Pseudodifferential Operators on Manifolds with Foliated Boundaries

Frédéric Rochon

1991 Mathematics Subject Classification: 58J28, 58J32, 58J40.

1 Manifolds with Fibred Boundaries

Let X be a compact manifold with boundary ∂X endowed with a fibration

$$Z \longrightarrow \partial X$$

$$\downarrow \Phi$$

$$Y.$$

Let $x \in C^{\infty}(X)$ be a boundary defining function and let g_{Φ} be a complete Riemannian metric on $X \setminus \partial X$ which in a collar neighborhood of ∂X is of the form

$$g_{\Phi} = \frac{dx^2}{x^4} + \frac{\Phi^* h}{x^2} + \kappa,$$
 (1)

where κ is a symmetric 2-tensor restricting to give a metric on each fibre of Φ and h is a Riemannian metric on Y. To study geometric operators (Laplacian, Dirac operators) associated to such metrics, Mazzeo and Melrose introduced a calculus of

F. Rochon (🖂)

Université de Québec á Montréal, Montreal, Canada e-mail: rochon.frederic@uqam.ca

pseudodifferential operators: the Φ -calculus. The starting point is the Lie algebra of Φ -vector fields:

$$\mathcal{V}_{\Phi}(X) = \{ \xi \in \Gamma(TX) \mid \xi x \in x^2 \mathcal{C}^{\infty}(X), \ \Phi_*(\xi|_{\partial X}) = 0 \}.$$

In local coordinates, such a vector $\xi \in \mathcal{V}_{\Phi}(X)$ takes the form:

$$\xi = ax^2 \frac{\partial}{\partial x} + \sum_i b^i x \frac{\partial}{\partial y^i} + \sum_j c^j \frac{\partial}{\partial z^j}, \quad a, b^i, c^j \in \mathcal{C}^{\infty}(X).$$

Since it is a Lie algebra, we can consider its universal enveloping algebra to define Φ -differential operators. Mazzeo and Melrose defined more generally Φ -pseudodifferential operators. They are useful to study mapping properties, for instance to determine when a Φ -differential operator is Fredholm.

2 Manifolds with Foliated Boundaries

Question 1. What can we do when the fibration Φ is replaced by a smooth foliation \mathcal{F} on ∂X ?

The notion of \mathcal{F} -vector fields is easy to define:

$$\mathcal{V}_{\mathcal{F}}(X) = \{ \xi \in \Gamma(TX) \mid \xi x \in x^2 \mathcal{C}^{\infty}(X), \ \xi|_{\partial X} \in \Gamma(T\mathcal{F}) \}.$$

This is still a Lie algebra, so we can define \mathcal{F} -differential operators. However, since pseudodifferential operators are not local, we expect global aspects of the foliation \mathcal{F} to come into play. One approach consists in using groupoid theory, namely, since $\mathcal{V}_{\mathcal{F}}(X)$ is in fact a Lie algebroid, we can integrate it to get a Lie groupoid \mathcal{G} . We can then use the general approach of Nistor-Weinstein-Xu to construct a pseudodifferential calculus. We will instead proceed differently by assuming the foliation can be 'resolved' by a fibration. This restricts the class of foliations that can be considered, but will allow us to develop further the underlying analysis.

We will assume the foliation arises as follows:

- 1. $\partial X = \partial \widetilde{X} / \Gamma$, where Γ is a discrete group acting freely and properly discontinuously on $\partial \widetilde{X}$, a possibly non-compact manifold;
- 2. There is a fibration $\Phi : \partial X \to Y$ with Y a compact manifold;
- 3. The group Γ acts *Y* in a locally free manner (that is, if $\gamma \in \Gamma$ and $\mathcal{U} \subset Y$ an open set are such that $y \cdot \gamma = y$ for all $y \in \mathcal{U}$, then γ is the identity element) and so that $\Phi(p \cdot \gamma) = \Phi(p) \cdot \gamma$ for all $p \in \partial \widetilde{X}$ and $\gamma \in \Gamma$;
- 4. The images of the fibres of Φ under the quotient map $q : \partial \widetilde{X} \to \partial X$ give the leaves of the foliation \mathcal{F} .

Example 1. The Kronecker foliation on the 2-torus with lines of irrational slope θ arise in this way. One takes $\partial \widetilde{X} = \mathbb{R} \times \mathbb{R}/\mathbb{Z}$ with the fibration Φ given by the projection on the right factor $Y = \mathbb{R}/\mathbb{Z}$, and the group Γ to be the integers with action given by

$$(x, [y]) \cdot k = (x+k, [y-k\theta]), [y] \cdot k = [y-k\theta], k \in \mathbb{Z}.$$

The identification with the standard definition of the Kronecker foliation is then given by the map

$$\Psi: (\mathbb{R} \times \mathbb{R}/\mathbb{Z})/\mathbb{Z} \to \mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$$
$$[x, [y]] \mapsto ([x], [y + \theta x]).$$

Example 2. Seifert fibrations (circle foliations on a compact 3-manifold) typically arise in this way, except when the space of leaves is a bad orbifold.

For such foliations, we can define \mathcal{F} -operators as follows. We let $M = \partial X \times [0, \epsilon)_x \subset X$ be a collar neighborhood of ∂X and consider $\widetilde{M} = \partial \widetilde{X} \times [0, \epsilon)_x$ with Γ acting on \widetilde{M} in obvious way so that $\widetilde{M}/\Gamma = M$. On \widetilde{M} , we consider the space of Γ -invariant Φ -operators $\Psi_{\Phi,\Gamma}^*(\widetilde{M})$ with support away from $x = \epsilon$. Given $\widetilde{P} \in \Psi_{\Phi,\Gamma}^k(\widetilde{M})$, we can make it act on $f \in \mathcal{C}^\infty(M)$ by requiring that $\widetilde{P}(q^*f) = q^*\widetilde{P}(f)$, where $q: \widetilde{M} \to M$ is the quotient map. This is meaningful because \widetilde{P} acts on Γ invariant functions to give again Γ -invariant functions. We denote by $q_*\widetilde{P}$ the operator acting on $\mathcal{C}^\infty(M)$ obtained from \widetilde{P} in this way.

Definition 1. An \mathcal{F} -pseudodifferential operator $P \in \Psi^m_{\mathcal{F}}(X)$ is an operator of the form

$$P = q_*P_1 + P_2, \quad P_1 \in \Psi^m_{\Phi,\Gamma}(\widetilde{M}), \ P_2 \in \dot{\Psi}^m(X).$$

From the Φ -calculus, we deduce relatively easily that \mathcal{F} -operators are closed under composition, that they map smooth functions to smooth functions and that they are bounded when acting on appropriate Sobolev spaces. One can also introduce a notion of principal symbol $\sigma_m(P)$ as well as a notion of normal operator $N_{\mathcal{F}}(P)$ defined by 'restricting' the operator P to the boundary. This leads to a simple criterion to describe Fredholm operators. An operator $P \in \Psi_{\mathcal{F}}^m(X)$ is Fredholm (when acting on suitable Sobolev spaces) if and only if its principal symbol $\sigma_m(P)$ and its normal operator $N_{\mathcal{F}}(P)$ are invertible.

3 An Index Theorem for Some Dirac-Type Operators

Assume now that the foliation \mathcal{F} is also such that $\partial \widetilde{X}$ is compact and the group Γ is finite. In particular, the leaves of \mathcal{F} must be compact. Let $g_{\mathcal{F}}$ be a metric such that $q^*(g_{\mathcal{F}}|_M)$ takes the form (1) near $\partial \widetilde{X}$. Suppose X is even dimensional and that X, \widetilde{X} and Y are spin manifolds. Let $D_{\mathcal{F}}$ be the induced Dirac operator. Suppose

its normal operator $N_{\mathcal{F}}(D_{\mathcal{F}})$ is invertible, which is the case for instance when the induced metric on the leaves of the foliation \mathcal{F} has positive scalar curvature. Under the decomposition $S = S^+ \oplus S^-$ of the spinor bundle, the Dirac operator can be written as

$$D_{\mathcal{F}} = \begin{pmatrix} 0 & D_{\mathcal{F}}^- \\ D_{\mathcal{F}}^+ & 0 \end{pmatrix}.$$

Since $N_{\mathcal{F}}(D_{\mathcal{F}})$ is invertible, the operator $D_{\mathcal{F}}^+$ is Fredholm.

Theorem 1. The index of $D_{\mathcal{F}}^+$ is given by

$$\operatorname{ind}(D_{\mathcal{F}}^{+}) = \int_{X} \widehat{A}(X, g_{\mathcal{F}}) - \frac{1}{|\Gamma|} \int_{Y} \widehat{A}(Y, h) \widehat{\eta}(\widetilde{D}_{0}) + \frac{\rho}{2}$$

where \widetilde{D}_0 is a family of Dirac operators on the fibres of $\Phi : \partial \widetilde{X} \to Y$ associated to $q^*(D_{\mathcal{F}}|_M)$ and $\rho = \frac{\eta(\widetilde{D}_{\delta})}{|\Gamma|} - \eta(D_{\delta})$ is a difference of two eta invariants with \widetilde{D}_{δ} the Dirac operator on $(\partial \widetilde{X}, \frac{\Phi^*h}{\delta^2} + \kappa)$ and D_{δ} the Dirac operator on $(\partial X, q_*(\frac{\Phi^*h}{\delta^2} + \kappa))$. Both \widetilde{D}_{δ} and D_{δ} are invertible for $\delta > 0$ small enough and ρ does not depend on δ .

The strategy to prove this theorem is to take an adiabatic limit.