Microlocal Analysis and Adiabatic Problems:
The Case of Perturbed Periodic Schrodinger
Operators

Gianluca Panati

Microlocal analysis is a powerful technique to deal with multiscale and adiabatic
problems in Quantum Mechanics. We illustrate this general claim in the specific
case of a perturbed periodic Schrodinger operator, namely the operator defined in a
dense subspace of L*(R?) by

d

a 2
H, = lz(_-BTj—A,(ex)) + V(x) + @(ex), (D

j=1
where V : R? — R is a Z¢-periodic function, V € leoc (R9), corresponding to the
interaction of the test electron with the ionic cores of a crystal, while A; € C*° (RY)
and ¢ € C° (RY) represent some perturbing external electromagnetic potentials.
The parameter ¢ << 1 corresponds to the separation of space-scales.

Since the unperturbed Hamiltonian H., = —%A + V is periodic, it can
be decomposed as a direct integral of simpler operators, thus exhibiting a band
structure, analogous to the one appearing in the Born-Oppenheimer problem.

We are interested to the behavior of the solutions to the dynamical Schrodinger
equation i d;¥:(t) = H:Y¥.(¢) in the limit ¢ — 0. We show that by using
microlocal analysis with operator-valued symbols one can decouple the dynamics
corresponding to different bands and determine a simpler approximate dynamics for
each band [3]. Further developments have been obtained, more recently, in [1,5].

The Bloch-Floquet transform. The Z?-symmetry of the unperturbed Hamiltonian
operator Hpe, = —%A + V can be used to decomposed it as a direct integral of
simpler operators. To fix the notation, let ¥ be a fundamental domain for the action
of the translation group I' = Z< on R?, and let B be a fundamental domain for the
action of the dual lattice ['* := {K e (R)*:k-ye2nZ Vye F} on the dual
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space (R?)* (“momentum space”). We also introduce the tori T¢ = RY/T" and
T* = (R?)*/T'*. The formula

@)k y) = S O y(y +y),  yeRk e ®R)"y e SRY)
yelr

extends to a unitary operatora LPRY) — L’B) ® Lz(Ti) ~ L*(B, LZ(’IF’){)),
called (modified) Bloch-Floquet transform. Hereafter H; := LZ(']T@).

The advantage of this construction is that, after conjugation, H,., becomes a
fibered operator, namely

— — - 7] 7]
Hper :=U Hpee ™" = / Hper(k) dk in L*(B, Hy) ~ / Hedk =: H,
B B

1
Hyper (k) = 5(—ivy + k) 4+ V(y) actingon D C L*(T¢,dy) = H;

where D is a dense subspace of Hy. The operator Hp. (k) has compact resol-
vent, and we label its eigenvalues as Eg(k) < E (k) < .... Notice that the
eigenvalues are I"*-periodic. We assume that a solution of the eigenvalue problem
Hper(k) xu(k,y) = E,(k) y,(k,y) is known, and we denote by P,(k) the

eigenprojector corresponding to the n-th eigenvalue, while P, = fB® P,(k)dk.
The set &, = {(k, E,(k)) € T* x R} is called the n-th Bloch band.

The perturbed dynamics. We consider a Bloch band &, which is separated by a
gap from the rest of the spectrum, i. e.

inf{|E, (k) — En(k)| : k € T*,m # n} > 0, 2)
and the corresponding subspace

RanP, = {W € H : W(k,y) = ¢(k) yxn(k,y) for ¢ € L*(B,dk)}.

In the unperturbed case, A = 0 and ¢ = 0, the subspace Ran P, is exactly invariant,

in the sense that (1—P,) e Hee’/¢ P, W = 0 forall U € H. Moreover, the dynamics
of W € Ran P, is particularly simple, namely

(7 t/ow) (k. y) = (7502 0(K)) 20 (K. ).

Thus a natural question arises: to what extent such properties survive in the
perturbed case? More precisely,

(i) Does exist a subspace of H which is almost-invariant with respect to the
dynamics, up to errors of order & ?

(i1) Isthere any simple (and numerically convenient) way to approximately describe
the dynamics inside the almost invariant subspace?
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The microlocal approach. Microlocal analysis is a useful tool to answer these
questions. In a nutshell, one checks that by modified BF transform one has

Ho=UHU" = (=iV, +k—AieV)’ + V() + ¢ (ieV,).

The latter operator “looks like” the e-Weyl quantization of an operator-valued

symbol
h: T* x RY — Operators( H; )

(k,r) > (=iVy +k—AF)" + V() + o).

This observation naturally leads to exploit techniques related to matrix-valued
pseudo-differential operators [2, 4]. Obviously, to perform this program one has
to circumvent some technical scholia (unbounded-operator-valued symbols, covari-
ance, ... ), for whose solution we refer to [3]. As an answer to question (i), we have
the following

Theorem 1. Let &, be an isolated Bloch band, see (2). Then there exists an
orthogonal projection 11, € B(H) such that for every N € N there exist Cy
such that

|H.. o <Cye"

n.el H B(H)

and T1,, ¢ is O(e™)-close to the e-Weyl quantization of a symbol with principal part
mo(k,r) = Py(k — A(r)).

As for question (ii), one preliminarily notices that there is no natural identifi-
cation between RanI1,, . and L?>(T*, dk), so no evident reduction of the number of
degrees of freedom. To circumvent this obstacle, one constructs an intertwining uni-
tary operator (which is an additional unknown in the problem) U, . : RanIl, , —
L?*(T*,dk). The freedom to choose U, . can be exploited to obtain a simple and
physically transparent representation of the dynamics, as in the following result [3].

Theorem 2. Let &, be an isolated Bloch band. Define the effective Hamiltonian as
the operator Hege,» := U, 11, H 11, ¢ Unf; acting in L>(T*, dk). Then:

(i) (approximation of the dynamics) for any N € N there is Cy such that

H (s—iHst/a _ U—l €_i Hett,» /¢ Un,s) Hn’s

n,e

<Cye"+t).
s = EVE (1 + 12D

(i1) (explicit description of the approximated dynamics) the operator I;Veffy is
O(e®)-close to the e-Weyl quantization of the symbol he : T* x R? — C,
with leading orders

hi'(k.r)y = E,(k — A(r)) + ¢(r)

(k. r) = (Vé(r) = VE, (k) AB(r)) + A (k) — B(r) - My (k)
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where k(k,r) = k—A(r), Bj; = 0; Aj— 01 Aj, Ay(k) =i (xu(k) |V xn(k)) sy,
is called Berry connection and

M, (k) = %(V)(n (A | (Hper (k) = En (k)Y s (K)), -
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