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Slepian’s Inequality, Modularity
and Integral Orderings

J. Hoffmann-Jgrgensen

Abstract. Slepian’s inequality comes in many variants under different sets of
regularity conditions. Unfortunately, some of these variants are wrong and
other variants are imposing to strong regularity conditions. The first part of
this paper contains a unified version of Slepian’s inequality under minimal
regularity conditions, covering all the variants I know about. It is well known
that Slepian’s inequality is closely connected to integral orderings in general
and the supermodular ordering in particular. In the last part of the paper
I explore this connection and corrects some results in the theory of integral
orderings.
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1. Introduction

Throughout this paper, we let (2, F, P) denote a fixed probability space. If &k > 1
is an integer, we set [k] := {1,...,k}. If X = (Xy,...,X}) is a random vector
such that X1,..., X € L2(P), we let X; := X; — EX; denote the centered random
variables for i € [k] and we let ¥ = {o;¥} and II™ = {x;} } denote the covariance
matriz and intrinsic metric of X; that is:

o)y = E(X;X;) and ), == E(X; — X;)* Vi,j € [k].

ij
Note that 7y = o} + 075 — 2075 for all 4,j € [k] and that d(i,j) := Ty is a
Hilbertian pseudo-metric on [k].

It is well known that Slepian’s inequality is an important tool in the theory of
Gaussian processes. Let X = (X1,...,X;) and Y = (Y1, ...,Y%) be k-dimensional
Gaussian vectors with zero means. Slepian’s inequality comes in many variants;
see [2, 6, 7,9, 10, 12, 16, 18], but in essence it states that Ef(Y) < Ef(X) for all
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f:R* = R satisfying

2 2 ..
(agj?—ag)azagj(x)zo or (ﬂg—wg)aing(x)ZO Vi, j (1.1)

plus some regularity conditions. Condition (1.1) indicates that f should be suffi-
ciently smooth (at least twice differentiable), but Slepian’s inequality is often used
for indicator functions which are not even continuous. In most of the literature
the indicator case and the smooth case are treated separately. The most general
form of Slepian’s inequality is found in [7] and [9] where (1.1) is interpreted in the
sense of Schwartz distributions. However, Theorem 3.11 on p. 74 in [9] is false as
it stands:

Example A: Let k£ > 2 be an integer, let U, Uy, ...,U; be independent N(0,1)-
distributed random variables and set X = (U,...,U) and Y = (Uy,...,Ux). Then
X and Y are Gaussian random vectors such that o), = o7y and 02; =0<1=0}
for1 <i#j <1 Let D:={x € RF|az = = x;} denote the diagonal
in R* and set f = —1p. Since f = 0 Lebesgue a.e. we have Ef(Y) = 0 and

aa?faij = 0 in distribution sense for all 1 <4, j < k and since P(X € D) = 1, we
have Ef(X) = —1 showing that Theorem 3.11 on p. 74 in [9] fails in this case.
Many other counterexamples can be constructed in a similar manner.

This observation calls for a closer glance at the validity of Slepian’s inequality
and Section 2 of this paper will be devoted to establish a unified form of Slepian’s
inequality under minimal regularity conditions on f.

Slepian’s inequality is intimately connected with integral orderings in general
and the supermodular ordering in particular. If S and T are sets, we let 2° denote
the set of all subsets of S, we let T denote the set of all functions from S into T,
and we let B(S) denote the set of all bounded, real-valued functions on S. Recall
that (T, <) is a proset if T is a non-empty set and < is a relation on T such that
< s reflexive (t <t Vt € T) and transitive (t <u, u<v = t <v).

Let (S,.A) be a measurable space; that is, S is a non-empty set and A is a
o-algebra on S. Then we let M (S, A) denote the set of all A-measurable functions
from S into R and we let Pr(S,.A) denote the set of all probability measures on
(S, A). Let ® C M(S,.A) be a given set of functions. Then it is customary to define
the ®-integral ordering on Pr(S, A), denoted <g, as follows: u <¢ v if and only if
Jsddu < [godvfor all g € N L () N L' (v). Then <g is a relation on Pr(S, B)
which is reflexive but not transitive and exhibits strange properties:

Example B: Let S = R and let B denote the Borel o-algebra on R. Let & denote
the set of all increasing, convex functions ¢ : R — R.. Let u be a Borel probability
measure such that [ z% p(dz) = oo. Then ® N L'(p) is the set of all constant
functions and so we have y <¢ v and v <g p for all v € Pr(R, B). In particular, we
see that <g is not transitive and that the integral ordering <g is not a preordering.

To avoid such peculiarities, I shall introduce a slight modification of the
®-integral ordering. If ® C R®, we define the ®-integral ordering on Pr(S, A),
denoted =g, as follows u <g v if and only if [“ddu < [T ¢dv for all ¢ € @,
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where f* f du denotes the upper p-integral of f. Then (Pr(S,.4), <s) is a proset.
If (Q,F, P) is a probability space and X,Y,Z : (Q,F) — (S,.A) are measurable
functions, we let Pz(A) = P(Z € A) for A € A denote the distribution of Z and
we write X <g Y if Px =<¢ Py. Note that y <¢ v = p < v and that the
converse implication holds if ® C L!(u) N LY (v). In Section 3 we shall take a closer
look at integral orderings,

The classical stochastic ordering on R, usually denoted =g, is the integral
ordering induced by the indicator functions {1j, ) | @ € R}; that is u =<y v
if and only if p([a,00)) < v(]a,0)) for all a € R. More generally, let (S, <) be
a proset. Then we let In(S, <) denote the set of all increasing functions from S
into R and we say that A C S is an upper interval if 14 € In(S, <). We define
the stochastic ordering on S, denoted =g, to be the integral ordering induced by
indicators of upper intervals; that is, p <y v if and only if p*(A) < v*(A) for
every upper interval A C S. If u € S, we define the upper and lower intervals
[u,] :={s € S| s>u}and [*,u] :=={s €S |s <u} and we define the orthant
ordering, denoted =, to be the integral ordering induced by {1, . | v € S}; that
is, p Sor v if and only if p*([u, *]) < v*([u,*]) for all u € S.

Let £ > 1 be an integer. Then we let < denote the product ordering on
R*; that is, (z1,...,2%) < (y1,...,yx) if and only if 2; < y; for all i = 1,... k.

If z = (x1,...,2,) and y = (y1,...,yx) are vectors, we define the lattice infi-
mum and supremum as usual z Ay := (min(z1,y1), ..., min(zg, yx)) and 2 Vy =
(max(z1,y1), ..., max(zg,yx)), and we define [z,y] = {z € RF | z < z < y}.

We let B* denote the Borel o-algebra on RF. Let f : R* — R be a given func-
tion. Then we say that f is increasing (decreasing) if f is increasing (decreas-
ing) with respect to the product ordering <. We say that f is supermodular if
fl@)+ fly) < flxVvy) + fx Ay) for all 2,y € R, we say that f is submodular
if (—f) is supermodular, and we say that f is modular if f is supermodular and
submodular. We define the following function spaces

sm(R") = {f € M(R*,B") | f is supermodular }
m(RF) = {f € M(RF,B*) | f is modular } , bm(R*) = B(R*) nm(RF)
bsm(R") = B(R*) nsm(R¥) , ism(RF) = In(R*, <) nsm(R¥)

and we let <, <bm, =m, =bsm and =iy denote the integral orderings induced
by sm(R¥), bm(R¥), m(R¥), bsm(R¥) and ism(RF), respectively. If k& = 1, then
every function is supermodular and every increasing function is Borel measurable.
Hence, in all dimensions there exists non-measurable supermodular functions and
if £ > 2, there exists non-measurable increasing functions. However, in Prop.4.3
below we shall see that an increasing supermodular function is Borel measurable.

Let 1 be a Borel probability measure on R* and let Fy,...,F : R — [0,1]
denote the one-dimensional marginal distribution functions of p. Then

F(z1,...,xk) := min(Fy(x1),... Fg(zg))
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is a k-dimensional distribution function, and if A, is the associated Lebesgue-
Stieltjes measure, then Ap is a Borel probability measure on R* with the same
one-dimensional marginals as u. By a theorem of A.H. Tchen (see [19]), we have
ka fdu < ka fdAp for every supermodular function which is continuous, and
satisfies a certain (uniform) integrability condition. In Theorem 4.7, we shall see
that @ =<psm Ap. In the modern literature it is frequently claimed that p <¢n Ag
and that <g, coincide with <jgp; see for instance [10]. The following example
shows that both claims fail when k& > 3.

Example C: (see [17]). Let U be a strictly positive random variable with a one-sided
Cauchy distribution; that is, with distribution function F' given by:

F(z) = 2 arctan(z) if >0 and F(z)=0ifz <0

Since U is strictly positive, we may define V := [1] and W = §|U -V]. A
straightforward computation shows that U, V and W all have distribution function
F and so we have Fy(z) = Fy(z) = Fw(z) = F(z) and Fyuu(e,y,2) =
min(F(x), F(y), F(z)) for all z,y,z € R. By [19] and Theorem 4.7 below, we
have that (U, V,W) <psm (U,U,U) and (U, V,W) <ism (U,U,U). Set f(x,y,z) =
x4y — 2z. Then f is continuous, linear and modular and we have

FOUU)=0, fUV.W)=20UlLya+ §lwsy
0< f(UV,W)<2, Ef(UUU)=0<Ef({U,V,W)= 22,

Hence, we see that (U, V,W) L (U,U,U) and (U, V,W) £, (U,U,U) which
shows the integrability condition in Theorem 5 of [19] cannot be removed and
that p <psm ¥ does not imply u <y, v.

Let X = (X1,...,Xg) and Y = (¥7,...,Y}) be k-dimensional Gaussian vec-
tors with zero means and covariances {0 } and {0};} such that o}; = o} for all
1<i<kand 05 < afj(v for all 1 <4 # j < k. Let f be a supermodular, locally

2
1 <i# j < k. So it is tempting to infer that Slepian’s inequality implies Y <4, X.
However Slepian’s inequality only shows that Ef(Y) < Ef(Y) if f satisfies some
additional regularity conditions. It can be shown that Y <pq, X; see Theorem 2.8
and Theorem 4.7, but Example C shows that Y <y, X does not imply Y <, X
in general, and I don’t know if we really have Y <y, X if X and Y are Gaussian
vectors satisfying the above hypotheses. However, Theorem 2.8 and Theorem 4.8
shows that Ef(Y) < Ef(X) for a large classs of unbounded supermodular func-
tions. Section 4 is devoted the study of the modular orderings introduced above.

Lebesgue integrable function. Then we have > 0 in distribution sense for all

2. Slepian’s inequality

In this section I shall prove a general version of Slepian’s inequality where the
partial derivatives are understood in the sense of Schwartz distributions. The idea
is to approximate the function f : R¥ — R with infinitely often differentiable
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functions fi, fo,... satisfying Slepian’s inequality The approximating sequence
will taken as the convolution integrals f,,(z) = [ f " (y) dy where K C RF
is a compact starshaped set and g is a nonnegatlve mﬁmtely often differentiable
function satisfying {g # 0} C K and fK 9(y) dy = 1. Below we shall see that if f
is locally Lebesgue integrable, then f,, is an infinitely often differentiable function
inheriting many properties of f and that f,(x) — f(x) for all x in a large subset
of R*. However, this requires some preparatory definitions and lemmas.

Let S be a set and let x : S — [0,00] be a given function. If f € R?, we let
[|fllx := inf{c € Ry | |f(s)] < ck(s) Vs € S} denote the weighted sup-norm of
fe R® with the usual convention inf ) := co. If ® C RS is a set of functions, we
let . := &N Rf_ denote the set of all nonnegative functions in ®. If § and T’
are topological spaces and ¢ : S — T is a given function, we let C(¢) denote the
continuity set of ¢; that is, the set of all s € S such that ¢ is continuous at s.

Let k > 1 be an integer and set [k] := {1,...,k}. Welet eq,. .., e denote the
standard unit vectors in R*. If = (z1,...,2x) € R¥ and y = (y1,...,yx) € R,
we let (z,y) = Ele z;y; denote the inner product and we let ||z|| = (x,z)Y/?
denote the Fuclidian norm. We let \; denote the k-dimensional Lebesgue measure
on R*. We say that f : R* — R is locally bounded if f is bounded on every
compact subset of R*, we say that f is locally Ap-integrable if 1cf € L'(\i)
for every compact set C C RF, and we let L{ .(\) denote the set of all locally
A,-integrable functions.

Let f : R* — R be a given function. If i € [k] and ¢t € R, we let Al f(z) :=
f(z + te;) — f(x) for x € RF denote the usual difference operator. If € R,
we say that f is O-differentiable at x if ¢ ~ f(x + t) is differentiable at 0
and if so we let g’; (z) := limy_ot~ (f(x + t0) — f(z)) denote the directional 0-
derivative of f at z. In particular, we let gi (z) := lim; 0t~ 1 Al f(z) denote the
partial derivative whenever it exists. We say that f is partially differentiable at
x if the partial derivatives g j (x) exists for all ¢ € [k] and if so we let V f(x) :=
(gwfl (x),..., a ( )) denote the gradient of f. We say that f is 0-differentiable if f
is G—differentlable at all x € R* and we say that f is continuously 0-differentiable
if f is f-differentiable and = ~ gg (x) is continuous on RF. We say that f is
partially differentiable if f is partially differentiable at all 2 € R*. Recall that f is
Fréchet differentiable at x if the directional derivative g{; (z) exists for all # € R*
and gg (z) = (0, Vf(x)) for all & € R*. Recall that f is differentiable at x with
differential D € R¥ if limg_q ||0]| 7| f(x + 0) — f(x) — (D, )| = 0.

If 41,...,ip € [k], we let 8%1(?7{99% () denote the pth order partial derivative
whenever it exists. We let C°>°(RF) denote the set of all infinitely often differen-

tiable functions f : R* — R and if x : R¥ — [0, 00] is a nonnegative function we
let C°(RF¥) denote the set of all f € C°(R") satisfying

orf

1l < o0 and |5, 7%,

‘ < oo Vp>1Vig,..., i, € k]
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In particular, we let leo(Rk) denote the set of all bounded, infinitely often dif-
ferentiable functions with bounded derivatives of all orders. We let C°(R¥) de-
note the set of all f € C°°(R¥) with compact support and we let  denote the
usual inductive limit topology on C%(RF); see [13]. We let D(RF) denote the set
all Schwartz distributions; that is, the set of all w-continuous linear functionals
¢ : CX(RF) = R.If ¢ € D(RF), we Write C > 0 if and only if {(¢) > 0 for all
¢ € CX(RF);. If f € LL (A\g), then f = Jar f( r)dx for ¢ € CZ2(RF)
defines a Schwartz distribution correspondlng to f and 1f 11, ..., ip € [k], then

O @)= (-1 [ 1(a) 5, 75, (0)do for o € CEZ(RY)

Rk

defines a Schwartz distributions, which corresponds to the “the partial derivative”
orf
8.7)7;1 8T,p .
Recall that K C R¥ is starshaped if 0 € K and az € K for all z € K and all
0 < a <1. Let K CR* be a bounded, starshaped Borel set and let z € R* be a

given vector. Then we say that f is continuous at x along K if
lim {sup fz+¥)— f(x)|} ~0 (2.1)
n—oo yEK
and we let C¥(f) denote the set of all x € R¥ satisfying (2.1). If 0 belongs to the
interior of K, then continuity along K coincides with ordinary continuity. We say
that f is right continuous at x if f is continuous at z along the unit cube [0, 1]%,
say that f is left continuous at x if f is continuous at x along the negative unit
cube [—1,0]*.
Let K C R* be a bounded, starshaped Borel set. Then we say that f is
approzimately continuous at x along K if f is locally Ag-integrable and

Jm [ 1+ ) = s@)ldy=o. (22)

We let CE(f) denote the set of all # € R” satisfying (2.2). Let f € L{. (\x) be a
Borel function. By the Fubini-Tonelli theorem, we see that Cali)( f) is a Borel set
containing C¥ (f) and by Theorem I11.12.8 p. 217 in [1] we have \x(R* \ CE (f)) =
0.

If f,g : R¥ — R are Ay-measurable and [5, | f(z— y) ( )| dy < o0 for allz €
R*, we say that the convolution exists and we let (fxg)(x ka —y) g(y) dy
denote the convolution of f and g.

Lemma 2.1. Let f : R¥ — R be a locally \,-integrable function and let g : R —
R be a bounded Lebesgue measurable function with compact support. Then the
convolution h(z) := (f * g)(x) exists and is continuous on R* and if 0 € RF is a
given vector, we have

(1) If f is O-differentiable and 8f € Li .(\), then h is continuously 0-different-

iable and we have ‘gg (z) = (80 xg)(z) Vo € RF.
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(2) If g is - diﬁerentiable and 9 is bounded, then h is continuously 0-different-
iable and we have 9 ( )= (f* 9)(x) Vz e RF.
(3) If f and g are 0- dzﬁerentmble, g’; € Li (M) and gg is bounded, then we

have
| i@ sy == [ ) o) dy

Proof. Set B, := {x € R¥ | ||z|| < r} for r > 0. Since g is bounded with compact
support, there exist a,p > 0 such that |g(z)| < a for all x € R* and g(z) = 0 for
all x ¢ B,,. Since f is locally Ag-integrable and |f(z—y) g(y)| < a|f(z—y)|[15,(y),
we see that the convolution h(z) = (f x g)(x) exists for all z € R*. Let r > 0 and
x € B, be given. Then f, := flp_,, € L'(A\) and we have f,(z —y)g(y) =
f(z—y)g(y) for all y € R*. Hence, we have (f, x g)(z) = h(z) for all € B, and
by Theorem 1.1.6 p. 4 in [14], we have that f,. g is continuous on R*. Hence, we
see that h is continuous on R*.

Suppose that f is 6-differentiable and that ¢ 89 € Lloc()\k) Let z € RF be
given. By the argument above we have that the convolutlons * g and | 29 | *1p,
exist and are continuous on R* for all » > 0. Let x € RF be glven By the Fubini-
Tonelli theorem and locally boundedness of | ae' * 1p,, there exists a Ag-null set
N, such that s ~ ag (x —y + s0) is locally A;- mtegrable on R for all y ¢ N, and
we have

/(ae *g)(z + s0) dS—/ dS/ o (z—y+s0)g(y)dy

:/Rk dy/o g’g(w—y—ksﬁ)g(y}ds.

Let y € RF\ N, be given and set F}, , (s) := f(z—y+s6). Then F, , is differentiable
with derivative F) ,(s) = g’g (x —y +s0) and F,  is locally Ai-integrable. By
a classical theorem of Denjoy and Banach (see Thm. IX.4.5 p. 271 and Thm.

IX.7.4 p. 284 in [15]), we see that F, , is absolutely continuous with Lebesgue
derivative F, . In particular, we have F ,(t) — fo »y(8) ds and since

Jrr Fry(s) g(y) dy = h(z + s0), we have

[ Groasstds = [ (o)~ Fuyf0) o) dy = hGa +16) — h(a)
0 R*

Since ag * g is continuous, we see that h is continuously 6#-differentiable with

gg (z) = (ag xg)(z) for all x € R*. Thus, (1) is proved and (2) follows in the same
manner. Applying (1) and (2) on f(y) and g(—y) with = 0, we obtain (3). O

Lemma 2.2. Let f : RF — R be a locally \,-integrable function and let K C R* be
starshaped, bounded Borel set. Let g € C3°(R¥) be given such that {g # 0} C K

and [ 9(y)dy = 1. Set g, (x) := n* g(—nzx) and f,(z) := (f * gn)(x) for n > 1
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and x € RF; see Lemma 2.1. Let p > 1 and iy, ... ,ip € [K] be given integers and
let us define

r(x) = sup [+l Ve eR e, =sw |y, 75, 1)
yeK
Then 0 < cy,,...5, < 0o and we have

(1) fn € C®(RF) and f,(z) = flx+ V)gly)dy Yo e R* Vn > 1.
Rk

@) 02ty 5a, @ = (=1 | @+ 1) 5,700, @)y Vo €RF V2 1.

aflfil 8’1‘1:0

(3) [fn(2)] < K(x) and Iagcf3 T (@) < ciyiynPR(z) Vo€ RF Vn > 1.

amLp

(4) lim fu(z) = f(z) Yo € CL(f).
(5) lim {sup / |f(z+ Y (x)|dx} =0 for all compact sets C C RF.
n—oo yEC

(6) If f is bounded with compact support, we have

lim [ [(fa(z) = f(2))o(2)lde =0 Vo € Lio (Ar)

n—oo Rk

Proof. (1)~(2): Note that g, gn, G = o by, and Gy = aq«a ggT are infinitely
iy O, i

often differentiable with compact supports and we have
Gn(z) = (1) n**P G(—nzx).
So by Lemma 2.1 we see that f, € C®°(RF) and that , 9"/ (2) = f+G,.

8’1‘ 8'13,
Hence, we see that (1)—(2) follows from the substitution z = —z

(3) Let n > 1 be given. Since K is starbhaped we have [f(z + Y)| < k()
for all (z,y) € R* x K and since g > 0 and [, g(y) dy = 1, we sce that ( ) follows
from (1)—(2).

(4): By (1), we have |fn(z) — f(z)] < a [, |f(x+Y) = f(x)|dy where a :=
sup,e e 9(y). Since a < 0o, we see that (4) holds.

(5): Let 7, ¢ > 0 be given and set B, := {z € R* | ||z|| < r}. Since f €

Li (M), we have f, :==1p,, f € Ll(/\k) By Theorem 1.1.5 in [14], there exists
0 <0 < 1such that [g,.|fr(z +u) — fr(x)|dz < e for all ||u]| < 4. Let z,y € B,
and n > § be given. Since |[Y|| <6 <1, we have z € B, and 2+ Y € B,;1 and
so we have f(z) = f.(z) and f(z + Y) = fr(z + ?). Hence, we have

| @t - r@lae< [ i) - ol <

r

for all n > § and all y € B,.. Since r > 0 is arbitrary, we see that (5) holds.
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(6): Suppose that f is bounded with compact support. Then

b:= sup |f(z)] < o0
zeRF
and there exists r > 0 such that {f # 0} U {g # 0} C B,. By (1), we see that
{fn # 0} C By, and that |f,(z)| < blp, (z). By (4), we see that f,(z) — f(x)
Ag-a.e. and so we see that (6) follows from Lebesgue’s convergence theorem. [

Lemma 2.3. Let f : RF — R be a locally \,-integrable function and let K C R* be
a starshaped bounded Borel set. Let g e C‘X’(Rk) be given such that {g # 0} C K
and [, 9(y)dy = 1 and set fn(x) = [ f( Yg(y)dy forn > 1 and x € R¥;
see Lemma 2.2

Let A = {a;;} be a (k x k)-matriz and let H* denote the set of all twice

partially differentiable functions h : RF — [0, 00) with compact support such that h,

g;l and 838}’ are locally \-integrable for all i,j € [k] and ZZ 1 E; @i 52 8%
is bounded. Let €1,01,€2,02,... > 0 be positive numbers such that ¢, — 0 and

Op — 0 Then the following four statements are equivalent:

(1) Z Zaw@gf>0

i=1j=

Mw

k
Za”/f Ol (r)dx >0 VheHA.

i=17=1

awa?ézj( z) >0 VzeRFvVn>1.

'M?r
M=

@
I

-
<.
I

-

(3)

4)

In partzcular we have

k
z GAT AN F(2) >0 Mp-ace. Vn > 1

I\Mx-

(5) If f is convex and A is nonnegative definite, then Z Z a;;0i f >0
i=1j=

and if f is twice partially differentiable and f, am, and s 8f are locally -

integmble for all i,j € [k], then we have

(6) ;:1]2 a;;0i;f >0 < ZZ:UE aij aq« 8T () >0 Ag-ae.
Proof. Set ¢ = Zle 25:1 a;; i f, Fo(z) = Ez 1 ZJ 1 @i 8213;’; () and
gn(x) = n* g(—nz) for all z € R* and all n > 1.

(1) = (2): Suppose that ¢ > 0 and let h € HA be given. Set H(x) =
Zle 2?21 a;j 8.2»28};? (z). By Lemma 2.2 and local \g-integrability of h and H, we
have that the convolutions h,, := hxg, and H, := Hxg, exist and satisfies (1)-(6)
in Lemma 2.2. Since h is nonnegative with compact support, we have h,,, H, €
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C2(R¥) and h,, > 0 and by Lemma 2.1, we have H, = }, ; aij 822}5; Since
¢ >0, we have 0 < ((h ka fH, d\g for all n > 1. Recall that H is bounded
with compact support and that f is locally Ag-integrable. So by Lemma 2.2.(6)
applied to the pair (f,v) := (H, f), we have [, fH d\y = limy, o ((hn) > 0.

(2) = (3): Suppose that (2) holds and let # € R* and n > 1 be given. Set
Gne(y) = gn(x —y) for y € RF. By Lemma 2.1, we have

02 fn _ gy _ a
Ox;0x; (Z‘) - R f(y) 89:1-ng dy / f 89:19an )

and since g,, € H*, we see that (2) implies (3).
(3) = (4): Suppose that (3) holds and let n > 1 and u,v > 0 be given. Since
fn € C®(RF), we have

AFAT fo(z / ds/ 8‘3 g’; (z + se; +tej)dt Vo € RF.

So by (3) we have >, a;; AYA] fr(z) > 0 for all z € R* and by Lemma 2.2.(4)
we have that f,, — f )\k -a.e. Hence, we see that (3) implies (4).

(4) = (1): Suppose that (4) holds. As above, we see that (4) implies F,(z) > 0
for all x € R*. Let h € C2(R¥), be given and set H = Doi Qi afzahT Then we
have ((h ka fH d\, and observe that H is bounded with compact support.
So by Lemma 2.1.(3) and Lemma 2.2.(6) we have

¢(h) = lim fo(@)H(z)dz = lim E,(z)h(x)dz > 0.
n—oo [pk n—oo [pk
Hence we see that (4) implies (1).

(5): Suppose that f is convex and A is nonnegative definite. Let n > 1 be a
given integer. By nonnegativity of g, we see that f, is convex and infinitely often
differentiable. Let x € R* and n > 1 be given and set b;; = aijg’;j (x) for i, j € [k].
Then B = (b;;) is the Hessian of f,, and since f, is convex, we have that B is a
nonnegative definite (k x k)-matrix. By Schur’s product theorem (see Thm. 7.5.3
p. 458 in [5]) we have that the Hadamard product (c;;) = (as; bi;) is nonnegative
definite. In particular, we have

5 % eu k@ = ¥ Y

i=17=

HM»

Hence, we see that (5) follows from the equivalence of (3) and (1).

(6): Suppose that f is twice partially differentiable such that g $fz and afzafmj

are locally Ag-integrable for all i,j € [k]. Then F' := )7, - a; af;’;j belongs to
Li (M) and by Lemma 2.1 we have

0= 3 R [ 10,75, e = [ Flajote)ds v € CxRE)
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Since F' > 0 Ag-a.e. if and only if [p, Féd, > 0 for all ¢ € C2(RF),, we see
that (6) holds. O

Lemma 2.4. Let f : R¥ — R be a locally \i-integrable Borel function and let
{aij hi<ij<k be a (k x k)-matriz. Let 6 = (01,...,0;), b = (b1,...,bx) and ¢ =
(c1,...,cx) be a given vectors. If there exist functions h : RF — R and ¢ : R — R
satisfying f(z +t0) = h(x) +(t) for all v € R¥ and all t € R, then we have

(1) f(x—i—t@) flz )—l—’yt Vo € RFVte R where v := f(0) — £(0).
(2) E Zawawf Z Z(aw + bit); +¢;0:)0; f -

i=1j=1 i=1j=

Proof. (1): Set ¥o(t) = (t) (0) for all ¢ € R.. Since f(x) = h(z) + ¥(0), we
have f(z +t0) = f(x) + 1o(t) and so we have

Yols +1) = f(s0+10) = f(0) = f(s8) + 1o (t) = f(0) = Yo(s) + 1o(t)

for all s,t € R. Since f is Borel measurable and v (t) = f(¢ ) f(O), we see that
1o is a Borel function satisfying 1y(0) = 0 and o (s + t) = ¥o(s) + ¥o(t) for all
s,t € R. So by [11] we have ¥g(t) = ~t for all t € R where v = (1) = f(6) — f(0).
Since f(z +t0) = f(x) + ¥o(t), we see that (1) holds.

(2) Let g € C°° (Rk) be a nonnegative function with [, g(y)dy = 1 and
set fn(x) = [gu f( ) g(y) dy for all z € R* and all n € N (see Lem. 2.2). Then
fn € C’DO (RF) and by ( ), we have f,(z + t0) = fn(x) + vt. In particular, we see
that v = 8f" 5 (z) = Zle 0; gf"( ) for all z € R*. Hence, we have

k
> S tes k0= X o { L0 @)} =0 vee RS

j=li= j=1
In the same manner we see that Zle Z?Zl 30 a(z g’; () = 0 for all z € R¥ and
so we see that (2) follows from Proposition 2.3. O

Lemma 2.5. Let ¢,¢) : R = R be absolutely continuous functions with Lebesgue
derivatives ¢(t) and ¥(t). Set .(t) = [ [h(s)|ds for t > 0 and .(t) =
fioo |1/)(s)| ds fort < 0. If (¢,) satzsﬁes the following condition

(1) eL'n), ¢ €L (M) and lim P(2) =0= lim ¢(x)

then d) - and ¢ - 1/1 are A-integrable and we have

2) [ Za's(s)w(s) as—— [ Z¢><s>w<s> ds

Proof. Since w is Ap-integrable and lim, 1 ¥ (z) = 0, we have

t):/;w(s)d8=—/too¢(s)d8
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for all t € R. In particular, we see that |¢(t)] < ¢.(¢) for all £ € R and so by (1)
we have ¢(t) 1 (t) € L'()\). By the Fubini-Tonelli theorem, we have

| 1ot = sl < [ dt/ 19()9(0)| ds
/ ds/ (t)|dt = /Ooo|<b(s)lw*(s)ds<oo

and in the same manner, we see that f_ooo lp(t) — ¢(0)] - [¢p(t)] dt < oc. Since

P € LY(\), we see that ¢(t)4(t) € L*(\). So by the Fubini-Tonelli theorem we
have

/ODQ d(t)(t) dt = —/OOO dt /too d(t)h(s) ds = _/ODQ ds /0 S(t)s) dt

= [ 060) ~ i) s = —60)0) [~ o) (s)ds
0 0

In the same manner, we see that f_ooo d(t) Y(t) dt = ¢(0)h(0) — fi)oo o(t) ¥ (t) dt.
Adding the two equalities we obtain (2). O

Lemma 2.6. Let (Up,Us,...,Us) be a (k + 1)-dimensional Gaussian random vec-
tor with mean zero and set U := (Uy,...,U) and 0 := (04,...,0;) where 0; :=
E(UoU;) fori =1,...,k. Let h : RF — R be a 0-differentiable Borel function
satisfying E|\Ugh(U)| < 0o and E gZ(U)| < 00. Then we have

(1) E{Uh(U)} = E{3;(U)}.

Proof. Set 02 = EUZ. If 02 = 0, then we have Uy = 0 a.s. and so we have § = 0
and gg (z) = 0 for all z € R*. Hence, we see that (1) holds if 6% = 0. So suppose
that 02 > 0 and set ¢,(t) := h(z +t0) for all t € R and all z € R*. Then ¢, is
differentiable on R with derivative ¢’ (t) = g’; (z +t0). Let us define

B={zeR"| [3 |90 (z+10)]e~ (@02t < o0}

and set Vy := 072Uy and V := (Vi,...,V}) where V; = U; — 6;V, for i =

., k. Then we have Vo ~ N(0,072) and E(V,V;) = 0 for all 1 < i < k. Since
(Vo, V1, ..., Vi) is Gaussian with mean zero, we see that Vy and V' are independent
and since U =V + V0 and gg (U) € LY(P), we see that P(V € B) =

Let z € B be given and set ¢(t) := —e=(0%/2 for all t € R. Then we have
W (t) = o2te=(D°/2 and 1, (t) = e=@)°/2 where 1, (t) is defined as in Lemma
2.4. Since z € B, we see that ¢/, is locally A-integrable on R. So by Theorem
IX.4.5 p. 271 and Theorem IX.7.4 p. 284 in [15] we have that ¢, is absolutely
continuous on R with Lebesgue derivative ¢/, and that (¢.,) satisfies condition
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(1) in Lemma 2.5. Hence, we have that ¢/, 1) and ¢, ¢’ are A\;-integrable and

/R (2 + t0)ote= (oD /2q4 = /q&z /(;S

:/ B2+ th)e” (D" 24t.
R

Recall that Vy and V are independent with U = V 4 Vp6 and Vo ~ N(0,072).
Since Uph(U) € L'(P) and 2% (U) € L(P), we have P(V € B) = Py(B) = 1 and

E(Uoh(U)) = o E{Voh(V + V0)}

- J;w/ Py (dZ)/ h(z + t0)0>te= (024t
B R

= A /B Py (dz) /R Oz +t0)e= @D /2 at
= E(54(V +Vo8)) = E(54(U))

which proves the lemma. O

Lemma 2.7. Let Z = (Zy,...,Zy) be an n-dimensional Gaussian random vector
with mean zero and a non-zero covariance matriz L% = {a -}. Let X denote the
largest eigenvalue of % and let v denote the multiplicity of the eigenvalue \. Let
r denote the rank of X% and let ¢ : [0,00) — [0,00) be an essentially increasing
Borel function (see the remark below). Then A > 0 and 1 < v < r < n and we
have

(1) /Oootrw(t)ez&ﬁ dt < 0o = E¢(|Z]|) < oo

2) Eo(|Z]]) < o = / (1+ 1) 1(t)e= 57 dt < oo,
(3) E¢(||Z]]) < oo = Jc> 0 so that ¢(t) < c(1+1t)2 " exp(,t?) V& > 0.

Remark. We say that ¢ : [0,00) — [0,00) is essentially increasing if there exists
C > 0 such that ¢(s) < C(1+¢(t)) forall 0 < s <t

Proof. Since »Z #0,wehave A\ >0and 1 <v <r <n. Let vy,...,v, € R" be
an orthonormal basis of eigenvectors of ¥Z ordered such that A\; > Ao > --- >\,
where )\; is the eigenvalue associated to v;. Then we have A = A; > A, > 0 for
1<i<wvand \; =0forr < i <n.Set U; := )\;1/2<Z,vi> fori=1,...,r.
Then Uy, ..., U, are independent N (0, 1)-distributed random variables such that
7 = 22:1 )\}/QUi v; a.s. and ||Z]]? = Z:ﬂ \U? as. Let 1 < d < r be a given
integer and set U? = (Uy,...,Uy).

Recall that 27%/2T(¢)~1 is the (d — 1)-dimensional volume of the (d — 1)-
dimensional unit sphere {u € R | ||u|| = 1}; see (8.43.9) p. 60 in vol. 2 of [3]. So
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by (8.24.1) p. 27 in vol. 2 of [3] with T'(z) = ||z||, we have
Bo(VAIU|) = (2@*%’/ S(VA|z||)e 2 171" 4o
R4

> _ _ 142 > _ _ 1 82
= 2d/2%(g)A td 1¢(t\/)\)6 20 gt = (2>\)d/22F(§)/0 sd 1¢(8)€ 225 ds.

Since ||Z]]* = Yi_; NU?, we have A||U”|]? < ||Z]]*> < A||U"||* and since ¢
is essentially increasing, there exists a constant C' > 0 such that 0 < ¢(s) <
C (1 + ¢(t)) for all 0 < s < t. In particular, we have

(VAU < C(L+o(12]) » $(IZ1]) < C(L+ o(VAIUT]))

and since ¢(t) < C(1+¢(1)) for 0 <t <1 and (1+¢)V~t <2v71¢~1fort > 1,
we see that (1) and (2) follow from the equality above. Since ¢(s) < C (1 + ¢(1))
for all £ > s, we have

¢(8>(1+s)”‘1/00 et dt < C/Ooo(l+t)”—1(1+¢(t))e—zgt2dt

S

and so we see that (3) follows from (2) and Exercise 2.51 p. 148 in vol. 1 of [3]. O

Theorem 2.8 (Slepian’s inequality). Let k > 1 be an integer and let X = (X,

Xi) and Y = (Y1,...,Y%) be Gaussian random vectors with zero means and
covariance matrices EX = {a }oand XY = {o};}. Let K C R* be a bounded,
starshaped Borel set with non- empty mnterior. Let ¢ : [0,00) — [0,00) be an es-

sentially increasing Borel function and let f : R¥ — R be a locally \j-integrable
Borel function satisfying

(1) P(X € CiL(f)) =1=P(Y € Cii(f))-
(2) Eo(IX1) + E¢([[Y]]) < oo and 522|f(33+5y)| < c¢(||zl]) vz € R¥

for some positive numbers ¢,d > 0. Then E|f(X)| < co and E|f(Y)| < co and we
have

(3) 3 (0% — o) 0y >0 = Ef(Y) < Ef(X).

i=1j=1
Set e = (1,1,...,1) and suppose that there exist functions h : R¥ — R and
¥ : R — R such that f(x + te) = h( ) 4+ (t) for all (t,x) € R x RF. Set
7755- = E(X; — X;)? and 71'3; = E(Y; = Y;)? for all i,j € [k]. Then we have

E ok E ok
4) X X (i —75)0if =23 Y (off — o)y f.

i=1j=1 i=1j=1

E ok
() 21 Zl(WZ 5)0if >0 = Ef(Y) < Ef(X).

i=1j=

Proof. Since K is starshaped, we have 0 € K. Hence, by (2), we have |f(z)| <
co(llz]l) and E|f(X)] < 0o and BIf(Y)[ < co.

So suppose that Zz 1 ZJ 1 05055 f > 0, where 6;; = U;)J( — 0} Y and let

me show that Ef(Y) < Ef(X). Without loss of generality we may assume that
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X and Y are independent. If X =Y = 0 a.s. then (3) holds trivially. So let us
assume that P(X # 0) + P(Y # 0) > 0 and set é(t) '= SUP,eg,q #(5). Then b
is increasing with ¢ < ¢~5 and since ¢ is essentially increasing, there exists C' > 0
such that ¢(t) < C (1 + ¢(t)) for all ¢ > 0. Let ¢,d > 0 be chosen according to
(2). Replacing (¢, K) by (cq@, 0K') we may, without loss of generality, assume that
¢ is increasing and that |f(x + y)| < ¢(||z||) for all z € R* and all y € K. Let
Ax and Ay denote the largest eigenvalues of Y x and Yy, respectively, and set
A = max(Ax, \y) and k(z) = ¢(||z||) for # € R*. Then A > 0 and by (2) and

Lemma 2.7 there exists b > 0 such that ¢(t) < b(1 4 t) exp(,} t2) for all ¢ > 0.

Let 0 < r < 1 and n € N be fixed for a while. Since K has non-empty interior,
there exists g € CZS(R*) such that g > 0, {g # 0} € K and [, g(y)dy = 1. Set
fa(x) = Jgx fx+Y) g(y) dy for € R* (see Lemma 2.2). By Lemma 2.2 we have
that f, € C°(R¥) and that (f,) satisfies (1)-(6) in Lemma 2.2. Since 0 < r < 1

and ¢(rt) < b(1 + rt) exp(gitz) we have

(i) A= E{ (1 VA4 I )0 (- VI |Y||2)} <.

Let z,y € R* be given and set U, ,(t) = r(t'/22 + (1 — t)1/2y) and V, ,(t) =
frn(Ugy(t)) for t € [0,1]. Then U, , and V, , are continuous on [0, 1] and continu-
ously differentiable on (0, 1) with derivatives

Uly() = 56720 = (=07 Py =, (11— 112
Vi) = (Usy(8), Vu(Usy (1))
for all 0 < ¢ < 1. By the Cauchy-Schwartz inequality, we have

Uz O < et 2|z + (1 =) 2yl < r/[l2l|? + [ly]> ¥0 <t <1

! T 2 2
102,01 <, 4y Vil + [lyll> Yo <t<1.

In particular, we see that V, , is absolutely continuous on [0, 1] and so we have
1

(i) fo(rz) = fu(ry) = Vay(1) = Vay(0) :/0 Viy(t) dt.

Let 0 < t < 1 be given and let us define U(¢) = (Ui (t),...,Ux(t)) := Ux,v(t) and
V() == Vx y(t). Since V'(t) = (U'(t), Vfn(U(t))), we have

U@ < rIXIE+ Y2 L V@< 100 1V L0
VO < e,y VIXIE+ Y2

Set ¥, = 7’22 (01j,...,0k;) and hj(x) = giz (z) for z € R¥ and 1 < j < k. Since
fn € CZ(RF), we have h; € C(RF) and since |hj(z)| < ||V fn(z)|| and k(z) =
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o(||x]|), we have

U7 ()] < U O IV £U) < [V Falls - [0 O] ST D)
o ()] < 1951 IV @D < 19511 1WA - ST D)]).

Hence, by (i) we see that U}(t) h; (U (t)), gg§ (U(t)) and V'(t) are P-integrable and

1 1
/E|V’(t)|dt§AHan||K/ L gt < oo
0 0 V't

(1-t)

So by (ii) and the Fubini-Tonelli theorem, we have

1
(iii) Efp(rX) — Ef,(rY) = / EV'(t) dt.
0
Since X and Y are independent Gaussian random vector with zero means, we see
that (Uj(t),U1(?), ..., Uk(t)) is a (k+1)-dimensional Gaussian random vector with
zero mean and E(UJ(t) U;(t)) = T; ;5. So by Lemma 2.6 we have

B{Uj0h;(U®)} = B{ o5 (W)} = E{zow oo, U <t>>}

and by Proposition 2.3, we have Zle 2?21 05 8?%5; (z) > 0 for all € R¥. Since

VI(t) = (U'(t), VI (U (1) = éUJ‘(t)hj(U(t))

we see that EV'(¢t) > 0 for all 0 < ¢ < 1 and so by (iii) we have Ef,(rY) <
Efn(rX) for all n € N and all 0 < 7 < 1. Since ¢ is increasing and sup, ¢ | f(z +
)| < o(||z]]), we have |fn(rz)] < ¢(||z]|) for all 0 < r < 1, all # € RF and all
n € N; see Lemma 2.2. So by (2), continuity of f,, and Lebesgue’s convergence
theorem, we have

Ef(Y) = lim Bf,(rY) < lim Ef,(rX) = Ef, ()

for all n > 1. By (1) and Lemma 2.2, we have f,(z) — f(x) (Px + Py)-a.s. and
recall that |f,(z)| < ¢(]|z|). So by (2) and Lebesgue’s convergence theorem, we
have
Ef(Y) = lim Efo(Y) < lim Efu(X) = Ef(X)
n—oo n—oo

which completes the proof of (3).

Suppose that there exist functions h : R¥ — R and 1/) R —> R such that
f(z +te) = h(z) +(t) for all (t,2) € R x R¥. Note that 75 = 7r =0 and

Y Y Y _ X Y X
my — iy =207y —0i) + (03 — o5y ) + (07— 07%)

Hence, we see (4)—(5) follow from (3) and Lemma 2.4. O
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Remark 2.9. (a): Condition (1) is a weak smoothness restriction on f. Note that
condition (1) holds if f is right or left continuous and since Rk\CaII()(f) is a Ag-null
set, we see that (1) holds if % and ¥¥ are non-singular. However, Example A in
introduction shows that some smoothness condition on f is needed.

(b): Condition (2) is a growth condition on f. Let a, ¢ > 0 be positive numbers
and let ¢ : [0,00) — [0, 00) be an essentially increasing function satisfying Ev (e +
X)) + Ev(e+ ||Y]]) < oo and [f(z)| < at)(||z]|) for all z € RE. Since K is
bounded and v is essentially increasing, it follows easily that f satisfies condition
(2) with ¢(t) := (e +t).

(c): Let Ax denote the largest eigenvalues of ¥, let vx denote the multiplic-
ity of Ax and let rx denote the rank of the covariance matrix £¥X. Let p > 0 be a
given number and set ¢(t) = (14 ¢) P e2x #* for all t > 0. By Lemma 2.7, we have
p>rx = E¢(]|X|]) < o = p > vx. Since, the Slepian inequality implicitly
requires finiteness of E|f(X)| and E|f(Y)|, we see that the growth condition (2)
is close to be optimal.

(d): Let ¢ : [0,00) — R be an increasing convex function and set Q(x) :=
maxi<; j<k |7; — x| and f(z) = p(Q(x)) for all z = (z1,...,7x) € R*. Fernique
(see Theorem 2.1.2 p. 18 in [2]) has shown that =)} < w5 Vi,j € [k] implies
Ef(Y) < Ef(X). Note that 75 = 71X = 0 and f(x + te) = f(x) for all (t,z) €
R x RF and in Corollary 4.5 below, we shall see that 0i; f <0 for all ¢ # j. Hence,
we see that (5) is an extension of Fernique’s version of Slepian’s inequality.

3. Integral orderings

In this section we shall study an extension of the integral ordering to the set
of finitely additive contents. Let (S,.A, 1) be a content space; i.e., A C 2° is an
algebra on the set S and u : A — [0, 00] is a finitely additive set function satisfying
w(@)=0.If D C S, welet u*(D) = infaca a>p p(A) denote the outer content of
D. We let TM (1) denote the set of all totally p-measurable real-valued functions
(see Def. I11.2.10 p. 106 in [1]), and we let L' (1) denote the set of all u-integrable
functions (see Def. I11.2.17 p. 112 in [1]). If f, f1, fa, ... € RS, we write f,, —* f if
w(|f—fnl >¢) = 0foralle > 0 (see Lem. I11.2.7 p. 104 in [1]). If f,g: S — R, we
write f < g pra.e. if u*(f > e+g) = 0 for all e > 0. Note that u*(f > ¢g) = 0 implies
f < g p-a.e. and the converse implication holds if x is a measure. If f : S — R,
we let

[Ffdu = inf{ [cpdp|¢ec L'(w), f < p-ae } (infl:= o)

[, fdp:=sup{ [godp | ¢ € L'(n),¢ < f p-ae. } (supf:=—o0)
denote the upper and lower u-integral of f; see [4]. We say that & C RS is uniformly
p-integrable if for every e > 0 there exists h € L'(u) such that [*(|¢| —h)T du < e

for all ¢ € ®. If 11 is a measure and ® C L(u), then the reader easily verifies that
uniform integrability as defined here coincides with the usual definition of uniform
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integrability; see for instance, (3.22.34) p. 187 in vol. 1 of [3]. Let f, f1, fo,... € R®
be given functions. Then we write f <, liminf f, if and only if

pAN{S > 1}) <liminf p"(AN{fn > s}) Vs <t VA€ A

We define A° := {A € A| u(A) < oo} and we write limsup f, <, f if and only if
limsup p*(AN{fn > t}) <p (AN{f>s}) Vs<tVAe A

n—oo

Recall that L'(u) € TM(u) and if ¢ € TM(u), then we have
(3.1) (f—=fa)t =2 0= f <, liminf f,, = (f + ¢) <, liminf(f,, + o).
(3:2)  (fa— )T =" 0= limsup f, <, f = limsup(fn + ¢) <u (f + ).

Set fi«(s) = liminf, o fn(s) and f*(s) = limsup,_, ., fn(s) for all s € S. If
(S, A, p) is a measure space, then we have

(3.3)  f« <, liminf f,.
(3.4) If f1, f2,... are p-measurable, then limsup f, <, f*.

If £ C 2% we let W(S, L) denote the set of all functions f : S — R such that
for all y > x there exists a set L € LU {0}, S} satisfying {f >y} C L C {f > x},
and we let W (S, £) denote the set of all functions f : S — [0, 00) such that for all
y > x > 0 there exists a set L € LU{0} satisfying {f >y} C L C {f > z}. We say
that ® C RS is (1)-stable if sup,,~; ¢, € ® for every increasing sequence (¢,) C ®
satisfying sup,,~; ¢n(s) < oo for all s € S, and we say that ® is sequentially closed
if for every pointwise convergent sequence ¢1,¢s,... € ® we have ¢ € & where
@(s) = limp 00 Pp(s) for all s € S. We let L4 denote the set of all sets of the form
U2, L,, for some increasing sequence (L,) C LU {0} and we let £ denote the
set of all sets of the form N2, L,, for some decreasing sequence (L,) C LU{0}. If
feWwW(S, L), then we have

(3.5) {f>t}eLly Vt>infses f(s), {f >t} € Ly Vit >infseq f(s).

If £ is a o-algebra on S, then W (S, L) = M(S, £). If S is a topological space and
L is the set of all open (closed) subsets of S, then W (S, £) is the set of all lower
(upper) semicontinuous functions. If (S, <) is a proset and L is the set of all upper
intervals, then W (S, £) = In(S, <).

Lemma 3.1. Let S be a non-empty set and let & C Ri be a (1)-stable, convex cone.
Let J C R be an interval with interior J° and let h : J — R be a continuous,
increasing, convex function such that inf,cyh(x) = 0. Let f : S — J be a given
function satisfying (f — clg)t € ® for all c € J°. Then we have ho f € ®.

Proof. Let a = inf J and b = sup J denote the endpoints of J. If a = b, then the
lemma holds trivially. So suppose that a < b and set 0.(t) = (t —¢)* for all t € J
and all ¢ € R. Let I denote the convex cone generated by {6, | ¢ > a} and let us
define

ho(t) =sup{y(t) | v € I',v(s) < h(s) Vse J} Vte
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Then hg is an increasing, convex function satisfying 0 < ho(t) < h(t) for all t € J
and since hg is lower semicontinuous on J, we have that hg is continuous on J.
Let a < ¢ < b be given. Since h is convex, we have that the right-hand derivative
r = limg hi@ T)fg(c) exists and is finite and satisfies h(c) +r (z — ¢) < h(z) for all
x e J. Set v(z) := (h(c) + 7 (z —¢))* for all x € J. If r = 0, we have h(z) > h(c)
for all x € J and since infze s h(x) = 0, we have h(c) = 0 = () for all z € J.
If r > 0, we have v = 76, where u = ¢ — ") and since infycsh(z) = 0 and

c+ h(T) h(e) > x > a for all x € J, we have u > a. Hence, in either case, we
have ~ €T and ~v(z) < h(z) for all z € J. Since y(c) = h(c ) > ho(c), we have
ho(c) = h(c) for all ¢ € J° and so by continuity of h and hg, we have h = hyg.

By Lindel6f’s theorem there exist 1,72, . .. € I' such that h(x) =sup,,;>; yn(x)
for all 2 € J. Set hy,(z) = max(y1(x), ..., Vn(2)) for 2 € J and n > 1. Note that T
is the set of all increasing, continuous, convex, piecewise linear functions v : J — R
satisfying inf,c; v(x) = 0. In particular, we see that h,, € T and that h,,(z) T h(x)
for all z € J. By assumption, we have 6. o f € ® for all ¢ € J° and since 6, = 0
for ¢ > b and @ is an (1)-stable convex cone, we have yo f € ® for all y € I'. In
particular, we have hy, o f € ® for all n > 1 and since hy,(f(s)) T h(f(s)) for all
s €S, wehave ho f € ® O

Lemma 3.2. Let (S, A, i) be a content space and let f, f1, fo,...: S — R be given
functions. If {f;7) | n > 1} is uniformly p-integrable, then we have

(1) limsup fn, <, f = limsup [~ fodp < [* fdp.
n— oo
If {f,7) | n > 1} is uniformly p-integrable, then we have
(2) f <, liminf f,, = [ fdu < liminf [* f,dp.
n—oo

Proof. Suppose that limsup f, <, f and that {f; | n > 1} is uniformly u-
integrable. If [* f du = oo, then (1) holds trivially. So suppose that [~ fdu < oo
and let ¢ € L'(u) be given function satisfying f < ¢ p-a.e. Set g = f — ¢
and ¢, = fn, — ¢. Let € > 0 be given. Since g < fI + ¢, we see that (g,")
is uniformly p-integrable. Hence, there exists 1 € L'(u) such that 1 > 0 and
[ (gt —¢)tdu < § for all n > 1. Since ) € L} ( ), there exist positive numbers
8, ¢ > 0 such that fs Y A)dp < § and [¢(1 tdp < 5. Since p* (v > §) < oo,
there exists F' € A such that {¢ > §} C F and ,u( ) < co. Let n > 1 be given.
Since S\ F C {¢ < §} and g7 <+ (g, — )", we have
S ls\rgfdu < [T AS)du+ ["(gf —v)dn < 5 +5 =

Set hy, = 1p g and Q,(t) = p*(hy, >t) for t € Ry and n > 1. Let t > 0 be given.
Since f < ¢ p-a.e., we have p*(g > t) = 0 and by (3.2) we have limsup g, <, g.
Since {h,, >t} = Fﬁ {gn >t} and u(F) < oo, we have Q,(¢t) — 0 for all ¢ > 0.

Let n > 1 be given Then we have 0 < h,, < gt < (g7 — )" + 1 and so by
Theorem 2.1.(7) in [4] we have

| @ude= [ hadus [at -t ans [vausss [ o
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Since 0 < h < g;, we have (h, —c¢)" < (g; —¢)" + (¢ — ¢)* and so by Theorem
2.1.(7) in [4] we have

/Qn t)dt = /Qnt+cdt /(h o)t du

_/(gi )t du+/s(w—c)+du< +o=¢

Since 0 < hy, < g7 < (g7 — )" + ¢, we have hy, A6 < (g — )T + (¢ Ad) and
so by Theorem 2.1.(7) in [4] we have

/OéQn(t)dtZ/*(hn/\é)du</*(g;f_¢)+du+/*w+/\5)dﬂ<g.

Hence, for every € > 0 there exist positive numbers ¢, § > 0 satisfying

oo &

sup/ Qn(t)dt < oo | sup/ Qn(t)dt <e, sup/ Qn(t)dt <e.
n>1J0 n>1 n>1

Since @, is decreasing, it follows easily that {Q,, | n > 1} is uniformly A;-integrable

and recall that @, (t) — 0 for all ¢ > 0. Hence, by the Dunford-Pettis theorem (see

(3.23) p. 189 in [3]) we have

*

0= lim Qn(t)dt = lim hy d

n—oo 0 n— oo

and since g;" = hy, + 1g\p g;f, we have

S fndp < [qddu+ [“gf dp < [gopdu+ [Thndp+ ["1s\pg, dp.
Since f Ls\r gt dp < e for all n > 1, we have
limsup [*fodp < [q¢pdu+e Ve > 0.
n—oo

Letting ¢ | 0, we see that limsup [* f, du < [ @du for all ¢ € L () with f < ¢
p-a.e. Taking infimum over ¢, we obtain (1).

Suppose that f <, liminf f, and that {f,, | n > 1} is uniformly integrable.
Let ¢ > 0 be given. Then there exists ¢ € L'(u) such that ¢ > 0 and [*(f; —
P)tduy < eforallm > 1.Set g = f+ ¢ and g, = fn + ¢ and let us define
Q) =p (g>t) and Q,(t) = u*(gn > t) for t € R and n > 1. By (3.1), we have
Q(t) < liminf Q,(s) for all 0 < s < t and so we have Q(t) < liminf @,(t) for all
t € C(Q)N(0,00). Since @ is decreasing, we have R\ C(Q) is at most countable.
Hence, by Theorem 2.1.(7) in [4] and Fatou’s lemma we have

/ g dp = / Q(t) dt < liminf Qn( dt—hmmf/
0

n—oo

Since g, = (=fn — )" < (f, — @), we have (see Thm. 2.1.(5) in [4])
f g du=["gndp+ [ g7 du < e+ [“gndp
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and since ¢ € L'(u) and f = g + ¢, we have
[ fdu < [Tg" dp+ [sbdp < liminf([" g7 dp+ [gdp)
< . . * —_ . . * .
< 5+hnn_1>1£f(f Indp + [s& dp) 5—|—hnllrr_1>1or<1>ff fndp
Letting ¢ | 0, we obtain (2). O
Theorem 3.3. Let (S, A1, u) and (S, Aa,v) be content spaces and let us define

A={feRS| ["fau< [*fav}, L={LCS|u"(L)<v'(L)}.
Let f,g € R® be given functions. Then we have

(1) feAandge ANLY(v) = af +g€ A VaeR,.

(2) f (nls)eA vneN = feA.

(3) v(S) <oo, v(S)<u(S) and (f +nlg)T €A VneN = feA.
(4) Wi(S, E)CAandzf,u() v(S) < oo, then W(S,L) C A

()

5) If f1,fa,... € A are given functions such that (f, | n > 1) is uniformly

p-integrable, (f;F | n > 1) is uniformly v-integrable, f <, liminf f, and
limsup f,, <, f, then we have f € A.
(6) If p is a measure and [, fdp > —oo, then {h € A | h > f} is (T)-stable.

Let J C R be an interval with interior J° such that f(S) C J and let G : J — R be
an increasing, continuous, convex function such that inf,e; G(x) = 0. If (S, A1, p)
and (S, Aa,v) and (T, B,n) are measure spaces and A := Ay N As, then we have
(7) If u, v and n are o-finite and h € L*(u®@n) N LY (v ® ) is a given function
such that h(-,t) € AVt € T and h( ) E Ll( ) Vs € S, then we have
h" e AN LY(u) N LY (v) where h"(s fT
(8) If f € M(S,A) and (f —clg)" € A Ve e Jo, then GOf €A.

(9) If © C M (S, A) is sequentially closed, {¢p~ | ¢ € ®} is uniformly p-integrable
and {¢T | ¢ € ®} is uniformly v-integrable, then AN® is sequentially closed.

Proof. (1): Let f € A and g € AN L'(v) be given functions and let a > 0 be a
nonnegative number. Then we have (see [4]):

[Haf+g9)dp<a [ fdut["gdp<a [ fdv+ [ggdv < [*(af +g)dv

which proves (1).
(2) is an immediate consequence of Theorem 2.1.(6) in [4] and since

fV(-nlg)=(f +nlg)" —nlg,

we see that (3) follows from (1) and (2).

(4): Let f € WS (S, L) be given. Let y > = > 0 be given. Since ) € L, there
exists L € L such that {f > y} C L C {f > z}. Hence, we have p*(f > y) <
pw* (L) < v*(L) < v*(f > x) for all 0 < z < y and so we have p*(f > z) <
v*(f > x) for all x € Ry \ D where D is the set of all discontinuity points of
y ~ p*(f > y). Since y ~ p*(f > y) is decreasing, we have that D is at most
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countable and so by Theorem 2.1.(7) in [4] we have

/*fdu:/ooou*(f>t)dt§/ooou*(f>t)dt:/*fdu

which proves the first inclusion in (4). So suppose that u(S) = v(S) < oo and let
f e W(S, L) be given. Since {0, S} € L, we have (f +nlg)™ € W;(S,L£) C A for
all n > 1 and so by (3) we have f € A which completes the proof of (4).

(5): Suppose that the hypotheses of (5) hold. Then we have f* fndu <
f* fndv and so by Lemma 3.2 we have

[ fdu Slirginff*fnduglirginff*fndl/glimsupf*fndl/g [ fdv
n oo n o0 n—oo

which proves (5).

(6): Suppose that p is a measure and [, fdu > —oo. Let (h,) € A be an
increasing sequence such that h; > f and h, T h € R®. Since [, fdp > —o0, we
have f* f~dp < oo and since 0 < h,, < h] < f~, we see that {h,, | n > 1} is
uniformly p-integrable. Since h,, < h and h, € A, we have [~ h,du < [*h,dv <
f* hdv for all n > 1 and by (3.3), we have h <, liminf h,,. So by Lemma 3.2, we
see that [“hdu < [ hdv which proves (6).

(7): Suppose that the hypotheses of (7) hold. Since h € L*(p®n)NL ' (v®@n),
there exists a n-null set N C T such that h(-,t) € L*(u) N L (v) for allt € T\ N.
Since h(-,t) € A, we have [¢h(s,t) u(ds) < [qh(s,t)v(ds) for all t € T\ N and
by the Fubini-Tonelli theorem we have h” € L'(u) N L!(v) and

Jsh" dp = fT\Nn(dt)fSh(s, t) u(ds) < fT\Nn(dt)fSh(s, t)v(ds) = [Gh"dv.

Hence, we see that h7 € AN LY (u) N LY(v).

(8): Suppose that f € M(S,As) and (f — clg)™ € A for all ¢ € J°. Set
® = ANM(S, As). By (1) and (6), we have that ® is an (1)-stable cone. Let
¢, € @ be given and let me show that ¢ + ¢ € A. If f*(¢ + ) dv = oo, this is
evident. So suppose that [*(¢ + ) dv < oo. Since 1 > 0, we have [ ¢dv < oo
and since ¢ is nonnegative and v-measurable, we have ¢ € L(v), So by (1) we
see that ¢ 4+ 1 € ®. Hence, we see that ® is an (1)-stable convex cone containing
(f —clg)t € A for all ¢ € J° and so by Lemma 3.1 we have Go f € & C A.

(9): Suppose that the hypotheses of (9) hold and let h € R and (h,) C
AN®N M(S,A) be given functions satisfying h,,(s) — h(s) for all s € S. Since
® is sequentially closed, we have h € ® N M(S,.A). By (3.3)-(3.4), we have h <,
liminf h,, and h <, limsup h,, and since {h; | n > 1} is uniformly p-integrable
and {h;7 | n > 1} is uniformly v-integrable, we have h € A by (5). O

Theorem 3.4. Let A C M(RF B¥) be a non-empty set, let k : R¥ — [0,00] be a
Borel function and let u and v be Borel measures on RF satisfying

(1) 6xg €A Vo€ AN LL(N) Vg € CER), with [ gy =1.
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(2) k€ LY (u) N LY (v) and/ fdug/ fdv Yf e ANCZ(RF).
RFk Rk

Let K C R* be a bounded, starshaped, Borel set with non-empty interior and let
f € A be a locally A-integrable Borel function satisfying

(3) 3¢, 6 > 0 so that sup,cx |f(z+dy)| < cr(z) Vze RE.
(4) p(R*\ CLL(f) = 0= v(RE\ CL (/).
Then f € L'(u) N LY (v) and we have [g, fdp < [q. fdv.

Proof. Let f € ANLL () be a given function satisfying (3)-(4) and let ¢, > 0
be chosen according to (3). Since K has non-empty interior, there exists a function

CC’O(R’“)Jr such that {g # 0} C 0K and [, gd\, = 1. Let n > 1 be given
and set fo(x) = [qu f(@+ Y)g(y)dy for x € R¥; see Lemma 2.2. By (1) and
Lemma 2.2, we have f, € A ﬂ C2(RF). So by (2), we have [ f,du < [ f,dv for
all n > 1. By (3) and Lemma 2.2.(3), we have |f,(z)| < ck(z) for all z € R* and
all n > 1 and by (4) and Lemma 2.2.(4), we have f,, — f p-a.e. and v-a.e. By (2)
we have k € L'(u) N LY(v) and so by Lebesgue’s convergence theorem we have
feLY(u)n LY (v) and

fdp = lim fn dp < lim fn dv = fdv
RFE n— 00 n— 00 RE
which proves the theorem. O

4. Modular orderings

Let p and v be Borel probability measures on R* such that p <pg, v. In the
modern literature it is frequently claimed that this implies p <y, v; see for instance
[10]. Theorem 4.8 below shows that we do have [ fdu < [ fdv for a large class
of unbounded, supermodular Borel functions, and that we do have y <y, v if p
and v are discrete measures with finitely many mass points. However, Example
C of the introduction shows that this inequality may fail for some continuous,
linear, modular function f satisfying 0 < f < 2 p-a.s. and v-a.s. This shows
that a closer glance at the supermodular ordering is needed. This section will
be devoted to the study of supermodular functions and the modular orderings
introduced in the introduction. Recall that f : R¥ — R is supermodular if and
only if f(z Vy)+ flx Ay) < f(z) + f(y) for all z,y € RF. Here we shall use
an equivalent definition: f is supermodular if and only if AJA%f(z) > 0 for all
1 <i#j <k alazcRFandall s,t € Ry; see [8], where A? for i € [k] is
the difference operator A? f(z) = f(z + se;) — f(z) and A7AY is the second-order
difference operator:

AFALf(x) = f(x+ sei +tej) — fz + se;) — flz +tej) + f(x).

Let k > 1 be a given integer and let f : R¥ — R be a given function. If
i € [k], we write A;f > 0 if and only if Ajf(x) >0 for all s € R and all € R¥.



42 J. Hoffmann-Jgrgensen

If 4,5 € [k], we write A f > 0 if and only if AJALf(z) > 0 for all 5, € Ry and
all z € R*, and we write A;;f < 0 if and only if Ajj(—f) > 0. If 2 € R* and
i € [k], we let

f;(t) = f({E + (t — xi)ei) = f(xl, L1, 6 T, ,{Ek) Vie R

denote the partial function. Let “xxx” be a given property of a function of one
variable (such as “increasing” or “continuous” or “differentiable”). If 7 € [k] and
f : R¥ — R is a function of k variables, we say that f has “xxx” in the ith
coordinate if the partial functions f¥ has “xxx” for all # € R*. Note that f is
increasing if and only if f is increasing in each coordinate and that we have

A;f >0 & fis increasing in the jth coordinate.
Aijf >0 & .~ Aff(x) is increasing in the jth coordinate for all s > 0.
[ is supermodular if and only if A;; f > 0 for all 1 <1 # j < k; see [8].

f is convex in the ith coordinate if and only if A;;f > 0 and f has the
Baire property in the ith coordinate; see [20].

If i € [k] and # € R¥, we let

D; f(x) := limsup f(m+“e;’)_f(m) , D, f(x):=1lim i(r)lf f(m'HLii)_f(m)
u—r

u—0

D; f(z) := limsup f(m+“e;’)_f(m) , fo(a:) := limsup f('r'HLii)_f(m)
ul0 uT0

D f(z):= limiionf flatue)=f(z) Dif(z) = limTiOnf f(wﬂwqi)*f(w)

u
denote the right / left / upper / lower partial Dini derivatives of f at x; see [15].

Proposition 4.1. Let f : R¥ — R and ¢1,...,¢r : R = R be given functions and
set () := (p1(x1), ..., dr(zr)) and {(x) := Hle oi(x;) for alle = (x1,...,2) €

RF. Let J C R be an interval and let € : J — R be an increasing and convex
function. Let i,j € [k] be given integers. Then we have

(1) If ¢1,...,¢k are nonnegative, i # j and ¢; and ¢; are both increasing
(decreasing) on R, then we have A;;¢ > 0.

(2) If Ajjf > 0,40 # j and ¢; and ¢; are both increasing (decreasing) on R, then
we have Ay;(f o ¢) > 0.

(3) Let hy,...,hn, : RF = R and g : R® — R be increasing functions and set
h(z) := (h1(x), ..., ha(2)) for all z € R*. Then we have

Ajjhe >0 and Nppg >0 V1 <{l,m <n= A;j(goh)>0.

(4) If f(R*) C J and Ajj(f Va) >0Va € J, then Aj;(Eo f) > 0.
(5) If f(R*) C J, f is increasing and Aijf > 0, then A;j(Eo f) > 0.
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Proof. (1) and (2) are easy and well known. Let g and hy,...,h, be increasing
functions such that A;;jhe > 0 and Agpg > 0 for all 1 < ¢,m < n. Set () =
g(h(z)) for x € R¥. Let u,v > 0 and 2 € R be given and let us define y = z + ve;
and

h(x) h(x + uei) ) yO = h(y) ) yn = h(y + uei)
= (hi(z + uez) cshe(x Fue), hopr (), .. ha(x) VI<E<n
= (hi(y +uei), ..., he(y +ue;), hes1(y), ..., hn(y)) V1 <L <n.

Let 1 < ¢ < n be given and set u; := A¥hg(x) and vy := A¥hy(y). Then we
have g(z*) — g(z'~") = Apg(at") and g(y*) — g(y*") = Af"g(y*"). Since
he is increasing, we have u’ > 0 and recall that A;jhe > 0. Hence, by (4.2)
we have that z ~ A¥hy(z) is increasing in the jth coordinate and so we have
0 < up < vp. Recall that Agng > 0 for all m = 1,...,n. Hence, by (4.2) we
have that z ~ A}*g(z) is increasing on R™ and since < y and hy, ..., h, are
increasing, we have z/~! < y~!. Thus, we have Ay‘g(z‘~1) < A}*g(y*~!) and
since 0 < uy < vy and g is increasing, we have Az“g(yefl) < Azég(yefl). Hence,
we have

Alp(x) = g(a") — g(2°) =37 (9(@") — g2~ ") =S Apga™™)
<Y AT Y =3 (9 — 9 ) = g(y™) — 9(y°) = Alp(x + vey)

for all z € R* and all u, v > 0. In particular, we see that = ~ A¥e)(x) is increasing
in the jth coordinate for all v > 0 and so by (4.2) we conclude that A;;¢ > 0.
Thus, (3) is proved.

(4): Suppose that A;;(f Va) > 0 for all a € J. Let ®;; denote the set of all
functions F : RF — R such that Ai;F > 0. Then ®;; is a pointwise closed, convex
cone containing all constant functions and since (f(x) —a)™ = (f V a)(z) — a, we
see that (f(-) —a)t € ®;; for all a € J. Since ¢ is increasing and convex on
J, there exist increasing, continuous, convex functions £1,&,... : R — R such
that & (t) — &(t) for all t € J and ¢y, = infiej&n(t) > —oo for all m > 1.
Then 0, (t) = &n(t) — ¢ 18 an increasing, continuous, convex function on J with
infye 7 Nm(t) = 0. So by Lemma 3.1, we see that 1, o f € ®;; for all m > 1 and
since My, () + ¢m = Em (t) — £(t), we have A;;(£o f) > 0.

(5): Suppose that f is increasing with A;;f > 0 and let &1,&2,... : R = R
be chosen as above. By (4.4), we have A11&,, > 0 and so by (3) applied with
n:=1and (g, h1) := (&m, f), we see that A;;(&y o f) > 0 for all m > 1 and since
Em(f(x)) = &(f(2)), we have A (§o f) > 0. O

Proposition 4.2. Let f : R* — R be a supermodular function. If i € [k] and
s,t € R, then we have

(1) &~ fE(t)— fF(s) is increasing on R¥ if s <t and decreasing on R¥ if t < s.
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Let us define o(z,y) = {i € [k] | #; < yi} for v = (v1,...,2%) € RF and y =
(y1,--.,yr) € RF. Let us define

Fu@) = f(@va) = ¥ folava) . F@)= fana) = ¥ folz Aa)

for all a = (ay,...,ax) € R¥ and all x = (21,...,7x) € RF. If a < b and
x,y € [a,b] are given vectors, we have

2) f@)—fy) < X (F=) - )+ X () — )

i€o(z,y) i€o(y,x)

B3) 1f(z) = fly)] < fEllf{‘(xi) — [ i)l + Zk)l (i) = (i)l

(4) f is modular if and only if there exist functions fi,..., fr : R = R such that
fu) = fi(uy) + -+ fu(ug) for allu = (uy,...,us) € R*.
(5) F, is increasing and supermodular and F* is decreasing and supermodular.

Proof. (1): Let 1 < i # j < k and s,t € R be given such that s < ¢. Then u :=
t —s >0 and by (4.2)—(4.3) and supermodularity of f, we have that © ~ A¥ f(x)
is increasing in the jth coordinate. Since fF(t) — fF(s) = A¥ f(x + (s — x;)e;), we
see that * ~ f¥(t) — f¥(s) is increasing in the jth coordinate for j # ¢ and since
x ~ fE(t) — fF(s) is constant in the ith coordinate, we see that © ~ f¥(t) — f¥(s)
is increasing if s < t. Interchanging s and ¢, we see that x ~ f¥(t) — f¥(s) is
decreasing if ¢ < s.

(2)-(3): Let 2,y € RF be given vectors and set zy = z, 2, = y and z; =

(Y1, -+ Yi, Tit1,---, k) for 1 <4 < n. Then we have
(i) f(z) = fly) = ; (F(zi1) — f(20)) = ; (F7 (i) — f7(42))-

Let a,b € R* be given vectors such that z,y € [a,b]. Since a < z; < b, we
have f7(x;) — f7(yi) < fi'(z:) — f(yi) for all i € o(x,y) and f7(2;) — 7 (y:) <
fi (@)= fP (yi) for alli € a(y, ). Since fi* (;)— f* (y:) = 0 fori ¢ o(x,y)Ua(y, ),
we see that (2) holds. (3) is an immediate consequence of (2).

(4): So suppose that f is modular. By (1), there exist functions g1,..., gk :
R — R such that f#(t) — f¥(0) = gi(t) for all (t,7) € R x R¥ and all i € [k].
So by (i) with y = (0,...,0), we see that f(z) = f(0,...,0) + Zle gi(z;) which
proves the “only if” in (4). The “if” part is evident.

(5): Let « < y be given. Then we have ¢ < xVa <y V a and so by (2) with
b:=1y Va, we have

k
fleva) = flyva) <3 (ff (@ Vai) = iy Vai)).
Hence, we see that F, is increasing. In the same manner we see that F'* is decreas-

ing. By Proposition 4.1.(2) we see that f(z V a) and f(z A a) are supermodular.
So by (4) we see that F, and F* are supermodular. O

Proposition 4.3. Let f : R¥ — R be a supermodular function. Let D C RF be a
given set satisfying Uyeplu, x| = R¥ = Uyeplx,u]. Let Ay, ..., Ay be o-algebras
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on R, let u; be a finite measure on (R, A;) fori € [k] and let A=A ®@---Q Ay
denote the product o-algebra on RF. Let i,..., 7, be topologies on R and let
T =7 X -+ X 73, denote the product topology on R*. If ¢ = (c;,...,cx) is a given
vector such that ¢; admits a bounded T;-neighborhood for all i € [k], then we have

(1) If f* is A;-measurable Vu € D Vi € [k], then f is A-measurable.

(2) If f¥ is Ti-continuous at ¢; Yu € D Vi € [k], then f is T-continuous at
c=(c1y...,ck).

(3) If f#* € L (p;) Yu € D Vi € [k], then f¥ € L'(u;) Vo € RF Vi € [k].

Proof. Since R*¥ = Uuep [a, *] there exists a” = (af,...,a}) € D for n > 1 such
that a7t < a? < —n for all n € N and all i € [k] and since R¥ = U,ep [*, 0]
there exists b = (b},...,b}) € D for n > 1 such that n < b} < b?“ foralln e N
and all i € [k]. Set C,, = [a",b"] for all n > 1. Then we have C,, T R* and by
Proposition 4.2.(3) we have

@) 1f (@) = f@l < X1 () = £ (i)l + é 7" (i) = £ ()]

=1

ko

for all z,y € C,,. Suppose that f}* is A;-measurable for all uw € D and all i € [k].
Since f&" and f?" are A;-measurable for all n € N and all i € [k], it follows easily
that fis (A; ® - - - ® Ag)-measurable.

(2): Suppose that f* is continuous at ¢; for all v € D and all i € [k]. By
assumption, we have that ¢; admits a bounded 7;-neighborhood G; fori =1,... k.
Since a! < —n < 0 < n < bP, there exists ¢ € N such that G; C [a],b]] for all
i € [k]. Then G := G X - -+ x G}, is a T-neighborhood of ¢ such that G C [a?, bY]
and f¢* and f¥" are 7;-continuous at ¢; for all i € [k]. So by (i) we see that f is
T-continuous at c.

(3): Suppose that fi* € L'(u;) for all w € D and all i € [k], Let + € R* and
i € [k] be given. Then there exists n > 1 such that = € [a™,b"]. So by Proposition
4.2 (1) we have

2@ = FRO< @) = [ O]+ 177 (1) = £7(0)] Ve eR

and by (1), we see that f7 is ju;-measurable. Since (R, A;, 11;) is a finite measure
space and ¢ and f*" belong to L'(u;), we see that f¥ € L(yu;). O

Theorem 4.4. Let f : RF — R be a given function and let i,j € [k] be given
integers such that f is continuous in the ith coordinate. Then we have

(1) f Mt eR|Dif(x+te;) <0)=0and {t e R | D;f(x +te;) = —c0} is at

most countable for all x € RF, then f is increasing in the ith coordinate.

L : ¢
Let Dy denote one of the siz Dini operators DZ, D}, D,, Df, D; or D;. and let
us define

I = {t e R| Dj f(z + te;) > 0}, Ji; = {te R| Dj f(z +tej) < 0}
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for all x € R*. Suppose that DY f(z) is finite for all x € R*. If J C R is an
interval containing f(R¥) and ¢ : J — R is an increasing convex function, then
we have

2) Ajif >0« D?f(x) is increasing in the jth coordinate.
J 7
(3) If Aijf >0 and t ~ f(x +te;) is increasing on I, and decreasing on J3;
for all z € RE, then Aj;(Eo f) > 0.
(4) If Aijf <0 andt ~ f(x +te;) is decreasing on I} ; and increasing on J,
for all z € R¥, then A;j(€o f) <0.

Proof. (1) follows from Theorem VI.7.3 p. 204 in [15]. So let Df be one of the six
Dini derivatives and suppose that D¢ f(x) is finite for all z € R*.

(2): Suppose that A;jf > 0 and let z € R¥ and s > 0 be given. By (4.2)
we have that t ~ A] f(x + te;) is increasing on R and so we see that DY f(z) is
increasing in the jth coordinate. Conversely, suppose that Df f(x) is increasing in
the jth coordinate. Let v > 0 and = € RF be given and set g(t) := Al f(z+tei) =
flrx+ue;+te;)— f(x+te;) for all t € R. Since f is continuous in the ith coordinate,
we have that g is continuous on R and since Df f(x) is finite and increasing in the
jth coordinate, it follows easily that we have

Dg(t) > Dg f(x + uej + te;) — Dy f(x +te;) >0 Vt € R.

Hence, by Theorem VI.7.3 p. 204 in [15] we see that g is increasing; that is, A f
is increasing in the jth coordinate and so by (4.2) we have A;; f > 0.

Let ¢ : R — R be a continuously differentiable, increasing, convex function
and set h = ¢ o f. Let € R be given. Then we have

Ash(z) = /¢> )+t Alf(z))dt VseR

and since f is continuous in the ith coordinate and ¢’ is increasing, nonnegative
and continuous we have

(i) D{h(x +te;) = D5 f(x +tej)d' (f(x + te;)) VteR.
Suppose that A;; f > 0 and that t ~ f(x +te;) is increasing on [{"; and decreasing
on J; for all z € R*. By (2), we have that t ~ D f(x + te;) is increasing on R.
Let € R* be a given vector, let s < t be given numbers and let me show that
D¢h(x + se;) < Dh(x + tej).

Suppose that s € I7;. Then we have 0 < D7 f(z + se;) < D f(z + tej)
and so we have s,t € I?; and f(z + se;) < f(z + te;). Since ¢’ is increasing
and nonnegative, we have 0 < ¢'(f(x + se;)) < ¢'(f(x + te;)). So by (i) we have
D{h(x + se;) < DYh(x + tej).

Suppose that ¢ € J7;. Then we have DY f(z + se;) < D7 f(z + tej) < 0
and so we have s,t € J$ and f(xz + tej) < f(z + se;). Since ¢’ is increasing
and nonnegative, we have O < ¢ (f(x+te;)) < ¢ (f(x + sej)). So by (i) we have
D¢h(x + se;) < Dh(x + tej).
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Suppose that s ¢ [}, and t ¢ J,. Then we have Dy f(z+se;) < 0 < D7 f(z+
te;) and so by (i) and nonnegativity of ¢’, we have DY h(z+se;) < 0 < DYh(z+te;).

Hence, in all cases we have D{h(x + sej) < D{h(z + te;) and so we see that
D¢h(x) is increasing in the jth coordinate. So by (2), we have A;;(¢p o f) > 0.
Since £ : J — R is increasing and convex, there exist continuously differentiable,
increasing convex functions &1,&2,... : R — R such that &, (t) — £(¢) for all
t € J. By the argument above, we have A;;(&r o f) > 0 for all m > 1 and since
Em(f(x)) = &(f(2)), we see that Ayj(€o f) > 0. Thus (3) is proved and (4) follows

in the same manner. O

Corollary 4.5. Let ¢1,...,¢r : R — R be given functions which are either all
increasing or all decreasing and let us define ¢(x) = (¢1(x1), ..., dr(xk)) and
M = i = mi i = i 4y
k() maxs m(z) min @ Qr(z) max s — ]
for all x = (x1,...,7) € R¥. Let ¢ : R — R be an increasing function and let
€:[0,00) = R be an increasing convez function. Then we have
(1) My(z) and G(z) := »(Mi(p(x))) are submodular.
(2) mg(z) and F(x) := p(mi(p(x))) are supermodular.
(3) Qr(z) and H(x) := &£(Qr(¢(x))) are submodular.

Proof. Let z,y € R¥ be given. Then we have My(z V y) = M (z) V Mi(y) and
since My, is increasing, we have My (x A y) < Mg (x) A Mg (y).
Hence we have

Mi(z Vy) + My(x Ny) < My(2) V My(y) + My(2) A My(y) = My(2) + My (y)-

Hence, we see that (1) follows from Proposition 4.1 and since my(x) = — My (—x),
we see that (2) follows from (1) and Proposition 4.1. Since Qg (z) = My(z) —my(x),
we see that @y, is submodular. Let 1 < # j < k be given and set m;; = [k]\ {7,5}.
Let + = (x1,...,2,) € R* be given and set M;; = max,er,; v, and m;; =
minyer,; ¥, with the usual conventions sup @ := —oo and inf @ := +00. Then we
have D:Qk(a:) =1lifz; > z; vV My, D:Qk(x) =0if z; Amy; <z < x; V M;; and
D;Qn(x) = —1if x; < £; Amyj. So by Theorem 4.3.(4), we have Ay;(€ 0 Q) < 0.
Hence, we see that (3) follows from (4.3) and Proposition 4.1. O

Lemma 4.6. Let D C R be a countable set and let £ denote the topology on R
generated by {(a,b] | a,b € RYU{G | G C D}. Let ©(R¥) denote the set of all
0 : R* — RF of the form 0(xq,...,xx) = (01(x1),...,0k(zk)) for some increasing,
right continuous step functions 601,...,0 : R — R. Let & C RE" be a non-empty
set and let f : R¥ — R be a given function satisfying

(1) ® is sequentially closed and fof € & V0 c O(RF).

(2) f is £p-continuous in the ith coordinate for alli=1,... k.

Then we have f € ® N M(RF, B¥). More precisely, f € ® and f is of Baire class
k+1. Let F,H € M(RF,B¥) be given functions satisfying
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(3) 36 > 0 so that F(x) < f(x —y) < H(z) Vaz € R* Wy €[0,4]*
and let § denote the set of all locally bounded, right continuous functions h : RF —

R such that F(x) < h(z) < H(z) for all z € RF. Let pn and v be Borel measures
on RF satisfying

(4) FeL'(u), He L*v) and [“¢pdu < [¢pdv Yo € dNF.
Then we have f € L' (1) and [g, fdp < [* fdv < oc.

Remark. (a): Note that g : R — R is ¢p-continuous if and only if g is left continu-
ous at z for all z € R\ D. Recall that g : R — R is a right continuous step function
if and only if there exist numbers (¢; | @ € Z) such that ¢; < ¢;41 for all ¢ € Z,
SUp;cyz ¢ = 00, inficz ¢; = —oo and g(t) = g(¢;) for all t € [¢;, ¢ci+1) and all ¢ € Z.

(b): Let T be a topological space and let h : T' — R be a function. Recall
that h is of Baire class 0 if h is continuous and that h is of Baire class « for some
ordinal o > 0 if and only if h is a pointwise limit of a sequence of functions of
Baire class < a.

Proof. Let F1 C E5 C --- C R be an increasing sequence of finite sets such that
E, 1 D and set D, = E, U{i27" | i € Z} and 0,(t) = sup (D, N (—o0,t])
for all n > 1 and all ¢t € R. Then 0, is an increasing, right continuous, step
function and we have t — 27" < 0,,(t) < 0p41(t) < tfor allm > 1 and all t € R.
Let 01,...,00, € N and # = (z1,...,2) € R" be given and set f¥  (z) =
f(001 (.’El), ceey adk (xk)) and

;lg(x) = f(bs,(z1),...,00,(xi), Tix1,...,2x) forl<i<k.

Note that 6,,(t) = t for all t € E,, and all n > m. Since E,, 1 D, we see that
0,.(t) — t in £p and so by (2) we have

rreia ()= MW fo o (@) VI<i<k, f(z)= lim f5, ().

o1 —00

By (1), we have f(’fl
®. Since 6, is a right continuous step function, we see that ffjl

€ ¢ and since ¢ is sequentially closed we see that f €

3Ok
Ok is a right
continuous, locally bounded Borel function on R*. So by Lemma 2.2 we see that

51,...,% is of Baire class 1. Hence, we see that f is of Baire class k + 1.

Let ¢ and v be Borel measures on R* and let F € L'(u) and H € L'(v)
be given functions satisfying (3)—(4). Let 6 > 0 be chosen according to (3) and
let ¢ € N be chosen such that 277 < §. Let A denote the set of all functions
h: R* — R satisfying [“hdu < ["hdv and set ¥ = {4 € ® | F < ¢ < H}. By
(1), we see that W is sequentially closed and since F' € L(u) and H € L'(v), we see
that {¢~ | ¢ € ¥} is uniformly p-integrable and that {1)* | ¢ € U} is uniformly
v-integrable. By Theorem 3.3.(9), we have that AN ¥ N M (RF, B¥) is sequentially
closed. Let o1,...,0, > ¢ be given integers. Since 6,, is a right continuous, step
function satisfying ¢ — 0 < 0,(t) < t for all n > ¢ and all ¢ € R, we have

Koo, €ONFNM(RF, BF). Soby (3)—(4), we have f% . € AnUNM(R*,B)

T geeny
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for all o1,...,0, > q and since A N¥ N M(R*, B¥) is sequentially closed, we see
that f € AN ¥ N M(R*, B*). Hence, we have

—o0 < qug/fdﬂg/fdug/fdug Hdy < oco.
RFE * RF

So by Theorem 2.1.(8) in [4] we have f € L'(y) and [g, fdu < [* fdv <oo O

Theorem 4.7. Let j1 and v be Borel probability measures on RF with one-dimen-
stonal marginals py, ..., we and vy, ..., v, respectively. Then we have

(1) p=pmV & ui=v; for i=1,... k.

(2) fdp < / fdv Vf e CFRF) Nism(RF) < g <igm v
RF RF

) [ fdus [ fdvvpeCERYNmEY) S u S
Rk Rk

(4) 1 Sbsm ¥V € 1 Sism ¥ and p Spm V.

(5) / Fdp < / Fdv Vf € CRRF) Nsm(RF) < p <pum 1.
RE RE

Proof. Throughout the proof we let A denote the set of all functions f : RF - R
satisfying [* fdu < [* fdv. (1) follows easily from Proposition 4.2.(4).

(2): Suppose that Cp°(R¥) Nism(R*) C A. Let Cp denote the set of all
bounded, right continuous functions on R* and set x(z) = 1. Then (ism(RF), »)
satisfies conditions (1)—(2) in Theorem 3.4 and so we conclude that C} Nism(R¥) C
A. Let f € B(R*)nism(RF¥) be given. Then there exists ¢ > 0 such that |f(z)| < ¢
for all x € R*. Let A C RF be a countable dense subset of R¥. Since fitis
increasing, there exists a countable set D C R such that R\ D C C(f*) for all
i € [k] and all v € A. Hence, by Proposition 4.2.(3), we have R\ D C C(f})
for all 4 € [k] and all u € R* and so we see the (f, D) satisfies condition (2)
in Lemma 4.6. By Proposition 4.1.(2) we see that (ism(R*, f) satisfies condition
(1) in Lemma 4.6. Since Cj Nism(R¥) C A we see that f satisfies condition (3)—
(4) in Lemma 4.6 with F(x) = —c and H(xz) = c. Hence, we have f € A for
all f € B(RF) Nism(R¥). Let f € ism(RF) be given. Set b™ = (m,...,m) and
fmn(x) = f(xAb™)V(—n) for allm,n € N and all x € R¥. Then f,, , is increasing
and bounded and by Proposition 4.1, we have that f,, , is supermodular. Hence,
we have fp, , € A. Since f is increasing, we see that —n < f1, < fo, < -+ and
Sup,,>1 fmn(x) = f(x) V (—n) for all 2 € R*. So by Theorem 3.3.(8) we see that
f(x)V (=n) € A for all n € N and so by Theorem 3.3.(2) we have f € A; that is,
1t =ism ¥ which completes the proof of (2).

(3): Suppose that C2°(R*)Nm(R*) C A and let i € [k] be given. By Proposi-
tion 4.2.(4), we have [ ¢u; = [ ¢v; for all ¢ € Cp°(R) and so we have p; = v;.
Hence, we see that (3) follows from (1).

(4): The implication “=" in (4) follows directly from (2). Suppose that @ <ism
v and g <pm v and let f € bsm(R¥) be given. Set a™ = (—n,...,—n) for n > 1.
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By Proposition 4.2.(1) we have that the limits
ai(t) := lim (f7" (1) = [ (0))

exist and are finite for all ¢ € R and all ¢ € [k]. Since f is a bounded Borel
function, we see that «; is bounded Borel function. So by Proposition 4.2.(4),
we have that G(z) := Zle a;i(z;) is a bounded, modular, Borel function. By
Proposition 4.2.(5), we see that

M=

x f(xVa)—

(fi(zi v ai) = fi(0))

i=1

is increasing and supermodular for all a € R*. Hence, we see that F'(x) := f(z) —
G(z) is a bounded, increasing, supermodular, Borel function. Since p <igm v, we
have F € ANL'(u) N LY (v) and since p <pm v, we have G € ANLY ()N L(v). So
by Theorem 3.3.(1) we have f = F + G € A for all f € bsm(R¥) which completes
the proof of (4).

(5): Suppose that f € C°(R*) Nnsm(R*) C A. By (2) and (3), we have
1 =pm ¥ and f Sjsm V. So by (4) we have u <pgm V- O

Theorem 4.8. Let i and v be Borel probability measures on R* such that 1 =bsm V
and let iy, ..., px denote the one-dimensional marginals of . Let f : R¥ — R be
a supermodular Borel function and let us define fyc(z) = f(z V ¢) and fac(z) =
flx Ac) for all c,x € R*. If c € RF is a given vector, then we have

(1) If f is either increasing or decreasing, then f* fdu < f* fdv.

(2) If f¢ € L'(w;) for all i € [k], then we have [~ fyedu < [ fyedv and
f*f/\cd,u < f*f/\ch~

Let A, B C RF be given sets satisfying Useala, ] = RF = Upep[*,b]. Then we

have f* fdu < f* fdv if just one of the following three conditions holds:

(A) fo e LY (w) Vi€ [k] Va € A, {fya | a € A} is uniformly p-integrable and
{fd. | a € A} is uniformly v-integrable.

(B) fb e LY(w;) Vi € [k] Vb e B, {f, | b € B} is uniformly p-integrable and
{f%, | b € B} is uniformly v-integrable.

(C) There exist functions hy € LY (pu1),..., hyy € LY(ux) such that |f(z)] <
Zle hi(z;) for all v = (z1,...,71) € RF.

Proof. Throughout the proof, we let A denote the set of all functions h: R* — R,
satisfying [“hdu < ["hdv. We set f(z) = f(—=) for all z € R* and we set
i(B) = u(—B) and #(B) — v(—B) for all B € B*. Then ji and ¥ are Borel
probability measures on R¥ such that [ fdi = [ fdu and [ fdv = [ fdv. By
Proposition 4.1, we see that f is supermodular and that f <psm, U.

(1): Since yt <psm v, we have bsm(R¥) C A and by Theorem 4.7, we have
ism(Rk) CAand p; =v; fori=1,...,k where vy, ...,y are the one-dimensional
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marginals of v. Hence, we have f € A if f is increasing. Applying this to the triple
(f,fi, ), we see that f € A if f is decreasing.

(2): Suppose that f¢ € L(u;) foralli = 1,... kandset G(z) = Zle S(aV
c;) for all z = (z1,...,75) € R¥. By Proposition 4.2.(4), we have that G is a
modular, Borel function and since p; is finite, we have that f£(t V ¢;) belongs to
LY(u;). Since v; = p;, we have G € AN L(u) N LY (v) and by Proposition 4.2.(5),
we have fy.—G € ism(RF) C A. So by Theorem 3.3.(1) we have fy. € A. Applying
this to triple (f,/], V) with ¢ := —¢, we see that fa. € A.

Suppose that condition (A) holds. By (2), we see that fy, € A for alla € A
and since R¥ = U,ca [a, %], there exists a™ = (af,...,a}) € A such that a;""’l <
a? < —nforalln € N and all ¢ € [k]. Then we have fy,n(z) — f(x) and by (2) and
(A), we have fuan € A, {fy,n | n > 1} is uniformly p-integrable and {f,. | n > 1}
is uniformly v-integrable. So by (3.3)—(3.4) and Theorem 3.3.(5) we have f € A.

Suppose that condition (B) holds. Applying case (A) on the triple (f,/l,l?)
with A := —B, we see that f € A. Suppose that condition (C) holds. Since
h; € L% (w;), we see that f € L'(u;) for all z € R” and all i € [k]. Let £ be a
finite Borel measure on R. Then I claim that we have

(i) liminf /R () — h(t Vw)|é(dt) = 0 Vh e L'(€).

Proof of (i). Suppose that (i) fails. Then there exist h € L*(¢) and a positive num-
ber § > 0 such that liminf,|_ [g |h(t) — h(t V u)|&(dt) > 2. Since h € L'(§),
there exists ¢ € R such that

/ |h|d§<6and/|h h(tVu)|&(dt) >26 Yu<g.
q]

—0Q,

Let u < ¢ be given and set F¢(u) := &((—o00,u]). Then we have

26 h(t u)| €(d h d h(u)|Fe(u
< O —mevwlgan < [ ol + rwiRe)
< 5+ |h(w)| Fe(w)

and so we see that |h(u)| Fe(u) > 6 for all u < ¢. Set m = inf <, |h(s)| and let
s < ¢ be given. Since F¢ is increasing. we have § < |h(s)| F¢(s) < |h(s)| F¢(¢) and
so we have 6 < m F¢(q) and

S mE0) = [ mE@) < [ el <5

which is impossible. Thus, we see that (i) holds.
Let i € [k] be given. By (i) there exist numbers a} > a? > --- such that
al < —n for all n > 1 and

lim [ [hi(t) — hi(t V@) pa(dt) =0 Yi=1,...,k.
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Set a™ = (a},...,a}) and H(z) = Zle hi(z;) for & = (@1,...,2) € RF. Since
w; = v; and

o8

|H (x) — H(xVa")| < 3 |hi(xi) — h(z: V aif)|

i=1

we have
/ |H(z) — H(zVa")| p(dx) =0, / |H(xz) — H(z Va")|v(dz) — 0.

In particular, we see that {Hyg» | n > 1} is uniformly p-integrable and uniformly
v-integrable. Since |f(xVa™)| < H(xzVa™), we see that { fyen | n > 1} is uniformly
p-integrable and uniformly v-integrable. So by case (A) we have f € A O
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