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Preface

The High Dimensional Probability assemblage of probabilists grew out of a group
of mathematicians, who had a common interest in doing probability on Banach
spaces. There were nine International Conferences in Probability in Banach Spaces
beginning with Oberwolfach in 1975. An earlier conference on Gaussian processes
with many of the same participants as the 1975 meeting was held in Strasbourg,
France in 1973. The last Banach space meeting took place in Sandjberg, Denmark
in 1993. It was decided in 1994, that in order to reflect the widening interests of
the members of the group, to change the name of this conference series to the
International Conference on High Dimensional Probability.

The present volume is an outgrowth of the Sixth High Dimensional Probability
Conference (HDP VI) held at the Banff International Research Station (BIRS),
Banff, Canada, October 9–14, 2011. The scope and the quality of the contributed
papers show very well that high dimensional probability (HDP) remains a vibrant
and expanding area of mathematical research. Four of the participants of the first
Probability on Banach Spaces meeting-Jørgen Hoffmann-Jørgensen, Jim Kuelbs,
Mike Marcus and Jan Rosiński-have contributed papers to this volume.

HDP deals with a set of ideas and techniques whose origin can largely be
traced back to the theory of Gaussian processes and, in particular, the study
of their paths properties. The original impetus was to characterize boundedness
or continuity via geometric structures associated with random variables in high
dimensional or infinite dimensional spaces. More precisely, these are geometric
characteristics of the parameter space, equipped with the metric induced by the
covariance structure of the process, described via metric entropy, majorizing mea-
sures and generic chaining.

This original set of ideas and techniques turned out to be particularly fruit-
ful in extending the classical limit theorems in probability, such as laws of large
numbers, laws of iterated logarithm and central limit theorems, to the context of
Banach spaces and in the study of empirical processes.

Similar developments took place in other mathematical subfields such as con-
vex geometry, asymptotic geometric analysis, additive combinatorics and random
matrices, to name but a few topics. Moreover, the methods of HDP, and especially
its offshoot, the concentration of measure phenomenon, were found to have a num-
ber of important applications in these areas as well as in Statistics and Computer
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Science. This breadth is very well illustrated by the contributions in the present
volume.

Most of the papers in this volume were presented at HDP VI. The participants
of this conference are grateful for the support of the BIRS and the editors thank
Springer Verlag for agreeing to publish the resulting HDP VI volume.

The papers in this volume aptly display the methods and breadth of HDP.
They use a variety of techniques in their analysis that should be of interest to
advanced students and researchers. We have organized the papers into five general
areas: Inequalities and Convexity, Limit Theorems, Stochastic Processes, Random
Matrices and High Dimensional Statistics. To give an idea of their scope, we shall
now briefly describe them by subject area.

Inequalities and Convexity:

∙ Bracketing entropy of high dimensional distributions, by Fuchang Gao
∙ Slepian’s inequality, modularity and integral orderings, by Jørgen Hoffmann-

Jørgensen
∙ A more general maximal Bernstein-type inequality, by Péter Kevei and David

M. Mason
∙ Maximal inequalities for centered norms of sums of independent random vec-

tors, by Rafal̷ Latal̷a
∙ A probabilistic inequality related to negative definite functions, by Mikhail

Lifshits, René L. Schilling and Ilya Tyurin
∙ Optimal re-centering bound, with applications to Rosenthal-type concentra-

tion of measure inequalities, by Iosif Pinelis
∙ Strong log-concavity is preserved by convolution, by Jon A. Wellner
∙ On some Gaussian concentration inequality for non-Lipschitz functions, by

Pawel̷ Wolff

Gao considers the family of all distribution functions on [0, 1]𝑑 and obtains
bounds on the bracketing entropies of these classes for 𝐿𝑝 metrics with 𝑝 ≥ 1. These
bounds have important implications for rates of convergence of nonparametric
estimators in a number of statistical problems.

Jørgen Hoffmann-Jørgensen proves a unified version of Slepian’s inequality
under minimal regularity conditions and points to the subtleties of the assumptions
of this inequality. This basically covers all forms of Slepian’s inequality known in
the literature. Then the author explores the connection of Slepian’s inequality to
integral orderings in general, and to the supermodular ordering in particular, and
also corrects some results in the theory of integral orderings.

Kevei and Mason show that under very weak assumptions a general version
of Bernstein’s exponential inequality for sums of random variables, which are not
necessarily independent, extends to a maximal version.

Latal̷a proves a Lévy-Ottaviani type inequality for sums of independent ran-
dom variables with arbitrary centering. The vector case is explored and a modified
inequality proved in the Hilbert space framework.
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Lifshits, Schilling and Tyurin prove an inequality comparing the expectations
of a negative definite function applied to either the difference or the sum of two iid
random vectors. A particular case which involves lower powers of the Euclidean
norm is linked to bifractional Brownian motion.

Pinelis considers optimal bounds between expectations of a nonnegative func-
tion of centered and non-centered random variables. Applications to Rosenthal-
type concentration of measure inequalities are given.

Although it is well known that log-concavity of distributions is preserved
under convolution (addition of independent random variables), preservation of the
stronger notion of ultra log-concavity under convolution in the setting of integer-
valued random variables was first proved by Liggett (1997). Wellner’s paper shows
that a recent proof of Liggett’s result by Johnson (2007) carries over to a proof of
the preservation of strong log-concavity under convolution for real-valued random
variables.

Wolff’s paper establishes a concentration inequality for functions of a pair
of Gaussian random vectors. The bounded Lipschitz assumption present in the
classical Gaussian concentration inequality is now replaced by the boundedness of
second-order derivatives.

Limit Theorems:

∙ Rates of convergence in the strong invariance principle for non adapted
sequences: application to ergodic automorphisms of the torus, by Jérôme
Dedecker, Florence Merlevède and Françoise Pène

∙ On the rate of convergence to the semi-circular law, by Friedrich Götze and
Alexandre Tikhomirov

∙ Empirical quantile CLTs for time dependent data, by James Kuelbs and Joel
Zinn

∙ Asymptotic properties for linear processes of functionals of reversible or nor-
mal Markov chains, by Magda Peligrad

Dedecker, Merlevède and Pène establish strong invariance principles for non-
adapted sequences and apply them to iterates of ergodic automorphisms of the
𝑑-dimensional torus. Their main theorems are proved using an approximating mar-
tingale introduced by Gordin (1969).

Applying a bound for the Kolmogorov distance between distribution func-
tions via Stieltjes transforms, Götze and Tikhomirov derive under side conditions
a rate of convergence in the semi-circular law.

Peligrad proves central limit theorems for linear processes of functionals of
reversible or normal Markov chains. The proofs are based on a result of Peligrad
and Utev (2006) concerning the asymptotic behavior of a class of linear processes
and spectral calculus.

Kuelbs and Zinn develop central limit theorems for quantitle processes defined
in terms of empirical processes of time dependent data. The key to their proofs is
an important extension of a method of Vervaat (1972).
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Stochastic Processes:

∙ First exit of Brownian motion from a one-sided moving boundary, by Frank
Aurzada and Tanja Kramm

∙ On Lévy’s equivalence theorem in the Skorohod space, by Andreas Basse-
O’Connor and Jan Rosiński

∙ Continuity conditions for a class of second-order permanental chaoses, by
Michael B. Marcus and Jay Rosen

Aurzada and Kramm give a short proof of the celebrated Uchiyama’s result
on the first exit time of Brownian motion from a moving boundary for the case
of decreasing boundary. As a consequence, a relatively simple proof of Uchiyama’s
result for monotone boundaries can now be obtained.

Basse-O’Connor and Rosiński present a new and simple proof of Lévy’s
Equivalence Theorem in the space of càdlàg functions equipped with the Sko-
rohod topology. In the proof, the authors use their recent result on the uniform
convergence of jump processes, which removes major difficulties of working with
the Skorohod topology in this context.

Marcus and Rosen establish a sufficient condition for the continuity of perma-
nental fields. Permanental fields are defined by a real-valued kernel and a positive
parameter; when the kernel is symmetric and the parameter equals 1/2, a perma-
nental field becomes the second-order Gaussian chaos.

Random Matrices and Applications:

∙ On the operator norm of random rectangular Toeplitz matrices, by Radosl̷aw
Adamczak

∙ Edge fluctuations of eigenvalues of Wigner matrices, by Hanna Döring and
Peter Eichelsbacher

∙ On the limiting shape of Young diagrams associated with inhomogeneous
random words, by Christian Houdré and Hua Xu

Adamczak’s paper presents sharp estimates on the operator norm of rect-
angular random Toeplitz matrices. The entries of the matrix are generated by
centered and independent random variables with moments of order strictly higher
than two.

Döring and Eichelsbacher obtain a moderate deviation principle for the eigen-
value counting function of a Wigner matrix in a interval close to the edge of the
spectrum. Possible extensions to other random matrix ensembles are briefly dis-
cussed.

Houdré and Xu obtain the limiting shape of the random Young diagrams
associated with an inhomogeneous random word as a multidimensional Brownian
functional. This functional has the same law as the spectrum of a Gaussian random
matrix.
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High Dimensional Statistics:

∙ Low rank estimation of similarities on graphs, by Vladimir Koltchinskii and
Pedro Rangel

∙ Sparse principal component analysis with missing observations, by Karim
Lounici

∙ High dimensional CLT and its applications, by Dragan Radulovic

Koltchinskii and Rangel study an estimation problem concerning similarities
defined on graphs. They study a class of modified least squares estimators with
complexity penalization based on both the nuclear norm and Sobolev type norms
of symmetric kernels on the graph, and provide upper bounds on 𝐿2-errors of such
estimators.

Lounici studies sparse principal component analysis in a high dimensional
setting. This paper focuses on estimation of the first principal component in set-
tings involving data that is only partially observed, and provides both information
theoretic lower bounds an analysis of an estimation procedure based on a Bayes
Information Criterion (BIC) which achieves the lower bounds up to logarithmic
factors.

Radulovic investigates bootstrap methods for finite classes of functions ℱ𝑛
with finite cardinality 𝑘𝑛 increasing with the sample size 𝑛. He shows that such
classes have statistical applicability in testing situations even though they are not
Donsker classes of functions.

Christian Houdré
David M. Mason
Jan Rosiński
Jon A. Wellner
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Michael Marcus CUNY
David M. Mason University of Delaware
Elizabeth Meckes Case Western Reserve University
Mark Meckes Case Western Reserve University
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Dedication

This volume is dedicated to the memory of our friend and colleague Wenbo Li, who
recently passed away in the prime of his life. He was a very talented, energetic and
vital force in our field. In addition to being an extremely dynamic and welcome
mover and shaker in probability theory activities worldwide, he was imbedded in
the heart and soul of the High Dimensional Probability meetings. He had actively
participated in all of them, and he had served on the organizing committee of the
HDP IV meeting. He had also been a member of the HDP VII meeting committee.
His enthusiastic and warm presence among us will be sorely missed.
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Bracketing Entropy of
High Dimensional Distributions

Fuchang Gao

Abstract. Let ℱ𝑑 be the class of probability distribution functions on [0, 1]𝑑,
𝑑 ≥ 2. The following estimate for the bracketing entropy of ℱ𝑑 in the 𝐿𝑝

norm, 1 ≤ 𝑝 < ∞, is obtained:

log𝑁[ ](𝜀,ℱ𝑑, ∥ ⋅ ∥𝑝) = 𝑂(𝜀−1∣ log 𝜀∣2(𝑑−1)).

Based on this estimate, a general relation between bracketing entropy in the
𝐿𝑝 norm and metric entropy in the 𝐿1 norm for multivariate smooth functions
is established.

Mathematics Subject Classification (2010). Primary 41A25; Secondary 62G05.

Keywords. Bracketing entropy, metric entropy, high dimensional distribution.

1. Introduction

Given a probability measure 𝜇 on [0, 1]𝑑, 𝑑 ≥ 2, we denote by 𝐹𝜇 the distribution
function of 𝜇, that is

𝐹𝜇(𝑥1, 𝑥2, . . . , 𝑥𝑑) = 𝜇([0, 𝑥1] × [0, 𝑥2] × ⋅ ⋅ ⋅ × [0, 𝑥𝑑]), 0 ≤ 𝑥1, 𝑥2, . . . , 𝑥𝑑 ≤ 1.

Clearly, 𝐹𝜇 belongs to 𝐿𝑝([0, 1]𝑑) ≡ 𝐿𝑝([0, 1]𝑑,ℬ𝑑, 𝜆) for all 1 ≤ 𝑝 ≤ ∞, where 𝜆 is
Lebesgue measure on the Borel sigma-field ℬ𝑑 of [0, 1]𝑑. We denote

ℱ𝑑 := {𝐹𝜇 : 𝜇([0, 1]𝑑) = 1}.
The complexity of the function class ℱ𝑑 is well known. For example, it is the main
object of an active research area in number theory, see, e.g., [1] and the references
therein.

In this paper, we are interested the bracketing entropy of ℱ𝑑 in the 𝐿𝑝 norm,
1 ≤ 𝑝 < ∞. Recall that for a function class ℱ in a space equipped with a metric
𝜌, the 𝜀-bracketing entropy of ℱ is defined as the quantity log𝑁[ ](𝜀,ℱ , 𝜌), where

Supported in part by a grant from the Simons Foundation (#246211).



4 F. Gao

𝑁[ ](𝜀,ℱ , 𝜌) is the minimum number of 𝜀-brackets need to cover ℱ , that is,

𝑁[ ](𝜀,ℱ , 𝜌) := min

{
𝑛 : ∃𝑓1, 𝑓∗1 , . . . , 𝑓𝑛, 𝑓∗𝑛 s.t. 𝜌(𝑓∗𝑘 , 𝑓𝑘) ≤ 𝜀,ℱ ⊂

𝑛∪
𝑘=1

[𝑓𝑘, 𝑓
∗
𝑘 ]

}
,

where the bracket [𝑓𝑘, 𝑓
∗
𝑘 ] is defined by

[𝑓𝑘, 𝑓
∗
𝑘 ] = {𝑔 ∈ ℱ𝑑 : 𝑓𝑘 ≤ 𝑔 ≤ 𝑓∗𝑘} .

The class ℱ𝑑 is a natural and important object, and the question of studying
its bracketing entropy is motivated by its applications in statistics and probabil-
ity, where the bracketing entropy controls the rate of convergence of uniform limit
theorem, and is of central importance in design and analysis of statistical estima-
tors. In fact, the question of determining the bracketing entropy was motivated by
its application to rates of convergence of maximum likelihood estimators for high
dimensional interval censoring models [9].

Bracketing entropy is closely related to the metric entropy log𝑁(𝜀,ℱ , 𝜌),
where 𝑁(𝜀,ℱ , 𝜌) is the minimal number of balls of radius 𝜀 in 𝜌-distance needed
to cover the function class ℱ . It is clear that

𝑁(𝜀,ℱ , 𝜌) ≤ 𝑁[ ](𝜀,ℱ , 𝜌).

However, a reverse inequality is not true in general. Of course, when 𝜌 is dominated
by the ∥ ⋅ ∥∞ norm, the following relation is trivial:

𝑁[ ](𝜀,ℱ , 𝜌) ≤ 𝑁[ ](𝜀,ℱ , ∥ ⋅ ∥∞) ≤ 𝑁(𝜀/2,ℱ , ∥ ⋅ ∥∞). (1.1)

In fact, (1.1) is the primary tool to study bracketing entropy. For example, by us-
ing this relation, Nickl et al. [12] derived bracketing entropy estimates for Besov-
and Sobolev-type spaces; and earlier, van der Vaart [13] obtained results of this
type for multivariate functions that have bounded derivatives up to order ∣𝛼∣ ≤ 𝑘.
However, if the functions are not smooth enough, then (1.1) is no longer useful.
For example, for the class of block monotone functions [7]. In such cases, to esti-
mate bracketing entropy often requires constructive arguments, and thus is usually
more difficult to study than metric entropy. As an application of this work, we will
develop a general method to estimate the upper bound of bracketing entropy of
some multivariate function classes in the 𝐿𝑝 norm by the metric entropy of their
derivatives in the 𝐿1 norm.

The problem of determining the metric entropy of 𝑑-dimensional distributions
is a longstanding open problem, even for the simplest case where 𝑝 = 2. It is
observed in [3] that when 𝑝 = 2, the problem is equivalent to the rate of the small
ball probability of 𝑑-dimensional Brownian sheets in the supremum norm. By using
an earlier result of Dunker et al. [4] on the small ball probability of 𝑑-dimensional
Brownian sheets, Blei et al. [3] proved that

log𝑁(𝜀,ℱ𝑑, ∥ ⋅ ∥2) = 𝑂(𝜀−1∣ log 𝜀∣𝑑− 1
2 ). (1.2)

When 𝑑 = 2, the estimate above is sharp. However, for 𝑑 > 2, the best known
lower bound is 𝐶𝜀−1∣ log 𝜀∣𝑑−1+𝛿 for some 𝛿 > 0, which can be derived from the
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work of Bilyk and et al. [2]. We remark that this problem is also equivalent to the
longstanding open problem on the discrepancy of distribution in number theory,
see, e.g., [1].

When 𝑝 ∕= 2, the difficulty of the problem further increases. This is because
many familiar tools in Hilbert space are then no longer available. For example, in
[3] the upper bound estimate of log𝑁(𝜀,ℱ𝑑, ∥ ⋅ ∥2) was obtained using Gaussian
processes and the Kuelbs-Li connection [11] between metric entropy and small ball
probability. When 𝑝 ∕= 2, there is no similar connection between log𝑁(𝜀,ℱ𝑑, ∥ ⋅∥𝑝)
and small ball probability of random processes that has been discovered.

In studying bracketing entropy, even fewer tools are available. For example,
the powerful tool of metric entropy duality and standard methods from Fourier
analysis are no longer applicable for bracketing entropy. Thus, it is not a surprise
that not much is known about the bracketing entropy log𝑁[ ](𝜀,ℱ𝑑, ∥ ⋅ ∥𝑝).

Of course, when 𝑑 = 1, the problem is much simpler. In that case, the class
of probability distribution functions is the same as the class of non-decreasing
right continuous functions with range [0, 1], and the bracketing entropy estimate
is known, [10]. Specifically, [14, p. 159] contains a proof of the following upper
bound estimate

log𝑁(𝜀,ℱ1, ∥ ⋅ ∥𝑝) ∼ log𝑁[ ](𝜀,ℱ1, ∥ ⋅ ∥𝑝) ∼ 𝜀−1,

where 𝐴 ∼ 𝐵 means that there exist constants positive 𝐶1 and 𝐶2 such that
𝐶1𝐴 ≤ 𝐵 ≤ 𝐶2𝐴. A simple proof was given in [3]. In fact, for all 𝑚-monotone
functions, 𝑚 ≥ 1, and complete monotone functions on [0, 1], the metric entropy
and bracketing entropy estimates are known; cf. [5, 6, 8].

It is true that a probability distribution function on [0, 1]𝑑 is block non-
decreasing, that is, non-decreasing in each variable. However, the class ℳ𝑑 of
𝑑-dimensional block non-decreasing continuous functions on [0, 1]𝑑 is much larger
than ℱ𝑑. In fact, it is proved in [7] that for 𝑝 ∕= 𝑑

𝑑−1 ,

log𝑁[ ](𝜀,ℳ𝑑, ∥ ⋅ ∥𝑝) ∼ 𝜀−𝛼,

where 𝛼 = max{𝑑, (𝑑 − 1)𝑝}; however, for ℱ𝑑, we are looking for an estimate of
the order

log[ ]𝑁(𝜀,ℱ𝑑, ∥ ⋅ ∥𝑝) ∼ 𝜀−1∣ log 𝜀∣𝛽
for some 𝛽.

In this paper, we will prove

Theorem 1.1. Let ℱ𝑑 be the set of probability distributions on [0, 1]𝑑. For 1 ≤ 𝑝 <
∞ and 𝑑 ≥ 2,

log𝑁[ ](𝜀,ℱ𝑑, ∥ ⋅ ∥𝑝) = 𝑂(𝜀−1∣ log 𝜀∣2(𝑑−1)).
In comparison with the metric entropy estimate (1.2) for ℱ𝑑 in the case 𝑝 = 2,

we see there is some discrepancy on the exponent of the logarithmic term. While
it is possible that our result is not optimal for 𝑑 > 2, we believe that in the case
𝑑 = 2, our result is sharp. In other words, we believe the discrepancy is intrinsic.
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Note that many examples (such as Besov spaces) witness that when the function
class is smoother than the distribution functions, there is no discrepancy between
bracketing entropy and metric entropy. Thus, it becomes an interesting question to
determine if there is indeed any discrepancy for the class of distribution functions.

As an application, we show that Theorem 1.1 can be used to obtain bracketing
entropy estimate for classes of smooth functions using the metric entropy of their
derivatives in the 𝐿1 norm. More precisely, we show that

Theorem 1.2. Let ℱ be a class of smooth functions 𝑓 on [0, 1]𝑑 bounded by 1, 𝑑 > 1.
Let ℋ = {𝐷𝛼1,𝛼2,...,𝛼𝑑𝑓 : 0 ≤ 𝛼1, 𝛼2, . . . , 𝛼𝑑 ≤ 1, 𝑓 ∈ ℱ}. Suppose

log𝑁(𝜀,ℋ, ∥ ⋅ ∥1) ≤ 𝜙(𝜀),

where 𝜙 is a decreasing function on (0, 1), then for any 0 < 𝜀 < 1,

log 𝑁[ ](𝜀,ℱ , ∥ ⋅ ∥𝑝) ≤ 𝐾(𝑑, 𝑝) ⋅ 𝑟(𝜀)[log 𝑟(𝜀)]2(𝑑−1),

where 𝐾(𝑑, 𝑝) is a positive constant depending only on 𝑑 and 𝑝, and 𝑟(𝜀) is the
solution to the equation

𝜙(𝜀𝑟) = 𝑟[log 𝑟]2(𝑑−1).

Remark 1.3. Theorem 1.2 concerns the case 𝑑 > 1. When 𝑑 = 1, it was proved in
Gao and Wellner [8] that the estimate is

log𝑁[ ](𝜀,ℱ , ∥ ⋅ ∥𝑝) ≤ 𝐾(𝑑, 𝑝) ⋅ 𝑟(𝜀),

where 𝑟(𝜀) is the solution to the equation 𝜙(𝜀𝑟) = 𝑟. While we do not further
study the sharpness of these estimates in this paper, we remark that at least for
all 𝑘-monotone functions on [0, 1], 𝑘 = 1, 2, . . . , such estimates are sharp; see [8].

Results of this nature are very useful, because metric entropy in the 𝐿1 norm
is much easier to estimate than bracketing entropy in the 𝐿𝑝 norm. We use the
following example to demonstrate the usefulness of Theorem 1.2.

Example. Let 𝒟𝑑 be the class of probability distribution functions with bounded
block monotone density, that is, all the functions in ℳ𝑑 := {𝐷1,1,...,1𝑔 : 𝑔 ∈ 𝒟𝑑}
are integrable and bounded monotone in each variable. Then according to Gao and
Wellner [7], log 𝑁(𝜀,ℳ𝑑, ∥ ⋅ ∥1) = 𝑂(𝜀−𝑑). Thus, by Theorem 1.2, we immediately
obtain

log𝑁[ ](𝜀,𝒟𝑑, ∥ ⋅ ∥𝑝) = 𝑂
(
𝜀−

𝑑
𝑑+1 ∣ log 𝜀∣ 2𝑑(𝑑−1)

𝑑+1

)
,

for all 𝑑 ≥ 2 and 1 ≤ 𝑝 < ∞. One may compare this estimate with that of the class
𝒞𝛼1 with 𝛼 = (1, 1, . . . , 1) – that is, a class of multivariate functions with bounded
derivative 𝐷1,1,...,1𝑔. For the latter, van der Vaart [13] proved that the bracketing
entropy is of the rate 𝜀−1.

While we do not pursue statistics applications of our results in this paper,
we would like to point out that our estimate for the bracketing entropy can be
used to derive convergence rates of density estimators in statistics, such as MLE
estimators, cf. [7, 8, 14].
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2. Bracketing entropy estimate

To simplify the presentation, we first make some observations. Note that, if 𝜇 is a
measure on [0, 1]𝑑 such that 𝜃 := 𝜇([0, 1]𝑑) < 1, then we can define a probability
measure

𝜈 = 𝜇 + (1 − 𝜃)𝛿(1,1,...,1),

so that 𝐹𝜇 = 𝐹𝜈 on [0, 1]𝑑 except at (1, 1, . . . , 1). Thus, ℱ𝑑 and the function class
ℱ ′
𝑑 := {𝐹𝜈 : 𝜈([0, 1]𝑑) ≤ 1} have the same bracketing number in the 𝐿𝑝 norm for

all 1 ≤ 𝑝 < ∞, that is,

𝑁[ ](𝜀,ℱ𝑑, ∥ ⋅ ∥𝑝) = 𝑁[ ](𝜀,ℱ ′
𝑑, ∥ ⋅ ∥𝑝). (2.1)

Next, we observe that if we define

ℱ ′′
𝑑 := {𝐹𝜇 : 𝜇([0, 1]𝑑) ≤ 1, 𝜇 ≪ 𝜆},

where 𝜆 is the Lebesgue measure on [0, 1]𝑑, then ℱ ′′
𝑑 and ℱ𝑑 have the same rate of

bracketing entropy. More precisely, we have

Lemma 2.1. For all 0 < 𝜀 < 1,

log 𝑁[ ](𝜀,ℱ ′′
𝑑 , ∥ ⋅ ∥𝑝) ≤ log𝑁[ ](𝜀,ℱ𝑑, ∥ ⋅ ∥𝑝) ≤ 2 log𝑁[ ](𝜀/3,ℱ ′′

𝑑 , ∥ ⋅ ∥𝑝).
Remark 2.2. The idea of the proof of Lemma 2.1 is simple: by redistributing a point
mass to a nearby area in the upper right side of the point, we can approximate the
distribution function of a singular measure from below by a distribution function
that has a density. Approximation from above is done similarly. The detailed
verification is however somewhat tedious. Readers may choose to skip the proof
of Lemma 2.1. Though Lemma 2.1 can help readers to better understand the
definition of the cutting point in the proof of Theorem 1.1, the latter will be
presented without relying on Lemma 2.1.

Proof. In view of (2.1), we can replace the 𝑁[ ](𝜀,ℱ𝑑, ∥ ⋅ ∥𝑝) in the lemma by
𝑁[ ](𝜀,ℱ ′

𝑑, ∥ ⋅ ∥𝑝). Then, the first inequality becomes trivial because ℱ ′′
𝑑 ⊂ ℱ ′

𝑑.

To prove the second inequality, we first show that for any 𝐹𝜇 ∈ ℱ𝑑, and any
𝛿 > 0, we can find measures 𝜈1 and 𝜈2 on [−𝛿, 1+𝛿]𝑑 that are absolutely continuous
with respect to the Lebesgue measure, such that when restricted on [0, 1]𝑑, we have

𝐹𝜈1 ≤ 𝐹𝜇 ≤ 𝐹𝜈2 , (2.2)

∥𝐹𝜈2 − 𝐹𝜈1∥𝐿𝑝([0,1]𝑑) ≤ 2(2𝑑𝛿)1/𝑝. (2.3)

To see this, we write 𝜇 = 𝜈 +
∑

𝑖 𝑐𝑖𝛿𝑥𝑖 where 𝜈 ≪ 𝜆, 𝑐𝑖 > 0 and 𝑥𝑖 = (𝑥𝑖(1), 𝑥𝑖(2),

. . . , 𝑥𝑖(𝑑)) ∈ [0, 1]𝑑. Because
∑

𝑐𝑖 ≤ 𝜇([0, 1]𝑑) ≤ 1, there exists 𝑁 such that∑
𝑖>𝑁 𝑐𝑖 < (2𝑑𝛿)1/𝑝. For each 1 ≤ 𝑖 ≤ 𝑁 , let 𝑢𝑖 be the uniform measure on

𝑥𝑖 + [0, 𝛿]𝑑 with total mass 𝑐𝑖, and 𝑣𝑖 be the uniform measure on 𝑥𝑖 + [−𝛿, 0]𝑑

with total mass 𝑐𝑖. Further, we denote by 𝑢0 the uniform measure on [1, 1 + 𝛿]𝑑
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with total mass
∑

𝑖>𝑁 𝑐𝑖, and 𝑣0 the uniform measure on [−𝛿, 0]𝑑 with total mass∑
𝑖>𝑁 𝑐𝑖. Now, we define

𝜈1 = 𝜈 +

𝑁∑
𝑖=1

𝑢𝑖 + 𝑢0, 𝜈2 = 𝜈 +

𝑁∑
𝑖=1

𝑣𝑖 + 𝑣0.

It is then clear that 𝜈1 and 𝜈2 are absolutely continuous with respect to the
Lebesgue measure on [−𝛿, 1+ 𝛿]𝑑. Furthermore, when restricted on [0, 1]𝑑, we have
𝐹𝜈1 ≤ 𝐹𝜇 ≤ 𝐹𝜈2 .

Now, we estimate ∥𝐹𝜈2 − 𝐹𝜈1∥𝐿𝑝([0,1]𝑑). For notational simplicity, we denote
∥ ⋅ ∥𝐿𝑝([0,1]𝑑) by ∥ ⋅ ∥𝑝 for short, even if the function involved maybe defined in a

larger domain. Note that for each 1 ≤ 𝑖 ≤ 𝑁 , and for all (𝑡1, 𝑡2, . . . , 𝑡𝑑) ∈ [0, 1]𝑑,

0 ≤ 𝐹𝑣𝑖(𝑡1, 𝑡2, . . . , 𝑡𝑑) − 𝐹𝑢𝑖(𝑡1, 𝑡2, . . . , 𝑡𝑑) ≤ 𝑐𝑖.

Furthermore, if 𝑡𝑗 ≤ 𝑥𝑖(𝑗) − 𝛿 for all 1 ≤ 𝑗 ≤ 𝑑, then

𝐹𝑢𝑖(𝑡1, 𝑡2, . . . , 𝑡𝑑) = 𝐹𝑣𝑖(𝑡1, 𝑡2, . . . , 𝑡𝑑) = 0;

if 𝑡𝑗 ≥ 𝑥𝑖(𝑗) + 𝛿 for all 1 ≤ 𝑗 ≤ 𝑑, then

𝐹𝑢𝑖(𝑡1, 𝑡2, . . . , 𝑡𝑑) = 𝐹𝑣𝑖(𝑡1, 𝑡2, . . . , 𝑡𝑑) = 𝑐𝑖.

Hence, for all 1 ≤ 𝑖 ≤ 𝑁

∥𝐹𝑣𝑖 − 𝐹𝑢𝑖∥𝑝𝑝 ≤
𝑑∑

𝑗=1

∫ 1

0

⋅ ⋅ ⋅
∫ 1

0

∫ 𝑥𝑖(𝑗)+𝛿

𝑥𝑖(𝑗)−𝛿

∫ 1

0

⋅ ⋅ ⋅
∫ 1

0

𝑐𝑝𝑖 = 2𝑑𝛿𝑐𝑝𝑖 .

Together with the relation

0 ≤ 𝐹𝑣0 − 𝐹𝑢0 ≤
∑
𝑖>𝑁

𝑐𝑖 ≤ (2𝑑𝛿)1/𝑝

we obtain

∥𝐹𝜈2 − 𝐹𝜈1∥𝑝 ≤
𝑁∑
𝑖=1

∥𝐹𝑣𝑖 − 𝐹𝑢𝑖∥𝑝 + ∥𝐹𝑣0 − 𝐹𝑢0∥𝑝

≤
𝑁∑
𝑖=1

𝑐𝑖(2𝑑𝛿)1/𝑝 + (2𝑑𝛿)1/𝑝

≤ 2(2𝑑𝛿)1/𝑝.

This proves the statements (2.2) and (2.3).
Note that because 𝜈1 and 𝜈2 are not supported on [0, 1]𝑑, 𝐹𝜈1 and 𝐹𝜈2 do not

belong to ℱ ′′
𝑑 . However, if we define functions 𝐺1 and 𝐺2 on [0, 1]𝑑 by

𝐺1(𝑡1, 𝑡2, . . . , 𝑡𝑑) = 𝐹𝜈1((1 + 2𝛿)𝑡1 − 𝛿, (1 + 2𝛿)𝑡2 − 𝛿, . . . , (1 + 2𝛿)𝑡𝑑 − 𝛿),

𝐺2(𝑡1, 𝑡2, . . . , 𝑡𝑑) = 𝐹𝜈2((1 + 2𝛿)𝑡1 − 𝛿, (1 + 2𝛿)𝑡2 − 𝛿, . . . , (1 + 2𝛿)𝑡𝑑 − 𝛿),

for (𝑡1, 𝑡2, . . . , 𝑡𝑑) ∈ [0, 1]𝑑, then 𝐺1, 𝐺2 ∈ ℱ ′′
𝑑 .
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Suppose ℱ ′′
𝑑 can be covered by 𝜀

3 -brackets [𝑔1, 𝑔
∗
1 ], [𝑔2, 𝑔

∗
2 ], . . . , [𝑔𝑁 , 𝑔∗𝑁 ], then

there exists 𝑖 and 𝑗 such that 𝐺1 ∈ [𝑔𝑖, 𝑔
∗
𝑖 ] and 𝐺2 ∈ [𝑔𝑗, 𝑔

∗
𝑗 ]. For 1 ≤ 𝑘 ≤ 𝑁 , define

𝑓𝑘 and 𝑓∗𝑘 on [−𝛿, 1 + 𝛿]𝑑 by

𝑓𝑘((1 + 2𝛿)𝑡1 − 𝛿, (1 + 2𝛿)𝑡2 − 𝛿, . . . , (1 + 2𝛿)𝑡𝑑 − 𝛿) = 𝑔𝑘(𝑡1, 𝑡2, . . . , 𝑡𝑑),

𝑓∗𝑘 ((1 + 2𝛿)𝑡1 − 𝛿, (1 + 2𝛿)𝑡2 − 𝛿, . . . , (1 + 2𝛿)𝑡𝑑 − 𝛿) = 𝑔∗𝑘(𝑡1, 𝑡2, . . . , 𝑡𝑑),

for (𝑡1, 𝑡2, . . . , 𝑡𝑑) ∈ [0, 1]𝑑. Then we have 𝐹𝜈1 ∈ [𝑓𝑖, 𝑓
∗
𝑖 ] and 𝐹𝜈2 ∈ [𝑓𝑗 , 𝑓

∗
𝑗 ]. Thus,

restricted on [0, 1]𝑑, we have

𝑓𝑖 ≤ 𝐹𝜈1 ≤ 𝐹𝜇 ≤ 𝐹𝜈2 ≤ 𝑓∗𝑗 .

That is, 𝐹𝜇 ∈ [𝑓𝑖, 𝑓
∗
𝑗 ]. Note that

∥𝑓∗𝑗 − 𝑓𝑖∥𝑝 ≤ ∥𝑓∗𝑗 − 𝐹𝜈2∥𝑝 + ∥𝐹𝜈2 − 𝐹𝜈1∥𝑝 + ∥𝐹𝜈1 − 𝑓𝑖∥𝑝
≤ ∥𝑓∗𝑗 − 𝑓𝑗∥𝑝 + ∥𝐹𝜈2 − 𝐹𝜈1∥𝑝 + ∥𝑓∗𝑖 − 𝑓𝑖∥𝑝
≤ (1 + 2𝛿)𝑑/𝑝∥𝑔∗𝑗 − 𝑔𝑗∥𝑝 + ∥𝐹𝜈2 − 𝐹𝜈1∥𝑝 + (1 + 2𝛿)𝑑/𝑝∥𝑔∗𝑖 − 𝑔𝑖∥𝑝
≤ (1 + 2𝛿)𝑑/𝑝𝜀/3 + 2(2𝑑𝛿)1/𝑝 + (1 + 2𝛿)𝑑/𝑝𝜀/3,

where in the third inequality comes from changing variables, and the last inequality
follows from (2.3) and the fact that ∥𝑔∗𝑘 − 𝑔𝑘∥𝑝 ≤ 𝜀

3 for 𝑘 = 𝑖, 𝑗. In particular, if
we choose 𝛿 small enough, we have ∥𝑓∗𝑗 − 𝑓𝑖∥𝑝 < 𝜀. That is, [𝑓𝑖, 𝑓

∗
𝑗 ] is an 𝜀-bracket

that covers 𝐹𝜇. Because 𝐹𝜇 ∈ ℱ𝑑 is arbitrary, we conclude that ℱ𝑑 can be covered
by the following set of 𝜀-brackets:

{[𝑓𝑘, 𝑓
∗
𝑙 ] : ∥𝑓∗𝑙 − 𝑓𝑘∥𝑝 ≤ 𝜀, 1 ≤ 𝑘, 𝑙 ≤ 𝑁}

restricted on [0, 1]𝑑. Therefore,

𝑁[ ](𝜀,ℱ ′
𝑑, ∥ ⋅ ∥𝑝) ≤ 𝑁2 = [𝑁[ ](𝜀/3,ℱ ′′

𝑑 , ∥ ⋅ ∥𝑝)]2.
This implies the second inequality in the lemma. □

Now, we return to the proof of Theorem 1.1. Note that if for 𝐼 = (𝑎, 𝑏] ×
[0, 1]𝑑−1 ⊂ [0, 1]𝑑 or 𝐼 = [𝑎, 𝑏) × [0, 1]𝑑−1 ⊂ [0, 1]𝑑 we denote

ℱ𝑡,𝐼 = {𝐹𝜈1𝐼 : 𝜈(𝐼) ≤ 𝑡},
then by changing variable in the integration and using (2.1), we have

𝑁[ ](𝑡(𝑏 − 𝑎)1/𝑝𝜀,ℱ𝑡,𝐼 , ∥ ⋅ ∥𝑝) = 𝑁[ ](𝜀,ℱ𝑑, ∥ ⋅ ∥𝑝), (2.4)

and the same equality holds for metric entropy. Thus, for convenience, we will call
ℱ𝑡,𝐼 a compression of ℱ𝑑 onto 𝐼, and call the quantity 𝑡(𝑏− 𝑎)1/𝑝 its compression
factor.

This scaling property of compressions is key to our approach in this paper.
To explain how we will use this property. Let us consider a probability distribution
𝐹 on the unit square [0, 1]2. If we cut the square into two rectangles [0, 12 ] × [0, 1]

and (12 , 1] × [0, 1], then the restriction of 𝐹 on the left rectangle belongs to a
compression of ℱ2 onto the left rectangle, while the restriction of 𝐹 on the right
rectangle is a function that belongs to a compression of ℱ2 onto the right rectangle,
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plus a lower-dimensional distribution function (which is described fully in the
sentence following (2.10)). The scaling property of compressions then enables us
to do iteration, and relate the bracketing entropy of ℱ2 to that of a class of lower-
dimensional distributions (ℱ1). In what follows, we will carefully develop this idea
in [0, 1]𝑑.

First, let us see how we should cut the cube [0, 1]𝑑. There are a few ways we
can cut it. For example, we cut it into two identical rectangular boxes. However, for
the convenience of later iteration, the best way is to cut [0, 1]𝑑 into [0, 𝑐𝜇]×[0, 1]𝑑−1

and (𝑐𝜇, 1] × [0, 1]𝑑−1, where the cutting point 𝑐𝜇 is defined by

𝑐𝜇 = inf{𝑥 ∈ [0, 1] : 𝜇([0, 𝑥] × [0, 1]𝑑−1) ≥ ℎ(𝑥)},
where

ℎ(𝑥) =
(1 − 𝑥)1/𝑝

𝑥1/𝑝 + (1 − 𝑥)1/𝑝
.

(If we use Lemma 2.1, we only need to consider the case when 𝜇([0, 𝑥]) is a
continuous function, in which case, 𝑐𝜇 is the unique solution to the equation
𝜇([0, 𝑥] × [0, 1]𝑑−1) = ℎ(𝑥).) With the cutting point 𝑐𝜇 defined this way, we have

𝜇([0, 𝑐𝜇) × [0, 1]𝑑−1)𝑐1/𝑝𝜇 ≤ ℎ(𝑐𝜇)𝑐1/𝑝𝜇 ,

[1 − 𝜇([0, 𝑐𝜇] × [0, 1]𝑑−1)](1 − 𝑐𝜇)1/𝑝 ≤ ℎ(𝑐𝜇)𝑐1/𝑝𝜇 .

(Note that in the first inequality, the interval is [0, 𝑐𝜇), not [0, 𝑐𝜇]. Of course, this
makes no difference when 𝜇 ≪ 𝜆.)

It is straightforward to check that 𝑥
1
𝑝ℎ(𝑥) ≤ 2−

1
𝑝−1. Indeed, because

𝑥
1
𝑝ℎ(𝑥) =

𝑥
1
𝑝 (1 − 𝑥)

1
𝑝

𝑥
1
𝑝 + (1 − 𝑥)

1
𝑝

=
1

𝑥−
1
𝑝 + (1 − 𝑥)−

1
𝑝

.

The inequality follows immediately from the convexity of the function 𝑥−
1
𝑝 . Thus,

𝜇([0, 𝑐𝜇) × [0, 1]𝑑−1)𝑐1/𝑝𝜇 ≤ 2−
1
𝑝−1, (2.5)

[1 − 𝜇([0, 𝑐𝜇] × [0, 1]𝑑−1)](1 − 𝑐𝜇)1/𝑝 ≤ 2−
1
𝑝−1. (2.6)

The location of 𝑐𝜇 depends on the specific distribution function 𝐹𝜇, and could
be anywhere in [0, 1]. In order to obtain information about the location, we need
to divide ℱ𝑑 into distinct groups according to the location of 𝑐𝜇. Let 𝑛 be a large
positive integer to be determined later. For each 𝐹𝜇 ∈ ℱ𝑑, if 𝑐𝜇 < 1, then there

exists a unique 𝑘, 1 ≤ 𝑘 ≤ 𝑛, such that 𝑐𝜇 ∈ [𝑘−1𝑛 , 𝑘𝑛 ). Thus, if we define

𝒢𝑘 =

{
𝐹𝜇 ∈ ℱ𝑑 :

𝑘 − 1

𝑛
≤ 𝑐𝜇 <

𝑘

𝑛

}
, 𝑘 = 1, 2, . . . , 𝑛− 1,

and

𝒢𝑛 =

{
𝐹𝜇 ∈ ℱ𝑑 :

𝑛− 1

𝑛
≤ 𝑐𝜇 ≤ 1

}
,

then, 𝒢𝑘, 𝑘 = 1, 2, . . . , 𝑛 form a partition of ℱ𝑑.
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For each 1 ≤ 𝑘 ≤ 𝑛, we denote

𝐼𝑘 =

[
0,

𝑘 − 1

𝑛

)
× [0, 1]𝑑−1,

𝐽𝑘 =

[
𝑘 − 1

𝑛
,
𝑘

𝑛

]
× [0, 1]𝑑−1,

𝐾𝑘 =

(
𝑘

𝑛
, 1

]
× [0, 1]𝑑−1.

(𝐼1 and 𝐾𝑛 are empty sets.) When 𝑛 is large, 𝐽𝑘 is a thin slab. It separates the
two rectangular boxes 𝐼𝑘 and 𝐾𝑘.

For each 𝐹𝜇 ∈ 𝒢𝑘, if we define 𝜇1, 𝜇2, 𝜇3 as the restriction of 𝜇 on 𝐼𝑘, 𝐽𝑘 and
𝐾𝑘 respectively, then we can write

𝐹𝜇 = 𝐹𝜇11𝐼𝑘 + 𝐹𝜇1+𝜇21𝐽𝑘 + 𝐹𝜇31𝐾𝑘
+ 𝐹𝜇1+𝜇21𝐾𝑘

.

We denote

ℐ𝑘 = {𝐹𝜇11𝐼𝑘 : 𝐹𝜇 ∈ 𝒢𝑘}, 𝒥𝑘 = {𝐹𝜇1+𝜇21𝐽𝑘 : 𝐹𝜇 ∈ 𝒢𝑘},
𝒦𝑘 = {𝐹𝜇31𝐾𝑘

: 𝐹𝜇 ∈ 𝒢𝑘}, ℳ𝑘 = {𝐹𝜇1+𝜇21𝐾𝑘
: 𝐹𝜇 ∈ 𝒢𝑘},

where ℐ1 and 𝒦𝑛 are defined by {0}. If we denote 𝒮𝑘 = ℐ𝑘 +𝒥𝑘 +𝒦𝑘 +ℳ𝑘, then
𝒢𝑘 ⊂ 𝒮𝑘, and consequently, ℱ𝑑 ⊂ ∪𝑛𝑘=1𝒮𝑘. Hence,

𝑁[ ](𝜀,ℱ𝑑, ∥ ⋅ ∥𝑝) ≤
∑𝑛

𝑘=1
𝑁[ ](𝜀,𝒮𝑘, ∥ ⋅ ∥𝑝). (2.7)

Now, we take a closer look at ℐ𝑘,𝒥𝑘,𝒦𝑘 and ℳ𝑘.
Firstly, for 𝑘 = 2, 3, . . . , 𝑛, by the definitions of 𝐼𝑘 and (2.5), we see that for

every 𝐹𝜇 ∈ 𝒢𝑘,

𝜇1(𝐼𝑘) ≤ 𝜇1([0, 𝑐𝜇) × [0, 1]𝑑−1) ≤ 2−
1
𝑝−1[(𝑘 − 1)/𝑛]−1/𝑝.

Thus, ℐ𝑘 is a subset of ℱ𝑡,𝐼𝑘 with 𝑡 = 2−
1
𝑝−1[(𝑘−1)/𝑛]−1/𝑝. That is, ℐ𝑘 is contained

in the compression of ℱ𝑑 onto 𝐼𝑘 with the compression factor 2−
1
𝑝−1. Hence, by

(2.4), for any 0 < 𝜂 < 1,

𝑁[ ](2
− 1
𝑝−1𝜂, ℐ𝑘, ∥ ⋅ ∥𝑝) ≤ 𝑁[ ](𝜂,ℱ𝑑, ∥ ⋅ ∥𝑝). (2.8)

The inequality trivially holds for the case 𝑘 = 1.
Similarly, for 𝑘 = 1, 2, . . . , 𝑛 − 1, and every 𝐹𝜇 ∈ 𝒢𝑘, by using definitions of

𝐾𝑘 and (2.6), we have

𝜇3(𝐾𝑘) ≤ [1 − 𝜇([0, 𝑐𝜇] × [0, 1]𝑑−1)] ≤ 2−
1
𝑝−1[1 − 𝑘/𝑛]−1/𝑝

Thus, 𝒦𝑘 is a subset of ℱ𝑠,𝐾𝑘
with 𝑠 = 2−

1
𝑝−1[1−𝑘/𝑛]−1/𝑝. That is, 𝒦𝑘 is contained

in the compression of ℱ𝑑 onto 𝐾𝑘 with the compression factor 2−
1
𝑝−1. Hence, by

(2.4), for any 0 < 𝜂 < 1,

𝑁[ ](2
− 1
𝑝−1𝜂,𝒦𝑘, ∥ ⋅ ∥𝑝) ≤ 𝑁[ ](𝜂,ℱ𝑑, ∥ ⋅ ∥𝑝). (2.9)

The inequality trivially holds for 𝑘 = 𝑛.
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Secondly, because the functions in 𝒥𝑘 are non-negative, bounded by 1, and
supported on 𝐽𝑘, the class 𝒥𝑘 can be covered by a single bracket [0, 1𝐽𝑘 ]. Since 𝐽𝑘
is a thin slab of thickness 1/𝑛, we have ∥1𝐽𝑘 − 0∥𝑝 = 𝑛−1/𝑝. Thus, [0, 1𝐽𝑘 ] is an

𝑛−1/𝑝-bracket, and consequently we have

𝑁[ ](𝑛
− 1
𝑝 ,𝒥𝑘, ∥ ⋅ ∥𝑝) = 1. (2.10)

Finally, ℳ𝑘 can be viewed as a class of lower-dimensional distributions. In-
deed, if we define 𝜈 on [0, 1]𝑑−1 such that for any Borel set in [0, 1]𝑑−1,

𝜈(𝐴) = (𝜇1 + 𝜇2)([0, 𝑘/𝑛]× 𝐴),

then for any (𝑥1, 𝑥2, . . . , 𝑥𝑑) ∈ 𝐾𝑘,

𝐹𝜇1+𝜇2(𝑥1, 𝑥2, . . . , 𝑥𝑑) = 𝐹𝜈(𝑥2, 𝑥3, . . . , 𝑥𝑑).

Thus, by using (2.1), we have for any 𝛿, 𝜂 > 0,

𝑁[ ](2
− 1
𝑝−1𝛿𝜂,ℳ𝑘, ∥ ⋅ ∥𝑝) ≤ 𝑁[ ](2

− 1
𝑝−1𝛿𝜂,ℱ ′

𝑑−1, ∥ ⋅ ∥𝑝)
= 𝑁[ ](2

− 1
𝑝−1𝛿𝜂,ℱ𝑑−1, ∥ ⋅ ∥𝑝). (2.11)

Now we use (2.8), (2.9), (2.10) and (2.11) to estimate the number of brackets
needed to cover 𝒮𝑘. For convenience, we denote

𝑁𝐼 = 𝑁[ ](2
− 1
𝑝−1𝜂, ℐ𝑘, ∥ ⋅ ∥𝑝),

𝑁𝐾 = 𝑁[ ](2
− 1
𝑝−1𝜂,𝒦𝑘, ∥ ⋅ ∥𝑝),

𝑁𝑀 = 𝑁[ ](2
− 1
𝑝−1𝛿𝜂,ℳ𝑘, ∥ ⋅ ∥𝑝).

Suppose {[𝑓𝑖, 𝑓
∗
𝑖 ]}𝑁𝐼𝑖=1 and {[𝑔𝑗 , 𝑔

∗
𝑗 ]}𝑁𝐾𝑗=1 are 2−

1
𝑝−1𝜂-brackets that cover ℐ𝑘, and

𝒦𝑘, respectively. Let [ℎ, ℎ∗] = [0, 1𝐽𝑘 ] be the 𝑛−
1
𝑝 -bracket that cover 𝒥𝑘, and

{[𝑚𝑖,𝑚
∗
𝑖 ]}𝑁𝑀𝑖=1 be 2−

1
𝑝−1𝛿𝜂-brackets that cover ℳ𝑘. Define

ℬ𝑘 = {[𝑓𝑖+𝑔𝑗 + ℎ + 𝑚𝑙, 𝑓
∗
𝑖 + 𝑔∗𝑗 + ℎ∗ + 𝑚∗

𝑙 ] :

1 ≤ 𝑖 ≤ 𝑁𝐼 , 1 ≤ 𝑗 ≤ 𝑁𝐽 , 1 ≤ 𝑙 ≤ 𝑁𝑀}.
Then, ℬ𝑘 cover 𝒮𝑘. Indeed, for any 𝐹𝜇 ∈ 𝒮𝑘, we can write

𝐹𝜇 = 𝐹𝐼 + 𝐹𝐽 + 𝐹𝐾 + 𝐹𝑀 , 𝐹𝐼 ∈ ℐ𝑘, 𝐹𝐽 ∈ 𝒥𝑘, 𝐹𝐾 ∈ 𝒦𝑘, 𝐹𝑀 ∈ℳ𝑘.

By the assumptions given above, we have some 𝑖, 𝑗 and 𝑙 such that

𝐹𝐼 ∈ [𝑓𝑖, 𝑓
∗
𝑖 ], 𝐹𝐽 ∈ [ℎ, ℎ∗], 𝐹𝐾 = [𝑔𝑗, 𝑔

∗
𝑗 ], 𝐹𝑀 ∈ [𝑚𝑙,𝑚

∗
𝑙 ].

Hence

𝐹𝜇 ∈ [𝑓𝑖 + 𝑔𝑗 + ℎ + 𝑚𝑙, 𝑓
∗
𝑖 + 𝑔∗𝑗 + ℎ∗ + 𝑚∗

𝑙 ].

To estimate the width of each bracket in ℬ𝑘, we note that ℐ𝑘, 𝒥𝑘 and 𝒦𝑘+ℳ𝑘

have disjoint supports, so we can assume that the brackets cover them also have
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disjoint supports. Thus,

∥(𝑓∗𝑖 + 𝑔∗𝑗 + ℎ∗ + 𝑚∗
𝑙 ) − (𝑓𝑖 + 𝑔𝑗 + ℎ + 𝑚𝑙)∥𝑝

=
(∥𝑓∗𝑖 − 𝑓𝑖∥𝑝𝑝 + ∥ℎ∗ − ℎ∥𝑝𝑝 + ∥(𝑔∗𝑗 − 𝑔𝑗) + (𝑚∗

𝑙 −𝑚𝑙)∥𝑝𝑝
)1/𝑝

≤
(

𝜂𝑝

2𝑝+1
+

1

𝑛
+

𝜂𝑝

2𝑝+1
(1 + 𝛿)𝑝

)1/𝑝
≤ 1 + 𝛿

2
𝜂,

provided that we choose 𝛿 so that 𝑛−1 ≤ 2−𝑝−1(𝜂𝛿)𝑝. Thus, ℬ𝑘 are 1+𝛿
2 𝜂-brackets

that cover 𝒮𝑘.
Since ℬ𝑘 contains 𝑁𝐼𝑁𝐾𝑁𝑀 brackets, by using (2.8), (2.9) and (2.11) we

have

𝑁[ ](
1 + 𝛿

2
𝜂,𝒮𝑘, ∥ ⋅ ∥𝑝) ≤ 𝑁𝐼𝑁𝐾𝑁𝑀

≤ [𝑁[ ](𝜂,ℱ𝑑, ∥ ⋅ ∥𝑝)]2𝑁[ ](2− 1
𝑝−1𝛿𝜂,ℱ𝑑−1, ∥ ⋅ ∥𝑝). (2.12)

Now, we choose 𝛿 = 1
𝑚 and 𝜂 = 𝜂𝑚 := 𝑚2−𝑚+1, where 𝑚 is any positive integer

satisfying the inequality 𝑛−1 ≤ 2−𝑝−1(𝜂𝛿)𝑝 = 2−𝑝−1(2−𝑚+1)𝑝, that is

1 ≤ 𝑚 ≤ 𝑟 :=

⌊
log2 𝑛− 1

𝑝

⌋
. (2.13)

Then,

𝑁[ ](𝜂𝑚+1,𝒮𝑘, ∥ ⋅ ∥𝑝) ≤
[
𝑁[ ](𝜂𝑚,ℱ𝑑, ∥ ⋅ ∥𝑝)

]2
𝑁[ ](2

− 1
𝑝−𝑚,ℱ𝑑−1, ∥ ⋅ ∥𝑝).

Therefore, for 1 ≤ 𝑚 ≤ 𝑟, by using (2.7) we obtain the following iteration relation:

𝑁[ ](𝜂𝑚+1,ℱ𝑑, ∥ ⋅ ∥𝑝) ≤ 𝑛
[
𝑁[ ](𝜂𝑚,ℱ𝑑, ∥ ⋅ ∥𝑝)

]2
𝑁[ ](2

− 1
𝑝−𝑚,ℱ𝑑−1, ∥ ⋅ ∥𝑝).

To find the bracketing entropy of ℱ𝑑, we take logarithm to this iteration relation,
then multiply it by 2−𝑚, and denote

𝑓(𝑚) = 2−𝑚 log𝑁[ ](𝜂𝑚+1,ℱ𝑑, ∥ ⋅ ∥𝑝),
we obtain

𝑓(𝑚) ≤ 𝑓(𝑚− 1) + 2−𝑚 log𝑛 + 2−𝑚 log 𝑁[ ](2
− 1
𝑝−𝑚,ℱ𝑑−1, ∥ ⋅ ∥𝑝),

which is valid for all 1 ≤ 𝑚 ≤ 𝑟. Telescoping, and using the fact that 𝑓(0) = 0, we
obtain

𝑓(𝑟) ≤ log𝑛 +

𝑟∑
𝑚=1

2−𝑚 log 𝑁[ ](2
− 1
𝑝−𝑚,ℱ𝑑−1, ∥ ⋅ ∥𝑝).

Multiplying by 2𝑟, using the definition of 𝑓(𝑟) and recalling 𝜂𝑟 = 𝑟2−𝑟+1, we obtain

log𝑁[ ]((𝑟 + 1)2−𝑟,ℱ𝑑, ∥ ⋅ ∥𝑝)

≤ 2𝑟 log𝑛 + 2𝑟
𝑟∑

𝑚=1

2−𝑚 log𝑁[ ](2
− 1
𝑝−𝑚,ℱ𝑑−1, ∥ ⋅ ∥𝑝). (2.14)
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By the definition of 𝑟 in(2.13), we have log𝑛 ≤ log2 𝑛 ≤ 𝑝𝑟 + 𝑝 + 1. Hence,

log𝑁[ ]((𝑟 + 1)2−𝑟,ℱ𝑑, ∥ ⋅ ∥𝑝)

≤ (𝑝𝑟 + 𝑝 + 1)2𝑟 + 2𝑟
𝑟∑

𝑚=1

2−𝑚 log𝑁[ ](2
− 1
𝑝−𝑚,ℱ𝑑−1, ∥ ⋅ ∥𝑝). (2.15)

As mentioned in the introduction, it is known that there exists a constant 𝐶1
depending only on 𝑝 such that for all 0 < 𝑡 < 1,

log 𝑁[ ](𝑡,ℱ1, ∥ ⋅ ∥𝑝) ≤ 𝐶1𝑡
−1

Applying this to (2.15) for 𝑑 = 2, we obtain,

log𝑁[ ]((𝑟 + 1)2−𝑟,ℱ2, ∥ ⋅ ∥𝑝) ≤ (𝑝𝑟 + 𝑝 + 1)2𝑟 + 𝐶𝑟2𝑟,

where 𝐶 is a constant depending only on 𝑝. For any 0 < 𝜀 < 1, we choose 𝑟 to be
the smallest integer such that (𝑟 + 1)2−𝑟 ≤ 𝜀. Then, we have

log𝑁[ ](𝜀,ℱ2, ∥ ⋅ ∥𝑝) ≤ 𝐶2𝜀
−1∣ log 𝜀∣2. (2.16)

Note that by using (2.15) and induction, we immediately obtain

log 𝑁[ ](𝜀,ℱ𝑑, ∥ ⋅ ∥𝑝) ≤ 𝐶𝑑𝜀
−1∣ log 𝜀∣2(𝑑−1),

where 𝐶𝑑 is a constant depending only on 𝑝 and 𝑑.

3. Bounding bracketing entropy using metric entropy

Estimating bracketing entropy is typically difficult. Unlike metric entropy for which
Fourier analytic methods are standard tools, for bracketing entropy, besides the
connection with the ∥ ⋅ ∥∞ norm that has been discussed in the introduction, few
tools are available. Based on our results in the previous section, here we develop
a useful general method to estimate bracketing entropy for smooth functions. We
say that a class ℱ of multivariate functions on [0, 1]𝑑 is smooth if for each 𝑓 ∈ ℱ
and for all 0 ≤ 𝛼1, 𝛼2, . . . , 𝛼𝑑 ≤ 1, the derivative

𝐷𝛼1,𝛼2,...,𝛼𝑑𝑓 :=
∂𝛼1+𝛼2+⋅⋅⋅+𝛼𝑑𝑓

∂𝑥𝛼1
1 ∂𝑥𝛼2

2 ⋅ ⋅ ⋅∂𝑥𝛼𝑑𝑑
exists everywhere in [0, 1]𝑑, and is integrable. Clearly, many functions fall into this
category. Theorem 1.2 stated in the introduction says that in order to estimate the
bracketing entropy of ℱ in the 𝐿𝑝 norm, 1 ≤ 𝑝 < ∞, one only needs to study the
metric entropy of its derivative ℋ := {𝐷𝛼1,𝛼2,...,𝛼𝑑𝑓 : 0 ≤ 𝛼1, 𝛼2, . . . , 𝛼𝑑 ≤ 1, 𝑓 ∈
ℱ} in the 𝐿1 norm, which is much easier.

Now, we turn to the proof of Theorem 1.2.

Proof of Theorem 1.2: We first estimate the bracketing entropy of the class 𝒢 ⊂ ℱ
consisting of all the functions in ℱ that can be expressed as

𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑑) =

∫ 𝑥1

0

∫ 𝑥2

0

⋅ ⋅ ⋅
∫ 𝑥𝑑

0

𝐷1,1,...,1𝑔(𝑡1, 𝑡2, . . . , 𝑡𝑑)𝑑𝑡𝑑 ⋅ ⋅ ⋅ 𝑑𝑡2𝑑𝑡1. (3.1)
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By the assumption on the metric entropy of ℋ, we can find a set of functions ℎ𝑖,
1 ≤ 𝑖 ≤ 𝑚 = 𝑁(𝜀,ℋ, ∥ ⋅ ∥1) ≤ 𝑒𝜙(𝜀) that forms an 𝜀-net of ℋ in the ∥ ⋅ ∥1 norm.
For any 𝑔 ∈ 𝒢, 𝐷1,1,...,1𝑔 ∈ ℋ, so there exists ℎ𝑖 such that ∥𝐷1,1,...,1𝑔 − ℎ𝑖∥1 < 𝜀.
Of course, such ℎ𝑖 may not be unique. We will always choose the one with the
smallest index 𝑖. Thus, 𝑖 = 𝑖(𝑔) is a mapping from 𝒢 to {1, 2, . . . ,𝑚}. Denote
𝑇+𝑔 = max{𝐷1,1,...,1𝑔 − ℎ𝑖, 0} and 𝑇−𝑔 = max{ℎ𝑖 − 𝐷1,1,...,1𝑔, 0}. Then, 𝑇+𝑔
and 𝑇−𝑔 are non-negative and have 𝐿1 norms bounded by 𝜀, and 𝑇+𝑔 − 𝑇−𝑔 =
𝐷1,1,...,1𝑔 − ℎ𝑖. Now, for each 1 ≤ 𝑘 ≤ 𝑚, we define

𝒢+𝑘 =

{∫ 𝑥1

0

∫ 𝑥2

0

⋅ ⋅ ⋅
∫ 𝑥𝑑

0

𝑇+𝑔(𝑡1, 𝑡2, . . . , 𝑡𝑑)𝑑𝑡𝑑 ⋅ ⋅ ⋅ 𝑑𝑡2𝑑𝑡1 : 𝑖(𝑔) = 𝑘, 𝑔 ∈ 𝒢
}

,

𝒢−𝑘 =

{∫ 𝑥1

0

∫ 𝑥2

0

⋅ ⋅ ⋅
∫ 𝑥𝑑

0

𝑇−𝑔(𝑡1, 𝑡2, . . . , 𝑡𝑑)𝑑𝑡𝑑 ⋅ ⋅ ⋅ 𝑑𝑡2𝑑𝑡1 : 𝑖(𝑔) = 𝑘, 𝑔 ∈ 𝒢
}

.

Then

𝒢 ⊂
𝑚∪
𝑘=1

(𝒢+𝑘 − 𝒢−𝑘 + ℐℎ𝑘
)
,

where

ℐℎ𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑑) =

∫ 𝑥1

0

∫ 𝑥2

0

⋅ ⋅ ⋅
∫ 𝑥𝑑

0

ℎ𝑖(𝑡1, 𝑡2, . . . , 𝑡𝑑)𝑑𝑡𝑑 ⋅ ⋅ ⋅ 𝑑𝑡2𝑑𝑡1.

This implies that for any 𝜂 < 𝜀,

𝑁[ ](𝜂,𝒢, ∥ ⋅ ∥𝑝) ≤
𝑚∑
𝑘=1

𝑁[ ](𝜂/2,𝒢+𝑘 , ∥ ⋅ ∥𝑝)𝑁[ ](𝜂/2,𝒢−𝑘 , ∥ ⋅ ∥𝑝).

A crucial observation is that for each 1 ≤ 𝑘 ≤ 𝑚, 𝒢+𝑘 and 𝒢−𝑘 are subsets of

{𝐹𝜇 : 𝜇([0, 1]𝑑) ≤ 𝜀} = 𝜀ℱ ′
𝑑. Thus, by using (2.1), we have for all 1 ≤ 𝑘 ≤ 𝑚

𝑁[ ](𝜂,𝒢+𝑘 , ∥ ⋅ ∥𝑝) ≤ 𝑁[ ](𝜂, 𝜀ℱ ′
𝑑, ∥ ⋅ ∥𝑝) = 𝑁[ ](

𝜀

𝜂
,ℱ𝑑, ∥ ⋅ ∥𝑝),

𝑁[ ](𝜂,𝒢−𝑘 , ∥ ⋅ ∥𝑝) ≤ 𝑁[ ](𝜂, 𝜀ℱ ′
𝑑, ∥ ⋅ ∥𝑝) = 𝑁[ ](

𝜀

𝜂
,ℱ𝑑, ∥ ⋅ ∥𝑝).

Hence

𝑁[ ](𝜂,𝒢, ∥ ⋅ ∥𝑝) ≤ 𝑚
[
𝑁[ ](

𝜂

𝜀
,ℱ𝑑, ∥ ⋅ ∥𝑝)

]2
.

Applying Theorem 1.1, we then obtain

log𝑁[ ](𝜂,𝒢, ∥ ⋅ ∥𝑝) ≤ 𝜙(𝜀) + 𝐶(𝑝, 𝑑)
𝜀

𝜂

[
log

𝜀

𝜂

]2(𝑑−1)
, (3.2)

where 𝐾(𝑑, 𝑝) is a positive constant depending only on 𝑑 and 𝑝. In particular, if
we choose 𝜂 and 𝜀 so that

𝜙(𝜀) =
𝜀

𝜂

[
log

𝜀

𝜂

]2(𝑑−1)
,
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Then, we obtain

log𝑁[ ](𝜂,𝒢, ∥ ⋅ ∥𝑝) ≤ 𝐾(𝑑, 𝑝) ⋅ 𝑟(𝜂)[log 𝑟(𝜂)]2(𝑑−1), (3.3)

where 𝐾(𝑑, 𝑝) is a positive constant depending only on 𝑑 and 𝑝, and 𝑟(𝜂) is the
solution to the equation

𝜙(𝑟𝜂) = 𝑟[log 𝑟]2(𝑑−1).

This gives the estimate for the bracketing entropy of the subclass 𝒢. Note that the
functions in 𝒢 has 𝑑-variables. For clarity, we denote 𝒢 by 𝒢𝑑.

To estimate the bracketing entropy of ℱ , we notice that for any 𝑓 ∈ ℱ , we
can write

𝑓 = 𝑔𝑑 + 𝑐𝑑−1𝑔𝑑−1 + 𝑐𝑑−2𝑔𝑑−2 + ⋅ ⋅ ⋅ + 𝑐1𝑔1 + 𝑐0,

where 𝑔𝑖 ∈ 𝒢𝑖, 1 ≤ 𝑖 ≤ 𝑑, and the coefficients 𝑐0, 𝑐1, . . . , 𝑐𝑑−1 are bounded. Since
for all 1 ≤ 𝑖 ≤ 𝑑 − 1, the bracketing entropy of 𝒢𝑖 has a lower order than
𝑟(𝜂)[log 𝑟(𝜂)]2(𝑑−1), a standard argument shows that ℱ and 𝒢𝑑 have the same
rate of bracketing entropy. This finishes the proof of Theorem 1.2. □
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Slepian’s Inequality, Modularity
and Integral Orderings

J. Hoffmann-Jørgensen

Abstract. Slepian’s inequality comes in many variants under different sets of
regularity conditions. Unfortunately, some of these variants are wrong and
other variants are imposing to strong regularity conditions. The first part of
this paper contains a unified version of Slepian’s inequality under minimal
regularity conditions, covering all the variants I know about. It is well known
that Slepian’s inequality is closely connected to integral orderings in general
and the supermodular ordering in particular. In the last part of the paper
I explore this connection and corrects some results in the theory of integral
orderings.
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1. Introduction

Throughout this paper, we let (Ω,ℱ , 𝑃 ) denote a fixed probability space. If 𝑘 ≥ 1
is an integer, we set [𝑘] := {1, . . . , 𝑘}. If 𝑋 = (𝑋1, . . . , 𝑋𝑘) is a random vector
such that 𝑋1, . . . , 𝑋𝑘 ∈ 𝐿2(𝑃 ), we let 𝑋̄𝑖 := 𝑋𝑖−𝐸𝑋𝑖 denote the centered random
variables for 𝑖 ∈ [𝑘] and we let Σ𝑋 = {𝜎𝑋𝑖𝑗 } and Π𝑋 = {𝜋𝑋𝑖𝑗 } denote the covariance
matrix and intrinsic metric of 𝑋 ; that is:

𝜎𝑋𝑖𝑗 := 𝐸(𝑋̄𝑖𝑋̄𝑗) 𝑎𝑛𝑑 𝜋𝑋𝑖𝑗 := 𝐸(𝑋̄𝑖 − 𝑋̄𝑗)
2 ∀ 𝑖, 𝑗 ∈ [𝑘].

Note that 𝜋𝑋𝑖𝑗 = 𝜎𝑋𝑖𝑖 + 𝜎𝑋𝑗𝑗 − 2 𝜎𝑋𝑖𝑗 for all 𝑖, 𝑗 ∈ [𝑘] and that 𝑑(𝑖, 𝑗) :=
√

𝜋𝑋𝑖𝑗 is a

Hilbertian pseudo-metric on [𝑘].

It is well known that Slepian’s inequality is an important tool in the theory of
Gaussian processes. Let 𝑋 = (𝑋1, . . . , 𝑋𝑘) and 𝑌 = (𝑌1, . . . , 𝑌𝑘) be 𝑘-dimensional
Gaussian vectors with zero means. Slepian’s inequality comes in many variants;
see [2, 6, 7, 9, 10, 12, 16, 18], but in essence it states that 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋) for all
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𝑓 : R𝑘 → R satisfying

(𝜎𝑋𝑖𝑗 − 𝜎𝑌𝑖𝑗 )
∂2𝑓

∂𝑥𝑖∂𝑥𝑗
(𝑥) ≥ 0 or (𝜋𝑌𝑖𝑗 − 𝜋𝑋𝑖𝑗 ) ∂2𝑓

∂𝑥𝑖∂𝑥𝑗
(𝑥) ≥ 0 ∀𝑖, 𝑗 (1.1)

plus some regularity conditions. Condition (1.1) indicates that 𝑓 should be suffi-
ciently smooth (at least twice differentiable), but Slepian’s inequality is often used
for indicator functions which are not even continuous. In most of the literature
the indicator case and the smooth case are treated separately. The most general
form of Slepian’s inequality is found in [7] and [9] where (1.1) is interpreted in the
sense of Schwartz distributions. However, Theorem 3.11 on p. 74 in [9] is false as
it stands:

Example A: Let 𝑘 ≥ 2 be an integer, let 𝑈,𝑈1, . . . , 𝑈𝑘 be independent 𝑁(0, 1)-
distributed random variables and set 𝑋 = (𝑈, . . . , 𝑈) and 𝑌 = (𝑈1, . . . , 𝑈𝑘). Then
𝑋 and 𝑌 are Gaussian random vectors such that 𝜎𝑌𝑖𝑖 = 𝜎𝑋𝑖𝑖 and 𝜎𝑌𝑖𝑗 = 0 < 1 = 𝜎𝑋𝑖𝑗
for 1 ≤ 𝑖 ∕= 𝑗 ≤ 1. Let 𝐷 := {𝑥 ∈ R𝑘 ∣ 𝑥1 = ⋅ ⋅ ⋅ = 𝑥𝑘} denote the diagonal
in R𝑘 and set 𝑓 = −1𝐷. Since 𝑓 = 0 Lebesgue a.e. we have 𝐸𝑓(𝑌 ) = 0 and
∂2𝑓

∂𝑥𝑖∂𝑥𝑗
= 0 in distribution sense for all 1 ≤ 𝑖, 𝑗 ≤ 𝑘 and since 𝑃 (𝑋 ∈ 𝐷) = 1, we

have 𝐸𝑓(𝑋) = −1 showing that Theorem 3.11 on p. 74 in [9] fails in this case.
Many other counterexamples can be constructed in a similar manner.

This observation calls for a closer glance at the validity of Slepian’s inequality
and Section 2 of this paper will be devoted to establish a unified form of Slepian’s
inequality under minimal regularity conditions on 𝑓 .

Slepian’s inequality is intimately connected with integral orderings in general
and the supermodular ordering in particular. If 𝑆 and 𝑇 are sets, we let 2𝑆 denote
the set of all subsets of 𝑆, we let 𝑇 𝑆 denote the set of all functions from 𝑆 into 𝑇 ,
and we let 𝐵(𝑆) denote the set of all bounded, real-valued functions on 𝑆. Recall
that (𝑇,≤) is a proset if 𝑇 is a non-empty set and ≤ is a relation on 𝑇 such that
≤ is reflexive (𝑡 ≤ 𝑡 ∀ 𝑡 ∈ 𝑇 ) and transitive (𝑡 ≤ 𝑢 , 𝑢 ≤ 𝑣 ⇒ 𝑡 ≤ 𝑣).

Let (𝑆,𝒜) be a measurable space; that is, 𝑆 is a non-empty set and 𝒜 is a
𝜎-algebra on 𝑆. Then we let 𝑀(𝑆,𝒜) denote the set of all 𝒜-measurable functions
from 𝑆 into R and we let Pr(𝑆,𝒜) denote the set of all probability measures on
(𝑆,𝒜). Let Φ ⊆ 𝑀(𝑆,𝒜) be a given set of functions. Then it is customary to define
the Φ-integral ordering on Pr(𝑆,𝒜), denoted ≤Φ, as follows: 𝜇 ≤Φ 𝜈 if and only if∫
𝑆
𝜙𝑑𝜇 ≤ ∫

𝑆
𝜙𝑑𝜈 for all 𝜙 ∈ Φ∩𝐿1(𝜇)∩𝐿1(𝜈). Then ≤Φ is a relation on Pr(𝑆,ℬ)

which is reflexive but not transitive and exhibits strange properties:

Example B: Let 𝑆 = R and let ℬ denote the Borel 𝜎-algebra on R. Let Φ denote
the set of all increasing, convex functions 𝜙 : R → R. Let 𝜇 be a Borel probability
measure such that

∫
R
𝑥+ 𝜇(𝑑𝑥) = ∞. Then Φ ∩ 𝐿1(𝜇) is the set of all constant

functions and so we have 𝜇 ≤Φ 𝜈 and 𝜈 ≤Φ 𝜇 for all 𝜈 ∈ Pr(R,ℬ). In particular, we
see that ≤Φ is not transitive and that the integral ordering ≤Φ is not a preordering.

To avoid such peculiarities, I shall introduce a slight modification of the
Φ-integral ordering. If Φ ⊆ R𝑆 , we define the Φ-integral ordering on Pr(𝑆,𝒜),
denoted ⪯Φ, as follows 𝜇 ⪯Φ 𝜈 if and only if

∫ ∗
𝜙𝑑𝜇 ≤ ∫ ∗ 𝜙𝑑𝜈 for all 𝜙 ∈ Φ,
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where
∫ ∗

𝑓 𝑑𝜇 denotes the upper 𝜇-integral of 𝑓 . Then (Pr(𝑆,𝒜),⪯Φ) is a proset.
If (Ω,ℱ , 𝑃 ) is a probability space and 𝑋,𝑌, 𝑍 : (Ω,ℱ) → (𝑆,𝒜) are measurable
functions, we let 𝑃𝑍(𝐴) = 𝑃 (𝑍 ∈ 𝐴) for 𝐴 ∈ 𝒜 denote the distribution of 𝑍 and
we write 𝑋 ⪯Φ 𝑌 if 𝑃𝑋 ⪯Φ 𝑃𝑌 . Note that 𝜇 ⪯Φ 𝜈 ⇒ 𝜇 ≤Φ 𝜈 and that the
converse implication holds if Φ ⊆ 𝐿1(𝜇)∩𝐿1(𝜈). In Section 3 we shall take a closer
look at integral orderings,

The classical stochastic ordering on R, usually denoted ⪯st, is the integral
ordering induced by the indicator functions {1[𝑎,∞) ∣ 𝑎 ∈ R}; that is 𝜇 ⪯st 𝜈
if and only if 𝜇([𝑎,∞)) ≤ 𝜈([𝑎,∞)) for all 𝑎 ∈ R. More generally, let (𝑆,≤) be
a proset. Then we let In(𝑆,≤) denote the set of all increasing functions from 𝑆
into R and we say that 𝐴 ⊆ 𝑆 is an upper interval if 1𝐴 ∈ In(𝑆,≤). We define
the stochastic ordering on 𝑆, denoted ⪯st, to be the integral ordering induced by
indicators of upper intervals; that is, 𝜇 ⪯st 𝜈 if and only if 𝜇∗(𝐴) ≤ 𝜈∗(𝐴) for
every upper interval 𝐴 ⊆ 𝑆. If 𝑢 ∈ 𝑆, we define the upper and lower intervals
[𝑢, ∗] := {𝑠 ∈ 𝑆 ∣ 𝑠 ≥ 𝑢} and [∗, 𝑢] := {𝑠 ∈ 𝑆 ∣ 𝑠 ≤ 𝑢} and we define the orthant
ordering, denoted ⪯or, to be the integral ordering induced by {1[𝑢,∗] ∣ 𝑢 ∈ 𝑆}; that
is, 𝜇 ⪯or 𝜈 if and only if 𝜇∗([𝑢, ∗]) ≤ 𝜈∗([𝑢, ∗]) for all 𝑢 ∈ 𝑆.

Let 𝑘 ≥ 1 be an integer. Then we let ≤ denote the product ordering on
R𝑘; that is, (𝑥1, . . . , 𝑥𝑘) ≤ (𝑦1, . . . , 𝑦𝑘) if and only if 𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖 = 1, . . . , 𝑘.
If 𝑥 = (𝑥1, . . . , 𝑥𝑘) and 𝑦 = (𝑦1, . . . , 𝑦𝑘) are vectors, we define the lattice infi-
mum and supremum as usual 𝑥 ∧ 𝑦 := (min(𝑥1, 𝑦1), . . . ,min(𝑥𝑘, 𝑦𝑘)) and 𝑥 ∨ 𝑦 :=
(max(𝑥1, 𝑦1), . . . ,max(𝑥𝑘, 𝑦𝑘)), and we define [𝑥, 𝑦] = {𝑧 ∈ R𝑘 ∣ 𝑥 ≤ 𝑧 ≤ 𝑦}.
We let ℬ𝑘 denote the Borel 𝜎-algebra on R𝑘. Let 𝑓 : R𝑘 → R be a given func-
tion. Then we say that 𝑓 is increasing (decreasing) if 𝑓 is increasing (decreas-
ing) with respect to the product ordering ≤. We say that 𝑓 is supermodular if
𝑓(𝑥) + 𝑓(𝑦) ≤ 𝑓(𝑥 ∨ 𝑦) + 𝑓(𝑥 ∧ 𝑦) for all 𝑥, 𝑦 ∈ R𝑘, we say that 𝑓 is submodular
if (−𝑓) is supermodular, and we say that 𝑓 is modular if 𝑓 is supermodular and
submodular. We define the following function spaces

sm(R𝑘) = {𝑓 ∈ 𝑀(R𝑘,ℬ𝑘) ∣ 𝑓 is supermodular }
m(R𝑘) = {𝑓 ∈ 𝑀(R𝑘,ℬ𝑘) ∣ 𝑓 is modular } , bm(R𝑘) = 𝐵(R𝑘) ∩ m(R𝑘)

bsm(R𝑘) = 𝐵(R𝑘) ∩ sm(R𝑘) , ism(R𝑘) = In(R𝑘,≤) ∩ sm(R𝑘)

and we let ⪯sm, ⪯bm, ⪯m, ⪯bsm and ⪯ism denote the integral orderings induced
by sm(R𝑘), bm(R𝑘), m(R𝑘), bsm(R𝑘) and ism(R𝑘), respectively. If 𝑘 = 1, then
every function is supermodular and every increasing function is Borel measurable.
Hence, in all dimensions there exists non-measurable supermodular functions and
if 𝑘 ≥ 2, there exists non-measurable increasing functions. However, in Prop.4.3
below we shall see that an increasing supermodular function is Borel measurable.

Let 𝜇 be a Borel probability measure on R𝑘 and let 𝐹1, . . . , 𝐹𝑘 : R → [0, 1]
denote the one-dimensional marginal distribution functions of 𝜇. Then

𝐹 (𝑥1, . . . , 𝑥𝑘) := min(𝐹1(𝑥1), . . . 𝐹𝑘(𝑥𝑘))
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is a 𝑘-dimensional distribution function, and if 𝜆𝐹 is the associated Lebesgue-

Stieltjes measure, then 𝜆𝐹 is a Borel probability measure on R𝑘 with the same
one-dimensional marginals as 𝜇. By a theorem of A.H. Tchen (see [19]), we have∫
R𝑘 𝑓 𝑑𝜇 ≤ ∫R𝑘 𝑓 𝑑𝜆𝐹 for every supermodular function which is continuous, and

satisfies a certain (uniform) integrability condition. In Theorem 4.7, we shall see
that 𝜇 ⪯bsm 𝜆𝐹 . In the modern literature it is frequently claimed that 𝜇 ≤sm 𝜆𝐹
and that ≤sm coincide with ≤bsm; see for instance [10]. The following example
shows that both claims fail when 𝑘 ≥ 3.

Example C: (see [17]). Let 𝑈 be a strictly positive random variable with a one-sided
Cauchy distribution; that is, with distribution function 𝐹 given by:

𝐹 (𝑥) = 2
𝜋 arctan(𝑥) if 𝑥 > 0 and 𝐹 (𝑥) = 0 if 𝑥 ≤ 0

Since 𝑈 is strictly positive, we may define 𝑉 := 1
𝑈 and 𝑊 := 1

2 ∣𝑈 − 𝑉 ∣. A
straightforward computation shows that 𝑈 , 𝑉 and 𝑊 all have distribution function
𝐹 and so we have 𝐹𝑈 (𝑥) = 𝐹𝑉 (𝑥) = 𝐹𝑊 (𝑥) = 𝐹 (𝑥) and 𝐹(𝑈,𝑈,𝑈)(𝑥, 𝑦, 𝑧) =
min(𝐹 (𝑥), 𝐹 (𝑦), 𝐹 (𝑧)) for all 𝑥, 𝑦, 𝑧 ∈ R. By [19] and Theorem 4.7 below, we
have that (𝑈, 𝑉,𝑊 ) ⪯bsm (𝑈,𝑈, 𝑈) and (𝑈, 𝑉,𝑊 ) ⪯ism (𝑈,𝑈, 𝑈). Set 𝑓(𝑥, 𝑦, 𝑧) =
𝑥 + 𝑦 − 2𝑧. Then 𝑓 is continuous, linear and modular and we have

𝑓(𝑈,𝑈, 𝑈) = 0 , 𝑓(𝑈, 𝑉,𝑊 ) = 2𝑈1{𝑈<1} + 2
𝑈 1{𝑈≥1}

0 < 𝑓(𝑈, 𝑉,𝑊 ) ≤ 2 , 𝐸𝑓(𝑈,𝑈, 𝑈) = 0 < 𝐸𝑓(𝑈, 𝑉,𝑊 ) = 2 log 2
𝜋 .

Hence, we see that (𝑈, 𝑉,𝑊 ) ∕≤sm (𝑈,𝑈, 𝑈) and (𝑈, 𝑉,𝑊 ) ∕≤m (𝑈,𝑈, 𝑈) which
shows the integrability condition in Theorem 5 of [19] cannot be removed and
that 𝜇 ⪯bsm 𝜈 does not imply 𝜇 ≤m 𝜈.

Let 𝑋 = (𝑋1, . . . , 𝑋𝑘) and 𝑌 = (𝑌1, . . . , 𝑌𝑘) be 𝑘-dimensional Gaussian vec-
tors with zero means and covariances {𝜎𝑋𝑖𝑗 } and {𝜎𝑌𝑖𝑗} such that 𝜎𝑌𝑖𝑖 = 𝜎𝑋𝑖𝑖 for all

1 ≤ 𝑖 ≤ 𝑘 and 𝜎𝑌𝑖𝑗 ≤ 𝜎𝑋𝑖𝑗 for all 1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘. Let 𝑓 be a supermodular, locally

Lebesgue integrable function. Then we have ∂2𝑓
∂𝑥𝑖∂𝑥𝑗

≥ 0 in distribution sense for all

1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘. So it is tempting to infer that Slepian’s inequality implies 𝑌 ⪯sm 𝑋 .
However Slepian’s inequality only shows that 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑌 ) if 𝑓 satisfies some
additional regularity conditions. It can be shown that 𝑌 ⪯bsm 𝑋 ; see Theorem 2.8
and Theorem 4.7, but Example C shows that 𝑌 ⪯bsm 𝑋 does not imply 𝑌 ⪯sm 𝑋
in general, and I don’t know if we really have 𝑌 ⪯sm 𝑋 if 𝑋 and 𝑌 are Gaussian
vectors satisfying the above hypotheses. However, Theorem 2.8 and Theorem 4.8
shows that 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋) for a large classs of unbounded supermodular func-
tions. Section 4 is devoted the study of the modular orderings introduced above.

2. Slepian’s inequality

In this section I shall prove a general version of Slepian’s inequality where the
partial derivatives are understood in the sense of Schwartz distributions. The idea
is to approximate the function 𝑓 : R𝑘 → R with infinitely often differentiable
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functions 𝑓1, 𝑓2, . . . satisfying Slepian’s inequality. The approximating sequence
will taken as the convolution integrals 𝑓𝑛(𝑥) =

∫
𝐾

𝑓(𝑥+ 𝑦
𝑛 )𝑔(𝑦) 𝑑𝑦 where 𝐾 ⊆ R𝑘

is a compact starshaped set and 𝑔 is a nonnegative infinitely often differentiable
function satisfying {𝑔 ∕= 0} ⊆ 𝐾 and

∫
𝐾

𝑔(𝑦) 𝑑𝑦 = 1. Below we shall see that if 𝑓
is locally Lebesgue integrable, then 𝑓𝑛 is an infinitely often differentiable function
inheriting many properties of 𝑓 and that 𝑓𝑛(𝑥) → 𝑓(𝑥) for all 𝑥 in a large subset
of R𝑘. However, this requires some preparatory definitions and lemmas.

Let 𝑆 be a set and let 𝜅 : 𝑆 → [0,∞] be a given function. If 𝑓 ∈ R𝑆 , we let
∣∣𝑓 ∣∣𝜅 := inf{𝑐 ∈ R+ ∣ ∣𝑓(𝑠)∣ ≤ 𝑐 𝜅(𝑠) ∀ 𝑠 ∈ 𝑆} denote the weighted sup-norm of
𝑓 ∈ R𝑆 with the usual convention inf ∅ := ∞. If Φ ⊆ R𝑆 is a set of functions, we
let Φ+ := Φ ∩ R𝑆

+ denote the set of all nonnegative functions in Φ. If 𝑆 and 𝑇
are topological spaces and 𝜙 : 𝑆 → 𝑇 is a given function, we let 𝐶(𝜙) denote the
continuity set of 𝜙; that is, the set of all 𝑠 ∈ 𝑆 such that 𝜙 is continuous at 𝑠.

Let 𝑘 ≥ 1 be an integer and set [𝑘] := {1, . . . , 𝑘}. We let 𝑒1, . . . , 𝑒𝑘 denote the
standard unit vectors in R𝑘. If 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘 and 𝑦 = (𝑦1, . . . , 𝑦𝑘) ∈ R𝑘,

we let ⟨𝑥, 𝑦⟩ =
∑𝑘

𝑖=1 𝑥𝑖𝑦𝑖 denote the inner product and we let ∣∣𝑥∣∣ = ⟨𝑥, 𝑥⟩1/2
denote the Euclidian norm. We let 𝜆𝑘 denote the 𝑘-dimensional Lebesgue measure
on R𝑘. We say that 𝑓 : R𝑘 → R is locally bounded if 𝑓 is bounded on every
compact subset of R𝑘, we say that 𝑓 is locally 𝜆𝑘-integrable if 1𝐶𝑓 ∈ 𝐿1(𝜆𝑘)
for every compact set 𝐶 ⊆ R𝑘, and we let 𝐿1loc(𝜆𝑘) denote the set of all locally
𝜆𝑘-integrable functions.

Let 𝑓 : R𝑘 → R be a given function. If 𝑖 ∈ [𝑘] and 𝑡 ∈ R, we let Δ𝑡
𝑖𝑓(𝑥) :=

𝑓(𝑥 + 𝑡𝑒𝑖) − 𝑓(𝑥) for 𝑥 ∈ R𝑘 denote the usual difference operator. If 𝜃 ∈ R𝑘,
we say that 𝑓 is 𝜃-differentiable at 𝑥 if 𝑡 ↷ 𝑓(𝑥 + 𝑡𝜃) is differentiable at 0

and if so we let ∂𝑓
∂𝜃 (𝑥) := lim𝑡→0 𝑡−1 (𝑓(𝑥 + 𝑡𝜃) − 𝑓(𝑥)) denote the directional 𝜃-

derivative of 𝑓 at 𝑥. In particular, we let ∂𝑓
∂𝑥𝑖

(𝑥) := lim𝑡→0 𝑡−1Δ𝑡
𝑖𝑓(𝑥) denote the

partial derivative whenever it exists. We say that 𝑓 is partially differentiable at
𝑥 if the partial derivatives ∂𝑓

∂𝑥𝑖
(𝑥) exists for all 𝑖 ∈ [𝑘] and if so we let ∇𝑓(𝑥) :=

( ∂𝑓
∂𝑥1

(𝑥), . . . , ∂𝑓
∂𝑥𝑘

(𝑥)) denote the gradient of 𝑓 . We say that 𝑓 is 𝜃-differentiable if 𝑓

is 𝜃-differentiable at all 𝑥 ∈ R𝑘 and we say that 𝑓 is continuously 𝜃-differentiable
if 𝑓 is 𝜃-differentiable and 𝑥 ↷

∂𝑓
∂𝜃 (𝑥) is continuous on R𝑘. We say that 𝑓 is

partially differentiable if 𝑓 is partially differentiable at all 𝑥 ∈ R𝑘. Recall that 𝑓 is
Fréchet differentiable at 𝑥 if the directional derivative ∂𝑓

∂𝜃 (𝑥) exists for all 𝜃 ∈ R𝑘

and ∂𝑓
∂𝜃 (𝑥) = ⟨𝜃,∇𝑓(𝑥)⟩ for all 𝜃 ∈ R𝑘. Recall that 𝑓 is differentiable at 𝑥 with

differential 𝐷 ∈ R𝑘 if lim𝜃→0 ∥𝜃∥−1∣𝑓(𝑥 + 𝜃) − 𝑓(𝑥) − ⟨𝐷, 𝜃⟩∣ = 0.

If 𝑖1, . . . , 𝑖𝑝 ∈ [𝑘], we let ∂𝑝𝑓
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑥) denote the 𝑝th order partial derivative

whenever it exists. We let 𝐶∞(R𝑘) denote the set of all infinitely often differen-
tiable functions 𝑓 : R𝑘 → R and if 𝜅 : R𝑘 → [0,∞] is a nonnegative function we
let 𝐶∞

𝜅 (R𝑘) denote the set of all 𝑓 ∈ 𝐶∞(R𝑘) satisfying

∥𝑓∥𝜅 < ∞ and
∥∥∥ ∂𝑝𝑓
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝

∥∥∥
𝜅
< ∞ ∀𝑝 ≥ 1 ∀𝑖1, . . . , 𝑖𝑝 ∈ [𝑘].
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In particular, we let 𝐶∞
𝑏 (R𝑘) denote the set of all bounded, infinitely often dif-

ferentiable functions with bounded derivatives of all orders. We let 𝐶∞∘∘(R𝑘) de-
note the set of all 𝑓 ∈ 𝐶∞(R𝑘) with compact support and we let 𝜛 denote the
usual inductive limit topology on 𝐶∞

∘∘(R𝑘); see [13]. We let 𝒟(R𝑘) denote the set
all Schwartz distributions ; that is, the set of all 𝜛-continuous linear functionals
𝜁 : 𝐶∞

∘∘(R𝑘) → R. If 𝜁 ∈ 𝒟(R𝑘), we write 𝜁 ≥ 0 if and only if 𝜁(𝜙) ≥ 0 for all
𝜙 ∈ 𝐶∞∘∘(R𝑘)+. If 𝑓 ∈ 𝐿1loc(𝜆𝑘), then 𝑓(𝜙) :=

∫
R𝑘 𝑓(𝑥)𝜙(𝑥) 𝑑𝑥 for 𝜙 ∈ 𝐶∞∘∘(R𝑘)

defines a Schwartz distribution corresponding to 𝑓 and if 𝑖1, . . . , 𝑖𝑝 ∈ [𝑘], then

∂𝑖1,...,𝑖𝑝𝑓(𝜙) := (−1)𝑝
∫
R𝑘

𝑓(𝑥) ∂𝑝𝜙
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑥) 𝑑𝑥 for 𝜙 ∈ 𝐶∞

∘∘(R𝑘)

defines a Schwartz distributions, which corresponds to the “the partial derivative”
∂𝑝𝑓

∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 .

Recall that 𝐾 ⊆ R𝑘 is starshaped if 0 ∈ 𝐾 and 𝛼𝑥 ∈ 𝐾 for all 𝑥 ∈ 𝐾 and all
0 ≤ 𝛼 ≤ 1. Let 𝐾 ⊆ R𝑘 be a bounded, starshaped Borel set and let 𝑥 ∈ R𝑘 be a
given vector. Then we say that 𝑓 is continuous at 𝑥 along 𝐾 if

lim
𝑛→∞

{
sup
𝑦∈𝐾

∣𝑓(𝑥 + 𝑦
𝑛 ) − 𝑓(𝑥)∣

}
= 0 (2.1)

and we let 𝐶𝐾(𝑓) denote the set of all 𝑥 ∈ R𝑘 satisfying (2.1). If 0 belongs to the
interior of 𝐾, then continuity along 𝐾 coincides with ordinary continuity. We say
that 𝑓 is right continuous at 𝑥 if 𝑓 is continuous at 𝑥 along the unit cube [0, 1]𝑘,
say that 𝑓 is left continuous at 𝑥 if 𝑓 is continuous at 𝑥 along the negative unit
cube [−1, 0]𝑘.

Let 𝐾 ⊆ R𝑘 be a bounded, starshaped Borel set. Then we say that 𝑓 is
approximately continuous at 𝑥 along 𝐾 if 𝑓 is locally 𝜆𝑘-integrable and

lim
𝑛→∞

∫
𝐾

∣𝑓(𝑥 + 𝑦
𝑛 ) − 𝑓(𝑥)∣ 𝑑𝑦 = 0. (2.2)

We let 𝐶𝐾
ap(𝑓) denote the set of all 𝑥 ∈ R𝑘 satisfying (2.2). Let 𝑓 ∈ 𝐿1loc(𝜆𝑘) be a

Borel function. By the Fubini-Tonelli theorem, we see that 𝐶𝐾
ap(𝑓) is a Borel set

containing 𝐶𝐾(𝑓) and by Theorem III.12.8 p. 217 in [1] we have 𝜆𝑘(R𝑘 ∖ 𝐶𝐾
ap(𝑓)) =

0.

If 𝑓, 𝑔 : R𝑘 → R are 𝜆𝑘-measurable and
∫
R𝑘 ∣𝑓(𝑥−𝑦) 𝑔(𝑦)∣ 𝑑𝑦 < ∞ for all 𝑥 ∈

R𝑘, we say that the convolution exists and we let (𝑓 ★𝑔)(𝑥) :=
∫
R𝑘 𝑓(𝑥−𝑦) 𝑔(𝑦) 𝑑𝑦

denote the convolution of 𝑓 and 𝑔.

Lemma 2.1. Let 𝑓 : R𝑘 → R be a locally 𝜆𝑘-integrable function and let 𝑔 : R𝑘 →
R be a bounded Lebesgue measurable function with compact support. Then the
convolution ℎ(𝑥) := (𝑓 ★ 𝑔)(𝑥) exists and is continuous on R𝑘 and if 𝜃 ∈ R𝑘 is a
given vector, we have

(1) If 𝑓 is 𝜃-differentiable and ∂𝑓
∂𝜃 ∈ 𝐿1loc(𝜆𝑘), then ℎ is continuously 𝜃-different-

iable and we have ∂ℎ
∂𝜃 (𝑥) = (∂𝑓∂𝜃 ★ 𝑔)(𝑥) ∀𝑥 ∈ R𝑘.
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(2) If 𝑔 is 𝜃-differentiable and ∂𝑔
∂𝜃 is bounded, then ℎ is continuously 𝜃-different-

iable and we have ∂ℎ
∂𝜃 (𝑥) = (𝑓 ★ ∂𝑔

∂𝜃 )(𝑥) ∀𝑥 ∈ R𝑘.

(3) If 𝑓 and 𝑔 are 𝜃-differentiable, ∂𝑓
∂𝜃 ∈ 𝐿1loc(𝜆𝑘) and ∂𝑔

∂𝜃 is bounded, then we
have ∫

R𝑘

∂𝑓
∂𝜃 (𝑥) ⋅ 𝑔(𝑦) 𝑑𝑦 = −

∫
R𝑘

𝑓(𝑦) ⋅ ∂𝑔∂𝜃 𝑔(𝑦) 𝑑𝑦.

Proof. Set 𝐵𝑟 := {𝑥 ∈ R𝑘 ∣ ∣∣𝑥∣∣ ≤ 𝑟} for 𝑟 ≥ 0. Since 𝑔 is bounded with compact
support, there exist 𝑎, 𝜌 > 0 such that ∣𝑔(𝑥)∣ ≤ 𝑎 for all 𝑥 ∈ R𝑘 and 𝑔(𝑥) = 0 for
all 𝑥 /∈ 𝐵𝜌. Since 𝑓 is locally 𝜆𝑘-integrable and ∣𝑓(𝑥−𝑦) 𝑔(𝑦)∣ ≤ 𝑎 ∣𝑓(𝑥−𝑦)∣ 1𝐵𝜌(𝑦),

we see that the convolution ℎ(𝑥) = (𝑓 ★ 𝑔)(𝑥) exists for all 𝑥 ∈ R𝑘. Let 𝑟 > 0 and
𝑥 ∈ 𝐵𝑟 be given. Then 𝑓𝑟 := 𝑓 1𝐵𝑟+𝜌 ∈ 𝐿1(𝜆𝑘) and we have 𝑓𝑟(𝑥 − 𝑦) 𝑔(𝑦) =

𝑓(𝑥− 𝑦) 𝑔(𝑦) for all 𝑦 ∈ R𝑘. Hence, we have (𝑓𝑟 ★ 𝑔)(𝑥) = ℎ(𝑥) for all 𝑥 ∈ 𝐵𝑟 and
by Theorem 1.1.6 p. 4 in [14], we have that 𝑓𝑟 ★ 𝑔 is continuous on R𝑘. Hence, we
see that ℎ is continuous on R𝑘.

Suppose that 𝑓 is 𝜃-differentiable and that ∂𝑓
∂𝜃 ∈ 𝐿1loc(𝜆𝑘). Let 𝑥 ∈ R𝑘 be

given. By the argument above we have that the convolutions ∂𝑓
∂𝜃 ★ 𝑔 and ∣∂𝑓∂𝜃 ∣ ★ 1𝐵𝑟

exist and are continuous on R𝑘 for all 𝑟 ≥ 0. Let 𝑥 ∈ R𝑘 be given. By the Fubini-
Tonelli theorem and locally boundedness of ∣∂𝑓∂𝜃 ∣ ★ 1𝐵𝑟 , there exists a 𝜆𝑘-null set

𝑁𝑥 such that 𝑠 ↷
∂𝑓
∂𝜃 (𝑥− 𝑦 + 𝑠𝜃) is locally 𝜆1-integrable on R for all 𝑦 /∈ 𝑁𝑥 and

we have ∫ 𝑡

0

(∂𝑓∂𝜃 ★ 𝑔)(𝑥 + 𝑠𝜃) 𝑑𝑠 =

∫ 𝑡

0

𝑑𝑠

∫
R𝑘

∂𝑓
∂𝜃 (𝑥− 𝑦 + 𝑠𝜃)𝑔(𝑦) 𝑑𝑦

=

∫
R𝑘

𝑑𝑦

∫ 𝑡

0

∂𝑓
∂𝜃 (𝑥 − 𝑦 + 𝑠𝜃) 𝑔(𝑦) 𝑑𝑠.

Let 𝑦 ∈ R𝑘∖𝑁𝑥 be given and set 𝐹𝑥,𝑦(𝑠) := 𝑓(𝑥−𝑦+𝑠𝜃). Then 𝐹𝑥,𝑦 is differentiable

with derivative 𝐹 ′
𝑥,𝑦(𝑠) = ∂𝑓

∂𝜃 (𝑥 − 𝑦 + 𝑠𝜃) and 𝐹 ′
𝑥,𝑦 is locally 𝜆1-integrable. By

a classical theorem of Denjoy and Banach (see Thm. IX.4.5 p. 271 and Thm.
IX.7.4 p. 284 in [15]), we see that 𝐹𝑥,𝑦 is absolutely continuous with Lebesgue

derivative 𝐹 ′
𝑥,𝑦. In particular, we have 𝐹𝑥,𝑦(𝑡) − 𝐹𝑥,𝑦(0) =

∫ 𝑡
0 𝐹

′
𝑥,𝑦(𝑠) 𝑑𝑠 and since∫

R𝑘 𝐹𝑥,𝑦(𝑠) 𝑔(𝑦) 𝑑𝑦 = ℎ(𝑥 + 𝑠𝜃), we have∫ 𝑡

0

(∂𝑓∂𝜃 ★ 𝑔)(𝑥 + 𝑠𝜃) 𝑑𝑠 =

∫
R𝑘

(𝐹𝑥,𝑦(𝑡) − 𝐹𝑥,𝑦(0)) 𝑔(𝑦) 𝑑𝑦 = ℎ(𝑥 + 𝑡𝜃) − ℎ(𝑥).

Since ∂𝑓
∂𝜃 ★ 𝑔 is continuous, we see that ℎ is continuously 𝜃-differentiable with

∂ℎ
∂𝜃 (𝑥) = (∂𝑓∂𝜃 ★ 𝑔)(𝑥) for all 𝑥 ∈ R𝑘. Thus, (1) is proved and (2) follows in the same
manner. Applying (1) and (2) on 𝑓(𝑦) and 𝑔(−𝑦) with 𝑥 = 0, we obtain (3). □

Lemma 2.2. Let 𝑓 : R𝑘 → R be a locally 𝜆𝑘-integrable function and let 𝐾 ⊆ R𝑘 be
starshaped, bounded Borel set. Let 𝑔 ∈ 𝐶∞

+ (R𝑘) be given such that {𝑔 ∕= 0} ⊆ 𝐾

and
∫
𝐾 𝑔(𝑦) 𝑑𝑦 = 1. Set 𝑔𝑛(𝑥) := 𝑛𝑘 𝑔(−𝑛𝑥) and 𝑓𝑛(𝑥) := (𝑓 ★ 𝑔𝑛)(𝑥) for 𝑛 ≥ 1



26 J. Hoffmann-Jørgensen

and 𝑥 ∈ R𝑘; see Lemma 2.1. Let 𝑝 ≥ 1 and 𝑖1, . . . , 𝑖𝑝 ∈ [𝑘] be given integers and
let us define

𝜅(𝑥) = sup
𝑦∈𝐾

∣𝑓(𝑥 + 𝑦)∣ ∀𝑥 ∈ R , 𝑐𝑖1...𝑖𝑝 = sup
𝑦∈𝐾

∣ ∂𝑝𝑔
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑦)∣.

Then 0 ≤ 𝑐11,...,𝑖𝑝 < ∞ and we have

(1) 𝑓𝑛 ∈ 𝐶∞(R𝑘) and 𝑓𝑛(𝑥) =

∫
R𝑘

𝑓(𝑥 + 𝑦
𝑛 )𝑔(𝑦)𝑑𝑦 ∀𝑥 ∈ R𝑘 ∀𝑛 ≥ 1.

(2) ∂𝑝𝑓𝑛
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑥) = (−𝑛)𝑝

∫
R𝑘

𝑓(𝑥 + 𝑦
𝑛 ) ∂𝑝𝑔

∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑦) 𝑑𝑦 ∀𝑥 ∈ R𝑘 ∀𝑛 ≥ 1.

(3) ∣𝑓𝑛(𝑥)∣ ≤ 𝜅(𝑥) and ∣ ∂𝑝𝑓𝑛
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑥)∣ ≤ 𝑐𝑖1...𝑖𝑝𝑛

𝑝𝜅(𝑥) ∀𝑥 ∈ R𝑘 ∀𝑛 ≥ 1.

(4) lim
𝑛→∞ 𝑓𝑛(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ 𝐶𝐾

ap(𝑓).

(5) lim
𝑛→∞

{
sup
𝑦∈𝐶

∫
𝐶

∣𝑓(𝑥 + 𝑦
𝑛 ) − 𝑓(𝑥)∣𝑑𝑥

}
= 0 for all compact sets 𝐶 ⊆ R𝑘.

(6) If 𝑓 is bounded with compact support, we have

lim
𝑛→∞

∫
R𝑘

∣(𝑓𝑛(𝑥) − 𝑓(𝑥))𝜓(𝑥)∣𝑑𝑥 = 0 ∀𝜓 ∈ 𝐿1loc(𝜆𝑘)

.

Proof. (1)–(2): Note that 𝑔, 𝑔𝑛, 𝐺 = ∂𝑝𝑔
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 and 𝐺𝑛 = ∂𝑝𝑔𝑛

∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 are infinitely

often differentiable with compact supports and we have

𝐺𝑛(𝑥) = (−1)𝑝 𝑛𝑘+𝑝𝐺(−𝑛𝑥).

So by Lemma 2.1 we see that 𝑓𝑛 ∈ 𝐶∞(R𝑘) and that ∂𝑝𝑓𝑛
∂𝑥𝑖1 ⋅⋅⋅∂𝑥𝑖𝑝 (𝑥) = 𝑓 ★ 𝐺𝑛.

Hence, we see that (1)–(2) follows from the substitution 𝑧 = − 𝑦
𝑛 .

(3): Let 𝑛 ≥ 1 be given. Since 𝐾 is starshaped, we have ∣𝑓(𝑥 + 𝑦
𝑛 )∣ ≤ 𝜅(𝑥)

for all (𝑥, 𝑦) ∈ R𝑘×𝐾 and since 𝑔 ≥ 0 and
∫
𝐾

𝑔(𝑦) 𝑑𝑦 = 1, we see that (3) follows
from (1)–(2).

(4): By (1), we have ∣𝑓𝑛(𝑥) − 𝑓(𝑥)∣ ≤ 𝑎
∫
𝐾
∣𝑓(𝑥 + 𝑦

𝑛 ) − 𝑓(𝑥)∣ 𝑑𝑦 where 𝑎 :=
sup𝑦∈𝐾 𝑔(𝑦). Since 𝑎 < ∞, we see that (4) holds.

(5): Let 𝑟, 𝜀 > 0 be given and set 𝐵𝑟 := {𝑥 ∈ R𝑘 ∣ ∣∣𝑥∣∣ < 𝑟}. Since 𝑓 ∈
𝐿1loc(𝜆𝑘), we have 𝑓𝑟 := 1𝐵1+𝑟 𝑓 ∈ 𝐿1(𝜆𝑘). By Theorem 1.1.5 in [14], there exists
0 < 𝛿 < 1 such that

∫
R𝑘 ∣𝑓𝑟(𝑥 + 𝑢) − 𝑓𝑟(𝑥)∣ 𝑑𝑥 < 𝜀 for all ∣∣𝑢∣∣ ≤ 𝛿. Let 𝑥, 𝑦 ∈ 𝐵𝑟

and 𝑛 ≥ 𝑟
𝛿 be given. Since ∣∣ 𝑦𝑛 ∣∣ ≤ 𝛿 < 1, we have 𝑥 ∈ 𝐵𝑟+1 and 𝑥 + 𝑦

𝑛 ∈ 𝐵𝑟+1 and
so we have 𝑓(𝑥) = 𝑓𝑟(𝑥) and 𝑓(𝑥 + 𝑦

𝑛 ) = 𝑓𝑟(𝑥 + 𝑦
𝑛 ). Hence, we have∫

𝐵𝑟

∣𝑓(𝑥 + 𝑦
𝑛 ) − 𝑓(𝑥)∣𝑑𝑥 ≤

∫
R𝑘

∣𝑓𝑟(𝑥 + 𝑦
𝑛 ) − 𝑓𝑟(𝑥)∣𝑑𝑥 ≤ 𝜀

for all 𝑛 ≥ 𝑟
𝛿 and all 𝑦 ∈ 𝐵𝑟. Since 𝑟 > 0 is arbitrary, we see that (5) holds.
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(6): Suppose that 𝑓 is bounded with compact support. Then

𝑏 := sup
𝑥∈R𝑘

∣𝑓(𝑥)∣ < ∞

and there exists 𝑟 > 0 such that {𝑓 ∕= 0} ∪ {𝑔 ∕= 0} ⊆ 𝐵𝑟. By (1), we see that
{𝑓𝑛 ∕= 0} ⊆ 𝐵2𝑟 and that ∣𝑓𝑛(𝑥)∣ ≤ 𝑏 1𝐵2𝑟(𝑥). By (4), we see that 𝑓𝑛(𝑥) → 𝑓(𝑥)
𝜆𝑘-a.e. and so we see that (6) follows from Lebesgue’s convergence theorem. □

Lemma 2.3. Let 𝑓 : R𝑘 → R be a locally 𝜆𝑘-integrable function and let 𝐾 ⊆ R𝑘 be
a starshaped, bounded Borel set. Let 𝑔 ∈ 𝐶∞

+ (R𝑘) be given such that {𝑔 ∕= 0} ⊆ 𝐾

and
∫
𝐾

𝑔(𝑦) 𝑑𝑦 = 1 and set 𝑓𝑛(𝑥) =
∫
𝐾

𝑓(𝑥 + 𝑦
𝑛 ) 𝑔(𝑦) 𝑑𝑦 for 𝑛 ≥ 1 and 𝑥 ∈ R𝑘;

see Lemma 2.2
Let 𝐴 = {𝑎𝑖𝑗} be a (𝑘 × 𝑘)-matrix and let ℋ𝐴 denote the set of all twice

partially differentiable functions ℎ : R𝑘 → [0,∞) with compact support such that ℎ,
∂ℎ
∂𝑥𝑖

and ∂2ℎ
∂𝑥𝑖∂𝑥𝑗

are locally 𝜆𝑘-integrable for all 𝑖, 𝑗 ∈ [𝑘] and
∑𝑘

𝑖=1

∑𝑘
𝑗=1 𝑎𝑖𝑗

∂2ℎ
∂𝑥𝑖∂𝑥𝑗

is bounded. Let 𝜖1, 𝛿1, 𝜖2, 𝛿2, . . . > 0 be positive numbers such that 𝜖𝑛 → 0 and
𝛿𝑛 → 0. Then the following four statements are equivalent:

(1)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗∂𝑖𝑗𝑓 ≥ 0.

(2)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗

∫
R𝑘

𝑓(𝑥) ∂2ℎ
∂𝑥𝑖∂𝑥𝑗

(𝑥)𝑑𝑥 ≥ 0 ∀ℎ ∈ ℋ𝐴.

(3)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗
∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) ≥ 0 ∀𝑥 ∈ R𝑘 ∀𝑛 ≥ 1.

(4)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗Δ
𝜖𝑛
𝑖 Δ𝛿𝑛

𝑗 𝑓(𝑥) ≥ 0 𝜆𝑘-a.e. ∀𝑛 ≥ 1.

In particular, we have

(5) If 𝑓 is convex and 𝐴 is nonnegative definite, then
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗∂𝑖𝑗𝑓 ≥ 0

and if 𝑓 is twice partially differentiable and 𝑓 , ∂𝑓
∂𝑥𝑖

and ∂2𝑓
∂𝑥𝑖∂𝑥𝑗

are locally 𝜆𝑘-

integrable for all 𝑖, 𝑗 ∈ [𝑘], then we have

(6)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗∂𝑖𝑗𝑓 ≥ 0 ⇔
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗
∂2𝑓

∂𝑥𝑖∂𝑥𝑗
(𝑥) ≥ 0 𝜆𝑘-a.e.

Proof. Set 𝜁 =
∑𝑘

𝑖=1

∑𝑘
𝑗=1 𝑎𝑖𝑗 ∂𝑖𝑗𝑓 , 𝐹𝑛(𝑥) =

∑𝑘
𝑖=1

∑𝑘
𝑗=1 𝑎𝑖𝑗

∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) and

𝑔𝑛(𝑥) = 𝑛𝑘 𝑔(−𝑛𝑥) for all 𝑥 ∈ R𝑘 and all 𝑛 ≥ 1.
(1) ⇒ (2): Suppose that 𝜁 ≥ 0 and let ℎ ∈ ℋ𝐴 be given. Set 𝐻(𝑥) =∑𝑘

𝑖=1

∑𝑘
𝑗=1 𝑎𝑖𝑗

∂2ℎ
∂𝑥𝑖∂𝑥𝑗

(𝑥). By Lemma 2.2 and local 𝜆𝑘-integrability of ℎ and 𝐻 , we

have that the convolutions ℎ𝑛 := ℎ★𝑔𝑛 and 𝐻𝑛 := 𝐻★𝑔𝑛 exist and satisfies (1)–(6)
in Lemma 2.2. Since ℎ is nonnegative with compact support, we have ℎ𝑛, 𝐻𝑛 ∈
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𝐶∞
∘∘(R𝑘) and ℎ𝑛 ≥ 0 and by Lemma 2.1, we have 𝐻𝑛 =

∑
𝑖,𝑗 𝑎𝑖𝑗

∂2ℎ𝑛
∂𝑥𝑖∂𝑥𝑗

. Since

𝜁 ≥ 0, we have 0 ≤ 𝜁(ℎ𝑛) =
∫
R𝑘 𝑓𝐻𝑛 𝑑𝜆𝑘 for all 𝑛 ≥ 1. Recall that 𝐻 is bounded

with compact support and that 𝑓 is locally 𝜆𝑘-integrable. So by Lemma 2.2.(6)
applied to the pair (𝑓, 𝜓) := (𝐻, 𝑓), we have

∫
R𝑘 𝑓𝐻 𝑑𝜆𝑘 = lim𝑛→∞ 𝜁(ℎ𝑛) ≥ 0.

(2) ⇒ (3): Suppose that (2) holds and let 𝑥 ∈ R𝑘 and 𝑛 ≥ 1 be given. Set
𝑔𝑛𝑥(𝑦) = 𝑔𝑛(𝑥− 𝑦) for 𝑦 ∈ R𝑘. By Lemma 2.1, we have

∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) =

∫
R𝑘

𝑓(𝑦) ∂2𝑔𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥− 𝑦)𝑑𝑦 =

∫
R𝑘

𝑓(𝑦) ∂2𝑔𝑛𝑥
∂𝑥𝑖∂𝑥𝑗

(𝑦)𝑑𝑦

and since 𝑔𝑛𝑥 ∈ ℋ𝐴, we see that (2) implies (3).
(3) ⇒ (4): Suppose that (3) holds and let 𝑛 ≥ 1 and 𝑢, 𝑣 > 0 be given. Since

𝑓𝑛 ∈ 𝐶∞(R𝑘), we have

Δ𝑢
𝑖 Δ𝑣

𝑗 𝑓𝑛(𝑥) =

∫ 𝑢

0

𝑑𝑠

∫ 𝑣

0

∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥 + 𝑠𝑒𝑖 + 𝑡𝑒𝑗) 𝑑𝑡 ∀𝑥 ∈ R𝑘.

So by (3) we have
∑

𝑖,𝑗 𝑎𝑖𝑗 Δ𝑢
𝑖 Δ𝑣

𝑗 𝑓𝑛(𝑥) ≥ 0 for all 𝑥 ∈ R𝑘 and by Lemma 2.2.(4)

we have that 𝑓𝑛 → 𝑓 𝜆𝑘-a.e. Hence, we see that (3) implies (4).
(4) ⇒ (1): Suppose that (4) holds. As above, we see that (4) implies 𝐹𝑛(𝑥) ≥ 0

for all 𝑥 ∈ R𝑘. Let ℎ ∈ 𝐶∞∘∘(R𝑘)+ be given and set 𝐻 =
∑

𝑖,𝑗 𝑎𝑖𝑗
∂2ℎ

∂𝑥𝑖∂𝑥𝑗
. Then we

have 𝜁(ℎ) =
∫
R𝑘 𝑓𝐻 𝑑𝜆𝑘 and observe that 𝐻 is bounded with compact support.

So by Lemma 2.1.(3) and Lemma 2.2.(6) we have

𝜁(ℎ) = lim
𝑛→∞

∫
R𝑘

𝑓𝑛(𝑥)𝐻(𝑥) 𝑑𝑥 = lim
𝑛→∞

∫
R𝑘

𝐹𝑛(𝑥)ℎ(𝑥) 𝑑𝑥 ≥ 0.

Hence we see that (4) implies (1).
(5): Suppose that 𝑓 is convex and 𝐴 is nonnegative definite. Let 𝑛 ≥ 1 be a

given integer. By nonnegativity of 𝑔, we see that 𝑓𝑛 is convex and infinitely often

differentiable. Let 𝑥 ∈ R𝑘 and 𝑛 ≥ 1 be given and set 𝑏𝑖𝑗 = ∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) for 𝑖, 𝑗 ∈ [𝑘].

Then 𝐵 = (𝑏𝑖𝑗) is the Hessian of 𝑓𝑛 and since 𝑓𝑛 is convex, we have that 𝐵 is a
nonnegative definite (𝑘 × 𝑘)-matrix. By Schur’s product theorem (see Thm. 7.5.3
p. 458 in [5]) we have that the Hadamard product (𝑐𝑖𝑗) = (𝑎𝑖𝑗 𝑏𝑖𝑗) is nonnegative
definite. In particular, we have

𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗
∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) =
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑐𝑖𝑗 ≥ 0.

Hence, we see that (5) follows from the equivalence of (3) and (1).

(6): Suppose that 𝑓 is twice partially differentiable such that ∂𝑓
∂𝑥𝑖

and ∂2𝑓
∂𝑥𝑖∂𝑥𝑗

are locally 𝜆𝑘-integrable for all 𝑖, 𝑗 ∈ [𝑘]. Then 𝐹 :=
∑

𝑖,𝑗 𝑎𝑖𝑗
∂2𝑓

∂𝑥𝑖∂𝑥𝑗
belongs to

𝐿1loc(𝜆𝑘) and by Lemma 2.1 we have

𝜁(𝜙) =
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗

∫
R𝑘

𝑓(𝑥) ∂2𝜙
∂𝑥𝑖∂𝑥𝑗

(𝑥)𝑑𝑥 =

∫
R𝑘

𝐹 (𝑥)𝜙(𝑥) 𝑑𝑥 ∀𝜙 ∈ 𝐶∞
∘∘(R𝑘).
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Since 𝐹 ≥ 0 𝜆𝑘-a.e. if and only if
∫
R𝑘 𝐹𝜙𝑑𝜆𝑘 ≥ 0 for all 𝜙 ∈ 𝐶∞

∘∘(R𝑘)+, we see
that (6) holds. □

Lemma 2.4. Let 𝑓 : R𝑘 → R be a locally 𝜆𝑘-integrable Borel function and let
{𝑎𝑖𝑗}1≤𝑖,𝑗≤𝑘 be a (𝑘 × 𝑘)-matrix. Let 𝜃 = (𝜃1, . . . , 𝜃𝑘), 𝑏 = (𝑏1, . . . , 𝑏𝑘) and 𝑐 =
(𝑐1, . . . , 𝑐𝑘) be a given vectors. If there exist functions ℎ : R𝑘 → R and 𝜓 : R → R
satisfying 𝑓(𝑥 + 𝑡𝜃) = ℎ(𝑥) + 𝜓(𝑡) for all 𝑥 ∈ R𝑘 and all 𝑡 ∈ R, then we have

(1) 𝑓(𝑥 + 𝑡𝜃) = 𝑓(𝑥) + 𝛾𝑡 ∀𝑥 ∈ R𝑘 ∀𝑡 ∈ R where 𝛾 := 𝑓(𝜃) − 𝑓(0).

(2)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

𝑎𝑖𝑗∂𝑖𝑗𝑓 =
𝑘∑
𝑖=1

𝑘∑
𝑗=1

(𝑎𝑖𝑗 + 𝑏𝑖𝜃𝑗 + 𝑐𝑗𝜃𝑖)∂𝑖𝑗𝑓 .

Proof. (1): Set 𝜓0(𝑡) = 𝜓(𝑡) − 𝜓(0) for all 𝑡 ∈ R. Since 𝑓(𝑥) = ℎ(𝑥) + 𝜓(0), we
have 𝑓(𝑥 + 𝑡𝜃) = 𝑓(𝑥) + 𝜓0(𝑡) and so we have

𝜓0(𝑠 + 𝑡) = 𝑓(𝑠𝜃 + 𝑡𝜃) − 𝑓(0) = 𝑓(𝑠𝜃) + 𝜓0(𝑡) − 𝑓(0) = 𝜓0(𝑠) + 𝜓0(𝑡)

for all 𝑠, 𝑡 ∈ R. Since 𝑓 is Borel measurable and 𝜓0(𝑡) = 𝑓(𝑡𝜃)− 𝑓(0), we see that
𝜓0 is a Borel function satisfying 𝜓0(0) = 0 and 𝜓0(𝑠 + 𝑡) = 𝜓0(𝑠) + 𝜓0(𝑡) for all
𝑠, 𝑡 ∈ R. So by [11] we have 𝜓0(𝑡) = 𝛾𝑡 for all 𝑡 ∈ R where 𝛾 = 𝜓0(1) = 𝑓(𝜃)−𝑓(0).
Since 𝑓(𝑥 + 𝑡𝜃) = 𝑓(𝑥) + 𝜓0(𝑡), we see that (1) holds.

(2): Let 𝑔 ∈ 𝐶∞
∘∘(R𝑘)+ be a nonnegative function with

∫
R𝑘 𝑔(𝑦) 𝑑𝑦 = 1 and

set 𝑓𝑛(𝑥) =
∫
R𝑘 𝑓(𝑥+ 𝑦

𝑛 ) 𝑔(𝑦) 𝑑𝑦 for all 𝑥 ∈ R𝑘 and all 𝑛 ∈ N (see Lem. 2.2). Then

𝑓𝑛 ∈ 𝐶∞(R𝑘) and by (1), we have 𝑓𝑛(𝑥 + 𝑡𝜃) = 𝑓𝑛(𝑥) + 𝛾𝑡. In particular, we see

that 𝛾 = ∂𝑓𝑛
∂𝜃 (𝑥) =

∑𝑘
𝑖=1 𝜃𝑖

∂𝑓𝑛
∂𝑥𝑖

(𝑥) for all 𝑥 ∈ R𝑘. Hence, we have

𝑘∑
𝑗=1

𝑘∑
𝑖=1

𝜃𝑖𝑐𝑗
∂2𝑓𝑛
∂𝑥𝑗∂𝑥𝑖

(𝑥) =
𝑘∑
𝑗=1

𝑐𝑗
∂
∂𝑥𝑗

{
𝑘∑
𝑖=1

𝜃𝑖
∂𝑓𝑛
∂𝑥𝑖

(𝑥)

}
= 0 ∀𝑥 ∈ R𝑘.

In the same manner we see that
∑𝑘

𝑖=1

∑𝑘
𝑗=1 𝑏𝑖𝜃𝑗

∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) = 0 for all 𝑥 ∈ R𝑘 and

so we see that (2) follows from Proposition 2.3. □

Lemma 2.5. Let 𝜙, 𝜓 : R → R be absolutely continuous functions with Lebesgue
derivatives 𝜙̇(𝑡) and 𝜓̇(𝑡). Set 𝜓∗(𝑡) :=

∫∞
𝑡

∣𝜓̇(𝑠)∣ 𝑑𝑠 for 𝑡 ≥ 0 and 𝜓∗(𝑡) :=∫ 𝑡
−∞ ∣𝜓̇(𝑠)∣ 𝑑𝑠 for 𝑡 < 0. If (𝜙, 𝜓) satisfies the following condition

(1) 𝜓̇ ∈ 𝐿1(𝜆1) , 𝜙̇ ⋅ 𝜓∗ ∈ 𝐿1(𝜆1) and lim
𝑥→∞𝜓(𝑥) = 0 = lim

𝑥→−∞𝜓(𝑥)

then 𝜙̇ ⋅ 𝜓 and 𝜙 ⋅ 𝜓̇ are 𝜆-integrable and we have

(2)

∫ ∞

−∞
𝜙̇(𝑠)𝜓(𝑠) 𝑑𝑠 = −

∫ ∞

−∞
𝜙(𝑠)𝜓̇(𝑠) 𝑑𝑠.

Proof. Since 𝜓̇ is 𝜆1-integrable and lim𝑥→±∞ 𝜓(𝑥) = 0, we have

𝜓(𝑡) =

∫ 𝑡

−∞
𝜓̇(𝑠) 𝑑𝑠 = −

∫ ∞

𝑡

𝜓̇(𝑠) 𝑑𝑠
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for all 𝑡 ∈ R. In particular, we see that ∣𝜓(𝑡)∣ ≤ 𝜓∗(𝑡) for all 𝑡 ∈ R and so by (1)

we have 𝜙̇(𝑡)𝜓(𝑡) ∈ 𝐿1(𝜆). By the Fubini-Tonelli theorem, we have∫ ∞

0

∣𝜙(𝑡) − 𝜙(0)∣ ⋅ ∣𝜓̇(𝑡)∣𝑑𝑡 ≤
∫ ∞

0

𝑑𝑡

∫ 𝑡

0

∣𝜙̇(𝑠)𝜓̇(𝑡)∣ 𝑑𝑠

=

∫ ∞

0

𝑑𝑠

∫ ∞

𝑠

∣𝜙̇(𝑠)𝜓̇(𝑡)∣𝑑𝑡 =

∫ ∞

0

∣𝜙̇(𝑠)∣𝜓∗(𝑠) 𝑑𝑠 < ∞

and in the same manner, we see that
∫ 0
−∞ ∣𝜙(𝑡) − 𝜙(0)∣ ⋅ ∣𝜓̇(𝑡)∣ 𝑑𝑡 < ∞. Since

𝜓̇ ∈ 𝐿1(𝜆), we see that 𝜙(𝑡) 𝜓̇(𝑡) ∈ 𝐿1(𝜆). So by the Fubini-Tonelli theorem we
have∫ ∞

0

𝜙̇(𝑡)𝜓(𝑡) 𝑑𝑡 = −
∫ ∞

0

𝑑𝑡

∫ ∞

𝑡

𝜙̇(𝑡)𝜓̇(𝑠) 𝑑𝑠 = −
∫ ∞

0

𝑑𝑠

∫ 𝑠

0

𝜙̇(𝑡)𝜓̇(𝑠) 𝑑𝑡

=

∫ ∞

0

(𝜙(0) − 𝜙(𝑠))𝜓̇(𝑠) 𝑑𝑠 = −𝜙(0)𝜓(0) −
∫ ∞

0

𝜙(𝑠)𝜓̇(𝑠) 𝑑𝑠.

In the same manner, we see that
∫ 0
−∞ 𝜙̇(𝑡)𝜓(𝑡) 𝑑𝑡 = 𝜙(0)𝜓(0) − ∫ 0−∞ 𝜙(𝑡) 𝜓̇(𝑡) 𝑑𝑡.

Adding the two equalities we obtain (2). □

Lemma 2.6. Let (𝑈0, 𝑈1, . . . , 𝑈𝑘) be a (𝑘 + 1)-dimensional Gaussian random vec-
tor with mean zero and set 𝑈 := (𝑈1, . . . , 𝑈𝑘) and 𝜃 := (𝜃1, . . . , 𝜃𝑘) where 𝜃𝑖 :=
𝐸(𝑈0 𝑈𝑖) for 𝑖 = 1, . . . , 𝑘. Let ℎ : R𝑘 → R be a 𝜃-differentiable Borel function
satisfying 𝐸∣𝑈0ℎ(𝑈)∣ < ∞ and 𝐸∣∂ℎ∂𝜃 (𝑈)∣ < ∞. Then we have

(1) 𝐸{𝑈0ℎ(𝑈)} = 𝐸{∂ℎ∂𝜃 (𝑈)}.

Proof. Set 𝜎2 = 𝐸𝑈20 . If 𝜎2 = 0, then we have 𝑈0 = 0 a.s. and so we have 𝜃 = 0
and ∂ℎ

∂𝜃 (𝑥) = 0 for all 𝑥 ∈ R𝑘. Hence, we see that (1) holds if 𝜎2 = 0. So suppose

that 𝜎2 > 0 and set 𝜙𝑧(𝑡) := ℎ(𝑧 + 𝑡𝜃) for all 𝑡 ∈ R and all 𝑧 ∈ R𝑘. Then 𝜙𝑧 is
differentiable on R with derivative 𝜙′𝑧(𝑡) = ∂ℎ

∂𝜃 (𝑧 + 𝑡𝜃). Let us define

𝐵 = {𝑧 ∈ R𝑘 ∣ ∫
R
∣∂ℎ∂𝜃 (𝑧 + 𝑡𝜃)∣𝑒−(𝜎𝑡)2/2𝑑𝑡 < ∞}

and set 𝑉0 := 𝜎−2 𝑈0 and 𝑉 := (𝑉1, . . . , 𝑉𝑘) where 𝑉𝑖 := 𝑈𝑖 − 𝜃𝑖 𝑉0 for 𝑖 =
1, . . . , 𝑘. Then we have 𝑉0 ∼ 𝑁(0, 𝜎−2) and 𝐸(𝑉0𝑉𝑖) = 0 for all 1 ≤ 𝑖 ≤ 𝑘. Since
(𝑉0, 𝑉1, . . . , 𝑉𝑘) is Gaussian with mean zero, we see that 𝑉0 and 𝑉 are independent
and since 𝑈 = 𝑉 + 𝑉0𝜃 and ∂ℎ

∂𝜃 (𝑈) ∈ 𝐿1(𝑃 ), we see that 𝑃 (𝑉 ∈ 𝐵) = 1.

Let 𝑧 ∈ 𝐵 be given and set 𝜓(𝑡) := −𝑒−(𝜎𝑡)
2/2 for all 𝑡 ∈ R. Then we have

𝜓′(𝑡) = 𝜎2𝑡 𝑒−(𝜎𝑡)
2/2 and 𝜓∗(𝑡) = 𝑒−(𝜎𝑡)

2/2 where 𝜓∗(𝑡) is defined as in Lemma
2.4. Since 𝑧 ∈ 𝐵, we see that 𝜙′𝑧 is locally 𝜆-integrable on R. So by Theorem
IX.4.5 p. 271 and Theorem IX.7.4 p. 284 in [15] we have that 𝜙𝑧 is absolutely
continuous on R with Lebesgue derivative 𝜙′𝑧 and that (𝜙𝑧 , 𝜓) satisfies condition
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(1) in Lemma 2.5. Hence, we have that 𝜙′𝑧 𝜓 and 𝜙𝑧 𝜓
′ are 𝜆1-integrable and∫

R

ℎ(𝑧 + 𝑡𝜃)𝜎2𝑡𝑒−(𝜎𝑡)
2/2𝑑𝑡 =

∫
R

𝜙𝑧(𝑡)𝜓
′(𝑡) 𝑑𝑡 = −

∫
R

𝜙′𝑧(𝑡)𝜓(𝑡) 𝑑𝑡

=

∫
R

∂ℎ
∂𝜃 (𝑧 + 𝑡𝜃)𝑒−(𝜎𝑡)

2/2𝑑𝑡.

Recall that 𝑉0 and 𝑉 are independent with 𝑈 = 𝑉 + 𝑉0𝜃 and 𝑉0 ∼ 𝑁(0, 𝜎−2).
Since 𝑈0ℎ(𝑈) ∈ 𝐿1(𝑃 ) and ∂ℎ

∂𝜃 (𝑈) ∈ 𝐿1(𝑃 ), we have 𝑃 (𝑉 ∈ 𝐵) = 𝑃𝑉 (𝐵) = 1 and

𝐸(𝑈0ℎ(𝑈)) = 𝜎2𝐸{𝑉0ℎ(𝑉 + 𝑉0𝜃)}
= 𝜎√

2𝜋

∫
𝐵

𝑃𝑉 (𝑑𝑧)

∫
R

ℎ(𝑧 + 𝑡𝜃)𝜎2𝑡𝑒−(𝜎𝑡)
2/2𝑑𝑡

= 𝜎√
2𝜋

∫
𝐵

𝑃𝑉 (𝑑𝑧)

∫
R

∂ℎ
∂𝜃 (𝑧 + 𝑡𝜃)𝑒−(𝜎𝑡)

2/2 𝑑𝑡

= 𝐸(∂ℎ∂𝜃 (𝑉 + 𝑉0𝜃)) = 𝐸(∂ℎ∂𝜃 (𝑈))

which proves the lemma. □

Lemma 2.7. Let 𝑍 = (𝑍1, . . . , 𝑍𝑛) be an 𝑛-dimensional Gaussian random vector
with mean zero and a non-zero covariance matrix Σ𝑍 = {𝜎𝑍𝑖𝑗}. Let 𝜆 denote the

largest eigenvalue of Σ𝑍 and let 𝜈 denote the multiplicity of the eigenvalue 𝜆. Let
𝑟 denote the rank of Σ𝑍 and let 𝜙 : [0,∞) → [0,∞) be an essentially increasing
Borel function (see the remark below). Then 𝜆 > 0 and 1 ≤ 𝜈 ≤ 𝑟 ≤ 𝑛 and we
have

(1)

∫ ∞

0

𝑡𝑟−1𝜙(𝑡)𝑒−
1
2𝜆 𝑡

2

𝑑𝑡 < ∞ ⇒ 𝐸𝜙(∥𝑍∥) < ∞.

(2) 𝐸𝜙(∥𝑍∥) < ∞ ⇒
∫ ∞

0

(1 + 𝑡)𝜈−1𝜙(𝑡)𝑒−
1
2𝜆 𝑡

2

𝑑𝑡 < ∞.

(3) 𝐸𝜙(∥𝑍∥) < ∞ ⇒ ∃𝑐 > 0 so that 𝜙(𝑡) ≤ 𝑐(1 + 𝑡)2−𝜈 exp
(
1
2𝜆 𝑡

2
) ∀𝑡 ≥ 0.

Remark. We say that 𝜙 : [0,∞) → [0,∞) is essentially increasing if there exists
𝐶 ≥ 0 such that 𝜙(𝑠) ≤ 𝐶 (1 + 𝜙(𝑡)) for all 0 ≤ 𝑠 ≤ 𝑡.

Proof. Since Σ𝑍 ∕= 0, we have 𝜆 > 0 and 1 ≤ 𝜈 ≤ 𝑟 ≤ 𝑛. Let 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛 be
an orthonormal basis of eigenvectors of Σ𝑍 ordered such that 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑛
where 𝜆𝑖 is the eigenvalue associated to 𝑣𝑖. Then we have 𝜆 = 𝜆𝑖 ≥ 𝜆𝑟 > 0 for

1 ≤ 𝑖 ≤ 𝜈 and 𝜆𝑖 = 0 for 𝑟 < 𝑖 ≤ 𝑛. Set 𝑈𝑖 := 𝜆
−1/2
𝑖 ⟨𝑍, 𝑣𝑖⟩ for 𝑖 = 1, . . . , 𝑟.

Then 𝑈1, . . . , 𝑈𝑟 are independent 𝑁(0, 1)-distributed random variables such that

𝑍 =
∑𝑟

𝑖=1 𝜆
1/2
𝑖 𝑈𝑖 𝑣𝑖 a.s. and ∣∣𝑍∣∣2 =

∑𝑟
𝑖=1 𝜆𝑖𝑈

2
𝑖 a.s. Let 1 ≤ 𝑑 ≤ 𝑟 be a given

integer and set 𝑈𝑑 = (𝑈1, . . . , 𝑈𝑑).

Recall that 2𝜋𝑑/2 Γ(𝑑2 )−1 is the (𝑑 − 1)-dimensional volume of the (𝑑− 1)-

dimensional unit sphere {𝑢 ∈ R𝑑 ∣ ∣∣𝑢∣∣ = 1}; see (8.43.9) p. 60 in vol. 2 of [3]. So
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by (8.24.1) p. 27 in vol. 2 of [3] with 𝑇 (𝑥) = ∣∣𝑥∣∣, we have

𝐸𝜙(
√
𝜆∥𝑈𝑑∥) = (2𝜋)−

𝑑
2

∫
R𝑑

𝜙(
√
𝜆∥𝑥∥)𝑒−

1
2∥𝑥∥2𝑑𝑥

= 2
2𝑑/2Γ( 𝑑2 )

∫ ∞

0

𝑡𝑑−1𝜙(𝑡
√
𝜆)𝑒−

1
2 𝑡

2

𝑑𝑡 = 2
(2𝜆)𝑑/2Γ( 𝑑2 )

∫ ∞

0

𝑠𝑑−1𝜙(𝑠)𝑒−
1
2𝜆 𝑠

2

𝑑𝑠.

Since ∣∣𝑍∣∣2 =
∑𝑟

𝑖=1 𝜆𝑖𝑈
2
𝑖 , we have 𝜆 ∣∣𝑈𝜈 ∣∣2 ≤ ∣∣𝑍∣∣2 ≤ 𝜆 ∣∣𝑈 𝑟∣∣2 and since 𝜙

is essentially increasing, there exists a constant 𝐶 > 0 such that 0 ≤ 𝜙(𝑠) ≤
𝐶 (1 + 𝜙(𝑡)) for all 0 ≤ 𝑠 ≤ 𝑡. In particular, we have

𝜙(
√
𝜆∥𝑈𝜈∥) ≤ 𝐶(1 + 𝜙(∥𝑍∥)) , 𝜙(∥𝑍∥) ≤ 𝐶(1 + 𝜙(

√
𝜆∥𝑈 𝑟∥))

and since 𝜙(𝑡) ≤ 𝐶(1 + 𝜙(1)) for 0 ≤ 𝑡 ≤ 1 and (1 + 𝑡)𝜈−1 ≤ 2𝜈−1 𝑡𝜈−1 for 𝑡 ≥ 1,
we see that (1) and (2) follow from the equality above. Since 𝜙(𝑠) ≤ 𝐶 (1 + 𝜙(𝑡))
for all 𝑡 ≥ 𝑠, we have

𝜙(𝑠)(1 + 𝑠)𝜈−1
∫ ∞

𝑠

𝑒−
1
2𝜆 𝑡

2

𝑑𝑡 ≤ 𝐶

∫ ∞

0

(1 + 𝑡)𝜈−1(1 + 𝜙(𝑡))𝑒−
1
2𝜆 𝑡

2

𝑑𝑡

and so we see that (3) follows from (2) and Exercise 2.51 p. 148 in vol. 1 of [3]. □
Theorem 2.8 (Slepian’s inequality). Let 𝑘 ≥ 1 be an integer and let 𝑋 = (𝑋1,
. . ., 𝑋𝑘) and 𝑌 = (𝑌1, . . . , 𝑌𝑘) be Gaussian random vectors with zero means and
covariance matrices Σ𝑋 = {𝜎𝑋𝑖𝑗 } and Σ𝑌 = {𝜎𝑌𝑖𝑗}. Let 𝐾 ⊆ R𝑘 be a bounded,

starshaped Borel set with non-empty interior. Let 𝜙 : [0,∞) → [0,∞) be an es-
sentially increasing Borel function and let 𝑓 : R𝑘 → R be a locally 𝜆𝑘-integrable
Borel function satisfying

(1) 𝑃 (𝑋 ∈ 𝐶𝐾
ap(𝑓)) = 1 = 𝑃 (𝑌 ∈ 𝐶𝐾

ap(𝑓)).

(2) 𝐸𝜙(∥𝑋∥) + 𝐸𝜙(∥𝑌 ∥) < ∞ and sup
𝑦∈𝐾

∣𝑓(𝑥 + 𝛿𝑦)∣ ≤ 𝑐 𝜙(∥𝑥∥) ∀𝑥 ∈ R𝑘

for some positive numbers 𝑐, 𝛿 > 0. Then 𝐸∣𝑓(𝑋)∣ < ∞ and 𝐸∣𝑓(𝑌 )∣ < ∞ and we
have

(3)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

(𝜎𝑋𝑖𝑗 − 𝜎𝑌𝑖𝑗) ∂𝑖𝑗𝑓 ≥ 0 ⇒ 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋).

Set 𝑒 = (1, 1, . . . , 1) and suppose that there exist functions ℎ : R𝑘 → R and
𝜓 : R → R such that 𝑓(𝑥 + 𝑡𝑒) = ℎ(𝑥) + 𝜓(𝑡) for all (𝑡, 𝑥) ∈ R × R𝑘. Set
𝜋𝑋𝑖𝑗 = 𝐸(𝑋𝑖 −𝑋𝑗)

2 and 𝜋𝑌𝑖𝑗 = 𝐸(𝑌𝑖 − 𝑌𝑗)
2 for all 𝑖, 𝑗 ∈ [𝑘]. Then we have

(4)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

(𝜋𝑌𝑖𝑗 − 𝜋𝑋𝑖𝑗 )∂𝑖𝑗𝑓 = 2
𝑘∑
𝑖=1

𝑘∑
𝑗=1

(𝜎𝑋𝑖𝑗 − 𝜎𝑌𝑖𝑗 )∂𝑖𝑗𝑓 .

(5)
𝑘∑
𝑖=1

𝑘∑
𝑗=1

(𝜋𝑌𝑖𝑗 − 𝜋𝑋𝑖𝑗 )∂𝑖𝑗𝑓 ≥ 0 ⇒ 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋).

Proof. Since 𝐾 is starshaped, we have 0 ∈ 𝐾. Hence, by (2), we have ∣𝑓(𝑥)∣ ≤
𝑐 𝜙(∣∣𝑥∣∣) and 𝐸∣𝑓(𝑋)∣ < ∞ and 𝐸∣𝑓(𝑌 )∣ < ∞.

So suppose that
∑𝑘

𝑖=1

∑𝑘
𝑗=1 𝜃𝑖𝑗 ∂𝑖𝑗𝑓 ≥ 0, where 𝜃𝑖𝑗 := 𝜎𝑋𝑖𝑗 − 𝜎𝑌𝑖𝑗 and let

me show that 𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋). Without loss of generality we may assume that
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𝑋 and 𝑌 are independent. If 𝑋 = 𝑌 = 0 a.s. then (3) holds trivially. So let us

assume that 𝑃 (𝑋 ∕= 0) + 𝑃 (𝑌 ∕= 0) > 0 and set 𝜙(𝑡) := sup𝑠∈[0,𝑡] 𝜙(𝑠). Then 𝜙

is increasing with 𝜙 ≤ 𝜙 and since 𝜙 is essentially increasing, there exists 𝐶 > 0
such that 𝜙(𝑡) ≤ 𝐶 (1 + 𝜙(𝑡)) for all 𝑡 ≥ 0. Let 𝑐, 𝛿 > 0 be chosen according to

(2). Replacing (𝜙,𝐾) by (𝑐 𝜙, 𝛿𝐾) we may, without loss of generality, assume that
𝜙 is increasing and that ∣𝑓(𝑥 + 𝑦)∣ ≤ 𝜙(∣∣𝑥∣∣) for all 𝑥 ∈ R𝑘 and all 𝑦 ∈ 𝐾. Let
𝜆𝑋 and 𝜆𝑌 denote the largest eigenvalues of Σ𝑋 and Σ𝑌 , respectively, and set
𝜆 = max(𝜆𝑋 , 𝜆𝑌 ) and 𝜅(𝑥) = 𝜙(∣∣𝑥∣∣) for 𝑥 ∈ R𝑘. Then 𝜆 > 0 and by (2) and
Lemma 2.7 there exists 𝑏 > 0 such that 𝜙(𝑡) ≤ 𝑏(1 + 𝑡) exp( 12𝜆 𝑡2) for all 𝑡 ≥ 0.

Let 0 < 𝑟 < 1 and 𝑛 ∈ N be fixed for a while. Since 𝐾 has non-empty interior,
there exists 𝑔 ∈ 𝐶∞

∘∘(R𝑘) such that 𝑔 ≥ 0, {𝑔 ∕= 0} ⊆ 𝐾 and
∫
𝐾

𝑔(𝑦) 𝑑𝑦 = 1. Set

𝑓𝑛(𝑥) =
∫
R𝑘 𝑓(𝑥+ 𝑦

𝑛 ) 𝑔(𝑦) 𝑑𝑦 for 𝑥 ∈ R𝑘 (see Lemma 2.2). By Lemma 2.2 we have

that 𝑓𝑛 ∈ 𝐶∞
𝜅 (R𝑘) and that (𝑓𝑛) satisfies (1)–(6) in Lemma 2.2. Since 0 < 𝑟 < 1

and 𝜙(𝑟𝑡) ≤ 𝑏(1 + 𝑟𝑡) exp( 𝑟
2

2𝜆 𝑡
2) we have

(i) 𝐴 := 𝐸

{(
1 +
√∥𝑋∥2 + ∥𝑌 ∥2

)
𝜙

(
𝑟
√∥𝑋∥2 + ∥𝑌 ∥2

)}
< ∞.

Let 𝑥, 𝑦 ∈ R𝑘 be given and set 𝑈𝑥,𝑦(𝑡) = 𝑟(𝑡1/2 𝑥 + (1 − 𝑡)1/2 𝑦) and 𝑉𝑥,𝑦(𝑡) =
𝑓𝑛(𝑈𝑥,𝑦(𝑡)) for 𝑡 ∈ [0, 1]. Then 𝑈𝑥,𝑦 and 𝑉𝑥,𝑦 are continuous on [0, 1] and continu-
ously differentiable on (0, 1) with derivatives

𝑈 ′
𝑥,𝑦(𝑡) = 𝑟

2 (𝑡−1/2𝑥− (1 − 𝑡)−1/2𝑦) = 𝑟

2
√
𝑡(1−𝑡) ((1 − 𝑡)1/2𝑥− 𝑡1/2𝑦)

𝑉 ′
𝑥,𝑦(𝑡) = ⟨𝑈 ′

𝑥,𝑦(𝑡),∇𝑓𝑛(𝑈𝑥,𝑦(𝑡))⟩
for all 0 < 𝑡 < 1. By the Cauchy-Schwartz inequality, we have

∥𝑈𝑥,𝑦(𝑡)∥ ≤ 𝑟𝑡1/2∥𝑥∥ + 𝑟(1 − 𝑡)1/2∥𝑦∥ ≤ 𝑟
√
∥𝑥∥2 + ∥𝑦∥2 ∀0 ≤ 𝑡 ≤ 1

∥𝑈 ′
𝑥,𝑦(𝑡)∥ ≤ 𝑟

2
√
𝑡(1−𝑡)

√
∥𝑥∥2 + ∥𝑦∥2 ∀0 < 𝑡 < 1.

In particular, we see that 𝑉𝑥,𝑦 is absolutely continuous on [0, 1] and so we have

(ii) 𝑓𝑛(𝑟𝑥) − 𝑓𝑛(𝑟𝑦) = 𝑉𝑥,𝑦(1) − 𝑉𝑥,𝑦(0) =

∫ 1

0

𝑉 ′
𝑥,𝑦(𝑡) 𝑑𝑡.

Let 0 < 𝑡 < 1 be given and let us define 𝑈(𝑡) = (𝑈1(𝑡), . . . , 𝑈𝑘(𝑡)) := 𝑈𝑋,𝑌 (𝑡) and
𝑉 ′(𝑡) := 𝑉 ′

𝑋,𝑌 (𝑡). Since 𝑉 ′(𝑡) = ⟨𝑈 ′(𝑡),∇𝑓𝑛(𝑈(𝑡))⟩, we have

∥𝑈(𝑡)∥ ≤ 𝑟
√
∥𝑋∥2 + ∥𝑌 ∥2 , ∣𝑉 ′(𝑡)∣ ≤ ∥𝑈 ′(𝑡)∥ ⋅ ∥∇𝑓𝑛(𝑈(𝑡))∥

∥𝑈 ′(𝑡)∥ ≤ 𝑟

2
√
𝑡(1−𝑡)

√∥𝑋∥2 + ∥𝑌 ∥2.

Set 𝜗𝑗 = 𝑟2

2 (𝜃1𝑗 , . . . , 𝜃𝑘𝑗) and ℎ𝑗(𝑥) = ∂𝑓𝑛
∂𝑥𝑗

(𝑥) for 𝑥 ∈ R𝑘 and 1 ≤ 𝑗 ≤ 𝑘. Since

𝑓𝑛 ∈ 𝐶∞
𝜅 (R𝑘), we have ℎ𝑗 ∈ 𝐶∞

𝜅 (R𝑘) and since ∣ℎ𝑗(𝑥)∣ ≤ ∣∣∇𝑓𝑛(𝑥)∣∣ and 𝜅(𝑥) =
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𝜙(∥𝑥∥), we have

∣𝑈 ′
𝑗(𝑡)ℎ𝑗(𝑈(𝑡))∣ ≤ ∥𝑈 ′(𝑡)∥ ⋅ ∥∇𝑓𝑛(𝑈(𝑡))∥ ≤ ∥∇𝑓𝑛∥𝜅 ⋅ ∥𝑈 ′(𝑡)∥ ⋅ 𝜙(∥𝑈(𝑡)∥)

∣ ∂ℎ𝑗∂𝜗𝑗
(𝑈(𝑡))∣ ≤ ∥𝜗𝑗∥ ⋅ ∥∇ℎ𝑗(𝑈(𝑡))∥ ≤ ∥𝜗𝑗∥ ⋅ ∥∇ℎ𝑗∥𝜅 ⋅ 𝜙(∥𝑈(𝑡)∥).

Hence, by (i) we see that 𝑈 ′
𝑗(𝑡)ℎ𝑗(𝑈(𝑡)),

∂ℎ𝑗
∂𝜗𝑗

(𝑈(𝑡)) and 𝑉 ′(𝑡) are 𝑃 -integrable and∫ 1

0

𝐸∣𝑉 ′(𝑡)∣ 𝑑𝑡 ≤ 𝐴∥∇𝑓𝑛∥𝜅
∫ 1

0

1√
𝑡(1−𝑡)𝑑𝑡 < ∞.

So by (ii) and the Fubini-Tonelli theorem, we have

(iii) 𝐸𝑓𝑛(𝑟𝑋) − 𝐸𝑓𝑛(𝑟𝑌 ) =

∫ 1

0

𝐸𝑉 ′(𝑡) 𝑑𝑡.

Since 𝑋 and 𝑌 are independent Gaussian random vector with zero means, we see
that (𝑈 ′

𝑗(𝑡), 𝑈1(𝑡), . . . , 𝑈𝑘(𝑡)) is a (𝑘+1)-dimensional Gaussian random vector with

zero mean and 𝐸(𝑈 ′
𝑗(𝑡)𝑈𝑖(𝑡)) = 𝑟2

2 𝜃𝑖𝑗 . So by Lemma 2.6 we have

𝐸
{
𝑈 ′
𝑗(𝑡)ℎ𝑗(𝑈(𝑡))

}
= 𝐸
{
∂ℎ𝑗
∂𝜗𝑗

(𝑈(𝑡))
}

= 𝑟2

2 𝐸

{
𝑘∑
𝑖=1

𝜃𝑖𝑗
∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑈(𝑡))

}
and by Proposition 2.3, we have

∑𝑘
𝑖=1

∑𝑘
𝑗=1 𝜃𝑖𝑗

∂2𝑓𝑛
∂𝑥𝑖∂𝑥𝑗

(𝑥) ≥ 0 for all 𝑥 ∈ R𝑘. Since

𝑉 ′(𝑡) = ⟨𝑈 ′(𝑡),∇𝑓𝑛(𝑈(𝑡)⟩ =
𝑘∑
𝑗=1

𝑈 ′
𝑗(𝑡)ℎ𝑗(𝑈(𝑡))

we see that 𝐸𝑉 ′(𝑡) ≥ 0 for all 0 < 𝑡 < 1 and so by (iii) we have 𝐸𝑓𝑛(𝑟𝑌 ) ≤
𝐸𝑓𝑛(𝑟𝑋) for all 𝑛 ∈ N and all 0 < 𝑟 < 1. Since 𝜙 is increasing and sup𝑦∈𝐾 ∣𝑓(𝑥 +

𝑦)∣ ≤ 𝜙(∣∣𝑥∣∣), we have ∣𝑓𝑛(𝑟𝑥)∣ ≤ 𝜙(∣∣𝑥∣∣) for all 0 < 𝑟 ≤ 1, all 𝑥 ∈ R𝑘 and all
𝑛 ∈ N; see Lemma 2.2. So by (2), continuity of 𝑓𝑛 and Lebesgue’s convergence
theorem, we have

𝐸𝑓𝑛(𝑌 ) = lim
𝑟↑1

𝐸𝑓𝑛(𝑟𝑌 ) ≤ lim
𝑟↑1

𝐸𝑓𝑛(𝑟𝑋) = 𝐸𝑓𝑛(𝑋)

for all 𝑛 ≥ 1. By (1) and Lemma 2.2, we have 𝑓𝑛(𝑥) → 𝑓(𝑥) (𝑃𝑋 + 𝑃𝑌 )-a.s. and
recall that ∣𝑓𝑛(𝑥)∣ ≤ 𝜙(∥𝑥∣). So by (2) and Lebesgue’s convergence theorem, we
have

𝐸𝑓(𝑌 ) = lim
𝑛→∞𝐸𝑓𝑛(𝑌 ) ≤ lim

𝑛→∞𝐸𝑓𝑛(𝑋) = 𝐸𝑓(𝑋)

which completes the proof of (3).

Suppose that there exist functions ℎ : R𝑘 → R and 𝜓 : R → R such that
𝑓(𝑥 + 𝑡𝑒) = ℎ(𝑥) + 𝜓(𝑡) for all (𝑡, 𝑥) ∈ R×R𝑘. Note that 𝜋𝑋𝑖𝑖 = 𝜋𝑌𝑗𝑗 = 0 and

𝜋𝑌𝑖𝑗 − 𝜋𝑋𝑖𝑗 = 2(𝜎𝑋𝑖𝑗 − 𝜎𝑌𝑖𝑗 ) + (𝜎𝑌𝑖𝑖 − 𝜎𝑋𝑖𝑖 ) + (𝜎𝑌𝑗𝑗 − 𝜎𝑋𝑗𝑗)

Hence, we see (4)–(5) follow from (3) and Lemma 2.4. □
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Remark 2.9. (a): Condition (1) is a weak smoothness restriction on 𝑓 . Note that
condition (1) holds if 𝑓 is right or left continuous and since R𝑘 ∖𝐶𝐾

ap(𝑓) is a 𝜆𝑘-null

set, we see that (1) holds if Σ𝑋 and Σ𝑌 are non-singular. However, Example A in
introduction shows that some smoothness condition on 𝑓 is needed.

(b): Condition (2) is a growth condition on 𝑓 . Let 𝑎, 𝜖 > 0 be positive numbers
and let 𝜓 : [0,∞) → [0,∞) be an essentially increasing function satisfying 𝐸𝜓(𝜖+
∣∣𝑋 ∣∣) + 𝐸𝜓(𝜖 + ∣∣𝑌 ∣∣) < ∞ and ∣𝑓(𝑥)∣ ≤ 𝑎𝜓(∣∣𝑥∣∣) for all 𝑥 ∈ R𝑘. Since 𝐾 is
bounded and 𝜓 is essentially increasing, it follows easily that 𝑓 satisfies condition
(2) with 𝜙(𝑡) := 𝜓(𝜖 + 𝑡).

(c): Let 𝜆𝑋 denote the largest eigenvalues of Σ𝑋 , let 𝜈𝑋 denote the multiplic-
ity of 𝜆𝑋 and let 𝑟𝑋 denote the rank of the covariance matrix Σ𝑋 . Let 𝑝 > 0 be a

given number and set 𝜙(𝑡) = (1 + 𝑡)−𝑝 𝑒
1
2𝜆 𝑡

2

for all 𝑡 ≥ 0. By Lemma 2.7, we have
𝑝 > 𝑟𝑋 ⇒ 𝐸𝜙(∣∣𝑋 ∣∣) < ∞ ⇒ 𝑝 > 𝜈𝑋 . Since, the Slepian inequality implicitly
requires finiteness of 𝐸∣𝑓(𝑋)∣ and 𝐸∣𝑓(𝑌 )∣, we see that the growth condition (2)
is close to be optimal.

(d): Let 𝜑 : [0,∞) → R be an increasing convex function and set 𝑄(𝑥) :=
max1≤𝑖,𝑗≤𝑘 ∣𝑥𝑖 − 𝑥𝑗 ∣ and 𝑓(𝑥) = 𝜑(𝑄(𝑥)) for all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘. Fernique
(see Theorem 2.1.2 p. 18 in [2]) has shown that 𝜋𝑌𝑖𝑗 ≤ 𝜋𝑋𝑖𝑗 ∀ 𝑖, 𝑗 ∈ [𝑘] implies

𝐸𝑓(𝑌 ) ≤ 𝐸𝑓(𝑋). Note that 𝜋𝑋𝑖𝑖 = 𝜋𝑌𝑖𝑖 = 0 and 𝑓(𝑥 + 𝑡𝑒) = 𝑓(𝑥) for all (𝑡, 𝑥) ∈
R×R𝑘 and in Corollary 4.5 below, we shall see that ∂𝑖𝑗𝑓 ≤ 0 for all 𝑖 ∕= 𝑗. Hence,
we see that (5) is an extension of Fernique’s version of Slepian’s inequality.

3. Integral orderings

In this section we shall study an extension of the integral ordering to the set
of finitely additive contents. Let (𝑆,𝒜, 𝜇) be a content space; i.e., 𝒜 ⊆ 2𝑆 is an
algebra on the set 𝑆 and 𝜇 : 𝒜 → [0,∞] is a finitely additive set function satisfying
𝜇(∅) = 0. If 𝐷 ⊆ 𝑆, we let 𝜇∗(𝐷) = inf𝐴∈𝒜,𝐴⊇𝐷 𝜇(𝐴) denote the outer content of
𝐷. We let 𝑇𝑀(𝜇) denote the set of all totally 𝜇-measurable real-valued functions
(see Def. III.2.10 p. 106 in [1]), and we let 𝐿1(𝜇) denote the set of all 𝜇-integrable
functions (see Def. III.2.17 p. 112 in [1]). If 𝑓, 𝑓1, 𝑓2, . . . ∈ R𝑆 , we write 𝑓𝑛 →𝜇 𝑓 if
𝜇∗(∣𝑓−𝑓𝑛∣ > 𝜀) → 0 for all 𝜀 > 0 (see Lem. III.2.7 p. 104 in [1]). If 𝑓, 𝑔 : 𝑆 → R̄, we
write 𝑓 ≤ 𝑔 𝜇-a.e. if 𝜇∗(𝑓 > 𝜖+𝑔) = 0 for all 𝜖 > 0. Note that 𝜇∗(𝑓 > 𝑔) = 0 implies
𝑓 ≤ 𝑔 𝜇-a.e. and the converse implication holds if 𝜇 is a measure. If 𝑓 : 𝑆 → R̄,
we let ∫ ∗

𝑓𝑑 𝜇 := inf
{∫

𝑆
𝜙𝑑𝜇 ∣ 𝜙 ∈ 𝐿1(𝜇), 𝑓 ≤ 𝜙 𝜇 -a.e.

}
(inf ∅ := ∞)∫

∗ 𝑓 𝑑𝜇 := sup
{∫

𝑆
𝜙𝑑𝜇 ∣ 𝜙 ∈ 𝐿1(𝜇), 𝜙 ≤ 𝑓 𝜇 -a.e.

}
(sup ∅ := −∞)

denote the upper and lower 𝜇-integral of 𝑓 ; see [4]. We say that Φ ⊆ R𝑆 is uniformly
𝜇-integrable if for every 𝜀 > 0 there exists ℎ ∈ 𝐿1(𝜇) such that

∫ ∗
(∣𝜙∣−ℎ)+ 𝑑𝜇 < 𝜀

for all 𝜙 ∈ Φ. If 𝜇 is a measure and Φ ⊆ 𝐿1(𝜇), then the reader easily verifies that
uniform integrability as defined here coincides with the usual definition of uniform
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integrability; see for instance, (3.22.34) p. 187 in vol. 1 of [3]. Let 𝑓, 𝑓1, 𝑓2, . . . ∈ R̄𝑆

be given functions. Then we write 𝑓 ≤𝜇 lim inf 𝑓𝑛 if and only if

𝜇∗(𝐴 ∩ {𝑓 > 𝑡}) ≤ lim inf
𝑛→∞ 𝜇∗(𝐴 ∩ {𝑓𝑛 > 𝑠}) ∀𝑠 < 𝑡 ∀𝐴 ∈ 𝒜.

We define 𝒜∘ := {𝐴 ∈ 𝒜 ∣ 𝜇(𝐴) < ∞} and we write lim sup 𝑓𝑛 ≤𝜇 𝑓 if and only if

lim sup
𝑛→∞

𝜇∗(𝐴 ∩ {𝑓𝑛 > 𝑡}) ≤ 𝜇∗(𝐴 ∩ {𝑓 > 𝑠}) ∀𝑠 < 𝑡 ∀𝐴 ∈ 𝒜∘.

Recall that 𝐿1(𝜇) ⊆ 𝑇𝑀(𝜇) and if 𝜙 ∈ 𝑇𝑀(𝜇), then we have

(3.1) (𝑓 − 𝑓𝑛)+ →𝜇 0 ⇒ 𝑓 ≤𝜇 lim inf 𝑓𝑛 ⇒ (𝑓 + 𝜙) ≤𝜇 lim inf(𝑓𝑛 + 𝜙).

(3.2) (𝑓𝑛 − 𝑓)+ →𝜇 0 ⇒ lim sup 𝑓𝑛 ≤𝜇 𝑓 ⇒ lim sup(𝑓𝑛 + 𝜙) ≤𝜇 (𝑓 + 𝜙).

Set 𝑓∗(𝑠) = lim inf𝑛→∞ 𝑓𝑛(𝑠) and 𝑓∗(𝑠) = lim sup𝑛→∞ 𝑓𝑛(𝑠) for all 𝑠 ∈ 𝑆. If
(𝑆,𝒜, 𝜇) is a measure space, then we have

(3.3) 𝑓∗ ≤𝜇 lim inf 𝑓𝑛.

(3.4) If 𝑓1, 𝑓2, . . . are 𝜇-measurable, then lim sup 𝑓𝑛 ≤𝜇 𝑓∗.

If ℒ ⊆ 2𝑆 , we let 𝑊 (𝑆,ℒ) denote the set of all functions 𝑓 : 𝑆 → R such that
for all 𝑦 > 𝑥 there exists a set 𝐿 ∈ ℒ ∪ {∅, 𝑆} satisfying {𝑓 > 𝑦} ⊆ 𝐿 ⊆ {𝑓 > 𝑥},
and we let 𝑊+

∘ (𝑆,ℒ) denote the set of all functions 𝑓 : 𝑆 → [0,∞) such that for all
𝑦 > 𝑥 > 0 there exists a set 𝐿 ∈ ℒ∪{∅} satisfying {𝑓 > 𝑦} ⊆ 𝐿 ⊆ {𝑓 > 𝑥}. We say
that Φ ⊆ R𝑆 is (↑)-stable if sup𝑛≥1 𝜙𝑛 ∈ Φ for every increasing sequence (𝜙𝑛) ⊆ Φ
satisfying sup𝑛≥1 𝜙𝑛(𝑠) < ∞ for all 𝑠 ∈ 𝑆, and we say that Φ is sequentially closed
if for every pointwise convergent sequence 𝜙1, 𝜙2, . . . ∈ Φ we have 𝜙 ∈ Φ where
𝜙(𝑠) = lim𝑛→∞ 𝜙𝑛(𝑠) for all 𝑠 ∈ 𝑆. We let ℒ↑ denote the set of all sets of the form
∪∞𝑛=1𝐿𝑛 for some increasing sequence (𝐿𝑛) ⊆ ℒ ∪ {∅} and we let ℒ↓ denote the
set of all sets of the form ∩∞𝑛=1𝐿𝑛 for some decreasing sequence (𝐿𝑛) ⊆ ℒ∪{∅}. If
𝑓 ∈ 𝑊 (𝑆,ℒ), then we have

(3.5) {𝑓 > 𝑡} ∈ ℒ↑ ∀𝑡 ≥ inf𝑠∈𝑆 𝑓(𝑠) , {𝑓 ≥ 𝑡} ∈ ℒ↓ ∀𝑡 > inf𝑠∈𝑆 𝑓(𝑠).

If ℒ is a 𝜎-algebra on 𝑆, then 𝑊 (𝑆,ℒ) = 𝑀(𝑆,ℒ). If 𝑆 is a topological space and
ℒ is the set of all open (closed) subsets of 𝑆, then 𝑊 (𝑆,ℒ) is the set of all lower
(upper) semicontinuous functions. If (𝑆,≤) is a proset and ℒ is the set of all upper
intervals, then 𝑊 (𝑆,ℒ) = In(𝑆,≤).

Lemma 3.1. Let 𝑆 be a non-empty set and let Φ ⊆ R𝑆
+ be a (↑)-stable, convex cone.

Let 𝐽 ⊆ R be an interval with interior 𝐽∘ and let ℎ : 𝐽 → R be a continuous,
increasing, convex function such that inf𝑥∈𝐽 ℎ(𝑥) = 0. Let 𝑓 : 𝑆 → 𝐽 be a given
function satisfying (𝑓 − 𝑐1𝑆)+ ∈ Φ for all 𝑐 ∈ 𝐽∘. Then we have ℎ ∘ 𝑓 ∈ Φ.

Proof. Let 𝑎 = inf 𝐽 and 𝑏 = sup 𝐽 denote the endpoints of 𝐽 . If 𝑎 = 𝑏, then the
lemma holds trivially. So suppose that 𝑎 < 𝑏 and set 𝜃𝑐(𝑡) = (𝑡− 𝑐)+ for all 𝑡 ∈ 𝐽
and all 𝑐 ∈ R. Let Γ denote the convex cone generated by {𝜃𝑐 ∣ 𝑐 ≥ 𝑎} and let us
define

ℎ0(𝑡) = sup{𝛾(𝑡) ∣ 𝛾 ∈ Γ, 𝛾(𝑠) ≤ ℎ(𝑠) ∀𝑠 ∈ 𝐽} ∀𝑡 ∈ 𝐽.
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Then ℎ0 is an increasing, convex function satisfying 0 ≤ ℎ0(𝑡) ≤ ℎ(𝑡) for all 𝑡 ∈ 𝐽
and since ℎ0 is lower semicontinuous on 𝐽 , we have that ℎ0 is continuous on 𝐽 .
Let 𝑎 < 𝑐 < 𝑏 be given. Since ℎ is convex, we have that the right-hand derivative

𝑟 := lim𝑥↓𝑐
ℎ(𝑥)−ℎ(𝑐)

𝑥−𝑐 exists and is finite and satisfies ℎ(𝑐) + 𝑟 (𝑥− 𝑐) ≤ ℎ(𝑥) for all

𝑥 ∈ 𝐽 . Set 𝛾(𝑥) := (ℎ(𝑐) + 𝑟 (𝑥− 𝑐))+ for all 𝑥 ∈ 𝐽 . If 𝑟 = 0, we have ℎ(𝑥) ≥ ℎ(𝑐)
for all 𝑥 ∈ 𝐽 and since inf𝑥∈𝐽 ℎ(𝑥) = 0, we have ℎ(𝑐) = 0 = 𝛾(𝑥) for all 𝑥 ∈ 𝐽 .

If 𝑟 > 0, we have 𝛾 = 𝑟 𝜃𝑢 where 𝑢 = 𝑐 − ℎ(𝑐)
𝑟 and since inf𝑥∈𝐽 ℎ(𝑥) = 0 and

𝑐 + ℎ(𝑥)−ℎ(𝑐)
𝑟 ≥ 𝑥 ≥ 𝑎 for all 𝑥 ∈ 𝐽 , we have 𝑢 ≥ 𝑎. Hence, in either case, we

have 𝛾 ∈ Γ and 𝛾(𝑥) ≤ ℎ(𝑥) for all 𝑥 ∈ 𝐽 . Since 𝛾(𝑐) = ℎ(𝑐) ≥ ℎ0(𝑐), we have
ℎ0(𝑐) = ℎ(𝑐) for all 𝑐 ∈ 𝐽∘ and so by continuity of ℎ and ℎ0, we have ℎ = ℎ0.

By Lindelöf’s theorem there exist 𝛾1, 𝛾2, . . . ∈ Γ such that ℎ(𝑥)=sup𝑛≥1 𝛾𝑛(𝑥)
for all 𝑥 ∈ 𝐽 . Set ℎ𝑛(𝑥) = max(𝛾1(𝑥), . . . , 𝛾𝑛(𝑥)) for 𝑥 ∈ 𝐽 and 𝑛 ≥ 1. Note that Γ
is the set of all increasing, continuous, convex, piecewise linear functions 𝛾 : 𝐽 → R
satisfying inf𝑥∈𝐽 𝛾(𝑥) = 0. In particular, we see that ℎ𝑛 ∈ Γ and that ℎ𝑛(𝑥) ↑ ℎ(𝑥)
for all 𝑥 ∈ 𝐽 . By assumption, we have 𝜃𝑐 ∘ 𝑓 ∈ Φ for all 𝑐 ∈ 𝐽∘ and since 𝜃𝑐 = 0
for 𝑐 ≥ 𝑏 and Φ is an (↑)-stable convex cone, we have 𝛾 ∘ 𝑓 ∈ Φ for all 𝛾 ∈ Γ. In
particular, we have ℎ𝑛 ∘ 𝑓 ∈ Φ for all 𝑛 ≥ 1 and since ℎ𝑛(𝑓(𝑠)) ↑ ℎ(𝑓(𝑠)) for all
𝑠 ∈ 𝑆, we have ℎ ∘ 𝑓 ∈ Φ □
Lemma 3.2. Let (𝑆,𝒜, 𝜇) be a content space and let 𝑓, 𝑓1, 𝑓2, . . . : 𝑆 → R̄ be given
functions. If {𝑓+𝑛 ) ∣ 𝑛 ≥ 1} is uniformly 𝜇-integrable, then we have

(1) lim sup 𝑓𝑛 ≤𝜇 𝑓 ⇒ lim sup
𝑛→∞

∫ ∗
𝑓𝑛𝑑𝜇 ≤ ∫ ∗ 𝑓𝑑𝜇.

If {𝑓−𝑛 ) ∣ 𝑛 ≥ 1} is uniformly 𝜇-integrable, then we have

(2) 𝑓 ≤𝜇 lim inf 𝑓𝑛 ⇒ ∫ ∗ 𝑓𝑑𝜇 ≤ lim inf
𝑛→∞

∫ ∗
𝑓𝑛𝑑𝜇.

Proof. Suppose that lim sup 𝑓𝑛 ≤𝜇 𝑓 and that {𝑓+𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜇-

integrable. If
∫ ∗

𝑓 𝑑𝜇 = ∞, then (1) holds trivially. So suppose that
∫ ∗

𝑓 𝑑𝜇 < ∞
and let 𝜙 ∈ 𝐿1(𝜇) be given function satisfying 𝑓 ≤ 𝜙 𝜇-a.e. Set 𝑔 = 𝑓 − 𝜙
and 𝑔𝑛 = 𝑓𝑛 − 𝜙. Let 𝜀 > 0 be given. Since 𝑔+𝑛 ≤ 𝑓+𝑛 + 𝜙−, we see that (𝑔+𝑛 )
is uniformly 𝜇-integrable. Hence, there exists 𝜓 ∈ 𝐿1(𝜇) such that 𝜓 ≥ 0 and∫ ∗

(𝑔+𝑛 − 𝜓)+ 𝑑𝜇 < 𝜀
2 for all 𝑛 ≥ 1. Since 𝜓 ∈ 𝐿1+(𝜇), there exist positive numbers

𝛿, 𝑐 > 0 such that
∫
𝑆

(𝜓 ∧ 𝛿) 𝑑𝜇 < 𝜀
2 and

∫
𝑆

(𝜓− 𝑐)+ 𝑑𝜇 < 𝜀
2 . Since 𝜇∗(𝜓 > 𝛿) < ∞,

there exists 𝐹 ∈ 𝒜 such that {𝜓 > 𝛿} ⊆ 𝐹 and 𝜇(𝐹 ) < ∞. Let 𝑛 ≥ 1 be given.
Since 𝑆 ∖ 𝐹 ⊆ {𝜓 ≤ 𝛿} and 𝑔+𝑛 ≤ 𝜓 + (𝑔+𝑛 − 𝜓)+, we have∫ ∗

1𝑆∖𝐹 𝑔+𝑛 𝑑𝜇 ≤ ∫ ∗(𝜓 ∧ 𝛿)𝑑𝜇 +
∫ ∗

(𝑔+𝑛 − 𝜓)𝑑𝜇 ≤ 𝜀
2 + 𝜀

2 = 𝜀.

Set ℎ𝑛 = 1𝐹 𝑔+𝑛 and 𝑄𝑛(𝑡) = 𝜇∗(ℎ𝑛 > 𝑡) for 𝑡 ∈ R+ and 𝑛 ≥ 1. Let 𝑡 > 0 be given.
Since 𝑓 ≤ 𝜙 𝜇-a.e., we have 𝜇∗(𝑔 > 𝑡) = 0 and by (3.2) we have lim sup 𝑔𝑛 ≤𝜇 𝑔.
Since {ℎ𝑛 > 𝑡} = 𝐹 ∩ {𝑔𝑛 > 𝑡} and 𝜇(𝐹 ) < ∞, we have 𝑄𝑛(𝑡) → 0 for all 𝑡 > 0.

Let 𝑛 ≥ 1 be given. Then we have 0 ≤ ℎ𝑛 ≤ 𝑔+𝑛 ≤ (𝑔+𝑛 − 𝜓)+ + 𝜓 and so by
Theorem 2.1.(7) in [4] we have∫ ∞

0

𝑄𝑛(𝑡) 𝑑𝑡 =

∫ ∗
ℎ𝑛𝑑𝜇 ≤

∫ ∗
(𝑔+𝑛 − 𝜓)+ 𝑑𝜇 +

∫
𝑆

𝜓 𝑑𝜇 ≤ 𝜀
2 +

∫
𝑆

𝜓 𝑑𝜇.
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Since 0 ≤ ℎ𝑛 ≤ 𝑔+𝑛 , we have (ℎ𝑛− 𝑐)+ ≤ (𝑔+𝑛 −𝜓)+ + (𝜓− 𝑐)+ and so by Theorem
2.1.(7) in [4] we have∫ ∞

𝑐

𝑄𝑛(𝑡)𝑑𝑡 =

∫ ∞

0

𝑄𝑛(𝑡 + 𝑐)𝑑𝑡 =

∫ ∗
(ℎ𝑛 − 𝑐)+ 𝑑𝜇

≤
∫ ∗

(𝑔+𝑛 − 𝜓)+ 𝑑𝜇 +

∫
𝑆

(𝜓 − 𝑐)+𝑑𝜇 ≤ 𝜀
2 + 𝜀

2 = 𝜀.

Since 0 ≤ ℎ𝑛 ≤ 𝑔+𝑛 ≤ (𝑔+𝑛 − 𝜓)+ + 𝜓, we have ℎ𝑛 ∧ 𝛿 ≤ (𝑔+𝑛 − 𝜓)+ + (𝜓 ∧ 𝛿) and
so by Theorem 2.1.(7) in [4] we have∫ 𝛿

0

𝑄𝑛(𝑡) 𝑑𝑡 =

∫ ∗
(ℎ𝑛 ∧ 𝛿) 𝑑𝜇 ≤

∫ ∗
(𝑔+𝑛 − 𝜓)+ 𝑑𝜇 +

∫ ∗
(𝜓+ ∧ 𝛿) 𝑑𝜇 ≤ 𝜀.

Hence, for every 𝜀 > 0 there exist positive numbers 𝑐, 𝛿 > 0 satisfying

sup
𝑛≥1

∫ ∞

0

𝑄𝑛(𝑡)𝑑𝑡 < ∞ , sup
𝑛≥1

∫ ∞

𝑐

𝑄𝑛(𝑡)𝑑𝑡 ≤ 𝜀 , sup
𝑛≥1

∫ 𝛿

0

𝑄𝑛(𝑡) 𝑑𝑡 ≤ 𝜀.

Since 𝑄𝑛 is decreasing, it follows easily that {𝑄𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜆1-integrable
and recall that 𝑄𝑛(𝑡) → 0 for all 𝑡 > 0. Hence, by the Dunford-Pettis theorem (see
(3.23) p. 189 in [3]) we have

0 = lim
𝑛→∞

∫ ∞

0

𝑄𝑛(𝑡) 𝑑𝑡 = lim
𝑛→∞

∫ ∗
ℎ𝑛 𝑑𝜇

and since 𝑔+𝑛 = ℎ𝑛 + 1𝑆∖𝐹 𝑔+𝑛 , we have∫ ∗
𝑓𝑛 𝑑𝜇 ≤ ∫

𝑆
𝜙𝑑𝜇 +

∫ ∗
𝑔+𝑛 𝑑𝜇 ≤ ∫

𝑆
𝜙𝑑𝜇 +

∫ ∗
ℎ𝑛 𝑑𝜇 +

∫ ∗
1𝑆∖𝐹 𝑔+𝑛 𝑑𝜇.

Since
∫ ∗

1𝑆∖𝐹 𝑔+𝑛 𝑑𝜇 ≤ 𝜀 for all 𝑛 ≥ 1, we have

lim sup
𝑛→∞

∫ ∗
𝑓𝑛 𝑑𝜇 ≤ ∫𝑆𝜙𝑑𝜇 + 𝜀 ∀𝜀 > 0.

Letting 𝜀 ↓ 0, we see that lim sup
∫ ∗

𝑓𝑛 𝑑𝜇 ≤ ∫
𝑆
𝜙𝑑𝜇 for all 𝜙 ∈ 𝐿1(𝜇) with 𝑓 ≤ 𝜙

𝜇-a.e. Taking infimum over 𝜙, we obtain (1).
Suppose that 𝑓 ≤𝜇 lim inf 𝑓𝑛 and that {𝑓−𝑛 ∣ 𝑛 ≥ 1} is uniformly integrable.

Let 𝜀 > 0 be given. Then there exists 𝜙 ∈ 𝐿1(𝜇) such that 𝜙 ≥ 0 and
∫ ∗

(𝑓−𝑛 −
𝜙)+ 𝑑𝜇 ≤ 𝜀 for all 𝑛 ≥ 1. Set 𝑔 = 𝑓 + 𝜙 and 𝑔𝑛 = 𝑓𝑛 + 𝜙 and let us define
𝑄(𝑡) = 𝜇∗(𝑔 > 𝑡) and 𝑄𝑛(𝑡) = 𝜇∗(𝑔𝑛 > 𝑡) for 𝑡 ∈ R and 𝑛 ≥ 1. By (3.1), we have
𝑄(𝑡) ≤ lim inf 𝑄𝑛(𝑠) for all 0 < 𝑠 < 𝑡 and so we have 𝑄(𝑡) ≤ lim inf 𝑄𝑛(𝑡) for all
𝑡 ∈ 𝐶(𝑄) ∩ (0,∞). Since 𝑄 is decreasing, we have R ∖𝐶(𝑄) is at most countable.
Hence, by Theorem 2.1.(7) in [4] and Fatou’s lemma we have∫ ∗

𝑔+ 𝑑𝜇 =

∫ ∞

0

𝑄(𝑡) 𝑑𝑡 ≤ lim inf
𝑛→∞

∫ ∞

0

𝑄𝑛(𝑡) 𝑑𝑡 = lim inf
𝑛→∞

∫ ∗
𝑔+𝑛 𝑑𝜇.

Since 𝑔−𝑛 = (−𝑓𝑛 − 𝜙)+ ≤ (𝑓−𝑛 − 𝜙)+, we have (see Thm. 2.1.(5) in [4])∫ ∗
𝑔+𝑛 𝑑𝜇 =

∫ ∗
𝑔𝑛 𝑑𝜇 +

∫
∗𝑔
−
𝑛 𝑑𝜇 ≤ 𝜀 +

∫ ∗
𝑔𝑛 𝑑𝜇
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and since 𝜙 ∈ 𝐿1(𝜇) and 𝑓 = 𝑔 + 𝜙, we have∫ ∗
𝑓 𝑑𝜇 ≤ ∫ ∗𝑔+ 𝑑𝜇 +

∫
𝑆
𝜙𝑑𝜇 ≤ lim inf

𝑛→∞ (
∫ ∗

𝑔+𝑛 𝑑𝜇 +
∫
𝑆
𝜙𝑑𝜇)

≤ 𝜀 + lim inf
𝑛→∞ (

∫ ∗
𝑔𝑛 𝑑𝜇 +

∫
𝑆
𝜙𝑑𝜇) = 𝜀 + lim inf

𝑛→∞
∫ ∗

𝑓𝑛 𝑑𝜇.

Letting 𝜀 ↓ 0, we obtain (2). □

Theorem 3.3. Let (𝑆,𝒜1, 𝜇) and (𝑆,𝒜2, 𝜈) be content spaces and let us define

Λ = {𝑓 ∈ R𝑆 ∣ ∫ ∗𝑓 𝑑𝜇 ≤ ∫ ∗𝑓 𝑑𝜈} , ℒ = {𝐿 ⊆ 𝑆 ∣ 𝜇∗(𝐿) ≤ 𝜈∗(𝐿)}.
Let 𝑓, 𝑔 ∈ R𝑆 be given functions. Then we have

(1) 𝑓 ∈ Λ and 𝑔 ∈ Λ ∩ 𝐿1(𝜈) ⇒ 𝑎𝑓 + 𝑔 ∈ Λ ∀𝑎 ∈ R+.

(2) 𝑓 ∨ (−𝑛1𝑆) ∈ Λ ∀𝑛 ∈ N ⇒ 𝑓 ∈ Λ.

(3) 𝜈(𝑆) < ∞ , 𝜈(𝑆) ≤ 𝜇(𝑆) and (𝑓 + 𝑛1𝑆)+ ∈ Λ ∀𝑛 ∈ N ⇒ 𝑓 ∈ Λ.

(4) 𝑊+
∘ (𝑆,ℒ) ⊆ Λ and if 𝜇(𝑆) = 𝜈(𝑆) < ∞, then 𝑊 (𝑆,ℒ) ⊆ Λ.

(5) If 𝑓1, 𝑓2, . . . ∈ Λ are given functions such that (𝑓−𝑛 ∣ 𝑛 ≥ 1) is uniformly
𝜇-integrable, (𝑓+𝑛 ∣ 𝑛 ≥ 1) is uniformly 𝜈-integrable, 𝑓 ≤𝜇 lim inf 𝑓𝑛 and
lim sup 𝑓𝑛 ≤𝜈 𝑓 , then we have 𝑓 ∈ Λ.

(6) If 𝜇 is a measure and
∫
∗ 𝑓 𝑑𝜇 > −∞, then {ℎ ∈ Λ ∣ ℎ ≥ 𝑓} is (↑)-stable.

Let 𝐽 ⊆ R be an interval with interior 𝐽∘ such that 𝑓(𝑆) ⊆ 𝐽 and let 𝐺 : 𝐽 → R be
an increasing, continuous, convex function such that inf𝑥∈𝐽 𝐺(𝑥) = 0. If (𝑆,𝒜1, 𝜇)
and (𝑆,𝒜2, 𝜈) and (𝑇,ℬ, 𝜂) are measure spaces and 𝒜 := 𝒜1 ∩ 𝒜2, then we have

(7) If 𝜇, 𝜈 and 𝜂 are 𝜎-finite and ℎ ∈ 𝐿1(𝜇⊗ 𝜂) ∩ 𝐿1(𝜈 ⊗ 𝜂) is a given function
such that ℎ(⋅, 𝑡) ∈ Λ ∀𝑡 ∈ 𝑇 and ℎ(𝑠, ⋅) ∈ 𝐿1(𝜂) ∀𝑠 ∈ 𝑆, then we have
ℎ𝜂 ∈ Λ ∩ 𝐿1(𝜇) ∩ 𝐿1(𝜈) where ℎ𝜂(𝑠) :=

∫
𝑇
ℎ(𝑠, 𝑡) 𝜂(𝑑𝑡).

(8) If 𝑓 ∈ 𝑀(𝑆,𝒜2) and (𝑓 − 𝑐1𝑆)+ ∈ Λ ∀𝑐 ∈ 𝐽∘, then 𝐺 ∘ 𝑓 ∈ Λ.

(9) If Φ ⊆ 𝑀(𝑆,𝒜) is sequentially closed, {𝜙− ∣ 𝜙 ∈ Φ} is uniformly 𝜇-integrable
and {𝜙+ ∣ 𝜙 ∈ Φ} is uniformly 𝜈-integrable, then Λ∩Φ is sequentially closed.

Proof. (1): Let 𝑓 ∈ Λ and 𝑔 ∈ Λ ∩ 𝐿1(𝜈) be given functions and let 𝑎 ≥ 0 be a
nonnegative number. Then we have (see [4]):∫ ∗

(𝑎𝑓 + 𝑔)𝑑𝜇 ≤ 𝑎
∫ ∗

𝑓 𝑑𝜇+̇
∫ ∗

𝑔 𝑑𝜇 ≤ 𝑎
∫ ∗

𝑓 𝑑𝜈 +
∫
𝑆
𝑔 𝑑𝜈 ≤ ∫ ∗(𝑎𝑓 + 𝑔) 𝑑𝜈

which proves (1).
(2) is an immediate consequence of Theorem 2.1.(6) in [4] and since

𝑓 ∨ (−𝑛1𝑆) = (𝑓 + 𝑛1𝑆)+ − 𝑛1𝑆,

we see that (3) follows from (1) and (2).
(4): Let 𝑓 ∈ 𝑊+

∘ (𝑆,ℒ) be given. Let 𝑦 > 𝑥 > 0 be given. Since ∅ ∈ ℒ, there
exists 𝐿 ∈ ℒ such that {𝑓 > 𝑦} ⊆ 𝐿 ⊆ {𝑓 > 𝑥}. Hence, we have 𝜇∗(𝑓 > 𝑦) ≤
𝜇∗(𝐿) ≤ 𝜈∗(𝐿) ≤ 𝜈∗(𝑓 > 𝑥) for all 0 < 𝑥 < 𝑦 and so we have 𝜇∗(𝑓 > 𝑥) ≤
𝜈∗(𝑓 > 𝑥) for all 𝑥 ∈ R+ ∖ 𝐷 where 𝐷 is the set of all discontinuity points of
𝑦 ↷ 𝜇∗(𝑓 > 𝑦). Since 𝑦 ↷ 𝜇∗(𝑓 > 𝑦) is decreasing, we have that 𝐷 is at most
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countable and so by Theorem 2.1.(7) in [4] we have∫ ∗
𝑓 𝑑𝜇 =

∫ ∞

0

𝜇∗(𝑓 > 𝑡) 𝑑𝑡 ≤
∫ ∞

0

𝜈∗(𝑓 > 𝑡) 𝑑𝑡 =

∫ ∗
𝑓 𝑑𝜈

which proves the first inclusion in (4). So suppose that 𝜇(𝑆) = 𝜈(𝑆) < ∞ and let
𝑓 ∈ 𝑊 (𝑆,ℒ) be given. Since {∅, 𝑆} ∈ ℒ, we have (𝑓 + 𝑛1𝑆)+ ∈ 𝑊+

∘ (𝑆,ℒ) ⊆ Λ for
all 𝑛 ≥ 1 and so by (3) we have 𝑓 ∈ Λ which completes the proof of (4).

(5): Suppose that the hypotheses of (5) hold. Then we have
∫ ∗

𝑓𝑛 𝑑𝜇 ≤∫ ∗
𝑓𝑛 𝑑𝜈 and so by Lemma 3.2 we have∫ ∗

𝑓 𝑑𝜇 ≤ lim inf
𝑛→∞

∫ ∗
𝑓𝑛𝑑𝜇 ≤ lim inf

𝑛→∞
∫ ∗

𝑓𝑛𝑑𝜈 ≤ lim sup
𝑛→∞

∫ ∗
𝑓𝑛𝑑𝜈 ≤ ∫ ∗𝑓 𝑑𝜈

which proves (5).

(6): Suppose that 𝜇 is a measure and
∫
∗ 𝑓 𝑑𝜇 > −∞. Let (ℎ𝑛) ⊆ Λ be an

increasing sequence such that ℎ1 ≥ 𝑓 and ℎ𝑛 ↑ ℎ ∈ R𝑆 . Since
∫
∗ 𝑓 𝑑𝜇 > −∞, we

have
∫ ∗

𝑓− 𝑑𝜇 < ∞ and since 0 ≤ ℎ−𝑛 ≤ ℎ−1 ≤ 𝑓−, we see that {ℎ−𝑛 ∣ 𝑛 ≥ 1} is

uniformly 𝜇-integrable. Since ℎ𝑛 ≤ ℎ and ℎ𝑛 ∈ Λ, we have
∫ ∗

ℎ𝑛 𝑑𝜇 ≤ ∫ ∗ ℎ𝑛 𝑑𝜈 ≤∫ ∗
ℎ 𝑑𝜈 for all 𝑛 ≥ 1 and by (3.3), we have ℎ ≤𝜇 lim inf ℎ𝑛. So by Lemma 3.2, we

see that
∫ ∗

ℎ 𝑑𝜇 ≤ ∫ ∗ ℎ 𝑑𝜈 which proves (6).

(7): Suppose that the hypotheses of (7) hold. Since ℎ ∈ 𝐿1(𝜇⊗𝜂)∩𝐿1(𝜈⊗𝜂),
there exists a 𝜂-null set 𝑁 ⊆ 𝑇 such that ℎ( ⋅ , 𝑡) ∈ 𝐿1(𝜇)∩𝐿1(𝜈) for all 𝑡 ∈ 𝑇 ∖𝑁 .
Since ℎ(⋅, 𝑡) ∈ Λ, we have

∫
𝑆 ℎ(𝑠, 𝑡)𝜇(𝑑𝑠) ≤ ∫𝑆 ℎ(𝑠, 𝑡) 𝜈(𝑑𝑠) for all 𝑡 ∈ 𝑇 ∖ 𝑁 and

by the Fubini-Tonelli theorem we have ℎ𝜂 ∈ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and∫
𝑆ℎ

𝜂 𝑑𝜇 =
∫
𝑇∖𝑁𝜂(𝑑𝑡)

∫
𝑆ℎ(𝑠, 𝑡)𝜇(𝑑𝑠) ≤ ∫𝑇∖𝑁𝜂(𝑑𝑡)

∫
𝑆ℎ(𝑠, 𝑡) 𝜈(𝑑𝑠) =

∫
𝑆ℎ

𝜂𝑑𝜈.

Hence, we see that ℎ𝜂 ∈ Λ ∩ 𝐿1(𝜇) ∩ 𝐿1(𝜈).

(8): Suppose that 𝑓 ∈ 𝑀(𝑆,𝒜2) and (𝑓 − 𝑐1𝑆)+ ∈ Λ for all 𝑐 ∈ 𝐽∘. Set
Φ = Λ ∩ 𝑀+(𝑆,𝒜2). By (1) and (6), we have that Φ is an (↑)-stable cone. Let
𝜙, 𝜓 ∈ Φ be given and let me show that 𝜙 + 𝜓 ∈ Λ. If

∫ ∗
(𝜙 + 𝜓) 𝑑𝜈 = ∞, this is

evident. So suppose that
∫ ∗

(𝜙 + 𝜓) 𝑑𝜈 < ∞. Since 𝜓 ≥ 0, we have
∫ ∗

𝜙𝑑𝜈 < ∞
and since 𝜙 is nonnegative and 𝜈-measurable, we have 𝜙 ∈ 𝐿1(𝜈), So by (1) we
see that 𝜙 + 𝜓 ∈ Φ. Hence, we see that Φ is an (↑)-stable convex cone containing
(𝑓 − 𝑐1𝑆)+ ∈ Λ for all 𝑐 ∈ 𝐽∘ and so by Lemma 3.1 we have 𝐺 ∘ 𝑓 ∈ Φ ⊆ Λ.

(9): Suppose that the hypotheses of (9) hold and let ℎ ∈ R𝑆 and (ℎ𝑛) ⊆
Λ ∩ Φ ∩ 𝑀(𝑆,𝒜) be given functions satisfying ℎ𝑛(𝑠) → ℎ(𝑠) for all 𝑠 ∈ 𝑆. Since
Φ is sequentially closed, we have ℎ ∈ Φ ∩𝑀(𝑆,𝒜). By (3.3)–(3.4), we have ℎ ≤𝜇

lim inf ℎ𝑛 and ℎ ≤𝜈 lim supℎ𝑛 and since {ℎ−𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜇-integrable
and {ℎ+𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜈-integrable, we have ℎ ∈ Λ by (5). □

Theorem 3.4. Let Λ ⊆ 𝑀(R𝑘,ℬ𝑘) be a non-empty set, let 𝜅 : R𝑘 → [0,∞] be a
Borel function and let 𝜇 and 𝜈 be Borel measures on R𝑘 satisfying

(1) 𝜙 ★ 𝑔 ∈ Λ ∀𝜙 ∈ Λ ∩ 𝐿1loc(𝜆𝑘) ∀𝑔 ∈ 𝐶∞
∘∘(R𝑘)+ with

∫
R𝑘

𝑔(𝑦)𝑑𝑦 = 1.
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(2) 𝜅 ∈ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and

∫
R𝑘

𝑓𝑑𝜇 ≤
∫
R𝑘

𝑓 𝑑𝜈 ∀𝑓 ∈ Λ ∩ 𝐶∞
𝜅 (R𝑘).

Let 𝐾 ⊆ R𝑘 be a bounded, starshaped, Borel set with non-empty interior and let
𝑓 ∈ Λ be a locally 𝜆𝑘-integrable Borel function satisfying

(3) ∃𝑐, 𝛿 > 0 so that sup𝑦∈𝐾 ∣𝑓(𝑥 + 𝛿𝑦)∣ ≤ 𝑐 𝜅(𝑥) ∀𝑥 ∈ R𝑘.

(4) 𝜇(R𝑘 ∖ 𝐶𝐾
ap(𝑓)) = 0 = 𝜈(R𝑘 ∖ 𝐶𝐾

ap(𝑓)).

Then 𝑓 ∈ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and we have
∫
R𝑘 𝑓 𝑑𝜇 ≤ ∫

R𝑘 𝑓 𝑑𝜈.

Proof. Let 𝑓 ∈ Λ ∩ 𝐿1loc(𝜆𝑘) be a given function satisfying (3)–(4) and let 𝑐, 𝛿 > 0
be chosen according to (3). Since 𝐾 has non-empty interior, there exists a function
𝑔 ∈ 𝐶∞

∘∘(R𝑘)+ such that {𝑔 ∕= 0} ⊆ 𝛿𝐾 and
∫
𝐾

𝑔 𝑑𝜆𝑘 = 1. Let 𝑛 ≥ 1 be given

and set 𝑓𝑛(𝑥) =
∫
R𝑘 𝑓(𝑥 + 𝑦

𝑛 ) 𝑔(𝑦) 𝑑𝑦 for 𝑥 ∈ R𝑘; see Lemma 2.2. By (1) and

Lemma 2.2, we have 𝑓𝑛 ∈ Λ ∩ 𝐶∞
𝜅 (R𝑘). So by (2), we have

∫
𝑓𝑛 𝑑𝜇 ≤ ∫ 𝑓𝑛 𝑑𝜈 for

all 𝑛 ≥ 1. By (3) and Lemma 2.2.(3), we have ∣𝑓𝑛(𝑥)∣ ≤ 𝑐 𝜅(𝑥) for all 𝑥 ∈ R𝑘 and
all 𝑛 ≥ 1 and by (4) and Lemma 2.2.(4), we have 𝑓𝑛 → 𝑓 𝜇-a.e. and 𝜈-a.e. By (2)
we have 𝜅 ∈ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and so by Lebesgue’s convergence theorem we have
𝑓 ∈ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and∫

R𝑘

𝑓𝑑𝜇 = lim
𝑛→∞

∫
R𝑘

𝑓𝑛𝑑𝜇 ≤ lim
𝑛→∞

∫
R𝑘

𝑓𝑛 𝑑𝜈 =

∫
R𝑘

𝑓 𝑑𝜈

which proves the theorem. □

4. Modular orderings

Let 𝜇 and 𝜈 be Borel probability measures on R𝑘 such that 𝜇 ≤bsm 𝜈. In the
modern literature it is frequently claimed that this implies 𝜇 ≤sm 𝜈; see for instance
[10]. Theorem 4.8 below shows that we do have

∫
𝑓 𝑑𝜇 ≤ ∫ 𝑓 𝑑𝜈 for a large class

of unbounded, supermodular Borel functions, and that we do have 𝜇 ≤sm 𝜈 if 𝜇
and 𝜈 are discrete measures with finitely many mass points. However, Example
C of the introduction shows that this inequality may fail for some continuous,
linear, modular function 𝑓 satisfying 0 ≤ 𝑓 ≤ 2 𝜇-a.s. and 𝜈-a.s. This shows
that a closer glance at the supermodular ordering is needed. This section will
be devoted to the study of supermodular functions and the modular orderings
introduced in the introduction. Recall that 𝑓 : R𝑘 → R is supermodular if and
only if 𝑓(𝑥 ∨ 𝑦) + 𝑓(𝑥 ∧ 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦) for all 𝑥, 𝑦 ∈ R𝑘. Here we shall use
an equivalent definition: 𝑓 is supermodular if and only if Δ𝑠

𝑖Δ
𝑡
𝑗𝑓(𝑥) ≥ 0 for all

1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘, all 𝑥 ∈ R𝑘 and all 𝑠, 𝑡 ∈ R+; see [8], where Δ𝑠
𝑖 for 𝑖 ∈ [𝑘] is

the difference operator Δ𝑠
𝑖𝑓(𝑥) = 𝑓(𝑥 + 𝑠𝑒𝑖)− 𝑓(𝑥) and Δ𝑠

𝑖Δ
𝑡
𝑗 is the second-order

difference operator:

Δ𝑠
𝑖Δ

𝑡
𝑗𝑓(𝑥) = 𝑓(𝑥 + 𝑠𝑒𝑖 + 𝑡𝑒𝑗) − 𝑓(𝑥 + 𝑠𝑒𝑖) − 𝑓(𝑥 + 𝑡𝑒𝑗) + 𝑓(𝑥).

Let 𝑘 ≥ 1 be a given integer and let 𝑓 : R𝑘 → R be a given function. If
𝑖 ∈ [𝑘], we write Δ𝑖𝑓 ≥ 0 if and only if Δ𝑠

𝑖 𝑓(𝑥) ≥ 0 for all 𝑠 ∈ R+ and all 𝑥 ∈ R𝑘.
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If 𝑖, 𝑗 ∈ [𝑘], we write Δ𝑖𝑗𝑓 ≥ 0 if and only if Δ𝑠
𝑖Δ

𝑡
𝑗𝑓(𝑥) ≥ 0 for all 𝑠, 𝑡 ∈ R+ and

all 𝑥 ∈ R𝑘, and we write Δ𝑖𝑗𝑓 ≤ 0 if and only if Δ𝑖𝑗(−𝑓) ≥ 0. If 𝑥 ∈ R𝑘 and
𝑖 ∈ [𝑘], we let

𝑓𝑥𝑖 (𝑡) = 𝑓(𝑥 + (𝑡− 𝑥𝑖)𝑒𝑖) = 𝑓(𝑥1, . . . , 𝑥𝑖−1, 𝑡, 𝑥𝑖+1, . . . , 𝑥𝑘) ∀𝑡 ∈ R

denote the partial function. Let “xxx” be a given property of a function of one
variable (such as “increasing” or “continuous” or “differentiable”). If 𝑖 ∈ [𝑘] and
𝑓 : R𝑘 → R is a function of 𝑘 variables, we say that 𝑓 has “xxx” in the 𝑖th
coordinate if the partial functions 𝑓𝑥𝑖 has “xxx” for all 𝑥 ∈ R𝑘. Note that 𝑓 is
increasing if and only if 𝑓 is increasing in each coordinate and that we have

(4.1) Δ𝑗𝑓 ≥ 0 ⇔ 𝑓 is increasing in the 𝑗th coordinate.

(4.2) Δ𝑖𝑗𝑓 ≥ 0 ⇔ 𝑥 ↷ Δ𝑠
𝑖 𝑓(𝑥) is increasing in the 𝑗th coordinate for all 𝑠 > 0.

(4.3) 𝑓 is supermodular if and only if Δ𝑖𝑗𝑓 ≥ 0 for all 1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘; see [8].

(4.4) 𝑓 is convex in the 𝑖th coordinate if and only if Δ𝑖𝑖𝑓 ≥ 0 and 𝑓 has the
Baire property in the 𝑖th coordinate; see [20].

If 𝑖 ∈ [𝑘] and 𝑥 ∈ R𝑘, we let

𝐷𝑖𝑓(𝑥) := lim sup
𝑢→0

𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)
𝑢 , 𝐷𝑖𝑓(𝑥) := lim inf

𝑢→0
𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)

𝑢

𝐷
𝑟

𝑖 𝑓(𝑥) := lim sup
𝑢↓0

𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)
𝑢 , 𝐷

ℓ

𝑖𝑓(𝑥) := lim sup
𝑢↑0

𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)
𝑢

𝐷𝑟
𝑖 𝑓(𝑥) := lim inf

𝑢↓0
𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)

𝑢 , 𝐷ℓ
𝑖𝑓(𝑥) := lim inf

𝑢↑0
𝑓(𝑥+𝑢𝑒𝑖)−𝑓(𝑥)

𝑢

denote the right / left / upper / lower partial Dini derivatives of 𝑓 at 𝑥; see [15].

Proposition 4.1. Let 𝑓 : R𝑘 → R and 𝜙1, . . . , 𝜙𝑘 : R → R be given functions and

set 𝜙(𝑥) := (𝜙1(𝑥1), . . . , 𝜙𝑘(𝑥𝑘)) and 𝜁(𝑥) :=
∏𝑘
𝑖=1 𝜙𝑖(𝑥𝑖) for all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈

R𝑘. Let 𝐽 ⊆ R be an interval and let 𝜉 : 𝐽 → R be an increasing and convex
function. Let 𝑖, 𝑗 ∈ [𝑘] be given integers. Then we have

(1) If 𝜙1, . . . , 𝜙𝑘 are nonnegative, 𝑖 ∕= 𝑗 and 𝜙𝑖 and 𝜙𝑗 are both increasing
(decreasing) on R, then we have Δ𝑖𝑗𝜁 ≥ 0.

(2) If Δ𝑖𝑗𝑓 ≥ 0, 𝑖 ∕= 𝑗 and 𝜙𝑖 and 𝜙𝑗 are both increasing (decreasing) on R, then
we have Δ𝑖𝑗(𝑓 ∘ 𝜙) ≥ 0.

(3) Let ℎ1, . . . , ℎ𝑛 : R𝑘 → R and 𝑔 : R𝑛 → R be increasing functions and set
ℎ(𝑥) := (ℎ1(𝑥), . . . , ℎ𝑛(𝑥)) for all 𝑥 ∈ R𝑘. Then we have

Δ𝑖𝑗ℎℓ ≥ 0 and Δℓ𝑚𝑔 ≥ 0 ∀1 ≤ ℓ,𝑚 ≤ 𝑛 ⇒ Δ𝑖𝑗(𝑔 ∘ ℎ) ≥ 0.

(4) If 𝑓(R𝑘) ⊆ 𝐽 and Δ𝑖𝑗(𝑓 ∨ 𝑎) ≥ 0 ∀ 𝑎 ∈ 𝐽 , then Δ𝑖𝑗(𝜉 ∘ 𝑓) ≥ 0.

(5) If 𝑓(R𝑘) ⊆ 𝐽 , 𝑓 is increasing and Δ𝑖𝑗𝑓 ≥ 0, then Δ𝑖𝑗(𝜉 ∘ 𝑓) ≥ 0.
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Proof. (1) and (2) are easy and well known. Let 𝑔 and ℎ1, . . . , ℎ𝑛 be increasing
functions such that Δ𝑖𝑗ℎℓ ≥ 0 and Δℓ𝑚𝑔 ≥ 0 for all 1 ≤ ℓ,𝑚 ≤ 𝑛. Set 𝜓(𝑥) :=
𝑔(ℎ(𝑥)) for 𝑥 ∈ R𝑘. Let 𝑢, 𝑣 > 0 and 𝑥 ∈ R𝑘 be given and let us define 𝑦 = 𝑥+𝑣𝑒𝑗
and

𝑥0 = ℎ(𝑥) , 𝑥𝑛 = ℎ(𝑥 + 𝑢𝑒𝑖) , 𝑦0 = ℎ(𝑦) , 𝑦𝑛 = ℎ(𝑦 + 𝑢𝑒𝑖)

𝑥ℓ = (ℎ1(𝑥 + 𝑢𝑒𝑖), . . . , ℎℓ(𝑥 + 𝑢𝑒𝑖), ℎℓ+1(𝑥), . . . , ℎ𝑛(𝑥)) ∀1 ≤ ℓ < 𝑛

𝑦ℓ = (ℎ1(𝑦 + 𝑢𝑒𝑖), . . . , ℎℓ(𝑦 + 𝑢𝑒𝑖), ℎℓ+1(𝑦), . . . , ℎ𝑛(𝑦)) ∀1 ≤ ℓ < 𝑛.

Let 1 ≤ ℓ ≤ 𝑛 be given and set 𝑢ℓ := Δ𝑢
𝑖 ℎℓ(𝑥) and 𝑣ℓ := Δ𝑢

𝑖 ℎℓ(𝑦). Then we
have 𝑔(𝑥ℓ) − 𝑔(𝑥ℓ−1) = Δ𝑢ℓ

ℓ 𝑔(𝑥ℓ−1) and 𝑔(𝑦ℓ) − 𝑔(𝑦ℓ−1) = Δ𝑣ℓ
ℓ 𝑔(𝑦ℓ−1). Since

ℎℓ is increasing, we have 𝑢ℓ ≥ 0 and recall that Δ𝑖𝑗ℎℓ ≥ 0. Hence, by (4.2)
we have that 𝑧 ↷ Δ𝑢

𝑖 ℎℓ(𝑧) is increasing in the 𝑗th coordinate and so we have
0 ≤ 𝑢ℓ ≤ 𝑣ℓ. Recall that Δℓ𝑚𝑔 ≥ 0 for all 𝑚 = 1, . . . , 𝑛. Hence, by (4.2) we
have that 𝑧 ↷ Δ𝑢ℓ

ℓ 𝑔(𝑧) is increasing on R𝑛 and since 𝑥 ≤ 𝑦 and ℎ1, . . . , ℎ𝑛 are

increasing, we have 𝑥ℓ−1 ≤ 𝑦ℓ−1. Thus, we have Δ𝑢ℓ
ℓ 𝑔(𝑥ℓ−1) ≤ Δ𝑢ℓ

ℓ 𝑔(𝑦ℓ−1) and

since 0 ≤ 𝑢ℓ ≤ 𝑣ℓ and 𝑔 is increasing, we have Δ𝑢ℓ
ℓ 𝑔(𝑦ℓ−1) ≤ Δ𝑣ℓ

ℓ 𝑔(𝑦ℓ−1). Hence,
we have

Δ𝑢
𝑖 𝜓(𝑥) = 𝑔(𝑥𝑛) − 𝑔(𝑥0) =

∑𝑛
ℓ=1(𝑔(𝑥ℓ) − 𝑔(𝑥ℓ−1) =

∑𝑛
ℓ=1Δ

𝑢ℓ
ℓ 𝑔(𝑥ℓ−1)

≤∑𝑛
ℓ=1Δ

𝑣ℓ
ℓ 𝑔(𝑦ℓ−1) =

∑𝑛
ℓ=1(𝑔(𝑦ℓ) − 𝑔(𝑦ℓ−1) = 𝑔(𝑦𝑛) − 𝑔(𝑦0) = Δ𝑢

𝑖 𝜓(𝑥 + 𝑣𝑒𝑗)

for all 𝑥 ∈ R𝑘 and all 𝑢, 𝑣 > 0. In particular, we see that 𝑥 ↷ Δ𝑢
𝑖 𝜓(𝑥) is increasing

in the 𝑗th coordinate for all 𝑢 > 0 and so by (4.2) we conclude that Δ𝑖𝑗𝜓 ≥ 0.
Thus, (3) is proved.

(4): Suppose that Δ𝑖𝑗(𝑓 ∨ 𝑎) ≥ 0 for all 𝑎 ∈ 𝐽 . Let Φ𝑖𝑗 denote the set of all
functions 𝐹 : R𝑘 → R such that Δ𝑖𝑗𝐹 ≥ 0. Then Φ𝑖𝑗 is a pointwise closed, convex
cone containing all constant functions and since (𝑓(𝑥) − 𝑎)+ = (𝑓 ∨ 𝑎)(𝑥) − 𝑎, we
see that (𝑓( ⋅ ) − 𝑎)+ ∈ Φ𝑖𝑗 for all 𝑎 ∈ 𝐽 . Since 𝜉 is increasing and convex on
𝐽 , there exist increasing, continuous, convex functions 𝜉1, 𝜉2, . . . : R → R such
that 𝜉𝑚(𝑡) → 𝜉(𝑡) for all 𝑡 ∈ 𝐽 and 𝑐𝑚 := inf𝑡∈𝐽 𝜉𝑚(𝑡) > −∞ for all 𝑚 ≥ 1.
Then 𝜂𝑚(𝑡) = 𝜉𝑚(𝑡) − 𝑐𝑚 is an increasing, continuous, convex function on 𝐽 with
inf𝑡∈𝐽 𝜂𝑚(𝑡) = 0. So by Lemma 3.1, we see that 𝜂𝑚 ∘ 𝑓 ∈ Φ𝑖𝑗 for all 𝑚 ≥ 1 and
since 𝜂𝑚(𝑡) + 𝑐𝑚 = 𝜉𝑚(𝑡) → 𝜉(𝑡), we have Δ𝑖𝑗(𝜉 ∘ 𝑓) ≥ 0.

(5): Suppose that 𝑓 is increasing with Δ𝑖𝑗𝑓 ≥ 0 and let 𝜉1, 𝜉2, . . . : R → R
be chosen as above. By (4.4), we have Δ11𝜉𝑚 ≥ 0 and so by (3) applied with
𝑛 := 1 and (𝑔, ℎ1) := (𝜉𝑚, 𝑓), we see that Δ𝑖𝑗(𝜉𝑚 ∘ 𝑓) ≥ 0 for all 𝑚 ≥ 1 and since
𝜉𝑚(𝑓(𝑥)) → 𝜉(𝑓(𝑥)), we have Δ𝑖𝑗(𝜉 ∘ 𝑓) ≥ 0. □

Proposition 4.2. Let 𝑓 : R𝑘 → R be a supermodular function. If 𝑖 ∈ [𝑘] and
𝑠, 𝑡 ∈ R, then we have

(1) 𝑥 ↷ 𝑓𝑥𝑖 (𝑡)−𝑓𝑥𝑖 (𝑠) is increasing on R𝑘 if 𝑠 ≤ 𝑡 and decreasing on R𝑘 if 𝑡 ≤ 𝑠.
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Let us define 𝜎(𝑥, 𝑦) = {𝑖 ∈ [𝑘] ∣ 𝑥𝑖 < 𝑦𝑖} for 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘 and 𝑦 =
(𝑦1, . . . , 𝑦𝑘) ∈ R𝑘. Let us define

𝐹𝑎(𝑥) = 𝑓(𝑥 ∨ 𝑎) −
𝑛∑
𝑖=1

𝑓𝑎𝑖 (𝑥𝑖 ∨ 𝑎𝑖) , 𝐹 𝑎(𝑥) = 𝑓(𝑥 ∧ 𝑎) −
𝑛∑
𝑖=1

𝑓𝑎𝑖 (𝑥𝑖 ∧ 𝑎𝑖)

for all 𝑎 = (𝑎1, . . . , 𝑎𝑘) ∈ R𝑘 and all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘. If 𝑎 ≤ 𝑏 and
𝑥, 𝑦 ∈ [𝑎, 𝑏] are given vectors, we have

(2) 𝑓(𝑥) − 𝑓(𝑦) ≤ ∑
𝑖∈𝜎(𝑥,𝑦)

(𝑓𝑎𝑖 (𝑥𝑖) − 𝑓𝑎𝑖 (𝑦𝑖)) +
∑

𝑖∈𝜎(𝑦,𝑥)
(𝑓 𝑏𝑖 (𝑥𝑖) − 𝑓 𝑏𝑖 (𝑦𝑖)).

(3) ∣𝑓(𝑥) − 𝑓(𝑦)∣ ≤
𝑘∑
𝑖=1

∣𝑓𝑎𝑖 (𝑥𝑖) − 𝑓𝑎𝑖 (𝑦𝑖)∣ +
𝑘∑
𝑖=1

∣𝑓 𝑏𝑖 (𝑥𝑖) − 𝑓 𝑏𝑖 (𝑦𝑖)∣.
(4) 𝑓 is modular if and only if there exist functions 𝑓1, . . . , 𝑓𝑘 : R → R such that

𝑓(𝑢) = 𝑓1(𝑢1) + ⋅ ⋅ ⋅ + 𝑓𝑘(𝑢𝑘) for all 𝑢 = (𝑢1, . . . , 𝑢𝑘) ∈ R𝑘.

(5) 𝐹𝑎 is increasing and supermodular and 𝐹 𝑎 is decreasing and supermodular.

Proof. (1): Let 1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘 and 𝑠, 𝑡 ∈ R be given such that 𝑠 ≤ 𝑡. Then 𝑢 :=
𝑡− 𝑠 ≥ 0 and by (4.2)–(4.3) and supermodularity of 𝑓 , we have that 𝑥 ↷ Δ𝑢

𝑖 𝑓(𝑥)
is increasing in the 𝑗th coordinate. Since 𝑓𝑥𝑖 (𝑡) − 𝑓𝑥𝑖 (𝑠) = Δ𝑢

𝑖 𝑓(𝑥 + (𝑠− 𝑥𝑖)𝑒𝑖), we
see that 𝑥 ↷ 𝑓𝑥𝑖 (𝑡) − 𝑓𝑥𝑖 (𝑠) is increasing in the 𝑗th coordinate for 𝑗 ∕= 𝑖 and since
𝑥 ↷ 𝑓𝑥𝑖 (𝑡)− 𝑓𝑥𝑖 (𝑠) is constant in the 𝑖th coordinate, we see that 𝑥 ↷ 𝑓𝑥𝑖 (𝑡)− 𝑓𝑥𝑖 (𝑠)
is increasing if 𝑠 ≤ 𝑡. Interchanging 𝑠 and 𝑡, we see that 𝑥 ↷ 𝑓𝑥𝑖 (𝑡) − 𝑓𝑥𝑖 (𝑠) is
decreasing if 𝑡 ≤ 𝑠.

(2)–(3): Let 𝑥, 𝑦 ∈ R𝑘 be given vectors and set 𝑧0 = 𝑥, 𝑧𝑛 = 𝑦 and 𝑧𝑖 =
(𝑦1, . . . , 𝑦𝑖, 𝑥𝑖+1, . . . , 𝑥𝑘) for 1 ≤ 𝑖 < 𝑛. Then we have

(i) 𝑓(𝑥) − 𝑓(𝑦) =
𝑛∑
𝑖=1

(𝑓(𝑧𝑖−1) − 𝑓(𝑧𝑖)) =
𝑛∑
𝑖=1

(𝑓𝑧𝑖𝑖 (𝑥𝑖) − 𝑓𝑧𝑖𝑖 (𝑦𝑖)).

Let 𝑎, 𝑏 ∈ R𝑘 be given vectors such that 𝑥, 𝑦 ∈ [𝑎, 𝑏]. Since 𝑎 ≤ 𝑧𝑖 ≤ 𝑏, we
have 𝑓𝑧𝑖𝑖 (𝑥𝑖)− 𝑓𝑧𝑖𝑖 (𝑦𝑖) ≤ 𝑓𝑎𝑖 (𝑥𝑖)− 𝑓𝑎𝑖 (𝑦𝑖) for all 𝑖 ∈ 𝜎(𝑥, 𝑦) and 𝑓𝑧𝑖𝑖 (𝑥𝑖)− 𝑓𝑧𝑖𝑖 (𝑦𝑖) ≤
𝑓 𝑏𝑖 (𝑥𝑖)−𝑓 𝑏𝑖 (𝑦𝑖) for all 𝑖 ∈ 𝜎(𝑦, 𝑥). Since 𝑓𝑧𝑖𝑖 (𝑥𝑖)−𝑓𝑧𝑖𝑖 (𝑦𝑖) = 0 for 𝑖 /∈ 𝜎(𝑥, 𝑦)∪𝜎(𝑦, 𝑥),
we see that (2) holds. (3) is an immediate consequence of (2).

(4): So suppose that 𝑓 is modular. By (1), there exist functions 𝑔1, . . . , 𝑔𝑘 :
R → R such that 𝑓𝑥𝑖 (𝑡) − 𝑓𝑥𝑖 (0) = 𝑔𝑖(𝑡) for all (𝑡, 𝑥) ∈ R × R𝑘 and all 𝑖 ∈ [𝑘].

So by (i) with 𝑦 = (0, . . . , 0), we see that 𝑓(𝑥) = 𝑓(0, . . . , 0) +
∑𝑘

𝑖=1 𝑔𝑖(𝑥𝑖) which
proves the “only if” in (4). The “if” part is evident.

(5): Let 𝑥 ≤ 𝑦 be given. Then we have 𝑎 ≤ 𝑥 ∨ 𝑎 ≤ 𝑦 ∨ 𝑎 and so by (2) with
𝑏 := 𝑦 ∨ 𝑎, we have

𝑓(𝑥 ∨ 𝑎) − 𝑓(𝑦 ∨ 𝑎) ≤∑𝑘
𝑖=1(𝑓

𝑎
𝑖 (𝑥𝑖 ∨ 𝑎𝑖) − 𝑓𝑎𝑖 (𝑦𝑖 ∨ 𝑎𝑖)).

Hence, we see that 𝐹𝑎 is increasing. In the same manner we see that 𝐹 𝑎 is decreas-
ing. By Proposition 4.1.(2) we see that 𝑓(𝑥 ∨ 𝑎) and 𝑓(𝑥 ∧ 𝑎) are supermodular.
So by (4) we see that 𝐹𝑎 and 𝐹 𝑎 are supermodular. □

Proposition 4.3. Let 𝑓 : R𝑘 → R be a supermodular function. Let 𝐷 ⊆ R𝑘 be a
given set satisfying ∪𝑢∈𝐷[𝑢, ∗] = R𝑘 = ∪𝑢∈𝐷[∗, 𝑢]. Let 𝒜1, . . . ,𝒜𝑘 be 𝜎-algebras
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on R, let 𝜇𝑖 be a finite measure on (R,𝒜𝑖) for 𝑖 ∈ [𝑘] and let 𝒜 = 𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑘

denote the product 𝜎-algebra on R𝑘. Let 𝜏1, . . . , 𝜏𝑘 be topologies on R and let
𝜏 = 𝜏1 × ⋅ ⋅ ⋅ × 𝜏𝑘 denote the product topology on R𝑘. If 𝑐 = (𝑐𝑖, . . . , 𝑐𝑘) is a given
vector such that 𝑐𝑖 admits a bounded 𝜏𝑖-neighborhood for all 𝑖 ∈ [𝑘], then we have

(1) If 𝑓𝑢𝑖 is 𝒜𝑖-measurable ∀𝑢 ∈ 𝐷 ∀ 𝑖 ∈ [𝑘], then 𝑓 is 𝒜-measurable.

(2) If 𝑓𝑢𝑖 is 𝜏𝑖-continuous at 𝑐𝑖 ∀𝑢 ∈ 𝐷 ∀ 𝑖 ∈ [𝑘], then 𝑓 is 𝜏-continuous at
𝑐 = (𝑐1, . . . , 𝑐𝑘).

(3) If 𝑓𝑢𝑖 ∈ 𝐿1(𝜇𝑖) ∀𝑢 ∈ 𝐷 ∀ 𝑖 ∈ [𝑘], then 𝑓𝑥𝑖 ∈ 𝐿1(𝜇𝑖) ∀𝑥 ∈ R𝑘 ∀ 𝑖 ∈ [𝑘].

Proof. Since R𝑘 = ∪𝑎∈𝐷 [𝑎, ∗] there exists 𝑎𝑛 = (𝑎𝑛1 , . . . , 𝑎
𝑛
𝑘 ) ∈ 𝐷 for 𝑛 ≥ 1 such

that 𝑎𝑛+1𝑖 < 𝑎𝑛𝑖 ≤ −𝑛 for all 𝑛 ∈ N and all 𝑖 ∈ [𝑘] and since R𝑘 = ∪𝑎∈𝐷 [∗, 𝑎]

there exists 𝑏𝑛 = (𝑏𝑛1 , . . . , 𝑏
𝑛
𝑘 ) ∈ 𝐷 for 𝑛 ≥ 1 such that 𝑛 ≤ 𝑏𝑛𝑖 < 𝑏𝑛+1𝑖 for all 𝑛 ∈ N

and all 𝑖 ∈ [𝑘]. Set 𝐶𝑛 = [𝑎𝑛, 𝑏𝑛] for all 𝑛 ≥ 1. Then we have 𝐶𝑛 ↑ R𝑘 and by
Proposition 4.2.(3) we have

(i) ∣𝑓(𝑥) − 𝑓(𝑦)∣ ≤
𝑘∑
𝑖=1

∣𝑓𝑎𝑛𝑖 (𝑥𝑖) − 𝑓𝑎
𝑛

𝑖 (𝑦𝑖)∣ +
𝑘∑
𝑖=1

∣𝑓 𝑏𝑛𝑖 (𝑥𝑖) − 𝑓 𝑏
𝑛

𝑖 (𝑦𝑖)∣

for all 𝑥, 𝑦 ∈ 𝐶𝑛. Suppose that 𝑓𝑢𝑖 is 𝒜𝑖-measurable for all 𝑢 ∈ 𝐷 and all 𝑖 ∈ [𝑘].
Since 𝑓𝑎

𝑛

𝑖 and 𝑓 𝑏
𝑛

𝑖 are 𝒜𝑖-measurable for all 𝑛 ∈ N and all 𝑖 ∈ [𝑘], it follows easily
that 𝑓 is (𝒜1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝒜𝑘)-measurable.

(2): Suppose that 𝑓𝑢𝑖 is continuous at 𝑐𝑖 for all 𝑢 ∈ 𝐷 and all 𝑖 ∈ [𝑘]. By
assumption, we have that 𝑐𝑖 admits a bounded 𝜏𝑖-neighborhood 𝐺𝑖 for 𝑖 = 1, . . . , 𝑘.
Since 𝑎𝑛𝑖 ≤ −𝑛 < 0 < 𝑛 ≤ 𝑏𝑛𝑖 , there exists 𝑞 ∈ N such that 𝐺𝑖 ⊆ [𝑎𝑞𝑖 , 𝑏

𝑞
𝑖 ] for all

𝑖 ∈ [𝑘]. Then 𝐺 := 𝐺1 × ⋅ ⋅ ⋅ × 𝐺𝑘 is a 𝜏 -neighborhood of 𝑐 such that 𝐺 ⊆ [𝑎𝑞, 𝑏𝑞]
and 𝑓𝑎

𝑞

𝑖 and 𝑓 𝑏
𝑞

𝑖 are 𝜏𝑖-continuous at 𝑐𝑖 for all 𝑖 ∈ [𝑘]. So by (i) we see that 𝑓 is
𝜏 -continuous at 𝑐.

(3): Suppose that 𝑓𝑢𝑖 ∈ 𝐿1(𝜇𝑖) for all 𝑢 ∈ 𝐷 and all 𝑖 ∈ [𝑘], Let 𝑥 ∈ R𝑘 and
𝑖 ∈ [𝑘] be given. Then there exists 𝑛 ≥ 1 such that 𝑥 ∈ [𝑎𝑛, 𝑏𝑛]. So by Proposition
4.2 (1) we have

∣𝑓𝑥𝑖 (𝑡) − 𝑓𝑥𝑖 (0)∣ ≤ ∣𝑓𝑎𝑛𝑖 (𝑡) − 𝑓𝑎
𝑛

𝑖 (0)∣ + ∣𝑓 𝑏𝑛𝑖 (𝑡) − 𝑓 𝑏
𝑛

𝑖 (0)∣ ∀𝑡 ∈ R

and by (1), we see that 𝑓𝑥𝑖 is 𝜇𝑖-measurable. Since (R𝑘,𝒜𝑖, 𝜇𝑖) is a finite measure
space and 𝑓𝑎

𝑛

𝑖 and 𝑓 𝑏
𝑛

belong to 𝐿1(𝜇𝑖), we see that 𝑓𝑥𝑖 ∈ 𝐿1(𝜇𝑖). □

Theorem 4.4. Let 𝑓 : R𝑘 → R be a given function and let 𝑖, 𝑗 ∈ [𝑘] be given
integers such that 𝑓 is continuous in the 𝑖th coordinate. Then we have

(1) If 𝜆1(𝑡 ∈ R ∣ 𝐷𝑖𝑓(𝑥 + 𝑡𝑒𝑖) < 0) = 0 and {𝑡 ∈ R ∣ 𝐷𝑖𝑓(𝑥 + 𝑡𝑒𝑖) = −∞} is at
most countable for all 𝑥 ∈ R𝑘, then 𝑓 is increasing in the 𝑖th coordinate.

Let 𝐷⋄
𝑖 denote one of the six Dini operators 𝐷

𝑟

𝑖 , 𝐷𝑟
𝑖 , 𝐷

ℓ

𝑖 , 𝐷ℓ
𝑖 , 𝐷𝑖 or 𝐷𝑖. and let

us define

𝐼𝑥𝑖,𝑗 := {𝑡 ∈ R ∣ 𝐷⋄
𝑖 𝑓(𝑥 + 𝑡𝑒𝑗) > 0} , 𝐽𝑥𝑖,𝑗 := {𝑡 ∈ R ∣ 𝐷⋄

𝑖 𝑓(𝑥 + 𝑡𝑒𝑗) < 0}
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for all 𝑥 ∈ R𝑘. Suppose that 𝐷⋄
𝑖 𝑓(𝑥) is finite for all 𝑥 ∈ R𝑘. If 𝐽 ⊆ R is an

interval containing 𝑓(R𝑘) and 𝜉 : 𝐽 → R is an increasing convex function, then
we have

(2) Δ𝑖𝑗𝑓 ≥ 0 ⇔ 𝐷⋄
𝑖 𝑓(𝑥) is increasing in the 𝑗th coordinate.

(3) If Δ𝑖𝑗𝑓 ≥ 0 and 𝑡 ↷ 𝑓(𝑥 + 𝑡𝑒𝑗) is increasing on 𝐼𝑥𝑖,𝑗 and decreasing on 𝐽𝑥𝑖,𝑗
for all 𝑥 ∈ R𝑘, then Δ𝑖𝑗(𝜉 ∘ 𝑓) ≥ 0.

(4) If Δ𝑖𝑗𝑓 ≤ 0 and 𝑡 ↷ 𝑓(𝑥 + 𝑡𝑒𝑗) is decreasing on 𝐼𝑥𝑖,𝑗 and increasing on 𝐽𝑥𝑖,𝑗
for all 𝑥 ∈ R𝑘, then Δ𝑖𝑗(𝜉 ∘ 𝑓) ≤ 0.

Proof. (1) follows from Theorem VI.7.3 p. 204 in [15]. So let 𝐷⋄
𝑖 be one of the six

Dini derivatives and suppose that 𝐷⋄
𝑖 𝑓(𝑥) is finite for all 𝑥 ∈ R𝑘.

(2): Suppose that Δ𝑖𝑗𝑓 ≥ 0 and let 𝑥 ∈ R𝑘 and 𝑠 > 0 be given. By (4.2)
we have that 𝑡 ↷ Δ𝑠

𝑖 𝑓(𝑥 + 𝑡𝑒𝑗) is increasing on R and so we see that 𝐷⋄
𝑖 𝑓(𝑥) is

increasing in the 𝑗th coordinate. Conversely, suppose that 𝐷⋄
𝑖 𝑓(𝑥) is increasing in

the 𝑗th coordinate. Let 𝑢 > 0 and 𝑥 ∈ R𝑘 be given and set 𝑔(𝑡) := Δ𝑢
𝑗 𝑓(𝑥+ 𝑡𝑒𝑖) =

𝑓(𝑥+𝑢𝑒𝑗+𝑡𝑒𝑖)−𝑓(𝑥+𝑡𝑒𝑖) for all 𝑡 ∈ R. Since 𝑓 is continuous in the 𝑖th coordinate,
we have that 𝑔 is continuous on R and since 𝐷⋄

𝑖 𝑓(𝑥) is finite and increasing in the
𝑗th coordinate, it follows easily that we have

𝐷𝑔(𝑡) ≥ 𝐷⋄
𝑖 𝑓(𝑥 + 𝑢𝑒𝑗 + 𝑡𝑒𝑖) −𝐷⋄

𝑖 𝑓(𝑥 + 𝑡𝑒𝑖) ≥ 0 ∀𝑡 ∈ R.

Hence, by Theorem VI.7.3 p. 204 in [15] we see that 𝑔 is increasing; that is, Δ𝑢
𝑖 𝑓

is increasing in the 𝑗th coordinate and so by (4.2) we have Δ𝑖𝑗𝑓 ≥ 0.

Let 𝜙 : R → R be a continuously differentiable, increasing, convex function
and set ℎ = 𝜙 ∘ 𝑓 . Let 𝑥 ∈ R𝑘 be given. Then we have

Δ𝑠
𝑖ℎ(𝑥) = Δ𝑠

𝑖 𝑓(𝑥) ⋅
∫ 1

0

𝜙′(𝑓(𝑥) + 𝑡 ⋅ Δ𝑠
𝑖𝑓(𝑥)) 𝑑𝑡 ∀𝑠 ∈ R

and since 𝑓 is continuous in the 𝑖th coordinate and 𝜙′ is increasing, nonnegative
and continuous we have

(i) 𝐷⋄
𝑖 ℎ(𝑥 + 𝑡𝑒𝑗) = 𝐷⋄

𝑖 𝑓(𝑥 + 𝑡𝑒𝑗)𝜙
′(𝑓(𝑥 + 𝑡𝑒𝑗)) ∀𝑡 ∈ R.

Suppose that Δ𝑖𝑗𝑓 ≥ 0 and that 𝑡 ↷ 𝑓(𝑥+ 𝑡𝑒𝑗) is increasing on 𝐼𝑥𝑖,𝑗 and decreasing

on 𝐽𝑥𝑖,𝑗 for all 𝑥 ∈ R𝑘. By (2), we have that 𝑡 ↷ 𝐷⋄
𝑖 𝑓(𝑥 + 𝑡𝑒𝑗) is increasing on R.

Let 𝑥 ∈ R𝑘 be a given vector, let 𝑠 < 𝑡 be given numbers and let me show that
𝐷⋄
𝑖 ℎ(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄

𝑖 ℎ(𝑥 + 𝑡𝑒𝑗).

Suppose that 𝑠 ∈ 𝐼𝑥𝑖,𝑗 . Then we have 0 < 𝐷⋄
𝑖 𝑓(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄

𝑖 𝑓(𝑥 + 𝑡𝑒𝑗)

and so we have 𝑠, 𝑡 ∈ 𝐼𝑥𝑖,𝑗 and 𝑓(𝑥 + 𝑠𝑒𝑗) ≤ 𝑓(𝑥 + 𝑡𝑒𝑗). Since 𝜙′ is increasing
and nonnegative, we have 0 ≤ 𝜙′(𝑓(𝑥 + 𝑠𝑒𝑗)) ≤ 𝜙′(𝑓(𝑥 + 𝑡𝑒𝑗)). So by (i) we have
𝐷⋄
𝑖 ℎ(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄

𝑖 ℎ(𝑥 + 𝑡𝑒𝑗).

Suppose that 𝑡 ∈ 𝐽𝑥𝑖,𝑗 . Then we have 𝐷⋄
𝑖 𝑓(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄

𝑖 𝑓(𝑥 + 𝑡𝑒𝑗) < 0
and so we have 𝑠, 𝑡 ∈ 𝐽𝑥𝑖,𝑗 and 𝑓(𝑥 + 𝑡𝑒𝑗) ≤ 𝑓(𝑥 + 𝑠𝑒𝑗). Since 𝜙′ is increasing

and nonnegative, we have 0 ≤ 𝜙′(𝑓(𝑥 + 𝑡𝑒𝑗)) ≤ 𝜙′(𝑓(𝑥 + 𝑠𝑒𝑗)). So by (i) we have
𝐷⋄
𝑖 ℎ(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄

𝑖 ℎ(𝑥 + 𝑡𝑒𝑗).
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Suppose that 𝑠 /∈ 𝐼𝑥𝑖,𝑗 and 𝑡 /∈ 𝐽𝑥𝑖,𝑗 . Then we have 𝐷⋄
𝑖 𝑓(𝑥+𝑠𝑒𝑗) ≤ 0 ≤ 𝐷⋄

𝑖 𝑓(𝑥+

𝑡𝑒𝑗) and so by (i) and nonnegativity of 𝜙′, we have 𝐷⋄
𝑖 ℎ(𝑥+𝑠𝑒𝑗) ≤ 0 ≤ 𝐷⋄

𝑖 ℎ(𝑥+𝑡𝑒𝑗).
Hence, in all cases we have 𝐷⋄

𝑖 ℎ(𝑥 + 𝑠𝑒𝑗) ≤ 𝐷⋄
𝑖 ℎ(𝑥 + 𝑡𝑒𝑗) and so we see that

𝐷⋄
𝑖 ℎ(𝑥) is increasing in the 𝑗th coordinate. So by (2), we have Δ𝑖𝑗(𝜙 ∘ 𝑓) ≥ 0.

Since 𝜉 : 𝐽 → R is increasing and convex, there exist continuously differentiable,
increasing convex functions 𝜉1, 𝜉2, . . . : R → R such that 𝜉𝑚(𝑡) → 𝜉(𝑡) for all
𝑡 ∈ 𝐽 . By the argument above, we have Δ𝑖𝑗(𝜉𝑚 ∘ 𝑓) ≥ 0 for all 𝑚 ≥ 1 and since
𝜉𝑚(𝑓(𝑥)) → 𝜉(𝑓(𝑥)), we see that Δ𝑖𝑗(𝜉 ∘𝑓) ≥ 0. Thus (3) is proved and (4) follows
in the same manner. □

Corollary 4.5. Let 𝜙1, . . . , 𝜙𝑘 : R → R be given functions which are either all
increasing or all decreasing and let us define 𝜙(𝑥) = (𝜙1(𝑥1), . . . , 𝜙𝑘(𝑥𝑘)) and

𝑀𝑘(𝑥) = max
𝑖∈[𝑘]

𝑥𝑖 , 𝑚𝑘(𝑥) = min
𝑖∈[𝑘]

𝑥𝑖 , 𝑄𝑘(𝑥) = max
𝑖,𝑗∈[𝑘]

∣𝑥𝑖 − 𝑥𝑗 ∣

for all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘. Let 𝜓 : R → R be an increasing function and let
𝜉 : [0,∞) → R be an increasing convex function. Then we have

(1) 𝑀𝑘(𝑥) and 𝐺(𝑥) := 𝜓(𝑀𝑘(𝜙(𝑥))) are submodular.

(2) 𝑚𝑘(𝑥) and 𝐹 (𝑥) := 𝜓(𝑚𝑘(𝜙(𝑥))) are supermodular.

(3) 𝑄𝑘(𝑥) and 𝐻(𝑥) := 𝜉(𝑄𝑘(𝜙(𝑥))) are submodular.

Proof. Let 𝑥, 𝑦 ∈ R𝑘 be given. Then we have 𝑀𝑘(𝑥 ∨ 𝑦) = 𝑀𝑘(𝑥) ∨ 𝑀𝑘(𝑦) and
since 𝑀𝑘 is increasing, we have 𝑀𝑘(𝑥 ∧ 𝑦) ≤ 𝑀𝑘(𝑥) ∧𝑀𝑘(𝑦).

Hence we have

𝑀𝑘(𝑥 ∨ 𝑦) + 𝑀𝑘(𝑥 ∧ 𝑦) ≤ 𝑀𝑘(𝑥) ∨𝑀𝑘(𝑦) + 𝑀𝑘(𝑥) ∧𝑀𝑘(𝑦) = 𝑀𝑘(𝑥) + 𝑀𝑘(𝑦).

Hence, we see that (1) follows from Proposition 4.1 and since 𝑚𝑘(𝑥) = −𝑀𝑘(−𝑥),
we see that (2) follows from (1) and Proposition 4.1. Since 𝑄𝑘(𝑥) = 𝑀𝑘(𝑥)−𝑚𝑘(𝑥),
we see that 𝑄𝑘 is submodular. Let 1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘 be given and set 𝜋𝑖𝑗 = [𝑘]∖{𝑖, 𝑗}.
Let 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘 be given and set 𝑀𝑖𝑗 = max𝜈∈𝜋𝑖𝑗 𝑥𝜈 and 𝑚𝑖𝑗 =
min𝜈∈𝜋𝑖𝑗 𝑥𝜈 with the usual conventions sup ∅ := −∞ and inf ∅ := +∞. Then we

have 𝐷
𝑟

𝑖𝑄𝑘(𝑥) = 1 if 𝑥𝑖 ≥ 𝑥𝑗 ∨𝑀𝑖𝑗 , 𝐷
𝑟

𝑖𝑄𝑘(𝑥) = 0 if 𝑥𝑗 ∧𝑚𝑖𝑗 ≤ 𝑥𝑖 < 𝑥𝑗 ∨𝑀𝑖𝑗 and

𝐷
𝑟

𝑖𝑄𝑘(𝑥) = −1 if 𝑥𝑖 < 𝑥𝑗 ∧𝑚𝑖𝑗 . So by Theorem 4.3.(4), we have Δ𝑖𝑗(𝜉 ∘𝑄𝑘) ≤ 0.
Hence, we see that (3) follows from (4.3) and Proposition 4.1. □

Lemma 4.6. Let 𝐷 ⊆ R be a countable set and let ℓ𝐷 denote the topology on R
generated by {(𝑎, 𝑏] ∣ 𝑎, 𝑏 ∈ R} ∪ {𝐺 ∣ 𝐺 ⊆ 𝐷}. Let Θ(R𝑘) denote the set of all
𝜃 : R𝑘 → R𝑘 of the form 𝜃(𝑥1, . . . , 𝑥𝑘) = (𝜃1(𝑥1), . . . , 𝜃𝑘(𝑥𝑘)) for some increasing,

right continuous step functions 𝜃1, . . . , 𝜃𝑘 : R → R. Let Φ ⊆ RR𝑘

be a non-empty
set and let 𝑓 : R𝑘 → R be a given function satisfying

(1) Φ is sequentially closed and 𝑓 ∘ 𝜃 ∈ Φ ∀𝜃 ∈ Θ(R𝑘).

(2) 𝑓 is ℓ𝐷-continuous in the 𝑖th coordinate for all 𝑖 = 1, . . . , 𝑘.

Then we have 𝑓 ∈ Φ ∩𝑀(R𝑘,ℬ𝑘). More precisely, 𝑓 ∈ Φ and 𝑓 is of Baire class
𝑘 + 1. Let 𝐹,𝐻 ∈ 𝑀(R𝑘,ℬ𝑘) be given functions satisfying
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(3) ∃𝛿 > 0 so that 𝐹 (𝑥) ≤ 𝑓(𝑥− 𝑦) ≤ 𝐻(𝑥) ∀𝑥 ∈ R𝑘 ∀𝑦 ∈ [0, 𝛿]𝑘

and let 𝔉 denote the set of all locally bounded, right continuous functions ℎ : R𝑘 →
R such that 𝐹 (𝑥) ≤ ℎ(𝑥) ≤ 𝐻(𝑥) for all 𝑥 ∈ R𝑘. Let 𝜇 and 𝜈 be Borel measures
on R𝑘 satisfying

(4) 𝐹 ∈ 𝐿1(𝜇) , 𝐻 ∈ 𝐿1(𝜈) and
∫ ∗

𝜙𝑑𝜇 ≤ ∫ ∗𝜙𝑑𝜈 ∀𝜙 ∈ Φ ∩ 𝔉.

Then we have 𝑓 ∈ 𝐿1(𝜇) and
∫
R𝑘 𝑓 𝑑𝜇 ≤ ∫ ∗ 𝑓 𝑑𝜈 < ∞.

Remark. (a): Note that 𝑔 : R → R is ℓ𝐷-continuous if and only if 𝑔 is left continu-
ous at 𝑥 for all 𝑥 ∈ R∖𝐷. Recall that 𝑔 : R → R is a right continuous step function
if and only if there exist numbers (𝑐𝑖 ∣ 𝑖 ∈ Z) such that 𝑐𝑖 < 𝑐𝑖+1 for all 𝑖 ∈ Z,
sup𝑖∈Z 𝑐𝑖 = ∞, inf𝑖∈Z 𝑐𝑖 = −∞ and 𝑔(𝑡) = 𝑔(𝑐𝑖) for all 𝑡 ∈ [𝑐𝑖, 𝑐𝑖+1) and all 𝑖 ∈ Z.

(b): Let 𝑇 be a topological space and let ℎ : 𝑇 → R be a function. Recall
that ℎ is of Baire class 0 if ℎ is continuous and that ℎ is of Baire class 𝛼 for some
ordinal 𝛼 > 0 if and only if ℎ is a pointwise limit of a sequence of functions of
Baire class < 𝛼.

Proof. Let 𝐸1 ⊆ 𝐸2 ⊆ ⋅ ⋅ ⋅ ⊆ R be an increasing sequence of finite sets such that
𝐸𝑛 ↑ 𝐷 and set 𝐷𝑛 = 𝐸𝑛 ∪ {𝑖 2−𝑛 ∣ 𝑖 ∈ Z} and 𝜃𝑛(𝑡) = sup (𝐷𝑛 ∩ (−∞, 𝑡])
for all 𝑛 ≥ 1 and all 𝑡 ∈ R. Then 𝜃𝑛 is an increasing, right continuous, step
function and we have 𝑡 − 2−𝑛 ≤ 𝜃𝑛(𝑡) ≤ 𝜃𝑛+1(𝑡) ≤ 𝑡 for all 𝑛 ≥ 1 and all 𝑡 ∈ R.
Let 𝜎1, . . . , 𝜎𝑘 ∈ N and 𝑥 = (𝑥1, . . . , 𝑥ℎ) ∈ R𝑘 be given and set 𝑓𝑘𝜎1,...,𝜎𝑘(𝑥) =
𝑓(𝜃𝜎1(𝑥1), . . . , 𝜃𝜎𝑘(𝑥𝑘)) and

𝑓 𝑖𝜎1,...,𝜎𝑖(𝑥) = 𝑓(𝜃𝜎1(𝑥1), . . . , 𝜃𝜎𝑖(𝑥𝑖), 𝑥𝑖+1, . . . , 𝑥𝑘) for 1 ≤ 𝑖 < 𝑘.

Note that 𝜃𝑛(𝑡) = 𝑡 for all 𝑡 ∈ 𝐸𝑚 and all 𝑛 ≥ 𝑚. Since 𝐸𝑛 ↑ 𝐷, we see that
𝜃𝑛(𝑡) → 𝑡 in ℓ𝐷 and so by (2) we have

𝑓 𝑖−1𝜎1,...,𝜎𝑖−1
(𝑥) = lim

𝜎𝑖→∞ 𝑓 𝑖𝜎1,...,𝜎𝑖(𝑥) ∀1 < 𝑖 ≤ 𝑘 , 𝑓(𝑥) = lim
𝜎1→∞ 𝑓1𝜎1

(𝑥).

By (1), we have 𝑓𝑘𝜎1,...,𝜎𝑘
∈ Φ and since Φ is sequentially closed we see that 𝑓 ∈

Φ. Since 𝜃𝑛 is a right continuous step function, we see that 𝑓𝑘𝜎1,...,𝜎𝑘
is a right

continuous, locally bounded Borel function on R𝑘. So by Lemma 2.2 we see that
𝑓𝑘𝜎1,...,𝜎𝑘

is of Baire class 1. Hence, we see that 𝑓 is of Baire class 𝑘 + 1.

Let 𝜇 and 𝜈 be Borel measures on R𝑘 and let 𝐹 ∈ 𝐿1(𝜇) and 𝐻 ∈ 𝐿1(𝜈)
be given functions satisfying (3)–(4). Let 𝛿 > 0 be chosen according to (3) and
let 𝑞 ∈ N be chosen such that 2−𝑞 < 𝛿. Let Λ denote the set of all functions
ℎ : R𝑘 → R satisfying

∫ ∗
ℎ 𝑑𝜇 ≤ ∫ ∗ ℎ 𝑑𝜈 and set Ψ = {𝜓 ∈ Φ ∣ 𝐹 ≤ 𝜙 ≤ 𝐻}. By

(1), we see that Ψ is sequentially closed and since 𝐹 ∈ 𝐿1(𝜇) and 𝐻 ∈ 𝐿1(𝜈), we see
that {𝜓− ∣ 𝜓 ∈ Ψ} is uniformly 𝜇-integrable and that {𝜓+ ∣ 𝜓 ∈ Ψ} is uniformly
𝜈-integrable. By Theorem 3.3.(9), we have that Λ∩Ψ∩𝑀(R𝑘,ℬ𝑘) is sequentially
closed. Let 𝜎1, . . . , 𝜎𝑘 ≥ 𝑞 be given integers. Since 𝜃𝑛 is a right continuous, step
function satisfying 𝑡 − 𝛿 ≤ 𝜃𝑛(𝑡) ≤ 𝑡 for all 𝑛 ≥ 𝑞 and all 𝑡 ∈ R, we have
𝑓𝑘𝜎1,...,𝜎𝑘 ∈ Φ∩𝔉∩𝑀(R𝑘 ,ℬ𝑘). So by (3)–(4), we have 𝑓𝑘𝜎1,...,𝜎𝑘 ∈ Λ∩Ψ∩𝑀(R𝑘,ℬ𝑘)
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for all 𝜎1, . . . , 𝜎𝑘 ≥ 𝑞 and since Λ ∩ Ψ ∩𝑀(R𝑘,ℬ𝑘) is sequentially closed, we see
that 𝑓 ∈ Λ ∩ Ψ ∩𝑀(R𝑘,ℬ𝑘). Hence, we have

−∞ <

∫
R𝑘

𝐹 𝑑𝜇 ≤
∫
∗
𝑓 𝑑𝜇 ≤

∫ ∗
𝑓 𝑑𝜇 ≤

∫ ∗
𝑓 𝑑𝜈 ≤

∫
R𝑘

𝐻 𝑑𝜈 < ∞.

So by Theorem 2.1.(8) in [4] we have 𝑓 ∈ 𝐿1(𝜇) and
∫
R𝑘 𝑓 𝑑𝜇 ≤ ∫ ∗ 𝑓 𝑑𝜈 < ∞ □

Theorem 4.7. Let 𝜇 and 𝜈 be Borel probability measures on R𝑘 with one-dimen-
sional marginals 𝜇1, . . . , 𝜇𝑘 and 𝜈1, . . . , 𝜈𝑘, respectively. Then we have

(1) 𝜇 ⪯bm 𝜈 ⇔ 𝜇𝑖 = 𝜈𝑖 for 𝑖 = 1, . . . , 𝑘.

(2)

∫
R𝑘

𝑓 𝑑𝜇 ≤
∫
R𝑘

𝑓 𝑑𝜈 ∀𝑓 ∈ 𝐶∞
𝑏 (R𝑘) ∩ ism(R𝑘) ⇔ 𝜇 ⪯ism 𝜈.

(3)

∫
R𝑘

𝑓 𝑑𝜇 ≤
∫
R𝑘

𝑓 𝑑𝜈 ∀𝑓 ∈ 𝐶∞
𝑏 (R𝑘) ∩ m(R𝑘) ⇔ 𝜇 ⪯bm 𝜈.

(4) 𝜇 ⪯bsm 𝜈 ⇔ 𝜇 ⪯ism 𝜈 and 𝜇 ⪯bm 𝜈.

(5)

∫
R𝑘

𝑓 𝑑𝜇 ≤
∫
R𝑘

𝑓 𝑑𝜈 ∀𝑓 ∈ 𝐶∞
𝑏 (R𝑘) ∩ sm(R𝑘) ⇔ 𝜇 ⪯bsm 𝜈.

Proof. Throughout the proof we let Λ denote the set of all functions 𝑓 : R𝑘 → R
satisfying

∫ ∗
𝑓 𝑑𝜇 ≤ ∫ ∗ 𝑓 𝑑𝜈. (1) follows easily from Proposition 4.2.(4).

(2): Suppose that 𝐶∞
𝑏 (R𝑘) ∩ ism(R𝑘) ⊆ Λ. Let 𝐶𝑟

𝑏 denote the set of all
bounded, right continuous functions on R𝑘 and set 𝜅(𝑥) ≡ 1. Then (ism(R𝑘), 𝜅)
satisfies conditions (1)–(2) in Theorem 3.4 and so we conclude that 𝐶𝑟

𝑏 ∩ism(R𝑘) ⊆
Λ. Let 𝑓 ∈ 𝐵(R𝑘)∩ ism(R𝑘) be given. Then there exists 𝑐 > 0 such that ∣𝑓(𝑥)∣ ≤ 𝑐
for all 𝑥 ∈ R𝑘. Let 𝐴 ⊆ R𝑘 be a countable dense subset of R𝑘. Since 𝑓𝑢𝑖 is
increasing, there exists a countable set 𝐷 ⊆ R such that R ∖𝐷 ⊆ 𝐶(𝑓𝑢𝑖 ) for all
𝑖 ∈ [𝑘] and all 𝑢 ∈ 𝐴. Hence, by Proposition 4.2.(3), we have R ∖ 𝐷 ⊆ 𝐶(𝑓𝑢𝑖 )
for all 𝑖 ∈ [𝑘] and all 𝑢 ∈ R𝑘 and so we see the (𝑓,𝐷) satisfies condition (2)
in Lemma 4.6. By Proposition 4.1.(2) we see that (ism(R𝑘, 𝑓) satisfies condition
(1) in Lemma 4.6. Since 𝐶𝑟

𝑏 ∩ ism(R𝑘) ⊆ Λ we see that 𝑓 satisfies condition (3)–
(4) in Lemma 4.6 with 𝐹 (𝑥) ≡ −𝑐 and 𝐻(𝑥) ≡ 𝑐. Hence, we have 𝑓 ∈ Λ for
all 𝑓 ∈ 𝐵(R𝑘) ∩ ism(R𝑘). Let 𝑓 ∈ ism(R𝑘) be given. Set 𝑏𝑚 = (𝑚, . . . ,𝑚) and
𝑓𝑚,𝑛(𝑥) = 𝑓(𝑥∧𝑏𝑚)∨(−𝑛) for all 𝑚,𝑛 ∈ N and all 𝑥 ∈ R𝑘. Then 𝑓𝑚,𝑛 is increasing
and bounded and by Proposition 4.1, we have that 𝑓𝑚,𝑛 is supermodular. Hence,
we have 𝑓𝑚,𝑛 ∈ Λ. Since 𝑓 is increasing, we see that −𝑛 ≤ 𝑓1,𝑛 ≤ 𝑓2.𝑛 ≤ ⋅ ⋅ ⋅ and
sup𝑚≥1 𝑓𝑚,𝑛(𝑥) = 𝑓(𝑥) ∨ (−𝑛) for all 𝑥 ∈ R𝑘. So by Theorem 3.3.(8) we see that
𝑓(𝑥) ∨ (−𝑛) ∈ Λ for all 𝑛 ∈ N and so by Theorem 3.3.(2) we have 𝑓 ∈ Λ; that is,
𝜇 ⪯ism 𝜈 which completes the proof of (2).

(3): Suppose that 𝐶∞
𝑏 (R𝑘)∩m(R𝑘) ⊆ Λ and let 𝑖 ∈ [𝑘] be given. By Proposi-

tion 4.2.(4), we have
∫
R
𝜙𝜇𝑖 =

∫
R
𝜙 𝜈𝑖 for all 𝜙 ∈ 𝐶∞

𝑏 (R) and so we have 𝜇𝑖 = 𝜈𝑖.
Hence, we see that (3) follows from (1).

(4): The implication “⇒” in (4) follows directly from (2). Suppose that 𝜇 ⪯ism
𝜈 and 𝜇 ⪯bm 𝜈 and let 𝑓 ∈ bsm(R𝑘) be given. Set 𝑎𝑛 = (−𝑛, . . . ,−𝑛) for 𝑛 ≥ 1.
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By Proposition 4.2.(1) we have that the limits

𝛼𝑖(𝑡) := lim
𝑛→∞ (𝑓𝑎

𝑛

𝑖 (𝑡) − 𝑓𝑎
𝑛

𝑖 (0))

exist and are finite for all 𝑡 ∈ R and all 𝑖 ∈ [𝑘]. Since 𝑓 is a bounded Borel
function, we see that 𝛼𝑖 is bounded Borel function. So by Proposition 4.2.(4),

we have that 𝐺(𝑥) :=
∑𝑘

𝑖=1 𝛼𝑖(𝑥𝑖) is a bounded, modular, Borel function. By
Proposition 4.2.(5), we see that

𝑥 ↷ 𝑓(𝑥 ∨ 𝑎) −
𝑘∑
𝑖=1

(𝑓𝑎𝑖 (𝑥𝑖 ∨ 𝑎𝑖) − 𝑓𝑎𝑖 (0))

is increasing and supermodular for all 𝑎 ∈ R𝑘. Hence, we see that 𝐹 (𝑥) := 𝑓(𝑥)−
𝐺(𝑥) is a bounded, increasing, supermodular, Borel function. Since 𝜇 ⪯ism 𝜈, we
have 𝐹 ∈ Λ∩𝐿1(𝜇)∩𝐿1(𝜈) and since 𝜇 ⪯bm 𝜈, we have 𝐺 ∈ Λ∩𝐿1(𝜇)∩𝐿1(𝜈). So
by Theorem 3.3.(1) we have 𝑓 = 𝐹 + 𝐺 ∈ Λ for all 𝑓 ∈ bsm(R𝑘) which completes
the proof of (4).

(5): Suppose that 𝑓 ∈ 𝐶∞
𝑏 (R𝑘) ∩ sm(R𝑘) ⊆ Λ. By (2) and (3), we have

𝜇 ⪯bm 𝜈 and 𝜇 ⪯ism 𝜈. So by (4) we have 𝜇 ⪯bsm 𝜈. □

Theorem 4.8. Let 𝜇 and 𝜈 be Borel probability measures on R𝑘 such that 𝜇 ⪯bsm 𝜈
and let 𝜇1, . . . , 𝜇𝑘 denote the one-dimensional marginals of 𝜇. Let 𝑓 : R𝑘 → R be
a supermodular Borel function and let us define 𝑓∨𝑐(𝑥) = 𝑓(𝑥 ∨ 𝑐) and 𝑓∧𝑐(𝑥) =
𝑓(𝑥 ∧ 𝑐) for all 𝑐, 𝑥 ∈ R𝑘. If 𝑐 ∈ R𝑘 is a given vector, then we have

(1) If 𝑓 is either increasing or decreasing, then
∫ ∗

𝑓 𝑑𝜇 ≤ ∫ ∗ 𝑓 𝑑𝜈.

(2) If 𝑓 𝑐𝑖 ∈ 𝐿1(𝜇𝑖) for all 𝑖 ∈ [𝑘], then we have
∫ ∗

𝑓∨𝑐𝑑𝜇 ≤ ∫ ∗ 𝑓∨𝑐 𝑑𝜈 and∫ ∗
𝑓∧𝑐𝑑𝜇 ≤ ∫ ∗ 𝑓∧𝑐 𝑑𝜈.

Let 𝐴,𝐵 ⊆ R𝑘 be given sets satisfying ∪𝑎∈𝐴[𝑎, ∗] = R𝑘 = ∪𝑏∈𝐵[∗, 𝑏]. Then we
have

∫ ∗
𝑓 𝑑𝜇 ≤ ∫ ∗ 𝑓 𝑑𝜈 if just one of the following three conditions holds:

(A) 𝑓𝑎𝑖 ∈ 𝐿1(𝜇𝑖) ∀ 𝑖 ∈ [𝑘] ∀ 𝑎 ∈ 𝐴, {𝑓−∨𝑎 ∣ 𝑎 ∈ 𝐴} is uniformly 𝜇-integrable and
{𝑓+∨𝑎 ∣ 𝑎 ∈ 𝐴} is uniformly 𝜈-integrable.

(B) 𝑓 𝑏𝑖 ∈ 𝐿1(𝜇𝑖) ∀ 𝑖 ∈ [𝑘] ∀ 𝑏 ∈ 𝐵, {𝑓−∧𝑏 ∣ 𝑏 ∈ 𝐵} is uniformly 𝜇-integrable and

{𝑓+∧𝑏 ∣ 𝑏 ∈ 𝐵} is uniformly 𝜈-integrable.

(C) There exist functions ℎ1 ∈ 𝐿1+(𝜇1) , . . . , ℎ𝑘 ∈ 𝐿1+(𝜇𝑘) such that ∣𝑓(𝑥)∣ ≤∑𝑘
𝑖=1 ℎ𝑖(𝑥𝑖) for all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘.

Proof. Throughout the proof, we let Λ denote the set of all functions ℎ : R𝑘 → R
satisfying

∫ ∗
ℎ 𝑑𝜇 ≤ ∫ ∗ ℎ 𝑑𝜈. We set 𝑓(𝑥) = 𝑓(−𝑥) for all 𝑥 ∈ R𝑘 and we set

𝜇̃(𝐵) = 𝜇(−𝐵) and 𝜈(𝐵) − 𝜈(−𝐵) for all 𝐵 ∈ ℬ𝑘. Then 𝜇̃ and 𝜈 are Borel

probability measures on R𝑘 such that
∫
𝑓 𝑑𝜇̃ =

∫
𝑓 𝑑𝜇 and

∫
𝑓 𝑑𝜈 =

∫
𝑓 𝑑𝜈. By

Proposition 4.1, we see that 𝑓 is supermodular and that 𝜇̃ ⪯bsm 𝜈.
(1): Since 𝜇 ⪯bsm 𝜈, we have bsm(R𝑘) ⊆ Λ and by Theorem 4.7, we have

ism(R𝑘) ⊆ Λ and 𝜇𝑖 = 𝜈𝑖 for 𝑖 = 1, . . . , 𝑘 where 𝜈1, . . . , 𝜈𝑘 are the one-dimensional
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marginals of 𝜈. Hence, we have 𝑓 ∈ Λ if 𝑓 is increasing. Applying this to the triple
(𝑓, 𝜇̃, 𝜈), we see that 𝑓 ∈ Λ if 𝑓 is decreasing.

(2): Suppose that 𝑓 𝑐𝑖 ∈ 𝐿1(𝜇𝑖) for all 𝑖 = 1, . . . , 𝑘 and set 𝐺(𝑥) =
∑𝑘

𝑖=1 𝑓 𝑐𝑖 (𝑥𝑖∨
𝑐𝑖) for all 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘. By Proposition 4.2.(4), we have that 𝐺 is a
modular, Borel function and since 𝜇𝑖 is finite, we have that 𝑓 𝑐𝑖 (𝑡 ∨ 𝑐𝑖) belongs to
𝐿1(𝜇𝑖). Since 𝜈𝑖 = 𝜇𝑖, we have 𝐺 ∈ Λ ∩ 𝐿1(𝜇) ∩ 𝐿1(𝜈) and by Proposition 4.2.(5),
we have 𝑓∨𝑐−𝐺 ∈ ism(R𝑘) ⊆ Λ. So by Theorem 3.3.(1) we have 𝑓∨𝑐 ∈ Λ. Applying

this to triple (𝑓, 𝜇̃, 𝜈) with 𝑐 := −𝑐, we see that 𝑓∧𝑐 ∈ Λ.

Suppose that condition (A) holds. By (2), we see that 𝑓∨𝑎 ∈ Λ for all 𝑎 ∈ 𝐴
and since R𝑘 = ∪𝑎∈𝐴 [𝑎, ∗], there exists 𝑎𝑛 = (𝑎𝑛1 , . . . , 𝑎

𝑛
𝑘 ) ∈ 𝐴 such that 𝑎𝑛+1𝑖 ≤

𝑎𝑛𝑖 ≤ −𝑛 for all 𝑛 ∈ N and all 𝑖 ∈ [𝑘]. Then we have 𝑓∨𝑎𝑛(𝑥) → 𝑓(𝑥) and by (2) and
(A), we have 𝑓∨𝑎𝑛 ∈ Λ, {𝑓−∨𝑎𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜇-integrable and {𝑓+∨𝑎𝑛 ∣ 𝑛 ≥ 1}
is uniformly 𝜈-integrable. So by (3.3)–(3.4) and Theorem 3.3.(5) we have 𝑓 ∈ Λ.

Suppose that condition (B) holds. Applying case (A) on the triple (𝑓, 𝜇̃, 𝜈)
with 𝐴 := −𝐵, we see that 𝑓 ∈ Λ. Suppose that condition (C) holds. Since
ℎ𝑖 ∈ 𝐿1+(𝜇𝑖), we see that 𝑓𝑥𝑖 ∈ 𝐿1(𝜇𝑖) for all 𝑥 ∈ R𝑘 and all 𝑖 ∈ [𝑘]. Let 𝜉 be a
finite Borel measure on R. Then I claim that we have

(i) lim inf
𝑢→−∞

∫
R

∣ℎ(𝑡) − ℎ(𝑡 ∨ 𝑢)∣𝜉(𝑑𝑡) = 0 ∀ℎ ∈ 𝐿1(𝜉).

Proof of (i). Suppose that (i) fails. Then there exist ℎ ∈ 𝐿1(𝜉) and a positive num-
ber 𝛿 > 0 such that lim inf𝑢↓−∞

∫
R ∣ℎ(𝑡) − ℎ(𝑡 ∨ 𝑢)∣ 𝜉(𝑑𝑡) > 2𝛿. Since ℎ ∈ 𝐿1(𝜉),

there exists 𝑞 ∈ R such that∫
(−∞,𝑞]

∣ℎ∣ 𝑑𝜉 < 𝛿 and

∫
R

∣ℎ(𝑡) − ℎ(𝑡 ∨ 𝑢)∣ 𝜉(𝑑𝑡) > 2 𝛿 ∀𝑢 ≤ 𝑞.

Let 𝑢 ≤ 𝑞 be given and set 𝐹𝜉(𝑢) := 𝜉((−∞, 𝑢]). Then we have

2𝛿 <

∫
R

∣ℎ(𝑡) − ℎ(𝑡 ∨ 𝑢)∣ 𝜉(𝑑𝑡) ≤
∫
(−∞,𝑞]

∣ℎ(𝑡)∣𝜉(𝑑𝑡) + ∣ℎ(𝑢)∣𝐹𝜉(𝑢)

≤ 𝛿 + ∣ℎ(𝑢)∣𝐹𝜉(𝑢)

and so we see that ∣ℎ(𝑢)∣𝐹𝜉(𝑢) > 𝛿 for all 𝑢 ≤ 𝑞. Set 𝑚 = inf𝑠≤𝑞 ∣ℎ(𝑠)∣ and let
𝑠 ≤ 𝑞 be given. Since 𝐹𝜉 is increasing. we have 𝛿 ≤ ∣ℎ(𝑠)∣𝐹𝜉(𝑠) ≤ ∣ℎ(𝑠)∣𝐹𝜉(𝑞) and
so we have 𝛿 ≤ 𝑚𝐹𝜉(𝑞) and

𝛿 ≤ 𝑚𝐹𝜉(𝑞) =
∫
(−∞,𝑞]𝑚𝜉(𝑑𝑠) ≤

∫
(−∞,𝑞]

∣ℎ(𝑠)∣ 𝜉(𝑑𝑠) < 𝛿

which is impossible. Thus, we see that (i) holds.

Let 𝑖 ∈ [𝑘] be given. By (i) there exist numbers 𝑎1𝑖 > 𝑎2𝑖 > ⋅ ⋅ ⋅ such that
𝑎𝑛𝑖 < −𝑛 for all 𝑛 ≥ 1 and

lim
𝑛→∞

∫
R

∣ℎ𝑖(𝑡) − ℎ𝑖(𝑡 ∨ 𝑎𝑛𝑖 )∣𝜇𝑖(𝑑𝑡) = 0 ∀𝑖 = 1, . . . , 𝑘.
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Set 𝑎𝑛 = (𝑎𝑛1 , . . . , 𝑎
𝑛
𝑘 ) and 𝐻(𝑥) =

∑𝑘
𝑖=1 ℎ𝑖(𝑥𝑖) for 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘. Since

𝜇𝑖 = 𝜈𝑖 and

∣𝐻(𝑥) −𝐻(𝑥 ∨ 𝑎𝑛)∣ ≤
𝑛∑
𝑖=1

∣ℎ𝑖(𝑥𝑖) − ℎ(𝑥𝑖 ∨ 𝑎𝑛𝑖 )∣
we have∫

R𝑘

∣𝐻(𝑥) −𝐻(𝑥 ∨ 𝑎𝑛)∣𝜇(𝑑𝑥) → 0 ,

∫
R𝑘

∣𝐻(𝑥) −𝐻(𝑥 ∨ 𝑎𝑛)∣ 𝜈(𝑑𝑥) → 0.

In particular, we see that {𝐻∨𝑎𝑛 ∣ 𝑛 ≥ 1} is uniformly 𝜇-integrable and uniformly
𝜈-integrable. Since ∣𝑓(𝑥∨𝑎𝑛)∣ ≤ 𝐻(𝑥∨𝑎𝑛), we see that {𝑓∨𝑎𝑛 ∣ 𝑛 ≥ 1} is uniformly
𝜇-integrable and uniformly 𝜈-integrable. So by case (A) we have 𝑓 ∈ Λ □
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Bernstein-type Inequality
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Abstract. We extend a general Bernstein-type maximal inequality of Kevei
and Mason (2011) for sums of random variables.
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1. Introduction

Let 𝑋1, 𝑋2, . . . be a sequence of random variables, and for any choice of 1 ≤
𝑘 ≤ 𝑙 < ∞ we denote the partial sum 𝑆(𝑘, 𝑙) =

∑𝑙
𝑖=𝑘 𝑋𝑖, and define 𝑀(𝑘, 𝑙) =

max{∣𝑆(𝑘, 𝑘)∣, . . . , ∣𝑆(𝑘, 𝑙)∣}. It turns out that under a variety of assumptions the
partial sums 𝑆(𝑘, 𝑙) will satisfy a generalized Bernstein-type inequality of the fol-
lowing form: for suitable constants 𝐴 > 0, 𝑎 > 0, 𝑏 ≥ 0 and 0 < 𝛾 < 2 for all
𝑚 ≥ 0, 𝑛 ≥ 1 and 𝑡 ≥ 0,

𝑃{∣𝑆(𝑚 + 1,𝑚 + 𝑛)∣ > 𝑡} ≤ 𝐴 exp

{
− 𝑎𝑡2

𝑛 + 𝑏𝑡𝛾

}
. (1.1)

Kevei and Mason [2] provide numerous examples of sequences of random vari-
ables 𝑋1, 𝑋2, . . . , that satisfy a Bernstein-type inequality of the form (1.1). They
show, somewhat unexpectedly, without any additional assumptions, a modified
version of it also holds for 𝑀(1 + 𝑚,𝑛+ 𝑚) for all 𝑚 ≥ 0 and 𝑛 ≥ 1. Here is their
main result.

Theorem 1.1. Assume that for constants 𝐴 > 0, 𝑎 > 0, 𝑏 ≥ 0 and 𝛾 ∈ (0, 2),
inequality (1.1) holds for all 𝑚 ≥ 0, 𝑛 ≥ 1 and 𝑡 ≥ 0. Then for every 0 < 𝑐 < 𝑎
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there exists a 𝐶 > 0 depending only on 𝐴, 𝑎, 𝑏, 𝑐 and 𝛾 such that for all 𝑛 ≥ 1,
𝑚 ≥ 0 and 𝑡 ≥ 0,

𝑃{𝑀(𝑚 + 1,𝑚 + 𝑛) > 𝑡} ≤ 𝐶 exp

{
− 𝑐𝑡2

𝑛 + 𝑏𝑡𝛾

}
. (1.2)

There exists an interesting class of Bernstein-type inequalities that are not
of the form (1.1). Here are two motivating examples.

Example 1. Assume that 𝑋1, 𝑋2, . . . is a stationary Markov chain satisfying the
conditions of Theorem 6 of Adamczak [1] and let 𝑓 be any bounded measurable
function such that 𝐸𝑓 (𝑋1) = 0. His theorem implies that for some constants
𝐷 > 0, 𝑑1 > 0 and 𝑑2 > 0 for all 𝑡 ≥ 0 and 𝑛 ≥ 1,

𝑃 {∣𝑆𝑛(𝑓)∣ ≥ 𝑡} ≤ 𝐷−1 exp

(
− 𝐷𝑡2

𝑛𝑑1 + 𝑡𝑑2 log𝑛

)
, (1.3)

where 𝑆𝑛(𝑓) =
∑𝑛

𝑖=1 𝑓 (𝑋𝑖), and 𝐷/𝑑1 is related to the limiting variance in the
central limit theorem.

Example 2. Assume that 𝑋1, 𝑋2, . . . is a strong mixing sequence with mixing
coefficients 𝛼 (𝑛), 𝑛 ≥ 1, satisfying for some 𝑑 > 0, 𝛼 (𝑛) ≤ exp (−2𝑑𝑛). Also
assume that 𝐸𝑋𝑖 = 0 and for some 𝑀 > 0, ∣𝑋𝑖∣ ≤ 𝑀 , for all 𝑖 ≥ 1. Theorem 2 of
Merlevède, Peligrad and Rio [4] implies that for some constant 𝐷 > 0 for all 𝑡 ≥ 0
and 𝑛 ≥ 1,

𝑃 {∣𝑆𝑛∣ ≥ 𝑡} ≤ 𝐷 exp

(
− 𝐷𝑡2

𝑛𝑣2 + 𝑀2 + 𝑡𝑀 (log𝑛)2

)
, (1.4)

where 𝑆𝑛 =
∑𝑛

𝑖=1𝑋𝑖 and 𝑣2 = sup𝑖>0

(
𝑉 𝑎𝑟 (𝑋𝑖) + 2

∑
𝑗>𝑖 ∣𝑐𝑜𝑣 (𝑋𝑖, 𝑋𝑗)∣

)
.

The purpose of this note to establish the following extended version of The-
orem 1.1 that will show that a maximal version of inequalities (1.3) and (1.4) also
holds.

Theorem 1.2. Assume that there exist constants 𝐴 > 0 and 𝑎 > 0 and a sequence
of non-decreasing non-negative functions {𝑔𝑛}𝑛≥1 on (0,∞), such that for all 𝑡 > 0

and 𝑛 ≥ 1, 𝑔𝑛 (𝑡) ≤ 𝑔𝑛+1 (𝑡) and for all 0 < 𝜌 < 1

lim
𝑛→∞ inf

{
𝑡2

𝑔𝑛(𝑡) log 𝑡
: 𝑔𝑛 (𝑡) > 𝜌𝑛

}
= ∞, (1.5)

where the infimum of the empty set is defined to be infinity, such that for all 𝑚 ≥ 0,
𝑛 ≥ 1 and 𝑡 ≥ 0,

𝑃{∣𝑆(𝑚 + 1,𝑚 + 𝑛)∣ > 𝑡} ≤ 𝐴 exp

{
− 𝑎𝑡2

𝑛 + 𝑔𝑛(𝑡)

}
. (1.6)

Then for every 0 < 𝑐 < 𝑎 there exists a 𝐶 > 0 depending only on 𝐴, 𝑎, 𝑐 and
{𝑔𝑛}𝑛≥1 such that for all 𝑛 ≥ 1, 𝑚 ≥ 0 and 𝑡 ≥ 0,

𝑃{𝑀(𝑚 + 1,𝑚 + 𝑛) > 𝑡} ≤ 𝐶 exp

{
− 𝑐𝑡2

𝑛 + 𝑔𝑛(𝑡)

}
. (1.7)
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Note that condition (1.5) trivially holds when the functions 𝑔𝑛 are bounded,
since the corresponding sets are empty sets. However, in the interesting cases 𝑔𝑛’s
are not bounded, and in this case the condition basically says that 𝑔𝑛(𝑡) increases
slower than 𝑡2.

Essentially the same proof shows that the statement of Theorem 1.2 remains
true if in the numerator of (1.6) and (1.7) the function 𝑡2 is replaced by a regu-
larly varying function at infinity 𝑓(𝑡) with a positive index. In this case the 𝑡2 in
condition (1.5) must be replaced by 𝑓(𝑡). Since we do not know any application of
a result of this type, we only mention this generalization.

Proof. Choose any 0 < 𝑐 < 𝑎. We prove our theorem by induction on 𝑛. Notice
that by the assumption, for any integer 𝑛0 ≥ 1 we may choose 𝐶 > 𝐴𝑛0 to make
the statement true for all 1 ≤ 𝑛 ≤ 𝑛0. This remark will be important, because at
some steps of the proof we assume that 𝑛 is large enough. Also since the constants
𝐴 and 𝑎 in (1.6) are independent of 𝑚, we can without loss of generality assume
𝑚 = 0.

Assume the statement holds up to some 𝑛 ≥ 2. (The constant 𝐶 will be
determined in the course of the proof.)

Case 1. Fix a 𝑡 > 0 and assume that

𝑔𝑛+1(𝑡) ≤ 𝛼𝑛, (1.8)

for some 0 < 𝛼 < 1 be specified later. (In any case, we assume that 𝛼𝑛 ≥ 1.) Using
an idea of [5], we may write for arbitrary 1 ≤ 𝑘 < 𝑛, 0 < 𝑞 < 1 and 𝑝 + 𝑞 = 1 the
inequality

𝑃{𝑀(1, 𝑛 + 1) > 𝑡} ≤ 𝑃{𝑀(1, 𝑘) > 𝑡} + 𝑃{∣𝑆(1, 𝑘 + 1)∣ > 𝑝𝑡}
+ 𝑃{𝑀(𝑘 + 2, 𝑛 + 1) > 𝑞𝑡}.

Let

𝑢 =
𝑛 + 𝑔𝑛+1(𝑞𝑡) − 𝑞2𝑔𝑛+1(𝑡)

1 + 𝑞2
.

Note that 𝑢 ≤ 𝑛 − 1 if 0 < 𝛼 < 1 is chosen small enough depending on 𝑞, for 𝑛
large enough. Notice that

𝑡2

𝑢 + 𝑔𝑛+1(𝑡)
=

𝑞2𝑡2

𝑛− 𝑢 + 𝑔𝑛+1(𝑞𝑡)
. (1.9)

Set

𝑘 = ⌈𝑢⌉ . (1.10)

Using the induction hypothesis and (1.6), keeping in mind that 1 ≤ 𝑘 ≤ 𝑛− 1, we
obtain

𝑃{𝑀(1, 𝑛 + 1) > 𝑡} ≤ 𝐶 exp

{
− 𝑐𝑡2

𝑘 + 𝑔𝑘(𝑡)

}
+ 𝐴 exp

{
− 𝑎𝑝2𝑡2

𝑘 + 1 + 𝑔𝑘+1(𝑝𝑡)

}
+ 𝐶 exp

{
− 𝑐𝑞2𝑡2

𝑛− 𝑘 + 𝑔𝑛−𝑘(𝑞𝑡)

}
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≤ 𝐶 exp

{
− 𝑐𝑡2

𝑘 + 𝑔𝑛+1(𝑡)

}
+ 𝐴 exp

{
− 𝑎𝑝2𝑡2

𝑘 + 1 + 𝑔𝑛+1(𝑝𝑡)

}
+ 𝐶 exp

{
− 𝑐𝑞2𝑡2

𝑛− 𝑘 + 𝑔𝑛+1(𝑞𝑡)

}
. (1.11)

Notice that we chose 𝑘 to make the first and third terms in (1.11) almost equal,
and since by (1.10)

𝑡2

𝑘 + 𝑔𝑛+1(𝑡)
≤ 𝑞2𝑡2

𝑛− 𝑘 + 𝑔𝑛+1(𝑞𝑡)

the first term is greater than or equal to the third.
First we handle the second term in formula (1.11), showing that whenever

𝑔𝑛+1(𝑡) ≤ 𝛼𝑛,

exp

{
− 𝑎𝑝2𝑡2

𝑘 + 1 + 𝑔𝑛+1(𝑝𝑡)

}
≤ exp

{
− 𝑐𝑡2

𝑛 + 1 + 𝑔𝑛+1(𝑡)

}
.

For this we need to verify that for 𝑔𝑛+1(𝑡) ≤ 𝛼𝑛,

𝑎𝑝2

𝑘 + 1 + 𝑔𝑛+1(𝑝𝑡)
>

𝑐

𝑛 + 1 + 𝑔𝑛+1(𝑡)
, (1.12)

which is equivalent to

𝑎𝑝2(𝑛 + 1 + 𝑔𝑛+1(𝑡)) > 𝑐(𝑘 + 1 + 𝑔𝑛+1(𝑝𝑡)).

Using that

𝑘 = ⌈𝑢⌉ ≤ 𝑢 + 1 = 1 +
1

1 + 𝑞2
[
𝑛 + 𝑔𝑛+1(𝑞𝑡) − 𝑞2𝑔𝑛+1(𝑡)

]
,

it is enough to show

𝑛

(
𝑎𝑝2 − 𝑐

1 + 𝑞2

)
+ 𝑎𝑝2 − 2𝑐

+

[
𝑔𝑛+1(𝑡)𝑎𝑝

2 − 𝑔𝑛+1(𝑝𝑡)𝑐− 𝑐

1 + 𝑞2
(
𝑔𝑛+1(𝑞𝑡) − 𝑞2𝑔𝑛+1(𝑡)

)]
> 0.

Note that if the coefficient of 𝑛 is positive, then we can choose 𝛼 in (1.8) small
enough to make the above inequality hold. So in order to guarantee (1.12) (at least
for large 𝑛) we only have to choose the parameter 𝑝 so that 𝑎𝑝2 − 𝑐 > 0, which
implies that

𝑎𝑝2 − 𝑐

1 + 𝑞2
> 0 (1.13)

holds, and then select 𝛼 small enough, keeping mind that we assume 𝛼𝑛 ≥ 1 and
𝑘 ≤ 𝑛− 1.

Next we treat the first and third terms in (1.11). Because of the remark
above, it is enough to handle the first term. Let us examine the ratio of

𝐶 exp

{ −𝑐𝑡2

𝑘 + 𝑔𝑛+1(𝑡)

}
and 𝐶 exp

{ −𝑐𝑡2

𝑛 + 1 + 𝑔𝑛+1(𝑡)

}
.
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Notice again that since 𝑢 + 1 ≥ 𝑘, the monotonicity of 𝑔𝑛+1(𝑡) and 𝑔𝑛+1(𝑡) ≤ 𝛼𝑛
implies

𝑛 + 1 − 𝑘 ≥ 𝑛− 𝑢 = 𝑛− 𝑛 + 𝑔𝑛+1(𝑞𝑡) − 𝑞2𝑔𝑛+1(𝑡)

1 + 𝑞2

≥ 𝑞2𝑛− (1 − 𝑞2)𝑔𝑛+1(𝑡)

1 + 𝑞2

≥ 𝑛
𝑞2 − 𝛼(1 − 𝑞2)

1 + 𝑞2

=: 𝑐1𝑛.

At this point we need that 0 < 𝑐1 < 1. Thus we choose 𝛼 small enough so that

𝑞2 − 𝛼(1 − 𝑞2) > 0. (1.14)

Also we get using 𝑔𝑛+1(𝑡) ≤ 𝛼𝑛 the bound

(𝑛 + 1 + 𝑔𝑛+1(𝑡))(𝑘 + 𝑔𝑛+1(𝑡)) ≤ 2𝑛2(1 + 𝛼)2 =: 𝑐2𝑛
2,

which holds if 𝑛 large enough. Therefore, we obtain for the ratio

exp

{
−𝑐𝑡2

(
1

𝑘 + 𝑔𝑛+1(𝑡)
− 1

𝑛 + 1 + 𝑔𝑛+1(𝑡)

)}
≤ exp

{
−𝑐𝑐1𝑡

2

𝑐2𝑛

}
≤ e−1,

whenever 𝑐𝑐1𝑡
2/(𝑐2𝑛) ≥ 1, that is 𝑡 ≥ √𝑐2𝑛/(𝑐𝑐1). Substituting back into (1.11),

for 𝑡 ≥√𝑐2𝑛/(𝑐𝑐1) and 𝑔𝑛+1(𝑡) ≤ 𝛼𝑛 we obtain

𝑃{𝑀(1, 𝑛 + 1) > 𝑡}

≤
(

2

e
𝐶 + 𝐴

)
exp{−𝑐𝑡2/(𝑛 + 1 + 𝑔𝑛+1(𝑡))} ≤ 𝐶 exp{−𝑐𝑡2/(𝑛 + 1 + 𝑔𝑛+1(𝑡))},

where the last inequality holds for 𝐶 > 𝐴e/(e − 2).

Next assume that 𝑡 <
√

𝑐2𝑛/(𝑐𝑐1). In this case choosing 𝐶 large enough we
can make the bound > 1, namely

𝐶 exp

{
− 𝑐𝑡2

𝑛 + 1 + 𝑔𝑛+1(𝑡)

}
≥ 𝐶 exp

{
−𝑐𝑐2𝑛

𝑐𝑐1𝑛

}
= 𝐶e−𝑐2/𝑐1 ≥ 1,

if 𝐶 > e𝑐2/𝑐1 .

Case 2. Now we must handle the case 𝑔𝑛+1(𝑡) > 𝛼𝑛. Here we apply the inequality

𝑃{𝑀(1, 𝑛 + 1) > 𝑡} ≤ 𝑃{𝑀(1, 𝑛) > 𝑡} + 𝑃{∣𝑆(1, 𝑛 + 1)∣ > 𝑡}.
Using assumption (1.6) and the induction hypothesis, we have

𝑃{𝑀(1, 𝑛 + 1) > 𝑡} ≤ 𝐶 exp

{
− 𝑐𝑡2

𝑛 + 𝑔𝑛(𝑡)

}
+ 𝐴 exp

{
− 𝑎𝑡2

𝑛 + 1 + 𝑔𝑛+1(𝑡)

}
≤ 𝐶 exp

{
− 𝑐𝑡2

𝑛 + 𝑔𝑛+1(𝑡)

}
+ 𝐴 exp

{
− 𝑎𝑡2

𝑛 + 1 + 𝑔𝑛+1(𝑡)

}
.



60 P. Kevei and D.M. Mason

We will show that the right side ≤ 𝐶 exp{−𝑐𝑡2/(𝑛 + 1 + 𝑔𝑛+1(𝑡))}. For this it is
enough to prove

exp

{
−𝑐𝑡2

(
1

𝑛 + 𝑔𝑛+1(𝑡)
− 1

𝑛 + 1 + 𝑔𝑛+1(𝑡)

)}
+

𝐴

𝐶
exp

{
− 𝑡2(𝑎− 𝑐)

𝑛 + 1 + 𝑔𝑛+1(𝑡)

}
≤ 1.

(1.15)

Using the bound following from 𝑔𝑛+1(𝑡) > 𝛼𝑛 and recalling that 𝛼𝑛 ≥ 1 and
0 < 𝛼 < 1, we get

𝑡2

(𝑛 + 𝑔𝑛+1(𝑡))(𝑛 + 1 + 𝑔𝑛+1(𝑡))
≥ 𝛼2𝑡2

(1 + 𝛼)(1 + 2𝛼)𝑔𝑛+1(𝑡)2
=: 𝑐3

𝑡2

𝑔𝑛+1(𝑡)2
,

and
𝑡2(𝑎− 𝑐)

𝑛 + 1 + 𝑔𝑛+1(𝑡)
≥ 𝑡2

𝑔𝑛+1(𝑡)

𝛼(𝑎− 𝑐)

1 + 2𝛼
=:

𝑡2

𝑔𝑛+1(𝑡)
𝑐4.

Choose 𝛿 > 0 so small such that 0 < 𝑥 ≤ 𝛿 implies e−𝑐𝑐3𝑥
2 ≤ 1 − 𝑐𝑐3

2 𝑥2.

For 𝑡/𝑔𝑛+1(𝑡) ≥ 𝛿 the left-hand side of (1.15) is less then

e−𝑐𝑐3𝛿
2

+
𝐴

𝐶
,

which is less than 1, for 𝐶 large enough.

For 𝑡/𝑔𝑛+1(𝑡) ≤ 𝛿 by the choice of 𝛿 the left-hand side of (1.15) is less then

1 − 𝑐𝑐3
2

𝑡2

𝑔𝑛+1(𝑡)2
+

𝐴

𝐶
exp

{
− 𝑡2

𝑔𝑛+1(𝑡)
𝑐4

}
,

which is less than 1 if

𝑐𝑐3
2

𝑡2

𝑔𝑛+1(𝑡)2
>

𝐴

𝐶
exp

{
− 𝑡2

𝑔𝑛+1(𝑡)
𝑐4

}
.

By (1.5), for any 0 < 𝜂 < 1 and all large enough 𝑛, 𝑔𝑛+1(𝑡)1 {𝑔𝑛+1 (𝑡) > 𝛼𝑛} ≤ 𝜂𝑡2,
so that for all large 𝑛, whenever 𝑔𝑛+1 (𝑡) > 𝛼𝑛, we have

𝑡2

𝑔𝑛+1(𝑡)2
≥ 𝑡−2,

and again by (1.5) for all large 𝑛, whenever

𝑔𝑛+1 (𝑡) > 𝛼𝑛, 𝑡2/𝑔𝑛+1(𝑡) ≥ (3/𝑐4 ) log 𝑡.

Therefore for all large 𝑛, whenever 𝑔𝑛+1 (𝑡) > 𝛼𝑛,

exp

{
− 𝑡2

𝑔𝑛+1(𝑡)
𝑐4

}
≤ 𝑡−3,

which is smaller than 𝑡−2𝐶𝑐𝑐32𝐴 , for 𝑡 large enough, i.e., for 𝑛 large enough. The
proof is complete. □
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By choosing 𝑔𝑛 (𝑡) = 𝑏𝑡𝛾 for all 𝑛 ≥ 1 we see that Theorem 1.2 gives Theorem
1.1 as a special case. Also note that Theorem 1.2 remains valid for sums of Ba-
nach space-valued random variables with absolute value ∣⋅∣ replaced by norm ∣∣ ⋅ ∣∣.
Theorem 1.2 permits us to derive the following maximal versions of inequalities
(1.3) and (1.4).

Application 1. In Example 1 one readily checks that the assumptions of Theorem
1.2 are satisfied with 𝐴 = 𝐷−1 and 𝑎 = 𝐷/𝑑1

𝑔𝑛 (𝑡) =
𝑡𝑑2
𝑑1

log 𝑛.

We get the maximal version of inequality (1.3) holding for any 0 < 𝑐 < 1 and all
𝑛 ≥ 1 and 𝑡 > 0

𝑃

{∣∣ max
1≤𝑚≤𝑛

𝑆𝑚(𝑓)
∣∣ ≥ 𝑡

}
≤ 𝐶 exp

(
− 𝑐𝐷𝑡2

𝑛𝑑1 + 𝑡𝑑2 log𝑛

)
, (1.16)

for some constant 𝐶 ≥ 𝐷−1 depending on 𝑐, 𝐷−1, 𝐷/𝑑1 and {𝑔𝑛}𝑛≥1.
Application 2. In Example 2 one can verify that the assumptions of the Theorem
1.2 hold with 𝐴 = 𝐷 and 𝑎 = 𝐷/𝑣2 and

𝑔𝑛 (𝑡) =
𝑀2

𝑣2
+

𝑡𝑀

𝑣2
(log𝑛)

2
,

which leads to the maximal version of inequality (1.4) valid for any 0 < 𝑐 < 1 and
all 𝑛 ≥ 1 and 𝑡 > 0

𝑃

{
max
1≤𝑚≤𝑛

∣𝑆𝑚∣ ≥ 𝑡

}
≤ 𝐶 exp

(
− 𝑐𝐷𝑡2

𝑛𝑣2 + 𝑀2 + 𝑡𝑀 (log𝑛)
2

)
(1.17)

for some constant 𝐶 ≥ 𝐷 depending on 𝑐, 𝐷/𝑣2 and {𝑔𝑛}𝑛≥1. See Corollary 24 of

Merlevède and Peligrad [3] for a closely related inequality that holds for all 𝑛 ≥ 2
and 𝑡 > 𝐾 log𝑛 for some 𝐾 > 0.

Remark. There is a small oversight in the published version of the Kevei and
Mason paper. Here are the corrections that fix it.

1. Page 1057, line −9: Replace “1 ≤ 𝑘 ≤ 𝑛” by “1 ≤ 𝑘 < 𝑛”.

2. Page 1057, line −7: Replace this line with

≤ P {𝑀 (1, 𝑘) > 𝑡} + P {𝑆 (1, 𝑘 + 1) > 𝑝𝑡} + P {𝑀 (𝑘 + 2, 𝑛 + 1) > 𝑞𝑡} .
3. Page 1058: Replace “𝑘 + 𝑏𝑝𝛾𝑡𝛾” by “𝑘 + 1 + 𝑏𝑝𝛾𝑡𝛾” in equations (2.4) and (2.5),
as well as in line −13.

4. Page 1058: Replace “𝑎𝑝2 − 𝑐” by “𝑎𝑝2 − 2𝑐” in line −9.
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[5] F.A. Móricz, R.J. Serfling and W.F. Stout, Moment and probability bounds with
quasisuperadditive structure for the maximum partial sum. Ann. Probab. 10 (1982),
1032–1040.
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Maximal Inequalities for Centered Norms
of Sums of Independent Random Vectors

Rafal̷ Latal̷a

Abstract. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent random variables and 𝑆𝑘 =∑𝑘
𝑖=1𝑋𝑖. We show that for any constants 𝑎𝑘,

ℙ( max
1≤𝑘≤𝑛

∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 11𝑡) ≤ 30 max
1≤𝑘≤𝑛

ℙ(∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 𝑡).

We also discuss similar inequalities for sums of Hilbert and Banach space-
valued random vectors.

Mathematics Subject Classification (2010). Primary 60E15; Secondary 60G50,
60B11.

Keywords. Sums of independent random variables, random vectors, maximal
inequality.

1. Introduction and main results

Let 𝑋1, 𝑋2, . . . be independent random vectors in a separable Banach space 𝐹 .
The Lévy-Ottaviani maximal inequality (see, e.g., Proposition 1.1.1 in [2]) states
that for any 𝑡 > 0,

ℙ

(
max
1≤𝑘≤𝑛

∥𝑆𝑘∥ > 3𝑡
)
≤ 3 max

1≤𝑘≤𝑛
ℙ(∥𝑆𝑘∥ > 𝑡), (1.1)

where here and in the rest of this note,

𝑆𝑘 =

𝑘∑
𝑖=1

𝑋𝑖 for 𝑘 = 1, 2, . . . .

If, additionally, variables 𝑋𝑖 are symmetric then the classical Lévy inequality gives
the sharper bound

ℙ

(
max
1≤𝑘≤𝑛

∥𝑆𝑘∥ > 𝑡
)
≤ 2ℙ(∥𝑆𝑛∥ > 𝑡).

Research partially supported by MNiSW Grant no. N N201 397437.

c⃝ 2013 Springer Basel



64 R. Latal̷a

Montgomery-Smith [4] showed that if we replace symmetry assumptions by the
identical distribution then

ℙ

(
max
1≤𝑘≤𝑛

∥𝑆𝑘∥ > 𝐶1𝑡
)
≤ 𝐶2ℙ(∥𝑆𝑛∥ > 𝑡), (1.2)

where one may take 𝐶1 = 30 and 𝐶2 = 9.
Maximal inequalities are fundamental tools in the study of convergence of

random series and limit theorems for sums of independent random vectors (see,
e.g., [2] and [3]).

In some applications one needs to investigate asymptotic behaviour of cen-
tered norms of sums, i.e., random variables of the form (∥𝑆𝑛∥ − 𝑎𝑛)/𝑏𝑛 (cf. [1]).
For such purpose it is natural to ask whether in (1.1) or (1.2) one may replace
variables ∥𝑆𝑘∥ by ∣∥𝑆𝑘∥−𝑎𝑘∣. The answer turns out to be positive in the real case.

Theorem 1.1. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent real r.v.’s. Then for any numbers
𝑎1, 𝑎2, . . . , 𝑎𝑛 and 𝑡 > 0,

ℙ

(
max
1≤𝑘≤𝑛

∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 11𝑡
)
≤ 30 max

1≤𝑘≤𝑛
ℙ(∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 𝑡). (1.3)

Example. Let 𝑌1, 𝑌2, . . . be i.i.d. r.v.’s such that 𝔼𝑌 2𝑖 = 1 and Var(𝑌 2𝑖 ) < ∞. Let

𝑆𝑘 =
∑𝑘

𝑖=1𝑋𝑖, where 𝑋𝑖 = 𝑒𝑖𝑌𝑖 and (𝑒𝑖) is an orthonormal system in a Hilbert
space ℋ; also let ∣𝑥∣ denote the norm of a vector 𝑥 ∈ ℋ. Then for 𝑡 > 0,

ℙ(∣∣𝑆𝑘∣ −
√
𝑘∣ ≥ 𝑡) ≤ ℙ(∣∣𝑆𝑘∣2 − 𝑘∣ ≥ 𝑡

√
𝑘) ≤ Var(∣𝑆𝑘∣2)

𝑡2𝑘
=

Var(𝑌 21 )

𝑡2
.

On the other hand if we choose 𝑗0 such that 2𝑗0/2 ≥ 𝑡, then for 𝑛 ≥ 2𝑗0 ,

𝑝𝑛 := ℙ

(
max
1≤𝑘≤𝑛

∣∣𝑆𝑘∣ −
√
𝑘∣ ≥ 𝑡

)
≥ ℙ

(
max

2𝑗0≤𝑘≤𝑛
(∣𝑆𝑘∣2 − 𝑘) ≥ 3𝑡

√
𝑘
)

≥ ℙ

( ∪
𝑗0≤𝑗≤log2 𝑛

{
∣𝑆2𝑗 ∣2 − 2𝑗 ≥ 3 ⋅ 2𝑗/2𝑡

})

≥ ℙ

( ∪
𝑗0+1≤𝑗≤log2 𝑛

{
2−𝑗/2

2𝑗∑
𝑖=2𝑗−1+1

(𝑌 2𝑖 − 1) ≥ 6𝑡
})

and lim𝑛→∞ 𝑝𝑛 = 1 for any 𝑡 > 0 by the CLT. It is not hard to modify this example
in such a way that 𝑋𝑖 be an i.i.d. sequence.

Hence Theorem 1.1 does not hold in infinite dimensional Hilbert spaces even
if we assume that 𝑋𝑖 are symmetric and identically distributed. However a modi-
fication of (1.3) is satisfied in Hilbert spaces.

Proposition 1.2. Let 𝑋1, . . . , 𝑋𝑛 be independent symmetric r.v.’s with values in a
separable Hilbert space (ℋ, ∣ ∣). Then for any sequence of real numbers 𝑎1, . . . , 𝑎𝑛
and 𝑡 ≥ 0,

ℙ

(
max
1≤𝑘≤𝑛

∣∣∣𝑆𝑘∣2 − 𝑎𝑘
∣∣ ≥ 3𝑡

)
≤ 6 max

1≤𝑘≤𝑛
ℙ
(∣∣∣𝑆𝑘∣2 − 𝑎𝑘

∣∣ ≥ 𝑡
)
.
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A first consequence of Proposition 1.2 is the following Hilbert-space version
of (1.3) under a regularity assumption on coefficients (𝑎𝑘).

Corollary 1.3. Let 𝑋1, . . . , 𝑋𝑛 be as in Proposition 1.2, 1 ≤ 𝑖 ≤ 𝑛 and nonnegative
real numbers 𝑎𝑖, . . . , 𝑎𝑛, 𝛼, 𝛽 and 𝑡 satisfy the condition

𝑎𝑘 ≤ 𝛼𝑎𝑙 + 𝛽𝑡 for all 𝑖 ≤ 𝑘, 𝑙 ≤ 𝑛. (1.4)

Then

ℙ

(
max
𝑖≤𝑘≤𝑛

∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ (6𝛼 + 2𝛽 + 1)𝑡
)
≤ 6 max

𝑖≤𝑘≤𝑛
ℙ
(∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ 𝑡

)
.

In proofs of limit theorems one typically applies maximal inequalities to uni-
formly estimate ∥𝑆𝑘∥ for 𝑐𝑛 ≤ 𝑘 ≤ 𝑛, where 𝑐 is some constant. Next two corollaries
show that if we restrict 𝑘 to such a group of indices then, under i.i.d. and symmetry
assumptions, (1.3) holds in Hilbert spaces.

Corollary 1.4. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be symmetric i.i.d. r.v.’s with values in a sep-
arable Hilbert space (ℋ, ∣ ∣). Then for any integer 𝑖 such that 𝑛

2 ≤ 𝑖 ≤ 𝑛 and any
sequence of positive numbers 𝑎𝑖, . . . , 𝑎𝑛 and 𝑡 ≥ 0 we have

ℙ

(
max
𝑖≤𝑘≤𝑛

∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ 19𝑡
)
≤ 6 max

𝑖≤𝑘≤𝑛
ℙ(∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ 𝑡).

Proof. We may obviously assume that

max
𝑖≤𝑘≤𝑛

ℙ(∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ 𝑡) ≤ 1

6
.

Observe that for any 𝑘 < 𝑙, the random variable 𝑆𝑘,𝑙 :=
∑𝑙

𝑖=𝑘 𝑋𝑖 has the same
distribution as 𝑆𝑙−𝑘+1.

Take 𝑘, 𝑙 ∈ {𝑖, . . . , 𝑛}, then

ℙ(∣𝑆2𝑘∣ ≥ 2𝑎𝑘 + 2𝑡) ≤ ℙ(∣𝑆𝑘∣ ≥ 𝑎𝑘 + 𝑡) + ℙ(∣𝑆𝑘+1,2𝑘∣ ≥ 𝑎𝑘 + 𝑡)

= 2ℙ(∣𝑆𝑘∣ ≥ 𝑎𝑘 + 𝑡) ≤ 1

3
.

Therefore

ℙ(𝑎𝑙 − 𝑡 ≤ ∣𝑆𝑙∣ ≤ 2𝑎𝑘 + 2𝑡)

≥ ℙ(𝑎𝑙 − 𝑡 ≤ ∣𝑆𝑙∣, ∣𝑆𝑙 + 𝑆𝑙+1,2𝑘∣ ≤ 2𝑎𝑘 + 2𝑡, ∣𝑆𝑙 − 𝑆𝑙+1,2𝑘∣ ≤ 2𝑎𝑘 + 2𝑡)

≥ 1 − ℙ(∣𝑆𝑙∣ < 𝑎𝑙 − 𝑡) − 2ℙ(∣𝑆2𝑘∣ > 2𝑎𝑘 + 2𝑡) ≥ 1 − 1

6
− 2

3
> 0,

where in the second inequality we used the symmetry of 𝑋𝑖. Hence we get 𝑎𝑙 ≤
2𝑎𝑘 + 3𝑡 and we may apply Corollary 1.3 with 𝛼 = 2 and 𝛽 = 3. □

Corollary 1.5. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be as before. Then for any 𝑛
2𝑗 ≤ 𝑖 ≤ 𝑛 and any

sequence of positive numbers 𝑎𝑖, . . . , 𝑎𝑛 and 𝑡 ≥ 0 we have

ℙ

(
max
𝑖≤𝑘≤𝑛

∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ 19𝑡
)
≤ 6𝑗 max

𝑖≤𝑘≤𝑛
ℙ(∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ 𝑡).
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Corollary 1.4 naturally leads to the formulation of the following open ques-
tion.

Question. Characterize all separable Banach spaces (𝐸, ∥ ∥) with the following
property. There exist constants 𝐶1, 𝐶2 < ∞ such that for any symmetric i.i.d.
r.v.’s 𝑋1, 𝑋2, . . . , 𝑋𝑛 with values in 𝐸, any 𝑛

2 ≤ 𝑖 ≤ 𝑛, any positive constants
𝑎𝑖, . . . , 𝑎𝑛 and 𝑡 > 0,

ℙ

(
max
𝑖≤𝑘≤𝑛

∣∥𝑆𝑘∥ − 𝑎𝑘∣ ≥ 𝐶1𝑡
)
≤ 𝐶2 max

𝑖≤𝑘≤𝑛
ℙ(∣∥𝑆𝑘∥ − 𝑎𝑘∣ ≥ 𝑡). (1.5)

In particular does the above inequality hold in 𝐿𝑝 with 1 < 𝑝 < ∞?

In the last section of the paper we present an example showing that in a
general separable Banach space estimate (1.5) does not hold.

2. Proofs

Below we will use the following notation. By 𝑋̃1, 𝑋̃2, . . . we will denote the inde-
pendent copy of the random sequence 𝑋1, 𝑋2, . . .. We put

𝑆𝑘 :=
𝑘∑
𝑖=1

𝑋̃𝑖, 𝑆𝑘,𝑛 := 𝑆𝑛 − 𝑆𝑘−1 =
𝑛∑
𝑖=𝑘

𝑋𝑖.

We start with the following simple lemma.

Lemma 2.1. Suppose that real numbers 𝑥, 𝑦, 𝑎, 𝑏 and 𝑢 satisfy the conditions
∣∣𝑥∣ − 𝑎∣ ≤ 𝑢, ∣∣𝑦∣ − 𝑎∣ ≤ 𝑢, ∣∣𝑥 + 𝑠∣ − 𝑏∣ ≤ 𝑢, ∣∣𝑦 + 𝑠∣ − 𝑏∣ ≤ 𝑢 and ∣𝑥 − 𝑦∣ > 2𝑢.
Then ∣𝑎− 𝑏∣ ≤ 2𝑢 and ∣𝑠∣ ≤ 4𝑢.

Proof. If 𝑎 < 0 then ∣𝑥∣, ∣𝑦∣ < 𝑢 and ∣𝑥 − 𝑦∣ < 2𝑢. So 𝑎 ≥ 0 and in the same
way we show that 𝑏 ≥ 0. Without loss of generality we may assume 𝑥 < 𝑦, hence
𝑥 ∈ (−𝑎−𝑢,−𝑎+𝑢), 𝑦 ∈ (𝑎−𝑢, 𝑎+𝑢), 𝑥+𝑠 ∈ (−𝑏−𝑢,−𝑏+𝑢), 𝑦+𝑠 ∈ (𝑏−𝑢, 𝑏+𝑢).
Thus 2𝑎− 2𝑢 ≤ 𝑦 − 𝑥 ≤ 2𝑎 + 2𝑢 and 2𝑏 − 2𝑢 ≤ (𝑦 + 𝑠) − (𝑥 + 𝑠) ≤ 2𝑏 + 2𝑢 and
therefore ∣𝑎 − 𝑏∣ ≤ 2𝑢. Moreover, −𝑏 + 𝑎 − 2𝑢 ≤ 𝑠 ≤ −𝑏 + 𝑎 + 2𝑢 and we get
∣𝑠∣ ≤ ∣𝑎− 𝑏∣ + 2𝑢 ≤ 4𝑢. □

Proof of Theorem 1.1. We may and will assume that

𝑝 := max
1≤𝑘≤𝑛

ℙ(∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 𝑡) ∈ (0, 1/30).

Let

𝐼1 := {𝑘 : 𝑎𝑘 ≤ 2𝑡}, 𝐼2 := {𝑘 : ℙ(∣𝑆𝑘 − 𝑆𝑘∣ > 2𝑡) > 5𝑝}
and

𝐼3 := {1, . . . , 𝑛} ∖ (𝐼1 ∪ 𝐼2).

First we show that

ℙ

(
max
𝑘∈𝐼1

∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 11𝑡
)
≤ 3𝑝. (2.1)
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Indeed, notice that for all 𝑘, 𝑎𝑘 > −𝑡 (otherwise 𝑝 = 1). Therefore by the Lévy-
Ottaviani inequality (1.1),

ℙ

(
max
𝑘∈𝐼1

∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 11𝑡
)
≤ ℙ(max

𝑘∈𝐼1
∣𝑆𝑘∣ > 9𝑡) ≤ 3 max

𝑘∈𝐼1
ℙ(∣𝑆𝑘∣ > 3𝑡)

≤ 3 max
𝑘∈𝐼1

ℙ(∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 𝑡) ≤ 3𝑝.

Next we prove that

ℙ

(
max
𝑘∈𝐼2

∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 11𝑡
)
≤ 5𝑝. (2.2)

Let us take 𝑘 ∈ 𝐼2 and define the following events

𝐴1 := {∣𝑆𝑘 − 𝑆𝑘∣ > 2𝑡}, 𝐴2 := 𝐴1 ∩ {∣𝑆𝑘+1,𝑛∣ > 4𝑡}
and

𝐵 := {∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≤ 𝑡, ∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≤ 𝑡, ∣∣𝑆𝑛∣ − 𝑎𝑛∣ ≤ 𝑡, ∣∣𝑆𝑘 + 𝑆𝑘+1,𝑛∣ − 𝑎𝑛∣ ≤ 𝑡}.
We have ℙ(𝐴1) + ℙ(𝐵) > 5𝑝 + 1 − 4𝑝 > 1, hence 𝐴1 ∩ 𝐵 ∕= ∅ and by Lemma
2.1, ∣𝑎𝑘 − 𝑎𝑛∣ ≤ 2𝑡. Also by Lemma 2.1, 𝐴2 ∩ 𝐵 = ∅, hence ℙ(𝐴2) + ℙ(𝐵) ≤ 1.
Therefore 5𝑝ℙ(∣𝑆𝑘+1,𝑛∣ > 4𝑡) ≤ ℙ(𝐴2) ≤ 4𝑝. Thus for all 𝑘 ∈ 𝐼2, ∣𝑎𝑘 − 𝑎𝑛∣ ≤ 2𝑡
and ℙ(∣𝑆𝑘+1,𝑛∣ ≤ 4𝑡) ≥ 1/5. Let

𝜏 := inf{𝑘 ∈ 𝐼2 : ∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 11𝑡}.
Then

1

5
ℙ(𝜏 = 𝑘) ≤ ℙ(𝜏 = 𝑘, ∣𝑆𝑘+1,𝑛∣ ≤ 4𝑡)

≤ ℙ(𝜏 = 𝑘, ∣∣𝑆𝑛∣ − 𝑎𝑛∣ > 11𝑡− 4𝑡− ∣𝑎𝑘 − 𝑎𝑛∣)
≤ ℙ(𝜏 = 𝑘, ∣∣𝑆𝑛∣ − 𝑎𝑛∣ > 𝑡)

and

ℙ

(
max
𝑘∈𝐼2

∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 11𝑡
)

=
∑
𝑘∈𝐼2

ℙ(𝜏 = 𝑘) ≤ 5
∑
𝑘∈𝐼2

ℙ(𝜏 = 𝑘, ∣∣𝑆𝑛∣ − 𝑎𝑛∣ > 𝑡)

≤ 5ℙ(∣∣𝑆𝑛∣ − 𝑎𝑛∣ > 𝑡) ≤ 5𝑝.

Finally we show

ℙ

(
max
𝑘∈𝐼3

∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 11𝑡
)
≤ 21𝑝. (2.3)

To this end take any 𝑘 ∈ 𝐼3 and notice that

2 max{ℙ(∣𝑆𝑘 − 𝑎𝑘∣ ≤ 𝑡),ℙ(∣𝑆𝑘 + 𝑎𝑘∣ ≤ 𝑡)}
≥ ℙ(∣𝑆𝑘 − 𝑎𝑘∣ ≤ 𝑡) + ℙ(∣𝑆𝑘 + 𝑎𝑘∣ ≤ 𝑡)

≥ ℙ(∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≤ 𝑡) ≥ 1 − 𝑝 ≥ 29

30
.
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If ∣𝑥− 𝑎𝑘∣ ≤ 𝑡 and ∣𝑦 + 𝑎𝑘∣ ≤ 𝑡 then ∣𝑥− 𝑦∣ ≥ 2𝑎𝑘 − 2𝑡 > 2𝑡. Therefore

5𝑝 ≥ ℙ(∣𝑆𝑘 − 𝑆𝑘∣ > 2𝑡)

≥ ℙ(∣𝑆𝑘 − 𝑎𝑘∣ ≤ 𝑡, ∣𝑆𝑘 + 𝑎𝑘∣ ≤ 𝑡) + ℙ(∣𝑆𝑘 + 𝑎𝑘∣ ≤ 𝑡, ∣𝑆𝑘 − 𝑎𝑘∣ ≤ 𝑡)

= 2ℙ(∣𝑆𝑘 − 𝑎𝑘∣ ≤ 𝑡)ℙ(∣𝑆𝑘 + 𝑎𝑘∣ ≤ 𝑡).

So for any 𝑘 ∈ 𝐼3 we may choose 𝑏𝑘 = ±𝑎𝑘 such that

ℙ(∣𝑆𝑘 − 𝑏𝑘∣ ≤ 𝑡) ≤ 30

29
5𝑝 ≤ 6𝑝.

Therefore

ℙ(∣𝑆𝑘 + 𝑏𝑘∣ > 𝑡) ≤ ℙ(∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 𝑡) + ℙ(∣𝑆𝑘 − 𝑏𝑘∣ ≤ 𝑡) ≤ 7𝑝

and by the Lévy-Ottaviani inequality (1.1),

ℙ(max
𝑘∈𝐼3

∣∣𝑆𝑘∣ − 𝑎𝑘∣ > 11𝑡) ≤ ℙ(max
𝑘∈𝐼3

∣𝑆𝑘 + 𝑏𝑘∣ > 11𝑡)

≤ 3 max
𝑘∈𝐼3

ℙ(∣𝑆𝑘 + 𝑏𝑘∣ > 11

3
𝑡) ≤ 21𝑝.

This shows (2.3).
Inequalities (2.1), (2.2) and (2.3) imply (1.3). □

Proof of Proposition 1.2. It is enough to consider the case when

𝑝 := max
1≤𝑘≤𝑛

ℙ
(∣∣∣𝑆𝑘∣2 − 𝑎𝑘

∣∣ ≥ 𝑡
)
<

1

6
.

Notice that

ℙ
(∣∣∣𝑆𝑛∣2 − ∣𝑆𝑘∣2 − (𝑎𝑛 − 𝑎𝑘)

∣∣ ≥ 2𝑡
) ≤ ℙ

(∣∣∣𝑆𝑛∣2 − 𝑎𝑛
∣∣ ≥ 𝑡

)
+ ℙ
(∣∣∣𝑆𝑘∣2 − 𝑎𝑘

∣∣ ≥ 𝑡
)

Therefore

ℙ
(∣∣∣𝑆𝑘+1,𝑛∣2 + 2⟨𝑆𝑘, 𝑆𝑘+1,𝑛⟩ − (𝑎𝑛 − 𝑎𝑘)

∣∣ ≥ 2𝑡) ≤ 2𝑝

and by the symmetry

ℙ
(∣∣∣𝑆𝑘+1,𝑛∣2 − 2⟨𝑆𝑘, 𝑆𝑘+1,𝑛⟩ − (𝑎𝑛 − 𝑎𝑘)

∣∣ ≥ 2𝑡
) ≤ 2𝑝.

Thus by the triangle inequality

ℙ
(∣∣∣𝑆𝑘+1,𝑛∣2 − (𝑎𝑛 − 𝑎𝑘)

∣∣ ≥ 2𝑡
) ≤ 4𝑝.

Now let 𝑥 ∈ ℋ be such that ∣∣𝑥∣2 − 𝑎𝑘∣ ≥ 3𝑡 then by the triangle inequality
and symmetry

1 − 4𝑝 ≤ ℙ
(∣∣∣𝑥∣2 + ∣𝑆𝑘+1,𝑛∣2 − 𝑎𝑛

∣∣ ≥ 𝑡
)

≤ ℙ
(∣∣∣𝑥∣2 + ∣𝑆𝑘+1,𝑛∣2 + 2⟨𝑥, 𝑆𝑘+1,𝑛⟩ − 𝑎𝑛

∣∣ ≥ 𝑡
)

+ ℙ
(∣∣∣𝑥∣2 + ∣𝑆𝑘+1,𝑛∣2 − 2⟨𝑥, 𝑆𝑘+1,𝑛⟩ − 𝑎𝑛

∣∣ ≥ 𝑡
)

= 2ℙ
(∣∣∣𝑥∣2 + ∣𝑆𝑘+1,𝑛∣2 + 2⟨𝑥, 𝑆𝑘+1,𝑛⟩ − 𝑎𝑛

∣∣ ≥ 𝑡
)

= 2ℙ
(∣∣∣𝑥 + 𝑆𝑘+1,𝑛∣2 − 𝑎𝑛

∣∣ ≥ 𝑡
)
.
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So for any 𝑥 ∈ ℋ and 𝑘 = 1, 2, . . . , 𝑛,∣∣∣𝑥∣2 − 𝑎𝑘
∣∣ ≥ 3𝑡 ⇒ ℙ

(∣∣∣𝑥 + 𝑆𝑘+1,𝑛∣2 − 𝑎𝑛
∣∣ ≥ 𝑡

) ≥ 1

2
(1 − 4𝑝) ≥ 1

6
. (2.4)

Now let

𝜏 := inf
{
𝑘 ≤ 𝑛 :

∣∣∣𝑆𝑘∣2 − 𝑎𝑘
∣∣ ≥ 3𝑡

}
,

then since {𝜏 = 𝑘} ∈ 𝜎(𝑋1, . . . , 𝑋𝑘) we get by (2.4),

ℙ
(
𝜏 = 𝑘,

∣∣∣𝑆𝑛∣2 − 𝑎𝑛
∣∣ ≥ 𝑡

) ≥ 1

6
ℙ(𝜏 = 𝑘).

Hence

ℙ
(∣∣∣𝑆𝑛∣2 − 𝑎𝑛

∣∣ ≥ 𝑡
) ≥ 1

6

𝑛∑
𝑘=1

ℙ(𝜏 = 𝑘) =
1

6
ℙ

(
max
1≤𝑘≤𝑛

∣∣∣𝑆𝑘∣2 − 𝑎𝑘
∣∣ ≥ 3𝑡

)
and the proposition follows. □

Proof of Corollary 1.3. We may consider variables 𝑆𝑖, 𝑋𝑖+1, . . . , 𝑋𝑛 instead of
𝑋1, . . . , 𝑋𝑛 and assume that 𝑖 = 1. Let 𝑎 := min1≤𝑘≤𝑛 𝑎𝑘. We will analyze two
cases.

Case 1. 𝑎 ≤ 3𝑡. Then by (1.4) we get 𝑎𝑘 ≤ (3𝛼 + 𝛽)𝑡 for all 𝑘. Thus by the Lévy
inequality,

ℙ

(
max
𝑘

∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ (6𝛼 + 2𝛽 + 1)𝑡
)
≤ ℙ

(
max
𝑘

∣𝑆𝑘∣ ≥ (3𝛼 + 𝛽 + 1)𝑡
)

≤ 2ℙ(∣𝑆𝑛∣ ≥ (3𝛼 + 𝛽 + 1)𝑡)

≤ 2ℙ(∣∣𝑆𝑛∣ − 𝑎𝑛∣ ≥ 𝑡)

≤ 2 max
𝑘

ℙ(∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ 𝑡).

Case 2. 𝑎 ≥ 3𝑡. Notice first that for any 𝑠 > 0 we have

{∣∣𝑆𝑘∣2 − 𝑎2𝑘∣ ≥ 𝑠(2𝑎𝑘 + 𝑠)} ⊂ {∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ 𝑠} ⊂ {∣∣𝑆𝑘∣2 − 𝑎2𝑘∣ ≥ 𝑠𝑎𝑘}. (2.5)

Indeed, the last inclusion follows since ∣∣𝑆𝑘∣2 − 𝑎2𝑘∣ = (∣𝑆𝑘∣ + 𝑎𝑘)∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥
𝑎𝑘∣∣𝑆𝑘∣ − 𝑎𝑘∣. To see the first inclusion in (2.5) observe that

{∣∣𝑆𝑘∣2 − 𝑎2𝑘∣ ≥ 𝑠(2𝑎𝑘 + 𝑠)} ⊂ {∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ 𝑠} ∪ {∣𝑆𝑘∣ + 𝑎𝑘 ≥ 2𝑎𝑘 + 𝑠}
⊂ {∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ 𝑠}.

Now by (2.5) we get

ℙ

(
max
𝑘

∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ (6𝛼 + 2𝛽 + 1)𝑡
)

≤ ℙ

(
max
𝑘

∣∣𝑆𝑘∣2 − 𝑎2𝑘∣ ≥ (6𝛼 + 2𝛽 + 1)𝑎𝑡
)
.

Hence by Proposition 1.2,

ℙ

(
max
𝑘

∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ (6𝛼 + 2𝛽 + 1)𝑡
)
≤ 6 max

𝑘
ℙ
(∣∣𝑆𝑘∣2 − 𝑎2𝑘∣ ≥

1

3
(6𝛼 + 2𝛽 + 1)𝑎𝑡

)
.
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But 1
3 (6𝛼 + 2𝛽 + 1)𝑎 ≥ 2(𝛼𝑎 + 𝛽𝑡) + 𝑡 ≥ 2𝑎𝑘 + 𝑡 for all 𝑘 by (1.4). Therefore by

(2.5),

ℙ

(
max
𝑘

∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ (6𝛼 + 2𝛽 + 1)𝑡
)
≤ 6 max

𝑘
ℙ(∣∣𝑆𝑘∣2 − 𝑎2𝑘∣ ≥ 𝑡(2𝑎𝑘 + 𝑡))

≤ 6 max
𝑘

ℙ(∣∣𝑆𝑘∣ − 𝑎𝑘∣ ≥ 𝑡). □

3. Example

Let us fix a positive integer 𝑛 and put

𝐼𝑛 =
{
𝑗 ∈ ℤ :

𝑛

2
≤ 𝑗 ≤ 𝑛

}
.

Let 𝑡𝑗 = 𝑛2+𝑗
𝑗 for 𝑗 = 1, 2, . . . , 𝑛, then

𝑗𝑡𝑗 = 𝑛2 + 𝑗 and (𝑗 − 1)𝑡𝑗 ≤ 𝑛2 for 𝑗 ∈ 𝐼𝑛. (3.1)

Let 𝑁 be a large integer (to be fixed later) and let 𝐹 be the space of all
double-indexed sequences 𝑎 = (𝑎𝑖,𝑗)0≤𝑖≤𝑁,𝑗∈𝐼𝑛 with the norm∥∥∥(𝑎𝑖,𝑗)0≤𝑖≤𝑁,𝑗∈𝐼𝑛∥∥∥ = max

𝑗∈𝐼𝑛

(
∣𝑎0,𝑗 ∣ + 𝑡𝑗

∑
1≤𝑖1<𝑖2<⋅⋅⋅<𝑖𝑗≤𝑁

𝑗∑
𝑠=1

∣𝑎𝑖𝑠,𝑗 ∣
)
.

Let (𝑒𝑖,𝑗) be a standard basis of 𝐹 , so that (𝑎𝑖,𝑗) =
∑

𝑖,𝑗 𝑎𝑖,𝑗𝑒𝑖,𝑗.

Define random vectors 𝑋1, 𝑋2, . . . , 𝑋𝑛 by the formula

𝑋𝑙 =
∑
𝑗∈𝐼𝑛

(𝑌𝑙,𝑗𝑒0,𝑗 + 𝑅𝑙,𝑗𝑒𝑁𝑙,𝑗),

where (𝑌𝑙,𝑗 , 𝑅𝑙,𝑗)𝑙≤𝑛,𝑗∈𝐼𝑛 and (𝑁𝑙)𝑙≤𝑛 are independent r.v’s, ℙ(𝑅𝑙,𝑗 = ±1) = 1/2,
𝑌𝑙,𝑗 are symmetric ℙ(∣𝑌𝑙,𝑗 ∣ = 1

2𝑛 ) = 1 − ℙ(𝑌𝑘,𝑗 = 0) = 𝑝𝑛 (with 𝑝𝑛 a small
positive number to be specified later) and 𝑁𝑙 are uniformly sampled from the set
{1, . . . , 𝑁}.

Obviously 𝑋1, 𝑋2, . . . , 𝑋𝑛 are i.i.d. and symmetric. As usual we set 𝑆𝑘 =
𝑋1 + 𝑋2 + ⋅ ⋅ ⋅ + 𝑋𝑘. Let

𝐴 = {𝑁1, 𝑁2, . . . , 𝑁𝑛 are pairwise distinct}.
Notice that ℙ(𝐴𝑐) → 0 when 𝑁 →∞. On the set 𝐴 we have for 𝑘 ≤ 𝑛,

∥𝑆𝑘∥ = max
𝑗∈𝐼𝑛

(∣∣∣ 𝑘∑
𝑙=1

𝑌𝑙,𝑗

∣∣∣+ 𝑡𝑗 min{𝑘, 𝑗}
)
.

For 𝑗 > 𝑘 we have by (3.1),∣∣∣ 𝑘∑
𝑙=1

𝑌𝑙,𝑗

∣∣∣+ 𝑡𝑗 min{𝑘, 𝑗} < 1 + 𝑡𝑗(𝑗 − 1) ≤ 𝑛2 + 1,
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hence on the set 𝐴, for 𝑘 ∈ 𝐼𝑛 we get

∥𝑆𝑘∥ = max
𝑗∈𝐼𝑛,𝑗≤𝑘

(∣∣∣ 𝑘∑
𝑙=1

𝑌𝑙,𝑗

∣∣∣+ 𝑛2 + 𝑗
)

=
∣∣∣ 𝑘∑
𝑙=1

𝑌𝑙,𝑘

∣∣∣+ 𝑛2 + 𝑘.

Take 0 < 𝑡 < 1
2𝑛𝐶1

then for 𝑘 ∈ 𝐼𝑛,

ℙ(∣∥𝑆𝑘∥ − (𝑛2 + 𝑘)∣ ≥ 𝑡) ≤ ℙ(𝐴) + ℙ

( 𝑘∑
𝑙=1

𝑌𝑙,𝑘 ∕= 0
)
≤ ℙ(𝐴𝑐) + 𝑘𝑝𝑛

and

ℙ

(
max
𝑘∈𝐼𝑛

∣∥𝑆𝑘∥ − (𝑛2 + 𝑘)∣ ≥ 𝑡𝐶1

)
≥ ℙ

(
max
𝑘∈𝐼𝑛

∣∣∣ 𝑘∑
𝑙=1

𝑌𝑙,𝑘

∣∣∣ ∕= 0
)
− ℙ(𝐴𝑐).

The last number is of order 𝑛2𝑝𝑛 if 𝑁 is large and 𝑝𝑛 is small. This shows that if
(1.5) holds for 𝑖 = ⌈𝑛/2⌉ in 𝐹 then 𝐶2 must be of order 𝑛. So (1.5) cannot hold with
absolute constants 𝐶1 and 𝐶2 in (infinite dimensional) separable Banach spaces.
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A Probabilistic Inequality Related to
Negative Definite Functions

Mikhail Lifshits, René L. Schilling and Ilya Tyurin

Abstract. We prove that for any pair of i.i.d. random vectors 𝑋,𝑌 in ℝ𝑛

and any real-valued continuous negative definite function 𝜓 : ℝ𝑛 → ℝ the
inequality

𝔼𝜓(𝑋 − 𝑌 ) ⩽ 𝔼𝜓(𝑋 + 𝑌 ).

holds. In particular, for 𝛼 ∈ (0, 2] and the Euclidean norm ∥ ⋅ ∥2 one has

𝔼∥𝑋 − 𝑌 ∥𝛼2 ⩽ 𝔼∥𝑋 + 𝑌 ∥𝛼2 .
The latter inequality is due to A. Buja et al. [4] where it is used for some
applications in multivariate statistics. We show a surprising connection with
bifractional Brownian motion and provide some related counter-examples.

Mathematics Subject Classification (2010). Primary 60E15; Secondary 60G22,
60E10.

Keywords. Bifractional Brownian motion, moment inequalities, Bernstein
functions, negative definite functions.

1. Introduction

Let 𝑋,𝑌 be i.i.d. random variables with finite expectations. Then one has

𝔼∣𝑋 − 𝑌 ∣ ⩽ 𝔼∣𝑋 + 𝑌 ∣. (1.1)

The inequality (1.1) appeared recently in an analytic context (properties of inte-
grable functions) [8]. Since (1.1) is a nice fact in itself and since it seems not to be
well known in the probabilistic community, it is desirable to search for adequate
proofs and to explore possible extensions of it. For instance, for which values of 𝛼
do we have

𝔼∣𝑋 − 𝑌 ∣𝛼 ⩽ 𝔼∣𝑋 + 𝑌 ∣𝛼 ? (1.2)

As before, we assume that 𝑋 and 𝑌 are i.i.d. and 𝔼∣𝑋 ∣𝛼 < ∞.

c⃝ 2013 Springer Basel
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Proving (1.1) is a non-trivial exercise for a probability course. If 𝑋,𝑌 are
real valued, one way to see this inequality is to use the identity

𝔼∣𝑋 + 𝑌 ∣ − 𝔼∣𝑋 − 𝑌 ∣ = 2

∫ ∞

0

[ℙ(𝑋 > 𝑟) − ℙ(𝑋 < −𝑟)]
2
𝑑𝑟.

For (1.2) we are, however, not aware of a similar elementary approach. On the
other hand, A. Buja et al. prove in [4] even a multivariate version of (1.2): for any
pair of i.i.d. random vectors 𝑋,𝑌 in ℝ𝑛, any 𝛼 ∈ (0, 2] and for a class of norms
∥ ⋅ ∥ on ℝ𝑛 including the Euclidean norm ∥ ⋅ ∥2 the estimate

𝔼∥𝑋 − 𝑌 ∥𝛼 ⩽ 𝔼∥𝑋 + 𝑌 ∥𝛼 (1.3)

holds true. The elegance of this inequality is obvious; at the same time we stress
that it arises from statistical applications. In any case it merits to be better known
in the probabilistic community!

In Section 2 we give an extension of (1.3) by replacing the norm with an
arbitrary negative definite function. Moreover, we show how this fact extends to
an arbitrary number of i.i.d. random vectors. In Sections 3 and 4 we establish a
surprising connection to some recent advances in the theory of random processes
related to bifractional Brownian motion. A counterexample to (1.2) with 𝛼 ∈
(2,∞) is given in Section 5.

2. Main result

Consider the class of continuous real-valued negative definite functions, i.e., char-
acteristic exponents of symmetric Lévy processes. The notion of negative definite
function goes back to Schoenberg; good sources are the books [3] and [11]. Recall
that a continuous real-valued negative definite function is uniquely given by its
Lévy-Khintchine representation

𝜓(𝜉) = 𝑎 +
1

2
⟨𝑄𝜉, 𝜉⟩ +

∫
ℝ𝑛∖{0}

(1 − cos⟨𝜉, 𝑢⟩) 𝜈(𝑑𝑢), 𝜉 ∈ ℝ𝑛, (2.1)

where 𝑎 ⩾ 0 is a constant, 𝑄 ∈ ℝ𝑛×𝑛 is a symmetric positive semidefinite matrix
and 𝜈 is the Lévy measure, i.e., a measure on ℝ𝑛 ∖ {0} satisfying the integrability
condition ∫

ℝ𝑛∖{0}
min{∥𝑢∥22, 1}𝜈(𝑑𝑢) < ∞. (2.2)

Without loss of generality, we will always assume that 𝑎 = 0, i.e., 𝜓(0) = 0. For

our discussion it is worth noticing that (𝜉, 𝜂) 9→ √𝜓(𝜉 − 𝜂) is always a metric. A
deep theorem of Schoenberg states that a metric space (ℝ𝑛, 𝑑) can be isometrically
embedded into an (in general infinite dimensional) Hilbert space ℋ if, and only if,

𝑑(𝜉, 𝜂) is of the form 𝑑𝜓(𝜉, 𝜂) =
√

𝜓(𝜉 − 𝜂), cf. [12], [2, p. 187] as well as [7] for a
discussion of metric measure spaces related to the metric 𝑑𝜓.
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An important subclass of continuous negative definite functions are the spher-
ically symmetric negative definite functions. These are of the form

𝜉 9→ 𝑓(∥𝜉∥22) where 𝑓 is a Bernstein function. (2.3)

Recall that a Bernstein function is a function 𝑓 : ℝ+ → ℝ+ which admits
the following Lévy-Khintchine representation

𝑓(𝜆) = 𝑎 + 𝑏𝜆 +

∫ ∞

0

(
1 − 𝑒−𝑡𝜆

)
𝜇(𝑑𝑡);

here 𝑎, 𝑏 ⩾ 0 are constants and 𝜇 is a measure on (0,∞) satisfying the integrability
condition

∫∞
0

min{𝑡, 1}𝜇(𝑑𝑡) < ∞. In probability theory Bernstein functions arise
as the characteristic exponents of the Laplace transform of subordinators, i.e.,
increasing one-dimensional Lévy processes. Bernstein functions, many examples
and their connections to various fields of mathematics are discussed in the mono-
graph [11]. It is easy to see that Bernstein functions are infinitely many times
differentiable, increasing, concave; moreover, they grow at most linearly. Typical
examples are 𝜆 9→ log(1 + 𝜆) and 𝜆 9→ 𝑓𝛽(𝜆) := 𝜆𝛽 for 0 < 𝛽 ⩽ 1. Note that the
composition 𝑓 ∘𝜓 of a Bernstein function 𝑓 with a continuous real-valued negative
definite function 𝜓 is again a continuous real-valued negative definite function. At
the level of stochastic processes this corresponds to Bochner’s subordination of the
Lévy process with characteristic exponent 𝜓 by the subordinator with the Laplace
exponent 𝑓 .

Using the Bernstein functions 𝑓𝛽 with 𝛽 = 𝛼/2 and 0 < 𝛼 ⩽ 2 we obtain

𝜉 9→ ∥𝜉∥𝛼2 = 𝑓𝛼/2(∥𝜉∥2), 0 < 𝛼 ⩽ 2,

𝜉 9→ 𝑑𝜓(𝜉, 0)𝛼 =
√

𝜓(𝜉)
𝛼

= 𝑓𝛼/2(𝜓(𝜉)), 0 < 𝛼 ⩽ 2,

as examples for real-valued continuous negative definite functions. Note that the
functions defined by (2.3) are characteristic exponents of subordinate Brownian
motions.

We prove the following result extending (1.3).

Theorem 2.1. Let 𝜓 be a real-valued continuous negative definite function on ℝ𝑛.
For any pair of i.i.d. random vectors 𝑋,𝑌 in ℝ𝑛 it is true that

𝔼𝜓(𝑋 − 𝑌 ) ⩽ 𝔼𝜓(𝑋 + 𝑌 ). (2.4)

Proof. Without loss of generality we may assume that 𝑎 = 0 and 𝑄 = 0 – in both
cases the inequality (2.4) is elementary.

Using the Lévy-Khintchine representation of 𝜓 we get

𝔼𝜓(𝑋 + 𝑌 ) = 𝔼

∫
ℝ𝑛∖{0}

(
1 − cos⟨𝑋 + 𝑌, 𝑢⟩) 𝜈(𝑑𝑢)

= 𝔼

∫
ℝ𝑛∖{0}

(
1 − Re exp(𝑖⟨𝑋 + 𝑌, 𝑢⟩)) 𝜈(𝑑𝑢)

=

∫
ℝ𝑛∖{0}

(
1 − Re 𝔼 exp(𝑖⟨𝑋 + 𝑌, 𝑢⟩)) 𝜈(𝑑𝑢)
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=

∫
ℝ𝑛∖{0}

(
1 − Re [𝔼 exp(𝑖⟨𝑋, 𝑢⟩)]2

)
𝜈(𝑑𝑢).

A similar calculation yields

𝔼𝜓(𝑋 − 𝑌 ) = 𝔼

∫
ℝ𝑛∖{0}

(
1 − cos⟨𝑋 − 𝑌, 𝑢⟩) 𝜈(𝑑𝑢)

= 𝔼

∫
ℝ𝑛∖{0}

(
1 − Re exp(𝑖⟨𝑋 − 𝑌, 𝑢⟩)) 𝜈(𝑑𝑢)

=

∫
ℝ𝑛∖{0}

(
1 − Re 𝔼 exp(𝑖⟨𝑋 − 𝑌, 𝑢⟩)) 𝜈(𝑑𝑢)

=

∫
ℝ𝑛∖{0}

(
1 − ∣𝔼 exp(𝑖⟨𝑋, 𝑢⟩)∣2

)
𝜈(𝑑𝑢).

Using the elementary estimate Re(𝑧2) ⩽ ∣𝑧2∣ = ∣𝑧∣2 we obtain (2.4). □

Remark 2.2. Let 𝑋1, . . . , 𝑋2𝑚 be i.i.d. random variables in ℝ𝑛 and 𝜀𝑗 = ±1 (non-
random, or even random but independent of the 𝑋1, . . . , 𝑋2𝑚) constants satisfying∑2𝑚

𝑗=1 𝜀𝑗 = 0. Then

𝔼𝜓

⎛⎝ 2𝑚∑
𝑗=1

𝜀𝑗𝑋𝑗

⎞⎠ ⩽ 𝔼𝜓

⎛⎝ 2𝑚∑
𝑗=1

𝑋𝑗

⎞⎠ . (2.5)

This follows if we use Theorem 2.1 for 𝑋 =
∑2𝑚

𝑗=1 𝜀
+
𝑗 𝑋𝑗 and 𝑌 =

∑2𝑚
𝑗=1 𝜀

−
𝑗 𝑋𝑗 .

Remark 2.3. Essentially the same calculations as in the proof of Theorem 2.1 show
that we also have

𝔼𝜓(𝑋) ⩽ 𝔼𝜓(𝑋 + 𝑌 ). (2.6)

This follows from the elementary inequality Re(𝑧2) ⩽ Re 𝑧 for ∣𝑧∣ ⩽ 1 and the fact
that

𝔼𝜓(𝑋) =

∫
ℝ𝑛∖{0}

(
1 − Re𝔼 exp(𝑖⟨𝑋, 𝑢⟩)

)
𝜈(𝑑𝑢).

A special case of the inequality (2.6) with 𝜓(𝜉) = ∣𝜉∣ and 𝜈(𝑑𝑢) = 1
𝜋 𝑢−2 𝑑𝑢

appeared in the 2003 Putnam competition, cf. [10, Problem B6, p. 783 and p. 790]
where the task was to show that∫ 1

0

∫ 1

0

∣𝑓(𝑥) + 𝑓(𝑦)∣ 𝑑𝑥 𝑑𝑦 ⩾
∫ 1

0

∣𝑓(𝑥)∣ 𝑑𝑥

for a continuous real-valued function 𝑓 defined on the interval [0, 1].

Using the distance function 𝑑𝜓(𝜉, 𝜂) :=
√

𝜓(𝜉 − 𝜂) related to a real-valued
continuous negative definite function 𝜓 we get the following counterpart of (1.3).
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Corollary 2.4. Let 𝜓 : ℝ𝑛 → ℝ be a real-valued continuous negative definite func-
tion, 𝑑𝜓(𝜉, 𝜂) =

√
𝜓(𝜉 − 𝜂) the associated metric and 0 < 𝛼 ⩽ 2. For any pair of

i.i.d. random vectors 𝑋,𝑌 in ℝ𝑛 it is true that

𝔼 𝑑𝛼𝜓(𝑋 − 𝑌 ) ⩽ 𝔼 𝑑𝛼𝜓(𝑋 + 𝑌 ). (2.7)

Remark 2.5. Assume that 𝜓 : ℝ𝑛 → ℝ is a continuous function such that 𝜓(0) = 0
and 𝜓(𝜉) = 𝜓(−𝜉). If (2.4) holds for this 𝜓 and any random variable 𝑋 (and
an independent copy 𝑌 of 𝑋), then one can show that the kernel 𝐾𝜓(𝜉, 𝜂) :=
𝜓(𝜉 + 𝜂) − 𝜓(𝜉 − 𝜂) is positive definite. We wonder whether this already entails
that 𝜓 is a continuous negative definite function.

3. A relation to random processes

We will show now that the inequality (2.4) has an interesting relation to Gaussian
processes. Let 𝜓 : ℝ𝑛 → ℝ be a real-valued continuous negative definite function
defined on ℝ𝑛.

Lemma 3.1. The kernel 𝐾𝜓(𝜉, 𝜂) = 𝜓(𝜉 + 𝜂) − 𝜓(𝜉 − 𝜂) is positive definite.

Proof. By the Lévy-Khintchine formula (2.1) we get

𝐾𝜓(𝜉, 𝜂) = 2⟨𝑄𝜉, 𝜂⟩ +

∫
ℝ𝑛∖{0}

(cos(⟨𝜉 − 𝜂, 𝑢⟩) − cos(⟨𝜉 + 𝜂, 𝑢⟩)) 𝜈(𝑑𝑢).

Using the elementary trigonometric identity

cos⟨𝜉 − 𝜂, 𝑢⟩ − cos⟨𝜉 + 𝜂, 𝑢⟩ = 2 sin⟨𝜉, 𝑢⟩ sin⟨𝜂, 𝑢⟩,
we see that

𝐾𝜓(𝜉, 𝜂) = 2⟨𝑄𝜉, 𝜂⟩ + 2

∫
ℝ𝑛∖{0}

sin⟨𝜉, 𝑢⟩ sin⟨𝜂, 𝑢⟩ 𝜈(𝑑𝑢).

Now let 𝑆 be a finite set and (𝜆𝜉, 𝜉 ∈ 𝑆) be complex numbers. Then∑
𝜉,𝜂∈𝑆

𝐾𝜓(𝜉, 𝜂)𝜆𝜉𝜆𝜂

= 2
∑
𝜉,𝜂∈𝑆

𝜆𝜉𝜆𝜂⟨𝑄𝜉, 𝜂⟩ + 2

∫
ℝ𝑛∖{0}

⎛⎝ ∑
𝜉,𝜂∈𝑆

𝜆𝜉 sin⟨𝜉, 𝑢⟩ 𝜆𝜂 sin⟨𝜂, 𝑢⟩
⎞⎠ 𝜈(𝑑𝑢)

= 2

〈
𝑄
∑
𝜉∈𝑆

𝜆𝜉 𝜉,
∑
𝜉∈𝑆

𝜆𝜉 𝜉

〉
+ 2

∫
ℝ𝑛∖{0}

∣∣∣∣∑
𝜉∈𝑆

𝜆𝜉 sin⟨𝜉, 𝑢⟩
∣∣∣∣2𝜈(𝑑𝑢) ⩾ 0,

which means that 𝐾𝜓(⋅, ⋅) is positive definite. □

Remark 3.2. A special case of Lemma 3.1 for powers of ℓ𝑝-norms is proved in [4].

Probabilistic proof of Theorem 2.1. Since 𝐾𝜓(𝜉, 𝜂) is positive definite, there is a

centered Gaussian process
(
𝐺𝜓
𝜉 , 𝜉 ∈ ℝ𝑛

)
whose covariance function is 𝐾𝜓(𝜉, 𝜂).
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For given i.i.d. random vectors 𝑋,𝑌 ∈ ℝ𝑛 set

𝑍𝜓 :=

∫
ℝ𝑛

𝐺𝜓
𝜉 𝑃 (𝑑𝜉),

where 𝑃 stands for the common distribution of 𝑋 and 𝑌 . Then

0 ⩽ Var(𝑍𝜓) =

∫
ℝ𝑛

∫
ℝ𝑛

𝐾𝜓(𝜉, 𝜂)𝑃 (𝑑𝜉)𝑃 (𝑑𝜂)

=

∫
ℝ𝑛

∫
ℝ𝑛

(𝜓(𝜉 + 𝜂) − 𝜓(𝜉 − 𝜂)) 𝑃 (𝑑𝜉)𝑃 (𝑑𝜂)

= 𝔼𝜓(𝑋 + 𝑌 ) − 𝔼𝜓(𝑋 − 𝑌 ),

and we obtain again 𝔼𝜓(𝑋 − 𝑌 ) ⩽ 𝔼𝜓(𝑋 + 𝑌 ). □

4. Relation to bifractional Brownian motion

In some most important cases it is possible to identify the Gaussian process(
𝐺𝜓
𝜉 , 𝜉 ∈ ℝ𝑛

)
of Section 3 with bifractional Brownian motion (bBm). The latter

process was introduced by Houdré and Villa in [6] as a centered Gaussian process

𝐵𝐻,𝐾 =
(
𝐵𝐻,𝐾
𝑡 , 𝑡 ∈ ℝ𝑛

)
with covariance function

𝑅𝐻,𝐾(𝑡, 𝑠) := 𝔼

(
𝐵𝐻,𝐾
𝑡 𝐵𝐻,𝐾

𝑠

)
= 2−𝐾

(
(∣∣𝑡∣∣2𝐻2 + ∣∣𝑠∣∣2𝐻2 )𝐾 − ∣∣𝑡− 𝑠∣∣2𝐻𝐾2

)
,

where 𝑠, 𝑡 ∈ ℝ𝑛. For 𝑛 = 1, 𝐾 = 1 we get the usual fractional Brownian motion
𝐵𝐻 with Hurst index 𝐻 . Originally, the process was defined for the parameters
𝐻 ∈ (0, 1] and 𝐾 ∈ (0, 1]. Bardina and Es-Sebaiy [1] recently proved that 𝐵𝐻,𝐾

exists for all (𝐻,𝐾) ∈ 𝒟, where

𝒟 := {𝐻,𝐾 : 0 < 𝐻 ⩽ 1, 0 < 𝐾 ⩽ 2, 𝐻 ⋅𝐾 ⩽ 1}.
(The possibility of such an extension was already indicated in the earlier work by
Lei and Nualart [9] who established an integral representation relating 𝐵𝐻,𝐾 with
fractional Brownian motion 𝐵𝐻𝐾 .)

For 𝜓(𝜉) := ∣𝜉∣𝛼, 0 < 𝛼 ⩽ 2, and

𝐺𝜓
𝜉 := 2𝛼/2 sgn(𝜉)𝐵

1
2 ,𝛼

∣𝜉∣ , 𝜉 ∈ ℝ,

it is trivial to see that

𝔼

(
𝐺𝜓
𝜉 𝐺

𝜓
𝜂

)
= sgn(𝜉𝜂) 2𝛼 𝔼

(
𝐵

1
2 ,𝛼

∣𝜉∣ , 𝐵
1
2 ,𝛼

∣𝜉∣
)

= ∣𝜉 + 𝜂∣𝛼 − ∣𝜉 − 𝜂∣𝛼 = 𝐾𝜓(𝜉, 𝜂).

Therefore, we are led to a probabilistic interpretation of the inequality (1.2)

through 𝐵
1
2 ,𝛼.

Remark 4.1. In higher dimensions bi-fractional Brownian motion does not show up
in the context of our inequalities (nor do we rely on bBm with 𝐻 ∕= 1

2 ); therefore it
becomes natural to search for the extensions of bBm based upon general negative
definite functions. This will be done elsewhere.
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5. A counterexample

The inequality (1.2) trivially extends to the case 𝛼 = ∞ in the following sense.
Let

𝑀 = sup{𝑟 : ℙ(𝑋 < 𝑟) < 1} = ess sup𝑋 ;

𝑚 = sup{𝑟 : ℙ(𝑋 < 𝑟) = 0} = ess inf 𝑋.

Then
∥𝑋 − 𝑌 ∥∞ = 𝑀 −𝑚 ⩽ 2 max{∣𝑀 ∣, ∣𝑚∣} = ∥𝑋 + 𝑌 ∥∞.

Without further assumptions the inequality (1.2) will, in general, not hold,
for 2 < 𝛼 < ∞. To see this, fix 𝛼 ∈ (2,∞) and 𝑐 > 0. For any 𝑀 ⩾ 𝑐 set 𝑞 := 𝑐/𝑀
and 𝑝 := 1 − 𝑞. Let 𝑋𝑀 , 𝑌𝑀 be i.i.d. random variables such that

ℙ(𝑋𝑀 = 1) = ℙ(𝑌𝑀 = 1) = 𝑝;

ℙ(𝑋𝑀 = −𝑀) = ℙ(𝑌𝑀 = −𝑀) = 𝑞.

If 𝑀 ⩾ 1, then

𝔼∣𝑋𝑀−𝑌𝑀 ∣𝛼 − 𝔼∣𝑋𝑀 + 𝑌𝑀 ∣𝛼
= 2𝑝𝑞 [(𝑀 + 1)𝛼 − (𝑀 − 1)𝛼] − 2𝛼𝑀𝛼𝑞2 − 2𝛼𝑝2

⩾ 4𝑝𝑞𝛼𝑀𝛼−1 − 2𝛼𝑀𝛼𝑞2 − 2𝛼𝑝2

= 𝑀𝛼−2(4𝑝𝛼𝑐− 2𝛼𝑐2) − 2𝛼𝑝2.

Hence, whenever 𝑐 < 22−𝛼𝛼 and 𝑀 is large enough,

𝔼∣𝑋𝑀 − 𝑌𝑀 ∣𝛼 − 𝔼∣𝑋𝑀 + 𝑌𝑀 ∣𝛼 > 0,

and (1.2) fails.

Remark 5.1. Further counterexamples are presented in [4].
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Mathematics.

[8] H. Kempka, A. Nekvinda (2011), private communication.

[9] P. Lei, D. Nualart (2009), A decomposition of the bifractional Brownian motion and
some applications, Statist. Probab. Letters 79 619–624. [arXiv:0803.2227]

[10] Putnam Competition (2004) Sixty-fourth Annual William Lowell Putnam Mathe-
matical Competition, Saturday December 6, 2003, Amer. Math. Monthly 111 780–
790.
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Optimal Re-centering Bounds,
with Applications to Rosenthal-type
Concentration of Measure Inequalities

Iosif Pinelis

Abstract. For any nonnegative Borel-measurable function 𝑓 such that 𝑓(𝑥) =
0 if and only if 𝑥 = 0, the best constant 𝑐𝑓 in the inequality E 𝑓(𝑋 − E𝑋) ⩽
𝑐𝑓 E 𝑓(𝑋) for all random variables 𝑋 with a finite mean is obtained. Properties
of the constant 𝑐𝑓 in the case when 𝑓 = ∣⋅∣𝑝 for 𝑝 > 0 are studied. Applications
to concentration of measure in the form of Rosenthal-type bounds on the
moments of separately Lipschitz functions on product spaces are given.
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Keywords. Probability inequalities, Rosenthal-type inequalities, sums of inde-
pendent random variables, martingales, concentration of measure, separately
Lipschitz functions, product spaces.

1. Introduction

In many situations (as, e.g., in [18]), one starts with zero-mean random variables
(r.v.’s), which need to be truncated in some manner, and then the means no longer
have to be zero. So, to utilize such tools as the Rosenthal inequality for sums of
independent zero-mean r.v.’s, one has to re-center the truncated r.v.’s. Then one
will usually need to bound moments of the re-centered truncated r.v.’s in terms of
the corresponding moments of the original r.v.’s. To be more specific, let 𝑍 be a
given r.v., possibly (but not necessarily) of zero mean. Next, let 𝑍 be a truncated

version of 𝑍 such that ∣𝑍∣ ⩽ ∣𝑍∣; possibilities here include letting 𝑍 equal 𝑍 I{𝑍 ⩽
𝑧} or 𝑍 I{∣𝑍∣ ⩽ 𝑧} or 𝑍 ∧ 𝑧, for some 𝑧 > 0; cf. [16, 26]. Assume that E ∣𝑍∣ < ∞.
Then for any 𝑝 ⩾ 1 one can use the inequalities ∣𝑥 − 𝑦∣𝑝 ⩽ 2𝑝−1(∣𝑥∣𝑝 + ∣𝑦∣𝑝) and

(E ∣𝑍∣)𝑝 ⩽ E ∣𝑍∣𝑝, to write

E ∣𝑍 − E𝑍∣𝑝 ⩽ 2𝑝 E ∣𝑍∣𝑝 ⩽ 2𝑝 E ∣𝑍∣𝑝, (1.1)

Supported in part by NSA grant H98230-12-1-0237.

c⃝ 2013 Springer Basel
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as it is often done. However, the factor 2𝑝 in (1.1) can be significantly improved,
especially for 𝑝 ⩾ 2. For instance, it is clear that for 𝑝 = 2 this factor can be
reduced from 22 = 4 to 1. More generally, for every real 𝑝 > 1 we shall provide the
best constant factor 𝐶𝑝 in the inequality

E ∣𝑋 − E𝑋 ∣𝑝 ⩽ 𝐶𝑝 E ∣𝑋 ∣𝑝 (1.2)

for all r.v.’s 𝑋 with a finite mean E𝑋 . In particular, 𝐶𝑝 improves the factor 2𝑝

more than 6 times for 𝑝 = 3, and for large 𝑝 this improvement is asymptotically√
8𝑒𝑝 times; see parts (vi) and (iv) of Theorem 2.3 and the left panel in Figure 2

in this paper. In fact, in Theorem 2.1 below we shall present an extended version
of the exact inequality (1.2), for a quite general class of moment functions 𝑓 in
place of the power functions ∣ ⋅ ∣𝑝.

Another natural application of these results is to concentration of measure
for separately Lipschitz functions on product spaces. In Section 3 of this paper,
we shall give Rosenthal-type bounds on the moments of such functions. Similar
extensions of the von Bahr–Esseen inequality were given in [17].

2. Summary and discussion

Let 𝑓 : ℝ → ℝ be any nonnegative Borel-measurable function such that 𝑓(𝑥) = 0
if and only if 𝑥 = 0. Let 𝑋 stand for any random variable (r.v.) with a finite mean
E𝑋 .

Theorem 2.1. One has

E 𝑓(𝑋 − E𝑋) ⩽ 𝑐𝑓 E 𝑓(𝑋), (2.1)

where

𝑐𝑓 := sup
{ 𝑎𝑓(𝑏) + 𝑏𝑓(−𝑎)

𝑎𝑓(𝑏− 𝑡) + 𝑏𝑓(−𝑎− 𝑡)
: 𝑎 ∈ (0,∞), 𝑏 ∈ (0,∞), 𝑡 ∈ ℝ

}
(2.2)

is the best possible constant factor in (2.1) (over all r.v.’s 𝑋 with a finite mean).

All necessary proofs will be given in Section 4.
Note that for all 𝑎 ∈ (0,∞), 𝑏 ∈ (0,∞), and 𝑡 ∈ ℝ both the numerator and

the denominator of the ratio in (2.2) are strictly positive (since 𝑓 is nonnegative
and vanishes only at 0). So, 𝑐𝑓 is correctly defined, with possible values in (0,∞].

It is possible to say much more about the optimal constant factor 𝑐𝑓 in the
important case when 𝑓 is the power function ∣ ⋅ ∣𝑝. To state the corresponding
result, let us introduce more notation.

Take any 𝑎 ∈ (0,∞) and 𝑏 ∈ (0,∞), and let 𝑋𝑎,𝑏 be any zero-mean r.v. with
values −𝑎 and 𝑏, so that

P(𝑋𝑎,𝑏 = 𝑏) =
𝑎

𝑎 + 𝑏
= 1 − P(𝑋𝑎,𝑏 = −𝑎).

Note that
𝑋𝑏,𝑎

D
= −𝑋𝑎,𝑏,

where
D
= denotes the equality in distribution.
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Take any

𝑝 ∈ (1,∞) (2.3)

and introduce

𝑅(𝑝, 𝑏) := (𝑏𝑝−1 + (1 − 𝑏)𝑝−1)
(
𝑏

1
𝑝−1 + (1 − 𝑏)

1
𝑝−1
)𝑝−1

for any 𝑏 ∈ [0, 1]. (2.4)

Proposition 2.2. If 𝑝 ∕= 2 then there exists 𝑏𝑝 ∈ (0, 12 ) such that

(i) ∂𝑏𝑅(𝑝, 𝑏) > 0 for 𝑏 ∈ (0, 𝑏𝑝) and hence 𝑅(𝑝, 𝑏) is (strictly) increasing in
𝑏 ∈ [0, 𝑏𝑝];

(ii) ∂𝑏𝑅(𝑝, 𝑏) < 0 for 𝑏 ∈ (𝑏𝑝,
1
2 ) and hence 𝑅(𝑝, 𝑏) is decreasing in 𝑏 ∈ [𝑏𝑝,

1
2 ].

So, 𝑏𝑝 is the unique maximizer of 𝑅(𝑝, 𝑏) over all 𝑏 ∈ [0, 12 ].

In Proposition 2.2 and in the sequel, ∂⋅ denotes the partial differentiation
with respect to the argument in the subscript.

Theorem 2.3.

(i) Inequality (1.2) holds with the constant factor

𝐶𝑝 := 𝑐∣⋅∣𝑝 = sup
𝑏∈[0,1]

𝑅(𝑝, 𝑏) = max
𝑏∈(0,1/2)

𝑅(𝑝, 𝑏) = 𝑅(𝑝, 𝑏𝑝), (2.5)

where 𝑅(𝑝, 𝑏) is as in (2.4) and 𝑏𝑝 is as in Proposition 2.2. In particular,
𝐶2 = 𝑅(2, 𝑏) = 1 for all 𝑏 ∈ [0, 1].

(ii) 𝐶𝑝 is the best possible constant factor in (1.2). More specifically, the equality
in (1.2) obtains if and only if one of the following three conditions holds:
(a) E ∣𝑋 ∣𝑝 = ∞;
(b) 𝑝 = 2, E𝑋2 < ∞, and E𝑋 = 0;

(c) 𝑝 ∕= 2 and 𝑋
D
= 𝜆(𝑋1−𝑏𝑝,𝑏𝑝 − 𝑡𝑏𝑝) for some 𝜆 ∈ ℝ, where

𝑡𝑏 := 𝑏− 𝑏1/(𝑝−1)

𝑏1/(𝑝−1) + (1 − 𝑏)1/(𝑝−1)
(2.6)

for all 𝑏 ∈ (0, 1), and 𝑏𝑝 is as in Proposition 2.2.
(iii) One has the symmetries

𝐶1/
√
𝑝−1

𝑝 = 𝐶1/
√
𝑞−1

𝑞 and 𝑏𝑝 = 𝑏𝑞, (2.7)

where 𝑞 is dual to 𝑝 in the sense of 𝐿𝑝-spaces:

1

𝑝
+

1

𝑞
= 1.

(iv) For 𝑝 →∞,

𝐶𝑝 ∼ 2𝑝√
8𝑒𝑝

; (2.8)

as usual, 𝐴 ∼ 𝐵 means that 𝐴/𝐵 → 1.
(v) 𝐶𝑝 is strictly log-convex and hence continuous in 𝑝 ∈ (1,∞); moreover, 𝐶𝑝

decreases in 𝑝 ∈ (1, 2] from 2 to 1 and increases in 𝑝 ∈ [2,∞) from 1 to ∞.
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(vi) The values of 𝐶𝑝, 𝑏𝑝, and 𝑡𝑏𝑝 are algebraic whenever 𝑝 is rational; in particu-

lar, 𝐶3 = 1
27 (17 + 7

√
7) = 1.315 . . . , 𝑏3 = 1

2 − 1
6

√
1 + 2

√
7 = 0.0819 . . . , and

𝑡𝑏3 = − 1
3

√
1
2

(
13
√

7 − 34
)

= −0.148 . . . .

By parts (vi) and (v) of Theorem 2.3, 𝐶𝑝 can in principle be however closely
bracketed for any real 𝑝 ∈ (1,∞). However, such a calculation may in many cases be
inefficient. On the other hand, Proposition 2.2 allows one to bracket the maximizer
𝑏𝑝 of 𝑅(𝑏, 𝑝) however closely and thus, perhaps more efficiently, compute 𝐶𝑝 with
any degree of accuracy.

(A part of) the graph of 𝐶𝑝 is shown in Figure 1, and those of 2𝑝/𝐶𝑝 and 𝑏𝑝
are shown in Figure 2.

Remark 2.4. What if, instead of the condition (2.3), one has 𝑝 ∈ (0, 1]? It is easy
to see that the inequality (1.2) holds for 𝑝 = 1 with 𝐶1 = 2 (cf. (1.1)), which is
then the best possible factor, as seen by letting

𝑋 = 𝑋1−𝑏,𝑏 − 𝑏 with 𝑏 ↓ 0. (2.9)

However, the equality E ∣𝑋 − E𝑋 ∣ = 2E ∣𝑋 ∣ obtains only if 𝑋
D
= 0; one may also

note here that, by part (v) of Theorem 2.3, 𝐶1+ = 2 = 𝐶1. As to 𝑝 ∈ (0, 1), for
each such value of 𝑝 the best possible factor 𝐶𝑝 in (1.2) is ∞; indeed, consider 𝑋
as in (2.9).

2 3 4 5
p

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cp

Figure 1. 𝐶𝑝 decreases in 𝑝 ∈ (1, 2] from 2 to 1 and increases in 𝑝 ∈
[2,∞) from 1 to ∞.
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Figure 2. By (2.8), 2𝑝/𝐶𝑝 ∼
√

8𝑒𝑝 as 𝑝 → ∞. By (2.7), 𝑏𝑝 = 𝑏𝑞; note
here also that 𝑝 ∈ (1, 2] ⇐⇒ 𝑞 ∈ [2,∞); by (4.16), 𝑏𝑝 ∼ (𝑝 − 1)/2 as
𝑝 ↓ 1.

3. Application: Rosenthal-type concentration inequalities for
separately Lipschitz functions on product spaces

It is well known that for every 𝑝 ∈ [2,∞) there exist finite positive constants
𝑐1(𝑝) and 𝑐2(𝑝), depending only on 𝑝, such that for any independent real-valued
zero-mean r.v.’s 𝑋1, . . . , 𝑋𝑛

E ∣𝑌 ∣𝑝 ⩽ 𝑐1(𝑝)𝐴𝑝 + 𝑐2(𝑝)𝐵𝑝,

where 𝑌 := 𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑛, 𝐴𝑝 := E ∣𝑋1∣𝑝 + ⋅ ⋅ ⋅ + E ∣𝑋𝑛∣𝑝, and 𝐵 := (E𝑋2
1 +

⋅ ⋅ ⋅ + E𝑋2
𝑛)1/2. An inequality of this form was first proved by Rosenthal [27], and

has since been very useful in many applications. It was generalized to martingales
[4, (21.5)], including martingales in Hilbert spaces [19] and, further, in 2-smooth
Banach spaces [23]. The constant factors 𝑐1(𝑝) and 𝑐2(𝑝) were actually allowed in
[19] and [23] to depend on certain freely chosen parameters, which provided for
optimal in a certain sense sizes of 𝑐1(𝑝) and 𝑐2(𝑝), for any given positive value
of the Lyapunov ratio 𝐴𝑝/𝐵

𝑝. Best possible Rosenthal-type bounds for sums of
independent real-valued zero-mean r.v.’s were given, under different conditions, by
Utev [28] and Ibragimov and Sharakhmetov [6, 7]. Also for sums of independent
real-valued zero-mean r.v.’s 𝑋1, . . . , 𝑋𝑛, Latal̷a [10] obtained an expression ℰ in
terms of 𝑝 and the individual distributions of the 𝑋𝑖’s such that 𝑎1ℰ ⩽ ∥𝑌 ∥𝑝 ⩽ 𝑎2ℰ
for some positive absolute constants 𝑎1 and 𝑎2.

Given a Rosenthal-type upper bound for real-valued martingales, one can
use the Yurinskĭı martingale decomposition [8] and (say) Theorem 2.3 to obtain
a corresponding upper bound on the 𝑝th absolute central moment of the norm of
the sum of independent random vectors in an arbitrary separable Banach space;
even more generally, one can obtain such a measure-concentration inequality for
separately Lipschitz functions on product spaces.
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To state such a result, let 𝑋1, . . . , 𝑋𝑛 be independent r.v.’s with values in
measurable spaces 𝔛1, . . . ,𝔛𝑛, respectively. Let 𝑔 : 𝔓 → ℝ be a measurable func-
tion on the product space 𝔓 := 𝔛1 × ⋅ ⋅ ⋅ × 𝔛𝑛. Let us say (cf. [1, 24]) that 𝑔 is
separately Lipschitz if it satisfies a Lipschitz-type condition in each of its argu-
ments:

∣𝑔(𝑥1, . . . , 𝑥𝑖−1, 𝑥̃𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) − 𝑔(𝑥1, . . . , 𝑥𝑛)∣ ⩽ 𝜌𝑖(𝑥̃𝑖, 𝑥𝑖) (3.1)

for some measurable functions 𝜌𝑖 : 𝔛𝑖 ×𝔛𝑖 → ℝ and all 𝑖 ∈ 1, 𝑛, (𝑥1, . . . , 𝑥𝑛) ∈ 𝔓,
and 𝑥𝑖 ∈ 𝔛𝑖. Take now any separately Lipschitz function 𝑔 and let

𝑌 := 𝑔(𝑋1, . . . , 𝑋𝑛).

Suppose that the r.v. 𝑌 has a finite mean.
On the other hand, take any 𝑝 ∈ [2,∞) and suppose that positive constants

𝑐1(𝑝) and 𝑐2(𝑝) are such that for all real-valued martingales (𝜁𝑗)
𝑛
𝑗=0 with 𝜁0 = 0

and differences 𝜉𝑖 := 𝜁𝑖 − 𝜁𝑖−1

E ∣𝜁𝑛∣𝑝 ⩽ 𝑐1(𝑝)

𝑛∑
1

E ∣𝜉𝑖∣𝑝 + 𝑐2(𝑝)
( 𝑛∑

1

∥E𝑖−1 𝜉2𝑖 ∥∞
)𝑝/2

, (3.2)

where E𝑗 denotes the expectation given 𝜁0, . . . , 𝜁𝑗 .
Then one has

Corollary 3.1. For each 𝑖 ∈ 1, 𝑛, take any 𝑥𝑖 and 𝑦𝑖 in 𝔛𝑖. Then

E ∣𝑌 − E𝑌 ∣𝑝 ⩽ 𝐶𝑝𝑐1(𝑝)
𝑛∑
1

E 𝜌𝑖(𝑋𝑖, 𝑥𝑖)
𝑝 + 𝑐2(𝑝)

( 𝑛∑
1

E 𝜌𝑖(𝑋𝑖, 𝑦𝑖)
2
)𝑝/2

, (3.3)

where 𝐶𝑝 is as in (2.5).

An example of separately Lipschitz functions 𝑔 : 𝔛𝑛 → ℝ is given by the
formula

𝑔(𝑥1, . . . , 𝑥𝑛) = ∥𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛∥ (3.4)

for all 𝑥1, . . . , 𝑥𝑛 in a separable Banach space (𝔛, ∥ ⋅ ∥). In this case, one may take
𝜌𝑖(𝑥̃𝑖, 𝑥𝑖) ≡ ∥𝑥̃𝑖 − 𝑥𝑖∥. Thus, one immediately obtains

Corollary 3.2. Let 𝑋1, . . . , 𝑋𝑛 be independent random vectors in a separable Ba-
nach space (𝔛, ∥ ⋅ ∥). Let here 𝑌 := ∥𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑛∥. For each 𝑖 ∈ 1, 𝑛, take any
𝑥𝑖 and 𝑦𝑖 in 𝔛𝑖. Then

E ∣𝑌 − E𝑌 ∣𝑝 ⩽ 𝐶𝑝𝑐1(𝑝)

𝑛∑
1

E ∥𝑋𝑖 − 𝑥𝑖∥𝑝 + 𝑐2(𝑝)
( 𝑛∑

1

E ∥𝑋𝑖 − 𝑦𝑖∥2
)𝑝/2

. (3.5)

Particular cases of separately Lipschitz functions more general than the norm
of the sum as in (3.4) were discussed earlier in [21] and [20, pages 20–23].

For 𝑝 = 2, it is obvious that the inequality (3.2) holds with 𝑐1(2) = 1 and
𝑐2(2) = 0, and then the inequalities (3.3) and (3.5) do so. Thus, for 𝑝 = 2 (3.5)
becomes

Var 𝑌 ⩽
𝑛∑
1

E ∥𝑋𝑖 − 𝑥𝑖∥2, (3.6)
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since 𝐶2 = 1. The inequality (3.6) was presented in [20, page 29] and [22, The-
orem 4], based on an improvement of the method of Yurinskĭı [8]; cf. [1, 14, 15],
[23, Proposition 2.5], and [24, Section 4]. The proof of Corollary 3.1 is based in
part on the same kind of improvement.

The case 𝑝 = 3 is also of particular importance in applications, especially to
Berry–Esseen-type bounds; cf., e.g., [2, Lemma A1], [5, Lemma 6.3], and [18]. It
follows from the main result of [19] that (3.2) holds for 𝑝 = 3 with 𝑐1(3) = 1 and
𝑐2(3) = 3, whereas, by part (vi) of Theorem 2.3, 𝐶3 < 1.316. Thus, one has an
instance of (3.5) with rather small constant factors:

E ∣𝑌 − E𝑌 ∣3 ⩽ 1.316

𝑛∑
1

E ∥𝑋𝑖 − 𝑥𝑖∥3 + 3
( 𝑛∑

1

E ∥𝑋𝑖 − 𝑦𝑖∥2
)3/2

.

Similarly, the more general inequality (3.3) holds for 𝑝 = 3 with 1.316 and 3 in
place of 𝐶𝑝𝑐1(𝑝) and 𝑐2(𝑝).

As can be seen from the proof given in Section 4, both Corollaries 3.1 and
3.2 will hold even if the separately-Lipschitz condition (3.1) is relaxed to

∣E 𝑔(𝑥1, . . . , 𝑥𝑖−1, 𝑥̃𝑖, 𝑋𝑖+1, . . . , 𝑋𝑛) − E 𝑔(𝑥1, . . . , 𝑥𝑖, 𝑋𝑖+1, . . . , 𝑋𝑛)∣ ⩽ 𝜌𝑖(𝑥̃𝑖, 𝑥𝑖).
(3.7)

Note also that in Corollaries 3.1 and 3.2 the r.v.’s 𝑋𝑖 do not have to be
zero-mean, or even to have any definable mean; at that, the arbitrarily chosen
𝑥𝑖’s and 𝑦𝑖’s may act as the centers, in some sense, of the distributions of the
corresponding 𝑋𝑖’s.

Other inequalities for the distributions of separately Lipschitz functions on
product spaces were given in [1, 17, 24].

Clearly, the separate-Lipschitz (sep-Lip) condition (3.1) is easier to check
than a joint-Lipschitz one. Also, sep-Lip (especially in the relaxed form (3.7)) is
more generally applicable. On the other hand, when a joint-Lipschitz condition is
satisfied, one can generally obtain better bounds. Literature on the concentration
of measure phenomenon, almost all of it for joint-Lipschitz settings, is vast; let us
mention here only [3, 9, 11–13].

4. Proofs

Proof of Theorem 2.1. It is well known that any zero-mean probability distribution
on ℝ is a mixture of zero-mean distributions on sets of at most two elements; see,
e.g., [25, Proposition 3.18]. So, there exists a Borel probability measure 𝜇 on the
set

𝑆 := ℝ× (0, 1/2]

such that

E 𝑔(𝑋 − E𝑋) =

∫
𝑆

E 𝑔(𝜆𝑋1−𝑏,𝑏)𝜇(d𝜆× d𝑏) (4.1)
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for all nonnegative Borel functions 𝑔; the measure 𝜇 depends on the distribution
of the r.v. 𝑋 − E𝑋 . Letting now

𝑆0 := (ℝ ∖ {0}) × (0, 1/2] (4.2)

and using the condition 𝑓(0) = 0, one has

E 𝑓(𝑋 − E𝑋) =

∫
𝑆

E 𝑓(𝜆𝑋1−𝑏,𝑏)𝜇(d𝜆× d𝑏)

=

∫
𝑆0

E 𝑓(𝜆𝑋1−𝑏,𝑏)𝜇(d𝜆× d𝑏)

⩽ 𝑐𝑓

∫
𝑆0

E 𝑓(𝜆𝑋1−𝑏,𝑏 + E𝑋)𝜇(d𝜆× d𝑏) (4.3)

⩽ 𝑐𝑓

∫
𝑆

E 𝑓(𝜆𝑋1−𝑏,𝑏 + E𝑋)𝜇(d𝜆× d𝑏) (4.4)

= 𝑐𝑓 E 𝑓
(
(𝑋 − E𝑋) + E𝑋

)
= 𝑐𝑓 E 𝑓(𝑋),

where

𝑐𝑓 := sup{𝜌𝑓 (𝜆, 𝑏, 𝑡) : (𝜆, 𝑏) ∈ 𝑆0, 𝑡 ∈ ℝ} and (4.5)

𝜌𝑓 (𝜆, 𝑏, 𝑡) :=
E 𝑓(𝜆𝑋1−𝑏,𝑏)

E 𝑓
(
𝜆(𝑋1−𝑏,𝑏 − 𝑡)

) , (4.6)

so that

𝑐𝑓 = 𝑐𝑓 . (4.7)

Now the inequality in (2.1) follows from the above multi-line display and (4.7),
and (4.7)

(
together with (4.5) and (4.6)

)
also shows that 𝑐𝑓 is the best possible

constant factor in (2.1). □

Proof of Proposition 2.2. It is straightforward to check the symmetry

𝑅(𝑝, 𝑏)1/
√
𝑝−1 = 𝑅(𝑞, 𝑏)1/

√
𝑞−1 (4.8)

for all 𝑏 ∈ [0, 1], where 𝑞 is dual to 𝑝.
So, it remains to consider 𝑝 ∈ (1, 2). Also assume that 𝑏 ∈ (0, 1/2) and

introduce

𝑟 := 𝑝− 1, 𝑥 :=
𝑏

1 − 𝑏
, and 𝑧 := − ln𝑥

𝑟
, (4.9)

so that

𝑟 ∈ (0, 1), 𝑥 ∈ (0, 1), and 𝑧 ∈ (0,∞).

Now introduce

𝐷1(𝑥) := 𝐷1(𝑟, 𝑥) := (1−𝑏)
𝑥𝑟 + 1

𝑥𝑟−1 − 1
∂𝑏 ln𝑅(𝑝, 𝑏) = 𝑟− (𝑥− 𝑥1/𝑟)(1 + 𝑥𝑟)

(𝑥𝑟 − 𝑥)(1 + 𝑥1/𝑟)
(4.10)

and

𝐷2(𝑥) := 𝐷2(𝑟, 𝑥) := 𝑟𝑥3(1 + 𝑥1/𝑟)2(𝑥𝑟−1 − 1)2𝐷′
1(𝑥), (4.11)
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so that 𝐷1(𝑥) and 𝐷2(𝑥) are equal in sign to ∂𝑏 ln𝑅(𝑝, 𝑏) and 𝐷′
1(𝑥), respectively.

One can verify the identity

𝐷2(𝑥)𝑒(1+𝑟+𝑟
2)𝑧/2 = 𝐷21(𝑧) + (1 − 𝑟)𝐷22(𝑧), (4.12)

where

𝐷21(𝑧) := 𝑟2 sh((1 − 𝑟)𝑧) + sh(𝑟(1 − 𝑟)𝑧) − 𝑟 sh((1 − 𝑟2)𝑧),

𝐷22(𝑧) := ℎ(𝑧) − ℎ(𝑟𝑧), ℎ(𝑢) := sh 𝑟𝑢 − 𝑟 sh𝑢;

we use sh and ch for sinh and cosh. Note that ℎ′(𝑢) = 𝑟(ch 𝑟𝑢−ch𝑢) < 0 for 𝑢 > 0
and hence

𝐷22(𝑧) < 0.

Next,

𝐷′
21(𝑧)

(1 − 𝑟)𝑟
=
(

ch[(1 − 𝑟)𝑟𝑧] − ch[(1 − 𝑟2)𝑧]
)

+ 𝑟
(

ch[(1 − 𝑟)𝑧] − ch[(1 − 𝑟2)𝑧]
)
< 0,

since (1− 𝑟)𝑟 < 1− 𝑟 < 1− 𝑟2. So, 𝐷21(𝑧) is decreasing (in 𝑧 > 0) and, obviously,
𝐷21(0+) = 0. Hence, 𝐷21(𝑧) < 0 as well. Thus, by (4.12), 𝐷2(𝑥) < 0, which shows
that 𝐷′

1(𝑥) < 0 and 𝐷1(𝑥) is decreasing – in 𝑥 ∈ (0, 1). Moreover, 𝐷1(0+) = 𝑟 >
0 > 𝑟 − 1/𝑟 = 𝐷1(1−). It follows, in view of (4.11), that 𝐷1(𝑥) changes in sign
exactly once, from + to −, as 𝑥 increases from 0 to 1. Equivalently, by (4.10),
∂𝑏 ln𝑅(𝑝, 𝑏) changes in sign exactly once, from + to −, as 𝑏 increases from 0 to
1/2. This completes the proof of Proposition 2.2. □

Proof of Theorem 2.3. (i) To begin the proof of part (i) of Theorem 2.3, note
that the last two inequalities in (2.5) follow by the obvious symmetry

𝑅(𝑝, 𝑏) = 𝑅(𝑝, 1 − 𝑏) for all 𝑏 ∈ [0, 1] (4.13)

and Proposition 2.2.
Next, in view of the definition of 𝐶𝑝 in (2.5), inequality (1.2) is a special case

of (2.1). Moreover, by the definition of 𝜌 in (4.6) and the homogeneity of the power
function ∣ ⋅ ∣𝑝,

𝜌∣⋅∣𝑝(𝜆, 𝑏, 𝑡) = 𝜌𝑝(𝑏, 𝑡) := 𝜌∣⋅∣𝑝(1, 𝑏, 𝑡) =
E ∣𝑋1−𝑏,𝑏∣𝑝

E ∣𝑋1−𝑏,𝑏 − 𝑡∣𝑝 (4.14)

for all (𝜆, 𝑏) ∈ 𝑆0 and 𝑡 ∈ ℝ, where 𝑆0 is as in (4.2). Next, the denominator
E ∣𝑋1−𝑏,𝑏 − 𝑡∣𝑝 decreases in 𝑡 ∈ (−∞, 𝑏− 1], increases in 𝑡 ∈ [𝑏,∞), and attains its
minimum over all 𝑡 ∈ [𝑏− 1, 𝑏]

(
and thus over all 𝑡 ∈ ℝ

)
only at 𝑡 = 𝑡𝑏, where 𝑡𝑏 is

as in (2.6). So,

max
𝜆∈ℝ∖{0}, 𝑡∈ℝ

𝜌∣⋅∣𝑝(𝜆, 𝑏, 𝑡) = max
𝑡∈ℝ

𝜌𝑝(𝑏, 𝑡) = 𝜌𝑝(𝑏, 𝑡𝑏) = 𝑅(𝑝, 𝑏) (4.15)

for all 𝑏 ∈ (0, 1/2], in view of (2.4). Now (4.7), (4.5), and (4.13) yield

𝑐∣⋅∣𝑝 = sup
𝑏∈(0,1/2]

𝑅(𝑝, 𝑏) = sup
𝑏∈[0,1]

𝑅(𝑝, 𝑏).

Thus, the proof of (2.5) and all of part (i) of Theorem 2.3 is complete.
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(ii) That the equality in (1.2) obtains under either of the conditions (a) or (b) in
part (ii) of Theorem 2.3 is trivial. If the condition (c) of part (ii) holds with 𝜆 = 0,

then 𝑋
D
= 0, and again the equality in (1.2) is trivial. If now (c) holds with some

𝜆 ∈ ℝ ∖ {0} – so that 𝑋
D
= 𝜆(𝑋1−𝑏𝑝,𝑏𝑝 − 𝑡𝑏𝑝), then (2.5), (4.15), and (4.14) imply

𝐶𝑝 = 𝑅(𝑝, 𝑏𝑝) = 𝜌𝑝(𝑏𝑝, 𝑡𝑏𝑝) =
E ∣𝑋1−𝑏𝑝,𝑏𝑝 ∣𝑝

E ∣𝑋1−𝑏𝑝,𝑏𝑝 − 𝑡𝑏𝑝 ∣𝑝
=

E ∣𝑋 − E𝑋 ∣𝑝
E ∣𝑋 ∣𝑝 ,

whence the equality in (1.2) follows. Thus, for the equality in (1.2) to hold it is
sufficient that one of the conditions (a), (b), or (c) be satisfied.

Let us now verify the necessity of one of these three conditions. W.l.o.g.
condition (a) fails to hold, so that E ∣𝑋 ∣𝑝 < ∞. If now 𝑝 = 2 then 𝐶𝑝 = 𝐶2 = 1,
and the necessity of the condition E𝑋 = 0 for the equality in (1.2) is obvious.
It remains to consider the case when 𝑝 ∕= 2 and E ∣𝑋 ∣𝑝 < ∞. Suppose that one
has the equality in (1.2) and let 𝑓 = ∣ ⋅ ∣𝑝. Then, by the definition of 𝐶𝑝 in (2.5)
and the equality (4.7), equalities take place in (4.3) and (4.4). In view of the
condition E ∣𝑋 ∣𝑝 < ∞, the integrals in (4.3) and (4.4) are both finite and equal
to each other. So, the equality in (4.4) means that ∣E𝑋 ∣𝑝 𝜇({0} × (0, 1/2]

)
= 0.

If now 𝜇
({0} × (0, 1/2]

) ∕= 0 then E𝑋 = 0, and the equality in (1.2) takes the
form E ∣𝑋 ∣𝑝 = 𝐶𝑝 E ∣𝑋 ∣𝑝; but, by part (v) of Theorem 2.3 (to be proved a bit
later), the condition 𝑝 ∕= 2 implies 𝐶𝑝 > 1, which yields E ∣𝑋 ∣𝑝 = 0, and so,

𝑋
D
= 𝜆(𝑋1−𝑏𝑝,𝑏𝑝 − 𝑡𝑏𝑝) for 𝜆 = 0. It remains to consider the case when 𝑝 ∕= 2,

E ∣𝑋 ∣𝑝 < ∞, and 𝜇
({0} × (0, 1/2]

)
= 0. Then 𝜇(𝑆0) = 𝜇(𝑆) = 1, and the equality

in (4.3) (again with 𝑓 = ∣ ⋅ ∣𝑝), together with (2.5) and (4.7), will imply that
E ∣𝜆𝑋1−𝑏,𝑏∣𝑝 = 𝐶𝑝 E ∣𝜆𝑋1−𝑏,𝑏+E𝑋 ∣𝑝 for 𝜇-almost all (𝜆, 𝑏) ∈ 𝑆0. In view of (4.14),
(2.5), Proposition 2.2, and (4.15), this in turn yields

𝜌𝑝(𝑏,−E𝑋/𝜆) = 𝑅(𝑝, 𝑏𝑝) ⩾ 𝑅(𝑝, 𝑏) = 𝜌𝑝(𝑏, 𝑡𝑏)

for 𝜇-almost all (𝜆, 𝑏) ∈ 𝑆0. Now recall that for each 𝑏 ∈ (0, 1/2] the maximum of
𝜌𝑝(𝑏, 𝑡) in 𝑡 ∈ ℝ is attained only at 𝑡 = 𝑡𝑏. It follows that for 𝜇-almost all (𝜆, 𝑏) ∈ 𝑆0
one has

(i) 𝑅(𝑝, 𝑏𝑝) = 𝑅(𝑝, 𝑏) and hence, by Proposition 2.2, 𝑏 = 𝑏𝑝 and
(ii) −E𝑋/𝜆 = 𝑡𝑏 = 𝑡𝑏𝑝 or, equivalently, 𝜆 = −E𝑋/𝑡𝑏 = −E𝑋/𝑡𝑏𝑝 =: 𝜆𝑝.

Therefore, (𝜆, 𝑏) = (𝜆𝑝, 𝑏𝑝) for 𝜇-almost all (𝜆, 𝑏) ∈ 𝑆0 and thus for 𝜇-almost

all (𝜆, 𝑏) ∈ 𝑆. Now (4.1) shows that 𝑋 + 𝜆𝑝𝑡𝑏𝑝 = 𝑋 − E𝑋
D
= 𝜆𝑝𝑋1−𝑏𝑝,𝑏𝑝 or,

equivalently, 𝑋
D
= 𝜆𝑝(𝑋1−𝑏𝑝,𝑏𝑝 − 𝑡𝑏𝑝), which completes the proof of part (ii) of

Theorem 2.3.
(iii) Part (iii) of Theorem 2.3 follows immediately by the symmetry (4.8) of
𝑅(𝑝, 𝑏) in 𝑝 and the definitions of 𝐶𝑝 and 𝑏𝑝 in (2.5) and Proposition 2.2, respec-
tively.
(iv) As in (4.9), let 𝑟 := 𝑝−1, so that 𝑟 →∞. For a moment, take any 𝑘 ∈ (0,∞)
and choose 𝑏 = 𝑘

𝑟 . Then, by (4.9), 𝑥 ∼ 𝑏 = 𝑘
𝑟 , and now (4.10) yields 𝐷1(𝑟, 𝑥) ∼

(1 − 1
2𝑘 )𝑟, whence 𝐷1(𝑟, 𝑥) is eventually (i.e., for all large enough 𝑟) positive or
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negative according as 𝑘 is greater or less than 1
2 . So, again by (4.9), for any real 𝑘

and 𝑘 such that 0 < 𝑘 < 1
2 < 𝑘, eventually ∂𝑏𝑅(𝑝, 𝑏)

∣∣
𝑏=𝑘̌/𝑟

> 0 > ∂𝑏𝑅(𝑝, 𝑏)
∣∣
𝑏=𝑘̂/𝑟

.

It follows by Proposition 2.2 that

𝑏𝑝 ∼ 1

2𝑟
, (4.16)

that is, 𝑏𝑝 = 𝜅/𝑟 for some 𝜅 varying with 𝑟 so that 𝜅 → 1/2. Hence,

(1 − 𝑏𝑝)
𝑟 + 𝑏𝑟𝑝 = (1 − 𝜅/𝑟)𝑟 + (𝜅/𝑟)𝑟 → 𝑒−1/2. (4.17)

Next, 𝑏
1/𝑟
𝑝 = (𝜅/𝑟)1/𝑟 = exp

(
1
𝑟 ln 𝜅

𝑟

)
= 1 + 1

𝑟 ln 𝜅
𝑟 + 𝑂

((
1
𝑟 ln 𝜅

𝑟

)2)
and

(1 − 𝑏𝑝)
1/𝑟 = 1 + 𝑂(1/𝑟2), whence(
(1 − 𝑏𝑝)

1/𝑟 + 𝑏1/𝑟𝑝

)𝑟
=
[
2
(

1 +
1

2𝑟
ln

𝜅

𝑟
+ 𝑂
( ln2 𝑟

𝑟2

))]𝑟
=
[
2 exp

{ 1

2𝑟
ln

𝜅

𝑟
+ 𝑜
(1

𝑟

)}]𝑟
∼ 2𝑟

√
𝜅

𝑟
∼ 2𝑝√

8𝑝
.

Recalling now (2.5), (2.4), and (4.17), one obtains (2.8).
(v) Take any 𝑏 ∈ (0, 1/2). Then

𝑑2,1(𝑟) := ∂𝑟 ∂𝑟 ln
(
𝑏𝑟 + (1 − 𝑏)𝑟

)
=

(1 − 𝑏)𝑟𝑏𝑟(
𝑏𝑟 + (1 − 𝑏)𝑟

)2 ln2
1 − 𝑏

𝑏
> 0

for all 𝑟 > 0. Moreover,

𝑑2,2(𝑟) := ∂𝑟 ∂𝑟 ln
[(
𝑏1/𝑟 + (1 − 𝑏)1/𝑟

)𝑟]
= 𝑑2,1(1/𝑟)/𝑟3 > 0

for all 𝑟 > 0. So, ∂𝑝 ∂𝑝 ln𝑅(𝑝, 𝑏) = 𝑑2,1(𝑝 − 1) + 𝑑2,2(𝑝 − 1) > 0, which shows
that 𝑅(𝑝, 𝑏) is strictly log-convex in 𝑝 ∈ (1,∞). Also, ∂𝑝 ln𝑅(𝑝, 𝑏)

∣∣
𝑝=2

= 0, so

that 𝑅(𝑝, 𝑏) decreases in 𝑝 ∈ (1, 2] and increases in 𝑝 ∈ [2,∞), with 𝑅(2, 𝑏) = 1.
Therefore and in view of (2.5) – note in particular the attainment of the supremum
there, 𝐶𝑝 is strictly log-convex and hence continuous in 𝑝 ∈ (1,∞), and it also
follows that 𝐶𝑝 decreases in 𝑝 ∈ (1, 2] and increases in 𝑝 ∈ [2,∞), with 𝐶𝑝 = 1.
Next, (2.8) shows that 𝐶𝑝 → ∞ as 𝑝 → ∞. Letting now 𝑝 ↓ 1 and using (2.7),

one has 𝑞 →∞ and hence 𝐶𝑝 = 𝐶
1/(𝑞−1)
𝑞 =

(
2𝑞/
√

(8 + 𝑜(1))𝑒𝑞
)1/(𝑞−1) → 2. This

completes the proof of part (v) of Theorem 2.3.
(vi) The proof of part (vi) of Theorem 2.3 is straightforward, in view of (2.5),
Proposition 2.2, (2.4), and (2.6). □

Proof of Corollary 3.1. The proof is based on ideas presented in [20, 22] concern-
ing the use of the mentioned Yurinskĭı martingale decomposition; similar ideas
were also used, e.g., in [1, 17, 24]. Consider the martingale defined by the formula
𝜁𝑗 := E𝑗(𝑌 − E𝑌 ) for 𝑗 ∈ 0, 𝑛, where E𝑗 stands for the conditional expectation
given the 𝜎-algebra generated by (𝑋1, . . . , 𝑋𝑗), with E0 := E, and then consider
the differences 𝜉𝑖 := 𝜁𝑖 − 𝜁𝑖−1. Next, for each 𝑖 ∈ 1, 𝑛 introduce the r.v.

𝜂𝑖 := E𝑖(𝑌 − 𝑌𝑖),
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where 𝑌𝑖 := 𝑔(𝑋1, . . . , 𝑋𝑖−1, 𝑥𝑖, 𝑋𝑖+1, . . . , 𝑋𝑛), so that 𝜉𝑖 = 𝜂𝑖 − E𝑖−1 𝜂𝑖, since the
r.v.’s 𝑋1, . . . , 𝑋𝑛 are independent. Also, in view of (3.1) or (3.7), for all 𝑖 ∈ 1, 𝑛
and 𝑧𝑖 ∈ 𝔛𝑖 one has ∣𝜂𝑖∣ ⩽ 𝜌𝑖(𝑋𝑖, 𝑧𝑖), whence, by (1.2),

E𝑖−1 ∣𝜉𝑖∣𝑟 = E𝑖−1 ∣𝜂𝑖 − E𝑖−1 𝜂𝑖∣𝑟 ⩽ 𝐶𝑟 E𝑖−1 ∣𝜂𝑖∣𝑟 ⩽ 𝐶𝑟 E𝑖−1 𝜌𝑖(𝑋𝑖, 𝑧𝑖)
𝑟

= 𝐶𝑟 E 𝜌𝑖(𝑋𝑖, 𝑧𝑖)
𝑟

for all 𝑟 ∈ (1,∞). Now (3.3) follows from (3.2), since 𝜁𝑛 = 𝑌 −E𝑌 and 𝐶2 = 1. □
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Strong Log-concavity
is Preserved by Convolution

Jon A. Wellner

Abstract. We review and formulate results concerning strong-log-concavity in
both discrete and continuous settings. Although four different proofs of preser-
vation of strong log-concavity are known in the discrete setting (where strong
log-concavity is known as “ultra-log-concavity”), preservation of strong log-
concavity under convolution has apparently not been investigated previously
in the continuous case.

Mathematics Subject Classification (2010). Primary 60E15; Secondary 26D15.

Keywords. Log-concave, ultra log-concave, strongly log-concave, convolution.

1. Log-concavity and ultra-log-concavity for discrete distributions

We begin with a discussion of log-concavity and ultra-log-concavity in the setting
of discrete random variables. This material is from [13] and [11].

A sequence {𝑎𝑖 : 𝑖 ∈ ℤ+} of non-negative real numbers is log-concave if

𝑎2𝑖 ≥ 𝑎𝑖−1𝑎𝑖+1 for 𝑖 ≥ 1

and the set {𝑖 ≥ 0 : 𝑎𝑖 > 0} is an interval of integers. A non-negative integer-
valued random variable 𝑋 with probability mass function {𝑝𝑥 : 𝑥 ∈ ℤ+} is log-
concave if {𝑝𝑥} is a log-concave sequence with

∑∞
𝑥=0 𝑝𝑥 = 1. A stronger notion,

analogous to strong log-concavity in the case of continuous random variables, is
that of ultra-log-concavity: for any 𝜆 > 0 define ULC(𝜆) to be the class of non-
negative integer-valued random variables 𝑋 with mean 𝐸𝑋 = 𝜆 such that the
probability mass function 𝑝𝑥 satisfies

𝑥𝑝2𝑥 ≥ (𝑥 + 1)𝑝𝑥+1𝑝𝑥−1 for all 𝑥 ≥ 1. (1.1)

Then the class of ultra log-concave random variables is ULC = ∪𝜆>0ULC(𝜆).
Note that (1.1) is equivalent to log-concavity of 𝑥 9→ 𝑝𝑥/𝜋𝜆,𝑥 where 𝜋𝜆,𝑥 =

Supported in part by NSF Grant DMS-1104832, NI-AID grant 2R01 AI291968-04, and the
Alexander von Humboldt Foundation.

c⃝ 2013 Springer Basel
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𝑒−𝜆𝜆𝑥/𝑥! is the Poisson distribution on ℕ, and hence ultra-log-concavity corre-
sponds to 𝑝 being log-concave relative to 𝜋𝜆 (or 𝑝 ≤lc 𝜋𝜆) in the sense defined by
[23] pages 625–626: 𝑝 ≤lc 𝑞 if 𝑝/𝑞 is log-concave. Thus 𝑋 ∈ ULC(𝜆) if and only
if 𝐸𝑋 = 𝜆 and 𝑝𝑥 = ℎ𝑥𝜋𝜆,𝑥 where ℎ is log-concave. When we want to emphasize
that the mass function {𝑝𝑥} corresponds to 𝑋 , we also write 𝑝𝑋(𝑥) instead of 𝑝𝑥.

Our main interest here is the preservation of ultra-log-concavity under con-
volution.

Theorem 1.1 ([17]). The class of ultra-log-concave distributions on ℤ is closed
under convolution. More precisely, these classes are closed under convolution in
the following sense: if 𝑈 ∈ ULC(𝜆) and 𝑉 ∈ ULC(𝜇) are independent, then
𝑈 + 𝑉 ∈ ULC(𝜆 + 𝜇).

Liggett’s proof proceeds by direct calculation. For recent alternative proofs of
this property of ultra-log-concave distributions, see [8], [14], and [18]. A relatively
simple proof is given by [11] using results from [16] and [6], and that is the proof
we will summarize here.

Proposition 1.2. 𝑋 ∈ ULC(𝜆) if and only if the relative score function

𝜌𝑋(𝑖) ≡ (𝑖 + 1)𝑝𝑋(𝑖 + 1)

𝜆𝑝𝑋(𝑖)
− 1 =

(𝑖 + 1)𝑝𝑋(𝑖 + 1)

𝜆𝑝𝑋(𝑖)
− (𝑖 + 1)𝜋𝜆,𝑖+1

𝜆𝜋𝜆,𝑖

is a decreasing function of 𝑖.

Proof. This follows immediately from the definitions and elementary rearrange-
ment of terms. □

Proposition 1.3.

(i) If 𝑋 and 𝑌 are independent discrete random variables with means 𝜇 = 𝐸(𝑋)
and 𝜈 = 𝐸(𝑌 ) respectively, then

𝜌𝑋+𝑌 (𝑧) = 𝐸

{
𝜇

𝜇 + 𝜈
𝜌𝑋(𝑋) +

𝜈

𝜇 + 𝜈
𝜌𝑌 (𝑌 )

∣∣∣∣𝑋 + 𝑌 = 𝑧

}
.

(ii) If 𝑋 ∈ ULC(𝜇), 𝑌 ∈ ULC(𝜈) are independent, then 𝑋 + 𝑌 ∈ ULC(𝜇+ 𝜈).

Proof. (i) This projection formula is proved in the Lemma on page 471 of [16] by
direct calculation.

(ii) This claim follows from (i) and Theorem 1 of [6], upon noting Efron’s remark 1,
page 278, concerning the discrete case of his theorem: for independent log-concave
random variables 𝑋 and 𝑌 and a measurable function Φ monotone (decreasing
here) in each argument, 𝐸{Φ(𝑋,𝑌 )∣𝑋 +𝑌 = 𝑧} is a monotone decreasing function
of 𝑧: note that ultra-log-concavity of 𝑋 and 𝑌 implies that

Φ(𝑥, 𝑦) =
𝜇

𝜇 + 𝜈
𝜌𝑋(𝑥) +

𝜈

𝜇 + 𝜈
𝜌𝑌 (𝑦)

is a monotone decreasing function of 𝑥 and 𝑦 (separately) by Proposition 1.2. Thus
𝜌𝑋+𝑌 is a decreasing function of 𝑧 by Proposition 1.3 and Efron’s theorem, and
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hence 𝑋 + 𝑌 ∈ ULC(𝜇 + 𝜈) by Proposition 1.2 again. This completes the proof
of (ii) of Proposition 1.3 and hence Theorem 1.1. □

Here are some facts concerning the entropy of discrete random variables,
Bernoulli sums, and ultra-log-concavity.

For any probability distribution {𝑝𝑥 : 𝑥 ∈ ℤ}, the entropy 𝐻(𝑝) is given by

𝐻(𝑝) ≡ −
∑
𝑥

𝑝𝑥 log 𝑝𝑥.

If 𝑋1, . . . , 𝑋𝑛 are independent Bernoulli(𝑝1), . . . ,Bernoulli(𝑝𝑛) random variables,
then 𝑆𝑛 =

∑𝑛
𝑖=1𝑋𝑖 is called a Bernoulli sum, and we write 𝑏p(𝑥) ≡ 𝑃p(𝑆𝑛 = 𝑥)

for 𝑥 ∈ ℕ for its probability mass function where p = (𝑝1, . . . , 𝑝𝑛) ∈ [0, 1]𝑛.
Furthermore, for each 𝜆 > 0 set

𝒫𝑛(𝜆) = {p ∈ [0, 1]𝑛 : 𝑝1 + ⋅ ⋅ ⋅ + 𝑝𝑛 = 𝜆},
𝒫∞(𝜆) = ∪∞𝑛=1𝒫𝑛(𝜆).

Fact 1.4 ([20]). For each fixed 𝑛 ≥ 1, the Bernoulli sum 𝑏𝑝 which has maximal
entropy among all Bernoulli sums with mean 𝜆 is Binomial (𝑛, 𝜆/𝑛), the Binomial
with parameters 𝑛 and 𝜆/𝑛. In other words,

𝐻(Binomial(𝑛, 𝜆/𝑛)) = max{𝐻(𝑏p) : p ∈ 𝒫𝑛(𝜆)}.
This was extended to the Poisson distribution by Harremoës: If Po(𝜆) denotes

the Poisson distribution with mean 𝜆 on ℕ then we have:

Fact 1.5 ([10]).

𝐻(Po(𝜆)) = sup{𝐻(𝑏p) : p ∈ 𝒫∞(𝜆)}.
Fact 1.6. The Poisson distribution and all Bernoulli sums are ultra-log-concave.
(This is trivial for Poisson, easily verified for any Bernoulli variable, and hence
true for Bernoulli sums by Proposition 2. Also see [7] for a direct proof that
Bernoulli sums are ultra-log-concave in the terminology of [17].)

Fact 1.7 ([11]).

𝐻(Po(𝜆)) = max {𝐻(𝑝) : 𝑝 ∈ ULC with mean 𝜆} .
Theorem 1.8. For any 𝜆 ≥ 0, if 𝑋 ∈ ULC(𝜆) then the entropy 𝐻(𝑋) of 𝑋 satisfies

𝐻(𝑋) ≤ 𝐻(𝑍𝜆) with equality if and only if 𝑋
𝑑
= 𝑍𝜆 ∼ Poisson(𝜆).

Proposition 1.9. For any 𝜆 ≥ 0 and 𝜇 ≥ 0:

(i) If 𝑉 ∈ ULC(𝜆) then it is log-concave.
(ii) The Poisson random variable 𝑍𝜆 ∈ ULC(𝜆).
(iii) The classes are closed under convolution in the following sense: if 𝑈 ∈

ULC(𝜆) and 𝑉 ∈ ULC(𝜇) are independent, then 𝑈 + 𝑉 ∈ ULC(𝜆 + 𝜇).
(iv) 𝒫∞(𝜆) ⊂ ULC(𝜆).
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Fact 1.10. It follows from [7] that the hypergeometric distribution (sampling without
replacement count of “successes”) is equal in distribution to a Bernoulli sum; hence
the hypergeometric distribution is ultra-log-concave.

Question 1.11. Is there an analogue of Chernoff’s density in the discrete case which
is ultra-log-concave? (See [1] for Chernoff’s density in the continuous case. Possible
connections to Polya frequency sequences as treated in [15], Chapter 8?)

2. Log-concavity and strong-log-concavity for continuous
distributions on ℝ

Despite considerable interest in strong log-concavity as a hypothesis for correlation
inequalities, log-Sobolev inequalities, and various results in transportation theory
(see, e.g., [9], [22], and [4]), I am unaware of any previous proof that strong log-
concavity is preserved by convolution. Here we give a proof of this preservation
property along the lines of the proof by [11] in the discrete case discussed in
Section 1.

A non-negative function 𝑔 on ℝ (or ℝ𝑑) is log-concave if for all 𝑥, 𝑦 ∈ ℝ

(respectively ℝ𝑑) and 𝜃 ∈ (0, 1)

𝑔(𝜃𝑥 + (1 − 𝜃)𝑦) ≥ 𝑔(𝑥)𝜃𝑔(𝑦)1−𝜃.

A density function 𝑔 on ℝ (respectively ℝ𝑑) is log-concave if it is a non-negative
log-concave function with

∫
ℝ
𝑔(𝑥)𝑑𝑥 = 1 (respectively

∫
ℝ𝑑

𝑔(𝑥)𝑑𝑥 = 1).

Definition 2.1. For any 𝜎2 > 0 define the class strongly-log-concave with variance
parameter 𝜎2, denoted SLC(𝜎2), to be the collection of random variables 𝑋 (or
their corresponding density functions 𝑓 = 𝑓𝑋) with 𝐸𝑋 = 0, Var(𝑋) = 𝜎2,
𝑃 (𝑋 ∈ 𝑑𝑥) = 𝑓(𝑥)𝑑𝑥, such that

𝑓(𝑥) = 𝑔(𝑥)
1

𝜎
𝜙(𝑥/𝜎) with 𝑔 log-concave (2.1)

where 𝜙(𝑧) = (2𝜋)−1/2 exp(−𝑧2/2) is the standard Gaussian density.

Thus strong log-concavity of 𝑓 is equivalent to 𝑓 being log-concave relative to
𝜙(⋅/𝜎)/𝜎 (or 𝑓 ≤lc 𝜎−1𝜙(⋅/𝜎)) in the terminology of [23]: 𝑓 ≤lc 𝑔 if and only if 𝑓/𝑔
is log-concave. When (− log 𝑓) is twice differentiable, a useful sufficient condition is

(− log 𝑓)′′(𝑥) ≥ 1

𝜎2
for all 𝑥 ∈ ℝ.

For 𝑋 with Var(𝑋) = 𝜎2, define the relative score

𝜌𝑋(𝑥) ≡ 𝜌𝑓 (𝑥) ≡ −𝑓 ′

𝑓
(𝑥) − 𝑥

𝜎2
= −𝑓 ′

𝑓
(𝑥) − (− log{𝜎−1𝜙(𝑥/𝜎)})′

where 𝜙(𝑧) = (2𝜋)−1/2 exp(−𝑧2/2) is the standard Gaussian density.
Strong log-concavity of 𝑓 implies that (− log 𝑓)′ exists at all but countably

many points; see, e.g., [21], Theorem 1.26, page 19. By using the left derivative of
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𝑓 we can define 𝜌𝑋 for every strongly log-concave 𝑋 with density 𝑓 . Note that the
“standardized Fisher Information” 𝐽(𝑋) of [2] is given by

𝐽(𝑋) = 𝜎2𝐸𝑓𝜌
2
𝑓 (𝑋).

Furthermore

𝐷(𝑋) ≡ 𝐾(𝑓, 𝜙) ≡
∫

𝑓(𝑥) log
𝑓(𝑥)

𝜙(𝑥)
𝑑𝑥

=

∫ 1

0

𝐽(
√
𝑡𝑋 +

√
1 − 𝑡𝑍)

1

2𝑡
𝑑𝑡

=

∫ ∞

0

𝐽(𝑒−𝑣𝑋 +
√

1 − 𝑒−2𝑣𝑍)𝑑𝑣

where 𝑍 ∼ 𝑁(0, 𝜎2). Compare with (1.14) of [5].

To prove Theorem 2.3 below, we first prove an analogue of Proposition 1.2
in the preceding section:

Proposition 2.2. 𝑋 ∈ SLC(𝜎2) if and only if 𝜌𝑓 (𝑥) is nondecreasing in 𝑥.

Proof. Suppose that 𝜌𝑓 is nondecreasing where we take 𝑓 ′ to be the left derivative
of 𝑓 . Then for 𝑥 > 𝑥0,∫ 𝑥

𝑥0

𝜌𝑓 (𝑦)𝑑𝑦 =

∫ 𝑥

𝑥0

−𝑓 ′(𝑦)

𝑓(𝑦)
𝑑𝑦 −

∫ 𝑥

𝑥0

𝑦

𝜎2
𝑑𝑦

= − log 𝑓(𝑥) − (− log 𝑓(𝑥0)) − 1

2𝜎2
(𝑥2 − 𝑥20)

is a convex function of 𝑥. Thus

− log 𝑓(𝑥) − 1

2𝜎2
𝑥2,

is convex, and it follows that 𝑓(𝑥) = 𝑔(𝑥)𝜎−1𝜙(𝑥/𝜎) where 𝑔 is log-concave.

On the other hand suppose that (2.1) holds. Then

− log 𝑓(𝑥) = − log 𝑔(𝑥) − log(𝜙(𝑥/𝜎)/𝜎)

is convex and its derivative (which exists at all but countably many 𝑥’s; see, e.g.,
[21], page 19) is

−𝑓 ′

𝑓
(𝑥) = −𝑔′

𝑔
(𝑥) +

𝑥

𝜎2

where

−𝑔′

𝑔
(𝑥) = −𝑓 ′

𝑓
(𝑥) − 𝑥

𝜎2
= 𝜌𝑓(𝑥)

is non-decreasing since − log 𝑔 is convex; see [21], Theorem 1.26, page 19, or [19],
Exercise 12.59, page 565. □
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From [3] (see (2.5) on page 142) or [12], Lemma 3.1 we know that for inde-
pendent random variables 𝑋 and 𝑌 with absolutely continuous densities 𝑓 and 𝑔
respectively we have

𝐸

{
−𝑓 ′𝑌

𝑓𝑌
(𝑌 )∣𝑋 + 𝑌 = 𝑧

}
= −𝑓 ′𝑋+𝑌

𝑓𝑋+𝑌
(𝑧). (2.2)

This yields the following theorem:

Theorem 2.3.

(i) If 𝑋 and 𝑌 are independent random variables with variances 𝜎2 = Var(𝑋)
and 𝜏2 = Var(𝑌 ), and absolutely continuous densities 𝑓 and 𝑔 respectively,
then

𝜌𝑋+𝑌 (𝑧) = 𝐸

{
𝜎2

𝜎2 + 𝜏2
𝜌𝑋(𝑋) +

𝜏2

𝜎2 + 𝜏2
𝜌𝑌 (𝑌 )

∣∣∣∣𝑋 + 𝑌 = 𝑧

}
.

(ii) If 𝑋 ∈ SLC(𝜎2) and 𝑌 ∈ SLC(𝜏2) are independent, then 𝑋+𝑌 ∈ SLC(𝜎2+
𝜏2).

Proof. (i) follows immediately from the projection formula (2.2) and linearity of
conditional expectation: here is a detailed calculation.

𝐸

{
𝜎2

𝜎2 + 𝜏2

{
−𝑓 ′𝑋
𝑓𝑋

(𝑋) − 𝑋

𝜎2

}
+

𝜏2

𝜎2 + 𝜏2

{
−𝑓 ′𝑌
𝑓𝑌

(𝑌 ) − 𝑌

𝜏2

} ∣∣∣∣𝑋 + 𝑌 = 𝑧

}
=

𝜎2

𝜎2 + 𝜏2

{
−𝑓 ′𝑋+𝑌

𝑓𝑋+𝑌
(𝑧)

}
+

𝜏2

𝜎2 + 𝜏2

{
−𝑓 ′𝑋+𝑌

𝑓𝑋+𝑌
(𝑧)

}
− 𝐸

{
𝑋 + 𝑌

𝜎2 + 𝜏2

∣∣∣∣𝑋 + 𝑌 = 𝑧

}
= −𝑓 ′𝑋+𝑌

𝑓𝑋+𝑌
(𝑧) − 𝑧

𝜎2 + 𝜏2

= 𝜌𝑋+𝑌 (𝑧).

(ii) follows from (i) and Efron’s ([6]) observation that for independent log-concave
random variables 𝑋 and 𝑌 and a measurable function Φ increasing in each argu-
ment, 𝐸{Φ(𝑋,𝑌 )∣𝑋 + 𝑌 = 𝑧} is an increasing function of 𝑧: take

Φ(𝑥, 𝑦) =
𝜎2

𝜎2 + 𝜏2
𝜌𝑋(𝑥) +

𝜏2

𝜎2 + 𝜏2
𝜌𝑌 (𝑦).

Thus 𝜌𝑋+𝑌 is an increasing function of 𝑧 and hence 𝑋 + 𝑌 ∈ SLC(𝜎2 + 𝜏2) by
Proposition 2.2. □
Question 2.4. Are there alternative proofs of (ii) of Theorem 2.3 paralleling the
alternative proofs by [8] and [14] that ultra-log-concavity is preserved by convolu-
tion?

Question 2.5. Is multivariate strong log-concavity preserved under convolution?

Question 2.6. Can the result of Theorem 2.3 be used to prove the strong log-
concavity of Chernoff’s density conjectured in [1]?
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3. Appendix: strong convexity and strong log-concavity

Following [19], page 565, we say that a proper convex function ℎ : ℝ𝑑 → ℝ is
strongly convex if there exists a positive number 𝑐 such that

ℎ(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃ℎ(𝑥) + (1 − 𝜃)ℎ(𝑦) − 1

2
𝑐𝜃(1 − 𝜃)∥𝑥− 𝑦∥2

for all 𝑥, 𝑦 ∈ ℝ𝑑and 𝜃 ∈ (0, 1). It is easily seen that this is equivalent to convexity
of ℎ(𝑥) − (1/2)𝑐∥𝑥∥2 (see [19], Exercise12.59, page 565).

Now 𝑓 is strongly log-concave if and only

𝑓(𝑥) = 𝑔(𝑥)𝜎−𝑑
∏𝑑
𝑗=1 𝜙(𝑥𝑗/𝜎)

for some 𝜎 > 0 where 𝑔 is log-concave. But this agrees with the definition of strong
convexity given above since,

ℎ(𝑥) ≡ − log 𝑓(𝑥) = − log 𝑔(𝑥) + 𝑑 log(𝜎
√

2𝜋) +
∥𝑥∥2
2𝜎2

,

so that

− log 𝑓(𝑥) − ∥𝑥∥2
2𝜎2

= − log 𝑔(𝑥) + 𝑑 log(𝜎
√

2𝜋)

is convex; i.e., − log 𝑓(𝑥) is strongly convex with 𝑐 = 1/(2𝜎2).
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Statist. 36 272–279.

[7] Ehm, W. (1991). Binomial approximation to the Poisson binomial distribution.
Statist. Probab. Lett. 11 7–16.

[8] Gurvits, L. (2009). A short proof, based on mixed volumes, of Liggett’s theorem
on the convolution of ultra-logconcave sequences. Electron. J. Combin. 16 Note 5, 5.



102 J.A. Wellner
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On Some Gaussian Concentration Inequality
for Non-Lipschitz Functions

Pawel̷ Wolff

Abstract. A concentration inequality for functions of a pair of Gaussian ran-
dom vectors is established. Instead of the usual Lipschitz condition some
boundedness of second-order derivatives is assumed. This result can be viewed
as an extension of a well-known tail estimate for Gaussian random bi-linear
forms to the non-linear case.
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1. Introduction

The Gaussian concentration inequality in one of its forms states that for a stan-
dard Gaussian random vector 𝑋 in ℝ𝑛 and a function 𝑓 : ℝ𝑛 → ℝ satisfying the
Lipschitz condition, with a constant 𝐿 > 0,

ℙ(∣𝑓(𝑋) − 𝔼𝑓(𝑋)∣ ≥ 𝑡) ≤ 2 exp

(
− 𝑡2

2𝐿2

)
(1.1)

for all 𝑡 > 0 (see, e.g., [5, Ch. 2.3]).

In order to motivate further considerations, let us make the following trivial
observation. Let 𝑓 : ℝ× ℝ → ℝ be a 𝒞2 function satisfying∣∣∣∣ ∂2𝑓∂𝑥∂𝑦

(𝑥, 𝑦)

∣∣∣∣ ≤ 𝐿

for all (𝑥, 𝑦) ∈ ℝ × ℝ and put 𝑔(𝑥, 𝑦) = 𝑓(𝑥, 0) + 𝑓(0, 𝑦) − 𝑓(0, 0). Then for any
𝑡 > 0,

(𝛾1 ⊗ 𝛾1)
( {(𝑥, 𝑦) ∈ ℝ× ℝ : ∣𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)∣ ≥ 𝑡} ) ≤ 𝐶𝑒−𝑐𝑡/𝐿, (1.2)

Research partially supported by MNiSW Grant no. N N201 397437.

c⃝ 2013 Springer Basel
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where 𝛾1 is the standard Gaussian distribution on ℝ. This fact is as trivial as the
Gaussian concentration on the real line. Just write

𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑓(𝑥, 0) − 𝑓(0, 𝑦) + 𝑓(0, 0) =

∫ 𝑥

0

∫ 𝑦

0

∂2𝑓

∂𝑥∂𝑦
(𝑢, 𝑣) 𝑑𝑢𝑑𝑣

to see that

∣𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)∣ ≤ 𝐿∣𝑥𝑦∣.
Now the desired inequality follows from the fact that the random variable ∣𝑔1𝑔2∣,
where 𝑔1, 𝑔2 are independent 𝒩 (0, 1), roughly behaves like an exponential ran-
dom variable, i.e., ℙ(∣𝑔1𝑔2∣ ≥ 𝑡) ≤ 𝐶𝑒−𝑐𝑡. The example 𝑓(𝑥, 𝑦) = 𝑓1(𝑥) + 𝑓2(𝑦)
shows that under the assumption of boundedness of the second-order mixed deriv-
ative, one cannot control the deviation of 𝑓 from anything “simpler” than a linear
combination of functions depending on a single variable only.

This observation leads to natural questions: Does (1.2) have a multidimen-
sional counterpart in the spirit of the usual Gaussian concentration inequality?
What should one assume on the second-order derivatives of 𝑓 : ℝ𝑛 ×ℝ𝑛 → ℝ and
what is a natural choice for the function 𝑔?

2. The result

Before we formulate the main result, we introduce some notation. Let (Ω,ℱ ,ℙ)
be a probability space and 𝑋,𝑌 be independent random vectors defined on that
space. For any integrable random variable 𝑉 we define

Π1𝑉 = 𝔼[𝑉 ∣𝑋 ] + 𝔼[𝑉 ∣𝑌 ] − 𝔼𝑉.

Note that the operator Π1 restricted to 𝐿2(Ω,ℱ ,ℙ) is an orthogonal projection
onto the subspace spanned by random variables which are either 𝜎(𝑋)- or 𝜎(𝑌 )-
measurable, i.e., 𝐿2(Ω, 𝜎(𝑋),ℙ)+𝐿2(Ω, 𝜎(𝑌 ),ℙ). In the case 𝑉 = 𝑓(𝑋,𝑌 ), Π1𝑉 =
𝔼𝑌 𝑓(𝑋,𝑌 ) + 𝔼𝑋𝑓(𝑋,𝑌 ) − 𝔼𝑓(𝑋,𝑌 ), where, e.g., by 𝔼𝑋𝑓(𝑋,𝑌 ) we mean the
integration w.r.t. to 𝑋 only. The operator Π1 is related to so-called Hoeffding
projection from the theory of U-statistics.

For a 𝒞2 function 𝑓 : ℝ𝑛1 ×ℝ𝑛2 → ℝ and a point (𝑥, 𝑦) ∈ ℝ𝑛1 ×ℝ𝑛2, we shall
consider a matrix of second-order mixed derivatives of 𝑓 at (𝑥, 𝑦):

∂2𝑥𝑦𝑓(𝑥, 𝑦) =

(
∂2𝑓

∂𝑥𝑖∂𝑦𝑗
(𝑥, 𝑦)

)
𝑖≤𝑛1
𝑗≤𝑛2.

Note that apart from special situations, ∂2𝑥𝑦𝑓(𝑥, 𝑦) is usually not symmetric.
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For an 𝑛1×𝑛2 matrix 𝐴 = (𝑎𝑖𝑗) we shall consider the operator norm and the
Hilbert-Schmidt norm of 𝐴:

∥𝐴∥op = sup

⎧⎨⎩ ∑
𝑖≤𝑛1,𝑗≤𝑛2

𝑎𝑖𝑗𝑥𝑖𝑦𝑗 :
∑
𝑖≤𝑛1

𝑥2𝑖 ≤ 1,
∑
𝑗≤𝑛2

𝑦2𝑗 ≤ 1

⎫⎬⎭ ,

∥𝐴∥HS =

⎛⎝ ∑
𝑖≤𝑛1,𝑗≤𝑛2

𝑎2𝑖𝑗

⎞⎠1/2 .
For two 𝑛1 × 𝑛2 matrices 𝐴 = (𝑎𝑖𝑗) and 𝐵 = (𝑏𝑖𝑗), we shall write ⟨𝐴,𝐵⟩ =∑

𝑖,𝑗 𝑎𝑖𝑗𝑏𝑖𝑗 . For 𝑥 ∈ ℝ𝑛1 and 𝑦 ∈ ℝ𝑛2 , 𝑥⊗ 𝑦 is the 𝑛1 × 𝑛2 matrix with the entries

𝑥𝑖𝑦𝑗 , for 𝑖 ≤ 𝑛1 and 𝑗 ≤ 𝑛2. With the above notation ⟨𝐴, 𝑥 ⊗ 𝑦⟩ =
∑

𝑖,𝑗 𝑎𝑖𝑗𝑥𝑖𝑦𝑗 .

By 𝐶, 𝑐, etc. we denote positive numerical constants which do not depend
on any parameters involved. At each occurrence a value of such constant may
be different. Finally, for a random variable 𝑍, ∥𝑍∥𝑝 denotes its 𝐿𝑝-norm, i.e.,

(𝔼∣𝑍∣𝑝)1/𝑝.
The main result of this note is the following

Theorem 2.1. Let 𝑋 and 𝑌 be independent standard Gaussian random vectors in
ℝ𝑛1 and ℝ𝑛2 respectively, 𝑓 : ℝ𝑛1×ℝ𝑛2 → ℝ be a 𝒞2 function and 𝔼∣𝑓(𝑋,𝑌 )∣ < ∞.
If for any (𝑥, 𝑦) ∈ ℝ𝑛1 × ℝ𝑛2 ,

∥∂2𝑥𝑦𝑓(𝑥, 𝑦)∥op ≤ 𝑎 and ∥∂2𝑥𝑦𝑓(𝑥, 𝑦)∥HS ≤ 𝑏,

then for all 𝑡 > 0,

ℙ
(∣𝑓(𝑋,𝑌 ) − Π1𝑓(𝑋,𝑌 )∣ ≥ 𝑡

) ≤ 𝐶 exp
(− 𝑐min

(
𝑡/𝑎, 𝑡2/𝑏2

) )
.

Let us first discuss the optimality of the above estimate. If 𝑓 is bi-linear,
i.e., 𝑓(𝑥, 𝑦) =

∑
𝑖≤𝑛1,𝑗≤𝑛2

𝑎𝑖𝑗𝑥𝑖𝑦𝑗 , then Π1𝑓(𝑋,𝑌 ) = 0 a.s. and in this case the

inequality from Theorem 2.1 matches (up to numerical constants) the well-known
upper bound for the tail of a (decoupled) Gaussian chaos of order 2, i.e., the
random variable 𝑆 =

∑
𝑖≤𝑛1,𝑗≤𝑛2

𝑎𝑖𝑗𝑔𝑖𝑔
′
𝑗 , where 𝑔𝑖, 𝑔

′
𝑗 are i.i.d. 𝒩 (0, 1) random

variables [2]:

ℙ(∣𝑆∣ ≥ 𝑡) ≤ 𝐶 exp
(−𝑐min

(
𝑡/∥(𝑎𝑖𝑗)∥op, 𝑡2/∥(𝑎𝑖𝑗)∥2HS)

))
. (2.1)

The estimate (2.1) is optimal in a sense that with different numerical constants
it is also a lower bound for the tail of ∣𝑆∣ (cf. [3]). Therefore, Theorem 2.1 can
be considered as an extension of (2.1) to the non-linear case. In fact, the bi-linear
case will be one of the ingredients of the proof of Theorem 2.1. More precisely, we
shall use the following estimate for moments of 𝑆 =

∑
𝑖≤𝑛1,𝑗≤𝑛2

𝑎𝑖𝑗𝑔𝑖𝑔
′
𝑗 : for any

𝑝 ≥ 2,

∥𝑆∥𝑝 ≤ 𝐶 max (𝑝∥(𝑎𝑖𝑗)∥op,√𝑝∥(𝑎𝑖𝑗)∥HS) . (2.2)

In the form stated above, (2.2) is an easy consequence of the usual Gaussian
concentration, e.g., in the form of (1.1).
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The other ingredient in the proof of Theorem 2.1 is the following Sobolev-type
inequality due to Maurey and Pisier [7]:

Theorem 2.2 (Maurey-Pisier). Let 𝑋, 𝑋̄ be independent standard Gaussian vectors
in ℝ𝑛, 𝑓 : ℝ𝑛 → ℝ be a 𝒞1 function satisfying 𝔼∣𝑓(𝑋)∣ < ∞, and Φ: ℝ → ℝ be a
convex function. Then

𝔼Φ(𝑓(𝑋) − 𝔼𝑓(𝑋)) ≤ 𝔼Φ
(𝜋

2
⟨∇𝑓(𝑋), 𝑋̄⟩

)
. (2.3)

Actually, we shall use the following “tensorized” version of the above inequal-
ity:

Proposition 2.3. Let 𝑋, 𝑋̄ be independent standard Gaussian vectors in ℝ𝑛1 and
𝑌, 𝑌 be independent standard Gaussian vectors in ℝ𝑛2 , independent of (𝑋, 𝑋̄).
Further, let 𝑓 : ℝ𝑛1 × ℝ𝑛2 → ℝ be 𝒞2 and 𝔼∣𝑓(𝑋,𝑌 )∣ < ∞, and Φ: ℝ → ℝ be a
convex function. Then

𝔼Φ
(
𝑓(𝑋,𝑌 ) − Π1𝑓(𝑋,𝑌 )

) ≤ 𝔼Φ
(

(
𝜋

2
)2⟨∂2𝑥𝑦𝑓(𝑋,𝑌 ), 𝑋̄ ⊗ 𝑌 ⟩

)
. (2.4)

Proof. We just follow the proof of Theorem 2.2 as presented in [7]. For (𝜃1, 𝜃2) ∈
[0, 𝜋/2]2, we define

𝑋(𝜃1) = 𝑋 sin 𝜃1 + 𝑋̄ cos 𝜃1,

𝑌 (𝜃2) = 𝑌 sin 𝜃2 + 𝑌 cos 𝜃2.

The crucial property of 𝑋(𝜃1) and 𝑌 (𝜃2) is

(𝑋(𝜃1), 𝑋
′(𝜃1))

𝑑
= (𝑋, 𝑋̄),

(𝑌 (𝜃2), 𝑌
′(𝜃2))

𝑑
= (𝑌, 𝑌 )

(2.5)

for any 𝜃1, 𝜃2 ∈ [0, 𝜋/2] (by, e.g., 𝑋 ′(𝜃1) we mean 𝑑
𝑑𝜃1

𝑋(𝜃1) = 𝑋 cos 𝜃1− 𝑋̄ sin 𝜃1).
By the smoothness assumption and the chain rule,

𝑓(𝑋,𝑌 ) − 𝑓(𝑋̄, 𝑌 ) − 𝑓(𝑋,𝑌 ) + 𝑓(𝑋̄, 𝑌 )

=

∫ 𝜋/2

0

∫ 𝜋/2

0

∂2𝑥𝑦𝑓(𝑋(𝜃1), 𝑌 (𝜃2))

∂𝜃1∂𝜃2
𝑑𝜃1𝑑𝜃2

=

∫ 𝜋/2

0

∫ 𝜋/2

0

⟨∂2𝑥𝑦𝑓(𝑋(𝜃1), 𝑌 (𝜃2)), 𝑋
′(𝜃1) ⊗ 𝑌 ′(𝜃2)⟩ 𝑑𝜃1𝑑𝜃2 a.s.

Applying Φ to the both sides and using the Jensen inequality yield

Φ
(
𝑓(𝑋,𝑌 ) − 𝑓(𝑋̄, 𝑌 ) − 𝑓(𝑋,𝑌 ) + 𝑓(𝑋̄, 𝑌 )

)
≤
∫ 𝜋/2

0

∫ 𝜋/2

0

Φ
(
(𝜋/2)2⟨∂2𝑥𝑦𝑓(𝑋(𝜃1), 𝑌 (𝜃2)), 𝑋

′(𝜃1) ⊗ 𝑌 ′(𝜃2)⟩
)

× (2/𝜋)2 𝑑𝜃1𝑑𝜃2 a.s.
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Integrating the both sides, applying the Fubini theorem and using (2.5), we arrive
with

𝔼Φ
(
𝑓(𝑋,𝑌 ) − 𝑓(𝑋̄, 𝑌 ) − 𝑓(𝑋,𝑌 ) + 𝑓(𝑋̄, 𝑌 )

)
≤
∫ 𝜋/2

0

∫ 𝜋/2

0

𝔼Φ
(
(𝜋/2)2⟨∂2𝑥𝑦𝑓(𝑋,𝑌 ), 𝑋̄ ⊗ 𝑌 ⟩) (2/𝜋)2 𝑑𝜃1𝑑𝜃2,

hence the two outer integrals on the right-hand side can be omitted. We finish
with the Jensen inequality applied conditionally to the left-hand side:

𝔼Φ
(
𝑓(𝑋,𝑌 ) − Π1𝑓(𝑋,𝑌 )

)
≤ 𝔼𝔼

[
Φ
(
𝑓(𝑋,𝑌 ) − 𝑓(𝑋̄, 𝑌 ) − 𝑓(𝑋,𝑌 ) + 𝑓(𝑋̄, 𝑌 )

)∣∣∣𝑋,𝑌
]
. □

Proof of Theorem 2.1. Taking Φ(𝑢) = ∣𝑢∣𝑝 for 𝑝 ≥ 2 in Proposition 2.3 we obtain

∥𝑓(𝑋,𝑌 ) − Π1𝑓(𝑋,𝑌 )∥𝑝 ≤
(
𝔼𝑋,𝑌 𝔼𝑋̄,𝑌

(
(
𝜋

2
)2⟨∂2𝑥𝑦𝑓(𝑋,𝑌 ), 𝑋̄ ⊗ 𝑌 ⟩

)𝑝)1/𝑝
.

Since for a given (𝑋,𝑌 ), ⟨∂2𝑥𝑦𝑓(𝑋,𝑌 ), 𝑋̄ ⊗ 𝑌 ⟩ is a decoupled Gaussian chaos of
order 2, we can use (2.2):

𝔼𝑋̄,𝑌

(
(
𝜋

2
)2⟨∂2𝑥𝑦𝑓(𝑋,𝑌 ), 𝑋̄ ⊗ 𝑌 ⟩

)𝑝
≤ 𝐶𝑝 max

(
𝑝𝑝∥∂2𝑥𝑦𝑓(𝑋,𝑌 )∥𝑝op, 𝑝𝑝/2∥∂2𝑥𝑦𝑓(𝑋,𝑌 )∥𝑝HS

)
a.s.,

so plugging it into the right-hand side of the previous inequality gives

∥𝑓(𝑋,𝑌 ) − Π1𝑓(𝑋,𝑌 )∥𝑝 ≤ 𝐶 max (𝑝𝑎,
√
𝑝𝑏) .

By the Chebyshev inequality, for any 𝑝 ≥ 2,

ℙ
(∣𝑓(𝑋,𝑌 ) − Π1𝑓(𝑋,𝑌 )∣ ≥ 𝑒∥𝑓(𝑋,𝑌 ) − Π1𝑓(𝑋,𝑌 )∥𝑝

) ≤ 𝑒−𝑝,

hence

ℙ
(∣𝑓(𝑋,𝑌 ) − Π1𝑓(𝑋,𝑌 )∣ ≥ 𝑒𝐶 max (𝑝𝑎,

√
𝑝𝑏)
) ≤ 𝑒−𝑝.

The observation that 𝑡 = 𝑒𝐶 max
(
𝑝𝑎,

√
𝑝𝑏
)

iff 𝑝 = min
(
𝑡/(𝑒𝐶𝑎), 𝑡2/(𝑒𝐶𝑏)2

)
con-

cludes the proof. □

Remark 2.4. Another way to obtain Proposition 2.3 is to iterate the inequal-
ity (2.3) twice. First use it conditionally on 𝑌 for the function 𝑔𝑌 (𝑥) = 𝑓(𝑥, 𝑌 ) −
𝔼𝑓(𝑥, 𝑌 ) and obtain

𝔼Φ
(
𝑓(𝑋,𝑌 ) − 𝔼𝑌 𝑓(𝑋,𝑌 ) − 𝔼𝑋(𝑓(𝑋,𝑌 ) − 𝔼𝑌 𝑓(𝑋,𝑌 ))

) ≤ 𝔼Φ
(𝜋

2
⟨∇𝑔𝑌 (𝑋), 𝑋̄⟩

)
= 𝔼𝔼

[
Φ
(𝜋

2

(⟨∇𝑥𝑓(𝑋,𝑌 ), 𝑋̄⟩ − 𝔼𝑌 ⟨∇𝑥𝑓(𝑋,𝑌 ), 𝑋̄⟩)) ∣∣∣𝑋, 𝑋̄
]
.

Now use (2.3) conditionally on 𝜎(𝑋, 𝑋̄) for ℎ𝑋,𝑋̄(𝑦) = 𝜋
2 ⟨∇𝑥𝑓(𝑋, 𝑦), 𝑋̄⟩ and note

that

⟨∇𝑦ℎ𝑋,𝑋̄(𝑦), 𝑦⟩ =
𝜋

2
⟨∂2𝑥𝑦𝑓(𝑋, 𝑦), 𝑋̄ ⊗ 𝑦⟩.
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A different iteration scheme of the same Maurey-Pisier inequality (2.3) is proposed
in [1].

Proposition 2.3 has a straightforward generalization to functions of more than
two Gaussian vectors. Namely, given 𝑑 independent random vectors 𝑋1, . . . , 𝑋𝑑,
one defines

Π𝑑−1𝑉 =
∑

∅∕=𝐾⊆{1,...,𝑑}
(−1)#𝐾−1𝔼 [𝑉 ∣𝜎(𝑋𝑖 : 𝑖 ∕∈ 𝐾)] .

On the 𝐿2 space, Π𝑑−1 is an orthogonal projection onto the subspace spanned by
functions each of which depends on at most 𝑑−1 vectors among 𝑋1, . . . , 𝑋𝑑. Next,
let 𝑋𝑖 be a standard Gaussian vector in ℝ𝑛𝑖 and (𝑋1, . . . , 𝑋𝑑) be an independent
copy of the sequence (𝑋1, . . . , 𝑋𝑑). Then, for any convex Φ: ℝ → ℝ and 𝒞𝑑 function
𝑓 : ℝ𝑛1 × ⋅ ⋅ ⋅ × ℝ𝑛𝑑 → ℝ,

𝔼Φ
(
𝑓(𝑋1, . . . , 𝑋𝑑) − Π𝑑−1𝑓(𝑋1, . . . , 𝑋𝑑)

)
≤ 𝔼Φ

(
(
𝜋

2
)𝑑⟨∂𝑑𝑥1...𝑥𝑑

𝑓(𝑋1, . . . , 𝑋𝑑), 𝑋1 ⊗ ⋅ ⋅ ⋅ ⊗𝑋𝑑⟩
)
,

where

⟨∂𝑑𝑥1...𝑥𝑑
𝑓(𝑥(1), . . . , 𝑥(𝑑)), 𝑦(1) ⊗ ⋅ ⋅ ⋅ ⊗ 𝑦(𝑑)⟩

=
∑

𝑖1≤𝑛1,...,𝑖𝑑≤𝑛𝑑

∂𝑑𝑓

∂𝑥
(1)
𝑖1

⋅ ⋅ ⋅ ∂𝑥(𝑑)𝑖𝑑
(𝑥(1), . . . , 𝑥(𝑑))𝑦

(1)
𝑖1

⋅ ⋅ ⋅ ⋅ ⋅ 𝑦(𝑑)𝑖𝑑
.

Clearly, the higher-order analog of Theorem 2.1 requires moments estimates for
(decoupled) Gaussian chaoses of order 𝑑,

𝑆 =
∑

𝑖1≤𝑛1,...,𝑖𝑑≤𝑛𝑑
𝑎𝑖1⋅⋅⋅𝑖𝑑𝑔

(1)
𝑖1

⋅ ⋅ ⋅ ⋅ ⋅ 𝑔(𝑑)𝑖𝑑
,

where 𝐺(𝑗) = (𝑔
(𝑗)
1 , . . . , 𝑔

(𝑗)
𝑛𝑗 ), 𝑗 = 1, . . . , 𝑑 are independent standard Gaussian vec-

tors. Optimal estimates were found by Latal̷a [4] and they are expressed explicitly
in terms of some norms of the multi-indexed matrix 𝐴 = (𝑎𝑖1⋅⋅⋅𝑖𝑑). For example,
in the case 𝑑 = 3, for any 𝑝 ≥ 2,

𝑐𝑚𝑝(𝐴) ≤ ∥𝑆∥𝑝 ≤ 𝐶𝑚𝑝(𝐴),

where

𝑚𝑝(𝐴) = ∥𝐴∥{1}{2}{3}𝑝3/2 + (∥𝐴∥{12}{3} + ∥𝐴∥{13}{2} + ∥𝐴∥{23}{1})𝑝
+ ∥𝐴∥{123}𝑝1/2

and

∥𝐴∥{1}{2}{3} = sup

{ ∑
𝑖1,𝑖2,𝑖3

𝑎𝑖1𝑖2𝑖3𝑥
(1)
𝑖1

𝑥
(2)
𝑖2

𝑥
(3)
𝑖3

:
∑
𝑖𝑗

(
𝑥
(𝑗)
𝑖𝑗

)2
≤ 1 for 𝑗 = 1, 2, 3

}



Gaussian Concentration for Non-Lipschitz Functions 109

is the operator norm of 𝐴 considered as a 3-linear functional on ℝ𝑛1 ×ℝ𝑛2 ×ℝ𝑛3 ,
∥𝐴∥{123} is the Hilbert-Schmidt norm of 𝐴 (the sum of squares of all the entries
of 𝐴), and, e.g.,

∥𝐴∥{12}{3} = sup

{ ∑
𝑖1,𝑖2,𝑖3

𝑎𝑖1𝑖2𝑖3𝑥
(12)
𝑖1𝑖2

𝑥
(3)
𝑖3

:
∑
𝑖1,𝑖2

(
𝑥
(12)
𝑖1𝑖2

)2
≤ 1 and

∑
𝑖3

(
𝑥
(3)
𝑖3

)2
≤ 1

}
.

Let us also mention that since the Maurey-Pisier inequality behaves well
under Lipschitz maps (see [7, p. 181]), one can have a version of Proposition 2.3
for random vectors 𝑋 = 𝑇1(𝐺1) and 𝑌 = 𝑇2(𝐺2), where 𝑇𝑖 : ℝ

𝑛𝑖 → ℝ𝑛𝑖 is Lipschitz
with a constant 𝐿𝑖 and 𝐺1, 𝐺2 are independent standard Gaussian vectors:

𝔼Φ
(
𝑓(𝑋,𝑌 ) − Π1𝑓(𝑋,𝑌 )

) ≤ 𝔼Φ
(
𝐿1𝐿2(

𝜋

2
)2⟨∂2𝑥𝑦𝑓(𝑋,𝑌 ), 𝐺̄1 ⊗ 𝐺̄2⟩

)
,

where (𝐺̄1, 𝐺̄2) is an independent copy of (𝐺1, 𝐺2),

3. Application to U-statistics

Consider a U-statistic over an i.i.d. sample of 𝒩 (0, 1) random variables

𝑍 =
∑

𝑖,𝑗≤𝑛, 𝑖∕=𝑗
ℎ𝑖,𝑗(𝑔𝑖, 𝑔𝑗).

Assume that all kernels ℎ𝑖,𝑗 are symmetric and completely degenerate, i.e.,
ℎ(𝑥, 𝑦) = ℎ(𝑦, 𝑥) and 𝔼𝑔𝑖ℎ𝑖,𝑗(𝑔𝑖, 𝑔𝑗) = 0 a.s. and 𝔼𝑔𝑗ℎ𝑖,𝑗(𝑔𝑖, 𝑔𝑗) = 0 a.s. Further,
assume for all 𝑥, 𝑦 ∈ ℝ, ∣∣∣∣ ∂2ℎ∂𝑥∂𝑦

(𝑥, 𝑦)

∣∣∣∣ ≤ 𝑎𝑖𝑗 .

By the decoupling inequalities for U-statistics [6], an estimate for tails of 𝑍 follows
from a corresponding estimate for a decoupled version of 𝑍:

𝑍 =
∑

𝑖,𝑗≤𝑛, 𝑖∕=𝑗
ℎ𝑖,𝑗(𝑔𝑖, 𝑔

′
𝑗),

where 𝑌 = (𝑔′1, . . . , 𝑔′𝑛) is an independent copy of 𝑋 = (𝑔1, . . . , 𝑔𝑛). Note that

the complete degeneracy of the kernels ℎ𝑖,𝑗 implies Π1𝑍 = 0 a.s. Also note that

𝑍 = 𝑓(𝑋,𝑌 ) with 𝑓 satisfying

∥∂2𝑥𝑦𝑓∥op ≤ ∥(𝑎𝑖𝑗)∥op and ∥∂2𝑥𝑦𝑓∥HS ≤ ∥(𝑎𝑖𝑗)∥HS.
Therefore we obtain

Corollary 3.1. In the setting described above, for all 𝑡 > 0,

ℙ(∣𝑍∣ ≥ 𝑡) ≤ 𝐶 exp
(−𝑐min

(
𝑡/∥(𝑎𝑖𝑗)∥op, 𝑡2/∥(𝑎𝑖𝑗)∥2HS

))
.
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Rates of Convergence in the Strong Invariance
Principle for Non-adapted Sequences.
Application to Ergodic Automorphisms
of the Torus

Jérôme Dedecker, Florence Merlevède and Françoise Pène

Abstract. In this paper, we give rates of convergence in the strong invariance
principle for non-adapted sequences satisfying projective criteria. The results
apply to the iterates of ergodic automorphisms 𝑇 of the 𝑑-dimensional torus
𝕋𝑑, even in the non hyperbolic case. In this context, we give a large class of
unbounded function 𝑓 from 𝕋𝑑 to ℝ, for which the partial sum 𝑓 ∘ 𝑇 + 𝑓 ∘
𝑇 2 + ⋅ ⋅ ⋅ + 𝑓 ∘ 𝑇𝑛 satisfies a strong invariance principle with an explicit rate
of convergence.

Mathematics Subject Classification (2010). 60F17; 37D30.

Keywords.Almost sure invariance principle, strong approximations, nonadapt-
ed sequences, ergodic automorphisms of the torus.

1. Introduction and notations

Let (Ω,𝒜,ℙ) be a probability space, and 𝑇 : Ω 9→ Ω be a bijective bimeasurable
transformation preserving the probability ℙ. For a 𝜎-algebra ℱ0 satisfying ℱ0 ⊆
𝑇−1(ℱ0), we define the nondecreasing filtration (ℱ𝑖)𝑖∈ℤ by ℱ𝑖 = 𝑇−𝑖(ℱ0). The 𝕃𝑝

norm of a random variable 𝑋 is denoted by ∥𝑋∥𝑝 = (𝔼(∣𝑋 ∣𝑝))1/𝑝.
Let 𝑋0 be a real-valued and square integrable random variable such that

𝔼(𝑋0) = 0, and define the stationary sequence (𝑋𝑖)𝑖∈ℤ by 𝑋𝑖 = 𝑋0∘𝑇 𝑖. Define then
the partial sum by 𝑆𝑛 = 𝑋1+𝑋2+ ⋅ ⋅ ⋅+𝑋𝑛. According to the Birkhoff-Khinchine
theorem, 𝑆𝑛 satisfies a strong law of large numbers. One can go further in the
study of the statistical properties of 𝑆𝑛. We study here the rate of convergence
in the almost sure invariance principle (ASIP). More precisely, we give conditions

F. Pène is partially supported by the French ANR projects MEMEMO2 and PERTURBATIONS.

c⃝ 2013 Springer Basel
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under which there exists a sequence of independent identically distributed (iid)
Gaussian random variables (𝑍𝑖)𝑖≥1 such that

sup
1≤𝑘≤𝑛

∣∣∣ 𝑘∑
𝑖=1

(𝑋𝑖 − 𝑍𝑖)
∣∣∣ = 𝑜(𝑛1/𝑝𝐿(𝑛)) almost surely, (1.1)

for 𝑝 ∈]2, 4] and 𝐿 an explicit slowly varying function. Let us recall that, in the iid
case, Komlós, Major and Tusnády [13] and Major [18] obtained an ASIP with the
optimal rate 𝑜(𝑛1/𝑝) in (1.1) as soon as the random variables admit a moment of
order 𝑝, for 𝑝 > 2.

Since the seminal paper by Philipp and Stout [25], many authors have con-
sidered this problem in a dependent context, but most of the papers deal with the
adapted case, when 𝑋0 is ℱ0 measurable (for instance, ℱ0 is the past 𝜎-algebra
𝜎(𝑋𝑖, 𝑖 ≤ 0)). Unfortunately, it is quite common to encounter dynamical systems
for which the natural filtration does not permit the control of any quantity involv-
ing terms of the type ∥𝔼(𝑋𝑛∣ℱ0)∥𝑝.

In this paper, we shall not assume that 𝑋0 is ℱ0-measurable, and we shall give
conditions on the quantities ∥𝔼(𝑋𝑛∣ℱ0)∥𝑝, ∥𝑋−𝑛−𝔼(𝑋−𝑛∣ℱ0)∥𝑝 and ∥𝔼(𝑆2𝑛∣ℱ−𝑛)−
𝔼(𝑆2𝑛)∥𝑝/2 for (1.1) to hold (see Theorems 3.1 and 3.2 of Section 3). These condi-
tions are in the same spirit as those given by Gordin [7] for 𝑝 = 2 to get the usual
central limit theorem. Our proof is based on the approximation

𝑛∑
𝑖=1

𝑋𝑖 = 𝑀𝑛 + 𝑅𝑛

by the martingale 𝑀𝑛 = 𝑑1 + 𝑑2 + ⋅ ⋅ ⋅ + 𝑑𝑛, where 𝑑𝑖 is the martingale difference

𝑑𝑖 =
∑
𝑘∈ℤ

(𝔼(𝑋𝑘∣ℱ𝑖) − 𝔼(𝑋𝑘∣ℱ𝑖−1))

introduced by Gordin [7] and Heyde [10]. In the adapted case, similar conditions
are given in the recent paper [2], together with a long list of applications.

In the non-adapted case, it is easy to see that our results apply to a large
class of two-sided functions of iid sequences, or two-sided functions of absolutely
regular sequences. But they also apply to very complicated dynamical systems,
for which such a representation by functions of absolutely regular sequences is
not available. In the next section, we consider the case where 𝑇 is an ergodic
automorphism of the 𝑑-dimensional torus 𝕋𝑑, and ℙ is the Lebesgue measure on
𝕋𝑑. In this context, we use the 𝜎-algebras ℱ𝑖 considered by Le Borgne [14]. As a
consequence of Theorem 2.1, we obtain that (1.1) holds for 𝑝 = 4 and 𝑋𝑖 = 𝑓 ∘𝑇 𝑖,
where 𝑓 : 𝕋𝑑 → ℝ, as soon as the Fourier coefficients (𝑐k)k∈ℤ𝑑 of 𝑓 are such that

∣𝑐k∣ ≤ 𝐴
𝑑∏
𝑖=1

1

(1 + ∣𝑘𝑖∣)3/4 log𝛼(2 + ∣𝑘𝑖∣) for some 𝛼 > 13/8.



Rates in the ASIP for Non-adapted Sequences 115

We also get that there exists a positive 𝜀 such that

sup
1≤𝑘≤𝑛

∣∣∣ 𝑘∑
𝑖=1

(𝑋𝑖 − 𝑍𝑖)
∣∣∣ = 𝑜(𝑛1/2−𝜀) almost surely,

as soon as

∣𝑐k∣ ≤ 𝐴

𝑑∏
𝑖=1

1

(1 + ∣𝑘𝑖∣)𝛿 for some 𝛿 > 1/2.

These rates of convergence in the almost sure invariance principle complement the
results by Leonov [16] and Le Borgne [14] for the central limit theorem and the
almost sure invariance principle respectively. Let us mention that Dolgopyat [5]
established an ASIP with the rate 𝑜(𝑛1/2−𝜀) (for some 𝜀 > 0) valid for ergodic
automorphisms of the torus and 𝑓 a Hölder continuous function. Thanks to the
decorrelation estimates obtained in [15], the rate for Hölder observables can be
improved by applying the general result of Gouëzel in [8] to get the rate 𝑜(𝑛1/4+𝜀)
for every 𝜀 > 0, and by applying the results of the present paper to get the rate
𝑜(𝑛1/4𝐿(𝑛)). To our knowledge, the present work gives the first strong approxima-
tion results for such partially hyperbolic transformations 𝑇 for unbounded (and
then non continuous) functions 𝑓 .

To conclude, let us mention some previous works in the context of dynamical
systems: several results have been established with the rate 𝑜(𝑛1/2−𝜀) for some
𝜀 > 0 (see [4, 5, 11, 19, 24]). Results giving a rate in 𝑜(𝑛1/4+𝜀) for every 𝜀 > 0 can
be found in [6, 8, 20, 21]. Most of these results hold for bounded functions 𝑓 .

Let us reiterate that we can reach the rate 𝑜(𝑛1/4𝐿(𝑛)) instead of 𝑜(𝑛1/4+𝜀)
for every 𝜀 > 0. Moreover, our conditions giving the rate 𝑜(𝑛1/𝑝𝐿(𝑛)) are related
to moments of order 𝑝 of 𝑓 . Such results are not very common in the context
of dynamical systems (let us mention [8] in the particular case of Gibbs-Markov
maps, and [3, 23] for generalized Pommeau-Manneville maps).

2. ASIP with rates for ergodic automorphisms of the torus

A probability dynamical system (Ω,ℱ ,ℙ, 𝑇 ) is given by a probability space (Ω,ℱ ,ℙ)
and a measurable ℙ-preserving transformation 𝑇 : Ω → Ω. Such a dynamical sys-
tem is said to be ergodic if the only 𝐴 ∈ ℱ such that 𝑇−1𝐴 = 𝐴 a.s. are the sets
of probability 0 or 1.

If (Ω,ℱ ,ℙ, 𝑇 ) is ergodic, the study of the stochastic properties of the sta-
tionary sequence (𝑓 ∘ 𝑇 𝑘)𝑘≥1 starts with the Birkhoff-Khintchine theorem [1, 12].
This theorem ensures that, for every integrable function 𝑓 : Ω → ℝ, the sequence
𝑛−1
∑𝑛

𝑘=1 𝑓 ∘ 𝑇 𝑘 converges almost surely to 𝔼(𝑓). This means that (𝑓 ∘ 𝑇 𝑘)𝑘≥1
satisfies a strong law of large number. A natural question is then to investigate
further stochastic properties of (𝑓 ∘ 𝑇 𝑘)𝑘≥1.

We illustrate our general Theorems 3.1 and 3.2 by a concrete example of in-
vertible non hyperbolic dynamical system, which is actually partially hyperbolic.
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We shall prove a strong invariance principle for a large class of unbounded func-
tions 𝑓 , with a rate depending on the rate of convergence to zero of the Fourier
coefficients of 𝑓 . In this context, we use the 𝜎-algebras ℱ𝑖 considered by Le Borgne
[14]. The stationary sequence (𝑇 𝑖)𝑖∈ℤ is non-adapted to this filtration (ℱ𝑖)𝑖∈ℤ, in
the sense that 𝑇 𝑖 is not ℱ𝑖 measurable. This is an important difference with the
classical probabilistic situation, where the study of stationary sequences can often
be done with the help of a natural “past” filtration (think of stationary Markov
chains, or of causal linear processes).

Let 𝑑 ≥ 2. We consider a group automorphism 𝑇 of the torus 𝕋𝑑 = ℝ𝑑/ℤ𝑑.
For every 𝑥 ∈ ℝ𝑑, we write 𝑥̄ its class in 𝕋𝑑. We recall that 𝑇 is the quotient map
of a linear map 𝑇 : ℝ𝑑 → ℝ𝑑 given by 𝑇 (𝑥) = 𝑆 ⋅ 𝑥, where 𝑆 is a 𝑑 × 𝑑-matrix
with integer entries and with determinant 1 or −1. The map 𝑥 9→ 𝑆 ⋅ 𝑥 preserves
the infinite Lebesgue measure 𝜆 on ℝ𝑑 and 𝑇 preserves the probability Lebesgue
measure 𝜆̄. We suppose that 𝑇 is ergodic, which is equivalent to the fact that no
eigenvalue of 𝑆 is a root of the unity. In this case, it is known that the spectral
radius of 𝑆 is larger than one (and so 𝑆 admits at least an eigenvalue of modulus
larger than one and at least an eigenvalue of modulus smaller than one). This
hypothesis holds true in the case of hyperbolic automorphisms of the torus (i.e.,
in the case when no eigenvalue of 𝑆 has modulus one) but is much weaker. Indeed,
as mentioned in [14], the following matrix gives an example of an ergodic non
hyperbolic automorphism of 𝕋4:

𝑆 :=

⎛⎜⎜⎝
0 0 0 −1
1 0 0 2
0 1 0 0
0 0 1 2

⎞⎟⎟⎠ .

When 𝑇 is ergodic and non hyperbolic, the dynamical system (𝕋𝑑, 𝑇, 𝜆̄) has no
Markov partition. However, it is possible to construct some measurable partition
[17], to prove a central limit theorem [16]. Moreover, in [14], Le Borgne proved the
functional central limit theorem and the Strassen strong invariance principle for
(𝑋𝑘 = 𝑓 ∘ 𝑇 𝑘)𝑘 under weak hypotheses on 𝑓 , thanks to Gordin’s method and to
the partitions studied by Lind in [17].

We give here rates of convergence in the strong invariance principle for (𝑋𝑘 =
𝑓 ∘𝑇 𝑘)𝑘 under conditions on the Fourier coefficients of 𝑓 : 𝕋𝑑 → ℝ. In what follows,
for k ∈ ℤ𝑑, we denote by ∣k∣ = max𝑖∈{1,...,𝑑} ∣𝑘𝑖∣.

Theorem 2.1. Let 𝑇 be an ergodic automorphism of 𝕋𝑑 with the notations as above.
Let 𝑝 ∈]2, 4] and 𝑞 be its conjugate exponent. Let 𝑓 : 𝕋𝑑 → ℝ be a centered function
with Fourier coefficients (𝑐k)k∈ℤ𝑑 satisfying, for any integer 𝑏 ≥ 2,

∑
∣k∣≥𝑏

∣𝑐k∣𝑞 ≤ 𝑅 log−𝜃(𝑏) for some 𝜃 >
𝑝2 − 2

𝑝(𝑝− 1)
, (2.2)
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and ∑
∣k∣≥𝑏

∣𝑐k∣2 ≤ 𝑅 log−𝛽(𝑏) for some 𝛽 >
3𝑝− 4

𝑝
. (2.3)

Then the series

𝜎2 = 𝜆̄((𝑓 − 𝜆̄(𝑓))2) + 2
∑
𝑘>0

𝜆̄((𝑓 − 𝜆̄(𝑓))𝑓 ∘ 𝑇 𝑘)

converges absolutely and, enlarging 𝕋𝑑 if necessary, there exists a sequence (𝑍𝑖)𝑖≥1
of iid Gaussian random variables with zero mean and variance 𝜎2 such that, for
any 𝑡 > 2/𝑝,

sup
1≤𝑘≤𝑛

∣∣∣ 𝑘∑
𝑖=1

𝑓∘𝑇 𝑖−
𝑘∑
𝑖=1

𝑍𝑖

∣∣∣ = 𝑜
(
𝑛1/𝑝(log𝑛)(𝑡+1)/2

)
almost surely, as 𝑛 → ∞. (2.4)

Observe that (2.3) follows from (2.2) provided that 𝜃 > (3𝑝 − 4)/(2𝑝 − 2).
Hence, (2.2) and (2.3) are both satisfied as soon as∑

∣k∣≥𝑏
∣𝑐k∣𝑞 ≤ 𝑅 log−𝜃(𝑏) for some 𝜃 >

3𝑝− 4

2(𝑝− 1)
.

Example. Let 𝑝 ∈]2, 4]. If we assume that the Fourier coefficients of 𝑓 are such
that

∣𝑐k∣ ≤ 𝐴

𝑑∏
𝑖=1

1

(1 + ∣𝑘𝑖∣)1/𝑞 log𝛼(2 + ∣𝑘𝑖∣) , (2.5)

for some positive constant 𝐴, then the conditions (2.2) and (2.3) are both satisfied
provided that 𝛼 > (2𝑝2 − 𝑝− 2)/𝑝2.

Let us now compare our hypotheses on Fourier coefficients with those ap-
pearing in other works. In [16], Leonov proved a central limit theorem (possibly
degenerated) when

∣𝑐k∣ ≤ 𝐴

𝑑∏
𝑖=1

1

(1 + ∣𝑘𝑖∣)1/2 log𝛼(2 + ∣𝑘𝑖∣) for some 𝛼 > 3/2. (2.6)

In [14], Le Borgne proved the functional central limit theorem and the Strassen
strong invariance principle when (2.3) holds true with 𝛽 > 2 (and when 𝑓 is not a
coboundary), which is a weaker condition than (2.6). Observe that, as 𝑝 converges
to 2, (𝑝2 − 2)/(𝑝(𝑝− 1)) and (3𝑝− 4)/𝑝 both converge to 1.

3. Probabilistic results

In the rest of the paper, we shall use the following notations: 𝔼𝑘(𝑋) = 𝔼(𝑋 ∣ℱ𝑘),
and 𝑎𝑛 ≪ 𝑏𝑛 means that there exists a numerical constant 𝐶 not depending on 𝑛
such that 𝑎𝑛 ≤ 𝐶𝑏𝑛, for all positive integers 𝑛.
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In this section, we give rates of convergence in the strong invariance principle
under projective criteria for stationary sequences that are non necessarily adapted
to ℱ𝑖.

Theorem 3.1. Let 2 < 𝑝 < 4 and 𝑡 > 2/𝑝. Assume that 𝑋0 belongs to 𝕃𝑝, that∑
𝑛≥2

𝑛𝑝−1

𝑛2/𝑝(log𝑛)(𝑡−1)𝑝/2
(∥𝔼0(𝑋𝑛)∥𝑝𝑝 + ∥𝑋−𝑛 − 𝔼0(𝑋−𝑛)∥𝑝𝑝

)
< ∞ , (3.1)

and that∑
𝑛≥2

𝑛3𝑝/4

𝑛2(log𝑛)(𝑡−1)𝑝/2
(∥𝔼0(𝑋𝑛)∥𝑝/22 + ∥𝑋−𝑛 − 𝔼0(𝑋−𝑛)∥𝑝/22

)
< ∞ . (3.2)

Assume in addition that there exists a positive integer 𝑚 such that∑
𝑛≥2

1

𝑛2(log 𝑛)(𝑡−1)𝑝/2
∥∥𝔼−𝑛𝑚(𝑆2𝑛) − 𝔼(𝑆2𝑛)

∥∥𝑝/2
𝑝/2

< ∞ . (3.3)

Then 𝑛−1𝔼(𝑆2𝑛) converges to 𝜎2 =
∑

𝑘∈ℤ Cov(𝑋0, 𝑋𝑘) and, enlarging Ω if neces-
sary, there exists a sequence (𝑍𝑖)𝑖≥1 of iid Gaussian random variables with zero
mean and variance 𝜎2 such that

sup
1≤𝑘≤𝑛

∣∣∣𝑆𝑘 − 𝑘∑
𝑖=1

𝑍𝑖

∣∣∣ = 𝑜
(
𝑛1/𝑝(log 𝑛)(𝑡+1)/2

)
almost surely, as 𝑛 →∞. (3.4)

Theorem 3.2. Let 𝑡 > 1/2. Assume that 𝑋0 belongs to 𝕃4 and that the conditions
(3.1) and (3.3) hold with 𝑝 = 4. Assume in addition that∑

𝑛≥2
𝑛(log𝑛)4−2𝑡

(∥𝔼0(𝑋𝑛)∥22 + ∥𝑋−𝑛 − 𝔼0(𝑋−𝑛)∥22
)
< ∞ . (3.5)

Then the conclusion of Theorem 3.1 holds with 𝑝 = 4.

Of course, if (𝑋𝑖)𝑖∈ℤ is a sequence of iid random variables in 𝕃𝑝, then, taking
ℱ𝑖 = 𝜎(𝑋𝑘, 𝑘 ≤ 𝑖), all the conditions (3.1), (3.2), (3.3) and (3.5) are satisfied. In
that particular case, we obtain an extra power of log(𝑛) compared to the optimal
rate 𝑛1/𝑝.

The conditions (3.1), (3.2) and (3.5) are similar to the conditions given by
Gordin [7] when 𝑝 = 2 for the central limit theorem, and hence Theorem 3.1 and
3.2 have the same range of applicability as Gordin’s result.

For the proof of Theorems 3.1 and 3.2, we shall use the approximating mar-
tingale 𝑀𝑛 introduced by Gordin [7], and we shall give an appropriate upper bound
on 𝑅𝑛 = 𝑆𝑛 −𝑀𝑛. The next step is to get a strong approximation result for the
martingale 𝑀𝑛. This will be done by applying Proposition 5.1 in [2], which itself
is based on the Skorohod embedding for martingales, as in [26].
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3.1. Proofs of Theorems 3.1 and 3.2

Proof. We first notice that since 𝑝 > 2, (3.1) implies that∑
𝑛>0

𝑛−1/𝑝∥𝔼0(𝑋𝑛)∥𝑝 < ∞ and
∑
𝑛>0

𝑛−1/𝑝∥𝑋−𝑛 − 𝔼0(𝑋−𝑛)∥𝑝 < ∞

(apply Hölder’s inequality to see this). Let 𝑃𝑘(𝑋) = 𝔼𝑘(𝑋) − 𝔼𝑘−1(𝑋). Using
Lemma 5.1 of the appendix with 𝑞 = 1, we infer that∑

𝑘∈ℤ
∥𝑃0(𝑋𝑘)∥𝑝 < ∞ . (3.6)

In addition the condition (3.6) implies that 𝑛−1𝔼(𝑆2𝑛) converges to the quantity
𝜎2 =

∑
𝑘∈Z Cov(𝑋0, 𝑋𝑘).

Let now 𝑑0 :=
∑

𝑗∈ℤ 𝑃0(𝑋𝑗). Then 𝑑0 belongs to 𝕃𝑝 and 𝔼(𝑑0∣ℱ−1) = 0. Let

𝑑𝑖 := 𝑑0 ∘ 𝑇 𝑖 for all 𝑖 ∈ ℤ. Then (𝑑𝑖)𝑖∈ℤ is a stationary sequence of martingale
differences in 𝕃𝑝. Let

𝑀𝑛 :=

𝑛∑
𝑖=1

𝑑𝑖 and 𝑅𝑛 := 𝑆𝑛 −𝑀𝑛 .

The theorems will be proven if we can show that

𝑅𝑛 = 𝑜
(
𝑛1/𝑝(log 𝑛)(𝑡+1)/2

)
almost surely as 𝑛 →∞, (3.7)

and that (3.4) holds true with 𝑀𝑘 replacing 𝑆𝑘. Since 𝔼(𝑑20) = 𝜎2 and 𝑡 > 𝑝/2,
according to Proposition 5.1 in [2] (applied with 𝜓(𝑛) := 𝑛2/𝑝(log 𝑛)𝑡), to prove
that (3.4) holds true with 𝑀𝑘 replacing 𝑆𝑘, it suffices to prove that∑

𝑛≥2

1

𝑛2(log𝑛)(𝑡−1)𝑝/2
∥∥𝔼0(𝑀2

𝑛) − 𝔼(𝑀2
𝑛)
∥∥𝑝/2
𝑝/2

< ∞ . (3.8)

By standard arguments, (3.7) will be satisfied if we can show that

∑
𝑟>0

∥max1≤ℓ≤2𝑟 ∣𝑅ℓ∣∥𝑝𝑝
2𝑟 𝑟(𝑡+1)𝑝/2

< ∞ . (3.9)

Now, by stationarity, ∥max1≤ℓ≤2𝑟 ∣𝑅ℓ∣∥𝑝 ≪ 2𝑟/𝑝
∑𝑟

𝑘=0 2−𝑘/𝑝∥𝑅2𝑘∥𝑝 (see for in-
stance inequality (6) in [27]) and for all 𝑖, 𝑗 ≥ 0, ∥𝑅𝑖+𝑗∥𝑞 ≤ ∥𝑅𝑖∥𝑞 + ∥𝑅𝑗∥𝑞.
Applying then Item 1 of Lemma 37 in [22], we derive that for any integer 𝑛 in
[2𝑟, 2𝑟+1[, ∥∥∥∥ max

1≤ℓ≤2𝑟
∣𝑅ℓ∣
∥∥∥∥
𝑝

≪ 𝑛1/𝑝
𝑛∑

𝑘=1

𝑘−(1+1/𝑝)∥𝑅𝑘∥𝑝 . (3.10)
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Therefore using (3.10) followed by an application of Hölder’s inequality, we get
that for any 𝛼 < 1,∑

𝑟>0

∥max1≤ℓ≤2𝑟 ∣𝑅ℓ∣∥𝑝𝑝
2𝑟 𝑟(𝑡+1)𝑝/2

≪
∑
𝑛≥2

1

𝑛 (log𝑛)(𝑡+1)𝑝/2

( 𝑛∑
𝑘=1

𝑘−(1+1/𝑝)∥𝑅𝑘∥𝑝
)𝑝

≪
∑
𝑛≥2

(log𝑛)(𝑝−1)(1−𝛼)

𝑛 (log𝑛)(𝑡+1)𝑝/2

𝑛∑
𝑘=1

𝑘−2(log 𝑘)𝛼(𝑝−1)∥𝑅𝑘∥𝑝𝑝 .

Hence taking 𝛼 ∈]1 − 𝑝/(2(𝑝 − 1)), 1[ and changing the order of summation, we
infer that (3.9) and then (3.7) hold provided that∑

𝑛≥2

∥𝑅𝑛∥𝑝𝑝
𝑛2(log𝑛)(𝑡−1)𝑝/2

< ∞ . (3.11)

On an other hand, we shall prove that condition (3.8) is implied by: there
exists a positive finite integer 𝑚 such that∑

𝑛≥2

1

𝑛2(log𝑛)(𝑡−1)𝑝/2
∥∥𝔼−𝑛𝑚(𝑀2

𝑛) − 𝔼(𝑀2
𝑛)
∥∥𝑝/2
𝑝/2

< ∞ . (3.12)

For any nonnegative integer 𝑖, we set 𝑉𝑖 := ∥𝔼0(𝑀2
𝑖 )−𝔼(𝑀2

𝑖 )∥𝑝/2. Using that 𝑀𝑛

is a martingale, we infer that, for any nonnegative integers 𝑖 and 𝑗,

𝑉𝑖+𝑗 ≤ 𝑉𝑖 + 𝑉𝑗 . (3.13)

Let now 𝑛 ∈ [2𝑘, 2𝑘+1 − 1] ∩ ℕ, and write its binary expansion:

𝑛 =

𝑘∑
ℓ=0

2ℓ𝑏ℓ where 𝑏𝑘 = 1 and 𝑏𝑗 ∈ {0, 1} for 𝑗 = 0, . . . , 𝑘 − 1 .

Inequality (3.13) combined with Hölder’s inequality implies that, for any 𝜂 > 0,

𝑉 𝑝/2
𝑛 ≤

( 𝑘∑
ℓ=0

𝑉2ℓ

)𝑝/2
≪ 2𝜂𝑝(𝑘+1)/2

𝑘∑
ℓ=0

(𝑉2ℓ
2𝜂ℓ

)𝑝/2
. (3.14)

Therefore ∑
𝑛≥2

1

𝑛2(log 𝑛)(𝑡−1)𝑝/2
𝑉 𝑝/2
𝑛 ≪

∑
𝑘>0

2𝜂𝑝(𝑘+1)/2

2𝑘𝑘(𝑡−1)𝑝/2

𝑘∑
ℓ=0

(𝑉2ℓ
2𝜂ℓ

)𝑝/2
.

Changing the order of summation and taking 𝜂 ∈]0, 2/𝑝[, it follows that (3.8) is
implied by ∑

𝑘≥1

1

2𝑘𝑘(𝑡−1)𝑝/2
∥∥𝔼0(𝑀2

2𝑘) − 𝔼(𝑀2
2𝑘)
∥∥𝑝/2
𝑝/2

< ∞ (3.15)

(actually due to the subadditivity of the sequence (𝑉𝑖) both conditions are equiva-
lent, see the proof of item 1 of Lemma 37 in [22] to prove that (3.8) entails (3.15)).
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Now, since (𝑀𝑛) is a martingale,

𝔼0(𝑀
2
2𝑘) − 𝔼(𝑀2

2𝑘) =

𝑘∑
𝑗=1

(
𝔼0((𝑀2𝑗 −𝑀2𝑗−1)2) − 𝔼((𝑀2𝑗 −𝑀2𝑗−1)2)

)
+ 𝔼0(𝑑

2
1) − 𝔼(𝑑21) ,

which implies by stationarity that

∥∥𝔼0(𝑀2
2𝑘) − 𝔼(𝑀2

2𝑘)
∥∥
𝑝/2

≤
𝑘−1∑
𝑗=0

∥∥𝔼−2𝑗 (𝑀2
2𝑗 ) − 𝔼(𝑀2

2𝑗 )
∥∥
𝑝/2

+
∥∥𝔼0(𝑑21) − 𝔼(𝑑21)

∥∥
𝑝/2

.

Therefore by using Hölder’s inequality as done in (3.14) with 𝜂 ∈]0, 2/𝑝[, we infer
that (3.15) is implied by∑

𝑘≥1

1

2𝑘𝑘(𝑡−1)𝑝/2
∥∥𝔼−2𝑘(𝑀2

2𝑘) − 𝔼(𝑀2
2𝑘)
∥∥𝑝/2
𝑝/2

< ∞ . (3.16)

Notice now that the sequence (𝑊𝑛)𝑛>0 defined by

𝑊𝑛 :=
∥∥𝔼−𝑛(𝑀2

𝑛) − 𝔼(𝑀2
𝑛)
∥∥
𝑝/2

is subadditive. Indeed, for any non negative integers 𝑖 and 𝑗, using that 𝑀𝑛 is a
martingale together with the stationarity, we derive that

𝑊𝑖+𝑗 =
∥∥𝔼−(𝑖+𝑗)(𝑀2

𝑖 ) − 𝔼(𝑀2
𝑖 ) + 𝔼−(𝑖+𝑗)((𝑀𝑖+𝑗 −𝑀𝑖)

2) − 𝔼((𝑀𝑖+𝑗 −𝑀𝑖)
2)
∥∥
𝑝/2

≤ ∥∥𝔼−𝑖(𝑀2
𝑖 ) − 𝔼(𝑀2

𝑖 )
∥∥
𝑝/2

+
∥∥𝔼−𝑗(𝑀𝑗)

2) − 𝔼(𝑀𝑗)
2)
∥∥
𝑝/2

≤ 𝑊𝑖 + 𝑊𝑗 .

Therefore 𝑊
𝑝/2
𝑖+𝑗 ≤ 2𝑝/2𝑊

𝑝/2
𝑖 + 2𝑝/2𝑊

𝑝/2
𝑗 . This implies that, for any integer ℓ and

any integer 0 ≤ 𝑗 ≤ ℓ, 𝑊
𝑝/2
ℓ ≤ 2𝑝/2(𝑊

𝑝/2
𝑗 + 𝑊

𝑝/2
ℓ−𝑗) in such a way that

(ℓ + 1)𝑊
𝑝/2
ℓ ≤ 21+𝑝/2

ℓ∑
𝑗=1

𝑊
𝑝/2
𝑗 . (3.17)

Therefore using (3.17) with ℓ = 2𝑘, we infer that condition (3.16) is implied by∑
𝑛≥2

1

𝑛2(log 𝑛)(𝑡−1)𝑝/2
∥∥𝔼−𝑛(𝑀2

𝑛) − 𝔼(𝑀2
𝑛)
∥∥𝑝/2
𝑝/2

< ∞ . (3.18)

It remains to prove that (3.12) implies (3.18). With this aim, we have, for any
positive integer 𝑚,

𝑀𝑛 =

𝑚∑
𝑘=1

(
𝑀𝑘[𝑛𝑚−1] −𝑀(𝑘−1)[𝑛𝑚−1]

)
+ 𝑀𝑛 −𝑀𝑚[𝑛𝑚−1] .
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Using that 𝑀𝑛 is a martingale together with the stationarity, we then infer that∥∥𝔼−𝑛(𝑀2
𝑛) − 𝔼(𝑀2

𝑛)
∥∥𝑝/2
𝑝/2

≤ 2𝑝/2𝑚𝑝/2
∥∥𝔼−𝑛(𝑀2

[𝑛𝑚−1]) − 𝔼(𝑀2
[𝑛𝑚−1])

∥∥𝑝/2
𝑝/2

+ 2𝑝/2
∥∥𝔼−𝑛(𝑀2

𝑛−𝑚[𝑛𝑚−1]) − 𝔼(𝑀2
𝑛−𝑚[𝑛𝑚−1])

∥∥𝑝/2
𝑝/2

,

which, together with the fact that 𝑛−𝑚[𝑛𝑚−1] < 𝑚, implies that∥∥𝔼−𝑛(𝑀2
𝑛) − 𝔼(𝑀2

𝑛)
∥∥𝑝/2
𝑝/2

≤ 2𝑝/2𝑚𝑝/2
(

2𝑝/2∥𝑑0∥𝑝𝑝 +
∥∥𝔼−𝑛(𝑀2

[𝑛𝑚−1]) − 𝔼(𝑀2
[𝑛𝑚−1])

∥∥𝑝/2
𝑝/2

)
≤ 2𝑝/2𝑚𝑝/2

(
2𝑝/2∥𝑑0∥𝑝𝑝 +

∥∥𝔼−𝑚[𝑛𝑚−1](𝑀
2
[𝑛𝑚−1]) − 𝔼(𝑀2

[𝑛𝑚−1])
∥∥𝑝/2
𝑝/2

)
,

(3.19)

where for the last line we have used the fact that 𝑛 ≥ 𝑚[𝑛𝑚−1]. We notice now
that due to the martingale property of (𝑀𝑛) and to stationarity, the sequence
(𝑈𝑖)𝑖≥0 defined for any non negative integer 𝑖 by

𝑈𝑖 :=
∥∥𝔼−𝑚𝑖(𝑀2

𝑖 ) − 𝔼(𝑀2
𝑖 )
∥∥𝑝/2
𝑝/2

satisfies, for any positive integers 𝑖 and 𝑗,

𝑈𝑖+𝑗 ≤
(∥∥𝔼−𝑚(𝑖+𝑗)(𝑀2

𝑖 ) − 𝔼(𝑀2
𝑖 )
∥∥
𝑝/2

+
∥∥𝔼−𝑚(𝑖+𝑗)((𝑀𝑖+𝑗 −𝑀𝑖)

2) − 𝔼((𝑀𝑖+𝑗 −𝑀𝑖)
2)
∥∥
𝑝/2

)𝑝/2
≤ 2𝑝/2𝑈𝑖 + 2𝑝/2𝑈𝑗 .

Hence by (3.17) applied with 𝑊
𝑝/2
𝑖 = 𝑈𝑖,

𝑈[𝑛𝑚−1] ≤ 21+𝑝/2([𝑛𝑚−1] + 1)−1
[𝑛𝑚−1]∑
𝑘=1

𝑈𝑘 ≤ 21+𝑝/2
[𝑛𝑚−1]∑
𝑘=1

𝑈𝑘
𝑘

. (3.20)

Therefore starting from (3.19), considering (3.20) and changing the order of sum-
mation, we infer that (3.18) (and so (3.8)) holds provided that (3.12) does. To end
the proof, it remains to show that under the conditions of Theorems 3.1 and 3.2,
the conditions (3.11) and (3.12) are satisfied. This is achieved by using the two
following lemmas. □
Lemma 3.1. Let 𝑝 ∈ [2, 4]. Assume that (3.1) holds. Then∑

𝑛≥2

max1≤ℓ≤𝑛 ∥𝑅ℓ∥𝑝𝑝
𝑛2(log𝑛)(𝑡−1)𝑝/2

< ∞ ,

and (3.11) holds.

Proof. Since (3.1) implies (3.6), Item 2 of Proposition 5.1 given in the appendix
implies that, for any positive integers ℓ and 𝑁 ,

∥𝑅ℓ∥𝑝 ≪ max
𝑘=ℓ,𝑁

∥𝔼0(𝑆𝑘)∥𝑝 + max
𝑘=ℓ,𝑁

∥𝑆𝑘 − 𝔼𝑘(𝑆𝑘)∥𝑝 + ℓ1/2
∑
∣𝑗∣≥𝑁

∥𝑃0(𝑋𝑗)∥𝑝 .



Rates in the ASIP for Non-adapted Sequences 123

Next, applying Lemma 5.1 given in the appendix with 𝑞 = 1, and using the fact
that by stationarity, for any positive integer 𝑘,

∥𝔼0(𝑆𝑘)∥𝑝 ≤
𝑘∑
ℓ=1

∥𝔼0(𝑋ℓ)∥𝑝 and ∥𝑆𝑘 − 𝔼𝑘(𝑆𝑘)∥𝑝 ≤
𝑘−1∑
ℓ=0

∥𝑋−ℓ − 𝔼0(𝑋−ℓ)∥𝑝 ,
(3.21)

we derive that for, any positive integers 𝑁 ≥ 𝑛 ≥ 2,

max
1≤ℓ≤𝑛

∥𝑅ℓ∥𝑝 ≪
𝑁∑
𝑘=1

∥𝔼0(𝑋𝑘)∥𝑝 +

𝑁−1∑
𝑘=0

∥𝑋−𝑘 − 𝔼0(𝑋−𝑘)∥𝑝 (3.22)

+ 𝑛1/2
∑

𝑘≥[𝑁/2]

∥𝔼0(𝑋𝑘)∥𝑝
𝑘1/𝑝

+ 𝑛1/2
∑

𝑘≥[𝑁/2]

∥𝑋−𝑘 − 𝔼0(𝑋−𝑘)∥𝑝
𝑘1/𝑝

.

The lemma follows from (3.22) with 𝑁 = [𝑛𝑝/2] by using Hölder’s inequality (see
the computations in the proof of Proposition 2.2 in [2]). □

Lemma 3.2. Let 𝑝 ∈ [2, 4] and assume that (3.1) and (3.3) are satisfied. Assume
in addition that (3.2) holds when 2 < 𝑝 < 4 and (3.5) does when 𝑝 = 4. Then
(3.12) is satisfied.

Proof. Let 𝑚 be a positive integer such that (3.3) is satisfied. We first write that

∥𝔼−𝑛𝑚(𝑀2
𝑛) − 𝔼(𝑀2

𝑛)
∥∥
𝑝/2

≤ ∥𝔼−𝑛𝑚(𝑆2𝑛) − 𝔼(𝑆2𝑛)
∥∥
𝑝/2

+ 2∥𝔼−𝑛𝑚(𝑆𝑛𝑅𝑛) − 𝔼(𝑆𝑛𝑅𝑛)∥𝑝/2 + 2∥𝑅𝑛∥2𝑝 .
By using Lemma 3.1, and since (3.3) holds, Lemma 3.2 will follow if we can prove
that ∑

𝑛≥1

1

𝑛2(log𝑛)(𝑡−1)𝑝/2
∥𝔼−𝑛𝑚(𝑆𝑛𝑅𝑛)∥𝑝/2𝑝/2 < ∞ . (3.23)

With this aim we shall prove the following inequality. For any non negative integer
𝑟 and any positive integer 𝑢𝑛 such that 𝑢𝑛 ≤ 𝑛, we have that

∥𝔼−𝑟(𝑆𝑛𝑅𝑛)∥𝑝/2 (3.24)

≪ √
𝑢𝑛
(∥𝔼0(𝑆𝑛)∥2 + ∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛)∥2

)
+ max

𝑘={𝑛,𝑛−𝑢𝑛}
∥𝑅𝑘∥2𝑝 +

√
𝑛
(∥𝔼−𝑢𝑛(𝑆𝑛)∥2 + ∥𝑆𝑛 − 𝔼𝑛+𝑢𝑛(𝑆𝑛)∥2

)
+ max

𝑘={𝑛,𝑢𝑛}
∥𝔼−𝑟(𝑆2𝑘) − 𝔼(𝑆2𝑘)∥𝑝/2 +

√
𝑛
( 𝑛∑
𝑘=1

∥∥ ∑
∣𝑗∣≥𝑘+𝑛

𝑃0(𝑋𝑗)
∥∥2
2

)1/2
.

Let us show how, thanks to (3.24), the convergence (3.23) can be proven. Let us
first consider the case where 2 < 𝑝 < 4. Notice that the following elementary claim
is valid:

Claim 3.1. If ℱ and 𝒢 are two 𝜎-algebras such that 𝒢 ⊂ ℱ , then for any random
variable 𝑋 in 𝕃𝑞 for 𝑞 ≥ 1, ∥𝑋 − 𝔼(𝑋 ∣ℱ)∥𝑞 ≤ 2∥𝑋 − 𝔼(𝑋 ∣𝒢)∥𝑞.
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Starting from (3.24) with 𝑟 = 𝑛𝑚 and 𝑢𝑛 = 𝑛, and using Claim 3.1, we derive
that

∥𝔼−𝑛𝑚(𝑆𝑛𝑅𝑛)∥𝑝/2 ≪ ∥𝔼−𝑛𝑚(𝑆2𝑛) − 𝔼(𝑆2𝑛)∥𝑝/2
+
√
𝑛
(∥𝔼0(𝑆𝑛)∥2 + ∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛)∥2

)
+ ∥𝑅𝑛∥2𝑝 + 𝑛

∑
∣𝑗∣≥𝑛

∥𝑃0(𝑋𝑗)∥2 .

This last inequality combined with condition (3.3) and Lemma 3.1 shows that
(3.23) will be satisfied if we can prove that∑

𝑛≥2

𝑛𝑝/4

𝑛2(log 𝑛)(𝑡−1)𝑝/2
(∥𝔼0(𝑆𝑛)∥2 + ∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛)∥2

)𝑝/2
< ∞ , (3.25)

and ∑
𝑛≥2

𝑛𝑝/2

𝑛2(log𝑛)(𝑡−1)𝑝/2

(∑
∣𝑗∣≥𝑛

∥𝑃0(𝑋𝑗)∥2
)𝑝/2

< ∞ . (3.26)

To prove (3.25), we use the inequalities (3.21) with 𝑝 = 2. Hence setting

𝑎ℓ = ∥𝔼0(𝑋ℓ)∥2 + ∥𝑋−ℓ+1 − 𝔼0(𝑋−ℓ+1)∥2 , (3.27)

and using Hölder’s inequality, we derive that for any 𝛼 < 1,∑
𝑛≥2

𝑛𝑝/4

𝑛2(log𝑛)(𝑡−1)𝑝/2
(∥𝔼0(𝑆𝑛)∥2 + ∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛)∥2

)𝑝/2
≪
∑
𝑛≥2

𝑛𝑝/4

𝑛2(log𝑛)(𝑡−1)𝑝/2

( 𝑛∑
ℓ=1

𝑎ℓ

)𝑝/2
≪
∑
𝑛≥2

𝑛𝑝/4𝑛(1−𝛼)(𝑝/2−1)

𝑛2(log𝑛)(𝑡−1)𝑝/2

𝑛∑
ℓ=1

ℓ𝛼(𝑝/2−1)𝑎𝑝/2ℓ .

Taking 𝛼 ∈](3𝑝 − 8)/(2𝑝 − 4), 1[ (this is possible since 𝑝 < 4) and changing the
order of summation, we infer that (3.25) holds provided that (3.2) does. It remains
to show that (3.26) is satisfied. Using Lemma 5.1 and the notation (3.27), we first
observe that ∑

𝑛≥2

𝑛𝑝/2

𝑛2(log𝑛)(𝑡−1)𝑝/2

(∑
∣𝑗∣≥𝑛

∥𝑃0(𝑋𝑗)∥2
)𝑝/2

≪
∑
𝑛≥2

𝑛𝑝/2

𝑛2(log 𝑛)(𝑡−1)𝑝/2

( ∑
ℓ≥[𝑛/2]

ℓ−1/2𝑎ℓ

)𝑝/2
.

Therefore by Hölder’s inequality, it follows that for any 𝛼 < 1,∑
𝑛≥2

𝑛𝑝/2

𝑛2(log𝑛)(𝑡−1)𝑝/2

(∑
∣𝑗∣≥𝑛

∥𝑃0(𝑋𝑗)∥2
)𝑝/2

≪
∑
𝑛≥2

𝑛𝑝/2𝑛(1−𝛼)(𝑝/2−1)

𝑛2(log𝑛)(𝑡−1)𝑝/2
∑

ℓ≥[𝑛/2]
ℓ𝛼(𝑝/2−1)ℓ−𝑝/4𝑎𝑝/2ℓ .
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Therefore taking 𝛼 ∈]1, 2[ and changing the order of summation, we infer that
(3.25) holds provided that (3.2) does. This ends the proof of (3.23) when 𝑝 ∈]2, 4[.

Now, we prove (3.23) when 𝑝 = 4. With this aim we start from (3.24) with
𝑟 = 𝑛𝑚 and 𝑢𝑛 = [

√
𝑛]. This inequality combined with condition (3.3), Lemma

3.1 and the arguments developed to prove (3.25) and (3.26) shows that (3.23) will
be satisfied for 𝑝 = 4 if we can prove that∑

𝑛≥2

1

𝑛(log𝑛)2(𝑡−1)
(∥𝔼−[√𝑛](𝑆𝑛)∥2 + ∥𝑆𝑛 − 𝔼𝑛+[

√
𝑛](𝑆𝑛)∥2

)2
< ∞ , (3.28)

and ∑
𝑛≥2

1

𝑛2(log𝑛)2(𝑡−1)
∥∥𝔼−𝑛𝑚(𝑆2[

√
𝑛]) − 𝔼(𝑆2[

√
𝑛])
∥∥2
2
< ∞ . (3.29)

We start by proving (3.28). With this aim, using the notation (3.27), we first write
that

∥𝔼−[√𝑛](𝑆𝑛)∥2 + ∥𝑆𝑛 − 𝔼𝑛+[
√
𝑛](𝑆𝑛)∥2 ≤

𝑛+[
√
𝑛]∑

𝑘=[
√
𝑛]+1

𝑎𝑘 .

Therefore by Cauchy-Schwarz’s inequality∑
𝑛≥2

1

𝑛(log 𝑛)2(𝑡−1)
(∥𝔼−[√𝑛](𝑆𝑛)∥2 + ∥𝑆𝑛 − 𝔼𝑛+[

√
𝑛](𝑆𝑛)∥2

)2
≪
∑
𝑛≥2

log𝑛

𝑛(log𝑛)2(𝑡−1)

𝑛+[
√
𝑛]∑

𝑘=[
√
𝑛]+1

𝑘𝑎2𝑘 ≪
∑
𝑛≥1

1

𝑛

𝑛+[
√
𝑛]∑

𝑘=[
√
𝑛]+1

𝑘 log 𝑘

(log 𝑘)2(𝑡−1)
𝑎2𝑘 .

Changing the order of summation, this proves that (3.28) holds provided that (3.5)
does. It remains to prove (3.29). With this aim, we set for any positive real 𝑥,

ℎ([𝑥]) =
∥∥𝔼−𝑚[𝑥](𝑆2[𝑥]) − 𝔼(𝑆2[𝑥])

∥∥2
2
,

and we notice that, for any integer 𝑛 ≥ 0,∥∥𝔼−𝑛𝑚(𝑆2[
√
𝑛]) − 𝔼(𝑆2[

√
𝑛])
∥∥2
2
≤ ℎ([

√
𝑛]) .

In addition, if 𝑥 ∈ [𝑛, 𝑛 + 1[, then [
√
𝑛] = [

√
𝑥] or [

√
𝑛] = [

√
𝑥] − 1. Therefore∑

𝑛≥3

1

𝑛2(log𝑛)(𝑡−1)𝑝/2
ℎ([

√
𝑛]) ≪

∑
𝑛≥3

ℎ([
√
𝑛])

∫
[𝑛,𝑛+1[

1

𝑥2(log 𝑥)(𝑡−1)𝑝/2
𝑑𝑥

≪
∫ ∞

3

1

𝑥2(log 𝑥)(𝑡−1)𝑝/2
ℎ([

√
𝑥])𝑑𝑥 +

∫ ∞

3

1

𝑥2(log 𝑥)(𝑡−1)𝑝/2
ℎ([

√
𝑥] − 1)𝑑𝑥

≪
∫ ∞

2

1

𝑦3(log 𝑦)(𝑡−1)𝑝/2
ℎ([𝑦])𝑑𝑦 ≪

∑
𝑛≥2

1

𝑛3(log𝑛)(𝑡−1)𝑝/2
ℎ(𝑛)𝑑𝑦 .

For the last inequality, we have used that if 𝑦 ∈ [𝑛, 𝑛 + 1[, then [𝑦] = 𝑛. Therefore
condition (3.3) implies (3.29). This ends the proof of (3.23) when 𝑝 = 4.
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It remains to prove (3.24). With this aim, we start with the decomposition
of 𝑅𝑛 given in Proposition 5.1 of the appendix with 𝑁 = 𝑛. Therefore setting

𝐴𝑛 :=
𝑛∑
𝑘=1

∑
𝑗≥2𝑛+1

𝑃𝑘(𝑋𝑗) +
𝑛∑

𝑘=1

∑
𝑗≥𝑛

𝑃𝑘(𝑋−𝑗) ,

we write that

𝑅𝑛 = 𝔼0(𝑆𝑛) − 𝔼0(𝑆𝑛) ∘ 𝑇 𝑛 + 𝔼−𝑛(𝑆𝑛) ∘ 𝑇 𝑛 + 𝑆𝑛 − 𝔼𝑛(𝑆𝑛)

− (𝔼2𝑛(𝑆𝑛 − 𝔼𝑛(𝑆𝑛)) ∘ 𝑇−𝑛 −𝐴𝑛 . (3.30)

Starting from (3.30) and noticing that

∥𝔼−𝑟(𝑆𝑛(𝔼−𝑛(𝑆𝑛) ∘ 𝑇 𝑛)∥𝑝/2 ≤ ∥𝔼0(𝑆𝑛(𝔼−𝑛(𝑆𝑛) ∘ 𝑇 𝑛)∥𝑝/2
≤ ∥𝔼0(𝑆𝑛)∥𝑝∥𝔼0(𝑆2𝑛 − 𝑆𝑛)∥𝑝 ,

and that 𝔼−𝑟(𝑆𝑛(𝑆𝑛 − 𝔼𝑛(𝑆𝑛)) = 𝔼−𝑟((𝑆𝑛 − 𝔼𝑛(𝑆𝑛))2), we first get

∥𝔼−𝑟(𝑆𝑛𝑅𝑛)∥𝑝/2 ≤ 2∥𝔼0(𝑆𝑛)∥2𝑝 + ∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛)∥2𝑝
+ ∥𝔼−𝑟(𝑆𝑛𝔼𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2
+ ∥𝔼−𝑟(𝑆𝑛𝔼𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2
+ ∥𝔼−𝑟(𝑆𝑛𝐴𝑛)

∥∥
𝑝/2

. (3.31)

Next, we use the following fact: if 𝑋 and 𝑌 are two variables in 𝕃𝑝 with 𝑝 ∈ [2, 4],
then for any integer 𝑢,

∥𝔼𝑢(𝑋𝑌 )∥𝑝/2 ≤ ∥𝔼𝑢(𝑋2) − 𝔼(𝑋2)∥𝑝/2 + ∥𝑌 ∥2𝑝 +
√
𝔼(𝑋2)∥𝑌 ∥2 . (3.32)

Indeed, it suffices to write that

∥𝔼𝑢(𝑋𝑌 )∥𝑝/2 ≤ ∥𝔼1/2𝑢 (𝑋2)𝔼1/2𝑢 (𝑌 2)∥𝑝/2
≤ ∥∣𝔼𝑢(𝑋2) − 𝔼(𝑋2)∣1/2𝔼1/2𝑢 (𝑌 2)∥𝑝/2 + (𝔼(𝑋2))1/2∥𝔼1/2𝑢 (𝑌 2)∥𝑝/2
≤ ∥𝔼𝑢(𝑋2) − 𝔼(𝑋2)∥𝑝/2 + ∥𝑌 ∥2𝑝 + (𝔼(𝑋2))1/2∥𝔼1/2𝑢 (𝑌 2)∥𝑝/2 ,

and to notice that, since 𝑝 ∈ [2, 4], ∥𝔼1/2𝑢 (𝑌 2)∥𝑝/2 ≤ ∥𝔼1/2𝑢 (𝑌 2)∥2 = ∥𝑌 ∥2. There-

fore, starting from (3.31) and using (3.32) together with 𝔼(𝑆2𝑛) ≪ 𝑛, we infer
that

∥𝔼−𝑟(𝑆𝑛𝑅𝑛)∥𝑝/2 ≪ ∥𝔼0(𝑆𝑛)∥2𝑝 + ∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛)∥2𝑝
+ ∥𝔼−𝑟(𝑆𝑛𝔼𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2
+ ∥𝔼−𝑟(𝑆𝑛𝔼𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2
+ ∥𝔼−𝑟(𝑆2𝑛) − 𝔼(𝑆2𝑛)

∥∥
𝑝/2

+ ∥𝐴𝑛∥2𝑝 + 𝑛1/2∥𝐴𝑛∥2 ,



Rates in the ASIP for Non-adapted Sequences 127

and since ∥𝔼0(𝑆𝑛)∥𝑝 ≤ ∥𝑅𝑛∥𝑝, ∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛)∥𝑝 ≤ 2∥𝑅𝑛∥𝑝 and ∥𝐴𝑛∥𝑝 ≤ 8∥𝑅𝑛∥𝑝,
we have overall that

∥𝔼−𝑟(𝑆𝑛𝑅𝑛)∥𝑝/2 ≪ ∥𝑅𝑛∥2𝑝 + ∥𝔼−𝑟(𝑆𝑛𝔼𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2
+ ∥𝔼−𝑟(𝑆𝑛𝔼𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2
+ ∥𝔼−𝑟(𝑆2𝑛) − 𝔼(𝑆2𝑛)

∥∥
𝑝/2

+ 𝑛1/2∥𝐴𝑛∥2 . (3.33)

By orthogonality and by stationarity,

∥𝐴𝑛∥2 ≤
( 𝑛∑
𝑘=1

∥∥∥ ∑
𝑗≥2𝑛+1

𝑃𝑘(𝑋𝑗)
∥∥∥2
2

)1/2
+
( 𝑛∑
𝑘=1

∥∥∥∑
𝑗≥𝑛

𝑃𝑘(𝑋−𝑗)
∥∥∥2
2

)1/2
≤
( 𝑛∑
𝑘=1

∥∥∥ ∑
ℓ≥𝑘+𝑛

𝑃0(𝑋ℓ)
∥∥∥2
2

)1/2
+
( 𝑛∑
𝑘=1

∥∥∥ ∑
ℓ≥𝑘+𝑛

𝑃0(𝑋−ℓ)
∥∥∥2
2

)1/2
. (3.34)

Now for any integer 𝑢𝑛 such that 𝑢𝑛 ≤ 𝑛,

∥𝔼−𝑟(𝑆𝑛𝔼𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2 ≤ ∥𝔼−𝑟((𝑆𝑛 − 𝑆𝑛−𝑢𝑛)𝔼𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2
+ ∥𝔼−𝑟(𝑆𝑛−𝑢𝑛𝔼𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2

≪ ∥𝔼−𝑟(𝑆2𝑢𝑛) − 𝔼(𝑆2𝑢𝑛)
∥∥
𝑝/2

+ ∥𝔼0(𝑆𝑛)∥2𝑝 +
√
𝑢𝑛∥𝔼0(𝑆𝑛)∥2

+ ∥𝔼−𝑟(𝑆𝑛−𝑢𝑛𝔼𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2 , (3.35)

where for the last inequality we have used (3.32) together with 𝔼(𝑆2𝑢𝑛) ≪ 𝑢𝑛.
Next, we write that

∥𝔼−𝑟(𝑆𝑛−𝑢𝑛𝔼𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2
≤ ∥𝔼−𝑟((𝑆𝑛−𝑢𝑛 − 𝔼𝑛−𝑢𝑛(𝑆𝑛−𝑢𝑛))𝔼𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2

+ ∥𝔼−𝑟(𝔼𝑛−𝑢𝑛(𝑆𝑛−𝑢𝑛)𝔼𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2
≤ ∥𝑆𝑛−𝑢𝑛 − 𝔼𝑛−𝑢𝑛(𝑆𝑛−𝑢𝑛)∥𝑝∥𝔼0(𝑆𝑛)∥𝑝

+ ∥𝔼−𝑟(𝔼𝑛−𝑢𝑛(𝑆𝑛−𝑢𝑛)𝔼𝑛−𝑢𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2
≤ ∥𝑆𝑛−𝑢𝑛 − 𝔼𝑛−𝑢𝑛(𝑆𝑛−𝑢𝑛)∥2𝑝 + ∥𝔼0(𝑆𝑛)∥2𝑝

+ ∥𝔼−𝑟(𝑆𝑛𝔼𝑛−𝑢𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2
+ ∥𝔼−𝑟((𝑆𝑛 − 𝑆𝑛−𝑢𝑛)𝔼𝑛−𝑢𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2 .

Therefore using (3.32), we infer that

∥𝔼−𝑟(𝑆𝑛−𝑢𝑛𝔼𝑛(𝑆2𝑛 − 𝑆𝑛))∥𝑝/2 (3.36)

≪ max
𝑘={𝑛,𝑛−𝑢𝑛}

∥𝑅𝑘∥2𝑝 +
√
𝑛∥𝔼−𝑢𝑛(𝑆𝑛)∥2 + max

𝑘={𝑛,𝑢𝑛}
∥𝔼−𝑟(𝑆2𝑘) − 𝔼(𝑆2𝑘)∥𝑝/2 .
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We deal now with the third term in the right-hand side of (3.33). With this aim,
we first write that

∥𝔼−𝑟(𝑆𝑛𝔼𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2
≤ ∥𝔼−𝑟(𝑆𝑛𝔼𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼𝑢𝑛(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2

+ ∥𝔼−𝑟(𝑆𝑛𝔼𝑢𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2. (3.37)

By using (3.32) together with 𝔼(𝑆2𝑢𝑛) ≪ 𝑛, stationarity and the fact that ∥𝑆𝑛 −
𝔼𝑛+𝑢𝑛(𝑆𝑛)∥2 ≤ 2∥𝑅𝑛∥𝑝, we infer that

∥𝔼−𝑟(𝑆𝑛𝔼𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼𝑢𝑛(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2
≪ ∥𝔼−𝑟(𝑆2𝑛) − 𝔼(𝑆2𝑛)∥𝑝/2 + ∥𝑅𝑛∥2𝑝 +

√
𝑛∥𝑆𝑛 − 𝔼𝑛+𝑢𝑛(𝑆𝑛)∥2 . (3.38)

On the other hand,

∥𝔼−𝑟(𝑆𝑛𝔼𝑢𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2
≤ ∥𝔼−𝑟(𝑆𝑢𝑛𝔼𝑢𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2

+ ∥𝔼−𝑟(𝔼𝑢𝑛(𝑆𝑛 − 𝑆𝑢𝑛)𝔼𝑢𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛))∥𝑝/2 .
We apply (3.32) to the first term of the right-hand side together with the fact that
𝔼(𝑆2𝑢𝑛) ≪ 𝑛. Hence by stationarity and since ∥𝑆𝑛−𝔼𝑛(𝑆𝑛)∥𝑝 ≤ 2∥𝑅𝑛∥𝑝, we derive
that

∥𝔼−𝑟(𝑆𝑢𝑛𝔼𝑢𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2
≪ ∥𝔼−𝑟(𝑆2𝑢𝑛) − 𝔼(𝑆2𝑢𝑛)∥𝑝/2 + ∥𝑅𝑛∥2𝑝 +

√
𝑢𝑛∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛)∥2 .

On the other hand, by stationarity,

∥𝔼−𝑟(𝔼𝑢𝑛(𝑆𝑛 − 𝑆𝑢𝑛)𝔼𝑢𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2
≤ ∥𝔼𝑢𝑛(𝑆𝑛 − 𝑆𝑢𝑛)∥𝑝∥𝔼𝑢𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛))∥𝑝
≤ ∥𝔼0(𝑆𝑛−𝑢𝑛)∥𝑝∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛))∥𝑝 .
≤ ∥𝔼0(𝑆𝑛−𝑢𝑛)∥2𝑝 + ∥𝑅𝑛∥2𝑝 .

Therefore we get overall that

∥𝔼−𝑟(𝑆𝑛𝔼𝑢𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2 (3.39)

≪ ∥𝑅𝑛∥2𝑝 + ∥𝔼0(𝑆𝑛−𝑢𝑛)∥2𝑝 + ∥𝔼−𝑟(𝑆2𝑢𝑛) − 𝔼(𝑆2𝑢𝑛)∥𝑝/2 +
√
𝑢𝑛∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛)∥2 .

Starting from (3.37) and taking into account (3.38) and (3.39), we get that

∥𝔼−𝑟(𝑆𝑛𝔼𝑛(𝑆𝑛 ∘ 𝑇−𝑛 − 𝔼0(𝑆𝑛 ∘ 𝑇−𝑛)))∥𝑝/2
≪ √

𝑢𝑛∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛)∥2 +
√
𝑛∥𝑆𝑛 − 𝔼𝑛+𝑢𝑛(𝑆𝑛)∥2

+ max
𝑘={𝑛,𝑢𝑛}

∥𝔼−𝑟(𝑆2𝑘) − 𝔼(𝑆2𝑘)∥𝑝/2 + max
𝑘={𝑛,𝑛−𝑢𝑛}

∥𝑅𝑘∥2𝑝 .
(3.40)

Finally, starting from (3.33) and considering (3.34), (3.35), (3.36) and (3.40),
we conclude that (3.24) holds. □
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4. Proof of Theorem 2.1

4.1. Preparatory material

Let us denote by 𝐸𝑢, 𝐸𝑒 and 𝐸𝑠 the 𝑆-stable vector spaces associated to the
eigenvalues of 𝑆 of modulus respectively larger than one, equal to one and smaller
than one. Let 𝑑𝑢, 𝑑𝑒 and 𝑑𝑠 be their respective dimensions. Let 𝑣1, . . . , 𝑣𝑑 be a basis
of ℝ𝑑 in which 𝑆 is represented by a real Jordan matrix. Suppose that 𝑣1, . . . , 𝑣𝑑𝑢
are in 𝐸𝑢, 𝑣𝑑𝑢+1, . . . , 𝑣𝑑𝑢+𝑑𝑒 are in 𝐸𝑒 and 𝑣𝑑𝑢+𝑑𝑒+1, . . . , 𝑣𝑑 are in 𝐸𝑠. We suppose
moreover that det(𝑣1∣𝑣2∣ ⋅ ⋅ ⋅ ∣𝑣𝑑) = 1. Let us write ∣∣ ⋅ ∣∣ the norm on ℝ𝑑 given by∥∥∥∥∥

𝑑∑
𝑖=1

𝑥𝑖𝑣𝑖

∥∥∥∥∥ = max
𝑖=1,...,𝑑

∣𝑥𝑖∣

and 𝑑0(⋅, ⋅) the metric induced by ∣∣⋅∣∣ on ℝ𝑑. Let also 𝑑1 be the metric induced by 𝑑0
on 𝕋𝑑. We define now 𝐵𝑢(𝛿) := {𝑦 ∈ 𝐸𝑢 : ∣∣𝑦∣∣ ≤ 𝛿}, 𝐵𝑒(𝛿) := {𝑦 ∈ 𝐸𝑒 : ∣∣𝑦∣∣ ≤ 𝛿}
and 𝐵𝑠(𝛿) = {𝑦 ∈ 𝐸𝑠 : ∣∣𝑦∣∣ ≤ 𝛿}. Let ∣ ⋅ ∣ be the usual euclidean norm on ℝ𝑑.

Let 𝑟𝑢 be the spectral radius of 𝑆−1∣𝐸𝑢. For every 𝜌𝑢 ∈ (𝑟𝑢, 1), there exists

𝐾 > 0 such that, for every integer 𝑛 ≥ 0, we have

∀ℎ𝑢 ∈ 𝐸𝑢, ∣∣𝑆𝑛ℎ𝑢∣∣ ≥ 𝐾𝜌−𝑛𝑢 ∣∣ℎ𝑢∣∣ (4.41)

and

∀(ℎ𝑒, ℎ𝑠) ∈ 𝐸𝑒 × 𝐸𝑠, ∣∣𝑆𝑛(ℎ𝑒 + ℎ𝑠)∣∣ ≤ 𝐾(1 + 𝑛)𝑑𝑒 ∣∣ℎ𝑒 + ℎ𝑠∣∣. (4.42)

Let 𝜌𝑢 ∈ (𝑟𝑢, 1) and 𝐾 satisfying (4.41) and (4.42). Let us denote by 𝑚𝑢, 𝑚𝑒,
𝑚𝑠 the Lebesgue measure on 𝐸𝑢 (in the basis 𝑣1, . . . , 𝑣𝑑𝑢), 𝐸𝑒 (in the basis
𝑣𝑑𝑢+1, . . . , 𝑣𝑑𝑢+𝑑𝑒) and 𝐸𝑠 (in the basis 𝑣𝑑𝑢+𝑑𝑒+1, . . . , 𝑣𝑑) respectively. Observe
that 𝑑𝜆(ℎ𝑢 + ℎ𝑒 + ℎ𝑠) = 𝑑𝑚𝑢(ℎ𝑢)𝑑𝑚𝑒(ℎ𝑒)𝑑𝑚𝑠(ℎ𝑠).

The properties satisfied by the filtration considered in [14, 17] and enabling
the use of a martingale approximation method à la Gordin will be crucial here.
Given a finite partition 𝒫 of 𝕋𝑑, we define the measurable partition 𝒫∞

0 by :

∀𝑥̄ ∈ 𝕋𝑑, 𝒫∞
0 (𝑥̄) :=

∩
𝑘≥0

𝑇 𝑘𝒫(𝑇−𝑘(𝑥̄))

and, for every integer 𝑛, the 𝜎-algebra ℱ𝑛 generated by

∀𝑥̄ ∈ 𝕋𝑑, 𝒫∞
−𝑛(𝑥̄) :=

∩
𝑘≥−𝑛

𝑇 𝑘𝒫(𝑇−𝑘(𝑥̄)) = 𝑇−𝑛(𝒫∞
0 (𝑇 𝑛(𝑥̄)).

These definitions coincide with the ones of [14] applied to the ergodic torus auto-
morphism 𝑇−1. We obviously have ℱ𝑛 ⊆ ℱ𝑛+1 = 𝑇−1ℱ𝑛. Let 𝑟0 > 0 be such that
(ℎ𝑢, ℎ𝑒, ℎ𝑠) 9→ ℎ𝑢 + ℎ𝑒 + ℎ𝑠 defines a diffeomorphism from 𝐵𝑢(𝑟0)×𝐵𝑒(𝑟0)×𝐵𝑠(𝑟0)
on its image in 𝕋𝑑. Observe that, for every 𝑥 ∈ 𝕋𝑑, on the set 𝑥̄+𝐵𝑢(𝑟0)+𝐵𝑒(𝑟0)+

𝐵𝑠(𝑟0), we have 𝑑𝜆̄(𝑥̄ + ℎ𝑢 + ℎ𝑒 + ℎ𝑠) = 𝑑𝑚𝑢(ℎ𝑢)𝑑𝑚𝑒(ℎ𝑒)𝑑𝑚𝑠(ℎ𝑠).

Proposition 4.1 ([14, 17] applied to 𝑻−1). There exist some 𝑄 > 0, 𝐾0 > 0,
𝛼 ∈ (0, 1) and some finite partition 𝒫 of 𝕋𝑑 whose elements are of the form
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∑𝑑
𝑖=1 𝐼𝑖𝑣𝑖 where the 𝐼𝑖 are intervals with diameter smaller than min(𝑟0,𝐾) such

that, for almost every 𝑥̄ ∈ 𝕋𝑑,

1. the local leaf 𝒫∞
0 (𝑥̄) of 𝒫∞

0 containing 𝑥̄ is a bounded convex set 𝑥 + 𝐹 (𝑥̄),
with 0 ∈ 𝐹 (𝑥̄) ⊆ 𝐸𝑢, 𝐹 (𝑥̄) having non-empty interior in 𝐸𝑢,

2. we have

𝔼𝑛(𝑓)(𝑥̄) =
1

𝑚𝑢(𝑆−𝑛𝐹 (𝑇 𝑛𝑥̄))

∫
𝑆−𝑛𝐹 (𝑇𝑛𝑥̄)

𝑓(𝑥̄ + ℎ𝑢) 𝑑𝑚𝑢(ℎ𝑢), (4.43)

3. for every 𝛾 > 0, we have

𝑚𝑢(∂(𝐹 (𝑥̄))(𝛾)) ≤ 𝑄𝛾, (4.44)

where

∂𝐹 (𝛽) := {𝑦 ∈ 𝐹 : 𝑑(𝑦, ∂𝐹 ) ≤ 𝛽},
4. for every k ∈ ℤ𝑑 ∖ {0}, for every integer 𝑛 ≥ 0,∣∣∣𝔼−𝑛(𝑒2𝑖𝜋⟨k,⋅⟩)(𝑥̄)

∣∣∣ ≤ 𝐾0

𝑚𝑢(𝐹 (𝑇−𝑛(𝑥)))
∣k∣𝑑𝑒+𝑑𝑠𝛼𝑛, (4.45)

5. for every 𝛽 ∈ (0, 1),

∃𝐿 > 0, ∀𝑛 ≥ 0, 𝜆̄(𝑚𝑢(𝐹 (⋅)) < 𝛽𝑛) ≤ 𝐿𝛽𝑛/𝑑𝑢 . (4.46)

Proof. The first item comes from Proposition II.1 of [14]. Item 2 comes from the
formula given after Lemma II.2 of [14]. Item 3 follows from Lemma III.1 of [14] and
from the fact that the numbers 𝑎(𝒫∞

0 (⋅)) considered in [14] are uniformly bounded.
Item 4 comes from Proposition III.3 of [14] and from the uniform boundedness of
𝑎(𝒫∞

0 (⋅)). Item 5 comes from the proof of Proposition II.1 of [14]. □

According to the first item of Proposition 4.1 and to (4.41), there exists 𝑐𝑢 > 0
such that, for almost every 𝑥̄ ∈ 𝕋𝑑 and every 𝑛 ≥ 1, we have

sup
ℎ𝑢∈𝑆−𝑛𝐹 (𝑇𝑛(𝑥̄))

∣ℎ𝑢∣ ≤ 𝑐𝑢𝜌
𝑛
𝑢. (4.47)

Proposition 4.2. Let 𝑝 ≥ 2 and 𝑞 be its conjugate exponent. Let 𝜃 > 0 and 𝑓 :
𝕋𝑑 → ℝ be a centered function with Fourier coefficients (𝑐k)k∈ℤ𝑑 satisfying∑

∣k∣≥𝑏
∣𝑐k∣𝑞 ≤ 𝑅 log−𝜃(𝑏) . (4.48)

Then

∥𝔼0(𝑓 ∘ 𝑇 𝑛)∥𝑝 = ∥𝔼−𝑛(𝑓)∥𝑝 = 𝑂(𝑛−𝜃(𝑝−1)/𝑝) .

Proof. Recall first that 𝔼0(𝑓 ∘ 𝑇 𝑛) = 𝔼−𝑛(𝑓) ∘ 𝑇 𝑛. Let us consider 𝛼 satisfying
(4.45). Let 𝛽 := 𝛼1/2, 𝛾 := max(𝛼𝑝/2, 𝛽1/𝑑𝑢) and

𝒱𝑛 :=
{
𝑥̄ ∈ 𝕋𝑑 : 𝑚𝑢(𝐹 (𝑇−𝑛(𝑥̄)) ≥ 𝛽𝑛

}
.
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Let 𝑏(𝑛) :=
[
𝛾−𝑛/(2𝑝(𝑑+𝑑𝑒+𝑑𝑠))

]
. Let us write

𝑓 = 𝑓1,𝑛+𝑓2,𝑛 where 𝑓1,𝑛 :=
∑

∣k∣<𝑏(𝑛)
𝑐k𝑒

2𝑖𝜋⟨k,⋅⟩ and 𝑓2,𝑛 :=
∑

∣k∣≥𝑏(𝑛)
𝑐k𝑒

2𝑖𝜋⟨k,⋅⟩.

(4.49)
We have ∫

𝒱𝑛
∣𝔼−𝑛(𝑓1,𝑛)∣𝑝 𝑑𝜆̄ ≤ esssup

𝑥̄∈𝒱𝑛

( ∑
∣k∣≤𝑏(𝑛)

∣𝑐k∣
∣∣𝔼−𝑛(𝑒2𝑖𝜋⟨k,⋅⟩)(𝑥̄)

∣∣)𝑝
≤
( ∑
∣k∣≤𝑏(𝑛)

∣𝑐k∣𝐾0𝛽
−𝑛∣k∣𝑑𝑒+𝑑𝑠𝛼𝑛

)𝑝
,

according to (4.45) and thanks to the definition of 𝒱𝑛. Now, since 𝛽 = 𝛼1/2, we
get ∫

𝒱𝑛
∣𝔼−𝑛(𝑓1,𝑛)∣𝑝 𝑑𝜆̄ ≤ 3𝑑𝑝∣∣𝑓 ∣∣𝑝1𝐾𝑝

0𝛼
𝑛𝑝
2 (𝑏(𝑛))𝑝(𝑑+𝑑𝑒+𝑑𝑠).

Hence ∫
𝒱𝑛

∣𝔼−𝑛(𝑓1,𝑛)∣𝑝 𝑑𝜆̄ = 𝑂(𝛾𝑛(𝑏(𝑛))𝑝(𝑑+𝑑𝑒+𝑑𝑠)) = 𝑂(𝛾𝑛/2). (4.50)

Moreover, thanks to (4.46), we have∫
𝒱𝑐𝑛

∣𝔼−𝑛(𝑓1,𝑛)∣𝑝 𝑑𝜆̄ ≤ 𝜆̄(𝒱𝑐𝑛)

( ∑
∣k∣≤𝑏(𝑛)

∣𝑐k∣
)𝑝

= 𝑂((𝑏(𝑛))𝑑𝑝𝛽𝑛/𝑑𝑢) = 𝑂((𝑏(𝑛))𝑑𝑝𝛾𝑛) = 𝑂(𝛾𝑛/2). (4.51)

Since 𝑝 ≥ 2 and since 𝑝/𝑞 = 𝑝− 1, thanks to (4.48), we have

∥𝔼−𝑛(𝑓2,𝑛)∥𝑝𝑝 ≤ ∥𝑓2,𝑛∥𝑝𝑝 ≤
( ∑
∣k∣≥𝑏(𝑛)

∣𝑐k∣𝑞
)𝑝/𝑞

≤ 𝑅𝑝−1(log(𝑏(𝑛)))−𝜃(𝑝−1) ≪ 𝑛−𝜃(𝑝−1) . (4.52)

Combining (4.50), (4.51) and (4.52), the proposition follows. □

Proposition 4.3. Under the assumptions of Proposition 4.2,∥∥𝔼0(𝑓 ∘ 𝑇−𝑛) − 𝑓 ∘ 𝑇−𝑛
∥∥
𝑝

= ∥𝔼𝑛(𝑓) − 𝑓∥𝑝 = 𝑂(𝑛−𝜃(𝑝−1)/𝑝) .

Proof. We consider the decomposition (4.49) with 𝑏(𝑛) defined by

𝑏(𝑛) =
[
𝜌−𝑛/(2(𝑑+1))𝑢

]
.
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We have

∥𝔼𝑛(𝑓1,𝑛) − 𝑓1,𝑛∥𝑝 ≤ ∥𝔼𝑛(𝑓1,𝑛) − 𝑓1,𝑛∥∞
≤
∑

∣k∣≤𝑏(𝑛)
∣𝑐k∣∥𝔼𝑛(𝑒2𝑖𝜋⟨k,⋅⟩) − 𝑒2𝑖𝜋⟨k,⋅⟩∥∞

≤
∑

∣k∣≤𝑏(𝑛)
∣𝑐k∣2𝜋∣k∣𝑐𝑢𝜌𝑛𝑢 ,

according to (4.43) and to (4.47). Therefore

∥𝔼𝑛(𝑓1,𝑛) − 𝑓1,𝑛∥𝑝 ≪ (𝑏(𝑛))𝑑+1𝜌𝑛𝑢 ≪ 𝜌𝑛/2𝑢 . (4.53)

Moreover, thanks to (4.48), we have

∥𝔼𝑛(𝑓2,𝑛) − 𝑓2,𝑛∥𝑝𝑝 ≤ 2𝑝∥𝑓2,𝑛∥𝑝𝑝 ≤ 2𝑝
( ∑
∣k∣≥𝑏(𝑛)

∣𝑐k∣𝑞
)𝑝/𝑞

≤ 2𝑝𝑅𝑝−1(log(𝑏(𝑛)))−𝜃(𝑝−1) ≪ 𝑛−𝜃(𝑝−1) . (4.54)

Considering (4.53) and (4.54), the proposition follows. □

Proposition 4.4. Let 𝑝 ∈ [2, 4] and set 𝑆𝑛(𝑓) :=
∑𝑛

𝑘=1 𝑓 ∘ 𝑇 𝑘 with 𝑓 : 𝕋𝑑 → ℝ be
a centered function with Fourier coefficients satisfying (4.48) with 𝜃 > 0 and∑

∣k∣≥𝑏
∣𝑐k∣2 ≤ 𝑅 log−𝜂(𝑏) for some 𝜂 > 1 . (4.55)

Set

𝑚 :=
[
− 4(𝑑𝑒 + 𝑑𝑠) log(𝑟)

log(𝛼)

]
+ 1 . (4.56)

where 𝑟 is the spectral radius of 𝑆. Then

∥𝔼−𝑛𝑚(𝑆2𝑛(𝑓)) − 𝔼(𝑆2𝑛(𝑓))∥𝑝/2 ≪ 𝑛2−2𝜃(𝑝−1)/𝑝 + 𝑛(3−𝜂)/2 .

Proof. Let

𝛽 := 𝛼1/2, 𝒱𝑛𝑚 :=
{
𝑥̄ ∈ 𝕋𝑑 : 𝑚𝑢(𝐹 (𝑇−𝑛𝑚(𝑥̄)) ≥ 𝛽𝑛𝑚

}
, 𝛾 := max(𝛼𝑝/8, 𝛽1/𝑑𝑢)

and

𝑏(𝑛) :=
[
𝛾𝑛𝑚/(𝑝(2𝑑+𝑑𝑒+𝑑𝑠))

]
. (4.57)

We consider the decomposition (4.49) with 𝑏(𝑛) defined by (4.57) and we set

𝑆1,𝑛(𝑓) :=

𝑛∑
𝑘=1

𝑓1,𝑛 ∘ 𝑇 𝑘 and 𝑆2,𝑛(𝑓) :=

𝑛∑
𝑘=1

𝑓2,𝑛 ∘ 𝑇 𝑘 .
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First, we note that

∥𝔼−𝑛𝑚(𝑆2𝑛(𝑓)) − 𝔼(𝑆2𝑛(𝑓))∥𝑝/2
≤ ∥𝔼−𝑛𝑚(𝑆21,𝑛(𝑓)) − 𝔼(𝑆21,𝑛(𝑓))∥𝑝/2

+ ∥𝔼−𝑛𝑚(𝑆22,𝑛(𝑓)) − 𝔼(𝑆22,𝑛(𝑓))∥𝑝/2
+ 2∥𝔼−𝑛𝑚(𝑆1,𝑛(𝑓)𝑆2,𝑛(𝑓)) − 𝔼(𝑆1,𝑛(𝑓)𝑆2,𝑛(𝑓))∥𝑝/2

≤ ∥𝔼−𝑛𝑚(𝑆21,𝑛(𝑓)) − 𝔼(𝑆21,𝑛(𝑓))∥𝑝/2
+ 2∥𝑆2,𝑛(𝑓)∥2𝑝 + 4∥𝔼−𝑛𝑚(𝑆1,𝑛(𝑓)𝑆2,𝑛(𝑓))∥𝑝/2 .

Next using (3.32), we get that

∥𝔼−𝑛𝑚(𝑆1,𝑛(𝑓)𝑆2,𝑛(𝑓))∥𝑝/2 ≤∥𝔼−𝑛𝑚(𝑆21,𝑛(𝑓)) − 𝔼(𝑆21,𝑛(𝑓))∥𝑝/2
+ ∥𝑆2,𝑛(𝑓)∥2𝑝 + ∥𝑆1,𝑛(𝑓)∥2∥𝑆2,𝑛(𝑓)∥2

≤∥𝔼−𝑛𝑚(𝑆21,𝑛(𝑓)) − 𝔼(𝑆21,𝑛(𝑓))∥𝑝/2
+ 2∥𝑆2,𝑛(𝑓)∥2𝑝 + ∥𝑆𝑛(𝑓)∥2∥𝑆2,𝑛(𝑓)∥2 .

By Propositions 4.2 and 4.3, (4.55) implies that

∑
𝑛>0

∥𝔼−𝑛(𝑓)∥2
𝑛1/2

< ∞ and
∑
𝑛>0

∥𝑓 − 𝔼𝑛(𝑓)∥2
𝑛1/2

< ∞ ,

which yields (3.6) with 𝑝 = 2, and then ∥𝑆𝑛(𝑓)∥2 ≪ √
𝑛. Therefore, we get overall

that

∥𝔼−𝑛𝑚(𝑆2𝑛(𝑓)) − 𝔼(𝑆2𝑛(𝑓))∥𝑝/2
≪ ∥𝔼−𝑛𝑚(𝑆21,𝑛(𝑓)) − 𝔼(𝑆21,𝑛(𝑓))∥𝑝/2 + ∥𝑆2,𝑛(𝑓)∥2𝑝 +

√
𝑛∥𝑆2,𝑛(𝑓)∥2 . (4.58)

Since 𝑝 ≥ 2 and 𝑝/𝑞 = 𝑝− 1, (4.48) implies that

∥𝑆2,𝑛(𝑓)∥𝑝 ≤ 𝑛∥𝑓2,𝑛∥𝑝 ≤ 𝑛
( ∑
∣k∣≥𝑏(𝑛)

∣𝑐k∣𝑞
)1/𝑞

≤ 𝑛𝑅(𝑝−1)/𝑝(log(𝑏(𝑛)))−𝜃(𝑝−1)/𝑝 ≪ 𝑛1−𝜃(𝑝−1)/𝑝 . (4.59)

Similarly using (4.55), we get that

∥𝑆2,𝑛(𝑓)∥2 ≤ 𝑛∥𝑓2,𝑛∥2 ≪ 𝑛1−𝜂/2 . (4.60)

We deal now with the first term in the right-hand side of (4.58). With this aim, we

first observe that, for any non negative integer ℓ, 𝑒2𝑖𝜋⟨k,𝑇
ℓ(⋅)⟩ = 𝑒2𝑖𝜋⟨

𝑡𝑆ℓk,⋅⟩, where
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𝑡𝑆ℓ is the transposed matrix of 𝑆ℓ. Therefore,∫
𝒱𝑛𝑚

∣∣𝔼−𝑛𝑚(𝑓1,𝑛.𝑓1,𝑛 ∘ 𝑇 ℓ) − 𝔼(𝑓1,𝑛.𝑓1,𝑛 ∘ 𝑇 ℓ)
∣∣𝑝/2 𝑑𝜆̄

≤ esssup
𝑥̄∈𝒱𝑛𝑚

( ∑
∣k∣,∣m∣≤𝑏(𝑛):k+𝑡𝑆ℓm∕=0

∣𝑐k∣∣𝑐m∣∣∣𝔼−𝑛𝑚(𝑒2𝑖𝜋⟨k+
𝑡𝑆ℓm,⋅⟩)(𝑥̄)

∣∣)𝑝/2

≤
( ∑
∣k∣,∣m∣≤𝑏(𝑛)

∣𝑐k∣∣𝑐m∣𝐾0𝛽
−𝑛𝑚∣k + 𝑡𝑆ℓm∣𝑑𝑒+𝑑𝑠𝛼𝑛𝑚

)𝑝/2
,

according to (4.45) and to the definition of 𝒱𝑛𝑚. It follows that∫
𝒱𝑛𝑚

∣∣𝔼−𝑛𝑚(𝑓1,𝑛.𝑓1,𝑛 ∘ 𝑇 ℓ) − 𝔼(𝑓1,𝑛.𝑓1,𝑛 ∘ 𝑇 ℓ)
∣∣𝑝/2 𝑑𝜆̄

≤
( ∑
∣k∣,∣m∣≤𝑏(𝑛)

∥𝑓∥21𝐾0𝛽
−𝑛𝑚(∣k∣ + 𝑟ℓ∣m∣)𝑑𝑒+𝑑𝑠𝛼𝑛𝑚

)𝑝/2
≪ 𝛼

𝑛𝑚𝑝
4 𝑟𝑝ℓ(𝑑𝑒+𝑑𝑠)/2(𝑏(𝑛))𝑝(2𝑑+𝑑𝑒+𝑑𝑠)/2 .

Hence, since 𝛾 ≥ 𝛼𝑝/8, 𝑚 ≥ 4(𝑑𝑒 + 𝑑𝑠) log(𝑟)/log(1/𝛼), and according to the
definition of 𝑏(𝑛), we have

sup
ℓ∈{0,...,𝑛}

∫
𝒱𝑛𝑚

∣∣∣𝔼−𝑛𝑚(𝑓1,𝑛.𝑓1,𝑛 ∘ 𝑇 ℓ) − 𝔼(𝑓1,𝑛.𝑓1,𝑛 ∘ 𝑇 ℓ)
∣∣∣𝑝/2 𝑑𝜆̄

≪ 𝛼3𝑛𝑚𝑝/16𝑟𝑝𝑛(𝑑𝑒+𝑑𝑠)/2 ≪ 𝛾𝑛𝑚/2. (4.61)

Moreover, for any non negative integer ℓ,∫
𝒱𝑐𝑛𝑚

∣∣∣𝔼−𝑛𝑚(𝑓1,𝑛.𝑓1,𝑛 ∘ 𝑇 ℓ)
∣∣∣𝑝/2 𝑑𝜆̄ ≤ 𝜆̄(𝒱𝑐𝑛𝑚)

( ∑
∣k∣,∣m∣≤𝑏(𝑛)

∣𝑐k∣∣𝑐m∣
)𝑝/2

(4.62)

≪ (𝑏(𝑛))𝑑𝑝𝛽𝑛𝑚/𝑑𝑢 ≪ (𝑏(𝑛))𝑑𝑝𝛾𝑛𝑚 ≪ 𝛾𝑛𝑚/2 ,

according to (4.46) and to the definition of 𝑏(𝑛) and of 𝛾. Combining (4.61) and
(4.62), we then derive that

∥𝔼−𝑛𝑚(𝑆21,𝑛(𝑓)) − 𝔼(𝑆21,𝑛(𝑓))∥𝑝/2 (4.63)

≤ 2
𝑛∑
𝑖=1

𝑛−𝑖∑
𝑗=0

∥𝔼−𝑛𝑚(𝑓1,𝑛 ∘ 𝑇 𝑖𝑓1,𝑛 ∘ 𝑇 𝑖+𝑗) − 𝔼(𝑓1,𝑛 ∘ 𝑇 𝑖𝑓1,𝑛 ∘ 𝑇 𝑖+𝑗)∥𝑝/2

≤ 𝑛2 sup
ℓ∈{0,...,𝑛}

∥𝔼−𝑛𝑚(𝑓1,𝑛𝑓1,𝑛 ∘ 𝑇 ℓ) − 𝔼(𝑓1,𝑛𝑓1,𝑛 ∘ 𝑇 ℓ)∥𝑝/2 ≪ 𝑛2𝛾𝑛𝑚/𝑝 .

Considering (4.59), (4.60) and (4.63) in (4.58), the proposition follows. □
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4.2. End of the proof of Theorem 2.1

Proof. Propositions 4.2 and 4.3 give (3.1) provided (2.2) is satisfied. Propositions
4.2 and 4.3 give (3.2) (when 𝑝 ∈]2, 4[) and (3.5) (when 𝑝 = 4), provided (2.3) is
satisfied. Finally, Proposition 4.4 gives (3.3) provided (2.2) and (2.3) are satisfied.
The proof follows now from Theorem 3.1 when 𝑝 ∈]2, 4[ and from Theorem 3.2
when 𝑝 = 4. □

5. Appendix

As in Section 3, let 𝑃𝑘(𝑋) = 𝔼𝑘(𝑋) − 𝔼𝑘−1(𝑋).

Lemma 5.1. Let 𝑝 ∈ [2,∞[. Then, for any real 1 ≤ 𝑞 ≤ 𝑝 and any positive integer 𝑛,∑
𝑘≥2𝑛

∥𝑃0(𝑋𝑘)∥𝑞𝑝 ≪
∑
𝑘≥𝑛

∥𝔼0(𝑋𝑘)∥𝑞𝑝
𝑘𝑞/𝑝

and ∑
𝑘≥2𝑛

∥𝑃0(𝑋−𝑘)∥𝑞𝑝 ≪
∑
𝑘≥𝑛

∥𝑋−𝑘 − 𝔼0(𝑋−𝑘)∥𝑞𝑝
𝑘𝑞/𝑝

.

Proof. The first inequality is Lemma 5.1 in [2]. To prove the second one, we first
consider the case 𝑝 > 𝑞 and we follow the lines of the proof Lemma 5.1 in [2] with
𝑃𝑘(𝑋0) replacing 𝑃−𝑘(𝑋0). We get that∑

𝑘≥2𝑛
∥𝑃0(𝑋−𝑘)∥𝑞𝑝 ≪

∑
𝑘≥𝑛+1

𝑘−
𝑞
𝑝

(∑
ℓ≥𝑘

∥𝑃0(𝑋−ℓ)∥𝑝𝑝
)𝑞/𝑝

.

Now, we notice that, by the Rosenthal’s inequality given in Theorem 2.12 of [9],
there exists a constant 𝑐𝑝 depending only on 𝑝 such that∑

ℓ≥𝑘
∥𝑃0(𝑋−ℓ)∥𝑝𝑝 =

∑
ℓ≥𝑘

∥𝑃ℓ(𝑋0)∥𝑝𝑝 ≤ 𝑐𝑝

∥∥∥∑
ℓ≥𝑘

𝑃ℓ(𝑋0)
∥∥∥𝑝
𝑝

= 𝑐𝑝∥𝑋0 − 𝔼𝑘(𝑋0)∥𝑝𝑝 = 𝑐𝑝∥𝑋−𝑘 − 𝔼0(𝑋−𝑘)∥𝑝𝑝 . (5.1)

Now when 𝑝 = 𝑞, inequality (5.1) together with the fact that by Claim 3.1, for any
integer 𝑘 in [𝑛 + 1, 2𝑛], ∥𝑋0 − 𝔼2𝑛(𝑋0)∥𝑝𝑝 ≤ 2𝑝∥𝑋0 − 𝔼𝑘(𝑋0)∥𝑝𝑝 imply the result.
Indeed we have∑

𝑘≥2𝑛
∥𝑃0(𝑋−ℓ)∥𝑝𝑝 ≤ 𝑐𝑝∥𝑋0 − 𝔼2𝑛(𝑋0)∥𝑝𝑝 ≪

2𝑛∑
𝑘=𝑛+1

𝑘−1∥𝑋0 − 𝔼𝑘(𝑋0)∥𝑝𝑝 .

The proof is complete. □

Proposition 5.1. Let 𝑝 ∈ [1,∞[ and assume that

the series 𝑑0 =
∑
𝑖∈ℤ

𝑃0(𝑋𝑖) converges in 𝕃𝑝. (5.2)
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Let 𝑀𝑛 :=
∑𝑛

𝑖=1 𝑑0 ∘ 𝑇 𝑖 and 𝑅𝑛 := 𝑆𝑛 − 𝑀𝑛. Then, for any positive integers 𝑛
and 𝑁 ,

𝑅𝑛 = 𝔼0(𝑆𝑛) − 𝔼0(𝑆𝑁 ) ∘ 𝑇 𝑛 + 𝔼−𝑛(𝑆𝑁 ) ∘ 𝑇 𝑛 −
𝑛∑

𝑘=1

∑
𝑗≥𝑛+𝑁+1

𝑃𝑘(𝑋𝑗)

+ 𝑆𝑛 − 𝔼𝑛(𝑆𝑛) − (𝔼𝑛+𝑁 (𝑆𝑁 − 𝔼𝑁 (𝑆𝑁 )) ∘ 𝑇−𝑁 −
𝑛∑

𝑘=1

∑
𝑗≥𝑁

𝑃𝑘(𝑋−𝑗) ,

and

∥𝑅𝑛∥𝑝′𝑝 ≪ ∥𝔼0(𝑆𝑛)∥𝑝′𝑝 + ∥𝔼0(𝑆𝑁 )∥𝑝′𝑝 + ∥𝑆𝑛 − 𝔼𝑛(𝑆𝑛)∥𝑝′𝑝 + ∥𝑆𝑁 − 𝔼𝑁 (𝑆𝑁 )∥𝑝′𝑝

+

𝑛∑
𝑘=1

∥∥∥∥ ∑
𝑗≥𝑘+𝑁

𝑃0(𝑋𝑗)

∥∥∥∥𝑝′
𝑝

+

𝑛∑
𝑘=1

∥∥∥∥ ∑
𝑗≥𝑘+𝑁

𝑃0(𝑋−𝑗)
∥∥∥∥𝑝′
𝑝

,

where 𝑝′ = min(2, 𝑝).

Proof. Notice first that the following decomposition is valid: for any positive inte-
ger 𝑛,

𝑅𝑛 =

𝑛∑
𝑘=1

(
𝑋𝑘 −

𝑛∑
𝑗=1

𝑃𝑗(𝑋𝑘)

)
−

𝑛∑
𝑘=1

∑
𝑗≥𝑛+1

𝑃𝑘(𝑋𝑗) −
𝑛∑

𝑘=1

∞∑
𝑗=0

𝑃𝑘(𝑋−𝑗)

= 𝑅𝑛,1 + 𝑅𝑛,2 , (5.3)

where

𝑅𝑛,1 := 𝔼0(𝑆𝑛) −
𝑛∑
𝑘=1

∑
𝑗≥𝑛+1

𝑃𝑘(𝑋𝑗) , 𝑅𝑛,2 := 𝑆𝑛 − 𝔼𝑛(𝑆𝑛) −
𝑛∑

𝑘=1

∞∑
𝑗=0

𝑃𝑘(𝑋−𝑗) .

(5.4)
Let 𝑁 be a positive integer. According to item 1 of Proposition 2.1 in [2],

𝑅𝑛,1 = 𝔼0(𝑆𝑛) − 𝔼𝑛(𝑆𝑛+𝑁 − 𝑆𝑛) + 𝔼0(𝑆𝑛+𝑁 − 𝑆𝑛) −
𝑛∑

𝑘=1

∑
𝑗≥𝑛+𝑁+1

𝑃𝑘(𝑋𝑗) .

(5.5)

On an other hand, we write that

∞∑
𝑗=0

𝑃𝑘(𝑋−𝑗) =

𝑁−1∑
𝑗=0

𝑃𝑘(𝑋−𝑗) +
∑
𝑗≥𝑁

𝑃𝑘(𝑋−𝑗) .

Therefore

𝑅𝑛,2 = 𝑆𝑛 − 𝔼𝑛(𝑆𝑛) − (𝔼𝑛+𝑁 (𝑆𝑁 − 𝔼𝑁 (𝑆𝑁 )) ∘ 𝑇−𝑁 −
𝑛∑

𝑘=1

∑
𝑗≥𝑁

𝑃𝑘(𝑋−𝑗) . (5.6)

Starting from (5.3) and considering (5.5) and (5.6), the first part follows. We turn
now to the second part of the proposition. Applying Burkholder’s inequality and
using stationarity, we obtain that there exists a positive constant 𝑐𝑝 such that, for
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any positive integer 𝑛,∥∥∥∥ 𝑛∑
𝑘=1

∑
𝑗≥𝑛+𝑁+1

𝑃𝑘(𝑋𝑗)

∥∥∥∥𝑝′
𝑝

≤𝑐𝑝

𝑛∑
𝑘=1

∥∥∥∥ ∑
𝑗≥𝑛+𝑁+1

𝑃𝑘(𝑋𝑗)

∥∥∥∥𝑝′
𝑝

=𝑐𝑝

𝑛∑
𝑘=1

∥∥∥∥ ∑
𝑗≥𝑁+𝑘

𝑃0(𝑋𝑗)

∥∥∥∥𝑝′
𝑝

,

(5.7)

and∥∥∥∥ 𝑛∑
𝑘=1

∑
𝑗≥𝑁

𝑃𝑘(𝑋−𝑗)
∥∥∥∥𝑝′
𝑝

≤𝑐𝑝

𝑛∑
𝑘=1

∥∥∥∥∑
𝑗≥𝑁

𝑃𝑘(𝑋−𝑗)
∥∥∥∥𝑝′
𝑝

=𝑐𝑝

𝑛∑
𝑘=1

∥∥∥∥ ∑
𝑗≥𝑁+𝑘

𝑃0(𝑋−𝑗)
∥∥∥∥𝑝′
𝑝

. (5.8)

The second part of the proposition follows from item 1 by taking into account the
stationarity and by considering the bounds (5.7) and (5.8). □
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[22] F. Merlevède and M. Peligrad, Rosenthal inequalities for martingales and stationary
sequences and examples, to appear in Ann. Probab. (2012). arXiv:1103.3242.
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On the Rate of Convergence
to the Semi-circular Law

Friedrich Götze and Alexandre Tikhomirov

Abstract. Let X = (𝑋𝑗𝑘)𝑛𝑗,𝑘=1 denote a Hermitian random matrix with entries
𝑋𝑗𝑘, which are independent for 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛. We consider the rate of
convergence of the empirical spectral distribution function of the matrix X
to the semi-circular law assuming that E𝑋𝑗𝑘 = 0, E𝑋2

𝑗𝑘 = 1 and that the
distributions of the matrix elements 𝑋𝑗𝑘 have a uniform sub exponential decay
in the sense that there exists a constant ϰ > 0 such that for any 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛
and any 𝑡 ≥ 1 we have

Pr{∣𝑋𝑗𝑘∣ > 𝑡} ≤ ϰ
−1 exp{−𝑡ϰ}.

By means of a short recursion argument it is shown that the Kolmogorov
distance between the empirical spectral distribution of the Wigner matrix
W = 1√

𝑛
X and the semicircular law is of order 𝑂(𝑛−1 log𝑏 𝑛) with some

positive constant 𝑏 > 0.
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Keywords. Spectral distribution function, semi-circular law.

1. Introduction

Consider a family X = {𝑋𝑗𝑘}, 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛, of independent real random
variables defined on some probability space (Ω,M,Pr), for any 𝑛 ≥ 1. Assume that
𝑋𝑗𝑘 = 𝑋𝑘𝑗 , for 1 ≤ 𝑘 < 𝑗 ≤ 𝑛, and introduce the symmetric matrices

W =
1√
𝑛

⎛⎜⎜⎜⎝
𝑋11 𝑋12 ⋅ ⋅ ⋅ 𝑋1𝑛
𝑋21 𝑋22 ⋅ ⋅ ⋅ 𝑋2𝑛

...
...

. . .
...

𝑋𝑛1 𝑋𝑛2 ⋅ ⋅ ⋅ 𝑋𝑛𝑛

⎞⎟⎟⎟⎠ .
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The matrix W has a random spectrum {𝜆1, . . . , 𝜆𝑛} and an associated spec-
tral distribution function ℱ𝑛(𝑥) = 1

𝑛 card {𝑗 ≤ 𝑛 : 𝜆𝑗 ≤ 𝑥}, 𝑥 ∈ ℝ. Averaging
over the random values 𝑋𝑖𝑗(𝜔), define the expected (non-random) empirical distri-
bution functions 𝐹𝑛(𝑥) = Eℱ𝑛(𝑥). Let 𝐺(𝑥) denote the semi-circular distribution

function with density 𝑔(𝑥) = 𝐺′(𝑥) = 1
2𝜋

√
4 − 𝑥2𝕀[−2,2](𝑥), where 𝕀[𝑎,𝑏](𝑥) denotes

an indicator-function of interval [𝑎, 𝑏]. We shall study the rate of convergence of
ℱ𝑛(𝑥) to the semi-circular law under the condition

Pr{∣𝑋𝑗𝑘∣ > 𝑡} ≤ ϰ−1 exp{−𝑡ϰ}, (1.1)

for some ϰ > 0 and for any 𝑡 ≥ 1. The rate of convergence to the semi-circular law
has been studied by several authors. We proved in [7] that the Kolmogorov distance
between ℱ𝑛(𝑥) and the distribution function 𝐺(𝑥), Δ∗

𝑛 := sup𝑥 ∣ℱ𝑛(𝑥) −𝐺(𝑥)∣ is

of order 𝑂𝑃 (𝑛−
1
2 ) (i.e., 𝑛

1
2 Δ∗

𝑛 is bounded in probability). Bai [1] and Girko [4]

showed that Δ𝑛 := sup𝑥 ∣𝐹𝑛(𝑥)−𝐺(𝑥)∣ = 𝑂(𝑛−
1
2 ). Bobkov, Götze and Tikhomirov

[3] proved that Δ𝑛 and EΔ∗
𝑛 have order 𝑂(𝑛−

2
3 ) assuming a Poincaré inequality

for the distribution of the matrix elements. For the Gaussian Unitary Ensemble
respectively for the Gaussian Orthogonal Ensemble, see [6] respectively [12], it has
been shown that Δ𝑛 = 𝑂(𝑛−1). Denote by 𝛾𝑛1 ≤ ⋅ ⋅ ⋅ ≤ 𝛾𝑛𝑛, the quantiles of 𝐺, i.e.,

𝐺(𝛾𝑛𝑗) = 𝑗
𝑛 . We introduce the notation llog𝑛 := log log𝑛. Erdös, Yau and Yin [10]

showed, for matrices with elements 𝑋𝑗𝑘 which have a uniformly sub exponential
decay, i.e., condition (1.1) holds, the following result

Pr
{
∃ 𝑗 : ∣𝜆𝑗 − 𝛾𝑗 ∣ ≥ (log𝑛)𝐶 llog𝑛

[
min{(𝑗,𝑁 − 𝑗 + 1)

]− 1
3

𝑛−
2
3

}
≤ 𝐶 exp{−(log𝑛)𝑐 llog𝑛},

for 𝑛 large enough. It is straightforward to check that this bound implies that

Pr
{

sup
𝑥

∣ℱ𝑛(𝑥) −𝐺(𝑥)∣ ≤ 𝐶𝑛−1(log 𝑛)𝐶 llog𝑛
}
≥ 1 − 𝐶 exp{−(log𝑛)𝑐 llog𝑛}. (1.2)

From the last inequality it is follows that EΔ∗
𝑛 ≤ 𝐶𝑛−1(log𝑛)𝐶 llog𝑛 . In this paper

we derive some improvement of the result (1.2) (reducing the power of logarithm)
using arguments similar to those used in [10] and provide a self-contained proof
based on recursion methods developed in the papers of Götze and Tikhomirov
[7], [5] and [13]. It follows from the results of Gustavsson [8] that the best pos-
sible bound in the Gaussian case for the rate of convergence in probability is
𝑂(𝑛−1

√
log𝑛). For any positive constants 𝛼 > 0 and ϰ > 0, define the quantities

𝑙𝑛,𝛼 := log𝑛(log log𝑛)𝛼 and 𝛽𝑛 := (𝑙𝑛,𝛼)
1
ϰ
+ 1

2 . (1.3)

The main result of this paper is the following

Theorem 1.1. Let E𝑋𝑗𝑘 = 0, E𝑋2
𝑗𝑘 = 1. Assume that there exists a constant ϰ > 0

such that inequality (1.1) holds, for any 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 and any 𝑡 ≥ 1. Then, for
any positive 𝛼 > 0 there exist positive constants 𝐶 and 𝑐 depending on ϰ and 𝛼
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only such that

Pr
{

sup
𝑥

∣ℱ𝑛(𝑥) −𝐺(𝑥)∣ > 𝑛−1𝛽4𝑛 ln𝑛
}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

We apply the result of Theorem 1.1 to study the eigenvectors of the matrix
W. Let u𝑗 = (𝑢𝑗1, . . . , 𝑢𝑗𝑛)𝑇 be eigenvectors of the matrix W corresponding to
the eigenvalues 𝜆𝑗 , 𝑗 = 1, . . . , 𝑛. We prove the following result.

Theorem 1.2. Under the conditions of Theorem 1.1, for any positive 𝛼 > 0, there
exist positive constants 𝐶 and 𝑐, depending on ϰ and 𝛼 only such that

Pr
{

max
1≤𝑗,𝑘≤𝑛

∣𝑢𝑗𝑘∣2 >
𝛽2𝑛
𝑛

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}, (1.4)

and

Pr
{

max
1≤𝑘≤𝑛

∣∣∣∣∣
𝑘∑

𝜈=1

∣𝑢𝑗𝜈 ∣2 − 𝑘

𝑛

∣∣∣∣∣ > 𝛽2𝑛√
𝑛

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (1.5)

2. Bounds for the Kolmogorov distance between distribution
functions via Stieltjes transforms

To bound the error Δ∗
𝑛 we shall use an approach developed in previous work of

the authors, see [7].
We modify the bound of the Kolmogorov distance between an arbitrary distribu-
tion function and the semi-circular distribution function via their Stieltjes trans-
forms obtained in [7] Lemma 2.1. For 𝑥 ∈ [−2, 2] define 𝛾(𝑥) := 2 − ∣𝑥∣. Given
1
2 > 𝜀 > 0 introduce the interval 𝕁𝜀 := {𝑥 ∈ [−2, 2] : 𝛾(𝑥) ≥ 𝜀} and 𝕁′𝜀 := 𝕁𝜀/2.
For a distribution function 𝐹 denote by 𝑆𝐹 (𝑧) its Stieltjes transform,

𝑆𝐹 (𝑧) =

∫ ∞

−∞

1

𝑥− 𝑧
𝑑𝐹 (𝑥).

Proposition 2.1. Let 𝑣 > 0 and 𝑎 > 0 and 1
2 > 𝜀 > 0 be positive numbers such that

1

𝜋

∫
∣𝑢∣≤𝑎

1

𝑢2 + 1
𝑑𝑢 =

3

4
=: 𝛽, (2.1)

and
2𝑣𝑎 ≤ 𝜀

3
2 . (2.2)

If 𝐺 denotes the distribution function of the standard semi-circular law, and 𝐹 is
any distribution function, there exist some absolute constants 𝐶1 and 𝐶2 such that

Δ(𝐹,𝐺) := sup
𝑥

∣𝐹 (𝑥) −𝐺(𝑥)∣

≤ 2 sup
𝑥∈𝕁′𝜀

∣∣∣Im ∫ 𝑥

−∞
(𝑆𝐹 (𝑢 + 𝑖

𝑣√
𝛾

) − 𝑆𝐺(𝑢 + 𝑖
𝑣√
𝛾

))𝑑𝑢
∣∣∣+ 𝐶1𝑣 + 𝐶2𝜀

3
2 .

Remark 2.2. For any 𝑥 ∈ 𝒥𝜀 we have 𝛾 = 𝛾(𝑥) ≥ 𝜀 and according to condition
(2.2), 𝑎𝑣√

𝛾 ≤ 𝜀
2 .
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Proof. The proof of Proposition 2.1 is a straightforward adaptation of the proof
of Lemma 2.1 from [7]. We include it here for the sake of completeness. First we
note that

sup
𝑥

∣𝐹 (𝑥) −𝐺(𝑥)∣ = sup
𝑥∈[−2,2]

∣𝐹 (𝑥) −𝐺(𝑥)∣ (2.3)

= max
{

sup
𝑥∈𝒥𝜀

∣𝐹 (𝑥) −𝐺(𝑥)∣, sup
𝑥∈[−2,−2+𝜀]

∣𝐹 (𝑥) −𝐺(𝑥)∣, sup
𝑥∈[2−𝜀,2]

∣𝐹 (𝑥) −𝐺(𝑥)∣
}
.

Furthermore, for 𝑥 ∈ [−2,−2 + 𝜀] we have

−𝐺(−2 + 𝜀) ≤ 𝐹 (𝑥) −𝐺(𝑥) ≤ 𝐹 (−2 + 𝜀) −𝐺(−2 + 𝜀) + 𝐺(−2 + 𝜀)

≤ sup
𝑥∈𝒥𝜀

∣𝐹 (𝑥) −𝐺(𝑥)∣ + 𝐺(−2 + 𝜀). (2.4)

This inequality yields

sup
𝑥∈[−2,−2+𝜀]

∣𝐹 (𝑥) −𝐺(𝑥)∣ ≤ sup
𝑥∈𝒥𝜀

∣𝐹 (𝑥) −𝐺(𝑥)∣ + 𝐺(−2 + 𝜀). (2.5)

Similarly we get

sup
𝑥∈[2−𝜀,2]

∣𝐹 (𝑥) −𝐺(𝑥)∣ ≤ sup
𝑥∈𝒥𝜀

∣𝐹 (𝑥) −𝐺(𝑥)∣ + 1 −𝐺(2 − 𝜀). (2.6)

Note that 𝐺(−2 + 𝜀) = 1 − 𝐺(2 − 𝜀) and 𝐺(−2 + 𝜀) ≤ 𝐶𝜀
3
2 with some absolute

constant 𝐶 > 0. Combining all these relations we get

sup
𝑥

∣𝐹 (𝑥) −𝐺(𝑥)∣ ≤ Δ𝜀(𝐹,𝐺) + 𝐶𝜀
3
2 , (2.7)

where Δ𝜀(𝐹,𝐺) = sup𝑥∈𝕁𝜀 ∣𝐹 (𝑥) −𝐺(𝑥)∣. We denote 𝑣′ = 𝑣√
𝛾 . For any 𝑥 ∈ 𝕁′𝜀∣∣∣ 1

𝜋
Im
(∫ 𝑥

−∞
(𝑆𝐹 (𝑢 + 𝑖𝑣′) − 𝑆𝐺(𝑢 + 𝑖𝑣′))𝑑𝑢

)∣∣∣
≥ 1

𝜋
Im
(∫ 𝑥

−∞
(𝑆𝐹 (𝑢 + 𝑖𝑣′) − 𝑆𝐺(𝑢 + 𝑖𝑣′))𝑑𝑢

)
=

1

𝜋

[∫ 𝑥

−∞

∫ ∞

−∞

𝑣′𝑑(𝐹 (𝑦) −𝐺(𝑦))

(𝑦 − 𝑢)2 + 𝑣′2

]
𝑑𝑢

=
1

𝜋

∫ 𝑥

−∞

[∫ ∞

−∞

2𝑣′(𝑦 − 𝑢)(𝐹 (𝑦) −𝐺(𝑦))𝑑𝑦

((𝑦 − 𝑢)2 + 𝑣′2)2

]
=

1

𝜋

∫ ∞

−∞
(𝐹 (𝑦) −𝐺(𝑦))

[∫ 𝑥

−∞

2𝑣′(𝑦 − 𝑢)

((𝑦 − 𝑢)2 + 𝑣′2)2
𝑑𝑢

]
𝑑𝑦

=
1

𝜋

∫ ∞

−∞

𝐹 (𝑥− 𝑣′𝑦) −𝐺(𝑥− 𝑣′𝑦)

𝑦2 + 1
𝑑𝑦, by change of variables. (2.8)

Furthermore, using (2.1) and the definition of Δ(𝐹,𝐺) we note that

1

𝜋

∫
∣𝑦∣>𝑎

∣𝐹 (𝑥− 𝑣′𝑦) −𝐺(𝑥− 𝑣′𝑦)∣
𝑦2 + 1

𝑑𝑦 ≤ (1 − 𝛽)Δ(𝐹,𝐺). (2.9)
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Since 𝐹 is non-decreasing, we have

1

𝜋

∫
∣𝑦∣≤𝑎

𝐹 (𝑥− 𝑣′𝑦) −𝐺(𝑥− 𝑣′𝑦)

𝑦2 + 1
𝑑𝑦 ≥ 1

𝜋

∫
∣𝑦∣≤𝑎

𝐹 (𝑥− 𝑣′𝑎) −𝐺(𝑥− 𝑣′𝑦)

𝑦2 + 1
𝑑𝑦

≥ (𝐹 (𝑥 − 𝑣′𝑎) −𝐺(𝑥− 𝑣′𝑎))𝛽 − 1

𝜋

∫
∣𝑦∣≤𝑎

∣𝐺(𝑥 − 𝑣′𝑦) −𝐺(𝑥− 𝑣′𝑎)∣𝑑𝑦. (2.10)

These inequalities together imply (using a change of variables in the last step)

1

𝜋

∫ ∞

−∞

𝐹 (𝑥− 𝑣′𝑦) −𝐺(𝑥 − 𝑣′𝑦)

𝑦2 + 1
𝑑𝑦

≥ 𝛽(𝐹 (𝑥− 𝑣′𝑎) −𝐺(𝑥− 𝑣′𝑎))

− 1

𝜋

∫
∣𝑦∣≤𝑎

∣𝐺(𝑥− 𝑣′𝑦) −𝐺(𝑥 − 𝑣′𝑎)∣𝑑𝑦 − (1 − 𝛽)Δ(𝐹,𝐺)

≥ 𝛽(𝐹 (𝑥− 𝑣′𝑎) −𝐺(𝑥− 𝑣′𝑎))

− 1

𝑣′𝜋

∫
∣𝑦∣≤𝑣′𝑎

∣𝐺(𝑥 − 𝑦) −𝐺(𝑥 − 𝑣′𝑎))∣𝑑𝑦 − (1 − 𝛽)Δ(𝐹,𝐺). (2.11)

Note that according to Remark 2.2, 𝑥 ± 𝑣′𝑎 ∈ 𝕁′𝜀 for any 𝑥 ∈ 𝒥𝜀. Assume first
that 𝑥𝑛 ∈ 𝕁𝜀 is a sequence such that 𝐹 (𝑥𝑛) − 𝐺(𝑥𝑛) → Δ𝜀(𝐹,𝐺). Then 𝑥′𝑛 :=
𝑥𝑛 + 𝑣′𝑎 ∈ 𝕁′𝜀. Using (2.8) and (2.11), we get

sup
𝑥∈𝕁′𝜀

∣∣∣∣Im ∫ 𝑥

−∞
(𝑆𝐹 (𝑢 + 𝑖𝑣′) − 𝑆𝐺(𝑢 + 𝑖𝑣′))𝑑𝑢

∣∣∣∣
≥ Im

∫ 𝑥′𝑛

−∞
(𝑆𝐹 (𝑢 + 𝑖𝑣′) − 𝑆𝐺(𝑢 + 𝑖𝑣′))𝑑𝑢

≥ 𝛽(𝐹 (𝑥′𝑛 − 𝑣′𝑎) −𝐺(𝑥′𝑛 − 𝑣′𝑎))

− 1

𝜋𝑣
sup
𝑥∈𝕁′𝜀

√
𝛾

∫
∣𝑦∣≤2𝑣′𝑎

∣𝐺(𝑥 + 𝑦) −𝐺(𝑥)∣𝑑𝑦 − (1 − 𝛽)Δ(𝐹,𝐺)

= 𝛽(𝐹 (𝑥𝑛) −𝐺(𝑥𝑛))

− 1

𝜋𝑣
sup
𝑥∈𝕁′𝜀

√
𝛾

∫
∣𝑦∣<2𝑣′𝑎

∣𝐺(𝑥 + 𝑦) −𝐺(𝑥)∣𝑑𝑦 − (1 − 𝛽)Δ(𝐹,𝐺). (2.12)

Assume for definiteness that 𝑦 > 0. Recall that 𝜀 ≤ 2𝛾, for any 𝑥 ∈ 𝒥 ′
𝜀 . By

Remark 2.2 with 𝜀/2 instead 𝜀, we have 0 < 𝑦 ≤ 2𝑣′𝑎 ≤ √
2𝜀, for any 𝑥 ∈ 𝒥 ′

𝜀 . For
the semi-circular law we obtain,

∣𝐺(𝑥 + 𝑦) −𝐺(𝑥)∣ ≤ 𝑦 sup
𝑢∈[𝑥,𝑥+𝑦]

𝐺′(𝑢) ≤ 𝑦𝐶
√
𝛾 + 𝑦

≤ 𝐶𝑦
√

𝛾 + 2𝑣′𝑎 ≤ 𝐶𝑦
√
𝛾 + 𝜀 ≤ 𝐶𝑦

√
𝛾. (2.13)

This yields after integrating in 𝑦

1

𝜋𝑣
sup
𝑥∈𝕁′𝜀

√
𝛾

∫
0≤𝑦≤2𝑣′𝑎

∣𝐺(𝑥 + 𝑦) −𝐺(𝑥)∣𝑑𝑦 ≤ 𝐶

𝑣
sup
𝑥∈𝕁′𝜀

𝛾𝑣′2 ≤ 𝐶𝑣. (2.14)
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Similarly we get that

1

𝜋𝑣
sup
𝑥∈𝕁′𝜀

√
𝛾

∫
0≥𝑦≥−2𝑣′𝑎

∣𝐺(𝑥 + 𝑦) −𝐺(𝑥)∣𝑑𝑦 ≤ 𝐶

𝑣
sup
𝑥∈𝕁′𝜀

𝛾𝑣′2 ≤ 𝐶𝑣. (2.15)

By inequality (2.7)

Δ𝜀(𝐹,𝐺) ≥ Δ(𝐹,𝐺) − 𝐶𝜀
3
2 . (2.16)

The inequalities (2.12), (2.16) and (2.14), (2.15) together yield as 𝑛 tends to infinity

sup
𝑥∈𝕁′𝜀

∣∣∣∣Im ∫ 𝑥

−∞
(𝑆𝐹 (𝑢 + 𝑖𝑣′) − 𝑆𝐺(𝑢 + 𝑖𝑣′))𝑑𝑢

∣∣∣∣
≥ (2𝛽 − 1)Δ(𝐹,𝐺) − 𝐶𝑣 − 𝐶𝜀

3
2 , (2.17)

for some constant 𝐶 > 0. Similar arguments may be used to prove this inequality
in case there is a sequence 𝑥𝑛 ∈ 𝕁𝜀 such 𝐹 (𝑥𝑛) −𝐺(𝑥𝑛) → −Δ𝜀(𝐹,𝐺). In view of
(2.17) and 2𝛽 − 1 = 1/2 this completes the proof. □

Lemma 2.1. Under the conditions of Proposition 2.1, for any 𝑉 > 𝑣 and 0 < 𝑣 ≤
𝜀3/2

2𝑎 and 𝑣′ = 𝑣/
√
𝛾, 𝛾 = 2 − ∣𝑥∣, 𝑥 ∈ 𝕁′𝜀 as above, the following inequality holds

sup
𝑥∈𝕁′𝜀

∣∣∣∣∫ 𝑥

−∞
(Im(𝑆𝐹 (𝑢 + 𝑖𝑣′) − 𝑆𝐺(𝑢 + 𝑖𝑣′))𝑑𝑢

∣∣∣∣
≤
∫ ∞

−∞
∣𝑆𝐹 (𝑢 + 𝑖𝑉 ) − 𝑆𝐺(𝑢 + 𝑖𝑉 )∣𝑑𝑢 + sup

𝑥∈𝕁′𝜀

∣∣∣∣∣
∫ 𝑉

𝑣′
(𝑆𝐹 (𝑥 + 𝑖𝑢) − 𝑆𝐺(𝑥 + 𝑖𝑢)) 𝑑𝑢

∣∣∣∣∣.
Proof. Let 𝑥 ∈ 𝕁′𝜀 be fixed. Let 𝛾 = 𝛾(𝑥). Put 𝑧 = 𝑢+ 𝑖𝑣′. Since 𝑣′ = 𝑣√

𝛾 ≤ 𝜀
2𝑎 , see

(2.2), we may assume without loss of generality that 𝑣′ ≤ 4 for 𝑥 ∈ 𝕁′𝜀. Since the
functions of 𝑆𝐹 (𝑧) and 𝑆𝐺(𝑧) are analytic in the upper half-plane, it is enough to
use Cauchy’s theorem. We can write for 𝑥 ∈ 𝒥 ′

𝜀∫ 𝑥

−∞
Im(𝑆𝐹 (𝑧) − 𝑆𝐺(𝑧))𝑑𝑢 = Im

{
lim
𝐿→∞

∫ 𝑥

−𝐿
(𝑆𝐹 (𝑢 + 𝑖𝑣′) − 𝑆𝐺(𝑢 + 𝑖𝑣′))𝑑𝑢

}
.

By Cauchy’s integral formula, we have∫ 𝑥

−𝐿
(𝑆𝐹 (𝑧) − 𝑆𝐺(𝑧))𝑑𝑢 =

∫ 𝑥

−𝐿
(𝑆𝐹 (𝑢 + 𝑖𝑉 ) − 𝑆𝐺(𝑢 + 𝑖𝑉 ))𝑑𝑢

+

∫ 𝑉

𝑣′
(𝑆𝐹 (−𝐿 + 𝑖𝑢) − 𝑆𝐺(−𝐿 + 𝑖𝑢))𝑑𝑢

−
∫ 𝑉

𝑣′
(𝑆𝐹 (𝑥 + 𝑖𝑢) − 𝑆𝐺(𝑥 + 𝑖𝑢))𝑑𝑢.

Denote by 𝜉( resp. 𝜂) a random variable with distribution function 𝐹 (𝑥) (resp.
𝐺(𝑥)). Then we have

∣𝑆𝐹 (−𝐿 + 𝑖𝑢)∣ =

∣∣∣∣E 1

𝜉 + 𝐿− 𝑖𝑢

∣∣∣∣ ≤ 𝑣′−1 Pr{∣𝜉∣ > 𝐿/2} +
2

𝐿
,
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for any 0 < 𝑣′ ≤ 𝑢 ≤ 𝑉 . Similarly,

∣𝑆𝐺(−𝐿 + 𝑖𝑢)∣ ≤ 𝑣′−1 Pr{∣𝜂∣ > 𝐿/2} +
2

𝐿
.

These inequalities imply that∣∣∣∣∣
∫ 𝑉

𝑣′
(𝑆𝐹 (−𝐿 + 𝑖𝑢)− 𝑆𝐺(−𝐿 + 𝑖𝑢))𝑑𝑢

∣∣∣∣∣→ 0 as 𝐿 →∞,

which completes the proof. □
Combining the results of Proposition 2.1 and Lemma 2.1, we get

Corollary 2.2. Under the conditions of Proposition 2.1 the following inequality
holds

Δ(𝐹,𝐺) ≤ 2

∫ ∞

−∞
∣𝑆𝐹 (𝑢 + 𝑖𝑉 ) − 𝑆𝐺(𝑢 + 𝑖𝑉 )∣𝑑𝑢 + 𝐶1𝑣 + 𝐶2𝜀

3
2

+ 2 sup
𝑥∈𝕁′𝜀

∫ 𝑉

𝑣′
∣𝑆𝐹 (𝑥 + 𝑖𝑢) − 𝑆𝐺(𝑥 + 𝑖𝑢)∣𝑑𝑢,

where 𝑣′ = 𝑣√
𝛾 with 𝛾 = 2 − ∣𝑥∣ and 𝐶1, 𝐶2 > 0 denote absolute constants.

We shall apply the last inequality. We denote the Stieltjes transform of ℱ𝑛(𝑥)
by 𝑚𝑛(𝑧) and the Stieltjes transform of the semi-circular law by 𝑠(𝑧). Let R = R(𝑧)
be the resolvent matrix of W given by R = (W − 𝑧I𝑛)−1, for all 𝑧 = 𝑢 + 𝑖𝑣 with
𝑣 ∕= 0. Here and in what follows I𝑛 denotes the identity matrix of dimension 𝑛.
Sometimes we shall omit the sub index in the notation of an identity matrix. It is
well known that the Stieltjes transform of the semi-circular distribution satisfies
the equation

𝑠2(𝑧) + 𝑧𝑠(𝑧) + 1 = 0 (2.18)

(see, for example, equality (4.20) in [7]). Furthermore, the Stieltjes transform of
an empirical spectral distribution function ℱ𝑛(𝑥), say 𝑚𝑛(𝑧), is given by

𝑚𝑛(𝑧) =
1

𝑛

𝑛∑
𝑗=1

𝑅𝑗𝑗 =
1

2𝑛
TrR.

(see, for instance, equality (4.3) in [7]). Introduce the matrices W(𝑗), which are
obtained from W by deleting the 𝑗th row and the 𝑗th column, and the corre-
sponding resolvent matrix R(𝑗) defined by R(𝑗) := (W(𝑗) − 𝑧I𝑛−1)−1 and let

𝑚
(𝑗)
𝑛 (𝑧) := 1

𝑛−1TrR(𝑗). Consider the index sets 𝕋𝑗 := {1, . . . , 𝑛} ∖ {𝑗}. We shall
use the representation

𝑅𝑗𝑗 =
1

−𝑧 + 1√
𝑛
𝑋𝑗𝑗 − 1

𝑛

∑
𝑘,𝑙∈𝕋𝑗𝑋𝑗𝑘𝑋𝑗𝑙𝑅

(𝑗)
𝑘𝑙

,

(see, for example, equality (4.6) in [7]). We may rewrite it as follows

𝑅𝑗𝑗 = − 1

𝑧 + 𝑚𝑛(𝑧)
+

1

𝑧 + 𝑚𝑛(𝑧)
𝜀𝑗𝑅𝑗𝑗 , (2.19)
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where 𝜀𝑗 := 𝜀𝑗1 + 𝜀𝑗2 + 𝜀𝑗3 + 𝜀𝑗4 with

𝜀𝑗1 :=
1√
𝑛
𝑋𝑗𝑗 , 𝜀𝑗2 :=

1

𝑛

∑
𝑘∈𝕋𝑗

(𝑋2
𝑗𝑘 − 1)𝑅

(𝑗)
𝑘𝑘 ,

𝜀𝑗3 :=
1

𝑛

∑
𝑘 ∕=𝑙∈𝕋𝑗

𝑋𝑗𝑘𝑋𝑗𝑙𝑅
(𝑗)
𝑘𝑙 , 𝜀𝑗4 :=

1

𝑛
(TrR(𝑗) − TrR). (2.20)

This relation immediately implies the following two equations

𝑅𝑗𝑗 = − 1

𝑧 + 𝑚𝑛(𝑧)
−

3∑
𝜈=1

𝜀𝑗𝜈
(𝑧 + 𝑚𝑛(𝑧))2

+

3∑
𝜈=1

1

(𝑧 + 𝑚𝑛(𝑧))2
𝜀𝑗𝜈𝜀𝑗𝑅𝑗𝑗 +

1

𝑧 + 𝑚𝑛(𝑧)
𝜀𝑗4𝑅𝑗𝑗 ,

and

𝑚𝑛(𝑧) = − 1

𝑧 + 𝑚𝑛(𝑧)
− 1

(𝑧 + 𝑚𝑛(𝑧))

1

𝑛

𝑛∑
𝑗=1

𝜀𝑗𝑅𝑗𝑗 (2.21)

= − 1

𝑧 + 𝑚𝑛(𝑧)
− 1

(𝑧 + 𝑚𝑛(𝑧))2
1

𝑛

3∑
𝜈=1

𝑛∑
𝑗=1

𝜀𝑗𝜈+

+
1

(𝑧 + 𝑚𝑛(𝑧))2
1

𝑛

3∑
𝜈=1

𝑛∑
𝑗=1

𝜀𝑗𝜈𝜀𝑗𝑅𝑗𝑗 +
1

𝑧 + 𝑚𝑛(𝑧)

1

𝑛

𝑛∑
𝑗=1

𝜀𝑗4𝑅𝑗𝑗 . (2.22)

3. Large deviations I

In the following lemmas we shall bound 𝜀𝑗𝜈 , for 𝜈 = 1, . . . , 4 and 𝑗 = 1, . . . , 𝑛. Using
the exponential tails of the distribution of 𝑋𝑗𝑘 we shall replace quantities like, e.g.,

E∣𝑋𝑗𝑘∣𝑝𝐼(∣𝑋𝑗𝑘∣ > 𝑙
1
ϰ
𝑛,𝛼) and others by a uniform error bound 𝐶 exp{−𝑐𝑙𝑛,𝛼} with

constants 𝐶, 𝑐 > 0 depending on ϰ and 𝛼 varying from one instance to the next.

Lemma 3.1. Assuming the conditions of Theorem 1.1 there exist positive constants
𝐶 and 𝑐, depending on ϰ and 𝛼 such that

Pr{∣𝜀𝑗1∣ ≥ 2 𝑙
1
ϰ
𝑛,𝛼𝑛

− 1
2 } ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼},

for any 𝑗 = 1, . . . , 𝑛.

Proof. The result follows immediately from the hypothesis (1.1). □

Lemma 3.2. Assuming the conditions of Theorem 1.1 we have, for any 𝑧 = 𝑢 + 𝑖𝑣
with 𝑣 > 0 and any 𝑗 = 1, . . . , 𝑛,

∣𝜀𝑗4∣ ≤ 1

𝑛𝑣
.
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Proof. The conclusion of Lemma 3.2 follows immediately from the obvious in-
equality ∣TrR− TrR(𝑗)∣ ≤ 𝑣−1 (see Lemma 4.1 in [7]). □
Lemma 3.3. Assuming the conditions of Theorem 1.1, for all 𝑧 = 𝑢+𝑖𝑣 with 𝑢 ∈ ℝ

and 𝑣 > 0, the following inequality holds

Pr
{
∣𝜀𝑗2∣ > 3 𝑙

2
ϰ
+ 1

2
𝑛,𝛼 𝑛−

1
2 (𝑛−1

∑
𝑙∈𝕋𝑗

∣𝑅(𝑗)𝑙𝑙 ∣2)
1
2

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼},

for some positive constants 𝑐 > 0 and 𝐶, depending on ϰ and 𝛼 only.

Proof. We use the following well-known inequality for sums of independent random
variables. Let 𝜉1, . . . , 𝜉𝑛 be independent random variables such that E𝜉𝑗 = 0 and
∣𝜉𝑗 ∣ ≤ 𝜎𝑗 . Then, for some numerical constant 𝑐 > 0,

Pr

{∣∣∣∣ 𝑛∑
𝑗=1

𝜉𝑗

∣∣∣∣ > 𝑥

}
≤ 𝑐(1 − Φ(𝑥/𝜎)) ≤ 𝑐𝜎

𝑥
exp

{
− 𝑥2

2𝜎2

}
, (3.1)

where Φ(𝑥) = 1√
2𝜋

∫ 𝑥
−∞ exp{− 𝑦2

2 }𝑑𝑦 and 𝜎2 = 𝜎21 + ⋅ ⋅ ⋅ + 𝜎2𝑛. The last inequality

holds for 𝑥 ≥ 𝜎. (See, for instance [2], p.1, first inequality.) We put 𝜂𝑙 = 𝑋2
𝑗𝑙 − 1,

and define,

𝜉𝑙 =
(
𝜂𝑙𝕀{∣𝑋𝑗𝑙∣ ≤ 𝑙

1
ϰ
𝑛,𝛼} −E𝜂𝑙𝕀{∣𝑋𝑗𝑙∣ ≤ 𝑙

1
ϰ
𝑛,𝛼}
)
𝑅
(𝑗)
𝑙𝑙 .

Note that E𝜉𝑙 = 0 and ∣𝜉𝑙∣ ≤ 2𝑙
2
ϰ
𝑛,𝛼∣𝑅(𝑗)𝑙𝑙 ∣. Introduce the 𝜎-algebra M(𝑗) gen-

erated by the random variables 𝑋𝑘𝑙 with 𝑘, 𝑙 ∈ 𝕋𝑗 . Let E𝑗 and Pr𝑗 denote the

conditional expectation and the conditional probability with respect to M(𝑗). Note

that the random variables 𝑋𝑗𝑙 and the 𝜎-algebra M(𝑗) are independent. Applying

inequality (3.1) with 𝑥 := 𝑙
1
2
𝑛,𝛼𝜎 and with

𝜎2 = 4𝑛𝑙
4
ϰ
𝑛,𝛼

(
1

𝑛

∑
𝑙∈𝕋𝑗

∣𝑅(𝑗)𝑙𝑙 ∣2
)
,

we get

Pr

{∣∣∣∣∑
𝑙∈𝕋𝑗

𝜉𝑗

∣∣∣∣ > 𝑥

}
= EPr𝑗

{∣∣∣∣∑
𝑙∈𝕋𝑗

𝜉𝑗

∣∣∣∣ ≥ 𝑥

}

≤ E exp

{
−𝑥2

𝜎2

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (3.2)

Furthermore, note that

E𝑗𝜂𝑙𝕀
{
∣𝑋𝑗𝑙∣ ≤ 𝑙

1
ϰ
𝑛,𝛼

}
= −E𝑗𝜂𝑙𝕀

{
∣𝑋𝑗𝑙∣ ≥ 𝑙

1
ϰ
𝑛,𝛼

}
.

This implies

∣E𝑗𝜂𝑙𝕀
{
∣𝑋𝑗𝑙∣ ≤ 𝑙

1
ϰ
𝑛,𝛼

}
∣ ≤ E

1
2
𝑗 ∣𝜂𝑙∣2Pr

1
2
𝑗

{
∣𝑋𝑗𝑙∣ > 𝑙

1
ϰ
𝑛,𝛼

}
≤ E

1
2 ∣𝜂𝑙∣2 exp

{
−1

2
𝑙𝑛,𝛼

}
≤ 𝐶 exp

{
−1

2
𝑙𝑛,𝛼

}
.
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The last inequality implies that∣∣∣ 1
𝑛

∑
𝑙∈𝕋𝑗

E𝑗𝜂𝑙𝕀
{
∣𝑋𝑗𝑙∣ ≤ 𝑙

1
ϰ
𝑛,𝛼)
}
𝑅
(𝑗)
𝑙𝑙

∣∣∣
≤
(

1

𝑛

∑
𝑙∈𝕋𝑗

∣E𝑗𝜂𝑙𝕀
{
∣𝑋𝑗𝑙∣ ≤ 𝑙

1
ϰ
𝑛,𝛼)
}
∣2
) 1

2
(

1

𝑛

∑
𝑙∈𝕋𝑗

∣𝑅(𝑗)𝑙𝑙 ∣2
) 1

2

≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}
(

1

𝑛

∑
𝑙∈𝕋𝑗

∣𝑅(𝑗)𝑙𝑙 ∣2
) 1

2

. (3.3)

Furthermore, we note that if ∣𝑋𝑗𝑙∣ ≤ 𝑙
1
ϰ
𝑛,𝛼 for all 𝑙 ∈ 𝕋𝑗 , (which holds with proba-

bility at least 1 − ϰ−1 exp{−𝑐𝑙𝑛,𝛼})

∣𝜀𝑗2∣ ≤
∣∣∣∣ 1𝑛 ∑

𝑙∈𝕋𝑗
𝜉𝑙

∣∣∣∣+ ∣∣∣∣ 1𝑛 ∑
𝑙∈𝕋𝑗

E𝑗𝜂𝑙𝕀
{
∣𝑋𝑗𝑙∣ ≤ 𝑙

1
ϰ
𝑛,𝛼

}
𝑅
(𝑗)
𝑙𝑙

∣∣∣∣. (3.4)

The inequalities (3.2), (3.3) and (3.4) together conclude the proof of Lemma
3.3. Thus Lemma 3.3 is proved. □
Corollary 3.4. Assuming the conditions of Theorem 1.1 for any 𝛼 > 0 there exist
positive constants 𝑐 and 𝐶, depending on ϰ and 𝛼 such that for any 𝑧 = 𝑢 + 𝑖𝑣
with 𝑢 ∈ ℝ and 𝑣 > 0

Pr
{
∣𝜀𝑗2∣ > 3𝑙

2
ϰ
+ 1

2
𝑛,𝛼 (𝑛𝑣)−

1
2 (Im 𝑚(𝑗)

𝑛 (𝑧))
1
2

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

Proof. Note that

𝑛−1
∑
𝑙∈𝕋𝑗

∣𝑅(𝑗)𝑙𝑙 ∣2 ≤ 𝑛−1Tr ∣R(𝑗)∣2 =
1

𝑣
Im𝑚(𝑗)

𝑛 (𝑧),

where ∣R(𝑗)∣2 = R(𝑗)R(𝑗)∗. The result follows now from Lemma 3.3. □
Lemma 3.5. Assuming the conditions of Theorem 1.1, for any 𝑗 = 1, . . . , 𝑛 and for
any 𝑧 = 𝑢 + 𝑖𝑣 with 𝑢 ∈ ℝ and 𝑣 > 0, the following inequality holds,

Pr

{
∣𝜀𝑗3∣ > 𝛽2𝑛𝑛

− 1
2

(
1

𝑛

∑
𝑘 ∕=𝑙∈𝕋𝑗

∣𝑅(𝑗)𝑘𝑙 ∣2
) 1

2
}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

Proof. We shall use a large deviation bound for quadratic forms which follows
from results by Ledoux (see [11]).

Proposition 3.1. Let 𝜉1, . . . , 𝜉𝑛 be independent random variables such that ∣𝜉𝑗 ∣ ≤ 1.
Let 𝑎𝑖𝑗 denote real numbers such that 𝑎𝑖𝑗 =𝑎𝑗𝑖 and 𝑎𝑗𝑗 =0. Let 𝑍 =

∑𝑛
𝑙,𝑘=1𝜉𝑙𝜉𝑘𝑎𝑙𝑘.

Let 𝜎2 =
∑𝑛

𝑙,𝑘=1 ∣𝑎𝑙𝑘∣2. Then for every 𝑡 > 0 there exists some positive constant
𝑐 > 0 such that the following inequality holds

Pr

{
∣𝑍∣ ≥ 3

2
E

1
2 ∣𝑍∣2 + 𝑡

}
≤ exp

{
− 𝑐𝑡

𝜎

}
.
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Proof. Proposition 3.1 follows from Theorem 3.1 in [11]. □

Remark 3.2. Proposition 3.1 holds for complex 𝑎𝑖𝑗 as well. Here we should consider
two quadratic forms with coefficients Re𝑎𝑗𝑘 and Im𝑎𝑗𝑘.

In order to bound 𝜀𝑗3 we use Proposition 3.1 with

𝜉𝑙 =
(
𝑋𝑗𝑙𝕀{∣𝑋𝑗𝑙∣ ≤ 𝑙

1
ϰ
𝑛,𝛼} −E𝑋𝑗𝑙𝕀{∣𝑋𝑗𝑙∣ ≤ 𝑙

1
ϰ
𝑛,𝛼}
)
/(2 𝑙

1
ϰ
𝑛,𝛼).

Note that the random variables 𝑋𝑗𝑙, 𝑙 ∈ 𝕋𝑗 and the matrix R(𝑗) are mutually
independent for any fixed 𝑗 = 1, . . . , 𝑛. Moreover, we have ∣𝜉𝑙∣ ≤ 1. Put 𝑍 :=∑

𝑘 ∕=𝑙∈𝕋𝑗 𝜉𝑙𝜉𝑘𝑅
(𝑗)
𝑘𝑙 . Note that R(𝑗) = R(𝑗)𝑇 . We have E𝑗 ∣𝑍∣2 = 2

∑
𝑘,𝑙∈𝕋𝑗 ∣𝑅

(𝑗)
𝑘𝑙 ∣2.

Applying Proposition 3.1 with 𝑡 = 𝑙𝑛,𝛼(
∑

𝑙 ∕=𝑘∈𝕋𝑗 ∣𝑅
(𝑗)
𝑙𝑘 ∣2)

1
2 , we get

EPr𝑗

{
∣𝑍∣ ≥ 𝑙𝑛,𝛼(

∑
𝑙 ∕=𝑘∈𝕋𝑗

∣𝑅(𝑗)𝑙𝑘 ∣2)
1
2

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (3.5)

Furthermore, for some appropriate 𝑐 > 0 and for 𝑛 ≥ 2

Pr{∃𝑗, 𝑙 ∈ [1, . . . , 𝑛] : ∣𝑋𝑗𝑙∣ > 𝑙
1
ϰ
𝑛,𝛼} ≤ ϰ−1𝑛2 exp{−𝑙𝑛,𝛼} ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}

and similarly since E𝑋𝑗𝑙 = 0,

∣E𝑋𝑗𝑙𝕀{∣𝑋𝑗𝑙∣ ≤ 𝑙
1
ϰ
𝑛,𝛼}∣ ≤ Pr

1
2 {∃𝑗, 𝑙 ∈ [1, . . . , 𝑛] : ∣𝑋𝑗𝑙∣ > 𝑙

1
ϰ
𝑛,𝛼} ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

(3.6)
Introduce the random variables

𝜉𝑙 = 𝑋𝑗𝑙𝕀{∣𝑋𝑗𝑙∣ ≤ 𝑙
1
ϰ
𝑛,𝛼}/(2𝑙

1
ϰ
𝑛,𝛼) and 𝑍 =

∑
𝑙,𝑘∈𝕋𝑗

𝜉𝑙𝜉𝑘𝑅
(𝑗)
𝑙𝑘 .

Note that

Pr

{ ∑
𝑙,𝑘∈𝕋𝑗

𝑋𝑗𝑘𝑋𝑗𝑙𝑅
(𝑗)
𝑘𝑙 ∕= 4𝑙

2
ϰ
𝑛,𝛼𝑍

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (3.7)

Furthermore, by (3.6) we have∣∣∣∣ 1𝑛 ∑
𝑙,𝑘∈𝕋𝑗

𝑅
(𝑗)
𝑘𝑙 E𝜉𝑙E𝜉𝑘

∣∣∣∣ ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}
(

1

𝑛

∑
𝑘 ∕=𝑙∈𝕋𝑗

∣𝑅(𝑗)𝑘𝑙 ∣2
) 1

2

. (3.8)

Finally, inequalities (3.5)–(3.8) together imply

Pr

{
∣𝜀𝑗3∣ > 4𝛽2𝑛𝑛

− 1
2 𝑏𝑖𝑔𝑔(

1

𝑛

∑
𝑘 ∕=𝑙∈𝕋𝑗

∣𝑅(𝑗)𝑘𝑙 ∣2
) 1

2
}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

Thus Lemma 3.5 is proved. □
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Corollary 3.6. Under the conditions of Theorem 1.1 there exist positive constants
𝑐 and 𝐶 depending on ϰ and 𝛼 such that for any 𝑧 = 𝑢 + 𝑖𝑣 with 𝑢 ∈ ℝ and with
𝑣 > 0

Pr{∣𝜀𝑗3∣ > 4𝛽2𝑛 (𝑛𝑣)−
1
2 (Im𝑚(𝑗)

𝑛 (𝑧))
1
2 } ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

Proof. Note that as above

𝑛−1
∑

𝑘 ∕=𝑙∈𝕋𝑗
∣𝑅(𝑗)𝑘𝑙 ∣2 ≤ 𝑛−1Tr ∣R(𝑗)∣2 =

1

𝑣
Im𝑚(𝑗)

𝑛 (𝑧). (3.9)

The result now follows from Lemma 3.5. □

To summarize these results we recall 𝛽𝑛 = (𝑙𝑛,𝛼)
1
ϰ
+ 1

2 , defined previously in
(1.3). Without loss of generality we may assume that 𝛽𝑛 ≥ 1 and 𝑙𝑛,𝛼 ≥ 1. Then

Lemmas 3.1, 3.2, Lemma 3.3 (with 𝑙
2
ϰ
+ 1

2
𝑛,𝛼 replaced by 𝛽2𝑛), and Lemma 3.5 together

imply

Pr
{
∣𝜀𝑗 ∣ > 𝛽2𝑛√

𝑛

(
1 +

Im
1
2𝑚

(𝑗)
𝑛 (𝑧)√
𝑣

+
1√

𝑣
√
𝑛𝑣

)}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

Using that

0 < Im𝑚(𝑗)
𝑛 (𝑧) ≤ Im𝑚𝑛(𝑧) +

1

𝑛𝑣
, (3.10)

we may rewrite the last inequality

Pr
{
∣𝜀𝑗 ∣ > 𝛽2𝑛√

𝑛

(
1 +

Im
1
2 𝑚𝑛(𝑧)√

𝑣
+

1√
𝑣
√
𝑛𝑣

)}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (3.11)

Denote by

Ω𝑛(𝑧, 𝜃) =
{
𝜔 ∈ Ω : ∣𝜀𝑗 ∣ ≤ 𝜃𝛽2𝑛√

𝑛

(
1 +

Im
1
2𝑚𝑛(𝑧)√

𝑣
+

1√
𝑛𝑣

)}
, (3.12)

for any 𝜃 ≥ 1. Let

𝑣0 :=
𝑑𝛽4𝑛
𝑛

(3.13)

with a sufficiently large positive constant 𝑑 > 0. We introduce the region 𝒟 =
{𝑧 = 𝑢 + 𝑖𝑣 ∈ ℂ : ∣𝑢∣ ≤ 2, 𝑣0 < 𝑣 ≤ 2}. Furthermore, we introduce the sequence
𝑧𝑙 = 𝑢𝑙 + 𝑣𝑙 in 𝒟, recursively defined via 𝑢𝑙+1− 𝑢𝑙 = 4

𝑛8 and 𝑣𝑙+1− 𝑣𝑙 = 2
𝑛8 . Using

a union bound, we have

Pr{∩𝑧𝑙∈𝒟Ω𝑛(𝑧𝑙, 𝜃)} ≥ 1 − 𝐶(𝜃) exp{−𝑐(𝜃) 𝑙𝑛,𝛼} (3.14)

with some constant 𝐶(𝜃) and 𝑐(𝜃) depending on 𝛼,ϰ and 𝜃. Using the resolvent
equality R(𝑧) −R(𝑧′) = −(𝑧 − 𝑧′)R(𝑧)R′(𝑧), we get

∣𝑅(𝑗)𝑘+𝑛,𝑙+𝑛(𝑧) −𝑅
(𝑗)
𝑘+𝑛,𝑙+𝑛(𝑧′)∣ ≤ ∣𝑧 − 𝑧′∣

𝑣𝑣′
.
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This inequality and the definition of 𝜀𝑗 together imply

Pr

{
∣𝜀𝑗(𝑧) − 𝜀𝑗(𝑧

′)∣ ≤ 𝑛𝑙
2
ϰ
𝑛,𝛼∣𝑧 − 𝑧′∣

𝑣20
for all 𝑧, 𝑧′ ∈ 𝒟

}
≥ 1 − 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

(3.15)
For any 𝑧 ∈ 𝒟 there exists a point 𝑧𝑙 such that ∣𝑧 − 𝑧𝑙∣ ≤ 𝐶𝑛−8. This together
with inequalities (3.14) and (3.15) immediately implies that

Pr{∩𝑧∈𝒟Ω𝑛(𝑧, 2)} ≥ Pr{∩𝑧𝑙∈𝒟Ω𝑛(𝑧𝑙, 1)} − 𝐶 exp{−𝑐𝑙𝑛,𝛼}
≥ 1 − 𝐶 exp{−𝑐𝑙𝑛,𝛼}, (3.16)

with some constants 𝐶 and 𝑐 depending on 𝛼 and ϰ only. Let

Ω𝑛 := ∩𝑧∈𝒟Ω𝑛(𝑧, 2). (3.17)

Put now

𝑣′0 := 𝑣′0(𝑧) =

√
2𝑣0√
𝛾

, (3.18)

where 𝛾 := 2 − ∣𝑢∣, 𝑧 = 𝑢 + 𝑖𝑣 and 𝑣0 is given by (3.13). Note that 0 ≤ 𝛾 ≤ 2, for
𝑢 ∈ [−2, 2] and 𝑣′0 ≥ 𝑣0. Denote 𝒟′ := {𝑧 ∈ 𝒟 : 𝑣 ≥ 𝑣′0}.

4. Bounds for ∣𝒎𝒏(𝒛)∣
In this section we bound the probability that Im 𝑚𝑛(𝑧) ≤ 𝐶 for some numerical
constant 𝐶 and for any 𝑧 ∈ 𝒟. We shall derive auxiliary bounds for the difference
between the Stieltjes transforms 𝑚𝑛(𝑧) of the empirical spectral measure of the
matrix X and the Stieltjes transform 𝑠(𝑧) of the semi-circular law. Introduce the
additional notations

𝛿𝑛 :=
1

𝑛

𝑛∑
𝑗=1

𝜀𝑗𝑅𝑗𝑗 .

Recall that 𝑠(𝑧) satisfies the equation

𝑠(𝑧) = − 1

𝑧 + 𝑠(𝑧)
. (4.1)

For the semi-circular law the following inequalities hold

∣𝑠(𝑧)∣ ≤ 1 and ∣𝑧 + 𝑠(𝑧)∣ ≥ 1. (4.2)

Introduce 𝑔𝑛(𝑧) := 𝑚𝑛(𝑧) − 𝑠(𝑧). Equality (4.1) implies that

1 − 1

(𝑧 + 𝑠(𝑧))(𝑧 + 𝑚𝑛(𝑧))
=

𝑧 + 𝑚𝑛(𝑧) + 𝑠(𝑧)

𝑧 + 𝑚𝑛(𝑧)
. (4.3)

The representation (2.21) implies

𝑔𝑛(𝑧) =
𝑔𝑛(𝑧)

(𝑧 + 𝑠(𝑧))(𝑧 + 𝑚𝑛(𝑧))
+

𝛿𝑛
𝑧 + 𝑚𝑛(𝑧)

. (4.4)
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From here it follows by solving for 𝑔𝑛(𝑧) that

𝑔𝑛(𝑧) =
𝛿𝑛(𝑧)

𝑧 + 𝑚𝑛(𝑧) + 𝑠(𝑧)
. (4.5)

Lemma 4.1. Let

∣𝑔𝑛(𝑧)∣ ≤ 1

2
. (4.6)

Then ∣𝑧 + 𝑚𝑛(𝑧)∣ ≥ 1
2 and Im𝑚𝑛(𝑧) ≤ ∣𝑚𝑛(𝑧)∣ ≤ 3

2 .

Proof. This is an immediate consequence of inequalities (4.2) and of

∣𝑧+𝑚𝑛(𝑧)∣ ≥ ∣𝑧+𝑠(𝑧)∣− ∣𝑔𝑛(𝑧)∣ ≥ 1

2
, and ∣𝑚𝑛(𝑧)∣ ≤ ∣𝑠(𝑧)∣+ ∣𝑔𝑛(𝑧)∣ ≤ 3

2
. □

Lemma 4.2. Assume condition (4.6) for 𝑧 = 𝑢 + 𝑖𝑣 with 𝑣 ≥ 𝑣0. Then for any
𝜔 ∈ Ω𝑛, defined in (3.17), we obtain ∣𝑅𝑗𝑗 ∣ ≤ 4.

Proof. By definition of Ω𝑛 in (3.17), we have

∣𝜀𝑗 ∣ ≤ 𝛽2𝑛√
𝑛

(
1 +

Im
1
2𝑚𝑛(𝑧)√

𝑣
+

1√
𝑣
√
𝑛𝑣

)
. (4.7)

Applying Lemmas 4.1 and (3.13), we get ∣𝜀𝑗∣ ≤ 𝐴𝛽2
𝑛√
𝑛𝑣

with some 𝐴 > 0 depending

on the parameter 𝑑 ≥ 1 in (3.13) which we may choose such that

∣𝜀𝑗 ∣ ≤ 1

200
, (4.8)

for any 𝜔 ∈ Ω𝑛, 𝑛 ≥ 2, and 𝑣 ≥ 𝑣0. Using representation (2.19) and applying
Lemma 4.1, we get ∣𝑅𝑗𝑗 ∣ ≤ 4. □

Lemma 4.3. Assume condition (4.6). Then, for any 𝜔 ∈ Ω𝑛 and 𝑣 ≥ 𝑣0,

∣𝑔𝑛(𝑧)∣ ≤ 1

100
. (4.9)

Proof. Lemma 4.2, inequality (4.8), and representation (4.5) together imply

∣𝛿𝑛∣ ≤ 4

𝑛

𝑛∑
𝑗=1

∣𝜀𝑗∣ ≤ 4𝛽2𝑛√
𝑛

(
1 +

Im
1
2𝑚𝑛(𝑧)√

𝑣
+

1√
𝑣
√
𝑛𝑣

)
(4.10)

Note that

∣𝑧 + 𝑚𝑛(𝑧) + 𝑠(𝑧)∣ ≥ Im𝑧 + Im𝑚𝑛(𝑧) + Im𝑠(𝑧) ≥ Im(𝑧 + 𝑠(𝑧)) ≥ 1

2
Im{
√

𝑧2 − 4}.
(4.11)

For 𝑧 ∈ 𝒟 we get Re(𝑧2 − 4) ≤ 0 and 𝜋
2 ≤ arg(𝑧2 − 4) ≤ 3𝜋

2 . Therefore,

Im{
√

𝑧2 − 4} ≥ 1√
2
∣𝑧2 − 4∣ 12 ≥ 1

4

√
𝛾 + 𝑣, (4.12)

where 𝛾 = 2 − ∣𝑢∣. These relations imply that

∣𝛿𝑛∣
∣𝑧 + 𝑚𝑛(𝑧) + 𝑠(𝑧)∣ ≤

𝛽2𝑛√
𝑛𝑣

+
𝛽2𝑛√

𝑛
√

𝑣
√
𝛾

+
𝛽2𝑛

(𝑛𝑣)
3
2
√
𝛾
. (4.13)
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For 𝑣
√
𝛾 ≥ 𝑣0, we get

∣𝑔𝑛(𝑧)∣ ≤ 8𝛽2𝑛√
𝑛𝑣0

≤ 1

100
(4.14)

by choosing the constant 𝑑 ≥ 1 in 𝑣0 appropriately large. Thus the lemma is
proved. □
Lemma 4.4. Assume that condition (4.6) holds, for some 𝑧 = 𝑢 + 𝑖𝑣 ∈ 𝒟′ and for
any 𝜔 ∈ Ω𝑛, (see (3.17) and the subsequent notions). Then (4.6) holds as well for
𝑧′ = 𝑢 + 𝑖𝑣 ∈ 𝒟′ with 𝑣 ≥ 𝑣 ≥ 𝑣 − 𝑛−8, for any 𝜔 ∈ Ω𝑛.

Proof. First of all note that

∣𝑚𝑛(𝑧) −𝑚𝑛(𝑧′)∣ =
1

𝑛
(𝑣 − 𝑣)∣TrR(𝑧)R(𝑧′)∣ ≤ 𝑣 − 𝑣

𝑣𝑣
≤ 𝐶

𝑛4
≤ 1

100

and ∣𝑠(𝑧) − 𝑠(𝑧′)∣ ≤ ∣𝑧−𝑧′∣
𝑣𝑣 ≤ 1

100 . By Lemma 4.3, we have ∣𝑔𝑛(𝑧)∣ ≤ 1
100 . All these

inequalities together imply ∣𝑔𝑛(𝑧′)∣ ≤ 3
100 < 1

2 . Thus, Lemma 4.4 is proved. □
Proposition 4.1. Assuming the conditions of Theorem 1.1 there exist constants
𝐶 > 0 and 𝑐 > 0 depending on ϰ and 𝛼 only such that

Pr

{
∣𝑚𝑛(𝑧)∣ ≤ 3

2
for any 𝑧 ∈ 𝒟′

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (4.15)

Proof. First we note that ∣𝑔𝑛(𝑧)∣ ≤ 1
2 a.s., for 𝑧 = 𝑢+4𝑖. By Lemma 4.4, ∣𝑔𝑛(𝑧′)∣ ≤

1
2 for any 𝜔 ∈ Ω𝑛. Applying Lemma 4.1 and a union bound, we get

Pr

{
∣𝑚𝑛(𝑧)∣ ≤ 3

2
for any 𝑧 ∈ 𝒟′

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (4.16)

Thus the proposition is proved. □

5. Large deviations II

In this section we improve the bounds for 𝛿𝑛. We shall use bounds for large devi-
ation probabilities of the sum of 𝜀𝑗. We start with

𝛿𝑛1 =
1

𝑛

𝑛∑
𝑗=1

𝜀𝑗1. (5.1)

Lemma 5.1. There exist constants 𝑐 and 𝐶 depending on ϰ and 𝛼 and such that

Pr
{∣𝛿𝑛1∣ > 𝑛−1𝛽𝑛

} ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.
Proof. We repeat the proof of Lemma 3.1. Consider the truncated random vari-

ables 𝑋̂𝑗𝑗 = 𝑋𝑗𝑗𝕀{∣𝑋𝑗𝑗 ∣ ≤ 𝑙
1
ϰ
𝑛,𝛼}. By assumption (1.1),

Pr
{
∣𝑋𝑗𝑗 ∣ > 𝑙

1
ϰ
𝑛,𝛼

}
≤ ϰ−1 exp{−𝑙𝑛,𝛼}.

Moreover,

∣E𝑋̂𝑗𝑗 ∣ ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.
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We define 𝑋̃𝑗𝑗 = 𝑋̂𝑗𝑗 −E𝑋̂𝑗𝑗 and consider the sum

𝛿𝑛1 :=
1

𝑛
√
𝑛

𝑛∑
𝑗=1

𝑋̃𝑗𝑗 .

Since ∣𝑋̃𝑗𝑗 ∣ ≤ 2 𝑙
1
ϰ
𝑛,𝛼, by inequality (3.1), we have

Pr
{
∣𝛿𝑛1∣ > 𝑛−1𝑙

1
ϰ
+ 1

2
𝑛,𝛼

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (5.2)

Note that

∣𝛿𝑛1 − 𝛿𝑛1∣ ≤ 1

𝑛

𝑛∑
𝑗=1

∣E𝑋̂𝑗𝑗 ∣ ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

This inequality and inequality (5.2) together imply

Pr
{
∣𝛿𝑛1∣ > 𝑛−1𝑙

1
ϰ
+ 1

2
𝑛,𝛼

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

Thus, Lemma 5.1 is proved. □

Consider now the quantity

𝛿𝑛2 :=
1

𝑛2

𝑛∑
𝑗=1

∑
𝑙∈𝕋𝑗

(𝑋2
𝑗𝑙 − 1)𝑅

(𝑗)
𝑙𝑙 . (5.3)

We prove the following lemma

Lemma 5.2. Let 𝑣0 =
𝑑𝛽4

𝑛

𝑛 with some numerical constant 𝑑 ≥ 1. Under the condi-
tions of Theorem 1.1 there exist constants 𝑐 and 𝐶, depending on ϰ and 𝛼 only,
such that

Pr

{
∣𝛿𝑛2∣ > 2𝑛−1𝛽2𝑛

1√
𝑣

(
3

2
+

1

𝑛𝑣

) 1
2
}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼},

for any 𝑧 ∈ 𝒟′.

Proof. Introduce the truncated random variables 𝜉𝑗𝑙 = 𝑋̂2
𝑗𝑙 − E𝑋̂2

𝑗𝑙, where 𝑋̂𝑗𝑙 =

𝑋𝑗𝑙𝕀{∣𝑋𝑗𝑙∣ ≤ 𝑙
1
ϰ
𝑛,𝛼}. It is straightforward to check that

0 ≤ 1 − 𝐸𝑋̂2
𝑗𝑙 ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (5.4)

We shall need the following quantities as well

𝛿𝑛2 =
1

𝑛2

𝑛∑
𝑗=1

∑
𝑙∈𝕋𝑗

(𝑋̂2
𝑗𝑙 − 1)𝑅

(𝑗)
𝑙𝑙 and 𝛿𝑛2 =

1

𝑛2

𝑛∑
𝑗=1

∑
𝑙∈𝕋𝑗

𝜉𝑗𝑙𝑅
(𝑗)
𝑙𝑙 .

By assumption (1.1),

Pr{𝛿𝑛2 ∕= 𝛿𝑛2} ≤
𝑛∑
𝑗=1

∑
𝑙∈𝕋𝑗

Pr
{
∣𝑋𝑗𝑙∣ > 𝑙

1
ϰ
𝑛,𝛼

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.
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By inequality (5.4),

∣𝛿𝑛2 − 𝛿𝑛2∣ ≤ 1

𝑛2

𝑛∑
𝑗=1

∑
𝑙∈𝕋𝑗

∣E𝑋̂2
𝑗𝑙 − 1∣∣𝑅(𝑗)𝑙𝑙 ∣ ≤ 𝐶𝑣−10 exp{−𝑐𝑙𝑛,𝛼}

≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼},

for 𝑣 ≥ 𝑣0 and 𝐶, 𝑐 > 0 which are independent of 𝑑 ≥ 1.

Let 𝜁𝑗 := 1√
𝑛

∑
𝑙∈𝕋𝑗 𝜉𝑗𝑙𝑅

(𝑗)
𝑙𝑙 . Then 𝛿𝑛2 = 1

𝑛
3
2

∑𝑛
𝑗=1 𝜁𝑗 . Let N𝑗 , for 𝑗 = 1, . . . 𝑛,

denote the 𝜎-algebras generated by the random variables 𝑋𝑙𝑘 with 1 ≤ 𝑙 ≤ 𝑗 and

1 ≤ 𝑘 ≤ 𝑗. Let N0 denote the trivial 𝜎-algebra. Note that the sequence 𝛿𝑛2 is a
martingale with respect to the 𝜎-algebras N𝑗 . In fact,

E{𝜁𝑗 ∣N𝑗−1} = E{E{𝜁𝑗∣M(𝑗)}∣N𝑗−1} = 0.

In order to use large deviation bounds for 𝛿𝑛2 we replace the differences 𝜁𝑗 by

truncated random variables. We put 𝜁𝑗 = 𝜁𝑗𝕀{∣𝜁𝑗 ∣ ≤ 𝑙
2
ϰ
+ 1

2
𝑛,𝛼 (32 + 1

𝑛𝑣 )
1
2 }. Denote by

𝑡2𝑛𝑣 = 3
2 + 1

𝑛𝑣 . Since 𝜁𝑗 is a sum of independent bounded random variables with

mean zero (conditioned on M(𝑗)), similar as in Lemma (3.3) we get

Pr𝑗

{
∣𝜁𝑗 ∣ > 𝑙

2
ϰ
+ 1

2
𝑛,𝛼

(
1

𝑛

∑
𝑙∈𝕋𝑗

∣𝑅(𝑗)𝑙𝑙 ∣2
) 1

2
}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

Using (3.9) and (3.10), we have

1

𝑛

∑
𝑙∈𝕋𝑗

∣𝑅(𝑗)𝑙𝑙 ∣2 ≤
1

𝑣
𝑡2𝑛𝑣. (5.5)

By Proposition 4.1, we have

Pr𝑗

{
∣𝜁𝑗 ∣ > 𝑙

2
ϰ
+ 1

2
𝑛,𝛼 𝑣−

1
2 𝑡𝑛𝑣

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (5.6)

This implies that

Pr

{ 𝑛∑
𝑗=1

𝜁𝑗 ∕=
𝑛∑
𝑗=1

𝜁𝑗

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (5.7)

Furthermore, introduce the random variables 𝜁𝑗 = 𝜁𝑗 −E{𝜁𝑗 ∣N𝑗−1}. First we note
that

E{𝜁𝑗 ∣N𝑗−1} = −E
{
𝜁𝑗𝕀{∣𝜁𝑗 ∣ > 𝑙

2
ϰ
+ 1

2
𝑛,𝛼 𝑣−

1
2 𝑡𝑛𝑣}

∣∣∣N𝑗−1}.
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Applying Cauchy-Schwartz, 𝐸𝑗𝜉𝑗𝑙𝜉𝑗𝑙′𝑅
(𝑗)
𝑙𝑙 𝑅

(𝑗)
𝑙′𝑙′ = 0 for 𝑙 ∕= 𝑙′, 𝑙, 𝑙′ ∈ 𝕋𝑗 and ∣𝑅(𝑗)𝑙𝑙 ∣ ≤

𝑣−1 as well as E{E𝑗{∣𝜁𝑗 ∣2}∣N𝑗−1} ≤ 1
𝑛𝑣

∑
𝑙∈𝕋𝑗 E∣𝜉𝑗𝑙∣2 we get

∣E{𝜁𝑗 ∣N𝑗−1}∣ ≤ 𝐶E
1
2 {∣𝜁𝑗 ∣2∣N𝑗−1}Pr

1
2

{
∣𝜁𝑗 ∣ > 𝑙

2
ϰ
+ 1

2
𝑛,𝛼 𝑣−

1
2 𝑡𝑛𝑣}

∣∣∣N𝑗−1}
= 𝐶E

1
2 {E𝑗{∣𝜁𝑗∣2}∣N𝑗−1}E 1

2

{
Pr𝑗

{
∣𝜁𝑗 ∣ > 𝑙

2
ϰ
+ 1

2
𝑛,𝛼 𝑣−

1
2 𝑡𝑛𝑣}

}∣∣∣N𝑗−1}
≤ 𝐶𝑣−1

( 1

𝑛

∑
𝑙∈𝕋𝑗

E∣𝜉𝑗𝑙∣2
) 1

2

exp{−𝑐𝑙𝑛,𝛼} ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}, (5.8)

for 𝑣
√
𝛾 ≥ 𝑣0 with constants 𝐶 and 𝑐 depending on 𝛼 and ϰ.

Furthermore, we may use a martingale bound due to Bentkus, [2], Theorem
1.1. It provides the following result. Let N0 = {∅,Ω} ⊂ N1 ⊂ ⋅ ⋅ ⋅ ⊂ N𝑛 ⊂ M be a
family of 𝜎-algebras of a measurable space {Ω,M}. Let 𝑀𝑛 = 𝜉1 + ⋅ ⋅ ⋅ + 𝜉𝑛 be a
martingale with bounded differences 𝜉𝑗 = 𝑀𝑗 −𝑀𝑗−1 such that Pr{∣𝜉𝑗 ∣ ≤ 𝑏𝑗} =

1, for 𝑗 = 1, . . . , 𝑛. Then, for 𝑥 >
√

8

Pr{∣𝑀𝑛∣ ≥ 𝑥} ≤ 𝑐(1 − Φ(
𝑥

𝜎
)) =

∫ ∞

𝑥
𝜎

𝜑(𝑡)𝑑𝑡, 𝜑(𝑡) =
1√
2𝜋

exp

{
− 𝑡2

2

}
,

with some numerical constant 𝑐 > 0 and 𝜎2 = 𝑏21 + ⋅ ⋅ ⋅ + 𝑏2𝑛. Note that for 𝑡 > 𝐶

1 − Φ(𝑡) ≤ 1

𝐶
𝜑(𝑡).

Thus, this leads to the inequality

Pr{∣𝑀𝑛∣ ≥ 𝑥} ≤ exp

{
− 𝑥2

2𝜎2

}
, (5.9)

which we shall use to bound 𝛿𝑛2. Take 𝑀𝑛 =
∑𝑛

𝑗=1 𝛿𝑗 with ∣𝛿𝑗 ∣ bounded by 𝑏𝑗 =

2𝑙
2
ϰ
+ 1

2
𝑛,𝛼 𝑣−

1
2 𝑡𝑛𝑣. By Proposition 4.1 obtain

𝜎2 = 4𝑛𝑣−1𝑙
4
ϰ
+1

𝑛,𝛼 𝑡2𝑛𝑣. (5.10)

Inequalities (5.9) with 𝑥 = 𝑙
1
2
𝑛,𝛼𝜎 and (5.10) together imply

Pr

{
∣𝛿𝑛2∣ > 2𝑛−1𝛽2𝑛

1√
𝑣
𝑡𝑛𝑣

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (5.11)

Inequalities (5.7)–(5.11) together conclude the proof of Lemma 5.2. □

Let

𝛿𝑛3 :=
1

𝑛2

𝑛∑
𝑗=1

∑
𝑙 ∕=𝑘∈𝕋𝑗

𝑋𝑗𝑙𝑋𝑗𝑘𝑅
(𝑗)
𝑙𝑘 . (5.12)
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Lemma 5.3. Let 𝑣0 =
𝑑𝛽4

𝑛

𝑛 with some numerical constant 𝑑 > 1. Under condition
of Theorem 1.1 there exist constants 𝑐 and 𝐶, depending on ϰ, 𝛼 only such that

Pr

{
∣𝛿𝑛3∣ > 4𝛽2𝑛𝑙

1
2
𝑛,𝛼

𝑛
√
𝑣

(
3

2
+

1

𝑛𝑣

) 1
2

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼},

for any 𝑧 ∈ 𝒟′.

Proof. The proof of this lemma is similar to the proof of Lemma 5.2. We introduce

the random variables 𝜂𝑗 = 1
𝑛

∑
𝑙 ∕=𝑘∈𝕋𝑗 𝑋𝑗𝑘𝑋𝑗𝑙𝑅

(𝑗)
𝑙𝑘 and note that the sequence

𝑀𝑗 = 1
𝑛

∑𝑗
𝑚=1 𝜂𝑚 is martingale with respect to the 𝜎-algebras N𝑗 , for 𝑗 = 1, . . . , 𝑛.

By Proposition 4.1, using inequality (5.5), we get

Pr

{
1

𝑛

∑
𝑙,𝑘∈𝕋𝑗

∣𝑅(𝑗)𝑙𝑘 ∣2 ≤
1

𝑣
𝑡2𝑛𝑣 for any 𝑧 ∈ 𝒟′

}
≥ 1 − 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (5.13)

At first we apply Proposition 3.1 replacing 𝜂𝑗 by truncated random variables and
then apply the martingale bound of Bentkus (5.9). Introduce the random variables

𝑋̂𝑗𝑘 = 𝑋𝑗𝑘𝕀{∣𝑋𝑗𝑘∣ ≤ 𝑙
1
ϰ
𝑛,𝛼} and 𝑋̃𝑗𝑘 = 𝑋̂𝑗𝑘 −E𝑋̂𝑗𝑘. By condition (1.1), we have

Pr{𝑋𝑗𝑘 ∕= 𝑋̂𝑗𝑘} ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (5.14)

The same condition yields

∣E𝑋̂𝑗𝑘∣ = ∣E𝑋𝑗𝑘𝕀{∣𝑋𝑗𝑘∣ > 𝑙
1
ϰ
𝑛,𝛼}∣ ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼} (5.15)

Let

𝜂𝑗 =
1

𝑛

∑
𝑙 ∕=𝑘∈𝕋𝑗

𝑋̂𝑗𝑘𝑋̂𝑗𝑙𝑅
(𝑗)
𝑙𝑘 , and 𝜂𝑗 =

1

𝑛

∑
𝑙 ∕=𝑘∈𝕋𝑗

𝑋̃𝑗𝑘𝑋̃𝑗𝑙𝑅
(𝑗)
𝑙𝑘 . (5.16)

Inequality (5.14) implies that

Pr{𝜂𝑗 ∕= 𝜂𝑗} ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (5.17)

Inequality (5.15) and ∣𝑋̃𝑗𝑘∣ ≤ 2𝑙𝑛,𝛼 together imply

Pr{∣𝜂𝑗 − 𝜂𝑗 ∣ ≤ 𝐶𝑙
1
ϰ
𝑛,𝛼 exp{−𝑐𝑙𝑛,𝛼}𝑣− 1

2 𝑡𝑛𝑣} = 1. (5.18)

Applying now Propositions 4.1 and 3.1, and inequality (5.5), similar to Lemma

3.5 we get, introducing 𝑟𝑣,𝑛 := 𝑣−
1
2𝛽2𝑛𝑡𝑛𝑣,

Pr{∣𝜂𝑗 ∣ > 𝑛−
1
2 𝑟𝑣,𝑛} ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (5.19)

Now we introduce

𝜃𝑗 = 𝜂𝑗𝕀{∣𝜂𝑗 ∣ ≤ 𝑛−
1
2 𝑟𝑣,𝑛} −E𝜂𝑗𝕀{∣𝜂𝑗 ∣ ≤ 𝑛−

1
2 𝑟𝑣,𝑛}. (5.20)

Furthermore, we consider the random variables 𝜃𝑗 = 𝜃𝑗−E{𝜃𝑗∣N𝑗−1}. The sequence

𝑀𝑠, defined by 𝑀𝑠 =
∑𝑠

𝑚=1 𝜃𝑚, is a martingale with respect to the 𝜎-algebras N𝑠,
for 𝑠 = 1, . . . , 𝑛. Similar to the proof of Lemma 5.1 we get

Pr{∣𝑀𝑛 −𝑀𝑛∣ > 4𝑙
1
2
𝑛,𝛼𝑟𝑣,𝑛} ≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (5.21)
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Applying inequality (5.9) to 𝑀𝑛 with 𝜎2 = 16𝑟2𝑣,𝑛 and 𝑥 = 𝑙
1
2
𝑛,𝛼𝜎, we get

Pr
{
∣𝑀𝑛∣ > 4𝑙

1
2
𝑛,𝛼𝑟𝑣,𝑛

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (5.22)

Thus the lemma is proved. □
Finally, we shall bound

𝛿𝑛4 :=
1

𝑛2

𝑛∑
𝑗=1

(TrR − TrR(𝑗))𝑅𝑗𝑗 . (5.23)

Lemma 5.4. For any 𝑧 = 𝑢 + 𝑖𝑣 with 𝑣 > 0 the following inequality

∣𝛿𝑛4∣ ≤ 1

𝑛𝑣
Im𝑚𝑛(𝑧) a. s. (5.24)

holds.

Proof. By formula (5.4) in [7], we have

(TrR− TrR(𝑗))𝑅𝑗𝑗 =

(
1 +

1

𝑛

∑
𝑙,𝑘∈𝑇𝑗

𝑋𝑗𝑙𝑋𝑗𝑘(𝑅(𝑗))2𝑙𝑘

)
𝑅2𝑗𝑗 =

𝑑

𝑑𝑧
𝑅𝑗𝑗 . (5.25)

From here it follows that

1

𝑛2

𝑛∑
𝑗=1

(TrR− TrR(𝑗))𝑅𝑗𝑗 =
1

𝑛2
𝑑

𝑑𝑧
TrR =

1

𝑛2
TrR2. (5.26)

Finally, we note that

∣ 1

𝑛2
TrR2∣ ≤ 1

𝑛𝑣
Im𝑚𝑛(𝑧).

The last inequality concludes the proof. Thus, Lemma 5.4 is proved. □

6. Stieltjes transforms

We shall derive auxiliary bounds for the difference between the Stieltjes transforms
𝑚𝑛(𝑧) of the empirical spectral measure of the matrix X and the Stieltjes transform
𝑠(𝑧) of the semi-circular law. Recalling the definitions of 𝜀𝑗, 𝜀𝑗𝜇 in (2.20) and of
𝛿𝑛𝜈 in (5.1), (5.3), (5.12) as well as (5.23), we introduce the additional notations

𝛿′𝑛 := 𝛿𝑛1 + 𝛿𝑛2 + 𝛿𝑛3, 𝛿𝑛 := 𝛿𝑛4, 𝛿𝑛 :=
1

𝑛

3∑
𝜈=1

𝑛∑
𝑗=1

𝜀𝑗𝜈𝜀𝑗𝑅𝑗𝑗 . (6.1)

Recall that 𝑔𝑛(𝑧) := 𝑚𝑛(𝑧) − 𝑠(𝑧). The representation (2.22) implies

𝑔𝑛(𝑧) =
𝑔𝑛(𝑧)

(𝑧 + 𝑠(𝑧))(𝑧 + 𝑚𝑛(𝑧))
− 𝛿′𝑛

(𝑧 + 𝑚𝑛(𝑧))2
+

𝛿𝑛
𝑧 + 𝑚𝑛(𝑧)

+
𝛿𝑛

(𝑧 + 𝑚𝑛(𝑧))2
. (6.2)

The equalities (6.2) and (4.3) together yield

∣𝑔𝑛(𝑧)∣ ≤ ∣𝛿′𝑛∣ + ∣𝛿𝑛∣
∣𝑧 + 𝑚𝑛(𝑧)∣∣𝑧 + 𝑠(𝑧) + 𝑚𝑛(𝑧)∣ +

∣𝛿𝑛∣
∣𝑧 + 𝑠(𝑧) + 𝑚𝑛(𝑧)∣ . (6.3)
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For any 𝑧 ∈ 𝒟′ introduce the events

Ω̂𝑛(𝑧) :=

{
𝜔 ∈ Ω : ∣𝛿′𝑛∣ ≤

(𝛽𝑛
𝑛

+
𝛽2𝑛𝑙

1
2
𝑛,𝛼

√
3
2

𝑛
√
𝑣

+
𝛽2𝑛𝑙

1
2
𝑛,𝛼

𝑛
3
2 𝑣

)}
, (6.4)

Ω̃𝑛(𝑧) :=

{
𝜔 ∈ Ω : ∣𝛿𝑛∣ ≤ 𝐶 Im𝑚𝑛(𝑧)

𝑛𝑣

}
, (6.5)

Ω𝑛(𝑧) :=

{
𝜔 ∈ Ω : ∣𝛿𝑛∣ ≤

(
𝛽2𝑛
𝑛

+
𝛽4𝑛(Im𝑚𝑛(𝑧) + 1

𝑛𝑣 )

𝑛𝑣
+

1

𝑛2𝑣2

)
1

𝑛

𝑛∑
𝑗=1

∣𝑅𝑗𝑗 ∣
}
.

Put Ω∗
𝑛(𝑧) := Ω̂𝑛(𝑧) ∩ Ω̃𝑛(𝑧) ∩ Ω𝑛(𝑧). By Lemmas 5.1–5.3, we have

Pr{Ω̂𝑛(𝑧)} ≥ 1 − 𝐶 exp{−𝑐𝑙𝑛,𝛼}.
The proof of the last relation is similar to the proof of inequality (3.16). By
Lemma 5.4,

Pr{Ω̃𝑛(𝑧)} = 1.

Note that

∣𝜀𝑗𝜈𝜀𝑗4∣ ≤ 1

2
(∣𝜀𝑗𝜈 ∣2 + ∣𝜀𝑗4∣2).

By Lemmas 3.3 and 3.5, we have, for 𝜈 = 2, 3,

Pr

{
∣𝜀𝑗𝜈 ∣2 >

𝛽4𝑛
𝑛𝑣

(
Im𝑚𝑛(𝑧) +

1

𝑛𝑣

)}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

According to Lemma 3.1,

Pr

{
∣𝜀𝑗1∣2 >

𝛽2𝑛
𝑛

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (6.6)

and, by Lemma 3.2

Pr

{
∣𝜀𝑗4∣2 ≤ 1

𝑛2𝑣2

}
= 1.

Similarly as in (3.16) we may show that

Pr{∩𝑧∈𝒟Ω∗
𝑛(𝑧) ∩ Ω𝑛} ≥ 1 − 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

Let

Ω∗
𝑛 := ∩𝑧∈𝒟Ω∗

𝑛(𝑧) ∩ Ω𝑛,

where Ω𝑛 was defined in (3.17). We prove now some auxiliary lemmas.

Lemma 6.1. Let 𝑧 = 𝑢 + 𝑖𝑣 ∈ 𝒟 and 𝜔 ∈ Ω∗
𝑛. Assume that

∣𝑔𝑛(𝑧)∣ ≤ 1

2
. (6.7)

Then the following bound holds

∣𝑔𝑛(𝑧)∣ ≤ 𝐶𝛽4𝑛
𝑛𝑣

+
𝐶𝛽4𝑛

𝑛2𝑣2
√
𝛾 + 𝑣

.
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Proof. Inequality (6.3) implies that for 𝜔 ∈ Ω∗
𝑛

∣𝑔𝑛(𝑧)∣ ≤
𝛽2𝑛𝑙

1
2
𝑛,𝛼

(
1 +
√
3
2

)
𝑛
√
𝑣∣𝑧 + 𝑚𝑛(𝑧)∣∣𝑧 + 𝑠(𝑧) + 𝑚𝑛(𝑧)∣ +

𝐶 Im𝑚𝑛(𝑧)

𝑛𝑣∣𝑧 + 𝑠(𝑧) + 𝑚𝑛(𝑧)∣

+
𝛽2𝑛𝑙

1
2
𝑛,𝛼

𝑛
3
2 𝑣∣𝑧 + 𝑚𝑛(𝑧)∣∣𝑧 + 𝑠(𝑧) + 𝑚𝑛(𝑧)∣

+
𝛽4𝑛

𝑛𝑣∣𝑧 + 𝑚𝑛(𝑧)∣∣𝑧 + 𝑠(𝑧) + 𝑚𝑛(𝑧)∣
(

Im𝑚𝑛(𝑧) +
1

𝑛𝑣

) 1

𝑛

𝑛∑
𝑗=1

∣𝑅𝑗𝑗 ∣.

(6.8)

Inequality (6.8) and Lemmas 4.1, inequalities (4.11), (4.12) together imply

∣𝑔𝑛(𝑧)∣ ≤ 𝐶𝛽4𝑛
𝑛𝑣

(
1 +

1

𝑛𝑣
√
𝛾 + 𝑣

)
. (6.9)

This inequality completes the proof of lemma. □

Put now

𝑣′0 := 𝑣′0(𝑧) =

√
2𝑣0√
𝛾

, (6.10)

where 𝛾 := 2 − ∣𝑢∣, 𝑧 = 𝑢 + 𝑖𝑣 and 𝑣0 given by (3.13). Note that 0 ≤ 𝛾 ≤ 2, for

𝑢 ∈ [−2, 2] and 𝑣′0 ≥ 𝑣0. Denote 𝒟̂ := {𝑧 ∈ 𝒟 : 𝑣 ≥ 𝑣′0}.

Corollary 6.2. Assume that ∣𝑔𝑛(𝑧)∣ ≤ 1
2 , for 𝜔 ∈ Ω∗

𝑛 and 𝑧 = 𝑢 + 𝑖𝑣 ∈ 𝒟̂.

Then ∣𝑔𝑛(𝑧)∣ ≤ 1
100 , for sufficiently large 𝑑 in the definition of 𝑣0.

Proof. Note that for 𝑣 ≥ 𝑣′0
𝐶𝛽4𝑛
𝑛𝑣

+
𝐶𝛽4𝑛

𝑛2𝑣2
√
𝛾 + 𝑣

≤ 𝐶
√
𝛾

𝑑
+

𝐶
√
𝛾

𝑑2𝛽4𝑛
≤ 1

100
, (6.11)

for an appropriately large constant 𝑑 in the definition of 𝑣0. Thus, the corollary is
proved. □

Remark 6.1. In what follows we shall assume that 𝑑 ≥ 1 is chosen and fixed such
that inequality (6.11) holds.

Assume that 𝑁0 is sufficiently large number such that for any 𝑛 ≥ 𝑁0 and
for any 𝑣 ∈ 𝒟 the right-hand side of inequality (6.9) is smaller then 1

100 . In the
what follows we shall assume that 𝑛 ≥ 𝑁0 is fixed. We repeat here Lemma 4.4. It
is similar to Lemma 3.4 in [9].

Lemma 6.3. Assume that condition (6.7) holds, for some 𝑧 = 𝑢 + 𝑖𝑣 ∈ 𝒟′ and for
any 𝜔 ∈ Ω∗

𝑛. Then (6.7) holds for 𝑧′ = 𝑢 + 𝑖𝑣 ∈ 𝒟 as well with 𝑣 ≥ 𝑣 ≥ 𝑣 − 𝑛−8,
for any 𝜔 ∈ Ω∗

𝑛.

Proof. To prove this lemma is enough to repeat the proof of Lemma 4.4. □
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Proposition 6.2. There exist positive constants 𝐶, 𝑐, depending on 𝛼 and ϰ only
such that

Pr
{
∣𝑔𝑛(𝑧)∣ > 𝐶𝛽4𝑛

𝑛𝑣
+

𝐶𝛽4𝑛
𝑛2𝑣2

√
𝛾 + 𝑣

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}. (6.12)

for all 𝑧 ∈ 𝒟′

Proof. Note that for 𝑣 = 4 we have, for any 𝜔 ∈ Ω∗
𝑛, ∣𝑔𝑛(𝑧)∣ ≥ 1

2 . By Lemma 6.1,
we obtain inequality (6.12) for 𝑣 = 4. By Lemma 6.3, this inequality holds for any
𝑣 with 𝑣0 ≤ 𝑣 ≤ 4 as well. Thus Proposition 6.2 is proved. □

7. Proof of Theorem 1.1

To conclude the proof of Theorem 1.1 we shall now apply the result of Corollary
2.2 with 𝑣 =

√
2𝑣0 and 𝑉 = 4 to the empirical spectral distribution function

ℱ𝑛(𝑥) of the random matrix X. At first we bound the integral over the line 𝑉 = 4.
Note that in this case we have ∣𝑧 + 𝑚𝑛(𝑧)∣ ≥ 1 and ∣𝑔𝑛(𝑧)∣ ≤ 1

2 a.s. Moreover,

Im 𝑚
(𝑗)
𝑛 (𝑧) ≤ 1

𝑉 ≤ 1
2 . In this case the results of Lemmas 5.1–5.3 hold for any

𝑧 = 𝑢 + 4𝑖 with 𝑢 ∈ ℝ. We apply inequality (6.8):

∣𝑔𝑛(𝑧)∣ ≤ 𝛽2𝑛(1 + Im
1
2𝑚𝑛(𝑧)

𝑛
√
𝑣∣𝑧 + 𝑚𝑛(𝑧)∣∣𝑧 + 𝑠(𝑧) + 𝑚𝑛(𝑧)∣ +

𝐶 Im𝑚𝑛(𝑧)

𝑛𝑣∣𝑧 + 𝑠(𝑧) + 𝑚𝑛(𝑧)∣
+

𝛽2𝑛

𝑛
3
2 𝑣∣𝑧 + 𝑚𝑛(𝑧)∣∣𝑧 + 𝑠(𝑧) + 𝑚𝑛(𝑧)∣

+
𝛽4𝑛

𝑛𝑣∣𝑧 + 𝑚𝑛(𝑧)∣∣𝑧 + 𝑠(𝑧) + 𝑚𝑛(𝑧)∣
(

Im𝑚𝑛(𝑧) +
1

𝑛𝑣

) 1

𝑛

𝑛∑
𝑗=1

∣𝑅𝑗𝑗 ∣,

(7.1)

which holds for any 𝑧 = 𝑢+4𝑖, 𝑢 ∈ ℝ, with probability at least 1−𝐶 exp{−𝑐𝑙𝑛,𝛼}.
Note that for 𝑉 = 4

∣𝑧 + 𝑚𝑛(𝑧)∣∣𝑧 + 𝑚𝑛(𝑧) + 𝑠(𝑧)∣ ≥
{

4 for ∣𝑢∣ ≤ 2,
1
4 ∣𝑧∣2 for∣𝑢∣ > 2

a.s.

We may rewrite the bound (7.1) as follows

∣𝑔𝑛(𝑧)∣ ≤ 𝐶𝛽4𝑛
𝑛(∣𝑧∣2 + 1)

+
𝐶Im𝑚𝑛(𝑧)

𝑛𝑉
.

Note that for any distribution function 𝐹 (𝑥) we have∫ ∞

−∞
Im𝑠𝐹 (𝑢 + 𝑖𝑣)𝑑𝑢 ≤ 𝜋

Moreover, for any random variable 𝜉 with distribution function 𝐹 (𝑥) and E𝜉 = 0,
𝐸𝜉2 = ℎ2 we have

Im𝑠𝐹 (𝑢 + 𝑖𝑉 ) ≤ 𝐶(1 + ℎ2)

𝑢2



162 F. Götze and A. Tikhomirov

with some numerical constant 𝐶. From here it follows that, for 𝑉 = 4,∫
∣𝑢∣≥𝑛2

∣𝑚𝑛(𝑧) − 𝑠(𝑧)∣𝑑𝑢 ≤ 𝐶(1 + ℎ2𝑛)

𝑛2
a.s. (7.2)

with ℎ2𝑛 =
∫∞
−∞ 𝑥2𝑑ℱ𝑛(𝑥). Furthermore, note that

ℎ2𝑛 =
1

𝑛2

𝑛∑
𝑗,𝑘=1

𝑋2
𝑗𝑘 ≤

2

𝑛2

∑
1≤𝑗≤𝑘≤𝑛

𝑋2
𝑗𝑘.

Using inequality (3.1), we get

Pr{ℎ2𝑛 > 𝐶𝑛} ≤ 𝐶 exp{−𝑙𝑛,𝛼}.
The last inequality and inequality (7.2) together imply that∫

∣𝑢∣>𝑛2

∣𝑚𝑛(𝑢 + 𝑖𝑉 ) − 𝑠(𝑢 + 𝑖𝑉 )∣𝑑𝑢 ≤ 𝐶

𝑛

with probability at least 1−𝐶 exp{−𝑐𝑙𝑛,𝛼}. Denote 𝒟𝑛 := {𝑧 = 𝑢+ 2𝑖 : ∣𝑢∣ ≤ 𝑛2}
and

Ω𝑛 :=

{
∩𝑧∈𝒟𝑛

{
𝜔 ∈ Ω : ∣𝑔𝑛(𝑧)∣ ≤ 𝐶𝛽2𝑛

𝑛(∣𝑧∣2 + 1)

}}
∩ Ω∗

𝑛.

Using a union bound, similar to (3.16) we may show that

Pr{Ω𝑛} ≥ 1 − 𝐶 exp{−𝑐𝑙𝑛,𝛼}.
It is straightforward to check that for 𝜔 ∈ Ω𝑛∫ ∞

−∞
∣𝑚𝑛(𝑧) − 𝑠(𝑧)∣𝑑𝑢 ≤ 𝐶𝛽4𝑛

𝑛
. (7.3)

Furthermore, we put 𝜀 = (2𝑎𝑣0)
2
3 and 𝑣0 =

𝑑𝛽4
𝑛

𝑛 with the constant 𝑑 as introduced
in (6.11). To conclude the proof we need to consider the “vertical” integrals, for
𝑧 = 𝑥 + 𝑖𝑣′ with 𝑥 ∈ 𝕁′𝜀, 𝑣

′ = 𝑣0√
𝛾 and 𝛾 = 2 − ∣𝑥∣. Note that∫ 2

𝑣′

𝛽4𝑛
𝑛𝑣

𝑑𝑣 ≤ 𝐶𝛽4𝑛 ln𝑛

𝑛
.

Furthermore, ∫ 2

𝑣′

1

𝑛2𝑣2
√
𝛾 + 𝑣

𝑑𝑣 ≤ 1

𝑛2𝑣′
√
𝛾
≤ 1

𝑛2𝑣0
≤ 𝛽4𝑛 ln𝑛

𝑛
.

Finally, we get, for any 𝜔 ∈ Ω𝑛,

Δ(ℱ𝑛, 𝐺) = sup
𝑥

∣ℱ𝑛(𝑥) −𝐺(𝑥)∣ ≤ 𝛽4𝑛 ln𝑛

𝑛
.

Thus Theorem 1.1 is proved. □



On the Rate of Convergence to the Semi-circular Law 163

8. Proof of Theorem 1.2

We may express the diagonal entries of the resolvent matrix R as follows

𝑅𝑗𝑗 =
𝑛∑
𝑘=1

1

𝜆𝑘 − 𝑧
∣𝑢𝑗𝑘∣2. (8.1)

Consider the distribution function, say 𝐹𝑛𝑗(𝑥), of the probability distribution of
the eigenvalues 𝜆𝑘

𝐹𝑛𝑗(𝑥) =

𝑛∑
𝑘=1

∣𝑢𝑗𝑘∣2𝕀{𝜆𝑘 ≤ 𝑥}.

Then we have

𝑅𝑗𝑗 = 𝑅𝑗𝑗(𝑧) =

∫ ∞

−∞

1

𝑥− 𝑧
𝑑𝐹𝑛𝑗(𝑥),

which means that 𝑅𝑗𝑗 is the Stieltjes transform of the distribution 𝐹𝑛𝑗(𝑥). Note
that, for any 𝜆 > 0,

max
1≤𝑘≤𝑛

∣𝑢𝑗𝑘∣2 ≤ sup
𝑥

(𝐹𝑛𝑗(𝑥 + 𝜆) − 𝐹𝑛𝑗(𝑥)) =: 𝑄𝑛𝑗(𝜆).

On the other hand, it is easy to check that

𝑄𝑛𝑗(𝜆) ≤ 2 sup
𝑢

𝜆Im𝑅𝑗𝑗(𝑢 + 𝑖𝜆). (8.2)

By relations (3.12) and (3.16), we obtain, for any 𝑣 ≥ 𝑣0 with 𝑣0 =
𝑑𝛽4

𝑛

𝑛 with a
sufficiently large constant 𝑑,

Pr
{ ∣𝜀𝑗 ∣
∣𝑧 + 𝑚𝑛(𝑧)∣ ≤

1

2

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼} (8.3)

with constants 𝐶 and 𝑐 depending on ϰ, 𝛼 and 𝑑. Furthermore, the representation
(2.19) and inequality (8.3) together imply, for 𝑣 ≥ 𝑣0, Im𝑅𝑗𝑗 ≤ ∣𝑅𝑗𝑗 ∣ ≤ 𝐶1 with
some positive constant 𝐶1 > 0 depending on ϰ and 𝛼. This implies that

Pr
{

max
1≤𝑘≤𝑛

∣𝑢𝑗𝑘∣2 ≤ 𝛽4𝑛
𝑛

}
≤ 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

By a union bound we arrive at the inequality (1.4). To prove inequality (1.5), we
consider the quantity 𝑟𝑗 := 𝑅𝑗𝑗 − 𝑠(𝑧). Using equalities (2.19) and (4.1), we get

𝑟𝑗 = − 𝑠(𝑧)𝑔𝑛(𝑧)

𝑧 + 𝑚𝑛(𝑧)
+

𝜀𝑗
𝑧 + 𝑚𝑛(𝑧)

𝑅𝑗𝑗 .

By inequalities (6.12), (3.11) and (3.16), we have

Pr{∣𝑟𝑗 ∣ ≤ 𝑐𝛽2𝑛√
𝑛𝑣

} ≥ 1 − 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

From here it follows that

sup
𝑥∈𝕁𝜀

∫ 𝑉

𝑣′
∣𝑟𝑗(𝑥 + 𝑖𝑣)∣𝑑𝑣 ≤ 𝐶√

𝑛
.
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Similar to (7.3) we get ∫ ∞

−∞
∣𝑟𝑗(𝑥 + 𝑖𝑉 )∣𝑑𝑥 ≤ 𝐶𝛽2𝑛√

𝑛
.

Applying Corollary 2.2, we get

Pr{sup
𝑥

∣𝐹𝑛𝑗(𝑥) −𝐺(𝑥)∣ ≤ 𝛽2𝑛√
𝑛
} ≥ 1 − 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

Using now that

Pr
{

sup
𝑥

∣ℱ𝑛(𝑥) −𝐺(𝑥)∣ ≤ 𝛽4𝑛 ln𝑛

𝑛

}
≥ 1 − 𝐶 exp{−𝑐𝑙𝑛,𝛼},

we get

Pr
{

sup
𝑥

∣𝐹𝑛𝑗(𝑥) −ℱ𝑛(𝑥)∣ ≤ 𝛽2𝑛√
𝑛

}
≥ 1 − 𝐶 exp{−𝑐𝑙𝑛,𝛼}.

Thus, Theorem 1.2 is proved. □
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for Time-dependent Data
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Abstract. We establish empirical quantile process CLTs based on 𝑛 indepen-
dent copies of a stochastic process {𝑋𝑡 : 𝑡 ∈ 𝐸} that are uniform in 𝑡 ∈ 𝐸 and
quantile levels 𝛼 ∈ 𝐼 , where 𝐼 is a closed sub-interval of (0, 1). The process
{𝑋𝑡 : 𝑡 ∈ 𝐸} may be chosen from a broad collection of Gaussian processes,
compound Poisson processes, stationary independent increment stable pro-
cesses, and martingales.
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1. Introduction

Let 𝑋 = {𝑋(𝑡) : 𝑡 ∈ 𝐸} be a stochastic process with 𝑃 (𝑋(⋅) ∈ 𝐷(𝐸)) = 1,
where 𝐸 is a set and 𝐷(𝐸) is a collection of real-valued functions on 𝐸. Also, let
𝒞 = {𝐶𝑠,𝑥 : 𝑠 ∈ 𝐸, 𝑥 ∈ ℝ}, where 𝐶𝑠,𝑥 = {𝑧 ∈ 𝐷(𝐸) : 𝑧(𝑠) ≤ 𝑥}, 𝑠 ∈ 𝐸, 𝑥 ∈ ℝ.
If {𝑋𝑗}∞𝑗=1 are i.i.d. copies of the stochastic process 𝑋 and 𝐹𝑡(𝑥) := 𝐹 (𝑡, 𝑥) :=

𝑃 (𝑋(𝑡) ≤ 𝑥) = 𝑃 (𝑋(⋅) ∈ 𝐶𝑡,𝑥), then the empirical distributions built on 𝒞 (or
built on the process 𝑋) are defined by

𝐹𝑛(𝑡, 𝑥) =
1

𝑛

𝑛∑
𝑖=1

𝐼(−∞,𝑥](𝑋𝑖(𝑡)) =
1

𝑛

𝑛∑
𝑖=1

𝐼{𝑋𝑖∈𝐶𝑡,𝑥}, 𝐶𝑡,𝑥 ∈ 𝒞,

and we say 𝑋 is the input process.
The empirical processes indexed by 𝒞 (or just 𝐸 × ℝ) and built from the

process, 𝑋 , are given by

𝜈𝑛(𝑡, 𝑥) :=
√
𝑛
(
𝐹𝑛(𝑡, 𝑥) − 𝐹 (𝑡, 𝑥)

)
.

It is a pleasure to thank the referees for their careful reading of our manuscript. Their comments
and suggestions led to a number of refinements in the presentation.

c⃝ 2013 Springer Basel
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In [4] we studied the central limit theorem in this setting, that is, we found
sufficient conditions for a pair (𝒞, 𝑃 ), where 𝑃 is the law of 𝑋 on 𝐷(𝐸), ensuring
that the sequence of empirical processes {𝜈𝑛(𝑡, 𝑥) : (𝑡, 𝑥) ∈ 𝐸×ℝ}, 𝑛 ≥ 1, converge
to a centered Gaussian process, 𝐺 = {𝐺𝑡,𝑥 : (𝑡, 𝑥) ∈ 𝐸 × ℝ} with covariance

𝔼(𝐺(𝑠, 𝑥)𝐺(𝑡, 𝑦)) = 𝔼([𝐼(𝑋𝑠 ≤ 𝑥) − 𝑃 (𝑋𝑠 ≤ 𝑥)][𝐼(𝑋𝑡 ≤ 𝑦) − 𝑃 (𝑋𝑡 ≤ 𝑦)]).

This requires that the law of 𝐺 on ℓ∞(𝐸×ℝ) (with the usual sup-norm) be Radon,
or equivalently, (see Example 1.5.10 in [10]), that 𝐺 has sample paths which are
bounded and uniformly continuous on 𝐸 × ℝ with respect to the psuedo-metric

𝑑((𝑠, 𝑥), (𝑡, 𝑦)) = (𝔼[𝐺(𝑠, 𝑥) −𝐺(𝑡, 𝑦)]2)1/2. (1)

It also requires that for every bounded, continuous 𝐹 : ℓ∞(𝐸 × ℝ) −→ ℝ,

lim
𝑛→∞𝔼∗𝐹 (𝜈𝑛) = 𝔼𝐹 (𝐺),

where 𝔼∗ denotes the upper expectation (see, e.g., p. 94 in [2]).
The quantiles and empirical quantiles are defined as the left-continuous in-

verses of 𝐹 (𝑡, 𝑥) and 𝐹𝑛(𝑡, 𝑥) in the variable 𝑥, respectively:

𝜏𝛼(𝑡) = 𝐹−1(𝑡, 𝛼) = inf{𝑥 : 𝐹 (𝑡, 𝑥) ≥ 𝛼} (2)

and
𝜏𝑛𝛼 (𝑡) = 𝐹−1

𝑛 (𝑡, 𝛼) = inf{𝑥 : 𝐹𝑛(𝑡, 𝑥) ≥ 𝛼}. (3)

The empirical quantile processes are defined as
√
𝑛
(
𝐹−1
𝑛 (𝑡, 𝛼) − 𝐹−1(𝑡, 𝛼)

)
,

and we also use the more compact notation
√
𝑛
(
𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡)

)
,

for these processes. Since we are seeking limit theorems with non-degenerate
Gaussian limits, it is appropriate to mention that for 𝛼 ∈ (0, 1) and 𝑡 fixed, that is,
for a one-dimensional situation, a necessary condition for the weak convergence of

√
𝑛
(
𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡)

)
=⇒ 𝜉, (4)

where 𝜉 has a strictly increasing, continuous distribution, is that the distribution
function 𝐹 (𝑡, ⋅) be differentiable at 𝜏𝛼(𝑡) and 𝐹 ′(𝑡, 𝜏𝛼(𝑡)) > 0. Hence 𝐹 (𝑡, ⋅) is
strictly increasing near 𝜏𝛼(𝑡) as a function of 𝑥, and if we keep 𝑡 fixed, but ask
that (4) holds for all 𝛼 ∈ (0, 1), then 𝐹 (𝑡, 𝑥) will be differentiable, with strictly
positive derivative 𝐹 ′(𝑡, 𝑥) on the set 𝐽𝑡 = {𝑥 : 0 < 𝐹 (𝑡, 𝑥) < 1}. Moreover, by
Theorem 8.21, p. 168, of [6], if 𝐹 ′(𝑡, 𝑥) is locally in 𝐿1 with respect to Lebesgue
measure on 𝐽𝑡, then 𝐹 ′(𝑡, 𝑥) is the density of 𝐹 (𝑡, ⋅) and it is strictly positive on
𝐽𝑡. For many of the base processes we study here, 𝐽𝑡 = ℝ for all 𝑡 ∈ 𝐸, but should
that not be the case, it can always be arranged by adding an independent random
variable 𝑍 with strictly positive density to our base process in order to have a
suitable input process. In particular, the reader should consider a base process as
one which, after possibly some modification, will be a suitable input process. At
first glance perhaps this may seem like a convenient shortcut, but we know from



Empirical Quantile CLTs 169

[4] that when 𝐸 = [0, 𝑇 ] and the base process is a fractional Brownian motion
starting at zero when 𝑡 = 0, then the empirical CLT over 𝒞 fails, but by adding 𝑍
as indicated above it will hold. Of course, in these cases adding 𝑍 is just starting
the process with the distribution of 𝑍, and hence a typical assumption throughout
paper is that the distributions 𝐹 (𝑡, ⋅) are continuous and strictly increasing on ℝ.

Section 2 provides statements of our main theoretical results providing CLTs
for empirical quantile processes. In particular, Theorem 2 provides applications
for a broad range of input processes that includes Gaussian processes, compound
Poisson processes, symmetric stationary increment stable processes, and certain
martingales. In Section 3 we provide a proof of Theorem 1, using an idea of Vervaat
from [11] on the relation between empirical and quantile processes. This relation-
ship is based on almost sure convergence results for weak convergence of empirical
measures, and since we are seeking results that are uniform in quantile levels and
the parameter set 𝐸 that indexes our input process, its proof involves a number
of ideas from empirical process theory as presented in [2] and [10]. Section 4 then
turns to the proof of Theorem 2.

The papers of Swanson [8] and [9] were the first to motivate our interest in
this set of problems, but the techniques we use are quite different and apply to a
much broader set of input processes. In the first of these papers Swanson obtained
a central limit theorem for the median process, when in our terminology the input
process {𝑋𝑡 : 𝑡 ≥ 0} is a sample continuous Brownian motion tied down to have
value 0 at time 0. In the second he establishes a CLT for the empirical quantile
process for each fixed 𝛼 ∈ (0, 1), but now {𝑋𝑡 : 𝑡 ≥ 0} is assumed to be a sample
continuous Brownian motion whose distribution at time zero is assumed to have a
density with a unique 𝛼 quantile. In particular, his results are uniform in 𝑡 ∈ [0, 𝑇 ]
for 𝑇 ∈ (0,∞), but only for fixed 𝛼, and only for empirical quantile processes of
Brownian motion. Hence our results are more general in most ways, but because
the results for empirical quantile CLTs we present here depend on the empirical
CLT over 𝒞, and this fails when 𝑋 is tied down Brownian motion on [0, 𝑇 ], they
apply to Brownian motion on [0, 𝑇 ] only when we start with a nice density at time
0. On the other hand, as can be seen in Theorem 2, our results apply to general
classes of processes, including symmetric stable processes and fractional Brownian
motions, as long as they have a nice density at time 0, and our quantile CLTs are
uniform in 𝑡 ∈ [0, 𝑇 ] and also in 𝛼 ∈ 𝐼, where 𝐼 is a closed subinterval of (0, 1).
Furthermore, as can be seen from [4] and Corollary 3 below, these processes fail
the empirical CLT over 𝒞 on [0, 𝑇 ] when they start at 0 when 𝑡 = 0, so to apply our
quantile CLTs to such processes we must find a way to circumvent the assumption
of the empirical CLT holding over 𝒞 on [0, 𝑇 ]. This has been done for a broad class
of processes, and is not at all immediate or trivial, and will appear in a future
paper. Finally, it is perhaps worth mentioning that as we learned more about the
related statistical literature, the idea of studying these problem for a wide range
of input processes and seeking results uniform in the quantile levels as well as in
the parameter 𝑡 ∈ 𝐸 became an interesting and natural goal.
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2. Statement of results

Throughout we assume the notation of Section 1. In particular, we are assuming
that for all 𝑡 ∈ 𝐸, 𝐹 (𝑡, 𝑥) is strictly increasing and continuous in 𝑥 ∈ ℝ. Our goal
in this section is to present two results. The first is an empirical quantile CLT
which is uniform in both the parameters 𝑡 and 𝛼, and the second indicates specific
applications of the general result to a broad class of processes.

The proof of our first result uses a method of Vervaat. In particular, we prove
an analogue of Vervaat’s Lemma 1 in [11], depending on an almost sure version of
the empirical CLT in the setting of [4]. This approach has been used by others, see
[3] and in [7] for two examples, but since we require uniformity in the parameters
𝑡 and 𝛼, the application in this setting is more general and requires a bit of care to
handle the necessary measurability issues required to obtain the results. Its proof
is in Section 3.

Up to this point we have only assumed that the distribution functions
{𝐹 (𝑡, ⋅) : 𝑡 ∈ 𝐸} are continuous and strictly increasing on ℝ. As explained in Sec-
tion 1, since we are seeking non-degenerate Gaussian limits for all 𝛼 ∈ (0, 1), 𝑡 ∈ 𝐸
in our quantile CLT’s, the distribution functions 𝐹 (𝑡, 𝑥) must be differentiable in
𝑥 with strictly positive and finite derivative on 𝐽𝑡 = {𝑥 : 0 < 𝐹 (𝑡, 𝑥) < 1}. By
smoothing if necessary, 𝐽𝑡 = ℝ for all 𝑡 ∈ 𝐸, and hence we typically assume that
these distribution functions have densities {𝑓(𝑡, ⋅) : 𝑡 ∈ 𝐸} such that

lim
𝛿→0

sup
𝑡∈𝐸

sup
∣𝑢−𝑣∣≤𝛿

∣𝑓(𝑡, 𝑢) − 𝑓(𝑡, 𝑣)∣ = 0, (5)

for every closed interval 𝐼 in (0, 1) there is an 𝜃(𝐼) > 0 such that

inf
𝑡∈𝐸,𝛼∈𝐼,∣𝑥−𝜏𝛼(𝑡)∣≤𝜃(𝐼)

𝑓(𝑡, 𝑥) ≡ 𝑐𝐼,𝜃(𝐼) > 0, (6)

and

sup
𝑡∈𝐸,𝑥∈ℝ

𝑓(𝑡, 𝑥) < ∞. (7)

The assumptions (5) and (6) suffice for our quantile CLTs when the empirical CLT
over 𝒞 holds, but otherwise (7), perhaps after smoothing, is a typical additional
assumption. In particular, Corollaries 2 and 3 show that the empirical CLT over
𝒞 may fail for important classes of input processes when (7) fails.

Our first quantile CLT requires the empirical CLT holds over the sets 𝒞, with
Gaussian limit {𝐺(𝑡, 𝑥) : (𝑡, 𝑥) ∈ 𝐸 ×ℝ} as given in Section 1, and is given in the
following result.

Theorem 1. Assume for all 𝑡 ∈ 𝐸 that the distribution functions 𝐹 (𝑡, 𝑥) are strictly
increasing, their densities 𝑓(𝑡, ⋅) satisfy (5) and (6), and the CLT holds on 𝒞
with centered Gaussian limit {𝐺(𝑡, 𝑥) : (𝑡, 𝑥) ∈ 𝐸 × ℝ}. Then, for 𝐼 any closed
subinterval of (0, 1), the quantile processes {√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))𝑓(𝑡, 𝜏𝛼(𝑡)) : 𝑛 ≥ 1}
satisfy the CLT in ℓ∞(𝐸 × 𝐼) with Gaussian limit process {𝐺(𝑡, 𝜏𝛼(𝑡)) : (𝑡, 𝛼) ∈
𝐸 × 𝐼}. Moreover, the quantile processes {√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡)) : 𝑛 ≥ 1} also satisfy

the CLT in ℓ∞(𝐸 × 𝐼) with Gaussian limit process {𝐺(𝑡,𝜏𝛼(𝑡))𝑓(𝑡,𝜏𝛼(𝑡))
: (𝑡, 𝛼) ∈ 𝐸 × 𝐼}.
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Our next result yields a large number of specific input processes {𝑋(𝑡) : 𝑡 ∈
𝐸} where the empirical quantile CLT holds by applying Theorem 1. In particular,
since an important assumption in Theorem 1 is that an empirical CLT over 𝒞 holds
for {𝑋(𝑡) : 𝑡 ∈ 𝐸}, an important part of the proof will be to verify this for the
processes considered by applying results in [4].

The typical empirical quantile CLT we establish next starts with a base
process {𝑌𝑡 : 𝑡 ∈ 𝐸}, and we define 𝑋𝑡 = 𝑌𝑡 + 𝑍, 𝑡 ∈ 𝐸, where 𝑍 is independent
of {𝑌𝑡 : 𝑡 ∈ 𝐸} and 𝑍 has density 𝑔(⋅) on ℝ. For the empirical process CLT’s
over 𝒞 we need only assume 𝑔(⋅) is uniformly bounded on ℝ, or in 𝐿𝑎(ℝ) for some
𝑎 > 1. In order to prove our empirical quantile results, we assume a bit more
about 𝑔(⋅), but these assumptions are not unusual, even for real-valued quantile
CLT’s. Moreover, keeping in mind possible application to a diverse collection of
base processes, we have chosen to put the assumptions we require on 𝑔(⋅), but
the reader should also note that if the distributions of 𝑌𝑡, 𝑡 ∈ 𝐸, have densities
with similar properties, then we could assume less about 𝑔(⋅). This is easily seen
from the proofs, and basic facts about convolutions, and are left for the reader
to implement should the occasion arise. It should also be emphasized that there
are many interesting base processes {𝑌𝑡 : 𝑡 ∈ 𝐸} where the empirical CLT over
𝒞 fails, but it holds for the smoothed process {𝑋𝑡 = 𝑌𝑡 + 𝑍 : 𝑡 ∈ 𝐸} as above.
Such examples can be found in [4], and include all fractional Brownian motions on
𝐸 = [0, 𝑇 ] that start at zero at time zero with probability one. Others will appear
in the results of Section 4 below.

The assumptions we impose on the input process {𝑋𝑡 : 𝑡 ∈ 𝐸} will be sufficent
for the empirical CLT over 𝒞 with centered Gaussian limit on ℓ∞(𝐸×ℝ) given by
{𝐺(𝑡, 𝑥) : 𝑡 ∈ 𝐸, 𝑥 ∈ ℝ}, where 𝐺(⋅, ⋅) is sample bounded on 𝐸 ×ℝ, and uniformly
continuous with respect to its 𝐿2-distance there. Of course, as in Section 1 a typical
point (𝑡, 𝑥) ∈ 𝐸 × ℝ has been identified with 𝐶𝑡,𝑥. Our empirical quantile CLT’s
in this setting will then be of two types, and in these results 𝐼 will always be a
closed subinterval of (0, 1). The first is that the quantile processes

{√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))𝑓(𝑡, 𝜏𝛼(𝑡)) : 𝑛 ≥ 1} (8)

satisfy the CLT in ℓ∞(𝐸 × 𝐼) with Gaussian limit process

{𝐺(𝑡, 𝜏𝛼(𝑡)) : (𝑡, 𝛼) ∈ 𝐸 × 𝐼}, (9)

and the second asserts that the quantile processes

{√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡)) : 𝑛 ≥ 1} (10)

satisfy the CLT in ℓ∞(𝐸 × 𝐼) with Gaussian limit process{
𝐺(𝑡, 𝜏𝛼(𝑡))

𝑓(𝑡, 𝜏𝛼(𝑡))
: (𝑡, 𝛼) ∈ 𝐸 × 𝐼

}
. (11)

The base processes {𝑌𝑡 : 𝑡 ∈ 𝐸} we consider are of three general types, and
there is some overlap between these types. For example, the compound Poisson
processes in (iii) below could also be martingales, but it is easy to check that there
are examples which fit into one and only one of the classes we study.
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(i) {𝑌𝑡 : 𝑡 ∈ 𝐸} is a centered sample continuous Gaussian process on a compact
subset 𝐸 of [0, 𝑇 ]𝑑 whose 𝐿2-distance 𝑑𝑌 is such that for some 𝑘1 < ∞,
𝑠, 𝑡 ∈ 𝐸,

𝑑𝑌 (𝑠, 𝑡) = [𝔼((𝑌𝑡 − 𝑌𝑠)
2)]1/2 ≤ 𝑘1∣∣𝑡− 𝑠∣∣𝛾

ℝ𝑑
, (12)

where ∣∣𝑡 − 𝑠∣∣ℝ𝑑 is the usual 𝐿2-distance on ℝ𝑑 and 0 < 𝛾 ≤ 1. Of course,
when 𝑋𝑡 = 𝑌𝑡 + 𝑍, 𝑡 ∈ 𝐸, the 𝐿2-distance 𝑑𝑋 of 𝑋 also satisfies (12).

(ii) 𝐸 = [0, 𝑇 ] and {𝑌 (𝑡) : 𝑡 ≥ 0} is a stochastic process with cadlag sample
paths on [0,∞) such that 𝑃 (𝑌 (0) = 0) = 1. In addition, {𝑌 (𝑡) : 𝑡 ∈ 𝐸} is a
martingale whose 𝐿1-increments are Lip-𝛽 for some 𝛽 ∈ (0, 1], or a stationary
independent increments process whose 𝐿𝑝-increments are Lip-𝛽 on 𝐸 for some
𝑝 ∈ (0, 1], i.e., there is a 𝛽 ∈ (0, 1] and 𝐶 < ∞ such that for all 𝑠, 𝑡 ∈ 𝐸

𝔼(∣𝑌 (𝑡) − 𝑌 (𝑠)∣𝑝) ≤ 𝐶∣𝑡− 𝑠∣𝛽 . (13)

(iii) 𝐸 = [0, 𝑇 ] and {𝑌𝑡 : 𝑡 ∈ 𝐸} is a compound Poisson process built from the
i.i.d. random variables {𝑌𝑘 : 𝑘 ≥ 1} having no mass at zero and Poisson
process {𝑁(𝑡) : 𝑡 ≥ 0} with cadlag paths and parameter 𝜆 ∈ (0,∞) providing
the jump times for {𝑌𝑡 : 𝑡 ∈ 𝐸}.

Remark 1. If {𝑌 (𝑡) : 𝑡 ≥ 0} is a strictly stable process with stationary inde-
pendent increments and index 𝑟 ∈ (0, 2], then for 𝑟 ∈ (1, 2] we have 𝔼(∣𝑌 (𝑡)∣) =
𝑡1/𝑟𝔼(∣𝑌 (1)∣) and hence

𝔼(∣𝑌 (𝑡) − 𝑌 (𝑠)∣) = ∣𝑡− 𝑠∣1/𝑟𝔼(∣𝑌 (1)∣),
which implies it has 𝐿1-increments that are Lip- 1𝑟 . Of course, it is also a martingale
when 𝑟 ∈ (1, 2]. If 0 < 𝑟 ≤ 1, then for 0 < 𝑝 < 𝑟 we have

𝔼(∣𝑌 (𝑡) − 𝑌 (𝑠)∣𝑝) = ∣𝑡− 𝑠∣𝑝/𝑟𝔼(∣𝑌 (1)∣𝑝),

which implies it has 𝐿𝑝-increments that are Lip- 𝑝𝑟 . If {𝑌 (𝑡) : 𝑡 ≥ 0} is a square inte-

grable martingale with 𝜆(𝑡) = 𝔼(𝑌 2(𝑡)), 𝑡 ≥ 0, then for 0 ≤ 𝑠 ≤ 𝑡 the orthogonality
of the increments of {𝑌 (𝑡) : 𝑡 ≥ 0} implies

𝔼((𝑌 (𝑡) − 𝑌 (𝑠))2) = 𝜆(𝑡) − 𝜆(𝑠). (14)

Hence, if 𝜆(⋅) is Lip-𝛾 on 𝐸, then (14) implies (13) with 𝑝 = 1, 𝛽 = 𝛾/2. In addition,
if {𝑌 (𝑡) : 𝑡 ≥ 0} also has stationary, independent increments with 𝑃 (𝑌 (0) = 0) = 1
and 𝜆(𝑡) = 𝔼(∣𝑌 (𝑡)∣) < ∞, 𝑡 ≥ 0, then for 𝑠, 𝑡 ∈ 𝐸 we have

𝔼(∣𝑌 (𝑡) − 𝑌 (𝑠)∣) = 𝔼(∣𝑌 (∣𝑡− 𝑠∣)∣) = 𝜆(∣𝑡− 𝑠∣). (15)

Therefore, if 𝜆(𝑡) ≤ 𝐶𝑡𝛽 for 𝑡 ∈ [0, 𝛿] and some 𝛿 > 0, 𝛽 ∈ (0, 1], then it is easy
to check that (15) implies (13) with 𝑝 = 1 and the given 𝛽 for all 𝑠, 𝑡 ∈ 𝐸, and a
possibly larger constant 𝐶, depending on 𝛿.

Theorem 2. Let {𝑌𝑡 : 𝑡 ∈ 𝐸} satisfy (i), (ii), or (iii). In addition, assume 𝑋𝑡 =
𝑌𝑡 + 𝑍, where 𝑍 is independent of {𝑌𝑡 : 𝑡 ∈ 𝐸}, and 𝑍 has a strictly positive,
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uniformly bounded, uniformly continuous density function 𝑔 on ℝ. If 𝐼 is any
closed subinterval of (0, 1), and we also assume that

lim
𝑏→∞

sup
𝑡∈𝐸

𝑃 (∣𝑌𝑡∣ ≥ 𝑏) = 0, (16)

then the quantile processes of (8) and (10) built from the input process {𝑋𝑡 : 𝑡 ∈ 𝐸}
satisfy the empirical quantile CLT with corresponding Gaussian limit as in (9)
and (11).

Remark 2. It is easy to see at this point that Theorem 2 implies empirical quantile
results of both types for fractional Brownian motions, the Brownian sheet, strictly
stable stationary independent increment processes, martingales, and compound
Poisson processes. The precise corollaries are easy to formulate, and hence are
not included. The details of the proof of Theorem 2 will show that the empirical
process CLT’s over 𝒞 will follow under the slightly weaker assumptions that 𝑔(⋅)
be uniformly bounded on ℝ, or in 𝐿𝑎(ℝ) for some 𝑎 > 1.

3. The proof of Theorem 1: Vervaat’s approach

3.1. Notation and some lemmas

As before, we assume for all 𝑡 ∈ 𝐸 that 𝐹 (𝑡, 𝑥) is strictly increasing and continuous
in 𝑥 ∈ ℝ. Our first task of significance is to prove an analogue of Vervaat’s Lemma
1 in [11]. We follow Vervaat’s idea of using an almost sure version of the empirical
CLT, but given the generality of our setting the implementation of these ideas in
the following three sub-sections is not as immediate as one might like. In particular,
to obtain uniformity in the parameters (𝑡, 𝑥) requires a general approach to such
issues, and one that also can handle the measurability problems that arise. Showing
that weak convergence, or convergence in law, can be expressed in terms of almost
sure convergence has a long history, and for the task here we use Theorem 3.5.1
in [2]. Its statement below is slightly less general than that in [2].

Notation 1. For a function 𝑓 : 𝑆 −→ ℝ̄ we use the notation 𝑓∗ to denote a
measurable cover function (see Lemma 1.2.1 [10]).

Theorem 3 ([2]). Let (𝐷, 𝑑∞) be a metric space, (Ω,𝒜, 𝑄) be a probability space
and 𝑓𝑛 : Ω → 𝐷 for each 𝑛 = 0, 1, . . . . Suppose 𝑓0 has separable range, 𝐷0, and
is measurable with respect to the Borel sigma algebra on 𝐷0. Then {𝑓𝑛 : 𝑛 ≥ 1}
converges weakly, or in law, to 𝑓0 iff there exists a probability space (Ω̂, ℱ̂ , 𝑃 ) and

perfect measurable functions 𝑔𝑛 from (Ω̂, ℱ̂) to (Ω,𝒜) for 𝑛 = 0, 1, . . . , such that

𝑃 ∘ 𝑔−1𝑛 = 𝑄 on 𝒜 (17)

for each 𝑛, and
𝑑∗∞(𝑓𝑛 ∘ 𝑔𝑛, 𝑓0 ∘ 𝑔0) →

a.s
0. (18)

where 𝑑∗∞(𝑓𝑛∘𝑔𝑛, 𝑓0∘𝑔0) denotes the measurable cover function for 𝑑∞(𝑓𝑛∘𝑔𝑛, 𝑓0∘
𝑔0) and the 𝑎.𝑠. convergence is with respect to 𝑃 .
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In our setting the metric space 𝐷 is ℓ∞(𝐸 × ℝ), with distance 𝑑∞ the usual
sup-norm there, and the probability space (Ω,𝒜, 𝑄) supports the i.i.d. sequence
{𝑋𝑗 : 𝑗 ≥ 1} and the Gaussian process 𝐺. Then, for 𝜔 ∈ Ω, 𝑛 ≥ 1, the 𝑓𝑛 of
Dudley’s result is our 𝜈𝑛,

𝑓𝑛(𝜔) =
√
𝑛(𝐹𝑛(⋅, ⋅)(𝜔) − 𝐹 (⋅, ⋅)) ∈ ℓ∞(𝐸 × ℝ), (19)

and {𝑓𝑛 : 𝑛 ≥ 1} converges in law to

𝑓0(𝜔) = 𝐺(⋅, ⋅)(𝜔) ∈ ℓ∞(𝐸 × ℝ). (20)

That is, we are assuming the empirical CLT over 𝒞, and therefore Theorem 3

implies there is a suitable probability space (Ω̂, ℱ̂ , 𝑃 ) and a set Ω̂1 ⊂ Ω̂ with

𝑃 (Ω̂1) = 1 such that for all 𝜔̂ ∈ Ω̂1,

∣∣(𝑓𝑛 ∘𝑔𝑛)(𝜔̂)− (𝑓0 ∘𝑔0)(𝜔̂)∣∣∗ ≡
(

sup
𝑡∈𝐸,𝑥∈ℝ

∣(𝑓𝑛 ∘𝑔𝑛)(𝜔̂)− (𝑓0 ∘𝑔0)(𝜔̂)∣
)∗

→ 0. (21)

Hence, if

𝐹𝑛(𝑡, 𝑥)(𝜔̂) = 𝐹𝑛(𝑡, 𝑥)(𝑔𝑛(𝜔̂)) and 𝐺̂(𝑡, 𝑥)(𝜔̂) = 𝐺(𝑡, 𝑥)(𝑔0(𝜔̂)),

then on Ω̂1 we have the empirical distribution functions {𝐹𝑛 : 𝑛 ≥ 1} satisfying

∥√𝑛(𝐹𝑛 − 𝐹 ) − 𝐺̂∥∗ ≡
(

sup
𝑡∈𝐸,𝑥∈ℝ

∣√𝑛(𝐹𝑛(𝑡, 𝑥)(𝜔̂) − 𝐹 (𝑡, 𝑥)) − 𝐺̂(𝑡, 𝑥)(𝜔̂)∣
)∗

→ 0.

(22)

Remark 3. The functions 𝐹𝑛 are still distribution functions as functions of 𝑥, and

on Ω̂ we have
√
𝑛(𝐹𝑛 − 𝐹 ) − 𝐺̂ ∈ ℓ∞(𝐸 × ℝ). In addition, since the functions

{𝑔𝑛 : 𝑛 ≥ 0} are perfect and (17) holds, it follows for every bounded, real-valued
function ℎ on ℓ∞(𝐸 × ℝ), and 𝑛 ≥ 1, that

𝔼∗
𝑃

[ℎ(
√
𝑛(𝐹𝑛 − 𝐹 ))] = 𝔼∗𝑄[ℎ(

√
𝑛(𝐹𝑛 − 𝐹 ))] and 𝔼𝑃 [ℎ(𝐺̂)] = 𝔼𝑄[ℎ(𝐺)]. (23)

Since we are assuming {√𝑛(𝐹𝑛 − 𝐹 ) : 𝑛 ≥ 1} converges weakly to the Gaussian
limit 𝐺, and 𝐺 has separable support in ℓ∞(𝐸×ℝ), then (23) immediately implies

{√𝑛(𝐹𝑛 − 𝐹 ) : 𝑛 ≥ 1} also converges weakly to 𝐺.

The generalized inverse of 𝐹𝑛(𝑡, ⋅) in the second variable is given by

𝜏𝑛𝛼 (𝑡) ≡ 𝐹−1
𝑛 (𝑡, 𝛼) = inf

{
𝑥 : 𝐹𝑛(𝑡, 𝑥) ≥ 𝛼

}
, 𝑡 ∈ 𝐸,𝛼 ∈ (0, 1), 𝑛 ≥ 1, (24)

and as before for each 𝑡 ∈ 𝐸,𝛼 ∈ (0, 1), the inverse function

𝜏𝛼(𝑡) ≡ 𝐹−1(𝑡, 𝛼) = inf{𝑥 : 𝐹 (𝑡, 𝑥) ≥ 𝛼}. (25)

Of course, since we are assuming 𝐹𝑡(𝑥) := 𝐹 (𝑡, 𝑥) is strictly increasing, this is a
classical inverse function, and to emphasize that the inverse is only on the second

variable we also will write 𝐹−1
𝑛,𝑡 and 𝐹−1

𝑡 for these inverses. Then, for each 𝑡 ∈ 𝐸,

since 𝑋1(𝑡), . . . , 𝑋𝑛(𝑡) are real numbers, we have 𝐹−1
𝑛,𝑡 (⋅) : [0, 1]

into−→ ℝ and since

𝐹𝑡 is assumed continuous and strictly increasing we have 𝐹−1
𝑡 (⋅) : (0, 1)

onto−→ ℝ. It

is also useful to define 𝐹−1
𝑡 (0) = −∞, 𝐹𝑡(−∞) = 𝐹𝑛,𝑡(−∞) = 0, 𝐹−1

𝑡 (1) = ∞,
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𝐹𝑡(+∞) = 𝐹𝑛,𝑡(+∞) = 1, and 𝐺̂𝑡(−∞) = 𝐺̂𝑡(+∞) = 0. We also set ℝ = ℝ ∪
{−∞} ∪ {+∞}.

To use (22) we will need the function 𝐹𝑛,𝑡 ∘ 𝐹−1
𝑡 and its inverse, which is

determined in the next lemma.

Lemma 1. For each 𝑡 ∈ 𝐸

(𝐹𝑛,𝑡 ∘ 𝐹−1
𝑡 )−1 = 𝐹𝑡 ∘ 𝐹−1

𝑛,𝑡 (26)

where the inverses are defined as in (24) and (25).

Proof. For each 𝑡 ∈ 𝐸,𝛼 ∈ [0, 1], we have, since we are assuming 𝐹𝑡(⋅) is strictly
increasing and continuous, that

(𝐹𝑛,𝑡 ∘ 𝐹−1
𝑡 )−1(𝛼) = inf{𝛽 : 𝐹𝑛,𝑡 ∘ 𝐹−1

𝑡 (𝛽) ≥ 𝛼}
= inf{𝐹𝑡(𝑥) : 𝐹𝑛,𝑡(𝑥) ≥ 𝛼}
= 𝐹𝑡(inf{𝑥 : 𝐹𝑛,𝑡(𝑥) ≥ 𝛼})

= (𝐹𝑡 ∘ 𝐹−1
𝑛,𝑡 )(𝛼). □

The next lemma is our modification of Lemma 1 in [11] applicable to the
present situation.

Lemma 2. Let 𝑎𝑛 → 0, and that(
sup

𝑡∈𝐸,𝑥∈ℝ

∣∣∣∣∣𝐹𝑛,𝑡(𝑥) − 𝐹𝑡(𝑥)

𝑎𝑛
− 𝐺̂𝑡(𝑥)

∣∣∣∣∣
)∗

→ 0 (27)

as 𝑛 tends to infinity. Then, setting 𝐼𝑡(𝛼) = 𝛼 for 𝑡 ∈ 𝐸,𝛼 ∈ [0, 1], we have(
sup

𝑡∈𝐸,𝛼∈[0,1]

∣∣∣∣∣(𝐹𝑛,𝑡 ∘ 𝐹−1
𝑡 )(𝛼) − 𝐼𝑡(𝛼)

𝑎𝑛
− (𝐺̂𝑡 ∘ 𝐹−1

𝑡 )(𝛼)

∣∣∣∣∣
)∗

→ 0. (28)

Furthermore, uniformly in 𝑡 ∈ 𝐸, 𝐺̂𝑡(𝐹
−1
𝑡 (𝛼)) is a uniformly continuous function

of 𝛼 ∈ [0, 1], and(
sup

𝑡∈𝐸,𝑢∈[0,1]

∣∣∣∣∣ (𝐹𝑡 ∘ 𝐹−1
𝑛,𝑡 )(𝑢) − 𝐼𝑡(𝑢)

𝑎𝑛
+ (𝐺̂𝑡 ∘ 𝐹−1

𝑡 )(𝑢)

∣∣∣∣∣
)∗

→ 0. (29)

Proof. Since we are assuming for each 𝑡 ∈ 𝐸 that 𝐹 (𝑡, ⋅) is strictly increasing and
continuous on ℝ, it follows that {𝐹−1

𝑡 (𝛼) : 𝛼 ∈ (0, 1)} = ℝ. Therefore, if one
restricts 𝛼 in (28) to be in (0, 1), then (28) follows immediately from (27). To
obtain (28) for 𝛼 = 0 and 𝛼 = 1, then follows from the conventions we made prior
to the statement of the lemma involving ±∞.

To show (28) implies (29) we define for each 𝑡 ∈ 𝐸 the completed graph of

(𝐹𝑛,𝑡 ∘ 𝐹−1
𝑡 )(⋅) on [0, 1] to be given by

Γ𝑛,𝑡 = {(𝛼, 𝑢) : 𝛼 ∈ [0, 1], (𝐹𝑛,𝑡 ∘ 𝐹−1
𝑡 )(𝛼 − 0) ≤ 𝑢 ≤ (𝐹𝑛,𝑡 ∘ 𝐹−1

𝑡 )(𝛼 + 0)}.
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Here (𝐹𝑛,𝑡 ∘ 𝐹−1
𝑡 )(𝛼± 0) denotes the left- and right-hand limits of (𝐹𝑛,𝑡 ∘ 𝐹−1

𝑡 )(⋅)
when 𝛼 ∈ (0, 1), and are given through the conventions above when 𝛼 = 0 or 1,
i.e., we understand the left- and right-hand limits at zero to both be zero, and the
left- and right-hand limits at one to both be one. Now (28) implies that

lim
𝑛→∞

(
sup
{∣∣∣𝑢−𝛼𝑎𝑛

− (𝐺̂𝑡 ∘ 𝐹−1
𝑡 )(𝛼)

∣∣∣ : (𝑡, 𝛼) ∈ 𝐸 × [0, 1], (𝛼, 𝑢) ∈ Γ𝑛,𝑡

})∗
= 0,

which also implies that

lim
𝑛→∞

(
sup
{∣∣∣𝛼−𝑢𝑎𝑛

+ (𝐺̂𝑡 ∘ 𝐹−1
𝑡 )(𝛼)

∣∣∣ : (𝑡, 𝛼) ∈ 𝐸 × [0, 1], (𝛼, 𝑢) ∈ Γ𝑛,𝑡

})∗
= 0.

(30)
For each 𝑡 ∈ 𝐸 we set

Γ−1𝑛,𝑡 = {(𝑢, 𝛼) : 𝑢 ∈ [0, 1], (𝐹𝑡 ∘ 𝐹−1
𝑛,𝑡 )(𝑢 − 0) ≤ 𝛼 ≤ (𝐹𝑡 ∘ 𝐹−1

𝑛,𝑡 )(𝑢 + 0)},
where one can check that the left-hand limit of 𝐹𝑡 ∘ 𝐹−1

𝑛,𝑡 (⋅) at zero is zero and we
take the right-hand limit at one to be one.

Then one can check that

(𝛼, 𝑢) ∈ Γ𝑛,𝑡 if and only if (𝑢, 𝛼) ∈ Γ−1𝑛,𝑡. (31)

Moreover, (29) is implied by

lim
𝑛→∞

(
sup
{∣∣∣𝛼−𝑢𝑎𝑛

+ (𝐺̂𝑡 ∘ 𝐹−1
𝑡 )(𝑢)

∣∣∣ : (𝑡, 𝑢) ∈ 𝐸 × [0, 1], (𝑢, 𝛼) ∈ Γ−1𝑛,𝑡
})∗

= 0,

(32)
and (30) and (31) implies (32) provided we show

lim
𝑛→∞(sup{∣(𝐺̂𝑡 ∘ 𝐹−1

𝑡 )(𝑢) − (𝐺̂𝑡 ∘ 𝐹−1
𝑡 )(𝛼)∣ : 𝑡 ∈ 𝐸, (𝑢, 𝛼) ∈ Γ−1𝑛,𝑡})∗ = 0. (33)

Since we are assuming the empirical CLT holds over 𝒞 with Gaussian limit
process {𝐺(𝑡, 𝑥) : (𝑡, 𝑥) ∈ 𝐸 × ℝ}, it follows that 𝐺 has a version which is sample
uniformly continuous on 𝐸 × ℝ with respect to its 𝐿2-distance, 𝑑(⋅, ⋅), given in
(1). This is a consequence of the addendum to Theorem 1.5.7 of [10], p. 37. When
referring to 𝐺 we will mean this version. By the total boundedness of the distance,
the associated space of uniformly continuous functions is separable in the uniform
topology. This space is a closed subspace of ℓ∞(𝐸 × ℝ), which then implies that
this version of 𝐺 is measurable with respect to the Borel sets of ℓ∞(𝐸×ℝ). Using

the definition of 𝐺̂ following (21), and (17) with 𝑛 = 0, we have the laws of 𝐺 and

𝐺̂ are equal on ℓ∞(𝐸 ×ℝ). In particular, 𝐺̂ is also measurable with respect to the
Borel sets of ℓ∞(𝐸 × ℝ) with separable support there, it has the same covariance
as 𝐺 and its 𝐿2-distance is 𝑑, and it is sample continuous on (𝐸 × ℝ, 𝑑) with

𝑃 -probability one.
Now for each 𝑡 ∈ 𝐸 and 𝛼, 𝛽 ∈ (0, 1) we have

𝑑2((𝑡, 𝐹−1
𝑡 (𝛼)), (𝑡, 𝐹−1

𝑡 (𝛽))) = ∣𝛼− 𝛽∣ − ∣𝛼− 𝛽∣2 ≤ ∣𝛼− 𝛽∣. (34)

Thus for each 𝑡 ∈ 𝐸 we have 𝑑((𝑡, 𝐹−1
𝑡 (𝛼)), (𝑡, 𝐹−1

𝑡 (𝛽))) → 0 as 𝛼, 𝛽 → 0 or
𝛼, 𝛽 → 1.



Empirical Quantile CLTs 177

We also have

𝑑2((𝑡, 𝐹−1
𝑡 (𝛼)), (𝑡, 𝐹−1

𝑡 (0))) = 𝛼− 𝛼2 ≤ ∣𝛼− 0∣,
𝑑2((𝑡, 𝐹−1

𝑡 (𝛼)), (𝑡, 𝐹−1
𝑡 (1))) = 𝛼− 𝛼2 ≤ ∣𝛼− 1∣,

and

𝑑((𝑡, 𝐹−1
𝑡 (0)), (𝑡, 𝐹−1

𝑡 (1))) = 0,

and hence the uniform continuity of 𝐺̂ along with 𝐺̂(𝑡, 𝐹−1
𝑡 (0))=𝐺̂(𝑡, 𝐹−1

𝑡 (1)) = 0

implies that uniformly in 𝑡 ∈ 𝐸 we have 𝐺̂𝑡(𝐹
−1
𝑡 (𝛼)) is uniformly continuous in

𝛼 ∈ [0, 1] with probability one. Moreover, the process {𝐺̂(𝑡, 𝑥) : (𝑡, 𝑥) ∈ 𝐸 × ℝ}
has separable support in ℓ∞(𝐸 × ℝ), and hence the upper cover used in (33) is

unnecessary as the function there is measurable. We also have with 𝑃 -probability
one that

sup
𝑡∈𝐸,𝛼∈[0,1]

∣𝐺̂𝑡(𝐹
−1
𝑡 (𝛼))∣ < ∞, (35)

and hence 𝑎𝑛 converging to zero, and (30) implies

lim
𝑛→∞ sup{∣𝑢− 𝛼∣ : 𝑡 ∈ 𝐸, (𝛼, 𝑢) ∈ Γ𝑛,𝑡} = 0. (36)

Therefore, (33) follows from (31) and that uniformly in 𝑡 ∈ 𝐸 we have 𝐺̂𝑡 ∘𝐹−1
𝑡 (𝛼)

uniformly continuous in 𝛼 ∈ [0, 1]. Therefore, (33) holds, and this implies (29), so
the lemma is proven. □
3.2. Applying Lemma 2 to obtain an empirical quantile CLT

Assuming the empirical CLT holds over 𝒞, the conclusions of Lemma 2 hold with
𝑎𝑛 = 1√

𝑛
, and we have proved the following lemma.

Lemma 3. For all 𝑡 ∈ 𝐸 assume the distribution function 𝐹 (𝑡, 𝑥) is strictly in-
creasing and continuous in 𝑥 ∈ ℝ, and that the CLT holds on 𝒞 with limit

{𝐺(𝑡, 𝑥) : (𝑡, 𝑥) ∈ 𝐸 × ℝ}.
Then, with 𝑃 -probability one, we have(

sup
𝑡∈𝐸,𝛼∈[0,1]

∣√𝑛[(𝐹𝑡 ∘ 𝐹−1
𝑛,𝑡 )(𝛼) − 𝐼𝑡(𝛼)] + (𝐺̂𝑡 ∘ 𝐹−1

𝑡 )(𝛼)∣
)∗

→ 0. (37)

Up to this point we have only assumed that the distribution functions
{𝐹𝑡(⋅) : 𝑡 ∈ 𝐸} are continuous and strictly increasing on ℝ, and that the em-
pirical processes satisfy the CLT over 𝒞. Now we add the assumptions that these
distribution functions have densities {𝑓(𝑡, ⋅) : 𝑡 ∈ 𝐸} satisfying (5) and (6).

Lemma 4. Assume for all 𝑡 ∈ 𝐸 that the distribution functions 𝐹 (𝑡, 𝑥) are strictly
increasing and continuous, and that their densities 𝑓(𝑡, ⋅) satisfy (6). If the CLT
holds on 𝒞, then for every closed subinterval 𝐼 of (0, 1)

lim
𝑛→∞[ sup

𝑡∈𝐸,𝛼∈𝐼
∣𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡)∣]∗ = 0. (38)

in 𝑃 probability.
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Proof. Since we are assuming (6), fix 𝐼 a closed subinterval of (0, 1), and take

0 < 𝜖 < 𝜃(𝐼). Then, since we have the CLT over 𝒞 with respect to 𝑃 , Lemma
2.10.14 on page 194 of [10] implies there exists 𝛿(𝜖) ∈ (0, 𝜖𝑐𝐼,𝜃((𝐼)/2) such that for
𝛿 ∈ (0, 𝛿(𝜖)) there is 𝑛𝛿 < ∞ such that 𝑛 ≥ 𝑛𝛿 implies

𝑃 (𝐵𝑛) < 𝜖, (39)

where
𝐵𝑛 = {[ sup

𝑡∈𝐸,𝑥∈ℝ
∣𝐹𝑛(𝑡, 𝑥) − 𝐹 (𝑡, 𝑥)∣]∗ > 𝛿}. (40)

In addition, (6) implies we also have

sup
𝛼∈𝐼,𝑡∈𝐸

(𝐹 (𝑡, 𝜏𝛼(𝑡) − 𝜖) − 𝛼) < −𝛿, (41)

and
inf

𝛼∈𝐼,𝑡∈𝐸
(𝐹 (𝑡, 𝜏𝛼(𝑡) + 𝜖) − 𝛼) > 𝛿. (42)

That is, (41) holds by (6) since

sup
𝑡∈𝐸,𝛼∈𝐼

(𝐹 (𝑡, 𝜏𝛼(𝑡) − 𝜖) − 𝛼) = − inf
𝑡∈𝐸,𝛼∈𝐼

∫ 𝜏𝛼(𝑡)

𝜏𝛼(𝑡)−𝜖
𝑓(𝑡, 𝑥)𝑑𝑥,

and if 0 < 𝛿 < 𝛿(𝜖) <
𝜖𝑐𝐼,𝜃(𝐼)
2 , 0 < 𝜖 < 𝜃(𝐼), we then have

inf
𝑡∈𝐸,𝛼∈𝐼

∫ 𝜏𝛼(𝑡)

𝜏𝛼(𝑡)−𝜖
𝑓(𝑡, 𝑥)𝑑𝑥 ≥ 𝜖𝑐𝐼,𝜃(𝐼) > 𝛿.

Thus on 𝐵𝑐
𝑛, for all 𝑡 ∈ 𝐸,𝛼 ∈ 𝐼,

𝐹 (𝑡, 𝜏𝑛𝛼 (𝑡)) ≥ 𝐹𝑛(𝑡, 𝜏𝑛𝛼 (𝑡)) − 𝛿 ≥ 𝛼− 𝛿,

where the second inequality follows by definition of 𝜏𝑛𝛼 (𝑡). Combined with (41), on
𝐵𝑐
𝑛 this implies that for all 𝑡 ∈ 𝐸, all 𝛼 ∈ 𝐼

𝜏𝑛𝛼 (𝑡) ≥ 𝜏𝛼(𝑡) − 𝜖. (43)

Similarly, if 0 < 𝛿 < 𝛿(𝜖) <
𝜖𝑐𝐼,𝜃(𝐼)
2 , 0 < 𝜖 < 𝜃(𝐼), (42) holds by (6), and so on

𝐵𝑐
𝑛 we have

𝜏𝛼(𝑡) + 𝜖 ≥ 𝜏𝑛𝛼 (𝑡)

for all 𝑡 ∈ 𝐸,𝛼 ∈ 𝐼. Combining this with (43), on 𝐵𝑐
𝑛 we have for all 𝑡 ∈ 𝐸, all

𝛼 ∈ 𝐼, that
𝜏𝛼(𝑡) − 𝜖 ≤ 𝜏𝑛𝛼 (𝑡) ≤ 𝜏𝛼(𝑡) + 𝜖. (44)

Hence on 𝐵𝑐
𝑛

[ sup
𝑡∈𝐸,𝛼∈𝐼

∣𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡)∣]∗ ≤ 𝜖.

Since 𝐵𝑛 is measurable, we thus have for 𝑛 ≥ 𝑛𝛿 that

𝑃 ([ sup
𝑡∈𝐸,𝛼∈𝐼

∣𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡)∣]∗ > 𝜖) ≤ 𝑃 (𝐵𝑛) ≤ 𝜖.

Since 𝜖 > 0 can be taken arbitrarily small, letting 𝑛 → ∞ implies (38). Thus the
lemma is proven. □
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Proposition 1. Assume for all 𝑡 ∈ 𝐸 that the distribution functions 𝐹 (𝑡, 𝑥) are
strictly increasing, their densities 𝑓(𝑡, ⋅) satisfy (5) and (6), and the CLT holds on
𝒞 with limit {𝐺(𝑡, 𝑥) : (𝑡, 𝑥) ∈ 𝐸×ℝ}. Then, for 𝐼 any closed subinterval of (0, 1)
we have (

sup
𝑡∈𝐸,𝛼∈𝐼

∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))𝑓(𝑡, 𝜏𝛼(𝑡)) + 𝐺̂(𝑡, 𝜏𝛼(𝑡))∣
)∗

→ 0 (45)

in 𝑃 probability, and therefore the quantile processes{√
𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡)) 𝑓(𝑡, 𝜏𝛼(𝑡)) : 𝑛 ≥ 1

}
satisfy the CLT in ℓ∞(𝐸 × 𝐼) with Gaussian limit process {𝐺̂(𝑡, 𝜏𝛼(𝑡)) : (𝑡, 𝛼) ∈
𝐸 × 𝐼}. Moreover, the quantile processes {√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡)) : 𝑛 ≥ 1} also satisfy

the CLT in ℓ∞(𝐸 × 𝐼) with Gaussian limit process { 𝐺̂(𝑡,𝜏𝛼(𝑡))𝑓(𝑡,𝜏𝛼(𝑡))
: (𝑡, 𝛼) ∈ 𝐸 × 𝐼}.

Proof. Applying Theorem 3.6.1 of [2], the first CLT asserted follows immediately

from (45) and symmetry of the process {𝐺̂(𝑡, 𝜏𝛼(𝑡)) : (𝑡, 𝛼) ∈ 𝐸 × 𝐼}. Hence we
next turn to the proof of (45).

First we observe that under the given assumptions, we have (37) holding.
Furthermore, since the densities are assumed continuous,

𝐹 (𝑡, 𝑦) − 𝐹 (𝑡, 𝑥) = 𝑓(𝑡, 𝑥)(𝑦 − 𝑥) + 𝑅(𝑡, 𝑥, 𝑦)(𝑦 − 𝑥), (46)

where 𝑅(𝑡, 𝑥, 𝑦) = 𝑓(𝑡, 𝜉(𝑡)) − 𝑓(𝑡, 𝑥), and 𝜉(𝑡) between 𝑥 and 𝑦 is determined by
the mean value theorem applied to 𝐹 (𝑡, ⋅). Of course, 𝑅(𝑡, ⋅, ⋅) depends on 𝐹 (𝑡, ⋅),
but we suppress that, and simply note that since 𝜉(𝑡) is between 𝑥 and 𝑦, we have
∣𝑅(𝑡, 𝑥, 𝑦)∣ ≤ sup𝑢∈[𝑥,𝑦]∪[𝑦,𝑥] ∣𝑓(𝑡, 𝑢) − 𝑓(𝑡, 𝑥)∣. Therefore, for 𝑀 > 0 we have

𝑃 ([ sup
𝑡∈𝐸,𝛼∈𝐼

∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))∣𝑓(𝑡, 𝜏𝛼(𝑡))

2
]∗ ≥ 𝑀) ≤ 𝑎𝑛(𝑀) + 𝑏𝑛,

where

𝑎𝑛(𝑀) = 𝑃 (𝐴𝑛,1 ∩ 𝐴𝑛,2),

𝐴𝑛,1 =

{[
sup

𝑡∈𝐸,𝛼∈𝐼
∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))∣(𝑓(𝑡, 𝜏𝛼(𝑡)) + 𝑅(𝑡, 𝜏𝛼(𝑡), 𝜏𝑛𝛼 (𝑡)))

]∗
≥ 𝑀

}
,

𝐴𝑛,2 =

{[
sup

𝑡∈𝐸,𝛼∈𝐼
∣𝑅(𝑡, 𝜏𝛼(𝑡), 𝜏𝑛𝛼 (𝑡))∣

]∗
≤ 𝑐𝐼,𝜃(𝐼)

2

}
,

𝑏𝑛 = 𝑃

([
sup

𝑡∈𝐸,𝛼∈𝐼
∣𝑅(𝑡, 𝜏𝛼(𝑡), 𝜏𝑛𝛼 (𝑡))∣

]∗
>

𝑐𝐼,𝜃(𝐼)
2

)
,

and 𝑐𝐼,𝜃(𝐼) > 0 is given as in (6). Thus

𝑃

([
sup

𝑡∈𝐸,𝛼∈𝐼
∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))∣𝑓(𝑡, 𝜏𝛼(𝑡))

2

]∗
≥ 𝑀

)
≤ 𝑃 (𝐴𝑛,1) + 𝑏𝑛,
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and by (46) we also have

𝐴𝑛,1 =

{[
sup

𝑡∈𝐸,𝛼∈𝐼
∣√𝑛(𝐹𝑡(𝜏

𝑛
𝛼 (𝑡)) − 𝐹𝑡(𝜏𝛼(𝑡)))∣

]∗
≥ 𝑀

}
,

which implies

𝑃

([
sup

𝑡∈𝐸,𝛼∈𝐼
∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))∣𝑓(𝑡, 𝜏𝛼(𝑡))

2

]∗
≥ 𝑀

)
≤ 𝑃

([
sup

𝑡∈𝐸,𝛼∈𝐼
∣√𝑛(𝐹𝑡(𝜏

𝑛
𝛼 (𝑡)) − 𝐹𝑡(𝜏𝛼(𝑡)))∣

]∗
≥ 𝑀

)
+ 𝑏𝑛.

(47)

Since 𝐼𝑡(𝛼) = 𝐹𝑡(𝐹
−1
𝑡 (𝛼)), 𝛼 ∈ (0, 1), 𝑡 ∈ 𝐸, and 𝐼 ⊆ (0, 1)[

sup
𝑡∈𝐸,𝛼∈𝐼

∣√𝑛(𝐹𝑡(𝜏
𝑛
𝛼 (𝑡)) − 𝐹𝑡(𝜏𝛼(𝑡)))∣

]∗
≤
[

sup
𝑡∈𝐸,𝛼∈[0,1]

∣√𝑛[(𝐹𝑡 ∘ 𝐹−1
𝑛,𝑡 )(𝛼) − 𝐼𝑡(𝛼)] + (𝐺̂𝑡 ∘ 𝐹−1

𝑡 (𝛼))∣
]∗

+

[
sup

𝑡∈𝐸,𝛼∈𝐼
∣𝐺̂𝑡 ∘ 𝐹−1

𝑡 (𝛼))∣
]∗

,

(48)

and since the process {𝐺̂(𝑡, 𝑥) : 𝑡 ∈ 𝐸, 𝑥 ∈ ℝ} is sample continuous on 𝐸 × ℝ in
the semi-metric 𝑑 given in (1) with Radon support in ℓ∞(𝐸 × ℝ) we also have[

sup
𝑡∈𝐸,𝛼∈𝐼

∣𝐺̂𝑡 ∘ 𝐹−1
𝑡 (𝛼)∣

]∗
= sup

𝑡∈𝐸,𝛼∈𝐼
∣𝐺̂𝑡 ∘ 𝐹−1

𝑡 (𝛼)∣. (49)

Therefore, for every 𝜖 > 0 and all 𝑛 ≥ 1, by combining (37), (48) and(49) we have
an 𝑀 = 𝑀(𝜖) sufficiently large that

𝑃

([
sup

𝑡∈𝐸,𝛼∈𝐼
∣√𝑛(𝐹𝑡(𝜏

𝑛
𝛼 (𝑡)) − 𝐹𝑡(𝜏𝛼(𝑡)))∣

]∗
≥ 𝑀

)
≤ 𝜖. (50)

We now turn to showing that[
sup

𝑡∈𝐸,𝛼∈𝐼
∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))∣

]∗
(51)

is bounded in 𝑃 probability. That is, let

𝜆(𝑡, 𝛿) = sup
∣𝑢−𝑣∣≤𝛿

∣𝑓(𝑡, 𝑢) − 𝑓(𝑡, 𝑣)∣.

Then

∣𝑅(𝑡, 𝑥, 𝑦)∣ ≤ 𝜆(𝑡, ∣𝑥− 𝑦∣),
and hence by (5) for every 𝜖 > 0 there exists 𝛿 > 0 such that ∣𝑥− 𝑦∣ ≤ 𝛿 implies

sup
𝑡∈𝐸

∣𝑅(𝑡, 𝑥, 𝑦)∣ < 𝜖.
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Therefore, for every 𝜖 ∈ (0,
𝑐𝐼,𝜃(𝐼)
2 )

𝑏𝑛≤𝑃

([
sup

𝑡∈𝐸,𝛼∈𝐼
∣𝑅(𝑡,𝜏𝛼(𝑡),𝜏𝑛𝛼 (𝑡))∣

]∗
≥𝜖

)
=𝑃 ∗

(
sup

𝑡∈𝐸,𝛼∈𝐼
∣𝑅(𝑡,𝜏𝛼(𝑡),𝜏𝑛𝛼 (𝑡))∣≥𝜖

)
,

(52)
and since

𝑃 ∗
(

sup
𝑡∈𝐸,𝛼∈𝐼

∣𝑅(𝑡, 𝜏𝛼(𝑡), 𝜏𝑛𝛼 (𝑡))∣ ≥ 𝜖

)
(53)

≤ 𝑃 ∗
(

sup
𝑡∈𝐸,𝛼∈𝐼

∣𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))∣ ≥ 𝛿

)
= 𝑃

([
sup

𝑡∈𝐸,𝛼∈𝐼
∣𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))∣

]∗
≥ 𝛿

)
,

Lemma 4 implies for every 𝜖 ∈ (0,
𝑐𝐼,𝜃(𝐼)
2 ) that

lim
𝑛→∞ 𝑏𝑛 = 0. (54)

Combining (47), (50), and (54), we have (51), i.e., [sup𝑡∈𝐸,𝛼∈𝐼 ∣
√
𝑛(𝜏𝑛𝛼 (𝑡)−𝜏𝛼(𝑡))∣]∗

is bounded in 𝑃 probability. Furthermore, we then also have that[
sup

𝑡∈𝐸,𝛼∈𝐼
∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))∣∣𝑅(𝑡, 𝜏𝛼(𝑡), 𝜏𝑛𝛼 (𝑡))∣

]∗
(55)

converges in 𝑃 probability to zero.

Now, by (37) and (46), we have with 𝑃 probability one that

lim
𝑛→∞

(
sup

𝑡∈𝐸,𝛼∈𝐼
∣√𝑛(𝜏𝑛𝛼 (𝑡)−𝜏𝛼(𝑡))[𝑓(𝑡,𝜏𝛼(𝑡))+𝑅(𝑡,𝜏𝛼(𝑡),𝜏𝑛𝛼 (𝑡))]+𝐺̂(𝑡,𝜏𝛼(𝑡)∣

)∗
=0,

(56)
and since[

sup
𝑡∈𝐸,𝛼∈𝐼

∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))𝑓(𝑡, 𝜏𝛼(𝑡)) + 𝐺̂(𝑡, 𝜏𝛼(𝑡)∣
]∗

≤ 𝑢𝑛 + 𝑣𝑛,

where

𝑢𝑛 ≤
[

sup
𝑡∈𝐸,𝛼∈𝐼

∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))[𝑓(𝑡, 𝜏𝛼(𝑡)) + 𝑅(𝑡, 𝜏𝛼(𝑡), 𝜏𝑛𝛼 (𝑡))

]
+ 𝐺̂(𝑡, 𝜏𝛼(𝑡)∣]∗

and

𝑣𝑛 ≤
[

sup
𝑡∈𝐸,𝛼∈𝐼

∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))𝑅(𝑡, 𝜏𝛼(𝑡), 𝜏𝑛𝛼 (𝑡))∣
]∗

,

we have by combining (55) and (56) that[
sup

𝑡∈𝐸,𝛼∈𝐼
∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡))𝑓(𝑡, 𝜏𝛼(𝑡)) + 𝐺̂(𝑡, 𝜏𝛼(𝑡)∣

]∗
→ 0

in 𝑃 probability. Hence (45) is proven.
To finish the proof it remains to check that the quantile processes{√

𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡)) : 𝑛 ≥ 1
}
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also satisfy the CLT in ℓ∞(𝐸 × 𝐼) with Gaussian limit process{
𝐺̂(𝑡, 𝜏𝛼(𝑡))

𝑓(𝑡, 𝜏𝛼(𝑡))
: (𝑡, 𝛼) ∈ 𝐸 × 𝐼

}
.

Since (45) holds, and by (6) we have the non-random quantity

sup
𝑡∈𝐸,𝛼∈𝐼

1

𝑓(𝑡, 𝜏𝛼(𝑡))
< ∞,

we thus have (
sup

𝑡∈𝐸,𝛼∈𝐼

∣∣∣∣√𝑛(𝜏𝑛𝛼 (𝑡) − 𝜏𝛼(𝑡)) +
𝐺̂(𝑡, 𝜏𝛼(𝑡))

𝑓(𝑡, 𝜏𝛼(𝑡))

∣∣∣∣)∗ → 0

in 𝑃 probability. The CLT then follows from Theorem 3.6.1 of [2], and that the

Gaussian process 𝐺̂ is symmetric. Hence the proposition is proven. □
3.3. Proof of Theorem 1

In Proposition 1 we proved the convergence in outer probability of quantities very
closely related to those we wish to study. The best we could hope for concerning
our original quantities is convergence in distribution, so there is a little work to
do to obtain Theorem 1. One might think at this point that this should follow
with a wave of the hand, but for the reader’s benefit, as well as our own, and to
appreciate the use of perfect maps in Theorem 3 we present a complete argument.
This finally establishes Theorem 1.

Proof. Recall the notation established at the start of this section in connection

with the statement of Theorem 3, and the perfect mappings 𝑔𝑛 : Ω̂ → Ω such that

𝑄 = 𝑃 ∘ 𝑔−1𝑛 . In particular, equations (17) to (25) are relevant.
For 𝑢1, . . . , 𝑢𝑛 ∈ 𝐷(𝐸) and 𝑛 ≥ 1, 𝑡 ∈ 𝐸,𝛼 ∈ (0, 1) define

𝑘𝑛(𝑢1, . . . , 𝑢𝑛, 𝑡, 𝛼) =
√
𝑛

[
inf

{
𝑥 :

𝑛∑
𝑗=1

𝐼(𝑢𝑗(𝑡) ≤ 𝑥) ≥ 𝑛𝛼

}
− 𝜏𝛼(𝑡)

]
𝑓(𝑡, 𝜏𝛼(𝑡)),

(57)

where 𝜏𝛼(𝑡) = 𝐹−1
𝑡 (𝛼). Hence setting

𝑟𝑛(𝑡, 𝛼, 𝜔) ≡ 𝑘𝑛(𝑋1, . . . , 𝑋𝑛, 𝑡, 𝛼)(𝜔) ≡ 𝑘𝑛(𝑋1(⋅, 𝜔), . . . , 𝑋𝑛(⋅, 𝜔), 𝑡, 𝛼),

we then have √
𝑛[𝐹−1

𝑛,𝑡 (𝛼)(𝜔) − 𝜏𝛼(𝑡)]𝑓(𝑡, 𝜏𝛼(𝑡)) = 𝑟𝑛(𝑡, 𝛼, 𝜔) (58)

and √
𝑛[𝐹−1

𝑛,𝑡 (𝛼)(𝜔̂) − 𝜏𝛼(𝑡)]𝑓(𝑡, 𝜏𝛼(𝑡)) = 𝑟𝑛(𝑡, 𝛼, 𝑔𝑛(𝜔̂)). (59)

Therefore, for 𝜔̂ ∈ Ω̂

𝐹−1
𝑛,𝑡 (𝛼)(𝜔̂) = 𝐹−1

𝑛,𝑡 (𝛼)(𝑔𝑛(𝜔̂)),

and for ℎ bounded on ℓ∞(𝐸 × 𝐼) we have

ℎ
(√

𝑛
[
𝐹−1
𝑛,𝑡 (𝛼)(𝜔̂) − 𝜏𝛼(𝑡)

]
𝑓(𝑡, 𝜏𝛼(𝑡))

)
= (ℎ ∘ 𝑟𝑛(𝑡, 𝛼, ⋅) ∘ 𝑔𝑛)(𝜔̂),
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and hence the upper integrals∫ ∗

Ω̂

ℎ(
√
𝑛[𝐹−1

𝑛,𝑡 (𝛼)(𝜔̂) − 𝜏𝛼(𝑡)]𝑓(𝑡, 𝜏𝛼(𝑡)))𝑑𝑃 (𝜔̂)

=

∫ ∗

Ω̂

(ℎ ∘ 𝑟𝑛(𝑡, 𝛼, ⋅) ∘ 𝑔𝑛)(𝜔̂)𝑑𝑃 (𝜔̂)

=

∫
Ω̂

[(ℎ ∘ 𝑟𝑛(𝑡, 𝛼, ⋅) ∘ 𝑔𝑛)]∗(𝜔̂)𝑑𝑃 (𝜔̂)

=

∫
Ω̂

([ℎ ∘ 𝑟𝑛(𝑡, 𝛼, ⋅)]∗ ∘ 𝑔𝑛)(𝜔̂)𝑑𝑃 (𝜔̂),

(60)

where the last equality holds since 𝑔𝑛 is perfect. Now∫
Ω̂

([ℎ ∘ 𝑟𝑛(𝑡, 𝛼, ⋅)]∗ ∘ 𝑔𝑛)(𝜔̂)𝑑𝑃 (𝜔) =

∫
Ω

[ℎ ∘ 𝑟𝑛(𝑡, 𝛼, 𝜔)]∗𝑑𝑄(𝜔)

=

∫ ∗

Ω

(ℎ ∘ 𝑟𝑛)(𝑡, 𝛼, 𝜔)𝑑𝑄(𝜔),

and therefore by (58) and (60), for all ℎ bounded on ℓ∞(𝐸 × 𝐼),∫ ∗

Ω̂

ℎ(
√
𝑛[𝐹−1

𝑛,𝑡 (𝛼)(𝜔̂) − 𝜏𝛼(𝑡)]𝑓(𝑡, 𝜏𝛼(𝑡)))𝑑𝑃 (𝜔̂)

=

∫ ∗

Ω

ℎ(
√
𝑛[𝐹−1

𝑛,𝑡 (𝛼)(𝜔) − 𝜏𝛼(𝑡)]𝑓(𝑡, 𝜏𝛼(𝑡)))𝑑𝑄(𝜔).

(61)

Now the equality in (61) implies that the quantile processes{√
𝑛
[
𝐹−1
𝑛,𝑡 (𝛼)(𝜔̂) − 𝜏𝛼(𝑡)

]
𝑓(𝑡, 𝜏𝛼(𝑡)) : 𝑛 ≥ 1, 𝑡 ∈ 𝐸,𝛼 ∈ 𝐼

}
satisfy the 𝐶𝐿𝑇 in ℓ∞(𝐸 × 𝐼) if and only if{√

𝑛
[
𝐹−1
𝑛,𝑡 (𝛼)(𝜔) − 𝜏𝛼(𝑡)

]
𝑓(𝑡, 𝜏𝛼(𝑡)) : 𝑛 ≥ 1, 𝑡 ∈ 𝐸,𝛼 ∈ 𝐼

}
satisfy the 𝐶𝐿𝑇 there, and they have the same Gaussian limit, namely

{𝐺(𝑡, 𝜏𝛼(𝑡)) : 𝑡 ∈ 𝐸,𝛼 ∈ 𝐼}.
A similar argument implies the quantile processes{√

𝑛
[
𝐹−1
𝑛,𝑡 (𝛼)(𝜔̂) − 𝜏𝛼(𝑡)

]
: 𝑛 ≥ 1, 𝑡 ∈ 𝐸,𝛼 ∈ 𝐼

}
satisfy the 𝐶𝐿𝑇 in ℓ∞(𝐸 × 𝐼) if and only if{√

𝑛
[
𝐹−1
𝑛,𝑡 (𝛼)(𝜔) − 𝜏𝛼(𝑡)

]
: 𝑛 ≥ 1, 𝑡 ∈ 𝐸,𝛼 ∈ 𝐼

}
satisfy the 𝐶𝐿𝑇 there, and they have the same Gaussian limit. Since Proposition 1
implies the Gaussian limit of{√

𝑛
[
𝐹−1
𝑛,𝑡 (𝛼)(𝜔̂) − 𝜏𝛼(𝑡)

]
: 𝑛 ≥ 1, 𝑡 ∈ 𝐸,𝛼 ∈ 𝐼

}
is given by

{
𝐺̂(𝑡,𝜏𝛼(𝑡))
𝑓(𝑡,𝜏𝛼(𝑡))

: 𝑡 ∈ 𝐸,𝛼 ∈ 𝐼
}
, which has the same Radon law on ℓ∞(𝐸×𝐼)

as
{
𝐺(𝑡,𝜏𝛼(𝑡))
𝑓(𝑡,𝜏𝛼(𝑡))

: 𝑡 ∈ 𝐸,𝛼 ∈ 𝐼
}
, the theorem is proven. □
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4. Proof of Theorem 2

It is easily seen that Theorem 2 follows from Theorem 1 once we show the dis-
tribution functions 𝐹 (𝑡, ⋅) of 𝑋𝑡 = 𝑌𝑡 + 𝑍, 𝑡 ∈ 𝐸, have strictly positive densities
𝑓(𝑡, ⋅) satisfying (5), (6), and the CLT holds on 𝒞 with centered Gaussian limit
{𝐺(𝑡, 𝑥) : (𝑡, 𝑥) ∈ 𝐸 × ℝ}. The proof of the conditions on the densities 𝑓(𝑡, 𝑥)
follows from the conditions imposed on the density 𝑔 of 𝑍, and is our next lemma.
Hence, once the lemma is proven it only remains to show that each of the three
classes of processes in the assumptions of the theorem satisfy the empirical CLT
over 𝒞. This will be done through a series of propositions, but we will also indicate
a few corollaries that make explicit the breadth of the processes in the classes
described prior to the statement of Theorem 2. In particular, we point out some
situations where the empirical CLT fails when the process is tied down to be a
constant on some subset of 𝐸.

Lemma 5. Let 𝑋𝑡 = 𝑌𝑡 + 𝑍, 𝑡 ∈ 𝐸, where 𝑍 is a real-valued random variable
independent of {𝑌𝑡 : 𝑡 ∈ 𝐸} having probability density function 𝑔(⋅) which is strictly
positive, uniformly bounded, and uniformly continuous on ℝ, and also assume (16)
holds. Then, the distribution functions 𝐹 (𝑡, ⋅) of 𝑋𝑡, 𝑡 ∈ 𝐸 have strictly positive
densities 𝑓(𝑡, ⋅) satisfying (5), (6), and (7).

Proof. If 𝐻𝑡(𝑥), 𝑡 ∈ 𝐸, is the distribution function of 𝑌𝑡, then 𝑋𝑡 has probability
density function

𝑓(𝑡, 𝑥) =

∫
ℝ

𝑔(𝑥− 𝑣)𝑑𝐻𝑡(𝑣), 𝑡 ∈ 𝐸.

Hence if 𝑔, the density of 𝑍, is strictly positive, uniformly bounded, and uniformly
continuous on ℝ, then it is easy to check that each of the densities 𝑓(𝑡, ⋅), 𝑡 ∈ 𝐸,
have the same properties. In particular, (7) is obvious, and we have

lim
𝛿→0

sup
𝑡∈𝐸

sup
∣𝑢−𝑣∣≤𝛿

∣𝑓(𝑡, 𝑢) − 𝑓(𝑡, 𝑣)∣ = 0,

which implies (5). To show (6) it then suffices to verify that the densities 𝑓(𝑡, ⋅) of
{𝑋𝑡 : 𝑡 ∈ 𝐸} satisfy

inf
𝑡∈𝐸,𝛼∈𝐼

𝑓(𝑡, 𝜏𝛼(𝑡)) = 𝑐𝐼 > 0 (62)

for every closed interval 𝐼 in (0, 1).
Now (62) holds if we show that for any closed subinterval 𝐼 of (0, 1) and all

𝑎 > 0 that

inf
𝑡∈𝐸,∣𝑥∣≤𝑎

𝑓(𝑡, 𝑥) = 𝑐𝑎 > 0 and sup
𝑡∈𝐸,𝛼∈𝐼

∣𝜏𝛼(𝑡)∣ < ∞. (63)

First we show the left expression in (63) holds, so take 𝑎 > 0. Then, for every
𝑏 > 0

inf
𝑡∈𝐸,∣𝑥∣≤𝑎

𝑓(𝑡, 𝑥) ≥ inf
𝑡∈𝐸

∫
ℝ

inf
∣𝑥∣≤𝑎

𝑔(𝑥− 𝑣)𝑑𝐻𝑡(𝑣) ≥ inf
∣𝑢∣≤𝑎+𝑏

𝑔(𝑢) inf
𝑡∈𝐸

∫ 𝑏

−𝑏
𝑑𝐻𝑡(𝑣),
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and, since (16) implies

lim
𝑏→∞

sup
𝑡∈𝐸

𝑃 (∣𝑌𝑡∣ ≥ 𝑏) ≤ lim
𝑏→∞

𝑃

(
sup
𝑡∈𝐸

∣𝑌𝑡∣ ≥ 𝑏

)
= 0, (64)

there exists 𝑏0 > 0 sufficiently large that inf𝑡∈𝐸
∫ 𝑏0
−𝑏0 𝑑𝐻𝑡(𝑣) ≥ 1

2 . Therefore, we
have

inf
𝑡∈𝐸,∣𝑥∣≤𝑎

𝑓(𝑡, 𝑥) ≥ 1

2
inf

∣𝑢∣≤𝑎+𝑏0
𝑔(𝑢) ≡ 𝑐𝑎 > 0.

Now we turn to the second term in (63). Since 𝐼 is a closed interval of (0, 1)
there is a 𝜃 ∈ (0, 12 ) such that 𝐼 ⊂ (𝜃, 1 − 𝜃) and

sup
𝑡∈𝐸

𝑃 (∣⟨𝑡,𝑋⟩ + 𝑍∣ ≥ 𝑎) ≤ sup
𝑡∈𝐸

𝑃
(
∣⟨𝑡,𝑋⟩∣ ≥ 𝑎

2

)
+ 𝑃

(
∣𝑍∣ ≥ 𝑎

2

)
≤ 𝜃

2
,

where the second inequality follows from (64) by taking 𝑎 > 0 sufficiently large.
Hence for each 𝑡 ∈ [0, 𝑇 ], 𝛼 ∈ 𝐼 we have 𝜏𝛼(𝑡) ∈ [−𝑎, 𝑎] and the right term of (63)
holds. Thus (62) holds, and the lemma is proven. □

4.1. Gaussian process empirical CLT’s over 퓒
Throughout this subsection we assume 𝐸 is a compact subset of the d-fold product
of [0, 𝑇 ], which we denote by [0, 𝑇 ]𝑑, and that {𝑋𝑡 : 𝑡 ∈ 𝐸} is a centered Gaussian
process whose 𝐿2-distance 𝑑𝑋 satisfies (12). Then, by applying Theorem 6.11 and
Corollary 6.12 on pages 144–45 of [1] we have from (12) that {𝑋𝑡 : 𝑡 ∈ 𝐸} has a

sample continuous version {𝑋̃𝑡 : 𝑡 ∈ 𝐸} such that for 𝑠, 𝑡 ∈ 𝐸

∣𝑋̃𝑡 − 𝑋̃𝑠∣ ≤ Γ∣∣𝑡− 𝑠∣∣𝑟ℝ𝑑 , (65)

where Γ < ∞ with probability one, and 0 < 𝑟 < 𝛾, 𝛾 ≤ 1 by (12). Hence, without
loss of generality, we may also assume throughout the sub-section that {𝑋𝑡 : 𝑡 ∈ 𝐸}
is sample continuous with (65) holding.

Proposition 2. Let 𝐸 be a compact subset of [0, 𝑇 ]𝑑, and assume {𝑋𝑡 : 𝑡 ∈ 𝐸} is a
sample continuous centered Gaussian process such that (12) holds, and there exists
𝑘2 < ∞ and 𝛽 ∈ (0, 1] such that for all 𝑥, 𝑦 ∈ ℝ

sup
𝑡∈𝐸

∣𝐹𝑡(𝑥) − 𝐹𝑡(𝑦)∣ ≤ 𝑘2∣𝑥− 𝑦∣𝛽. (66)

Then, the empirical CLT built from the process {𝑋𝑡 : 𝑡 ∈ 𝐸} holds over 𝒞. More-
over, if {𝑌𝑡 : 𝑡 ∈ 𝐸} is a sample continuous centered Gaussian process such that
(12) holds, and 𝑍 is a random variable independent of {𝑌𝑡 : 𝑡 ∈ 𝐸} whose density
is uniformly bounded on ℝ, or in 𝐿𝑝(ℝ) for some 𝑝 ∈ (1,∞), then the empirical
CLT based on the process {𝑋𝑡 : 𝑡 ∈ 𝐸} holds over 𝒞, where 𝑋𝑡 = 𝑌𝑡 + 𝑍, 𝑡 ∈ 𝐸.

Proof. Using Theorem 5 of [4] we have the empirical CLT over 𝒞, or equivalently in
ℓ∞(𝐸×ℝ) when we identify points (𝑡, 𝑦) ∈ 𝐸×ℝ with the sets 𝐶𝑡,𝑦 ∈ 𝒞, provided
we verify the following three conditions:
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(I) For some 𝛽 ∈ (0, 1], some 𝑘 < ∞, and all 𝑥, 𝑦 ∈ ℝ

sup
𝑡∈𝐸

∣𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑦)∣ ≤ 𝑘∣𝑥− 𝑦∣𝛽 . (67)

(II) For all 𝑠, 𝑡 ∈ 𝐸

∣𝑋𝑡 −𝑋𝑠∣ ≤ Γ𝜙(𝑠, 𝑡) (68)

and some 𝜂 > 0, and all 𝑢 ≥ 𝑢0

𝑃 (Γ ≥ 𝑢) ≤ 𝑢−𝜂.

(III) For 𝛽 as in (I), and 𝜂 as in (II), there exists 𝛼 ∈ (0, 𝛽/2) such that

𝜂(
1

𝛼
− 2

𝛽
) ≥ 2, (69)

and (𝜙(𝑠, 𝑡))𝛼 ≤ 𝜌(𝑠, 𝑡), where 𝜌(𝑠, 𝑡) is the 𝐿2 distance of a sample bounded,
uniformly continuous, centered Gaussian process on (𝐸, 𝜌), which for later use we
denote by {𝜆(𝑡) : 𝑡 ∈ 𝐸}.

First we assume {𝑋𝑡 : 𝑡 ∈ 𝐸} is a sample continuous centered Gaussian
process such that (12), (65), and (66) hold. Then, applying the Landau-Shepp-
Fernique result as in Lemma 2.2.5 of [2], we have exponential decay of the tail
probability of Γ in (65), and hence assumptions (I) and (II) hold with 𝜂 in (68)
allowed to be arbitrarily large and 𝜙(𝑠, 𝑡) = ∣∣𝑡 − 𝑠∣∣𝑟

ℝ𝑑
. If (12) and (65) hold for

{𝑌𝑡 : 𝑡 ∈ 𝐸} and 𝑋𝑡 = 𝑌𝑡+𝑍, where the density of 𝑍 is uniformly bounded, or in 𝐿𝑝
as indicated, then standard convolution formulas imply (66) holds for {𝑋𝑡 : 𝑡 ∈ 𝐸}.
In particular, if the density of 𝑍 is assumed to be uniformly bounded, then (66)
holds with 𝛽 = 1, and if it is in 𝐿𝑝(ℝ), then 𝛽 = 1− 1/𝑝 suffices. Therefore, under
either assumption on the density of 𝑍, we have assumptions (I) and (II) holding
for {𝑋𝑡 : 𝑡 ∈ 𝐸}.

Therefore, the conclusions of the proposition hold in either situation provided
we verify condition (III). Since 𝜂 > 0 can be taken arbitrarily large in (69) and
(65), it suffices to show that there is a centered Gaussian process {𝜆(𝑡) : 𝑡 ∈ 𝐸}
with 𝐿2-distance 𝜌(𝑠, 𝑡), which is sample bounded and uniformly continuous on

(𝐸, 𝜌), and for some 𝛼 ∈ (0, 𝛽2 ) we have

(∣∣𝑡− 𝑠∣∣ℝ𝑑)𝑟𝛼 ≤ 𝜌(𝑠, 𝑡), 𝑠, 𝑡 ∈ 𝐸. (70)

Therefore, we take {𝜆𝑡 : 𝑡 ∈ 𝐸} to be Lévy’s 𝜃-fractional Brownian motion
on 𝐸 with

𝜌(𝑠, 𝑡) = 𝔼((𝜆𝑡 − 𝜆𝑠)
2)1/2 = ∣∣𝑡− 𝑠∣∣𝜃ℝ𝑑 , 𝑠, 𝑡 ∈ 𝐸, 0 < 𝜃 < 1. (71)

Hence with 𝜃 = 𝑟𝛼, since 𝑟 < 1 and 𝛼 < 1/2, we have {𝜆𝑡 : 𝑡 ∈ 𝐸} a sample
bounded, uniformly continuous centered Gaussian process on (𝐸, 𝜌). In fact, it is
well known that this process can be taken to be sample continuous on all of ℝ𝑑

with respect to the distance 𝜌(⋅, ⋅), and this can be checked by showing Dudley’s
metric entropy condition

∫
0+(log𝑁(𝐶𝑎, 𝑢, 𝜌))1/2𝑑𝑢 < ∞ holds for cubes 𝐶𝑎 =∏𝑑

𝑗=1[−𝑎, 𝑎] with 𝑎 > 0 arbitrarily large. Hence the proof is complete. □
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An immediate application of Proposition 2 is to fractional Brownian motions,
which was also obtained in [4].

Corollary 1. Let 𝐸 = [0, 𝑇 ], and assume {𝑌𝑡 : 𝑡 ∈ 𝐸} is a centered sample continu-
ous 𝛾-fractional Brownian motion for 0 < 𝛾 < 1 such that 𝑌0 = 0 with probability
one and 𝔼(𝑌 2𝑡 ) = 𝑡2𝛾 for 𝑡 ∈ 𝐸. Set 𝑋𝑡 = 𝑌𝑡 + 𝑍, where 𝑍 is independent of
{𝑌𝑡 : 𝑡 ∈ 𝐸}, and assume 𝑍 has a density that is uniformly bounded on ℝ or is in
𝐿𝑝(ℝ) for some 𝑝 ∈ (1,∞). Then, the empirical CLT holds over 𝒞.

Proof. The 𝐿2-distance for {𝑋𝑡 : 𝑡 ∈ 𝐸} is 𝑑𝑋(𝑠, 𝑡) = ∣𝑠−𝑡∣𝛾 , and hence (12) holds
with 𝑘1 = 1. Also, (65) holds with 0 < 𝑟 < 𝛾, and the assumptions on the density
of 𝑍 then imply (66). Therefore, Proposition 2 applies to complete the proof. □

Our next application of Proposition 2 is to the 𝑑-dimensional Brownian sheet.
A result for 𝑑 = 2 appeared in [4], but once we have Proposition 2 in hand, the
general case follows easily.

Corollary 2. Let 𝐸 = [0, 𝑇 ]𝑑 for 𝑑 ≥ 2, and assume {𝑌𝑡 : 𝑡 ∈ 𝐸} is a centered
sample continuous Brownian sheet with covariance function

𝔼(𝑌𝑠𝑌𝑡) =

𝑑∏
𝑗=1

(𝑠𝑗 ∧ 𝑡𝑗), 𝑠 = (𝑠1, . . . , 𝑠𝑑), 𝑡 = (𝑡1, . . . , 𝑡𝑑) ∈ 𝐸. (72)

For 𝑡 ∈ 𝐸, let 𝑋𝑡 = 𝑌𝑡 + 𝑍, where 𝑍 is independent of {𝑌𝑡 : 𝑡 ∈ 𝐸}, and assume
𝑍 has a density that is uniformly bounded on ℝ or is in 𝐿𝑝(ℝ) for some 𝑝 ∈
(1,∞). Then, the empirical CLT based on the process {𝑋𝑡 : 𝑡 ∈ 𝐸} holds over
𝒞 = {𝐶𝑡,𝑥 : (𝑡, 𝑥) ∈ 𝐸 × ℝ}, where in this setting 𝐶𝑡,𝑥 = {𝑧 ∈ 𝐷(𝐸) : 𝑧(𝑡) ≤ 𝑥},
and 𝐷(𝐸) denotes the continuous functions on 𝐸. Moreover, the empirical CLT
over 𝒞 fails for the base process {𝑌 (𝑡) : 𝑡 ∈ 𝐸}.
Proof. First we observe that if 0 ≤ 𝑠𝑗 ≤ 𝑡𝑗 ≤ 𝑇 for 𝑗 = 1, . . . , 𝑑, then for 𝑑 ≥ 1

we have
∏𝑑
𝑗=1 𝑡𝑗 −

∏𝑑
𝑗=1 𝑠𝑗 ≤ 𝑇 𝑑−1∑𝑑

𝑗=1 ∣𝑡𝑗 − 𝑠𝑗 ∣. This elementary fact is obvious

for 𝑑 = 1 with 𝑇 0 = 1, and for 𝑑 ≥ 2 it follows by an easy induction argument.
Moreover, the 𝐿2-distance for {𝑋𝑡 : 𝑡 ∈ 𝐸} satisfies

𝑑2𝑋(𝑠, 𝑡) =

∣∣∣∣ 𝑑∏
𝑗=1

𝑡𝑗 +

𝑑∏
𝑗=1

𝑠𝑗 − 2

𝑑∏
𝑗=1

(𝑠𝑗 ∧ 𝑡𝑗)

∣∣∣∣,
and hence we easily have

𝑑2𝑋(𝑠, 𝑡) ≤ 𝑑𝑇 𝑑−1
𝑑∑

𝑗=1

∣𝑡𝑗−𝑠𝑗∣1
𝑑
≤ 𝑑𝑇 𝑑−1

( 𝑑∑
𝑗=1

∣𝑡𝑗−𝑠𝑗 ∣2 1

𝑑

)1/2
= 𝑑1/2𝑇 𝑑−1∣∣𝑡−𝑠∣∣ℝ𝑑 .

Thus 𝑑𝑋(𝑠, 𝑡) ≤ 𝑇
𝑑−1
2 𝑑1/4∣∣𝑡− 𝑠∣∣1/2

ℝ𝑑
, and hence (12) holds. Either assumption for

the density of 𝑍 implies (66) for a suitable 𝛽, and thus Proposition 2 applies to
show the CLT over 𝒞 holds for {𝑋(𝑡) : 𝑡 ∈ [0, 𝑇 ]𝑑} holds.
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To see why this CLT fails for the base process {𝑌 (𝑡) : 𝑡 ∈ [0, 𝑇 ]𝑑}, observe
that the process 𝑊 (𝑟) = 𝑌 (𝑟1/𝑑(1, . . . , 1)), 0 ≤ 𝑟 ≤ 𝑇 𝑑, is a Brownian motion
with 𝑃 (𝑊 (0) = 0) = 1. Thus by Lemma 7 of [4] we have {𝑌 (𝑡) : 𝑡 ∈ [0, 𝑇 ]𝑑}
fails the CLT over the class of sets 𝒞1 = {𝐶𝑟,𝑥 : 0 ≤ 𝑟 ≤ 𝑇 𝑑, 𝑥 ∈ ℝ}, where

𝐶𝑟,𝑥 = {𝑧 ∈ 𝐷(𝐸) : 𝑧(𝑟1/𝑑(1, . . . , 1)) ≤ 𝑥}. Since 𝒞1 ⊆ 𝒞, it follows from that the
CLT for 𝑌 over 𝒞 must also fail. □

4.2. Compound Poisson process empirical CLT’s over 퓒
Here we examine the empirical CLT over 𝒞 when our base process is an arbitrary
compound Poisson process. This will be done in the next proposition by applying
Theorem 3 of [4]. We will see from its proof that the Gaussian process needed for
this application can be taken to be a sample continuous Brownian motion, and
the space of functions 𝐷(𝐸), when 𝐸 = [0, 𝑇 ], is the space of cadlag functions on
[0, 𝑇 ]. These examples are somewhat interesting since the sample paths of the base
process {𝑌 (𝑡) : 𝑡 ∈ [0, 𝑇 ]} have jumps, while those of significance in [4] and the
previous subsection were all sample path continuous.

To define the base process in these examples we let {𝑁(𝑡) : 0 ≤ 𝑡 < ∞} be
a Poisson process with parameter 𝜆 ∈ (0,∞), and jump times 𝜏1, 𝜏2, . . . . As usual
we assume 𝑃 (𝑁(0) = 0) = 1, and that the sample paths {𝑁(𝑡) : 0 ≤ 𝑡 ≤ ∞} are
right continuous and nondecreasing. Also, let {𝑌𝑘 : 𝑘 ≥ 1} be i.i.d. real-valued
random variables, independent of {𝑁(𝑡) : 0 ≤ 𝑡 ≤ ∞}, and without mass at zero.
Then, 𝑌 (𝑡) is defined to be zero on [0, 𝜏1), 𝑌1 on [𝜏1, 𝜏2), and 𝑌1 + ⋅ ⋅ ⋅ + 𝑌𝑘 on
[𝜏𝑘, 𝜏𝑘+1) for 𝑘 ≥ 1.

Proposition 3. The empirical process built from i.i.d. copies of the compound Pois-
son process {𝑌 (𝑡) : 𝑡 ∈ 𝐸} with parameter 𝜆 ∈ (0,∞) and 𝐸 = [0, 𝑇 ] satisfies the
empirical CLT over 𝒞. In addition, if 𝑋(𝑡) = 𝑌 (𝑡) + 𝑍, 𝑡 ∈ [0, 𝑇 ], then the process
{𝑋(𝑡) : 𝑡 ∈ [0, 𝑇 ]} also satisfies the empirical CLT over 𝒞.
Proof. Using Theorem 3 of [4] it suffices to show {𝑌 (𝑡) : 𝑡 ∈ 𝐸} satisfies the
𝐿 condition of [4] when the Gaussian process involved is Brownian motion and
the 𝜌 distance is a multiple of standard Euclidean distance on [0, 𝑇 ]. Since the
distribution function of 𝑌 (𝑡) is not necessarily continuous, the 𝐿-condition involves
distributional transforms of the distribution functions 𝐹 (𝑡, 𝑥) = 𝑃 (𝑌 (𝑡) ≤ 𝑥)

denoted by 𝐹𝑡(𝑥). They are defined for 𝑡 ∈ 𝐸, 𝑥 ∈ ℝ as

𝐹𝑡(𝑥) = 𝐹 (𝑡, 𝑥−) + 𝑉 (𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥−)),

where 𝑉 is a uniform random variable on [0, 1] independent of the process

{𝑌 (𝑡) : 𝑡 ∈ 𝐸}.
To verify the 𝐿-condition for the 𝑌 process, let {𝐻(𝑡) : 0 ≤ 𝑡 < ∞} be a

sample continuous Brownian motion with 𝑃 (𝐻(0) = 0) = 1 satisfying

𝜌2(𝑠, 𝑡) = 𝔼((𝐻(𝑠) −𝐻(𝑡))2) = 4(𝜆 ∨ 1)∣𝑡− 𝑠∣.
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Then, for 𝜖 > 0

Λ ≡ sup
𝑡∈[0,𝑇 ]

𝑃

(
sup

{𝑠 : 𝜌(𝑠,𝑡)≤𝜖}
∣𝐹𝑡(𝑌 (𝑠)) − 𝐹𝑡(𝑌 (𝑡))∣ > 𝜖2

)
≤ sup

𝑡∈[0,𝑇 ]
𝑃

(
sup

{𝑠 : 𝜌(𝑠,𝑡)≤𝜖}
∣𝑌 (𝑠) − 𝑌 (𝑡)∣ > 0

)
= sup

𝑡∈[0,𝑇 ]

[
1 − 𝑃

(
sup

{𝑠 : 𝜌(𝑠,𝑡)≤𝜖}
∣𝑌 (𝑠) − 𝑌 (𝑡)∣ = 0

)]
.

Since 𝑌 (𝑠) − 𝑌 (𝑡) = 0 whenever 𝑁(𝑠) −𝑁(𝑡) = 0, and for 𝑡 ∈ [0, 𝑇 ] fixed{
sup

{𝑠 : 𝜌(𝑠,𝑡)≤𝜖}
∣𝑁(𝑠) −𝑁(𝑡)∣ = 0

}
=

{
𝑁

(
(𝑡 +

𝜖2

4(𝜆 ∨ 1)

)
∧ 𝑇

)
−𝑁

((
𝑡− 𝜖2

4(𝜆 ∨ 1)

)
∨ 0

)
= 0

}
,

it follows that

𝑃

(
𝑁

(
(𝑡 +

𝜖2

4(𝜆 ∨ 1)

)
∧ 𝑇

)
−𝑁

((
𝑡− 𝜖2

4(𝜆 ∨ 1)

)
∨ 0

)
= 0

)
= 𝑃

(
sup

{𝑠 : 𝜌(𝑠,𝑡)≤𝜖}
∣𝑁(𝑠) −𝑁(𝑡)∣ = 0

)
≤ 𝑃

(
sup

{𝑠 : 𝜌(𝑠,𝑡)≤𝜖}
∣𝑌 (𝑠) − 𝑌 (𝑡)∣ = 0

)
.

Now

𝑃

(
𝑁

((
𝑡+

𝜖2

4(𝜆∨1)

)
∧𝑇

)
−𝑁

((
𝑡− 𝜖2

4(𝜆∨1)

)
∨0

)
=0

)
≥exp

{
− 𝜆𝜖2

2(𝜆∨1)

}
,

and hence for 0 < 𝜖 < 𝜖0 we have Λ ≤ 1 − exp
{
− 𝜖2

2

}
≤ 𝜖2. Taking 𝐿 suitably

large we have for all 𝜖 > 0 that Λ ≤ 𝐿𝜖2, and hence the 𝐿-condition holds for the
compound Poisson process 𝑌 .

To complete the proof we let 𝐹𝑋,𝑡(𝑦) = 𝑃 (𝑋𝑡 ≤ 𝑦), and verify the 𝐿-condition
for {𝑋𝑡 : 𝑡 ∈ [0, 𝑇 ]}. Since the increments of 𝑋 and 𝑌 are identical, by repeating
the above, the proof is the same as before. □

Remark 4. It is interesting to note that in the previous proposition we proved
the base process {𝑌𝑡 : 𝑡 ∈ [0, 𝑇 ]} satisfied the empirical CLT, and using the proof
of that fact, we then showed 𝑋𝑡 = 𝑌𝑡 + 𝑍, 𝑡 ∈ [0, 𝑇 ], also satisfied the empirical
CLT. This is the reverse of the argument in Propositions 2 and 4, but since we are
interested in empirical quantile CLTs for such data, some smoothing is eventually
necessary, i.e., in Theorem 2 our assumptions require that the smoothed process
satisfies the empirical CLT over 𝒞 and that its densities are sufficiently smooth.

4.3. Empirical process CLT’s over 퓒 for other independent
increment processes and martingales

The processes we study here are either martingales, or stationary independent
increment processes. They form class (ii) that appeared prior to the statement
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of Theorem 2, and Remark 1 indicates some specific examples and properties
of processes in this class. The base processes are {𝑌 (𝑡) : 𝑡 ≥ 0}, and 𝑋(𝑡) =
𝑌 (𝑡) + 𝑍, 𝑡 ≥ 0, where 𝑍 is a real random variable independent of {𝑌 (𝑡) : 𝑡 ≥ 0}
with density 𝑔(⋅) such that

𝑘 = sup
𝑥∈ℝ

∣𝑔(𝑥)∣ < ∞ or 𝑔 ∈ 𝐿𝑎(ℝ) for some 𝑎 > 1. (73)

Then, 𝑔 is uniformly bounded implies

sup
𝑡∈𝐸

∣𝐹𝑡(𝑥) − 𝐹𝑡(𝑦)∣ ≤ 𝑘∣𝑥− 𝑦∣, 𝑥, 𝑦 ∈ ℝ, (74)

and if 𝑔 ∈ 𝐿𝑎(ℝ) we have a 𝑘 < ∞
sup
𝑡∈𝐸

∣𝐹𝑡(𝑥) − 𝐹𝑡(𝑦)∣ ≤ 𝑘∣𝑥− 𝑦∣1− 1
𝑎 , 𝑥, 𝑦 ∈ ℝ. (75)

Proposition 4. Let 𝐸 = [0, 𝑇 ], and assume {𝑌 (𝑡) : 𝑡 ≥ 0} is a stochastic pro-
cess whose sample paths are right continuous, with left-hand limits on [0,∞), and
satisfying 𝑃 (𝑌 (0) = 0) = 1. Furthermore, assume {𝑌 (𝑡) : 𝑡 ∈ 𝐸} is a martin-
gale whose 𝐿1-increments are Lip-𝛽 for some 𝛽 ∈ (0, 1], or a stationary inde-
pendent increments process satisfying (13) for some 𝑝 ∈ (0, 1) and 𝛽 ∈ (0, 1]. Let
𝑋(𝑡) = 𝑌 (𝑡)+𝑍, 𝑡 ≥ 0, where 𝑍 is a random variable independent of {𝑌 (𝑡) : 𝑡 ≥ 0}
and having density 𝑔(⋅) on ℝ satisfying (73). Then, the empirical process built from
i.i.d. copies of {𝑋(𝑡) : 𝑡 ∈ 𝐸} satisfies the CLT over 𝒞.

Proof. Let 𝜌(𝑠, 𝑡) = ∣𝑠− 𝑡∣𝜃, 0 < 𝜃 < 1. Then, 𝜌 is the 𝐿2-distance of a 𝜃-fractional
Brownian motion on 𝐸, and the proposition follows from Theorem 3 of [4] provided
we verify the 𝐿-condition for {𝑋(𝑡) : 𝑡 ∈ 𝐸} with respect to 𝜌 and an appropriately
chosen 𝜃. That is, since the distribution functions 𝐹𝑡(⋅) have a density, they are
continuous, and hence it suffices to show for an appropriate 𝜃 > 0 there is a
constant 𝐿 < ∞ such that for every 𝜖 > 0

sup
𝑡∈𝐸

𝑃
(

sup
{𝑠:𝑠∈𝐸,𝜌(𝑠,𝑡)≤𝜖}

∣𝐹𝑡(𝑋𝑠) − 𝐹𝑡(𝑋𝑡)∣ > 𝜖2
)
≤ 𝐿𝜖2. (76)

We prove the 𝐿-condition holds assuming the density 𝑔 of 𝑍 is uniformly
bounded, and hence we have (74) holding. The proof when 𝑔 ∈ 𝐿𝑎(ℝ) is essentially
the same, only the algebra changes, and hence the details are left to the reader.

First we examine the situation when {𝑌 (𝑡) : 𝑡 ≥ 0} is a martingale satisfying
(13) with 𝑝 = 1 and some 𝛽 ∈ (0, 1]. Applying (74) to (76) we then have

sup
𝑡∈𝐸

𝑃
(

sup
{𝑠:𝑠∈𝐸,𝜌(𝑠,𝑡)≤𝜖}

∣𝐹𝑡(𝑋𝑠) − 𝐹𝑡(𝑋𝑡)∣ > 𝜖2
)
≤ 𝐴𝜖 + 𝐵𝜖, (77)

where

𝐴𝜖 = sup
𝑡∈𝐸

𝑃

(
sup

{𝑠:𝑠∈[𝑡,(𝑡+𝜖1/𝜃)∧𝑇 ]}
∣𝑋𝑠 −𝑋𝑡∣ > 𝜖2

2𝑘

)
,

and

𝐵𝜖 = sup
𝑡∈𝐸

𝑃

(
sup

{𝑠:𝑠∈[(𝑡−𝜖1/𝜃)∨0,𝑡]}
∣𝑋𝑠 −𝑋𝑡∣ > 𝜖2

2𝑘

)
.
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Now

𝐴𝜖 = sup
𝑡∈𝐸

𝑃

(
sup

{𝑠:𝑠∈[𝑡,(𝑡+𝜖1/𝜃)∧𝑇 ]}
∣𝑌𝑠 − 𝑌𝑡∣ > 𝜖2

2𝑘

)
,

and hence Doob’s martingale maximal inequality implies

𝐴𝜖 ≤ sup
𝑡∈𝐸

2𝑘𝜖−2𝔼
(
∣𝑌(𝑡+𝜖1/𝜃)∧𝑇 − 𝑌𝑡∣

)
≤ 2𝑘𝐶𝜖−2+

𝛽
𝜃 , (78)

where the last inequality follows from (13) with 𝑝 = 1. We also have

𝐵𝜖 ≤ sup
𝑡∈𝐸

𝑃

(
∣𝑌(𝑡−𝜖1/𝜃)∨0 − 𝑌𝑡∣ > 𝜖2

4𝑘

)
+ sup

𝑡∈𝐸
𝑃

(
sup

{𝑠:𝑠∈[(𝑡−𝜖1/𝜃)∨0,𝑡]}
∣𝑌𝑠 − 𝑌(𝑡−𝜖1/𝜃)∨0∣ >

𝜖2

4𝑘

)
,

and using Markov’s inequality, the martingale maximal inequality, and (66) with
𝑝 = 1 as before, we have

𝐵𝜖 ≤ 8𝑘𝐶𝜖−2+
𝛽
𝜃 . (79)

Combining (77),(78), and (79) we have

sup
𝑡∈𝐸

𝑃

(
sup

{𝑠:𝑠∈𝐸,𝜌(𝑠,𝑡)≤𝜖}
∣𝐹𝑡(𝑋𝑠) − 𝐹𝑡(𝑋𝑡)∣ > 𝜖2

)
≤ 10𝑘𝐶𝜖−2+

𝛽
𝜃 . (80)

Given our assumption that (13) holds with 𝑝 = 1 and some 𝛽 ∈ (0, 1], we take

𝜃 = 𝛽
4 , and hence (79) implies we have the 𝐿-condition in (76) with 𝐿 = 10𝑘𝐶 < ∞.
Now we assume {𝑌 (𝑡) : 𝑡 ≥ 0} is a process with stationary independent

increments satisfying (13) with 𝑝 ∈ (0, 1) and some 𝛽 ∈ (0, 1]. Applying (74) to
(76) we again have (77), and as before

𝐴𝜖 = sup
𝑡∈𝐸

𝑃

(
sup

{𝑠:𝑠∈[𝑡,(𝑡+𝜖1/𝜃)∧𝑇 ]}
∣𝑌𝑠 − 𝑌𝑡∣ > 𝜖2

2𝑘

)
, (81)

Since {𝑌 (𝑡) : 𝑡 ∈ 𝐸} is a process with stationary independent increments and
cadlag sample paths, an application of Montgomery-Smith’s maximal inequality
in [5] implies

𝐴𝜖 ≤ 3 sup
𝑡∈𝐸

𝑃

(
∣𝑌(𝑡+𝜖1/𝜃)∧𝑇 − 𝑌𝑡∣ > 𝜖2

20𝑘

)
.

This maximal inequality is stated for sequences of i.i.d. random variables, but since
{𝑌 (𝑡) : 𝑡 ∈ 𝐸} is a process with stationary independent increments and cadlag
sample paths, for any integer 𝑛 we can partition any subinterval 𝐼 of 𝐸 into
2𝑛 equal subintervals and apply [5] to the partial sums formed from increments
over each of these subintervals. One can add auxiliary i.i.d. increments to form a
sequence, but that is unnecessary since for given 𝑛 ≥ 1 we need only work with the
partial sums of the 2𝑛 increments of that partition. We then use [5] for an upper
bound, and then pass via an increasing limit to what is needed, i.e., the desired
upper bound is fixed, and hence is an upper bound for the limit.



192 J. Kuelbs and J. Zinn

Thus by Markov’s inequality, and our assumption of (13), we have

𝐴𝜖 ≤ 3(20𝑘𝜖−2)𝑝 sup
𝑡∈𝐸

𝔼
(∣𝑌(𝑡+𝜖1/𝜃)∧𝑇 − 𝑌𝑡∣𝑝

) ≤ 3𝐶(20𝑘𝜖−2)𝑝𝜖𝛽/𝜃. (82)

We also have

𝐵𝜖 ≤ sup
𝑡∈𝐸

𝑃

(
∣𝑌(𝑡−𝜖1/𝜃)∨0 − 𝑌𝑡∣ > 𝜖2

4𝑘

)
+ sup

𝑡∈𝐸
𝑃

(
sup

{𝑠:𝑠∈[(𝑡−𝜖1/𝜃)∨0,𝑡]}
∣𝑌𝑠 − 𝑌(𝑡−𝜖1/𝜃)∨0∣ >

𝜖2

4𝑘

)
,

and using Montgomery-Smith’s maximal inequality again we have

𝐵𝜖 ≤ 4 sup
𝑡∈𝐸

𝑃

(
∣𝑌(𝑡−𝜖1/𝜃)∨0 − 𝑌𝑡∣ > 𝜖2

40𝑘

)
.

Thus by Markov’s inequality and (13)

𝐵𝜖 ≤ 4(40𝑘𝜖−2)𝑝 sup
𝑡∈𝐸

𝔼
(∣𝑌(𝑡+𝜖1/𝜃)∧𝑇 − 𝑌𝑡∣𝑝

) ≤ 4𝐶(40𝑘𝜖−2)𝑝𝜖𝛽/𝜃. (83)

Combining (77), (82) and (83) we have

sup
𝑡∈𝐸

𝑃

(
sup

{𝑠:𝑠∈𝐸,𝜌(𝑠,𝑡)≤𝜖}
∣𝐹𝑡(𝑋𝑠) − 𝐹𝑡(𝑋𝑡)∣ > 𝜖2

)
≤ 7𝐶(40𝑘)𝑝𝜖

𝛽
𝜃−2𝑝,

and hence the 𝐿-condition holds with 𝐿 = 7𝐶(40𝑘)𝑝 provided 𝜃 = 𝛽
2+2𝑝 . □

Corollary 3. Let 𝐸 = [0, 𝑇 ], and assume {𝑌 (𝑡) : 𝑡 ≥ 0} is a strictly stable process
of index 𝑟 ∈ (0, 2] with stationary independent increments, cadlag sample paths
on [0,∞), and such that 𝑃 (𝑌 (0) = 0) = 1. Let 𝑋(𝑡) = 𝑌 (𝑡) + 𝑍, 𝑡 ≥ 0, where 𝑍
is a random variable independent of {𝑌 (𝑡) : 𝑡 ≥ 0} and having density 𝑔(⋅) on ℝ

satisfying (73). Then, the empirical process built from i.i.d. copies of {𝑋(𝑡) : 𝑡 ∈
𝐸} satisfies the CLT over 𝒞. Moreover, except for the degenerate cases when 𝑟 = 1
and {𝑌 (𝑡) : 𝑡 ≥ 0} is pure drift, or 𝑌 (𝑡) is degenerate at zero for all 𝑡 ∈ 𝐸, the
empirical CLT over 𝒞 fails for these {𝑌 (𝑡) : 𝑡 ∈ 𝐸}.
Proof. The assertions about the CLT holding are immediate consequences of Prop-
osition 4 once we check that {𝑌 (𝑡) : 𝑡 ≥ 0} satisfies (13). This follows from Remark
1, and hence this part of the proof is established.

To show that the CLT fails for the strictly stable stationary independent
increment processes {𝑌 (𝑡) : 𝑡 ≥ 0} specified follows from an application of the
Kolmogorov zero-one law, and the fact that 𝑌 (𝑡) is non-degenerate and strictly
stable implies 𝑌 (𝑡) has a probability density for each 𝑡 > 0. The case 𝑟 = 2 was
previously established in [4] using a law of the iterated logarithm argument, which
also applied to all fractional Brownian motions.

Now fix 𝑛 ≥ 1, and let 𝑌1, . . . , 𝑌𝑛 be independent copies of 𝑌 . Let ℚ denote
the rational numbers and let 𝒞ℚ denote the countable subclass of 𝒞 given by
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𝒞ℚ = {𝐶𝑡,𝑦 ∈ 𝒞 : 𝑡, 𝑦 ∈ ℚ}. Then,

𝑃 (card{𝑌1(𝑡), . . . , 𝑌𝑛(𝑡)} = 𝑛 for all 𝑡 ∈ ℚ ∩ (0,∞)) = 1, (84)

and as in the proof of Lemma 7 in [4], to show the empirical CLT fails for {𝑌 (𝑡) :
𝑡 ∈ 𝐸} it suffices to show that

𝑃 (Δ𝒞ℚ(𝑌1, . . . , 𝑌𝑛) = 2𝑛) = 1, (85)

where Δ𝒞ℚ(𝑌1, . . . , 𝑌𝑛) = card{𝐶 ∩ {𝑌1, . . . , 𝑌𝑛} : 𝐶 ∈ 𝒞ℚ}.
Therefore, a first step is to show for every 𝑟, 0 ≤ 𝑟 ≤ 𝑛, and {𝑗1, . . . , 𝑗𝑟} ⊆

{1, . . . , 𝑛} that

𝑃 ({𝑌𝑗1 , . . . , 𝑌𝑗𝑟} ∈ {𝐶 ∩ {𝑌1, . . . , 𝑌𝑛} : 𝐶 ∈ 𝒞ℚ}) = 1. (86)

Hence, fix {𝑗1, . . . , 𝑗𝑟} ⊆ {1, 2, . . . , 𝑛} and define

Ω(𝑗1, . . . , 𝑗𝑟) = {𝜔 : 𝐼𝑚 holds for infinitely many 𝑚}
where 𝐼𝑚 is the condition

max
1≤𝑘≤𝑟

𝑌𝑗𝑘

(
1

𝑚
,𝜔

)
< min

𝑘/∈{𝑗1,...,𝑗𝑟}
𝑌𝑘

(
1

𝑚
,𝜔

)
,𝑚 = 1, 2, . . . . (87)

Now let

𝐻𝑘 =

(
𝑌1

(
1

𝑘

)
− 𝑌1

(
1

𝑘 + 1

)
, . . . , 𝑌𝑛

(
1

𝑘

)
− 𝑌𝑛

(
1

𝑘 + 1

))
, 𝑘 ≥ 1,

and set ℰ = ∩∞𝑚=1𝜎(𝐻𝑚, 𝐻𝑚+1, . . . ). Then, ℰ is the tail sigma field for the inde-
pendent random vectors {𝐻𝑘 : 𝑘 ≥ 1}, and since

𝑌𝑖

(
1

𝑚

)
=

∞∑
𝑘=𝑚

(
𝑌𝑖

(
1

𝑘

)
− 𝑌𝑖

(
1

𝑘 + 1

))
,

for 𝑚 ≥ 1 and 𝑖 = 1, . . . , 𝑛, we have Ω(𝑗1, . . . , 𝑗𝑟) ∈ ℰ for all 𝑟, 1 ≤ 𝑟 ≤ 𝑛, and
{𝑗1, . . . , 𝑗𝑟} ⊆ {1, . . . , 𝑛}.

Therefore, Kolmogorov’s zero-one law implies 𝑃 (Ω(𝑗1, . . . , 𝑗𝑟)) = 0 or 1. Since
the coordinate processes are i.i.d. these sets all have the same probability for each
fixed 𝑟 and subset {𝑗1, . . . , 𝑗𝑟}. Moreover, there are finitely many such sets, and
if they all have probability zero, then there is a set of 𝜔’s of probability one with
𝜏𝑟(𝜔) ↑ ∞ such that for all 𝑚 ≥ 𝜏𝑟(𝜔) we have

max
1≤𝑘≤𝑟

𝑌𝑗𝑘

(
1

𝑚
,𝜔

)
≥ min

𝑘/∈{𝑗1,...,𝑗𝑟}
𝑌𝑘

(
1

𝑚
,𝜔

)
(88)

for all choices of {𝑗1, . . . , 𝑗𝑟}. Call this set Ω0. Using (84) there is also a universal
set Ω1 of probability one so that for all 𝑡 ∈ (0, 𝑇 ] ∩ ℚ the numbers {𝑌1(𝑡, 𝜔), . . . ,
𝑌𝑛(𝑡, 𝜔)} are all distinct. Hence for each 𝜔 ∈ Ω0∩Ω1 and 𝑚 ≥ 𝜏𝑟(𝜔) there must be
𝑟 strictly smallest values among {𝑌1(𝑡), . . . , 𝑌𝑛(𝑡)} for each integer 𝑟 ∈ {1, . . . , 𝑛}.
Thus we arrive at a contradiction since this violates the previous inequality (88)
for some one of the subsets {𝑗1, . . . , 𝑗𝑟}.
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Hence (86) holds for every 𝑟 ∈ {1, . . . , 𝑛}, and all (2𝑛− 1) non-empty subsets
of {𝑌1, . . . , 𝑌𝑛} are in {𝐶 ∩ {𝑌1, . . . , 𝑌𝑛} : 𝐶 ∈ 𝒞ℚ} with probability one. To get
the empty set with probability one is trivial, i.e., the sample functions are cadlag
on [0, 𝑇 ], and the choice of 𝑥 in 𝐶𝑡,𝑥 ∈ 𝒞ℚ can be taken arbitrarily negative. Hence
(85) holds, and the corollary is proven. □
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Asymptotic Properties for
Linear Processes of Functionals of
Reversible or Normal Markov Chains

Magda Peligrad

Abstract. In this paper we study the asymptotic behavior of linear processes
having as innovations mean zero, square integrable functions of stationary
reversible or normal Markov chains. In doing so we shall preserve the general-
ity of coefficients assuming only that they are square summable. In this way
we include in our study the long range dependence case. The only assump-
tion imposed on the innovations for reversible Markov chains is the absolute
summability of their covariances. Besides the central limit theorem we also
study the convergence to fractional Brownian motion. The proofs are based
on general results for linear processes with stationary innovations that have
interest in themselves.
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Keywords. Central limit theorem, stationary linear process, reversible Markov
chains, generalized martingales, fractional Brownian motion.

1. Introduction

Let (𝜉𝑖)𝑖∈ℤ be a stationary sequence of random variables on a probability space
(Ω,𝒦,ℙ) with finite second moment and zero mean (𝔼𝜉0 = 0). Let (𝑎𝑖)𝑖∈ℤ be a
sequence of real numbers such that

∑
𝑖∈ℤ 𝑎2𝑖 < ∞ and denote by

𝑋𝑘 =

∞∑
𝑗=−∞

𝑎𝑘+𝑗𝜉𝑗 , 𝑆𝑛(𝑋) = 𝑆𝑛 =

𝑛∑
𝑘=1

𝑋𝑘, (1.1)

𝑏𝑛,𝑗 = 𝑎𝑗+1 + ⋅ ⋅ ⋅ + 𝑎𝑗+𝑛 and 𝑏2𝑛 =

∞∑
𝑗=−∞

𝑏2𝑛,𝑗.

Supported in part by a Charles Phelps Taft Memorial Fund grant, the NSA grant H98230-11-1-
0135 and the NSF grant DMS-1208237.
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The linear process (𝑋𝑘)𝑘∈ℤ is widely used in a variety of applied fields. It is properly
defined for any square summable sequence (𝑎𝑖)𝑖∈ℤ if and only if the stationary
sequence of innovations (𝜉𝑖)𝑖∈ℤ has a bounded spectral density. In general, the
covariances of (𝑋𝑘)𝑘∈ℤ might not be summable so that the linear process might
exhibit long range dependence.

An important theoretical question with numerous practical implications is to
prove stability of the central limit theorem under formation of linear sums. By this
we understand that if

∑𝑛
𝑖=1 𝜉𝑖/

√
𝑛 converges in distribution to a normal variable

the same holds for 𝑆𝑛(𝑋) properly normalized. This problem was first studied in
the literature by Ibragimov (1962) who proved that if (𝜉𝑖)𝑖∈ℤ are i.i.d. centered
with finite second moments, then 𝑆𝑛(𝑋)/𝑏𝑛 satisfies the central limit theorem
(CLT). The extra condition of finite second moment was removed by Peligrad
and Sang (2011). The central limit theorem for 𝑆𝑛(𝑋)/𝑏𝑛 for the case when the
innovations are square integrable martingale differences was proved in Peligrad
and Utev (1997) and (2006-a), where an extension to generalized martingales was
also given.

On the other hand, motivated by applications to unit root testing and to
isotonic regression, a related question is to study the limiting behavior of 𝑆[𝑛𝑡]/𝑏𝑛
(here and throughout the paper [𝑥] denotes the integer part of 𝑥). The first results
for i.i.d. random innovations go back to Davydov (1970), who established con-
vergence to fractional Brownian motion. Extensions to dependent settings under
certain projective criteria can be found for instance in Wu and Min (2005) and
Dedecker et al. (2011), among others.

In this paper we shall address both these questions of CLT and convergence
to fractional Brownian motion for linear processes with functions of reversible or
normal Markov chains innovations.

Kipnis and Varadhan (1986) considered partial sums 𝑆𝑛 (where 𝑎0 = 1,
and 0 elsewhere) of an additive functional zero mean of a stationary reversible
Markov chain and showed that the convergence of 𝑣𝑎𝑟(𝑆𝑛)/𝑛 implies convergence
of {𝑆[𝑛𝑡]/

√
𝑛, 0 ≤ 𝑡 ≤ 1} to the Brownian motion. There is a considerable number

of papers that further extend and apply this result to infinite particle systems, ran-
dom walks, processes in random media, Metropolis-Hastings algorithms. Among
others, Kipnis and Landim (1999) considered interacting particle systems, Tier-
ney (1994) discussed the applications to Markov Chain Monte Carlo. Liming Wu
(1999) studied the law of the iterated logarithm.

Our first result will show that under the only assumption of absolute summa-
bility of covariances of innovations, the partial sums of the linear process 𝑆𝑛(𝑋)/𝑏𝑛
satisfies the central limit theorem provided 𝑏𝑛 → ∞. If we only assume the con-
vergence of 𝑣𝑎𝑟(𝑆𝑛)/𝑛 we can also treat a related linear process.

Furthermore, we shall also establish convergence to the fractional Brownian
motion under a necessary regularity condition imposed to 𝑏2𝑛. For a Hurst index
larger than 1/2 we obtain a full blown invariance principle. This is not possible
without imposing additional conditions for a Hurst index smaller than or equal to
1/2. However we can still get the convergence of finite dimensional distributions.
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For a Hurst index of 1/2 we shall also consider the short memory case, when
the sequence of constants is absolutely summable, and obtain convergence to the
Brownian motion.

In this paper, besides a condition on the covariances, no other assumptions
such as irreducibility or aperiodicity are imposed to the reversible Markov chain.

The proofs are based on a result of Peligrad and Utev (2006-a) concern-
ing the asymptotic behavior of a class of linear processes and spectral calculus.
In addition, in Section 4.1 we develop several asymptotic results for a class of
linear processes with stationary innovations, which is not necessarily Markov or
reversible. The innovation satisfy a martingale-like condition. These results have
interest in themselves and can be applied to treat other classes of linear processes.

Applications are given to a Metropolis Hastings Markov chain, to instanta-
neous functions of a Gaussian process and to random walks on compact groups.

Our paper is organized as follows: Section 2 contains the definitions, a short
background of the problem and the results. Applications are discussed in Section 3.
Section 4 is devoted to the proofs. The Appendix contains some technical results.

2. Definitions, background and results

We assume that (𝛾𝑛)𝑛∈ℤ is a stationary Markov chain defined on a probability
space (Ω,ℱ ,ℙ) with values in a general state space (𝑆,𝒜). The marginal distribu-
tion is denoted by 𝜋(𝐴) = ℙ(𝛾0 ∈ 𝐴). Assume that there is a regular conditional
distribution for 𝛾1 given 𝛾0 denoted by 𝑄(𝑥,𝐴) = ℙ(𝛾1 ∈ 𝐴∣ 𝛾0 = 𝑥). Let 𝑄 also
denotes the Markov operator acting via (𝑄𝑔)(𝑥) =

∫
𝑆 𝑔(𝑠)𝑄(𝑥, 𝑑𝑠). Next, let 𝕃20(𝜋)

be the set of measurable functions on 𝑆 such that
∫
𝑔2𝑑𝜋 < ∞ and

∫
𝑔𝑑𝜋 = 0. If

𝑔, ℎ ∈𝕃20(𝜋), the integral
∫
𝑆
𝑔(𝑠)ℎ(𝑠)𝑑𝜋 will sometimes be denoted by < 𝑔, ℎ >.

For some function 𝑔 ∈𝕃20(𝜋), let

𝜉𝑖 = 𝑔(𝛾𝑖), 𝑆𝑛(𝜉) =

𝑛∑
𝑖=1

𝜉𝑖, 𝜎𝑛(𝑔) = (𝔼𝑆2𝑛(𝜉))1/2. (2.1)

Denote by ℱ𝑘 the 𝜎-field generated by 𝛾𝑖 with 𝑖 ≤ 𝑘 and by ℐ the invariant
𝜎-field.

For any integrable random variable 𝑋 we denote 𝔼𝑘𝑋 = 𝔼(𝑋 ∣ℱ𝑘). With this
notation, 𝔼0𝜉1 = 𝑄𝑔(𝛾0) = 𝔼(𝜉1∣𝛾0). We denote by ∣∣𝑋 ∣∣𝑝 the norm in 𝕃𝑝(Ω,ℱ ,ℙ).

The Markov chain is called reversible if 𝑄 = 𝑄∗, where 𝑄∗ is the adjoint
operator of 𝑄. In this setting, the condition of reversibility is equivalent to requiring
that (𝛾0,𝛾1) and (𝛾1, 𝛾0) have the same distribution. Equivalently∫

𝐴

𝑄(𝜔,𝐵)𝜋(𝑑𝜔) =

∫
𝐵

𝑄(𝜔,𝐴)𝜋(𝑑𝜔)
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for all Borel sets 𝐴,𝐵 ∈ 𝒜. The spectral measure of 𝑄 with respect to 𝑔 is con-
centrated on [−1, 1] and will be denoted by 𝜌𝑔. Then

𝔼(𝑄𝑚𝑔(𝛾0)𝑄
𝑛𝑔(𝛾0)) = ⟨𝑄𝑚𝑔,𝑄𝑛𝑔⟩ =

∫ 1

−1
𝑡𝑛+𝑚𝜌𝑔(𝑑𝑡).

Kipnis and Varadhan (1986) assumed that

lim
𝑛→∞

𝜎2𝑛(𝑔)

𝑛
= 𝜎2𝑔 (2.2)

and proved that for any reversible ergodic Markov chain defined by (1.1) this
condition implies

𝑊𝑛(𝑡) =
𝑆[𝑛𝑡](𝜉)√

𝑛
⇒ ∣𝜎𝑔∣𝑊 (𝑡), (2.3)

where 𝑊 (𝑡) is the standard Brownian motion, ⇒ denotes weak convergence.
As shown by Kipnis and Varadhan (1986, relation 1.1) condition (2.2) is

equivalent to ∫ 1

−1

1

1 − 𝑡
𝜌𝑔(𝑑𝑡) < ∞, (2.4)

and then

𝜎2𝑔 =

∫ 1

−1

1 + 𝑡

1 − 𝑡
𝜌𝑔(𝑑𝑡).

We shall establish the following central limit theorem:

Theorem 2.1. Assume that (𝜉𝑗)𝑗∈ℤ is defined by (2.1) and 𝑄 = 𝑄∗. Define (𝑋𝑘),
𝑆𝑛 and 𝑏𝑛 as in (1.1). Assume that 𝑏𝑛 →∞ as 𝑛 →∞ and∑

𝑗≥0
∣cov(𝜉0, 𝜉𝑗)∣ < ∞. (2.5)

Then, there is a nonnegative random variable 𝜂 measurable with respect to ℐ such
that 𝑛−1𝔼((

∑𝑛
𝑘=1 𝜉𝑘)2∣ℱ0) → 𝜂 in 𝕃1(Ω,ℱ ,ℙ) as 𝑛 →∞ and 𝔼𝜂 = 𝜎2𝑔 . In addition

lim
𝑛→∞

Var(𝑆𝑛(𝑋))

𝑏2𝑛
= 𝜎2𝑔

and
𝑆𝑛(𝑋)

𝑏𝑛
⇒ √

𝜂 𝑁 as 𝑛 →∞, (2.6)

where 𝑁 is a standard normal variable independent on 𝜂. Moreover if the sequence
(𝜉𝑖)𝑖∈ℤ is ergodic the central limit theorem in (2.6) holds with 𝜂 = 𝜎2𝑔 .

It should be noted that under the conditions of this theorem 𝜎2𝑔 also has the
following interpretation: the stationary sequence (𝜉𝑖)𝑖∈ℤ has a continuous spectral
density 𝑓(𝑥) and 𝜎2𝑔 = 2𝜋𝑓(0).

In order to present the functional form of the CLT we introduce a regularity
assumption which is necessary for this type of result. We denote by 𝐷([0, 1]) the
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space of functions defined on [0, 1] which are right continuous and have left-hand
limits at any point.

Definition 2.2. We say that a positive sequence (𝑏2𝑛)𝑛≥1 is regularly varying with
exponent 𝛽 > 0 if for any 𝑡 ∈]0, 1],

𝑏2[𝑛𝑡]

𝑏2𝑛
→ 𝑡𝛽 as 𝑛 →∞. (2.7)

We shall separate the case 𝛽 ∈]1, 2] from the case 𝛽 ∈]0, 1].

Theorem 2.3. Assume that the conditions of Theorem 2.1 are satisfied and in
addition 𝑏2𝑛, defined by (1.1), is regularly varying with exponent 𝛽 for a certain 𝛽 ∈
]1, 2]. Then, the process {𝑏−1𝑛 𝑆[𝑛𝑡](𝑋), 𝑡 ∈ [0, 1]} converges in 𝐷([0, 1]) to

√
𝜂𝑊𝐻

where 𝑊𝐻 is a standard fractional Brownian motion independent of 𝜂 with Hurst
index 𝐻 = 𝛽/2.

The case 𝛽 ∈]0, 1] is more delicate. For this case we only give the convergence
of the finite dimensional distributions since there are counterexamples showing that
the tightness might not hold without additional assumptions. As a matter of fact,
for 𝛽 = 1, it is known from counterexamples given in Wu and Woodroofe (2004)
and also in Merlevède and Peligrad (2006) that the weak invariance principle may
not be true for the partial sums of the linear process with i.i.d. square integrable
innovations.

Theorem 2.4. Assume that the conditions of Theorem 2.1 are satisfied and in
addition 𝑏2𝑛 is regularly varying with exponent 𝛽 for a certain 𝛽 ∈]0, 1]. Then
the finite dimensional distributions of {𝑏−1𝑛 𝑆[𝑛𝑡](𝑋), 𝑡 ∈ [0, 1]} converges to the
corresponding ones of

√
𝜂𝑊𝐻 , where 𝑊𝐻 is a standard fractional Brownian motion

independent of 𝜂 with Hurst index 𝐻 = 𝛽/2.

In the context of Theorems 2.3 and 2.4, condition (2.7) is necessary for the
conclusion of this theorem (see Lamperti, 1962). This condition has been also
imposed by Davydov (1970) for studying the weak invariance principle of linear
processes with i.i.d. innovations.

The following theorem is obtained under condition (2.2).

Theorem 2.5. Assume that (𝜉𝑗) is defined by (2.1) and condition (2.2) is satisfied.
Define

𝑋 ′
𝑘 =

∞∑
𝑗=−∞

𝑎𝑘+𝑗(𝜉𝑗 + 𝜉𝑗+1) , 𝑆𝑛(𝑋 ′) =
𝑛∑

𝑘=1

𝑋 ′
𝑘, . (2.8)

Then the conclusions of Theorems 2.1, 2.3 and 2.4 hold for 𝑆𝑛(𝑋 ′) and 𝑆[𝑛𝑡](𝑋
′).

In this case 𝜂 is identified as the limit 𝑛−1𝔼(
∑𝑛

𝑘=1(𝜉𝑘 + 𝜉𝑘+1)
2∣ℱ0) → 𝜂 in

𝕃1(Ω,ℱ ,ℙ) as 𝑛 → ∞. Furthermore, the stationary sequence (𝜉𝑘 + 𝜉𝑘+1)𝑘∈ℤ has
a continuous spectral density ℎ(𝑥) and

𝔼𝜂 = 2𝜋ℎ(0) = lim
𝑛→∞Var𝑆𝑛(𝑋 ′)/𝑏2𝑛. (2.9)
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As a corollary we obtain:

Corollary 2.6. Assume that (𝜉𝑗) is defined by (2.1), 𝑄 = 𝑄∗, and condition (2.2) is
satisfied. Assume (𝑋𝑘) defined by (1.1) exists in 𝕃2(Ω,ℱ ,ℙ). Then the conclusion
of Theorems 2.1, 2.3 and 2.4 hold for 𝑆𝑛(𝑋) and 𝑆[𝑛𝑡](𝑋) with 𝜂/4 where 𝜂 is
identified as in Theorem 2.5.

We shall present next the short memory case:

Theorem 2.7. Assume now
∑

𝑖∈ℤ ∣𝑎𝑖∣ < ∞ and let (𝑋𝑘)𝑘≥1 be as in Theorem 2.1.

Assume that condition (2.2) is satisfied. Then the process {𝑆[𝑛𝑡](𝑋)/
√
𝑛, 𝑡 ∈ [0, 1]}

converges in 𝐷([0, 1]) to
√
𝜂∣𝐴∣𝑊 where 𝑊 is a standard Brownian motion and

𝐴 =
∑

𝑖∈ℤ 𝑎𝑖.

Remark 2.8. It is easy to see that Theorem 2.7 extends the Kipnis and Varadhan
(1987) result to linear processes.

We give a few examples of sequences (𝑎𝑛) satisfying the conditions of our
theorems. In these examples the notation 𝑎𝑛 ∼ 𝑏𝑛 means 𝑎𝑛/𝑏𝑛 → 1 as 𝑛 →∞.

Example 1. For the selection 𝑎𝑖 ∼ 𝑖−𝛼ℓ(𝑖) where ℓ is a slowly varying function at
infinity and 1/2 < 𝛼 < 1 for 𝑖 ≥ 1 and 𝑎𝑖 = 0 elsewhere, then, 𝑏2𝑛 ∼ 𝜅𝛼𝑛

3−2𝛼ℓ2(𝑛)
(see for instance Relations (12) in Wang et al. (2003)), where 𝜅𝛼 is a positive
constant depending on 𝛼. Clearly, Theorem 2.3 and the corresponding part of
Theorem 2.5 apply.

Example 2. Let us consider now the fractionally integrated processes since they
play an important role in financial time series modeling and they are widely stud-
ied. Such processes are defined for 0 < 𝑑 < 1/2 by

𝑋𝑘 = (1 −𝐵)−𝑑𝜉𝑘 =
∑
𝑖≥0

𝑎𝑖𝜉𝑘−𝑖 with 𝑎𝑖 =
Γ(𝑖 + 𝑑)

Γ(𝑑)Γ(𝑖 + 1)
, (2.10)

where 𝐵 is the backward shift operator, 𝐵𝜀𝑘 = 𝜀𝑘−1.
For this example, by the well-known fact that for any real 𝑥, lim𝑛→∞ Γ(𝑛 +

𝑥)/𝑛𝑥Γ(𝑛) = 1, we have lim𝑛→∞ 𝑎𝑛/𝑛
𝑑−1 = 1/Γ(𝑑). Theorem 2.3 and the corre-

sponding part of Theorem 2.5 apply with 𝛽 = 2𝑑 + 1, since for 𝑘 ≥ 1 we have
𝑎𝑘 ∼ 𝜅𝑑𝑘

𝑑−1 for some 𝜅𝑑 > 0 and 𝑎𝑘 = 0 elsewhere.

Example 3. Now, if we consider the following selection of (𝑎𝑘)𝑘≥0: 𝑎0 = 1 and
𝑎𝑖 = (𝑖 + 1)−𝛼 − 𝑖−𝛼 for 𝑖 ≥ 1 with 𝛼 ∈]0, 1/2[ and 𝑎𝑖 = 0 elsewhere, then both
Theorem 2.4 and the corresponding part of Theorem 2.5 apply. Indeed for this
selection, 𝑏2𝑛 ∼ 𝜅𝛼𝑛

1−2𝛼, where 𝜅𝛼 is a positive constant depending on 𝛼.

Example 4. Finally, if 𝑎𝑖 ∼ 𝑖−1/2(log 𝑖)−𝛼 for some 𝛼 > 1/2, then

𝑏2𝑛 ∼ 𝑛2(log 𝑛)1−2𝛼/(2𝛼− 1)

(see Relations (12) in Wang et al. (2003)). Hence (2.7) is satisfied with 𝛽 = 2.
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3. Applications

3.1. Application to a Metropolis Hastings Markov chain

In this subsection we analyze a standardized example of a stationary irreducible
and aperiodic Metropolis-Hastings algorithm with uniform marginal distribution.
This type of Markov chain is interesting since it can easily be transformed into
Markov chains with different marginal distributions. Markov chains of this type
are often studied in the literature from different points of view. See, for instance,
Doukhan et al. (1994) and Longla et al. (2012) among many others.

Let 𝐸 = [−1, 1] and let 𝜐 be a symmetric atomless law on 𝐸. The transition
probabilities are defined by

𝑄(𝑥,𝐴) = (1 − ∣𝑥∣)𝛿𝑥(𝐴) + ∣𝑥∣𝜐(𝐴),

where 𝛿𝑥 denotes the Dirac measure. Assume that 𝜃 =
∫
𝐸 ∣𝑥∣−1𝜐(𝑑𝑥) < ∞. Then

there is a unique invariant measure

𝜋(𝑑𝑥) = 𝜃−1∣𝑥∣−1𝜐 (𝑑𝑥)

and the stationary Markov chain (𝛾𝑘) generated by 𝑄(𝑥,𝐴) and 𝜋 is reversible
and positively recurrent, therefore ergodic.

Theorem 3.1. Let 𝑔(−𝑥) = −𝑔(𝑥) for any 𝑥 ∈ 𝐸 and assume∫ 1

0

𝑔2(𝑥)𝑥−2𝑑𝑣 < ∞.

Then, the conclusions of all our theorems in Section 2 hold for (𝑋𝑘) and 𝑆𝑛(𝑋)
defined by (1.1) with

𝜂 = 𝜎2𝑔 = 𝜃−1
(
−
∫
𝐸

𝑔2(𝑥)∣𝑥∣−1𝜐(𝑑𝑥) + 2

∫
𝐸

𝑔2(𝑥)∣𝑥∣−2𝜐(𝑑𝑥)

)
.

Proof. Since 𝑔 is an odd function we have

𝔼(𝑔(𝛾𝑘)∣𝛾0) = (1 − ∣𝛾0∣)𝑘𝑔(𝛾0) a.s. (3.1)

Therefore, for any 𝑗 ≥ 0,

𝔼(𝑋0𝑋𝑗) = 𝔼(𝑔(𝛾0)𝔼(𝑔(𝛾𝑗)∣𝛾0)) = 𝜃−1
∫
𝐸

𝑔2(𝑥)(1 − ∣𝑥∣)𝑗 ∣𝑥∣−1𝜐(𝑑𝑥).

Then,

𝑘−1∑
𝑗=1

∣𝔼(𝑋0𝑋𝑗)∣ ≤ 2𝜃−1
𝑘−1∑
𝑗=1

∫ 1

0

𝑔2(𝑥)(1 − 𝑥)𝑗𝑥−1𝜐(𝑑𝑥) ≤ 2𝜃−1
∫ 1

0

𝑔2(𝑥)𝑥−2𝜐(𝑑𝑥)

(3.2)
and therefore condition (2.5) is satisfied. □
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3.2. Linear process of instantaneous functions of a Gaussian sequence

Theorem 3.2. Let (𝜉𝑘)𝑘∈ℤ be instantaneous functions of a stationary Markov
Gaussian sequence (𝛾𝑛), 𝜉𝑘 = 𝑔(𝛾𝑛) where 𝑔 is a measurable real function such
that 𝔼𝑔(𝛾𝑛) = 0 and 𝔼𝑔2(𝛾𝑛) < ∞. Define 𝑋𝑘 and 𝑆𝑛(𝑋) by (1.1). Then the
conclusions of our theorems in Section 2 hold.

Proof. In order to apply our results, because (𝛾𝑛) is reversible, we have only to
check condition (2.5). Under our conditions 𝑔 can be expanded in Hermite poly-
nomials 𝑔(𝑥) =

∑
𝑗≥1 𝑐𝑗𝐻𝑗(𝑥), where

∑
𝑗=1 𝑐

2
𝑗𝑗! < ∞.

For computing the covariances we shall apply the following well-known for-
mula: if 𝑎 and 𝑏 are jointly Gaussian random variables, 𝔼𝑎 = 𝔼𝑏 = 0, 𝔼𝑎2 = 𝔼𝑏2 =
1, 𝑟 = 𝔼𝑎𝑏, then

𝔼𝐻𝑘(𝑎)𝐻𝑙(𝑏) = 𝛿(𝑘, 𝑙)𝑟𝑘𝑘!,

where 𝛿 denotes the Kronecker delta. It follows that

𝑐𝑜𝑣(𝜉0, 𝜉𝑘) = 𝔼
∑
𝑗≥1

𝑐2𝑗𝐻𝑗(𝛾0)𝐻𝑗(𝛾𝑘) =
∑
𝑗≥1

𝑐2𝑗𝑟
𝑗
𝑘𝑗!.

Clearly, because under our condition it is known that 𝑟𝑘 = exp(−𝛼𝑘/2) for some
𝛼 > 0, then

∣𝑐𝑜𝑣(𝜉0, 𝜉𝑘)∣ ≤ exp(−𝛼𝑘/2)
∑
𝑗≥1

𝑐2𝑗𝑗!

and the result follows. □
For a particular class of weights of the form in Example 3, we mention that

Breuer and Major (1983) studied this problem for Gaussian chains without Markov
assumption.

3.3. Application to random walks on compact groups

In this section we shall apply our results to random walks on compact groups.
Let 𝒳 be a compact Abelian group, 𝒜 a sigma algebra of Borel subsets of 𝒳

and 𝜋 the normalized Haar measure on 𝒳 . The group operation is denoted by +.
Let 𝜈 be a probability measure on (𝒳 ,𝒜). The random walk on 𝒳 defined by 𝜈 is
the stationary Markov chain having the transition function

(𝑥,𝐴) → 𝑄(𝑥,𝐴) = 𝜈(𝐴− 𝑥).

The corresponding Markov operator denoted by 𝑄 is defined by

(𝑄𝑓)(𝑥) = 𝑓 ∗ 𝜈(𝑥) =

∫
𝒳
𝑓(𝑥 + 𝑦)𝜈(𝑑𝑦).

The Haar measure is invariant under 𝑄. We shall assume that 𝜈 is not supported
by a proper closed subgroup of 𝒳 , a condition that is equivalent to 𝑄 being ergodic.
In this context

(𝑄∗𝑓)(𝑥) = 𝑓 ∗ 𝜈∗(𝑥) =

∫
𝒳
𝑓(𝑥− 𝑦)𝜈(𝑑𝑦),

where 𝜈∗ is the image of measure 𝜈 by the map 𝑥 → −𝑥. Thus 𝑄 is symmetric on
𝕃2(𝜋) if and only if 𝜈 is symmetric on 𝒳 , that is 𝜈 = 𝜈∗.
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The dual group of 𝒳 , denoted by 𝒳 , is discrete. Denote by 𝜈 the Fourier
transform of the measure 𝜈, that is the function

𝑔 → 𝜈(𝑔) =

∫
𝒳
𝑔(𝑥)𝜈(𝑑𝑥) with 𝑔 ∈ 𝒳 .

A function 𝑓 ∈𝕃2(𝜋) has the Fourier expansion

𝑓 =
∑
𝑔∈𝒳

𝑓(𝑔)𝑔.

Ergodicity of 𝑄 is equivalent to 𝜈(𝑔) ∕= 1 for any non-identity 𝑔 ∈ 𝒳 . By arguments
in Borodin and Ibragimov (1994, Ch. 4, Sect. 9) and also Derriennic and Lin (2001,
Section 8) condition (2.4) takes the form∑

1∕=𝑔∈𝒳

∣𝑓(𝑔)∣2
∣1 − 𝜈(𝑔)∣ < ∞. (3.3)

Combining these considerations with the results in Section 2 we obtain the
following result:

Theorem 3.3. Let 𝜈 be ergodic and symmetric on 𝒳 . Let (𝜉𝑖) be the stationary
Markov chain with marginal distribution 𝜋 and transition operator 𝑄. If for 𝑔 in
𝕃20(𝜋) condition (3.3) is satisfied then the conclusions of Theorem 2.5 and Corollary
2.6 in Section 2 hold.

4. Proofs

4.1. Preliminary general results

This section contains some general results for linear processes of stationary se-
quences which are not necessarily Markov. We start by mentioning the following
theorem which is a variant of a result from Peligrad and Utev (2006-a). See also
Proposition 5.1 in Dedecker et al. (2011).

Theorem 4.1. Let (𝜉𝑘)𝑘∈ℤ be a strictly stationary sequence of centered square in-
tegrable random variables such that

Γ𝑗 =
∞∑
𝑘=0

∣𝔼(𝜉𝑗+𝑘𝔼0𝜉𝑗)∣ < ∞ and
1

𝑝

𝑝∑
𝑗=1

Γ𝑗 → 0 as 𝑝 →∞. (4.1)

For any positive integer 𝑛, let (𝑑𝑛,𝑖)𝑖∈ℤ be a triangular array of numbers satisfying,
for some positive 𝑐,∑

𝑖∈ℤ
𝑑2𝑛,𝑖 → 𝑐2 and

∑
𝑗∈ℤ

(𝑑𝑛,𝑗 − 𝑑𝑛,𝑗−1)2 → 0 as 𝑛 → ∞. (4.2)

In addition assume

sup
𝑗∈ℤ

∣𝑑𝑛,𝑗 ∣ → 0 as 𝑛 →∞. (4.3)
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Then
∑

𝑗∈ℤ 𝑑𝑛,𝑗𝜉𝑗 converges in distribution to
√
𝜂𝑐𝑁 where 𝑁 is a standard Gauss-

ian random variable independent of 𝜂. The variable 𝜂 is measurable with respect
to the invariant sigma field ℐ and 𝑛−1𝔼((

∑𝑛
𝑘=1 𝜉𝑘)2∣ℱ0) → 𝜂 in 𝕃1(Ω,ℱ ,ℙ)

as 𝑛 → ∞. Furthermore (𝜉𝑖)𝑖∈ℤ has a continuous spectral density 𝑓(𝑥) and
𝔼𝜂 = 2𝜋𝑓(0). If the sequence (𝜉𝑖)𝑖∈ℤ is ergodic we have 𝜂 = 2𝜋𝑓(0).

Proof. The proof follows the lines of Theorem 1 from Peligrad and Utev (2006-
a). We just have to repeat the arguments there with 𝑏𝑛,𝑖/𝑏𝑛 replaced by 𝑑𝑛,𝑖 and
take into account that the properties (4.2) and (4.3) are precisely all is needed to
complete the proof. □

Next we shall establish the convergence of finite dimensional distributions.

Theorem 4.2. Define (𝑋𝑘) and 𝑆𝑛 by (1.1) and assume condition (4.1) is satisfied.
Then 𝑆𝑛/𝑏𝑛 converges in distribution to

√
𝜂𝑁 where 𝑁 and 𝜂 are as in Theorem

4.1. If we assume in addition that condition (2.7) is satisfied, then the finite dimen-
sional distributions of {𝑊𝑛(𝑡) = 𝑏−1𝑛 𝑆[𝑛𝑡], 𝑡 ∈ [0, 1]} converge to the corresponding
ones of

√
𝜂𝑊𝐻 , where 𝑊𝐻 is a standard fractional Brownian motion independent

of 𝜂 with Hurst index 𝐻 = 𝛽/2.

Proof. The central limit theorem part requires just to verify the conditions of
Theorem 4.1 for 𝑑𝑛,𝑗 = 𝑏𝑛,𝑗/𝑏𝑛 and 𝑐 = 1. Condition (4.3) was verified in Peligrad
and Utev (1997, pp. 448–449) while condition (4.2) was verified in Lemma A.1. in
Peligrad and Utev (2006-a).

We shall prove next the second part of the theorem. Notice that if we impose
(2.7), for each 𝑡 fixed

var(𝑊𝑛(𝑡)) → 2𝜋𝑓(0)𝑡𝛽 (4.4)

and 𝑊𝑛(𝑡) ⇒ 𝜂𝑡𝛽/2𝑁.
Let 0 ≤ 𝑡1 ≤ ⋅ ⋅ ⋅ ≤ 𝑡𝑘 ≤ 1. By Cramèr-Wold device, in order to find the

limiting distribution of (𝑊𝑛(𝑡𝑖))1≤𝑖≤𝑘 we have to study 𝑉𝑛 =
∑𝑘

𝑖=1 𝑢𝑖𝑊𝑛(𝑡𝑖) where
𝑢𝑖 is a real vector. Let us compute its limiting variance. To find it, let 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.
By using the fact that for any two real numbers 𝑎 and 𝑏 we have 𝑎(𝑎 − 𝑏) =
(𝑎2 + (𝑎− 𝑏)2 − 𝑏2)/2, we obtain the representation:

cov(𝑊𝑛(𝑡),𝑊𝑛(𝑠)) = var(𝑊𝑛(𝑠)) + cov(𝑊𝑛(𝑠),𝑊𝑛(𝑡) −𝑊𝑛(𝑠))

= var(𝑊𝑛(𝑠)) + 1/2 [var(𝑊𝑛(𝑡) −𝑊𝑛(𝑠)) + var(𝑊𝑛(𝑡)) − var(𝑊𝑛(𝑠))] .

By stationarity,

var(𝑊𝑛(𝑡) −𝑊𝑛(𝑠)) = var(𝑊[𝑛𝑡]−[𝑛𝑠]),
and by (4.4) and the fact that 𝑏𝑛 →∞ we obtain

lim
𝑛→∞ cov(𝑊𝑛(𝑡),𝑊𝑛(𝑠)) = 𝜋𝑓(0)(𝑠𝛽 + 𝑡𝛽 − ∣𝑡− 𝑠∣𝛽). (4.5)

So,

lim
𝑛→∞

1

2𝜋𝑓(0)
var(𝑉𝑛) =

𝑘∑
𝑖=1

𝑢2𝑖 𝑡
𝛽
𝑖 +

𝑘−1∑
𝑖=1

𝑘∑
𝑗=𝑖+1

𝑢𝑖𝑢𝑗(𝑡
𝛽
𝑖 + 𝑡𝛽𝑗 − (𝑡𝑗 − 𝑡𝑖)

𝛽) = 𝐵𝑘. (4.6)
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Writing now

𝑉𝑛 =
𝑘∑
𝑖=1

𝑢𝑖𝑊𝑛(𝑡𝑖) =
∑
𝑗∈ℤ

𝑑𝑛,𝑗(𝑘)𝜉𝑗 ,

where 𝑑𝑛,𝑗(𝑘) =
∑𝑘

𝑖=1 𝑢𝑖𝑏[𝑛𝑡𝑖],𝑗/𝑏𝑛, we shall apply Theorem 4.1. The second part
of (4.2) and (4.3) were verified in Peligrad and Utev (1996 and 2006-a). It remains
to verify the first part of condition (4.2). By the point (iii) of Lemma 5.1 in the
Appendix we obtain

var(𝑉𝑛)/
∑
𝑗∈ℤ

𝑑2𝑛,𝑗(𝑘) → 2𝜋𝑓(0),

which combined with (4.6) implies that the first part of (4.2) is verified with 𝑐2 =
lim𝑛→∞

∑
𝑗∈ℤ 𝑑2𝑛,𝑗(𝑘) = 𝐵𝑘. In other words, the finite dimensional distributions

are convergent to those of a fractional Brownian motion with Hurst index 𝛽/2. □

Discussion on tightness. As we mentioned above, for 𝛽 ≤ 1 the conditions of
Theorem 4.2 are not sufficient to imply tightness.

However for 𝛽 > 1 we can obtain tightness in 𝐷([0, 1]) endowed with Sko-
rohod topology. By the point (i) of Lemma 5.1 in the Appendix we have the
inequality

𝔼∣𝑆𝑘∣2 ≤
(
𝔼[𝜉20 ] + 2

∑
𝑘∈ℤ

∣𝔼(𝜉0𝜉𝑘)∣
)∑

𝑗∈ℤ
𝑏2𝑘,𝑗 .

Therefore, by using (4.1) and (2.7), the conditions of Lemma 2.1 p. 290 in Taqqu
(1975) are satisfied when 𝛽 > 1, and the tightness follows. □

To treat the short memory case we mention the following result in Peligrad
and Utev (2006-b).

Theorem 4.3. Assume that 𝑋𝑘 and 𝑆𝑛 are defined by (1.1) and
∑

𝑖∈𝑍 ∣𝑎𝑖∣ < ∞.
Moreover assume that for some 𝑐𝑛 > 0 the innovations satisfy the invariance
principle

𝑐−1𝑛 𝑆[𝑛𝑡](𝜉) ⇒ 𝜂𝑊 (𝑡),

where 𝜂 is ℐ-measurable and 𝑊 is a standard Brownian motion on [0, 1] indepen-
dent on ℐ. In addition assume that the following condition holds:

𝔼 max
1≤𝑗≤𝑛

∣𝑆𝑗(𝜉)∣ ≤ 𝐶𝑐𝑛. (4.7)

where 𝐶 is a positive constant. Then, the linear process also satisfies the invariance
principle, i.e., 𝑐−1𝑛 𝑆[𝑛𝑡](𝑋) ⇒ 𝜂∣𝐴∣𝑊 (𝑡) as 𝑛 →∞ where 𝐴 =

∑
𝑖∈ℤ 𝑎𝑖.

4.2. Normal and reversible Markov chains

In this subsection we give the proofs of the theorems stated in Section 2. The goal
is to verify condition (4.1) that will assure that all the results in Subsection 4.1
are valid.

We start by applying the general results to normal Markov chains.
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Theorem 4.4. Assume that (𝜉𝑗)𝑗∈ℤ is defined by (2.1) and the Markov chain is
normal, 𝑄𝑄∗ = 𝑄∗𝑄. For this case condition (4.1) is implied by∑

𝑘≥0
∣∣𝑄𝑘𝑔∣∣22 < ∞. (4.8)

and as a consequence all the results obtained in Subsection 4.1 are valid.

Proof. Indeed, we start by rewriting (4.1) in operator notation:

∣𝔼[𝜉𝑗+𝑘𝔼(𝜉𝑗 ∣ℱ0)]∣ = ∣𝔼(𝔼0𝜉𝑘+𝑗𝔼0𝜉𝑗)∣ =
∣∣〈𝑄𝑘+𝑗𝑔,𝑄𝑗𝑔

〉∣∣
=
∣∣∣〈𝑄[𝑘/2]+𝑗𝑔, (𝑄∗)𝑘−[𝑘/2]𝑄𝑗𝑔

〉∣∣∣ ≤ ∣∣𝑄[𝑘/2]+𝑗𝑔∣∣2∣∣(𝑄∗)𝑘−[𝑘/2]𝑄𝑗𝑔∣∣2.
For a normal operator, by using the properties of conditional expectation, we have

∣∣(𝑄∗)𝑘−[𝑘/2]𝑄𝑗𝑔∣∣2 = ∣∣𝑄𝑗(𝑄∗)𝑘−[𝑘/2]𝑔∣∣2 ≤ ∣∣(𝑄∗)𝑘−[𝑘/2]𝑔∣∣2.
Since for all 𝜀 > 0, and any two numbers 𝑎 and 𝑏 we have ∣𝑎𝑏∣ ≤ 𝑎2/2𝜀+ 𝜀𝑏2/2, by
the above considerations we easily obtain∑

𝑘≥0
∣𝔼[𝜉𝑗+𝑘𝔼(𝜉𝑗 ∣ℱ0)]∣ ≤

∑
𝑘≥0

∣∣𝑄[𝑘/2]+𝑗𝑔∣∣2∣∣𝑄𝑘−[𝑘/2]𝑔∣∣2

≤ 1

𝜀

∑
𝑘≥𝑗

∣∣𝑄𝑘𝑔∣∣22 + 𝜀
∑
𝑘≥0

∣∣𝑄𝑘𝑔∣∣22,

condition (4.1) is verified under (4.8), by letting 𝑗 →∞ followed by 𝜀 → 0. □

In terms of spectral measure 𝜌𝑔(𝑑𝑧), condition (4.8) is implied by∫
𝐷

1

1 − ∣𝑧∣𝜌𝑔(𝑑𝑧) < ∞,

where 𝐷 is the unit disk. Note that this condition is stronger than the condition
needed for the validity of CLT for the partial sums (i.e., the case 𝑎1 = 1, 𝑎𝑖 = 0
elsewhere), which requires only the condition

∫
𝐷

1
∣1−𝑧∣𝜌𝑔(𝑑𝑧) < ∞ (see Gordin and

Lifshitz (1981), or in Ch. IV in Borodin and Ibragimov (1994)).

Proof of Theorems 2.1, 2.3 and 2.4

For the reversible Markov chains just notice that

𝔼[𝜉𝑗+𝑘𝔼(𝜉𝑗 ∣ℱ0)] =

∫ 1

−1
𝑡2𝑗+𝑘𝜌𝑔(𝑑𝑧) = cov(𝜉0, 𝜉2𝑗+𝑘)

and then, condition (4.1) is verified under (2.5) because∑
𝑘≥0

∣𝔼[𝜉𝑗+𝑘𝔼(𝜉𝑗 ∣ℱ0)]∣ =
∑
𝑘≥2𝑗

∣ cov(𝜉0, 𝜉𝑘)∣ → 0 as 𝑗 →∞.

Theorems 2.1, 2.3 and 2.4 follow as simple applications of the results in Subsec-
tion 4.1.
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Proof of Theorem 2.5. In order to prove this theorem, we shall also apply Theorem
4.2 along to the tightness discussion at the end of Subsection 4.1. We denote
𝛾𝑗 = 𝜉𝑗 + 𝜉𝑗+1 and verify condition (4.1) for this sequence of innovations. We have

∣𝔼(𝛾𝑘+𝑗𝔼0𝛾𝑗)∣ =
∣∣〈𝑄𝑘+𝑗𝑔 + 𝑄𝑘+𝑗+1𝑔,𝑄𝑗𝑔 + 𝑄𝑗+1𝑔

〉∣∣
and by spectral calculus∑

𝑘≥0

∣∣〈𝑄𝑘+𝑗𝑔 + 𝑄𝑘+𝑗+1𝑔,𝑄𝑗𝑔 + 𝑄𝑗+1𝑔
〉∣∣ =

∑
𝑘≥0

∣∣∣∣∫ 1

−1
𝑡𝑘+2𝑗(1 + 𝑡)2𝑑𝜌𝑔

∣∣∣∣ .
We divide the sum in 2 parts, according to 𝑘 even or odd. When 𝑘 = 2𝑢 the sum
has positive terms and it can be written as∑

𝑢≥0

∫ 1

−1
𝑡2𝑢+2𝑗(1 + 𝑡)2𝑑𝜌𝑔 ≤

∫ 1

−1

𝑡2𝑗

1 − 𝑡2
(1 + 𝑡)2𝑑𝜌𝑔 =

∫ 1

−1

𝑡2𝑗(1 + 𝑡)

1 − 𝑡
𝑑𝜌𝑔.

When 𝑘 is odd∑
𝑘≥1,𝑘 odd

∣∣∣∣∫ 1

−1
𝑡𝑘+2𝑗(1 + 𝑡)2𝑑𝜌𝑔

∣∣∣∣ ≤ ∫ 1

−1

∑
𝑘≥1,𝑘 odd

∣𝑡𝑘+2𝑗(1 + 𝑡)2∣𝑑𝜌𝑔

≤
∫ 1

−1

∑
𝑘≥1,𝑘 odd

∣𝑡𝑘−1+2𝑗(1 + 𝑡)2∣𝑑𝜌𝑔 ≤
∑
𝑢≥0

∣𝑡2𝑢+2𝑗(1 + 𝑡)2∣𝑑𝜌𝑔,

and we continue the computation as for the case 𝑘 even. It follows that

1

𝑚

𝑚∑
𝑗=1

∑
𝑘≥0

∣𝔼(𝛾𝑘+𝑗𝔼0𝛾𝑗)∣ ≤ 2

𝑚

𝑚∑
𝑗=1

∫ 1

−1

𝑡2𝑗(1 + 𝑡)

1 − 𝑡
𝑑𝜌𝑔.

Note that (2.4) implies that 𝜌𝑔(1) = 0. We also have 𝑚−1∑𝑚
𝑗=1 𝑡

2𝑗(1 + 𝑡) is con-

vergent to 0 for all 𝑡 ∈ [−1, 1). Furthermore, 𝑚−1∑𝑚
𝑗=1 𝑡

2𝑗(1 + 𝑡) is dominated by

2 and in view of (2.4) and Lebesgue dominated convergence theorem we have

lim
𝑚→∞

∫ 1

−1

1

𝑚

𝑚∑
𝑗=1

𝑡2𝑗(1 + 𝑡)

1 − 𝑡
𝑑𝜌𝑔 = 0,

and therefore condition (4.1) is satisfied. □

Proof of Corollary 2.6. We start from the representation given by (1.1),

1

𝑏𝑛
(𝑋1+ ⋅ ⋅ ⋅+𝑋𝑛) =

1

𝑏𝑛

∑
𝑗∈ℤ

𝑏𝑛,𝑗𝜉𝑗 and
1

𝑏𝑛
(𝑋0 + ⋅ ⋅ ⋅+𝑋𝑛−1) =

1

𝑏𝑛

∑
𝑗∈ℤ

𝑏𝑛,𝑗𝜉𝑗+1.

By adding these relations we obtain

𝑋0 + 2𝑆𝑛 −𝑋𝑛

𝑏𝑛
=

1

𝑏𝑛

∑
𝑗∈ℤ

𝑏𝑛,𝑗(𝜉𝑗 + 𝜉𝑗+1). (4.9)
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Because 𝑏𝑛 → ∞, by Theorem 3.1 in Billingsley (1999), the limiting behavior of
2𝑆𝑛/𝑏𝑛 is given by the sequence

1

𝑏𝑛

∞∑
𝑗=−∞

𝑏𝑛,𝑗(𝜉𝑗 + 𝜉𝑗+1) =
1

𝑏𝑛

𝑛∑
𝑗=1

𝑋 ′
𝑗,

with 𝑋 ′
𝑗 defined by (2.8). The conclusion of Theorem 4.1 follows by the corre-

sponding part of Theorem 2.5.
To derive the conclusions of Theorems 2.3 and 2.4, note that by (4.9) and

(2.8) with the notations 𝑊𝑛(𝑡) = 𝑏−1𝑛 𝑆[𝑛𝑡] and 𝑊
′
𝑛(𝑡) =

∑[𝑛𝑡]
𝑗=1𝑋

′
𝑗/𝑏𝑛, we have

2𝑊𝑛(𝑡) = 𝑊
′
𝑛(𝑡) − 𝑋0

𝑏𝑛
+

𝑋[𝑛𝑡]

𝑏𝑛
. (4.10)

It is well known that for a stationary sequence with finite second moments

1

𝑛
𝔼

(
max
1≤𝑖≤𝑛

𝑋2
𝑖

)
→ 0.

So, by the fact that 1 < 𝛽 < 2 and by (2.7) we also have

1

𝑏2𝑛
𝔼

(
max
1≤𝑖≤𝑛

𝑋2
𝑖

)
→ 0.

and then, by Theorem 3.1 in Billingsley (1999), it follows that the asymptotic

behavior of {2𝑊𝑛(𝑡), 0 ≤ 𝑡 ≤ 1} is identical to that of {𝑊 ′
𝑛(𝑡), 0 ≤ 𝑡 ≤ 1} and we

apply the second part of Theorem 2.5. □

Proof of Theorem 2.7. Theorem 2.7 follows by combining Theorem 4.3 with the
invariance principle in Kipnis and Varadhan (1997). We have only to verify con-
dition (4.7). It is known that the maximal inequality required by condition (4.7)
holds for partial sums of functions of reversible Markov chains. Indeed, we know
from Proposition 4 in Longla et al. (2012) that

𝔼

(
max
1≤𝑖≤𝑛

𝑆2𝑖

)
≤ 2𝔼

(
max
1≤𝑖≤𝑛

𝑋2
𝑖

)
+ 22 max

1≤𝑖≤𝑛
𝔼(𝑆2𝑖 ) (4.11)

and then, condition (2.2) and stationarity implies condition (4.7) with 𝑐𝑛 =
√
𝑛.
□

5. Appendix

Facts about spectral densities. In the following lemma we combine a few facts
about spectral densities, covariances, behavior of variances of sums and their rela-
tionships. The first two points are well known. They can be found for instance in
Bradley (2007, Vol 1, 0.19–0.21 and Ch.8). The point (iii) was proven in Peligrad
and Utev (2006-a).

Lemma 5.1. Let (𝜉𝑖)𝑖∈ℤ be a stationary sequence of real-valued variables with 𝔼𝜉0 =
0 and finite second moment. Let 𝐹 denotes the spectral measure and 𝑓 denotes its
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spectral density (if exists), i.e.,

𝔼(𝜉0𝜉𝑘) =

∫ 𝜋

−𝜋
𝑒−𝑖𝑘𝑡𝑑𝐹 (𝑡) =

∫ 𝜋

−𝜋
𝑒−𝑖𝑘𝑡𝑓(𝑡)𝑑𝑡.

(i) For any positive integer 𝑛 and any real numbers 𝑎1, . . . , 𝑎𝑛,

𝔼

( 𝑛∑
𝑘=1

𝑎𝑘𝜉𝑘

)2
=

∫ 𝜋

−𝜋

∣∣∣∣ 𝑛∑
𝑘=1

𝑎𝑘𝑒
𝑖𝑘𝑡

∣∣∣∣2𝑓(𝑡)𝑑𝑡 ≤ 2𝜋∥𝑓∥∞
𝑛∑
𝑘=1

𝑎2𝑘

≤
(
𝔼[𝜉20 ] + 2

∑
𝑘≥1

∣𝔼(𝜉0𝜉𝑘)∣
) 𝑛∑
𝑘=1

𝑎2𝑘.

(ii) Assume
∑∞

𝑘=1 ∣𝔼(𝜉0𝜉𝑘)∣ < ∞. Then, 𝑓 is continuous.

(iii) Assume that the spectral density 𝑓 is continuous, and let (𝑑𝑛,𝑗)𝑗∈ℤ be a double
array of real numbers with 𝑑2𝑛 = Σ𝑗∈ℤ𝑑2𝑛,𝑗 < ∞ that satisfies the condition

1

𝑑2𝑛

∑
𝑗∈ℤ

∣𝑑𝑛,𝑗 − 𝑑𝑛,𝑗−1∣2 → 0. (5.1)

Then,

lim
𝑛→∞

1

𝑑2𝑛
𝔼

(∑
𝑗∈ℤ

𝑑𝑛,𝑗𝜉𝑗

)2
= 2𝜋𝑓(0). (5.2)
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First Exit of Brownian Motion from
a One-sided Moving Boundary

Frank Aurzada and Tanja Kramm

Abstract. We revisit a result of Uchiyama (1980): given that a certain integral
test is satisfied, the rate of the probability that Brownian motion remains
below the moving boundary 𝑓 is asymptotically the same as for the constant
boundary. The integral test for 𝑓 is also necessary in some sense.

After Uchiyama’s result, a number of different proofs appeared simpli-
fying the original arguments, which strongly rely on some known identities
for Brownian motion. In particular, Novikov (1996) gives an elementary proof
in the case of an increasing boundary. Here, we provide an elementary, half-
page proof for the case of a decreasing boundary. Further, we identify that
the integral test is related to a repulsion effect of the three-dimensional Bessel
process. Our proof gives some hope to be generalized to other processes such
as FBM.

Mathematics Subject Classification (2010). Primary 60G15; Secondary 60G18.

Keywords. Brownian motion; Bessel process; moving boundary; first exit time;
one-sided exit problem.

1. Introduction

This note is concerned with the first exit time distribution of Brownian motion
from a so-called moving boundary:

ℙ [𝐵𝑡 ≤ 𝑓(𝑡), 𝑡 ≤ 𝑇 ] , as 𝑇 →∞,

where 𝐵 is a Brownian motion and 𝑓 : [0,∞) → ℝ is the “moving boundary”. The
question we treat here is follows: for which functions 𝑓 does the above probability
have the same asymptotic rate as in the case 𝑓 ≡ 1? This problem was considered
by a number of authors [1–3, 5, 6, 8] and, besides being a classical problem for
Brownian motion, has some implications for the so-called KPP equation (see, e.g.,
[2]), for branching Brownian motion (see, e.g., [1]), and for other questions.

Frank Aurzada and Tanja Kramm were supported by the DFG Emmy Noether programme.

c⃝ 2013 Springer Basel
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The solution of the problem was given by Uchiyama [8], Gärtner [2], and
Novikov [5] independently and can be re-phrased as follows.

Theorem 1.1. Let 𝑓 : [0,∞) → ℝ be a continuously differentiable function with
𝑓(0) > 0 and ∫ ∞

1

∣𝑓(𝑡)∣ 𝑡−3/2 d𝑡 < ∞. (1.1)

Then

ℙ [𝐵𝑡 ≤ 𝑓(𝑡), 𝑡 ≤ 𝑇 ] ≈ 𝑇−1/2, as 𝑇 →∞. (1.2)

If 𝑓 is either convex or concave and the integral test (1.1) fails, 𝑇−1/2 is not the
right order in (1.2).

Here and in the following, we denote 𝑎(𝑡) ≈ 𝑏(𝑡) if 𝑐1𝑎(𝑡) ≤ 𝑏(𝑡) ≤ 𝑐2𝑎(𝑡) for
some constants 𝑐1, 𝑐2 and all 𝑡 sufficiently large.

Even though the above-mentioned problem has been solved by Uchiyama,
there have been various attempts to simplify the proof of this result and to give an
interpretation for the integral test (1.1). It is the purpose of this note (a) to give
a simplified proof of the theorem for the case of a decreasing boundary. Our proof
(b) also allows to interpret the integral test as coming from a repulsion effect of
the three-dimensional Bessel process and (c) gives hope to be generalized to other
processes, contrary to the existing proofs, which all make use of very specific known
identities for Brownian motion.

Let us assume for a moment that 𝑓 is monotone. Note that the sufficiency part
of the theorem can be decomposed into two parts: if 𝑓 ′ ≥ 0 one needs an upper
bound of the probability in question, while if 𝑓 ′ ≤ 0 one needs a lower bound.
The first case is much better studied; in particular, Novikov [6] gives a relatively
simple proof of the theorem in this case. To the contrary, in case of a decreasing
boundary he wonders that “it would be interesting to find an elementary proof of
this bound” ([6], p. 723). We shall provide such an elementary proof here.

The remainder of this note is structured as follows. Section 2 contains the
proof of the theorem, which now fits on half a page. We also outline the relation
to the Bessel process. In Section 3, we list some additional remarks.

2. Proof

We give a proof of the following theorem, which concerns the part of Theorem 1.1
related to the decreasing boundary.

Theorem 2.1. Let 𝑓 : [0,∞) → ℝ be a twice continuously differentiable function
with 𝑓(0) > 0.
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∙ Then for some absolute constant 0 < 𝑐 < ∞ we have

ℙ [𝐵𝑡 ≤ 𝑓(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ]

≥ ℙ [𝐵𝑡 ≤ 𝑓(0), 0 ≤ 𝑡 ≤ 𝑇 ]

⋅ exp

(
−1

2

∫ 𝑇

0

𝑓 ′(𝑠)2d𝑠− 𝑐

∫ 𝑇

0

∣𝑓 ′′(𝑠)∣√𝑠 d𝑠− 𝑐
√
𝑇 ∣𝑓 ′(𝑇 )∣

)
.

∙ In particular, if (1.1) holds and 𝑓 ′ ≤ 0, 𝑓 ′′ ≥ 0, for large enough arguments,
then we have

ℙ [𝐵𝑡 ≤ 𝑓(𝑡), 𝑡 ≤ 𝑇 ] ≈ 𝑇−1/2, as 𝑇 →∞. (2.1)

Proof. The Cameron-Martin-Girsanov theorem implies that

ℙ [𝐵𝑡 ≤ 𝑓(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ] = ℙ

[
𝐵𝑡 −

∫ 𝑡

0

𝑓 ′(𝑠)d𝑠 ≤ 𝑓(0), 0 ≤ 𝑡 ≤ 𝑇

]
= 𝔼

[
𝑒−

∫
𝑇
0
𝑓 ′(𝑠)d𝐵𝑠 1l{𝐵𝑡≤𝑓(0),0≤𝑡≤𝑇}

]
𝑒−

1
2

∫
𝑇
0
𝑓 ′(𝑠)2d𝑠.

(2.2)

Further, ∫ 𝑇

0

𝑓 ′(𝑠)d𝐵𝑠 = 𝐵𝑇 𝑓
′(𝑇 ) −

∫ 𝑇

0

𝐵𝑢𝑓
′′(𝑢)d𝑢,

so that the expectation in (2.2) equals

𝔼[𝑒
∫
𝑇
0
𝐵𝑢𝑓

′′(𝑢)d𝑢−𝐵𝑇 𝑓 ′(𝑇 ) 1l{𝐵𝑡≤𝑓(0),0≤𝑡≤𝑇}]
ℙ [𝐵𝑡 ≤ 𝑓(0), 0 ≤ 𝑡 ≤ 𝑇 ]

⋅ ℙ [𝐵𝑡 ≤ 𝑓(0), 0 ≤ 𝑡 ≤ 𝑇 ]

= 𝔼

[
𝑒
∫
𝑇
0
𝐵𝑢𝑓

′′(𝑢)d𝑢−𝐵𝑇 𝑓 ′(𝑇 )
∣∣∣∣ sup
0≤𝑡≤𝑇

𝐵𝑡 ≤ 𝑓(0)

]
⋅ ℙ [𝐵𝑡 ≤ 𝑓(0), 0 ≤ 𝑡 ≤ 𝑇 ] .

By Jensen’s inequality, the first term can be estimated from below by

exp

(∫ 𝑇

0

𝔼 [𝑌𝑢] 𝑓 ′′(𝑢)d𝑢 + 𝔼 [𝑌𝑇 ] (−𝑓 ′(𝑇 ))

)
, (2.3)

where we denote by 𝑌 the law of 𝐵 conditioned on sup0≤𝑡≤𝑇 𝐵𝑡 ≤ 𝑓(0). Since
𝔼[𝑌𝑢] ≤ 0 the functions 𝑓 ′′(𝑢) and −𝑓 ′(𝑇 ) in (2.3) can be estimated from above
by the absolute value; and hence the theorem is proved by applying Lemma 2.2
below. □

Lemma 2.2. Let 𝐵 be a Brownian motion and 𝑓(0) > 0 be some constant. Then
there is a constant 𝑐 > 0 such that

𝔼

[
𝐵𝑢

∣∣∣∣ sup
0≤𝑡≤𝑇

𝐵𝑡 ≤ 𝑓(0)

]
≥ −𝑐

√
𝑢, ∀0 ≤ 𝑢 ≤ 𝑇.
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In order to show this lemma one can use the joint distribution of maximum
over an interval and terminal value of Brownian motion, which is explicitly known
(see, e.g., [4], Prop. 2.8.1). However, we do not include this proof here. Let us
rather mention that the lemma can also be seen through a relation to the three-
dimensional Bessel process, as detailed now.

Recall that a (three-dimensional) Bessel process has three representations: it
can be defined firstly as Brownian motion conditioned to be positive for all times,
secondly as the solution of a certain stochastic differential equation (which gives
rise to Bessel processes of other dimensions), and thirdly as the modulus of a three-
dimensional Brownian motion, see, e.g., [4], Chapter 3.3.C. Let us denote by 𝑌 the
law of a Brownian motion 𝐵 under the condition sup0≤𝑡≤𝑇 𝐵𝑡 ≤ 𝑓(0). Then, from
the first representation, it is intuitively clear that one can find a Bessel process −𝑋
such that 𝑌 ≥ 𝑋 . Now, taking expectations and using the third representation of
−𝑋 (and Brownian motion scaling) it is clear that 𝔼𝑌𝑠 ≥ 𝔼𝑋𝑠 = −𝑐

√
𝑠. Thus, the

integral test is related to the repulsion of Brownian motion by the conditioning.

3. Further remarks

Remark 3.1. Clearly the value of 𝑓 in a finite time horizon [0, 𝑡0] does not matter
for the outcome of the problem, as we are interested in asymptotic results. Any
finite time horizon can be cut off with the help of Slepian’s inequality [7]:

ℙ [𝐵𝑡 ≤ 𝑓(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ] ≥ ℙ [𝐵𝑡 ≤ 𝑓(𝑡), 0 ≤ 𝑡 ≤ 𝑡0] ⋅ ℙ [𝐵𝑡 ≤ 𝑓(𝑡), 𝑡0 ≤ 𝑡 ≤ 𝑇 ] .

Remark 3.2. Let us comment on the regularity assumptions: it is clear that these
are of technical matter and of no importance to the question. Note that one can
easily modify a regular function 𝑓 such that either (1.1) fails or (1.2) does not
hold. The only way to avoid pathologies and to prove a general result is to as-
sume regularity. Note that the theorem is obviously true if we replace 𝑓 by an
irregular function 𝑔 /∈ 𝐶2(0,∞) with 𝑓 ≤ 𝑔. The same can be said about the
monotonicity/convexity assumption in the second part of Theorem 2.1.

Remark 3.3. It is easy to see that the integral test (1.1) implies∫ ∞

0

𝑓 ′′(𝑠)𝑠1/2 d𝑠 < ∞ and

∫ ∞

0

𝑓 ′(𝑠)2 d𝑠 < ∞

under the assumption of monotonicity and concavity.

Remark 3.4. Thanks to [6], Theorem 2, if (1.1) holds one does not only obtain
(2.1) but also the strong asymptotic order

lim
𝑇→∞

𝑇 1/2ℙ [𝐵𝑡 ≤ 𝑓(𝑡), 𝑡 ≤ 𝑇 ] =

√
2

𝜋
𝔼𝐵𝜏 ,

where 0 < 𝔼𝐵𝜏 = 𝔼𝑓(𝜏) < ∞ with 𝜏 := inf{𝑡 > 0 : 𝐵𝑡 = 𝑓(𝑡)}.
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Remark 3.5. Note that the technique of the main proof (Jensen’s inequality, Gir-
sanov’s theorem) does carry over to other processes. The crucial point is determin-
ing the repulsion effect of the conditioning in Lemma 2.2. The authors do not see
at the moment how a similar lemma can be established for processes other than
Brownian motion, e.g., FBM.
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Abstract. A new and simple proof of Lévy’s Equivalence Theorem in Skorohod
space is given. This result and its consequences complement and complete the
recent work of the authors [1].
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1. Introduction

Lévy’s Equivalence Theorem is a beautiful result in the classical probability the-
ory. It says that the three types of convergence, in distribution, in probability,
and almost surely, for partial sums of independent random variables are equiva-
lent. This theorem has a long history and many generalizations. In particular, Itô
and Nisio [5] established Lévy’s Equivalence Theorem for random variables taking
values in a separable Banach space, and added a new and powerful statement al-
lowing to deduce the almost sure convergence in the norm from the convergence of
one-dimensional projections. This condition was then applied to show the uniform
convergence in series decompositions of a Brownian motion and other continuous
Gaussian processes.

In order to investigate series decompositions of jump processes, such as càdlàg
Volterra processes driven by Lévy processes, it is natural to consider random series
in the space 𝐷[0, 1]. The convergence in the Skorohod as well as in the uniform
topologies are of interest. However, 𝐷[0, 1] is not separable under the uniform norm
and it is known that the Itô-Nisio Theorem does not hold in many non-separable
Banach spaces, see [1, Remark 2.4]. Nevertheless, for 𝐷([0, 1];𝐸), the space of
càdlàg functions from [0, 1] into a separable Banach space 𝐸 endowed with the
uniform topology, Basse-O’Connor and Rosiński [1, Theorem 2.1] showed that the
following version of the Itô-Nisio Theorem holds. In the following a random element
in 𝐷([0, 1];𝐸) is a random function taking values in 𝐷([0, 1];𝐸) measurable for
the cylindrical 𝜎-algebra.

c⃝ 2013 Springer Basel
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Theorem 1 (Basse-O’Connor, Rosiński). Let 𝑆𝑛 =
∑𝑛

𝑗=1𝑋𝑗 , 𝑛 ∈ �, where 𝑋𝑗

are independent random elements in 𝐷([0, 1];𝐸). Suppose there exist a random
element 𝑌 in 𝐷([0, 1];𝐸) and a dense subset 𝑇 of [0, 1] such that 1 ∈ 𝑇 and for
any 𝑡1, . . . , 𝑡𝑘 ∈ 𝑇

(𝑆𝑛(𝑡1), . . . , 𝑆𝑛(𝑡𝑘))
𝑑→ (𝑌 (𝑡1), . . . , 𝑌 (𝑡𝑘)) as 𝑛 →∞. (1)

Then there exists a random element 𝑆 in 𝐷([0, 1];𝐸) with the same distribution
as 𝑌 such that

(i) 𝑆𝑛 → 𝑆 a.s. uniformly on [0, 1], provided 𝑋𝑗 are symmetric.
(ii) If 𝑋𝑗 are not symmetric, then

𝑆𝑛 + 𝑦𝑛 → 𝑆 a.s. uniformly on [0, 1]. (2)

for some 𝑦𝑛 ∈ 𝐷([0, 1];𝐸) such that lim𝑛→∞ 𝑦𝑛(𝑡) = 0 for every 𝑡 ∈ 𝑇 .
(iii) Moreover, if the family {∣𝑆(𝑡)∣𝐸 : 𝑡 ∈ 𝑇 } is uniformly integrable and the

functions 𝑡 9→ 𝔼 (𝑋𝑛(𝑡)) belong to 𝐷([0, 1];𝐸), then one can take in (2) 𝑦𝑛
given by

𝑦𝑛(𝑡) = 𝔼 (𝑆(𝑡) − 𝑆𝑛(𝑡)) .

The question whether Lévy’s Equivalence Theorem is valid in 𝐷([0, 1];𝐸) un-
der the Skorohod topology is not addressed by this theorem (in the non-symmetric
case). It was answered affirmatively, and somewhat unexpectedly, by Kallenberg
[7, Theorem 1] in the case 𝐸 = �. However, Kallenberg’s proof is difficult to fol-
low; it is based on a deep and very convoluted analysis of jumps. The goal of the
present note is to give a simpler alternative proof of Lévy’s Equivalence Theorem
for 𝐷([0, 1];𝐸), under the Skorohod topology, as a consequence of our Theorem 1.
This result and its consequences complement and complete the recent work of the
authors [1].

Finally, notice that the validity of Lévy’s Equivalence Theorem in the Sko-
rohod space is far from being obvious. Typical methods used to prove such results
are based on Lévy-Ottaviani’s inequalities, which utilize convexity arguments, and
on a centering, see, e.g., [9]. The following two examples are discouraging to this
direction of a proof.

Example 2. Let 𝑋(𝑡) = 1[𝑈,1](𝑡), where the random variable 𝑈 has a continuous
distribution on [0, 1]. Then, for every convex compact set 𝐾 ⊂ 𝐷[0, 1], ℙ(𝑋 ∈
𝐾) = 0.

Indeed, let 𝐾 be a convex compact subset of 𝐷[0, 1] relative to Skorohod’s
𝐽1-topology. According to [3, Theorem 6], for every 𝜖 > 0 there exist 𝑛 ∈ � and
𝑡1, . . . , 𝑡𝑛 ∈ [0, 1] such that for each 𝑥 ∈ 𝐾 and 𝑡 ∈ [0, 1] ∖ {𝑡1, . . . , 𝑡𝑛}, we have
∣Δ𝑥(𝑡)∣ = ∣𝑥(𝑡) − 𝑥(𝑡−)∣ ≤ 𝜖. Taking 𝜖 = 1/2 we get

ℙ(𝑋 ∈ 𝐾) = ℙ(1[𝑈,1] ∈ 𝐾) ≤ ℙ(𝑈 ∈ {𝑡1, . . . , 𝑡𝑛}) = 0.

Another example addresses the discontinuity of addition in 𝐷[0, 1], which
affects centering arguments.
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Example 3. Let 𝑓𝑛 = 1[2−1−𝑛−1,1] and 𝑓 = 1[2−1,1]. Then 𝑓𝑛 → 𝑓 in 𝐷[0, 1] in the
Skorohod topology, but 𝑓𝑛 − 𝑓 ∕→ 0. In fact, 𝑓𝑛 − 𝑓 does not converge in 𝐷[0, 1].

1.1. Definitions and notations

(Ω,ℱ ,ℙ) is a complete probability space, (𝐸, ∣ ⋅ ∣𝐸) is a separable Banach space,
and 𝐷([0, 1];𝐸) is the space of càdlàg functions from [0, 1] into 𝐸. (Càdlàg means
right-continuous with left-hand limits.) The uniform norm of 𝑥 ∈ 𝐷([0, 1];𝐸) is
denoted ∥𝑥∥ = sup𝑡∈[0,1] ∣𝑥(𝑡)∣𝐸 and put Δ𝑥(𝑡) = 𝑥(𝑡)− 𝑥(𝑡−) for the size of jump

of 𝑥 at 𝑡. Skorohod’s 𝐽1-topology on 𝐷([0, 1];𝐸) is given by the following metric:

𝑑(𝑥, 𝑦) = inf
𝜆∈Λ

max
{

sup
𝑡∈[0,1]

∣𝑥(𝑡) − 𝑦 ∘ 𝜆(𝑡)∣𝐸 , sup
𝑡∈[0,1]

∣𝜆(𝑡) − 𝑡∣
}
,

where Λ is the class of strictly increasing, continuous mappings of [0, 1] onto itself
(see, e.g., [2, page 124]). The functionals 𝑤 and 𝑤′, given below, are important to
characterize compact sets in 𝐷([0, 1];𝐸). For all 𝑥 ∈ 𝐷([0, 1];𝐸) and 𝛿 > 0

𝑤(𝑥, 𝛿) = sup
𝑢,𝑡∈[0,1], ∣𝑢−𝑡∣≤𝛿

∣𝑥(𝑢) − 𝑥(𝑡)∣𝐸 ,

𝑤′(𝑥, 𝛿) = inf
(𝑡𝑖)𝑘𝑖=0

max
1≤𝑖≤𝑘

sup
𝑢,𝑡∈[𝑡𝑖−1,𝑡𝑖)

∣𝑥(𝑢) − 𝑥(𝑡)∣𝐸 ,

where the infimum is taken over all (𝑡𝑖)
𝑘
𝑖=0 with 𝑘 ∈ � and 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑘 =

1 such that 𝛿 ≤ 𝑡𝑖 − 𝑡𝑖−1 for all 𝑖 = 1, . . . , 𝑘. For fixed 𝛿, 𝑤(𝑥, 𝛿) and 𝑤′(𝑥, 𝛿) are
upper-semicontinuous in 𝑥 for the Skorohod topology, thus measurable, see [2, Sec.
12, Lemma 4]. It will be convenient for us to use the following characterization of
precompact sets in 𝐷([0, 1];𝐸). The closure of 𝐴 ⊂ 𝐷([0, 1];𝐸) is compact relative
to Skorohod’s 𝐽1-topology if and only if

(a) there exists (equivalently, for every) dense set 𝑇 ⊂ [0, 1], with 1 ∈ 𝑇 , such
that, for each 𝑡 ∈ 𝑇 , the set {𝑥(𝑡) : 𝑥 ∈ 𝐴} is precompact in 𝐸,

(b) lim
𝛿→0

sup
𝑥∈𝐴

𝑤′(𝑥, 𝛿) = 0.

In the case 𝐸 = �, this characterization is proved in the corollary that follows
Theorem 13.2 in [2]. In general, a proof of this criterion is a straightforward adap-
tion of arguments from [4, Ch. 3, Theorem 6.3], where a similar characterization is
given for 𝐷([0,∞);𝐸). Other useful criteria for precompactness in general Skoro-
hod spaces are given in [6]. For comprehensive information on 𝐷([0, 1];𝐸) we refer
to [2], and [8]. Integrals of 𝐸-valued functions are defined in the Bochner sense

and
𝑑→ and

𝑑
= denote, respectively, convergence and equality in distribution.

2. Lévy’s Equivalence Theorem for 𝑫([0, 1];𝑬)

The theorem reads as follows:

Theorem 4. Let 𝐸 be a separable Banach space. Let 𝑆𝑛 =
∑𝑛

𝑗=1𝑋𝑗 , 𝑛 ∈ �, where

𝑋𝑗 are independent random elements in 𝐷([0, 1];𝐸). Then the following condi-
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tions are equivalent for the convergence in 𝐷([0, 1];𝐸) equipped with the Skorohod
topology:

(i) {𝑆𝑛}𝑛∈� converges in distribution,
(ii) {𝑆𝑛}𝑛∈� converges in probability,
(iii) {𝑆𝑛}𝑛∈� converges almost surely.

Proof. We only need to prove that (i) implies (iii). Assume that {𝑆𝑛} converges
in distribution to some probability measure 𝜇 on 𝐷([0, 1];𝐸) and let

𝑇𝜇 := {𝑡 ∈ (0, 1) : 𝜇(𝑥 : Δ𝑥(𝑡) = 0) = 1} ∪ {0, 1}.
The set {𝑡 ∈ [0, 1] : 𝑡 /∈ 𝑇𝜇} is at most countable, cf. [2, p. 139]. Since for each
𝑡 ∈ 𝑇𝜇, lim𝑛 𝑆𝑛(𝑡) exists in distribution, {𝑆𝑛(𝑡)} converges a.s. in 𝐸 by Lévy’s
Equivalence Theorem. Therefore, to prove that {𝑆𝑛} converges a.s. in 𝐷([0, 1];𝐸)
it is enough to show that there exists a set Ω0 ⊂ Ω of probability one such that
for each 𝜔 ∈ Ω0, the set {𝑆𝑛(⋅, 𝜔)}𝑛∈� is precompact in 𝐷([0, 1];𝐸). In view of
(a)–(b) of Section 1.1, it suffices to show that for some dense set 𝑇 ⊂ [0, 1], with
1 ∈ 𝑇 , the following two conditions hold a.s.

for each 𝑡 ∈ 𝑇 the set {𝑆𝑛(𝑡)}𝑛∈� is precompact in 𝐸, (3)

lim
𝛿→0

lim sup
𝑛→∞

𝑤′(𝑆𝑛, 𝛿) = 0. (4)

Choose a countable set 𝑇 ⊂ 𝑇𝜇, dense in [0, 1] such that 1 ∈ 𝑇 . Since {𝑆𝑛(𝑡)}
converges a.s. for each 𝑡 ∈ 𝑇 , condition (3) is obviously satisfied. It remains to
prove (4).

By Theorem 1(ii) there exist {𝑦𝑛} ⊆ 𝐷([0, 1];𝐸) and a random element 𝑆 in
𝐷([0, 1];𝐸) such that 𝑆𝑛 + 𝑦𝑛 → 𝑆 a.s. in ∥ ⋅ ∥ and lim𝑛 𝑦𝑛(𝑡) = 0 for all 𝑡 ∈ 𝑇 .
Let 𝜖 > 0 be a fixed positive number and for all processes 𝑋 in 𝐷([0, 1];𝐸) define
the process 𝑋∗, depending on 𝑆 and 𝜖, by

𝑋∗(𝑡) = 𝑋(𝑡) −
∑

𝑣≤𝑡: ∣Δ𝑆(𝑣)∣𝐸>𝜖
Δ𝑋(𝑣), 𝑡 ∈ [0, 1].

For 𝛿 = 𝛿(𝜔) > 0 small enough we may choose random numbers 0 = 𝑡0 < 𝑡1(𝜔) <
𝑡2(𝜔) < ⋅ ⋅ ⋅ < 𝑡𝑘(𝜔) = 1 such that {𝑡 ∈ [0, 1] : ∣Δ𝑆(𝑡)∣𝐸 > 𝜖} ⊆ {𝑡1, . . . , 𝑡𝑘} and
𝛿 ≤ 𝑡𝑖 − 𝑡𝑖−1 ≤ 2𝛿 for all 𝑖 = 1, . . . , 𝑘. For all 𝑛 ∈ � we have

𝑤′(𝑆𝑛, 𝛿) ≤ max
1≤𝑖≤𝑘

sup
𝑢,𝑡∈[𝑡𝑖−1,𝑡𝑖)

∣𝑆𝑛(𝑢) − 𝑆𝑛(𝑡)∣𝐸
= max

1≤𝑖≤𝑘
sup

𝑢,𝑡∈[𝑡𝑖−1,𝑡𝑖)

∣𝑆∗𝑛(𝑢) − 𝑆∗𝑛(𝑡)∣𝐸 ≤ 𝑤(𝑆∗𝑛, 2𝛿)

≤ 𝑤(𝑆∗𝑛 + 𝑦∗𝑛, 2𝛿) + 𝑤(𝑦∗𝑛, 2𝛿) ≤ 𝑤(𝑆∗𝑛 + 𝑦∗𝑛, 2𝛿) + 2∥𝑦∗𝑛∥.
Notice that 𝑦∗𝑛 are stochastic processes while 𝑦𝑛 are non-random. By the uniform
convergence, 𝑆∗𝑛 + 𝑦∗𝑛 → 𝑆∗ a.s. in ∥ ⋅ ∥ and hence

lim sup
𝑛→∞

𝑤′(𝑆𝑛, 𝛿) ≤ 𝑤(𝑆∗, 2𝛿) + 2 lim sup
𝑛→∞

∥𝑦∗𝑛∥ a.s. (5)
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We infer that
lim sup
𝛿→0

𝑤(𝑆∗, 2𝛿) ≤ ∥Δ𝑆∗∥ ≤ 𝜖 a.s. (6)

where the second inequality follows by definition of 𝑆∗ and the first inequality
follows from the inequality 𝑤(𝑥, 𝛿) ≤ 2𝑤′(𝑥, 𝛿) + ∥Δ𝑥∥ for all 𝑥 ∈ 𝐷([0, 1];𝐸), see
[2, eq. (12.9)], and that lim𝛿→0 𝑤′(𝑥, 𝛿) = 0 for all 𝑥 ∈ 𝐷([0, 1];𝐸), see [2, Sec. 12,
Lemma 1].

To show (4) it is, according to (5)–(6), enough to show that

lim sup
𝑛→∞

∥𝑦∗𝑛∥ ≤ 𝜖 a.s. (7)

To this end we note that 𝑊𝑛 := (𝑆𝑛, 𝑆𝑛 + 𝑦𝑛) converges in distribution to (𝑆, 𝑆)
in 𝐷([0, 1];𝐸)2 equipped with the product topology; this follows by tightness of
{𝑊𝑛}𝑛∈� and since for all 𝑡 ∈ 𝑇

lim
𝑛→∞𝑆𝑛(𝑡) = lim

𝑛→∞
[
𝑆𝑛(𝑡) + 𝑦𝑛(𝑡)

]
= 𝑆(𝑡) a.s.

By Skorohod’s Representation Theorem, see [8, Theorem 6.7], there exist random
elements {𝑍𝑛} and 𝑍 in 𝐷([0, 1];𝐸)2 defined on some probability space (Ω′,ℱ ′,ℙ′)
such that 𝑍𝑛

𝑑
= 𝑊𝑛 for 𝑛 ∈ �, 𝑍

𝑑
= 𝑆 and lim𝑛 𝑍𝑛 = 𝑍 a.s. By measurability of

addition, 𝑍𝑛 = (𝑈𝑛, 𝑈𝑛 + 𝑦𝑛) and 𝑍 = (𝑈,𝑈) for some random elements 𝑈𝑛
𝑑
= 𝑆𝑛

and 𝑈
𝑑
= 𝑆 in 𝐷([0, 1];𝐸). That is, lim𝑛 𝑈𝑛 = 𝑈 a.s. and lim𝑛[𝑈𝑛 + 𝑦𝑛] = 𝑈 a.s. in

𝐷([0, 1];𝐸). By definition of the Skorohod topology we may choose two sequences
{𝜆1𝑛(⋅, 𝜔)}𝑛∈� and {𝜆2𝑛(⋅, 𝜔)}𝑛∈� in Λ (defined in Section 1.1) such that

∥𝑈𝑛 − 𝑈 ∘ 𝜆1𝑛∥ + ∥𝑈𝑛 + 𝑦𝑛 − 𝑈 ∘ 𝜆2𝑛∥ + ∥𝜆1𝑛 − 𝐼∥ + ∥𝜆2𝑛 − 𝐼∥ → 0 a.s.

where 𝐼(𝑡) = 𝑡 for all 𝑡 ∈ [0, 1], the first two ∥ ⋅ ∥ are the sup-norm on 𝐸 and the
last two ∥ ⋅ ∥ are the sup-norm on �. This implies that

∥𝑈 ∘ 𝜆1𝑛 − 𝑈 ∘ 𝜆2𝑛 + 𝑦𝑛∥ → 0 a.s.

For all processes 𝑋 in 𝐷([0, 1];𝐸) defined on (Ω′,ℱ ′,ℙ′) let 𝑋 ′ be the process,
depending on 𝑈 and 𝜖, given by

𝑋 ′(𝑡) = 𝑋(𝑡) −
∑

𝑣≤𝑡: ∣Δ𝑈(𝑣)∣𝐸>𝜖
Δ𝑋(𝑣).

Then
∥𝑈 ′ ∘ 𝜆1𝑛 − 𝑈 ′ ∘ 𝜆2𝑛 + 𝑦′𝑛∥ → 0 a.s.

which implies that with probability one

lim sup
𝑛→∞

∥𝑦′𝑛∥ ≤ lim sup
𝑛→∞

∥𝑈 ′ ∘ 𝜆1𝑛 − 𝑈 ′ ∘ 𝜆2𝑛∥ ≤ lim sup
𝑛→∞

𝑤(𝑈 ′, ∥𝜆1𝑛 − 𝜆2𝑛∥) ≤ 𝜖

in the last inequality we have used that ∥Δ𝑈 ′∥ ≤ 𝜖 and ∥𝜆1𝑛 − 𝜆2𝑛∥ → 0 a.s. This
shows (7) since {𝑦′𝑛}𝑛∈� and {𝑦∗𝑛}𝑛∈� has the same finite dimensional distribu-
tions. Since (4) follows from (7), the proof is complete. □

Corollary 5. Under the above notation, suppose also that 𝑋𝑗 are symmetric. Then
the following conditions are equivalent to (i)–(iii) of Theorem 4.
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(iv) {𝑆𝑛}𝑛∈� is tight,
(v) {𝑆𝑛}𝑛∈� converges uniformly a.s.

Proof. Assumption (iv) implies that for all 𝑡 ∈ [0, 1] ∩�, {𝑆𝑛(𝑡)}𝑛∈� is tight in
𝐸, see [4, Ch. 3, Theorem 7.2], so by symmetry we have that lim𝑛 𝑆𝑛(𝑡) exists
a.s. in 𝐸 cf. Itô and Nisio [5, Theorem 4.1]. This shows that {𝑆𝑛} has at most
one cluster point and proves the implication (iv)⇒(i). To prove (i)⇒(v) assume
that {𝑆𝑛} converges in distribution to some probability measure 𝜇 on 𝐷([0, 1];𝐸).
Condition (1) of Theorem 1 is satisfied for 𝑇 = {𝑡 ∈ (0, 1) : 𝜇(𝑥 : Δ𝑥(𝑡) = 0) =
1} ∪ {0, 1} which by Theorem 1(i) shows (v). □

The next corollary gives an alternative and simpler proof of Theorem 3 in [7]
and of Corollary 2.2 in [1]. The proof combines Theorems 1 and 4.

Corollary 6. If 𝑆𝑛
𝑑→ 𝑌 in the Skorohod 𝐽1-topology and 𝑌 does not have a jump

of non-random size and location, then 𝑆𝑛 converges a.s. uniformly on [0, 1].

Proof. By Theorem 4, 𝑆𝑛 → 𝑆 a.s in the Skorohod 𝐽1-topology, so that we may
choose a sequence {𝜆𝑛(⋅, 𝜔)}𝑛∈𝑁 ′ in Λ such that as 𝑛 → ∞,

sup
𝑠∈[0,1]

∣𝑆𝑛(𝑠) − 𝑆(𝜆𝑛(𝑠))∣𝐸 + sup
𝑠∈[0,1]

∣𝜆𝑛(𝑠) − 𝑠∣ → 0 a.s. (8)

Since condition (1) of Theorem 1 holds for

𝑇 = {𝑡 ∈ (0, 1) : ℙ(Δ𝑆(𝑡) = 0) = 1} ∪ {0, 1} ,
by part (ii) of that theorem there exists {𝑦𝑛} ⊆ 𝐷([0, 1];𝐸) such that ∥𝑆𝑛 + 𝑦𝑛 −
𝑆∥ → 0 a.s. Moreover, lim𝑛→∞ 𝑦𝑛(𝑡) = 0 for every 𝑡 ∈ 𝑇 . We want to show that
∥𝑦𝑛∥ → 0.

Assume to the contrary that lim sup𝑛→∞ ∥𝑦𝑛∥ > 𝜖 > 0. Then there exist a
subsequence 𝑁 ′ ⊆ �, and a monotone sequence {𝑡𝑛}𝑛∈𝑁 ′ ⊂ [0, 1] with 𝑡𝑛 → 𝑡
such that ∣𝑦𝑛(𝑡𝑛)∣𝐸 ≥ 𝜖 for all 𝑛 ∈ 𝑁 ′. Assume that 𝑡𝑛 ↑ 𝑡 (the case 𝑡𝑛 ↓ 𝑡 follows
similarly). From the uniform convergence we have that 𝑆𝑛(𝑡𝑛) + 𝑦𝑛(𝑡𝑛) → 𝑆(𝑡−)
a.s. (𝑛 →∞, 𝑛 ∈ 𝑁 ′).

Therefore, using (8),

∣𝑆(𝜆𝑛(𝑡𝑛)) − 𝑆(𝑡−) + 𝑦𝑛(𝑡𝑛)∣𝐸
≤ ∣𝑆(𝜆𝑛(𝑡𝑛)) − 𝑆𝑛(𝑡𝑛)∣𝐸 + ∣𝑆𝑛(𝑡𝑛) + 𝑦𝑛(𝑡𝑛) − 𝑆(𝑡−)∣𝐸 → 0 a.s.

(9)

Since 𝜆𝑛(𝑡𝑛) → 𝑡 a.s. as 𝑛 →∞, 𝑛 ∈ 𝑁 ′, the sequence {𝑆(𝜆𝑛(𝑡𝑛))}𝑛∈𝑁 ′ is relatively
compact in 𝐸 with at most two cluster points, 𝑆(𝑡) or 𝑆(𝑡−). By (9), the cluster
points for {𝑦𝑛(𝑡𝑛)}𝑛∈𝑁 ′ are −Δ𝑆(𝑡) or 0 and since ∣𝑦𝑛(𝑡𝑛)∣𝐸 ≥ 𝜖 we have that
𝑦𝑛(𝑡𝑛) → −Δ𝑆(𝑡) a.s., 𝑛 ∈ 𝑁 ′. This shows that Δ𝑆(𝑡) = 𝑐 a.s. for some non-
random 𝑐 ∈ 𝐸 ∖ {0}, which contradicts our assumption. □
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Department of Mathematics
University of Tennessee
Knoxville
TN 37996-1320, USA
e-mail: rosinski@math.utk.edu



Progress in Probability, Vol. 66, 227–243

Continuity Conditions for a Class
of Second-order Permanental Chaoses

Michael B. Marcus and Jay Rosen

Abstract. Just as permanental processes are generalizations of stochastic pro-
cesses that are the square of Gaussian processes we define permanental fields
as a generalization of certain second-order Gaussian chaos processes. A suffi-
cient condition for the continuity of permanental fields is obtained that gen-
eralizes an earlier result for second-order Gaussian chaoses.
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1. Introduction

An 𝛼-permanental process 𝜃 := {𝜃𝑥, 𝑥 ∈ 𝑆}, is a real-valued positive stochastic
process that is determined by a real-valued kernel Γ = {Γ(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑇 }, in the
sense that its finite joint distributions are given by

𝐸

(
exp

(
−

𝑛∑
𝑖=1

𝜆𝑖𝜃𝑥𝑖

))
=

1

∣𝐼 + ΛΓ∣𝛼 , (1.1)

where 𝐼 is the 𝑛× 𝑛 identity matrix, Λ is the 𝑛× 𝑛 diagonal matrix with entries
(𝜆1, . . . , 𝜆𝑛), Γ = {Γ(𝑥𝑖, 𝑥𝑗)}𝑛𝑖,𝑗=1 is an 𝑛× 𝑛 matrix, and 𝛼 > 0. It is shown in [8,

Proposition 4.2 ] that if 𝜃 := {𝜃𝑥, 𝑥 ∈ 𝑆} is an 𝛼-permanental process with kernel
Γ, then for any 𝑥1, . . . , 𝑥𝑛 ∈ 𝑆

𝐸

( 𝑛∏
𝑗=1

𝜃𝑥𝑗

)
=
∑
𝜋∈𝒫

𝛼𝑐(𝜋)
𝑛∏
𝑗=1

Γ(𝑥𝑗 , 𝑥𝜋(𝑗)), (1.2)
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where 𝒫 is the set of permutations 𝜋 of [1,n], and 𝑐(𝜋) is the number of cycles in
the permutation 𝜋.

If Γ is symmetric and positive definite and 𝛼 = 1/2, then 𝜃 = 𝐺2/2, where
𝐺 = {𝐺𝑥, 𝑥 ∈ 𝑆} is a mean zero Gaussian process with covariance Γ. However, in
the definition (1.1), Γ need not be symmetric or positive definite.

Under this definition

𝐸(𝜃𝑥𝜃𝑦) = 𝛼Γ(𝑥, 𝑦)Γ(𝑦, 𝑥) + 𝛼2Γ(𝑥, 𝑥)Γ(𝑦, 𝑦). (1.3)

We can simplify things if we consider the normalized, mean zero permanental
process

𝐻𝑥 = 𝜃𝑥 − 𝐸𝜃𝑥, 𝑥 ∈ 𝑆. (1.4)

We then have

𝐸

( 𝑛∏
𝑗=1

𝐻𝑥𝑗

)
=
∑
𝜋∈𝒫′

𝛼𝑐(𝜋)
𝑛∏
𝑗=1

Γ(𝑥𝑗 , 𝑥𝜋(𝑗)), (1.5)

where 𝒫 ′ is the set of permutations 𝜋 of [1,n] such that 𝜋(𝑗) ∕= 𝑗 for any 𝑗, and,
as above, 𝑐(𝜋) is the number of cycles in the permutation 𝜋. We now have

𝐸(𝐻𝑥𝐻𝑦) =
1

2
Γ(𝑥, 𝑦)Γ(𝑦, 𝑥). (1.6)

Consider the stochastic process

𝜓(𝜇𝑗) =

∫
𝐻𝑥 𝑑𝜇𝑗(𝑥) (1.7)

for some family of finite measures {𝜇𝑗} on 𝑆. The moments of {𝜓(𝜇𝑗)} are given
in (1.11) below. We notice that, depending on the measure, the kernel Γ does not
have to be finite on its diagonal in order for the right-hand side of (1.11) to be
finite.

Let 𝑆 be a locally compact metric space with countable base. Let ℬ(𝑆) denote
the Borel 𝜎-algebra, and let ℳ(𝑆) be the set of finite signed Radon measures on
ℬ(𝑆). When {𝜃𝑥, 𝑥 ∈ 𝑆} is the square of a Gaussian process and the kernel Γ,
necessarily symmetric and positive definite, and the measures 𝜇 in ℳ(𝑆), are
such that ∫ ∫

Γ2(𝑥, 𝑦) 𝑑𝜇(𝑥)𝑑𝜇(𝑦) < ∞, (1.8)

the integral in (1.7) is a second-order Gaussian chaos and well-known results give
good sufficient conditions for {𝜓(𝜇), 𝜇 ∈ ℳ(𝑆)} to be continuous on ℳ(𝑆) with
respect to the metric

𝑑(𝜇, 𝜈) =

(∫ ∫
Γ2(𝑥, 𝑦) 𝑑(𝜇(𝑥) − 𝜇(𝑦))𝑑(𝜈(𝑥) − 𝜈(𝑦))

)1/2
. (1.9)

This work is done in [5] in which we show that even when Γ(𝑥, 𝑥) = ∞, so that
𝐺𝑥 is not defined, as long as∫ ∫

Γ2(𝑥, 𝑦) 𝑑𝜇(𝑥)𝑑𝜇(𝑥) < ∞ ∀𝜇 ∈ ℳ(𝑆), (1.10)
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a second-order Gaussian chaos process {𝒢(𝜇), 𝜇 ∈ ℳ(𝑆)} exists, and the same
well-known results give good sufficient conditions for it to be continuous on ℳ(𝑆)
with respect to the metric in (1.9).

In this paper we consider the existence and continuity of a more general class
of processes than second-order Gaussian chaoses that arise when we generalize
(1.10) so that the kernel Γ, which may have Γ(𝑥, 𝑥) = ∞, need not be symmetric
or positive definite. Since these are not Gaussian chaos processes we don’t have
a convenient theory available to analyze them or even define them. Therefore, we
define them by giving their moments.

Definition 1.1. A map 𝜓 from a subset 𝒱 ⊆ ℳ(𝑆) to ℱ measurable functions on
a probability space (Ω,ℱ , 𝑃 ) is called an 𝛼-permanental field with kernel Γ if for
all 𝜈 ∈ 𝒱 , 𝐸𝜓(𝜈) = 0 and for all integers 𝑛 ≥ 2 and 𝜈1, . . . , 𝜈𝑛 ∈ 𝒱

𝐸

(∏𝑛

𝑗=1
𝜓(𝜈𝑗)

)
=
∑

𝜋∈𝒫′ 𝛼
𝑐(𝜋)

∫ ∏𝑛

𝑗=1
Γ(𝑥𝑗 , 𝑥𝜋(𝑗))

∏𝑛

𝑗=1
𝑑𝜈𝑗(𝑥𝑗), (1.11)

where 𝒫 ′ is the set of permutations 𝜋 of [1, 𝑛] such that 𝜋(𝑗) ∕= 𝑗 for any 𝑗, and
𝑐(𝜋) is the number of cycles in the permutation 𝜋.

In the course of our proofs we will see that random variables 𝜓(𝜈), 𝜈 ∈ 𝒱
satisfying (1.11) are exponentially integrable for a large class of 𝒱 and Γ, hence
their finite joint distributions are determined by their moments.

Because Definition 1.1 is satisfied by a second-order Gaussian chaos process
when Γ is symmetric and positive definite we refer to processes on 𝒱 with finite
joint distributions given by (1.11) as second-order permanental chaoses.

We obtain a sufficient condition for the continuity of {𝜓(𝜈); 𝜈 ∈ 𝒱} that
generalizes a very well-known result for the second-order Gaussian chaos, the case
when 𝑢(𝑥, 𝑦) is positive definite and symmetric. The result for the second-order
Gaussian chaos depends on the fact that

∥𝜓(𝜇) − 𝜓(𝜈)∥𝜌 ≤ 𝐶
(
𝐸(𝜓(𝜇) − 𝜓(𝜈))2

)1/2
(1.12)

=
𝐶

2

(∫ ∫
𝑢2(𝑥, 𝑦) 𝑑(𝜇(𝑥) − 𝜈(𝑥))𝑑(𝜇(𝑦) − 𝜈(𝑦))

)1/2
,

where ∥ ⋅ ∥𝜌 is the norm of the Orlicz space corresponding to exp ∣𝑥∣ − 1.
What we do in this paper is find metrics 𝜏(𝜇, 𝜈) that dominate ∥𝜓(𝜇)−𝜓(𝜈)∥𝜌

when 𝑢 is not symmetric. Then the same majorizing measure condition for the con-

tinuity of a second-order Gaussian chaos given in terms of
(
𝐸(𝜓(𝜇) − 𝜓(𝜈))2

)1/2
holds for the second-order permanental chaos with this norm replaced by 𝜏(𝜇, 𝜈).
(Details are given in Section 2.)

Here is a summary of our results:

Theorem 1.1. Let {𝜓(𝜇), 𝜇 ∈ 𝒱} be an 𝛼-permanental process with kernel 𝑢. Then
under any of the various conditions on 𝑢 listed in 1.–5.

∥𝜓(𝜇) − 𝜓(𝜈)∥𝜌 ≤ ∥𝜇− 𝜈∥𝑖, 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 (1.13)

for all 𝜇, 𝜈 ∈ 𝒱.
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1. The kernel 𝑢(𝑥, 𝑦) is defined on 𝑅𝑚 ×𝑅𝑚 and is a function of 𝑦 − 𝑥.

∥𝜇− 𝜈∥𝑎 = 𝐶1

(∫ ∫ (∫
𝑒𝑖(𝑥−𝑦)𝑞∣𝑢̂(𝑞)∣ 𝑑𝑞

)2
𝑑((𝜇− 𝜈)(𝑥)) 𝑑((𝜇 − 𝜈)(𝑦))

)1/2

= 𝐶′
1

(∫
∣𝜇̂(𝑦) − 𝜈(𝑦)∣2𝛾(𝑥) 𝑑𝑥

)1/2
, (1.14)

where 𝐶1 is a constant that depends only on 𝛼. (Similarly for 𝐶𝑖, 𝑖 = 2, . . . , 5
and 𝐶′

3.)

𝛾(𝑥) =

∫
∣𝑢̂(𝑥− 𝑦)∣ ∣𝑢̂(𝑦)∣ 𝑑𝑦 (1.15)

and 𝑢 and 𝜈 denote the Fourier transforms of 𝑢 and 𝜈.
2. The kernel 𝑢 is an 𝛼-potential density of a Markov process, i.e.,

𝑢(𝑥, 𝑦) =

∫ ∞

0

𝑒−𝛼𝑠𝑝𝑠(𝑥, 𝑦) 𝑑𝑠, 𝛼 ≥ 0 (1.16)

where 𝑝𝑠 is a transition probability density.

∥𝜇− 𝜈∥𝑏 =

(∫ ∫
Φ(𝑥, 𝑦) 𝑑(𝜇(𝑥) − 𝜈(𝑥)) 𝑑(𝜇(𝑦) − 𝜈(𝑦))

)1/2
, (1.17)

where

Φ(𝑥, 𝑦) = Θ𝑙(𝑥, 𝑦)Θ𝑟(𝑥, 𝑦) (1.18)

and

Θ𝑙(𝑥, 𝑦) =

∫ ∞

0

𝑒−𝛼𝑠
∫

𝑝𝑠/2(𝑥, 𝑢)𝑝𝑠/2(𝑦, 𝑢) 𝑑𝑢 𝑑𝑠,

Θ𝑟(𝑥, 𝑦) =

∫ ∞

0

𝑒−𝛼𝑠
∫

𝑝𝑠/2(𝑢, 𝑥)𝑝𝑠/2(𝑢, 𝑦) 𝑑𝑢 𝑑𝑠.

(1.19)

3. The kernel

𝑢(𝑥, 𝑦) =

∫
(1 − 𝑒𝑖𝜆𝑥)(1 − 𝑒−𝑖𝜆𝑦)

𝜙(𝜆)
𝑑𝜆, (1.20)

where 𝜙 is a Fourier transform.

∥𝜇− 𝜈∥𝑐 ≤
(∫ ∫

1

∣𝜙(𝑟)𝜙(𝑞)∣
∣∣∣∣∫ (1 − 𝑒−𝑖𝑟𝑧)(1 − 𝑒𝑖𝑞𝑧) 𝑑(𝜇− 𝜈)(𝑧)

∣∣∣∣2 𝑑𝑟 𝑑𝑞

)1/2

=

(∫ ∫ (∫
(1 − 𝑒𝑖𝜆𝑥)(1 − 𝑒−𝑖𝜆𝑦)

∣𝜙(𝜆)∣ 𝑑𝜆

)2
𝑑(𝜇− 𝜈)(𝑥) 𝑑(𝜇 − 𝜈)(𝑦)

)1/2
(1.21)

4. The kernel 𝑢 satisfies the conditions in 1 and is symmetric and 𝑢 is positive,
in 2 and the transition probabilities are symmetric, or in 3 and 𝜙 is real and
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positive.

∥𝜇− 𝜈∥𝑖 = 𝐶4

(∫ ∫
𝑢2(𝑥, 𝑦) 𝑑(𝜇(𝑥) − 𝜈(𝑥)) 𝑑(𝜇(𝑦) − 𝜈(𝑦))

)1/2
= 𝐶′

4

(
𝐸(𝜓(𝜇) − 𝜓(𝜈))2

)1/2
,

(1.22)

where 𝑖 = 𝑎, 𝑏, or 𝑐 depending on the case considered.
5. No condition on the kernel 𝑢(𝑥, 𝑦), which is a function on 𝑆 × 𝑆.

∥𝜇− 𝜈∥𝑒 =

(∫ ∫
𝑢2(𝑥, 𝑦) 𝑑(∣𝜇 − 𝜈∣(𝑥)) 𝑑(∣𝜇 − 𝜈∣(𝑦))

)1/2
(1.23)

where ∣𝜈∣ is the total variation of the measure 𝜈.

Using Theorems 1.1 and 2.1, below, we obtain continuity conditions for 𝛼-
permanental fields. However, the question remains, how do we know that there
are any 𝛼-permanental fields which may have Γ(𝑥, 𝑥) = ∞, other than second-
order Gaussian chaoses, the case when the kernel 𝑢 is symmetric and positive
definite and 𝛼 = 1/2. In [3], using loop soups, we show that permanental fields
with kernels 𝑢 exist. They can be associated with continuous additive functionals
of Markov processes with 0-potential densities 𝑢. In that work we develop an
Isomorphism Theorem, generalizing that of Dynkin, [5], connecting the continuous
additive functionals 𝐿 = {𝐿𝜈𝑡 , (𝜈, 𝑡) ∈ 𝒱 × 𝑅1+} of a Markov process 𝑋 with the
associated permanental field Ψ = {𝜓(𝜈), 𝜈 ∈ 𝒱}. In particular, the Isomorphism
Theorem can be used to show that if Ψ is almost surely continuous then so is
𝐿. This was our motivation for finding sufficient conditions for the continuity of
{𝜓(𝜈); 𝜈 ∈ 𝒱}.

The Markov processes we consider are transient Borel right processes with
state space 𝑆. These processes have jointly measurable transition densities 𝑝𝑡(𝑥, 𝑦)
with respect to some 𝜎-finite measure 𝑚 on 𝑆. An example is given by Lévy
processes on 𝑅𝑚.

Let 𝑌 = {𝑌𝑡, 𝑡 ∈ 𝑅+} be a Lévy process in 𝑅𝑚 with characteristic function

𝐸𝑒𝑖𝜆𝑌 (𝑡) = 𝑒−𝜙(𝜆)𝑡. (1.24)

We refer to 𝜙 as the characteristic exponent of 𝑌 . Consider a transient Markov
process 𝑋 = {𝑋𝑡, 𝑡 ∈ 𝑅+} that is 𝑌 killed at 𝜉𝛽 , an independent exponential time
with mean 1/𝛽 > 0. Then

𝑢𝛽(𝑥, 𝑦) =

∫ ∞

0

𝑒−𝛽𝑡𝑝𝑡(𝑥, 𝑦) 𝑑𝑡 =

∫
𝑒𝑖𝜆(𝑥−𝑦)

𝛽 + 𝜙(𝜆)
𝑑𝜆 =: 𝑢𝛽(𝑥− 𝑦) (1.25)

is the zero potential density of 𝑋 . It is kernels such as these that we consider in
Theorem 1.1, 1.

In Theorem 1.1, 2, we consider the 0-potential densities 𝑢 of Markov pro-
cesses, when 𝑢 is not a function of 𝑥− 𝑦.

When 𝑢 is positive and symmetric and the kernel in Theorem 1.1, 3 satisfies
(1.10) it defines a second-order Gaussian chaos. If the kernel is finite it is the
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covariance of a Gaussian process on 𝑅𝑚 with stationary increments, [6, page 236]
and the 0-potential density of a transient Markov process, [4, Lemma 5.1]. In
these cases the 𝛼 permanental processes exist and when 𝛼 ∕= 1/2 they are not the
squares of Gaussian processes. We do not know whether the kernel in Theorem 1.1,
3 defines 𝛼-permanental fields that are not second-order Gaussian chaoses when
the kernel is not finite on the diagonal. It would be interesting to see if they do,
since we then would have a strong condition for the fields to be continuous.

In Section 2 we state the well-know sufficient condition for continuity that we
refer to above. The bulk of the paper, Section 3, is devoted to proving Theorem
1.1. An example is given in Corollary 3.2.

Lastly, in Section 4, we give conditions under which

∥𝜇− 𝜈∥𝑎 ≤ 𝐶
(
𝐸(𝜓(𝜇) − 𝜓(𝜈))2

)1/2
, (1.26)

when 𝑢 is not symmetric, a result that holds for second-order Gaussian chaoses.

2. Continuity

We mention the well-known sufficient condition for continuity of stochastic process
that can be used with the metrics given in Theorem 1.1; see, e.g., [7, Section 3].

Let 𝜌(𝑥) = exp(𝑥) − 1 and 𝐿𝜌(Ω,ℱ , 𝑃 ) denote the set of random variables
𝜉 : Ω → 𝑅1 such that 𝐸𝜌 (∣𝜉∣/𝑐) < ∞ for some 𝑐 > 0. 𝐿𝜌(Ω,ℱ , 𝑃 ) is a Banach
space with norm given by

∥𝜉∥𝜌 = inf {𝑐 > 0 : 𝐸𝜌 (∣𝜉∣/𝑐) ≤ 1} . (2.1)

Let (𝑇, 𝜏) be a metric or pseudometric space. Let 𝐵𝜏 (𝑡, 𝑢) denote the closed
ball in (𝑇, 𝜏) with radius 𝑢 and center 𝑡. For any probability measure 𝜇 on (𝑇, 𝜏)
we define

𝐽𝑇,𝜏,𝜇(𝑎) = sup
𝑡∈𝑇

∫ 𝑎

0

log
1

𝜇(𝐵𝜏 (𝑡, 𝑢))
𝑑𝑢. (2.2)

The following basic continuity theorem gives sufficient conditions for continuity of
permanental fields.

Theorem 2.1. Let 𝑋 = {𝑋(𝑡) : 𝑡 ∈ 𝑇 } be a stochastic process such that 𝑋(𝑡, 𝜔) :
𝑇 × Ω 9→ [−∞,∞] is 𝒜 × ℱ measurable for some 𝜎-algebra 𝒜 on 𝑇 . Suppose
𝑋(𝑡) ∈ 𝐿𝜌(Ω,ℱ , 𝑃 ) and there exists a metric 𝜏 on 𝑇 such that

∥𝑋(𝑠)−𝑋(𝑡)∥𝜌 ≤ 𝜏(𝑠, 𝑡). (2.3)

Suppose furthermore that (𝑇, 𝜏) has finite diameter 𝐷, and that there exists a
probability measure 𝜇 on (𝑇,𝒜) such that

𝐽𝑇,𝜏,𝜇(𝐷) < ∞. (2.4)

Then there exists a version 𝑋 ′ = {𝑋 ′(𝑡), 𝑡 ∈ 𝑇 } of 𝑋 such that

𝐸 sup
𝑡∈𝑇

𝑋 ′(𝑡) ≤ 𝐶 𝐽𝑇,𝜏,𝜇(𝐷), (2.5)
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for some 𝐶 < ∞. Furthermore for all 0 < 𝛿 ≤ 𝐷,

sup
𝑠,𝑡∈𝑇

𝜏(𝑠,𝑡)≤𝛿
∣𝑋 ′(𝑠, 𝜔) −𝑋 ′(𝑡, 𝜔)∣ ≤ 2𝑍(𝜔)𝐽𝑇,𝜏,𝜇(𝛿), (2.6)

almost surely, where

𝑍(𝜔) := inf

{
𝛼 > 0 :

∫
𝑇

𝜌(𝛼−1∣𝑋(𝑡, 𝜔)∣)𝜇(𝑑𝑡) ≤ 1

}
(2.7)

and ∥𝑍∥𝜌 ≤ 𝐾, where 𝐾 is a constant.
In particular, if

lim
𝛿→0

𝐽𝑇,𝜏,𝜇(𝛿) = 0, (2.8)

𝑋 ′ is uniformly continuous on (𝑇, 𝜏) almost surely.

3. Proof of Theorem 1.1

We prove Theorem 1.1 and also present some related material.
The following immediate consequence of Definition 1.1 enables us to simplify

the notation.

Lemma 3.1. Let {𝜓(𝜈); 𝜈 ∈ℳ(𝑆)} be a permanental field. Then

𝐸(𝜓𝑛(𝜇− 𝜃)) = 𝐸 (𝜓(𝜇) − 𝜓(𝜃))
𝑛
. (3.1)

Therefore to estimate 𝐸(𝜓𝑛(𝜇− 𝜃)) it suffices to consider 𝐸(𝜓𝑛(𝜈)) keeping
in mind that the measure 𝜈 is generally not a positive measure.

We have the following general upper bounds for the terms in Definition 1.1,
which we use in several contexts in this section:

Lemma 3.2. Suppose that the kernel 𝑢(𝑥, 𝑦) has the from

𝑢(𝑥, 𝑦) =

∫
𝑓(𝑥, 𝜆)𝑔(𝑦, 𝜆)ℎ(𝜆) 𝑑𝜆, (3.2)

where 𝜆 ∈ 𝑅𝑛, for some 𝑛 ≥ 1. (Recall that 𝑥 ∈ 𝑅𝑚.) Let

𝐼𝑛(𝑢, {𝜈𝑗}𝑛𝑗=1) =

∣∣∣∣∣∣
∫

𝑢(𝑦1, 𝑦2) ⋅ ⋅ ⋅𝑢(𝑦𝑛−1, 𝑦𝑛)𝑢(𝑦𝑛, 𝑦1)

𝑛∏
𝑗=1

𝑑𝜈𝑗(𝑦𝑗)

∣∣∣∣∣∣ . (3.3)

and set

𝐻𝑗(𝑞, 𝑟) =

∫
𝑓(𝑧, 𝑞)𝑔(𝑧, 𝑟) 𝑑𝜈𝑗(𝑧). (3.4)

Then

𝐼𝑛(𝑢, {𝜈𝑗}𝑛𝑗=1) ≤
𝑛∏
𝑗=1

(∫ ∫
∣𝐻𝑗(𝑟, 𝑞)∣2∣ℎ(𝑟)∣ 𝑑𝑟∣ℎ(𝑞)∣ 𝑑𝑞

)1/2

=

𝑛∏
𝑗=1

(∫ ∫
𝑅(𝑧1, 𝑧2)𝑇 (𝑧1, 𝑧2) 𝑑𝜈𝑗(𝑧1) 𝑑𝜈𝑗(𝑧2)

)1/2
,

(3.5)
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where

𝑅(𝑧1, 𝑧2) =

∫
𝑓(𝑧1, 𝑞)𝑓(𝑧2, 𝑞)∣ℎ(𝑞)∣ 𝑑𝑞, 𝑇 (𝑧1, 𝑧2) =

∫
𝑔(𝑧1, 𝑟)𝑔(𝑧2, 𝑟)∣ℎ(𝑟)∣ 𝑑𝑟.

(3.6)

Proof. We have
𝑛∏
𝑗=1

𝑢(𝑧𝑗 , 𝑧𝑗+1) =

∫
. . .

∫ 𝑛∏
𝑗=1

𝑓(𝑧𝑗 , 𝜆𝑗)𝑔(𝑧𝑗+1, 𝜆𝑗)

𝑛∏
𝑗=1

ℎ(𝜆𝑗) 𝑑𝜆𝑗 , (3.7)

in which we set 𝑧𝑛+1 = 𝑧1. We write
𝑛∏
𝑗=1

𝑓(𝑧𝑗 , 𝜆𝑗)𝑔(𝑧𝑗+1, 𝜆𝑗) =

𝑛∏
𝑗=1

𝑓(𝑧𝑗, 𝜆𝑗)𝑔(𝑧𝑗 , 𝜆𝑗−1) (3.8)

where 𝜆0 = 𝜆𝑛. Using this we see that

𝐼𝑛(𝑢, {𝜈𝑗}𝑛𝑗=1) =

∣∣∣∣∣
∫ ⎛⎝ 𝑛∏

𝑗=1

∫
𝑓(𝑧𝑗 , 𝜆𝑗)𝑔(𝑧𝑗 , 𝜆𝑗−1) 𝑑𝜈𝑗(𝑧𝑗)

⎞⎠ 𝑛∏
𝑗=1

ℎ(𝜆𝑗) 𝑑𝜆𝑗

∣∣∣∣∣
=

∣∣∣∣∣
∫ 𝑛∏

𝑗=1

𝐻𝑗(𝜆𝑗 , 𝜆𝑗−1)
𝑛∏
𝑗=1

ℎ(𝜆𝑗) 𝑑𝜆𝑗

∣∣∣∣∣ (3.9)

≤
𝑛∏
𝑗=1

(∫ ∫
∣𝐻𝑗(𝑠, 𝑡)∣2∣ℎ(𝑠)∣ 𝑑𝑠∣ℎ(𝑡)∣ 𝑑𝑡

)1/2
.

The last inequality in (3.9) in a consequence of multiple applications of the Cauchy-
Schwarz inequality as follows:∣∣∣∣∣

∫ 𝑛∏
𝑗=1

𝐻𝑗(𝜆𝑗 , 𝜆𝑗−1)
𝑛∏
𝑗=1

ℎ(𝜆𝑗) 𝑑𝜆𝑗

∣∣∣∣∣ (3.10)

≤
∫ (∫

∣𝐻2(𝜆2, 𝜆1)∣2∣ℎ(𝜆1)∣ 𝑑𝜆1
)1/2 (∫

∣𝐻1(𝜆1, 𝜆𝑛)∣2∣ℎ(𝜆1)∣ 𝑑𝜆1
)1/2

∣𝐻3(𝜆3, 𝜆2)∣ ⋅ ⋅ ⋅ ∣𝐻𝑛(𝜆𝑛, 𝜆𝑛−1)∣
𝑛∏
𝑗=2

∣ℎ(𝜆𝑗)∣ 𝑑𝜆𝑗 .

We rearrange the terms so that the right-hand side of (3.10) is equal to∫ (∫ (∫
∣𝐻2(𝜆2, 𝜆1)∣2∣ℎ(𝜆1)∣ 𝑑𝜆1

)1/2
∣𝐻3(𝜆3, 𝜆2)∣∣ℎ(𝜆2)∣ 𝑑𝜆2

)
(∫

∣𝐻1(𝜆1, 𝜆𝑛)∣2∣ℎ(𝜆1)∣ 𝑑𝜆1
)1/2

∣𝐻4(𝜆4, 𝜆3)∣

⋅ ⋅ ⋅ ∣𝐻𝑛(𝜆𝑛, 𝜆𝑛−1)∣
𝑛∏
𝑗=3

∣ℎ(𝜆𝑗)∣ 𝑑𝜆𝑗 .
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Applying the Cauchy-Schwarz inequality again we see that this term is

≤
(∫ ∫

∣𝐻2(𝜆2, 𝜆1)∣2∣ℎ(𝜆1)∣ 𝑑𝜆1∣ℎ(𝜆2)∣ 𝑑𝜆2
)1/2

∫ (∫
∣𝐻3(𝜆3, 𝜆2)∣2∣ℎ(𝜆2)∣ 𝑑𝜆2

)1/2(∫
∣𝐻1(𝜆1, 𝜆𝑛∣2∣ℎ(𝜆1)∣ 𝑑𝜆1

)1/2
∣𝐻4(𝜆4, 𝜆3)∣ ⋅ ⋅ ⋅ ∣𝐻𝑛(𝜆𝑛, 𝜆𝑛−1)∣

𝑛∏
𝑗=3

∣ℎ(𝜆𝑗)∣ 𝑑𝜆𝑗 .

Therefore the left-hand side of (3.10)

≤
𝑛∏
𝑗=1

(∫ ∫
∣𝐻𝑗(𝜆𝑗 , 𝜆𝑗−1)∣2∣ℎ(𝜆𝑗)∣ 𝑑𝜆𝑗 ∣ℎ(𝜆𝑗−1)∣ 𝑑𝜆𝑗−1

)1/2
, (3.11)

in which, as above, 𝜆0 = 𝜆𝑛. This is the same as the first line of (3.5).

To get the second line of (3.5) we interchange the order of integration in
(3.11). We have

∣𝐻𝑗(𝜆𝑗 , 𝜆𝑗−1)∣2 =

∫
𝑓(𝑧1, 𝜆𝑗)𝑔(𝑧1, 𝜆𝑗−1) 𝑑𝜈𝑗(𝑧1)

∫
𝑓(𝑧2, 𝜆𝑗)𝑔(𝑧2, 𝜆𝑗−1) 𝑑𝜈𝑗(𝑧2).

(3.12)
Interchanging the order of integration, and integrating first with respect to 𝜆𝑗 and
𝜆𝑗−1, we see that ∫ ∫

∣𝐻𝑗(𝜆𝑗 , 𝜆𝑗−1)∣2∣ℎ(𝜆𝑗)∣ 𝑑𝜆𝑗 ∣ℎ(𝜆𝑗−1)∣ 𝑑𝜆𝑗−1 (3.13)

=

∫ ∫
𝑅(𝑧1, 𝑧2)𝑇 (𝑧1, 𝑧2) 𝑑𝜈𝑗(𝑧1) 𝑑𝜈𝑗(𝑧2). □

Corollary 3.1. Let {𝜓(𝜈); 𝜈 ∈ℳ(𝑆)} be a permanental field with kernel 𝑢 that can
be represented as in (3.2). Let

𝜏𝑢(𝜇, 𝜈) :=

(∫ ∫
𝑅(𝑧1, 𝑧2)𝑇 (𝑧1, 𝑧2) 𝑑(𝜇(𝑧1) − 𝜈(𝑧1)) 𝑑(𝜇(𝑧2) − 𝜈(𝑧2))

)1/2
=

(∫ ∫
∣𝐻(𝑟, 𝑞;𝜇, 𝜈)∣2 ∣ℎ(𝑟)∣ 𝑑𝑟 ∣ℎ(𝑞)∣ 𝑑𝑞

)1/2
(3.14)

for 𝑅 and 𝑇 as given in Lemma 3.2 and

𝐻(𝑞, 𝑟;𝜇, 𝜈) =

∫
𝑓(𝑧, 𝑞)𝑔(𝑧, 𝑟) 𝑑(𝜇(𝑧) − 𝜈(𝑧)). (3.15)

Then

∥𝜓(𝜇) − 𝜓(𝜈)∥𝜌 ≤ 2(𝛼 ∨ 1) 𝜏𝑢(𝜇, 𝜈). (3.16)

Moreover, if 𝑅 and 𝑇 are real valued 𝜏𝑢(𝜇, 𝜈) is a metric on ℳ(𝑆).
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Proof. Consider

𝛼𝑐(𝜋)
∫ 𝑛∏

𝑗=1

𝑢(𝑥𝑗 , 𝑥𝜋(𝑗))
𝑛∏
𝑗=1

𝑑𝜈(𝑥𝑗) (3.17)

for a fixed permutation 𝜋 ∈ 𝒫 ′. Suppose it has 𝑝 cycles of lengths 𝑙1, . . . , 𝑙𝑝. Label
the elements in cycle 𝑞 as 𝑞1, . . . , 𝑞𝑙𝑞 . Consider∫ 𝑙𝑞∏

𝑗=1

𝑢(𝑥𝑗 , 𝑥𝑗+1)

𝑙𝑞∏
𝑗=1

𝑑𝜈(𝑥𝑗), (3.18)

where 𝑙𝑞 + 1 = 1. By Lemma 3.2,∫ 𝑙𝑞∏
𝑗=1

𝑢(𝑥𝑗 , 𝑥𝑗+1)

𝑙𝑞∏
𝑗=1

𝑑𝜈(𝑥𝑗) ≤
𝑙𝑞∏
𝑗=1

(∫ ∫
𝑅(𝑥, 𝑦)𝑇 (𝑥, 𝑦) 𝑑𝜈(𝑥) 𝑑𝜈(𝑦)

)𝑙𝑞/2
.

(3.19)
Therefore (3.17)

≤ (𝛼 ∨ 1)𝑛
𝑛∏
𝑗=1

(∫ ∫
𝑅(𝑥, 𝑦)𝑇 (𝑥, 𝑦) 𝑑𝜈(𝑥) 𝑑𝜈(𝑦)

)𝑛/2
, (3.20)

since
∑𝑙

𝑗=1 𝑙𝑞 = 𝑛.

It now follows from Definition 1.1 that

𝐸(𝜓(𝜇) − 𝜓(𝜈))𝑛 ≤ (𝑛− 1)! (𝛼 ∨ 1)𝑛 (𝜏𝑢(𝜇, 𝜈))
𝑛/2

. (3.21)

When 𝑛 is even the left-hand side of (3.21) is equal to 𝐸∣𝜓(𝜇) − 𝜓(𝜈)∣𝑛. When
𝑛 is odd by Hölders inequality 𝐸∣𝜓(𝜇) − 𝜓(𝜈)∣𝑛−1 ≤ (𝐸∣𝜓(𝜇) − 𝜓(𝜈)∣𝑛)𝑛/(𝑛−1).
Therefore the left-hand side of (3.21) can be replaced by 𝐸∣𝜓(𝜇) − 𝜓(𝜈)∣𝑛 for all
𝑛. Consequently

𝐸

(
∣𝜓(𝜇) − 𝜓(𝜈)∣

2(𝛼 ∨ 1) (𝜏𝑢(𝜇, 𝜈))1/2

)𝑛
≤ 1

2𝑛
, (3.22)

which implies (3.16).
When 𝑅(𝑧1, 𝑧2) and 𝑇 (𝑧1, 𝑧2) are real valued they are symmetric. If they are

finite on their diagonals they define Gaussian processes, ℛ = {ℛ(𝑧), 𝑧 ∈ 𝑆} and
𝒯 = {𝒯 (𝑧), 𝑧 ∈ 𝑆}. Take ℛ and 𝒯 to be independent and for 𝜈 ∈ ℳ(𝑆) consider
the second-order Gaussian chaos

𝒢(𝜈) =

∫
ℛ(𝑧)𝒯 (𝑧) 𝑑𝜈(𝑧). (3.23)

We have (
𝐸(𝒢(𝜇) − 𝒢(𝜈))2

)1/2
= 𝜏𝑢(𝜇, 𝜈). (3.24)

Therefore 𝜏𝑢(𝜇, 𝜈) is a metric on ℳ(𝑆). However, even when 𝑅(𝑧1, 𝑧2) and 𝑇 (𝑧1, 𝑧2)
are infinite on their diagonals, following the argument in the beginning of Section 2,
[5] we can construct a second-order Gaussian chaos for which (3.24) holds. Clearly,
𝜏𝑢(𝜇, 𝜈) is a metric on ℳ(𝑆). □



Continuity Conditions for a Class of Permanental Chaoses 237

Remark 3.1. Obviously if (2.4) holds with the metric 𝜏𝑢 the permanental field 𝜓 is
continuous. Therefore, for a permanental field with kernel 𝑢 that is not symmetric,
in some sense, (3.23), when 𝑅(𝑧1, 𝑧2) and 𝑇 (𝑧1, 𝑧2) are real valued, is a dominating
second-order Gaussian chaos.

This second-order Gaussian chaos is not the type that is described by (1.11).
However, by the Cauchy-Schwartz inequality

𝜏2𝑢(𝜇, 𝜈) ≤
(∫ ∫

𝑅2(𝑧1, 𝑧2) 𝑑(𝜇(𝑧1) − 𝜈(𝑧1)) 𝑑(𝜇(𝑧2) − 𝜈(𝑧2))

)1/2
⋅
(∫ ∫

𝑇 2(𝑧1, 𝑧2) 𝑑(𝜇(𝑧1) − 𝜈(𝑧1)) 𝑑(𝜇(𝑧2) − 𝜈(𝑧2))

)1/2
.

(3.25)

The two terms on the right in (3.25) are the 𝐿2 metrics of second-order Gauss-
ian chaoses with kernels 𝑅(𝑧1, 𝑧2) and 𝑇 (𝑧1, 𝑧2). Call these metrics 𝑑1(𝜇, 𝜈) and
𝑑2(𝜇, 𝜈). We then have that

𝜏𝑢(𝜇, 𝜈) ≤ 𝑑1(𝜇, 𝜈) + 𝑑2(𝜇, 𝜈)

2
. (3.26)

We now use Lemma 3.2 and Corollary 3.1 to prove Theorem 1.1.

Proof of Theorem 1.1. We begin with 1. and assume that 𝑢 ∈ 𝐿2 and denote by 𝑢
its Fourier transform. We write

𝑢(𝑥− 𝑦) =
1

(2𝜋)𝑚

∫
𝑒−𝑖(𝑦−𝑥)𝜆𝑢(𝜆) 𝑑𝜆

=
1

(2𝜋)𝑚

∫
𝑒𝑖𝑥𝜆𝑒−𝑖𝑦𝜆𝑢(𝜆) 𝑑𝜆

(3.27)

and use Lemma 3.2 with

𝑓(𝑥, 𝜆) =
1

(2𝜋)𝑚/2
𝑒𝑖𝑥𝜆, 𝑔(𝑦, 𝜆) =

1

(2𝜋)𝑚/2
𝑒−𝑖𝑦𝜆, ℎ(𝜆) = 𝑢(𝜆). (3.28)

Consequently,

𝐻(𝑞, 𝑟) =
1

(2𝜋)𝑚

∫
𝑒𝑖𝑧𝑞𝑒−𝑖𝑧𝑟 𝑑𝜈(𝑧) =

1

(2𝜋)𝑚
𝜈(𝑞 − 𝑟) (3.29)

and∫
∣𝐻𝑗(𝑞, 𝑟)∣2∣ℎ(𝑟)∣ 𝑑𝑟 ∣ℎ(𝑞)∣ 𝑑𝑞 =

1

(2𝜋)2𝑚

∫
∣𝜈(𝑞 − 𝑟)∣2∣𝑢̂(𝑞)∣∣𝑢̂(𝑟)∣ 𝑑𝑟 𝑑𝑞

=
1

(2𝜋)𝑚

∫ ∫
∣𝜈(𝑞)∣2∣𝑢̂(𝑞 + 𝑟)∣∣𝑢̂(𝑟)∣ 𝑑𝑟 𝑑𝑞

=
1

(2𝜋)𝑚

∫ ∫
∣𝜈(𝑞)∣2∣𝑢̂(𝑞 − 𝑟)∣∣𝑢̂(−𝑟)∣ 𝑑𝑟 𝑑𝑞

=
1

(2𝜋)𝑚

∫ ∫
∣𝜈(𝑞)∣2∣𝑢̂(𝑞 − 𝑟)∣∣𝑢̂(𝑟)∣ 𝑑𝑟 𝑑𝑞. (3.30)

Replacing the measure 𝜈 by 𝜇−𝜈, the second line of (1.14) follows from the second
line of (3.14).
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The first line of (1.14) is the first line of (3.14), since in this case

𝑅(𝑧1, 𝑧2) =
1

(2𝜋)𝑚

∫
𝑒𝑖(𝑧1−𝑧2)𝑞∣𝑢̂(𝑞)∣ 𝑑𝑞 (3.31)

and 𝑇 (𝑧1, 𝑧2) = 𝑅(𝑧1, 𝑧2). Moreover, since 𝑅(𝑧1, 𝑧2) is real we actually have
𝑇 (𝑧1, 𝑧2) = 𝑅(𝑧1, 𝑧2). Therefore we can take the square in (1.14).

To prove 2. we write

𝑢(𝑥, 𝑦) =

∫ ∞

0

∫
𝑒−𝛼𝑡𝑝𝑡/2(𝑥, 𝑢)𝑝𝑡/2(𝑢, 𝑦) 𝑑𝑢 𝑑𝑡. (3.32)

Considering the notation in (3.2) we take

𝑓(𝑥, 𝜆) = 𝑒−𝛼𝑡/2𝑝𝑡/2(𝑥, 𝑢), 𝑔(𝑦, 𝜆) = 𝑒−𝛼𝑡/2𝑝𝑡/2(𝑢, 𝑦), ℎ(𝜆) = 1, (3.33)

in which 𝜆 = (𝑢1, . . . , 𝑢𝑛, 𝑡). Relabeling the variables we have

𝑓(𝑧, 𝑞) = 𝑒−𝛼𝑡/2𝑝𝑡/2(𝑧, 𝑢) and 𝑔(𝑦, 𝑟) = 𝑒−𝛼𝑠/2𝑝𝑠/2(𝑣, 𝑧), (3.34)

where 𝑞 = (𝑢1, . . . , 𝑢𝑛, 𝑡) and 𝑟 = (𝑣1, . . . , 𝑣𝑛, 𝑠). Therefore,

𝑅(𝑧1, 𝑧2) =

∫ ∞

0

𝑒−𝛼𝑠
∫

𝑝𝑠/2(𝑧1, 𝑢)𝑝𝑠/2(𝑧2, 𝑢) 𝑑𝑢 𝑑𝑠,

𝑇 (𝑧1, 𝑧2) =

∫ ∞

0

𝑒−𝛼𝑠
∫

𝑝𝑠/2(𝑧1, 𝑢)𝑝𝑠/2(𝑧2, 𝑢) 𝑑𝑢 𝑑𝑠.

(3.35)

The proof now follows from Lemma 3.2 and Corollary 3.1.
To prove 3. we use Lemma 3.2 with

𝑓(𝑥, 𝜆) =
1 − 𝑒𝑖𝑥𝜆

(2𝜋)𝑚/2
, 𝑔(𝑦, 𝜆) =

1 − 𝑒−𝑖𝑦𝜆

(2𝜋)𝑚/2
, ℎ(𝜆) =

1

𝜙(𝜆)
(3.36)

and write

𝐻(𝑞, 𝑟) =
1

(2𝜋)𝑚

∫
(1 − 𝑒𝑖𝑧𝑞)(1 − 𝑒−𝑖𝑧𝑟) 𝑑𝜈(𝑧). (3.37)

Clearly∫ ∣𝐻(𝑞, 𝑟)∣2
∣𝜙(𝑞)∣∣𝜙(𝑟)∣ 𝑑𝑟 𝑑𝑞 (3.38)

=
1

(2𝜋)2𝑚

∫ ∫
1

∣𝜙(𝑞)∣∣𝜙(𝑟)∣
∣∣∣∣∫ (1 − 𝑒𝑖𝑧𝑞)(1 − 𝑒−𝑖𝑧𝑟) 𝑑𝜈(𝑧)

∣∣∣∣2 𝑑𝑟 𝑑𝑞.

Therefore, the second line of (1.21) follows from Lemma 3.2.
Similarly, the third line of (1.21) follows from Lemma 3.2. (Note that∫
(1 − 𝑒𝑖𝜆𝑥)(1 − 𝑒−𝑖𝜆𝑦)

∣𝜙(𝜆)∣ 𝑑𝜆 =

∫
1 − cos𝜆𝑥− cos𝜆𝑦 + cos𝜆(𝑥 − 𝑦)

∣𝜙(𝜆)∣ 𝑑𝜆, (3.39)

since the numerator in the right-hand side of (3.39) is the real part of the numerator
in left-hand side and the imaginary part of the integral is zero, because ∣𝜙(𝜆)∣ is
even.
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To prove 5. we use the following lemma:

Lemma 3.3. When the measures {𝜈𝑗}𝑛𝑗=1 are positive and 𝑢(𝑥, 𝑦) is positive definite

𝐼𝑛(𝑢, {𝜈𝑗}𝑛𝑗=1 ≤
𝑛∏
𝑗=1

(
4

∫ ∫
𝑢2(𝑥, 𝑦) 𝑑𝜈𝑗(𝑥) 𝑑𝜈𝑗(𝑦)

)1/2
. (3.40)

Proof. The proof is essentially the same as the one beginning at (3.10). Using the
fact that the kernel 𝑢 is greater than or equal to zero, we have

𝐼𝑛(𝑢, {𝜈𝑗}𝑛𝑗=1) ≤
∫ (∫

𝑢2(𝑦1, 𝑦2) 𝑑𝜈1(𝑦1)

)1/2 (∫
𝑢2(𝑦𝑛, 𝑦1) 𝑑𝜈1(𝑦1)

)1/2
𝑢(𝑦2, 𝑦3) ⋅ ⋅ ⋅𝑢(𝑦𝑛−1, 𝑦𝑛)

𝑛∏
𝑗=2

𝑑𝜈𝑗(𝑦𝑗). (3.41)

This is equal to∫ (∫ (∫
𝑢2(𝑦1, 𝑦2) 𝑑𝜈1(𝑦1)

)1/2
𝑢(𝑦2, 𝑦3) 𝑑𝜈2

)
(3.42)

(∫
𝑢2(𝑦𝑛, 𝑦1) 𝑑𝜈1(𝑦1)

)1/2
𝑢(𝑦3, 𝑦4) ⋅ ⋅ ⋅𝑢(𝑦𝑛−1, 𝑦𝑛)

𝑛∏
𝑗=3

𝑑𝜈𝑗(𝑦𝑗),

which is equal to(∫ ∫
𝑢2(𝑦1, 𝑦2) 𝑑𝜈1(𝑦1) 𝑑𝜈2(𝑦2)

)1/2
(3.43)∫ (∫

𝑢2(𝑦2, 𝑦3) 𝑑𝜈2(𝑦2)

)1/2(∫
𝑢2(𝑦𝑛, 𝑦1) 𝑑𝜈1(𝑦1)

)1/2
𝑢(𝑦3, 𝑦4) ⋅ ⋅ ⋅𝑢(𝑦𝑛−1, 𝑦𝑛)

𝑛∏
𝑗=3

𝑑𝜈𝑗(𝑦𝑗).

Continuing this procedure we see that

𝐼𝑛(𝑢, {𝜈𝑗}𝑛𝑗=1) ≤
𝑛∏
𝑗=1

(∫ ∫
𝑢2(𝑦𝑗 , 𝑦𝑗+1) 𝑑𝜈𝑗(𝑦𝑗) 𝑑𝜈𝑗+1(𝑦𝑗+1)

)1/2
, (3.44)

in which 𝑦𝑛+1 = 𝑦1, which we can simplify to

𝐼𝑛(𝑢, {𝜈𝑗}𝑛𝑗=1) ≤
𝑛∏
𝑗=1

(∫ ∫
𝑢2(𝑥, 𝑦) 𝑑𝜈𝑗(𝑥) 𝑑𝜈𝑗+1(𝑦)

)1/2
. (3.45)

We now use the fact that 𝑢(𝑥, 𝑦) is positive definite. This implies that
(𝑢(𝑥, 𝑦) + 𝑢(𝑦, 𝑥))2 is symmetric and positive definite. Therefore by the Cauchy-
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Schwarz inequality∫ ∫
𝑢2(𝑥, 𝑦) 𝑑𝜈𝑗(𝑥) 𝑑𝜈𝑗+1(𝑦) ≤

∫ ∫
(𝑢(𝑥, 𝑦) + 𝑢(𝑦, 𝑥))2 𝑑𝜈𝑗(𝑥) 𝑑𝜈𝑗+1(𝑦) (3.46)

≤
(∫

(𝑢(𝑥, 𝑦) + 𝑢(𝑦, 𝑥))2 𝑑𝜈𝑗(𝑥) 𝑑𝜈𝑗(𝑦)

)1/2
(∫

(𝑢(𝑥, 𝑦) + 𝑢(𝑦, 𝑥))2 𝑑𝜈𝑗+1(𝑥) 𝑑𝜈𝑗+1(𝑦)

)1/2
≤ 4

(∫
𝑢2(𝑥, 𝑦) 𝑑𝜈𝑗(𝑥) 𝑑𝜈𝑗(𝑦)

)1/2
(∫

𝑢2(𝑥, 𝑦) 𝑑𝜈𝑗+1(𝑥) 𝑑𝜈𝑗+1(𝑦)

)1/2
. (3.47)

Using this in (3.45) we get (3.40). □

Proof of Theorem 1.1 continued. In Lemma 3.3 we need the condition that the
kernel is positive definite to deal with the fact that 𝜈𝑗 and 𝜈𝑗+1 are not necessarily
the same measures. However in 5. they are. When all the {𝜈𝑗} are the same positive
measure we get (3.40) with no hypotheses on the kernel 𝑢. Therefore, 5. follows
from Lemma 3.2.

The proof of 4. is given in the following remark. □

Remark 3.2. Let {𝜓(𝜈); 𝜈 ∈ ℳ(𝑆)} be an 𝛼-permanental field. It follows from
Definition 1.1 that(

1

2𝛼
𝐸 (𝜓(𝜇) − 𝜓(𝜈))

2

)1/2
=

(∫ ∫
𝑢(𝑥, 𝑦)𝑢(𝑦, 𝑥) 𝑑(𝜇(𝑥) − 𝜈(𝑥))𝑑(𝜇(𝑦) − 𝜈(𝑦))

)1/2
.

(3.48)

So, obviously, when 𝑢(𝑥, 𝑦) is symmetric,(
1

2𝛼
𝐸 (𝜓(𝜇) − 𝜓(𝜈))

2

)1/2
=

(∫ ∫
𝑢2(𝑥, 𝑦) 𝑑(𝜇(𝑥) − 𝜈(𝑥))𝑑(𝜇(𝑦) − 𝜈(𝑦))

)1/2
.

(3.49)

Consider the first equality in (1.14). When 𝑢 is symmetric, 𝑢̂(𝑞) is real. If it is also
positive ∫

𝑒𝑖(𝑥−𝑦)𝑞∣𝑢̂(𝑞)∣ 𝑑𝑞 = 𝐶𝑢(𝑦 − 𝑥) = 𝐶𝑢(𝑥, 𝑦). (3.50)

We get (1.22) when 𝑢 satisfies the conditions in 1.
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When 𝑢 satisfies the conditions in 2. and the transition probabilities are
symmetric we have

Θ𝑙(𝑥, 𝑦) =

∫ ∞

0

𝑒−𝛼𝑠
∫

𝑝𝑠/2(𝑥, 𝑢)𝑝𝑠/2(𝑢, 𝑦) 𝑑𝑢 𝑑𝑠 = 𝑢(𝑥, 𝑦) (3.51)

and similarly for Θ𝑙. Consequently (1.22) follows from (1.17).

The proof for 3. when 𝜙 is real and positive is trivial.

For use in Section 4 we note that when 𝑢 is a function of 𝑥 − 𝑦 the Fourier
transform of the square of (3.48) is∫ ∫

∣𝜇̂(𝜆1 − 𝜆2) − 𝜈(𝜆1 − 𝜆2)∣2𝑢̂(𝜆1)𝑢̂(𝜆2) 𝑑𝜆1 𝑑𝜆2

=

∫ ∫
∣𝜇̂(𝑥) − 𝜈(𝑥)∣2𝑢̂(𝑥 + 𝜆2)𝑢̂(𝜆2) 𝑑𝑥 𝑑𝜆2 (3.52)

=

∫ ∫
∣𝜇̂(𝑥) − 𝜈(𝑥)∣2𝑢̂(𝑥 − 𝑦)𝑢̂(𝑦) 𝑑𝑥 𝑑𝑦.

We can give more concrete results when 𝑢(𝑥, 𝑦) is a function of 𝑥 − 𝑦 and
when the measures we consider are translates of a fixed measure 𝜈, which we
denote by 𝒱𝐾 = {𝜈ℎ, ℎ ∈ 𝐾} where 𝐾 is some compact symmetric subset of 𝑅𝑚

that includes 0. We denote 𝜈0 by 𝜈. In this case

∣𝜈ℎ(𝑥) − 𝜈(𝑥)∣ = ∣1 − 𝑒𝑖𝑥ℎ∣2∣∣𝜈(𝑥)∣2 (3.53)

so we can write

𝜏𝑢(𝜈ℎ1+ℎ, 𝜈ℎ1) = 𝜏𝑢(𝜈ℎ, 𝜈) = 𝛼

(
1

(2𝜋)𝑚

∫ ∫
∣1 − 𝑒𝑖𝑥ℎ∣2∣∣𝜈(𝑥)∣2𝛾(𝑥) 𝑑𝑥

)1/2
(3.54)

≤ 𝛼

(
3

2(2𝜋)𝑚

∫ ∫
((∣𝑥∣∣ℎ∣)2 ∧ 1)∣∣𝜈(𝑥)∣2𝛾(𝑥) 𝑑𝑥

)1/2
.

Corollary 3.2. A sufficient condition for the continuity of the 𝛼 permanental pro-
cess {𝜓(𝜈), 𝜈 ∈ 𝒱𝐾} is that∫ ∞

2

(∫
∣𝑥∣≥𝑢 ∣𝜈(𝑥)∣2𝛾(𝑥) 𝑑𝑥

)1/2
𝑢

𝑑𝑢 < ∞. (3.55)

Proof. We use the bound on 𝜏𝑢(𝜈ℎ, 𝜈) in (3.54) and follow the proof of Theorem
1.6 in [5]. □

4. Domination by the second moment

Let 𝜓 = {𝜓(𝜈); 𝜈 ∈ ℳ(𝑆)} be an 𝛼-permanental field with kernel 𝑢. We are
interested in the situation in which

∥𝜓(𝜇) − 𝜓(𝜈)∥𝜌 ≤ 𝐶
(
𝐸(𝜓(𝜇) − 𝜓(𝜈))2

)1/2
= 𝐶∥𝜓(𝜇) − 𝜓(𝜈)∥2, (4.1)

for some constant C. This holds when 𝛼 = 1/2 and 𝑢 is symmetric, because in
this case 𝜓 is a second-order Gaussian chaos. In Theorem 1.1 we give examples
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in which this holds for all 𝛼 > 0 when 𝑢 is symmetric. We now give examples in
which this holds when 𝑢 is not symmetric.

Theorem 4.1. Let 𝜓 = {𝜓(𝜈), 𝜈 ∈ ℳ} be an 𝛼-permanental field, with kernel
𝑢𝛽(𝑥− 𝑦) as given in (1.25). Suppose that 𝜙(𝑥) satisfies the sectorial condition

∣Im 𝜙(𝑥)∣ ≤ 𝐶 Re (𝛽 + 𝜙(𝑥)), ∀𝑥 ∈ 𝑅𝑚, (4.2)

for some constant 𝐶 < 1. Then

∥𝜓(𝜈)∥𝜌 ≤ 𝐶′ (𝐸𝜓2(𝜈)
)1/2

, (4.3)

for some constant 𝐶′ that depends on 𝐶.

Proof. By (3.52)(
1

2𝛼
𝐸 (𝜓(𝜇) − 𝜓(𝜈))

2

)1/2
= 𝐶

(∫
∣𝜇̂(𝑥) − 𝜈(𝑥)∣2𝛾(𝑥) 𝑑𝑥

)1/2
where

𝛾(𝑥) =

∫
𝑢̂𝛽(𝑥 − 𝑦)𝑢̂𝛽(𝑦) 𝑑𝑦. (4.4)

Therefore, by Theorem 1.1, 1, to prove this theorem we need only show that (4.2)
implies that∫

∣𝑢̂𝛽(𝑥 − 𝑦)∣∣𝑢̂𝛽(𝑦)∣ 𝑑𝑦 ≤ 𝐶′′
∫

𝑢𝛽(𝑥− 𝑦)𝑢̂𝛽(𝑦) 𝑑𝑦 ∀𝑥 ∈ 𝑅𝑚 (4.5)

for some constant 𝐶′′ > 0. Set

𝑢̂𝛽(𝑥) =
1

𝛽 + 𝜙(𝑥)
=:

1

𝑣(𝑥) + 𝑖𝑤(𝑥)
. (4.6)

Note that 𝑣 is positive since the real part of a characteristic exponent of a Lévy
process, (see (1.24)), is positive.

Since 𝑢𝛽(𝑥)𝑢𝛽(−𝑥) is symmetric, its Fourier transform, which is given by the
left-hand side of (4.7) immediately below, is real. Consequently∫

𝑢̂𝛽(𝑥 − 𝑦)𝑢̂𝛽(𝑦) 𝑑𝑦 =

∫
𝑣(𝑥− 𝑦)𝑣(𝑥) + 𝑤(𝑥 − 𝑦)𝑤(𝑥)

∣𝑣2(𝑥− 𝑦) + 𝑤2(𝑥 − 𝑦)∣∣𝑣2(𝑦) + 𝑤2(𝑦)∣ 𝑑𝑦. (4.7)

Therefore, to obtain (4.5) we need only show that

𝑣(𝑥− 𝑦)𝑣(𝑥) + 𝑤(𝑥 − 𝑦)𝑤(𝑥)

∣𝑣2(𝑥− 𝑦) + 𝑤2(𝑥− 𝑦)∣1/2∣𝑣2(𝑦) + 𝑤2(𝑦)∣1/2 ≥ 𝑐, (4.8)

for some constant 𝑐 > 0.
By (4.2) and using the fact that 𝑣 is positive, we see that

𝑣(𝑥− 𝑦)𝑣(𝑥) + 𝑤(𝑥 − 𝑦)𝑤(𝑥) ≥ (1 − 𝐶)𝑣(𝑥 − 𝑦)𝑣(𝑥) (4.9)

and
∣𝑣2(𝑥) + 𝑤2(𝑥)∣ ≤ 2𝑣2(𝑥). (4.10)

Therefore, the denominator in (4.8) is less than or equal to 2𝑣(𝑥 − 𝑦)𝑣(𝑥), so we
can take 𝑐 = (1 − 𝐶)/2. □
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On the Operator Norm of Random
Rectangular Toeplitz Matrices

Radosl̷aw Adamczak

Abstract. We consider rectangular 𝑁 × 𝑛 Toeplitz matrices generated by se-
quences of centered independent random variables and provide bounds on
their operator norm under the assumption of finiteness of 𝑝th moments (𝑝 >
2). We also show that if 𝑁 ≫ 𝑛 log 𝑛 then with high probability such matrices
preserve the Euclidean norm up to an arbitrarily small error.

Mathematics Subject Classification (2010). 60B20, 60E15.

Keywords. Random Toeplitz Matrices.

1. Introduction

Generalities on random Toeplitz matrices. In recent years, following a question
raised in [3] a considerable amount of work has been devoted to the study of random
Toeplitz matrices, i.e., Toeplitz matrices determined by sequences of independent
random variables. In particular in [7, 9] the convergence of the spectral measure
for random symmetric Toeplitz matrices has been established, while [5] provides a
corresponding result for the spectral measure of 𝑋𝑋𝑇 , where 𝑋 is a nonsymmet-
ric random Toeplitz matrix. In both cases the limiting spectral distribution has
unbounded support.

A natural further question is the behaviour of the spectral norm of the matrix.
In [14] it has been shown that if the underlying random variables are sub-Gaussian
and of mean zero, then the operator norm of an 𝑛×𝑛 matrix is of the order

√
𝑛 log𝑛.

This result has been extended to matrices with bounded variance coefficients in [1],
where also a strong law of large numbers with the normalization by expectation
has been established. Although both papers consider symmetric matrices, their
methods easily generalize to the non-symmetric square ones. Recently in [16],
precise asymptotics of the operator norm have been found in the symmetric case.

Research partially supported by MNiSW Grant no. N N201 397437.

c⃝ 2013 Springer Basel
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It turns out that if 𝑇𝑛 is an 𝑛× 𝑛 random symmetric Toeplitz matrix with mean
zero, variance one coefficients and bounded 𝑝th moments (𝑝 > 2), then

∥𝑇𝑛∥ℓ𝑛2→ℓ𝑛2√
2𝑛 log𝑛

𝐿𝑝→ ∥𝑆(𝑥, 𝑦)∥22→4,

where 𝑆(𝑥, 𝑦) = sin(𝜋(𝑥−𝑦))
𝜋(𝑥−𝑦) is the sine kernel and ∥𝑆(𝑥, 𝑦)∥2→4 denotes the norm

of the integral operator associated with it, acting from 𝐿2(ℝ) to 𝐿4(ℝ).
In this article we present results on the behaviour of the operator norm of a

rectangular 𝑁 × 𝑛 random Toeplitz matrix with independent coefficients in terms
of the matrix size. When 𝑛 and 𝑁 are of the same order of magnitude, this question
can be easily reduced to the square case, however for general matrices there seems
to be no corresponding estimates in the literature. We remark that some results
can be obtained from Theorem III.4 in [15], where a more general problem of
estimating singular values of submatrices of a square random Toeplitz matrix is
considered. This estimate however, when specialized to our problem is not optimal
in the whole range of parameters (we discuss it briefly in the sequel).

Our main result gives estimates on the operator norm with optimal depen-
dence on 𝑛 and 𝑁 . Additionally, in the case of tall matrices we provide conditions
under which a properly scaled Toeplitz matrix preserves the Euclidean norm up
to a small error.

Notation and the main result. Throughout the article we will consider a random
Toeplitz 𝑁 × 𝑛 matrix

𝑇 = [𝑇𝑖𝑗 ]1≤𝑖≤𝑁,1≤𝑗≤𝑛 = [𝑋𝑖−𝑗 ]1≤𝑖≤𝑁,1≤𝑗≤𝑛,

where 𝑋1−𝑛, 𝑋2−𝑛, . . . , 𝑋𝑁−1 is a sequence of independent random variables.
We will denote absolute constants by 𝐶, and constants depending on some

parameters (say 𝑎) by 𝐶𝑎. In both cases the value of a constant may differ between
distinct occurrences.

We write ℓ𝑘2 for ℝ𝑘 equipped with the standard Euclidean structure (the
corresponding inner product will be denoted by ⟨⋅, ⋅⟩). For an 𝑁 × 𝑛 matrix 𝐴, by
∥𝐴∥ℓ𝑛2→ℓ𝑁2

we denote the operator norm of 𝐴 acting between the spaces ℓ𝑛2 and

ℓ𝑁2 , i.e., ∥𝐴∥ℓ𝑛2→ℓ𝑁2
= sup𝑥∈𝑆𝑛−1 sup𝑦∈𝑆𝑁−1⟨𝐴𝑥, 𝑦⟩.

Having desribed the notation, we are now ready to state our main result which is

Theorem 1.1. Let (𝑋𝑖)1−𝑛≤𝑖≤𝑁−1 be independent random variables such that
𝔼𝑋𝑖 = 0, 𝔼𝑋2

𝑖 = 1 and ∥𝑋𝑖∥𝑝 ≤ 𝐿 for some 𝑝 > 2. Then

𝔼∥𝑇 ∥ℓ𝑛2→ℓ𝑁2
≤ 𝐶𝑝𝐿(

√
𝑁 ∨ 𝑛 +

√
(𝑁 ∧ 𝑛) log(𝑁 ∧ 𝑛)). (1)

Moreover, for any 𝛿, 𝜀 ∈ (0, 1) if 𝑁 > 𝐶𝐿,𝑝,𝛿,𝜀𝑛 log𝑛, then with probability at least
1 − 𝛿, for all 𝑥 ∈ ℝ𝑛,

(1 − 𝜀)∣𝑥∣ ≤ ∣ 1√
𝑁

𝑇𝑥∣ ≤ (1 + 𝜀)∣𝑥∣. (2)

We postpone the proof of the above theorem to Section 2.
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A brief discussion of optimality. One can easily see that the estimates of Theorem
1.1 are of the right order. Indeed, if 𝑋𝑖 are independent Rademacher variables then
the Euclidean length of the first column of the matrix is

√
𝑁 , while the Euclidean

length of the first row is
√
𝑛, which gives ∥𝑇 ∥ℓ𝑛2→ℓ𝑁2

≥ √
𝑁 ∨ 𝑛. Moreover the

matrix 𝑇 contains a square Toeplitz submatrix with independent coefficients of size
(𝑁 ∧𝑛)× (𝑁 ∧𝑛). By a straightforward modification of the argument presented in
[14] for the symmetric case (see Theorem 3 therein), one can see that the operator

norm of this submatrix is bounded from below by 𝑐
√

(𝑁 ∧ 𝑛) log(𝑁 ∧ 𝑛) for some
absolute constant 𝑐 (in fact instead of mimicking the proof one can also easily
reduce the problem to the symmetric case). Standard symmetrization arguments
allow to extend such estimates to other sequences of independent random variables
satisfying a uniform lower bound on the absolute first moment (cf. the proof of
Theorem 6 in [1]).

Further remarks. The constants 𝐶𝑝 obtained in our proof of Theorem 1.1 explode
when 𝑝 → 2, contrary to known inequalities on the operator norm of symmetric
Toeplitz matrices. We present here a simple proposition, whose proof is based on
general methods of probability in Banach spaces, which gives an estimate weaker
than that of Theorem 1.1, but under the assumption of finiteness of the second
moment of 𝑋𝑖’s only. It’s proof is deferred to Section 3.

Proposition 1.2. Let (𝑋𝑖)1−𝑛≤𝑖≤𝑁−1 be independent random variables with 𝔼𝑋𝑖 =
0 and 𝔼𝑋2

𝑖 = 1. Then

𝔼∥𝑇 ∥ℓ𝑛2→ℓ𝑁2
≤ 𝐶(

√
𝑁 ∨ 𝑛 + 4

√
(𝑁 ∧ 𝑛)(𝑁 ∨ 𝑛)

√
log(𝑁 ∧ 𝑛)).

Restricting our attention to the case 𝑁 ≥ 𝑛, we see that the above proposition
gives an estimate of the same order as Theorem 1.1 (up to constants independent

of 𝑛 and 𝑁) if 𝑁 ≤ 𝐶′𝑛 or 𝑛 log2 𝑛 ≤ 𝐶′𝑁 . In the former case the operator norm
behaves like in the square case, i.e., is of the order

√
𝑛 log𝑛, whereas in the latter

one it is of the order
√
𝑁 , the same as the Euclidean length of a single column

of the matrix (with the implicit constants depending on 𝐶′). In the intermediate

regime, i.e., when 𝑛 ≪ 𝑁 ≪ 𝑛 log2 𝑛 one loses a logarithmic factor.

It is natural to conjecture that whenever 𝔼𝑋𝑖 = 0, 𝔼𝑋2
𝑖 = 1, the operator

norm is of the order
√
𝑁 +

√
𝑛 log𝑛 for all 𝑁 ≥ 𝑛, however we do not know how

to prove it without additional assumptions on higher moments of 𝑋𝑖’s. As for
the property (2), clearly it cannot hold just under the assumptions of the above
proposition without some stronger integrability assumptions, since assuming just
𝔼𝑋𝑖 = 0,𝔼𝑋2

𝑖 = 1 still does not exclude the possibility that with probability close
to one 𝑋𝑖 = 0 for all 𝑖. Let us also remark that an estimate of the same order
as in Proposition 1.2 can be obtained for matrices generated by Rademacher or
Gaussian sequences using inequalities presented in [15] (as already mentioned in
the introduction). In fact it can be also obtained by a modification of the proof of
Theorem 1.1, however the argument presented in Section 3 is more concise.
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2. Proof of Theorem 1.1

Without loss of generality we may assume that 𝑁 ≥ 𝑛 ≥ 2. In the main part of the
proof we will not work with the original Toeplitz matrix, but with its modification,
which will be more convenient for the calculations. Consider thus the matrix

Γ = [Γ𝑖𝑗 ]1≤𝑖≤𝑁,1≤𝑗≤𝑛, (3)

where Γ𝑖𝑗 = 𝑇𝑖𝑗 = 𝑋𝑖−𝑗 if 𝑗 ≤ 𝑖 ≤ 𝑁 − 𝑛 + 𝑗 and Γ𝑖𝑗 = 0 otherwise. Let us note
that 𝑇 and Γ differ just by two “corners” of Toeplitz type and thus 𝔼∥𝑇−Γ∥ℓ𝑛2→ℓ𝑁2
can be estimated by means of results for square Toeplitz matrices. More precisely,
by using Proposition 4.1 from the Appendix, we obtain

𝔼∥𝑇 − Γ∥ℓ𝑛2→ℓ𝑁2
≤ 𝐶

( ∑
𝑖≤−1 or 𝑖≥𝑁−𝑛+1

𝔼𝑋2
𝑖

)1/2√
log𝑛 ≤ 𝐶

√
𝑛 log𝑛.

Therefore for both assertions made in Theorem 1.1, the contribution from the
corners is negligible (for the first part it is a direct consequence of the above
inequality, whereas for the second part it follows easily by the above estimate and
Chebyshev’s inequality).

Denote the standard basis of ℓ𝑛2 and ℓ𝑁2 by (𝑒𝑗)
𝑛
𝑗=1 and (𝐸𝑗)

𝑁
𝑗=1 respectively

and let 𝐴𝑖 : ℓ𝑛2 → ℓ𝑁2 , 𝑖 = 0, . . . , 𝑁 − 𝑛 be the linear operator such that for all
1 ≤ 𝑗 ≤ 𝑛, 𝐴𝑖𝑒𝑗 = 𝐸𝑖+𝑗 (in the sequel we will identify operators with their

matrices in standard basis). Then Γ =
∑𝑁−𝑛

𝑖=0 𝑋𝑖𝐴𝑖 and so

Γ𝑇Γ =
∑

0≤𝑖,𝑗≤𝑁−𝑛
𝑋𝑖𝑋𝑗𝐴

𝑇
𝑖 𝐴𝑗 . (4)

Note that 𝐴𝑇
𝑖 𝐸𝑘 = 0 if 𝑘 < 𝑖+1 or 𝑘 > 𝑖+𝑛 and 𝐴𝑇

𝑖 𝐸𝑘 = 𝑒𝑘−𝑖 if 𝑖+1 ≤ 𝑘 ≤ 𝑛+ 𝑖.
Therefore

⟨Γ𝑇Γ𝑒𝑙, 𝑒𝑘⟩ =

(𝑁−𝑛−(𝑘−𝑙))∧(𝑁−𝑛)∑
𝑖=0∨(𝑙−𝑘)

𝑋𝑖𝑋𝑘−𝑙+𝑖. (5)

In particular Γ𝑇Γ is a symmetric Toeplitz matrix.

We will now state the main technical proposition, which will allow us to use
standard symmetrization techniques in the proof of Theorem 1.1.

Proposition 2.1. Let 𝑁 ≥ 𝑛 be two positive integers, 𝑎0, . . . , 𝑎𝑁−𝑛 be real numbers
and 𝑔0, . . ., 𝑔𝑁−𝑛 be independent standard Gaussian variables. Define a symmetric
𝑛× 𝑛 Toeplitz matrix 𝑀 = [𝑀𝑘𝑙]

𝑛
𝑘,𝑙=1, where 𝑀𝑘𝑘 = 0 and for 𝑘 ∕= 𝑙,

𝑀𝑘𝑙 = 𝑌∣𝑘−𝑙∣ :=

(𝑁−𝑛−(𝑘−𝑙))∧(𝑁−𝑛)∑
𝑖=0∨(𝑙−𝑘)

𝑎𝑖𝑎𝑘−𝑙+𝑖𝑔𝑖𝑔𝑘−𝑙+𝑖.
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Then

𝔼∥𝑀∥ℓ𝑛2→ℓ𝑛2
≤ 𝐶

( ∑
0≤𝑖,𝑗≤𝑁−𝑛

𝑎2𝑖 𝑎
2
𝑗1{1≤∣𝑖−𝑗∣≤𝑛−1}

)1/2√
log𝑛

+ 𝐶 max
0≤𝑘≤⌈(𝑁−𝑛+1)/𝑛⌉−1

( ∑
𝑖∕=𝑗

𝑘𝑛≤𝑖,𝑗≤((𝑘+2)𝑛−1)∧(𝑁−𝑛)

𝑎2𝑖 𝑎
2
𝑗

)1/2
log𝑛.

Proof of Proposition 2.1. Note first that without loss of generality we can assume
that 𝑁 − 𝑛 + 1 ≥ 2𝑛 and 𝑁 − 𝑛 + 1 is divisible by 𝑛 (we may simply enlarge 𝑁
and put zeros as the new 𝑎𝑖’s).

Since 𝑀 is a symmetric Toeplitz matrix, to estimate the operator norm we
may use the same strategy as in [14], i.e., relate the operator norm of 𝑀 to the
supremum of a random trigonometric polynomial for which we will use the en-
tropy method. The main difference between our case and [14] is the fact that the
coefficients of the polynomial will not be independent and the related supremum
will be a chaos of degree 2, which will result in an additional term appearing in the
entropy integral. Similarly as in [14] by extending 𝑀 to an infinite Laurent matrix
[𝑌∣𝑘−𝑙∣1{1≤∣𝑘−𝑙∣≤𝑛−1}]𝑘,𝑙∈ℤ and then noting that it corresponds to a multiplier on
the circle we obtain that

∥𝑀∥ℓ𝑛2→ℓ𝑛2
≤ 2 sup

0≤𝑥≤1

∣∣∣ 𝑛−1∑
𝑗=1

𝑌𝑗 cos(2𝜋𝑗𝑥)
∣∣∣

= 2 sup
0≤𝑥≤1

∣∣∣𝑁−𝑛−1∑
𝑖=0

(𝑁−𝑛−𝑖)∧(𝑛−1)∑
𝑗=1

𝑎𝑖𝑎𝑖+𝑗𝑔𝑖𝑔𝑖+𝑗 cos(2𝜋𝑗𝑥)
∣∣∣

= sup
0≤𝑥≤1

∣∣∣ ∑
0≤𝑖,𝑗≤𝑁−𝑛

𝐵𝑥
𝑖𝑗𝑔𝑖𝑔𝑗

∣∣∣ =: sup
0≤𝑥≤1

∣𝑆𝑥∣,

where for 𝑥 ∈ [0, 1], the matrix 𝐵𝑥 = [𝐵𝑥
𝑖𝑗 ]

𝑁−𝑛
𝑖,𝑗=0 is defined by

𝐵𝑥
𝑖𝑗 = 𝑎𝑖𝑎𝑗 cos(2𝜋∣𝑖− 𝑗∣𝑥)1{1≤∣𝑖−𝑗∣≤𝑛−1}.

By Proposition 4.2 in the Appendix we obtain that

ℙ(∣𝑆𝑥 − 𝑆𝑦∣ ≥ 𝑡) ≤ 2 exp
(
− 1

𝐶
min
( 𝑡2

∥𝐵𝑥 −𝐵𝑦∥2𝐻𝑆
,

𝑡

∥𝐵𝑥 −𝐵𝑦∥ℓ𝑁−𝑛+1
2 →ℓ𝑁−𝑛+1

2

))
and so, by Proposition 4.3, we get

∥𝑀∥ℓ𝑛2→ℓ𝑛2
≤ 𝐶
(
𝔼∣𝑆0∣ +

∫ ∞

0

√
log𝒩 ([0, 1], 𝑑1, 𝜀)𝑑𝜀 +

∫ ∞

0

log𝒩 ([0, 1], 𝑑2, 𝜀)𝑑𝜀
)
,

(6)

where 𝑑1(𝑥, 𝑦) = ∥𝐵𝑥 − 𝐵𝑦∥𝐻𝑆 , 𝑑2(𝑥, 𝑦) = ∥𝐵𝑥 − 𝐵𝑦∥ℓ𝑁−𝑛+1
2 →ℓ𝑁−𝑛+1

2
and for a

metric space (𝒳 , 𝑑), 𝒩 (𝒳 , 𝑑, 𝜀) denotes the minimum number of closed balls with
radius 𝜀 covering 𝒳 .
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Note that diam([0, 1], 𝑑1) ≤ 2
√∑

0≤𝑖,𝑗≤𝑁−𝑛 𝑎2𝑖 𝑎
2
𝑗1{1≤∣𝑖−𝑗∣≤𝑛−1} =: 𝐷1. Also,

using the Lipschitz property of the cosine function, we get that

𝑑1(𝑥, 𝑦)2 ≤ 4𝜋2
∑

0≤𝑖,𝑗≤𝑁−𝑛
𝑎2𝑖 𝑎

2
𝑗 (𝑖− 𝑗)21{1≤∣𝑖−𝑗∣≤𝑛−1}∣𝑥− 𝑦∣2,

which gives 𝒩 ([0, 1], 𝑑1, 𝜀) ≤ 𝐶Δ1/𝜀 for 𝜀 ≤ 𝐷1, where

Δ2
1 =

∑
0≤𝑖,𝑗≤𝑁−𝑛

𝑎2𝑖 𝑎
2
𝑗(𝑖− 𝑗)21{1≤∣𝑖−𝑗∣≤𝑛−1}.

We thus obtain∫ ∞

0

√
log([0, 1], 𝑑1, 𝜀)𝑑𝜀 ≤

∫ 𝐷1

0

√
log
(𝐶Δ1

𝜀

)
𝑑𝜀

=
𝐶Δ1√

2

∫ ∞
√
2 log(𝐶Δ1/𝐷1)

𝑡2𝑒−𝑡
2/2𝑑𝑡

≤ 𝐷1
√

log(𝐶Δ1/𝐷1) +
√
𝜋𝐷1

≤ 𝐶𝐷1
√

log 𝑛, (7)

where in the last inequality we used the estimate Δ1 ≤ 𝑛𝐷1.
Let us now estimate the other integral on the right-hand side of (6). Note

that 𝐵𝑥’s are band matrices and they may be decomposed as 𝐵𝑥 = 𝐵𝑥
1 +𝐵𝑥

2 +𝐵𝑥
3 ,

where 𝐵𝑥
1 is the block diagonal part of 𝐵𝑥 with blocks of size 𝑛 × 𝑛, whereas

𝐵𝑥
2 and 𝐵𝑥

3 correspond respectively to the part of 𝐵𝑥 below and above the block
diagonal. More formally,

𝐵𝑥
1 = [𝐵𝑥

𝑖𝑗1{⌊𝑖/𝑛⌋=⌊𝑗/𝑛⌋} ]𝑁−𝑛𝑖,𝑗=0,

𝐵𝑥
2 = [𝐵𝑥

𝑖𝑗1{⌊𝑖/𝑛⌋=⌊𝑗/𝑛⌋+1} ]𝑁−𝑛𝑖,𝑗=0,

𝐵𝑥
3 = [𝐵𝑥

𝑖𝑗1{⌊𝑖/𝑛⌋+1=⌊𝑗/𝑛⌋} ]𝑁−𝑛𝑖,𝑗=0.

The matrix 𝐵𝑥
1 − 𝐵𝑦

1 consists of (𝑁 − 𝑛 + 1)/𝑛 blocks and the Hilbert-Schmidt
norm of the 𝑘th block (𝑘 = 1, . . . , (𝑁 − 𝑛 + 1)/𝑛) is bounded by( 𝑘𝑛−1∑

𝑖,𝑗=(𝑘−1)𝑛
𝑎2𝑖 𝑎

2
𝑗(cos(2𝜋∣𝑖 − 𝑗∣𝑥) − cos(2𝜋∣𝑖− 𝑗∣𝑦))21{1≤∣𝑖−𝑗∣≤𝑛−1}

)1/2

≤ 2𝜋

( ∑
(𝑘−1)𝑛≤𝑖,𝑗≤𝑘𝑛−1

𝑎2𝑖 𝑎
2
𝑗(𝑖− 𝑗)2

)1/2
∣𝑥− 𝑦∣.

Thus for 𝑥, 𝑦 ∈ [0, 1],

∥𝐵𝑥
1 −𝐵𝑦

1∥ℓ𝑁−𝑛+1
2 →ℓ𝑁−𝑛+1

2

≤ 2𝜋∣𝑥− 𝑦∣ max
1≤𝑘≤(𝑁−𝑛+1)/𝑛

( ∑
(𝑘−1)𝑛≤𝑖,𝑗≤𝑘𝑛−1

𝑎2𝑖 𝑎
2
𝑗(𝑖− 𝑗)2

)1/2
.
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By a similar estimate for all 𝑥 ∈ [0, 1],

∥𝐵𝑥
1 −𝐵𝑦

1∥ℓ𝑁−𝑛+1
2 →ℓ𝑁−𝑛+1

2
≤ 2 max

1≤𝑘≤(𝑁−𝑛+1)/𝑛

( ∑
𝑖∕=𝑗

(𝑘−1)𝑛≤𝑖,𝑗≤𝑘𝑛−1

𝑎2𝑖 𝑎
2
𝑗

)1/2
.

Bounds on 𝐵𝑥
2 and 𝐵𝑥

3 can be obtained in an analogous way, by exploring their
block-diagonal structure (the blocks are not on the main diagonal, but still the
operator norm of the whole matrix is the maximum of operator norms of individual
blocks). Therefore we obtain

diam([0, 1], 𝑑2) ≤ max
1≤𝑘≤(𝑁−𝑛+1)/𝑛

( ∑
𝑖∕=𝑗

(𝑘−1)𝑛≤𝑖,𝑗≤𝑘𝑛−1

𝑎2𝑖 𝑎
2
𝑗

)1/2

+ max
1≤𝑘≤(𝑁−𝑛+1)/𝑛−1

( ∑
(𝑘−1)𝑛≤𝑗≤𝑘𝑛−1

𝑘𝑛≤𝑖≤(𝑘+1)𝑛−1

𝑎2𝑖 𝑎
2
𝑗

)1/2

+ max
1≤𝑘≤(𝑁−𝑛+1)/𝑛−1

( ∑
𝑘𝑛≤𝑖≤(𝑘+1)𝑛−1

(𝑘−1)𝑛≤𝑗≤𝑘𝑛−1

𝑎2𝑖 𝑎
2
𝑗

)1/2

≤ 3 max
0≤𝑘≤((𝑁−𝑛+1)/𝑛)−2

( ∑
𝑖∕=𝑗

𝑘𝑛≤𝑖,𝑗≤(𝑘+2)𝑛−1

𝑎2𝑖 𝑎
2
𝑗

)1/2
=: 𝐷2

and

𝑑2(𝑥, 𝑦) ≤ 𝐶 max
0≤𝑘≤((𝑁−𝑛+1)/𝑛)−2

( ∑
𝑘𝑛≤𝑖,𝑗≤(𝑘+2)𝑛−1

𝑎2𝑖 𝑎
2
𝑗(𝑖 − 𝑗)2

)1/2
∣𝑥− 𝑦∣

=: Δ2∣𝑥− 𝑦∣,
which allows us to write

𝒩 ([0, 1], 𝑑2, 𝜀) ≤ Δ2

𝜀
for 𝜀 ≤ 𝐷2. Thus∫ ∞

0

log𝒩 ([0, 1], 𝑑2, 𝜀)𝑑𝜀 ≤
∫ 𝐷2

0

log(Δ2𝜀
−1)𝑑𝜀

= 𝐷2 log(Δ2) −𝐷2 log𝐷2 + 𝐷2 ≤ 𝐶𝐷2 log𝑛, (8)

where in the last inequality we used the estimate Δ2 ≤ 𝐶𝑛𝐷2.
Let us now note that 𝑆0 =

∑
0≤𝑖,𝑗≤𝑁−𝑛 𝑎𝑖𝑎𝑗𝑔𝑖𝑔𝑗1{1≤∣𝑖−𝑗∣≤𝑛−1} and so by

independence of 𝑔𝑖’s,

𝔼∣𝑆0∣ ≤
√
𝔼∣𝑆0∣2 =

√
2

∑
0≤𝑖,𝑗≤𝑁−𝑛

𝑎2𝑖 𝑎
2
𝑗1{1≤∣𝑖−𝑗∣≤𝑛−1},

which together with (6), (7) and (8) ends the proof of the proposition. □
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Conclusion of the proof of Theorem 1.1. As explained at the beginning of this sec-
tion, it suffices to prove the corresponding statements for 𝑁 ≥ 𝑛 and the matrix
Γ defined by (3) instead of 𝑇 .

We have

Γ𝑇Γ =

(
Γ𝑇Γ −

(𝑁−𝑛∑
𝑖=0

𝑋2
𝑖

)
Id𝑛

)
+

(𝑁−𝑛∑
𝑖=0

𝑋2
𝑖

)
Id𝑛. (9)

Denote the first term on the right-hand side above by 𝑀̃ = [𝑀̃𝑘𝑙]𝑘,𝑙≤𝑛. From (5)

it follows that 𝑀̃𝑘𝑘 = 0 and for 𝑘 ∕= 𝑙,

𝑀̃𝑘𝑙 =

(𝑁−𝑛−(𝑘−𝑙))∧(𝑁−𝑛)∑
𝑖=0∨(𝑙−𝑘)

𝑋𝑖𝑋𝑘−𝑙+𝑖,

thus 𝑀̃ is a tetrahedral chaos of order two (with matrix coefficients).

Let 𝑔0, . . . , 𝑔𝑁−𝑛 be i.i.d. standard Gaussian variables independent of the
sequence (𝑋𝑖). By Proposition 4.4 from the Appendix we obtain

𝔼∥𝑀̃∥ℓ𝑛2→ℓ𝑛2
≤ 𝐶𝔼∥𝑀∥ℓ𝑛2→ℓ𝑛2

,

where the matrix 𝑀 is defined as in Proposition 2.1 with 𝑎𝑖 = 𝑋𝑖. Therefore,
applying this proposition conditionally on (𝑋𝑖) we get

𝔼∥𝑀̃∥ℓ𝑛2→ℓ𝑛2
≤ 𝐶𝔼

( ∑
0≤𝑖,𝑗≤𝑁−𝑛

𝑋2
𝑖 𝑋

2
𝑗 1{1≤∣𝑖−𝑗∣≤𝑛−1}

)1/2√
log𝑛 (10)

+ 𝐶𝔼 max
0≤𝑘≤⌈(𝑁−𝑛+1)/𝑛⌉−1

( ∑
𝑘𝑛≤𝑖≤((𝑘+2)𝑛−1)∧(𝑁−𝑛)

𝑋2
𝑖

)
log𝑛

(note that we have enlarged the second summand of the estimate given in Propo-
sition 2.1 by adding the diagonal terms).

Bounding the first summand on the right-hand side of the above inequality
is easy. By Jensen’s inequality, independence and the assumption 𝔼𝑋2

𝑖 = 1 we get

𝔼

( ∑
0≤𝑖,𝑗≤𝑁−𝑛

𝑋2
𝑖 𝑋

2
𝑗 1{1≤∣𝑖−𝑗∣≤𝑛−1}

)1/2√
log𝑛 ≤

√
2𝑁𝑛 log𝑛. (11)

Let us now take care of the second term. Denote

𝑍𝑘 =
∑

𝑘𝑛≤𝑖≤((𝑘+2)𝑛−1)∧(𝑁−𝑛)
𝑋2
𝑖 , 𝑍𝑘 = 𝑍𝑘 − 𝔼𝑍𝑘,

𝑘 = 0, 1, . . . , ⌈(𝑁 − 𝑛 + 1)/𝑛⌉ − 1.

Set 𝑞 = (𝑝/2)∧2 ≤ 2. Let also 𝜀0, . . . , 𝜀𝑁−𝑛 be independent Rademacher vari-
ables, independent of the sequence (𝑋𝑖). By standard symmetrization techniques
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and Hölder’s inequality we get

𝔼∣𝑍𝑘∣𝑞 ≤ 2𝑞𝔼𝑋𝔼𝜀

∣∣∣∣ ∑
𝑘𝑛≤𝑖≤((𝑘+2)𝑛−1)∧(𝑁−𝑛)

𝜀𝑖𝑋
2
𝑖

∣∣∣∣𝑞

≤ 2𝑞𝔼

( ∑
𝑘𝑛≤𝑖≤((𝑘+2)𝑛−1)∧(𝑁−𝑛)

𝑋4
𝑖

)𝑞/2
≤ 2𝑞𝔼

( ∑
𝑘𝑛≤𝑖≤((𝑘+2)𝑛−1)∧(𝑁−𝑛)

𝑋2𝑞
𝑖

)

≤ 2𝑞
( ∑
𝑘𝑛≤𝑖≤((𝑘+2)𝑛−1)∧(𝑁−𝑛)

𝐿2𝑞
)
≤ 2𝑞+2𝑛𝐿2𝑞,

where in the second and third inequality we used the fact 𝑞 ≤ 2 and in the fourth
one, 2𝑞 ≤ 𝑝 and the definition of 𝐿. We thus get

𝔼 max
0≤𝑘≤⌈(𝑁−𝑛+1)/𝑛⌉−1

( ∑
𝑘𝑛≤𝑖≤((𝑘+2)𝑛−1)∧(𝑁−𝑛)

𝑋2
𝑖

)

≤ max
0≤𝑘≤⌈(𝑁−𝑛+1)/𝑛⌉−1

( ∑
𝑘𝑛≤𝑖≤((𝑘+2)𝑛−1)∧(𝑁−𝑛)

𝔼𝑋2
𝑖

)
+ 𝔼 max

0≤𝑘≤⌈(𝑁−𝑛+1)/𝑛⌉−1
∣𝑍𝑘∣

≤ 2𝑛 +

( ∑
0≤𝑘≤⌈(𝑁−𝑛+1)/𝑛⌉−1

𝔼∣𝑍𝑘∣𝑞
)1/𝑞

≤ 2𝑛 +

(
𝐶

𝑁

𝑛
𝑛𝐿2𝑞

)1/𝑞
≤ 2𝑛 + 𝐶𝐿2𝑁1/𝑞,

which together with (10) and (11) gives

𝔼∥𝑀̃∥ℓ𝑛2→ℓ𝑛2
≤ 𝐶(

√
𝑁𝑛 log𝑛 + 𝑛 log𝑛 + 𝐿2𝑁1/𝑞 log𝑛) ≤ 𝐶𝑝𝐿

2(𝑁 + 𝑛 log𝑛),
(12)

where we used that 𝑞 > 1. Going back to (9), we see that it remains to estimate

the second term on the right-hand side. Clearly 𝔼
∑𝑁−𝑛

𝑖=0 𝑋2
𝑖 = 𝑁 − 𝑛 + 1, which

together with (12) gives 𝔼∥Γ∥2
ℓ𝑛2→ℓ𝑁2

= 𝔼∥Γ𝑇Γ∥ℓ𝑛2→ℓ𝑛2
≤ 𝐶𝑝𝐿

2(𝑁 + 𝑛 log𝑛) (recall

that 𝐿 ≥ 1) and proves the first assertion of the theorem.
To prove the second part, note that in the same way as for 𝑍𝑘 above, we get

𝔼

∣∣∣∣𝑁−𝑛∑
𝑖=0

(𝑋2
𝑖 − 1)

∣∣∣∣ ≤ 𝐶𝑁1/𝑞𝐿2.

Thus by the first inequality of (12), one obtains

𝔼∥Γ𝑇Γ − (𝑁 − 𝑛 + 1)Id𝑛∥ℓ𝑛2→ℓ𝑛2
≤ 𝐶

(√
𝑁 log𝑛 + 𝑛 log𝑛 + 𝐿2𝑁1/𝑞 log𝑛

)
,
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which gives

𝔼

∥∥∥ 1

𝑁
Γ𝑇Γ − Id𝑛

∥∥∥
ℓ𝑛2→ℓ𝑛2

≤ 𝜀𝛿

for 𝑁 ≥ 𝐶𝐿,𝑝,𝛿,𝜀𝑛 log𝑛. By Markov’s inequality this yields∥∥∥ 1

𝑁
Γ𝑇Γ − Id𝑛

∥∥∥
ℓ𝑛2→ℓ𝑛2

≤ 𝜀,

with probability at least 1 − 𝛿, which (after a suitable change of 𝜀) easily implies
the second part of the theorem. □

Remark. In the proof above we did not try to obtain explicit dependence of the
constant 𝐶𝐿,𝑝,𝛿,𝜀 on the parameters. Certain suboptimal estimates can be clearly
read from the proof. Moreover, once the expectations of the variables involved are
estimated, one can use general concentration inequalities for sums of independent
random variables and suprema of polynomial chaoses to get a better estimate on
the constants (depending on integrability properties of the underlying sequence of
random variables). We do not pursue this direction here.

3. Proof of Proposition 1.2

We can again assume that 𝑁 ≥ 𝑛 ≥ 2 and prove the corresponding estimate for
the matrix Γ. Going back to the equality (4) we obtain

𝔼∥Γ𝑇Γ∥ℓ𝑛2→ℓ𝑛2
≤ 𝔼

∥∥∥∥ ∑
0≤𝑖≤𝑁−𝑛

𝑋2
𝑖 𝐴

𝑇
𝑖 𝐴𝑖

∥∥∥∥
ℓ𝑛2→ℓ𝑛2

+ 𝔼

∥∥∥∥ ∑
0≤𝑖∕=𝑗≤𝑁−𝑛

𝑋𝑖𝑋𝑗𝐴
𝑇
𝑖 𝐴𝑗

∥∥∥∥
ℓ𝑛2→ℓ𝑛2

.

Since 𝐴𝑇
𝑖 𝐴𝑖 = Id𝑛 and 𝔼𝑋2

𝑖 = 1, the first term on the right-hand side equals
𝑁 − 𝑛 + 1 ≤ 𝑁 . To bound the second term we use the fact that the space of
𝑛× 𝑛 matrices equipped with the operator norm has type 2 constant bounded by
𝐶
√

log 𝑛 (see Proposition 4.6 in the Appendix). Thus we can use Proposition 4.5
from the Appendix and get(

𝔼

∥∥∥∥ ∑
0≤𝑖∕=𝑗≤𝑁−𝑛

𝑋𝑖𝑋𝑗𝐴
𝑇
𝑖 𝐴𝑗

∥∥∥∥
ℓ𝑛2→ℓ𝑛2

)2
≤ 𝐶

( ∑
0≤𝑖∕=𝑗≤𝑁−𝑛

∥𝐴𝑇
𝑖 𝐴𝑗∥2ℓ𝑛2→ℓ𝑛2

)
log2 𝑛.

Note that if ∣𝑖 − 𝑗∣ ≥ 𝑛 then 𝐴𝑇
𝑖 𝐴𝑗 = 0, moreover for all 𝑖, 𝑗, ∥𝐴𝑇

𝑖 𝐴𝑗∥ℓ𝑛2→ℓ𝑛2
≤ 1,

which together with the above inequality gives

𝔼

∥∥∥∥ ∑
0≤𝑖∕=𝑗≤𝑁−𝑛

𝑋𝑖𝑋𝑗𝐴
𝑇
𝑖 𝐴𝑗

∥∥∥∥
ℓ𝑛2→ℓ𝑛2

≤ 𝐶
√
𝑁𝑛 log𝑛.

Combining this with the previous estimates we get

𝔼∥Γ∥2ℓ𝑛2→ℓ𝑁2
= 𝔼∥Γ𝑇Γ∥ℓ𝑛2→ℓ𝑛2

≤ 𝐶
(
𝑁 +

√
𝑛𝑁 log𝑛

)
,

which ends the proof. □
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4. Appendix

For reader’s convenience we gather here several by now standard results which have
been used in the proofs above. For most of them we provide detailed references,
however in some cases we haven’t been able to find the formulation we need in the
literature, so we briefly describe how they follow from available references.

The first proposition gives estimates on the operator norm of a square random
Toeplitz matrix. It was proved in [1] for symmetric random Toeplitz matrices.
A simple modification of the proof gives the result in the non-symmetric case,
however it can be also easily obtained by exploring the type 2 property of the space
of symmetric matrices (see Proposition 4.6 below) or, e.g., by noncommutative
Bernstein inequalities, since a random square Toeplitz matrix can be written as a
linear combination with random coefficients of norm one matrices.

Proposition 4.1. If 𝑁 = 𝑛 and (𝑋𝑖)1−𝑛≤𝑖≤𝑛−1 are independent, centered random
variables, then

𝔼∥𝑇 ∥ℓ𝑛2→ℓ𝑛2
≤ 𝐶

( 𝑛−1∑
𝑖=1−𝑛

𝔼𝑋2
𝑖

)1/2√
log𝑛.

We will now state concentration results for Gaussian chaoses of order 2. In a
weaker form they can be traced to [10]. The present formulation can be deduced
from results on a Banach space-valued case in [2, 4] and appears explicitly in [11]
and [12] (where a generalization to chaoses of higher degree has been obtained).

Proposition 4.2. Let 𝑔1, 𝑔2, . . . , 𝑔𝑛 be independent standard Gaussian random vari-
ables and let 𝐴 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑛 be an array of real numbers such that for all
1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖𝑖 = 0. Then for any 𝑡 ≥ 0,

ℙ

(∣∣∣∣ ∑
1≤𝑖,𝑗≤𝑛

𝑎𝑖𝑗𝑔𝑖𝑔𝑗

∣∣∣∣ ≥ 𝑡

)
≤ 2 exp

(
− 1

𝐶
min
( 𝑡2

∥𝐴∥2𝐻𝑆
,

𝑡

∥𝐴∥ℓ𝑛2→ℓ𝑛2

))
.

The next proposition is a consequence of Theorem 1.2.7 in [17] and a com-
parison between 𝛾𝑝 functionals and entropy integrals.

Proposition 4.3. Consider a set 𝑇 equipped with two distances 𝑑1 and 𝑑2 and a
stochastic process (𝑋𝑡)𝑡∈𝑇 such that 𝔼𝑋𝑡 = 0 for all 𝑡 ∈ 𝑇 and for all 𝑠, 𝑡 ∈ 𝑇 and
𝑢 > 0,

ℙ(∣𝑋𝑠 −𝑋𝑡∣ ≥ 𝑢) ≤ 2 exp

(
− min

( 𝑢2

𝑑1(𝑠, 𝑡)2
,

𝑢

𝑑2(𝑠, 𝑡)

))
.

Then

𝔼 sup
𝑠,𝑡∈𝑇

∣𝑋𝑠 −𝑋𝑡∣ ≤ 𝐶

(∫ ∞

0

√
log𝒩 (𝑇, 𝑑1, 𝜀)𝑑𝜀 +

∫ ∞

0

log𝒩 (𝑇, 𝑑2, 𝜀)𝑑𝜀

)
.

Let us now state a simple proposition which combines standard symmetriza-
tion techniques with comparison between Gaussian and Rademacher averages.
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Proposition 4.4. Let 𝑋1, . . . , 𝑋𝑛 be independent centered random variables and let
(𝑎𝑖𝑗)1≤𝑖∕=𝑗≤𝑛 be coefficients from a normed space (𝐹, ∥ ⋅ ∥). Finally let 𝑔1, . . . , 𝑔𝑛 be
i.i.d. standard Gaussian variables independent of the sequence 𝑋1, . . . , 𝑋𝑛. Then

𝔼

∥∥∥∥ ∑
1≤𝑖∕=𝑗≤𝑛

𝑎𝑖𝑗𝑋𝑖𝑋𝑗

∥∥∥∥ ≤ 2𝜋𝔼

∥∥∥∥ ∑
1≤𝑖∕=𝑗≤𝑛

𝑎𝑖𝑗𝑔𝑖𝑔𝑗𝑋𝑖𝑋𝑗

∥∥∥∥.
Proof. Let 𝜀1, . . . , 𝜀𝑛 be independent Rademacher variables, independent of the
sequences (𝑋𝑖), (𝑔𝑖). Using repetitively (and conditionally) the fact that for any
convex function 𝜑 : ℝ → ℝ we have 𝔼𝜑(𝑋𝑖) ≤ 𝔼𝜑(2𝜀𝑖𝑋𝑖), we get

𝔼

∥∥∥∥ ∑
1≤𝑖∕=𝑗≤𝑛

𝑎𝑖𝑗𝑋𝑖𝑋𝑗

∥∥∥∥ ≤ 4𝔼

∥∥∥∥ ∑
1≤𝑖∕=𝑗≤𝑛

𝑎𝑖𝑗𝜀𝑖𝜀𝑗𝑋𝑖𝑋𝑗

∥∥∥∥.
Now, by symmetry of 𝑔𝑖 and Jensen’s inequality,

2

𝜋
𝔼

∥∥∥∥ ∑
1≤𝑖∕=𝑗≤𝑛

𝑎𝑖𝑗𝜀𝑖𝜀𝑗𝑋𝑖𝑋𝑗

∥∥∥∥ = 𝔼

∥∥∥∥ ∑
1≤𝑖∕=𝑗≤𝑛

𝑎𝑖𝑗𝜀𝑖𝜀𝑗𝔼𝑔∣𝑔𝑖𝑔𝑗∣𝑋𝑖𝑋𝑗

∥∥∥∥
≤ 𝔼

∥∥∥∥ ∑
1≤𝑖∕=𝑗≤𝑛

𝑎𝑖𝑗𝜀𝑖𝑔𝑖𝜀𝑗𝑔𝑗𝑋𝑖𝑋𝑗

∥∥∥∥
= 𝔼

∥∥∥∥ ∑
1≤𝑖∕=𝑗≤𝑛

𝑎𝑖𝑗𝑔𝑖𝑔𝑗𝑋𝑖𝑋𝑗

∥∥∥∥,
which ends the proof. □

Recall that a Banach space (𝐹, ∥ ⋅ ∥) is of type 2 if there exists a finite con-
stant 𝑇𝐹 , such that for all 𝑎1, . . . , 𝑎𝑛 ∈ 𝐹 and independent Rademacher variables
𝜀1, . . . , 𝜀𝑛, we have

𝔼∥𝜀1𝑎1 + ⋅ ⋅ ⋅ + 𝜀𝑛𝑎𝑛∥2 ≤ 𝑇 2𝐹

𝑛∑
𝑖=1

∥𝑎𝑖∥2. (13)

The next proposition concerns basic properties of polynomial chaoses in spaces of
type 2. It is well known, so we skip the proof and remark only that it consists of
the three following steps: 1) decoupling inequalities for chaoses (see, e.g., Theorem
3.1.1. in [8]), 2) an iterative application of symmetrization inequalities, 3) iterative
application of (13) conditionally on (𝑋𝑖)

𝑛
𝑖=1.

Proposition 4.5. Let 𝑋1, . . . , 𝑋𝑛 be independent centered, variance one random
variables and let (𝑎𝑖𝑗)1≤𝑖∕=𝑗≤𝑛 be coefficients from a normed space (𝐹, ∥ ⋅ ∥) with
type 2 constant 𝑇𝐹 . Then

𝔼∥
∑

1≤𝑖∕=𝑗≤𝑛
𝑎𝑖𝑗𝑋𝑖𝑋𝑗∥2 ≤ 𝐶𝑇 4𝐹

∑
1≤𝑖∕=𝑗≤𝑛

∥𝑎𝑖𝑗∥2.

Finally, the last proposition gives an estimate of the type 2 constant for the
space of symmetric 𝑛× 𝑛 matrices equipped with the operator norm.
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Proposition 4.6. The space 𝐹 = 𝑆𝑛∞ of 𝑛 × 𝑛 symmetric matrices equipped with
the operator norm has type 2 with constant 𝑇𝐹 ≤ 𝐶

√
log𝑛.

This proposition follows easily from estimates of type 2 constants for Schatten
classes 𝑆𝑛𝑝 , which follow from the proof of Theorem 3.1. in [18] (𝑇2(𝑆

𝑛
𝑝 ) ≤ 𝐶

√
𝑝),

and the fact that the Banach-Mazur distance between 𝑆𝑛∞ and 𝑆𝑛𝑝 is bounded by

𝑛1/𝑝 (it is enough to take 𝑝 = log𝑛). We refer the reader, e.g., to [19] for details
on the Banach-Mazur distance and geometry of Banach spaces.
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Edge Fluctuations of Eigenvalues
of Wigner Matrices

Hanna Döring and Peter Eichelsbacher

Abstract. We establish a moderate deviation principle (MDP) for the num-
ber of eigenvalues of a Wigner matrix in an interval close to the edge of the
spectrum. Moreover we prove a MDP for the 𝑖th largest eigenvalue close to
the edge. The proof relies on fine asymptotics of the variance of the eigen-
value counting function of GUE matrices due to Gustavsson. The extension
to large families of Wigner matrices is based on the Tao and Vu Four Mo-
ment Theorem. Possible extensions to other random matrix ensembles are
commented.

Mathematics Subject Classification (2010). Primary 60B20; Secondary 60F10,
15A18.

Keywords. Large deviations, moderate deviations, Wigner random matrices,
Gaussian ensembles, Four Moment Theorem.

1. Introduction

Recently, in [5] and [4] the Central Limit Theorem (CLT) for the eigenvalue count-
ing function of Wigner matrices, that is the number of eigenvalues falling in an
interval, was established. This universality result relies on fine asymptotics of the
variance of the eigenvalue counting function, on the Fourth Moment Theorem due
to Tao and Vu as well as on recent localization results due to Erdös, Yau and
Yin. There are many random matrix ensembles of interest, but to focus our dis-
cussion and to clear the exposition we shall restrict ourselves to the most famous
model class of ensembles, the Wigner Hermitian matrix ensembles. For an integer
𝑛 ≥ 1 consider an 𝑛× 𝑛 Wigner Hermitian matrix 𝑀𝑛 = (𝑍𝑖𝑗)1≤𝑖,𝑗≤𝑛: Consider a
family of jointly independent complex-valued random variables (𝑍𝑖𝑗)1≤𝑖,𝑗≤𝑛 with
𝑍𝑗𝑖 = 𝑍𝑖𝑗 , in particular the 𝑍𝑖𝑖 are real valued. For 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 require that the
random variables have mean zero and variance one and the 𝑍𝑖𝑗 ≡ 𝑍 are identically

The second author has been supported by Deutsche Forschungsgemeinschaft via SFB/TR 12.
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distributed, and for 1 ≤ 𝑖 = 𝑗 ≤ 𝑛 require that 𝑍𝑖𝑖 ≡ 𝑍 ′ are also identically dis-
tributed with mean zero and variance one. The distributions of 𝑍 and 𝑍 ′ are called
atom distributions. An important example of a Wigner Hermitian matrix 𝑀𝑛 is
the case where the entries are Gaussian, that is 𝑍𝑖𝑗 is distributed according to a
complex standard Gaussian 𝑁(0, 1)ℂ for 𝑖 ∕= 𝑗 and 𝑍𝑖𝑖 is distributed according to
a real standard Gaussian 𝑁(0, 1)ℝ, giving rise to the so-called Gaussian Unitary
Ensembles (GUE). GUE matrices will be denoted by 𝑀 ′

𝑛. In this case, the joint law
of the eigenvalues is known, allowing a good description of their limiting behavior
both in the global and local regimes (see [1]). In the Gaussian case, the distribu-
tion of the matrix is invariant by the action of the group 𝑆𝑈(𝑛). The eigenvalues
of the matrix 𝑀𝑛 are independent of the eigenvectors which are Haar distributed.
If (𝑍𝑖,𝑗)1≤𝑖<𝑗 are real valued the symmetric Wigner matrix is defined analogously
and the case of Gaussian variables with 𝔼𝑍2𝑖𝑖 = 2 is of particular importance, since
their law is invariant under the action of the orthogonal group 𝑆𝑂(𝑛), known as
Gaussian Orthogonal Ensembles (GOE).

The matrix 𝑊𝑛 := 1√
𝑛
𝑀𝑛 is called the coarse-scale normalized Wigner Her-

mitian matrix, and 𝐴𝑛 :=
√
𝑛𝑀𝑛 is called the fine-scale normalized Wigner Her-

mitian matrix. For any 𝑛× 𝑛 Hermitian matrix 𝐴 we denote by 𝜆1(𝐴), . . . , 𝜆𝑛(𝐴)
the real eigenvalues of 𝐴. We introduce the eigenvalue counting function

𝑁𝐼(𝐴) :=
∣∣{1 ≤ 𝑖 ≤ 𝑛 : 𝜆𝑖(𝐴) ∈ 𝐼 }∣∣

for any interval 𝐼 ⊂ ℝ. We will consider 𝑁𝐼(𝑊𝑛) as well as 𝑁𝐼(𝐴𝑛). Remark that
𝑁𝐼(𝑊𝑛) = 𝑁𝑛𝐼(𝐴𝑛). The global Wigner theorem states that the empirical measure
1
𝑛

∑𝑛
𝑖=1 𝛿𝜆𝑖 on the eigenvalues 𝜆𝑖 of the coarse-scale normalized Wigner Hermitian

matrix 𝑊𝑛 converges weakly almost surely as 𝑛 →∞ to the semicircle law

𝑑𝜚𝑠𝑐(𝑥) =
1

2𝜋

√
4 − 𝑥2 1[−2,2](𝑥) 𝑑𝑥,

(see [1, Theorem 2.1.21, Theorem 2.2.1]). Consequently, for any interval 𝐼 ⊂ ℝ,

lim
𝑛→∞

1

𝑛
𝑁𝐼(𝑊𝑛) = 𝜚𝑠𝑐(𝐼) :=

∫
𝐼

𝜚𝑠𝑐(𝑦) 𝑑𝑦

almost surely. At the fluctuation level, it is well known that for the GUE, 𝑊 ′
𝑛 :=

1√
𝑛
𝑀 ′

𝑛 satisfies a CLT (see [17]): Let 𝐼𝑛 be an interval in ℝ. If 𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)) →∞

as 𝑛 →∞, then

𝑁𝐼𝑛(𝑊 ′
𝑛) − 𝔼[𝑁𝐼𝑛(𝑊 ′

𝑛)]√
𝕍(𝑁𝐼𝑛(𝑊 ′

𝑛))
→ 𝑁(0, 1)ℝ

as 𝑛 →∞ in distribution. In [14] the asymptotic behavior of the expectation and
the variance of the counting function 𝑁𝐼𝑛(𝑊 ′

𝑛) for intervals 𝐼𝑛 = [𝑦(𝑛),∞) with
𝑦(𝑛) = 𝐺−1(𝑘/𝑛) (where 𝑘 = 𝑘(𝑛) is such that 𝑘/𝑛 → 𝑎 ∈ (0, 1) – strictly in
the bulk –, and 𝐺 denotes the distribution function of the semicircle law) was
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established:

𝔼[𝑁𝐼𝑛(𝑊 ′
𝑛)] = 𝑛− 𝑘(𝑛) + 𝑂

(
log𝑛

𝑛

)
and 𝕍(𝑁𝐼𝑛(𝑊 ′

𝑛)) =

(
1

2𝜋2
+ 𝑜(1)

)
log𝑛.

(1.1)
The proof applied strong asymptotics for orthogonal polynomials with respect to
exponential weights, see [6]. These conclusions were extended to non-Gaussian
Wigner Hermitian matrices in [5].

In this article we focus on the behaviour of the eigenvalue counting function
𝑁𝐼𝑛(𝑊𝑛) evaluated at the edge of the spectrum. Fine asymptotics of expecta-
tion and variance as well as the CLT at the edge of the spectrum of GUE ma-
trices are known, see [14]. Let 𝐼𝑛 = [𝑦𝑛,∞) where 𝑦𝑛 → 2− for 𝑛 → ∞ in a
certain speed. We prove a global moderate deviation principle (MDP) for 𝑍𝑛 :=
𝑁𝐼𝑛 (𝑊

′
𝑛)− 2

3𝜋𝑛(2−𝑦𝑛)3/2
𝑎𝑛

√
1

2𝜋2 log(𝑛(2−𝑦𝑛)3/2)
, that means: For any sequence (𝑎𝑛)𝑛 with 1 ≪ 𝑎𝑛 ≪ √

log𝑛,

we have

𝑃

⎛⎝𝑁𝐼𝑛(𝑊 ′
𝑛) − 2

3𝜋𝑛(2 − 𝑦𝑛)3/2

𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦𝑛)3/2)

∼ 𝑥

⎞⎠ ≈ 𝑒−𝑎
2
𝑛𝐼(𝑥) ,

see Theorem 2.1 for a precise statement. Using the equivalence

𝑁[𝑦,∞)(𝑊𝑛) ≤ 𝑛− 𝑖 if and only if 𝜆𝑖(𝑊𝑛) ≤ 𝑦

in Theorem 3.1 we prove a local MDP for an eigenvalue near the edge of the
spectrum of 𝑊 ′

𝑛. Applying the Four Moment Theorem due to Tao and Vu, the local
MDP can be generalized to a large class of Hermitian Wigner matrices. Finally
this yields the main theorem of the present article: a universal global MDP of the
eigenvalue counting function 𝑁[𝑦,∞)(𝑊𝑛) for 𝑦 near the edge of the spectrum. We
state it in Theorem 5.1. The last section indicates how to achieve the previous
moderate deviation results for symmetric Wigner matrices.

2. Global moderate deviations at the edge of the spectrum

Certain deviations results and concentration properties for Wigner matrices were
considered. Our aim is to establish moderate deviation principles. Recall that a
sequence of laws (𝑃𝑛)𝑛≥0 on a Polish space Σ satisfies a large deviation principle
(LDP) with good rate function 𝐼 : Σ → ℝ+ and speed 𝑠𝑛 going to infinity with 𝑛
if and only if the level sets {𝑥 : 𝐼(𝑥) ≤ 𝑀}, 0 ≤ 𝑀 < ∞, of 𝐼 are compact and for
all closed sets 𝐹

lim sup
𝑛→∞

𝑠−1𝑛 log𝑃𝑛(𝐹 ) ≤ − inf
𝑥∈𝐹

𝐼(𝑥)

whereas for all open sets 𝑂

lim inf
𝑛→∞ 𝑠−1𝑛 log𝑃𝑛(𝑂) ≥ − inf

𝑥∈𝑂
𝐼(𝑥).

We say that a sequence of random variables satisfies the LDP when the sequence
of measures induced by these variables satisfies the LDP. Formally a moderate
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deviation principle is nothing else but the LDP. However, we speak about a mod-
erate deviation principle (MDP) for a sequence of random variables, whenever the
scaling of the corresponding random variables is between that of an ordinary Law
of Large Numbers (LLN) and that of a CLT.

Large deviation results for the empirical measures of Wigner matrices are still
only known for the Gaussian ensembles since their proof is based on the explicit
joint law of the eigenvalues, see [2] and [1]. A moderate deviation principle for
the empirical measure of the GUE or GOE is also known, see [7]. This moderate
deviations result does not have yet a fully universal version for Wigner matrices. It
has been generalised to Gaussian divisible matrices with a deterministic self-adjoint
matrix added with converging empirical measure [7] and to Bernoulli matrices [9].
Recently we proved in [11] a MDP for the number of eigenvalues in the bulk of the
spectrum of a GUE matrix. If 𝑀 ′

𝑛 is a GUE matrix and 𝑊 ′
𝑛 := 1√

𝑛
𝑀 ′

𝑛 and 𝐼𝑛 be

an interval in ℝ. If 𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)) →∞ for 𝑛 →∞, then, for any sequence (𝑎𝑛)𝑛 of

real numbers such that 1 ≪ 𝑎𝑛 ≪√𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)), the sequence (𝑍𝑛)𝑛 with

𝑍𝑛 =
𝑁𝐼𝑛(𝑊 ′

𝑛) − 𝔼[𝑁𝐼𝑛(𝑊 ′
𝑛)]

𝑎𝑛
√
𝕍(𝑁𝐼𝑛(𝑊 ′

𝑛))

satisfies a MDP with speed 𝑎2𝑛 and rate function 𝐼(𝑥) = 𝑥2

2 . Moreover let 𝐼 =

[𝑦,∞) with 𝑦 ∈ (−2, 2) strictly in the bulk, then the sequence (𝑍𝑛)𝑛 with 𝑍𝑛 =
𝑁𝐼(𝑊

′
𝑛)−𝑛𝜚𝑠𝑐(𝐼)

𝑎𝑛
√

1
2𝜋2 log𝑛

satisfies the MDP with the same speed, the same rate function,

and in the regime 1 ≪ 𝑎𝑛 ≪ √
log𝑛 (called the MDP with numerics; see Theorem

1.1 in [11]). It follows applying (1.1). In [11], these conclusions were extended to
non-Gaussian Wigner Hermitian matrices. In [10] we proved a further universal
MDP for the logarithm of the determinants of Wigner matrices.

The first observation in this paper is, that the MDP for (𝑍𝑛)𝑛 and (𝑍𝑛)𝑛,
respectively, is not restricted to the bulk of the spectrum. To state the result, let
𝛿 > 0 and assume that 𝑦𝑛 ∈ [−2 + 𝛿, 2) and 𝑛(2 − 𝑦𝑛)3/2 → ∞ when 𝑛 → ∞.
Then with [14, Lemma 2.3] the variance of the number of eigenvalues of 𝑊 ′

𝑛 in
𝐼𝑛 := [𝑦𝑛,∞) satisfies

𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)) =

1

2𝜋2
log
(
𝑛(2 − 𝑦𝑛)3/2

)
(1 + 𝜂(𝑛)), (2.1)

where 𝜂(𝑛) → 0 as 𝑛 → ∞. Moreover the expected number of eigenvalues of 𝑊 ′
𝑛

in 𝐼𝑛, when 𝑦𝑛 → 2−, is given by [14, Lemma 2.2]:

𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛)) =

2

3𝜋
𝑛(2 − 𝑦𝑛)3/2 + 𝑂(1). (2.2)

Hence applying Theorem 1.1 in [11] we immediately obtain:

Theorem 2.1. Let 𝑀 ′
𝑛 be a GUE matrix and 𝑊 ′

𝑛 = 1√
𝑛
𝑀𝑛. Let 𝐼𝑛 = [𝑦𝑛,∞)

where 𝑦𝑛 → 2− for 𝑛 → ∞. Assume that 𝑦𝑛 ∈ [−2 + 𝛿, 2) and 𝑛(2 − 𝑦𝑛)3/2 → ∞
when 𝑛 → ∞. Then, for any sequence (𝑎𝑛)𝑛 of real numbers such that 1 ≪ 𝑎𝑛 ≪
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√
𝕍(𝑁𝐼𝑛(𝑊 ′

𝑛)), the sequence
𝑁𝐼𝑛(𝑊

′
𝑛)−𝔼[𝑁𝐼𝑛(𝑊

′
𝑛)]

𝑎𝑛
√

𝕍(𝑁𝐼𝑛(𝑊
′
𝑛))

satisfies a MDP with speed 𝑎2𝑛

and rate function 𝐼(𝑥) = 𝑥2

2 . Moreover the sequence

𝑍𝑛 :=
𝑁𝐼𝑛(𝑊 ′

𝑛) − 2
3𝜋𝑛(2 − 𝑦𝑛)3/2

𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦𝑛)3/2)

satisfies the MDP with the same speed, the same rate function, and in the regime

1 ≪ 𝑎𝑛 ≪
√

log(𝑛(2 − 𝑦𝑛)3/2) (called the MDP with numerics).

For symmetry reasons an analogous result could be formulated for the count-
ing function 𝑁𝐼𝑛(𝑊 ′

𝑛) near the left edge of the spectrum.

3. Local moderate deviations at the edge of the spectrum

Under certain conditions on 𝑖 it was proved in [14] that the 𝑖th eigenvalue 𝜆𝑖 of
the GUE 𝑊 ′

𝑛 satisfies a CLT. Consider 𝑡(𝑥) ∈ [−2, 2] defined for 𝑥 ∈ [0, 1] by

𝑥 =

∫ 𝑡(𝑥)

−2
𝜚𝑠𝑐(𝑡) 𝑑𝑡 =

1

2𝜋

∫ 𝑡(𝑥)

−2

√
4 − 𝑥2 𝑑𝑥.

Then for 𝑖 = 𝑖(𝑛) such that 𝑖/𝑛 → 𝑎 ∈ (0, 2) as 𝑛 → ∞ (i.e., 𝜆𝑖 is eigenvalue in
the bulk), 𝜆𝑖(𝑊

′
𝑛) satisfies a CLT:

𝑋𝑛 :=

√
4 − 𝑡(𝑖/𝑛)2

2

𝜆𝑖(𝑊
′
𝑛) − 𝑡(𝑖/𝑛)
√
log𝑛
𝑛

→ 𝑁(0, 1) (3.1)

for 𝑛 → ∞. Remark that 𝑡(𝑖/𝑛) is sometimes called the classical or expected lo-

cation of the 𝑖th eigenvalue. The standard deviation is
√
log𝑛

𝜋
√
2

1
𝑛𝜚𝑠𝑐(𝑡(𝑖/𝑛))

. Note

that from the semicircular law, the factor 1
𝑛𝜚𝑠𝑐(𝑡(𝑖/𝑛))

is the mean eigenvalue spac-

ing. Informally, (3.1) asserts in the GUE case, that each eigenvalue 𝜆𝑖(𝑊
′
𝑛) typ-

ically deviates by 𝑂
(√

log𝑛/(𝑛𝜚(𝑡(𝑖/𝑛)))
)

around its classical location. This re-
sult can be compared with the so-called eigenvalue rigidity property 𝜆𝑖(𝑊

′
𝑛) =

𝑡(𝑖/𝑛) + 𝑂(𝑛−1+𝜀) established in [12], which has a slightly worse bound on the
deviation but which holds with overwhelming probability and for general Wigner
ensembles. See also discussions in [20, Section 3]. We proved in [11, Theorem 4.1]
a MDP for

(
1
𝑎𝑛

𝑋𝑛

)
𝑛

with 𝑋𝑛 in (3.1), for any 1 ≪ 𝑎𝑛 ≪ √
log𝑛, with speed 𝑎2𝑛

and rate 𝑥2/2. Moreover in [11, Theorem 4.2], these conclusions were extended to
non-Gaussian Wigner Hermitian matrices. The proofs are achieved by the tight re-
lation between eigenvalues and the counting function expressed by the elementary
equivalence, for 𝐼(𝑦) = [𝑦,∞), 𝑦 ∈ ℝ,

𝑁𝐼(𝑦)(𝑊𝑛) ≤ 𝑛− 𝑖 if and only if 𝜆𝑖(𝑊𝑛) ≤ 𝑦. (3.2)

This relation is true for any eigenvalue 𝜆𝑖(𝑊𝑛), independent of sitting being in the
bulk of the spectrum or very close to the right edge of the spectrum. Hence the
next goal is to transport the MDP for the counting function of eigenvalues close
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to the (right) edge, Theorem 2.1, to a MDP for any singular eigenvalue close to
the right edge of the spectrum. Consider 𝑖 = 𝑖(𝑛) with 𝑖 → ∞ but 𝑖/𝑛 → 0 as
𝑛 →∞ and define 𝜆𝑛−𝑖(𝑊 ′

𝑛) as eigenvalue number 𝑛− 𝑖 in the GUE. An example
is 𝑖(𝑛) = 𝑛− log 𝑛. In [14, Theorem 1.2] a CLT was proven, which is

𝑍𝑛,𝑖 :=
𝜆𝑛−𝑖(𝑊 ′

𝑛) − (2 − ( 3𝜋2 𝑖
𝑛

)2/3)
const

(
log 𝑖

𝑖2/3𝑛4/3

)1/2 → 𝑁(0, 1)ℝ (3.3)

in distribution with const =
(
(3𝜋)2/321/3

)−1/2
. Remark that the formulation in

[14, Theorem 1.2] is different, since first of all the GUE in [14] was defined such
that the limiting semicircular law has support [−1, 1] and, second the CLT in [14]
is formulated for 𝜆𝑛−𝑖(𝑀 ′

𝑛) instead of 𝜆𝑛−𝑖(𝑊 ′
𝑛). The choice of the asymptotic

expectation and variance in (3.3) can be explained as follows. Let 𝑔(𝑦𝑛) be the
expected number of eigenvalues in 𝐼𝑛 = [𝑦𝑛,∞). Then with (3.2)

𝑃
(
𝜆𝑛−𝑖(𝑊 ′

𝑛) ≤ 𝑦𝑛
)

= 𝑃
(
𝑁𝐼𝑛(𝑊 ′

𝑛) ≤ 𝑖
)

= 𝑃

(
𝑁𝐼𝑛(𝑊 ′

𝑛) − 𝑔(𝑦𝑛)

𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2

≤ 𝑖− 𝑔(𝑦𝑛)

𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2

)
.

Trying to apply the CLT for 𝑁𝐼𝑛 is choosing 𝑦𝑛 such that 𝑖−𝑔(𝑦𝑛)√
𝕍(𝑁𝐼𝑛 (𝑊

′
𝑛))

→ 𝑥 for 𝑛 →
∞, because this would imply 𝑃

(
𝜆𝑛−𝑖(𝑊 ′

𝑛) ≤ 𝑦𝑛
) → ∫ 𝑥

−∞ 𝜑0,1(𝑡) 𝑑𝑡, where 𝜑0,1(⋅)
denotes the density of the standard normal distribution. The candidate for 𝑦𝑛 can
be found as in the proof of [14, Theorem 1.2], with 𝑔(𝑦𝑛) = 2

3𝜋𝑛(2− 𝑦𝑛)3/2+𝑂(1)

and ℎ(𝑦𝑛) = 𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2 = 1√

2𝜋
log1/2(𝑛(2− 𝑦𝑛)3/2) + 𝑜(log1/2(𝑛(2− 𝑦𝑛)3/2)).

Applying the same heuristic as on page 157 in [14], we obtain

𝑦𝑛 ≈ 2 −
(

3𝜋

2

𝑖

𝑛

)2/3
+ 𝑥

((
(3𝜋)2/321/3

)−1/2 log 𝑖

𝑖2/3𝑛4/3

)1/2
.

With respect to the statement in Theorem 2.1 one might expect a MDP for(
1
𝑎𝑛

𝑍𝑛,𝑖
)
𝑛

for certain growing sequences (𝑎𝑛)𝑛. We have

𝑃
(
𝑍𝑛,𝑖/𝑎𝑛 ≤ 𝑥

)
= 𝑃
(
𝜆𝑛−𝑖(𝑊 ′

𝑛) ≤ 𝑦𝑛(𝑎𝑛)
)

= 𝑃
(
𝑁𝐼𝑛(𝑊 ′

𝑛) ≤ 𝑖
)

= 𝑃

(
𝑁𝐼𝑛(𝑊 ′

𝑛) − 𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛))

𝑎𝑛𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2

≤ 𝑖− 𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛))

𝑎𝑛𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2

)
with

𝑦𝑛(𝑎𝑛) := 2 −
(

3𝜋

2

𝑖

𝑛

)2/3
+ 𝑎𝑛 𝑥

((
(3𝜋)2/321/3

)−1/2 ( log 𝑖

𝑖2/3𝑛4/3

))1/2
(3.4)

and 𝐼𝑛 = [𝑦𝑛(𝑎𝑛),∞). Since 𝑖 → ∞ and 𝑖/𝑛 → 0 for 𝑛 → ∞, we have that

𝑦𝑛(𝑎𝑛) → 2− for every 𝑎𝑛 such that 𝑎𝑛 ≪ (
log 𝑖
)1/2

. Hence we can apply (2.2),

that is 𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛)) = 2

3𝜋𝑛(2 − 𝑦𝑛(𝑎𝑛))3/2 + 𝑂(1). With

2 − 𝑦𝑛(𝑎𝑛) =

(
3𝜋

2

𝑖

𝑛

)2/3(
1 − 𝑎𝑛 𝑥 log1/2 𝑖

(3𝜋/
√

2)𝑖

)
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by Taylor’s expansion we obtain

2

3𝜋
𝑛(2 − 𝑦𝑛(𝑎𝑛))3/2 = 𝑖− 1√

2𝜋
𝑎𝑛 𝑥 log1/2 𝑖 + 𝑜

(
𝑎𝑛 𝑥 log1/2 𝑖

)
, (3.5)

and therefore 𝑖 − 𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛)) = 1√

2𝜋
𝑎𝑛 𝑥 log1/2 𝑖 + 𝑜

(
𝑎𝑛 𝑥 log1/2 𝑖

)
+𝑂(1). From

(3.5) we obtain that 𝑛(2 − 𝑦𝑛(𝑎𝑛))3/2 → ∞ for 𝑛 → ∞ for every 𝑎𝑛 ≪ (log 𝑖
)1/2

.

Hence we can apply (2.1), that is 𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)) = 1

2𝜋2 log
(
𝑛(2 − 𝑦𝑛(𝑎𝑛))3/2

)
(1 +

𝑜(1)). With (3.5) the variance 𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛)) equals(

1

2𝜋2
log
(3𝜋

2
𝑖
)

+
1

2𝜋2
log

(
1 − 𝑎𝑛 𝑥 (log 𝑖)1/2√

2𝜋𝑖
+ 𝑜
(𝑎𝑛 𝑥 (log 𝑖)1/2

𝑖

)))
(1 + 𝑜(1)).

Summarizing we have proven that for any growing sequence (𝑎𝑛)𝑛 of real numbers
such that 1 ≪ 𝑎𝑛 ≪ (log 𝑖)1/2

𝑖− 𝔼(𝑁𝐼𝑛(𝑊 ′
𝑛))

𝑎𝑛𝕍(𝑁𝐼𝑛(𝑊 ′
𝑛))1/2

= 𝑥 + 𝑜(1).

By Theorem 2.1 we obtain for every 𝑥 < 0 that lim𝑛→∞ 1
𝑎2
𝑛

log𝑃
(
𝑍𝑛,𝑖/𝑎𝑛 ≤ 𝑥

)
=

−𝑥2

2 . With 𝑃
(
𝑍𝑛,𝑖/𝑎𝑛 ≥ 𝑥

)
= 𝑃
(
𝑁𝐼𝑛(𝑊 ′

𝑛) ≥ 𝑖− 1
)

the same calculations lead, for
every 𝑥 > 0, to

lim
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝑍𝑛,𝑖/𝑎𝑛 ≥ 𝑥

)
= −𝑥2

2
. (3.6)

Next we choose all open intervals (𝑎, 𝑏), where at least one of the endpoints is
finite and where none of the endpoints is zero. Denote the family of such intervals
by 𝒰 . Now it follows for each 𝑈 = (𝑎, 𝑏) ∈ 𝒰 ,

ℒ𝑈 := lim
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝑍𝑛,𝑖/𝑎𝑛 ∈ 𝑈

)
=

⎧⎨⎩
𝑏2/2 : 𝑎 < 𝑏 < 0

0 : 𝑎 < 0 < 𝑏
𝑎2/2 : 0 < 𝑎 < 𝑏

By [8, Theorem 4.1.11], (𝑍𝑛,𝑖/𝑎𝑛)𝑛 satisfies a weak MDP (see definition in [8,

Section 1.2]) with speed 𝑎2𝑛 and rate function 𝑡 9→ sup𝑈∈𝒰 ;𝑡∈𝑈 ℒ𝑈 = 𝑡2

2 . With
(3.6), it follows that (𝑍𝑛,𝑖/𝑎𝑛)𝑛 is exponentially tight (see definition in [8, Section
1.2]), hence by Lemma 1.2.18 in [8], (𝑍𝑛,𝑖/𝑎𝑛)𝑛 satisfies the MDP with the same
speed and the same good rate function. Hence we have proven:

Theorem 3.1. Let 𝑀 ′
𝑛 be a GUE matrix and 𝑊 ′

𝑛 = 1√
𝑛
𝑀 ′

𝑛. Consider 𝑖 = 𝑖(𝑛) such

that 𝑖 → ∞ but 𝑖/𝑛 → 0 as 𝑛 → ∞. If 𝜆𝑛−𝑖 denotes the eigenvalue number 𝑛− 𝑖
in the GUE matrix 𝑊 ′

𝑛 it holds that for any sequence (𝑎𝑛)𝑛 of real numbers such
that 1 ≪ 𝑎𝑛 ≪ (log 𝑖)1/2, the sequence

(
1
𝑎𝑛

𝑍𝑛,𝑖
)
𝑛

with 𝑍𝑛,𝑖 given by (3.3) satisfies

a MDP with speed 𝑎2𝑛 and rate function 𝐼(𝑥) = 𝑥2

2 .
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4. Universal local moderate deviations near the edge

Our next goal is to check whether the precise distribution of the atom variables
𝑍𝑖𝑗 of a Hermitian random matrix 𝑀𝑛 are relevant for the conclusion of the MDP
stated in Theorems 2.1 and 3.1, so long as they are normalized to have mean zero
and variance one, and are jointly independent on the upper-triangular portion
of 𝑀𝑛. It is a remarkable feature of our MDP results that they are universal,
hence the distribution of the atom variables are irrelevant in some sense. The
arguments used above relied heavily on the special structure of the GUE ensemble,
in particular on the determinantal structure of the joint probability distribution
(see [11, Theorem 1.1 and 1.3]) and on the fine asymptotics of the expectation
and the variance of the eigenvalue counting function of GUE presented in [14]. We
apply the swapping method due to Tao and Vu, in which one replaces the entries
of one Wigner Hermitian matrix 𝑀𝑛 with another matrix 𝑀 ′

𝑛 which are close in
the sense of matching moments. This goes back to Lindeberg’s exchange strategy
for proving the classical CLT, [15], and applied to Wigner matrices, e.g., in [3]. The
precise statement of the so-called Four Moment Theorem needs some preparation.
We will use the notation as in [20].

We say that two complex random variables 𝜂1 and 𝜂2 match to order 𝑘 with
𝑘 ∈ ℕ if

𝔼
[
Re(𝜂1)

𝑚 Im(𝜂1)
𝑙
]

= 𝔼
[
Re(𝜂2)

𝑚 Im(𝜂2)
𝑙
]

for all 𝑚, 𝑙 ≥ 0 such that 𝑚 + 𝑙 ≤ 𝑘. We will consider the case when the real
and the imaginary parts of 𝜂1 or of 𝜂2 are independent, then the matching mo-
ment condition simplifies to the assertion that 𝐸

[
Re(𝜂1)

𝑚] = 𝐸
[
Re(𝜂2)

𝑚] and

𝐸
[
Im(𝜂1)

𝑙] = 𝐸
[
Im(𝜂2)

𝑙] for all 𝑚, 𝑙 ≥ 0 such that 𝑚 + 𝑙 ≤ 𝑘.
We say that the Wigner Hermitian matrix 𝑀𝑛 obeys Condition (C0) if we

have the exponential decay condition

𝑃
(∣𝑍𝑖𝑗 ∣ ≥ 𝑡𝐶

) ≤ 𝑒−𝑡

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑡 ≥ 𝐶′, and some constants 𝐶,𝐶′ independent of 𝑖, 𝑗, 𝑛. We
say that the Wigner Hermitian matrix 𝑀𝑛 obeys Condition (C1) with constant
𝐶0 if one has

𝔼∣𝑍𝑖𝑗 ∣𝐶0 ≤ 𝐶

for some constant 𝐶 independent of 𝑛. Of course, Condition (C0) implies Condition
(C1) for any 𝐶0, but not conversely. The statement of the Four Moment Theorem
for eigenvalues is:

Theorem 4.1 (Four Moment Theorem due to Tao and Vu). Let 𝑐0 > 0 be a suf-
ficiently small constant. Let 𝑀𝑛 = (𝑍𝑖𝑗) and 𝑀 ′

𝑛 = (𝑍 ′
𝑖𝑗) be two 𝑛 × 𝑛 Wigner

Hermitian matrices satisfying Condition (C1) for some sufficiently large constant
𝐶0. Assume furthermore that for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑍𝑖𝑗 and 𝑍 ′

𝑖𝑗 match to order 4

and for any 1 ≤ 𝑖 ≤ 𝑛, and 𝑍𝑖𝑖 and 𝑍 ′
𝑖𝑖 match to order 2. Set 𝐴𝑛 :=

√
𝑛𝑀𝑛 and

𝐴′
𝑛 :=

√
𝑛𝑀 ′

𝑛, let 1 ≤ 𝑘 ≤ 𝑛𝑐0 be an integer, and let 𝐺 : ℝ𝑘 → ℝ be a smooth func-
tion obeying the derivative bounds ∣∇𝑗𝐺(𝑥)∣ ≤ 𝑛𝑐0 for all 0 ≤ 𝑗 ≤ 5 and 𝑥 ∈ ℝ𝑘.
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Then for any 1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑘 ≤ 𝑛, and for 𝑛 sufficiently large we have

∣𝔼(𝐺(𝜆𝑖1 (𝐴𝑛), . . . , 𝜆𝑖𝑘(𝐴𝑛))
)− 𝔼

(
𝐺(𝜆𝑖1 (𝐴′

𝑛), . . . , 𝜆𝑖𝑘(𝐴′
𝑛))
)∣ ≤ 𝑛−𝑐0 . (4.1)

The preliminary version of this Theorem was first established in the case of
bulk eigenvalues and assuming Condition (C0), [19]. Later the restriction to the
bulk was removed and the Condition (C0) was relaxed to Condition (C1) for a
sufficiently large value of 𝐶0, [18]. Moreover, a natural question is whether the
requirement of four matching moments is necessary. As far as the distribution of
individual eigenvalues 𝜆𝑖(𝐴𝑛) are concerned, the answer is essentially yes. For this
see the discussions in [20].

Applying this Theorem for the special case when 𝑀 ′
𝑛 is GUE, we obtain the

following MDP:

Theorem 4.2. The MDP for
(
1
𝑎𝑛

𝑍𝑛,𝑖
)
𝑛
, Theorem 3.1, hold for Wigner Hermitian

matrices obeying Condition (C1) for a sufficiently large 𝐶0, and whose atom dis-
tributions match that of GUE to second order on the diagonal and fourth order off
the diagonal. Given 𝑖 = 𝑖(𝑛) such that 𝑖 → ∞ and 𝑖/𝑛 → 0 as 𝑛 → ∞ we have:
The sequence

(
1
𝑎𝑛

𝑍𝑛,𝑖
)
𝑛

with

𝑍𝑛,𝑖 :=
𝜆𝑛−𝑖(𝑊𝑛) − (2 − ( 3𝜋2 𝑖

𝑛

)2/3)
const

(
log 𝑖

𝑖2/3𝑛4/3

)1/2 (4.2)

satisfies the MDP for any sequence (𝑎𝑛)𝑛 of real numbers such that 1 ≪ 𝑎𝑛 ≪
(log 𝑖)1/2 with speed 𝑎2𝑛 and rate function 𝐼(𝑥) = 𝑥2

2 .

Proof. Let 𝑀𝑛 be a Wigner Hermitian matrix whose entries satisfy Condition
(C1) and match the corresponding entries of GUE up to order 4. Let 𝑖 be as in
the statement of the Theorem, and let 𝑐0 be as in Theorem 4.1. Then [19, (18)]
says that

𝑃
(
𝜆𝑖(𝐴

′
𝑛) ∈ 𝐼−

)− 𝑛−𝑐0 ≤ 𝑃
(
𝜆𝑖(𝐴𝑛) ∈ 𝐼

) ≤ 𝑃
(
𝜆𝑖(𝐴

′
𝑛) ∈ 𝐼+

)
+ 𝑛−𝑐0 (4.3)

for all intervals 𝐼 = [𝑏, 𝑐], and 𝑛 sufficiently large, where 𝐼+ := [𝑏 − 𝑛−𝑐0/10, 𝑐 +
𝑛−𝑐0/10] and 𝐼− := [𝑏 + 𝑛−𝑐0/10, 𝑐 − 𝑛−𝑐0/10]. We present the argument of proof
of (4.3) just to make the presentation more self-contained. One can find a smooth
bump function 𝐺 : ℝ → ℝ+ which is equal to one on the smaller interval 𝐼
and vanishes outside the larger interval 𝐼+. It follows that 𝑃

(
𝜆𝑖(𝐴𝑛) ∈ 𝐼

) ≤
𝔼𝐺(𝜆𝑖(𝐴𝑛)) and 𝔼𝐺(𝜆𝑖(𝐴

′
𝑛)) ≤ 𝑃

(
𝜆𝑖(𝐴

′
𝑛) ∈ 𝐼+

)
. One can choose 𝐺 to obey the

condition ∣∇𝑗𝐺(𝑥)∣ ≤ 𝑛𝑐0 for 𝑗 = 0, . . . , 5 and hence by Theorem 4.1 one gets

∣𝔼𝐺(𝜆𝑖(𝐴𝑛)) − 𝔼𝐺(𝜆𝑖(𝐴
′
𝑛))∣ ≤ 𝑛−𝑐0 .

Therefore the second inequality in (4.3) follows from the triangle inequality. The
first inequality is proven similarly.

Now for 𝑛 sufficiently large we consider the interval 𝐼𝑛 := [𝑏𝑛, 𝑐𝑛] with

𝑏𝑛 := 𝑏 𝑎𝑛 𝑛 const
( log 𝑖

𝑖2/3𝑛4/3

)1/2
+ 𝑛

(
2 −
(3𝜋

2

𝑖

𝑛

)2/3)
,
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𝑐𝑛 := 𝑐 𝑎𝑛 𝑛 const
( log 𝑖

𝑖2/3𝑛4/3

)1/2
+ 𝑛

(
2 −
(3𝜋

2

𝑖

𝑛

)2/3)
with 𝑏, 𝑐 ∈ ℝ, 𝑏 ≤ 𝑐 and const =

(
(3𝜋)2/321/3

)−1/2
. Then for 1

𝑎𝑛
𝑍𝑛,𝑖 defined as in

the statement of the Theorem we have 𝑃
(
𝑍𝑛,𝑖/𝑎𝑛 ∈ [𝑏, 𝑐]

)
= 𝑃

(
𝜆𝑛−𝑖(𝐴𝑛) ∈ 𝐼𝑛

)
.

With (4.3) and [8, Lemma 1.2.15] we obtain

lim sup
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝑍𝑛,𝑖/𝑎𝑛 ∈ [𝑏, 𝑐]

)
≤ max

(
lim sup
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝜆𝑛−𝑖(𝐴′

𝑛) ∈ (𝐼𝑛)+
)
; lim sup
𝑛→∞

1

𝑎2𝑛
log𝑛−𝑐0

)
.

For the first object we have

𝑃
(
𝜆𝑛−𝑖(𝐴′

𝑛) ∈ (𝐼𝑛)+
)

= 𝑃

(
𝜆𝑛−𝑖(𝐴′

𝑛) − 𝑛
(
2 − ( 3𝜋2 𝑖

𝑛

)2/3)
𝑎𝑛 𝑛 const

(
log 𝑖

𝑖2/3𝑛4/3

)1/2 ∈ [𝑏 − 𝜂(𝑛), 𝑐 + 𝜂(𝑛)]

)
with 𝜂(𝑛) = 𝑛−𝑐0/10

(
𝑎𝑛 𝑛 const

(
log 𝑖

𝑖2/3𝑛4/3

)1/2)−1 → 0 as 𝑛 → ∞. Since 𝑐0 > 0 and

log𝑛/𝑎2𝑛 →∞ for 𝑛 →∞ by assumption, applying Theorem 3.1 we have

lim sup
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝑍𝑛,𝑖/𝑎𝑛 ∈ [𝑏, 𝑐]

) ≤ − inf
𝑥∈[𝑏,𝑐]

𝑥2

2
.

Applying the first inequality in (4.3) in the same manner we also obtain the upper
bound

lim sup
𝑛→∞

1

𝑎2𝑛
log𝑃

(
𝑍𝑛,𝑖/𝑎𝑛 ∈ [𝑏, 𝑐]

) ≥ − inf
𝑥∈[𝑏,𝑐]

𝑥2

2
.

Finally the argument in the last part of the proof of Theorem 3.1 can be repeated
to obtain the MDP for (𝑍𝑛,𝑖/𝑎𝑛)𝑛. □

5. Universal global moderate deviations near the edge

Next we show the MDP for the eigenvalue counting function near the edge of
the spectrum for Wigner Hermitian matrices matching moments with GUE up to
order 4:

Theorem 5.1. The MDP for (𝑍𝑛)𝑛, Theorem 2.1, hold for Wigner Hermitian ma-
trices 𝑀𝑛 obeying Condition (C1) for a sufficiently large 𝐶0, and whose atom
distributions match that of GUE to second order on the diagonal and fourth order
off the diagonal. Let 𝑊𝑛 = 1√

𝑛
𝑀𝑛, let 𝐼𝑛 = [𝑦𝑛,∞) where 𝑦𝑛 → 2− for 𝑛 → ∞.

Assume that 𝑦𝑛 ∈ [−2 + 𝛿, 2) and 𝑛(2 − 𝑦𝑛)3/2 → ∞ when 𝑛 → ∞. Then the
sequence

𝑍𝑛 =
𝑁𝐼𝑛(𝑊𝑛) − 2

3𝜋𝑛(2 − 𝑦𝑛)3/2

𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦𝑛)3/2)
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satisfies the MDP with speed 𝑎2𝑛, rate function 𝑥2/2 and in the regime 1 ≪ 𝑎𝑛 ≪√
log(𝑛(2 − 𝑦𝑛)3/2).

Proof. For every 𝜉 ∈ ℝ and 𝑘𝑛 defined by

𝑘𝑛 := 𝜉 𝑎𝑛

√
1

2𝜋2
log(𝑛(2 − 𝑦𝑛)3/2) +

2

3𝜋
𝑛(2 − 𝑦𝑛)3/2

we obtain that 𝑃
(
𝑍𝑛 ≤ 𝜉

)
= 𝑃
(
𝑁𝐼𝑛(𝑊𝑛) ≤ 𝑘𝑛

)
. Hence using (3.2) it follows

𝑃
(
𝑍𝑛 ≤ 𝜉

)
= 𝑃
(
𝜆𝑛−𝑘𝑛(𝑊𝑛) ≤ 𝑦𝑛

)
= 𝑃
(
𝜆𝑛−𝑘𝑛(𝐴𝑛) ≤ 𝑛 𝑦𝑛

)
.

With (4.3) we have

𝑃
(
𝜆𝑛−𝑘𝑛(𝐴𝑛) ≤ 𝑛 𝑦𝑛

) ≤ 𝑃
(
𝜆𝑛−𝑘𝑛(𝐴′

𝑛) ≤ 𝑛 𝑦𝑛 + 𝑛−𝑐0/10
)

+ 𝑛−𝑐0

and

𝑃
(
𝜆𝑛−𝑘𝑛(𝐴′

𝑛) ≤ 𝑛 𝑦𝑛 + 𝑛−𝑐0/10
)

= 𝑃
(
𝜆𝑛−𝑘𝑛(𝑊 ′

𝑛) ≤ 𝑦𝑛 + 𝑛−1−𝑐0/10
)

= 𝑃
(
𝑁𝐽𝑛(𝑊 ′

𝑛) ≤ 𝑘𝑛
)
,

where 𝐽𝑛 = [𝑦𝑛 + 𝑛−1−𝑐0/10,∞). With 𝑦′𝑛 := 𝑦𝑛 + 𝑛−1−𝑐0/10 we consider

𝑍 ′
𝑛 =

𝑁𝐽𝑛(𝑊 ′
𝑛) − 2

3𝜋𝑛(2 − 𝑦′𝑛)3/2

𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦′𝑛)3/2)

.

In order to apply Theorem 2.1 for (𝑍 ′
𝑛)𝑛, we have to check if 𝑦′𝑛 → 2− and

𝑛(2 − 𝑦′𝑛)3/2 → ∞ when 𝑛 → ∞. For a proof see [4, Section 2]. We present the
arguments just to make the presentation more self-contained. By assumption we
take 𝑦𝑛 ∈ [−2 + 𝛿, 2) with 𝑦𝑛 → 2−. Suppose that 𝑦′𝑛 > 2 for some 𝑛, then
𝑦𝑛 − 2 + 𝑛−1−𝑐0/10 > 0, hence 2 − 𝑦𝑛 < 𝑛−1−𝑐0/10, which implies 𝑛(2 − 𝑦𝑛)3/2 <
𝑛𝑛−3/2−3𝑐0/20, but the left-hand side is growing by assumption, a contradiction.
We have proven 𝑦′𝑛 → 2−. Moreover we have

(2 − 𝑦′𝑛)3/2 = (2 − 𝑦𝑛)3/2
(

1 − 𝑛−1−𝑐0/10

2 − 𝑦𝑛

)3/2
= (2 − 𝑦𝑛)3/2

(
1 − 3

2

𝑛−1−𝑐0/10

2 − 𝑦𝑛
+ 𝑜

(
𝑛−1−𝑐0/10

2 − 𝑦𝑛

))
.

Notice that 𝑛−1−𝑐0/10
2−𝑦𝑛 = 𝑛−1/3−𝑐0/10

(𝑛(2−𝑦𝑛)3/2)2/3 → 0 and 𝑛(2 − 𝑦𝑛)3/2 → ∞ when 𝑛 → ∞
by assumption. Hence we can apply Theorem 2.1, which is the MDP for (𝑍 ′

𝑛)𝑛.
Summarizing we have

𝑃
(
𝑍𝑛 ≤ 𝜉

) ≤ 𝑃
(
𝑍 ′
𝑛 ≤ 𝜉𝑛

)
+ 𝑛−𝑐0
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with

𝜉𝑛 =
𝑘𝑛 − 2

3𝜋𝑛(2 − 𝑦′𝑛)3/2

𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦′𝑛)3/2)

=
2
3𝜋𝑛
(
(2 − 𝑦𝑛)3/2 − (2 − 𝑦′𝑛)3/2

)
𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦′𝑛)3/2)

+ 𝜉

(
log(𝑛(2 − 𝑦𝑛)3/2)

log(𝑛(2 − 𝑦′𝑛)3/2)

)1/2
.

We will prove that 𝜉𝑛 = 𝜉 + 𝑜(1). Using the preceding representation we have

𝑛
(
(2 − 𝑦𝑛)3/2 − (2 − 𝑦′𝑛)3/2

)
=

3

2
𝑛−𝑐0/10(2 − 𝑦𝑛)1/2 + 𝑜(𝑛−𝑐0/10) → 0

and 𝑎𝑛

√
1
2𝜋2 log(𝑛(2 − 𝑦′𝑛)3/2) →∞ when 𝑛 → ∞. Moreover

log(𝑛(2 − 𝑦𝑛)3/2)

log(𝑛(2 − 𝑦′𝑛)3/2)
=

log(𝑛(2 − 𝑦𝑛)3/2)

log(𝑛(2 − 𝑦𝑛)3/2) + 3
2 log

(
1 − 𝑛−1−𝑐0/10

2−𝑦𝑛
) → 1.

Applying Theorem 2.1, it follows that lim𝑛→∞ 1
𝑎2
𝑛

log 𝑃
(
𝑍𝑛 ≤ 𝜉

)
= − 𝜉2

2 for all

𝜉 < 0. Similarly we obtain for any 𝜉 > 0 that lim𝑛→∞ 1
𝑎2
𝑛

log𝑃
(
𝑍𝑛 ≥ 𝜉

)
= − 𝜉2

2

and the MDP for (𝑍𝑛)𝑛 follows along the lines of the proof of Theorem 2.1. □

Remark 5.2. In a next step one could ask whether the statement of Theorem 5.1
is true also for the sequence

𝑁𝐼𝑛(𝑊𝑛) − 𝔼[𝑁𝐼𝑛(𝑊𝑛)]

𝑎𝑛
√
𝕍(𝑁𝐼𝑛(𝑊𝑛))

.

Hence the question is whether the asymptotic behavior of the expectation and
the variance of 𝑁𝐼𝑛(𝑊𝑛) is identical to the one for GUE matrices, given in (2.1)
and (2.2). The answer is yes, but only for Wigner matrices obeying Condition
(C0). The reason for this is that the Four Moment Theorem 4.1 deals with a finite
number of eigenvalues, whereas 𝑁𝐼𝑛(𝑊𝑛) involves all the eigenvalues of the Wigner
matrix 𝑀𝑛. Theorem 4.1 does not give the asymptotics (2.1) and (2.2) for Wigner
matrices. A recent result of Erdös, Yau and Yin [12] describe strong localization
of the eigenvalues of Wigner matrices and this result provides the additional step
necessary to obtain (2.1) and (2.2) for Wigner matrices 𝑀𝑛 obeying Condition
(C0). The result in [12] is that for 𝑀𝑛 being a Wigner Hermitian matrix obeying
Condition (C0), there is a constant 𝐶 > 0 such that for any 𝑖 ∈ {1, . . . , 𝑛}

𝑃
(∣𝜆𝑖(𝑊𝑛) − 𝑡(𝑖/𝑛)∣ ≥ (log 𝑛)𝐶 log log𝑛 min(𝑖, 𝑛− 𝑖 + 1)−1/3𝑛−2/3

) ≤ 𝑛−3.

Along the lines of the proof of [5, Lemma 5] one obtains (2.1) and (2.2). We will
not present the details.
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6. Further random matrix ensembles

In this section, we indicate how the preceding results for Wigner Hermitian ma-
trices can be stated and proved for real Wigner symmetric matrices. Real Wigner
matrices are random symmetric matrices 𝑀𝑛 of size 𝑛 such that, for 𝑖 < 𝑗, (𝑀𝑛)𝑖𝑗
are i.i.d. with mean zero and variance one, (𝑀𝑛)𝑖𝑖 are i.i.d. with mean zero and
variance 2. The case where the entries are Gaussian is the GOE mentioned in the
introduction. As in the Hermitian case, the main issue is to establish our conclu-
sions for the GOE. On the level of CLT, this was developed in [16] by means of
the famous interlacing formulas due to Forrester and Rains, [13], that relates the
eigenvalues of different matrix ensembles.

Theorem 6.1 (Forrester, Rains, 2001). The following relation holds between GUE
and GOE matrix ensembles:

GUE𝑛 = even
(
GOEn ∪ GOEn+1

)
. (6.1)

The statement is: Take two independent (!) matrices from the GOE: one of
size 𝑛×𝑛 and one of size (𝑛+ 1)× (𝑛+ 1). Superimpose the 2𝑛+ 1 eigenvalues on
the real line and then take the 𝑛 even ones. They have the same distribution as
the eigenvalues of a 𝑛 × 𝑛 matrix from the GUE. Let 𝑀ℝ

𝑛 denote a GOE matrix
and let 𝑊ℝ

𝑛 := 1√
𝑛
𝑀ℝ

𝑛 . In [11, Theorem 4.2] we have proved a MDP for

𝑍ℝ
𝑛 :=

𝑁𝐼𝑛(𝑊ℝ
𝑛 ) − 𝔼[𝑁𝐼𝑛(𝑊ℝ

𝑛 )]

𝑎𝑛
√
𝕍(𝑁𝐼𝑛(𝑊ℝ

𝑛 ))
(6.2)

for any 1 ≪ 𝑎𝑛 ≪ √
𝕍(𝑁𝐼𝑛(𝑊ℝ

𝑛 )), 𝐼𝑛 an interval in ℝ, with speed 𝑎2𝑛 and rate
𝑥2/2. If 𝑀ℂ

𝑛 denotes a GUE matrix and 𝑊ℂ
𝑛 the corresponding normalized matrix,

the nice consequences of (6.1) were already suitably developed in [16]: applying
Cauchy’s interlacing theorem one can write

𝑁𝐼𝑛(𝑊ℂ
𝑛 ) =

1

2

[
𝑁𝐼𝑛(𝑊ℝ

𝑛 ) + 𝑁𝐼𝑛(𝑊ℝ
𝑛 ) + 𝜂′𝑛(𝐼𝑛)

]
, (6.3)

where one obtains GOE′𝑛 in 𝑁𝐼𝑛(𝑊ℝ
𝑛 ) from GOE𝑛+1 by considering the princi-

ple sub-matrix of GOE𝑛+1 and 𝜂′𝑛(𝐼𝑛) takes values in {−2,−1, 0, 1, 2}. Note that

𝑁𝐼𝑛(𝑊ℝ
𝑛 ) and 𝑁𝐼𝑛(𝑊ℝ

𝑛 ) are independent because GOE𝑛+1 and GOE𝑛 denote in-
dependent matrices from the GOE. Now the same arguments as in [11, Section 4]
and Theorem 2.1 lead to the MDP for (𝑍ℝ

𝑛 )𝑛, if we consider intervals 𝐼𝑛 = [𝑦𝑛,∞)
where 𝑦𝑛 → 2− for 𝑛 → ∞. Remark that the interlacing formula (6.3) leads to
2𝕍(𝑁𝐼𝑛(𝑊ℂ

𝑛 )) + 𝑂(1) = 𝕍(𝑁𝐼𝑛(𝑊ℝ
𝑛 )) if 𝕍(𝑁𝐼𝑛(𝑊ℂ

𝑛 )) → ∞. Next the proof of
Theorem 3.1 can be adapted to obtain an MDP for 𝜆𝑛−𝑖(𝑊ℝ

𝑛 ): Consider

𝑍ℝ
𝑛,𝑖 :=

𝜆𝑛−𝑖(𝑊ℝ
𝑛 ) − (2 − ( 3𝜋2 𝑖

𝑛

)2/3)
const

(
2 log 𝑖

𝑖2/3𝑛4/3

)1/2 .

With

𝔼[𝑁𝐼𝑛(𝑊ℝ
𝑛 )] = 𝔼[𝑁𝐼𝑛(𝑊ℂ

𝑛 )] + 𝑂(1) and 2𝕍(𝑁𝐼𝑛(𝑊ℂ
𝑛 )) + 𝑂(1) = 𝕍(𝑁𝐼𝑛(𝑊ℝ

𝑛 ))
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if 𝕍(𝑁𝐼𝑛(𝑊ℂ
𝑛 )) → ∞ we get a MDP along the lines of the proof of Theorem 3.1.

We omit the details. The Four Moment Theorem also applies for real symmet-
ric matrices. The proof of the next Theorem is nearly identical to the proofs of
Theorem 4.2 and Theorem 5.1.

Theorem 6.2. Consider a real symmetric Wigner matrix 𝑊𝑛 = 1√
𝑛
𝑀𝑛 whose en-

tries satisfy Condition (C1) and match the corresponding entries of GOE up to
order 4. Consider 𝑖 = 𝑖(𝑛) such that 𝑖 → ∞ and 𝑖/𝑛 → 0 as 𝑛 → ∞. Denote the
𝑖th eigenvalue of 𝑊𝑛 by 𝜆𝑖(𝑊𝑛). Let (𝑎𝑛)𝑛 be a sequence of real numbers such that
1 ≪ 𝑎𝑛 ≪ √

log 𝑖. Then the sequence (𝑍𝑛,𝑖)𝑛 with

𝑍𝑛,𝑖 =
𝜆𝑛−𝑖(𝑊𝑛) − (2 − ( 3𝜋2 𝑖

𝑛

)2/3)
const

(
2 log 𝑖

𝑖2/3𝑛4/3

)1/2
universally satisfies a MDP with speed 𝑎2𝑛 and rate function 𝐼(𝑥) = 𝑥2

2 . Moreover
the statement of Theorem 5.1 can be adapted and proved analogously.

Remark that one could consider the Gaussian Symplectic Ensemble (GSE).
Quaternion self-dual Wigner Hermitian matrices have not been studied. Due
to Forrester and Rains, the following relation holds between matrix ensembles:
GSE𝑛 = even

(
GOE2𝑛+1

)
1√
2
. The multiplication by 1√

2
denotes scaling the (2𝑛 +

1) × (2𝑛 + 1) GOE matrix by the factor 1√
2
. Let 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥𝑛 denote the

ordered eigenvalues of an 𝑛×𝑛 matrix from the GSE and let 𝑦1 < 𝑦2 < ⋅ ⋅ ⋅ < 𝑦2𝑛+1
denote the ordered eigenvalues of an (2𝑛 + 1) × (2𝑛 + 1) matrix from the GOE.

Then it follows that 𝑥𝑖 = 𝑦2𝑖/
√

2 in distribution. Hence the MDP for the 𝑖th eigen-
value of the GSE follows from the MDP in the GOE case. We omit formulating
the result.
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no. 6, 1013–1042.

[8] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Springer,
New York, 1998.
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On the Limiting Shape of
Young Diagrams Associated with
Inhomogeneous Random Words

Christian Houdré and Hua Xu

Abstract. The limiting shape of the random Young diagrams associated with
an inhomogeneous random word is identified as a multidimensional Brownian
functional. This functional is identical in law to the spectrum of a Gaussian
random matrix. Since the length of the top row of the Young diagrams is
also the length of the longest (weakly) increasing subsequence of the random
word, the corresponding limiting law follows. The Poissonized word problem
is also briefly studied, and the asymptotic behavior of the shape analyzed.

Mathematics Subject Classification (2010). 15B52, 60C05, 60F05, 60F17, 60G22,
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Keywords. Random matrices, Brownian functionals, Longest increasing sub-
sequence, Young diagrams, Random words, RSK correspondence.

1. Introduction

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛, . . . be a sequence of random variables taking values in an
ordered alphabet. The length of the longest (weakly) increasing subsequence of
𝑋1, 𝑋2, . . . , 𝑋𝑛, denoted by 𝐿𝐼𝑛, is the maximal 1 ≤ 𝑘 ≤ 𝑛 such that there exists
an increasing sequence of integers 1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑘 ≤ 𝑛 with 𝑋𝑖1 ≤ 𝑋𝑖2 ≤
⋅ ⋅ ⋅ ≤ 𝑋𝑖𝑘 , i.e.,

𝐿𝐼𝑛 = max {𝑘 : ∃ 1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑘 ≤ 𝑛, 𝑤𝑖𝑡ℎ 𝑋𝑖1 ≤ 𝑋𝑖2 ≤ ⋅ ⋅ ⋅ ≤ 𝑋𝑖𝑘} .
When the 𝑋𝑖𝑠 take their values independently and uniformly in an 𝑚-letter

ordered alphabet, through a careful analysis of the exponential generating function
of 𝐿𝐼𝑛, Tracy and Widom [27] gave the limiting distribution of 𝐿𝐼𝑛 (properly
centered and normalized) as that of the largest eigenvalue of a matrix drawn from
the 𝑚×𝑚 traceless Gaussian Unitary Ensemble (GUE). This result, motivated by

Research supported in part by the NSA Grant H98230-09-1-0017.
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the celebrated random permutation result of Baik, Deift and Johansson [2], was
further extended to the non-uniform case by Its, Tracy and Widom ([18], [19]).
In that last setting, the corresponding limiting law is the maximal eigenvalue of a
direct sum of mutually independent GUEs subject to an overall trace constraint.

A method to study the asymptotic behavior of the length of longest increasing
subsequences is through Young diagrams ([10], [24]). Recall that a Young diagram
of size 𝑛 is a collection of 𝑛 boxes arranged in left-justified rows, with a weakly
decreasing number of boxes from row to row. The shape of a Young diagram is
the vector 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑘), where 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑘 and for each 𝑖, 𝜆𝑖 is the
number of boxes in the 𝑖th row while 𝑘 is the total number of rows of the diagram
(and so 𝜆1 + ⋅ ⋅ ⋅ + 𝜆𝑘 = 𝑛). Recall also that a (semi-standard) Young tableau is
a Young diagram, with a filling of a positive integer in each box, in such a way
that the integers are weakly increasing along the rows and strictly increasing down
the columns. A standard Young tableau of size 𝑛 is a Young tableau in which the
fillings are the integers from 1 to 𝑛.

Let now [𝑚] := {1, 2, . . . ,𝑚} be an 𝑚-letter ordered alphabet. A word of
length 𝑛 is a mapping 𝑊 from {1, 2, . . . , 𝑛} to {1, 2, . . . ,𝑚}, and let [𝑚]𝑛 denotes
the set of words of length 𝑛 with letters taken from the alphabet {1, 2, . . . ,𝑚}. A
word is a permutation if 𝑚 = 𝑛, and 𝑊 is onto. The Robinson-Schensted corre-
spondence is a bijection between the set of words [𝑚]𝑛 and the set of pairs of Young
tableaux {(𝑃,𝑄)}, where 𝑃 is semi-standard with entries from {1, 2, . . . ,𝑚}, while
𝑄 is standard with entries from {1, 2, . . . , 𝑛}. Moreover 𝑃 and 𝑄 share the same
shape which is a partition of 𝑛, and so, we do not distinguish between shape and
partition. If the word is a permutation, then 𝑃 is also standard. A word 𝑊 in [𝑚]𝑛

can be represented uniquely as an 𝑚× 𝑛 matrix X𝑊 with entries

(X𝑊 )𝑖,𝑗 = 1𝑊 (𝑗)=𝑖. (1.1)

The Robinson-Schensted correspondence actually gives a one-to-one correspon-
dence between the set of pairs of Young tableaux and the set of matrices whose
entries are either 0 or 1 and with exactly a unique 1 in each column. This was
generalized by Knuth to the set of 𝑚×𝑛 matrices with nonnegative integer entries.
Let ℳ(𝑚,𝑛) be the set of 𝑚 × 𝑛 matrices with nonnegative integer entries. Let
𝒫(𝑃,𝑄) be the set of pairs of semi-standard Young tableaux (𝑃,𝑄) sharing the
same shape and whose size is the sum of all the entries, where 𝑃 has elements
in {1, . . . ,𝑚} and 𝑄 has elements in {1, . . . , 𝑛}. The Robinson-Schensted-Knuth
(RSK) correspondence is a one-to-one mapping between ℳ(𝑚,𝑛) and 𝒫(𝑃,𝑄). If
the matrix corresponds to a word in [𝑚]𝑛, then 𝑄 is standard.

Johansson [20], using orthogonal polynomial methods, proved that the lim-
iting shape of the Young diagrams, associated with homogeneous words, i.e., the
i.i.d. uniform 𝑚-letter framework, through the RSK correspondence, is the spec-
trum of the traceless 𝑚 × 𝑚 GUE. Since 𝐿𝐼𝑛 is also equal to the length of the
top row of the associated Young diagrams, these results recover those of [27]. The
permutation result is also obtained by Johansson [20], Okounkov [22] and Borodin,
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Okounkov and Olshanki [5]. More recently, for inhomogeneous words and via sim-
ple probabilistic tools, the limiting law of 𝐿𝐼𝑛 is given, in [15], as a Brownian
functional. Via the results of Baryshnikov [3] or of Gravner, Tracy and Widom
[12] this functional can then be identified as a maximal eigenvalue of a certain ma-
trix ensemble. For the shape of the associated Young diagrams, the corresponding
open problem is resolved below.

Let us now describe the content of the present paper. In Section 2, we list
some simple properties of a matrix ensemble, which we call generalized traceless
GUE; and relate various properties of the GUE to this generalized one. In Section
3, we obtain the limiting shape, of the RSK Young diagrams associated with an
inhomogeneous random word, as a multivariate Brownian functional. In turn, this
functional is identified as the spectrum of an 𝑚 × 𝑚 element of the generalized
traceless GUE. Therefore, the limiting law of 𝐿𝐼𝑛 is the largest eigenvalue of the
block of the 𝑚×𝑚 generalized traceless GUE corresponding to the most probable
letters. Finally, the corresponding Poissonized word problem is studied in Section 4.

2. Generalized traceless GUE

In this section, we list, without proofs, some elementary properties of the general-
ized traceless GUE. Proofs are omitted since simple consequences of known GUE
results as exposed, for example, in [21] or [1], except for the proof of Proposition 2.7
which relies on simple arguments presented in the Appendix.

Recall that an element of the 𝑚 ×𝑚 GUE is an 𝑚 ×𝑚 Hermitian random
matrix G = (𝐺𝑖,𝑗)1≤𝑖,𝑗≤𝑚, whose entries are such that: 𝐺𝑖,𝑖 ∼ 𝑁(0, 1), for 1 ≤ 𝑖 ≤
𝑚, Re (𝐺𝑖,𝑗) ∼ 𝑁(0, 1/2) and Im (𝐺𝑖,𝑗) ∼ 𝑁(0, 1/2), for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, and 𝐺𝑖,𝑖,
Re (𝐺𝑖,𝑗), Im (𝐺𝑖,𝑗) are mutually independent for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚. Now, for 𝑚 ≥ 1,

𝑘 = 1, . . . ,𝐾 and 𝑑1, . . . , 𝑑𝐾 such that
∑𝐾

𝑘=1 𝑑𝑘 = 𝑚, let 𝒢𝑚 (𝑑1, . . . , 𝑑𝐾) be the
set of random matrices X which are direct sums of mutually independent elements
of the 𝑑𝑘×𝑑𝑘 GUE, 𝑘 = 1, . . . ,𝐾 (i.e., X is an 𝑚×𝑚 block diagonal matrix whose
𝐾 blocks are mutually independent elements of the 𝑑𝑘 × 𝑑𝑘 GUE, 𝑘 = 1, . . . ,𝐾).
Let 𝑝1, . . . , 𝑝𝑚 > 0,

∑𝑚
𝑗=1 𝑝𝑗 = 1, be such that the multiplicities of the 𝐾 distinct

probabilities 𝑝(1), . . . , 𝑝(𝐾) are respectively 𝑑1, . . . , 𝑑𝐾 , i.e., let 𝑚1 = 0 and for 𝑘 =

2, . . . ,𝐾, let 𝑚𝑘 =
∑𝑘−1

𝑗=1 𝑑𝑗 , and so 𝑝𝑚𝑘+1 = ⋅ ⋅ ⋅ = 𝑝𝑚𝑘+𝑑𝑘 = 𝑝(𝑘), 𝑘 = 1, . . . ,𝐾.
The generalized 𝑚×𝑚 traceless GUE associated with the probabilities 𝑝1, . . . , 𝑝𝑚
is the set, denoted by 𝒢0 (𝑝1, . . . , 𝑝𝑚), of 𝑚×𝑚 matrices X0, of the form

X0
𝑖,𝑗 =

{
X𝑖,𝑖 −√

𝑝𝑖
∑𝑚

𝑙=1

√
𝑝𝑙X𝑙,𝑙, if 𝑖 = 𝑗;

X𝑖,𝑗 , if 𝑖 ∕= 𝑗,
(2.1)

where X ∈ 𝒢𝑚 (𝑑1, . . . , 𝑑𝐾). Clearly, from (2.1),
∑𝑚

𝑖=1

√
𝑝𝑖X

0
𝑖,𝑖 = 0. Note also that

the case 𝐾 = 1 (for which 𝑑1 = 𝑚) recovers the traceless GUE, whose elements
are of the form X− tr(X)I𝑚/𝑚, with X an element of the GUE and I𝑚 the 𝑚×𝑚
identity matrix.



280 C. Houdré and H. Xu

Here is an equivalent way of defining the generalized traceless GUE: let X(𝑘)

be the 𝑚×𝑚 diagonal matrix such that

X
(𝑘)
𝑖,𝑖 =

{ √
𝑝(𝑘)
∑𝑚

𝑙=1

√
𝑝𝑙X𝑙,𝑙, if 𝑚𝑘 < 𝑖 ≤ 𝑚𝑘 + 𝑑𝑘;

0, otherwise,
(2.2)

and let X ∈ 𝒢𝑚 (𝑑1, . . . , 𝑑𝐾). Then, X0 := X−∑𝐾
𝑘=1X

(𝑘) ∈ 𝒢0 (𝑝1, . . . , 𝑝𝑚).
Equivalently, there is an “ensemble” description of 𝒢0 (𝑝1, . . . , 𝑝𝑚).

Proposition 2.1. X0 ∈ 𝒢0 (𝑝1, . . . , 𝑝𝑚) if and only if X0 is distributed according to
the probability distribution

ℙ
(
𝑑X0
)

= 𝐶𝛾
(
𝑑X0

1,1, . . . , 𝑑X
0
𝑚,𝑚

) 𝐾∏
𝑘=1

(
𝑒
− ∑
𝑚𝑘<𝑖<𝑗≤𝑚𝑘+𝑑𝑘

∣X0
𝑖,𝑗 ∣2

∏
𝑚𝑘<𝑖<𝑗≤𝑚𝑘+𝑑𝑘

𝑑Re
(
X0
𝑖,𝑗

)
𝑑 Im

(
X0
𝑖,𝑗

))
,

(2.3)

on the space of 𝑚×𝑚 Hermitian matrices, which are direct sum of 𝑑𝑘 × 𝑑𝑘 Her-

mitian matrices, 𝑘 = 1, . . . ,𝐾,
∑𝐾

𝑘=1 𝑑𝑘 = 𝑚, and where 𝑚1 = 0, 𝑚𝑘 =
∑𝑘−1

𝑗=1 𝑑𝑗,

𝑘 = 2, . . . ,𝐾. Above, 𝐶 = 𝜋−
∑𝐾
𝑘=1 𝑑𝑘(𝑑𝑘−1)/2 and 𝛾

(
𝑑X0

1,1, . . . , 𝑑X
0
𝑚,𝑚

)
is the

distribution of an 𝑚-dimensional centered (degenerate) multivariate Gaussian law
with covariance matrix

Σ0 =

⎛⎜⎜⎜⎝
1 − 𝑝1 −√𝑝1𝑝2 ⋅ ⋅ ⋅ −√𝑝1𝑝𝑚
−√𝑝2𝑝1 1 − 𝑝2 ⋅ ⋅ ⋅ −√𝑝2𝑝𝑚

...
. . .

. . .
...

−√𝑝𝑚𝑝1 ⋅ ⋅ ⋅ −√𝑝𝑚𝑝𝑚−1 1 − 𝑝𝑚

⎞⎟⎟⎟⎠ .

We provide next a relation between the spectra of X and X0.

Proposition 2.2. Let X ∈ 𝒢𝑚 (𝑑1, . . . , 𝑑𝐾), and let X0 ∈ 𝒢0 (𝑝1, . . . , 𝑝𝑚). Let
𝜉1, . . . , 𝜉𝑚 be the eigenvalues of X, where for each 𝑘 = 1, . . . ,𝐾, 𝜉𝑚𝑘+1, . . . , 𝜉𝑚𝑘+𝑑𝑘

are the eigenvalues of the 𝑘th diagonal block (an element of the 𝑑𝑘 × 𝑑𝑘 GUE).
Then, the eigenvalues of X0 are given by:

𝜉0𝑖 = 𝜉𝑖 −√
𝑝𝑖

𝑚∑
𝑙=1

√
𝑝𝑙X𝑙,𝑙 = 𝜉𝑖 −√

𝑝𝑖

𝑚∑
𝑙=1

√
𝑝𝑙𝜉𝑙, 𝑖 = 1, . . . ,𝑚.

Let 𝜉𝐺𝑈𝐸,𝑚1 , 𝜉𝐺𝑈𝐸,𝑚2 , . . . , 𝜉𝐺𝑈𝐸,𝑚𝑚 be the eigenvalues of an element of the
𝑚 × 𝑚 GUE. It is well known that the empirical distribution of the eigenvalues(
𝜉𝐺𝑈𝐸,𝑚𝑖 /

√
𝑚
)
1≤𝑖≤𝑚

converges almost surely to the semicircle law 𝜈 with density
√

4 − 𝑥2/2𝜋, −2 ≤ 𝑥 ≤ 2. Equivalently, the semicircle law is also the almost sure
limit of the empirical spectral measure for the 𝑘th block of the generalized traceless
GUE, provided 𝑑𝑘 →∞, 𝑘 = 1, . . . ,𝐾. This is, for example, the case of the uniform
alphabet, where 𝐾 = 1, 𝑑1 = 𝑚 and 𝑝(1) = 1/𝑚.
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Proposition 2.3. Let 𝜉01 , 𝜉
0
2 , . . . , 𝜉

0
𝑚 be the eigenvalues of an element of the 𝑚×𝑚

generalized traceless GUE, such that 𝜉0𝑚𝑘+1
, . . . , 𝜉0𝑚𝑘+𝑑𝑘

are the eigenvalues of the
𝑘th diagonal block, for each 𝑘 = 1, . . . ,𝐾. For any 𝑘 = 1, . . . ,𝐾, the empirical
distribution of the eigenvalues

(
𝜉0𝑖 /

√
𝑑𝑘
)
𝑚𝑘<𝑖≤𝑚𝑘+𝑑𝑘

converges almost surely to

the semicircle law 𝜈 with density
√

4 − 𝑥2/2𝜋, −2 ≤ 𝑥 ≤ 2, whenever 𝑑𝑘 →∞.

Now for 𝑝1, . . . , 𝑝𝑚 considered, so far, i.e., such that the multiplicities of the
𝐾 distinct probabilities 𝑝(1), . . . , 𝑝(𝐾) are respectively 𝑑1, . . . , 𝑑𝐾 and 𝑝𝑚𝑘+1 =
⋅ ⋅ ⋅ = 𝑝𝑚𝑘+𝑑𝑘 = 𝑝(𝑘), 𝑘 = 1, . . . ,𝐾, let

ℒ𝑝1,...,𝑝𝑚 :=

{
𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ ℝ𝑚 : 𝑥𝑚𝑘+1 ≥ ⋅ ⋅ ⋅ ≥ 𝑥𝑚𝑘+𝑑𝑘 , 𝑘 = 1, . . . ,𝐾;

𝑚∑
𝑗=1

√
𝑝𝑗𝑥𝑗 = 0

}
. (2.4)

In other words, ℒ𝑝1,...,𝑝𝑚 is a subset of the hyperplane
∑𝑚

𝑗=1

√
𝑝𝑗𝑥𝑗 = 0, where

within each block of size 𝑑𝑘, 𝑘 = 1, . . . ,𝐾, the coordinates 𝑥𝑚𝑘+1, . . . , 𝑥𝑚𝑘+𝑑𝑘 , are
ordered. For any 𝑠1, . . . , 𝑠𝑚 ∈ ℝ, let also

ℒ𝑝1,...,𝑝𝑚(𝑠1,...,𝑠𝑚)
:= ℒ𝑝1,...,𝑝𝑚 ∩

{
(𝑥1, . . . , 𝑥𝑚) ∈ ℝ𝑚 : 𝑥𝑖 ≤ 𝑠𝑖, 𝑖 = 1, . . . ,𝑚

}
. (2.5)

The distribution function of the eigenvalues, written in non-increasing order within
each 𝑑𝑘 × 𝑑𝑘 GUE, of an element of 𝒢0 (𝑝1, . . . , 𝑝𝑚) is given now.

Proposition 2.4. The joint distribution function of the eigenvalues, written in non-
increasing order within each 𝑑𝑘×𝑑𝑘 GUE, of an element of 𝒢0 (𝑝1, . . . , 𝑝𝑚) is given,
for any 𝑠1, . . . , 𝑠𝑚 ∈ ℝ, by

ℙ

(
𝜉01 ≤ 𝑠1,𝜉

0
2 ≤ 𝑠2, . . . , 𝜉

0
𝑚 ≤ 𝑠𝑚

)
=

∫
ℒ𝑝1,...,𝑝𝑚

(𝑠1,...,𝑠𝑚)

𝑓(𝑥)𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑚−1, (2.6)

where for 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ ℝ𝑚,

𝑓(𝑥) := 𝑐𝑚

𝐾∏
𝑘=1

Δ𝑘(𝑥)2𝑒−
∑𝑚

𝑖=1 𝑥
2
𝑖/21ℒ𝑝1,...,𝑝𝑚 (𝑥), (2.7)

with 𝑐𝑚 = (2𝜋)−(𝑚−1)/2
∏𝐾
𝑘=1 (0!1! ⋅ ⋅ ⋅ (𝑑𝑘 − 1)!)

−1
and where Δ𝑘(𝑥) is the Van-

dermonde determinant associated with those 𝑥𝑖 for which 𝑝𝑖 = 𝑝(𝑘), i.e.,

Δ𝑘(𝑥) =
∏

𝑚𝑘+1≤𝑖<𝑗≤𝑚𝑘+𝑑𝑘

(𝑥𝑖 − 𝑥𝑗) .

Remark 2.5. When the eigenvalues are not ordered within each 𝑑𝑘 × 𝑑𝑘 GUE, the

identity (2.6) remains valid, multiplying 𝑐𝑚, above, by
∏𝐾
𝑘=1 (𝑑𝑘!)

−1
, and also by

omitting the ordering constraints 𝑥𝑚𝑘+1 ≥ ⋅ ⋅ ⋅ ≥ 𝑥𝑚𝑘+𝑑𝑘 , 𝑘 = 1, . . . ,𝐾, in the
definition of ℒ𝑝1,...,𝑝𝑚 .

The next proposition gives a relation in law between the spectra of elements
of 𝒢𝑚 (𝑑1, . . . , 𝑑𝐾) and of 𝒢0 (𝑝1, . . . , 𝑝𝑚).
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Proposition 2.6. For any 𝑚 ≥ 2, let X ∈ 𝒢𝑚 (𝑑1, . . . , 𝑑𝐾) and let X0 ∈
𝒢0 (𝑝1, . . . , 𝑝𝑚) . Let 𝜉1, . . . , 𝜉𝑚 be the eigenvalues of X, and let 𝜉01 , . . . , 𝜉

0
𝑚 be the

eigenvalues of X0 as given in Proposition 2.2. Then,

(𝜉1, . . . , 𝜉𝑚)
𝑑
=
(
𝜉01 , . . . , 𝜉

0
𝑚

)
+ (𝑍1, . . . , 𝑍𝑚) ,

where (𝑍1, . . . , 𝑍𝑚) is a centered (degenerate) multivariate Gaussian vector with
covariance matrix

(√
𝑝𝑖𝑝𝑗
)
1≤𝑖,𝑗≤𝑚. Moreover, (𝑍1, . . . , 𝑍𝑚) can be chosen to be

independent of
(
𝜉01 , . . . , 𝜉

0
𝑚

)
.

The asymptotic behavior of the maximal eigenvalues, within each block, of
X0 ∈ 𝒢0 (𝑝1, . . . , 𝑝𝑚) is well known and well understood (see also Proposition 5.2
and Proposition 5.4 of the Appendix for elementary arguments leading to the result
below).

Proposition 2.7. For 𝑘 = 1, . . . ,𝐾, let max
𝑚𝑘<𝑖≤𝑚𝑘+𝑑𝑘

𝜉0𝑖 be the largest eigenvalue of

the 𝑑𝑘 × 𝑑𝑘 block of X0 ∈ 𝒢0 (𝑝1, . . . , 𝑝𝑚), then

lim
𝑑𝑘→∞

max
𝑚𝑘<𝑖≤𝑚𝑘+𝑑𝑘

𝜉0𝑖
√
𝑑𝑘

= 2,

both almost surely and in the mean.

3. Young diagrams and inhomogeneous random words

Throughout the rest of this paper, let 𝑊 = 𝑋1𝑋2 ⋅ ⋅ ⋅𝑋𝑛 be a random word,
where 𝑋1, 𝑋2, . . . , 𝑋𝑛 are i.i.d. random variables with ℙ (𝑋1 = 𝑗) = 𝑝𝑗 , where
𝑗 = 1, . . . ,𝑚, 𝑝𝑗 > 0, and

∑𝑚
𝑗=1 𝑝𝑗 = 1. Let 𝜏 be a permutation of {1, . . . ,𝑚}

corresponding to a non-increasing ordering of 𝑝1, 𝑝2, . . . , 𝑝𝑚, i.e., 𝑝𝜏(1) ≥ ⋅ ⋅ ⋅ ≥
𝑝𝜏(𝑚). Assume also there are 𝐾 distinct probabilities in {𝑝1, 𝑝2, . . . , 𝑝𝑚} which are

reordered as 𝑝(1) > ⋅ ⋅ ⋅ > 𝑝(𝐾), in such a way that the multiplicity of each 𝑝(𝑘) is
𝑑𝑘, 𝑘 = 1, . . . ,𝐾. In our notation, 𝐾 = 1 corresponds to the uniform case, where

𝑑1 = 𝑚. Let 𝑚1 = 0 and for any 𝑘 = 2, . . . ,𝐾, let 𝑚𝑘 =
∑𝑘−1

𝑗=1 𝑑𝑗 and so the

multiplicity of each 𝑝𝜏(𝑗) is 𝑑𝑘 if 𝑚𝑘 < 𝜏(𝑗) ≤ 𝑚𝑘 + 𝑑𝑘, 𝑗 = 1, . . . ,𝑚. Finally, let
X𝑊 be as in (1.1) the matrix corresponding to such a random word 𝑊 of length 𝑛.

Its, Tracy and Widom ([18], [19]) have obtained the limiting law of the length
of the longest increasing subsequence of such a random word. To recall their result,
let (𝜉1, . . . , 𝜉𝑚) be the eigenvalues of an element of 𝒢0 (𝑝𝜏(1), . . . , 𝑝𝜏(𝑚)), written in

such a way that (𝜉1, . . . , 𝜉𝑚) =
(
𝜉𝑑11 , . . . , 𝜉𝑑1𝑑1 , . . . , 𝜉

𝑑𝐾
1 , . . . , 𝜉𝑑𝐾𝑑𝐾

)
, i.e., 𝜉𝑑𝑘1 , . . . , 𝜉𝑑𝑘𝑑𝑘

are the eigenvalues of the 𝑘th block, 𝑘 = 1, . . . ,𝐾. Then (see [19]), the limiting law
of the length of the longest increasing subsequence, properly centered and normal-
ized, is the law of max

1≤𝑖≤𝑑1
𝜉𝑑1𝑖 . A representation of this limiting law, as a Brownian

functional is given in [15]. A multidimensional Brownian functional representa-
tion of the whole shape of the diagrams associated with a Markov random word
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is further given in [17] (see also Chistyakov and Götze [7] or [16] for the binary
case). Below, we obtain the convergence of the whole shape of the diagrams, in
the i.i.d. non-uniform case via a different set of techniques which is related to the
work of Glynn and Whitt [11], Baryshnikov [3], Gravner, Tracy and Widom [12]
and Doumerc [9].

Let
(
𝐵̂1(𝑡), 𝐵̂2(𝑡), . . . , 𝐵̂𝑚(𝑡)

)
be the 𝑚-dimensional Brownian motion having

covariance matrix

Σ𝑡 :=

⎛⎜⎜⎜⎝
𝑝𝜏(1)

(
1 − 𝑝𝜏(1)

) −𝑝𝜏(1)𝑝𝜏(2) ⋅ ⋅ ⋅ −𝑝𝜏(1)𝑝𝜏(𝑚)
−𝑝𝜏(2)𝑝𝜏(1) 𝑝𝜏(2)

(
1 − 𝑝𝜏(2)

) ⋅ ⋅ ⋅ −𝑝𝜏(2)𝑝𝜏(𝑚)
...

...
. . .

...
−𝑝𝜏(𝑚)𝑝𝜏(1) −𝑝𝜏(𝑚)𝑝𝜏(2) ⋅ ⋅ ⋅ 𝑝𝜏(𝑚)

(
1 − 𝑝𝜏(𝑚)

)
⎞⎟⎟⎟⎠ 𝑡. (3.1)

For each 𝑙 = 1, . . . ,𝑚, there is a unique 1 ≤ 𝑘 ≤ 𝐾 such that 𝑝𝜏(𝑙) = 𝑝(𝑘), and let

𝐿̂𝑙𝑚 =

𝑚𝑘∑
𝑗=1

𝐵̂𝑗(1) + sup
𝐽(𝑙−𝑚𝑘,𝑑𝑘)

𝑚𝑘+𝑑𝑘∑
𝑗=𝑚𝑘+1

𝑙−𝑚𝑘∑
𝑖=1

(
𝐵̂𝑗(𝑡𝑖𝑗−𝑖+1) − 𝐵̂𝑗(𝑡𝑖𝑗−𝑖)

)
, (3.2)

where the first sum is understood to vanish when 𝑚𝑘 = 0 and where the set
𝐽(𝑙 −𝑚𝑘, 𝑑𝑘) consists of all the subdivisions (𝑡𝑖𝑗) of [0, 1], 1 ≤ 𝑖 ≤ 𝑙 −𝑚𝑘, 𝑗 ∈ ℕ,
of the form:

𝑡𝑖𝑗 ∈ [0, 1]; 𝑡𝑖+1𝑗 ≤ 𝑡𝑖𝑗 ≤ 𝑡𝑖𝑗+1; 𝑡𝑖𝑗 = 0 𝑓𝑜𝑟 𝑗 ≤ 𝑚𝑘

𝑎𝑛𝑑 𝑡𝑖𝑗 = 1 𝑓𝑜𝑟 𝑗 ≥ 𝑚𝑘+1 − (𝑙 −𝑚𝑘) + 1. (3.3)

With these preliminaries, we have:

Theorem 3.1. Let 𝜆(𝑅𝑆𝐾(X𝑊 )) = (𝜆1, . . . , 𝜆𝑚) be the common shape of the Young
diagrams associated with 𝑊 through the RSK correspondence. Then, as 𝑛 →∞,(

𝜆1 − 𝑛𝑝𝜏(1)√
𝑛

, . . . ,
𝜆𝑚 − 𝑛𝑝𝜏(𝑚)√

𝑛

)
=⇒

(
𝐿̂1𝑚, 𝐿̂2𝑚 − 𝐿̂1𝑚, . . . , 𝐿̂𝑚𝑚 − 𝐿̂𝑚−1𝑚

)
. (3.4)

Proof. Let (ej)𝑗=1,...,𝑚 be the canonical basis of ℝ𝑚, and let V = (𝑉1, . . . , 𝑉𝑚) be

the random vector such that

ℙ (V = ej) = 𝑝𝑗 , 𝑗 = 1, . . . ,𝑚.

Clearly, for each 1 ≤ 𝑗 ≤ 𝑚,

𝔼 (𝑉𝑗) = 𝑝𝑗, Var(𝑉𝑗) = 𝑝𝑗 (1 − 𝑝𝑗) ,

and for 𝑗1 ∕= 𝑗2, Cov(𝑉𝑗1 , 𝑉𝑗2) = −𝑝𝑗1𝑝𝑗2 . Hence the covariance matrix of V is

Σ =

⎛⎜⎜⎜⎝
𝑝1 (1 − 𝑝1) −𝑝1𝑝2 ⋅ ⋅ ⋅ −𝑝1𝑝𝑚
−𝑝2𝑝1 𝑝2 (1 − 𝑝2) ⋅ ⋅ ⋅ −𝑝2𝑝𝑚

...
...

. . .
...

−𝑝𝑚𝑝1 −𝑝𝑚𝑝2 ⋅ ⋅ ⋅ 𝑝𝑚 (1 − 𝑝𝑚)

⎞⎟⎟⎟⎠ . (3.5)
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Let V1,V2, . . . ,Vn be independent copies of V, where Vi = (𝑉𝑖,1, 𝑉𝑖,2, . . . , 𝑉𝑖,𝑚),
𝑖 = 1, . . . , 𝑛. Then X𝑊 has the same law as the matrix formed by all the 𝑉𝑖,𝑗 on
the lattice {1, . . . , 𝑛} × {1, . . . ,𝑚}.

It is a well-known combinatorial fact (see Section 3.2 in [10]) that, for all
1 ≤ 𝑙 ≤ 𝑚,

𝜆1 + ⋅ ⋅ ⋅ + 𝜆𝑙 = 𝐺𝑙(𝑚,𝑛) := max

{ ∑
(𝑖,𝑗)∈𝜋1∪⋅⋅⋅∪𝜋𝑙

𝑉𝑖,𝑗 : 𝜋1, . . . , 𝜋𝑙 ∈ 𝒫(𝑚,𝑛),

and 𝜋1, . . . , 𝜋𝑙 are all disjoint

}
, (3.6)

where 𝒫(𝑚,𝑛) is the set of all paths 𝜋 taking only unit steps up or to the right in
the rectangle {1, . . . , 𝑛} × {1, . . . ,𝑚} and where, by disjoint, it is meant that any
two paths do not share a common point in {1, . . . , 𝑛}× {1, . . . ,𝑚} when 𝑉𝑖,𝑗 = 1.
We prove next that, for any 𝑙 = 1, . . . ,𝑚,

𝐺𝑙(𝑚,𝑛) − 𝑛𝑠𝑙√
𝑛

𝑛→∞
=⇒ 𝐿̂𝑙𝑚, (3.7)

where 𝑠𝑙 =
∑𝑙

𝑗=1 𝑝𝜏(𝑗). For 𝑙 = 1,

𝐺1(𝑚,𝑛) = max

{ ∑
(𝑖,𝑗)∈𝜋

𝑉𝑖,𝑗 ;𝜋 ∈ 𝒫(𝑚,𝑛)

}
. (3.8)

Moreover, each path 𝜋 is uniquely determined by the weakly increasing sequence
of its 𝑚− 1 jumps, namely 0 = 𝑡0 ≤ 𝑡1 ≤ ⋅ ⋅ ⋅ ≤ 𝑡𝑚−1 ≤ 1, such that 𝜋 is horizontal
on [⌊𝑡𝑗−1𝑛⌋, ⌊𝑡𝑗𝑛⌋] × {𝑗} and vertical on {⌊𝑡𝑗𝑛⌋} × [𝑗, 𝑗 + 1]. Hence

𝐺1(𝑚,𝑛) = sup
0=𝑡0≤𝑡1≤⋅⋅⋅≤𝑡𝑚−1≤𝑡𝑚=1

𝑚∑
𝑗=1

⌊𝑡𝑗𝑛⌋∑
𝑖=⌊𝑡𝑗−1𝑛⌋

𝑉𝑖,𝑗 .

Let 𝑝max = max1≤𝑗≤𝑚 𝑝𝑗 , 𝐽(𝑚) = {𝑗 : 𝑝𝑗 = 𝑝max} ⊂ {1, . . . ,𝑚} and so 𝑑1 =
card (𝐽(𝑚)) (𝐽(𝑚) is the set of all the most probable letters). As shown in [17,
Section 3 and 4], the distribution of 𝐺1(𝑚,𝑛) is very close, for large 𝑛, to that of
a very similar expression which involves only those 𝑉𝑖,𝑗 for which 𝑗 ∈ 𝐽(𝑚). To
recall this result, if

𝐺̂1(𝑚,𝑛) = sup
0=𝑡0≤𝑡1≤⋅⋅⋅≤𝑡𝑚−1≤𝑡𝑚=1
𝑡𝑗−1=𝑡𝑗 𝑓𝑜𝑟 𝑗 /∈𝐽(𝑚)

𝑚∑
𝑗=1

⌊𝑡𝑗𝑛⌋∑
𝑖=⌊𝑡𝑗−1𝑛⌋

𝑉𝑖,𝑗 ,

then, as 𝑛 →∞,

𝐺1(𝑚,𝑛)√
𝑛

− 𝐺̂1(𝑚,𝑛)√
𝑛

ℙ−→ 0, (3.9)
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i.e., as 𝑛 →∞, the distribution of the maximum (over all the northeast paths) in
(3.8) is approximately the distribution of the maximum over the northeast paths
going eastbound only along the rows corresponding to the most probable letters.
Now,

𝐺̂1(𝑚,𝑛) − 𝑛𝑝max√
𝑛

= sup
0=𝑡0≤𝑡1≤⋅⋅⋅
≤𝑡𝑚−1≤𝑡𝑚=1

𝑡𝑗−1=𝑡𝑗 𝑓𝑜𝑟 𝑗 /∈𝐽(𝑚)

𝑚∑
𝑗=1

∑⌊𝑡𝑗𝑛⌋
𝑖=⌊𝑡𝑗−1𝑛⌋ 𝑉𝑖,𝑗 − (𝑡𝑗 − 𝑡𝑗−1)𝑛𝑝max√

𝑛
.

(3.10)
We next claim that, as 𝑛 →∞, for any 𝑡 > 0,(∑⌊𝑡𝑛⌋

𝑖=1 𝑉𝑖,𝑗 − 𝑡𝑛𝑝𝑗√
𝑛

)
1≤𝑗≤𝑚

=⇒
(
𝐵̃𝑗(𝑡)

)
1≤𝑗≤𝑚

,

where
(
𝐵̃𝑗(𝑡)

)
1≤𝑗≤𝑚

is an 𝑚-dimensional Brownian motion with covariance ma-

trix Σ𝑡. Indeed, for any 𝑡 > 0, since V1,V2, . . . are independent, each with mean
vector p = (𝑝1, . . . , 𝑝𝑚), and covariance matrix Σ,∑⌊𝑡𝑛⌋

𝑖=1 Vi − 𝑡𝑛p√
𝑛

=⇒
(
𝐵̃𝑗(𝑡)

)
1≤𝑗≤𝑚

,

by the central limit theorem for i.i.d. random vectors and Slutsky’s lemma. Next,
for any 𝑡 > 𝑠 > 0, and from the independence of the Vi𝑠,(∑⌊𝑡𝑛⌋

𝑖=⌊𝑠𝑛⌋+1Vi − ⌊(𝑡− 𝑠)𝑛⌋p
√
𝑛

,

∑⌊𝑠𝑛⌋
𝑖=1 Vi − ⌊𝑠𝑛⌋p√

𝑛

)

=⇒
((

𝐵̃𝑗(𝑡− 𝑠)
)
1≤𝑗≤𝑚

,
(
𝐵̃𝑗(𝑠)

)
1≤𝑗≤𝑚

)
.

(3.11)

The continuous mapping theorem allows to conclude that(∑⌊𝑡𝑛⌋
𝑖=1 Vi − 𝑡𝑛p√

𝑛
,

∑⌊𝑠𝑛⌋
𝑖=1 Vi − 𝑠𝑛p√

𝑛

)

=⇒
((

𝐵̃𝑗(𝑡)
)
1≤𝑗≤𝑚

,
(
𝐵̃𝑗(𝑠)

)
1≤𝑗≤𝑚

)
.

(3.12)

The convergence for the time points 𝑡1 > 𝑡2 > ⋅ ⋅ ⋅ > 𝑡𝑛 > 0 can be treated
in a similar fashion. Thus the finite dimensional distributions converge to that

of
(
𝐵̃𝑗(𝑡)

)
1≤𝑗≤𝑚

. Since tightness in 𝐶([0, 1]𝑚) is as in the proof of Donsker’s

invariance principle (e.g., see [4]), we are just left with identifying the covariance
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structure of the limiting Brownian motion
(
𝐵̃𝑗(𝑡)

)
1≤𝑗≤𝑚

. But,

Cov
(
𝐵̃𝑗1(𝑡), 𝐵̃𝑗2 (𝑡)

)
= lim

𝑛→∞Cov

(∑⌊𝑡𝑛⌋
𝑖=1 𝑉𝑖,𝑗1√

𝑛
,

∑⌊𝑡𝑛⌋
𝑖=1 𝑉𝑖,𝑗2√

𝑛

)

= lim
𝑛→∞

1

𝑛

⌊𝑡𝑛⌋∑
𝑖=1

Cov (𝑉1,𝑗1 , 𝑉1,𝑗2) (3.13)

= Cov (𝑉1,𝑗1 , 𝑉1,𝑗2) 𝑡.

Hence the 𝑚-dimensional Brownian motion
(
𝐵̃𝑗(𝑡)

)
1≤𝑗≤𝑚

has covariance matrix

Σ𝑡 with Σ given in (3.5). In particular, as 𝑛 →∞, for any 𝑡 > 0,(∑⌊𝑡𝑛⌋
𝑖=1 𝑉𝑖,𝑗 − 𝑡𝑛𝑝max√

𝑛

)
1≤𝑗≤𝑚, 𝑗∈𝐽(𝑚)

=⇒
(
𝐵̂𝑗(𝑡)

)
1≤𝑗≤𝑚, 𝑗∈𝐽(𝑚)

.

It is also straightforward to see that the covariance matrix of
(
𝐵̂𝑗(𝑡)

)
𝑗∈𝐽(𝑚)

is the

𝑑1 × 𝑑1 matrix⎛⎜⎜⎜⎝
𝑝max (1 − 𝑝max) −𝑝2max ⋅ ⋅ ⋅ −𝑝2max

−𝑝2max 𝑝max (1 − 𝑝max) ⋅ ⋅ ⋅ −𝑝2max
...

...
. . .

...
−𝑝2max −𝑝2max ⋅ ⋅ ⋅ 𝑝max (1 − 𝑝max)

⎞⎟⎟⎟⎠ 𝑡. (3.14)

By the continuous mapping theorem,

𝐺̂1(𝑚,𝑛) − 𝑛𝑝max√
𝑛

𝑛→∞
=⇒ sup

𝐽(1,𝑑1)

𝑑1∑
𝑗=1

(
𝐵̂𝑗(𝑡𝑗) − 𝐵̂𝑗(𝑡𝑗−1)

)
, (3.15)

and the right-hand side of (3.15) is exactly 𝐿̂1𝑚, then (3.9), leads to

𝐺1(𝑚,𝑛) − 𝑛𝑝max√
𝑛

𝑛→∞
=⇒ 𝐿̂1𝑚. (3.16)

Now, for 𝑙 ≥ 2, 𝐺𝑙(𝑚,𝑛) is the maximum, of the sums of the 𝑉𝑖,𝑗 , over 𝑙

disjoint paths. Still by the argument in [17],
(
𝐺𝑙(𝑚,𝑛)−𝐺̂𝑙(𝑚,𝑛)

)
/
√
𝑛

ℙ−→ 0, as

𝑛 → ∞, where 𝐺̂𝑙(𝑚,𝑛) is the maximal sums of the 𝑉𝑖,𝑗 over 𝑙 disjoint paths

we now describe. Let 1 ≤ 𝑘 ≤ 𝐾 be the unique integer such that 𝑝𝜏(𝑙) = 𝑝(𝑘).
Denote by 𝛼𝑗(1), . . . , 𝛼𝑗(𝑚𝑘) the letters corresponding to the 𝑚𝑘 probabilities that
are strictly larger than 𝑝𝜏(𝑙). For each 1 ≤ 𝑠 ≤ 𝑚𝑘, the horizontal path from
(1, 𝑗(𝑠)) to (𝑛, 𝑗(𝑠)) is included, and thus so are these 𝑚𝑘 paths. The remaining
𝑙 − 𝑚𝑘 disjoint paths only go eastbound along the rows corresponding to the 𝑑𝑘
letters having probability 𝑝𝜏(𝑙). The set of these 𝑙 − 𝑚𝑘 paths is in a one-to-one
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correspondence with the set of subdivisions of [0, 1] given in (3.3). Therefore

𝐺̂𝑙(𝑚,𝑛) =

𝑚𝑘∑
𝑗=1

𝑛∑
𝑖=1

𝑉𝑖,𝜏(𝑗) + sup
𝐽(𝑙−𝑚𝑘,𝑑𝑘)

𝑚𝑘+𝑑𝑘∑
𝑗=𝑚𝑘+1

𝑙−𝑚𝑘∑
𝑖=1

⌊𝑡𝑖𝑗−𝑖+1𝑛⌋∑
𝑟=⌊𝑡𝑖𝑗−𝑖𝑛⌋

𝑉𝑟,𝜏(𝑗). (3.17)

Now,

𝐺̂𝑙(𝑚,𝑛) − 𝑛𝑠𝑙√
𝑛

=

𝑚𝑘∑
𝑗=1

∑𝑛
𝑖=1 𝑉𝑖,𝜏(𝑗) − 𝑛𝑝𝜏(𝑗)√

𝑛

+ sup
𝐽(𝑙−𝑚𝑘,𝑑𝑘)

𝑚𝑘+𝑑𝑘∑
𝑗=𝑚𝑘+1

𝑙−𝑚𝑘∑
𝑖=1

∑⌊𝑡𝑖𝑗−𝑖+1𝑛⌋
𝑟=⌊𝑡𝑖𝑗−𝑖𝑛⌋

𝑉𝑟,𝜏(𝑗) −
(
𝑡𝑖𝑗−𝑖+1 − 𝑡𝑖𝑗−𝑖

)
𝑛𝑝(𝑘)

√
𝑛

.

(3.18)

Since the column vectors V1,V2, . . . ,Vn are i.i.d., again, as 𝑛 →∞, for any 𝑡 > 0,(∑⌊𝑡𝑛⌋
𝑟=1 𝑉𝑟,𝜏(𝑗) − 𝑡𝑛𝑝𝜏(𝑗)√

𝑛

)
1≤𝑗≤𝑚

=⇒
(
𝐵̂𝑗(𝑡)

)
1≤𝑗≤𝑚

,

where
(
𝐵̂𝑗(𝑡)

)
1≤𝑗≤𝑚

is an 𝑚-dimensional Brownian motion with covariance ma-

trix given in (3.1). Hence, (3.18) and standard arguments give

𝐺𝑙(𝑚,𝑛) − 𝑛𝑠𝑙√
𝑛

𝑛→∞
=⇒ 𝐿̂𝑙𝑚.

Finally, by the Cramér-Wold theorem, as 𝑛 →∞,(
𝜆1 − 𝑛𝑠1√

𝑛
,

∑2
𝑗=1 𝜆𝑗 − 𝑛𝑠2√

𝑛
, . . . ,

∑𝑚
𝑗=1 𝜆𝑗 − 𝑛𝑠𝑚√

𝑛

)
=⇒
(
𝐿̂1𝑚, 𝐿̂2𝑚, . . . , 𝐿̂𝑚𝑚

)
,

(3.19)

therefore, as 𝑛 →∞, by the continuous mapping theorem,(
𝜆1 − 𝑛𝑝𝜏(1)√

𝑛
,
𝜆2 − 𝑛𝑝𝜏(2)√

𝑛
, . . . ,

𝜆𝑚 − 𝑛𝑝𝜏(𝑚)√
𝑛

)

=

(
𝐺1−𝑛𝑠1√

𝑛
,

(
𝐺2−𝑛𝑠2

)−(𝐺1−𝑛𝑠1
)

√
𝑛

, . . . ,
(𝐺𝑚−𝑛𝑠𝑚)−(𝐺𝑚−1−𝑛𝑠𝑚−1

)
√
𝑛

)
=⇒

(
𝐿̂1𝑚, 𝐿̂2𝑚 − 𝐿̂1𝑚, . . . , 𝐿̂𝑚𝑚 − 𝐿̂𝑚−1𝑚

)
. (3.20)

The proof is now complete. □
Remark 3.2. (i) In Theorem 3.2 of [17], the limiting shape of the Young diagrams
generated by an irreducible, aperiodic, homogeneous Markov word with finite state
space is obtained as a multivariate Brownian functional similar to the one obtained
above. The arguments there are based on a careful analysis of the reconfiguration
of disjoint subsequences. Specifically, the smallest letter appearing in the disjoint
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subsequences is then solely in the first subsequence, the second smallest letter,
not included in the first subsequence, is completely in the second subsequence,
etc. With this new configuration of the disjoint subsequences, a subdivision of the
interval [0, 1] can be described and a Brownian functional representation is then
available. Our approach takes advantage of the lattice with zeros and ones entries
(exactly a unique one in each column), and the fact that each subsequence corre-
sponds to a north-east path on the lattice, and that the length of the subsequence
is identical to the sum of all the entries on that path. Moreover, for 1 ≤ 𝑙 ≤ 𝑚,
and 1 ≤ 𝑖 ≤ 𝑙, the 𝑖th lowest path can be chosen to be from (1, 𝑖) to (𝑁,𝑀 − 𝑙+ 𝑖).
Then the subdivision of [0, 1] is naturally determined by describing the jumps of
all the paths involved.

(ii) Let
(
𝜉01 , . . . , 𝜉

0
𝑚

)
represent the vector of the eigenvalues of an element

of 𝒢0 (𝑝𝜏(1), . . . , 𝑝𝜏(𝑚)), written in such a way that 𝜉0𝑚𝑘+1
≥ ⋅ ⋅ ⋅ ≥ 𝜉0𝑚𝑘+𝑑𝑘

for
𝑘 = 1, . . . ,𝐾. Its, Tracy and Widom [18] have shown that the limiting density

of
((

𝜆1−𝑛𝑝𝜏(1)
)
/
√
𝑛𝑝𝜏(1), . . . ,

(
𝜆𝑚−𝑛𝑝𝜏(𝑚)

)
/
√
𝑛𝑝𝜏(𝑚)

)
, as 𝑛 → ∞, is that of the

eigenvalues of an element of 𝒢0 (𝑝𝜏(1), . . . , 𝑝𝜏(𝑚)), given by (2.7). By a simple
Riemann integral approximation argument, it follows that(

𝜆1 − 𝑛𝑝𝜏(1)√
𝑛𝑝𝜏(1)

, . . . ,
𝜆𝑚 − 𝑛𝑝𝜏(𝑚)√

𝑛𝑝𝜏(𝑚)

)
=⇒ (𝜉01 , . . . , 𝜉0𝑚) .

Thus, from Theorem 3.1,(
𝐿̂1𝑚√
𝑝𝜏(1)

,
𝐿̂2𝑚 − 𝐿̂1𝑚√

𝑝𝜏(2)
, . . . ,

𝐿̂𝑚𝑚 − 𝐿̂𝑚−1𝑚√
𝑝𝜏(𝑚)

)
𝑑
=
(
𝜉01 , . . . , 𝜉

0
𝑚

)
. (3.21)

(iii) Let
(
𝐵1(𝑡), 𝐵2(𝑡), . . . , 𝐵𝑚(𝑡)

)
be a standard 𝑚-dimensional Brownian

motion. For 𝑘 = 1, . . . ,𝑚, let

𝐷𝑘
𝑚 = sup

𝑚∑
𝑖=1

𝑘∑
𝑝=1

(
𝐵𝑖(𝑡𝑝𝑖−𝑝+1) −𝐵𝑖(𝑡𝑝𝑖−𝑝)

)
,

where the sup is taken over all the subdivisions (𝑡𝑝𝑖 ) of [0, 1] described in (3.3). The
very approach to prove Theorem 3.1 can be used to obtain a Brownian functional
representation of the spectrum of the 𝑚×𝑚 GUE, namely,(

𝐷1
𝑚, 𝐷2

𝑚 −𝐷1
𝑚, . . . , 𝐷𝑚

𝑚 −𝐷𝑚−1
𝑚

) 𝑑
=
(
𝜉𝐺𝑈𝐸,𝑚1 , 𝜉𝐺𝑈𝐸,𝑚2 , . . . , 𝜉𝐺𝑈𝐸,𝑚𝑚

)
. (3.22)

From the observation that the supremum in the definition of 𝐺𝑘(𝑚,𝑛) is attained
on a particular set of 𝑘 disjoint northeast paths for each 𝑘 = 1, . . . ,𝑚, Doumerc

([9]) found Brownian functional representations for
∑𝑘

𝑖=1 𝜉
𝐺𝑈𝐸,𝑚
𝑖 . These function-

als are similar to the 𝐷𝑘
𝑚 except that the supremum is taken over a different set of

subdivisions of [0, 1]. In fact, we believe that the subdivisions given in (3.3) should
be the ones present in [9] (we believe the conditions 𝑡1 ≤ 𝑠2, 𝑡2 ≤ 𝑠3, . . . , present
at the top of page 7 of [9], should not be there). With a similar consideration of
𝑘 disjoint increasing subsequences, a specific expression for the sum of the first 𝑘
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rows of the Young diagram associated with a Markov random word is obtained,
in [17], in terms of the number of occurrences of the letters among the sequence
(see also Chistyakov and Götze [7] or [16] for the binary case). The multidimen-
sional convergence of the whole diagram towards a corresponding multidimensional
Brownian functional is also obtained there.

In contrast to the approach in [9], our potential proof of (3.22) does not
require passing through the matrix central limit theorem. To briefly describe the
approach in [9], let the 𝑉𝑖,𝑗 in (3.6) be i.i.d. geometric random variables, i.e., for
𝑟 = 0, 1, . . . , let ℙ (𝑉𝑖,𝑗 = 𝑟) = 𝑞(1− 𝑞)𝑟. With such 𝑉𝑖,𝑗 , the probability of a given
matrix realization only depends on the sum of the matrix entries, which is also
the sum of the entries in the shape of the associate Young diagrams. The joint
probability mass function of the shape of the associate Young diagrams through
the RSK correspondence can then be expressed through the well-known number
of Young diagrams sharing this given shape. Next, by setting 𝑞 = 1 − 𝐿−1, and
letting 𝐿 → ∞, the random variables on the lattice converge to i.i.d. exponential
random variables with parameter one, while the corresponding shape of the asso-
ciated Young diagrams converges to the spectrum of the 𝑚× 𝑛 Laguerre Unitary
Ensemble. As 𝑛 → ∞, for any 𝑘 = 1, . . . ,𝑚, the corresponding 𝐺𝑘(𝑚,𝑛), prop-
erly normalized, converge in distribution to 𝐷𝑘

𝑚. With the same normalization, it is
proved in [9] that the spectrum of the 𝑚×𝑛 Laguerre Unitary Ensemble converges
to the spectrum of the 𝑚×𝑚 GUE. Hence, the continuous mapping theorem, gives∑𝑘

𝑗=1 𝜉
𝐺𝑈𝐸,𝑚
𝑗

𝑑
= 𝐷𝑘

𝑚. Via the large 𝑛 asymptotics of the corresponding numbers
of Young diagrams, we are able to directly show that the limiting joint probability
mass function of the shape of the diagrams converges to the joint probability den-

sity function of the eigenvalues of an element of the GUE. Thus,
∑𝑘

𝑗=1 𝜉
𝐺𝑈𝐸,𝑚
𝑗

𝑑
=

𝐷𝑘
𝑚, and (3.22) follows from the Cramér-Wold theorem. Similar ideas are al-

ready developed by Johansson (Theorem 1.1 in [20]) to prove that the Poissonized
Plancherel measure can be obtained as a limit of the Meixner measure. Johansson
also proves the convergence of the whole diagram corresponding to a random word
for uniform alphabets, and obtains the joint density of the limiting law.

(iv) The functionals
(
𝐿̂1𝑚, . . . , 𝐿̂𝑚𝑚

)
can also be represented via 𝑚-dimensional stan-

dard Brownian motion
(
𝐵1, . . . , 𝐵𝑚

)
. Indeed, for 𝑖 = 1, . . . ,𝑚, let

𝐵̂𝑖(𝑡) =
√
𝑝𝜏(𝑖)

(
1 − 𝑝𝜏(𝑖)

)
𝐵𝑖(𝑡) − 𝑝𝜏(𝑖)

𝑚∑
𝑞=1, 𝑞 ∕=𝑖

√
𝑝𝜏(𝑞)𝐵

𝑞(𝑡)

=
√
𝑝𝜏(𝑖)𝐵

𝑖(𝑡) − 𝑝𝜏(𝑖)

𝑚∑
𝑞=1

√
𝑝𝜏(𝑞)𝐵

𝑞(𝑡). (3.23)

Then, it is easy to check that the multidimensional Brownian motion obtained via
this linear transformation has covariance matrix Σ𝑡 as in (3.1). Next, recall that
for each 𝑙 = 1, . . . ,𝑚, there is a unique 1 ≤ 𝑘 ≤ 𝐾 such that 𝑝𝜏(𝑙) = 𝑝(𝑘), each

𝑝(𝑘) having multiplicity 𝑑𝑘. Recall also that we set 𝑚1 = 0, and for 𝑘 = 2, . . . ,𝐾,
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𝑚𝑘 =
∑𝑘−1

𝑗=1 𝑑𝑗 , so that the multiplicity of each 𝑝𝜏(𝑗) is 𝑑𝑘 if 𝑚𝑘+1 ≤ 𝑗 ≤ 𝑚𝑘+𝑑𝑘,

𝑘 = 1, . . . ,𝑚. With these notations and using the transformation (3.23), and for
any 𝑙 = 1, . . . ,𝑚, with 𝑚𝑘 + 1 ≤ 𝑙 ≤ 𝑚𝑘 + 𝑑𝑘, (3.2) becomes:

𝐿̂𝑙𝑚 =

𝑚𝑘∑
𝑗=1

√
𝑝𝜏(𝑗)𝐵

𝑗(1) −
𝑚𝑘∑
𝑗=1

𝑝𝜏(𝑗)

𝑚∑
𝑞=1

√
𝑝𝜏(𝑞)𝐵

𝑞(1)

+ sup
𝐽(𝑙−𝑚𝑘,𝑑𝑘)

𝑚𝑘+𝑑𝑘∑
𝑗=𝑚𝑘+1

𝑙−𝑚𝑘∑
𝑖=1

{√
𝑝𝜏(𝑗)

(
𝐵𝑗(𝑡𝑖𝑗−𝑖+1) −𝐵𝑗(𝑡𝑖𝑗−𝑖)

)
− 𝑝𝜏(𝑗)

𝑚∑
𝑞=1

√
𝑝𝜏(𝑞)

(
𝐵𝑞(𝑡𝑖𝑗−𝑖+1) −𝐵𝑞(𝑡𝑖𝑗−𝑖)

)}

=

𝑚𝑘∑
𝑗=1

√
𝑝𝜏(𝑗)𝐵

𝑗(1) −
⎛⎝𝑚𝑘∑
𝑗=1

𝑝𝜏(𝑗) + (𝑙 −𝑚𝑘)𝑝𝜏(𝑚𝑘+1)

⎞⎠ 𝑚∑
𝑞=1

√
𝑝𝜏(𝑞)𝐵

𝑞(1)

+
√
𝑝𝜏(𝑚𝑘+1) sup

𝐽(𝑙−𝑚𝑘,𝑑𝑘)

𝑚𝑘+𝑑𝑘∑
𝑗=𝑚𝑘+1

𝑙−𝑚𝑘∑
𝑖=1

(
𝐵𝑗(𝑡𝑖𝑗−𝑖+1) −𝐵𝑗(𝑡𝑖𝑗−𝑖)

)
(3.24)

=

𝑚𝑘∑
𝑗=1

√
𝑝𝜏(𝑗)𝐵

𝑗(1) −
𝑙∑

𝑗=1

𝑝𝜏(𝑗)

𝑚∑
𝑞=1

√
𝑝𝜏(𝑞)𝐵

𝑞(1)

+
√
𝑝𝜏(𝑚𝑘+1) sup

𝐽(𝑙−𝑚𝑘,𝑑𝑘)

𝑚𝑘+𝑑𝑘∑
𝑗=𝑚𝑘+1

𝑙−𝑚𝑘∑
𝑖=1

(
𝐵𝑗(𝑡𝑖𝑗−𝑖+1) −𝐵𝑗(𝑡𝑖𝑗−𝑖)

)
, (3.25)

where all the sums
∑𝑚𝑘

𝑗=1 are understood to vanish when 𝑚𝑘 = 0. In particular,

for 𝑙 = 1, 𝑚1 = 0 and (3.24) becomes:

𝐿̂1𝑚 = −𝑝max

𝑚∑
𝑞=1

√
𝑝𝜏(𝑞)𝐵

𝑞(1) +
√
𝑝max sup

𝐽(1,𝑑1)

𝑑1∑
𝑗=1

(
𝐵𝑗(𝑡1𝑗) −𝐵𝑗(𝑡1𝑗−1)

)
. (3.26)

4. The Poissonized Word Problem

“Poissonization” is another useful tool in dealing with length asymptotics for
longest increasing subsequence problems. It was introduced by Hammersley in
[13] in order to show the existence of lim𝑛→∞ 𝔼𝐿𝜎𝑛/

√
𝑛, for 𝜎𝑛 a random permu-

tation of {1, 2, . . . , 𝑛}. Since then, this technique has been widely used and we use
it below in connection with the inhomogeneous word problem.

Johansson [20] studied the Poissonized measure on the set of shapes of Young
diagrams associated with the homogeneous random word, while, Its Tracy and
Widom [19] also studied the Poissonization of 𝐿𝐼𝑛 for inhomogeneous random
words. They showed that the Poissonized distribution of the length of the longest
increasing subsequence, as a function of 𝑝1, . . . , 𝑝𝑚, can be identified as the solu-
tion of a certain integrable system of nonlinear PDEs. Below, we show that the
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Poissonized distribution of the shape of the whole Young diagrams associated with
an inhomogeneous random word converges to the spectrum of the corresponding
direct sum of GUEs. Next, using this result, together with “de-Poissonization”, we
obtain the asymptotic behavior of the shape of the diagrams.

Let 𝑊 = 𝑋1𝑋2 ⋅ ⋅ ⋅𝑋𝑛 be a random word of length 𝑛, with each letter in-
dependently drawn and with ℙ𝑚 (𝑋𝑖 = 𝑗) = 𝑝𝑗 , 𝑖 = 1, . . . , 𝑛, where 𝑝𝑗 > 0
and

∑𝑚
𝑗=1 𝑝𝑗 = 1, i.e., the random word is distributed according to ℙ𝑊,𝑚,𝑛 =

ℙ𝑚 × ⋅ ⋅ ⋅ × ℙ𝑚 on the set of words [𝑚]𝑛. Using the terminology of [20], with
ℕ = {0, 1, 2, . . .}, let

𝒫(𝑛)𝑚 :=

{
𝜆 = (𝜆1, . . . , 𝜆𝑚) ∈ ℕ𝑚 : 𝜆1 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑚,

𝑚∑
𝑖=1

𝜆𝑖 = 𝑛

}
,

denote the set of partitions of 𝑛, of length at most 𝑚. The RSK correspondence
defines a bijection from [𝑚]𝑛 to the set of pairs of Young diagrams (𝑃,𝑄) of

common shape 𝜆 ∈ 𝒫(𝑛)𝑚 , where 𝑃 is semi-standard with elements in {1, . . . ,𝑚}
and 𝑄 is standard with elements in {1, . . . , 𝑛}.

For any 𝑊 ∈ [𝑚]𝑛, let 𝑆(𝑊 ) be the common shape of the Young diagrams
associated with 𝑊 by the RSK correspondence. Then 𝑆 is a mapping from [𝑚]𝑛

to 𝒫(𝑛)𝑚 , which, moreover, is a surjection. The image (or push-forward) of ℙ𝑊,𝑚,𝑛

by 𝑆 is the measure ℙ𝑚,𝑛 given, for any 𝜆0 ∈ 𝒫(𝑛)𝑚 , by

ℙ𝑚,𝑛 (𝜆0) := ℙ𝑊,𝑚,𝑛 (𝜆 (𝑅𝑆𝐾(X𝑊 )) = 𝜆0) .

Next, let

𝒫𝑚 := {𝜆 = (𝜆1, . . . , 𝜆𝑚) ∈ ℕ𝑚 : 𝜆1 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑚} ,
be the set of partitions, of elements of ℕ, of length at most 𝑚. The set 𝒫𝑚 consists
of the shapes of the Young diagrams associated with the random words of any
finite length made up from the 𝑚 letter alphabet.

For 𝛼 > 0, the Poissonized measure of ℙ𝑚,𝑛 on the set 𝒫𝑚 is then defined as

ℙ𝛼𝑚 (𝜆0) := 𝑒−𝛼
∞∑
𝑛=0

ℙ𝑚,𝑛 (𝜆0)
𝛼𝑛

𝑛!
. (4.1)

The Poissonized measure ℙ𝛼𝑚 coincides with the distribution of the shape of the
Young diagrams associated with a random word whose length is a Poisson random
variable with mean 𝛼. Such a random word is called Poissonized, and 𝐿𝐼𝛼 denote
the length of its longest increasing subsequence.

The Charlier ensemble is closely related to the Poissonized word problem. It
is used by Johansson [20] to investigate the asymptotics of 𝐿𝐼𝑛 for finite uniform
alphabets. For the non-uniform alphabets we consider, let us define the generalized
Charlier ensemble to be:

ℙ𝛼𝐶ℎ,𝑚
(
𝜆0
)

=
∏

1≤𝑖<𝑗≤𝑚
(𝜆0𝑖 − 𝜆0𝑗 + 𝑗 − 𝑖)

𝑚∏
𝑗=1

1

(𝜆0𝑗 + 𝑚− 𝑗)!
𝑠𝜆0(𝑝)𝑒−𝛼

𝑚∏
𝑖=1

𝛼𝜆
0
𝑖 , (4.2)
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for all 𝜆0 = (𝜆01, 𝜆
0
2, . . . , 𝜆

0
𝑚) ∈ 𝒫𝑚, and where 𝑠𝜆0(𝑝) is the Schur function of shape

𝜆0 in the variable 𝑝 =
(
𝑝𝜏(1), . . . , 𝑝𝜏(𝑚)

)
which we describe next. Let 𝒜1, . . . ,𝒜𝐾

be the decomposition of {1, . . . ,𝑚} such that 𝑝𝜏(𝑖) = 𝑝𝜏(𝑗) = 𝑝(𝑘) if and only if
𝑖, 𝑗 ∈ 𝒜𝑘, for some 1 ≤ 𝑘 ≤ 𝐾. Clearly, 𝑑𝑘 = card (𝒜𝑘). Then,

𝑠𝜆0(𝑝) =

∑
𝜎∈𝒮𝑚

(−1)𝜎
∏𝐾
𝑘=1

∏
𝑖∈𝒜𝑘

(
𝑝
𝑚−𝜎(𝑖)−𝑚𝑘−𝑑𝑘+𝜏(𝑖)
𝜏(𝑖) ℎ

𝑚𝑘+𝑑𝑘−𝜏(𝑖)
𝜎(𝑖)

)
∏𝐾
𝑘=1 (0!1! ⋅ ⋅ ⋅ (𝑑𝑘 − 1)!)

∏
𝑘<𝑙

(
𝑝(𝑘) − 𝑝(𝑙)

)𝑑𝑘𝑑𝑙 , (4.3)

where 𝒮𝑚 is the set of all the permutations of {1, . . . ,𝑚} and where ℎ𝑖 = 𝜆0𝑖 +𝑚−𝑖
for 𝑖 = 1, . . . ,𝑚.

The next theorem gives, for inhomogeneous random words, both ℙ𝑚,𝑛(𝜆0)
and the distribution of 𝐿𝐼𝛼. The first statement is due to Its, Tracy and Widom
([18], [19]), while the second follows directly from the fact that the length of
the longest increasing subsequence is equal to the length of the first row of the
corresponding Young diagrams.

Theorem 4.1.

(i) On [𝑚]𝑛, the image (or push-forward) of ℙ𝑊,𝑚,𝑛 by the mapping 𝑆 : [𝑚]𝑛 →
𝒫(𝑛)𝑚 is, for any 𝜆0 = (𝜆01, 𝜆

0
2, . . . , 𝜆

0
𝑚) ∈ 𝒫(𝑛)𝑚 , given by

ℙ𝑚,𝑛(𝜆0) = 𝑠𝜆0(𝑝)𝑓𝜆
0

. (4.4)

Above, 𝑓𝜆
0

is the number of Young diagrams of shape 𝜆0 with elements in
{1, . . . , 𝑛}:

𝑓𝜆
0

= 𝑛!
∏

1≤𝑖<𝑗≤𝑚
(𝜆0𝑖 − 𝜆0𝑗 + 𝑗 − 𝑖)

𝑚∏
𝑗=1

1

(𝜆0𝑗 + 𝑚− 𝑗)!
,

and 𝑠𝜆0(𝑝) is the Schur function of shape 𝜆0 in the variable 𝑝 =
(
𝑝𝜏(1), . . . ,

𝑝𝜏(𝑚)
)

given in (4.3), with 𝜏 a permutation of {1, . . . ,𝑚} corresponding to a
non-increasing ordering of 𝑝1, 𝑝2, . . . , 𝑝𝑚.

(ii) The Poissonization of ℙ𝑚,𝑛 is the generalized Charlier ensemble ℙ𝛼𝐶ℎ,𝑚 de-

fined in (4.2). In particular, for the Poissonized word problem,

ℙ𝛼𝑊,𝑚 (𝐿𝐼𝛼 ≤ 𝑡) := 𝑒−𝛼
∞∑
𝑛=0

ℙ𝑚,𝑛 (𝜆1 ≤ 𝑡)
𝛼𝑛

𝑛!
= ℙ𝛼𝐶ℎ,𝑚 (𝜆1 ≤ 𝑡) . (4.5)

For uniform alphabet, Johansson [20] obtained the convergence, as 𝛼 → ∞,
of the Poissonized measure on 𝒫𝑚 to the joint law of the ordered eigenvalues of the
GUE. Next, following his lead and techniques, we generalize this result to the non-
uniform case, where the convergence is towards the joint law of the eigenvalues
(𝜉1, . . . , 𝜉𝑚), ordered within each block, of an element of 𝒢𝑚 (𝑑1, . . . , 𝑑𝐾). The
density of (𝜉1, . . . , 𝜉𝑚) is, for any 𝑥 ∈ ℝ𝑚, given by

𝑓𝜉1,...,𝜉𝑚(𝑥) =
1√
2𝜋

𝑐𝑚

𝐾∏
𝑘=1

Δ𝑘(𝑥)2𝑒−
∑𝑚

𝑖=1 𝑥
2
𝑖/2, (4.6)
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where 𝑐𝑚 = (2𝜋)−(𝑚−1)/2
∏𝐾
𝑘=1 (0!1! ⋅ ⋅ ⋅ (𝑑𝑘 − 1)!)−1, and where

Δ𝑘(𝑥) =
∏

𝑚𝑘+1≤𝑖<𝑗≤𝑚𝑘+𝑑𝑘

(𝑥𝑖 − 𝑥𝑗) .

Theorem 4.2. Let 𝜆(𝑅𝑆𝐾(X𝑊 )) = (𝜆1, . . . , 𝜆𝑚) be the common shape of the Young
diagrams associated with 𝑊 through the RSK correspondence. Let (𝜉1, . . . , 𝜉𝑚)
be the eigenvalues of an element of 𝒢𝑚 (𝑑1, . . . , 𝑑𝐾), written in such a way that
𝜉𝑚𝑘+1 ≥ ⋅ ⋅ ⋅ ≥ 𝜉𝑚𝑘+𝑑𝑘 for 𝑘 = 1, . . . ,𝐾, and let 𝑓𝜉1,...,𝜉𝑚 be its density given by
(4.6). Then, for any continuous function 𝑔 on ℝ𝑚,

lim
𝛼→∞𝔼𝛼𝑚

(
𝑔

(
𝜆1 − 𝛼𝑝𝜏(1)√

𝛼𝑝𝜏(1)
, . . . ,

𝜆𝑚 − 𝛼𝑝𝜏(𝑚)√
𝛼𝑝𝜏(𝑚)

))
=

∫
ℝ𝑚

𝑔(𝑥)𝑓𝜉1,...,𝜉𝑚(𝑥)𝑑𝑥. (4.7)

Proof. By Theorem 4.1, for any partition 𝜆0 = (𝜆01, 𝜆
0
2, . . . , 𝜆

0
𝑚) of 𝑛 ∈ ℕ,

ℙ𝑚,𝑛(𝜆(𝑅𝑆𝐾(X𝑊 )) = 𝜆0) = 𝑠𝜆0(𝑝)𝑓𝜆
0

,

where

𝑓𝜆
0

= 𝑛!
∏

1≤𝑖<𝑗≤𝑚
(𝜆0𝑖 − 𝜆0𝑗 + 𝑗 − 𝑖)

𝑚∏
𝑗=1

1

(𝜆0𝑗 + 𝑚− 𝑗)!
,

and where 𝑠𝜆0(𝑝) is the Schur function of shape 𝜆0 in the variable 𝑝 =
(
𝑝𝜏(1), . . . ,

𝑝𝜏(𝑚)
)

as given in (4.3). Hence the Poissonized measure is

ℙ𝛼𝑚
(
𝜆0
)

= 𝑒−𝛼
∞∑
𝑛=0

𝑛!
∏

1≤𝑖<𝑗≤𝑚
(𝜆0𝑖 − 𝜆0𝑗 + 𝑗 − 𝑖)

𝑚∏
𝑗=1

1

(𝜆0𝑗 + 𝑚− 𝑗)!
𝑠𝜆0(𝑝)

𝛼𝑛

𝑛!
.

Next, for 𝑖 = 1, . . . ,𝑚, let

𝑥𝑖 =
𝜆0𝑖 − 𝛼𝑝𝜏(𝑖)√

𝛼𝑝𝜏(𝑖)
,

then, as 𝛼 →∞,

𝑚∏
𝑗=1

1

(𝜆0𝑗 + 𝑚− 𝑗)!
∼ (2𝜋)−𝑚/2

𝑒𝛼

𝛼𝑛
𝛼−𝑚(𝑚−1)/2

(
𝑚∏
𝑖=1

𝑝
𝜏(𝑖)−𝑚
𝜏(𝑖)

)
𝑒−

∑𝑚
𝑖=1 𝑥

2
𝑖/2, (4.8)

and∏
1≤𝑖<𝑗≤𝑚

(𝜆0𝑖 − 𝜆0𝑗 + 𝑗 − 𝑖) (4.9)

∼ 𝛼𝑚(𝑚−1)/2−
∑𝐾

𝑘=1 𝑑𝑘(𝑑𝑘−1)/4
𝐾∏
𝑘=1

((
𝑝(𝑘)
)𝑑𝑘(𝑑𝑘−1)/4

Δ𝑘(𝑥)

)∏
𝑘<𝑙

(
𝑝(𝑘) − 𝑝(𝑙)

)𝑑𝑘𝑑𝑙
.
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Together with∑
𝜎∈𝒮𝑚

(−1)𝜎
𝐾∏
𝑘=1

∏
𝑖∈𝒜𝑘

(
𝑝
𝑚−𝜎(𝑖)−𝑚𝑘−𝑑𝑘+𝜏(𝑖)
𝜏(𝑖) ℎ

𝑚𝑘+𝑑𝑘−𝜏(𝑖)
𝜎(𝑖)

)
(4.10)

∼
𝑚∏
𝑖=1

𝑝
𝑚−𝜏(𝑖)
𝜏(𝑖)

𝐾∏
𝑘=1

(
𝑝(𝑘)
)−𝑑𝑘(𝑑𝑘−1)/2

𝛼
∑𝐾

𝑘=1 𝑑𝑘(𝑑𝑘−1)/4
𝐾∏
𝑘=1

((
𝑝(𝑘)
)𝑑𝑘(𝑑𝑘−1)/4

Δ𝑘(𝑥)

)
,

the limiting density of
((

𝜆1 − 𝛼𝑝𝜏(1)
)
/
√
𝛼𝑝𝜏(1), . . . ,

(
𝜆𝑚 − 𝛼𝑝𝜏(𝑚)

)
/
√
𝛼𝑝𝜏(𝑚)

)
, as

𝛼 → ∞, is

√
2𝜋𝑐𝑚

𝐾∏
𝑘=1

Δ𝑘(𝑥)2𝑒−
∑𝑚

𝑖=1 𝑥
2
𝑖/2, 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ ℝ𝑚,

which is just the joint density of the eigenvalues, ordered within each block, of
an element of 𝒢𝑚 (𝑑1, . . . , 𝑑𝐾). The statement then follows from a Riemann sums
approximation argument as in [20]. □

The next result is concerned with “de-Poissonization”, and again is the non-
uniform version (with a similar proof) of a result of Johansson.

Proposition 4.3. Let 𝛼𝑛 = 𝑛 + 3
√
𝑛 log𝑛 and 𝛽𝑛 = 𝑛− 3

√
𝑛 log𝑛. Then there is a

constant 𝐶 such that, for sufficiently large 𝑛, and for any 0 ≤ 𝑛𝑖 ≤ 𝑛, 𝑖 = 1, . . . ,𝑚,

ℙ𝛼𝑛𝑚 (𝜆1 ≤ 𝑛1, . . . , 𝜆𝑚 ≤ 𝑛𝑚) − 𝐶

𝑛2
≤ ℙ𝑚,𝑛 (𝜆1 ≤ 𝑛1, . . . , 𝜆𝑚 ≤ 𝑛𝑚)

≤ ℙ𝛽𝑛𝑚 (𝜆1 ≤ 𝑛1, . . . , 𝜆𝑚 ≤ 𝑛𝑚) +
𝐶

𝑛2
.

(4.11)

Proof. The proof is analogous to the proof of the corresponding uniform alphabet
result, given in [20] (see also Lemma 4.7 in [5]). First, a simple consequence of the
description of the RSK correspondence ensures that ℙ𝑚,𝑛 (𝜆1 ≤ 𝑛1, . . . , 𝜆𝑚 ≤ 𝑛𝑚)
is non-increasing in 𝑛, i.e.,

ℙ𝑚,𝑛+1 (𝜆1 ≤ 𝑛1, . . . , 𝜆𝑚 ≤ 𝑛𝑚) ≤ ℙ𝑚,𝑛 (𝜆1 ≤ 𝑛1, . . . , 𝜆𝑚 ≤ 𝑛𝑚) . (4.12)

Next,

ℙ𝛼𝑚 (𝜆1 ≤ 𝑛1, . . . , 𝜆𝑚 ≤ 𝑛𝑚) =

∞∑
𝑛=0

𝑒−𝛼
𝛼𝑛

𝑛!
ℙ𝑚,𝑛 (𝜆1 ≤ 𝑛1, . . . , 𝜆𝑚 ≤ 𝑛𝑚) ,

and then, proceeding as in [20],∣∣∣ℙ𝛼𝑚 (𝜆1 ≤ 𝑛1, . . . , 𝜆𝑚 ≤ 𝑛𝑚)−
∑

∣𝑛−𝛼∣≤√8𝛼 log𝛼
𝑒−𝛼

𝛼𝑛

𝑛!
ℙ𝑚,𝑛 (𝜆1 ≤ 𝑛1, . . . , 𝜆𝑚 ≤ 𝑛𝑚)

∣∣∣
≤ 𝐶

𝛼2
, (4.13)

for some constant 𝐶, 𝛼 sufficiently large and all 1 ≤ 𝑛𝑖 ≤ 𝑛, 𝑖 = 1, . . . ,𝑚. Replacing
𝛼 by respectively 𝑛 + 3

√
𝑛 log𝑛 and 𝑛− 3

√
𝑛 log𝑛 completes the proof. □
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We are now ready to obtain asymptotics for the shape of the Young diagrams
associated with a random word 𝑊 ∈ [𝑚]𝑛, when 𝑚 and 𝑛 go to infinity. Before
stating our result, let us recall the well-known, large 𝑚, asymptotic behavior of
the spectrum of the 𝑚×𝑚 GUE ([25], [26], [20]):

Let 𝜉𝐺𝑈𝐸,𝑚𝑗 be the 𝑗th largest eigenvalue of an element of the 𝑚×𝑚 GUE. For

each 𝑟 ≥ 1, there is a distribution function 𝐹𝑟 on ℝ𝑟, such that, for all (𝑡1, . . . , 𝑡𝑟) ∈
ℝ𝑟,

lim
𝑚→∞ℙ𝐺𝑈𝐸,𝑚

(
𝜉𝐺𝑈𝐸,𝑚𝑗 ≤ 2

√
𝑚 + 𝑡𝑗/𝑚

1/6, 𝑗 = 1, . . . , 𝑟
)

= 𝐹𝑟(𝑡1, . . . , 𝑡𝑟).

The multivariate distribution function 𝐹𝑟 originates in [25] and [26], another
expression for it is also given in [20] (see (3.48) there) and its one-dimensional
marginals are Tracy-Widom distributions.

Once more, our next theorem is already present, for uniform alphabets, in
Johansson [20].

Theorem 4.4. Let 𝑟≥1. Let 𝑑1→+∞, as 𝑚→+∞. Then, for all (𝑡1, . . . , 𝑡𝑟) ∈ ℝ𝑟,

lim
𝑚→∞ lim

𝛼→∞ℙ𝛼𝑚

(
𝜆𝑗 ≤ 𝛼𝑝max + 2

√
𝑑1𝛼𝑝max + 𝑡𝑗𝑑

−1/6
1

√
𝛼𝑝max, 𝑗 = 1, . . . , 𝑟

)
= 𝐹𝑟(𝑡1, . . . , 𝑡𝑟), (4.14)

and,

lim
𝑑1→∞

lim
𝑛→∞ℙ𝑚,𝑛

(
𝜆𝑗 ≤ 𝑛𝑝max + 2

√
𝑑1𝑛𝑝max + 𝑡𝑗𝑑

−1/6
1

√
𝑛𝑝max, 𝑗 = 1, . . . , 𝑟

)
= 𝐹𝑟(𝑡1, . . . , 𝑡𝑟). (4.15)

Proof. By Theorem 4.2, for each 𝑟 ≥ 1, and for all (𝑠1, . . . , 𝑠𝑟) ∈ ℝ𝑟,

lim
𝛼→∞ℙ𝛼𝑊,𝑚

(
𝜆𝑗 − 𝛼𝑝max√

𝛼𝑝max
≤ 𝑠𝑗, 𝑗 = 1, . . . , 𝑟

)
= ℙ𝐺𝑈𝐸,𝑑1 (𝜉𝑗 ≤ 𝑠𝑗 , 𝑗 = 1, . . . , 𝑟) ,

(4.16)
where 𝜉𝑗 is the 𝑗𝑡ℎ largest eigenvalue of the 𝑑1 × 𝑑1 GUE.

Hence, for any (𝑡1, . . . , 𝑡𝑟) ∈ ℝ𝑟,

lim
𝛼→∞ℙ𝛼𝑚

(
𝜆𝑗 ≤ 𝛼𝑝max + 2

√
𝑑1𝛼𝑝max + 𝑡𝑗𝑑

−1/6
1

√
𝛼𝑝max, 𝑗 = 1, . . . , 𝑟

)
= lim

𝛼→∞ℙ𝛼𝑚

(
𝜆𝑗 − 𝛼𝑝max√

𝛼𝑝max
≤ 2
√

𝑑1 + 𝑡𝑗𝑑
−1/6
1 , 𝑗 = 1, . . . , 𝑟

)
(4.17)

= ℙ

(
𝜉𝑗 ≤ 2

√
𝑑1 + 𝑡𝑗𝑑

−1/6
1 , 𝑗 = 1, . . . , 𝑟

)
.

As 𝑑1 → ∞, the result of Tracy-Widom on the convergence of the spectrum of
the GUE gives the first conclusion, proving (4.14). Next, by Proposition 4.3, with
𝛼𝑛 = 𝑛 + 3

√
𝑛 log𝑛 and 𝛽𝑛 = 𝑛− 3

√
𝑛 log𝑛, there is a constant 𝐶 such that, for
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sufficiently large 𝑛, and for any 0 ≤ 𝑠𝑗 ≤ 𝑛, 𝑗 = 1, . . . , 𝑟,

ℙ𝛼𝑛𝑚 (𝜆𝑗 ≤ 𝑠𝑗 , 𝑗 = 1, . . . , 𝑟) − 𝐶

𝑛2
≤ ℙ𝑚,𝑛 (𝜆𝑗 ≤ 𝑠𝑗, 𝑗 = 1, . . . , 𝑟)

≤ ℙ𝛽𝑛𝑚 (𝜆𝑗 ≤ 𝑠𝑗 , 𝑗 = 1, . . . , 𝑟) +
𝐶

𝑛2
.

(4.18)

But,

𝑛 = (1 − 𝜀𝛼)𝛼𝑛, with 𝜀𝛼 = 3
√

𝑛 log𝑛/
(
𝑛 + 3

√
𝑛 log𝑛

)
,

whereas

𝑛 = (1 + 𝜀𝛽) 𝛽𝑛 with 𝜀𝛽 = 3
√

𝑛 log𝑛/
(
𝑛− 3

√
𝑛 log𝑛

)
.

Since 𝜀𝛼, 𝜀𝛽 → 0, as 𝑛 → ∞, it follows from (4.18), by setting 𝑠𝑗 = 𝑛𝑝max +

2
√
𝑑1𝑛𝑝max + 𝑡𝑗𝑑

−1/6
1

√
𝑛𝑝max, that

lim
𝑛→∞ℙ𝛼𝑛𝑚

(
𝜆𝑗 ≤ 𝛼𝑛𝑝max + 2

√
𝑑1𝛼𝑛𝑝max + 𝑡𝑗𝑑

−1/6
1

√
𝛼𝑛𝑝max, 𝑗 = 1, . . . , 𝑟

)
(4.19)

≤ lim
𝑛→∞ℙ𝑚,𝑛

(
𝜆𝑗 ≤ 𝑛𝑝max + 2

√
𝑑1𝑛𝑝max + 𝑡𝑗𝑑

−1/6
1

√
𝑛𝑝max, 𝑗 = 1, . . . , 𝑟

)
≤ lim

𝑛→∞ℙ𝛽𝑛𝑚

(
𝜆𝑗 ≤ 𝛽𝑛𝑝max + 2

√
𝑑1𝛽𝑛𝑝max + 𝑡𝑗𝑑

−1/6
1

√
𝛽𝑛𝑝max, 𝑗 = 1, . . . , 𝑟

)
.

Now, (4.17) holds true with 𝛼 replaced by 𝛼𝑛 or 𝛽𝑛. Finally, (4.15) follows from
(4.19) by letting 𝑑1 →∞. □

Remark 4.5. The convergence results in Theorem 4.4 are obtained by taking
successive limits, i.e., first in 𝑛 and then in 𝑚. For uniform finite alphabets, in
which case 𝑑1 = 𝑚, Johansson [20] obtained the simultaneous convergence, for
the length of the longest increasing subsequence, via a careful analysis of corre-
sponding kernels and methods of orthogonal polynomials. These results demand:
(log𝑛)3/2/𝑚 → 0 and

√
𝑛/𝑚 → ∞. Also in the uniform case, under the assumption

𝑚 = 𝑜
(
𝑛3/10(log𝑛)−3/5

)
, the simultaneous convergence result (4.15) is obtained,

via Gaussian approximation, in [6] where non-uniform results are also given.

5. Appendix

Let 𝜉𝐺𝑈𝐸,𝑚max,0 (resp. 𝜉𝐺𝑈𝐸,𝑚max ) be the maximal eigenvalue of an element of the 𝑚×𝑚

traceless GUE (resp. GUE). Below, we give simple proofs of the convergence of

𝜉𝐺𝑈𝐸,𝑚max,0 /
√
𝑚 (or equivalently of 𝜉𝐺𝑈𝐸,𝑚max ) towards 2. These proofs are based on

the “tridiagonalization” technique originating in Trotter [28] (see also Silverstein
[23] where similar ideas are used). Our first result is the well-known Householder
representation of Hermitian matrices.
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Lemma 5.1. Let G = (𝐺𝑖,𝑗)1≤𝑖,𝑗≤𝑚 be an element of the GUE. Then, there exists
a unitary matrix U, such that

T := UGU∗ =

⎛⎜⎜⎜⎜⎜⎝
𝐴1,1 𝜒2𝑚−1 0 ⋅ ⋅ ⋅ 0
𝜒2𝑚−1 𝐴2,2 𝜒2𝑚−2 ⋅ ⋅ ⋅ 0

...
. . .

. . .
. . .

...
0 ⋅ ⋅ ⋅ 𝜒22 𝐴𝑚−1,𝑚−1 𝜒21
0 ⋅ ⋅ ⋅ 0 𝜒21 𝐴𝑚,𝑚

⎞⎟⎟⎟⎟⎟⎠ , (5.1)

where 𝐴1,1, . . . , 𝐴𝑚,𝑚 are independent standard normal random variables, and for
each 1 ≤ 𝑘 ≤ 𝑚 − 1, 𝜒2𝑚−𝑘 has a chi-squared distribution, with 𝑚 − 𝑘 degrees of

freedom. Moreover, for each 𝑘 = 1, . . . ,𝑚−1, 𝐴𝑘,𝑘 is independent of 𝜒2𝑚−𝑘, . . . , 𝜒
2
1.

Proposition 5.2. Let 𝜉𝐺𝑈𝐸,𝑚max,0 (resp. 𝜉𝐺𝑈𝐸,𝑚max ) be the maximal eigenvalue of an ele-

ment of the 𝑚×𝑚 traceless GUE (resp. GUE), then as 𝑚 → ∞,

𝜉𝐺𝑈𝐸,𝑚max,0√
𝑚

→ 2,

(
resp.

𝜉𝐺𝑈𝐸,𝑚max√
𝑚

→ 2

)
almost surely.

Proof. An elementary proof is obtained along the following lines: First, by Lemma
5.1, G and T share the same eigenvalues. Next, by the Gerŝgorin circle theorem
(see [14]), for any eigenvalue 𝜉𝑖 of G, letting also 𝜒20 = 𝜒2𝑚 = 0,

𝜉𝑖 ∈
∪

𝑘=1,...,𝑚

[
𝐴𝑘,𝑘 − 𝜒2𝑚−𝑘+1 − 𝜒2𝑚−𝑘, 𝐴𝑘,𝑘 + 𝜒2𝑚−𝑘+1 + 𝜒2𝑚−𝑘

]
.

Hence

𝜉𝐺𝑈𝐸,𝑚max√
𝑚

≤ max
𝑘=1,...,𝑚

(
𝐴𝑘,𝑘√

𝑚
+

𝜒2𝑚−𝑘+1√
𝑚

+
𝜒2𝑚−𝑘√

𝑚

)
. (5.2)

For each 1 ≤ 𝑘 ≤ 𝑚, 𝐴𝑘,𝑘 ∼ 𝑁
(
0, 1
)
, and thus very classically max

𝑘=1,...,𝑚
𝐴𝑘,𝑘/

√
𝑚

a.s.→ 0. Next, for any fixed 𝜀 > 0,

ℙ

(∣∣∣∣∣ max
𝑘=1,...,𝑚

𝜒2𝑚−𝑘+1
𝑚

− 1

∣∣∣∣∣ > 𝜀

)
≤ ℙ
(
𝜒2𝑚 < 𝑚(1 − 𝜀)

)
+ 𝑚ℙ

(
𝜒2𝑚 > 𝑚(1 + 𝜀)

)
,

(5.3)

and the tail behavior of 𝜒2𝑚 ensures that
∑∞

𝑚=1𝑚ℙ
(
𝜒2𝑚 > 𝑚(1 + 𝜀)

)
< +∞, and

that
∑∞

𝑚=2 ℙ
(
𝜒2𝑚 < 𝑚(1 − 𝜀)

)
< +∞. Therefore, max

𝑘=1,...,𝑚
𝜒2𝑚−𝑘+1/𝑚

a.s.→ 1, and

almost surely,

lim sup
𝑚→∞

𝜉𝐺𝑈𝐸,𝑚max√
𝑚

≤ 2. (5.4)
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Next, since the empirical distribution of the eigenvalues
(
𝜉𝐺𝑈𝐸,𝑚𝑖 /

√
𝑚
)
1≤𝑖≤𝑚 con-

verges almost surely to the semicircle law 𝜈 with density
√

4 − 𝑥2/2𝜋, for any 𝜀 > 0,

ℙ

(
lim inf
𝑚→∞

𝜉𝐺𝑈𝐸,𝑚max√
𝑚

> 2 − 𝜀

)
= 1. (5.5)

Letting 𝜀 → 0 in (5.5) yields,

lim inf
𝑚→∞

𝜉𝐺𝑈𝐸,𝑚max√
𝑚

≥ 2 a.s. (5.6)

Combining (5.4) and (5.6), 𝜉𝐺𝑈𝐸,𝑚max /
√
𝑚 → 2 almost surely, and a similar result

also follows for 𝜉𝐺𝑈𝐸,𝑚max,0 /
√
𝑚. □

To prove our next convergence result, we first need a simple lemma.

Lemma 5.3. For each 𝑘 = 1, 2, . . . , let 𝜒2𝑘 be a chi-square random variable with 𝑘
degrees of freedom. Then,

lim
𝑚→∞𝔼

( max
𝑘=1,...,𝑚

𝜒2𝑘

𝑚

)
= 1. (5.7)

Proof. First,

𝔼

(
max

𝑘=1,...,𝑚
𝜒2𝑘

)
≥ 𝔼

(
𝜒2𝑚
)

= 𝑚.

Next, by the concavity of the logarithm, for any 0 < 𝑡 < 1/2,

𝑡𝔼

( max
𝑘=1,...,𝑚

𝜒2𝑘

𝑚

)
≤ 1

𝑚
ln

( 𝑚∑
𝑘=1

𝔼𝑒𝑡𝜒
2
𝑘

)
≤ 1

𝑚
ln

(
𝑚

1

(1 − 2𝑡)𝑚/2

)
=

ln𝑚

𝑚
− 1

2
ln (1 − 2𝑡) .

Hence,

𝑡 lim sup
𝑚→∞

𝔼

( max
𝑘=1,...,𝑚

𝜒2𝑘

𝑚

)
≤ −1

2
ln (1 − 2𝑡) ,

and letting 𝑡 → 0,

lim sup
𝑚→∞

𝔼

( max
𝑘=1,...,𝑚

𝜒2𝑘

𝑚

)
≤ lim

𝑡→0
− ln (1 − 2𝑡)

2𝑡
= 1.

(
Since − ln(1− 2𝑡) ≤ 2𝑡+ 4𝑡2, for 0 ≤ 𝑡 ≤ 1/3, taking 𝑡 =

√
ln𝑚/2𝑚 in (5.8), will

give 𝔼
(

max
𝑘=1,...,𝑚

𝜒2𝑘/𝑚
) ≤ 1 + 2

√
2 ln𝑚/𝑚, for 𝑚 > 10.

)
□
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Again, in the uniform finite alphabet case, where 𝑝1 = ⋅ ⋅ ⋅ = 𝑝𝑚 = 1/𝑚, we
have 𝐾 = 1, 𝑑1 = 𝑚. For 𝑘 = 1, . . . ,𝑚, and to keep up with the notation of [15], de-

note by 𝐻̃𝑘
𝑚 the particular version of 𝐿̂𝑘𝑚, as in (3.2). Let

(
𝐵̃1(𝑡), 𝐵̃2(𝑡), . . . , 𝐵̃𝑚(𝑡)

)
be the 𝑚-dimensional Brownian motion having covariance matrix⎛⎜⎜⎜⎝

1 𝜌 ⋅ ⋅ ⋅ 𝜌
𝜌 1 ⋅ ⋅ ⋅ 𝜌
...

...
. . .

...
𝜌 𝜌 ⋅ ⋅ ⋅ 1

⎞⎟⎟⎟⎠ 𝑡, (5.8)

with 𝜌 = −1/(𝑚− 1). Then, for 𝑘 = 1, . . . ,𝑚 (see also [15], [9]),

𝐻̃𝑘
𝑚 =

√
𝑚− 1

𝑚
sup

𝑚∑
𝑖=1

𝑘∑
𝑝=1

(
𝐵̃𝑖(𝑡𝑝𝑖−𝑝+1) − 𝐵̃𝑖(𝑡𝑝𝑖−𝑝)

)
,

where the sup is taken over all the subdivisions (𝑡𝑝𝑖 ) of [0, 1] as in (3.3). As a
corollary to Theorem 3.1 (see also [15]), for each 𝑚 ≥ 2,(

𝐻̃1
𝑚, 𝐻̃2

𝑚 − 𝐻̃1
𝑚, . . . , 𝐻̃𝑚

𝑚 − 𝐻̃𝑚−1
𝑚

)
𝑑
=
(
𝜉𝐺𝑈𝐸,𝑚1,0 , 𝜉𝐺𝑈𝐸,𝑚2,0 , . . . , 𝜉𝐺𝑈𝐸,𝑚𝑚,0

)
. (5.9)

Moreover, convergence in 𝐿1 also holds.

Proposition 5.4. As 𝑚 →∞,

𝜉𝐺𝑈𝐸,𝑚max,0√
𝑚

→ 2, in 𝐿1.

Equivalently,
𝜉𝐺𝑈𝐸,𝑚max√

𝑚
→ 2, in 𝐿1.

Equivalently,

𝐻̃1
𝑚√
𝑚

→ 2, in 𝐿1.

Proof. Note that when 𝑝1 = ⋅ ⋅ ⋅ = 𝑝𝑚 = 1/𝑚, ℒ𝑝1,...,𝑝𝑚(𝑠1,...,𝑠𝑚)
, given by (2.4) is the

empty set when 𝑠1 < 0. Hence 𝜉𝐺𝑈𝐸,𝑚max,0 is nonnegative (this is actually clear from

the traceless requirement). By Theorem 3.1, 𝐻̃1
𝑚 and 𝜉𝐺𝑈𝐸,𝑚max,0 are equal in distri-

bution, and so it suffices to prove that, as 𝑚 →∞,

𝔼

(
𝜉𝐺𝑈𝐸,𝑚max,0

)
√
𝑚

→ 2. (5.10)

Next, by Proposition 2.6, 𝔼
(
𝜉𝐺𝑈𝐸,𝑚max,0

)
= 𝔼

(
𝜉𝐺𝑈𝐸,𝑚max

)
. Moreover, taking expecta-

tions on both sides of (5.2) gives:

𝔼
(
𝜉𝐺𝑈𝐸,𝑚max

) ≤ 𝔼

(
max

𝑘=1,...,𝑚
𝐴𝑘,𝑘

)
+ 𝔼

(
max

𝑘=1,...,𝑚
𝜒2𝑚−𝑘+1

)
+ 𝔼

(
max

𝑘=1,...,𝑚
𝜒2𝑚−𝑘

)
.
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It is well known that,

𝔼

(
max

𝑘=1,...,𝑚
𝐴𝑘,𝑘

)
≤
√

2 ln𝑚,

while, by Lemma 5.3,

lim sup
𝑚→∞

𝔼

(
max

𝑘=1,...,𝑚

𝜒2𝑘√
𝑚

)
= 1,

leading to

lim sup
𝑚→∞

𝔼

(
𝜉𝐺𝑈𝐸,𝑚max,0√

𝑚

)
≤ 2.

Now, 𝜉𝐺𝑈𝐸,𝑚max,0 is nonnegative and by Proposition 5.2, 𝜉𝐺𝑈𝐸,𝑚max,0 /
√
𝑚 → 2, almost

surely. Thus, by Fatou’s Lemma,

lim inf
𝑚→∞ 𝔼

(
𝜉𝐺𝑈𝐸,𝑚max,0√

𝑚

)
≥ 𝔼

(
lim inf
𝑚→∞

𝜉𝐺𝑈𝐸,𝑚max,0√
𝑚

)
= 2,

and so, lim𝑚→∞ 𝔼

(
𝜉𝐺𝑈𝐸,𝑚max,0 /

√
𝑚
)

= 2. Using once more the fact that 𝜉𝐺𝑈𝐸,𝑚max,0 is

nonnegative, we conclude that lim𝑚→∞ 𝔼

∣∣∣𝜉𝐺𝑈𝐸,𝑚max,0 /
√
𝑚− 2

∣∣∣ = 0, and by the weak

law of large number, lim𝑚→∞ 𝔼
∣∣𝜉𝐺𝑈𝐸,𝑚max /

√
𝑚− 2

∣∣ = 0. □
Remark 5.5. A small and elementary tightening of the arguments of Davidson and
Szarek [8] will also provide an alternative proof of Proposition 5.4.

Proof of Proposition 2.7. By Proposition 2.2,

max
𝑚𝑘<𝑖≤𝑚𝑘+𝑑𝑘

𝜉0𝑖 = max
𝑚𝑘<𝑖≤𝑚𝑘+𝑑𝑘

𝜉𝑖 −
√

𝑝(𝑘)
𝑚∑
𝑙=1

√
𝑝𝑙X𝑙,𝑙.

Since max
𝑚𝑘<𝑖≤𝑚𝑘+𝑑𝑘

𝜉𝑖 is the maximal eigenvalue of an element of the 𝑑𝑘 × 𝑑𝑘

GUE, with probability one or in the mean, lim𝑑𝑘→∞ max
𝑚𝑘<𝑖≤𝑚𝑘+𝑑𝑘

𝜉𝑖/
√
𝑑𝑘 = 2.

Moreover,
∑𝑚

𝑙=1

√
𝑝𝑙X𝑙,𝑙 is a centered Gaussian random variable with variance

Var
(∑𝑚

𝑙=1

√
𝑝𝑙X𝑙,𝑙

)
=
∑𝑚

𝑙=1 𝑝𝑙 = 1. Hence, with probability one or in the mean,

lim𝑑𝑘→∞
√

𝑝(𝑘)
∑𝑚

𝑙=1

√
𝑝𝑙X𝑙,𝑙/

√
𝑑𝑘 = 0. □
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Low Rank Estimation of Similarities on Graphs

Vladimir Koltchinskii and Pedro Rangel

Abstract. Let (𝑉,𝐸) be a graph with vertex set 𝑉 and edge set 𝐸. Let
(𝑋,𝑋 ′, 𝑌 ) ∈ 𝑉 × 𝑉 × {−1, 1} be a random triple, where 𝑋,𝑋 ′ are inde-
pendent uniformly distributed vertices and 𝑌 is a label indicating whether
𝑋,𝑋 ′ are “similar” (𝑌 = +1), or not (𝑌 = −1). Our goal is to estimate the
regression function

𝑆∗(𝑢, 𝑣) = 𝔼(𝑌 ∣𝑋 = 𝑢,𝑋 ′ = 𝑣), 𝑢, 𝑣 ∈ 𝑉

based on training data consisting of 𝑛 i.i.d. copies of (𝑋,𝑋 ′, 𝑌 ). We are in-
terested in this problem in the case when 𝑆∗ is a symmetric low rank kernel
and, in addition to this, it is assumed that 𝑆∗ is “smooth” on the graph. We
study estimators based on a modified least squares method with complex-
ity penalization involving both the nuclear norm and Sobolev type norms of
symmetric kernels on the graph and prove upper bounds on 𝐿2-type errors of
such estimators with explicit dependence both on the rank of 𝑆∗ and on the
degree of its smoothness.

Mathematics Subject Classification (2010). Primary 62J99, 62H12; Secondary
60B20, 60G15.

Keywords. Estimation of similarities on graphs, matrix completion, low-rank
matrix estimation, nuclear norm penalization, graph Laplacian, Sobolev type
norms, noncommutative Bernstein inequality.

1. Introduction

Let 𝐺 = (𝑉,𝐸) be a graph with vertex set 𝑉 and edge set 𝐸, card(𝑉 ) = 𝑚. Let
𝐴 := (𝑎(𝑢, 𝑣))𝑢,𝑣∈𝑉 be the adjacency matrix of 𝐺, that is, 𝑎(𝑢, 𝑣) = 1 if 𝑢 and 𝑣 are
connected with an edge and 𝑎(𝑢, 𝑣) = 0 otherwise. Let Δ := 𝐷−𝐴 be the Laplacian
of 𝐺, 𝐷 being the diagonal matrix with the degrees of vertices on the diagonal. Let
(𝑋,𝑋 ′, 𝑌 ) ∈ 𝑉 × 𝑉 × {−1, 1} be a random triple with 𝑋,𝑋 ′ being independent

Vladimir Kotchinskii was partially supported by NSF Grants DMS-1207808, DMS-0906880 and
CCF-0808863. Pedro Rangel was supported by NSF Grant CCF-0808863.
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vertices sampled at random from the uniform distribution Π on 𝑉 and 𝑌 being
an “indicator” of a symmetric binary relationship between 𝑋,𝑋 ′ called in what
follows a “similarity”. More precisely, 𝑌 = +1 indicates that the vertices 𝑋,𝑋 ′

are similar and 𝑌 = −1 indicates that they are not. The conditional distribution
of 𝑌 given 𝑋,𝑋 ′ is completely characterized by the regression function

𝑆∗(𝑢, 𝑣) := 𝔼(𝑌 ∣𝑋 = 𝑢,𝑋 ′ = 𝑣), 𝑢, 𝑣 ∈ 𝑉

that is assumed to be a symmetric kernel on 𝑉 ×𝑉 and will be called the similarity
kernel. It is well known that sign(𝑆∗(𝑋,𝑋 ′)) is the Bayes classifier, that is, the
best possible predictor of 𝑌 based on an observation of 𝑋,𝑋 ′ in the sense that
it minimizes the generalization error ℙ{𝑌 ∕= 𝑔(𝑋,𝑋 ′)} over all possible predictors
𝑔 : 𝑉 × 𝑉 9→ {−1, 1}. Our goal is to estimate 𝑆∗ based on the training data
(𝑋1, 𝑋

′
1, 𝑌1), . . . , (𝑋𝑛, 𝑋

′
𝑛, 𝑌𝑛) consisting of 𝑛 i.i.d. copies of (𝑋,𝑋 ′, 𝑌 ). We are

especially interested in the class of problems such that, on the one hand, 𝑆∗ is
a matrix (kernel) of relatively small rank and, on the other hand, 𝑆∗ possesses
certain degree of smoothness on the graph.

Throughout the paper, 𝒮𝑉 denotes the linear space of symmetric kernels
𝑆 : 𝑉 × 𝑉 9→ ℝ, 𝑆(𝑢, 𝑣) = 𝑆(𝑣, 𝑢), 𝑢, 𝑣 ∈ 𝑉, that can be also viewed as real-
valued symmetric 𝑚 × 𝑚 matrices. For 𝑆 ∈ 𝒮𝑉 , let rank(𝑆) denote the rank of
𝑆 and tr(𝑆) denote the trace of 𝑆. The spectral representation of 𝑆 has the form
𝑆 =

∑𝑟
𝑗=1 𝜎𝑗(𝜓𝑗 ⊗ 𝜓𝑗), where 𝑟 = rank(𝑆), 𝜎1 ≤ ⋅ ⋅ ⋅ ≤ 𝜎𝑟 are non-zero eigenvalues

of 𝑆 (repeated with their multiplicities) and 𝜓1, . . . , 𝜓𝑟 are the corresponding or-
thonormal eigenfunctions (there is a multiple choice of 𝜓𝑗s in the case of repeated
eigenvalues). We also use the notation sign(𝑆) :=

∑𝑟
𝑗=1 sign(𝜎𝑗)(𝜓𝑗 ⊗ 𝜓𝑗) and we

define the support of 𝑆, denoted by supp(𝑆), as the linear span of {𝜓1, . . . , 𝜓𝑟}
in ℝ𝑉 .

For 1 ≤ 𝑝 < ∞, the Schatten 𝑝-norm of 𝑆 ∈ 𝒮𝑉 is defined as

∥𝑆∥𝑝 := (tr(∣𝑆∣𝑝))1/𝑝 =

( 𝑟∑
𝑗=1

∣𝜎𝑗 ∣𝑝
)1/𝑝

,

where ∣𝑆∣ :=
√
𝑆2. For 𝑝 = 1, ∥ ⋅ ∥1 is called the nuclear norm, while, for 𝑝 = 2,

∥ ⋅ ∥2 is the Hilbert–Schmidt or Frobenius norm, that is, the norm induced by the
Hilbert–Schmidt inner product which will be denoted by ⟨⋅, ⋅⟩. The operator or
spectral norm is defined as ∥𝑆∥ := max𝑗 ∣𝜎𝑗 ∣.

Let us also denote by Π2 := Π×Π the distribution of random couple (𝑋,𝑋 ′)
in 𝑉 × 𝑉 and let ∥𝑆∥𝐿2(Π2) be the 𝐿2(Π

2)-norm of kernel 𝑆 :

∥𝑆∥2𝐿2(Π2) =

∫
𝑉×𝑉

∣𝑆(𝑢, 𝑣)∣2Π2(𝑑𝑢, 𝑑𝑣) = 𝔼∣𝑆(𝑋,𝑋 ′)∣2.

The corresponding inner product is denoted by ⟨⋅, ⋅⟩𝐿2(Π2). Clearly, under the as-

sumption that the distribution Π is uniform in 𝑉, we have ∥𝑆∥2𝐿2(Π2) = 𝑚−2∥𝑆∥22
and ⟨𝑆1, 𝑆2⟩𝐿2(Π2) = 𝑚−2⟨𝑆1, 𝑆2⟩.
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The smoothness of a symmetric kernel 𝑆 : 𝑉 × 𝑉 9→ ℝ can be characterized
in terms of Sobolev type norms ∥Δ𝑝/2𝑆∥22 for some 𝑝 > 0. Note that if 𝑆 is a kernel
of rank 𝑟 with spectral representation 𝑆 =

∑𝑟
𝑘=1 𝜇𝑘(𝜓𝑘 ⊗ 𝜓𝑘), then1

∥Δ𝑝/2𝑆∥22 = tr(Δ𝑝/2𝑆2Δ𝑝/2) = tr(Δ𝑝𝑆2)

=

𝑚∑
𝑘=1

𝜇2𝑘⟨Δ𝑝𝜓𝑘, 𝜓𝑘⟩ =

𝑚∑
𝑘=1

𝜇2𝑘∥Δ𝑝/2𝜓𝑘∥2,

so, essentially, the smoothness of the kernel 𝑆 depends on the smoothness of its
eigenfunctions 𝜓𝑘 on the graph. In particular, for 𝑝 = 1, we have

∥Δ1/2𝑆∥22 =

𝑚∑
𝑘=1

𝜇2𝑘
∑
𝑢∼𝑣

∣𝜓𝑘(𝑢) − 𝜓𝑘(𝑣)∣2,

where the sum is over the pairs of vertices connected with an edge.
Given a kernel 𝑆, let 𝐿𝑛(𝑆) denote the following penalized empirical risk:

𝐿𝑛(𝑆) := ∥𝑆∥2𝐿2(Π2) −
2

𝑛

𝑛∑
𝑗=1

𝑌𝑗𝑆(𝑋𝑗 , 𝑋
′
𝑗) + 𝜀∥𝑆∥1 + 𝜀∥𝑊 1/2𝑆∥2𝐿2(Π2)

= ∥𝑆∥2𝐿2(Π2) −
2

𝑛

𝑛∑
𝑗=1

𝑌𝑗𝑆(𝑋𝑗 , 𝑋
′
𝑗) + 𝜀∥𝑆∥1 + 𝜀1∥𝑊 1/2𝑆∥22

(1.1)

where 𝑊 = 𝑑Δ𝑝 for some constants 𝑑 > 0 and 𝑝 > 0, 𝜀, 𝜀 > 0 are regularization
parameters and 𝜀1 = 𝜀

𝑚2 . We will study the following estimation method:

𝑆 := argmin𝑆∈𝔻𝐿𝑛(𝑆), (1.2)

where 𝔻 is a closed convex subset of the linear space 𝒮𝑉 of all symmetric kernels.
Note that there are two complexity penalties involved in the definition of penalized
empirical risk (1.1). The first penalty is based on the nuclear norm ∥𝑆∥1 and it is
used to “promote” low rank solutions. The second penalty is based on a “Sobolev
type norm” ∥𝑊 1/2𝑆∥22. It is used to “promote” the smoothness of the solution
on the graph. In principle, 𝑊 in the definition of 𝐿𝑛(𝑆) could be an arbitrary
symmetric nonnegatively definite matrix. Therefore, alternative interpretations of
the problem under consideration are possible (such as, for instance, learning sim-
ilarities on weighted graphs).

We will derive an upper bound on the error ∥𝑆−𝑆∗∥2𝐿2(Π2) = 𝑚−2∥𝑆−𝑆∗∥22
of estimator 𝑆 in terms of spectral characteristics of the target similarity matrix
𝑆∗ and matrix 𝑊 . Before stating the main results, let us recall recent advances
on low rank matrix completion problems in which the approach based on nuclear
norm penalization has been crucial.

Suppose first that a symmetric kernel 𝑆∗ ∈ 𝒮𝑉 is observed at random points
(𝑋𝑗 , 𝑋

′
𝑗), 𝑗 = 1, . . . , 𝑛, where 𝑋𝑗 , 𝑋

′
𝑗, 𝑗 = 1, . . . , 𝑛 are independent and sampled

1Below ∥ ⋅ ∥ denotes the Euclidean norm in ℝ𝑉 ; there is a little abuse of notation here since we
also denote the operator norm by ∥ ⋅ ∥.
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from the uniform distribution Π in 𝑉. In this case, 𝑉 is an arbitrary finite set
of cardinality 𝑚 and the set of edges 𝐸 is not specified. It is assumed that
𝑌𝑗 = 𝑆∗(𝑋𝑗 , 𝑋

′
𝑗), so, there are no errors in the observations. In such a noise-

less case, the following method is used to recover 𝑆∗ based on the observations
(𝑋1, 𝑋

′
1, 𝑌1), . . . , (𝑋𝑛, 𝑋

′
𝑛, 𝑌𝑛) :

𝑆 := argmin{∥𝑆∥1 : 𝑆 ∈ 𝒮𝑉 , 𝑆(𝑋𝑗, 𝑋
′
𝑗) = 𝑌𝑗 , 𝑗 = 1, . . . , 𝑛}.

Such methods of recovery of low rank target matrices 𝑆∗ have been extensively
studied in the recent literature (see Candes and Recht (2009), Recht, Fazel and
Parrilo (2010), Candes and Tao (2010), Gross (2011) and references therein). It is
easy to see that there are low rank matrices 𝑆∗ that can not be recovered based
on a random sample of 𝑛 entries unless 𝑛 is very large (comparable with the
total number of entries of the matrix). Indeed, consider 𝑆∗ such that, for given
𝑢, 𝑣 ∈ 𝑉, 𝑆∗(𝑢, 𝑣) = 𝑆∗(𝑣, 𝑢) = 1 and 𝑆∗(𝑢′, 𝑣′) = 0 otherwise. For this rank 2
matrix, the probability that the two “informative” entries are not present in the
sample is (1− 2

𝑚2 )𝑛, which is close to 1 if 𝑛 = 𝑜(𝑚2). Such sparse low rank matrices
should be excluded to make it possible to recover the target low rank matrix based
on relatively small samples of entries. This is done by introducing so-called low
coherence assumptions. Let {𝑒𝑣 : 𝑣 ∈ 𝑉 } be the canonical orthonormal basis of
ℝ𝑉 equipped with the standard Euclidean inner product. Given a linear subspace
𝐿 ⊂ ℝ𝑉 , denote by 𝐿⊥ the orthogonal complement of 𝐿 and by 𝑃𝐿 the projector
onto the subspace 𝐿. Let 𝐿 := supp(𝑆∗), 𝑟 = rank(𝑆∗) and suppose there exists a
constant 𝜈 ≥ 1 (coherence coefficient) such that

∥𝑃𝐿𝑒𝑣∥2 ≤ 𝜈𝑟

𝑚
, 𝑣 ∈ 𝑉 and ∣⟨sign(𝑆∗)𝑒𝑢, 𝑒𝑣⟩∣2 ≤ 𝜈𝑟

𝑚2
, 𝑢, 𝑣 ∈ 𝑉. (1.3)

The following result is due to Candes and Tao (2010) and Gross (2011) (we
state here a version of Gross that is an improvement of an earlier result of Candes
and Tao with significant simplification of the proof).

Theorem 1. Suppose conditions (1.3) hold for some 𝜈 ≥ 1. Then, there exists

a numerical constant 𝐶 > 0 such that, for all 𝑛 ≥ 𝐶𝜈𝑟𝑚 log2𝑚, 𝑆 = 𝑆∗ with
probability at least 1 −𝑚−2.

Thus, if, for the target matrix 𝑆∗, the coherence coefficient 𝜈 ≥ 1 is relatively
small, the nuclear norm minimization algorithm (1.2) does provide the exact re-
covery of 𝑆∗ as soon as the number of observed entries 𝑛 is of the order 𝑚𝑟 (up to
a log factor).

In the case when 𝑌𝑗 are noisy observations of 𝑆∗(𝑋𝑗 , 𝑋
′
𝑗) with

𝔼(𝑌𝑗 ∣𝑋𝑗 = 𝑢,𝑋 ′
𝑗 = 𝑣) = 𝑆∗(𝑢, 𝑣),

one can use the following estimation method based on penalized empirical risk
minimization with quadratic loss and with nuclear norm penalty:

𝑆 := argmin𝑆∈𝒮𝑉

[
𝑛−1

𝑛∑
𝑗=1

(𝑌𝑗 − 𝑆(𝑋𝑗 , 𝑋
′
𝑗))

2 + 𝜀∥𝑆∥1
]
. (1.4)
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This method has been also extensively studied for the recent years, in particular, by
Candes and Plan (2011), Rohde and Tsybakov (2011), Negahban and Wainwright
(2010), Koltchinskii, Lounici and Tsybakov (2011), Koltchinskii (2011b). It was
also pointed out by Koltchinskii, Lounici and Tsybakov (2011) that in the case of
known design distribution Π (which is the case in our paper) one can use instead
of (1.4) the following modified method:2

𝑆 := argmin𝑆∈𝒮𝑉

[
∥𝑆∥2𝐿2(Π2) −

2

𝑛

𝑛∑
𝑗=1

𝑌𝑗𝑆(𝑋𝑗 , 𝑋
′
𝑗) + 𝜀∥𝑆∥1

]
. (1.5)

Clearly, (1.5) is equivalent to method (1.2) defined above for 𝜀 = 0.
When the observations ∣𝑌𝑗 ∣ ≤ 1, 𝑗 = 1, . . . , 𝑛 (for instance, when 𝑌𝑗 ∈

{−1, 1}, which is the case studied in the paper), the next result follows from
Theorem 4 in Koltchinskii, Lounici and Tsybakov (2011).

Theorem 2. For 𝑡 > 0, suppose that

𝜀 ≥ 4

(√
𝑡 + log(2𝑚)

𝑛𝑚

⋁ 2(𝑡 + log(2𝑚))

𝑛

)
.

Then with probability at least 1 − 𝑒−𝑡

∥𝑆 − 𝑆∗∥2𝐿2(Π)
≤
(1 +

√
2

2

)2
𝑚2𝜀2rank(𝑆∗).

Our main goal is to show that this bound can be improved in the case when
the target kernel 𝑆∗, in addition to having relatively small rank, is also smooth on
the graph and when the estimation method (1.2) is used with a proper choice of
regularization parameters 𝜀, 𝜀.

2. Main results

Suppose that 𝑊 has the following spectral representation: 𝑊 =
∑𝑚

𝑘=1 𝜆𝑘(𝜙𝑘 ⊗
𝜙𝑘), where 0 ≤ 𝜆1 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑚 are the eigenvalues of 𝑊 (repeated with their
multiplicities) and 𝜙1, . . . , 𝜙𝑚 are the corresponding orthonormal eigenfunctions
(of course, there is a multiple choice of 𝜙𝑘 in the case of repeated eigenvalues). Let
𝑘0 be the smallest 𝑘 such that 𝜆𝑘 > 0. We will assume that for some (arbitrarily
large) 𝜁 ≥ 1, 𝜆𝑚 ≤ 𝑚𝜁 and 𝜆𝑘0 ≥ 𝑚−𝜁 . In addition, it is assumed that, for some
constant 𝑐 > 1 and for all 𝑘 = 𝑘0, . . . ,𝑚− 1, 𝜆𝑘+1 ≤ 𝑐𝜆𝑘. The following spectral
function characterizes the distribution of the eigenvalues:

𝐹 (𝜆) :=

𝑚∑
𝑗=1

𝐼(𝜆𝑗 ≤ 𝜆), 𝜆 ≥ 0.

2Note that, if the norm ∥𝑆∥𝐿2(Π2) in the definition below is replaced by the 𝐿2(Π𝑛)-norm, where

Π𝑛 is the empirical distribution based on (𝑋1, 𝑋′1), . . . , (𝑋𝑛, 𝑋′𝑛), then the resulting estimator
coincides with (1.4).
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We will also use an upper bound 𝐹 (𝜆) ≥ 𝐹 (𝜆), 𝜆 ≥ 0 that possesses some “reg-

ularity” in the sense that 𝐹 (𝜆)
𝜆 , 𝜆 ≥ 0 is a nonincreasing function and, for some

𝛾 ∈ (0, 1), ∫ ∞

𝜆

𝐹 (𝑡)

𝑡2
𝑑𝑡 ≤ 1

𝛾

𝐹 (𝜆)

𝜆
, 𝜆 > 0.

It is easy to see that the last two conditions are satisfied if 𝐹 (𝜆)
𝜆1−𝛾 , 𝜆 ≥ 0 is a non-

increasing function and that the smallest upper bound on 𝐹 with this property is

𝐹 (𝜆) = sup
𝑠≤𝜆

𝑠1−𝛾 sup
𝑡≥𝑠

𝐹 (𝑡)

𝑡1−𝛾
, 𝜆 ≥ 0.

We also can assume that, for all 𝜆 ≥ 𝑚, 𝐹 (𝜆) = 𝑚 (otherwise, 𝐹 can be replaced
by the function 𝐹 ∧𝑚).

Suppose now that the spectral representation of 𝑆∗ is 𝑆∗ =
∑𝑟

𝑘=1 𝜇𝑘(𝜓𝑘⊗𝜓𝑘),
where 𝑟 = rank(𝑆∗) ≥ 1, 𝜇𝑘 are non-zero eigenvalues of 𝑆∗ (possibly repeated) and
𝜓𝑘 are the corresponding orthonormal eigenfuctions. Denote 𝐿 := supp(𝑆∗). Let 𝜑

be an arbitrary nondecreasing function such that 𝑘 9→ 𝜑(𝑘)

𝐹 (𝜆𝑘)
is nonincreasing and

𝑘∑
𝑗=1

∥𝑃𝐿𝜙𝑗∥2 ≤ 𝜑(𝑘), 𝑘 = 0, 1, . . . ,𝑚.

It will be convenient to set 𝜑(𝑘) = 𝜑(𝑚) for all 𝑘 ≥ 𝑚. We will denote by Ψ =
Ψ𝑆∗,𝑊 the class of all the functions satisfying these properties.

The following coherence function will be crucial in our analysis:

𝜑(𝑘) := 𝜑(𝑆∗, 𝑘) := max
𝑙≤𝑘

𝐹 (𝜆𝑙) max
𝑗≥𝑙

1

𝐹 (𝜆𝑗)

𝑗∑
𝑖=1

∥𝑃𝐿𝜙𝑖∥2,

𝑘 = 1, . . . ,𝑚, 𝜑(0) = 0.

It is straightforward to check that 𝜑 ∈ Ψ and, for all 𝜑 ∈ Ψ, 𝜑(𝑘) ≤ 𝜑(𝑘),
𝑘 = 0, . . . ,𝑚. Thus, 𝜑 is the smallest function 𝜑 ∈ Ψ.

Also, 𝜑(𝑚) = 𝑟 since
∑𝑚

𝑗=1 ∥𝑃𝐿𝜙𝑗∥2 = ∥𝑃𝐿∥22 = 𝑟. Moreover, since 𝜑(𝑘)

𝐹 (𝜆𝑘)
is

nonincreasing, we have

𝜑(𝑘) ≥ 𝑟𝐹 (𝜆𝑘)

𝑚
, 𝑘 = 0, . . . ,𝑚.

Given 𝑡 > 0, let 𝑡𝑛,𝑚 := 𝑡+log(2𝑚 log2(16𝑛𝜁𝑚(3/2)𝜁)). We will assume in what
follows that 𝑚𝑡𝑛,𝑚 ≤ 𝑛. If 𝑡 ≍ log𝑚, which is a typical choice of 𝑡, this assumption
means that 𝑛 should be larger than 𝑚 times a log factor. The following value of
regularization parameter 𝜀 in (1.1) will be used:

𝜀 := 4

√
𝑡 + log(2𝑚)

𝑛𝑚
.
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Theorem 3. There exists constants 𝐶,𝐶1 depending only on 𝑐 such that, for all
𝑠 ∈ {𝑘0 + 1, . . . ,𝑚 + 1} and all 𝜀 ∈ [𝜆−1𝑠 , 𝜆−1𝑠−1],

3 with probability at least 1 − 𝑒−𝑡,

∥𝑆 − 𝑆∗∥2𝐿2(Π2) ≤ 𝐶
𝜑(𝑆∗; 𝑠)𝑚𝑡𝑛,𝑚

𝑛
+ 𝜀∥𝑊 1/2𝑆∗∥2𝐿2(Π2)

+ 𝐶1max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥2
(𝑚𝑡𝑛,𝑚

𝑛

)2
.

(2.1)

Remarks. Note that max𝑣∈𝑉 ∥𝑃𝐿𝑒𝑣∥2 ≤ 1. Thus, the last term in the right-hand
side of bound (2.1) is smaller than the first term, provided that

𝜑(𝑆∗; 𝑠) ≥ 𝑚𝑡𝑛,𝑚
𝑛

.

Moreover, this term is much smaller under a low coherence condition

max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥2 ≤ 𝜈𝑟

𝑚

for some 𝜈 ≥ 1 (see conditions (1.3)). In this case,

max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥2
(𝑚𝑡𝑛,𝑚

𝑛

)2
≤ 𝜈𝑟𝑚𝑡2𝑛,𝑚

𝑛2
≤ 𝜈𝑟𝑡𝑛,𝑚

𝑛
.

Note also that Theorem 3 holds in the case when 𝜀 = 0. In this case, 𝑠 = 𝑚 and
𝜑(𝑆∗,𝑚) = 𝑟, so the bound of Theorem 3 becomes

∥𝑆 − 𝑆∗∥2𝐿2(Π2) ≤ 𝐶
𝑟𝑚𝑡𝑛,𝑚

𝑛
, (2.2)

which also follows from the result of Koltchinskii, Lounici and Tsybakov (2011)
(see Theorem 2 in Section 1).

The function 𝜑 involved in the statement of the theorem has some connection
to the low coherence assumptions frequently used in the literature on low rank
matrix completion. To be specific, suppose that, for some 𝜈 ≥ 1,

𝑘∑
𝑗=1

∥𝑃𝐿𝜙𝑗∥2 ≤ 𝜈𝑟𝐹 (𝜆𝑘)

𝑚
, 𝑘 = 1, . . . ,𝑚. (2.3)

Then

𝜑(𝑘) ≤ 𝜈𝑟𝐹 (𝜆𝑘)

𝑚
, 𝑘 = 1, . . . ,𝑚.

A part of standard low coherence assumptions on matrix 𝑆∗ with respect to the
orthonormal basis {𝜙𝑘} is (see (1.3))

∥𝑃𝐿𝜙𝑘∥2 ≤ 𝜈𝑟

𝑚
, 𝑘 = 1, . . . ,𝑚

and it implies condition (2.3) that can be viewed as a weak version of low coherence.
Under condition (2.3), the following corollary of Theorem 3 holds.

3Here and in what follows, we use a convention that 𝜆𝑚+1 = +∞ and 𝜆−1
𝑚+1 = 0.
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Corollary 1. Suppose that condition (2.3) holds. Then, there exists a constant
𝐶 > 0 depending only on 𝜁 such that, for all 𝑠 ∈ {𝑘0 + 1, . . . ,𝑚 + 1} and all
𝜀 ∈ (𝜆−1𝑠 , 𝜆−1𝑠−1], with probability at least 1 − 𝑒−𝑡,

∥𝑆 − 𝑆∗∥2𝐿2(Π2) ≤ 𝐶
𝜈𝑟𝐹 (𝜆𝑠)𝑡𝑛,𝑚

𝑛
+ 𝜀∥𝑊 1/2𝑆∗∥2𝐿2(Π2)

+ 𝐶1 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥2
(𝑚𝑡𝑛,𝑚

𝑛

)2
.

Note that, if 𝜆𝑘 ≍ 𝑘2𝛽 for some 𝛽 > 1/2, then it is easy to see that one can
choose 𝐹 (𝜆) ≍ 𝜆1/2𝛽 and, with this choice, 𝐹 (𝜆𝑠) ≍ 𝑠. Thus, the value of 𝑠 that
minimizes the bound of Corollary 1 is

𝑠 ≍
(

𝑛

𝜈𝑟𝑡𝑛,𝑚

)1/(2𝛽+1)
∥𝑊 1/2𝑆∗∥2/(2𝛽+1)𝐿2(Π)

,

which, under a low coherence assumption max𝑣∈𝑉 ∥𝑃𝐿𝑒𝑣∥2 ≤ 𝜈𝑟
𝑚 , yields the bound

∥𝑆 − 𝑆∗∥2𝐿2(Π2) ≤ 𝐶

(
𝜈𝑟𝑡𝑛,𝑚

𝑛

)2𝛽/(2𝛽+1)
∥𝑊 1/2𝑆∗∥2/(2𝛽+1)𝐿2(Π)

. (2.4)

As a simple example, one can consider a “cycle” with 𝑚 vertices, that is, a graph
with vertex set 𝑉 = ℤ𝑚 = {0, 1, . . . ,𝑚 − 1}, 𝑢, 𝑣 ∈ 𝑉 being connected with an
edge iff 𝑢 − 𝑣 ≡ 1 (mod 𝑚) or 𝑣 − 𝑢 ≡ 1 (mod 𝑚). In this case, the spectrum of
the Laplacian Δ consists of the following eigenvalues (repeated with their multi-
plicities): 4 sin2 𝜋𝑘𝑚 , 𝑘 = 0, . . . ,𝑚− 1. Let 𝑊 := 𝑚2𝑝Δ𝑝 for some 𝑝 > 1/2. Then, it

is easy to check that 𝐹 (𝜆) ≍ 𝜆1/2𝑝, so, bound (2.4) holds with 𝛽 = 𝑝.
The advantage of (2.4) comparing with (2.2) (that holds for 𝜀 = 0 and does

not rely on any smoothness assumption on the kernel 𝑆∗) is due to the fact that
there is no factor 𝑚 in the numerator in the right-hand side of (2.4). Due to this
fact, when 𝑚 is large enough and 𝜈 is not too large, bound (2.4) becomes sharper
than (2.2).

3. Proofs

Proof of Theorem 3. Bound (2.1) will be proved for an arbitrary function 𝜑 ∈
Ψ𝑆∗,𝑊 with 𝜑(𝑘) = 𝑟, 𝑘 ≥ 𝑚 instead of 𝜑. It then can be applied to the function
𝜑 (which is the smallest function in Ψ𝑆∗,𝑊 ). We will also assume throughout the

proof that 𝑠 ∈ {𝑘0, . . . ,𝑚} and 𝜀 ∈ [𝜆−1𝑠+1, 𝜆
−1
𝑠 ] (at the end of the proof, we replace

𝑠 + 1 9→ 𝑠).
Denote 𝒫𝐿(𝐴) := 𝐴− 𝑃𝐿⊥𝐴𝑃𝐿⊥ , 𝒫⊥

𝐿 (𝐴) = 𝑃𝐿⊥𝐴𝑃𝐿⊥ , 𝐴 ∈ 𝒮𝑉 . Clearly, this
defines orthogonal projectors 𝒫𝐿,𝒫⊥

𝐿 in the space 𝒮𝑉 with Hilbert–Schmidt inner
product. We will use the following well-known representation of subdifferential of
convex function 𝑆 9→ ∥𝑆∥1 :

∂∥𝑆∥1 =
{

sign(𝑆) + 𝒫⊥
𝐿 (𝑀) : 𝑀 ∈ 𝒮𝑉 , ∥𝑀∥ ≤ 1

}
,
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where 𝐿 = supp(𝑆) (see Koltchinskii (2011b), Appendix A.4 and references there-

in). An arbitrary matrix 𝐴 ∈ ∂𝐿𝑛(𝑆) can be represented as follows:

𝐴 =
2

𝑚2
𝑆 − 2

𝑛

𝑛∑
𝑖=1

𝑌𝑖𝐸𝑋𝑖,𝑋′𝑖 + 𝜀𝑉 + 2𝜀1𝑊𝑆, (3.1)

where 𝑉 ∈ ∂∥𝑆∥1 and 𝐸𝑢,𝑣 = 𝐸𝑣,𝑢 = 1
2 (𝑒𝑢 ⊗ 𝑒𝑣 + 𝑒𝑣 ⊗ 𝑒𝑢). Since 𝑆 is a minimizer

of 𝐿𝑛(𝑆), there exists a matrix 𝐴 ∈ ∂𝐿𝑛(𝑆) such that −𝐴 belongs to the normal

cone of 𝔻 at the point 𝑆 (see Aubin and Ekeland (1984), Chap. 2, Corollary 6).

This implies that ⟨𝐴,𝑆 − 𝑆∗⟩ ≤ 0 and, in view of (3.1),

2⟨𝑆, 𝑆 − 𝑆∗⟩𝐿2(Π2) −
〈

2

𝑛

𝑛∑
𝑖=1

𝑌𝑖𝐸𝑋𝑖,𝑋′𝑖 , 𝑆 − 𝑆∗

〉
+ 𝜀⟨𝑉 , 𝑆 − 𝑆∗⟩ + 2𝜀1⟨𝑊𝑆,𝑆 − 𝑆∗⟩ ≤ 0

It follows by a simple algebra that

2∥𝑆 − 𝑆∗∥2𝐿2(Π2) + 2𝜀1∥𝑊 1/2(𝑆 − 𝑆∗)∥22 + 𝜀⟨𝑉 , 𝑆 − 𝑆∗⟩
≤ −2𝜀1⟨𝑆∗,𝑊 (𝑆 − 𝑆∗)⟩ + 2⟨Ξ, 𝑆 − 𝑆∗⟩,

(3.2)

where

Ξ :=
1

𝑛

𝑛∑
𝑗=1

𝑌𝑗𝐸𝑋𝑗 ,𝑋′𝑗 − 𝔼𝑌 𝐸𝑋,𝑋′ .

Note that ⟨Ξ, 𝑆⟩ = 1
𝑛

∑𝑛
𝑗=1

(
𝑌𝑗𝑆(𝑋𝑗 , 𝑋

′
𝑗) − 𝔼𝑌 𝑆(𝑋,𝑋 ′)

)
.

On the other hand, let 𝑉∗ ∈ ∂∥𝑆∗∥1. Therefore, the representation 𝑉∗ =
sign(𝑆∗) + 𝒫⊥

𝐿 (𝑀) holds, where 𝑀 is a matrix with ∥𝑀∥ ≤ 1. It follows from the
trace duality property that there exists an 𝑀 with ∥𝑀∥ ≤ 1 such that

⟨𝒫⊥
𝐿 (𝑀), 𝑆 − 𝑆∗⟩ = ⟨𝑀,𝒫⊥

𝐿 (𝑆 − 𝑆∗)⟩ = ⟨𝑀,𝒫⊥
𝐿 (𝑆)⟩ = ∥𝒫⊥

𝐿 (𝑆)∥1
where in the first equality we used that 𝒫⊥

𝐿 is a self-adjoint operator and in the sec-
ond equality we used that 𝑆∗ has support 𝐿. Using this equation and monotonicity
of subdifferentials of convex functions, we get

⟨sign(𝑆∗), 𝑆 − 𝑆∗⟩ + ∥𝒫⊥
𝐿 (𝑆)∥1 = ⟨𝑉∗, 𝑆 − 𝑆⟩ ≤ ⟨𝑉 , 𝑆 − 𝑆∗⟩

Substituting this in (3.2), it is easy to get

2∥𝑆 − 𝑆∗∥2𝐿2(Π2) + 𝜀∥𝒫⊥
𝐿 (𝑆)∥1 + 2𝜀1∥𝑊 1/2(𝑆 − 𝑆∗)∥22 (3.3)

≤ −𝜀⟨sign(𝑆∗), 𝑆 − 𝑆∗⟩ − 2𝜀1⟨𝑊 1/2𝑆∗,𝑊 1/2(𝑆 − 𝑆∗)⟩ + 2⟨Ξ, 𝑆 − 𝑆∗⟩
We will bound separately each term in the right-hand side. First note that

𝜀∣⟨sign(𝑆∗), 𝑆 − 𝑆∗⟩∣ ≤ 𝜀∥sign(𝑆∗)∥2∥𝑆 − 𝑆∗∥2 (3.4)

= 𝜀
√
𝑟𝑚∥𝑆 − 𝑆∗∥𝐿2(Π2) ≤ 1

2
𝑟𝑚2𝜀2 +

1

2
∥𝑆 − 𝑆∗∥2𝐿2(Π2).
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We will also need a more subtle bound on ⟨sign(𝑆∗), 𝑆 − 𝑆∗⟩, expressed in terms
of function 𝜑. Note that, for all 𝑘0 ≤ 𝑠 ≤ 𝑚,

⟨sign(𝑆∗), 𝑆 − 𝑆∗⟩ =
𝑚∑
𝑘=1

⟨sign(𝑆∗)𝜙𝑘, (𝑆 − 𝑆∗)𝜙𝑘⟩

=

𝑠∑
𝑘=1

⟨sign(𝑆∗)𝜙𝑘, (𝑆 − 𝑆∗)𝜙𝑘⟩

+
𝑚∑

𝑘=𝑠+1

〈
sign(𝑆∗)𝜙𝑘√

𝜆𝑘
,
√

𝜆𝑘(𝑆 − 𝑆∗)𝜙𝑘

〉
,

which easily implies

∣⟨sign(𝑆∗), 𝑆 − 𝑆∗⟩∣ ≤
( 𝑠∑
𝑘=1

∥sign(𝑆∗)𝜙𝑘∥2
)1/2( 𝑠∑

𝑘=1

∥(𝑆 − 𝑆∗)𝜙𝑘∥2
)1/2

+

( 𝑚∑
𝑘=𝑠+1

∥sign(𝑆∗)𝜙𝑘∥2
𝜆𝑘

)1/2( 𝑚∑
𝑘=𝑠+1

𝜆𝑘∥(𝑆 − 𝑆∗)𝜙𝑘∥2
)1/2

≤
( 𝑠∑
𝑘=1

∥𝑃𝐿𝜙𝑘∥2
)1/2

∥𝑆 − 𝑆∗∥2

+

( 𝑚∑
𝑘=𝑠+1

∥𝑃𝐿𝜙𝑘∥2
𝜆𝑘

)1/2
∥𝑊 1/2(𝑆 − 𝑆∗)∥2. (3.5)

We will now use the following elementary lemma.

Lemma 1. Let 𝑐, 𝛾 be the constants involved in the conditions on the spectrum of
𝑊 and in the definition of 𝐹. For all 𝑠 ≥ 𝑘0 − 1,

𝑚∑
𝑘=𝑠+1

∥𝑃𝐿𝜙𝑘∥2
𝜆𝑘

≤ 𝑐𝛾
𝜑(𝑠 + 1)

𝜆𝑠+1
and

𝑚∑
𝑘=𝑠+1

1

𝜆𝑘
≤ 𝑐𝛾

𝐹 (𝜆𝑠+1)

𝜆𝑠+1
,

where 𝑐𝛾 := 𝑐
𝛾 + 1.

Proof. Denote 𝐹𝑠 :=
∑𝑠

𝑘=1 ∥𝑃𝐿𝜙𝑘∥2, 𝑠 = 1, . . . ,𝑚. Then, using the properties of
functions 𝜑 ∈ Ψ and 𝐹 , and of the spectrum of 𝑊, we get

𝑚∑
𝑘=𝑠+1

∥𝑃𝐿𝜙𝑘∥2
𝜆𝑘

=

𝑚−1∑
𝑘=𝑠+1

𝐹𝑘

(
1

𝜆𝑘
− 1

𝜆𝑘+1

)
+

𝐹𝑚
𝜆𝑚

− 𝐹𝑠
𝜆𝑠+1

≤
𝑚−1∑
𝑘=𝑠+1

𝜑(𝑘)

(
1

𝜆𝑘
− 1

𝜆𝑘+1

)
+

𝜑(𝑚)

𝜆𝑚

≤ 𝜑(𝑠 + 1)

𝐹 (𝜆𝑠+1)

[ 𝑚−1∑
𝑘=𝑠+1

𝐹 (𝜆𝑘)

𝜆𝑘𝜆𝑘+1
(𝜆𝑘+1 − 𝜆𝑘) +

𝐹 (𝜆𝑚)

𝜆𝑚

]



Low Rank Estimation of Similarities on Graphs 315

≤ 𝑐
𝜑(𝑠 + 1)

𝐹 (𝜆𝑠+1)

𝑚−1∑
𝑘=𝑠+1

𝐹 (𝜆𝑘+1)

𝜆2𝑘+1
(𝜆𝑘+1 − 𝜆𝑘) +

𝜑(𝑠 + 1)

𝐹 (𝜆𝑠+1)

𝐹 (𝜆𝑠+1)

𝜆𝑠+1

≤ 𝑐
𝜑(𝑠 + 1)

𝐹 (𝜆𝑠+1)

∫ ∞

𝜆𝑠+1

𝐹 (𝑡)

𝑡2
𝑑𝑡 +

𝜑(𝑠 + 1)

𝜆𝑠+1

≤ 𝑐

𝛾

𝜑(𝑠 + 1)

𝐹 (𝜆𝑠+1)

𝐹 (𝜆𝑠+1)

𝜆𝑠+1
+

𝜑(𝑠 + 1)

𝜆𝑠+1
= 𝑐𝛾

𝜑(𝑠 + 1)

𝜆𝑠+1
. (3.6)

The proof of the second bound is similar (with some simplifications). □

It follows from (3.5) and the bound of Lemma 1 that

∣⟨sign(𝑆∗), 𝑆 − 𝑆∗⟩∣ ≤
√

𝜑(𝑠)∥𝑆 − 𝑆∗∥2 +

√
𝑐𝛾

𝜑(𝑠 + 1)

𝜆𝑠+1
∥𝑊 1/2(𝑆 − 𝑆∗)∥2

= 𝑚
√

𝜑(𝑠)∥𝑆 − 𝑆∗∥𝐿2(Π2) + 𝑚

√
𝑐𝛾

𝜑(𝑠 + 1)

𝜆𝑠+1
∥𝑊 1/2(𝑆 − 𝑆∗)∥𝐿2(Π2).

(3.7)

This implies the following bound:

𝜀∣⟨sign(𝑆∗), 𝑆 − 𝑆∗⟩∣ ≤ 𝜑(𝑠)𝑚2𝜀2 +
1

4
∥𝑆 − 𝑆∗∥2𝐿2(Π2)

+ 𝑐𝛾
𝜑(𝑠 + 1)

𝜆𝑠+1

𝑚2𝜀2

𝜀
+

𝜀

4
∥𝑊 1/2(𝑆 − 𝑆∗)∥2𝐿2(Π2),

(3.8)

where we used twice an elementary inequality 𝑎𝑏 ≤ 𝑎2+ 1
4𝑏
2, 𝑎, 𝑏 > 0. Since, under

the assumptions of the theorem, 𝜀𝜆𝑠+1 ≥ 1, (3.8) yields the following bound:

𝜀∣⟨sign(𝑆∗), 𝑆 − 𝑆∗⟩∣
≤ (𝑐𝛾 + 1)𝜑(𝑠 + 1)𝑚2𝜀2 +

1

4
∥𝑆 − 𝑆∗∥2𝐿2(Π2) +

𝜀

4
∥𝑊 1/2(𝑆 − 𝑆∗)∥2𝐿2(Π2).

(3.9)

To bound the second term in the right-hand side of (3.3), note that

∣⟨𝑊 1/2𝑆∗,𝑊 1/2(𝑆 − 𝑆∗)⟩∣ ≤ ∥𝑊 1/2𝑆∗∥2∥𝑊 1/2(𝑆 − 𝑆∗)∥2, (3.10)

which implies

𝜀1∣⟨𝑊 1/2𝑆∗,𝑊 1/2(𝑆 − 𝑆∗)⟩∣ ≤ 𝜀1∥𝑊 1/2𝑆∗∥22 +
𝜀1
4
∥𝑊 1/2(𝑆 − 𝑆∗)∥22 (3.11)

= 𝜀∥𝑊 1/2𝑆∗∥2𝐿2(Π2) +
𝜀

4
∥𝑊 1/2(𝑆 − 𝑆∗)∥2𝐿2(Π2).

Finally, we bound ⟨Ξ, 𝑆 − 𝑆∗⟩ :

∣⟨Ξ, 𝑆 − 𝑆∗⟩∣ ≤ ∣⟨Ξ,𝒫𝐿(𝑆 − 𝑆∗)⟩∣ + ∣⟨Ξ,𝒫⊥
𝐿 (𝑆)⟩∣

≤ ∣⟨𝒫𝐿Ξ, 𝑆 − 𝑆∗⟩∣ + ∥Ξ∥∥𝒫⊥
𝐿 (𝑆)∥1.

(3.12)

To bound ∥Ξ∥, we use a version of the noncommutative Bernstein inequality.
Such inequalities go back to Ahlswede and Winter (2002). The version stated below
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follows from Tropp (2010) (see also Tropp (2010), Koltchinskii (2011a, 2011b,
2011c) for other versions of such inequalities).

Lemma 2. Let 𝑍 be a bounded random symmetric matrix with 𝔼𝑍 = 0, 𝜎2𝑍 :=
∥𝔼𝑍2∥ and ∥𝑍∥ ≤ 𝑈 for some 𝑈 > 0. Let 𝑍1, . . . , 𝑍𝑛 be 𝑛 i.i.d. copies of 𝑍. Then
for all 𝑡 > 0, with probability at least 1 − 𝑒−𝑡∥∥∥∥∥ 1

𝑛

𝑛∑
𝑖=1

𝑍𝑖

∥∥∥∥∥ ≤ 2

(
𝜎𝑍

√
𝑡 + log(2𝑚)

𝑛

⋁
𝑈

𝑡 + log(2𝑚)

𝑛

)
It is applied to i.i.d. random matrices 𝑍𝑖 := 𝑌𝑖𝐸𝑋𝑖,𝑋′𝑖 − 𝔼(𝑌𝑖𝐸𝑋𝑖𝑋′𝑖), 𝑖 =

1, . . . , 𝑛. Since ∥𝑍𝑖∥ ≤ 2 and, by a simple computation, 𝜎2𝑍𝑖 := ∥𝔼𝑍2𝑖 ∥ ≤ 1/𝑚 (see,
e.g., Koltchinskii (2011b), Section 9.4), Lemma 2 implies that with probability at
least 1 − 𝑒−𝑡

∥Ξ∥ =

∥∥∥∥∥ 1

𝑛

𝑛∑
𝑖=1

𝑍𝑖

∥∥∥∥∥ ≤ 2

[√
𝑡 + log(2𝑚)

𝑛𝑚

⋁ 2(𝑡 + log(2𝑚))

𝑛

]
.

Under the assumption that

𝜀 ≥ 4

[√
𝑡 + log(2𝑚)

𝑛𝑚

⋁ 2(𝑡 + log(2𝑚))

𝑛

]
,

this yields ∥Ξ∥ ≤ 𝜀/2 and

∣⟨Ξ, 𝑆 − 𝑆∗⟩∣ ≤ ∣⟨𝒫𝐿Ξ, 𝑆 − 𝑆∗⟩∣ +
𝜀

2
∥𝒫⊥

𝐿 (𝑆)∥1. (3.13)

For simplicity, it is assumed that 𝑛 ≥ 2𝑚(𝑡 + log(2𝑚)). In this case, one can take

𝜀 = 4
√

𝑡+log(2𝑚)
𝑛𝑚 , as it has been done in the statement of the theorem.

We have to bound ∣⟨𝒫𝐿Ξ, 𝑆 − 𝑆∗⟩∣ and we start with the following simple
bound:

∣⟨𝒫𝐿Ξ, 𝑆 − 𝑆∗⟩∣ ≤ 𝑚∥𝒫𝐿Ξ∥2∥𝑆 − 𝑆∗∥𝐿2(Π2)

≤ 𝑚
√

2𝑟∥Ξ∥∥𝑆 − 𝑆∗∥𝐿2(Π2)

≤ 1

2
𝑚𝜀

√
2𝑟∥𝑆 − 𝑆∗∥𝐿2(Π2)

≤ 1

2
𝑚2𝜀2𝑟 +

1

4
∥𝑆 − 𝑆∗∥2𝐿2(Π2),

(3.14)

where we use the fact that rank(𝒫𝐿Ξ) ≤ 2𝑟. Substituting (3.4), (3.11), (3.13) and
(3.14) in (3.3), we easily get that

∥𝑆 − 𝑆∗∥2𝐿2(Π2) ≤
3

2
𝑟𝜀2𝑚2 + 2𝜀∥𝑊 1/2𝑆∗∥2𝐿2(Π2). (3.15)

For 𝜀 = 0, this bound follows from the results of Koltchinskii, Lounici and Tsy-
bakov (2011). However, we need a more subtle bound expressed in terms of function
𝜑, which is akin to bound (3.9). To this end, we will use the following lemma.
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Lemma 3. For 𝛿 > 0, let 𝑘(𝛿) := 𝐹 (𝛿−2) (that is, 𝑘(𝛿) is the largest value of 𝑘 ≤ 𝑚
such that 𝜆−1𝑘 ≥ 𝛿2). For all 𝑡 > 0, with probability at least 1 − 𝑒−𝑡,

sup
∥𝑀∥2≤𝛿,∥𝑊 1/2𝑀∥2≤1

∣⟨𝒫𝐿Ξ,𝑀⟩∣ ≤ 2
√

4(𝑐𝛾 + 1)

√
𝑡

𝑛𝑚
𝛿
√

𝜑(𝑘(𝛿) + 1)

+2
√

2𝛿 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥ 𝑡

𝑛
,

provided that 𝑘(𝛿) < 𝑚, and

∣⟨𝒫𝐿Ξ,𝑀⟩∣ ≤ 4
√

2𝛿

√
𝑟𝑡

𝑛𝑚
+ 2

√
2𝛿 max

𝑣∈𝑉
∥𝑃𝐿𝑒𝑣∥ 𝑡

𝑛
,

provided that 𝑘(𝛿) ≥ 𝑚.

Proof. The proof is somewhat akin to the derivation of the bounds on Rademacher
processes in terms of Mendelson’s complexities used in learning theory (see, e.g.,
Proposition 3.3 in Koltchinskii (2011b)).

Note that, for all symmetric 𝑚×𝑚 matrices 𝑀 ,

⟨𝒫𝐿Ξ,𝑀⟩ =

𝑚∑
𝑘,𝑗=1

⟨𝒫𝐿Ξ, 𝜙𝑘 ⊗ 𝜙𝑗⟩⟨𝑀,𝜙𝑘 ⊗ 𝜙𝑗⟩.

Suppose that

∥𝑀∥22 =

𝑚∑
𝑘,𝑗=1

∣⟨𝑀,𝜙𝑘 ⊗ 𝜙𝑗⟩∣2 ≤ 𝛿2

and

∥𝑊 1/2𝑀∥22 =
𝑚∑

𝑘,𝑗=1

𝜆𝑘∣⟨𝑀,𝜙𝑘 ⊗ 𝜙𝑗⟩∣2 ≤ 1.

Then, it easily follows that

𝑚∑
𝑘,𝑗=1

∣⟨𝑀,𝜙𝑘 ⊗ 𝜙𝑗⟩∣2
𝜆−1𝑘 ∧ 𝛿2

≤ 2,

which implies

∣⟨𝒫𝐿Ξ,𝑀⟩∣2 ≤
𝑚∑

𝑘,𝑗=1

(𝜆−1𝑘 ∧ 𝛿2)∣⟨𝒫𝐿Ξ, 𝜙𝑘 ⊗ 𝜙𝑗⟩∣2
𝑚∑

𝑘,𝑗=1

∣⟨𝑀,𝜙𝑘 ⊗ 𝜙𝑗⟩∣2
𝜆−1𝑘 ∧ 𝛿2

≤ 2

𝑚∑
𝑘,𝑗=1

(𝜆−1𝑘 ∧ 𝛿2)∣⟨𝒫𝐿Ξ, 𝜙𝑘 ⊗ 𝜙𝑗⟩∣2 (3.16)

Define now the following inner product:

⟨𝑀1,𝑀2⟩𝑤 :=
𝑚∑

𝑘,𝑗=1

(𝜆−1𝑘 ∧ 𝛿2)⟨𝑀1, 𝜙𝑘 ⊗ 𝜙𝑗⟩⟨𝑀2, 𝜙𝑘 ⊗ 𝜙𝑗⟩
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and let ∥ ⋅ ∥𝑤 be the corresponding norm. We will provide an upper bound on

∥𝒫𝐿Ξ∥𝑤 =

( 𝑚∑
𝑘,𝑗=1

(𝜆−1𝑘 ∧ 𝛿2)∣⟨𝒫𝐿Ξ, 𝜙𝑘 ⊗ 𝜙𝑗⟩∣2
)1/2

.

To this end, we use a standard Bernstein type inequality for random variables
in a Hilbert space. It is given in the following lemma (which follows, for instance,
from Theorem 3.3.4(b) in Yurinsky (1995)).

Lemma 4. Let 𝜉 be a bounded random variable with values in a Hilbert space ℋ.
Suppose that 𝔼𝜉 = 0, 𝔼∥𝜉∥2ℋ = 𝜎2 and ∥𝜉∥ℋ ≤ 𝑈 . Let 𝜉1, . . . , 𝜉𝑛 be 𝑛 i.i.d. copies
of 𝜉𝑖. Then for all 𝑡 > 0, with probability at least 1 − 𝑒−𝑡∥∥∥∥∥ 1

𝑛

𝑛∑
𝑖=1

𝜉𝑖

∥∥∥∥∥
ℋ
≤ 2

[
𝜎

√
𝑡

𝑛

⋁
𝑈

𝑡

𝑛

]

Applying Lemma 4 to the random variable 𝜉 = 𝑌 𝒫𝐿(𝐸𝑋,𝑋′)−𝔼𝑌 𝒫𝐿(𝐸𝑋,𝑋′),
we get that for all 𝑡 > 0, with probability at least 1 − 𝑒−𝑡,

∥𝒫𝐿Ξ∥𝑤 =

∥∥∥∥ 1

𝑛

𝑛∑
𝑗=1

𝑌𝑗𝒫𝐿(𝐸𝑋𝑗 ,𝑋′𝑗 ) − 𝔼𝑌 𝒫𝐿(𝐸𝑋,𝑋′ )

∥∥∥∥
𝑤

≤ 2

[
𝔼1/2∥𝑌 𝒫𝐿(𝐸𝑋,𝑋′ )∥2𝑤

√
𝑡

𝑛
+
∥∥∥∥𝑌 𝒫𝐿(𝐸𝑋,𝑋′)∥𝑤

∥∥∥
𝐿∞

𝑡

𝑛

]
.

(3.17)

Using the fact that 𝑌 ∈ {−1, 1}, we get

𝔼∥𝑌 𝒫𝐿(𝐸𝑋,𝑋′ )∥2𝑤 = 𝔼∥𝒫𝐿(𝐸𝑋,𝑋′ )∥2𝑤

= 𝔼

𝑚∑
𝑘,𝑗=1

(𝜆−1𝑘 ∧ 𝛿2)∣⟨𝒫𝐿(𝐸𝑋,𝑋′), 𝜙𝑘 ⊗ 𝜙𝑗⟩∣2

=

𝑚∑
𝑘,𝑗=1

(𝜆−1𝑘 ∧ 𝛿2)𝔼∣⟨𝐸𝑋,𝑋′ ,𝒫𝐿(𝜙𝑘 ⊗ 𝜙𝑗)⟩∣2

=

𝑚∑
𝑘,𝑗=1

(𝜆−1𝑘 ∧ 𝛿2)𝑚−2 ∑
𝑢,𝑣∈𝑉

∣⟨𝐸𝑢,𝑣,𝒫𝐿(𝜙𝑘 ⊗ 𝜙𝑗)⟩∣2

≤ 𝑚−2
𝑚∑

𝑘,𝑗=1

(𝜆−1𝑘 ∧ 𝛿2)∥𝒫𝐿(𝜙𝑘 ⊗ 𝜙𝑗)∥22

≤ 2𝑚−2
𝑚∑

𝑘,𝑗=1

(𝜆−1𝑘 ∧ 𝛿2)(∥𝑃𝐿𝜙𝑘∥2 + ∥𝑃𝐿𝜙𝑗∥2)

= 2𝑚−1
𝑚∑
𝑘=1

(𝜆−1𝑘 ∧ 𝛿2)∥𝑃𝐿𝜙𝑘∥2 + 2𝑚−2
𝑚∑
𝑘=1

(𝜆−1𝑘 ∧ 𝛿2)

𝑚∑
𝑗=1

∥𝑃𝐿𝜙𝑗∥2
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= 2𝑚−1
𝑚∑
𝑘=1

(𝜆−1𝑘 ∧ 𝛿2)∥𝑃𝐿𝜙𝑘∥2 + 2𝑚−2
𝑚∑
𝑘=1

(𝜆−1𝑘 ∧ 𝛿2)∥𝑃𝐿∥22

= 2𝑚−1
𝑚∑
𝑘=1

(𝜆−1𝑘 ∧ 𝛿2)∥𝑃𝐿𝜙𝑘∥2 + 2𝑚−2𝑟
𝑚∑
𝑘=1

(𝜆−1𝑘 ∧ 𝛿2). (3.18)

To bound 𝔼∥𝑌 𝒫𝐿(𝐸𝑋,𝑋′)∥2𝑤 further, note that

𝑚∑
𝑘=1

(𝜆−1𝑘 ∧ 𝛿2)∥𝑃𝐿𝜙𝑘∥2 ≤ 𝛿2
∑

𝑘≤𝑘(𝛿)
∥𝑃𝐿𝜙𝑘∥2 +

∑
𝑘>𝑘(𝛿)

𝜆−1𝑘 ∥𝑃𝐿𝜙𝑘∥2. (3.19)

Assuming that 1 ≤ 𝑘(𝛿) ≤ 𝑚− 1, using the first bound of Lemma 1, the fact
that 𝜆−1𝑘(𝛿)+1 < 𝛿2 and the monotonicity of function 𝜑, we get from (3.19) that

𝑚∑
𝑘=1

(𝜆−1𝑘 ∧ 𝛿2)∥𝑃𝐿𝜙𝑘∥2 ≤ 𝛿2𝜑(𝑘(𝛿)) + 𝑐𝛾
𝜑(𝑘(𝛿) + 1)

𝜆𝑘(𝛿)+1
(3.20)

≤ 𝛿2𝜑(𝑘(𝛿)) + 𝑐𝛾𝛿
2𝜑(𝑘(𝛿) + 1) ≤ (𝑐𝛾 + 1)𝛿2𝜑(𝑘(𝛿) + 1).

It is easy to check that (3.20) holds also for 𝑘(𝛿) = 0 and 𝑘(𝛿) = 𝑚 (in the last
case, 𝜑(𝑘(𝛿) + 1) = 𝑟). We also have

𝑚∑
𝑘=1

(𝜆−1𝑘 ∧ 𝛿2) ≤
∑

𝑘≤𝑘(𝛿)
𝛿2 +

∑
𝑘>𝑘(𝛿)

𝜆−1𝑘 ,

which, in view of the second bound of Lemma 1 and the properties of function 𝜑,
implies

𝑚∑
𝑘=1

(𝜆−1𝑘 ∧ 𝛿2) ≤ 𝛿2𝑘(𝛿) + 𝑐𝛾
𝐹 (𝜆𝑘(𝛿)+1)

𝜆𝑘(𝛿)+1
(3.21)

≤ (𝑐𝛾 + 1)𝛿2𝐹 (𝜆𝑘(𝛿)+1) ≤ (𝑐𝛾 + 1)
𝑚

𝑟
𝛿2𝜑(𝑘(𝛿) + 1).

Using bounds (3.18), (3.20) and (3.21), we get, under the condition that 𝑘(𝛿) < 𝑚,

𝔼∥𝑌 𝒫𝐿(𝐸𝑋,𝑋′)∥2𝑤 ≤ 2𝑚−1(𝑐𝛾 + 1)𝛿2𝜑(𝑘(𝛿) + 1) + 2𝑚−2𝑟(𝑐𝛾 + 1)
𝑚

𝑟
𝛿2𝜑(𝑘(𝛿) + 1)

≤ 4(𝑐𝛾 + 1)𝑚−1𝛿2𝜑(𝑘(𝛿) + 1). (3.22)

In the case when 𝑘(𝛿) ≥ 𝑚, it is easy to show that

𝔼∥𝑌 𝒫𝐿(𝐸𝑋,𝑋′)∥2𝑤 ≤ 4𝑚−1𝛿2𝑟. (3.23)
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We can also bound
∥∥∥∥𝑌 𝒫𝐿(𝐸𝑋,𝑋′ )∥𝑤

∥∥∥2
𝐿∞

as follows:∥∥∥∥𝑌 𝒫𝐿(𝐸𝑋,𝑋′ )∥𝑤
∥∥∥2
𝐿∞

=
∥∥∥∥𝒫𝐿(𝐸𝑋,𝑋′ )∥𝑤

∥∥∥2
𝐿∞

=

∥∥∥∥ 𝑚∑
𝑘,𝑗=1

(𝜆−1𝑘 ∧ 𝛿2)∣⟨𝒫𝐿(𝐸𝑋,𝑋′), 𝜙𝑘 ⊗ 𝜙𝑗⟩∣2
∥∥∥∥
𝐿∞

≤ max
1≤𝑘≤𝑚

(𝜆−1𝑘 ∧ 𝛿2) max
𝑢,𝑣∈𝑉

𝑚∑
𝑘,𝑗=1

∣⟨𝒫𝐿𝐸𝑢,𝑣, 𝜙𝑘 ⊗ 𝜙𝑗⟩∣2

≤ max
1≤𝑘≤𝑚

(𝜆−1𝑘 ∧ 𝛿2) max
𝑢,𝑣∈𝑉

∥𝒫𝐿𝐸𝑢,𝑣∥22
≤ 𝛿2 max

𝑢,𝑣∈𝑉
∥𝒫𝐿(𝑒𝑢 ⊗ 𝑒𝑣)∥22 ≤ 2𝛿2max

𝑣∈𝑉
∥𝑃𝐿𝑒𝑣∥2.

(3.24)

If 𝑘(𝛿) < 𝑚, it follows from (3.16), (3.17), (3.22) and (3.24) that with
probability at least 1 − 𝑒−𝑡, for all symmetric matrices 𝑀 with ∥𝑀∥2 ≤ 𝛿 and
∥𝑊 1/2𝑀∥2 ≤ 1,

∣⟨𝒫𝐿Ξ,𝑀⟩∣ ≤ 2
√

4(𝑐𝛾 + 1)

√
𝑡

𝑛𝑚
𝛿
√

𝜑(𝑘(𝛿) + 1) + 2
√

2𝛿 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥ 𝑡

𝑛
.

Alternatively, if 𝑘(𝛿) ≥ 𝑚, we use (3.23) to get

∣⟨𝒫𝐿Ξ,𝑀⟩∣ ≤ 4𝛿

√
𝑟𝑡

𝑛𝑚
+ 2

√
2𝛿 max

𝑣∈𝑉
∥𝑃𝐿𝑒𝑣∥ 𝑡

𝑛
.

This completes the proof of Lemma 3. □

It follows from Lemma 3 that, for all 𝛿 > 0, the following bound holds with
probability at least 1 − 𝑒−𝑡

sup
∥𝑀∥2≤𝛿,∥𝑊 1/2𝑀∥2≤1

∣⟨𝒫𝐿Ξ,𝑀⟩∣

≤ 4
√

𝑐𝛾 + 1

√
𝑡

𝑛𝑚
𝛿
√

𝜑(𝑘(𝛿) + 1) + 2
√

2𝛿 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥ 𝑡

𝑛

(3.25)

(recall that 𝜑(𝑘) = 𝑟 for 𝑘 ≥ 𝑚, so, the second bound of the lemma can be included
in the first bound). Moreover, the bound can be easily made uniform in 𝛿 ∈ [𝛿−, 𝛿+]
for arbitrary 𝛿− < 𝛿+. To this end, take 𝛿𝑗 := 𝛿+2−𝑗, 𝑗 = 0, 1, . . . , [log2(𝛿+/𝛿−)]+1
and use (3.25) for each 𝛿 = 𝛿𝑗 with 𝑡 := 𝑡 + log([log2(𝛿+/𝛿−)] + 2) instead of 𝑡.
An application of the union bound and monotonicity of the left-hand side and the
right-hand side of (3.25) with respect to 𝛿 then implies that with probability at
least 1 − 𝑒−𝑡 for all 𝛿 ∈ [𝛿−, 𝛿+]

sup
∥𝑀∥2≤𝛿,∥𝑊 1/2𝑀∥2≤1

∣⟨𝒫𝐿Ξ,𝑀⟩∣ ≤ 𝐶

√
𝑡

𝑛𝑚
𝛿
√

𝜑(𝑘(𝛿) + 1) + 4
√

2𝛿 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥ 𝑡

𝑛
.

(3.26)
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where 𝐶 > 0 is a constant depending only on 𝑐. Indeed, by the union bound, (3.25)
holds with probability at least

1 − ([log2(𝛿+/𝛿−)] + 2)𝑒−𝑡 = 1 − 𝑒−𝑡

for all 𝛿 = 𝛿𝑗 , 𝑗 = 0, . . . , [log2(𝛿+/𝛿−)] + 1.

Therefore, for all 𝑗 = 0, . . . , [log2(𝛿+/𝛿−)] + 1 and all 𝛿 ∈ (𝛿𝑗+1, 𝛿𝑗 ]

sup
∥𝑀∥2≤𝛿,∥𝑊 1/2𝑀∥2≤1

∣⟨𝒫𝐿Ξ,𝑀⟩∣

≤ 4
√

𝑐𝛾 + 1

√
𝑡

𝑛𝑚
𝛿𝑗

√
𝜑(𝑘(𝛿𝑗) + 1) + 2

√
2𝛿𝑗 max

𝑣∈𝑉
∥𝑃𝐿𝑒𝑣∥ 𝑡

𝑛

(3.27)

(by monotonicity of the left-hand side). Note that 𝑘(𝛿𝑗) ≤ 𝑘(𝛿) ≤ 𝑘(𝛿𝑗+1). We

can now use the fact that 𝜑(𝑘)
𝜆𝑘

= 𝜑(𝑘)

𝐹 (𝜆𝑘)

𝐹 (𝜆𝑘)
𝜆𝑘

is a nonincreasing function and the

condition 𝜆𝑘+1/𝜆𝑘 ≤ 𝑐 to show that√
𝑡

𝑛𝑚
𝛿𝑗

√
𝜑(𝑘(𝛿𝑗) + 1)+ ≤ 2

√
𝑡

𝑛𝑚
𝛿𝑗+1

√
𝜑(𝑘(𝛿𝑗+1) + 1)

≤ 2

√
𝑡

𝑛𝑚

√
𝜑(𝑘(𝛿𝑗+1) + 1)

𝜆𝑘(𝛿𝑗+1)
≤ 2

√
𝑐

√
𝑡

𝑛𝑚

√
𝜑(𝑘(𝛿𝑗+1) + 1)

𝜆𝑘(𝛿𝑗+1)+1

≤ 2
√
𝑐

√
𝑡

𝑛𝑚

√
𝜑(𝑘(𝛿) + 1)

𝜆𝑘(𝛿)+1
≤ 2

√
𝑐

√
𝑡

𝑛𝑚
𝛿
√

𝜑(𝑘(𝛿) + 1).

This and bound (3.27) imply that

sup
∥𝑀∥2≤𝛿,∥𝑊 1/2𝑀∥2≤1

∣⟨𝒫𝐿Ξ,𝑀⟩∣

≤ 8
√

𝑐(𝑐𝛾 + 1)

√
𝑡

𝑛𝑚
𝛿
√

𝜑(𝑘(𝛿) + 1) + 4
√

2𝛿 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥ 𝑡

𝑛
,

(3.28)

which proves bound (3.26).

Set 𝛿 as

𝛿 :=
∥𝑆 − 𝑆∗∥2

∥𝑊 1/2(𝑆 − 𝑆∗)∥2
=

∥𝑆 − 𝑆∗∥𝐿2(Π2)

∥𝑊 1/2(𝑆 − 𝑆∗)∥𝐿2(Π2)

and assume for now that 𝛿 ∈ [𝛿−, 𝛿+].

For a particular choice of 𝑀 := 𝑆−𝑆∗
∥𝑊 1/2(𝑆−𝑆∗)∥2 , we get from (3.26) that

∣⟨𝒫𝐿Ξ, 𝑆 − 𝑆∗⟩∣ ≤ 𝐶

√
𝑡

𝑛𝑚
∥𝑆 − 𝑆∗∥2

√
𝜑(𝑘(𝛿) + 1)

+ 4
√

2 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥ 𝑡

𝑛
∥𝑆 − 𝑆∗∥2.

(3.29)
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Suppose now that 𝛿2 ≥ 𝜀. Since, under assumptions of the theorem, 𝜀 ∈ (𝜆−1𝑠+1, 𝜆
−1
𝑠 ],

this implies that 𝑘(𝛿) ≤ 𝑘(
√
𝜀) = 𝑠 and

∣⟨𝒫𝐿Ξ, 𝑆 − 𝑆∗⟩∣ ≤ 𝐶

√
𝑡

𝑛𝑚
∥𝑆 − 𝑆∗∥2

√
𝜑(𝑠 + 1)

+ 4
√

2 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥ 𝑡

𝑛
∥𝑆 − 𝑆∗∥2

= 𝐶

√
𝑚𝑡

𝑛
∥𝑆 − 𝑆∗∥𝐿2(Π2)

√
𝜑(𝑠 + 1) (3.30)

+ 4
√

2 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥𝑚𝑡

𝑛
∥𝑆 − 𝑆∗∥𝐿2(Π)

≤ 2𝐶2
𝜑(𝑠 + 1)𝑚𝑡

𝑛
+ 64 max

𝑣∈𝑉
∥𝑃𝐿𝑒𝑣∥2

(𝑚𝑡

𝑛

)2
+

1

4
∥𝑆 − 𝑆∗∥2𝐿2(Π2).

In the case when 𝛿2 < 𝜀, we have 𝑘(𝛿) ≥ 𝑘(
√
𝜀) = 𝑠. In this case, we again use the

fact that 𝜑(𝑘)
𝜆𝑘

is a nonincreasing function and the condition 𝜆𝑘+1/𝜆𝑘 ≤ 𝑐 to show
that√

𝑡

𝑛𝑚
∥𝑆 − 𝑆∗∥2

√
𝜑(𝑘(𝛿) + 1) =

√
𝑚𝑡

𝑛
∥𝑊 1/2(𝑆 − 𝑆∗)∥𝐿2(Π2)

√
𝛿2𝜑(𝑘(𝛿) + 1)

≤
√

𝑚𝑡

𝑛
∥𝑊 1/2(𝑆 − 𝑆∗)∥𝐿2(Π2)

√
𝜑(𝑘(𝛿) + 1)

𝜆𝑘(𝛿)

≤ √
𝑐

√
𝑚𝑡

𝑛
∥𝑊 1/2(𝑆 − 𝑆∗)∥𝐿2(Π2)

√
𝜑(𝑘(𝛿) + 1)

𝜆𝑘(𝛿)+1

≤ √
𝑐

√
𝑚𝑡

𝑛
∥𝑊 1/2(𝑆 − 𝑆∗)∥𝐿2(Π2)

√
𝜑(𝑠 + 1)

𝜆𝑠+1

≤ √
𝑐

√
𝑚𝑡

𝑛

√
𝜀∥𝑊 1/2(𝑆 − 𝑆∗)∥𝐿2(Π2)

√
𝜑(𝑠 + 1).

This allows us to deduce from (3.29) that

∣⟨𝒫𝐿Ξ, 𝑆 − 𝑆∗⟩∣ ≤
√
𝑐𝐶

√
𝑚𝑡

𝑛

√
𝜀∥𝑊 1/2(𝑆 − 𝑆∗)∥𝐿2(Π2)

√
𝜑(𝑠 + 1)

+ 4
√

2 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥𝑚𝑡

𝑛
∥𝑆 − 𝑆∗∥𝐿2(Π)

≤ 𝑐𝐶2
𝜑(𝑠 + 1)𝑚𝑡

𝑛
+

1

4
𝜀∥𝑊 1/2(𝑆 − 𝑆∗)∥2𝐿2(Π2)

+ 32 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥2
(𝑚𝑡

𝑛

)2
+

1

4
∥𝑆 − 𝑆∗∥2𝐿2(Π2).

(3.31)
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It follows from bounds (3.30) and (3.31) that with probability at least 1 − 𝑒−𝑡,

∣⟨𝒫𝐿Ξ, 𝑆 − 𝑆∗⟩∣ ≤ (2 ∨ 𝑐)𝐶2
𝜑(𝑠 + 1)𝑚𝑡

𝑛
+ 64 max

𝑣∈𝑉
∥𝑃𝐿𝑒𝑣∥2

(𝑚𝑡

𝑛

)2
+

1

4
∥𝑆 − 𝑆∗∥2𝐿2(Π2) +

1

4
𝜀∥𝑊 1/2(𝑆 − 𝑆∗)∥2𝐿2(Π2),

(3.32)

provided that

𝛿 =
∥𝑆 − 𝑆∗∥2

∥𝑊 1/2(𝑆 − 𝑆∗)∥2
=

∥𝑆 − 𝑆∗∥𝐿2(Π2)

∥𝑊 1/2(𝑆 − 𝑆∗)∥𝐿2(Π2)

∈ [𝛿−, 𝛿+]. (3.33)

It remains now to substitute bounds (3.9), (3.11), (3.13) and (3.32) in bound (3.3)
to get that with some constants 𝐶 > 0, 𝐶1 > 0 depending only on 𝑐 and with
probability at least 1 − 2𝑒−𝑡

∥𝑆 − 𝑆∗∥2𝐿2(Π2) ≤ 𝐶
𝜑(𝑠 + 1)𝑚(𝑡 + 𝑡𝑚)

𝑛

+ 𝜀∥𝑊 1/2𝑆∗∥2𝐿2(Π2) + 𝐶1 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥2
(𝑚𝑡

𝑛

)2
,

(3.34)

where 𝑡𝑚 := 𝑡 + log(2𝑚).

We still have to choose the values of 𝛿−, 𝛿+ and to handle the case when

𝛿 =
∥𝑆 − 𝑆∗∥2

∥𝑊 1/2(𝑆 − 𝑆∗)∥2
=

∥𝑆 − 𝑆∗∥𝐿2(Π2)

∥𝑊 1/2(𝑆 − 𝑆∗)∥𝐿2(Π2)

∕∈ [𝛿−, 𝛿+]. (3.35)

First note that, since the largest eigenvalue of 𝑊 is 𝜆𝑚 and it is bounded from
above by 𝑚𝜁 , we have

∥𝑊 1/2(𝑆 − 𝑆∗)∥2 ≤
√

𝜆𝑚∥𝑆 − 𝑆∗∥2 ≤ 𝑚𝜁/2∥𝑆 − 𝑆∗∥2.
Thus, 𝛿 ≥ 𝑚−𝜁/2. Next note that

∥𝑊 1/2𝑆∗∥2𝐿2(Π2) ≤ 𝑚−2𝑚𝜁∥𝑆∗∥22 ≤ 𝑚𝜁 ,

where we also took into account that the absolute values of the entries of 𝑆∗ are
bounded by 1. It now follows from (3.15) that, under the assumption 2𝑚𝑡𝑚

𝑛 ≤ 1,

∥𝑆 − 𝑆∗∥2𝐿2(Π2) ≤
3

2
𝑟𝑚2𝜀2 + 2𝜀𝑚𝜁

≤ 24𝑟𝑚2 𝑡 + log(2𝑚)

𝑛𝑚
+ 2

𝑚𝜁

𝜆𝑠
≤ 12𝑚 + 2𝑚2𝜁 ≤ 14𝑚2𝜁 ,

which holds with probability at least 1 − 𝑒−𝑡. Therefore, as soon as ∥𝑊 1/2(𝑆 −
𝑆∗)∥𝐿2(Π2) ≥ 𝑛−𝜁 , we have 𝛿 ≤ 4𝑛𝜁𝑚𝜁 .

We will now take 𝛿− := 𝑚−𝜁/2, 𝛿+ := 4𝑛𝜁𝑚𝜁 . Then, the only case when (3.35)

can possibly hold is if ∥𝑊 1/2(𝑆 − 𝑆∗)∥𝐿2(Π2) ≤ 𝑛−𝜁 . In this case, we can set

𝛿 := 𝑛𝜁∥𝑆 − 𝑆∗∥𝐿2(Π2) ∈ [𝛿−, 𝛿+]
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and follow the proof of bound (3.32) replacing throughout the argument ∥𝑊 1/2(𝑆−
𝑆∗)∥𝐿2(Π2) with 𝑛−𝜁 . This yields

∣⟨𝒫𝐿Ξ, 𝑆 − 𝑆∗⟩∣ ≤ (2 ∨ 𝑐)𝐶2
𝜑(𝑠 + 1)𝑚𝑡

𝑛
(3.36)

+ 64 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥2
(𝑚𝑡

𝑛

)2
+

1

4
∥𝑆 − 𝑆∗∥2𝐿2(Π2) +

1

4
𝜀𝑛−2𝜁 .

Bound (3.36) can be now used instead of (3.32) to prove that

∥𝑆 − 𝑆∗∥2𝐿2(Π2) ≤ 𝐶
𝜑(𝑠 + 1)𝑚(𝑡 + 𝑡𝑚)

𝑛
(3.37)

+ 𝜀∥𝑊 1/2𝑆∗∥2𝐿2(Π2) + 𝐶1max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥2
(𝑚𝑡

𝑛

)2
+ 𝜀𝑛−2𝜁

with some constants 𝐶,𝐶1 > 0 depending only on 𝑐.
Clearly, we can assume that 𝐶1 ≥ 1 and 𝑡 ≥ 1. Since 𝑚 ≤ 𝑛2 (recall that we

even assumed that 𝑚𝑡𝑛,𝑚 ≤ 1), 𝜁 ≥ 1, max𝑣∈𝑉 ∥𝑃𝐿𝑒𝑣∥2 ≥ 𝑟
𝑚
4 and 𝜀 ≤ 𝜆−1𝑘0 ≤ 𝑚𝜁 ,

it is easy to check that

𝐶1 max
𝑣∈𝑉

∥𝑃𝐿𝑒𝑣∥2
(𝑚𝑡

𝑛

)2
≥ 𝑚

𝑛2
≥ 𝑚𝜁

𝑛2𝜁
≥ 𝜀𝑛−2𝜁 .

Thus, the last term of bound (3.37) can be dropped (with a proper adjustment of
constant 𝐶1).

Note also that with our choice of 𝛿−, 𝛿+

𝑡 = 𝑡 + log(log2(𝛿+/𝛿−) + 2) ≤ 𝑡 + log log2(16𝑛𝜁𝑚(3/2)𝜁)

and 𝑡 + 𝑡𝑚 ≤ 2𝑡𝑛,𝑚. It is now easy to conclude that, with some constants 𝐶,𝐶1
depending only on 𝑐 and with probability at least 1 − 3𝑒−𝑡

∥𝑆 − 𝑆∗∥2𝐿2(Π2) ≤ 𝐶
𝜑(𝑠 + 1)𝑚𝑡𝑛,𝑚

𝑛
+ 𝜀∥𝑊 1/2𝑆∗∥2𝐿2(Π2) + 𝐶1max

𝑣∈𝑉
∥𝑃𝐿𝑒𝑣∥2

(𝑚𝑡

𝑛

)2
.

(3.38)
The probability bound 1− 3𝑒−𝑡 can be rewritten as 1− 𝑒−𝑡 by changing the value
of constants 𝐶,𝐶1. Also, by changing the notation 𝑠 + 1 9→ 𝑠, bound (3.38) yields
(2.1). This completes the proof of the theorem. □
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Sparse Principal Component Analysis
with Missing Observations

Karim Lounici

Abstract. In this paper, we study the problem of sparse Principal Compo-
nent Analysis (PCA) in the high dimensional setting with missing observa-
tions. Our goal is to estimate the first principal component when we only have
access to partial observations. Existing estimation techniques are usually de-
rived for fully observed data sets and require a prior knowledge of the sparsity
of the first principal component in order to achieve good statistical guaran-
tees. Our contributions is essentially theoretical in nature. First, we establish
the first information-theoretic lower bound for the sparse PCA problem with
missing observations. Second, we study the properties of a BIC type estima-
tor that does not require any prior knowledge on the sparsity of the unknown
first principal component or any imputation of the missing observations and
adapts to the unknown sparsity of the first principal component. Third, if the
covariance matrix of interest admits a sparse first principal component and
is in addition approximately low-rank, then we can derive a completely data-
driven choice of the regularization parameter and the resulting BIC estimator
will also enjoy optimal statistical performances (up to a logarithmic factor).

Mathematics Subject Classification (2010). Primary 62H12.

Keywords. Low-rank covariance matrix, sparse principal component analysis,
missing observations, information-theoretic lower bounds, oracle inequalities.

1. Introduction

Let 𝑋,𝑋1, . . . , 𝑋𝑛 ∈ ℝ𝑝 be i.i.d. zero mean vectors with unknown covariance
matrix Σ = 𝔼𝑋 ⊗𝑋 of the form

Σ = 𝜎1𝜃1𝜃
⊤
1 + 𝜎2Υ, (1.1)

where 𝜎1 > 𝜎2 ≥ 0, 𝜃1 ∈ 𝒮𝑝 (the 𝑙2 unit sphere in ℝ𝑝) and Υ is a 𝑝× 𝑝 symmetric
positive semi-definite matrix with spectral norm ∥Υ∥∞ ≤ 1 and such that Υ𝜃1 = 0.

Supported in part by NSF Grant DMS-11-06644 and Simons foundation Grant 209842.
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The eigenvector 𝜃1 is called the first principal component of Σ. Our objective is to
estimate the first principal component 𝜃1 when the vectors 𝑋1, . . . , 𝑋𝑛 are partially

observed. More precisely, we consider the following framework. Denote by 𝑋
(𝑗)
𝑖 the

𝑗th component of the vector 𝑋𝑖. We assume that each component 𝑋
(𝑗)
𝑖 is observed

independently of the others with probability 𝛿 ∈ (0, 1]. Note that 𝛿 can be easily
estimated by the proportion of observed entries. Therefore, we will assume in this
paper that 𝛿 is known. Note also that the case 𝛿 = 1 corresponds to the standard
case of fully observed vectors. Let (𝛿𝑖,𝑗)1≤𝑖≤𝑛,1≤𝑗≤𝑝 be a sequence of i.i.d. Bernoulli
random variables with parameter 𝛿 and independent from 𝑋1, . . . , 𝑋𝑛. We observe
𝑛 i.i.d. random vectors 𝑌1, . . . , 𝑌𝑛 ∈ ℝ𝑝 whose components satisfy

𝑌
(𝑗)
𝑖 = 𝛿𝑖,𝑗𝑋

(𝑗)
𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑝. (1.2)

We can think of the 𝛿𝑖,𝑗 as masked variables. If 𝛿𝑖,𝑗 = 0, then we cannot observe

the 𝑗th component of 𝑋𝑖 and the default value 0 is assigned to 𝑌
(𝑗)
𝑖 . Our goal is

then to estimate 𝜃1 given the partial observations 𝑌1, . . . , 𝑌𝑛.

Principal Component Analysis (PCA) is a popular technique to reduce the
dimension of a data set that has been used for many years in a variety of different
fields including image processing, engineering, genetics, meteorology, chemistry
and many others. In most of these fields, data are now high dimensional, that is the
number of parameters 𝑝 is much larger than the sample size 𝑛, and contain missing
observations. This is especially true in genomic with gene expression microarray
data where PCA is used to detect the genes responsible for a given biological
process. Indeed, despite the recent improvements in gene expression techniques,
microarray data can contain up to 10% missing observations affecting up to 95% of
the genes. Unfortunately, it is a known fact that PCA is very sensitive even to small
perturbations of the data including in particular missing observations. Therefore,
several strategies have been developed to deal with missing values. The simple
strategy that consists in eliminating from the PCA study any gene with at least one
missing observation is not acceptable in this context since up to 95% of the genes
can be eliminated from the study. An alternative strategy consists in inferring the
missing values prior to the PCA using complex imputation schemes [3, 6]. These
schemes usually assume that the genes interactions follow some specified model and
involve intensive computational preprocessing to impute the missing observations.
We propose in this paper a different strategy. Instead of building an imputation
technique based on assumptions describing the genome structure (about which we
usually have no prior information), we propose a technique based on the analysis of
the perturbations process. In other words, if we understand the process generating
the missing observations, then we can efficiently correct the data prior to the PCA
analysis. This strategy was first introduced in [8] to estimate the spectrum of low-
rank covariance matrices. One of our goal is to show that this approach can be
successfully applied to perform accurate PCA with missing observations.

Standard PCA in the full observation framework (𝛿 = 1) consists in extracting
the first principal components of Σ (that is the eigenvector 𝜃1 associated to the
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largest eigenvalue) based on the i.i.d. observations 𝑋1, . . . , 𝑋𝑛:

𝜃 = argmax𝜃⊤𝜃=1
(
𝜃⊤Σ𝑛𝜃

)
, (1.3)

where Σ𝑛 = 1
𝑛

∑𝑛
𝑖=1𝑋𝑖𝑋

⊤
𝑖 . The standard PCA presents two majors drawbacks.

First, it is not consistent in high dimension [4, 11, 12]. Second, the solution 𝜃 is
usually a dense vector whereas sparse solutions are preferred in most applications
in order to obtain simple interpretable structures. For instance, in microarray
data, we typically observe that only a few among the thousands of screened genes
are involved in a given biological process. In order to improve interpretability,
several approaches have been proposed to perform sparse PCA, that is to enforce
sparsity of the PCA outcome. See for instance [13, 14, 18] for SVD based iterative
thresholding approaches. [19] reformulated the sparse PCA problem as a sparse
regression problem and then used the LASSO estimator. See also [10] for greedy
methods. Note also the recent paper [1] which studies the testing problem for
the presence of a sparse principal component. We consider now the approach by
[5] which consists in computing a solution of (1.3) under the additional 𝑙1-norm
constraint ∣𝜃∣1 ≤ 𝑠 for some fixed integer 𝑠 ≥ 1 in order to enforce sparsity of the
solution. The same approach with the 𝑙1-norm constraint replaced by the 𝑙0-norm
gives the following estimator

𝜃o = argmax𝜃∈𝒮𝑝 : ∣𝜃∣0≤𝑠
(
𝜃⊤Σ𝑛𝜃

)
, (1.4)

where ∣𝜃∣0 denotes the number of nonzero components of 𝜃 and 𝑠 ≥ 1 is a parameter
of this estimator. In the recent paper [17], the following oracle inequality was
established. If ∣𝜃1∣0 ≤ 𝑠, then we have(

𝔼∥𝜃o𝜃⊤o − 𝜃1𝜃
⊤
1 ∥2
)2

≤ 𝐶

(
𝜎1

𝜎1 − 𝜎2

)2
𝑠

log(𝑝/𝑠)

𝑛
,

for some absolute constant 𝐶 > 0. Note that this estimator requires the knowledge
of an upper bound 𝑠 ≥ ∣𝜃1∣0. In practice, we generally do not have access to any
prior information on the sparsity of 𝜃1. Consequently, if the parameter 𝑠 we use
in the estimator is too small, then the above upper bound does not hold, and if
𝑠 is too large, then the above upper bound, even though valid, is sub-optimal. In
other words, the estimator (1.4) with 𝑠 = ∣𝜃1∣0 can be seen as an oracle and our
goal is to propose an estimator that performs as well as this oracle without any
prior information on ∣𝜃1∣0.

In order to circumvent the fact that ∣𝜃1∣0 is unknown, we consider the follow-
ing estimator proposed by [2]

𝜃1 = argmax𝜃∈𝒮𝑝
(
𝜃⊤Σ𝑛𝜃 − 𝜆∣𝜃∣0

)
, (1.5)

where 𝜆 > 0 is a regularization parameter to be tuned properly. This optimization
problem is unfortunately hard to solve in practice. [2] proposed to solve instead a
convex relaxation for the above problem. [7] proposed a gradient procedure com-
putationally tractable even in high dimension to solve (1.5). However, a weakness
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of their procedure is that it can trapped into a local maximizer. Although the com-
putational interest of (1.5) is not clearly established yet, we believe nevertheless
that the investigation of the statistical performances of this estimator is important
to get a better theoretical understanding of the sparse PCA problem. Indeed, the
BIC estimator in high dimensional regression is not computationally tractable but
enjoys optimal statistical properties. This BIC estimator is then used as a theo-
retical benchmark to assess the statistical performances of other computationally
tractable procedures like the Lasso estimator. Similarly, we propose to show in
this paper that the statistical properties of (1.5) are optimal in the sparse PCA
problem. In particular, (1.5) is minimax rate optimal (up to a logarithmic factor)
and adapts to the unknown sparsity of 𝜃1 provided the regularization parameter
is tuned properly.

When the data contains incomplete observations (𝛿 < 1), we do not have
access to the empirical covariance matrix Σ𝑛. Given the observations 𝑌1, . . . , 𝑌𝑛,
we can build the following empirical covariance matrix

Σ(𝛿)𝑛 =
1

𝑛

𝑛∑
𝑖=1

𝑌𝑖𝑌
⊤
𝑖 .

As noted in [8], Σ
(𝛿)
𝑛 is not an unbiased estimator of Σ, Consequently, we need to

consider the following correction in order to get sharp estimation results:

Σ̃𝑛 = (𝛿−1 − 𝛿−2)diag
(

Σ(𝛿)𝑛

)
+ 𝛿−2Σ(𝛿)𝑛 , (1.6)

where for any 𝑝×𝑝 matrix 𝐴, diag(𝐴) is the 𝑝×𝑝 matrix obtained by keeping only
the diagonal elements of 𝐴 and putting all the non-diagonal elements of 𝐴 equal
to 0. Indeed, we can check by elementary algebra that Σ̃𝑛 is an unbiased estimator
of Σ in the missing observation framework 𝛿 ∈ (0, 1]. Therefore, we consider the
following estimator in the missing observation framework

𝜃1 = argmax𝜃∈𝒮𝑝 : ∣𝜃∣0≤𝑠
(
𝜃⊤Σ̃𝑛𝜃 − 𝜆∣𝜃∣0

)
, (1.7)

where 𝜆 > 0 is a regularization parameter to be tuned properly and 𝑠 is a mild

constraint on ∣𝜃1∣0. More precisely, 𝑠 can be chosen as large as 𝛿2𝑛
log(𝑒𝑝) when no

prior information on ∣𝜃1∣0 is available. We will prove in particular that the esti-
mator (1.7) adapts to the unknown sparsity of 𝜃1 provided that ∣𝜃1∣0 ≤ 𝑠. We also
investigate the case where Σ is in addition approximately low-rank. In that case,
we can remove the restriction ∣𝜃∣0 ≤ 𝑠 (taking 𝑠 = 𝑝) in the procedure (1.7) and
propose a data-driven choice of the regularization parameter 𝜆. Finally, we estab-
lish information theoretic lower bounds for the sparse PCA problem in the missing
observation framework 𝛿 ∈ (0, 1], showing in particular that the dependence of our
bounds on the parameter 𝛿 is sharp. Note that our results are nonasymptotic in
nature and hold for any setting of 𝑛, 𝑝 including in particular the high dimensional
setting 𝑝 > 𝑛.
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The rest of the paper is organized as follows. In Section 2, we recall some tools
and definitions that will be useful for our statistical analysis. Section 3 contains
our main theoretical results. Finally, Section 4 contains the proofs of our results.

2. Tools and definitions

In this section, we introduce various notations and definitions and we recall some
known facts that we will use to establish our results.

The 𝑙𝑞-norms of a vector 𝑥 =
(
𝑥(1), . . . , 𝑥(𝑝)

)⊤ ∈ ℝ𝑝 is given by

∣𝑥∣𝑞 =

( 𝑝∑
𝑗=1

∣𝑥(𝑗)∣𝑞
)1/𝑞

, for 1 ≤ 𝑞 < ∞, and ∣𝑥∣∞ = max
1≤𝑗≤𝑝

∣𝑥(𝑗)∣.

The support of a vector 𝑥 =
(
𝑥(1), . . . , 𝑥(𝑝)

)⊤ ∈ ℝ𝑝 is defined as follows

𝐽(𝑥) =
{
𝑗 : 𝑥(𝑗) ∕= 0

}
.

We denote the number of nonzero components of 𝑥 by ∣𝑥∣0. Note that ∣𝑥∣0 =
∣𝐽(𝑥)∣. Set 𝒮𝑝 = {𝑥 ∈ ℝ𝑝 : ∣𝑥∣2 = 1} and [𝑝] = 2{1,...,𝑝}. For any 𝐽 ∈ [𝑝], we
define 𝒮𝑝(𝐽) = {𝑥 ∈ 𝒮𝑝 : 𝐽(𝑥) = 𝐽}. For any integer 1 ≤ 𝑠 ≤ 𝑝, we define 𝒮𝑝𝑠 =
{𝑥 ∈ 𝒮𝑝 : ∣𝑥∣0 = 𝑠}. Note that 𝒮𝑝𝑠 = ∪𝐽∈[𝑝] : ∣𝐽∣=𝑠𝒮𝑝(𝐽).

For any 𝑝 × 𝑝 symmetric matrix 𝐴 with eigenvalues 𝜎1(𝐴), . . . , 𝜎𝑝(𝐴), we
define the Schatten 𝑞-norm of 𝐴 by

∥𝐴∥𝑞 =

( 𝑝∑
𝑗=1

∣𝜎𝑗(𝐴)∣𝑞
)1/𝑞

, ∀1 ≤ 𝑞 < ∞, and ∥𝐴∥∞ = max
1≤𝑗≤𝑝

{∣𝜎𝑗(𝐴)∣} .

Define the usual matrix scalar product ⟨𝐴,𝐵⟩ = tr(𝐴⊤𝐵) for any 𝐴,𝐵 ∈ 𝑅𝑝×𝑝.
Note that ∥𝐴∥2 =

√⟨𝐴,𝐴⟩ for any 𝐴 ∈ ℝ𝑝×𝑝. Recall the trace duality property

∣⟨𝐴,𝐵⟩∣ ≤ ∥𝐴∥∞∥𝐵∥1, ∀𝐴,𝐵 ∈ ℝ𝑝×𝑝.

We recall now some basic facts about 𝜖-nets (See for instance Section 5.2.2
in [16]).

Definition 1. Let (𝐴, 𝑑) be a metric space and let 𝜖 > 0. A subset 𝒩𝜖 of 𝐴 is
called an 𝜖-net of 𝐴 if for every point 𝑎 ∈ 𝐴, there exists a point 𝑏 ∈ 𝒩𝜖 so that
𝑑(𝑎, 𝑏) ≤ 𝜖.

We recall now an approximation result of the spectral norm on an 𝜖-net.

Lemma 1. Let 𝐴 be a 𝑘×𝑘 symmetric matrix for some 𝑘 ≥ 1. For any 𝜖 ∈ (0, 1/2),
there exists an 𝜖-net 𝒩𝜖 ⊂ 𝒮𝑘 (the unit sphere in ℝ𝑘) such that

∣𝒩𝜖∣ ≤
(

1 +
2

𝜖

)𝑘
, and sup

𝜃∈𝒮𝑘
∣⟨𝐴𝑥, 𝑥⟩∣ ≤ 1

1 − 2𝜖
sup
𝜃∈𝒩𝜖

∣⟨𝐴𝑥, 𝑥⟩∣.
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See for instance Lemma 5.2 and Lemma 5.3 in [16] for a proof.

We recall now the definition and some basic properties of sub-exponential
random vectors.

Definition 2. The 𝜓𝛼-norms of a real-valued random variable 𝑉 are defined by

∥𝑉 ∥𝜓𝛼 = inf {𝑢 > 0 : 𝔼 exp (∣𝑉 ∣𝛼/𝑢𝛼) ≤ 2} , 𝛼 ≥ 1.

We say that a random variable 𝑉 with values in ℝ is sub-exponential if ∥𝑉 ∥𝜓𝛼 < ∞
for some 𝛼 ≥ 1. If 𝛼 = 2, we say that 𝑉 is sub-Gaussian.

We recall some well-known properties of sub-exponential random variables:

1. For any real-valued random variable 𝑉 such that ∥𝑉 ∥𝜓𝛼 < ∞ for some 𝛼 ≥ 1,
we have

𝔼∣𝑉 ∣𝑚 ≤ 2
𝑚

𝛼
Γ
(𝑚
𝛼

)
∥𝑉 ∥𝑚𝜓𝛼 , ∀𝑚 ≥ 1 (2.1)

where Γ(⋅) is the Gamma function.
2. If a real-valued random variable 𝑉 is sub-Gaussian, then 𝑉 2 is sub-expon-

ential. Indeed, we have

∥𝑉 2∥𝜓1 ≤ 2∥𝑉 ∥2𝜓2
. (2.2)

Definition 3. A random vector 𝑋 ∈ ℝ𝑝 is sub-exponential if ⟨𝑋, 𝑥⟩ are sub-
exponential random variables for all 𝑥 ∈ ℝ𝑝. The 𝜓𝛼-norms of a random vector 𝑋
are defined by

∥𝑋∥𝜓𝛼 = sup
𝑥∈𝒮𝑝

∥⟨𝑋, 𝑥⟩∥𝜓𝛼 , 𝛼 ≥ 1.

We recall a version of Bernstein’s inequality for unbounded real-valued ran-
dom variables.

Proposition 1. Let 𝑌1, . . . , 𝑌𝑛 be independent real-valued random variables with
zero mean. Let there exist constants 𝜎, 𝜎′ and 𝐾 such that for any 𝑚 ≥ 2

1

𝑛

𝑛∑
𝑖=1

𝔼 [∣𝑌𝑖∣𝑚] ≤ 𝑚!

2
𝐾𝑚−2𝜎2. (2.3)

Then for every 𝑡 ≥ 0, we have with probability at least 1 − 2𝑒−𝑡∣∣∣∣∣ 1𝑛
𝑛∑
𝑖=1

𝑌𝑖

∣∣∣∣∣ ≤ 𝜎

√
2𝑡

𝑛
+ 𝐾

𝑡

𝑛
.

3. Main results for sparse PCA with missing observations

In this section, we state our main statistical results concerning the procedure
(1.7). We will establish these results under the following condition on the distri-
bution of 𝑋 .
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Assumption 1 (Sub-Gaussian observations). The random vector 𝑋 ∈ ℝ𝑝 is sub-
Gaussian, that is ∥𝑋∥𝜓2 < ∞. In addition, there exist a numerical constant 𝑐1 > 0
such that

𝔼(⟨𝑋, 𝑢⟩)2 ≥ 𝑐1∥⟨𝑋, 𝑢⟩∥2𝜓2
, ∀𝑢 ∈ ℝ𝑝. (3.1)

3.1. Oracle inequalities for sparse PCA

We first establish a preliminary results on the stochastic deviation of the following
empirical process

Z𝑛(𝑠) = max
𝜃∈𝒮𝑝𝑠

{∣∣∣𝜃⊤(Σ̃𝑛 − Σ)𝜃
∣∣∣} , ∀1 ≤ 𝑠 ≤ 𝑝.

We consider first the full observation case (𝛿 = 1). To this end, we introduce the
following quantity

𝜁𝑛(𝑠, 𝑝) := max

{√
𝑠 log(𝑒𝑝)

𝑛
,
𝑠 log(𝑒𝑝)

𝑛

}
, (3.2)

Proposition 2. Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. random vectors in ℝ𝑝 with covariance ma-
trix (1.2). Let Assumption 1 be satisfied. Then, we have

ℙ

(
𝑝∩

𝑠=1

{
Z𝑛(𝑠) ≤ 𝑐

𝜎1
𝑐1 ∧ 1

𝜁𝑛(𝑠, 𝑝)

})
≥ 1 − 1

𝑝
(3.3)

where 𝑐 > 0 is an absolute constant.

We now treat the missing observations case (𝛿 < 1). For the sake of simplicity,

we will assume in addition that ∣𝑋 ∣2 ≤ √
𝐾, almost surely, for some constant

𝐾 > 0. We can deduce from this case similar results for general distributions
satisfying Assumption 1 by taking 𝐾 = trace(Σ) log(𝑒𝑝) and a simple union bound
argument. See [8] for more details. We introduce the following quantity

𝜁𝑛(𝑠, 𝑝, 𝛿) := max

{√
𝑠 log(𝑒𝑝)

𝛿2𝑛
,
𝐾

𝜎1

𝑠 log(𝑒𝑝)

𝛿2𝑛

}
, (3.4)

Proposition 3. Let Assumption 1 be satisfied. Assume in addition that there exists
a constant 𝐾 > 0 such that ∣𝑋 ∣2 ≤

√
𝐾, almost surely. Let 𝑌1, . . . , 𝑌𝑛 be defined

in (1.2) with 𝛿 ∈ (0, 1]. Then, we have

ℙ

(
𝑝∩

𝑠=1

{
Z𝑛(𝑠) ≤ 𝑐

𝜎1
𝑐1 ∧ 1

𝜁𝑛(𝑠, 𝑝, 𝛿)

})
≥ 1 − 1

𝑝
(3.5)

where 𝑐 > 0 is an absolute constant.

We can now state our main results. We start with the full observation frame-
work (𝛿 = 1).
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Theorem 1. Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. random vectors in ℝ𝑝 with covariance matrix
(1.2). Let Assumption 1 be satisfied. Assume that 𝑛 ≥ 2̄𝑠 log(𝑒𝑝) where 𝑠 is a
parameter of the estimator (1.7). Take

𝜆 = 𝐶
𝜎21

𝜎1 − 𝜎2

log(𝑒𝑝)

𝑛
, (3.6)

where 𝐶 > 0 is a large enough numerical constant. If ∣𝜃1∣0 ≤ 𝑠, then the estimator
(1.7) satisfies with probability at least 1 − 1

𝑝

∥𝜃1𝜃⊤1 − 𝜃1𝜃
⊤
1 ∥22 ≤ 𝐶′∣𝜃1∣0𝜎̃2 log(𝑒𝑝)

𝑛
.

where 𝜎̃ = 𝜎1

𝜎1−𝜎2
and 𝐶′ > 0 is a numerical constant that can depend only on 𝑐1.

We consider now the missing observation framework (𝛿 < 1).

Theorem 2. Let the assumptions of Proposition 3 be satisfied. In addition, assume

that 𝑛 ≥ 2𝛿−2𝐾
2

𝜎2
1
𝑠 log(𝑒𝑝) where 𝑠 is a parameter of the estimator (1.7). Take

𝜆 = 𝐶
𝜎21

𝜎1 − 𝜎2

log(𝑒𝑝)

𝛿2𝑛
, (3.7)

where 𝐶 > 0 is a large enough numerical constant. If ∣𝜃1∣0 ≤ 𝑠, then the estimator
(1.7) satisfies with probability at least 1 − 1

𝑝

∥𝜃1𝜃⊤1 − 𝜃1𝜃
⊤
1 ∥22 ≤ 𝐶′∣𝜃1∣0𝜎̃2 log(𝑒𝑝)

𝛿2𝑛
.

where 𝜎̃ = 𝜎1

𝜎1−𝜎2
and 𝐶′ > 0 is a numerical constant that can depend only on 𝑐1.

1. We observe that the estimation bound increases as the difference 𝜎1 − 𝜎2
decreases. The problem of estimation of the first principal component is sta-
tistically more difficult when the largest and second largest eigenvalues are
close. We also observe that the optimal choice of the regularization parame-
ters in (3.6) and (3.7) depend on the eigenvalues 𝜎1, 𝜎2 of Σ. Unfortunately,
these quantities are typically unknown in practice. In order to circumvent
this difficulty, we propose in Section 3.3 a data-driven choice of 𝜆 with opti-
mal statistical performances (up to a logarithmic factor) provided that Σ is
approximately low-rank.

2. Let now consider the full observation framework (𝛿 = 1). In Theorem 1, we
established the following upper bound with probability at least 1 − 1

𝑝

∥𝜃1𝜃⊤1 − 𝜃1𝜃
⊤
1 ∥22 ≤ 𝐶′∣𝜃1∣0𝜎̃2 log(𝑒𝑝)

𝑛
.

We can compare this result with that obtained for the procedure (1.4) in [17](
𝔼∥𝜃𝑜𝜃⊤𝑜 − 𝜃1𝜃

⊤
1 ∥2
)2

≤ 𝐶′𝑠𝜎̃2
log(𝑒𝑝/𝑠)

𝑛
.

We see that in order to achieve the rate ∣𝜃1∣0𝜎̃2 log(𝑒𝑝/∣𝜃1∣0) with the pro-
cedure (1.4), we need to know the sparsity of 𝜃1 in advance, whereas our
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procedure adapts to the unknown sparsity of 𝜃1 and achieves the minimax
optimal rate up to a logarithmic factor provided that ∣𝜃1∣0 ≤ 𝑠 (see Section
3.4 for the lower bounds). This logarithmic factor is the price we pay for
adaptation to the sparsity of 𝜃1. Note also that we can formulate a version
of (1.4) when observations are missing (𝛿 < 1) by replacing Σ𝑛 with Σ̃𝑛. In
that case, our techniques of proof will give with probability at least 1 − 1

𝑝

∥𝜃o𝜃⊤o − 𝜃1𝜃
⊤
1 ∥22 ≤ 𝐶′𝑠𝜎̃2

log(𝑒𝑝/𝑠)

𝛿2𝑛
.

3. In the case where observations are missing (𝛿 < 1), Theorem 2 guarantees
that recovery of the first principal component is still possible using the proce-
dure (1.7). We observe the additional factor 𝛿−2. Consequently, the estimation
accuracy of the procedure (1.7) will decrease as the proportion of observed
entries 𝛿 decreases. We show in Section 3.4 below that the dependence of our
bounds on 𝛿−2 is sharp. In other words, there exists no statistical procedure
that achieves an upper bound without the factor 𝛿−2. Thus, we can conclude
that the factor 𝛿−2 is the statistical price to pay to deal with missing ob-
servations in the principal component estimation problem. If we consider for
instance microarray datasets where typically about 10% of the observations
are missing (that is 𝛿 = 0.9), then the optimal bound achieved for the first
principal component estimation increases by a factor 1.24 as compared to the
full observation framework (𝛿 = 1).

3.2. Study of approximately low-rank covariance matrices

We concentrate from now on the full observation case (𝛿 = 1). We now assume
that Σ defined in (1.1) is also approximately low-rank and study the different
implications of this additional condition. We recall that the effective rank of Σ
is defined by r(Σ) = trace(Σ)/∥Σ∥∞. We say that Σ is approximately low-rank
when r(Σ) ≪ 𝑝. Note also that the effective rank of an approximately low-rank

covariance matrix can be estimated efficiently in our context by r(Σ̃𝑛). See [8] for
more details.

First, we can propose a different control of the stochastic quantities Z𝑛(𝑠).

Note indeed that Z𝑛(𝑠) ≤ ∥Σ̃𝑛 − Σ∥∞ for any 1 ≤ 𝑠 ≤ 𝑝. We apply now Propo-
sition 3 in [8] and get the following control on Z𝑛(𝑠). Under the assumptions of
Proposition 3, we have with probability at least 1 − 𝑒−𝑡 that

∥Σ̃𝑛−Σ∥∞ ≤ 𝐶
𝜎1
𝑐1

max

{√
r(Σ) (𝑡 + log(2𝑝))

𝑛
,
r(Σ) (𝑡 + log(2𝑝))

𝑛
(𝑐1 + 𝑡 + log 𝑛)

}
,

(3.8)
where 𝐶 > 0 is an absolute constant. We concentrate now on the high dimensional
setting 𝑝 > 𝑛. Assume that

𝑛 ≥ 𝑐r(Σ) log2(𝑒𝑝), (3.9)



336 K. Lounici

for some sufficiently large numerical constant 𝑐 > 0. Taking 𝑡 = log(𝑒𝑝), we get
from the two above displays, with probability at least 1 − 1

𝑒𝑝 that

∥Σ̃𝑛 − Σ∥∞ ≤ 𝑐′𝜎1

√
r(Σ) log(𝑒𝑝)

𝑛
, (3.10)

where 𝑐′ > 0 can depends only on 𝑐1. Combining the previous display with Propo-
sition 2 and a union bound argument, we immediately obtain the following control
on Z𝑛(𝑠).

Proposition 4. Let the conditions of Proposition 2 be satisfied. In addition, let (3.9)
be satisfied. Then we have

ℙ

(
𝑝∩

𝑠=1

{
Z𝑛(𝑠) ≤ 𝑐𝜎1

√
min {r(Σ), 𝑠}

√
log(𝑒𝑝)

𝑛

})
≥ 1 − 1

𝑝
,

where 𝑐 > 0 is a numerical constant that can depend only on 𝑐1.

The motivation behind the new bound in Proposition 4 is the following. If
(3.9) is satisfied, then we can remove the restriction ∣𝜃∣0 ≤ 𝑠 in (1.7) and we
obtain exactly the estimator (1.5) that was the initial object of our interest. we
can now investigate its statistical performances. Following the proof of Theorem
1, we establish the following result for (1.5).

Theorem 3. Let the assumptions of Theorem 1 be satisfied. In addition, let (3.9)
be satisfied. Take

𝜆 = 𝐶
𝜎21

𝜎1 − 𝜎2

log(𝑒𝑝)

𝑛
, (3.11)

where 𝐶 > 0 is a large enough numerical constant. Then the estimator (1.5)
satisfies, with probability at least 1 − 1

𝑝 ,

∥𝜃1𝜃⊤1 − 𝜃1𝜃
⊤
1 ∥22 ≤ 𝐶′∣𝜃1∣0𝜎̃2 log(𝑒𝑝)

𝑛
.

where 𝜎̃ = 𝜎1

𝜎1−𝜎2
and 𝐶′ > 0 is a numerical constant that can depend only on 𝑐1.

Note that this result holds without any condition on the sparsity of 𝜃1. Of
course, as we already commented for Theorem 1, the result is of statistical interest
only when 𝜃1 is sparse: ∣𝜃1∣0 ≤ 𝑛

𝜎̃2 log(𝑒𝑝) .

3.3. Data-driven choice of 𝝀

As we see in Theorem 3, the optimal choice of the regularization parameter depends
on the largest and second largest eigenvalues of Σ. These quantities are typically
unknown in practice. To circumvent this difficulty, we propose the following data-
driven choice for the regularization parameter 𝜆

𝜆𝐷 = 𝐶
𝜎̂21

𝜎̂1 − 𝜎̂2

log(𝑒𝑝)

𝑛
, (3.12)
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where 𝐶 > 0 is a numerical constant and 𝜎̂1 and 𝜎̂2 are the two largest eigenvalues
of Σ̃𝑛. If (3.9) is satisfied, then as a consequence of Proposition 3 in [8], 𝜎̂1 and
𝜎̂2 are good estimators of 𝜎1 and 𝜎2. In order to guarantee that 𝜆𝐷 is a suitable
choice, we will need a more restrictive condition on the number of measurements 𝑛

than (3.9). This new condition involves in addition the “variance” 𝜎̃2 =
𝜎2
1

(𝜎1−𝜎2)2
:

𝑛 ≥ 𝑐𝜎̃2r(Σ) log2(𝑒𝑝), (3.13)

where 𝑐 > 0 is a sufficiently large numerical constant. As compared to (3.9), we
observe the additional factor 𝜎̃2 in the above condition. We already noted that
matrices Σ for which the difference 𝜎1 − 𝜎2 is small are statistically more difficult
to estimate. We observe that the number of measurements needed to construct a
suitable data-driven estimator also increases as the difference 𝜎1−𝜎2 decreases to 0.

We have the following result.

Lemma 2. Let the conditions of Proposition 3 be satisfied, Assume in addition that
(3.13) is satisfied. Let 𝜆𝐷 be defined in (3.12) with a sufficiently large numerical
constant 𝐶 > 0. Then, we have with probability at least 1 − 1

𝑝 that

Z2𝑛(𝑠) ≤ (𝜎1 − 𝜎2)𝜆𝐷 𝑠, ∀1 ≤ 𝑠 ≤ 𝑝,

and

𝜆𝐷 ≤ 𝐶′ 𝜎21
𝜎1 − 𝜎2

log(𝑒𝑝)

𝑛
,

for some numerical constant 𝐶′ > 0.

Consequently, the conclusion of Theorem 3 holds true for the estimator (1.5)
with 𝜆 = 𝜆𝐷 provided that (3.13) is satisfied.

3.4. Information theoretic lower bounds

We derive now minimax lower bounds for the estimation of the first principal
component 𝜃1 in the missing observation framework.

Let 𝑠1 ≥ 1. We denote by 𝒞 = 𝒞𝑠1(𝜎1, 𝜎2) the class of covariance matrices Σ
satisfying (1.1) with 𝜎1 > 𝜎2, 𝜃1 ∈ 𝒮𝑝 with ∣𝜃∣0 ≤ 𝑠1 and Υ is a 𝑝× 𝑝 symmetric
positive semi-definite matrix with spectral norm ∥Υ∥∞ ≤ 1 and such that Υ𝜃1 = 0.
We prove now that the dependence of our estimation bounds on 𝜎1− 𝜎2, 𝛿, 𝑠1, 𝑛, 𝑝
in Theorem 2 is sharp in the minimax sense. Set 𝜎̄2 = 𝜎1𝜎2

(𝜎1−𝜎2)2
.

Theorem 4. Fix 𝛿 ∈ (0, 1] and 𝑠1 ≥ 3. Let the integers 𝑛, 𝑝 ≥ 3 satisfy

2𝜎̄2𝑠1 log(𝑒𝑝/𝑠1) ≤ 𝛿2𝑛. (3.14)

Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. random vectors in ℝ𝑝 with covariance matrix Σ ∈ 𝒞. We
observe 𝑛 i.i.d. random vectors 𝑌1, . . . , 𝑌𝑛 ∈ ℝ𝑝 such that

𝑌 𝑗
𝑖 = 𝛿𝑖,𝑗𝑋

(𝑗)
𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑝,

where (𝛿𝑖,𝑗)1≤𝑖≤𝑛, 1≤𝑗≤𝑝 is an i.i.d. sequence of Bernoulli 𝐵(𝛿) random variables
independent of 𝑋1, . . . , 𝑋𝑛.



338 K. Lounici

Then, there exist absolute constants 𝛽 ∈ (0, 1) and 𝑐 > 0 such that

inf
𝜃1

sup
Σ∈ 𝒞

ℙΣ

(
∥𝜃1𝜃⊤1 − 𝜃1𝜃

⊤
1 ∥22 > 𝑐𝜎̄2

𝑠1
𝛿2𝑛

log

(
𝑒𝑝

𝑠1

))
≥ 𝛽, (3.15)

where inf𝜃1 denotes the infimum over all possible estimators 𝜃1 of 𝜃1 based on
𝑌1, . . . , 𝑌𝑛.

Remark 1. For 𝑠1 = 1, we can prove a similar lower bound with the factor 𝛿−2

replaced by 𝛿−1. This is actually the right dependence on 𝛿 for 1-sparse vectors.
We can indeed derive an upper bound of the same order for the selector 𝑒𝚥 =

argmax1≤𝑗≤𝑝
(
𝑒⊤𝑗 Σ̃𝑛𝑒𝑗

)
where 𝑒1, . . . , 𝑒𝑝 are the canonical vectors of ℝ𝑝.

For 𝑠1 = 2, we can prove a lower bound of the form (3.15) without the
logarithmic factor by comparing for instance the hypothesis 𝜃0 = 1√

2
(𝑒1 + 𝑒2) and

𝜃1 = 1
2𝑒1 +

√
3
2 𝑒2. Getting a lower bound for 𝑠1 = 2 with the logarithmic factor

remains an open question.

4. Proofs

4.1. Proof of Propositions 2 and 3

We start with the proof of Proposition 3.

Proof. For any 𝑠 ≥ 1, we have

Z𝑛(𝑠) ≤ 𝛿−1Z(1)𝑛 (𝑠) + 𝛿−2Z(2)𝑛 (𝑠) (4.1)

where

Z(1)𝑛 (𝑠) = max
𝜃∈𝒮𝑝𝑠

{∣∣∣𝜃⊤diag
(

Σ(𝛿)𝑛 − Σ(𝛿)
)
𝜃
∣∣∣} ,

Z(2)𝑛 (𝑠) = max
𝜃∈𝒮𝑝𝑠

{∣∣∣𝜃⊤ (𝐴(𝛿)𝑛 −𝐴(𝛿)
)
𝜃
∣∣∣}

with 𝐴
(𝛿)
𝑛 = Σ

(𝛿)
𝑛 −diag(Σ

(𝛿)
𝑛 ), 𝐴(𝛿) = Σ(𝛿)−diag(Σ(𝛿)) and Σ(𝛿) = 𝛿2[Σ−diag(Σ)]+

𝛿diag(Σ).

Before we proceed with the study of the empirical processes Z
(1)
𝑛 (𝑠) and

Z
(2)
𝑛 (𝑠), we need to introduce some additional notations. Define

𝑌 = (𝛿1𝑋
(1), . . . , 𝛿𝑝𝑋

(𝑝))⊤,

where 𝛿1, . . . , 𝛿𝑝 are i.i.d. Bernoulli random variables with parameter 𝛿 and inde-
pendent from 𝑋 . Denote by 𝔼𝛿 and 𝔼𝑋 the expectations w.r.t. (𝛿1, . . . , 𝛿𝑝) and 𝑋
respectively.

We now proceed with the study of Z
(2)
𝑛 (𝑠). For any 𝑠 ≥ 1 and any fixed

𝜃 ∈ 𝒮𝑝𝑠 , we have

𝜃⊤
(
𝐴(𝛿)𝑛 −𝐴(𝛿)

)
𝜃 =

1

𝑛

𝑛∑
𝑖=1

[
𝜃⊤
(
𝑌𝑖𝑌

⊤
𝑖 − diag(𝑌𝑖𝑌

⊤
𝑖 )
)
𝜃 − 𝛿2𝜃⊤ (Σ − diag(Σ)) 𝜃

]
.
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Set

𝑍𝑖 =
[(
𝑌𝑖𝑌

⊤
𝑖 − diag(𝑌𝑖𝑌

⊤
𝑖 )
)− 𝛿2 (Σ − diag(Σ))

]
, 1 ≤ 𝑖 ≤ 𝑛,

and

𝑍 =
[(
𝑌 𝑌 ⊤ − diag(𝑌 𝑌 ⊤)

)− 𝛿2 (Σ − diag(Σ))
]
.

We note that 𝑍,𝑍1, . . . , 𝑍𝑛 are i.i.d with zero mean.

For any 𝜃 = (𝜃(1), . . . , 𝜃(𝑝))⊤ ∈ ℝ𝑝 and 𝛿1, . . . , 𝛿𝑝 ∈ {0, 1}𝑝, we set 𝜃𝛿 =

(𝛿1𝜃
(1), . . . , 𝛿𝑝𝜃

(𝑝))⊤. Next, for any 𝜃 ∈ 𝒮𝑝 and 𝛿1, . . . , 𝛿𝑝, we have by assumption
on 𝑋 that

∣𝜃⊤𝑍𝜃∣ ≤ ∣𝜃⊤𝛿 [𝑋𝑋⊤ − diag(𝑋𝑋⊤)]𝜃𝛿∣ + 𝛿2 max
𝜃∈𝒮𝑝

{∣∣𝜃⊤[Σ − diag(Σ)]𝜃
∣∣}

≤ max

{
(𝜃⊤𝛿 𝑋)2,

𝑝∑
𝑗=1

(𝛿𝑗𝜃
(𝑗)𝑋(𝑗))2

}
+ 𝛿2 max

𝜃∈𝒮𝑝
{

max{𝜃⊤Σ𝜃, 𝜃⊤diag(Σ))𝜃}}
≤ 𝐾 + 𝛿2𝜎1 ≤ 2(𝐾 ∨ 𝜎1), a.s.

For any 𝜃 ∈ 𝒮𝑝𝑠 , we establish in Section 4.9 below that

𝔼
[
(𝜃⊤𝑍𝜃)2

] ≤ 𝑐
1

𝑐21
𝛿2𝜎2max(𝑠),

for some numerical constant 𝑐 > 0. Combining the last two displays, we deduce,
for any 𝑚 ≥ 2 and any 𝜃 ∈ 𝒮𝑝𝑠 , that

𝔼
[∣𝜃⊤𝑍𝜃∣𝑚] ≤ 𝔼

[
(𝜃⊤𝑍𝜃)2

]
[2(𝐾 ∨ 𝜎1)]

𝑚−2 ≤ 𝑐

𝑐21
𝛿2𝜎2max(𝑠)[2(𝐾 ∨ 𝜎1)]

𝑚−2.

Thus, for any fixed 𝜃 ∈ 𝒮𝑝𝑠 , Bernstein’s inequality gives for any 𝑡′ > 0 that

ℙ

(∣∣∣𝜃⊤(𝐴(𝛿)𝑛 −𝐴(𝛿))𝜃
∣∣∣ > 𝐶 max

{
𝛿𝜎max(𝑠)

𝑐1

√
𝑡′

𝑛
, (𝐾 ∨ 𝜎1)

𝑡′

𝑛

})
≤ 2𝑒−𝑡

′
,

where 𝐶 > 0 is an absolute constant. Note now that

Z(2)𝑛 (𝑠) = max
𝜃∈𝒮𝑝𝑠

{∣∣∣𝜃⊤(𝐴(𝛿)𝑛 −𝐴(𝛿))𝜃
∣∣∣} = max

𝐽∈[𝑝] : ∣𝐽∣=𝑠
max

𝜃∈𝒮𝑝(𝐽)

{∣∣∣𝜃⊤(𝐴(𝛿)𝑛 −𝐴(𝛿))𝜃
∣∣∣} .

For any fixed 𝐽 ∈ [𝑝] such that ∣𝐽 ∣ = 𝑠, Lemma 1 guarantees the existence of a
1
4 -net 𝒩 (𝐽) such that ∣𝒩 (𝐽)∣ ≤ 9𝑠 and

max
𝜃∈𝒮𝑝(𝐽)

{∣∣∣𝜃⊤(𝐴(𝛿)𝑛 −𝐴(𝛿))𝜃
∣∣∣} ≤ 2 max

𝜃∈𝒩 (𝐽)

{∣∣∣𝜃⊤(𝐴(𝛿)𝑛 −𝐴(𝛿))𝜃
∣∣∣} .

Combining the last three displays with a union bound argument, we get for 𝑡′ =
𝑡 + 𝑠 log(9) + 𝑠 log

(
𝑒𝑝
𝑠

)
and 𝑡 > 0 that

ℙ

(
Z(2)𝑛 (𝑠) > 𝜁(2)𝑛 (𝑠, 𝑡)

)
≤ 2𝑒−𝑡, (4.2)



340 K. Lounici

with

𝜁(2)𝑛 (𝑠, 𝑡) = 𝐶 max

{
𝛿𝜎max(𝑠)

𝑐1

√
𝑡 + 𝑠 log(9) + 𝑠 log

(
𝑒𝑝
𝑠

)
𝑛

,

(𝐾 ∨ 𝜎1)
𝑡 + 𝑠 log(9) + 𝑠 log

(
𝑒𝑝
𝑠

)
𝑛

}
.

We proceed similarly to treat the quantity Z
(1)
𝑛 (𝑠). We first note that

𝜃⊤
(

diag(Σ(𝛿)𝑛 − Σ(𝛿))
)
𝜃 =

1

𝑛

𝑛∑
𝑖=1

𝑝∑
𝑗=1

([
𝜃(𝑗)𝑌

(𝑗)
𝑖

]2
− 𝛿Σ𝑗,𝑗

(
𝜃(𝑗)
)2)

.

Next, we have for any 𝑚 ≥ 2 and any 𝜃 ∈ 𝒮𝑝𝑠

𝔼

[( 𝑝∑
𝑗=1

(
𝜃(𝑗)𝑌 (𝑗)

)2
− 𝛿Σ𝑗,𝑗

(
𝜃(𝑗)
)2)𝑚]

≤
𝑝∑

𝑗=1

(
𝜃(𝑗)
)2(

2𝑚−1𝔼
[(

𝑌 (𝑗)
)2𝑚]

+ 2𝑚−1𝛿𝑚Σ𝑚
𝑗,𝑗

)

≤
𝑝∑

𝑗=1

(𝜃(𝑗))2
[
𝛿2𝑚−1𝔼𝑋

[(
𝑋(𝑗)

)2𝑚]
+ 𝛿𝑚2𝑚−1Σ𝑚

𝑗,𝑗

]

≤
𝑝∑

𝑗=1

(𝜃(𝑗))2
[
2𝛿𝑚!

(
4∥𝑋(𝑗)∥2𝜓2

)𝑚
+ 𝛿𝑚2𝑚−1Σ𝑚

𝑗,𝑗

]
≤

𝑝∑
𝑗=1

(𝜃(𝑗))2
[
2𝛿𝑚!

(
4

𝑐1
Σ𝑗,𝑗

)𝑚
+ 𝛿𝑚2𝑚−1Σ𝑚

𝑗,𝑗

]

≤ 𝑚!

2

(
𝐶

𝑐1 ∧ 1

√
𝛿𝜎max(1)

)2(
𝐶𝜎max(1)

𝑐1 ∧ 1

)𝑚−2
,

for some numerical constant 𝐶 > 0. Then, for any 𝜃 ∈ 𝒮𝑝𝑠 , Bernstein’s inequality
(Proposition 2.9 in [9]) gives for any 𝑡′ > 0 that

ℙ

(∣∣∣𝜃⊤ (diag(Σ(𝛿)𝑛 − Σ(𝛿))
)
𝜃
∣∣∣ > 𝐶

𝜎max(1)

𝑐1 ∧ 1
max

{√
𝛿𝑡′

𝑛
,
𝑡′

𝑛

})
≤ 2𝑒−𝑡

′
,

for some numerical constant 𝐶 > 0. Next, a similar union bound argument as we

used above for Z
(2)
𝑛 (𝑠) gives

ℙ

(
Z(1)𝑛 (𝑠) > 𝜁(1)𝑛 (𝑠, 𝑡)

)
≤ 2𝑒−𝑡, (4.3)

with

𝜁(1)𝑛 (𝑠, 𝑡) = 𝐶
𝜎max(1)

𝑐1 ∧ 1
max

{√
𝛿(𝑡 + 𝑠 log

(
𝑒𝑝
𝑠

)
)

𝑛
,
𝑡 + 𝑠 log

(
𝑒𝑝
𝑠

)
𝑛

}
,
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for some numerical constant 𝐶 > 0. Next, easy computations give 1
𝛿 𝜁
(1)
𝑛 (𝑠, 𝑡) +

1
𝛿2 𝜁

(2)
𝑛 (𝑠, 𝑡) ≤ 𝜁𝑛(𝑠, 𝑡) where

𝜁𝑛(𝑠, 𝑡) = 𝐶
𝜎1

𝑐1 ∧ 1
max

{√
𝑡 + 𝑠 log

(
𝑒𝑝
𝑠

)
𝛿2𝑛

,

(
𝐾

𝜎1
∨ 1

)
𝑡 + 𝑠 log

(
𝑒𝑝
𝑠

)
𝛿2𝑛

}
,

for some numerical constant 𝐶 > 0. Combining (4.1), (4.2) and (4.3) with a union
bound argument, we get, for any 𝑠 = 1, . . . , 𝑝, that

ℙ
(
Z𝑛(𝑠) > 𝜁𝑛(𝑠, 𝑡)

) ≤ 4𝑒−𝑡.

Finally, using again a union bound argument, we get from the previous display
that

ℙ

( 𝑝∩
𝑠=1

{
Z𝑛(𝑠) > 𝜁𝑛(𝑠, 𝑡)

}) ≤ 4𝑝𝑒−𝑡.

Replacing 𝑡 by 𝑡 + log(𝑒𝑝) and up to a rescaling of the constants, we get that

ℙ

( 𝑝∩
𝑠=1

{
Z𝑛(𝑠) > 𝜁𝑛(𝑠, 𝑡)

}) ≤ 𝑒−𝑡, (4.4)

for some numerical constant 𝐶 > 0. Finally, taking 𝑡 = log(𝑒𝑝) yields the result.
□

The proof of Proposition 2 is essentially the same as that of Proposition 3.
The only difference is a sharper control of the moment 𝔼[∣𝜃⊤𝑍𝜃∣𝑚], which yields
a smaller bound in the large deviation regime. Indeed, we have for any 𝑚 ≥ 2 and
any 𝜃 ∈ 𝒮𝑝𝑠 that

𝔼[∣𝜃⊤𝑍𝜃∣𝑚] ≤ 2𝑚−1𝔼[(𝜃⊤𝑋)2𝑚] + 2𝑚−1
∑𝑝

𝑗=1
(𝜃(𝑗))2𝔼[(𝑋(𝑗))2𝑚]

≤ 𝑚!

2

(
𝐶

𝜎max(𝑠)

𝑐1

)𝑚
,

for some sufficiently large numerical constant 𝐶 > 0, where we have (2.1) and
Assumption 1. Therefore, we can apply Bernstein’s inequality with 𝜎 = 𝐾 =
𝜎max(𝑠)

𝑐1
. The rest of the proof is identical to that of Proposition 3.

4.2. Proof of Theorems 1 and 2

We start with the proof of Theorem 2. We will use the following lemma in order
to prove our results.

Lemma 3. Let 𝜃 ∈ 𝒮𝑝. Let Σ ∈ ℝ𝑝×𝑝 be a symmetric positive semi-definite matrix
with largest eigenvalue 𝜎1 of multiplicity 1 and second largest eigenvalue 𝜎2. Then,
for any 𝜃 ∈ 𝒮𝑝, we have

1

2
(𝜎1 − 𝜎2)∥𝜃𝜃⊤ − 𝜃1𝜃

⊤
1 ∥22 ≤ ⟨Σ, 𝜃1𝜃

⊤
1 − 𝜃𝜃⊤⟩.

See Lemma 3.2.1 in [17] for a proof of this result.
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Proof. We have by definition of 𝜃1 and in view of Lemma 3 that

𝜎1 − 𝜎2
2

∥𝜃1𝜃⊤1 − 𝜃1𝜃
⊤
1 ∥22 ≤

〈
Σ, 𝜃1𝜃

⊤
1 − 𝜃1𝜃

⊤
1

〉
≤
〈

Σ − Σ̃𝑛, 𝜃1𝜃
⊤
1 − 𝜃1𝜃

⊤
1

〉
+
〈

Σ̃𝑛, 𝜃1𝜃
⊤
1 − 𝜃1𝜃

⊤
1

〉
≤
〈

Σ − Σ̃𝑛, 𝜃1𝜃
⊤
1 − 𝜃1𝜃

⊤
1

〉
+
[
𝜃⊤1 Σ̃𝑛𝜃1 − 𝜆∣𝜃1∣0

]
−
[
𝜃⊤1 Σ̃𝑛𝜃1 − 𝜆∣𝜃1∣0

]
+ 𝜆∣𝜃1∣0 − 𝜆∣𝜃1∣0

≤
〈

Σ − Σ̃𝑛, 𝜃1𝜃
⊤
1 − 𝜃1𝜃

⊤
1

〉
+ 𝜆∣𝜃1∣0 − 𝜆∣𝜃1∣0

≤ ∥Π𝐽∪𝐽1
(Σ − Σ̃𝑛)Π𝐽∪𝐽1

∥∞
√

2∥𝜃1𝜃⊤1 − 𝜃1𝜃
⊤
1 ∥2

+ 𝜆∣𝜃1∣0 − 𝜆∣𝜃1∣0,
where Π𝐽∪𝐽1

is the orthogonal projection onto l.s.(𝑒𝑗 , 𝑗 ∈ 𝐽 ∪ 𝐽1), 𝐽 = 𝐽(𝜃1) and

𝐽1 = 𝐽(𝜃1).

Thus we get

∥𝜃1𝜃⊤1 − 𝜃1𝜃
⊤
1 ∥22 ≤

2
√

2

𝜎1 − 𝜎2
∥Π𝐽∪𝐽1

(Σ − Σ̃𝑛)Π𝐽∪𝐽1
∥∞∥𝜃1𝜃⊤1 − 𝜃1𝜃

⊤
1 ∥2

+
2

𝜎1 − 𝜎2
𝜆
(
∣𝜃1∣0 − ∣𝜃1∣0

)
.

Set

𝐴 = ∥𝜃1𝜃⊤1 − 𝜃1𝜃
⊤
1 ∥2, 𝛽 =

2
√

2

𝜎1 − 𝜎2
∥Π𝐽∪𝐽1

(Σ − Σ̃𝑛)Π𝐽∪𝐽1
∥∞

and

𝛾 =
2

𝜎1 − 𝜎2
𝜆
(
∣𝜃1∣0 − ∣𝜃1∣0

)
.

The above display becomes

𝐴2 − 𝛽𝐴− 𝛾 ≤ 0.

Next, basic computations on second order polynoms yield the following necessary
condition on 𝐴

𝐴 ≤ 𝛽 +
√

𝛽2 + 4𝛾

2
≤
√

2𝛽2 + 4𝛾

2
=
√

𝛽2 + 2𝛾,

where we have used concavity of 𝑥 → √
𝑥.

Set 𝑠1 = ∣𝜃1∣0 and 𝑠1 = ∣𝜃1∣0. Note that ∣𝐽 ∪ 𝐽1∣ ≤ 𝑠1 + 𝑠1 ≤ 2𝑠. Next, we

have in view of Proposition 3 and under the condition 2𝐾
2

𝜎2
1
𝑠 log2(𝑒𝑝) ≤ 𝛿2𝑛, with

probability at least 1 − 1
𝑝 that

∥Π𝐽∪𝐽1

(
Σ̃𝑛 − Σ

)
Π𝐽∪𝐽1

∥2∞ ≤ 𝑐2
𝜎21

𝑐21 ∧ 1

log(𝑒𝑝)

𝛿2𝑛
(𝑠1 + 𝑠1).
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Thus, we get, with probability at least 1 − 1
𝑝 that

𝛽2 + 2𝛾 ≤ 8

(𝜎1 − 𝜎2)2

(
𝑐2

𝜎21
𝑐21 ∧ 1

log(𝑒𝑝)

𝛿2𝑛
− 𝜎1 − 𝜎2

8
𝜆

)
𝑠1

+
8

(𝜎1 − 𝜎2)2

[
𝑐2

𝜎21
𝑐21 ∧ 1

log(𝑒𝑝)

𝛿2𝑛
+ (𝜎1 − 𝜎2)

𝜆

4

]
𝑠1.

Next, we note that

𝑐2
𝜎21

𝑐21 ∧ 1

log(𝑒𝑝)

𝛿2𝑛
≤ 𝜎1 − 𝜎2

8
𝜆,

provided that 𝜆 satisfies (3.7) with a large enough numerical constant 𝐶 > 0.
Combining the last two displays, we get for 𝜆 taken as in (3.7), with probability
at least 1 − 1

𝑝 that

𝛽2 + 2𝛾 ≤ 𝐶′ 𝜎21
(𝜎1 − 𝜎2)2

log(𝑒𝑝)

𝛿2𝑛
𝑠1,

where 𝐶′ > 0 can depend only on 𝑐1. □

The proof of Theorem 1 is virtually the same and is left to the reader.

4.3. Proof of Lemma 2

Proof. A standard matrix perturbation argument gives ∣𝜎̂𝑗 − 𝜎𝑗 ∣ ≤ ∥Σ̃𝑛 − Σ∥∞,
∀1 ≤ 𝑗 ≤ 𝑝. Consequently, we get

𝜎1 − ∥Σ̃𝑛 − Σ∥∞ ≤ 𝜎̂1 ≤ 𝜎1 + ∥Σ̃𝑛 − Σ∥∞,

𝜎̂1 − 𝜎̂2 = 𝜎̂1 − 𝜎1 + 𝜎1 − 𝜎2 + 𝜎2 − 𝜎̂2

≥ 𝜎1 − 𝜎2 − (∣𝜎̂1 − 𝜎1∣ + ∣𝜎̂2 − 𝜎2∣)
≥ 𝜎1 − 𝜎2 − 2∥Σ̃𝑛 − Σ∥∞

and similarly

𝜎̂1 − 𝜎̂2 ≤ 𝜎1 − 𝜎2 + 2∥Σ̃𝑛 − Σ∥∞.

Combining now (3.8) with (3.13) with a sufficiently large constant 𝑐 > 0, we get
with probability at least 1 − 1

𝑝 that

1

2
𝜎1 ≤ 𝜎̂1 ≤ 2𝜎1,

1

2
(𝜎1 − 𝜎2) ≤ 𝜎̂1 − 𝜎̂2 ≤ 2(𝜎1 − 𝜎1),

and

𝜎21
8(𝜎1 − 𝜎2)

≤ 𝜎̂21
𝜎̂1 − 𝜎̂2

≤ 8𝜎21
𝜎1 − 𝜎2

. (4.5)
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Next, Proposition 4 gives, with probability at least 1 − 1
𝑝 , for any 1 ≤ 𝑠 ≤ 𝑝

that

Z2𝑛(𝑠) ≤ 𝑐2𝜎21
𝑠 log(𝑒𝑝)

𝑛

≤ 𝑐2(𝜎1 − 𝜎2)
𝜎21

𝜎1 − 𝜎2

log(𝑒𝑝)

𝑛
𝑠.

Combining the last two displays with a union bound argument, we get with prob-
ability at least 1 − 2

𝑝 that

Z2𝑛(𝑠) ≤ 8
𝑐2

𝐶
(𝜎1 − 𝜎2)𝜆𝐷𝑠, ∀1 ≤ 𝑠 ≤ 𝑝.

Choosing the numerical constant 𝐶 > 0 large enough in (3.12), we get from the
previous display with probability at least 1 − 2

𝑝 that

Z2𝑛(𝑠) ≤ (𝜎1 − 𝜎2)𝜆𝐷𝑠, ∀1 ≤ 𝑠 ≤ 𝑝.

Up to a rescaling of the constants, we can assume that the above inequality holds
true with probability at least 1 − 1

𝑝 . This gives the first inequality in Lemma 2.

The second inequality is immediate in view of (3.12) and (4.5). □

4.4. Proof of Theorem 4

This proof uses standard tools of the minimax theory (see for instance [15]). The
proof is more technical in the missing observation case (𝛿 < 1) in order the get the
sharp dependence 𝛿−2 factor. In order to improve readability, we will decompose
the proof into several technical facts and proceed first with the main arguments.
Then, we give the proofs for the technical facts.

Proof. We consider the following class 𝒞 of 𝑝× 𝑝 covariance matrices

𝒞 =
{

Σ𝜃 = Σ(𝜃, 𝜎1, 𝜎2) = 𝜎1𝜃𝜃
⊤ + 𝜎2(𝐼𝑝 − 𝜃𝜃⊤), ∀𝜃 ∈ 𝒮𝑝 : ∣𝜃∣0 ≤ 𝑠1,

∀𝜎1 ≥ (1 + 𝜂)𝜎2 > 0
}
,

(4.6)

where 𝐼𝑝 is the 𝑝× 𝑝 identity matrix and 𝜂 > 0 is some absolute constant.

Note that the set 𝒞 contains only full rank matrices with the same determi-
nant and whose first principal component 𝜃 is 𝑠1-sparse. Note also that 𝒞 ⊂ 𝒞.
Indeed, it is easy to see that 𝜎1 is the largest eigenvalue of Σ with multiplicity 1 and
associated eigenvector 𝜃 with less than 𝑠1 nonzero components, ∥𝐼𝑝 − 𝜃𝜃⊤∥∞ = 1
and (𝐼𝑝 − 𝜃𝜃⊤)𝜃 = 0.

Next, we define 𝜔0 = (1, 1, 0, . . . , 0) ∈ {0, 1}𝑝 and

Ω =
{
𝜔 = (𝜔(1), . . . , 𝜔(𝑝)) ∈ {0, 1}𝑝 : 𝜔(1) = 𝜔(2) = 1, ∣𝜔∣0 = 𝑠1

}
∪ {𝜔0}.

A Varshamov-Gilbert’s type bound (see for instance Lemma 4.10 in [9]) guaran-

tees the existence of a subset 𝒩 ⊂ Ω with cardinality log(Card(𝒩 )) ≥ 𝐶1(𝑠1 −
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2) log(𝑒(𝑝− 2)/(𝑠1 − 2)) containing 𝜔0 such that, for any two distinct elements 𝜔
and 𝜔′ of 𝒩 , we have

∣𝜔 − 𝜔′∣0 ≥ 𝑠1
8

where 𝐶1 > 0 is an absolute constant.

Set 𝜖 = 𝑎
√

𝜎̄2𝑠1 log(𝑒𝑝/𝑠1)
𝛿2𝑛 for some numerical constant 𝑎 ∈ (0, 1/

√
2). Note

that we have 𝜖 < 1/2 under Condition (3.14). Consider now the following set of
normalized vectors

Θ =

{
𝜃(𝜔) =

(√
1 − 𝜖2

2
,

√
1 − 𝜖2

2
,

𝜔(3)𝜖√
𝑠1 − 2

, . . . ,
𝜔(𝑝)𝜖√
𝑠1 − 2

)⊤
: 𝜔 ∈ 𝒩 ∖ {𝜔0}

}

∪
{
𝜃0 =

1√
2
𝜔⊤0

}
. (4.7)

Note that ∣Θ∣ = ∣𝒩 ∣ and ∣𝜃∣0 ≤ 𝑠1 for any 𝜃 ∈ Θ.

Lemma 4. For any 𝑎 > 0 and any distinct 𝜃1, 𝜃2 ∈ Θ, we have

∥𝜃1𝜃⊤1 − 𝜃2𝜃
⊤
2 ∥22 ≥

𝑎2

8
𝜎̄2

𝑠1 log(𝑒𝑝/𝑠1)

𝛿2𝑛
. (4.8)

Clearly, for any 𝜃 ∈ Θ, we have Σ𝜃 ∈ 𝒞. We introduce now the class

𝒞(Θ) =
{

Σ𝜃 ∈ 𝒞 : 𝜃 ∈ Θ
}
.

Denote by ℙΣ the distribution of (𝑌1, . . . , 𝑌𝑛). For any 𝜃, 𝜃′ ∈ 𝒮𝑝, the Kullback-
Leibler divergences 𝐾

(
ℙΣ𝜃′ ,ℙΣ𝜃

)
between ℙΣ𝜃′ and ℙΣ𝜃 is defined by

𝐾
(
ℙΣ𝜃′ ,ℙΣ𝜃

)
= 𝔼Σ𝜃′ log

(
𝑑ℙΣ𝜃′
𝑑ℙΣ𝜃

)
.

We have the following result

Lemma 5. Let 𝑋1, . . . , 𝑋𝑛 ∈ ℝ𝑝 be i.i.d. 𝑁 (0,Σ) with Σ = Σ𝜃 ∈ 𝒞(Θ). Assume
that 𝜎1

𝜎2
≥ 1 + 𝜂 for some absolute 𝜂 > 0. Taking 𝑎 > 0 sufficiently small, we have

for any 𝜃′ ∈ 𝒮𝑝, that

𝐾
(
ℙΣ𝜃′ ,ℙΣ𝜃0

) ≤ 𝑎2

2
𝑠1 log

(
𝑒𝑝

𝑠1

)
.

Thus, we have that

1

Card(Θ) − 1

∑
𝜃∈Θ∖{𝜃0}

𝐾(ℙΣ𝜃ℙΣ𝜃0 ) ≤ 𝛼 log
(
Card(Θ) − 1

)
(4.9)

is satisfied for any 𝛼 > 0 if 𝑎 > 0 is chosen as a sufficiently small numerical constant
depending on 𝛼. In view of (4.8) and (4.9), (3.15) now follows by application of
Theorem 2.5 in [15]. □
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4.5. Proof of Lemma 4

Proof. For any distinct 𝜃1, 𝜃2 ∈ Θ, we have

∣𝜃1 − 𝜃2∣22 ≥
1

8
𝜖2 =

𝑎2

8
𝜎̄2

𝑠1 log(𝑒𝑝/𝑠1)

𝛿2𝑛
.

Next, we need to compare ∥𝜃1𝜃⊤1 − 𝜃2𝜃
⊤
2 ∥2 to ∣𝜃1 − 𝜃2∣2.

For any 𝜃1, 𝜃2 ∈ Θ, we have

∥𝜃1𝜃⊤1 − 𝜃2𝜃
⊤
2 ∥22 = 2 − 2(𝜃⊤1 𝜃2)

2

= ∣𝜃1∣22 + ∣𝜃2∣22 − 2(𝜃⊤1 𝜃2)
2

= ∣𝜃1 − 𝜃2∣22 + 2[(𝜃⊤1 𝜃2) − (𝜃⊤1 𝜃2)
2].

We immediately get from the previous display that ∥𝜃1𝜃⊤1 − 𝜃2𝜃
⊤
2 ∥2 ≥ ∣𝜃1 − 𝜃2∣2

for any 𝜃1, 𝜃2 ∈ Θ since 𝜃⊤1 𝜃2 > 0 for any 𝜃1, 𝜃2 ∈ Θ when 𝜖 < 1
2 . □

4.6. Proof of Lemma 5

Recall that 𝑋1, . . . , 𝑋𝑛 ∈ ℝ𝑝 are i.i.d. 𝑁 (0,Σ) with Σ = Σ𝜃 ∈ 𝒞(Θ). For any

1 ≤ 𝑖 ≤ 𝑛, set 𝛿𝑖 = (𝛿𝑖,1, . . . , 𝛿𝑖,𝑝)⊤ ∈ ℝ𝑝. We note that 𝛿1, . . . , 𝛿𝑛 are random
vectors in ℝ𝑝 with i.i.d. entries 𝛿𝑖,𝑗 ∼ 𝐵(𝛿) and independent from (𝑋1, . . . , 𝑋𝑛).

Recall that the observations 𝑌1, . . . , 𝑌𝑛 satisfies 𝑌
(𝑗)
𝑖 = 𝛿𝑖,𝑗𝑋

(𝑗)
𝑖 . Denote by ℙΣ the

distribution of (𝑌1, . . . , 𝑌𝑛) and by ℙ
(𝛿)
Σ the conditional distribution of (𝑌1, . . . , 𝑌𝑛)

given (𝛿1, . . . , 𝛿𝑛). Next, we note that for any 1 ≤ 𝑖 ≤ 𝑛 the conditional random

variables 𝑌𝑖 ∣ (𝛿1, . . . , 𝛿𝑛) are independent Gaussian vectors 𝑁(0,Σ
(𝛿𝑖)
𝜃 ), where

(Σ
(𝛿𝑖)
𝜃 )𝑗,𝑘 =

{
𝛿𝑖,𝑗𝛿𝑖,𝑘Σ𝑗,𝑘 if 𝑗 ∕= 𝑘,

𝛿𝑖,𝑗Σ𝑗,𝑗 otherwise.

Thus, we have ℙ
(𝛿)
Σ𝜃

= ⊗𝑛
𝑖=1ℙΣ(𝛿𝑖)

𝜃

. Denote respectively by ℙ𝛿 and 𝔼𝛿 the

probability distribution of (𝛿1, . . . , 𝛿𝑛) and the associated expectation. We also

denote by 𝔼Σ𝜃 and 𝔼
(𝛿)
Σ𝜃

the expectation and conditional expectation associated

respectively with ℙΣ𝜃 and ℙ
(𝛿)
Σ𝜃

.

Next, for any 𝜃, 𝜃′ ∈ 𝒮𝑝, the Kullback-Leibler divergences 𝐾
(
ℙΣ𝜃′ ,ℙΣ𝜃

)
be-

tween ℙΣ𝜃′ and ℙΣ𝜃 satisfies

𝐾
(
ℙΣ𝜃′ ,ℙΣ𝜃

)
= 𝔼Σ𝜃′ log

(
𝑑ℙΣ𝜃′
𝑑ℙΣ𝜃

)
= 𝔼Σ𝜃′ log

(
𝑑(ℙ𝛿 ⊗ ℙ

(𝛿)
Σ𝜃′

)

𝑑(ℙ𝛿 ⊗ ℙ
(𝛿)
Σ𝜃

)

)

= 𝔼𝛿𝔼
(𝛿)
Σ𝜃′

log

(
𝑑ℙ
(𝛿)
Σ𝜃′

𝑑ℙ
(𝛿)
Σ𝜃

)
= 𝔼𝛿𝐾

(
ℙ
(𝛿)
Σ𝜃′

,ℙ
(𝛿)
Σ𝜃

)
=

𝑛∑
𝑖=1

𝔼𝛿𝑖𝐾

(
ℙ
Σ

(𝛿𝑖)

𝜃′
,ℙ
Σ

(𝛿𝑖)

𝜃

)
. (4.10)



Sparse PCA with Missing Observations 347

Set 𝜃𝛿𝑖 = (𝛿𝑖,1𝜃
(1), . . . , 𝛿𝑖,𝑝𝜃

(𝑝))⊤. In view of (4.6), we have

Σ
(𝛿𝑖)
𝜃 =

[
(𝜎1 − 𝜎2)∣𝜃𝛿𝑖 ∣22 + 𝜎2

]
Π𝜃,𝛿𝑖 + 𝜎2

(
𝐼(𝛿𝑖)𝑝 − Π𝜃,𝛿𝑖

)
, (4.11)

and Π𝜃,𝛿𝑖 is the orthogonal projection onto 𝑙.𝑠.(𝜃𝛿𝑖) (Note indeed that we have

in general ∣𝜃𝛿𝑖 ∣2 ≤ 1, therefore Π𝜃,𝛿𝑖 = ∣𝜃𝛿𝑖 ∣−22 𝜃𝛿𝑖𝜃
⊤
𝛿𝑖

.) For any 𝜃 ∈ Θ, we set

𝜎1(𝜃) = (𝜎1 − 𝜎2)∣𝜃𝛿𝑖 ∣22 + 𝜎2.

∙ Fact 1: For any 1 ≤ 𝑖 ≤ 𝑛, any 𝜃, 𝜃′ ∈ 𝒮𝑝 and any realization of 𝛿𝑖 ∈ {0, 1}𝑝,
we have

𝐾
(
ℙ
Σ

(𝛿𝑖)

𝜃′
,ℙ
Σ

(𝛿𝑖)

𝜃

)
=

1

2

(
𝜎2

𝜎1(𝜃)
+

𝜎1(𝜃
′)

𝜎2
− 2

)
+

1

2
log

(
𝜎1(𝜃)

𝜎1(𝜃′)

)
+

1

2
tr (Π𝜃,𝛿𝑖Π𝜃′,𝛿𝑖)

[
𝜎1(𝜃

′)
𝜎1(𝜃)

+ 1 − 𝜎2
𝜎1(𝜃)

− 𝜎1(𝜃
′)

𝜎2

]
.

We apply Fact 1 with 𝜃 = 𝜃0 = 1√
2
𝜔⊤0 and take the expectation w.r.t. 𝛿𝑖 for

any 𝑖 = 1, . . . , 𝑛. Thus, we get the following.

∙ Fact 2: Assume that 𝜎1

𝜎2
≥ 1 + 𝜂 for some absolute 𝜂 > 0. Taking 𝑎 > 0

sufficiently small (that can depend only on 𝜂), we have for any 𝑖 = 1, . . . , 𝑛,
any 𝜃′ ∈ 𝒮𝑝, that

𝔼𝛿𝑖

[
𝐾
(
ℙ
Σ

(𝛿𝑖)

𝜃′
,ℙ
Σ

(𝛿𝑖)

𝜃0

)] ≤ 𝛿2

2𝜎̄2
𝜖2.

We immediately get from Fact 2 for any 𝜃′ ∈ Θ that

𝐾
(
ℙΣ𝜃′ ,ℙΣ𝜃0

)
=

𝑛∑
𝑖=1

𝔼𝛿𝑖

[
𝐾
(
ℙ
Σ

(𝛿𝑖)

𝜃′
,ℙ
Σ

(𝛿𝑖)

𝜃0

)] ≤ 𝛿2𝑛

2𝜎̄2
𝜖2 =

𝑎2

2
𝑠1 log(𝑒𝑝/𝑠1).

4.7. Proof of Fact 1

In view of (4.11), we get for any 1 ≤ 𝑖 ≤ 𝑛, any 𝜃, 𝜃′ ∈ 𝒮𝑝 and any realization
𝛿𝑖 ∈ {0, 1}𝑝 that ℙ

Σ
(𝛿𝑖)

𝜃

≪ ℙ
Σ

(𝛿𝑖)

𝜃′
and hence 𝐾

(
ℙ
Σ

(𝛿𝑖)

𝜃′
,ℙ
Σ

(𝛿𝑖)

𝜃

)
< ∞.

Define 𝐽𝑖 = {𝑗 : 𝛿𝑖,𝑗 = 1, 1 ≤ 𝑗 ≤ 𝑟} and 𝑑𝑖 = ∣𝐽𝑖∣. Define the mapping 𝑃𝑖 :

ℝ𝑝 → ℝ𝑑𝑖 as follows 𝑃𝑖(𝑥) = 𝑥(𝐽𝑖) where for any 𝑥 = (𝑥(1), . . . , 𝑥(𝑝))⊤ ∈ ℝ𝑝,
𝑥(𝐽𝑖) ∈ ℝ𝑑𝑖 is obtained by keeping only the components 𝑥(𝑘) with their index
𝑘 ∈ 𝐽𝑖. We denote by 𝑃 ∗

𝑖 : ℝ𝑑𝑖 → ℝ𝑝 the right inverse application of 𝑃𝑖. We note
that

𝑃𝑖Σ
(𝛿𝑖)
𝜃 𝑃 ∗

𝑖 = 𝜎1(𝜃)Π𝜃(𝐽𝑖),𝛿𝑖 + 𝜎2
[
𝐼𝑑𝑖 − Π𝜃(𝐽𝑖),𝛿𝑖

]
,

where Π𝜃(𝐽𝑖),𝛿𝑖 denotes the orthogonal projection onto the subspace l.s.(𝜃𝛿𝑖(𝐽𝑖)) of

ℝ𝑑𝑖 . Note also that 𝑃𝑖Σ
(𝛿𝑖)
𝜃 𝑃 ∗

𝑖 admits an inverse for any 𝜃 ∈ 𝒮𝑝 provided that 𝛿𝑖
is not the null vector in ℝ𝑝 and we have

(𝑃𝑖Σ
(𝛿𝑖)
𝜃 𝑃 ∗

𝑖 )−1 =
1

𝜎1(𝜃)
Π𝜃(𝐽𝑖),𝛿𝑖 +

1

𝜎2

[
𝐼𝑑𝑖 − Π𝜃(𝐽𝑖),𝛿𝑖

]
.
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Thus, we get for any 𝜃, 𝜃′ ∈ 𝒮𝑝 that

𝐾
(
ℙ
Σ

(𝛿𝑖)

𝜃′
,ℙ
Σ

(𝛿𝑖)

𝜃

)
= 𝐾

(
ℙ
𝑃𝑖Σ

(𝛿𝑖)

𝜃′ 𝑃∗𝑖
,ℙ

𝑃𝑖(Σ
(𝛿𝑖)

𝜃 )𝑃∗𝑖

)
=

1

2
tr
(

(𝑃𝑖Σ
(𝛿𝑖)
𝜃 𝑃 ∗

𝑖 )−1𝑃𝑖(Σ
(𝛿𝑖)
𝜃′ )𝑃 ∗

𝑖

)
+

1

2
log

⎛⎝det
(
𝑃𝑖Σ

(𝛿𝑖)
𝜃 𝑃 ∗

𝑖

)
det
(
𝑃𝑖Σ

(𝛿𝑖)
𝜃′ 𝑃 ∗

𝑖

)
⎞⎠− 𝑑𝑖

2

=
1

2
tr

([
1

𝜎1(𝜃)
Π𝜃(𝐽𝑖),𝛿𝑖 +

1

𝜎2

(
𝐼𝑑𝑖 − Π𝜃(𝐽𝑖),𝛿𝑖

)]
× [𝜎1(𝜃′)Π𝜃′(𝐽𝑖),𝛿𝑖 + 𝜎2

(
𝐼𝑑𝑖 − Π𝜃′(𝐽𝑖),𝛿𝑖

)])

+
1

2
log

⎛⎝det
(
𝑃𝑖Σ

(𝛿𝑖)
𝜃 𝑃 ∗

𝑖

)
det
(
𝑃𝑖Σ

(𝛿𝑖)
𝜃′ 𝑃 ∗

𝑖

)
⎞⎠− 𝑑𝑖

2

=
1

2

(
𝜎2

𝜎1(𝜃)
+

𝜎1(𝜃
′)

𝜎2
− 2

)
+

1

2
tr
(
Π𝜃(𝐽𝑖),𝛿𝑖Π𝜃′(𝐽𝑖),𝛿𝑖

) [𝜎1(𝜃′)
𝜎1(𝜃)

+ 1 − 𝜎2
𝜎1(𝜃)

− 𝜎1(𝜃
′)

𝜎2

]

+
1

2
log

⎛⎝det
(
𝑃𝑖Σ

(𝛿𝑖)
𝜃 𝑃 ∗

𝑖

)
det
(
𝑃𝑖Σ

(𝛿𝑖)
𝜃′ 𝑃 ∗

𝑖

)
⎞⎠

=
1

2

(
𝜎2

𝜎1(𝜃)
+

𝜎1(𝜃
′)

𝜎2
− 2

)
+

1

2
tr (Π𝜃,𝛿𝑖Π𝜃′,𝛿𝑖)

[
𝜎1(𝜃

′)
𝜎1(𝜃)

+ 1 − 𝜎2
𝜎1(𝜃)

− 𝜎1(𝜃
′)

𝜎2

]
+

1

2
log

(
𝜎1(𝜃)

𝜎1(𝜃′)

)
,

where we have used 𝜎1(𝜃) and 𝜎2 are eigenvalues of 𝑃𝑖Σ
(𝛿𝑖)
𝜃 𝑃 ∗

𝑖 with respective

multiplicity 1 and 𝑑1 − 1 for any 𝜃 ∈ Θ, and also that tr
(
Π𝜃(𝐽𝑖),𝛿𝑖Π𝜃′(𝐽𝑖),𝛿𝑖

)
=

tr (Π𝜃,𝛿𝑖Π𝜃′,𝛿𝑖) for any 𝜃, 𝜃′ ∈ Θ. □

4.8. Proof of Fact 2

For any 𝑖 = 1, . . . , 𝑛, we have that 𝜎1(𝜃0) = (𝜎1 − 𝜎2)
𝛿𝑖,1+𝛿𝑖,2

2 + 𝜎2 and

𝜎1(𝜃
′) = (𝜎1 − 𝜎2)

[(
1 − 𝜖2

2

)
(𝛿𝑖,1 + 𝛿𝑖,2) + 𝜖2

𝑝∑
𝑗=3

𝜔(𝑗)

𝑠1 − 2
𝛿𝑖,𝑗

]
+ 𝜎2.

Note that the random quantities in the last three displays depend on 𝛿𝑖,1, 𝛿𝑖,2
only through the sum 𝑍𝑖 := 𝛿𝑖,1 + 𝛿𝑖,2 ∼ Bin(2, 𝛿) and that 𝑍𝑖 is independent of
(𝛿𝑖,3, . . . , 𝛿𝑖,𝑝).
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Thus, we get

𝔼𝛿𝑖

[
𝜎2

2𝜎1(𝜃0)

]
= 𝔼𝛿𝑖

[
𝜎2

(𝜎1 − 𝜎2)(𝛿𝑖,1 + 𝛿𝑖,2) + 2𝜎2

]
=

𝛿2𝜎2
2𝜎1

+
2𝛿(1 − 𝛿)𝜎2
𝜎1 + 𝜎2

+
(1 − 𝛿)2

2
.

Similarly, we obtain

𝔼𝛿𝑖

[
𝜎1(𝜃

′)
2𝜎2

]
=

𝛿(𝜎1 − 𝜎2)∣𝜃′∣22 + 𝜎2
2𝜎2

=
𝛿𝜎1
2𝜎2

+
1 − 𝛿

2
.

Combining the last two displays, we get

𝔼𝛿𝑖

[
𝜎2

2𝜎1(𝜃0)
+

𝜎1(𝜃
′)

2𝜎2
− 1

]
=

𝛿(𝜎1 − 𝜎2)
2(𝜎1 + 𝛿𝜎2)

2𝜎1𝜎2(𝜎1 + 𝜎2)
. (4.12)

We study now the following quantity

1

2
tr (Π𝜃0,𝛿𝑖Π𝜃′,𝛿𝑖)

[
𝜎1(𝜃

′)
𝜎1(𝜃0)

+ 1 − 𝜎2
𝜎1(𝜃0)

− 𝜎1(𝜃
′)

𝜎2

]
.

We note first that

Π𝜃0,𝛿𝑖 =
1

𝛿𝑖,1 + 𝛿𝑖,2

⎛⎝ 𝛿𝑖,1 𝛿𝑖,1𝛿𝑖,2 𝑂
𝛿𝑖,1𝛿𝑖,2 𝛿𝑖,2 𝑂

𝑂 𝑂 𝑂

⎞⎠
and

Π𝜃′,𝛿𝑖 =
1 − 𝜖2

2∣𝜃′𝛿𝑖 ∣22

⎛⎝ 𝛿𝑖,1 𝛿𝑖,1𝛿𝑖,2 ∗
𝛿𝑖,1𝛿𝑖,2 𝛿𝑖,2 ∗

∗ ∗ ∗

⎞⎠ .

Thus, we get that

1

2
tr (Π𝜃0,𝛿𝑖Π𝜃′,𝛿𝑖) =

(
1 − 𝜖2

) 𝛿2𝑖,1 + 2𝛿𝑖,1𝛿𝑖,2 + 𝛿2𝑖,2
4∣𝜃′𝛿𝑖 ∣22(𝛿𝑖,1 + 𝛿𝑖,2)

=
(
1 − 𝜖2

) 𝛿𝑖,1 + 𝛿𝑖,2
4∣𝜃′𝛿𝑖 ∣22

.

Next, we set

𝜎̃(𝜃0, 𝜃
′) =

𝜎2𝜎1(𝜃
′) + 𝜎2𝜎1(𝜃0) − 𝜎22 − 𝜎1(𝜃0)𝜎1(𝜃

′)
𝜎2𝜎1(𝜃0)

.

If 𝑍𝑖 = 1, then 𝜎1(𝜃0) = (𝜎1 + 𝜎2)/2 and

𝜎̃(𝜃0, 𝜃
′) =

2𝜎2𝜎1(𝜃
′) + 𝜎2(𝜎1 + 𝜎2) − 2𝜎22 − (𝜎1 + 𝜎2)𝜎1(𝜃

′)
𝜎2(𝜎1 + 𝜎2)

= − (𝜎1 − 𝜎2)
2∣𝜃′𝛿𝑖 ∣22

𝜎2(𝜎1 + 𝜎2)
.

If 𝑍𝑖 = 2, then 𝜎1(𝜃0) = 𝜎1 and

𝜎̃(𝜃0, 𝜃
′) = − (𝜎1 − 𝜎2)

2∣𝜃′𝛿𝑖 ∣22
𝜎1𝜎2

.
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We now freeze (𝛿𝑖,3, . . . , 𝛿𝑖,𝑝) and compute the following expectation w.r.t 𝑍𝑖

𝔼𝑍𝑖

[
1

2
tr (Π𝜃0,𝛿𝑖Π𝜃′,𝛿𝑖) 𝜎̃(𝜃0, 𝜃

′)
]

= − 𝛿2
(
1 − 𝜖2

) (𝜎1 − 𝜎2)
2

2𝜎1𝜎2

− 𝛿(1 − 𝛿)
(
1 − 𝜖2

) (𝜎1 − 𝜎2)
2

2𝜎2(𝜎1 + 𝜎2)
.

We note that the above display does not depend on (𝛿𝑖,3, . . . , 𝛿𝑖,𝑝). Thus, we get

𝔼𝛿

[
1

2
tr (Π𝜃0,𝛿𝑖Π𝜃′,𝛿𝑖) 𝜎̃(𝜃0, 𝜃

′)
]

= − 𝛿2
(
1 − 𝜖2

) (𝜎1 − 𝜎2)
2

2𝜎1𝜎2

− 𝛿(1 − 𝛿)
(
1 − 𝜖2

) (𝜎1 − 𝜎2)
2

2𝜎2(𝜎1 + 𝜎2)
.

Combining the above display with (4.12), we get

Δ1 :=
𝛿(𝜎1 − 𝜎2)

2(𝜎1 + 𝛿𝜎2)

2𝜎1𝜎2(𝜎1 + 𝜎2)
− 𝛿2

(
1 − 𝜖2

) (𝜎1 − 𝜎2)
2

2𝜎1𝜎2

− 𝛿(1 − 𝛿)
(
1 − 𝜖2

) (𝜎1 − 𝜎2)
2

2𝜎2(𝜎1 + 𝜎2)

= − 𝛿

2

(𝜎1 − 𝜎2)
2

𝜎1𝜎2(𝜎1 + 𝜎2)

(
(1 − 𝛿)(1 − 2𝜖2)𝜎1 − 𝛿𝜖2(𝜎1 + 𝜎2)

)
.

We study now the logarithm factor

Δ2 :=
1

2
𝔼𝛿 log

(
𝜎1(𝜃0)

𝜎1(𝜃′)

)
.

Recall that 𝜎1(𝜃0) = (𝜎1 − 𝜎2)
𝑍𝑖
2 + 𝜎2 with 𝑍𝑖 = 𝛿𝑖,1 + 𝛿𝑖,2 ∼ Bin(2, 𝛿) and

𝜎1(𝜃
′) = (𝜎1 − 𝜎2)∣𝜃𝛿𝑖 ∣22 + 𝜎2 = (𝜎1 − 𝜎2)

[
𝑍𝑖
2

+
𝜖2

𝑠1 − 2
𝑍𝑖

]
+ 𝜎2.

with 𝑍𝑖 =
∑𝑝

𝑗=3 𝜔
(𝑗)𝛿𝑖,𝑗 ∼ Bin(𝑠1 − 2, 𝛿) and is independent of (𝛿𝑖,1, 𝛿𝑖,2).

We now freeze 𝑍𝑖 and take the expectation w.r.t. 𝑍𝑖. Thus, we get

𝔼𝑍𝑖

[
1

2
log

(
𝜎1(𝜃0)

𝜎1(𝜃′)

)]
= − (1 − 𝛿)2

2
log

(
(𝜎1 − 𝜎2)

𝜖2

𝑠1−2𝑍𝑖 + 𝜎2

𝜎2

)

− 𝛿(1 − 𝛿) log

(
(𝜎1 − 𝜎2)[(1 − 𝜖2) + 2𝜖2

𝑠1−2𝑍𝑖] + 2𝜎2

𝜎1 + 𝜎2

)

− 𝛿2

2
log

(
(𝜎1 − 𝜎2)[(1 − 𝜖2) + 𝜖2

𝑠1−2𝑍𝑖] + 𝜎2

𝜎1

)
.
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We study now the first term in the right-hand side of the above display. We have

(𝜎1 − 𝜎2)
𝜖2

𝑠1−2𝑍𝑖 + 𝜎2

𝜎2
= 1 − 𝜖2 + 𝜖2

[(
𝜎1
𝜎2

− 1

)
𝑍𝑖

𝑠1 − 2
+ 1

]

= 1 − 𝜖2 + 𝜖2

[
𝑝∑

𝑗=3

[(
𝜎1
𝜎2

− 1

)
𝛿𝑖,𝑗 + 1

]
𝜔(𝑗)

𝑠1 − 2

]
,

since
∑𝑝

𝑗=3 𝜔
(𝑗) = 𝑠1 − 2 by construction. Next, we notice that − log is convex.

Thus applying Jensen’s inequality twice gives that

𝔼𝑍𝑖

[
− log

(
(𝜎1 − 𝜎2)

𝜖2

𝑠1−2𝑍𝑖 + 𝜎2

𝜎2

)]

≤ 𝜖2𝔼𝑍𝑖

[
− log

( 𝑝∑
𝑗=3

[(
𝜎1
𝜎2

− 1

)
𝛿𝑖,𝑗 + 1

]
𝜔(𝑗)

𝑠1 − 2

)]

≤ −𝜖2
𝑝∑

𝑗=3

𝜔(𝑗)

𝑠1 − 2
𝔼𝛿𝑖,𝑗 log

[(
𝜎1
𝜎2

− 1

)
𝛿𝑖,𝑗 + 1

]

≤ −𝛿𝜖2 log

(
𝜎1
𝜎2

)
.

We proceed similarly and obtain

(𝜎1 − 𝜎2)[(1 − 𝜖2) + 2𝜖2

𝑠1−2𝑍𝑖] + 2𝜎2

𝜎1 + 𝜎2

= (1 − 𝜖2) + 𝜖2
(

2𝜎2
𝜎1 + 𝜎2

+
2(𝜎1 − 𝜎2)𝑍𝑖

(𝑠1 − 2)(𝜎1 + 𝜎2)

)
= (1 − 𝜖2) + 𝜖2

𝑝∑
𝑗=3

𝜔(𝑗)

𝑠1 − 2

(
2𝜎2 + 𝛿𝑖,𝑗(𝜎1 − 𝜎2)

𝜎1 + 𝜎2

)
,

and

𝔼𝑍𝑖

[
− log

(
(𝜎1 − 𝜎2)[(1 − 𝜖2) + 2𝜖2

𝑠1−2𝑍𝑖] + 2𝜎2

𝜎1 + 𝜎2

)]

≤ −𝜖2
𝑝∑

𝑗=3

𝜔(𝑗)

𝑠1 − 2
𝔼𝛿𝑖,𝑗 log

[
2𝜎2 + 𝛿𝑖,𝑗(𝜎1 − 𝜎2)

𝜎1 + 𝜎2

]
≤ −(1 − 𝛿)𝜖2 log

(
2𝜎2

𝜎1 + 𝜎2

)
.

We obtain similarly

(𝜎1 − 𝜎2)[(1 − 𝜖2) + 𝜖2

𝑠1−2𝑍𝑖] + 𝜎2

𝜎1
= (1 − 𝜖2) + 𝜖2

(
𝑍𝑖(𝜎1 − 𝜎2)

(𝑠1 − 2)𝜎1
+

𝜎2
𝜎1

)
= (1 − 𝜖2) + 𝜖2

𝑝∑
𝑗=3

𝜔(𝑗)

𝑠1 − 2

(
𝜎2 + 𝛿𝑖,𝑗(𝜎1 − 𝜎2)

𝜎1

)
,
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and

𝔼𝑍𝑖

[
− log

(
(𝜎1 − 𝜎2)[(1 − 𝜖2) + 𝜖2

𝑠1−2𝑍𝑖] + 𝜎2

𝜎1

)]

≤ −𝜖2
𝑝∑

𝑗=3

𝜔(𝑗)

𝑠1 − 2
𝔼𝛿𝑖,𝑗 log

[
𝜎2 + 𝛿𝑖,𝑗(𝜎1 − 𝜎2)

𝜎1

]

≤ −(1 − 𝛿)𝜖2 log

(
𝜎2
𝜎1

)
.

Thus, we get

Δ2 = − (1 − 𝛿)2𝛿

2
𝜖2 log

(
𝜎1
𝜎2

)
− 𝛿(1 − 𝛿)2𝜖2 log

(
2𝜎2

𝜎1 + 𝜎2

)
− (1 − 𝛿)𝛿2

2
𝜖2 log

(
𝜎2
𝜎1

)
= − (1 − 𝛿)𝛿

2
𝜖2
[
(1 − 𝛿) log

(
𝜎1
𝜎2

)
+ 2 log

(
2𝜎2

𝜎1 + 𝜎2

)
+ 𝛿 log

(
𝜎2
𝜎1

)]
=

(1 − 𝛿)𝛿

2
𝜖2
[
log

(
(𝜎1 + 𝜎2)

2

2𝜎1𝜎2

)
− log(2) + 2𝛿 log

(
𝜎1
𝜎2

)]
.

Set Δ := Δ1 + Δ2. We have

Δ = − 𝛿

2

(𝜎1 − 𝜎2)
2

𝜎1𝜎2(𝜎1 + 𝜎2)

(
(1 − 𝛿)(1 − 2𝜖2)𝜎1 − 𝛿𝜖2(𝜎1 + 𝜎2)

)
+

(1 − 𝛿)𝛿

2
𝜖2
[
log

(
(𝜎1 + 𝜎2)

2

4𝜎1𝜎2

)
+ 2𝛿 log

(
𝜎1
𝜎2

)]
≤ 𝛿2

2𝜎̄2
𝜖2 − 𝛿(1 − 𝛿)

2

[
(𝜎1 − 𝜎2)

2

𝜎2(𝜎1 + 𝜎2)

(
(1 − 2𝜖2)

)
−𝜖2
[
log

(
(𝜎1 + 𝜎2)

2

4𝜎1𝜎2

)
+ 2 log

(
𝜎1
𝜎2

)]]
≤ 𝛿2

2𝜎̄2
𝜖2 − 𝛿(1 − 𝛿)

2

[
(𝜎1 − 𝜎2)

2

𝜎2(𝜎1 + 𝜎2)

(
(1 − 2𝜖2)

)− 𝜖2 log

(
𝜎1(𝜎1 + 𝜎2)

2

4𝜎32

)]
.

We now show that if the absolute constant 𝑎 > 0 (recall that 𝜖 = 𝑎𝜎̄
√

𝑠1 log(𝑒𝑝/𝑠1)
𝛿2𝑛 )

is taken sufficiently small, then we have

(𝜎1 − 𝜎2)
2

𝜎2(𝜎1 + 𝜎2)

(
(1 − 2𝜖2)

)− 𝜖2 log

(
𝜎1(𝜎1 + 𝜎2)

2

4𝜎32

)
≥ 0, ∀𝜎1 > (1 + 𝜂)𝜎2.
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We set 𝑢 = 𝜎1 − 𝜎2 and 𝑥 = 𝑢/(2𝜎2). Then, we have

(𝜎1 − 𝜎2)
2

𝜎2(𝜎1 + 𝜎2)

(
(1 − 2𝜖2)

)− 𝜖2 log

(
𝜎1(𝜎1 + 𝜎2)

2

4𝜎32

)
=

𝑢2

𝜎2(2𝜎2 + 𝑢)
(1 − 2𝜖2) − 𝜖2 log

(
(𝜎2 + 𝑢)(2𝜎2 + 𝑢)2

4𝜎32

)
=

𝑢2

2𝜎22(1 + 𝑢/(2𝜎2))
(1 − 2𝜖2) − 𝜖2 log

([
1 +

𝑢

𝜎2

] [
1 +

𝑢

2𝜎2

]2)

≥ 𝑢2

2𝜎22(1 + 𝑢/(2𝜎2)
(1 − 2𝜖2) − 3𝜖2 log

(
1 +

𝑢

𝜎2

)
≥ 2(1 − 2𝜖2)

𝑥2

1 + 𝑥
− 3𝜖2 log (1 + 2𝑥) ≥ 0, ∀𝑥 ≥ 𝜂

2
,

provided that the numerical constant 𝑎 > 0 is taken sufficiently small (and this
choice can depend only on 𝜂 > 0). □

4.9. Bounding of the moment 𝔼[(𝜽⊤𝒁𝜽)2]

Set 𝑍 = 𝑋𝑋⊤ − diag(𝑋𝑋⊤). For any 𝜃 = (𝜃(1), . . . , 𝜃(𝑝))⊤ ∈ ℝ𝑝 and 𝛿1, . . . , 𝛿𝑝 ∈
{0, 1}𝑝, we set 𝜃𝛿 = (𝛿1𝜃

(1), . . . , 𝛿𝑝𝜃
(𝑝))⊤. Note that

𝜃⊤[𝑌 𝑌 ⊤ − diag(𝑌 𝑌 ⊤)]𝜃 = 𝜃⊤𝛿 𝑍𝜃𝛿.

We have for any 𝜃 ∈ 𝒮𝑝𝑠 that

(𝜃⊤𝑍𝜃)2 ≤ 2(𝜃⊤𝛿 𝑍𝜃𝛿)
2 + 2𝛿4(𝜃⊤[Σ − diag(Σ)]𝜃)2. (4.13)

It is easy to see that (𝜃⊤[Σ − diag(Σ)]𝜃)2 ≤ 𝜎2max(𝑠) for any 𝜃 ∈ 𝒮𝑝𝑠 . Next, we
concentrate on (𝜃⊤𝛿 𝑍𝜃𝛿)

2.

We have for any 𝜃 ∈ 𝒮𝑝𝑠 that

(𝜃⊤𝛿 𝑍𝜃𝛿)
2 =

(∑
𝑗 ∕=𝑘

𝛿𝑗𝛿𝑘𝜃
(𝑗)𝜃(𝑘)𝑋(𝑗)𝑋(𝑘)

)2
=

∑
𝑗1,𝑗2:𝑗1 ∕=𝑗2

𝛿𝑗1𝛿𝑗2

(
𝜃(𝑗1)

)2 (
𝜃(𝑗2)

)2 (
𝑋(𝑗1)

)2 (
𝑋(𝑗2)

)2
+

∑
𝑗1,𝑗2,𝑗3 distinct

𝛿𝑗1𝛿𝑗2𝛿𝑗3

(
𝜃(𝑗1)

)2
𝜃(𝑗2)𝜃(𝑗3)

(
𝑋(𝑗1)

)2
𝑋(𝑗2)𝑋(𝑗3)

+
∑

𝑗1,𝑗2,𝑗3𝑗4 distinct

𝛿𝑗1𝛿𝑗2𝛿𝑗3𝛿𝑗4𝜃
(𝑗1)𝜃(𝑗2)𝜃(𝑗3)𝜃(𝑗4)𝑋(𝑗1)𝑋(𝑗2)𝑋(𝑗3)𝑋(𝑗4).
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Taking the expectation w.r.t. to 𝛿1, . . . , 𝛿𝑝, we get

𝔼𝛿
[
(𝜃⊤𝛿 𝑍𝜃𝛿)

2
]

= 𝛿2
∑

𝑗1,𝑗2:𝑗1 ∕=𝑗2

(
𝜃(𝑗1)

)2 (
𝜃(𝑗2)

)2 (
𝑋(𝑗1)

)2 (
𝑋(𝑗2)

)2
+ 𝛿3

∑
𝑗1,𝑗2,𝑗3 distinct

(
𝜃(𝑗1)

)2
𝜃(𝑗2)𝜃(𝑗3)

(
𝑋(𝑗1)

)2
𝑋(𝑗2)𝑋(𝑗3)

+ 𝛿4
∑

𝑗1,𝑗2,𝑗3𝑗4,distinct

𝜃(𝑗1)𝜃(𝑗2)𝜃(𝑗3)𝜃(𝑗4)𝑋(𝑗1)𝑋(𝑗2)𝑋(𝑗3)𝑋(𝑗4).

Set

𝐴 =
∑

𝑗1,𝑗2:𝑗1 ∕=𝑗2

(
𝜃(𝑗1)

)2 (
𝜃(𝑗2)

)2 (
𝑋(𝑗1)

)2 (
𝑋(𝑗2)

)2
𝐵 =

∑
𝑗1,𝑗2,𝑗3 distinct

(
𝜃(𝑗1)

)2
𝜃(𝑗2)𝜃(𝑗3)

(
𝑋(𝑗1)

)2
𝑋(𝑗2)𝑋(𝑗3)

𝐶 =
∑

𝑗1,𝑗2,𝑗3𝑗4,distinct

𝜃(𝑗1)𝜃(𝑗2)𝜃(𝑗3)𝜃(𝑗4)𝑋(𝑗1)𝑋(𝑗2)𝑋(𝑗3)𝑋(𝑗4).

We have

𝔼𝛿
[
𝜃⊤𝛿 𝑍𝜃𝛿

]
= 𝛿2𝐴 + 𝛿3𝐵 + 𝛿4𝐶

= (𝛿2 − 𝛿4)𝐴 + (𝛿3 − 𝛿4)𝐵 + 𝛿4(𝐴 + 𝐵 + 𝐶)

= [(𝛿2 − 𝛿4 − (𝛿3 − 𝛿4)]𝐴 + (𝛿3 − 𝛿4)(𝐴 + 𝐵) + 𝛿4(𝐴 + 𝐵 + 𝐶)

= 𝛿2(1 − 𝛿)𝐴 + 𝛿3(1 − 𝛿)(𝐴 + 𝐵) + 𝛿4(𝐴 + 𝐵 + 𝐶). (4.14)

Next, we note that

𝐴 + 𝐵 + 𝐶 = (𝜃⊤𝑍𝜃)2 =

(
(𝜃⊤𝑋)2 −

∑
𝑗

(𝜃(𝑗)𝑋(𝑗))2
)2

≤ 2(𝜃⊤𝑋)4 + 2

(∑
𝑗

(𝜃(𝑗))2(𝑋(𝑗))2
)2

≤ 2(𝜃⊤𝑋)4 + 2
∑
𝑗

(𝜃(𝑗))2(𝑋(𝑗))4.

Taking now the expectation w.r.t 𝑋 , we get for any 𝜃 ∈ 𝒮𝑝𝑠 that

𝔼𝑋 [𝐴 + 𝐵 + 𝐶] ≤ 2𝔼𝑋 [(𝜃⊤𝑋)4] + 2
∑
𝑗

(𝜃(𝑗))2𝔼𝑋 [(𝑋(𝑗))4] (4.15)

≤ 8∥𝜃⊤𝑋∥4𝜓2
+ 8
∑
𝑗

(𝜃(𝑗))2∥𝑋(𝑗)∥4𝜓2

≤ 8

𝑐21

(
𝔼𝑋 [(𝜃⊤𝑋)2]

)2
+

8

𝑐21

∑
𝑗

(𝜃(𝑗))2
(
𝔼𝑋 [(𝑋(𝑗))2]

)2
≤ 16

𝑐21
𝜎2max(𝑠),

where we have used (2.1) and Assumption 1.
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We now treat 𝐴 + 𝐵 similarly. We have

𝐴 + 𝐵 =
∑
𝑗1

(𝜃(𝑗1))2(𝑋(𝑗1))2
( ∑
𝑗2,𝑗3 : 𝑗2 ∕=𝑗1,𝑗3 ∕=𝑗1

𝜃(𝑗2)𝜃(𝑗3)𝑋(𝑗2)𝑋(𝑗3)

)
=
∑
𝑗1

(𝜃(𝑗1))2(𝑋(𝑗1))2
(
𝜃⊤𝑋 − 𝜃(𝑗1)𝑋(𝑗1)

)2
≤ 2
∑
𝑗1

(𝜃(𝑗1))2(𝑋(𝑗1))2
(
𝜃⊤𝑋

)2
+ 2
∑
𝑗1

(𝜃(𝑗1))4(𝑋(𝑗1))4.

Next, we note that

𝔼𝑋 [(𝑋(𝑗1))2(𝜃⊤𝑋)2] ≤
√
𝔼𝑋 [(𝑋(𝑗1))4]

√
𝔼𝑋 [(𝜃⊤𝑋)4] ≤ 4

𝑐21
𝜎2max(𝑠).

Combining the two previous displays, we get

𝔼𝑋 [𝐴 + 𝐵] ≤ 16

𝑐21
𝜎2max(𝑠). (4.16)

We now deal with 𝐴. We have

𝐴 ≤
(∑

𝑗1

(𝜃(𝑗1))2(𝑋(𝑗1))2
)2

−
∑
𝑗1

(𝜃(𝑗1))4(𝑋(𝑗1))4 ≤
∑
𝑗1

(𝜃(𝑗1))2(𝑋(𝑗1))4.

Taking the expectation w.r.t. 𝑋 , we get

𝔼𝑋 [𝐴] ≤ 𝔼𝑋

(∑
𝑗1

(𝜃(𝑗1))2(𝑋(𝑗1))4
)
≤ 4

𝑐21
𝜎2max(𝑠). (4.17)

Combining (4.14)–(4.17), we get

𝔼
[
(𝜃⊤𝛿 𝑍𝜃𝛿)

2
] ≤ 16

𝑐21
𝛿2𝜎2max(𝑠)

(
1 − 𝛿 + 𝛿(1 − 𝛿) + 𝛿2

)
=

16

𝑐21
𝛿2𝜎2max(𝑠).

Combining the above display with (4.13), we get that

𝔼
[
(𝜃⊤𝑍𝜃)2

] ≤ 𝑐
1

𝑐21
𝛿2𝜎2max(𝑠), (4.18)

for some numerical constant 𝑐 > 0.
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High Dimensional CLT and its Applications
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Abstract. We study the behavior of empirical processes indexed by finite
classes of functions but we allow that the cardinality of these classes tend
to infinity. We prove general results showing that one can bootstrap these
types of processes even if they do not converge. We show that these results
can be used to construct novel statistical tests. To this end we offer a new
goodness of fit test.
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1. Introduction

Let 𝑋𝑖 be a sequence of i.i.d. random variables on a Polish space S, and let ℱ be
a collection of functions ℱ = {𝑓 : S → R}. We will consider the stochastic process

𝑍𝑛(𝑓)𝑓∈ℱ =
1√
𝑛

𝑛∑
𝑖=1

(𝑓(𝑋𝑖) − 𝐸𝑓(𝑋𝑖)).

Traditionally, this setting is studied under two scenarios. If the collection ℱ is
finite then we are dealing with finite dimensional Central Limit Theorem (FIDI-
CLT), while in the case of infinite ℱ the Empirical Processes Theory applies. In
this paper we will address the middle case, that is, we will consider a sequence of
classes ℱ𝑛 where for each 𝑛 the cardinality of ℱ𝑛 is finite but tends to infinity. We
call this case high dimensional CLT.

The motivation. It is well known (Gine and Zinn [4]) that the necessary and
sufficient conditions for the Uniform CLT are FIDI convergence and stochastic
equicontinuity.

FIDI : −→
𝑍 𝑛 = (𝑍𝑛(𝑓1), . . . , 𝑍𝑛(𝑓𝑑)) → converges weakly (1.1)

for any finite collections {𝑓1, . . . , 𝑓𝑑} ⊂ ℱ .
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Stochastic equicontinuity: for 𝜀 > 0

lim
𝛿→0

lim sup
𝑛→∞

𝑃
(

sup
𝑑(𝑓,𝑔)<𝛿

∣𝑍𝑛(𝑓 − 𝑔)∣ > 𝜀
)

= 0. (1.2)

These two conditions are used in the following way. For an arbitrary small 𝛿 > 0
we choose a covering class {𝑓1, . . . , 𝑓𝑑𝛿} = ℱ𝛿 ⊂ ℱ and construct a piecewise
constant process that changes the values only at the balls of radius 𝛿 which are

centered at 𝑓 ∈ ℱ𝛿. This process is de facto a finite dimensional vector
−→
𝑍 𝑛,𝛿 =

(𝑍𝑛(𝑓1), . . . , 𝑍𝑛(𝑓𝑑𝛿)). Next we let

𝑍𝑛 = (𝑍𝑛 −−→
𝑍 𝑛,𝛿) +

−→
𝑍 𝑛,𝛿 = 𝐼𝑛 + 𝐼𝐼𝑛,

and argue that part 𝐼𝑛 converges to zero by (1.2) while part 𝐼𝐼𝑛 converges weakly
to the appropriate limit by (1.1).

It is important to observe that the distribution of the limiting stochastic
process (i.e., 𝑍𝑛 → 𝑍0) depends on the behavior of FIDI part only (since 𝐼𝑛 → 0)
and for this reason alone it makes sense to study the FIDI part more carefully.
Since the above technique applies only if 𝛿 tends to zero, and since this typically
implies that the cardinality of ℱ𝛿 tends to infinity (i.e., 𝑑𝛿 →∞ ) we believe that
one should investigate the properties of

−→
𝑍 𝑛 = (𝑍𝑛(𝑓1), . . . , 𝑍𝑛(𝑓𝑑𝑛)) for 𝑑𝑛 →∞. (1.3)

By considering only the high dimensional part (1.3) we gain on several fronts.
These are much simpler and easier objects to study (i.e., random vectors versus
empirical processes), their behavior does not depend on stochastic equicontinuity
which considerably relaxes the restrictions commonly encountered in Empirical
Processes Theory (see Dudley [2]). This in turn opens the doors for some novel
and unusual statistical applications.

For example, the classical approach typically requires that we first prove the
weak convergence (i.e., 𝑍𝑛 → 𝑍𝑜) , and then derive statistical applications by
arguing that for appropriately chosen functional 𝐻 the laws of 𝐻(𝑍𝑛) and 𝐻(𝑍𝑜)
are similar (i.e., ℒ𝐻(𝑍𝑛) ≈ ℒ𝐻(𝑍𝑜) ). Here we adopt a different strategy. We
show that one could use the bootstrap version 𝑍∗

𝑛 in order to approximate the
distribution of 𝑍𝑛 (i.e., ℒ𝐻(𝑍𝑛) ≈ ℒ𝐻(𝑍∗) ) and to do so one does not need the
assumption on weak convergence. In fact, in Section 3 we present a novel goodness
of fit test which diverges (i.e., ℒ𝐻(𝑍𝑛) → ∞ ) but is still applicable; since its
distribution can be approximated by the bootstrap version of the process.

This approach of using the bootstrap to construct statistical tests, even for
statistics that diverge, is not new. To the best of our knowledge the first to demon-
strate this possibility were Bickel and Freedman [1]. The authors argued that in
some cases the regression, for which the number of parameters increases with 𝑛,
could be efficiently bootstrapped even though the original statistic 𝐻𝑛 does not
necessarily converge. A more general (albeit less applicable) result was presented
in Radulovic [5] where it was shown that there exists a class of empirical processes
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for which we can apply bootstrapping techniques without assuming limiting distri-
butions. Recently this result is expanded to more applicable settings in Radulovic
[6] and with some applications to copula functions in Fremanian et al. [3].

The main novelty presented here is that we are not dealing with empirical
processes but high dimensional vectors. This approach fits nicely with the Bickel
and Freedman idea. By treating the vectors we are able to bypass the cumbersome
𝑃 -Donsker type requirements (see van deer Vaart [7] and Dudley [2]) and conse-
quently we are able to characterize the whole new class of statistics for which this
interesting phenomenon (statistical testing without the weak limit) applies.

The paper is organized as follows. In Section 2 we state the main results:
Theorem 2.1 provides a general tool for the construction of specific types of sta-
tistics for which we could have hypothesis testing without assuming the weak
convergence. Corollary 2.1 and Theorem 2.2 expand on this idea by providing
more concrete (applicable) framework for such constructions.

In Section 3 we show that a straightforward application of Theorem 2.2 yields
a novel goodness of fit (GOF) test for which we provide a small simulation study.
We would like to stress here that the main purpose of this paper is not to introduce
a novel GOF test, but rather to demonstrate that the unusual and somewhat
cumbersome results (Theorem 2.1 and Theorem 2.2) could indeed produce concrete
and applicable test statistics. Section 4 is reserved for the proofs.

2. Main results

Definitions. Given two random vectors 𝑋,𝑌 : Ω → R𝑑 we define the Bounded
Lipschitz distance

𝑑𝐵𝐿1(𝑋,𝑌 ) = sup
𝐻∈𝐵𝐿(R𝑑)

∣𝐸𝐻(𝑋) − 𝐸𝐻(𝑌 )∣,

where 𝐵𝐿(R𝑑) := {𝐻 : R𝑑→R, ∣𝐻(𝑥)−𝐻(𝑦)∣ ≤ min(∣∣𝑥− 𝑦∣∣∞, 1)}. We will also
use d-3 distance

𝑑3(𝑋,𝑌 ) = sup
𝐻∈𝐶3(R𝑑)

∣𝐸𝐻(𝑋) − 𝐸𝐻(𝑌 )∣

where 𝐶3(R
𝑑) := {𝐻 : R𝑑→R, ∣∣𝐻𝑖,𝑗,𝑘(𝑥)∣∣∞ ≤ 1)}, and 𝐻𝑖,𝑗,𝑘(𝑥) denotes all

partial derivatives up to order 3 (we let 𝐻0,0,0(𝑥) ≡ 𝐻(𝑥) ).

Next we let 𝑑 ≤ 𝑛𝑚 for some 𝑚 > 0, and let
−→
𝑋𝑛,

−→
𝑌 𝑛 : Ω → 𝑅𝑑 such that

−→
𝑋𝑛 =

𝑛∑
𝑖=1

−→
𝑋 𝑖,𝑛 =

𝑛∑
𝑖=1

(𝑋1,𝑖,𝑛, 𝑋2,𝑖,𝑛, . . . , 𝑋𝑑,𝑖,𝑛)

and

−→
𝑌 𝑛 =

𝑛∑
𝑖=1

−→
𝑌 𝑖,𝑛 =

𝑛∑
𝑖=1

(𝑌1,𝑖,𝑛, 𝑌2,𝑖,𝑛, . . . , 𝑌𝑑,𝑖,𝑛).
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We will assume that the vectors
−→
𝑋 𝑖,𝑛 𝑖 = 1, . . . , 𝑛 are independent and that the

vectors
−→
𝑌 𝑖,𝑛 𝑖 = 1, . . . , 𝑛 are independent but

−→
𝑌 𝑖,𝑛’s are not necessarily indepen-

dent from
−→
𝑋 𝑖,𝑛’s. We let 𝐸𝑌 stand for a conditional expectation with respect to

sigma algebra generated by 𝑌𝑗,𝑖,𝑛, 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑑. The following theorem is a version
of Lemma A in Radulovic [6].

Theorem 2.1. Let 𝐸𝑋𝑗,𝑖,𝑛 = 𝐸𝑌 𝑌𝑗,𝑖,𝑛 = 0 and suppose that for some constant 𝐶
and sequence 𝑄𝑛 and 𝑅𝑛, the following holds

max
𝑗,𝑖

𝐸∣𝐸𝑌 (𝑌 2𝑗,𝑖,𝑛) − 𝐸(𝑋2
𝑗,𝑖,𝑛)∣ ≤ 𝐶

𝑄𝑛𝑛3/2
(2.1)

and

max
𝑗,𝑖

𝐸
(∣𝑋𝑗,𝑖,𝑛∣3 + 𝐸𝑌 (∣𝑌𝑗,𝑖,𝑛∣3

) ≤ 𝐶

𝑅𝑛𝑛3/2
. (2.2)

Then for some 𝛾 > 0

𝐸(𝑑𝐵𝐿1(
−→
𝑋𝑛,

−→
𝑌 𝑛∣𝜎(𝑋𝑗,𝑖,𝑛, 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑑)) = 𝑂

(
ln𝑛𝛾𝑑2

𝑛1/2𝑄𝑛
+

ln𝑛𝛾𝑑3

𝑛1/2𝑅𝑛

)
.

The above theorem does not follow the classical narrative where one shows
that a sequence of random variables converges to a fixed distribution (i.e.,

−→
𝑋𝑛 →−→

𝑋 0). However, it allows for the construction of an alternative sequence designed

to approximate the original process (i.e.,
−→
𝑌 𝑛 ≈ −→

𝑋𝑛).
The statement as well as the conditions of Theorem 2.1 is cumbersome but

it is fairly easy to adapt them into the setting of Empirical Processes and the
bootstrap approximation. For this we turn to the following corollary. Let {𝑋𝑖}𝑛𝑖=1,
be i.i.d. 𝑃 sequences defined on a Polish space S and let { 𝑋

∗
𝑖 }𝑛𝑖=1 be a bootstrap

sample based on 𝑋𝑖, (i.e., 𝑋∗
𝑖 = 𝑋𝑗 with probability 1/𝑛 ). Let 𝑑𝑛 ≤ 𝑛𝑚 for some

𝑚 > 0 and let us consider a sequence of indexing functions: ℱ𝑛 = {𝑓𝑗,𝑛 : S →
R, 𝑗 = 1, . . . , 𝑑𝑛}. If we let

𝑋𝑗,𝑖,𝑛 = 𝑛−1/2(𝑓𝑗,𝑛(𝑋𝑖) − 𝐸𝑓𝑗,𝑛(𝑋𝑖))

and

𝑌𝑗,𝑖,𝑛 = 𝑛−1/2(𝑓𝑗,𝑛(𝑋∗
𝑖 ) − 𝐸𝑓𝑗,𝑛(𝑋∗

𝑖 )),

then the vectors
−→
𝑋𝑛,

−→
𝑌 𝑛 : Ω → 𝑅𝑑𝑛 introduced prior Theorem 2.1 could be written

using more familiar notation:
−→
𝑋𝑛 =

−→
𝑍 𝑛(𝑓)𝑓∈ℱ𝑛 and

−→
𝑌 𝑛 =

−→
𝑍 ∗
𝑛(𝑓)𝑓∈ℱ𝑛 ,

where we use the notation
−→
𝑍 , just to emphasize that we are dealing with finite

dimensional indexing class.

Corollary 2.1. Suppose that
−→
𝑍 𝑛(𝑓)𝑓∈ℱ𝑛 and

−→
𝑍 ∗
𝑛(𝑓)𝑓∈ℱ𝑛 are defined as above and

suppose that

max
𝑗,𝑛

𝐸(𝑓𝑗,𝑛(𝑋1))
4 ≲ 1

𝑄𝑛
and max

𝑗,𝑛
𝐸∣𝑓𝑗,𝑛(𝑋1)∣3 ≲ 1

𝑅𝑛
(2.3)
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then for some 𝛾 > 0

𝐸𝑑𝐵𝐿1(
−→
𝑍 𝑛,

−→
𝑍 ∗
𝑛) = 𝑂

(
ln𝑛𝛾𝑑2𝑛

𝑛1/2𝑄
1/2
𝑛

+
ln𝑛𝛾𝑑3𝑛
𝑛1/2𝑅𝑛

)
.

If 𝐺 : 𝑅𝑑𝑛 → 𝑅 is a Lipschitz under the sup norm on 𝑅𝑑𝑛then

𝐸𝑑𝐵𝐿1(𝐺(
−→
𝑍 𝑛), 𝐺(

−→
𝑍 ∗
𝑛)) = 𝑂

(
ln𝑛𝛾𝑑2𝑛

𝑛1/2𝑄
1/2
𝑛

+
ln𝑛𝛾𝑑3𝑛
𝑛1/2𝑅𝑛

)
. (2.4)

Remark 2.1. If 𝑑𝑛 stays fix then the above results reduce to usual multidimensional
bootstrap CLT. Thus the obvious novelty here is that we could let 𝑑𝑛 →∞. Since

in this case it is not even clear how to define a weak convergence of
−→
𝑍 𝑛, the above

results open the doors for some creative and novel statistical constructions. The
second part of Corollary 2.1 provides the additional tool for such constructions.
Namely the classical Empirical Processes techniques often use the continuous map-
ping theorem in order to derive the concrete statistical inference. Here we offer the
second part of Corollary 2.1, which is a version of continuous mapping theorem
(we need a slightly stronger Lipschitz assumption).

Since the functional 𝐺(𝑎1, . . . , 𝑎𝑑𝑛) = max𝑖≤𝑑𝑛 ∣𝑎𝑖∣ is clearly Lipschitz, the

above Corollary 2.1 allows us to bootstrap sup norm (i.e., sup𝑓∈ℱ𝑛(
−→
𝑍 𝑛(𝑓))

≈ sup𝑓∈ℱ𝑛(
−→
𝑍∗

𝑛(𝑓)) ). But we can do even more. The following result is designed
to deal with 𝐿1 and 𝐿2 norms. That is, with statistics:

𝑑𝑛∑
𝑖=1

∣𝑍𝑛(𝑓𝑖,𝑛)∣ ,

𝑑𝑛∑
𝑖=1

(𝑍𝑛(𝑓𝑖,𝑛))2 or more general

𝑑𝑛∑
𝑖=1

𝑔𝑛(𝑍𝑛(𝑓𝑖,𝑛)).

To this end we start with some definitions. For 𝑓𝑘,𝑛 ∈ ℱ𝑛 we define the
centered version of the processes

𝑊𝑛,𝑘 =
1√
𝑛

𝑛∑
𝑖=1

𝑓𝑘,𝑛(𝑋𝑖) and 𝑊 ∗
𝑛,𝑘 =

1√
𝑛

𝑛∑
𝑖=1

𝑓𝑘,𝑛(𝑋∗
𝑖 ) (2.5)

where 𝑓𝑘,𝑛(𝑋𝑖) = 𝑓𝑘,𝑛(𝑋𝑖) − 𝐸𝑓𝑘,𝑛(𝑋𝑖) and 𝑓𝑘,𝑛(𝑋∗
𝑖 ) = 𝑓𝑘,𝑛(𝑋∗

𝑖 ) − 𝐸∗𝑓𝑘,𝑛(𝑋∗
𝑖 ).

For any 𝑔𝑛 : R → R we let

𝑇𝑛 =

𝑑𝑛∑
𝑘=1

𝑔𝑛(𝑊𝑛,𝑘) and 𝑇 ∗𝑛 =

𝑑𝑛∑
𝑘=1

𝑔𝑛(𝑊 ∗
𝑛,𝑘).

The assumptions

1) There exists a universal constant 𝐶 and a sequence 𝑀𝑛 such that

∣∣𝑔′𝑛∣∣∞ ≤ 𝐶, ∣∣𝑔′′𝑛∣∣∞ ≤ 𝐶𝑀𝑛, ∣∣𝑔′′′𝑛 ∣∣∞ ≤ 𝐶𝑀2
𝑛

2) There exist a universal constant 𝐶 and sequences 𝐾𝑛 and 𝑅𝑛 such that

max
𝑘

𝐸∣𝑓𝑘,𝑛(𝑋1)∣3 ≤ 1

𝑅𝑛
and max

𝑘
𝐸(𝑓𝑘,𝑛(𝑋1))

4 ≤ 1

𝐾𝑛
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Theorem 2.2. Under the assumptions 1 and 2 the following is true

𝑑3(𝑇
′
𝑛, 𝑇

∗
𝑛) := sup

𝐻∈𝐶3(1)

∣𝐸𝐻(𝑇 ′𝑛) − 𝐸∗𝐻(𝑇 ∗𝑛)∣

= 𝑂𝑃

(
𝑑3 + 𝑑2𝑀𝑛 + 𝑑𝑀2

𝑛

𝑛1/2𝑅𝑛
+

𝑑2 + 𝑑𝑀𝑛

𝑛1/2𝐾
1/2
𝑛

)
where 𝐶3(1) denotes a set of functions ℎ : 𝑅 → 𝑅 such that ∣∣ℎ∣∣∞ ≤ 1, ∣∣ℎ′∣∣∞ ≤ 1,
∣∣ℎ′′∣∣∞ ≤ 1 and ∣∣ℎ′′′∣∣∞ ≤ 1.

Remark 2.2. Unfortunately ∣𝑥∣ and 𝑥2 are not three times differentiable with
bounded derivatives and consequently we cannot deal with statistics

𝑑𝑛∑
𝑖=1

∣𝑍𝑛(𝑓𝑖,𝑛)∣ and

𝑑𝑛∑
𝑖=1

(𝑍𝑛(𝑓𝑖,𝑛))2

using the “plug-in” approach. Nevertheless, the above Theorem 2.2 allows us to
construct 𝑔𝑛(𝑥) as an approximation. In Section 3 we show how to use Theo-

rem 2.2, and 𝑔𝑛(𝑥) ≈ ∣𝑥∣ in order to bootstrap the statistic
∑𝑑𝑛

𝑖=1 ∣𝑍𝑛(𝑓𝑖,𝑛)∣ and∑𝑑𝑛
𝑖=1(𝑍𝑛(𝑓𝑖,𝑛))2.

3. Applications

Using the results presented thus far we derive a novel GOF test and we show that
on limited set of simulations the suggested test is equal or better than Kolmogorov-
Smirnov test. However, we would like to emphasize here that we do not claim
nor do we prove that the proposed test is superior. The only reason we include
this study is to emphasize that the results presented in Section 2 are not just a
theoretical pedantry but that indeed this approach of constructing statistical tests
without the weak limit assumption could yield to some relevant and potentially
useful statistical applications.

Before we proceed we have to deal with quantile approximation. As we men-
tioned earlier the main novelty of our approach is the fact that we are not requiring

the weak convergence of the process
−→
𝑍 𝑛. Instead we use the bootstrap version of

the process (i.e.,
−→
𝑍 ∗
𝑛 ) and argue that the two are close in 𝑑𝐵𝐿1 or 𝑑3 metric.

However, as stated above, it is not clear if the closeness in these metrics allows for
quantile approximation. The following simple computation testifies that indeed we
can use the aforementioned results in such a way.

Quantile approximation justification

For an arbitrary 𝜀 ∈ (0, 1) and a function 𝐻𝑡,𝜀(𝑥) = 1𝑥≤𝑡+ 𝑡+𝜀−𝑥
𝜀 1𝑡<𝑥≤𝑡+𝜀 we have

that

𝑃 (𝑋𝑛 ≤ 𝑡) ≤ 𝐸𝐻𝑡,𝜀(𝑋𝑛) = 𝐸𝐻𝑡,𝜀(𝑌𝑛) + 𝐸𝐻𝑡,𝜀(𝑋𝑛) − 𝐸𝐻𝑡,𝜀(𝑌𝑛)
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(since 𝜀𝐻𝑡,𝜀(𝑥) ∈ 𝐵𝐿(R) and by letting 𝑑𝐵𝐿1 = 𝑑𝐵𝐿1(𝑋𝑛, 𝑌𝑛) )

≤ 𝑃 (𝑌𝑛 ≤ 𝑡 + 𝜀) +
𝑑𝐵𝐿1

𝜀
.

Similar computation with 𝑡− 𝜀 yields

𝑃 (𝑌𝑛 ≤ 𝑡− 𝜀) − 𝑑𝐵𝐿1

𝜀
≤ 𝑃 (𝑋𝑛 ≤ 𝑡) ≤ 𝑃 (𝑌𝑛 ≤ 𝑡 + 𝜀) +

𝑑𝐵𝐿1

𝜀
. (3.1)

Since 𝜀 > 0 is arbitrary and if we assume that 𝑑𝐵𝐿1 → 0, one could use statement
(3.1) in order to justify the quantile approximation of 𝑃 (𝑋𝑛 ≤ 𝑡) by 𝑃 (𝑌𝑛 ≤ 𝑡).
In our case 𝑌𝑛 is a bootstrapped variable; thus a discrete random variable with
finitely many atoms. Consequently for almost all 𝑡 ∈ 𝑅, and for 𝜀 small enough we
have that 𝑃 (𝑌𝑛 ≤ 𝑡− 𝜀) = 𝑃 (𝑌𝑛 ≤ 𝑡 + 𝜀).

One could easily adapt the above argument (by constructing a three times
differentiable version of 𝐻𝑡,𝜀(𝑥)) and show that

𝑃 (𝑌𝑛 ≤ 𝑡− 𝜀1/3) − 𝑑3
𝜀
≤ 𝑃 (𝑋𝑛 ≤ 𝑡) ≤ 𝑃 (𝑌𝑛 ≤ 𝑡 + 𝜀1/3) +

𝑑3
𝜀
.

Application

Now we are ready for the applications. Let us assume that a sequence {𝑋𝑖}𝑛𝑖=1 is
i.i.d. 𝑃 , and 𝑋𝑖: Ω → R𝑚 for some integer 𝑚 > 0. We consider the sequence of
sets (partitions) of R𝑚 Π𝑛 = {𝐵1,𝑛, . . . , 𝐵𝑑𝑛,𝑛} such that 𝑃 (𝐵𝑖,𝑛 ∩𝐵𝑗,𝑛) = 0 and

max𝑘≤𝑑𝑛 𝑃 (𝐵𝑘,𝑛) ≤ 𝐶
𝑑𝑛

for some fixed constant 𝐶. We use the notation

𝑍𝑛(𝐵𝑘,𝑛) =
1√
𝑛

𝑛∑
𝑖=1

(1𝑋𝑖∈𝐵𝑘,𝑛 − 𝑃 (𝐵𝑘,𝑛)) and 𝑍∗
𝑛(𝐵𝑘,𝑛)

=
1√
𝑛

𝑛∑
𝑖=1

(1𝑋∗𝑖 ∈𝐵𝑘,𝑛 − 𝑃𝑛(𝐵𝑘,𝑛)).

Theorem 3.1. For 𝑑𝑛 ≤ 𝑛𝛾 , 𝛾 < 1/4, let a sequence of sets Π𝑛 be defined as above

and let 𝑇𝑛 =
∑𝑑𝑛

𝑘=1 ∣𝑍𝑛(𝐵𝑘)∣ and 𝑇 ∗𝑛 =
∑𝑑𝑛

𝑘=1 ∣𝑍∗
𝑛(𝐵𝑘)∣ ,then

𝑑3(𝑇𝑛, 𝑇
∗
𝑛) := sup

𝐻∈𝐶3(1)

∣𝐸𝐻(𝑇𝑛) − 𝐸∗𝐻(𝑇 ∗𝑛)∣ = 𝑜𝑃 (1)

Remark 3.1. Theorem 3.1 is a direct consequence of Theorem 2.1 and the assump-
tion 𝛾 < 1/4 comes from the fact that we need that 𝑑2/𝑛1/2 → 0. Moreover, the
rate 𝑛−1/2 is the well-known rate for the CLT (under fourth moment assumption)
while 𝑑2 comes from the number of partial derivatives. For the standard approach
dimension 𝑑 is fixed and the factor 𝑑2 is absorbed into a constant. Here we let
𝑑 →∞.
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GOF test

Next we describe the application of Theorem 3.1 for the one-dimensional case but
the extension to higher dimensions (i.e., 𝑋𝑖 : Ω → 𝑅𝑚 𝑚 > 1) is straightforward.
Let us consider the partitions 𝐵𝑘,𝑛 = [𝑎𝑘,𝑛, 𝑎𝑘+1,𝑛], where we let 𝑎0,𝑛 = −∞
and 𝑎𝑑𝑛,𝑛 = ∞ and 𝑃 (𝐵𝑘,𝑛) = 1

𝑑𝑛
, (one could relax the last assumption to

max𝑘 𝑃 (𝐵𝑘,𝑛) ≤ 𝐶
𝑑𝑛

for some constant 𝐶). The test statistic and its bootstrap
versions are

𝑇𝑛 = 𝑛1/2
∑

𝑘=1,𝑑𝑛

∣𝑃𝑛(𝐵𝑘,𝑛) − 𝑃 (𝐵𝑘,𝑛)∣ and 𝑇 ∗𝑛

= 𝑛1/2
∑

𝑘=1,𝑑𝑛

∣𝑃 ∗
𝑛(𝐵𝑘,𝑛) − 𝑃𝑛(𝐵𝑘,𝑛)∣

The intuition is clear: as 𝑑𝑛 → ∞, we are using finer and finer partitions and

statistic 𝑇𝑛 behaves like a total variation metric. Namely, under the null hypoth-

esis (if 𝑃 is continuous measure) the statistics 𝑇𝑛 is stochastically greater than
1
2

∑𝑑𝑛
𝑖=1 ∣𝐺(𝑎𝑘+1) − 𝐺(𝑎𝑘)∣, where 𝐺𝑃 (𝑡) is a Brownian Bridge process, and this

quantity obviously diverges.
On the other hand one can easily show that under the alternative hypothesis

𝐻1 : 𝑃 ∕= 𝑄 we have 𝑇𝑛 ≳ 𝑛1/2 as long as there exists an interval 𝐼 such that
𝑃 (𝐼) > 𝑄(𝐼). However, we can control Type 1 error since one can show that under
the null hypothesis

𝐸𝑇𝑛 = 𝑛1/2
∑

𝑘=1,𝑑𝑛

𝐸∣𝑃𝑛(𝐵𝑘,𝑛) − 𝑃 (𝐵𝑘,𝑛)∣

≤ 𝑑𝑛 max
𝑘≤𝑑𝑛

(
𝐸
(
1𝑋𝑖∈𝐵𝑘,𝑛

))1/2 ≲ 𝑑1/2𝑛 ≤ 𝑛1/8.

So, to summarize:

Under null hypothesis (ℒ(𝑋𝑖) = 𝑃 )

𝑇𝑛 →∞ and 𝑇𝑛 ≲ 𝑛1/8 in probab.

Under alternative (ℒ(𝑋𝑖) = 𝑄 ∕= 𝑃 )

𝑇𝑛 ≳ 𝑛1/2 in probab.

Clearly 𝑛1/2 >> 𝑛1/8 which in turns implies that under alternative hypothesis

the upper quantile of 𝑇𝑛 will be much larger than the upper quantile under the
null, resulting with the rejection.

Statistic 𝑇𝑛 is related to the statistic

𝑇𝑛 = sup
partition Π𝑛

𝑛1/2
∑

𝐵𝑘,𝑛∈Π𝑛
∣𝑃𝑛(𝐵𝑘,𝑛) − 𝑃 (𝐵𝑘,𝑛)∣

that was considered in Radulovic [6] and Fremanian et al. [3]. The main difference is
that here we do not have the supremum over all the partitions Π𝑛 = {𝐵1, . . . , 𝐵𝐿𝑛}
and consequently the statistic 𝑇𝑛 might have lower power (i.e., harder time to
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distinguish 𝑃 from the alternative). However, statistic 𝑇𝑛 comes with some issues
as well. To start with, the size of partitions grows logarithmically (i.e., 𝑑𝑛 ≈ ln𝑛)

while here for 𝑇𝑛 we have 𝑑𝑛 ≈ 𝑛1/4. More importantly, the computation of 𝑇𝑛 is

trivial while for 𝑇𝑛 we need to evaluate the supremum, which is often a non-trivial
computational problem.

Numerical results

In order to better understand the behavior of 𝑇𝑛 and proposed GOF test we offer
the following simulations. We created two tests and for each one we stipulated
wrong null hypothesis (i.e., 𝑁(0, 1) ), while the data came from a mixture of two
Gaussian random variables and Double Exponential andrespectively. (We denote
these two casses as 𝐴𝑙𝑡1 and 𝐴𝑙𝑡2.) Each of these distributions was designed to be
symmetric with variance one.

For a fixed sample size 𝑛 we computed 𝑇𝑛 as well as 1000 bootstrap resam-

plings {𝑇 ∗𝑛,𝑚}1000𝑚=1, evaluated at 𝑚th bootstrap sample {𝑋∗
𝑖,𝑚, . . . , 𝑋∗

𝑛,𝑚}. Both, 𝑇𝑛

and 𝑇 ∗𝑛 are evaluated at equidistant partition of interval [−3, 3] (i.e., 𝑎𝑘 = −3+ 6𝑘
𝑑𝑛

with 𝑘 = 0, . . . , 𝑑𝑛) where 𝑑𝑛 = 3 + ⌊ 4
√
𝑛⌋ . We used the bootstrap sample to es-

timate the 𝑃 − 𝑣𝑎𝑙 (i.e., 𝑃 − 𝑉 𝑎𝑙 =
∑1000

𝑚=1 1𝑇𝑛<𝑇∗𝑛,𝑚
/1000 ). For comparison we

also performed the usual KS test and recorded the corresponding 𝑃 -values. For
each 𝑛, we repeated this 100 times and averaged the resulting 𝑃 -values. Results
are presented in Table 3.1.

Table 3.1. Performance of GOF test on simulated data

Alt1 KS GOF Novel GOF
𝑁 Avg P-Val Avg P-Val 𝑑𝑛

200 0.3527 0.1089 4
400 0.2407 0.1185 5
600 0.0445 0.0053 5
800 0.038 0.0 6

Alt2 KS GOF Novel GOF
𝑁 Avg P-Val Avg P-Val 𝑑𝑛

200 0.1562 0.0134 4
400 0.0348 0.0261 5
600 0.0094 0.0004 5
800 0.0031 0.0 6

Comments for Table 3.1

Clearly as 𝑛 increases it is easier to reject the (wrong) null hypothesis. This was
captured by both methods and in both simulations since the average P-value de-
creases toward zero. However it is evident that in these two examples the proposed
test did considerably better than the KS test. For example: In the case of Gaussian
mixture (Alt1) the new test needed 𝑛 = 600 before the average P-value dropped
below 1%. On the other hand KS test, even for 𝑛 = 800 did not drop below 3% (in
fact we needed 𝑛 > 1000 to get below 1%). Double exponential example is inter-
esting too. Both tests had an easier time distinguishing the null from alternative,
but here too, the new test did better, since its P-value is consistently lower. We
also can observe the effect of increased partition size 𝑑𝑛 which nicely follows the
heuristic: “with larger data size we should consider more powerful statistic – with
finer partition”.
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4. Proofs

Proof of Theorem 2.1. For a fixed Lipschitz function 𝐻 : R𝑑 → R we need to
estimate

∣𝐸𝐻(
−→
𝑋𝑛) − 𝐸𝑌𝐻(

−→
𝑌 𝑛)∣.

Next we construct vectors (
−→
𝑋 ′

𝑖,𝑛) based on 𝑋 ′
𝑗,𝑖,𝑛, 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑑 that are defined

on the same probability space as 𝑋𝑗,𝑖,𝑛 ’s (enlarged if necessary) but such that
ℒ(𝑋 ′

𝑗,𝑖,𝑛, 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑑) = ℒ(𝑋𝑗,𝑖,𝑛, 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑑) and such that 𝑋 ′
𝑗,𝑖,𝑛, are indepen-

dent from 𝑋𝑗,𝑖,𝑛. We will use the notation 𝐸′ to indicate the expectation taken

with respect to 𝑋 ′
𝑗,𝑖,𝑛. Clearly 𝐸′𝐻(

−→
𝑋 ′

𝑛) = 𝐸𝐻(
−→
𝑋𝑛) and since both are constants

we only need to estimate

∣𝐸′𝐻(
−→
𝑋 ′

𝑛) − 𝐸𝑌𝐻(
−→
𝑌 𝑛)∣.

This transformation is useful since now we can interchange the order of integration
𝐸𝑌 and 𝐸′.

Next we let
−→
𝐺 := (𝐺1, . . . , 𝐺𝑑) be normal random variable with distribution

𝑁(0, 𝐼𝑑), independent from
−→
𝑌 𝑛,

−→
𝑋𝑛 and

−→
𝑋 ′

𝑛; and we let 𝛿𝑛 = (ln𝑛)−3. By adding
and subtracting the appropriate terms:

∣𝐸′𝐻(
−→
𝑋 ′

𝑛) − 𝐸𝑌𝐻(
−→
𝑌 𝑛)∣ ≤ ∣𝐸′𝐸𝐺𝐻(

−→
𝑋 ′

𝑛) − 𝐸′𝐸𝐺𝐻(
−→
𝑋 ′

𝑛 + 𝛿𝑛
−→
𝐺)∣

+ ∣𝐸′𝐸𝐺𝐻(
−→
𝑋 ′

𝑛 + 𝛿𝑛
−→
𝐺) − 𝐸𝑌 𝐸𝐺𝐻(

−→
𝑌 𝑛 + 𝛿𝑛

−→
𝐺)∣

+ ∣𝐸𝑌 𝐸𝐺𝐻(
−→
𝑌 𝑛) − 𝐸𝑌𝐸𝐺𝐻(

−→
𝑌 𝑛 + 𝛿𝑛

−→
𝐺)∣

= 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼,

where 𝐸𝐺 stands for the expectation with respect to
−→
𝐺. We first estimate 𝐼.

Since 𝐻 is bounded by one and Lipschitz we can let 𝜏𝑛 = (ln𝑛)−1and obtain the
following estimate:

𝐼 ≤ 𝜏𝑛 + 𝑃 (max
𝑖≤𝑑

∣𝛿𝑛𝐺𝑖∣ > 𝜏𝑛) ≤ (ln𝑛)−1 + 𝑑𝑃 (∣𝐺1∣ > 𝜏𝑛/𝛿𝑛)

≤ (ln𝑛)−1 + 𝑛𝑚𝑃 (∣𝐺1∣ > (ln𝑛)2) ≲ (ln𝑛)−1 + 𝑛𝑚𝑒−(ln𝑛)
2

= 𝑜(1).

The estimate for 𝐼𝐼𝐼 is exactly the same. Next we observe that for a −→𝑎 ∈ R𝑑 we
can define

𝐻̃(−→𝑎 ) := 𝐸𝐺𝐻(−→𝑎 + 𝛿𝑛
−→
𝐺) =

∫
(2𝜋𝛿2𝑛)−𝑑/2𝐻(

−→
𝑇 ) exp(−(1/2𝛿2𝑛))∣∣−→𝑇 −−→𝑎 ∣∣2𝑑−→𝑇 .

This convoluted version of 𝐻 belongs to 𝐶∞(R𝑑). It is easy to see that there exists

a universal constant 𝐶 such that all the partial derivatives (up to order 3) of 𝐻̃
are bounded by a constant multiple of 𝛿−𝐶𝑛 ≲ (ln𝑛)3𝐶 . Thus

𝐼𝐼 ≤ sup
𝐻̃∈𝐶3,𝑛

∣𝐸′𝐻̃(
−→
𝑋 ′

𝑛) − 𝐸𝑌 𝐻̃(
−→
𝑌 𝑛)∣
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where 𝐶3,𝑛 contains all the functions with partial derivatives (up to order 3)
bounded by (ln𝑛)3𝐶 . Now the proof proceeds as in the classical (Lindeberg’s)
proof for CLT.

For a fixed 𝐻̃ we let 𝑆𝑗 :=
∑𝑗−1

𝑖=1

−→
𝑋 ′

𝑖,𝑛+
∑𝑛

𝑖=𝑗+1

−→
𝑌 𝑖,𝑛, and by virtue of adding

and subtracting we get the following estimate:

∣𝐸′𝐻̃(
−→
𝑋 ′
𝑛)−𝐸𝑌 𝐻̃(

−→
𝑌 𝑛)∣ ≤

𝑛∑
𝑗=1

∣𝐸′𝐸𝑌 𝐻̃(𝑆𝑗 +
−→
𝑋 ′

𝑗,𝑛)−𝐸′𝐸𝑌 𝐻̃(𝑆𝑗 +
−→
𝑌 𝑗,𝑛)∣. (4.1)

Next we develop 𝐻̃ as a second degree Taylor polynomial. In order to avoid cum-
bersome notation we present the computation for 𝑑 = 1. The extension to 𝑑 > 1 is
straightforward but we need to keep in mind that we are dealing with 𝑑2 and 𝑑3

second- and third-order partial derivatives respectively. For a fixed 𝑗 we have that

𝐸′𝐸𝑌 𝐻̃(𝑆𝑗 + 𝑋 ′
𝑗,𝑛) − 𝐸′𝐸𝑌 𝐻̃(𝑆𝑗 + 𝑌𝑗,𝑛)

= 𝐸′𝐸𝑌 𝐻̃(𝑆𝑗) + 𝐸′𝐸𝑌

(
𝐻 ′(𝑆𝑗)𝑋 ′

𝑗,𝑛

)
+ 𝐸′𝐸𝑌

(
𝐻 ′′(𝑆𝑗)𝑋 ′2

𝑗,𝑛

)
/2!

+ 𝐸′𝐸𝑌

(
𝐻 ′′′(𝜉𝑗)𝑋 ′3

𝑗,𝑛

)
/3!− 𝐸′𝐸𝑌 𝐻̃(𝑆𝑗) − 𝐸′𝐸𝑌

(
𝐻 ′(𝑆𝑗)𝑌𝑗,𝑛

)
− 𝐸′𝐸𝑌

(
𝐻 ′′(𝑆𝑗)𝑌 2𝑗,𝑛

)
/2! − 𝐸′𝐸𝑌

(
𝐻 ′′′(𝜂𝑗)𝑌 3𝑗,𝑛

)
/3!

for some 𝜉𝑗 and 𝜂𝑗 . The terms with 𝐻̃ cancel. Since 𝑆𝑗 , 𝑋
′
𝑗,𝑛 as well as 𝑆𝑗 , 𝑌𝑗,𝑛 are

independent and since 𝐸′𝑋 ′
𝑗,𝑛 = 𝐸𝑌 𝑌𝑗,𝑛 = 0 the terms with 𝐻 ′ are equal zero.

Next we observe that by the assumption 𝐸′𝐸𝑌 𝐻̃ ′′(𝑆𝑗) ≤ (ln𝑛)3𝐶 and consequently

𝐸∣𝐸′𝐸𝑌 𝐻̃ ′′(𝑆𝑗)(𝐸′𝑋 ′2
𝑗,𝑛 − 𝐸𝑌 𝑌 2𝑗,𝑛)∣ ≤ (ln𝑛)3𝐶

𝑛3/2𝑄𝑛
.

This estimate is valid for any second-order partial derivative and it does not depend
on 𝑗. Since we are dealing with 𝑗 = 1, . . . , 𝑛 and 𝑑2 second-order partial derivatives;
the first moment of the total contribution from the terms with second-order partial
derivatives is bounded by

𝑑2(ln𝑛)3𝐶

𝑛1/2𝑄𝑛
.

Similar argument could be applied to estimate the contribution from the reminder
terms. Namely for each 𝑗 there are 𝑑3 reminders and the first moment of their sum
is bounded by

𝑛𝑑3(ln𝑛)3𝐶 max
𝑗,𝑖

(𝐸′∣𝑋 ′
𝑗,𝑖,𝑛∣3 + 𝐸𝐸𝑌 ∣𝑌𝑗,𝑖,𝑛∣3) ≤ 𝑑3(ln𝑛)3𝐶

𝑛1/2𝑅𝑛
.

This proves Theorem 2.1. □
Proof of Corollary 2.1. We will use the following substitution

𝑋𝑖,𝑗,𝑛 := 𝑛−1/2(𝑓𝑗,𝑛(𝑋𝑖) − 𝐸𝑓𝑗,𝑛(𝑋𝑖)) and

𝑌𝑖,𝑗,𝑛 = 𝑋∗
𝑖,𝑗,𝑛 := 𝑛−1/2(𝑓𝑗,𝑛(𝑋∗

𝑖 ) − 𝐸∗𝑓𝑗,𝑛(𝑋∗
𝑖 )).
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In order to apply Theorem 2.1 we need to verify (2.1) and (2.2).

max
𝑖,𝑗

𝐸∣𝑋𝑖,𝑗,𝑛∣3 ≲ 𝑛−3/2max
𝑗

𝐸∣𝑓𝑗(𝑋1)∣3 ≲ 1

𝑛3/2𝑅𝑛

and

max
𝑖,𝑗

𝐸∣𝑌𝑖,𝑗,𝑛∣3 = max
𝑖,𝑗

𝐸∗∣𝑋∗
𝑖,𝑗,𝑛∣3 ≲ 𝑛−3/2max

𝑗
𝐸∣𝑓𝑗(𝑋1)∣3 ≲ 1

𝑛3/2𝑅𝑛
.

Finally, since 𝐸𝑌 𝑌𝑖,𝑗,𝑛 = 𝐸∗𝑋∗
𝑖,𝑗,𝑛 we need to estimate

max
𝑗

𝐸∣𝐸∗(𝑋∗
𝑖,𝑗,𝑛)2 − 𝐸𝑋2

𝑖,𝑗,𝑛∣

≲ 𝑛−1max
𝑗

𝐸

(∣∣∣∣ 1𝑛
𝑛∑
𝑖=1

𝑓2𝑗 (𝑋𝑖) − 𝐸𝑓2𝑗 (𝑋𝑖)

∣∣∣∣+∣∣∣∣ 1𝑛
𝑛∑
𝑖=1

𝑓𝑗(𝑋𝑖) − 𝐸𝑓𝑗(𝑋𝑖)

∣∣∣∣)
≤ 𝑛−3/2max

𝑗

(
𝐸𝑓4𝑗 (𝑋1)

)1/2 ≲ 1

𝑛3/2𝑄
1/2
𝑛

.

With these estimates and Theorem 2.1 the proof follows easily.

Proof of Theorem 2.2. Let a sequence {𝑋 ′
𝑖}𝑛𝑖=1 be i.i.d. 𝑃 , independent from

{𝑋𝑖}𝑛𝑖=1 and defined on same probability space. We let 𝑇 ′𝑛 be defined in a same
ways as 𝑇𝑛 but based on the sequence {𝑋 ′

𝑖}𝑛𝑖=1 and not the sequence {𝑋𝑖}𝑛𝑖=1.
We observe that since ℒ({𝑋𝑖}𝑛𝑖=1) = ℒ({𝑋 ′

𝑖}𝑛𝑖=1) we can replace 𝐸′𝐻(𝑇 ′𝑛) with
𝐸𝐻(𝑇𝑛). This simple trick is important since now the variables {𝑋 ′

𝑖}𝑛𝑖=1 and
{𝑋∗

𝑖 }𝑛𝑖=1 are independent and we can freely interchange the order of integration
(i.e., 𝐸∗𝐸′ = 𝐸∗𝐸′), where we indicate 𝐸′ as integration with respect to 𝑋 ′

𝑖 only.
By definition of d-3 metric we need to estimate

sup
𝐻∈𝐶3(1)

∣𝐸𝐻𝑇𝑛 − 𝐸∗𝐻𝑇 ∗𝑛 ∣ = sup
𝐻∈𝐶3(1)

∣𝐸′𝐻𝑇𝑛 − 𝐸∗𝐻𝑇 ∗𝑛 ∣.

In what follows we will simplify the notation and use 𝑘, 𝑑 and 𝑔 instead of
𝑘𝑛, 𝑑𝑛 and 𝑔𝑛. Let

−→
𝑊𝑛 = (𝑊𝑛,1, . . . ,𝑊𝑛,𝑑) and

−→
𝑊 ∗

𝑛 = (𝑊 ∗
𝑛,1, . . . ,𝑊

∗
𝑛,𝑑).

For a fixed 𝑛 and 𝐻 ∈ 𝐶3(1) we define 𝐺 : 𝑅𝑑 → 𝑅 as

𝐺(−→𝑎 ) := 𝐺(𝑎1, . . . , 𝑎𝑑) := 𝐻

( 𝑑∑
𝑖=1

𝑔𝑛(𝑎𝑖)

)
,

where 𝑔𝑛 has the properties as stipulated in the assumptions preceding Theorem
2.2. We will write 𝑔 instead of 𝑔𝑛 and we let

𝐺𝑗(
−→𝑎 ) :=

∂

∂𝑎𝑗
𝐺(−→𝑎 ) = 𝐻 ′

( 𝑑∑
𝑖=1

𝑔(𝑎𝑖)

)
𝑔′(𝑎𝑗)
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We let 𝐺𝑗,𝑙(
−→𝑎 ) := ∂

∂𝑎𝑗∂𝑎𝑙
𝐺(−→𝑎 ) and observe that

𝐺𝑗,𝑙(
−→𝑎 ) =

⎧⎨⎩𝐻 ′′
(∑𝑑

𝑖=1 𝑔(𝑎𝑖)
)
𝑔′(𝑎𝑗)𝑔′(𝑎𝑙) if 𝑗 ∕= 𝑙

𝐻 ′′
(∑𝑑

𝑖=1 𝑔(𝑎𝑖)
)

(𝑔′(𝑎𝑗))2 + 𝐻 ′
(∑𝑑

𝑖=1 𝑔(𝑎𝑖)
)
𝑔′′(𝑎𝑗) if 𝑗 = 𝑙.

We let 𝐺𝑗,𝑙,𝑚(−→𝑎 ) := ∂
∂𝑎𝑗∂𝑎𝑙∂𝑎𝑚

𝐺(−→𝑎 ) and observe that

𝐺𝑗,𝑙,𝑚(−→𝑎 ) =

⎧⎨⎩
𝐻 ′′′
(∑𝑑

𝑖=1 𝑔(𝑎𝑖)
)
𝑔′(𝑎𝑗)𝑔′(𝑎𝑙)𝑔′(𝑎𝑚) if 𝑗 ∕= 𝑙 ∕= 𝑚

𝐻 ′′′
(∑𝑑

𝑖=1 𝑔(𝑎𝑖)
)

(𝑔′(𝑎𝑗))2𝑔′(𝑎𝑚)

+𝐻 ′′
(∑𝑑

𝑖=1 𝑔(𝑎𝑖)
)
𝑔′(𝑎𝑚)𝑔′′(𝑎𝑗) if 𝑗 = 𝑙 ∕= 𝑚

while in case 𝑗 = 𝑙 = 𝑚 we have

𝐺𝑗,𝑙,𝑚(−→𝑎 ) = 𝐻 ′′′
(∑𝑑

𝑖=1
𝑔(𝑎𝑖)

)
(𝑔′(𝑎𝑗))3 + 2𝐻 ′′

(∑𝑑

𝑖=1
𝑔(𝑎𝑖)

)
𝑔′(𝑎𝑗)𝑔′′(𝑎𝑗)

+ 𝐻 ′′
(∑𝑑

𝑖=1
𝑔(𝑎𝑖)

)
𝑔′′(𝑎𝑗)𝑔′(𝑎𝑗) + 𝐻 ′

(∑𝑑

𝑖=1
𝑔(𝑎𝑖)

)
𝑔′′′(𝑎𝑗).

Assumption 1 now implies that

∣∣𝐺∣∣∞ ≤ 1 and ∣∣𝐺𝑗 ∣∣∞ ≤ 𝐶 , ∣∣𝐺𝑗,𝑙∣∣∞ ≤ 1𝑗 ∕=𝑙𝐶2 + 1𝑗=𝑙𝐶𝑀𝑛 (4.2)

and

∣∣𝐺𝑗,𝑙,𝑚∣∣∞ ≤ 1𝑗 ∕=𝑙 ∕=𝑚𝐶3 + 1𝑗=𝑙 ∕=𝑚𝐶𝑀𝑛 + 1𝑗=𝑙=𝑚(𝐶3 + 3𝐶𝑀𝑛 + 𝐶𝑀2
𝑛). (4.3)

Next we adopt Linderberg inclusion-exclusion trick and derive an estimate
for ∣𝐸𝐻(𝑇 ′𝑛) − 𝐸∗𝐻(𝑇 ∗𝑛)∣ which will not depend on the choice of 𝐻 ∈ 𝐶3(1). For
this purpose we define

𝑆𝑚,𝑙 :=
𝑚−1∑
𝑗=1

𝑓𝑙(𝑋
′
𝑗)𝑛

−1/2 +
𝑛∑

𝑗=𝑚+1

𝑓𝑙(𝑋
∗
𝑗 )𝑛−1/2

and
−→
𝑆 𝑚 := (𝑆𝑚,1, . . . , 𝑆𝑚,𝑑) and

−→
𝑓 (𝑋 ′

𝑚) := 𝑛−1/2(𝑓1(𝑋 ′
𝑚), . . . , 𝑓𝑑(𝑋

′
𝑚)).

For a fixed 𝐻 ∈ 𝐶3(1) we used the earlier defined 𝐺 and observe that

𝐻(𝑇𝑛) = 𝐺(
−→
𝑆 𝑛+1) and 𝐻(𝑇 ∗𝑛) = 𝐺(

−→
𝑆 0).

Thus by using notation 𝑓𝑙(𝑋
∗
𝑛+1) := 0 and 𝑓𝑙(𝑋

∗
0 ) := 0 we get

𝐻(𝑇 ′𝑛) −𝐻(𝑇 ∗𝑛) =
𝑛∑
𝑗=0

(
𝐺
(−→
𝑆 𝑛+1−𝑗 +

−→
𝑓 (𝑋∗

𝑛+1−𝑗)
)
−𝐺

(−→
𝑆 𝑛−𝑗 +

−→
𝑓 (𝑋∗

𝑛−𝑗)
))

(since 𝑆𝑚,𝑙+ 𝑓𝑙(𝑋
∗
𝑚)𝑛−1/2 = 𝑆𝑚−1,𝑙+ 𝑓𝑙(𝑋

′
𝑚−1)𝑛

−1/2)

=

𝑛∑
𝑗=0

𝐺
(−→
𝑆 𝑛−𝑗 +

−→
𝑓 (𝑋 ′

𝑛−𝑗)
)
−𝐺

(−→
𝑆 𝑛−𝑗 +

−→
𝑓 (𝑋∗

𝑛−𝑗)
)
. (4.4)
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Claim. There exist universal constants 𝐶1 and 𝐶2 (not depending on 𝑘 ∈ {0, . . . ,
𝑛}) such that

𝐸 sup
𝐻∈𝐶3(1)

∣∣∣𝐸′𝐸∗𝐺𝐻

(−→
𝑆 𝑘 +

−→
𝑓 (𝑋 ′

𝑘)𝑛−1/2
)
− 𝐸′𝐸∗𝐺𝐻

(−→
𝑆 𝑘 +

−→
𝑓 (𝑋∗

𝑘 )𝑛−1/2
)∣∣∣

≤ 𝐶1
𝑑3 + 𝑑2𝑀𝑛 + 𝑑𝑀2

𝑛

𝑛3/2𝑅𝑛
+ 𝐶2

𝑑2 + 𝑑𝑀𝑛

𝑛3/2𝐾
1/2
𝑛

.

We use the notation 𝐸′, 𝐸,𝐸∗ in order to indicate the integration with respect to
𝑋 ′
𝑖, 𝑋𝑖 and 𝑋∗

𝑖 respectively. We will simplify the notation and write 𝐺 instead of

𝐺𝐻 . Since 𝐺 is three times differentiable there exist vectors
−→
𝜉 and −→𝜈 such that

𝐺(
−→
𝑆 𝑘 +

−→
𝑓 (𝑋 ′

𝑘)) = 𝐺(
−→
𝑆 𝑘) +

∑𝑑

𝑗=1
𝐺𝑗(

−→
𝑆 𝑘)𝑓𝑗(𝑋

′
𝑘)𝑛−1/2

+
∑𝑑

𝑗,𝑙=1
𝐺𝑗,𝑙(

−→
𝑆 𝑘)𝑓𝑗(𝑋

′
𝑘)𝑓𝑙(𝑋

′
𝑘)𝑛−1

+
∑𝑑

𝑗,𝑙,𝑚=1
𝐺𝑗,𝑙,𝑚(

−→
𝜉 )𝑓𝑗(𝑋

′
𝑘)𝑓𝑙(𝑋

′
𝑘)𝑓𝑚(𝑋 ′

𝑘)𝑛−3/2

= 𝐴0 + 𝐴1 + 𝐴2 + 𝐴3

and

𝐺(
−→
𝑆 𝑘 +

−→
𝑓 (𝑋∗

𝑘 )) = 𝐺(
−→
𝑆 𝑘) +

∑𝑑

𝑗=1
𝐺𝑗(

−→
𝑆 𝑘)𝑓𝑗(𝑋

∗
𝑘)𝑛−1/2

+
∑𝑑

𝑗,𝑙=1
𝐺𝑗,𝑙(

−→
𝑆 𝑘)𝑓𝑗(𝑋

∗
𝑘 )𝑓𝑙(𝑋

∗
𝑘 )𝑛−1

+
∑𝑑

𝑗,𝑙,𝑚=1
𝐺𝑗,𝑙,𝑚(−→𝜈 )𝑓𝑗(𝑋

∗
𝑘 )𝑓𝑙(𝑋

∗
𝑘 )𝑓𝑚(𝑋∗

𝑘 )𝑛−3/2

= 𝐴∗
0 + 𝐴∗

1 + 𝐴∗
2 + 𝐴∗

3.

Clearly, 𝐴0 = 𝐴∗
0 and since under the 𝐸′𝐸∗ the vector

−→
𝑆 𝑘 is independent

from both 𝑋 ′
𝑘 as well as 𝑋∗

𝑘 we have that 𝐸′𝐸∗𝐴1 = 𝐸′𝐸∗𝐴∗
1 = 0. Thus

𝐸 sup
𝐻∈𝐶3(1)

∣∣∣𝐸′𝐸∗𝐺
(−→
𝑆 𝑘 +

−→
𝑓 (𝑋 ′

𝑘)
)
− 𝐸′𝐸∗𝐺

(−→
𝑆 𝑘 +

−→
𝑓 (𝑋∗

𝑘)
)∣∣∣

≤ 𝐸 sup
𝐻∈𝐶3(1)

∣𝐸′𝐸∗𝐴2 − 𝐸′𝐸∗𝐴∗
2∣ + 𝐸 sup

𝐻∈𝐶3(1)

∣𝐸′𝐸∗𝐴3∣ + 𝐸 sup
𝐻∈𝐶3(1)

∣𝐸′𝐸∗𝐴∗
3∣.

Let us estimate 𝐸 sup𝐻∈𝐶3(1) ∣𝐸′𝐸∗𝐴3∣ first. Using the estimate (4.3), assumption
2 and Hölder’s inequality we have

∣𝐸′𝐸∗𝐴3∣ ≤ 𝑛−3/2
𝑑∑

𝑗,𝑙,𝑚=1

∣∣𝐺𝑗,𝑙,𝑚∣∣∞𝐸′∣𝑓𝑗(𝑋 ′
𝑘)𝑓𝑙(𝑋

′
𝑘)𝑓𝑚(𝑋 ′

𝑘)∣

(since ℒ(𝑋 ′
𝑖) = ℒ(𝑋𝑖) and 𝑓𝑗 = 𝑓𝑗 − 𝐸𝑓𝑗)

≤ 2𝑛−3/2(𝐶3𝑑3 + 𝐶𝑑2𝑀𝑛 + 𝑑𝐶3 + 3𝑑𝐶𝑀𝑛 + 𝑑𝐶𝑀2
𝑛) max𝑗 𝐸∣𝑓𝑗(𝑋1)∣3

≤ 𝐶
𝑑3 + 𝑑2𝑀𝑛 + 𝑑𝑀2

𝑛

𝑛3/2𝑅𝑛
,
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for some universal constant 𝐶 . The estimate for 𝐸∣𝐴∗
3∣ is very similar.

𝐸 sup
𝐻∈𝐶3(1)

∣𝐸′𝐸∗𝐴∗
3∣ ≤ 𝑛−3/2

𝑑∑
𝑗,𝑙,𝑚=1

∣∣𝐺𝑗,𝑙,𝑚∣∣∞𝐸 sup
𝐻∈𝐶3(1)

𝐸∗∣𝑓𝑗(𝑋∗
𝑘 )𝑓𝑙(𝑋

∗
𝑘 )𝑓𝑚(𝑋∗

𝑘 )∣

However,

𝐸𝐸∗∣𝑓𝑗(𝑋∗
𝑘)𝑓𝑙(𝑋

∗
𝑘 )𝑓𝑚(𝑋∗

𝑘)∣ ≤ 2𝐸𝑛−1
𝑛∑
𝑖=1

∣𝑓𝑗(𝑋𝑖)𝑓𝑙(𝑋𝑖)𝑓𝑚(𝑋𝑖)∣

= 𝐸∣𝑓𝑗(𝑋1)𝑓𝑙(𝑋1)𝑓𝑚(𝑋1)∣
and consequently

𝐸 sup
𝐻∈𝐶3(1)

∣𝐸′𝐸∗𝐴∗
3∣

≤ 2𝑛−3/2(𝐶3𝑑3 + 𝐶𝑑2𝑀𝑛 + 𝑑𝐶3 + 3𝑑𝐶𝑀𝑛 + 𝑑𝐶𝑀2
𝑛) max

𝑗
𝐸∣𝑓𝑗(𝑋1)∣3.

Finally we need to estimate

𝐸 sup
𝐻∈𝐶3(1)

∣𝐸′𝐸∗𝐴2 − 𝐸′𝐸∗𝐴∗
2∣

since
−→
𝑆 𝑘 is independent from 𝑋 ′

𝑘 as well as 𝑋∗
𝑘

≤ 𝑛−1
𝑑∑

𝑗,𝑙=1

∣∣𝐺𝑗,𝑙∣∣∞𝐸 sup
𝐻∈𝐶3(1)

∣𝐸′(𝑓𝑗(𝑋 ′
𝑘)𝑓𝑙(𝑋

′
𝑘) − 𝐸∗𝑓𝑗(𝑋∗

𝑘)𝑓𝑙(𝑋
∗
𝑘 )∣. (4.5)

First we estimate

𝐸 sup
𝐻∈𝐶3(1)

∣𝐸′(𝑓𝑗(𝑋 ′
𝑘)𝑓𝑙(𝑋

′
𝑘) − 𝐸∗𝑓𝑗(𝑋∗

𝑘 )𝑓𝑙(𝑋
∗
𝑘 )∣

since ℒ({𝑋𝑘}𝑘>0) = ℒ({𝑋 ′
𝑘}𝑘>0) and since 𝑓𝑗 ’s do not depend on 𝐻

= 𝑛−1/2𝐸∣𝑛−1/2
𝑛∑
𝑖=1

(𝑓𝑗(𝑋𝑖)𝑓𝑙(𝑋𝑖) − 𝐸(𝑓𝑗(𝑋𝑖)𝑓𝑙(𝑋𝑖))∣

≤ 𝑛−1/2
√

𝐸(𝑓𝑗(𝑋1)2𝑓𝑙(𝑋1)2) ≤ 𝑛−1/2(𝐸(𝑓𝑗(𝑋1)
4))1/2 ≤ 1

𝑛1/2𝐾
1/2
𝑛

.

Thus using estimate (4.2) the expression (4.5) is bounded by

𝐶
𝑑2 + 𝑑𝑀𝑛

𝑛3/2𝐾
1/2
𝑛

for some universal constant 𝐶. This proves the Claim. Finally, since the Linderberg
trick (computation (4.4)) yields 𝑛 parts we have shown that

𝐸 sup
𝐻∈𝐶3(1)

∣𝐸𝐻(𝑇𝑛) − 𝐸∗𝐻(𝑇 ∗𝑛)∣ ≤ 𝐶1
𝑑3 + 𝑑2𝑀𝑛 + 𝑑𝑀2

𝑛

𝑛1/2𝑅𝑛
+ 𝐶2

𝑑2 + 𝑑𝑀𝑛

𝑛1/2𝐾
1/2
𝑛

which proves Theorem 2.2. □
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Proof of Theorem 3.1. For a 𝐵𝑘,𝑛 ∈ Π𝑛 we define 𝑓𝑘,𝑛(𝑋𝑖) = 1𝑋𝑖∈𝐵𝑘,𝑛 and let

𝑊𝑛,𝑘 := 𝑍𝑛(𝐵𝑘,𝑛) =
1√
𝑛

𝑛∑
𝑖=1

𝑓𝑘,𝑛(𝑋𝑖)

and

𝑊 ∗
𝑛,𝑘 := 𝑍∗

𝑛(𝐵𝑘,𝑛) =
1√
𝑛

𝑛∑
𝑖=1

𝑓𝑘,𝑛(𝑋∗
𝑖 )

with 𝑓𝑘,𝑛(𝑋𝑖) = 𝑓𝑘,𝑛(𝑋𝑖) − 𝐸𝑓𝑘,𝑛(𝑋𝑖) and 𝑓𝑘,𝑛(𝑋∗
𝑖 ) = 𝑓𝑘,𝑛(𝑋∗

𝑖 ) − 𝐸∗𝑓𝑘,𝑛(𝑋∗
𝑖 ).

Next, for 𝑀𝑛 = 1/(𝑑 ln𝑑), we let

𝑔𝑛(𝑥) =

(
1

16𝑀5
𝑛

𝑥6 − 5

16𝑀3
𝑛

𝑥4 +
15

16𝑀𝑛
𝑥2 +

5𝑀𝑛

16

)
1∣𝑥∣≤𝑀𝑛

+ ∣𝑥∣1∣𝑥∣>𝑀𝑛

and observe that function 𝑔𝑛(𝑥) has the following properties:

∣∣(𝑔𝑛(𝑥) − ∣𝑥∣)∣∣∞ ≤ 𝑀−1
𝑛 , ∣∣𝑔′𝑛∣∣∞ ≤ 𝐶, ∣∣𝑔′′𝑛∣∣∞ ≤ 𝐶𝑀𝑛, ∣∣𝑔′′𝑛∣∣∞ ≤ 𝐶𝑀2

𝑛.

We define

𝑇𝑛 =

𝑑𝑛∑
𝑘=1

𝑔𝑛(𝑊𝑛,𝑘) and 𝑇 ∗𝑛 =

𝑑𝑛∑
𝑘=1

𝑔𝑛(𝑊 ∗
𝑛,𝑘),

and observe that for any 𝐻 ∈ 𝐶3(1)

∣𝐸𝐻(𝑇𝑛) − 𝐸𝐻(𝑇𝑛)∣ ≲
𝑑∑

𝑘=1

∥∣𝑊𝑛,𝑘∣ − 𝑔𝑛(𝑊𝑛,𝑘)∥∞ ≤ 1

ln 𝑑
→ 0

and

∣𝐸𝐻(𝑇 ∗𝑛) − 𝐸𝐻(𝑇 ∗𝑛)∣ ≲
𝑑∑

𝑘=1

∥∥∣𝑊𝑛,𝑘∣ − 𝑔𝑛(𝑊 ∗
𝑛,𝑘)
∥∥
∞ ≤ 1

ln 𝑑
→ 0.

Thus

sup
𝐻∈𝐶3(1)

∣𝐸𝐻(𝑇𝑛) − 𝐸∗𝐻(𝑇 ∗𝑛)∣ ≤ sup
𝐻∈𝐶3(1)

∣𝐸𝐻(𝑇𝑛) − 𝐸∗𝐻(𝑇 ∗𝑛)∣ + 𝑜(1)

(by Theorem 2.2)

= 𝑂𝑃

(
𝑑3 + 𝑑2𝑀𝑛 + 𝑑𝑀2

𝑛

𝑛1/2𝑅𝑛
+

𝑑2 + 𝑑𝑀𝑛

𝑛1/2𝐾
1/2
𝑛

)
+ 𝑜(1)

= 𝑂𝑃

(
𝑑3 ln2 𝑑

𝑛1/2𝑅𝑛
+

𝑑2 ln 𝑑

𝑛1/2𝐾
1/2
𝑛

)
+ 𝑜(1)

= 𝑂𝑃

(
ln2 𝑑

𝑛1/2−3𝛾𝑅𝑛
+

ln 𝑑

𝑛1/2−2𝛾𝐾1/2
𝑛

)
+ 𝑜(1)

where as before 𝐾𝑛 and 𝑅𝑛 are such that

max
𝑘

𝐸∣𝑓𝑘(𝑋1)∣3 ≤ 1

𝑅𝑛
and max

𝑘
𝐸(𝑓𝑘(𝑋1))

4 ≤ 1

𝐾𝑛
.



High Dimensional CLT and its Applications 373

However, from the definition of 𝑓 it follows that

𝐸∣𝑓𝑘(𝑋1)∣3 ≲ max
𝑘

𝑃 (𝐵𝑘) ≲ 1

𝑑𝑛
and 𝐸∣𝑓𝑘(𝑋1)∣4 ≲ max

𝑘
𝑃 (𝐵𝑘) ≲ 1

𝑑𝑛
.

Consequently, we can let 𝐾𝑛 = 𝑅𝑛 = 𝑑 = 𝑛𝛾 and since 𝛾 < 1/4 the above estimate
becomes

𝑂𝑃

(
ln2 𝑑

𝑛1/2−2𝛾
+

ln 𝑑

𝑛1/2−3/2𝛾𝐾𝑛

)
+ 𝑜(1) = 𝑜𝑃 (1).

This proves Theorem 3.1.
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