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and Finite-Time ODEs
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Abstract Lyapunov functions for general systems are difficult to construct.
However, for autonomous linear systems with exponentially stable equilibrium,
there is a classical way to construct a global Lyapunov function by solving a
matrix equation. Consequently, the same function is a local Lyapunov function for
a nonlinear system.

In this paper, we generalise these results to time-periodic and, in particular,
finite-time systems with an exponentially attractive zero solution. We show the exis-
tence of local Lyapunov functions for nonlinear systems. For finite-time systems,
we consider a generalised notion of a Lyapunov function, which is not necessarily
continuously differentiable, but just locally Lipschitz continuous; the derivative is
then replaced by the Dini derivative.

7.1 Introduction

Lyapunov functions were introduced by Lyapunov in 1892 [22] to study stability
of equilibria or other invariant sets. They can also be used to study the basin
of attraction of attractors by their sublevel sets. For simplicity, we will, in the
following, focus on an equilibrium or the zero solution as an attractor. The main
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features of a Lyapunov function are that it (a) decreases (strictly) along solutions
and (b) attains its minimum on the attractor.

Lyapunov functions characterise certain attractivity properties and the basin of
attraction; the necessity, i.e. the existence of Lyapunov functions, has been shown
in so-called converse theorems. However, the construction of a Lyapunov function
still remains a challenging problem. Recently, several algorithmic methods have
been proposed to construct a Lyapunov function for a given system. Many of
these methods face difficulties near the equilibrium or zero solution, since here the
Lyapunov function does not decrease, but is constant.

Let us consider three modern construction methods, the so-called SOS method
(sum of squares) [23–25], where a Lyapunov function that is presentable as a
sum of squares of polynomials is constructed by convex optimisation, the CPA
(continuous and piecewise affine) method [10–12, 16], where a Lyapunov function
that is continuous and locally affine on each simplex of a suitable triangulation is
constructed by linear programming, and the RBF (radial basis functions) method
using radial basis functions to numerically solve the Zubov equation [7]. All
three methods can compute Lyapunov functions on compact neighbourhoods of
exponentially stable equilibria of autonomous systems and include the equilibrium
in the domain of the Lyapunov function computed, given that the equilibrium is
exponentially stable. These methods are, however, very different in nature. The SOS
method is basically a local method, where the domain of the Lyapunov function
can be enhanced by increasing the order of the polynomial Lyapunov function at
the cost of greater computational complexity. The CPA and RBF methods are not
local in nature and have no problems computing Lyapunov functions with large
domains, if an arbitrary small neighbourhood of the equilibrium is excluded [7,16],
respectively.

The problem of including the equilibrium at the origin in the domain of Lyapunov
functions for CPA and RBF for the nonlinear system ẋ = f(x) can be overcome
by studying the linearised problem ẋ = Ax, where A = Df (0). For such
a linear equation, there is a classical method to construct a Lyapunov function
V (x) = xTQx . This function is a local Lyapunov function for the nonlinear system
ẋ = f(x), i.e. V decreases along solutions only in a (small) neighbourhood of the
origin. Hence, the local Lyapunov function can be used to determine a local basin
of attraction and close the gap between the implications of the nonlocal Lyapunov
function and the local behaviour. Moreover, it can be combined with a global
construction method to construct a Lyapunov function which is a true Lyapunov
function even near the equilibrium. For the RBF method this was done in [8].

For the CPA method it was shown that a modified CPA method can always
compute a CPA Lyapunov function including the equilibrium in its domain, first
for planar systems [10, 11] and then for general n-dimensional systems [12, 13].
The key to the existence of a CPA Lyapunov function close to the equilibrium was
to use the Lyapunov function W (x) =

√
xTQx , which satisfies A‖x‖2 ≤ W (x)

and W ′(x) ≤ −B‖x‖2, and to interpolate this function on the edges of a suitably
fine triangulation around the origin.
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This paper generalises these ideas to time-periodic systems of the form ẋ =
f(t, x), where f(t, x) is a T -periodic function, i.e. f(t + T, x) = f(t, x), as well
as to finite-time systems of the form ẋ = f(t, x), considered over the finite-time
interval [0, T ]. The reason why we are enhancing the Lyapunov stability theory
in this direction is because the CPA method has some nice properties like only
assuming f ∈ C2 and is extendable to switched systems [17] and differential
inclusions [1] in a straightforward manner. Hence, the results of this paper will,
besides the theoretical insight into Lyapunov functions, provide the starting point to
develop a CPA construction method for Lyapunov functions for time-periodic and
finite-time systems on domains, which include the attractive solution.

Lyapunov functions for periodic systems are functions v(t, x) where the orbital
derivative v′(t, x) = ∇xv(t, x) · f(t, x) + vt(t, x) is negative. Such a Lyapunov
function can be considered to be T -periodic without loss of generality.

Finite-time systems consider a nonautonomous equation ẋ = f(t, x) over
a finite-time interval I = [0, T ]. Finite-time dynamics were first studied in
applications, in particular in fluid dynamics. The first mathematical theory was
introduced by George Haller, who defined a Lagrangian coherent structure [20],
i.e. time-evolving surfaces which can serve as boundaries of attraction areas. The
relation of Lagrangian coherent structures to finite-time Lyapunov exponents as
well as computational aspects are studied in [18, 19]. Furthermore, hyperbolicity
and stable/unstable cones, which adapt the classical, infinite-time concepts of
hyperbolicity and stable/unstable manifolds to the finite-time case, have been
studied in [2, 5, 6].

While in the definition of hyperbolicity, attractivity is supposed to occur at
every instance within the time domain under consideration, in [14, 26], a concept
of attraction has been introduced, which allows that trajectories near an attracting
solution move away from it, provided they return before the end of the time period.
In this paper, we will use this notion of attractivity, where the distance of a solution
x(t) to the zero solution at time T is smaller than the distance of the solution at
time 0, i.e. ‖x(T )‖ < ‖x(0)‖. Note that for finite-time stability, the chosen norm is
crucial, since different norms lead to different notions of attractivity; this is not the
case for autonomous or periodic systems with infinite time because all norms on R

n

are equivalent. Lyapunov functions for general nonautonomous systems have been
studied in [15, 21], whereas Lyapunov functions for finite-time systems have been
considered in [9, 14].

To characterise stability of zero solutions in periodic systems, one can use
Floquet theory. We will show that Floquet theory is also helpful in the finite-
time case; however, similar results to the periodic case can only be obtained under
conditions that are stronger than assuming the attractivity of the zero solution and
only for a specific type of vector norm. It turns out that in the general case a
finite-time Lyapunov function can be constructed by a different approach.

An autonomous system can be regarded as a periodic system, and a periodic
system can also be considered over a finite-time interval; hence, we can compare
the different notions of attractivity in these cases. It turns out that finite-time
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attractivity implies periodic-time attractivity, whereas the notions for autonomous
and periodic-time are equivalent.

The paper is structured in the following way: in Sects. 7.2–7.4 we study
autonomous, periodic, and finite-time systems, respectively. In each section, we
start with linear systems, characterise exponential stability of the zero solution
(equilibrium in the autonomous case), and show the existence of global Lyapunov
functions. Furthermore, we consider nonlinear systems and prove similar results for
local Lyapunov functions. While the results in the autonomous case are classical,
parts of the periodic case are new. The main advance of the paper is the study of
the finite-time case. In Sect. 7.5, we compare the notion of attractivity in periodic
systems with the same system regarded as a finite-time system, and then we compare
all three notions for an autonomous system. We end the paper with conclusions and
an outlook for further work and applications of the results.

Notations

Definition 7.1. Consider a matrix A ∈ C
n×n.

1. A is called Hurwitz if all its eigenvalues have a strictly negative real part.
2. A is called Hermitian if A is equal to its conjugate transpose A∗ := AT .
3. A is called positive definite if all its eigenvalues are real-valued and strictly

positive.

Note that a Hermitian matrix A has real eigenvalues and vTAv is a real number
for all v ∈ R

n.
We denote by ‖ · ‖2 : Cn → R the Euclidean norm ‖v‖2 =

√〈v, v〉, where
〈v, w〉 = vTw, and by ‖ · ‖ : Cn → R an arbitrary vector norm on C

n. As usual, for
A ∈ C

n×n, we denote by ‖A‖ the induced matrix norm

‖A‖ := max
x∈Cn,‖x‖=1

‖Ax‖,

so that ‖Ax‖ ≤ ‖A‖‖x‖ holds for all x ∈ C
n. For x0 ∈ R

n and η > 0, we define
the open ball with respect to a norm on R

n byBη(x0) := {x ∈ Rn | ‖x−x0‖ < η}.

7.2 Autonomous System

The section about autonomous systems does not contain any new results, but
collects classical results that are needed for the periodic and finite-time case. It is
included for the convenience of the reader, and for comparison with the other two
cases.
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Lemma 7.1. Let C ∈ C
n×n be a Hermitian, positive definite matrix, and L ∈

C
n×n be Hurwitz. Then there is a unique solutionQ ∈ C

n×n of the matrix equation

QL+ L∗Q = −C

and Q is Hermitian and positive definite. If C and L are real-valued, then so is Q.

The proof is similar to the real case, cf. [21, Theorem 4.6].

Definition 7.2. A (strict) local Lyapunov function for the equilibrium at the origin
of system ẋ = f(x), where f ∈ C1(Rn,Rn) with f(0) = 0 is a function V ∈
C(U,R) ∩ C1(U \ {0},R), where U ⊂ R

n is an open neighbourhood of 0, which
satisfies

1. V (x) > 0 for all x ∈ U \ {0} and V (0) = 0 and
2. V ′(x) < 0 for all x ∈ U \ {0}
where the orbital derivative is defined by V ′(x) = ∇V (x) · f(x). If U = R

n, then
the Lyapunov function is called global.

Note that the condition on differentiability of V can be dropped if the orbital
derivative is replaced by the Dini derivative; this will be considered in Sect. 7.4.1.
A Lyapunov function gives important information about the stability and the basin
of attraction of the equilibrium 0.

Theorem 7.1. Let V be a local Lyapunov function. Then the equilibrium 0 is
asymptotically stable and any compact set V −1([0, c]) with c > 0, contained in U ,
is a subset of the basin of attraction of 0.

Theorem 7.2. Consider the autonomous, linear system

ẋ = Ax , where A ∈ R
n×n. (7.1)

Every fundamental matrix solution Φ(t) of (7.1) can be expressed in the form

Φ(t) = etAP0

where P0 ∈ R
n×n and the zero solution of (7.1) is globally exponentially stable

if and only if A is Hurwitz.
Let C ∈ R

n×n be a symmetric, positive definite matrix and Q ∈ R
n×n be the

solution of the matrix equation QA + ATQ = −C given by Lemma 7.1; note that
this implies that Q is also symmetric and positive definite.

Then V : Rn → R, V (x) := xTQx , and W : Rn → R, W (x) :=
√
V (x) =√

xTQx , are both global Lyapunov functions for (7.1), satisfying

a1‖x‖22 ≤ V (x) ≤ b1‖x‖22, V ′(x) ≤ −c1‖x‖22,
a2‖x‖2 ≤ W (x) ≤ b2‖x‖2, W ′(x) ≤ −c2‖x‖2.

for all x ∈ R
n \ {0} with constants a1, b1, c1, a2, b2, c2 > 0.
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In the nonlinear case, we have the following theorem, cf. [21, Corollary 4.3,
Proof of Theorem 4.7].

Theorem 7.3. Consider the autonomous, nonlinear system

ẋ = f(x) (7.2)

with f ∈ C1(Rn,Rn), f(0) = 0 and A := Df (0).
The equilibrium 0 of (7.2) is locally exponentially stable if and only if the

equilibrium 0 of (7.1) is globally exponentially stable, i.e. by Theorem 7.2 if A is
Hurwitz. The functions V and W from Theorem 7.2 are local Lyapunov functions
for (7.2) in some open neighbourhoodU of 0 and satisfy the same inequalities as in
Theorem 7.2.

7.3 Periodic Time

Most results of this section are classical; however, the explicit form of the Lyapunov
functions in Theorems 7.6 and 7.7 using Floquet theory is, to the best of our
knowledge, new. We start with a fundamental lemma, concerning the matrix
logarithm, cf. [3, Theorem 2.47].

Lemma 7.2. Let M ∈ R
n×n be invertible. Then the matrix equation

eX = M (7.3)

has a solution X ∈ C
n×n.

It is important to notice that, in general, even if the matrix M is real-valued,
the matrix X can be complex-valued. Moreover, the solution X is not unique. A
characterisation of all real-valued matrices M for which the matrix equation (7.3)
has a real solution is given in [4].

7.3.1 Linear Systems

The classical Floquet Theorem gives a representation of the fundamental solution in
terms of complex matrices, even if A(t) is real, cf. [3, Theorem 2.48].

Theorem 7.4. Consider the T -periodic system

ẋ = A(t)x (7.4)

where A(t) ∈ C(R,Rn×n) is T -periodic.
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Then every fundamental matrix solution Φ(t) of (7.4) can be expressed in the
form

Φ(t) = P (t)etL (7.5)

where P (t) is continuously differentiable and T -periodic,P (t) ∈ C
n×n is invertible

for all t ∈ R and L ∈ C
n×n.

Definition 7.3. A T -periodic (strict) local Lyapunov function for the zero solution
of system ẋ = f(t, x), where f ∈ C1(R × R

n,Rn) with f(t, 0) = 0 for all t ∈ R

and f(t + T, x) = f(t, x) for all (t, x) ∈ R × R
n, is a function V ∈ C(R ×

U,R)∩C1(R×U \ {0},R), where U ⊂ R
n is an open neighbourhood of 0, which

satisfies

1. V (t+ T, x) = V (t, x) for all x ∈ U and t ∈ R, i.e. V is T -periodic,
2. V (t, x) > 0 for all x ∈ U \ {0} and V (t, 0) = 0 for all t ∈ R and
3. V ′(t, x) < 0 for all x ∈ U \ {0} for all t ∈ R

where the orbital derivative is defined by

V ′(t, x) = ∇xV (t, x) · f(t, x) + Vt(t, x).

If U = R
n, then the Lyapunov function is called global.

Theorem 7.5. Let V be a T -periodic local Lyapunov function. Then the zero
solution is asymptotically stable and any compact set V −1([0, c])

∣
∣
[0,T ]×Rn with

c > 0, contained in [0, T ] × U , is a subset of the basin of attraction of the zero
solution.

In the following theorem we construct a T -periodic Lyapunov function for
the linear system (7.4). Note that this Lyapunov function is the same as the
one constructed in [21, Theorem 4.12] for the general nonautonomous case. In
the periodic case, to which we restrict ourselves here, however, one can drop some
assumptions on the uniformity with respect to t and, moreover, we can give a more
explicit expression for V , using Floquet theory.

Theorem 7.6. Consider the T -periodic linear equation

ẋ = A(t)x (7.6)

where A(t) ∈ C(R,Rn×n) is T -periodic.
Then the zero solution of (7.6) is globally exponentially stable if and only if L is

Hurwitz, where L is defined in Theorem 7.4.
Let C ∈ C

n×n be a Hermitian, positive definite matrix and Q ∈ C
n×n be the

solution of the matrix equation QL+L∗Q = −C, see Lemma 7.1; note that also Q
is Hermitian and positive definite.
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Then V,W : R × R
n → R,

V (t, x) := xT (P−1(t))∗QP−1(t)x

W (t, x) :=
√
V (t, x) =

√
xT (P−1(t))∗QP−1(t)x

are both T -periodic global Lyapunov functions for (7.6), satisfying

a1‖x‖22 ≤ V (t, x) ≤ b1‖x‖22, V ′(t, x) ≤ −c1‖x‖22,
a2‖x‖2 ≤ W (t, x) ≤ b2‖x‖2, W ′(t, x) ≤ −c2‖x‖2,

for all x ∈ R
n \ {0} and t ∈ R with constants a1, b1, c1, a2, b2, c2 > 0.

Proof. Using the transformation y = P−1(t)x, the system is transformed into
the autonomous system ẏ = Ly ; the characterisation of exponential stability now
follows from Theorem 7.2.

Using Theorem 7.4 we express the fundamental matrix solution with initial
condition Φ(0) = I by

Φ(t) = P (t)etL

where P (0) = P (T ) = I , P (t+ T ) = P (t) and P (t), L ∈ C
n×n. Note that since

Φ(t) is a solution, we have

Φ̇(t) = A(t)Φ(t) = A(t)P (t)etL

On the other hand,

Φ̇(t) = Ṗ (t)etL + P (t)LetL,

which yields Ṗ (t) = −P (t)L+A(t)P (t).

Moreover, since 0 = d
dt

(
P (t)P−1(t)

)
= Ṗ (t)P−1(t) + P (t)Ṗ−1(t), we have

Ṗ−1(t) = −P−1(t)Ṗ (t)P−1(t) = LP−1(t) − P−1(t)A(t). (7.7)

Note that

V (t, x) = xT (P−1(t))∗QP−1(t)x

is T -periodic and real-valued since (P−1(t))∗QP−1(t) is Hermitian. Moreover,
since Q is positive definite and P−1(t) is non-singular and T -periodic, there are
constants a1, b1 > 0 such that a1‖x‖22 ≤ V (t, x) ≤ b1‖x‖22 for all x ∈ R

n and
t ∈ R.



7 Local Lyapunov Functions for Periodic and Finite-Time ODEs 133

We show the statement for V ′(t, x). Using (7.7), we have

V ′(t, x) = xT (A(t))T (P−1(t))∗QP−1(t)x+ xT (Ṗ−1(t))∗QP−1(t)x

+xT (P−1(t))∗QṖ−1(t)x+ xT (P−1(t))∗QP−1(t)A(t)x

= xT [(A(t))T (P−1(t))∗ +(P−1(t))∗L∗ − (A(t))∗(P−1(t))∗]QP−1(t)x

+xT (P−1(t))∗Q[LP−1(t) − P−1(t)A(t) + P−1(t)A(t)]x

= xT (P−1(t))∗[L∗Q+QL]P−1(t)x

= −(P−1(t)x)∗CP−1(t)x

≤ −c1‖x‖22
for a suitable c1 > 0, since C is positive definite. For the function W , we use

W ′(t, x) =
1

2W (t, x)
V ′(t, x) ≤ 1

2
√
b1‖x‖2

(−c1‖x‖22) = − c1

2
√
b1

‖x‖2. �

7.3.2 Nonlinear Systems

Theorem 7.7. Consider the T -periodic nonlinear equation

ẋ = f(t, x) (7.8)

where f ∈ C1(R × R
n,Rn), f(t + T, x) = f(t, x), f(t, 0) = 0 for all t ∈ R and

A(t) := Dxf(t, 0).
Consider (7.6) with the same A(t). The zero solution of (7.8) is locally exponen-

tially stable if and only if the zero solution of (7.6) is globally exponentially stable,
i.e. L is Hurwitz, where L is defined in Theorem 7.6.

The functions V and W defined in Theorem 7.6 are local Lyapunov functions
for (7.8) and satisfy the same inequalities as in Theorem 7.6.

Proof. The zero solution is exponentially stable if and only if L is Hurwitz, cf.
e.g. [21, Theorem 4.15]—note that the assumptions of that theorem, which holds
in the more general nonautonomous case, can be relaxed, since we are focussing
on the periodic case. In particular, Dxf(t, x) is bounded uniformly in t, since it is
periodic in t, and the Lipschitz continuity, which was used in Taylor’s Theorem,
can be dropped by the following argument: Using Taylor’s Theorem, we can write
f(t, x) = A(t)x + ψ(t, x), where ψ(t, x) = (Dxf(t, θx) −Dxf(t, 0))x by the
mean value theorem, where θ ∈ [0, 1], i.e. ψ(t, x) = o(‖x‖) as x → 0, uniformly
in t, since Dxf(t, x) is continuous and T -periodic. Hence, for all ε > 0 there is a
r > 0 such that ‖ψ(t, x)‖2 ≤ ε‖x‖2 holds for all ‖x‖2 < r and all t ∈ R.
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We show that V is a local Lyapunov function, fulfilling the inequalities. Note
that the inequalities on V (t, x) are clear, by Theorem 7.6, so that we only have to
prove V ′(t, x) ≤ −c1‖x‖22; note that in the nonlinear case, V ′(t, x) is different to
the linear case.

Since C is Hermitian and positive definite, there is a smallest eigen-
value λ > 0 of C such that yTCy ≥ λ‖y‖22 for all y ∈ R

n. Set
ε := λ

4‖Q‖2 maxt∈[0,T ](‖P−1(t)‖2‖P (t)‖2)
and choose r > 0 as above such that

‖ψ(t, x)‖2 ≤ ε‖x‖2 holds for all ‖x‖2 < r and all t ∈ R. Then, similar to the
theorem in the linear case, we have, using (7.7)

V ′(t, x) = xT (A(t))T (P−1(t))∗QP−1(t)x+ ψ(t, x)T (P−1(t))∗QP−1(t)x

+xT (Ṗ−1(t))∗QP−1(t)x+ xT (P−1(t))∗QṖ−1(t)x

+xT (P−1(t))∗QP−1(t)A(t)x + xT (P−1(t))∗QP−1(t)ψ(t, x)

≤ xT [(A(t))T (P−1(t))∗ +(P−1(t))∗L∗ − (A(t))∗(P−1(t))∗]QP−1(t)x

+xT (P−1(t))∗Q[LP−1(t) − P−1(t)A(t) + P−1(t)A(t)]x

+2‖Q‖2‖P−1(t)‖2‖P−1(t)x‖2‖ψ(t, x)‖2
= xT (P−1(t))∗[L∗Q+QL]P−1(t)x

+2ε‖Q‖2‖P−1(t)‖2‖P−1(t)x‖2‖x‖2
= −(P−1(t)x)∗CP−1(t)x

+2ε‖Q‖2 max
t∈[0,T ]

(‖P−1(t)‖2‖P (t)‖2)‖P−1(t)x‖22

≤
(

−λ+
λ

2

)
‖P−1(t)x‖22

≤ −c1‖x‖22
for all ‖x‖2 < r with a suitable c1 > 0. The argumentation for W is as in
Theorem 7.6. �

7.4 Finite Time

For this section, we fix an arbitrary norm ‖ · ‖ on R
n. We consider the nonau-

tonomous ODE

ẋ = f(t, x) (7.9)

where f ∈ C1([0, T ] × R
n,Rn) over the finite-time interval I = [0, T ]. We denote

the solution of (7.9) with initial value x(t0) = x0 by ϕ(t, t0, x0) := x(t) and
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assume that it exists in the whole interval [0, T ]. This is e.g. the case if Dxf(t, x)
is bounded. We will later assume that μ(t) = 0 is a solution, i.e. f(t, 0) = 0 for all
t ∈ I. We use the following definition of finite-time attractivity from [14, 26].

Definition 7.4 (Finite-Time Attractivity, Domain of Attraction). Let μ : I

→ R
n be a solution of (7.9).

1. μ is called attractive on I with respect to the norm ‖ · ‖ if there exists an η > 0
such that

‖ϕ(T, 0, ξ) − μ(T )‖ < ‖ξ − μ(0)‖ ∀ξ ∈ Bη(μ(0)) \ {μ(0)} .

2. μ is called exponentially attractive on I with respect to the norm ‖ · ‖ if

lim sup
η↘0

1

η
sup

ξ∈Bη(0)

(‖ϕ (T, 0, ξ)− μ(T )‖) < 1 ,

and the negative number

1

T
ln

(

lim sup
η↘0

1

η
sup

ξ∈Bη(0)

(‖ϕ (T, 0, ξ)− μ(T )‖)
)

is called rate of exponential attraction.
3. Let μ : I → R

n be an attractive solution on I. Then a connected and invariant
nonautonomous (i.e. Gμ(t) := {x ∈ R

n | (t, x) ∈ Gμ} is nonempty for all
t ∈ I) set Gμ ⊂ I × R

n is called domain of attraction of μ if

‖ϕ(T, 0, x) − μ(T )‖ < ‖x− μ(0)‖ holds for all x ∈ Gμ(0) \ {μ(0)} ,

and Gμ is the maximal set containing graph(μ) with this property.

In order to study the local properties of linear and nonlinear systems, we can use
a Floquet-like theorem to define a local Lyapunov function. The following theorem
is similar to the classical Floquet Theorem, but does not requireA(t) to be periodic.
Thus, P (t) is not periodic either, but we can still show that P (0) = P (T ) holds.

Theorem 7.8. Consider the nonautonomous linear system

ẋ = A(t)x (7.10)

where A ∈ C(I,Rn×n). The principal solution, i.e. satisfying Φ(0) = I , of (7.10)
can be expressed in the form

Φ(t) = P (t)etL

where P (t) is continuously differentiable, P (t) ∈ C
n×n is invertible for all t ∈ I,

P (0) = P (T ) = I and L ∈ C
n×n.
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Proof. Define M := Φ−1(0)Φ(T ). By Lemma 7.2, there is a matrix L ∈ C
n×n

such that eTL =M . With P (t) := Φ(t)e−tL we have

P (T ) = Φ(T )e−TL = Φ(T )M−1 = Φ(0) = P (0) = I

using Φ(0) = I , and P (t) fulfills all the stated properties. �
We will first reprove the characterisation of finite-time exponential stability

which was given in [14] for the Euclidean norm, now for a general norm ‖ · ‖.

Theorem 7.9. Denote by FT : Rn → R
n the time–T map of (7.9), which is defined

by FT (x) := ϕ(T, 0, x). Moreover, let μ : I → R
n, μ(t) = 0 be a solution of (7.9).

Then μ is exponentially attractive on I if and only if ‖DFT (0)‖ < 1, where DFT is
the Jacobian of FT with respect to x. The rate of exponential attraction is given by

1

T
ln ‖DFT (0)‖.

If the principal solution Φ(t) of the linearised equation

ẋ = Dxf(t, 0)x

with Φ(0) = I is expressed Φ(t) = P (t)etL as in Theorem 7.8, we have DFT
(0) = eTL.

In particular the zero solution μ is exponentially attractive on I if and only
if ‖eTL‖ < 1.

Proof. We consider μ(t) = 0 and the solution ϕ(t, 0, w) starting in w ∈ R
n. Using

Taylor’s Theorem, we obtain

ϕ(T, 0, w) − 0 = FT (w) − FT (0) = DFT (0)w + ψ(w),

where lim‖w‖→0
ψ(w)
‖w‖ = 0. Thus,

lim sup
‖w‖→0

‖ϕ(T, 0, w)‖
‖w‖ = lim sup

‖w‖→0

‖DFT (0)w‖
‖w‖ = ‖DFT (0)‖ . (7.11)

Now
1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ = sup
‖w‖<η

‖ϕ(T, 0, w)‖
‖w‖

‖w‖
η
. (7.12)

From (7.12) we can conclude

1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ ≤ sup
‖w‖<η

‖ϕ(T, 0, w)‖
‖w‖

which implies with (7.11) that
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lim sup
η↘0

1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ ≤ lim sup
‖w‖→0

‖ϕ(T, 0, w)‖
‖w‖ = ‖DFT (0)‖ .

Furthermore, (7.12) and (7.11) yield for all fixed θ ∈ (0, 1)

1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ ≥ sup
‖w‖=θη

‖ϕ(T, 0, w)‖
‖w‖ θ

and

lim sup
η↘0

1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ ≥ lim sup
‖w‖→0

‖ϕ(T, 0, w)‖
‖w‖ θ = θ‖DFT (0)‖.

Since this inequality holds for all θ ∈ (0, 1), we have

lim sup
η↘0

1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ ≥ ‖DFT (0)‖.

This shows lim supη↘0
1
η supξ∈Bη(0) ‖ϕ (T, 0, ξ)‖ = ‖DFT (0)‖.

Furthermore, we can relate DFT to the solution of the linearised equation.
Denote by Ft : Rn → R

n the time-t map of (7.9), which is defined by Ft(x) :=
ϕ(t, 0, x). Then Φ(t, x) = DF t(x) solves the first variation equation

Φ̇(t, x) = Dxf(t, ϕ(t, 0, x))Φ(t, x).

In particular, as μ(t) = 0 is a solution of (7.9), we obtain

Φ̇(t, 0) = Dxf(t, 0)Φ(t, 0) = A(t)Φ(t, 0)

with solution Φ(t, 0) = P (t)etL. Thus, DFT (0) = Φ(T, 0) = P (T )eTL = eTL.
Hence, the zero solution of the nonlinear equation is exponentially stable if and only
if ‖eTL‖ < 1. �

7.4.1 Dini Derivative

Due to the general norm ‖·‖, the assumption that a Lyapunov function V (t, x) isC1

is too restrictive. For example, for the system ẋ = −x, x ∈ R and ‖x‖ := |x|, the
function V (t, x) = |x| is not C1 at 0, but it is a Lyapunov function in the sense that
it is decreasing along trajectories. We will give a precise definition in Definition 7.5.
We only assume that a Lyapunov function is continuous and locally Lipschitz in x,
and we have to replace the orbital derivative by a weaker notion, the Dini derivative.
Note that this can also be done in the autonomous and periodic case.
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We define a finite-time Lyapunov function. The definition is similar to the
periodic case, but V is fixed at times 0 and T by the norm.

Definition 7.5. A finite-time (strict) local Lyapunov function for the zero solution
of the system (7.9) is a continuous function V : I × U → R

n, where U ⊂ R
n is an

open neighbourhood of 0, which satisfies the following properties:

1. V (t, x) is locally Lipschitz in x.
2. V (0, x) = ‖x‖p and V (T, x) = ‖x‖p for all x ∈ U , where p ≥ 1.
3. V (t, x) > 0 for all x ∈ U \ {0} and V (t, 0) = 0 for all t ∈ I.
4. V +(t, x) < 0 for all x ∈ U \ {0} and all t ∈ I \ {T } = [0, T ).

Here the orbital derivative is defined by the Dini derivative

V +(t, x) = lim sup
h↘0

V (t+ h, x+ h · f(t, x)) − V (t, x)

h
. (7.13)

If U = R
n, then the function is a global finite-time Lyapunov function.

Remark 7.1. Locally Lipschitz in x in 1. is defined as follows: for every compact
C ⊂ I×U there exists a constant L > 0, such that |V (t, x)−V (t, y)| ≤ L‖x− y‖
for all (t, x), (t, y) ∈ C. It is needed to define the orbital derivative using f(t, x)
in 4. by (7.13) as shown on page 48 in [17]. Without this property

V +(t, x) = lim sup
h↘0

V (t+ h, ϕ(t+ h, t, x)) − V (t, x)

h

is not necessarily true.

Remark 7.2. If V is differentiable along orbits, i.e. the limit

lim
h→0

V (t+ h, ϕ(t+ h, t, x)) − V (t, x)

h

exists for all relevant t and x, then clearly V +(t, x) is equal to this limit. Note,
however, that this does not imply that ∇xV (t, x) or Vt(t, x) exist, e.g. consider the
example at the beginning of Sect. 7.4.1.

Theorem 7.10. Let V be a finite-time local Lyapunov function for the system (7.9).
Then the zero solution of (7.9) is attractive and any compact set V −1([0, C]) with
C > 0, contained in I × U , is a subset of the domain of attraction of the zero
solution.

Let V (t, x) additionally fulfill: There exist constants b ≥ 1 and c > 0 such that

1. V (t, x) ≤ b‖x‖p for all t ∈ I and all x ∈ U , where p is the same as in
Definition 7.5.

2. V +(t, x) ≤ −c‖x‖p for all t ∈ [0, T ) = I \ {T } and all x ∈ U .
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Then the zero solution of (7.9) is exponentially attractive with rate of exponential
attraction ≤ −c/(bp).
Proof. Since x(t) = 0 is a solution, there is an open neighbourhood U ′ ⊂ U of 0
such that x ∈ U ′ implies ϕ(t, 0, x) ∈ U for all t ∈ I.

Because V is locally Lipschitz it follows by [17, p. 48 and Corollary 3.10] that
t �→ V (t, ϕ(t, 0, x)) is a strictly decreasing function on I, if x �= 0. Hence,

‖x‖p = V (0, x) > V (T, ϕ(T, 0, x)) = ‖ϕ(T, 0, x)‖p

for all x ∈ U ′ \ {0} and the zero solution is attractive.
The same argument shows that V −1([0, C]), if it is contained in I × U , is

positively invariant. Now let (t0, x0) ∈ V −1([0, C]) with x0 �= 0. Then either the
trajectory ϕ(t, t0, x0) stays in V −1([0, C]) for all t ∈ I, or there is a τ ∈ I such that
ϕ(τ, t0, x0) �∈ V −1([0, C]). In the first case, (t0, x0) is in the domain of attraction
by the fact that t �→ V (t, ϕ(t, t0, x0)) is a strictly decreasing function. In the second
case, note that ϕ(τ, t0, x0) �∈ V −1([0, C]) implies that ϕ(0, t0, x0) �∈ V −1([0, C]),
since V −1([0, C]) is positively invariant. Again, by the positive invariance, we have
ϕ(T, t0, x0) ∈ V −1([0, C]). Hence,

‖ϕ(T, t0, x0)‖p = V (T, ϕ(T, t0, x0)) ≤ C < V (0, ϕ(0, t0, x0)) = ‖ϕ(0, t0, x0)‖p

which shows that also in this case (t0, x0) lies in the domain of attraction. This
proves the first claim of the theorem.

Now, assume that 1. and 2. are also fulfilled. Then V fulfills the Dini differential
inequality

V +(t, ϕ(t, 0, x)) ≤ −c

b
V (t, ϕ(t, 0, x))

and by taking Lemma 6.10 in [17] into consideration, we get V (T, ϕ(T, 0, x)) ≤
V (0, x)e−cT/b and thus ‖ϕ(T, 0, x)‖p ≤ ‖x‖pe−cT/b so for x �= 0

‖ϕ(T, 0, x)‖
‖x‖ ≤ e−cT/(bp) < 1

and by Definition 7.4, 2., the zero solution is exponentially attractive with rate of
exponential attraction ≤ −c/(bp). �
Remark 7.3. Note the obvious error in the statement of Lemma 6.10 in [17]. Of
course LC is a local Lipschitz constant for s and not y as should be clear from the
text and from the proof. y does not have to be locally Lipschitz. This is an important
point for otherwise V (t, x) would have to be locally Lipschitz in (t, x) and not
only x.
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Note that the Dini derivative does in general not obey the chain-rule. To see this
consider e.g. f(x) = |x|, g(x) = −x and h(x) = (f ◦ g)(x) = | − x|. Then

h+(0) = lim sup
η↘0

| − η| − |0|
η

= 1 but

f+(g(0)) · g+(0) = lim sup
η↘0

| − 0 + η| − | − 0|
η

· lim sup
η↘0

−η − (−0)

η
= 1 · (−1) = −1.

However, for our needs the following simple lemma suffices.

Lemma 7.3. Let f : R → R be a function such that lim suph↘0 f(h) = S < 0.
Then there is a τ > 0 such that f(x) < 0 for all x ∈ (0, τ). If g : R → R is a
further function such that limh↘0 g(h) = L �= 0, then lim suph↘0 f(h)g(h) = SL.

Proof. Assume there is no such τ > 0. Then

lim sup
h↘0

f(h) = lim
h↘0

[sup{f(x) | x ∈ (0, h)}] ≥ lim
h↘0

0 = 0,

which is a contradiction to lim suph↘0 f(h) = S < 0.
Now assume L > 0 and let 0 < ε < L/2 be arbitrary. Then, for all τ > h > 0

small enough, we have 0 < L− ε < g(h) < L+ ε, i.e. (L+ ε)f(h) ≤ g(h)f(h) ≤
(L− ε)f(h), and therefore

(L + ε)S ≤ lim sup
h↘0

f(h)g(h) ≤ (L− ε)S,

i.e. lim suph↘0 f(h)g(h) = SL by lack of alternatives. The case L < 0 follows
similarly. �

7.4.2 Linear Systems

Let us first focus on the linear case, i.e.

ẋ = A(t)x. (7.14)

We can use the construction method in [14], which uses linear interpolation along
a trajectory between the values at times 0 and T , to construct finite-time Lyapunov
functions in the following two theorems.

Theorem 7.11. Let the zero solution of

ẋ = A(t)x, (7.15)

where A ∈ C(I,Rn×n), be exponentially stable.
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Then there exists a finite-time Lyapunov function which satisfies

a1‖x‖2 ≤ V (t, x) ≤ b1‖x‖2, V +(t, x) ≤ −c1‖x‖2 (7.16)

for all x ∈ R
n and all t ∈ I \ {T }, where a1, b1, c1 > 0.

Proof. We define V (t, ϕ(t, 0, x)) by linear interpolation of the values at time T
and 0. Note that the principal fundamental solution Φ(t) (with Φ(0) = I) of (7.15)
can be, by Theorem 7.8, expressed in the form Φ(t) = P (t)etL, where P (t) is con-
tinuously differentiable, P (t) ∈ C

n×n is invertible for all t ∈ I, P (0) = P (T ) = I
and L ∈ C

n×n. Hence, ϕ(t1, t2, x) = Φ(t1)Φ
−1(t2)x = P (t1)e

L(t1−t2)P−1(t2)x.
We define

V (t, x) := [‖ϕ(T, t, x)‖2 − ‖ϕ(0, t, x)‖2] t
T

+ ‖ϕ(0, t, x)‖2 (7.17)

=
t

T
‖ϕ(T, t, x)‖2 +

(
1 − t

T

)
‖ϕ(0, t, x)‖2

=
t

T
‖eTLΦ−1(t)x‖2 +

(
1 − t

T

)
‖Φ−1(t)x‖2 (7.18)

It is easy to see that V (0, x) = V (T, x) = ‖x‖2. Since eTL �= 0, Φ−1(t) is non-
singular and continuous for t ∈ I and the norm ‖ · ‖ is continuous, the mappings
(t, x) �→ ‖eTLΦ−1(t)x‖ and (t, x) �→ ‖Φ−1(t)x‖ are both continuous functions
from the compact set I × {x ∈ R

n | ‖x‖ = 1} into the real numbers. Hence, there
are a1, b1 > 0 such that

a1‖x‖2 ≤ ‖eTLΦ−1(t)x‖2 ≤ b1‖x‖2 (7.19)

a1‖x‖2 ≤ ‖Φ−1(t)x‖2 ≤ b1‖x‖2 (7.20)

for all t ∈ I. Together with (7.18) this shows the first part of (7.16).
To show that V (t, x) is locally Lipschitz in x let η > 0 be an arbitrary constant

and x, y ∈ Bη(0) and t ∈ I. By (7.18), (7.19) and (7.20) we get

|V (t, x) − V (t, y)|

=
∣
∣
∣
t

T
(‖eTLΦ−1(t)x‖ + ‖eTLΦ−1(t)y‖)(‖eTLΦ−1(t)x‖ − ‖eTLΦ−1(t)y‖)

+

(
1 − t

T

)
(‖Φ−1(t)x‖ + ‖Φ−1(t)y‖)(‖Φ−1(t)x‖ − ‖Φ−1(t)y‖)

∣
∣
∣

≤
√
b1(‖x‖ + ‖y‖)

[
t

T
‖eTLΦ−1(t)(x − y)‖ +

(
1 − t

T

)
‖Φ−1(t)(x − y)‖

]
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≤
√
b1(‖x‖ + ‖y‖)

[
t

T

√
b1‖x− y‖ +

(
1 − t

T

)√
b1‖x− y‖

]

= b1(‖x‖ + ‖y‖)‖x− y‖ (7.21)

≤ 2ηb1‖x− y‖,

which proves that V (t, x) is locally Lipschitz in x.
Finally, we show the second part of (7.16). For every (t0, x0) ∈ I × R

n define
the function ψ(t0,x0)(t) := V (t, ϕ(t, t0, x0)) on I \ {T }. We claim that for every
(t0, x0) ∈ I × R

n the function ψ(t0,x0)(t) is differentiable with respect to t. To
see this note that by (7.17) and the semigroup property ϕ(t1, t2, ϕ(t2, t3, x)) =
ϕ(t1, t3, x)

ψ(t0,x0)(t) = [‖ϕ(T, t, ϕ(t, t0, x0))‖2 − ‖ϕ(0, t, ϕ(t, t0, x0))‖2] t
T

+‖ϕ(0, t, ϕ(t, t0, x0))‖2

= [‖ϕ(T, t0, x0)‖2 − ‖ϕ(0, t0, x0)‖2] t
T

+ ‖ϕ(0, t0, x0)‖2

so that

ψ′
(t0,x0)

(t) = [‖ϕ(T, t0, x0)‖2 − ‖ϕ(0, t0, x0)‖2] 1
T
.

By Theorem 7.9 we have ‖eTL‖ =: ν ∈ (0, 1), since the zero solution is
exponentially stable. Since V (t, x) is locally Lipschitz in x we have by Remark 7.2,
the product rule for differentiation, (7.17) and (7.20) that

V +(t0, x0) = lim sup
h↘0

V (t0 + h, ϕ(t0 + h, t0, x0)) − V (t0, x0)

h

= lim sup
h↘0

ψ(t0,x0)(t0 + h) − ψ(t0,x0)(t0)

h

= ψ′
(t0,x0)

(t0) =
1

T

(‖ϕ(T, t0, x0)‖2 − ‖ϕ(0, t0, x0)‖2
)

=
1

T

(‖eTLΦ−1(t0)x0‖2 − ‖Φ−1(t0)x0‖2
)

≤ ν2 − 1

T
‖Φ−1(t0)x0‖2

≤ −1 − ν2

T
a1‖x0‖2

Hence, with c1 := (1 − ν2)a1/T > 0, the rest of (7.16) is shown. �
We will show the existence of another Lyapunov function; note that this is

particularly useful if one wants to approximate it by a continuous piecewise
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affine function. Indeed, the authors showed in [12] that such a function can
be approximated by a continuous piecewise affine function so closely that the
approximation is a true CPA Lyapunov function for autonomous systems, even in a
neighbourhood of the equilibrium.

Theorem 7.12. Let the zero solution of the system (7.15) be exponentially stable.
Then there exists a finite-time Lyapunov function W (t, x) which satisfies

a2‖x‖ ≤ W (t, x) ≤ b2‖x‖, W+(t, x) ≤ −c2‖x‖ (7.22)

for all x ∈ R
n and t ∈ I \ {T }, where a2, b2, c2 > 0. W is globally Lipschitz in x.

Proof. We define W (t, x) :=
√
V (t, x), where V (t, x) is the function from

Theorem 7.11, and notice that immediately from (7.16)
√
a1‖x‖ ≤ W (t, x) ≤√

b1‖x‖ follows. It is easy to see that W (0, x) = W (T, x) = ‖x‖. To show the
second part of (7.22) fix t ∈ [0, T ). The case x = 0 follows from

√
V (t+ h, 0 + h · A(t)0) − √

V (t, 0)

h
=

0 − 0

h
= 0,

i.e. W+(t, 0) = 0. If x �= 0 we have by Lemma 7.3

W+(t, x) = lim sup
h↘0

√
V (t+ h, x+ h ·A(t)x) − √

V (t, x)

h

= lim sup
h↘0

V (t+ h, x+ h · A(t)x) − V (t, x)

h · (√V (t, x+ h ·A(t)x) +√
V (t, x))

≤ −c1‖x‖2
2
√
V (t, x)

≤ − c1

2
√
b1

‖x‖.

It remains to show that W (t, x) is globally Lipschitz in x. The case x = y = 0
is trivial and otherwise, by (7.21) and (7.16), we have

|W (t, x) −W (t, y)| =
∣
∣
∣
√
V (t, x) −

√
V (t, y)

∣
∣
∣ =

|V (t, x) − V (t, y)|
√
V (t, x) +

√
V (t, y)

≤ b1(‖x‖ + ‖y‖)√
a1 · (‖x‖ + ‖y‖) · ‖x− y‖ ≤ b1√

a1
· ‖x− y‖. �

Remark 7.4. A different function W with the properties as in Theorem 7.12 is

W2(t, x) := [‖ϕ(T, t, x)‖ − ‖ϕ(0, t, x)‖] t
T

+ ‖ϕ(0, t, x)‖.

One can prove the properties, following the proof of Theorem 7.11, dropping the
squares.
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We give an example that these two definitions lead to two different functionsW1

and W2. Consider ẋ = −x on the interval [0, 1] with the Euclidean norm. Then

V (t, x) =
(
te2(t−1) + (1 − t)e2t

)
x2,

W1(t, x) =

√
te2(t−1) + (1 − t)e2t|x|,

W2(t, x) =
(
tet−1 + (1 − t)et

) |x|.

7.4.3 Nonlinear Systems

Now we consider the nonlinear system

ẋ = f(t, x) (7.23)

over the finite-time interval I = [0, T ] and show the existence of local finite-time
Lyapunov functions.

Theorem 7.13. Consider the nonlinear system

ẋ = f(t, x) (7.24)

where f ∈ C1([0, T ] × R
n,Rn), f(t, 0) = 0 for all t ∈ [0, T ] over the finite-time

interval I = [0, T ]. Define A(t) := Dxf(t, 0).
Consider (7.15) with the same A(t). Then the Lyapunov functions V and W

in Theorems 7.11 and 7.12 respectively are also finite-time Lyapunov functions
for (7.24) satisfying V +(t, x) ≤ −cv‖x‖2 and W+(t, x) ≤ −cw‖x‖, cv, cw > 0,
for all t ∈ I \ {T } and all x in some open neighbourhoodU ⊂ R

n of 0.

Proof. It suffices to show that V +(t, x) ≤ −cv‖x‖2 and W+(t, x) ≤ −cw‖x‖ for
all t ∈ I \ {T } and all x in some open neighbourhoodU ⊂ R

n of 0.
We first show W+(t, x) ≤ −cw‖x‖. By Taylor’s Theorem we can write

f(t, x) = A(t)x + ψ(t, x), where for all ε > 0 there is a η > 0 such that
‖ψ(t, x)‖ ≤ ε‖x‖ holds for all ‖x‖ < η and all t ∈ I, cf. the proof of Theorem 7.7.
Because W (t, x) is globally Lipschitz in x by Theorem 7.12, there is a constant
L > 0 such that |W (t, x) − W (t, y)| ≤ L‖x − y‖ for all t ∈ I and x, y ∈ R

n.
Hence by (7.22)

W+(t, x) = lim sup
h↘0

W (t+ h, x+ h · f(t, x)) −W (t, x)

h

≤ lim sup
h↘0

W (t+ h, x+ h · [A(t)x+ ψ(t, x)]) −W (t+ h, x+ h ·A(t)x)
h
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+ lim sup
h↘0

W (t+ h, x+ h ·A(t)x)−W (t, x)

h

≤ lim sup
h↘0

L‖hψ(t, x)‖
h

− c2‖x‖

≤ L‖ψ(t, x)‖ − c2‖x‖.

With ε := c2/(2L) and cw := c2/2 it follows that there exists an η > 0 such that
W+(t, x) ≤ −cw‖x‖ for all t ∈ I \ {T } and all x ∈ Bη(0) =: U .

Now consider V (t, x) = [W (t, x)]2. The case x = 0 is trivial. For x �= 0 we
have by Lemma 7.3 and the above estimate

V +(t, x) = limsup
h↘0

W 2(t + h, x+ h · f(t, x)) − W 2(t, x)

h

≤ lim sup
h↘0

[W (t+ h, x+ h · f(t, x)) +W (t, x)]
W (t+ h, x+ h · f(t, x)) − W (t, x)

h

= 2W (t, x) · [−cw‖x‖] ≤ −a2cw‖x‖2

for all t ∈ I \ {T } and all x ∈ Bη(0) =: U . That is V +(t, x) ≤ −cv‖x‖2 with
cv = a2cw > 0. �

7.4.4 Norm ‖x‖2 = xTNx

In this section we restrict ourselves to the class of norms ‖x‖2 = xTNx , where
N ∈ R

n×n is a symmetric, positive definite matrix.
In the following Theorem 7.14 we consider a nonlinear system and give a suffi-

cient condition for the exponential stability of the zero solution. The construction of
the Lyapunov function is similar to the periodic-time case. Note that the assumptions
of Theorem 7.14 are sufficient, but not necessary for the exponential attraction of
the zero solution, see Theorem 7.15, number 2.

Theorem 7.14. Consider

ẋ = f(t, x), (7.25)

where f ∈ C1([0, T ] × R
n,Rn), f(t, 0) = 0 for all t ∈ [0, T ] over the finite-time

interval I = [0, T ]. Define A(t) := Dxf(t, 0). Let L be defined as in Theorem 7.8.
Let the norm ‖ · ‖ be defined by

‖x‖2 = xTNx ,

where N ∈ R
n×n is a symmetric, positive definite matrix.
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If the Hermitian matrix L∗N +NL is Hurwitz, then the zero solution of (7.25) is
exponentially stable. In this case,

V (t, x) := xT (P−1(t))∗NP−1(t)x and W (t, x) =
√
V (t, x)

are finite-time local Lyapunov function, satisfying

a1‖x‖2 ≤ V (t, x) ≤ b1‖x‖2, V ′(t, x) ≤ −c1‖x‖2,
a2‖x‖ ≤ W (t, x) ≤ b2‖x‖, W ′(t, x) ≤ −c2‖x‖,

for all x ∈ U \ {0} and t ∈ I \ {T }, where U is an open neighbourhood of 0, with
constants a1, b1, c1, a2, b2, c2 > 0.

Proof. Using Theorem 7.8, we express the fundamental matrix solution with initial
condition Φ(0) = I by

Φ(t) = P (t)etL

where P (0) = P (T ) = I and P (t), L ∈ C
n×n. The Hermitian matrix (L∗N+NL)

is negative definite. Denote the maximal eigenvalue by −ν < 0, which gives us

zT (L∗N +NL)z ≤ −ν‖z‖22 (7.26)

for all z ∈ C
n.

We define the functions V and W as in the theorem. The inequalities for
V (t, x) and W (t, x) follow from the fact that P−1(t) is non-singular and N is
positive definite. As P (0) = P (T ) = I , we have V (0, x) = V (T, x) = ‖x‖2
and W (0, x) =W (T, x) = ‖x‖.

Now we show the inequality for V ′(t, x). We use Ṗ−1(t) = LP−1(t) −
P−1(t)A(t), which is shown as in the periodic case (see (7.7) in the proof of
Theorem 7.6) and (A(t))∗ = (A(t))T since A(t) ∈ R

n×n. Furthermore, by
Taylor f(t, x) = A(t)x + ψ(x), where for ε := ν

2‖N‖2
there is r > 0 such that

‖P−1(t)ψ(t,x)‖2

‖P−1(t)x‖2
< ε for all t ∈ I and ‖x‖2 < r. Hence, we obtain

V ′(t, x) = xT (A(t))T (P−1(t))∗NP−1(t)x+ (ψ(t, x))∗(P−1(t))∗NP−1(t)x

+xT (Ṗ−1(t))∗NP−1(t)x+ xT (P−1(t))∗NṖ−1(t)x

+xT (P−1(t))∗NP−1(t)A(t)x+ xT (P−1(t))∗NP−1(t)ψ(t, x)

= xT [(A(t))T (P−1(t))∗N + (P−1(t))∗L∗N − (A(t))∗(P−1(t))∗N ]P−1(t)x

+xT (P−1(t))∗[NLP−1(t) − NP−1(t)A(t) + NP−1(t)A(t)]x

+2‖P−1(t)x‖2‖N‖2‖P−1(t)ψ(t, x)‖2
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= ((P−1(t))x)∗[L∗N + NL]P−1(t)x+
ν

2
‖P−1(t)x‖22

≤ −ν

2
‖P−1(t)x‖22

≤ −c1‖x‖2

for a suitable c1 > 0 and for all t ∈ I and 0 < ‖x‖2 < r by (7.26). The proof for W
follows as in Theorem 7.6. �

7.5 Relations Between Autonomous, Periodic
and Finite-Time Systems

7.5.1 Periodic Systems as Finite-Time Systems

If we consider a time-periodic system

ẋ = f(t, x),

then we can also regard this system as a finite-time system. We discuss the stability
of the zero solution with respect to the different notions.

Theorem 7.15. Consider a T -periodic system ẋ = f(t, x) with f ∈ C1(R ×
R
n,Rn), f(t, 0) = 0 for all t ∈ R. We can also consider the system as a finite-

time system over the interval I = [0, T ].
If the zero solution is exponentially stable with respect to the finite-time case,

then it is exponentially stable with respect to the periodic-time case.
By Theorems 7.4 and 7.8 there is a matrix L ∈ C

n×n such that the principal
solution of the linearised equation with Φ(0) = I can be expressed as Φ(t) =
P (t)etL, where P (0) = P (T ) = I . Now the following statements hold true forL:

1. Let ‖ · ‖ be an arbitrary norm on R
n. If ‖eTL‖ < 1, then L is Hurwitz.

2. LetN ∈ R
n×n be a symmetric, positive definite matrix and let ‖·‖ be the induced

matrix norm corresponding to the vector norm ‖x‖2 = xTNx .
If L∗N +NL is Hurwitz, then ‖eTL‖ < 1 for all T > 0.

Proof. Assume that the zero solution is exponentially stable with respect to the
finite-time case. Then, by Theorem 7.9 we have ‖DFT (0)‖ = μ ∈ (0, 1).

Since FT (x) = DFT (0)x + ψ(x) with a function ψ(x) = o(‖x‖) as x → 0,
there exists η > 0 such that ‖ψ(x)‖ ≤ 1−μ

2 ‖x‖ for all x ∈ Bη(0). Thus,

‖FT (x)‖ ≤ ‖DFT (0)‖‖x‖ + ‖ψ(x)‖ ≤ μ‖x‖ +
1 − μ

2
‖x‖ =

1 + μ

2
‖x‖.
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Denoting ν := 1+μ
2 ∈ (0, 1), since μ ∈ (0, 1), we have now

‖FT (x)‖ ≤ ν‖x‖

for all x ∈ Bη(x). This is also the Poincaré map P : Rn → R
n, x → ϕ(T, 0, x) of

the periodic system and thus

‖P kx‖ ≤ νk‖x‖

for all k ∈ N, which implies the exponential stability with respect to the periodic
system as ν ∈ (0, 1). Part 2 is a direct consequence of Theorems 7.14, 7.7 and 7.9.

�

7.5.2 Autonomous Systems as Periodic and Finite-Time
Systems

An autonomous system

ẋ = f(x)

can be considered as a periodic system with any period T , and also on a finite-
time interval [0, T ] with any T > 0. We discuss the relations between the different
notions of attractivity for such a system. We start with an example, and we later
prove a general theorem.

Example 7.1. Consider the linear system with f(x) = Ax , whereA :=

(−1 c

0 −1

)

with c ∈ R and x ∈ R
2. Then the principal solution can be written as Φ(t) = etL,

where in the previous notation we have P (t) = I and L =

(−1 c

0 −1

)
. The

eigenvalues of L are −1 and have negative real part. Thus, as an autonomous
example, the origin is exponentially asymptotically stable for all c ∈ R and so is
the zero solution if we regard it as a periodic system.

Now we consider the system as a finite-time system on the interval I = [0, T ]
with the Euclidean norm ‖x‖2 = xTx, i.e. N = I . In this case, ‖eTL‖2 is given by
the maximal eigenvalue of eTL∗

eTL. We have

eTL = e−T
(
1 Tc

0 1

)

and thus eTL∗
eTL = e−2T

(
1 Tc

Tc T 2c2 + 1

)
.
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The eigenvalues are

λ1,2 = e−2T

(

1 +
T 2c2

2
±
√

T 2c2 +
T 4c4

4

)

.

Both eigenvalues are < 1 if and only if

|c| < 2
sinhT

T
=: c∗(T ).

Note that limT→0 c
∗(T ) = 2 and limT→∞ c∗(T ) = ∞. Hence, depending on the

finite-time interval [0, T ] under consideration, the zero solution is exponentially
asymptotically stable, if and only if |c| < c∗(T ). As T → ∞, the zero solution
is exponentially attractive for all c.

Now we consider the condition that L∗N + NL is Hurwitz of Theorem 7.14,
which is sufficient for the exponential attractivity. In this example, L∗N + NL =

L∗+L =

(−2 c

c −2

)
. The eigenvalues are μ1,2 = −2±c, and they are both negative

if |c| < 2. Hence, the condition that the zero solution is finite-time attractive for all
T > 0 (|c| ≤ 2) is nearly equivalent to L∗N +NL being Hurwitz (|c| < 2).

We can prove the following general lemma.

Lemma 7.4. Consider the autonomous system

ẋ = f(x) (7.27)

with f ∈ C1(Rn,Rn), f(0) = 0 and Df (0) =: A ∈ R
n×n.

The zero solution of this T -periodic system for any T > 0 is exponentially stable
if and only if the equilibrium 0 is exponentially stable for the autonomous system.

If the zero solution is finite-time exponentially attractive for a T > 0, then it is
exponentially stable for both the autonomous and periodic system.

Now consider the norm ‖x‖2 = xTNx with symmetric positive definite matrix
N ∈ R

n×n. Then we have the following implications

(i) ⇒ (ii) ⇔ (iii) ⇒ (iv).

(i) All eigenvalues λ of ATN +NA satisfy λ < 0.
(ii) The zero solution of (7.27) is exponentially stable over the finite-time interval

[0, T ] for all T > 0.
(iii) For all T > 0, ‖eTA‖ < 1.
(iv) All eigenvalues λ of ATN +NA satisfy λ ≤ 0.
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Proof. The first part follows from the fact that L = A and Theorems 7.3 and 7.7 as
well as Theorem 7.15.

For the second part, note that (i)⇒(ii) follows from Theorem 7.14 and (ii)⇔(iii)
follows from Theorem 7.9. It is left to show (iii)⇒(iv).

Let us assume that for all T > 0, we have ‖eTA‖ < 1 and, in contradiction to the
statement, that there is an eigenvalue λ > 0 and v ∈ R

n \ {0} such that

(ATN +NA)v = λv.

Since ‖eTA‖ < 1, we have

‖v‖2 > vT eTAT

NeTAv

= vT
(
I + TAT +

1

2
T 2(AT )2 + . . .

)
N

(
I + TA+

1

2
T 2A2 + . . .

)
v

= vT
(
N + T (ATN +NA) + ϕ(T )

)
v

= ‖v‖2 + ‖v‖22(Tλ+ ϕ(T ))

where ϕ(T ) = o(T ) as T → 0. Hence, there is a T > 0 such that |ϕ(T )| ≤ Tλ/2
and 0 > ‖v‖22Tλ/2 > 0 due to λ > 0, which is a contradiction. �

7.6 Conclusions and Outlook

In this chapter, we have generalised the construction of local Lyapunov functions
for general nonlinear systems to periodic-time and finite-time systems. As in the
classical autonomous case, we have constructed two types of Lyapunov functions V
and W , satisfying

a1‖x‖2 ≤ V (t, x) ≤ b1‖x‖2, V ′(t, x) ≤ −c1‖x‖2,
a2‖x‖ ≤ W (t, x) ≤ b2‖x‖, W ′(t, x) ≤ −c2‖x‖.

They are global Lyapunov functions for linear systems, and local Lyapunov
functions for nonlinear ones.

Although we give explicit formulas for V and W , we are using the Floquet
representation of solutions, so that in explicit examples their calculation requires the
solution of the first variation equation. The practical use of the results, besides the
theoretical existence, is to derive an algorithm for the construction of CPA Lyapunov
functions for periodic and finite-time systems, where the results of this paper will
be important to close the gap between the local and the global part of the Lyapunov
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function. We envisage that, as in the autonomous case [11, 13], where we have
used similar results to show the existence and to algorithmically construct a CPA
Lyapunov function, we can use the results of this paper for similar algorithms in the
time-periodic and finite-time cases.
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