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Preface

Since its invention in the mid-twentieth century the field of microlocal analysis was
characterized by a tight interplay of mathematics and physics. While in language
and rigor it is a field of mathematics, many of its ideas originate in physics: Its
playing field is the cotangent bundle of a manifold, the mathematical counterpart of
the phase space of classical mechanics; its motivating problems came from partial
differential equations, particularly those arising in physics, like the Laplace equation
and the associated spectral problem, and the wave equation. Among its fundamental
tools is the WKBJ method, which was invented for quantum mechanics and also
used in geometrical optics; associating an operator to a symbol is one manifestation
of quantization. These ideas, often used rather informally in the physics context,
were made mathematically precise in microlocal analysis, and often triggered
further developments in mathematics, foremost in the field of partial differential
equations, but also in symplectic geometry or in singularity theory, to name a few;
they were also used in index theory as one of their deepest applications.

In spite of this common ancestry of microlocal analysis in mathematics and
physics there are few conferences which bridge the gap between the various
communities that use this set of techniques. This is how the idea for the conference
‘Microlocal methods in mathematical physics and global analysis’ arose. Our aim
was to bring together researchers at the highest international level in these areas, in
order to foster interaction, inform about new developments and get a state of the art
picture.

The major themes of the conference were the use or development of microlocal
techniques in semiclassical and adiabatic limits, singular spaces, spectral and
scattering theory, wave propagation and topological applications, and we have
organized this collection of extended abstracts accordingly, although not every talk
admits a unique assignment to one of these categories. A recurrent overall theme
of many of the talks was the occurence of singular settings, that is, where the
underlying space is singular or non-compact, or where one studies a family of
operators or spaces approaching a singular limit. The systematic exploration of such
singular problems has been a focus of much research in microlocal analysis since
the 1980s.
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vi Preface

The present volume is a collection of extended abstracts of most talks at the
conference. The talks were given by the first-mentioned authors of each extended
abstract. We believe that the format of extended abstract is a valuable means for
quick communication of current research, since it allows authors to disseminate
their results at an early stage and in a condensed form, and puts an emphasis on
conveying the essence of the lectures, without being overburdened by technicalities.
Therefore, we hope that this format, which was introduced by the Mathematisches
Forschungsinstitut Oberwolfach in 2004 under the name Oberwolfach Reports, will
be used more frequently at other conferences as well. We are very grateful to
Birkhäuser Verlag for engaging in this new format and agreeing to publish this
volume.

The conference could not have happened without the support from various
sources: Major funding was supplied by the Deutsche Forschungsgemeinschaft
(SFB/Transregio 71, “Geometric PDEs”) and the National Science Foundation of
the U.S.A. (grant No. 1067924); we are also grateful to the University of Tübingen
for hosting the conference.

The organizers
D. Grieser

S. Teufel
A. Vasy
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Part I
Semiclassical and Adiabatic Limits



Local Smoothing with a Prescribed Loss
for the Schrödinger Equation

Hans Christianson and Jared Wunsch

1 Introduction: What Is Local Smoothing

In R
n, the Schrödinger propagator at time t is unitary on Hs spaces. However,

solutions to the linear Schrödinger equation on R
n are smoother on average in time,

and locally in space:

Z T

0

���hxi�1=2�� eit�u0
���2
H1=2

dt � Cku0k2L2 :

What about different geometries? In [5], Doi showed the H1=2 smoothing effect
holds on asymptotically Euclidean manifolds if and only if the manifold is non-
trapping (meaning all geodesics escape to infinity).

2 Trapping: Hyperbolic Orbits – Local Smoothing

What about trapping geometries? There are several previous results in this direction.

Theorem 1 ([3]). Let .M; g/ non-compact, Riemannian manifold with or without
a compact boundary, and assume M is asymptotically Euclidean (multiple copies
is okay) outside a compact set, and assume � � M is a hyperbolic closed
geodesic with only transversal reflections, and M non-trapping otherwise. Let
r D dist g.x; x0/ be a “radial” variable. Then for all � > 0, there exists C > 0

such that Z T

0

���hri�1=2�� eit�gu0
���2
H1=2��

dt � Cku0k2L2 :

H. Christianson (�) � J. Wunsch
Department of Mathematics, UNC-Chapel Hill, CB#3250 Phillips Hall, Chapel Hill,
NC 27599, USA
e-mail: hans@math.unc.edu; jwunsch@math.northwestern.edu

D. Grieser et al. (eds.), Microlocal Methods in Mathematical Physics and Global Analysis,
Trends in Mathematics, DOI 10.1007/978-3-0348-0466-0 1, © Springer Basel 2013
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4 H. Christianson and J. Wunsch

This generalizes results of Burq [1] (Ikawa’s example), and has been generalized
by the first author [2] and also by Datchev [4]. Apart from exhibiting a deep
connection between geometry and dispersion, there are additional applications to
Strichartz estimates and nonlinear Schrödinger equations.

3 Limitations of Local Smoothing

The theorem of Doi shows if there is no trapping there is a gain of 1=2 derivative,
and if there is trapping you must lose something but does not show what you lose.
One hyperbolic trapped orbit or a very “thin” trapped set loses a “trivial” �. A stable
or elliptic geodesic loses everything (no smoothing effect).

An important question is to ask if there is something in between trivial loss and
total loss.

We now introduce a class of asymptotically Euclidean examples with a degener-
ate hyperbolic orbit. We consider the manifold X D Rx � R�=2�Z, equipped with
a metric of the form

g D dx2 C A2.x/d�2;

where A 2 C1 is a smooth function, A � � > 0 for some epsilon. We are
primarily interested in the case A.x/ D .1C x2m/1=2m, m 2 ZC, in which case the
manifold is asymptotically Euclidean (with two ends). Clairaut’s theorem implies
the only periodic geodesic is at x D 0. A.x/�2 has a critical point of order x2m

at x D 0, which is degenerate for m > 1. The Gaussian curvature is nonpositive,
asymptotically 0 as x ! ˙1, and vanishes to order 2m � 2 at x D 0.

We prove the following theorem.

Theorem 2 (Local Smoothing with loss). Suppose X is as above for m � 2, and
assume u solves (

.Dt ��/u D 0 in R �X;
ujtD0 D u0 2 Hs

for some s � m=.mC 1/. Then for any T < 1, there exists a constant C > 0 such
that

Z T

0

k hxi�3=2 uk2
H1.X/

dt � C.k hD� im=.mC1/ u0k2L2 C k hDxi1=2 u0k2L2 /:

This theorem says that there is a 1=.m C 1/ derivative gain in the tangential
direction, and 1=2 derivative gain in the transversal direction.

Theorem 3. Theorem 2 is sharp, and the estimate can be saturated on a weak
semiclassical time scale.
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4 Sketch of Proof Ideas

We use a positive commutator idea: let B D arctan.x/@x and compute

Œ�;B� D 2 hxi�2 @2x C 2A0A�3 arctan.x/@2� C l.o.t.

Here “l.o.t.” can be absorbed into H1=2 energy. Everything looks good except the
coefficient of @2� has A0 arctan.x/, which vanishes to order 2m at x D 0, so the
commutator is not strictly positive! Integrations by parts yields

Z T

0

.k hxi�1 @xuk2
L2

C kjxjm hxi�m�3=2 @�uk2
L2
/dt � Cku0k2H1=2 : (1)

In order to estimate near x D 0, we separate variables:

u.t; x; �/ D
X
k

eik�uk.t; x/;

and
u0.x; �/ D

X
k

eik�u0;k.x/

and try to estimate on each mode uk . By orthogonality, it suffices to show

Z T

0

k�.x/kukk2L2.R/dt � C.k hkim=.mC1/ u0;kk2L2 C ku0;kk2H1=2

for some � 2 C1c .R/ with �.x/ � 1 near x D 0.
By a duality argument, energy cutoff, and Fourier transform t 7! 	 , it suffices to

show the following (sharp) cutoff resolvent estimate.

Proposition 1. With the notations above, the operatorQk satisfies the estimate

��
.x;D=jkj/.	 CQk/
�1
.x;D=jkj/��

L2x!L2x � Ck�2=.mC1/

where 
 2 C1c .T �R/ with 
 � 1 near .0; 0/.

The proof of this proposition involves careful analysis of escape function
dynamics and a sophisticated two-parameter semiclassical calculus to estimate
operators at the level of the uncertainty principle.
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Propagation Through Trapped Sets
and Semiclassical Resolvent Estimates

Kiril Datchev and András Vasy

Let P D �h2�CV.x/, V 2 C10 .Rn/. We are interested in semiclassical resolvent
estimates of the form

k�.P � E � i0/�1�kL2.Rn/!L2.Rn/ � a.h/

h
; h 2 .0; h0�; (1)

forE > 0, � 2 C1.Rn/ with j�.x/j � hxi�s , s > 1=2. We ask: how is the function
a.h/ for which (1) holds affected by the relationship between the support of � and
the trapped set at energy E , defined by

KE D f˛ 2 T �RnW 9C > 0;8t > 0; j exp.tHp/˛j � C g‹

Here p D j�j2 C V.x/ andHp D 2� � rx � rV � r� .
We have (1) with �.x/ D hxi�s and a.h/ D C for all E in a neighborhood of

E0 > 0 if and only if KE0 D ; ([6, 7]). For general V and �, the optimal bound is
a.h/ D exp.C=h/, but Burq [1] and Cardoso-Vodev [2] prove that for any given V ,
if � vanishes on a sufficiently large compact set, for any E > 0 there exists C such
that (1) holds with a.h/ D C . In our main theorem we improve the condition on �
and obtain a shorter proof at the expense of an a priori assumption.

Theorem 1 ([3]). Fix E > 0. Suppose that (1) holds for �.x/ D hxi�s with s >
1=2 and with a.h/ D h�N for some N 2 N. Then if we take instead � such that
KE \ T � supp� D ;, we have (1) with a.h/ D C .

K. Datchev (�)
Mathematics Department, MIT, Cambridge, MA, 02139-4307, USA
e-mail: datchev@math.mit.edu

A. Vasy
Mathematics Department, Stanford University, Stanford, CA, 94305-2125, USA
e-mail: andras@math.stanford.edu

D. Grieser et al. (eds.), Microlocal Methods in Mathematical Physics and Global Analysis,
Trends in Mathematics, DOI 10.1007/978-3-0348-0466-0 2, © Springer Basel 2013
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8 K. Datchev and A. Vasy

In fact our result holds for more general operators, and the cutoff � can be
replaced by a cutoff in phase space whose microsupport is disjoint from KE . In
certain situations it is even possible to take a cutoff whose support overlapsKE : see
[3] for more details and references.

The a priori assumption that (1) holds for �.x/ D hxi�s with a.h/ D h�N is
not present in [1, 2] and is not always satisfied, but there are many examples of
hyperbolic trapping where it holds: see e.g. [5, 8].

To indicate the comparative simplicity of our method, we prove a special case
of the Theorem, under the additional assumption that suppV � fjxj < R0g and
supp� � fR0 < jxj < R0 C 1g. In other words, suppose .P � �/u D f , with
Re� D E , and suppf � fR0 < jxj < R0 C 1g, kf k � 1. We must prove that
k�uk � Ch�1, uniformly as Im� ! 0C. Here and below all norms are L2 norms.

Let S denote functions in C1.T �Rn/ which are bounded together with all
derivatives, and for a 2 S define

Op.a/u.x/ D .2�h/�n
Z

exp.i.x � y/ � �=h/a.x; �/u.y/dyd�:

Because P � � has a semiclassical elliptic inverse away from p�1.E/ (see for
example [4, Chap. 4]), we have k Op.a/uk � C whenever supp a \ p�1.E/D ;.
Consequently it is enough to show that k Op.a/uk � Ch�1 for some a 2 S

with a nowhere vanishing on T � supp� \ p�1.E/. We will prove this inductively:
we will show that if there is a1 with this nowhere vanishing property such that
k Op.a1/uk � Chk, then there is a2 with the same nowhere vanishing property such
that k Op.a2/uk � ChkC1=2, provided k � �3=2. The base case follows from the a
priori assumption that kuk � h�N�1, so it suffices to prove the inductive step.

Take ' D '.jxj/ � 0 a smooth function such that ' D 1 when jxj � R0, ' D 0

when jxj � R0C1, ' 0 D � 2 with smooth. We require further that T � supp be
contained in the set where a1 is nonvanishing, and in the end we will take a2 D  .
We will now use a positive commutator argument with ' as the commutant:

ihŒP; '�u; ui D ihu; 'f i � ih'f; ui � 2 Im�kuk2 � �Ck ukkf k; (2)

where we used first .P � �/u D f and then Im� � 0 and suppf � f ¤ 0g. The
semiclassical principal symbol of i ŒP; '� is

hHp' D 2h
' 0 D �2h
 2;

where 
 is the dual variable to jxj in T �Rn.
We now define an open cover and partition of unity of T � supp� according to

the regions where this commutator does and does not have a favorable sign (the
favorable sign is Hp' < 0, because of the direction of the inequality in (2)). Take
c > 0 small enough that for 
 < 2c, jxj > R0, t < 0 we have x C 2
t 62
suppV . Let K be a neighborhood of p�1.E/ \ T � supp� with compact closure in
T �fR0 < jxj < R0 C 1g, and let O be a neighborhood of K with compact closure
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in T �fR0 < jxj < R0 C 1g, and let

UC D f˛ 2 O W 
 > cg; U� D f˛ 2 O W 
 < 2cg [ .T �Rn nK/:

Take 
˙ 2 C10 .O/ with 
2C C 
2� D 1 on T � supp� and with supp
˙ � U˙.
Then

Hp' D �b2 � 2
 2
2�; where b D p
2
 
C;

and if B D Op.b/ and ˆ� D Op.
�/

i ŒP; '� D �hB�B C hˆ�R1ˆ� C h2R2 CO.h1/;

where R1;2 D Op.r1;2/ for r1;2 2 S with supp r1;2 � supp . Combining with (2),
and using L2 boundedness of R1, we obtain

hkBuk2 � Chkˆ�uk2 C h2hR2u; ui C Ck ukkf k CO.h1/:

Since hR2u; ui � Ch2k by inductive hypothesis, we have

kBuk2 � C.kˆ�uk2 C h2kC1 C h�1k ukkf k/
� C.kˆ�uk2 C h2kC1 C ı�1h�2 C ık uk2/;

where we used kf k � 1, and where ı > 0 will be specified presently. Since at least
one of B and ˆ� is elliptic at each point in the interior of T � supp , we have

k uk2 � C.kˆ�uk2 C kBuk2/; (3)

from which we conclude that, if ı is sufficiently small,

kBuk2 � Cı.kˆ�uk2 C h�2 C h2kC1/: (4)

Because c was chosen small enough that all backward bicharacteristics through
supp
� stay in T �fjxj > R0g, where P D �h2�, we have

kˆ�uk � Ch�1;

by standard nontrapping estimates (see, for example, [3, Sect. 6]). This, combined
with (3) and (4), gives

k uk2 � Cı.h
�2 C h2kC1/;

after which taking a2 D  completes the proof of the inductive step.
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Space–Adiabatic Theory for Random–Landau
Hamiltonian: Results and Prospects

Giuseppe De Nittis

The study of the (integer) Quantum Hall Effect (QHE) requires a careful analysis of
the spectral properties of the 2D, single-electron Hamiltonian

H�;B WD .�i@x � B y/2 C ��i@y CB x
�2 C V�.x; y/ (1)

where HB WD H�;B � V� is the usual Landau Hamiltonian (in symmetric gauge)
with magnetic field B and V� is a � � Z

2 periodic potential which models the
electronic interaction with a crystalline structure. Under usual conditions (e.g.,
V� 2 L2loc.R

2/) the Hamiltonian (1) is self-adjoint on a suitable domain of L2.R2/.
A direct analysis of the fine spectral properties of (1) is extremely difficult and one
needs resorting to simpler effective models hoping to capture (some of) the main
physical features in suitable physical regimes.

Weak magnetic field limit. The regimeB 	 1 is very interesting since it is easily
accessible to experiments. The common lore, (cf. works of R. Peierls, P. G. Harper
and D. Hofstadter), says that the “local description” of the spectrum of (1) is “well
approximated” by the spectrum of the (effective) Hofstadter model

�
H
.B/
Hof �

�
n;m

WD emB �nC1;m C emB �n�1;m C enB �n;mC1 C enB �n;m�1 (2)

with f�n;mg 2 `2.Z2/ and emB WD ei2�mB .
The above discussion leads to the following questions:

(Q.1) In what mathematical sense are Spec
�
H�;B

�
and Spec

�
H
.B/

Hof

�
“locally

equivalent”?
(Q.2) What is the relation between the “effective” dynamics induced by H.B/

Hof and
the “true” dynamics induced by H�;B?
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12 G. De Nittis

A third question concerns the rôle of the disorder in the explanation of the QHE.
Indeed, the introduction of a random potential V! (e.g., an Anderson potential) in
(1), leading to

H�;B;! WD H�;B C V!; (3)

is essential in order to explain the emergence of the quantum Hall plateaus. Then:

(Q.3) In presence of disorder is it still possible to derive a “simplified” (i.e.,
effective) model forH�;B;! which encodes the (main) spectral and dynamical
properties of the original model?

In order to answer questions (Q.1) and (Q.2) one needs to prove the so-called
Peierls substitution. This is an old problem which dates back to the works of
Bellissard [1] and Helffer and Sjöstrand [6]. However, these works provide only
a partial answer to (Q.1) (local isospectrality) and no answer for (Q.2). A complete
solution has been given only recently by the author and M. Lein in [3]. In this paper
a strong version of the Peierls substitution has been derived by means of a joint
application of the Space-adiabatic perturbation theory (SAPT) developed by Panati
et al. [8] and the magnetic Weyl quantization developed by Măntoiu and Purice [7].
The main result derived in [3] can be stated as follows:

Theorem 1. Assume the existence of a S � Spec
�
H�;BD0

�
separated from the rest

of the spectrum Spec
�
H�;BD0

� n S by gaps.1 Then:

(i) Associated to S there exists an an orthogonal projection …B in L2.R2/ such
that for any N 2 N

��ŒH�;B I…B�
�� 6 CN B

N if B ! 0 (4)

where CN > 0 are suitable constants. The space Ran …B � L2.R2/ is called
almost-invariant subspace.

(ii) There exists a reference Hilbert space Hr (B-independent), an effective
(bounded) operator H eff

B on Hr and a unitary operator UB W Ran …B ! Hr

such that for any N 2 N

���
eitH�;B � U�1B eitH eff

B UB
�
…B

�� 6 CN B
N jt j if B ! 0: (5)

(iii) If S corresponds to a single Bloch energy band E� for the periodic operator
H�;BD0, then Hr � `2.Z2/. Moreover if the dispersion law for E� can be
approximated as E�.k1; k2/ D 2 cos.k1/ C 2 cos.k2/ C Bf .k1; k2/, with k1
and k2 the Bloch momenta, then

H eff
B D H

.B/
Hof C O.B/ if B ! 0: (6)

1This assumption can be relaxed by introducing the notion of adiabatically decoupled energy
subspace, cf. [8] or [3].
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Theorem 1 implies the following answers for (Q.1) and (Q.2): …BH�;B…B and
H
.B/
Hof are unitarily equivalent up to an error which goes to zero ifB ! 0 (asymptotic

unitary equivalence); the dynamics generated by H.B/

Hof approximates the dynamics
generated by …BH�;B…B up to a small error over any macroscopic time-scale t 2
Œ0; T �.

Question (Q.3) suggests to combine SAPT-techniques with the randomness
induced by V! . However, one of the main ingredients of SAPT is the separation in
fast and slow degrees of freedom induced by the periodic structure ofH�;BD0. This
separation (mathematically highlighted by a Bloch-Floquet transform) identifies the
fast part of the dynamics with the one inside the fundamental cell of � . The slow
part is related to the motion at the boundary of adjacent cells and is controlled by the
slow variation of the Bloch momenta induced by the weak, but non-zero, magnetic
field B 	 1. In order to include V! in this schema, one needs to assume that the
randomness perturbs the periodic structure on a scale larger that the typical length
of the crystal and which becomes larger and larger when B ! 0. In other words
SAPT-tecniques are compatible only with B-dependent random potentials of type

V!;B.x; y/ WD w!
�
B�1x; B�1x

�
(7)

where w! are suitable random variables. In order to overcome the quite unphysical
restriction (7) one has to replace the usual Bloch-Floquet transform with some more
general tool able to take care of the loss of the translation symmetry. An hint in
this direction is provided by the Bellissard’s idea of replacing the Bloch-Floquet
decomposition with the algebraic notion of non-commutative Brillouin zone (i.e.
crossed product C �-algebra) [2].

Strong magnetic field limit. The opposite regime of a strong magnetic fieldB 
 1

(accessible to experiments by means of optical lattices) is mathematically easier
to treat. In this regime, the dominant terms for the “renormalized” Hamiltonian
B�1 H�;B turns out to be a harmonic oscillator which fixes the energy threshold
(Landau level). Under the assumption V�.x; y/ ' 2 cos.x/ C 2 cos.y/, the first
relevant term for the asymptotic description of the spectral properties of (1) is given
by the (effective) Harper model

�
H
.B/
Har �

�
.s/ WD �

�
sCB�1

� C �.s �B�1/C 2 cos.2�s/�.s/; � 2 L2.R/: (8)

The effective operator (8) was firstly derived by M. Wilkinson (1987). However,
a rigorous (asymptotic) unitary derivation of H.B/

Har from H�;B , in the spirit of the
Theorem 1, has been established only recently in [4]. Moreover, the proof can be
easily extended to the case of a random potential V! generalizing a perturbative
technique developped in [5].

Acknowledgements The author would like to thank F. Klopp for many stimulating discussions.
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Microlocal Analysis of FIOs with Singularities

Raluca Felea

Overview In this talk we describe the composition calculus of Fourier Integral
Operators (FIOs) with fold and cusp singularities. Such operators appear in many
inverse scattering problems, where the composition calculus can be used as a
tool for recovering images. In these problems, caustics occur and create artifacts
which make the reconstruction more complicated and challenging. The goal is to
understand these artifacts, find their strength and try to remove them.

Motivation In the seismic problems [13, 14], acoustic waves are generated at the
surface of the earth, scatter the heterogeneities of the subsurface and return to the
surface. The pressure field is measured at the surface and is used to reconstruct
an image of the subsurface. We consider the linearized operator F which maps
singular perturbations of a smooth background sound speed in the subsurface, to
perturbations of the pressure field. We study different cases where the waves are
generated from a fixed single source and from a moving single source. In reality
caustics appear. We define a caustic in the following way: a ray departing from a
source s in the direction ˛ reaches at time t a point denoted x.t; ˛/ in the subsurface.
If the projection map .t; ˛/ ! x.t; ˛/ is singular then x.t; ˛/ lies on a caustic. We
consider only fold and cusp caustics which occur when this map exhibits fold or
cusp singularities. In order to reconstruct the image we apply the operator F � to
the data. In the case when no caustics occur, F �F is a pseudodifferential operator
which can be inverted [1]. The focus is to understand the reconstruction operator
F �F when caustics are present.

Background Let Im.X; Y IC/ be the class of Fourier integral operators, F W
E 0.Y / ! D0.X/ associated to a canonical relation C � .T �X�T �Y /nf0g. Under
certain geometric conditions like transverse and clean intersection conditions, this
class is closed under composition [2,11]. When these conditions fail to be satisfied,
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16 R. Felea

the geometry of each canonical relation plays an important role in establishing a
composition calculus. Let �L and �R be the projections to the left and right from C

to T �X n 0 and T �Y n 0.

Singularities My interest is in the case when both projections are singular in
specific ways: �L and �R have both fold singularities (when C is called a two sided
fold) or �R is a submersion with folds and �L has a cross cap singularity (when C
is called a folded cross cap) or �R and �L have both cusp singularities (when C is
called a two sided cusp). In the above examples, the operator F �F is not an FIO
anymore but it belongs to a new class of operators associated to a pair of intersecting
Lagrangeans .�;C /where� is the diagonal in T �X�T �Y and C is the artifact. In
the first two cases, C is a smooth canonical relation and intersects� cleanly and we
show that F �F belongs to Ip;l .�; C /, a class of distributions studied in [8–10, 12]
while in the last case, C is a singular Lagrangean called an open umbrella [5, 7].

Fixed source, fold caustics In the case when a single source generates acoustics
waves in the presence of fold caustics only, Nolan showed that F is associated to
a two sided fold [13]. We proved that F �F 2 I 2m;0.�; OC/ where OC is another
two sided fold [3, 13]. Using the properties of Ip;l classes, this implies that F �F 2
I 2m.� n OC/ and F �F 2 I 2m. OC n�/. Thus the artifact OC has the same strength as
the pseudodifferential part and it cannot be removed.

Fixed source, cusp caustics In the single source case, in the presence of cusp
caustics, F is associated to a two sided cusp and F �F 2 I 2m.�;ƒ/ [5], where
ƒ is an open umbrella. We also obtain that away from � \ƒ; F �F is of order 2m
on both � and ƒ which means that the artifact is as strong as the initial location of
the singularities.

Moving source, fold caustics We prove that under the fold caustic assumption, F
is an FIO associated to a folded cross cap canonical relation C , and that F �F 2
I 2m� 12 ; 12 .�; QC/ where QC is a two sided fold [4]. In this case F �F 2 I 2m.� n QC/
and F �F 2 I 2m� 12 . QC n �/, hence the artifact is 1

2
smoother and there is hope for

the image recovering. So far we obtained Hs estimates for operators belonging to
Ip;l .�; OC/ and Ip;l .�; QC/ [6].

Open problems We would like to find Sobolev estimates for the operators in the
class I 2m.�;ƒ/ and to invert the operators from I 2m� 12 ; 12 .�; QC/.

References

1. Beylkin, G. Imaging of discontinuities in the inverse problem by inversion of a generalized
Radon transform, Jour. Math. Phys. 28 (1985), 99–108.

2. Duistermaat, J.J., Guillemin, V., The spectrum of positive elliptic operators and periodic
bicharacteristics, Inv. math., 29 (1975), 39–79.

3. Felea, R. Composition calculus of Fourier integral operators with fold and blowdown singular-
ities, Comm. P.D.E, 30 (13) (2005), 1717–1740.



Microlocal Analysis of FIOs with Singularities 17

4. Felea, R., Greanleaf, A., An FIO calculus for marine seismic imaging: folds and cross caps,
Communications in PDEs, 33 (1), (2008), 45–77.

5. Felea, R., Greanleaf, A., Fourier integral operators with open umbrellas and seismic inversion
for cusp caustics, Math Ress Lett, 17 (5) (2010), 867–886.

6. Felea, R., Greenleaf, A., Pramanik, M., An FIO calculus for marine seismic imaging, II:
Sobolev estimates, Math. Annalen, (2011).

7. Givental, A. Lagrangian imbeddings of surfaces and unfolded Whitney umbrella. (English)
Func. Anal. Appl. 20 (3) (1986), 197–203.

8. Greenleaf, A., Uhlmann, G., Estimates for singular Radon transforms and pseudodifferential
operators with singular symbols, Jour. Func. Anal., 89 (1990), 220–232.

9. Greenleaf, A., Uhlmann,G., Composition of some singular Fourier integral operators and
estimates for restricted X-ray transforms, Ann. Inst. Fourier, Grenoble, 40 (1990), 443–466.

10. Guillemin, V., Uhlmann, G., Oscillatory integrals with singular symbols. Duke Math. J. 48 (1)
(1981), 251–267.
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A Nonlinear Adiabatic Theorem for Coherent
States

Clotilde Fermanian Kammerer and Rémi Carles

1 Introduction

We present a result obtained in collaboration with Rémi Carles on the propagation
of coherent states for a 1-d cubic nonlinear Schrödinger equation in a semi-classical
regime (" 	 1):

i"@t 
" C "2

2
@2x 

" D V.x/ " C "˛j "j2 ";  " W Rt � Rx ! CN ; ˛ > 0:

Typically, when N D 2, such systems model a binary mixture of Bose-Einstein
condensates (double condensate), under the effect of trap potentials (see [11],
and [2] – and the references therein – for numerical analysis of this equation).

The initial data is a semi-classical wave packets (coherent states) of the form

 ".0; x/ D 1

"1=4
a

�
x � x0p

"

�
ei�0�.x�x0/="�.x/;

where a 2 S.R/ and �.x/ is an eigenvector of V.x/, V.x/�.x/ D �.x/�.x/. Our
aim is to discuss under which conditions the solution  ".t; x/ is asymptotic to a
coherent state of the same form as the data.

In the scalar linear case (ƒ D 0, V.x/ D �.x/Id), such asymptotics are valid
until the celebrated Ehrenfest time: T ."/ / Log

�
1
"

�
(see [1, 6, 7] and [10]). In the

scalar nonlinear case: V.x/ D �.x/Id, a similar result holds if d D 1, while for
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d > 1, the asymptotics hold only on shorter times: QT ."/ / LogLog
�
1
"

�
(see [4]).

Finally, in the matrix-valued linear case, the result is still valid under a spectral gap
condition (see [13, 14] and [12]) for results on adiabatic decoupling and [8, 9] for
precise studies of coherent states).

In the nonlinear matrix-valued case, we perform the following assumptions:

(H1) A weak spectral gap condition: let .�j .x//1�j�P be the eigenvalues of V.x/,

9c0; n0 2 RC; 8j 6D k; j�j .x/ � �k.x/j � c0hxi�n0 :

(H2) A weak linear coupling: The potential V.x/ is of the form V.x/ D D.x/ C
W.x/ with D diagonal with coefficients at most quadratic and W symmetric
bounded as well as its derivatives.

Then, we are able to prove that  " is asymptotic to a coherent state which remains
in the same eigenspace of V , for times of order LogLog

�
1
"

�
. Besides, under precise

conditions on the energy of the wave packets, we can prove a superposition result.

2 Notations

Let us introduce first a few notations. We define the Hamiltonian flow

( Px.t/ D �.t/ I x.0/ D x0;

P�.t/ D ��0 .x.t// I �.0/ D �0:

Note that x; � 2 C1.RI Rd / and that the subquadraticity of V.x/ yields an
exponential control in time on the norm of the trajectories. We define the classical
action as

S.t/ D
Z t

0

�
1

2
j�.s/j2 � � .x.s//

�
ds;

and we perform the rescaling:

 ".t; x/ � 1

"1=4
u"

�
t;
x � x.t/p

"

�
ei.S.t/C�.t/�.x�x.t///="�.t; x/:

In the scalar case, V.x/ D �.x/Id (and �.x/ D 1), the equation for  " writes

i@tu
" C 1

2
@2yu" D V"u" C "˛�3=2ju"j2u";

where V".t; y/ D 1

"

�
�.x.t/C p

"y/� �.x.t// � p
"�0.x.t//y

�
:
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Formally, V".t; y/�!
"!0 V.t; y/ D 1

2
�00.x.t//y2; which suggests the ansatz

'".t; x/ D 1

"1=4
u

�
t;
x � x.t/p

"

�
ei.S.t/C�.t/�.x�x.t//=";

where the profile u satisfies different equation whether ˛ > 3=2 or not

i@tu C 1

2
@2yu D

8<
:
0 if ˛ > 3=2;
1

2
�00.x.t//y2u C juj2u if ˛ D 3=2

I u.0; y/ D a.y/: (1)

In the following, we shall assume that we are in a nonlinear regime, i.e. ˛ D
3=2. Then, the existence and the properties of the solution to the nonlinear and non
autonomous Schrödinger equation (1) is an issue by itself. It has been solved by
Carles [3]: for a 2 S, there exists a unique global solution to (1). Besides, we have
an exponential control of the growth of the momenta of u

In the matrix-valued setting, we also need to choose the eigenvectors that we will
consider. We use the time dependent eigenvectors introduced by George Hagedorn
in 1994 (see [8] and [4]): if dj denotes the multiplicity of the eigenvalue �j ,
there exists a smooth orthonormal family

�
�`.t; x/

�
1�`�d1 such that for all t ,�

�`.t; x/
�
1�`�d1 spans the eigenspace associated to �1 WD�, �1.0; x/D�.x/ and for

` 2 f1; � � � ; d1g, the vector @t�`.t; x/C �.t/@x�
`.t; x/ is in Ker .V .x/ � �.x/Id/?.

Moreover, we have an exponential control in time of the growth of the derivatives
of the vectors �`.

3 Main Results

Theorem 1 (Adiabatic Theorem, [5]). Let a 2 S.R/. Under (H1) and (H2), there
exists C > 0 such that w".t; x/ D  ".t; x/ � '".t; x/�1.t; x/ satisfies

sup
jt j�C loglog 1"

.kw".t/kL2 C kxw".t/kL2 C k"@xw".t/kL2/�!
"!0 0:

We prove this theorem by energy estimates on the function w" C "g" where g"

are correction terms belonging to the orthogonal to Ker .V .x/ � �.x/Id/. These
correction terms are here to compensate the component of the vector r.t; x/ D
@t�C �.t/@x� on Ker .V .x/ � �.x/Id/?. We point out that if V.x/ D �.x/Id, one
can prove that the asymptotics holds up to (an analogue of) Ehrenfest time by using
Strichartz estimates.

It is also possible to prove a nonlinear superposition result. We suppose

 "0.x/ D '"1.0; x/�1.x/C '"2.0; x/�2.x/;
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with .x1; �1/ ¤ .x2; �2/ when �1.x/ and �2.x/ are in the same eigenspace. We
naturally associate with .xj ; �j ; �j /, j 2 f1; 2g an ansatz '"j and we obtain the
following result.

Theorem 2 (Nonlinear Superposition, [5]). Set Ej D �2j
2

C Q�j .xj / and suppose

� D inf
x2R

ˇ̌
ˇ Q�1.x/ � Q�2.x/ � .E1 � E2/

ˇ̌
ˇ > 0:

Then, there exists C > 0 such that the function w".t/ D  ".t/ � '"1�
1.t; x/ �

'"2�
2.t; x/ satisfies

sup
t�C loglog 1"

.kw".t/kL2 C kxw".t/kL2 C k"@xw".t/kL2/�!
"!0 0:

The proof of this theorem relies on energy estimates and a careful analysis of the
nonlinear interactions between '"1 and '"2. One can prove that interaction terms of
the form j'"1j2j'"2j are small provided the gap between the trajectory, jx1.t/�x2.t/j is
large enough. Then, the constant � allows to control the lengths of the time intervals
where this gap is small.

4 Perspectives

Of course, the generalization of this result to higher dimension is a challenging
problem. In that case, a proof by energy estimates is no longer possible and one
needs to use Strichartz estimates for the matrix-valued Schrödinger operatorP."/ D
� "2

2
�CV.x/. Such estimates are available in the literature under decay assumptions

on V.x/ as jxj goes to 1. As far as we know, the existence of Strichartz estimates
for the operator P."/ when V.x/ can have quadratic growth is an open question.
It is also an issue to analyze the competition between the coupling by the non-
linearity and the coupling produced by the potential in the case where V.x/ presents
eigenvalue crossings. Indeed, in the linear setting, eigenvalue crossings are known
to generate non adiabatic transitions between the modes. However, the analysis of
crossings in the nonlinear regime has not yet been done.
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Adiabatic Limits and Related Lattice Point
Problems

Yuri A. Kordyukov and Andrey A. Yakovlev

1 Preliminaries on Adiabatic Limits

Let .M;F/ be a closed foliated manifold endowed with a Riemannian metric g.
Then we have a direct sum decomposition TM DF ˚H of the tangent bundle TM
of M , where F D TF is the tangent bundle of F and H DF? is the orthogonal
complement ofF , and the corresponding decomposition of the metric: gDgFCgH .
Consider the one-parameter family of Riemannian metrics onM ,

g" D gF C "�2gH ; " > 0;

and the corresponding Laplace-Beltrami operator �". We are interested in the
asymptotic behavior of the trace of the operator f .�"/ for sufficiently nice functions
f on R, in particular, of the eigenvalue distribution functionN".�/ of�", as " ! 0

(in the adiabatic limit).
In [4] (see also [2, 3, 5]), the first author proved an asymptotic formula for

trf .�"/ in the case when the foliation F is Riemannian and the metric g is bundle-
like. For particular examples of non-Riemannian foliations, such an asymptotic
formula was proved by the second author in [11, 12] (see also a survey paper [6]
for some historic remarks and references).

As the simplest example, one can consider the linear foliation F on the n-
dimensional torus Tn D R

n=Zn given by the leaves Lx D xCF mod Z
n, x 2 T

n,
where F is a linear subspace of Rn. Let g be the standard Euclidean metric on T

n.
The foliation F is Riemannian, and the metric g is bundle-like. In this case, the
eigenvalue distribution functionN".�/ of �" equals the number of integer points in
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26 Y.A. Kordyukov and A.A. Yakovlev

the ellipsoid f� 2 R
n W Pn

j;`D1 g
j`
" �j �` < �=.2�/2g. So we arrive at the following

lattice point problem.

2 Lattice Point Problems

Let F be a p-dimensional linear subspace of R
n and H D F? the orthogonal

complement of F with respect to the standard Euclidean inner product .�; �/ in R
n,

p C q D n. For any " > 0, consider the linear transformation T" W R
n ! R

n

defined by
T".x/ D x; if x 2 F; T".x/ D "�1x; if x 2 H:

Let S be a bounded open set with smooth boundary in R
n. Put

n".S/ D #.T".S/\ Z
n/; " > 0:

The problem is to study the asymptotic behavior of n".S/ as " ! 0. It appears
that, in the general case, the leading term in the asymptotic formula for n".S/ as
" ! 0 was unknown. In a slightly different context, this problem was studied in
considerable detail in [9, 10] (see also the references therein).

Let � D Z
n \ F . � is a free abelian group. Denote by r D rank� � p the

rank of � . Let V be the r-dimensional subspace of Rn spanned by the elements
of � . Observe that � is a lattice in V . Let �� � V denote the dual lattice to �:
�� D f�� 2 V W .��; �/ � Zg. For any x 2 V , denote by Px the .n � r/-
dimensional affine subspace of Rn, passing through x orthogonal to V .

Theorem 1 ([7]). Under the current assumptions, we have

n".S/ D "�q

vol.V=�/

X
��2��

voln�r .P�� \ S/CR".S/;

where the remainder R".S/ satisfies the estimate

R".S/ D O."
1

p�rC1�q/; " ! 0:

Theorem 2 ([7, 8]).

(1) If, for any x 2 F , the intersection fx CH g \ S is strictly convex, then

R".S/ D O."
2q

qC1C2.p�r/�q/; " ! 0:

(2) If, for any x 2 F , the intersection fx C V ?g \ S is strictly convex, then

R".S/ D O."
2q

n�rC1�q/; " ! 0:
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In [8], we also study the average remainder estimates, where the average is taken
over rotations of the domain S by orthogonal transformations in R

n.

3 Applications to Adiabatic Limits

As a straightforward consequence of Theorem 2, we obtain a more precise estimate
for the remainder in the asymptotic formula of [4] in the above mentioned case when
F is a linear foliation on T

n and g is the standard Euclidean metric.

Theorem 3 ([7]). For � > 0, we have, as " ! 0,

N".�/ D "�q
!n�r

vol.V=�/

X
��2��

�
�

4�2
� j��j2

�.n�r/=2
CO."

2q
n�rC1�q/;

where !n�r is the volume of the unit ball in R
n�r .

4 Some Open Problems

1. Prove an asymptotic formula for tr f .�"/ when F is an arbitrary foliation.
The case when F is given by the fibers of a fibration over a compact manifold

and the metric g is not bundle-like, is already quite interesting.
2. Prove a complete asymptotic expansion for the heat trace tr e�t�" as " ! 0 (even

if the metric g is bundle-like).
3. Study the adiabatic limits of more complicated spectral invariants like the eta-

invariant, the analytic torsion etc. (even if the metric g is bundle-like).
Here the extension of the Mazzeo-Melrose result on small eigenvalues in the

adiabatic limit and spectral sequences to Riemannian foliations [1] might be
useful.

4. Study the remainder estimates for N".�/.
5. Continue the study of the remainder R".S/, depending on geometry of a domain
S and properties of F andH .
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The Effective Hamiltonian in Curved Quantum
Waveguides and When It Does Not Work

David Krejčiřı́k and Helena Šediváková

We are concerned with the singular operator limit for the Dirichlet Laplacian in a
three-dimensional curved tube (cf. Fig. 1) when its cross-section shrinks to zero. The
tube �" is constructed by translating and rotating the cross-section along a spatial
(bounded, unbounded or semibounded) curve � and the limit is realized by scaling
a fixed cross-section ! by a small positive number ". Geometrically, �" collapses
to � as " ! 0. We are interested in how and when the three-dimensional Laplacian
���"

D can be approximated by a one-dimensional operatorHeff on the curve.
We start with some more or less obvious observations.

1. Since we deal with unbounded operators, the convergence of ���"
D to Heff is

understood through a convergence of their resolvents.
2. The Dirichlet boundary conditions imply that the spectrum of ���"

D explodes as
" ! 0. It is just because the first eigenvalue of the (two-dimensional) Dirichlet
Laplacian in the scaled cross-section "! equals "�2E1, where E1 is the first
eigenvalue of the Dirichlet Laplacian in the fixed cross-section !. Hence, a
normalization ���"

D � "�2E1 is in order to get a non-trivial limit.
3. Finally, since the configuration spaces �" and � have different dimensions, a

suitable identification of respective Hilbert spaces of ���"
D andHeff is required.

This is achieved by consideringHeff as acting on the subspace ofL2.�"/ spanned
by functions of the form 
 ˝ J1 on � � !, where J1 denotes the positive
normalized eigenfunction of ��!

D corresponding to E1.
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Fig. 1 An example of a waveguide of elliptical cross-section. Twisting and bending are demon-
strated on the left and right part of the picture, respectively

It is well known how the limiting operator looks like [2, 4, 6]. We have

���"
D � "�2E1 ���!

"!0 Heff WD ���
D � �2

4
C C! . P�F � 	/2 (1)

in a resolvent sense, where � and 	 denote respectively the curvature and torsion
of � , �F is an angle function defining the rotation of "! with respect to the Frenet
frame of � and C! WD k@'J1kL2.!/, with @' denoting the angular derivative. The
potential of Heff clearly consists of two competing terms, which represent the
opposite effects of bending and twisting in quantum waveguides, cf. [5].

The question we would like to address here is about the optimal regularity
conditions under which the effective approximation (1) holds. We are motivated
by the fact that the known existing results mentioned above do not cover physically
interesting curves with discontinuous curvature and without Frenet frame. Indeed,
the latter is a standard hypothesis in the literature in order to construct the
waveguide. However, the Frenet frame exists only for curves of class C3 with
nowhere vanishing curvature �.

Furthermore, the �-convergence method of [2, 4], which seems to work under
less restrictive regularity once the technical difficulty of the non-existence of the
Frenet frame is overcome, implies only (unless the waveguide is bounded [4]) a
strong-resolvent convergence for (1) and does not provide any information about
the convergence rate. Our goals are thus as follows:

1. Impose no unnatural hypothesis about the reference curve � , include curves
which are merely of class W 2;1

loc and which do not possess Frenet frame.
2. Use operator methods instead of the �-convergence, establish (1) in the norm-

resolvent sense and get a control on the convergence rate.

Ou strategy how to achieve these goals is based on the following ideas:

1. Use the frame defined by the parallel transport instead of the Frenet frame.
This alternative frame is known to exist for any curve of class C2, cf. [1]. We
generalize the construction to the curves of class W 2;1

loc .
2. Work exclusively with the quadratic forms associated with the operators.

Even if one implements the above ideas, the standard operator approach to
the thin-width limit in quantum waveguides (see, e.g., [3]) still requires certain
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differentiability of curvature � (which is just bounded under our hypotheses).
To see it, we briefly recall the standard strategy.

First, one uses curvilinear coordinates, which induce the unitary transform
U1 W L2.�"/ ! L2

�
� � !; "2 h".s; t/ds dt

�
, with the Jacobian

h".�; t/ WD 1 � " t1 Œk1 cos � � k2 sin �� � " t2 Œk1 sin � C k2.s/ cos �� : (2)

Here k1; k2 are curvature functions computed with respect to our relatively parallel
frame and � is an angle function defining the rotation of the cross-section "! with
respect to the frame. We have �2 D k21 C k22 and, if the Frenet frame exists, our
frame is rotated with respect to the Frenet frame by the angle given by a primitive
of torsion 	 . Consequently, in our more general setting, the difference P�F � 	 in (1)
is to be replaced by P� .

Second, to recover the curvature term in the effective potential of (1), one also
performs the unitary transform U2 W L2�� � !; "2 h".s; t/ ds dt

� ! L2.� � !/

generated by 7! "
p
h" . However, this transform does not leave the form domain

W 1;2.� � !/ invariant if k1; k2 are not smooth in a suitable sense.
This last difficulty is overcome by the following trick:

3. Replace the curvature functions in (2) by their "-dependent mollifications
(� 2 f1; 2g)

k"�.s/ WD 1

ı."/

Z sC ı."/
2

s� ı."/
2

k�.�/ d� ;

where ı is a continuous function such that "�1ı."/ diverges as " ! 0.

Then everything works very well because the longitudinal derivative of the molli-
fied h" involves the terms " Pk"� which vanish in the limit " ! 0, even if Pk"� diverge.

Our main result can be informally stated as follows:

Theorem 1. Let � 2 W
2;1

loc with � 2 L1 and � 2 W
1;1

loc with P� 2 L1. Then (1)
holds in the norm-resolvent sense provided

�."/ WD
X

fDk1;k2; P�
sup
n2Z

vuut sup
j�j< ıf ."/

2

Z nC1

n

jf .s C �/ � f .s/j2 ds (3)

tends to zero as " ! 0.

Our sufficient condition for the validity of the effective approximation looks
horrible. But it is actually not so bad. It is easy to verify that it covers all the
known results, and much more. In particular, it holds if all the representants of f
are either Lipschitz, or just uniformly continuous, or square integrable (i.e., always
whenever � is bounded), or periodic, etc. Furthermore, the quantity �."/ together
with "k Pk"�k1 determines the decay rate of the convergence (1).

An open problem is to get rid of the hypothesis �."/ ! 0 as " ! 0, if possible.
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The Adiabatic Limit of the Laplacian
on Thin Fibre Bundles

Jonas Lampart and Stefan Teufel

We consider the time dependent Schrödinger equation on a fibre bundle in the
adiabatic limit. We allow the fibres to have a boundary, in which case we impose
Dirichlet conditions. In particular this allows us to understand, in a general setting,
results obtained in the context of quantum waveguides (see the review [2]), in which
case the bundle is usually a solid cylinder or a square. In order to extract such results
from our effective operator one has to embed the total space into R

n and expand the
induced metric. The leading order term will be a Riemannian submersion. When
calculating the effective operator the additional corrections due to the metric need
to be taken into account. The resulting operator can then be analysed to obtain e.g.
expansions for the eigenvalues.
One of the virtues of the approach is a scaling that gives results for energies that are
infinite in many of the settings treated in the literature. More precisely, Theorem 1
gives an approximation for finite energies when the energies of the fibre dynamics
are independent of the scaling parameter. In comparison the often considered scaling
in which these energies go to infinty as the fibres get thin only yields results for small
energies above the ground state (after substracting the increasing energy of the fibre
ground state).

We use methods of adiabatic perturbation theory (see [3] for a comprehensive
presentation). The basic idea is that the separation of scales between the base and
the fibre leads to a decoupling of the corresponding dynamics. This means that
for special initial conditions (one may think of eigenstates of the fibre dynamics)
the dynamics in the fibre direction will be trivial for long times. One can thus
decompose the total problem into a set of simpler problems, one for every such
initial condition. Each of these has dynamics only in directions on the base and is
governed by an effective equation.

J. Lampart (�) � S. Teufel
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These methods were applied in a differential geometric setting to the problem of
constraints in quantum mechanics [4].

Let F ! M
�! B be a smooth fibre bundle with a Riemannian submersion

metric g D gFx ˚ ��h (see [1, Chap. 2] for a discussion of basic properties). By
the adiabatic limit we mean the asymptotic limit as " ! 0 for the scaled family of
metrics g" D gFx ˚"�2��h. We study this limit for the time dependent Schrödinger
equation

i@t D ��g" : (1)

�g" is self adjoint on the Dirichlet domainH2.M/\H1
0 .M/(DH2.M/ if @M D ;).

It can easily be seen (for example using the quadratic form) that the Laplacian
decomposes into

�g" D trTFr2 C "2
�
trNFr2 � �� DW �Fx C "2�h (2)

where � is the mean curvature vector of the fibres (in the metric g"D1). We interpret
these terms in the following way:

• For every x the Laplacian of the fibre �Fx is a bounded linear operator from
its domain to L2.Fx/. It can thus be viewed as a section of a bundle over B:
Let L2.F I�/ and D be vector bundles induced by � (with fibres L2.F / and
H2.Fx/\H1

0 .Fx/ respectively). The fibre Laplacian is precisely a section of the
bundle of continuous linear maps L

�
D;L2.F I�/� between both.

• Derivation in the horizontal direction formally defines a connection rh on
L2.F I�/. ��h can be identified as the Laplacian rh�rh of this connection.

From this point of view the operator �g" D �Fx C "2�h fits nicely into the
framework of adiabatic perturbation theory, where one might call it “fibred overB”.
Now we proceed by noting that for every x 2 B the spectrum of �Fx is discrete,
of finite multiplicity and independent of ". As it depends continuously on x it has
a band structure i.e. one can choose continuous functions E.x/ that are eigenvalues
for every x.

Let E be such a band and P.x/ its spectral projection, i.e.

8x W ��FxP.x/ D E.x/P.x/: (3)

Since P.x/ is a bounded linear map on L2.Fx/, P is a section of L.L2.F I�//. If
E is separated from the rest of the spectrum then the dimension of ranP is constant
and PL2.F I�/ is a finite-rank subbundle that is locally spanned by eigenfunctions
of �Fx .

One can show that PL2.M/ is left invariant by the dynamics up to errors of order
" by estimating Œ�g"; P � D Œ"2�h; P � using the following:
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Lemma 1. Let M , B and � be of bounded geometry.1 Let E be bounded and
uniformly separated.
Then

��Œ"rh
X
; P �P

��
L.L2.M//

� C" for every boundedX .

This allows us to describe the leading order dynamics (with initial conditions in
PL2.M/) by the effective operator P�g"P on the L2-sections of our finite-rank
bundle PL2.F I�/. However we aim for more precision because:

1. Horizontal distances increase as " ! 0, so with kinetic energies of order one it
takes times of order 1=" for global effects to occur, and

2. The spacing of the eigenvalues of �g" decreases and an error of order " might
not be enough to distinguish them.

Therefore we need better approximations to understand the dynamics and com-
pletely resolve the spectrum. For this purpose we construct a corrected projection
P " D P C O."/ (that is no longer a fibrewise operator), for which Œ�g" ; P �P D
O."N / holds, and an intertwining unitary U " W P "L2.M/ ! PL2.M/ that allows
us to define the effective operator on sections of PL2.F I�/ (see [4] for a detailed
exposition of the technique).

Theorem 1. Under the assumptions of the lemma there exist

• A projection P " 2 L
�
L2.M/

�
,

• A unitary operator U " 2 L
�
L2.M/

�
that maps P "L2.M/ ! PL2.M/,

• A self-adjoint operator .Heff;Deff/ on L2.PL2.F I�//,
such that

���
�

e�iH"t � U "�e�iHefftU "
�
P "�.�1;Emax/.�g"/

���
L.L2.M//

� C"N t (4)

for all t � 0 and Emax < 1;
If � is an eigenvalue ofHeff then there is a ball B of radius C"N around � such that
B \ �

�
�g"

� ¤ ;.

The effective operator is given by

Heff D PU "�g"U
"�P D �"2�B C E.x/C O."2/ ; (5)

where ��B is the Laplacian of the induced connection rB D PrhP . The higher
order corrections can be computed explicitly from the construction of P ".

1When there is no boundary we require that M;B be of bounded geometry and � have bounded
derivatives. In the case with boundary there is a similar condition. Both are trivially satisfied if M
is compact.
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Adiabatic Limit with Isolated Degenerate Fibres

Richard B. Melrose

In this talk I want to remind you of the setup for adiabatic limit and then to discuss
various generalizations of it. I will try to show how problems with singular or
degenerate fibres can be treated and how these are related to gluing problems and to
the behaviour at the boundary of certain geometric moduli spaces.

1 Adiabatic Limit

Recall that the basic set up of an adiabatic limit corresponds to a fibration of
manifolds – a submersion between compact connected manifolds 
 W X �! Y

with typical fibre Z. On the total space X one can consider a family of ‘adiabatic
metrics’ gt D 
�hC t2� where h is a metric on the base (it could also depend on t)
and � is a smooth symmetric 2-cotensor on the fibres which restricts to be positive
definite, and hence a metric, on the fibres. In fact I think it is more natural to consider
a family of metrics such as t�2gt where the fibres are of more-or-less constant size
and fixed vectors in the base get ‘large’ which means the base is ‘slow’ (hence
the term adiabatic). I believe Witten [4] was the first to consider global analysis
related to such metrics when he examined the behaviour of the eta invariant for the
particular case of a fibration over a circle.

Note that this setting is more general than a Riemannian submersion, which
corresponds to the case that � has rank exactly equal to the dimension of the fibres
at each point and I will mention some other possible generalizations below.

For t > 0 nothing much is happening, one just has a smooth family of metrics
and t is simply a parameter. On the other hand one can view the singular limit at
t D 0 as imposing a ‘geometry’. Then t is no longer a true parameter but should
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be included in the analysis, so instead of X consider the space X � Œ0; 1� where the
iterval corresponds to t . The basic object to consider is the space of smooth vector
fields on X � Œ0; 1�

Va.X/ D fV IV t D 0; V tangent to 
�1.y/ at t D 0g: (1)

These can also be identified as the smooth t-dependent vector fields on X such
that gt .V / D O.t2/. They form a Lie algebra and module over C1.X � Œ0; 1�/

which implies that it makes sense to consider (for any vector bundles Wi over X )
the filtered ‘enveloping algebra’ t l Diffka .X IW1;W2/ given by the sums of products
of up to k elements of this Lie algbra with an overall factor of t l . The Laplacian of
gt , �t 2 t�2 Diff2a.X Iƒ�/.

Some year ago, Rafe Mazzeo and I considered the invertibility properties of the
Laplacian on forms on X in this context. Let me use these results to illustrate the
general behaviour of adiabatic problems. Roughly speaking the Laplacian is similar
to the product case when we might have �t D �Y C t�2�Y but where the twisting
does have an effect. In terms of the existence of a generalized inverse – which exists
for t > 0, so we are really considering the regularity theory as t # 0 – there always
exists a two-sided parametrix Pt such that

�tPt � Id; Pt�t � Id are uniformly bounded on L2 and of finite rank

with kPtkL2 bounded as t # 0:
(2)

Of course one can say a lot more than this. In fact the generalized Hodge inverse
Qt is such that

�tQt � Id D Qt�t � Id D ….t/; ….t/2 D ….t/ D …�.t/ for t > 0

with ….t/u D u ” �tu D 0; t > 0; kQtkL2 � C t�2k:
(3)

2 Uniform Degeneracy

Although the ‘main’ solvability issue above appears to be the invertibility of the
fibre Laplacian. Really, it is not quite this which is involved, or rather it is a little
more than that. Namely what we actually get is a suspended Laplacian. This is the
‘adiabatic symbol’. Note that the ‘semiclassical’ case is when 
 is the identity. Then
the adiabatic, or semiclassical, symbol is the ‘full symbol’ of the Laplacian. In case
of a general fibration 
 it is a bundle, over T �Y , of operators. For each point in the
base we get a differential operator (on some form bundle) over the space TyY �Zy ,
where Zy is the fibre above y. This is a second order elliptic differential operator
and is translation-invariant in TyY . We can take the Fourier transform and hence get
a differential operator on Zy which is polynomial in T �y Y . The main issue is then
is the invertibility of this ‘suspended’ family (suspended in the topological sense of
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having some Euclidean variables added). For an adiabatic metric such as described
above this turns out to be straightforward, the null space can be decomposed (over
forms from the base) in terms of the fibre null spaces which form an ordinary vector
bundle, the forms on Y twisted by the flat bundles of fibre harmonic forms.

So for the Laplacian on forms this model operator can never be fully invertible –
the constants in degree 0 always intervene. For other similar problems it can. For
instance if the fibres are manifolds with boundary and one considers the Dirichlet
boundary condition, then the adiabatic model operators are fully invertible and in
consequence the full Laplacian is also invertible uniformly:-

k��1t;DirkL2 � C t2 as t # 0: (4)

Then a more interesting question, touched on below, is the behaviour of the lowest
eigenvalue and eigenstate.

So the case of no boundary is ‘uniformly degenerate’ because these fibre oper-
ators are non-invertible in a uniform way and the invertibility properties described
above depend on the invertibility (up to finite rank) of the induced Laplacian on
these bundles. There is a second ‘level’ of solvability corresponding to the formal
term ‘�Y ’ and indeed there is an induced Laplacian on the bundle, over Y , of null
spaces at the first level. Correspondingly, the spectrum of�t has three main ‘pieces’
as t # 0. There is a ‘big’ part which corresponds to non-zero eigenvalues of the fibre
Laplacian, these behave like t�2 – for the Dirchlet case this is everything. There is
a ‘finite but non-zero’ part which tends to non-zero constants – these correspond to
the non-zero eigenvalues of �Y . The third part arises from eigenvalues which tend
to zero with t I it is finite-dimensional. This can be further analysed corresponding
to the order of vanishing and leads to the various estimates above; the best k in
(3) corresponds to the level at which the Leray-Serre spectral sequence for the
cohomology of X degenerates – anything smaller than this is in the null space for
all t .

Next let me note that the adiabatic limit in the form discussed above does have
direct geometric applications. One such is in the work of Joel Fine [2] on the
existence of Kähler metrics of constant mean curvature. I do not have time to get into
the details of this, but the set up is as above, where 
 is a ‘fibration’ in the case ofX a
compact complex surface (so having real dimension 4) and Y is a Riemann surface,
so is Z. The first thing to understand is that in the complex, holomorphic, world
(holomorphic) submersions are not (holomorphic) fibrations in the obvious sense,
since in general the complex structure on the fibres varies – they are diffeomorphic
in the real sense, but are not biholomorphical. Here this happens, except in low
genus. In his thesis (some years ago) Fine shows how to ‘make’ a Kähler metric
with constant scalar curvature on the total space from the ‘obvious’ metrics on base
and fibre. Namely, since these are Riemann surfaces, there are metrics of constant
curvature on them – including a smooth family of metrics on the fibres. Making
(non-trivial) computations in the world of Kähler potentials, Fine shows how to
construct a constant curvature adiabatic Kähler metric up to infinite order, i.e. in
the sense of Taylor series (so the adiabatic family is Kähler and the scalar curvature
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is asymptotically just a function of t). Then the perturbation to an exact solution
is an application of the implicit function using the invertibility properties of an
operator (fourth order) like the Laplacian above. The message to take from this
is that if one can solve an adiabatic problem to infinite order one can likely solve it
exactly (although this is not the case for superficially similar similar problems, such
as Witten’s Morse complex).

3 Degenerate Fibres: Analytic Case

One natural question is what happens to the adiabatic limit if the form of the
metric is generalized. This is related to issues below and there are several levels of
‘relaxation’ of the conditions. One might first consider perturbations of first order
in t which include cross terms between base and fibre such as tdy˝d z. Note that it
does not really make sense to want these to have coefficients which only depend on
the base variables. The effect of adding such a term can be quite dramatic, since it
can change the invertibility properties of the adiabatic model operators although this
is still an elliptic suspended family – the null spaces may no longer form a bundle, as
they may not be smooth over the base. If the failure to be smooth is itself reasonably
smooth, as discussed below, then something can be done. I don’t really know what
happens to the null space in the general case – if anyone wants to try to work it out
they are welcome to try and I am interested to discuss it!

Another possible ‘perturbation’ is to replace h by a basic tensor – that is, to let its
coefficients vary on the fibre. This is actually less of a problem than the introduction
of cross terms and leads to a very similar structure, but the details have not been
written up as far as I know.

Next consider the effect of adding a potential, for simplicity in the case of the
Laplacian on functions. The simplest case is when the potential is real and non-
negative. If it is non-zero on any fibre then the model on that fibre is invertible. The
opposite extreme to uniform degeneracy is when V vanishes on isolated fibres and
has non-zero Hessian (in the base variables) at every point on those fibres

0 � V 2 C1.X/;

9 fy1; : : : ; ykg � Y s.t. V.x/ D 0 ” x 2
[
j

Zyj ;

Hessy V .yj / > 0:

(5)

Then �t C V has an inverse with a weaker (optimal) bound than in a case such as
(4) when the model operators are invertible

k.�t C V /�1kL2 � C t (6)

In this case there are additional model operators at the singular fibres which are
harmonic oscillators.
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4 Eigenvalues for Triangles

One geometric setting closely related to the perturbation by a potential with
isolated minima is the vertical collapse of a manifold with boundary. For example,
if one takes a region in the plane between two 2�-periodic smooth curves,
� D f.x; y/ 2 R

2IL.x/ < y < U.x/g, and ‘collapses’ it by vertical scaling to
�t D f.x; y/ 2 R

2IL.x/ < y=t < U.x/g, 0 < t � 1, then consider the behaviour
of the eigenvalues for the Dirichlet, or Neumann, problem. For the Dirichlet problem
the smallest eigenvalue has an asymptotic expansion related to that above, in
particular there are harmonic oscillator models, provided U.x/ � L.x/ only has
non-degenerated maxima.

The general problem of the behaviour of the eigenvalues for the Dirichlet
problem for triangles as functions on moduli space remains open and certainly
there is behaviour similar to this under vertical collapse, except that the harmonic
oscillator is replaced by its ‘one-sided’ cousion, Airy’s operator.

5 b-Fibration Algebra

Returning to the initial setting of a fibration the opposite extreme to the semiclassical
case corresponds to a trivial fibration in the sense that 
 has one fibre. Then
the operators are simply smooth in the parameter t . This serves to emphasize that
the map to Œ0; 1� is itself a fibration and this can be generalized – as in the setting of
the Atiyah-Singer index theorem – to the case of a more general base and fibration
with X � Œ0; 1� replace by a fibration 
 W OX �! B with typical fibre X . This in
turn can be generalized to the case of a b-fibration which allows degeneration, of
a specific type, on the fibres. Rather than define this in general let me point to a
specific type of example.

Suppose M is a compact manifold with corners. It may have many boundary
hypersurfaces but each has (by assumption) a defining function – a smooth non-
negative function on M which vanishes precisely at the boundary hypersurface in
question and has non-zero differential there. Then a total boundary defining function
on M is a product of such functions. More generally one can take a product of
positive integral powers of such functions. The resulting function, which vanishes
at every boundary point but is positive elsewhere, defines a b-fibration – a kind of
collar decomposition – as a map to Œ0; �� for � > 0 small enough. The general case
of a b-fibration is locally the product of such maps and an ordinary fibration. In any
case there is a similar structure to the case of a fibration if vector fields tangent to
all boundaries are considered and there is an algebra of pseudodifferential operators
reducing to the fibre pseudodifferential operators for a fibration:

Vb=
.M/ � 
˛ Diff�b=
.M IW / � 
˛ ‰�b=
.M IW / � 
˛ ‰��b=
.M IW / (7)

The last space here actually depends on a choice of the resolution of the fibre
diagonal ([3]).
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Example of this is provided by the blow-up calculus being developed with Pierre
Albin and also the gluing calculus with Michael Singer which corresponds to gluing
problems such as treated by Arezzo and Pacard [1]. Namely, from a manifold with
an interior separating hypersurface a manifold with corners can be constructed with
b-fibration which corresponds to the process of gluing a complete metric on one
side of the hypersurface to an appropriate (often incomplete) metric on the other
side. The b-fibration is of the type discussed above. This is also related to older
work with Andrew Hassell and Rafe Mazzeo on the eta invariant.

6 Morse Degeneration

The two types of calculus above, corresponding to a b-fibration, where the vector
fields degenerate only at a submanifold in the boundary, and the adiabatic case
where the degenerate to be tangent to the fibres of a fibration can be combined.
Rather than set this up in general – corresponding to iterated b-fibrations where
there are finer fibrations over (some of) the boundary hypersurfaces of the first
b-fibration – let me simply indicate an example which arises from a question of
Atiyah.

Every compact manifold M carries a Morse function f W M �! Œa; b�. This
can be thought of as a generalization of a fibration over the circle – the setting
considered by Witten in [4]. There are singular fibres but they are isolated and of
‘minimal singularity’. In particular the singular points, where the differential of f
vanishes, are themselves isolated. To construct an adiabatic limit of this b-type, first
replaceM by the manifold with boundary in which the critical points of f are blown
up radially, MCp D ŒM I Cp� to which f lifts as a smooth function. The singular
fibres of f are resolved in the sense that they are each the union of a boundary
hypersurface and an embedded (generally non-connected) submanifold SF which
meets this boundary transversally. The full space with b-fibration we consider is

ŒMCp � Œ0; 1�t I SF� �! Œ0; 1�t : (8)

The additional condition imposes on vector fields (and hence differential operators)
corresponding to the adiabatic limit is that over t D 0 they should be tangent to the
boundaries, to the regular fibres of f and to the fibres of the blow-down map for the
blow-up of SF.

Atiyah’s question is whether for a Dirac operator on the total space one can find a
formula for the index (which of course is known) in terms of the spectral flow of the
induced Dirac operators on the fibres, between the singular values (likely regularized
in some way) with perhaps some ‘jump terms’ across the singular fibres. For the
moment I only know how do do this after perturbing the operator by a smoothing
operator associated to the calculus that I have implicitly described above. To give
a more realistic answer requires a better understanding of the behaviour of the eta
invariant.
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Microlocal Analysis and Adiabatic Problems:
The Case of Perturbed Periodic Schrödinger
Operators

Gianluca Panati

Microlocal analysis is a powerful technique to deal with multiscale and adiabatic
problems in Quantum Mechanics. We illustrate this general claim in the specific
case of a perturbed periodic Schrödinger operator, namely the operator defined in a
dense subspace of L2.Rd / by

H" D 1

2

dX
jD1

�
�i @
@xj

� Aj ."x/

�2

C V.x/C '."x/; (1)

where V W Rd ! R is a Z
d -periodic function, V 2 L2loc.R

d /, corresponding to the
interaction of the test electron with the ionic cores of a crystal, while Aj 2 C1b .Rd /

and ' 2 C1b .Rd / represent some perturbing external electromagnetic potentials.
The parameter " 	 1 corresponds to the separation of space-scales.

Since the unperturbed Hamiltonian Hper D � 1
2
� C V is periodic, it can

be decomposed as a direct integral of simpler operators, thus exhibiting a band
structure, analogous to the one appearing in the Born-Oppenheimer problem.

We are interested to the behavior of the solutions to the dynamical Schrödinger
equation i" @t ".t/ D H" ".t/ in the limit " ! 0. We show that by using
microlocal analysis with operator-valued symbols one can decouple the dynamics
corresponding to different bands and determine a simpler approximate dynamics for
each band [3]. Further developments have been obtained, more recently, in [1, 5].

The Bloch-Floquet transform. The Zd -symmetry of the unperturbed Hamiltonian
operator Hper D � 1

2
� C V can be used to decomposed it as a direct integral of

simpler operators. To fix the notation, let Y be a fundamental domain for the action
of the translation group � D Z

d on R
d , and let B be a fundamental domain for the

action of the dual lattice �� WD ˚
� 2 .Rd /� W � � � 2 2�Z 8� 2 �	

on the dual
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space .Rd /� (“momentum space”). We also introduce the tori TdY D R
d=� and

T
� D .Rd /�=��. The formula

.eU /.k; y/ D
X
�2�

e�ik�.yC�/  .y C �/; y 2 R
d ; k 2 .Rd /�;  2 S.Rd /

extends to a unitary operator eU W L2.Rd / �! L2.B/˝ L2.TdY / ' L2.B; L2.TdY //,
called (modified) Bloch-Floquet transform. Hereafter Hf WD L2.TdY /.

The advantage of this construction is that, after conjugation, Hper becomes a
fibered operator, namely

eH per WD eU Hper eU�1 D
Z ˚
B

Hper.k/ dk in L2.B;Hf/ '
Z ˚
B

Hf dk DW H;

Hper.k/ D 1

2
.�iry C k/2 C V.y/ acting on D � L2.TdY ; dy/ D Hf

where D is a dense subspace of Hf. The operator Hper.k/ has compact resol-
vent, and we label its eigenvalues as E0.k/ � E1.k/ � : : :. Notice that the
eigenvalues are ��-periodic. We assume that a solution of the eigenvalue problem
Hper.k/ �n.k; y/ D En.k/ �n.k; y/ is known, and we denote by Pn.k/ the

eigenprojector corresponding to the n-th eigenvalue, while Pn D R ˚
B
Pn.k/ dk.

The set En D f.k;En.k// 2 T
� � Rg is called the n-th Bloch band.

The perturbed dynamics. We consider a Bloch band En which is separated by a
gap from the rest of the spectrum, i. e.

inffjEn.k/� Em.k/j W k 2 T
�; m ¤ ng > 0; (2)

and the corresponding subspace

RanPn D f‰ 2 H W ‰.k; y/ D '.k/ �n.k; y/ for ' 2 L2.B; dk/g:

In the unperturbed case, A D 0 and 
 D 0, the subspace RanPn is exactly invariant,
in the sense that .1�Pn/ e�ieH pert=" Pn‰ D 0 for all‰ 2 H:Moreover, the dynamics
of ‰ 2 RanPn is particularly simple, namely

�
e�ieHpert="‰

�
.k; y/ D �

e�iEn.k/t="'.k/
�
�n.k; y/:

Thus a natural question arises: to what extent such properties survive in the
perturbed case? More precisely,

(i) Does exist a subspace of H which is almost-invariant with respect to the
dynamics, up to errors of order "N ?

(ii) Is there any simple (and numerically convenient) way to approximately describe
the dynamics inside the almost invariant subspace?
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The microlocal approach. Microlocal analysis is a useful tool to answer these
questions. In a nutshell, one checks that by modified BF transform one has

eH" WD eU H"
eU�1 D ��iry C k � A.i"rk/

�2 C V.y/C 
.i"ry/:

The latter operator “looks like” the "-Weyl quantization of an operator-valued
symbol

h W T� � R
d �! Operators.Hf /

.k; r/ 7�! ��iry C k �A.r/�2 C V.y/C 
.r/:

This observation naturally leads to exploit techniques related to matrix-valued
pseudo-differential operators [2, 4]. Obviously, to perform this program one has
to circumvent some technical scholia (unbounded-operator-valued symbols, covari-
ance, . . . ), for whose solution we refer to [3]. As an answer to question (i), we have
the following

Theorem 1. Let En be an isolated Bloch band, see (2). Then there exists an
orthogonal projection …n;" 2 B.H/ such that for every N 2 N there exist CN
such that ��ŒeH";…n;"�

��
B.H/

� CN "
N

and…n;" is O."1/-close to the "-Weyl quantization of a symbol with principal part
�0.k; r/ D Pn.k �A.r//.

As for question (ii), one preliminarily notices that there is no natural identifi-
cation between Ran…n;" and L2.T�; dk/, so no evident reduction of the number of
degrees of freedom. To circumvent this obstacle, one constructs an intertwining uni-
tary operator (which is an additional unknown in the problem) Un; " W Ran…n;" !
L2.T�; dk/. The freedom to choose Un; " can be exploited to obtain a simple and
physically transparent representation of the dynamics, as in the following result [3].

Theorem 2. Let En be an isolated Bloch band. Define the effective Hamiltonian as
the operator OHeff; ” WD Un; " …n; " H" …n; " U

�1
n; " acting in L2.T�; dk/. Then:

(i) (approximation of the dynamics) for any N 2 N there is CN such that

���
�
"�ieH"t=" � U�1n; " "�i OHeff; ” t=" Un; "

�
…n;"

���
B.H/

� CN "
N .1C jt j/:

(ii) (explicit description of the approximated dynamics) the operator OHeff;” is
O."1/-close to the "-Weyl quantization of the symbol heff

" W T
� � R

d ! C,
with leading orders

heff
0 .k; r/ D En.k � A.r//C 
.r/

heff
1 .k; r/ D .r
.r/� rEn.�/^B.r//C An.�/� B.r/ �Mn.�/
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where �.k; r/ D k�A.r/, Bjl D @jAl �@lAj , An.k/ D i h�n.k/ j r�n.k/iHf

is called Berry connection and

Mn.k/ D i

2

˝r�n.k/^ j .Hper.k/ �En.k//r�n.k/
˛
Hf
:
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Recent Results in Semiclassical Approximation
with Rough Potentials

T. Paul

Quantum Mechanics was invented for stability reasons. In fact it is striking to notice
the difference of regularity that needs the potential of a Schrödinger operator to
insure unitary of the quantum flow (e.g. V 2 L1loc; lim�!0 supx

R
jx�yj�� jx �

yj2�N jV.y/jdyD 0) compared to the classical Cauchy-Lipshitz condition for vector
fields.

On the other side, tremendous progress have been done in the last 25 years
concerning the theorey of ODEs using PDE’s methods: extension of the Cauchy-
Lipshitz condition to Sobolev ones [5] and BV vector fields (Bouchut for the
Hamiltonian case [4] and Ambrosio for the general case [1]) have been proved to
provide well-posedness of the classical flow almost everywhere, through uniqness
result for the corresponding Liouville equation in the space L1C .Œ0; T �IL1.R2n/ \
L1.R2n//. Under these regularity conditions on the potential (in addition to some
growing at infinity) the Schrödinger equation is well posed for all positive values of
the Planck constant and it is therefore natural to ask what’s happen at the classical
limit. As we will see different answers will be given, according to the choice we
make first on the topology of the convergence, and secondly on the asymptotic
properties of the initial datum. The genral idea of the results we are going to present
here can be summarized as follows:

For some V … C1;1 both the quantum and the classical exist and

the diPerna-Lions-Ambrosio flow is the classical limit of the quantum flow

for non concentrating initial data.

For concentrating initial data

the multivalued bicharateristics are the classical limit of the quantum flow.
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All the results presented here will use a quantum formalsim on phase space,
thanks to the notion of Wigner funtion. More precisely we will be concerned with
the so-called Schrödinger and von Neumann equation

i„@t D .�„2�C V / and @tD D 1

i„ Œ�„2�C V;D�

with  tD0 2L2.Rn/ and DtD0 � 0; T rDtD0 D 1 (density matrix, e.g. D0 D
j 0ih 0j). And we will consider the Wigner funtion associted to Dt (e.g. D
j t ih t j), defined by

W �D.x; p/ WD 1

.2�/n

Z
Rn

Dt .x C �

2
yx � �

2
y/e�ipydy

where Dt.x; y/ is the integral kernel of Dt (e.g. D  t.x/ t .y/ in which case we
write W � t� ).

The well-known lack of positivity of W � suggests, in order to study evolution in
spaces like L1C , to use the so-called Husimi function of Dt , a molification of W �

defined as AW �D WD e��R2nW �D which happens to be positive. But the only bound
we have for AW �D is kAW �DkL1 � ��nTrD, unuseful for the L1 condition needed
for the existence of the classical solution. We formulate the

Conjecture. For an � dependant family D� of density matrices we have

TrD� D 1 H) sup
�>0

k AW �D�kL1 D C1

In the general case of a potentials whose gradient is BV, the first idea will be to
smeared out the initial conditions and consider a family of vectors 0�;w; w belonging
to a probabilty space .W;F ;P/. Under the general assumptions

Assumptions on V Assumptions on initial datum

globally bounded, locally Lipschitz  �0;w 2 H2.RnIC/
rUb 2 BVloc.RnIRn/ sup�>0

R
W

R
Rn

jH� 
0
�;wj2dxdP.w/<1

ess supx2Rn
jrUb.x/j
1Cjxj < C1 R

W j 0�;w ><  0�;wj dP.w/ � �nId

C finite repulsive Coulomb singularities lim�#0 BW � 0�;w D i.w/ 2 P.Rd /
for P � a:e: w 2 W:

we have, any bounded distance dP inducing the weak topology in P.R2n/, the

Theorem 1 ([2]).

lim
�!0

Z
W

sup
t2Œ�T;T �

dP
�
BW � t�;w/;�.t; i.w//

�
dP.w/ D 0;
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where �.t; �/ is a (regular Lagrangian) flow on P.P.R2n// “solving” the Liouville
equation.

In the case of the von Neumann equation, a more direct result can be obtained.

Assumptions on V Assumptions on initial datum

globally bounded, locally Lipschitz sup�2.0;1/Tr.H2
� D

o
� / < C1

rUb 2 BVloc.RnIRn/ Do
� � �nId

ess supx2Rn
jrUb.x/j
1Cjxj < C1 w � lim�!0 W �D0

� D W 0
0 2 PR

2n

Theorem 2 ([6]). Let dP be any bounded distance inducing the weak topology in
P.R2n/. Then

lim
�!0 sup

Œ0;T �

dP.AW
�Dt

�;W
0
t / D 0;

W 0
t is the unique solution in L1C .Œ0; T �IL1.R2n/ \ L1.R2n// of the Liouville

equation.

The next result concern the semiclassical approximation in strong topology. Let
us denote eV WD e��Rn V .

(new) Assumptions on V (new) Assumptions on initial datum

R jbV .S/j jS j2
1CjS j2 dS < 1 W �

0 2 H2.Rn/R
jS j2.a;b/

jbV .S/j jS jmdS � if @t
 C k@x
 � @xeV � @x
 D 0; 
tD0 WD W �
0

C
�
bm�1�� � am�1�� �

m D 0; 1; 2; 0 < � < 1 9T > 0, ı 2 �
0; �

2C�
�

such that

jj
.t/jjH2 D O."�ıjjW "
0 jjL2/ for t 2 Œ0; T �

Theorem 3 ([3]). Let 
�1 be the solution of

@t

�
1 C k@x


�
1 � @xeV � @x
�1 D 0:

W �
t WD W �Dt

� satisfies, uniformly on Œ0; T �,

jjW �
t � 
"1.t/jjL2 D O."�jjW "

0 jjL2/; � D minf 1C �

2
� 1; �

2C �
� ı g:

Let us now give a 1D example where the lack of unicity will be crucial.
Let V be a confining potentail such that V D �jxj1C� near 0. Near .0; 0/ we

obtain two solutions of the Hamiltonian flow:

.X˙.t/; P˙.t// D .˙c0t�;˙c0�t��1/;



52 T. Paul

� D 2
1�� and c0 D

�
.1��/2
2

�1��
, plus a continuum family of solutions by not moving

up to any value of the time and then starting to move according to .X˙.t/; P˙.t//.
The question now is to know which one is going to be selected the semiclassical

limit. The answer is given by the following result.

Theorem 4 ([3]). LetW "D0
� .x; k/D�

7C3�
30 w.�

1C�
6 x;�

1��
15 k/; �D log 1

�
; supp w �

fjxj2 C jkj2 < 1g.
Then 9T > 0/ t 2 Œ0; T �, W �Dt

� converges in weak-
 sense to

W 0
t D cCı.XC.t/;PC.t// C c�ı.X�.t/;P�.t//;

c˙ D
Z

˙x>0
w.x; k/dxdk:

What these results show is the fact that, at the contrary of the case where
the underlying classical dynamics is well-posed, the semiclassical limit of the
qunatum evolution with non regular (i.e. not providing uniqness of the classical
flow) potentials is not unique, and depends on the family itself of initial conditions,
and not anymore only on their limit.

For non concentrating data the classical limit, in the general case of a potential
whose gradient is BV, is driven (in the two senses expressed by Thoerems 1 and 2)
by the DiPerna-Lions-Bouchut-Ambrosio flow.

Slowly concentrating data (Theorem 4) provide situations where the classical
limit is ubiquous, and follows several of the non unique bi-charateritics, a typical
quantum feature surviving in this situation the classical limit. It is important to
remark that the speed of concentration governs the selections of the remaining
trajectories. The case of fast concentration, in particular the pure states situations, is
still open.
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We present a semi-Fredholm theorem for the minimal extension of an elliptic
differential operator on a manifold with wedge singularities and give, under suitable
assumptions, a full asymptotic expansion of the trace of the resolvent.

1 Wedge Operators

Let M be a smooth compact manifold with boundary. Assume that the boundary is
the total space of a locally trivial fiber bundle } W @M ! Y with typical fiber Z ,
where Y and Z are smooth compact manifolds. Let E;F ! M be smooth vector
bundles. We are interested in the space x�m Diffme .MIE;F / of differential wedge
operators of orderm, where Diffme .MIE;F / denotes the space of differential edge
operators, as introduced in [3], and x W M ! R is any smooth defining function
for @M.

Locally, near a point p 2 @M, a wedge operator A 2 x�m Diffme .MIE;F / can
be represented as

A D x�m
X

kCj˛jCjˇj�m
ak;˛;ˇ.x; y; z/.xDx/

k.xDy/
˛Dˇ

z (1)

with coefficients ak;˛;ˇ smooth up to x D 0.
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For example, if gw is a Riemannian metric on M that near @M takes the form
gw D dx2 C x2gZ C gY (wedge metric), then the Laplacian associated with gw is
a wedge operator of order 2 and has the local representation

x�2
�
.xDx/

2 � i.dim Z � 1/.xDx/C�Z C x2�Y
�
:

Note that if Y D fptg, the space x�m Diffme .MIE;F / reduces to the class of
cone operators, and if Z D fptg, then x�m Diffme .MIE;F / contains all regular
differential operators on M.

Let A be a wedge operator or order m, locally near the boundary represented as
in (1). The following principal symbols are intrinsically associated with A.

The w-principal symbol. There is a natural structure bundle wT �M ! M
associated with wedge geometry. The principal symbol of a wedge operator A
extends from the interior of M to wT �M n 0. Locally near @M, the w-principal
symbol of A can be represented as

w� .A/ D
X

kCj˛jCjˇjDm
ak;˛;ˇ.x; y; z/�

k�˛�ˇ:

The operator A is said to be w-elliptic if w� .A/ is invertible.

The conormal symbol (indicial family). The indicial family restricts to the fibers of
} W @M ! Y . We have

OA.y; �/ D
X

kCjˇj�m
ak;0;ˇ.0; y; z/�

kDˇ
z

for y 2 Y and � 2 C, and OA.y; �/ acts on C1.Z/. The set

spece.A/ D ˚
.y; �/ 2 Y � C W OA.y; �/ is not invertible

	

is called the boundary spectrum of A.

The principal edge symbol (normal family). The choice of defining function
trivializes the inward pointing half NC.@M/ of the normal bundle of @M in M.
We get an induced fibration }^ W NC.@M/ ! Y with typical fiber Z^ D RC � Z .
Locally, the normal family takes the form

A^.y; �/ D x�m
X

kCj˛jCjˇj�m
ak;˛;ˇ.0; y; z/.xDx/

k.x�/˛Dˇ
z ;

where .y; �/ 2 T �Y n 0, and A^.y; �/ acts in the canonically induced conic
L2-space on the fiber Z^.

Under suitable conditions on the normal family and the boundary spectrum of a
w-elliptic wedge operator, we present the following results, cf. [2].
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2 Main Results

For simplicity of the exposition, we assume that the operators are scalar.
Let A 2 x�m Diffme .M/ be w-elliptic, considered as an unbounded operator

A W C1c .
ı

M/ � x��L2b.M/ ! x��L2b.M/

for some fixed � 2 R. Here L2b.M/ denotes the L2 space defined using a fixed
density of the form x�1m for some smooth positive density m on M.

We let Hm
e .M/ denote the corresponding Sobolev space defined using edge

differential operators of order � m. Let Dmin be the closure of C1c .
ı

M/ with respect
to the graph norm ofA, and let D^;min.y/ be the closure of C1c .Z^/ in x��L2b.Z^/
with respect to the one of A^.y; �/.

Our first result concerns the minimal domain and the semi-Fredholm property of
the minimal extension of A.

Theorem 1. Let A be as above. If A^.y; �/ W D^;min.y/ ! x��L2b is injective on
T �Y n0, and if �C spece.A/\f=� D ��mg D ;, then Dmin.A/ D x��CmHm

e .M/

and A W Dmin ! x��L2b.M/ is a semi-Fredholm operator with finite-dimensional
kernel and closed range.

For our next result, letƒ be a closed sector properly contained in C. Such a sector
is called a sector of minimal growth for AD W D � x��L2b ! x��L2b , if AD � � is

invertible for j�j large, and k�
AD � �

��1kL .x��L2b/
D O.j�j�1/ as j�j ! 1.

Theorem 2 (Resolvent expansion). Let m > 0, let A 2 x�m Diffme .M/ be such
that spec. w� .A// \ ƒ D ; on wT �M n 0. If �C spece.A/ \ f=� D � � mg D ;,
and if A^.y; �/� � W D^;min.y/ ! x��L2b is bijective on .T �Y �ƒ/ n 0, thenƒ is
a sector of minimal growth for ADmin , and for every ` 2 N with ` > dim M

m
,

�
ADmin � �

��` W x��L2b.M/ ! x��L2b.M/

is of trace class. For every ' 2 C1.M/, we have an expansion

Tr
�
'

�
ADmin � �

��`� �
1X
jD0

mjX
kD0

˛jk�
dim M�j

m �` logk.�/ as j�j ! 1: (2)

Here mj � 1 for all j , andmj D 0 for j � dim Z .

By standard methods, this asymptotic expansion leads to short time asymptotics
of the heat trace when ADmin is sectorial, and to results concerning the meromorphic
structure of the �-function when ADmin is positive.

The above theorems rely on the construction of suitable parametrices within the
class of wedge pseudodifferential operators. Our approach makes substantial use of
pseudodifferential methods developed by Schulze, see e.g. [4].
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The asymptotic expansion in (2) is of course consistent with what is known in the
special cases of boundary value problems (dim Z D 0) and of elliptic cone operators
(dim Y D 0). For closed extensions other than the minimal extension, one should
generally expect a more intricate asymptotic structure of the resolvent. In fact, in
the case when dim Y D 0, the corresponding expansion of the resolvent sometimes
involves rational functions in log� and complex powers of �, see [1].
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0901202.
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Generalized Blow-Up of Corners and Fiber
Products

Chris Kottke and Richard Melrose

Consider the category of manifolds with corners and interior b-maps f W X ! Y .
These are required to pull back smooth functions to be smooth, and pull back
each principal ideal1 IH D C1.Y / � 
H of functions vanishing on a boundary
hypersurfaceH 2 M1.Y / to a product

f �IH �
Y

G2M1.X/

I˛.H;G/G ˛.�; �/ 2 N (1)

of similar ideals in C1.X/. One reason to consider this category is that it contains
blow-up.

Recall that the blow-up of a codimension k boundary face2 F 2 Mk.Y / is the
space ŒY IF � D Y nF[SCNF , where SCNF denotes the inward pointing spherical
normal bundle. It has a “blow-down” map ˇ W ŒY IF � ! Y and is equipped with the
smooth functions generated by ˇ�C1.Y / as well as the quotients 
Hi =
Hj (where
finite) of boundary defining functions for hypersurfaces through F .

While this theory is well-known, we give a new description of the data defined
by a b-map that allows for significant clarification and generalization of boundary
blow-up, which we use to discuss the existence and resolution of fiber products of

1Here 
H is a boundary defining function forH – a nonnegative smooth function vanishing simply
and exactly on H .
2We only consider the blow-up of boundary faces and its subsequent generalization, leaving the
situation of general submanifolds to a future work.

C. Kottke (�)
Brown University, Providence, USA
e-mail: ckottke@math.brown.edu

R. Melrose
Department of Mathematics, MIT, Cambridge, MA, USA
e-mail: rbm@math.mit.edu

D. Grieser et al. (eds.), Microlocal Methods in Mathematical Physics and Global Analysis,
Trends in Mathematics, DOI 10.1007/978-3-0348-0466-0 13, © Springer Basel 2013

59



60 C. Kottke and R. Melrose

manifolds with corners. This new description is the theory of monoidal complexes
and their refinements.

The boundary faces of a manifold have natural ‘b-normal’ spaces

bNF � bTFX; F 2 M�.X/

with natural inclusions bNpF � bNpG whenever p 2 G � F . At each point
these are spanned by the ‘radial’ vector fields with respect to the face in question.
As a result such a bundle has a global canonical frame3 f
i@
i g by which it can be
trivialized, identifying the fibers with a fixed vector space bNF which has well-
defined lattice structure span

Z
f
i@
i g. Taking the inward pointing lattice points

defines a ‘smooth,’ which is to say freely generated, monoid

�F D span
Z

C

f
i@
i g;

and the collection of these along with the inclusions iGF W �G ,! �F for G � F

define what we call the ‘basic monoidal complex’ of X :

PX D f.�F ; iGF / I G � F 2 M.X/g:

A b-map f W X ! Y has a tangent differential which at a face F 2 M.X/

restricts to a well-defined monoid homomorphism (i.e. additive map)

f\ W �F ! �G

where G is the boundary face of largest codimension in Y such that f .F / � G.
Indeed, viewed as a matrix, the coefficients of this map are just the relevant
exponents ˛.�; �/ 2 ZC in (1). The collection of these homomorphisms patch
together to form a morphism

f\ W PX ! PY
of monoidal complexes which is fundamental to our discussion.

In general, the monoidal complexes and their morphisms capture only the
combinatorial relationships between boundary faces ofX , those of Y , and the order
of vanishing of boundary defining functions with respect to these faces. However,
in the case of blow-up, this is enough to completely specify the domainX D ŒY IF �
in terms of the range Y . Indeed, in this case the blow-down map has additional
properties, namely

ˇ W X n @X ! Y n @Y is a diffeomorphism, (2)

3The 
i are boundary defining functions for the hypersurfaces through F defined in a neighbor-
hood.
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and
bˇ� W bTpX ! bTˇ.p/Y is an isomorphism for all p, (3)

and the morphism ˇ\ W PX ! PY forms what we call a ‘smooth refinement’ of PY .
Abstracting this, we call a smooth proper map between manifolds satisfying

(1), (2) and (3) a generalized blow-down map. Such are substantially more
general than standard blow-down maps, and one of our main results is a complete
characterization of these maps.

Theorem 1. A generalized blow-down map f W X ! Y determines a smooth
refinement PX ! PY of the monoidal complex on Y , and conversely for any smooth
refinement R ! PY there is a unique (up to diffeomorphism) manifoldX D ŒY I R�
with PX D R and a generalized blow-down map f W X D ŒY I R� ! Y .

We call ŒY I R� the ‘generalized blow-up’ of Y by the refinement R, and we show
that the important question of lifting of b-maps under generalized blow-ups of the
domain and/or range can be addressed at the level of monoidal complexes.

Finally this theory is applied to the problem of fiber products. Recall that, in any
category, the fiber product of two maps fi W Xi ! Y , i D 1; 2 is an object X with
maps hi W X ! Xi such that f1 ı h1 D f2 ı h2, and has the universal property that
for any other maps gi W Z ! Xi such that g2 ı f2 D g1 ı f1 there is a unique map
h W Z ! X through which they factor.

In the category of sets there is a unique fiber product

X1 �Y X2 D f.p1; p2/ I f1.p1/ D f2.p2/g � X1 �X2; (4)

however, in the setting of manifolds, (4) is not smooth and fiber products do not
generally exist. For manifolds without boundary, there is a well-known sufficient
condition for existence, namely that f1 and f2 be transversal, meaning that
whenever f1.p1/ D f2.p2/ D q 2 Y , then

.f1/�.Tp1X1/C .f2/�.Tp2X2/ D TqY: (5)

In this case (4) is a smooth manifold and the hi are smooth maps.
The natural analog of (5) in the setting of manifolds with corners is

‘b-transversality,’ namely the requirement that

.bf1/�.bTp1X1/C .bf2/�.bTp2X2/ D bTqY: (6)

Under this condition, (4) is not necessarily a manifold, but it is a union of what we
call ‘interior binomial subvarieties.’ These are objects generalizing manifolds with
corners, with smooth interiors and boundary faces of the same type.

As for a manifold, there is a natural monoidal complex PD defined over the
boundary faces of a binomial subvariety D � X , the difference being that the
monoids may not be smooth (freely generated). If they are smooth, then D has a
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natural structure of a smooth manifold (though it need not be smoothly embedded
inX ), and if they are not, we show thatD can be resolved, giving a smooth manifold
ŒDI R� ! D for every smooth refinement R ! PD.

In the case of fiber products, the monoids in PD are of the form

�F1 ��G �F2 ; Fi 2 M.Xi/; fi .Fi / � G (7)

which leads to our second main theorem.

Theorem 2. If fi W Xi ! Y are b-maps of manifolds with corners which satisfy
(6), and if each of the monoids (7) is freely generated, then there exists a smooth
fiber product in the category of manifolds with corners.

In case the monoids (7) are not freely generated, our theory leads to the following
‘resolved’ version of the fiber product.

Theorem 3. For every smooth refinement R of the complex PX1�Y X2 , there is a
smooth manifold with corners ŒX1 �Y X2 I R� with maps to Xi commuting with the
fi W Xi ! Y . If hi W Z ! Xi , i D 1; 2 are smooth maps commuting with the fi for
some other manifold Z, then there exists a generalized blow-up ŒZI S� ! Z and a
unique map h W ŒZI S� ! ŒX1 �Y X2 I R� such that the maps form a commutative
diagram.
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1 Introduction

Let .M; g/ be a Riemannian manifold and E ! M a Hermitian vector bundle. Let

A W C1c .M IE/ ! C1.M IE/ (1)

be a differential operator (with smooth coefficients). A is closable as an unbounded
operator in H D L2.M IE/. The domains of the minimal and maximal extension
of A are

Dmin D Closure of (1) with respect to the graph norm kukA D kukL2 C kAukL2 ;
Dmax D fu 2 L2.M IE/I Au 2 L2.M IE/g:

Both are complete in the graph norm, and the closed extensions of A are the
unbounded operators AD in H that act like A with domains Dmin � D � Dmax

such that D is complete in the graph norm.
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Let ƒ D f� D rei� I r � 0; j� � �0j � ˛g be a closed sector. Suppose that ƒ is
a sector of minimal growth for AD, i.e., A � � W D ! H is invertible for all � 2 ƒ
with j�j > 0 sufficiently large, and

k�
AD � �

��1kL.H/ D O.j�j�1/ as j�j ! 1; � 2 ƒ:
Furthermore, assume that .AD��0/�1 2 Cp.H/ for some �0 2 C and p > 0, where
Cp.H/ denotes the Schatten class of all operators T 2 L.H/ such that the sequence
of nonzero eigenvalues of

p
T �T (counting multiplicities) is p-summable.

Elementary functional analysis then shows that, for ` 2 N large enough, the `-th
power of the resolvent .AD � �/�` W H ! H is of trace class, and the trace

t.�/ D Tr.AD � �/�` W ƒR ! C (2)

is a symbol on ƒR D f� 2 ƒI j�j > Rg for R > 0 large enough. We will refer to
(2) as the resolvent trace.

The following question is motivated by Seeley’s seminal work [19] on complex
powers of elliptic operators.

Question 1. What are the asymptotics of the resolvent trace Tr.AD � �/�` onƒ as
j�j ! 1?

The asymptotic properties of the resolvent trace immediately translate to struc-
tural results about the short time asymptotics of the heat trace Tr e�tAD if AD
is sectorial, and to results about the singularities of the analytic extension of
the �-function associated with a semibounded operator AD . These in turn have
numerous applications in global analysis.

If M is a closed, compact manifold of dimension n, and A 2 Diffm.M IE/,
m > 0, is elliptic with parameter in ƒ, i.e., the principal symbol ��.A/ has no
spectrum in ƒ everywhere on T �M n 0, then Seeley’s analysis shows that for
` > n=m the resolvent trace (2) is a step- 1

m
polyhomogeneous symbol of order

n�`m
m

on ƒR, i.e.,

Tr.A� �/�` �
1X
jD0

˛j �
n�`m�j

m as j�j ! 1: (3)

Note that A W C1.M IE/ ! C1.M IE/ is essentially closed in L2.M IE/
with Dmin D Dmax D Hm.M IE/ in this case. The same asymptotics also hold for
the resolvent trace of L2-realizations of parameter-dependent elliptic operators A
on smooth compact manifolds M with boundary subject to differential boundary
conditions T u D 0 on @M that satisfy the Shapiro-Lopatinsky condition with
parameter in ƒ, see [11].

The general answer to Question 1 for elliptic operators on manifolds with conical
singularities has been open since Cheeger’s seminal paper [2]. Cheeger’s paper
initiated considerable research in this direction with partial answers to Question 1
for a variety of particular cases, see for example [1,13–15,18]. The interest to answer
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the question for general elliptic cone operators has been renewed by the discovery
of unusual or exotic behavior of the �-function for particular examples, see [3–5,12,
13,16]. Phrased in terms of the resolvent trace, what makes these examples unusual
or exotic is that the asymptotic structure of the resolvent trace differs substantially
from (3). Building on our previous work [6–9], we were able to answer Question 1 in
[10] for general closed extensions of elliptic cone operators, see Theorem 1 below.

2 The Resolvent Trace of Elliptic Cone Operators

LetM be a compact manifold with boundary of dimension n, and let x be a defining
function for @M . The interior M of M is equipped with a c-metric cg, i.e., a
Riemannian metric that in coordinates near the boundary is given by a smooth,
positive definite cotensor in the forms dx and xdyj up to x D 0. In other words,
a c-metric is the Riemannian metric induced on M by any choice of metric on
the c-cotangent bundle cT �M . The latter is a vector bundle on M whose smooth
sections are in one-to-one correspondence to all smooth 1-forms on M that are
conormal to the boundary, see [6]. Locally near Y D @M , a local frame for cT �M
is given by the sections that correspond to the forms dx and xdyj , where the yj ,
j D 1; : : : ; n � 1, are local coordinate maps on Y .

Let E ! M be a Hermitian vector bundle, and let cL2.M IE/ be the L2-space
with respect to cg and the Hermitian form on E . A cone operator is an operator
A 2 x�m Diffmb .M IE/, where Diffmb .M IE/ is the space of totally characteristic
differential operators of orderm, see [17]. In coordinates near the boundary,

A D x�m
X

kCj˛j�m
ak;˛.x; y/.xDx/

kD˛
y (4)

with ak;˛.x; y/ smooth up to x D 0. Here and in what follows we assume that
m > 0. The following principal symbols are associated with A:

• The c-principal symbol c��.A/, defined on cT �M n 0. If A is as in (4) near the
boundary, then

c��.A/ D
X

kCj˛jDm
ak;˛.x; y/�

k�˛:

• The normal or model operator A^ W C1c .Y ^IE^/ ! C1.Y ^IE^/, where Y ^
is the inward pointing half of the normal bundle of Y D @M , and E^ is the pull-
back of Ej@M to Y ^ with respect to the canonical projection. In coordinates we
have

A^ D x�m
X

kCj˛j�m
ak;˛.0; y/.xDx/

kD˛
y

if A is as in (4).

The function x^ D dx W NY ! R trivializes Y ^ as Y �RC. On Y ^ we consider
the Riemannian metric dx2^ C gY for any choice of metric gY on Y , and E^
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carries the Hermitian metric induced by the metric on Ej@M and pull-back. Let
cL2.Y ^IE^/ be the associated L2-space, and D^;min and D^;max be the domains
of the minimal and maximal extension of A^ in that space, respectively. Under
the assumption of c-ellipticity, i.e., the c-principal symbol c��.A/ is invertible on
cT �M n 0, we constructed in [6] a canonical isomorphism

� W Dmax.A/=Dmin.A/ ! D^;max=D^;min

that allows passage from the domains of closed extensions of A in cL2.M IE/ to
those of A^ in cL2.Y ^IE^/.
Theorem 1 ([10]). Let c��.A/ � � be invertible for � in a closed sector ƒ ¨ C

which is a sector of minimal growth for A^ with the associated domain D^ defined
via D^=D^;min D �.D=Dmin/.

Then ƒ is a sector of minimal growth for AD , and for ` 2 N with ` > n=m,

Tr.AD � �/�` �
n�1X
jD0

˛j �
n�`m�j

m C ˛n log.�/��` C sD.�/ as j�j ! 1

with coefficients ˛j 2 C that are independent of the choice of domain D, and
a remainder sD.�/ of order O.j�j�`/. More precisely, in general we have an
expansion

sD.�/ �
1X
jD0

rj .�
i�1 ; : : : ; �i�N ; log�/��j =m as j�j ! 1; (5)

where each rj is a rational function in N C 1 variables, N 2 N0, with real
numbers �k , k D 1; : : : ; N , and �`m � �j > �jC1 ! �1 as j ! 1. We have
rj D pj =qj with pj ; qj 2 CŒz1; : : : ; zNC1� such that qj .�i�1 ; : : : ; �i�N ; log�/ is
uniformly bounded away from zero for large �.

The numbers �j and �j in (5) are determined by the boundary spectrum of A,
more precisely the part of the boundary spectrum that directly relates to the cL2-
extensions of A, see [10]. What terms actually occur in the asymptotic expansion
depends strongly on certain dynamical properties of D^=D^;min with respect to the
flow on the Grassmannian of subspaces of D^;max=D^;min that is induced by the
scaling action �% on Y ^ D Y � RC; for functions u.y; x/ we have �%u.y; x/ D
u.y; %x/ for % > 0 and .y; x/ 2 Y � RC. This dynamical viewpoint is crucial for
the proof and the understanding of Theorem 1.
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Spectral Geometry for the Riemann
Moduli Space

Rafe Mazzeo

A report on joint work with Lizhen Ji, Werner Müller and Andras Vasy.
It is only within the last few decades that the study of analytic and geometric

problems in the setting of spaces with structured singularities has become a real
focus in geometric analysis and partial differential equations. Unlike for the many
traditional problems concerning spaces and equations with overall low regularity,
the focus here is on spaces which are mostly smooth, but which have stratified
singular sets and metrics (or coefficients of the PDE) which are adapted to these
singularities. Because of this, one can expect much sharper results. There are many
reasons for studying such spaces, chief amongst which is that from many points of
view they are just as natural as smooth manifolds. Examples of this type of singular
space appear in the study of algebraic and analytic varieties, configuration and
moduli spaces, and even just as level sets of smooth functions (Morse-Bott theory).
Granting the interest of these spaces, one then wishes to extend the techniques,
methods and goals of geometric analysis to these settings.

There are several important themes in this subject. One revolves around the
development of systematic techniques to study, for example, elliptic differential
operators on spaces with various types of singularities. Even the simplest type
of singularity, namely compact manifolds with isolated conic singularities, has
provided a very rich field of study, with many interesting new developments.
Generalizations include the study of manifolds with simple edge singularities, or
more generally still, iterated edge singularities, sometimes also known as smoothly
stratified spaces. There is now a body of work even in this relatively general setting,
beginning with the foundational work of Cheeger [2], but see also [1, 3, 5, 6].

A related theme concerns the study of very specific singular spaces which arise
“in nature”, preferably with certain canonical metrics on them. Here one should
include the enormous body of work concerning analysis on singular projective
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varieties, on compactifications of locally symmetric spaces, and on singular moduli
spaces. One of the most classical objects of this type is the Riemann moduli
space Mg of conformal structures (or equivalently, hyperbolic metrics) on a fixed
compact Riemann surface of genus g > 1, moduli diffeomorphisms. This space is
commonly represented as the quotient Tg=Map.†/, where the mapping class group,
Map.†/ D Diff.†/=Diff0.†/, is the quotient of the space of all diffeomorphisms of
† by the closed subgroup of all diffeomorphisms which are isotopic to the identity;
the space Tg is the Teichmüller space, which is the quotient of the space of all
hyperbolic metrics on † by Diff0.†/.

The Deligne-Mumford compactification Mg of this space has a somewhat
complicated singular structure, but with certain simplifying features. It is a complex
space, singular along the union of a collection D0; : : : ;DŒg=2� of immersed divisors
with simple normal crossings, and carries several important metrics. We choose to
focus on two of these: the Weil-Petersson metric, which is the natural L2 metric on
the tangent space, and the so-called Ricci metric (or rather, certain mollifications
of it). The former is incomplete, and an instance of an ‘iterated cusp-edge’ metric,
while the latter is complete and has a fairly simple asymptotic product structure at
infinity. A good survey of current knowledge about the former of these metrics is
contained in [7], and we refer there for a much more extensive bibliography.

The work reported in this talk is joint with Lizhen Ji, Werner Müller and Andras
Vasy. Our goal is analyze the Laplacian and other natural elliptic operators for the
Weil-Petersson metric from the point of view of spectral geometry, and similarly to
analyze the corresponding operators for the smoothed Ricci metric from the point of
view of geometric scattering theory. The former of these projects is now at a more
advanced stage, so we restrict discussion here to that case.

To set the stage, we recall what is known about the asymptotics of the Weil-
Petersson metric gWP near the singular divisors. The approximate structure of this
metric was first obtained by Masur in the 1970s [4]; this was later substantially
sharpened by Yamada [8], with further results on its structure by Wolpert [7]. The
upshot of these papers is that if p is a point in the singular set, then there is a
local set of holomorphic coordinates .z1; : : : ; zn, n D 3g � 3, in some punctured
neighbourhood, such that if we write zj D rj e

i�j , then

gWP D
kX

jD1
.dr2j C r6d�2j /.1C O.r3//C gD C kI

here r D j.r1; : : : ; rk/j and gD is some induced metric on the singular stratum
where z1 D : : : D zk D 0; the final term k is a higher order remainder term which
is irrelevant for our purposes below. Before carrying out more refined spectral
geometric analysis of this space, it will be necessary to establish higher order
asymptotics of gWP, but these are not yet known.

We announce some basic results about the scalar Laplacian � for the Weil-
Petersson metric.
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Theorem 1. The operator � acting on C10 .Mg/ has a unique self-adjoint exten-
sion to an unbounded operator on L2.Mg/, which we continue to denote by �.
Furthermore, this operator has discrete spectrum f�j g, and the spectral counting
function N.�/ D #fj W �j � �g satisfies the Weyl law

N.�/ D !6g�6
.2�/6g�6

Vol.Mg/�
n=2 C o.�n=2/:

(where !` is the volume of the Euclidean ball B`).

This sets the stage for further investigations: one expects interesting connections
between spec.�/ and other aspects of the geometry of this space.

Essential self-adjointness is obtained by showing that there are noL2 solutions to
.�˙ i/u D 0. These can be ruled out if we prove the standard identity h��u; ui D
jjrujj2 without additional boundary terms. In other words, it suffices to prove that
if u and�u both lie in L2, then we can control the growth of u near the singular set
enough to carry out this integration by parts. This is done using an elaboration of the
Hardy inequality. The discreteness of the spectrum is then proved by showing that
the (now unique) domain Dom.�/ is compactly contained in L2. Finally, to obtain
the Weyl law in this relatively crude form (i.e. with no estimate of the remainder), we
can use standard comparison techniques (Dirichlet-Neumann bracketing), once we
have verified that an arbitrarily small neighbourhood of the singular set contributes
a lower order term. Amongst these three arguments, the first one is more difficult
than the others.

There are many further directions. Current work of Gell-Redman proves a
full asymptotic expansion for the heat kernel associated to metrics with the
same ‘crossing cubic cuspidal’ structure as gWP, but assuming that these metrics
themselves have full asymptotic regularity. The asymptotics of the heat trace involve
some new and potentially interesting terms. One significant goal is to obtain a
signature formula for .Mg; gWP/, and this heat kernel analysis should provide a
crucial tool for this. However, it remains to show that gWP itself does indeed have full
asymptotic regularity or at least that what is known about its asymptotic structure
suffices to understand enough of the expansion of the heat trace to obtain such index
formulas.
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Invariant Integral Operators on the Oshima
Compactification of a Riemannian Symmetric
Space: Kernel Asymptotics and Regularized
Traces

Pablo Ramacher and Aprameyan Parthasarathy

Let X be a Riemannian symmetric space of non-compact type. Then X is isomorphic
to G=K , where G is a connected, real, semisimple Lie group, and K a maximal
compact subgroup. Consider further the Oshima compactification eX of X [8], which
is a simply connected, closed, real-analytic manifold carrying an analytic G-action.
The orbital decomposition of eX is of normal crossing type, and the open orbits are
isomorphic to G=K , the number of them being equal to 2l , where l denotes the rank
of G=K . We study invariant integral operators of the form

�.f / D
Z
G

f .g/�.g/dG.g/; (1)

where � is the regular representation of G on the Banach space C.eX/ of continuous
functions on eX, f a smooth, rapidly decreasing function on G, and dG a Haar
measure on G. These operators play an important role in representation theory,
and our interest will be directed towards the elucidation of the microlocal structure
of the operators �.f /. Since the underlying group action on eX is not transitive,
the operators �.f / are not smooth, and the orbit structure of eX is reflected in the
singular behavior of their Schwartz kernels. As it turns out, the operators in question
can be characterized as totally characteristic pseudodifferential operators, a class
which was first introduced in [7] in connection with boundary problems. In fact, ifeX� denotes a component in eX isomorphic to G=K , we prove that the restrictions

�.f /jeX� W C1c .eX�/ �! C1.eX�/
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of the operators �.f / to the manifold with corners eX� are totally characteristic
pseudodifferential operators of class L�1b . A similar structure theorem for invariant
integral operators on prehomogeneous vector spaces was already obtained in [9].

As a special class of integral operators, we consider the holomorphic semigroup
generated by a strongly elliptic operator � associated to the regular representation
.�;C.eX// of G, as well as its resolvent. Since both the holomorphic semigroup and
the resolvent can be characterized as operators of the form (1), they can be studied
with the previous methods, and relying on the theory of elliptic operators on Lie
groups [10] we obtain a description of the asymptotic behavior of the semigroup
and resolvent kernels on eX� ' X at infinity. In the particular case of the Laplace-
Beltrami operator on X, these questions have been studied before. For the classical
heat kernel on X, precise upper and lower bounds were previously obtained in [1]
using spherical analysis, while a detailed description of the analytic properties of
the resolvent of the Laplace-Beltrami operator on X was given in [5] and [6].

Using the structure theorem, a regularized trace for the operators �.f / can be
defined, yielding a distribution on the group G which is defined to be the character
of the representation .�; C.eX//. In fact, in his early work on infinite dimensional
representations of semi-simple Lie groups, Harish–Chandra [4] realized that the
correct generalization of the character of a finite-dimensional representation was
a distribution on the group given by the trace of a convolution operator on
representation space. This distribution character is given by a locally integrable
function which is analytic on the set of regular elements, and satisfies character
formulae analogous to the finite dimensional case. Later, Atiyah and Bott [2] gave
a similar description of the character of a parabolically induced representation in
their work on Lefschetz fixed point formulae for elliptic complexes. More precisely,
let H be a closed, co-compact subgroup of G, and % a representation of H on a
finite dimensional vector space V . If T .g/ D .��%/.g/ is the representation of G
induced by % in the space of sections over G=H with values in the homogeneous
vector bundle G �H V , then its distribution character is given by the distribution

‚T W C1c .G/ 3 f 7�! Tr T .f /; T .f / D
Z
G

f .g/T .g/dG.g/;

where dG denotes a Haar measure on G. The point to be noted is that T .f / is a
smooth operator, and since G=H is compact, it does have a well-defined trace. On
the other hand, assume that g 2 G is transversal, meaning that it acts on G=H
only with simple fixed points. In this case, a transversal trace Tr[ T .g/ of T .g/ can
be defined within the framework of pseudodifferential operators, which is given by
a sum over fixed points of g. Atiyah and Bott then showed that, on an open set
GT � G of transversal elements,

‚T .f / D
Z
GT

f .g/Tr[ T .g/dG.g/; f 2 C1c .GT /:
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This means that, on GT , the character ‚T of the induced representation T is
represented by the locally integrable function Tr[ T .g/, and its computation reduced
to the evaluation of a sum over fixed points. When G is a p-adic reductive group
defined over a non-Archimedean local field of characteristic zero, a similar analysis
of the character of a parabolically induced representation was carried out in [3]. In
our case, the convolution operators �.f /, where f 2 C1c .G/, are not smooth, and
therefore do not have a well-defined trace. Nevertheless, using the fact that they can
be characterized as totally characteristic pseudodifferential operators of order �1,
we are able to define a regularized trace Trreg �.f / for the operators �.f /, and in
this way obtain a map

‚� W C1c .G/ 3 f 7! Trreg.f / 2 C;

which is shown to be a distribution on G. This distribution is defined to be the
character of the representation � . We then show that, on a certain open set G.eX/ of
transversal elements,

Trreg �.f / D
Z
G.eX/ f .g/Tr[ �.g/dG.g/; f 2 C1c .G.eX//;

where, with the notation ˆg. Qx/ D g � Qx,

Tr[ �.g/ D
X

Qx2Fix.eX;g/
1

jdet .1 � dˆg. Qx//j ;

the sum being over the (simple) fixed points of g 2 G.eX/ on eX. Thus, on the open
set G.eX/, ‚� is represented by the locally integrable function Tr[ �.g/, which is
given by a formula similar to the character of a parabolically induced representation.
It is likely that similar distribution characters could be introduced for G-manifolds
with a dense union of open orbits, or for spherical varieties, and that corresponding
character formulae could be proved.
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Pseudodifferential Operators on Manifolds
with Foliated Boundaries

Frédéric Rochon
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1 Manifolds with Fibred Boundaries

Let X be a compact manifold with boundary @X endowed with a fibration

Z �� @X

ˆ

��
Y:

Let x 2 C1.X/ be a boundary defining function and let gˆ be a complete
Riemannian metric on X n @X which in a collar neighborhood of @X is of the form

gˆ D dx2

x4
C ˆ�h

x2
C �; (1)

where � is a symmetric 2-tensor restricting to give a metric on each fibre of ˆ and
h is a Riemannian metric on Y . To study geometric operators (Laplacian, Dirac
operators) associated to such metrics, Mazzeo and Melrose introduced a calculus of
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pseudodifferential operators: theˆ-calculus. The starting point is the Lie algebra of
ˆ-vector fields:

Vˆ.X/ D f� 2 �.TX/ j �x 2 x2C1.X/; ˆ�. �j@X/ D 0g:

In local coordinates, such a vector � 2 Vˆ.X/ takes the form:

� D ax2
@

@x
C

X
i

bix
@

@yi
C

X
j

cj
@

@zj
; a; bi ; cj 2 C1.X/:

Since it is a Lie algebra, we can consider its universal enveloping algebra to
define ˆ-differential operators. Mazzeo and Melrose defined more generally
ˆ-pseudodifferential operators. They are useful to study mapping properties, for
instance to determine when a ˆ-differential operator is Fredholm.

2 Manifolds with Foliated Boundaries

Question 1. What can we do when the fibrationˆ is replaced by a smooth foliation
F on @X?

The notion of F -vector fields is easy to define:

VF .X/ D f� 2 �.TX/ j �x 2 x2C1.X/; �j@X 2 �.TF/g:

This is still a Lie algebra, so we can define F -differential operators. However,
since pseudodifferential operators are not local, we expect global aspects of the
foliation F to come into play. One approach consists in using groupoid theory,
namely, since VF .X/ is in fact a Lie algebroid, we can integrate it to get a
Lie groupoid G. We can then use the general approach of Nistor-Weinstein-Xu
to construct a pseudodifferential calculus. We will instead proceed differently by
assuming the foliation can be ‘resolved’ by a fibration. This restricts the class of
foliations that can be considered, but will allow us to develop further the underlying
analysis.

We will assume the foliation arises as follows:

1. @X D @eX=� , where � is a discrete group acting freely and properly discontinu-
ously on @eX , a possibly non-compact manifold;

2. There is a fibration ˆ W @eX ! Y with Y a compact manifold;
3. The group � acts Y in a locally free manner (that is, if � 2 � and U � Y an

open set are such that y � � D y for all y 2 U , then � is the identity element) and
so that ˆ.p � �/ D ˆ.p/ � � for all p 2 @eX and � 2 �;

4. The images of the fibres of ˆ under the quotient map q W @eX ! @X give the
leaves of the foliation F .
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Example 1. The Kronecker foliation on the 2-torus with lines of irrational slope
� arise in this way. One takes @eX D R � R=Z with the fibration ˆ given by the
projection on the right factor Y D R=Z, and the group � to be the integers with
action given by

.x; Œy�/ � k D .x C k; Œy � k��/; Œy� � k D Œy � k��; k 2 Z:

The identification with the standard definition of the Kronecker foliation is then
given by the map

‰ W .R � R=Z/=Z ! T
2 D R=Z � R=Z

Œx; Œy�� 7! .Œx�; Œy C �x�/:

Example 2. Seifert fibrations (circle foliations on a compact 3-manifold) typically
arise in this way, except when the space of leaves is a bad orbifold.

For such foliations, we can define F -operators as follows. We let M D @X �
Œ0; �/x � X be a collar neighborhood of @X and consider fM D @eX � Œ0; �/x
with � acting on fM in obvious way so that fM=� D M . On fM , we consider
the space of �-invariant ˆ-operators ‰�̂;� .fM/ with support away from x D �.
Given eP 2 ‰k

ˆ;�.
fM/, we can make it act on f 2 C1.M/ by requiring that

eP.q�f / D q�eP.f /, where q W fM ! M is the quotient map. This is meaningful
because eP acts on � invariant functions to give again �-invariant functions. We
denote by q�eP the operator acting on C1.M/ obtained from eP in this way.

Definition 1. An F -pseudodifferential operator P 2 ‰m
F .X/ is an operator of the

form
P D q�P1 C P2; P1 2 ‰m

ˆ;�.
fM/; P2 2 P‰m.X/:

From the ˆ-calculus, we deduce relatively easily that F -operators are closed
under composition, that they map smooth functions to smooth functions and
that they are bounded when acting on appropriate Sobolev spaces. One can also
introduce a notion of principal symbol �m.P / as well as a notion of normal operator
NF .P / defined by ‘restricting’ the operator P to the boundary. This leads to a
simple criterion to describe Fredholm operators. An operator P 2 ‰m

F .X/ is
Fredholm (when acting on suitable Sobolev spaces) if and only if its principal
symbol �m.P / and its normal operator NF .P / are invertible.

3 An Index Theorem for Some Dirac-Type Operators

Assume now that the the foliation F is also such that @eX is compact and the group
� is finite. In particular, the leaves of F must be compact. Let gF be a metric such
that q�.gF jM / takes the form (1) near @eX . SupposeX is even dimensional and that
X , eX and Y are spin manifolds. Let DF be the induced Dirac operator. Suppose
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its normal operator NF .DF / is invertible, which is the case for instance when the
induced metric on the leaves of the foliation F has positive scalar curvature. Under
the decomposition S D SC ˚ S� of the spinor bundle, the Dirac operator can be
written as

DF D
�
0 D�F
DCF 0

�
:

Since NF .DF / is invertible, the operatorDCF is Fredholm.

Theorem 1. The index of DCF is given by

ind.DCF / D
Z
X

bA.X; gF /� 1

j�j
Z
Y

bA.Y; h/b�.eD0/C 


2
;

where eD0 is a family of Dirac operators on the fibres of ˆ W @eX ! Y associated to

q�.DF jM/ and 
 D �.eDı/

j�j � �.Dı/ is a difference of two eta invariants with eDı the

Dirac operator on .@eX; ˆ�h
ı2

C�/ andDı the Dirac operator on .@X; q�.ˆ
�h
ı2

C�//.
Both eDı andDı are invertible for ı > 0 small enough and 
 does not depend on ı.

The strategy to prove this theorem is to take an adiabatic limit.



The Determinant of the Laplacian
on a Conically Degenerating Family of Metrics

David A. Sher

One way to approach analysis problems on singular manifolds is to approximate by
a degenerating sequence of smooth manifolds and then to analyze the behavior of
the relevant quantities under the degeneration. To this end, we consider a family
of smooth manifolds �� degenerating to a manifold �0 with a single conical
singularity, and analyze the determinant of the Laplacian.

One motivation for this analysis is the work of Osgood, Phillips, and Sarnak in
[5–7], who used the determinant to prove compactness of isospectral sets of closed
surfaces and of planar domains. Khuri, a student of Sarnak, tried to extend the results
to surfaces of arbitrary genus with arbitrary number of holes [3]. A key ingredient
in [6] and [7] is the properness of the determinant on the relevant moduli space of
constant-curvature surfaces. However, Khuri showed that this properness is untrue
in the setting of flat tori with one hole, and the troublesome families of surfaces
look quite a bit like a conical degeneration. We hope that our work will help us
understand exactly what goes wrong here. Another motivation is that we would
like to understand what happens to the analytic torsion, which is an alternating
sum of determinants; a goal of Dai, Mazzeo, myself, and Vertman (among others)
is to prove an analog of the Cheeger-Muller theorem on manifolds with conical
singularities, and we hope that analyzing the analytic torsion on such a degenerating
family yields insights into the relationship between the smooth and conic settings.

We recall the definition of the determinant, which can be found in [9] and
elsewhere and is originally due to Ray and Singer [8]. Given a smooth compact
manifoldM with Laplacian�M , we define

�M .s/ D 1

�.s/

Z 1
0

T r.e�t�M � P0/t
s�1 dt;
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where P0 is the projector onto the constants. It is standard from the theory of short-
time heat asymptotics (described in [9]) that �M .s/ has a meromorphic continuation
to all of C, with s D 0 as a regular value. Thus we can define � 0M.0/, and we write

det�M D e��0

M .0/:

We also note that it is possible, with a few additional wrinkles, to define the
determinant on smooth manifolds with isolated conical singularities [1]. More
subtly, it is also possible to define a renormalized zeta function and determinant
on an asymptotically conic manifoldZ. The heat kernel is no longer trace class, but
we instead replace T r.e�t�M / in the zeta function with a renormalized trace

RT r.e�t�Z / D f:p:�D0
Z
r<1=�

HZ.t; z; z/ d z:

This is the finite part of a divergent expansion, analogous to Melrose’s b-trace [4].
In our particular setting, we assume that �0 has a point p and a neighborhood

of p that is isometric to Œ0; 1�r � Nn�1, with the conic metric dr2 C r2d�2, where
.N; �/ is a closed Riemannian manifold of dimension n � 1 (the cross-section).
To construct �� , we introduce a model space. Let Z be a complete manifold with
a neighborhood of infinity isometric to Œ1;1�r � N , again with the conic metric.
Note that in particular, Z is asymptotically conic. For each � < 1, we remove the
tip of �0 (cutting at r D 1) and replace it by a scaled copy of the tip of Z, namely
�.Z \ fr < 1=�g/. One easily sees that this gluing process gives a smooth manifold
�� . In fact, this is a special case of the “asymptotically conic convergence” defined
by Rowlett in [10]. In this setting, we have proven the following:

Theorem 1. As � ! 0, we have the divergent expansion

� 0��.0/ �R �Z.0/.2 log �/CR � 0Z.0/C � 0�0.0/;

in the sense that the difference converges to zero as � ! 0.

In order to obtain this theorem, we consider the heat trace on��, T rH��.t/. This
is a function of � and t and hence lives on the quadrant Q D ft � 0; � � 0g. Let
Q0 be the space obtained fromQ by performing a radial blow-up in the coordinates
.�;

p
t/ at

p
t D � D 0, with blowdown map ˇ. Then we claim that:

Theorem 2. ˇ�.T rH��.t// is polyhomogeneous conormal on Q0.

With this, as well as some information about the coefficients in the expansions, we
can analyze the zeta function and determinant directly and prove Theorem 1.

The way we prove the structure theorem is via a direct parametrix construction
ofH�� . Note that�� is equal to�0 outside r D 1 and equal to �Z inside r D 1, so
we define our initial guessG� by gluing together those heat kernels in the respective
regions. We need to understand the structure of G�.t; z; z0/; there is a contribution
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from H�0.t; z; z0/ and also a contribution from H�Z.t; z; z0/. Using the scaling
property that

H�Z.t; z; z0/ D ��nHZ.t=�2; z=�; z0=�/;

we see that to understand the parametrix at time t , we need to understand the heat
kernel on Z at the rescaled time t=�2. In particular, we need to understand the
structure of the heat kernel on Z for large time as well as short time.

To do this, we exploit the relationship between the heat kernel and the resolvent,
given by:

HZ.t; z; z0/ D
Z
�

e�t�.�C �/�1.z; z0/ d�;

where � is a contour around the spectrum. By making the change of variables
�0 D t�, we can see that the heat kernel at time t is analogous to the resolvent
at energy � D 1=t . So we need to understand the resolvent at low energy. In recent
work, [2], Guillarmou and Hassell have analyzed this structure very thoroughly.
By using and extending their results, we can describe the heat kernel on Z at long
time as polyhomogeneous conormal on a particular blown-up space, which lets us
understand the structure of G� . We then perform the usual parametrix construction,
and by some careful analysis we can prove Theorem 2.

As a follow-up to this work, we would like to understand the analytic torsion,
and to do this we need to get some version of Theorem 1 for the Laplacian on
differential forms. If we follow this program, that means getting an analogue of
Guillarmou and Hassell’s results for the Laplacian on forms. However, in this case,
there are additional difficulties because of the possible presence of harmonic forms.
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Part III
Spectral and Scattering Theory



Relatively Isospectral Noncompact Surfaces

Pierre Albin, Clara Aldana, and Frédéric Rochon

I will report on work in progress with Clara Aldana and Frédéric Rochon extending
the famous compactness result of Osgood, Phillips, and Sarnak from compact
surfaces to non-compact surfaces.

Recall that two closed Riemannian surfaces .M; g/ and .M 0; g0/ are said to be
isospectral if their Laplacians� and�0 have the same spectrum counted with multi-
plicity. It is well-known that the spectrum of a surface does not determine the metric,
and so it is natural to ask how large the set of metrics with a given spectrum can be.

Richard Melrose [8] considered the case of planar domains and showed that
the spectrum of the Laplacian (with Dirichlet boundary conditions) determines the
geodesic curvature of the boundary of the domain to within a compact set. Indeed,
he was able to show that the first k terms in the short-time expansion of the trace
of the heat kernel (a spectral invariant) control the first k Sobolev norms of the
geodesic curvature.

Melrose’s result on these coefficients was extended to closed surfaces by Osgood
et al. [6] (and eventually by Gilkey [2] to higher dimensional closed manifolds).
In [6] the authors were also able to extend Melrose’s compactness result. Indeed,
they showed that starting with any sequence of isospectral metrics .Mi ; gi / on, say,
closed surfaces there is a subsequence .Mik ; gik /; a closed surface .M; g/; and a
sequence of diffeomorphisms 
k W M �! Mik such that


�k gik �! g:
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This compactness result has been extended to non-compact surfaces in a couple
of contexts. First in the setting of exterior domains, R2 n O; by Hassell and Zelditch
[5]. Using that the metric is Euclidean near infinity and the resulting scattering
theory to define the ‘scattering phase’ s.�/; they say that two obstacles are isophasal
if they have the same scattering phase, and they point out that this is analogous to
using the counting function to express isospectrality of closed surfaces. They are
able to prove a sequential compactness result for isophasal obstacles after using
inversion with respect to the origin to work with bounded domains.

A second extension of the compactness result of Osgood-Phillips-Sarnak to non-
compact surfaces was carried out by Borthwick and Perry [1]. They work in the
context of non-compact surfaces whose ends are hyperbolic funnels and whose
metrics coincide outside of some fixed compact set. The hyperbolicity of the metrics
at infinity allows them to use a meromorphic continuation of the resolvent [3, 4, 7].
Two metrics are dubbed isoresonant if the poles of these meromorphic continuations
coincide with multiplicity. Borthwick and Perry show that a sequence of isoresonant
metrics on non-compact surfaces that coincide, and are hyperbolic funnels, outside
a fixed compact set has a convergent subsequence in the same sense as in Osgood-
Phillips-Sarnak.

Both of these results make strong assumptions about the structure of the metric
near infinity. In the latter the ends are hyperbolic funnels while in the former the ends
are Euclidean. Our aim is to prove a compactness result for non-compact surfaces
with only weak assumptions about the behavior of the metrics near infinity, although
we do require that the metrics coincide outside of a compact set. An important first
step is to extend the notion of isospectral metrics.

We say that two Riemannian spaces .M1; g1/; .M2; g2/ coincide cocompactly if
there are compact subsets

K1 � M1; K2 � M2

and an isometry .M1nK1; g1/ �! .M2nK2; g2/:We say that .M1; g1/ and .M2; g2/

are relatively isospectral if they coincide cocompactly and

Tr.e�t�g1 � e�t�g2 / D 0 for all t > 0:

We are implicitly assuming that e�t�g1 � e�t�g2 is trace-class, however this is
automatically true if .M1; g1/ is complete and is also true in some singular contexts.
Notice that this condition extends the notion of isospectrality on closed manifolds.
Indeed, if .Mi ; gi / are compact and have the same trace of the heat kernel for all
times, then they have the same spectrum with multiplicity as one can see from the
uniqueness of the Laplace transform of a measure.

Our main result is a sequential compactness theorem for relatively isospectral
metrics on non-compact surfaces with some mild assumptions. Details will be
forthcoming.
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Microlocal Analysis of Scattering Data
for Nested Conormal Potentials

Suresh Eswarathasan

1 Statement of the Problem and Results

Consider the potential scattering problem for the wave equation:

.@2t � 4 C q/u D 0 in R
n � R

u D ı.t � x � !/ for t << �
; (1)

where q is a compactly supported potential and ! 2 Sn�1 is fixed. Here 
 is the
value such that supp.q/ � fjxj � 
g.

The scattering map ˆ which sends q to ˛q is nonlinear and overdetermined and
there has been much interest in the inverse problem of determining q from ˛q . Since
˛q is overdetermined, it is naturally also of interest to try to reconstruct q from the
restriction of ˛q to various submanifolds of R � Sn�1 � Sn�1. In this work, we are
interested in the inverse problem of determining some information about q from
restrictions of ˛q to some lower-dimensional set.

Let us review a few of the important inverse scattering results involving fixed
angle and backscattering data.

1. Fixed angle scattering: Set � D �0 2 Sn�1. Stefanov [9] proves uniqueness of
the potentials under a smallness assumption and Ruiz [8] shows that the Born
approximation determines a “close” approximation of q 2 Hs.Rn/ for n D 2
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Centre-ville Station, Montréal (Québéc) H3C 3J7, Canada
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2. Backscattering: Set � D �! 2 Sn�1. Uniqueness under a smallness assumption
is obtained by Lagergen [6] for n D 3 and recovery of singularities for n D 2 by
Ola et. al [7]. Generic uniqueness is proven in Eskin and Ralston [1].

The above referenced papers contain further citations of articles with significant
results in inverse scattering. A highly pursued question within the inverse problems
community is the following:

Open problem: For what spaces of potentials q and partial sets of scattering
data do we have uniqueness and/or reconstruction? That is, for which D � R �
Sn�1 � Sn�1 does ˛q jD determine q? For these, can one constructively determine
(reconstruct) q from ˛qjD?

The class of q’s to be considered in (1) are those that have singularities conormal
to a nested pair of submanifolds S2 � S1 of R

n, denoted by I�1;�2 .S1; S2/ [2],
with S1 and S2 intersecting in codimension d , and �1 and �2 being the singularity
orders; these are a subset of the paired Lagrangian distributions introduced in [4,5].
The inverse problem that is solved consists of determining these submanifolds and
the principal symbol of q, which is enough to determine the singularities of q, from
the leading singularities of the backscattering ˛q jB, where B D f� D �!g �
R � Sn�1 � Sn�1. In addition, we treat similar determined sets of scattering data.

It is shown that ˛q is, away from !’s that are tangent to either of the sub-
manifolds, the sum of a paired Lagrangian distribution associated to two cleanly
intersecting reflected Lagrangians, two reflected Lagrangian distributions, and a
single peak Lagrangian distribution, modulo Sobolev errors. Although the strongest
singularity lies on the peak Lagrangian, which is consistent with the physics
literature, we show that it is the restriction of the reflected Lagrangians and their
points of intersection to various submanifolds of scattering data in R�Sn�1 �Sn�1
that determine the singularities of q. The precise theorem is the following:

Theorem 1. Let S2 � S1 � R
n be smooth nested submanifolds of codimension

d1Cd2 and d1, respectively. Assume that q is compactly supported and is conormal
to the nested pair .S1; S2/ of orders M1 andM2. Furthermore, suppose that

M2 > �d2 andM1 < �d1 � d2

2
C 1 or

M2 � �d2 andM1 < �d1 C 1; for

M1 C M2

2
< inff�n � 2

n
.d1 C d2/;�d1 � d2 C 1g if n � 5;

and

M1 C M2

2
< inff�d1 C d2

2
;�d1 � d2 C 1g if n D 3 and 4:

Then S1; S2, and the principal symbol of q are determined by the singularities of ˛q
restricted to the backscattering surface f� D �!g � R � Sn�1 � Sn�1.
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In fact, we prove a stronger result that shows that for a given submanifold of
scattering data with certain geometrical properties, the inverse problem can still be
solved. See [2] for a more detailed statement.

Potentials that are conormal to a single submanifold are dealt with by Greenleaf
and Uhlmann [3]; we closely follow the time-dependent approach taken in [3]
and generalize the results to these more singular q. Using Proposition 3.7 in [4]
involving the intersection of classes of paired Lagrangians over all orders M2,
it follows that Theorem 1 covers the main result of [3]. The potentials under
consideration are allowed to blow up, i.e. there are no size restrictions on q, in
contrast to those made in, e.g. [9].

A significant difference between this work and that of [3] is the new, more
complicated geometry that arises when using an approximation method, the under-
standing of multiplication by q and the parametrix to � on Sobolev spaces and
other classes of distributions, and the appearance of distributions that are associated
to cleanly intersecting triples and quadruples of Lagrangians.

We note that even for a arbitrary Lagrangian distribution u, calculating the
blowup rates that assist in finding which Lp space u belongs to is difficult without
some additional assumptions on the Lagrangian. Hence, from the viewpoint of the
Lax-Phillips scattering theory, assuming that u is in some conormal category is a
reasonable restriction.

2 Brief Outline of the Proof

The goal of recovering singularities lies in understanding an approximation to the
scattering kernel ˛q . We start by analyzing the forward problem and the Born series,

X
i

.�1/i .��1Mq/
i .ı.t � x � !//; (2)

which is an asymptotic expansion of the solution u to (1), where ��1 is the
parametrix to the wave equation and Mq is multiplication by the nested conormal
distribution q. A “good” description of the singulartities of (2) will eventually lead,
after application of certain elliptic Fourier integral operators, to a precise enough
approximation of ˛jB that will solve our inverse problem.

Due to the proliferation of new wavefront set that occurs at each term of the
Born series, we concentrate on u0 C u1, referred to by physicists as the Born
approximation. As a result of the multiplication of a paired Lagrangian distribution
against a single Lagrangian distribution, we develop a natural class of distributions
that are conormal to a nested triple of submanifolds. Also, the action of ��1 on the
paired Lagrangian and nested triple spaces is studied in order to get the most refined
description of the singularities of the Born approximation that is possible.
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After understanding the strength and location of the singularities of u0 C u1,
we need to show the remaining terms of the Born series are smoother in Sobolev
regularity than of the previous terms. This is equivalent to showing that our error
terms do not “interfere” with the measurements. We take this approach because of
the proliferating wavefront set mentioned earlier. The Sobolev mapping properties
of ��1 are well understood, but those of Mq are not. The absence of a composition
calculus for operators of this type, specifically those whose Schwarz kernels have
singularities on intersecting triples of Lagrangians, brings us to use a parabolic cut-
off argument of Melrose and along with Littlewood-Paley techniques. The orders
that appear in the statement of Theorem 1 are derived after requiring that the
composition ��1Mq gain derivatives.

Once we have shown the required smoothness, an application of a Radon-
type transform and a pullback operator to this error, following the Lax-Phillips
formulation of the scattering theory, shows that we can formulate and use an
approximate scattering kernel that displays the same singularities as those of the
exact scattering kernel. Geometrical computations, an application of the restriction
operator to the backscattering (also an elliptic Fourier integral operator), and the
symbol calculus in [4] essentially finish our problem. A fairly straightforward
geometrical lemma settles the result for more general determined sets of scattering
data.
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Equidistribution of Eisenstein Series for Convex
Co-compact Hyperbolic Manifolds

Colin Guillarmou and Frédéric Naud

The quantum ergodic theorem, due to Schnirelman [4], Colin de Verdière [1] and
Zelditch [5], says that on any compact Riemannian manifold X whose geodesic
flow is ergodic, one can find a full density sequence �j ! C1 of eigenvalues of
the Laplacian �X such that the corresponding normalized eigenfunctions  j are
equidistributed i.e. for all f 2 L2.X/, we have

lim
j!C1

Z
X

f .z/j j .z/j2dv.z/ D
Z
X

f .z/dv.z/;

where dv is the normalized volume measure. For non-compact manifolds, there can
be continuous spectrum and the quantum ergodic theorem does not really make
sense in general. However, for hyperbolic surfaces of finite volume and in particular
arithmetic cases, Zelditch [6], Luo-Sarnak [3] prove a related statement involving
the generalized eigenfunctions (also known as Eisenstein series). Let us recall their
results. Let X D �nH2 be a finite area surface where � is a non co-compact co-
finite Fuchsian group. The non compact ends of X are cusps related to fixed points
cj in @H2 of parabolic elements in � . The spectrum of the Laplacian �X has
a discrete part which corresponds to L2.X/-eigenfunctions and may be infinite
and the absolutely continuous part Œ1=4;C1/ which is parametrized (t 2 R) by
the finite set of Eisenstein series EX.1=2 C i t I z; j / related to each cusp cj . The
Eisenstein series EX.1=2C i t I z; j / are smooth non-L2.X/ eigenfunctions
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�XEX.1=2C i t I z; j / D .1=4C t2/EX.1=2C i t I z; j /:

For all t 2 R, define the density �t by

Z
X

a.z/d�t .z/ WD
X
j

Z
X

a.z/jEX.1=2C i t I z; j /j2dv.z/;

where a 2 C10 .X/. In the case with only finitely many eigenvalues then Zelditch’s
equidistribution result is as follows: for a 2 C10 .X/,

1

s.T /

Z T

�T

ˇ̌
ˇ
Z
X

ad�t � @t s.t/

Z
X

a dv
ˇ̌
ˇdt ! 0 as T ! 1

where s.t/ is the scattering phase appearing as a sort of regularization of Eisenstein
series due to the fact that the Weyl law involves the continuous spectrum. On the
other hand, for the modular surface X D PSL2.Z/nH2, Luo and Sarnak [3] showed
that as t ! C1,

Z
X

ad�t D 48

�
log.t/

Z
X

adv C o.log.t//;

which is a much stronger statement obtained via sharp estimates on certain
L-functions.

We report here some recent result of [2], where we studied the case of infinite
volume hyperbolic manifolds without cusps, more precisely convex co-compacts
quotients X D �nHnC1 of the hyperbolic space. A discrete group of orientation
preserving isometries of H

nC1 is said to be convex co-compact if it admits a
polygonal, finite sided fundamental domain whose closure does not intersect the
limit set of � . The limit set ƒ� and the set of discontinuity�� are defined by

ƒ� WD �:o \ Sn; �� WD Sn nƒ�;

where o 2 H
nC1 is any point in H

nC1. The quotient space X D �nHnC1
has ‘funnel type’ ends and is the interior of a compact manifold with boundary
X WD �n.HnC1 [ ��/, the action of � on .HnC1 [ ��/ being free and totally
discontinuous. By a result of Patterson and Sullivan, the Hausdorff dimension of
ƒ�

ı� WD dimHaus.ƒ�/

is also the exponent of convergence of the Poincaré series, i.e. for all m;m0 2 H
nC1

and s > 0, X
�2�

e�sd.�m;m0/ < 1 ” s > ı�; (1)

where d.m;m0/ denotes the hyperbolic distance.
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In that case the spectrum of �X consists of the absolutely continuous spectrum
Œn2=4;C1/ and a (possibly empty) finite set of eigenvalues in .0; n2=4/. The
Eisenstein functions are defined using the ball model of HnC1 to be the automorphic
functions ofm 2 H

nC1 given by

EX.sIm; �/ D
X
�2�

� 1 � j�mj2
4j�m � �j2

�s
; � 2 ��;

which are absolutely convergent for Re.s/ > ı� and extend meromorphically to
s 2 C. The Eisenstein series are non-L2.X/ eigenfunctions of the Laplacian with
eigenvalue s.n � s/ on Re.s/ D n=2. We show the following

Theorem 1. Let X D �nHnC1 be a convex co-compact quotient with ı� < n=2.
Let a 2 C10 .X/ and let EX.sI �; �/ be an Eisenstein series as above with a given
point � 2 @X at infinity. Then we have as t ! C1,

Z
X

a.m/
ˇ̌
ˇEX.n

2
C i t Im; �/

ˇ̌
ˇ2dv.m/ D

Z
X

a.m/EX.nIm; �/dv.m/C O.t2ı��n/:

The limit measure on X is given by the harmonic density EX.nIm; �/ whose
boundary limit is the Dirac mass at � 2 @X . A microlocal extension of this theorem
is also proved. We first need to introduce some adequate notations. Fix any � 2 @X .
Let L�� defined by

L�� WD [�2�L�� � S�X;

where L�� are stable Lagrangian submanifolds of the unit cotangent bundle S�X :
the Lagrangian manifold L�� is defined to be the projection on �nS�HnC1 of

f.m; ���.m// 2 S�HnC1Im 2 H
nC1g;

where ���.m/ is the unit (co)vector tangent to the geodesic starting atm and pointing
toward �� 2 Sn. The set L�� “fibers” over X , and the fiber over a point m 2 X

corresponds to the closure of the set of directions v 2 S�X such that the geodesic
starting at m with directions v converges to � 2 @X as t ! C1. Since the closure
of the orbit �:� satisfies �:� � ƒ� , L�� contains the forward trapped set

TC WD f.m; �/ 2 S�X W gt .m; �/ remains bounded as t ! C1g;

where gt W S�X ! S�X is the geodesic flow. The Hausdorff dimension of L�� is
nC ı� C 1 and satisfies nC 1 < ı� C nC 1 < 2nC 1 if � is non elementary.

Our phase-space statement is the following

Theorem 2. LetA be a compactly supported 0-th order pseudodifferential operator
with principal symbol a 2 C10 .X; T �X/, then as t ! C1
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D
AEX.

n

2
C i t I �; �/; EX.n

2
C i t I �; �/

E
L2.X/

D
Z
S�X

a d�� C O.t�min.1;n�2ı� //

where �� is a gt -invariant measure supported on the fractal subset L�� � S�X .

Notice that the fractal behaviour of the semi-classical limit �� can only be
observed at the microlocal level. By averaging over the boundary with respect to
the volume measure induced by Sn on �� , we obtain as t ! C1
Z
@X

Z
X

a.m/
ˇ̌
ˇEX.n

2
C i t Im; �/

ˇ̌
ˇ2dv.m/d� D vol.Sn/

Z
X

a.m/dv.m/CO.t2ı��n/
(2)

and
Z
@X

D
AEX.

n

2
C i t I �; �/; EX.n

2
C i t I �; �/

E
L2.X/

d� D
Z
S�X

a d�C O.t� min.n�2ı� ;1//

where � denotes the Liouville measure. This is the perfect analog of the previously
known results for the modular surface (actually with a remainder in our case).
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Mathématiques de l’IHES, 81 (1995), 207–237.
4. A. I. Schnirelman, Ergodic properties of eigenfunctions, Usp. Math. Nauk., 29 (1974), 181–182.
5. S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math.

J. 55 (1987), 919–941.
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Lower Bounds for the Counting Function
of an Integral Operator

Yuri Safarov

1 Motivation

Let aŒ�� be a closed quadratic form defined on a subspace H1 of a Hilbert space
H , and let H1

0 be an a-closed subspace of H1 which is dense in H . Consider the
self-adjoint operators AN and AN generated by the form aŒ�� with domains H1 and
H1
0 respectively, and denote by NN.�/ and ND.�/ their left continuous counting

functions.

Example 1. If � is a domain in R
n, n � 2, H WD L2.�/, H1, H1

0 are the Sobolev
spaces and aŒu� WD R

�
jru.x/j2 dx then AD and AN are the Dirichlet and Neumann

Laplacians on�. More generally, if � is a measurable function on the boundary @�
and aŒu� WD R

�
jru.x/j2 dx C R

@�
�.x0/ ju.x0/j2 dx0 then AN is the Laplacian with

Robin boundary condition.

Theorem 1. If � in Example 1 is a bounded domain with smooth boundary and
� � 0 then NN.�/ D ND.�/ C nD.�/ C g�.�/, where nD.�/ is the multiplicity
of � as an eigenvalue of AD and g�.�/ is the number of negative eigenvalues of
the Dirichlet-to-Neumann (D-N) operator in the subspace fu 2 H1 W ��u D �ug
(see [2]).

Theorem 2. The same is true for a bounded domain� with smooth boundary in a
Riemannian manifold (see [3]).

Remark 1. In [1], N. Filonov noticed that, under the conditions of Theorem 1,
NN.�/ � ND.�/C nD.�/C g�.�/ for all bounded domains�.
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LetA be the unbounded (non-self-adjoint) operator such thatAu D f if and only
if aŒu; v� D .Au; v/H for all v 2 H1

0 (wee assume that u 2 D.A/ if such a function
f exists). In the abstract setting, the D-N operator is understood as the self-adjoint
operator generated by the restriction of the quadratic form aŒu� � �kuk2H to the
subspace G� WD fu 2 D.A/ W Au D �ug.

Example 2. If aŒ�� is a differential form on a domain � then A is the differential
operator on � without boundary condition on � obtained by integration by parts
in aŒ��. The classical D-N operator on @� is obtained by integration by parts in the
form aŒu�� �kuk2H .

Theorem 3. Theorem 1 holds in the abstract setting, no conditions are needed
(see [4]).

Under the conditions of Theorem 1, the functions e�.x/ WD eix�� with f� 2
R W j�j2 D � > 0g belong to G�. Clearly, aŒe� � D �ke�k2H , which implies that
g�.�/ � 1 and, consequently,NN.�/�ND.�/ � 1. This shows that there are at least
k C 1 Neumann eigenvalues which are smaller than the kth Dirichlet eigenvalue.

In view of the above results, the same is true in the abstract setting, provided that
there exists e� 2 G� such that aŒe�� � �ke�k2 and e� is not an eigenfunction.

Note that e� form an infinite dimensional subset of H D L2.�/. But this subset
contains only one dimensional linear subspaces, so that we can only say that
g�.�/ � 1.

Question: is it possible to construct a higher dimensional “negative” subspace
of the quadratic form aŒe�� � �ke�k2, using the functions e� ?

2 Reduction to the Integral Operator

Let M be a metric space with a locally finite Borel measure �, and let fe�g�2M is
a continuous family of solutions to the equation Au D �u. Define

K.�; �/ WD aŒe� ; e�� � � .e�; e�/H

and consider the self-adjoint integral operator K W u 7! R
K.�; �/ u.�/ d�.�/ in the

spaceL2.M; d�/. If fu.�/ WD .u; e�/L2.M;d�/ then aŒfu���kfuk2 D .Ku; u/L2.M;d�/.
This implies

Lemma 1. Assume that fu 6� 0 for all nonzero functions u 2 L2.M; d�/. Then
g�.�/ is estimated from below by the number of negative eigenvalues of K .

Remark 2. We can choose the measure � on M as we wish. In particular, if � is
the sum of ı-measures located at some points �k 2 M then K coincides with the
restriction of the D-N operator to the subspace spanned by the functions e�k .
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Example 3. Let AD and AN be the Dirichlet and Robin Laplacians on a domain
� � R

n (as in Example 1). Take M D S
n�1
� WD f� 2 R

n W j�j D �g and e� D eix�� .
Then K.�; �/ D � 1

2
j�� �j2 O��.�� �/C O�@�.�� �/ where O��.�/ D R

�
e�ix�� dx

and �@�.�/ D R
@� e

ix���.x0/dx0 .
Assume that 1

2
j���j2 O��.���/ D O�@�.���/ for some � ¤ 0. Then K.�; �/ D

K.�; �/ D K.�; �/ D K.�; �/ D 0 for all �; � 2 S
n�1
� such that ��� D � . It follows

that g�.�/ � 2 for all � � j� j=2.

3 Main Theorem

Let �.�; �/ be the minimal eigenvalue of the matrix

�
K.�; �/ K.�; �/
K.�; �/ K.�; �/

�
: Define

†t WD f.�; �/ 2 M �M W �.�; �/ < tg , t � 0. Clearly, †t is an open symmetric
subset of M �M and �.�; �/ D �.�; �/. Let Mt be the projection of †t onto M .
If � is a symmetric Borel measure on †t , we shall denote by �0 its marginal,
that is, the measure on Mt such that �0.S/ WD � .f.�; �/ 2 †t W � 2 Sg/ for all
measurable S � Mt .

Theorem 4. Let N .KI t/ be the dimension of the eigenspace of K corresponding
to the interval .�1; t/, where t � 0. If the set †t is not empty then N .K; t/ �
1
2

C 1
16
Ct.�/ for all symmetric Borel measures � on †t , where

Ct.�/ WD
�R

†t
.t � �.�; �// d�.�; �/

�2
R
Mt

R
Mt

jK.�; �/j2 d�0.�/ d�0.�/
:

Since Ct.�/ � 0, Theorem 4 immediately implies that N .K; t/ � 1 whenever
†t ¤ ; . Applying the theorem with �.�; �/ D �0.�/ ı.� � �/, we obtain

Corollary 1. Let M� WD f� 2 M W K.�; �/ < 0g ¤ ;. Then

N .K; 0/ � 1

2
C

�R
M

�

K.�; �/ d�0.�/
�2

4
R
M

�

R
M

�

jK.�; �/j2 d�0.�/ d�0.�/

for all Borel measures �0 on M� .

A possible strategy of optimizing the choice of � in Theorem 4 is to fix the
marginal �0 and to minimize

R
.t � �.�; �/ d�.�; �/ over the set of symmetric

measures � with the fixed marginal. The problem of minimizing the integral of
the form

R
f .�; �/ d�.�; �/ over the set of measures with fixed marginals is known

as Kantorovich’s problem. It has been solved for some special functions f .�; �/.



102 Y. Safarov

References

1. N. Filonov. On an inequality between Dirichlet and Neumann eigenvalues for the Laplace
operator, Algebra Anal. 16, No.2 (2004), 172–176 (Russian). English translation in St. Petersbg.
Math. J. 16, No. 2 (2005), 413–416.

2. L. Friedlander. Some inequalities between Dirichlet and Neumann eigenvalues, Arch. Ration.
Mech. Anal. 116 (1991), 153–160.

3. R. Mazzeo. Remarks on a paper of Friedlander concerning inequalities between Neumann and
Dirichlet eigenvalues, Int. Math. Res. Not., No. 4 (1991), 41–48.

4. Y. Safarov, On the comparison of the Dirichlet and Neumann counting functions, AMS
Translations (2), Advances in Mathematical Sciences, vol. 225 (2008), 191–204.



The Identification Problems in SPECT:
Uniqueness, Non-uniqueness and Stability

Plamen Stefanov

We study an inverse problem arising in Single Photon Emission Computerized
Tomography (SPECT): recover an unknown source distribution with a unknown
attenuation. The mathematical model is the attenuated X-ray transform

Xaf .x; �/ D
Z
e�Ba.xCt�;�/f .x C t�/ t.; x 2 R2; � 2 S1; (1)

in the plane with a source f and an attenuation a that we want to recover. We
denote by

Ba.x; �/ D
Z 1
0

a.x C t�/ dt (2)

the “beam transform” of a, usually denoted by Da. The functions a and f are
assumed to be compactly supported. We analyze whether one can recover both a and
f , and if so; whether this can be done in a stable way.

The linearization ıXa;f of Xaf with respect to .a; f / turns out to be a sum of
two weighted X-ray transforms:

ıXa;f .ıa; ıf / D IwıaCXaıf;

where

Iwf .x; �/ D
Z

w.x C t�; �/f .x C t�/ dt; x 2 R2; � 2 S1;
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and
w D �e�Bau;

with

u.x; �/ D
Z 0

�1
e�

R 0
t a.xCs�/dsf .x C t�/ dt:

This motivates the study of the inversion of the more general transform Iw1g1 C
Iw2g2.

The data ıXa;f .ıa; ıf / contains an integral over each line twice—once in
each direction. On the other hand, the integral over each such line (and some
neighborhood of it) contains information about singularities conormal to it. So
microlocally, we have a 2 � 2 system. To get a pseudo-differential system, instead
of an FIO one, we take the Fourier transform with respect to the initial point z 2 �?
of each line, for each direction � . The determinant of the so transformed ıXa;f , up
to elliptic factors, is

p0.x; �/ D u.x; �/ � u.x;��/j�D�?=j�j:

Since p0 is an odd function of � , it has zeros over any point x. Therefore, elliptic
methods would not work. The Hamiltonian flow of p0 then plays an important
role. We call the projections of the zero bicharacteristics of p0 to the x-space
rays. By the Duistermaat-Hörmaner propagation of singularities theorem, on any
bicharacteristics, either each point is a singularity, or none is. If we a priori know
that ıa, ıf are supported in a non-trapping set K (no ray lies entirely in K), then
recovery of the singularities of ıa, ıf is possible with a loss of one derivative. Then
we also have an a priori regularity estimate. A more careful analysis actually reveals
that we need to assume the non-trapping condition for ıa only.

Using this, we prove that under the non-trapping assumption the linearization
ıXa;f is invertible in a stable way, if we know that it is injective. We provide
conditions for injectivity: either .ıa; ıf / are supported in a small enough set, or
.a; f / satisfy the following analyticity conditions:Ba and u are analytic inK �S1.
For the non-linear identification problem we prove local uniqueness near such a, f ,
in particular assuming the non-trapping condition for ıa, and a conditional Hölder
stability estimate.

As an example, we consider radial a and f . First, we consider a D 0 and f
being equal to the characteristic function of the unit disk. The rays then are the
concentric circles jxj D R, 0 � R < 1. K is non-trapping, if and only if no entire
circle of that family lies in K . We also study the case of general radial a and f .
There is no uniqueness in that case, and in fact, given any C10 radial a, f , one
can find a radial f0, so that Xaf D X0f0. This is a trapping case (without non-
trapping support restrictions, except that all functions are supported in the unit disk)
and demonstrates that in the trapping case we may lose the well-posedness of the
problem.

Acknowledgements Partly supported by NSF.



Eigenvalues and Spectral Determinants
on Compact Hyperbolic Surfaces

Alexander Strohmaier and Ville Uski

Compact hyperbolic surfaces are two dimensional oriented Riemannian manifolds
of constant negative curvature �1. They can be realized as quotients �nH of the
upper half plane H D f.x; y/ j y > 0g by a discrete hyperbolic co-compact
subgroup � � SL.2;R/. By the uniformization theorem any two dimensional
compact oriented Riemannian manifold of genus g > 1 admits exactly one metric
of constant curvature �1 in its conformal class, so that in each genus g > 2 there
exist many different hyperbolic metrics. The moduli space of hyperbolic metrics
on a given 2-dimensional surface of genus g > 1 modulo diffeomorphisms can be
described as the quotient of the Teichmüller space Tg by the mapping class group.
Here the Teichmüller space is defined as the space of hyperbolic metrics on a given
2-dimensional surface of genus g > 1 modulo diffeomorphisms that are homotopic
to the identity. The Teichmüller space is known to have dimension 6g � 6 and we
use an explicit description in terms of the so-called Fenchel Nielsen coordinates.

The description is based on the observation that for any three positive numbers
`1; `2; `3 there is an up to isometry unique sphere with three holes (a so called
Y -piece), equipped with a metric of curvature �1, such that the boundary com-
ponents are geodesics and have lengths `1; `2; `3. Now any hyperbolic surface can
be constructed by gluing 2g � 2 such Y -pieces. This construction is unique once
an order of glueing is fixed and once the twist for each boundary component is
specified. Thus, given 3g�3 length parameters and 3g�3 angle parameters together
with a discrete prescription on how the surface is to be glued from the Y -pieces fixes
a concrete surface. The boundary geodesics will then be a system of simple closed
geodesics on the surface X .

We give an algorithm that allows to compute the eigenvalues �i of the (positive)
Laplace operator � on X with high accuracy and with rigorous error bounds. We
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also show how derived spectral quantities such as the spectral determinant and the
Casimir energy can be computed from a finite part of the spectrum.

The starting point for our algorithm is the construction of basis functionsˆj .�/
on each pair of pants Y that are discontinuous along one geodesic but that satisfy
�ˆj .�/ D �ˆj .�/. For the construction of the basis functions we use the fact
that each Y -piece can be cut open along one geodesic connecting two boundary
components and the resulting set embeds isometrically into a hyperbolic cylinder.
The symmetry of the hyperbolic cylinder can then be used to solve the eigenvalue
equation using separation of variables.

Gluing the surface X from the cut-open Y -pieces then leads to boundary
conditions for the functions on the Y -pieces. If one can find a linear combination
of basis functions that satisfy or are close to satisfying the boundary conditions,
then � is close to an eigenvalue. For a function ‰ D P

j ajˆj we use the
quadratic form F�3=2;�1=2.‰/2 which measures the difference of the function values
and their normal derivatives along the curves using the Sobolev norms H�3=2 and
H�1=2. Thus, if F�3=2;�1=2.‰/ D 0 the boundary conditions are satisfied exactly.
We proved that there exists a constant C > 0 depending only on the geometry such
that �‰ D �‰ and ı D C

F
�3=2;�1=2.‰/

k‰k
L2.M/

< 1 imply that the interval Œ� � �; � C ��

contains an eigenvalue, where

� D .1C �/ı

1 � ı
:

We managed to give an estimate for the constantC which is good enough to be used
in numerical computations. Approximating the function‰ by linear combinations of
the basis functions, the task of minimizing F

�3=2;�1=2.‰/

k‰kL2.M/
for finite linear combinations

of the ˆj becomes a problem in linear algebra, namely finding the generalized
singular value of two matrices.

The linear algebra problem can be set in such a way that the computation of
the error in the above theorem remains rigorous. This is done by choosing the
matrices in such a way that the generalized singular values are equal to the Simpson
rule expression when computing the L2-norms of differences of boundary data.
Using known bounds on the fourth derivatives of eigenfunctions and the error
of the Simpson approximation this gives rigorous estimates for the error made
by discretization. It is important here that the basis functions ˆj can be chosen
orthonormal in the L2-norm of a smaller hyperbolic cylinder fitted into the Y -piece.

In order to find eigenvalues we compute the smallest generalized singular value
�.A.�/; B.�// of a pair of matrices A.�/ and B.�/, where the dimensions of the
matrices depend on a numberN , reflecting the number of basis functions used, and
on �. For this special set of basis functions we were able to prove that

�.A.�/; B.�// � ˇ.N; �0/C C.�/j� � �0j
if � is close to an eigenvalue �0. Since both constants ˇ.N; �0/ and C.�/ can
be computed explicitly in a concrete geometric situation this allows to find all
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eigenvalues. The constant ˇ.N; �0/ is decaying exponentially fast in N so that not
many basis functions need to be used to obtain high accuracy.

We implemented this algorithm in Fortran for surfaces of arbitrary genus. As
a test case we present here the Bolza surface, which is a surface of genus two
that maximizes the order of the symmetry group. For this surface we find the first
nonzero eigenvalue � D 3:838887258842199518586622450435where we believe
all decimal places to be correct. The mathematically rigorous error bound that
also includes a crude error estimate of the Simpson rule gives an interval of size
0:00000001 around this point. We calculated the first 2,000 eigenvalues in order
to compute the spectral determinant which we find to be roughly 4:722738 where
again we believe all given decimal places to be correct. Changing parameters in
Teichmüller space shows that both quantities are local maxima and are likely to be
global maxima. Using our method to compute determinants is more accurate than
the methods employed previously.

This method is closely related to spectral questions in microlocal analysis. Non–
concentration along closed geodesics, boundedness of pseudodifferential operators,
as well as analyticity of eigenfunctions on the Grauert tube, play a role in the
effectiveness of the method. This short presentation is based on the article [1].
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A Support Theorem for a Nonlinear
Radiation Field

Dean Baskin and António Sá Barreto

This note describes work in progress.
We consider the energy-critical semilinear wave equation on R � R

3:

�u C juj4u D 0; (1)

.u; @tu/jtD0 D .
;  /:

This equation has been extensively studied (see, for example, the papers of
Grillakis [4], Shatah-Struwe [5], Bahouri-Shatah [3], and Bahouri-Gérard [2]) and
is known to possess unique solutions in

C1
�
RIL2.R3/� \ C0

�
RI PH1.R3/

� \L5 �
RIL10.R/� :

Bahouri and Gérard also showed that solutions to this equation exhibit scattering,
i.e., given a solution u of equation (1), there are solutions u˙ of the linear problem
�u˙ D 0 such that

kru.t/ � ru˙.t/kL2.R3/ C k@tu.t/ � @tu˙.t/kL2.R3/ ! 0 as t ! ˙1:

If .u˙; @tu˙/tD0 D .
˙;  ˙/, we define the Moeller wave operator�˙ by

�˙.
˙;  ˙/ D .
;  /:
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We prove the following support theorem:

Theorem 1. If .
˙;  ˙/ 2 C1c .R3/ are radial and supported in fjzj � Rg, then
.
;  / are also smooth, radial, and supported in fjzj � Rg.

To prove the theorem, we show that the Moeller wave operators can be defined in
terms of Friedlander’s wave operators, which are unitary translation representations
of the semilinear wave group. In particular, we define the nonlinear forward and
backward radiation fields for a solution u of equation (1) as rescaled restrictions of
u to null infinity:

L˙.
;  /.s; �/ D lim
r!1 @s

�
r.n�1/=2u.s ˙ r; r�/

�
;

which exist because juj4u 2 L1L2.
The same formulae define the linear radiation fields. For a solution v of the linear

wave equation �v D 0 with initial data .
˙;  ˙/, the linear radiation field is given
by

R˙.
˙;  ˙/.s; �/ D lim
r!1 @s

�
r.n�1/=2v.s ˙ r; r�/

�
:

The relationship between the nonlinear scattering operators and the Moeller wave
operators is given by

�˙ D L�1˙ R˙:

Although Theorem 1 implies that �˙ preserve supports for smooth compactly
supported radial functions, their inverses generally do not. In particular, Theorem 1
is not a nonlinear Huygens’ principle.

We prove the following support theorem for LC, which is equivalent in this
setting to Theorem 1.

Theorem 2. Suppose thatF 2 C1c .R/ vanishes for jsj � R and satisfies
R
F D 0.

Then F D LC.
;  / for radial 
; 2 C1c .R3/, supported in fjzj � Rg.

The proof of this theorem relies on unique continuation results in 1C 1-dimensions
and is unlikely to be true for non-radial data (see, for example, the paper of
Alinhac-Baouendi [1]).

References

1. S. Alinhac and M. S. Baouendi. A nonuniqueness result for operators of principal type.
Math. Z., 220(4):561–568, 1995.

2. Hajer Bahouri and Patrick Gérard. High frequency approximation of solutions to critical
nonlinear wave equations. Amer. J. Math., 121(1):131–175, 1999.

3. Hajer Bahouri and Jalal Shatah. Decay estimates for the critical semilinear wave equation.
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Propagation of Singularities Around
a Lagrangian Submanifold of Radial Points

Nick Haber and András Vasy

This talk discusses the wavefront set of a solution u to P u Df , where P is a
pseudodifferential operator on a manifold with real-valued homogeneous principal
symbol p, when the Hamilton vector field corresponding to p is radial on a
Lagrangian submanifold contained in the characteristic set ofP . According to a the-
orem of Duistermaat-Hörmander [2], singularities propagate along bicharacteristics
of this Hamilton vector field. This theorem gives us no information about the
wavefront set when the Hamilton vector field is radial.

Analysis takes place on X , an n-dimensional manifold without boundary. Let o
be the 0-section of T �X . Denote by M W T �Xno � RC ! T �Xno the natural
dilation of the fibers of T �Xno: given v 2 T �x X; v ¤ 0, M..x; v/; t/ D .x; tv/. We
call a subset of T �Xno conic if M acts on it.

Definition 1. We call the vector field f .�/ 7! d
dt

jtD0f .M.�; t// the radial vector
field. We say that Hp (the Hamilton vector field associated to symbol p) is radial
at a point q 2 T �X if Hp is a scalar multiple of the radial vector field at q, and we
then call q a radial point of Hp .

If we choose local canonical coordinates .x; �/ for T �X , then Hp is radial at q
if it is a scalar multiple of � � @� at q. Equivalently,Hp is radial at q if dp is a scalar
multiple of the canonical 1-form of T �X , given in local canonical coordinates byP

i �i dxi .
Melrose [9] and Vasy [11] give a global analysis of the propagation of

singularities around a Lagrangian submanifold of radial points. By adapting the
standard positive commutator estimate proof of this theorem, we microlocalize
these results. We let S�X be the coshpere bundle at infinity, and � W T �X ! S�X
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the quotient map. If Hp is radial at ��1.q/, then the images under � of a set of flow
lines of Hp have q as a limit point. Let �q be the union of these images. In the
following, we treat wavefront sets to be subsets of S�X .

Theorem 1. Given P 2 ‰m.X/ with a real-valued homogeneous principal symbol
p such that Hp is radial (and nonvanishing) on a conic Lagrangian submanifold
ƒ � †.P /, then given q 2 �.ƒ/, there exist s0; s1 2 R such that

• For s < s0, if there is an open neighborhood U0 � S�X of q disjoint from
WFs�mC1.P u/ and from �q \ WFs.u/, then q … WFs.u/.

• If s > s1,then q … WFs1 .u/ implies q … WFs.u/nWFs�mC1.P u/.

In particular, if P �P � has a homogeneous choice of principal symbol, then we
can choose any s1 > s0. The values of s0 and s1 can be determined explicitly. Let
� be a homogeneous elliptic symbol of order 1, defined locally in a neighborhood
of ��1.q/. Let � D �Hp�. If we assume that P � P � has homogeneous principal
symbol and take �m�1.P�P

�

2i
/ to be homogeneous, then

f .w/ WD �m�1.P�P
�

2i
/�

�
.w/

is homogeneous of order 0, and thus a function on S�X . It is then optimal to choose

s0 D f .q/C m � 1

2

and any s1 > s0. If we do not assume that P � P � has homogeneous principal
symbol, then f is not homogeneous, and we must take a limit over neighborhoods
about q. Explicitly,

s0 WD sup
U 0

0�U0 with q2U 0

0 ;�0>0

�
inf

fw2U j�.w/2U 0

0 ;�.w/>�0g
f .w/C m � 1

2

�

and

s1 > inf
U 0

0�U0;q2U 0

0 ;�0>0

�
sup

fw2U j�.w/2U 0

0 ;�.w/>�0g
f .w/C m � 1

2

�
:

These values can be derived as follows. We prove the above theorem with a
positive commutator argument. Let b be the symbol of the commutant. This can
be taken to have a simple form: bD�
, where � is an order-0 cutoff, and 
 is a
weight, depending on � and the regularity order s we wish to show. Around the
Lagrangian submanifold, �Hp
 is the dominant term in Hpb. The sign of this term
thus depends on whether the desired regularity is high or low. As the commutator
must also absorb the subprincipal term P�P�

2i
, this term shifts the thresholds.

It should be emphasized that these results are completely local. That is, in
order to conclude regularity for u at a point q in this Lagrangian submanifold,
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we need only have regularity for f in an arbitrarily small neighborhood of q. At
times we also need regularity assumptions on u around �q , and at other times we
also need a priori lower regularity assumptions on u – it is important to note that
these requirements are again local around q. Thus we do not, for instance, require
regularity assumptions around the whole Lagrangian submanifold.

Under the nondegeneracy assumption dp ¤ 0, the largest-dimensional subspace
on which a Hamilton vector field can be radial is a Lagrangian submanifold.
This occurs naturally in many applications, including geometric scattering theory.
Indeed, this result generalizes a result in [9]. For the treatment of the opposite
extreme, that is, that of an isolated radial point, see for instance [3–5].

Here is a simple example of such a situation. Working on R
n, if we conjugate

���2 (� ¤ 0) by the Fourier transform, we get the multiplication operator jxj2��2.
Using canonical coordinates .x; �/, this has Hamilton vector field �2x � @� , which
is radial on the conormal bundle of fjxj2 D �2g. This is a Lagrangian submanifold.
Thus, regularity information for solutions to jxj2 � �2 gives decay information for
solutions to � � �2. The threshold s0 D � 1

2
corresponds to, for jxj2 � �2, the

existence of delta functions, and for � � �2, the existence of spherical waves. This
analysis generalizes to the Laplacian on asymptotically euclidean spaces; see [9]
for details.

A paper containing this result is in preparation and should appear shortly.
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Local Energy Decay for Several Evolution
Equations on Asymptotically Euclidean
Manifolds

Dietrich Häfner and Jean-François Bony

2000 Mathematics Subject Classification: 35L05, 35J10, 35P25, 58J45, 81U30.
This report is devoted to the study of the local energy decay for several evolution

equations associated to long range metric perturbations of the Euclidean Laplacian
on R

d . We consider the following operator on R
d , with d � 1,

P D �bdiv.Grb/ D �
dX

i;jD1
b.x/

@

@xi
Gi;j .x/

@

@xj
b.x/;

where b.x/ 2 C1.Rd / and G.x/ 2 C1.Rd IRd�d / is a real symmetric d � d

matrix. The C1 hypothesis is made mostly for convenience, much weaker regular-
ity could actually be considered. We make an ellipticity assumption:

9C > 0; 8x 2 R
d G.x/ � CId and b.x/ � C; (H1)

Id being the identity matrix on R
d . We also assume that P is a long range

perturbation of the Euclidean Laplacian:

9
 > 0; 8˛ 2 N
d j@˛x.G.x/ � Id /j C j@˛x.b.x/ � 1/j . hxi�
�j˛j: (H2)
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For the high energy part, we will assume that

P is non-trapping. (H3)

In the following, k � k will always design the norm on L2.Rd /. We obtain local
energy decay estimates for various evolution equations (see [2]).

Theorem 1. Assume (H1)–(H3) and d � 2. For all " > 0, we have

(i) for the wave equation

���hxi1�d sin t
p
Pp

P
u
���
H1.Rd /

. hti1�dC"��hxid�1u��;
���hxi�d .@t ;

p
P /

sin t
p
Pp

P
u
��� . hti�dC"��hxidu

��:

(ii) for the Klein–Gordon equation

��hxi�d=2eit
p
1CP u

�� . hti�d=2C"��hxid=2u��:
(iii) for the Schrödinger equation

��hxi�d=2eitP u
�� . jt j�d=2hti"��hxid=2u��

H�d=2.Rd /
:

(iv) for the capillary water wave equation

��hxi�2d=3eitP 3=4u�� . jt j�2d=3hti"��hxi2d=3u��
H�d=3.Rd /

:

(v) for the gravity water wave equation

��hxi�2d eitP 1=4u�� . hti�2dC"��hxi2du
��
Hd .Rd /

:

Similar results are obtained for the fourth order Schrödinger equation in [2]. For
compactly supported perturbations, the theory of resonances can be applied to obtain
decay of the local energy (see [7]). In the potential case, one can use perturbation
theory as in [6]. For small time dependent perturbations of the Minkowski metric
outside obstacles, see [8]. In our setting, estimates of powers of the resolvent which
imply local energy decay with other decay rates have been obtained in [4]. In the
case of scattering manifolds, we refer to [9, 10].

In even dimensions, the estimates in i/ are optimal modulo the loss of hti". In
odd dimensions and for short range perturbations, we have (see [3])

Theorem 2. Assume (H1)–(H3) and d � 3 odd. Suppose furthermore 
 > �C 2

(
 > �C 1 in dimension d D 3) with � � 0. For all " > 0, we have
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���hxi���1�" sin t
p
Pp

P
hxi���1�"

��� . hti��:

If d D 3 and � � 1, we can replace hxi���1�" by hxi���1=2�".
Our analysis separates into a low and high frequency analysis. For the low

frequency part, we obtain the following general theorem without assuming the non-
trapping condition (see [2]).

Theorem 3. Assume (H1)–(H2) and d � 2. Let f be a real function such that
f .x/ D a0 C a1x

˛ C x˛C�g.x/ with a1 ¤ 0, ˛; � > 0 and g 2 C1.R/. Let
� 2 C10 .R/ be such that f 0.x/ > 0 for all x 2 supp�\�0;C1Œ.

(i) If 0 < ˛ � 1, we have for all " > 0

��hxi� d
2˛ eitf .P /�.P /hxi� d

2˛

�� . hti� d
2˛C":

(ii) If ˛ > 1, we have for all " > 0

��hxi� d2 eitf .P /�.P /hxi� d
2

�� . hti� d
2˛C":

The proof of this theorem rests on Mourre theory (see [5]). More precisely, we
obtain positive commutator estimates at the bottom of the spectrum and generalized
Hardy type estimates. Our method also gives low frequency resolvent estimates (see
[1]).

Theorem 4. Assume (H1)–(H2) and d � 3. For all ˛; ˇ > 1=2 with ˛ C ˇ > 2,
we have

sup
z2CnR; jzj<1

��hxi�˛.P � z/�1hxi�ˇ�� . 1:

This estimate is false for the Euclidean Laplacian in dimension 3 if ˛ � 1=2 or
ˇ � 1=2 or ˛ C ˇ < 2. Theorem 1 follows from Theorem 3 and the following
general result at high frequency proved by semiclassical methods (see [2]).

Theorem 5. Assume (H1)–(H3) and d � 1. Let f be a real function such that, for
x � 1; f .x/ D x˛ C x˛��g.x/; with ˛; � > 0 and g

�
1
x

� 2 C1.Œ0; 1Œ/.
(i) For all ' 2 C10 .�0;C1Œ/ and � � 0, we have

��hxi��eitf .P /'.h2P /hxi���� .
˝
th1�2˛

˛��
;

uniformly for h > 0 small enough and t 2 R.
(ii) For all � 2 C10 .R/ equal to 1 on a large neighborhood of 0 and � � 0,

��hxi��eitf .P /.1��/.P /u��
L2.Rd /

.

8<
:

hti����hxi�u
��
H��2˛�.Rd /

for ˛ � 1=2;

jt j����hxi�u
��
H��2˛�.Rd /

for ˛ > 1=2:
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Rayleigh Surface Waves and Geometric
Pseudo-differential Calculus

Sönke Hansen

1991 Mathematics Subject Classification: 35Q74, 35S05.
Applying microlocal analysis we study Rayleigh-type elastic surface waves. For

precise statements, proofs, and additional references see [3].
By Hooke’s law, the stress (Dforce) tensor of an elastic material is proportional

to strain, sDCe. The strain e corresponding to an (infinitesimal) displacement
field u is the deformation of the metric tensor g of the 3-dimensional Riemannian
manifold M filled by the medium, eD Def u DLug=2. Stress and strain are
symmetric 2-tensors. The elasticity tensor C is a 4-tensor defining a scalar product
on symmetric 2-tensors. It vanishes on antisymmetric tensors. The elastic properties
of the material are encoded in C . The elasticity operator L and the traction T u on
the boundaryX D @M are defined by

Z
M

.Def uj Def v/CdVM D
Z
M

.Lujv/dVM C
Z
X

.T ujv/dVX;

Thus L D Def�Def D �r�Cr.
We are interested in solutions with vanishing traction, T u D 0 onX , of the wave

equation, Lu � D2
t u D 0, and of the spectral problem, h2Lu � u D 0 as h # 0.

The semiclassical principal symbol of h2L � Id equals c.�/ � Id 2 End.TxM/ at
� 2 T �x M . The acoustic tensor c.�/ D c.�; �/ is a contraction of the elasticity
tensor, c.�; �/ D �:C:�. If the medium is isotropic, i.e., if C is SO.3/-invariant,
then the elastodynamic system in the interior is a system of real principal type in the
sense of Dencker [2]. It follows from this that Lagrangian distribution solutions can
be constructed by solving invariantly defined transport equations.
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The elliptic boundary region E � T �X consists of all � 2 T �X D �? � T �M
such that `.s/ WD c.� C s�/ � Id is positive definite for real s, � the unit exterior
conormal field. Rays from the interior do not intersect E . From the theory of self-
adjoint matrix polynomials it follows that there is a unique factorization `.s/ D
.s�q�/c.�/.s�q/ such that the spectrum of q is contained in the lower half-plane.
Moreover,

q

I
`.s/�1ds D

I
s `.s/�1ds;

where the contour of integration encloses only that part of the spectrum of ` which
lies in the lower half-plane.

The above factorization is used to construct, microlocally over E , a Dirichlet
parametrix Bh and the DN map

Zh � TBh W ujX 7! T ujX; h2Lu � u D 0:

The principal symbol z of Zh is called the surface impedance tensor in applied
physics. It is self-adjoint, and z.�/ is positive definite for sufficiently large j�j.
Rayleigh waves arise from the characteristic set † WD fdet z.�/ D 0g � E . In the
applied physics literature, an important advance in the theory of surface waves of
general elastic media was made by Barnett and Lothe [4]. Their proof of what is
called the uniqeness of surface waves shows that, when translated to microlocal
analysis, Zh is a real principal type system. We sketch the argument. A calculation
of the principal symbol of the composition TBh gives the following formula for z:

z
I
`.s/�1ds D i

I
c.�; s� C �/ `.s/�1ds:

Using the residue calculus one derives

Re z
Z 1
�1

`.s/�1ds D � Id;

hence the positive definiteness of Re z everywhere in E . If z had only one positive
eigenvalue with eigenvector v, then Re z would be negative semi-definite on real
vectors orthogonal to the real and to the imaginary part of v. Since z is 3 � 3, it
follows that z has at most one non-positive eigenvalue, implying the real principal
type property.

In the isotropic case, Taylor [6] showed how in microlocal analysis the Rayleigh
wave phenomenon is understood as propagation of singularities for the DN map
over E . Here † D fcr j�j D 1g ¤ ;, where cr > 0 is the Rayleigh wave speed
which is strictly smaller than the interior wave speeds. Cardoso and Popov [1] and
Stefanov [5] constructed Rayleigh quasimodes for isotropic media.

We generalize the construction of Rayleigh quasimodes to general elastic media,
not nesessarily isotropic. To guarantee existence, we assume that † intersects each
halfray RC�, and also that the line bundle ker z ! † is trivial. The first assumption
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implies † D fp D 1g with 0 < p smooth and positively homogeneous of degree
one. Following Stefanov’s approach we show that, microlocally near†, the DN map
intertwines into a scalar eigenvalue problem; essentially,

ZhJh � Jh.P � h�1/:

Here P is a self-adjoint first order scalar pseudo-differential operator on X with
principal symbol p. In particular, P is elliptic and bounded from below. The
eigenfunctions of P are mapped by the intertwiner Jh and the Dirichlet parametrix
Bh into a sequence of quasimodes. This leads to (sub-)sequences of eigenvalues and
resonances for zero traction boundary and scattering problems, respectively.

The asymptotic behaviour of the eigenvalues of the operator P is affected by
the subprincipal symbol. We derive an explicit formula for the subprincipal symbol
ps of P which is new even for isotropic elasticity. The curvature of the boundary
X enters into the formula. Also ps depends on the choice of a global section of
ker z ! † because the construction of the intertwiner Jh does. When changing to
a different section, a Poisson bracket fp; 'g is added to the formula for ps . Such
terms are seen to cancel in asymptotic formulas for eigenvalues, however.

For computing the subprincipal symbol of P we use the geometric pseudo-
differential calculus developed by Widom [7] and others. In this calculus, differ-
ential geometric structure enters into the quantization rule. Symbols are quantized
as follows:

Op.a/u.x/ D
Z
T �

x X

Z
TxX

e�ih�;via.x; �/	Œx expx v�u.expx v/dvd��:

Here exp denotes the exponential map of the Levi-Civita connection, and 	Œx y� is
the parallel transport map from y to x along the shortest geodesic. The full symbol
of the composition Oph.a]b/ D Oph.a/Oph.b/ is given by

a]b � ab � ih tr rvarhb C : : : ;

where the horizontal derivative rh is defined using the connection. This allows to
conveniently track symbols of systems of pseudo-differential operators such as Zh
down to subprincipal level.
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Topological Implications of Global
Hypoellipticity

Gerardo A. Mendoza

I collect here some results concerning implications of a topological nature of
conditions such as ellipticity or hypoellipticity of a differential or pseudodifferential
operator. Results of this kind help to better understand the scope of hypotheses of
such essentially analytic conditions. This is of interest, in particular, in the case
of complexes of differential operators, whether elliptic or not (for example, CR
complexes). Such complexes have been the subject of extensive investigation by
many authors, one of the most remarkable results in the theory being that of Cordaro
and Hounie [1] on local solvability (the validity of the Poincaré Lemma) for a certain
non-elliptic complex.

The following theorem is part of joint work in progress (research partially
supported by FAPESP, contract nr. 2008/56767-0) with A.P. Bergamasco and
S.L. Zani [2, 3] on topological restrictions imposed by the assumption of global
C1-hypoellipticity.

Theorem 1. Suppose M is a closed orientable connected surface,E;F ! M are
line bundles, and

P W C1.MIE/ ! C1.MIF / (1)

is a first order differential operator of principal type. If P is globally hypoelliptic,
then

c.F /� c.E/ D ˙e.M/:

Here c.E/ is the total Chern class ofE and e.M/ is the Euler class of M. Global
hypoellipticity of course means that P has the property that if u 2 C�1.MIE/ and
P u 2 C1.MIF / then in fact u 2 C1.MIE/. Finally, principal type is meant here
in the classical sense: the restriction of the principal symbol of P to any fiber T �x M
of T �M is nonzero as a (linear) function TxM ! Hom.Ex; Fx/. The proof of
Theorem 1 uses a microlocal argument concerning solvability of the transpose of P
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which ends up allowing us to deform P to an elliptic differential operator of order 1
using an idea from [6]. Once this is accomplished, the result is a consequence of
Theorem 4 discussed below.

Theorem 1 generalizes the following theorem of Hounie [4]:

Theorem 2. Suppose M is a closed orientable smooth surface and L is a vector
field on M of principal type. IfL is, as a differential operator, globally hypoelliptic,
then M is a torus.

The assumption that L is of principal type is equivalent to the statement that L
is nowhere zero. Thus if L is a real vector field, then this implies immediately that
M is a torus. However L may be a complex vector field, so Hounie’s theorem is
not immediate since the complexification of the tangent bundle of any manifold
admits a globally defined nowhere zero vector field; a hypothesis such as global
hypoellipticity is needed. Theorem 1 reduces to Hounie’s theorem when E and F
are the trivial vector bundle and P is has no zeroth order term (invariantly, P
annihilates the constants).

Next is a theorem in which one reaches the same conclusion as in Theorem 1,
starting with a different hypothesis. First some concepts. Let M be an arbitrary
smooth paracompact manifold and � W V ,! CTM a subbundle. Then there is
an associated differential operator D W C1.M/ ! C1.MI V�/, namely if f
is a smooth function, let Df D ��df . In other words, Df is the restriction of
df to V . When V is involutive, D is the first operator in a complex of first order
differential operators on the exterior powers of V� (see Treves [7]). Many natural
differential complexes arise in this manner. Letm D dim M � rk V . The subbundle
V is said to be a hypo-complex structure (see Treves, op cit.) if for each x 2 M
there exists some open neighborhood U of x and a C1 function Z W U ! C

m

whose components Zi satisfy DZi D 0 over U and have independent differentials
at x, with the property that for any u such that Du D 0 near x there is h holomorphic
near Z.x/ such that u D h ı Z near x. The following result [6, Theorem 7.3] was
part of a general analysis of subbundles of CTM carried out in joint work with H.
Jacobowitz also aimed at getting a better sense of the analytical conditions that can
be placed on complexes of the kind just described.

Theorem 3. Suppose M is an orientable two-manifold and V � CTM is a hypo-
complex subbundle (with rk V D 1). Then there exists a smooth family of subbundles
Vt � CTM, 0 � t � 1 in which V0 D V and Vt is a holomorphic structure on M
for each t > 0.

This theorem can be viewed as intermediate between Theorems 1 and 2. Indeed,
in the terminology of the first theorem, we have again that E is the trivial line
bundle as in Theorem 2 but now F D V . The conclusion of Theorem 1, namely
that c1.V/ D ˙e.M/, holds here because the Euler class of M is, except for sign
(corresponding to choice a of orientation), the first Chern class of a holomorphic or
antiholomorphic structure on M.

With the stronger assumption of ellipticity we have the following correspond-
ingly stronger result obtained in collaboration with Jacobowitz [5]
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Theorem 4. Let M be a connected compact manifold and E;F ! M complex
vector bundles. If there is an elliptic classical pseudodifferential operator P W
C1.MIE/ ! C1.MIF / then c.F /� c.E/ D ke.M/ for some k 2 Z.

This is shown using the Gysin sequence associated with the cosphere bundle of
M, see [5]. A somewhat weaker result can be obtained if M is orientable using a
Mayer-Vietoris sequence, as follows. Let p be the principal symbol of an elliptic
pseudodifferential operator as in the statement of the theorem. Thus p W P��E !
P��F is an isomorphism (where P� W T �M n 0 ! M is the projection). Suppose for
a moment that M admits a global nonvanishing (continuous) differential one-form
˛. The image of M by ˛ is of course diffeomorphic to M and the isomorphism
pj˛.M/ W P��Ej˛.M/ ! P��F j˛.M/ therefore descends to an isomorphism E ! F .
That is, under the hypotheses of the theorem, if the Euler class of M vanishes, then
E D F . Now, for general M, pick x 2 M arbitrarily, and let U be a neighborhood
of x diffeomorphic to a ball. Then E is isomorphic to F over M n fxg as well as
over U , since both these manifolds have vanishing Euler characteristic. The maps

H2q.M/ ! H2q.M n fxg/˚H2q.U/

in the Mayer-Vietoris sequence in integral cohomology for the pair M n fxg;U
are injective when 0 < 2q < dim M, so since the image of cq.F / � cq.E/ in
H2q.M n fxg/˚H2q.U/ vanishes, cq.E/ � cq.F / D 0 when 2q < dim M (here
cq.E/ is the q-th Chern class ofE). So c.F /�c.E/ is either 0 (when dim M is odd)
or a homogeneous class of top degree (when dim M is even). The theorem asserts
that the latter is proportional to the Euler class of M.

Suppose now that M is a closed connected orientable surface, let e be the Euler
class of M and letE and F be line bundles over M. If the operator (1) is an elliptic
differential differential operator, then c1.F /� c1.E/ D ke, k 2 Z. The number jkj
is the order of P (see [5, Corollary 2.5]). Thus Theorem 1 includes Theorem 4 in
the restricted context (in dimension and rank) of the former.
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Chern-Simons Line Bundle on Teichmüller
Space

Sergiu Moroianu and Colin Guillarmou

We report in this note on our recent results about Chern-Simons invariants of certain
geometrically finite hyperbolic 3-manifoldsX . The ends of X can be either funnels
or rank 2 cusps, but we focus here on convex co-compact hyperbolic manifolds,
which are conformally compactifiable to a smooth manifold with boundary. More
precisely, let M be a Riemann surface of genus � 2 with a hyperbolic metric h0,
and A an endomorphism of TM satisfying divh0A D 0, and Tr.A/ D � 1

2
scalh0 .

A hyperbolic funnel is some collar .0; �/x �M equipped with a metric

g D dx2 C h.x/

x2
; (1)

where h.x/ 2 C1.M; S2CT �M/, and h.x/ D h0

�
.Id C x2

2
A/�; .Id C x2

2
A/�

�
. The

metric g on the funnel is of constant sectional curvature �1, and every end of X
is isometric to such a hyperbolic funnel. The funnels have a conformal boundary,
which is a disjoint union of compact Riemann surfaces forming the conformal
boundary M of X . The deformation space of X is essentially the deformation
space of its conformal boundary, i.e. Teichmüller space T . A couple .h0; A0/ can
be considered as an element of T �h0T , if A0 D A � 1

2
tr.A/Id is the trace-free part

of the divergence-free tensor A. We therefore identify the tangent bundle T �T of T
with the set of hyperbolic funnels modulo the action of the diffeomorphism group
D0.M/, acting trivially in the x variable.
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The renormalized volume of .X; g/ is defined by

VolR.X/ WD FP�!0
Z
x>�

volg

where FP means finite-part (i.e. the coefficient of �0 in the asymptotic expansion as
� ! 0). Here x is the distinguished boundary-defining function appearing in (1).

Let ! be the so.3/-valued Levi-Civita connection 1-form on X in an oriented
orthonormal frame S D .S1; S2; S3/. Let � WD ! C iT ; here T is the so.3/-valued
1-form defined by Tij .V / WD g.V �Sj ; Si / and � is the vector product with respect
to the metric g. We define

CS.g; S/ WD � 1
16�2

FP�!0
Z
x>�

Tr.! ^ d! C 2
3
! ^ ! ^ !/I (2)

CSPSL2.C/.g; S/ WD � 1
16�2

FP�!0
Z
X

Tr.� ^ d� C 2
3
� ^ � ^ �/: (3)

We ask that S be even to the first order at fx D 0g. Equipped with the conformal
metric Og WD x2g, the manifold X extends to a smooth Riemannian manifold X D
X [M with boundaryM . The Chern-Simons invariant CS. Og; OS/ is therefore well
defined if OS D x�1S is an orthonormal frame for Og.

Proposition 1. On a convex co-compact hyperbolic 3-manifold .X; g/ one has
CS.g; S/ D CS. Og; OS/, and

CSPSL2.C/.g; S/ D � i
2�2

VolR.X/C i
4�
�.M/C CS.g; S/ (4)

where �.M/ is the Euler characteristic of the conformal boundaryM .

There exists a smooth mapˆ from T to the set of geometrically finite hyperbolic
metrics on X (up to diffeomorphisms of X ) such that the conformal boundary of
ˆ.h/ is .M; h/ for any h 2 T . The subgroup ModX of the mapping class group
Mod consisting of elements which extend to diffeomorphisms on X homotopic to
the identity acts freely, properly discontinuously on T and the quotient is a complex
manifold of dimension 3jgj � 3. The map ˆ is invariant under the action of ModX
and the deformation space TX of X is identified with a quotient of the Teichmüller
space, TX D T =ModX .

Since X is not closed, e2�iCS.g;S/ depends on the choice of the frame S near
the conformal boundary, so e2�iCSPSL2.C/ and e2�iCS are not numerical invariants but
rather sections in a complex line bundle L over the Teichmüller space T .

Theorem 1. There exists a holomorphic Hermitian line bundle L over T equipped
with a Hermitian connection rL, with curvature given by i

8�
times the Weil-

Petersson symplectic form !WP on T . The bundle L with its connection descend
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to TX and if gh D ˆ.h/ is the geometrically finite hyperbolic metric with conformal
boundary h 2 T , then h ! e2�iCS.gh;�/ is a global section of L.

Since funnels can be identified to elements in T �T , the map ˆ described above
induces a section � of the bundle T �T (which descends to T �TX ) by assigning to
h 2 T the funnels of ˆ.h/. The image of �

H WD f�.h/ 2 T �TX ; h 2 TX g

identifies the set of geometrically finite hyperbolic metrics onX as a graph in T �TX .
Define a modified connection

r� WD rL C 2
�
�1;0 (5)

on the pull-back of L to T �T , where �1;0 is the .1; 0/ part of the Liouville 1-form
� on T �T . The connection descends to T �TX , and it is not Hermitian, but r� and
rL induce the same holomorphic structure on L.

Theorem 2. For V 2 T .T �T / tangent to H, we have r�
V e

2�iCSPSL2.C/ D 0.

The curvature of r� vanishes on H by Theorem 2 while the curvature of rL

is i
8�
!WP (by Theorem 1). By considering the real and imaginary parts of these

curvature identities, we obtain

Corollary 1. The manifold H is Lagrangian in T �TX for the Liouville symplectic
form� and d.VolRı�/D � 1

4
� on H. The renormalized volume is a Kähler potential

for the Weil-Petersson metric on TX :

N@@.VolR ı �/ D i
16
!WP:

Finally we relate the Chern-Simons line bundle L to the Quillen determinant line
bundle det @ D ƒg.coker @/ of @ on functions in the particular case of Schottky
hyperbolic manifolds of genus g. Once we choose a marking of M by disjoint
simple closed curves ˛1; : : : ; ˛g we obtain a canonical section ' WD '1 ^ � � � ^ 'g

where 'j are holomorphic 1-forms on M normalized through the requirementR
˛j
'k D ıjk .

Theorem 3. Over the Schottky space, there is an explicit isometric isomorphism
of holomorphic Hermitian line bundles between the inverse L�1 of the Chern-
Simons line bundle and the 6-th power .det @/˝6 of the determinant line bundle
det @, given by

.F'/˝6 7! e�2�iCSPSL2.C/
:
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Here F is a holomorphic function on S which up to a constant is given, on the
open set where the product converges absolutely, by

F.�/ D
Y
f�g

1Y
mD0

.1 � q1Cm� /;

where q� is the multiplier of � 2 � , and f�g runs over all distinct primitive
conjugacy classes in � 2 S except the identity.
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A Simple Diffractive Boundary Value Problem
on an Asymptotically Anti-de Sitter Space

Ha Pham

In this project we study the propagation of singularities (in the sense of C1 wave
front set) of the solution of a model case initial – boundary value problem with
glancing rays for a concave domain on an asymptotically Anti de-Sitter manifold.
Singularities of solutions of linear partial differential equations are described in
terms of wave front sets of distributions. In the boundaryless setting, a special case
of a result by Hörmander [1] gives that for P a linear differential operator with real
principal symbol p, the solution u of P u D 0 has its wavefront set contained in the
characteristic set p�1.0/ and invariant under the flow generated by Hamiltonian
vector field Hp . In the presence of boundary, the rays containing wavefront set
which hit the boundary transversally are reflected according to Snell’s law ie with
energy and tangential momentum conserved (see for e.g. [2] for codimension-
1 boundary and [10] for higher codimension boundary). The situation however
becomes more complicated in the presence of boundary and glancing rays (i.e.
tangency of the bicharacteristics). While one already has the general theorem
of propagation of singularities along generalized broken bicharacteristics ([7–9]
for smooth boundary, [10] for corners using a relatively permissive notion of
generalized broken bicharacteristics analogous to those in the analytic case [3]),
one could refine the results (i.e. make the generalized broken bicharacteristics less
permissive) by considering the diffractive problem, one aspect of which studies the
phenomenon of propagation of singularities into the shadow region. By results of
Friedlander [4], Melrose [5], Melrose-Sjöstrand [7] etc., on smooth boundaries,
there is no propagation into the shadow region and in fact, at a diffractive point,
the ray carrying wavefront set does not stick to the boundary. The question
remains for higher codimension settings, in particular for edges. On the other
hand, asymptotically Anti de-Sitter space can be considered analogous to a reduced
problem on an edge. In addition, we have the general theorem for propagation of
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singularities along generalized bicharachteristics by Vasy [11] on asymptotically
AdS spaces for both hyperbolic and glancing cases. Hence, similar to the edge case,
one would like to refine this result and study the diffractive problem for this setting.
Our setting is a simple case of asympotically Anti-de Sitter spaces, which are
Lorentzian manifolds modeled on Anti-de Sitter space at infinity. The metric for
the problem is specified as :

on R
C
x � R

n
y W g D �dx2 C .1C x/�1dy2n � Pn�1

jD1 dy2j
x2

:

For convenience, we work with a modification of the Klein-Gordon operator by a
first order derivative

P WD �g C x

2.x C 1/
x@x C �:

This modification does not change the problem in an essential way in the sense that
this does not affect the propagation of singularities result on asymptotically AdS
space since the principal symbol remains unchanged thus so do the bicharacteristics,
and the 0-normal operator is not affected either. The diffractive condition is satisfied
with H2

Opx > 0 where Op is the principal symbol for conformal operator OP ie

Op D ��2 C Œ.1C x/�2n � j� 0j2�.
The approach adopted is motivated from the work done for a conformally related
diffractive model problem by Friedlander [4] in which an explicit solution was
constructed using the Airy function. The result was later greatly generalized
by Melrose using a parametrix construction in [5, 6]. After taking the Fourier
transform in y and denote by � the dual variable of y, our goal is to construct a
polyhomongeous conormal solution modulo a smooth function in PC1.RnC1C / which
satisfies the boundary condition at x D 0 i.e.

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

OLOu 2 PC1.RnC1C /

x�s� Ou jxD0 D 1 s˙.�/ D n

2
˙

r
n2

4
� �

Ou 2 exp.i
in/Lph.C / 
in D �2
3
��1n



.1C x � j O� 0j2/3=2 � .1 � j O� 0j2/3=2�sgn�n

where Lph.C / is the set of polyhomogeneous conormal functions on some blown-up
space C of R

n

� � Œ0; 1/x, and s˙.�/ come from the indicial roots of the Klein Gordon
operator and prescribe the asymtotic behavior of its solution on asymptotically AdS
[11]. The chosen oscillatory behavior is modeled from that possessed by the specific
solution Friedlander worked with in [4]. Following the same change of variable as
in [4], the problem is reduced to studying the following semiclassical ODE, which
at one end is a b-operator while having a scattering behavior at infinity,

Q D h2.z@z/
2 C h2

�
� � n2

4

�
C z3 C z2:
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We use different techniques near 0 and infinity to analyze the local problems: near
infinity we use local resolvent bounds given by Vasy and Zworski [13] and near
zero we build a local semiclassical parametrix. The next technical difficulties arise
from the fact that the operator Q is not semiclassical elliptic, which prevents us
from simply patching the two above local resolvents by partition of unity, which
otherwise results in an error that is not trivial semiclassically. To overcome this
problem, we adopt the method of Datchev and Vasy [12] to get a global approximate
resolvent with an O.h1/ error.
The remaining technical details of the problem involve constructing a local resolvent
near 0 for Q. For this we first need to construct a certain blown-up space of
Œ0; 1/z � Œ0; 1/z0 � Œ0; 1/h. The usual method (see for e.g. [14]) involves resolving
the b-singularity at the corner of fz D z0 D 0g and the semiclassical singularity.
In our case, we incur non-uniformity in the behavior of the normal operator on the
semiclassical front face as we approach the b front face (i.e. as z0 ! 0). This gives
motivation to do a blow-up at Zh ! 1 and z0 ! 0 where Z D z

z0

the variable

associated with the b-blowup and Zh D Z�1
h

the variable associated the blow-up
along the lifted diagonal in the semiclassical face. For matter of convenience, the
blown-up space we will work on results from the same idea of singularity resolution
however with different order of blowing up, namely after the b-blowup we blow
up the intersection of the b-front face with semiclassical face, then blow up the
intersection of the lifted diagonal and the semiclassical face. There will be two
additional blow-ups to desingularize the flow and to create a transition region from
the scattering behavior to the boundary behavior prescribed by indicial roots. We
then construct a polyhomongeous cornomal function U on this blown-up space so
that

QU � SKId 2 h1z1.z0/

r
n2

4
���Q�B1C2C1

SKId schwartz kernel of Id, and for some constant Q�B1 :

After removing singularities at the lifted diagonal, the remaining difficulty involves
choosing the order in which one will remove singularities of the error to achieve the
above effect.
Once constructed, a parametrix provides among other things information on the
properties of the fundamental solution, which enables one to make very precise
statements on the propagation of singularities, in particular in the ‘shadow regions’.

Acknowledgements I would like to thank my advisor András Vasy for all his help with this
project.
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Quantization in a Magnetic Field

Radu Purice, Viorel Iftimie, and Marius Măntoiu

1 Introduction

Together with Marius Măntoiu we have considered quantum hamiltonians with
magnetic fields and replaced the usual translations with magnetic translations,
generalizing some former results from constant magnetic fields to bounded smooth
magnetic fields. This approach allowed us to obtain a pseudodifferential Weyl
calculus, twisted by a 2-cocycle associated to the flux of the magnetic field and
we developped this calculus in colaboration with V. Iftimie. An interesting fact that
we pointed out is that the algebra of observables is defined only in terms of the
magnetic field without the need of a vector potential. Using these techniques we
proved a number of spectral results for quantum Hamiltonians in magnetic fields.
At the classical level the magnetic field may also be described by a deformation of
the canonical symplectic form of the phase space and hence, a deformation of the
Poisson bracket of the classical observables. At the quantum level, we can define a
twisted Moyal algebra, with the Moyal product twisted by a 2-cocycle associated to
the flux of the magnetic field. These two descriptions may be put together in a strict
deformation quantization in the sense of M. Rieffel.

Some notations. The configuration space: X WDR
n. The phase space: „ WD TT�X

Š X �X 0 with momentum space X 0, the dual of X , (canonically isomorphic to R
n).

The canonical symplectic form on „:

�
�
.x; �/; .y; �/

� WD< �; y > � < �; x >

with < :; : > the duality application X 0 � X ! R.

R. Purice (�) � V. Iftimie �M. Măntoiu
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The magnetic field is described by a closed 2-form B on X : B D
nP

j;kD1
Bjk.x/dxj ^ dxk , Bjk.x/D � Bkj .x/, dBD 0. On R

n there always exists a
1-form, the vector potential A such that B DdA. The association of a vector
potential to a magnetic field B is highly non unique and we have that A � A0 D
rˆ , dA D dA0 D B: If B has components of class C1pol.X /, then one can
always find a vector potential with components of class C1pol.X /.

2 A ‘Magnetic’ Weyl System

The idea we propose is to use the unitary groups associated to the 2n self-adjoint
operators

˚
Q1; : : : ;Qn

	
,

˚
…A
1 ; : : : ;…

A
n

	
defined previously and their real linear

combinations, and define the Magnetic Weyl system (Just use the Kato-Trotter
formula):

W A..x; �// WD e�i<�;.QCx=2/> e�i
R
ŒQ;QCx� A ei<x;P>:

• For any test function f W „ ! C we define the associated magnetic Weyl
operator:

OpA.f / WD
Z
„

dX Of .X/W A.X/ 2 BŒH�

• In fact for any tempered distribution F 2 S 0.„/ we can define the linear
operator:

OpA.F / WD
Z
„

dX OF .X/W A.X/ 2 BŒS.X /I S 0.X /�

• It defines a linear bijection [11].
• The Schrödinger representations associated to any two gauge-equivqlent

vector potentials are unitarily equivqlent (gauge covariance): A0DACd')
OpA

0

.f / D ei'.Q/OpA.f /e�i'.Q/:

3 A ‘Magnetic’ Moyal Algebra

The above ‘magnetic’ functional calculus induces a magnetic composition on the
complex linear space of test functions: OpA.f ]Bg/ WDOpA.f / � OpA.g/. It only
depends on the magnetic field B! in fact on the ‘magnetic’ deformation of the
symplectic form on „.
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Theorem 1 ([11]). For a magnetic field B with components of class C1pol.X /, the

composition ]B defines a bilinear map

S.„/ � S.„/ 3 .
;  / 7! 
]B 2 S.„/

that is jointly continuous (for the usual Fréchet topology on S.„/).

Proposition 1 ([11]). For a magnetic fieldB with components of class C1pol.X /, we
have:

Z
„

�

]B 

�
.X/ dX D

Z
„


.X/ .X/ dX; 8.
;  / 2
�
S.„/

�2
;

Z
„

�

]B 

�
.X/�.X/dX D

Z
„


.X/
�
 ]B�

�
.X/dX; 8.
;  ; �/ 2

�
S.„/

�3
:

We ca extend the product ]B by duality to bilinear maps:

S 0.„/]BS.„/ ! S 0.„/I S.„/]BS 0.„/ ! S 0.„/:

The magnetic Moyal algebra. We set:

MB.„/ WD ˚
F 2 S 0.„/ j F ]B
 2 S.„/; 
]BF 2 S.„/;8
 2 S.„/

	

This defines a �-algebra for the composition ]B and the usual complex conjugation
as �-conjugation.

Proposition 2 ([11]). The space of indefinitely differentiable functions with uni-
form polynimial growth on„ is contained in MB.„/.

Proposition 3 ([5]). If the magnetic field B has components of class C1pol.X /, for

m 2 R and 0 � ı � 
 � 1 we have Sm
;ı.„/ � MB.„/.

The norm. The family: CB.„/ WD ˚
F 2 S 0.„/ j OpA.F / 2 BŒL2.X /�

	
does only

depend on the magnetic field B .
On CB.„/ we can define the map: kF kB WD kOpA.F /kBŒL2.X /� that does

not depend on the choice of A and is in fact a C�-norm on CB.„/. CB.„/ is a
C�-algebra isomorphic to BŒL2.X /�.

Theorem 2 ([5]). If the magnetic field B has components of class BC1.X /, then
S0
;
.„/, with 0 � 
 < 1 and S0
;ı.„/, with 0 � ı < 
 � 1 are contained in CB.„/
and there exist two constants c.n/ 2 RC and p.n/ 2 N, depending only on the
dimension n of the space X , such that we have the estimation (where jF j.p;q/ are
the seminorms defining the topology of S0
;ı.„/):

kF kB � c.n/jF j.p.n/;p.n//:
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4 Some Operator-Algebraic Aspects

Let us first observe that with any Weyl system associated to a choice of a magnetic
potential A, we have:

• A representation of the C �-algebra BC.X / (considered as functions on „

constant along X 0)

BC.X / 3 f 7! OpA.f / � f .Q/ 2 BŒH�; Œf .Q/u�.x/ D f .x/u.x/

(by usual functional calculus associated to V .
• A twisted unitary representation of X

X 3 x 7! OpA.ex/ � UA.x/ 2 BŒH�; where: ex.y; �/ WD eix��

In fact one has UA.x/UA.y/ D !B.QI x; y/U A.x C y/,

where: !B.qI x; y/ D exp
n
�i R

T .q;qCx;qCxCy/ B
o

with T .q1; q2; q3/ the trian-

gle of vertices q1; q2; q3.

We have:
UA.x/f .Q/ŒU A.x/��1 D f .Q C x/ D Œ	xf �.Q/:

We put thus into evidence the following twisted C �-dynamical system
fX ; BCu.X /; 	; !Bg. Given a twisted C �-dynamical system fX ;A; 	; !g let us
consider:

• The linear space: L1.X I A/ of measurable functions f W X ! A such that the
positive function X 3 x 7! kf .x/kA is integrable with respect to the Haar
measure �X on X

• The .	; !/ crossed-product:

.f Ì!	 g/.x/ WD
Z

X
dy 	 y�x

2
Œf .y/� � 	 y

2
Œg.x � y/� � 	� x2 Œ!.y; x � y/�

with � the product in the algebra A.
• The involution f Ì.x/ WD 	� x2



!.x;�x/�1�f .�x/

• The C �-enveloping norm k:k�
Its closure with respect to k:k� is the twisted crossed-productC �-algebra AÌ!	 X .

It is a standard matter that all the covariant representations of a twisted
C �-dynamical system fX ;A; 
; !g are in a one-to-one correspondence with the
representations of the twisted crossed-product A Ì!
 X .

Some computations allow us to prove that the partial Fourier transformation:

F W L1.X IBCu.X // ! BC.„/; ŒFf � .x; �/ WD
�Z

X
dye�i<�;y>f .y/



.x/

gives an isometric embeding: F W BCu.X / Ì!B	 X ,! CB:
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The important achievement of the above formalism is that it provides us with a
procedure to associate to any translation invariant sub-C �-algebra A of BCu.X /, a
sub-C �-algebra CBA of CB :

CBA.„/ WD A.X / Ì!B	 X :

Proposition 4 ([11]). For any magnetic fieldB with components of classBC1.X /
we have

C0.X / Ì!B	 X Š B1ŒH�

(the ideal of compact operators on H).

5 A ‘Magnetic’ Pseudo-differential Calculus

Definition 1. Choosing any vector potential A for B we define the associated
classes of magnetic pseudodifferential operators on H WD L2.X / with Hörmander
type symbols:

‰m

;ı.A/ WD OpAŒSm
;ı.„/�:

Proposition 5. For 0 � ı < 
 � 1 or 0 � ı D 
 < 1 we have that

‰0

;ı.A/ � CB.„/:

Theorem 3 ([5]). If the magnetic field B has components of class C1pol.X /, for any
m1 and m2 in R and for any 0 � ı � 
 � 1 we have:

S
m1

;ı .„/ ]

B S
m2

;ı .„/ � S

m1Cm2

;ı .„/:

Definition 2. Suppose that the magnetic fieldB has components of classBC1.X /
and suppose chosen a vector potentialA for it. For anym > 0we define the complex
linear space:

Hm
A.X / WD ˚

u 2 L2.X / j pAmu 2 L2.X /	
with

pAm WD OpA.}m/; }m.x; �/ WD< � >m� .1C j�j2/m=2; 8m > 0:

Definition 3. Suppose that the magnetic fieldB has components of classBC1.X /
and suppose chosen a vector potential A. For any m > 0 we define the space
H�mA .X / as the dual space of Hm

A.X / with the dual norm:

k
k.�m;A/ WD sup
u2Hm

A.X /nf0g
j < 
; u > j

kuk.m;A/
that induces a scalar product.

We also denote H0
A.X / WD L2.X /.
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Definition 4. For m > 0 a symbol F 2 Sm
;ı.„/ is said to be elliptic if there exist
two positive constants R and C such that for any .x; �/ 2 „ with j�j � R one has
that jF.x; �/j � C < � >m.

Theorem 4 ([5]).

• Suppose that the magnetic field B has components of class BC1.X / and
suppose chosen a vector potential A for it.

• Supposem � 0 and F 2 Sm
;ı.„/ is a real symbol (elliptic if m > 0), with either
0 � ı < 
 � 1 or ı D 
 2 Œ0; 1/.

• Then the operator
OpA.F / W Hm

A.X / ! L2.X /

is self-adjoint.
• If F � 0 then OpA.F / is lower semibounded and we have a strong Gårding

inequality.
• If A is chosen in C1pol.X /, then OpA.F / is essentially self-adjoint on S.X /.

6 Some Results for Quantum Hamiltonians

6.1 Anisotropic Magnetic Hamiltonians

We are interested in anisotropic problems [8,9]. The anisotropy will be characterized
by a C �-subalgebra algebra:

A.X / � BCu.X /

satisfying:

• A.X / is a unital C �-subalgebra of BCu.X /
• A.X / is left invariant by all the translations 	x (with x 2 X ).
• C0.X / � A.X /.

Then

•
h
A.X / Ì!B	 X

i
�

h
C0.X / Ì!B	 X

i
Š

h
A.X /�C0.X /

i
Ì!B	 X

and we have a very effective procedure to obtain a decomposition of the essential
spectrum as closure of the union of the spectra of the ’asymptotic limits’ of the
Hamiltonian.

6.2 Continuity of the Spectra

Consider a family of Hamiltonians fh�g�2I with I �R a compact interval,
such that
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• h� 2 Sm1 .„/ elliptic with m > 0, for each � 2 I ,
• The map I 3 � 7! h� 2 Sm1 .„/ is continuous for the Fréchet topology on
Sm.„/;

• There exist C 2 RC such that h� � �C; 8 � 2 I .

We are given a family of magnetic fields fB�g�2I with the components B�
jk 2

BC1.X / such that the map I 3 � 7! B�
jk 2 BC1.X / is continuous for the

Fréchet topology on BC1.X /.

Definition 5. Let I be a compact interval and suppose given a family f��g�2I of
closed subsets of R.

1. The family f��g�2I is called outer continuous at �0 2 I if for any compact
K � R such that K \ ��0 D ;, there exists a neighborhood V �0

K of �0 with
K \ �� D ;, 8� 2 V �0

K .
2. The family f��g�2I is called inner continuous at �0 2 I if for any open O � R

such that O\��0 ¤ ;, there exists a neighborhoodV �0
O � I of �0 with O\�� ¤

;, 8� 2 V �0
O .

3. The family f��g�2I is called continuous at �0 2 I if it is both inner and outer
continuous.

Theorem 5 ([1]). Suppose given a compact interval I � R, a family of classical
Hamiltonians fh�g�2I and a family of magnetic fields fB�g�2I satisfying the above
hypothesis. Let us consider the family of quantum Hamiltonians H� WD OpA

�

.h�/

for some choice of a vector potentialA� forB� . Then the spectra �� WD �.H�/ � R

form a continuous family of subsets at any point � 2 I .

6.3 Eigenfunction Decay

Theorem 6 ([3]).
Let us suppose that

• h 2 Sm1 .Rd / (with m > 0) is elliptic;
• The magnetic field B has components of class BC1.X /;
• We fixed a vector potential A for the magnetic field having components of class
BC1.X /.

Let � 2 �disc.OpA.h// and u 2 Ker
�
OpA.h/ � ��

. Then u 2 S.X /.
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Price’s Law on Black Hole Space-Times

Daniel Tataru

The aim of the talk was to provide an overview of recent and ongoing work
concerning global in time decay properties for the wave equation on asymptotically
flat space-times. Parts of this work are joint with the following collaborators:
Jeremy Marzuola, Jason Metcalfe and Mihai Tohaneanu. Some of this research was
motivated by problems in general relativity concerning the decay properties for the
wave equation on Schwarzschild and Kerr backgrounds. Partly for this reason, all
the results are presented in 3C 1 space dimensions.

We consider decay estimates for the forward wave equation

.�g C V /u D f; u.0/ D u0; @tu.0/ D u1 (1)

For the metric g and the potential V we consider three cases:

Case A: g is a smooth Lorenzian metric in R � R
3, with the following properties:

(i) The level sets t D const are space-like, and (ii) g is asymptotically flat,
i.e. gDmC or.1/ and V D or.r

�2/ as jxj D r ! 1, where m stands for the
Minkowski metric.

Case B: g is a smooth Lorenzian metric in an exterior domain R � R
3 n B.0;R0/

which satisfies (i) and (ii) above, as well as (iii) the lateral boundary R � @B.0;R0/
is outgoing space-like.

Case C: g is a smooth Lorenzian metric in an exterior domain R � R
3 n B.0;R0/

which satisfies (i) and (ii) above, as well as (iv) the lateral boundary R � @B.0;R0/
is time-like, and u satisfies a Dirichlet boundary condition.

The second case is modeled after the Schwarzschild and Kerr metrics, which
satisfy the above conditions in suitable advanced time coordinates. There the
parameter R0 is chosen so that 0 < R0 < 2M in the case of the Schwarzschild

D. Tataru (�)
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e-mail: tataru@math.berkeley.edu

D. Grieser et al. (eds.), Microlocal Methods in Mathematical Physics and Global Analysis,
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metric, respectively r� < R0 < rC in the case of Kerr, so that the exterior of the
R0 ball contains a neighbourhood of the event horizon.

One question we ask here is what is the sharp pointwise decay rate for
linear waves with, say, smooth, compactly supported data. By the finite speed of
propagation, the solutions will be localized in a forward light cone; it is also natural
to expect a t�1 decay rate along the light cone. The interesting problem is then what
is the decay rate inside the cone.

In the Minkowski case Huygens principle holds, so the solution will vanish inside
a smaller light cone. Adding a small compactly supported potential generates some
tails inside the cone, but these decay exponentially. However, adding polynomial
tails to either V or the metric it seems natural to expect only polynomial decay
rates inside the cone. In addition, for large perturbations one needs to also consider
trapping issues; indeed, in Schwarzschild/Kerr and perturbations thereof trapping
necessarily occurs.

This work is motivated in part by some heuristic computations of a physicist,
Robert Price, who derived a t�3 local decay rate for the case of the Schwarzschild
space-time. This corresponds to a metric g � m C O.1=r/ and/or a potential
decaying like O.1=r3/; here m represents the Minkowski metric. The t�3 decay
rate became known as “Price’s Law”. In addition to the local decay given by Price’s
Law, it is also of interest to understand the decay in the entire light cone. The main
result can be stated as follows:

Theorem 1 ([11, 22]). Consider either case A,B,C. Suppose that the metric g and
the potential V satisfy

g D mCOradial .r
�1/C o.r�1/; g D mCOradial .r

�3/C o.r�3/

If in addition some suitable local assumptions hold then we have the following
pointwise decay estimates for solutions to (1) with smooth localized data

ju.t; x/j � C

ht C jxjiht � jxji2 ; j@tu.t; x/j � C

ht C jxjiht � jxji3 (2)

The suitable local assumptions above are of two types:

I. Energy estimates, where the aim is to obtain uniform in time bounds,

krx;tukL1L2 � krx;tu.0/kL2 C kf kL1t L2x
II. Local energy decay, i.e. integrated energy decay in compact spatial regions:

krx;tukLE C khri�1ukLE � krx;tu.0/kL2 C kf kLE�

where the dualLE and LE� norms are defined using the partition of the space-
time RC � R

3 into dyadic regions Am D fhri � 2mg
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kvkLE D sup
m

khri� 12 vkL2x;t .Am/; kf kLE� D
X
m

khri 12 f kL2x;t .Am/

In the case when trapping occurs the energy estimates remain unchanged, but it
is natural to weaken somewhat the local energy decay norms on the trapped set. This
makes no difference in the above theorem.

At this point, these two types of estimates are known to be valid for small pertur-
bations of the Minkowski and Schwarzschild/Kerr metrics. In the Minkowski case,
no time decay is needed for the perturbation. However, in the Schwarzschild/Kerr
case a t�1� decay is assumed near the trapped set. More generally, one can split the
problem into a low frequency part, where the enemy is represented by bound states,
and a high frequency part, where the issue is trapping.
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