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1 Preliminaries on Adiabatic Limits

Let .M; F/ be a closed foliated manifold endowed with a Riemannian metric g.
Then we have a direct sum decomposition TM D F ˚H of the tangent bundle TM

of M , where F D T F is the tangent bundle of F and H D F ? is the orthogonal
complement of F , and the corresponding decomposition of the metric: g D gF CgH .
Consider the one-parameter family of Riemannian metrics on M ,

g" D gF C "�2gH ; " > 0;

and the corresponding Laplace-Beltrami operator �". We are interested in the
asymptotic behavior of the trace of the operator f .�"/ for sufficiently nice functions
f on R, in particular, of the eigenvalue distribution function N".�/ of �", as " ! 0

(in the adiabatic limit).
In [4] (see also [2, 3, 5]), the first author proved an asymptotic formula for

tr f .�"/ in the case when the foliation F is Riemannian and the metric g is bundle-
like. For particular examples of non-Riemannian foliations, such an asymptotic
formula was proved by the second author in [11, 12] (see also a survey paper [6]
for some historic remarks and references).

As the simplest example, one can consider the linear foliation F on the n-
dimensional torus Tn D R

n=Zn given by the leaves Lx D x CF mod Z
n, x 2 T

n,
where F is a linear subspace of Rn. Let g be the standard Euclidean metric on T

n.
The foliation F is Riemannian, and the metric g is bundle-like. In this case, the
eigenvalue distribution function N".�/ of �" equals the number of integer points in
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the ellipsoid f� 2 R
n W Pn

j;`D1 g
j `
" �j �` < �=.2�/2g. So we arrive at the following

lattice point problem.

2 Lattice Point Problems

Let F be a p-dimensional linear subspace of R
n and H D F ? the orthogonal

complement of F with respect to the standard Euclidean inner product .�; �/ in R
n,

p C q D n. For any " > 0, consider the linear transformation T" W R
n ! R

n

defined by
T".x/ D x; if x 2 F; T".x/ D "�1x; if x 2 H:

Let S be a bounded open set with smooth boundary in R
n. Put

n".S/ D #.T".S/ \ Z
n/; " > 0:

The problem is to study the asymptotic behavior of n".S/ as " ! 0. It appears
that, in the general case, the leading term in the asymptotic formula for n".S/ as
" ! 0 was unknown. In a slightly different context, this problem was studied in
considerable detail in [9, 10] (see also the references therein).

Let � D Z
n \ F . � is a free abelian group. Denote by r D rank � � p the

rank of � . Let V be the r-dimensional subspace of Rn spanned by the elements
of � . Observe that � is a lattice in V . Let �� � V denote the dual lattice to �:
�� D f�� 2 V W .��; �/ � Zg. For any x 2 V , denote by Px the .n � r/-
dimensional affine subspace of Rn, passing through x orthogonal to V .

Theorem 1 ([7]). Under the current assumptions, we have

n".S/ D "�q

vol.V=�/

X

��2��

voln�r .P�� \ S/ C R".S/;

where the remainder R".S/ satisfies the estimate

R".S/ D O."
1

p�rC1 �q
/; " ! 0:

Theorem 2 ([7, 8]).

(1) If, for any x 2 F , the intersection fx C H g \ S is strictly convex, then

R".S/ D O."
2q

qC1C2.p�r/ �q
/; " ! 0:

(2) If, for any x 2 F , the intersection fx C V ?g \ S is strictly convex, then

R".S/ D O."
2q

n�rC1 �q/; " ! 0:



Adiabatic Limits and Related Lattice Point Problems 27

In [8], we also study the average remainder estimates, where the average is taken
over rotations of the domain S by orthogonal transformations in R

n.

3 Applications to Adiabatic Limits

As a straightforward consequence of Theorem 2, we obtain a more precise estimate
for the remainder in the asymptotic formula of [4] in the above mentioned case when
F is a linear foliation on T

n and g is the standard Euclidean metric.

Theorem 3 ([7]). For � > 0, we have, as " ! 0,

N".�/ D "�q !n�r

vol.V=�/

X

��2��

�
�

4�2
� j��j2

�.n�r/=2

C O."
2q

n�rC1 �q/;

where !n�r is the volume of the unit ball in R
n�r .

4 Some Open Problems

1. Prove an asymptotic formula for tr f .�"/ when F is an arbitrary foliation.
The case when F is given by the fibers of a fibration over a compact manifold

and the metric g is not bundle-like, is already quite interesting.
2. Prove a complete asymptotic expansion for the heat trace tr e�t�" as " ! 0 (even

if the metric g is bundle-like).
3. Study the adiabatic limits of more complicated spectral invariants like the eta-

invariant, the analytic torsion etc. (even if the metric g is bundle-like).
Here the extension of the Mazzeo-Melrose result on small eigenvalues in the

adiabatic limit and spectral sequences to Riemannian foliations [1] might be
useful.

4. Study the remainder estimates for N".�/.
5. Continue the study of the remainder R".S/, depending on geometry of a domain

S and properties of F and H .
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