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Slepian’s Inequality, Modularity
and Integral Orderings

J. Hoffmann-Jørgensen

Abstract. Slepian’s inequality comes in many variants under different sets of
regularity conditions. Unfortunately, some of these variants are wrong and
other variants are imposing to strong regularity conditions. The first part of
this paper contains a unified version of Slepian’s inequality under minimal
regularity conditions, covering all the variants I know about. It is well known
that Slepian’s inequality is closely connected to integral orderings in general
and the supermodular ordering in particular. In the last part of the paper
I explore this connection and corrects some results in the theory of integral
orderings.
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1. Introduction

Throughout this paper, we let (Ω,ℱ , 𝑃 ) denote a fixed probability space. If 𝑘 ≥ 1
is an integer, we set [𝑘] := {1, . . . , 𝑘}. If 𝑋 = (𝑋1, . . . , 𝑋𝑘) is a random vector
such that 𝑋1, . . . , 𝑋𝑘 ∈ 𝐿2(𝑃 ), we let �̄�𝑖 := 𝑋𝑖−𝐸𝑋𝑖 denote the centered random
variables for 𝑖 ∈ [𝑘] and we let Σ𝑋 = {𝜎𝑋𝑖𝑗 } and Π𝑋 = {𝜋𝑋𝑖𝑗 } denote the covariance
matrix and intrinsic metric of 𝑋 ; that is:

𝜎𝑋𝑖𝑗 := 𝐸(�̄�𝑖�̄�𝑗) 𝑎𝑛𝑑 𝜋𝑋𝑖𝑗 := 𝐸(�̄�𝑖 − �̄�𝑗)
2 ∀ 𝑖, 𝑗 ∈ [𝑘].

Note that 𝜋𝑋𝑖𝑗 = 𝜎𝑋𝑖𝑖 + 𝜎𝑋𝑗𝑗 − 2 𝜎𝑋𝑖𝑗 for all 𝑖, 𝑗 ∈ [𝑘] and that 𝑑(𝑖, 𝑗) :=
√

𝜋𝑋𝑖𝑗 is a

Hilbertian pseudo-metric on [𝑘].

It is well known that Slepian’s inequality is an important tool in the theory of
Gaussian processes. Let 𝑋 = (𝑋1, . . . , 𝑋𝑘) and 𝑌 = (𝑌1, . . . , 𝑌𝑘) be 𝑘-dimensional
Gaussian vectors with zero means. Slepian’s inequality comes in many variants;
see [2, 6, 7, 9, 10, 12, 16, 18], but in essence it states that 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋) for all
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𝑓 : R𝑘 → R satisfying

(𝜎𝑋𝑖𝑗 − 𝜎𝑌𝑖𝑗 )
∂2𝑓

∂𝑥𝑖∂𝑥𝑗
(𝑥) ≥ 0 or (𝜋𝑌𝑖𝑗 − 𝜋𝑋𝑖𝑗 ) ∂2𝑓

∂𝑥𝑖∂𝑥𝑗
(𝑥) ≥ 0 ∀𝑖, 𝑗 (1.1)

plus some regularity conditions. Condition (1.1) indicates that 𝑓 should be suffi-
ciently smooth (at least twice differentiable), but Slepian’s inequality is often used
for indicator functions which are not even continuous. In most of the literature
the indicator case and the smooth case are treated separately. The most general
form of Slepian’s inequality is found in [7] and [9] where (1.1) is interpreted in the
sense of Schwartz distributions. However, Theorem 3.11 on p. 74 in [9] is false as
it stands:

Example A: Let 𝑘 ≥ 2 be an integer, let 𝑈,𝑈1, . . . , 𝑈𝑘 be independent 𝑁(0, 1)-
distributed random variables and set 𝑋 = (𝑈, . . . , 𝑈) and 𝑌 = (𝑈1, . . . , 𝑈𝑘). Then
𝑋 and 𝑌 are Gaussian random vectors such that 𝜎𝑌𝑖𝑖 = 𝜎𝑋𝑖𝑖 and 𝜎𝑌𝑖𝑗 = 0 < 1 = 𝜎𝑋𝑖𝑗
for 1 ≤ 𝑖 ∕= 𝑗 ≤ 1. Let 𝐷 := {𝑥 ∈ R𝑘 ∣ 𝑥1 = ⋅ ⋅ ⋅ = 𝑥𝑘} denote the diagonal
in R𝑘 and set 𝑓 = −1𝐷. Since 𝑓 = 0 Lebesgue a.e. we have 𝐸𝑓(𝑌 ) = 0 and
∂2𝑓

∂𝑥𝑖∂𝑥𝑗
= 0 in distribution sense for all 1 ≤ 𝑖, 𝑗 ≤ 𝑘 and since 𝑃 (𝑋 ∈ 𝐷) = 1, we

have 𝐸𝑓(𝑋) = −1 showing that Theorem 3.11 on p. 74 in [9] fails in this case.
Many other counterexamples can be constructed in a similar manner.

This observation calls for a closer glance at the validity of Slepian’s inequality
and Section 2 of this paper will be devoted to establish a unified form of Slepian’s
inequality under minimal regularity conditions on 𝑓 .

Slepian’s inequality is intimately connected with integral orderings in general
and the supermodular ordering in particular. If 𝑆 and 𝑇 are sets, we let 2𝑆 denote
the set of all subsets of 𝑆, we let 𝑇 𝑆 denote the set of all functions from 𝑆 into 𝑇 ,
and we let 𝐵(𝑆) denote the set of all bounded, real-valued functions on 𝑆. Recall
that (𝑇,≤) is a proset if 𝑇 is a non-empty set and ≤ is a relation on 𝑇 such that
≤ is reflexive (𝑡 ≤ 𝑡 ∀ 𝑡 ∈ 𝑇 ) and transitive (𝑡 ≤ 𝑢 , 𝑢 ≤ 𝑣 ⇒ 𝑡 ≤ 𝑣).

Let (𝑆,𝒜) be a measurable space; that is, 𝑆 is a non-empty set and 𝒜 is a
𝜎-algebra on 𝑆. Then we let 𝑀(𝑆,𝒜) denote the set of all 𝒜-measurable functions
from 𝑆 into R and we let Pr(𝑆,𝒜) denote the set of all probability measures on
(𝑆,𝒜). Let Φ ⊆ 𝑀(𝑆,𝒜) be a given set of functions. Then it is customary to define
the Φ-integral ordering on Pr(𝑆,𝒜), denoted ≤Φ, as follows: 𝜇 ≤Φ 𝜈 if and only if∫
𝑆
𝜙𝑑𝜇 ≤ ∫

𝑆
𝜙𝑑𝜈 for all 𝜙 ∈ Φ∩𝐿1(𝜇)∩𝐿1(𝜈). Then ≤Φ is a relation on Pr(𝑆,ℬ)

which is reflexive but not transitive and exhibits strange properties:

Example B: Let 𝑆 = R and let ℬ denote the Borel 𝜎-algebra on R. Let Φ denote
the set of all increasing, convex functions 𝜙 : R → R. Let 𝜇 be a Borel probability
measure such that

∫
R
𝑥+ 𝜇(𝑑𝑥) = ∞. Then Φ ∩ 𝐿1(𝜇) is the set of all constant

functions and so we have 𝜇 ≤Φ 𝜈 and 𝜈 ≤Φ 𝜇 for all 𝜈 ∈ Pr(R,ℬ). In particular, we
see that ≤Φ is not transitive and that the integral ordering ≤Φ is not a preordering.

To avoid such peculiarities, I shall introduce a slight modification of the
Φ-integral ordering. If Φ ⊆ R𝑆 , we define the Φ-integral ordering on Pr(𝑆,𝒜),
denoted ⪯Φ, as follows 𝜇 ⪯Φ 𝜈 if and only if

∫ ∗
𝜙𝑑𝜇 ≤ ∫ ∗ 𝜙𝑑𝜈 for all 𝜙 ∈ Φ,
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where
∫ ∗

𝑓 𝑑𝜇 denotes the upper 𝜇-integral of 𝑓 . Then (Pr(𝑆,𝒜),⪯Φ) is a proset.
If (Ω,ℱ , 𝑃 ) is a probability space and 𝑋,𝑌, 𝑍 : (Ω,ℱ) → (𝑆,𝒜) are measurable
functions, we let 𝑃𝑍(𝐴) = 𝑃 (𝑍 ∈ 𝐴) for 𝐴 ∈ 𝒜 denote the distribution of 𝑍 and
we write 𝑋 ⪯Φ 𝑌 if 𝑃𝑋 ⪯Φ 𝑃𝑌 . Note that 𝜇 ⪯Φ 𝜈 ⇒ 𝜇 ≤Φ 𝜈 and that the
converse implication holds if Φ ⊆ 𝐿1(𝜇)∩𝐿1(𝜈). In Section 3 we shall take a closer
look at integral orderings,

The classical stochastic ordering on R, usually denoted ⪯st, is the integral
ordering induced by the indicator functions {1[𝑎,∞) ∣ 𝑎 ∈ R}; that is 𝜇 ⪯st 𝜈
if and only if 𝜇([𝑎,∞)) ≤ 𝜈([𝑎,∞)) for all 𝑎 ∈ R. More generally, let (𝑆,≤) be
a proset. Then we let In(𝑆,≤) denote the set of all increasing functions from 𝑆
into R and we say that 𝐴 ⊆ 𝑆 is an upper interval if 1𝐴 ∈ In(𝑆,≤). We define
the stochastic ordering on 𝑆, denoted ⪯st, to be the integral ordering induced by
indicators of upper intervals; that is, 𝜇 ⪯st 𝜈 if and only if 𝜇∗(𝐴) ≤ 𝜈∗(𝐴) for
every upper interval 𝐴 ⊆ 𝑆. If 𝑢 ∈ 𝑆, we define the upper and lower intervals
[𝑢, ∗] := {𝑠 ∈ 𝑆 ∣ 𝑠 ≥ 𝑢} and [∗, 𝑢] := {𝑠 ∈ 𝑆 ∣ 𝑠 ≤ 𝑢} and we define the orthant
ordering, denoted ⪯or, to be the integral ordering induced by {1[𝑢,∗] ∣ 𝑢 ∈ 𝑆}; that
is, 𝜇 ⪯or 𝜈 if and only if 𝜇∗([𝑢, ∗]) ≤ 𝜈∗([𝑢, ∗]) for all 𝑢 ∈ 𝑆.

Let 𝑘 ≥ 1 be an integer. Then we let ≤ denote the product ordering on
R𝑘; that is, (𝑥1, . . . , 𝑥𝑘) ≤ (𝑦1, . . . , 𝑦𝑘) if and only if 𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖 = 1, . . . , 𝑘.
If 𝑥 = (𝑥1, . . . , 𝑥𝑘) and 𝑦 = (𝑦1, . . . , 𝑦𝑘) are vectors, we define the lattice infi-
mum and supremum as usual 𝑥 ∧ 𝑦 := (min(𝑥1, 𝑦1), . . . ,min(𝑥𝑘, 𝑦𝑘)) and 𝑥 ∨ 𝑦 :=
(max(𝑥1, 𝑦1), . . . ,max(𝑥𝑘, 𝑦𝑘)), and we define [𝑥, 𝑦] = {𝑧 ∈ R𝑘 ∣ 𝑥 ≤ 𝑧 ≤ 𝑦}.
We let ℬ𝑘 denote the Borel 𝜎-algebra on R𝑘. Let 𝑓 : R𝑘 → R be a given func-
tion. Then we say that 𝑓 is increasing (decreasing) if 𝑓 is increasing (decreas-
ing) with respect to the product ordering ≤. We say that 𝑓 is supermodular if
𝑓(𝑥) + 𝑓(𝑦) ≤ 𝑓(𝑥 ∨ 𝑦) + 𝑓(𝑥 ∧ 𝑦) for all 𝑥, 𝑦 ∈ R𝑘, we say that 𝑓 is submodular
if (−𝑓) is supermodular, and we say that 𝑓 is modular if 𝑓 is supermodular and
submodular. We define the following function spaces

sm(R𝑘) = {𝑓 ∈ 𝑀(R𝑘,ℬ𝑘) ∣ 𝑓 is supermodular }
m(R𝑘) = {𝑓 ∈ 𝑀(R𝑘,ℬ𝑘) ∣ 𝑓 is modular } , bm(R𝑘) = 𝐵(R𝑘) ∩ m(R𝑘)

bsm(R𝑘) = 𝐵(R𝑘) ∩ sm(R𝑘) , ism(R𝑘) = In(R𝑘,≤) ∩ sm(R𝑘)

and we let ⪯sm, ⪯bm, ⪯m, ⪯bsm and ⪯ism denote the integral orderings induced
by sm(R𝑘), bm(R𝑘), m(R𝑘), bsm(R𝑘) and ism(R𝑘), respectively. If 𝑘 = 1, then
every function is supermodular and every increasing function is Borel measurable.
Hence, in all dimensions there exists non-measurable supermodular functions and
if 𝑘 ≥ 2, there exists non-measurable increasing functions. However, in Prop.4.3
below we shall see that an increasing supermodular function is Borel measurable.

Let 𝜇 be a Borel probability measure on R𝑘 and let 𝐹1, . . . , 𝐹𝑘 : R → [0, 1]
denote the one-dimensional marginal distribution functions of 𝜇. Then

𝐹 (𝑥1, . . . , 𝑥𝑘) := min(𝐹1(𝑥1), . . . 𝐹𝑘(𝑥𝑘))
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is a 𝑘-dimensional distribution function, and if 𝜆𝐹 is the associated Lebesgue-

Stieltjes measure, then 𝜆𝐹 is a Borel probability measure on R𝑘 with the same
one-dimensional marginals as 𝜇. By a theorem of A.H. Tchen (see [19]), we have∫
R𝑘 𝑓 𝑑𝜇 ≤ ∫R𝑘 𝑓 𝑑𝜆𝐹 for every supermodular function which is continuous, and

satisfies a certain (uniform) integrability condition. In Theorem 4.7, we shall see
that 𝜇 ⪯bsm 𝜆𝐹 . In the modern literature it is frequently claimed that 𝜇 ≤sm 𝜆𝐹
and that ≤sm coincide with ≤bsm; see for instance [10]. The following example
shows that both claims fail when 𝑘 ≥ 3.

Example C: (see [17]). Let 𝑈 be a strictly positive random variable with a one-sided
Cauchy distribution; that is, with distribution function 𝐹 given by:

𝐹 (𝑥) = 2
𝜋 arctan(𝑥) if 𝑥 > 0 and 𝐹 (𝑥) = 0 if 𝑥 ≤ 0

Since 𝑈 is strictly positive, we may define 𝑉 := 1
𝑈 and 𝑊 := 1

2 ∣𝑈 − 𝑉 ∣. A
straightforward computation shows that 𝑈 , 𝑉 and 𝑊 all have distribution function
𝐹 and so we have 𝐹𝑈 (𝑥) = 𝐹𝑉 (𝑥) = 𝐹𝑊 (𝑥) = 𝐹 (𝑥) and 𝐹(𝑈,𝑈,𝑈)(𝑥, 𝑦, 𝑧) =
min(𝐹 (𝑥), 𝐹 (𝑦), 𝐹 (𝑧)) for all 𝑥, 𝑦, 𝑧 ∈ R. By [19] and Theorem 4.7 below, we
have that (𝑈, 𝑉,𝑊 ) ⪯bsm (𝑈,𝑈, 𝑈) and (𝑈, 𝑉,𝑊 ) ⪯ism (𝑈,𝑈, 𝑈). Set 𝑓(𝑥, 𝑦, 𝑧) =
𝑥 + 𝑦 − 2𝑧. Then 𝑓 is continuous, linear and modular and we have

𝑓(𝑈,𝑈, 𝑈) = 0 , 𝑓(𝑈, 𝑉,𝑊 ) = 2𝑈1{𝑈<1} + 2
𝑈 1{𝑈≥1}

0 < 𝑓(𝑈, 𝑉,𝑊 ) ≤ 2 , 𝐸𝑓(𝑈,𝑈, 𝑈) = 0 < 𝐸𝑓(𝑈, 𝑉,𝑊 ) = 2 log 2
𝜋 .

Hence, we see that (𝑈, 𝑉,𝑊 ) ∕≤sm (𝑈,𝑈, 𝑈) and (𝑈, 𝑉,𝑊 ) ∕≤m (𝑈,𝑈, 𝑈) which
shows the integrability condition in Theorem 5 of [19] cannot be removed and
that 𝜇 ⪯bsm 𝜈 does not imply 𝜇 ≤m 𝜈.

Let 𝑋 = (𝑋1, . . . , 𝑋𝑘) and 𝑌 = (𝑌1, . . . , 𝑌𝑘) be 𝑘-dimensional Gaussian vec-
tors with zero means and covariances {𝜎𝑋𝑖𝑗 } and {𝜎𝑌𝑖𝑗} such that 𝜎𝑌𝑖𝑖 = 𝜎𝑋𝑖𝑖 for all

1 ≤ 𝑖 ≤ 𝑘 and 𝜎𝑌𝑖𝑗 ≤ 𝜎𝑋𝑖𝑗 for all 1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘. Let 𝑓 be a supermodular, locally

Lebesgue integrable function. Then we have ∂2𝑓
∂𝑥𝑖∂𝑥𝑗

≥ 0 in distribution sense for all

1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘. So it is tempting to infer that Slepian’s inequality implies 𝑌 ⪯sm 𝑋 .
However Slepian’s inequality only shows that 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑌 ) if 𝑓 satisfies some
additional regularity conditions. It can be shown that 𝑌 ⪯bsm 𝑋 ; see Theorem 2.8
and Theorem 4.7, but Example C shows that 𝑌 ⪯bsm 𝑋 does not imply 𝑌 ⪯sm 𝑋
in general, and I don’t know if we really have 𝑌 ⪯sm 𝑋 if 𝑋 and 𝑌 are Gaussian
vectors satisfying the above hypotheses. However, Theorem 2.8 and Theorem 4.8
shows that 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋) for a large classs of unbounded supermodular func-
tions. Section 4 is devoted the study of the modular orderings introduced above.

2. Slepian’s inequality

In this section I shall prove a general version of Slepian’s inequality where the
partial derivatives are understood in the sense of Schwartz distributions. The idea
is to approximate the function 𝑓 : R𝑘 → R with infinitely often differentiable
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functions 𝑓1, 𝑓2, . . . satisfying Slepian’s inequality. The approximating sequence
will taken as the convolution integrals 𝑓𝑛(𝑥) =

∫
𝐾

𝑓(𝑥+ 𝑦
𝑛 )𝑔(𝑦) 𝑑𝑦 where 𝐾 ⊆ R𝑘

is a compact starshaped set and 𝑔 is a nonnegative infinitely often differentiable
function satisfying {𝑔 ∕= 0} ⊆ 𝐾 and

∫
𝐾

𝑔(𝑦) 𝑑𝑦 = 1. Below we shall see that if 𝑓
is locally Lebesgue integrable, then 𝑓𝑛 is an infinitely often differentiable function
inheriting many properties of 𝑓 and that 𝑓𝑛(𝑥) → 𝑓(𝑥) for all 𝑥 in a large subset
of R𝑘. However, this requires some preparatory definitions and lemmas.

Let 𝑆 be a set and let 𝜅 : 𝑆 → [0,∞] be a given function. If 𝑓 ∈ R𝑆 , we let
∣∣𝑓 ∣∣𝜅 := inf{𝑐 ∈ R+ ∣ ∣𝑓(𝑠)∣ ≤ 𝑐 𝜅(𝑠) ∀ 𝑠 ∈ 𝑆} denote the weighted sup-norm of
𝑓 ∈ R𝑆 with the usual convention inf ∅ := ∞. If Φ ⊆ R𝑆 is a set of functions, we
let Φ+ := Φ ∩ R𝑆

+ denote the set of all nonnegative functions in Φ. If 𝑆 and 𝑇
are topological spaces and 𝜙 : 𝑆 → 𝑇 is a given function, we let 𝐶(𝜙) denote the
continuity set of 𝜙; that is, the set of all 𝑠 ∈ 𝑆 such that 𝜙 is continuous at 𝑠.

Let 𝑘 ≥ 1 be an integer and set [𝑘] := {1, . . . , 𝑘}. We let 𝑒1, . . . , 𝑒𝑘 denote the
standard unit vectors in R𝑘. If 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘 and 𝑦 = (𝑦1, . . . , 𝑦𝑘) ∈ R𝑘,

we let ⟨𝑥, 𝑦⟩ =
∑𝑘

𝑖=1 𝑥𝑖𝑦𝑖 denote the inner product and we let ∣∣𝑥∣∣ = ⟨𝑥, 𝑥⟩1/2
denote the Euclidian norm. We let 𝜆𝑘 denote the 𝑘-dimensional Lebesgue measure
on R𝑘. We say that 𝑓 : R𝑘 → R is locally bounded if 𝑓 is bounded on every
compact subset of R𝑘, we say that 𝑓 is locally 𝜆𝑘-integrable if 1𝐶𝑓 ∈ 𝐿1(𝜆𝑘)
for every compact set 𝐶 ⊆ R𝑘, and we let 𝐿1loc(𝜆𝑘) denote the set of all locally
𝜆𝑘-integrable functions.

Let 𝑓 : R𝑘 → R be a given function. If 𝑖 ∈ [𝑘] and 𝑡 ∈ R, we let Δ𝑡
𝑖𝑓(𝑥) :=

𝑓(𝑥 + 𝑡𝑒𝑖) − 𝑓(𝑥) for 𝑥 ∈ R𝑘 denote the usual difference operator. If 𝜃 ∈ R𝑘,
we say that 𝑓 is 𝜃-differentiable at 𝑥 if 𝑡 ↷ 𝑓(𝑥 + 𝑡𝜃) is differentiable at 0

and if so we let ∂𝑓
∂𝜃 (𝑥) := lim𝑡→0 𝑡−1 (𝑓(𝑥 + 𝑡𝜃) − 𝑓(𝑥)) denote the directional 𝜃-

derivative of 𝑓 at 𝑥. In particular, we let ∂𝑓
∂𝑥𝑖

(𝑥) := lim𝑡→0 𝑡−1Δ𝑡
𝑖𝑓(𝑥) denote the

partial derivative whenever it exists. We say that 𝑓 is partially differentiable at
𝑥 if the partial derivatives ∂𝑓

∂𝑥𝑖
(𝑥) exists for all 𝑖 ∈ [𝑘] and if so we let ∇𝑓(𝑥) :=

( ∂𝑓
∂𝑥1

(𝑥), . . . , ∂𝑓
∂𝑥𝑘

(𝑥)) denote the gradient of 𝑓 . We say that 𝑓 is 𝜃-differentiable if 𝑓

is 𝜃-differentiable at all 𝑥 ∈ R𝑘 and we say that 𝑓 is continuously 𝜃-differentiable
if 𝑓 is 𝜃-differentiable and 𝑥 ↷

∂𝑓
∂𝜃 (𝑥) is continuous on R𝑘. We say that 𝑓 is

partially differentiable if 𝑓 is partially differentiable at all 𝑥 ∈ R𝑘. Recall that 𝑓 is
Fréchet differentiable at 𝑥 if the directional derivative ∂𝑓

∂𝜃 (𝑥) exists for all 𝜃 ∈ R𝑘

and ∂𝑓
∂𝜃 (𝑥) = ⟨𝜃,∇𝑓(𝑥)⟩ for all 𝜃 ∈ R𝑘. Recall that 𝑓 is differentiable at 𝑥 with

differential 𝐷 ∈ R𝑘 if lim𝜃→0 ∥𝜃∥−1∣𝑓(𝑥 + 𝜃) − 𝑓(𝑥) − ⟨𝐷, 𝜃⟩∣ = 0.

If 𝑖1, . . . , 𝑖𝑝 ∈ [𝑘], we let ∂𝑝𝑓
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑥) denote the 𝑝th order partial derivative

whenever it exists. We let 𝐶∞(R𝑘) denote the set of all infinitely often differen-
tiable functions 𝑓 : R𝑘 → R and if 𝜅 : R𝑘 → [0,∞] is a nonnegative function we
let 𝐶∞

𝜅 (R𝑘) denote the set of all 𝑓 ∈ 𝐶∞(R𝑘) satisfying

∥𝑓∥𝜅 < ∞ and
∥∥∥ ∂𝑝𝑓
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝

∥∥∥
𝜅
< ∞ ∀𝑝 ≥ 1 ∀𝑖1, . . . , 𝑖𝑝 ∈ [𝑘].
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In particular, we let 𝐶∞
𝑏 (R𝑘) denote the set of all bounded, infinitely often dif-

ferentiable functions with bounded derivatives of all orders. We let 𝐶∞∘∘(R𝑘) de-
note the set of all 𝑓 ∈ 𝐶∞(R𝑘) with compact support and we let 𝜛 denote the
usual inductive limit topology on 𝐶∞

∘∘(R𝑘); see [13]. We let 𝒟(R𝑘) denote the set
all Schwartz distributions ; that is, the set of all 𝜛-continuous linear functionals
𝜁 : 𝐶∞

∘∘(R𝑘) → R. If 𝜁 ∈ 𝒟(R𝑘), we write 𝜁 ≥ 0 if and only if 𝜁(𝜙) ≥ 0 for all
𝜙 ∈ 𝐶∞∘∘(R𝑘)+. If 𝑓 ∈ 𝐿1loc(𝜆𝑘), then 𝑓(𝜙) :=

∫
R𝑘 𝑓(𝑥)𝜙(𝑥) 𝑑𝑥 for 𝜙 ∈ 𝐶∞∘∘(R𝑘)

defines a Schwartz distribution corresponding to 𝑓 and if 𝑖1, . . . , 𝑖𝑝 ∈ [𝑘], then

∂𝑖1,...,𝑖𝑝𝑓(𝜙) := (−1)𝑝
∫
R𝑘

𝑓(𝑥) ∂𝑝𝜙
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑥) 𝑑𝑥 for 𝜙 ∈ 𝐶∞

∘∘(R𝑘)

defines a Schwartz distributions, which corresponds to the “the partial derivative”
∂𝑝𝑓

∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 .

Recall that 𝐾 ⊆ R𝑘 is starshaped if 0 ∈ 𝐾 and 𝛼𝑥 ∈ 𝐾 for all 𝑥 ∈ 𝐾 and all
0 ≤ 𝛼 ≤ 1. Let 𝐾 ⊆ R𝑘 be a bounded, starshaped Borel set and let 𝑥 ∈ R𝑘 be a
given vector. Then we say that 𝑓 is continuous at 𝑥 along 𝐾 if

lim
𝑛→∞

{
sup
𝑦∈𝐾

∣𝑓(𝑥 + 𝑦
𝑛 ) − 𝑓(𝑥)∣

}
= 0 (2.1)

and we let 𝐶𝐾(𝑓) denote the set of all 𝑥 ∈ R𝑘 satisfying (2.1). If 0 belongs to the
interior of 𝐾, then continuity along 𝐾 coincides with ordinary continuity. We say
that 𝑓 is right continuous at 𝑥 if 𝑓 is continuous at 𝑥 along the unit cube [0, 1]𝑘,
say that 𝑓 is left continuous at 𝑥 if 𝑓 is continuous at 𝑥 along the negative unit
cube [−1, 0]𝑘.

Let 𝐾 ⊆ R𝑘 be a bounded, starshaped Borel set. Then we say that 𝑓 is
approximately continuous at 𝑥 along 𝐾 if 𝑓 is locally 𝜆𝑘-integrable and

lim
𝑛→∞

∫
𝐾

∣𝑓(𝑥 + 𝑦
𝑛 ) − 𝑓(𝑥)∣ 𝑑𝑦 = 0. (2.2)

We let 𝐶𝐾
ap(𝑓) denote the set of all 𝑥 ∈ R𝑘 satisfying (2.2). Let 𝑓 ∈ 𝐿1loc(𝜆𝑘) be a

Borel function. By the Fubini-Tonelli theorem, we see that 𝐶𝐾
ap(𝑓) is a Borel set

containing 𝐶𝐾(𝑓) and by Theorem III.12.8 p. 217 in [1] we have 𝜆𝑘(R𝑘 ∖ 𝐶𝐾
ap(𝑓)) =

0.

If 𝑓, 𝑔 : R𝑘 → R are 𝜆𝑘-measurable and
∫
R𝑘 ∣𝑓(𝑥−𝑦) 𝑔(𝑦)∣ 𝑑𝑦 < ∞ for all 𝑥 ∈

R𝑘, we say that the convolution exists and we let (𝑓 ★𝑔)(𝑥) :=
∫
R𝑘 𝑓(𝑥−𝑦) 𝑔(𝑦) 𝑑𝑦

denote the convolution of 𝑓 and 𝑔.

Lemma 2.1. Let 𝑓 : R𝑘 → R be a locally 𝜆𝑘-integrable function and let 𝑔 : R𝑘 →
R be a bounded Lebesgue measurable function with compact support. Then the
convolution ℎ(𝑥) := (𝑓 ★ 𝑔)(𝑥) exists and is continuous on R𝑘 and if 𝜃 ∈ R𝑘 is a
given vector, we have

(1) If 𝑓 is 𝜃-differentiable and ∂𝑓
∂𝜃 ∈ 𝐿1loc(𝜆𝑘), then ℎ is continuously 𝜃-different-

iable and we have ∂ℎ
∂𝜃 (𝑥) = (∂𝑓∂𝜃 ★ 𝑔)(𝑥) ∀𝑥 ∈ R𝑘.
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(2) If 𝑔 is 𝜃-differentiable and ∂𝑔
∂𝜃 is bounded, then ℎ is continuously 𝜃-different-

iable and we have ∂ℎ
∂𝜃 (𝑥) = (𝑓 ★ ∂𝑔

∂𝜃 )(𝑥) ∀𝑥 ∈ R𝑘.

(3) If 𝑓 and 𝑔 are 𝜃-differentiable, ∂𝑓
∂𝜃 ∈ 𝐿1loc(𝜆𝑘) and ∂𝑔

∂𝜃 is bounded, then we
have ∫

R𝑘

∂𝑓
∂𝜃 (𝑥) ⋅ 𝑔(𝑦) 𝑑𝑦 = −

∫
R𝑘

𝑓(𝑦) ⋅ ∂𝑔∂𝜃 𝑔(𝑦) 𝑑𝑦.

Proof. Set 𝐵𝑟 := {𝑥 ∈ R𝑘 ∣ ∣∣𝑥∣∣ ≤ 𝑟} for 𝑟 ≥ 0. Since 𝑔 is bounded with compact
support, there exist 𝑎, 𝜌 > 0 such that ∣𝑔(𝑥)∣ ≤ 𝑎 for all 𝑥 ∈ R𝑘 and 𝑔(𝑥) = 0 for
all 𝑥 /∈ 𝐵𝜌. Since 𝑓 is locally 𝜆𝑘-integrable and ∣𝑓(𝑥−𝑦) 𝑔(𝑦)∣ ≤ 𝑎 ∣𝑓(𝑥−𝑦)∣ 1𝐵𝜌(𝑦),

we see that the convolution ℎ(𝑥) = (𝑓 ★ 𝑔)(𝑥) exists for all 𝑥 ∈ R𝑘. Let 𝑟 > 0 and
𝑥 ∈ 𝐵𝑟 be given. Then 𝑓𝑟 := 𝑓 1𝐵𝑟+𝜌 ∈ 𝐿1(𝜆𝑘) and we have 𝑓𝑟(𝑥 − 𝑦) 𝑔(𝑦) =

𝑓(𝑥− 𝑦) 𝑔(𝑦) for all 𝑦 ∈ R𝑘. Hence, we have (𝑓𝑟 ★ 𝑔)(𝑥) = ℎ(𝑥) for all 𝑥 ∈ 𝐵𝑟 and
by Theorem 1.1.6 p. 4 in [14], we have that 𝑓𝑟 ★ 𝑔 is continuous on R𝑘. Hence, we
see that ℎ is continuous on R𝑘.

Suppose that 𝑓 is 𝜃-differentiable and that ∂𝑓
∂𝜃 ∈ 𝐿1loc(𝜆𝑘). Let 𝑥 ∈ R𝑘 be

given. By the argument above we have that the convolutions ∂𝑓
∂𝜃 ★ 𝑔 and ∣∂𝑓∂𝜃 ∣ ★ 1𝐵𝑟

exist and are continuous on R𝑘 for all 𝑟 ≥ 0. Let 𝑥 ∈ R𝑘 be given. By the Fubini-
Tonelli theorem and locally boundedness of ∣∂𝑓∂𝜃 ∣ ★ 1𝐵𝑟 , there exists a 𝜆𝑘-null set

𝑁𝑥 such that 𝑠 ↷
∂𝑓
∂𝜃 (𝑥− 𝑦 + 𝑠𝜃) is locally 𝜆1-integrable on R for all 𝑦 /∈ 𝑁𝑥 and

we have ∫ 𝑡

0

(∂𝑓∂𝜃 ★ 𝑔)(𝑥 + 𝑠𝜃) 𝑑𝑠 =

∫ 𝑡

0

𝑑𝑠

∫
R𝑘

∂𝑓
∂𝜃 (𝑥− 𝑦 + 𝑠𝜃)𝑔(𝑦) 𝑑𝑦

=

∫
R𝑘

𝑑𝑦

∫ 𝑡

0

∂𝑓
∂𝜃 (𝑥 − 𝑦 + 𝑠𝜃) 𝑔(𝑦) 𝑑𝑠.

Let 𝑦 ∈ R𝑘∖𝑁𝑥 be given and set 𝐹𝑥,𝑦(𝑠) := 𝑓(𝑥−𝑦+𝑠𝜃). Then 𝐹𝑥,𝑦 is differentiable

with derivative 𝐹 ′
𝑥,𝑦(𝑠) = ∂𝑓

∂𝜃 (𝑥 − 𝑦 + 𝑠𝜃) and 𝐹 ′
𝑥,𝑦 is locally 𝜆1-integrable. By

a classical theorem of Denjoy and Banach (see Thm. IX.4.5 p. 271 and Thm.
IX.7.4 p. 284 in [15]), we see that 𝐹𝑥,𝑦 is absolutely continuous with Lebesgue

derivative 𝐹 ′
𝑥,𝑦. In particular, we have 𝐹𝑥,𝑦(𝑡) − 𝐹𝑥,𝑦(0) =

∫ 𝑡
0 𝐹

′
𝑥,𝑦(𝑠) 𝑑𝑠 and since∫

R𝑘 𝐹𝑥,𝑦(𝑠) 𝑔(𝑦) 𝑑𝑦 = ℎ(𝑥 + 𝑠𝜃), we have∫ 𝑡

0

(∂𝑓∂𝜃 ★ 𝑔)(𝑥 + 𝑠𝜃) 𝑑𝑠 =

∫
R𝑘

(𝐹𝑥,𝑦(𝑡) − 𝐹𝑥,𝑦(0)) 𝑔(𝑦) 𝑑𝑦 = ℎ(𝑥 + 𝑡𝜃) − ℎ(𝑥).

Since ∂𝑓
∂𝜃 ★ 𝑔 is continuous, we see that ℎ is continuously 𝜃-differentiable with

∂ℎ
∂𝜃 (𝑥) = (∂𝑓∂𝜃 ★ 𝑔)(𝑥) for all 𝑥 ∈ R𝑘. Thus, (1) is proved and (2) follows in the same
manner. Applying (1) and (2) on 𝑓(𝑦) and 𝑔(−𝑦) with 𝑥 = 0, we obtain (3). □

Lemma 2.2. Let 𝑓 : R𝑘 → R be a locally 𝜆𝑘-integrable function and let 𝐾 ⊆ R𝑘 be
starshaped, bounded Borel set. Let 𝑔 ∈ 𝐶∞

+ (R𝑘) be given such that {𝑔 ∕= 0} ⊆ 𝐾

and
∫
𝐾 𝑔(𝑦) 𝑑𝑦 = 1. Set 𝑔𝑛(𝑥) := 𝑛𝑘 𝑔(−𝑛𝑥) and 𝑓𝑛(𝑥) := (𝑓 ★ 𝑔𝑛)(𝑥) for 𝑛 ≥ 1
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and 𝑥 ∈ R𝑘; see Lemma 2.1. Let 𝑝 ≥ 1 and 𝑖1, . . . , 𝑖𝑝 ∈ [𝑘] be given integers and
let us define

𝜅(𝑥) = sup
𝑦∈𝐾

∣𝑓(𝑥 + 𝑦)∣ ∀𝑥 ∈ R , 𝑐𝑖1...𝑖𝑝 = sup
𝑦∈𝐾

∣ ∂𝑝𝑔
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑦)∣.

Then 0 ≤ 𝑐11,...,𝑖𝑝 < ∞ and we have

(1) 𝑓𝑛 ∈ 𝐶∞(R𝑘) and 𝑓𝑛(𝑥) =

∫
R𝑘

𝑓(𝑥 + 𝑦
𝑛 )𝑔(𝑦)𝑑𝑦 ∀𝑥 ∈ R𝑘 ∀𝑛 ≥ 1.

(2) ∂𝑝𝑓𝑛
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑥) = (−𝑛)𝑝

∫
R𝑘

𝑓(𝑥 + 𝑦
𝑛 ) ∂𝑝𝑔

∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑦) 𝑑𝑦 ∀𝑥 ∈ R𝑘 ∀𝑛 ≥ 1.

(3) ∣𝑓𝑛(𝑥)∣ ≤ 𝜅(𝑥) and ∣ ∂𝑝𝑓𝑛
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑥)∣ ≤ 𝑐𝑖1...𝑖𝑝𝑛

𝑝𝜅(𝑥) ∀𝑥 ∈ R𝑘 ∀𝑛 ≥ 1.

(4) lim
𝑛→∞ 𝑓𝑛(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ 𝐶𝐾

ap(𝑓).

(5) lim
𝑛→∞

{
sup
𝑦∈𝐶

∫
𝐶

∣𝑓(𝑥 + 𝑦
𝑛 ) − 𝑓(𝑥)∣𝑑𝑥

}
= 0 for all compact sets 𝐶 ⊆ R𝑘.

(6) If 𝑓 is bounded with compact support, we have

lim
𝑛→∞

∫
R𝑘

∣(𝑓𝑛(𝑥) − 𝑓(𝑥))𝜓(𝑥)∣𝑑𝑥 = 0 ∀𝜓 ∈ 𝐿1loc(𝜆𝑘)

.

Proof. (1)–(2): Note that 𝑔, 𝑔𝑛, 𝐺 = ∂𝑝𝑔
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 and 𝐺𝑛 = ∂𝑝𝑔𝑛

∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 are infinitely

often differentiable with compact supports and we have

𝐺𝑛(𝑥) = (−1)𝑝 𝑛𝑘+𝑝𝐺(−𝑛𝑥).

So by Lemma 2.1 we see that 𝑓𝑛 ∈ 𝐶∞(R𝑘) and that ∂𝑝𝑓𝑛
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑥) = 𝑓 ★ 𝐺𝑛.

Hence, we see that (1)–(2) follows from the substitution 𝑧 = − 𝑦
𝑛 .

(3): Let 𝑛 ≥ 1 be given. Since 𝐾 is starshaped, we have ∣𝑓(𝑥 + 𝑦
𝑛 )∣ ≤ 𝜅(𝑥)

for all (𝑥, 𝑦) ∈ R𝑘×𝐾 and since 𝑔 ≥ 0 and
∫
𝐾

𝑔(𝑦) 𝑑𝑦 = 1, we see that (3) follows
from (1)–(2).

(4): By (1), we have ∣𝑓𝑛(𝑥) − 𝑓(𝑥)∣ ≤ 𝑎
∫
𝐾
∣𝑓(𝑥 + 𝑦

𝑛 ) − 𝑓(𝑥)∣ 𝑑𝑦 where 𝑎 :=
sup𝑦∈𝐾 𝑔(𝑦). Since 𝑎 < ∞, we see that (4) holds.

(5): Let 𝑟, 𝜀 > 0 be given and set 𝐵𝑟 := {𝑥 ∈ R𝑘 ∣ ∣∣𝑥∣∣ < 𝑟}. Since 𝑓 ∈
𝐿1loc(𝜆𝑘), we have 𝑓𝑟 := 1𝐵1+𝑟 𝑓 ∈ 𝐿1(𝜆𝑘). By Theorem 1.1.5 in [14], there exists
0 < 𝛿 < 1 such that

∫
R𝑘 ∣𝑓𝑟(𝑥 + 𝑢) − 𝑓𝑟(𝑥)∣ 𝑑𝑥 < 𝜀 for all ∣∣𝑢∣∣ ≤ 𝛿. Let 𝑥, 𝑦 ∈ 𝐵𝑟

and 𝑛 ≥ 𝑟
𝛿 be given. Since ∣∣ 𝑦𝑛 ∣∣ ≤ 𝛿 < 1, we have 𝑥 ∈ 𝐵𝑟+1 and 𝑥 + 𝑦

𝑛 ∈ 𝐵𝑟+1 and
so we have 𝑓(𝑥) = 𝑓𝑟(𝑥) and 𝑓(𝑥 + 𝑦

𝑛 ) = 𝑓𝑟(𝑥 + 𝑦
𝑛 ). Hence, we have∫

𝐵𝑟

∣𝑓(𝑥 + 𝑦
𝑛 ) − 𝑓(𝑥)∣𝑑𝑥 ≤

∫
R𝑘

∣𝑓𝑟(𝑥 + 𝑦
𝑛 ) − 𝑓𝑟(𝑥)∣𝑑𝑥 ≤ 𝜀

for all 𝑛 ≥ 𝑟
𝛿 and all 𝑦 ∈ 𝐵𝑟. Since 𝑟 > 0 is arbitrary, we see that (5) holds.
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(6): Suppose that 𝑓 is bounded with compact support. Then

𝑏 := sup
𝑥∈R𝑘

∣𝑓(𝑥)∣ < ∞

and there exists 𝑟 > 0 such that {𝑓 ∕= 0} ∪ {𝑔 ∕= 0} ⊆ 𝐵𝑟. By (1), we see that
{𝑓𝑛 ∕= 0} ⊆ 𝐵2𝑟 and that ∣𝑓𝑛(𝑥)∣ ≤ 𝑏 1𝐵2𝑟(𝑥). By (4), we see that 𝑓𝑛(𝑥) → 𝑓(𝑥)
𝜆𝑘-a.e. and so we see that (6) follows from Lebesgue’s convergence theorem. □

Lemma 2.3. Let 𝑓 : R𝑘 → R be a locally 𝜆𝑘-integrable function and let 𝐾 ⊆ R𝑘 be
a starshaped, bounded Borel set. Let 𝑔 ∈ 𝐶∞

+ (R𝑘) be given such that {𝑔 ∕= 0} ⊆ 𝐾

and
∫
𝐾

𝑔(𝑦) 𝑑𝑦 = 1 and set 𝑓𝑛(𝑥) =
∫
𝐾

𝑓(𝑥 + 𝑦
𝑛 ) 𝑔(𝑦) 𝑑𝑦 for 𝑛 ≥ 1 and 𝑥 ∈ R𝑘;

see Lemma 2.2
Let 𝐴 = {𝑎𝑖𝑗} be a (𝑘 × 𝑘)-matrix and let ℋ𝐴 denote the set of all twice

partially differentiable functions ℎ : R𝑘 → [0,∞) with compact support such that ℎ,
∂ℎ
∂𝑥𝑖

and ∂2ℎ
∂𝑥𝑖∂𝑥𝑗

are locally 𝜆𝑘-integrable for all 𝑖, 𝑗 ∈ [𝑘] and
∑𝑘

𝑖=1

∑𝑘
𝑗=1 𝑎𝑖𝑗

∂2ℎ
∂𝑥𝑖∂𝑥𝑗

is bounded. Let 𝜖1, 𝛿1, 𝜖2, 𝛿2, . . . > 0 be positive numbers such that 𝜖𝑛 → 0 and
𝛿𝑛 → 0. Then the following four statements are equivalent:

(1)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗∂𝑖𝑗𝑓 ≥ 0.

(2)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗

∫
R𝑘

𝑓(𝑥) ∂2ℎ
∂𝑥𝑖∂𝑥𝑗

(𝑥)𝑑𝑥 ≥ 0 ∀ℎ ∈ ℋ𝐴.

(3)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗
∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) ≥ 0 ∀𝑥 ∈ R𝑘 ∀𝑛 ≥ 1.

(4)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗Δ
𝜖𝑛
𝑖 Δ𝛿𝑛

𝑗 𝑓(𝑥) ≥ 0 𝜆𝑘-a.e. ∀𝑛 ≥ 1.

In particular, we have

(5) If 𝑓 is convex and 𝐴 is nonnegative definite, then
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗∂𝑖𝑗𝑓 ≥ 0

and if 𝑓 is twice partially differentiable and 𝑓 , ∂𝑓
∂𝑥𝑖

and ∂2𝑓
∂𝑥𝑖∂𝑥𝑗

are locally 𝜆𝑘-

integrable for all 𝑖, 𝑗 ∈ [𝑘], then we have

(6)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗∂𝑖𝑗𝑓 ≥ 0 ⇔
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗
∂2𝑓

∂𝑥𝑖∂𝑥𝑗
(𝑥) ≥ 0 𝜆𝑘-a.e.

Proof. Set 𝜁 =
∑𝑘

𝑖=1

∑𝑘
𝑗=1 𝑎𝑖𝑗 ∂𝑖𝑗𝑓 , 𝐹𝑛(𝑥) =

∑𝑘
𝑖=1

∑𝑘
𝑗=1 𝑎𝑖𝑗

∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) and

𝑔𝑛(𝑥) = 𝑛𝑘 𝑔(−𝑛𝑥) for all 𝑥 ∈ R𝑘 and all 𝑛 ≥ 1.
(1) ⇒ (2): Suppose that 𝜁 ≥ 0 and let ℎ ∈ ℋ𝐴 be given. Set 𝐻(𝑥) =∑𝑘

𝑖=1

∑𝑘
𝑗=1 𝑎𝑖𝑗

∂2ℎ
∂𝑥𝑖∂𝑥𝑗

(𝑥). By Lemma 2.2 and local 𝜆𝑘-integrability of ℎ and 𝐻 , we

have that the convolutions ℎ𝑛 := ℎ★𝑔𝑛 and 𝐻𝑛 := 𝐻★𝑔𝑛 exist and satisfies (1)–(6)
in Lemma 2.2. Since ℎ is nonnegative with compact support, we have ℎ𝑛, 𝐻𝑛 ∈
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𝐶∞
∘∘(R𝑘) and ℎ𝑛 ≥ 0 and by Lemma 2.1, we have 𝐻𝑛 =

∑
𝑖,𝑗 𝑎𝑖𝑗

∂2ℎ𝑛
∂𝑥𝑖∂𝑥𝑗

. Since

𝜁 ≥ 0, we have 0 ≤ 𝜁(ℎ𝑛) =
∫
R𝑘 𝑓𝐻𝑛 𝑑𝜆𝑘 for all 𝑛 ≥ 1. Recall that 𝐻 is bounded

with compact support and that 𝑓 is locally 𝜆𝑘-integrable. So by Lemma 2.2.(6)
applied to the pair (𝑓, 𝜓) := (𝐻, 𝑓), we have

∫
R𝑘 𝑓𝐻 𝑑𝜆𝑘 = lim𝑛→∞ 𝜁(ℎ𝑛) ≥ 0.

(2) ⇒ (3): Suppose that (2) holds and let 𝑥 ∈ R𝑘 and 𝑛 ≥ 1 be given. Set
𝑔𝑛𝑥(𝑦) = 𝑔𝑛(𝑥− 𝑦) for 𝑦 ∈ R𝑘. By Lemma 2.1, we have

∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) =

∫
R𝑘

𝑓(𝑦) ∂2𝑔𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥− 𝑦)𝑑𝑦 =

∫
R𝑘

𝑓(𝑦) ∂2𝑔𝑛𝑥
∂𝑥𝑖∂𝑥𝑗

(𝑦)𝑑𝑦

and since 𝑔𝑛𝑥 ∈ ℋ𝐴, we see that (2) implies (3).
(3) ⇒ (4): Suppose that (3) holds and let 𝑛 ≥ 1 and 𝑢, 𝑣 > 0 be given. Since

𝑓𝑛 ∈ 𝐶∞(R𝑘), we have

Δ𝑢
𝑖 Δ𝑣

𝑗 𝑓𝑛(𝑥) =

∫ 𝑢

0

𝑑𝑠

∫ 𝑣

0

∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥 + 𝑠𝑒𝑖 + 𝑡𝑒𝑗) 𝑑𝑡 ∀𝑥 ∈ R𝑘.

So by (3) we have
∑

𝑖,𝑗 𝑎𝑖𝑗 Δ𝑢
𝑖 Δ𝑣

𝑗 𝑓𝑛(𝑥) ≥ 0 for all 𝑥 ∈ R𝑘 and by Lemma 2.2.(4)

we have that 𝑓𝑛 → 𝑓 𝜆𝑘-a.e. Hence, we see that (3) implies (4).
(4) ⇒ (1): Suppose that (4) holds. As above, we see that (4) implies 𝐹𝑛(𝑥) ≥ 0

for all 𝑥 ∈ R𝑘. Let ℎ ∈ 𝐶∞∘∘(R𝑘)+ be given and set 𝐻 =
∑

𝑖,𝑗 𝑎𝑖𝑗
∂2ℎ

∂𝑥𝑖∂𝑥𝑗
. Then we

have 𝜁(ℎ) =
∫
R𝑘 𝑓𝐻 𝑑𝜆𝑘 and observe that 𝐻 is bounded with compact support.

So by Lemma 2.1.(3) and Lemma 2.2.(6) we have

𝜁(ℎ) = lim
𝑛→∞

∫
R𝑘

𝑓𝑛(𝑥)𝐻(𝑥) 𝑑𝑥 = lim
𝑛→∞

∫
R𝑘

𝐹𝑛(𝑥)ℎ(𝑥) 𝑑𝑥 ≥ 0.

Hence we see that (4) implies (1).
(5): Suppose that 𝑓 is convex and 𝐴 is nonnegative definite. Let 𝑛 ≥ 1 be a

given integer. By nonnegativity of 𝑔, we see that 𝑓𝑛 is convex and infinitely often

differentiable. Let 𝑥 ∈ R𝑘 and 𝑛 ≥ 1 be given and set 𝑏𝑖𝑗 = ∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) for 𝑖, 𝑗 ∈ [𝑘].

Then 𝐵 = (𝑏𝑖𝑗) is the Hessian of 𝑓𝑛 and since 𝑓𝑛 is convex, we have that 𝐵 is a
nonnegative definite (𝑘 × 𝑘)-matrix. By Schur’s product theorem (see Thm. 7.5.3
p. 458 in [5]) we have that the Hadamard product (𝑐𝑖𝑗) = (𝑎𝑖𝑗 𝑏𝑖𝑗) is nonnegative
definite. In particular, we have

𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗
∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) =
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑐𝑖𝑗 ≥ 0.

Hence, we see that (5) follows from the equivalence of (3) and (1).

(6): Suppose that 𝑓 is twice partially differentiable such that ∂𝑓
∂𝑥𝑖

and ∂2𝑓
∂𝑥𝑖∂𝑥𝑗

are locally 𝜆𝑘-integrable for all 𝑖, 𝑗 ∈ [𝑘]. Then 𝐹 :=
∑

𝑖,𝑗 𝑎𝑖𝑗
∂2𝑓

∂𝑥𝑖∂𝑥𝑗
belongs to

𝐿1loc(𝜆𝑘) and by Lemma 2.1 we have

𝜁(𝜙) =
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗

∫
R𝑘

𝑓(𝑥) ∂2𝜙
∂𝑥𝑖∂𝑥𝑗

(𝑥)𝑑𝑥 =

∫
R𝑘

𝐹 (𝑥)𝜙(𝑥) 𝑑𝑥 ∀𝜙 ∈ 𝐶∞
∘∘(R𝑘).
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Since 𝐹 ≥ 0 𝜆𝑘-a.e. if and only if
∫
R𝑘 𝐹𝜙𝑑𝜆𝑘 ≥ 0 for all 𝜙 ∈ 𝐶∞

∘∘(R𝑘)+, we see
that (6) holds. □

Lemma 2.4. Let 𝑓 : R𝑘 → R be a locally 𝜆𝑘-integrable Borel function and let
{𝑎𝑖𝑗}1≤𝑖,𝑗≤𝑘 be a (𝑘 × 𝑘)-matrix. Let 𝜃 = (𝜃1, . . . , 𝜃𝑘), 𝑏 = (𝑏1, . . . , 𝑏𝑘) and 𝑐 =
(𝑐1, . . . , 𝑐𝑘) be a given vectors. If there exist functions ℎ : R𝑘 → R and 𝜓 : R → R
satisfying 𝑓(𝑥 + 𝑡𝜃) = ℎ(𝑥) + 𝜓(𝑡) for all 𝑥 ∈ R𝑘 and all 𝑡 ∈ R, then we have

(1) 𝑓(𝑥 + 𝑡𝜃) = 𝑓(𝑥) + 𝛾𝑡 ∀𝑥 ∈ R𝑘 ∀𝑡 ∈ R where 𝛾 := 𝑓(𝜃) − 𝑓(0).

(2)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗∂𝑖𝑗𝑓 =
𝑘∑
𝑖=1

𝑘∑
𝑗=1

(𝑎𝑖𝑗 + 𝑏𝑖𝜃𝑗 + 𝑐𝑗𝜃𝑖)∂𝑖𝑗𝑓 .

Proof. (1): Set 𝜓0(𝑡) = 𝜓(𝑡) − 𝜓(0) for all 𝑡 ∈ R. Since 𝑓(𝑥) = ℎ(𝑥) + 𝜓(0), we
have 𝑓(𝑥 + 𝑡𝜃) = 𝑓(𝑥) + 𝜓0(𝑡) and so we have

𝜓0(𝑠 + 𝑡) = 𝑓(𝑠𝜃 + 𝑡𝜃) − 𝑓(0) = 𝑓(𝑠𝜃) + 𝜓0(𝑡) − 𝑓(0) = 𝜓0(𝑠) + 𝜓0(𝑡)

for all 𝑠, 𝑡 ∈ R. Since 𝑓 is Borel measurable and 𝜓0(𝑡) = 𝑓(𝑡𝜃)− 𝑓(0), we see that
𝜓0 is a Borel function satisfying 𝜓0(0) = 0 and 𝜓0(𝑠 + 𝑡) = 𝜓0(𝑠) + 𝜓0(𝑡) for all
𝑠, 𝑡 ∈ R. So by [11] we have 𝜓0(𝑡) = 𝛾𝑡 for all 𝑡 ∈ R where 𝛾 = 𝜓0(1) = 𝑓(𝜃)−𝑓(0).
Since 𝑓(𝑥 + 𝑡𝜃) = 𝑓(𝑥) + 𝜓0(𝑡), we see that (1) holds.

(2): Let 𝑔 ∈ 𝐶∞
∘∘(R𝑘)+ be a nonnegative function with

∫
R𝑘 𝑔(𝑦) 𝑑𝑦 = 1 and

set 𝑓𝑛(𝑥) =
∫
R𝑘 𝑓(𝑥+ 𝑦

𝑛 ) 𝑔(𝑦) 𝑑𝑦 for all 𝑥 ∈ R𝑘 and all 𝑛 ∈ N (see Lem. 2.2). Then

𝑓𝑛 ∈ 𝐶∞(R𝑘) and by (1), we have 𝑓𝑛(𝑥 + 𝑡𝜃) = 𝑓𝑛(𝑥) + 𝛾𝑡. In particular, we see

that 𝛾 = ∂𝑓𝑛
∂𝜃 (𝑥) =

∑𝑘
𝑖=1 𝜃𝑖

∂𝑓𝑛
∂𝑥𝑖

(𝑥) for all 𝑥 ∈ R𝑘. Hence, we have

𝑘∑
𝑗=1

𝑘∑
𝑖=1

𝜃𝑖𝑐𝑗
∂2𝑓𝑛
∂𝑥𝑗∂𝑥𝑖

(𝑥) =
𝑘∑
𝑗=1

𝑐𝑗
∂
∂𝑥𝑗

{
𝑘∑
𝑖=1

𝜃𝑖
∂𝑓𝑛
∂𝑥𝑖

(𝑥)

}
= 0 ∀𝑥 ∈ R𝑘.

In the same manner we see that
∑𝑘

𝑖=1

∑𝑘
𝑗=1 𝑏𝑖𝜃𝑗

∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) = 0 for all 𝑥 ∈ R𝑘 and

so we see that (2) follows from Proposition 2.3. □

Lemma 2.5. Let 𝜙, 𝜓 : R → R be absolutely continuous functions with Lebesgue
derivatives �̇�(𝑡) and �̇�(𝑡). Set 𝜓∗(𝑡) :=

∫∞
𝑡

∣�̇�(𝑠)∣ 𝑑𝑠 for 𝑡 ≥ 0 and 𝜓∗(𝑡) :=∫ 𝑡
−∞ ∣�̇�(𝑠)∣ 𝑑𝑠 for 𝑡 < 0. If (𝜙, 𝜓) satisfies the following condition

(1) �̇� ∈ 𝐿1(𝜆1) , �̇� ⋅ 𝜓∗ ∈ 𝐿1(𝜆1) and lim
𝑥→∞𝜓(𝑥) = 0 = lim

𝑥→−∞𝜓(𝑥)

then �̇� ⋅ 𝜓 and 𝜙 ⋅ �̇� are 𝜆-integrable and we have

(2)

∫ ∞

−∞
�̇�(𝑠)𝜓(𝑠) 𝑑𝑠 = −

∫ ∞

−∞
𝜙(𝑠)�̇�(𝑠) 𝑑𝑠.

Proof. Since �̇� is 𝜆1-integrable and lim𝑥→±∞ 𝜓(𝑥) = 0, we have

𝜓(𝑡) =

∫ 𝑡

−∞
�̇�(𝑠) 𝑑𝑠 = −

∫ ∞

𝑡

�̇�(𝑠) 𝑑𝑠
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for all 𝑡 ∈ R. In particular, we see that ∣𝜓(𝑡)∣ ≤ 𝜓∗(𝑡) for all 𝑡 ∈ R and so by (1)

we have �̇�(𝑡)𝜓(𝑡) ∈ 𝐿1(𝜆). By the Fubini-Tonelli theorem, we have∫ ∞

0

∣𝜙(𝑡) − 𝜙(0)∣ ⋅ ∣�̇�(𝑡)∣𝑑𝑡 ≤
∫ ∞

0

𝑑𝑡

∫ 𝑡

0

∣�̇�(𝑠)�̇�(𝑡)∣ 𝑑𝑠

=

∫ ∞

0

𝑑𝑠

∫ ∞

𝑠

∣�̇�(𝑠)�̇�(𝑡)∣𝑑𝑡 =

∫ ∞

0

∣�̇�(𝑠)∣𝜓∗(𝑠) 𝑑𝑠 < ∞

and in the same manner, we see that
∫ 0
−∞ ∣𝜙(𝑡) − 𝜙(0)∣ ⋅ ∣�̇�(𝑡)∣ 𝑑𝑡 < ∞. Since

�̇� ∈ 𝐿1(𝜆), we see that 𝜙(𝑡) �̇�(𝑡) ∈ 𝐿1(𝜆). So by the Fubini-Tonelli theorem we
have∫ ∞

0

�̇�(𝑡)𝜓(𝑡) 𝑑𝑡 = −
∫ ∞

0

𝑑𝑡

∫ ∞

𝑡

�̇�(𝑡)�̇�(𝑠) 𝑑𝑠 = −
∫ ∞

0

𝑑𝑠

∫ 𝑠

0

�̇�(𝑡)�̇�(𝑠) 𝑑𝑡

=

∫ ∞

0

(𝜙(0) − 𝜙(𝑠))�̇�(𝑠) 𝑑𝑠 = −𝜙(0)𝜓(0) −
∫ ∞

0

𝜙(𝑠)�̇�(𝑠) 𝑑𝑠.

In the same manner, we see that
∫ 0
−∞ �̇�(𝑡)𝜓(𝑡) 𝑑𝑡 = 𝜙(0)𝜓(0) − ∫ 0−∞ 𝜙(𝑡) �̇�(𝑡) 𝑑𝑡.

Adding the two equalities we obtain (2). □

Lemma 2.6. Let (𝑈0, 𝑈1, . . . , 𝑈𝑘) be a (𝑘 + 1)-dimensional Gaussian random vec-
tor with mean zero and set 𝑈 := (𝑈1, . . . , 𝑈𝑘) and 𝜃 := (𝜃1, . . . , 𝜃𝑘) where 𝜃𝑖 :=
𝐸(𝑈0 𝑈𝑖) for 𝑖 = 1, . . . , 𝑘. Let ℎ : R𝑘 → R be a 𝜃-differentiable Borel function
satisfying 𝐸∣𝑈0ℎ(𝑈)∣ < ∞ and 𝐸∣∂ℎ∂𝜃 (𝑈)∣ < ∞. Then we have

(1) 𝐸{𝑈0ℎ(𝑈)} = 𝐸{∂ℎ∂𝜃 (𝑈)}.

Proof. Set 𝜎2 = 𝐸𝑈20 . If 𝜎2 = 0, then we have 𝑈0 = 0 a.s. and so we have 𝜃 = 0
and ∂ℎ

∂𝜃 (𝑥) = 0 for all 𝑥 ∈ R𝑘. Hence, we see that (1) holds if 𝜎2 = 0. So suppose

that 𝜎2 > 0 and set 𝜙𝑧(𝑡) := ℎ(𝑧 + 𝑡𝜃) for all 𝑡 ∈ R and all 𝑧 ∈ R𝑘. Then 𝜙𝑧 is
differentiable on R with derivative 𝜙′𝑧(𝑡) = ∂ℎ

∂𝜃 (𝑧 + 𝑡𝜃). Let us define

𝐵 = {𝑧 ∈ R𝑘 ∣ ∫
R
∣∂ℎ∂𝜃 (𝑧 + 𝑡𝜃)∣𝑒−(𝜎𝑡)2/2𝑑𝑡 < ∞}

and set 𝑉0 := 𝜎−2 𝑈0 and 𝑉 := (𝑉1, . . . , 𝑉𝑘) where 𝑉𝑖 := 𝑈𝑖 − 𝜃𝑖 𝑉0 for 𝑖 =
1, . . . , 𝑘. Then we have 𝑉0 ∼ 𝑁(0, 𝜎−2) and 𝐸(𝑉0𝑉𝑖) = 0 for all 1 ≤ 𝑖 ≤ 𝑘. Since
(𝑉0, 𝑉1, . . . , 𝑉𝑘) is Gaussian with mean zero, we see that 𝑉0 and 𝑉 are independent
and since 𝑈 = 𝑉 + 𝑉0𝜃 and ∂ℎ

∂𝜃 (𝑈) ∈ 𝐿1(𝑃 ), we see that 𝑃 (𝑉 ∈ 𝐵) = 1.

Let 𝑧 ∈ 𝐵 be given and set 𝜓(𝑡) := −𝑒−(𝜎𝑡)
2/2 for all 𝑡 ∈ R. Then we have

𝜓′(𝑡) = 𝜎2𝑡 𝑒−(𝜎𝑡)
2/2 and 𝜓∗(𝑡) = 𝑒−(𝜎𝑡)

2/2 where 𝜓∗(𝑡) is defined as in Lemma
2.4. Since 𝑧 ∈ 𝐵, we see that 𝜙′𝑧 is locally 𝜆-integrable on R. So by Theorem
IX.4.5 p. 271 and Theorem IX.7.4 p. 284 in [15] we have that 𝜙𝑧 is absolutely
continuous on R with Lebesgue derivative 𝜙′𝑧 and that (𝜙𝑧 , 𝜓) satisfies condition
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(1) in Lemma 2.5. Hence, we have that 𝜙′𝑧 𝜓 and 𝜙𝑧 𝜓
′ are 𝜆1-integrable and∫

R

ℎ(𝑧 + 𝑡𝜃)𝜎2𝑡𝑒−(𝜎𝑡)
2/2𝑑𝑡 =

∫
R

𝜙𝑧(𝑡)𝜓
′(𝑡) 𝑑𝑡 = −

∫
R

𝜙′𝑧(𝑡)𝜓(𝑡) 𝑑𝑡

=

∫
R

∂ℎ
∂𝜃 (𝑧 + 𝑡𝜃)𝑒−(𝜎𝑡)

2/2𝑑𝑡.

Recall that 𝑉0 and 𝑉 are independent with 𝑈 = 𝑉 + 𝑉0𝜃 and 𝑉0 ∼ 𝑁(0, 𝜎−2).
Since 𝑈0ℎ(𝑈) ∈ 𝐿1(𝑃 ) and ∂ℎ

∂𝜃 (𝑈) ∈ 𝐿1(𝑃 ), we have 𝑃 (𝑉 ∈ 𝐵) = 𝑃𝑉 (𝐵) = 1 and

𝐸(𝑈0ℎ(𝑈)) = 𝜎2𝐸{𝑉0ℎ(𝑉 + 𝑉0𝜃)}
= 𝜎√

2𝜋

∫
𝐵

𝑃𝑉 (𝑑𝑧)

∫
R

ℎ(𝑧 + 𝑡𝜃)𝜎2𝑡𝑒−(𝜎𝑡)
2/2𝑑𝑡

= 𝜎√
2𝜋

∫
𝐵

𝑃𝑉 (𝑑𝑧)

∫
R

∂ℎ
∂𝜃 (𝑧 + 𝑡𝜃)𝑒−(𝜎𝑡)

2/2 𝑑𝑡

= 𝐸(∂ℎ∂𝜃 (𝑉 + 𝑉0𝜃)) = 𝐸(∂ℎ∂𝜃 (𝑈))

which proves the lemma. □

Lemma 2.7. Let 𝑍 = (𝑍1, . . . , 𝑍𝑛) be an 𝑛-dimensional Gaussian random vector
with mean zero and a non-zero covariance matrix Σ𝑍 = {𝜎𝑍𝑖𝑗}. Let 𝜆 denote the

largest eigenvalue of Σ𝑍 and let 𝜈 denote the multiplicity of the eigenvalue 𝜆. Let
𝑟 denote the rank of Σ𝑍 and let 𝜙 : [0,∞) → [0,∞) be an essentially increasing
Borel function (see the remark below). Then 𝜆 > 0 and 1 ≤ 𝜈 ≤ 𝑟 ≤ 𝑛 and we
have

(1)

∫ ∞

0

𝑡𝑟−1𝜙(𝑡)𝑒−
1
2𝜆 𝑡

2

𝑑𝑡 < ∞ ⇒ 𝐸𝜙(∥𝑍∥) < ∞.

(2) 𝐸𝜙(∥𝑍∥) < ∞ ⇒
∫ ∞

0

(1 + 𝑡)𝜈−1𝜙(𝑡)𝑒−
1
2𝜆 𝑡

2

𝑑𝑡 < ∞.

(3) 𝐸𝜙(∥𝑍∥) < ∞ ⇒ ∃𝑐 > 0 so that 𝜙(𝑡) ≤ 𝑐(1 + 𝑡)2−𝜈 exp
(
1
2𝜆 𝑡

2
) ∀𝑡 ≥ 0.

Remark. We say that 𝜙 : [0,∞) → [0,∞) is essentially increasing if there exists
𝐶 ≥ 0 such that 𝜙(𝑠) ≤ 𝐶 (1 + 𝜙(𝑡)) for all 0 ≤ 𝑠 ≤ 𝑡.

Proof. Since Σ𝑍 ∕= 0, we have 𝜆 > 0 and 1 ≤ 𝜈 ≤ 𝑟 ≤ 𝑛. Let 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛 be
an orthonormal basis of eigenvectors of Σ𝑍 ordered such that 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑛
where 𝜆𝑖 is the eigenvalue associated to 𝑣𝑖. Then we have 𝜆 = 𝜆𝑖 ≥ 𝜆𝑟 > 0 for

1 ≤ 𝑖 ≤ 𝜈 and 𝜆𝑖 = 0 for 𝑟 < 𝑖 ≤ 𝑛. Set 𝑈𝑖 := 𝜆
−1/2
𝑖 ⟨𝑍, 𝑣𝑖⟩ for 𝑖 = 1, . . . , 𝑟.

Then 𝑈1, . . . , 𝑈𝑟 are independent 𝑁(0, 1)-distributed random variables such that

𝑍 =
∑𝑟

𝑖=1 𝜆
1/2
𝑖 𝑈𝑖 𝑣𝑖 a.s. and ∣∣𝑍∣∣2 =

∑𝑟
𝑖=1 𝜆𝑖𝑈

2
𝑖 a.s. Let 1 ≤ 𝑑 ≤ 𝑟 be a given

integer and set 𝑈𝑑 = (𝑈1, . . . , 𝑈𝑑).

Recall that 2𝜋𝑑/2 Γ(𝑑2 )−1 is the (𝑑 − 1)-dimensional volume of the (𝑑− 1)-

dimensional unit sphere {𝑢 ∈ R𝑑 ∣ ∣∣𝑢∣∣ = 1}; see (8.43.9) p. 60 in vol. 2 of [3]. So
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by (8.24.1) p. 27 in vol. 2 of [3] with 𝑇 (𝑥) = ∣∣𝑥∣∣, we have

𝐸𝜙(
√
𝜆∥𝑈𝑑∥) = (2𝜋)−

𝑑
2

∫
R𝑑

𝜙(
√
𝜆∥𝑥∥)𝑒−

1
2∥𝑥∥2𝑑𝑥

= 2
2𝑑/2Γ( 𝑑2 )

∫ ∞

0

𝑡𝑑−1𝜙(𝑡
√
𝜆)𝑒−

1
2 𝑡

2

𝑑𝑡 = 2
(2𝜆)𝑑/2Γ( 𝑑2 )

∫ ∞

0

𝑠𝑑−1𝜙(𝑠)𝑒−
1
2𝜆 𝑠

2

𝑑𝑠.

Since ∣∣𝑍∣∣2 =
∑𝑟

𝑖=1 𝜆𝑖𝑈
2
𝑖 , we have 𝜆 ∣∣𝑈𝜈 ∣∣2 ≤ ∣∣𝑍∣∣2 ≤ 𝜆 ∣∣𝑈 𝑟∣∣2 and since 𝜙

is essentially increasing, there exists a constant 𝐶 > 0 such that 0 ≤ 𝜙(𝑠) ≤
𝐶 (1 + 𝜙(𝑡)) for all 0 ≤ 𝑠 ≤ 𝑡. In particular, we have

𝜙(
√
𝜆∥𝑈𝜈∥) ≤ 𝐶(1 + 𝜙(∥𝑍∥)) , 𝜙(∥𝑍∥) ≤ 𝐶(1 + 𝜙(

√
𝜆∥𝑈 𝑟∥))

and since 𝜙(𝑡) ≤ 𝐶(1 + 𝜙(1)) for 0 ≤ 𝑡 ≤ 1 and (1 + 𝑡)𝜈−1 ≤ 2𝜈−1 𝑡𝜈−1 for 𝑡 ≥ 1,
we see that (1) and (2) follow from the equality above. Since 𝜙(𝑠) ≤ 𝐶 (1 + 𝜙(𝑡))
for all 𝑡 ≥ 𝑠, we have

𝜙(𝑠)(1 + 𝑠)𝜈−1
∫ ∞

𝑠

𝑒−
1
2𝜆 𝑡

2

𝑑𝑡 ≤ 𝐶

∫ ∞

0

(1 + 𝑡)𝜈−1(1 + 𝜙(𝑡))𝑒−
1
2𝜆 𝑡

2

𝑑𝑡

and so we see that (3) follows from (2) and Exercise 2.51 p. 148 in vol. 1 of [3]. □
Theorem 2.8 (Slepian’s inequality). Let 𝑘 ≥ 1 be an integer and let 𝑋 = (𝑋1,
. . ., 𝑋𝑘) and 𝑌 = (𝑌1, . . . , 𝑌𝑘) be Gaussian random vectors with zero means and
covariance matrices Σ𝑋 = {𝜎𝑋𝑖𝑗 } and Σ𝑌 = {𝜎𝑌𝑖𝑗}. Let 𝐾 ⊆ R𝑘 be a bounded,

starshaped Borel set with non-empty interior. Let 𝜙 : [0,∞) → [0,∞) be an es-
sentially increasing Borel function and let 𝑓 : R𝑘 → R be a locally 𝜆𝑘-integrable
Borel function satisfying

(1) 𝑃 (𝑋 ∈ 𝐶𝐾
ap(𝑓)) = 1 = 𝑃 (𝑌 ∈ 𝐶𝐾

ap(𝑓)).

(2) 𝐸𝜙(∥𝑋∥) + 𝐸𝜙(∥𝑌 ∥) < ∞ and sup
𝑦∈𝐾

∣𝑓(𝑥 + 𝛿𝑦)∣ ≤ 𝑐 𝜙(∥𝑥∥) ∀𝑥 ∈ R𝑘

for some positive numbers 𝑐, 𝛿 > 0. Then 𝐸∣𝑓(𝑋)∣ < ∞ and 𝐸∣𝑓(𝑌 )∣ < ∞ and we
have

(3)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

(𝜎𝑋𝑖𝑗 − 𝜎𝑌𝑖𝑗) ∂𝑖𝑗𝑓 ≥ 0 ⇒ 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋).

Set 𝑒 = (1, 1, . . . , 1) and suppose that there exist functions ℎ : R𝑘 → R and
𝜓 : R → R such that 𝑓(𝑥 + 𝑡𝑒) = ℎ(𝑥) + 𝜓(𝑡) for all (𝑡, 𝑥) ∈ R × R𝑘. Set
𝜋𝑋𝑖𝑗 = 𝐸(𝑋𝑖 −𝑋𝑗)

2 and 𝜋𝑌𝑖𝑗 = 𝐸(𝑌𝑖 − 𝑌𝑗)
2 for all 𝑖, 𝑗 ∈ [𝑘]. Then we have

(4)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

(𝜋𝑌𝑖𝑗 − 𝜋𝑋𝑖𝑗 )∂𝑖𝑗𝑓 = 2
𝑘∑
𝑖=1

𝑘∑
𝑗=1

(𝜎𝑋𝑖𝑗 − 𝜎𝑌𝑖𝑗 )∂𝑖𝑗𝑓 .

(5)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

(𝜋𝑌𝑖𝑗 − 𝜋𝑋𝑖𝑗 )∂𝑖𝑗𝑓 ≥ 0 ⇒ 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋).

Proof. Since 𝐾 is starshaped, we have 0 ∈ 𝐾. Hence, by (2), we have ∣𝑓(𝑥)∣ ≤
𝑐 𝜙(∣∣𝑥∣∣) and 𝐸∣𝑓(𝑋)∣ < ∞ and 𝐸∣𝑓(𝑌 )∣ < ∞.

So suppose that
∑𝑘

𝑖=1

∑𝑘
𝑗=1 𝜃𝑖𝑗 ∂𝑖𝑗𝑓 ≥ 0, where 𝜃𝑖𝑗 := 𝜎𝑋𝑖𝑗 − 𝜎𝑌𝑖𝑗 and let

me show that 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋). Without loss of generality we may assume that
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𝑋 and 𝑌 are independent. If 𝑋 = 𝑌 = 0 a.s. then (3) holds trivially. So let us

assume that 𝑃 (𝑋 ∕= 0) + 𝑃 (𝑌 ∕= 0) > 0 and set 𝜙(𝑡) := sup𝑠∈[0,𝑡] 𝜙(𝑠). Then 𝜙

is increasing with 𝜙 ≤ 𝜙 and since 𝜙 is essentially increasing, there exists 𝐶 > 0
such that 𝜙(𝑡) ≤ 𝐶 (1 + 𝜙(𝑡)) for all 𝑡 ≥ 0. Let 𝑐, 𝛿 > 0 be chosen according to

(2). Replacing (𝜙,𝐾) by (𝑐 𝜙, 𝛿𝐾) we may, without loss of generality, assume that
𝜙 is increasing and that ∣𝑓(𝑥 + 𝑦)∣ ≤ 𝜙(∣∣𝑥∣∣) for all 𝑥 ∈ R𝑘 and all 𝑦 ∈ 𝐾. Let
𝜆𝑋 and 𝜆𝑌 denote the largest eigenvalues of Σ𝑋 and Σ𝑌 , respectively, and set
𝜆 = max(𝜆𝑋 , 𝜆𝑌 ) and 𝜅(𝑥) = 𝜙(∣∣𝑥∣∣) for 𝑥 ∈ R𝑘. Then 𝜆 > 0 and by (2) and
Lemma 2.7 there exists 𝑏 > 0 such that 𝜙(𝑡) ≤ 𝑏(1 + 𝑡) exp( 12𝜆 𝑡2) for all 𝑡 ≥ 0.

Let 0 < 𝑟 < 1 and 𝑛 ∈ N be fixed for a while. Since 𝐾 has non-empty interior,
there exists 𝑔 ∈ 𝐶∞

∘∘(R𝑘) such that 𝑔 ≥ 0, {𝑔 ∕= 0} ⊆ 𝐾 and
∫
𝐾

𝑔(𝑦) 𝑑𝑦 = 1. Set

𝑓𝑛(𝑥) =
∫
R𝑘 𝑓(𝑥+ 𝑦

𝑛 ) 𝑔(𝑦) 𝑑𝑦 for 𝑥 ∈ R𝑘 (see Lemma 2.2). By Lemma 2.2 we have

that 𝑓𝑛 ∈ 𝐶∞
𝜅 (R𝑘) and that (𝑓𝑛) satisfies (1)–(6) in Lemma 2.2. Since 0 < 𝑟 < 1

and 𝜙(𝑟𝑡) ≤ 𝑏(1 + 𝑟𝑡) exp( 𝑟
2

2𝜆 𝑡
2) we have

(i) 𝐴 := 𝐸

{(
1 +
√∥𝑋∥2 + ∥𝑌 ∥2

)
𝜙

(
𝑟
√∥𝑋∥2 + ∥𝑌 ∥2

)}
< ∞.

Let 𝑥, 𝑦 ∈ R𝑘 be given and set 𝑈𝑥,𝑦(𝑡) = 𝑟(𝑡1/2 𝑥 + (1 − 𝑡)1/2 𝑦) and 𝑉𝑥,𝑦(𝑡) =
𝑓𝑛(𝑈𝑥,𝑦(𝑡)) for 𝑡 ∈ [0, 1]. Then 𝑈𝑥,𝑦 and 𝑉𝑥,𝑦 are continuous on [0, 1] and continu-
ously differentiable on (0, 1) with derivatives

𝑈 ′
𝑥,𝑦(𝑡) = 𝑟

2 (𝑡−1/2𝑥− (1 − 𝑡)−1/2𝑦) = 𝑟

2
√
𝑡(1−𝑡) ((1 − 𝑡)1/2𝑥− 𝑡1/2𝑦)

𝑉 ′
𝑥,𝑦(𝑡) = ⟨𝑈 ′

𝑥,𝑦(𝑡),∇𝑓𝑛(𝑈𝑥,𝑦(𝑡))⟩
for all 0 < 𝑡 < 1. By the Cauchy-Schwartz inequality, we have

∥𝑈𝑥,𝑦(𝑡)∥ ≤ 𝑟𝑡1/2∥𝑥∥ + 𝑟(1 − 𝑡)1/2∥𝑦∥ ≤ 𝑟
√
∥𝑥∥2 + ∥𝑦∥2 ∀0 ≤ 𝑡 ≤ 1

∥𝑈 ′
𝑥,𝑦(𝑡)∥ ≤ 𝑟

2
√
𝑡(1−𝑡)

√
∥𝑥∥2 + ∥𝑦∥2 ∀0 < 𝑡 < 1.

In particular, we see that 𝑉𝑥,𝑦 is absolutely continuous on [0, 1] and so we have

(ii) 𝑓𝑛(𝑟𝑥) − 𝑓𝑛(𝑟𝑦) = 𝑉𝑥,𝑦(1) − 𝑉𝑥,𝑦(0) =

∫ 1

0

𝑉 ′
𝑥,𝑦(𝑡) 𝑑𝑡.

Let 0 < 𝑡 < 1 be given and let us define 𝑈(𝑡) = (𝑈1(𝑡), . . . , 𝑈𝑘(𝑡)) := 𝑈𝑋,𝑌 (𝑡) and
𝑉 ′(𝑡) := 𝑉 ′

𝑋,𝑌 (𝑡). Since 𝑉 ′(𝑡) = ⟨𝑈 ′(𝑡),∇𝑓𝑛(𝑈(𝑡))⟩, we have

∥𝑈(𝑡)∥ ≤ 𝑟
√
∥𝑋∥2 + ∥𝑌 ∥2 , ∣𝑉 ′(𝑡)∣ ≤ ∥𝑈 ′(𝑡)∥ ⋅ ∥∇𝑓𝑛(𝑈(𝑡))∥

∥𝑈 ′(𝑡)∥ ≤ 𝑟

2
√
𝑡(1−𝑡)

√∥𝑋∥2 + ∥𝑌 ∥2.

Set 𝜗𝑗 = 𝑟2

2 (𝜃1𝑗 , . . . , 𝜃𝑘𝑗) and ℎ𝑗(𝑥) = ∂𝑓𝑛
∂𝑥𝑗

(𝑥) for 𝑥 ∈ R𝑘 and 1 ≤ 𝑗 ≤ 𝑘. Since

𝑓𝑛 ∈ 𝐶∞
𝜅 (R𝑘), we have ℎ𝑗 ∈ 𝐶∞

𝜅 (R𝑘) and since ∣ℎ𝑗(𝑥)∣ ≤ ∣∣∇𝑓𝑛(𝑥)∣∣ and 𝜅(𝑥) =
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𝜙(∥𝑥∥), we have

∣𝑈 ′
𝑗(𝑡)ℎ𝑗(𝑈(𝑡))∣ ≤ ∥𝑈 ′(𝑡)∥ ⋅ ∥∇𝑓𝑛(𝑈(𝑡))∥ ≤ ∥∇𝑓𝑛∥𝜅 ⋅ ∥𝑈 ′(𝑡)∥ ⋅ 𝜙(∥𝑈(𝑡)∥)

∣ ∂ℎ𝑗∂𝜗𝑗
(𝑈(𝑡))∣ ≤ ∥𝜗𝑗∥ ⋅ ∥∇ℎ𝑗(𝑈(𝑡))∥ ≤ ∥𝜗𝑗∥ ⋅ ∥∇ℎ𝑗∥𝜅 ⋅ 𝜙(∥𝑈(𝑡)∥).

Hence, by (i) we see that 𝑈 ′
𝑗(𝑡)ℎ𝑗(𝑈(𝑡)),

∂ℎ𝑗
∂𝜗𝑗

(𝑈(𝑡)) and 𝑉 ′(𝑡) are 𝑃 -integrable and∫ 1

0

𝐸∣𝑉 ′(𝑡)∣ 𝑑𝑡 ≤ 𝐴∥∇𝑓𝑛∥𝜅
∫ 1

0

1√
𝑡(1−𝑡)𝑑𝑡 < ∞.

So by (ii) and the Fubini-Tonelli theorem, we have

(iii) 𝐸𝑓𝑛(𝑟𝑋) − 𝐸𝑓𝑛(𝑟𝑌 ) =

∫ 1

0

𝐸𝑉 ′(𝑡) 𝑑𝑡.

Since 𝑋 and 𝑌 are independent Gaussian random vector with zero means, we see
that (𝑈 ′

𝑗(𝑡), 𝑈1(𝑡), . . . , 𝑈𝑘(𝑡)) is a (𝑘+1)-dimensional Gaussian random vector with

zero mean and 𝐸(𝑈 ′
𝑗(𝑡)𝑈𝑖(𝑡)) = 𝑟2

2 𝜃𝑖𝑗 . So by Lemma 2.6 we have

𝐸
{
𝑈 ′
𝑗(𝑡)ℎ𝑗(𝑈(𝑡))

}
= 𝐸
{
∂ℎ𝑗
∂𝜗𝑗

(𝑈(𝑡))
}

= 𝑟2

2 𝐸

{
𝑘∑
𝑖=1

𝜃𝑖𝑗
∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑈(𝑡))

}
and by Proposition 2.3, we have

∑𝑘
𝑖=1

∑𝑘
𝑗=1 𝜃𝑖𝑗

∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) ≥ 0 for all 𝑥 ∈ R𝑘. Since

𝑉 ′(𝑡) = ⟨𝑈 ′(𝑡),∇𝑓𝑛(𝑈(𝑡)⟩ =
𝑘∑
𝑗=1

𝑈 ′
𝑗(𝑡)ℎ𝑗(𝑈(𝑡))

we see that 𝐸𝑉 ′(𝑡) ≥ 0 for all 0 < 𝑡 < 1 and so by (iii) we have 𝐸𝑓𝑛(𝑟𝑌 ) ≤
𝐸𝑓𝑛(𝑟𝑋) for all 𝑛 ∈ N and all 0 < 𝑟 < 1. Since 𝜙 is increasing and sup𝑦∈𝐾 ∣𝑓(𝑥 +

𝑦)∣ ≤ 𝜙(∣∣𝑥∣∣), we have ∣𝑓𝑛(𝑟𝑥)∣ ≤ 𝜙(∣∣𝑥∣∣) for all 0 < 𝑟 ≤ 1, all 𝑥 ∈ R𝑘 and all
𝑛 ∈ N; see Lemma 2.2. So by (2), continuity of 𝑓𝑛 and Lebesgue’s convergence
theorem, we have

𝐸𝑓𝑛(𝑌 ) = lim
𝑟↑1

𝐸𝑓𝑛(𝑟𝑌 ) ≤ lim
𝑟↑1

𝐸𝑓𝑛(𝑟𝑋) = 𝐸𝑓𝑛(𝑋)

for all 𝑛 ≥ 1. By (1) and Lemma 2.2, we have 𝑓𝑛(𝑥) → 𝑓(𝑥) (𝑃𝑋 + 𝑃𝑌 )-a.s. and
recall that ∣𝑓𝑛(𝑥)∣ ≤ 𝜙(∥𝑥∣). So by (2) and Lebesgue’s convergence theorem, we
have

𝐸𝑓(𝑌 ) = lim
𝑛→∞𝐸𝑓𝑛(𝑌 ) ≤ lim

𝑛→∞𝐸𝑓𝑛(𝑋) = 𝐸𝑓(𝑋)

which completes the proof of (3).

Suppose that there exist functions ℎ : R𝑘 → R and 𝜓 : R → R such that
𝑓(𝑥 + 𝑡𝑒) = ℎ(𝑥) + 𝜓(𝑡) for all (𝑡, 𝑥) ∈ R×R𝑘. Note that 𝜋𝑋𝑖𝑖 = 𝜋𝑌𝑗𝑗 = 0 and

𝜋𝑌𝑖𝑗 − 𝜋𝑋𝑖𝑗 = 2(𝜎𝑋𝑖𝑗 − 𝜎𝑌𝑖𝑗 ) + (𝜎𝑌𝑖𝑖 − 𝜎𝑋𝑖𝑖 ) + (𝜎𝑌𝑗𝑗 − 𝜎𝑋𝑗𝑗)

Hence, we see (4)–(5) follow from (3) and Lemma 2.4. □
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Remark 2.9. (a): Condition (1) is a weak smoothness restriction on 𝑓 . Note that
condition (1) holds if 𝑓 is right or left continuous and since R𝑘 ∖𝐶𝐾

ap(𝑓) is a 𝜆𝑘-null

set, we see that (1) holds if Σ𝑋 and Σ𝑌 are non-singular. However, Example A in
introduction shows that some smoothness condition on 𝑓 is needed.

(b): Condition (2) is a growth condition on 𝑓 . Let 𝑎, 𝜖 > 0 be positive numbers
and let 𝜓 : [0,∞) → [0,∞) be an essentially increasing function satisfying 𝐸𝜓(𝜖+
∣∣𝑋 ∣∣) + 𝐸𝜓(𝜖 + ∣∣𝑌 ∣∣) < ∞ and ∣𝑓(𝑥)∣ ≤ 𝑎𝜓(∣∣𝑥∣∣) for all 𝑥 ∈ R𝑘. Since 𝐾 is
bounded and 𝜓 is essentially increasing, it follows easily that 𝑓 satisfies condition
(2) with 𝜙(𝑡) := 𝜓(𝜖 + 𝑡).

(c): Let 𝜆𝑋 denote the largest eigenvalues of Σ𝑋 , let 𝜈𝑋 denote the multiplic-
ity of 𝜆𝑋 and let 𝑟𝑋 denote the rank of the covariance matrix Σ𝑋 . Let 𝑝 > 0 be a

given number and set 𝜙(𝑡) = (1 + 𝑡)−𝑝 𝑒
1
2𝜆 𝑡

2

for all 𝑡 ≥ 0. By Lemma 2.7, we have
𝑝 > 𝑟𝑋 ⇒ 𝐸𝜙(∣∣𝑋 ∣∣) < ∞ ⇒ 𝑝 > 𝜈𝑋 . Since, the Slepian inequality implicitly
requires finiteness of 𝐸∣𝑓(𝑋)∣ and 𝐸∣𝑓(𝑌 )∣, we see that the growth condition (2)
is close to be optimal.

(d): Let 𝜑 : [0,∞) → R be an increasing convex function and set 𝑄(𝑥) :=
max1≤𝑖,𝑗≤𝑘 ∣𝑥𝑖 − 𝑥𝑗 ∣ and 𝑓(𝑥) = 𝜑(𝑄(𝑥)) for all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘. Fernique
(see Theorem 2.1.2 p. 18 in [2]) has shown that 𝜋𝑌𝑖𝑗 ≤ 𝜋𝑋𝑖𝑗 ∀ 𝑖, 𝑗 ∈ [𝑘] implies

𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋). Note that 𝜋𝑋𝑖𝑖 = 𝜋𝑌𝑖𝑖 = 0 and 𝑓(𝑥 + 𝑡𝑒) = 𝑓(𝑥) for all (𝑡, 𝑥) ∈
R×R𝑘 and in Corollary 4.5 below, we shall see that ∂𝑖𝑗𝑓 ≤ 0 for all 𝑖 ∕= 𝑗. Hence,
we see that (5) is an extension of Fernique’s version of Slepian’s inequality.

3. Integral orderings

In this section we shall study an extension of the integral ordering to the set
of finitely additive contents. Let (𝑆,𝒜, 𝜇) be a content space; i.e., 𝒜 ⊆ 2𝑆 is an
algebra on the set 𝑆 and 𝜇 : 𝒜 → [0,∞] is a finitely additive set function satisfying
𝜇(∅) = 0. If 𝐷 ⊆ 𝑆, we let 𝜇∗(𝐷) = inf𝐴∈𝒜,𝐴⊇𝐷 𝜇(𝐴) denote the outer content of
𝐷. We let 𝑇𝑀(𝜇) denote the set of all totally 𝜇-measurable real-valued functions
(see Def. III.2.10 p. 106 in [1]), and we let 𝐿1(𝜇) denote the set of all 𝜇-integrable
functions (see Def. III.2.17 p. 112 in [1]). If 𝑓, 𝑓1, 𝑓2, . . . ∈ R𝑆 , we write 𝑓𝑛 →𝜇 𝑓 if
𝜇∗(∣𝑓−𝑓𝑛∣ > 𝜀) → 0 for all 𝜀 > 0 (see Lem. III.2.7 p. 104 in [1]). If 𝑓, 𝑔 : 𝑆 → R̄, we
write 𝑓 ≤ 𝑔 𝜇-a.e. if 𝜇∗(𝑓 > 𝜖+𝑔) = 0 for all 𝜖 > 0. Note that 𝜇∗(𝑓 > 𝑔) = 0 implies
𝑓 ≤ 𝑔 𝜇-a.e. and the converse implication holds if 𝜇 is a measure. If 𝑓 : 𝑆 → R̄,
we let ∫ ∗

𝑓𝑑 𝜇 := inf
{∫

𝑆
𝜙𝑑𝜇 ∣ 𝜙 ∈ 𝐿1(𝜇), 𝑓 ≤ 𝜙 𝜇 -a.e.

}
(inf ∅ := ∞)∫

∗ 𝑓 𝑑𝜇 := sup
{∫

𝑆
𝜙𝑑𝜇 ∣ 𝜙 ∈ 𝐿1(𝜇), 𝜙 ≤ 𝑓 𝜇 -a.e.

}
(sup ∅ := −∞)

denote the upper and lower 𝜇-integral of 𝑓 ; see [4]. We say that Φ ⊆ R𝑆 is uniformly
𝜇-integrable if for every 𝜀 > 0 there exists ℎ ∈ 𝐿1(𝜇) such that

∫ ∗
(∣𝜙∣−ℎ)+ 𝑑𝜇 < 𝜀

for all 𝜙 ∈ Φ. If 𝜇 is a measure and Φ ⊆ 𝐿1(𝜇), then the reader easily verifies that
uniform integrability as defined here coincides with the usual definition of uniform
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integrability; see for instance, (3.22.34) p. 187 in vol. 1 of [3]. Let 𝑓, 𝑓1, 𝑓2, . . . ∈ R̄𝑆

be given functions. Then we write 𝑓 ≤𝜇 lim inf 𝑓𝑛 if and only if

𝜇∗(𝐴 ∩ {𝑓 > 𝑡}) ≤ lim inf
𝑛→∞ 𝜇∗(𝐴 ∩ {𝑓𝑛 > 𝑠}) ∀𝑠 < 𝑡 ∀𝐴 ∈ 𝒜.

We define 𝒜∘ := {𝐴 ∈ 𝒜 ∣ 𝜇(𝐴) < ∞} and we write lim sup 𝑓𝑛 ≤𝜇 𝑓 if and only if

lim sup
𝑛→∞

𝜇∗(𝐴 ∩ {𝑓𝑛 > 𝑡}) ≤ 𝜇∗(𝐴 ∩ {𝑓 > 𝑠}) ∀𝑠 < 𝑡 ∀𝐴 ∈ 𝒜∘.

Recall that 𝐿1(𝜇) ⊆ 𝑇𝑀(𝜇) and if 𝜙 ∈ 𝑇𝑀(𝜇), then we have

(3.1) (𝑓 − 𝑓𝑛)+ →𝜇 0 ⇒ 𝑓 ≤𝜇 lim inf 𝑓𝑛 ⇒ (𝑓 + 𝜙) ≤𝜇 lim inf(𝑓𝑛 + 𝜙).

(3.2) (𝑓𝑛 − 𝑓)+ →𝜇 0 ⇒ lim sup 𝑓𝑛 ≤𝜇 𝑓 ⇒ lim sup(𝑓𝑛 + 𝜙) ≤𝜇 (𝑓 + 𝜙).

Set 𝑓∗(𝑠) = lim inf𝑛→∞ 𝑓𝑛(𝑠) and 𝑓∗(𝑠) = lim sup𝑛→∞ 𝑓𝑛(𝑠) for all 𝑠 ∈ 𝑆. If
(𝑆,𝒜, 𝜇) is a measure space, then we have

(3.3) 𝑓∗ ≤𝜇 lim inf 𝑓𝑛.

(3.4) If 𝑓1, 𝑓2, . . . are 𝜇-measurable, then lim sup 𝑓𝑛 ≤𝜇 𝑓∗.

If ℒ ⊆ 2𝑆 , we let 𝑊 (𝑆,ℒ) denote the set of all functions 𝑓 : 𝑆 → R such that
for all 𝑦 > 𝑥 there exists a set 𝐿 ∈ ℒ ∪ {∅, 𝑆} satisfying {𝑓 > 𝑦} ⊆ 𝐿 ⊆ {𝑓 > 𝑥},
and we let 𝑊+

∘ (𝑆,ℒ) denote the set of all functions 𝑓 : 𝑆 → [0,∞) such that for all
𝑦 > 𝑥 > 0 there exists a set 𝐿 ∈ ℒ∪{∅} satisfying {𝑓 > 𝑦} ⊆ 𝐿 ⊆ {𝑓 > 𝑥}. We say
that Φ ⊆ R𝑆 is (↑)-stable if sup𝑛≥1 𝜙𝑛 ∈ Φ for every increasing sequence (𝜙𝑛) ⊆ Φ
satisfying sup𝑛≥1 𝜙𝑛(𝑠) < ∞ for all 𝑠 ∈ 𝑆, and we say that Φ is sequentially closed
if for every pointwise convergent sequence 𝜙1, 𝜙2, . . . ∈ Φ we have 𝜙 ∈ Φ where
𝜙(𝑠) = lim𝑛→∞ 𝜙𝑛(𝑠) for all 𝑠 ∈ 𝑆. We let ℒ↑ denote the set of all sets of the form
∪∞𝑛=1𝐿𝑛 for some increasing sequence (𝐿𝑛) ⊆ ℒ ∪ {∅} and we let ℒ↓ denote the
set of all sets of the form ∩∞𝑛=1𝐿𝑛 for some decreasing sequence (𝐿𝑛) ⊆ ℒ∪{∅}. If
𝑓 ∈ 𝑊 (𝑆,ℒ), then we have

(3.5) {𝑓 > 𝑡} ∈ ℒ↑ ∀𝑡 ≥ inf𝑠∈𝑆 𝑓(𝑠) , {𝑓 ≥ 𝑡} ∈ ℒ↓ ∀𝑡 > inf𝑠∈𝑆 𝑓(𝑠).

If ℒ is a 𝜎-algebra on 𝑆, then 𝑊 (𝑆,ℒ) = 𝑀(𝑆,ℒ). If 𝑆 is a topological space and
ℒ is the set of all open (closed) subsets of 𝑆, then 𝑊 (𝑆,ℒ) is the set of all lower
(upper) semicontinuous functions. If (𝑆,≤) is a proset and ℒ is the set of all upper
intervals, then 𝑊 (𝑆,ℒ) = In(𝑆,≤).

Lemma 3.1. Let 𝑆 be a non-empty set and let Φ ⊆ R𝑆
+ be a (↑)-stable, convex cone.

Let 𝐽 ⊆ R be an interval with interior 𝐽∘ and let ℎ : 𝐽 → R be a continuous,
increasing, convex function such that inf𝑥∈𝐽 ℎ(𝑥) = 0. Let 𝑓 : 𝑆 → 𝐽 be a given
function satisfying (𝑓 − 𝑐1𝑆)+ ∈ Φ for all 𝑐 ∈ 𝐽∘. Then we have ℎ ∘ 𝑓 ∈ Φ.

Proof. Let 𝑎 = inf 𝐽 and 𝑏 = sup 𝐽 denote the endpoints of 𝐽 . If 𝑎 = 𝑏, then the
lemma holds trivially. So suppose that 𝑎 < 𝑏 and set 𝜃𝑐(𝑡) = (𝑡− 𝑐)+ for all 𝑡 ∈ 𝐽
and all 𝑐 ∈ R. Let Γ denote the convex cone generated by {𝜃𝑐 ∣ 𝑐 ≥ 𝑎} and let us
define

ℎ0(𝑡) = sup{𝛾(𝑡) ∣ 𝛾 ∈ Γ, 𝛾(𝑠) ≤ ℎ(𝑠) ∀𝑠 ∈ 𝐽} ∀𝑡 ∈ 𝐽.
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Then ℎ0 is an increasing, convex function satisfying 0 ≤ ℎ0(𝑡) ≤ ℎ(𝑡) for all 𝑡 ∈ 𝐽
and since ℎ0 is lower semicontinuous on 𝐽 , we have that ℎ0 is continuous on 𝐽 .
Let 𝑎 < 𝑐 < 𝑏 be given. Since ℎ is convex, we have that the right-hand derivative

𝑟 := lim𝑥↓𝑐
ℎ(𝑥)−ℎ(𝑐)

𝑥−𝑐 exists and is finite and satisfies ℎ(𝑐) + 𝑟 (𝑥− 𝑐) ≤ ℎ(𝑥) for all

𝑥 ∈ 𝐽 . Set 𝛾(𝑥) := (ℎ(𝑐) + 𝑟 (𝑥− 𝑐))+ for all 𝑥 ∈ 𝐽 . If 𝑟 = 0, we have ℎ(𝑥) ≥ ℎ(𝑐)
for all 𝑥 ∈ 𝐽 and since inf𝑥∈𝐽 ℎ(𝑥) = 0, we have ℎ(𝑐) = 0 = 𝛾(𝑥) for all 𝑥 ∈ 𝐽 .

If 𝑟 > 0, we have 𝛾 = 𝑟 𝜃𝑢 where 𝑢 = 𝑐 − ℎ(𝑐)
𝑟 and since inf𝑥∈𝐽 ℎ(𝑥) = 0 and

𝑐 + ℎ(𝑥)−ℎ(𝑐)
𝑟 ≥ 𝑥 ≥ 𝑎 for all 𝑥 ∈ 𝐽 , we have 𝑢 ≥ 𝑎. Hence, in either case, we

have 𝛾 ∈ Γ and 𝛾(𝑥) ≤ ℎ(𝑥) for all 𝑥 ∈ 𝐽 . Since 𝛾(𝑐) = ℎ(𝑐) ≥ ℎ0(𝑐), we have
ℎ0(𝑐) = ℎ(𝑐) for all 𝑐 ∈ 𝐽∘ and so by continuity of ℎ and ℎ0, we have ℎ = ℎ0.

By Lindelöf’s theorem there exist 𝛾1, 𝛾2, . . . ∈ Γ such that ℎ(𝑥)=sup𝑛≥1 𝛾𝑛(𝑥)
for all 𝑥 ∈ 𝐽 . Set ℎ𝑛(𝑥) = max(𝛾1(𝑥), . . . , 𝛾𝑛(𝑥)) for 𝑥 ∈ 𝐽 and 𝑛 ≥ 1. Note that Γ
is the set of all increasing, continuous, convex, piecewise linear functions 𝛾 : 𝐽 → R
satisfying inf𝑥∈𝐽 𝛾(𝑥) = 0. In particular, we see that ℎ𝑛 ∈ Γ and that ℎ𝑛(𝑥) ↑ ℎ(𝑥)
for all 𝑥 ∈ 𝐽 . By assumption, we have 𝜃𝑐 ∘ 𝑓 ∈ Φ for all 𝑐 ∈ 𝐽∘ and since 𝜃𝑐 = 0
for 𝑐 ≥ 𝑏 and Φ is an (↑)-stable convex cone, we have 𝛾 ∘ 𝑓 ∈ Φ for all 𝛾 ∈ Γ. In
particular, we have ℎ𝑛 ∘ 𝑓 ∈ Φ for all 𝑛 ≥ 1 and since ℎ𝑛(𝑓(𝑠)) ↑ ℎ(𝑓(𝑠)) for all
𝑠 ∈ 𝑆, we have ℎ ∘ 𝑓 ∈ Φ □
Lemma 3.2. Let (𝑆,𝒜, 𝜇) be a content space and let 𝑓, 𝑓1, 𝑓2, . . . : 𝑆 → R̄ be given
functions. If {𝑓+𝑛 ) ∣ 𝑛 ≥ 1} is uniformly 𝜇-integrable, then we have

(1) lim sup 𝑓𝑛 ≤𝜇 𝑓 ⇒ lim sup
𝑛→∞

∫ ∗
𝑓𝑛𝑑𝜇 ≤ ∫ ∗ 𝑓𝑑𝜇.

If {𝑓−𝑛 ) ∣ 𝑛 ≥ 1} is uniformly 𝜇-integrable, then we have

(2) 𝑓 ≤𝜇 lim inf 𝑓𝑛 ⇒ ∫ ∗ 𝑓𝑑𝜇 ≤ lim inf
𝑛→∞

∫ ∗
𝑓𝑛𝑑𝜇.

Proof. Suppose that lim sup 𝑓𝑛 ≤𝜇 𝑓 and that {𝑓+𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜇-

integrable. If
∫ ∗

𝑓 𝑑𝜇 = ∞, then (1) holds trivially. So suppose that
∫ ∗

𝑓 𝑑𝜇 < ∞
and let 𝜙 ∈ 𝐿1(𝜇) be given function satisfying 𝑓 ≤ 𝜙 𝜇-a.e. Set 𝑔 = 𝑓 − 𝜙
and 𝑔𝑛 = 𝑓𝑛 − 𝜙. Let 𝜀 > 0 be given. Since 𝑔+𝑛 ≤ 𝑓+𝑛 + 𝜙−, we see that (𝑔+𝑛 )
is uniformly 𝜇-integrable. Hence, there exists 𝜓 ∈ 𝐿1(𝜇) such that 𝜓 ≥ 0 and∫ ∗

(𝑔+𝑛 − 𝜓)+ 𝑑𝜇 < 𝜀
2 for all 𝑛 ≥ 1. Since 𝜓 ∈ 𝐿1+(𝜇), there exist positive numbers

𝛿, 𝑐 > 0 such that
∫
𝑆

(𝜓 ∧ 𝛿) 𝑑𝜇 < 𝜀
2 and

∫
𝑆

(𝜓− 𝑐)+ 𝑑𝜇 < 𝜀
2 . Since 𝜇∗(𝜓 > 𝛿) < ∞,

there exists 𝐹 ∈ 𝒜 such that {𝜓 > 𝛿} ⊆ 𝐹 and 𝜇(𝐹 ) < ∞. Let 𝑛 ≥ 1 be given.
Since 𝑆 ∖ 𝐹 ⊆ {𝜓 ≤ 𝛿} and 𝑔+𝑛 ≤ 𝜓 + (𝑔+𝑛 − 𝜓)+, we have∫ ∗

1𝑆∖𝐹 𝑔+𝑛 𝑑𝜇 ≤ ∫ ∗(𝜓 ∧ 𝛿)𝑑𝜇 +
∫ ∗

(𝑔+𝑛 − 𝜓)𝑑𝜇 ≤ 𝜀
2 + 𝜀

2 = 𝜀.

Set ℎ𝑛 = 1𝐹 𝑔+𝑛 and 𝑄𝑛(𝑡) = 𝜇∗(ℎ𝑛 > 𝑡) for 𝑡 ∈ R+ and 𝑛 ≥ 1. Let 𝑡 > 0 be given.
Since 𝑓 ≤ 𝜙 𝜇-a.e., we have 𝜇∗(𝑔 > 𝑡) = 0 and by (3.2) we have lim sup 𝑔𝑛 ≤𝜇 𝑔.
Since {ℎ𝑛 > 𝑡} = 𝐹 ∩ {𝑔𝑛 > 𝑡} and 𝜇(𝐹 ) < ∞, we have 𝑄𝑛(𝑡) → 0 for all 𝑡 > 0.

Let 𝑛 ≥ 1 be given. Then we have 0 ≤ ℎ𝑛 ≤ 𝑔+𝑛 ≤ (𝑔+𝑛 − 𝜓)+ + 𝜓 and so by
Theorem 2.1.(7) in [4] we have∫ ∞

0

𝑄𝑛(𝑡) 𝑑𝑡 =

∫ ∗
ℎ𝑛𝑑𝜇 ≤

∫ ∗
(𝑔+𝑛 − 𝜓)+ 𝑑𝜇 +

∫
𝑆

𝜓 𝑑𝜇 ≤ 𝜀
2 +

∫
𝑆

𝜓 𝑑𝜇.



38 J. Hoffmann-Jørgensen

Since 0 ≤ ℎ𝑛 ≤ 𝑔+𝑛 , we have (ℎ𝑛− 𝑐)+ ≤ (𝑔+𝑛 −𝜓)+ + (𝜓− 𝑐)+ and so by Theorem
2.1.(7) in [4] we have∫ ∞

𝑐

𝑄𝑛(𝑡)𝑑𝑡 =

∫ ∞

0

𝑄𝑛(𝑡 + 𝑐)𝑑𝑡 =

∫ ∗
(ℎ𝑛 − 𝑐)+ 𝑑𝜇

≤
∫ ∗

(𝑔+𝑛 − 𝜓)+ 𝑑𝜇 +

∫
𝑆

(𝜓 − 𝑐)+𝑑𝜇 ≤ 𝜀
2 + 𝜀

2 = 𝜀.

Since 0 ≤ ℎ𝑛 ≤ 𝑔+𝑛 ≤ (𝑔+𝑛 − 𝜓)+ + 𝜓, we have ℎ𝑛 ∧ 𝛿 ≤ (𝑔+𝑛 − 𝜓)+ + (𝜓 ∧ 𝛿) and
so by Theorem 2.1.(7) in [4] we have∫ 𝛿

0

𝑄𝑛(𝑡) 𝑑𝑡 =

∫ ∗
(ℎ𝑛 ∧ 𝛿) 𝑑𝜇 ≤

∫ ∗
(𝑔+𝑛 − 𝜓)+ 𝑑𝜇 +

∫ ∗
(𝜓+ ∧ 𝛿) 𝑑𝜇 ≤ 𝜀.

Hence, for every 𝜀 > 0 there exist positive numbers 𝑐, 𝛿 > 0 satisfying

sup
𝑛≥1

∫ ∞

0

𝑄𝑛(𝑡)𝑑𝑡 < ∞ , sup
𝑛≥1

∫ ∞

𝑐

𝑄𝑛(𝑡)𝑑𝑡 ≤ 𝜀 , sup
𝑛≥1

∫ 𝛿

0

𝑄𝑛(𝑡) 𝑑𝑡 ≤ 𝜀.

Since 𝑄𝑛 is decreasing, it follows easily that {𝑄𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜆1-integrable
and recall that 𝑄𝑛(𝑡) → 0 for all 𝑡 > 0. Hence, by the Dunford-Pettis theorem (see
(3.23) p. 189 in [3]) we have

0 = lim
𝑛→∞

∫ ∞

0

𝑄𝑛(𝑡) 𝑑𝑡 = lim
𝑛→∞

∫ ∗
ℎ𝑛 𝑑𝜇

and since 𝑔+𝑛 = ℎ𝑛 + 1𝑆∖𝐹 𝑔+𝑛 , we have∫ ∗
𝑓𝑛 𝑑𝜇 ≤ ∫

𝑆
𝜙𝑑𝜇 +

∫ ∗
𝑔+𝑛 𝑑𝜇 ≤ ∫

𝑆
𝜙𝑑𝜇 +

∫ ∗
ℎ𝑛 𝑑𝜇 +

∫ ∗
1𝑆∖𝐹 𝑔+𝑛 𝑑𝜇.

Since
∫ ∗

1𝑆∖𝐹 𝑔+𝑛 𝑑𝜇 ≤ 𝜀 for all 𝑛 ≥ 1, we have

lim sup
𝑛→∞

∫ ∗
𝑓𝑛 𝑑𝜇 ≤ ∫𝑆𝜙𝑑𝜇 + 𝜀 ∀𝜀 > 0.

Letting 𝜀 ↓ 0, we see that lim sup
∫ ∗

𝑓𝑛 𝑑𝜇 ≤ ∫
𝑆
𝜙𝑑𝜇 for all 𝜙 ∈ 𝐿1(𝜇) with 𝑓 ≤ 𝜙

𝜇-a.e. Taking infimum over 𝜙, we obtain (1).
Suppose that 𝑓 ≤𝜇 lim inf 𝑓𝑛 and that {𝑓−𝑛 ∣ 𝑛 ≥ 1} is uniformly integrable.

Let 𝜀 > 0 be given. Then there exists 𝜙 ∈ 𝐿1(𝜇) such that 𝜙 ≥ 0 and
∫ ∗

(𝑓−𝑛 −
𝜙)+ 𝑑𝜇 ≤ 𝜀 for all 𝑛 ≥ 1. Set 𝑔 = 𝑓 + 𝜙 and 𝑔𝑛 = 𝑓𝑛 + 𝜙 and let us define
𝑄(𝑡) = 𝜇∗(𝑔 > 𝑡) and 𝑄𝑛(𝑡) = 𝜇∗(𝑔𝑛 > 𝑡) for 𝑡 ∈ R and 𝑛 ≥ 1. By (3.1), we have
𝑄(𝑡) ≤ lim inf 𝑄𝑛(𝑠) for all 0 < 𝑠 < 𝑡 and so we have 𝑄(𝑡) ≤ lim inf 𝑄𝑛(𝑡) for all
𝑡 ∈ 𝐶(𝑄) ∩ (0,∞). Since 𝑄 is decreasing, we have R ∖𝐶(𝑄) is at most countable.
Hence, by Theorem 2.1.(7) in [4] and Fatou’s lemma we have∫ ∗

𝑔+ 𝑑𝜇 =

∫ ∞

0

𝑄(𝑡) 𝑑𝑡 ≤ lim inf
𝑛→∞

∫ ∞

0

𝑄𝑛(𝑡) 𝑑𝑡 = lim inf
𝑛→∞

∫ ∗
𝑔+𝑛 𝑑𝜇.

Since 𝑔−𝑛 = (−𝑓𝑛 − 𝜙)+ ≤ (𝑓−𝑛 − 𝜙)+, we have (see Thm. 2.1.(5) in [4])∫ ∗
𝑔+𝑛 𝑑𝜇 =

∫ ∗
𝑔𝑛 𝑑𝜇 +

∫
∗𝑔
−
𝑛 𝑑𝜇 ≤ 𝜀 +

∫ ∗
𝑔𝑛 𝑑𝜇
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and since 𝜙 ∈ 𝐿1(𝜇) and 𝑓 = 𝑔 + 𝜙, we have∫ ∗
𝑓 𝑑𝜇 ≤ ∫ ∗𝑔+ 𝑑𝜇 +

∫
𝑆
𝜙𝑑𝜇 ≤ lim inf

𝑛→∞ (
∫ ∗

𝑔+𝑛 𝑑𝜇 +
∫
𝑆
𝜙𝑑𝜇)

≤ 𝜀 + lim inf
𝑛→∞ (

∫ ∗
𝑔𝑛 𝑑𝜇 +

∫
𝑆
𝜙𝑑𝜇) = 𝜀 + lim inf

𝑛→∞
∫ ∗

𝑓𝑛 𝑑𝜇.

Letting 𝜀 ↓ 0, we obtain (2). □

Theorem 3.3. Let (𝑆,𝒜1, 𝜇) and (𝑆,𝒜2, 𝜈) be content spaces and let us define

Λ = {𝑓 ∈ R𝑆 ∣ ∫ ∗𝑓 𝑑𝜇 ≤ ∫ ∗𝑓 𝑑𝜈} , ℒ = {𝐿 ⊆ 𝑆 ∣ 𝜇∗(𝐿) ≤ 𝜈∗(𝐿)}.
Let 𝑓, 𝑔 ∈ R𝑆 be given functions. Then we have

(1) 𝑓 ∈ Λ and 𝑔 ∈ Λ ∩ 𝐿1(𝜈) ⇒ 𝑎𝑓 + 𝑔 ∈ Λ ∀𝑎 ∈ R+.

(2) 𝑓 ∨ (−𝑛1𝑆) ∈ Λ ∀𝑛 ∈ N ⇒ 𝑓 ∈ Λ.

(3) 𝜈(𝑆) < ∞ , 𝜈(𝑆) ≤ 𝜇(𝑆) and (𝑓 + 𝑛1𝑆)+ ∈ Λ ∀𝑛 ∈ N ⇒ 𝑓 ∈ Λ.

(4) 𝑊+
∘ (𝑆,ℒ) ⊆ Λ and if 𝜇(𝑆) = 𝜈(𝑆) < ∞, then 𝑊 (𝑆,ℒ) ⊆ Λ.

(5) If 𝑓1, 𝑓2, . . . ∈ Λ are given functions such that (𝑓−𝑛 ∣ 𝑛 ≥ 1) is uniformly
𝜇-integrable, (𝑓+𝑛 ∣ 𝑛 ≥ 1) is uniformly 𝜈-integrable, 𝑓 ≤𝜇 lim inf 𝑓𝑛 and
lim sup 𝑓𝑛 ≤𝜈 𝑓 , then we have 𝑓 ∈ Λ.

(6) If 𝜇 is a measure and
∫
∗ 𝑓 𝑑𝜇 > −∞, then {ℎ ∈ Λ ∣ ℎ ≥ 𝑓} is (↑)-stable.

Let 𝐽 ⊆ R be an interval with interior 𝐽∘ such that 𝑓(𝑆) ⊆ 𝐽 and let 𝐺 : 𝐽 → R be
an increasing, continuous, convex function such that inf𝑥∈𝐽 𝐺(𝑥) = 0. If (𝑆,𝒜1, 𝜇)
and (𝑆,𝒜2, 𝜈) and (𝑇,ℬ, 𝜂) are measure spaces and 𝒜 := 𝒜1 ∩ 𝒜2, then we have

(7) If 𝜇, 𝜈 and 𝜂 are 𝜎-finite and ℎ ∈ 𝐿1(𝜇⊗ 𝜂) ∩ 𝐿1(𝜈 ⊗ 𝜂) is a given function
such that ℎ(⋅, 𝑡) ∈ Λ ∀𝑡 ∈ 𝑇 and ℎ(𝑠, ⋅) ∈ 𝐿1(𝜂) ∀𝑠 ∈ 𝑆, then we have
ℎ𝜂 ∈ Λ ∩ 𝐿1(𝜇) ∩ 𝐿1(𝜈) where ℎ𝜂(𝑠) :=

∫
𝑇
ℎ(𝑠, 𝑡) 𝜂(𝑑𝑡).

(8) If 𝑓 ∈ 𝑀(𝑆,𝒜2) and (𝑓 − 𝑐1𝑆)+ ∈ Λ ∀𝑐 ∈ 𝐽∘, then 𝐺 ∘ 𝑓 ∈ Λ.

(9) If Φ ⊆ 𝑀(𝑆,𝒜) is sequentially closed, {𝜙− ∣ 𝜙 ∈ Φ} is uniformly 𝜇-integrable
and {𝜙+ ∣ 𝜙 ∈ Φ} is uniformly 𝜈-integrable, then Λ∩Φ is sequentially closed.

Proof. (1): Let 𝑓 ∈ Λ and 𝑔 ∈ Λ ∩ 𝐿1(𝜈) be given functions and let 𝑎 ≥ 0 be a
nonnegative number. Then we have (see [4]):∫ ∗

(𝑎𝑓 + 𝑔)𝑑𝜇 ≤ 𝑎
∫ ∗

𝑓 𝑑𝜇+̇
∫ ∗

𝑔 𝑑𝜇 ≤ 𝑎
∫ ∗

𝑓 𝑑𝜈 +
∫
𝑆
𝑔 𝑑𝜈 ≤ ∫ ∗(𝑎𝑓 + 𝑔) 𝑑𝜈

which proves (1).
(2) is an immediate consequence of Theorem 2.1.(6) in [4] and since

𝑓 ∨ (−𝑛1𝑆) = (𝑓 + 𝑛1𝑆)+ − 𝑛1𝑆,

we see that (3) follows from (1) and (2).
(4): Let 𝑓 ∈ 𝑊+

∘ (𝑆,ℒ) be given. Let 𝑦 > 𝑥 > 0 be given. Since ∅ ∈ ℒ, there
exists 𝐿 ∈ ℒ such that {𝑓 > 𝑦} ⊆ 𝐿 ⊆ {𝑓 > 𝑥}. Hence, we have 𝜇∗(𝑓 > 𝑦) ≤
𝜇∗(𝐿) ≤ 𝜈∗(𝐿) ≤ 𝜈∗(𝑓 > 𝑥) for all 0 < 𝑥 < 𝑦 and so we have 𝜇∗(𝑓 > 𝑥) ≤
𝜈∗(𝑓 > 𝑥) for all 𝑥 ∈ R+ ∖ 𝐷 where 𝐷 is the set of all discontinuity points of
𝑦 ↷ 𝜇∗(𝑓 > 𝑦). Since 𝑦 ↷ 𝜇∗(𝑓 > 𝑦) is decreasing, we have that 𝐷 is at most
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countable and so by Theorem 2.1.(7) in [4] we have∫ ∗
𝑓 𝑑𝜇 =

∫ ∞

0

𝜇∗(𝑓 > 𝑡) 𝑑𝑡 ≤
∫ ∞

0

𝜈∗(𝑓 > 𝑡) 𝑑𝑡 =

∫ ∗
𝑓 𝑑𝜈

which proves the first inclusion in (4). So suppose that 𝜇(𝑆) = 𝜈(𝑆) < ∞ and let
𝑓 ∈ 𝑊 (𝑆,ℒ) be given. Since {∅, 𝑆} ∈ ℒ, we have (𝑓 + 𝑛1𝑆)+ ∈ 𝑊+

∘ (𝑆,ℒ) ⊆ Λ for
all 𝑛 ≥ 1 and so by (3) we have 𝑓 ∈ Λ which completes the proof of (4).

(5): Suppose that the hypotheses of (5) hold. Then we have
∫ ∗

𝑓𝑛 𝑑𝜇 ≤∫ ∗
𝑓𝑛 𝑑𝜈 and so by Lemma 3.2 we have∫ ∗

𝑓 𝑑𝜇 ≤ lim inf
𝑛→∞

∫ ∗
𝑓𝑛𝑑𝜇 ≤ lim inf

𝑛→∞
∫ ∗

𝑓𝑛𝑑𝜈 ≤ lim sup
𝑛→∞

∫ ∗
𝑓𝑛𝑑𝜈 ≤ ∫ ∗𝑓 𝑑𝜈

which proves (5).

(6): Suppose that 𝜇 is a measure and
∫
∗ 𝑓 𝑑𝜇 > −∞. Let (ℎ𝑛) ⊆ Λ be an

increasing sequence such that ℎ1 ≥ 𝑓 and ℎ𝑛 ↑ ℎ ∈ R𝑆 . Since
∫
∗ 𝑓 𝑑𝜇 > −∞, we

have
∫ ∗

𝑓− 𝑑𝜇 < ∞ and since 0 ≤ ℎ−𝑛 ≤ ℎ−1 ≤ 𝑓−, we see that {ℎ−𝑛 ∣ 𝑛 ≥ 1} is

uniformly 𝜇-integrable. Since ℎ𝑛 ≤ ℎ and ℎ𝑛 ∈ Λ, we have
∫ ∗

ℎ𝑛 𝑑𝜇 ≤ ∫ ∗ ℎ𝑛 𝑑𝜈 ≤∫ ∗
ℎ 𝑑𝜈 for all 𝑛 ≥ 1 and by (3.3), we have ℎ ≤𝜇 lim inf ℎ𝑛. So by Lemma 3.2, we

see that
∫ ∗

ℎ 𝑑𝜇 ≤ ∫ ∗ ℎ 𝑑𝜈 which proves (6).

(7): Suppose that the hypotheses of (7) hold. Since ℎ ∈ 𝐿1(𝜇⊗𝜂)∩𝐿1(𝜈⊗𝜂),
there exists a 𝜂-null set 𝑁 ⊆ 𝑇 such that ℎ( ⋅ , 𝑡) ∈ 𝐿1(𝜇)∩𝐿1(𝜈) for all 𝑡 ∈ 𝑇 ∖𝑁 .
Since ℎ(⋅, 𝑡) ∈ Λ, we have

∫
𝑆 ℎ(𝑠, 𝑡)𝜇(𝑑𝑠) ≤ ∫𝑆 ℎ(𝑠, 𝑡) 𝜈(𝑑𝑠) for all 𝑡 ∈ 𝑇 ∖ 𝑁 and

by the Fubini-Tonelli theorem we have ℎ𝜂 ∈ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and∫
𝑆ℎ

𝜂 𝑑𝜇 =
∫
𝑇∖𝑁𝜂(𝑑𝑡)

∫
𝑆ℎ(𝑠, 𝑡)𝜇(𝑑𝑠) ≤ ∫𝑇∖𝑁𝜂(𝑑𝑡)

∫
𝑆ℎ(𝑠, 𝑡) 𝜈(𝑑𝑠) =

∫
𝑆ℎ

𝜂𝑑𝜈.

Hence, we see that ℎ𝜂 ∈ Λ ∩ 𝐿1(𝜇) ∩ 𝐿1(𝜈).

(8): Suppose that 𝑓 ∈ 𝑀(𝑆,𝒜2) and (𝑓 − 𝑐1𝑆)+ ∈ Λ for all 𝑐 ∈ 𝐽∘. Set
Φ = Λ ∩ 𝑀+(𝑆,𝒜2). By (1) and (6), we have that Φ is an (↑)-stable cone. Let
𝜙, 𝜓 ∈ Φ be given and let me show that 𝜙 + 𝜓 ∈ Λ. If

∫ ∗
(𝜙 + 𝜓) 𝑑𝜈 = ∞, this is

evident. So suppose that
∫ ∗

(𝜙 + 𝜓) 𝑑𝜈 < ∞. Since 𝜓 ≥ 0, we have
∫ ∗

𝜙𝑑𝜈 < ∞
and since 𝜙 is nonnegative and 𝜈-measurable, we have 𝜙 ∈ 𝐿1(𝜈), So by (1) we
see that 𝜙 + 𝜓 ∈ Φ. Hence, we see that Φ is an (↑)-stable convex cone containing
(𝑓 − 𝑐1𝑆)+ ∈ Λ for all 𝑐 ∈ 𝐽∘ and so by Lemma 3.1 we have 𝐺 ∘ 𝑓 ∈ Φ ⊆ Λ.

(9): Suppose that the hypotheses of (9) hold and let ℎ ∈ R𝑆 and (ℎ𝑛) ⊆
Λ ∩ Φ ∩ 𝑀(𝑆,𝒜) be given functions satisfying ℎ𝑛(𝑠) → ℎ(𝑠) for all 𝑠 ∈ 𝑆. Since
Φ is sequentially closed, we have ℎ ∈ Φ ∩𝑀(𝑆,𝒜). By (3.3)–(3.4), we have ℎ ≤𝜇

lim inf ℎ𝑛 and ℎ ≤𝜈 lim supℎ𝑛 and since {ℎ−𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜇-integrable
and {ℎ+𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜈-integrable, we have ℎ ∈ Λ by (5). □

Theorem 3.4. Let Λ ⊆ 𝑀(R𝑘,ℬ𝑘) be a non-empty set, let 𝜅 : R𝑘 → [0,∞] be a
Borel function and let 𝜇 and 𝜈 be Borel measures on R𝑘 satisfying

(1) 𝜙 ★ 𝑔 ∈ Λ ∀𝜙 ∈ Λ ∩ 𝐿1loc(𝜆𝑘) ∀𝑔 ∈ 𝐶∞
∘∘(R𝑘)+ with

∫
R𝑘

𝑔(𝑦)𝑑𝑦 = 1.
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(2) 𝜅 ∈ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and

∫
R𝑘

𝑓𝑑𝜇 ≤
∫
R𝑘

𝑓 𝑑𝜈 ∀𝑓 ∈ Λ ∩ 𝐶∞
𝜅 (R𝑘).

Let 𝐾 ⊆ R𝑘 be a bounded, starshaped, Borel set with non-empty interior and let
𝑓 ∈ Λ be a locally 𝜆𝑘-integrable Borel function satisfying

(3) ∃𝑐, 𝛿 > 0 so that sup𝑦∈𝐾 ∣𝑓(𝑥 + 𝛿𝑦)∣ ≤ 𝑐 𝜅(𝑥) ∀𝑥 ∈ R𝑘.

(4) 𝜇(R𝑘 ∖ 𝐶𝐾
ap(𝑓)) = 0 = 𝜈(R𝑘 ∖ 𝐶𝐾

ap(𝑓)).

Then 𝑓 ∈ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and we have
∫
R𝑘 𝑓 𝑑𝜇 ≤ ∫

R𝑘 𝑓 𝑑𝜈.

Proof. Let 𝑓 ∈ Λ ∩ 𝐿1loc(𝜆𝑘) be a given function satisfying (3)–(4) and let 𝑐, 𝛿 > 0
be chosen according to (3). Since 𝐾 has non-empty interior, there exists a function
𝑔 ∈ 𝐶∞

∘∘(R𝑘)+ such that {𝑔 ∕= 0} ⊆ 𝛿𝐾 and
∫
𝐾

𝑔 𝑑𝜆𝑘 = 1. Let 𝑛 ≥ 1 be given

and set 𝑓𝑛(𝑥) =
∫
R𝑘 𝑓(𝑥 + 𝑦

𝑛 ) 𝑔(𝑦) 𝑑𝑦 for 𝑥 ∈ R𝑘; see Lemma 2.2. By (1) and

Lemma 2.2, we have 𝑓𝑛 ∈ Λ ∩ 𝐶∞
𝜅 (R𝑘). So by (2), we have

∫
𝑓𝑛 𝑑𝜇 ≤ ∫ 𝑓𝑛 𝑑𝜈 for

all 𝑛 ≥ 1. By (3) and Lemma 2.2.(3), we have ∣𝑓𝑛(𝑥)∣ ≤ 𝑐 𝜅(𝑥) for all 𝑥 ∈ R𝑘 and
all 𝑛 ≥ 1 and by (4) and Lemma 2.2.(4), we have 𝑓𝑛 → 𝑓 𝜇-a.e. and 𝜈-a.e. By (2)
we have 𝜅 ∈ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and so by Lebesgue’s convergence theorem we have
𝑓 ∈ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and∫

R𝑘

𝑓𝑑𝜇 = lim
𝑛→∞

∫
R𝑘

𝑓𝑛𝑑𝜇 ≤ lim
𝑛→∞

∫
R𝑘

𝑓𝑛 𝑑𝜈 =

∫
R𝑘

𝑓 𝑑𝜈

which proves the theorem. □

4. Modular orderings

Let 𝜇 and 𝜈 be Borel probability measures on R𝑘 such that 𝜇 ≤bsm 𝜈. In the
modern literature it is frequently claimed that this implies 𝜇 ≤sm 𝜈; see for instance
[10]. Theorem 4.8 below shows that we do have

∫
𝑓 𝑑𝜇 ≤ ∫ 𝑓 𝑑𝜈 for a large class

of unbounded, supermodular Borel functions, and that we do have 𝜇 ≤sm 𝜈 if 𝜇
and 𝜈 are discrete measures with finitely many mass points. However, Example
C of the introduction shows that this inequality may fail for some continuous,
linear, modular function 𝑓 satisfying 0 ≤ 𝑓 ≤ 2 𝜇-a.s. and 𝜈-a.s. This shows
that a closer glance at the supermodular ordering is needed. This section will
be devoted to the study of supermodular functions and the modular orderings
introduced in the introduction. Recall that 𝑓 : R𝑘 → R is supermodular if and
only if 𝑓(𝑥 ∨ 𝑦) + 𝑓(𝑥 ∧ 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦) for all 𝑥, 𝑦 ∈ R𝑘. Here we shall use
an equivalent definition: 𝑓 is supermodular if and only if Δ𝑠

𝑖Δ
𝑡
𝑗𝑓(𝑥) ≥ 0 for all

1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘, all 𝑥 ∈ R𝑘 and all 𝑠, 𝑡 ∈ R+; see [8], where Δ𝑠
𝑖 for 𝑖 ∈ [𝑘] is

the difference operator Δ𝑠
𝑖𝑓(𝑥) = 𝑓(𝑥 + 𝑠𝑒𝑖)− 𝑓(𝑥) and Δ𝑠

𝑖Δ
𝑡
𝑗 is the second-order

difference operator:

Δ𝑠
𝑖Δ

𝑡
𝑗𝑓(𝑥) = 𝑓(𝑥 + 𝑠𝑒𝑖 + 𝑡𝑒𝑗) − 𝑓(𝑥 + 𝑠𝑒𝑖) − 𝑓(𝑥 + 𝑡𝑒𝑗) + 𝑓(𝑥).

Let 𝑘 ≥ 1 be a given integer and let 𝑓 : R𝑘 → R be a given function. If
𝑖 ∈ [𝑘], we write Δ𝑖𝑓 ≥ 0 if and only if Δ𝑠

𝑖 𝑓(𝑥) ≥ 0 for all 𝑠 ∈ R+ and all 𝑥 ∈ R𝑘.
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If 𝑖, 𝑗 ∈ [𝑘], we write Δ𝑖𝑗𝑓 ≥ 0 if and only if Δ𝑠
𝑖Δ

𝑡
𝑗𝑓(𝑥) ≥ 0 for all 𝑠, 𝑡 ∈ R+ and

all 𝑥 ∈ R𝑘, and we write Δ𝑖𝑗𝑓 ≤ 0 if and only if Δ𝑖𝑗(−𝑓) ≥ 0. If 𝑥 ∈ R𝑘 and
𝑖 ∈ [𝑘], we let

𝑓𝑥𝑖 (𝑡) = 𝑓(𝑥 + (𝑡− 𝑥𝑖)𝑒𝑖) = 𝑓(𝑥1, . . . , 𝑥𝑖−1, 𝑡, 𝑥𝑖+1, . . . , 𝑥𝑘) ∀𝑡 ∈ R

denote the partial function. Let “xxx” be a given property of a function of one
variable (such as “increasing” or “continuous” or “differentiable”). If 𝑖 ∈ [𝑘] and
𝑓 : R𝑘 → R is a function of 𝑘 variables, we say that 𝑓 has “xxx” in the 𝑖th
coordinate if the partial functions 𝑓𝑥𝑖 has “xxx” for all 𝑥 ∈ R𝑘. Note that 𝑓 is
increasing if and only if 𝑓 is increasing in each coordinate and that we have

(4.1) Δ𝑗𝑓 ≥ 0 ⇔ 𝑓 is increasing in the 𝑗th coordinate.

(4.2) Δ𝑖𝑗𝑓 ≥ 0 ⇔ 𝑥 ↷ Δ𝑠
𝑖 𝑓(𝑥) is increasing in the 𝑗th coordinate for all 𝑠 > 0.

(4.3) 𝑓 is supermodular if and only if Δ𝑖𝑗𝑓 ≥ 0 for all 1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘; see [8].

(4.4) 𝑓 is convex in the 𝑖th coordinate if and only if Δ𝑖𝑖𝑓 ≥ 0 and 𝑓 has the
Baire property in the 𝑖th coordinate; see [20].

If 𝑖 ∈ [𝑘] and 𝑥 ∈ R𝑘, we let

𝐷𝑖𝑓(𝑥) := lim sup
𝑢→0

𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)
𝑢 , 𝐷𝑖𝑓(𝑥) := lim inf

𝑢→0
𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)

𝑢

𝐷
𝑟

𝑖 𝑓(𝑥) := lim sup
𝑢↓0

𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)
𝑢 , 𝐷

ℓ

𝑖𝑓(𝑥) := lim sup
𝑢↑0

𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)
𝑢

𝐷𝑟
𝑖 𝑓(𝑥) := lim inf

𝑢↓0
𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)

𝑢 , 𝐷ℓ
𝑖𝑓(𝑥) := lim inf

𝑢↑0
𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)

𝑢

denote the right / left / upper / lower partial Dini derivatives of 𝑓 at 𝑥; see [15].

Proposition 4.1. Let 𝑓 : R𝑘 → R and 𝜙1, . . . , 𝜙𝑘 : R → R be given functions and

set 𝜙(𝑥) := (𝜙1(𝑥1), . . . , 𝜙𝑘(𝑥𝑘)) and 𝜁(𝑥) :=
∏𝑘
𝑖=1 𝜙𝑖(𝑥𝑖) for all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈

R𝑘. Let 𝐽 ⊆ R be an interval and let 𝜉 : 𝐽 → R be an increasing and convex
function. Let 𝑖, 𝑗 ∈ [𝑘] be given integers. Then we have

(1) If 𝜙1, . . . , 𝜙𝑘 are nonnegative, 𝑖 ∕= 𝑗 and 𝜙𝑖 and 𝜙𝑗 are both increasing
(decreasing) on R, then we have Δ𝑖𝑗𝜁 ≥ 0.

(2) If Δ𝑖𝑗𝑓 ≥ 0, 𝑖 ∕= 𝑗 and 𝜙𝑖 and 𝜙𝑗 are both increasing (decreasing) on R, then
we have Δ𝑖𝑗(𝑓 ∘ 𝜙) ≥ 0.

(3) Let ℎ1, . . . , ℎ𝑛 : R𝑘 → R and 𝑔 : R𝑛 → R be increasing functions and set
ℎ(𝑥) := (ℎ1(𝑥), . . . , ℎ𝑛(𝑥)) for all 𝑥 ∈ R𝑘. Then we have

Δ𝑖𝑗ℎℓ ≥ 0 and Δℓ𝑚𝑔 ≥ 0 ∀1 ≤ ℓ,𝑚 ≤ 𝑛 ⇒ Δ𝑖𝑗(𝑔 ∘ ℎ) ≥ 0.

(4) If 𝑓(R𝑘) ⊆ 𝐽 and Δ𝑖𝑗(𝑓 ∨ 𝑎) ≥ 0 ∀ 𝑎 ∈ 𝐽 , then Δ𝑖𝑗(𝜉 ∘ 𝑓) ≥ 0.

(5) If 𝑓(R𝑘) ⊆ 𝐽 , 𝑓 is increasing and Δ𝑖𝑗𝑓 ≥ 0, then Δ𝑖𝑗(𝜉 ∘ 𝑓) ≥ 0.
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Proof. (1) and (2) are easy and well known. Let 𝑔 and ℎ1, . . . , ℎ𝑛 be increasing
functions such that Δ𝑖𝑗ℎℓ ≥ 0 and Δℓ𝑚𝑔 ≥ 0 for all 1 ≤ ℓ,𝑚 ≤ 𝑛. Set 𝜓(𝑥) :=
𝑔(ℎ(𝑥)) for 𝑥 ∈ R𝑘. Let 𝑢, 𝑣 > 0 and 𝑥 ∈ R𝑘 be given and let us define 𝑦 = 𝑥+𝑣𝑒𝑗
and

𝑥0 = ℎ(𝑥) , 𝑥𝑛 = ℎ(𝑥 + 𝑢𝑒𝑖) , 𝑦0 = ℎ(𝑦) , 𝑦𝑛 = ℎ(𝑦 + 𝑢𝑒𝑖)

𝑥ℓ = (ℎ1(𝑥 + 𝑢𝑒𝑖), . . . , ℎℓ(𝑥 + 𝑢𝑒𝑖), ℎℓ+1(𝑥), . . . , ℎ𝑛(𝑥)) ∀1 ≤ ℓ < 𝑛

𝑦ℓ = (ℎ1(𝑦 + 𝑢𝑒𝑖), . . . , ℎℓ(𝑦 + 𝑢𝑒𝑖), ℎℓ+1(𝑦), . . . , ℎ𝑛(𝑦)) ∀1 ≤ ℓ < 𝑛.

Let 1 ≤ ℓ ≤ 𝑛 be given and set 𝑢ℓ := Δ𝑢
𝑖 ℎℓ(𝑥) and 𝑣ℓ := Δ𝑢

𝑖 ℎℓ(𝑦). Then we
have 𝑔(𝑥ℓ) − 𝑔(𝑥ℓ−1) = Δ𝑢ℓ

ℓ 𝑔(𝑥ℓ−1) and 𝑔(𝑦ℓ) − 𝑔(𝑦ℓ−1) = Δ𝑣ℓ
ℓ 𝑔(𝑦ℓ−1). Since

ℎℓ is increasing, we have 𝑢ℓ ≥ 0 and recall that Δ𝑖𝑗ℎℓ ≥ 0. Hence, by (4.2)
we have that 𝑧 ↷ Δ𝑢

𝑖 ℎℓ(𝑧) is increasing in the 𝑗th coordinate and so we have
0 ≤ 𝑢ℓ ≤ 𝑣ℓ. Recall that Δℓ𝑚𝑔 ≥ 0 for all 𝑚 = 1, . . . , 𝑛. Hence, by (4.2) we
have that 𝑧 ↷ Δ𝑢ℓ

ℓ 𝑔(𝑧) is increasing on R𝑛 and since 𝑥 ≤ 𝑦 and ℎ1, . . . , ℎ𝑛 are

increasing, we have 𝑥ℓ−1 ≤ 𝑦ℓ−1. Thus, we have Δ𝑢ℓ
ℓ 𝑔(𝑥ℓ−1) ≤ Δ𝑢ℓ

ℓ 𝑔(𝑦ℓ−1) and

since 0 ≤ 𝑢ℓ ≤ 𝑣ℓ and 𝑔 is increasing, we have Δ𝑢ℓ
ℓ 𝑔(𝑦ℓ−1) ≤ Δ𝑣ℓ

ℓ 𝑔(𝑦ℓ−1). Hence,
we have

Δ𝑢
𝑖 𝜓(𝑥) = 𝑔(𝑥𝑛) − 𝑔(𝑥0) =

∑𝑛
ℓ=1(𝑔(𝑥ℓ) − 𝑔(𝑥ℓ−1) =

∑𝑛
ℓ=1Δ

𝑢ℓ
ℓ 𝑔(𝑥ℓ−1)

≤∑𝑛
ℓ=1Δ

𝑣ℓ
ℓ 𝑔(𝑦ℓ−1) =

∑𝑛
ℓ=1(𝑔(𝑦ℓ) − 𝑔(𝑦ℓ−1) = 𝑔(𝑦𝑛) − 𝑔(𝑦0) = Δ𝑢

𝑖 𝜓(𝑥 + 𝑣𝑒𝑗)

for all 𝑥 ∈ R𝑘 and all 𝑢, 𝑣 > 0. In particular, we see that 𝑥 ↷ Δ𝑢
𝑖 𝜓(𝑥) is increasing

in the 𝑗th coordinate for all 𝑢 > 0 and so by (4.2) we conclude that Δ𝑖𝑗𝜓 ≥ 0.
Thus, (3) is proved.

(4): Suppose that Δ𝑖𝑗(𝑓 ∨ 𝑎) ≥ 0 for all 𝑎 ∈ 𝐽 . Let Φ𝑖𝑗 denote the set of all
functions 𝐹 : R𝑘 → R such that Δ𝑖𝑗𝐹 ≥ 0. Then Φ𝑖𝑗 is a pointwise closed, convex
cone containing all constant functions and since (𝑓(𝑥) − 𝑎)+ = (𝑓 ∨ 𝑎)(𝑥) − 𝑎, we
see that (𝑓( ⋅ ) − 𝑎)+ ∈ Φ𝑖𝑗 for all 𝑎 ∈ 𝐽 . Since 𝜉 is increasing and convex on
𝐽 , there exist increasing, continuous, convex functions 𝜉1, 𝜉2, . . . : R → R such
that 𝜉𝑚(𝑡) → 𝜉(𝑡) for all 𝑡 ∈ 𝐽 and 𝑐𝑚 := inf𝑡∈𝐽 𝜉𝑚(𝑡) > −∞ for all 𝑚 ≥ 1.
Then 𝜂𝑚(𝑡) = 𝜉𝑚(𝑡) − 𝑐𝑚 is an increasing, continuous, convex function on 𝐽 with
inf𝑡∈𝐽 𝜂𝑚(𝑡) = 0. So by Lemma 3.1, we see that 𝜂𝑚 ∘ 𝑓 ∈ Φ𝑖𝑗 for all 𝑚 ≥ 1 and
since 𝜂𝑚(𝑡) + 𝑐𝑚 = 𝜉𝑚(𝑡) → 𝜉(𝑡), we have Δ𝑖𝑗(𝜉 ∘ 𝑓) ≥ 0.

(5): Suppose that 𝑓 is increasing with Δ𝑖𝑗𝑓 ≥ 0 and let 𝜉1, 𝜉2, . . . : R → R
be chosen as above. By (4.4), we have Δ11𝜉𝑚 ≥ 0 and so by (3) applied with
𝑛 := 1 and (𝑔, ℎ1) := (𝜉𝑚, 𝑓), we see that Δ𝑖𝑗(𝜉𝑚 ∘ 𝑓) ≥ 0 for all 𝑚 ≥ 1 and since
𝜉𝑚(𝑓(𝑥)) → 𝜉(𝑓(𝑥)), we have Δ𝑖𝑗(𝜉 ∘ 𝑓) ≥ 0. □

Proposition 4.2. Let 𝑓 : R𝑘 → R be a supermodular function. If 𝑖 ∈ [𝑘] and
𝑠, 𝑡 ∈ R, then we have

(1) 𝑥 ↷ 𝑓𝑥𝑖 (𝑡)−𝑓𝑥𝑖 (𝑠) is increasing on R𝑘 if 𝑠 ≤ 𝑡 and decreasing on R𝑘 if 𝑡 ≤ 𝑠.
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Let us define 𝜎(𝑥, 𝑦) = {𝑖 ∈ [𝑘] ∣ 𝑥𝑖 < 𝑦𝑖} for 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘 and 𝑦 =
(𝑦1, . . . , 𝑦𝑘) ∈ R𝑘. Let us define

𝐹𝑎(𝑥) = 𝑓(𝑥 ∨ 𝑎) −
𝑛∑
𝑖=1

𝑓𝑎𝑖 (𝑥𝑖 ∨ 𝑎𝑖) , 𝐹 𝑎(𝑥) = 𝑓(𝑥 ∧ 𝑎) −
𝑛∑
𝑖=1

𝑓𝑎𝑖 (𝑥𝑖 ∧ 𝑎𝑖)

for all 𝑎 = (𝑎1, . . . , 𝑎𝑘) ∈ R𝑘 and all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘. If 𝑎 ≤ 𝑏 and
𝑥, 𝑦 ∈ [𝑎, 𝑏] are given vectors, we have

(2) 𝑓(𝑥) − 𝑓(𝑦) ≤ ∑
𝑖∈𝜎(𝑥,𝑦)

(𝑓𝑎𝑖 (𝑥𝑖) − 𝑓𝑎𝑖 (𝑦𝑖)) +
∑

𝑖∈𝜎(𝑦,𝑥)
(𝑓 𝑏𝑖 (𝑥𝑖) − 𝑓 𝑏𝑖 (𝑦𝑖)).

(3) ∣𝑓(𝑥) − 𝑓(𝑦)∣ ≤
𝑘∑
𝑖=1

∣𝑓𝑎𝑖 (𝑥𝑖) − 𝑓𝑎𝑖 (𝑦𝑖)∣ +
𝑘∑
𝑖=1

∣𝑓 𝑏𝑖 (𝑥𝑖) − 𝑓 𝑏𝑖 (𝑦𝑖)∣.
(4) 𝑓 is modular if and only if there exist functions 𝑓1, . . . , 𝑓𝑘 : R → R such that

𝑓(𝑢) = 𝑓1(𝑢1) + ⋅ ⋅ ⋅ + 𝑓𝑘(𝑢𝑘) for all 𝑢 = (𝑢1, . . . , 𝑢𝑘) ∈ R𝑘.

(5) 𝐹𝑎 is increasing and supermodular and 𝐹 𝑎 is decreasing and supermodular.

Proof. (1): Let 1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘 and 𝑠, 𝑡 ∈ R be given such that 𝑠 ≤ 𝑡. Then 𝑢 :=
𝑡− 𝑠 ≥ 0 and by (4.2)–(4.3) and supermodularity of 𝑓 , we have that 𝑥 ↷ Δ𝑢

𝑖 𝑓(𝑥)
is increasing in the 𝑗th coordinate. Since 𝑓𝑥𝑖 (𝑡) − 𝑓𝑥𝑖 (𝑠) = Δ𝑢

𝑖 𝑓(𝑥 + (𝑠− 𝑥𝑖)𝑒𝑖), we
see that 𝑥 ↷ 𝑓𝑥𝑖 (𝑡) − 𝑓𝑥𝑖 (𝑠) is increasing in the 𝑗th coordinate for 𝑗 ∕= 𝑖 and since
𝑥 ↷ 𝑓𝑥𝑖 (𝑡)− 𝑓𝑥𝑖 (𝑠) is constant in the 𝑖th coordinate, we see that 𝑥 ↷ 𝑓𝑥𝑖 (𝑡)− 𝑓𝑥𝑖 (𝑠)
is increasing if 𝑠 ≤ 𝑡. Interchanging 𝑠 and 𝑡, we see that 𝑥 ↷ 𝑓𝑥𝑖 (𝑡) − 𝑓𝑥𝑖 (𝑠) is
decreasing if 𝑡 ≤ 𝑠.

(2)–(3): Let 𝑥, 𝑦 ∈ R𝑘 be given vectors and set 𝑧0 = 𝑥, 𝑧𝑛 = 𝑦 and 𝑧𝑖 =
(𝑦1, . . . , 𝑦𝑖, 𝑥𝑖+1, . . . , 𝑥𝑘) for 1 ≤ 𝑖 < 𝑛. Then we have

(i) 𝑓(𝑥) − 𝑓(𝑦) =
𝑛∑
𝑖=1

(𝑓(𝑧𝑖−1) − 𝑓(𝑧𝑖)) =
𝑛∑
𝑖=1

(𝑓𝑧𝑖𝑖 (𝑥𝑖) − 𝑓𝑧𝑖𝑖 (𝑦𝑖)).

Let 𝑎, 𝑏 ∈ R𝑘 be given vectors such that 𝑥, 𝑦 ∈ [𝑎, 𝑏]. Since 𝑎 ≤ 𝑧𝑖 ≤ 𝑏, we
have 𝑓𝑧𝑖𝑖 (𝑥𝑖)− 𝑓𝑧𝑖𝑖 (𝑦𝑖) ≤ 𝑓𝑎𝑖 (𝑥𝑖)− 𝑓𝑎𝑖 (𝑦𝑖) for all 𝑖 ∈ 𝜎(𝑥, 𝑦) and 𝑓𝑧𝑖𝑖 (𝑥𝑖)− 𝑓𝑧𝑖𝑖 (𝑦𝑖) ≤
𝑓 𝑏𝑖 (𝑥𝑖)−𝑓 𝑏𝑖 (𝑦𝑖) for all 𝑖 ∈ 𝜎(𝑦, 𝑥). Since 𝑓𝑧𝑖𝑖 (𝑥𝑖)−𝑓𝑧𝑖𝑖 (𝑦𝑖) = 0 for 𝑖 /∈ 𝜎(𝑥, 𝑦)∪𝜎(𝑦, 𝑥),
we see that (2) holds. (3) is an immediate consequence of (2).

(4): So suppose that 𝑓 is modular. By (1), there exist functions 𝑔1, . . . , 𝑔𝑘 :
R → R such that 𝑓𝑥𝑖 (𝑡) − 𝑓𝑥𝑖 (0) = 𝑔𝑖(𝑡) for all (𝑡, 𝑥) ∈ R × R𝑘 and all 𝑖 ∈ [𝑘].

So by (i) with 𝑦 = (0, . . . , 0), we see that 𝑓(𝑥) = 𝑓(0, . . . , 0) +
∑𝑘

𝑖=1 𝑔𝑖(𝑥𝑖) which
proves the “only if” in (4). The “if” part is evident.

(5): Let 𝑥 ≤ 𝑦 be given. Then we have 𝑎 ≤ 𝑥 ∨ 𝑎 ≤ 𝑦 ∨ 𝑎 and so by (2) with
𝑏 := 𝑦 ∨ 𝑎, we have

𝑓(𝑥 ∨ 𝑎) − 𝑓(𝑦 ∨ 𝑎) ≤∑𝑘
𝑖=1(𝑓

𝑎
𝑖 (𝑥𝑖 ∨ 𝑎𝑖) − 𝑓𝑎𝑖 (𝑦𝑖 ∨ 𝑎𝑖)).

Hence, we see that 𝐹𝑎 is increasing. In the same manner we see that 𝐹 𝑎 is decreas-
ing. By Proposition 4.1.(2) we see that 𝑓(𝑥 ∨ 𝑎) and 𝑓(𝑥 ∧ 𝑎) are supermodular.
So by (4) we see that 𝐹𝑎 and 𝐹 𝑎 are supermodular. □

Proposition 4.3. Let 𝑓 : R𝑘 → R be a supermodular function. Let 𝐷 ⊆ R𝑘 be a
given set satisfying ∪𝑢∈𝐷[𝑢, ∗] = R𝑘 = ∪𝑢∈𝐷[∗, 𝑢]. Let 𝒜1, . . . ,𝒜𝑘 be 𝜎-algebras
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on R, let 𝜇𝑖 be a finite measure on (R,𝒜𝑖) for 𝑖 ∈ [𝑘] and let 𝒜 = 𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑘

denote the product 𝜎-algebra on R𝑘. Let 𝜏1, . . . , 𝜏𝑘 be topologies on R and let
𝜏 = 𝜏1 × ⋅ ⋅ ⋅ × 𝜏𝑘 denote the product topology on R𝑘. If 𝑐 = (𝑐𝑖, . . . , 𝑐𝑘) is a given
vector such that 𝑐𝑖 admits a bounded 𝜏𝑖-neighborhood for all 𝑖 ∈ [𝑘], then we have

(1) If 𝑓𝑢𝑖 is 𝒜𝑖-measurable ∀𝑢 ∈ 𝐷 ∀ 𝑖 ∈ [𝑘], then 𝑓 is 𝒜-measurable.

(2) If 𝑓𝑢𝑖 is 𝜏𝑖-continuous at 𝑐𝑖 ∀𝑢 ∈ 𝐷 ∀ 𝑖 ∈ [𝑘], then 𝑓 is 𝜏-continuous at
𝑐 = (𝑐1, . . . , 𝑐𝑘).

(3) If 𝑓𝑢𝑖 ∈ 𝐿1(𝜇𝑖) ∀𝑢 ∈ 𝐷 ∀ 𝑖 ∈ [𝑘], then 𝑓𝑥𝑖 ∈ 𝐿1(𝜇𝑖) ∀𝑥 ∈ R𝑘 ∀ 𝑖 ∈ [𝑘].

Proof. Since R𝑘 = ∪𝑎∈𝐷 [𝑎, ∗] there exists 𝑎𝑛 = (𝑎𝑛1 , . . . , 𝑎
𝑛
𝑘 ) ∈ 𝐷 for 𝑛 ≥ 1 such

that 𝑎𝑛+1𝑖 < 𝑎𝑛𝑖 ≤ −𝑛 for all 𝑛 ∈ N and all 𝑖 ∈ [𝑘] and since R𝑘 = ∪𝑎∈𝐷 [∗, 𝑎]

there exists 𝑏𝑛 = (𝑏𝑛1 , . . . , 𝑏
𝑛
𝑘 ) ∈ 𝐷 for 𝑛 ≥ 1 such that 𝑛 ≤ 𝑏𝑛𝑖 < 𝑏𝑛+1𝑖 for all 𝑛 ∈ N

and all 𝑖 ∈ [𝑘]. Set 𝐶𝑛 = [𝑎𝑛, 𝑏𝑛] for all 𝑛 ≥ 1. Then we have 𝐶𝑛 ↑ R𝑘 and by
Proposition 4.2.(3) we have

(i) ∣𝑓(𝑥) − 𝑓(𝑦)∣ ≤
𝑘∑
𝑖=1

∣𝑓𝑎𝑛𝑖 (𝑥𝑖) − 𝑓𝑎
𝑛

𝑖 (𝑦𝑖)∣ +
𝑘∑
𝑖=1

∣𝑓 𝑏𝑛𝑖 (𝑥𝑖) − 𝑓 𝑏
𝑛

𝑖 (𝑦𝑖)∣

for all 𝑥, 𝑦 ∈ 𝐶𝑛. Suppose that 𝑓𝑢𝑖 is 𝒜𝑖-measurable for all 𝑢 ∈ 𝐷 and all 𝑖 ∈ [𝑘].
Since 𝑓𝑎

𝑛

𝑖 and 𝑓 𝑏
𝑛

𝑖 are 𝒜𝑖-measurable for all 𝑛 ∈ N and all 𝑖 ∈ [𝑘], it follows easily
that 𝑓 is (𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑘)-measurable.

(2): Suppose that 𝑓𝑢𝑖 is continuous at 𝑐𝑖 for all 𝑢 ∈ 𝐷 and all 𝑖 ∈ [𝑘]. By
assumption, we have that 𝑐𝑖 admits a bounded 𝜏𝑖-neighborhood 𝐺𝑖 for 𝑖 = 1, . . . , 𝑘.
Since 𝑎𝑛𝑖 ≤ −𝑛 < 0 < 𝑛 ≤ 𝑏𝑛𝑖 , there exists 𝑞 ∈ N such that 𝐺𝑖 ⊆ [𝑎𝑞𝑖 , 𝑏

𝑞
𝑖 ] for all

𝑖 ∈ [𝑘]. Then 𝐺 := 𝐺1 × ⋅ ⋅ ⋅ × 𝐺𝑘 is a 𝜏 -neighborhood of 𝑐 such that 𝐺 ⊆ [𝑎𝑞, 𝑏𝑞]
and 𝑓𝑎

𝑞

𝑖 and 𝑓 𝑏
𝑞

𝑖 are 𝜏𝑖-continuous at 𝑐𝑖 for all 𝑖 ∈ [𝑘]. So by (i) we see that 𝑓 is
𝜏 -continuous at 𝑐.

(3): Suppose that 𝑓𝑢𝑖 ∈ 𝐿1(𝜇𝑖) for all 𝑢 ∈ 𝐷 and all 𝑖 ∈ [𝑘], Let 𝑥 ∈ R𝑘 and
𝑖 ∈ [𝑘] be given. Then there exists 𝑛 ≥ 1 such that 𝑥 ∈ [𝑎𝑛, 𝑏𝑛]. So by Proposition
4.2 (1) we have

∣𝑓𝑥𝑖 (𝑡) − 𝑓𝑥𝑖 (0)∣ ≤ ∣𝑓𝑎𝑛𝑖 (𝑡) − 𝑓𝑎
𝑛

𝑖 (0)∣ + ∣𝑓 𝑏𝑛𝑖 (𝑡) − 𝑓 𝑏
𝑛

𝑖 (0)∣ ∀𝑡 ∈ R

and by (1), we see that 𝑓𝑥𝑖 is 𝜇𝑖-measurable. Since (R𝑘,𝒜𝑖, 𝜇𝑖) is a finite measure
space and 𝑓𝑎

𝑛

𝑖 and 𝑓 𝑏
𝑛

belong to 𝐿1(𝜇𝑖), we see that 𝑓𝑥𝑖 ∈ 𝐿1(𝜇𝑖). □

Theorem 4.4. Let 𝑓 : R𝑘 → R be a given function and let 𝑖, 𝑗 ∈ [𝑘] be given
integers such that 𝑓 is continuous in the 𝑖th coordinate. Then we have

(1) If 𝜆1(𝑡 ∈ R ∣ 𝐷𝑖𝑓(𝑥 + 𝑡𝑒𝑖) < 0) = 0 and {𝑡 ∈ R ∣ 𝐷𝑖𝑓(𝑥 + 𝑡𝑒𝑖) = −∞} is at
most countable for all 𝑥 ∈ R𝑘, then 𝑓 is increasing in the 𝑖th coordinate.

Let 𝐷⋄
𝑖 denote one of the six Dini operators 𝐷

𝑟

𝑖 , 𝐷𝑟
𝑖 , 𝐷

ℓ

𝑖 , 𝐷ℓ
𝑖 , 𝐷𝑖 or 𝐷𝑖. and let

us define

𝐼𝑥𝑖,𝑗 := {𝑡 ∈ R ∣ 𝐷⋄
𝑖 𝑓(𝑥 + 𝑡𝑒𝑗) > 0} , 𝐽𝑥𝑖,𝑗 := {𝑡 ∈ R ∣ 𝐷⋄

𝑖 𝑓(𝑥 + 𝑡𝑒𝑗) < 0}



46 J. Hoffmann-Jørgensen

for all 𝑥 ∈ R𝑘. Suppose that 𝐷⋄
𝑖 𝑓(𝑥) is finite for all 𝑥 ∈ R𝑘. If 𝐽 ⊆ R is an

interval containing 𝑓(R𝑘) and 𝜉 : 𝐽 → R is an increasing convex function, then
we have

(2) Δ𝑖𝑗𝑓 ≥ 0 ⇔ 𝐷⋄
𝑖 𝑓(𝑥) is increasing in the 𝑗th coordinate.

(3) If Δ𝑖𝑗𝑓 ≥ 0 and 𝑡 ↷ 𝑓(𝑥 + 𝑡𝑒𝑗) is increasing on 𝐼𝑥𝑖,𝑗 and decreasing on 𝐽𝑥𝑖,𝑗
for all 𝑥 ∈ R𝑘, then Δ𝑖𝑗(𝜉 ∘ 𝑓) ≥ 0.

(4) If Δ𝑖𝑗𝑓 ≤ 0 and 𝑡 ↷ 𝑓(𝑥 + 𝑡𝑒𝑗) is decreasing on 𝐼𝑥𝑖,𝑗 and increasing on 𝐽𝑥𝑖,𝑗
for all 𝑥 ∈ R𝑘, then Δ𝑖𝑗(𝜉 ∘ 𝑓) ≤ 0.

Proof. (1) follows from Theorem VI.7.3 p. 204 in [15]. So let 𝐷⋄
𝑖 be one of the six

Dini derivatives and suppose that 𝐷⋄
𝑖 𝑓(𝑥) is finite for all 𝑥 ∈ R𝑘.

(2): Suppose that Δ𝑖𝑗𝑓 ≥ 0 and let 𝑥 ∈ R𝑘 and 𝑠 > 0 be given. By (4.2)
we have that 𝑡 ↷ Δ𝑠

𝑖 𝑓(𝑥 + 𝑡𝑒𝑗) is increasing on R and so we see that 𝐷⋄
𝑖 𝑓(𝑥) is

increasing in the 𝑗th coordinate. Conversely, suppose that 𝐷⋄
𝑖 𝑓(𝑥) is increasing in

the 𝑗th coordinate. Let 𝑢 > 0 and 𝑥 ∈ R𝑘 be given and set 𝑔(𝑡) := Δ𝑢
𝑗 𝑓(𝑥+ 𝑡𝑒𝑖) =

𝑓(𝑥+𝑢𝑒𝑗+𝑡𝑒𝑖)−𝑓(𝑥+𝑡𝑒𝑖) for all 𝑡 ∈ R. Since 𝑓 is continuous in the 𝑖th coordinate,
we have that 𝑔 is continuous on R and since 𝐷⋄

𝑖 𝑓(𝑥) is finite and increasing in the
𝑗th coordinate, it follows easily that we have

𝐷𝑔(𝑡) ≥ 𝐷⋄
𝑖 𝑓(𝑥 + 𝑢𝑒𝑗 + 𝑡𝑒𝑖) −𝐷⋄

𝑖 𝑓(𝑥 + 𝑡𝑒𝑖) ≥ 0 ∀𝑡 ∈ R.

Hence, by Theorem VI.7.3 p. 204 in [15] we see that 𝑔 is increasing; that is, Δ𝑢
𝑖 𝑓

is increasing in the 𝑗th coordinate and so by (4.2) we have Δ𝑖𝑗𝑓 ≥ 0.

Let 𝜙 : R → R be a continuously differentiable, increasing, convex function
and set ℎ = 𝜙 ∘ 𝑓 . Let 𝑥 ∈ R𝑘 be given. Then we have

Δ𝑠
𝑖ℎ(𝑥) = Δ𝑠

𝑖 𝑓(𝑥) ⋅
∫ 1

0

𝜙′(𝑓(𝑥) + 𝑡 ⋅ Δ𝑠
𝑖𝑓(𝑥)) 𝑑𝑡 ∀𝑠 ∈ R

and since 𝑓 is continuous in the 𝑖th coordinate and 𝜙′ is increasing, nonnegative
and continuous we have

(i) 𝐷⋄
𝑖 ℎ(𝑥 + 𝑡𝑒𝑗) = 𝐷⋄

𝑖 𝑓(𝑥 + 𝑡𝑒𝑗)𝜙
′(𝑓(𝑥 + 𝑡𝑒𝑗)) ∀𝑡 ∈ R.

Suppose that Δ𝑖𝑗𝑓 ≥ 0 and that 𝑡 ↷ 𝑓(𝑥+ 𝑡𝑒𝑗) is increasing on 𝐼𝑥𝑖,𝑗 and decreasing

on 𝐽𝑥𝑖,𝑗 for all 𝑥 ∈ R𝑘. By (2), we have that 𝑡 ↷ 𝐷⋄
𝑖 𝑓(𝑥 + 𝑡𝑒𝑗) is increasing on R.

Let 𝑥 ∈ R𝑘 be a given vector, let 𝑠 < 𝑡 be given numbers and let me show that
𝐷⋄
𝑖 ℎ(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄

𝑖 ℎ(𝑥 + 𝑡𝑒𝑗).

Suppose that 𝑠 ∈ 𝐼𝑥𝑖,𝑗 . Then we have 0 < 𝐷⋄
𝑖 𝑓(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄

𝑖 𝑓(𝑥 + 𝑡𝑒𝑗)

and so we have 𝑠, 𝑡 ∈ 𝐼𝑥𝑖,𝑗 and 𝑓(𝑥 + 𝑠𝑒𝑗) ≤ 𝑓(𝑥 + 𝑡𝑒𝑗). Since 𝜙′ is increasing
and nonnegative, we have 0 ≤ 𝜙′(𝑓(𝑥 + 𝑠𝑒𝑗)) ≤ 𝜙′(𝑓(𝑥 + 𝑡𝑒𝑗)). So by (i) we have
𝐷⋄
𝑖 ℎ(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄

𝑖 ℎ(𝑥 + 𝑡𝑒𝑗).

Suppose that 𝑡 ∈ 𝐽𝑥𝑖,𝑗 . Then we have 𝐷⋄
𝑖 𝑓(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄

𝑖 𝑓(𝑥 + 𝑡𝑒𝑗) < 0
and so we have 𝑠, 𝑡 ∈ 𝐽𝑥𝑖,𝑗 and 𝑓(𝑥 + 𝑡𝑒𝑗) ≤ 𝑓(𝑥 + 𝑠𝑒𝑗). Since 𝜙′ is increasing

and nonnegative, we have 0 ≤ 𝜙′(𝑓(𝑥 + 𝑡𝑒𝑗)) ≤ 𝜙′(𝑓(𝑥 + 𝑠𝑒𝑗)). So by (i) we have
𝐷⋄
𝑖 ℎ(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄

𝑖 ℎ(𝑥 + 𝑡𝑒𝑗).
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Suppose that 𝑠 /∈ 𝐼𝑥𝑖,𝑗 and 𝑡 /∈ 𝐽𝑥𝑖,𝑗 . Then we have 𝐷⋄
𝑖 𝑓(𝑥+𝑠𝑒𝑗) ≤ 0 ≤ 𝐷⋄

𝑖 𝑓(𝑥+

𝑡𝑒𝑗) and so by (i) and nonnegativity of 𝜙′, we have 𝐷⋄
𝑖 ℎ(𝑥+𝑠𝑒𝑗) ≤ 0 ≤ 𝐷⋄

𝑖 ℎ(𝑥+𝑡𝑒𝑗).
Hence, in all cases we have 𝐷⋄

𝑖 ℎ(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄
𝑖 ℎ(𝑥 + 𝑡𝑒𝑗) and so we see that

𝐷⋄
𝑖 ℎ(𝑥) is increasing in the 𝑗th coordinate. So by (2), we have Δ𝑖𝑗(𝜙 ∘ 𝑓) ≥ 0.

Since 𝜉 : 𝐽 → R is increasing and convex, there exist continuously differentiable,
increasing convex functions 𝜉1, 𝜉2, . . . : R → R such that 𝜉𝑚(𝑡) → 𝜉(𝑡) for all
𝑡 ∈ 𝐽 . By the argument above, we have Δ𝑖𝑗(𝜉𝑚 ∘ 𝑓) ≥ 0 for all 𝑚 ≥ 1 and since
𝜉𝑚(𝑓(𝑥)) → 𝜉(𝑓(𝑥)), we see that Δ𝑖𝑗(𝜉 ∘𝑓) ≥ 0. Thus (3) is proved and (4) follows
in the same manner. □

Corollary 4.5. Let 𝜙1, . . . , 𝜙𝑘 : R → R be given functions which are either all
increasing or all decreasing and let us define 𝜙(𝑥) = (𝜙1(𝑥1), . . . , 𝜙𝑘(𝑥𝑘)) and

𝑀𝑘(𝑥) = max
𝑖∈[𝑘]

𝑥𝑖 , 𝑚𝑘(𝑥) = min
𝑖∈[𝑘]

𝑥𝑖 , 𝑄𝑘(𝑥) = max
𝑖,𝑗∈[𝑘]

∣𝑥𝑖 − 𝑥𝑗 ∣

for all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘. Let 𝜓 : R → R be an increasing function and let
𝜉 : [0,∞) → R be an increasing convex function. Then we have

(1) 𝑀𝑘(𝑥) and 𝐺(𝑥) := 𝜓(𝑀𝑘(𝜙(𝑥))) are submodular.

(2) 𝑚𝑘(𝑥) and 𝐹 (𝑥) := 𝜓(𝑚𝑘(𝜙(𝑥))) are supermodular.

(3) 𝑄𝑘(𝑥) and 𝐻(𝑥) := 𝜉(𝑄𝑘(𝜙(𝑥))) are submodular.

Proof. Let 𝑥, 𝑦 ∈ R𝑘 be given. Then we have 𝑀𝑘(𝑥 ∨ 𝑦) = 𝑀𝑘(𝑥) ∨ 𝑀𝑘(𝑦) and
since 𝑀𝑘 is increasing, we have 𝑀𝑘(𝑥 ∧ 𝑦) ≤ 𝑀𝑘(𝑥) ∧𝑀𝑘(𝑦).

Hence we have

𝑀𝑘(𝑥 ∨ 𝑦) + 𝑀𝑘(𝑥 ∧ 𝑦) ≤ 𝑀𝑘(𝑥) ∨𝑀𝑘(𝑦) + 𝑀𝑘(𝑥) ∧𝑀𝑘(𝑦) = 𝑀𝑘(𝑥) + 𝑀𝑘(𝑦).

Hence, we see that (1) follows from Proposition 4.1 and since 𝑚𝑘(𝑥) = −𝑀𝑘(−𝑥),
we see that (2) follows from (1) and Proposition 4.1. Since 𝑄𝑘(𝑥) = 𝑀𝑘(𝑥)−𝑚𝑘(𝑥),
we see that 𝑄𝑘 is submodular. Let 1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘 be given and set 𝜋𝑖𝑗 = [𝑘]∖{𝑖, 𝑗}.
Let 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘 be given and set 𝑀𝑖𝑗 = max𝜈∈𝜋𝑖𝑗 𝑥𝜈 and 𝑚𝑖𝑗 =
min𝜈∈𝜋𝑖𝑗 𝑥𝜈 with the usual conventions sup ∅ := −∞ and inf ∅ := +∞. Then we

have 𝐷
𝑟

𝑖𝑄𝑘(𝑥) = 1 if 𝑥𝑖 ≥ 𝑥𝑗 ∨𝑀𝑖𝑗 , 𝐷
𝑟

𝑖𝑄𝑘(𝑥) = 0 if 𝑥𝑗 ∧𝑚𝑖𝑗 ≤ 𝑥𝑖 < 𝑥𝑗 ∨𝑀𝑖𝑗 and

𝐷
𝑟

𝑖𝑄𝑘(𝑥) = −1 if 𝑥𝑖 < 𝑥𝑗 ∧𝑚𝑖𝑗 . So by Theorem 4.3.(4), we have Δ𝑖𝑗(𝜉 ∘𝑄𝑘) ≤ 0.
Hence, we see that (3) follows from (4.3) and Proposition 4.1. □

Lemma 4.6. Let 𝐷 ⊆ R be a countable set and let ℓ𝐷 denote the topology on R
generated by {(𝑎, 𝑏] ∣ 𝑎, 𝑏 ∈ R} ∪ {𝐺 ∣ 𝐺 ⊆ 𝐷}. Let Θ(R𝑘) denote the set of all
𝜃 : R𝑘 → R𝑘 of the form 𝜃(𝑥1, . . . , 𝑥𝑘) = (𝜃1(𝑥1), . . . , 𝜃𝑘(𝑥𝑘)) for some increasing,

right continuous step functions 𝜃1, . . . , 𝜃𝑘 : R → R. Let Φ ⊆ RR𝑘

be a non-empty
set and let 𝑓 : R𝑘 → R be a given function satisfying

(1) Φ is sequentially closed and 𝑓 ∘ 𝜃 ∈ Φ ∀𝜃 ∈ Θ(R𝑘).

(2) 𝑓 is ℓ𝐷-continuous in the 𝑖th coordinate for all 𝑖 = 1, . . . , 𝑘.

Then we have 𝑓 ∈ Φ ∩𝑀(R𝑘,ℬ𝑘). More precisely, 𝑓 ∈ Φ and 𝑓 is of Baire class
𝑘 + 1. Let 𝐹,𝐻 ∈ 𝑀(R𝑘,ℬ𝑘) be given functions satisfying
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(3) ∃𝛿 > 0 so that 𝐹 (𝑥) ≤ 𝑓(𝑥− 𝑦) ≤ 𝐻(𝑥) ∀𝑥 ∈ R𝑘 ∀𝑦 ∈ [0, 𝛿]𝑘

and let 𝔉 denote the set of all locally bounded, right continuous functions ℎ : R𝑘 →
R such that 𝐹 (𝑥) ≤ ℎ(𝑥) ≤ 𝐻(𝑥) for all 𝑥 ∈ R𝑘. Let 𝜇 and 𝜈 be Borel measures
on R𝑘 satisfying

(4) 𝐹 ∈ 𝐿1(𝜇) , 𝐻 ∈ 𝐿1(𝜈) and
∫ ∗

𝜙𝑑𝜇 ≤ ∫ ∗𝜙𝑑𝜈 ∀𝜙 ∈ Φ ∩ 𝔉.

Then we have 𝑓 ∈ 𝐿1(𝜇) and
∫
R𝑘 𝑓 𝑑𝜇 ≤ ∫ ∗ 𝑓 𝑑𝜈 < ∞.

Remark. (a): Note that 𝑔 : R → R is ℓ𝐷-continuous if and only if 𝑔 is left continu-
ous at 𝑥 for all 𝑥 ∈ R∖𝐷. Recall that 𝑔 : R → R is a right continuous step function
if and only if there exist numbers (𝑐𝑖 ∣ 𝑖 ∈ Z) such that 𝑐𝑖 < 𝑐𝑖+1 for all 𝑖 ∈ Z,
sup𝑖∈Z 𝑐𝑖 = ∞, inf𝑖∈Z 𝑐𝑖 = −∞ and 𝑔(𝑡) = 𝑔(𝑐𝑖) for all 𝑡 ∈ [𝑐𝑖, 𝑐𝑖+1) and all 𝑖 ∈ Z.

(b): Let 𝑇 be a topological space and let ℎ : 𝑇 → R be a function. Recall
that ℎ is of Baire class 0 if ℎ is continuous and that ℎ is of Baire class 𝛼 for some
ordinal 𝛼 > 0 if and only if ℎ is a pointwise limit of a sequence of functions of
Baire class < 𝛼.

Proof. Let 𝐸1 ⊆ 𝐸2 ⊆ ⋅ ⋅ ⋅ ⊆ R be an increasing sequence of finite sets such that
𝐸𝑛 ↑ 𝐷 and set 𝐷𝑛 = 𝐸𝑛 ∪ {𝑖 2−𝑛 ∣ 𝑖 ∈ Z} and 𝜃𝑛(𝑡) = sup (𝐷𝑛 ∩ (−∞, 𝑡])
for all 𝑛 ≥ 1 and all 𝑡 ∈ R. Then 𝜃𝑛 is an increasing, right continuous, step
function and we have 𝑡 − 2−𝑛 ≤ 𝜃𝑛(𝑡) ≤ 𝜃𝑛+1(𝑡) ≤ 𝑡 for all 𝑛 ≥ 1 and all 𝑡 ∈ R.
Let 𝜎1, . . . , 𝜎𝑘 ∈ N and 𝑥 = (𝑥1, . . . , 𝑥ℎ) ∈ R𝑘 be given and set 𝑓𝑘𝜎1,...,𝜎𝑘(𝑥) =
𝑓(𝜃𝜎1(𝑥1), . . . , 𝜃𝜎𝑘(𝑥𝑘)) and

𝑓 𝑖𝜎1,...,𝜎𝑖(𝑥) = 𝑓(𝜃𝜎1(𝑥1), . . . , 𝜃𝜎𝑖(𝑥𝑖), 𝑥𝑖+1, . . . , 𝑥𝑘) for 1 ≤ 𝑖 < 𝑘.

Note that 𝜃𝑛(𝑡) = 𝑡 for all 𝑡 ∈ 𝐸𝑚 and all 𝑛 ≥ 𝑚. Since 𝐸𝑛 ↑ 𝐷, we see that
𝜃𝑛(𝑡) → 𝑡 in ℓ𝐷 and so by (2) we have

𝑓 𝑖−1𝜎1,...,𝜎𝑖−1
(𝑥) = lim

𝜎𝑖→∞ 𝑓 𝑖𝜎1,...,𝜎𝑖(𝑥) ∀1 < 𝑖 ≤ 𝑘 , 𝑓(𝑥) = lim
𝜎1→∞ 𝑓1𝜎1

(𝑥).

By (1), we have 𝑓𝑘𝜎1,...,𝜎𝑘
∈ Φ and since Φ is sequentially closed we see that 𝑓 ∈

Φ. Since 𝜃𝑛 is a right continuous step function, we see that 𝑓𝑘𝜎1,...,𝜎𝑘
is a right

continuous, locally bounded Borel function on R𝑘. So by Lemma 2.2 we see that
𝑓𝑘𝜎1,...,𝜎𝑘

is of Baire class 1. Hence, we see that 𝑓 is of Baire class 𝑘 + 1.

Let 𝜇 and 𝜈 be Borel measures on R𝑘 and let 𝐹 ∈ 𝐿1(𝜇) and 𝐻 ∈ 𝐿1(𝜈)
be given functions satisfying (3)–(4). Let 𝛿 > 0 be chosen according to (3) and
let 𝑞 ∈ N be chosen such that 2−𝑞 < 𝛿. Let Λ denote the set of all functions
ℎ : R𝑘 → R satisfying

∫ ∗
ℎ 𝑑𝜇 ≤ ∫ ∗ ℎ 𝑑𝜈 and set Ψ = {𝜓 ∈ Φ ∣ 𝐹 ≤ 𝜙 ≤ 𝐻}. By

(1), we see that Ψ is sequentially closed and since 𝐹 ∈ 𝐿1(𝜇) and 𝐻 ∈ 𝐿1(𝜈), we see
that {𝜓− ∣ 𝜓 ∈ Ψ} is uniformly 𝜇-integrable and that {𝜓+ ∣ 𝜓 ∈ Ψ} is uniformly
𝜈-integrable. By Theorem 3.3.(9), we have that Λ∩Ψ∩𝑀(R𝑘,ℬ𝑘) is sequentially
closed. Let 𝜎1, . . . , 𝜎𝑘 ≥ 𝑞 be given integers. Since 𝜃𝑛 is a right continuous, step
function satisfying 𝑡 − 𝛿 ≤ 𝜃𝑛(𝑡) ≤ 𝑡 for all 𝑛 ≥ 𝑞 and all 𝑡 ∈ R, we have
𝑓𝑘𝜎1,...,𝜎𝑘 ∈ Φ∩𝔉∩𝑀(R𝑘 ,ℬ𝑘). So by (3)–(4), we have 𝑓𝑘𝜎1,...,𝜎𝑘 ∈ Λ∩Ψ∩𝑀(R𝑘,ℬ𝑘)
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for all 𝜎1, . . . , 𝜎𝑘 ≥ 𝑞 and since Λ ∩ Ψ ∩𝑀(R𝑘,ℬ𝑘) is sequentially closed, we see
that 𝑓 ∈ Λ ∩ Ψ ∩𝑀(R𝑘,ℬ𝑘). Hence, we have

−∞ <

∫
R𝑘

𝐹 𝑑𝜇 ≤
∫
∗
𝑓 𝑑𝜇 ≤

∫ ∗
𝑓 𝑑𝜇 ≤

∫ ∗
𝑓 𝑑𝜈 ≤

∫
R𝑘

𝐻 𝑑𝜈 < ∞.

So by Theorem 2.1.(8) in [4] we have 𝑓 ∈ 𝐿1(𝜇) and
∫
R𝑘 𝑓 𝑑𝜇 ≤ ∫ ∗ 𝑓 𝑑𝜈 < ∞ □

Theorem 4.7. Let 𝜇 and 𝜈 be Borel probability measures on R𝑘 with one-dimen-
sional marginals 𝜇1, . . . , 𝜇𝑘 and 𝜈1, . . . , 𝜈𝑘, respectively. Then we have

(1) 𝜇 ⪯bm 𝜈 ⇔ 𝜇𝑖 = 𝜈𝑖 for 𝑖 = 1, . . . , 𝑘.

(2)

∫
R𝑘

𝑓 𝑑𝜇 ≤
∫
R𝑘

𝑓 𝑑𝜈 ∀𝑓 ∈ 𝐶∞
𝑏 (R𝑘) ∩ ism(R𝑘) ⇔ 𝜇 ⪯ism 𝜈.

(3)

∫
R𝑘

𝑓 𝑑𝜇 ≤
∫
R𝑘

𝑓 𝑑𝜈 ∀𝑓 ∈ 𝐶∞
𝑏 (R𝑘) ∩ m(R𝑘) ⇔ 𝜇 ⪯bm 𝜈.

(4) 𝜇 ⪯bsm 𝜈 ⇔ 𝜇 ⪯ism 𝜈 and 𝜇 ⪯bm 𝜈.

(5)

∫
R𝑘

𝑓 𝑑𝜇 ≤
∫
R𝑘

𝑓 𝑑𝜈 ∀𝑓 ∈ 𝐶∞
𝑏 (R𝑘) ∩ sm(R𝑘) ⇔ 𝜇 ⪯bsm 𝜈.

Proof. Throughout the proof we let Λ denote the set of all functions 𝑓 : R𝑘 → R
satisfying

∫ ∗
𝑓 𝑑𝜇 ≤ ∫ ∗ 𝑓 𝑑𝜈. (1) follows easily from Proposition 4.2.(4).

(2): Suppose that 𝐶∞
𝑏 (R𝑘) ∩ ism(R𝑘) ⊆ Λ. Let 𝐶𝑟

𝑏 denote the set of all
bounded, right continuous functions on R𝑘 and set 𝜅(𝑥) ≡ 1. Then (ism(R𝑘), 𝜅)
satisfies conditions (1)–(2) in Theorem 3.4 and so we conclude that 𝐶𝑟

𝑏 ∩ism(R𝑘) ⊆
Λ. Let 𝑓 ∈ 𝐵(R𝑘)∩ ism(R𝑘) be given. Then there exists 𝑐 > 0 such that ∣𝑓(𝑥)∣ ≤ 𝑐
for all 𝑥 ∈ R𝑘. Let 𝐴 ⊆ R𝑘 be a countable dense subset of R𝑘. Since 𝑓𝑢𝑖 is
increasing, there exists a countable set 𝐷 ⊆ R such that R ∖𝐷 ⊆ 𝐶(𝑓𝑢𝑖 ) for all
𝑖 ∈ [𝑘] and all 𝑢 ∈ 𝐴. Hence, by Proposition 4.2.(3), we have R ∖ 𝐷 ⊆ 𝐶(𝑓𝑢𝑖 )
for all 𝑖 ∈ [𝑘] and all 𝑢 ∈ R𝑘 and so we see the (𝑓,𝐷) satisfies condition (2)
in Lemma 4.6. By Proposition 4.1.(2) we see that (ism(R𝑘, 𝑓) satisfies condition
(1) in Lemma 4.6. Since 𝐶𝑟

𝑏 ∩ ism(R𝑘) ⊆ Λ we see that 𝑓 satisfies condition (3)–
(4) in Lemma 4.6 with 𝐹 (𝑥) ≡ −𝑐 and 𝐻(𝑥) ≡ 𝑐. Hence, we have 𝑓 ∈ Λ for
all 𝑓 ∈ 𝐵(R𝑘) ∩ ism(R𝑘). Let 𝑓 ∈ ism(R𝑘) be given. Set 𝑏𝑚 = (𝑚, . . . ,𝑚) and
𝑓𝑚,𝑛(𝑥) = 𝑓(𝑥∧𝑏𝑚)∨(−𝑛) for all 𝑚,𝑛 ∈ N and all 𝑥 ∈ R𝑘. Then 𝑓𝑚,𝑛 is increasing
and bounded and by Proposition 4.1, we have that 𝑓𝑚,𝑛 is supermodular. Hence,
we have 𝑓𝑚,𝑛 ∈ Λ. Since 𝑓 is increasing, we see that −𝑛 ≤ 𝑓1,𝑛 ≤ 𝑓2.𝑛 ≤ ⋅ ⋅ ⋅ and
sup𝑚≥1 𝑓𝑚,𝑛(𝑥) = 𝑓(𝑥) ∨ (−𝑛) for all 𝑥 ∈ R𝑘. So by Theorem 3.3.(8) we see that
𝑓(𝑥) ∨ (−𝑛) ∈ Λ for all 𝑛 ∈ N and so by Theorem 3.3.(2) we have 𝑓 ∈ Λ; that is,
𝜇 ⪯ism 𝜈 which completes the proof of (2).

(3): Suppose that 𝐶∞
𝑏 (R𝑘)∩m(R𝑘) ⊆ Λ and let 𝑖 ∈ [𝑘] be given. By Proposi-

tion 4.2.(4), we have
∫
R
𝜙𝜇𝑖 =

∫
R
𝜙 𝜈𝑖 for all 𝜙 ∈ 𝐶∞

𝑏 (R) and so we have 𝜇𝑖 = 𝜈𝑖.
Hence, we see that (3) follows from (1).

(4): The implication “⇒” in (4) follows directly from (2). Suppose that 𝜇 ⪯ism
𝜈 and 𝜇 ⪯bm 𝜈 and let 𝑓 ∈ bsm(R𝑘) be given. Set 𝑎𝑛 = (−𝑛, . . . ,−𝑛) for 𝑛 ≥ 1.
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By Proposition 4.2.(1) we have that the limits

𝛼𝑖(𝑡) := lim
𝑛→∞ (𝑓𝑎

𝑛

𝑖 (𝑡) − 𝑓𝑎
𝑛

𝑖 (0))

exist and are finite for all 𝑡 ∈ R and all 𝑖 ∈ [𝑘]. Since 𝑓 is a bounded Borel
function, we see that 𝛼𝑖 is bounded Borel function. So by Proposition 4.2.(4),

we have that 𝐺(𝑥) :=
∑𝑘

𝑖=1 𝛼𝑖(𝑥𝑖) is a bounded, modular, Borel function. By
Proposition 4.2.(5), we see that

𝑥 ↷ 𝑓(𝑥 ∨ 𝑎) −
𝑘∑
𝑖=1

(𝑓𝑎𝑖 (𝑥𝑖 ∨ 𝑎𝑖) − 𝑓𝑎𝑖 (0))

is increasing and supermodular for all 𝑎 ∈ R𝑘. Hence, we see that 𝐹 (𝑥) := 𝑓(𝑥)−
𝐺(𝑥) is a bounded, increasing, supermodular, Borel function. Since 𝜇 ⪯ism 𝜈, we
have 𝐹 ∈ Λ∩𝐿1(𝜇)∩𝐿1(𝜈) and since 𝜇 ⪯bm 𝜈, we have 𝐺 ∈ Λ∩𝐿1(𝜇)∩𝐿1(𝜈). So
by Theorem 3.3.(1) we have 𝑓 = 𝐹 + 𝐺 ∈ Λ for all 𝑓 ∈ bsm(R𝑘) which completes
the proof of (4).

(5): Suppose that 𝑓 ∈ 𝐶∞
𝑏 (R𝑘) ∩ sm(R𝑘) ⊆ Λ. By (2) and (3), we have

𝜇 ⪯bm 𝜈 and 𝜇 ⪯ism 𝜈. So by (4) we have 𝜇 ⪯bsm 𝜈. □

Theorem 4.8. Let 𝜇 and 𝜈 be Borel probability measures on R𝑘 such that 𝜇 ⪯bsm 𝜈
and let 𝜇1, . . . , 𝜇𝑘 denote the one-dimensional marginals of 𝜇. Let 𝑓 : R𝑘 → R be
a supermodular Borel function and let us define 𝑓∨𝑐(𝑥) = 𝑓(𝑥 ∨ 𝑐) and 𝑓∧𝑐(𝑥) =
𝑓(𝑥 ∧ 𝑐) for all 𝑐, 𝑥 ∈ R𝑘. If 𝑐 ∈ R𝑘 is a given vector, then we have

(1) If 𝑓 is either increasing or decreasing, then
∫ ∗

𝑓 𝑑𝜇 ≤ ∫ ∗ 𝑓 𝑑𝜈.

(2) If 𝑓 𝑐𝑖 ∈ 𝐿1(𝜇𝑖) for all 𝑖 ∈ [𝑘], then we have
∫ ∗

𝑓∨𝑐𝑑𝜇 ≤ ∫ ∗ 𝑓∨𝑐 𝑑𝜈 and∫ ∗
𝑓∧𝑐𝑑𝜇 ≤ ∫ ∗ 𝑓∧𝑐 𝑑𝜈.

Let 𝐴,𝐵 ⊆ R𝑘 be given sets satisfying ∪𝑎∈𝐴[𝑎, ∗] = R𝑘 = ∪𝑏∈𝐵[∗, 𝑏]. Then we
have

∫ ∗
𝑓 𝑑𝜇 ≤ ∫ ∗ 𝑓 𝑑𝜈 if just one of the following three conditions holds:

(A) 𝑓𝑎𝑖 ∈ 𝐿1(𝜇𝑖) ∀ 𝑖 ∈ [𝑘] ∀ 𝑎 ∈ 𝐴, {𝑓−∨𝑎 ∣ 𝑎 ∈ 𝐴} is uniformly 𝜇-integrable and
{𝑓+∨𝑎 ∣ 𝑎 ∈ 𝐴} is uniformly 𝜈-integrable.

(B) 𝑓 𝑏𝑖 ∈ 𝐿1(𝜇𝑖) ∀ 𝑖 ∈ [𝑘] ∀ 𝑏 ∈ 𝐵, {𝑓−∧𝑏 ∣ 𝑏 ∈ 𝐵} is uniformly 𝜇-integrable and

{𝑓+∧𝑏 ∣ 𝑏 ∈ 𝐵} is uniformly 𝜈-integrable.

(C) There exist functions ℎ1 ∈ 𝐿1+(𝜇1) , . . . , ℎ𝑘 ∈ 𝐿1+(𝜇𝑘) such that ∣𝑓(𝑥)∣ ≤∑𝑘
𝑖=1 ℎ𝑖(𝑥𝑖) for all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘.

Proof. Throughout the proof, we let Λ denote the set of all functions ℎ : R𝑘 → R
satisfying

∫ ∗
ℎ 𝑑𝜇 ≤ ∫ ∗ ℎ 𝑑𝜈. We set 𝑓(𝑥) = 𝑓(−𝑥) for all 𝑥 ∈ R𝑘 and we set

�̃�(𝐵) = 𝜇(−𝐵) and 𝜈(𝐵) − 𝜈(−𝐵) for all 𝐵 ∈ ℬ𝑘. Then �̃� and 𝜈 are Borel

probability measures on R𝑘 such that
∫
𝑓 𝑑�̃� =

∫
𝑓 𝑑𝜇 and

∫
𝑓 𝑑𝜈 =

∫
𝑓 𝑑𝜈. By

Proposition 4.1, we see that 𝑓 is supermodular and that �̃� ⪯bsm 𝜈.
(1): Since 𝜇 ⪯bsm 𝜈, we have bsm(R𝑘) ⊆ Λ and by Theorem 4.7, we have

ism(R𝑘) ⊆ Λ and 𝜇𝑖 = 𝜈𝑖 for 𝑖 = 1, . . . , 𝑘 where 𝜈1, . . . , 𝜈𝑘 are the one-dimensional
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marginals of 𝜈. Hence, we have 𝑓 ∈ Λ if 𝑓 is increasing. Applying this to the triple
(𝑓, �̃�, 𝜈), we see that 𝑓 ∈ Λ if 𝑓 is decreasing.

(2): Suppose that 𝑓 𝑐𝑖 ∈ 𝐿1(𝜇𝑖) for all 𝑖 = 1, . . . , 𝑘 and set 𝐺(𝑥) =
∑𝑘

𝑖=1 𝑓 𝑐𝑖 (𝑥𝑖∨
𝑐𝑖) for all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘. By Proposition 4.2.(4), we have that 𝐺 is a
modular, Borel function and since 𝜇𝑖 is finite, we have that 𝑓 𝑐𝑖 (𝑡 ∨ 𝑐𝑖) belongs to
𝐿1(𝜇𝑖). Since 𝜈𝑖 = 𝜇𝑖, we have 𝐺 ∈ Λ ∩ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and by Proposition 4.2.(5),
we have 𝑓∨𝑐−𝐺 ∈ ism(R𝑘) ⊆ Λ. So by Theorem 3.3.(1) we have 𝑓∨𝑐 ∈ Λ. Applying

this to triple (𝑓, �̃�, 𝜈) with 𝑐 := −𝑐, we see that 𝑓∧𝑐 ∈ Λ.

Suppose that condition (A) holds. By (2), we see that 𝑓∨𝑎 ∈ Λ for all 𝑎 ∈ 𝐴
and since R𝑘 = ∪𝑎∈𝐴 [𝑎, ∗], there exists 𝑎𝑛 = (𝑎𝑛1 , . . . , 𝑎

𝑛
𝑘 ) ∈ 𝐴 such that 𝑎𝑛+1𝑖 ≤

𝑎𝑛𝑖 ≤ −𝑛 for all 𝑛 ∈ N and all 𝑖 ∈ [𝑘]. Then we have 𝑓∨𝑎𝑛(𝑥) → 𝑓(𝑥) and by (2) and
(A), we have 𝑓∨𝑎𝑛 ∈ Λ, {𝑓−∨𝑎𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜇-integrable and {𝑓+∨𝑎𝑛 ∣ 𝑛 ≥ 1}
is uniformly 𝜈-integrable. So by (3.3)–(3.4) and Theorem 3.3.(5) we have 𝑓 ∈ Λ.

Suppose that condition (B) holds. Applying case (A) on the triple (𝑓, �̃�, 𝜈)
with 𝐴 := −𝐵, we see that 𝑓 ∈ Λ. Suppose that condition (C) holds. Since
ℎ𝑖 ∈ 𝐿1+(𝜇𝑖), we see that 𝑓𝑥𝑖 ∈ 𝐿1(𝜇𝑖) for all 𝑥 ∈ R𝑘 and all 𝑖 ∈ [𝑘]. Let 𝜉 be a
finite Borel measure on R. Then I claim that we have

(i) lim inf
𝑢→−∞

∫
R

∣ℎ(𝑡) − ℎ(𝑡 ∨ 𝑢)∣𝜉(𝑑𝑡) = 0 ∀ℎ ∈ 𝐿1(𝜉).

Proof of (i). Suppose that (i) fails. Then there exist ℎ ∈ 𝐿1(𝜉) and a positive num-
ber 𝛿 > 0 such that lim inf𝑢↓−∞

∫
R ∣ℎ(𝑡) − ℎ(𝑡 ∨ 𝑢)∣ 𝜉(𝑑𝑡) > 2𝛿. Since ℎ ∈ 𝐿1(𝜉),

there exists 𝑞 ∈ R such that∫
(−∞,𝑞]

∣ℎ∣ 𝑑𝜉 < 𝛿 and

∫
R

∣ℎ(𝑡) − ℎ(𝑡 ∨ 𝑢)∣ 𝜉(𝑑𝑡) > 2 𝛿 ∀𝑢 ≤ 𝑞.

Let 𝑢 ≤ 𝑞 be given and set 𝐹𝜉(𝑢) := 𝜉((−∞, 𝑢]). Then we have

2𝛿 <

∫
R

∣ℎ(𝑡) − ℎ(𝑡 ∨ 𝑢)∣ 𝜉(𝑑𝑡) ≤
∫
(−∞,𝑞]

∣ℎ(𝑡)∣𝜉(𝑑𝑡) + ∣ℎ(𝑢)∣𝐹𝜉(𝑢)

≤ 𝛿 + ∣ℎ(𝑢)∣𝐹𝜉(𝑢)

and so we see that ∣ℎ(𝑢)∣𝐹𝜉(𝑢) > 𝛿 for all 𝑢 ≤ 𝑞. Set 𝑚 = inf𝑠≤𝑞 ∣ℎ(𝑠)∣ and let
𝑠 ≤ 𝑞 be given. Since 𝐹𝜉 is increasing. we have 𝛿 ≤ ∣ℎ(𝑠)∣𝐹𝜉(𝑠) ≤ ∣ℎ(𝑠)∣𝐹𝜉(𝑞) and
so we have 𝛿 ≤ 𝑚𝐹𝜉(𝑞) and

𝛿 ≤ 𝑚𝐹𝜉(𝑞) =
∫
(−∞,𝑞]𝑚𝜉(𝑑𝑠) ≤

∫
(−∞,𝑞]

∣ℎ(𝑠)∣ 𝜉(𝑑𝑠) < 𝛿

which is impossible. Thus, we see that (i) holds.

Let 𝑖 ∈ [𝑘] be given. By (i) there exist numbers 𝑎1𝑖 > 𝑎2𝑖 > ⋅ ⋅ ⋅ such that
𝑎𝑛𝑖 < −𝑛 for all 𝑛 ≥ 1 and

lim
𝑛→∞

∫
R

∣ℎ𝑖(𝑡) − ℎ𝑖(𝑡 ∨ 𝑎𝑛𝑖 )∣𝜇𝑖(𝑑𝑡) = 0 ∀𝑖 = 1, . . . , 𝑘.
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Set 𝑎𝑛 = (𝑎𝑛1 , . . . , 𝑎
𝑛
𝑘 ) and 𝐻(𝑥) =

∑𝑘
𝑖=1 ℎ𝑖(𝑥𝑖) for 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘. Since

𝜇𝑖 = 𝜈𝑖 and

∣𝐻(𝑥) −𝐻(𝑥 ∨ 𝑎𝑛)∣ ≤
𝑛∑
𝑖=1

∣ℎ𝑖(𝑥𝑖) − ℎ(𝑥𝑖 ∨ 𝑎𝑛𝑖 )∣
we have∫

R𝑘

∣𝐻(𝑥) −𝐻(𝑥 ∨ 𝑎𝑛)∣𝜇(𝑑𝑥) → 0 ,

∫
R𝑘

∣𝐻(𝑥) −𝐻(𝑥 ∨ 𝑎𝑛)∣ 𝜈(𝑑𝑥) → 0.

In particular, we see that {𝐻∨𝑎𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜇-integrable and uniformly
𝜈-integrable. Since ∣𝑓(𝑥∨𝑎𝑛)∣ ≤ 𝐻(𝑥∨𝑎𝑛), we see that {𝑓∨𝑎𝑛 ∣ 𝑛 ≥ 1} is uniformly
𝜇-integrable and uniformly 𝜈-integrable. So by case (A) we have 𝑓 ∈ Λ □
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