Microlocal Analysis and Adiabatic Problems: The Case of Perturbed Periodic Schrödinger Operators

Gianluca Panati

Microlocal analysis is a powerful technique to deal with multiscale and adiabatic problems in Quantum Mechanics. We illustrate this general claim in the specific case of a perturbed periodic Schrödinger operator, namely the operator defined in a dense subspace of $L^2(\mathbb{R}^d)$ by

$$H_{\varepsilon} = \frac{1}{2} \sum_{j=1}^{d} \left(-i \frac{\partial}{\partial x_j} - A_j(\varepsilon x) \right)^2 + V(x) + \varphi(\varepsilon x), \tag{1}$$

where $V : \mathbb{R}^d \to \mathbb{R}$ is a \mathbb{Z}^d -periodic function, $V \in L^2_{loc}(\mathbb{R}^d)$, corresponding to the interaction of the test electron with the ionic cores of a crystal, while $A_j \in C_b^{\infty}(\mathbb{R}^d)$ and $\varphi \in C_b^{\infty}(\mathbb{R}^d)$ represent some perturbing external electromagnetic potentials. The parameter $\varepsilon \ll 1$ corresponds to the separation of space-scales.

Since the unperturbed Hamiltonian $H_{per} = -\frac{1}{2}\Delta + V$ is periodic, it can be decomposed as a direct integral of simpler operators, thus exhibiting a *band structure*, analogous to the one appearing in the Born-Oppenheimer problem.

We are interested to the behavior of the solutions to the dynamical Schrödinger equation $i\varepsilon \partial_t \psi_{\varepsilon}(t) = H_{\varepsilon}\psi_{\varepsilon}(t)$ in the limit $\varepsilon \to 0$. We show that by using microlocal analysis with operator-valued symbols one can decouple the dynamics corresponding to different bands and determine a simpler approximate dynamics for each band [3]. Further developments have been obtained, more recently, in [1, 5].

The Bloch-Floquet transform. The \mathbb{Z}^d -symmetry of the unperturbed Hamiltonian operator $H_{\text{per}} = -\frac{1}{2}\Delta + V$ can be used to decomposed it as a direct integral of simpler operators. To fix the notation, let *Y* be a fundamental domain for the action of the translation group $\Gamma = \mathbb{Z}^d$ on \mathbb{R}^d , and let \mathbb{B} be a fundamental domain for the action of the dual lattice $\Gamma^* := \{\kappa \in (\mathbb{R}^d)^* : \kappa \cdot \gamma \in 2\pi\mathbb{Z} \mid \forall \gamma \in \Gamma\}$ on the dual

G. Panati (🖂)

Dipartimento di Matematica, Universitá di Roma "La Sapienza", Roma, Italy e-mail: panati@mat.uniroma1.it

space $(\mathbb{R}^d)^*$ ("momentum space"). We also introduce the tori $\mathbb{T}_Y^d = \mathbb{R}^d / \Gamma$ and $\mathbb{T}^* = (\mathbb{R}^d)^* / \Gamma^*$. The formula

$$(\widetilde{\mathcal{U}}\psi)(k, y) = \sum_{\gamma \in \Gamma} e^{-ik \cdot (y+\gamma)} \psi(y+\gamma), \qquad y \in \mathbb{R}^d, k \in (\mathbb{R}^d)^*, \psi \in \mathcal{S}(\mathbb{R}^d)$$

extends to a unitary operator $\widetilde{\mathcal{U}}: L^2(\mathbb{R}^d) \longrightarrow L^2(\mathbb{B}) \otimes L^2(\mathbb{T}^d_Y) \simeq L^2(\mathbb{B}, L^2(\mathbb{T}^d_Y))$, called (modified) Bloch-Floquet transform. Hereafter $\mathcal{H}_f := L^2(\mathbb{T}^d_Y)$.

The advantage of this construction is that, after conjugation, H_{per} becomes a fibered operator, namely

$$\widetilde{H}_{\text{per}} := \widetilde{\mathcal{U}} H_{\text{per}} \widetilde{\mathcal{U}}^{-1} = \int_{\mathbb{B}}^{\oplus} H_{\text{per}}(k) \, dk \quad \text{in } L^2(\mathbb{B}, \mathcal{H}_{\text{f}}) \simeq \int_{\mathbb{B}}^{\oplus} \mathcal{H}_{\text{f}} \, dk =: \mathcal{H},$$
$$H_{\text{per}}(k) = \frac{1}{2} (-i\nabla_y + k)^2 + V(y) \text{ acting on } \mathcal{D} \subseteq L^2(\mathbb{T}_Y^d, dy) = \mathcal{H}_{\text{f}}$$

where \mathcal{D} is a dense subspace of \mathcal{H}_{f} . The operator $H_{per}(k)$ has compact resolvent, and we label its eigenvalues as $E_{0}(k) \leq E_{1}(k) \leq \ldots$. Notice that the eigenvalues are Γ^{*} -periodic. We assume that a solution of the eigenvalue problem $H_{per}(k) \chi_{n}(k, y) = E_{n}(k) \chi_{n}(k, y)$ is known, and we denote by $P_{n}(k)$ the eigenprojector corresponding to the *n*-th eigenvalue, while $P_{n} = \int_{\mathbb{B}}^{\oplus} P_{n}(k) dk$. The set $\mathcal{E}_{n} = \{(k, E_{n}(k)) \in \mathbb{T}^{*} \times \mathbb{R}\}$ is called the *n*-th Bloch band.

The perturbed dynamics. We consider a Bloch band \mathcal{E}_n which is separated by a gap from the rest of the spectrum, *i. e.*

$$\inf\{|E_n(k) - E_m(k)| : k \in \mathbb{T}^*, m \neq n\} > 0,$$
(2)

and the corresponding subspace

$$\operatorname{Ran} P_n = \{ \Psi \in \mathcal{H} : \Psi(k, y) = \varphi(k) \, \chi_n(k, y) \text{ for } \varphi \in L^2(\mathbb{B}, dk) \}.$$

In the unperturbed case, A = 0 and $\phi = 0$, the subspace $\operatorname{Ran} P_n$ is exactly invariant, in the sense that $(1-P_n) e^{-i\widetilde{H}_{\operatorname{perf}}/\varepsilon} P_n \Psi = 0$ for all $\Psi \in \mathcal{H}$. Moreover, the dynamics of $\Psi \in \operatorname{Ran} P_n$ is particularly simple, namely

$$\left(e^{-i\widetilde{H}_{\mathrm{per}}t/\varepsilon}\Psi\right)(k,y)=\left(e^{-iE_n(k)t/\varepsilon}\varphi(k)\right)\chi_n(k,y).$$

Thus a natural question arises: to what extent such properties survive in the perturbed case? More precisely,

- (i) Does exist a subspace of \mathcal{H} which is almost-invariant with respect to the dynamics, up to errors of order ε^N ?
- (ii) Is there any simple (and numerically convenient) way to approximately describe the dynamics inside the almost invariant subspace?

The microlocal approach. Microlocal analysis is a useful tool to answer these questions. In a nutshell, one checks that by modified BF transform one has

$$\widetilde{H}_{\varepsilon} := \widetilde{\mathcal{U}} \ H_{\varepsilon} \ \widetilde{\mathcal{U}}^{-1} = \left(-i \nabla_{y} + k - A(i \varepsilon \nabla_{k})\right)^{2} + V(y) + \phi(i \varepsilon \nabla_{y}).$$

The latter operator "looks like" the ε -Weyl quantization of an operator-valued symbol

$$h: \mathbb{T}^* \times \mathbb{R}^d \longrightarrow \text{Operators}(\mathcal{H}_f)$$
$$(k, r) \longmapsto \left(-i\nabla_y + k - A(r)\right)^2 + V(y) + \phi(r)$$

This observation naturally leads to exploit techniques related to matrix-valued pseudo-differential operators [2, 4]. Obviously, to perform this program one has to circumvent some technical *scholia* (*unbounded*-operator-valued symbols, covariance, ...), for whose solution we refer to [3]. As an answer to question (i), we have the following

Theorem 1. Let \mathcal{E}_n be an isolated Bloch band, see (2). Then there exists an orthogonal projection $\Pi_{n,\varepsilon} \in \mathcal{B}(\mathcal{H})$ such that for every $N \in \mathbb{N}$ there exist C_N such that

$$\left\| [\widetilde{H}_{\varepsilon}, \Pi_{n,\varepsilon}] \right\|_{\mathcal{B}(\mathcal{H})} \leq C_N \, \varepsilon^N$$

and $\Pi_{n,\varepsilon}$ is $\mathcal{O}(\varepsilon^{\infty})$ -close to the ε -Weyl quantization of a symbol with principal part $\pi_0(k, r) = P_n(k - A(r)).$

As for question (ii), one preliminarily notices that there is no natural identification between Ran $\Pi_{n,\varepsilon}$ and $L^2(\mathbb{T}^*, dk)$, so no evident reduction of the number of degrees of freedom. To circumvent this obstacle, one constructs an intertwining unitary operator (which is an additional unknown in the problem) $U_{n,\varepsilon}$: Ran $\Pi_{n,\varepsilon} \rightarrow$ $L^2(\mathbb{T}^*, dk)$. The freedom to choose $U_{n,\varepsilon}$ can be exploited to obtain a simple and physically transparent representation of the dynamics, as in the following result [3].

Theorem 2. Let \mathcal{E}_n be an isolated Bloch band. Define the effective Hamiltonian as the operator $\hat{H}_{\text{eff},"} := U_{n,\varepsilon} \prod_{n,\varepsilon} H_{\varepsilon} \prod_{n,\varepsilon} U_{n,\varepsilon}^{-1}$ acting in $L^2(\mathbb{T}^*, dk)$. Then:

(i) (approximation of the dynamics) for any $N \in \mathbb{N}$ there is C_N such that

$$\left\| \left(\varepsilon^{-i\widetilde{H}_{\varepsilon}t/\varepsilon} - U_{n,\varepsilon}^{-1} \ \varepsilon^{-i \ \hat{H}_{\text{eff}, `` t/\varepsilon}} \ U_{n,\varepsilon} \right) \Pi_{n,\varepsilon} \right\|_{\mathcal{B}(\mathcal{H})} \leq C_N \ \varepsilon^N \ (1+|t|).$$

(ii) (explicit description of the approximated dynamics) the operator $\hat{H}_{\text{eff},"}$ is $\mathcal{O}(\varepsilon^{\infty})$ -close to the ε -Weyl quantization of the symbol $h_{\varepsilon}^{\text{eff}}$: $\mathbb{T}^* \times \mathbb{R}^d \to \mathbb{C}$, with leading orders

$$h_0^{\text{eff}}(k,r) = E_n(k - A(r)) + \phi(r)$$

$$h_1^{\text{eff}}(k,r) = (\nabla \phi(r) - \nabla E_n(\kappa) \wedge B(r)) + \mathcal{A}_n(\kappa) - B(r) \cdot M_n(\kappa)$$

where $\kappa(k, r) = k - A(r)$, $B_{jl} = \partial_j A_l - \partial_l A_j$, $A_n(k) = i \langle \chi_n(k) | \nabla \chi_n(k) \rangle_{\mathcal{H}_f}$ is called Berry connection and

$$M_n(k) = \frac{i}{2} \left\langle \nabla \chi_n(k) \wedge | (H_{\text{per}}(k) - E_n(k)) \nabla \chi_n(k) \right\rangle_{\mathcal{H}_{\text{f}}}$$

References

- G. De Nittis, M. Lein. Applications of magnetic Ψ-DO techniques to Space-adiabatic Perturbation Theory, Rev. Math. Phys. 23, 233–260 (2011).
- 2. C. Emmrich, A. Weinstein. Geometry of the transport equation in multicomponent WKB approximations, Commun. Math. Phys. 176, 701–711 (1996).
- G. Panati, H. Spohn, S. Teufel. *Effective dynamics for Bloch eelctrons: Peierls substitution and beyond*, Commun. Math. Phys. 242, 547–578 (2003).
- J. Sjöstrand. Projecteurs adiabatiques du point de vue pseudodifferentiel, C. R. Acad. Sci. Paris Ser. I Math. 317, 217–220 (1993).
- 5. H. Stiepan, S. Teufel. Paper in preparation (2011).