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Abstract We present an outline of quasi-steady state methods (QSS) in ordi-
nary differential equations which model systems of chemical reactions, and its
application to reduction of dimension. Special attention is given to the relation
between QSS and singular perturbations including, as a new result, a general explicit
reduction formula. Moreover, we describe and discuss heuristics which convert a
QSS assumption to conditions restricting the parameters of the differential equation.
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8.1 Introduction

Quasi-steady state (QSS) reduction is frequently employed to reduce the dimension
of differential equations for chemical and biochemical reactions, in particular as a
preliminary step in parameter identification problems. While QSS has been used by
biologists, chemists, and also by application-oriented mathematicians since the early
twentieth century, a precise mathematical description and analysis was achieved
only in the late 1980s, and some aspects are still not completely resolved. The issue
is complicated by the fact that different groups of scientists (including different
groups of mathematicians) have different notions of, and different approaches to,
QSS assumptions and reductions. Another critical point concerns the role, the
applicability, and the application of singular perturbation theory.
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Most of this paper collects some classical and recent results on QSS and QSS
reduction. We also present a few new results and aspects, including a general
explicit reduction formula for mass action kinetics, given a singular perturbation
setting. In Sect. 8.2 we review definitions of QSS (including a working definition
we will adopt), give a short historical outline, and describe some problems and
applications, including standard examples. Motivated by applications, it seems
advisable to distinguish two notions of QSS (which also appear under different
names in the literature). On one hand, there is QSS for reactions, where certain
(forward—backward) reactions are assumed to reach equilibrium quickly. On the
other hand, there is QSS for concentrations of certain chemical species, which goes
back to Michaelis and Menten. Analyzing these different QSS assumptions leads to
different mathematical problems. Section 8.3 is about reduction of dimension in the
classical Tikhonov—Fenichel setting of singular perturbations. We present a general
reduction formula, sketch its derivation, and give several examples. Moreover we
show that, in the scenario of slow—fast reactions, Tikhonov—Fenichel theory is
applicable in rather general circumstances. Section 8.4 is about various heuristics—
including scaling methods—for finding “small parameters” from QSS assumptions.
While these heuristics provide satisfactory results in many cases, identification of
small parameters for QSS—which is closely tied to the chosen definition—still
seems unfinished. Most of the examples we give are presented for the purpose
of illustration and have been discussed in other publications. One exception is a
somewhat larger example to demonstrate the feasibility of the reduction procedure.

8.2 Background and Statement of Problem

8.2.1 Chemical Reactions and ODEs

Systems of chemical reactions are frequently modeled with the help of differential
equations. In this paper we will concentrate on systems that can be modeled by
ordinary differential equations, which is justified in the following scenario:

* Reactions take place in a closed vessel, and there is no spatial inhomogeneity.

e Thermodynamical parameters such as temperature and pressure are (being kept)
constant.

e There are explicit expressions for the reaction rates (usually mass action
kinetics).

Given these conditions, there is a standard procedure to transfer a chemical reaction
scheme to a system of ordinary differential equations and there is a number of
strong theoretical results on the properties of such equations. The procedure was
formalized and the class of resulting equations was discussed by several authors in
the 1960s and 1970s, with fundamental contributions, in particular with regard to
convergence to equilibrium, due to Feinberg [7], and Horn and Jackson [15]. One
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important ingredient of this procedure is stoichiometry: Molecules do not vanish
into nothing and are not created out of nothing. Thus in a reaction like A + B=C,
for every C-molecule that is created, an A and a B vanish. Hence stoichiometry
implies the existence of linear first integrals for the differential equations.

Example 8.1. The Michaelis—Menten system (Michaelis and Menten [20], see also
Briggs and Haldane [5] and many textbooks and monographs such as Atkins and
de Paula [2]; Berg et al. [3]; Keener and Sneyd [18]; Murray [22]) is a basic model
reaction for an enzyme FE catalyzing the transformation of substrate S to product P
via an intermediate complex C. The reaction scheme

Ky )
E+S C E+ P
k_1 k_o

by way of the above-mentioned procedure with mass action kinetics yields a
differential equation system for the concentrations:

é=—kies + (k—1 + ka)c — k_zep,
$=—kies + k_1c,

¢= kies — (k—1+ ka)c+ k_zep,
p= koc — k_gep.

The relevant initial values are s(0) = so > 0, ¢(0) = 0, e(0) = ep > 0, and
p(0) = 0. All rate constants k; are assumed to be > 0, with the possible exception
k_o > 0.Incase k_o = 0 one speaks of the irreversible Michaelis—Menten reaction,
the case k_o > 0 is called reversible. The irreversible system is usually presented
and investigated in monographs and research articles.

From stoichiometry one obtains the linear first integrals e+ c and s+ c+ p, which
may be used to reduce the differential equation to dimension two. The standard
procedure leads to the following equation:

$=— kiegs + (/ClS + k_l)c,

8.1
¢= kiegs — (k1s+k_1+ko)e+k_2(e0 —¢)(so — s —¢). @1

Example 8.2. A cooperative enzyme-catalyzed reaction is described by the reaction
scheme (see e.g. Keener and Sneyd [10, 18, 25]):

k1 ka

S+ E > (4 >~ K+ P,
k_1 k_o
ks ks

S+ Ch >~ Yy ~ C1 + P.

ks k_a
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Here substrate and enzyme react to form a complex C1, and moreover substrate and
(1 react to form a complex Cs. In the reversible scenario, enzyme and product may
also combine to form C with rate constant k_o > 0, and C; and P may combine to
form C5 with rate constant k_4 > 0. Similar to the Michaelis—Menten system one
also considers the irreversible case with k_o = k_4 = 0; all other rate constants are
assumed > 0 throughout. From mass action kinetics, stoichiometry, and the initial
values s(0) = so > 0, ¢1(0) = ¢2(0) = 0, ¢(0) = eg > 0, and p(0) = 0, one
obtains the differential equation

$=—kieos + (k—1 + k1s — kzs)c1 + (k1s + k—_3)ca,
é1:k1(60 — C1 — CQ)S — (k71 + kg)cl + k,Q(GO — C1 — CQ)(SO —S5—C — 262)
—kgcls + (k73 + k4)62 - k7401(80 — S —C — 202),
é2:k3018 - (k73 + k4)02 + k,401(80 — S —C — 202).
8.2)

8.2.2 Quasi-Steady State

It seems much harder to precisely define QSS, as well as the corresponding QSS
assumption, than to illustrate the use of QSS to reduce the dimension of the
system. Some authors use a (relatively straightforward) notion of QSS for reactions,
which we will consider in Sect. 8.3.3 below. However, the notion of QSS for
chemical species, which will be in the focus of this paper, seems more delicate.
(The distinction has also been noticed and investigated in detail by Goussis [11].
One also speaks of partial equilibrium instead of QSS for reactions.) It should be
emphasized that the choice of a definition for QSS critically influences its translation
to mathematical terms, and that various notions exist in the literature. The following
characterization (taken from [24]) may be the least common denominator of all
definitions:

Working Definition. A reacting system is in OSS, or quasi-stationary, with respect
to certain species, if the rates of change of their concentrations are negligibly small
compared to the overall rate of reaction, during some relevant time interval.

A OSS assumption amounts to the hypothesis that a reaction is in QSS with
respect to certain components.

The source of a QSS assumption generally lies outside mathematics. Usually
experimental observations or biological or chemical intuition are invoked. Generally
QSS corresponds to restrictions on certain parameters, such as rate constants or
initial concentrations.

We give a brief sketch of the history of QSS and mention some contributors
to its theory and practice, with no claim to completeness. Michaelis and Menten
[20] stated and applied a certain equilibrium assumption, which they did not
justify further. Briggs and Haldane [5] seem to be the first who discussed the
QSS assumption for the complex C' (now sometimes called the standard QSS
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assumption) in the Michaelis—Menten system (8.1), and moreover they justified
this assumption by referring to smallness of certain parameters in the differential
equation. Atkins and de Paula’s popular introductory text on Physical Chemistry
(see [2, p. 812 ff.]) reflects a frequently used notion of QSS in a reacting system:
“(...) after an initial induction period (. . .), and during the major part of the reaction,
the rates of change of concentrations of all reaction intermediates are negligibly
small.” The biochemistry text by Stryer et al. (see [3]) seems to make direct use of
QSS, with no discussion of underlying assumptions. In the contribution by Rubinow
and Segel to the collection [31] (see p. 3 ff.), one finds the following description
for (irreversible) Michaelis—Menten: under suitable experimental conditions “one
expects that after an initial short transient period there will be a balance between
the formation of complex by the union of enzyme and substrate and the breaking
apart of complex (. ..).” From a mathematical perspective, the (explicit or implicit)
involvement of two different time regimes (initial phase vs. major part of the
reaction, to paraphrase Atkins et al.) suggests a singular perturbation approach. One
of the earliest papers on QSS from the perspective of Tikhonov’s theorem is due
to Heineken, Tsuchiya, and Aris [12], with “small parameter” eg/sq. Segel [29],
and Segel and Slemrod [30] performed a careful analysis of QSS and conditions on
parameters. These papers seem to be the starting point for time scale arguments in
QSS considerations. Among the many who continued and extended this approach,
with varying emphasis on mathematical rigor, we mention Ignetik and Deakin
[17]; Ignetik et al. [16]; Borghans et al. [4]; Schnell and Maini [28]; and Tzafriri
and Edelman [35]. An approach by Schauer and Heinrich [26] to the Michaelis—
Menten system, on the other hand, could be seen as emphasizing the slow manifold
in a singular perturbation setting, but their reasoning is essentially based on the
assumption that the concentration of the complex is almost constant (more precisely,
that ¢ ~ 0).

In Sect. 8.4 we will review some of these arguments and their use in heuristics
for finding small parameters.

8.2.3 The Ad Hoc Reduction from QSS

The following reduction method (which we call the ad hoc reduction) is directly
related to a QSS assumption: In the differential equation, set the negligible rates of
change equal to zero, and use the subsequent algebraic relations to obtain a reduced
system.

Example 8.3. QSS for the complex C' in the Michaelis—Menten system.
In the irreversible case (k_o = 0) one has

kleos

0(=¢)=k — (k k_ k th =
(=¢) 1€08 — (k1s + k_1 + ko)e, us c P A
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By substitution one obtains the reduced equation

k2€08
(s + (k-1 +k2)/k1)

which can be found in virtually all books and papers which mention Michaelis—
Menten. Note that this approach does not explicitly make use of small parameters,
although in its justification in the literature (e.g., [4,12,29,30]) small parameters are
frequently invoked. We will discuss a different approach in Example 8.5 below.

In the reversible case the ad hoc method leads to a quadratic equation

0(=¢) =kieos — (kis+k_1 + ka2)c+ k_a(eg — ¢)(so — s — ¢),

which yields

c

1
:2k (k18+k,1+k2+k,2(80+80—S):l:\/("'))
—2

and a relatively cumbersome reduced equation, which is not frequently used. (There
are discussions, e.g., in Miller and Alberty [21]; Seshadri and Fritsch [32].)

Example 8.4. QSS in the cooperative system.

Consider the system from Eq. (8.2), and assume QSS for both complexes. In the
irreversible case (k_y = k_4 = 0), solving “¢; = ¢y = 0,” which is a linear
parameter-dependent system for ¢; and cg, provides a nice reduced equation for s;
see Keener and Sneyd [18]. But the reversible case leads to a system of quadratic
equations for c¢; and cg, which in turn leads to a reduced equation for s which is
intractable, for all practical purposes. See [10,25] for more details.

Thus the ad hoc reduction, although conceptually straightforward, may become
quite inconvenient even in rather simple settings. And, more fundamentally, there
remains the question: How, if at all, can a reduction procedure be justified
mathematically?

8.3 Reduction in the Presence of Small Parameters

In this section we consider an analytic ordinary differential equation depending on
a “small parameter” € > 0. Thus we have

i=h(z,e) =h)+ehP(x)+..., zeUcR"™™, (8.3)
with both n and m positive integers (to be specified below), and we will be interested

in the behavior of the solutions as ¢ — 0. Our primary focus is on differential
equations modeling chemical reactions, and the small parameter may stem either
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from a separation of fast and slow reactions, or (by some yet-to-be-discussed
reasoning; see Sect. 8.4) from a QSS assumption. (For the examples introduced in
Sect. 8.2, ¢ = eg works.) But once a small parameter is given, the natural starting
point is to try singular perturbation theory.

Due to our focus on chemical reactions, we will impose additional conditions
on the right-hand side, which go beyond what is necessary from the perspective of
singular perturbation theory. Thus we assume that A(®) and A(!) are polynomials.
These assumptions are natural in our setting, since we start from polynomial
differential equations of mass action kinetics.

We will mostly rely only on the classical results of singular perturbation theory,
see Tikhonov [34], Vasil’eva [36], Fenichel [8], and Hoppensteadt [14]. The
monograph [37] by Verhulst, in particular Chapter 8, is an appropriate source for
most of the relevant material. The principal new result in this section will be an
explicit expression for a reduction of (8.3), given the special assumptions on the
right-hand side. We obtain a QSS reduction which is both on solid mathematical
ground and relatively simple to compute.

8.3.1 Singular Perturbations

The usual scenario for Tikhonov’s and Fenichel’s theorems starts with a system in
what we call Tikhonov standard form:

yl = Ef(l)(y17y2) +.. ) yl(o) = Y1,0, 8.4
) (1) 0) = 8.4)
2= gy, y2) + g (w1, 02) + ..o 42(0) = y2.0,

with (y1, y2) € D C R™ x R™, D open, and (in our setting) analytic right-hand
side.
We obtain the system in “slow time” by rescaling 7 = et:

Y = FOM1,y2) + ... y1(0) = yi0, ®5)
vy = e 9Oy, y2) + gDy, y2) + ..., 12(0) = y20.

A fundamental result of Tikhonov’s theory can be stated as follows. (See Verhulst
[37], Theorem 8.1 for a more general theorem under less restrictive hypotheses.)

Theorem 8.1. Let system (8.5) be given. Assume that:

(i) The zero setY of 9 is nonempty. B ~
(ii) There exist a nonempty relatively open subset Mo C Y and p > 0 such that
every eigenvalue ongg(O)(yl, ya), with (y1,y2) € Mo, has real part < —p.

Then there exists t1 > 0 such that for every iy € (0, t1) and for every point
sufficiently close to My, the solution of (8.5) with initial condition (y1,0, Y2,0)
approaches the solution of the degenerate system
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3/1 — f(l) (y17y27 0)7 yl(O) =Y1,0,
0= 9(0)(y17y270)

uniformly on [to, t1] ase — 0.

A priori a system (8.3) derived from a chemical reaction network may not be given
in Tikhonov standard form, which raises two questions. First, under what conditions
does a transformation to standard form exist? Second, assuming the existence of a
transformation, how can a reduced equation be computed?

As for existence, one needs a diffeomorphism ¥ = (¥, Ws)* (defined on some
open subset of D) which sends solutions of (8.3) to solutions of a system (8.4) in
standard form. A necessary and sufficient condition is the identity

9O (2) (¥ (x), Ta(z)) + . ..

8

DU (z) (h<0> (z) + ehW(z) + .. ) - (
For € = 0 one obtains

0
DY (z)h9 (z) = <g(0) (Wl(a:),WQ(ZC))) 7

and this implies the existence of n independent first integrals (viz., the entries of
¥) for & = h(®(z). Recall that the existence of first integrals is not trivial near
stationary points. Moreover, 2(?) then admits an n-dimensional local manifold M,
of stationary points. The following result is taken from [25], but it essentially goes
back to Fenichel [8].

Proposition 8.1. Given & = h(z,¢), there exists a transformation ¥, defined on
some open U C D, to Tikhonov standard form with the eigenvalue condition
(ii) from Theorem 8.1, if and only if the following hold:

The zero set Y of h(® in U is nonempty. Moreover there exist a nonempty
relatively open My C Y and p > 0 such that for every vy € My the derivative
Dh© (x0) admits the eigenvalue 0 with algebraic and geometric multiplicity n,
and the remaining eigenvalues have real part < —p. (In particular My is a local
n-dimensional submanifold.)

The condition given in Proposition 8.1 implies the existence of a direct sum
decomposition

R?*t™ — Ker DR (ajo) @ Im Dh® (Io) (8.6)

for every zg € Mjy. Moreover, this condition implies locally the existence of n
independent first integrals for & = h(®)(z).
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8.3.2 Computing a Reduction

First, we discuss the special case when the hypotheses of Proposition 8.1 are
satisfied and a transformation ¥ to Tikhonov standard form (as well as its inverse)
is explicitly known. Then determining a reduced system in original coordinates is
relatively straightforward. Although ¥ cannot be directly applied to the reduced
system in the version

yll = f(l)(ylu y2)7 g(O) (y17y2) = 07

there is an equivalent version on the invariant manifold M, introduced in
Theorem 8.1, viz.

Y — — f(l)(ylqu) ) 8.7
(%) Ply) - (—D29(0)(y1,yz)_lDlg(O)(ylayz)'f(l)(yl,yz) » 87

which can be transported back via ¥, to a differential equation with invariant
manifold M, see [25].

Example 8.5. The reduced system for reversible Michaelis—Menten.
Here the small parameter is (assumed to be) eg, and system (8.1) gives the
function

h(o) _ ( (kls + k_l)c )
—(k1s+k_1+ ko +k_o(so—s—c))c) "

The differential equation with right-hand side /() is a scaled linear system, and a
first integral (and therefore a transformation) can be found explicitly. Carrying out
the program outlined above (see [25]), one obtains the reduced equation, in addition
toc =0,

. S(klkz +k_1k_o) —k_1k_250
kls + k71 + kg + k,Q(SO — S) ’

S:—eo

which is generally different from the ad hoc-reduced equation, and actually appears
less complicated (no square roots). But note that the Tikhonov—Fenichel reduction
coincides with the ad hoc reduction when k_o5 = 0.

If an explicit transformation is known, it may provide an additional benefit
because Theorem 8.1 in Verhulst [37] characterizes the admissible initial conditions.
Moreover, for Michaelis—Menten one can verify Hoppensteadt’s [14] criteria for
convergence on the interval [tp, co) (notation from Theorem 8.1).

Generally, one cannot hope for an explicit construction of a transformation to
Tikhonov standard form, but still it is possible to compute a reduced equation. If the
slow manifold M, can be explicitly represented as the graph of some function,
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Fenichel ([8], Lemma 5.4) and Stiefenhofer ([33], Equation (2.13), with a different
and quite short proof) gave expressions for the reduced equation.

One can carry Fenichel’s observations further to obtain a reduced system in the
general setting. A closer look at Eq. (8.7) shows that one gets p(y) via the kernel-
image decomposition of the derivative

(D) Daso))
D19 (y) D2g' (y)

(compare Eq.(8.6)) by computing the kernel component of (f(V)(y), g™ (y))t".
Since the kernel-image decomposition is preserved in coordinate transformations,
one obtains (see [25]):

Proposition 8.2. Given the eigenvalue condition from Proposition 8.1 for trans-
formability to Tikhonov standard form, near a point xo with h(®) (xg) = 0, one
obtains the reduced system of (8.3) by computing the kernel component of h") (x)
with respect to the direct kernel-image decomposition of Dh(®) (z).

As noted in [25], the projection onto the kernel can be found from the minimal
polynomial of Dh(®) (z), and for some—relatively small—examples this approach
is computationally feasible. For higher dimensions and many parameters, this
procedure becomes prohibitively expensive. But in any case the argument shows that
for polynomial (or rational) 2(?) and h(1) the reduced system will have a rational
right-hand side.

A practicable method to compute reduced systems was recently developed in [9].
It is based on an auxiliary result from classical Algebraic Geometry.

Lemma 8.1. For system (8.3) with polynomials (or rational functions) h'®) and
R, et xo be such that h\©)(xq) = 0 and that the eigenvalue condition from
Proposition 8.1 hold for Dh) (x¢), with m = rank Dh®) (xq). Then there exist
a (n + m) x m matrix P with rational entries, of rank m, and a vector valued
polynomial p with m entries, such that

WO (2) = P(z)u(x)

in some Zariski neighborhood of xy. By appropriate choice of the neighborhood,
one may assume that h\®) and p have the same zero sets. The entries of | may be
taken as any m independent entries of h(9).

This Lemma, which is proved in [9], is almost trivial in the local analytic
(or differentiable) setting, in view of the Implicit Function Theorem. But the point
is that P is rational, and that there are constructive methods to determine P. With
this auxiliary result, the reduction is relatively straightforward, as is shown in the
next theorem.

Theorem 8.2. For system (8.3), with assumptions as in Lemma 8.1, let xo be such
that h(©) (x0) = 0. Then the reduced system, in a Zariski neighborhood My of g in
the zero set'Y of ), is given (in slow time) by
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o' = b (@) — P(x) (Du() P(x)) " Du()h® ().
Proof. The eigenvalue conditions at x( guarantee that Y is locally an n-dimensional
manifold. Let M, be a relatively open subset of Y such that the eigenvalue

conditions hold for all points of M. Denote the columns of P by py,...,pm. The
Jacobian matrix of 7(?) equals

m

DhO (@) = 3 (p1(@) Dpa() + pa() Dpy ()
i=1

in a Zariski neighborhood of x(, and therefore
DhO(z) = P(z) - Du(z) forallz € M. (8.8)
Now fix x € My. Then
Ker DY (z) = Ker Dpu(z), (8.9)
due to the rank condition for P(z). The condition rank P(xz) = m also implies
Im DR () = Im P(z).
From our basic hypothesis we have the direct sum decomposition (8.6). Set
A(x) := Du(x) - P(z).
We first show that A(z) is invertible. Thus let 5 € R™ be a solution of the equation
Du(z)P(x)B = 0. (8.10)
The direct sum decomposition and
P(z)B € Ker DAY () N Tm DA (z)
show P(x)3 = 0. Since P(z) has full rank, we see 5 = 0. Thus Eq. (8.10) admits
only the trivial solution, whence A(x) = Du(z)P(z) is invertible.
Moreover, due to the direct sum decomposition (8.6), for any y € R"™™ there
exist z € Ker Dh(?)(2) = Ker Du(z) and o € R™ such that
y=z+ P(z)a.

Since z = y — P(z)a € Ker Du(x), one finds

Du(z) (y — P(z)a) =0,
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which implies o = A(x) ! Du(z)y, and thus
2=y — P(z)A(x)" Du(x)y.

Apply this to h(Y) () to obtain the assertion. O

Remark 8.1. (a) It may be appropriate to discuss invertibility of A(x) and the
eigenvalue condition in more detail. The zero set Y of h(®) is an algebraic
variety in R, and we are actually interested in an n-dimensional component
My of this variety. For 2 € Y, Dh(®)(z) must therefore have eigenvalue 0 with
geometric multiplicity n. If the geometric and algebraic multiplicity are equal
to n then (and only then) the kernel-image decomposition (8.6) exists, and the
latter is equivalent to invertibility of A(x). Thus it is possible to write down the
equation in Theorem 8.2. But additional conditions (for instance, all real parts
of eigenvalues < —p) are necessary to make this a meaningful reduced system.

(b) The matrix A(x) is of size m x m, hence relatively small. One should also
emphasize that inverting this matrix is not actually necessary to determine the
reduced system: It suffices to solve a system of linear equations with this matrix.

(c) The eigenvalue condition (ii) from Theorem 8.1 on Dh© (x) is satisfied if and
only if all eigenvalues of A(x) have real part < —p. Indeed, by virtue of Eq. 8.8
and linear algebra the nonzero eigenvalues of these two matrices are the same.

Example 8.6. Trreversible Michaelis—Menten with slow product formation.

This is an example for a slow—fast reaction separation. One considers the familiar
differential equation (8.1), but now with small parameter k3. The underlying
assumption is that product formation is much slower than formation of complex and
degrading of complex back to enzyme and substrate. One has (with the arguments
8, ¢ suppressed)

h(O): <_,U*)’ P = <_1>7 ,u:kzleos—(kls—i-k,l)c, h,(l): ( 0 )
I 1 —c
Thus
-1
A= (ki(eo — ¢), —=(k1s + k-1)) ( ] ) = —(ki(eo —¢) + k1s + k1)
and the reduction procedure yields the system
(s) _ ko ((k18+k—1)c>
¢ k1(€0—0)+k18+/€_1 kl(eo—c)c

on the invariant variety M defined by n = 0. Using the parametrization of M, one
may obtain a reduced equation for substrate alone, viz.

3 kaokiegs (kis + k—1)
k1k_1e0+ (kis + k_1)?

S =
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This is different from the standard reduction based on QSS for complex. This
example illustrates that different QSS assumptions (QSS for the species C, resp.
QSS with slow product formation) will lead to different reductions.

Example 8.7. The cooperative system with small parameter ey (see Example 8.2
above) was originally discussed in [25], with the minimal polynomial approach
(and serious reliance on a computer algebra system). Theorem 8.2 makes this
computation feasible even by hand. With the abbreviations

o = —(kl + kg)S - (k,1 + kg) - (k,Q + k,4)(50 — S8 —C — 262)
ﬂ = —kls + k,3 + k4 - k,Q(SO — S —C — 202)
one has

(]C_l + ki1s — k38)01 + (kls + k_3)02
hO = cra+ cf )
kgclS - (kfg + k4)02 + k7461 (50 —S—C — 202)

—le
h(l) = kls + k,Q(SO — S —C — 202) B
0
and the (relevant component of the) zero set of h(9) is given by ¢; = ¢; = 0.

A decomposition according to Lemma 8.1 is given by
k71 +k15—k3$ k1$+k,3

P = « 15}
kss + k_4(80 —S8S—C — 262) —k_3—ky

(2

Note that such a decomposition is not unique. For A = Dy - P one obtains

and

—kis+k_s+ks—Ek_2(so—s)
Als. 0. 0) = CL(S) 1 3 4 2(S0
(87 ’ ) (k38+k_4(80—8) —k_3—ky

with abbreviation a(s) = —(k1+k3)s— (k—1+k2) — (k2 +k_4)(so — ). The matrix
A can easily be inverted, and the eigenvalue condition is readily checked. The final
result for the reduced equation is, of course, identical to the one given in [25].
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Example 8.8. To illustrate the feasibility of the approach via Theorem 8.2, we
discuss a somewhat bigger example, from Stiefenhofer [33, Section 3], whose
reduction was computed in [33] only for some special parameter choices. This
system models communication between slime mold cells such as Dictyostelium
discoideum. Communication is effected by cAM P, denoted by P, furthermore S
stands for the substrate AT P, while D and R represent transmembrane receptors,
with D and R representing the corresponding bound states. (See [33] for more
details.) The reaction scheme, including production and decomposition of cAM P
with constant rates, can be written as follows.

D= R S+RE¥EpyrR  Rphw
ERK—
p— k41 — ks
D = D+2P Rk: R+ 2P,
4 -5

with parameters k; > 0, and the €’s indicating the slow reactions. We also adopt the
further simplification s(t) = S > 0 from [33].

We use the first integral d = c—d—r — T, with some constant ¢ > 0, to obtain

the system

P = —2kadp® + 2k_s(c —d —r —F) — 2ksrp® + 2k_57 + cks — ek_3p + eko ST,
d=—ksdp® + k_s(c—d—71—T) —ekid + ek_y7,

7= —ksrp® + k_sT + ckid — ek_1r,
= k5rp2 — k_s5T
(8.1D)
With
2 2
_ —ksrp? + k_sT _ 01
d = P(p,d =
M(pa ,’f',’f') <—k4dp2+k4(c—d—7’—F) 9 (pa ,’f',’f') 1 O I
—-10
and

ks — k_3p+ ko ST

_ —kid + k_lT
KD (p,d,r,T) = !
(p,d,r.T) kd — k_yr
0
Equation (8.11) may be written as
_ =P pu+ Eh(l),

QU
/e B SV
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which is a representation according to Lemma 8.1. The variety Y may be taken as
the zero set of i, and one verifies that the choice

My =Y N intRY,

is possible. Straightforward computations show that the eigenvalue condition is at
least generically satisfied, and the reduced system on the invariant set M is given by

p N
dlal 1™
E r _6 N3

T Ny

on a suitable subset W C R?, which is determined from M, N R% by this
elimination, with

Ny := —k_3p°kska + (k2ST kska + kskska) p* — k—3 (k—ska + k—4ks) p>
+(2k1 (—k_aks + k_ska)d — 2k 1 (—k_aks + k_ska) 7
+Ska (k,5k4 + k,4k5)7+ ks (k,5k4 + k,4k5) )p2 — k_3pk_sk_4 + ksk_sk_4
+koSTk_s5k_4,
No := 2kadp?ksk_3 + (—2kskska — 2kaST kska) dp® + ((2kak_s5k_3 — ksk_4k1)d
+ksk_ak_17)p? + (— 4kid?kak_s + ((—4ksk_ak1 +4k_1kak_5)7
—2kgk 5kaST — 2kak_sk3)d+ 4k 172k _4ks)p — kidk_sk_4 +k_ 17k _s5k_4,
N3 =2 k57‘p4k4k,3 + (—2 ksksks — 2]6257165]64) T‘ps + (k,5k4k1d
+ (2ksk—ak_3 — k_1kak_5) T’)p2 + (4 k1d2k4k275
+(—4k_1kak_5+ 4ksk_ak1)rd — 4]@717“2/674/4:5 + ( — 2ksk_4ks
-2 k5k74k257)7“)p + kidk_sk_4 — k_1rk_5k_4,
Ny = (kskak1d — kska (k-1 +2k_3)7) p4 + (4 k5k4k‘1d2 + 4dkska (—k—1+ k1) rd
—4 k5k71k47’2 + (2k2ST kska + 2 kskska) T)p3 + (k:5k:74k1d - k5k74(k71
+2 k73)7’)p2 + (2ksk—akoST + 2 ksk_ak3) rp

and

Q L= k5p4k4 + (4 k4k57" +4 k4dk5)p3 + (k,5k4 + k74k5)p2
+ (4 k57‘k_4 +4 k4dk_5)p + k_5k_4.

One may eliminate the variables » and 7 via

ks (—kadp? + k_a(c — d ksp? (—kadp? + k_a(c — d
Mo:{(l%d,n?)"; _ kos(zhadp” + k—a(c = d)) 5p”(—hadp” + k-l ))}7

7F =
k_4(k—5 + ksp?) k_4(k—s5 + ksp?)

and obtain the equivalent version
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Ny := —p'98dks3kake — p°ks3kak_g k_ 5 + p®(cStks3ka k_4 ko

—25dks3ka k_a ko — 2 Sdks2k_5 ka2koks3kak_a k3) + p7(—k‘53k‘742k‘73
—3ks?k_skak_4 k_3)+ p6(63k53k742k22 +2¢Sksk_s kak_4 ko — Sdks3k_42ko
—4.8dks?k_s kg k_sg ko — Sdks k_52ka?ko3 ksk_s ks k_4 ks — 2dks®k_4°k1
+2dks2k_skak_aki — 2dks?k_skak_ak_1 + 2dks k_52ka%k_1 + k:53k:742k:3)
+P5(—3 ks’k_sk_4%k_3 —3ksk_52kak_4 k_3)+ p4(2 cSks?k_s5k_4%ko

+cSks k_s2ka k_g ko — 2 Sdks?k_5 k_4%ko — 2 Sdks k_52ks k—_4 k2
+2cks2k_s5k_42k_1 —2cks k—s2kak_ak_1 — 4dks3k_5 k_4%k1
—2dks2k_s5k_a’k_1+4ddks k_52kak_a k1 + 2dk_53ka’k_1
+3ksk_52kak_aks) +p3(=3ksk_52k_4%k_3 —k_5%kak_ak_3)

+p2(CSk‘5 k752k2742k22 + 3k252k275 k‘742k‘3 — Sdks k‘752k‘742k‘2

+2cks k—5k_42k_1 —2ck_53kak_ak_1 — 2dks k_5%k_4°k1

—2dks k_52k_42k_1 +2dk_s53kak_s k1 + 2dk_53kak_ak—_1 + 3ks k—52k_42ks
+hk_53kak_4ks) — pk_53k_4%k_3 + k_53k_4%ks,

Ny = pg(2 Sd2k53k42k2) + p8(2 dks3kak_4 k_3)+ p7(—2 cSdks3ka k_4 ko
+2 Sd2k‘53k‘4 k_4ko + 4Sd2k52k‘75 k‘42k22 -2 dk‘53k‘4 k_aks3)+ pﬁ(—dk53k742k‘1
+6dks?k_skak_sk_3 —dks?k_skak_ak_1) 4+ p®(—6dks?k_5ksk_4ks
—4 chkszk‘f{, kak_4ko+4 Sd2k52k‘75 kak_4ko+2 Sd2k5 k‘752k‘42k‘2)
+p4(+ck52k275 k‘742k‘71 — 3dk‘52k‘75 k‘742k21 — dk52k75 k‘742k‘71
+6dksk_52kak_ak_3 —2dksk_s%kak_ak_1) 4+ p®(+4d%ks2k_5 k_4%k:
—A4d?ks k_52kak_a k1 +4d%ks k_52kak_a k—1 — 4d%k_53ka%k_1
—6dks k_52kak_a ks —2cSdks k_52kak_a ko + 2 Sd%ks k_s52ka k_4 ko
—dedkZk_5k_4%ky —dedks k_52kak_ak_1) +p?(2cks k_52k_4%k_1
—3dks k_52k_42k1 — 2dks k—_52k_42k_1 4+ 2dk_53ka k_a k_3
—dk‘753k‘4 k—ak_1)+p(4 c2k‘5 k752k742k271 — 4 cdks k‘752k‘742k‘1
—8cdks k—52k_4%k_1 +4cdk_s53ka k_ak_1 +4d%ks k_52k_42k;
+4d2ks k_52k_42k_1 —4d?k_53kak_s k1 — 4d2k_53ka k_a k_1
—2dk_53kak_gk3) +ck_53k_42k_1 — dk_53k_4%k1 — dk_53k_4%k_1,

Q = (pOks?kak_4 + p®(4dks?ka k_4 — ddks k_5 ka?) + p*(ks?k_a? + 2ks k_s kak_4)
+p3(4dcks ks kak_a) +p?(2ks k_s k_4® + k_s52ka k_4) + p(4d cks k_5 k_4>
—ddksk_sk_a® +4dk_5%kak_a) + k_5%k_42) (p?ks + k_5).

Up to scaling of time, one therefore obtains a two-dimensional equation with
polynomial right-hand side (of degree 11) on W. (Q > 0 on W follows from
@ > 0on Ri.) In particular one has Poincaré—Bendixson theory available in the
asymptotic limit.

8.3.3 Slow and Fast Reactions

For slow and fast reactions the reduction program via Tikhonov-Fenichel was
carried out by Schauer and Heinrich [27] (who cited Vasil’eva [36] for singular
perturbation results), and continued by Stiefenhofer [33]. (A recent paper by Lee
and Othmer [19] reproduces several of these results.)
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Before discussing slow and fast reactions in some detail, it will be necessary to
give a more precise outline of the work by Feinberg [7], Horn and Jackson [15],
and others. We mostly follow Feinberg’s Lecture Notes [7]; a short overview can
be found in Section 2 of Anderson’s recent paper [1]. We sketch the formalism
for chemical reaction networks and reaction systems with mass action kinetics,
using the irreversible Michaelis—Menten system as an illustrating example. One
starts with an ordered collection of ¢ chemical species, which are identified with
the standard basis of R?. Next one forms complexes, which formally speaking
are nonnegative (integer) linear combinations of species (appearing as reactants or
as reaction products). Then reactions are defined as ordered pairs of complexes,
usually written in a notation with reaction arrows. (The notion of reversible reaction
is obvious). For Michaelis—Menten the species are F, S, C, and P, which will in
the following be identified with the standard basis vectors of R*. Moreover one has
complexes E + S, C, F + P, and reactions

EFE+S—-C; C—-FE+S;, C—-E+P.

Using the identification of species and standard basis vectors, one assigns to each
reaction a vector in RY, counting the reactants with negative sign, calls their span in
R? the stoichiometric subspace S, and collects these column vectors in a matrix
Z which is related to the stoichiometric matrix as defined by Feinberg. For the
Michaelis—Menten example one has, in the above order, column vectors

-1 1 1 -11 1
-1 ’ 1 ’ 0 Cthus Z = -11 0
1 -1 -1 1 -1-1
0 0 1 0 0 1

The differential equation for the concentrations may now be written in the form

e -1 1 1 I
d|s 11 0 165
—_ = . k_lc
dt | ¢ 1 —1-1 o

» 0 0 1 2

and generally for mass action kinetics one obtains a differential equation system of
the form

i=7 &) (8.12)

for the vector of concentrations. ¢ can be characterized more precisely; see [7] for
details.

There is a natural assignment of a directed graph to a reaction network: The
nodes are the complexes, and there exists a directed edge from one complex to
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another if and only if there is a reaction from the former to the latter. The connected
components of this graph are called linkage classes. The deficiency of a network is
then defined by

0 := # complexes — # linkage classes — rank Z,

and one can show that § > 0. Finally, one calls the reaction network weakly
reversible if, whenever there is a reaction from one complex to another, there is
also a chain of reactions from the latter to the former.

Both R‘i and its interior are positively invariant for the system (8.12). The
cosets x* + S, with S the stoichiometric subspace and 0 # z* € RY, are called
the stoichiometric compatibility classes, and are positively invariant sets for the
differential equation. Now we can state one fundamental result of the theory.

Deficiency Zero Theorem (Horn and Jackson [15], Feinberg [7]). Assume that
(8.12) corresponds to a weakly reversible deficiency zero network. Then the
following hold.

(i) The intersection of every stoichiometric compatibility class with int RZ_ con-
tains exactly one stationary point.
(ii) This point is locally asymptotically stable within its compatibility class.

Remark 8.2. (a) The proof of part (ii) is based on an ingenious choice of a
Lyapunov function. Linear asymptotic stability cannot be deduced from the
inequalities in this argument.

(b) In Feinberg’s Notes [7] a stronger claim is made, viz. global asymptotic stability
within the intersection of the stoichiometric compatibility class and int R .
Later a problem in the global stability argument was pointed out; and generally
global stability is still a conjecture. Only recently Anderson [1] succeeded with
a proof in the case of a single linkage class.

Now we turn to slow—fast systems of chemical reactions. These are usually
described by

i=hO)+erM(z), zeR (8.13)

with the fast subsystem h(?) (large rate constants) and the slow subsystem eh (1)
(small rate constants, symbolized by the factor ¢). Thus both (%) and A(") admit
a representation of the form (8.12). A substantial part of the following result
is due to Schauer and Heinrich [27]. The transfer from Schauer and Heinrich’s
condition to weakly reversible deficiency zero systems in the statement and proof
of the following Proposition is a first step, in ongoing work [9], toward a more
comprehensive theorem.

Proposition 8.3. Assume that the fast subsystem of (8.13) has deficiency zero and is
weakly reversible. Assume moreover that every stationary point in int R% is linearly

asymptotically stable for h(®) within its stoichiometric compatibility class. Then the
following hold.
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(a) The eigenvalue conditions from Proposition 8.1 are satisfied for Dh(®) (x0) at
all zeros o € int R of h(©),
(b) There exists a linear transformation of the system to Tikhonov standard form.

Proof. We write
RO (z) = Z - &(x)

and let zp € int Ri be a stationary point. Let s be the dimension of the
stoichiometric subspace, thus rank Z = s. Then

Dh O (z0) = Z DB(x)

admits the eigenvalue 0 with multiplicity > ¢ — s (due to the rank of Z) and has
s eigenvalues with negative real part, due to the linear stability requirement. In
particular

rank Z = rank Dh(% (z). (8.14)

Therefore the zero set of h(%) is locally a manifold of dimension s. Moreover there
are independent linear forms Aq, ..., Aj—s suchthat \;0 Z = 0,1 <14 < g— s, and
these are also first integrals of 2(?). Completing these by suitable linear forms to a
basis of the dual of R? will produce the desired transformation to Tikhonov standard
form. O

Remark 8.3. The importance of the rank condition (8.14) for the existence of a
linear transformation to standard form was first noted by Schauer and Heinrich [27].
They also stated (with only a partial justification for some special cases, it seems; see
[27, Section 4]) that the rank condition holds when every fast reaction is reversible
with fast reverse reaction. It seems that linear stability conditions did not play a role
in [27].

8.3.4 Why Does the Ad Hoc Method Persist?

As noted earlier, the ad hoc reduction produces the same result as Tikhonov—
Fenichel in some relevant cases, but not in general. In [10] we provide a
detailed investigation for several basic reaction schemes in biochemistry (including
Michaelis—Menten), with the result that ad hoc and Tikhonov—Fenichel reduction
coincide when certain product-forming reactions are irreversible, but differ in the
fully reversible case. Since such reductions are actually used to determine rate
constants and other reaction parameters, it is very likely that serious discrepancies
between ad hoc reduction and reality would have been noticed in experimental
verification. To explain this apparent lack of serious discrepancy, we note two
possible reasons for good approximation by the irreversible reduced system.
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First, some reversible reactions may be almost irreversible (for instance, k_o may
be very small in the Michaelis—Menten example). Since the reduced system in the
irreversible case is the limit of the reversible case, the discrepancy may be hardly
noticeable.

Second, continuous removal of product may be responsible, as noted in Heinrich
and Schuster [13], Keener and Sneyd [18]. A thorough justification of this argument
was also given in [10] for reversible Michaelis—Menten with product removal (rate
a > 0). Indeed, a Tikhonov—Fenichel reduction of the system

$ = —kieg + (kls + k_l)c,
¢ = kleoS — (k:ls + k71 + kQ)C + k,Q(eo — C)p,
p = kaec—k_2p(eo —c) —ap

with “small parameter” eq yields the familiar “irreversible reduced equation” (with
« vanishing along the way). See Examples 8.3 and 8.5 with k_o = 0.

8.4 Finding Small Parameters

While the results in the previous section are based on a well-defined mathematical
scenario, there is another facet of QSS which, in the present stage, is not so amenable
to rigorous mathematics. The underlying problem is that the translation of a model
assumption to mathematical terms is rarely straightforward, and it may depend on
seemingly small details. Here we are concerned with translating certain assumptions
on chemical reacting systems—in particular QSS assumptions—to mathematical
terms.

8.4.1 Underlying Assumptions: QSS vs. Slow-Fast

Frequently QSS assumptions—directly or indirectly—amount to slow—fast hypothe-
ses, and we briefly review some of these.

A direct slow—fast assumption (small and large rate constants) underlies the
discussion of slow and fast reactions, as in Eq.(8.13). As noticed above, this is
different from a QSS assumption for chemical species, which we discuss now. An
indirect slow—fast assumption for species (based on the fact that the linearization of a
system (8.4) in Tikhonov standard form necessarily has some very small eigenvalues
near the slow manifold) works by seeking conditions to ensure a very small ratio of
absolutely smallest to absolutely largest eigenvalue of the linearization (near some
submanifold). This was used, for instance, by Duchéne and Rouchon [6], but the
method frequently has to rely on numerical calculations, and general parameter
conditions seem to be hard to derive. A different indirect slow—fast assumption
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proposed by Segel [29], Segel and Slemrod [30] starts from the observation that
in singular perturbation scenarios there is a fast initial phase (a “boundary layer
in time”; see Verhulst [37]), followed by a slower time regime. From time scale
estimates for the initial and the later phase, and the requirement that their ratio
should be very small, Segel and Slemrod [30] obtain conditions on the parameters
in the Michaelis—Menten system. The approach by Schauer and Heinrich [26] may
also be justified by singular perturbation arguments, but the line of reasoning is
concerned not with time scales but rather with the presumed slow manifold, and
derives parameter conditions from requiring closeness of a solution trajectory to
this manifold.

Generally, all these approaches are (at least partly) of heuristic nature, and
validity of QSS will have to be checked a posteriori. A potentially erroneous
conclusion from the time scale comparisons in Segel and Slemrod [30] for so-called
reverse QSS (QSS for substrate) is discussed in [10, Section 4]. Moreover it is easy
to construct examples which satisfy the condition proposed by Schauer and Heinrich
[26] but do not satisfy any initial phase requirement (as stated in Atkins and de Paula
[2]; see quote in Sect. 8.2): consider systems with a first integral. We emphasize
that, while QSS hypotheses frequently lead to singularly perturbed systems (with
the benefit of a solid reduction theory), this does not seem to be the case in every
relevant scenario. Again, much depends on the exact notion of QSS that is used.

8.4.2 The Role of Scaling

In the context of this chapter, a scaling transformation for an ordinary differential
equation consists of multiplying the independent variable (time) and each dependent
variable by positive numbers. In most mathematically oriented texts and research
papers (see in particular Murray [22], Segel and Slemrod [30], Heineken et al. [12])
scaling is used, and frequently employed to find “small parameters.” While there is
no doubt that scaling is highly relevant for an appropriate analysis of differential
equations modeling a real-life situation, in particular for concrete estimates, there
may be some danger in the “lumping together” of several model parameters into one
“small parameter” for asymptotic arguments.

We will briefly discuss the necessity, benefits, and limitations of scaling for
irreversible Michaelis—Menten and the “small parameter” ¢* = 2—8 from Heineken

et al. [12]. (For the Segel-Slemrod “small parameter” ¢ = Sofklﬁ—see [30]—
similar remarks apply.) Note that £* tends to zero when ey — 0, and this case
has been resolved above in a satisfactory manner. But €* also tends to zero when
so — 00, and to properly analyze the latter case one should keep in mind that the
relevant domain for the Michaelis—Menten system (8.1) is defined by the inequalities
0 <c<eand0 < s+ c < sg. Hence sg — oo will blow up the region of
interest. Since Tikhonov’s theory applies to differential equations on fixed domains,
scaling is necessary here. We scale (following Heineken et al. [12] in part, but not

completely) by setting 0 = s/sg and v = ¢/eg, and € = 1/ s, obtaining the system
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o= —]{1600'(1 —’7)+€'€0/€_1’7 (8 15)
¥ = thio (1 —7) — (k_1 + k2)y
on the domain defined, e.g., by the inequalities 0 < o0 +egy < 1,0 <~ < 1.
With the usual notation we have

B0 _ ( 0 > rc. <—k1600(1 —7)) _
kio(1—7) — (k=1 + ka)y
The zero set My of h(®) has two components; the one defined by v = 1
corresponds to the standard QSS assumption. The conditions for Tikhonov—Fenichel

are satisfied, and a straightforward computation shows that the reduced equation is
given by

=0, y=1.

In other words, Tikhonov—Fenichel applies but it yields a degenerate reduced
system. Including higher-order terms in € (thus passing to a O’Malley-Vasil’eva
expansion, see Verhulst [37]) one formally obtains the familiar reduced equation.
The approach in [12, Equations (10) to (13)] encounters the same problem in the
case s9p — 00, because some of the scaled parameters approach zero in this limiting
case. Taking this into account, the lowest-order reduction in [12] will also be trivial.

The point we want to emphasize here is the necessity to consider all possible
ways in which a “small parameter” may approach zero. This also may be of some
practical relevance, since eg — 0 (“very little enzyme”) and so — oo (“very
high substrate concentration”) represent different experimental settings. These cases
require individual consideration, with one case not amenable to standard singular
perturbation methods. However, other lines of reasoning, such as the phase plane
arguments in [23], show that a QSS assumption is indeed justified for this scenario.

Finally, we note that the other component of M for Eq. (8.15) is given by o = 0,
which would correspond to the reverse QSS assumption (with s approaching its
equilibrium 0 very fast). In this case the Tikhonov—Fenichel reduction formalism is
not applicable, due to a nilpotent Jacobian. (One may question whether reverse QSS
is chemically sensible for very high sg.)

8.4.3 Near-Invariance Heuristics

In [24] a proposal was made to generalize Schauer and Heinrich’s [26] heuristics
from Michaelis—Menten to general systems. We will present the heuristics here in
a somewhat informal manner, referring for details to [24]. Thus we start with a
parameter-dependent differential equation

& = q(z, p) (8.16)
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withq : U x V — R", where U C R" is a neighborhood of a compact set K* and
V is some subset of R? (d > 1).

®

(i)

(iii)

(iv)

We assume that certain functions 11 (x, p), ..., ¥, (x,p), defined for all z €
K, are in QSS (according to the Working Definition) for some relevant
solution. Thus their rates of change, given by the Lie derivatives

(bi(xa p) = Lq(djl)(xa p) = <grad1/)l-(:c, p)a q(Ia p)>v 1 < { < T,

are small along this solution. (All derivatives are to be understood with respect
to x only.) In applications, the 9; are frequently coordinate functions.
Forp e V let

K=Ky ={y €K 61(y) = = 6,(y) = 0}

Then, due to continuity and compactness arguments, the maximum of the terms
|p1(2)],...,|dr(x)| tends to zero if and only if dist (z, K') tends to zero. Thus
requiring QSS with higher and higher accuracy, one obtains invariance of the
set K for the differential equation in the limiting case. This is one motivation
for the following definition.

Near-invariance (see [24]): Let K*, ¢1,..., ¢, and K be as above, let the ¢;
be sufficiently differentiable, and assume that the rank of (D1, ..., D¢, ) on
K is equal to r. Given 0 < 6 < 1 we say that K is d-nearly invariant for
& = q(z, p) with respect to ¢1, ..., ¢, if forall z € K and 1 < j < r one has
the inequality

| (grad ¢;(z, p), q(x, p)) | < 0 -[lgrad ¢;(z, p)| - [lg(z, p)I|.

The inequality always holds for § = 1, due to Cauchy—Schwarz, and for § = 0
the condition implies invariance of K. Thus one may expect solutions to stay
close to K when ¢ < 1.

It should be emphasized that this is another heuristic approach, replacing slow—
fast heuristics by “invariant set-heuristics.” Also, the notion does not only
depend on the set K but also on the defining functions.

Some properties of near-invariance.

* Locally the desired property from (ii) is a consequence of near-invariance
(see [24]): Let K be d-nearly invariant. Then locally in time (|t| < p),
solutions starting on K remain (C-§)-close to K, with C and p independent
of the starting point and of ¢.

* In the limiting case 6 — 0 one obtains an invariant set. Since one has a
parameter-dependent system, and K may change with parameters, one has
to take care that no degeneracies occur, as in scaling procedures, and one
should avoid blowing up K*.

* The notion is compatible (up to an error of order &) with Tikhonov—
Fenichel: While the asymptotic slow manifold M, in the singular



176 A. Goeke and S. Walcher

perturbation setting is not necessarily (C - £)-nearly invariant, by an order &
correction in the defining equations one will obtain order € near-invariance
(see [24]).

(v) Use in practice: Let a parameter-dependent system (8.16) be given on K*.
Let ¢4, - - , ¢, define a desired or suspected nearly invariant set K. The near-
invariance property cannot be expected to hold generally, but only for certain
parameter combinations. Thus evaluation of the near-invariance condition in
(iii) will produce (necessary) conditions for the parameters. Determine (or
estimate)

o Lerad o). p) e )|
o) := { Teradd; (. pl- Ta(e, D)

z € K, 1§j§7’}

as a function of the parameters. Requiring §(p) to be small provides conditions
on the parameter set p. Asymptotic conditions are obtained from the limiting
case d(p) — 0.

Again we emphasize that further analysis and verification is necessary.

Example 8.9. Reversible Michaelis—Menten.
Consider the reversible Michaelis—Menten reaction (8.1), which we restate as

$=- d(s,¢) — kac+ Ek_2(ep —¢)(so — s — ¢), 8.17)

¢ = d)(sv C)a
(the right-hand side will be called ¢) with QSS for complex ¢ (s, ¢) = ¢, and its Lie
derivative

@(s,c) = kieos — (k1s+ k—1 + ka)c+ k_2(e0 — ¢)(so — s — ¢)

on the set K* C R2 givenby 0 < c < eff, s > 0,and s + ¢ < s§. (Here ef) and s;
are upper bounds for the initial concentrations.)
This system was discussed in detail in [24], with attention to the range for which
QSS is assumed to hold. (For instance, requiring QSS only when sufficient substrate
is still present would amount to a different choice of K *.) Here we focus on QSS for
the whole course of the reaction (after some initial phase), and look at the asymptotic
scenario. To obtain QSS conditions for ¢ = ¢, evaluate

Ly(6)(6. ) = (b = ka)(eo = ), ) (2 F (oo el =)

for (s, ¢) € K (taking into account ¢» = 0). One has

[Lq(0)(s, )

= kl—k_g (€ —C),
laGs, o~ | (e0 =)
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and a rough estimate yields

[Lq(9) (s, )] < [kn —k 2] €0 5
llg(s, o)l - llgrad g(s,0)l| = koyr+ky
forall (s, ¢) € K.

The particular case k1 = k_5 actually yields an invariant set (regardless of other

parameters), as noted by Miller and Alberty [21]. For the irreversible case k_» = 0,
the expression for 6* is equal to the one introduced by Seshadri and Fritzsch [32];
compare the discussion in [23].
It may be appropriate to clarify what has actually been gained. By design of
the procedure, one is assured of an invariant set in the limiting case e¢g — 0.
This may be taken as a motivation for choosing the small parameter eg in the
reversible Michaelis—Menten differential equation, which we did throughout this
paper. One then verifies that the hypotheses for Tikhonov—Fenichel are satisfied,
and one obtains a reduced system with a mathematically solid foundation. Finally
(see [10]) one can check a posteriori that QSS does indeed hold for complex under
the assumption of small ey. Thus the circle closes.

Near-invariance heuristics like all the proposed heuristics leading from a QSS
assumption (to a precisely stated QSS assumption) to finding small parameters
should be seen as work in progress, but there seems to be more potential in this
particular approach. One advantage is that the implementation of the procedure (see
(v) above) is in principle straightforward.
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