The Adiabatic Limit of the Laplacian
on Thin Fibre Bundles
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We consider the time dependent Schrédinger equation on a fibre bundle in the
adiabatic limit. We allow the fibres to have a boundary, in which case we impose
Dirichlet conditions. In particular this allows us to understand, in a general setting,
results obtained in the context of quantum waveguides (see the review [2]), in which
case the bundle is usually a solid cylinder or a square. In order to extract such results
from our effective operator one has to embed the total space into R” and expand the
induced metric. The leading order term will be a Riemannian submersion. When
calculating the effective operator the additional corrections due to the metric need
to be taken into account. The resulting operator can then be analysed to obtain e.g.
expansions for the eigenvalues.

One of the virtues of the approach is a scaling that gives results for energies that are
infinite in many of the settings treated in the literature. More precisely, Theorem 1
gives an approximation for finite energies when the energies of the fibre dynamics
are independent of the scaling parameter. In comparison the often considered scaling
in which these energies go to infinty as the fibres get thin only yields results for small
energies above the ground state (after substracting the increasing energy of the fibre
ground state).

We use methods of adiabatic perturbation theory (see [3] for a comprehensive
presentation). The basic idea is that the separation of scales between the base and
the fibre leads to a decoupling of the corresponding dynamics. This means that
for special initial conditions (one may think of eigenstates of the fibre dynamics)
the dynamics in the fibre direction will be trivial for long times. One can thus
decompose the total problem into a set of simpler problems, one for every such
initial condition. Each of these has dynamics only in directions on the base and is
governed by an effective equation.
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These methods were applied in a differential geometric setting to the problem of
constraints in quantum mechanics [4].

Let F — M 5> B be a smooth fibre bundle with a Riemannian submersion
metric g = g @ 7*h (see [1, Chap. 2] for a discussion of basic properties). By
the adiabatic limit we mean the asymptotic limit as ¢ — 0 for the scaled family of
metrics g. = g5, ® & 2m*h. We study this limit for the time dependent Schrodinger
equation

0y =—Ag . (1

Ay, is self adjoint on the Dirichlet domain H*(M)NHJ (M )(=H?*(M) if IM = 0).
It can easily be seen (for example using the quadratic form) that the Laplacian
decomposes into

Ag, = trr,VZ + &% (ry, V2 — 1)) =1 Af, +€°Ay, )

where 7 is the mean curvature vector of the fibres (in the metric g.—1). We interpret
these terms in the following way:

* For every x the Laplacian of the fibre Ar_is a bounded linear operator from
its domain to L?(F,). It can thus be viewed as a section of a bundle over B:
Let L2(F;m) and D be vector bundles induced by 7 (with fibres L?(F) and
H?(F\) N H} (Fy) respectively). The fibre Laplacian is precisely a section of the
bundle of continuous linear maps £ (D, L>(F; 7)) between both.

* Derivation in the horizontal direction formally defines a connection V” on
L?(F; ). —Ay can be identified as the Laplacian V/*V" of this connection.

From this point of view the operator A,, = Ap, + &2A; fits nicely into the
framework of adiabatic perturbation theory, where one might call it “fibred over B”.
Now we proceed by noting that for every x € B the spectrum of A, is discrete,
of finite multiplicity and independent of €. As it depends continuously on x it has
a band structure i.e. one can choose continuous functions E(x) that are eigenvalues
for every x.

Let E be such a band and P (x) its spectral projection, i.e.

Vx: —ApP(x)=E(x)P(x). 3)

Since P(x) is a bounded linear map on L?(F,), P is a section of L(L*(F;m)). If
E is separated from the rest of the spectrum then the dimension of ran P is constant
and PL*(F; ) is a finite-rank subbundle that is locally spanned by eigenfunctions
of Ay..

One can show that PL?(M) is left invariant by the dynamics up to errors of order
& by estimating [A,, P] = [¢ Ay, P] using the following:
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Lemma 1. Let M, B and © be of bounded geometry.! Let E be bounded and
uniformly separated.

Then || [eV], P1P || Ce for every bounded X .

catoy =

This allows us to describe the leading order dynamics (with initial conditions in
PL?*(M)) by the effective operator PA,, P on the L?-sections of our finite-rank
bundle PL?(F; ). However we aim for more precision because:

1. Horizontal distances increase as ¢ — 0, so with kinetic energies of order one it
takes times of order 1/¢ for global effects to occur, and

2. The spacing of the eigenvalues of A, decreases and an error of order &£ might
not be enough to distinguish them.

Therefore we need better approximations to understand the dynamics and com-
pletely resolve the spectrum. For this purpose we construct a corrected projection
P® = P + O(e) (that is no longer a fibrewise operator), for which [A,,, P]P =
O(e") holds, and an intertwining unitary U® : P*L*(M) — PL?*(M) that allows
us to define the effective operator on sections of PL?(F; 1) (see [4] for a detailed
exposition of the technique).

Theorem 1. Under the assumptions of the lemma there exist

e A projection P* € L (LZ(M)),
e A unitary operator U* € L (LZ(M)) that maps P*L*>(M) — PL*(M),
* A self-adjoint operator (Hegr, Deit) on L>(PL*(F; 1)),

such that

< CeNt 4)

L(L2(M))

H (e—iHst _ Us*e—iHefftUs) PSX(—oo,EmM)(Ags)

forallt > 0 and Eyax < 00;
If A is an eigenvalue of Heg then there is a ball B of radius Ce™ around A such that
BnNo(A,)#9.

The effective operator is given by
Her = PU*AL U™ P = —e’Ap + E(x) + O(¢?), (5)

where —A g is the Laplacian of the induced connection VZ = PV" P The higher
order corrections can be computed explicitly from the construction of P?.

"When there is no boundary we require that M, B be of bounded geometry and 7 have bounded
derivatives. In the case with boundary there is a similar condition. Both are trivially satisfied if M
is compact.
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