Pseudodifferential Operators on Manifolds with Foliated Boundaries

Frédéric Rochon

1991 Mathematics Subject Classification: 58J28, 58J32, 58J40.

1 Manifolds with Fibred Boundaries

Let X be a compact manifold with boundary ∂X endowed with a fibration

$$
Z \longrightarrow \partial X
$$

\n
$$
\downarrow \Phi
$$

\n
$$
Y.
$$

Let $x \in C^{\infty}(X)$ be a boundary defining function and let g_{Φ} be a complete Riemannian metric on $X \setminus \partial X$ which in a collar neighborhood of ∂X is of the form

$$
g_{\Phi} = \frac{dx^2}{x^4} + \frac{\Phi^* h}{x^2} + \kappa,\tag{1}
$$

where κ is a symmetric 2-tensor restricting to give a metric on each fibre of Φ and h is a Riemannian metric on Y. To study geometric operators (Laplacian, Dirac operators) associated to such metrics, Mazzeo and Melrose introduced a calculus of

F. Rochon (\boxtimes)

Université de Québec á Montréal, Montreal, Canada e-mail: rochon.frederic@uqam.ca

pseudodifferential operators: the Φ -calculus. The starting point is the Lie algebra of ˆ-vector fields:

$$
\mathcal{V}_{\Phi}(X) = \{ \xi \in \Gamma(TX) \mid \xi x \in x^2 \mathcal{C}^{\infty}(X), \ \Phi_*(\xi|_{\partial X}) = 0 \}.
$$

In local coordinates, such a vector $\xi \in V_{\Phi}(X)$ takes the form:

$$
\xi = ax^2 \frac{\partial}{\partial x} + \sum_i b^i x \frac{\partial}{\partial y^i} + \sum_j c^j \frac{\partial}{\partial z^j}, \quad a, b^i, c^j \in \mathcal{C}^{\infty}(X).
$$

Since it is a Lie algebra, we can consider its universal enveloping algebra to define Φ -differential operators. Mazzeo and Melrose defined more generally ˆ-pseudodifferential operators. They are useful to study mapping properties, for instance to determine when a Φ -differential operator is Fredholm.

2 Manifolds with Foliated Boundaries

Question 1. What can we do when the fibration Φ is replaced by a smooth foliation $\mathcal F$ on ∂X ?

The notion of F -vector fields is easy to define:

$$
\mathcal{V}_{\mathcal{F}}(X) = \{ \xi \in \Gamma(TX) \mid \xi x \in x^2 \mathcal{C}^\infty(X), \ \xi \vert_{\partial X} \in \Gamma(T\mathcal{F}) \}.
$$

This is still a Lie algebra, so we can define *F*-differential operators. However, since pseudodifferential operators are not local, we expect global aspects of the foliation F to come into play. One approach consists in using groupoid theory, namely, since $V_F(X)$ is in fact a Lie algebroid, we can integrate it to get a Lie groupoid G. We can then use the general approach of Nistor-Weinstein-Xu to construct a pseudodifferential calculus. We will instead proceed differently by assuming the foliation can be 'resolved' by a fibration. This restricts the class of foliations that can be considered, but will allow us to develop further the underlying analysis.

We will assume the foliation arises as follows:

- 1. $\partial X = \partial \widetilde{X}/\Gamma$, where Γ is a discrete group acting freely and properly discontinuously on $\partial \tilde{X}$, a possibly non-compact manifold;
- 2. There is a fibration $\Phi : \partial \widetilde{X} \to Y$ with Y a compact manifold;
- 3. The group Γ acts Y in a locally free manner (that is, if $\gamma \in \Gamma$ and $\mathcal{U} \subset Y$ and one net are such that $y \cdot y = y$ for all $y \in \mathcal{U}$ then y is the identity element) and open set are such that $y \cdot \gamma = y$ for all $y \in U$, then γ is the identity element) and so that $\Phi(p \cdot \gamma) = \Phi(p) \cdot \gamma$ for all $p \in \partial \widetilde{X}$ and $\gamma \in \Gamma$; so that $\Phi(p \cdot \gamma) = \Phi(p) \cdot \gamma$ for all $p \in \partial X$ and $\gamma \in \Gamma$;
The images of the fibres of Φ under the quotient man
- 4. The images of the fibres of Φ under the quotient map $q : \partial X \to \partial X$ give the leaves of the foliation $\mathcal F$ leaves of the foliation *F*.

Example 1. The Kronecker foliation on the 2-torus with lines of irrational slope θ arise in this way. One takes $\partial \widetilde{X} = \mathbb{R} \times \mathbb{R}/\mathbb{Z}$ with the fibration Φ given by the projection on the right factor $Y = \mathbb{R}/\mathbb{Z}$, and the group Γ to be the integers with action given by

$$
(x,[y]) \cdot k = (x+k,[y-k\theta]), [y] \cdot k = [y-k\theta], k \in \mathbb{Z}.
$$

The identification with the standard definition of the Kronecker foliation is then given by the map

$$
\Psi : (\mathbb{R} \times \mathbb{R}/\mathbb{Z})/\mathbb{Z} \to \mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}
$$

$$
[x, [y]] \quad \mapsto \quad ([x], [y + \theta x]).
$$

Example 2. Seifert fibrations (circle foliations on a compact 3-manifold) typically arise in this way, except when the space of leaves is a bad orbifold.

For such foliations, we can define *F*-operators as follows. We let $M = \partial X \times$ $[0, \epsilon)_x \subset X$ be a collar neighborhood of ∂X and consider $M = \partial X \times [0, \epsilon)_x$
with Γ acting on M in obvious way so that $\widetilde{M}/\Gamma = M$ On M we consider with Γ acting on M in obvious way so that $M/\Gamma = M$. On M, we consider the space of Γ -invariant Φ -operators Ψ^* (M) with support away from $\chi = \epsilon$ the space of Γ -invariant Φ -operators $\Psi_{\Phi,\Gamma}^*(M)$ with support away from $x = \epsilon$.
Civen $\widetilde{P} \subset \mathcal{N}^k$ (\widetilde{M}) we can make it get on $f \subset \mathcal{C}^{\infty}(M)$ by requiring that Given $\widetilde{P} \in \Psi_{\Phi,\Gamma}^{k}(\widetilde{M})$, we can make it act on $f \in C^{\infty}(M)$ by requiring that $\widetilde{P}(e^*,f) = e^* \widetilde{P}(f)$, where $g: \widetilde{M} \to M$ is the quotient map. This is meaningful $P(q^*)$ $P(q^* f) = q^* P(f)$, where $q : M \to M$ is the quotient map. This is meaningful
because \widetilde{P} acts on Γ invariant functions to give again Γ -invariant functions. We denote by $q_* P$ the operator acting on $C^{\infty}(M)$ obtained from P in this way.

Definition 1. An *F*-pseudodifferential operator $P \in \Psi_{\mathcal{F}}^m(X)$ is an operator of the form form

$$
P = q_* P_1 + P_2, \quad P_1 \in \Psi_{\Phi,\Gamma}^m(\widetilde{M}), \ P_2 \in \dot{\Psi}^m(X).
$$

From the Φ -calculus, we deduce relatively easily that $\mathcal F$ -operators are closed under composition, that they map smooth functions to smooth functions and that they are bounded when acting on appropriate Sobolev spaces. One can also introduce a notion of principal symbol $\sigma_m(P)$ as well as a notion of normal operator $N_f(P)$ defined by 'restricting' the operator P to the boundary. This leads to a simple criterion to describe Fredholm operators. An operator $P \in \Psi_{\mathcal{F}}^m(X)$ is
Fredholm (when acting on suitable Soboley spaces) if and only if its principal Fredholm (when acting on suitable Sobolev spaces) if and only if its principal symbol $\sigma_m(P)$ and its normal operator $N_{\mathcal{F}}(P)$ are invertible.

3 An Index Theorem for Some Dirac-Type Operators

Assume now that the the foliation $\mathcal F$ is also such that $\partial \widetilde X$ is compact and the group Γ is finite. In particular, the leaves of $\mathcal F$ must be compact. Let $g_{\mathcal F}$ be a metric such that $q^*(g_{\mathcal{F}}|_M)$ takes the form [\(1\)](#page-0-0) near ∂X . Suppose X is even dimensional and that $X \times \widetilde{X}$ and Y are spin manifolds. Let $D_{\mathcal{F}}$ be the induced Dirac operator. Suppose X, \widetilde{X} and Y are spin manifolds. Let $D_{\mathcal{F}}$ be the induced Dirac operator. Suppose its normal operator $N_{\mathcal{F}}(D_{\mathcal{F}})$ is invertible, which is the case for instance when the induced metric on the leaves of the foliation $\mathcal F$ has positive scalar curvature. Under the decomposition $S = S^+ \oplus S^-$ of the spinor bundle, the Dirac operator can be written as

$$
D_{\mathcal{F}} = \begin{pmatrix} 0 & D_{\mathcal{F}}^- \\ D_{\mathcal{F}}^+ & 0 \end{pmatrix}.
$$

Since $N_{\mathcal{F}}(D_{\mathcal{F}})$ is invertible, the operator $D_{\mathcal{F}}^+$ is Fredholm.

Theorem 1. *The index of* $D_{\mathcal{F}}^{+}$ *is given by*

$$
\operatorname{ind}(D_{\mathcal{F}}^+) = \int_X \widehat{A}(X, g_{\mathcal{F}}) - \frac{1}{|\Gamma|} \int_Y \widehat{A}(Y, h) \widehat{\eta}(\widetilde{D}_0) + \frac{\rho}{2},
$$

where D_0 is a family of Dirac operators on the fibres of $\Phi : \partial X \to Y$ associated to $q^*(D_{\mathcal{F}}|_M)$ and $\rho = \frac{\eta(\widetilde{D}_{\delta})}{|\Gamma|} - \eta(D_{\delta})$ is a difference of two eta invariants with \widetilde{D}_{δ} the *Dirac operator on* $(\partial \overline{X}, \frac{\Phi^* h}{\delta^2} + \kappa)$ *and* D_δ *the Dirac operator on* $(\partial X, q_*(\frac{\Phi^* h}{\delta^2} + \kappa))$ *.*
Reth \widetilde{D}_k *and* D_k *an imagitible for* $\delta > 0$ *cmall maybend* and a decompt dyname on δ *Both* \widetilde{D}_δ *and* D_δ *are invertible for* $\delta > 0$ *small enough and* ρ does not *depend on* δ *.*

The strategy to prove this theorem is to take an adiabatic limit.