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Edge Fluctuations of Eigenvalues
of Wigner Matrices

Hanna Döring and Peter Eichelsbacher

Abstract. We establish a moderate deviation principle (MDP) for the num-
ber of eigenvalues of a Wigner matrix in an interval close to the edge of the
spectrum. Moreover we prove a MDP for the 𝑖th largest eigenvalue close to
the edge. The proof relies on fine asymptotics of the variance of the eigen-
value counting function of GUE matrices due to Gustavsson. The extension
to large families of Wigner matrices is based on the Tao and Vu Four Mo-
ment Theorem. Possible extensions to other random matrix ensembles are
commented.
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1. Introduction

Recently, in [5] and [4] the Central Limit Theorem (CLT) for the eigenvalue count-
ing function of Wigner matrices, that is the number of eigenvalues falling in an
interval, was established. This universality result relies on fine asymptotics of the
variance of the eigenvalue counting function, on the Fourth Moment Theorem due
to Tao and Vu as well as on recent localization results due to Erdös, Yau and
Yin. There are many random matrix ensembles of interest, but to focus our dis-
cussion and to clear the exposition we shall restrict ourselves to the most famous
model class of ensembles, the Wigner Hermitian matrix ensembles. For an integer
𝑛 ≥ 1 consider an 𝑛× 𝑛 Wigner Hermitian matrix 𝑀𝑛 = (𝑍𝑖𝑗)1≤𝑖,𝑗≤𝑛: Consider a
family of jointly independent complex-valued random variables (𝑍𝑖𝑗)1≤𝑖,𝑗≤𝑛 with
𝑍𝑗𝑖 = 𝑍𝑖𝑗 , in particular the 𝑍𝑖𝑖 are real valued. For 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 require that the
random variables have mean zero and variance one and the 𝑍𝑖𝑗 ≡ 𝑍 are identically
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distributed, and for 1 ≤ 𝑖 = 𝑗 ≤ 𝑛 require that 𝑍𝑖𝑖 ≡ 𝑍 ′ are also identically dis-
tributed with mean zero and variance one. The distributions of 𝑍 and 𝑍 ′ are called
atom distributions. An important example of a Wigner Hermitian matrix 𝑀𝑛 is
the case where the entries are Gaussian, that is 𝑍𝑖𝑗 is distributed according to a
complex standard Gaussian 𝑁(0, 1)ℂ for 𝑖 ∕= 𝑗 and 𝑍𝑖𝑖 is distributed according to
a real standard Gaussian 𝑁(0, 1)ℝ, giving rise to the so-called Gaussian Unitary
Ensembles (GUE). GUE matrices will be denoted by 𝑀 ′

𝑛. In this case, the joint law
of the eigenvalues is known, allowing a good description of their limiting behavior
both in the global and local regimes (see [1]). In the Gaussian case, the distribu-
tion of the matrix is invariant by the action of the group 𝑆𝑈(𝑛). The eigenvalues
of the matrix 𝑀𝑛 are independent of the eigenvectors which are Haar distributed.
If (𝑍𝑖,𝑗)1≤𝑖<𝑗 are real valued the symmetric Wigner matrix is defined analogously
and the case of Gaussian variables with 𝔼𝑍2𝑖𝑖 = 2 is of particular importance, since
their law is invariant under the action of the orthogonal group 𝑆𝑂(𝑛), known as
Gaussian Orthogonal Ensembles (GOE).

The matrix 𝑊𝑛 := 1√
𝑛
𝑀𝑛 is called the coarse-scale normalized Wigner Her-

mitian matrix, and 𝐴𝑛 :=
√
𝑛𝑀𝑛 is called the fine-scale normalized Wigner Her-

mitian matrix. For any 𝑛× 𝑛 Hermitian matrix 𝐴 we denote by 𝜆1(𝐴), . . . , 𝜆𝑛(𝐴)
the real eigenvalues of 𝐴. We introduce the eigenvalue counting function

𝑁𝐼(𝐴) :=
∣∣{1 ≤ 𝑖 ≤ 𝑛 : 𝜆𝑖(𝐴) ∈ 𝐼 }∣∣

for any interval 𝐼 ⊂ ℝ. We will consider 𝑁𝐼(𝑊𝑛) as well as 𝑁𝐼(𝐴𝑛). Remark that
𝑁𝐼(𝑊𝑛) = 𝑁𝑛𝐼(𝐴𝑛). The global Wigner theorem states that the empirical measure
1
𝑛

∑𝑛
𝑖=1 𝛿𝜆𝑖 on the eigenvalues 𝜆𝑖 of the coarse-scale normalized Wigner Hermitian

matrix 𝑊𝑛 converges weakly almost surely as 𝑛 →∞ to the semicircle law

𝑑𝜚𝑠𝑐(𝑥) =
1

2𝜋

√
4 − 𝑥2 1[−2,2](𝑥) 𝑑𝑥,

(see [1, Theorem 2.1.21, Theorem 2.2.1]). Consequently, for any interval 𝐼 ⊂ ℝ,

lim
𝑛→∞

1

𝑛
𝑁𝐼(𝑊𝑛) = 𝜚𝑠𝑐(𝐼) :=

∫
𝐼

𝜚𝑠𝑐(𝑦) 𝑑𝑦

almost surely. At the fluctuation level, it is well known that for the GUE, 𝑊 ′
𝑛 :=

1√
𝑛
𝑀 ′

𝑛 satisfies a CLT (see [17]): Let 𝐼𝑛 be an interval in ℝ. If 𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)) →∞

as 𝑛 →∞, then

𝑁𝐼𝑛(𝑊 ′
𝑛) − 𝔼[𝑁𝐼𝑛(𝑊 ′

𝑛)]√
𝕍(𝑁𝐼𝑛(𝑊 ′

𝑛))
→ 𝑁(0, 1)ℝ

as 𝑛 →∞ in distribution. In [14] the asymptotic behavior of the expectation and
the variance of the counting function 𝑁𝐼𝑛(𝑊 ′

𝑛) for intervals 𝐼𝑛 = [𝑦(𝑛),∞) with
𝑦(𝑛) = 𝐺−1(𝑘/𝑛) (where 𝑘 = 𝑘(𝑛) is such that 𝑘/𝑛 → 𝑎 ∈ (0, 1) – strictly in
the bulk –, and 𝐺 denotes the distribution function of the semicircle law) was
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established:

𝔼[𝑁𝐼𝑛(𝑊 ′
𝑛)] = 𝑛− 𝑘(𝑛) + 𝑂

(
log𝑛

𝑛

)
and 𝕍(𝑁𝐼𝑛(𝑊 ′

𝑛)) =

(
1

2𝜋2
+ 𝑜(1)

)
log𝑛.

(1.1)
The proof applied strong asymptotics for orthogonal polynomials with respect to
exponential weights, see [6]. These conclusions were extended to non-Gaussian
Wigner Hermitian matrices in [5].

In this article we focus on the behaviour of the eigenvalue counting function
𝑁𝐼𝑛(𝑊𝑛) evaluated at the edge of the spectrum. Fine asymptotics of expecta-
tion and variance as well as the CLT at the edge of the spectrum of GUE ma-
trices are known, see [14]. Let 𝐼𝑛 = [𝑦𝑛,∞) where 𝑦𝑛 → 2− for 𝑛 → ∞ in a
certain speed. We prove a global moderate deviation principle (MDP) for 𝑍𝑛 :=
𝑁𝐼𝑛 (𝑊

′
𝑛)− 2

3𝜋𝑛(2−𝑦𝑛)3/2
𝑎𝑛

√
1

2𝜋2 log(𝑛(2−𝑦𝑛)3/2)
, that means: For any sequence (𝑎𝑛)𝑛 with 1 ≪ 𝑎𝑛 ≪ √

log𝑛,

we have

𝑃

⎛⎝𝑁𝐼𝑛(𝑊 ′
𝑛) − 2

3𝜋𝑛(2 − 𝑦𝑛)3/2

𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦𝑛)3/2)

∼ 𝑥

⎞⎠ ≈ 𝑒−𝑎
2
𝑛𝐼(𝑥) ,

see Theorem 2.1 for a precise statement. Using the equivalence

𝑁[𝑦,∞)(𝑊𝑛) ≤ 𝑛− 𝑖 if and only if 𝜆𝑖(𝑊𝑛) ≤ 𝑦

in Theorem 3.1 we prove a local MDP for an eigenvalue near the edge of the
spectrum of 𝑊 ′

𝑛. Applying the Four Moment Theorem due to Tao and Vu, the local
MDP can be generalized to a large class of Hermitian Wigner matrices. Finally
this yields the main theorem of the present article: a universal global MDP of the
eigenvalue counting function 𝑁[𝑦,∞)(𝑊𝑛) for 𝑦 near the edge of the spectrum. We
state it in Theorem 5.1. The last section indicates how to achieve the previous
moderate deviation results for symmetric Wigner matrices.

2. Global moderate deviations at the edge of the spectrum

Certain deviations results and concentration properties for Wigner matrices were
considered. Our aim is to establish moderate deviation principles. Recall that a
sequence of laws (𝑃𝑛)𝑛≥0 on a Polish space Σ satisfies a large deviation principle
(LDP) with good rate function 𝐼 : Σ → ℝ+ and speed 𝑠𝑛 going to infinity with 𝑛
if and only if the level sets {𝑥 : 𝐼(𝑥) ≤ 𝑀}, 0 ≤ 𝑀 < ∞, of 𝐼 are compact and for
all closed sets 𝐹

lim sup
𝑛→∞

𝑠−1𝑛 log𝑃𝑛(𝐹 ) ≤ − inf
𝑥∈𝐹

𝐼(𝑥)

whereas for all open sets 𝑂

lim inf
𝑛→∞ 𝑠−1𝑛 log𝑃𝑛(𝑂) ≥ − inf

𝑥∈𝑂
𝐼(𝑥).

We say that a sequence of random variables satisfies the LDP when the sequence
of measures induced by these variables satisfies the LDP. Formally a moderate
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deviation principle is nothing else but the LDP. However, we speak about a mod-
erate deviation principle (MDP) for a sequence of random variables, whenever the
scaling of the corresponding random variables is between that of an ordinary Law
of Large Numbers (LLN) and that of a CLT.

Large deviation results for the empirical measures of Wigner matrices are still
only known for the Gaussian ensembles since their proof is based on the explicit
joint law of the eigenvalues, see [2] and [1]. A moderate deviation principle for
the empirical measure of the GUE or GOE is also known, see [7]. This moderate
deviations result does not have yet a fully universal version for Wigner matrices. It
has been generalised to Gaussian divisible matrices with a deterministic self-adjoint
matrix added with converging empirical measure [7] and to Bernoulli matrices [9].
Recently we proved in [11] a MDP for the number of eigenvalues in the bulk of the
spectrum of a GUE matrix. If 𝑀 ′

𝑛 is a GUE matrix and 𝑊 ′
𝑛 := 1√

𝑛
𝑀 ′

𝑛 and 𝐼𝑛 be

an interval in ℝ. If 𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)) →∞ for 𝑛 →∞, then, for any sequence (𝑎𝑛)𝑛 of

real numbers such that 1 ≪ 𝑎𝑛 ≪√𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)), the sequence (𝑍𝑛)𝑛 with

𝑍𝑛 =
𝑁𝐼𝑛(𝑊 ′

𝑛) − 𝔼[𝑁𝐼𝑛(𝑊 ′
𝑛)]

𝑎𝑛
√
𝕍(𝑁𝐼𝑛(𝑊 ′

𝑛))

satisfies a MDP with speed 𝑎2𝑛 and rate function 𝐼(𝑥) = 𝑥2

2 . Moreover let 𝐼 =

[𝑦,∞) with 𝑦 ∈ (−2, 2) strictly in the bulk, then the sequence (𝑍𝑛)𝑛 with 𝑍𝑛 =
𝑁𝐼(𝑊

′
𝑛)−𝑛𝜚𝑠𝑐(𝐼)

𝑎𝑛
√

1
2𝜋2 log𝑛

satisfies the MDP with the same speed, the same rate function,

and in the regime 1 ≪ 𝑎𝑛 ≪ √
log𝑛 (called the MDP with numerics; see Theorem

1.1 in [11]). It follows applying (1.1). In [11], these conclusions were extended to
non-Gaussian Wigner Hermitian matrices. In [10] we proved a further universal
MDP for the logarithm of the determinants of Wigner matrices.

The first observation in this paper is, that the MDP for (𝑍𝑛)𝑛 and (𝑍𝑛)𝑛,
respectively, is not restricted to the bulk of the spectrum. To state the result, let
𝛿 > 0 and assume that 𝑦𝑛 ∈ [−2 + 𝛿, 2) and 𝑛(2 − 𝑦𝑛)3/2 → ∞ when 𝑛 → ∞.
Then with [14, Lemma 2.3] the variance of the number of eigenvalues of 𝑊 ′

𝑛 in
𝐼𝑛 := [𝑦𝑛,∞) satisfies

𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)) =

1

2𝜋2
log
(
𝑛(2 − 𝑦𝑛)3/2

)
(1 + 𝜂(𝑛)), (2.1)

where 𝜂(𝑛) → 0 as 𝑛 → ∞. Moreover the expected number of eigenvalues of 𝑊 ′
𝑛

in 𝐼𝑛, when 𝑦𝑛 → 2−, is given by [14, Lemma 2.2]:

𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛)) =

2

3𝜋
𝑛(2 − 𝑦𝑛)3/2 + 𝑂(1). (2.2)

Hence applying Theorem 1.1 in [11] we immediately obtain:

Theorem 2.1. Let 𝑀 ′
𝑛 be a GUE matrix and 𝑊 ′

𝑛 = 1√
𝑛
𝑀𝑛. Let 𝐼𝑛 = [𝑦𝑛,∞)

where 𝑦𝑛 → 2− for 𝑛 → ∞. Assume that 𝑦𝑛 ∈ [−2 + 𝛿, 2) and 𝑛(2 − 𝑦𝑛)3/2 → ∞
when 𝑛 → ∞. Then, for any sequence (𝑎𝑛)𝑛 of real numbers such that 1 ≪ 𝑎𝑛 ≪
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√
𝕍(𝑁𝐼𝑛(𝑊 ′

𝑛)), the sequence
𝑁𝐼𝑛(𝑊

′
𝑛)−𝔼[𝑁𝐼𝑛(𝑊

′
𝑛)]

𝑎𝑛
√

𝕍(𝑁𝐼𝑛(𝑊
′
𝑛))

satisfies a MDP with speed 𝑎2𝑛

and rate function 𝐼(𝑥) = 𝑥2

2 . Moreover the sequence

𝑍𝑛 :=
𝑁𝐼𝑛(𝑊 ′

𝑛) − 2
3𝜋𝑛(2 − 𝑦𝑛)3/2

𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦𝑛)3/2)

satisfies the MDP with the same speed, the same rate function, and in the regime

1 ≪ 𝑎𝑛 ≪
√

log(𝑛(2 − 𝑦𝑛)3/2) (called the MDP with numerics).

For symmetry reasons an analogous result could be formulated for the count-
ing function 𝑁𝐼𝑛(𝑊 ′

𝑛) near the left edge of the spectrum.

3. Local moderate deviations at the edge of the spectrum

Under certain conditions on 𝑖 it was proved in [14] that the 𝑖th eigenvalue 𝜆𝑖 of
the GUE 𝑊 ′

𝑛 satisfies a CLT. Consider 𝑡(𝑥) ∈ [−2, 2] defined for 𝑥 ∈ [0, 1] by

𝑥 =

∫ 𝑡(𝑥)

−2
𝜚𝑠𝑐(𝑡) 𝑑𝑡 =

1

2𝜋

∫ 𝑡(𝑥)

−2

√
4 − 𝑥2 𝑑𝑥.

Then for 𝑖 = 𝑖(𝑛) such that 𝑖/𝑛 → 𝑎 ∈ (0, 2) as 𝑛 → ∞ (i.e., 𝜆𝑖 is eigenvalue in
the bulk), 𝜆𝑖(𝑊

′
𝑛) satisfies a CLT:

𝑋𝑛 :=

√
4 − 𝑡(𝑖/𝑛)2

2

𝜆𝑖(𝑊
′
𝑛) − 𝑡(𝑖/𝑛)
√
log𝑛
𝑛

→ 𝑁(0, 1) (3.1)

for 𝑛 → ∞. Remark that 𝑡(𝑖/𝑛) is sometimes called the classical or expected lo-

cation of the 𝑖th eigenvalue. The standard deviation is
√
log𝑛

𝜋
√
2

1
𝑛𝜚𝑠𝑐(𝑡(𝑖/𝑛))

. Note

that from the semicircular law, the factor 1
𝑛𝜚𝑠𝑐(𝑡(𝑖/𝑛))

is the mean eigenvalue spac-

ing. Informally, (3.1) asserts in the GUE case, that each eigenvalue 𝜆𝑖(𝑊
′
𝑛) typ-

ically deviates by 𝑂
(√

log𝑛/(𝑛𝜚(𝑡(𝑖/𝑛)))
)

around its classical location. This re-
sult can be compared with the so-called eigenvalue rigidity property 𝜆𝑖(𝑊

′
𝑛) =

𝑡(𝑖/𝑛) + 𝑂(𝑛−1+𝜀) established in [12], which has a slightly worse bound on the
deviation but which holds with overwhelming probability and for general Wigner
ensembles. See also discussions in [20, Section 3]. We proved in [11, Theorem 4.1]
a MDP for

(
1
𝑎𝑛

𝑋𝑛

)
𝑛

with 𝑋𝑛 in (3.1), for any 1 ≪ 𝑎𝑛 ≪ √
log𝑛, with speed 𝑎2𝑛

and rate 𝑥2/2. Moreover in [11, Theorem 4.2], these conclusions were extended to
non-Gaussian Wigner Hermitian matrices. The proofs are achieved by the tight re-
lation between eigenvalues and the counting function expressed by the elementary
equivalence, for 𝐼(𝑦) = [𝑦,∞), 𝑦 ∈ ℝ,

𝑁𝐼(𝑦)(𝑊𝑛) ≤ 𝑛− 𝑖 if and only if 𝜆𝑖(𝑊𝑛) ≤ 𝑦. (3.2)

This relation is true for any eigenvalue 𝜆𝑖(𝑊𝑛), independent of sitting being in the
bulk of the spectrum or very close to the right edge of the spectrum. Hence the
next goal is to transport the MDP for the counting function of eigenvalues close
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to the (right) edge, Theorem 2.1, to a MDP for any singular eigenvalue close to
the right edge of the spectrum. Consider 𝑖 = 𝑖(𝑛) with 𝑖 → ∞ but 𝑖/𝑛 → 0 as
𝑛 →∞ and define 𝜆𝑛−𝑖(𝑊 ′

𝑛) as eigenvalue number 𝑛− 𝑖 in the GUE. An example
is 𝑖(𝑛) = 𝑛− log 𝑛. In [14, Theorem 1.2] a CLT was proven, which is

𝑍𝑛,𝑖 :=
𝜆𝑛−𝑖(𝑊 ′

𝑛) − (2 − ( 3𝜋2 𝑖
𝑛

)2/3)
const

(
log 𝑖

𝑖2/3𝑛4/3

)1/2 → 𝑁(0, 1)ℝ (3.3)

in distribution with const =
(
(3𝜋)2/321/3

)−1/2
. Remark that the formulation in

[14, Theorem 1.2] is different, since first of all the GUE in [14] was defined such
that the limiting semicircular law has support [−1, 1] and, second the CLT in [14]
is formulated for 𝜆𝑛−𝑖(𝑀 ′

𝑛) instead of 𝜆𝑛−𝑖(𝑊 ′
𝑛). The choice of the asymptotic

expectation and variance in (3.3) can be explained as follows. Let 𝑔(𝑦𝑛) be the
expected number of eigenvalues in 𝐼𝑛 = [𝑦𝑛,∞). Then with (3.2)

𝑃
(
𝜆𝑛−𝑖(𝑊 ′

𝑛) ≤ 𝑦𝑛
)

= 𝑃
(
𝑁𝐼𝑛(𝑊 ′

𝑛) ≤ 𝑖
)

= 𝑃

(
𝑁𝐼𝑛(𝑊 ′

𝑛) − 𝑔(𝑦𝑛)

𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2

≤ 𝑖− 𝑔(𝑦𝑛)

𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2

)
.

Trying to apply the CLT for 𝑁𝐼𝑛 is choosing 𝑦𝑛 such that 𝑖−𝑔(𝑦𝑛)√
𝕍(𝑁𝐼𝑛 (𝑊

′
𝑛))

→ 𝑥 for 𝑛 →
∞, because this would imply 𝑃

(
𝜆𝑛−𝑖(𝑊 ′

𝑛) ≤ 𝑦𝑛
) → ∫ 𝑥

−∞ 𝜑0,1(𝑡) 𝑑𝑡, where 𝜑0,1(⋅)
denotes the density of the standard normal distribution. The candidate for 𝑦𝑛 can
be found as in the proof of [14, Theorem 1.2], with 𝑔(𝑦𝑛) = 2

3𝜋𝑛(2− 𝑦𝑛)3/2+𝑂(1)

and ℎ(𝑦𝑛) = 𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2 = 1√

2𝜋
log1/2(𝑛(2− 𝑦𝑛)3/2) + 𝑜(log1/2(𝑛(2− 𝑦𝑛)3/2)).

Applying the same heuristic as on page 157 in [14], we obtain

𝑦𝑛 ≈ 2 −
(

3𝜋

2

𝑖

𝑛

)2/3
+ 𝑥

((
(3𝜋)2/321/3

)−1/2 log 𝑖

𝑖2/3𝑛4/3

)1/2
.

With respect to the statement in Theorem 2.1 one might expect a MDP for(
1
𝑎𝑛

𝑍𝑛,𝑖
)
𝑛

for certain growing sequences (𝑎𝑛)𝑛. We have

𝑃
(
𝑍𝑛,𝑖/𝑎𝑛 ≤ 𝑥

)
= 𝑃
(
𝜆𝑛−𝑖(𝑊 ′

𝑛) ≤ 𝑦𝑛(𝑎𝑛)
)

= 𝑃
(
𝑁𝐼𝑛(𝑊 ′

𝑛) ≤ 𝑖
)

= 𝑃

(
𝑁𝐼𝑛(𝑊 ′

𝑛) − 𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛))

𝑎𝑛𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2

≤ 𝑖− 𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛))

𝑎𝑛𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2

)
with

𝑦𝑛(𝑎𝑛) := 2 −
(

3𝜋

2

𝑖

𝑛

)2/3
+ 𝑎𝑛 𝑥

((
(3𝜋)2/321/3

)−1/2 ( log 𝑖

𝑖2/3𝑛4/3

))1/2
(3.4)

and 𝐼𝑛 = [𝑦𝑛(𝑎𝑛),∞). Since 𝑖 → ∞ and 𝑖/𝑛 → 0 for 𝑛 → ∞, we have that

𝑦𝑛(𝑎𝑛) → 2− for every 𝑎𝑛 such that 𝑎𝑛 ≪ (
log 𝑖
)1/2

. Hence we can apply (2.2),

that is 𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛)) = 2

3𝜋𝑛(2 − 𝑦𝑛(𝑎𝑛))3/2 + 𝑂(1). With

2 − 𝑦𝑛(𝑎𝑛) =

(
3𝜋

2

𝑖

𝑛

)2/3(
1 − 𝑎𝑛 𝑥 log1/2 𝑖

(3𝜋/
√

2)𝑖

)
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by Taylor’s expansion we obtain

2

3𝜋
𝑛(2 − 𝑦𝑛(𝑎𝑛))3/2 = 𝑖− 1√

2𝜋
𝑎𝑛 𝑥 log1/2 𝑖 + 𝑜

(
𝑎𝑛 𝑥 log1/2 𝑖

)
, (3.5)

and therefore 𝑖 − 𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛)) = 1√

2𝜋
𝑎𝑛 𝑥 log1/2 𝑖 + 𝑜

(
𝑎𝑛 𝑥 log1/2 𝑖

)
+𝑂(1). From

(3.5) we obtain that 𝑛(2 − 𝑦𝑛(𝑎𝑛))3/2 → ∞ for 𝑛 → ∞ for every 𝑎𝑛 ≪ (log 𝑖
)1/2

.

Hence we can apply (2.1), that is 𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)) = 1

2𝜋2 log
(
𝑛(2 − 𝑦𝑛(𝑎𝑛))3/2

)
(1 +

𝑜(1)). With (3.5) the variance 𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)) equals(

1

2𝜋2
log
(3𝜋

2
𝑖
)

+
1

2𝜋2
log

(
1 − 𝑎𝑛 𝑥 (log 𝑖)1/2√

2𝜋𝑖
+ 𝑜
(𝑎𝑛 𝑥 (log 𝑖)1/2

𝑖

)))
(1 + 𝑜(1)).

Summarizing we have proven that for any growing sequence (𝑎𝑛)𝑛 of real numbers
such that 1 ≪ 𝑎𝑛 ≪ (log 𝑖)1/2

𝑖− 𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛))

𝑎𝑛𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2

= 𝑥 + 𝑜(1).

By Theorem 2.1 we obtain for every 𝑥 < 0 that lim𝑛→∞ 1
𝑎2
𝑛

log𝑃
(
𝑍𝑛,𝑖/𝑎𝑛 ≤ 𝑥

)
=

−𝑥2

2 . With 𝑃
(
𝑍𝑛,𝑖/𝑎𝑛 ≥ 𝑥

)
= 𝑃
(
𝑁𝐼𝑛(𝑊 ′

𝑛) ≥ 𝑖− 1
)

the same calculations lead, for
every 𝑥 > 0, to

lim
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝑍𝑛,𝑖/𝑎𝑛 ≥ 𝑥

)
= −𝑥2

2
. (3.6)

Next we choose all open intervals (𝑎, 𝑏), where at least one of the endpoints is
finite and where none of the endpoints is zero. Denote the family of such intervals
by 𝒰 . Now it follows for each 𝑈 = (𝑎, 𝑏) ∈ 𝒰 ,

ℒ𝑈 := lim
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝑍𝑛,𝑖/𝑎𝑛 ∈ 𝑈

)
=

⎧⎨⎩
𝑏2/2 : 𝑎 < 𝑏 < 0

0 : 𝑎 < 0 < 𝑏
𝑎2/2 : 0 < 𝑎 < 𝑏

By [8, Theorem 4.1.11], (𝑍𝑛,𝑖/𝑎𝑛)𝑛 satisfies a weak MDP (see definition in [8,

Section 1.2]) with speed 𝑎2𝑛 and rate function 𝑡 9→ sup𝑈∈𝒰 ;𝑡∈𝑈 ℒ𝑈 = 𝑡2

2 . With
(3.6), it follows that (𝑍𝑛,𝑖/𝑎𝑛)𝑛 is exponentially tight (see definition in [8, Section
1.2]), hence by Lemma 1.2.18 in [8], (𝑍𝑛,𝑖/𝑎𝑛)𝑛 satisfies the MDP with the same
speed and the same good rate function. Hence we have proven:

Theorem 3.1. Let 𝑀 ′
𝑛 be a GUE matrix and 𝑊 ′

𝑛 = 1√
𝑛
𝑀 ′

𝑛. Consider 𝑖 = 𝑖(𝑛) such

that 𝑖 → ∞ but 𝑖/𝑛 → 0 as 𝑛 → ∞. If 𝜆𝑛−𝑖 denotes the eigenvalue number 𝑛− 𝑖
in the GUE matrix 𝑊 ′

𝑛 it holds that for any sequence (𝑎𝑛)𝑛 of real numbers such
that 1 ≪ 𝑎𝑛 ≪ (log 𝑖)1/2, the sequence

(
1
𝑎𝑛

𝑍𝑛,𝑖
)
𝑛

with 𝑍𝑛,𝑖 given by (3.3) satisfies

a MDP with speed 𝑎2𝑛 and rate function 𝐼(𝑥) = 𝑥2

2 .
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4. Universal local moderate deviations near the edge

Our next goal is to check whether the precise distribution of the atom variables
𝑍𝑖𝑗 of a Hermitian random matrix 𝑀𝑛 are relevant for the conclusion of the MDP
stated in Theorems 2.1 and 3.1, so long as they are normalized to have mean zero
and variance one, and are jointly independent on the upper-triangular portion
of 𝑀𝑛. It is a remarkable feature of our MDP results that they are universal,
hence the distribution of the atom variables are irrelevant in some sense. The
arguments used above relied heavily on the special structure of the GUE ensemble,
in particular on the determinantal structure of the joint probability distribution
(see [11, Theorem 1.1 and 1.3]) and on the fine asymptotics of the expectation
and the variance of the eigenvalue counting function of GUE presented in [14]. We
apply the swapping method due to Tao and Vu, in which one replaces the entries
of one Wigner Hermitian matrix 𝑀𝑛 with another matrix 𝑀 ′

𝑛 which are close in
the sense of matching moments. This goes back to Lindeberg’s exchange strategy
for proving the classical CLT, [15], and applied to Wigner matrices, e.g., in [3]. The
precise statement of the so-called Four Moment Theorem needs some preparation.
We will use the notation as in [20].

We say that two complex random variables 𝜂1 and 𝜂2 match to order 𝑘 with
𝑘 ∈ ℕ if

𝔼
[
Re(𝜂1)

𝑚 Im(𝜂1)
𝑙
]

= 𝔼
[
Re(𝜂2)

𝑚 Im(𝜂2)
𝑙
]

for all 𝑚, 𝑙 ≥ 0 such that 𝑚 + 𝑙 ≤ 𝑘. We will consider the case when the real
and the imaginary parts of 𝜂1 or of 𝜂2 are independent, then the matching mo-
ment condition simplifies to the assertion that 𝐸

[
Re(𝜂1)

𝑚] = 𝐸
[
Re(𝜂2)

𝑚] and

𝐸
[
Im(𝜂1)

𝑙] = 𝐸
[
Im(𝜂2)

𝑙] for all 𝑚, 𝑙 ≥ 0 such that 𝑚 + 𝑙 ≤ 𝑘.
We say that the Wigner Hermitian matrix 𝑀𝑛 obeys Condition (C0) if we

have the exponential decay condition

𝑃
(∣𝑍𝑖𝑗 ∣ ≥ 𝑡𝐶

) ≤ 𝑒−𝑡

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑡 ≥ 𝐶′, and some constants 𝐶,𝐶′ independent of 𝑖, 𝑗, 𝑛. We
say that the Wigner Hermitian matrix 𝑀𝑛 obeys Condition (C1) with constant
𝐶0 if one has

𝔼∣𝑍𝑖𝑗 ∣𝐶0 ≤ 𝐶

for some constant 𝐶 independent of 𝑛. Of course, Condition (C0) implies Condition
(C1) for any 𝐶0, but not conversely. The statement of the Four Moment Theorem
for eigenvalues is:

Theorem 4.1 (Four Moment Theorem due to Tao and Vu). Let 𝑐0 > 0 be a suf-
ficiently small constant. Let 𝑀𝑛 = (𝑍𝑖𝑗) and 𝑀 ′

𝑛 = (𝑍 ′
𝑖𝑗) be two 𝑛 × 𝑛 Wigner

Hermitian matrices satisfying Condition (C1) for some sufficiently large constant
𝐶0. Assume furthermore that for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑍𝑖𝑗 and 𝑍 ′

𝑖𝑗 match to order 4

and for any 1 ≤ 𝑖 ≤ 𝑛, and 𝑍𝑖𝑖 and 𝑍 ′
𝑖𝑖 match to order 2. Set 𝐴𝑛 :=

√
𝑛𝑀𝑛 and

𝐴′
𝑛 :=

√
𝑛𝑀 ′

𝑛, let 1 ≤ 𝑘 ≤ 𝑛𝑐0 be an integer, and let 𝐺 : ℝ𝑘 → ℝ be a smooth func-
tion obeying the derivative bounds ∣∇𝑗𝐺(𝑥)∣ ≤ 𝑛𝑐0 for all 0 ≤ 𝑗 ≤ 5 and 𝑥 ∈ ℝ𝑘.
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Then for any 1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑘 ≤ 𝑛, and for 𝑛 sufficiently large we have

∣𝔼(𝐺(𝜆𝑖1 (𝐴𝑛), . . . , 𝜆𝑖𝑘(𝐴𝑛))
)− 𝔼

(
𝐺(𝜆𝑖1 (𝐴′

𝑛), . . . , 𝜆𝑖𝑘(𝐴′
𝑛))
)∣ ≤ 𝑛−𝑐0 . (4.1)

The preliminary version of this Theorem was first established in the case of
bulk eigenvalues and assuming Condition (C0), [19]. Later the restriction to the
bulk was removed and the Condition (C0) was relaxed to Condition (C1) for a
sufficiently large value of 𝐶0, [18]. Moreover, a natural question is whether the
requirement of four matching moments is necessary. As far as the distribution of
individual eigenvalues 𝜆𝑖(𝐴𝑛) are concerned, the answer is essentially yes. For this
see the discussions in [20].

Applying this Theorem for the special case when 𝑀 ′
𝑛 is GUE, we obtain the

following MDP:

Theorem 4.2. The MDP for
(
1
𝑎𝑛

𝑍𝑛,𝑖
)
𝑛
, Theorem 3.1, hold for Wigner Hermitian

matrices obeying Condition (C1) for a sufficiently large 𝐶0, and whose atom dis-
tributions match that of GUE to second order on the diagonal and fourth order off
the diagonal. Given 𝑖 = 𝑖(𝑛) such that 𝑖 → ∞ and 𝑖/𝑛 → 0 as 𝑛 → ∞ we have:
The sequence

(
1
𝑎𝑛

𝑍𝑛,𝑖
)
𝑛

with

𝑍𝑛,𝑖 :=
𝜆𝑛−𝑖(𝑊𝑛) − (2 − ( 3𝜋2 𝑖

𝑛

)2/3)
const

(
log 𝑖

𝑖2/3𝑛4/3

)1/2 (4.2)

satisfies the MDP for any sequence (𝑎𝑛)𝑛 of real numbers such that 1 ≪ 𝑎𝑛 ≪
(log 𝑖)1/2 with speed 𝑎2𝑛 and rate function 𝐼(𝑥) = 𝑥2

2 .

Proof. Let 𝑀𝑛 be a Wigner Hermitian matrix whose entries satisfy Condition
(C1) and match the corresponding entries of GUE up to order 4. Let 𝑖 be as in
the statement of the Theorem, and let 𝑐0 be as in Theorem 4.1. Then [19, (18)]
says that

𝑃
(
𝜆𝑖(𝐴

′
𝑛) ∈ 𝐼−

)− 𝑛−𝑐0 ≤ 𝑃
(
𝜆𝑖(𝐴𝑛) ∈ 𝐼

) ≤ 𝑃
(
𝜆𝑖(𝐴

′
𝑛) ∈ 𝐼+

)
+ 𝑛−𝑐0 (4.3)

for all intervals 𝐼 = [𝑏, 𝑐], and 𝑛 sufficiently large, where 𝐼+ := [𝑏 − 𝑛−𝑐0/10, 𝑐 +
𝑛−𝑐0/10] and 𝐼− := [𝑏 + 𝑛−𝑐0/10, 𝑐 − 𝑛−𝑐0/10]. We present the argument of proof
of (4.3) just to make the presentation more self-contained. One can find a smooth
bump function 𝐺 : ℝ → ℝ+ which is equal to one on the smaller interval 𝐼
and vanishes outside the larger interval 𝐼+. It follows that 𝑃

(
𝜆𝑖(𝐴𝑛) ∈ 𝐼

) ≤
𝔼𝐺(𝜆𝑖(𝐴𝑛)) and 𝔼𝐺(𝜆𝑖(𝐴

′
𝑛)) ≤ 𝑃

(
𝜆𝑖(𝐴

′
𝑛) ∈ 𝐼+

)
. One can choose 𝐺 to obey the

condition ∣∇𝑗𝐺(𝑥)∣ ≤ 𝑛𝑐0 for 𝑗 = 0, . . . , 5 and hence by Theorem 4.1 one gets

∣𝔼𝐺(𝜆𝑖(𝐴𝑛)) − 𝔼𝐺(𝜆𝑖(𝐴
′
𝑛))∣ ≤ 𝑛−𝑐0 .

Therefore the second inequality in (4.3) follows from the triangle inequality. The
first inequality is proven similarly.

Now for 𝑛 sufficiently large we consider the interval 𝐼𝑛 := [𝑏𝑛, 𝑐𝑛] with

𝑏𝑛 := 𝑏 𝑎𝑛 𝑛 const
( log 𝑖

𝑖2/3𝑛4/3

)1/2
+ 𝑛

(
2 −
(3𝜋

2

𝑖

𝑛

)2/3)
,
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𝑐𝑛 := 𝑐 𝑎𝑛 𝑛 const
( log 𝑖

𝑖2/3𝑛4/3

)1/2
+ 𝑛

(
2 −
(3𝜋

2

𝑖

𝑛

)2/3)
with 𝑏, 𝑐 ∈ ℝ, 𝑏 ≤ 𝑐 and const =

(
(3𝜋)2/321/3

)−1/2
. Then for 1

𝑎𝑛
𝑍𝑛,𝑖 defined as in

the statement of the Theorem we have 𝑃
(
𝑍𝑛,𝑖/𝑎𝑛 ∈ [𝑏, 𝑐]

)
= 𝑃

(
𝜆𝑛−𝑖(𝐴𝑛) ∈ 𝐼𝑛

)
.

With (4.3) and [8, Lemma 1.2.15] we obtain

lim sup
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝑍𝑛,𝑖/𝑎𝑛 ∈ [𝑏, 𝑐]

)
≤ max

(
lim sup
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝜆𝑛−𝑖(𝐴′

𝑛) ∈ (𝐼𝑛)+
)
; lim sup
𝑛→∞

1

𝑎2𝑛
log𝑛−𝑐0

)
.

For the first object we have

𝑃
(
𝜆𝑛−𝑖(𝐴′

𝑛) ∈ (𝐼𝑛)+
)

= 𝑃

(
𝜆𝑛−𝑖(𝐴′

𝑛) − 𝑛
(
2 − ( 3𝜋2 𝑖

𝑛

)2/3)
𝑎𝑛 𝑛 const

(
log 𝑖

𝑖2/3𝑛4/3

)1/2 ∈ [𝑏 − 𝜂(𝑛), 𝑐 + 𝜂(𝑛)]

)
with 𝜂(𝑛) = 𝑛−𝑐0/10

(
𝑎𝑛 𝑛 const

(
log 𝑖

𝑖2/3𝑛4/3

)1/2)−1 → 0 as 𝑛 → ∞. Since 𝑐0 > 0 and

log𝑛/𝑎2𝑛 →∞ for 𝑛 →∞ by assumption, applying Theorem 3.1 we have

lim sup
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝑍𝑛,𝑖/𝑎𝑛 ∈ [𝑏, 𝑐]

) ≤ − inf
𝑥∈[𝑏,𝑐]

𝑥2

2
.

Applying the first inequality in (4.3) in the same manner we also obtain the upper
bound

lim sup
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝑍𝑛,𝑖/𝑎𝑛 ∈ [𝑏, 𝑐]

) ≥ − inf
𝑥∈[𝑏,𝑐]

𝑥2

2
.

Finally the argument in the last part of the proof of Theorem 3.1 can be repeated
to obtain the MDP for (𝑍𝑛,𝑖/𝑎𝑛)𝑛. □

5. Universal global moderate deviations near the edge

Next we show the MDP for the eigenvalue counting function near the edge of
the spectrum for Wigner Hermitian matrices matching moments with GUE up to
order 4:

Theorem 5.1. The MDP for (𝑍𝑛)𝑛, Theorem 2.1, hold for Wigner Hermitian ma-
trices 𝑀𝑛 obeying Condition (C1) for a sufficiently large 𝐶0, and whose atom
distributions match that of GUE to second order on the diagonal and fourth order
off the diagonal. Let 𝑊𝑛 = 1√

𝑛
𝑀𝑛, let 𝐼𝑛 = [𝑦𝑛,∞) where 𝑦𝑛 → 2− for 𝑛 → ∞.

Assume that 𝑦𝑛 ∈ [−2 + 𝛿, 2) and 𝑛(2 − 𝑦𝑛)3/2 → ∞ when 𝑛 → ∞. Then the
sequence

𝑍𝑛 =
𝑁𝐼𝑛(𝑊𝑛) − 2

3𝜋𝑛(2 − 𝑦𝑛)3/2

𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦𝑛)3/2)
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satisfies the MDP with speed 𝑎2𝑛, rate function 𝑥2/2 and in the regime 1 ≪ 𝑎𝑛 ≪√
log(𝑛(2 − 𝑦𝑛)3/2).

Proof. For every 𝜉 ∈ ℝ and 𝑘𝑛 defined by

𝑘𝑛 := 𝜉 𝑎𝑛

√
1

2𝜋2
log(𝑛(2 − 𝑦𝑛)3/2) +

2

3𝜋
𝑛(2 − 𝑦𝑛)3/2

we obtain that 𝑃
(
𝑍𝑛 ≤ 𝜉

)
= 𝑃
(
𝑁𝐼𝑛(𝑊𝑛) ≤ 𝑘𝑛

)
. Hence using (3.2) it follows

𝑃
(
𝑍𝑛 ≤ 𝜉

)
= 𝑃
(
𝜆𝑛−𝑘𝑛(𝑊𝑛) ≤ 𝑦𝑛

)
= 𝑃
(
𝜆𝑛−𝑘𝑛(𝐴𝑛) ≤ 𝑛 𝑦𝑛

)
.

With (4.3) we have

𝑃
(
𝜆𝑛−𝑘𝑛(𝐴𝑛) ≤ 𝑛 𝑦𝑛

) ≤ 𝑃
(
𝜆𝑛−𝑘𝑛(𝐴′

𝑛) ≤ 𝑛 𝑦𝑛 + 𝑛−𝑐0/10
)

+ 𝑛−𝑐0

and

𝑃
(
𝜆𝑛−𝑘𝑛(𝐴′

𝑛) ≤ 𝑛 𝑦𝑛 + 𝑛−𝑐0/10
)

= 𝑃
(
𝜆𝑛−𝑘𝑛(𝑊 ′

𝑛) ≤ 𝑦𝑛 + 𝑛−1−𝑐0/10
)

= 𝑃
(
𝑁𝐽𝑛(𝑊 ′

𝑛) ≤ 𝑘𝑛
)
,

where 𝐽𝑛 = [𝑦𝑛 + 𝑛−1−𝑐0/10,∞). With 𝑦′𝑛 := 𝑦𝑛 + 𝑛−1−𝑐0/10 we consider

𝑍 ′
𝑛 =

𝑁𝐽𝑛(𝑊 ′
𝑛) − 2

3𝜋𝑛(2 − 𝑦′𝑛)3/2

𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦′𝑛)3/2)

.

In order to apply Theorem 2.1 for (𝑍 ′
𝑛)𝑛, we have to check if 𝑦′𝑛 → 2− and

𝑛(2 − 𝑦′𝑛)3/2 → ∞ when 𝑛 → ∞. For a proof see [4, Section 2]. We present the
arguments just to make the presentation more self-contained. By assumption we
take 𝑦𝑛 ∈ [−2 + 𝛿, 2) with 𝑦𝑛 → 2−. Suppose that 𝑦′𝑛 > 2 for some 𝑛, then
𝑦𝑛 − 2 + 𝑛−1−𝑐0/10 > 0, hence 2 − 𝑦𝑛 < 𝑛−1−𝑐0/10, which implies 𝑛(2 − 𝑦𝑛)3/2 <
𝑛𝑛−3/2−3𝑐0/20, but the left-hand side is growing by assumption, a contradiction.
We have proven 𝑦′𝑛 → 2−. Moreover we have

(2 − 𝑦′𝑛)3/2 = (2 − 𝑦𝑛)3/2
(

1 − 𝑛−1−𝑐0/10

2 − 𝑦𝑛

)3/2
= (2 − 𝑦𝑛)3/2

(
1 − 3

2

𝑛−1−𝑐0/10

2 − 𝑦𝑛
+ 𝑜

(
𝑛−1−𝑐0/10

2 − 𝑦𝑛

))
.

Notice that 𝑛−1−𝑐0/10
2−𝑦𝑛 = 𝑛−1/3−𝑐0/10

(𝑛(2−𝑦𝑛)3/2)2/3 → 0 and 𝑛(2 − 𝑦𝑛)3/2 → ∞ when 𝑛 → ∞
by assumption. Hence we can apply Theorem 2.1, which is the MDP for (𝑍 ′

𝑛)𝑛.
Summarizing we have

𝑃
(
𝑍𝑛 ≤ 𝜉

) ≤ 𝑃
(
𝑍 ′
𝑛 ≤ 𝜉𝑛

)
+ 𝑛−𝑐0
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with

𝜉𝑛 =
𝑘𝑛 − 2

3𝜋𝑛(2 − 𝑦′𝑛)3/2

𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦′𝑛)3/2)

=
2
3𝜋𝑛
(
(2 − 𝑦𝑛)3/2 − (2 − 𝑦′𝑛)3/2

)
𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦′𝑛)3/2)

+ 𝜉

(
log(𝑛(2 − 𝑦𝑛)3/2)

log(𝑛(2 − 𝑦′𝑛)3/2)

)1/2
.

We will prove that 𝜉𝑛 = 𝜉 + 𝑜(1). Using the preceding representation we have

𝑛
(
(2 − 𝑦𝑛)3/2 − (2 − 𝑦′𝑛)3/2

)
=

3

2
𝑛−𝑐0/10(2 − 𝑦𝑛)1/2 + 𝑜(𝑛−𝑐0/10) → 0

and 𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦′𝑛)3/2) →∞ when 𝑛 → ∞. Moreover

log(𝑛(2 − 𝑦𝑛)3/2)

log(𝑛(2 − 𝑦′𝑛)3/2)
=

log(𝑛(2 − 𝑦𝑛)3/2)

log(𝑛(2 − 𝑦𝑛)3/2) + 3
2 log

(
1 − 𝑛−1−𝑐0/10

2−𝑦𝑛
) → 1.

Applying Theorem 2.1, it follows that lim𝑛→∞ 1
𝑎2
𝑛

log 𝑃
(
𝑍𝑛 ≤ 𝜉

)
= − 𝜉2

2 for all

𝜉 < 0. Similarly we obtain for any 𝜉 > 0 that lim𝑛→∞ 1
𝑎2
𝑛

log𝑃
(
𝑍𝑛 ≥ 𝜉

)
= − 𝜉2

2

and the MDP for (𝑍𝑛)𝑛 follows along the lines of the proof of Theorem 2.1. □

Remark 5.2. In a next step one could ask whether the statement of Theorem 5.1
is true also for the sequence

𝑁𝐼𝑛(𝑊𝑛) − 𝔼[𝑁𝐼𝑛(𝑊𝑛)]

𝑎𝑛
√
𝕍(𝑁𝐼𝑛(𝑊𝑛))

.

Hence the question is whether the asymptotic behavior of the expectation and
the variance of 𝑁𝐼𝑛(𝑊𝑛) is identical to the one for GUE matrices, given in (2.1)
and (2.2). The answer is yes, but only for Wigner matrices obeying Condition
(C0). The reason for this is that the Four Moment Theorem 4.1 deals with a finite
number of eigenvalues, whereas 𝑁𝐼𝑛(𝑊𝑛) involves all the eigenvalues of the Wigner
matrix 𝑀𝑛. Theorem 4.1 does not give the asymptotics (2.1) and (2.2) for Wigner
matrices. A recent result of Erdös, Yau and Yin [12] describe strong localization
of the eigenvalues of Wigner matrices and this result provides the additional step
necessary to obtain (2.1) and (2.2) for Wigner matrices 𝑀𝑛 obeying Condition
(C0). The result in [12] is that for 𝑀𝑛 being a Wigner Hermitian matrix obeying
Condition (C0), there is a constant 𝐶 > 0 such that for any 𝑖 ∈ {1, . . . , 𝑛}

𝑃
(∣𝜆𝑖(𝑊𝑛) − 𝑡(𝑖/𝑛)∣ ≥ (log 𝑛)𝐶 log log𝑛 min(𝑖, 𝑛− 𝑖 + 1)−1/3𝑛−2/3

) ≤ 𝑛−3.

Along the lines of the proof of [5, Lemma 5] one obtains (2.1) and (2.2). We will
not present the details.
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6. Further random matrix ensembles

In this section, we indicate how the preceding results for Wigner Hermitian ma-
trices can be stated and proved for real Wigner symmetric matrices. Real Wigner
matrices are random symmetric matrices 𝑀𝑛 of size 𝑛 such that, for 𝑖 < 𝑗, (𝑀𝑛)𝑖𝑗
are i.i.d. with mean zero and variance one, (𝑀𝑛)𝑖𝑖 are i.i.d. with mean zero and
variance 2. The case where the entries are Gaussian is the GOE mentioned in the
introduction. As in the Hermitian case, the main issue is to establish our conclu-
sions for the GOE. On the level of CLT, this was developed in [16] by means of
the famous interlacing formulas due to Forrester and Rains, [13], that relates the
eigenvalues of different matrix ensembles.

Theorem 6.1 (Forrester, Rains, 2001). The following relation holds between GUE
and GOE matrix ensembles:

GUE𝑛 = even
(
GOEn ∪ GOEn+1

)
. (6.1)

The statement is: Take two independent (!) matrices from the GOE: one of
size 𝑛×𝑛 and one of size (𝑛+ 1)× (𝑛+ 1). Superimpose the 2𝑛+ 1 eigenvalues on
the real line and then take the 𝑛 even ones. They have the same distribution as
the eigenvalues of a 𝑛 × 𝑛 matrix from the GUE. Let 𝑀ℝ

𝑛 denote a GOE matrix
and let 𝑊ℝ

𝑛 := 1√
𝑛
𝑀ℝ

𝑛 . In [11, Theorem 4.2] we have proved a MDP for

𝑍ℝ
𝑛 :=

𝑁𝐼𝑛(𝑊ℝ
𝑛 ) − 𝔼[𝑁𝐼𝑛(𝑊ℝ

𝑛 )]

𝑎𝑛
√
𝕍(𝑁𝐼𝑛(𝑊ℝ

𝑛 ))
(6.2)

for any 1 ≪ 𝑎𝑛 ≪ √
𝕍(𝑁𝐼𝑛(𝑊ℝ

𝑛 )), 𝐼𝑛 an interval in ℝ, with speed 𝑎2𝑛 and rate
𝑥2/2. If 𝑀ℂ

𝑛 denotes a GUE matrix and 𝑊ℂ
𝑛 the corresponding normalized matrix,

the nice consequences of (6.1) were already suitably developed in [16]: applying
Cauchy’s interlacing theorem one can write

𝑁𝐼𝑛(𝑊ℂ
𝑛 ) =

1

2

[
𝑁𝐼𝑛(𝑊ℝ

𝑛 ) + 𝑁𝐼𝑛(𝑊ℝ
𝑛 ) + 𝜂′𝑛(𝐼𝑛)

]
, (6.3)

where one obtains GOE′𝑛 in 𝑁𝐼𝑛(𝑊ℝ
𝑛 ) from GOE𝑛+1 by considering the princi-

ple sub-matrix of GOE𝑛+1 and 𝜂′𝑛(𝐼𝑛) takes values in {−2,−1, 0, 1, 2}. Note that

𝑁𝐼𝑛(𝑊ℝ
𝑛 ) and 𝑁𝐼𝑛(𝑊ℝ

𝑛 ) are independent because GOE𝑛+1 and GOE𝑛 denote in-
dependent matrices from the GOE. Now the same arguments as in [11, Section 4]
and Theorem 2.1 lead to the MDP for (𝑍ℝ

𝑛 )𝑛, if we consider intervals 𝐼𝑛 = [𝑦𝑛,∞)
where 𝑦𝑛 → 2− for 𝑛 → ∞. Remark that the interlacing formula (6.3) leads to
2𝕍(𝑁𝐼𝑛(𝑊ℂ

𝑛 )) + 𝑂(1) = 𝕍(𝑁𝐼𝑛(𝑊ℝ
𝑛 )) if 𝕍(𝑁𝐼𝑛(𝑊ℂ

𝑛 )) → ∞. Next the proof of
Theorem 3.1 can be adapted to obtain an MDP for 𝜆𝑛−𝑖(𝑊ℝ

𝑛 ): Consider

𝑍ℝ
𝑛,𝑖 :=

𝜆𝑛−𝑖(𝑊ℝ
𝑛 ) − (2 − ( 3𝜋2 𝑖

𝑛

)2/3)
const

(
2 log 𝑖

𝑖2/3𝑛4/3

)1/2 .

With

𝔼[𝑁𝐼𝑛(𝑊ℝ
𝑛 )] = 𝔼[𝑁𝐼𝑛(𝑊ℂ

𝑛 )] + 𝑂(1) and 2𝕍(𝑁𝐼𝑛(𝑊ℂ
𝑛 )) + 𝑂(1) = 𝕍(𝑁𝐼𝑛(𝑊ℝ

𝑛 ))
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if 𝕍(𝑁𝐼𝑛(𝑊ℂ
𝑛 )) → ∞ we get a MDP along the lines of the proof of Theorem 3.1.

We omit the details. The Four Moment Theorem also applies for real symmet-
ric matrices. The proof of the next Theorem is nearly identical to the proofs of
Theorem 4.2 and Theorem 5.1.

Theorem 6.2. Consider a real symmetric Wigner matrix 𝑊𝑛 = 1√
𝑛
𝑀𝑛 whose en-

tries satisfy Condition (C1) and match the corresponding entries of GOE up to
order 4. Consider 𝑖 = 𝑖(𝑛) such that 𝑖 → ∞ and 𝑖/𝑛 → 0 as 𝑛 → ∞. Denote the
𝑖th eigenvalue of 𝑊𝑛 by 𝜆𝑖(𝑊𝑛). Let (𝑎𝑛)𝑛 be a sequence of real numbers such that
1 ≪ 𝑎𝑛 ≪ √

log 𝑖. Then the sequence (𝑍𝑛,𝑖)𝑛 with

𝑍𝑛,𝑖 =
𝜆𝑛−𝑖(𝑊𝑛) − (2 − ( 3𝜋2 𝑖

𝑛

)2/3)
const

(
2 log 𝑖

𝑖2/3𝑛4/3

)1/2
universally satisfies a MDP with speed 𝑎2𝑛 and rate function 𝐼(𝑥) = 𝑥2

2 . Moreover
the statement of Theorem 5.1 can be adapted and proved analogously.

Remark that one could consider the Gaussian Symplectic Ensemble (GSE).
Quaternion self-dual Wigner Hermitian matrices have not been studied. Due
to Forrester and Rains, the following relation holds between matrix ensembles:
GSE𝑛 = even

(
GOE2𝑛+1

)
1√
2
. The multiplication by 1√

2
denotes scaling the (2𝑛 +

1) × (2𝑛 + 1) GOE matrix by the factor 1√
2
. Let 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥𝑛 denote the

ordered eigenvalues of an 𝑛×𝑛 matrix from the GSE and let 𝑦1 < 𝑦2 < ⋅ ⋅ ⋅ < 𝑦2𝑛+1
denote the ordered eigenvalues of an (2𝑛 + 1) × (2𝑛 + 1) matrix from the GOE.

Then it follows that 𝑥𝑖 = 𝑦2𝑖/
√

2 in distribution. Hence the MDP for the 𝑖th eigen-
value of the GSE follows from the MDP in the GOE case. We omit formulating
the result.
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