On the Closure of Elliptic Wedge Operators

Juan B. Gil, Thomas Krainer, and Gerardo A. Mendoza

2010 Mathematics Subject Classification: Primary: 58J50; Secondary: 35P05, 58J32, 58J05.

We present a semi-Fredholm theorem for the minimal extension of an elliptic differential operator on a manifold with wedge singularities and give, under suitable assumptions, a full asymptotic expansion of the trace of the resolvent.

1 Wedge Operators

Let M be a smooth compact manifold with boundary. Assume that the boundary is the total space of a locally trivial fiber bundle $\wp : \partial M \to Y$ with typical fiber Z, where *Y* and *Z* are smooth compact manifolds. Let $E, F \rightarrow M$ be smooth vector bundles. We are interested in the space x^{-m} Diff^m(M ; E , F) of differential *wedge*
onerators of order m, where $\text{Diff}^m(M; F, F)$ denotes the space of differential edge *operators* of order *m*, where $Diff_{\ell}^{m}(\mathcal{M}; E, F)$ denotes the space of differential edge
operators as introduced in [3] and $x : \mathcal{M} \to \mathbb{R}$ is any smooth defining function operators, as introduced in [\[3](#page-3-0)], and $x : \mathcal{M} \to \mathbb{R}$ is any smooth defining function for ∂M .

Locally, near a point $p \in \partial M$, a wedge operator $A \in x^{-m}$ Diff^m ($M; E, F$) can represented as be represented as

$$
A = x^{-m} \sum_{k+|\alpha|+|\beta| \le m} a_{k,\alpha,\beta}(x,y,z) (xD_x)^k (xD_y)^\alpha D_z^\beta \tag{1}
$$

with coefficients $a_{k,\alpha,\beta}$ smooth up to $x = 0$.

J.B. Gil (\boxtimes) · T. Krainer

G.A. Mendoza

Penn State Altoona, 3000 Ivyside Park, Altoona, PA, 16601, USA e-mail: jgil@psu.edu; krainer@psu.edu

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA e-mail: gmendoza@temple.edu

For example, if g_w is a Riemannian metric on M that near ∂M takes the form $g_w = dx^2 + x^2g_z + g_y$ (wedge metric), then the Laplacian associated with g_w is a wedge operator of order 2 and has the local representation

$$
x^{-2}((xD_x)^2 - i(\dim \mathcal{Z} - 1)(xD_x) + \Delta_{\mathcal{Z}} + x^2\Delta_{\mathcal{Y}}).
$$

Note that if $\mathcal{Y} = \{pt\}$, the space $x^{-m} \text{Diff}_e^m(\mathcal{M}; E, F)$ reduces to the class of cone operators and if $\mathcal{Z} = \{pt\}$ then $x^{-m} \text{Diff}^m(\mathcal{M}; E, F)$ contains all regular cone operators, and if $\mathcal{Z} = \{pt\}$, then x^{-m} Diff^m (*M*; *E*, *F*) contains all regular differential operators on *M* differential operators on *M*.

Let A be a wedge operator or order m , locally near the boundary represented as in [\(1\)](#page-0-0). The following principal symbols are intrinsically associated with A.

The w-principal symbol. There is a natural structure bundle ${}^wT^*\mathcal{M} \rightarrow \mathcal{M}$ associated with wedge geometry. The principal symbol of a wedge operator A extends from the interior of M to ${}^wT^*\mathcal{M} \setminus 0$. Locally near $\partial \mathcal{M}$, the *w*-principal symbol of A can be represented as

$$
\mathbf{w}_{\boldsymbol{\sigma}}(A) = \sum_{k+|\alpha|+|\beta|=m} a_{k,\alpha,\beta}(x,y,z) \xi^k \eta^{\alpha} \zeta^{\beta}.
$$

The operator A is said to be *w*-elliptic if $\mathbb{W}(\mathcal{A})$ is invertible.

The conormal symbol (indicial family). The indicial family restricts to the fibers of $\wp : \partial \mathcal{M} \to \mathcal{Y}$. We have

$$
\hat{A}(y,\sigma) = \sum_{k+|\beta| \le m} a_{k,0,\beta}(0,y,z) \sigma^k D_z^{\beta}
$$

for $y \in \mathcal{Y}$ and $\sigma \in \mathbb{C}$, and $\hat{A}(y, \sigma)$ acts on $C^{\infty}(\mathcal{Z})$. The set

$$
\operatorname{spec}_e(A) = \{(y, \sigma) \in \mathcal{Y} \times \mathbb{C} : \hat{A}(y, \sigma) \text{ is not invertible}\}
$$

is called the boundary spectrum of A.

The principal edge symbol (normal family). The choice of defining function trivializes the inward pointing half $\mathcal{N}_+(\partial \mathcal{M})$ of the normal bundle of $\partial \mathcal{M}$ in \mathcal{M} . We get an induced fibration $\wp_{\wedge} : \mathcal{N}_+(\partial \mathcal{M}) \to \mathcal{Y}$ with typical fiber $\mathcal{Z}^{\wedge} = \overline{\mathbb{R}}_+ \times \mathcal{Z}$. Locally, the normal family takes the form

$$
A_{\wedge}(y,\eta) = x^{-m} \sum_{k+|\alpha|+|\beta| \leq m} a_{k,\alpha,\beta}(0,y,z) (xD_x)^k (x\eta)^{\alpha} D_z^{\beta},
$$

where $(y, \eta) \in T^* \mathcal{Y} \setminus 0$, and $A_{\wedge}(y, \eta)$ acts in the canonically induced conic L^2 -space on the fiber \mathcal{Z}^{\wedge} .

Under suitable conditions on the normal family and the boundary spectrum of a *w*-elliptic wedge operator, we present the following results, cf. [\[2](#page-3-1)].

2 Main Results

For simplicity of the exposition, we assume that the operators are scalar.

Let $A \in x^{-m}$ Diff^m_e (*M*) be *w*-elliptic, considered as an unbounded operator

$$
A:C_c^{\infty}(\mathcal{M})\subset x^{-\gamma}L_b^2(\mathcal{M})\to x^{-\gamma}L_b^2(\mathcal{M})
$$

for some fixed $\gamma \in \mathbb{R}$. Here $L_b^2(\mathcal{M})$ denotes the L^2 space defined using a fixed density of the form x^{-1} m for some smooth positive density m on M density of the form x^{-1} m for some smooth positive density m on *M*.

We let $H_e^m(\mathcal{M})$ denote the corresponding Sobolev space defined using edge differential operators of order $\leq m$. Let \mathcal{D}_{\min} be the closure of $C_c^{\infty}(\mathcal{M})$ with respect
to the graph norm of A and let $\mathcal{D}_{\text{max}}(y)$ be the closure of $C^{\infty}(\mathcal{Z}^{\wedge})$ in $x^{-\gamma}L^2(\mathcal{Z}^{\wedge})$ to the graph norm of A, and let $\mathcal{D}_{\wedge,\min}(y)$ be the closure of $C_c^{\infty}(\mathcal{Z}^{\wedge})$ in $x^{-\gamma}L_b^2(\mathcal{Z}^{\wedge})$ with respect to the one of $A_{\wedge}(y, \eta)$.

Our first result concerns the minimal domain and the semi-Fredholm property of the minimal extension of A.

Theorem 1. Let A be as above. If $A_{\wedge}(y, \eta) : \mathcal{D}_{\wedge,\min}(y) \to x^{-\gamma} L_b^2$ is injective on $T^* \mathcal{V} \setminus 0$ and if π_c spec $(A) \cap \{^{\infty} \sigma - \gamma - m\} - \emptyset$ then $\mathcal{D}_{\text{max}}(A) = x^{-\gamma + m} H^m(M)$ $T^* \mathcal{Y} \setminus 0$, and if $\pi_{\mathbb{C}}$ spec_e $(A) \cap {\mathfrak{F}} \sigma = \gamma - m$ $= \emptyset$, then $\mathcal{D}_{\min}(A) = x^{-\gamma + m} H_{\epsilon}^m(\mathcal{M})$
and $A : \mathcal{D}_{\min} \to x^{-\gamma} L^2(\mathcal{M})$ is a semi-Fredholm operator with finite-dimensional and $A: \mathcal{D}_{\min} \to x^{-\gamma} L_b^2(\mathcal{M})$ is a semi-Fredholm operator with finite-dimensional
kernel and closed range *kernel and closed range.*

For our next result, let Λ be a closed sector properly contained in $\mathbb C$. Such a sector is called a *sector of minimal growth* for $A_{\mathcal{D}}$: $\mathcal{D} \subset x^{-\gamma} L_b^2 \to x^{-\gamma} L_b^2$, if $A_{\mathcal{D}} - \lambda$ is invertible for $|\lambda|$ large, and $\|(A_{\mathcal{D}} - \lambda)^{-1}\|_{\mathscr{L}(x^{-\gamma}L_b^2)} = O(|\lambda|^{-1})$ as $|\lambda| \to \infty$.

Theorem 2 (Resolvent expansion). *Let* $m > 0$, let $A \in x^{-m}$ Diff^m(\mathcal{M}) *be such that* spec($\mathcal{H}(A) \cap \Lambda = \emptyset$ *on* $\mathcal{W}^* \mathcal{W}^* \mathcal{M} \setminus 0$. If π_G spec($A) \cap \mathcal{W}^* \mathcal{W} = \mathcal{W} = m \setminus -\emptyset$ *that* spec($\mathcal{W}(A)$) \cap $\Lambda = \emptyset$ *on* $\mathcal{W}T^*\mathcal{M} \setminus 0$. If $\pi_{\mathbb{C}} \text{spec}_e(A) \cap \{\mathfrak{F} \sigma = \gamma -$
and if $A_+(\gamma, n) = \lambda : \mathcal{D}_e$ \rightarrow $(\gamma) \rightarrow x^{-\gamma}I^2$ is bijective on $(T^*\mathcal{V} \times \Lambda) \setminus 0$ $-m\} = \emptyset,$
i then Λ is *and if* $A_{\wedge}(y, \eta) - \lambda : \mathcal{D}_{\wedge,\min}(y) \to x^{-\gamma} L_b^2$ *is bijective on* $(T^* \mathcal{Y} \times \Lambda) \setminus 0$, then Λ *is* a sector of minimal growth for $A_{\mathcal{D}}$ and for every $\ell \in \mathbb{N}$ with $\ell > \frac{\dim \mathcal{M}}{\ell}$ *a sector of minimal growth for* $A_{\mathcal{D}_{\min}}$ *, and for every* $\ell \in \mathbb{N}$ *with* $\ell > \frac{\dim \mathcal{M}}{m}$ *,*

$$
(A_{\mathcal{D}_{\min}} - \lambda)^{-\ell} : x^{-\gamma} L_b^2(\mathcal{M}) \to x^{-\gamma} L_b^2(\mathcal{M})
$$

is of trace class. For every $\varphi \in C^{\infty}(\mathcal{M})$ *, we have an expansion*

$$
\mathrm{Tr}\big(\varphi\big(A_{\mathcal{D}_{\min}}-\lambda\big)^{-\ell}\big)\sim\sum_{j=0}^{\infty}\sum_{k=0}^{m_j}\alpha_{jk}\lambda^{\frac{\dim\mathcal{M}-j}{m}-\ell}\log^k(\lambda)\;as\;|\lambda|\to\infty.\qquad(2)
$$

Here $m_j \leq 1$ *for all j*, and $m_j = 0$ *for* $j \leq \dim \mathcal{Z}$ *.*

By standard methods, this asymptotic expansion leads to short time asymptotics of the heat trace when $A_{\mathcal{D}_{\text{min}}}$ is sectorial, and to results concerning the meromorphic structure of the ζ -function when $A_{\mathcal{D}_{\text{min}}}$ is positive.

The above theorems rely on the construction of suitable parametrices within the class of wedge pseudodifferential operators. Our approach makes substantial use of pseudodifferential methods developed by Schulze, see e.g. [\[4](#page-3-2)].

The asymptotic expansion in [\(2\)](#page-2-0) is of course consistent with what is known in the special cases of boundary value problems (dim $\mathcal{Z} = 0$) and of elliptic cone operators (dim $\mathcal{V} = 0$). For closed extensions other than the minimal extension, one should generally expect a more intricate asymptotic structure of the resolvent. In fact, in the case when dim $\mathcal{Y} = 0$, the corresponding expansion of the resolvent sometimes involves rational functions in $\log \lambda$ and complex powers of λ , see [\[1\]](#page-3-3).

Acknowledgements Work partially supported by the NSF, grants DMS-0901173 & DMS-0901202.

References

- 1. J. Gil, T. Krainer, and G. Mendoza, *Dynamics on Grassmannians and resolvents of cone operators*, Anal. PDE **4** (2011), no. 1, 115–148.
- 2. J. Gil, T. Krainer, and G. Mendoza, *On the closure of elliptic wedge operators*, preprint arXiv:1007.2397v2, December 2010.
- 3. R. Mazzeo, *Elliptic theory of differential edge operators I*, Comm. Partial Differential Equations **16** (1991), 1615–1664.
- 4. B.-W. Schulze, *Pseudo-differential Operators on Manifolds with Singularities*, North Holland, Amsterdam, 1991.