Microlocal Analysis and Adiabatic Problems: $The Case of Perturbed Periodic Schrödinger$ **Operators**

Gianluca Panati

Microlocal analysis is a powerful technique to deal with multiscale and adiabatic problems in Quantum Mechanics. We illustrate this general claim in the specific case of a perturbed periodic Schrödinger operator, namely the operator defined in a dense subspace of $L^2(\mathbb{R}^d)$ by

$$
H_{\varepsilon} = \frac{1}{2} \sum_{j=1}^{d} \left(-i \frac{\partial}{\partial x_j} - A_j(\varepsilon x) \right)^2 + V(x) + \varphi(\varepsilon x), \tag{1}
$$

where $V : \mathbb{R}^d \to \mathbb{R}$ is a \mathbb{Z}^d -periodic function, $V \in L^2_{loc}(\mathbb{R}^d)$, corresponding to the interaction of the test electron with the jonic cores of a crystal, while $A : \in \mathbb{C}^\infty(\mathbb{R}^d)$ interaction of the test electron with the ionic cores of a crystal, while $A_j \in C_0^{\infty}(\mathbb{R}^d)$ represent some perturbing external electromagnetic potentials and $\varphi \in C_b^{\infty}(\mathbb{R}^d)$ represent some perturbing external electromagnetic potentials.
The parameter $s \ll 1$ corresponds to the separation of space-scales The parameter $\varepsilon \ll 1$ corresponds to the separation of space-scales.

Since the unperturbed Hamiltonian $\hat{H}_{\text{per}} = -\frac{1}{2}\hat{\Delta} + V$ is periodic, it can decomposed as a direct integral of simpler operators, thus exhibiting a hand be decomposed as a direct integral of simpler operators, thus exhibiting a *band structure*, analogous to the one appearing in the Born-Oppenheimer problem.

We are interested to the behavior of the solutions to the dynamical Schrödinger equation $i \varepsilon \partial_t \psi_{\varepsilon}(t) = H_{\varepsilon} \psi_{\varepsilon}(t)$ in the limit $\varepsilon \to 0$. We show that by using microlocal analysis with operator-valued symbols one can decouple the dynamics corresponding to different bands and determine a simpler approximate dynamics for each band $[3]$. Further developments have been obtained, more recently, in $[1, 5]$ $[1, 5]$ $[1, 5]$.

The Bloch-Floquet transform. The \mathbb{Z}^d -symmetry of the unperturbed Hamiltonian operator $H_{\text{per}} = -\frac{1}{2}\Delta + V$ can be used to decomposed it as a direct integral of
simpler operators. To fix the notation let Y be a fundamental domain for the action simpler operators. To fix the notation, let Y be a fundamental domain for the action of the translation group $\Gamma = \mathbb{Z}^d$ on \mathbb{R}^d , and let $\mathbb B$ be a fundamental domain for the action of the dual lattice $\Gamma^* := \{ \kappa \in (\mathbb{R}^d)^* : \kappa \cdot \gamma \in 2\pi \mathbb{Z} \quad \forall \gamma \in \Gamma \}$ on the dual

G. Panati (\boxtimes)

Dipartimento di Matematica, Universita di Roma "La Sapienza", Roma, Italy ´ e-mail: panati@mat.uniroma1.it

space $(\mathbb{R}^d)^*$ ("momentum space"). We also introduce the tori $\mathbb{T}_Y^d = \mathbb{R}^d / \Gamma$ and $\mathbb{T}^* = (\mathbb{R}^d)^* / \Gamma^*$. The formula $\mathbb{T}^* = (\mathbb{R}^d)^*/\Gamma^*$. The formula

$$
(\widetilde{\mathcal{U}}\psi)(k, y) = \sum_{\gamma \in \Gamma} e^{-ik \cdot (y + \gamma)} \psi(y + \gamma), \qquad y \in \mathbb{R}^d, k \in (\mathbb{R}^d)^*, \psi \in \mathcal{S}(\mathbb{R}^d)
$$

extends to a unitary operator $\widetilde{\mathcal{U}}: L^2(\mathbb{R}^d) \longrightarrow L^2(\mathbb{B}) \otimes L^2(\mathbb{T}^d_1) \simeq L^2(\mathbb{B}, L^2(\mathbb{T}^d_1)),$
called (modified) Bloch-Floquet transform Hereafter $\mathcal{H}_c := L^2(\mathbb{T}^d)$ called (modified) Bloch-Floquet transform. Hereafter $\mathcal{H}_{\rm f} := L^2(\mathbb{T}_{\rm Y}^d)$.
The advantage of this construction is that after conjugation H

The advantage of this construction is that, after conjugation, H_{per} becomes a fibered operator, namely

$$
\widetilde{H}_{\text{per}} := \widetilde{\mathcal{U}} \, H_{\text{per}} \widetilde{\mathcal{U}}^{-1} = \int_{\mathbb{B}}^{\oplus} H_{\text{per}}(k) \, dk \quad \text{in } L^{2}(\mathbb{B}, \mathcal{H}_{f}) \simeq \int_{\mathbb{B}}^{\oplus} \mathcal{H}_{f} \, dk =: \mathcal{H},
$$
\n
$$
H_{\text{per}}(k) = \frac{1}{2} (-i \nabla_{y} + k)^{2} + V(y) \quad \text{acting on } \mathcal{D} \subseteq L^{2}(\mathbb{T}_{Y}^{d}, dy) = \mathcal{H}_{f}
$$

where *D* is a dense subspace of H_f . The operator $H_{\text{per}}(k)$ has compact resolvent, and we label its eigenvalues as $E_0(k) \le E_1(k) \le \dots$. Notice that the eigenvalues are Γ^* -periodic. We assume that a solution of the eigenvalue problem $H_{\text{per}}(k) \chi_n(k, y) = E_n(k) \chi_n(k, y)$ is known, and we denote by $P_n(k)$ the eigenprojector corresponding to the *n*-th eigenvalue, while $P_n = \int_{\mathbb{B}}^{\oplus} P_n(k) dk$.
The set $\mathcal{E} = \{(k, E_n(k)) \in \mathbb{T}^* \times \mathbb{R} \}$ is called the *n*-th Bloch band The set $\mathcal{E}_n = \{(k, E_n(k)) \in \mathbb{T}^* \times \mathbb{R}\}$ is called the *n*-th Bloch band.

The perturbed dynamics. We consider a Bloch band \mathcal{E}_n which is separated by a gap from the rest of the spectrum, i. e.

$$
\inf\{|E_n(k) - E_m(k)| : k \in \mathbb{T}^*, m \neq n\} > 0,
$$
\n(2)

and the corresponding subspace

$$
\text{Ran}P_n = \{ \Psi \in \mathcal{H} : \Psi(k, y) = \varphi(k) \, \chi_n(k, y) \text{ for } \varphi \in L^2(\mathbb{B}, dk) \}.
$$

In the unperturbed case, $A = 0$ and $\phi = 0$, the subspace Ran P_n is exactly invariant, in the sense that $(1 - P_n) e^{-i \tilde{H}_{\text{perf}}/s} P_n \Psi = 0$ for all $\Psi \in \mathcal{H}$. Moreover, the dynamics of $\Psi \in \text{Ran } P$ is particularly simple, pamely of $\Psi \in \text{Ran}P_n$ is particularly simple, namely

$$
\left(e^{-i\widetilde{H}_{\text{per}}t/\varepsilon}\Psi\right)(k, y) = \left(e^{-iE_n(k)t/\varepsilon}\varphi(k)\right)\chi_n(k, y).
$$

Thus a natural question arises: to what extent such properties survive in the perturbed case? More precisely,

- (i) Does exist a subspace of H which is almost-invariant with respect to the dynamics, up to errors of order ε^N ?
- (ii) Is there any simple (and numerically convenient) way to approximately describe the dynamics inside the almost invariant subspace?

The microlocal approach. Microlocal analysis is a useful tool to answer these questions. In a nutshell, one checks that by modified BF transform one has

$$
\widetilde{H}_{\varepsilon} := \widetilde{U} \ H_{\varepsilon} \ \widetilde{U}^{-1} = \left(-i \nabla_y + k - A(i \varepsilon \nabla_k) \right)^2 + V(y) + \phi(i \varepsilon \nabla_y).
$$

The latter operator "looks like" the ε -Weyl quantization of an operator-valued symbol

$$
h: \mathbb{T}^* \times \mathbb{R}^d \longrightarrow \text{ Operators}(\mathcal{H}_f)
$$

$$
(k,r) \longmapsto (-i\nabla_y + k - A(r))^2 + V(y) + \phi(r).
$$

This observation naturally leads to exploit techniques related to matrix-valued pseudo-differential operators [\[2,](#page-3-3) [4\]](#page-3-4). Obviously, to perform this program one has to circumvent some technical *scholia* (*unbounded*-operator-valued symbols, covariance, ...), for whose solution we refer to $[3]$. As an answer to question (i), we have the following

Theorem 1. Let \mathcal{E}_n be an isolated Bloch band, see [\(2\)](#page-1-0). Then there exists an *orthogonal projection* $\Pi_{n,\varepsilon} \in \mathcal{B}(\mathcal{H})$ *such that for every* $N \in \mathbb{N}$ *there exist* C_N *such that*

$$
\left\|[\widetilde{H}_{\varepsilon},\Pi_{n,\varepsilon}]\right\|_{\mathcal{B}(\mathcal{H})}\leq C_{N}\,\varepsilon^{N}
$$

and $\Pi_{n,\varepsilon}$ *is* $\mathcal{O}(\varepsilon^{\infty})$ -close to the ε -Weyl quantization of a symbol with principal part $\pi_0(k, r) = P_n(k - A(r)).$

As for question (ii), one preliminarily notices that there is no natural identification between Ran $\Pi_{n,\varepsilon}$ and $L^2(\mathbb{T}^*, dk)$, so no evident reduction of the number of degrees of freedom. To circumvent this obstacle, one constructs an intertwining unitary operator (which is an additional unknown in the problem) $U_{n,\varepsilon}$: Ran $\Pi_{n,\varepsilon}$ \rightarrow $L^2(\mathbb{T}^*, dk)$. The freedom to choose $U_{n,\varepsilon}$ can be exploited to obtain a simple and physically transparent representation of the dynamics, as in the following result [\[3\]](#page-3-0).

Theorem 2. Let \mathcal{E}_n be an isolated Bloch band. Define the effective Hamiltonian as *the operator* $\hat{H}_{\text{eff},\degree} := U_{n,\degree} \prod_{n,\degree} H_{\epsilon} \prod_{n,\degree} U_{n,\degree}^{-1}$ acting in $L^2(\mathbb{T}^*,dk)$. Then:

(i) (approximation of the dynamics) *for any* $N \in \mathbb{N}$ *there is* C_N *such that*

$$
\left\| \left(\varepsilon^{-i \widetilde{H}_{\varepsilon} t/\varepsilon} - U_{n,\varepsilon}^{-1} \varepsilon^{-i \hat{H}_{\text{eff},\varepsilon} t/\varepsilon} U_{n,\varepsilon} \right) \Pi_{n,\varepsilon} \right\|_{\mathcal{B}(\mathcal{H})} \leq C_N \varepsilon^N (1+|t|).
$$

(ii) (explicit description of the approximated dynamics) *the operator* \hat{H}_{eff} ; *is* $\mathcal{O}(\varepsilon^{\infty})$ -close to the ε -Weyl quantization of the symbol $h_{\varepsilon}^{\text{eff}}$: $\mathbb{T}^* \times \mathbb{R}^d \to \mathbb{C}$, with leading orders *with leading orders*

$$
h_0^{\text{eff}}(k,r) = E_n(k - A(r)) + \phi(r)
$$

$$
h_1^{\text{eff}}(k,r) = (\nabla \phi(r) - \nabla E_n(\kappa) \wedge B(r)) + \mathcal{A}_n(\kappa) - B(r) \cdot M_n(\kappa)
$$

where $\kappa(k, r) = k - A(r)$, $B_{jl} = \partial_j A_l - \partial_l A_j$, $A_n(k) = i \langle \chi_n(k) | \nabla \chi_n(k) \rangle_{\mathcal{H}_l}$
is called Berry connection *and is called* Berry connection *and*

$$
M_n(k) = \frac{i}{2} \left\langle \nabla \chi_n(k) \wedge \left| (H_{\text{per}}(k) - E_n(k)) \nabla \chi_n(k) \right\rangle_{\mathcal{H}_{\text{f}}}.
$$

References

- 1. G. De Nittis, M. Lein. *Applications of magnetic* Ψ -DO techniques to Space-adiabatic Perturba*tion Theory*, Rev. Math. Phys. **23**, 233–260 (2011).
- 2. C. Emmrich, A. Weinstein. *Geometry of the transport equation in multicomponent WKB approximations*, Commun. Math. Phys. **176**, 701–711 (1996).
- 3. G. Panati, H. Spohn, S. Teufel. *Effective dynamics for Bloch eelctrons: Peierls substitution and beyond*, Commun. Math. Phys. **242**, 547–578 (2003).
- 4. J. Sjöstrand. Projecteurs adiabatiques du point de vue pseudodifferentiel, C. R. Acad. Sci. Paris Ser. I Math. **317**, 217–220 (1993).
- 5. H. Stiepan, S. Teufel. Paper in preparation (2011).