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1 Manifolds with Fibred Boundaries

Let X be a compact manifold with boundary @X endowed with a fibration

Z �� @X

ˆ

��
Y:

Let x 2 C1.X/ be a boundary defining function and let gˆ be a complete
Riemannian metric on X n @X which in a collar neighborhood of @X is of the form

gˆ D dx2

x4
C ˆ�h

x2
C �; (1)

where � is a symmetric 2-tensor restricting to give a metric on each fibre of ˆ and
h is a Riemannian metric on Y . To study geometric operators (Laplacian, Dirac
operators) associated to such metrics, Mazzeo and Melrose introduced a calculus of
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pseudodifferential operators: the ˆ-calculus. The starting point is the Lie algebra of
ˆ-vector fields:

Vˆ.X/ D f� 2 �.TX/ j �x 2 x2C1.X/; ˆ�. �j@X/ D 0g:

In local coordinates, such a vector � 2 Vˆ.X/ takes the form:

� D ax2 @

@x
C

X

i

bi x
@

@yi
C

X

j

cj @

@zj
; a; bi ; cj 2 C1.X/:

Since it is a Lie algebra, we can consider its universal enveloping algebra to
define ˆ-differential operators. Mazzeo and Melrose defined more generally
ˆ-pseudodifferential operators. They are useful to study mapping properties, for
instance to determine when a ˆ-differential operator is Fredholm.

2 Manifolds with Foliated Boundaries

Question 1. What can we do when the fibration ˆ is replaced by a smooth foliation
F on @X?

The notion of F -vector fields is easy to define:

VF .X/ D f� 2 �.TX/ j �x 2 x2C1.X/; �j@X 2 �.T F/g:

This is still a Lie algebra, so we can define F -differential operators. However,
since pseudodifferential operators are not local, we expect global aspects of the
foliation F to come into play. One approach consists in using groupoid theory,
namely, since VF .X/ is in fact a Lie algebroid, we can integrate it to get a
Lie groupoid G. We can then use the general approach of Nistor-Weinstein-Xu
to construct a pseudodifferential calculus. We will instead proceed differently by
assuming the foliation can be ‘resolved’ by a fibration. This restricts the class of
foliations that can be considered, but will allow us to develop further the underlying
analysis.

We will assume the foliation arises as follows:

1. @X D @eX=� , where � is a discrete group acting freely and properly discontinu-
ously on @eX , a possibly non-compact manifold;

2. There is a fibration ˆ W @eX ! Y with Y a compact manifold;
3. The group � acts Y in a locally free manner (that is, if � 2 � and U � Y an

open set are such that y � � D y for all y 2 U , then � is the identity element) and
so that ˆ.p � �/ D ˆ.p/ � � for all p 2 @eX and � 2 �;

4. The images of the fibres of ˆ under the quotient map q W @eX ! @X give the
leaves of the foliation F .
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Example 1. The Kronecker foliation on the 2-torus with lines of irrational slope
� arise in this way. One takes @eX D R � R=Z with the fibration ˆ given by the
projection on the right factor Y D R=Z, and the group � to be the integers with
action given by

.x; Œy�/ � k D .x C k; Œy � k��/; Œy� � k D Œy � k��; k 2 Z:

The identification with the standard definition of the Kronecker foliation is then
given by the map

‰ W .R � R=Z/=Z ! T
2 D R=Z � R=Z

Œx; Œy�� 7! .Œx�; Œy C �x�/:

Example 2. Seifert fibrations (circle foliations on a compact 3-manifold) typically
arise in this way, except when the space of leaves is a bad orbifold.

For such foliations, we can define F -operators as follows. We let M D @X �
Œ0; �/x � X be a collar neighborhood of @X and consider fM D @eX � Œ0; �/x

with � acting on fM in obvious way so that fM=� D M . On fM , we consider
the space of �-invariant ˆ-operators ‰�̂

;� .fM/ with support away from x D �.
Given eP 2 ‰k

ˆ;�.fM/, we can make it act on f 2 C1.M / by requiring that
eP .q�f / D q�eP .f /, where q W fM ! M is the quotient map. This is meaningful
because eP acts on � invariant functions to give again �-invariant functions. We
denote by q�eP the operator acting on C1.M / obtained from eP in this way.

Definition 1. An F -pseudodifferential operator P 2 ‰m
F .X/ is an operator of the

form
P D q�P1 C P2; P1 2 ‰m

ˆ;�.fM /; P2 2 P‰m.X/:

From the ˆ-calculus, we deduce relatively easily that F -operators are closed
under composition, that they map smooth functions to smooth functions and
that they are bounded when acting on appropriate Sobolev spaces. One can also
introduce a notion of principal symbol 	m.P / as well as a notion of normal operator
NF .P / defined by ‘restricting’ the operator P to the boundary. This leads to a
simple criterion to describe Fredholm operators. An operator P 2 ‰m

F .X/ is
Fredholm (when acting on suitable Sobolev spaces) if and only if its principal
symbol 	m.P / and its normal operator NF .P / are invertible.

3 An Index Theorem for Some Dirac-Type Operators

Assume now that the the foliation F is also such that @eX is compact and the group
� is finite. In particular, the leaves of F must be compact. Let gF be a metric such
that q�.gF jM / takes the form (1) near @eX . Suppose X is even dimensional and that
X , eX and Y are spin manifolds. Let DF be the induced Dirac operator. Suppose
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its normal operator NF .DF / is invertible, which is the case for instance when the
induced metric on the leaves of the foliation F has positive scalar curvature. Under
the decomposition S D SC ˚ S� of the spinor bundle, the Dirac operator can be
written as

DF D
�

0 D�
F

DC
F 0

�
:

Since NF .DF / is invertible, the operator DC
F is Fredholm.

Theorem 1. The index of DC
F is given by

ind.DC
F / D

Z

X

bA.X; gF / � 1

j�j
Z

Y

bA.Y; h/b
.eD0/ C �

2
;

where eD0 is a family of Dirac operators on the fibres of ˆ W @eX ! Y associated to

q�.DF jM / and � D 
.eDı/

j�j � 
.Dı/ is a difference of two eta invariants with eDı the

Dirac operator on .@eX; ˆ�h
ı2 C�/ and Dı the Dirac operator on .@X; q�. ˆ�h

ı2 C�//.
Both eDı and Dı are invertible for ı > 0 small enough and � does not depend on ı.

The strategy to prove this theorem is to take an adiabatic limit.
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