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On the Rate of Convergence
to the Semi-circular Law

Friedrich Gotze and Alexandre Tikhomirov

Abstract. Let X = (Xjx)} x—1 denote a Hermitian random matrix with entries
Xjr, which are independent for 1 < j < k < n. We consider the rate of
convergence of the empirical spectral distribution function of the matrix X
to the semi-circular law assuming that EX;, = 0, Eka = 1 and that the
distributions of the matrix elements X, have a uniform sub exponential decay
in the sense that there exists a constant s > 0 such that forany 1 < j <k <n
and any ¢t > 1 we have

Pr{|X;x| >t} < > "exp{—t"}.

By means of a short recursion argument it is shown that the Kolmogorov
distance between the empirical spectral distribution of the Wigner matrix
W = \/lnX and the semicircular law is of order O(n~'log”n) with some
positive constant b > 0.
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1. Introduction

Consider a family X = {X;r}, 1 < j < k < n, of independent real random
variables defined on some probability space (2, M, Pr), for any n > 1. Assume that
Xjr = Xpj, for 1 <k < j <n, and introduce the symmetric matrices

X1 X2 -+ X

1 Xo1 X -0 Xoy
W = . . .
vn : e

an Xn2 tee Xnn
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The matrix W has a random spectrum {Ay, ..., \,} and an associated spec-
tral distribution function F,(z) = } card{j < n:\; <z}, z € R. Averaging
over the random values X;;(w), define the expected (non-random) empirical distri-
bution functions F,(z) = E F,(x). Let G(x) denote the semi-circular distribution
function with density g(z) = G'(z) = ;. V4 — 22I[_5 9)(2), where I}, ;)(x) denotes
an indicator-function of interval [a, b]. We shall study the rate of convergence of
Fn(z) to the semi-circular law under the condition

Pr{|X x| >t} < » T exp{—t*}, (1.1)

for some s > 0 and for any ¢t > 1. The rate of convergence to the semi-circular law
has been studied by several authors. We proved in [7] that the Kolmogorov distance
between Fy,(x) and the distribution function G(z), A} := sup, |Fn(x) — G(z)| is
of order Op(n~2) (i.c., n2A¥ is bounded in probability). Bai [1] and Girko [4]
showed that A, := sup, |F,,(z)—G(z)| = O(n~2). Bobkov, Gétze and Tikhomirov
3] proved that A,, and EA* have order O(n~3) assuming a Poincaré inequality
for the distribution of the matrix elements. For the Gaussian Unitary Ensemble
respectively for the Gaussian Orthogonal Ensemble, see [6] respectively [12], it has
been shown that A,, = O(n~1!). Denote by V1 < -+ < Ynn, the quantiles of G, i.e.,
G(vn;) = fl We introduce the notation llog,, := loglogn. Erdés, Yau and Yin [10]
showed, for matrices with elements X, which have a uniformly sub exponential
decay, i.e., condition (1.1) holds, the following result

1

Pr{ 35 1A — 5] > (logn)Cleen {min{(j,N —ji+ 1)} _3n—§}
< Cexp{—(logn)* llog,, 1,

for n large enough. It is straightforward to check that this bound implies that

Pr{sup | Fp(z) — G(x)] < Cn~'(log n)CHOg"} > 1 — Cexp{—(logn)<o&r}. (1.2)

From the last inequality it is follows that EAY < Cn~!(logn)® "°&». In this paper
we derive some improvement of the result (1.2) (reducing the power of logarithm)
using arguments similar to those used in [10] and provide a self-contained proof
based on recursion methods developed in the papers of Gotze and Tikhomirov
[7], [5] and [13]. It follows from the results of Gustavsson [8] that the best pos-
sible bound in the Gaussian case for the rate of convergence in probability is
O(n=ty/logn). For any positive constants o > 0 and s > 0, define the quantities

lno :=logn(loglogn)® and g, := (ln,a)}«Jré. (1.3)
The main result of this paper is the following

Theorem 1.1. Let EX;;, =0, EXJz,C = 1. Assume that there exists a constant s > 0
such that inequality (1.1) holds, for any 1 < j <k <n and any t > 1. Then, for
any positive o > 0 there exist positive constants C' and ¢ depending on » and «
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only such that
Pr { sup | F(z) — G(z)| > n~ 148 lnn} < Cexp{—cln,a}-

We apply the result of Theorem 1.1 to study the eigenvectors of the matrix
W. Let u; = (uj1,. .. ,ujn)T be eigenvectors of the matrix W corresponding to
the eigenvalues A;, j =1,...,n. We prove the following result.

Theorem 1.2. Under the conditions of Theorem 1.1, for any positive o > 0, there
exist positive constants C' and ¢, depending on » and o only such that

2
2 Bn
. < — .
Pr{lgrnj,%én luje]” > " } < Cexp{—cln,a}, (1.4)
and
; k| _ B2
12 n < — . .
Pr{lrgnkagxn }:1 [wj ol > \/n} < Cexp{—cln,a} (1.5)

2. Bounds for the Kolmogorov distance between distribution
functions via Stieltjes transforms

To bound the error A} we shall use an approach developed in previous work of
the authors, see [7].

We modify the bound of the Kolmogorov distance between an arbitrary distribu-
tion function and the semi-circular distribution function via their Stieltjes trans-
forms obtained in [7] Lemma 2.1. For z € [—-2,2] define v(z) := 2 — |z|. Given
5 > € > 0 introduce the interval J. := {z € [-2,2] : y(z) > £} and J. := J.o.
For a distribution function F' denote by Sr(z) its Stieltjes transform,

Sp(z):/oo L ir@).

o T —Z

Proposition 2.1. Let v > 0 and a > 0 and % > ¢ > 0 be positive numbers such that

1 1 3
du=  =: 2.1
T ~/|US(L u2 +1 U 4 ﬁ’ ( )
and s
2va <e2. (2.2)

If G denotes the distribution function of the standard semi-circular law, and F is
any distribution function, there exist some absolute constants Cy and Cy such that

A(F,G) := sup |F(z) — G(x)]

r v v 3
<2su Im/ Sp(u+1 —Se(u+1 du| + Civ + Caez.
sup [im [ (Spui )= Saluti ) dul +Cro+C

Remark 2.2. For any z € J. we have v = y(x) > ¢ and according to condition

(22), @ <5,
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Proof. The proof of Proposition 2.1 is a straightforward adaptation of the proof
of Lemma 2.1 from [7]. We include it here for the sake of completeness. First we
note that

sup |[F(z) — G(x)| = sup [F(z) — G(z)| (2:3)
T r€[—2,2]

= max{ sup [F(z) = G()l, swp  |F(z) = G(x), swp |F(x)-Gla)l}.
€T z€[—2,—2+4¢] z€[2—¢,2]

Furthermore, for x € [—2, —2 + €] we have
—G(—24e)<F(x)—Gx) <F(-2+4+¢)—G(-24+¢)+ G(—-2+¢)

< sup |F(z) — G(z)| + G(—2 +¢). (2.4)
FASVAS
This inequality yields
sup  |F(x) — G(z)| < sup |F(z) — G(z)| + G(—2 + ¢). (2.5)
z€[—2,—24¢] x€Je
Similarly we get
sup |F(z) — G(z)| < sup |F(z) — G(z)|+1—-G(2—¢). (2.6)
z€[2—¢,2] z€Je

Note that G(—2+¢) =1 — G(2 —¢) and G(—2 4 ¢) < Ce? with some absolute
constant C' > 0. Combining all these relations we get

sup |[F(z) — G(z)| < A(F,G) + Ce?, (2.7)

where A, (F, G) = sup,¢j_|F(x) — G(z)|. We denote v" = \/”,Y. For any x € J.
1 ¢ -y .y
’ Im(/ (Sr(u+ ') — Sa(u + v ))du)’
™ — 0o

> 1Im</$ (Sr(u+iv') — Sa(u+ iv'))du)
I ).
° 21} w)(F G(y))d
S (y«y -)(wfi o]

o[

1 o F ! _ !
= / (@—v y)2 Glz = v'y) dy, by change of variables. (2.8)
T J oo y?+1

Furthermore, using (2.1) and the definition of A(F,G) we note that

1 |F(x —v'y) — Gz —v'y)|
/y>a y2+1 dy < (1 = B)A(F, G). (2.9)
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Since F' is non-decreasing, we have
1 Flr —v'vy) — _ 1 Flx —v'a) — o
/ (z vy)2 G(x vy)dyZ / (z va)2 G(x vy)dy
™ Jlyl<a y=+1 ™ Jlyl<a y=+1
1
> (F(x —v'a) — G(z —v'a))B — / |G(z —v'y) — G(z — v'a)|dy. (2.10)
ly|<a

™

These inequalities together imply (using a change of variables in the last step)
1 /°° F(z —v'y) — G(z —v'y)
T J y? +1
> B(F(x —v'a) — Gz —v'a))
1
1| It - Gl - valay - (- HAEG)
ly|<a

s

dy

> B(F(x —v'a) — Gz —v'a))
1
n |16 -G valdy - (1= HAFG). @21
V' Jjyi<va
Note that according to Remark 2.2, z +v'a € J. for any © € J.. Assume first
that x, € J. is a sequence such that F(z,) — G(z,) = A(F,G). Then z], =
Zn +v'a € JL. Using (2.8) and (2.11), we get

sup
z€JL

Im /T (Sr(u+iv') — Sg(u +iv'))du

> Im /ﬂfn (Sp(u+iv') — Sg(u+iv))du
> B(F(x, — v'a) = G(a;, —v'a))

~sevr [ ) 6@y - (- 9AFG)

TV ze].
= B(F(wn) — G(za)
Sy Gy - Gl (- ARG, (212

TV gl

Assume for definiteness that y > 0. Recall that ¢ < 24, for any = € J/. By
Remark 2.2 with £/2 instead ¢, we have 0 < y < 2v'a < /2¢, for any = € J/. For
the semi-circular law we obtain,

Gz +y) - Gx)| <y sup G'(u) <yCyy+y

u€lz,w+y]
< Cyy/y+20a < Cyr/y+e < Cyy/v. (2.13)
This yields after integrating in y
1 c
sup \/’y/ |G(z +y) — G(z)|dy < ~ sup 'y'U'Q < Cw. (2.14)
TV ze]. 0<y<2v’a U zel,



144 F. Gotze and A. Tikhomirov

Similarly we get that

! sup \/’y/ |G(z +y) — G(z)|dy < ¢ sup 'yv'2 < Cw. (2.15)
TV zel. 0>y>—2v'a U zel,
By inequality (2.7)
A(F,G) > A(F,G) — Ce?>. (2.16)
The inequalities (2.12), (2.16) and (2.14), (2.15) together yield as n tends to infinity

sup
rel.

Im /T (Sp(u+iv') — Sg(u+iv'))du

— 0o

> (28— )A(F,G) — Cv — Ce?, (2.17)

for some constant C' > 0. Similar arguments may be used to prove this inequality
in case there is a sequence z,, € J. such F(x,) — G(z,) = —A:(F,G). In view of
(2.17) and 28 — 1 = 1/2 this completes the proof. O

Lemma 2.1. Under the conditions of Proposition 2.1, for any V> v and 0 < v <
=" and o' = v/, =2 —|z|, x € IL as above, the following inequality holds

2a
sup / (Im (Sp(u + ') — Sg(u+iv"))du
zell |J—o00

v
/ (Sr(z +iu) — Sg(z +iu)) du

v’

< / |Sp(u+iV) — Sg(u+iV)|du + sup

— oo z€JL

Proof. Let « € J. be fixed. Let v = y(x). Put z = u+1v’. Since v’ = \“/’7 < 5, see

(2.2), we may assume without loss of generality that v’ < 4 for z € J.. Since the
functions of Sp(z) and Sg(z) are analytic in the upper half-plane, it is enough to
use Cauchy’s theorem. We can write for z € J!

/ Im (S (2) — S (2))du = Im { lim / (Sp(u+iv) — Se(u + iv'))du}.
—0o0 -0 J_L
By Cauchy’s integral formula, we have

/w (Sp(2) — S (2))du = / (Sp(u+iV) — Sq(u—+iV))du

—L —L

%
+ // (Sp(—L +iu) — Sg(—L + iu))du

v
- / (Sr(z +iu) — Sg(x + iu))du.

/

Denote by &( resp. ) a random variable with distribution function F(z) (resp.
G(z)). Then we have

1
E+ L —iu

_ 2
<o 'Pr{l¢| > L/2} + I

|Sp(—L +iu)| = ’E
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for any 0 < v’ < u < V. Similarly,
_ 2
1Sa(—L + iu)| < o'~ Pr{|n| > L/2} + I

These inequalities imply that

v
/(SF(—L—i—iu)—Sg(—L—i—iu))du =0 as L — oo,

’

which completes the proof. O
Combining the results of Proposition 2.1 and Lemma 2.1, we get

Corollary 2.2. Under the conditions of Proposition 2.1 the following inequality
holds

A(F,G) < 2/ 1Sp(u~+iV) = Sa(u+iV)|du+ Crv + Coe?

— 00

v
+ 2 sup / |Sr(z + iu) — Sg(x + iu)|du,

xzeJ. Jov’

v

Vel

We shall apply the last inequality. We denote the Stieltjes transform of F,,(x)

by my,(z) and the Stieltjes transform of the semi-circular law by s(z). Let R = R(%)

be the resolvent matrix of W given by R = (W — zI,,)7!, for all z = u + iv with

v # 0. Here and in what follows I,, denotes the identity matrix of dimension n.

Sometimes we shall omit the sub index in the notation of an identity matrix. It is

well known that the Stieltjes transform of the semi-circular distribution satisfies
the equation

where v = with v = 2 — |x| and C1,Cs > 0 denote absolute constants.

s2(2) +2s(2) +1=0 (2.18)
(see, for example, equality (4.20) in [7]). Furthermore, the Stieltjes transform of
an empirical spectral distribution function F,(x), say m,(z), is given by

1 — 1
mn(z) = n ZRjj = 2nTI‘R.
j=1

(see, for instance, equality (4.3) in [7]). Introduce the matrices W), which are
obtained from W by deleting the jth row and the jth column, and the corre-
sponding resolvent matrix R defined by RY) = (W(j) — 2I,,_1)7 ! and let
mgf)(z) = 1 TrRY. Consider the index sets T; := {1,...,n}\ {j}. We shall
use the representation

1

—Z+ \/171,ij - }sz,leTijkXﬂRl(fz)
(see, for example, equality (4.6) in [7]). We may rewrite it as follows

1 1
Rj; =—
77 z 4+ mp(2) + z + mp(2)

Rjj =

€jRjj, (219)
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where €; := €51 + €52 + €53 + €54 with

1 1 :
= g K f2im > (X~ DR
keT;
1 : 1 :
ez = > XpXuRY, eu=_(TrRY —TrR). (2.20)
=} "

This relation immediately implies the following two equations

3
1 £j
R.: = — _ Jv
5= ma(e) T 2 (4 ()
> 1 1
iR AR
2 om0
and
1 1 1o
n(z) = — - R 2.21
mn(2) 2+ mp(2) (z—l—mn(z))n;Ej 7 (221)
3 n
1 1 1
Tz ma(z) (z—f—mn(z))?n;;gju—’—
giveiR;; gialR;;. .
(z—f—mn(z))Qny:lj:1 I z+mn(z)nj:1 I
3. Large deviations I
In the following lemmas we shall bound €5, forv =1,...,4and j = 1,...,n. Using

the exponential tails of the distribution of X, we shall replace quantities like, e.g.,
1

E|X;i|PI(| X k| > l#a) and others by a uniform error bound C' exp{—cl, o} with

constants C, ¢ > 0 depending on » and « varying from one instance to the next.

Lemma 3.1. Assuming the conditions of Theorem 1.1 there exist positive constants
C and c, depending on s and « such that

1
Pr{le;1]| > 2lﬁjan*5} < Cexp{—clna},
foranyj=1,...,n.
Proof. The result follows immediately from the hypothesis (1.1). O

Lemma 3.2. Assuming the conditions of Theorem 1.1 we have, for any z = u + v
withv >0 and any j =1,...,n,
1

gl < .
leja] < o
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Proof. The conclusion of Lemma 3.2 follows immediately from the obvious in-
equality |[TrR — Tr RU)| < v~! (see Lemma 4.1 in [7]). O

Lemma 3.3. Assuming the conditions of Theorem 1.1, for all z = u+iv with u € R
and v > 0, the following inequality holds

2 1 .
Pr{lejal > 3Lad i n =t Y0 IR < Cexp{—clnal,
lETj
for some positive constants ¢ > 0 and C, depending on » and o only.
Proof. We use the following well-known inequality for sums of independent random

variables. Let &1,...,&, be independent random variables such that E§; = 0 and
|€;] < oj. Then, for some numerical constant ¢ > 0,

Pr{ égj > x} < (1 - ®(zx/0)) < Cxa exp{—;jz } (3.1)

where ®(z) = \/1% [ exp{—y22 tdy and 0% = 0? + -+ + o2. The last inequality
holds for = > o. (See, for instance [2], p.1, first inequality.) We put n; = ijl -1,
and define,

1 1 .
& = (mI{|1 Xz < lia} — Enl{|X;| < lia})RY.

2 . .
Note that E&§ = 0 and |§| < 2[5‘,&|Rl(l])|. Introduce the o-algebra M) gen-
erated by the random variables Xj; with k,l € T;. Let E; and Pr; denote the

conditional expectation and the conditional probability with respect to M) Note
that the random variables X;; and the o-algebra M) are independent. Applying

1
inequality (3.1) with x := 32 oo and with

2 (1 ()2
=4nlz o g R ,
o Nn, <n | 1 |>
lETj

lETj
> x} = EPrj{ > x}
2

< Eexp{—xQ} < Cexp{—cln,a} (3.2)
o

we get

> g

o

Furthermore, note that

1 1
Emﬂ[{|Xﬂ| < l;;,a} = —Emﬂ[{|Xﬂ| > lﬁ‘a}

> g

1Ty

This implies
1 1 1 1
Egn{ Xl < ba bl < B ImPPri {1 Xa] > Lo }

1 1
< Eé |771|28Xp{—2ln,a} < Cexp{_2ln,a}-



148 F. Gotze and A. Tikhomirov

The last inequality implies that

! . <) )
n Z Emﬂ[ |le| < ln,o/) Rll

€T,
1
< (1 > By {| X <z;}a)}|2>2<1 ST IRP P )
—\n J I = e n
leTj leTj
1
<C el 1 RY 2 : 3.3
< Cexp{—cln,a} n2|ll| ‘ (3.3)
lETj

1
Furthermore, we note that if |X;;| <l for all | € T;, (which holds with proba-
bility at least 1 — s~ exp{—cln o})

1 1 1 .
leja| < ‘n > al+ ‘n > Emﬂ[{|Xﬂ| < lﬁ‘,a}Rz(zj) : (3.4)
1Ty 1Ty
The inequalities (3.2), (3.3) and (3.4) together conclude the proof of Lemma
3.3. Thus Lemma 3.3 is proved. O

Corollary 3.4. Assuming the conditions of Theorem 1.1 for any o > 0 there exist
positive constants ¢ and C, depending on s and « such that for any z = v+ w
with u € R and v > 0

Pr{|€j2| > 317242 (nv) 3 (Im m;D(z))é} < Cexpl{—clpa}-
Proof. Note that

. . 1 .
n YD IRPE <0 RV = ) (2),

lETj
where [R0)|2 = RORE". The result follows now from Lemma 3.3. O
Lemma 3.5. Assuming the conditions of Theorem 1.1, for any j =1,...,n and for

any z = u + v with u € R and v > 0, the following inequality holds,

/1 , 2
Pr{|5j3| > [B2n" 2 (n Z |Rl(jl)|2) } < Cexp{—cln,a}-

k#LET;

Proof. We shall use a large deviation bound for quadratic forms which follows
from results by Ledoux (see [11]).

Proposition 3.1. Let &1, ..., &, be independent random variables such that |§;] < 1.
Let a;; denote real numbers such that a;j=a;; and aj;=0. Let Zzzzkzlflfkalk.
Let 02 = szzl laik|?. Then for every t > 0 there exists some positive constant
¢ > 0 such that the following inequality holds

Pr{|Z| > ‘;)E%|Z|2+t} < exp{ - Ct}.
g
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Proof. Proposition 3.1 follows from Theorem 3.1 in [11]. O

Remark 3.2. Proposition 3.1 holds for complex a;; as well. Here we should consider
two quadratic forms with coefficients Rea;, and Imaj.

In order to bound ¢;3 we use Proposition 3.1 with
1 1 1
& = (Xl X3l < Ua} = EXGI{|Xp] < 170} )/ (2Lio).

Note that the random variables Xj;, [ € T; and the matrix R are mutually
independent for any fixed j = 1,...,n. Moreover, we have |§] < 1. Put Z :=

Sisier, @6 R Note that RO = RO, We have Ej[Z2 = 237, ,p |RY[2.
Applying Proposition 3.1 with ¢ = lma(Zl;ékeTj |Rl(,? 2)2, we get

P {12] 2 ol Y [RP)H) < Coxp{—clnal. (3.5)
I#£kET;

Furthermore, for some appropriate ¢ > 0 and for n > 2
1
Pr{3j,le[1,....n]: | Xj| > 7o} < P exp{—ln,a} < Cexp{—cly o}
and similarly since EXj; = 0,

1 1
[EX;I{|X;| <lia}l < Pré{Elj,l €l,...,n]: | Xj| >lia} < Cexp{—clpa}

(3.6)
Introduce the random variables
& = Xal{|X ;| < lra)/ (27 4 7= SERY
& = Xul{| Xl < lia}/(lia) and Z= 3 G&RY.
1,keT;
Note that
. 2 -~
Pre N X XRy # 41;;,(12} < Cexp{—cln.a}- (3.7)

1,kET,

Furthermore, by (3.6) we have
1

1 . 2
< Cexp{—cln.a} (n Z |R](€Jl)|2) : (3.8)

1 NN
' Y RYEGEE,
n k#IET;

1,k€T;

Finally, inequalities (3.5)—(3.8) together imply

1

1 . 2
Pr{|€j3| > 4ﬁin’5bigg(n Z |R,(fl)|2> } < Cexp{—cly.a}.
kALET;

Thus Lemma 3.5 is proved. t
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Corollary 3.6. Under the conditions of Theorem 1.1 there exist positive constants
¢ and C depending on » and a such that for any z = u + iv with u € R and with
v >0

Pr{lejs| > 452 (nv)~ 2 (Imm)(2))2} < Cexp{—clna}.

Proof. Note that as above

. ] 1 ]
nt YRR <0 I ROE = L) (), (3.9)
k#IET;
The result now follows from Lemma 3.5. O

To summarize these results we recall 8, = (In.q) ;1('*‘%, defined previously in

(1.3). Without loss of generality we may assume that 8, > 1 and l,, o > 1. Then
2 1

Lemmas 3.1, 3.2, Lemma 3.3 (with lﬁj;rz replaced by 32), and Lemma 3.5 together

imply
Imémglj)(z) 1
P ; 1
r{|EJ| o ( + N, + Vuy/nv

Jn )} < Cexp{—cln,a}-

Using that
0 < Imm(2) < Tmmy,(2) + ! , (3.10)
nv
we may rewrite the last inequality
B2 Im 2m,, (2) 1
P ; 1 < —clp o). A1
r{|sj| > \/n( + v + \/v\/m))} < Cexp{—cln,a} (3.11)
Denote by
032 Im 2m,, (2) 1
U (2,0) = {we: |5 < o (1+ i \/m)}’ (3.12)
for any 8 > 1. Let
4
Vo = dﬁn (313)
n

with a sufficiently large positive constant d > 0. We introduce the region D =
{z=u+iv e C:|ul <2, v < v < 2}. Furthermore, we introduce the sequence
z; = u; + vy in D, recursively defined via w11 —u; = fg and vj41 — v = 77,28' Using
a union bound, we have

Pr{N;,epQn(21,0)} > 1 —C(0) exp{—c(0)ln.a} (3.14)

with some constant C() and ¢(f) depending on «, 3¢ and 6. Using the resolvent
equality R(z) — R(2') = —(z — 2)R(2)R/(z2), we get

R(J) _ R(j) NN < |Z - ZI|
| k+n,l+n,(z) k+n,l+n(’z )< o
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This inequality and the definition of ¢; together imply

2
lialz — 2
Pr {|€j(z) —;(d)| < " a|22 d for all z,2" € D} >1—Cexp{—clpa}
Yo
(3.15)

For any z € D there exists a point z; such that |z — z;| < Cn~8. This together
with inequalities (3.14) and (3.15) immediately implies that

Pr{mZE'DQn(Zv 2)} > Pr{mzzE'DQn(zlv 1)} -C exp{_Cln,a}

>1—Cexp{—clna}, (3.16)
with some constants C and ¢ depending on « and s only. Let
Q= Neepin(z,2). (3.17)

Put now

_ V20
VT

where 7 := 2 — |u|, 2 = u + iv and vy is given by (3.13). Note that 0 < < 2, for

u € [—2,2] and v}, > vg. Denote D’ :={z € D: v > v]}.

vg = vg(2) (3.18)

4. Bounds for |m,(2)]

In this section we bound the probability that Imm,(z) < C for some numerical
constant C' and for any z € D. We shall derive auxiliary bounds for the difference
between the Stieltjes transforms m,,(z) of the empirical spectral measure of the
matrix X and the Stieltjes transform s(z) of the semi-circular law. Introduce the
additional notations

1 n
Op 1= eiR;;.
n n; 34

Recall that s(z) satisfies the equation

s(z) =~ +18(Z). (4.1)
For the semi-circular law the following inequalities hold
|s(z)] <1and |z+s(z)] > 1. (4.2)
Introduce g, (z) := my(z) — s(z). Equality (4.1) implies that
B 1 _ z—i—mn(z)—i—s(z)' (4.3)
(2 + 5(2))(z + mn(2)) z+mn(2)
The representation (2.21) implies
gn(2) = gn (%) LN (4.4)

(24 5(2))(z +mn(2)) 2+ ma(2)
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From here it follows by solving for g,,(z) that

0n(2)

z+mp(2) +s(z) (45)

gn(2) =
Lemma 4.1. Let .
l9n(2) < - (4.6)

Then |z +my(2)| > 3 and Imm,,(2) < [m,(2)] < 3.

Proof. This is an immediate consequence of inequalities (4.2) and of
1 3
[z tma(2)] 2 [z +5(2) = lgn(2)| 2 . and  [ma(2)] < [s(2)[+gn(2)] < - O

Lemma 4.2. Assume condition (4.6) for z = u + iv with v > vo. Then for any
w € Qy,, defined in (3.17), we obtain |R;;| < 4.
Proof. By definition of Q,, in (3.17), we have
52 ( Im 2 my, (2) 1
1< (1 ). 4.7

|6J| — \/n + \/’U + \/’U\/TLU ( )
Applying Lemmas 4.1 and (3.13), we get |e;| < é’i’i with some A > 0 depending
on the parameter d > 1 in (3.13) which we may choose such that

1
| < 4.
for any w € Q,, n > 2, and v > vy. Using representation (2.19) and applying
Lemma 4.1, we get |R;;| < 4. O
Lemma 4.3. Assume condition (4.6). Then, for any w € Q,, and v > vy,
1
(< . 4.9
902)1 < 10, (1.9
Proof. Lemma 4.2, inequality (4.8), and representation (4.5) together imply
4 & 432 Im 2 my, (2) 1
5| < | < *Pn (1 ) 4.10
| | ~n Z |€J| — \/n + \/U + \/U\/TZ’U ( )

j=1
Note that

|z +mp(2) + s(2)| > Imz+Imm,(z) + Ims(z) > Im (2 + s(z)) > ;Im{\/z2 —4}.

(4.11)
For z € D we get Re (22 —4) <0 and ] < arg(z? —4) < *7. Therefore,
1 1
Im{v22 -4} > | |22 —4]> > v+, (4.12)
V2 4
where v = 2 — |u|. These relations imply that
5, 2 2 2

2 ma(2) +5(2) = Vo T ynyoyn T )iy
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For v,/ > vo, we get

852 1
n < "< 4.14
< < 0o (114)
by choosing the constant d > 1 in vy appropriately large. Thus the lemma is
proved. O

Lemma 4.4. Assume that condition (4.6) holds, for some z =u+iv € D' and for
any w € Qp, (see (3.17) and the subsequent notions). Then (4.6) holds as well for
Z=u+iweD withv>79>v—n"%, for any w € Q,,.

Proof. First of all note that

My (z) — my, (2')] = i(v —0)|TrR(2)R(2)] < vo? < ¢ < L

~ w0 — nt T 100
and [s(z) — s(2')| < |Z;;/| < Lo0- By Lemma 4.3, we have [g,(2)| < ;5,- All these
inequalities together imply |g,(2")| < 130 < % Thus, Lemma 4.4 is proved. O

Proposition 4.1. Assuming the conditions of Theorem 1.1 there exist constants
C > 0 and ¢ > 0 depending on s and o only such that

Pr{|mn(z)| < ; for any z € ’D'} < Cexp{—clya}- (4.15)

Proof. First we note that |g,,(2)| < § a.s., for z = u+4i. By Lemma 4.4, |g,(z')| <
é for any w € Q,,. Applying Lemma 4.1 and a union bound, we get

Pr{|mn(z)| < 3 for any z € D'} < Cexp{—cln,a}. (4.16)

Thus the proposition is proved. [l

5. Large deviations II

In this section we improve the bounds for §,,. We shall use bounds for large devi-
ation probabilities of the sum of €;. We start with

1 n
Op1 = n Z€j1- (5.1)
Jj=1
Lemma 5.1. There exist constants ¢ and C' depending on » and « and such that

Pr {|5n1| > n_lﬁn} < Cexp{—cly,a}-
Proof. We repeat the proof of Lemma 3.1. Consider the truncated random vari-
~ 1
ables X;; = X;;I{|X;;| < lii«}. By assumption (1.1),
Pr{|X5] > lia} < % exp{—lnal

Moreover,
[EX;;| < Cexp{—clpa}
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We define )ijj = )/fjj — E)/fjj and consider the sum

~ 1 <~
On1 i= ny/n ;ij.
Since |)Z'jj| < 217’}70[, by inequality (3.1), we have

Pr{|gn1| > nill;};—é} < Cexp{—cln,a}
Note that

~ 1 <& ~

On1 — On1| < EX | <C —clp.at-

o =l <, 37 IBR) < C expi=cloc}
This inequality and inequality (5.2) together imply

1 1 + 1
Pr{|5n1| >n"lEa 2} < Cexp{—cly,a}-
Thus, Lemma 5.1 is proved.
Consider now the quantity

Gpg 1= 222 2~ 1)RY.

J=11€T;
We prove the following lemma

Lemma 5.2. Let vy = dp,

(5.2)

W with some numerical constant d > 1. Under the condi-

tions of Theorem 1.1 there exist constants ¢ and C, depending on s and o only,

such that

{|5n2| > 2n*15n o <3 + 1 )2} < Cexp{—cln,a},

for any z € D'.

Proof. Introduce the truncated random variables £;; = X — EX?

Xal{| X < l,’i‘,a}. It is straightforward to check that
0<1— E)?fl < Cexp{—cly,a}-

We shall need the following quantities as well

On2 QZZ 2-DRY and Gnp = QZZ@R”.

j=11€T; j=11€T,

By assumption (1.1),

Pr{dn2 # gng} < Z Z Pr {|Xﬂ| > lﬁl‘a} < Cexp{—cln,a}

j=11€T,

where X;; =

(5.4)
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By inequality (5.4),

~ ~ 1 & S
L STSTIEXE - 1IRY| < Cuptexpl{—clua)

j=11€T,
< Cexp{—clna},

for v > vy and C, ¢ > 0 which are independent of d > 1.

Let G = J, Yier, &Ryl Then 62 = & 771 ¢ Let Ry, for j=1,...n
denote the o-algebras generated by the random variables X, with 1 < < j and
1 <k < j. Let Ny denote the trivial o-algebra. Note that the sequence 6,2 is a
martingale with respect to the o-algebras %;. In fact,

E{(|%_1} = E{B{G®™D}R;_1} =0.

In order to use large deviation bounds for gng we replace the differences ¢; by

-~ 2 1
truncated random variables. We put ¢; = (I{|(;| < lﬁ‘,$2 (5 + m)) }. Denote by
2, = g + nlv. Since (; is a sum of independent bounded random variables with
mean zero (conditioned on M), similar as in Lemma (3.3) we get

Prj{|Cj| > lﬁz,‘,;fé< Z |R(J) ) } < Cexp{—clya}-

€T,

Using (3.9) and (3.10), we have

Z |R” = [ (5.5)

leT

By Proposition 4.1, we have
2 41 1
Prj{|(j| > 5o 2v*2tm,} < Cexp{—cln,a}- (5.6)

This implies that
Pr { > G # Z@} < Cexp{—clypa}- (5.7)
j=1 j=1

Furthermore, introduce the random variables ; = EJ — E{Eﬂ?ﬁj_l}. First we note
that

E{G %1} = ~B{GI{IG| > el ot}
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Applying Cauchy-Schwartz, E;&;60 R RY) =0 for 1 £ 1/, 1,1 € T; and |RY)| <
v™" as well as E{E;{|¢;|?}IR;-1} < |, Yier, Eléul* we get
1}

-~ 1 1 245 1
[E{G1R -1} < CE2{|¢]R;-1}Pr2 {|Cj| > 5?0 2t}
= CEME;{IGPY -1} BH {Pry {5 > it o b taa} 51

1 2
< Cvfl(n Z E|£jl|2) exp{—cln.o} < Cexp{—clpa}, (5.8)

l€T;

for v,/y > vy with constants C' and ¢ depending on « and s.

Furthermore, we may use a martingale bound due to Bentkus, [2], Theorem
1.1. It provides the following result. Let R = {0,Q} C Ry C --- C R,, T M be a
family of o-algebras of a measurable space {2, M}. Let M,, = & +---+ &, be a
martingale with bounded differences £; = M; — M,_; such that Pr{|¢;| < b;} =
1, for j=1,...,n. Then, for z > /8

Pr{lag, > o} <cli-a(0) = [Tt w0 = en{-{ 1.

with some numerical constant ¢ > 0 and 02 = b3 + --- + b2. Note that for t > C

- ()< elt)

Thus, this leads to the inequality

2
Pr{|M,| > 2} <exp {—2:22} , (5.9)

which we shall use to bound d,2. Take M,, = Z?:l 5; with |<§;| bounded by b; =
215‘7I5 VT2 tno. By Proposition 4.1 obtain
0% = dno~ 1z 2 (5.10)

nv*

Inequalities (5.9) with x = lé,aa and (5.10) together imply

Pr {|gn2| > 2n~1p2 lvtm)} < Cexp{—cly,a}- (5.11)

Inequalities (5.7)—(5.11) together conclude the proof of Lemma 5.2. O
Let

Oz = n12 zn: ST XaXRY. (5.12)

J=11#£keT,
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4
Lemma 5.3. Let vg = di" with some numerical constant d > 1. Under condition

of Theorem 1.1 there exist constants ¢ and C, depending on », « only such that

1 1
45212 . (3 1\2
Pr{|5n3| > Bul, <2 + ) } < Cexp{—clna},

ny/v nv
for any z € D'.

Proof. The proof of this lemma is similar to the proof of Lemma 5.2. We introduce
the random variables n; = }l Zl?ﬁkﬂj Xijlel(,i) and note that the sequence

M; = }l an:l Mm is martingale with respect to the o-algebras 9t;, for j =1,...,n.

By Proposition 4.1, using inequality (5.5), we get

1 ()12 1,4
P RTVIP< "2 f Di>1-C —clyat. 5.13
r{nlkgem| | < o b or any z € > exp{—cln.a} ( )

At first we apply Proposition 3.1 replacing 7n; by truncated random variables and
then apply the martingale bound of Bentkus (5.9). Introduce the random variables

~

1 ~ o~ ~
Xk = Xjl{| Xji| < i} and X, = X, — EXjj. By condition (1.1), we have

Pr{X, # X} < Cexp{—cln.a}. (5.14)
The same condition yields
~ 1
EX k| = |EX;pI{|Xjk| > lia}] < Cexp{—clna} (5.15)
Let
1 s o j _ 1 ~ = ,
Bi= > XpXaRi, and 7= Y XpXuRp (5.16)
I#k€ET; I#k€ET;

Inequality (5.14) implies that
Pr{n; #7;} < Cexp{—cln.a}. (5.17)
Inequality (5.15) and |)2jk| < 21, o together imply
Pr{[ij — iij] < Clita exp{—clp.o}v™ > tny} = 1. (5.18)

Applying now Propositions 4.1 and 3.1, and inequality (5.5), similar to Lemma
3.5 we get, introducing 7, 1= v_éﬁfltm,

Pr{|n;| > n_%rv,n} < Cexp{—cln,a}- (5.19)
Now we introduce
_1 _1
0; = nl{In;| <n"z2ryn} —EnI{|n;| <n” 2y} (5.20)

Furthermore, we consider the random variables gj = 0;—E{0;|R;_1}. The sequence
M, defined by My = >"" _ 6,,, is a martingale with respect to the o-algebras R,
for s =1,...,n. Similar to the proof of Lemma 5.1 we get

Pr{|]\//.7n - M,| > 4172;&7"1,,”} < Cexp{—clpa}- (5.21)
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1

Applying inequality (5.9) to M, with o2 = 1677, and = = I3 o0, we get
— 1
Pr{|Mn| > 41ﬁ,arv,n} < Cexp{—clp.al. (5.22)
Thus the lemma is proved. t

Finally, we shall bound

1 n )
dnai= ;(TrR ~TrRY)R;;. (5.23)

Lemma 5.4. For any z = u + iv with v > 0 the following inequality
1
Ona| < 1 n . 8. 5.24
ol < Tmma(2) 0. s (5:24)
holds.
Proof. By formula (5.4) in [7], we have

, 1 , d
(TrR — TrRV)R;; = <1+ > lexjk(RU))%k) R = "Ry  (5.25)
1,kET;
From here it follows that
1 & ) 1 d 1 5
2 > (TR - TrRV)R; = o g, TR= " TrR”. (5.26)
j=1
Finally, we note that

1 1

| 2TrR2| < Immy(2).

n nv

The last inequality concludes the proof. Thus, Lemma 5.4 is proved. (]

6. Stieltjes transforms

We shall derive auxiliary bounds for the difference between the Stieltjes transforms
my(2) of the empirical spectral measure of the matrix X and the Stieltjes transform
s(z) of the semi-circular law. Recalling the definitions of ¢;,¢;, in (2.20) and of
dny in (5.1), (5.3), (5.12) as well as (5.23), we introduce the additional notations

3 n
~ 1
8! = 0n1 + On On3, Op:=0n4, Onp:= eiR. 1
n 1+ 0n2 + 0n3 4 HZZ&:J ejRj; (6.1)

v=1j=1

Recall that g,(z) := m,(z) — s(z). The representation (2.22) implies

- gn(z) _ 5; gn on
I = D) mn(2) e ma(2)2 2 b ma(2) (4 ma(2))2” &P

The equalities (6.2) and (4.3) together yield

|0] + [6n] |0n|

= |z + mp(2)||z + s(2) + mn(2)] * |z + 5(2) + mn(2)| (6.3)

lgn(2)
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For any z € D’ introduce the events

273 3 !
By, ﬁnln,a\/z B212 o

n(2) = Q: |8 < n

@={wens s (Ba T VE L Al

)
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(6.4)

(6.5)

Qn(z) = {w €N: |6, < CImmn(z)}7
nv
B2 BrImma(2)+ L) 1 1
= : < n il e
()= {wen: ol < (7 ot * i) )

(2) == ﬁn(z) N Qn(2) N (2). By Lemmas 5.1-5.3, we have
Pr{Q,(2)} >1— Cexp{—clna}-

The proof of the last relation is similar to the proof of inequality (3.16). By

Lemma 5.4,
Pr{Q,(2)} =1.
Note that .
lejvejal < 2(|EJV|2 + ejal?).

By Lemmas 3.3 and 3.5, we have, for v = 2, 3,

B 1
Pr< lejn]® > 77 ( Imm, < Cexp{—clna}-
r{|51 [“ > o mm,(z)—l—m) < Cexp{—cly.a}
According to Lemma 3.1,
52
Pr {|5—:j1|2 > n”} < Cexp{—cln,a}-

and, by Lemma 3.2
1
2 _
Pr{|5j4| S ’I’LQUQ} =1.
Similarly as in (3.16) we may show that
Pr{N.ep 2, (2) N} > 1 — Cexp{—cly.a}

Let
Q= NLepi (2) N Qy,

where (2, was defined in (3.17). We prove now some auxiliary lemmas.

Lemma 6.1. Let z =u+iv € D and w € . Assume that

1
< .
9n(2) <
Then the following bound holds

Ch, Ch,

n < )
l9n(2)] < nv n2v2\/y + v
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Proof. Inequality (6.3) implies that for w € Q

5%17%@ (1 + \/3) CImmy(z)
ny/v|z + mp(2)||z + s(2) + mn(2)]  nv|z + s(z) + mu(2)]
Bilia
n3olz + ma (2|2 + 5(2) + ma (2)
Jiis 11
+ nolz + mp(2)|]z + s(2) + ma(2)| (Immn(z) + m;) n ; | Rsal
(6.8)

lgn(2)] <

Inequality (6.8) and Lemmas 4.1, inequalities (4.11), (4.12) together imply

jga(2)] < P (1+ ! ). (6.9)

nv nu\/y + v

This inequality completes the proof of lemma. O

Put now

_\/2110
=

where v := 2 — |u|, z = u + v and vy given by (3.13). Note that 0 < v < 2, for
u € [—2,2] and vj > vg. Denote D :={z €D : v > vy}.

vy = vh(2) (6.10)

Corollary 6.2. Assume that |g,(2)| < 3, for w € QF and z = u+iv € D.

Then |gn(2)| < 149 for sufficiently large d in the definition of vo.
Proof. Note that for v > v},
4 4
CBy Cho  OVY, Oy 1
nv - nPfui/y+v T d d?p% — 100
for an appropriately large constant d in the definition of vy. Thus, the corollary is
proved. O

(6.11)

Remark 6.1. In what follows we shall assume that d > 1 is chosen and fixed such
that inequality (6.11) holds.

Assume that Ny is sufficiently large number such that for any n > Ny and
for any v € D the right-hand side of inequality (6.9) is smaller then 1(1)0. In the
what follows we shall assume that n > Ny is fixed. We repeat here Lemma 4.4. It

is similar to Lemma 3.4 in [9)].

Lemma 6.3. Assume that condition (6.7) holds, for some z =u+iv € D' and for
any w € Q. Then (6.7) holds for 2/ = u+iv € D as well with v >0 > v —n~8%,
for any w € 0.

Proof. To prove this lemma is enough to repeat the proof of Lemma 4.4. O
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Proposition 6.2. There exist positive constants C, ¢, depending on « and 3 only

such that
CB, CB,
Pr{lga()| > w4

for all z € D'

} < Cexp{—clpa}- (6.12)

Proof. Note that for v = 4 we have, for any w € Q% |g.(2)| > é By Lemma 6.1,
we obtain inequality (6.12) for v = 4. By Lemma 6.3, this inequality holds for any
v with vg < v < 4 as well. Thus Proposition 6.2 is proved. O

7. Proof of Theorem 1.1

To conclude the proof of Theorem 1.1 we shall now apply the result of Corollary
2.2 with v = v/2vp and V = 4 to the empirical spectral distribution function
Fn(z) of the random matrix X. At first we bound the integral over the line V' = 4.
Note that in this case we have |z 4+ m,(z)| > 1 and |gn(2)| < j a.s. Moreover,

Im mg,j)(z) < < 3. In this case the results of Lemmas 5.1-5.3 hold for any

z = u+ 4¢ with u € R. We apply inequality (6.8):

B2(1+Im 2my,(z) CImm,(2)
19n(2)] < ny/vlz + mp(2)|]z + s(2) + mn(2)|  nvlz+ s(z) + my(2)|
e
T nbulz + ma(2)llz + 5(2) + mn(2)]
B;‘l’l 1 1 n
+ nolz +mp(2)|]z + s(2) + my(2)| (Immn(z) + m;) n ; Rl

(7.1)

which holds for any z = u+4i, v € R, with probability at least 1 — C exp{—cly o}
Note that for V=14
4 for |ul <2,
+ my +mn(z) + > -

2+ a2+ () + 5(2) {ﬂAQﬂMM>2
We may rewrite the bound (7.1) as follows
< ofi Clmmy,(2)
“n(z]2+1) nV

Note that for any distribution function F(z) we have

|gn (2)l

(o)
/ Imsp(u+iv)du <7
—0o0

Moreover, for any random variable £ with distribution function F(z) and E¢ = 0,
E£? = h? we have

C(1+ h?)

Imsp(u+iV) < 2
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with some numerical constant C. From here it follows that, for V =4,

2
/ |man(2) — s(z)|du < C(ln—z ) a.s.
lu|>n?

o0

with h2 = [*_2?dF,(x). Furthermore, note that
h2—1§n:X2<2 > X3
nTop2 gk = 2 jk-
Jsk=1 1<j<k<n
Using inequality (3.1), we get
Pr{h? > Cn} < Cexp{—In.a}-
The last inequality and inequality (7.2) together imply that

/ | (u +iV) — s(u +iV)|du < ¢
|u]>n? n

with probability at least 1 — C exp{—cly, o }. Denote Dy, := {z = u+2i : [u| < n?}
and
Cp2
Q,:=<N € Q: lgn < " nar.
{ zEDn{w |g (’Z)| n(|z|2—|—1)}} n
Using a union bound, similar to (3.16) we may show that
Pr{Q,} > 1— Cexp{—clpa}.
It is straightforward to check that for w € €,
o] C 4
/ |y (2) — s(2)]|du < f” (7.3)

4
Furthermore, we put € = (2av0)§ and vg = dﬁ " with the constant d as introduced
in (6.11). To conclude the proof we need to consider the “vertical” integrals, for
z=z+4 withz € J,, v = " and v =2 — |z|. Note that

Nal
2 o4 4
ﬁndv < Cﬁnlnn.
o MU n
Furthermore,
/2 1 PR R Biinn
v .
o NP0/ +v o T ey T onfug T n
Finally, we get, for any w € €,
41
A(F0, @) = sup | Fule) ~ Gla) < P

Thus Theorem 1.1 is proved. O
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8. Proof of Theorem 1.2

We may express the diagonal entries of the resolvent matrix R as follows
“ 1
2

Consider the distribution function, say Fi;(x), of the probability distribution of
the eigenvalues \g

Foj(@) =Y lue T <}
k=1

Then we have
* 1

Rjj = Rj;(2) =/ o i),

which means that R;; is the Stieltjes transform of the distribution F),;(x). Note
that, for any A > 0,

max |ujk|2 <sup(Fpj(x + ) — Fpj(x)) = Qui(N).

1<k<n

On the other hand, it is easy to check that
Qnj(N) <2sup AImRj;(u +iA). (8.2)
By relations (3.12) and (3.16), we obtain, for any v > vy with vy = dfﬁ with a

sufficiently large constant d,
l&5] 1

Pr{ <} < Cexpf-clua 8.3
U ma(z)] = 2 = ORIl (53

with constants C and ¢ depending on s, o and d. Furthermore, the representation
(2.19) and inequality (8.3) together imply, for v > vy, ImRj; < |R;;| < Cy with
some positive constant C7 > 0 depending on > and «. This implies that

4
12 < Bn} < o .
Pr{lrgnlfgcnmjﬂ <, < Cexp{—clpa}

By a union bound we arrive at the inequality (1.4). To prove inequality (1.5), we
consider the quantity r; := R;; — s(2). Using equalities (2.19) and (4.1), we get
__ s(2)gn(2) €j
j=- Rjj.
z+mp(z) 24+ my(2)
By inequalities (6.12), (3.11) and (3.16), we have

32
”v} >1—Cexp{—cln.a}

Pr(in| < O

From here it follows that

v C
sup/ ri(x +iv)ldv < .
sw [ Ir;( )l Jn
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Similar to (7.3) we get

oo ) 052
; < o
[m |rj(x +1iV)|dz < Jn
Applying Corollary 2.2, we get
2
Pr{sup |F,,;(z) — G(z)| < \/';1} >1—Cexp{—clya}

Using now that

4
Pr{sup |Fn(z) — G(z)] < ﬁnTllnn} >1—Cexp{—clna},

we get

Pr{st;p |Frnj(x) — Fn(z)] < \B/i} >1—Cexp{—clpa}
Thus, Theorem 1.2 is proved. O
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