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Preface

In January 2012 the International Conference Recent Trends in Dynamical Systems
was held in Munich on the occasion of Jürgen Scheurle’s 60th birthday. As parts of
this conference, a scientific colloquium took place at the Carl Friedrich von Siemens
Stiftung in Munich from 11th to 13th of January and also a Festkolloquium at the
Technische Universität München in the afternoon of January 13th. Besides numerous
posters on recent advances in the field of dynamical systems, 25 highly recognized
scholars gave plenary talks that were grouped according to the following themes:

– Stability and bifurcation
– Geometric mechanics and control theory
– Invariant manifolds, attractors, and chaos
– Fluid mechanics and elasticity
– Perturbations and multiscale problems
– Hamiltonian dynamics and KAM theory

These themes reflect the broad scientific interests of Jürgen Scheurle and his
fascination of applying mathematics to real world situations, in particular from
physics and mechanics. The volume at hand is an outgrowth of this conference,
containing research articles about exciting new developments in the multifaceted
subject of dynamical systems as well as survey articles. We are very happy that
the authors accepted the invitation to contribute to this volume in honour of Jürgen
Scheurle and we are sure that their exciting articles will be of interest not only
to experts in the field of dynamical systems but also to graduate students and
scientists from many other fields, including engineering. This is in the spirit of
Jürgen Scheurle, who, besides his research activities, always puts a lot of emphasis
on conveying the beauty of the Theory of Dynamical Systems and its applicability
to real world problems in extremely well-prepared, beautiful lectures.

Munich, Germany Andreas Johann
January 2013 Hans-Peter Kruse

Florian Rupp
Stephan Schmitz
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Short Curriculum Vitae of Jürgen Scheurle

Jürgen Scheurle was born on September 26, 1951, in Schwäbisch Gmünd, Baden-
Württemberg. He received his professional education at the University of Stuttgart,
where he studied mathematics, physics, and computer science from 1970 until 1974,
and finished his diploma degree in mathematics with a thesis entitled “Ein Antikon-
vergenzprinzip”. Some months later, in 1975, he completed his doctorate under the
guidance of Klaus Kirchgässner. The title of his Ph.D. thesis is “Ein selektives Itera-
tionsverfahren und Verzweigungsprobleme”. In 1981 he presented his Habilitation
thesis on “Verzweigung quasiperiodischer Lösungen bei reversiblen dynamischen
Systemen”.

From 1974 to 1985 Jürgen Scheurle held positions as a postdoctoral researcher,
senior researcher, and assistant professor, at the University of Stuttgart. In 1982 he
was visiting professor at the Department of Mathematics, University of California,
Berkeley (USA), and in 1983 at the Division of Applied Mathematics, Brown
University, Providence (USA). In 1985 Jürgen Scheurle moved to Fort Collins
(USA), where he became an associate and later full professor at Colorado State
University. In 1987 he accepted a full professorship and the Chair of Theory and
Applications of Partial Differential Equations at the University of Hamburg. In 1996
Jürgen Scheurle was appointed full professor at the Technische Universität München
(TUM) and since then holds the Chair of Advanced Mathematics and Analytical
Mechanics. Notable predecessors at this chair were Felix Klein, Walter von Dyck,
and Robert Sauer, see Fig. 1, which illustrates the special responsibility of Jürgen
Scheurle for the mathematical education of engineering students.

He was the founding director of the Center for Mathematics at TUM and later
dean of the Faculty of Mathematics. As dean, he continued the reform-oriented
politics of his predecessors. During his term in office, the faculty voluntarily
conducted a peer assessment and was awarded the title “Reformfakultät” by
the “Stifterverband der Deutschen Wissenschaft”. Such assessments are common
nowadays but were completely novel 10 years ago. Moreover, far ahead before
such procedures were put into law, the Bavarian Ministry of Research and Teaching
allowed the faculty to introduce an “Experimentierklausel” to assess prospective for
the admission of students.

Jürgen Scheurle was responsible for the introduction of the “Master of Science in
Industrial & Financial Mathematics” at the off-shore campus of TUM in Singapore.
He was a member of the planning team for the new mathematics building at the
research campus Garching and in charge of the relocation from downtown Munich
to Garching in 2002. Finally, Jürgen Scheurle was and is member of numerous
expert committees appointed by the president of the TUM and the faculty of
mathematics. Inter alia he is representative of the “Bayerische Eliteakademie”,
member of the “Hurwitz-Gesellschaft zur Förderung der Mathematik an der TU
München” and its president since 2011.

Jürgen Scheurle authored and co-authored several pioneering publications, and
among them the following are highly influential articles:
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• On the bounded solutions of a semilinear elliptic equation in a strip (together
with K. Kirchgässner). J. Diff. Equat. 32 (1) (1979), 119–148.

• Smoothness of bounded solutions of non-linear evolution equations (together
with J. Hale). J. Diff. Equat. 56 (1) (1985), 142–163.

• Chaotic solutions of systems with almost periodic forcing. ZAMP 37 (1986), 12–
26.

• The construction and smoothness of invariant manifolds by the deformation
method (together with J. Marsden). SIAM J. Math. Anal. 18 (5) (1987), 1261–
1274.

• Exponentially small splittings of separatrices in KAM theory and degenerate
bifurcations (together with P. Holmes and J. Marsden). Cont. Math. 81 (1988),
213–243.

• Existence of perturbed solitary wave solutions to a model equation for water
waves (together with J. Hunter). Physica D 32 (1988), 253–268.

• Lagrangian reduction and bifurcations of relative equilibria of the double
spherical pendulum (together with J. Marsden). ZAMP 44 (1993), 17 - 43.

• The reduced Euler-Lagrange equations (together with J. Marsden). Fields Inst.
Comm. 1 (1993), 139–164.

• Pattern evocation and geometric phases in mechanical systems with symmetry
(together with J. Marsden), Dyn. and Stab. of Systems 10 (1995), 315–338.

• Discretization of homoclinic orbits and “invisible” chaos (together with B.
Fiedler). Memoirs of the AMS vol. 119, nb. 570 (3), Providence 1996.

• Reduction Theory and the Lagrange-Routh equations (together with J. Marsden
and T. Ratiu). J. Math. Phys. 41(6) (2000), 3379–3429.

• The orbit space method (together with M. Rumberger). In Ergodic Theory,
Analysis and Efficient Simulation of Dynamical Systems, B. Fiedler edt.,
Springer-Verlag 2001, 649–689.
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• On the generation of conjugate flanks for arbitrary gear geometries (together
with A. Johann). GAMM-Mitt. 32, No. 1, 2009, 61–79.

His teaching covers a wide spectrum of subjects, ranging from mathematics
for engineering students, functional analysis, ordinary differential equations and
partial differential equations to dynamical systems, bifurcation theory, hamiltonian
dynamics, geometric mechanics, mathematical methods in continuum mechanics,
and mathematical modeling in biology and ecology. He supervised more than 20
dissertations and habilitations in these areas.

Jürgen Scheurle was a member of the advisory board of the book series Dynam-
ics Reported and an executive editor of the International Journal of Nonlinear
Mechanics. He is currently a member of the editorial board of the Journal of
Nonlinear Science, Nonlinear Science Today, Journal of Applied Mathematics and
Mechanics (ZAMM), and Journal of Geometric Mechanics.
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Stability, Bifurcation and Perturbations



Chapter 1
The Birth of Chaos

John Guckenheimer

1.1 Introduction

The word chaos has become firmly embedded in the literature on dynamical
systems. Indeed, James Gleick’s book, Chaos Theory [17], established that term
as a description of the entire subject in the public mind. Nonetheless, there is no
authoritative technical meaning of “chaos” in dynamical systems. Li and Yorke
first used the word in the title of their paper “Period three implies chaos” [31],
but it does not appear in the text. They refer to trajectories that are “nonperiodic
and might be called ‘chaotic’.” Ruelle and Takens [45] used the longer phrase
“sensitive dependence to initial conditions” and the two terms have largely been
regarded as synonyms [15, 57]. The informal definition of sensitive dependence to
initial conditions is that nearby initial conditions separate; the technical definition
is that there are sets of trajectories with positive Lyapunov exponents [15] that
measure the exponential rate of separation of nearby trajectories. What is not
often specified in the definition is how many trajectories have positive Lyapunov
exponents. For example, if a dynamical system has a saddle point, this point has a
positive Lyapunov exponent, but the presence of a single saddle point (or even more
complicated normally hyperbolic sets) does not make the system chaotic. There
appears to be little consensus on the minimal requirements for sets of trajectories
with positive Lyapunov exponents that make a system chaotic, but there is a
sufficient criterion formulated by Smale [48] that is often used as a practical test:
namely, that the system possesses a “transversal intersection of stable and unstable
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4 J. Guckenheimer

manifolds of a periodic orbit.” This concept is explained below. Such homoclinic
orbits were first discovered by Poincaré in 1890 in a prize winning essay [43]
motivated by the question, is the solar system stable? The intriguing history
of Poincaré’s discovery has been studied and recounted by Barrow-Green [3].
The work of Poincaré and later Birkhoff was directed at conservative dynamical
systems arising in celestial mechanics. Within the setting of systems that preserve
a symplectic structure, they investigated the presence of transversal intersections
of the stable and unstable manifolds of periodic orbits. The first mathematical
analysis of transversal homoclinic orbits in the context of dissipative systems that
are not conservative was carried out by Cartwright and Littlewood, beginning
during World War II [9–12] and culminating in Littlewood’s long two part paper
of 1957 [32–34]. The personal aspects of the Cartwright–Littlewood collaboration
are also fascinating and have been described by McMurran and Tattersall [37,38] as
well as by Cartwright herself [8, 50].

The initial presentations of significant mathematical discoveries seldom appear
in full clarity. The path to a new discovery is often tortuous, so reformulation
is typically needed to distill the essence of new insights. This has been true in
dynamical systems theory: the papers of Poincaré and Littlewood cited above
are excellent examples. The work of Cartwright–Littlewood has a dual character,
containing detailed analysis of the forced Van der Pol differential equation as well
as a description of the dynamical consequences of transversal homoclinic orbits in
dissipative systems. There was a long period of abstraction and simplification of
the arguments of Cartwright–Littlewood that led to piecewise linear vector fields
studied by Levinson [30] and later Levi [29], the geometric discrete time Smale
horseshoe [47, 49] and the concept of hyperbolic invariant sets [46]. Figure 1.1
illustrates the horseshoe. These developments provided tremendous insight into
chaotic dynamics, but they draw upon only a small portion of the Cartwright–
Littlewood analysis of the forced Van der Pol differential equation. Thus, there is a
disparity between mathematical awareness of these two aspects of the Cartwright–
Littlewood discovery of chaos in dissipative systems. The horseshoe and its
symbolic dynamics are a beautiful geometric example of chaotic dynamics, simple
enough to be included routinely in undergraduate courses. Littlewood’s analysis
of the forced Van der Pol equation remains obscure despite its central role in the
book of Grasman [18]. This paper visualizes horseshoes in the forced Van der
Pol equation from the perspective of geometric singular perturbation theory and
describes recent extensions of the work of Cartwright–Littlewood by myself and
collaborators [6,19,20] that culminated in the thesis of Radu Haiduc [22,23]. Haiduc
proved that there are parameter values for which the forced Van der Pol equation is
structurally stable and possesses a chaotic invariant set. This paper gives an extended
outline of this work, presenting the key geometric constructions used in the analysis
of the forced Van der Pol equation.
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R1

R2

f(R1) f(R2)

Fig. 1.1 The horseshoe is an invariant set Λ of the discrete map f depicted in this figure. The
map f stretches the background oval vertically, compresses it horizontally, and maps it back into
itself. The rectangles R1 and R2 shaded in light gray are mapped rectilinearly into their images
shaded in dark gray. Inside the intersection (R1 ∪ R2) ∩ (f(R1) ∪ f(R2)), there is an invariant
Cantor set Λ consisting of points whose f -trajectories (both forward and backward) remain inside
the intersection. The vertical distance between points that lie on different horizontal lines increases
until one of the points lands in R1 at the same time that the other lands in R2. This expresses the
sensitivity to initial conditions of this map. There is a one-to-one correspondence between points
of Λ and bi-infinite sequences of 1 and 2 that encode which rectangle Rj each iterate lies in

1.2 The Forced Van der Pol Equation

The main object of this paper is analysis of the system of differential equations

εẋ = y + x− x3

3

ẏ = −x+ a sin(2πθ)

θ̇ = ω

(1.1)

where the variable θ ∈ S1 = R/Z, so we identify θ and θ + 1. We are interested
in the parameter regime where ε > 0 is small. The limit ε = 0 produces a system
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of differential algebraic equations that plays a central role in our investigation of
the equation. The methods that we use to study this limit come from geometric sin-
gular perturbation theory[16, 27] and are reviewed below. In different coordinates,
this system is the one studied by Balthasar van der Pol in the 1920s as a model
for the dynamics of an electronic vacuum tube subject to a sinusoidal input. In
addition to his qualitative analysis of the solutions to this system, Van der Pol built
electronic circuits that he studied experimentally. The report of Van der Pol and
Van der Mark [53] that they heard noisy output when the output of such a circuit
drove a loudspeaker has been long recognized as the first observation of chaos in a
physical system [7]. While the observations of Van der Pol and Van der Mark almost
certainly did not come from the same chaotic oscillations found by Cartwright and
Littlewood in Eq. (1.1), they served as an inspiration for Cartwright and Littlewood.

There are two very different ways of reducing the forced Van der Pol equation to
a two-dimensional dynamical system. The first consists of choosing a cross section
by fixing a value of θ and examining the return map of this section. Since θ̇ is
constant, the section is global; indeed the return map is obtained by flowing for
time 1/ω. This is the customary perspective of dynamical systems theory, but it
is not well adapted to identification of the features that give rise to chaos in the
system. Moreover, numerical computation of the return map is problematic because
there is a repelling slow manifold along which trajectories separate so rapidly that
the return map appears to be discontinuous. Filling the gaps associated with these
discontinuities required innovative methods.

Littlewood adopted a different approach in studying the system. His approach is
related to investigation of the singular limit ε = 0. Figure 1.2 shows two trajectories
of the forced Van der Pol equation when ε = 10−4. The cubic surface S defined by
y+ x− x3

3 = 0 is the critical manifold of the system. Away from S, the flow of the
system is almost parallel to the x axis. The projection of S onto the (y, θ) cylinder
along the x axis is singular along the two circles defined by (x, y) = (±1,∓2/3).
These circles are called fold curves. They separate S into three sheets. The outer
sheets given by |x| > 1 are attracting while the inner sheet given by |x| < 1
is repelling. Trajectories are drawn quickly to an O(ε) neighborhood of the outer
sheets, then flow along the sheets until they reach the fold curves. As described in
more detail below, they flow very rapidly from the fold curve to the opposite sheet
of S where they turn and proceed further along S. Perhaps the most subtle part of
the dynamics involves trajectories that approach the fold curves almost tangentially.
When a > 1, some trajectories approach the fold curve, but then turn back along the
attracting slow manifold instead of jumping to the opposite sheet. Littlewood used
the terminology “dips” and “slices” to distinguish trajectories that turn back from
trajectories that jump. The gap between these regions contains trajectories, called
canards, that follow the repelling slow manifold for a substantial time and hence
distance before jumping or turning back. Figure 1.3 shows two unstable periodic
orbits that each contain a pair of canard segments. Nearby trajectories with canards
separate from each other, giving rise to the stretching requisite for the formation
of horseshoes and transversal homoclinic orbits. This separation is abrupt when
ε is small and evident in Fig. 1.3. Singular perturbation theory identifies folded
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S

p

Fig. 1.2 The flow of the forced Van der Pol equation with parameters (a, ω, ε) =
(1.1, 1.57, 0.0001). The cylindrical phase space is cut along the surface θ = 0, so pairs of points
(x, y, θ) with θ = 0 and θ = 1 are to be identified with one another. The critical manifold S is
displayed as a light gray surface and its fold curves are drawn as thin dashed lines. The dotted lines
are the lines (x, y) = (±2,±2/3) on the critical manifold at the same height as the fold curves.
Two trajectories are shown. A stable periodic orbit of period 3 is drawn as a heavy line. Starting at
θ = 0, x < 0, this trajectory moves up S, reaching θ = 1 with x close to −1. It then crosses the
fold curve and jumps almost parallel to the x-axis to the sheet of S with x > 1. It turns abruptly and
follows this sheet with decreasing y until it reaches the fold curve with x = 1. During this portion
of the trajectory, θ advances by approximately 1.5. At the fold with x = 1, the trajectory jumps
back to the sheet of S with x < −1, turns abruptly, and returns to its starting position. The second
trajectory is drawn as a thin curve. It starts at (x, y, θ) = (1, 2/3, 0.5), marked as the point p. This
trajectory approaches the periodic orbit as one follows it forward

singularities, isolated points on the fold curve of the critical manifold that lie at the
heart of these dynamics. Analysis of the dynamics of one type of folded singularity,
the folded saddle, and its associated canards is the crux of establishing the existence
of chaos in the forced Van der Pol equation. The next section describes in more
detail the components of geometric singular perturbation theory that are used in
analyzing these dynamical features.

1.3 Background on Slow–Fast Dynamical Systems

The forced Van der Pol equation is an example of a slow–fast dynamical system of
the form

εẋ = f(x, y)

ẏ = g(x, y)
(1.2)
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Fig. 1.3 Two periodic orbits of the forced Van der Pol equation containing canards. Parameters
are (a, ω, ε) = (1.1, 1.57, 0.0001). Over most of their length, these trajectories are very close to
one another. After the orbits cross the fold curves at x = ±1, they remain close to S instead of
immediately jumping to the opposite sheet of S. Here they separate as one of the two orbits jumps
back to the sheet it was on, while at a later time (i.e., larger θ), the second orbit jumps across
to the opposite sheet of S. Both periodic orbits are invariant under the symmetry (x, y, θ) �→
(−x,−y, θ + 0.5)

In our case, x ∈ R is the fast variable, y ∈ R
2 is the slow variable, and ε is a small

parameter that represents the ratio of time scales.
The Van der Pol equation with constant forcing a

εẋ = y − x3

3
+ x

ẏ = a− x

(1.3)

is one of the first slow–fast systems to have been studied mathematically [51, 52],
and it has served as a key example in the development of singular perturbation theory
for dynamical systems [18]. Figure 1.4 shows a phase portrait of a periodic orbit for
this system when a = 0 together with the curve S defined by y − x3

3 + x = 0
and a pair of horizontal segments. Note that the horizontal segments and two
segments of the curve S comprise a good approximation to the periodic orbit. This
is apparent from a geometric description of the flow of system (1.3). When ε > 0
is small, trajectories of system (1.3) are almost horizontal outside a neighborhood
U of S. The curve S is partitioned into three “branches” Sl, Sm, Sr by the fold
points at x = ∓1. Trajectories outside U flow toward Sl and Sr and away from
Sm. Trajectories inside U near Sr flow down because ẏ = −x > 0 and they
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Fig. 1.4 The periodic orbit of the Van der Pol equation with parameter values (a, ε) = (0, 0.001)

is drawn as a thick curve. The critical manifold y = x3

3
− x is drawn as a thin curve. The singular

cycle of the system consists of two segments of the critical manifold together with horizontal
segments drawn as dashed curves that join the fold points (±1,∓2/3) to the opposite branch of
the critical manifold. Motion along the periodic orbit is clockwise

flow up inside U near Sl. A key aspect of the dynamics is what happens near
the fold points p± = (±1,∓2/3). The vertical component of trajectories near
p+ is negative, and below S the horizontal component points is also negative.
Consequently, trajectories near p+ are carried into the region where the flow is
almost horizontal and approaches Sl. Similarly, trajectories near p− are carried into
the region where the flow is almost horizontal and approaches Sr. In numerical
simulations with 0 < ε < 10−3, the mutual attraction of trajectories near Sr and Sl
is so strong that they all appear to merge with one another in less than a single cycle
around the periodic orbit. Conceptually, one can think of reducing the system to
slow manifolds and fast jumps that occur when an attracting slow manifold ends at
a fold point. Geometric singular perturbation theory provides rigorous foundations
for this mathematical intuition [14, 28, 30].

The equation (1.2) no longer defines a system of ordinary differential equations
(ODEs) when ε = 0. It gives a system of differential algebraic equations (DAEs).
Unlike ODEs, DAEs may have initial conditions for which solutions do not exist.
This happens at the fold points p± of the Van der Pol equation. At p+, the equations
demand that ẏ = −1 < 0, but y has a local minimum along S at p+. The
solutions of the equation f = 0 in (1.2) constitute the critical manifold S of the
system. Denote the derivatives of f with respect to x by fx, etc. If fx is a regular
(nonsingular) matrix at z = (x, y) ∈ S, the implicit function theorem implies
that there is a neighborhood U of z with the property that S ∩ U is the graph
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of a function x = h(y). The DAE then reduces to the ODE ẏ = g(h(y), y) which
does have solutions. This ODE is often called the reduced system or the slow flow
of the system (1.2). Convergence of solutions of the “full” system (1.2) to those of
the reduced system is a fundamental topic in the theory of slow–fast systems. The
results depend upon the fast subsystems or layer equations ẋ = f(x). Time can be
rescaled in Eq. (1.2) to obtain

x′ = f(x, y)

y′ = εg(x, y)
(1.4)

where the unit time scale is fast rather than slow. The limit ε = 0 of this system is
a family of vector fields for x, with y acting as a parameter. The critical manifold S
constitutes the set of equilibrium points of this system.

The portion of S where all the eigenvalues of fx have negative real parts is
attracting for the layer equations. Asymptotic methods summarized in the book
of Mishchenko and Rozov [40] were used to investigate attractors for the full
system near attracting sheets of the critical manifold. Geometric methods were used
by Fenichel to study the existence of invariant slow manifolds near sheets of S
that are normally hyperbolic. The critical manifold S is normally hyperbolic at a
point z if the matrix fx has no eigenvalue whose real part is zero. Folds occur only
at points where fx has a zero eigenvalue, so normal hyperbolicity is a more stringent
condition.

One of the technical difficulties encountered in the search for invariant slow man-
ifolds is that they often do not exist for any ε > 0! This is apparent in the Van der Pol
equation, where the critical manifold S is one dimensional. No trajectory remains
slow in either forward or backward time. In forward time, trajectories approach an
attracting branch of the critical manifold S but then go past a fold point where they
become fast as they jump to the opposite branch of S. In backward time, trajectories
either become unbounded in finite time or they remain close to the critical manifold
where the magnitude ẏ = −x is unbounded. Nonetheless, there are long sections
of trajectories that remain close to S. Manifolds with boundary formed from these
trajectory segments are said to be locally invariant. They cannot be unique since
bounded segments of trajectories vary continuously with initial data, but the fast
dynamics forces locally invariant manifolds to be exponentially close. This means
that, away from their boundaries, the separation of locally invariant manifolds is
bounded by a quantity of the form c1 exp(−c2/ε) for suitable c1, c2 > 0 that are
independent of ε. With these difficulties in mind, Fenichel [16] proved

• The existence of locally invariant manifolds near compact regions of a normally
hyperbolic critical manifold

• The convergence of the flow on these invariant manifolds to the slow flow on the
critical manifold

• The existence of foliations of strong stable and unstable manifolds of the
invariant manifolds
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Fig. 1.5 The left panel displays a blown-up portion of a numerical trajectory of the Van der
Pol equation with parameter values (a, ε) = (−0.99987490608059, 0.001) and initial condition
(1,−2/3). The trajectory is able to follow the repelling branch of the critical manifold only a short
distance before jumping right or left. The directions of the successive jumps are erratic, inconsistent
with the Poincaré–Bendixson theorem. The right panel shows two canard orbits of the Van der Pol
equation, computed at the same parameter values. These trajectories were computed by starting
with initial conditions on the vertical lines x = ±1 and integrating in both forward and backward
time to the line x = 1

The fibers of the stable foliation consist of points whose forward trajectories
approach each other at a fast exponential rate until they flow past the boundary of
the invariant manifold. Similarly, the fibers of the unstable foliation consist of points
whose backward trajectories approach each other at a fast exponential rate. These
results comprise Fenichel theory; they give a satisfying description of slow–fast
systems in the vicinity of normally hyperbolic portions of their critical manifolds.
However, as illustrated by the Van der Pol equation, they are not enough to yield
a comprehensive understanding of slow–fast systems where the critical manifolds
have folds.

Figure 1.5 illustrates the numerical difficulties of computing solutions with
canards using the Van der Pol equation. Forward numerical integration is unable
to follow trajectories along the repelling branch of the critical manifold due to
its fast transverse instability. We set ε = 0.001 and select the parameter value
a = −0.99987490608059 so that the attracting and repelling slow manifolds
appear to connect near the fold point at x = 1. The left panel of the figure shows
that simulation of a trajectory at these parameter values is unable to consistently
detect the relative locations of the attracting and repelling slow manifolds. The
trajectory returns repeatedly to the region of the fold and starts along the repelling
manifold. However, it is able to follow this manifold only a short distance before
jumping right or left, and the directions of successive jumps are erratic. The
figure shows the trajectory only in a small region near the fold. This behavior is
inconsistent with the Poincaré–Bendixson theorem, but has been observed with all
numerical integration algorithms that have been tried, even with the most stringent
error tolerances.
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As discovered by a French group of mathematicians [13], periodic orbits of
the system undergo a canard explosion in which they grow from size O(ε1/2) to
size O(1) in an exponentially small range of the parameter a. The right panel of
the figure shows two of these periodic orbits, one a “canard with head” and the
second a “canard without head.” The shape of the canard with head motivated the
introduction of the term “canard” to denote a special class of periodic orbits, but
conventional usage now is that the term refers to any trajectory that contains a
segment which spends O(1) (slow) time near a repelling slow manifold. In Fig. 1.5,
the canard with head was computed by integrating the initial condition (−1, 0.35)
both forward and backward to its intersection with the vertical line x = 1 near the
fold of the critical manifold. The canard without head was computed in the same
way from initial condition (1, 0.15). The terminal points of these four trajectories
agree to 15 digits of precision. Thus, numerical integration with double precision
floating point arithmetic is unable to resolve the separation of trajectories that arrive
at the fold point of this system along its slow manifolds. The exponential conver-
gence (divergence) of trajectories along the attracting (repelling) manifold is so
extreme that trajectories starting over a very large region of initial conditions appear
to arrive at the same point. Thus, we need to employ our theoretical understanding
of the dynamics of canards to obtain qualitative correct simulations from numerical
integration. This is also the case for the Van der Pol equation with periodic forcing,
where the horseshoes we locate consist of trajectories containing canard segments.

1.4 Folds and Folded Saddles

Singularity theory [1, 2] provides mathematical tools that can be used to investigate
slow–fast systems in the vicinity of their folds. The term fold has a technical
meaning in singularity theory as the simplest singularity, and folds in this sense
are the only type of singularity that appear in the Van der Pol equations with either
constant or periodic forcing. We have already determined that the folds of the forced
Van der Pol equation (1.1) are the circles defined by (x, y) = (±1,∓2/3). At these
points, the inequalities that determine that the singularity is a simple fold are that
fy �= 0 and fxx �= 0. The first inequality implies that the critical manifold is indeed
a manifold, while the second implies that the tangency of this manifold with the
surface of constant x is of the lowest possible order.

One of the principal strategies of singularity theory is to employ coordinate
transformations that bring a system to a normal form. The normal forms characterize
the extent to which any two systems with the same type of singularity can
be transformed into one another by coordinate changes. In dynamical systems
theory, the theory of normal forms is more complicated. At the outset, one seeks
coordinate changes that simplify the Taylor expansions of a vector field at an
equilibrium. A polynomial vector field P with an equilibrium at the origin is
described as the truncated normal form for a class of systems if coordinate changes
bring each vector field in the class to a system of the form P+ higher order terms.
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In the singularity theory of maps, the goal is to transform (germs of) a map exactly to
the truncated normal forms. For vector fields, this is seldom possible at degenerate
equilibria. Arnold et al. [2] investigated normal forms in the context of slow–fast
systems. For simple folds, we are primarily interested in whether the reduced system
has trajectories that flow toward or away from the fold. To study this question, it is
helpful to rescale or desingularize the reduced system.

Desingularization of the reduced system of the forced Van der Pol equation is
a bit simpler than the general case, so we describe the construction in this specific
case. The critical manifold of the forced Van der Pol equation is the graph of the
function y = x3

3 −x. Differentiate this equation to obtain the relation ẏ = (x2−1)ẋ

that holds on the critical manifold when ε = 0. Since ẏ and θ̇ do not depend upon
y, substituting the relation into the equation (1.1) yields

(x2 − 1)ẋ = −x+ a sin(2πθ)

θ̇ = ω
(1.5)

eliminating y from the equations. However, ẋ is infinite at the folds x = ±1. To
desingularize the equation, we rescale time by (x2− 1) to obtain the desingularized
reduced system

ẋ = −x+ a sin(2πθ)

θ̇ = ω(x2 − 1)
(1.6)

The time rescaling comes at a cost: it reverses orientation on the repelling sheet of
the critical manifold where x2−1 < 0. When relating trajectories of the system (1.6)
to those of (1.1), it is crucial to take this orientation reversal into account.

Trajectories of the desingularized reduced system that cross the fold curve are not
limits of trajectories of the full system as ε→ 0. The trajectories of the full system
flow away from the fold almost parallel to the x direction of the system (1.2). In the
case of the forced Van der Pol equation, these trajectories flow toward the opposite
sheet of the critical manifold, where they once again become slow and follow paths
close to the trajectories of the reduced system. Thus the limit behavior of the forced
Van der Pol equation has jumps: trajectories arriving at a fold are discontinuous,
jumping from the point (±1,∓2/3, θ) to the point (∓2,∓2/3, θ), which is the
intersection of a line parallel to the x axis with the opposite sheet of the critical
manifold. From this perspective, the reduced system is a discontinuous or hybrid
dynamical system in which the maps from the fold curves to the critical manifold are
discrete time components of the dynamics. For general slow–fast systems, singular
perturbation theory describes asymptotic expansions in ε of the flow maps past folds.
These expansions are singular, involving fractional powers of ε [18, 40].

Equilibrium points of the desingularized reduced system on its fold curve are
called folded singularities. Due to the rescaling factor of desingularization, folded
singularities need not be limits of equilibria of the full system of equations (1.2)
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Fig. 1.6 This is a phase portrait of the desingularized reduced flow of the forced Van der Pol
equation for parameters (a, ω) = (1.1, 1.57). All trajectories above x = 1 flow to the right. The
stable manifold and one branch of the unstable manifold of the folded saddle are drawn as heavy
curves. Trajectories starting at x = 2 to the left of the stable manifold flow directly to the fold
curve x = 1 where they jump to x = −2 (not shown). Trajectories starting at x = 2 to the right
of the stable manifold follow the unstable manifold of the folded saddle before reaching the fold
curve x = 1. For the stable manifold itself, singular limits of the full system include trajectories
that proceed along the branch of the stable manifold with x < 1 and then jump either to the region
with 1 < x < 2 or the region −2 < x < −1. The landing points of these jumps in the region
1 < x < 2 are drawn as a dotted curve

as ε → 0. Indeed, the forced Van der Pol equation has no equilibria at all because
θ̇ = ω �= 0, but it does have folded singularities when a > 1. These are located at the
points where x = ±1 and x = a sin(2πθ). The folded singularities divide the fold
into segments, characterized by whether trajectories of the desingularized reduced
system flow toward or away from the fold. The usual classification of equilibria
of two-dimensional vector fields into nodes, foci, and saddles is applied here. A
straightforward calculation shows that the region where folded nodes occur is very
small, and that over most of the parameter space with a > 1, each fold curve
has a folded saddle and a folded focus. Figure 1.6 shows a phase portrait of the
desingularized reduced system for parameters (a, ω) = (1.1, 1.57).

Folded saddles are pivotal to our analysis of chaos in the forced Van der Pol
equation. They were first studied by Benoit [5], who analyzed a (truncated) normal
form. We describe the salient results from this analysis. We assume that S is the
critical manifold of a system with two slow variables and one fast variable, that
L ⊂ S is a fold curve dividing S into an attracting sheet Sa,0 and a repelling sheet
Sr,0 and that p ∈ L is a folded saddle. Fenichel theory implies that there are smooth
attracting and repelling slow manifolds Sa,ε and Sr,ε that are O(ε) distant from
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Fig. 1.7 Intersections of the attracting and repelling slow manifolds of the forced Van der Pol
equation with parameters (a, ω, ε) = (1.1, 1.57, 0.0001). The gray surface is the critical manifold.
The black curves are bundles of trajectories with initial conditions on the critical manifold and
terminal conditions on the cross section θ = θs, the value of θ at the folded saddle of the reduced
system. The inset shows the terminal points of the two bundles, illustrating that they intersect with
an angle that is O(ε). The intersection point is on the maximal canard of the system

Sa,0 and Sr,0 away from L. Extensions of these manifolds along trajectories are
still invariant but no longer normally hyperbolic; the extensions show the fate of
trajectories as they pass through a neighborhood of L. The first important result is
that extensions of Sa,ε and Sr,ε intersect near p. The intersection is a trajectory γ,
called a maximal canard, that flows from the attracting slow manifold Sa,ε to the
repelling slow manifold Sr,ε. The second important result is that the extensions of
Sa,ε and Sr,ε intersect transversally along γ with an angle of intersection that is
O(ε). Together with the normal hyperbolicity of Sa,ε and Sr,ε, this splitting angle
is large enough to ensure that the flow along γ is hyperbolic. Trajectories on Sa,ε
to one side of γ jump along the fast direction while trajectories on the other side
of γ turn away from the fold and flow back along Sa,ε without jumping. Since
the solutions of the system (1.2) depend continuously upon their initial conditions
for ε > 0, the trajectories on Sa,ε in the immediate vicinity of γ must interpolate
between these behaviors. They do so by following γ for varying distances along
Sr,ε as canards and then jumping away from the fold ! or back to Sa,ε. The distance
a trajectory travels before jumping is comparable to (minus) the logarithm of its
distance from γ on Sa,ε. Consequently, this process stretches the distance between
trajectories that start close to each other by a large amount. In the forced Van der
Pol equation, the stretching that takes place in the horseshoes that we exhibit comes
from the flow of these canards along Sr,ε (Fig. 1.7).
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1.5 Return Maps

Poincaré introduced cross sections and return maps as a means of reducing the
analysis of an n dimensional vector field to an (n − 1) dimensional discrete map.
Forced oscillations have global cross sections obtained by fixing a phase of the
forcing. For the forced Van der Pol equation, a different choice of cross section gives
more insight into the dynamics. Apart from trajectories that follow the repelling
slow manifold along canards, all trajectories make fast jumps from a neighborhood
of the fold curve defined by (x, y) = (−1, 2/3) to the sheet of the critical manifold
with x > 1. The half plane defined by x = 1 and y > −2/3 is transverse to the
vector field and serves as a good choice of cross section. Additionally, we observe
that the systems (1.1) and (1.6) are symmetric with respect to the transformation
σ(x, y, θ) = (−x,−y, θ + 1/2). Note that σ ◦ σ is the identity. Denoting the flow
map from the section Σ = {(1, y, z)|y > −2/3} to the section σ(Σ) by F , this
motivates us to define the half return map on Σ to be Hε = σ ◦ F . The symmetry
of the system implies that Hε ◦Hε is the return map of Σ. It is easier to analyze Hε

than Hε ◦Hε since there is less folding. We also want to analyze the singular limit
H0 of Hε. Apart from the trajectories with canards, all of the returns to Σ occur
in a thin strip around the circle x = 1, y = 2/3. The image of the singular limit
of the return map lies in this circle except for the limits of some trajectories with
canards. To compute the singular limit of Hε, we must take account of the fact that
the cross sections are in the middle of jumps. Points with x = 1, y = 2/3 jump to
points of the critical manifold with x = 2, so we use x = 2 as our cross section
of the reduced system. Thus, we obtain values of H0 by following a trajectory of
the reduced system from x = 2 to x = 1, jumping to x = −2 and then applying
σ to obtain a new point with x = 2. Apart from the trajectories with canards, H0

is a one-dimensional map that is the limit of the maps Hε after accounting for the
change of coordinates resulting from the jump from x = 1 to x = −2.

Analyzing the singular limit of trajectories with canards is a bit more intricate.
When a > 1, the desingularized reduced system has a folded saddle p on x = 1
with stable manifold W s(p). This stable manifold intersects x = 2 at one or more
points where there are discontinuities of H0. Trajectories on one side of W s(p)
flow directly to x = 1, while trajectories on the other side of W s(p) turn and follow
the unstable manifold Wu(p) to x = 1. These discontinuities can be “patched” by
making the map H0 multivalued. The appropriate patch contains limits of all canard
trajectories of the full system as ε → 0. The singular limits of canards consist of
segments on the branch of W s(p) on the repelling sheet of the critical manifold.
The canards can end and jump to one of the attracting sheets of the critical manifold
|x| > 1 anywhere along this branch of W s(p). If the jump is “back” to x > 1,
an explicit calculation establishes that the jump lands on the side of W s(p) where
trajectories follow Wu(p) to x = 1, determining the value of H0. If the jump is
“forward” to (x, θ) with x < −1, then the forward trajectory of (x, θ) does not
encounter the fold curve x = −1 before its next jump. To obtain a consistent value
of H0 for this trajectory, we follow the trajectory of (x, θ) back to x = −2 and take
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Fig. 1.8 The half return map H0 of the singular limit of the forced Van der Pol equation for
parameter values (a, ω) = (1.1, 1.57) and cross section x = 2 is displayed. The discontinuity of
H0 occurs at the intersection (θs, 2) of x = 2 with the stable manifold of the folded saddle. The
extension of H0 to trajectories with singular canards is plotted as a dotted vertical segment. The
horizontal dashed line is θ = θs, showing that the images of the singular canards contains θs

the value of θ there to be the value of H0 for this trajectory. See Fig. 1.8. Thus the
patches to the discontinuities of H0 consist of vertical segments. The extreme value
of these segments corresponds to maximal canards that follow Wu(p) to its first
intersection with one of the fold curves. Whether this intersection occurs on x = 1
or x = −1 depends upon parameters (a, ω); in the parameter region we study it
occurs on x = 1.

A second aspect of H0 that is important in its dynamics are critical points where
dH0

dθ = 0. These critical points occur where the desingularized reduced system is
tangent to the line x = 2. They satisfy the equation 2 + a sin(2πθ), so they occur
only in the parameter region where |a| ≥ 2. This prompts us to focus attention
on the parameter region 1 < a < 2 where ẋ < 0 on the circle x = 2. In this
parameter region, H0 has no critical points and it has a single discontinuity located
at the intersection of W s(p) with x = 2. No trajectory on Sr can cross the circle
x = 2 twice. Bold et al. [6] discuss the dynamics of the system when a > 2.

Horseshoes of the forced Van der Pol equation are reflected in the dynamics
of H0 by intervals that are mapped back onto themselves at least twice. In the
parameter region 1 < a < 2 this can only occur via trajectories that contain
canards, because outside these canard trajectories (the dotted vertical segment of
the return map in Fig. 1.8) H0 is increasing and injective. The canard trajectories
yield a “spike” in the graph of H0, leading us to look for parameter values where
the location of the spike is contained in its image. Numerical computations involving
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only the desingularized reduced system can identify parameter regions where this
happens.

The proof that the system has horseshoes at these parameter values for suffi-
ciently small ε begins with a computer-assisted step that verifies that the intersection
of W s(p) with x = 2 lies in the image of singular canard orbits of H0. This is
hardly a delicate calculation, requiring only a moderately accurate determination of
the location of W s(p) in the strip −1 < x < 2. The intersection of the branch of
W s(p) with x = 1 determines the location of the maximal canard and the extreme
value of the canard spike of H0. The remainder of the proof is based on the theory
that has been described above, together with analytical tools for determining that a
mapping has a hyperbolic invariant set.

1.6 Structural Stability, Hyperbolic Invariant Sets,
and Axiom A

Dynamical systems whose qualitative properties remain unchanged when the system
is perturbed are said to be structural stable. The definition states that a vector field
is Cr structurally stable if it has a neighborhood in the space of Cr vector fields that
are all topologically equivalent. A topological equivalence of two vector fields
is a homeomorphism that maps trajectories of one system to trajectories of the
other, preserving the time orientation of the trajectories. The first investigations
of structural stability were carried out in the setting of planar vector fields, where
chaotic dynamics is precluded by the Poincaré–Bendixson theorem [25]. The first
examples of chaotic systems proved to be structurally stable were discrete time
systems, namely Smale’s horseshoe and Anosov diffeomorphisms of tori [46].
As recounted above, the horseshoe was inspired by the work of Cartwright and
Littlewood on the forced Van der Pol equation. One of the achievements of the work
recounted here has been to “close the loop” by proving that the forced Van der Pol
equation has parameter values for which it is structurally stable while possessing
chaotic invariant sets. This proof relies upon the geometric characterization of
structural stability via Smale’s Axiom A.

The common theme in the horseshoe and Anosov diffeomorphisms is that
the chaotic invariant set has a hyperbolic structure consisting of directions that
are stretched by the transformation and directions that are contracted by the
transformation. A hyperbolic structure for an invariant set Λ of a diffeomorphism
f : M → M consists of an invariant splitting of the tangent bundle TΛM =
EsΛ ⊕ EuΛ that satisfies the inequalities

|Df nv| > cλ−n|v|, v ∈ Eux , x ∈ Λ
|Df nv| < cλn|v|, v ∈ Esx, x ∈ Λ
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for suitable 0 < c, 0 < λ < 1. Thus, vectors in the stable subspaces Esx
are contracted at an exponential rate while vectors in the unstable subspaces Eux are
expanded at an exponential rate. In the case that the set Λ is a fixed point x, the stable
manifold theorem proves that there are invariant stable and unstable manifoldsW s

x

and Wu
x tangent to Esx and Eux . Moreover,W s

x is characterized geometrically as the
set of points y whose trajectories fn(y) approach x as n → ∞ and W s

x consists of
the points y whose trajectories fn(y) approach x as n → −∞. Generalizations of
the stable manifold theorem were developed for hyperbolic invariant sets and then
under even weaker assumptions about hyperbolicity [44].

Smale’s Axiom A for a diffeomorphism f requires that periodic orbits are dense
in the non-wandering set Ω of f and that Ω possesses a hyperbolic structure. If the
state space of f is a compact manifold, then Axiom A implies that Ω decomposes
as a finite union of invariant basic sets on which f is topologically transitive,
i.e., has a dense orbit. The culmination of this circle of ideas was the proof that
a diffeomorphism of a compact manifold is structurally stable if and only if it
satisfies Axiom A together with the no cycle property [36]. The no cycle property
states that there are no cyclic chains of trajectories connecting basic sets. The
extension of this theory to differential equations adds new geometric complexity.
Flows cannot expand or contract along the direction of the flow, so hyperbolic
structures are defined by splitting tangent spaces into three components—one being
the line tangent to the flow. However, forced oscillations have global return maps
that are diffeomorphisms, so the relationship between flows and diffeomorphisms is
simpler in this setting than for general flows. The forced Van der Pol equation is still
one of a very few examples in which this hyperbolic theory of structural stability has
been brought to bear upon models defined by differential equations [56].

1.7 Structural Stability of the Forced Van der Pol Equation

We end by sketching how the concepts described above fit together to yield a
proof that the forced Van der Pol equation has parameters for which it has a
return map containing a horseshoe and it is structurally stable. The starting point
is numerical computation of the phase portraits of the reduced system. These are
two-dimensional flows with one-dimensional half return maps H0. When 1 <
a < 2, the half return maps have discontinuities at trajectories that lie in the
stable manifold of the folded saddle on the circle x = 1. We extend the half return
maps to be multivalued at these discontinuity points by computing the possible
singular canard trajectories that follow the stable manifold of the folded saddle
onto the repelling sheet of the critical manifold and then jumping to one of the
two attracting sheets of the critical manifold. By scanning the parameter space,
we identify parameter values for which the half return map has a fixed point
corresponding to a trajectory that possesses a singular canard. See Fig. 1.8. Haiduc
does not give an analytic proof that there is a parameter region with this property.
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Fig. 1.9 The half return map of the forced Van der Pol equation with parameters (a, ω, ε) =
(1.1, 1.57, 0.0001) is illustrated. The vertical object is a thin quadrilateral in the cross section
x = 1. This strip is squeezed vertically and stretched horizontally in an extreme manner. The
images of points on the top segment of the strip are plotted with the symbol “o” and the image
of points on the bottom segment of the strip are plotted with the symbol “x.” The flow of both
these segments intersects the repelling slow manifold, but forward integration is unable to track
the trajectories that follow the repelling slow manifold. The images of the canard trajectories are
plotted as a solid curve, computed with a combination of forward and backward integration starting
at points on the repelling manifold close to the maximal canard of the system. The returns of these
orbits with canards produces a horseshoe

Instead, interval arithmetic is used with an initial value solver to verify the needed
estimates. We reemphasize that this is not a delicate calculation.

For small values of ε > 0, the forced Van der Pol equation will have trajectories
containing canards whose properties are approximated by the multivalued extension
of the reduced system. The canard trajectories flow near the region of the folded
saddle and continue along the repelling slow manifold until they jump to one
of the attracting slow manifolds and return to the vicinity of the opposite folded
saddle. Both directions of jumping occur. The (half) return map of a cross section
to these trajectories, displayed in Fig. 1.9, has a hyperbolic invariant set Λh that is
topologically conjugate to the horseshoe. The expansion of the hyperbolic structure
is due to the stretching that occurs as canards jump from the repelling slow manifold
at different times, while the contraction of the hyperbolic structure is due to the rapid
convergence of trajectories to the attracting slow manifolds. The transversality of
the two is a consequence of the O(ε) splitting between the attracting and repelling
slow manifolds along the intersection of their extensions. The set Λh consists of
intersections with the cross section of trajectories with an infinite number of canards
and jumps in both forward and backward time. Labeling each jump with a symbol
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that indicates the direction of the jump gives a map ψ from Λh to the space of
bi-infinite sequences of the two symbols. Using the hyperbolicity of the return map,
it is readily proved as with the horseshoe that ψ is a bijection: every bi-infinite
sequence of symbols corresponds to exactly one trajectory.

In fact, the horseshoe is embedded in a larger basic set of the system. The
half return map has a region containing the canards and extending to the right
that maps into itself with a “Z”-shaped shape, and this gives rise to a basic set Λ
whose trajectories can be labeled by sequences of three symbols rather than two. The
trajectories corresponding to the third symbol return to the folded saddle between
their first and second return to the cross section. Their jumps from the repelling
manifold occur at a different location than the points in the horseshoe. The symbolic
dynamics of the set Λ yield a dense set of periodic orbits in this basic set. The
remainder of the non-wandering set of the system consists of an unstable periodic
orbit with small amplitudes of x and y and a stable periodic orbit that contains a
stable fixed point of the half return map. The system is proved to be structurally
stable by demonstrating that wandering trajectories that do not lie in the stable
manifold of Λ tend to the stable periodic orbit, and that trajectories that do not lie
in the unstable manifold of Λ tend to the unstable periodic orbit in backward time.
This precludes the existence of chain recurrent cycles and concludes our overview
of the proof of structural stability.

1.8 Afterword

A surprising aspect of the results recounted here is that, unlike the Lorenz
attractor [35], they do not yield chaotic trajectories that have been computed with
an initial value solver. Because the trajectories contain canards, finding them by
integrating forward with an initial value solver is not feasible if ε is sufficiently
small. Pragmatically, ε = 10−3 is sufficiently small as we illustrated with the Van
der Pol equation without periodic forcing. Even if we did not have to contend
with the numerical difficulties of integrating trajectories with canards to exhibit
Λ, it would still be hard to find because it is not an attractor. The distinction
between chaotic invariant sets and chaotic attractors is important, and the search
for chaotic attractors has been a major theme within dynamical systems theory
research for decades. Perhaps the earliest example of a hyperbolic chaotic attractor
other than Anosov diffeomorphisms and flows is the solenoid [46], an attractor of a
three-dimensional diffeomorphism. A few years after Smale described this example,
Plykin [42] constructed a diffeomorphism of the plane that has a hyperbolic chaotic
attractor. Nonetheless, chaotic attractors are more common than suggested by these
structurally stable examples. Henon [24] discovered that diffeomorphisms of the
plane defined by quadratic equations can have chaotic attractors. It is evident that
the attractor of the Henon map cannot satisfy Axiom A. An extraordinary set of
results beginning with the work of Jakobson [26] on one- dimensional quadratic
maps culminated in the demonstration by Benedicks and Carleson [4] that Henon
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maps could have chaotic attractors. Their results have been extended to larger
classes of “Henon-like” maps, first by Mora and Viana [41] and then further by
Wang and Young [55]. In principle, the theory of Henon-like diffeomorphisms
should apply to the forced Van der Pol equation. When a > 2, the singular half
return map H0 has critical points where its image folds. There are parameter values
a > 2 where H0 maps an interval into itself in a unimodal fashion. That is a starting
point for applying the theory of Henon-like diffeomorphisms. Guckenheimer
et al. [21] took a significant step along this path. (See also Mishchenko et al. [39].)
They showed that the singular limits of return maps of smooth slow–fast systems
with two slow and one fast variable yield return maps with sufficient smoothness
to apply the theory of Wang and Young [54]. To avoid complications of dealing
with canards, they studied a modification of the forced Van der Pol equation for
which there are no folded singularities or canards but there are critical points of
the singular return map. They located parameter regimes where there are chaotic
attractors in this modified system of differential equations. Like Haiduc’s thesis,
this result puts a solid mathematical foundation under heuristic arguments that were
used for decades to connect the theory of chaotic dynamical systems to examples
defined by actual differential equations. The theory of chaotic attractors is based
on the analysis of diffeomorphisms of the plane that perturb rank one maps. This
mathematical setting is realized by the singular limits of slow–fast systems.
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Chapter 2
Periodic Orbits Close to Grazing for an Impact
Oscillator

D.R.J. Chillingworth and A.B. Nordmark

Abstract We show how the geometric impact surface approach to the dynamics
of an impact oscillator provides an immediate visualization of the criteria that
determine the existence of an impacting periodic orbit close to grazing. We recover
the criteria set out earlier by A. Nordmark and indicate how the geometric setting
and singularity geometry may be exploited to yield appropriate criteria in degenerate
situations where the Nordmark criteria would not apply.

2.1 The Impact Oscillator

There are many physical and engineering contexts in which a vibrating or oscillating
system encounters impacts—typically accompanied by undesirable noise and wear
and thus demanding to be eliminated or at least controlled. See e.g. [1,3,14], as well
as [9], for examples and further references.

The simplest model for such a system is the one degree of freedom impact
oscillator of the form

ẍ+ f(x, ẋ) = g(t) (2.1)

where f : R2 → R and g : R → R are smooth functions, g is T -periodic
with T > 0, and where x is restricted to the region x ≥ c. To describe the local
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consequence of impact with the obstacle at x = c a restitution law is assumed,
which usually takes the form of replacing ẋ < 0 by −rẋ, r > 0 at impact.

Impact oscillators can be seen as special cases of N -degree of freedom
(autonomous) systems with codimension-1 obstacles, or of general hybrid systems
involving piecewise-smooth vector fields in Rn together with maps defined on
the codimension-1 boundaries of the regions of smoothness: see [1] for further
discussion.

An impact oscillator (2.1) exhibits certain bifurcation phenomena that arise
specifically from the impacts, in addition to those seen in smooth (non-impacting)
systems. The most natural example to study first is that in which a hyperbolic (or,
at least, isolated and persistent) periodic orbit of period T lying in the region x > c
collides with the obstacle at x = c as a parameter μ in the system increases through
a critical value μ0. For μ = μ0 the orbit satisfies ẋ = 0 where x = c, that is
it grazes the obstacle. It is not a priori clear whether such a periodic orbit will
persist (with impacts) for μ > μ0 or how the result may depend on the nature of
the Poincaré map of the grazing orbit.

There have been many studies, both theoretical and numerical, of the dynamical
behaviour of an impact oscillator close to grazing: see for example [2, 4, 6–8, 10–
12, 15, 16]. A thorough investigation of the persistence or otherwise of a grazing
T -periodic orbit was carried out by Nordmark in [13] in the wider context of an
n-degree of freedom (autonomous) system with a codimension-1 obstacle, and as an
illustration in that paper the general results are applied to the 1-degree of freedom
system (2.1). A detailed analysis of criteria for the persistence of orbits of period
nT for n = 1, 2, 3 . . . is carried out, leading to interesting algebra related to the
eigenvalues of the Poincaré map. However, simple criteria in terms of the Poincaré
map itself are not immediately visible.

The purpose of this paper is, first, to extract the essential data from the
general formalism of [13] in order to write down what is needed for the impact
oscillator (2.1) in the cases n = 1 and n = 2. Having done this, we then take
a different approach and use the impact surface description formulated in [5] in
order to reveal in this setting the extremely simple geometric criteria that underlie
the phenomenon of grazing bifurcation. Finally we show how this geometry, when
converted into algebra, yields the Nordmark criteria.

2.1.1 Nordmark’s Criteria

We apply the general formalism from [13] to this setting, and in particular to the
cases designated there as (n) where n = 1 or n = 2, that is cases of impacting orbits
close to grazing that have a single impact during a period of T or of 2T . The aim is
to derive simple criteria for the existence of such periodic orbits as a system with a
grazing orbit P of period T is perturbed by a parameter μ. We suppose without loss
of generality that the grazing occurs when μ = 0.
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2.1.1.1 Single Impact T -Periodic Orbits

Following the notation from [13], let

A =

(
α γ

β δ

)

denote the Jacobian matrix of the time-T map in the (x, ẋ)-plane for the sys-
tem (2.1) (in the absence of the obstacle) at the point p = (c, 0) when μ = 0.
The T -periodicity of P means that p is a fixed point of the map. It is convenient to
introduce also the covector C = [1, 0] and the vector B = [0, 1]t where t denotes
transpose.1

First assume that

Δ− := det(I −A) �= 0

so that P (although not necessarily hyperbolic) persists as a T -periodic orbit Pμ in
the absence of the obstacle for small |μ| > 0. A central role in [13] is played by
the quantity

e : = C(I −A)−1(κ, λ)t (2.2)

= Δ−1
−
(
(1− δ)κ+ γλ

)
(2.3)

where (κ, λ) = ( ∂x∂μ ,
∂ẋ
∂μ ) evaluated at p when μ = 0.

To first order in μ, the location of a T -periodic (n = 1) single-impacting
orbit (when it exists) relative to the grazing point p is given by μX ∈ R2

where ([13, eq. (51)])

C(I −A)X = 0 , CX = −1 (2.4)

and from [13, eq. (34)] the condition for such an orbit to exist is

y1eμ > 0 (2.5)

where from [13, eq. (32)] we have (up to a positive multiple)

y1 = Bt(I −A)X. (2.6)

1The vector B differs from that in [13] by a positive scalar multiple.
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From the second equation of (2.4) we see X has the form X = (−1, x1)t, and then
combining (2.4) and (2.6) we may write

(I −A)

(−1 0

x1 1

)
=

(
0 −γ
y1 1− δ

)
(2.7)

which on taking determinants gives

γ y1 = −Δ− . (2.8)

Assuming γ �= 0 this gives

y1e = −γ−1
(
(1 − δ)κ+ γλ

)

and so the criterion (2.5) gives the following basic result:

Proposition 2.1 (Nordmark). Suppose Δ− �= 0 ,γ �= 0 and also

ψ := (1− δ)κ+ γλ �= 0.

For |μ| sufficiently small, a single-impact orbit of periodT exists close to the grazing
orbit if and only if the parameter μ has the opposite sign from γψ.

In particular this implies that as μ passes through zero an impacting period-T orbit
must exist on one side or the other. If it exists for μ > 0 then the impacting orbit is
a continuation of the non-impacting orbit, while for the case μ < 0 the free and the
impacting orbit exist simultaneously and mutually annihilate at μ = 0. The latter
phenomenon is often called a nonsmooth fold: see [1].

2.1.1.2 Single Impact 2T -Periodic Orbits

For a 2T -periodic orbit (n = 2) with single impact the locationX is now by analogy
with (2.4) given by

C(I −A2)X = 0 , CX = −1 (2.9)

while the conditions for such an orbit to exist are

b2,1 e μ > 0 (2.10)

y2 e μ > 0 (2.11)

where

b2,1 = CAX + 1 (2.12)

y2 = Bt(I −A2)X. (2.13)
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Let α2 , γ2 denote the α, γ-entries in A2, that is

α2 = α2 + βγ = αη − detA (2.14)

γ2 = γ η (2.15)

where η = tr A is the trace of A. By analogy with (2.7) we have on taking
determinants

ηγ y2 = − det(I −A2) = −Δ−Δ+ (2.16)

with Δ+ = det(I +A), and so

γy2e = −η−1Δ+

(
(1− δ)κ+ γλ

)

provided η �= 0. If (2.11) holds then the condition (2.10) can simply be expressed
by saying that b2,1 and y2 have the same sign. Now if X = (−1, x2)t satisfies (2.9)
we find

b2,1 = −α+ γx2 + 1 (2.17)

= −α+ γγ−1
2 (α2 − 1) + 1 (2.18)

= −η−1Δ− (2.19)

using (2.14) and (2.15). From (2.16) the same-sign condition on b2,1 and y2 is
therefore precisely the condition that γ Δ+ > 0. To summarize:

Proposition 2.2 (Nordmark). Suppose Δ− �= 0, ηψ �= 0 and also γΔ+ �= 0.
For |μ| sufficiently small, a single-impact orbit of period 2T exists close to the
grazing orbit if and only if γΔ+ > 0 and μ has the opposite sign from ηψ.

2.1.2 The Impact Surface Approach

We now turn to address the same questions, but from the point of view of the
geometry of the impact surface as set out in [5]. We briefly describe the formalism,
and refer to [5] for further details.

The impact surface Vc is defined as

Vc = {(τ, v, t) ∈ R3 : xc(τ, v, t) = c} (2.20)

where x(c, v, τ ;u) denotes the solution of (2.1) with initial data (x, ẋ) = (c, v)
when u = τ , and we write xc(τ, v, t) = x(c, v, τ ; τ + t).
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Clearly Vc contains the t = 0 plane Π , and in [5] it is shown that Vc = Π ∪ V ′
c

where V ′
c is a smooth 2-manifold (except generically for finitely many values of c

at which V ′
c undergoes a Morse perestroika) that intersects Π transversely along

the τ -axis. The impacting system can then be modelled by a discontinuous discrete
dynamical system on Π defined as the composition

Gc := R ◦ φc ◦ Fc : Π → Π

where

Fc : Π → V ′
c is the first hit map (τ, v) �→ (τ, v, t1) where t1 is the smallest

positive value of t for which (τ, v, t) ∈ V ′
c

φc : V
′
c → Π is the reset map (τ, v, t) �→ (τ + t, ẋ(τ + t))

R : Π → Π is the restitution map (such as (τ, v) �→ (τ,−rv)).
In other words, we reconstruct the dynamics by taking each impact at x = c as a
new set of initial data and then proceeding (after applying restitution) to the next
impact.

Remark 2.1. In general the map Fc may fail to be defined for either of the following
two reasons: for given (τ, v) ∈ Π the subset {t : (τ, v, t) ∈ V ′

c} of R may be empty,
or (when v = 0) may accumulate at zero. Neither of these arises in the present
discussion, however. It is also the case that infinitely many impacts can occur in a
finite time interval (the chatter phenomenon), but again for current purposes this
does not concern us.

2.1.2.1 Singularity Geometry

The singularity structure of the projection map

πc = π|V ′
c : (τ, v, t) �→ (τ, v)

and of the reset map φc are crucial in construction of the dynamical map
Gc : Π → Π . For (τ, 0, t) ∈ V ′

c let a = a(τ) := ẍc(τ, 0, 0) denote the ‘initial’
acceleration. Then from [5] we have

Proposition 2.3.

1. The singular set S(πc) consists of the points on V ′
c where ẋc = 0.

If ẍc �= 0 then the singularity is a fold singularity.
2. The singular set S(φc) consists of the points on V ′

c where v = 0.
If a �= 0 then the singularity is a fold singularity.

The first part of the proposition is elementary, from the geometry of V ′
c itself,

although the second part is less obvious. Note that πcS(πc) is the apparent outline
(or contour) of V ′

c as viewed along the t-axis; in [5] we call S(πc) the horizon
curve H .
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Fig. 2.1 Two fold maps
πc, φc : V ′

c → Π. The point
p1 ∈ V ′

c is a singular (fold)
point for both maps

Consider now a grazing and otherwise non-impacting periodic orbit P with
period T . In terms of the impact surface the orbit P is represented by a point
p0 = (τ0, 0, 0) on the τ -axis such that the line l(τ0) through p0 parallel to the t-axis
intersects V ′

c precisely at the points pn = (τ0, 0, nT ), n ∈ Z and is tangent to V ′
c

there. Suppose the grazing is quadratic, so that a > 0 and ẍc > 0 at all points pn .
From Proposition 2.3 we obtain

Proposition 2.4. Each of the maps πc : V ′
c → Π and φc : V ′

c → Π has a fold
singularity at each of the points pn , n �= 0.

See Fig. 2.1 for an illustration of this geometry for n = 1.
The T -periodicity of g means that the impact surface Vc is invariant under

translation τ �→ τ + T , so working modulo T on the τ -axis we can regard φc
as taking every pn ∈ V ′

c to p0 ∈ Π , as does πc. Therefore at each pn , n �= 0, we
have two fold singularities

πc , φc : (V
′
c , pn)→ (Π, p0).

We now use this geometry to derive a criterion for the existence of impacting period-
T orbits after perturbation based on the following elementary properties of fold
maps. By smooth curve we mean a smooth arc or 1-manifold.

Lemma 2.1. Let f : (R2, q)→ (R2, p) be a fold singularity with singular set S(f)
(a smooth curve through q) in R2; then U(f) := fS(f) is a smooth curve (fold
image curve) through p in R2. Let λ be a smooth curve in R2 passing through q,
and suppose the tangent to λ at q does not coincide with the kernel of the derivative
Df(q) : R2 → R2. Then f(λ) is a smooth curve through p and is tangent to U(f).
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These facts can easily be deduced from the normal form (x, y) �→ (x, y2) for a fold
map (R2, 0)→ (R2, 0).

2.1.3 Single Impact Period T Orbits

Suppose now that p ∈ Π represents a single-impact T -periodic orbit, so that p is a
fixed point of the dynamical map Gc : Π → Π , that is

p = Gc(p) = R ◦ φc ◦ Fc(p). (2.21)

This can be re-expressed as

πc(q) = R ◦ φc(q) (2.22)

where q = Fc(p) ∈ V ′
c . Thus, rather than seek a fixed point p of Gc directly, we

instead look for a point q on V ′
c that is taken to the same point under the two maps

πc and R ◦ φc ; the advantage here is that both of these maps are smooth.
Taking local coordinates (s, v) on V ′

c at p1 (here t = T +s) we find that the maps
πc and φc : V ′

c → Π can be expressed as

πc : (s, v) �→ (a−1v, v) +O(2) (2.23)

φc : (s, v) �→ (s+ a−1v, as+ v) +O(2) (2.24)

for constant a = ẍ(p1) = ẍ(p0) > 0 . The result (2.23) is easily obtained by noting
that the fold image curve is orthogonal to (∂xc

∂τ ,
∂xc

∂v ) evaluated at p1 and using the
identity (2.32) below, while (2.24) follows from expressing V ′

c locally near p1 as a
graph τ = τ(t, v), checking that (∂τ∂t ,

∂τ
∂v ) = (0, a−1) at p1 and again using (2.32).

Consequently, in order for (2.22) to be satisfied by a point q ∈ V ′
c near p1 the

coordinates (s, v) of q must satisfy

a−1v = s+ a−1v +O(2) (2.25)

v = −ras− rv +O(2) (2.26)

which for small (s, v) holds only at the origin. Thus we already have the following
simple but otherwise not immediately obvious result:

Proposition 2.5. Single-impact period-T orbits cannot exist arbitrarily close to a
period-T grazing orbit with nonzero acceleration at the graze.

A geometric view of this fact is as follows. Equation (2.26) represents (near p1) a
smooth curve Γ through p1 , namely the locus of those points q ∈ V ′

c such that the
v-coordinates of π(q) and R ◦ φ(q) coincide. Let Γ ′ = πc(Γ ) and Γ ′′ = R ◦φc(Γ )
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Fig. 2.2 The images Γ ′ and Γ ′′ of Γ under the two fold maps πc and R ◦ φc modulo T

be the respective images of Γ : then πc(q) = R ◦ φc(q) precisely when the curves
Γ ′ and Γ ′′ intersect at that point. Now since Γ is tangent neither to the kernel of
Dπc(p1) (the s-axis) nor the kernel of Dφc at p1 (which is spanned by (a,−1)) it
follows from Lemma 2.1 that Γ ′ and Γ ′′ are tangent to the fold image curves of πc
and R ◦φc, respectively. However, (2.23) and (2.24) show that these fold curves are
tangent to the directions (1, a) and (1,−ra), respectively, and so with τ reduced
modulo T these curves clearly intersect only at (τ, v) = (τ0, 0). See Fig. 2.2.

From this picture it is now easy to visualize the effect of a smooth perturbation to
the system, parametrized by a scalar parameter μ. We suppose that f and g in (2.1)
are replaced by fμ and gμ (with c also possibly replaced by cμ) taking their original
values at μ = 0. The stability of fold singularities ensures that for sufficiently small
|μ| there exists a unique point p1(μ) on V ′

c (μ), varying smoothly with μ, which is a
fold singularity point for both πc, φc : V ′

c (μ)→ Π with c = cμ. Let k = k(μ) and
l = l(μ) denote the τ -coordinate of the image of p1(μ) under πc, φc respectively,
so that the equations of the tangent lines to the fold image curves of πc, φc through
(k, 0), (l, 0) are

v = m(τ − k) (2.27)

v = n(τ − l) (2.28)

with slopes m = m(μ) and n = n(μ) that are close to a and −ra, respectively, for
small |μ|. It is elementary to check that the v coordinate of the point of intersection
of the two lines (2.27), (2.28) is positive (so that a single impact T -periodic orbit
occurs locally) if and only if k− l has the same sign as ( 1n− 1

m). Since for μ = 0 we
have ( 1n− 1

m ) = −a−1(r−1+1) < 0, the criterion becomes simply that l−k > 0 for
sufficiently small |μ|. In the present context by construction k = τ and l = τ+t−T
and so we arrive at the following result.
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Proposition 2.6. A single-impact T -periodic orbit occurs for sufficiently small
|μ| �= 0 if and only if the t-coordinate t1(μ) of p1(μ) is greater than T .

In other words, there is a T -periodic impacting orbit provided that the unique nearby
initially grazing orbit that grazes a second time takes longer than time T to do so.

From the definition of p1(μ) as the unique point close to p1 which satisfies
xc = ẋc = 0 as well as v = 0 we find from implicit differentiation that

t′1(0) = −a−1
(
∂xc

∂τ

)−1
detW (2.29)

where W denotes the matrix
(
∂xc

∂τ
∂xc

∂μ
∂ẋc

∂τ
∂ẋc

∂μ

)

evaluated at p1(0). If we assume t′1(0) �= 0 then since a > 0 the necessary and
sufficient condition for the existence of a single-impact T -periodic orbit close to
grazing becomes explicitly:

(∂xc

∂τ )−1 detWμ < 0. (2.30)

At first sight this appears distinct from Nordmark’s criterion in Proposition 2.1
which involves derivatives with respect to v (the terms γ, δ) rather than with respect
to τ . The two are reconciled, however, using the fact that, regarding the system
(without the obstacle) as generating a flow {Ψt} in (x, ẋ, τ)-space, the Jacobian
matrix DΨt(c, v, τ) takes the initial tangent vector (v, a, 1)t to the time-t tangent
vector (ẋ, ẍ, 1)t. For a grazing periodic orbit of period T this means that (v, a, 1)t

is an eigenvector of DΨT (c, 0, τ) with eigenvalue 1, giving the identities

∂xc

∂v a+ ∂xc

∂τ = 0 (2.31)

∂ẋc

∂v a+ ∂ẋc

∂τ = a (2.32)

with derivatives evaluated at p0 (or p1). Using these we find that

detW = −a((1− δ)κ+ γλ) = −aψ

in the notation of Sect. 2.1.1. Thus the criterion (2.30) becomes γψ < 0 just as in
Proposition 2.1.

Observe that here we have not required the condition det(I − A) �= 0, and so
(in contrast to [13] where this is heavily used) we have no information about the
persistence of a non-impacting T -periodic orbit for |μ| �= 0.
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2.1.4 Single Impact 2T -Periodic Orbits

We next apply the impact surface geometry to the criterion for persistence of
a 2T -periodic single-impact orbit. Clearly there are two criteria that together
are necessary and sufficient for persistence of a 2T -periodic single-impact orbit,
namely:

1. The criterion analogous to (2.30) at p2(0) rather than p1(0)
2. The condition that V ′

c does not intervene between p0(μ) and p2(μ).

To formulate the second criterion, we need information not only about the
positions of fold image curves in Π but also about which side of such a curve is the
one that lies in the image of the fold map. From the normal form (x, y) �→ (x, y2)
for a fold map we deduce that a coordinate-independent description is as follows.

Lemma 2.2. Let f : (R2, q) → (R2, p) be a fold singularity as in Lemma 2.1.
Let u ∈ K = kerDF (q) be a nonzero vector. The restriction f |(q + K) has the
form

f : q + ξu �→ p+ ξ2w +O(ξ3)

for a nonzero vector w ∈ R2 that does not lie in the range of Df(q). Thus p+ ηw
lies in the range of f for all sufficiently small η > 0.

In our case we have that at every point pn (n > 0) the kernel Kπ of Dπc(pn) is the
s-axis while the kernelKφ of Dφc(pn) is spanned by the vector (1,−a), using local
coordinates (s, v) on V ′

c near pn as in (2.24). Moreover, representing V ′
c locally

as the graph of a smooth function τ = τ(s, v) we find by implicit differentiation
of (2.20) that at each such pn

∂2τ
∂t2 = −a(∂xc

∂τ

)−1
=
(
∂xc

∂v

)−1
=: γ−1

n

using (2.31), and also (with a little more effort) that

(a,−1) ·D2φc|Kφ : ξ(−1, a) �→ −ξ2aγ−1
n detAn = −kγ−1

n

for k > 0, where the dot denotes scalar product. Using this information, sketches of
the images of the fold maps πc, φc close to p2 and the map πc close to p1 quickly
indicate that the condition for V ′

c not to intervene between p0(μ) and p2(μ) is

(
t′1(μ) − t′2(μ)

)
γ > 0 (2.33)

where γ = γ1 by definition.
The point pn(μ) = (τn(μ), 0; tn(μ)) is obtained by solving

xc(τ, 0; t, μ) = ẋc(τ, 0; t, μ) = 0
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close to pn = pn(0), from which we find

(
∂xc

∂τ 0
∂ẋc

∂τ a

)(
τ ′
n(0)

t′n(0)

)
= −

(
∂xc

∂μ
∂ẋc

∂μ

)

with partial derivatives evaluated at pn, giving

τ ′
n(0) = −

(
∂xc

∂τ

)−1

n
κn = a−1γ−1

n κn (2.34)

with the obvious notation and assuming as before that γ and η (hence also γ2
by (2.15)) are nonzero. The criterion (2.33) therefore becomes

κμ > γ−1
2 γκ2μ. (2.35)

From the identity

κ2 = (α + 1)κ+ γλ

this becomes

κμ > η−1((α+ 1)κ+ γλ)μ, (2.36)

that is (since a number has the same sign as its inverse)

η((1 − δ)κ+ γλ)μ < 0. (2.37)

For the criterion (1) the counterpart of (2.30) at p2 is

(
∂xc

∂τ

)−1

2
detW2 μ < 0,

where W2 is the matrix (2.1.3) evaluated at p2. Using the easily verified fact that
W2 = (I +A)W , we may rewrite this as

η−1γ−1Δ+((1 − δ)κ+ γλ)μ < 0.

From (2.37) we see that the additional condition for criterion (1) to hold is that
γΔ+ > 0, and so we recover Proposition 2.2.

2.1.5 Conclusion

We have shown how the impact surface approach to the geometry of grazing
bifurcation allows an easy derivation of criteria for the existence of single-impact
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T -periodic orbits or 2T -periodic orbits close to grazing for a T -periodically forced
impact oscillator. As in the study by Nordmark [13], the methods can naturally be
extended to nT -periodic orbits with m impacts. However, a further advantage of the
impact surface description is that the tools of singularity theory can be applied in this
context to study multiparameter bifurcation of periodic orbits close to degenerate
grazing (a = 0) where the geometry of the relevant singularities (described in [5])
is more complicated than the fold geometry that arises here. We aim to pursue this
study in further work.
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Chapter 3
Branches of Periodic Orbits in Reversible
Systems

André Vanderbauwhede

Abstract In the typical reversible systems which appear in many applications
(symmetric) periodic solutions appear in one-parameter families. In this short
survey we describe how these branches of periodic orbits originate from equilibria,
terminate at homoclinic orbits, and branch from each other in period-doubling
bifurcations or higher order subharmonic bifurcations. Adding external param-
eters allows to study degenerate cases and the transition from degenerate to
non-degenerate situations.

3.1 Introduction

It is a kind of popular statement—initiated by Henri Poincaré himself—that in
Hamiltonian systems the subset of periodic orbits forms a sort of backbone for the
full dynamics of the system. What may be less well known is that in reversible
systems the subset of symmetric periodic orbits shows a similarly rich behavior
as its analogue in the Hamiltonian case. Of course, in many classical applications
reversible systems are also Hamiltonian (and vice-versa), but reversible systems can
be studied in their own right; actually, in many cases results for reversible systems
are somewhat easier to obtain, only relying on symmetry properties and avoiding
symplectic structures.

In this brief note we survey some of the basic branching behavior of symmetric
periodic orbits in reversible systems. For simplicity we restrict to the simplest case
of reversibility, and our statements will be rather descriptive instead of technically
complete. Even then, keeping in mind that a simple picture is worth more than
a thousand words, we would like to urge the interested reader to download the
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slides of our RTDS talk on this topic [17] and keep them at hand as we move
forward.

The results which we describe are either very classical, or based on joint work
we did during the last decade (or longer) in collaboration with Jürgen Knobloch,
Bernold Fiedler, Maria-Cristina Ciocci, Francisco Javier Muñoz Almaraz, Jorge
Galán, Emilio Freire, and Sebius Doedel. More details can be found in the papers
[1–3, 5, 6, 10–14] for the older results, [7, 8] for more recent work, and [9, 15, 16]
for more general results on the Lyapunov–Schmidt reduction which is in the
background of our approach.

3.2 Reversible Systems

Consider a smooth finite-dimensional system

ẋ = F (x), (x ∈ R
n, F : Rn → R

n smooth) (3.1)

and the corresponding flow x̃ = x̃(t;x). We say that such system is reversible if
there exist a closed subgroup Γ ⊂ GL(n;R) and a nontrivial group homomorphism
χ : Γ → {1,−1} such that

gF (x) = χ(g)F (gx ), ∀g ∈ Γ, ∀x ∈ R
n. (3.2)

It follows immediately that

gx̃(t;x) = x̃(χ(g)t; gx ), ∀g ∈ Γ ; ∀t ∈ R, ∀x ∈ R
n. (3.3)

Here we will restrict to the simplest possible case where Γ = {I, R}, with
R ∈ L (Rn) a linear involution (i.e., R2 = I) and χ(R) = −1; the reversibility
condition (3.2) then reduces to

RF (x) = −F (Rx), ∀x ∈ R
n; (3.4)

the flow satisfies

Rx̃(t;x) = x̃(−t;Rx), ∀t ∈ R, ∀x ∈ R
n. (3.5)

We also assume that

n = 2N and dim(Fix(R)) = N. (3.6)

The prototype example of such reversible system is given by the scalar second
order equation
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ÿ + f(y) = 0, (y ∈ R, f : R→ R smooth). (3.7)

For this equation we have N = 1, x = (y, ẏ) and Rx = R(y, ẏ) = (y,−ẏ).
Depending on f the phase plane typically consists of a succession of centers and
saddle points along the y-axis. For the particular case f(y) = y(1 − y) we get a
center at y = 0 and a saddle point at y = 1; there is a homoclinic orbit attached to
the saddle, and the region inside this homoclinic is filled with period orbits. The full
picture is symmetric under R.

We are particularly interested in symmetric orbits, i.e., orbits γ = {x̃(t;x0) |
t ∈ R} such thatR(γ) = γ. It is easy to show that an orbit γ is symmetric if and only
if γ∩Fix(R) �= ∅. Choosing x0 to be one of the intersection points we have then that
Rx̃(t;x0) = x̃(−t;x0). Excluding symmetric equilibria an orbit γ is symmetric and
periodic if and only if γ ∩ Fix(R) = {x0, x1} for two distinct points x0 �= x1; the
minimal period of such symmetric periodic orbit equals two times the time needed
to travel from x0 to x1: if T > 0 is such that x1 = x̃(T ;x0) and x̃(t;x0) �= x1 for
0 ≤ t < T then the minimal period is 2T . It follows that symmetric periodic orbits
are generated by the intersection points of the N -dimensional subspace Fix(R) with
the (N + 1)-dimensional manifold {x̃(t;x) | t ∈ R, x ∈ Fix(R)}; therefore
symmetric periodic orbits typically appear in one-parameter families.

It is then a natural question to ask how these one-parameter families of symmetric
periodic orbits start, finish, and/or branch from each other. The simple example
above already shows a partial answer. The center with the surrounding periodic
orbits is an example of the Lyapunov Center Theorem for reversible systems: under
appropriate technical conditions each equilibrium whose linearization has a pair
of simple purely imaginary eigenvalues ±iω0 (ω0 > 0) is contained in a two-
dimensional invariant manifold filled with symmetric periodic orbits whose minimal
period converges to 2π/ω0 as one approaches the equilibrium. At the other end the
period tends to infinity, and the periodic orbits tend to the symmetric homoclinic
orbit. This is an example of a period blow-up: again under appropriate technical
conditions, each non-degenerate symmetric homoclinic orbit to a hyperbolic fixed
point is the limit of a one-parameter family of symmetric periodic orbits whose
minimal period tends to infinity as one approaches the homoclinic.

These are essentially the only phenomena one can see for N = 1; of course
many more possibilities arise for N > 1. As a guiding example we can consider the
following system (with f as before):

ÿ + f(y) = z, z̈ + g(z) = 0, (g(0) = 0, g′(0) = 1). (3.8)

Here N = 2, x = (y, ẏ, z, ż) and Rx = R(y, ẏ, z, ż) = (y,−ẏ, z,−ż). A particular
question we can ask about this example (and which we will address further on) is:
are there, close to the symmetric periodic orbits for z = 0, any other periodic orbits
with z �= 0 but small? Also, adding external parameters may help to see certain
transitions from more degenerate to less degenerate situations.
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3.3 Reversible Hopf Bifurcation

One of the main bifurcations appearing in general systems is the Hopf bifurcation,
where an equilibrium looses stability under the change of an external parameter
because a pair of simple eigenvalues of the linearization crosses the imaginary axis;
as a result a small periodic orbit bifurcates from the equilibrium. In reversible
systems such crossing of the imaginary axis is not possible. Indeed, consider a
reversible system depending on a scalar parameter λ ∈ R:

ẋ = F (x, λ), (RF (x, λ) = −F (Rx , λ), ∀λ); (3.9)

assume also that x = 0 is an equilibrium for all λ (F (0, λ) = 0), and let Aλ :=
DxF (0, λ). It is easy to see that if μ ∈ C is an eigenvalue of Aλ, then so is −μ. As
a consequence, if Aλ has a pair of simple eigenvalues on the imaginary axis, then
this pair of eigenvalues can not be moved off the imaginary axis under a change of
the parameter λ. The only way eigenvalues can be moved off the imaginary axis is
by two pairs of purely imaginary eigenvalues meeting each other and then splitting
off into the complex plane, two to the left, two to the right. This is precisely the
situation described by the reversible Hopf bifurcation. A similar situation appears
in Hamiltonian systems at a so-called Hamiltonian Hopf bifurcation.

So assume that for λ < 0 the linearization Aλ has two pairs of simple purely
imaginary eigenvalues which coalesce for λ = 0 in a pair of (non-semisimple)
purely imaginary eigenvalues, and such that for λ > 0 we have a quadruple of
eigenvalues ±α ± iβ (α > 0, β > 0). For λ < 0 but small the two pairs
of purely imaginary eigenvalues satisfy the non-resonance condition required by
the reversible Lyapunov Center Theorem, and therefore we have for such λ two
branches of symmetric periodic orbits originating from the equilibrium at x = 0.
Detailed analysis shows that as λ goes to zero and becomes positive two scenarios
are possible. In the first scenario the two families which exist for λ < 0 are locally
connected into a single family which shrinks to the equilibrium as λ approaches zero
and then disappears for λ > 0. In the second scenario the two families (for λ < 0)
are not locally connected but become tangent to each other as λ goes to zero, and
then connect to each other into a single family detached from the equilibrium for
λ > 0. A detailed analysis of the associated dynamics can be found for example
in Section 4.3.3 of [4]; the first scenario mentioned above corresponds to the
“defocusing case,” while the second scenario corresponds to the “focusing case,”

3.4 Generic Subharmonic Branching

Next we turn our attention to the example system (3.8). We assume that the
unperturbed system (for z = 0) has a family of symmetric periodic orbits (as
explained in Sect. 3.2), parametrized by some parameter α ∈ R; we call this the
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primary family. Denote the minimal period along this family by T (α). Now suppose
that at α = α0 there is a bifurcation of another branch of periodic orbits, with z �= 0,
and parametrized by ρ ∈ R; denote the minimal period along this branch by T̃ (ρ).
Then the limiting period along the bifurcating branch must be an integer multiple
of the period at the branching point along the primary family, i.e., there must be
some q ∈ N such that limρ→0 T̃ (ρ) = qT (α0). In a more general situation this
resonance condition translates in the fact that a symmetric period orbit can only be
at a branching point of periodic solutions if it has a pair of multipliers which are
roots of unity, i.e., of the form

exp(±iθ0), with θ0 = 2πp/q, p, q ∈ N, gcd(p, q) = 1. (3.10)

One of the possible approaches to study the branching of periodic orbits at such
resonant periodic orbit is by using the Poincaré map. More precisely, one considers
a Poincaré map P : Σ → Σ where the section Σ is chosen to be R-invariant;
clearly dim(Σ) = 2N − 1. Putting the origin on Σ at the intersection point with
the resonant periodic orbit we have then P (0) = 0 and (because of the reversibility)
RPR = P−1; as a consequence 1 is always an eigenvalue of DP(0), with odd
(algebraic) multiplicity ≥ 1. Further on we will assume that 1 is a simple eigenvalue
of DP(0) (generically this will be the case). The resonance condition then implies
that DP(0) has a pair of eigenvalues of the form (3.10), with 0 < p < q and q ≥ 2.
The problem is then to study the bifurcation of q-periodic points of P from the
fixed point at the origin. This can be done by an appropriate Lyapunov–Schmidt
reduction.

We should also mention the important property that the reversibility implies that
if μ ∈ C is a multiplier of a symmetric periodic orbit then so is μ−1; in particular, if
a symmetric periodic orbit (along a branch of such symmetric periodic orbits) has a
pair of simple multipliers on the unit circle, then by moving along the branch these
multipliers have to stay on the unit circle.

3.4.1 Period Doubling

For the case q = 2 we assume that −1 is an eigenvalue of DP(0) with geometric
multiplicity one and algebraic multiplicity two. The problem of finding period-
doubled solutions then reduces to a three-dimensional bifurcation equation with
D2-symmetry: the dimension equals the dimension of the generalized kernel
of DP2(0), the D2-symmetry from a combination of the reversibility with the
Z2-symmetry which originates from the fact that if x is a solution of P 2(x) = x,
then so is P (x).

Denoting the coordinates on the three-dimensional “bifurcation space” by
(α, ξ, η) and using the symmetries the bifurcation equations reduce to

ξϕ(α, ξ2) = 0 and η = 0, (3.11)
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whereϕ is a scalar function with ϕ(0, 0) = 0. This gives us immediately the solution
branch {(α, 0, 0) | α ∈ R}, corresponding to the primary branch. If we assume
the transversality condition ∂ϕ/∂α(0, 0) �= 0 then we get a branch of period-
doubled solutions {(α∗(ξ2), ξ, 0) | ξ > 0} (we only have to consider ξ > 0 since ξ
and −ξ correspond to the same 2-periodic orbit of P ). The transversality condition
means that as we move along the primary branch a pair of simple multipliers moves
toward −1 on the unit circle, coalesces at −1, and then splits on the real axis in a
generic way.

3.4.2 Subharmonic Branching

For q ≥ 3 we assume that the resonant multipliers (3.10) are simple multipliers.
The Lyapunov–Schmidt reduction for the bifurcation of q-periodic points of P
results in a three-dimensional problem with a Dq-symmetry. The three-dimensional
bifurcation space corresponds to the three-dimensional kernel of DPq(0), which
itself corresponds to the three simple eigenvalues 1 and exp(±iθ0) of DP(0);
it is convenient to denote the coordinates in this space by u = (α, z) =
(α, ρ exp(±iθ)) ∈ R × C. The symmetry is generated by the reversibility and by
the implicit Zq-symmetry of the problem: if x ∈ Σ generates a q-periodic point
of P , then so do P (x), P 2(x), . . . , P q−1(x) and P q(x) = x. On the bifurcation
space the Dq-symmetry is generated by S0u = S0(α, z) = (α, exp(iθ0)z) and
Ru = R(α, z) = (α, z̄).

Using the symmetry one finds that the bifurcation equations take the form

B(u) =
(
h0(u)im(zq), ih1(u)z + ih2(u)z̄

q−1
)
= 0, (3.12)

where the functions hi : R × Z → R (i = 0, 1, 2) are smooth, with h1(0) = 0
and hi(u) = hi(S0u) = hi(Ru) for all u ∈ R × C and i = 0, 1, 2. There are two
immediate consequences. First, we have B(α, 0) = 0 for all α ∈ R, giving the
solution branch {(α, 0) | α ∈ R} corresponding to the primary branch. Second, if
either h0(0, 0) �= 0 or h2(0, 0) �= 0, then nontrivial solutions (with z �= 0) can only
exist if (for z = ρ exp(iθ))

im(zq) = ρq sin(qθ) = 0. (3.13)

Since all Sj0u = S0(α, z) = (α, exp(ij θ0)z) (j ∈ Z) generate the same q-periodic
orbit of P we have to consider only two cases: θ = 0 and θ = π/q, both with
ρ > 0. For these the bifurcation equations reduce to a single scalar equation,
respectively

b+(α, ρ) = h1(α, ρ) + ρq−2h2(α, ρ) = 0 (3.14)
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and

b−(α, ρ) = h1(α, ρ exp(iπ/q))− ρq−2h2(α, ρ exp(iπ/q)) = 0. (3.15)

We have already mentioned that h1(0, 0) = 0; therefore, assuming the transver-
sality condition ∂h1/∂α(0, 0) �= 0 we obtain from (3.14) and (3.15) two solution
branches {(α∗

+(ρ), ρ) | ρ ≥ 0} and {(α∗
−(ρ), ρ exp(iπ/q)) | ρ ≥ 0}, respectively.

For q ≥ 5 these two branches are very close to each other, as the two sides of
an Arnol’d tongue: if α∗

+(ρ+) = α∗
−(ρ−) = d for some small d > 0, then

|ρ+−ρ−| = O
(
d

d−2
2

)
. Also, the solutions along the two branches of subharmonics

are symmetric.
A further calculation shows that for q ≥ 5 and if h2(0) �= 0), then the

solutions along one of the two branches are elliptic and those along the other
branch hyperbolic, in the following sense. The solutions along both branches have
4 multipliers close to 1; two of these (counting multiplicities) are exactly equal to 1;
along the elliptic branch the two other multipliers are on the unit circle, while along
the hyperbolic branch they are on the real axis—one inside and one outside of the
unit circle.

For q = 3 and q = 4 (the so-called weak resonant cases) the second term in
b+(α, ρ) and b−(α, ρ) is of order ρ, respectively ρ2, and hence interferes with the
order ρ2 term in h1; therefore these cases require a separate analysis which we do
not comment on any further in this note.

The attentive reader may notice here a certain resemblance with the analysis
of subharmonic bifurcations in dissipative systems, in particular the appearance of
Arnol’d tongues and the distinction between weak and strong resonances. We should
warn that this resemblance is purely formal, since the reversible and the dissipative
cases are widely different. In dissipative systems subharmonic bifurcation is a
codimension two phenomenon, while in reversible (and Hamiltonian) systems it
is codimension zero, i.e., it appears robustly in fixed systems. In dissipative systems
the Arnol’d tongues are regions in parameter space; points inside or at the border of
the tongues correspond to systems having subharmonic solutions. In the reversible
case which we discuss here the “tongues” are just two curves in a Poincaré section of
phase space the points of which correspond to subharmonic solutions (in particular,
the points “inside” the tongues do not correspond to periodic orbits).

In order to get the generic picture sketched above (two bifurcating branches of
subharmonics, one elliptic and one hyperbolic, and close to each other as the two
sides of an Arnol’d tongue) we need next to h2(0) �= 0 (which is essentially a
condition on some higher order terms in the normal form) basically two conditions:
(a) a pair of simple resonant multipliers of the form (3.10), and (b) the transversality
condition ∂h1/∂α(0, 0) �= 0. This transversality condition means that as we move
along the primary branch (using α as a parameter) a pair of simple multipliers
crosses the critical pair (3.10) with nonzero speed. This brings us to the question
what happens when one of these conditions is not satisfied; the answer forms the
subject of the next section.
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3.5 Degenerate Subharmonic Branching

First we briefly consider the case where we have a symmetric periodic orbit with a
resonant pair of multipliers which are not simple. More precisely, we assume that
we have a symmetric periodic orbit with a resonant pair of multipliers (3.10) (for
simplicity we will restrict to q ≥ 5) with geometric multiplicity one but algebraic
multiplicity two (this requires N ≥ 3). Typically this means that as we move
along the primary branch to which the critical periodic orbit belongs two pair of
simple multipliers move along the unit circle and meet each other at the critical
pair (3.10); then they split off the unit circle, with one pair inside and one pair
outside the unit circle. Because of the requirement that the two pairs meet exactly at
the resonant pair (3.10) this is a codimension one situation. Adding an appropriate
external parameter λ ∈ R we get a situation where for λ < 0 the meeting point
of the two pairs of multipliers is at one side of the critical pair (3.10), while for
λ > 0 it is at the other side. This means that both for λ < 0 and λ > 0 we have
a non-degenerate situation, with a pair of multipliers crossing the resonant value
with nonzero speed. So, both for λ < 0 and for λ > 0 we have two branches of
subharmonics bifurcating from the primary branch; obviously, one then expects the
same to happen for λ = 0, and this is precisely what comes out of a (rather lengthy)
detailed analysis.

A more interesting situation arises when the resonant pair of multipliers (3.10) is
simple, but the transversality condition is not satisfied. This is a situation which
can already arise in our example system (3.8) when along the primary family
the (minimal) period reaches a local maximum or minimum. This maximum or
minimum has to happen precisely at a periodic orbit for which the resonance
condition is satisfied, so again this is a codimension one situation. To give a full
description we add an external parameter λ ∈ R; for example, in (3.8) we replace
f(y) by f(y, λ) where f : R×R→ R satisfies appropriate technical conditions such
that for the primary family given by the unperturbed equation ÿ + f(y, λ) = 0 the
following situation arises. For fixed λ < 0 a pair of simple multipliers moves along
the unit circle, passes the resonant pair (3.10), turns around a little bit further on, and
passes again the resonant pair. As λ increases toward zero the turning point comes
closer to the resonant pair, for λ = 0 the turning point is exactly at the resonant pair,
while for λ > 0 the turning happens before the resonant pair is reached. This means
that for λ < 0 we have two generic subharmonic bifurcations close to each other
along the primary family, while for λ > 0 there is no such subharmonic bifurcation.

To study this degenerate case we can use the same Lyapunov–Schmidt reduction
as before; we get a three-dimensional reduced problem of the form (3.12) which
reduces via (3.13) to two scalar bifurcation equations of the form

b±(α, ρ, λ) = Aλ +Bρ2 + Cα2 + h.o.t. = 0; (3.16)

the two bifurcation functions b+(α, ρ, λ) and b−(α, ρ, λ) only differ in the higher
terms (again we assume q ≥ 5). Assuming ABC �= 0 we obtain two possible
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bifurcation scenarios, depending on the sign of BC ; we assume AC > 0. For
BC > 0 we get the banana scenario, where the two branches of subharmonics
(one elliptic, one hyperbolic) which for λ < 0 start at each of the two bifurcation
points are locally connected, shrink as λ approaches zero, and disappear for λ ≥ 0.
For BC < 0 we get the banana split scenario: the two times two subharmonic
branches which exist for λ < 0 are not locally connected, they become tangent to
each other for λ = 0, and for λ > 0 connect to each other and detach from the
primary branch, giving two branches of subharmonics, one elliptic and the other
hyperbolic.

To illustrate the result one can look at the four-dimensional system

ÿ +
(
y + y2 + γy3

)
= z, z̈ + ω2z = 0; (3.17)

this system has two parameters γ and ω. For γ = 0.3 the period map for the
unperturbed system shows a maximum. For ω = 0.4003 one finds two local
branches of 5-subharmonics, very close to each other and forming the boundary
of a very thin banana. However, and contrary to the theoretical results we have
just explained, it is not so that one of the two branches is elliptic and the other
hyperbolic. Instead, along each of the two branches we see a transition from elliptic
to hyperbolic. The explanation of this deviation from the theory brings us to our last
section.

3.6 Change of Stability Without Bifurcation

Our example (3.17) is not fully generic, in the sense that not all the conditions in
order to get the banana scenario as described before are satisfied. The reason for this
nongenericity stems from the fact that the system (3.17) has a first integral, namely
the (square of the) amplitude of the forcing equation: H = z2 + ω2ż2. It is also
clear that this first integral reaches a maximum along each of the two branches of
subharmonics. And for such situation one can prove the following general result:
when along a branch of symmetric periodic orbits in a reversible system with a
first integral this integral reaches either a maximum or a minimum, then at the
critical periodic orbit one will typically see a change of stability, from elliptic to
hyperbolic or vice versa. This result forms a counterexample to the “folk theorem”
in bifurcation theory which says that a change of stability leads to bifurcation. Here
we get a single branch of periodic orbits along which we see a change of stability,
from elliptic to hyperbolic, without any further bifurcation.

It is easy to change our earlier banana and banana split scenarios for this
nongeneric situation with a first integral. Finally, the example system

ÿ +
(
y + y2 + γy3

)
= z, z̈ +

(
ω2 + εy

)
z = 0 (3.18)
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allows to visualize (numerically) the transition from the nongeneric situation (for
ε = 0) to the generic one. Increasing ε from zero one sees how along the two sides
of the banana the transition points between elliptic and hyperbolic subharmonics
start to shift and finally disappear (for sufficiently small bananas). The theoretical
study of this transition is still underway. . .
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Chapter 4
Canard Explosion and Position Curves

Freddy Dumortier

Dedicated to the 60th birthday of Juergen Scheurle

Abstract The paper deals with smooth two-dimensional singular perturbation
problems. Attention goes to the canard explosion for a generic Hopf or jump
breaking mechanism.

We introduce the notion of position curve and study the typical shape of a
position curve. We also study catastrophes of limit cycles, obtaining results in
ε-uniform neighbourhoods, both in phase space and in parameter space.

4.1 Introduction

The “canard explosion” has first been detected and studied using non-standard
analysis (see e.g. [1, 2]). A description by means of standard techniques, more
precisely by “geometric singular perturbation theory”, has been provided for the
Van der Pol case in [11]. A treatment of a slightly more general case using the
techniques introduced in [11] can be found in [16].

Essentially, in the papers mentioned above, for small values of the small
parameter ε and up to a time reversal, a limit cycle is born in a Hopf bifurcation and
grows monotonically until getting the shape of a traditional relaxation oscillation
with two fast and two slow movements. All this happens, when changing the
“breaking parameter” (see [4]) in a regular way. The expansion of the limit cycle
starts slowly, and then suddenly “explodes”, while changing its shape from a small
amplitude “round” form to its final form. This is what happens in the “most generic”
case of canard explosion. Both in [11] and in [16] this is well described, based on
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“blow up” and the use of center manifolds. During the complete process the limit
cycle stays unique. For the Van der Pol case (see [11]) this has been proven in [3]
(see also [10]). This fact is taken for granted in [16] but is not proven there. In the
meantime a proof has been given in [8], based on the theory developed in [14].

Krupa and Szmolyan [16] also have a case in which a saddle node bifurcation of
limit cycles occurs during the explosion. The figure that is made of the position
of the limit cycles is qualitatively correct, but is quantitatively in contradiction
with [1], where it is proven that, during the explosion, one can only have one
so-called flying (i.e. rapidly changing in size) canard, the other remaining more or
less unchanged in shape, or so-called sitting. The terminology comes from [1]. The
occurrence of elementary catastrophes of any order, during some canard explosions,
has been studied in [12]. It has not yet been analyzed precisely how this can
match with the observation on the unicity of the “flying” canard. Moreover in [4]
the difference is studied between the order of the catastrophes when changing
the breaking parameter, versus a situation in which the canard passage remains
unbroken. In both cases all bifurcations occur near a zero of the “slow divergence
integral”. In the latter case the order of the catastrophe near a zero is exactly given
by the multiplicity of this zero. In the former case, and under a regular change of the
“breaking parameter”, the order of the catastrophe is one unit higher, involving the
occurrence of one more limit cycle than the number predicted by the multiplicity of
the zero of the slow divergence integral.

We will now show how this can be in agreement with [1], as well as in agreement
with the upper bound on the number of limit cycles, as proven in [12].

At this point we provide a quite stronger result than the one given in [12].
In [12] the occurrence of the catastrophe of higher codimension is proven inside
a “domain” that shrinks when ε ↓ 0. The results of [12] do not apply to a full
tubular neighbourhood of the slow fast cycle at which the slow divergence integral
is zero, neither to a full neighbourhood of the parameter value at which the situation
occurs. In this paper we will obtain results that are valid in a full neighbourhood in
the product of the phase space and the parameter space. For a precise statement we
refer to Theorem 4.1 that we will formulate at the end of Sect. 4.2.

Exactly like in [4], the study we make also applies to the so-called jump breaking
mechanism that has first been studied in [13].

We intend to rely heavily on [4], in order not to have to repeat the notions that
have been introduced in full detail there. In Sect. 4.2.1 we will only recall some
essential elements in order to be able to state the results and start the proofs. We will
also not repeat the proofs that have been given in [4] when using the results from [4].

Section 4.2.2 of this paper can be considered as a natural continuation of [4],
stressing some facts about the canard explosion that might lead to misinterpretation
if not dealt with carefully.

In Sect. 4.2.3 we introduce the notion of “position curve” and show how a
generic position curve has a “typical shape”, as represented in Fig. 4.5. For precise
numerical calculation of such position curves we refer to the forthcoming paper [9],
a paper that also contains other interesting numerical observations. We end Sect. 4.2
by formulating Theorem 4.1.
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In Sect. 4.3 we study the typical shape of position curves.
Section 4.4 deals with the proof of Theorem 4.1 and can be considered as the

most important contribution of this paper, since we obtain results on limit cycles
and their bifurcations that hold in a full neighbourhood in the product of the phase
space and the parameter space. The results hold near any slow–fast cycle of type
FSTS for the Hopf breaking mechanism and of type FSJS for the jump breaking
mechanism. The precise definition of these slow–fast cycles will be recalled in
Sect. 4.2. The proof relies heavily on the structure theorems that have been proven
in the papers [6, 13]. A survey of these results can also be found in [4]. The proof
requires a direct treatment of differences of exponentially small functions.

In Sect. 4.5 we discuss the consequences of Theorem 4.1 as well as the remaining
problems for a complete understanding of the bifurcations of limit cycles near
slow–fast cycles of the type described above. Special attention is given to the role
of the “flying” canard in these bifurcations.

4.2 Setting of the Problem and Statement of Results

4.2.1 Generic Breaking Mechanisms and Nearby
Transition Maps

As announced in the introduction we recall the description of the generic breaking
mechanisms as presented in [4]. There are two such generic breaking mechanisms,
one called Hopf breaking mechanism, that has been studied in [12], and the other
called jump breaking mechanism that has been studied in [13]. We consider smooth
equations that can locally be given an expression

{
ẋ = f(x, y, ε, λ)

ẏ = εg(x, y, ε, λ),
(4.1)

with f and g smooth functions,λ = (λ1, . . . , λn), ε > 0 and ε ∼ 0. In case we study
planar systems, we can often use an expression as in (4.1) globally, but as we will
see the results we want to present also apply to smooth systems defined on arbitrary
smooth surfaces. For ε = 0 we call (4.1) the (λ-family of) layer equation(s); it is
subject to an invariant foliation (locally) given by {y = constant}.

The set {f(x, y, λ) = 0} is called the (λ-family of) critical curve(s), also
called slow curve(s). On the slow curves can be defined a so-called slow dynamics
by considering ẏ = g(x, y, 0, λ) along the slow curve. In this paper we use the
name slow curve and will restrict to connected curves; a slow–fast orbit will be a
connected succession of (connected) slow curves and fast orbits of a layer equation,
whose orientations fit. If such slow–fast orbit is closed, i.e. homeomorphic to a
circle S1, we call it a slow–fast cycle.
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Fig. 4.1 Breaking mechanisms and layer variables

At most points of a slow curve we require a layer equation (2.1)ε=0 to be
normally hyperbolic, either attracting or repelling.

We accept this property not to hold at isolated points, that we call contact points.
At such points the critical curve has a contact with a leaf of the foliation {y =
constant}.

In this paper we only admit two kinds of contact points, namely the generic jump
point and the generic turning point.

Definition 4.1. We say that (4.1) has at (x, y, λ) = (x0, y0, λ0) a generic jump
point, respectively a generic turning point, if, after smooth rescaling of the variables
(x, y) and rescaling of time, system (4.1) can, locally near (x0, y0, λ0), be written
as

{
ẋ = y − x2 + x3h1(x, y, ε, λ)

ẏ = −ε(1 + xh2(x, λ) +O(||(y, ε)||), (4.2)

for some smooth functions h1 and h2, in case of a generic jump point, and as

{
ẋ = y − x2 + x3h1(x, y, ε, λ)

ẏ = −ε(a(λ) + x+ x2h2(x, λ) +O(||(y, ε)||), (4.3)

for some smooth functions h1, h2 and with a(λ0) = 0 and λ �→ a(λ) a smooth
submersion at λ0, in case of a generic turning point.

We speak of a generic jump breaking mechanism when in a layer equation we
encounter a slow–fast cycle as represented in Fig. 4.1b, consisting of an attracting
slow curve ending in a generic jump point (as in (4.2)), a fast orbit connecting this
jump point to a second generic jump point, and a repelling slow curve starting at the
second jump point. We denote by p the union of the two jump points and the fast
orbit between them. Let us denote by γ− (resp. γ+) the attracting (resp. repelling)
slow curve. We suppose that the slow dynamics is nonzero on γ− ∪ γ+, directed
towards p on γ− and away from p on γ+. Like in Fig. 4.1 we suppose that there
exists a layer of fast orbits that is adherent to both γ− and γ+. We characterize the
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different orbits of this fast layer by a regular parameter Y on some transverse section
R (see Fig. 4.1a, b). We call Y a layer variable and for each orbit, characterized by
Y ∈ R, we denote its ω-limit on γ− by ω(Y ) and its α-limit on γ+ by α(Y ).
A slow–fast cycle can then be characterized by the Y -value where it cuts R. We say
that such a slow–fast cycle is of type FSJS, standing for F(ast) S(low) J(ump) S(low).

Transverse to the fast orbit contained in p we also choose a segment that we
denote by T and on T we choose any regular parameter U . For ε = 0 and for
λ ∼ λ0 there is a fast orbit γ1 having the first jump point as α-limit and a fast orbit
γ2 having the second jump point as ω-limit. Both γi cut T at a single point hi(λ).
We suppose that

λ �→ h1(λ)− h2(λ)

is a submersion at λ = λ0. This condition is part of the definition of a generic jump
mechanism. By a smooth reparametrization we can suppose that

λ = (a, μ),

where a, defined as a = h1(λ) − h2(λ), is called a breaking parameter. We will
from now on denote the slow–fast system as X(ε,a,μ).

For ε > 0 we can define two transition maps from R to T by following the
X(ε,a,μ)-orbits in respectively forward time and backward time. Let us denote the
first map by (U, ε) = (P1(Y ), ε) and the second map by (U, ε) = (P2(Y ), ε).

Before describing the essential properties of P1 and P2, let us recall some
definition from [6, 14].

Definition 4.2 (ε-Regularly Smoothness). We say that a function f(z, ε), with
z ∈ IRp, for some p, is ε-regularly smooth in z (or ε-regularly C∞ in z) if f is
continuous and all partial derivatives of f with respect to z exist and are continuous
in (z, ε).

In R we choose a smooth reference curve ΣYr = {Y = Yr(ε)} like, e.g. {Y =
Yr}, with Yr constant. We orientate R and T in a way that both P1 and P2 are
orientation preserving and that we work on domains of Y -values with Y > Yr.

We denote, for ε > 0, by W f
Yr

(resp. W b
Yr
) the saturation, i.e. union of forward

(resp. backward) orbits through points of ΣYr ; W f
Yr

and W b
Yr

are clearly C∞.
We also consider their continuous extension at ε = 0. It has been proven in [13],
based on results of [7], that these continuous extensions, that we still denote as
W f
Yr

and W b
Yr

, cut T in curves that can be described as graphs of functions that are
ε-regularly smooth in (Y, a, μ).

In [13] has also been proven that for Y with Y > Yr and ω(Y ) ∈ γ− we have
following expression for P1.

P1(Y, ε, a, μ) = f1(ε, a, μ) + exp

(
1

ε
A1(Y, ε, a, μ)

)
, (4.4)



56 F. Dumortier

where both f1 and A1 are ε-regularly smooth in respectively (a, μ) and (Y, a, μ),

{U = f1(ε, a, μ)} = W f
Yr
∩ T , and

A1(Y, 0, a, μ) = I1(Y, a, μ), (4.5)

with I1 the slow divergence integral calculated along [ω(Y ), p[⊂ γ−. To precisely
define this slow divergence integral, we choose any regular parameter r on γ−,
denote by r(Y ) the r-value of ω(Y ) and by r∗ the r-value of p; if we let ṙ =
ϕ(r, a, μ) denote the slow dynamics on γ− then I1 is defined as

I1(Y, a, μ) =

r∗∫
r(Y )

divX(0,a,μ)(r) · 1

ϕ(r, a, μ)
dr , (4.6)

where divX(0,a,μ)(r) denotes the divergence of X(0,a,μ), calculated at the point of
γ− having the parameter value r.

Remark 4.1. In a plane the divergence is meant to be a divergence with respect to
the standard volume form. In using these results on surfaces one can proceed like
in [6].

The structure of P2 is completely similar as in (4.4), for functions f2 and A2 that
are ε-regularly smooth in respectively (a, μ) and (Y, a, μ), {U = f2(ε, a, μ)} =
W b
Yr
∩ T and A2(Y, 0, a, μ) = I2(Y, a, μ) as in (4.4), where I2(Y, a, μ) is defined

as in (4.6), and with r a regular parameter on γ+ such that ṙ = ϕ(r, a, μ) represents
the slow dynamics on γ+.

We speak of a generic Hopf breaking mechanism when in a layer equation we
encounter a slow–fast orbit as represented in Fig. 4.1a, consisting of a succession
of an attracting slow orbit γ−, a generic turning point p, as defined in (4.3), and a
repelling slow orbit. We suppose that the slow dynamics is nonzero on γ− ∪ γ+,
directed towards p on γ− and away from p on γ+, and that there exists a fast
layer that is adherent to both γ− and γ+. The study of the generic Hopf breaking
mechanism is similar to the study of the generic jump mechanism. We again
introduce a transverse section R and a layer variable Y . We also introduce the
related notions ω(Y ) and α(Y ) as before. Again we characterize the slow–fast
cycles under consideration by the Y-value at which they cut R and we call them
FSTS cycles, where FSTS stands for F(ast) S(low) T(urning point) S(low).

For the definition of the section T and the variable U we use, near p, the
expression (4.3). However, as explained in [12], we first reparametrize λ, changing
it into (a, μ), and then write

(ε, a) = (u2, uA), (4.7)
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for some u ∈ IR and A ∈ IR. We call A a breaking parameter of the Hopf breaking
mechanism. In expression (4.3) we define T = {x = 0} and on T we do not define
a regular parameter but use U , defined as

y = u2U. (4.8)

From (4.7) and (4.8) it is clear that both A and U can be considered as regular
parameters as long as ε > 0, but no longer at ε = 0. Nevertheless, working with
these “blown-up” U and A, instead of regular U and a, as we did in the jump case,
is the right way to work. It permits to make exactly the same statements on the
transition maps Pi : Ri → T in the Hopf case as we did for the jump case, i.e. the
same results hold on W f

Yr
, W b

Yr
and the related expression of the transition maps,

changing ε-regular smoothness by u-regular smoothness.
Of course a function is u-regularly smooth in variables z if and only if it is

ε-regularly smooth in z, but from now on we intend to use, where appropriate, the
u-notions to remind the blowing up (4.7).

We will hence use

P1(Y, u,A, μ) = f1(u,A, μ) + exp

(
1

u2
A1(Y, u,A, μ)

)
, (4.9)

where both f1 and A1 are u-regularly smooth in respectively (A, μ) and (Y,A, μ)
as well as a similar expression for P2.

Also the relation of A1 and A2 with the slow divergence integral as presented
in (4.5) and (4.6) holds for the Hopf breaking mechanism.

The proof of the results, both in the jump and in the Hopf case, heavily relies
on a blow-up of the contact points (see [12, 13]). In this paper there is no need
to recall the blow-up technique, since we will only use the properties we stated;
the understanding of the property does not require acquaintance with the blow-up
technique.

4.2.2 Control Curves and Manifold of Closed Orbits

Continuing with the notations of Sect. 4.2.1, we restrict the layer variable Y to some
segment [Y1, Y2] ⊂ R, that lies to the right of Yr.

Using (4.4)–(4.6) and (4.9), we know that limit cycles of Xε,a,μ are implicitly
given by

exp

(
1

uk
(A1(Y, u, a, μ))

)
− exp

(
1

uk
(A2(Y, u, a, μ))

)
= f(u, a, μ), (4.10)

with ε = uk, for some k ∈ IN1 with f(u, a, μ) = f2(u, a, μ) − f1(u, a, μ) and
f(0, a, μ) = a. In this equation a stands for the traditional breaking parameter in the
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jump breaking mechanism, but can also stand for a breaking parameter in the Hopf
breaking mechanism. In the latter case a does not need to be equal to A but might
be equal to A.K(u,A, μ) for some strictly positive function K that is u-regularly
smooth in (A, μ). In any case we continue working with (a, μ) as new parameters.

In (4.10), in agreement with Sect. 4.2.1, we use ε = uk, with k = 3 for the jump
mechanism and k = 2 for the Hopf mechanism. All functions appearing in (4.10)
are u-regularly smooth in their respective values (Y, a, μ) or (a, μ).

Applying the implicit function theorem to f we know that there exists a curve
a = c0(u, μ), that is u-regularly smooth in μ, with the property that W f

Yr
∩ T =

W b
Yr
∩ T . We call such curve a control curve:

f(u, c0(u, μ), μ) = 0.

Remark 4.2. We recall that f(u, a, μ) and hence also c0(u, μ) depend on the
particular choice of initial conditions ΣYr (see [13]).

We can also apply the implicit function theorem to the full equation (4.10)
inducing the existence of a function a = c(Y, u, μ), that describes all solutions
of (4.10) in the region under consideration. The function c is u-regularly smooth
in (Y, μ). For u > 0 it describes the closed orbits that cut the section R at a value
Y ∈ [Y1, Y2]. We call it the manifold of closed orbits. It satisfies the equation:

exp

(
1

uk
(A1(Y, u, c(Y, u, μ), μ))

)
− exp

(
1

uk
(A2(Y, u, c(Y, u, μ), μ))

)
=

f(u, c(Y, u, μ), μ).

(4.11)

A control curve is generally represented in a (u, a)-diagram. It depends on the
choice of (Yr , μ). If we fix μ, then the appropriate Yr-family of control curves con-
sists of curves that are exponentially close to each other. If we fix Yr, then the appro-
priate μ-family of control curves can present differences that are of finite order in u.

4.2.3 Position Curves and Statement of Results

Besides representing the manifold of closed orbits (see Sect. 4.2.2) as a (Y, μ)-
family of control curves in a (u, a)-diagram, it can also be interesting to represent
it as a (u, μ)-family of curves in a (Y, a)-diagram. We call these curves position
curves. For u = 0 a position curve is given by the Y -axis, but for u > 0 it expresses
the value of the breaking parameter a at which the system Xε,a,μ can have a closed
orbit cutting R at some value Y . More interesting however is that the position curve
also shows the number of limit cycles that we can encounter for a certain value a
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of the breaking parameter. Of course the representation is (u, μ)-dependent with
u > 0. Since a is the parameter controlling the breaking in the breaking mechanism
we prefer to represent the position curve in a (a, Y )-diagram. We however recall
that it can be represented by a graph a(Y ) but mostly not as a graph Y (a).

In the Sects. 4.3 and 4.4 we will provide interesting results on position curves.
We will see that essential information is contained in the slow-divergence integral
along ΓY , where ΓY is the slow–fast cycle cutting R at the value Y . We denote this
slow divergence integral by I(Y ), or better by I(Y, μ). The slow divergence integral
I(Y, μ) is defined as

I(Y, u) = I1(Y, 0, μ)− I2(Y, 0, μ),

with I1 and I2 as defined in Sect. 4.2.1 (see (4.6) for I1 and the paragraph below
Remark 4.1 for I2). When, for a fixed (μ, Y ) = (μ0, Y0), I(Y0, μ0) < 0, then limit
cycles γY with Y ∼ Y0, u ∼ 0 and μ ∼ μ0, are hyperbolically attracting in the
sense that the derivative of the Poincaré map at this limit cycle is strictly negative
for u > 0 and tends to −∞ if u ↓ 0. Such a “canard-type” limit cycle, in the
terminology of [1], is called a flying canard.

In Sect. 4.3 we will explain why this terminology is well chosen and we will
calculate the speed at which it flies, depending on a. We will also prove that for
every value a there is at most one flying canard. This fact had first been observed by
Benoit for the Hopf breaking mechanism and was studied by means of non-standard
analysis.

The study of the case where I(Y0, μ0) > 0 can be reduced to the former one,
leading to similar results.

In Sect. 4.3 we will also start considering the case where I(Y0, μ0) = 0. As we
will see this is more delicate. For a number of results we simply refer to Sect. 4.3.
There is however one result that we prefer to formulate as a theorem (Theorem 4.1).
For the statement of Theorem 4.1 we not only rely on the notations as introduced in
the previous paragraphs, but we also introduce some extra notations.

Knowing A1 and A2 from (4.10) we introduce

Ã = Ã1 − Ã2, (4.12)

with

Ãi(Y, u, a, μ) = Ai(Y, u, a, μ) + uk log

(
∂Ai
∂Y

(Y, u, a, μ)

)
, (4.13)

for i = 1, 2.
In Sect. 4.4 the function Ã will be denoted as Ã1, since we will also have to

introduce Ãi, with i ≥ 1.
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We know that

Ã(Y, u, a, μ) = I(Y, μ) +O(u) +O(a)

and that a similar development also holds for all partial derivatives w.r.t. (Y, μ).
We now suppose that, at some (Y0, μ0), the slow divergence integral I represents

an elementary catastrophe of codimension n, in the sense that:

I(Y0, μ0) =
∂I

∂Y
(Y0, μ0) = . . . =

∂nI

∂Y n
(Y0, μ0) = 0,

∂n+1I

∂Y n+1
(Y0, μ0) > 0,

det

(
∂(I,

∂I

∂Y
, . . . ,

∂n−1I

∂Y n−1
)/∂(μ1, . . . , μn)

)
(Y0, μ0) �= 0, (4.14)

where we take μ ∼ μ0.
We define the sets Σi in (Y, u, μ)- space as:

Σi = {(Y, u, μ) : Ã(Y, u, c(Y, u, μ), μ) = ∂Ã

∂Y
(Y, u, c(Y, u, μ), μ) = . . .

=
∂iÃ

∂Y i
(Y, u, c(Y, u, μ), μ) = 0},

(4.15)

for 0 ≤ i ≤ n.
Seen the stability of the properties (4.14) we can prove (see e.g. [17]) that, inside

sufficiently small neighbourhoods of (Y0, 0, 0, μ0) in (Y, u, a, μ)-space, the Σi are
manifolds of respective dimension n− i+ 1.

We have Σn = {(Y0(u), u, c(Y0(u), u, μ0(u)), μ0(u))} for some u-regularly
smooth functions Y0(u) and μ0(u) with (Y0(0), μ0(0)) = (Y0, μ0).

Theorem 4.1. Consider, in a smooth two-dimensional singular perturbation
problem Xε,a,μ, a FSTS cycle in a generic Hopf breaking mechanism or a FSJS
cycle in a generic jump breaking mechanism (see Fig. 4.1). Let a = c(Y, u, μ)
be the equation of the manifold of closed orbits (manifold M), with ε = uk, for
k = 2 or k = 3 in respectively the Hopf and the jump breaking mechanism.
We suppose that the cycle occurs for some (Y, μ) = (Y0, μ0). Then there exists a
neighbourhoodV of (Y0, 0, μ0) in (Y, u, μ)-space and some a0 > 0 such that inside
(V × [−a0, a0]) ∩ {u > 0} the sets

Mi = {(Y, u, μ) : a = c(Y, u, μ),
∂c

∂Y
(Y, u, μ) = . . . =

∂i+1c

∂Y i+1
(Y, u, μ) = 0},

(4.16)
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for 0 ≤ i ≤ n, are given by

{(Y, u, c(Y, u, μ), μ) : (Y, u, μ) ∈ Σi},

and hence are manifolds of respective dimension n− i+ 1.
For (Y, u, μ) ∈Mi \Mi+1, with 0 ≤ i ≤ n− 1 we have

∂i+2c

∂Y i+2
(Y, u, μ).

∂i+1Ã

∂Y i+1
(Y, u, c(Y, u, μ), μ) > 0,

and for (Y, u, μ) ∈Mn we have

∂n+1c

∂Y n+1
(Y, u, μ).

∂n+1Ã

∂Y n+1
(Y, u, c(Y, u, μ), μ) > 0.

For (Y, u, μ) ∈Mn we also have

det

(
∂(
∂c

∂Y
, . . . ,

∂nc

∂Y n
)/∂(μ1, . . . , μn)

)
(Y0(u), u, c(Y0(u), u, μ0(u)), μ0(u)) �= 0,

having the same sign as the determinant in (4.14).

The proof of Theorem 4.1 can be found in Sect. 4.4. In Sect. 4.5 we will discuss
consequences of Theorem 4.1 as well as some remaining problems. Special attention
will go to the role of the flying canard in the bifurcation.

4.3 Typical Shape of Generic Position Curves

4.3.1 Flying Canards

We will start by studying the canard cycles near some ΓY0 , with Y0 ∈ [Y1, Y2], under
the condition that I(Y0, μ0) < 0. As we know from Sect. 4.2 all closed orbits, for
u > 0, are given by a = c(Y, u, μ).

If we take Y ∼ Y0, u ∼ 0, μ ∼ μ0, then, by supposition:

A1(Y, u, c(Y, u, μ), μ) < A2(Y, u, c(Y, u, μ), μ). (4.17)

Recall that both Ai(Y, u, c(Y, u, μ), μ) are strictly negative, if we keep Y ∼ Y0,
u ∼ 0, μ ∼ μ0. In fact

Ai(Y, u, a, μ) = Ii(Y, a, μ) +O(u), (4.18)
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and we supposed that

I1(Y0, 0, μ0) < I2(Y0, 0, μ0), (4.19)

both quantities being strictly negative.
If we derive (4.11) w.r.t. Y we get

exp(
1

uk
(Ã1(Y, u, c(Y, u, μ), μ)))− exp(

1

uk
(Ã2(Y, u, c(Y, u, μ), μ)))

= uk · ∂c
∂Y

(Y, u, μ) · F (Y, u, c(Y, u, μ), μ), (4.20)

where

Ãi(Y, u, a, μ) = Ai(Y, u, a, μ) + uk log

(
∂Ai
∂Y

(Y, u, a, μ)

)
(4.21)

and

F (Y, u, a, μ) = ∂f
∂a (u, a, μ) +

1
uk

(
2∑
i=1

(−1)i ∂Ai

∂a (Y, u, a, μ)

)

· exp ( 1
uk (Ai(Y, u, a, μ))

)
= 1 +O(u).

For both breaking mechanisms (4.21) implies that

Ãi(Y, u, c(Y, u, μ), μ) = Ii(Y, 0, μ) +O(u).

Let us, from now on, write Ii(Y, μ) instead of Ii(Y, 0, u). From (4.20) and (4.21)
we see that

uk · ∂c
∂Y

(Y, u, μ) = − exp

(
1

uk
(I2(Y, μ) +O(u))

)
. (4.22)

It implies that ∂c
∂Y (Y, u, μ), for Y ∼ Y0, μ ∼ μ0 and u > 0, u ∼ 0, is strictly

negative, inducing the existence of an inverse function

Y = p(a, u, μ),

expressing that for (a, u, μ) ∼ (c(Y0, u, μ0), 0, μ0), u > 0, we find a unique limit
cycle, cutting R at some Y ∼ Y0. From (4.22) we see that

∂p

∂a
(c(Y, u, μ), u, μ) = −uk exp

(
− 1

uk
(I2(Y, μ) +O(u))

)
. (4.23)
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a

Y

Y0

a

Y

Y0

a b

Fig. 4.2 Graphs of p(a, u, μ), for respectively an attracting and a repelling flying canard

For u ∼ 0, Y ∼ Y0, μ ∼ μ0, and u > 0, we see that ∂p
∂a (c(Y, u, μ), u, μ) is a

large negative value, showing that, for changing a, the function p(a, u, μ) changes
very fastly. We could say that the canard “flies” with a fast speed, following the
terminology of [1].

For decreasing a the value p(a, u, μ) increases and the speed
∣∣∣ ∂p∂a (c(Y, u, μ), u, μ)

∣∣∣
decreases since −I2(Y, μ) decreases. This behaviour is represented in a qualita-
tive way in Fig. 4.2a, depending on a fixed (u, μ), in a (a, Y )-diagram In case
I(Y0, μ0) > 0 we can apply the former analysis, but (4.22) and (4.23) change into
respectively

uk
∂c

∂Y
(Y, u, μ) = exp

(
1

uk
(I1(Y, μ) +O(u))

)
(4.24)

and

∂p

∂a
(c(Y, u, μ), u, μ) = uk exp

(
− 1

uk
(I1(Y, μ) +O(u))

)
. (4.25)

As long as I(Y, μ0) remains strictly negative (resp. strictly positive) the analysis
made for Y ∼ Y0 remains valid and the graph of p(a, u, μ) remains qualitatively

like in Fig. 4.2a (resp. Fig. 4.2b). The value of
∣∣∣ ∂p∂a (c(Y, u, μ), u, μ)

∣∣∣ will continue

decreasing when Y increases.
Let us now continue with the case I(Y0, μ0) < 0 and fix μ = μ0. As explained

in different papers, among which [4], there is no possibility to get a limit cycle γY
cutting R at some Y < Y0 if we fix (u, μ0) and take a = c(Y0, u, μ0). In fact all
orbits cutting R at Y < Y0 asymptotically tend to the limit cycle γY0 . The same
happens for all Y > Y0 at which I(Y, μ0) remains strictly negative.

The basin of attraction of γY0 can only stop when we approach some Ỹ0 at which
I(Ỹ0, μ0) = 0.
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Let us now study what happens near the zeros of I(Y, μ0), under the condition
that we have a limit cycle γY0 , i.e. a limit cycle cutting R at Y = Y0 for some fixed
(u, μ) ∼ (0, μ0), and with a = c(Y0, u, μ).

We know that

exp
(

1
uk (A1(Y0, u, c(Y0, u, μ), μ))

)− exp
(

1
uk (A2(Y0, u, c(Y0, u, μ), μ), μ))

)
= f(u, c(Y0, u, μ), μ).

(4.26)

To get other limit cycles γY for the same parameter values (u, c(Y0, u, μ), μ) we
need to look for values Y that are solution of

exp
(

1
uk (A1(Y, u, c(Y0, u, μ), μ))

)− exp
(

1
uk (A2(Y, u, c(Y0, u, μ), μ))

)
= f(u, c(Y0, u, μ), μ).

(4.27)

Combining (4.26) and (4.27), this implies that we look for solutions of

exp
(

1
uk (A

0
1(Y, u, μ))

)− exp
(

1
uk (A

0
1(Y0, u, μ))

)
= exp

(
1
uk (A

0
2(Y, u, μ))

)− exp
(

1
uk (A

0
2(Y0, u, μ))

) (4.28)

where A0
i (Y, u, μ) = Ai(Y, u, c(Y0, u, μ), μ), and Y > Y0.

We see that

exp
(

1
ukA

0
i (Y, u, μ))

)− exp
(

1
uk (A

0
i (Y0, u, μ))

)
= 1

uk

Y∫
Y0

exp
(

1
uk Ã

0
i (y, u, μ)

)
dy,

where

Ã0
i (y, u, μ) = A0

i (y, u, μ) + uk log

(
∂A0

i

∂Y
(y, u, μ)

)

= Ii(y, μ) +O(u).

Equation (4.28) can be rewritten as:

ψ(Y ) = ψ(u,μ)(Y )

=
Y∫
Y0

[
exp

(
1
uk (Ã

0
1(y, u, μ))

)
− exp

(
1
uk (Ã

0
2(y, u, μ))

)]
dy = 0.

(4.29)

As long as Ã0
1(y, u, μ) < Ã0

2(y, u, μ), it is hence not possible to get a second limit
cycle γY with Y > Y0.

We have ψ(Y0) = 0 and

∂ψ

∂Y
(Y ) = exp

(
1

uk
(Ã0

1(Y, u, μ))

)
− exp

(
1

uk
(Ã0

2(Y, y, μ))

)
. (4.30)
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Ỹ c
0Ỹ c

0Y0 Y0
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a bFig. 4.3 Position curve near
a simple zero of the slow
divergence integral

Hence ∂ψ
∂Y (Y0) < 0 and ∂ψ

∂Y (Y ) remains negative as long as Ã0
1(y, u, μ) <

Ã0
2(y, u, μ) for y ∈ [Y0, Y ].
The function ψ will have a critical point at Y iff Ã0

1(Y, u, μ) = Ã0
2(Y, u, μ), and

such a value Y has to lay close to a zero of I(Y, μ0).

4.3.2 Simple Zeros of I(Y, μ0)

If we suppose that I(Ỹ0, μ0) = 0, and that Ỹ0 is a simple zero of I(Y, μ0), then the
Implicit Function Theorem implies that, for (u, μ) ∼ (0, μ0) there is a unique zero
Ỹ c0 of (Ã0

1 − Ã0
2)(Y, u, μ), Ỹ

c
0 ∼ Ỹ0 and this zero is simple. Of course the zero Ỹ c

0

depends on (u, μ) and tends to Ỹ0 for (0, μ)→ (0, μ0). Ỹ c0 is the first critical point
of ψ for Y ≥ Y0 (see Fig. 4.3a). From Theorem 4.3(2) of [4] we know that ψ has
a simple zero at some Ỹ z0 = Ỹ z

0 (u, μ), for (u, μ) ∼ (0, μ0) with Ỹ z0 (0, μ0) = Ỹ0.
Of course we need to have Ỹ z

0 (u, μ) > Ỹ c0 (u, μ) and we know that ∂ψ
∂Y is strictly

positive from Ỹ c0 on, including at Ỹ z
0 . The graph of ψ will be like in Fig. 4.3b. We

see that (Ỹ z
0 − Ỹ c0 )(u, μ)→ 0 for (u, μ)→ (0, μ0).

For Y > Ỹ z0 we can continue in the same way and we know that ψ will have no
extra zero, unless we are close to a new zero of I(Y, μ0). Near such a zero Ŷ0, we
will encounter a unique critical point Ŷ c0 (u, μ) and a unique (simple) zero Ŷ z

0 (u, μ),
with Ŷ c0 (u, μ) < Ŷ z

0 (u, μ) and such that both Ŷ c
0 (u, μ) and Ŷ z

0 (u, μ) tend to Ŷ0 for
(u, μ)→ (0, μ0).

In Fig. 4.4 we represent the shape of the position curve p(a, u, μ) below a piece
of curve representing a flying canard. Near each simple zero of I(Y, μ0) the position
curve contains an almost horizontal level. This level is alternatively increasing and
decreasing for respectively an attracting or a repelling limit cycle. To see how these
pieces of the position curve connect to each other, we will successively work at the
different levels {Y = Ỹ0} where I(Y, μ0) has a simple zero. We start with a first
one. As long as we keep a = c(Y, u, μ), with Y0 ≥ Y > Ỹ0 we have a situation
as represented in Fig. 4.4. We hence need to make a better choice of control curve.
After all we know from [12, 13] (see also Theorem 4.3(3) of [4]) that for Y ∼ Ỹ0
it is possible to find a generic saddle node bifurcation of limit cycles. To see this it
suffices to go back to (4.11), given the equation of the closed orbits:

exp

(∫
1

uk
(A1(Y, u, a, μ))

)
− exp

(
1

uk
(A2(Y, u, a, μ))

)
− f(u, a, μ) = 0.

(4.31)
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Ỹ0
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Ŷ0

Ỹ0

Y0

a

Fig. 4.4 Position curve under a flying canard

Recall that f is calculated w.r.t. some reference Yr with Yr < Y0. In order to find a
limit cycle of multiplicity two, for Y ∼ Ỹ0, we look for a solution of (4.31) that is
also solution of

Ã1(Y, u, a, μ)− Ã2(Y, u, a, μ) = a (4.32)

with Ãi as defined in (4.21).
We consider (4.31)–(4.32) as a mapping from R

2 × R
p+1 → R

2, depending on
the variables (Y, a) and the parameters (u, μ) and we calculate, at (Ỹ0, 0, 0, μ0), the
differential with respect to (Y, a). We get:

⎛
⎝ O(u) −(1 +O(u))

∂I
∂Y (Ỹ0, μ0) +O(u) O(u)

⎞
⎠ .

This matrix is invertible, implying that for (Y, u, a, μ) ∼ (Ỹ0, 0, 0, μ0) there is a
unique solution

(Y, a) = (Ỹ s
0 (u, μ), c̃(u, μ)), (4.33)

for which both (4.31) and (4.32) hold. Of course we have that

c̃(u, μ) = c(Ỹ s0 (0, μ), 0, μ). (4.34)

We will now use c̃(u, μ) as control curve. A first observation is that

∂c

∂Y
(Ỹ s

0 (u, μ), u, μ) = 0.
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Indeed from (4.31) we get:

u2(1 +O(u)) ∂c∂Y (Y, u, μ) =

exp
(

1
uk (Ã1(Y, u, c(Y, u, μ), μ))

)
− exp

(
1
uk (Ã2(Y, u, c(Y, u, μ), μ))

)
.

(4.35)

Evaluating (4.35) at Y = Ỹ s
0 (u, μ), the claim now follows from (4.34), knowing

that (4.33) is a solution of (4.32). From (4.35) we also see that (Ỹ s0 (u, μ), u, μ)
are the only values at which ∂c

∂Y = 0, at least for (Y, u, μ) ∼ (Ỹ0, 0, μ0). If we
derive (4.35) w.r.t. Y we get:

u2k(1 +O(u)) ∂
2c

∂Y 2 (Y, u, μ) +O(u2k+1) ∂c∂Y (Y, u, μ)

= exp
(

1
uk (

˜̃A1(Y, u, c(Y, u, μ), μ))
)
− exp

(
1
uk (

˜̃A2(Y, u, c(Y, u, μ), μ))
)
,

(4.36)

with

˜̃Ai(Y, u, a, μ) = Ãi(Y, u, a, μ) + uk log

(
∂Ãi
∂Y

(Y, u, a, μ)

)

= Ii(Y, μ) +O(u).

If we evaluate (4.36) at Y = Ỹ s
0 (u, μ) we get

u2k(1 +O(u)) ∂
2c

∂Y 2 (Ỹ
s
0 (u, μ), u, μ) =

[(
∂Ã1

∂Y − ∂Ã2

∂Y

)
(Ỹ s

0 (u, μ), u, c(Ỹ
s
0 (u, μ), u, μ), μ)

]
.

exp
(

1
uk (Ã1(Ỹ

s
0 (u, μ), u, c(Ỹ

s
0 (u, μ), u, μ), μ))

)
.

(4.37)

Since the quantity in between brackets is equal to

∂I

∂Y
(Ỹ0, μ) +O(u),

which is nonzero, we see that ∂2c
∂Y 2 (Ỹ

s
0 (u, μ), u, μ), for (u, μ) ∼ (0, μ0) is nonzero

and has the same sign as ∂I
∂Y (Ỹ0, μ0).

It implies that c(Y, u, μ), for (u, μ) ∼ (0, μ0) and u > 0 has a Morse type
maximum if ∂I

∂Y (Ỹ0, μ0) > 0 and a Morse type minimum if ∂I
∂Y (Ỹ0, μ0) < 0.

We can continue the analysis of p(a, u, μ) and c(Y, u, μ) by working with (4.29),
however changing the control curve c(Y0, u, μ) to c̃(u, μ) = c(Ỹ s

0 (u, μ), u, μ).
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Fig. 4.5 Typical shape of a position curve

We easily find that no limit cycles are possible for Y < Ỹ s
0 (u, μ), since there

are no zeros of I(Y, μ0) at such values. However at zeros of I(Y, μ0) with Y >
Ỹ s0 (u, μ), we can make an analysis as we just made.

As a conclusion we see that a typical position curve on some segment of R has a
shape as represented in Fig. 4.5.

The “levels” that are encountered beneath any value of the position curve are not
only typical for a position curve, but necessary.

The position curves that are drawn in Fig. 4.5 are related to a slow divergence
integral I(Y, μ0) that only has simple zeros. In Sect. 4.4 we will study what happens
at a multiple zero of I(Y, μ0).

4.4 Catastrophes of Canard Type Limit Cycles

We continue the study that we started in Sect. 4.3, using the same notations as
introduced there. In this section we will look what happens at a multiple zero Y0 of
I(Y, μ0). We continue relying on Eq. (4.10), of which a = c(Y, u, μ) is a solution
(see (4.11)), representing the “manifold of closed orbits”.

The jth derivative of (4.10), for j ≥ 1, can be written as:

1

ujk

[
exp

(
1

uk
(Ãj1(Y, u, a, μ))

)
− exp

(
1

uk
(Ãj2(Y, u, a, μ))

)]
,

where Ãji is defined recursively as

Ãji (Y, u, a, μ) = Ãj−1
i (Y, u, a, μ) + uk log

(
∂Ãj−1

i

∂Y
(Y, u, a, μ)

)
,

and Ã0
i = Ai.
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To find limit cycles of codimension m+ 2 we solve (4.10) in combination with

Ãj1(Y, u, a, μ)− Ãj2(Y, a, a, μ) = 0, for j = 1, . . . ,m+ 1. (4.38)

The common solutions to all equations of (4.38) coincide with the common
solutions of the equations

∂j(Ã1
1 − Ã1

2)

∂Y j
(Y, u, a, μ), for j = 0, . . . ,m. (4.39)

We also know that

∂j(Ã1
1 − Ã1

2)

∂Y j
(Y, u, a, μ) =

∂jI

∂Y j
(Y, μ) +O(u) +O(a). (4.40)

We now suppose that, at some Y = Y0—and for simplicity in notation we choose
Y0 = 0 and μ0 = 0—we have:

I(0, 0) =
∂I

∂Y
(0, 0) = . . . =

∂nI

∂Y n
(0, 0) = 0,

∂n+1I

∂Y n+1
(0, 0) > 0,

det

(
∂(I,

∂I

∂Y
, . . . ,

∂n−1I

∂Y n−1
)/∂(μ1, . . . , μn)

)
(0, 0) �= 0,

where we take μ = (μ1, . . . , μn) ∼ (0, . . . , 0).
Similar conditions hold for (Ã1

1−Ã1
2) at (Y, u, a, μ) = (0, 0, 0, 0), see (4.40), and

we apply the Malgrange preparation Theorem on the u-regularly smooth Ã1
1 − Ã1

2

to write it as:

(Ã1
1 − Ã1

2)(Y, u, a, μ) = P (Y, u, a, μ) · (Y n+1 +

n−1∑
i=0

λiY
i), (4.41)

with P u-regularly smooth in (Y, a, μ) and strictly positive; the λi are new
parameters that are u-regularly smooth combinations of the old ones. From now
we also suppose that μ = (λ0, . . . , λn−1). Also Y is a new variable obtained in an
u-regularly smooth way.

Remark 4.3. The whole expression (4.41) can depend on extra parameters in an
u-regularly smooth way, but we do not add this to the notation.

Deriving (4.11) w.r.t. Y we get:

uk(1 +O(u)) ∂c∂Y (Y, u, μ) =

exp
(

1
uk (Ã

1
1(Y, u, c(Y, u, μ), μ))

)
− exp

(
1
uk (Ã

1
2(Y, u, c(Y, u, μ), μ))

)
.

(4.42)



70 F. Dumortier

Seen expression (4.41) the derivative ∂c
∂Y (Y, u, μ), for u > 0, is nonzero whenever

Y n+1 +

n−1∑
i=0

λiY
i �= 0,

and its sign is given by the sign of this expression.
Remains to look what happens at the zeros of Ã1

1 − Ã1
2, namely along

Y n+1 +

n−1∑
i=0

λiY
i = 0.

To make a study along this manifold of critical closed orbits we introduce a new
parameter Ỹ ∼ 0, keeping λ1, . . . , λn−1 and changing λ0 by

λ0 = −
(
Ỹ n+1 +

n−1∑
i=1

λiỸ
i

)
. (4.43)

Referring to [5] we say that we “clone” Y . The parameters (Ỹ , λ1, . . . , λn−1)
parametrize, by means of (4.43), the stratum Σ0 in parameter space to which we
can restrict our study.

We introduce the notation

μc(Ỹ ) =

(
−(Ỹ n+1 +

n−1∑
i=1

λiỸ
i), λ1, . . . , λn−1

)
.

Let us now prove that

∂2c

∂Y 2
(Ỹ , u, μc(Ỹ )) = (1 +O(u))

[
∂

∂Y
(Ã1

1 − Ã1
2)(Ỹ , u, ac(Ỹ ), μc(Ỹ ))

]
·

1

u2k
exp

(
1

uk
(Ã1

1(Ỹ , u, ac(Ỹ ), μc(Ỹ )

)
,

(4.44)

where ac(Ỹ ) = c(Ỹ , u, μc(Ỹ )).
For this we derive (4.42) w.r.t. Y and get:

u2k
[
(1 +O(u)) ∂2c

∂Y 2 (Y, u, μ) +O(u) ∂c
∂Y

(Y, u, μ)
]

=
∂Ã1

1
∂Y

(Y, u, a, μ) · exp
(

1
uk Ã

1
1(Y, u, a, μ)

)
− ∂Ã1

2
∂Y

(Y, u, a, μ) · exp
(

1
uk Ã

1
2(Y, u, a, μ)

)
,

since ∂
∂a (exp(Ã

1
r)), with r = 1, 2, are u-regularly smooth functions in (Y, a, μ) that

are flat in u. Restricting to (a, μ) = (ac(Ỹ ), μc(Ỹ )) we see that ∂c
∂Y = 0 as well as
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Ã1
1 = Ã1

2, so that we get (4.44). Expression (4.44) implies that, along ∂c
∂Y = 0 and

for u > 0, ∂
2c

∂Y 2 will be nonzero whenever

(n+ 1)Y n +

n−1∑
i=1

iλiY
i−1 �= 0;

its sign is given by the sign of this expression.
We can now further restrict to a stratum Σ1 ⊂ Σ0 in parameter space that is

parametrized by (Ỹ , λ2, . . . , λn−1), and along which ∂c
∂Y = ∂2c

∂Y 2 = 0.
We introduce the notation:

μ1
c(Ỹ ) = (λ̃0(Ỹ ), λ̃1(Ỹ ), λ2, . . . , λn−1),

with

λ̃1(Ỹ ) = −
(
n−1∑
i=2

iλiỸ
i−1 + (n+ 1)Ỹ n

)

and

λ̃0(Ỹ ) = −
(
Ỹ n+1 +

n−1∑
i=1

λiỸ
i + λ̃1(Ỹ )

)
.

(4.45)

We define a1c(Ỹ ) accordingly as:

a1c(Ỹ ) = c(Ỹ , u, μ1
c(Ỹ )).

This procedure can now be continued recursively. The conditions ∂j

∂Y j (Y
n+1 +

n−1∑
i=1

λiY
i) = 0, for j = 0, . . . , l, with 1 ≤ l ≤ n − 1, define a stratum Σl in

parameter space, that can be parametrized by (Ỹ , λl+1, · · · , λn−1) in case l ≤ n−2
and by Ỹ in case l = n − 1. The parametrization μ = μlc(Ỹ ) is a straightforward
generalization of (4.45) and we define alc(Ỹ ) = c(Ỹ , u, μlc(Ỹ )). We define Σn to
be the point (Ỹ , μ) = (0, 0). Along Σl, with l = 1, . . . , n we will prove that

∂l+2

∂Y l+2
(Ỹ , u, μl

c(Ỹ )) = (1 +O(u))

[
∂l+1

∂Y l+1
(Ã1

1 − Ã1
2)(Ỹ , u, a

l
c(Ỹ ), μl

c(Ỹ ))

]
1

u2k
·

exp

(
1

uk
(Ã1

1(Ỹ , u, a
l
c(Ỹ ), μl

c(Ỹ )

)
, (4.46)

where alc(Ỹ ) = c(Ỹ , u, μlc(Ỹ )).
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To see this, we recursively derive (4.42) w.r.t.Y, giving:

uk(j+1)

[
(1 +O(u)) ∂j+1

∂Y j+1 (Y, u, μ) +
j∑
s=1

Os(u)
∂sc
∂Y s (Y, u, μ)

]

= exp
(

1
uk (Ã

j+1
1 (Y, u, c(Y, u, μ), μ))

)
− exp

(
1
uk (Ã

j+1
2 (Y, u, c(Y, u, μ), μ))

)
,

(4.47)

for j = 1, . . . , n, whereO(u) andOs(u), s = 1, . . . , j, stand for u-regularly smooth
functions in (Y, u, c(Y, u, μ), μ) that are O(u).

Also for each j = 1, . . . , n, and r = 1, 2 we recall that

exp

(
1

uk
Ãj+1
r

)
=

∂Ãjr
∂Y
· exp

(
1

uk
Ãjr

)
= uk

∂

∂Y

(
exp

(
1

uk
Ãjr

))
. (4.48)

From (4.48) follows that:

exp
(

1
uk Ã

3
r

)
= uk · ∂

∂Y

(
exp

(
1
uk Ã

2
r

))
= uk ∂

∂Y

(
∂Ã1

r

∂Y · exp
(

1
uk Ã

1
r

))

=

(
uk

∂2Ã1
r

∂Y 2 +
(
∂Ã1

r

∂Y

)2)
· exp

(
1
uk Ã

1
r

)
.

Recursively we see that for 2 ≤ j ≤ n:

exp

(
1

uk
Ãj+1
r

)
=

(
uk(j−1) ∂

jÃ1
r

∂Y j
+ Pj

(
∂Ã1

r

∂Y
, . . . ,

∂j−1Ã1
r

∂Y j−1

))
exp

(
1

uk
Ã1
r

)

(4.49)

where Pj is some universal polynomial in its (j − 1) variables. The coefficients of
the polynomial can contain powers ukq , with 0 ≤ q ≤ j − 2.

We can now change the right-hand side of (4.46) by using (4.49), for parameter
values along Σ0, and get:

uk(j+1)

(
(1 +O(u)) ∂

j+1c
∂Y j+1 (Y, u, μ) +

j∑
s=1

Os(u)
∂sc
∂Y s (Y, u, μ)

)

=
(
uk(j−1) ∂j

∂Y j (Ã
1
1 − Ã2

2) + Pj

(
∂Ã1

1

∂Y , . . . ,
∂j−1Ã1

1

∂Y j−1

)
− Pj

(
∂Ã1

2

∂Y , . . . ,
∂j−1Ã1

2

∂Y j−1

))
·

exp
(

1
uk Ã

1
1

)
.

(4.50)

Along Σl, for 2 ≤ l ≤ n, we clearly see that (4.46) is a consequence of (4.50).
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Along Σ0 we can also prove that for 0 ≤ i ≤ n− 1 we have:

(1 +O(u)) ∂2c
∂λi∂Y

(Ỹ , u, μ0
c(Ỹ )) =[

∂
∂λi

(Ã1
1 − Ã1

2)(Ỹ , u, a
0
c(Ỹ ), μ0

c(Ỹ ))
]
· 1
u2k exp

(
1
uk (Ã

1
1(Ỹ , u, a

0
c(Ỹ ), μ0

c(Ỹ ))
)
.

(4.51)

We therefore derive expression (4.42) w.r.t. λi and get:

u2k(1 +O(u)) ∂2c
∂λi∂Y

(Y, u, μ) +O(u2k+1) ∂c∂Y (Y, u, μ) =(
∂Ã1

1

∂λi
(Y, u, c(Y, u, μ), μ) +

∂Ã1
1

∂a (Y, u, c(Y, u, μ), μ) ∂c∂λi
(Y, u, μ)

)
·

exp
(

1
uk (Ã

1
1(Y, u, c(Y, u, μ), μ))

)

−
(
∂Ã1

2

∂λi
(Y, u, c(Y, u, μ), μ) +

∂Ã2
1

∂a (Y, u, c(Y, u, μ), μ) · ∂c∂λi
(Y, u, μ))

)
·

exp
(

1
uk (Ã

1
2(Y, u, c(Y, u, μ), μ)

)
.

(4.52)

Along Σ0, where ∂c
∂Y = 0, Ã1

1 = Ã1
2 and ∂Ã1

1

∂a =
∂Ã1

2

∂a , we see that (4.51) is a
consequence of (4.52).

We would now like to study ∂l+2c
∂λi∂Y l+1 with l ≥ 1 and l ≤ i ≤ n− 1

We start with l = 1 and derive (4.44) w.r.t. λi. We get:

u2k

[

(1 + O(u))
∂3c

∂λi∂Y 2
(Y, u, μ) +O1(u)

∂2c

∂λi∂Y
(Y, u, μ) +

2∑

v=1

Ov(u)
∂vc

∂Y v
(Y, u, μ)

]

=
∂

∂λi

[
exp

(
1

uk
(Ã2

1(Y, u, c(Y, u, μ), μ))

)

− exp

(
1

uk
(Ã2

2(Y, u, c(Y, u, μ), μ))

)]
, (4.53)

where the functions O1(u), Ov(u) and O(u) are u-regularly smooth in (Y, μ)
and O(u).

From the first equality of (4.48) we get, for r = 1, 2, and Ã2
r =

Ã2
r(Y, u, c(Y, u, μ), μ):

∂
∂λi

[
exp

(
1
uk (Ã

2
r)
)]

=
∂2Ã1

r

∂λi∂Y
· exp

(
1
uk Ã

1
r

)
+ 1

uk · ∂Ã
1
r

∂Y
∂Ã1

r

∂λi
· exp

(
1
uk Ã

1
r

)
+ ∂c
∂λi

(
∂2Ã1

r

∂a∂Y + 1
uk · ∂Ã

1
r

∂a

)
exp

(
1
uk Ã

1
r

)
.

(4.54)

Along Σ1, and because of (4.41) we know that

∂Ã1
1

∂a
=

∂Ã1
2

∂a
, as well as

∂2Ã1
1

∂a∂Y
=

∂2Ã1
2

∂a∂Y
.
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Using (4.54) to adapt the right-hand side of (4.52) and restricting to Σ1, we
transform (4.53) into:

u2k
[
(1 +O(u)) ∂3c

∂λi∂Y 2 (Y, u, μ) +O1(u)
∂2c

∂λi∂Y
(Y, u, μ)

]

=
(

∂2

∂λi∂Y
(Ã1

1 − Ã1
2)
)
exp

(
1
uk Ã

1
1

)
+ 1

uk

(
∂
∂λi

(
Ã1

1 − Ã1
2

))
∂Ã1

1

∂Y · exp
(

1
uk Ã

1
1

)
.

(4.55)

Because of (4.50), expression (4.55) leads to:

u2k(1 +O(u)) ∂3c
∂λi∂Y 2 (Y, u, μ) =

(
∂2

∂λi∂Y
(Ã1

1 − Ã1
2)(Ỹ , u, a

1
c(Ỹ ), μ1

c(Ỹ ))+

1
uk

(
∂Ã1

1

∂Y (Ỹ , u, a1c(Ỹ ), μ1
c(Ỹ )) +O(u)

)
· ∂
∂λi

(
Ã1

1 − Ã1
2

))
· exp

(
1
uk Ã

1
1

)
.

(4.56)

Along Σ1 we have

∂
∂λi

(
Ã1

1 − Ã1
2

)(
Ỹ , u, a1c(Ỹ ), μ1

c(Ỹ )
)
= P

(
Ỹ , u, a1c(Ỹ ), μ1

c(Ỹ )
)
· Ỹ i.

In any case, at (Ỹ , μ) = (0, 0), we see that for i ≥ 1:

(1 +O(u))
∂3c

∂λiY 2
(0, u, 0) =

∂2

∂λi∂Y
(Ã1

1 − Ã1
2)(0, u, 0, 0) ·

1

u2k
· exp

(
1

uk
Ã1

1

)

(4.57)

We can now continue by induction on l, for l ≥ 2, by deriving (4.47) w.r.t. λi.
We get:

uk(l+1)

[

(1 + O(u))
∂l+2c

∂λi∂Y l+1
(Y, u, μ) +

l∑

s=1

Os(u)
∂s+1c

∂λi∂Y s
(Y, u, μ)+

l+1∑

v=1

Ov(u)
∂vc

∂Y v
(Y, u, μ)

]

(4.58)

=
∂

∂λi

[

exp

(
1

uk

(
Ãl+1

1 (Y, u, c(Y, u, μ), μ)
))

− exp
( 1

uk
(Ãl+1

2 (Y, u, c(Y, u, μ), μ)
)]

.

To adapt the right-hand side of (4.58) we derive (4.48) w.r.t. λi and get, changing j
by l, and for r = 1, 2:
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∂
∂λi

(
exp

(
1
uk Ã

l+1
r

))
=

(
uk(l−1) ∂

l+1Ã1
r

∂λi∂Y l +
l−1∑
v=1

Qv

(
∂Ã1

r

∂Y , . . . ,
∂l−1Ã1

r

∂Y l−1

)
∂v+1Ã1

r

∂λn∂Y v

)
· exp

(
1
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(4.59)

The functions Qv, v = 1, . . . , l are universal polynomials in their respective
variables. We will now continue working along Σl, permitting to use that ∂vc

∂Y v = 0

for v = 1, . . . , l + 1, that ∂j+1

∂a∂Y (Ã1
1 − Ã1

2) = 0 for j = 0, . . . , l, as well as
∂j

∂Y j (Ã
1
1 − Ã1

2) = 0 for j = 0, . . . , l.
Combining (4.58) and (4.59) along Σl we now get:
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(Ã1

1 − Ã1
2)
]
exp

(
1
uk Ã
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(4.60)

Recursively on l, starting with (4.51) for l = 0 and (4.56) for l = 1, we can prove
that:

uk(l+1)(1 +O(u)) ∂l+2c
∂λi∂Y l+1 =[

uk(l−1) ∂l+1

∂λi∂Y l (Ã
1
1 − Ã1
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v=0
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∂v+1

∂λi∂Y v (Ã
1
1 − Ã1

2)

]
· exp

(
1
uk Ã

1
1

)
,

(4.61)

where for Nl sufficiently large, the functions uNl · Rv are u-regularly smooth
functions in (Ỹ , alc(Ỹ ), μlc(Ỹ )).

4.5 Consequences of Theorem 4.1 and Remaining Problems

Under the notations introduced in Sect. 4.2 and under the conditions expressed in
Theorem 4.1, we know that limit cycles are situated on the manifold of closed orbits,
given by:

F (Y, u, a, μ) = c(Y, u, μ)− a = 0. (4.62)
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The properties of c along (Y, μ) = (Y0(u), μ0(u)), as stated in Theorem 4.1, imply
that following properties hold on F :

F (Y, u, a, μ) =
∂F

∂Y
(Y, u, a, μ) = . . . =

∂n+1F

∂Y n+1
(Y, u, a, μ) = 0,

∂n+2F

∂Y n+2
(Y, u, a, μ) > 0,

det

(
∂(F,

∂F

∂Y
, . . . ,

∂nF

∂Y n
)/∂(a, μ1, . . . , μn)

)
(Y, u, a, μ) �= 0,

if we restrict to (Y, u, a, μ) = (Y0(u), u, c(Y0(u), u, μ0(u)), μ0(u)) and keep
u ∼ 0.

The results of Theorem 4.1 are valid in a full neighbourhood [Y0 − δ, Y0 + δ]×
Bδ(μ0)×]0, u0[, for some δ > 0, u0 > 0.

It is hence clear that for u > 0, there is an elementary catastrophe of
codimension (n + 1) of limit cycles near respectively the FSTS-cycle (in the Hopf
breaking mechanism) or the FSJS-cycle (in the jump breaking mechanism) under
consideration, if we take δ sufficiently small.

This does however not necessarily imply that, for each u ∈]0, u0], the local
catastrophe near (Y0(u), μ0(u)) extends in a trivial way and that all bifurcations
on the limit cycles are expressed by this catastrophe.

From Sect. 4.3 we already know that this can even not be the case for a
catastrophe of codimension 1, i.e. for a generic saddle-node bifurcation of limit
cycles. Indeed, if we choose some u with u ∈]0, u0], then there exist appropriate
δ > 0 and δ′ > 0 such that—up to the sign of a—the position curve looks like in
Fig. 4.6a.

It implies that, for each value of a, we have 0 or 2 limit cycles, multiplicity taken
into account.

If we now fix [Y0 − δ′, Y0 + δ] and let u ↓ 0, then we know from Sect. 4.3 that
the position curve will not only tend to {u = 0} but also take a typical shape like in
Fig. 4.6b.

This movement only expresses that the flying canard moves much faster under
the change of a than a sitting one does. For some values of a we now have the
possibility to encounter a single limit cycle of multiplicity one. It implies that the
bifurcations expressed by the elementary catastrophe are not the only bifurcations
that we encounter in a u-uniform neighbourhood of Y0. We have to add a boundary
bifurcation, permitting the flying canard to escape from the fixed neighbourhood
[Y0 − δ′, Y0 + δ].

Similar boundary bifurcations happen of course also for the elementary
catastrophes of higher codimension. It explains how an elementary catastrophe
of codimension n on sitting canards can become an elementary catastrophe of one
codimension higher when it gets hit by a flying canard. The resulting catastrophe of
codimension n+ 1 does not extend in a uniformly trivial way w.r.t. to u.
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Fig. 4.6 Evolution of position curve when changing u

This boundary bifurcation is comparable to a similar one that has been proven to
exist in the unfolding of a codimension 3 nilpotent singularity with an elliptic sector
(see [15]).

Besides this boundary bifurcation there is also another remaining problem
concerning the bifurcation diagram itself. The problem starts from codimension
3 on. In this (swallowtail) catastrophe there is the possibility of encountering the
simultaneous occurrence of two saddle-node bifurcations. In a standard swallowtail
catastrophe this happens along a single curve in parameter space. With the informa-
tion provided in the statement of Theorem 4.1 it is not possible to be sure of this
result in a fixed neighbourhood of Y0, uniformly in u.

Even the extra information on the derivatives ∂j+1c
∂λi∂Y j that we obtained in

Sect. 4.4, during the proof of Theorem 4.1, does not yet seem to suffice. So further
analysis is required concerning the so-called Riemann–Hugoniot bifurcation set of
the catastrophe.
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Chapter 5
Bifurcation for Non-smooth Dynamical Systems
via Reduction Methods
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Abstract Due to the presence of discontinuities, non-smooth dynamical systems
(PWS) present a wide variety of bifurcations, which cannot be explained by the
classical theory, for instance, transition from sticking to sliding due to friction and
sudden loss of stability as typically observed in mechanics. These phenomena are
due to interactions between the boundaries and the phase trajectories that cross
them from one region to another. In the present work, we review the concept of
invariant sets given as cone-like objects which has turned out as an appropriate
generalization of the notion of center manifolds. The existence of invariant cones
containing a segment of sliding orbits and stability properties of those cones are also
investigated. Based on these results we present new bifurcation phenomena in a class
of 3D-PWS concerning sliding modes. Further we show that the dynamics within the
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T. Küpper (�) · H.A. Hosham
Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Köln, Germany
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80 T. Küpper et al.

5.1 Introduction

Non-smooth dynamical systems occur as models in many applications related to
science, engineering, economics, and control theory. Typically non-smooth effects
are due to dry friction or impacts in mechanics, switches in electrical systems,
control of pacemakers through external state-dependent impulses, etc.

A large class of such situations can be modelled by systems of ordinary
differential equations defined on adjacent components of the phase space together
with additional rules for the transition from one component to another.

A typical situation can be written in the form

ξ̇ = fi(ξ), (ξ ∈Mi)(i = 1, . . . , n),

where the phase space R
n is separated into disjoint and open sets Mi such that

R
n =

⋃n
i M̄i.

The transition rules can be formulated as

ξ(t∗+) = R(ξ(t∗−)),

when the trajectory ξ(t) ∈ Mj(t < t∗) reaches the boundary ∂Mj of Mj at the
time t∗.

Typical constellations for transition are

• Direct crossing from Mj to some Mi

• Sliding in ∂Mj for some time
• Jumps due to impacts

Of course, the class of non-smooth systems allows more general types of equations
such as algebraic components (related to DAE), PDE, or even mixed forms usually
called hybrid systems.

Here we will restrict our attention to systems described by ODE.
The fundamental theory for such systems as far as an appropriate notion of the

term “solution” as well as fundamental properties like existence and uniqueness are
concerned have already been laid by Filippov [8,9]. Qualitative properties have been
less studied. More than half a century ago investigations concerning the dynamics
and bifurcations for non-smooth systems raised a rather new topic developed during
the past decades. An excellent recent review is given in [5].

First investigations had been stimulated by experiments exploring phenomena
related to dry friction or impacts. As an idealized experimental set up to analyze such
phenomena friction and impact oscillators [1,5] in various forms have been designed
which can easily be modeled by differential equations. Since experimental results
show similar effects concerning for example bifurcation as were known for smooth
systems, it was suggested to analyze the corresponding mathematical systems
systematically and to develop appropriate tools known from classical bifurcation
theory.
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Questions of particular interest were related to a characterization of solutions
with regard to stability, to various mechanisms of bifurcation especially to the
generation of periodic orbits, to qualify systems by characteristic numbers such as
Lyapunov exponents, or to establish procedures like the center manifold approach
to reduce higher dimensional systems to an equivalent lower dimensional system
carrying the essential dynamics.

As all these methods crucially depend on an approximation by linearization,
differentiability is needed which by definition does not hold for non-smooth
systems.

Hence, new approaches had to be developed. According to the degree of
nonsmoothness the systems can be divided into various classes. The simplest
situation is given by continuous but not differentiable systems. In that case solutions
are (absolutely) continuous going along with a direct crossing from one component
to another.

Discontinuous systems allow a great variety of phenomena due to an abrupt
change of the corresponding vector fields, for example sliding motion, if all vector
fields of the adjacent components are directed toward the boundary. The solution
is then forced to remain within the boundary leading to a sliding motion which is
governed by the Filippov extension [8, 9].

A particular case is given by impact systems; due to impacts the trajectory in
phase space is no longer continuous but involves jumps. For mechanical systems
jumps typically occur in the velocity component. As an illustrative example we
refer to the motion of bells where the interaction of the coupled system of bell and
clapper and the influence of impacts can be analyzed [12, 15].

Lyapunov exponents are frequently used to characterize stable resp. chaotic
motion. Since the classical definition depends on properties of the linearized flow,
existence for non-smooth system is not obvious. Various investigations have shown
that they can be defined properly for non-smooth systems as well and that they
provide a reliable tool to describe the dynamics, see [11] for a review.

Standard bifurcation theory as well is built up on linearization techniques such
as the Lyapunov–Schmidt procedure or a center manifold approach.

The change of stationary solutions to periodic motion is a frequent situation in
practical applications. The corresponding mathematical result in the form of Hopf-
bifurcation relies on properties of the linearized system such as the crossing of a
pair of complex eigenvalues through the imaginary axis. These analytical criteria do
not work for non-smooth systems since there is no linearization.

The corresponding geometric analog though suggests a suitable approach. At
the bifurcation point there is a switch in the basic system from a stable focus to
an unstable focus via a center. This feature exists for appropriate piecewise linear
systems as well and can be used to trigger the bifurcation of periodic orbits in the
form of some kind of generalized Hopf-bifurcation. This approach has been carried
out first for planar systems [22–24] using a simple Poincaré map. The idea to split
a piecewise nonlinear system into a piecewise linear system (PWLS) and remaining
terms of higher order first used for planar systems serves as an useful approach for
higher dimensional systems as well. A successful technique to analyze the dynamics
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of high dimensional systems is based on reduction to lower dimensional systems
which contain the essential dynamics. Usually, this is done by the construction of
invariant manifolds. The center manifold approach is known as a well-established
procedure for such a reduction.

There are various ways to construct invariant manifolds, which are usually
defined as solution of an appropriate fixed point problem in function spaces. It is
common to these approaches that they are based on properties of the linearized
problem, and hence differentiality is required.

Since that situation is typically not given for non-smooth systems, new methods
have to be developed.

The key idea which we pursue is based on the splitting of the piecewise smooth
system into a piecewise linear part and nonlinear perturbations of higher order.

For piecewise linear systems it is easy to set up a Poincaré map, to study its
properties, and to define invariant sets, typically given as invariant cones.

It can then be shown that these invariant sets remain under small perturbation in
the way that they are deformed to cone like surfaces. These invariant surfaces can be
seen as generalization of center manifolds for piecewise smooth systems, and they
can be used to reduce investigation of the bifurcation and stability. We note that
such cones have already been detected in the analysis of continuous piecewise
linear systems [3, 4]. Our analysis is based on the fact that the Poincaré map for the
PWLS can be split into a sum of two operators representing different differentiality
properties crucial for the analysis.

The motion on the cones can easily been used to illustrate the fact well known
in control theory that the combination of stable systems may lead to instability.
This corresponds to the situation that the cone itself is attractive, but the dynamics
on the cone is unstable. In [16] Marsden and Scheurle presented a general
approach to construct invariant manifolds for smooth systems by a method based
on deformations of the linear part. It would be an interesting project to investigate if
that approach could be carried over with piecewise linear systems used as a base.

For 3D continuous piecewise smooth systems with two zones a normal form has
been derived [3, 4]. In the case of discontinuous systems this is more complicated.
Preliminary results have been obtained by Weiss [18].

In addition, discontinuous piecewise linear systems exhibit a more complicated
behavior, such as sliding or constellations with multiple attractive invariant cones.

Within the sliding area the dimension is reduced anyway. For piecewise lin-
ear smooth system the dimension can be further reduced due to the special
homogeneous form of the Filippov extension. This reduction allows a simplified
analysis of the sliding motion dynamics; in particular for three-dimensional systems
the situation turns out to be simple, since the sliding motion can be split into
components separated by invariant manifolds.

The dynamics within the sliding area may as well lead to further bifurcations;
various situations will be illustrated by examples. For higher dimensional systems
the situation is more complicated.

The concept of generalized invariant “manifold” carries over to the case that
sliding is involved. The proof is obvious if the flow in the sliding area is linear which
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Fig. 5.1 Two half-spaces
separated by a hyperplane

holds under certain conditions. The general results need some extra care, which will
be carried out elsewhere [20].

5.2 General Setting

To describe the results we use a simplified setting of a piecewise smooth system
(PWS) in R

n given in two half-spaces separated by a hyperplane M := {ξ ∈
R
n| h(ξ) = 0}, Fig. 5.1:

ξ̇ =

{
f+(ξ), ξ ∈ R

n
+,

f−(ξ), ξ ∈ R
n
−,

(5.1)

where f± : Rn → R
n are sufficiently smooth functions and R

n is split into two
regions Rn+ and R

n
− by the separation manifold M such that Rn = R

n
+ ∪M ∪Rn−.

The regions Rn+ and R
n
− are defined as

R
n
+ = {ξ ∈ R

n|h(ξ) > 0},
R
n
− = {ξ ∈ R

n|h(ξ) < 0}.

On the separating hyperplane M we need additional rules describing the
interaction:

(a) Direct transversal crossing.
Let ρ(ξ) = nT(ξ)f+(ξ)n

T(ξ)f−(ξ), (the normal vector n(ξ) perpendicular to
the manifold M is given by n(ξ) = ∇h(ξ)

‖∇h(ξ)‖2
). Then, the direct crossing set

is defined as M c = {ξ ∈ M |ρ(ξ) > 0}. Further, the direct crossing set can
be partitioned into two subsets: M c

− = {ξ ∈ M c | nT(ξ)f+(ξ) < 0} and
M c

+ = {ξ ∈M c | nT(ξ)f+(ξ) > 0}, Fig. 5.2a.
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Fig. 5.2 Schematic illustration dynamics at a switching manifold. (a) Transversal crossing;
(b) sliding mode

A simple system showing direct crossing is given by the continuous but piecewise
smooth linear system.

Example 5.1 ([4]).

Set h(ξ) = eT1ξ, f±(ξ) = A±ξ, A± =

⎛
⎝ t± −1 0

m± 0 1

d± 0 0

⎞
⎠,

here both matrices satisfy the continuity relation A+ − A− = (A+ − A−)e1e
T
1.

Hence, all trajectories of this system approaching the hyperplane M cross it
immediately and for such initial condition, there is a unique absolutely continuous
solution.

(b) Sliding on M .
The sliding mode set is defined as M s = {ξ ∈ M | ρ(ξ) ≤ 0}. This set is
further classified as attracting M s

− or repulsive M s
+

M s
− = {ξ ∈M s | nT(ξ)f+(ξ) < 0},

M s
+ = {ξ ∈M s | nT(ξ)f+(ξ) > 0}.

If ξ ∈M s
−, then the vector field of both systems at ξ points toward M s, hence

the flow cannot leave M s at ξ; M s
− is called attractive sliding area.

If ξ ∈ M s
+, then both vector fields are directed away from M s at ξ; hence

the flow in forward time is not uniquely defined at ξ and M s
+ is called repulsive,

Fig. 5.2b. The flow in M s itself is governed by Filippov’s extension:

ξ̇ =
nT(ξ)f−(ξ) · f+(ξ) − nT(ξ)f+(ξ) · f−(ξ)

nT(ξ)(f−(ξ) − f+(ξ))
. (5.2)
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Fig. 5.3 Periodic orbit
comprising a sliding segment

Example 5.2 ([7]).
Set: h(ξ) = ξ2 − 0.2 and

f+(ξ) =

(
ξ2

−ξ1 − 1
0.8+ξ2

)
, f−(ξ) =

(
ξ2

−ξ1 + 1
1.2−ξ2

)
.

We can define the sliding region as: M s = {ξ ∈M , (ξ1 + 1)(ξ1 − 1) < 0} which
is attractive, i.e., M s = M s

− where M s
− = {ξ ∈ M s, ξ1 ∈ (−1, 1)}. Therefore

using the sliding vector field (5.2), we obtain Fs as:

Fs =

(
0.2

0

)
.

Thus, the sliding flow in ξ1 grows linearly within M s
− until it reaches the boundary

of sliding at ξ1 = 1. In Fig. 5.3, we show the periodic orbit containing a segment of
sliding motion.

(c) Jumps in phase space
Impacts at a specific time ti (i = 1, 2, . . .) will cause a jump in phase space due
to an impact rule

ξ(ti+) = R(ξ(ti−)),

where t− and t+ are the instants of time immediately before and after an impact.
Usually Newton’s impact rule is used and formulated as reflection of the
velocity at the impact point together with some damping. Typical examples are
given by impact oscillators.
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Fig. 5.4 Schematic
illustration of impact

Example 5.3 (Impact Pendulum [2]).
The dynamics of the impact pendulum (Fig. 5.4) between impacting is described
by the equations:

φ̈(t) + sinφ(t) = g(t), −φ̂ < φ(t),

φ(t+) = φ(t−)

φ̇(t+) = −rφ̇(t−)

}
, if φ(t) = −φ̂

where r ∈ (0, 1] denotes some factor reflecting damping.

Example 5.4 (Bells as Impacting System).
Bells are a nice example for impacting systems with state-dependent impacts.
Following Veltmann’s analysis [17] with regard to the large Emperor’s bell in the
Cathedral of Cologne the system of bell and clapper can be modelled as a (forced)
double pendulum.

While Veltmann has derived this system to understand the curious behavior why
the Cathedral of Cologne did not ring when installed in 1887, the system of bell
and clapper provides an example of an impacting system showing typical behavior
such as multiple impacts eventually leading to grazing. Following [12, 15] the non-
dimensionalized equations of motion for a model of an impacting-contact model of
a bell and clapper takes the form

M(Φ)Φ̈+B(Φ)Φ̇2 +CΦ̇+D(Φ) = F(τ), (5.3)

with impact events

ϕ̇2(τ+)− ϕ̇1(τ+) = μ
(
ϕ̇2(τ−)− ϕ̇1(τ−)

)
,when ϕ2 = ϕ1 ± ψ

2
(5.4)
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Fig. 5.5 Quasiperiodic solution associated with grazing bifurcations and multiple impact (chatter-
ing) [figures produced in cooperation with P. Piiroinen and J. Mason]

where Φ = [ϕ1, ϕ2]
T represent the angular displacement of the motion of bell and

the clapper, ψ is the maximum angular displacement of the clapper, ϕ̇1,2(τ−) and
ϕ̇1,2(τ+) are the velocities immediately before and after impact, respectively, C is
a constant damping coefficient and

M(Φ) =

(
α ε cos(ϕ1 − ϕ2)

ε cos(ϕ1 − ϕ2) 1

)
, B(Φ) =

(
0 ε sin(ϕ1 − ϕ2)

−ε sin(ϕ1 − ϕ2) 0

)
,

D(Φ) =

(
γ sin(ϕ1)

sin(ϕ2)

)
, F(τ) =

(
ψ̂ cos(ω0τ)

0

)
, Φ̇2 = (ϕ̇2

1, ϕ̇
2
1)
T .

Here, α, ε, ψ̂, and γ are constant parameters.
System (5.3) and (5.4) can be written as 5D-PWS

d

dt
Z = f(Z(τ)), Z = [ϕ1, ϕ2, ϕ̇1, ϕ̇2, ω0τ ]

Multiple impact and grazing bifurcation behavior is shown in Fig. 5.5.

5.3 Concept of Generalized Center Manifolds

For smooth systems ξ̇ = f(ξ), ξ ∈ R
n the center manifold approach can be used

to determine the dynamics near a special solution ξ̄ by reducing the system to a
smaller system, which can be employed to investigate bifurcation, stability, and the
dependence on critical parameters.

As an essential tool for the analysis linearization techniques are used. Since such
properties are not at hand for non-smooth systems near a special solution, new
methods have to be developed.
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Following [25], we assume that ξ̄ = 0 ∈M is a stationary solution of our system
which will be written as:

ξ̇ = f±(ξ, λ) = A±(λ)ξ︸ ︷︷ ︸
basic linear term

+ g±(ξ, λ),︸ ︷︷ ︸
nonlinear term

λ ∈ R, ±eT1ξ > 0,
(5.5)

where A± are constant (parameters dependent) matrices and g± denote smooth
functions of higher order terms.

We first review the situation for planar piecewise smooth system to investigate
mechanisms leading to the generation of periodic orbits. The standard procedure
for smooth system is given by Hopf-bifurcation triggered by the crossing of exactly
one pair of eigenvalues through the imaginary axis. For a piecewise smooth system
the notion of eigenvalues is not at hand, but it turned out that instead of this
analytical criterium the geometric correspondent remains available. Geometrically
Hopf-bifurcation occurs, when the stationary solution changes from a stable focus
to an unstable focus via a center. It turns out that this situation carries over to non-
smooth systems. The formal procedure relies on the construction of a Poincaré map
for the two-dimensional piecewise linear system ξ̇ = A±(λ)ξ of the form

P (ξ2, λ) = eπb(λ)ξ2, b(λ) = α+(λ)/ω+(λ) + α−(λ)/ω−(λ).

We consider the following assumptions:

(H1) f±(ξ, λ) are Ck-smooth (k ≥ 2) for (ξ, λ) ∈ R
±
2 × R.

(H2) f±(0, λ) ≡ 0 for λ ∈ R.
(H3) The spectrum of A±(λ) consists of a pair of complex conjugate eigenvalues

α±(λ) ± iω±(λ), ω(λ) > 0 for λ ∈ R.
(H4) a±

12 > 0 or a±
12 < 0.

(H5) transversality condition, b(0) = 0, db
dλ(0) �= 0.

Under the previous assumptions, the main result is given in the following theorem .

Theorem 5.1 ([25]).
Suppose that (H1) − (H5) hold, then there bifurcates a continuous branch of
periodic orbits for the planar PWS (5.5) from the origin at λ = 0.

Example 5.5 (Brake System for a Bike [25]).
The mathematical model is a system of two differential equations:

mẍ+ d1ẋ+ c1x = σ+(x, ẋ, λ), if x > 0

mẍ+ (d1 + d2)ẋ+ (c1 + c2)x = σ−(x, ẋ, λ), if x < 0
(5.6)

where the mass rests on a smooth surface and is connected to the walls by springs cj
and dampers dj , j = 1, 2, σ± representing external force and λ is a free parameter.
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Set x = u, ẋ = v, and m = 1; without loss of generality [25], we assume that the
system (5.6) is of the following form

(
u̇

v̇

)
=

(
v

(b±
1 λ− b±

0 )v − a±u− β±u3

)
. (5.7)

Note that the origin is always an equilibrium point, hence the eigenvalues corre-
sponding to the linearization of (5.7) at the origin are given by α±(λ) ± iω±(λ) =
− 1

2 (b
±
0 − b±1 λ)± i 12

(
4a± − (b±0 − b±1 λ)

2
)1/2

.

The assumption (H1)–(H5) hold if b−0 = −(a−/a+)1/2b+0 . Therefore, general-
ized Hopf-bifurcation occurs as the parameter λ crosses 0.

We assume that the transition at M is determined by the vector field of (5.1), i.e.,
here we first consider either direct transition or sliding but no jumps in phase space.

As an interesting example for systems of the form we use the following
brake system suggested by K. Popp (1998, private communication), consisting of
three coupled oscillators connected by friction forces. To capture realistic friction
behavior we have slightly extended the system by allowing a general friction
characteristic μ2.

Example 5.6 (Brake System).
A brake pad 1 on a rigid frame acts on a brake disc 2. Between brake pad and brake
disc there is a relative displacement with constant velocity v > 0, Fig. 5.6; for that
reason friction forces depend only on the normal force and the kinematic friction
μ1. The coefficients of the linear viscous dampers are represented by d1, d2 and
spring constants are denoted by c1, c2. Therefore, the brake pad is equipped with
three mechanical degrees of freedom:

• Vertical movement x1
• Horizontal movement x2
• Rotation φ

The pad is supported via a friction contact with velocity depending friction force
R(νrel) by the frame where R is of the form R(νrel) = Fn · μ2(νrel). As friction
characteristic we take

μ2(ν) = sgn(ν)
[
α1 +

β1
1 + γ1|ν| + δ1ν

2
]
.

Note that the simple Coulomb friction characteristic is included for β1 = δ1 = 0,
but for δ1 > 0 care is taken to incorporate the fact that friction increases for large
value of the relative velocity.

The equations of motion are given as:
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Fig. 5.6 Three-degree-of-freedom brake system model

mẍ1 = −(d1 + d2)ẋ1 +
b

2
(d2 − d1)φ̇− (c1 + c2)x1 +

b

2
(c2 − c1)φ

− sgn(ẋ1 − aφ̇)c3x2
[
α1 +

β1

1 + γ1|(ẋ1 − aφ̇)| + δ1(ẋ1 − aφ̇)2
]

(5.8a)

mẍ2 = (d1 + d2)μ1ẋ1 +
μ1b

2
(d1 − d2)φ̇+ (c1 + c2)μ1x1 − c3x2

+
μ1b

2
(c1 − c2)φ,

(5.8b)

jφ̈ =
( b
2
(d2 − d1) + (d1 + d2)hμ1

)
ẋ1 − ( b2

4
(d1 + d2) +

bhμ1

2
(d2 − d1)

)
φ̇

− ( b
2
(c1 − c2) − (c1 + c2)hμ1

)
x1 + c3sx2 − ( b2

4
(c1 + c2) +

bhμ1

2
(c2 − c1)

)
φ

+ sgn(ẋ1 − aφ̇)c3ax2

[
α1 +

β1

1 + γ1|(ẋ1 − aφ̇)| + δ1(ẋ1 − aφ̇)2
]
.

(5.8c)
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5.3.1 Brake Model as PWS

System (5.8) contains six unknown variables (x1, ẋ1, x2, ẋ2, φ, φ̇) and 13 parame-
ters. Non-smooth components enter just in two ways by the term sgn(ẋ1−aφ̇). It is
clear that an exact analytic solution is unavailable. Our approach to such a problem
is to view it as a non-smooth system. We first carry out the following transformation
and scaling of t described as:

z1 := x1, z2 := x2, z3 := x1 − aφ, z4 := μ1ẋ1, z5 := ẋ2, z6 := ẋ1 − aφ̇, t → maμ1t,

where a,m, μ1 > 0, which has no effect on the solution behavior of the model
system.

To be specific, we rewrite (5.8) by using the above transformation as an
equivalent six-dimensional system as follows:

ż =

{
A+z + g+(z), z6 > 0,

A−z + g−(z), z6 < 0,
(5.9)

with the simple form of the matrices

A± =

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎝

0 0 0 a14 0 0

0 0 0 0 a25 0

0 0 0 0 0 a25

a41 ∓α a43 a44 a45 a46

a51 a52 a53 a54 0 a56

a61 ∓β a63 a64 a65 a66

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎠

, g± = ∓

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

0

0

0

c3aμ21z2(ε̃z6 + ˜̃εz26) + . . .

0

−ac3μ1(1 + ma2

j
)z2(ε̃z6 + ˜̃εz26) + . . .

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

(5.10)

where
a14 = ma, a25 = maμ1, a41 = aμ2

1(c1 + c2) − bμ2
1(c2−c1)

2 , α = ac3μ
2
1μ

0
2,

a43 = − bμ2
1(c2−c1)

2 , a44 = −aμ1(d1 + d2) +
bμ1(d2−d1)

2 , a46 = − bμ2
1

2 (d2 − d1),

a51 = aμ2
1(c1 + c2) +

bμ2
1(c2−c1)

2 , a52 = −ac3μ1, a53 =
−bμ2

1(c2−c1)
2 ,

a54 = aμ1(d1 + d2) +
bμ1(d1−d2)

2 , a56 = − bμ2
1

2 (d1 − d2), a61 = bμ1

2 (c2 − c1) −
aμ1(c1+c2)+

ma2μ1

j ( b2 (c1−c2)−(c1+c2)hμ1)+
maμ1

j ( b
2

4 (c1+c2)+
bhμ1

2 (c2−c1)),
β = ∓(ac3μ1μ

0
2+

a3c3mμ1μ
0
2

j )− a2c3smμ1

j , a63 = bμ1

2 (c1−c2)−maμ1

j ( b
2

4 (c1+c2)+
bhμ1

2 (c2 − c1)), a64 = −a(d1 + d2)− ma2

j ( b2 (d2 − d1) + (d1 + d2)hμ1) +
ma
j ( b

2

4

(d1 + d2) +
bhμ1

2 (d2 − d1)), a65 = bμ1

2 (d2 − d1), a66 = − bμ1

2 (d2 − d1) −
maμ1

j ( b
2

4 (d1+d2)+
bhμ1

2 (d2−d1)), μ0
2 = α1+β1, ε̃ = −α1γ1, ˜̃ε = 2(δ1+α1+γ

2
1).

For PWS it is necessary to know the direction of the flow of the vector field
when the trajectory reaches M . We will discuss the vector field on M in two main
cases, namely direct crossing through M or sliding motion on M where the sliding
surface is particularly important with regard to the friction coefficient.
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5.3.2 Detecting Crossing and Sliding Regions

In this section we demonstrate the existence of a crossing and sliding mode from
the point of view of a Filippov system. Let Υ (z) = a61z1 + a63z3 + a64z4 + a65z5.
The direct crossing in M c for z6 = 0 occurs if both quantities [nT(z)f±(z)] have the
same sign. Therefore, the crossing region M c := {z ∈M |Υ (z)2− (βz2)

2 > 0} is
divided into two main regions, namely

M c
+ := {z ∈M c|Υ (z) > βz2},

M c
− := {z ∈M c|Υ (z) < βz2}.

In a similar way, we can define the sliding mode region as M s := {z ∈M |Υ (z)2−
(βz2)

2 ≤ 0} which is divided into two main regions, namely

M s
− := {z ∈M s|Υ (z) < βz2},

M s
+ := {z ∈M s|Υ (z) > βz2},

where we use the notation M s− to represent the attractive sliding motion and M s
+ to

represent repulsive sliding motion.

5.4 Piecewise Smooth Linear System

PWLS are extensively used to model many physical phenomena such as mechanical
devices [6] or electronic circuits [21]. We consider the n-dimensional piecewise
smooth linear system :

ξ̇ =

{
A+ξ, h(ξ) > 0,

A−ξ, h(ξ) < 0,
(5.11)

where ξ ∈ R
n andA± are n×n real matrices. For that setting the stationary solution

is always located within the separating manifold. We are interested to investigate the
dynamical behavior in a neighborhood of the stationary solution and in particular to
study the generation of periodic orbits. Other questions concern stability and the
possibility to reduce the system to a lower dimensional one.

5.4.1 Concepts of Invariant Cones

PWLS can be classified in two classes depending on the degree of smoothness
properties of the associated vector field, namely continuous PWLS (non-sliding
flow) and discontinuous PWLS (sliding flow).
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Fig. 5.7 Different dynamics on cones, μc < 1, μc = 1 and μc > 1, respectively

To analyze the dynamical behavior of n-dimensional PWLS (5.11), we assume
that both matrices have at least a pair of complex conjugated eigenvalues introducing
rotations in the system. For initial values ξ ∈ M for which nT(ξ)A±ξ have both
negative sign and for which et−(ξ)A−

ξ reaches M again for the first time t−(ξ)
at η, we define the Poincaré map P−(ξ) := et−(ξ)A−

ξ and similarly P+(η) :=

et+(η)A+

η.
If both P− and P+ are well defined so that P+(P−(ξ)) exists, we can study the

behavior of the combined map P+ ◦ P−. If there exists ξ̃ ∈M such that

P (ξ̃) = μcξ̃,

for some μc > 0, then the same holds for the half-ray {λξ̃ |λ > 0}.
In that way an invariant cone is generated by the flow of (5.11).
The “eigenvalue” parameter μc determines the dynamics on the cone; if μc < 1

resp. μc > 1 the flow on the cone spirals in resp. out; for μc = 1 the cone is foliated
by periodic orbits of (5.11), Fig. 5.7. The “eigenvalue” μc of P is an eigenvalue of
the linear operator DP evaluated at ξ̃ as well.

Attractivity of the invariant cone is determined by the remaining (n − 2)
eigenvalues of DP(ξ̃).

Theorem 5.2 ([13]).
If there exists ξ̄ ∈M c

− and μc > 0 such that

P (ξ̃) = μcξ̃,

then ξ̃ generates an invariant cone under the flow of (5.11) due to P (λξ̃) =
λP (ξ̃) = λμcξ̃; moreover,

(i) If μc > 1, then the stationary solution 0 is unstable.
(ii) If μc = 1, then the cone consists of periodic orbits.

(iii) If μc < 1, then the stability of 0 depends on the stability of P with respect to
the complimentary directions.



94 T. Küpper et al.

The existence of an invariant cone for 3D problems has been studied in detail in
[10, 14]; further a general nonlinear determining system to compute the generating
vector ξ̃ has been set up in [13].

For homogenous and continuous 3D-PWLS with two zones existence of invariant
cones and their bifurcations have already been studied in [3, 4]. There also, an
example is given demonstrating that the combination of two stable systems may
be unstable; an effect already known in control theory.

This nevertheless surprising result can systematically be explained in our setting
by the existence of an invariant attractive cone with the property that the motion on
the cone is unstable, i.e., μc > 1.

In general coexistence of several attractive cones is possible; a result which does
not hold for continuous PWLS.

Example 5.7 (Existence of Multiple Invariant Cones).
Set

A− =

⎛
⎝λ− −1 0

1 λ− 0

0 0 μ−

⎞
⎠ , A+ =

⎛
⎝ 2λ+ −1 μ+

λ+2 + 1 0 −λ+2 + 2λ+μ+ − 1

0 0 μ+

⎞
⎠ .

The �-system possesses an invariant plane ξ3 = 0 with constant return time
t−(ξ) = π. For the ⊕-system the line ξ3 = 1

μ+ ξ2 determines the boundary of
the sliding motion area in the (ξ2, ξ3)-plane.

Note that vanishing or appearing of a sliding area is based on one parameter μ+.
Here, we assume that the starting point ξ ∈M c

+ hence ξ2 < 0, and the Poincaré
map P = P− ◦ P+(ξ) mapping (ξ2, ξ3) into itself (i.e., P (ξ) : M c

+ → M c
+ ) is

given by

P (ξ) =

F

⎛

⎜
⎝
λ+ sin(t+) − cos(t+) sin(t+)(1 − λ+2) + 2λ+

(
cos(t+) − e(μ

+−λ+)t+
)

0 e(μ
+−λ+)t++π(μ−−λ−)

⎞

⎟
⎠

(
ξ2

ξ3

)

,

where F = eλ
+t++πλ−

and the return time t+(ξ) depends on ξ in a nonlinear
linear way, and it is determined by the smallest positive solution of the following
equation

− sin(t+)ξ2 + (λ+ sin(t+)− cos(t+) + et+(μ+−λ+))ξ3 = 0. (5.12)

Lemma 5.1 ([10]).
If ξ ∈ M c± and λ+ = −λ−, then the present system has, at least, two invariant
cones with periodic orbits. One of them can be asymptotically stable and the other
unstable or both can be unstable foci; but there is also the situation where both
invariant cones are asymptotically stable.
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Fig. 5.8 Two attractive invariant cones, λ+ = −λ− = 0.6, μ+ = −1.13, μ− = 0.4266, where
t+ = π for the flat cone and t+ = 1.1306 for the other

Proof. Set ξ ∈ M c
+ and λ+ = −λ−. Since an invariant cone consisting of

periodic orbits requires that either μc1 = eλ
−(π−t+)(λ+ sin(t+) − cos(t+)) or

μc2 = eμ
+t++πμ−

equals 1 we get

(i) μc1 = 1, and t+ = π by direct analysis of the fixed point equation P (ξ) = ξ

which requires −2λ+(1 + e(μ
+−λ+)π)ξ3 = 0, hence ξ3 = 0. In this case we

obtain a flat cone given as the invariant plane which is attractive if μ+ < −μ−

or repulsive if μ+ > −μ−.

(ii) μc2 = 1, hence t+ = −μ−π
μ+ . The corresponding eigenvector is calculated as

ξ̃ =

⎛
⎝ −1
− 1+eλ

+t++πλ−(
λ+ sin(t+)−cos(t+)

)
eλ

+t++πλ−(
sin(t+)(1−λ+2)+2λ+(cos(t+)−e(μ+−λ+)t+ )

)
⎞
⎠

To prove the existence of the function t+(ξ) ∈ (0, π), without loss of generality,
we set ξ ∈ ∂M s

+ (∂M s
+ refer to the boundary between sliding and crossing

areas), then the existence of a solution for Eq. (5.12) requires (μ+ − λ+) < 1.
The corresponding cone is attractive, resp. repulsive if μc1 < 1 resp. μc1 > 1.

Figure 5.8 shows an example to illustrate the situation of two attractive invariant
cones for the special choice of parameters. ��

Example 5.8 (Existence of an Invariant Cone for the Linear Brake System Without
Sliding Motion [10]).
For the simple Coulomb friction characteristic included by β1 = δ1 = 0, the
nonlinear brake system (5.8) reduces to a linear form. To simplify, we set the
parameters c := c1 = c2 and d := d1 = d2. In Fig. 5.9, we fix all parameters
values as in Table 5.1 and choose the friction coefficient smaller than the static
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Fig. 5.9 Invariant cones and solution components for linear brake system without sliding motion

Table 5.1 Parameters are presented in K. Popp (1998, private communication)

Description Unit Value Remark

m kg 0.3 Weighed, rounded
j kg m2 3 · 10−4 From m and geometry
a m 58 · 10−3 Measured
b m 50 · 10−3 Estimated
h m 8 · 10−3 Measured
s m 1 · 10−3 Measured
μ1 1 0.4 Static friction
μ02 1 0.15 Kinetic friction
c1, c2 N m−1 18 · 108 Spring constants
c3 N m−1 13 · 107 Spring constant, estimated
d1, d2 N s m−1 657.3 Damping coefficients

one (i.e., μ0
2 � μ1). The main reason for choosing μ0

2 is that this choice rapidly
restores the spring to a more relaxed length. Note that a change of this parameter
μ0
2 changes the control parameters α, β (i.e., the friction force). The parameter β in

turn causes the existence of sliding and crossing regions.

Figure 5.9 shows an invariant cone, a 4-periodic orbit and solution components
at d = 0 and μ0

2 = 0.00014 which is quite small.
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5.5 PWLS with Sliding

Example 5.6 indicates that sliding motion occurs. Following Filippov the motion
within M is determined by (5.2). For a piecewise linear system (5.11) this reduces to

ξ̇ =
nT(ξ)A−ξ · A+ξ − nT(ξ)A+ξ ·A−ξ

nT(ξ)(A−ξ −A+ξ)
(5.13)

In general this is a nonlinear system. Due to the homogeneity special features
hold.

(a) If ξ(t) is a solution, then λξ(t) as well for λ ≥ 0.
(b) Half-rays are mapped into half-rays, with constant time of evaluation from one

half-ray to another, hence if some trajectory leaves M a half-ray does at the
same time.
Further, if there are stationary solutions in M , i.e., Fs(ξ̄) = 0, then there is a
half-ray of stationary solution.

For an initial position in M s
− or if the flow of a subsystem of (5.11) arrives at

the sliding region M s
−, the sliding motion can be observed along the discontinuity

surface in phase space. Let ϕs(ts(ξ), ξ) in Ck, k ≥ 1, denote the sliding flow
generated by solution of (5.13), and let ts be the time spent in the M s

− region.
Then we define the sliding map as

Ps : M s
− →M s

−,

ξ → Ps(ξ) = ϕs(ts, ξ).

The existence of an invariant cone passing through the sliding region depends on
the existence of an “eigenvector” ξ̄ �∈ M s

+ of the nonlinear eigenvalue problem
P (ξ̃) = μcξ̃ whereP is the required composition of one or both of (P−, P+) andPs.

Example 5.9 (Existence of Invariant Cone for the Linear Brake System with Sliding
Motion).
For the special choice that the initial friction coefficient μ0

2 is equal to the static
μ0
2 = μ1 = 0.4, the complex behavior of the brake system is revealed to multiple

periodic orbits including sliding. In Fig. 5.10 we show a 4-periodic orbit where a
transition phase slip motions with small length appear.

Stationary solutions and invariant manifolds within M may strongly influence
the flow in M ; in particular they can prevent trajectories to leave M so that the
long time motion might be restricted to M . For that reason it is worth while to
investigate the flow in M . Due to special properties the system can be reduced to a
lower dimensional system or even to a linear system under additional hypotheses.

In the following we assume without restriction that n = e1.
Using a suitable transformation T we can simplify system (5.13).
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Fig. 5.10 Invariant cones and solution components, existence of 4-sliding periodic orbit when
α 
= 0, β 
= 0

Assume that T leaves M invariant, i.e., Te1 = e1 and set Tη := ξ. Then

η̇ =
1

eT1(A
− −A+)Tη

[
(eT1A

−Tη)T−1A+Tη − (eT1A
+Tη)T−1A−Tη

]
.

Further we can arrange that for η ∈M

eT1(A
− −A+)Tη = ηj ,

for some j ∈ {2, . . . , n}; we assume without restriction that j = n. Then

η̇ =
1

ηn

[
(eT1A

−Tη)T−1A+Tη − (eT1A
+Tη)T−1A−Tη

]
.

Define slopes si = ηi/ηn, (i = 1, . . . , n). Then for η ∈M : ṡ1 = 0 and ṡn = 0; for
i ∈ {2, . . . , n− 1} we obtain

ṡi =
[
η̇iηn − ηiη̇n

]
/η2n.

By using the differential equations of η̇, we obtain a reduced system for the slopes
describing the motion in M .
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Lemma 5.2. The flow in M is governed by the evolution of the slopes si, (i =
2, . . . , n− 1):

ṡi = eT1A
−TseTiT

−1A+Ts − eT1A
+TseTiT

−1A−Ts

−si
[
eT1A

−TseTnT
−1A+Ts − eT1A

+TseTnT
−1A−Ts

]
.

(5.14)

Remark 5.1. Since the right-hand side of (5.14) consists of quadratic resp. cubic
(polynomial) forms statements can be drawn concerning for example the number of
stationary lines.

As a special situation consider n = 3. Then

ṡ1 = 0,

ṡ2 = eT1A
−TseT2T

−1A+Ts − eT1A
+TseT2T

−1A−Ts

−s2
[
eT1A

−TseT3T
−1A+Ts − eT1A

+TseT3T
−1A−Ts

]
= g(s2).

ṡ3 = 0.

Since g(s2) is either a quadratic resp. cubic polynomial in s2, the number of
possible stationary solutions is limited to at most 2 resp. 3; in a similar way stability
can be obtained via the derivative of g.

Example 5.10. As a simple example to illustrate possible features resulting of
sliding motion we consider a situation where A+, A− are chosen such that T = I
and h(x) = ξ1. We take

A+ =

⎛
⎝λ+ −1 0

1 λ+ a+23
0 0 μ+

⎞
⎠ , A− =

⎛
⎝ λ− −1 1

a−
21 0 a−

23

0 a−
32 μ

−

⎞
⎠ .

Then, for M = {ξ ∈ R
3 | ξ1 = 0} the attractive sliding motion area is given by

M s
− = {ξ ∈ R

3 | ξ1 = 0, ξ3 ≥ ξ2 ≥ 0}.

In Fig. 5.11 we show M s
− is bounded by the half-rays G1 and G2.

The sliding motion dynamics is governed for s1 = 0, s3 = 1 by :

ṡ2 = −a−
32s

3
2 + (μ+ − μ− − λ+)s22 + (λ+ − μ+ + a−

23 − a+23)s2 + a+23 =: g(s2),

(0 ≤ s2 ≤ 1).

Remark 5.2. (i) For the 3-dimensional system the dynamics within the sliding
motion area is described by a simple equation ṡ2 = g(s2).
Since g is a polynomial of degree 3 there are at most 3 stationary solutions.
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Fig. 5.11 Schematic illustration location of attractive sliding region M s− consists of stationary
solution (pseudo-equilibrium line)

The degree of g is equal to 3 if a−
32 �= 0. In case a−

32 = 0 there are at most 2
zeros of g. The flow on the boundary of the sliding motion area is determined
by ṡ2 = g(s2) for s2 = 0 resp. s2 = 1, hence by

g(0) = a+23,

g(1) = a+23 − a−
32 − μ−.

If a+23 > 0 then the flow enters M s
− through G1, if a+23 < 0 the flow leaves

M s
− through G1, and if a+23 = 0 then G1 is invariant. In a similar way the flow

on G2 can be characterized by g(1) = a+23 − a−
32 − μ−.

(ii) If 0 ≤ a+23 and a+23 > a−
32 + μ−, then the flow enters M s

− through G1 and
leaves it through G2 and there are either no zero of g in [0, 1] or one stable
and one unstable one.

(iii) If 0 ≤ a+23 < a−
32 + μ−, then the flow enters M s

− through G1 and G2, and
there is exactly one stable zero of g in [0, 1].

(iv) Stationary solutions of ṡ2 = g(s2) correspond to invariant lines for the system
ξ̇ = Fs(ξ) which can be a stable, unstable, or a center manifold separating the
planar phase space.
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Fig. 5.12 Bifurcation of invariant cone involving sliding depending on the location of the return
map, the cone is closed (consists of periodic orbits, see (i)) or destroyed with solution remaining
in M s

− (see (ii))

In higher dimensional systems those lines do not separate the phase space; so
it is interesting to investigate if separating manifolds can be used to structure
M s

− in dimensions greater than 3.
(v) If the line G1 is mapped back to M s

− by the flow of the system than it depends
on the structure in M s

− and the location of the return if the flow remains in M s
−

for all times or if an invariant closed cone will be generated. Invariant lines in
M s

− will serve as separatrix and lead to bifurcation. Using the classification
in (ii) and (iii) together with properties of P+ and P−, parameters can be
chosen appropriately.
Illustrative examples are shown in Fig. 5.12.

(vi) The relationship

(A+ −A−)
(
0 0

0 I

)
= x yT,

for suitable vectors x and y which leads to a linear flow in M s
− holds if λ+ = 0

and a−
32, x and y can be chosen as y1 = y2 = 0, y3 = 1, x1 = −1, x2 =

a+23 − a−
23.

In special situations such as for the brake system the sliding motion is governed
by a linear equation:

ż =

⎛

⎜
⎜
⎜⎜
⎜
⎝

a14z4
a25z5
0

(a41 − α
β
a61)z1 + (a43 − α

β
a63)z3 + (a44 − α

β
a64)z4 + (a45 − α

β
a65)z5

a51z1 + a52z2 + a53z3 + a54z4

⎞

⎟
⎟
⎟⎟
⎟
⎠
.
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This simplification holds under conditions which are described in [20]:

Theorem 5.3. Assume that Te1 = e1 and that for suitable vectors x, y the relation

(A+ −A−)T [I − e1e
T

1] = xyT,

holds. Then the flow within M is described by the linear system

η̇ = T−1A+Tη − 1

eT1x
eT1A

+TηT−1x.

Proof. Using

ξ̇ =
1

eT1[A
− −A+]ξ

[
(eT1A

−ξ)A+ξ − (eT1A
+ξ)A−ξ

]

=
1

eT1[A
− −A+]ξ

[
(eT1A

−ξ)A+ξ − (eT1A
+ξ)A+ξ + (eT1A

+ξ)A+ξ

−(eT1A+ξ)A−ξ
]

= A+ξ +
(eT1A

+ξ)

eT1[A
− −A+]ξ

[A+ − A−]ξ

and

η̇ = T−1A+Tη − (eT1A
+Tη)

eT1[A
− −A+]Tη

T−1[A+ −A−]Tη

= T−1A+Tη − (eT1A
+Tη)

eT1xy
Tη

T−1xyTη

= T−1A+Tη − (eT1A
+Tη)

eT1x
T−1x. ��

5.6 Nonlinear Piecewise Smooth Systems (PWNS)

Recently [19], the existence of cone-like invariant manifolds as an extension
to nonlinear perturbations of certain n-dimensional non-smooth systems under
appropriate conditions in the case without sliding motion carrying the essential
dynamics of the full system has been proved. To see this we introduce the following
hypotheses:

(a) We assume
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ξ̇ = f±(ξ) = A±ξ︸︷︷︸
basic linear term

+ g±(ξ),︸ ︷︷ ︸
nonlinear term

±eT1ξ > 0, ξ ∈ R
n,

(5.15)

with constant matrices A± and nonlinear Ck-parts g±(ξ) = o(‖ξ‖), k ≥ 1.
(b) Direct transition between R

n− and R
n
+ through M , hence, without loss of

generality, ξ ∈M c−.
(c) Existence of μc > 0 and ξ̄ such that P (ξ̄) = μcξ̄ for linear PWS.
(d) The attractivity condition is satisfied, i.e., the remaining (n-2) eigenvalues of

λ−, . . . , λn−2 of DP satisfy |λj | < min{1, μc}, (j = 1, . . . , n− 2).

Theorem 5.4 ([19]).
Under the previous hypotheses on the corresponding PWLS and g±, there exists a
sufficiently small δ and a C1-function H : [0, δ) → M satisfying H(0) = 0 and
∂
∂uH(0) = ξ̄ such that

{H(u) | 0 ≤ u < δ}

is locally invariant and attractive under the Poincaré map of system (1). For k = 2
the function H is Ck in case of μc ≥ 1 andCmin(k,j) in case of μc < 1 and α < μjc.

Example 5.11 (Class of 3D-PWNS).
Set:

A± = (S±)−1A±
NS±, A

±
N =

⎛

⎜
⎝

λ± −ω± 0

−ω± λ± 0

0 0 μ±

⎞

⎟
⎠ , (S−)−1 =

⎛

⎜
⎝

1 −α(α+1)
2

−α
−δ 1 0

0 −δ 1

⎞

⎟
⎠ ,

(S+)
−1 = I, g+(ξ) = ρ+

⎛

⎜
⎝

0

0

ξ21 + ξ22

⎞

⎟
⎠ , g−(ξ) = ρ−

⎛

⎜
⎝
ξ23
0

0

⎞

⎟
⎠ .

Attractivity of the cone is guaranteed if |μ1| < min{1, μc} and the invariant
“eigenvector” ξ̄ satisfying P (ξ̄) = μcξ̄ in PWLS is chosen as ξ̄ = (ȳ, z̄)T = (1,m)T

with m as slope of the invariant line.
If α = ρ− = 0, system (5.15) has an invariant curve given by

H(y) = my +
b2

μ2
c − μ1

y2 + . . . ,

where b2 =
ρ+μc

(
e2λ

+π/ω+−eμ+π/ω+
)

2λ+−μ+ .
Figure 5.13 shows that an invariant cone is generated by H(y) with parameters

set as ω± = 1.0, λ+ = −λ− = 1.0, μ+ = 0.02, ρ+ = 12.3, t± = π.
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Fig. 5.13 An attractive cone generated by invariant curve H(y) of PWNS

0.5

–0.5

–0.5

0.5

–0.5

–1

–1 –1

–1.5

–2.5

–2

0

0
0.5

0

H(y)

H(y)

z

yx

z

y x

–0.01

–0.015

–0.02

–0.025
–2

–1
0

1
2

3
4 –8

–6
–4

–2
0

2
x 10

–3

x 10
–3

Fig. 5.14 Two generalized center manifolds of PWNS (ρ− = −0.01, ρ+ = 0.1) for μ− = μ−
0

(left), stable periodic orbit of PWNS for μ− = −1.06 > μ−
0 (right)

Figure 5.14 (left) shows another situation, where the system (5.15) has two
invariant curves, hence there are two attractive invariant cones. A periodic orbit
on the manifold generated by Hopf-bifurcation is shown in Fig. 5.14 (right). The
simulation is done with parameters set at λ+ = −0.5, λ− = 0.5, μ+ = 0.2, α =
0.5, t+ = π, ω+ = ω− = 1.0, ρ− = −0.01, ρ+ = 0.1 and bifurcation parameter
μ− close to μ−

0 := −μ+t+/t−(ξ̄) ≈ −1.0604, where t−(ξ̄) ≈ 0.5928.
Extension of these results to situations involving sliding motion are given in [20].
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22. Zou, Y., Küpper, T.: Generalized Hopf bifurcation emanated from a corner. Nonlinear Anal.

TAM 62(1), 1–17 (2005)
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Chapter 6
Homoclinic Flip Bifurcations in Conservative
Reversible Systems

Björn Sandstede

Abstract In this paper, flip bifurcations of homoclinic orbits in conservative
reversible systems are analyzed. In such systems, orbit-flip and inclination-flip
bifurcations occur simultaneously. It is shown that multi-pulses either do not
bifurcate at all at flip bifurcation points or else bifurcate simultaneously to both
sides of the bifurcation point. An application to a fifth-order model of water waves
is given to illustrate the results, and open problems regarding the PDE stability of
multi-pulses are outlined.

6.1 Introduction

In this paper, we discuss flip bifurcations of homoclinic orbits in conservative
reversible systems. Our main motivation for studying these bifurcations comes
from the observation that spatially localized traveling waves of partial differential
equations (PDEs) in one-dimensional extended domains can be found as homoclinic
orbits of the underlying ordinary differential equation (ODE) that describes traveling
waves. To illustrate this principle, consider the fifth-order PDE

ut +
2

15
uxxxxx − buxxx + 3uux + 2uxuxx + uuxxx = 0, x ∈ R, (6.1)

which arises as the weakly nonlinear long-wave approximation to the classical
gravity-capillary water-wave problem [1, 2]. Here, u(x, t) is the surface elevation
measured with respect to the underlying normal water height, and the parameter b
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Fig. 6.1 The left panel illustrates the shape of a typical localized pulse u(x): plotted is u(x)
vertically against the horizontal spatial variable x. Multiple pulses resemble several well-separated
copies of a single pulse as indicated in the right panel for a 3-pulse, consisting of three copies. The
distances L1 and L2 between consecutive pulses in the 3-pulse can be used to distinguish different
multi-pulses

is the offset of the Bond number, which measures surface tension, from the value 1
3 .

Traveling waves u(x, t) = u(x+ ct) of (6.1) satisfy the fourth-order equation

2

15
uiv − bu′′ + cu +

3

2
u2 − 1

2
[u′]2 + [uu′]′ = 0, (6.2)

where c denotes the wave speed. Localized wave profiles u(x) of (6.1) that satisfy
limx→±∞ u(x) = 0, which we will refer to as pulses, correspond therefore to
homoclinic orbits of the first-order system obtained from the ODE (6.2).

Assume now that we found a pulse u(x), which corresponds to a localized wave
of elevation or suppression. In this case, it is of interest to see whether several copies
of the pulse can be glued together to create a traveling pulse that consists of several
regions of elevation or suppression as indicated in Fig. 6.1. Several bifurcation
scenarios are known at which multi-pulses of the form described above emerge, and
we refer to [5] for a comprehensive survey. This paper focuses on homoclinic flip
bifurcations, which come in two varieties. Orbit-flip bifurcations arise if the pulse is
more localized than expected from the spatial eigenvalue structure of the equilibrium
u = 0 of the ODE (6.2). Inclination-flip bifurcations, on the other hand, arise as
follows: let L be the linearization of the PDE (6.1), formulated in a comoving
frame, about the pulse, then this operator has an eigenvalue at the origin due to
translation symmetry. Let ψ(x) denote the associated eigenfunction of the adjoint
operator L ∗; this eigenfunction has a natural interpretation as a solution of the
adjoint variational equation of the ODE (6.2) about the pulse u(x). An inclination-
flip arises if the adjoint eigenfunction is more localized than expected.

Whether, and in what form, multi-pulses bifurcate at an orbit- or inclination flip
bifurcation depends strongly on whether the underlying traveling-wave system (6.2)
has additional structure. Here, we focus on two possible structures that commonly
arise. The first structure is equivariance of (6.2) under the reflection x �→ −x,
which we will refer to as reversibility. The second relevant structure is whether
the traveling-wave system admits a first integral, that is, a real-valued quantity H
that does not change when evaluated along solutions: we refer to such systems as
conservative.
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It was shown in [12] that orbit-flip bifurcations of nonconservative reversible
systems lead to N -pulses for each N . A similar result was shown in [13] for
nonreversible conservative systems. It turns out that the water-wave problem (6.2)
is both reversible and conservative (we will show this in Sect. 6.4). Neither of
the aforementioned results therefore applies to (6.2), and this paper focuses on
deriving bifurcation results for this case. As we will see, the results for reversible
conservative systems are quite different from those for systems that admit one but
not both of these structures.

The main open issue is the stability of the multi-pulses found in this and other
bifurcation scenarios with respect to the underlying partial differential equation. The
fifth-order model given above is a Hamiltonian PDE, and stability for such equations
is subtle. We will comment in detail on the outstanding issues in the conclusions
section at the end of this paper.

This paper is structured as follows. The precise setting and the main results are
formulated in Sect. 6.2. Our results are proved in Sect. 6.3, and we consider the
application to the water-wave problem in Sect. 6.4. Conclusions and open problems
are presented in Sect. 6.5.

6.2 Main Results

In this section, we state the setting, assumptions, and main results more formally.
We consider the ordinary differential equation

u′ = f(u, μ), (u, μ) ∈ R
2n × R, (6.3)

where f is a smooth nonlinearity. We assume that (6.3) is reversible and conservative
in the following sense.

Hypothesis (H1) (Reversibility). There exists a linear map R : R2n → R
2n such

thatR2 = id, the fixed-point space Fix(R) of the reverserR satisfies dimFix(R) =
n, and Rf (u, μ) = −f(Ru, μ) for all (u, μ) ∈ R

2n × R.

We call a solution u(x) reversible or symmetric with respect to the reverser R if
u(0) ∈ Fix(R). Any symmetric solution u automatically satisfies

u(−x) = Ru(x), x ∈ R.

We also assume that (6.3) is conservative, that is, it admits a conserved quantity or
first integral that is compatible with the reverser R.

Hypothesis (H2) (Conservative System). There exists a smooth function H :
R

2n × R → R such that Hu(u, μ)f(u, μ) = 0 for all (u, μ) ∈ R
2n × R,

and Hu(u, μ) = 0 only at a discrete set of points in R
2n for each fixed μ ∈

R. Furthermore, we assume that H is invariant under the reverser R, that is,
H(Ru, μ) = H(u, μ) for all (u, μ).
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If Hypothesis (H2) is met, then H(u(x), μ) = H(u(0), μ) along any solution
u(x) of (6.3). Hamiltonian systems given by

u′ = JHu(u, μ), J =

(
0 −1
1 0

)
, u ∈ R

n × R
n

are a particular example of conservative systems.
Throughout, we assume that zero is a hyperbolic equilibrium of (6.3) for all μ

near zero so that f(0, μ) = 0 and fu(0, μ) is hyperbolic for μ near zero. We also
assume that (6.3) admits a reversible homoclinic solution h0(x) to the origin for
μ = 0.

Hypothesis (H3). There is a solution h0(x) of (6.3) for μ = 0 with h0 �≡ 0
such that

1. limx→±∞ h0(x) = 0;
2. Th0(0)W

s(0) ∩ Th0(0)W
u(0) = Rh′

0(0);
3. h0(0) ∈ Fix(R).

Hypotheses (H1) and (H2) each imply that the spectrum of fu(0, μ) is symmetric
with respect to the imaginary axis; see, for instance, [5, 14]. We assume that the
leading eigenvalues of the origin are real.

Hypothesis (H4). The spectrum of the equilibrium u = 0 is given by

spec(fu(0, μ)) = σs ∪ {±λu(μ),±λuu(μ)} ∪ σu

where ±λu(μ) and ±λuu(μ) are simple eigenvalues with 0 < λu(μ) < λuu(μ). We
also assume that there is a constant λr with λr > λuu(μ) so that Reσs < −λr and
Reσu > λr for all μ near zero.

Hypothesis (H3) implies that there exists a smooth one-parameter family hμ(x)
of homoclinic solutions for μ close to zero that all satisfy Hypothesis (H3); see again
[5, 14], for instance. We assume that these homoclinic orbits undergo an orbit-flip
bifurcation at μ = 0:

Hypothesis (H5). We assume that h0(x) ∈W uu(0) for μ = 0 and that

1. lim
x→−∞ e−λuuxh0(x) = vuu �= 0;

2. lim
x→−∞ e−λux d

dμhμ(x)|μ=0 = vu �= 0.

It follows that vu and vuu are eigenvectors of fu(0, 0) that belong to the
eigenvalues λu(0) and λuu(0), respectively. The quantities

bj := 〈Huu(0, 0)vj ,Rvj〉 = Huu(0, 0)[vj,Rv j ], j = u, uu (6.4)
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will play an important role in our result. In four dimensions, the sign of the product
bubuu has the following geometric interpretation. First, using that H cannot change
along the stable or unstable manifolds of the origin, we can show that

bj = 〈Huu(0, 0)vj ,Rvj〉 = 〈Huu(0, 0)(vj + Rvj), (vj + Rv j)〉, j = u, uu.

Thus, bu measures how the energy changes if we move along the direction vu+Rvu,
which is the spine of the cone formed by the eigenvectors vu and Rvu belonging
to the eigenvalues λu and −λu, respectively, of fu(0, 0). In particular, bu > 0
indicates that the energy increases in this direction, while bu < 0 means the
energy decreases. The quantity buu has same interpretation for the cone in the
strong stable and unstable eigenspace. The product bubuu is therefore positive if
the energy increases or decreases in both cones, while bubuu < 0 means that the
energy increases in one cone and decreases in the other cone. In order to be able to
pass from hμ(L) to hμ(−L), we need to pass through the product of these cones
near the equilibrium. Since energy is conserved, this seems possible only if the zero
energy level set intersects these cones: this happens only if bubuu < 0. Thus, at
least in four dimensions, we expect N -pulses to exist only when bubuu is negative,
but not if bubuu is positive. Our main result confirms this intuition, not just for the
four-dimensional but also for the general case.

Theorem 6.1. Assume that Hypotheses (H1)–(H5) are met. For each N > 1, there
exist numbers μN > 0 and LN � 1 with the following properties.

1. If bubuu > 0, then (6.3) with |μ| < μN does not admit a homoclinic orbit that
makes N distinct loops near the primary orbit h0(x), where each return time is
larger than LN .

2. If bubuu < 0, then (6.3) has, for each μ �= 0 with |μ| < μN , a unique homoclinic
orbit that makes N distinct loops near the primary orbit h0(x), where each
return time is larger LN . This orbit is reversible, and the return times between
consecutive pulses are given, to leading order, by

L =
ln |μ|

λu − λuu
+ L∗

for some constant L∗ ∈ R.

In other words, N -pulses either do not emerge at all or else emerge to either
side of μ = 0. This is in contrast to many other homoclinic flip bifurcations, where
solutions bifurcate either sub- or super-critically. In particular,N -pulses bifurcate to
one side only at orbit-flip bifurcations in non-conservative reversible systems [12]
and in non-reversible conservative systems [13].
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6.3 Proof of Theorem 6.1

We apply Lin’s method [8] to prove the existence and nonexistence of the N -pulses
near a homoclinic flip bifurcation. This method is explained in detail in [12], see
also [5], and we shall follow here the same strategy and use the same notation as
in [12].

Before we can state the results from [8,10,12], we introduce additional notation.
Recall that we assumed that our system (6.3) is conservative. As shown for instance
in [14], this property implies that the functions

ψμ(x) = ∇uH(hμ(x), μ) (6.5)

are nontrivial bounded solutions to the adjoint variational equations

w′ = −fu(hμ(x), μ)∗w (6.6)

associated with the homoclinic orbits hμ(x). We can now state the results from
[8, 10, 12] that express conditions for the existence of N -pulses. Fix any natural
number N > 1, then the results in [8,10,12] state that there are numbers μ∗ and L∗
such that Eq. (6.3) with |μ| < μ∗ has an N -homoclinic orbit that is pointwise close
to the orbit of h0(x) and follows h0(x) N -times if, and only if, the equations

〈ψμ(−Lj−1), hμ(Lj−1)〉 − 〈ψμ(Lj), hμ(−Lj)〉+Rj(L, μ) = 0 (6.7)

with j = 1, . . . , N − 1 has a solution L = (Lj)j=1,...,N−1 with Lj ≥ L∗ and L0 =
∞. The numbers Lj are the return times of consecutive homoclinic loops to a fixed
section at h0(0) or, alternatively, the distances between consecutive pulses in the
corresponding multi-pulse. The functions Rj(L, μ) are higher-order terms, which
we will estimate below. In restricting the index j in (6.7) to the set j = 1, . . . , N−1,
we have used [12, Lemma 3.2] which asserts that the N th equation will be satisfied
automatically due to the energy constraint H provided the first N − 1 equations
are met.

Before stating the estimates for the remainder terms Rj(L, μ), we simplify (6.7)
further. Reversibility of hμ(x) and compatibility of R and H imply that

hμ(x) = Rhμ(−x)
ψμ(−x) = ∇uH(hμ(−x), μ) = ∇uH(Rhμ(x), μ) = R∗∇uH(hμ(x), μ) = R∗ψμ(x).

Thus, (6.7) can be written as

〈ψμ(Lj−1), hμ(−Lj−1)〉 − 〈ψμ(Lj), hμ(−Lj)〉 +Rj(L, μ) = 0, j = 1, . . . , N − 1.
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Using thatL0 =∞, we can recursively add the (j−1)th equation to the jth equation
to obtain the new equivalent system

〈ψμ(Lj), hμ(−Lj)〉 − Rj(L, μ)−Rj−1(L, μ) = 0, j = 1, . . . , N − 1

or, equivalently,

〈∇uH(hμ(Lj), μ), hμ(−Lj)〉 −Rj(L, μ)−Rj−1(L, μ) = 0, j = 1, . . . , N − 1
(6.8)

with R0 ≡ 0.
Next, we derive expressions for the scalar product that appears in (6.8). Since we

assumed that fu(0, μ) is hyperbolic, and therefore in particular invertible, it follows
easily from differentiating Hu(u, μ)f(u, μ) with respect to x that Hu(0, μ) = 0.
Using this property together with [12, (3.8)] and (6.5), we obtain the expansions

hμ(−x) = μe−λuxvu + e−λuuxvuu + vr(x)

+O
(
|μ|(|μ|e−λux + e−2λux + e−λuux) + e−2λuux

)
(6.9)

∇uH(hμ(x), μ) = Huu(0, μ)hμ(x) + O(|hμ(x)|2)
= Huu(0, μ)Rhμ(−x) + O(|hμ(−x)|2)

in the limit x→∞, where the function vr(x) lies in the eigenspace associated with
σu and decays faster than e−λrx as x → ∞. Using these expansions, recalling
the definition (6.4) of the quantities bj , and using the fact that Huu(0, 0)v is
an eigenvector of fu(0, 0)∗ belonging to the eigenvalue −λ whenever v is an
eigenvector of fu(0, 0) belonging to the eigenvalue λ, a straightforward calculation
shows that

〈∇uH(hμ(x), μ), hμ(−x)〉 = μ2bue−2λux + buue−2λuux (6.10)

+O
(
e−2λrx + |μ|[e−(2λu+λuu)x + e−2λuux]

+|μ|2[e−(λu+λuu)x + e−3λux] + |μ|3e−2λux
)

uniformly in μ near zero and x� 1. It remains to derive estimates on the remainder
terms Rj .

Lemma 6.1. Under the hypotheses of Theorem 6.1, the error termsRj(L, μ) satisfy

Rj(L, μ) = O

((
e−λuLj−1 + e−λuLj

)N−1∑
k=1

(
μ2e−2λuLk + e−2λuuLk

))
,

(6.11)

and the error terms can be differentiated.
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Proof. The estimates given in [12, Theorem 3] are not sufficient to get the statement
of the theorem. We therefore return to [10, §3.3.2] where the relevant expression for
the bifurcation equations are recorded on [10, top of page 99]. The integral terms
appearing in [10, top of page 99] can be estimated by

(
e−λuLj−1 + e−λuLj

)N−1∑
k=1

(
μ2e−2λuLk + e−2λuuLk

)

using [10, Lemma 3.20]. The scalar products appearing in [10, top of page 99] are
given by

〈ψμ(−Lj), hμ(Lj)〉+O

((
e−λuLj−1 + e−λuLj

)N−1∑
k=1

(
μ2e−2λuLk + e−2λuuLk

))

once [10, (3.42), (3.43) and (3.39)] are used, which completes the proof. ��
As in [10, 12], we replace the variables Lj and μ by the new variables

μ = ±rβ/2, ajr = e−2λuLj (6.12)

for aj > 0 and r ≥ 0, where the exponent β > 0 will be chosen later. We also
define

α =
λuu

λu
− 1 =

λuu − λu

λu
.

Substituting the expansion (6.10) and the estimates (6.11) into the bifurcation
equations (6.8) and rewrite them using (6.12), we arrive, after some tedious but
straightforward manipulations, at the system

ajr
1+βbu + a1+αj r1+αbuu +O

(
max

{
r1+α+γ , r1+β+γ

})
= 0 (6.13)

where j = 1, . . . , N − 1. Here, γ > 0 is a positive constant that depends only on
the quantities λu, λuu, and λr but not on L or μ. Observe that nontrivial solutions
of (6.13) can exist only in the scaling α = β for which (6.13) becomes

ajr
1+αbu + a1+αj r1+αbuu +O(r1+α+γ) = 0, j = 1, . . . , N − 1.

Dividing by r1+α, we obtain

aj
(
bu + aαj b

uu
)
+O(rγ) = 0, j = 1, . . . , N − 1. (6.14)

If bubuu > 0, it is not difficult to see that (6.14) cannot have any solutions other than
aj = 0 for all j which corresponds to the persisting homoclinic orbit hμ(x).
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Thus, let us assume from now on that bubuu < 0. In this case, (6.14) has the
positive solution

a∗
j =

(
− bu

buu

)1/α

> 0, j = 1, . . . , N − 1 (6.15)

at r = 0, and we can solve (6.14) near this solution for r > 0 by the implicit
function theorem.

This completes the existence part of Theorem 6.1. The obtained N -homoclinic
orbit is reversible since we could simply have solved the equations for j =
1, . . . , [N/2], with [x] being the largest integer smaller than x, and setting
aN−j := aj for j = 1, . . . , [N/2]. Applying [12, Lemma 3.1] then shows that
any solution to this truncated system corresponds to a reversible N -homoclinic
orbit of (6.3). Proceeding as above though, we find the same solution (6.15), which
therefore must be symmetric. Lastly, the uniqueness of the N -homoclinic orbits can
be proved as in [12, Lemma 3.6].

6.4 Application to a Fifth-Order Model for Water Waves

We now apply Theorem 6.1 to Eq. (6.1), now written as

ut + ∂x

(
2

15
uxxxx − buxx +

3

2
u2 +

1

2
u2x + uuxx

)
= 0, x ∈ R, (6.16)

which, as mentioned in the introduction, arises as a long-wave approximation to
the gravity-capillary water-wave problem [2]. Localized traveling waves u(x, t) =
u(x+ ct) of (6.16) satisfy the fourth-order equation

2

15
uiv − bu ′′ + cu +

3

2
u2 +

1

2
[u′]2 + uu′′ = 0. (6.17)

Note that (6.17) is reversible under the reflection x �→ −x. This equation is also
Hamiltonian, and hence conservative: indeed, as shown in [2], the variables

q1 = u, q2 = u′, p1 = − 2

15
u′′′ + bu′ − uu′, p2 =

2

15
u′′

make (6.17) Hamiltonian with respect to the energy

H = −1

2
q31 −

c

2
q21 + p1q2 − b

2
q22 +

15

4
p22 +

1

2
q1q

2
2

and the symplectic operator J

J : (q1, q2, p1, p2) �−→ (p1, p2,−q1,−q2).
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In these coordinates, the reverser R becomes

R : (q1, q2, p1, p2) �−→ (q1,−q2,−p1, p2),

and we have H ◦ R = H as required. In particular, Hypotheses (H1) and (H2)
are met.

As shown in [2, (4.3)], Eq. (6.17) has the explicit localized solution

u∗(x) = 3

(
b +

1

2

)
2

sech
(√

3(2b+ 1)
x

2

)
(6.18)

for b > − 1
2 , with wave speed given by

c = c∗(b) =
3

5
(2b+ 1)(b− 2). (6.19)

Linearizing (6.17) about u = 0, we find that its eigenvalues satisfy the relation

2

15
λ4 − bλ2 + c = 0. (6.20)

Substituting c = c∗(b) from (6.19) and computing the unstable spatial eigenvalues,
we find that they are given by

λu =
1

2

√
6(b− 2), λuu =

√
3(2b+ 1). (6.21)

In particular, the equilibrium u = 0 is hyperbolic when b > 2, and this will be the
region we shall focus on from now on. We are interested in applying Theorem 6.1
to the system (6.17), where the speed c, varied near c = c∗(b), plays the role of the
parameter μ that appears in Sect. 6.2. We now discuss the validity of the hypotheses
required for Theorem 6.1 to hold.

Comparing with (6.17), we see that the homoclinic orbit u∗ is indeed in an orbit-
flip configuration for all such b, and we see that Hypotheses (H3)(i)+(iii), (H4),
and (H5)(i) are satisfied.

Thus, it remains to discuss Hypotheses (H3)(ii) and (H5)(ii): we do not have an
analytical proof of their validity but describe now how they can be checked numer-
ically. Restated in a more convenient formulation, Hypothesis (H3)(ii) assumes that
u′∗(x) is the only bounded solution of the variational equation

L v :=
2

15
viv − bv ′′ + c∗(b)v + 3u∗(x)v + u′

∗(x)v
′ + u∗(x)v′′ + vu ′′

∗(x) = 0.

(6.22)

In other words, this hypothesis requires that the eigenvalue λpde = 0 of the operator
L posed on L2(R) is simple. Discretizing the derivatives in the operator L by
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Reλpde

b

(i) (ii)

L = 10.0

L = 7.5

b

log |eλuLv(L)|

Fig. 6.2 The numerical computations presented in panel (i) indicate that λpde = 0 is simple as an
eigenvalue of the linearization L about the pulse; this indicates that Hypothesis (H3)(ii) is met. In
panel (ii), we plot b versus eλ

uL d
dc
u∗(x; c)|c=c∗(b) for different values of L: this quantity is not

decreasing as L increases, thus indicating that Hypothesis (H5)(ii) is also satisfied. We refer to the
main text for details on how these computations were carried out

centered finite differences and calculating its spectrum numerically in MATLAB

using the sparse eigenvalue solver EIGS, we find that λpde = 0 is indeed simple
as an eigenvalue of L ; see Fig. 6.2a for the spectrum of L for values of b in the
range [2, 6]. These results therefore indicate that Hypothesis (H3)(ii) is met, so that
there is a family u∗(x; c) of pulses for c near c∗(b) for each fixed b > 2.

Next, Hypothesis (H5)(ii) assumes that the function

v(x) :=
d

dc
u∗(x; c)

∣∣∣
c=c∗(b)

does not decay faster than exponentially with rate λu as x → ∞; in other words,
eλ

uxv(x) should not converge to zero. Differentiating (6.17) with respect to c and
evaluating at c = c∗(b), we see that the function v(x) satisfies the system

L v + u∗(x) = 0.

We calculated this solution in AUTO on the interval [0, L] for with Neumann
boundary conditions on either end for different values of L and plotted eλ

uLv(L)
for some of the values of L in Fig. 6.2b. The results indicate that Hypothesis (H5)(ii)
is also met.

In summary, a combination of analytical verification and numerical computations
indicates that Theorem 6.1 applies to the fifth-order water-wave problem (6.17). It
remains to evaluate the constants

bj := 〈Huu(0, 0)vj ,Rvj〉, j = u, uu

from (6.4), where we can take vu and vuu to be any eigenvectors of the linearization
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JH uu(0) =

⎛
⎜⎜⎝

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
−c 0 0 0

0 −b 1 0

0 1 0 0

0 0 0 15
2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0

0 0 0 15
2

c 0 0 0

0 b −1 0

⎞
⎟⎟⎠

about u = 0 at c = c∗(b). The eigenvector v belonging to a real eigenvalue λ is
given by

v =

(
1, λ,

c

λ
,
2λ2

15

)
.

Thus, upon using (6.20), we obtain

〈Huu(0)v,Rv〉 = bλ2 − 2c,

and substituting the eigenvalues from (6.21), we obtain

bu = − 3

10
(3b+ 4)(b− 2), buu =

3

5
(3b+ 4)(2b+ 1).

Thus, buu is positive for b > − 1
2 , while bu is positive for − 1

2 < b < 2 and negative
for b > 2. In summary, we expect N -pulses to bifurcate from the primary pulse for
b > 2, while our theory does not apply to− 1

2 < b < 2 as the origin is not hyperbolic
in this parameter range.

The analytical predictions from Theorem 6.1 (communicated by me to the
authors of [2] prior to publication of [2]) were confirmed in the numerical
computations of 2-pulses presented in [2, Figures 23–24] below and above the
bifurcation point c = c∗(b).

6.5 Open Problems

One of the issues not addressed here, or elsewhere, is the stability of the multi-pulses
we found above under the time evolution of the fifth-order model (6.16)

ut + ∂x

(
2

15
uxxxx − buxx + cu +

3

2
u2 +

1

2
u2x + uuxx

)
= 0, x ∈ R,

(6.23)

now written in a comoving frame. This is a difficult question as the PDE (6.23) is
Hamiltonian when posed on appropriate function spaces since it can be written as
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ut = −∂xE′(u) (6.24)

where J := −∂x is skew-symmetric and

E(u) =
1

2

∫
R

(
2

15
u2xx + bu2x + cu2 + u3 − uu2x

)
dx.

It is worthwhile to point out that the L2-norm

N(u) =
1

2

∫
R

u(x)2 dx,

is invariant under the time evolution of (6.23). More generally, many other fifth-
order equations, such as the fifth-order Korteweg–de Vries equation

ut + ∂x
(
uxxxx − uxx + cu + u2

)
, x ∈ R, (6.25)

which are of the form (6.24) with the same conserved quantity N(u), are known to
exhibit solitary waves and multi-pulses: it is therefore natural, and indeed important
for applications, to investigate the temporal stability of their pulses and multi-pulses.

Before we discuss multi-pulses, we briefly review stability results for the
underlying primary solitary wave u∗(x) given in (6.18) of (6.23); recall that this
profile is in a flip configuration and gives rise to multi-pulses as discussed in the
previous section. Given the Hamiltonian nature of (6.23), it is natural to construct
stable stationary solutions of (6.23), which correspond to traveling waves with
speed c of the original equation (6.1), by seeking minimizers of the Hamiltonian
E. However, solitary waves usually do not minimize the functional E. Instead, they
can be thought of as constrained minimizers of Ẽ(u) = E(u) − cN (u) under the
constraintN(u) = const; in this formulation, the wave speed c arises as a Lagrange
multiplier. Typically, the energy will decrease as one moves along the family u∗(·; c)
of solitary waves with c varying, while b is kept fixed. As shown in [3, Theorem 2.1]
and the references therein, the pulse u∗(x) will be stable for (6.23) if the Hessian,
or second variation, E′′(u∗) = L of E has a simple eigenvalue at the origin and
only one negative eigenvalue and if furthermore d

dcN(u∗(·; c)) > 0. For (6.23),
the first hypothesis is checked numerically in Fig. 6.2(i), while Fig. 6.3 indicates the
second assumption is met as well. These numerical calculations therefore indicate
that the underlying primary pulses (6.18) are indeed stable, and it is natural to
discuss whether the multi-pulses emerging from them are stable, too.

First, we consider the Hessian LN of the PDE energy E at an N -pulse solution.
It follows from [11] that LN has N eigenvalues near the negative eigenvalue
of L1 and exactly N small eigenvalues near the origin. For (6.23), preliminary
computations that follow [11] indicate that N − 1 of these small eigenvalues are
negative, while the remaining small eigenvalue is at the origin, as dictated by
translation invariance of the energy; see Fig. 6.4. In particular, there are now 2N−1
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b

d
dc

u∗(x; c)2 dx

Fig. 6.3 Shown is the dependence of d
dc

∫
R
u∗(x; c)2 dx on the parameter b. This quantity is

computed numerically using AUTO

Fig. 6.4 Shown are the anticipated spectra of the Hessian of the energy E evaluated at the primary
pulse (left) and the 2-pulse (right)

direction along with the energy decreases, and the single known conserved quantity
N(u) cannot compensate for them when N > 1.

Next, consider the linearization JLN = −∂xLN of the PDE (6.24) about an
N -pulse. The anticipated spectra of JL and JLN are shown in Fig. 6.5 for N = 2.
Indeed, the results in [11], applied in an appropriate exponentially weighted norm to
the linearization JLN , show that JL will have 2N eigenvalues near the origin, and
two of these will reside at the origin due to translational symmetry. For a 2-pulse,
the remaining two eigenvalues may reside on the real or imaginary axis, or move
off the imaginary axis. In the latter case, there will be another pair of eigenvalues on
the other side of the imaginary axis as the spectrum of Hamiltonian linearizations is
symmetric with respect to reflections across the imaginary axis. The reason that the
two extra eigenvalues are not included in the count of 2N is that their eigenfunctions
are not bounded under the exponential weighted norm used to locate them. We claim
that the case shown in Fig. 6.5(iii) can actually not occur given that the spectrum of
L2 looks as shown in Fig. 6.4. Indeed, there should be three directions along which
the energy decreases near the 2-pulse: one of these directions corresponds again to
changing the speed of the 2-pulse, and the other two directions must therefore be
associated with the eigenspace of the two real nonzero eigenvalues; however, the
dynamics on this eigenspace is of saddle-type, and the energy therefore decreases
only along one and not both of these directions. More generally, we expect that an
expression of the form
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Fig. 6.5 Panel (i) shows the spectrum of the linearization of (6.24) about a stable primary pulse.
Panels (ii)–(iv) show the anticipated three possibilities for the spectrum of the PDE linearization
about a 2-pulse. The origin is an algebraically double eigenvalue in all panels

n(L )− 1 = kr + 2k−
i + 2kc

holds, where n(L ) is the number of strictly negative eigenvalues of L , while kr,
k−
i , and kc denote the number of pairs of real eigenvalues, pairs of purely imaginary

eigenvalues with negative Krein signature (meaning that L is negative definite
on the associated eigenspace), and quadruplets of genuinely complex eigenvalues,
respectively. Theorems of this type can be found, for instance, in [7] and [4],
though results of this type are not known for fifth-order KdV equations posed on
the real line as the symplectic operator ∂x is not bounded (and boundedness is
a crucial assumption needed in [7] and references therein). To conclude at least
spectral stability, it therefore remains to exclude the case shown in Fig. 6.5(iv).
This is difficult for the following reason: the computations arising from [11] show
that the quadruplet lies, to leading order, on the imaginary axis, and it is not clear
how a refined analysis could exclude the possibility of a very small yet nonzero
real part for those eigenvalues. Furthermore, even if the eigenvalues start out to
be purely imaginary, as shown in Fig. 6.5(ii), then these eigenvalues with negative
Krein signature can move off the imaginary axis as soon as they collide with
eigenvalues of positive Krein signature.1 Since the essential spectrum that occupies
the imaginary axis has positive Krein signature, there does not seem to be an
immediate structural reason that confines these eigenvalues to the imaginary axis.
I believe that the eigenvalues lie on the imaginary axis, and one possible way of
ascertaining that they do is to use the recent Krein-matrix formalism developed in
[6]: this formalism shows that there can be hidden structural reasons that prevent
eigenvalues from leaving the imaginary axis even when eigenvalues of opposite

1The Hessian of the energy restricted to the eigenspace associated with a quadruplet off the
imaginary axis must decrease and increase in two transverse planes; thus eigenvalues can leave
the imaginary axis only when the energy restricted to their combined eigenspace is indefinite, that
is, the eigenvalues have opposite Krein signatures; see [7] and references therein.
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Fig. 6.6 The left panel indicates the anticipated spectrum of JL2 in an appropriate exponential
weight. The right panel illustrates the anticipated flow on the four-dimensional center manifold,
with the two directions that correspond to translation and speed taken out. The energy is still
conserved so that the flow must consist of periodic orbits that surround the 2-pulse

Krein signature collide. Currently, the formalism in [6] applies only to problems
with discrete spectrum, and it remains an open problem whether it can be extended
to PDEs of the form (6.23).

Finally, I discuss briefly what type of nonlinear stability one might expect if
the 2-pulses turn out to be spectrally stable. Following [9], the idea is to work in an
appropriate exponentially weighted space in which the spectrum of JL2 will look as
shown in Fig. 6.6. It should then be possible to extend the analysis in [9] to prove the
existence of a local four-dimensional center manifold near the 2-pulse the contains
the two-parameter family of 2-pulses which is parametrized by their location and
speed. The other two directions consist of functions that resemble two copies of the
1-pulse whose distances and relative speeds differ by ΔL and Δc from those of the
2-pulse. This manifold will be exponentially attracting, and nearby solutions will
converge to it and asymptotically follow solutions on the center manifold. Since the
spectrum of the Hessian is negative definite on the eigenspace associated with the
pair of purely imaginary eigenvalues shown in Fig. 6.5(ii), it follows that the flow on
the nontrivial part of the center manifold consists of periodic orbits that surround the
2-pulses. Thus, the 2-pulses are expected to be nonlinearly stable in this setting,
though, in contrast to the 1-pulse setting of [9], they are not asymptotically stable in
the exponential weight.

Most of the discussion above is, of course, highly speculative, though I also
believe that some progress on the program outlined above can be made given the
recent advances on Krein-signature analyses.
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Chapter 7
Local Lyapunov Functions for Periodic
and Finite-Time ODEs

Peter Giesl and Sigurdur Hafstein

Dedicated to Jürgen Scheurle on the occasion of his 60th
birthday

Abstract Lyapunov functions for general systems are difficult to construct.
However, for autonomous linear systems with exponentially stable equilibrium,
there is a classical way to construct a global Lyapunov function by solving a
matrix equation. Consequently, the same function is a local Lyapunov function for
a nonlinear system.

In this paper, we generalise these results to time-periodic and, in particular,
finite-time systems with an exponentially attractive zero solution. We show the exis-
tence of local Lyapunov functions for nonlinear systems. For finite-time systems,
we consider a generalised notion of a Lyapunov function, which is not necessarily
continuously differentiable, but just locally Lipschitz continuous; the derivative is
then replaced by the Dini derivative.

7.1 Introduction

Lyapunov functions were introduced by Lyapunov in 1892 [22] to study stability
of equilibria or other invariant sets. They can also be used to study the basin
of attraction of attractors by their sublevel sets. For simplicity, we will, in the
following, focus on an equilibrium or the zero solution as an attractor. The main
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features of a Lyapunov function are that it (a) decreases (strictly) along solutions
and (b) attains its minimum on the attractor.

Lyapunov functions characterise certain attractivity properties and the basin of
attraction; the necessity, i.e. the existence of Lyapunov functions, has been shown
in so-called converse theorems. However, the construction of a Lyapunov function
still remains a challenging problem. Recently, several algorithmic methods have
been proposed to construct a Lyapunov function for a given system. Many of
these methods face difficulties near the equilibrium or zero solution, since here the
Lyapunov function does not decrease, but is constant.

Let us consider three modern construction methods, the so-called SOS method
(sum of squares) [23–25], where a Lyapunov function that is presentable as a
sum of squares of polynomials is constructed by convex optimisation, the CPA
(continuous and piecewise affine) method [10–12, 16], where a Lyapunov function
that is continuous and locally affine on each simplex of a suitable triangulation is
constructed by linear programming, and the RBF (radial basis functions) method
using radial basis functions to numerically solve the Zubov equation [7]. All
three methods can compute Lyapunov functions on compact neighbourhoods of
exponentially stable equilibria of autonomous systems and include the equilibrium
in the domain of the Lyapunov function computed, given that the equilibrium is
exponentially stable. These methods are, however, very different in nature. The SOS
method is basically a local method, where the domain of the Lyapunov function
can be enhanced by increasing the order of the polynomial Lyapunov function at
the cost of greater computational complexity. The CPA and RBF methods are not
local in nature and have no problems computing Lyapunov functions with large
domains, if an arbitrary small neighbourhood of the equilibrium is excluded [7,16],
respectively.

The problem of including the equilibrium at the origin in the domain of Lyapunov
functions for CPA and RBF for the nonlinear system ẋ = f(x) can be overcome
by studying the linearised problem ẋ = Ax, where A = Df (0). For such
a linear equation, there is a classical method to construct a Lyapunov function
V (x) = xTQx . This function is a local Lyapunov function for the nonlinear system
ẋ = f(x), i.e. V decreases along solutions only in a (small) neighbourhood of the
origin. Hence, the local Lyapunov function can be used to determine a local basin
of attraction and close the gap between the implications of the nonlocal Lyapunov
function and the local behaviour. Moreover, it can be combined with a global
construction method to construct a Lyapunov function which is a true Lyapunov
function even near the equilibrium. For the RBF method this was done in [8].

For the CPA method it was shown that a modified CPA method can always
compute a CPA Lyapunov function including the equilibrium in its domain, first
for planar systems [10, 11] and then for general n-dimensional systems [12, 13].
The key to the existence of a CPA Lyapunov function close to the equilibrium was
to use the Lyapunov function W (x) =

√
xTQx , which satisfies A‖x‖2 ≤ W (x)

and W ′(x) ≤ −B‖x‖2, and to interpolate this function on the edges of a suitably
fine triangulation around the origin.
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This paper generalises these ideas to time-periodic systems of the form ẋ =
f(t, x), where f(t, x) is a T -periodic function, i.e. f(t + T, x) = f(t, x), as well
as to finite-time systems of the form ẋ = f(t, x), considered over the finite-time
interval [0, T ]. The reason why we are enhancing the Lyapunov stability theory
in this direction is because the CPA method has some nice properties like only
assuming f ∈ C2 and is extendable to switched systems [17] and differential
inclusions [1] in a straightforward manner. Hence, the results of this paper will,
besides the theoretical insight into Lyapunov functions, provide the starting point to
develop a CPA construction method for Lyapunov functions for time-periodic and
finite-time systems on domains, which include the attractive solution.

Lyapunov functions for periodic systems are functions v(t, x) where the orbital
derivative v′(t, x) = ∇xv(t, x) · f(t, x) + vt(t, x) is negative. Such a Lyapunov
function can be considered to be T -periodic without loss of generality.

Finite-time systems consider a nonautonomous equation ẋ = f(t, x) over
a finite-time interval I = [0, T ]. Finite-time dynamics were first studied in
applications, in particular in fluid dynamics. The first mathematical theory was
introduced by George Haller, who defined a Lagrangian coherent structure [20],
i.e. time-evolving surfaces which can serve as boundaries of attraction areas. The
relation of Lagrangian coherent structures to finite-time Lyapunov exponents as
well as computational aspects are studied in [18, 19]. Furthermore, hyperbolicity
and stable/unstable cones, which adapt the classical, infinite-time concepts of
hyperbolicity and stable/unstable manifolds to the finite-time case, have been
studied in [2, 5, 6].

While in the definition of hyperbolicity, attractivity is supposed to occur at
every instance within the time domain under consideration, in [14, 26], a concept
of attraction has been introduced, which allows that trajectories near an attracting
solution move away from it, provided they return before the end of the time period.
In this paper, we will use this notion of attractivity, where the distance of a solution
x(t) to the zero solution at time T is smaller than the distance of the solution at
time 0, i.e. ‖x(T )‖ < ‖x(0)‖. Note that for finite-time stability, the chosen norm is
crucial, since different norms lead to different notions of attractivity; this is not the
case for autonomous or periodic systems with infinite time because all norms on R

n

are equivalent. Lyapunov functions for general nonautonomous systems have been
studied in [15, 21], whereas Lyapunov functions for finite-time systems have been
considered in [9, 14].

To characterise stability of zero solutions in periodic systems, one can use
Floquet theory. We will show that Floquet theory is also helpful in the finite-
time case; however, similar results to the periodic case can only be obtained under
conditions that are stronger than assuming the attractivity of the zero solution and
only for a specific type of vector norm. It turns out that in the general case a
finite-time Lyapunov function can be constructed by a different approach.

An autonomous system can be regarded as a periodic system, and a periodic
system can also be considered over a finite-time interval; hence, we can compare
the different notions of attractivity in these cases. It turns out that finite-time
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attractivity implies periodic-time attractivity, whereas the notions for autonomous
and periodic-time are equivalent.

The paper is structured in the following way: in Sects. 7.2–7.4 we study
autonomous, periodic, and finite-time systems, respectively. In each section, we
start with linear systems, characterise exponential stability of the zero solution
(equilibrium in the autonomous case), and show the existence of global Lyapunov
functions. Furthermore, we consider nonlinear systems and prove similar results for
local Lyapunov functions. While the results in the autonomous case are classical,
parts of the periodic case are new. The main advance of the paper is the study of
the finite-time case. In Sect. 7.5, we compare the notion of attractivity in periodic
systems with the same system regarded as a finite-time system, and then we compare
all three notions for an autonomous system. We end the paper with conclusions and
an outlook for further work and applications of the results.

Notations

Definition 7.1. Consider a matrix A ∈ C
n×n.

1. A is called Hurwitz if all its eigenvalues have a strictly negative real part.
2. A is called Hermitian if A is equal to its conjugate transpose A∗ := AT .
3. A is called positive definite if all its eigenvalues are real-valued and strictly

positive.

Note that a Hermitian matrix A has real eigenvalues and vTAv is a real number
for all v ∈ R

n.
We denote by ‖ · ‖2 : Cn → R the Euclidean norm ‖v‖2 =

√〈v, v〉, where
〈v, w〉 = vTw, and by ‖ · ‖ : Cn → R an arbitrary vector norm on C

n. As usual, for
A ∈ C

n×n, we denote by ‖A‖ the induced matrix norm

‖A‖ := max
x∈Cn,‖x‖=1

‖Ax‖,

so that ‖Ax‖ ≤ ‖A‖‖x‖ holds for all x ∈ C
n. For x0 ∈ R

n and η > 0, we define
the open ball with respect to a norm on R

n byBη(x0) := {x ∈ Rn | ‖x−x0‖ < η}.

7.2 Autonomous System

The section about autonomous systems does not contain any new results, but
collects classical results that are needed for the periodic and finite-time case. It is
included for the convenience of the reader, and for comparison with the other two
cases.
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Lemma 7.1. Let C ∈ C
n×n be a Hermitian, positive definite matrix, and L ∈

C
n×n be Hurwitz. Then there is a unique solutionQ ∈ C

n×n of the matrix equation

QL+ L∗Q = −C

and Q is Hermitian and positive definite. If C and L are real-valued, then so is Q.

The proof is similar to the real case, cf. [21, Theorem 4.6].

Definition 7.2. A (strict) local Lyapunov function for the equilibrium at the origin
of system ẋ = f(x), where f ∈ C1(Rn,Rn) with f(0) = 0 is a function V ∈
C(U,R) ∩ C1(U \ {0},R), where U ⊂ R

n is an open neighbourhood of 0, which
satisfies

1. V (x) > 0 for all x ∈ U \ {0} and V (0) = 0 and
2. V ′(x) < 0 for all x ∈ U \ {0}
where the orbital derivative is defined by V ′(x) = ∇V (x) · f(x). If U = R

n, then
the Lyapunov function is called global.

Note that the condition on differentiability of V can be dropped if the orbital
derivative is replaced by the Dini derivative; this will be considered in Sect. 7.4.1.
A Lyapunov function gives important information about the stability and the basin
of attraction of the equilibrium 0.

Theorem 7.1. Let V be a local Lyapunov function. Then the equilibrium 0 is
asymptotically stable and any compact set V −1([0, c]) with c > 0, contained in U ,
is a subset of the basin of attraction of 0.

Theorem 7.2. Consider the autonomous, linear system

ẋ = Ax , where A ∈ R
n×n. (7.1)

Every fundamental matrix solution Φ(t) of (7.1) can be expressed in the form

Φ(t) = etAP0

where P0 ∈ R
n×n and the zero solution of (7.1) is globally exponentially stable

if and only if A is Hurwitz.
Let C ∈ R

n×n be a symmetric, positive definite matrix and Q ∈ R
n×n be the

solution of the matrix equation QA + ATQ = −C given by Lemma 7.1; note that
this implies that Q is also symmetric and positive definite.

Then V : Rn → R, V (x) := xTQx , and W : Rn → R, W (x) :=
√
V (x) =√

xTQx , are both global Lyapunov functions for (7.1), satisfying

a1‖x‖22 ≤ V (x) ≤ b1‖x‖22, V ′(x) ≤ −c1‖x‖22,
a2‖x‖2 ≤ W (x) ≤ b2‖x‖2, W ′(x) ≤ −c2‖x‖2.

for all x ∈ R
n \ {0} with constants a1, b1, c1, a2, b2, c2 > 0.
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In the nonlinear case, we have the following theorem, cf. [21, Corollary 4.3,
Proof of Theorem 4.7].

Theorem 7.3. Consider the autonomous, nonlinear system

ẋ = f(x) (7.2)

with f ∈ C1(Rn,Rn), f(0) = 0 and A := Df (0).
The equilibrium 0 of (7.2) is locally exponentially stable if and only if the

equilibrium 0 of (7.1) is globally exponentially stable, i.e. by Theorem 7.2 if A is
Hurwitz. The functions V and W from Theorem 7.2 are local Lyapunov functions
for (7.2) in some open neighbourhoodU of 0 and satisfy the same inequalities as in
Theorem 7.2.

7.3 Periodic Time

Most results of this section are classical; however, the explicit form of the Lyapunov
functions in Theorems 7.6 and 7.7 using Floquet theory is, to the best of our
knowledge, new. We start with a fundamental lemma, concerning the matrix
logarithm, cf. [3, Theorem 2.47].

Lemma 7.2. Let M ∈ R
n×n be invertible. Then the matrix equation

eX = M (7.3)

has a solution X ∈ C
n×n.

It is important to notice that, in general, even if the matrix M is real-valued,
the matrix X can be complex-valued. Moreover, the solution X is not unique. A
characterisation of all real-valued matrices M for which the matrix equation (7.3)
has a real solution is given in [4].

7.3.1 Linear Systems

The classical Floquet Theorem gives a representation of the fundamental solution in
terms of complex matrices, even if A(t) is real, cf. [3, Theorem 2.48].

Theorem 7.4. Consider the T -periodic system

ẋ = A(t)x (7.4)

where A(t) ∈ C(R,Rn×n) is T -periodic.
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Then every fundamental matrix solution Φ(t) of (7.4) can be expressed in the
form

Φ(t) = P (t)etL (7.5)

where P (t) is continuously differentiable and T -periodic,P (t) ∈ C
n×n is invertible

for all t ∈ R and L ∈ C
n×n.

Definition 7.3. A T -periodic (strict) local Lyapunov function for the zero solution
of system ẋ = f(t, x), where f ∈ C1(R × R

n,Rn) with f(t, 0) = 0 for all t ∈ R

and f(t + T, x) = f(t, x) for all (t, x) ∈ R × R
n, is a function V ∈ C(R ×

U,R)∩C1(R×U \ {0},R), where U ⊂ R
n is an open neighbourhood of 0, which

satisfies

1. V (t+ T, x) = V (t, x) for all x ∈ U and t ∈ R, i.e. V is T -periodic,
2. V (t, x) > 0 for all x ∈ U \ {0} and V (t, 0) = 0 for all t ∈ R and
3. V ′(t, x) < 0 for all x ∈ U \ {0} for all t ∈ R

where the orbital derivative is defined by

V ′(t, x) = ∇xV (t, x) · f(t, x) + Vt(t, x).

If U = R
n, then the Lyapunov function is called global.

Theorem 7.5. Let V be a T -periodic local Lyapunov function. Then the zero
solution is asymptotically stable and any compact set V −1([0, c])

∣∣
[0,T ]×Rn with

c > 0, contained in [0, T ] × U , is a subset of the basin of attraction of the zero
solution.

In the following theorem we construct a T -periodic Lyapunov function for
the linear system (7.4). Note that this Lyapunov function is the same as the
one constructed in [21, Theorem 4.12] for the general nonautonomous case. In
the periodic case, to which we restrict ourselves here, however, one can drop some
assumptions on the uniformity with respect to t and, moreover, we can give a more
explicit expression for V , using Floquet theory.

Theorem 7.6. Consider the T -periodic linear equation

ẋ = A(t)x (7.6)

where A(t) ∈ C(R,Rn×n) is T -periodic.
Then the zero solution of (7.6) is globally exponentially stable if and only if L is

Hurwitz, where L is defined in Theorem 7.4.
Let C ∈ C

n×n be a Hermitian, positive definite matrix and Q ∈ C
n×n be the

solution of the matrix equation QL+L∗Q = −C, see Lemma 7.1; note that also Q
is Hermitian and positive definite.
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Then V,W : R× R
n → R,

V (t, x) := xT (P−1(t))∗QP−1(t)x

W (t, x) :=
√
V (t, x) =

√
xT (P−1(t))∗QP−1(t)x

are both T -periodic global Lyapunov functions for (7.6), satisfying

a1‖x‖22 ≤ V (t, x) ≤ b1‖x‖22, V ′(t, x) ≤ −c1‖x‖22,
a2‖x‖2 ≤ W (t, x) ≤ b2‖x‖2, W ′(t, x) ≤ −c2‖x‖2,

for all x ∈ R
n \ {0} and t ∈ R with constants a1, b1, c1, a2, b2, c2 > 0.

Proof. Using the transformation y = P−1(t)x, the system is transformed into
the autonomous system ẏ = Ly ; the characterisation of exponential stability now
follows from Theorem 7.2.

Using Theorem 7.4 we express the fundamental matrix solution with initial
condition Φ(0) = I by

Φ(t) = P (t)etL

where P (0) = P (T ) = I , P (t+ T ) = P (t) and P (t), L ∈ C
n×n. Note that since

Φ(t) is a solution, we have

Φ̇(t) = A(t)Φ(t) = A(t)P (t)etL

On the other hand,

Φ̇(t) = Ṗ (t)etL + P (t)LetL,

which yields Ṗ (t) = −P (t)L+A(t)P (t).

Moreover, since 0 = d
dt

(
P (t)P−1(t)

)
= Ṗ (t)P−1(t) + P (t)Ṗ−1(t), we have

Ṗ−1(t) = −P−1(t)Ṗ (t)P−1(t) = LP−1(t)− P−1(t)A(t). (7.7)

Note that

V (t, x) = xT (P−1(t))∗QP−1(t)x

is T -periodic and real-valued since (P−1(t))∗QP−1(t) is Hermitian. Moreover,
since Q is positive definite and P−1(t) is non-singular and T -periodic, there are
constants a1, b1 > 0 such that a1‖x‖22 ≤ V (t, x) ≤ b1‖x‖22 for all x ∈ R

n and
t ∈ R.
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We show the statement for V ′(t, x). Using (7.7), we have

V ′(t, x) = xT (A(t))T (P−1(t))∗QP−1(t)x+ xT (Ṗ−1(t))∗QP−1(t)x

+xT (P−1(t))∗QṖ−1(t)x+ xT (P−1(t))∗QP−1(t)A(t)x

= xT [(A(t))T (P−1(t))∗ +(P−1(t))∗L∗− (A(t))∗(P−1(t))∗]QP−1(t)x

+xT (P−1(t))∗Q[LP−1(t)− P−1(t)A(t) + P−1(t)A(t)]x

= xT (P−1(t))∗[L∗Q+QL]P−1(t)x

= −(P−1(t)x)∗CP−1(t)x

≤ −c1‖x‖22
for a suitable c1 > 0, since C is positive definite. For the function W , we use

W ′(t, x) =
1

2W (t, x)
V ′(t, x) ≤ 1

2
√
b1‖x‖2

(−c1‖x‖22) = − c1

2
√
b1
‖x‖2. ��

7.3.2 Nonlinear Systems

Theorem 7.7. Consider the T -periodic nonlinear equation

ẋ = f(t, x) (7.8)

where f ∈ C1(R × R
n,Rn), f(t + T, x) = f(t, x), f(t, 0) = 0 for all t ∈ R and

A(t) := Dxf(t, 0).
Consider (7.6) with the same A(t). The zero solution of (7.8) is locally exponen-

tially stable if and only if the zero solution of (7.6) is globally exponentially stable,
i.e. L is Hurwitz, where L is defined in Theorem 7.6.

The functions V and W defined in Theorem 7.6 are local Lyapunov functions
for (7.8) and satisfy the same inequalities as in Theorem 7.6.

Proof. The zero solution is exponentially stable if and only if L is Hurwitz, cf.
e.g. [21, Theorem 4.15]—note that the assumptions of that theorem, which holds
in the more general nonautonomous case, can be relaxed, since we are focussing
on the periodic case. In particular, Dxf(t, x) is bounded uniformly in t, since it is
periodic in t, and the Lipschitz continuity, which was used in Taylor’s Theorem,
can be dropped by the following argument: Using Taylor’s Theorem, we can write
f(t, x) = A(t)x + ψ(t, x), where ψ(t, x) = (Dxf(t, θx)−Dxf(t, 0))x by the
mean value theorem, where θ ∈ [0, 1], i.e. ψ(t, x) = o(‖x‖) as x → 0, uniformly
in t, since Dxf(t, x) is continuous and T -periodic. Hence, for all ε > 0 there is a
r > 0 such that ‖ψ(t, x)‖2 ≤ ε‖x‖2 holds for all ‖x‖2 < r and all t ∈ R.
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We show that V is a local Lyapunov function, fulfilling the inequalities. Note
that the inequalities on V (t, x) are clear, by Theorem 7.6, so that we only have to
prove V ′(t, x) ≤ −c1‖x‖22; note that in the nonlinear case, V ′(t, x) is different to
the linear case.

Since C is Hermitian and positive definite, there is a smallest eigen-
value λ > 0 of C such that yTCy ≥ λ‖y‖22 for all y ∈ R

n. Set
ε := λ

4‖Q‖2 maxt∈[0,T ](‖P−1(t)‖2‖P (t)‖2)
and choose r > 0 as above such that

‖ψ(t, x)‖2 ≤ ε‖x‖2 holds for all ‖x‖2 < r and all t ∈ R. Then, similar to the
theorem in the linear case, we have, using (7.7)

V ′(t, x) = xT (A(t))T (P−1(t))∗QP−1(t)x+ ψ(t, x)T (P−1(t))∗QP−1(t)x

+xT (Ṗ−1(t))∗QP−1(t)x+ xT (P−1(t))∗QṖ−1(t)x

+xT (P−1(t))∗QP−1(t)A(t)x + xT (P−1(t))∗QP−1(t)ψ(t, x)

≤ xT [(A(t))T (P−1(t))∗ +(P−1(t))∗L∗− (A(t))∗(P−1(t))∗]QP−1(t)x

+xT (P−1(t))∗Q[LP−1(t)− P−1(t)A(t) + P−1(t)A(t)]x

+2‖Q‖2‖P−1(t)‖2‖P−1(t)x‖2‖ψ(t, x)‖2
= xT (P−1(t))∗[L∗Q+QL]P−1(t)x

+2ε‖Q‖2‖P−1(t)‖2‖P−1(t)x‖2‖x‖2
= −(P−1(t)x)∗CP−1(t)x

+2ε‖Q‖2 max
t∈[0,T ]

(‖P−1(t)‖2‖P (t)‖2)‖P−1(t)x‖22

≤
(
−λ+

λ

2

)
‖P−1(t)x‖22

≤ −c1‖x‖22
for all ‖x‖2 < r with a suitable c1 > 0. The argumentation for W is as in
Theorem 7.6. ��

7.4 Finite Time

For this section, we fix an arbitrary norm ‖ · ‖ on R
n. We consider the nonau-

tonomous ODE

ẋ = f(t, x) (7.9)

where f ∈ C1([0, T ]× R
n,Rn) over the finite-time interval I = [0, T ]. We denote

the solution of (7.9) with initial value x(t0) = x0 by ϕ(t, t0, x0) := x(t) and
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assume that it exists in the whole interval [0, T ]. This is e.g. the case if Dxf(t, x)
is bounded. We will later assume that μ(t) = 0 is a solution, i.e. f(t, 0) = 0 for all
t ∈ I. We use the following definition of finite-time attractivity from [14, 26].

Definition 7.4 (Finite-Time Attractivity, Domain of Attraction). Let μ : I

→ R
n be a solution of (7.9).

1. μ is called attractive on I with respect to the norm ‖ · ‖ if there exists an η > 0
such that

‖ϕ(T, 0, ξ)− μ(T )‖ < ‖ξ − μ(0)‖ ∀ξ ∈ Bη(μ(0)) \ {μ(0)} .

2. μ is called exponentially attractive on I with respect to the norm ‖ · ‖ if

lim sup
η↘0

1

η
sup

ξ∈Bη(0)

(‖ϕ (T, 0, ξ)− μ(T )‖) < 1 ,

and the negative number

1

T
ln

(
lim sup
η↘0

1

η
sup

ξ∈Bη(0)

(‖ϕ (T, 0, ξ)− μ(T )‖)
)

is called rate of exponential attraction.
3. Let μ : I → R

n be an attractive solution on I. Then a connected and invariant
nonautonomous (i.e. Gμ(t) := {x ∈ R

n | (t, x) ∈ Gμ} is nonempty for all
t ∈ I) set Gμ ⊂ I× R

n is called domain of attraction of μ if

‖ϕ(T, 0, x)− μ(T )‖ < ‖x− μ(0)‖ holds for all x ∈ Gμ(0) \ {μ(0)} ,

and Gμ is the maximal set containing graph(μ) with this property.

In order to study the local properties of linear and nonlinear systems, we can use
a Floquet-like theorem to define a local Lyapunov function. The following theorem
is similar to the classical Floquet Theorem, but does not requireA(t) to be periodic.
Thus, P (t) is not periodic either, but we can still show that P (0) = P (T ) holds.

Theorem 7.8. Consider the nonautonomous linear system

ẋ = A(t)x (7.10)

where A ∈ C(I,Rn×n). The principal solution, i.e. satisfying Φ(0) = I , of (7.10)
can be expressed in the form

Φ(t) = P (t)etL

where P (t) is continuously differentiable, P (t) ∈ C
n×n is invertible for all t ∈ I,

P (0) = P (T ) = I and L ∈ C
n×n.
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Proof. Define M := Φ−1(0)Φ(T ). By Lemma 7.2, there is a matrix L ∈ C
n×n

such that eTL = M . With P (t) := Φ(t)e−tL we have

P (T ) = Φ(T )e−TL = Φ(T )M−1 = Φ(0) = P (0) = I

using Φ(0) = I , and P (t) fulfills all the stated properties. ��
We will first reprove the characterisation of finite-time exponential stability

which was given in [14] for the Euclidean norm, now for a general norm ‖ · ‖.
Theorem 7.9. Denote by FT : Rn → R

n the time–T map of (7.9), which is defined
by FT (x) := ϕ(T, 0, x). Moreover, let μ : I→ R

n, μ(t) = 0 be a solution of (7.9).
Then μ is exponentially attractive on I if and only if ‖DFT (0)‖ < 1, where DFT is
the Jacobian of FT with respect to x. The rate of exponential attraction is given by

1

T
ln ‖DFT (0)‖.

If the principal solution Φ(t) of the linearised equation

ẋ = Dxf(t, 0)x

with Φ(0) = I is expressed Φ(t) = P (t)etL as in Theorem 7.8, we have DFT

(0) = eTL.
In particular the zero solution μ is exponentially attractive on I if and only

if ‖eTL‖ < 1.

Proof. We consider μ(t) = 0 and the solution ϕ(t, 0, w) starting in w ∈ R
n. Using

Taylor’s Theorem, we obtain

ϕ(T, 0, w)− 0 = FT (w) − FT (0) = DFT (0)w + ψ(w),

where lim‖w‖→0
ψ(w)
‖w‖ = 0. Thus,

lim sup
‖w‖→0

‖ϕ(T, 0, w)‖
‖w‖ = lim sup

‖w‖→0

‖DFT (0)w‖
‖w‖ = ‖DFT (0)‖ . (7.11)

Now
1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ = sup
‖w‖<η

‖ϕ(T, 0, w)‖
‖w‖

‖w‖
η

. (7.12)

From (7.12) we can conclude

1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ ≤ sup
‖w‖<η

‖ϕ(T, 0, w)‖
‖w‖

which implies with (7.11) that
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lim sup
η↘0

1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ ≤ lim sup
‖w‖→0

‖ϕ(T, 0, w)‖
‖w‖ = ‖DFT (0)‖ .

Furthermore, (7.12) and (7.11) yield for all fixed θ ∈ (0, 1)

1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ ≥ sup
‖w‖=θη

‖ϕ(T, 0, w)‖
‖w‖ θ

and

lim sup
η↘0

1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ ≥ lim sup
‖w‖→0

‖ϕ(T, 0, w)‖
‖w‖ θ = θ‖DFT (0)‖.

Since this inequality holds for all θ ∈ (0, 1), we have

lim sup
η↘0

1

η
sup

ξ∈Bη(0)

‖ϕ (T, 0, ξ)‖ ≥ ‖DFT (0)‖.

This shows lim supη↘0
1
η supξ∈Bη(0) ‖ϕ (T, 0, ξ)‖ = ‖DFT (0)‖.

Furthermore, we can relate DFT to the solution of the linearised equation.
Denote by Ft : R

n → R
n the time-t map of (7.9), which is defined by Ft(x) :=

ϕ(t, 0, x). Then Φ(t, x) = DF t(x) solves the first variation equation

Φ̇(t, x) = Dxf(t, ϕ(t, 0, x))Φ(t, x).

In particular, as μ(t) = 0 is a solution of (7.9), we obtain

Φ̇(t, 0) = Dxf(t, 0)Φ(t, 0) = A(t)Φ(t, 0)

with solution Φ(t, 0) = P (t)etL. Thus, DFT (0) = Φ(T, 0) = P (T )eTL = eTL.
Hence, the zero solution of the nonlinear equation is exponentially stable if and only
if ‖eTL‖ < 1. ��

7.4.1 Dini Derivative

Due to the general norm ‖·‖, the assumption that a Lyapunov function V (t, x) is C1

is too restrictive. For example, for the system ẋ = −x, x ∈ R and ‖x‖ := |x|, the
function V (t, x) = |x| is not C1 at 0, but it is a Lyapunov function in the sense that
it is decreasing along trajectories. We will give a precise definition in Definition 7.5.
We only assume that a Lyapunov function is continuous and locally Lipschitz in x,
and we have to replace the orbital derivative by a weaker notion, the Dini derivative.
Note that this can also be done in the autonomous and periodic case.
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We define a finite-time Lyapunov function. The definition is similar to the
periodic case, but V is fixed at times 0 and T by the norm.

Definition 7.5. A finite-time (strict) local Lyapunov function for the zero solution
of the system (7.9) is a continuous function V : I× U → R

n, where U ⊂ R
n is an

open neighbourhood of 0, which satisfies the following properties:

1. V (t, x) is locally Lipschitz in x.
2. V (0, x) = ‖x‖p and V (T, x) = ‖x‖p for all x ∈ U , where p ≥ 1.
3. V (t, x) > 0 for all x ∈ U \ {0} and V (t, 0) = 0 for all t ∈ I.
4. V +(t, x) < 0 for all x ∈ U \ {0} and all t ∈ I \ {T } = [0, T ).

Here the orbital derivative is defined by the Dini derivative

V +(t, x) = lim sup
h↘0

V (t+ h, x+ h · f(t, x))− V (t, x)

h
. (7.13)

If U = R
n, then the function is a global finite-time Lyapunov function.

Remark 7.1. Locally Lipschitz in x in 1. is defined as follows: for every compact
C ⊂ I×U there exists a constant L > 0, such that |V (t, x)−V (t, y)| ≤ L‖x− y‖
for all (t, x), (t, y) ∈ C. It is needed to define the orbital derivative using f(t, x)
in 4. by (7.13) as shown on page 48 in [17]. Without this property

V +(t, x) = lim sup
h↘0

V (t+ h, ϕ(t+ h, t, x))− V (t, x)

h

is not necessarily true.

Remark 7.2. If V is differentiable along orbits, i.e. the limit

lim
h→0

V (t+ h, ϕ(t+ h, t, x))− V (t, x)

h

exists for all relevant t and x, then clearly V +(t, x) is equal to this limit. Note,
however, that this does not imply that ∇xV (t, x) or Vt(t, x) exist, e.g. consider the
example at the beginning of Sect. 7.4.1.

Theorem 7.10. Let V be a finite-time local Lyapunov function for the system (7.9).
Then the zero solution of (7.9) is attractive and any compact set V −1([0, C]) with
C > 0, contained in I × U , is a subset of the domain of attraction of the zero
solution.

Let V (t, x) additionally fulfill: There exist constants b ≥ 1 and c > 0 such that

1. V (t, x) ≤ b‖x‖p for all t ∈ I and all x ∈ U , where p is the same as in
Definition 7.5.

2. V +(t, x) ≤ −c‖x‖p for all t ∈ [0, T ) = I \ {T } and all x ∈ U .
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Then the zero solution of (7.9) is exponentially attractive with rate of exponential
attraction ≤ −c/(bp).
Proof. Since x(t) = 0 is a solution, there is an open neighbourhood U ′ ⊂ U of 0
such that x ∈ U ′ implies ϕ(t, 0, x) ∈ U for all t ∈ I.

Because V is locally Lipschitz it follows by [17, p. 48 and Corollary 3.10] that
t �→ V (t, ϕ(t, 0, x)) is a strictly decreasing function on I, if x �= 0. Hence,

‖x‖p = V (0, x) > V (T, ϕ(T, 0, x)) = ‖ϕ(T, 0, x)‖p

for all x ∈ U ′ \ {0} and the zero solution is attractive.
The same argument shows that V −1([0, C]), if it is contained in I × U , is

positively invariant. Now let (t0, x0) ∈ V −1([0, C]) with x0 �= 0. Then either the
trajectory ϕ(t, t0, x0) stays in V −1([0, C]) for all t ∈ I, or there is a τ ∈ I such that
ϕ(τ, t0, x0) �∈ V −1([0, C]). In the first case, (t0, x0) is in the domain of attraction
by the fact that t �→ V (t, ϕ(t, t0, x0)) is a strictly decreasing function. In the second
case, note that ϕ(τ, t0, x0) �∈ V −1([0, C]) implies that ϕ(0, t0, x0) �∈ V −1([0, C]),
since V −1([0, C]) is positively invariant. Again, by the positive invariance, we have
ϕ(T, t0, x0) ∈ V −1([0, C]). Hence,

‖ϕ(T, t0, x0)‖p = V (T, ϕ(T, t0, x0)) ≤ C < V (0, ϕ(0, t0, x0)) = ‖ϕ(0, t0, x0)‖p

which shows that also in this case (t0, x0) lies in the domain of attraction. This
proves the first claim of the theorem.

Now, assume that 1. and 2. are also fulfilled. Then V fulfills the Dini differential
inequality

V +(t, ϕ(t, 0, x)) ≤ −c
b
V (t, ϕ(t, 0, x))

and by taking Lemma 6.10 in [17] into consideration, we get V (T, ϕ(T, 0, x)) ≤
V (0, x)e−cT/b and thus ‖ϕ(T, 0, x)‖p ≤ ‖x‖pe−cT/b so for x �= 0

‖ϕ(T, 0, x)‖
‖x‖ ≤ e−cT/(bp) < 1

and by Definition 7.4, 2., the zero solution is exponentially attractive with rate of
exponential attraction ≤ −c/(bp). ��
Remark 7.3. Note the obvious error in the statement of Lemma 6.10 in [17]. Of
course LC is a local Lipschitz constant for s and not y as should be clear from the
text and from the proof. y does not have to be locally Lipschitz. This is an important
point for otherwise V (t, x) would have to be locally Lipschitz in (t, x) and not
only x.
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Note that the Dini derivative does in general not obey the chain-rule. To see this
consider e.g. f(x) = |x|, g(x) = −x and h(x) = (f ◦ g)(x) = | − x|. Then

h+(0) = lim sup
η↘0

| − η| − |0|
η

= 1 but

f+(g(0)) · g+(0) = lim sup
η↘0

| − 0 + η| − | − 0|
η

· lim sup
η↘0

−η − (−0)

η
= 1 · (−1) = −1.

However, for our needs the following simple lemma suffices.

Lemma 7.3. Let f : R → R be a function such that lim suph↘0 f(h) = S < 0.
Then there is a τ > 0 such that f(x) < 0 for all x ∈ (0, τ). If g : R → R is a
further function such that limh↘0 g(h) = L �= 0, then lim suph↘0 f(h)g(h) = SL.

Proof. Assume there is no such τ > 0. Then

lim sup
h↘0

f(h) = lim
h↘0

[sup{f(x) | x ∈ (0, h)}] ≥ lim
h↘0

0 = 0,

which is a contradiction to lim suph↘0 f(h) = S < 0.
Now assume L > 0 and let 0 < ε < L/2 be arbitrary. Then, for all τ > h > 0

small enough, we have 0 < L− ε < g(h) < L+ ε, i.e. (L+ ε)f(h) ≤ g(h)f(h) ≤
(L− ε)f(h), and therefore

(L + ε)S ≤ lim sup
h↘0

f(h)g(h) ≤ (L− ε)S,

i.e. lim suph↘0 f(h)g(h) = SL by lack of alternatives. The case L < 0 follows
similarly. ��

7.4.2 Linear Systems

Let us first focus on the linear case, i.e.

ẋ = A(t)x. (7.14)

We can use the construction method in [14], which uses linear interpolation along
a trajectory between the values at times 0 and T , to construct finite-time Lyapunov
functions in the following two theorems.

Theorem 7.11. Let the zero solution of

ẋ = A(t)x, (7.15)

where A ∈ C(I,Rn×n), be exponentially stable.
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Then there exists a finite-time Lyapunov function which satisfies

a1‖x‖2 ≤ V (t, x) ≤ b1‖x‖2, V +(t, x) ≤ −c1‖x‖2 (7.16)

for all x ∈ R
n and all t ∈ I \ {T }, where a1, b1, c1 > 0.

Proof. We define V (t, ϕ(t, 0, x)) by linear interpolation of the values at time T
and 0. Note that the principal fundamental solution Φ(t) (with Φ(0) = I) of (7.15)
can be, by Theorem 7.8, expressed in the form Φ(t) = P (t)etL, where P (t) is con-
tinuously differentiable, P (t) ∈ C

n×n is invertible for all t ∈ I, P (0) = P (T ) = I
and L ∈ C

n×n. Hence, ϕ(t1, t2, x) = Φ(t1)Φ
−1(t2)x = P (t1)e

L(t1−t2)P−1(t2)x.
We define

V (t, x) := [‖ϕ(T, t, x)‖2 − ‖ϕ(0, t, x)‖2] t
T

+ ‖ϕ(0, t, x)‖2 (7.17)

=
t

T
‖ϕ(T, t, x)‖2 +

(
1− t

T

)
‖ϕ(0, t, x)‖2

=
t

T
‖eTLΦ−1(t)x‖2 +

(
1− t

T

)
‖Φ−1(t)x‖2 (7.18)

It is easy to see that V (0, x) = V (T, x) = ‖x‖2. Since eTL �= 0, Φ−1(t) is non-
singular and continuous for t ∈ I and the norm ‖ · ‖ is continuous, the mappings
(t, x) �→ ‖eTLΦ−1(t)x‖ and (t, x) �→ ‖Φ−1(t)x‖ are both continuous functions
from the compact set I × {x ∈ R

n | ‖x‖ = 1} into the real numbers. Hence, there
are a1, b1 > 0 such that

a1‖x‖2 ≤ ‖eTLΦ−1(t)x‖2 ≤ b1‖x‖2 (7.19)

a1‖x‖2 ≤ ‖Φ−1(t)x‖2 ≤ b1‖x‖2 (7.20)

for all t ∈ I. Together with (7.18) this shows the first part of (7.16).
To show that V (t, x) is locally Lipschitz in x let η > 0 be an arbitrary constant

and x, y ∈ Bη(0) and t ∈ I. By (7.18), (7.19) and (7.20) we get

|V (t, x)− V (t, y)|

=
∣∣∣ t
T
(‖eTLΦ−1(t)x‖ + ‖eTLΦ−1(t)y‖)(‖eTLΦ−1(t)x‖ − ‖eTLΦ−1(t)y‖)

+

(
1− t

T

)
(‖Φ−1(t)x‖ + ‖Φ−1(t)y‖)(‖Φ−1(t)x‖ − ‖Φ−1(t)y‖)

∣∣∣

≤
√
b1(‖x‖+ ‖y‖)

[
t

T
‖eTLΦ−1(t)(x − y)‖+

(
1− t

T

)
‖Φ−1(t)(x − y)‖

]
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≤
√
b1(‖x‖+ ‖y‖)

[
t

T

√
b1‖x− y‖+

(
1− t

T

)√
b1‖x− y‖

]

= b1(‖x‖+ ‖y‖)‖x− y‖ (7.21)

≤ 2ηb1‖x− y‖,

which proves that V (t, x) is locally Lipschitz in x.
Finally, we show the second part of (7.16). For every (t0, x0) ∈ I × R

n define
the function ψ(t0,x0)(t) := V (t, ϕ(t, t0, x0)) on I \ {T }. We claim that for every
(t0, x0) ∈ I × R

n the function ψ(t0,x0)(t) is differentiable with respect to t. To
see this note that by (7.17) and the semigroup property ϕ(t1, t2, ϕ(t2, t3, x)) =
ϕ(t1, t3, x)

ψ(t0,x0)(t) = [‖ϕ(T, t, ϕ(t, t0, x0))‖2 − ‖ϕ(0, t, ϕ(t, t0, x0))‖2] t
T

+‖ϕ(0, t, ϕ(t, t0, x0))‖2

= [‖ϕ(T, t0, x0)‖2 − ‖ϕ(0, t0, x0)‖2] t
T

+ ‖ϕ(0, t0, x0)‖2

so that

ψ′
(t0,x0)

(t) = [‖ϕ(T, t0, x0)‖2 − ‖ϕ(0, t0, x0)‖2] 1
T
.

By Theorem 7.9 we have ‖eTL‖ =: ν ∈ (0, 1), since the zero solution is
exponentially stable. Since V (t, x) is locally Lipschitz in x we have by Remark 7.2,
the product rule for differentiation, (7.17) and (7.20) that

V +(t0, x0) = lim sup
h↘0

V (t0 + h, ϕ(t0 + h, t0, x0))− V (t0, x0)

h

= lim sup
h↘0

ψ(t0,x0)(t0 + h)− ψ(t0,x0)(t0)

h

= ψ′
(t0,x0)

(t0) =
1

T

(‖ϕ(T, t0, x0)‖2 − ‖ϕ(0, t0, x0)‖2)

=
1

T

(‖eTLΦ−1(t0)x0‖2 − ‖Φ−1(t0)x0‖2
)

≤ ν2 − 1

T
‖Φ−1(t0)x0‖2

≤ −1− ν2

T
a1‖x0‖2

Hence, with c1 := (1− ν2)a1/T > 0, the rest of (7.16) is shown. ��
We will show the existence of another Lyapunov function; note that this is

particularly useful if one wants to approximate it by a continuous piecewise
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affine function. Indeed, the authors showed in [12] that such a function can
be approximated by a continuous piecewise affine function so closely that the
approximation is a true CPA Lyapunov function for autonomous systems, even in a
neighbourhood of the equilibrium.

Theorem 7.12. Let the zero solution of the system (7.15) be exponentially stable.
Then there exists a finite-time Lyapunov function W (t, x) which satisfies

a2‖x‖ ≤ W (t, x) ≤ b2‖x‖, W+(t, x) ≤ −c2‖x‖ (7.22)

for all x ∈ R
n and t ∈ I \ {T }, where a2, b2, c2 > 0. W is globally Lipschitz in x.

Proof. We define W (t, x) :=
√
V (t, x), where V (t, x) is the function from

Theorem 7.11, and notice that immediately from (7.16)
√
a1‖x‖ ≤ W (t, x) ≤√

b1‖x‖ follows. It is easy to see that W (0, x) = W (T, x) = ‖x‖. To show the
second part of (7.22) fix t ∈ [0, T ). The case x = 0 follows from

√
V (t+ h, 0 + h · A(t)0)−√V (t, 0)

h
=

0− 0

h
= 0,

i.e. W+(t, 0) = 0. If x �= 0 we have by Lemma 7.3

W+(t, x) = lim sup
h↘0

√
V (t+ h, x+ h ·A(t)x) −√V (t, x)

h

= lim sup
h↘0

V (t+ h, x+ h · A(t)x) − V (t, x)

h · (√V (t, x+ h ·A(t)x) +√V (t, x))

≤ −c1‖x‖2
2
√
V (t, x)

≤ − c1

2
√
b1
‖x‖.

It remains to show that W (t, x) is globally Lipschitz in x. The case x = y = 0
is trivial and otherwise, by (7.21) and (7.16), we have

|W (t, x)−W (t, y)| =
∣∣∣√V (t, x)−

√
V (t, y)

∣∣∣ = |V (t, x) − V (t, y)|√
V (t, x) +

√
V (t, y)

≤ b1(‖x‖+ ‖y‖)√
a1 · (‖x‖+ ‖y‖) · ‖x− y‖ ≤ b1√

a1
· ‖x− y‖. ��

Remark 7.4. A different function W with the properties as in Theorem 7.12 is

W2(t, x) := [‖ϕ(T, t, x)‖ − ‖ϕ(0, t, x)‖] t
T

+ ‖ϕ(0, t, x)‖.

One can prove the properties, following the proof of Theorem 7.11, dropping the
squares.
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We give an example that these two definitions lead to two different functions W1

and W2. Consider ẋ = −x on the interval [0, 1] with the Euclidean norm. Then

V (t, x) =
(
te2(t−1) + (1− t)e2t

)
x2,

W1(t, x) =

√
te2(t−1) + (1− t)e2t|x|,

W2(t, x) =
(
tet−1 + (1− t)et

) |x|.

7.4.3 Nonlinear Systems

Now we consider the nonlinear system

ẋ = f(t, x) (7.23)

over the finite-time interval I = [0, T ] and show the existence of local finite-time
Lyapunov functions.

Theorem 7.13. Consider the nonlinear system

ẋ = f(t, x) (7.24)

where f ∈ C1([0, T ] × R
n,Rn), f(t, 0) = 0 for all t ∈ [0, T ] over the finite-time

interval I = [0, T ]. Define A(t) := Dxf(t, 0).
Consider (7.15) with the same A(t). Then the Lyapunov functions V and W

in Theorems 7.11 and 7.12 respectively are also finite-time Lyapunov functions
for (7.24) satisfying V +(t, x) ≤ −cv‖x‖2 and W+(t, x) ≤ −cw‖x‖, cv, cw > 0,
for all t ∈ I \ {T } and all x in some open neighbourhoodU ⊂ R

n of 0.

Proof. It suffices to show that V +(t, x) ≤ −cv‖x‖2 and W+(t, x) ≤ −cw‖x‖ for
all t ∈ I \ {T } and all x in some open neighbourhoodU ⊂ R

n of 0.
We first show W+(t, x) ≤ −cw‖x‖. By Taylor’s Theorem we can write

f(t, x) = A(t)x + ψ(t, x), where for all ε > 0 there is a η > 0 such that
‖ψ(t, x)‖ ≤ ε‖x‖ holds for all ‖x‖ < η and all t ∈ I, cf. the proof of Theorem 7.7.
Because W (t, x) is globally Lipschitz in x by Theorem 7.12, there is a constant
L > 0 such that |W (t, x) −W (t, y)| ≤ L‖x − y‖ for all t ∈ I and x, y ∈ R

n.
Hence by (7.22)

W+(t, x) = lim sup
h↘0

W (t+ h, x+ h · f(t, x)) −W (t, x)

h

≤ lim sup
h↘0

W (t+ h, x+ h · [A(t)x+ ψ(t, x)]) −W (t+ h, x+ h ·A(t)x)
h
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+ lim sup
h↘0

W (t+ h, x+ h ·A(t)x)−W (t, x)

h

≤ lim sup
h↘0

L‖hψ(t, x)‖
h

− c2‖x‖

≤ L‖ψ(t, x)‖ − c2‖x‖.

With ε := c2/(2L) and cw := c2/2 it follows that there exists an η > 0 such that
W+(t, x) ≤ −cw‖x‖ for all t ∈ I \ {T } and all x ∈ Bη(0) =: U .

Now consider V (t, x) = [W (t, x)]2. The case x = 0 is trivial. For x �= 0 we
have by Lemma 7.3 and the above estimate

V +(t, x) = limsup
h↘0

W 2(t + h, x+ h · f(t, x)) −W 2(t, x)

h

≤ lim sup
h↘0

[W (t+ h, x+ h · f(t, x)) +W (t, x)]
W (t+ h, x+ h · f(t, x)) −W (t, x)

h

= 2W (t, x) · [−cw‖x‖] ≤ −a2cw‖x‖2

for all t ∈ I \ {T } and all x ∈ Bη(0) =: U . That is V +(t, x) ≤ −cv‖x‖2 with
cv = a2cw > 0. ��

7.4.4 Norm ‖x‖2 = xTNx

In this section we restrict ourselves to the class of norms ‖x‖2 = xTNx , where
N ∈ R

n×n is a symmetric, positive definite matrix.
In the following Theorem 7.14 we consider a nonlinear system and give a suffi-

cient condition for the exponential stability of the zero solution. The construction of
the Lyapunov function is similar to the periodic-time case. Note that the assumptions
of Theorem 7.14 are sufficient, but not necessary for the exponential attraction of
the zero solution, see Theorem 7.15, number 2.

Theorem 7.14. Consider

ẋ = f(t, x), (7.25)

where f ∈ C1([0, T ] × R
n,Rn), f(t, 0) = 0 for all t ∈ [0, T ] over the finite-time

interval I = [0, T ]. Define A(t) := Dxf(t, 0). Let L be defined as in Theorem 7.8.
Let the norm ‖ · ‖ be defined by

‖x‖2 = xTNx ,

where N ∈ R
n×n is a symmetric, positive definite matrix.
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If the Hermitian matrix L∗N +NL is Hurwitz, then the zero solution of (7.25) is
exponentially stable. In this case,

V (t, x) := xT (P−1(t))∗NP−1(t)x and W (t, x) =
√
V (t, x)

are finite-time local Lyapunov function, satisfying

a1‖x‖2 ≤ V (t, x) ≤ b1‖x‖2, V ′(t, x) ≤ −c1‖x‖2,
a2‖x‖ ≤ W (t, x) ≤ b2‖x‖, W ′(t, x) ≤ −c2‖x‖,

for all x ∈ U \ {0} and t ∈ I \ {T }, where U is an open neighbourhood of 0, with
constants a1, b1, c1, a2, b2, c2 > 0.

Proof. Using Theorem 7.8, we express the fundamental matrix solution with initial
condition Φ(0) = I by

Φ(t) = P (t)etL

where P (0) = P (T ) = I and P (t), L ∈ C
n×n. The Hermitian matrix (L∗N+NL)

is negative definite. Denote the maximal eigenvalue by−ν < 0, which gives us

zT (L∗N +NL)z ≤ −ν‖z‖22 (7.26)

for all z ∈ C
n.

We define the functions V and W as in the theorem. The inequalities for
V (t, x) and W (t, x) follow from the fact that P−1(t) is non-singular and N is
positive definite. As P (0) = P (T ) = I , we have V (0, x) = V (T, x) = ‖x‖2
and W (0, x) = W (T, x) = ‖x‖.

Now we show the inequality for V ′(t, x). We use Ṗ−1(t) = LP−1(t) −
P−1(t)A(t), which is shown as in the periodic case (see (7.7) in the proof of
Theorem 7.6) and (A(t))∗ = (A(t))T since A(t) ∈ R

n×n. Furthermore, by
Taylor f(t, x) = A(t)x + ψ(x), where for ε := ν

2‖N‖2
there is r > 0 such that

‖P−1(t)ψ(t,x)‖2

‖P−1(t)x‖2
< ε for all t ∈ I and ‖x‖2 < r. Hence, we obtain

V ′(t, x) = xT (A(t))T (P−1(t))∗NP−1(t)x+ (ψ(t, x))∗(P−1(t))∗NP−1(t)x

+xT (Ṗ−1(t))∗NP−1(t)x+ xT (P−1(t))∗NṖ−1(t)x

+xT (P−1(t))∗NP−1(t)A(t)x+ xT (P−1(t))∗NP−1(t)ψ(t, x)

= xT [(A(t))T (P−1(t))∗N + (P−1(t))∗L∗N − (A(t))∗(P−1(t))∗N ]P−1(t)x

+xT (P−1(t))∗[NLP−1(t) − NP−1(t)A(t) + NP−1(t)A(t)]x

+2‖P−1(t)x‖2‖N‖2‖P−1(t)ψ(t, x)‖2
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= ((P−1(t))x)∗[L∗N + NL]P−1(t)x+
ν

2
‖P−1(t)x‖22

≤ −ν

2
‖P−1(t)x‖22

≤ −c1‖x‖2

for a suitable c1 > 0 and for all t ∈ I and 0 < ‖x‖2 < r by (7.26). The proof for W
follows as in Theorem 7.6. ��

7.5 Relations Between Autonomous, Periodic
and Finite-Time Systems

7.5.1 Periodic Systems as Finite-Time Systems

If we consider a time-periodic system

ẋ = f(t, x),

then we can also regard this system as a finite-time system. We discuss the stability
of the zero solution with respect to the different notions.

Theorem 7.15. Consider a T -periodic system ẋ = f(t, x) with f ∈ C1(R ×
R
n,Rn), f(t, 0) = 0 for all t ∈ R. We can also consider the system as a finite-

time system over the interval I = [0, T ].
If the zero solution is exponentially stable with respect to the finite-time case,

then it is exponentially stable with respect to the periodic-time case.
By Theorems 7.4 and 7.8 there is a matrix L ∈ C

n×n such that the principal
solution of the linearised equation with Φ(0) = I can be expressed as Φ(t) =
P (t)etL, where P (0) = P (T ) = I . Now the following statements hold true forL:

1. Let ‖ · ‖ be an arbitrary norm on R
n. If ‖eTL‖ < 1, then L is Hurwitz.

2. LetN ∈ R
n×n be a symmetric, positive definite matrix and let ‖·‖ be the induced

matrix norm corresponding to the vector norm ‖x‖2 = xTNx .
If L∗N +NL is Hurwitz, then ‖eTL‖ < 1 for all T > 0.

Proof. Assume that the zero solution is exponentially stable with respect to the
finite-time case. Then, by Theorem 7.9 we have ‖DFT (0)‖ = μ ∈ (0, 1).

Since FT (x) = DFT (0)x + ψ(x) with a function ψ(x) = o(‖x‖) as x → 0,
there exists η > 0 such that ‖ψ(x)‖ ≤ 1−μ

2 ‖x‖ for all x ∈ Bη(0). Thus,

‖FT (x)‖ ≤ ‖DFT (0)‖‖x‖+ ‖ψ(x)‖ ≤ μ‖x‖+ 1− μ

2
‖x‖ =

1 + μ

2
‖x‖.
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Denoting ν := 1+μ
2 ∈ (0, 1), since μ ∈ (0, 1), we have now

‖FT (x)‖ ≤ ν‖x‖

for all x ∈ Bη(x). This is also the Poincaré map P : Rn → R
n, x → ϕ(T, 0, x) of

the periodic system and thus

‖P kx‖ ≤ νk‖x‖

for all k ∈ N, which implies the exponential stability with respect to the periodic
system as ν ∈ (0, 1). Part 2 is a direct consequence of Theorems 7.14, 7.7 and 7.9.

��

7.5.2 Autonomous Systems as Periodic and Finite-Time
Systems

An autonomous system

ẋ = f(x)

can be considered as a periodic system with any period T , and also on a finite-
time interval [0, T ] with any T > 0. We discuss the relations between the different
notions of attractivity for such a system. We start with an example, and we later
prove a general theorem.

Example 7.1. Consider the linear system with f(x) = Ax , whereA :=

(−1 c

0 −1
)

with c ∈ R and x ∈ R
2. Then the principal solution can be written as Φ(t) = etL,

where in the previous notation we have P (t) = I and L =

(−1 c

0 −1
)

. The

eigenvalues of L are −1 and have negative real part. Thus, as an autonomous
example, the origin is exponentially asymptotically stable for all c ∈ R and so is
the zero solution if we regard it as a periodic system.

Now we consider the system as a finite-time system on the interval I = [0, T ]
with the Euclidean norm ‖x‖2 = xTx, i.e. N = I . In this case, ‖eTL‖2 is given by
the maximal eigenvalue of eTL∗

eTL. We have

eTL = e−T
(
1 Tc

0 1

)

and thus eTL∗
eTL = e−2T

(
1 Tc

Tc T 2c2 + 1

)
.
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The eigenvalues are

λ1,2 = e−2T

(
1 +

T 2c2

2
±
√
T 2c2 +

T 4c4

4

)
.

Both eigenvalues are < 1 if and only if

|c| < 2
sinhT

T
=: c∗(T ).

Note that limT→0 c
∗(T ) = 2 and limT→∞ c∗(T ) = ∞. Hence, depending on the

finite-time interval [0, T ] under consideration, the zero solution is exponentially
asymptotically stable, if and only if |c| < c∗(T ). As T → ∞, the zero solution
is exponentially attractive for all c.

Now we consider the condition that L∗N + NL is Hurwitz of Theorem 7.14,
which is sufficient for the exponential attractivity. In this example, L∗N + NL =

L∗+L =

(−2 c

c −2
)

. The eigenvalues are μ1,2 = −2±c, and they are both negative

if |c| < 2. Hence, the condition that the zero solution is finite-time attractive for all
T > 0 (|c| ≤ 2) is nearly equivalent to L∗N +NL being Hurwitz (|c| < 2).

We can prove the following general lemma.

Lemma 7.4. Consider the autonomous system

ẋ = f(x) (7.27)

with f ∈ C1(Rn,Rn), f(0) = 0 and Df (0) =: A ∈ R
n×n.

The zero solution of this T -periodic system for any T > 0 is exponentially stable
if and only if the equilibrium 0 is exponentially stable for the autonomous system.

If the zero solution is finite-time exponentially attractive for a T > 0, then it is
exponentially stable for both the autonomous and periodic system.

Now consider the norm ‖x‖2 = xTNx with symmetric positive definite matrix
N ∈ R

n×n. Then we have the following implications

(i)⇒ (ii)⇔ (iii)⇒ (iv).

(i) All eigenvalues λ of ATN +NA satisfy λ < 0.
(ii) The zero solution of (7.27) is exponentially stable over the finite-time interval

[0, T ] for all T > 0.
(iii) For all T > 0, ‖eTA‖ < 1.
(iv) All eigenvalues λ of ATN +NA satisfy λ ≤ 0.
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Proof. The first part follows from the fact that L = A and Theorems 7.3 and 7.7 as
well as Theorem 7.15.

For the second part, note that (i)⇒(ii) follows from Theorem 7.14 and (ii)⇔(iii)
follows from Theorem 7.9. It is left to show (iii)⇒(iv).

Let us assume that for all T > 0, we have ‖eTA‖ < 1 and, in contradiction to the
statement, that there is an eigenvalue λ > 0 and v ∈ R

n \ {0} such that

(ATN +NA)v = λv.

Since ‖eTA‖ < 1, we have

‖v‖2 > vT eTAT

NeTAv

= vT
(
I + TAT +

1

2
T 2(AT )2 + . . .

)
N

(
I + TA+

1

2
T 2A2 + . . .

)
v

= vT
(
N + T (ATN +NA) + ϕ(T )

)
v

= ‖v‖2 + ‖v‖22(Tλ+ ϕ(T ))

where ϕ(T ) = o(T ) as T → 0. Hence, there is a T > 0 such that |ϕ(T )| ≤ Tλ/2
and 0 > ‖v‖22Tλ/2 > 0 due to λ > 0, which is a contradiction. ��

7.6 Conclusions and Outlook

In this chapter, we have generalised the construction of local Lyapunov functions
for general nonlinear systems to periodic-time and finite-time systems. As in the
classical autonomous case, we have constructed two types of Lyapunov functions V
and W , satisfying

a1‖x‖2 ≤ V (t, x) ≤ b1‖x‖2, V ′(t, x) ≤ −c1‖x‖2,
a2‖x‖ ≤ W (t, x) ≤ b2‖x‖, W ′(t, x) ≤ −c2‖x‖.

They are global Lyapunov functions for linear systems, and local Lyapunov
functions for nonlinear ones.

Although we give explicit formulas for V and W , we are using the Floquet
representation of solutions, so that in explicit examples their calculation requires the
solution of the first variation equation. The practical use of the results, besides the
theoretical existence, is to derive an algorithm for the construction of CPA Lyapunov
functions for periodic and finite-time systems, where the results of this paper will
be important to close the gap between the local and the global part of the Lyapunov
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function. We envisage that, as in the autonomous case [11, 13], where we have
used similar results to show the existence and to algorithmically construct a CPA
Lyapunov function, we can use the results of this paper for similar algorithms in the
time-periodic and finite-time cases.
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Chapter 8
Quasi-Steady State: Searching for and Utilizing
Small Parameters

Alexandra Goeke and Sebastian Walcher

Dedicated to Jürgen Scheurle on the occasion of his 60th
birthday

Abstract We present an outline of quasi-steady state methods (QSS) in ordi-
nary differential equations which model systems of chemical reactions, and its
application to reduction of dimension. Special attention is given to the relation
between QSS and singular perturbations including, as a new result, a general explicit
reduction formula. Moreover, we describe and discuss heuristics which convert a
QSS assumption to conditions restricting the parameters of the differential equation.
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8.1 Introduction

Quasi-steady state (QSS) reduction is frequently employed to reduce the dimension
of differential equations for chemical and biochemical reactions, in particular as a
preliminary step in parameter identification problems. While QSS has been used by
biologists, chemists, and also by application-oriented mathematicians since the early
twentieth century, a precise mathematical description and analysis was achieved
only in the late 1980s, and some aspects are still not completely resolved. The issue
is complicated by the fact that different groups of scientists (including different
groups of mathematicians) have different notions of, and different approaches to,
QSS assumptions and reductions. Another critical point concerns the role, the
applicability, and the application of singular perturbation theory.
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Most of this paper collects some classical and recent results on QSS and QSS
reduction. We also present a few new results and aspects, including a general
explicit reduction formula for mass action kinetics, given a singular perturbation
setting. In Sect. 8.2 we review definitions of QSS (including a working definition
we will adopt), give a short historical outline, and describe some problems and
applications, including standard examples. Motivated by applications, it seems
advisable to distinguish two notions of QSS (which also appear under different
names in the literature). On one hand, there is QSS for reactions, where certain
(forward–backward) reactions are assumed to reach equilibrium quickly. On the
other hand, there is QSS for concentrations of certain chemical species, which goes
back to Michaelis and Menten. Analyzing these different QSS assumptions leads to
different mathematical problems. Section 8.3 is about reduction of dimension in the
classical Tikhonov–Fenichel setting of singular perturbations. We present a general
reduction formula, sketch its derivation, and give several examples. Moreover we
show that, in the scenario of slow–fast reactions, Tikhonov–Fenichel theory is
applicable in rather general circumstances. Section 8.4 is about various heuristics—
including scaling methods—for finding “small parameters” from QSS assumptions.
While these heuristics provide satisfactory results in many cases, identification of
small parameters for QSS—which is closely tied to the chosen definition—still
seems unfinished. Most of the examples we give are presented for the purpose
of illustration and have been discussed in other publications. One exception is a
somewhat larger example to demonstrate the feasibility of the reduction procedure.

8.2 Background and Statement of Problem

8.2.1 Chemical Reactions and ODEs

Systems of chemical reactions are frequently modeled with the help of differential
equations. In this paper we will concentrate on systems that can be modeled by
ordinary differential equations, which is justified in the following scenario:

• Reactions take place in a closed vessel, and there is no spatial inhomogeneity.
• Thermodynamical parameters such as temperature and pressure are (being kept)

constant.
• There are explicit expressions for the reaction rates (usually mass action

kinetics).

Given these conditions, there is a standard procedure to transfer a chemical reaction
scheme to a system of ordinary differential equations and there is a number of
strong theoretical results on the properties of such equations. The procedure was
formalized and the class of resulting equations was discussed by several authors in
the 1960s and 1970s, with fundamental contributions, in particular with regard to
convergence to equilibrium, due to Feinberg [7], and Horn and Jackson [15]. One
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important ingredient of this procedure is stoichiometry: Molecules do not vanish
into nothing and are not created out of nothing. Thus in a reaction like A +B�C,
for every C-molecule that is created, an A and a B vanish. Hence stoichiometry
implies the existence of linear first integrals for the differential equations.

Example 8.1. The Michaelis–Menten system (Michaelis and Menten [20], see also
Briggs and Haldane [5] and many textbooks and monographs such as Atkins and
de Paula [2]; Berg et al. [3]; Keener and Sneyd [18]; Murray [22]) is a basic model
reaction for an enzyme E catalyzing the transformation of substrate S to product P
via an intermediate complex C. The reaction scheme

E + S
k1

GGGGGGBF GGGGGG

k−1

C
k2

GGGGGGGBF GGGGGGG

k−2

E + P

by way of the above-mentioned procedure with mass action kinetics yields a
differential equation system for the concentrations:

ė = −k1es + (k−1 + k2)c − k−2ep,

ṡ = −k1es + k−1c,

ċ = k1es − (k−1 + k2)c + k−2ep,

ṗ = k2c − k−2ep.

The relevant initial values are s(0) = s0 > 0, c(0) = 0, e(0) = e0 > 0, and
p(0) = 0. All rate constants ki are assumed to be > 0, with the possible exception
k−2 ≥ 0. In case k−2 = 0 one speaks of the irreversible Michaelis–Menten reaction,
the case k−2 > 0 is called reversible. The irreversible system is usually presented
and investigated in monographs and research articles.

From stoichiometry one obtains the linear first integrals e+c and s+c+p, which
may be used to reduce the differential equation to dimension two. The standard
procedure leads to the following equation:

ṡ = − k1e0s + (k1s+ k−1)c,

ċ = k1e0s − (k1s+ k−1 + k2)c+ k−2(e0 − c)(s0 − s− c).
(8.1)

Example 8.2. A cooperative enzyme-catalyzed reaction is described by the reaction
scheme (see e.g. Keener and Sneyd [10, 18, 25]):

S + E
k1

GGGGGGBF GGGGGG

k−1

C1

k2
GGGGGGBF GGGGGG

k−2

E + P,

S + C1

k3
GGGGGGBF GGGGGG

k−3

C2

k4
GGGGGGBF GGGGGG

k−4

C1 + P.
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Here substrate and enzyme react to form a complex C1, and moreover substrate and
C1 react to form a complex C2. In the reversible scenario, enzyme and product may
also combine to formC1 with rate constant k−2 > 0, and C1 and P may combine to
form C2 with rate constant k−4 > 0. Similar to the Michaelis–Menten system one
also considers the irreversible case with k−2 = k−4 = 0; all other rate constants are
assumed > 0 throughout. From mass action kinetics, stoichiometry, and the initial
values s(0) = s0 > 0, c1(0) = c2(0) = 0, e(0) = e0 > 0, and p(0) = 0, one
obtains the differential equation

ṡ=−k1e0s+ (k−1 + k1s− k3s)c1 + (k1s+ k−3)c2,

ċ1=k1(e0 − c1 − c2)s− (k−1 + k2)c1 + k−2(e0 − c1 − c2)(s0 − s− c1 − 2c2)

−k3c1s+ (k−3 + k4)c2 − k−4c1(s0 − s− c1 − 2c2),

ċ2=k3c1s− (k−3 + k4)c2 + k−4c1(s0 − s− c1 − 2c2).
(8.2)

8.2.2 Quasi-Steady State

It seems much harder to precisely define QSS, as well as the corresponding QSS
assumption, than to illustrate the use of QSS to reduce the dimension of the
system. Some authors use a (relatively straightforward) notion of QSS for reactions,
which we will consider in Sect. 8.3.3 below. However, the notion of QSS for
chemical species, which will be in the focus of this paper, seems more delicate.
(The distinction has also been noticed and investigated in detail by Goussis [11].
One also speaks of partial equilibrium instead of QSS for reactions.) It should be
emphasized that the choice of a definition for QSS critically influences its translation
to mathematical terms, and that various notions exist in the literature. The following
characterization (taken from [24]) may be the least common denominator of all
definitions:

Working Definition. A reacting system is in QSS, or quasi-stationary, with respect
to certain species, if the rates of change of their concentrations are negligibly small
compared to the overall rate of reaction, during some relevant time interval.

A QSS assumption amounts to the hypothesis that a reaction is in QSS with
respect to certain components.

The source of a QSS assumption generally lies outside mathematics. Usually
experimental observations or biological or chemical intuition are invoked. Generally
QSS corresponds to restrictions on certain parameters, such as rate constants or
initial concentrations.

We give a brief sketch of the history of QSS and mention some contributors
to its theory and practice, with no claim to completeness. Michaelis and Menten
[20] stated and applied a certain equilibrium assumption, which they did not
justify further. Briggs and Haldane [5] seem to be the first who discussed the
QSS assumption for the complex C (now sometimes called the standard QSS
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assumption) in the Michaelis–Menten system (8.1), and moreover they justified
this assumption by referring to smallness of certain parameters in the differential
equation. Atkins and de Paula’s popular introductory text on Physical Chemistry
(see [2, p. 812 ff.]) reflects a frequently used notion of QSS in a reacting system:
“(. . .) after an initial induction period (. . .), and during the major part of the reaction,
the rates of change of concentrations of all reaction intermediates are negligibly
small.” The biochemistry text by Stryer et al. (see [3]) seems to make direct use of
QSS, with no discussion of underlying assumptions. In the contribution by Rubinow
and Segel to the collection [31] (see p. 3 ff.), one finds the following description
for (irreversible) Michaelis–Menten: under suitable experimental conditions “one
expects that after an initial short transient period there will be a balance between
the formation of complex by the union of enzyme and substrate and the breaking
apart of complex (. . .).” From a mathematical perspective, the (explicit or implicit)
involvement of two different time regimes (initial phase vs. major part of the
reaction, to paraphrase Atkins et al.) suggests a singular perturbation approach. One
of the earliest papers on QSS from the perspective of Tikhonov’s theorem is due
to Heineken, Tsuchiya, and Aris [12], with “small parameter” e0/s0. Segel [29],
and Segel and Slemrod [30] performed a careful analysis of QSS and conditions on
parameters. These papers seem to be the starting point for time scale arguments in
QSS considerations. Among the many who continued and extended this approach,
with varying emphasis on mathematical rigor, we mention Ignetik and Deakin
[17]; Ignetik et al. [16]; Borghans et al. [4]; Schnell and Maini [28]; and Tzafriri
and Edelman [35]. An approach by Schauer and Heinrich [26] to the Michaelis–
Menten system, on the other hand, could be seen as emphasizing the slow manifold
in a singular perturbation setting, but their reasoning is essentially based on the
assumption that the concentration of the complex is almost constant (more precisely,
that ċ ≈ 0).

In Sect. 8.4 we will review some of these arguments and their use in heuristics
for finding small parameters.

8.2.3 The Ad Hoc Reduction from QSS

The following reduction method (which we call the ad hoc reduction) is directly
related to a QSS assumption: In the differential equation, set the negligible rates of
change equal to zero, and use the subsequent algebraic relations to obtain a reduced
system.

Example 8.3. QSS for the complex C in the Michaelis–Menten system.
In the irreversible case (k−2 = 0) one has

0 (= ċ) = k1e0s− (k1s+ k−1 + k2)c, thus c =
k1e0s

k1s+ k−1 + k2
.
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By substitution one obtains the reduced equation

ṡ = − k2e0s

(s+ (k−1 + k2)/k1)

which can be found in virtually all books and papers which mention Michaelis–
Menten. Note that this approach does not explicitly make use of small parameters,
although in its justification in the literature (e.g., [4,12,29,30]) small parameters are
frequently invoked. We will discuss a different approach in Example 8.5 below.

In the reversible case the ad hoc method leads to a quadratic equation

0 (= ċ) = k1e0s− (k1s+ k−1 + k2)c+ k−2(e0 − c)(s0 − s− c),

which yields

c =
1

2k−2

(
k1s+ k−1 + k2 + k−2(e0 + s0 − s)±

√
(· · · )

)

and a relatively cumbersome reduced equation, which is not frequently used. (There
are discussions, e.g., in Miller and Alberty [21]; Seshadri and Fritsch [32].)

Example 8.4. QSS in the cooperative system.
Consider the system from Eq. (8.2), and assume QSS for both complexes. In the

irreversible case (k−2 = k−4 = 0), solving “ċ1 = ċ2 = 0,” which is a linear
parameter-dependent system for c1 and c2, provides a nice reduced equation for s;
see Keener and Sneyd [18]. But the reversible case leads to a system of quadratic
equations for c1 and c2, which in turn leads to a reduced equation for s which is
intractable, for all practical purposes. See [10, 25] for more details.

Thus the ad hoc reduction, although conceptually straightforward, may become
quite inconvenient even in rather simple settings. And, more fundamentally, there
remains the question: How, if at all, can a reduction procedure be justified
mathematically?

8.3 Reduction in the Presence of Small Parameters

In this section we consider an analytic ordinary differential equation depending on
a “small parameter” ε ≥ 0. Thus we have

ẋ = h(x, ε) = h(0)(x) + εh(1)(x) + . . . , x ∈ U ⊂ R
n+m, (8.3)

with bothn andm positive integers (to be specified below), and we will be interested
in the behavior of the solutions as ε → 0. Our primary focus is on differential
equations modeling chemical reactions, and the small parameter may stem either
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from a separation of fast and slow reactions, or (by some yet-to-be-discussed
reasoning; see Sect. 8.4) from a QSS assumption. (For the examples introduced in
Sect. 8.2, ε = e0 works.) But once a small parameter is given, the natural starting
point is to try singular perturbation theory.

Due to our focus on chemical reactions, we will impose additional conditions
on the right-hand side, which go beyond what is necessary from the perspective of
singular perturbation theory. Thus we assume that h(0) and h(1) are polynomials.
These assumptions are natural in our setting, since we start from polynomial
differential equations of mass action kinetics.

We will mostly rely only on the classical results of singular perturbation theory,
see Tikhonov [34], Vasil’eva [36], Fenichel [8], and Hoppensteadt [14]. The
monograph [37] by Verhulst, in particular Chapter 8, is an appropriate source for
most of the relevant material. The principal new result in this section will be an
explicit expression for a reduction of (8.3), given the special assumptions on the
right-hand side. We obtain a QSS reduction which is both on solid mathematical
ground and relatively simple to compute.

8.3.1 Singular Perturbations

The usual scenario for Tikhonov’s and Fenichel’s theorems starts with a system in
what we call Tikhonov standard form:

ẏ1 = εf (1)(y1, y2) + . . . , y1(0) = y1,0,

ẏ2 = g(0)(y1, y2) + εg(1)(y1, y2) + . . . , y2(0) = y2,0,
(8.4)

with (y1, y2) ∈ D ⊆ R
n × R

m, D open, and (in our setting) analytic right-hand
side.

We obtain the system in “slow time” by rescaling τ = εt:

y′
1 = f (1)(y1, y2) + . . . , y1(0) = y1,0,

y′
2 = ε−1g(0)(y1, y2) + g(1)(y1, y2) + . . . , y2(0) = y2,0.

(8.5)

A fundamental result of Tikhonov’s theory can be stated as follows. (See Verhulst
[37], Theorem 8.1 for a more general theorem under less restrictive hypotheses.)

Theorem 8.1. Let system (8.5) be given. Assume that:

(i) The zero set Ỹ of g(0) is nonempty.
(ii) There exist a nonempty relatively open subset M̃0 ⊆ Ỹ and ρ > 0 such that

every eigenvalue of D2g
(0)(y1, y2), with (y1, y2) ∈ M̃0, has real part ≤ −ρ.

Then there exists t1 > 0 such that for every t0 ∈ (0, t1) and for every point
sufficiently close to M̃0, the solution of (8.5) with initial condition (y1,0, y2,0)
approaches the solution of the degenerate system
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y′
1 = f (1)(y1, y2, 0), y1(0) = y1,0 ,

0 = g(0)(y1, y2, 0)

uniformly on [t0, t1] as ε→ 0.

A priori a system (8.3) derived from a chemical reaction network may not be given
in Tikhonov standard form, which raises two questions. First, under what conditions
does a transformation to standard form exist? Second, assuming the existence of a
transformation, how can a reduced equation be computed?

As for existence, one needs a diffeomorphism Ψ = (Ψ1, Ψ2)
tr (defined on some

open subset of D) which sends solutions of (8.3) to solutions of a system (8.4) in
standard form. A necessary and sufficient condition is the identity

DΨ(x)
(
h(0)(x) + εh(1)(x) + . . .

)
=

(
ε · f (1)(x)(Ψ1(x), Ψ2(x)) + . . .

g(0)(x)(Ψ1(x), Ψ2(x)) + . . .

)
.

For ε = 0 one obtains

DΨ(x)h(0)(x) =

(
0

g(0)(Ψ1(x), Ψ2(x))

)
,

and this implies the existence of n independent first integrals (viz., the entries of
Ψ1) for ẋ = h(0)(x). Recall that the existence of first integrals is not trivial near
stationary points. Moreover, h(0) then admits an n-dimensional local manifold M0

of stationary points. The following result is taken from [25], but it essentially goes
back to Fenichel [8].

Proposition 8.1. Given ẋ = h(x, ε), there exists a transformation Ψ , defined on
some open Ũ ⊆ D, to Tikhonov standard form with the eigenvalue condition
(ii) from Theorem 8.1, if and only if the following hold:

The zero set Y of h(0) in Ũ is nonempty. Moreover there exist a nonempty
relatively open M0 ⊆ Y and ρ > 0 such that for every x0 ∈ M0 the derivative
Dh(0)(x0) admits the eigenvalue 0 with algebraic and geometric multiplicity n,
and the remaining eigenvalues have real part ≤ −ρ. (In particular M0 is a local
n-dimensional submanifold.)

The condition given in Proposition 8.1 implies the existence of a direct sum
decomposition

R
n+m = KerDh(0)(x0)⊕ ImDh(0)(x0) (8.6)

for every x0 ∈ M0. Moreover, this condition implies locally the existence of n
independent first integrals for ẋ = h(0)(x).
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8.3.2 Computing a Reduction

First, we discuss the special case when the hypotheses of Proposition 8.1 are
satisfied and a transformation Ψ to Tikhonov standard form (as well as its inverse)
is explicitly known. Then determining a reduced system in original coordinates is
relatively straightforward. Although Ψ cannot be directly applied to the reduced
system in the version

y′
1 = f (1)(y1, y2), g(0)(y1, y2) = 0,

there is an equivalent version on the invariant manifold M̃0 introduced in
Theorem 8.1, viz.

(
y′
1

y′
2

)
= p(y) :=

(
f (1)(y1, y2)

−D2g
(0)(y1, y2)

−1D1g
(0)(y1, y2) · f (1)(y1, y2)

)
, (8.7)

which can be transported back via Ψ , to a differential equation with invariant
manifold M0, see [25].

Example 8.5. The reduced system for reversible Michaelis–Menten.
Here the small parameter is (assumed to be) e0, and system (8.1) gives the

function

h(0) =

(
(k1s+ k−1)c

−(k1s+ k−1 + k2 + k−2(s0 − s− c))c

)
.

The differential equation with right-hand side h(0) is a scaled linear system, and a
first integral (and therefore a transformation) can be found explicitly. Carrying out
the program outlined above (see [25]), one obtains the reduced equation, in addition
to ċ = 0,

ṡ = −e0 · s(k1k2 + k−1k−2)− k−1k−2s0
k1s+ k−1 + k2 + k−2(s0 − s)

,

which is generally different from the ad hoc-reduced equation, and actually appears
less complicated (no square roots). But note that the Tikhonov–Fenichel reduction
coincides with the ad hoc reduction when k−2 = 0.

If an explicit transformation is known, it may provide an additional benefit
because Theorem 8.1 in Verhulst [37] characterizes the admissible initial conditions.
Moreover, for Michaelis–Menten one can verify Hoppensteadt’s [14] criteria for
convergence on the interval [t0, ∞) (notation from Theorem 8.1).

Generally, one cannot hope for an explicit construction of a transformation to
Tikhonov standard form, but still it is possible to compute a reduced equation. If the
slow manifold M0 can be explicitly represented as the graph of some function,
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Fenichel ([8], Lemma 5.4) and Stiefenhofer ([33], Equation (2.13), with a different
and quite short proof) gave expressions for the reduced equation.

One can carry Fenichel’s observations further to obtain a reduced system in the
general setting. A closer look at Eq. (8.7) shows that one gets p(y) via the kernel-
image decomposition of the derivative

(
0 0

D1g
(0)(y) D2g

(0)(y)

)

(compare Eq. (8.6)) by computing the kernel component of (f (1)(y), g(1)(y))tr.
Since the kernel-image decomposition is preserved in coordinate transformations,
one obtains (see [25]):

Proposition 8.2. Given the eigenvalue condition from Proposition 8.1 for trans-
formability to Tikhonov standard form, near a point x0 with h(0)(x0) = 0, one
obtains the reduced system of (8.3) by computing the kernel component of h(1)(x)
with respect to the direct kernel-image decomposition of Dh(0)(x).

As noted in [25], the projection onto the kernel can be found from the minimal
polynomial of Dh(0)(x), and for some—relatively small—examples this approach
is computationally feasible. For higher dimensions and many parameters, this
procedure becomes prohibitively expensive. But in any case the argument shows that
for polynomial (or rational) h(0) and h(1) the reduced system will have a rational
right-hand side.

A practicable method to compute reduced systems was recently developed in [9].
It is based on an auxiliary result from classical Algebraic Geometry.

Lemma 8.1. For system (8.3) with polynomials (or rational functions) h(0) and
h(1), let x0 be such that h(0)(x0) = 0 and that the eigenvalue condition from
Proposition 8.1 hold for Dh(0)(x0), with m = rank Dh(0)(x0). Then there exist
a (n + m) × m matrix P with rational entries, of rank m, and a vector valued
polynomial μ with m entries, such that

h(0)(x) = P (x)μ(x)

in some Zariski neighborhood of x0. By appropriate choice of the neighborhood,
one may assume that h(0) and μ have the same zero sets. The entries of μ may be
taken as any m independent entries of h(0).

This Lemma, which is proved in [9], is almost trivial in the local analytic
(or differentiable) setting, in view of the Implicit Function Theorem. But the point
is that P is rational, and that there are constructive methods to determine P . With
this auxiliary result, the reduction is relatively straightforward, as is shown in the
next theorem.

Theorem 8.2. For system (8.3), with assumptions as in Lemma 8.1, let x0 be such
that h(0)(x0) = 0. Then the reduced system, in a Zariski neighborhoodM0 of x0 in
the zero set Y of h(0), is given (in slow time) by
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x′ = h(1)(x)− P (x) (Dμ(x)P (x))
−1

Dμ(x)h(1)(x).

Proof. The eigenvalue conditions at x0 guarantee that Y is locally an n-dimensional
manifold. Let M0 be a relatively open subset of Y such that the eigenvalue
conditions hold for all points of M0. Denote the columns of P by p1, . . . , pm. The
Jacobian matrix of h(0) equals

Dh(0)(x) =

m∑
i=1

(pi(x)Dμi(x) + μi(x)Dpi(x))

in a Zariski neighborhood of x0, and therefore

Dh(0)(x) = P (x) ·Dμ(x) for all x ∈M0. (8.8)

Now fix x ∈M0. Then

KerDh(0)(x) = KerDμ(x), (8.9)

due to the rank condition for P (x). The condition rankP (x) = m also implies

Im Dh(0)(x) = Im P (x).

From our basic hypothesis we have the direct sum decomposition (8.6). Set

A(x) := Dμ(x) · P (x).

We first show that A(x) is invertible. Thus let β ∈ R
m be a solution of the equation

Dμ(x)P (x)β = 0. (8.10)

The direct sum decomposition and

P (x)β ∈ KerDh(0)(x) ∩ Im Dh(0)(x)

show P (x)β = 0. Since P (x) has full rank, we see β = 0. Thus Eq. (8.10) admits
only the trivial solution, whence A(x) = Dμ(x)P (x) is invertible.

Moreover, due to the direct sum decomposition (8.6), for any y ∈ R
n+m there

exist z ∈ KerDh(0)(x) = KerDμ(x) and α ∈ R
m such that

y = z + P (x)α.

Since z = y − P (x)α ∈ KerDμ(x), one finds

Dμ(x) (y − P (x)α) = 0,
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which implies α = A(x)−1Dμ(x)y, and thus

z = y − P (x)A(x)−1Dμ(x)y.

Apply this to h(1)(x) to obtain the assertion. ��
Remark 8.1. (a) It may be appropriate to discuss invertibility of A(x) and the

eigenvalue condition in more detail. The zero set Y of h(0) is an algebraic
variety in R

n+m, and we are actually interested in an n-dimensional component
M0 of this variety. For x ∈ Y , Dh(0)(x) must therefore have eigenvalue 0 with
geometric multiplicity n. If the geometric and algebraic multiplicity are equal
to n then (and only then) the kernel-image decomposition (8.6) exists, and the
latter is equivalent to invertibility of A(x). Thus it is possible to write down the
equation in Theorem 8.2. But additional conditions (for instance, all real parts
of eigenvalues≤ −ρ) are necessary to make this a meaningful reduced system.

(b) The matrix A(x) is of size m × m, hence relatively small. One should also
emphasize that inverting this matrix is not actually necessary to determine the
reduced system: It suffices to solve a system of linear equations with this matrix.

(c) The eigenvalue condition (ii) from Theorem 8.1 on Dh(0)(x) is satisfied if and
only if all eigenvalues of A(x) have real part≤ −ρ. Indeed, by virtue of Eq. 8.8
and linear algebra the nonzero eigenvalues of these two matrices are the same.

Example 8.6. Irreversible Michaelis–Menten with slow product formation.
This is an example for a slow–fast reaction separation. One considers the familiar
differential equation (8.1), but now with small parameter k2. The underlying
assumption is that product formation is much slower than formation of complex and
degrading of complex back to enzyme and substrate. One has (with the arguments
s, c suppressed)

h(0) =

(−μ
μ

)
, P =

(−1
1

)
, μ = k1e0s− (k1s+ k−1)c, h(1) =

(
0

−c
)
.

Thus

A = (k1(e0 − c), −(k1s+ k−1))

(−1
1

)
= − (k1(e0 − c) + k1s+ k−1)

and the reduction procedure yields the system

(
ṡ

ċ

)
= − k2

k1(e0 − c) + k1s+ k−1

(
(k1s+ k−1)c

k1(e0 − c)c

)

on the invariant variety M∗
0 defined by μ = 0. Using the parametrization of M0 one

may obtain a reduced equation for substrate alone, viz.

ṡ = − k2k1e0s (k1s+ k−1)

k1k−1e0 + (k1s+ k−1)2
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This is different from the standard reduction based on QSS for complex. This
example illustrates that different QSS assumptions (QSS for the species C, resp.
QSS with slow product formation) will lead to different reductions.

Example 8.7. The cooperative system with small parameter e0 (see Example 8.2
above) was originally discussed in [25], with the minimal polynomial approach
(and serious reliance on a computer algebra system). Theorem 8.2 makes this
computation feasible even by hand. With the abbreviations

α = −(k1 + k3)s− (k−1 + k2)− (k−2 + k−4)(s0 − s− c1 − 2c2)

β = −k1s+ k−3 + k4 − k−2(s0 − s− c1 − 2c2)

one has

h(0) =

⎛
⎝ (k−1 + k1s− k3s)c1 + (k1s+ k−3)c2

c1α+ c2β

k3c1s− (k−3 + k4)c2 + k−4c1(s0 − s− c1 − 2c2)

⎞
⎠ ,

h(1) =

⎛
⎝ −k1s
k1s+ k−2(s0 − s− c1 − 2c2)

0

⎞
⎠ ,

and the (relevant component of the) zero set of h(0) is given by c1 = c2 = 0.
A decomposition according to Lemma 8.1 is given by

P =

⎛
⎝ k−1 + k1s− k3s k1s+ k−3

α β

k3s+ k−4(s0 − s− c1 − 2c2) −k−3 − k4

⎞
⎠

and

μ =

(
c1
c2

)
.

Note that such a decomposition is not unique. For A = Dμ · P one obtains

A(s, 0, 0) =

(
a(s) −k1s+ k−3 + k4 − k−2(s0 − s)

k3s+ k−4(s0 − s) −k−3 − k4

)

with abbreviation a(s) = −(k1+k3)s−(k−1+k2)−(k2+k−4)(s0−s). The matrix
A can easily be inverted, and the eigenvalue condition is readily checked. The final
result for the reduced equation is, of course, identical to the one given in [25].
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Example 8.8. To illustrate the feasibility of the approach via Theorem 8.2, we
discuss a somewhat bigger example, from Stiefenhofer [33, Section 3], whose
reduction was computed in [33] only for some special parameter choices. This
system models communication between slime mold cells such as Dictyostelium
discoideum. Communication is effected by cAMP , denoted by P , furthermore S
stands for the substrate ATP , while D and R represent transmembrane receptors,
with D and R representing the corresponding bound states. (See [33] for more
details.) The reaction scheme, including production and decomposition of cAMP
with constant rates, can be written as follows.

D
εk1�
εk−1

R S +R
εk2⇀ P +R

εk3⇀ P
εk−3
⇀

D
k4�
k−4

D + 2P R
k5�
k−5

R+ 2P,

with parameters ki > 0, and the ε’s indicating the slow reactions. We also adopt the
further simplification s(t) = S > 0 from [33].

We use the first integral d = c− d− r − r, with some constant c ≥ 0, to obtain
the system

ṗ = −2k4dp
2 + 2k−4(c− d− r − r) − 2k5rp

2 + 2k−5r + εk3 − εk−3p+ εk2Sr,

ḋ = −k4dp2 + k−4(c− d− r − r) − εk1d+ εk−1r,

ṙ = −k5rp2 + k−5r + εk1d− εk−1r,

ṙ = k5rp
2 − k−5r.

(8.11)

With

μ(p, d, r, r) :=

( −k5rp2 + k−5r

−k4dp2 + k−4(c− d− r − r)

)
, P (p, d, r, r) :=

⎛
⎜⎜⎝

2 2

0 1

1 0

−1 0

⎞
⎟⎟⎠ ,

and

h(1)(p, d, r, r) :=

⎛
⎜⎜⎝
k3 − k−3p+ k2Sr

−k1d+ k−1r

k1d− k−1r

0

⎞
⎟⎟⎠ ,

Equation (8.11) may be written as

d

dt

⎛
⎜⎜⎝
p

d

r

r

⎞
⎟⎟⎠ = P · μ+ εh(1),
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which is a representation according to Lemma 8.1. The variety Y may be taken as
the zero set of μ, and one verifies that the choice

M0 := Y ∩ intR4
+,

is possible. Straightforward computations show that the eigenvalue condition is at
least generically satisfied, and the reduced system on the invariant setM0 is given by

d

dt

⎛
⎜⎜⎝
p

d

r

r

⎞
⎟⎟⎠ =

1

Q

⎛
⎜⎜⎝
N1

N2

N3

N4

⎞
⎟⎟⎠

on a suitable subset W ⊂ R
2, which is determined from M0 ∩ R

4
+ by this

elimination, with

N1 := −k−3p5k5k4 + (k2Sr k5k4 + k3k5k4) p4 − k−3 (k−5k4 + k−4k5) p3

+
(
2 k1 (−k−4k5 + k−5k4) d− 2 k−1 (−k−4k5 + k−5k4) r

+Sk2 (k−5k4 + k−4k5) r + k3 (k−5k4 + k−4k5)
)
p2 − k−3pk−5k−4 + k3k−5k−4

+k2Sr k−5k−4,

N2 := 2 k4dp4k5k−3 + (−2 k3k5k4 − 2 k2Sr k5k4) dp3 +
(
(2 k4k−5k−3 − k5k−4k1) d

+k5k−4k−1r
)
p2 +

( − 4 k1d2k4k−5 +
(
(−4 k5k−4k1 + 4 k−1k4k−5) r

−2 k4k−5k2Sr − 2 k4k−5k3
)
d+ 4 k−1r2k−4k5

)
p− k1dk−5k−4 + k−1rk−5k−4,

N3 := 2 k5rp4k4k−3 + (−2 k3k5k4 − 2 k2Sr k5k4) rp3 +
(
k−5k4k1d

+(2 k5k−4k−3 − k−1k4k−5) r
)
p2 +

(
4 k1d2k4k−5

+(−4 k−1k4k−5 + 4 k5k−4k1) rd− 4 k−1r2k−4k5 +
( − 2 k5k−4k3

−2 k5k−4k2Sr
)
r
)
p + k1dk−5k−4 − k−1rk−5k−4,

N4 := (k5k4k1d− k5k4 (k−1 + 2 k−3) r) p4 +
(
4 k5k4k1d2 + 4 k5k4 (−k−1 + k1) rd

−4 k5k−1k4r2 + (2 k2Sr k5k4 + 2 k3k5k4) r
)
p3 +

(
k5k−4k1d− k5k−4

(
k−1

+2 k−3

)
r
)
p2 + (2 k5k−4k2Sr + 2 k5k−4k3) rp

and

Q : = k5p
4k4 + (4 k4k5r + 4 k4dk5) p

3 + (k−5k4 + k−4k5) p
2

+ (4 k5rk−4 + 4 k4dk−5) p+ k−5k−4.

One may eliminate the variables r and r via

M0 =

{
(p, d, r, r)tr; r =

k−5(−k4dp2 + k−4(c− d))

k−4(k−5 + k5p2)
, r =

k5p2(−k4dp2 + k−4(c− d))

k−4(k−5 + k5p2)

}
,

and obtain the equivalent version

d

dt

(
p

d

)
=

1

Q̃

(
Ñ1

Ñ2

)
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with

Ñ1 := −p10Sdk53k42k2 − p9k5
3k4 k−4 k−3 + p8(cStk5

3k4 k−4 k2
−2Sdk5

3k4 k−4 k2 − 2Sdk5
2k−5 k4

2k2k5
3k4 k−4 k3) + p7(−k53k−4

2k−3

−3 k5
2k−5 k4 k−4 k−3) + p6(cSk5

3k−4
2k2 + 2 cSk5

2k−5 k4, k−4 k2 − Sdk5
3k−4

2k2
−4Sdk5

2k−5 k4 k−4 k2 − Sdk5 k−5
2k4

2k23 k5
2k−5 k4 k−4 k3 − 2 dk5

3k−4
2k1

+2 dk5
2k−5 k4 k−4 k1 − 2 dk5

2k−5 k4 k−4 k−1 + 2 dk5 k−5
2k4

2k−1 + k5
3k−4

2k3)

+p5(−3 k5
2k−5 k−4

2k−3 − 3 k5 k−5
2k4 k−4 k−3) + p4(2 cSk5

2k−5 k−4
2k2

+cSk5 k−5
2k4 k−4 k2 − 2Sdk5

2k−5 k−4
2k2 − 2Sdk5 k−5

2k4 k−4 k2
+2 ck5

2k−5 k−4
2k−1 − 2 ck5 k−5

2k4 k−4 k−1 − 4 dk5
2k−5 k−4

2k1
−2 dk5

2k−5 k−4
2k−1 + 4 dk5 k−5

2k4 k−4 k1 + 2 dk−5
3k4

2k−1

+3 k5 k−5
2k4 k−4 k3) + p3(−3 k5 k−5

2k−4
2k−3 − k−5

3k4 k−4 k−3)

+p2(cSk5 k−5
2k−4

2k2 + 3 k5
2k−5 k−4

2k3 − Sdk5 k−5
2k−4

2k2
+2 ck5 k−5

2k−4
2k−1 − 2 ck−5

3k4 k−4 k−1 − 2 dk5 k−5
2k−4

2k1
−2 dk5 k−5

2k−4
2k−1 + 2 dk−5

3k4 k−4 k1 + 2 dk−5
3k4 k−4 k−1 + 3 k5 k−5

2k−4
2k3

+k−5
3k4 k−4 k3) − pk−5

3k−4
2k−3 + k−5

3k−4
2k3,

Ñ2 := p9(2Sd2k5
3k4

2k2) + p8(2 dk5
3k4 k−4 k−3) + p7(−2 cSdk5

3k4 k−4 k2
+2Sd2k5

3k4 k−4 k2 + 4Sd2k5
2k−5 k4

2k2 − 2 dk5
3k4 k−4 k3) + p6(−dk53k−4

2k1
+6 dk5

2k−5 k4 k−4 k−3 − dk5
2k−5 k4 k−4 k−1) + p5(−6 dk5

2k−5 k4 k−4 k3
−4 cSdk5

2k−5 k4 k−4 k2 + 4Sd2k5
2k−5 k4 k−4 k2 + 2Sd2k5 k−5

2k4
2k2)

+p4(+ck5
2k−5 k−4

2k−1 − 3 dk5
2k−5 k−4

2k1 − dk5
2k−5 k−4

2k−1

+6 dk5 k−5
2k4 k−4 k−3 − 2 dk5 k−5

2k4 k−4 k−1) + p3(+4 d2k5
2k−5 k−4

2k1
−4 d2k5 k−5

2k4 k−4 k1 + 4 d2k5 k−5
2k4 k−4 k−1 − 4 d2k−5

3k4
2k−1

−6 dk5 k−5
2k4 k−4 k3 − 2 cSdk5 k−5

2k4 k−4 k2 + 2Sd2k5 k−5
2k4 k−4 k2

−4 cdk25k−5 k−4
2k1 − 4 cdk5 k−5

2k4 k−4 k−1) + p2(2 ck5 k−5
2k−4

2k−1

−3 dk5 k−5
2k−4

2k1 − 2 dk5 k−5
2k−4

2k−1 + 2 dk−5
3k4 k−4 k−3

−dk−5
3k4 k−4 k−1) + p(4 c2k5 k−5

2k−4
2k−1 − 4 cdk5 k−5

2k−4
2k1

−8 cdk5 k−5
2k−4

2k−1 + 4 cdk−5
3k4 k−4 k−1 + 4 d2k5 k−5

2k−4
2k1

+4 d2k5 k−5
2k−4

2k−1 − 4 d2k−5
3k4 k−4 k1 − 4 d2k−5

3k4 k−4 k−1

−2 dk−5
3k4 k−4 k3) + ck−5

3k−4
2k−1 − dk−5

3k−4
2k1 − dk−5

3k−4
2k−1,

Q̃ :=
(
p6k5

2k4 k−4 + p5(4 dk5
2k4 k−4 − 4 dk5 k−5 k4

2) + p4(k5
2k−4

2 + 2 k5 k−5 k4 k−4)

+p3(4 ck5 k−5 k4 k−4) + p2(2 k5 k−5 k−4
2 + k−5

2k4 k−4) + p(4 ck5 k−5 k−4
2

−4 dk5 k−5 k−4
2 + 4 dk−5

2k4 k−4) + k−5
2k−4

2
)(
p2k5 + k−5

)
.

Up to scaling of time, one therefore obtains a two-dimensional equation with
polynomial right-hand side (of degree 11) on W . (Q̃ > 0 on W follows from
Q > 0 on R

4
+.) In particular one has Poincaré–Bendixson theory available in the

asymptotic limit.

8.3.3 Slow and Fast Reactions

For slow and fast reactions the reduction program via Tikhonov–Fenichel was
carried out by Schauer and Heinrich [27] (who cited Vasil’eva [36] for singular
perturbation results), and continued by Stiefenhofer [33]. (A recent paper by Lee
and Othmer [19] reproduces several of these results.)
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Before discussing slow and fast reactions in some detail, it will be necessary to
give a more precise outline of the work by Feinberg [7], Horn and Jackson [15],
and others. We mostly follow Feinberg’s Lecture Notes [7]; a short overview can
be found in Section 2 of Anderson’s recent paper [1]. We sketch the formalism
for chemical reaction networks and reaction systems with mass action kinetics,
using the irreversible Michaelis–Menten system as an illustrating example. One
starts with an ordered collection of q chemical species, which are identified with
the standard basis of R

q . Next one forms complexes, which formally speaking
are nonnegative (integer) linear combinations of species (appearing as reactants or
as reaction products). Then reactions are defined as ordered pairs of complexes,
usually written in a notation with reaction arrows. (The notion of reversible reaction
is obvious). For Michaelis–Menten the species are E, S, C, and P , which will in
the following be identified with the standard basis vectors of R4. Moreover one has
complexes E + S, C, E + P , and reactions

E + S → C; C → E + S; C → E + P.

Using the identification of species and standard basis vectors, one assigns to each
reaction a vector in R

q , counting the reactants with negative sign, calls their span in
R
q the stoichiometric subspace S, and collects these column vectors in a matrix

Z which is related to the stoichiometric matrix as defined by Feinberg. For the
Michaelis–Menten example one has, in the above order, column vectors

⎛
⎜⎜⎝
−1
−1
1

0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1

1

−1
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1

0

−1
1

⎞
⎟⎟⎠ , thus Z =

⎛
⎜⎜⎝
−1 1 1

−1 1 0

1 −1 −1
0 0 1

⎞
⎟⎟⎠ .

The differential equation for the concentrations may now be written in the form

d

dt

⎛
⎜⎜⎝
e

s

c

p

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
−1 1 1

−1 1 0

1 −1 −1
0 0 1

⎞
⎟⎟⎠ ·
⎛
⎝ k1es

k−1c

k2c

⎞
⎠

and generally for mass action kinetics one obtains a differential equation system of
the form

ẋ = Z · Φ(x) (8.12)

for the vector of concentrations. Φ can be characterized more precisely; see [7] for
details.

There is a natural assignment of a directed graph to a reaction network: The
nodes are the complexes, and there exists a directed edge from one complex to
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another if and only if there is a reaction from the former to the latter. The connected
components of this graph are called linkage classes. The deficiency of a network is
then defined by

δ := # complexes−# linkage classes− rankZ,

and one can show that δ ≥ 0. Finally, one calls the reaction network weakly
reversible if, whenever there is a reaction from one complex to another, there is
also a chain of reactions from the latter to the former.

Both R
q
+ and its interior are positively invariant for the system (8.12). The

cosets x∗ + S, with S the stoichiometric subspace and 0 �= x∗ ∈ R
q
+, are called

the stoichiometric compatibility classes, and are positively invariant sets for the
differential equation. Now we can state one fundamental result of the theory.

Deficiency Zero Theorem (Horn and Jackson [15], Feinberg [7]). Assume that
(8.12) corresponds to a weakly reversible deficiency zero network. Then the
following hold.

(i) The intersection of every stoichiometric compatibility class with intRq+ con-
tains exactly one stationary point.

(ii) This point is locally asymptotically stable within its compatibility class.

Remark 8.2. (a) The proof of part (ii) is based on an ingenious choice of a
Lyapunov function. Linear asymptotic stability cannot be deduced from the
inequalities in this argument.

(b) In Feinberg’s Notes [7] a stronger claim is made, viz. global asymptotic stability
within the intersection of the stoichiometric compatibility class and intRq+.
Later a problem in the global stability argument was pointed out; and generally
global stability is still a conjecture. Only recently Anderson [1] succeeded with
a proof in the case of a single linkage class.

Now we turn to slow–fast systems of chemical reactions. These are usually
described by

ẋ = h(0)(x) + εh(1)(x), x ∈ R
q (8.13)

with the fast subsystem h(0) (large rate constants) and the slow subsystem εh(1)

(small rate constants, symbolized by the factor ε). Thus both h(0) and h(1) admit
a representation of the form (8.12). A substantial part of the following result
is due to Schauer and Heinrich [27]. The transfer from Schauer and Heinrich’s
condition to weakly reversible deficiency zero systems in the statement and proof
of the following Proposition is a first step, in ongoing work [9], toward a more
comprehensive theorem.

Proposition 8.3. Assume that the fast subsystem of (8.13) has deficiency zero and is
weakly reversible. Assume moreover that every stationary point in intRq+ is linearly
asymptotically stable for h(0) within its stoichiometric compatibility class. Then the
following hold.
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(a) The eigenvalue conditions from Proposition 8.1 are satisfied for Dh(0)(x0) at
all zeros x0 ∈ intRq+ of h(0).

(b) There exists a linear transformation of the system to Tikhonov standard form.

Proof. We write

h(0)(x) = Z · Φ(x)

and let x0 ∈ intRq+ be a stationary point. Let s be the dimension of the
stoichiometric subspace, thus rankZ = s. Then

Dh(0)(x0) = Z DΦ(x0)

admits the eigenvalue 0 with multiplicity ≥ q − s (due to the rank of Z) and has
s eigenvalues with negative real part, due to the linear stability requirement. In
particular

rankZ = rankDh(0)(x0). (8.14)

Therefore the zero set of h(0) is locally a manifold of dimension s. Moreover there
are independent linear forms λ1, . . . , λq−s such that λi ◦Z = 0, 1 ≤ i ≤ q− s, and
these are also first integrals of h(0). Completing these by suitable linear forms to a
basis of the dual of Rq will produce the desired transformation to Tikhonov standard
form. ��
Remark 8.3. The importance of the rank condition (8.14) for the existence of a
linear transformation to standard form was first noted by Schauer and Heinrich [27].
They also stated (with only a partial justification for some special cases, it seems; see
[27, Section 4]) that the rank condition holds when every fast reaction is reversible
with fast reverse reaction. It seems that linear stability conditions did not play a role
in [27].

8.3.4 Why Does the Ad Hoc Method Persist?

As noted earlier, the ad hoc reduction produces the same result as Tikhonov–
Fenichel in some relevant cases, but not in general. In [10] we provide a
detailed investigation for several basic reaction schemes in biochemistry (including
Michaelis–Menten), with the result that ad hoc and Tikhonov–Fenichel reduction
coincide when certain product-forming reactions are irreversible, but differ in the
fully reversible case. Since such reductions are actually used to determine rate
constants and other reaction parameters, it is very likely that serious discrepancies
between ad hoc reduction and reality would have been noticed in experimental
verification. To explain this apparent lack of serious discrepancy, we note two
possible reasons for good approximation by the irreversible reduced system.
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First, some reversible reactions may be almost irreversible (for instance, k−2 may
be very small in the Michaelis–Menten example). Since the reduced system in the
irreversible case is the limit of the reversible case, the discrepancy may be hardly
noticeable.

Second, continuous removal of product may be responsible, as noted in Heinrich
and Schuster [13], Keener and Sneyd [18]. A thorough justification of this argument
was also given in [10] for reversible Michaelis–Menten with product removal (rate
α > 0). Indeed, a Tikhonov–Fenichel reduction of the system

ṡ = −k1e0 + (k1s+ k−1)c,

ċ = k1e0s− (k1s+ k−1 + k2)c+ k−2(e0 − c)p,

ṗ = k2c− k−2p(e0 − c)− αp

with “small parameter” e0 yields the familiar “irreversible reduced equation” (with
α vanishing along the way). See Examples 8.3 and 8.5 with k−2 = 0.

8.4 Finding Small Parameters

While the results in the previous section are based on a well-defined mathematical
scenario, there is another facet of QSS which, in the present stage, is not so amenable
to rigorous mathematics. The underlying problem is that the translation of a model
assumption to mathematical terms is rarely straightforward, and it may depend on
seemingly small details. Here we are concerned with translating certain assumptions
on chemical reacting systems—in particular QSS assumptions—to mathematical
terms.

8.4.1 Underlying Assumptions: QSS vs. Slow–Fast

Frequently QSS assumptions—directly or indirectly—amount to slow–fast hypothe-
ses, and we briefly review some of these.

A direct slow–fast assumption (small and large rate constants) underlies the
discussion of slow and fast reactions, as in Eq. (8.13). As noticed above, this is
different from a QSS assumption for chemical species, which we discuss now. An
indirect slow–fast assumption for species (based on the fact that the linearization of a
system (8.4) in Tikhonov standard form necessarily has some very small eigenvalues
near the slow manifold) works by seeking conditions to ensure a very small ratio of
absolutely smallest to absolutely largest eigenvalue of the linearization (near some
submanifold). This was used, for instance, by Duchêne and Rouchon [6], but the
method frequently has to rely on numerical calculations, and general parameter
conditions seem to be hard to derive. A different indirect slow–fast assumption
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proposed by Segel [29], Segel and Slemrod [30] starts from the observation that
in singular perturbation scenarios there is a fast initial phase (a “boundary layer
in time”; see Verhulst [37]), followed by a slower time regime. From time scale
estimates for the initial and the later phase, and the requirement that their ratio
should be very small, Segel and Slemrod [30] obtain conditions on the parameters
in the Michaelis–Menten system. The approach by Schauer and Heinrich [26] may
also be justified by singular perturbation arguments, but the line of reasoning is
concerned not with time scales but rather with the presumed slow manifold, and
derives parameter conditions from requiring closeness of a solution trajectory to
this manifold.

Generally, all these approaches are (at least partly) of heuristic nature, and
validity of QSS will have to be checked a posteriori. A potentially erroneous
conclusion from the time scale comparisons in Segel and Slemrod [30] for so-called
reverse QSS (QSS for substrate) is discussed in [10, Section 4]. Moreover it is easy
to construct examples which satisfy the condition proposed by Schauer and Heinrich
[26] but do not satisfy any initial phase requirement (as stated in Atkins and de Paula
[2]; see quote in Sect. 8.2): consider systems with a first integral. We emphasize
that, while QSS hypotheses frequently lead to singularly perturbed systems (with
the benefit of a solid reduction theory), this does not seem to be the case in every
relevant scenario. Again, much depends on the exact notion of QSS that is used.

8.4.2 The Role of Scaling

In the context of this chapter, a scaling transformation for an ordinary differential
equation consists of multiplying the independent variable (time) and each dependent
variable by positive numbers. In most mathematically oriented texts and research
papers (see in particular Murray [22], Segel and Slemrod [30], Heineken et al. [12])
scaling is used, and frequently employed to find “small parameters.” While there is
no doubt that scaling is highly relevant for an appropriate analysis of differential
equations modeling a real-life situation, in particular for concrete estimates, there
may be some danger in the “lumping together” of several model parameters into one
“small parameter” for asymptotic arguments.

We will briefly discuss the necessity, benefits, and limitations of scaling for
irreversible Michaelis–Menten and the “small parameter” ε∗ = e0

s0
from Heineken

et al. [12]. (For the Segel–Slemrod “small parameter” ε = k1e0
s0+k−1+k2

—see [30]—
similar remarks apply.) Note that ε∗ tends to zero when e0 → 0, and this case
has been resolved above in a satisfactory manner. But ε∗ also tends to zero when
s0 → ∞, and to properly analyze the latter case one should keep in mind that the
relevant domain for the Michaelis–Menten system (8.1) is defined by the inequalities
0 ≤ c ≤ e0 and 0 ≤ s + c ≤ s0. Hence s0 → ∞ will blow up the region of
interest. Since Tikhonov’s theory applies to differential equations on fixed domains,
scaling is necessary here. We scale (following Heineken et al. [12] in part, but not
completely) by setting σ = s/s0 and γ = c/e0, and ε = 1/s0, obtaining the system
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σ̇ = −k1e0σ(1 − γ) + ε · e0k−1γ

γ̇ = ε−1k1σ (1− γ)− (k−1 + k2)γ
(8.15)

on the domain defined, e.g., by the inequalities 0 ≤ σ + e0γ ≤ 1, 0 ≤ γ ≤ 1.
With the usual notation we have

h(0) =

(
0

k1σ(1 − γ)

)
, h(1) =

(−k1e0σ(1 − γ)

−(k−1 + k2)γ

)
.

The zero set M0 of h(0) has two components; the one defined by γ = 1
corresponds to the standard QSS assumption. The conditions for Tikhonov–Fenichel
are satisfied, and a straightforward computation shows that the reduced equation is
given by

σ̇ = 0, γ = 1.

In other words, Tikhonov–Fenichel applies but it yields a degenerate reduced
system. Including higher-order terms in ε (thus passing to a O’Malley-Vasil’eva
expansion, see Verhulst [37]) one formally obtains the familiar reduced equation.
The approach in [12, Equations (10) to (13)] encounters the same problem in the
case s0 →∞, because some of the scaled parameters approach zero in this limiting
case. Taking this into account, the lowest-order reduction in [12] will also be trivial.

The point we want to emphasize here is the necessity to consider all possible
ways in which a “small parameter” may approach zero. This also may be of some
practical relevance, since e0 → 0 (“very little enzyme”) and s0 → ∞ (“very
high substrate concentration”) represent different experimental settings. These cases
require individual consideration, with one case not amenable to standard singular
perturbation methods. However, other lines of reasoning, such as the phase plane
arguments in [23], show that a QSS assumption is indeed justified for this scenario.

Finally, we note that the other component of M0 for Eq. (8.15) is given by σ = 0,
which would correspond to the reverse QSS assumption (with s approaching its
equilibrium 0 very fast). In this case the Tikhonov–Fenichel reduction formalism is
not applicable, due to a nilpotent Jacobian. (One may question whether reverse QSS
is chemically sensible for very high s0.)

8.4.3 Near-Invariance Heuristics

In [24] a proposal was made to generalize Schauer and Heinrich’s [26] heuristics
from Michaelis–Menten to general systems. We will present the heuristics here in
a somewhat informal manner, referring for details to [24]. Thus we start with a
parameter-dependent differential equation

ẋ = q(x, p) (8.16)
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with q : U × V → R
n, where U ⊂ R

n is a neighborhood of a compact set K∗ and
V is some subset of Rd (d ≥ 1).

(i) We assume that certain functions ψ1(x, p), . . . , ψr(x, p), defined for all x ∈
K∗, are in QSS (according to the Working Definition) for some relevant
solution. Thus their rates of change, given by the Lie derivatives

φi(x, p) := Lq(ψi)(x, p) = 〈gradψi(x, p), q(x, p)〉 , 1 ≤ i ≤ r,

are small along this solution. (All derivatives are to be understood with respect
to x only.) In applications, the ψi are frequently coordinate functions.

(ii) For p ∈ V let

K = Kp = {y ∈ K∗ : φ1(y) = · · · = φr(y) = 0} .

Then, due to continuity and compactness arguments, the maximum of the terms
|φ1(x)|, . . . , |φr(x)| tends to zero if and only if dist (x, K) tends to zero. Thus
requiring QSS with higher and higher accuracy, one obtains invariance of the
set K for the differential equation in the limiting case. This is one motivation
for the following definition.

(iii) Near-invariance (see [24]): Let K∗, φ1, . . . , φr and K be as above, let the φi
be sufficiently differentiable, and assume that the rank of (Dφ1, . . . , Dφr) on
K is equal to r. Given 0 ≤ δ ≤ 1 we say that K is δ-nearly invariant for
ẋ = q(x, p) with respect to φ1, . . . , φr if for all x ∈ K and 1 ≤ j ≤ r one has
the inequality

| 〈gradφj(x, p), q(x, p)〉 | ≤ δ · ‖gradφj(x, p)‖ · ‖q(x, p)‖.

The inequality always holds for δ = 1, due to Cauchy–Schwarz, and for δ = 0
the condition implies invariance of K . Thus one may expect solutions to stay
close to K when δ � 1.
It should be emphasized that this is another heuristic approach, replacing slow–
fast heuristics by “invariant set-heuristics.” Also, the notion does not only
depend on the set K but also on the defining functions.

(iv) Some properties of near-invariance.

• Locally the desired property from (ii) is a consequence of near-invariance
(see [24]): Let K be δ-nearly invariant. Then locally in time (|t| ≤ ρ) ,
solutions starting on K remain (C ·δ)-close to K , with C and ρ independent
of the starting point and of δ.

• In the limiting case δ → 0 one obtains an invariant set. Since one has a
parameter-dependent system, and K may change with parameters, one has
to take care that no degeneracies occur, as in scaling procedures, and one
should avoid blowing up K∗.

• The notion is compatible (up to an error of order ε) with Tikhonov–
Fenichel: While the asymptotic slow manifold M0 in the singular
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perturbation setting is not necessarily (C · ε)-nearly invariant, by an order ε
correction in the defining equations one will obtain order ε near-invariance
(see [24]).

(v) Use in practice: Let a parameter-dependent system (8.16) be given on K∗.
Let φ1, · · · , φr define a desired or suspected nearly invariant set K . The near-
invariance property cannot be expected to hold generally, but only for certain
parameter combinations. Thus evaluation of the near-invariance condition in
(iii) will produce (necessary) conditions for the parameters. Determine (or
estimate)

δ(p) := max

{ | 〈(gradφj)(x, p), q(x, p)〉 |
‖gradφj(x, p)‖ · ‖q(x, p)‖ ; x ∈ K, 1 ≤ j ≤ r

}

as a function of the parameters. Requiring δ(p) to be small provides conditions
on the parameter set p. Asymptotic conditions are obtained from the limiting
case δ(p)→ 0.
Again we emphasize that further analysis and verification is necessary.

Example 8.9. Reversible Michaelis–Menten.
Consider the reversible Michaelis–Menten reaction (8.1), which we restate as

ṡ = − φ(s, c) − k2c+ k−2(e0 − c)(s0 − s− c),

ċ = φ(s, c),
(8.17)

(the right-hand side will be called q) with QSS for complex ψ(s, c) = c, and its Lie
derivative

φ(s, c) = k1e0s− (k1s+ k−1 + k2)c+ k−2(e0 − c)(s0 − s− c)

on the set K∗ ⊆ R
2 given by 0 ≤ c ≤ e∗

0, s ≥ 0, and s+ c ≤ s∗
0. (Here e∗

0 and s∗
0

are upper bounds for the initial concentrations.)
This system was discussed in detail in [24], with attention to the range for which
QSS is assumed to hold. (For instance, requiring QSS only when sufficient substrate
is still present would amount to a different choice of K∗.) Here we focus on QSS for
the whole course of the reaction (after some initial phase), and look at the asymptotic
scenario. To obtain QSS conditions for ψ = c, evaluate

Lq(φ)(s, c) = ((k1 − k−2)(e0 − c), ∗)
(−k2c+ k−2(e0 − c)(s0 − s− c)

0

)

for (s, c) ∈ K (taking into account φ = 0). One has

|Lq(φ)(s, c)|
||q(s, c)|| = |k1 − k−2| · (e0 − c),
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and a rough estimate yields

|Lq(φ)(s, c)|
||q(s, c)|| · ||gradφ(s, c)|| ≤

|k1 − k−2| · e0
k−1 + k2

=: δ∗

for all (s, c) ∈ K .
The particular case k1 = k−2 actually yields an invariant set (regardless of other

parameters), as noted by Miller and Alberty [21]. For the irreversible case k−2 = 0,
the expression for δ∗ is equal to the one introduced by Seshadri and Fritzsch [32];
compare the discussion in [23].
It may be appropriate to clarify what has actually been gained. By design of
the procedure, one is assured of an invariant set in the limiting case e0 → 0.
This may be taken as a motivation for choosing the small parameter e0 in the
reversible Michaelis–Menten differential equation, which we did throughout this
paper. One then verifies that the hypotheses for Tikhonov–Fenichel are satisfied,
and one obtains a reduced system with a mathematically solid foundation. Finally
(see [10]) one can check a posteriori that QSS does indeed hold for complex under
the assumption of small e0. Thus the circle closes.

Near-invariance heuristics like all the proposed heuristics leading from a QSS
assumption (to a precisely stated QSS assumption) to finding small parameters
should be seen as work in progress, but there seems to be more potential in this
particular approach. One advantage is that the implementation of the procedure (see
(v) above) is in principle straightforward.
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Abstract In this chapter, we deal with a class of nonautonomous degenerate
parabolic systems that encompasses two different effects: porous medium and
chemotaxis. Such classes of equations arise in the mesoscale level modeling of
biomass spreading mechanisms via chemotaxis. Under certain “balance” conditions
on the order of the porous medium degeneracy and the growth of the chemotactic
function, we establish the existence of a strong uniform pull back attractor for the
case of one spatial dimension, thus improving our previous study, where a weak
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9.1 Introduction

In this chapter, we consider the following model:

∂tM = ∂x (|M |α∂xM)− ∂x (|M |γ∂xρ) + f(t,M, ρ) in (τ,∞)× (a, b), (9.1)

∂tρ = ∂xxρ− g(t,M, ρ) in (τ,∞)× (a, b), (9.2)

M(t, a) = M(t, b) = 0, ρ(t, a) = ρ(t, b) = 1 for t ∈ (τ,∞), (9.3)

M(τ, x) = Mτ , ρ(τ, x) = ρτ for x ∈ (a, b), (9.4)

where τ, a, b ∈ R, a < b, and α and γ are given positive constants satisfying

α

2
+ 1 ≤ γ < α. (9.5)

Remark 9.1.

1. We call conditions (9.5) “balance” conditions since they establish a balance
between the diffusion and transport terms, that is, between the porous medium
and chemotaxis effects.

2. It is clear from (9.5) that α, γ > 2 should hold.

This system of partial differential equations, models, for example, a population
described in terms of its density M which grows in dependence of a substrate
with concentration ρ. The governing equation, Eq. (9.1), describes the evolution of
the population. The spatial movement of the population is caused by two different
effects. First of all, Eq. (9.1) includes a density-dependent diffusion term. This non-
linear diffusion effect becomes stronger as the population grows larger locally,
following a power law as in case of the porous medium equation. Secondly, the
population moves toward regions with increased substrate availability, i.e., follows a
chemical signal with concentration ρ. This effect is also controlled by the population
density, and its intensity increases as the local population density grows. Both effects
of population mobility increase/diminish with the population, each following a
power law. Thus, Eq. (9.1) degenerates wherever M = 0. Finally, Eq. (9.1) includes
a “source” term: a nonlinear reaction interaction term f . As usual, it stays for the
sink/source density (net number of particles created per unit time and unit volume).
The evolution equation (9.2) for the substrate includes the standard linear diffusion
term and a nonlinear reaction interaction term g.

The study of the model (9.1)–(9.4) expands the previous work of the authors
(see [7], where the autonomous case was studied). In our research, we generalize
the model to include the case of nonautonomous reaction interaction terms f and g.
We make the following assumptions: for all t,M, ρ ∈ R let
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|f(t,M, ρ)| ≤ f1(t)(1 + |M |ξ) 1
2 , f1 ∈ L2

b(R), 0 ≤ ξ < α− γ + 2, (9.6)

f(t,M, ρ)M ≤ −F2M
2 + f3(t)|M |, f3 ∈ Lκb (R), κ > 1, (9.7)

g(t,M, ρ) = g1(t)ρ+ g2(t, ρ)M, g1 ∈ C1(R) : ∂tg1 ≤ 0, g1(±∞) <∞,
(9.8)

|g2(t, ρ)| ≤ g3(t), g3 ∈ Lηb (R), η > 4, (9.9)

and, in order to ensure the uniqueness and the non-negativity of solutions for
nonnegative initial data,

f̃(t,M, ρ) := f
(
t,M |M | 2

2+α −1, ρ
)
− F4M |M | 2

2+α −1,
∂f̃

∂M
∈ L∞

loc(R
3),

(9.10)

Df ∈ L∞
loc(R

3), Dg2 ∈ L∞
loc(R

2), f(t, 0, ρ) = 0, g2(t, 0) = 0, (9.11)

where f1, f3, g1, g3 are nonnegative functions and F2, F4 are some constants, F2 is
strictly positive and for p ∈ [1,∞], Q ⊂ R

m

Lploc(Q) = {u : Q→ R : u ∈ Lp(K) for all compact sets K ⊂ Q} ,

Lpb(Q) =

{
u ∈ Lploc(Q) : ||u||Lp

b(Q) := sup
x0∈Rm

||u||Lp(Q∩B1
x0
) <∞

}

where B1
x0

is a ball of unit radius centered at x0. We would like to point out that
conditions on f and g are forced by the analysis of well-posedness of the system
(9.1)–(9.4). The admissible reaction-interaction terms that enjoy (9.6)–(9.11) are
not those commonly used in most population studies. The following example of
functions f and g satisfies the conditions (9.6)–(9.11):

Example 9.1.

f(t,M, ρ) = −M +
M

2+α
2

+

M
2+α
2

+ + 1
sin(t),

g(t,M, ρ) =
1

1 + t
ρ+M

ρ+
ρ+ + 1

cos(t),

where M+ = max {M, 0}. For the initial data, we assume that

Mτ ∈ L∞(a, b), ρτ ∈ W 1,∞(a, b).
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In this paper, we treat weak solutions of the system (9.1)–(9.4). The definition is
as follows:

Definition 9.1 (Weak Solution). A pair of functions (M,ρ) defined in [τ,∞) ×
[a, b] is said to be a weak solution of (9.1)–(9.4) for Mτ ∈ L∞(a, b), ρτ ∈
W 1,∞(a, b), if for all T > τ

(i) M ∈ L∞ ((τ, T )×Ω), |M |αM ∈ L2
(
(τ, T );H1

0 (a, b)
)
, ∂tM ∈

L2
(
(τ, T );H−1(a, b)

)
;

(ii) ρ− 1 ∈ C((τ, T );W 1,∞
0 (a, b));

(iii) (M,ρ) satisfies

∫ T

τ

(M, v) ∂tϕ− (|M |α∂xM − |M |γ∂xρ, ∂xv)ϕ+ (f(s,M, ρ), v)ϕds=0

for any v ∈ H1
0 (a, b), ϕ ∈ C∞

0 [τ, T ], M(τ) = Mτ in Cw((τ, T );L
2(a, b))-

sense and

ρ(t)− 1 =e(t−τ)Δ(ρτ − 1)−
∫ t

τ

e(t−s)Δg(s,M(s), ρ(s)) ds

in W 1,∞
0 (a, b).

Notation 1.
|| · || stands for || · ||L2(a,b)-norm and (u, v) for

∫ b
a u(x)v(x) dx or, more generally

(in the case of distributional derivatives for instance), for 〈u, v〉.
Remark 9.2. From M ∈ L∞([τ, T ];L2(a, b)) and ∂tM ∈ L2

(
[τ, T ];H−1(a, b)

)
it follows that M ∈ Cw([τ, T ];L2(a, b)) (see [2]), therefore the initial condition for
M does make sense.

The main focus of this study is on proving a dissipative estimate for the problem
(9.1)–(9.4). We use this intermediate result to establish the existence of a global
uniform pullback attractor for our system in L∞(a, b)×W 1,∞(a, b). We emphasize
on the fact that the analysis of long-time behavior for the models that contain
either porous-medium or chemotaxis-type terms is quite difficult. Interested reader
is referred to the results on dynamics of the porous medium equation [3], the
classical Keller–Segel model for chemotaxis [8, 15], and the Keller–Segel model
with growth in both autonomous and non-autonomous cases [5]. We also mention
interesting works [9, 11, 12, 14] (see also references therein) on well-posedness
and asymptotic behavior of solutions for a model without growth which includes
both of the nonlinear motion effects as in (1)–(4) but which is stated in Ω = Rd.
With all three nonlinear effects present in our model, we face significant difficulties.
In order to overcome these difficulties, we impose the “balance” conditions between
the order of porous-medium degeneracy and the growth order of the chemotaxis
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function: α2 +1 ≤ γ < α. We showed in [6] that our model is a well-posed one and
that it exhibits no singular behavior. For each pair of starting values the solution is
uniformly bounded in time and space.

The condition α > γ reads: the density-dependent diffusion coefficient “dom-
inates” the intensity of response to the chemical signal as the population density
grows. This, as we showed in [6], results in the uniform boundedness of M
and ρ.

On the other hand, we also showed in [6] that even in the areas with low
population density, the porous medium effect is due to α

2 + 1 ≤ γ strong enough
to keep the population spreading without vanishing locally, which means that the
support of M(t, ·), the set {x ∈ (a, b)|M(t, x) > 0}, is not shrinking in t.

We proved in [6] the time-global existence and boundedness of solution to our
system. The main result of [6] can be summarized as follows:

Theorem 9.1. Let the functions f and g satisfy the assumptions (9.6)–(9.11) and let
the given constantsα and γ satisfy γ ∈ [α2 + 1, α

)
. Then the initial boundary-value

problem (9.1)–(9.4) has at most one nonnegative solution (in the sense of Defini-
tion 9.1) for each pair of starting values (Mτ , ρτ ) ∈ L∞(a, b) ×W 1,∞(a, b). The
solution is uniformly bounded in time in the phase space L∞(a, b)×W 1,∞(a, b).

However, the estimates derived there were not sufficient to show the existence
of the attractor. In this paper, we use the condition α > γ to establish a dissipative
estimate for our model, which will be necessary to show the existence of attractor.

Our main result can be summarized as follows:

Theorem 9.2. Let the functions f and g satisfy the assumptions (9.6)–(9.11) and let
the given constants α and γ satisfy γ ∈ [α2 + 1, α

)
. Then the following dissipative

estimate holds for the initial boundary-value problem (9.1)–(9.4):

||M(t)||L∞(a,b) + ||ρ(t)||W 1,∞(a,b) ≤C∞
(||Mτ ||L∞(a,b) + ||ρτ ||W 1,∞(a,b)

)r∞

· e−ω∞(t−τ) +D∞ ∀t ≥ τ, (9.12)

where the positive constants C∞, r∞, ω∞, D∞ depend only on α, γ, f and g and
are independent of Mτ , ρτ or t.

Remark 9.3. As will become clear from the proof, we do not actually need the
condition γ ≥ α

2 + 1 for the dissipative estimate that we want to obtain, but it
is crucial for well-posedness (see [6]).

We will prove this theorem in Sect. 9.2. As a consequence of Theorems 9.1 and
9.2, we obtain the existence of a global uniform pullback attractor for (9.1)–(9.4):
we prove in Sect. 9.3 the following

Theorem 9.3. Let the functions f and g satisfy the assumptions (9.6)–(9.11) and
let the given constants α and γ satisfy γ ∈ [α2 + 1, α

)
. Further let the solution of

the problem (9.1)–(9.4) be described by the process {U(t, τ)}t≥τ . Then there exists
a family {A (t)}t∈R

of sets with the properties:
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1. {A (t)}t∈R
is a global uniform pullback attractor for the process {U(t, τ)}t≥τ

in L∞(a, b)×W 1,∞(a, b);
2. ∪

t∈R

A (t) is relative compact in L∞(a, b)×W 1,∞(a, b).

9.2 Dissipative Estimates (Proof of Theorem 9.2)

In this section, we derive a collection of coupled dissipative estimates forM and∇ρ
in various Lδ norms, with δ <∞ for the M component, and then apply a bootstrap
argument in order to obtain the desired dissipative estimate in the L∞ norm for both
components.

We start with rewriting equation (9.1) in the following way:

∂tM = ∂x

(
|M |γ∂x

(
1

α− γ + 1
M |M |(α−γ+1)−1 − ρ

))
+ f(t,M, ρ)

In order to derive our first a priori estimate, we multiply this equation by(
1

α−γ+1M |M |(α−γ+1)−1 − ρ
)

and integrate over (a, b) to obtain that

(
∂tM,

1

α− γ + 1
M |M |(α−γ+1)−1 − ρ

)

= −
(
|M |γ ,

∣∣∣∣∂x
(

1

α− γ + 1
M |M |(α−γ+1)−1 − ρ

)∣∣∣∣
2
)

+

(
f(t,M, ρ),

1

α− γ + 1
M |M |(α−γ+1)−1 − ρ

)

≤
(
f(t,M, ρ),

1

α− γ + 1
M |M |(α−γ+1)−1 − ρ

)
.

⇔ d

dt

(
1

(α− γ + 1)(α− γ + 2)

∥∥∥|M |α−γ+2
2

∥∥∥2 − (M,ρ)

)

≤
(
f(t,M, ρ),

1

α− γ + 1
M |M |(α−γ+1)−1 − ρ

)
− (∂tρ,M) (9.13)

and we multiply equation (9.2) by (∂tρ+ ρ− 1) in the same sense as above to
obtain that

‖∂tρ‖2 +
1

2

d

dt
||ρ− 1||2 = −1

2

d

dt
‖∂xρ‖2 − ‖∂xρ‖2 − (g(t,M, ρ), ∂tρ+ ρ− 1) ⇔

1

2

d

dt

(‖∂xρ‖2 + ||ρ− 1||2) = − ‖∂xρ‖2 − ‖∂tρ‖2 − (g(t,M, ρ), ∂tρ+ ρ− 1) .

(9.14)
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Adding inequalities (9.13) and (9.14) together, we obtain that

d

dt

(
1

(α− γ+1)(α− γ + 2)

∥∥∥|M |α−γ+2
2

∥∥∥2 − (M,ρ) +
1

2
‖∂xρ‖2 + 1

2
||ρ− 1||2

)

≤
(
f(t,M, ρ),

1

α− γ+1
M |M |(α−γ+1)−1 − ρ

)
− ‖∂xρ‖2 − (∂tρ,M)− ‖∂tρ‖2

− (g(t,M, ρ), ∂tρ+ ρ− 1) . (9.15)

We consider first the term containing g(t,M, ρ) = g1(t)ρ+ g2(t, ρ)M . It holds:

− (g1ρ, ∂tρ+ ρ− 1) = − 1

2

d

dt

(
g1||ρ||2

)
+

1

2

d

dt
g1||ρ||2 − g1

(||ρ||2 − (1, ρ)
)

≤
(9.8)

− 1

2

d

dt

(
g1||ρ||2

)− g1
(||ρ||2 − (1, ρ)

)

≤ − 1

2

d

dt

(
g1||ρ||2

)− (1 − ε)g1||ρ||2 + 1

4ε
g1

≤
(9.8)

− 1

2

d

dt

(
g1||ρ||2

)− (1 − ε)g1||ρ||2 + 1

4ε
g1(τ)

(9.16)

and

− (g2(t, ρ)M,∂tρ+ ρ− 1) ≤ ε ‖∂tρ‖2 + ε||ρ− 1||2 + 1

2ε
||g2(t, ρ)M ||2

≤
(9.9)

ε ‖∂tρ‖2 + ε||ρ− 1||2 + 1

2ε
g23 ||M ||2. (9.17)

By combining (9.16) and (9.17) with inequality

− (∂tρ,M)− ‖∂tρ‖2 ≤ 1

2
||M ||2 − 1

2
‖∂tρ‖2 (9.18)

and by choosing ε ≤ 1
2 , we have that

− (∂tρ,M) − ‖∂tρ‖2 − (g(t,M, ρ), ∂tρ+ ρ− 1)

≤ − 1

2

d

dt

(
g1||ρ||2

) − (1 − ε)g1||ρ||2 + ε||ρ− 1||2 +
1

4ε
g1(τ ) −

(
1

2
− ε

)
‖∂tρ‖2

+

(
1

2
+

1

2ε
g23

)
||M ||2
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≤
ε≤ 1

2

− 1

2

d

dt

(
g1||ρ||2

) − (1 − ε)g1||ρ||2 + ε||ρ− 1||2 +
1

4ε
g1(τ )

+

(
1

2
+

1

2ε
g23

)
||M ||2. (9.19)

Further, we can estimate the terms with f from (9.15) in the following way:

(
f(t,M, ρ),M |M |(α−γ+1)−1

)
≤

(9.7)

(
−F2M

2 + f3|M |, |M |(α−γ+1)−1
)

= − F2

∥∥∥|M |α−γ+2
2

∥∥∥2 + f3

∥∥∥|M |α−γ+1
2

∥∥∥2 ,
(9.20)

− (f(t,M, ρ), ρ) ≤
(9.6)

ε||ρ||2 + 1

4ε
f2
1

(
1 +

∥∥∥|M | ξ2∥∥∥2
)

≤2ε||ρ− 1||2 + 2ε+
1

4ε
f2
1 +

1

4ε
f2
1

∥∥∥|M | ξ2
∥∥∥2 . (9.21)

Using inequalities (9.19)–(9.21), we conclude from (9.15) that

d

dt

(
1

(α− γ + 1)(α− γ + 2)

∥
∥
∥|M |α−γ+2

2

∥
∥
∥
2

− (M,ρ)

+
1

2
‖∂xρ‖2 +

1

2
||ρ − 1||2 +

1

2
g1||ρ||2

)

≤ − F2

∥
∥
∥|M |α−γ+2

2

∥
∥
∥
2

+ f3

∥
∥
∥|M |α−γ+1

2

∥
∥
∥
2

+
1

4ε
f2
1

∥
∥
∥|M | ξ2

∥
∥
∥
2

+

(
1

2
+

1

2ε
g23

)
||M ||2

− ‖∂xρ‖2 − (1 − ε)g1||ρ||2 + 3ε||ρ− 1||2 + 2ε+
1

4ε
g1(τ ) +

1

4ε
f2
1 . (9.22)

In order to shorten the formulas, we introduce a new variable:

ϕ :=
1

(α− γ + 1)(α− γ + 2)

∥∥∥|M |α−γ+2
2

∥∥∥2 − (M,ρ)

+
1

2
‖∂xρ‖2 + 1

2
||ρ− 1||2 + 1

2
g1||ρ||2 + C (9.23)

where the constant C can be chosen in such a way that ϕ ≥ 1 holds. Indeed,
|M |α−γ+2

2 is the leading M -power present in the expression (9.23) due to the
assumptions made on α, γ and ξ, and we also have the estimate

(M,ρ) ≤ ε||ρ||2 + 1

4ε
||M ||2 (9.24)
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valued for all ε > 0. Moreover, applying the Poincaré and the Hölder inequalities
and adjusting the constants C and ε, we can deduce from (9.22) inequality

d

dt
ϕ ≤ −A1ϕ+ a2ϕ

θ (9.25)

for some A1 ∈ R+ and a2 ∈ L1
b(R), a2 ≥ 0 and

θ :=
max

{
α−γ+1

2 , ξ2

}
α−γ+2

2

∈ (0, 1).

A simple calculation shows that any solution ϕ of inequality (9.25) satisfies
inequality

ϕ(t) ≤
(
ϕ1−θ(τ)e−A1(1−θ)(t−τ) + (1− θ)

∫ t

τ

e−A1(1−θ)(t−s)a2(s) ds
) 1

1−θ

.

(9.26)

Applying Lemma 9.1 from the Appendix to inequality (9.26) and tacking into
account that a2 ∈ L1

b(R) and inequality (9.24) holds, we finally obtain our first
dissipative estimate. Set for short

yδ0 := ||M ||δ0δ0 + 1 + ‖∂xρ‖2 , (9.27)

δ0 := α− γ + 2 > 2,

it holds then:

yδ0(t) ≤ Cyδ0 yδ0(τ)e
−ωyδ0

(t−τ)
+Dyδ0

. (9.28)

for some Cyδ0 , ωyδ0 , Dyδ0
that dependent only upon the parameters of the problem.

Notation 2. For the sake of convenience, we assume that the constants Bi (appear
below) for all indices i are only dependent upon the parameters of the problem
(9.6)–(9.11), that is, upon the constants a, b,α, γ, η, κ, ξ, ||f1||L2

b(R)
, F2, ||f3||Lκ

b
,

||g1||∞, ||g3||Lη
b (R)

, and not upon the initial data Mτ , ρτ or the time variables τ
and t, or (unless stated otherwise) any other parameters.

In what follows, we use (9.28) in order to obtain several intermediate dissipa-
tive estimates for M and ρ, which in turn lead to an L∞-dissipative estimate.
The following observation, which is an implication from the theory of abstract
parabolic evolution equations (see [15]), will be helpful further.

Having a δ ∈ (2,∞) fixed, consider the unbounded operator

∂xx : Lδ(a, b)→ Lδ(a, b)
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equipped with the domain

D (∂xx) :=
{
u ∈ W 1,δ

0 (a, b) : ∂xxu ∈ Lδ(a, b)
}
.

It is known (see [15]) that this operator generates an analytic semigroup et∂xx and
its spectrum lies entirely in {λ ∈ R : λ ≤ −β} for some β > 0. As such it has the
following properties:

(−∂xxρ)μ et∂xx = et∂xx (−∂xxρ)μ , (9.29)∥∥et∂xx (−∂xxρ)μ
∥∥
δ
≤ Aμ,δe−βtt−μ (9.30)

for all t > 0 and μ > 0 for some constants Aμ,δ . Now, Eq. (9.2) can be rewritten in
the following way:

∂t(ρ− 1) = ∂xx(ρ− 1)− g(t,M, ρ)

and can thus be regarded as an abstract parabolic evolution equation with respect to
ρ− 1. Therefore for all t > 0 holds:

ρ(t)− 1 = e(t−τ)∂xx(ρ(τ) − 1)−
∫ t

τ

e(t−s)∂xxg(s,M(s), ρ(s)) ds. (9.31)

and applying the operator ∂x to both sides of (9.31) and making use of the
property (9.29), we obtain that

∂xρ(t) = e(t−τ)∂xx∂xρ(τ) −
∫ t

τ

∂x

(
e(t−s)∂xxg(s,M(s), ρ(s))

)
ds. (9.32)

We want to estimate ‖∂xρ‖∞ using (9.32). The initial value ρ(τ) is assumed to be
sufficiently smooth, so that holds

‖∂xρ(τ)‖∞ <∞. (9.33)

What remains is to estimate theL∞-norm of the integral from (9.32) with the help of
(9.30) and the assumptions on g. Choosing μ = 3

4 and recalling that W
3
2 ,δ̂(a, b) ↪→

W 1,∞(a, b) for δ̂ > 2, we arrive at the estimate

∥∥∥∥
∫ t

τ

∂x

(
e(t−s)∂xxg(s,M(s), ρ(s))

)
ds

∥∥∥∥
∞

≤
∫ t

τ

∥∥∥(−∂xx) 3
4

(
e(t−s)∂xxg(s,M(s), ρ(s))

)∥∥∥
δ̂
ds

≤A 3
4 ,δ̂

∫ t

τ

e−β(t−s)(t− s)−
3
4

(|g1(s)|||ρ(s)||δ̂ + g3(s)||M(s)||δ̂
)
ds. (9.34)
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Altogether, we obtain from (9.32)–(9.34) the following estimate:

‖∂xρ(t)‖∞ ≤e−βt ‖∂xρ(τ )‖∞ +A
3
4
,δ̂·

·
∫ t

τ

e−β(t− s)(t− s)− 3
4 (|g1(s)|+ g3(s)) (||ρ(s)||δ̂ + ||M(s)||δ̂) ds.

(9.35)

Leaving this result for a moment and returning to Eq. (9.1), we multiply this
equation by M |M |δ−1 for an arbitrary δ ≥ α− γ + 1, so that all occurring powers
remain nonnegative, and (formally) integrate over (a, b):

(
∂tM,M |M |δ−1

)
=(∂x (|M |α∂xM)− ∂x (|M |γ∂xρ)

+f(t,M, ρ),M |M |δ−1
)
.

It follows:

1

δ + 1

d

dt

∥∥∥|M | δ+1
2

∥∥∥2 =− 4δ

(α+ δ + 1)2

∥∥∥∂x|M |α+δ+1
2

∥∥∥2

+
2δ

α+ δ + 1

(
∂x|M |α+δ+1

2 , |M |γ−α
2 + δ−1

2 ∂xρ
)

+ (f(t,M, ρ),M |M |δ−1). (9.36)

Denote ϑ(δ) :=
γ− α

2 + δ−1
2

α+δ+1
2

. Then ϑ(δ) < 1 holds due to the assumption α > γ.

Applying Hölder’s inequality, we obtain that

(
∂x|M |α+δ+1

2 , |M |γ−α
2
+ δ−1

2 ∂xρ
)
=
(
∂x|M |α+δ+1

2 , |M |ϑ(δ)α+δ+1
2 ∂xρ

)

≤ ‖1‖ 2
1 − θ(δ)

∥∥∥∂x|M |α+ δ +1
2

∥∥∥ ∥∥∥|M |α+δ+1
2

∥∥∥ϑ(δ)

2
‖∂xρ‖∞

≤B1

∥∥∥∂x|M |α+δ+1
2

∥∥∥1+ϑ(δ)
‖∂xρ‖∞ . (9.37)

For the last inequality the Poincaré inequality has been used.
Further, we use once more the Hölder inequality and the assumptions on the

function f and write:

(f(t,M, ρ),M |M |δ−1) ≤− F2

∥∥∥|M | δ+1
2

∥∥∥2 + f3

∥∥∥|M | δ2 ∥∥∥2 (9.38)

≤− F2

∥∥∥|M | δ+1
2

∥∥∥2 + f3 ‖1‖δ+1

(∥∥∥|M | δ+1
2

∥∥∥2
) δ

δ+1

.

(9.39)
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We can conclude from (9.36) using (9.37) and (9.39) that:

1

δ + 1

d

dt

∥∥∥|M | δ+1
2

∥∥∥2 ≤− 4δ

(α+ δ + 1)2

∥∥∥∂x|M |α+δ+1
2

∥∥∥2

+
2δ

α+ δ + 1
B1

∥∥∥∂x|M |α+δ+1
2

∥∥∥1+ϑ(δ) ‖∂xρ‖∞
− F2

∥∥∥|M | δ+1
2

∥∥∥2 + f3 ‖1‖δ+1

(∥∥∥|M | δ+1
2

∥∥∥2
) δ

δ+1

.

Since 1 + ϑ(δ) < 2 it follows with the Young inequality:

1

δ + 1

d

dt

∥∥∥|M | δ+1
2

∥∥∥2 ≤ − F2

∥∥∥|M | δ+1
2

∥∥∥2 + f3 ‖1‖δ+1

(∥∥∥|M | δ+1
2

∥∥∥2
) δ

δ+1

+B2(δ) ‖∂xρ‖
2

1−ϑ(δ)∞ , (9.40)

where B2(δ) = 1−ϑ(δ)
2

(
2δ

α+δ+1B1

) 2
1−ϑ(δ)

(
4δ

(α+δ+1)2
2

1+ϑ(δ)

)− 1+ϑ(δ)
1−ϑ(δ)

, therefore

this constant depends only on δ and the parameters of the problem.
Next, we return to equality (9.36) to repeat the whole procedure once more but

this time being more precise about the estimates being made and using the regularity
achieved up to this point. First, due to (9.38) and two obvious inequalities, we have

d

dt

∥∥∥|M | δ+1
2

∥∥∥2 =− 4δ(δ + 1)

(α+ δ + 1)2

∥∥∥∂x|M |α+δ+1
2

∥∥∥2

+
2δ(δ + 1)

α+ δ + 1

(
∂x|M |α+δ+1

2 , |M |γ−α
2 + δ−1

2 ∂xρ
)

+ (δ + 1)(f(t,M, ρ),M |M |δ−1).

≤−B3

∥∥∥∂x|M |α+δ+1
2

∥∥∥2

+ (δ + 1)B4 ‖∂xρ‖∞
∥∥∥∂x|M |α+δ+1

2

∥∥∥ ∥∥∥|M |α+δ+1
2

∥∥∥ϑ(δ)

− (δ + 1)F2

∥∥∥|M | δ+1
2

∥∥∥2 + (δ + 1)B5f3

∥∥∥|M |α+δ+1
2

∥∥∥2ζ
(9.41)

for δ ≥ α− γ + 1 with ζ = δ
α+δ+1 .

Recall that f3 ∈ Lκb (R) and κ > 1. Taking into account a special case of the
interpolation inequality for Sobolev spaces (see [1]):

||v|| ≤ Iκ,p ‖∂xv‖1− 1
κ ||v|| 1κp , p =

6

1 + 2κ
,
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we obtain with the help of the Young inequality that

(δ + 1) ‖∂xv‖ ||v||ϑ(δ)

≤(δ + 1) (Iκ,p)
ϑ(δ) ‖∂xv‖1+ϑ(δ)(1− 1

κ ) ||v||ϑ(δ) 1
κ

p

≤ (Iκ,p)
ϑ(δ)

⎛
⎝ε ‖∂xv‖2 +B6(ε)(δ + 1)

2

1−ϑ(δ)(1− 1
κ ) ||v||

2ϑ(δ) 1
κ

1−ϑ(δ)(1− 1
κ )

p

⎞
⎠ (9.42)

and

(δ + 1)f3||v||2ζ ≤ (δ + 1)f3 (I
κ,p)2ζ ‖∂xv‖2ζ(1− 1

κ ) ||v||2ζ
1
κ

p

≤ (Iκ,p)2ζ

⎛

⎜
⎝ε ‖∂xv‖2 +B7(ε) (f3(δ + 1))

1

1−ζ(1− 1
κ ) ||v||

2ζ 1
κ

1−ζ(1− 1
κ )

p

⎞

⎟
⎠ ,

(9.43)

where B6(ε) and B7(ε) depend only on ε and the parameters of the problem.
With the Hölder inequality, we also have

∥∥∥|M |α+δ+1
2

∥∥∥
p
≤ ∥∥|M |α2 ∥∥ qp

q−p

∥∥∥|M | δ+1
2

∥∥∥
q
, q >

2

1 + 2κ
. (9.44)

Since κ > 1 is, 2
1+2κ < 2 holds, we can assume that q < 2 and that it is independent

from δ. Combining (9.42)–(9.43) for v := |M |α+δ+1
2 with (9.44) and choosing ε

small enough depending only on Iκ,p andB3 (thus it depends only on the parameters
of the problem), we can conclude from (9.41):

d

dt

∥∥∥|M | δ+1
2

∥∥∥2 ≤ B8
(‖∂xρ‖∞ (δ + 1)

) 2

1−ϑ(δ)(1− 1
κ )

(∥∥∥|M |α2
∥∥∥ qp

q−p

∥∥∥|M | δ+1
2

∥∥∥
q

) 2ϑ(δ) 1
κ

1−ϑ(δ)(1− 1
κ )

+B8 (f3(δ + 1))

1

1−ζ(1− 1
κ )

(∥∥∥|M |α2
∥∥∥ qp

q−p

∥∥∥|M | δ+1
2

∥∥∥
q

) 2ζ 1
κ

1−ζ(1− 1
κ )

−F2(δ + 1)
∥∥∥|M | δ+1

2

∥∥∥2

for δ ≥ α− γ + 1. Since ϑ(δ), ζ ∈ (0, 1) it follows for all δ ≥ α− γ + 2:

d

dt

(
‖M‖δ

δ + 1
)

≤B8δ
2κ

(‖∂xρ‖2κ
∞ + fκ

3 + 1
) (‖M‖α

α
2

qp
q−p

+ 1
)(

‖M‖qδ/2
qδ/2 + 1

) 2
q

− F2δ
(
‖M‖δ

δ + 1
)



192 M. Efendiev and A. Zhigun

and once more, we get an integral inequality for ‖M(t)‖δδ + 1:

‖M(t)‖δ
δ + 1 ≤B8δ

2κ

∫ t

τ

e−δF2(t−s)
(‖∂xρ(s)‖2κ

∞ + fκ
3 (s) + 1

) (‖M(s)‖α
α
2

qp
q−p

+ 1
)

·
(
‖M(s)‖qδ/2

qδ/2 + 1
) 2

q
ds+ e−δF2(t−τ)

(
‖M(τ )‖δ

δ + 1
)
. (9.45)

We are now ready to derive more dissipative estimates for the problem (9.1)–(9.4).
We will extensively use the following

Lemma 9.1. Let z1, z2, z3 : [τ,+∞)→ [0,+∞) be such functions that

z1(t) ≤ ψ1(z1(τ))e
−ω1t +D1,

z2(t) ≤ ψ2(z2(τ))e
−ω2t +D2,

z3(t) ≤ z3(τ)e
−ω3t +

∫ t

τ

e−ω3(t−s)d3(t, s)z1(s) ds, (9.46)

z1(τ), z2(τ), z3(τ) ≥ 1,

for some constants ω1, ω2, ω3 > 0 and D1, D2 ≥ 1, some non-decreasing
functions ψ1, ψ2 : [1,+∞) → [1,+∞) and some d3 ∈ L∞(R+

τ , L
1
b(R

+
τ )). Then it

holds that

1. (z1 + z2)(t) ≤ (ψ1 + ψ2)((z1 + z2)(τ))e
− min{ω1,ω2}t +D1 +D2;

2. z1z2(t) ≤ 3D1D2ψ1ψ2(z1z2(τ))e
− min{ω1,ω2}t +D1D2;

3. zσ1 (t) ≤ max
{
1, 2σ−1

}
(ψσ1 (z1(τ))e

−σω1t +Dσ
1 ) ∀σ > 0;

4. For ω1 �= ω3

z3(t) ≤
(
ψ1(z1(τ))

1

1 − e−|ω1−ω3| e
−min{ω1,ω3}t +D1

1

1− e−ω3

)

· ||d3||L∞(R+
τ ,L1

b(R
+
τ )) + z3(τ)e

−ω3t (9.47)

and for ω3 = ω1

z3(t) ≤
(
ψ1(z1(τ)) #t$ e−ω1t +D1

1

1− e−ω1

)
||d3||L∞(R+

τ ,L1
b(R

+
τ ))

+ z3(τ)e
−ω1t.

For ω1 < ω3, we also have that

z3(t) ≤z3(τ)e−ω3t + z1(t)

∫ t

τ

e−(ω3−ω1)(t−s)d3(t, s) ds.
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(See Appendix 9.3 for some details regarding the proof of this lemma.)
Lemma 9.1 is very useful in our situation. It shows actually that the “dissipative

property” is preserved under standard operations (addition, multiplication, raising
to a power and integration).

To shorten the formulas let us set

h := ‖∂xρ‖∞ + 1,

uδ := ||M ||δδ + 1, δ ∈ [1,∞).

Observe that particular powers of yδ0 and h, h and uδ (for sufficiently large δ) can
be connected with one another by the inequalities of the type (9.46) in the same
manner as z1 and z3 from Lemma 9.1 are. From the Lemma 9.1, we can conclude
that all of them dissipate exponentially with t:

h(t) ≤ Ch(h+ yδ0)
rh(τ)e−ωh(t−τ) +Dh, (9.48)

uδ(t) ≤ U
(
uδ(τ) + Cuδ

(h+ yδ0)
rδ(τ)

)
e− F2

2 δ(t−τ) +Duδ
=: ũδ(t), (9.49)

where the appearing coefficients depend on the parameters of the problem, and only
the coefficients Cuδ

and Duδ
depend on δ as well. We especially emphasize that r

is independent from δ (it will be crucial for the existence of the uniform dissipative
estimate). Indeed, from (9.35) and the definition of yδ0 (yδ0 > 1, see (9.27)), we
obtain for δ̂ := min {α− γ + 2, 3} > 2 that

‖∂xρ(t)‖∞ ≤e−βt ‖∂xρ(τ)‖∞ +A
3
4 ,δ̂·

·
∫ t

τ

e−β(t−s)(t− s)−
3
4 (|g1(s)|+ g3(s))

(||ρ(s)||δ̂ + ||M(s)||δ̂
)
ds

≤e−βt ‖∂xρ(τ)‖∞ + C δ̂A
3
4 ,δ̂·

·
∫ t

τ

e−β(t−s)(t− s)−
3
4 (|g1(s)|+ g3(s))yδ0(s) ds (9.50)

sinceW
3
2 ,δ̂ ⊂W 1,∞ andW 1,2(a, b) ⊂ Lδ̂(a, b) (with the embedding constantC δ̂).

The estimate for h now follows with (9.50) and Lemma 9.1 due to the fact that for the

function d(t, s) := (t−s)− 3
4

+ (|g1(s)|+g3(s)) the condition sup
t>0
||d(t, ·)||L1

b(R)
<∞

is satisfied (recall that we assumed that g1 ∈ L∞(R) and g3 ∈ Lηb (R), η > 4).
Let us now check the dissipative estimate (9.49). The estimate (9.40) reads:

1

δ

d

dt
uδ ≤− F2uδ + (b − a)f3u

δ−1
δ

δ +B2(δ)h
2

1−ϑ(δ) . (9.51)
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Recall that ϑ(δ) = γ−α
2 + δ−2

2
α+δ
2

and consequently 2
1−ϑ(δ) = α+δ

α−γ+1 ≤ B9δ for some

B9 and δ ≥ δ∗ sufficiently large. Now, the Young inequality yields:

u
δ−1
δ

δ = (εuδ)
δ−1
δ ε− δ−1

δ ≤ δ − 1

δ
εuδ +

1

δ
ε−(δ−1),

therefore it follows from (9.51)

d

dt
uδ ≤− δ

(
F2 − ε(b− a)f3

δ − 1

δ

)
uδ + ε−(δ−1)(b − a)f3 + δB2(δ)h

B9δ.

Gronwall’s lemma yields then

uδ(t) ≤
∫ t

τ

e−δ
∫ t
s F2−ε(b−a)f3(s)

δ−1
δ

ds
(
ε−(δ−1)(b− a)f3(s) + δB2(δ)h

B9δ(s)
)
ds

+ e−δ
∫ t
τ F2−ε(b−a)f3(s)

δ−1
δ

dsuδ(τ ). (9.52)

Observe that it holds

∫ t

τ

F2 − ε(b− a)f3(s) ds ≥F2(t− τ ) − ε(b− a)

∫ �t�

	τ

f3(s) ds

≥F2(t− τ ) − ε(b− a)||f3||L1
b
(R)(
t� − �τ)

≥
(
F2 − ε(b− a)||f3||L1

b
(R)

)
(t− τ ) − 2ε(b− a)||f3||L1

b
(R).

(9.53)

For ε := F2

2(b−a)||f3||
L1
b
(R)

it follows with (9.52) and (9.53)

uδ(t) ≤eF2

(∫ t

τ

e−(t−s)δ F2
2

(
ε−(δ−1)(b− a)f3(s) + δB2(δ)h

B9δ(s)
)
ds

+e−(t−τ)δF2
2 uδ(τ)

)
.

The dissipate estimate (9.49) follows now with the estimate (9.47) of Lemma 9.1
and the dissipate estimate (9.48) for h.

Now, we can conclude from inequality (9.45) that

uδ(t) ≤e−δF2(t−τ)uδ(τ) +B8δ
2κ

∫ t

τ

e−δF2(t−s)H1(s)ũ
2
q
q
2 δ
(s) ds, (9.54)
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where

H1(t) :=
(
h2κ(t) + fκ3 (t) + 1

)
ũ

2(q−p)
qp

α
2

qp
q−p

(t).

Taking into account that u
2
q
q
2 δ

dissipates with e−δ F2
2 (t−τ) and that H1 dissipates

with an exponent independent of δ, we consecutively apply (9.47) to (9.54) and
obtain that

uδ(t) ≤e−δ F2
2 (t−τ)uδ(τ) +B8δ

2κũ
2
q
q
2 δ
(t)

∫ t

τ

e−δ F2
2 (t−s)H1(s) ds

≤e−δ F2
2 (t−τ)uδ(τ) +B10δ

2κ−1H2(t)ũ
2
q
q
2 δ
(t),

where

H2(t) :=
(
h2κ(t) + ||f3||κLκ

b
(R) + 1

)
ũ

2(q−p)
qp

α
2

qp
q−p

(t)

and δ ≥ δ∗ is sufficiently large. The bound δ∗ depends only on the parameters of
the problem. Therefore, we may assume that

ũ(t) =e−δ F2
2 (t−τ)uδ(τ) +B10δ

2κ−1H2(t)ũ
2
q
q
2 δ
(t), (9.55)

Since

uδ(τ) = ||M(τ)||δδ + 1 ≤ ||M(τ)||∞(b− a) + 1,

we conclude from (9.55) that for

Aδ(t) := ũδ(t)

(
e

F2
2 (t−τ)

||M(τ)||∞ + 1

)δ
+ 1 (9.56)

it holds

Aδ(t) ≤ B11H2(t)δ
2κ−1A

2
q
q
2 δ
(t).

One can show by induction then that

A
( q

2 )
n

( 2
q )

n
δ∗
(t) ≤ (

B11H2(t)δ
2κ−1
∗

)∑n
k=1(

q
2 )

k (q
2

)(2κ−1)
∑n

k=1 k(
q
2 )

k

Aδ∗(t)

→
n→∞

(
B11H2(t)δ

2κ−1
∗

) q
2

1− q
2

(q
2

)(2κ−1) q
2

(
1

1− q
2

)2

Aδ∗(t)

=: Hδ∗(t)Aδ∗(t).
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Therefore, we obtain that

lim sup
δ→∞

A
1
δ

δ (t) ≤ H(t)A
1
δ∗
δ∗ (t). (9.57)

Combining (9.57) with (9.56), we finally arrive at an estimate for ||M(t)||∞:

||M(t)||∞ + 1 = lim
δ→∞

u
1
δ

δ (t)

≤ lim sup
δ→∞

ũ
1
δ

δ (t)

≤H(t)

(
ũ

1
δ∗
δ∗ (t) + (||Mτ ||∞ + 1) e− F2

2 (t−τ)
)
. (9.58)

Now, since the functionsH and ũδ∗ dissipate exponentially (recall (9.48) and (9.49)
and the definition of H and H2), we apply Lemma 9.1 to (9.58) and conclude
that ||M ||∞ dissipates exponentially as well. Moreover, it follows from our proof
that there exists a dissipative estimate for ||M ||∞ of the form given in (9.12). The
dissipative estimate for ‖∂xρ‖∞ + 1 = h is given in (9.48) and the Theorem 9.2 is
thus proved.

9.3 Global Uniform Pullback Attractor
(Proof of Theorem 9.3)

It is generally known that the long time behavior of a non-autonomous dynamical
system can often be described in terms of its uniform pull-back attractor. Let us
recall several facts from the general theory of pullback attractors in Banach spaces
(for details we refer to [10, 13] and, for further development, to [4, 5] and the
references therein). We start with an abstract nonautonomous initial problem

⎧⎨
⎩

du

dt
= F (t, u), t > τ,

u(τ) = uτ , τ ∈ R,

(9.59)

in a Banach space T . If the initial problem (9.59) is well-posed for uτ ∈ T , it
generates a family of solving operators U(t, τ) that acts on T mapping the initial
data at time τ onto the solution at time t:

U(t, τ)(uτ ) := u(t), t ≥ τ, uτ ∈ T .
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This family of operators satisfies the properties

U(τ, τ) = idT ∀τ ∈ R,

U(t, τ) = U(t, s) ◦ U(s, τ) ∀t ≥ s ≥ τ, τ, s, t ∈ R,

where idT denotes the identity operator. We say that it forms a process on the phase
space T .

Definition 9.2. A family A (t), t ∈ R is called global uniform pullback attractor
in T if

(i) The sets A (t) are compact in T for all t ∈ R.
(ii) The invariance property holds:

U(t, τ)A (τ) = A (t) ∀t ∈ R.

(iii) The uniform pullback attracting property holds: for every bounded set B ⊆ T

lim
s→+∞sup

t∈R

distT (U(t, t− s)B,A (t)) = 0.

Here distT denotes the non-symmetric Hausdorff distance between subsets of T :

distT (X,Y ) := sup
x∈T

inf
y∈T
||x− y||.

Recall now a general criteria for the existence of a global uniform pullback attractor:

Theorem 9.4. Let U(t, τ) be a process in a Banach space T , U(t, τ) ∈ C(T )
for all t ≥ τ , and having a compact uniformly absorbing set K ⊆ T . Then the
process U(t, τ) has a global uniform pullback attractor A (t), t ∈ R and it holds:
∪
t∈R

A (t) ⊆ K .

Remark 9.4. The attraction property (iii) from Definition 9.2 has the following
interpretation: for each time t ∈ R, A (t) attracts bounded sets of initial data
coming from the past (i.e., from −∞). Forward convergence is not true in general.
However, under the assumptions of Theorem 9.4, the absorbing set K is uniformly
both pullback and forward absorbing. In this case, each global uniform pullback
attractor A (t) is at the same time a global uniform forward-attractor for the process
U(t, τ), i.e., the following forward attracting property (compare with the property
(iii) from the Definition 9.2) holds: for every bounded set B ⊆ T

lim
s→+∞sup

t∈R

distT (U(t+ s, t)B,A (t+ s)) = 0.

Our goal is now to apply the general theory to the problem (9.1)–(9.4). We
showed in [6] that the problem (9.1)–(9.4) if considered as an equation with respect
to (M,ρ) in the Banach space L∞(a, b)×W 1,∞(a, b) is well posed: for each pair
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of initial values (Mτ , ρτ ) ∈ L∞(a, b) ×W 1,∞(a, b) there exist a unique solution
(M(t), ρ(t)), t ∈ [τ,+∞) in terms of Definition 9.1. We define the solving process
U(t, τ) as follows:

U(t, τ)(Mτ , ρτ ) := (M(t), ρ(t)) for all t ≥ τ.

Therefore, it is sufficient to show the existence of a compact uniformly absorbing set
in B∗ and the continuity of the process operators U(t, τ) for all t > τ . The general
criteria Theorem 9.4 would be then applicable to U(t, τ).

Let us first show the existence of a compact uniformly absorbing set. We multiply
equation (9.1) with (α+ 1)∂t|M |αM and integrate over (a, b):

(α+ 1) (∂tM,∂t|M |αM) =
(
∂xx|M |αM + (α+ 1)f̂(t,M, ρ), ∂t|M |αM

)
.

Here:

f̂(t,M, ρ) =− ∂x (|M |γ∂xρ) + f(t,M, ρ).

After integration by parts, we obtain that

(
α+ 1
α
2
+ 1

)2 ∥
∥
∥∂t|M |α2 +1

∥
∥
∥
2

= − 1

2

d

dt

∥∥∂x|M |α+1
∥∥2

+ (α+ 1)
(
f̂(t,M, ρ), ∂t|M |αM

)
.

It follows with multiplying by t− τ :

1

2

d

dt

(
(t− τ)

∥∥∂x|M |α+1
∥∥2)

=
1

2

∥∥∂x|M |α+1
∥∥2 −

(
α+ 1
α
2 + 1

)2 (√
t− τ

∥∥∂t|M |α2 +1
∥∥)2

+
(α+ 1)2

α
2 + 1

(
|M |α2 f̂(t,M, ρ)

√
t− τ ,

√
t− τ∂t|M |α2 M

)

≤1

2

∥∥∂x|M |α+1
∥∥2 + 1

2
C1(t− τ)

∥∥∥|M |α2 f̂(t,M, ρ)
∥∥∥2 .

Integrating over [τ, t], we obtain that

(t− τ)
∥∥∂x|M(t)|α+1

∥∥2 ≤
∫ t

τ

∥∥∂x|M(s)|α+1
∥∥2

+ C1(s− τ)
∥∥∥|M(s)|α2 f̂(s,M(s), ρ(s))

∥∥∥2 ds.
(9.60)
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It remains therefore to estimate the integral on the right side of (9.60). We have

∥
∥
∥|M |α2 f̂(s,M, ρ)

∥
∥
∥ =

∥∥
∥
∥

γ
α
2
+ γ

∂x|M |α2 +γ · ∂xρ+ |M |α2 +γ∂xxρ+ |M |α2 f(s,M, ρ)

∥∥
∥
∥

≤ γ
α
2
+ γ

‖∂xρ‖∞

∥
∥
∥∂x|M |α2 +γ

∥
∥
∥+ ‖∂xxρ‖2

∥
∥
∥|M |α2 +γ

∥
∥
∥

∞

+
∥
∥
∥|M |α2 f(s,M, ρ)

∥
∥
∥ .

From the derivation of dissipative estimates for ||M ||δδ in Sect. 9.2, we conclude that
there exist nonnegative functions Φi(s, x, y), which are nondecreasing with respect
to s, x and y, independent of Mτ and ρτ and such that it holds:

∫ t

τ

∥∥∂x|M |α+1(s)
∥∥2 ds ≤Φ1

(
t− τ, ||Mτ ||L∞(a,b), ‖∂xρτ‖∞

)
, (9.61)

∫ t

τ

∥∥∂x|M |α2 +γ(s)
∥∥2 ds ≤Φ2

(
t− τ, ||Mτ ||L∞(a,b), ‖∂xρτ‖∞

)
. (9.62)

Recall that due to the classical energy estimate

∫ t

τ

‖∂xxρ(s)‖2 ds ≤‖∂xρ(τ)‖2 +
∫ t

τ

‖g(s,M(s), ρ(s)) ds‖2

≤Φ3

(
t− τ, ||Mτ ||L∞(a,b), ‖∂xρτ‖∞

)
. (9.63)

Combining (9.61)–(9.63) with (9.60), we get the following smoothing estimate
for M :

√
t− τ

∥∥∂x|M(t)|α+1
∥∥ ≤ ΦM

(
t− τ, ||Mτ ||L∞(a,b), ‖∂xρτ‖∞

)
(9.64)

for some nonnegative function ΦM (s, x, y), which is, again, nondecreasing with
respect to s, x and y and independent of Mτ and ρτ . Next, since

(−∂xx)
11
12 ρ(t) = (−∂xx)

11
12 e(t−τ)∂xxρτ

−
∫ t

τ

(−∂xx)
11
12 e(t−ω)∂xxg(ω,M(ω), ρ(ω)) dω,

we obtain that
∥∥∥(−∂xx) 11

12 ∂xxρ(t)
∥∥∥
2

≤
∥∥∥∥(−∂xx) 11

12 e(t−τ)∂xxρτ −
∫ t

τ

(−∂xx)
11
12 e(t−ω)∂xxg(ω,M(ω), ρ(ω)) dω

∥∥∥∥
2

≤C2(t− τ)−
5
12 ‖∂xρτ‖2 + C2

∫ t

τ

(t− ω)−
11
12 ‖g(ω,M(ω), ρ(ω)) dω‖2 .
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Thus there exists a nonnegative function Φρ(t, x, y) which is nondecreasing with
respect to t, x and y, independent of Mτ and ρτ and such that the following
smoothing estimate for ρ holds:

(t− τ)
5
12

∥∥∥(−∂xx) 11
12 ∂xxρ(t)

∥∥∥
2
≤Φρ

(
t− τ, ||Mτ ||δ̂, ‖∂xρτ‖∞

)
. (9.65)

Due to the smoothing properties (9.64)–(9.65) and the compact embeddings

H1(a, b) ⊂⊂ L∞(a, b),

W
11
6 ,2(a, b) ⊂⊂W 1,∞(a, b),

we obtain thatU(t, τ) mapsL∞(a, b)×W 1,∞(a, b)-balls onto relative compact sets
of L∞(a, b) ×W 1,∞(a, b) for all t ≥ τ . The dissipative estimate (9.12) provides
the existence of a ball B∗ := B(0, 2D∞) centered in 0 with radius 2D∞ which
uniformly absorbs all bounded sets of the space L∞(a, b)×W 1,∞(a, b).

Consequently, the set V∗ := ∪
t∈R

U(t, t− T∗)B∗ for T∗ := T (B∗) (recall that T∗
is such that U(t, t − T∗)B∗ ⊆ B∗, T∗ exists due to the fact that B∗ is an absorbing
set) is a relatively compact uniformly absorbing set for the process U(t, τ).

In [6], we derived local Lipschitz continuity for the solutions of (9.1)–(9.4) in the
following sense: for all T,R > 0 it holds

∥∥∥U(t, τ)
(
M (1)
τ , ρ(1)τ

)
− U(t, τ)

(
M (2)
τ , ρ(2)τ

)∥∥∥
H−1(a,b)×L2(a,b)

≤L(t, R)
∥∥∥(M (1)

τ , ρ(1)τ

)
−
(
M (2)
τ , ρ(2)τ

)∥∥∥
H−1(a,b)×L2(a,b)

(9.66)

for all
∥∥∥(M (i)

τ , ρ
(i)
τ

)∥∥∥
L∞(a,b)×W 1,∞(a,b)

≤ R, i = 1, 2 and some nonnegative non-

decreasing in both t and R function L(t, R) independent of M,ρ and τ .
Recall that due to embedding theorems for Sobolev spaces, we have

L∞(a, b)×W 1,∞(a, b)⊂H−1(a, b)× L2(a, b). (9.67)

Let
(
M

(n)
τ , ρ

(n)
τ

)
be a sequence convergent to some (Mτ , ρτ ). Due to

the continuous embedding (9.67) it converges in H−1(a, b) × L2(a, b) to
the same limit (Mτ , ρτ ). From the property (9.66), we deduce that the

sequences
(
U(t, τ)

(
M

(n)
τ , ρ

(n)
τ

))
converge to U(t, τ) (Mτ , ρτ ) in H−1(a, b) ×

L2(a, b) for all t ≥ τ . Let us further assume that for some t ≥ τ the

sequence
(
U(t, τ)

(
M

(n)
τ , ρ

(n)
τ

))
is convergent in L∞(a, b)×W 1,∞(a, b). Due to

(9.67) the limit is U(t, τ) (Mτ , ρτ ). Therefore, we can conclude that the operators
U(t, τ) are closed. Since any (nonlinear) closed compact operator is completely
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continuous (i.e., continuous and compact), we get the continuity of the operators
U(t, τ) in L∞(a, b)×W 1,∞(a, b).

Now let us denote by V ∗ the closure of the set V∗ in of L∞(a, b)×W 1,∞(a, b).
The set V ∗ is then a compact uniformly absorbing set for the process {U(t, τ)}t≥τ
in B∗ equipped with L∞(a, b)×W 1,∞(a, b)-topology and, as we have just shown,
the operators U(t, τ) are continuous in this space. Applying Theorem 9.4, we
deduce the existence of a global uniform pullback attractor A (t) for the process
{U(t, τ)}t≥τ in of L∞(a, b)×W 1,∞(a, b). It holds: ∪

t∈R

A (t) ⊆ V ∗.

Appendix (Proof of the Auxiliary Lemma 9.1)

Consider first the differential inequality

d

dt
y ≤ −ωyy + dyy

ζy

assuming that y ≥ 1, ζy ∈ (0, 1), dy ∈ L1
b(R) so that with some computation the

estimate

(y(t))1−ζy ≤ (y(τ))1−ζy e−ωy(1−ζy)t + (1− ζy)

∫ t

τ

e−ωy(1−ζy)(t−s)dy(s) ds

follows.

Lemma 9.2. Let z1, z2, z3 : [τ,+∞)→ [0,+∞) be such functions that

z1(t) ≤ ψ1(z1(τ))e
−ω1t +D1,

z2(t) ≤ ψ2(z2(τ))e
−ω2t +D2,

z3(t) ≤ z3(τ)e
−ω3t +

∫ t

τ

e−ω3(t−s)d3(t, s)z1(s) ds, (9.68)

z1(τ), z2(τ), z3(τ) ≥ 1,

for some constants ω1, ω2, ω3 > 0 and D1, D2 ≥ 1, some non-decreasing functions
ψ1, ψ2 : [1,+∞) → [1,+∞) and some d3 ∈ L∞(R+

τ , L
1
b(R

+
τ )). Then it holds

that

1. (z1 + z2)(t) ≤ (ψ1 + ψ2)((z1 + z2)(τ))e
− min{ω1,ω2}t +D1 +D2;

2. z1z2(t) ≤ 3D1D2ψ1ψ2(z1z2(τ))e
− min{ω1,ω2}t +D1D2;

3. zσ1 (t) ≤ max
{
1, 2σ−1

}
(ψσ1 (z1(τ))e

−σω1t +Dσ
1 ) ∀σ > 0;

4. For ω1 �= ω3
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z3(t) ≤
(
ψ1(z1(τ))

1

1 − e−|ω1−ω3| e
−min{ω1,ω3}t +D1

1

1− e−ω3

)

· ||d3||L∞(R+
τ ,L1

b(R
+
τ )) + z3(τ)e

−ω3t (9.69)

and for ω3 = ω1

z3(t) ≤
(
ψ1(z1(τ)) #t$ e−ω1t +D1

1

1− e−ω1

)
||d3||L∞(R+

τ ,L1
b(R

+
τ ))

+ z3(τ)e
−ω1t.

For ω1 < ω3, we also have

z3(t) ≤z3(τ)e−ω3t + z1(t)

∫ t

τ

e−(ω3−ω1)(t−s)d3(t, s) ds.

Proof. We only check the property (9.69). Since

∫ t

τ

e−ω3(t−s)e−ω1sd3(t, s) ds

=e−min{ω1,ω3}t
{∫ t

τ
e−|ω1−ω3|(t−s)d3(t, s) ds if ω1 < ω3∫ t

τ
e−|ω1−ω3|sd3(t, s) ds if ω1 > ω3

≤ 1

1− e−|ω1−ω3| e
−min{ω1,ω3}t||d3||L∞(R+

τ ,L1
b(R

+
τ )),

we conclude from (9.68) that

∫ t

τ

e−ω3(t−s)d3(t, s)z1(s) ds

≤
∫ t

τ

e−ω3(t−s)d3(t, s)
(
ψ1(z1(s))e

−ω1(t−s) +D1

)
ds

≤
(
ψ1(z1(τ))

1

1 − e−|ω1−ω3| e
−min{ω1,ω3}t +D1

1

1− e−ω3

)

· ||d3||L∞(R+
τ ,L1

b(R
+
τ )),

and (9.69) follows. ��
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10.1 Introduction

We consider random dynamical systems [10] induced by the iteration

Xn+1 = Ψ(Xn) + Ξn, n ≥ 0, (10.1)

under the assumption that X0 : Ω → R
N is a multivariate random variable

over some sample space Ω with given probability density function (PDF) π0(x),
Ξn : Ω → R

N are independent and identically distributed Gaussian random
variables with mean zero and covariance matrix Q ∈ R

N×N , i.e., Ξn ∼ N(0, Q),
and Ψ : RN → R

N is an appropriate map. The associated Chapman–Kolmogorov
equation [10] for the marginal PDFs πn(x), i.e., Xn ∼ πn, is given by

πn+1(x) =

∫

RN

1

(2π)N/2|Q|1/2 exp

(
−1

2
(x− Ψ(x′))TQ−1(x− Ψ(x′))

)
πn(x

′) dx ′

=

∫

RN

π(x|x′) πn(x
′) dx ′ (10.2)

with Markov transition kernel

π(x|x′) =
1

(2π)N/2|Q|1/2 exp

(
−1

2
(x− Ψ(x′))TQ−1(x− Ψ(x′))

)
.

Here |Q| denotes the determinant of Q.
In this paper, we will assume that (10.1) arises from the discretization of

an underlying stochastic differential equation (SDE) by the Euler–Maruyama
method [13] with step-size Δt > 0, i.e.,

Xn+1 = Xn +Δtf(Xn) +
√
2ΔtZn, tn+1 = tn +Δt,

and the marginal PDFs will be denoted by πX(x, tn) = πn(x). To avoid
confusion we will also use the notation X(tn) = Xn from now on. Hence
Ψ(X(tn)) = X(tn) + Δtf(X(tn)) is the drift term and Ξ(tn) =

√
2ΔtZn

describes diffusion with Zn ∼ N(0, γI) and diffusion coefficient γ > 0. The zero
diffusion limit γ = 0, i.e.

X(tn+1) = Ψ(X(tn)) = X(tn) +Δtf(X(tn)),

gives formally rise to the Chapman–Kolmogorov equation

πX(x, tn+1) =

∫
RN

δ(x − Ψ(x′))πX(x′, tn) dx′,

which is equivalent to

πX(Ψ(x), tn+1) |DΨ(x)| = πX(x, tn), (10.3)
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where DΨ(x) ∈ R
N×N denotes the Jacobian matrix of partial derivatives of

Ψ(x) and δ(·) the Dirac delta function. We emphasize that we are not interested
in the Δt → 0 limit in this paper and will consider Δt > 0 as a given, fixed
quantity. We emphasize furthermore that the algorithms considered in this paper
do not depend on this assumption and are applicable to general intermittent data
assimilation problems.

We assume the availability of partial observations yobs(jΔtobs) of the stochastic
process generated by (10.1) in discrete time intervals Δtobs and for j ≥ 1. We also
assume that Δtobs = LΔt, i.e., measurements are taken every L ≥ 1 time-steps.
The forward model for the observational process is assumed to be linear, i.e.,

Y = HX +Θ (10.4)

with forward operator H : R
N → R

K , measurement error Θ ∼ N(0, R), and
measurement error covariance matrix R ∈ R

K×K . It is assumed that measurement
errors at different instances in time are independent and identically distributed. The
associated likelihood function is denoted by πY (y|x).

The task of intermittent data assimilation is to determine the conditional PDFs
πX(x, tn|Yk) of the random variable X(tn) at tn = nΔt given collected
measurements

Yk = (yobs(t1)
T , yobs(t2)

T , · · · , yobs(tk)T )T

at observation times tj = jΔtobs, j = 1, . . . , k. We will consider the two cases
tn = tk (filtering) and tn > tk (prediction). See [12] for an excellent introduction
to stochastic processes and filtering.

Let us first consider the pure prediction problem with no observations (k = 0).
A Monte Carlo simulation of (10.1) would proceed as follows. First, one finds
M independent realizations xi(t0) from the initial PDF πX(x, t0). Second, each
realization is updated recursively and independently according to

xi(tn+1) = Ψ(xi(tn)) + ξi(tn), n ≥ 0, (10.5)

where ξi(tn) are independent realizations from the normal distributionN(0, Q) with
Q = 2γΔtI . Under appropriate conditions on the marginal PDFs πX(x, tn) it can
be shown that the empirical distribution

πem
X (x, tn) =

1

M

M∑
i=1

δ(x− xi(tn))

converges weakly to πX(x, tn) as M →∞ for any fixed n > 0.
Monte Carlo simulation approaches for the pure prediction problem have been

extended to the combined filtering-prediction problem and have given rise to a broad
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range of sequential Monte Carlo methods [2,8]. The essential idea is to augment the
realizations xi(tn) by weights wi(tn) > 0 subject to

∑
i

wi(tn) = 1

and to adjust the weights such that they reflect the importance of the samples xi(tn)
relative to the available measurements Yk while the samples xi(tn) continue to
follow the stochastic dynamics (10.1). A common problem of this basic impor-
tance sampling approach is a degeneracy of weights which requires resampling
techniques. Straightforward resampling can be achieved by eliminating samples
with small weights and duplication of those with large weights. Practical experience
shows that the just described combined importance sampling–resampling approach
of sequential Monte Carlo methods does not work well for high dimensional
problems unless the number of samples M is increased at a rate which scales
exponentially in the phase space dimension N [3]. At the same time, the ensemble
Kalman filter (EnKF) [9] has emerged as a robust alternative to sequential Monte
Carlo methods applicable to high dimensional problems. The EnKF relies on
Gaussian approximations to the marginal PDFs πX(x, tn|Yk) and can be shown to
be statistically inconsistent in the limit M → 0 (contrary to sequential Monte Carlo
methods) [16]. Hence the EnKF is only applicable to problems with an unimodal
and nearly Gaussian behavior of the underlying PDFs.

Recently, increased efforts have been made to turn sequential Monte Carlo
methods viable for large-scale problems. All these efforts have in common that
one tries to dynamically steer samples xi(tn) to regions of high probability
in πX(x, tn|Yk) and hence to maintain nearly uniform weights wi(tn) without
the need for frequent resampling. We will call these methods guided sequential
Monte Carlo (GSMC) methods. Particular instances of GSMC methods have been
discussed, for example, by [4, 5, 15, 18]. An alternative line of research is focused
on improvements of the EnKF. We mention the rank histogram filter (RHF) of [1]
and the moment corrected EnKFs of [16].

In this paper, we combine the coupling/transportation perspective on filtering
with sequential Monte Carlo methods in order to propose a novel GSMC method.
The outline of this paper is as follows. We will first review Bayes’ theorem and
its connection to coupling of random variables in Sect. 10.2. This will provide us
with an abstract Monte Carlo methodology for the combined filtering-prediction
problem. Finding exact couplings is impossible in most practical cases which
suggest to combine available couplings, such as EnKFs [9], with sequential Monte
Carlo methods. Algorithmic details will be given in Sect. 10.3 while a numerical
demonstration is provided in Sect. 10.4.
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10.2 Bayes’ Theorem, Filtering, and Coupling
of Random Variables

Recall that we have assumed that observations are taken in intervals of Δtobs which
satisfy Δtobs = ΔtL for an appropriate integer L ≥ 1. In this context it is helpful
to generalize the Chapman–Kolmogorov equation (10.2) to its L-fold recursive
application, i.e.,

πX(x, tn+Δtobs) =

∫
RN

· · ·
∫
RN

π(x|x′)π(x′|x′′) · · ·

π(x(L−1)|x(L))πX(x(L), tn) dx
′ · · · dx (L)

=

∫
RN

πL(x|x̃)πX(x̃, tn) dx̃ .

At the level of PDFs, the sequential data assimilation problem can now be stated as
follows: For j = 0, 1, . . . alternate between

(i) Prediction:

πX(x, tj+1|Yj) =
∫
RN

πL(x|x′)πX(x′, tj |Yj) dx ′, (10.6)

(ii) Filtering:

πX(x, tj+1|Yj+1) =
πY (yobs(tj+1)|x)πX(x, tj+1|Yj)∫

RN πY (yobs(tj+1)|x)πX(x, tj+1|Yj) dx (10.7)

with likelihood function

πY (y|x) = 1

(2π)K/2|R|1/2 exp

(
−1

2
(y −Hx)TR−1(y −Hx)

)

from the forward model (10.4).

Recall that πX(x, 0|Y0) is equal to the given PDF πX(x, t0) of the initial random
variable X(t0).

We now summarize a few Monte Carlo approaches for sequential data
assimilation. We have already discussed a Monte Carlo approach to simulating
the Chapman–Kolmogorov equation (10.2). We formally extend this approach
to the data assimilation problem (10.6)–(10.7). We introduce the notation
(xfi (tj), w

f
i (tj)), i = 1, . . . ,M , to denote M weighted samples from the forecast

(or predicted) distribution πX(x, tj |Yj−1) and, correspondingly, (xai (tj), w
a
i (tj)),

i = 1, . . . ,M , to denote weighted samples from the analyzed (or filtered)
distribution πX(x, tj |Yj) at time tj = jΔtobs. It follows that expectation values ḡ
of a function g : RN → R can be approximated according to
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ḡfM =

M∑
i=1

wfi (tj) g(x
f
i (tj)) ≈

∫
RN

g(x)πX(x, tj |Yj−1) dx

and

ḡaM =
M∑
i=1

wai (tj) g(x
a
i (tj)) ≈

∫
RN

g(x)πX(x, tj |Yj) dx ,

respectively.
The basic sequential Monte Carlo method is based on the following importance

sampling approach [2, 8]: For j = 0, 1, . . . alternate between

(i) Prediction:

xfi (tj+1) ∼ πL(·|xai (tj)), wfi (tj+1) = wai (tj), (10.8)

(ii) Filtering:

xai (tj+1) = xfi (tj+1), wai (tj+1) ∝ wfi (tj+1)πY (yobs(tj+1)|xfi (tj+1)),
(10.9)

where the constant of proportionality is chosen such that

M∑
i=1

wai (tj+1) = 1.

Due to a possible degeneracy of weights, it is necessary to perform resampling
either after each filtering step or whenever an appropriate criterion on the distribu-
tion of weights is satisfied. Residual resampling is one of the popular resampling
methods [2, 14].

We now summarize an alternative approach which leads to constant weights
wfi = wai = 1/M . The basic idea is that of coupling the prior and posterior
distributions [6, 19, 22]. In order to explain this idea in more detail, we simplify
the notation in (10.7) and use the shorthands

πprior
X (x) = πX(x, tj+1|Yj), πpost

X (x) = πX(x, tj+1|Yj+1)

for the prior and posterior distributions at tj+1, respectively. A coupling between
these two distributions is defined by a joint PDF πXZ(x, z) (or more generally by a
joint measure μXZ on R

N × R
N ) such that

πprior
X (x) =

∫
RN

πXZ (x, z) dz
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and

πpost
X (z) =

∫
RN

πXZ (x, z) dx ,

respectively. Given a coupling, one can replace (10.9) by the following Monte Carlo
approach:

(ii) Filtering:

xai (tj+1) ∼ πZ(·|xfi (tj+1)) :=
πXZ (x

f
i (tj+1), ·)

πprior
X (xfi (tj+1))

, wai (tj+1) = wfi (tj+1).

(10.10)

Hence the filtering step has now the same structural form as (10.8). The important
difference is that the Markov transition kernel πL(x|x′) is determined explicitly
by the model (10.1) while such a transition kernel needs to be constructed using a
coupling in case of the Bayesian filtering step (10.7) and depends on the observed
yobs(tj+1). In the literature, this is sometimes called the McKean approach to
filtering [17].

There is a further difficulty in that the prior and posterior PDFs are not explicitly
available in the context of sequential Monte Carlo methods and that approximations
π̄prior
X and π̄post

X , respectively, need to be estimated from the available samples xfi ,
their weights wfi and likelihoods πY (yobs|xfi ) either via parametric or nonparamet-
ric statistics [11, 26].

We now continue with a simple demonstration of the concept of coupling by
means of two univariate Gaussian random variables X ∼ N(x̄, σ2

xx ) and Z ∼
N(z̄, σ2

zz ). Since the marginal are given a priori, a joint Gaussian has to be of the
form N(m,P ) with mean m = (x̄, z̄)T ∈ R

2 and covariance matrix

P =

(
σ2
xx σ2

xz

σ2
zx σ2

zz

)
∈ R

2×2,

where the only free parameter σ2
xz = σ2

zx has to satisfy

σ2
xxσ

2
zz − σ4

xz > 0

to make P symmetric positive definite. Setting σxz = 0 implies independence of X
and Z and is equivalent to defining a coupling via the product PDF

πXZ (x, z) = πprior
X (x)πpost

X (z)

in the general case. We now consider σ2
xz > 0 and recall that (10.10) requires the

conditional PDF πZ(z|x) which in this example is characterized by the conditional
mean
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ẑ = z̄ +
σ2
xz

σ2
xx

(x− x̄)

and the variance

σ2 = σ2
zz − σ2

zxσ
−2
xx σ

2
xz .

If one sets σ2
xz =

√
σ2
xxσ

2
zz , then σ2 becomes zero and one obtains a deterministic

coupling of the two random variables via

Z = z̄ +
σzz
σxx

(X − x̄),

which amounts to the well-known transformation of univariate Gaussians under a
linear function.

Inspired by this example we will search for general deterministic couplings Z =
T (X) with associated joint probability measure

μXZ (dx , dz ) = δ(z − T (x))πprior
X (x) dxdz

from which it follows via marginalization that T has to satisfy

πpost
X (T (x)) |DT (x)| = πprior

X (x) (10.11)

(compare (10.3)). Once a deterministic coupling has been found, (10.10) can be
replaced by

(ii) Filtering:

xai (tj+1) = Tj+1(x
f
i (tj+1)), wai (tj+1) = wfi (tj+1) (10.12)

where Tj+1 is a transport map, satisfying (10.11) at tj+1, given the prior
πX(x, tj+1|Yj) and the measurement yobs(tj+1).

Optimality in the sense of Monge–Kantorovitch [25] is defined by

μ∗
XZ = arg inf

μXZ ∈Π

∫
RN×RN

‖x− z‖2μXZ (dx , dz ),

where the infimum runs over the set of all couplings μXZ , denoted by Π , with
marginals πprior

X and πpost
X . We first note that finding the optimal coupling between

empirical measures

μprior
X (dx ) =

1

M

M∑
i=1

δ(x− xfi )dx

and
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μpost
X (dz ) =

M∑
i=1

wiδ(z − xfi )dz

leads to a linear programming problem [6, 24]. Another key result of optimal
transportation states that the optimal coupling is induced by a transport map T (x)
for sufficiently regular prior PDFs πprior

X [25]. Furthermore, the transport map
satisfies T (x) = ∇xψ(x) for an appropriate potential ψ : RN → R. It follows
from (10.11) that the potential ψ has to satisfy the nonlinear elliptic PDE

πpost
X (∇xψ(x)) |D∇xψ(x)| = πprior

X (x). (10.13)

For univariate prior and posterior random variables with cumulative probability
distribution functions

Fprior(x) =

∫ x

−∞
πprior
X (x′) dx ′

and Fpost(x), respectively, a transport map is easily found via

z = T (x) = F−1
post(Fprior(x)). (10.14)

It becomes however computationally infeasible to solve (10.13) for ψ in case the
dimension N of phase space is large and/or πprior

X is non-Gaussian. Being forced to
give up the idea of strict optimality, one can resort to an idea of [20] (see also [25])
to find a deterministic coupling. Moser suggested to utilize a dynamic embedding
of the form

dx

ds
= − 1

πs(x)
∇xφ(x), (10.15)

with linearly interpolated PDFs

πs = (1− s)πprior
X + sπpost

X , s ∈ [0, 1],

and the potential φ determined by the Poisson equation

∇x · (∇xφ) = −πprior
X + πpost

X .

The desired transport map T is defined as the time-one flow map of the ODE (10.15).
The embedding technique of Moser has been applied and refined for the Bayesian
filtering step in sequential data assimilation by [22]. It has been demonstrated by
[23] that explicit solutions to the embedding technique (10.15) can be found in case
πprior
X is a multivariate Gaussian or a mixture of multivariate Gaussians.

Furthermore, the popular family of EnKFs [9] can be viewed as providing
couplings under the assumption that the prior distribution is approximated at tj+1

by a multivariate Gaussian with mean x̄f and covariance matrix P f . For example,
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the EnKF with perturbed observations leads to a non-deterministic (non-optimal)
coupling, which gives rise to

xai (tj+1) ∼ πZ(·|xfi (tj+1)) = N(xfi (tj+1)−K(Hxfi (tj+1)− yobs),KRKT )

in (10.10) with Kalman gain matrix

K = P fHT (HPfHT +R)−1.

See also the discussion in [6] on an optimal coupling for EnKFs based on the work
of [21].

We will now utilize available couplings for Bayesian inference in order to derive
GSMC methods for more general classes of prior and posterior distributions.

10.3 A GSMC Method

We assume that, at initial time t0 = 0, an ensemble of M independent samples
xi(0) ∈ R

N from the given PDF πX(x, 0) is being generated. Each sample is given
an initial weight of wfi (0) = 1/M .

In between observations, the ensemble is propagated under the dynamical
model (10.5). The initial conditions for each simulation interval are provided by
the analyzed ensemble members xai (tj) from the most current data assimilation
step. The model predictions at the next observation point tj+1 are denoted by
xfi (tj+1). The weights wi(tj) do not change during model simulations. Observed
values y(tj) ∈ R

K are assimilated in time intervals of Δtobs using the forward
model (10.4).

An essential ingredient of the proposed GSMC method is to find an
appropriate estimate π̄prior

X (x, tj+1) of the prior PDF from the weighted samples
(xfi (tj+1), w

f
i (tj+1)), i = 1, . . . ,M . For example, the prior distribution at time

tj+1 can be approximated using a Gaussian mixture or a Gaussian kernel density
estimator [26] of the form

π̄prior
X (x, tj+1) =

M∑
i=1

wfi
(2πh)N/2|P f |1/2 exp

(
− 1

2h
(x− xfi )

T (P f )−1(x− xfi )

)
,

wherexfi = xfi (tj+1),w
f
i = wfi (tj+1), P f denotes the empirical covariance matrix

of the forecast ensemble, and 1 ≥ h > 0 is the bandwidth of the estimator. From
now on we will drop the time argument and assume that all relevant quantities are
computed for t = tj+1 unless indicated otherwise.

Our GSMC approach relies on an appropriate transport map T̂ : RN → R
N ,

which will depend on both the forecast ensemble {(xfi , wfi )}Mi=1 and the measured
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yobs. It should be chosen such that the transformed posterior distribution π̃post
X ,

defined according to (10.11) by

π̃post
X (T̂ (x))|DT̂ (x)| = π̄prior

X (x),

is close to the desired posterior distribution

π̄post
X (x) := πX(x|yobs) ∝ πY (yobs|x)π̄prior

X (x).

Following the idea of importance sampling, we now define the analyzed ensem-
ble by xai = T̂ (xfi ) with updated weights

wai ∝ wfi
πY (yobs|xai ) π̄prior

X (xai )

π̃post
X (xai )

= wfi πY (yobs|xai ) |DT̂ (xfi )|
π̄prior
X (xai )

π̄prior
X (xfi )

,

where the normalization constant is chosen such that
∑
i w

a
i = 1.

Furthermore, we will assume that the transport map T̂ couples a prior π̂prior
X and

its associated posterior PDF π̂post
X exactly. Such transport maps exists for Gaussian

prior PDFs as well as Gaussian mixture prior PDFs. The coupling property implies
that

|DT̂ (x)| = π̂prior
X (x)

π̂post
X (T̂ (x))

and, furthermore, since

π̂post
X (T̂ (x)) ∝ πY (yobs|T̂ (x)) π̂prior

X (T̂ (x))

we may conclude that

|DT̂ (x)| ∝ π̂prior
X (x)

πY (yobs|T̂ (x)) π̂prior
X (T̂ (x))

.

Combining all these results leads to the modified filtering step:

(ii) Filtering:

xai = T̂ (xfi ), wai ∝ wfi
π̂prior
X (xfi )

π̂prior
X (xai )

π̄prior
X (xai )

π̄prior
X (xfi )

, (10.16)
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where the time argument tj+1 has been dropped for notational convenience.
Here π̄prior

X (x) denotes an estimate of the true underlying prior and π̂prior
X (x)

denotes a PDF which allows for the computation of a transport map T̂ (x).

The PDF π̂prior
X (x) should be chosen such that particle weights remain nearly uni-

form. If the accumulated weights become however strongly nonuniform, particles
can be resampled by the same techniques as being employed for traditional
sequential Monte Carlo methods.

We mention that the proposed GSMC algorithm can be extended to the case that
an exact coupling cannot be found for the given likelihood πY (y|x) and a simplified
likelihood π̂Y (y|x) needs be employed. In that case one would use

wai ∝ wfi
πY (yobs|xai )
π̂Y (yobs|xai )

π̂prior
X (xfi )

π̂prior
X (xai )

π̄prior
X (xai )

π̄prior
X (xfi )

in (10.16).
We next provide a simple numerical demonstration of the proposed GSMC

method using one-dimensional Brownian dynamics.

10.4 Brownian Dynamics Under a Double Well Potential

We consider one-dimensional Brownian dynamics

dx = −V ′(x) dt + dW (t)

with potential

V (x) = cos(x) +
3

4

(x
6

)4

and standard Brownian motion W (t) as a test example. The stochastic equations are
solved numerically by the Euler–Maruyama method, i.e.,

xn+1 = xn −ΔtV ′(xn) +
√
ΔtZn

with step-size Δt = 0.1 and Zn ∼ N(0, 1).
The measurement equation is

Y = X +
√
RΞ

with Ξ ∼ N(0, 1) and R = 36 is the variance of the measurement error.
Actual measurements are obtained from a reference trajectory (see Fig. 10.1) of
our Brownian dynamics model and added measurement noise. Ensemble sizes vary
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Fig. 10.1 Shown is the reference solution from which observations are generated by adding
Gaussian noise with mean zero and variance R = 36

between M = 20, 50 and 100. Measurements are taken every 10 units of time
(i.e., Δtobs = 10Δt) and a total of 1,000 assimilation steps are performed.

We compute a highly accurate reference solution by solving the Fokker–Planck
equation

∂πX
∂t

=
∂

∂x
(πXV

′) +
1

2

∂2πX
∂x2

with stationary PDF

π∗
X(x) ∝ exp(−2V (x))

over a computational grid with mesh-size Δx = 1/16. The results are used to
approximate the prediction step (10.6) directly on the level of PDFs. The grid
approximations to πX(x, tj+1|Yj) are then used to find grid approximation to the
analyzed PDFs πX(x, tj+1|Yj+1) using (10.7). These density approximations are
finally used to approximate the time-evolved means x̄ref(tn) which are taken as a
reference for the ensemble-based filter algorithms.

Given a set of particles xfi ∈ R with weights wi > 0 we compute the unweighted
ensemble mean

x̄f =
1

M

M∑
i=1

xfi

and the corresponding covariance matrix

P f =
1

M − 1

M∑
i=1

(xfi − x̄f )2,
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Table 10.1 RMS errors for ensemble means obtained from an ensemble square root filter
(EnKF), the ensemble Gaussian mixture filter (EGMF), the guided sequential Monte Carlo method
(GSMC), and the rank histogram filter (RHF) compared to the expected value computed by a
Fokker–Planck discretization with error variance R = 36 and ensemble sizes of M = 20, 50, 100
particles/ensemble members

EnKF EGMF GSMC RHF

M = 20 1.1590 0.7683 1.0200 0.6551
M = 50 1.0701 0.5127 0.7172 0.3717
M = 100 1.0477 0.4033 0.6534 0.2691

which implies a Gaussian prior

π̂prior
X (x) =

1

(2πP f )1/2
exp

(
− 1

2P f
(x − x̄f )2

)

for the application of the ensemble square root filter as a proposal map T̂ (x).
For the implementation of the GSMC approach we assume furthermore that

particles are given an index αi ∈ {−1, 1} indicating whether they belong to the
left or the right, respectively, potential well, i.e., αi = +1 if xfi > 0 and αi = −1 if
xfi < 0. We then approximate the prior distribution πX(x, tj+1|Yj) by

π̄prior
X (x) =

γ−1

(2π)1/2σ
exp

(
− 1

2σ2
(x− x̄−1)

2

)
+

γ+1

(2π)1/2σ
exp

(
− 1

2σ2
(x− x̄+1)

2

)

with

γtj =

M∑
i=1

δα,αiwi, α ∈ {−1,+1},

where δjk denotes the Kronecker delta,

x̄α =

M∑
i=1

δα,αiwix
f
i

and fixed standard deviation σ =
√
2. Clearly, a more sophisticated Gaus-

sian mixture model could be fitted to the available ensembles using the
expectation-maximization (EM) algorithm [7].

We also implemented the RHF of [1] using piecewise linear ensemble-based
approximations to the prior and posterior cumulative distribution functions Fprior,
Fpost and subsequent construction of a transport map for (10.12) using for-
mula (10.14).

Numerical results are presented in Table 10.1, where the root mean square (RMS)
error is defined as
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RMS error =

√√√√ 1

J

J∑
j=1

(x̄a(tj)− x̄ref(tj))2,

with x̄a(tj) denoting the analyzed ensemble average from the filter at time tj and
x̄ref(tj) its numerical approximation from the Fokker–Planck approach.

The RHF with a transport map based on cumulative distribution functions yields
the most accurate filter results. In fact, the RHF converges to the analytic filtering
solution as M → ∞. The second best result is obtained for the ensemble Gaussian
mixture filter (EGMF) of [23] for which a transport map is constructed using a
binary Gaussian mixture approximation for the distributions in x using the EM
algorithm. We also find that the GSMC approach yields an improvement over the
EnKF while not delivering results as accurate as those from the RHF and the EGMF.
Note that the GSMC implementation with T̂ based on a ensemble square root
filter can be viewed as an inexpensive post-processing step to the associated EnKF
algorithm.

10.5 Conclusions

From a mathematical perspective the coupling and optimal transportation approach
to Bayesian data assimilation offers attractive opportunities. Practical implementa-
tions are limited by the fact that optimal transport maps are difficult to compute
numerically. It has, however, been demonstrated for a wide range of problems that
rather crude approximations to the coupling/transport problem, such as the EnKF,
can lead to surprisingly robust data assimilation algorithms. In this paper, we have
followed a recent trend of combining crude ensemble transform approximations
with sequential Monte Carlo methods. More specifically, we have proposed an
importance sampling approach for post-processing existing ensemble transform
filter formulations. Such an approach should be useful whenever the underlying
ensemble transform filter is capable of tracking regions of high posterior probability
while being of limited statistical accuracy. Under those circumstances, post-
processing the data should lead to improved statistics.
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Chapter 11
Deterministic and Stochastic Dynamics
of Chronic Myelogenous Leukaemia Stem Cells
Subject to Hill-Function-Like Signaling

Tor Flå, Florian Rupp, and Clemens Woywod

Dedicated to Jürgen Scheurle on the occasion of his 60th
birthday

Abstract Based on a discrete Markovian birth-death model including regulated
symmetric and asymmetric cell division, we formulate a continuous four-
dimensional stochastic (ordinary) differential equation model for the dynamics
of Chronic Myelogenous Leukaemia (CML) stem cells in a bone marrow niche
involving signaling and competition between active stem cells. Invoking stochastic-
deterministic correspondence we then investigate two deterministic subsystems:
(a) the competition between active normal and wild-type CML stem cells or
also between two developing leukaemic stem cell strains is represented by a
two-dimensional equation system, and (b) a three-dimensional model involving
both cycling and noncycling normal stem cells as well as cycling wild-type CML
stem cells is defined. The four-dimensional equation system finally includes in
addition one cycling CML stem cell clone of an anti-CML-drug-resistant mutant.
By totally analytic means we discuss the existence and stability of the equilibria
of the three systems in the deterministic small noise limit, and establish, by
numerical means, connections between these classical results and the original
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Department of Mathematics and Statistics, University of Tromsø, 9037 Tromsø, Norway
e-mail: tor.fla@uit.no

F. Rupp
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stochastic setting. The robust, stable finite population equilibria can be interpreted
as homeostatic equilibria of normal and leukaemic stem cell populations, in the case
of the four-dimensional model for the scenario of treatment of the wild-type CML
clone with a CML suppressing agent, e.g., imatinib, which leads to the emergence
of a resistant CML strain. The four-dimensional model thus represents a common
clinical picture.

11.1 Introduction

One of the major challenges and driving forces of present day medicine is the quest
for an understanding of the mechanisms that cause and promote cancer on a cellular
level in order to design effective treatment strategies. From a theoretical perspective,
mathematical biology and in particular the theory of dynamical systems are playing
a key role for the simulation of tumor formation and development.

Chronic myelogenous leukaemia (CML) is the most common cancer of the
hematopoietic system, and the relatively simple and well-understood pattern of
origin and effects on the molecular level makes CML a very interesting target for
both experimentalists and theoreticians.

One assumes that normal cells residing in a stem cell niche mutate by an unreg-
ulated crossing-over of certain chromosomes during cell division into wild-type
leukaemic cells. Like normal stem cells, CML stem cells differentiate via asym-
metric division and produce progenitor cells which are able to leave the stem cell
niche and, through the process of differentiation, eventually lead to the observed
cancer symptoms. More precisely, CML is generated by mutated hematopoietic
stem cells which establish a hierarchy of progenitor and differentiated blood
cells with a cancerous phenotype. CML cells are characterized by a reciprocal
translocation of chromosomes 9 and 22. The shortened chromosome 22 carries
the BCR-ABL1 fusion gene. The corresponding BCR-ABL1 protein is oncogenic
and is a constitutively activated tyrosine kinase which is responsible for CML.
The agent imatinib inhibits the BCR-ABL1 tyrosine kinase by occupying the
ATP-binding site and prevents phosphorylation of its substrates [6]. Subsequently,
the downstream signaling pathways leading to leukogenesis are switched off.
Imatinib selectively acts on leukaemia cells by inducing a proliferation inhibiting
effect and an increase in the apoptotic rate of actively proliferating cells, cf.
[11, 31, 35, 43, 52]. Unfortunately, imatinib -resistant cancer clones may appear in
a subgroup of CML patients, see [20, 21, 53].

Several models for the description of CML have been proposed, see e.g.
[2, 8, 30, 31, 33–35, 38, 41–43, 52] and the literature therein. More generally models
for proliferation of metastases are given in, e.g., [7, 15], and for the signaling
between cells, which is considered a crucial part when it comes to understanding
tumors, in [16].

Michor et al. [11, 38] suggested a CML model including stem cells, progenitors,
and differentiated cells in which imatinib treatment does not affect the stem cell
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compartment. By assuming a sufficiently strong imatinib repression of the growth
rate of downstream cells, it was found that measurements of BCR-ABL1 transcripts
in the blood following imatinib treatment could be interpreted by a rapid initial
decay of differentiated leukaemic cells succeeded by a slower decay of leukaemic
progenitors. Later Roeder et al. [42, 43] have shown that clinical data showing a
biphasic decline of BCR-ABL1 transcripts as well as the rapid relapse of BCR-
ABL1 levels at treatment cessation can alternatively be explained by a model
including proliferating stem cells and quiescent stem cells.

Their CML model explains the biphasic decline of BCR-ABL1 transcripts by
competition for stem cell niches and implies that only quiescent CML stem cells
are unaffected by the drug. The Roeder model has a state space of a continuous
activation parameter and it has recently been shown to be equivalent to a PDE
transport model in this state space [41].

We will invoke a simplified picture of stem cell dynamics similar to [31–33, 35,
52] considering only cycling (i.e., stem cells that are actively participating in the
cell division cycle) and quiescent (= non-cycling) stem cells (i.e., stem cells that
have reversibly entered an inactive mode) explicitly in the model. Progenitor and
differentiated cell compartments are not explicitly taken into account.

The brief overview of computational models that have been developed for
the description of CML dynamics shows that both deterministic and stochastic
formalisms have been employed. Today, the study of stochastic-deterministic
correspondences in biological systems is an active field of research, see e.g. [1, 13].
Although we are inherently dealing with a stochastic system, information that may
be valuable for the stochastic approach can be gained by a precise knowledge of the
underlying deterministic system and in particular of its equilibria.

The stochastic dynamics can, e.g., be formulated as an Itô stochastic
differential/ Langevin equation. At an equilibrium point of the corresponding
deterministic system the drift term of the stochastic formulation vanishes and
only the pure diffusion part survives. In particular, the trajectories representing
solutions of an Itô stochastic differential equation will converge toward the
location of an asymptotically stable equilibrium of the deterministic system if
the diffusive influence can be assumed to be small. Similarly, the trapping of
stochastic trajectories at (stable) heteroclinic orbits or the avoidance of regions
near unstable deterministic equilibria can be observed. For instance, in the view
of a corresponding Fokker–Planck equation this leads to local density maxima at
deterministic asymptotically stable equilibria.

In this work, we have not considered the constitutive, deregulated symmetric
division of cancer stem cells as described, e.g., in [31–35, 52] since we are
not presently interested in modeling the blast phase. Instead, we investigate the
dynamics of the chronic phase induced by the wild type and, in one case,
additionally by one imatinib-resistant CML clone, but still dominated by normal
stem cells, progenitors, and differentiated cells close to homeostatic equilibrium.

The compartments of progenitor and differentiated cells, both normal and
leukaemic, are not explicitly included in the dynamical models. However, the
regulatory feedback effects of the downstream populations are implicitly taken
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into account in our stem cell models through appropriate competition parameters.
This concept is based on the idea that the time development of progenitors with
sufficiently fast decay and differentiated cells are in a quasi-static equilibrium on
the slow timescale of stem cell dynamics.

This chapter is structured as follows: in Sect. 11.2 we define a probabilistic four-
dimensional model (model C) of the stem cell system consisting of cycling and
noncycling normal stem cells as well as cycling wild-type and imatinib-resistant
CML stem cells. Starting from first principles, i.e., Markov transition probabilities,
we derive an approximated Fokker–Planck equation that leads to a stochastic
differential model equation system. Based on a biologically motivated scaling
argument, we infer that the diffusion part of this equation is rather small and study
the dynamics of the deterministic drift part in depth. This is done in Sect. 11.3, where
we determine, by totally analytic means, the location of all 13 equilibrium structures
in the full four-dimensional deterministic setting. Moreover, specific attention is
paid to a two-dimensional (model A, representing competing active normal and
wild-type CML stem cells or alternatively two competing leukaemic strains) and
a three-dimensional (model B, representing cycling and noncycling normal stem
cells plus cycling wild-type CML stem cells) deterministic subsystem for which
we study the stability of all equilibria and the complete bifurcation behavior. The
two-dimensional subsystem turns out to be completely governed by the dynamics
induced by its equilibria since no admissible values of the parameters for periodic
orbits exist. We further establish, numerically, connections between the classical
results and the original stochastic setting. Finally, Sect. 11.4 summarizes our results.

11.2 Definition of the Governing Probabilistic
Four-Dimensional Model (Model C)

11.2.1 Biological Aspects of the Model

We discuss the dynamics of active and quiescent cell types in a stem cell niche
including signaling as well as competition effects. In our approach, the growth of the
stem cell populations in the bone marrow niche by symmetric division is regulated
by negative feedback proportional to the size of the total stem cell population.
Differentiation and self-renewal of stem cells are realized by asymmetric division,
and the expansion of stem cell pools is balanced by loss of stem cells mainly by
symmetric division to progenitors which finally proliferate to differentiated cells,
cf. [18, 19, 45]. Stem cell numbers are also controlled by apoptosis and, here only
implemented for normal stem cells, by the fraction of cells that enter the cell
cycle from a large normal stem cell population in G0 or quiescent state. It should
be mentioned here that leukaemic Ph+/BCR-ABL1 stem cells in G0 mode are
hypothesized to be capable of generating leukaemic proliferation in a reversible
way, but this issue will be addressed in separate studies.
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We basically have a birth–death model characterized by a regulated and an
unregulated net growth/death rate.

It is straightforward to show for the effectively autoregulatory case that
homeostatic, stable, finite stem cell equilibria are potentially obtained if the net
death (−net growth) rate is positive with negative feedback regulation of the
stem cell division. It is also characteristic for the regime of autoregulation that
the corresponding zero population equilibrium is unstable (stable) if the total
death rate at this equilibrium is positive (negative) with a bifurcation point for
the existence of homeostatic equilibria at the state where the total growth rate is
zero. In the autoregulatory case, the existence of homeostatic CML population
equilibria and the dynamics toward the equilibria from newly mutated, small cancer
populations can be determined in the same way as if one or several independent
homeostatic, finite, stable CML stem cell populations were present.

We also notice that without the regulated part of the rate, homeostatic equilibria
can only be found at the bifurcation point associated with a zero net death rate
since in this case any population represents a marginally stable equilibrium. For any
nonzero death rate only the zero population equilibrium exists. Within the scenario
of autoregulation, a successful CML treatment is then distinguished by modifying
the total growth rate at the zero cancer population equilibrium in a way that the
population dynamics regime changes from instability to stability. The desired effect
of drug administration is obviously to achieve a switch of the total CML growth
rate from positive to negative. In principle, this goal can be achieved by (i) either
decreasing the regulated part or (ii) by increasing the net death rate via reduction of
the unregulated growth rate or enlargement of the unregulated death rate.

The inclusion of a pool of quiescent stem cells, which are supposed to be
in a continuous exchange with the actively dividing stem cells, in the model
leads to the same zero population stability regimes, with the only difference that
the population dynamics generically displays a biphasic behavior with an initial
phase characterized by large decay and growth rates followed by slow asymptotic
convergence to stable population limits on the timescale of activation of quiescent
stem cells.

In this chapter, we investigate the stability and bifurcations of equilibria
(1) of cycling normal stem cells contending with wild-type CML stem cells for
resources (model A, Sect. 11.3.1, this model can also be interpreted as competition
between two leukaemic stem cell species) and (2) of normal stem cells in a
competition regulated by negative feedback with a wild-type leukaemic stem
cell strain (model B, Sect. 11.3.2) and up to one imatinib -resistant mutant clone
(model C, Sect. 11.3.3). We consider the processes of deactivation of cycling normal
stem cells and of activation of quiescent normal stem cells. The model consists of
two major components:

1. A threshold-controlled protein-signal model featuring a sigmoidal regulatory
function that realizes negative feedback by in principle all cell types on
the growth of any given stem cell clone. The protein signal regulating the
symmetric stem cell division process is here simply assumed to be proportional
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to the number of cells of different types. The contributions of the individual cell
types to the regulatory switch are determined by weight factors.

The population threshold applicable to an individual switch is assumed to
be fixed and equal to an effective stem cell population Ne. Ne is related to the
average inverse population scale by the expression Ne = 〈N−1〉−1. The average
is determined with respect to the stem cell niche environment and geometry.
This parameter for stem cell growth regulation is based on previous work by
Kimura [24, 25] and Waxman [50].

A Hill-type sigmoidal function has been selected for the model presented in
this work. This version of a power function switch is commonly used to describe
ultra-sensitive switching in certain signaling networks and to approximate
Michaelis–Menten functions in enzyme chemistry. In our study, the sigmoidal
function is employed for the description of the input/output response in an intra-
and inter-cell network that is connected by protein signaling and regulates cell
division and cell death processes.

Recent motivation for selecting Hill-type functions for the implementation
of stem cell decision models is coming from work on the regulation of gene
expression by cell-population density variations (“quorum sensing”) [46, 48]
and, on the molecular level, by mechanisms that control the interaction of
transcription factors and operon binding sites [3, 5, 22, 36, 39, 40, 47].

Similar logistic cell decision functions have been defined not only for the
regulation of stem cell reproduction and gene expression, but also in the contexts
of other biological network models that can be described by the concept of
funneling landscapes of functional activity [9, 36]. The interacting constituents
might be amino acids for protein folding, base pairs for gene expression, units of
regulated genes with operons for protein networks, modules of genes/proteins for
pathways, and modules of pathways for stem cells in their niches [48, 49].

2. Knowledge of the fundamental symmetric and asymmetric stem cell division
mechanisms suggests the adoption of an underlying birth–death Markov process
and also of a Fokker–Planck equation describing the corresponding Langevin
stochastic process from first principles. The Fokker–Planck formalism has been
implemented numerically and we compare the stochastic sampling paths to the
corresponding deterministic paths.

The primary mutation leading to the wild-type CML phenotype as well as
the pretreatment phase are assumed to be complete and are parameterized via
the initial conditions of the normal and CML clones. While suppression of the
wild-type CML variant by imatinib administration is known to be effective,
imatinib-resistant CML mutations may develop during the phase of imatinib
application.

The bifurcations and stability diagrams of the resulting multi-population
equilibria in the different regulation regimes can be interpreted as deforma-
tions of the simple, independent autoregulatory and nonregulated homeostatic
equilibria discussed above. We note that modified treatment conditions and
sub-equilibria of the multi-clone stem cell equilibria, including normal stem cells
as well as wild-type and imatinib-resistant CML stem cells, need to be classified
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Fig. 11.1 Illustration of the four-species model (model C) for leukaemic stem cell dynamics.
Sketched are the different stem cell types in a niche as considered in this chapter and their
interactions together with an outlook on how the dynamics in a stem cell niche governs the actual
dynamics of normal and leukaemic stem cells in the (human) body

on a personal medication level including stochastic theory taking mutations of the
wild-type CML strain into account. Such a classification and the derivation of the
biological implications, i.e., of effective stem cell growth, death, and mutation
rates, need to be performed in order to reliably predict personalized treatment
strategies for scenarios involving drug-resistant CML clones.

11.2.2 Formulation of the Building Blocks of Model C

Specifically, we identify the cycling/active and noncycling/quiescent populations
of normal stem cells by xs,0 and xq , respectively. The cycling/active wild-type
and imatinib-resistant CML clones are denoted by the variables xs,1 and xs,2,
respectively, cf. Fig. 11.1.

By means of first order Markov birth and death processes these types of cells
have the following properties:

Let P(m, τ |n, t) denote the conditional probability of being in state m at time τ
given state n at time t. At each time step t+Δt the number of normal active stem
cells ns,0 can grow in two ways: First, due to activation of quiescent stem cells [10]:

P (ns,0 + 1, ns,1, ns,2, nq − 1, t+Δt |ns,0, ns,1, ns,2, nq, t) =: t+−
0,q (n)

= Δt · α0 · nq + o(Δt) ,

where o(Δt) means that o(Δt)/Δt → 0 as Δt → 0, α0 > 0 is a proportionality
factor and ns,i, nq are population numbers of leukaemic stem cells xs,i (i = 1, 2)
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and of quiescent normal stem cells xq , respectively. The four population variables
are collected in the vector n := (ns,0, ns,1, ns,2, nq)

T .
Second, normal cycling stem cells can proliferate as a result of cell divisions:

P (ns,0 + 1, ns,1, ns,2, nq, t+Δt |ns,0, ns,1, ns,2, nq, t) =: t+0 (n)

= Δt ·
(
g0 +

l0
1 + (w0,0ns,0 + w0,1ns,1 + w0,2ns,2)m

)
ns,0 + o(Δt) ,

with proportionality factor l0 > 0 and g0 ≥ 0. The cell divisions are regulated by a
Hill function of odd index m ∈ N/2N with signaling weights w0,i (i = 0, 1, 2)
that take the existence of further active normal and leukaemic stem cells into
account1. Without loss of generality we can scale the “relative” signaling weights
that influence the active stem cell population such that w0,0 = 1.

Active normal stem cells can become quiescent with a proportionality factor
β0 > 0, i.e., [10]

P (ns,0 − 1, ns,1, ns,2, nq + 1, t+Δt |ns,0, ns,1, ns,2, nq, t) =: t−+
0,q (n)

= Δt · β0 · ns,0 + o(Δt) .

For the cancer-causing stem cells xs,i we assume that these can just reproduce
with proportionality factors li (i = 1, 2) and not mutate a second time or interact
with the quiescent population of normal stem cells, i.e.,

P (ns,0, ns,1 + 1, ns,2, nq, t+Δt |ns,0, ns,1, ns,2, nq, t) =: t+1 (n)

= Δt ·
(
g1 +

l1
1 + (w1,0ns,0 + w1,1ns,1 + w1,2ns,2)m

)
ns,1 + o(Δt) ,

and

P (ns,0, ns,1, ns,2 + 1, nq, t+Δt |ns,0, ns,1, ns,2, nq, t) =: t+2 (n)

= Δt ·
(
g2 +

l2
1 + (w2,0ns,0 + w2,1ns,1 + w2,2ns,2)m

)
ns,2 + o(Δt) ,

1As we will show in an upcoming article, an even more precise model for the dependence of
signaling on stem cell populations would be given by so-called Tsallis functions as they fulfill some
important limits better than Hill functions. However, when it comes to an interpretation of the Hill
functions, the only difference up to some scales which can be absorbed in the populations is, in
the Tsallis-function case, a fixed positive shift in the argument of the respective power function.
This means that the effect of the regulation does not kick in before a predefined population size
is reached. In this sense, the Hill function can be viewed as a limit of the more exact Tsallis
expression.
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with g1, g2 ≥ 0 and signaling weights w1,i, w2,i > 0 (i = 0, 1, 2). Again, we
assume w1,1 = w2,2 = 1.

Moreover, we assume that the active stem cells may die with a proportionality
factor d̂i > 0 (i = 0, 1, 2), i.e.,

P (ns,i − 1, t+Δt |ns,i, t) = Δt · d̂i ·ns,i+o(Δt) =: t−i (n) , for i = 0, 1, 2 ,

as well as

P (ns,0 |ns,0, t) = 1−
(

2∑
i=0

(
t+i (n) + t−i (n)

)
+ t+−

0,q (n) + t−+
0,q (n)

)
.

Note, that Δt is chosen such that the respective number of cells can increase or
decrease by just one unit.

These first order birth and death Markov processes form the building blocks of
an approximate Fokker–Planck / Kolmogorov forward equation that describes the
evolution of the continuous probability densities for the involved stem cell types.

11.2.3 The Approximate Fokker-Planck Equation
for Model C

The Chapman–Kolmogorov transition equation between two time steps t and t+Δt
for a discrete population density p(n, t) : N4 × R→ R is given by

p(n, t+Δt) =
∑
n′

P(n, t+Δt|n′, t)p(n′, t) .

Let the canonical basis vectors e1, e2, e3, e4 in R
4 be denoted by 10 := e1, 11 := e2,

12 := e3 and 1q := e4. Then, in particular, we have:

p(n, t+Δt)

=
(
1−

(∑2
i=0

(
t+i (n) + t−i (n)

)
+ t+−

0,q (n) + t−+
0,q (n)

))
· p(n, t)

+
∑2

i=0 t
+
i (n− 1i) · p(n− 1i, t) +

∑2
i=0 t

−
i (n+ 1i) · p(n+ 1i, t)

+ t+−
0,q (n− 10 − 1q) · p(n− 10 − 1q, t) + t−+

0,q (n+ 10 + 1q) · p(n+10+1q, t) .

To come from discrete population sizes n to continuous population sizes x, we
introduce the scaling x = n/Ne for some natural effective population scale Ne such
that E(N(t))/Ne = O(1) and Var(N(t))/Ne ≤ O(1) for the total population
size N(t)=

∑2
i=0 ns,i + nq .
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Again, let 1i be the ith canonical basis vector in R
d, and Δx a small scalar

positive quantity. For two analytic functions a, b : Rd → R with Hesse-matrices Ha

and Hb one can show, by expansion in a Taylor-series, that

(1− a(x))b(x) + a(x+Δx1i)b(x+Δx1i)

= b(x)− a(x)b(x) +
(
a(x) +∇a(x)T 1iΔx+ 1

2Δx1
T
i Ha(x)1iΔx+ o(Δx3)

)
· (b(x) +∇b(x)T 1iΔx+ 1

2Δx1
T
i Hb(x)1iΔx + o(Δx3)

)
= b(x) +

(
b(x)∇a(x)T + a(x)∇b(x)T ) 1iΔx

+ 1
2

(
b(x)1Ti Ha(x)1i + 2∇a(x)T 1i · ∇b(x)T 1i + a(x)1Ti Hb(x)1i

)
Δx2

+ o(Δx3)

= b(x) +∇(a · b)(x)T 1iΔx+ 1
2Δx1

T
i Ha·b(x)1iΔx+ o(Δx3)

= b(x) + ∂xi(a · b)(x)Δx + 1
2∂xi∂xi(a · b)(x)Δx2 + o(Δx3) ,

and

−a(x)b(x) + a(x −Δx1i)b(x−Δx1i)

= −∂xi(a · b)(x)Δx + 1
2∂xi∂xi(a · b)(x)Δx2 + o(Δx3) .

Analogously, we get for a two-point change, associated with t+−
0,q or t−+

0,q , by first
expanding with respect to Δx1j and then with respect to Δx1i (i �= j)

−a(x)b(x) + a(x+Δx1i −Δx1j)b(x +Δx1i −Δx1j)

=
(
∂xi − ∂xj

)
(a · b)(x)Δx + 1

2

(
∂xi − ∂xj

)2
(a · b)(x)Δx2 + o(Δx3) ,

where
(
∂xi − ∂xj

)2
= ∂xi∂xi − 2∂xi∂xj + ∂xj∂xj , together with

−a(x)b(x) + a(x−Δx1i +Δx1j)b(x−Δx1i +Δx1j)

=
(−∂xi + ∂xj

)
(a · b)(x)Δx + 1

2

(
∂xi − ∂xj

)2
(a · b)(x)Δx2 + o(Δx3) .

With Δx = N−1
e , we thus obtain the state-continuous, time-discrete model

p(x, t+Δt)− p(x, t)

Δt
= −

4∑
i=1

∂xi (Vi(x) · p(x, t))T Δx

+ 1
2Ne

4∑
i,j=1

∂xi∂xj (Gij(x)p(x, t))Δx
2 + o(Δx3) ,



11 Deterministic and Stochastic Dynamics of Chronic Myelogenous . . . 231

where for x := (xs,0, xs,1, xs,2xq)
T the vector-valued function V : R4 → R

4 with
rescaled weights is given as

V (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
l0

1+(xs,0+w0,1xs,1+w0,2xs,2)m
− d0 − β0

)
xs,0 + α0xq(

l1
1+(xs,1+w1,0xs,0+w1,2xs,2)m

− d1

)
xs,1(

l2
1+(xs,2+w2,0xs,0+w2,1xs,1)m

− d2

)
xs,2

−α0xq + β0xs,0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (11.1)

with di := d̂i − gi, i = 0, 1, 2, and the symmetric matrix G = (γi,j)i,j=1,...,4 ∈
R

4×4can be written according to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1,1 =
(

l0
1+(xs,0+w0,1xs,1+w0,2xs,2)m

+ d̂0 + g0 + β0

)
xs,0 + α0xq

γ2,2 =
(

l1
1+(xs,1+w1,0xs,0+w1,2xs,2)m

+ d̂1 + g1

)
xs,1

γ3,3 =
(

l2
1+(xs,2+w2,0xs,0+w2,1xs,1)m

+ d̂2 + g2

)
xs,2

γ4,4 = α0xq + β0xs,0

γ1,4 = γ4,1 = − (α0xq + β0xs,0) = −γ4,4

, (11.2)

with all remaining entries being zero. Note that G is diagonally dominant with
positive entries on its diagonal (for xs,0, xs,1, xs,2xq > 0). Thus, due to the
Gershgorin circle theorem, G has nonnegative eigenvalues only. This enables us
to determine its “square root” later on.

Finally, if we scale the time as τ = t/Ne = tΔx and scale the continuous density
distribution as ρ(x, τ)Δx = p(x, t), we get an approximate Fokker–Planck equation
representing model C:

∂τρ(x, τ) = −
4∑
i=1

∂xi (Vi(x)ρ(x, τ)) + 1
2Ne

4∑
i,j=1

∂xi∂xj (Gij(x)ρ(x, τ)) ,

(11.3)

with drift-vector V and diffusion matrix G as in Eqs. (11.1) and (11.2), respectively.

11.2.4 The Stochastic Version of Model C in Terms
of Itô/Langevin Equations

There exists an easy translation from the Fokker–Planck Eq. (11.3) to a stochastic
differential equation, cf. [44], namely

dXt = V (x)dt + L(x) dWt , with G(x) = L(x)LT (x) ,
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where Wt is a vector-valued Wiener process and V and G = (γi,j)i,j=1,...,4 as
specified in (11.1) and (11.2), respectively. Here, the (Langevin) diffusion matrix L
is formulated as

L =

√
1

Ne

⎛
⎜⎜⎜⎝

√
γ1,1 − γ4,4 0 0 −√γ4,4

0
√
γ2,2 0 0

0 0
√
γ3,3 0

0 0 0
√
γ4,4

⎞
⎟⎟⎟⎠ .

Note, L is unique only up to orthogonal transformations.
This technique leads to the following four-dimensional system of coupled Itô

stochastic differential equations (Langevin type) for the dynamics of cancer stem
cells in a niche, corresponding to model C:

dxs,0 =

((
l0

1 + (xs,0 + w0,1xs,1 + w0,2xs,2)m
− d0 − β0

)
xs,0 + α0xq

)
dt

+

√
1

Ne

((
l0

1 + (xs,0 + w0,1xs,1 +w0,2xs,2)m
+ d̂0 + g0

)
xs,0

)
dW (0)

t

−
√

1

Ne

(
α0xq + β0xs,0

)
dW (q)

t ,

dxs,1 =

(
l1

1 + (xs,1 + w1,0xs,0 + w1,2xs,2)m
− d1

)
xs,1dt

+

√
1

Ne

(
l1

1 + (xs,1 + w1,0xs,0 + w1,2xs,2)m
+ d̂1 + g1

)
xs,1 dW (1)

t ,

dxs,2 =

(
l2

1 + (xs,2 + w2,0xs,0 + w2,1xs,1)m
− d2

)
xs,2dt

+

√
1

Ne

(
l2

1 + (xs,2 + w2,0xs,0 + w2,1xs,1)m
+ d̂2 + g2

)
xs,2 dW (2)

t ,

dxq = (−α0xq + β0xs,0) dt +

√
1

Ne
(α0xq + β0xs,0)dW

(q)
t ,

where W (0)
t , . . . ,W

(q)
t are independent scalar standard Wiener processes. In this

context di = d̂i − gi, i = 0, 1, 2 can be interpreted as the net unregulated death–
birth rate. As already mentioned, the effective stem cell niche reference population
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Fig. 11.2 Model C: five simulation runs for each of the stochastically driven stem cell populations
xs,0 (blue), xq (red) in the top subfigures and xs,1 (black), xs,2 (green) in the lower subfigures over
time for different parameter values that highlight the stochastic influence: (a) g0 = g1 = g2 = 0.1,
d̂0 = d̂1 = d̂2 = 0.3 and (b) g0 = g1 = g2 = 4, d̂0 = d̂1 = d̂2 = 5. The remaining parameters are
the same for columns (a) and (b); they are given as α0 = 0.1, β0 = 1, l0 = l1 = l2 = 1, together
with w0,1 = w1,0 = 0.5, w0,2 = w1,2 = w2,0 = w2,1 = 0.1, as well as di = d̂i − gi = 0.2
for i = 1, 2, 3. The initial conditions are xs,0(0) = 0.5, xq(0) = 0.2 in the top subfigures and
xs,1 = 0.1, xs,2 = 0.2 in the lower subfigures

is defined as Ne and is here taken to be fixed for simplicity. It can be seen that
Ne only affects the variance in the rescaled model, but defines the population
measurement unit. In practice, one can scale wi,i = 1/Ne and take Newi,j → wi,j ,
ni/Ne → xi for i = 0, 1, 2. The model C might be improved by adopting
nonuniform population scales wi,i = 1/Ne,i. These population scalings correspond
to the regulated population capacity of the stem cell niche.

Inspection of this system, especially of its underlying Markovian birth and death
dynamics, leads to the conclusion that once a population vanishes it stays zero
for all consecutive times unless reemergence of a specific clone by activation of
associated quiescent stem cells or by reoccurrence of the mutagenesis is taken
into account. Hence, the phase space orthant of the nonnegative populations
{(xs,0, xs,1, xs,2, xq) ∈ R

4 : xs,0, xs,1, xs,2, xq ≥ 0} may stay invariant.
Moreover, the drift coefficients of this system are Lipschitz-continuous and fulfill
the usual linear growth conditions for all elements of the state space. The diffusion
coefficients are Lipschitz-continuous and fulfill the usual linear growth conditions
outside any environment of the origin. Thus, outside the origin this system has a
path-wise unique strong solution for any final and nonvanishing initial condition, cf.
[14], p. 98. This allows the application of path-wise numerical schemes to simulate
the dynamics as in Fig. 11.2 where the influence of the stochastic perturbations
is highlighted. Part (a) of Fig. 11.2 shows a very weak influence of the stochastic
diffusion whereas the influence of stochasticity is well recognizable in part (b).
Interestingly enough, the parameters chosen in (b) seem to lead to an extinction
of the cancer clones compared to those taken in (a). In order to understand, at
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least from a small noise perspective, what really happens a thorough discussion
of the parameter space and its corresponding deterministic phase spaces needs to be
carried out. As we will see in the following section multiple bifurcation scenarios
are present in the parameter space.

For the preparation of Fig. 11.2 these stochastic simulations were carried out
with the Milstein scheme, a numerical scheme of strong order of convergence
one, cf. [28, p. 345], and supplemented with the positions of the equilibria of
the underlying deterministic system. We will formulate the Milstein scheme for the
stochastic dynamics of competing normal and leukaemic stem cells in a niche in the
appendix of this chapter. Of, course, like the existence and path-wise uniqueness of
strong solutions, the order of convergence depends crucially on the assumption that
the coefficient functions are (globally) Lipschitz-continuous. Because of the square
roots at the diffusion coefficients these assumptions hold outside a neighborhood of
the origin, only. This may cause the Milstein scheme to deliver negative numerical
results even though the analytic solution always stays positive. This is a well-known
difficulty in financial mathematics, cf. [27].

The induced deterministic dynamics will be analyzed in the remainder of this
chapter by a complete discussion of the deterministic equilibria, their stability, and
the global dynamics they contribute to. Such a study of the deterministic dynamics
is quite valuable for the stochastic case, as we will show.

11.3 Equilibria and Their Stability in the Deterministic
Small Noise Limit

The discussion of the underlying deterministic dynamics forms an important
foundation for the proper understanding of any stochastic system. Though the
deterministic system is the noise-free representation of the stochastic system, one
can expect the stochastic system’s behavior for small noise to be close to that of the
free noise system, cf. [4, 12]. Moreover, deterministic equilibria remain as sources
and sinks in a stochastic density interpretation2.

We therefore analyze the global dynamics of the deterministic normal/leukaemic
stem cell system (model C) [10]:

ẋs,0 =

(
l0

1 + (xs,0 + w0,1xs,1 + w0,2xs,2)m
− d0 − β0

)
xs,0 + α0xq , (11.4)

ẋs,1 =

(
l1

1 + (xs,1 + w1,0xs,0 + w1,2xs,2)m
− d1

)
xs,1 , (11.5)

2 Of course, it is not uncommon that “large” noise perturbations may drive the trajectories away
even from an asymptotically stable equilibrium of the deterministic system, cf. [4, 23].
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ẋs,2 =

(
l2

1 + (xs,2 + w2,0xs,0 + w2,1xs,1)m
− d2

)
xs,2 , (11.6)

ẋq = −α0xq + β0xs,0 , (11.7)

with li, di > 0 (i = 0, 1, 2), w0,1, w0,2, w1,0, w1,2, w2,0, w2,1 > 0, α0, β0 > 0 and
m ∈ N/2N.

Due to “symmetries” in these equations, the discussion is presented sequentially:
First, we propose model A to study the dynamics of two competing cell species,
which could be normal and wild-type CML stem cells or alternatively two different
leukaemic strains, i.e., a subsystem involving the variables xs,1 and xs,2 is consid-
ered (i.e., xs,0 = 0 and xq = 0). This corresponds to a two-dimensional manifold
in the solution space and allows insights into the behavior of two developing
cell lines. Second, the three-dimensional state space manifold (xs,0, xs,1, xq) is
discussed (model B). This means that two important sub-manifolds are completely
analyzed. Finally, the full four-dimensional system (model C) including both
cycling wild-type and imatinib -resistant CML strains is considered. This sequential
procedure has the advantage that analysis of the four-dimensional state space can be
restricted to the dynamics outside of the lower-dimensional sub-manifolds.

11.3.1 Model A: The Dynamics of Two Competing Clones

As a starting point, we completely analyze the deterministic dynamics of the two
species sub-model. By introducing the variables x = xs,1 and y = xs,2, the first
order system of ordinary differential equations corresponding to model A is given by

ẋ =

(
l1

1 + (x+ w1y)m
− d1

)
x , (11.8)

ẏ =

(
l2

1 + (y + w2x)m
− d2

)
y , (11.9)

with li, wi, di > 0 (i = 1, 2) and m ∈ N/2N.
The variables x and y may represent either normal and wild-type CML stem

cells, respectively, or alternatively two competing leukaemic clones.
The right-hand side’s coefficient functions of this system have uniformly

bounded derivatives and are thus globally Lipschitz-continuous. Moreover, they
satisfy the usual linear growth condition. Hence, our two-dimensional system has
an unique solution on its maximal domain of definition, R2. Moreover, the first
quadrant {(x, y) ∈ R

2 : x, y ≥ 0} is invariant and negative populations are not
accessible from positive initial conditions.

A graphical representation of the dynamics determined by Eqs. (11.8)–(11.9) is
given in Fig. 11.3 for the parameters l1 = l2 = 1, w1 = 1, w2 = 1.1, d1 = d2 = 0.9
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Fig. 11.3 Model A: simulation of the deterministic dynamics of normal and wild-type CML stem
cells (or of wild-type and resistant CML clones) described by Eqs. (11.8)–(11.9) for the parameters
l1 = l2 = 1, w1 = 1, w2 = 1.1, d1 = d2 = 0.9 and m = 2 in the first row (1) and for
the parameters l1 = l2 = 1, w1 = w2 = 0.5, d1 = d2 = 0.2 and m = 2 in the second
row (2) (cf. [10] for the parameterization of a similar equation system). Subfigures in row (a) show
the deterministic phase space including two stochastic trajectories (with Ne = 1,000) and row
(b) provides the norm of the corresponding deterministic vector-field

and m = 2 (first row) as well as l1 = l2 = 1, w1 = w2 = 0.5, d1 = d2 = 0.2 and
m = 2 (second row) (cf. [10] for the parameterization of a similar equation system)
Figs. 11.3 (1a) and (2a) display the phase space together with the vector-field and
a bundle of specific deterministic trajectories for the corresponding parameters.
In particular, they show the system’s equilibria together with the directions of
their stable and unstable eigen-spaces, and, starting at (x, y) = (0.1, 0.1) and
(x, y) = (1, 0.4), two stochastic trajectories which are characterized by a diffusion
part that is analogous to the full model presented in Sect. 11.2.4 (with Ne = 1000).
Moreover, Figs. 11.3 (1b) and (2b) illustrate the norm of the corresponding vector-
field thus indicating the speed of a population combination. We observe that this
speed declines and nearly vanishes at the heteroclinic orbit connecting the equilibria
at the coordinate-axes (1b) and locally around the mixed species equilibrium (2b),
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respectively. This explains why the stochastic trajectories stay in the corresponding
region as their drift component no longer contributes significantly.

To understand the dynamics for all parameter regimes we discuss the existence
and stability of the equilibria of the system Eqs. (11.8)–(11.9).

Theorem 11.1 (Existence of Equilibria). Besides the point at infinity, for admis-
sible parameters li, wi, di > 0 (i = 1, 2) and m ∈ N/2N the following points in R

2

are equilibria of the system Eqs. (11.8)–(11.9):

• the origin (x, y) = (0, 0) for all choices of the parameter.

• the line equilibrium (x, 0) = (xs, 0), with xs := m

√
d−1
1 (l1 − d1), provided

l1 − d1 > 0 holds.

• the line equilibrium (0, y) = (0, ys), with ys :=
m

√
d−1
2 (l2 − d2), provided l2 −

d2 > 0 holds.
• the face equilibrium (x, y) = (xf , yf ), where

xf :=
xs − w1ys
1− w1w2

, and yf :=
ys − w2xs
1− w1w2

,

given that xf , yf > 0, w1w2 �= 1 and xs, ys exist as defined above.
• the line of equilibria (x, y) = (x,w2(xs − x)), if w1w2 = 1 and xs, ys exists as

defined above, for all x such that xs > x. Note, that ys = w2xs holds in this case.

Moreover, these are the only candidates for equilibria in the first quadrant.

Proof. By definition, the equilibria of Eqs. (11.8)–(11.9) are those points for which
the right-hand sides of the system equations vanish. This is correct for (x, y) =
(0, 0). Next, let x > 0 and y = 0, then

0
!
=

l1
1 + xm

− d1 ⇔ x =
+

[−] m

√
d−1
1 (l1 − d1) = xs ,

provided l1 − d1 > 0 holds. The analogous argumentation shows that (0, ys) is the
unique equilibrium for y > 0 and x = 0, provided l2 − d2 > 0 holds. Finally, let
x, y > 0. Then, provided xs and ys exist,

{
x+ w1y = xs
y + w2x = ys

⇔
{

x+ w1y = xs
y(1− w1w2) = ys − w2xs

.

The assertion on the face equilibrium follows if 1 − w1w2 �= 0 and (ys − w2xs)
(1 − w1w2)

−1 > 0 together with (xs − w1ys)(1 − w1w2)
−1 hold. If w1w2 = 1 it

results that ys = w2xs and consequently y = w2(xs−x) together with 0 < x < xs.
There are no further candidates in the first quadrant that lead to equilibria. ��

For further reference, we define the following quantities that will be utilized later
as bifurcation parameters:
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Fig. 11.4 Model A: graph of the possible equilibrium situations of the system Eqs. (11.8)–(11.9)
as stated in Theorem 11.1

γx := (l1 − d1)d
−1
1 , γx = xms , if γx > 0 ,

γy := (l2 − d2)d
−1
2 , γy = yms , if γy > 0 .

Counting the number of equilibria with respect to those quantities (cf. Fig. 11.4)
reveals that the origin is always an equilibrium. If xs and / or ys are admissible by
the parameters, one, two, or infinitely many (forw1w2 = 1) equilibria exist. Finally,
if xs and ys are both admissible and the weights w1 and w2 are such that xf and yf
exist, then the system Eqs. (11.8)–(11.9) has four isolated equilibria.

We continue with a discussion of the linearized stability properties of the
equilibria. Therefore, evaluation of the 2 × 2-Jacobi-matrix J(x∗, y∗) as given by
the right-hand side of the system Eqs. (11.8)–(11.9) at an equilibrium (x∗, y∗) in
the first quadrant is required. In general, the entries of J(x∗, y∗) are given by the
expressions:

J1,1(x
∗, y∗) =

∂

∂x

((
l1

1 + (x+ w1y)m
− d1

)
x

)∣∣∣∣
(x,y)=(x∗,y∗)

=
l1

1 + (x∗ + w1y∗)m
− d1

︸ ︷︷ ︸
=0 , if x∗ �= 0

− ml1(x
∗ + w1y

∗)m−1

(1 + (x∗ + w1y∗)m)
2x

∗ ,

J1,2(x
∗, y∗) = −ml1w1(x

∗ + w1y
∗)m−1

(1 + (x∗ + w1y∗)m)
2 x∗ ,



11 Deterministic and Stochastic Dynamics of Chronic Myelogenous . . . 239

and

J2,2(x
∗, y∗) =

∂

∂y

((
l2

1 + (y + w2x)m
− d2

)
y

)∣∣∣∣
(x,y)=(x∗,y∗)

=
l2

1 + (y∗ + w2x∗)m
− d2

︸ ︷︷ ︸
=0 , if y∗ �= 0

− ml2(y
∗ + w2x

∗)m−1

(1 + (y∗ + w2x∗)m)
2 y

∗ ,

J2,1(x
∗, y∗) = −ml2w2(y

∗ + w2x
∗)m−1

(1 + (y∗ + w2x∗)m)
2 y∗ .

Thus, the stability properties of the origin become obvious:

Proposition 11.1 (Linearized Stability of the Origin). The Jacobi-matrix of
system Eqs. (11.8)–(11.9) evaluated at the origin corresponds to J(0, 0) =
diag (l1 − d1, l2 − d2), and consequently (x, y) = (0, 0) is hyperbolic if
l1 − d1, l2 − d2 �= 0. In particular, J(0, 0) is asymptotically stable in the linearized
system if both l1 − d1 and l2 − d2 are negative, stable if either l1 − d1 = 0 (or
l2− d2 = 0) together with l2− d2 ≤ 0 (or l1− d1 ≤ 0), and unstable if l1− d1 > 0
or l2 − d2 > 0.

Moreover, e1 := (1, 0)T is the eigenvector corresponding to the eigenvalue l1 −
d1, and e2 := (0, 1)T corresponds to the eigenvalue l2 − d2.

The principle of linearized stability allows to transfer the stability properties
as determined for the linearized system at the origin to the nonlinear system
Eqs. (11.8)–(11.9) if (x, y) = (0, 0) is hyperbolic. In the case that (x, y) = (0, 0) is
non-hyperbolic, we utilize the function V (x, y) = 1

2x
2 + 1

2y
2 as a strict Lyapunov

function to show that the origin is asymptotically stable if l1 − d1 ≤ 0 and
l2 − d2 ≤ 0. The conditions V (x, y) > 0 for all (x, y) ∈ R

2 \ {0} and V (x, y) = 0
if and only if (x, y) = (0, 0) follow immediately, as well as

V ′(x, y) = 〈∇V (x, y), (ẋ, ẏ)T 〉
=
(

l1
1+(x+w1y)m

− d1

)
x2 +

(
l2

1+(y+w2x)m
− d2

)
y2

≤ 0 , as l1 − d1 ≤ 0 and l2 − d2 ≤ 0 ,

for the orbital derivative V ′ together with V ′(x, y) = 0 if and only if (x, y) = (0, 0).
Thus, as claimed, V is a strict Lyapunov function and the origin is asymptotically
stable in the non-hyperbolic case l1 − d1 = 0 and l2 − d2 = 0, too. Note that if the
line equilibria (xs, 0) and / or (0, ys) exist, then l1 − d1 > 0 and / or l2 − d2 > 0
holds, which leads to an unstable eigen-direction of the origin. Consequently, this
leads to instability in the non-hyperbolic cases (l1 − d1 = 0, l2 − d2 > 0) and
(l1 − d1 > 0, l2 − d2 = 0).

Moreover, for any pair (l1, d1), (l2, d2) there exist large enough values of x and
y such that the right-hand side of Eqs. (11.8)–(11.9) becomes negative and stays
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negative for even larger values of x and y. Thus, the point at infinity acts as a source
for all parameters, and if the origin becomes repellent, too, another attractor has to
form.

The coordinate lines {(x, 0) ∈ R
2 : x ≥ 0} and {(0, y) ∈ R

2 : y ≥ 0} are
invariant under the dynamics induced by Eqs. (11.8)–(11.9). Proposition 11.1 thus
already proves (for this one-dimensional setting) that the line equilibria (xs, 0) and
(0, ys), if they exist, have at least one (asymptotically) stable eigen-direction, and
that (xs, 0) and (0, ys), if they exist, are trivially connected to the origin by an orbit
lying totally in the respective coordinate line.

Proposition 11.2 (Linearized Stability of the Line Equilibria). Let xs be admis-
sible by the parameter, then the Jacobi-matrix of system Eqs. (11.8)–(11.9) evalu-
ated at the line equilibrium (xs, 0) is given by

J(xs, 0) =

(−md1(l1 − d1)l
−1
1 −mw1d1(l1 − d1)l

−1
1

0 j2,2

)

with

j2,2 =
d1d2

(1− wm2 )d1 + w2l1
(γy − wm2 x

m
s ) .

The value λ1 := −md1(l1 − d1)l
−1
1 < 0 is an eigenvalue of J(xs, 0), and e1 is

its corresponding eigenvector3. The value λ2 := j2,2 is the second eigenvalue of
J(xs, 0), and

(
− j2,2 +mw1d1(l1 − d1)l

−1
1

md1(l1 − d1)l
−1
1

, 1

)T

is the corresponding eigenvector of the Jacobi matrix.
Thus, (xs, 0) is asymptotically stable if γy < wm2 x

m
s , it is a saddle if γy >

wm2 x
m
s , and its linearization has a neutral component if wm2 x

m
s = yms = γy. For

w1w2 = 1, this neutral component corresponds to the line of equilibria as described
in Theorem 11.1.

The analogous result can be established for the line equilibrium (0, ys). In
particular, the eigenvalues of the corresponding Jacobi-matrix are −md2(l2 −
d2)l

−1
2 < 0 and d1d2 ((1 − wm1 )d2 + w1l2)

−1
(γx − wm1 y

m
s ).

Proof. It is sufficient to take a more detailed look at j2,2, the remaining assertions
follow immediately from the Jacobi-matrix:

3 The line equilibrium (xs, 0) is thus always asymptotically stable with respect to the eigen-
direction corresponding to λ1.
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j2,2 = l2d1
(1−wm

2 )d1+wm
2 l1
− d2 =

(1−wm
2 )d1(l2−d2)+wm

2 (l2d1−l1d2)
(1−wm

2 )d1+wm
2 l1

= d1d2
(1−wm

2 )d1+w2l1
(γy − wm2 x

m
s ) .

Following the proof of Theorem 11.1 it holds that w2xs = ys for w1w2 = 1 and
existing xs, ys. ��

If λ2 < 0 (λ2 > 0), the nonlinear asymptotic stability (instability) of (xs, 0)
follows immediately from the principle of linearized stability, and the nonlinear
stability in the special case w1w2 = 1 and existing xs, ys is obvious due to the line
of equilibria.

The nonlinear stability of the non-hyperbolic case γy = wm2 x
m
s for w1w2 �= 1

remains to be investigated. Therefore, we apply the method of Markov partitions
that constitute transitions between certain regions of the phase space near the
equilibrium. Let εx ∈ R and εy > 0 be small enough such that (xs + εx, εy) is near
(xs, 0) and in the first quadrant. Then, the dynamics of the initial point (xs+εx, εy)
as described by Eqs. (11.8)–(11.9) is governed by

ε̇x =

(
l1

1 + (xs + εx + w1εy)m
− d1

)
(xs − εx) ,

ε̇y =

(
l2

1 + (εy + w2(xs + εx))m
− d2

)
εy .

For all (εx, εy) in

S−− :=
{
(εx, εy) ∈ R× R

+ : εx + w1εy > 0 and εy + w2εx > 0
}

it holds that ε̇x, ε̇y < 0, as

l1
1+(xs+ε)m

− d1 < 0 , and l2
1+(ε+w2xs)m

− d2 < l2
1+(w2xs)m

− d2 = 0 ,

for all ε > 0. That is, a positive value of εx + w1εy leads to a negative value of ε̇x
and thus a decrease of εx. Similarly, for w−1

1 > w2, the Markov partitions

S0− := {(εx, εy) ∈ R× R
+ : εx + w1εy = 0 and εy + w2εx > 0} ,

S+− := {(εx, εy) ∈ R× R
+ : εx + w1εy < 0 and εy + w2εx > 0} ,

S+0 := {(εx, εy) ∈ R× R
+ : εx + w1εy < 0 and εy + w2εx = 0} ,

S++ := {(εx, εy) ∈ R× R
+ : εx + w1εy < 0 and εy + w2εx < 0} ,

are defined and yield specific signs of ε̇x and ε̇y . In particular, S+− is positively
invariant and its elements tend toward the equilibrium (xs, 0). Moreover, elements
of all other partitions eventually reach S+− or the equilibrium (xs, 0) itself, see
Fig. 11.5. This describes the nonlinear dynamics around (xs, 0) completely and
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(xs, 0)

S--

S+-

S++

So-

S+o

S--

S+-

S++

So-S+o

(ws, 0)

εy = w1-1 εx

εy = w2 εx

(xs, 0)

S--

S-+

S++

S-o

So+

S--

S-+

S++

S-oSo+

εy = w1-1 εx

εy = w2 εx

Br := { εx, εy : ||(εx, εy)|| < r }

leaves Br

Fig. 11.5 Model A: sketch of the Markov partitions near the equilibrium (xs, 0) and the transitions
between these phase space partitions

constitutes the asymptotic stability of (xs, 0) for w−1
1 > w2. An analogous

discussion, as graphically represented in Fig. 11.5, shows the saddle point character
of (xs, 0) for w−1

1 < w2. There, additionally the Markov partitions

S−+ := {(εx, εy) ∈ R× R
+ : εx + w1εy > 0 and εy + w2εx < 0} ,

S−0 := {(εx, εy) ∈ R× R
+ : εx + w1εy > 0 and εy + w2εx = 0} ,

S0+ := {(εx, εy) ∈ R× R
+ : εx + w1εy = 0 and εy + w2εx < 0} ,

are defined. For w−1
1 < w2 elements of any other partition may enter S−+ and then

be transported away from the equilibrium.
As next step we focus on the linearized stability of the elements of the line of

equilibria:

Proposition 11.3 (Linearized Stability of the Line of Equilibria). Let w1w2 = 1
and xs be admissible by the parameters. Then the Jacobi-matrix of system
Eqs. (11.8)–(11.9) evaluated at an interior element of the line of equilibria
(x,w2(xs − x)) (x ∈ (0, xs)) reads as

J(x,w2(xs − x)) = −
(

α w1α

w2β β

)
,

where

α :=
ml1x

m−1
s

(1 + xms )2
x > 0 , β :=

ml2(w2xs)
m−1

(1 + (w2xs)m)2
w2(xs − x) > 0 .

Each interior equilibrium on the line of equilibria is non-hyperbolic with a
vanishing eigenvalue as well as a real negative eigenvalue.
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Proof. The existence of a vanishing eigenvalue can be read off directly from
the rank one matrix J(x,w2(xs − x)), as w1(α,w2β)

T = (w1α, β), as
w1w2 = 1. The characteristic polynomial of J(x,w2(xs − x)) is given by
χJ(λ) = λ (λ+ (α+ β)), which entirely verifies the assertion. ��

Forw1w2 = 1 and xs = w2ys any constant xb and yb is a solution of Eqs. (11.8)–
(11.9) if the pair (xb, yb) lies on the line of equilibria. This result indicates that an
equilibrium on the line of equilibria might be a biological state which is preferred
in the signal-triggered competition and could be a target of regulation if robustness
toward homeostatic equilibrium is required. The reason is that if w1 = w2 = 1 such
equilibria correspond to x + w1y = N = fixed, i.e., the total number N of stem
cells is fixed. This must then be true also for the total number of differentiated cells
since the populations of stem and differentiated cells are to a good approximation
proportional. This might be a preferred state also for a model that includes both
normal and leukaemic stem cells including regulation.

In [37] an intensive study of a similar system exhibiting such a line of determin-
istic equilibria is carried out with the special focus on evolutionary selection and
survival times of the two involved species. The stochastic impact eventually drives
a state of coexistence (e.g., an initial point at the middle of the line of equilibria) to
one of the equilibria at the axis. This leads to a dynamics evolving along the line of
equilibria and thus finally to the extinction of one of the species, cf. Fig. 11.3 (1a).

Proposition 11.4 (Linearized Stability of the Face Equilibria). Let xf and yf be
admissible. Then the Jacobi-matrix of system Eqs. (11.8)–(11.9) evaluated at a face
equilibrium (xf , yf) can be written as

J(xf , yf ) =

⎛
⎝ −ml1xm−1

s

(1+xm
s )2 xf −w1

ml1x
m−1
s

(1+xm
s )2 xf

−w2
ml2y

m−1
s

(1+yms )2 yf −ml2ym−1
s

(1+yms )2 yf

⎞
⎠ .

If w1w2 > 1 the equilibrium (xf , yf) is a saddle, and if w1w2 < 1 it is
asymptotically stable.

Proof. Define a, b > 0 such that

J(xf , yf ) = −
(

a w1a

w2b b

)
⇒ χJ (λ) = λ2 + (a+ b)λ+ (1 − w1w2)ab .

The sequence of signs of the coefficients of the quadratic characteristic polynomial
χJ(λ) of J(xf , yf ) has exactly one sign change if w1w2 > 1. Accordingly,
Descartes sign rule implies the existence of one positive real root and thus of one
negative real root. This establishes the saddle character of (xf , yf ).

Moreover, the usual solution formula for quadratics leads to

λ1/2 = 1
2

(
−(a+ b)±

√
(a− b)2 + 4w1w2ab

)
,
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hence,χJ(λ) always has two real roots. It follows that (a−b)2+4w1w2ab < (a+b)2

if w1w2 < 1 and thus that in this case both roots are negative. This establishes the
asymptotic stability of (xf , yf ). ��

Due to the complete classification of the equilibria in Theorem 11.1 and the
invariance of the x- and y-coordinate spaces periodic orbits could exist only for
parameters that allow face equilibria with the face equilibrium located at the center
of the periodic orbit. However, the following proposition shows that even in this
case no periodic orbits exist in the system Eqs. (11.8)–(11.9).

Proposition 11.5 (Non-Existence of Periodic Orbits). Let the parameters of
system Eqs. (11.8)–(11.9) be such that a face equilibrium at (xf , yf) exists. Then,
there is no periodic orbit lying in the open first quadrant.

Proof. Let D := {(x, y) ∈ R
2 : x, y > 0} ⊂ R

2 be the open first quadrant, and
B(x, y) : D → R be defined as B(x, y) := (xy)−1. Moreover, let F (x, y) denote
the right-hand side of Eq. (11.8) and G(x, y) that of Eq. (11.9). Then

∂x (B(x, y)F (x, y)) + ∂y (B(x, y)G(x, y))

= − ml1(x+w1y)
m−1

y(1+(x+w1y)m)2
− ml2(y+w2x)

m−1

x(1+(y+w2x)m)2
< 0 for all (x, y) ∈ D .

Due to Dulac’s criterion, there are no periodic orbits lying entirely in D. ��
This concludes the discussion of the global dynamics of the system Eqs. (11.8)–

(11.9) since, according to the Theorem of Poincare–Bendixon, the ω-limit of
every regular point is an equilibrium point (neither periodic orbits nor attractive
connecting orbits exist due to the stability properties of the equilibria).

Finally, Fig. 11.6 summarizes our results by showing the typical dynamics
for successively increased values of γx and γy , and hence illustrating various
bifurcation patterns. In particular for w1w2 �= 1 (and γx, γy > 0) the transition
paths

γx > w−m
2 γy and γx > wm1 γy

γx = w−m
2 γy and γx > wm1 γy

γx < w−m
2 γy and γx > wm1 γy

γx < w−m
2 γy and γx = wm1 γy

γx < w−m
2 γy and γx < wm1 γy

or

γx > w−m
2 γy and γx > wm1 γy

γx > w−m
2 γy and γx = wm1 γy

γx > w−m
2 γy and γx < wm1 γy

γx = w−m
2 γy and γx < wm1 γy

γx < w−m
2 γy and γx < wm1 γy

from γx > w−m
2 γy and γx > wm1 γy to γx < w−m

2 γy and γx < wm1 γy via the face
equilibria are visualized. Here, the combination 0 < γx < w−m

2 γy , γx > wm1 γy
(γx > w−m

2 γy > 0, γx < wm1 γy) immediately implies 1 > w1w2 (1 < w1w2), i.e.,
the face equilibria are trivially admissible by the parameters.

In biological terms, Fig. 11.6 reveals that only y stem cells can survive if γx >
0 > γy , independent of the value of w1 and w2. Under the condition γx, γy > 0,
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Fig. 11.6 Model A: graphical representation of bifurcation scenario showing the global dynamics
for increasing values of γx and γy
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both scenarios that allow for the existence of exclusively one species, x or y, and
also of mixed population states are possible. The eventual picture is determined by
the ratio γx/γy as well as by the magnitude of the signaling weights w1 and w2 and
of the Hill-function index m.

If we assume that x and y represent normal and wild-type leukaemic stem cells,
respectively, then the desired effect of treatment would be to shift the system toward
equilibria characterized by an elimination of the y clone and a nonzero x population.

Inspection of Fig. 11.6 shows that a successful medication can, e.g., be realized
with the restrictions wm2 γx ≥ γy > 0 and γx ≥ wm1 γy . Within these limits,
preparation of the system in any mixed state will lead to survival of the x strain
only. The reverse situation is obtained with 0 < wm2 γx ≤ γy and γx ≤ wm1 γy .

Pure x populations can also be reached from initial conditions satisfying y < x
if 0 < wm2 γx < γy and γx > wm1 γy .

This result reflects the notion that according to Eqs. (11.8)–(11.9) an effective
control of leukaemic stem cells y by an agent could imply an increase of the death
rate d2, a reduction of the growth rate of y, e.g., by decreasing l2, or achieving both
effects simultaneously. These measures will lead to the desired decline of γy .

Figure 11.7 illustrates in a rather compact way the bifurcation pattern shown
in Fig. 11.6. The two phase space dimensions x and y are supplemented by
a third “pseudo”-axis representing the consecutive increase of the bifurcation
parameters γx and γy . Bifurcation points, i.e., locations where the stability of
one or more equilibria changes, are represented as gray circles with respect to
this third coordinate, and stability of the equilibria is displayed by certain line
styles (solid for stable character, dashed for saddle character, and dotted for a
completely unstable character). The left figure illustrates the behavior for the case
w1w2 < 1 (the right one can be interpreted analogously): by fixing a suitable
value of γy < 0 and increasing γx > 0, the equilibrium at the origin stays as
the only attractive equilibrium until the first bifurcation point is reached and an
asymptotically stable equilibrium on the x-axis occurs (at that point the origin just
becomes a saddle point). Now, we increase γy while fixing γx such that a saddle-
point equilibrium occurs at the y-axis reducing the origin to an equilibrium with
two unstable directions. Further increase in γy leads to the emergence of a stable
line of equilibria. This is indicated by the solid line connecting the two bifurcation
points on the x- and y-axis. These last bifurcation points finally display the change
of stability for further increased values of γy where the line of equilibria breaks.

11.3.2 Model B: The Formation of Cancer—Competition
Between Normal and Wild-Type Leukaemic Stem Cells

Next, we consider a model system including cycling and noncycling normal stem
cells as well as cycling wild-type CML stem cells. We introduce the variables x =
xs,0, y = xs,1 and z = xq to write the first order system of ordinary differential
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2 stable directions

2 un-stable directions

saddle character

bifurcation point

γx, γy γx, γy

y-coordinate y-coordinate

x-coordinate x-coordinate

w1 w2 < 1 w1 w2 > 1

Fig. 11.7 Model A: bifurcation diagram illustrating the dependence of the equilibria on the
bifurcation parameters γx, γy for w1w2 < 1 (left) and w1w2 > 1 (right). See the text for more
details

equations corresponding to model B as

ẋ =

(
l0

1 + (x+ w0y)m
− d0 − β0

)
x+ α0z , (11.10)

ẏ =

(
l1

1 + (y + w1x)m
− d1

)
y , (11.11)

ż = −α0z + β0x , (11.12)

with li, wi, di > 0 (i = 0, 1), α0, β0 > 0 and m ∈ N/2N. For a small initial number
y(0) of wild-type CML stem cells the state of the system can be interpreted as the
origin of leukaemia: due to genetic aberration (cf. Sect. 17.1), leukaemic stem cells
are formed and it is now interesting to simulate their development and in particular
the response of the system to the administration of imatinib. We ask: are CML stem
cells able to persist, displace normal stem cells, and take over the stem cell niche or
can the growth of CML stem cells be suppressed by medication, with the goal of an
asymptotically stable “healthy” equilibrium?

The right-hand side’s coefficient functions of this system have uniformly
bounded derivatives and are thus globally Lipschitz-continuous. Moreover, they
satisfy the usual linear growth condition. Hence, our three-dimensional system has
an unique solution on its maximal domain of definition, R3. Moreover, the first
octant {(x, y, z) ∈ R

3 : x, y, z ≥ 0} is invariant and negative populations are not
accessible from positive initial conditions.

Figure 11.8 provides a first impression of the dynamics described by
Eqs. (11.10)–(11.12) for the parameters l1 = l2 = 1, w1 = 1, w2 = 1.1, d1 = d2 =
0.9 and (first row) as well as l1 = l2 = 1, w1 = w2 = 0.5, d1 = d2 = 0.2 (second
row) together with m = 2, α0 = 0.1 and β0 = 1. Figure 11.8 (1a) and (2a) shows
the purely deterministic phase space represented by a bundle of trajectories obtained
with the specified parameters, and provide equilibria together with their stable and
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Fig. 11.8 Model B: simulation of the deterministic dynamics described by Eqs. (11.10)–(11.12)
for the parameters l1 = l2 = 1, w1 = 1, w2 = 1.1, and d1 = d2 = 0.9 in panels (1a)–(1b)
and for the parameters l1 = l2 = 1, w1 = w2 = 0.5, and d1 = d2 = 0.2 in panels (2a)–(2b)
as well as m = 2, α0 = 0.1 and β0 = 1. Two stochastic trajectories (with Ne = 1,000) starting
at (x, y, z) = (0.1, 0.1, 0.4) and (x, y, z) = (1, 1, 4) are added to the corresponding deterministic
phase representation in subfigures (1b) and (2b), respectively

unstable manifolds. In Fig. 11.8 (1b) and (2b), the deterministic phase space picture
is complemented by two stochastic trajectories starting at (x, y, z) = (0.1, 0.1, 0.4)
and (x, y, z) = (1, 1, 4). The diffusion part of the stochastic solutions is analogous
to the full model presented in Sect. 11.2.4 (with Ne = 1000). We find again that,
in particular due to the small diffusion part, these stochastic trajectories condense
around the deterministic stable manifolds and converge to the asymptotically stable
deterministic equilibrium, cf. [4, 12].

Due to the structural analogy to system Eqs. (11.8)–(11.9), the equilibria of our
new system Eqs. (11.10)–(11.12) follow immediately:

Theorem 11.2 (Existence of Equilibria). Besides the point at infinity, for admis-
sible parameters li, wi, di > 0 (i = 0, 1), α0, β0 > 0 and m ∈ N/2N the following
points in R

3 are equilibria of the system Eqs. (11.10)–(11.12):

• the origin (x, y, z) = (0, 0, 0) for all choices of the parameter.

• the point (x, 0, z) = (xs, 0, α
−1
0 β0xs), with xs := m

√
d−1
0 (l0 − d0), provided

l0 − d0 > 0 holds.
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• the point (0, y, 0) = (0, ys, 0), with ys :=
m

√
d−1
1 (l1 − d1), provided l1−d1 > 0

holds.
• the point (x, y, z) = (xf , yf , α

−1
0 β0xf ), where

xf :=
xs − w0ys
1− w0w1

, and yf :=
ys − w1xs
1− w0w1

,

provided that xf , yf > 0, w0w1 �= 1 and xs, ys exist as defined above.
• the line of equilibria (x, y, z) = (x,w2(xs − x), α−1

0 β0x), if w0w1 = 1 and xs
exists as defined above, for all x such that xs > x.

Moreover, these are the only candidates for equilibria in the first octant.

Proof. Compared to Theorem 11.1 the only new component is the dynamics
on the z-coordinate. Here, z∗ = α−1

0 β0x
∗ has to hold for any equilibrium of

the system Eqs. (11.10)–(11.12). The remaining assertions follow analogously to
Theorem 11.1. ��

Let K(x∗, y∗, z∗) ∈ R
3 denote the Jacobi-matrix of the right-hand side of

system Eqs. (11.10)–(11.12) evaluated at one of the equilibria (x∗, y∗, z∗) stated
in Theorem 11.2.

The right-hand side of system Eqs. (11.8)–(11.9) defines the Jacobian J(x, y) =
(Ji,j(x, y))i,j=1,2 (cf. Sect. 11.3.1) which leads to

K(x∗, y∗, z∗) =

⎛
⎝J1,1(x

∗, y∗)− β0 J1,2(x
∗, y∗) α0

J2,1(x
∗, y∗) J2,2(x

∗, y∗) 0

β0 0 −α0

⎞
⎠ .

By suppressing the arguments (x∗, y∗, z∗) and applying Sarrus’s rule, the character-
istic polynomial χK(λ) can be written as

χK(λ) = (J2,2 − λ) (− (J1,1 − β0 − λ) (α0 + λ)− α0β0)+J1,2J2,1 (α0 + λ) .

Hence, if J1,2 = 0 or J2,1 = 0 as in the case of an equilibrium at the origin or
at the points (xs, 0, α

−1
0 β0xs) and (0, ys, 0), the eigenvalues λi (i = 1, 2, 3) of K

follow immediately as

λ2 = J2,2 , andλ1/3 = 1
2

(
J1,1 − α0 − β0 ±

√
(J1,1 − α0 − β0)2 + 4α0J1,1

)
.

Because the systems’ behavior with respect to the eigenvalue λ2 = J2,2 has already
been analyzed in Sect. 11.3.1, we proceed with the discussion of λ1 and λ3 at the
origin and at the points (xs, 0, α

−1
0 β0xs) and (0, ys, 0).
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Proposition 11.6 (Linearized Stability of the Origin in the x-z-Plane). The
eigenvalues λ1 and λ3 of the linearization of the system Eqs. (11.10)–(11.12) at
the origin

• are real and of opposite sign if l0 − d0 > 0 (saddle structure),
• are zero and a negative value if l0 − d0 = 0 (stable structure),
• have negative real part if l0 − d0 < 0 (asymptotically stable structure). In

particular, λ1 and λ3 are complex conjugate if 4α0|l0 − d0| > (|l0 − d0| +
α0 + β0)

2.

Proof. The assertions follow immediately as J11 = l0 − d0. ��
Proposition 11.7 (Linearized Stability of (0, ys, 0) and (xs, 0, α

−1
0 β0xs) in the

x-z-Plane). For i = 0, 1, the eigenvalues λ1 and λ3 of the linearization of the
system Eqs. (11.10)–(11.12) at the point (0, ys, 0) and at the point (xs, 0, α

−1
0 β0xs),

respectively,

• are real and of opposite sign if li − di < 0 (saddle structure),
• are zero and a negative value if li − di = 0 (stable structure),
• have negative real part if li − di > 0 (asymptotically stable structure).

Here, the index i = 0 corresponds to the discussion of the point (xs, 0, α
−1
0 β0xs)

and the index i = 1 to that of the point (0, ys, 0).

Proof. The assertions follow immediately as J11 = −mli(li − di)l
−1
i for i = 0, 1.

��
Remark 11.1. Mathematically, treatment of the wild-type CML clone would thus
correspond to a variation of the parameters wi, li, di (i = 0, 1) in a way that
(xs, 0, α

−1
0 β0xs) becomes an asymptotically stable equilibrium and the remaining

equilibria are unstable. Hence, one would try to affect, by suitable medication, the
death and birth rates such that l0 − d0 > 0 and l1 − d1 > 0 as well as w0w1 > 1
to create an unstable mixed-species equilibrium at (xf , yf , α

−1
0 β0xf )) (if it exists),

cf. Proposition 11.9.
The only difference between model A [Eqs. (11.8)–(11.9)] and model B

[Eqs. (11.10)–(11.12)] is the inclusion of a pool of quiescent stem cells z in model
B that is in continuous exchange with the cycling normal stem cells x. According to
Theorem 2, extension of model A by quiescent stem cells to yield model B does not
lead to the formation of additional equilibria. The structure of the terms describing
deactivation of normal cells and activation of quiescent cells, respectively, implies
that a steady state is established. The size of the residual long-time population of z
is determined by the parameters of model B.

The discussion of the biological relevance of the solutions of Eqs. (11.8)–(11.9)
obtained for different parameter regimes at the end of Sect. 11.3.1 also applies to
Eqs. (11.10)–(11.12), since the dependence of the relative topology of the equilibria
positions in (x,y) space on the bifurcation parameters γx and γy as documented for
model A in Fig. 11.6 is not changed by adopting model B.
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We now address the stability of the line of equilibria and that of the point
(xf , yf , α

−1
0 β0xf ). In this case, the characteristic polynomial χK(λ) can be

expressed via tr(J) and det(J) leading to

p(λ) = λ3− (tr(J)− α0 − β0)λ
2− (α0tr(J)− det(J) + β0J2,2)λ+α0 det(J) ,

with p(λ) = −χK(λ).

Proposition 11.8 (Linearized Stability of the Line of Equilibria). Let w0w1 = 1
and xs be admissible by the parameters. Then the Jacobi-matrix K of system
Eqs. (11.10)–(11.12) evaluated at an interior element of the line of equilibria
(x,w2(xs − x), α−1

0 β0x) (x ∈ (0, xs)) has a vanishing eigenvalue as well as two
eigenvalues (counted by multiplicity) with negative real part.

Proof. Since det(J) is the product and tr(J) the sum of J’s eigenvalues, we arrive,
due to Proposition 11.3, for J(xs, w2(xs − x)) at the following properties of J :
det(J) = 0, tr(J) = J1,1 + J2,2 < 0 and J1,1, J2,2 < 0. Hence, p(λ) becomes

p(λ) = λ
(
λ2 − (tr(J)− α0 − β0)λ− α0tr(J)− β0J2,2

)
,

and the usual solution formula for quadratics leads to

λ2,3 = 1
2

(
tr(J)− α0 − β0 ±

√
(tr(J)− α0 − β0)

2
+ 4 (α0tr(J) + β0J2,2)

)
.

This confirms the assertion. ��
Proposition 11.9 (Linearized Stability of the Point (xf , yf , α−1

0 β0xf )). Let xf
and yf be admissible, i.e., w0w1 �= 1. The equilibrium (xf , yf , α

−1
0 β0xf ) is

hyperbolic. It is asymptotically stable for w0w1 < 1 and unstable for w0w1 > 1.

Proof. Proposition 11.4 implies that J1,1, J2,2 < 0, tr(J) < 0 as well as det(J) < 0
if w0w1 > 1 and det(J) > 0 if w0w1 < 1. Let the coefficients of p(λ) be identified
by κ0, κ1, κ2 such that p(λ) = λ3 + κ2λ

2 + κ1λ+ κ0. As κ0 �= 0 none of the roots
of p(λ) vanishes.

If κ0, κ2 > 0 and κ1κ2 > κ0, then all roots of p(λ) are negative or have negative
real part due to the Routh–Hurwitz criterion. Letw0w1 < 1, then κ0, κ1, κ2 > 0 and

κ1κ2 − κ0 = (α0tr(J)− det(J) + β0J2,2) (tr(J)− α0 − β0)− α0 det(J)

= α0(tr(J))2 − α0(α0 + β0)tr(J)− tr(J) det(J) + β0 det(J)

+ β0J2,2tr(J)− β0(α0 + β0)J2,2 > 0 .

Thus, the assertion follows for w0w1 < 1.
For w0w1 > 1 it follows that κ2 > 0 and κ0 < 0 holds. Hence, due to Descartes

sign rule, there is exactly one positive real root of p(λ). ��



252 T. Flå et al.

The bifurcation pattern is analogous to that described in Sect. 11.3.1 in the
context of the dynamics of two competing stem cell strains.

11.3.3 Model C: The Full Four-Dimensional Problem,
Including Cycling and Noncycling Normal Stem Cells
Plus Two Cycling Leukaemic Stem Cell Clones

We are now ready to investigate the equilibria of the initial four-dimensional model
equations (11.4)–(11.7). We recall the governing equations for model C with some
notational modifications:

ẋ0 =

(
l0

1 + (x0 + w0,1x1 + w0,2x2)m
− d0 − β0

)
x0 + α0x3 , (11.13)

ẋ1 =

(
l1

1 + (x1 + w1,0x0 + w1,2xs)m
− d1

)
x1 , (11.14)

ẋ2 =

(
l2

1 + (x2 + w2,0x0 + w2,1x1)m
− d2

)
x2 , (11.15)

ẋ3 = −α0x3 + β0x0 , (11.16)

with li, di > 0 (i = 0, 1, 2), w0,1, w0,2, w1,0, w1,2, w2,0, w2,1 > 0, α0, β0 > 0 and
m ∈ N/2N.

Due to the previous considerations in Sects. 11.3.1 and 11.3.2, combinatorics can
be employed to analyze the existence and location of the equilibria.

Theorem 11.3 (Existence of Equilibria). Besides the point at infinity, for admissi-
ble parameters li, wi, di > 0 (i = 0, 1, 2), α0, β0 > 0 and m ∈ N/2N the following
points in R

4 are equilibria of the system Eqs. (11.13)–(11.16):

• the origin (x0, x1, x2, x3) = (0, 0, 0, 0) for all choices of the parameter.

• the point (x0, 0, 0, x3) = (xs, 0, 0, α
−1
0 β0xs), with xs := m

√
d−1
0 (l0 − d0),

provided l0 − d0 > 0 holds.

• the point (0, x1, 0, 0) = (0, y
(1)
s , 0, 0), with y

(1)
s := m

√
d−1
1 (l1 − d1), provided

l1 − d1 > 0 holds, and the point (0, 0, x2, 0) = (0, 0, y
(2)
s , 0), with y

(2)
s :=

m

√
d−1
2 (l2 − d2), provided l2 − d2 > 0 holds.

• the points (x0, x1, 0, x3) = (x
(1)
f , y

(1)
f , 0, α−1

0 β0x
(1)
f ), and (x0, 0, x2, x3) =

(x
(2)
f , 0, y

(2)
f , α−1

0 β0x
(2)
f ), where
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x
(i)
f :=

xs − w0,iy
(i)
s

1− w0,iwi,0
, and y

(i)
f :=

y
(i)
s − wi,0xs
1− w0,iwi,0

,

provided that x(i)f , y
(i)
f > 0, w0,iwi,0 �= 1 and xs, y

(i)
s (i = 1, 2) exist as defined

above.
• the line of equilibria (x0, x1, 0, x3) = (x0, w1,0(xs − x0), 0, α

−1
0 β0x0), if

w0,1w1,0 = 1, and the line of equilibria (x0, 0, x2, x3) = (x0, 0, w2,0(xs −
x0), α

−1
0 β0x0), if w0,2w2,0 = 1, provided xs exists as defined above, for all x0

such that xs > x0.
• the point (x0, x1, x2, x3) = (y1, y2, y3, α

−1
0 β0y1), provided that the following

conditions hold:

(i) xs, y
(1)
s , y

(2)
s > 0 exist as defined above,

(ii) 1 − w1,0w0,1 �= 0 and y
(2)
s − w2,0xs − y(1)s −w1,0xs

1−w1,0w0,1
�= 0 together with 1 −

w2,0w0,2 − w1,2−w1,0w0,2

1−w1,0w0,1
�= 0, or

(ii′) 1− w1,0w0,1 = 0 and w1,2 − w1,0w0,2 �= 0 and w2,1 − w2,0w0,1 �= 0,

(iii) y = (y1, y2, y3)
T is the unique solution of Wy = (xs, y

(1)
s , y

(2)
s )T , where

W = (wi,j) with wi,i = 1 (i = 1, 2, 3), and finally
(iv) y1, y2, y3 > 0. Note, due to condition (ii) or (ii’) the system Wy =

(xs, y
(1)
s , y

(2)
s )T has an unique solution.

• the one-parameter family (x0, x1, x2, x3) = (y0(z), y0(z), z, α
−1
0 β0y0(z)) of

equilibria, where z > 0 is such that

y1(z) =
y(2)s −w2,0xs−(1−w2,0w0,2)z

w2,1−w2,0w0,1
> 0

and

y0(z) = xs − w0,1y1(z)− w0,2z > 0

hold, provided that 1− w0,1w1,0 = 0, w1,2 −w1,0w0,2 = 0, y(1)s −w1,0xs = 0,
together with w2,1 − w2,0w0,1 �= 0.

• the one-parameter family (x0, x1, x2, x3) = (y0(z), z, y2, α
−1
0 β0y0(z)) of

equilibria, where z > 0 is such that

y0(z) = xs − w0,1z − w0,2
y
(1)
s − w1,0xs

w1,2 − w1,0w0,2
> 0

holds, provided that

(i) 1− w0,1w1,0 = 0, w1,2 − w1,0w0,2 �= 0 together with w2,1 − w2,0w0,1 = 0,

(ii) (1− w2,0w0,2)(y
(1)
s − w1,0xs) = (w1,2 − w1,0w0,2)(y

(2)
s − w2,0xs), and

(iii) y2 :=
y(1)s −w1,0xs

w1,2−w1,0w0,2
> 0.
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• the one-parameter family (x0, x1, x2, x3) = (y0(z), z, y2, α
−1
0 β0y0(z)) of

equilibria, where z > 0 is such that

y0(z) = xs − w0,1z − w0,2
y
(2)
s − w2,0xs
1− w2,0w0,2

> 0

holds, provided that

(i) y2 =
y(2)s −w2,0xs

1−w2,0w0,2
> 0,

(ii) 1−w0,1w1,0 = 0, w1,2−w1,0w0,2 = 0 together with y(1)s −w1,0xs = 0, and
(iii) w2,1 − w2,0w0,1 = 0 with 1− w2,0w0,2 > 0.

• the two-parameter family (x0, x1, x2, x3) = (y0(z), z1, z2, α
−1
0 β0y0(z)) of

equilibria, where z1, z2 > 0 are such that y0(z1, z2) = xs−w0,1z1−w0,2z2 > 0,
provided that

(i) 1− w0,1w1,0 = 0, w1,2 − w1,0w0,2 = 0 together with y(1)s − w1,0xs = 0, as
well as

(ii) w2,1 − w2,0w0,1 = 0, 1− w2,0w0,2 = 0 together with y(2)s − w2,0xs = 0.

Moreover, these are the only candidates for equilibria in the first orthant P :=
{(x0, x1, x2, x3)T ∈ R

4 : xi ≥ 0 for all i = 0, 1, 2, 3}.
Proof. Theorems 11.1 and 11.2 show the existence of the postulated equilibria if at
least one of the four components x0, x1, x2, or x3 vanishes.

Let us now assume that x0, x1, x2, x3 �= 0, and denote the coordinates of an
equilibrium by (y0, y1, y2, y3)

T . The x0- and x3-coordinates at an equilibrium are
coupled via y3 = α−1

0 β0y0. Thus, we only have to care about the first three
coordinates y := (y0, y1, y2)

T of an equilibrium point: at an equilibrium, we have
with i = 0, 1, 2

li
1 + (wTi y)

m
− di = 0 ⇔ δi := m

√
li − di
di

= wTi y ,

where w0 := (1, w0,1, w0,2)
T , w1 := (w1,0, 1, w1,2)

T , and w2 := (w2,0, w2,1, 1)
T .

Thus, we are left with solving the linear system Wy = δ with W :=

(wT0 , w
T
1 , w

T
2 ) ∈ R

3×3 and δ = (δ0, δ1, δ2)
T = (xs, y

(1)
s , y

(2)
s )T ∈ R

3. By
Gaussian elimination we have

⎛
⎜⎝

1 w0,1 w0,2 xs

w1,0 1 w1,2 y
(1)
s

w2,0 w2,1 1 y
(2)
s

⎞
⎟⎠

(1)−→

⎛
⎜⎝

1 w0,1 w0,2 xs

0 1− w1,0w0,1 w1,2 − w1,0w0,2 y
(1)
s − w1,0xs

0 w2,1 − w2,0w0,1 1− w2,0w0,2 y
(2)
s − w2,0xs

⎞
⎟⎠ .
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If first 1− w1,0w0,1 �= 0, we continue to obtain

(2)−→
(
1−w1,0w0,1 w1,2 −w1,0w0,2 y

(1)
s −w1,0xs

0 1 − w2,0w0,2 − w1,2 −w1,0w0,2

1 −w1,0w0,1
y
(2)
s −w2,0xs − y

(1)
s − w1,0xs

1 −w1,0w0,1

)

,

and thus, if second y(2)s − w2,0xs − y(1)s −w1,0xs

1−w1,0w0,1
�= 0 together with 1 − w2,0w0,2 −

w1,2−w1,0w0,2

1−w1,0w0,1
�= 0, the three coordinates of an equilibrium follow as

y2 =
y
(2)
s − w1,0w0,1y

(2)
s − w2,0xs + w1,0w0,1w2,0xs − y

(1)
s + w1,0xs

1− w1,0w0,1 − w2,0w0,2 + w1,0w0,1w2,0w0,2 − w1,2 + w1,0w0,2

y1 =
y
(1)
s − w1,0xs − (w1,2 − w1,0w0,2)y2

1− w1,0w0,1

y0 = xs − w0,1y1 − w0,2y2 .

Before we consider further singular cases, we have to check for positivity, i.e.,
y0, y1, y2 > 0. This is guaranteed by the conditions imposed via the theorem. Note,
as the entries ofW are positive and independent of the entries of δ, we can construct
parameter values li, di (i = 0, 1, 2) such that for any choice of positive entries of y
the system Wy = δ has an unique solution.

Next, let 1 − w0,1w1,0 = 0, then the Gaussian elimination procedure proceeds
according to

(2′)−→
(

0 w1,2 − w1,0w0,2 y
(1)
s − w1,0xs

w2,1 − w2,0w0,1 1− w2,0w0,2 y
(2)
s − w2,0xs

)
.

If, additionally,w1,2 − w1,0w0,2 �= 0 and w2,1 − w2,0w0,1 �= 0, then

y′
2 =

y
(1)
s − w1,0xs

w1,2 − w1,0w0,2

y′
1 =

y
(2)
s − w2,0xs − (1 − w2,0w0,2)y

(1)
s

w2,1 − w2,0w0,1

y′
0 = xs − w0,1y

′
1 − w0,2y

′
2 .

Again, we moreover require y′
2, y

′
1, y

′
0 > 0.

If 1−w0,1w1,0 = 0 and w1,2−w1,0w0,2 = 0, then y(1)s −w1,0xs = 0 is required
to allow for a solution. Under these conditions let z := y2 > 0 be arbitrary, for
w2,1 − w2,0w0,1 �= 0 we get a one-parameter family of equilibria as
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y1(z) =
y
(2)
s − w2,0xs − (1− w2,0w0,2)z

w2,1 − w2,0w0,1

y0(z) = xs − w0,1y1 − w0,2z .

provided y1, y0 > 0.
If 1− w0,1w1,0 = 0, w1,2 − w1,0w0,2 �= 0 and w2,1 − w2,0w0,1 = 0, then

y2 =
y
(1)
s − w1,0xs

w1,2 − w1,0w0,2
,

and

(1 − w2,0w0,2)(y
(1)
s − w1,0xs) = (w1,2 − w1,0w0,2)(y

(2)
s − w2,0xs) ,

has to hold. Finally, let z := y1 > 0 be arbitrary, then

y0(z) = xs − w0,1z − w0,2
y
(1)
s − w1,0xs

w1,2 − w1,0w0,2
.

Again, for all combinations we further require y2, y1 = z, y0(z) > 0.
Let 1 − w0,1w1,0 = 0, w1,2 − w1,0w0,2 = 0 together with y(1)s − w1,0xs = 0,

and w2,1 − w2,0w0,1 = 0 with 1− w2,0w0,2 > 0, then

y2 =
y
(2)
s − w2,0xs
1− w2,0w0,2

.

With z := y1 > 0 it follows that

y0(z) = xs − w0,1z − w0,2
y
(2)
s − w2,0xs
1− w2,0w0,2

.

For all combinations we additionally require y2, y1 = z, y0(z) > 0.

Finally, let 1−w0,1w1,0 = 0,w1,2−w1,0w0,2 = 0 together with y(1)s −w1,0xs =

0, and w2,1 − w2,0w0,1 = 0, 1 − w2,0w0,2 = 0 together with y
(2)
s − w2,0xs = 0.

Then, with z1 > 0 and z2 we get the two-parameter family of feasible solutions

y0(z1, z2) = xs − w0,1z1 − w0,2z2 ,

provided y0(z1, z2) > 0.
No further options that would lead to equilibria are given. ��
Not unsurprisingly, we recover essentially the same types of isolated and

connected equilibria as in Theorem 11.2, though with one additional dimension



11 Deterministic and Stochastic Dynamics of Chronic Myelogenous . . . 257

for the additional leukaemic species. In principle, the stability of each of the
13 equilibrium structures of Theorem 11.3 can now be obtained analogously to those
discussed in Theorem 11.2.

11.4 Summary and Outlook

Starting from first principles with the assumption of Hill-function-like signaling, we
derived the approximated Fokker–Planck and its associated Langevin equation for
the dynamics of a four-dimensional system consisting of cycling and noncycling
normal hematopoietic stem cells together with the wild-type and one imatinib -
resistant cycling CML stem cell clone (model C). Since the equilibria of the
corresponding deterministic system are known to have a non-negligible influence
on the stochastic dynamics, we determined the location of all those equilibria in
the full four-dimensional setting. Moreover, a two-dimensional (model A) and a
three-dimensional (model B) deterministic subsystem were studied with respect to
stability of all equilibria and complete bifurcation behavior.

The discussion of the bifurcation behavior of the solutions of models A, B,
and C confirms that it is possible to direct the equation systems into single-
state equilibrium situations characterized by elimination of CML stem cells within
certain parameter regimes. Treatment is assumed to have the effect of reducing and
increasing the growth and death rate, respectively, of CML stem cells by appropriate
medication.

Our study was motivated by current research on imatinib -resistant CML strains
that appear after treatment of the wild-type leukaemic clone with imatinib [20, 21,
53]. The models proposed here will hopefully serve, in further studies, to better
understand the emergence of imatinib -resistant CML mutations and allow for an
effective medication strategy. A relevant question on the modeling side is the best
form of the signaling function, as there are some indicators that a signaling model
employing Tsallis-functions may resemble observed statistical patterns better. An
interesting biological aspect that will be addressed in future theoretical work is the
issue of the involvement of quiescent stem cells in the development of CML, in
particular with respect to the mechanisms that drive the emergence of imatinib -
resistant CML clones after successful elimination of the wild-type leukaemic strain
by this drug.
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Appendix: Milstein Scheme for the Stochastic
Itô-/Langevin-Model Presented in Sect. 11.2.4

With suitable functions f0, . . . , fq for the drift and g0, . . . , gq for the diffusion our
four-dimensional system of stochastic differential Itô equations from Sect. 11.2.4
reads as

dXt =

⎛
⎜⎜⎝
f0(Xt)

f1(Xt)

f2(Xt)

fq(Xt)

⎞
⎟⎟⎠ dt+

⎛
⎜⎜⎝
g0(Xt)

0

0

0

⎞
⎟⎟⎠ dW (0)

t +

⎛
⎜⎜⎝

0

g1(Xt)

0

0

⎞
⎟⎟⎠ dW (1)

t

+

⎛
⎜⎜⎝

0

0

g2(Xt)

0

⎞
⎟⎟⎠ dW (2)

t +

⎛
⎜⎜⎝
−gq(Xt)

0

0

gq(Xt)

⎞
⎟⎟⎠ dW (q)

t .

As discussed in [28, p. 345], a numerical scheme with strong order of con-
vergence one is the so-called (explicit) Milstein-method. The order one of strong
convergence depends, of course, on the right-hand side of the stochastic differential
equation considered, cf. Theorem 10.3.5, [28, p. 350]. In particular, for our square-
root diffusion functions this order of convergence will hold true only outside
the origin. Due to Itô’s chain rule, some additional terms and, in particular
in our multi-noise setting, multiple stochastic integrals occur compared to the
familiar deterministic Euler-method. Nevertheless, the Milstein-method as a first
order scheme, like the deterministic Euler-method, can be considered as the proper
stochastic analogue to the deterministic Euler-method.

For our system of stochastic differential equations Milstein’s method leads to the
following time-discretization with tn+1−tn =: Δt is the spacing between two time-
points of an equidistant time grid, and W (i)

tn+1
−W

(i)
tn =: ΔW (i) the corresponding

increment of the Wiener process W (i)
t (i = 0, 1, 2, q). First, we get for the normal

stem cells

xs,0(tn+1) = xs,0(tn) + f0(X(tn))Δt + g0(X(tn))ΔW
(0)

+

2∑
i=0

(
gi(X(tn))

∂

∂xs,i
g0(X)

∣∣∣∣
tn

)
I(i, 0)

+ (gq(X(tn))I(q, 0)− gq(X(tn))I(0, 0))
∂

∂xs,q
g0(X)

∣∣∣∣
tn

,

where X := (xs,0, xs,1, xs,2, xq), and I(i, j) (i, j ∈ {0, 1, 2, q}) are multiple
stochastic integrals given as
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I(i, j) =

∫ tn+1

tn

∫ s1

tn

dW (i)
s2 dW (j)

s1 ,

and, in particular,

I(i, i) = 1
2

((
ΔW (i)

)2
−Δt

)
.

For model A, we obtain with this notation

xs,1(tn+1) = xs,1(tn) + f1(X(tn))Δt+ g1(X(tn))ΔW
(1)

+

2∑
i=0

(
gi(X(tn))

∂

∂xs,i
g1(X)

∣∣∣∣
tn

)
I(i, 1) ,

and

xs,2(tn+1) = xs,2(tn) + f2(X(tn))Δt+ g2(X(tn))ΔW
(1)

+

2∑
i=0

(
gi(X(tn))

∂

∂xs,i
g2(X)

∣∣∣∣
tn

)
I(i, 2) .

Finally, the Milstein discretization scheme for the quiescent stem cell population is

xq(tn+1) = xq(tn) + fq(X(tn))Δt+ gq(X(tn))ΔW
(q)

+ g0(X(tn))
∂

∂xs,0
gq(X)

∣∣∣∣
tn

I(q, 0)

+ (gq(X(tn))I(q, q) − gq(X(tn))I(0, q))
∂

∂xs,q
gq(X)

∣∣∣∣
tn

.

The efficient numerical evaluation of multiple stochastic integrals is somewhat
challenging, cf. [28, 29, p. 198] or [17]: For one of our standard Wiener processes
W

(i)
t (i, j ∈ {0, 1, 2, q}), the starting point for the computation of I(i, j), i �= j, is

the Brownian bridge process

W
(i)
t − t

s
W (i)
s , for 0 ≤ t ≤ s := Δt .

The associated Fourier series reads as

W
(i)
t − t

s
W (i)
s = 1

2ai,0 +

∞∑
k = 1

(
ai,k cos

(
2πkt

s

)
+ ai,k sin

(
2πkt

s

))
,
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which is equivalent to

W
(i)
t =

1

s
W (i)
s t + 1

2ai,0 +

∞∑
k = 1

(
ai,k cos

(
2πkt

s

)
+ ai,k sin

(
2πkt

s

))
,

(11.17)

where ai,0 = −2∑∞
k=0 ai,k by setting t = 0 and the coefficients bi,j and

ai,j are N (0, (2π2k2)s)-distributed pairwise independent random variables. As
outlined in [29], this Fourier series can be used to successively derive a hierarchy
of multiple stochastic integrals. In particular, it can be shown by first integrating
equation (11.17) with respect to t over [0, s] and then with respect to W

(j)
t over

[0, s], that the following relation is true:

I(i, j) = 1
2W

(i)
s W (j)

s − 1
2

(
aj,0W

(i)
s − ai,0W

(j)
s

)
+ sAi,j ,

where

Ai,j = π
s

∞∑
k=1

k (ai,kbj,k − aj,kbi,k) .

To handle these infinite series on a computer, a truncation method is required.
First, we observe that

ξi := 1√
s
W (i)
s , ξi,k :=

√
2
sπkai,k , ηi,k :=

√
2
sπkbi,k

are independent Gaussian random variables which can be conveniently sampled
prior to computation. Let p ∈ N denote a truncation index such that I(i, j) ≈
I(i, j)p, where the approximation I(i, j)p of I(i, j) is given as

I(i, j)p = 1
2sξiξj −

√
s
2

(
apj,0ξi − api,0ξj

)
+ sApi,j ,

with

Api,j = 1
2π

p∑
k=1

1
k (ξi,kηj,k − ξj,kηi,k) and api,0 = −

√
2s

π

p∑
k=1

1
k ξi,k .

The mean-square error of this approximation is discussed in [29], and in order
to achieve a strong order of convergence one for the Milstein scheme with this
approximation of the multiple stochastic integrals. Ref. [17] suggests that p should
be chosen of order O(s−1). A method to reduce the number p is for instance
proposed in [51].

A very efficient alternative to the rather cumbersome Fourier series ansatz
to simulate double/multiple stochastic integrals is to apply the Euler–Mayurama
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scheme on each sub-interval with a very fine step size, cf. [26]. For instance, the
integral I1,2 is the solution of the two-dimensional stochastic differential equation

dXt = 1 dW (1)
t , dYt = Xt dW (2)

t ,

such that I1,2 = YΔ on tn ≤ t ≤ tn+1 with step size Δ = tn+1 − tn. This two-
dimensional stochastic differential equation can now, for instance, be solved with
the Euler–Mayurama scheme with step size Δ2.
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Chapter 12
Singular Solutions of Euler–Poincaré Equations
on Manifolds with Symmetry

D.D. Holm, J. Munn, and S.N. Stechmann

In honor of Jürgen Scheurle’s 60th birthday

Abstract The Euler–Poincaré equation EPDiff governs geodesic flow on the
diffeomorphisms with respect to a chosen metric, which is typically a Sobolev norm
on the tangent space of vector fields. For a strong enough norm, EPDiff admits
singular solutions, called “diffeons,” whose momenta are supported on embedded
subspaces of the ambient space. Diffeons are true solitons for some choices of the
norm. The diffeon solution itself is a momentum map. Consequently, the diffeons
evolve according to canonical Hamiltonian equations.

This paper examines diffeon solutions on Einstein spaces that are “mostly” sym-
metric, i.e., whose quotient by a subgroup of the isometry group is one-dimensional.
An example is the two-sphere, whose isometry group SO3 contains S1. In this
situation, the singular diffeons are supported on latitudes of the sphere. For this
S1 symmetry of the two-sphere, the canonical Hamiltonian dynamics for diffeons
reduces from integral partial differential equations to a dynamical system of ordi-
nary differential equations for their co-latitudes. Explicit examples are computed
numerically for the motion and interaction of the Puckons on the sphere with respect
to the H1 norm. We analyze this case and several other two-dimensional examples.
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From consideration of these two-dimensional spaces, we outline the theory for
reduction of diffeons on a general manifold possessing a metric equivalent to the
warped product of the line with the bi-invariant metric of a Lie group.

12.1 Introduction

12.1.1 Motivation and Problem Statement

The Euler–Poincaré equation EPDiff arises in continuum mechanics, where for
the L2 norm it governs incompressible fluid flow [2]. EPDiff also arises in shape
analysis, where it is used to measure the “distance” between two images with respect
to a chosen metric [16, 17]. When the metric is a Sobolev norm, (2, s) with s ≥ 1,
EPDiff admits singular solutions, called diffeons, whose momenta are supported on
embedded subspaces of the ambient space.

Finally, EPDiff also arises in integrable systems theory, as the dispersionless
case of the Camassa–Holm (CH) equation for strongly nonlinear shallow water
waves [4]. In this case, the metric is the H1 norm of the fluid velocity. The
momentum for each solitary wave of the CH equation in one spatial dimension is
concentrated on a point moving with the flow, at which the velocity profile has a
jump in derivative at its peak. These singular soliton solutions are called peakons.

Previously, EPDiff has been solved analytically for the interactions of two
solitary waves on the real line in one dimension [4], as radially symmetric rotating
concentric circles on the two-dimensional plane [10] and numerically in two
dimensions and three dimensions, for a variety of initial value problems [12]. In
cases with one-dimensional linear, or radial symmetry, these dynamics reduce to
canonical Hamiltonian ordinary differential equations (ODEs). Here we consider
the corresponding reduction for singular wave motion on the surface of the sphere
for EPDiff with respect to the H1 norm and we discuss its generalizations for other
surfaces of constant curvature.

In each case, we derive the symmetry which reduces the dynamics of the singular
solutions of the EPDiff equation to a system of canonical Hamiltonian ODEs. We
also provide explicit numerical results for the interactions of these singular EPDiff
solutions in the case of Puckon motion as concentric latitudes moving on the sphere.
In showing a variety of examples of how EPDiff can be reduced to interesting
systems of canonical Hamiltonian ODEs for multi-diffeon solutions, we hope to
inspire ideas for further explorations and applications of these solutions. To facilitate
this purpose, most of the calculations will be done explicitly.
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12.1.2 The Camassa–Holm Equation on a Riemannian
Manifold

Variational Formulation of 1D CH.

The dispersionless Camassa–Holm (CH) equation [4] for one-dimensional shallow
water waves arises from stationarity of the kinetic energy functional given by the
Sobolev (2,1)-norm

' : W 2,1(R) −→ R ,

'[u] =

∫
R

(
u(x)2 + ux(x)

2
)
dx ,

subject to velocity variations in the Euler–Poincaré form [9]

δu = ζ̇ − aduζ = ζ̇ + [u, ζ] ,

where u, ζ ∈ g, and g consists of the vector fields on the real line, X(R), with Lie
bracket [·, ·] given by

[u, ζ] = uζx − ζux = −aduζ .

The dispersionless CH equation itself is given by the following system for velocity
u and its dual momentum m,

ṁ = −ad∗
um = −(m∂x + ∂xm)u ,

with m =
δ'

δu
= u− uxx = u+Δu ,

so that u = G ∗m =

∫
R

G(x − y)m(y)dy ,

(12.1)

where G(x) = 1
2e

−|x| is the Green’s function for the Helmholtz operator 1− ∂2
x on

the real line. We are using the convention that the Laplacian in 1D is given by

Δu = − uxx.

The minus sign comes from regarding the Laplacian as ∂∗
x∂x, where ∂∗

x is the L2

adjoint of the derivative operator ∂x.

Legendre Transforming 1D CH to the Hamiltonian Side.

The Legendre transform yields the following invertible relations between momen-
tum and velocity,
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m = (1− ∂2
x)u and u = G ∗m, (12.2)

where G(x) = 1
2e

−|x| is the Green’s function for the Helmholtz operator (1 − ∂2
x),

assuming homogeneous boundary conditions (on u) that allow inversion of the
Helmholtz operator to determine u from m.

The associated Hamiltonian is,

h[m] = 〈m, u〉 − 1

2
‖u‖2 = 1

2

∫
m ·G ∗m dx =:

1

2
‖m‖2 , (12.3)

which also defines a norm ‖m‖ via a convolution kernel G, which is symmetric
and positive, when the Lagrangian '[u] is a norm. As expected, the norm ‖m‖
given by the Hamiltonian h[m] specifies the velocity u in terms of its Legendre-
dual momentum m by the variational operation,

u =
δh

δm
= G ∗m ≡

∫
G(x− y)m(y) dy . (12.4)

The kernelG(x−y) = 1
2e

−|x−y| for the Helmholtz operator is translation-invariant,
so Noether’s theorem implies that the total momentum M =

∫
m dnx is conserved.

It is also symmetric under spatial reflections, so u and m have the same parity under
spatial reflections.

After the Legendre transformation (12.3), Eq. (12.1) appears in its equivalent
Lie–Poisson Hamiltonian form,

∂

∂t
m = {m,h} = − ad∗

δh/δmm. (12.5)

Here the operation {· , · } denotes the Lie–Poisson bracket dual to the (right) action
of vector fields among themselves by vector-field commutation. That is,

{f , h } = −
〈
m,

[
δf

δm
,
δh

δm

]〉
. (12.6)

Variational Formulation of CH on a Riemannian Manifold.

The dispersionless CH equation (12.1) may be put onto a general Riemannian man-
ifold (M, 〈·, ·〉) with dim(M) = n and Levi–Civita connection ∇, by introducing
the functional on the space of weakly differentiable square-integrable vector fields,

' : W 2,1X (M) −→ R

'[u] =

∫
M

(|u|2 + |∇u|2) dvol.
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Again, we consider the stationary points of ' with respect to variations of the
Euler–Poincaré form

δu = ζ̇ + [ζ, u] .

This requirement yields the following n-dimensional EPDiff equation on M ,

ṁ = −ad∗
um, where m =

δ'

δu
= u+Δ∇u , (12.7)

with which we shall work in the remainder of the paper. Here we denote

Δ∇ = ∇∗∇

for the connection Laplacian with respect to the metric and we assume homogeneous
boundary conditions for the velocity u.

The same type of Legendre transformation and Hamiltonian formulation as
before also applies to the EPDiff equation (12.7) for the CH equation on a
Riemannian manifold. For more details and additional background concerning the
relation of classical EP theory to Lie–Poisson Hamiltonian equations, see [9, 15].

Diffeons: Singular Solutions for EPDiff.

The Hamiltonian formulation of the EPDiff equation (12.7) is Lie–Poisson in the
momentum variable m, which possesses a remarkable set of singular solutions,
given by

m(t, x) =

N∑
i=1

∫
Si

Pi(t, si)δ(x−Ri(t, si)) dsi for x ∈M. (12.8)

These singular solutions emerge dynamically from smooth confined initial con-
ditions and are called diffeons. The diffeon singular solutions of EPDiff are
vector-valued functions supported in M on a set of N surfaces (or curves) of
codimension (n − k) for s ∈ Mk ⊂ M with dimMk = k < n. For example,
diffeons may be supported on sets of points (k = 0), curves (k = 1), or surfaces
(k = 2) in three dimensions. These support sets of m move with the fluid velocity
u = G ∗ m; so the coordinates s ∈ Mk ⊂ M are Lagrangian fluid labels. The
Green’s function G for the operator 1 + Δ∇ is continuous, but it has a jump in
its derivative on the support set that advects with the velocity u = G ∗ m under
the evolution of EPDiff. In fluid dynamics, a jump in derivative which moves with
the flow is called a “contact discontinuity” [14]. The relationship of the singular
solutions of EPDiff equation (12.7) to fluid dynamics is illuminated by rewriting
equation (12.7) in “Riemann-invariant form,”
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d

dt
(m · dx⊗ dvol) = 0, along

dx

dt
= u = G ∗m.

The diffeon singular solution ansatz (12.8) was first discovered as the “peakon”
solutions for CH motion on the real line in [4]. This was generalized to motion
in higher dimensions in [11] and was shown to be a momentum map in [8]. As
a result of the singular solution ansatz being a momentum map, the 2N vari-
ables Pi, Ri,satisfy Hamilton’s canonical equations. In general, these are integro-
partial differential equations for the canonically conjugate diffeon parameters
Pi(t, si), Ri(t, si) in (12.8) with i = 1, . . . , N .

12.1.3 Main Results of the Paper

This paper will study diffeon solutions of the EPDiff equations (12.7) on Einstein
manifolds that are “mostly” symmetric, i.e., that have a group acting by isometries
so that the orbits have co-dimension 1 in the manifold except on a set of measure
zero, and hence the quotient of the manifold by the group is one-dimensional.

Thus, we are interested in identifying and analyzing cases where imposing an
additional translation symmetry on the solution reduces the canonical Hamiltonian
dynamics of the singular solutions of the EPDiff on Einstein manifolds from integro-
partial differential equations to Hamiltonian ordinary differential equations for
canonical variables Pi(t), Ri(t). We shall then analyze some of the properties of
those canonical equations and examine their numerical solutions.

We begin by noting some simplifications of the EPDiff equations when restricted
to Einstein spaces. These simplifications take advantage of the relation between
the connection Laplacian and the Hodge Laplacian, the latter of which is easier
to compute. Knowing the EPDiff equations in one dimension, we move up to the
Einstein spaces in two dimensions.

The first manifold we study is the 2-sphere, which has the familiar group action
formed by rotations about a fixed axis. Thus we construct “Puckons,” which are
singular solutions of the EPDiff equations supported on concentric circular latitudes
of the 2-sphere. The name “Puckon” (as opposed to “peakon”) arises from the
famous boast by Shakespeare’s character, Puck, in A Midsummer Night’s Dream,
that he would, “put a girdle round about the earth in forty minutes.”1 The case
of rotationally symmetric singular solutions of EPDiff in the Euclidean plane has
already been discussed in [10], so we proceed to examine the hyperbolic plane,
which has a rich isometry group. However, the diffeon dynamics on the unbounded
hyperbolic plane affords little opportunity for multiple diffeon interactions and does
not admit periodic behavior. Even richer opportunities for diffeon dynamics and

1Thanks to J.D. Gibbon for reminding us of this quote and suggesting the name, “Puckon” for
these solutions.



12 Singular Solutions of Euler–Poincaré Equations on Manifolds with Symmetry 273

interactions in hyperbolic spaces are offered in the context of Teichmüller theory.
However, the latter is beyond the scope of the present work, and we refer to [13].

From consideration of these two-dimensional spaces, we sketch how one might
develop the theory for a general manifold that possesses a metric equivalent to the
warped product of the line with the bi-invariant metric of a Lie group.

12.1.4 Plan of the Paper

After briefly recalling the essentials needed from the theory of Einstein manifolds
in Sect. 12.2, we begin in Sect. 12.3 by reducing the singular solutions of EPDiff to
a canonical Hamiltonian dynamical system for the simplest Einstein manifold, the
2-sphere. We study the motion on a sphere of singular EPDiff solutions supported
on concentric circular latitudes, or “girdles.” These new singular solutions girdling
the sphere are the “Puckons.” Although the canonical reduction is guaranteed
by the momentum map property of EPDiff, the reduction of its singular diffeon
solutions for Puckons is given in detail, so it may be used to confirm the numerical
results for the interactions of Puckons on the sphere described in Sect. 12.4.
Section 12.5 generalizes the Puckons to other surfaces that are Einstein manifolds
with a translation symmetry. Section 12.6 incorporates these ideas into the theory of
warped products.

12.2 EPDiff Equations on Einstein Spaces

The operator

Δ∇ + 1

arises in the following context in Riemannian geometry.

Definition 12.1. On any given Riemannian manifold, the musical isomorphisms are
defined to be the Riesz representation and inverse maps with respect to the metric:

( : T∗M −→ TM〈
α�, w

〉
= α(w)

) : TM −→ T∗M

v�(w) = 〈v, w〉 .
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In Riemannian geometry, the Levi–Civita connection respects the musical isomor-
phisms, namely for v, w ∈ X (M) and α ∈ Ω1(M):

(∇vw)� = ∇v(w�)
(∇vα)� = ∇v(α�).

Thus, the musical isomorphisms identify vector fields with 1-forms and allow them
to be differentiated in the same way.

The connection Laplacian on 1-forms satisfies the Bochner–Weitzenböck
formula.

Theorem 12.1 (Bochner–Weitzenböck). On a Riemannian manifold with Levi–
Civita connection∇, any 1-form α satisfies

Δdα = Δ∇α+Ric(α)

where Δd = d∗d+dd∗ is the Hodge Laplacian formed from the exterior derivative
d on forms and Ric is the Ricci curvature operator.

From now on, we restrict our attention to a special type of manifold, namely the
Einstein manifolds.

Definition 12.2. An Einstein manifold is a Riemannian manifold that satisfies

Ric = k 1

for some constant k.

On an Einstein manifold, one may scale the metric so that k can be replaced by
−1, 0, 1 depending on whether k is negative, zero, or positive, respectively. Thus on
an Einstein manifold, the Bochner–Weitzenböck formula becomes

Δd = Δ∇ + sign(k)1.

We restrict our study further to Einstein manifolds with positive k (we shall call
these positive Einstein manifolds) and scale to k = 1. Thus we have

Δd = Δ∇ + 1.

The implication of this for the EPDiff Lagrangian on vector fields is as follows, for
homogeneous boundary conditions:

'[u] =
∫
M

(|u|2 + |∇u|2) dvol
=

∫
M

(|u�|2 + |∇u�|2
)
dvol
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=

∫
M

〈
u�, u� +Δ∇u�

〉
dvol

=

∫
M

〈
u�, Δ

du�
〉
dvol

(
=

∫
M

(|du�|2 + |d∗u�|2
)
dvol

)
.

Hence, finding the stationary points of Lagrangian ' with the usual Euler–Poincaré
constraints on the variations implies the EPDiff equation system of Eq. (12.7) in the
form

ṁ = −ad∗
um , where m = Δdu� . (12.9)

These equations generalize the EPDiff equations to Einstein manifolds.

12.3 The EPDiff Equation on the Sphere

In two dimensions, the only manifold with positive Einstein constant is the standard
round sphere which we shall regard as the Riemann sphere. We use stereographic
projections to identify the complex plane with the sphere whose North Pole is
removed. This is equivalent to putting the metric

g =
4

(1 + x2 + y2)2
(
dx2 + dy2

)
=

4

(1 + |z|2)2 dzdz̄

on the plane.

12.3.1 Rotationally Invariant Solutions

We shall examine vector-field solutions u of EPDiff in (12.9) with

∫
S2

〈
Δdu�, β

〉
=

∫
C

〈pdr + qdθ, β〉

for any smooth 1-form β and constant p, q, and where C is a circle of latitude on the
sphere. The quantity m = Δdu� is a distribution, defined by its integration against a
smooth function. Thus, we seek weak, or singular, solutions of EPDiff on the sphere.
We change coordinates on the sphere to assist us in this search. The metric on R

2\0
in polar coordinates is dr2 + r2dθ. Thus we can regard the sphere minus both poles
as R2\0 with the metric
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g S = ρ2
(
dr2 + r2dθ2

)
, where ρ =

2

(1 + r2)
.

Green’s Function for the Helmholtz Operator on the Riemann Sphere.

We now seek solutions to the equation

Δdu� = δ(r −R)(k1dr + k2dθ) (12.10)

where R, k1, k2 are constants. Let us assume that the velocity one-form u� is
invariant under rotations of the sphere about the axis joining North and South Poles
and is radial, i.e., we must solve

u� = a(r)dr, (12.11)

Δdu� = P
δ(r −R)

Rρ(R)2
dr. (12.12)

Let us first solve the Green’s function equation

Δd(G(r, R)dr) =
δ(r −R)

R
dr ,

for one recognizes that the single diffeon velocity is proportional to the Green’s
function, i.e.,

a(r) = PG(r, R) .

To solve explicitly for the Green’s function in our present case, we begin by recalling

ΔdG(r, R)dr = − ∂

∂r

(
(1 + r2)2

4r

∂(rG(r, R))

∂r

)
dr .

Integrating the Green’s function equation using this expression yields

G(r, R)dr =
1

R

(
A1

r
+

2A2

r(1 + r2)
+

2

r(1 + max(r, R)2)

)
dr ,

for constants A1, A2. In particular, we can remove the singularities at r = 0 and
r =∞ by setting A1 = 0 and

A2 = − 1

R(1 +R2)
,
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whence

G(r, R)dr =
2min(r, R)2

rR(1 + r2)(1 +R2)
dr.

is continuous over the sphere, but has a jump in derivative at r = R.
Thus, we have proved the following.

Proposition 12.1 (Radial Green’s Function on the Sphere). The solution to
(12.11, 12.12) for the radial Green’s function on the sphere is

u� =
PG(r, R)

ρ(R)2
dr =

PR(1 +R2)min(r, R)2

2r(1 + r2)
dr .

Solution Ansatz for EPDiff on the Sphere.

Following [11], we propose a solution ansatz for EPDiff velocity on the sphere as
the following superposition of Green’s functions,

η = u� =
N∑
i=1

PiGRi

Riρ(Ri)2
dr (12.13)

where we denote

GR(r) = RG(r, R).

and Pi, Ri are 2N functions of time. The corresponding vector field dual to η is

u =
N∑
i=1

PiGRi

Riρ(Ri)2ρ(r)2
∂r (12.14)

We pair the arbitrary smooth vector field w = f∂r + g∂θ on S2 with the EPDiff
equation using the solution ansatz given by the one-form η in Eq. (12.13).

A direct calculation yields the following equations for the diffeon parameters,

Proposition 12.2 (Diffeon Parameter Equations on the Sphere). The equations
for diffeon parameter evolution on the sphere are:

Ṙi =

N∑
j=1

(
Pj

ρ(Ri)2ρ(Rj)2Rj
G(Ri, Rj)

)
(12.15)

Ṗi = −
N∑
j=1

PiPj
ρ(Ri)2ρ(Rj)2

(
∂

∂r
G(r,Rj)

∣∣∣∣
r=Ri

+ 2Riρ(Ri)G(Ri, Rj)

)
. (12.16)
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Proof. By direct calculation,

0 =
∂

∂t

(∫
S2i

Δdη(w)dvol

)
+

∫
S2
Δdη([w, u])dvol

=
∂

∂t

(
N∑
i=1

∫ 2π

0

∫ ∞

0
δ(r − Ri)f(r, θ)Piρ

2rdrdθ

)

+

∫ 2π

0

N∑
i=1

∫ ∞

0
δ(r − Ri)Pidr

⎛
⎝
⎡
⎣f(r, θ)∂r + g(r, θ)∂θ ,

N∑
j=1

ρ−2PjGRj
(r)∂r

⎤
⎦
⎞
⎠ ρ2rdrdθ

=
∂

∂t

(
N∑
i=1

Pi

∫ 2π

0
f(Ri, θ)dθ

)

+
N∑

i,j=1

Ri

∫ 2π

0

(
PjG

′
Rj

(Ri)f(Ri, θ) + 2PjRiρ(Ri)GRj
(Ri)f(Ri, θ)

−PjGRj
(Ri)fr(Ri, θ)

)
Pidθ

=

N∑
i=1

∫ 2π

0
(fr(Ri, θ)ṘiPi + Ṗif(Ri, θ))dθ

+
N∑

i,j=1

Ri

∫ 2π

0

(
PjG

′
Rj

(Ri)f(Ri, θ) + 2PjRiρ(Ri)GRj
(Ri)f(Ri, θ)

−PjGRj
(Ri)fr(Ri, θ)

)
Pidθ

Comparing coefficients of f and fr implies

0 = ṘiPi −
N∑
j=1

(
PiPj

ρ(Ri)2ρ(Rj)2
G(Ri, Rj)

)

0 = Ṗi +

N∑
j=1

PiPj
ρ(Ri)2ρ(Rj)2Rj

(
G′
Rj

(Ri) + 2Riρ(Ri)GRj (Ri)
)

This finishes the calculation of the diffeon parameter evolution equations (12.15,
12.16). ��
Proposition 12.3 (Canonical Hamiltonian Form of Diffeon Parameter Equa-
tions). Evolution equations (12.15, 12.16) for the diffeon parameters are equivalent
to Hamilton’s canonical equations,
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πṘi =
∂H

∂Ri
, πṖi = − ∂H

∂Pi
, (12.17)

with Hamiltonian function of P = (P1, . . . , PN ) and R = (R1, . . . , PN ) given by,

H(P,R) = π

N∑
i,j=1

PiPjG(Rj , Ri)

ρ(Ri)2ρ(Rj)2
. (12.18)

Proof. We Legendre transform the Lagrangian ' into the Hamiltonian H by setting

H(m) =

∫
S2

m(u)dvol − '[u]

whence we find that

H(m) =
1

2

∫
S2

m(u)dvol

with

m = Δdu�.

We then express the velocity as the superposition of Green’s functions,

u� = η =

N∑
i=1

1

ρ(Ri)2
2Pimin(r, Ri)

2

rRi(1 + r2)(1 +R2
i )
dr .

We set ki = Pi/(ρ(Ri)
2Ri), for i = 1, . . . , N , and we evaluate the Hamiltonian on

this solution with m = Δdη as

H(m) =
1

2

∫

S2

〈η,m〉dvol

=
1

2

∫ 2π

0

∫ ∞

0

N∑

i,j=1

〈
2ki min(r, Ri)

2

r(1 + r2)(1 + R2
i )

dr,Δd 2kj min(r,Rj)2

r(1 + r2)(1 + R2
j )

dr

〉

ρ2rdr ∧ dθ

=
1

2

∫ 2π

0

∫ ∞

0

N∑

i,j=1

〈
kiGRi

(r)dr, kjδ(r − Rj)dr
〉
ρ2rdr ∧ dθ

=
1

2

∫ 2π

0

N∑

i,j=1

kiGRi
(Rj)kjRjdθ

= π

N∑

i,j=1

PiPjG(Ri, Rj)

ρ(Ri)2ρ(Rj )2
.
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The canonical equations for this Hamiltonian now recover the diffeon parameter
evolution equations (12.15, 12.16). ��
Thus, we see that we have

H(m) = 2πH(P,R)

Remark 12.1. As explained in [8], the reduction of EPDiff to canonical Hamiltonian
form for the diffeons was guaranteed, because the singular solution ansatz (12.8)
is a momentum map. However, we shall require the explicit results here for the
numerical solutions in Sect. 12.4.

Definition 12.3 (N -Puckon). The singular solution of EPDiff

∂

∂t
Δdη = −ad∗

η�Δ
dη , (12.19)

is given on the Riemann sphere by a vector field η satisfying

Δdη =

N∑
i=1

Pi
ρ(Ri)2Ri

δ(r −Ri)dr . (12.20)

The support set of this (weak) solution of EPDiff on the Riemann sphere is a set
of circular latitudes (girdles) at radii Ri(t) with conjugate radial momenta Pi(t),
where i = 1, . . . , N . Equation (12.20) constitutes a solution ansatz for the velocity
vector field η, which will be called an N -Puckon solution.

12.3.2 The Basic Irrotational Puckon

The Single Irrotational Puckon.

Let us consider the case where N = 1 and examine the motion of the basic Puckon
without rotation. For N = 1, the Hamiltonian (12.18) is given by

H(P,R) =
1

2

P 2G(R,R)

ρ(R)4
=

P 2

8
(1 +R2)2 ,

which follows because the Green’s function in this case is

G(R,R) = 2
min(R,R)2

R2(1 +R2)2
=

2

(1 +R2)2
.

Thus, upon restricting ourselves to the constant level set of the Hamiltonian
defined by
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H(P,R) =
K2

2
,

for constant K , we may solve for the momentum variable,

P = Kρ(R) =
2K

(1 +R2)
.

Next, we note that the canonical coordinate equation

Ṙ =
∂H

∂P
=

P

4
(1 +R2)2 =

K

2
(1 +R2) ,

integrates to

R = tan

(
K

2
t+

ε

2

)
. (12.21)

Consequently, the single Puckon momentum is found as

P = K +K cos (Kt+ ε) . (12.22)

So far we have been using the stereographic projection to provide charts for the
sphere. However we may easily pass from the coordinates (r, θ) obtained from
stereographic projection to latitudinal–longitudinal coordinates (φ, θ) where r and
φ are related by

r = tan

(
φ

2

)
.

By this token, the co-latitude φ = Φ(t) of the peak of the Puckon evolves linearly
in time as

Φ(t) = Kt+ ε.

Proposition 12.4 (Irrotational Puckon Solution). The velocity vector field v = η�

generated by the irrotational Puckon motion is given in stereographic coordi-
nates by

u =
P

4

min(r, R)

max(r, R)
(1 + r2)∂r .

This appears in latitudinal–longitudinal coordinates on the Riemann sphere, as
follows:
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u =
K(1 + cos(Kt+ ε))

2

min
(∣∣∣tan(φ2

)∣∣∣ , ∣∣tan (K2 t+ ε
2

)∣∣)

max
(∣∣∣tan(φ2

)∣∣∣ , ∣∣tan (K2 t+ ε
2

)∣∣)
∂

∂φ
.

Proof. This result is obtained by direct substitution of solutions (12.21) and (12.22)
for the diffeon parameters into the solution ansatz (12.14). ��
Remark 12.2 (Puckon Peak). The peak of the Puckon occurs when

φ = Φ(t) = Kt+ ε,

(modulo behavior at the poles), whence

|u|S2 =
|K|(1 + cos(Kt+ ε))

2
.

We still need to examine precisely what happens to the dynamics of a Puckon as
it collides with itself at the poles.

Proposition 12.5 (Puckon Behavior at the Poles). The Puckon bounces elasti-
cally, when it collides with itself at the poles.

Proof. We notice that Ṙ = K/2 �= 0 at R = 0 and by setting U = 1/R we see
that at U = 0, U̇ = K/2 �= 0. Similarly, one can show that Ṗ = 0 at both poles.
Thus, the Puckon velocity is finite at the poles. Since Hamiltonian motion is time-
reversible, the Puckon must bounce elastically, when it collides with itself at the
poles. ��

12.3.3 Rotating Puckons

So far we have concentrated on singular EPDiff solutions on the sphere moving with
only a radial component. Now we turn to examine the rotating N -Puckon, i.e., the
solution of the following system of equations for η, cf. Eq. (12.10),

Δdη =
N∑
i=1

δ(r −Ri)

ρ(Ri)2Ri
(Pidr +Midθ) , (12.23)

∂

∂t
Δdη = −ad∗

η�Δ
dη , (12.24)

in which Mi(t) with i = 1, . . . , N , are the angular momenta of the N Puckons.
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From the definition of G that

Δd (AG(r, R)dr +BrG(r, R)dθ) = δ(r −R)

(
A

R
dr +Bdθ

)
. (12.25)

Proposition 12.6 (Canonical Hamiltonian Equations for the Rotating
N -Puckon).
The equations for the rotating N -Puckon may be expressed as:

Ṙi =
N∑

j=1

PjFj(Ri)RjRi =
∂H

∂Pi
, (12.26)

Ṗi = −
N∑

j=1

(
PiPjF

′
j(Ri)RjRi + PiPjFj(Ri)Rj +MiMjF

′
j(Ri)

)
= − ∂H

∂Ri
, (12.27)

Ṁi = 0 , (12.28)

where Fi(Rj) = Fj(Ri) is defined in terms of the Green’s function G as

Fi(Rj) =
G(Ri, Rj)

ρ(Ri)2Riρ2(Rj)Rj
.

The last equation (12.28) expresses the conservation of the angular momentum of
each Puckon. WithMi constant, the first two equations (12.26) and (12.27) comprise
Hamilton’s canonical equations with symmetry-reduced Hamiltonian

H(P,R;M) =
1

2

N∑
i,j=1

(PiPjRiRj +MiMj)Fi(Rj) . (12.29)

Proof. First, we note from (12.25) that the velocity one-form corresponding to the
momentum singular solution ansatz (12.23) is given by,

η =

N∑
i=1

G(r, Ri)

ρ(Ri)2Ri
(RiPidr +Mirdθ)

Thus the velocity vector field u dual to η is given by

u =

N∑
i=1

G(r, Ri)

ρ(Ri)2Riρ2r
(RiPir∂r +Mi∂θ) .

To make our calculations more transparent, we collect terms and define notation as

Fi(r) =
G(r, Ri)

ρ(Ri)2Riρ2r
,
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so that

u =

N∑
i=1

Fi(r) (RiPir∂r +Mi∂θ)

and

η =
N∑
i=1

Fi(r)ρ
2r (RiPidr +Mirdθ) .

Note that the expression for Fi is symmetric in r and Ri, which implies the
permutation symmetry,

Fi(Rj) = Fj(Ri).

Now let w = f∂r + g∂θ be any smooth vector field on S2. Then, one computes the
pairing

∫
S2

Δdη(w)dvol =
N∑
i=1

∫ 2π

0

(Pif(Ri, θ) +Mig(Ri, θ)) dθ.

Hence, the left-hand side of the EPDiff equation becomes

∂
∂t

(∫
S2 Δ

dη(w)dvol
)
=
∑N

i=1

∫ 2π

0

(
Ṗif(Ri, θ) + PiṘifr(Ri, θ) + Ṁig(Ri, θ)

+ MiṘigr(Ri, θ)
)
dθ.

Now we need to calculate its right-hand side.

∫
S2

Δdη([w, u])dvol.

For this, we write the commutator,

[w, u] =
N∑
i=1

(F ′
iRiPirf + FiRiPif − FiRiPirfr − FiMifθ) ∂r

+

N∑
i=1

(fF ′
iMi − FiRiPirgr − FiMigθ) ∂θ.

Now, by Stokes’ theorem, when we integrate over the whole sphere, the contribution
due to fθ, gθ will be zero because f, g, the only components of the integration to
depend on θ, satisfy f(r, 0) = f(r, 2π) etc. Thus
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∫
S2

Δdη([w, u])dvol

=
N∑

i,j=1

∫ 2π

0

(
PiF

′
j(Ri)RjPjRif(Ri, θ) + PiFj(Ri)RjPjf(Ri, θ)

−PiFj(Ri)RjPjRifr(Ri, θ)) dθ

+

N∑
i,j=1

∫ 2π

0

(
MiF

′
j(Ri)Mjf(Ri, θ)−MiFj(Ri)RjPjRigr(Ri, θ)

)
dθ.

Now to find the evolution equations for Pi, Ri,Mi we need to only compare the
coefficients of f, fr, g, gr occurring in

0 =
∂

∂t

(∫
S2

Δdη(w)dvol

)
+

∫
S2

Δdη([w, u])dvol .

From this comparison, one finds

0 = Ṗi +

N∑
j=1

(
PiF

′
j(Ri)RjPjRi + PiFj(Ri)RjPj +MiF

′
j(Ri)Mj

)
,

0 = PiṘi −
n∑
j=1

(
PiFj(Ri)RjPjRi

)
,

0 = Ṁi ,

0 = MiṘi −
N∑
j=1

(
MiFj(Ri)RjPjRi

)
,

in which the second and fourth equations provide the same information. We
therefore obtain the evolution equations (12.26–12.28) for Pi, Ri,Mi given in the
statement of Proposition 12.6. ��
Remark 12.3 (Verifying the Hamiltonian). A simple check following the same
pattern as Proposition 12.3 shows that if the Hamiltonian

H(m) =

∫
S2

m(u)dvol − '[u]

is the Legendre transform of the Lagrangian ' then

H(m) =
1

2

∫
S2

〈
Δdη, η

〉
dvol

= 2πH(P,R;M) ,
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which is the Hamiltonian for the rotating N -Puckon in formula (12.29) of Propo-
sition 12.6. As explained in [8], the reduction to canonical Hamiltonian form is
guaranteed, since the singular solution ansatz (12.8) is a momentum map.

12.3.4 The Basic Rotating Puckon

Proposition 12.7 (Extremal Radii of the Basic Rotating Puckon). The motion
of the basic rotating Puckon lies on the Riemann plane between the maximum and
minimum values of R given by,

Rmax/min =
2K ±√4K2 −M2

M
, (12.30)

assuming that 2K ≥M > 0.

Proof. We N = 1 in Hamiltonian (12.29) to find

H(P,R) =
1

16R2
(1 +R2)2(P 2R2 +M2).

We notice that for a rotating Puckon with H = K2 = const, the girdle of the
Puckon cannot have zero radius unless M = 0, in which case we return to the
irrotational Puckon. Likewise, the girdle radius cannot be infinite unless again
M = 0. Thus, a rotating Puckon with M �= 0 is constrained to lie between a
maximum and a minimum radius. To find these extremal radii, we must solve

∂H

∂P
=

P

8
(1 +R2)2 = 0 ,

H =
1

16R2
(1 +R2)2(P 2R2 +M2) = K2.

The first equation can only be solved by P = 0; for which the second becomes

M2

16R2
(1 +R2)2 = K2.

Assuming that K and M are both positive, we find that the maximum and minimum
values of R are the roots,

Rmax/min =
2K ±√4K2 −M2

M

This proves the proposition. ��
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Remark 12.4 (A Single Critical Point). We observe that if M = 2K , then the
Puckon is radially static at the equator and P is identically zero. The solution
(P,R) = (0, 1) is the only critical point of the Hamiltonian H unless M = 0
in which case the set defined by P = 0 is the critical manifold.

Proposition 12.8 (Periodic motion of the basic rotating Puckon). The motion of
the rotating Puckon is periodic, with period 2π/

√
2H determined by the constant

value of the Hamiltonian, H .

Proof. By using the co-latitude representation of periodic rotating Puckon motion
to investigate the motion of the rotating Puckon, we pass from stereographic
coordinates to longitude-co-latitude coordinates in which we put

R = tan
Φ

2
.

As we will see later in the general case, this does not alter the situation a great deal.
For example, the momentum is given later in Eq. (12.39), after substituting sin for
ψ. The Hamiltonian for the rotating Puckon on the sphere in longitude-co-latitude
coordinates is

H(P,Φ) =
1

2

(
P 2 +

M2

sin2 Φ

)
, (12.31)

in which Φ and P are canonically conjugate variables. Along the motion of the
Puckon, H is constant, say H = K2. Thus, taking the positive branch for P

P =

√
2K2 − M2

sin2 Φ

yields the equation for the co-latitude

Φ̇ = P =

√
2K2 − M2

sin2 Φ
.

Integration of this ODE implies that

t =

∫ Φ(t)

Φ(0)

sinΦdΦ√
2K2 sin2 Φ−M2

=
1

K
√
2

(
arccos

(
K
√
2 cosΦ(t)√

2K2 −M2

)
− arccos

(
K
√
2 cosΦ(0)√

2K2 −M2

))
.

Thus the co-latitude for the single rotating Puckon is given as a function of time by
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Φ(t) =

√
2K2 cos2 Φ(0)

2K2 −M2
cos(Kt

√
2)−

√
2K2 sin2 Φ(0)−M2

2K2 −M2
sin(Kt

√
2).

These rotating Puckon solutions are periodic with period 2π/(K
√
2), determined

by the constant value K2 of the Hamiltonian. ��

12.3.5 Puckons and Geodesics

Proposition 12.9 (Geodesic Motion of a Point on the Girdle of the Rotating
Puckon). A point on the girdle of the rotating Puckon moves along a great circle at
constant speed equal to K

√
2 determined by the valueH = K2 of the Hamiltonian,

H . The normal to its plane of motion is inclined to the South Pole at the angle
π − arctan(2Rmax) with Rmax given in (12.30).

Proof. For a rotationally symmetric surface M with metric

g = dr2 + ψ(r)2dθ,

the equations for a curve x = (R(t), Θ(t)) to be a geodesic are equivalent to

Ṙ2 + ψ2Θ̇2 = 1 (12.32)

ψ2Θ̇ = const. (12.33)

So in the case of the sphere with metric g = dφ2 + sin2 φdθ, if we define

Θ̇ = uθ(Φ) =
M2

sin2 Φ
(12.34)

then we obtain a curve on the sphere with coordinates x = (Φ,Θ) and tangent vector

ẋ(t) = (Φ̇ , Θ̇).

Now, the speed is given by

|ẋ|2 = g(ẋ, ẋ)

= Φ̇2 + (sin2 Φ) Θ̇2

= P 2 +
M2

sin2 Φ

= 2H(P,Φ) = constant = 2K2.
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Thus a point on the geodesic has constant speed equal to
√
2H and by (12.34)

we have

(sin2 Φ)Θ̇ = M2 = constant.

Consequently, ẋ/(K
√
2) satisfies equations (12.32) and (12.33), thereby determin-

ing a geodesic on the sphere. This means that a point on the girdle of the Puckon
moves along a great circle at constant speed equal to

√
2H and the normal to its

plane of motion is inclined to the South Pole at the angle π− arctan(2Rmax), with
Rmax given in Eq. (12.30). ��

12.3.6 Further Hamiltonian Aspects of Radial Solutions
of EPDiff on the Riemann Sphere

Proposition 12.10 (Lie–Poisson Hamiltonian form of EPDiff on the Riemann
Sphere). The radially symmetric solutions of EPDiff on the Riemann sphere may
be written as

∂

∂t

(
mr

rmθ

)
= D

(
ur
uθ

r

)
= D

(
δH/δmr

δH/δ(rmθ)

)
, (12.35)

where D is the skew-symmetric Hamiltonian operator given by

D =

(− (mr∂r + ∂rmr − 2mrρr +
mr

r

) −rmθ∂r(−∂rrmθ + 2mθr
2ρ−mθ

)
0

)
, (12.36)

and the velocities ur and uθ/r are given by the variational derivatives of the
Hamiltonian,

ur =
δH

δmr
,

uθ
r

=
δH

δrmθ
.

Equations (12.35) and (12.36) provide the Lie–Poisson Hamiltonian form of the
EPDiff equation for radially symmetric dynamics on the Riemann sphere.

Proof. In the case that

u =

N∑
i=1

G(r, Ri)

ρ(Ri)2Riρ2r
(RiPir∂r +Mi∂θ)

=: ur∂r +
uθ
r
∂θ.
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where thePi andRi satisfy (12.26) and (12.27), the associated momentum density is

m = Δdu� = mrdr + rmθdθ,

where

mr =

N∑
i=1

δ(r −Ri)

ρ(Ri)2Ri
Pi , and rmθ =

N∑
i=1

δ(r −Ri)

ρ(Ri)2Ri
Mi.

Let w1 = f
ρ2r∂r and w2 = g

ρ2r∂θ be two vector fields on S2. These satisfy the
commutator relations,

[w1, u] =
[
f

ρ2r
∂r, ur∂r +

uθ
r
∂θ

]

=

(
fu′

r

ρ2r
− ur∂rf

ρ2r
− 2

fur
ρ

+
fur
ρ2r2

− uθ∂θf

ρ2r2

)
∂r +

(
fu′

θ

ρ2r2
− fuθ
ρ2r3

)
∂θ,

and

[w2, u] =
[
g

ρ2r
∂θ, ur∂r +

uθ
r
∂θ

]

= −
(
ur∂rg

ρ2r
+ 2

gur
ρ
− gur
ρ2r2

+
uθ∂θg

ρ2r2

)
∂θ.

Thus, the EPDiff equations become, for w1,

0 =

∫

S2

(
∂

∂t
m(w1) + m([w1, u])

)
dvol

=

∫ 2π

0

∫ ∞

0

(
∂mr

∂t

f

ρ2r
+mr

(
fu′

r

ρ2r
− ur∂rf

ρ2r
− 2

fur

ρ
+
fur

ρ2r2
− uθ∂θf

ρ2r2

))
ρ2rdrdθ

+

∫ 2π

0

∫ ∞

0

rmθ

(
fu′

θ

ρ2r2
− fuθ

ρ2r3

)
ρ2rdrdθ

=

∫ 2π

0

∫ ∞

0

(
∂mr

∂t
f +mr

(
fu′

r − ur∂rf − 2furρr +
fur

r

))
drdθ

+

∫ 2π

0

∫ ∞

0

r2mθ

(
fu′

θ

r2
− fuθ

r3

)
drdθ

From this we obtain the radial equation

∂mr

∂t
= −

(
mr∂r + ∂rmr − 2mrρr +

mr

r

)
ur − rmθ∂r

uθ
r
. (12.37)
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Similarly, for w2,

0 =

∫
S2

(
∂

∂t
m(w2) + m([w2, u])

)
dvol

=

∫ 2π

0

∫ ∞

0

(
∂rmθ

∂t

g

ρ2r
− rmθ

(
ur∂rg

ρ2r
+2

gur
ρ
− gur
ρ2r2

+
uθ∂θg

ρ2r2

))
ρ2rdrdθ

=

∫ 2π

0

∫ ∞

0

(
∂rmθ

∂t
g − rmθ

(
ur∂rg + 2gurrρ− gur

r

))
drdθ

Hence we have the azimuthal equation

∂rmθ

∂t
=
(−∂rrmθ + 2mθr

2ρ−mθ

)
ur. (12.38)

Equations (12.37) and (12.38) provide the Lie–Poisson form of EPDiff on the
Riemann Sphere. ��

12.4 Numerical Solutions for EPDiff on the Sphere

12.4.1 Overview

We present numerical solutions to both the EPDiff partial differential equations
(12.35, 12.36) and the corresponding ordinary differential equations (12.26, 12.27)
for Puckons. Instead of using the stereographic projection, the numerical solutions
were calculated on the sphere with co-latitude–longitude (φ, θ) coordinates (and
canonical variables Φ, P instead of R,P ).

The equations in (φ, θ) coordinates on the sphere are obtained from those in
Sect. 12.3 using ψ = sinφ, so that g = dφ2 + sin2 φdθ2.

We also introduce a length scale α for our numerical solutions by effectively
changing the radius of the sphere from 1 to α.

In this case α2Δd = 1 + α2Δ∇ so that the Green’s function is

G(φ, Φ) =
α

2

⎧⎪⎨
⎪⎩
(
tan φ

2 cot Φ2

)1/α
, φ < Φ ,(

tan Φ
2 cot φ2

)1/α
, φ > Φ .
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Fig. 12.1 The PDE simulations show an initially Gaussian distribution of velocity breaking up
into Puckons, two of which are evident for the times shown

12.4.2 Numerical Specifications

Numerical simulations for diffeons on the sphere were performed using both PDEs
and ODEs. In simulating the Lie–Poisson partial differential equations (12.35,
12.36) in co-latitude–longitude coordinates in Proposition 12.10, fourth-order finite
differences were used to calculate spatial derivatives, and the momentum was
advanced in time using a fourth-order Runge–Kutta scheme. The Hamiltonian was
fond to be conserved in the PDE simulations to within 10−4 of its initial value
for the simulations with smooth initial velocity distributions, but only to within
5–10% for the simulations when using one or two Puckons as the initial velocity
distribution. The ordinary differential equations (12.26, 12.27) for the canonical
variables in co-latitude–longitude coordinates were advanced in time using a fourth-
order Runge–Kutta scheme. For these ODE simulations, the Hamiltonian was
conserved to within 10−8. The PDE simulation results will be shown as a velocity
distribution changing in time, whereas the results of the ODE simulations will be
shown as plots of the time evolution of the canonical variables Φ, P . The length
scale α in the simulations was set to 0.1 unless otherwise noted.

Irrotational Puckons.

We first consider irrotational Puckons (uθ = 0). Figure 12.1 shows the evolution
when the initial meridional velocity uφ(θ, 0) is a Gaussian. The Gaussian is chosen
as a typical smooth confined initial condition on which to demonstrate the general
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property of emergence of the singular Puckons. As time elapses (t = 0 is at the
bottom of the figure, and later times are shown above it), a Puckon emerges from
the Gaussian in Fig. 12.1, and a second Puckon begins to emerge. In agreement with
the prediction of Eq. (12.31), the first Puckon retains its height (and thus retains its
velocity and canonical momentum P ) as it approaches the South Pole.

An overtaking collision between two irrotational Puckons is shown in Fig. 12.2.
As the plot of co-latitudes shows, these two Puckons do not pass through each
other. Instead, they bounce and exchange momenta. However, their momenta are
not exchanged exactly, as the plot of P (t) shows. This behavior contrasts with
2-soliton collisions for completely integrable PDEs in which momentum is exactly
exchanged.

A head-on collision between two irrotational Puckons is shown in Fig. 12.3. In
the PDE simulation, a vertical slope appears to form in finite time. Note that the
Puckon velocities (i.e., the Puckon heights in the PDE simulation or the slopes of
Φ(t) in the ODE simulation) remain finite and actually decrease to zero, whereas the
equal and opposite canonical radial Puckon momenta diverge as the collision takes
place.

Rotating Puckons.

Now we consider numerical simulations of rotating Puckons (uθ �= 0). Figure 12.4
shows the PDE evolution when the initial meridional velocity uφ is zero and the
initial azimuthal velocity uθ is a Gaussian. Two rotating Puckons have emerged
from the Gaussian by the time shown, and they are moving toward opposite poles.
The Puckons each have small but nonzero azimuthal velocities.

Finally, Fig. 12.5 shows an ODE simulation of a single rotating Puckon when the
length scale is α = 1 and the canonical variables are initially Φ = 1.5, P = −1,
M = −2. As discussed in Sect. 12.3.4, the basic rotating Puckon moves between
minimum and maximum co-latitudes. The Puckon is initially moving toward the
North Pole, and one can see that its meridional velocity vanishes as it changes
its direction and moves toward the South Pole. Its azimuthal velocity is negative
throughout, i.e., it does not change its sense of rotation. Numerically, the Puckon
moves between minimum and maximum co-latitudes of (to five significant digits)
1.1033 and 2.0384, in comparison with the corresponding values of 1.1031 and
2.0385 predicted by the formula given in Sect. 12.3.4. Also, the numerical result
for the period of the Puckon’s motion (averaged over the first five periods) agrees
to six significant digits (5.60858) with the value given in Sect. 12.3.4. Thus, these
numerical results for the ODE dynamics are accurate to between four and six
significant figures.
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Fig. 12.2 The upper panel shows two Puckons undergoing an overtaking collision. The lower
panels show the evolution of the co-latitudes (Φ1, Φ2) and canonical momenta (P1, P2) of the
Puckons. The PDE simulation agrees with the co-latitudes Φ of the ODE simulation to within 1 %
and with the canonical momenta P to within 3 %
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Fig. 12.3 The upper panel shows the velocity profile of two Puckons undergoing a head-on
collision. The lower panels show the evolution of the co-latitudes (Φ1, Φ2) and canonical momenta
(P1, P2) of the Puckons. The Puckon velocities remain finite and tend to zero during the collision,
whereas the equal and opposite canonical momenta of the Puckons diverge. In the PDE simulation,
a vertical slope appears to form in finite time
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Fig. 12.4 The evolution when the initial meridional velocity uφ is zero and the initial azimuthal
velocity uθ is a Gaussian. The larger picture shows the magnitude of the velocity. Two rotating
Puckons have emerged at the time shown, and two more are in the process of emerging from the
Gaussian
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Fig. 12.5 The evolution of a single rotating Puckon is shown for length scale α = 1. The initial
parameters are Φ = 1.5, P = −1, M = −2. The PDE simulation shown in the upper panels
contains about half of the period of the Puckon’s motion. The ODE simulation shown in the lower
panels contains about five periods of the Puckon’s motion. The meridional and azimuthal velocity
components uφ and uθ are shown for the PDE simulation

12.5 Generalizing to Other Surfaces

We now wish to extend these Hamiltonian reductions for diffeons on the sphere to
other surfaces. This will require us to summon considerably more resources from the
differential geometry of Riemannian surfaces than in the previous sections. These
resources from differential geometry will be used to identify conditions for which
the singular momentum map property of EPDiff and the corresponding reduction to
canonically Hamiltonian ODEs persist. In particular, these properties will be shown
to persist for Riemannian manifoldsΣ with a free isometric action of a Lie groupG,
so that Σ/G is a one-dimensional manifoldN , and Σ may be taken as Σ ∼= G×N .
For the moment, we retain the rotational symmetry. We will pass to the more general
case in Sect. 12.6.
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12.5.1 Rotationally Symmetric Surfaces

Any surface Σ with an isometric action of S1 has rotationally invariant coordinate
charts on which the metric is given by

g = dr2 + ψ(r)2dθ2

where (r, θ) ∈ (rmin, rmax) × (0, 2π). We may take rmin = 0 to describe a fixed
point of the motion. Let∇ be the Levi–Civita connection with respect to this metric
and set

I = (1+Δ∇).

By the Bochner–Weitzenböck theorem on 1-forms we compute

I = 1+Δd − Ric

=

(
ψ + ψ′′

ψ

)
1+Δd.

We also have the explicit relation,

Δd(a(r)dr + b(r)dθ) = − ∂

∂r

(
1

ψ

∂

∂r
(ψa(r))

)
dr − ψ

∂

∂r

(
1

ψ

∂

∂r
(b(r))

)
dθ.

Suppose that u is a rotationally invariant vector field on Σ. That is, suppose

u = ur(r)∂r + uθ(r)∂θ ,

then the singular momentum solution ansatz for EPDiff,

Iu� =
δ(r −R)

ψ(R)
dr + ψ(R)δ(r −R)dθ , (12.39)

is a system of ordinary differential equations in r. We may solve this system to
obtain two rotationally invariant, continuous functions Gr, Gθ of r and R, within
our coordinate chart, which are symmetric in the two variables and which satisfy

I
(
Gr(r, R)dr +Gθ(r, R)dθ

)
=

δ(r −R)

ψ(R)
dr + ψ(R)δ(r −R)dθ .

The two Green’s functions Gr, Gθ are related by

Gθ(r, R) = ψ(r)ψ(R)Gr(r, R).
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They also have a jump in the derivative along the diagonal r = R. Thus the solution
of (12.39) for the velocity u is

u = (Gr(r, R)dr + ψ(r)ψ(R)Gr(r, R)dθ)
�

= Gr(r, R)
∂

∂r
+ ψ(R)

Gr(r, R)

ψ(r)

∂

∂θ
.

The EPDiff equations on the rotationally symmetric surface Σ are

m = Iu� =
N∑
i=1

δ(r −Ri)

ψ(Ri)
(Pidr +Midθ) (12.40)

0 =
∂m
∂t

+ ad∗
um , (12.41)

and these equations extremize

'[u] =
1

2

∫
Σ

(|u|2g + |∇u|2g)dvolg

=
1

2

∫
Σ

〈u, Iu〉dvolg

=
1

2

∫
Σ

m(u)dvolg .

After the Legendre transformation we arrive at the Hamiltonian

H [m] =

∫
Σ

m(u)dvol − '[u]

=
1

2

∫
Σ

m(u)dvol.

We already know that the solution to (12.40) is

u� =
N∑
i=1

Gr(r, Ri)

ψ(Ri)

(
Piψ(Ri)dr +Miψ(r)dθ

)
,

that is,

u =

N∑
i=1

Gr(r, Ri)

ψ(r)ψ(Ri)

(
Piψ(Ri)ψ(r)

∂

∂r
+Mi

∂

∂θ

)

=: ur
∂

∂r
+ uθ

∂

∂θ
.
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Because m is only supported within our coordinate chart and is invariant under the
action of S1, we have

H(m) =
1

2
2π

N∑
i=1

(Piur(Ri) +Miuθ(Ri))

where 2π arises as the volume of S1. Choose a vector field w = f(r, θ) ∂∂r +

g(r, θ) ∂∂θ . Again since m is supported within our chart, we know that

∫
σ

m(w)dvolg =
∑
i

∫ 2π

0

(Pif(Ri, θ) +Mig(Ri, θ)) dθ.

We also have

[w, u] = (fu′
r − ur∂rf − uθ∂θf)

∂

∂r
+ (fu′

θ − ur∂rg − uθ∂θg)
∂

∂θ
.

Consequently, the EPDiff equations yield

0 =

∫
Σ

(
∂

∂t
(m(w)) + m([w, u])

)
dvolg

=

∫ 2π

0

∂

∂t
(Pif(Ri, θ) +Mig(Ri, θ)) dθ

+

∫ 2π

0

(Pi (fu
′
r − ur∂rf − uθ∂θf) +Mi (fu

′
θ − ur∂rg − uθ∂θg))

∣∣
r=Ri

dθ

=

∫ 2π

0

(
Ṗif(Ri, θ) + PiṘi∂rf(Ri, θ) + Ṁig(Ri, θ) +MiṘi∂rg(Ri, θ)

)
dθ

+

∫ 2π

0

(Pi (fu
′
r − ur∂rf) +Mi (fu

′
θ − ur∂rg))

∣∣
r=Ri

dθ.

Comparing coefficients of f, ∂rf, g∂rg now yields

0 = Ṗi + Piu
′
r(Ri) +Miu

′
θ(Ri)

0 = PiṘi − Piur(Ri)

0 = Ṁi

0 = MiṘi −Miur(Ri)

Now since

ur(Ri) =

N∑
j=1

Gr(Ri, Rj)
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and

u′
r(Ri) =

N∑
j=1

∂Gr

∂r
(Ri, Rj)

we see that

∂

∂Ri

N∑
j =1

ur(Rj) =
∂

∂Ri

N∑
j,k=1

Gr(Rj , Rk)

=
N∑

j,k=1

(
∂Rj

∂Ri

∂Gr(r, R)

∂r

∣∣∣∣
r =Rj ,R=Rk

+
∂Rk

∂Ri

∂Gr(r,R)

∂R

∣∣∣∣
r=Rj ,R=Rk

)

=
N∑

j,k=1

(
∂Rj

∂Ri

∂Gr(r, R)

∂r

∣∣∣∣
r =Rj ,R=Rk

+
∂Rk

∂Ri

∂Gr(r,R)

∂r

∣∣∣∣
r=Rk,R=Rj

)

since Gr is symmetric in its arguments

=
N∑

j,k=1

(
δij

∂Gr(r, R)

∂r

∣∣∣∣
r=Rj ,R=Rk

+ δki
∂Gr(r, R)

∂r

∣∣∣∣
r =Rk,R=Rj

)

=
N∑

k=1

∂Gr(r, R)

∂r

∣∣∣∣
r=Ri,R=Rk

+
N∑

j =1

∂Gr(r, R)

∂r

∣∣∣∣
r =Ri,R=Rj

= 2
N∑

j =1

∂Gr(r, R)

∂r

∣∣∣∣
r=Ri,R=Rj

= 2u′
r(Ri).

Similarly

u′
θ(Ri) =

1

2

∂

∂Ri

N∑
j=1

uθ(Rj).

This finally yields

Ṗi = −1

2

∂

∂Ri

N∑
j=1

(Pjur(Rj) +Mjuθ(Rj)) (12.42)

Ṙi = ur(Ri) (12.43)

Ṁi = 0. (12.44)

Thus, we have proved the following realization of the momentum map in [8].
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Proposition 12.11 (Canonical Equations for Rotationally Symmetric Diffeons).
The parameters Pi, Ri for diffeons on a rotationally symmetric surface Σ with
constant positive curvature and metric given by g = dr2 + ψ(r)2dθ2 satisfy
Hamilton’s canonical equations with Hamiltonian given by

H(P,R;M) =
1

2π

(∫
Σ

m(u)dvol − '[u]
)

=
1

2

N∑
i=1

(Piur(Ri) +Miuθ(Ri))

=
1

2

N∑
i,j=1

Gr(Ri, Rj)

ψ(Ri)ψ(Rj)
(PiPjψ(Ri)ψ(Rj) +MiMj) .

A solution to (12.42, 12.43, 12.44) is an example of an N -diffeon on a rotationally
symmetric surface Σ.

We notice that the critical points of H are those R = (R1, . . . , Rn) such that
Gr(Ri, Rj) = 0 for all i, j. But the value of H at these critical points is always 0
since H depends on Gr.

Remark 12.5. The only one-dimensional Lie groups are R and S1, and while we
have considered the isometric action of S1 on a surface, we have to be more careful
with translation invariance because the group ceases to be compact. However we
can consider θ, which parameterizes each orbit r = const, taking values in (−L,L)
rather than (−∞,∞) for the full translation group. This makes the integration finite.

12.5.2 Rotationally Invariant Diffeons on Hyperbolic Space

Hyperbolic space has a richer structure than either the plane, or the sphere. Indeed,
the isometry group of the sphere is SO3; so all isometries are rotations. We
have already examined the case of rotationally invariant diffeons. (These are the
Puckons.) The isometry group of the plane R

2 is S1 � R
2, the semi-direct product

of rotations and translations. Translational invariance yields the direct product of the
original one-dimensional peakons, whereas rotational invariance yields the rotating
circular peakons developed in [10]. However, the isometry group of hyperbolic
space is PSL(2,R), which is not compact and contains three different types of
isometry. These are the rotational, translational, and horolational subgroups.

The Hamiltonian for Hyperbolic N -Diffeons with Rotational Symmetry.

We have already done most of the work for the rotationally symmetric case. All
that remains is to write the hyperbolic metric in a conformally flat way and from it
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deduce the Green’s functionsGr andGθ . The model is familiar: we use the Poincaré
disc D = {(x, y) ∈ R

2| x2 + y2 < 1} in polar coordinates with the metric

gH =
4

(1− r2)2
(
dr2 + r2dθ2

)
,

i.e., the conformal parameter is

ρ(r) =
2

1− r2
.

The Bochner–Weitzenböck formula states that on TD

Δd = Δ∇ − 1 ,

so that

I = 1+Δ∇ = 21+Δd. (12.45)

We wish to find Green’s functions Gr and Gθ such that

I(Gr(r, R)dr +Gθ(r, R)dθ) = δ(r −R)

(
1

R
dr +Rdθ

)
.

We also ask that these Green’s functions be finite at the origin, continuous and
symmetric in their variables. Explicitly, we have

Δd (a(r)dr + b(r)dθ) = − ∂

∂r

(
1

ρ2r

∂

∂r
(ra(r))

)
dr − r

∂

∂r

(
1

ρ2r

∂b

∂r

)
dθ.

Upon setting

F (r) = 2− 2r4 + 8 log(r)r2 + r2

we write

Gr(r, R) =
ρ(r)2ρ(R)2

16

min(r, R)

min(r, R)
F (max(r, R)),

and hence

Gθ(r, R) = RrGr(r, R).

Thus, we have shown the following.
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Proposition 12.12 (Hamiltonian for Rotationally Invariant Hyperbolic
N -Diffeons). The Hamiltonian for rotationally invariant N -diffeons on hyperbolic
space is given by

H(P,R;M) =
1

2

N∑

i,j=1

1

ρ(Ri)2Riρ(Rj)2Rj

(
PiPjRiRjG

r(Ri, Rj) +
MiMj

RiRj
Gθ(Ri, Rj)

)

=
1

2

N∑

i,j=1

Gr(Ri, Rj)

ρ(Ri)2Riρ(Rj)2Rj
(PiPjRiRj +MiMj) .

The Hyperbolic Diffeon.

Let us examine the behavior of the basic rotationally symmetric hyperbolic diffeon.
The Hamiltonian is

H(P,R) =
1

2

Gr(R,R)

ρ(R)4R2

(
P 2R2 +M2

)

=
F (R)

32R2

(
P 2R2 +M2

)
.

The function F (R)/R2 is positive and continuous on (0, 1), and it has a singularity
at R = 0. Its derivative is negative on (0, 1) and its image is (1,∞). Consequently,
F (R)/R2 is an invertible function (0, 1) −→ (1,∞).

Assuming M �= 0, on the level set H(P,R) = K2 we find that

P 2 =
32K2

F (R)
− M2

R2
.

So Ṙ = 0, whenever

F (R)

R2
=

32K2

M2
.

Hence, whenever 32K2 > M2 > 0, precisely one turning point exists for R. This
proves the following.

Proposition 12.13. Rotating diffeons with M2 > 0 on a rotationally symmetric
hyperbolic surface do not exhibit periodic behavior.

For the irrotational diffeon, M = 0 and we have

P 2 =
32K2

F (R)
.

Since F (R) > 0 for all R ∈ [0, 1], the irrotational diffeon has no turning points of
R at all.
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12.5.3 Horolationally Invariant Diffeons on Hyperbolic Space

We now turn to a subtly different problem. So far we have been using solely
the rotation group (the circle) to produce symmetric diffeons. Now we consider
a different subgroup of hyperbolic isometries. This time it is expedient to use the
upper-half-plane model of hyperbolic geometry. That is,

H = {(x, y) ∈ R
2|y > 0}

with the metric

gH =
dx2 + dy2

y2
.

The group we consider is the horolation group (x, y) �→ (x+ a, y). This is a unique
type of isometry in planar geometries and is, figuratively speaking, a “rotation about
infinity.” We can see immediately that the orbits of this group action are the lines
y = const, and that we seek diffeons which are independent of x. In this situation
by (12.45),

I(a(y)dx+ b(y)dy)=
1

y

(
2ya− ∂2a

∂y2
y3 − 2

∂a

∂y
y2

)
dx+

(
2b− ∂2b

∂y2
y2 − 2

∂b

∂y
y

)
dy

Thus the solution to

I(G(y, Y )dx) = δ(y − Y )dx

is

G(y, Y ) =
min(y, Y )

3max(y, Y )2
,

and this solution also solves

I(G(y, Y )dy) = δ(y − Y )dy.

Next, we consider the compactness issue. Since the coordinate x ranges from−∞ to
∞ we know that functions that only involve y cannot be integrated across all of H .
Thus the Diffeon Hamiltonian cannot exist over the whole space and the theory of
Sect. 12.5.1 does not apply. Let us restrict ourselves to the strip BL = {(x, y)|y >
0, |x| < L} ⊂H . By doing this we can apply similar calculations to those used in
Sect. 12.5.1 to BL, but we must apply them only in the case of vector fields which
are tangent to the boundary x = ±L.



306 D.D. Holm et al.

Thus if

m =

N∑
i=1

δ(y − Yi)Y
2
i (Midx+ Pidy)

then we arrive at the Hamiltonian

H(P,Y) = L

N∑
i,j=1

G(Yi, Yj)Y
2
i Y

2
j (PiPj +MiMj)

= L

N∑
i,j=1

min(Yi, Yj)

3max(Yi, Yj)2
Y 2
i Y

2
j (PiPj +MiMj)

= L

N∑
i,j=1

min(Yi, Yj)
3

3
(PiPj +MiMj)

and the condition that Ṁi = 0.
For the 1-diffeon, the Hamiltonian is

H(P, Y ) = L
Y 3

3
(P 2 +M2)

so for H(P, Y ) = const = K , the only turning point of Y is at

Y =
3

√
3K

LM2

or at 0, if M = 0.

Remark 12.6. Joining the edges of BL together yields a surface called Gabriel’s
Horn, whereby the translation invariant diffeons on BL become rotationally invari-
ant diffeons on Gabriel’s horn.

12.5.4 Translation Invariant Diffeons on Hyperbolic Space

Translations on the hyperbolic plane are characterized by having two ideal fixed
points. The version of the metric we use in this case for the upper half plane is

gH = dr + cosh2 rdθ2 ,
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where the subsets formed by r = const are the orbits of the translation. Again, the
orbits are not compact, so we limit ourselves to the strip BL = {(r, θ) ∈ R

2|r >
0, |θ| < L} ⊂H .

In this situation, the Green’s function G(r, R) solving

IG(r, R)dr =
δ(r −R)

cosh(R)
dr

is given by

G(r,R)=,
1

2
tanh(min(r,R)) cosh(max(r,R))+ cosh(r) cosh(R) arctan(emin(r,R)).

Due to the complicated form of the Green’s function, we will not write down the
explicit form of the Hamiltonian for the N -diffeon. However, the Hamiltonian for
the 1-diffeon is,

H(P,R;M) =
1

2

G(R,R)

cosh2R

(
P 2 cosh2R +M2

)

=
1

4

(
tanhR sechR+ 2 arctan(eR)

) (
P 2 cosh2R+M2

)
.

In this case

∂H

∂P
=

1

2

(
tanhR sechR + 2 arctan(eR)

)
P cosh2R ,

∂H

∂R
=

1

2

(
P 2
(
coshR+ sinh 2R arctan(eR)

)
+M2 sech3R

)
.

It can be shown that there are no equilibria for the motion unless M = 0, where the
line P = 0 is the critical point set for H . However,

H(0, R) = 0 ,

for each value of R. So the line P consists entirely of stationary points, and since
away from this line no points exist for which Ṙ = 0, there can be no periodic
behavior of 1-diffeons in this case.

Extending EPDiff on Hyperbolic Space.

Our study of EPDiff on hyperbolic spaces so far shows that the behavior of
hyperbolic diffeons seems less interesting than the rich dynamical structure of
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multiple Puckons interacting on the sphere. This is because hyperbolic diffeons will
bounce only once before heading off to infinity, in the cases we have studied so far.

However, hyperbolic space is related intimately with the study of curves of genus
at least 2: it forms the universal cover for all such Riemann surfaces. So far, we
have been unable to examine the case of curves of genus ≥ 2 simply because
their isometry groups are small (usually discrete) which means that no 1-parameter
subgroup exists by which we may reduce the EPDiff equations to ODEs.

Any high genus Riemann surface can be realized as the quotient of the hyperbolic
plane by a tiling, or hyperbolic lattice [19]. The complex structure of the Riemann
surface depends upon the shape of the lattice. A surface Σ of genus γ ≥ 2 is
determined topologically by the symmetry group of the tiling, but a variety of
complex structures may be put upon Σ to turn it into a Riemann Surface. If Γ is
the symmetry group of the tiling, then the space of complex structures which may
be put on Σ is given by the space

TΓ =
Γ -invariant quasiconformal maps of D

Hyperbolic isometries of D
.

Here D is the Poincaré disc (the unit disc in the complex plane). In the space TΓ
a quasiconformal map is a generalization of a conformal map in which although
angles are not preserved, the angular dilation is uniformly bounded, see [1, 5].

The inclusion of a subgroup Γ ′ in Γ induces a natural inclusion of TΓ in TΓ ′ , so
it makes sense to consider the universal Teichmüller space as the Teichmüller space
T1 associated with the trivial group. The universal Teichmüller space is endowed
with the Weil–Petersson metric, thus providing the framework essential for the
theory of EPDiff. Furthermore, the restriction of the maps given in the definition
of Teichmüller space to the boundary of the disc provides us with the essential
method by which we reduce the EPDiff PDEs to ODEs. See [6, 7, 13] for some
recent progress in this framework.

12.6 EPDiff on Warped Product Spaces

In the previous sections, we have studied rotationally symmetric solutions. That is,
the solutions have been invariant under a circle action, and this effectively reduced
I in (12.45) to an ordinary differential operator. As a result, we were able to find
Gr and Gθ which are invariant under the group action, continuous and have a jump
in the derivative along an orbit. This motivates the study of higher dimensional
Riemannian manifolds (Σ, g) which possess an isometric action of the Lie group
K such that the quotient space Σ/K is one-dimensional. In particular, we shall
consider a Riemannian manifold Σ with a free isometric action of a Lie group K ,
so that Σ/K is a one-dimensional manifold N , and hence Σ ∼= K ×N .
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12.6.1 Warped Products

Let K be a compact semi-simple Lie group of dimension n− 1 and Σ −→ I ⊂ R

a principal K-bundle over the open interval I . (In what follows, one may also take
I to be the circle S1.) Suppose Σ has a Riemannian metric g preserved by K , and
that coordinates exist such that the metric has the form of a warped product

g = dr2 + ψ(r)2gK

where gK is a bi-invariant inner product on TK and ψ is a K-invariant function on
Σ, i.e., a function of r alone. The coordinate r parameterizes the orbit of K in Σ.
Let∇ be the Levi–Civita connection with respect to g.

This situation is rich enough to produce interesting results. In what follows
{ξi}ni=1 will be a gK orthonormal basis of k and Xξ the left-invariant vector field
generated by ξ ∈ k. We write Xi = Xξi , assume that these form an orthonormal
frame of TK and define θi to be the coframe dual to the Xi. Let ∇K be the
Levi–Civita connection of K with respect to gK .

Proposition 12.14. We have

Δ∇K

Xi = kXi.

Proof. This follows from the identity on K ,

∇KXi
Xj =

1

2
[Xi, Xj ] .

��
Thus, Δ∇K

will be the Casimir operator associated with the adjoint representation
ofK on k applied to the frame {Xi}. The Casimir however is just a constant multiple
of the identity, the constant k being

k = 1− dim z(K)

dim k

where z(K) is the Lie algebra of the center of the group K .
The geometry of warped products is reasonably well known [3,18]. In particular,

we have the following (see pp 58–59 of [3]).

Proposition 12.15. Let f be a K-invariant function on Σ and suppose ψ(r) =
eλ(r). The connection Laplacian associated with g satisfies
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Δ∇fdr = −
(
∂2f

∂r2
+ (n− 1)

∂λ

∂r

∂f

∂r
− (n− 1)

(
∂λ

∂r

)2

f

)
dr ,

Δ∇feλθi = −
(
∂2f

∂r2
+ (n− 1)

∂λ

∂r

∂f

∂r
−
(
∂λ

∂r

)2

f − e−λkf

)
eλθi .

These two propositions imply that the K-invariant equations

Ia0(r)dr =
δ(r −R)

ψ(R)
dr , (12.46)

Iai(r)ψ(r)θi = δ(r −R)θi , (12.47)

are n ordinary differential equations in r. Thus, there are n functions G0(r, R),
Gi(r, R) that solve (12.46) and (12.47), respectively, are continuous on r = R, and
are symmetric in the sense that

G0(r, R) = G0(R, r) and Gi(r, R) = Gi(R, r).

Indeed, the second identity in Proposition 12.15 shows that Gi is independent of the
index i. Hence, instead of Gi, we shall write GK .

Now let m be the measure-valued one-form

mj =

N∑
i=1

δ(r −Ri)

ψ(Ri)

(
Pidr +Miθ

j
)
. (12.48)

The solution to I(uj)� = mj is

uj =

N∑
i=1

(
PiG

0(r, Ri)
∂

∂r
+

Mi

ψ(r)ψ(Ri)
GK(r, Ri)Xj

)

=: u0j(r)
∂

∂r
+ uj(r)Xj (no sum on j).

Note, we are not using the summation convention here. Also denote

w = f0 ∂

∂r
+ f ζXζ

for any ζ ∈ k and arbitrary scalar functions of r, denoted f0 and f ζ . Any vector
field on Σ will be the sum of such vector fields w. Then we may write the vector
field commutation relation,

[w, uj ] =
(
f0u0

j
′ − u0

j∂rf
0 − ujXj(f

0)
) ∂

∂r
−

(
u0
j∂rf

ζ + ujXj(f
ζ)
)
Xζ + f0u′

jXj .
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Thus

∫

Σ

mj(w)dvolP =
N∑

i=1

∫

K

∫

I

δ(r−Ri)

ψ(Ri)

(
Pif

0 +Mif
ζgK(Xζ , Xj)

)
ψ(r)drdvolK

=

N∑

i=1

∫

h∈K

(
Pif

0(Ri, h)+Mif
ζ(Ri, h)ζ

j
)
dvolK ,

where ζ =
∑n−1

j=1 ζ
jξj . In particular, this yields the ad∗ relation needed for

expressing EPDiff in this setting,

∫

Σ

mj([w,uj ])dvolP

=

N∑

i=1

∫

h∈K

Pi

(
f0(Ri, h)u

0
j

′
(Ri) − u0j (Ri)∂rf

0(Ri, h) − uj(Ri)Xj(f
0)(Ri, h)

)
dvolK

−
N∑

i=1

∫

h∈K

Mi

(
u0j (Ri)∂rf

ζ(Ri, h)ζ
j +ujXj(f

ζ)(Ri, h)ζ
j − f0(Ri, h)u

′
j(Ri)

)
dvolK .

Remark 12.7. When we were dealing in Sect. 12.5 with isometric action of S1,
terms such as uθ∂θf disappeared when integrated over the circle, by the Stokes
theorem. Here, however, we have the terms ujXj(f

0) and ujXj(f
ζ) (again no sum

on j). As we shall see, these terms will vanish when we integrate over the group K .

From standard Riemannian geometry, one has

Proposition 12.16. For any compact Riemannian manifold N , and any vector field
X and function φ on N we have

∫
N

X(φ)dvol =

∫
N

φdivXdvol .

From this formula we see that, in the present situation,

Proposition 12.17. Given any κ ∈ k and any function φ on K .

∫
K

Xκ(φ)dvolK = 0 .

This relation follows because Xκ generates volume preserving (and metric preserv-
ing) diffeomorphisms of K .

Hence, upon integrating over K , the terms ujXi(f
0) and ujXj(f

ζ) will vanish
because uj is K-invariant. Thus, we have
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∫

Σ

mj([w,uj ])dvolP =

N∑

i=1

∫

h∈K

Pi

(
f0(Ri, h)u

0
j

′
(Ri) − u0j (Ri)∂rf

0(Ri, h)
)
dvolK

−
N∑

i=1

∫

h∈K

Mi

(
u0j (Ri)∂rf

ζ(Ri, h)ζ
j − f0(Ri, h)u

′
j(Ri)

)
dvolK

This formula implies the EPDiff equations,

0 =

∫
Σ

(
∂mj

∂t
(w) + mj([w, uj ])

)
dvolP

=

N∑
i=1

∫
h∈K

(
Ṗif

0(Ri, h) + PiṘi
∂

∂Ri
f0(Ri, h) + Ṁif

ζ(Ri, h)ζ
j

+MiṘi
∂

∂Ri
f ζ(Ri, h)ζ

j

)
dvolK

+

N∑
i=1

∫
h∈K

Pi

(
f0(Ri, h)u

0
j
′
(Ri)− u0j(Ri)∂rf

0(Ri, h)
)
dvolK

−
N∑
i=1

∫
h∈K

Mi

(
u0j(Ri)∂rf

ζ(Ri, h)ζ
j − f0(Ri, h)u

′
j(Ri)

)
dvolK

Again, we compare coefficients of f0, f ζ, ∂
∂Ri

f0 and ∂
∂Ri

f ζ to find the dynamical
equations

0 = Ṗi + Piu
0
j
′
(Ri) +Miu

′
j(Ri),

0 = PiṘi − Piu
0
j(Ri) ,

0 = Ṁiζ
j ,

0 = MiṘiζ
j −Miu

0
j(Ri)ζ

j .

Therefore, we have proved the following.

Theorem 12.2 (Hamiltonian Diffeon Reduction for K-Invariant Warped Prod-
uct Spaces). The warped product diffeon parameters in Eq. (12.48) satisfy

Ṗi = − 1

2

∂

∂Ri

N∑
k=1

(
Pku

0
j(Rk) +Mkuj(Rk)

)
, (12.49)

Ṙi = u0j(Ri) , (12.50)

Ṁi = 0 . (12.51)
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As guaranteed by the momentum map property of the diffeon solution (12.8) for
EPDiff, these are Hamilton’s equations with collectivized Hamiltonian Hj/(volK)
given by

Hj(P,R;M) =
1

2

∫

Σ

mj(uj)dvolP

=
1

2
vol (K)

N∑

i=1

(
Piu

0
j (Ri) +Miuj(Ri)

)

=
1

2
vol (K)

N∑

i=1

(
Piu

0
j (Ri) +Miuj(Ri)

)

=
1

2
vol (K)

N∑

i,k=1

(
PiPkG

0(Ri, Rk)+
MiMk

ψ(Ri)ψ(Rk)
GK(Ri, Rk)

)
.

Notice that Hj is independent of j; so we may write HK for Hj .

Thus, given any ζ ∈ k a diffeon exists that moves on Σ with motion described
by Hamilton’s equations with the Hamiltonian given by H . The diffeon itself is
“rotating” in the direction determined by ζ with conserved angular momentum
determined by M = (M1, . . . ,MN).

Remark 12.8. One may repeat the whole procedure replacing K with a compact
symmetric space K/H for some closed Lie subgroup H of K . The only significant
changes would be that the θi would become local on K/H rather than global.
However, all the propositions will remain true because of the intimate relationship
between symmetric spaces and Lie groups. Thus, for example, we would expect
diffeon behavior on Sn to be similar to the Puckon behavior on S2 since

gSn = dr2 + (cos2 r) gSn−1 .

12.6.2 Singular Fibers

We have so far dealt with a free action of a group on a manifold such that the quotient
space is a 1-manifold. Thinking back to the case of Σ = S2, we see that the action
of the circle was not completely free, because there are precisely two points (the
poles) which are fixed under the group. Away from these fixed points, the sphere is
a principal S1 fibration, and the Puckons “bounce” off the poles (provided they are
not rotating). For the general manifold Σ, the situation could become much more
complex.

For example, in the situation of the previous section, we see that problems arise if
we choose a diffeon which is rotating in the direction ζ ∈ k and find thatXζ vanishes
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at a point p. However, if the diffeon is not rotating, and the vector field ∂
∂r vanishes

nowhere, then all the previous theory holds. The theory also holds for the warped
product of the line (or circle) with the flat metric with an Einstein space, upon using
harmonic coordinate charts (page 285 of [18]).

12.7 Conclusions

We provided a canonical Hamiltonian framework for exploring the solutions of the
EPDiff equations on surfaces of constant curvature. This framework used symmetry
and the momentum map for singular solutions to reduce the EPDiff integro-partial
differential equation to canonical Hamiltonian ODEs in time. We specialized to the
case of the sphere and provided both numerical integrations and qualitative analysis
of the solutions, which we called “Puckons.”

The main conclusions from our numerical study were:

• Momentum plays a key role in the dynamics of Puckons. Radial momentum
drives Puckons to collapse onto one of the poles, and angular momentum prevents
this collapse from occurring. Puckons were found to exhibit elastic collision
behavior (with its associated exchanges of momentum and angular momentum,
but with no excitation of any internal degrees of freedom) just as occurs in soliton
dynamics.

• Puckons without rotation may collapse onto one of the poles. This collapse
occurs with bounded canonical momentum and the radial slope in velocity
appears to become vertical at the instant of collapse.

• For nonzero rotation, Puckon collapse onto one of the poles cannot occur and the
radial slope in velocity never becomes infinite.

• Head-on collisions between two Puckons may be accompanied by an apparently
vertical radial slope in velocity which forms in finite time.

The main theoretical questions that remain are:

• Numerical simulations show that near vertical or vertical slope occurs at head-on
collision between two Puckons of nearly equal height. A rigorous proof of this
fact is still missing.

• It remains to discover whether a choice of Green’s function exists for which the
reduced motion is integrable on our 2N dimensional Hamiltonian manifold of
concentric rotating Puckons for N > 1.

• It also remains to determine the number and speeds of the rotating Puckons that
emerge from a given initial condition.

All of these challenging theoretical problems are beyond the scope of this paper and
we will leave them as potential subjects for future work.

We applied these ideas to hyperbolic spaces, as well. This led to rather simple
reduced dynamics with only a limited number of possible collisions. We discussed
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a new departure for hyperbolic space, based on Teichmüller theory, whose investi-
gation has already begun elsewhere [6, 7, 13].

Finally, we answered an outstanding question by generalizing the momentum
map to the case of diffeons with (n − 1)-dimensional internal degrees of freedom
by using the theory of warped product spaces.

In summary, we identified and analyzed cases where imposing an additional
translation symmetry on the solution reduced the canonical Hamiltonian dynamics
of the singular solutions of EPDiff on Einstein surfaces from (integral) partial
differential equations to Hamilton’s canonical ordinary differential equations, in
time. We extended our methods for surfaces to “mostly symmetric” manifolds in
higher dimensions by using warped products.

All calculations were done explicitly, in hopes of encouraging further applica-
tions of these ideas.
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with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

10. Holm, D.D., Putkaradze, V., Stechmann, S.N.: Rotating concentric circular peakons. Nonlin-
earity 17, 2163–2186 (2004). Preprint at arxiv.org/abs/nlin.SI/0312012

11. Holm, D.D., Staley, M.F.: Wave structures and nonlinear balances in a family of evolutionary
PDEs. SIAM J. Appl. Dyn. Syst. 2, 323–380 (2003)

arxiv.org/abs/nlin.CD/0312048
arxiv.org/abs/nlin.SI/0312012


316 D.D. Holm et al.

12. Holm, D.D., Staley, M.F.: Interaction dynamics of singular wave fronts. Unpublished MS
(2004)

13. Kushnarev, S. Teichons: soliton-like geodesics on universal Teichmüller space. Exp. Math.
18(3), 325–336 (2009)

14. LeVeque, R.J. Numerical Methods for Conservation Laws. Birkhäuser, Boston (1992)
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Chapter 13
On the Destruction of Resonant Lagrangean
Tori in Hamiltonian Systems

Henk W. Broer, Heinz Hanßmann, and Jiangong You

Abstract Starting from Poincaré’s fundamental problem of dynamics, we consider
perturbations of integrable Hamiltonian systems in the neighbourhood of resonant
Lagrangean (i.e. maximal) invariant tori with a single (internal) resonance. Applying
KAM Theory and Singularity Theory we investigate how such a torus disintegrates
when the action variables vary in the resonant surface. For open subsets of this
surface the resulting lower dimensional tori are either hyperbolic or elliptic. For a
better understanding of the dynamics, both qualitatively and quantitatively, we also
investigate the singular tori and the way in which they are being unfolded by the
action variables. In fact, if N is the number of degrees of freedom, singularities
up to co-dimension N − 1 cannot be avoided. In the case of Kolmogorov non-
degeneracy the singular tori are parabolic, while under the weaker non-degeneracy
condition of Rüssmann the lower dimensional tori may also undergo e.g. umbilical
bifurcations. We emphasize that this application of Singularity Theory only uses
internal (or distinguished) parameters and no external ones.
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13.1 Introduction

Classical perturbation theory largely concerns the continuation of quasi-periodic
motions as these occur in integrable Hamiltonian systems for small non-integrable
perturbations. The classical perturbation series here diverge on a resonance subset
that densely fills the phase space, leading to the notorious small denominators even
when avoiding this dense set. This paper deals with the dynamics within such
resonance gaps.

Background. We briefly summarize that Kolmogorov–Arnol’d–Moser (KAM)
Theory [2] establishes the persistence of quasi-periodic motions that densely fill
Lagrangean tori, meaning that the dimension equals the number N of degrees of
freedom. If ω ∈ R

N denotes the frequency vector, the resonances alluded to above
are given by

〈k, ω〉 = 0 , 0 �= k ∈ Z
N . (13.1)

KAM Theory excludes such resonances by imposing strongly non-resonant, Dio-
phantine conditions

| 〈k, ω〉 | ≥ γ

|k|τ for all k ∈ Z
N\{0} (13.2)

on the frequency vectors, where γ > 0, τ > N −1, which guarantee the persistence
of many Lagrangean tori in the sense of measure theory. We recall [25] that the
persistentN -tori are smoothly parametrized over the nowhere dense union of closed
half lines defined by (13.2), in the sense of Whitney; colloquially we speak of a
Cantor family of half lines.

Aim of the paper. We investigate what happens to the Lagrangean tori of the
unperturbed system for which the frequency vector is resonant, i.e. satisfying (13.1)
for a single fixed nonzero k ∈ Z

N (and its integer multiples), so which is contained
in a gap of the “Cantor set” defined by (13.2).

Starting point is the real analytic perturbed N -degree-of-freedom Hamiltonian

Hε(ϕ, I) = H0(I) + εH1(ϕ, I; ε) (13.3)

defined on T
N × R

N with perturbation parameter 0 < ε � 1. We concentrate on
a single resonance, whence a normal form approximation can be reduced to one
degree of freedom. See below for details. The reduced system is defined on the
cylinder T× R with Hamiltonian of the form

H (p, q;μ) , (q, p) ∈ T× R, μ ∈ R
N−1 ; (13.4)

here μ = μ(I) is a (distinguished) parameter varying along the resonance surface

〈k, ω(I)〉 = 0 , where ω(I) := DH0(I) .
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We will show that (13.4) is a general family of Hamiltonian functions and our
interest is the study of the dynamics they generate. As in all one-degree-of-freedom
systems, this dynamics is largely determined by the configuration of level sets.
We recall [2] that the closed curves correspond to librational Lagrangean N -tori,
while the critical points correspond to invariant (N − 1)-tori. The latter govern the
global geometry of the dynamics and in the (N − 1)-parameter family (13.4) of
functions their behaviour is determined by Singularity Theory [3, 27].

Within such an (N − 1)-parameter family of functions one may encounter
singularities up to co-dimension N − 1 in a persistent way. Singularity Theory
provides us with versal unfoldings of these. These unfoldings also will appear
persistently in our general family (13.4).

The compact-open topology. We like to note that for families of planar functions
persistence in the sense of structural stability is a generic property. To formulate
this property in a precise way one needs a topology on the space of Hamiltonian
functions in one degree of freedom. In the present real analytic setting we use the
compact-open topology on holomorphic extensions detailed in [11].

The real-analytic compact-open topology on holomorphic extensions fits with
local uniform convergence of the corresponding Hamiltonian functions. We recall
from [11] that this compact-open topology has the Baire property, which means that
countable intersections of dense-open sets are still dense. Moreover, the compact-
open topology is stronger than the WhitneyCk topologies used in [22,23]. From the
latter it immediately follows that any Ck open property also is open in the compact-
open sense. The same holds for denseness, as long as we restrict to properties
defined in terms of transversality. Therefore a real analytic unfolding that is versal in
the Ck sense also is versal with respect to the compact-open topology. In particular
the differentiable Singularity Theory also applies for the real analytic case. In fact,
Weierstraß originally developed the theory for the analytic case.

Co-dimensions. We recall that for equilibria to be either hyperbolic or elliptic, the
corresponding singularity A1 has co-dimension 0, which means that in one degree
of freedom it has open occurrence in the space of families of Hamiltonian functions.
However, the singularities of higher co-dimension determine the geometric organi-
zation of those of lower co-dimension, therefore in particular the ones corresponding
to hyperbolic and elliptic equilibria. This organization reflects both qualitative and
quantitative aspects.

Example 13.1 (A Quasi-Periodic Center-Saddle Bifurcation). As an example1 in
the space of (N − 1)-parameter families in one degree of freedom we consider

H (p, q;μ) =
1

2
p2 +

1

6
q3 + λ(μ)q (13.5)

1Any non-degenerate example of a co-dimension 1 bifurcation can be reduced to this case. Here
we exclude a setting with symmetry or other structural restrictions [20].
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with λ(0) = 0 and Dμλ(0) �= 0. We remark that this family usually is called fold,
a versal unfolding of the singularity A2, see [3, 27]. Clearly (13.5) is a family of
one-degree-of-freedom systems for which the equilibrium (p, q) = (0, 0) at μ = 0
is parabolic (and hence neither elliptic nor hyperbolic), and for any (real analytic)
small perturbation there is a parameter value μ = μ0 ≈ 0 for which there is a
parabolic equilibrium at a certain point (p, q) = (p0, q0) ≈ (0, 0). Thus, there
is a full neighbourhood of the (N − 1)-parameter family defined by (13.5) in the
compact-open topology such that a parabolic equilibrium occurs nearby. Hence it
is impossible for the set of all families of one-degree-of-freedom systems that only
have elliptic and/or hyperbolic equilibria to contain a countable intersection of open
and dense sets, i.e. to be generic.

In the reconstruction to the setting of N degrees of freedom, the equilibria
correspond to invariant (N − 1)-tori, where the normal behaviour is inherited, and
the closed level curves correspond to librational Lagrangean N -tori. Addition of
the non-symmetric higher order terms presents us with a new perturbation problem.
This can be solved by KAM Theory [18]. In this way the entire bifurcation scenario
becomes Cantorized as explained below, for a detailed example also see Sect. 13.2.

An interesting aspect is that in a fixed energy level we have the same theory, with
one parameter less. ForN ≥ 3 we thus have in each energy level elliptic, hyperbolic,
and parabolic tori in a center-saddle bifurcation. In both cases a quantitative
consequence of this is that for small perturbations the asymptotic distance of the two
families of tori, as they approach the parabolic equilibrium, is of order

√−λ(μ) as
μ→ 0.

Observe that for N = 2 the lower dimensional tori really are closed orbits. In
this case the energy is the only parameter and no bifurcation takes place inside an
energy level. For N ≥ 3 the bifurcating tori have dimension larger than or equal
to 2 and the bifurcation can take place within an energy level.

Unfoldings. The fold example (13.5) is a special case of the family of cuspoids
that unfold the co-rank 1 singularities Ak+1, k ∈ N, see [3, 27] for more
details. The corresponding KAM perturbation problem has been solved in [5]. In
that paper (trans)-versality conditions as dictated by Singularity Theory [3, 27]
are used to develop a normal form of Hamiltonians in the neighbourhood of a
parabolic torus. Solving the ensuing small divisor problems it is proven that the
bifurcation scenario persists in a Cantorized way. See Example 13.2 below for a
more detailed description. In this way all possible quasi-periodic bifurcations of
normally parabolic tori can be retrieved in resonance gaps, taking N sufficiently
high.

An aspect that one has to keep in mind in the present case of (N − 1)-parameter
families (13.4) defined by the normal form of (13.3) near a single resonance is that
part of the terms in H , say the p-terms, come from H0 and the remaining terms
come from the perturbation H1. The p2-term in (13.5) occurs in the case where the
integrable part H0 satisfies the Kolmogorov condition

detD2H0(I) �= 0 , (13.6)
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which is valid on an open and dense set in parameter space, see [2]. For these values
of I the above theory of parabolic tori applies, see Sect. 13.2 for more details.
In particular, one can read off from the degeneracy of the minimum and the
maximum of a certain potential Vμ on T a lower bound for the number of families
of invariant (N − 1)-tori.

Note that the Kolmogorov non-degeneracy condition (13.6) fails on a
co-dimension 1 subset. Here one may still expect a weaker form of non-degeneracy
to hold true, expressed by the Rüssmann condition, cf. [8, 26, 29]. In this way
also more general singularities can be incorporated, giving rise to all possible
applications of Singularity Theory as in [20]. More degenerate singularities may
e.g. lead to umbilical torus bifurcations, for an example see Sect. 13.3; in Sect. 13.4
we discuss further possibilities.

We emphasize that we are not to impose genericity conditions on occurring
equilibria, but only on the initial Hamiltonian H , see (13.3). Our genericity
assumption on H0 amounts to Rüssmann non-degeneracy. The remaining genericity
assumptions on H are obtained via H1. These genericity conditions amount to
versality of the occurring unfolding, thereby excluding too pathological examples.
For more details see below.

On Cantorization. The Diophantine condition (13.2) defines a Cantor family of
closed half lines, parametrized over a Cantor set of positive measure [9]. This Cantor
family in turn parametrizes a Cantor bundle of integrable quasi-periodic invariant
tori, in a Whitney smooth way. KAM Theory implies that in case of Kolmogorov
non-degeneracy, under small perturbations this Cantor bundle is distorted by a
near-identity Whitney smooth conjugation. Where the integrable invariant tori
foliate a submanifold or a semi-algebraic set organized by Singularity Theory, we
colloquially say that the Diophantine condition (13.2) “Cantorizes” this geometry,
with the same terminology for nearly integrable systems. We note that the property
of having positive (Hausdorff) measure is preserved by diffeomorphisms. In the
sequel we shall also meet Cantor bundles of tori parametrized over (real) Cantor
sets. In all cases these bundles can be distinguished by their Hausdorff dimension.

Related work. To our knowledge, invariant tori reconstructed from possibly
degenerate equilibria have only been addressed for single resonances, not for
multiple resonances.

Cheng [13] considers convex H0, such that in the reduced system (13.4) the
maximum and minimum of the q-dependent part differ. The invariant (N − 1)-
tori corresponding to non-degenerate maxima are hyperbolic tori, but in [13] a
degenerate maximum is not excluded and the resulting tori are called of “hyperbolic
type”. It is established that the system (13.3) has a Cantor family of “hyperbolic
type” invariant (N − 1)-tori. In [14] the minima of the q-dependent part of (13.4)
are treated, restricting to non-degenerate minima (i.e. elliptic tori). This yields a
Cantor family of elliptic invariant (N − 1)-tori.

The approach by Gallavotti, Gentile, and Giuliani [17] considers the perturbation
parameter ε also as a bifurcation parameter. Although they do consider degenerate
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singularities, the results only concern Cantor families of elliptic and hyperbolic
invariant (N − 1)-tori. Careful considerations yield expansions of the ε-family of
(N −1)-tori in e.g.

√
ε, and quantitative asymptotic information. We note that these

results can be retrieved as a direct consequence of our approach. However, the fate of
degenerate tori is not explained in [17] and a fortiori a complete bifurcation scenario
is not discussed.

As soon as one makes the assumption that all equilibria of the reduced system
are non-degenerate one obtains elliptic and hyperbolic lower dimensional tori also
for multiple resonances, see [10, 12, 15, 28] and references therein. We like to
emphasize that this assumption is not generic for reduced systems parametrized
by the conjugate actions; one then also has to deal with degenerate equilibria and
the corresponding bifurcation theory. A starting point for the development of such
a persistence result is formed by [4, 7], where multiple resonances are taken into
account. For m-fold resonances corank-m-singularities may occur already under
the Kolmogorov condition, and under the Rüssmann condition this may further rise
to corank 2m.

13.2 Kolmogorov Hamiltonians

To explain the kind of results that can be obtained for the perturbation (13.3) of an
integrable Hamiltonian H0 = H0(I) on T

N ×R
N we first restrict to an open subset

U ⊂ R
N where the Kolmogorov non-degeneracy condition (13.6) is valid for every

I ∈ U . By classical KAM Theory [2, 8, 25] it then follows that most Lagrangean
tori TN × {I}, I ∈ U satisfy the Diophantine conditions (13.2) and persist. For
Lagrangean tori with resonant frequency vector that have a single resonance we
have the following result.

Theorem 13.1 (Resonant Dynamics). Consider the perturbed Hamiltonian (13.3)
on T

N × U satisfying the Kolmogorov non-degeneracy condition (13.6) for all
I ∈ U . Then for sufficiently small perturbations H1, satisfying suitable genericity
conditions, a Lagrangean torus of the unperturbed system with a single resonance
〈k,DH0(I)〉 = 0, k ∈ Z

N\{0} leads in the perturbed system (13.3) to Cantor
families of hyperbolic, elliptic, and possibly also parabolic tori. The distribution of
these tori is determined by the way in which the genericity conditions on H1 are
fulfilled.

The proof in particular reveals the nature of the genericity conditions, made precise
in Lemma 13.1 and the paragraph preceding it.

Proof. The equation 〈k,DH0(I)〉 = 0 determines a local hypersurface Y ⊂ U . For
I ∈ Y the unperturbed Lagrangean torus TN × {I} is foliated into invariant tori of
dimension N − 1. Let us put

n = N − 1
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and on U choose local coordinates ϕ = (x, q) with values in T
n×T and I = (y, p)

with values in R
n×R, where y parametrizes the surfaceY. In these local coordinates

the single resonance reads

∂

∂p
H0(y, 0) = 0 for all y ∈ Y , (13.7)

cf. [10, 13, 14, 28]. The remaining frequencies form the vector ω = DyH0(y, 0)
which is non-resonant at a single resonance (y, p) = (y∗, 0). Treating ω as an exter-
nal parameter, we expect persistence results only for Diophantine ω, where gaps in
the resulting “Cantor set” correspond to multiple resonances. Following [9, 25], we
localize to ŷ (ε-close to 0) writing y = y∗+ ŷ, thereby shrinking the neighbourhood
U if necessary. Moreover we restrict to the lowest order terms

H0(ŷ, p; y
∗, ω) = 〈ω, ŷ〉 +

a(y∗)
2

p2 .

From (13.6) together with (13.7) we infer

a(y∗) �= 0 for all y∗ ∈ Y ,

whence we find a lower bound of the function |a| by shrinking the coordinate
domain U ⊃ Y a bit if necessary.

We now apply a familiar method to replace the system (13.3) by a family of
one-degree-of-freedom systems, cf. [2, 10, 13, 28]. Starting point is a normalizing
transformation that turns the perturbed Hamiltonian into

Hε(x, ŷ, p, q; y
∗, ω) = H0(ŷ, p; y

∗, ω) + εH̄1(ŷ, p, q; y
∗, ω) + O(ε2)

where H̄1 is the Tn-average along x of H1 at ε = 0. In the expansion

H̄1 = η(ŷ; y∗, ω) + α(ŷ; y∗, ω)p + β(ŷ; y∗, ω)q

+
A(y∗)

2
p2 +

B(y∗)
2

q2 + C(y∗)pq + . . .

we may have A(y∗) ≡ 0, but more importantly |a(y∗) + εA(y∗)| is still bounded
from below on Y. Re-parametrizing ω �→ ω+εDŷη(ŷ; y

∗, ω), maintaining the same
symbol ω for the frequency vector, the expansion of Hε still starts with 〈ω, ŷ〉. By
means of an ε-small shear transformation in p we get rid of terms that are linear in p,
and scaling p by

√
ε we arrive at

Hε(x, ŷ, p, q; y
∗, ω) = 〈ω, ŷ〉 + εH (p, q; y∗, ω) + O(ε2) (13.8)
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with

H (p, q; y∗, ω) =
a(y∗)
2

p2 + Vy∗(q) ,

compare with (13.4).
Here Vy∗ can be interpreted as an n-parameter family of one-dimensional

potentials, and critical points q∗ of Vy∗ correspond to invariant n-tori T
n ×

{(0, 0, q∗; y∗, ω)} of the “intermediate” integrable system with Hamiltonian Hε =
〈ω, ŷ〉+ εH . The y∗ ∈ R

n ∼= Y around which ŷ is localized has the character of a
(distinguished) parameter; let us make this explicit by writing

μ := y∗ .

While critical points of a single potential are generically non-degenerate, it is a
generic property for the n-parameter family Vμ of potentials to encounter critical
points up to co-dimension n. Note that this amounts to a genericity condition on
the perturbation H1 of H0. More precisely, the μ-values parametrizing a potential
Vμ with a degenerate critical point of co-dimension k form an (n− k)-dimensional
submanifold Λk in μ-space.

Lemma 13.1 (Versality). In the above circumstances, let μ∗ ∈ Λk and put d =
k + 2. Then all derivatives at q∗ of order j < d vanish, so

Vμ∗(q) =
b(μ∗)
d!

(q − q∗)d + O
(
(q − q∗)d+1

)
(13.9)

with b(μ∗) �= 0 and 2 ≤ d ≤ n + 2 near the critical point q∗ of Vμ∗ . When d = 2
the critical point q∗ is non-degenerate and (p, q) = (0, q∗) is a non-degenerate
equilibrium of the one-degree-of-freedom system—a saddle if ab < 0 and a center
if ab > 0. In case d ≥ 3 the equilibrium is parabolic and it is furthermore generic
for the family Vμ to provide a versal unfolding of the degenerate critical point. Also
this genericity condition is a condition on the perturbation H1.

Let us translate coordinates to q∗ = 0 and concentrate on a degenerate critical point
with d ≤ n+ 1. Then

H (p, q;μ, ω) =
a(μ)

2
p2 +

b(μ)

d!
qd +

d−2∑
j=1

cj(μ)

j!
qj + O(qd+1)

and Hε = 〈ω, ŷ〉 + εH has the form (1.4) of [5] with λj = εcj(μ). Thus
under small perturbation, satisfying the above genericity conditions, the resonant
Lagrangean torus leads to the entire bifurcation scenario detailed in [5]. This
amounts to the classical hierarchy of the cuspoids [3,27] unfolding the singularities
Ak+1, k ∈ N, that are Cantorized in the now familiar way by taking out a small
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neighbourhood of the dense set of resonances mentioned before and using KAM
Theory. Granted the proof of Lemma 13.1 (given below), this proves Theorem 13.1.

��
Remark 13.1. Since μ = y − ŷ was introduced by localization the rôle of the
unfolding parameter λ is ultimately played by the action y conjugate to the toral
angles, provided that c : μ �→ c(μ) is at μ = 0 a submersion from R

n to R
d−2. The

tori Tn × {(0, 0, q∗)} with d = n + 2 are generically isolated and may therefore
disappear in a resonance gap. In case n − d + 2 ≥ 1 Diophantine approximation
of dependent quantities does yield persistence on Cantor sets, see [5,8,20] for more
details.

Proof of Lemma 13.1. For a description of the compact-open topology on holomor-
phic extensions of real analytic systems we refer to the introduction. We recall that
Singularity Theory in the real analytic setting coincides with that in the Ck setting
for k large. Therefore the families Vμ are also versal in the real analytic setting.

The versality of the family Vμ of potentials amounts to a genericity condition
on the same family. This in turn is implied by a genericity condition on H1 since
the mapping H1 �→ H̄1 �→ Vμ is a composition of submersions. Indeed, the latter
part H̄1 �→ Vμ is merely a scaling in p after which the quadratic part a2p

2 is split
off by means of the Morse Lemma [22]. The normalization H1 �→ H̄1 consists of
a coordinate transformation followed by truncation of higher order terms which for
sufficiently small ε has the character of a (linear) projection. ��
Example 13.2 (Unfolding a Degenerate Minimum). We consider the case d = 4 for
which the one-degree-of freedom family has the form

H (p, q;μ, ω) =
1

2
p2 +

1

24
q4 + λ1(μ)q +

λ2(μ)

2
q2 , (13.10)

versally unfolding the singularity A3. Note that this example occurs persistently for
N ≥ 4 degrees of freedom. For definiteness we fix N = 4. So we started with
four action variables R4 = {I1, . . . , I4} in which the three-dimensional resonance
hypersurface Y is defined by 〈k,DH0(I)〉 = 0. Locally we have the variable p
transverse to Y and μ = (μ1, μ2, μ3) parametrizes Y.

In Fig. 13.1 we show the organization of the local dynamics in dependence of the
parameters. We now describe the meaning of the phase portraits for the 4-degree-
of-freedom system. All periodic orbits correspond to Lagrangean tori and equilibria
to three-dimensional tori. These are elliptic in the case of a center, hyperbolic in the
case of a saddle and parabolic in the (two) remaining cases.

We recall that μ �→ λ(μ) is a (local) submersion. Therefore Cantorization in the
(μ1, μ2, μ3)-direction amounts to the following.

1. We begin with the cases corresponding to parabolic tori.

(a) The central point λ = 0 corresponds to a line that Cantorizes to a (real)
Cantor set (i.e. of topological dimension 0) of Hausdorff dimension 1.
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λ1

λ2

Fig. 13.1 Organization of the local dynamics near a degenerate minimum of the reduced
Hamiltonian H . Phase portraits show the reduced one-degree-of-freedom dynamics of (13.10).
The interpretation for the N-degree-of-freedom system is given in the text

(b) The fold lines emanating from λ = 0 correspond to planes that Cantorize to
a (real) Cantor set as well, now of Hausdorff dimension 2.

2. The hyperbolic tori are parametrized over the open region in between the fold
lines, which corresponds to an open three-dimensional set. Cantorization leads
to a union of lines, smoothly parametrized over the two-dimensional Cantor set
mentioned above and also ending there. Recall that colloquially we call this a
Cantor family of closed half lines; the Hausdorff dimension is 3.

3. Both open regions in Fig. 13.1 parametrize elliptic tori, observing that in between
the fold lines each point corresponds to two elliptic tori, and in the other region
only to one.

(a) In the latter case Cantorization leads to a (real) Cantor set.
(b) In the former case Cantorization leads to two layers of (real) Cantor sets.

In both cases the Cantor set has Hausdorff dimension 3.

As usual, Cantorization of the librational Lagrangean tori takes place along a
Cantor family of lines, of Hausdorff dimension 4. Note that this also uses the p
variable to obtain the four-dimensional (μ, p)-set. Here, and in the earlier cases, the
corresponding Hausdorff measure is positive and, in fact, even close to full measure
when the perturbation is small.

As in the example of the quasi-periodic center-saddle bifurcation, we can give
asymptotic estimates based on the geometry sketched in Fig. 13.1. For instance,
along the symmetry axis λ1 = 0 the distance between the two elliptic tori is of
order

√−λ2(μ) as μ→ 0.
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It is instructive to compare the above results with the corresponding statements
in [17]. When d is odd the bifurcation diagram contains empty regions and regions
with both elliptic and hyperbolic tori. When d is even all open regions of the
bifurcation diagram Cantor-parametrize at least one elliptic torus if b > 0, see
Fig. 13.1, while b < 0 yields deformations with hyperbolic tori. For a similar
approach in the latter case (not using Lindstedt series) see [30].

For small perturbations εH1 of H0 Theorem 13.1 allows to recover what [13,14]
state in this situation. Indeed, the angular variable q takes values in T and on this
compact set each potential Vμ, μ fixed, assumes minimum and maximum. It is a
genericity condition on H1 for these to be different from each other, i.e. Vμ �= const

for all μ, and furthermore for Vμ to assume the form (13.9) with d even and b(μ) < 0
at a maximum q∗ while b(μ) > 0 at a minimum; let us denote the latter by q∗.
For definiteness we concentrate on a(μ) > 0 (which may always be achieved by
reversing time if necessary). Then the maximum q∗ corresponds to a “hyperbolic
type” torus T

n × {(0, 0, q∗)}, truly hyperbolic if the maximum is non-degenerate
and parabolic otherwise. In both cases we have persistence for ω satisfying the
Diophantine conditions (13.2) with N replaced by n. This leads to Cantorization.

The persistence of at least one n-torus from the H0-resonant Tn × {(0, 0)} × T

for Diophantine ω had already been established in [13], and without any genericity
condition on the perturbation. What our approach adds to this is a precise description
how occurring degenerate maxima of the potential, called “of weaker persistency”
in [13], lead to a Cantorized bifurcation scenario of the corresponding n-tori.
This latter result cannot be obtained without genericity conditions. The generality
of the result in [13] does not exclude perturbations that are rather pathological.
Correspondingly, that approach does not allow to obtain information on the fine
structure where the n-tori fail to be truly hyperbolic.

The minima q∗ of Vμ are treated in [14]. In the non-degenerate case these
correspond to elliptic n-tori, whence normal-internal resonances have to be avoided
as well. Therefore, persistence of a second n-torus is obtained in [14] only on a
smaller (though still measure-theoretically large) subset S. For generic perturbations
we can now explain the fine structure. In particular the tori coming from degenerate
minima q∗ do not have to be excluded. In fact, these give the opportunity to enlarge S
a bit. For instance, when d = 4 in (13.9) we recover the bifurcation diagram given
in Fig. 13.1 and next to at least one center for all nonzero λ ∈ R

2 we have an
additional saddle in between the two fold lines; hence, here only Diophanticity of
internal frequencies is needed to obtain persistence of a second family of invariant
n-tori in the resonant zone.

Remark 13.2. Without the genericity conditions on the perturbation there may be
tori Tn × {(0, 0, q∗)} with d > n + 2. In an attempt to still apply the results
of [5] we may introduce extra (external) parameters ν to provide a versal unfolding.
The perturbed system then displays again the Cantorized bifurcation scenario and
contains the original perturbed system as a subsystem. The torus Tn×{(0, 0, q∗)} is
an invariant torus of the intermediate system. However, we cannot expect this torus
to be present in the perturbed system since this torus is moved by the perturbation.
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We still have the weaker conclusion, though, that the Cantorized family of n-tori
contains parabolic tori of at most degeneracy d (as found in the intermediate
system).

Note that this approach does not allow us to drop the genericity conditions that we
had to impose on the perturbation when recovering the results of [13,14]. Indeed, the
small constant ε in Theorem 2.1 of [5] depends on d and may tend to 0 as d→ ∞.
Since the results in [13, 14] are valid for non-generic perturbations as well one may
speculate that the latter does not occur.

Example 13.3 (A Non-versal Perturbation). The class of perturbed Hamiltonians

Hε(ϕ, I) = H0(I) + εH1(ϕ) (13.11)

figures a perturbation that is independent of the action variable I . A single
resonance (13.7) leads again to a reduced system (13.4) of the form

H (p, q;μ) =
a(μ)

2
p2 + V (q)

where the potential V is now equal to the T
n-average H̄1 of H1, with no further

transformations. As a μ-dependent family this potential is trivial, being the same for
all parameter values. Invariantn-tori correspond to (p, q) = (0, q∗) with V ′(q∗) = 0
and if b := V ′′(q∗) �= 0 the triviality of the family is not problematic. Indeed, the
torus is elliptic for ab > 0 and hyperbolic for ab < 0 with no need for an unfolding.
On the other hand, if b = 0 then (13.11) is a very degenerate system: the torus is
parabolic and the potential cannot provide the necessary unfolding. Remark 13.2
still applies, though.

The degeneracy in Example 13.3 that occurs for b = 0 should then be seen
as a warning sign that the model (13.11) is problematic and might need to be
changed. This kind of warning sign is given whenever Theorem 13.1 does not
apply, cf. [1, 27]. The necessary genericity conditions can be explicitly checked in
examples and provide one with clues of what exactly is happening. For instance,
where the n-parameter family Vμ of potentials encounters critical points of co-
dimension exceeding n the perturbed system (13.4) deserves further examination.

This might result in an adjusted model for what one is trying to describe.
Another possible outcome is that a symmetry is found in (13.4), and that within
the “symmetric universe” the co-dimension no longer exceeds n. The unfolding
provided by Vμ then is expected to be versal within the “symmetric universe”,
see [24], and also the O(ε2)-terms in (13.8) do not break the symmetry. Also other
reasons for seemingly non-generic behaviour are known to exist, see e.g. [21] for
the persistent occurrence of a degenerate bifurcation.

A different approach (that avoids to impose genericity conditions) is pursued
in [16], where periodic orbits foliating invariant 2-tori are searched for using
the zeroes of the subharmonic Mel’nikov function. In case the latter vanishes
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identically, a second order Mel’nikov function is defined with similar properties,
and so on. If all higher order Melnikov functions vanish identically, then the whole
torus consisting of periodic orbits is shown to survive the perturbation.

13.3 An Umbilic Example

To understand how results similar to those of the previous section can be obtained
if the Kolmogorov condition (13.6) is replaced by Rüssmann’s non-degeneracy
condition, we now consider the following example in N = 5 degrees of freedom.
Starting point remains the perturbed Hamiltonian (13.3) with I = (y, p), and for the
unperturbed part we work with

H0(y, p) =

4∑
i=1

ei−1yi +
1

2
y2i +

1

6
y3i +

1

6
p3 , (13.12)

where we use that the vector (1, e, e2, e3) is Diophantine. Then Rüssmann’s non-
degeneracy condition

R
5 = < ∂|�|ω

∂I�

∣∣∣∣ 0 �= ' ∈ N
5
0 > ⊇ < ∂ω

∂y1
,
∂ω

∂y2
,
∂ω

∂y3
,
∂ω

∂y4
,
∂2ω

∂p2
>

that the partial derivatives span the frequency space is satisfied everywhere. We are
interested in the fate of the resonant tori p = 0. Again we apply a normalizing
transformation that turns the perturbed Hamiltonian Hε = H0 + εH1 into

Hε(x, ŷ, p, q;μ, ω) = H0(ŷ, p;μ, ω) + εH̄1(ŷ, p, q;μ, ω) + O(ε2)

where H̄1 is the T4-average along x of H1 at ε = 0.
A vanishing 1-jet (in the (p, q)-variables) of a Hamiltonian function merely

amounts to (p, q) = (0, 0) being a relative equilibrium. This is already true for H0,
and to achieve this for Hε we (again) translate coordinates to q∗ = 0. Using the
p3-term in H0 a translation in p allows to remove the p2-term in the expansion of
H̄1 in p and q. In case the coefficient a02(0;μ, ω) of q2 does not vanish at μ = 0 we
scale p by

√
ε and q by 4

√
ε to recover the quasi-periodic center-saddle bifurcation

encountered in the previous section. Finally, for nonzero a11(0; 0, ω)pq we scale p
and q both by ε, revealing the relative equilibrium to be hyperbolic. In the expansion

H̄1 =
∑
k+l=3

akl(ŷ;μ, ω)

k! l!
pkql + h.o.t.

we therefore start with third order terms. We emphasize that for generic perturba-
tions H1 this cannot be avoided to occur at 1-parameter subfamilies.
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Shrinking Y a bit, if necessary, the coefficient2 a03 is bounded away from zero.
Scaling p by ε

2
3 and q by ε

1
3 we obtain

Hε(x, ŷ, p, q;μ, ω) = 〈ω, ŷ〉 + ε2H (p, q;μ, ω) + O(ε
7
3 )

with

H (p, q;μ, ω) =
a

6
p3 +

b

6
q3 + c1(μ)q + c2(μ)p + c3(μ)pq

where a ≈ 1 , b = 6a03(0;μ, ω). The coefficient functions c1, c2 and c3 vanish at
μ = 0, this allows to rescale a01 by ε

2
3 to yield c1(μ) and a10 by ε

1
3 to yield c2(μ);

a11 is not rescaled, we simply put c3 = a11(0;μ, ω). Note that we do not obtain
the unfolding of D4 used in [6, 20], but a form adapted to the critical singularity
a
6p

3 + b
6q

3, and that this form leads to the hyperbolic umbilic. Still, we conclude
that the family of resonant Lagrangean tori p = 0 of (13.12) may lead to umbilical
torus bifurcations of invariant 4-tori.

13.4 Rüssmann Hamiltonians

The example of the previous section looks in one aspect quite degenerate—the
resonance p = 0 coincides with the hypersurface p = 0 where the Kolmogorov
condition (13.6) fails. In general the (transverse) intersection of these should be a
co-dimension 2 submanifold, and singularities of the equation detD2H0 = 0 may
lead to further complications. For instance, one could consider the example in the
previous section with one more degree of freedom and add 3 the terms

e4y5 +
1

2
y25 +

1

6
y35 +

1

2
y5p

2

to the unperturbed Hamiltonian (13.12). Then the analysis of the previous section
concerns y5 = 0 and the obvious question is how the perturbed system behaves
when unfolded by y5—scaled by ε

2
3 . Note that it is generic for H0 to satisfy some

form of Rüssmann non-degeneracy at every point, cf. [29].
Leaving such complications aside for the moment, a “naive” generalization of

the example in the previous section leads to

2Here we depart from the general theory of planar singularities that allows to transparently treat the
relative equilibria. Indeed, the coordinates p and q already have a “meaning”, so we had to sharpen
the usual assumption that the (homogeneous) 3-jet does not have multiple roots.
3Here we use that the vector (1, e, . . . , e4) is Diophantine as well.
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H0(ŷ, p;μ, ω) = 〈ω, ŷ〉 +
a(μ)

'!
p�

with a(μ) �= 0 and 2 ≤ ' ≤ n+ 2. For instance, if ' = 3 the potential (13.9) leads
to the quasi-periodic center-saddle bifurcation (unfolding the singularity A2) when
d = 2. For d = 3 this similarly leads to umbilic tori (unfolding the singularity D4)
and to the simple singularities E6 and E8 (see [19, 20]) when d = 4 and 5,
respectively.

The umbilic example of the previous section gives some confidence that it
should still be possible to find adapted scalings that turn a

�!p
� + εH̄1 for generic

perturbation H1 into versal unfoldings of occurring singularities. Note, however,
that the special “starting point” a

�!p
� leads to a classification that may slightly differ

from the classification of one-degree-of-freedom equilibria by means of planar
singularities.

13.5 Conclusions

Summarizing we may state that for a single resonance the Kolmogorov
condition (13.6) restricts the occurring singularities to the family Ak+1 of
corank-1-singularities (13.9), while under the weaker Rüssmann condition also
singularities of corank 2 may occur. Theorem 13.1 treats the former situation, while
the example in Sect. 13.3 concerns the latter case. All these singularities describe
the normal behaviour of Cantor bundles of (degenerate) tori, with Cantorized
unfoldings.

The corank-2-singularities D4, D5, D6 and E6 of low co-dimension are still
simple and E8 and the complete family Dk+1, k ≥ 3, unfolded by the umbilics,
are simple as well. Next to these also singularities with modal parameters become
possible, leading for high N to all quasi-periodic bifurcations of [20]. We note that,
for these bifurcations to take their standard form in a resonance gap, a scaling will
be needed.

In the case of an m-fold resonance the above normalization procedure applied
to (13.3) leads to an (N −m)-parameter family of Hamiltonian systems defined on
T
m×Rm. Here, non-degenerate minima correspond to elliptic (N−m)-dimensional

tori [10, 12, 15, 28]. For these cases there exist many results on quasi-periodic
persistence, employing KAM Theory.

In the spirit of this paper, one should consider degenerate minima as well.
Under the Kolmogorov condition (13.6) this leads to corank-m-singularities. The
corresponding quasi-periodic bifurcation theory still has to be developed. Under
the Rüssmann condition similarly this gives rise to singularities of corank 2m. We
like to stress that none of these complications can be avoided.

Acknowledgements We thank an anonymous referee for challenging us with the example
H(ϕ, I) = H0(I) + εH1(ϕ) of a non-versal perturbation.
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Chapter 14
Deformation of Geometry
and Bifurcations of Vortex Rings

James Montaldi and Tadashi Tokieda

Abstract We construct a smooth family of Hamiltonian systems, together with a
family of group symmetries and momentum maps, for the dynamics of point vortices
on surfaces parametrized by the curvature of the surface. Equivariant bifurcations
in this family are characterized, whence the stability of the Thomson heptagon is
deduced without recourse to the Birkhoff normal form, which has hitherto been a
necessary tool.

Introduction

This paper introduces one geometric idea and implements it in one dynamical
problem.

Here is the problem. On the Euclidean plane, a ring of identical point vortices
shaped as a regular n-gon is a relative equilibrium, in that it spins while keeping
the same shape. Is this solution stable if we perturb the initial shape away from
the regular n-gon? When n < 7, linear stability analysis (first carried out by
Thomson [22]) concludes that the solution is stable; when n > 7, it is likewise
unstable. But when n = 7, degeneracy makes linear analysis inapplicable and
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prevents us from concluding. Is the regular 7-gon stable or unstable? This is known
as the Thomson heptagon problem. It has been answered in the affirmative, see
[11, 16, 20], although as pointed out in [11] the argument in [16] is incomplete.
Indeed part of our approach could be viewed as completing the argument of [16].

The spirit of the approach goes back to Poincaré. In the theory of dynamical
systems, the simplest solution methods to problems require some nondegeneracy
condition (nonzero determinant, nonresonant frequencies, . . .). When the problem,
call it P , is degenerate, we have to mobilize heavy machinery (cf. [20] for a
proof with recourse to the Birkhoff normal form that the Thomson heptagon is
nonlinearly stable, as well as for historical details). But there is an alternative
approach. Embed P = P0 in a parametric family Pλ of problems and deform
it away from degeneracy. The problem P can become tractable when regarded as
limλ→0 Pλ, if we happen to understand well enough the bifurcations that occur
in such a deformation. Thus, this approach trades one machinery for another, of
bifurcation theory. The point is that the latter sometimes sheds an unusual light on
the problem compared to the former.

In the classic applications of this idea, people deform the dynamical system by
adding a perturbation term in λ. This, however, we cannot do in our special instance
of the heptagon problem if we wish to preserve the hydrodynamic motivation: as
long as we are studying the dynamics on the plane, it makes little physical sense to
tamper with the Hamiltonian.

We therefore deform not so much the dynamical system but rather the phase
space on which the system evolves. A deformed choice of the phase space fixes
canonically, by the hydrodynamic motivation, a deformed Hamiltonian formalism.
Explicitly, we take λ to be the Gaussian curvature1 and deform the original plane
to λ > 0 (family of spheres) and to λ < 0 (family of hyperbolic planes).
Corresponding to this family of surfaces parametrized by λ, we must write a whole
parametric family of Hamiltonian systems for point vortices: a family of symplectic
(Kähler) forms depending on λ, a family of symmetry groups and momentum
maps depending on λ, a family of invariant Hamiltonians depending on λ—all
dependences arranged to be smooth. We do this in Sect. 14.1. In Sect. 14.2 we carry
out the stability analysis for the parametric family. Bifurcations are characterized,
and the nonlinear stability of the heptagon is deduced, in Sect. 14.3.

The idea of deforming the geometry underlying the dynamics of point vortices,
in particular as a route to a better understanding of the Thomson heptagon problem,
arose during an evening conversation between the two authors in Peyresq, in the
summer of 2003. We have since discussed it in seminars and conferences, and part
of it has leaked into the literature [1]. We set down the full story in this paper. The
stability of the Thomson heptagon is stated below as Corollary 14.7.

1Actually formulaic convenience leads us to take 4λ to be the Gaussian curvature.
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14.1 Smooth Family of Geometries

In this section we describe the family of surfaces of constant curvature, containing
the hyperbolic planes (λ < 0), the Euclidean plane (λ = 0), and the spheres (λ > 0).
Each is a homogenous space, i.e. an orbit of its group of symmetries, and for the
different signs of λ we describe the different groups. We begin with the 1-parameter
family of Lie algebras gλ (rather than groups) in Sect. 14.1.1, and in order to obtain
the corresponding family of surfaces Mλ, we shift the usual linear action of these
Lie algebras to obtain affine linear actions. In Sect. 14.1.2 the geometry of Mλ

is described; among other things it has curvature 4λ. The Hamiltonian for point
vortices on Mλ is based on Green’s function for the Laplacian on Mλ, and we meet
three possible choices of Green’s function according to choices of the “boundary
condition”. In Sect. 14.1.3 we comment on the implications of the different choices
of Green’s function.

14.1.1 Lie Algebras

Let λ ∈ R. On R
3 with coordinates (x, y, u), consider the family of metrics

ds2 = dx2 + dy2 + λdu2. (14.1)

The Lie group of linear transformations preserving this metric will be denoted
SO(qλ), where qλ = diag[1, 1, λ] is the metric tensor. For the Lie algebra, we have
X ∈ so(qλ) if and only if XT qλ + qλX = 0. A basis for so(qλ) is

X1 =

⎛
⎝0 0 0

0 0 −λ
0 1 0

⎞
⎠ , X2 =

⎛
⎝ 0 0 λ

0 0 0

−1 0 0

⎞
⎠ , X3 =

⎛
⎝0 −1 0

1 0 0

0 0 0

⎞
⎠ . (14.2)

(Strictly speaking, the third column of Xi is arbitrary when λ = 0, meaning the
family of all automorphisms of (14.1) is not flat. We are picking a component which
is a flat family over λ.) This basis satisfies the commutation relations

[X1, X2] = λX3, [X2, X3] = X1, [X3, X1] = X2.

From now on, we shall abbreviate Gλ = SO(qλ) and gλ = so(qλ).
The Lie algebra gλ is isomorphic to so(3) for λ > 0, to se(2) for λ = 0, and to

sl(2) for λ < 0. Indeed, for λ �= 0, the standard commutation relations are recovered
by rescaling the basis to {|λ|−1/2X1, |λ|−1/2X2, X3}. So
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Gλ )

⎧⎪⎪⎨
⎪⎪⎩
SO(3) ifλ > 0

SE(2) ifλ = 0

SL(2,R) ifλ < 0.

It is seen from the commutation relations that in the adjoint representation
of gλ the basis elements are represented by adXj = −XT

j ; in other words, if∑
j ajXj ∈ gλ is written as a vector u = (a1 a2 a3)

T , then adXj (u) = −XT
j u.

In the coadjoint representation the basis elements Xj ∈ gλ are represented by
the matrices Xj themselves. Thus the original R3 from which we started may be
naturally identified with g∗

λ.

Affine Action

While the coadjoint action defined by the matrices Xj depends continuously on λ,
it is not possible to track a single orbit continuously as λ crosses 0. Yet, in what
follows, we wish to do just that. To this end we must shift the linear coadjoint action
by a translation, making it an affine action.

The affine action of the Lie algebra is given by

X · μ = Xμ+ τ(X), (14.3)

where Xμ is the linear action part (matrix times vector) and

τ(aX1 + bX2 + cX3) =

⎛
⎝−b/2a/2

0

⎞
⎠

is the translation. The orbit we track is the one through the origin, cf. Sect. 14.1.2.

Remark 14.1. Our translation τ , a function of the element of gλ, is a 1-cocycle
taking values in g∗

λ, a symplectic cocycle in Souriau’s terminology [21] because
the matrix of τ is skew-symmetric. It is known that every cocycle is exact
when the group is semi-simple, and our Gλ is semi-simple for λ �= 0. Here
τ = δ((0, 0, 1/2λ)T ), since by definition δ(μ)(X) = −coadXμ = −Xμ. The
natural invariant Poisson structure on R

3 = g∗
λ with the cocycle τ is given by

(cf. [15, 21])

{f, g}(μ) = 〈μ, [df(μ), dg(μ)]〉 − 〈τ(df(μ)), dg(μ)〉 (14.4)

under the identification df(μ), dg(μ) ∈ (g∗
λ)

∗ ) gλ. The Casimir for this Poisson
structure is x2 + y2 + λu2 − u, so level sets of this function are the orbits of the



14 Deformation of Geometry and Bifurcations of Vortex Rings 339

shifted coadjoint action (14.3), of which we shall take advantage below. For the
record, the Kostant–Kirillov–Souriau symplectic form on the affine coadjoint orbits
is given by the same formula,

Ωμ(u,v) = 〈μ, [ξ, η]〉 − 〈τ(ξ), η〉 ,

where u = coadξμ and v = coadημ.

14.1.2 Surfaces

Now consider the family of quadratic surfaces through the origin in R
3,

x2 + y2 + λu2 − u = 0. (14.5)

When λ > 0, this looks like an ellipsoid with centre at (x, y, u) = (0, 0, 1/2λ).
With the metric (14.1), however, this ellipsoid-looking surface is in fact a sphere of
radius 1/2

√
λ. Its Gaussian curvature is 4λ.

When λ = 0, (14.5) defines the paraboloid u = x2 + y2, and the metric is the
usual metric on the xy-plane lifted to the paraboloid by orthogonal projection, so is
of curvature 0.

When λ < 0, the metric (14.1) becomes Lorentzian, but restricted to either sheet
of the 2-sheeted hyperboloid defined by (14.5) it induces the hyperbolic metric
of constant negative curvature 4λ; we consider just the “upper sheet” that passes
through the origin, see Fig. 14.1.

We refer to the surface (14.5) with metric induced from (14.1) as Mλ. It is easy
to check that Mλ is invariant under the infinitesimal action (14.3), and is therefore
an orbit of the affine coadjoint Gλ-action on g∗

λ.
To create a uniform coordinate system on Mλ, we use stereographic projection

on the xy-plane, centred at the point (0, 0, 1/λ) (where Mλ intersects the u-axis,
besides the origin); for λ = 0 this is the orthogonal projection. We also identify the
xy-plane with C, via z = x+ iy. The map inverse to the projection has the formula

z �→
(
x+ iy

u

)
=

1

1 + λ|z|2
(

z

|z|2
)
. (14.6)

The domain of this map is {z ∈ C | 1 + λ|z|2 > 0}, which is the entire plane if
λ � 0 and a bounded disc (Poincaré disc) if λ < 0. For the sphere, the equator
corresponds to |z|2 = 1/λ, while the point antipodal to z is −1/λz̄.

The metric on the surface Mλ induced from that in (14.1), in terms of the
complex variable z, is

ds2 =
1

σ2
|dz|2,
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×

λ > 0 (sphere)

×

λ < 0 (hyperboloid)

Fig. 14.1 Geometries in the 1-parameter family

where σ = 1 + λ|z|2, a notation we shall use throughout. The circle |z| = r in C

maps to a circle of radius a on Mλ, where2

a =

⎧⎪⎪⎨
⎪⎪⎩

1√
λ
tan−1

(
r
√
λ
)

ifλ > 0

r ifλ = 0
1√−λ tanh−1

(
r
√−λ) ifλ < 0.

(14.7)

Pulling back the vector fields Xj of the Lie algebra (or rather their affine variants
shifted by τ ) via the stereographic projection yields

ξ1(x, y)=
1
2

(
2λxy , 1−λ(x2− y2)) , ξ2(x, y)= − 1

2

(
1+λ(x2 − y2), 2λxy) ,

ξ3(x, y) = (−y, x),
or in complex variables

ξ1 + iξ2 = −i∂z̄ − iλ z2∂z , ξ3 = i (z ∂z − z̄ ∂z̄) ,

or in polar coordinates

ξ1 + iξ2 = 1
2e

iθ 1− λr2

r
∂θ +

1
2 i e

iθσ ∂r, ξ3 = ∂θ.

2Despite three formulae, a is a single analytic function of r, λ, with series expansion a = r −
1
3
r3λ+ 1

5
r5λ2 − 1

7
r7λ3 + · · · convergent for |r2λ| < 1.
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Symplectic Structures

Up to a scalar multiple, there exists a unique SO(qλ)-invariant symplectic form on
Mλ. We choose the scalar so that

Ωλ =
2

σ2
dx ∧ dy =

i

σ2
dz ∧ dz̄. (14.8)

The choice of scaling is such that the sphere Mλ of radius 1/2
√
λ acquires

symplectic area 2πλ−1. With respect to the basis {X1, X2, X3} for the Lie algebra,
the momentum map takes the form

Jλ(z) =
1

σ
(z, |z|2). (14.9)

This coincides with the inclusion Mλ ↪→ R
3 given in (14.6), which shows that Ωλ

coincides with the KKS symplectic form on the affine coadjoint orbit.

Green’s Functions

The metric (14.1) on R
3 induces the metric on Mλ. In terms of the uniform

coordinate system (14.6), the metric tensor is σ−2diag[1, 1]. The Laplace–Beltrami
operator on Mλ is

Δf = σ2

(
∂2

∂x2
+

∂2

∂y2

)
f = 1

4σ
2 ∂2

∂z∂z̄
f.

The 2-point Green’s function for this operator is

G(z;w) = log |z − w|2. (14.10)

This satisfies ΔzG = 0 for z �= w and has a logarithmic singularity at z = w. When
we regard the plane as a model for (most of) the sphere, G has another singularity
at z =∞.

An alternative Green’s function is

G1(z;w) = log
|z − w|2
|1 + λzw̄|2 . (14.11)

This satisfies ΔzG1(z;w) = 0 for z �∈ {w, −1/λw̄} and has a logarithmic
singularity at those excluded points (which are antipodal to each other), but is
regular at z =∞.
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The Green’s function that is usually used on the sphere is the “log of Euclidean
distance”, whose expression after stereographic projection is

G(z;w) = log
|z − w|2

(1 + λ|z|2)(1 + λ|w|2) . (14.12)

Away from the pole at z = w, this satisfies ΔzG(z;w) = −4λ, so it is not, if we
go by the book, a Green’s function. This function is regular at z = ∞, and also
has a well-defined limit as w → ∞, namely G(z;∞) = − logσ (up to an additive
constant of − logλ), which checks against Δz(− logσ) = −4λ.

In the next section we comment on the differences among these Green’s functions
in the context of the dynamics of point vortices.

14.1.3 Hamiltonians for Point Vortices

We recall how the Hamiltonian formalism for the dynamics of point vortices works.
Let (u, v)T be the velocity field of an inviscid, incompressible flow on a domain

D ⊆ R
2 ) C. The incompressibility ∂

∂xu + ∂
∂yv = 0 implies the existence of a

stream function ψ : D → R such that

u =
∂

∂y
ψ, v = − ∂

∂x
ψ. (14.13)

The curl of the velocity3 is ∂
∂xv − ∂

∂yu = −Δψ. The boundary condition for an

inviscid flow is that (u, v)T be tangent to ∂D everywhere, equivalently that every
connected component of ∂D be a level set of ψ. The total circulation along all the
boundary components is, by Stokes’s theorem,

∫
∂D

u dx+ v dy =

∫
D

−Δψ dxdy, (14.14)

the total curl present on D.
Now consider a model situation where the flow is generated by a curl concen-

trated at a singularity z0 = x0 + iy0 and the circulation around that singularity is
2πκ :

−Δψ(z) = 2πκδ(z − z0).

3The minus sign makes −Δ a positive operator. But we shall be casual about the sign and use +Δ
as well as −Δ. All that the casualness causes is to reverse the direction of the flow.
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We recognize that, up to the sign and a scalar coefficient, ψ is Green’s function. We
say that we have a point vortex of vorticity κ at z0. In the situation where we have
point vortices of vorticities κ1, . . . , κn at z1, . . . , zn, each vortex moves carried by
the sum of the flows generated by all the other vortices. Equation (14.13) shows that
the dynamics then is Hamiltonian.

The theory is written analogously on any domain of any Riemann surface. In
particular, on the surfaces Mλ discussed above, the Hamiltonian is

Hλ(z1, . . . , zN ) = − 1

4π

∑
i<j

κiκjGλ(zi; zj).

Note an unusual feature of this Hamiltonian system: unlike in classical mechanics,
the phase space here is not the cotangent bundle of anything, but rather the n-fold
product Mλ×· · ·×Mλ (minus the diagonals if we want a priori to avoid collisions)
with the weighted-sum symplectic form κ1Ωλ ⊕ · · · ⊕ κnΩλ.

For λ > 0, Mλ is compact without boundary. In this case, the fact of nature
(14.14) forces the total vorticity to be zero:

∑
j κj = 0. This, in principle, bans

placing a lone point vortex on Mλ for λ > 0 or on any closed Riemann surface. The
dodge around this ban, favoured in the literature, is to impose a constant background
vorticity

−sum of circulations/area = −λ
∑
j

κj ,

which results in (14.12). For a (geo)physical example, a rigidly rotating sphere
entails such a background vorticity. But even if background vorticity dodges around
λ > 0, continuing it to λ � 0 gets us into trouble, for on these noncompact surfaces,
background vorticity imparts an infinite amount of energy to the flow. So for λ � 0
the family (14.10) seems preferable.

However, welding together (14.12) for λ � 0, (14.10) for λ < 0 has a decisive
defect: the resulting family is not smooth in λ. There are three options for having a
smooth family.

1. Use (14.10). This costs postulating an immobile vortex of vorticity −∑j κj at
the North Pole for λ > 0.

2. Use (14.11). This costs introducing “counter-vortices” at antipodes to the zjs for
λ > 0 (recall that the point antipodal to z is −1/λz̄ ).

3. Use (14.12). This costs infinite energy for λ � 0.

In the planar case λ = 0 all three Green’s functions (14.10)–(14.12) agree.
In this paper, we opt for the family defined in (14.12) with the constant

background vorticity, because the infinite energy of a tame flow would not shock
any fluid dynamicist—flows on the plane uniform at infinity and such are handled
routinely—whereas the smoothness of the family, without postulating extraneous
objects, is essential for us. In Sect. 14.4 we sketch how the analysis can be adapted
to the other two options.
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14.2 Nondegenerate Analysis of Vortex Rings

In this section we study a ring of n vortices with identical vorticities κ, shaped
as an n-gon on Mλ. We evaluate the Hamiltonian, the momentum map, and the
augmented Hamiltonian at the regular ring in Sect. 14.2.1. We obtain the Hessian of
the augmented Hamiltonian and its spectral data in Sect. 14.2.2. In Sect. 14.2.3 we
construct the symplectic slice and say what we can, as far as this linear analysis goes,
about the stability of the ring. The answers will depend not only on n but also on λ.

Recall that the augmented Hamiltonian is given by H − ωJ , where J = Jλ
is the conserved quantity coming from the rotational symmetry; it represents the
Hamiltonian in a frame rotating with angular velocity ω. Its critical points are
therefore equilibria in the rotating frame, i.e. relative equilibria, and the Hessian
restricted to the symplectic slice determines the stability.

14.2.1 Regular Ring

Let γ be a primitive n th root of unity. When the vortices are placed at the vertices
zj = re2πij/n (j = 1, . . . , n) of a regular n-gon of radius r, the Hamiltonian Hλ

takes the value

hλ(r
2) = −nκ

2

8π

n−1∑
j=1

Gλ(r, rγ
j),

where Gλ = log ◦ ρλ with ρλ(r, rγ
j) = |1 − γ j |2r2/(1 + λr2)2. In view of the

identity
∏n−1
j=1 (1− γ j) = n,

n−1∏
j=1

ρλ(r, rγ
j) = n2

(
r

1 + λr2

)2(n−1)

,

hence

hλ(r
2) = −n(n− 1)κ2

8π
log

r2

(1 + λr2)2
+ const.

Recall the momentum map given in (14.9). The first component vanishes for these
regular rings, while the value of the second component at the regular ring is

Jλ(r
2) =

nκr2

1 + λr2
.
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(Notice that the full momentum map is typeset in bold, while this component is not.)
Ignoring the constant, the augmented Hamiltonian then takes the value

ĥλ(r
2) = hλ(r

2)− ωJλ(r
2)

= −n(n− 1)κ2

8π
log

r2

(1 + λr2)2
− ω

nκr2

1 + λr2
,

which admits a critical point at r = r0 �= 0 if and only if

ω = ω 0 = − (n− 1)κ

8π

1− λ2r40
r20

. (14.15)

This is the angular velocity of the regular ring. (It is a little surprising that ω 0 is
even in λ.)

14.2.2 Hessians

We continue with the system of n identical point vortices, all with vorticity κ.
In the uniform coordinate system on Mλ, the Hamiltonian with Green’s function
(14.12) is

Hλ(z1, . . . , zn) = −κ
2

4π

∑
i<j

log
|zi − zj |2
σiσj

,

where σj = 1+ λ|zj |2 (j = 1, . . . , n). The augmented Hamiltonian then is

Ĥλ(z1, . . . , zn) = Hλ(z1, . . . , zn)− ω

n∑
j=1

κ
|zj |2
σj

.

We saw above that this is critical at zj = r0e
2iπj/n and ω = ω 0 as in (14.15). The

entries in the Hessian are

∂2

∂r2j
Ĥλ = A

∂2

∂rj∂rk
Ĥλ =

κ2

4πr20

(
1− cos 2π(j−k)

n

)
∂2

∂θ2j
Ĥλ =

κ2

24π
(n2 − 1)

∂2

∂θj∂θk
Ĥλ = − κ2

4π
(
1− cos 2π(j−k)

n

)
∂2

∂rj∂θk
Ĥλ = 0 (∀j, k).

(14.16)
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At the critical point, and with ω = ω 0, we have

A =
(n− 1)κ2

24πr20σ
2

(
(5 − n)σ2 + 6σ̃ 2

)
, (14.17)

where

σ = 1 + λr20 , σ̃ = 1− λr20

(so that σ + σ̃ = 2). We used the identity, valid for 0 � ' � n , cf. [8]:

n−1∑
j=1

cos(2π'j/n)

1− cos(2πj/n)
=

1

6
(n2 − 1)− '(n− '). (14.18)

Eigenvalues of the Hessian

The Hessian matrix d2Ĥλ is block-diagonal, with two n × n blocks both of which
are symmetric circulant, so the eigenvalues can be written down at once.

Following the notation in [13], for ' = 0, 1, . . . , +n/2, define the Fourier tangent
vectors

ζ
(�)
r = α

(�)
r + iβ

(�)
r =

n∑
j=1

exp(−2πi 'j/n) δrj

ζ
(�)
θ = α

(�)
θ + iβ

(�)
θ = 1

r0

n∑
j=1

exp(−2πi 'j/n) δθj.
(14.19)

Here δrj denotes the unit tangent vector in the rj -direction, and similarly for δθj/r0.

For ' = 0, n/2, we have β(�)
r = β

(�)
θ = 0 and the ζ(�)s are real. The αs and βs form

a set of 2n linearly independent vectors, forming a basis for the tangent space. For
the record,

δrj =
1

n

n∑
�=1

exp(2πi 'j/n)ζ(�)r ,

and similarly for δθj . The span V� =
〈
α
(�)
r , α

(�)
θ , β

(�)
r , β

(�)
θ

〉
is a subspace of Fourier

modes; for ' = 0, n/2 they are 2-dimensional, while for all other indices ' they are
4-dimensional.

As each block of d2Ĥλ is circulant as well as symmetric, ζ(�)r and ζ(�)θ (or rather

their real and imaginary parts) are the eigenvectors. The eigenvalues ε(�)r and ε(�)θ (of
course real) are found to be
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ε
(�)
r = A+ κ2

24πr20

(
(n2 − 1)− 6'(n− ')

)

= κ2

4πr20

(
2(n− 1)

1+λ2r40
σ2 − '(n− ')

)

ε
(�)
θ = κ2

4π '(n− '),

(14.20)

where A is given in (14.17). In case ' = 1, these simplify to

ε(1)r = (n− 1)
κ2σ̃ 2

4πr20σ
2
, ε

(1)
θ = (n− 1)

κ2

4π
, (14.21)

which are both strictly positive.

14.2.3 Symplectic Slice

Not all the eigenvalues are relevant to stability. First, those that are zero because they
correspond to directions along the group orbit should be discarded. Second, those
corresponding to directions transverse to the level set of the conserved quantities
should be discarded, too. This is the process of reduction: restrict to Ker dJ (where
J = Jλ is given in (14.9)), then take the complement to the group orbit in that
kernel. The resulting space is called the symplectic slice, which we denote by N .

We find Ker dJ using the Fourier basis above. Identify g∗
λ with C× R. Then

dJζ(0)r =
nr0
σ2

(
0

1

)
, dJζ(1)r =

nσ̃

σ2

(
1

0

)
, dJζ

(1)
θ =

n

σ

(
i

0

)
,

while dJ vanishes on all other Fourier tangent vectors. Write V ′
1 = V1 ∩ KerdJ.

Then

V ′
1 =

〈
σα(1)

r − σ̃β
(1)
θ , σβ(1)

r + σ̃α
(1)
θ

〉
. (14.22)

Ker dJ is spanned by the V� s with ' > 1, V ′
1 , and ζ(0)θ . The subspace generated by

ζ
(0)
θ is tangent to the group orbit (an infinitesimal rotation about the origin), so must

be discarded. Finally the symplectic slice is

N = V ′
1 ⊕

n/2�⊕
�=2

V�. (14.23)
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The relevant eigenvalues are therefore ε(�)r , ε(�)θ for ' � 1. Now, with respect to the
basis for V ′

1 given in (14.22), the restriction of the Hessian to V ′
1 is a scalar multiple

of the identity. So it has a double eigenvalue

ε′1 =
n

2
σ2ε(1)r +

n

2r20
σ̃ 2ε

(1)
θ =

n(n− 1)κ2

4πr20
σ̃ 2, (14.24)

which is strictly positive unless λr20 = 1. However, λr20 = 1 corresponds to the
equator on the sphere, at which the momentum value is left fixed by all of SO(3).
In this case N drops in dimension, V ′

1 no longer lies in N , and the corresponding
eigenvalue ε′1 becomes irrelevant to the stability of the relative equilibrium.

Stability

The relative equilibria in question are rotating rings; thus they are periodic
trajectories. The precise sense of stability we are adopting is like the ordinary
one of Lyapunov stability, but in terms of Gμ-invariant open sets, where μ is the
momentum value at the trajectory and Gμ is the stabilizer of μ: in detail, for
every Gμ-invariant neighbourhood V of the trajectory, there exists a Gμ-invariant
neighbourhoodU ⊆ V such that every trajectory starting in U remains in V for all
time.

We can make do with a coarse criterion: if the restriction of the Hessian of the
augmented Hamiltonian to the symplectic slice is positive-definite, then the relative
equilibrium is stable in our sense. A finer criterion is: if this Hessian is merely non-
negative but the augmented Hamiltonian admits a local extremum at the relative
equilibrium, then the relative equilibrium is still stable [17, Theorem 1.2].

Among the relevant eigenvalues, ε(�)θ > 0 for ' � 1 and ε′1 > 0. It remains to

check the sign of ε(�)r for ' � 2. From the expression in (14.20), it is clear that the
least eigenvalue occurs for ' = +n/2,. This is the criterion we have been after: the
relevant eigenvalues are all strictly positive if and only if

1 + λ2r40
(1 + λr20)

2
>

1

2(n− 1)

⌊n2

4

⌋
. (14.25)

The left-hand side is unbounded as a function of r0 if λ < 0. The right-hand side is
a strictly increasing, unbounded function of n for n � 3. Hence, on one hand, for
fixed λ, r0 a value of n exists beyond which the inequality fails; on the other hand,
if λ < 0, for fixed n, by enlarging r20 sufficiently close to −1/λ (its supremum on
the hyperbolic plane), we can ensure the inequality holds. We conclude with a result
which for spheres is due to [2] (see also [13]):
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Theorem 14.2. On Mλ, the relative equilibrium of n identical point vortices in a
regular ring of radius a is Lyapunov-stable if (14.25) is satisfied, where a and r0 are
related by (14.7). In particular, in the hyperbolic scenario λ < 0 this ring is stable
if λr20 is sufficiently close to −1.

Remark 14.3. Physical intuition confirms that a spherical surface destabilizes a ring
whereas a hyperbolic surface stabilizes it. Think of a vortex of the ring. As λ
gets positive, the adjacent vortices remain relatively near while the diametrically
opposite vortices become relatively far, so the former, which tend to knock our
vortex perpendicularly to the ring, exert more influence than the latter, which tend
to slide our vortex tangentially to the ring. As λ gets negative, the effects are felt the
other way round.

Remark 14.4. If the inequality in (14.25) is reversed, then the ring is linearly
unstable. This is because the Vn/2� mode will have real eigenvalues. Indeed, for
n even Vn/2 is of dimension 2 and the Hessian is indefinite, which suffice to
conclude that the eigenvalues are real. For n odd V(n−1)/2 is 4-dimensional, so
having an indefinite Hamiltonian does not imply the eigenvalues are real. However,
the negative eigenspace is spanned by α(�)

r , β
(�)
r which is Lagrangian, and then the

realness of the eigenvalues follows.
If the parameters are such that (14.25) is an equality, then the stability is not

determined by linear analysis. This determination is what our deformation plus
bifurcation approach achieves, in Sects. 14.3.5.1 and 14.3.5.2.

We now spell out the conclusions concretely for each of the three geometries.
See Fig. 14.2 and the table of bifurcation points below. On the spheres λ > 0
there are two bifurcation points: the value of λr20 listed in the table below and its
reciprocal.

n 4 5 6 7 8 9 10 11 12 13

λr20 0.268 0.172 0.0557 0 −0.0627 −0.101 −0.143 −0.172 −0.202 −0.225

Plane

There is an obvious scale-invariance, and the stability/instability of the ring is
independent of the radius a. We recover J.J. Thomson’s original result [22] that
the ring is stable when n < 7 and unstable when n > 7. When n = 7, we have the
so-called Thomson heptagon, whose stability is not determined by linear analysis
(but cf. Corollary 14.7).
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logσ-1 0 1

n = 50

n = 15

n = 12

n = 9

n = 8

n = 7

n = 6

n = 5

n = 4

n = 3

Fig. 14.2 Ranges of stability (solid lines) and instability (dotted lines) for the dimensionless
quantity log σ = log(1 + λr20)

Spheres

When n � 7, the ring is always unstable. When n < 7, there is a range of a over
which it is stable. Example: when n = 6, it is stable for (λr20 − 2)2 > 3 which
translates, bearing in mind λ > 0, into

r20 <
2−√3

λ
or r20 >

2 +
√
3

λ
.

The two inequalities correspond to neighbourhoods of the South and North Poles,
respectively. For n = 3 the ring is always stable, at any radius a. The linear stability
of rings of vortices on the sphere was first studied by Polvani and Dritschel [18],
and the full nonlinear stability in [2]—see also [13] for more details.

Hyperbolic Planes

When n � 7, the ring is always stable. When n > 7, it is stable (for a given λ) for
a sufficiently large. Example: when n = 15, it is stable for

r20 >
2−√3
|λ| .
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14.3 Bifurcations Across the Degeneracy

To understand the bifurcations in detail, it is imperative to exploit the symmetries
of the system, which for the ring of point vortices is the dihedral group. We
begin Sect. 14.3.1 by setting up the dihedral symmetry of the system, and then
in Sect. 14.3.2 list the bifurcations we expect in Hamiltonian systems with dihedral
symmetry. Following that, in Sect. 14.3.3, we state the main theorem (Theorem 14.6)
on which of these bifurcations occur in the dynamics of point vortices; it leads to
the nonlinear stability of the Thomson heptagon (Corollary 14.7). In Sect. 14.3.4 we
visit the geometry of the bifurcating rings, which enjoy less symmetry (spontaneous
symmetry breaking) and are illustrated in Fig. 14.6. Finally, Sect. 14.3.5 proves the
main theorem: we perform the calculations needed to justify these “expectations”
and decide which of the expectations are actually realized. For the sake of
completeness, Sect. 14.3.6 summarizes results from [14] on bifurcations from the
equator; they are not covered by the other results as the momentum value there
is degenerate (in the sense that it is fixed by the entire group rather than just a
1-parameter subgroup).

14.3.1 Dihedral Group Action

For the simplicity of language, we shall confuse Mλ and the uniform chart C

of Sect. 14.1.2. Points and group actions on C should be interpreted as their lifts
on Mλ.

The full system is invariant under the symmetry groupGλ (depending on λ) as in
Sect. 14.1.1. For every λ, Gλ contains rotations about the origin, and reflections in
lines through the origin together generating a subgroup of Gλ isomorphic to O(2).
Consider now a system of n identical point vortices. A dihedral subgroup4 Dn ⊆
O(2)× Sn acts on the phase space Cn by

c · (z1, . . . , zn) = (czn, cz1, . . . , czn−1)

m · (z1, . . . , zn) = (z̄n−1, z̄n−2, . . . , z̄1, z̄n).
(14.26)

where c = exp(2πi/n) is a cyclic rotation and m is a mirror reflection. If the points
zj = r0 exp(2πij/n) are placed as a regular ring, then that configuration is fixed
by this Dn, and m acts as a reflection in the line passing through zn. In case n is
odd, all reflections in Dn are conjugate, whereas in case n is even, there are two
distinct conjugacy classes of reflections, one consisting of those through opposite
vertices of a regular n-gon (all conjugate tom), the other consisting of those through

4Sn is the group of permutations of the n vortices and Dn has order 2n.
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mid-points of opposite edges (all conjugate to m′ = cm). This will come into play
in deciding what bifurcating solutions appear.

Since the Dn-action fixes the ring, Dn acts on the tangent space to the phase
space at this ring. The Fourier basis (14.19) for n point vortices is adapted to this
action:

c · ζ(�)r = e−2πi�/n ζ
(�)
r m · ζ(�)r = ζ̄

(�)
r

c · ζ(�)θ = e−2πi�/n ζ
(�)
θ m · ζ(�)θ = −ζ̄(�)θ ,

(14.27)

and m′ · ζ(�)r = e−2πi�/n ζ̄
(�)
r , m′ · ζ(�)θ = −e−2πi�/n ζ̄

(�)
θ . For the 2-dimensional

subspace V ′
1 of the symplectic slice N (14.22), write

ζ′ = (σα(1)
r − σ̃β

(1)
θ ) + i(σβ(1)

r + σ̃α
(1)
θ ) = σζ(1)r + iσ̃ζ

(1)
θ . (14.28)

Then (14.27) implies that c · ζ′ = e−2πi/n ζ′, m · ζ′ = ζ′, and m′ · ζ′ = e−2πi/n ζ′.
As the parameter λ varies, the eigenvalue ε(�)r , ' � 2 in (14.20) may cross 0 and

may involve a bifurcation in the mode V�. In contrast ε(1)r and ε
(�)
θ , being strictly

positive, never involve bifurcations and in particular the mode V ′
1 never bifurcates.

14.3.2 Dihedral Bifurcations

The type of bifurcation expected in a symmetric Hamiltonian system is controlled
by the group action on the generalized kernel of the linear system at the bifurcation
point. This was first investigated by Golubitsky and Stewart [6], cf. also [4].
It follows from [6] that in a generic family of linear Hamiltonian systems, a
pair of eigenvalues come together along the imaginary axis, collide at the origin,
and split along the real axis. This splitting transition is indeed what happens in
our problem, as seen from the expressions (14.20) for the eigenvalues. Part of
the genericity hypothesis of [6] is that the generalized kernel be an irreducible
symplectic representation, which is satisfied here.

The greatest common divisor of n and ' will be denoted by (n, '). We see from
(14.27) that the cyclic subgroup Z(n,�) ⊂ Dn acts trivially on V�. Consequently
on V� there is an effective action of Dn/(n,�). It turns out that V� is an irreducible
symplectic representation of this group. Two cases are to be distinguished: ' = n/2
(n even) when Vn/2 is 2-dimensional with an action of D2 = Z2×Z2, and ' �= n/2
when the V� s for 0 < ' < n/2 are all 4-dimensional. For bifurcations the modes
1 < ' � n/2 alone are of interest to us. Much of the analysis of generic bifurcations
with dihedral symmetry is found in [7], and although there they deal with general
vector fields rather than with Hamiltonian ones, the conclusions turn out to be the
same. Analysis of the gradient case is also in [3].
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In the dynamics of point vortices, if the bifurcating mode is ' �= +n/2,, then the
linear system5 at the relative equilibrium has real eigenvalues in the +n/2, mode,
hence is unstable. If ' = +n/2,, then the bifurcation involves a loss of stability in
the mode '. This means that in our analysis below, a local minimum corresponds to
stable relative equilibria only if we are looking at the +n/2,mode.

Bifurcations on V� for � = n/2

This is the 2-dimensional symplectic span

〈
ζ(n/2)r , ζ

(n/2)
θ

〉
,

with an action of D2 ) Z2 × Z2. The kernel of the Hessian at the bifurcation
point is the one-dimensional subspace spanned by ζ

(n/2)
r , with a Z2-action. Then

the generic bifurcation is a Z2-pitchfork, which can be either sub- or super-critical:
if subcritical, the bifurcating solutions are unstable, and if supercritical, they are
stable (provided the original “central” solution was stable). A normal form is given
by the family

fu(x, y) = −ux2 ± x4 + y2 + h.o.t. (14.29)

“h.o.t.” stands for higher-order terms in x2, y2, u. The + sign in front of y2 is
justified by the eigenvalue in the ζ(n/2)θ -direction, which is always positive. The −
sign in front of u is a choice, dictated by the fact that increasing λr20 makes a critical
point pass from local minimum to saddle, as shown in Fig. 14.2. The sign + or− in
front of x4 corresponds to supercritical or subcritical, respectively. See Fig. 14.3a,
b and the lecture notes [4] for a fuller discussion. In Remark 14.11 we explain why
the bifurcations occurring here are in fact all supercritical, for all even n.

Bifurcations on V� for � �= n/2

Of these only ' = 1
2 (n − 1) involves stable relative equilibria, other modes

bifurcate only if the linear system already has real eigenvalues; that said, the other
values of ' do involve the appearance of new unstable relative equilibria, so are
of interest. Write k = n/(n, '). Then k � 4 and Dk acts effectively on V�. The
type of generic bifurcation we get depends on k. The 4-dimensional V� is a direct

5The vector field, not the Hessian.
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a b

c d

e

Fig. 14.3 Bifurcation diagrams for generic Dk-bifurcations, k � 2. r =
√
x2 + y2, and u is

the parameter as in the text. Solid lines refer to local minima, dashed lines to saddles and local
maxima. For k � 3 each nontrivial branch corresponds to k solutions after applying the rotations
from Dk. Figure (e) is drawn for α > 1, where α is the coefficient in (14.30); if α < −1, reflect
the diagram in the r-axis. (a) D2 supercritical pitchfork. (b) D2 subcritical pitchfork. (c) D3

(transcritical). (d) D4 transcritical (|α| < |β|). (e) Dk pitchfork, k � 4 (with |α| > |β|
for k = 4)

sum of two Dk-invariant 2-dimensional Lagrangian subspaces, on one of which
the Hessian vanishes at the bifurcation point, on the other it is always positive-
definite. A Dk-invariant function on such a space is a function of the fundamental
invariants

N(x, y) = x2 + y2, P (x, y) = Re(x+ iy)k.

A generic 1-parameter family of such functions is given by

fu = −uN + αN2 + βP + h.o.t., (14.30)

where “h.o.t.” stands for higher-order terms in N , P , u. Figure 14.4 shows the level
sets of fu for k = 3, . . . , 6, as u varies through 0.
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a b

c d

Fig. 14.4 Contours of the generic 1-parameter family of Dk-invariant functions (14.30), for k =
3, 4 [produced with Maple, with a judicious choice of level sets]. The figures (a)–(d) are all
transcritical bifurcations. (a) D3 with u < 0. (b) D3 with u > 0. (c) D4 with |α| < |β| and u < 0.
(d) D4 with |α| < |β| and u > 0.

• If k = 3 or if k = 4 with β > α, then the bifurcation can be said to be
transcritical, in that the bifurcating branches exist on both sides of the bifurcation
point u = 0, and the k bifurcating points are all saddles (and hence unstable
equilibria), each of which is fixed by a mirror reflection conjugate to m. See the
bifurcation diagrams in Fig. 14.3c, d.

• If k = 4 and α > β or if k > 4, then the bifurcation is like a pitchfork, in that all
bifurcating equilibria coexist on the same side of the bifurcation point. But unlike
the pitchfork, two types of bifurcating solutions appear, possibly with different
stability properties; if k is even, then one has symmetry type 〈m〉 and the other
〈m′〉. See the bifurcation diagram in Fig. 14.3e.

Remark 14.5. The finite determinacy and unfolding theorems of singularity theory
guarantee that f0 in (14.29) and (14.30) is finitely determined and h.o.t. may be
ignored. If n � 3, then f0 has codimension 1 provided β �= 0, and fu is a versal
unfolding of f0, so that any deformation is equivalent to it. If n � 4, then f0 has
codimension 2, and a versal unfolding is

fu,v = −uN + (α+ v)N2 + βP

provided β �= 0 (and α �= ±β when n = 4). The parameter v defines a
topologically trivial deformation, i.e. v can be eliminated via a continuous change
of coordinates rather than a smooth one; nevertheless this homeomorphism will be a
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e f

g h

i j

Fig. 14.4 (continued) Contours of the generic 1-parameter family of Dk-invariant functions
(14.30), for k � 4. These figures are all dihedral pitchfork bifurcations. (e) D4 with |α| > |β|,
u < 0. (f) D4 with |α| > |β|, u > 0. (g) D5 with u < 0. (h) D5 with u > 0. (i) D6 with u < 0.
(j) D6 with u > 0

diffeomorphism away from the origin, so critical points are preserved. The modulus
v that arises when n = 4 is related to the cross-ratio of the four lines making up
f−1(0).

14.3.3 Bifurcations of Vortex Rings

We work with the parameter λr20 > −1. Recall that r0 is the radius of the vortex
ring measured on C after the stereographic projection, and that it is related by (14.7)
to the radius a measured on Mλ. The 0 curvature case is λ = 0, and in the spherical
case λ > 0 the values λr20 and 1/λr20 are equivalent as they represent antipodal
rings on the sphere. We therefore let λr20 vary in the range (−1, 1].
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n = 4

(2)

n = 5

(2)

n = 6

(3) (2)

n = 7

(3) (2)

n = 8

(4) (3) (2)

?

n = 9

(4) (3) (2)

Fig. 14.5 Bifurcation diagrams for the ring of n identical vortices for low values of n. The number
in parentheses is the mode number bifurcating at that point. The black dot on the axis represents
schematically the point where λ = 0 (the plane). λ increases toward right. We do not know whether
the bifurcating branches from the lower modes branch to the right or the left, though we believe
they are as shown. The case n = 8, � = 2 has an effective action of D4, so could be transcritical
or pitchfork—we do not know which occurs

Now for the main theorem. Stability means Lyapunov stability modulo rotations
(same as orbital stability in our situation). Instability means full spectral instability,
i.e. at least one of the eigenvalues is real and positive. The ring of n = 3 vortices is
always nonlinearly stable.

Theorem 14.6. Let n � 4. With λr20 ∈ (−1, 1] as a parameter, the regular ring of
n identical vortices undergoes the following bifurcations, illustrated in Fig. 14.5:

all n The ring is stable for λr20 < bn, where bn is the unique root in (−1, 1] of 6

1 + b2n
(1 + bn)2

=
1

2(n− 1)

⌊n2

4

⌋
. (14.31)

6Cf. (14.25).
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n even As λr20 crosses bn, the ring loses stability via a supercritical pitchfork
bifurcation, and the (stable) bifurcating solution consists of a pair of n/2-gons
with different values for the radius.

n odd As λr20 crosses bn, the ring loses stability via a supercritical bifurcation
as depicted in Fig. 14.3e, to 2 types of relative equilibria, each with a line of
symmetry.

all n As λr20 increases further, the ring undergoes a sequence of bifurcations, one
in each of the modes +n/2, > ' > 1; all the relative equilibria involved are
unstable, and the bifurcating solutions have D(n,�)-symmetry.7

As a special case, we recover the following result of Kurakin and Yudovich [11] and
Schmidt [20]. The calculation justifying it is the subject of Sect. 14.3.5.2.

Corollary 14.7. The Thomson heptagon is nonlinearly stable.

Bifurcation Values of λr2
0

The tables below spell out the values of λr20 where the bifurcations occur, for n =

6, 7, 8, 9. They are found by solving ε
(�)
r = 0 (14.20) for λr20 ; the first values are

those of bn mentioned in Theorem 14.6.

n = 6

mode ' = 3 ' = 2

λr20 0.056 0.127

n = 7

mode ' = 3 ' = 2

λr20 0 0.101

n = 8

mode ' = 4 ' = 3 ' = 2

λr20 −0.063 −0.033 0.084

n = 9

mode ' = 4 ' = 3 ' = 2

λr20 −0.101 −0.056 0.072

In all the tables, the bifurcation of the ' = 2 mode occurs for λ > 0 (on the sphere);
this is easily checked to be true for all n.

14.3.4 Geometry of Bifurcating Rings

At a bifurcation, the bifurcating mode controls the geometry/symmetry of the
bifurcating solution. Points in V� all correspond to configurations with cyclic

7We put D1 = Z2 acting by reflection.
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symmetry Z(n,�) ⊂ Dn, which allows the Dn-action on V� to factor through a
Dn/Z(n,�) ) Dk-action, where

k = n/(n, ').

Moreover, the bifurcating solutions are all fixed by a reflection in Dk (conjugate to
m or to m′), which implies that they are symmetric under a Z(n,�)-action and under
a reflection, together giving a symmetry of D(n,�). This means that if (n, ') > 1,
then the configuration consists of k rings of (n, ') vortices in each. Typical deformed
configurations with the correct symmetry in each mode for n = 3, . . . , 8 are shown
in Fig. 14.6.

In particular, when n is even and ' = n/2, the solutions have symmetry
isomorphic to Dn/2. Now in Dn there sit 2 non-conjugate copies of Dn/2,

one containing m, the other containing m′, and since ζ
(n/2)
r is fixed by m, the

bifurcating solutions must have the symmetry Dn/2 containing m. Consequently
the bifurcating solution consists of a pair of regular n/2-gons, in general of different
radii, staggered by 2π/n as shown in Fig. 14.6a, d, k.

When ' �= n/2, the Dn-action factors through a Dk-action, and all bifurcating
solutions have reflexive symmetry of m or m′ (as seen from Fig. 14.4). Now if
k is odd, the resulting reflections are conjugate, so a configuration fixed by m
will also be fixed by some conjugate of m′. This fact is illustrated in Fig. 14.6c
where n = 6, ' = 2, k = 3. Indeed, as Dn has n reflections while Dk has k,
in the representation Dn → Dk we must have (n, ') reflections in Dn that get
identified, thereby fixing the same configurations. On the other hand, if k is even
(as in n = 8, ' = 2, Fig. 14.6g, h, the nonconjugate m and m′ in Dn have as
images 2 nonconjugate reflections in Dk, so the latter’s fixed-point sets correspond
to different configurations.

Finally, whenever ' divides n, a perturbation in the ζ(�)r -direction produces n/'
rings of '-gons, in general of slightly different radii, and in the configurations with
reflexive symmetry m the vortices in the different '-gons line up with the original
n-gon.

14.3.5 Degenerate Critical Points

This section is dedicated to proving Theorem 14.6. We begin by presenting a
criterion for a degenerate critical point to be a local minimum, then in Sects. 14.3.5.1
and 14.3.5.2 respectively apply the criterion to the cases where n is even and
n is odd.

Lemma 14.8. Let f be an analytic function defined on a neighbourhood of 0 in
R
n with a degenerate critical point at 0, such that f(0) = 0. Write B = d2f(0),

C = d3f(0),D = d4f(0). IfB is positive-semidefinite and if for all a ∈ KerB\{0},
b ∈ R

n we have
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a b

c d

e f

Fig. 14.6 Perturbations of the n-ring in mode �. These configurations are invariant under a
subgroup isomorphic to D(n,�), and the grey lines in the centre of each represent the lines
of reflection. The dotted figures are the regular n-gons. See Sect. 14.3.4 for explanations.
(a) n = 4, � = 2. (b) n = 5, � = 2. (c) n = 6, � = 2. (d) n = 6, � = 3. (e) n = 7, � = 2.
(f) n = 7, � = 3. (g) n = 8, � = 2 (Fixm). (h) n = 8, � = 2 (Fixm′). (i) n = 8, � = 3 (Fixm).
(j) n = 8, � = 3 (Fixm′). (k) n = 8, � = 4

Ca3 = 0, Da4 + 6Ca2b+ 3B b2 > 0,

then f is strictly positive on a punctured neighbourhood of 0.

The symbol like Ca2b means “evaluate the trilinear form C at a in 2 of its 3
arguments and at b in the 1 remaining argument”. In our application of this lemma,
f will be the augmented Hamiltonian Ĥλ (Sect. 14.2.2), and for the point-vortex
problem this is analytic.

Proof. Suppose for a contradiction that f−1(0) intersects every punctured neigh-
bourhood of 0.
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g h

i j k

Fig. 14.6 (continued)

Use the splitting lemma (e.g. [19]) to write

f(x, y) = Q(x) + h(y),

where Q is a homogeneous quadratic form and h is a function with vanishing 2-jet.
Explicitly, Q(x) = 1

2x
TB x and y ∈ KerB. Since y ∈ KerB, the hypothesis

Ca3 = 0 implies that h in fact has vanishing 3-jet. Since the hypotheses of the
lemma on the derivatives are intrinsic (invariant under change of coordinates), in the
new coordinates x, y they become d3h = 0 and d4h a4 > 0 for all a ∈ KerB \{0}.

Use the curve selection lemma [5,9] to deduce the existence of an analytic curve
γ(t) passing through 0 along which f vanishes. In the new coordinates, write γ(t) =
(x, y) = (ξ(t), η(t)); then Q(ξ(t)) + h(η(t)) = 0. Expand ξ, η in Taylor series:

ξ(t) = ξ1t
r + ξ2t

r+1 + · · · , η(t) = η1t
r + η2t

r+1 + · · · ,

where r is the order of the curve (at least one of ξ1, η1 is nonzero). The leading
terms of f ◦ (ξ, η), all of which must vanish, are

Q(ξ(t)) = 1
2Bξ

2
1 t

2r +Bξ1ξ2 t
2r+1 + · · ·

By inspection this forces ξ1 = · · · = ξr = 0. The coefficient of t4r is then Bξ2r+1 +
1
4!d

4h η41 , which must vanish. But the order of the curve being r and ξ1 = 0, we must
have η1 �= 0, hence from the hypothesisBξ2r+1+

1
4!d

4h η21 > 0, a contradiction. ��
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Consider now any Hamiltonian system on any symplectic manifold M , with
Hamiltonian H , symmetry group G, momentum map J : M → g∗, and suppose
x ∈ M lies on a relative equilibrium with finite stabilizer (possibly trivial). Define
T0 := g ·x ∩ Ker dJ. The symplectic slice N is then anyGx-invariant complement
to T0 in Ker dJ.

Proposition 14.9. If the hypotheses of Lemma 14.8 are satisfied with R
n replaced

by N and f by Ĥ, then the relative equilibrium is Lyapunov stable.

Proof. It is enough to show that in the reduced space Mμ, μ = J(x), the reduced
Hamiltonian admits a local extremum at x, cf. [17]. Since the action is locally free,
J is a submersion near x. The tangent space of the submanifold J−1(μ) is T0⊕N ,
and dJλ(x) maps N isomorphically to Tx̄Mμ, where x̄ is the image of x in Mμ.
Let γ̄ be a curve in Mμ through x̄. Then γ̄ lifts to a smooth curve in M tangent to
N at x. The claim now follows because the hypotheses of Lemma 14.8 applied on
Mμ are equivalent to the same hypotheses applied on N . ��

As the argument and calculations for the stability of the bifurcating points
take distinct turns depending on the parity of n, we treat the even and odd cases
separately. The even case is fairly easy, the odd case is much harder.

14.3.5.1 n Even

The critical mode is ' = n/2, we have ζ(n/2) = α(n/2), and both c and m
act by multiplication by −1. This means that on this Fourier mode Vn/2 =〈
α
(n/2)
r , α

(n/2)
θ

〉
, the augmented Hamiltonian Ĥλ is an even function. We therefore

expect, for generic families of functions, Ĥλ restricted to Vn/2 to be equivalent to a
family of the form

fu(x, y) = ±x4 + ux2 + y2,

where u is a parameter depending on r0, λ. The + sign in front of the y2 term is
justified because the y-direction here corresponds to α

(�)
θ , whose eigenvalue from

(14.20) is κ2n2/16π > 0.
The Dn-invariance of Ĥλ helps us to figure out which terms arise in its Taylor

series. For example, if f ∈ V ∗
� , g ∈ V ∗

m, and fg is invariant, then m = '.

Lemma 14.10. For all a ∈ Vn/2 and b ∈ N , we have Ca2b = 0.

Proof. On the symplectic slice expand Ĥλ in Taylor series. Each term is invariant,
in particular the 3rd-order term Cx3 for x ∈ N . Given ai ∈ V�i (i = 1, 2, 3),
the quantity Ca1a2a3 lies in the tensor product V�1 ⊗ V�2 ⊗ V�3 , which contains
invariant functions if and only if '1± '2± '3 ≡ 0 mod n. For a1 = a2 = a ∈ Vn/2,
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Ca2b (necessarily invariant) can be nonzero only if b ∈ V0. But V0 ∩N = {0},
implying that if b ∈ N and Ca2b is invariant, then b = 0, so that Ca2b = 0. ��

It remains to calculate Da4 for a ∈ Vn/2 in order to apply Proposition 14.9. The
criterion for a bifurcation (14.31) reads, for even n,

1 + λ2r40
(1 + λr20)

2
=

n2

8(n− 1)
. (14.32)

Put zj = (r0 + (−1)j t)e2πij/n and f(t) = Ĥλ(z1, . . . , zn). We shall expand

f(t) = − 1

4π

∑
i<j

log |zi − zj|2 + n− 1

4π

∑
j

log(1 + λ|zj |2)− ω
∑
j

|zj|2
1 + λ|zj |2 .

to the 4th order in t.

Calculation

At the bifurcation point, r0 and λ are related by (14.32) and ω = ω 0 is given by
(14.15). We are expanding

f(t) = − n

8π

∑
1�k�n−1, k odd

log
(
r20 + t2 − (r20 − t2) cos(2πk/n)

)

−n(n− 2)

32π

(
log (r0 + t)

2
+ log (r0 − t)

2
)

+
n(n− 1)

8π

(
log(1 + λ(r0 + t)2) + log(1 + λ(r0 − t)2)

)

−ω 0
n

2

(
(r0 + t)2

1 + λ(r0 + t)2
+

(r0 − t)2

1 + λ(r0 − t)2

)
+ · · ·

where · · · is a constant independent of r0, t, n, which will henceforth be ignored.
Taking Taylor series in t of all of these terms to order 4 is simple, except for the first
line, which comes out as

−n
2

8π
log r0 − n2(n− 2)

32πr20
t2 +

n2(n− 2)(n2 + 2n− 12)

768πr40
t4 +O(t6)

(up to an additive constant), thanks to identities akin to (14.18). The coefficient of
t2 in the Taylor series is then
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n

32πr20σ
2

(−(n− 2)2σ2 + 4(n− 1)(1− λr20)
2
)

which can be shown to vanish subject to the bifurcation relation (14.32). The
coefficient of t4 is

n

768πr40σ
4

[
(n− 2)(n3 + 2n2 − 12n+ 24)σ4

+24(n− 1)λr20(19λ
3r60 − 54λ2r40 + 43λr20 − 4)

]
.

Denote by T the term in square brackets. We wish to show that T > 0 at the
bifurcation point. Solving (14.32) for λr20 yields 2 roots, substituting which into T
in turn yields 2 values, say T1, T2 (functions of n). Write m = n− 2. A calculation
(using Maple!) reveals that T1 + T2 is equal to

128(m+ 1)

(m2 − 4m− 4)4
(
384 + 2560m+ 4m9 + 4832m2 + 5024m3 + 10616m4

+15888m5 + 10778m6 + 3266m7 + 177m8
)
,

while T1T2 is equal to

4096(m + 1)2

(m2 − 4m− 4)4
(
16m10 + 648m9 + 7409m8 + 1044m7 + 39960m6 + 85512m5

+57332m4 + 25824m3 + 15136m2 + 5376m + 576
)
.

In view of m � 0 and n � 2, both are manifestly strictly positive, so that each of
T1 and T2 is indeed strictly positive. �

Remark 14.11. Since the relative equilibrium is stable at the point of bifurcation,
the resulting pitchfork bifurcations are supercritical: the bifurcating relative equilib-
ria are stable and coexist with the unstable central one. Thus these stable bifurcating
relative equilibria exist in a neighbourhood of the bifurcation point, λr20 satisfying
(14.25) with the inequality reversed. See also Fig. 14.2.

To persuade ourselves that this is a genuine pitchfork, we need to check the
nondegeneracy condition which is that the eigenvalues of the Hessian move through
0 at nonzero speed with respect to the parameter λr20 (or just λ or r0 separately).
The expression (14.20) for the eigenvalues permits an easy check.

As the mode that bifurcates is ' = n/2, the bifurcation occurs in the fixed-point
space for the subgroup Dn/2 as explained in Sect. 14.3.4. The bifurcating solutions
have Dn/2-symmetry, i.e. consist of 2 regular n/2-gons at slightly different radii
from the common centre, and these bifurcating solutions are stable, at least close to
the bifurcation point.
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14.3.5.2 n Odd

There are two reasons why n odd is much harder than n even. First, KerB
(degeneracy space) is 2-dimensional and its basis elements are less simple (namely
ζ
(n−1)/2
r rather than ζ(n/2)r ). Second, the third derivative contributions are nonzero

and no analogue of Lemma 14.10 holds. We proceed as far as we can with general
odd n, and then specialize to numerical calculations for a few low values of n.

The criterion for a bifurcation (14.31) reads, for odd n,

1 + λ2r40

(1 + λr20)
2 =

n+ 1

8
. (14.33)

The critical mode is ' = 1
2 (n− 1), and

Vc := KerB =
〈
α((n−1)/2)
r , β((n−1)/2)

r

〉
⊂ V(n−1)/2.

We wish to apply Proposition 14.9, based on Lemma 14.8 with a ∈ Vc and b ∈ N .
The calculations are simplified by the following observations. Recall the definition
of V ′

1 from (14.22).

Proposition 14.12. 1. No cubic invariant exists on Vc , consequently Ca3 = 0.
2. Up to scalar multiple, there exists a unique quartic invariant on Vc , consequently

Da4 is a multiple of |a|4.
3. Up to scalar multiple, there exists a unique cubic invariant of the form Ca2b

with a ∈ Vc and b ∈ N , and invariance forces b ∈ V ′
1 .

Proof. Because 1
2 (n − 1) is coprime to n, the action of Dn on Vc is equivalent

to the usual representation of Dn in the plane, though with an unusual choice of
generator, cf. (14.27). Dn-invariant functions on Vc are functions of N = x2 + y2

and P = Re(x+ iy)n, cf. comment just before (14.30). Write a = (x, y).

(i) As n � 5, this representation accommodates no cubic invariants, and as Ca3

must be invariant, it is 0.
(ii) Likewise, the unique quartic invariant on Vc is N2, so Da4 is a scalar multiple

of N2 = |a|4.
(iii) If a ∈ Vc and b ∈ Vm, then Ca2b ∈ V2·(n−1)/2+m⊕V2·(n−1)/2−m⊕Vm. For

this to be invariant, we need m = 0 or m = 1. The former is ruled out by the
assumption b ∈ N , so b ∈ N ∩ V1 = V ′

1 . ��
To understand better the invariant Ca2b, let x, y be as before on Vc and u, v be

coordinates on V ′
1 , chosen so that m · (x, y) = (x,−y) and m · (u, v) = (u,−v);

in a nutshell m · (z, w) = (z̄, w̄) in terms of complex variables z = x + iy and
w = u + iv. We then have c · (z, w) = (c(n−1)/2z, cw). The cubics of the form
Ca2b are the real and imaginary parts of z2w, z2w̄, |z|2w. However, only the first
of these is invariant under c, and only its real part is invariant under m. Thus,
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Ca2b = γ (z2w + z̄2w̄) = 2γ
(
u(x2 − y2)− 2vxy

)

for some value of γ ∈ R; explicitly γ = 1
4

∂3

∂x2∂u
(Ca2b) = 3

2
∂3

∂x2∂u
Ĥλ.

The key quantity Da4 + Ca2b+Bb2 becomes, on completing the square,

δ|z|4 + 2γRe(z2w) + β|w|2 = δ
∣∣∣z2 + γ

δ
w̄
∣∣∣2 + βδ − γ 2

δ
|w|2. (14.34)

Manifestly this is positive for all z, w �= 0 if and only if δ > 0 and βδ > γ 2. The
value of β is

β = ε′1 =
n(n− 1)κ2

4πr20
σ̃ 2

where as before σ̃ = 1 − λr20 , cf. (14.24). There remains the task of calculating γ
and δ.

Calculation

The awkward trigonometric expressions prevented us (and Maple) from reaching
closed forms for γ and δ. We therefore proceed to evaluate them numerically. In all
these evaluations, r0 is related to the parameter λ by (14.33). For n = 7, of course
λ = 0 and r0 is arbitrary.

n = 5 :

β =
37.1

r20
, γ = −9.04

r30
, δ =

15.8

r40
.

βδ − γ 2 = 504.7/r60 > 0 hence the pentagon is stable.

n = 7 :

It transpires (Maple) that for n = 7 we have

β =
21

2πr20
, γ =

63

4πr30
, δ =

1071

8πr40
.

Computationally these numbers are correct to a high degree of precision—but we
have no proof that they are rational multiples of 1/πrk0 . At any rate it is certain that
βδ − γ 2 > 0, hence the heptagon is stable. This establishes Corollary 14.7.
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n = 9 :

β =
6.9

r20
, γ =

13.8

r30
, δ =

182.4

r40
.

βδ − γ 2 = 1075.60/r40 > 0 hence the enneagon8 is stable.

n = 11 :

β =
12.0

r20
, γ =

29.7

r30
, δ =

555.1

r40
.

βδ − γ 2 = 5787.6/r60 > 0 hence the hendecagon9 is stable.

Conjecture 14.13. For all values of n, the n-gon is stable at the bifurcation point.

Above, we have proved this for all even n and for n = 3, 5, 7, 9, 11.

14.3.6 Bifurcations from the Equator

For all values of n > 3, the ' = 1 mode “bifurcates” at λr20 = 1, i.e. when the ring
of vortices lies on the equator of the sphere. The momentum value at such a ring is
fixed by all of SO(3): indeed, for the usual coadjoint equivariant momentum map for
this problem, the momentum value is 0. Let us summarize from [14, Proposition 3.8]
what bifurcations occur in this situation. On each near-zero momentum sphere we
get, besides the regular ring of n vortices, the following configurations.

n odd For each of the n planes through the poles of the sphere and containing one
of the vortices, 2 configurations consisting of 1

2 (n− 1) pairs and that 1 vortex on
the plane; the vortices in each pair are each other’s reflection in that plane. The
notation in [14] is Ch(12 (n − 1)R, E), E referring to the single vortex on the
plane, the R to the reflection pairs.

n even In this case there are two distinct types of bifurcating solution, arising
from the two distinct types of reflection in Dn:

1. For each of the 1
2n planes through the poles and containing a pair of diamet-

rically opposite vortices, 1 configuration consisting of 1
2n− 1 reflection pairs

and those 2 vortices on the plane. The notation in [14] is Ch((12n− 1)R, 2E).

8“Nonagon” mixes Latin and Greek.
9“Undecagon” is another Greco-Latin hybrid.
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2. For each of the 1
2n planes through the poles and passing midway between

adjacent vortices, 1 configuration consisting of 1
2n reflection pairs. The

notation in [14] is Ch(12nR).

14.4 What Happens with Other Hamiltonians

Toward the end of Sects. 14.1.2 and 14.1.3, we met three options for families of
Green’s functions, which all agree for the plane λ = 0. We have been opting for
(14.12). Here we sketch the conditions that guarantee the stability of the ring of
identical vortices for the other two options (14.10), (14.11); the methods are the
same as those of Sects. 14.2 and 14.3.

14.4.1 Green’s Function G = log |z − w|2

Angular Velocity

The regular ring of n vortices with identical vorticities κ rotates at angular velocity

ω = − (n− 1)κ

8π

σ2

r20
.

Unlike the expression (14.15) this is not even in λ.

Stability

The Hessian of the augmented Hamiltonian is the same as (14.16), except that A is
changed to

A = − (n− 1)κ2

24πr20σ

(
(n− 11) + (n+ 13)λr20

)

and the eigenvalues of the Hessian become

ε(�)r =
κ2

4πr20

(
(n− 1)

6 + 5λ2r40
3σ2

− '(n− ')

)

while the expressions for ε(�)θ are as before. Also as before, the ' = +n/2,mode has

the least eigenvalue, so the ring is stable provided εn/2�
r > 0. The criterion is
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1 + 5
6λ

2r40
(1 + λr20)

2
>

1

2(n− 1)

⌊n2

4

⌋
.

Compared with (14.25), for each n this new inequality is satisfied by a slightly
narrower range of the effective parameter λr20 . The transition from stable to unstable
still occurs at λr20 of the same sign as for the previous Hamiltonian, and for λ = 0
the two Hamiltonians agree. Hence the Thomson heptagon is still stable.

Bifurcations

It seems likely that the bifurcations are of the same types as those explained in
Sect. 14.3; we have checked this for n = 5, 7, 9.

14.4.2 Green’s Function G = log |z−w|2
|1+λzw̄|2

On the hyperbolic plane λ < 0 this reduces to the Hamiltonian adopted by Kimura
[10]. For λ = 0 it is the standard Green’s function on the plane, while for λ > 0
it corresponds to Green’s function for the Laplacian on the sphere with “counter-
vortices”. The Hamiltonian will model 2n vortices placed pairwise at antipodal
points, each pair having opposite vorticities. Thus the “ring” becomes 2 rings, one
of n vortices of vorticity κ near the North Pole, the other of n vortices of vorticity
−κ near the South Pole. In Laurent-Polz [12] these configurations are referred to as
Dnh(2R) when n is even and Dnd(R,R

′) when n is odd (in the former the rings
are aligned, while in the latter they are staggered). The stability results of [12] are
not directly applicable here, as he considers stability with respect to perturbations of
all 2n vortices, whereas we are considering a restricted class of perturbations: those
preserving the antipodal pairing of the configurations. If a configuration is stable for
Laurent-Polz, then a fortiori it will be stable for our setting.

The calculations based on this option of Green’s function get so cumbersome that
the stability problem seems no longer tractable analytically. It seems likely that the
results are similar to those in Sect. 14.3, though the details of where the bifurcations
occur will differ. We did calculate that the angular velocity ω analogous to (14.15)
of the ring is

− κ

8πr20

1 + λr2

1 − (−λr2)n
(
(n− 1)(1 + λr2)

(
1 +

(−λr2)n−1
)
+ 2λr2

(
1 − (−λr2)n−1

))
.

For λ > 0 (spheres) this can be deduced from [12, Proposition 3.11].
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Chapter 15
Gradient Flows in the Normal and Kähler
Metrics and Triple Bracket Generated
Metriplectic Systems
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Abstract The dynamics of gradient and Hamiltonian flows with particular appli-
cation to flows on adjoint orbits of a Lie group and the extension of this setting
to flows on a loop group are discussed. Different types of gradient flows that arise
from different metrics including the so-called normal metric on adjoint orbits of a
Lie group and the Kähler metric are compared. It is discussed how a Kähler metric
can arise from a complex structure induced by the Hilbert transform. Hybrid and
metriplectic flows which combine Hamiltonian and gradient components are exam-
ined. A class of metriplectic systems that is generated by completely antisymmetric
triple brackets (trilinear brackets) is described and for finite-dimensional systems
given a Lie algebraic interpretation. A variety of explicit examples of the several
types of flows are given. It is shown that this geometry describes a number of
classical ordinary and partial differential equations of interest and that the different
metrics give rise to different kinds of dissipation that occur in applications.
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15.1 Introduction

Dynamical systems describing physical phenomena, finite or infinite dimensional,
typically have some terms that are, in some sense, Hamiltonian and others that
can be recognized as dissipative, with the Hamiltonian part associated with a
Poisson bracket and the dissipative one being some kind of gradient flow. The
description of Hamiltonian systems has received much attention over nearly two
centuries and, although some forms of dissipation have been intensively studied,
the understanding and classification of dissipative dynamics, a much broader
topic, is considerably less well developed. Early modern treatments of geometric
Hamiltonian mechanics include those of [1, 4, 5, 68]; the literature on this topic is
now immense. A special type of gradient flow that preserves the invariants of the
Hamiltonian terms, the double bracket formalism due to [21] (see also [11, 12]),
occurs in a variety of contexts (see [17, 18]) and is well adapted to practical
numerical computations (e.g., [28, 72]). Other examples of infinite dimensional
gradient flows include the Cahn–Hilliard equation (e.g., [62]), the celebrated Ricci
flow (e.g., [23, 33]) which is a nonlinear diffusion-like equation, and certain
astrophysical systems (e.g., [40]). Various types of gradient flows in the infinite
dimensional setting, including double bracket flows that are nonlocal, were treated
in [35–39]. A general form for combined Hamiltonian and gradient flows was
described in [53] and were termed metriplectic (see also [46, 49, 55, 60]). Due to
the profusion of such types of systems consisting of the sum of a Hamiltonian and a
dissipative vector field, it is of interest to investigate the general geometric structure
of such evolutionary equations and isolate their key properties. The goal of this
paper is precisely such a study, in both the ODE and PDE contexts. Specifically,
we investigate the dynamics of gradient and Hamiltonian flows, with particular
applications to those on coadjoint orbits of Lie groups and the extension of this
setting to loop groups. We compare the different types of gradient flows that arise
from various metrics, in particular, the so-called normal and the Kähler metrics
on adjoint orbits of compact Lie groups. We discuss how a Kähler metric on a
loop group arises from the complex structure induced by the Hilbert transform.
In addition, we present the general theory of metriplectic flows in both the finite
and infinite dimensional setting. These systems have the remarkable property that
they conserve energy, produce entropy, and equilibria are found by a maximum
entropy principle (see Sect. 15.4 for the precise statements). Particular attention
is given to metriplectic flows that arise from completely antisymmetric triple
brackets. For finite dimensional systems, we show how the triple bracket has a
natural Lie algebraic formulation and for infinite dimensional systems we present
a procedure for constructing general classes of metriplectic PDEs. We also discuss
energy dissipating hybrid systems that are the sum of a Hamiltonian and a gradient
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term. Several examples of hybrid and metriplectic flows are given, including finite
dimensional systems such as the Toda lattice on the real line and metriplectic
ones arising from so(3) brackets. In the infinite dimensional context, we present
a metriplectic 1+1 dissipative system and hybrid systems, such as KdV with
dissipation and the Ott-Sudan equation [61] that describes Landau damping. This
paper is partly expository, reviewing the necessary background geometry on adjoint
orbits and loop groups, as well as gradient and metriplectic flows in various settings,
although we make no claim to be comprehensive. New material on the various
types of gradient flows that can occur in the loop group setting is included, as
well as considerations generalizing metriplectic flows in both the finite and infinite
dimensional setting.

The paper is organized as follows. In Sect. 15.2, we review background material,
such as metrics on adjoint orbits, Toda flows, and the double bracket equation.
Sections 15.3 and 15.4 contain the main new results of the paper. In Sect. 15.3, we
discuss metrics on loop groups and related gradient flows, while in Sect. 15.4, we
present our results on metriplectic systems, in both finite and infinite dimensions,
and give examples.

15.2 Metrics on Adjoint Orbits of Compact Lie Groups
and Associated Dynamical Systems

15.2.1 Double Bracket Systems

Let gu be the compact real form of a complex semisimple Lie algebra g, Gu a
compact connected real Lie group with Lie algebra gu, and κ the Killing form (on g
or gu, depending on the context).

The “normal” metric on the adjoint orbit O of Gu through L0 ∈ gu (see [6, 9,
Chapter 8]) is given as follows. Decompose orthogonally gu = gLu ⊕ guL, relative
to the invariant inner product 〈 , 〉 := −κ( , ), where guL := ker adL is the
centralizer of L and gLu = range adL; as usual, adL := [L, ·]. For X ∈ gu
denote by XL ∈ gLu and XL ∈ guL the orthogonal projections of X on gLu and
guL, respectively. Recall that a general vector tangent at L to the adjoint orbit O is
necessarily of the form [L,X ] for some X ∈ gu. The normal metric on O is the
Gu-invariant Riemannian metric whose value at L ∈ O is given by

〈[L,X ], [L, Y ]〉normal :=
〈
XL, Y L

〉
(15.1)

for any X,Y ∈ gu.
Fix N ∈ gu and consider the flow

d

dt
L(t) = [L(t), [L(t), N ]] , L(0) = L0 ∈ gu , (15.2)
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on the adjoint orbit O of Gu. We recall the following well-known result [13–16,21,
22].

Proposition 15.1. The vector field given by the ordinary differential equa-
tion (15.2) is the gradient of the function H(L) = κ(L,N) relative to the normal
metric on O .

Proof. By the definition of the gradient grad H(L) ∈ TLO ⊂ gu relative to the
normal metric, we have for any L ∈ O and δL ∈ gu,

dH(L) · [L, δL] = 〈grad H(L), [L, δL]〉normal (15.3)

where · denotes the natural pairing between 1-forms and tangent vectors and [L, δL]
is an arbitrary tangent vector at L to O . Set gradH(L) = [L,X ] = [L,XL].
Then (15.3) becomes

−〈[L, δL], N〉 = 〈[L,X ], [L, δL]〉normal

or, equivalently,

〈[L,N ], δL〉 = 〈XL, δLL〉 = 〈XL, δL〉 .

Since [L,N ] ∈ gLu , this implies that XL = [L,N ], and hence grad H(L) =
[L, [L,N ]], as stated. ��

The same computation, for a general function H ∈ C∞(gu), yields

grad H(L) = −[L, [L,∇H(L)]] (15.4)

where∇H(L) denotes the gradient of the function H relative to the invariant inner
product 〈 , 〉 := −κ( , ), i.e., dH(L) ·X = 〈∇H(L), X〉 for any X ∈ gu.

15.2.2 The Finite Toda System

The double bracket equation (15.2) is intimately related to the finite non-compact
Toda lattice system. This is a Hamiltonian system modeling n particles moving
freely on the x-axis and interacting under an exponential potential. Denoting the
position of the kth particle by xk, the Hamiltonian is given by

H(x, y) =
1

2

n∑
k=1

y2k +

n−1∑
k=1

exk−xk+1

and hence the associated Hamiltonian equations are



15 Gradient Flows in the Normal and Kähler Metrics and Triple Bracket . . . 375

ẋk =
∂H

∂yk
= yk , ẏk = − ∂H

∂xk
= exk−1−xk − exk−xk+1 , (15.5)

where we use the conventions ex0−x1 = exn−xn+1 = 0, which corresponds to
formally setting x0 = −∞ and xn+1 = +∞.

This system of equations has an extraordinarily rich structure. Part of this is
revealed by Flaschka’s change of variables [27] given by

ak =
1

2
e(xk−xk+1)/2 and bk = −1

2
yk , (15.6)

which transform (15.5) to

{
ȧk = ak(bk+1 − bk) , k = 1, . . . , n− 1 ,

ḃk = 2(a2k − a2k−1) , k = 1, . . . , n ,

with the boundary conditions a0 = an = 0. This system is equivalent to the Lax
equation

d

dt
L = [B,L] = BL− LB , (15.7)

where

L =

⎛
⎜⎜⎜⎜⎜⎝

b1 a1 0 · · · 0

a1 b2 a2 · · · 0
...

. . .
...

0 · · · bn−1 an−1

0 · · · an−1 bn

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎝

0 a1 0 · · · 0

−a1 0 a2 · · · 0
...

. . .
...

0 · · · 0 an−1

0 · · · −an−1 0

⎞
⎟⎟⎟⎟⎟⎠

.

(15.8)
If O(t) is the orthogonal matrix solving the equation

d

dt
O = BO , O(0) = Identity ,

then from (15.7) we have

d

dt
(O−1LO) = 0 .

Thus, O−1LO = L(0), i.e., L(t) is related to L(0) by conjugation with an
orthogonal matrix and thus the eigenvalues of L, which are real and distinct, are
preserved along the flow. This is enough to show that this system is explicitly
solvable, or integrable. Equivalently, after fixing the center of mass, i.e., setting
b1 + · · ·+ bn = 0, the n− 1 integrals in involution whose differentials are linearly
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independent on an open dense set of phase space {(a1, . . . , an−1, b1, . . . , bn) |
b1 + · · ·+ bn = 0} are Tr L2, . . . ,Tr Ln.

15.2.3 Lie Algebra Integrability of the Toda System

Let us quickly recall the well-known Lie algebraic approach to integrability of
the Toda lattice. Let g be a Lie algebra with an invariant non-degenerate bilinear
symmetric form 〈 , 〉, i.e., 〈[ξ, η], ζ〉 = 〈ξ, [η, ζ]〉 for all ξ, η, ζ ∈ g and 〈ξ, ·〉 = 0
implies ξ = 0. Suppose that k, s ⊂ g are Lie subalgebras and that, as vector spaces,
g = k⊕ s. Let πk : g→ k, πs : g→ s be the two projections induced by this vector
space direct sum decomposition. Since g - ξ

∼�−→ 〈ξ, ·〉 ∈ g∗ is a vector space
isomorphism, it naturally induces the isomorphisms k⊥ ∼= s∗, s⊥ ∼= k∗. By non-
degeneracy of 〈 , 〉, we have g = s⊥ ⊕ k⊥; denote by πk⊥ : g → k⊥, πs⊥ : g → s⊥

the two projections induced by this vector space direct sum decomposition. In
particular, g, s⊥, k⊥ all carry natural Lie–Poisson structures. The (−)Lie–Poisson
bracket of s∗ ∼= k⊥ is given by

{ϕ, ψ}(ξ) = −〈ξ, [πs∇ϕ(ξ), πs∇ψ(ξ)]〉 , ξ ∈ k⊥, (15.9)

where ϕ, ψ : k⊥ → R are any smooth functions, extended arbitrarily to smooth
functions, also denoted by ϕ and ψ, on g and ∇ϕ, ∇ψ are the gradients of these
arbitrary extensions relative to 〈 , 〉. This formula follows from the fact that the
gradient on k⊥ of ϕ|k⊥ , which is an element of s due to the isomorphism k⊥ ∼= s∗,
equals πs∇ϕ. Thus, the Hamiltonian vector field of ψ ∈ C∞(k⊥), given by
ϕ̇ = {ϕ, ψ} for any ϕ ∈ C∞(k⊥), has the expression

Xψ(ξ) = −πk⊥ [πs∇ψ(ξ), ξ] , ξ ∈ k⊥ (15.10)

with the same conventions as above.
If ψ ∈ C∞(g) is invariant, i.e., [∇ψ(ζ), ζ] = 0 for all ζ ∈ g, then (15.10)

simplifies to

Xψ(ξ) = [πk∇ψ(ξ), ξ] = − [πs∇ψ(ξ), ξ] , ξ ∈ k⊥. (15.11)

The Adler–Kostant–Symes Theorem (see [3,44,66,69,70] for many theorems of the
same type) states that if ϕ and ψ are both invariant functions on g, then {ϕ, ψ} = 0
on k⊥ which is equivalent to the commutation of the flows of the Hamiltonian vector
fields (15.11).

Suppose that G = KS, whereG is a Lie group with Lie algebra g and K,S ⊂ G
are closed subgroups with Lie algebras k and s, respectively. The writing G = KS
means that each element g ∈ G can be uniquely decomposed as g = ks, where
k ∈ K and s ∈ S and that this decomposition defines a smooth diffeomorphism
K × S ≈ G. The coadjoint action of S on s∗ has the following expression, if s∗ is
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identified with k⊥ via 〈 , 〉: if s ∈ S, ξ ∈ k⊥, then s · ξ = πk⊥ Ads ξ, where Ads ξ is
the adjoint action in G of the element s ∈ S ⊂ G on ξ ∈ k⊥ ⊂ g.

For the Toda lattice (15.7), this general setup applies in the following way. Let
G = GL(n,R), K = SO(n), S = {invertible lower triangular matrices}, G =
KS is the Gram–Schmidt orthonormalization process, g = gl(n,R), k = so(n),
s = {lower triangular matrices}, 〈ξ, η〉 := Tr(ξη) for all ξ, η ∈ gl(n,R), k⊥ =
sym(n) the vector space of symmetric matrices, and s⊥ = n, the nilpotent Lie
algebra of strictly lower triangular matrices. The set of matrices L in (15.8) is a
union of S-coadjoint orbits parametrized by the value of the trace; for example,
the set of trace zero matrices L of the form (15.8) equals the S-coadjoint orbit
through the symmetric matrix that has everywhere zero entries with the exception
of the upper and lower first diagonals where all entries are equal to one. Thus, the
Toda lattice is a Poisson system whose restriction to a symplectic leaf is a classical
Hamiltonian system with n − 1 degrees of freedom. The Hamiltonian of the Toda
lattice is 1

2 Tr L
2 and the fk(L) := 1

k Tr L
k, k = 1, . . . , n − 1 are the n − 1

integrals in involution (by the Adler–Kostant–Symes Theorem) and are generically
independent.

15.2.4 The Toda System as a Double Bracket Equation

If N is the matrix diag{1, 2, . . . , n}, the Toda equations (15.7) may be written
in the double bracket form (15.2) for B := [N,L]. This was shown in [11]; the
consequences of this fact were further analyzed for general compact Lie algebras in
[13–15]. As shown in Proposition 15.1, the double bracket equation, with L replaced
by iL and N by iN , restricted to a level set of the integrals described above, i.e.,
restricted to a generic adjoint orbit of SU(n), is the gradient flow of the function
TrLN with respect to the normal metric; see [15] for this approach.

This observation easily implies that the flow tends asymptotically to a diagonal
matrix with the eigenvalues of L(0) on the diagonal and ordered according to
magnitude, recovering the result of [24, 56, 71].

15.2.5 Riemannian Metrics on O

Now, we recall that, in addition to the normal metric on an adjoint orbit, there
are other natural Gu-invariant metrics: the induced and the group invariant Kähler
metrics (as discussed in [6, §4], [7], and [9, Chapter 8]).

First, there is the induced metric b on O , defined by b := ι∗ (−κ( , )), where
ι : O ↪→ gu is the inclusion and 〈 , 〉 := −κ( , ) is thought of as a constant
Riemannian metric on gu. Therefore,



378 A.M. Bloch et al.

b(L)([L,X ], [L, Y ]) := 〈[L,X ], [L, Y ]〉 (15.12)

for any L ∈ O , X,Y ∈ gu. The induced metric on O is also Gu-invariant.
Second, there are the Gu-invariant Kähler metrics on O compatible with the

natural complex structure (of course, induced by the complex structure of G). These
are in bijective correspondence (by the transgression homomorphism) with the set of
Gu-invariant sections of the trivial vector bundle over O whose fiber at L ∈ O is the
center of ker (adL) and whose scalar product with all positive roots is positive [9,
Proposition 8.83]. Among these, there is the Gu-invariant Kähler metric b2 which is
compatible with both the natural complex structure on O and has as imaginary part
the orbit symplectic structure; b2 is called the standard Kähler metric on O .

The Gu-invariant Riemannian metrics on a maximal dimensional orbit O are
completely determined by T -invariant inner products on the direct sum of the two-
dimensional root spaces of gu, which is the tangent space to O at the point L0 ∈ t
in the interior of the positive Weyl chamber; recall that O intersects the positive
Weyl chamber in a unique point. The negative of the Killing form induces on each
such two-dimensional space an inner product. This inner product, left translated at
all points of O by elements of Gu, yields the normal metric on O . Any other Gu-
invariant inner product on O is obtained by left translating at all points of O the inner
product on this direct sum of two-dimensional root spaces obtained by multiplying
in each two-dimensional summand the inner product with a positive real constant.

Since L0 lies in the interior of the positive Weyl chamber (because O is maximal
dimensional), α(L0) > 0 for all positive roots α of gu. Then the constant by which
the natural inner product on the two-dimensional root space needs to be multiplied
in order to get the standard Kähler metric is α(L0), whereas to get the induced
metric, it is α(L0)

2 [6, Remark 2 in §4]. We can formulate this differently, as in
[15]. Since, by (15.12) and (15.1),

b(L)([L,X], [L, Y ]) = 〈[L,X], [L, Y ]〉 =
〈
[L,XL], [L, Y L]

〉
=

〈
−[L, [L,XL]], Y L

〉

=
〈
−[L, [L,XL]]L, Y L

〉
=

〈− ad2
L[L,X], [L, Y ]

〉
normal

we have

b(L)([L,X ], [L, Y ]) = b1(L)(A (L)2[L,X ], [L, Y ]), (15.13)

where we denote now by b1 the normal metric and A (L) :=

√
(i adL)

2 is the

positive square root of (i adL)
2
= − ad2L = A (L)2. The standard Kähler metric on

O is then given by

b2(L)[L,X ], [L, Y ]) = b1(A (L)[L,X ], [L, Y ]). (15.14)

Note that, as opposed to the normal and induced metrics which have explicit
expressions, the standard Kähler metric on O requires the spectral decomposition of
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A (L) at any point L ∈ O . Or, as explained above, one expresses it at the point L0

in the positive Weyl chamber in terms of the positive roots and then left translates
the resulting inner product at any point of O . The normal metric does not depend on
the operators A (L), whereas the standard Kähler and induced metrics do.

15.3 Gradient Flows on the Loop Group of the Circle

In this section we introduce three weak Riemannian metrics on the subgroup of
average zero functions of the connected component of the loop group L̃(S1) of the
circle, analogous to the normal, standard Kähler, and induced metrics on adjoint
orbits of compact semisimple Lie groups. Of course, we shall not work on adjoint
orbits of this group because they degenerate to points, L̃(S1) being a commutative
group. Then we shall compute the gradient flows for these three metrics.

15.3.1 The Loop Group of S1

Recall (e.g., [65]) that the loop group L̃(S1) of the circle S1 consists of smooth
maps of S1 to S1. With pointwise multiplication, L̃(S1) is a commutative group.
Often, elements of L̃(S1) are written as eif , where

f ∈ L̃(R) :=
{
g : [−π, π] → R | g is C∞, g(π) = g(−π) + 2nπ, for some n ∈ Z

}
;

n is the winding number of the closed curve [−π, π] - t �→ eig(t) ∈ S1 about the
origin. More precisely, there is an exact sequence of groups

0 −→ Z −→ L̃(R)
ẽxp−→ L̃(S1) −→ Z −→ 0

n �−→ 2πn; f �−→ eif �−→ f(π)−f(−π)
2π

which shows that ker ẽxp = Z and coker ẽxp = {0}. Thus the connected compo-
nents of L̃(S1) are indexed by the winding number. The connected component of
the identity L̃(S1)0 consists of loops with winding number zero about the origin.

If one insists on working with smooth loops, then one can consider L̃(S1) and
L̃(S1)0 as Fréchet Lie groups either in the convenient calculus of [45] or in the tame
category of [32].

Alternatively, one can work with loops eif for f : [−π, π] → R of Sobolev
class Hs, where s ≥ 1 (or appropriate W s,p or Hölder spaces). By standard theory
(see, e.g., [63] or [2]), it is checked that L̃(S1) is a Hilbert Lie group (see, e.g.,
[20] or [58]). We shall not add the index s on L̃(R) and L̃(S1); from now on we
work exclusively in this category of Hs Sobolev class maps and loops. A simple
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proof of the fact that L̃(R) is a Hilbert Lie group was given to us by K.-H. Neeb.
First, note that L̃(R) is a closed additive subgroup of the Hilbert space Hs(R) :=

{h : R → R | h of class Hs}. Second, L̃(R) = L̃(R)0 × Z as topological groups,
where L̃(R)0 := {g ∈ L̃(R) | g(π) = g(−π)} is the closed vector subspace of
Hs(R) consisting of periodic functions; hence it is an additive Hilbert Lie group.
Therefore, there is a unique Hilbert Lie group structure on L̃(R) for which L̃(R)0
is the connected component of the identity. For general criteria that characterize Lie
subgroups in infinite dimensions, see [59, Theorem IV.3.3] (even for certain classes
of Lie groups modeled on locally convex spaces). Third, since ẽxp : L̃(R)→ L̃(S1)

maps bijectively each connected component of L̃(R) to a connected component of
L̃(S1), it induces a Hilbert Lie group structure on L̃(S1).

The commutative Hilbert Lie algebra of L̃(S1) is clearly Hs(S1,R) := {u :
S1 → R | u of class Hs}, the space of periodic Hs maps, and the exponential
map exp : Hs(S1,R) → L̃(S1) is given by exp(u)(θ) = eiu(θ), where θ ∈ R/2π
Z = S1.

15.3.2 The Based Loop Group of S1

The inner product on the Hilbert space L2(S1) of L2 real valued functions on S1 is
defined by

〈f, g〉 := 1

2π

∫ π

−π
dθ f(θ)g(θ) , f, g ∈ L2(S1).

Following [7, 64], we introduce the closed Hilbert Lie subgroup L(S1) := {ϕ ∈
L̃(S1) | ϕ(1) = 1} of L̃(S1) whose closed commutative Hilbert Lie algebra is
L(R) := {u ∈ Hs(S1,R) | u(1) = 0}. The exponential map exp : L(R) - u �→
eiu ∈ L(S1) is a Lie group isomorphism (with L(R) thought of as a commutative
group relative to addition), a fact that will play a very important role later on (see
also [65, page 151, §8.9]).

There is a natural 2-cocycle ω on L(R), namely

ω(u, v) :=
1

2π

∫ π

−π
dθ u′(θ)v(θ) = 〈u′, v〉 , (15.15)

where u′ := du/dθ. Therefore, there is a central extension of Lie algebras

0 −→ R −→ L̂(R) −→ L(R) −→ 0

which, as shown in [67], integrates to a central extension of Lie groups
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1 −→ S1 −→ L̂(S1) −→ L(S1) −→ 1.

The “geometric duals” of L(R) and L̂(R) = R⊕L(R) are themselves, relative to the

weak L2-pairing. It turns out that the coadjoint action of L̂(S1) on L̂(R) preserves

{1} ⊕ L(R) so that, as usual, the coadjoint action of L̂(S1) on L(R) is an affine
action which, in this case, because the group is commutative, equals

Ad∗
eif μ =

f ′

f
= (log |f |)′ eif ∈ L(S1), μ ∈ L(R).

Thus, the orbit of the constant function 0 is L̂(S1)/S1 (where the denominator is
thought of as constant loops), i.e., it equals L(S1). Therefore, every element u ∈
L(R) of its Lie algebra has, in Fourier representation, vanishing zero order Fourier
coefficient , i.e., û(0) = 0.

Thus, the based loop group is a coadjoint orbit of its natural central extension and,
according to Sect. 15.2, has three distinguished weak Riemannian metrics. These
were computed explicitly in [7, 64, 65]; we recall them below.

15.3.3 L(S1) as a Weak Kähler Manifold

Note that on L(R), the cocycle (15.15) is weakly non-degenerate. Therefore, left (or
right) translating it at every point of the groupL(S1) yields a weakly non-degenerate
closed two-form, i.e., a symplectic form. Thus, as expected, since it is a coadjoint
orbit, the Hilbert Lie group L(S1) carries an invariant symplectic form whose value
at the identity element 1 (the constant loop equal to 1) is given by (15.15).

Now we introduce the Hilbert transform on the circle

H u(θ) :=
1

2π
−
∫ π

−π
ds u(s) cot

(
θ − s

2

)
=

1

2π
−
∫ π

−π
ds u(θ − s) cot

(s
2

)

:= lim
ε→0+

1

π

∫
ε≤|s|≤π

ds u(θ − s) cot
(s
2

)
(15.16)

for any u ∈ L2(S1), where −
∫

denotes the Cauchy principal value. We adopt here the
sign conventions in [43, Formulas (3.202) and (6.38), Vol. 1]. If u ∈ L2(S1), then
H u ∈ L2(S1) and it is defined for almost every θ ∈ [−π, π] (Lusin’s Theorem,
[43, §6.19, Vol. 1]). The Hilbert transform has the following remarkable properties
that will be used later on:

• If u(θ) =
∑∞
n=−∞ û(n)einθ ∈ L2(S1), where û(n) := 1

2π

∫ π
−πdθ u(θ)e

−inθ, so

û(n) = û(−n) since u is real valued, then
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H u(θ) = −i
∞∑

n=−∞
û(n) sign(n) einθ ∈ L2(S1) (15.17)

which follows from the identity Ĥ f(n) = −if̂(n) sign(n) [43, Formulas
(6.100) or (6.124), Vol. 1]. Here, sign(n) = 1 if n ∈ N, sign(n) = −1
if n ∈ −N, and sign(0) = 0. Note that H u is also real valued since
û(n) sign(n) = −û(−n) sign(−n). The formula above implies that [43,
Formula (6.126), Vol. 1]

∫ π

−π
dsH u(s) = 0.

• For every u ∈ L2(S1), we have the orthogonality property [43, Formula (6.127),
Vol. 1]:

〈u,H u〉 = 0.

• Take the orthonormal Hilbert basis
{
ϕn(θ) := einθ | n ∈ Z

}
of L2(S1). Then

[43, Formula (6.131), Vol. 1]:

H ϕn(θ) = −i sign(n)ϕn(θ), for all n ∈ Z.

So, the eigenvalues of H are: −i for all n > 0, i for all n < 0, and 0 if n = 0.
• If u, v ∈ L2(S1) then [43, Formula (6.99), Vol. 1]

〈u, v〉 = 1

4π2

(∫ π

−π
ds u(s)

)(∫ π

−π
ds v(s)

)
+ 〈H u,H v〉

and hence [43, Formula (6.97), Vol. 1]

‖u‖2L2(S1) =

(
1

2π

∫ π

−π
ds u(s)

)2

+ ‖H u‖2L2(S1)

for any u ∈ L2(S1). This shows that ‖H u‖2L2(S1) ≤ ‖u‖2L2(S1) and the
constant 1 is the best possible [43, Formulas (6.167) and (6.168), Vol. 1]. In
particular, if the average of u is zero, then H is an isometry of L2(S1).

• The Hilbert transform is skew-adjoint relative to the L2(S1)-inner product, i.e.,
H ∗ = −H [43, Formula (6.98) or (6.106), Vol. 1].

• For any u ∈ L2(S1) we have [43, Formulas (6.34), (6.82), or (6.156), Vol. 1]:

H 2u(θ) = −u(θ) + 1

2π

∫ π

−π
ds u(s) = −u(θ) + û(0).
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• For any u ∈ Hs(S1) with s ≥ 0 we have H u ∈ Hs(S1); this is an immediate
consequence of (15.17). If s ≥ 1, then H u′ = (H u)′, i.e., H ◦ d

dθ = d
dθ ◦H

on Hs(S1) with s ≥ 1.

Using these properties, if u(θ) =
∑∞

n=−∞ û(n)einθ ∈ H1(S1), then

u′(θ) =
∞∑

n=−∞
û(n)ineinθ ∈ L2(S1)

and hence

(
H u′) (θ) = (H u)′ (θ) =

(
−i

∞∑
n=−∞

û(n) sign(n) einθ

)′
=

∞∑
n=−∞

|n|û(n)einθ .

(15.18)

On the other hand, if v ∈ H2(S1), then

− d2

dθ2
v(θ) =

∞∑
n=−∞

n2v̂(n)einθ (15.19)

and hence if u ∈ H1(S1),

(
− d2

dθ2

) 1
2

u(θ) =

∞∑
n=−∞

|n|û(n)einθ = (H u′)(θ) =
((

H ◦ d

dθ

)
u

)
(θ)

(15.20)

by (15.18). By the previous properties we have (H ◦ d/dθ)2 = −d2/dθ2, as
expected; note that the extra term, which is the zero order Fourier coefficient, does
not appear in this case, because the derivative eliminates it.

Now, if ϕ = eif ∈ L(S1), i.e., ϕ(1) = 1 and f : [−π, π] → R is a periodic
function, then f̂(0) = f(0) = 0. Similarly, if u ∈ L(R), i.e., u(1) = 0 and we
think of u as a periodic function u : [−π, π] → R, then û(0) = u(0) = 0. This,
and the properties of the Hilbert transform on the circle, imply: H (L(R)) ⊆ L(R),
H is unitary on L(R) (relative to the Hs-inner product), H ◦H = −I on L(R).
Concretely, the Hilbert transform on L(R) has the form:

u(θ) =
∑

n∈Z\{0}
û(n)einθ ∈ L(R) ⇒ H u(θ) = −i

∑

n∈Z\{0}
û(n) sign(n) einθ ∈ L(R).

Thus, H defines the structure of a complex Hilbert space on L(R), relative to the
Hs inner product, s ≥ 1. Hence, translating H to any tangent space of L(S1), we
obtain an invariant almost complex structure on the Hilbert Lie group L(S1) which
is, in fact, a complex structure. For general criteria how to obtain complex structures
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on real Banach manifolds, see [8]; the argument above is a very special case of these
general methods.

Finally, L(S1) is a Kähler manifold, as proved in [7]. This is immediately seen
by noting that

g(1)(u, v) := ω(H u, v) =

∞∑
n=−∞

|n|û(n)v̂(n) (15.21)

is symmetric and positive definite and so, by translations, defines a weak Rieman-
nian metric on L(S1). Note that this metric is not the Hs metric for any s ≥ 1. In
fact, the metric g is incomplete, whereas the Hs metric is complete.

Concluding, (L(S1), ω, g,H ) is a weak Kähler manifold and all structures are
group invariant (see [7, 64, 65]).

15.3.4 Weak Riemannian Metrics on L(S1)

The three metrics discussed in Sect. 15.2 for L(S1), viewed as a coadjoint orbit of
its central extension, have been computed in [64]. We recall here relevant formulas.

The induced metric is defined by the natural inner product on L(R), which is the
usual L2-inner product. Hence, the induced metric is obtained by left (equivalently,
right) translation of the inner product

b(1)(u, v) := 〈u, v〉 = 1

2π

∫ π

−π
dt u(t)v(t) (15.22)

for any two functions u, v ∈ L(R).
Define the following inner products on L(R):

b2(1)(u, v) := b(1)(u,H v′) = 〈u,H v′〉 , if u, v ∈ Hs(S1), s ≥ 1
(15.23)

b1(1)(u, v) := b(1)(u′, v′) = 〈u′, v′〉 , if u, v ∈ Hs(S1), s ≥ 1. (15.24)

Bilinearity and symmetry of b1(1) and b2(1) are obvious. If u ∈ L(S1), writing
u(θ) =

∑∞
n=−∞ û(n)einθ with û(0) = 0, we have u′(θ) = i

∑∞
n=−∞ nû(n)einθ .

Since {einθ | n ∈ Z} is an orthonormal Hilbert basis of L2(S1), we get

b1(1)(u, u) =
∞∑

n=−∞
n2|û(n)|2 ≥ 0.

In addition, b1(1)(u, u) = 0 if and only if û(n) = 0 for all n �= 0, i.e., u(θ) =
û(0) = 0. This shows that b1(1) is indeed an inner product on L(R) which coincides



15 Gradient Flows in the Normal and Kähler Metrics and Triple Bracket . . . 385

with the H1 inner product. Hence, if L(R) is endowed with the Hs topology
for s ≥ 1, this inner product is strong if s = 1 and weak if s > 1. Left translating
this inner product to any tangent space of L(S1) (endowed with the Hs topology
for s ≥ 1), yields a Riemannian metric on L(S1) that is strong for s = 1 and weak
for s > 1. This Riemannian metric is the normal metric on L(S1).

The inner product b2(1) is identical to g(1) by (15.21), (15.23), and (15.15).
Thus, translating this inner product to the tangent space at every point of the Hilbert
Lie groupL(S1), yields the standard Kähler metric b2 = g on L(S1), endowed with
the Hs topology for s ≥ 1. Note that if u ∈ L(S1), then

b2(1)(u, u) =

∞∑
n=−∞

|n||û(n)|2

which shows that the Kähler metric b2 coincides with the H1/2 metric and is,
therefore, a weak metric on L(S1).

There are relations similar to (15.13) and (15.14), namely

b(1)(u, v) = b1(1)(A
2u, v), b2(1)(u, v) = b1(1)(A u, v),

where

(A 2u)(θ) =

∞∑
n=−∞

n2û(n)einθ, (A u)(θ) =

∞∑
n=−∞

|n|û(n)einθ

if u(θ) =
∑∞
n=−∞ û(n)einθ. However, note that the relation involving A 2 requires

that u ∈ Hs(S1) with s ≥ 2.

15.3.5 Vector Fields on L(S1) and L(R)

Recall that the exponential map exp : L(R) - u �→ eiu ∈ L(S1) is a Lie group
isomorphism [65, page 151, §8.9]. Here we identified the Lie algebra of S1 with
R, even though, naturally, it is the imaginary axis, the tangent space at 1 ∈ S1

to S1. This means that care must be taken when carrying out standard Lie group
operations with the exponential map, interpreted as the exponential of a purely
imaginary number. Since such computations affect our next results, we clarify these
statements below.

The tangent space at the identity 1 to S1 is the imaginary axis. This is the natural
Lie algebra of the Lie group S1 and the exponential map is given by exp : iR -
(ix) �→ eix ∈ S1. Of course, traditionally, one identifies iR with R by dividing by i
and thinks of the exponential map as exp : R - x �→ eix ∈ S1. Unfortunately, this
induces some problems. For example, since (left) translation is given by Leixeiy :=
eixeiy, it follows that
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T1Leix(iy) :=
d

dε

∣∣∣∣
ε=0

Leixe
iεy =

d

dε

∣∣∣∣
ε=0

eixeiεy = iyeix, (15.25)

so the identification of the Lie algebra with R poses no problems and we have,
dividing both sides by i,

T1Leix(y) = yeix. (15.26)

However, the definition of the exponential map for any Lie group G with Lie
algebra g, yields

d

dt
exp(tξ) = TeLexp(tξ)ξ, for all ξ ∈ g. (15.27)

This formula works perfectly well if the Lie algebra of S1 is iR. Indeed

d

dt
etix = ixetix

which coincides with (15.27) in view of (15.25). On the other hand, if the Lie algebra
is thought of as R, i.e., the right-hand side needs to be divided by i, then with the
definition of exp(tx) = eitx the identity above is no longer valid. What we should
get is

d

dt
exp(tx) = x exp(tx) = T1Lexp(tx)x = xeitx

by (15.26) if exp(tx) = eitx, but the righthand side gives ixeitx, as we saw above. In
other words, if the Lie algebra of S1 is thought of as R, as is traditionally done, then
we need a formula for the derivative of the Lie group exponential map in terms of the
exponential map of purely imaginary numbers. In view of the previous discussion,
this formula is

d

dt
exp(tx) :=

1

i

d

dt
eitx = xeitx. (15.28)

With these remarks in mind, we shall now compute the push-forward of a vector
field on L(R) to L(S1).

Proposition 15.2. Let X ∈ X(L(R)) be an arbitrary vector field . Then its push-
forward to L(S1)) has the expression

(exp∗ X)
(
eiu
)
= X(u)eiu

for any u ∈ L(R).
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Proof. By the definition of push forward of vector fields by a diffeomorphism, we
have

(exp∗ X)
(
eiu
)
=
(
T exp ◦X ◦ exp−1

) (
eiu
)
= Tu exp (X(u))

=
d

dε

∣∣∣∣
ε=0

exp (u+ εX(u)) =
d

dε

∣∣∣∣
ε=0

exp(u) exp(εX(u))

=

(
d

dε

∣∣∣∣
ε=0

exp(εX(u))

)
exp(u)

(15.28)
=

(
1

i

d

dε

∣∣∣∣
ε=0

eiεX(u)

)
eiu

= X(u)eiu

as stated. ��

15.3.6 The Gradient Vector Fields in the Three Metrics
of L(S1)

We compute now the gradients of a specific function using the three metrics.

Theorem 15.1. The gradients of the smooth function H : L(S1)→ R given by

H
(
eif
)
=

1

4π

∫ π

−π
dθ f ′(θ)2

are

(i) ∇1H
(
eif
)
= feif for the normal metric b1;

(ii) ∇H (eif) = −f ′′eif with respect to the induced metric b for f ∈ Hs(S1)
with s ≥ 2;

(iii) ∇2H
(
eif
)
= (H f ′)eif with respect to the weak Kähler metric b2.

Proof. (i) Since T1Leifu = ueif for any u ∈ L(R) and eif ∈ L(S1), invariance
of b1 yields

b1(1)
(
e−if∇1H

(
eif
)
, u
)
= b1

(
eif
)(

∇1H
(
eif
)
, ueif

)
= dH

(
eif
)(
ueif

)

=
d

dt

∣∣∣∣
t=0

H
(
ei(f+tu)

)

=
d

dt

∣∣∣∣
t=0

1

4π

∫ π

−π
dθ
(
f ′(θ) + tu′(θ)

)2

=
1

2π

∫ π

−π
dθ f ′(θ)u′(θ) =

〈
f ′, u′〉 (15.1)

= b1(1)(f, u)

which shows that∇1H
(
eif
)
= feif .
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(ii) Proceeding as above, using the same notations, and assuming that f ∈ Hs(S1)
with s ≥ 2, we have

b(1)
(
e−if∇H (eif) , u) = b

(
eif
) (∇H (eif) , ueif) = dH

(
eif
) (
ueif

)

=
1

2π

∫ π

−π
dθ f ′(θ)u′(θ) = − 1

2π

∫ π

−π
dθ f ′′(θ)u(θ)

= 〈−f ′′, u〉 (15.12)
= b(1) (−f ′′, u)

which shows that∇H (eif) = −f ′′eif .
(iii) This computation uses the isometry property of H relative to the L2 inner

product. We have,

b2(1)
(
e−if∇2H

(
eif
)
, u
)
= b2

(
eif
) (∇2H

(
eif
)
, ueif

)
= dH

(
eif
) (
ueif

)

= 〈f ′, u′〉 = 〈H f ′,H u′〉 (15.23)
= b2(1) (H f ′, u)

which shows that∇2H
(
eif
)
= (H f ′)eif . ��

Since

ω
(
eif

)(
H ∇2H

(
eif

)
, ueif

)
(15.21)
= b2

(
eif

)(
∇2H

(
eif

)
, ueif

)
= dH

(
eif

)(
ueif

)

it follows that the Hamiltonian vector field on
(
L(S1), ω

)
for the function H is

XH = H ∇2H . Since H commutes with the tangent lift to group translations,
Theorem 15.1(iii) implies that

XH

(
eif
)
=
(
H ∇2H

) (
eif
)
= H

(∇2H
(
eif
))

= H
(
(H f ′) eif

)
= −f ′eif .

This proves the first part of the following statement.

Corollary 15.1. The Hamiltonian vector field of H relative to the translation
invariant symplectic form ω on L(S1) whose value at the identity element is given
by (15.15) has the expression XH

(
eif
)
= −f ′eif . Its flow is the rotation

(
Ft
(
eif
))

(θ) = e−i(f(t+θ)−f(t)).

Proof. Since L(R) - u �−→ eiu ∈ L(S1) is the exponential map and we think of
R as the Lie algebra of S1 (and not the imaginary axis), we write deitu/dt = ueitu

without the factor of i in front (see (15.28)). The verification that Ft is indeed the
flow of XH is straightforward:
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d

dt

(
Ft
(
eif
))

(θ) =
d

dt
e−i(f(t+θ)−f(t)) = −(f ′(t+ θ)− f ′(t))e−i(f(t+θ)−f(t))

= XH

(
Ft
(
eif
))

(θ)

as required. ��
We recover thus [64, Proposition 3.1] (up to a sign which is due to different

conventions calibrating ω, H , and b2).
Applying Proposition 15.2 to Theorem 15.1, we get the following result:

Corollary 15.2. The three gradient vector fields for the smooth function H1 :
L(R)→ R given by

H1(u) =
1

4π

∫ π

−π
dθ (u′)2

are

(i) ∇1H1(u) = u for the weak inner product b1(1) defining the normal metric;
(ii) ∇H1(u) = −u′′ for the weak inner product b(1) defining the induced metric,

where for u ∈ Hs(R) with s ≥ 2;
(iii) ∇2H1(u) = H u′ for the weak inner product b2(1) defining the Kähler metric.

Since the exponential map is a Lie group isomorphism and the three metrics
coincide with the respective inner products at the identity, their left invariance
guarantees that the three inner products on L(R) correspond to the three invariant
metrics on L(S1).

Applying Proposition 15.2 to Corollary 15.1, we conclude:

Corollary 15.3. The Hamiltonian vector field of H1 relative to the symplectic form
ω given by (15.15) has the expression XH(u) = −u′. Its flow is (Ft(u)) (θ) =
u(θ − t).

The verification of the statement about the flow is immediate:

d

dt
(Ft(u)) (θ) =

d

dt
u(θ − t) = −u′(θ − t) = (XH (Ft(u))) (θ).

If one is willing to put more stringent hypotheses on the functional, it is possible
to obtain a general result.

Theorem 15.2. Let H : L(S1) → R be a smooth function (with L(S1) endowed,
as usual, with the Hs topology for s ≥ 1) and assume that the functional derivative
δH/δu ∈ L(S1) exists. Then the gradient vector fields are

(i) ∇H(u) = δH
δu with respect the weak inner product b(1) defining the induced

metric;
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(ii)
(∇1H(u)

)
(θ) = − ∫ θ0dϕ (∫ ϕ0 dψ δH

δu (ψ)
)

with respect to the (weak) inner

product b1(1) defining the normal metric, provided both
∫ θ
0
dϕ δH

δu (ϕ) as well

as
∫ θ
0 dϕ

(∫ ϕ
0 dψ δH

δu (ψ)
)

are periodic;

(iii)
(∇2H(u)

)
(θ) = −H

∫ θ
0
dϕ δH

δu (ϕ) with respect to the weak inner product

b2(1) defining the Kähler metric, provided
∫ θ
0 dϕ

δH
δu (ϕ) is periodic.

Proof. (i) For the inner product b(1) on L(S1) defining the induced metric, if
u, v ∈ L(R), we have by periodicity of u, v,

b(1) (∇H(u), v) = DH(u) · v =

〈
δH

δu
, v

〉
(15.12)
= b(1)

(
δH

δu
, v

)
.

This shows that∇H(u) = δH
δu .

(ii) For the inner product b1(1) on L(S1) defining the normal metric, if u, v ∈
L(R), we have by periodicity of

∫ θ
0 dϕ

δH
δu (ϕ) and

∫ θ
0 dϕ

(∫ ϕ
0 dψ δH

δu (ψ)
)
,

b1(1)(∇1H(u), v) = DH(u) · v =

〈
δH

δu
, v

〉
=

1

2π

∫ π

−π
dθ

δH

δu
(θ)v(θ)

=
1

2π

(∫ θ

0

dϕ
δH

δu
(ϕ)

)
v(θ)

∣∣∣∣∣
π

−π

− 1

2π

∫ π

−π
dθ

(∫ θ

0

dϕ
δH

δu
(ϕ)

)
v′(θ)

= − 1

2π

∫ π

−π
dθ

d

dθ

(∫ θ

0

dϕ

(∫ ϕ

0

dψ
δH

δu
(ψ)

))
v′(θ)

= −
〈

d

dθ

(∫ θ

0

dϕ

(∫ ϕ

0

dψ
δH

δu
(ψ)

))
, v′
〉

(15.1)
= b1

(
−
∫ θ

0

dϕ

(∫ ϕ

0

dψ
δH

δu
(ψ)

)
, v

)

which shows that (∇1H(u))(θ) = − ∫ θ
0
dϕ
(∫ ϕ

0
dψ δH

δu (ψ)
)
.

(iii) For the inner product b2(1) on L(S1) defining the Kähler metric, if u, v ∈
L(R), we have by periodicity of

∫ θ
0 dϕ

δH
δu (ϕ) and the isometry property of H ,
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b2(1)(∇2H(u), v) = DH(u) · v =

〈
δH

δu
, v

〉
=

1

2π

∫ π

−π
dθ

δH

δu
(θ)v(θ)

=
1

2π

(∫ θ

0

dϕ
δH

δu
(ϕ)

)
v(θ)

∣∣∣∣∣
π

−π

− 1

2π

∫ π

−π
dθ

(∫ θ

0

dϕ
δH

δu
(ϕ)

)
v′(θ)

= −
〈∫ θ

0

dϕ
δH

δu
(ϕ), v′

〉
= −

〈
H

∫ θ

0

dϕ
δH

δu
(ϕ),H v′

〉

(15.23)
= b2(1)

(
−H

∫ θ

0

dϕ
δH

δu
(ϕ), v

)

which shows that
(∇2H(u)

)
(θ) = −H

∫ θ
0
dϕ δH

δu (ϕ). ��
Corollary 15.4. Under the same hypothesis as in Theorem 15.2(iii), the Hamilto-
nian vector field of the smooth function H : L(S1) → R relative to the symplectic

form ω on L(R) given by (15.15) has the expression XH(u) =
∫ θ
0 dϕ

δH
δu (ϕ)

Proof. We have XH(u) = H ∇2H(u)
(iii)
=
∫ θ
0 dϕ

δH
δu (ϕ). ��

Of course, using Proposition 15.2, there are immediate counterparts of
Theorem 15.2 and Corollary 15.4 on the loop group L(S1), which we shall not
spell out explicitly.

The hypotheses guaranteeing the existence of the functional derivative of H
relative to the weakly non-degenerate L2 pairing are quite severe. For example,
the theorem can be applied to the functional H1 in Corollary 15.2, but one needs
additional smoothness. Indeed, the first thing to check is if this functional has a
functional derivative. In fact, it does not, unless we assume that u ∈ Hs(S1) for
s ≥ 2, in which case we have

DH1(u) · v =
1

2π

∫ π

−π
ds u′(s)v′(s) =

1

2π
u′(s)v(s)

∣∣∣∣
π

−π
− 1

2π

∫ π

−π
ds u′′(s)v(s)

= 〈−u′′, v〉 ,

i.e., δH/δu = −u′′. With this additional hypothesis, the gradient flow with respect
to the weak inner product b(1) defining the induced metric is given by ut = −u′′.

Therefore, to continue computing the other two gradients of H1, we need to
assume that u ∈ Hs(S1) for s ≥ 2. Provided this holds, to find the gradient relative
to the (weak) inner product b1(1) defining the normal metric, we have to check that
both
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∫ θ

0

dϕ
δH

δu
(ϕ) = −

∫ θ

0

dϕu′′(ϕ) = −u′(θ) + u′(0)

∫ θ

0

dϕ

(∫ ϕ

0

dψ
δH

δu
(ψ)

)
= −

∫ θ

0

dϕ (u′(ϕ) − u′(0)) = −u(θ) + u′(0)θ

are periodic. While the first one is periodic, the second one is not unless we assume
that u′(0) = 0. With this additional hypothesis, the gradient is given by ut = u.
However, we know from Corollary 15.2 that neither s ≥ 2, nor u′(0) = 0 is needed.
In addition, this can also be seen directly, as follows. For any u, v ∈ L(R), we have

b1(1)(∇1H(u), v) = DH(u) · v =
1

2π

∫ π

−π
ds u′(s)v′(s) = 〈u′, v′〉 (15.1)

= b1(u, v)

which shows that∇1H(u) = u.
The same situation occurs in the computation of the third gradient. In the

hypotheses of the theorem, we have

(∇2H(u)
)
(θ) = −H

∫ θ

0

dϕ
δH

δu
(ϕ) = H (u′ − u′(0)) = H u′

because the Hilbert transform of a constant is zero. Thus, the gradient flow is given
in this case by

ut = H u′ (15.20)
=

(
− d2

dθ2

) 1
2

u.

As before, the same result can be obtained easier and without any additional
hypotheses in the following way:

b2(1)(∇2H(u), v) = DH(u) · v = 〈u′, v′〉 = 〈H u′,H v′〉 (15.23)
= b2(1)(H u′, v).

15.3.7 Symplectic Structure on Periodic Functions

The form of the periodic Korteweg–de Vries (KdV) equation we shall use is

ut − 6uuθ + uθθθ = 0, (15.29)

where u(t, θ) is a real valued function of t ∈ R and θ ∈ [−π, π], periodic in θ,
and uθ := ∂u/∂θ. The KdV equation is, of course, a famous integrable infinite
dimensional Hamiltonian system. It is Hamiltonian on the Poisson manifold of all
periodic functions relative to the Gardner bracket [29]
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{F,G} = 1

2π

∫ π

−π
dθ

δF

δu

d

dθ

δG

δu
, (15.30)

where

F (u) =

∫
S1

dθ f(u, uθ, uθθ, . . .)

and similarly for G; the functional derivative δF/δu is the usual one relative to the
L2(S1) inner product, i.e.,

δF

δu
=

∂f

∂u
− d

dθ

(
∂f

∂uθ

)
+

d2

dθ2

(
∂f

∂uθθ

)
− · · · .

The Hamiltonian vector field of H(u) = 1
2π

∫ π
−πdθ h(u, uθ, uθθ, . . .) has the

expression

XH(u) =
d

dθ

(
δH

δu

)
.

For the KdV equation one takes

H(u) =
1

2π

∫ π

−π
dθ

(
u3 +

1

2
u2θ

)
. (15.31)

The Casimir functions of the Gardner bracket are all smooth functionals C for
which δC/δu = c is a constant function, i.e.,

C(u) = 〈c, u〉 = 1

2π

∫ π

−π
dθ cu(θ) = cû(0).

Thus C−1(0) is a candidate weak symplectic leaf in the phase space of all periodic
functions. The situation in infinite dimensions is not as clear as in finite dimensions,
where this would be a conclusion, because there is no general stratification theorem
and one cannot expect, in general, more than a weak symplectic form. However, in
our case, this actually holds, as shown in [73]. Indeed,

σ(u1, u2) : =
1

4π

∫ π

−π
dθ

(∫ θ

0

dϕ (u1(ϕ)u2(θ) − u2(ϕ)u1(θ))

)

=
1

2π

∫ π

−π
dθ

(∫ θ

0

dϕu1(ϕ)

)
u2(θ) =

〈∫ θ

0

dϕu1(ϕ), u2

〉

(15.32)
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defines a weak symplectic form on L(R) whose formal Poisson bracket is (15.30).
This immediately shows that there is a tight relationship with the symplectic form ω
of the complex Hilbert space L(R), the Lie algebra of the based loop groups, given
by (15.15), namely

σ

(
d2

dθ2
u, v

)
= ω(u, v)

for all u, v ∈ L(R) of class Hs, s ≥ 2. Defining

(
d

dθ

)−1

u :=

∫ θ

0

dϕu(ϕ),

the KdV symplectic form σ has the suggestive expression (see (15.28))

σ(u1, u2) =

〈(
d

dθ

)−1

u1, u2

〉
,

which is well defined on H− 1
2 (S1,R).

On the other hand, the Poisson bracket given by the Kähler symplectic form
(15.15) on L(R) is

{F,G} = 1

2π

∫ π

−π
dθ

δF

δu

(
d

dθ

)−1
δG

δu
, (15.33)

which is similarly well defined on H− 1
2 , and the Hamiltonian vector field defined

by this bracket is given by Corollary 15.4, i.e.,

ut = XH(u) =

(
d

dθ

)−1
δH

δu
. (15.34)

Now, the gradient vector field for the corresponding Kähler metric, as computed in
Theorem 15.2(iii), is written as

ut = −H

(
d

dθ

)−1
δH

δu
. (15.35)

15.4 Metriplectic Systems

In this section we define metriplectic systems and show how to construct general
classes of such systems in terms of triple brackets for both finite- and infinite-
dimensional theories. We use some of the machinery developed above to address
specific examples.
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15.4.1 Definition and Consequences

A metriplectic system consists of a smooth manifold P , two smooth vector bundle
maps π, κ : T ∗P → TP covering the identity, and two functions H,S ∈ C∞(P ),
the Hamiltonian or total energy and the entropy of the system, such that

(i) {F,G} := 〈dF, π(dG)〉 is a Poisson bracket; in particular π∗ = −π;
(ii) (F,G) := 〈dF, κ(dG)〉 is a positive semidefinite symmetric bracket, i.e.,

( , ) is R-bilinear and symmetric, so κ∗ = κ, and (F, F ) ≥ 0 for every
F ∈ C∞(P );

(iii) {S, F} = 0 and (H,F ) = 0 for all F ∈ C∞(P )⇐⇒ π(dS) = κ(dH) = 0.

The metriplectic dynamics of the system is given in terms of the two brackets by

d

dt
F = {F,H + S}+ (F,H + S) = {F,H}+ (F, S), for all F ∈ C∞(P ),

(15.36)
or, equivalently, as an ordinary differential equation, by

d

dt
c(t) = π(c(t))dH(c(t)) + κ(c(t))dS(c(t)). (15.37)

The Hamiltonian vector field XH := π(dH) ∈ X(P ) represents the conservative
or Hamiltonian part, whereas YS := κ(dS) ∈ X(P ) the dissipative part of the full
metriplectic dynamics (15.36) or (15.37).

As far as we know, the first attempts to introduce such a structure were given
in adjacent papers in [42, 51]. (See also [41].) Kaufman [42] imposed, instead
of (iii), the weaker condition {H,S} = (H,S) = 0, which is enough, as will
become apparent below, to deduce the First and Second Laws of Thermodynamics.
In the plasma examples presented, he used (iii) for a large class of functions. All
three axioms, including the degeneracy condition of (iii), were stated explicitly by
Morrison in [51, 52]. The former treated the same kinetic example as [42] along
with additional formalism, while the latter presented the metriplectic formalism
for the compressible Navier–Stokes equations with entropy production. All three
axioms were restated in [53], where the terminology metriplectic was introduced
and a detailed physical motivation for the introduction of (iii) is presented along
with other examples such as a dissipative free rigid body equation and the Vlasov–
Poisson equation with a collision term that generalizes the Landau and Balescu–
Lenard equations. In [31], under the name GENERIC (General Equations for
Non-Equilibrium Reversible Irreversible Coupling), the same geometric structure
was used to analyze many other equations; due to this paper and subsequent work
of these authors, the metriplectic formalism has been popularized. For a very
interesting modern application of this structure see [49] and for further discussion
about avenues for generalization see [55].

The definition of metriplectic systems has three immediate important conse-
quences. Let c(t) be an integral curve of the system (15.37).
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1. Energy conservation:

d

dt
H(c(t)) = {H,H}(c(t)) + (H,S)(c(t)) = 0. (15.38)

2. Entropy production:

d

dt
S(c(t)) = {S,H}(c(t)) + (S, S)(c(t)) ≥ 0. (15.39)

3. Maximum entropy principle yields equilibria: Suppose that there are n functions
C1, . . . , Cn ∈ C∞(P ) such that {F,Ci} = (F,Ci) = 0 for allF ∈ C∞(P ), i.e.,
these functions are simultaneously conserved by the conservative and dissipative
part of the metriplectic dynamics. Let p0 ∈ P be a maximum of the entropy S
subject to the constraints H−1(h) ∩ C−1

1 (c1) ∩ . . . C−1
n (cn), for given regular

values h, c1, . . . , cn ∈ R of H,C1, . . . , Cn, respectively. By the Lagrange
Multiplier Theorem, there exist α, β1, . . . , βn ∈ R such that

dS(p0) = αdH(p0) + β1dC1(p0) + · · ·+ dCn(p0).

But then, assuming that α �= 0, for every F ∈ C∞(P ), we have

{F,H}(p0) + (F, S)(p0)

= 〈dF (p0), π(p0) (dH(p0))〉+ 〈dF (p0), κ(p0) (dS(p0))〉
=
〈
dF (p0),

1
απ(p0) (dS(p0)− β1dC1(p0)− · · · − dCn(p0))

〉
+ 〈dF (p0), κ(p0) (αdH(p0) + β1dC1(p0) + · · ·+ dCn(p0))〉

= 1
α{F, S}(p0)− β1

α {F,C1}(p0)− · · · − βn

α {F,Cn}(p0)
+α(F,H)(p0) + β1(F,C1)(p0) + · · ·+ βn(F,Cn)(p0) = 0

which means that p0 is an equilibrium of the metriplectic dynamics (15.36) or
(15.37). This is akin to the free energy extremization of thermodynamics, as
noted in [52, 53] where it was suggested that one can build in degeneracies
associated with Hamiltonian “dynamical constraints.” (See also [49].)

Suppose that K ∈ C∞(P ) is a conserved quantity for the Hamiltonian part of
the metriplectic dynamics, i.e., {K,H} = 0. Then, if c(t) is an integral curve of the
metriplectic dynamics, we have

d

dt
K(c(t)) = dK(c(t)) (ċ(t)) = 〈dF (c(t)), π(c(t)) (dH(c(t)))〉

+ 〈dF (c(t)), κ(c(t)) (dS(c(t)))〉
= {K,H}(c(t)) + (K,S)(c(t)) = (K,S)(c(t)).

As pointed out in [53], this immediately implies that a function that is simulta-
neously conserved for the full metriplectic dynamics and its Hamiltonian part, is
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necessarily conserved for the dissipative part. Physically, it is advantageous for
general metriplectic systems to conserve dynamical constraints, i.e., conserved
quantitates of its Hamiltonian part and the examples given in [42, 51–53] satisfy
this condition.

15.4.2 Metriplectic Systems Based on Lie Algebra Triple
Brackets

Associated with any quadratic Lie algebra (i.e., a Lie algebra admitting a bilinear
symmetric invariant form) is a natural completely antisymmetric triple bracket. This
is used to construct Lie algebra-based metriplectic systems. The algebra so(3) is
worked out explicitly and examples are given.

15.4.2.1 General Theory

A quadratic Lie algebra is, by definition, a Lie algebra admitting a bilinear
symmetric non-degenerate invariant form κ : g × g → R (the letter κ is meant to
remind one of the Killing form in a semisimple Lie algebra). Recall that invariance
means that κ([ξ, η], ζ) = κ(ξ, [η, ζ]) for all ξ, η, ζ ∈ g or, equivalently, that
the adjoint operators adη for all η ∈ g are antisymmetric relative to κ. Non-
degeneracy (strong) means that the map g - ξ �→ κ(ξ, ·) ∈ g∗ is an isomorphism.
Finite dimensional quadratic Lie algebras have been completely classified in [48].
For finite dimensional Lie algebras, non-degeneracy is equivalent to the following
statement: κ(ξ, η) = 0 for all η ∈ g if and only if ξ = 0. In infinite dimensions this
condition is called weak non-degeneracy and it is implied by non-degeneracy but
the converse is, in general, false.

For example, let g be an arbitrary finite dimensional Lie algebra. Recall that the
Killing form is defined by κ(ξ, η) := Trace(adξ ◦ adη). If {ei}, i = 1, . . .dim g, is
an arbitrary basis of g and cpij are the structure constants of g, i.e., [ei, ej] = cpijep,
then

κ(ξ, η) = ξicpiqη
jcqjp

and hence the components of κ in the basis {ei}, i = 1, . . .dim g, are given by

κij = κ(ei, ej) = cpiqc
q
jp.

The Killing form is bilinear symmetric and invariant; it is non-degenerate if and only
if g is semisimple. Moreover, −κ is a positive definite inner product if and only if
the Lie algebra g is compact (i.e., it is the Lie algebra of a compact Lie group).
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In general, let κ be a bilinear symmetric non-degenerate invariant form and define
the completely antisymmetric covariant 3-tensor

c(ξ, η, ζ) := κ(ξ, [η, ζ]) = −c(ξ, ζ, η) = −c(η, ξ, ζ) = −c(ζ, η, ξ).

In the coordinates given by the basis {ei}, i = 1, . . .dim g, the components of c are

cijk := κimc
m
jk = −cikj = −cjik = −ckji.

This construction immediately leads to the triple bracket introduced in [10] (see
also [54]), { · , ·, ·} : C∞(g)× C∞(g)× C∞(g)→ C∞(g) defined by

{f, g, h}(ξ) := c(∇f(ξ),∇g(ξ),∇h(ξ)) := κ (∇f(ξ), [∇g(ξ),∇h(ξ)]) ,
(15.40)

where the gradient is taken relative to the non-degenerate bilinear form κ, i.e., for
any ξ ∈ g we have

κ(∇f(ξ), ·) := df(ξ),

or, in coordinates

∇if(ξ) = κij
∂f

∂ξi
,

where [κij ] = [κkl]
−1, i.e., κijκjk = δik. This triple bracket is trilinear over R,

completely antisymmetric, and satisfies the Leibniz rule in any of its variables. In
coordinates it is given by

{f, g, h} = cijk∇if∇jg∇kh = κimc
m
jkκ

ip ∂f

∂ξp
κjq

∂g

∂ξq
κkr

∂h

∂ξr

= cpjkκ
jqκkr

∂f

∂ξp
∂g

∂ξq
∂h

∂ξr
= cpqr

∂f

∂ξp
∂g

∂ξq
∂h

∂ξr
,

where cpqr are the components of the contravariant completely antisymmetric 3-
tensor c̄ associated with c by raising its indices with the non-degenerate symmetric
bilinear form κ, i.e., for any ξ, η, ζ ∈ g, we have

c̄ (κ(ξ, ·), κ(η, ·), κ(γ, ·)) := c(ξ, η, ζ).

This construction extends the bracket due to Nambu [57] to a Lie algebra setting.
Nambu considered ordinary vectors in R

3 and defined

{f, g, h}Nambu(Π) = ∇f(Π) · (∇g(Π)×∇h(Π)) , (15.41)
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where “·” and “×” are the ordinary dot and cross products. Thus, the Nambu
bracket is a special case of the triple bracket (15.40) in the case of g = so(3),
whose structure constants are the completely antisymmetric Levi–Civita symbols
εijk . Such “modified rigid body brackets” were also described in [19, 34, 47].

If g is an arbitrary quadratic Lie algebra with bilinear symmetric non-degenerate
invariant form κ, the quadratic function

C2(ξ) :=
1
2κ(ξ, ξ) (15.42)

is a Casimir function for the Lie–Poisson bracket on g, identified with g∗ via κ, i.e.,

{f, g}±(ξ) = ±κ (ξ, [∇f(ξ),∇g(ξ)]) , (15.43)

as an easy verification shows, since ∇C2(ξ) = ξ. In view of (15.43), the following
identity is obvious

{f, g}+ = {C2, f, g}

(this was first pointed out in [10]). For example, if g = so(3), the (−)Lie–Poisson
bracket

{f, g}so(3)− (Π) = −{C2, f, g}Nambu(Π) = −Π · (∇f(Π)×∇g(Π))
(15.44)

is the rigid body bracket, i.e., if h(Π) = 1
2Π · Ω, where Π i = IiΩi, Ii > 0,

i = 1, 2, 3, and Ii are the principal moments of inertia of the body, then Hamilton’s
equations d

dtF (Π) = {f, h}so(3)− (Π) are equivalent to Euler’s equations Π̇ =
Π ×Ω.

Note that given any two functions, f, g ∈ C∞(g), because the triple bracket
satisfies the Leibniz identity in every factor, the map C∞(g) - h �→ {h, f, g} ∈
C∞(g) is a derivation and hence defines a vector field on g, denoted by Xf,g : g→
g, i.e.,

〈
dh(ξ), Xf,g(ξ)

〉
= κ

(∇h(ξ), Xf,g(ξ)) = {h, f, g}(ξ) for all h ∈ C∞(g).

(15.45)

Note that Xf,f = 0. Thus, for triple brackets, two functions define a vector field,
analogous to the Hamiltonian vector field defined by a single function associated
with a standard Poisson bracket.

From (15.40) we have the following result.

Proposition 15.3. The vector field Xf,g on g corresponding to the pair of functions
f, g is given by

Xf,g(ξ) = [∇f(ξ),∇g(ξ)] . (15.46)
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Triple brackets of the form (15.40) can be used to construct metriplectic systems
on a quadratic Lie algebra g in the following manner. Let κ be the bilinear symmetric
non-degenerate form on g defining the quadratic structure and fix some h ∈ C∞(g).
Define the symmetric bracket

(f, g)κh(ξ) := −κ (Xh,f (ξ), Xh,g(ξ)) . (15.47)

Assume that −κ is a positive definite inner product. Then (f, f) ≥ 0. Thus we
have the manifold g endowed with the Lie–Poisson bracket (15.43), the symmetric
bracket (15.47), the Hamiltonian h, and for the entropy S we take any Casimir
function of the Lie–Poisson bracket. Then the conditions (i)–(iii) of Sect. 15.4.1
are all satisfied, because (h, g)κh = −κ(Xh,h, Xh,g) = −κ(0, Xh,g) = 0 for any
g ∈ C∞(g). The equations of motion (15.36) are in this case given by

d

dt
f(ξ) = κ

(
∇f(ξ), d

dt
ξ

)
= {f, h}±(ξ) + (f, S)(ξ)

= ±κ (ξ, [∇f(ξ),∇h(ξ)]) − κ (Xh,f(ξ), Xh,S(ξ))

= ∓κ (∇f(ξ), [ξ,∇h(ξ)]) − κ ([∇h(ξ),∇f(ξ)], [∇h(ξ),∇S(ξ)])

for any f ∈ C∞(g).
This gives the equations of motion

ξ̇ = ±[ξ,∇h(ξ)] + [∇h(ξ), [∇h(ξ),∇S(ξ)]] . (15.48)

Note that the flow corresponding to S is a generalized double bracket flow.
Observe also that this flow reduces to a double bracket flow and is tangent to an orbit
of the group if ∇h(ξ) = ξ. Indeed if h = 1

2κ(ξ, ξ) the symmetric bracket (15.47)
reduces to the symmetric bracket induced from the normal metric.

We remark that flows with a similar structure are discussed in the fluid dynamics
setting in [30]. We discuss the case of PDEs below.

15.4.2.2 Special Case of so(3)

If the quadratic Lie algebra is so(3), we identify it with R
3 with the cross product as

Lie bracket via the Lie algebra isomorphism ˆ : R3 → so(3) given by ûv := u× v

for all u,v ∈ R
3. Since AdA û = Âu, for any A ∈ SO(3) and u ∈ R

3, we
conclude that the usual inner product on R

3 is an invariant inner product. In terms
of elements of so(3) we have u ·v = − 1

2 Trace (ûv̂). We shall show below that the
metriplectic structure on R

3 is precisely the one given in [53].
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Recall that the Nambu bracket is given for so(3) by (15.41) and hence the
symmetric bracket (15.47) has the form

κ({Π,h, f}, {Π,h, g}) = εimn
∂h

∂Πm

∂f

∂Πn
δij ε

jst ∂h

∂Πs

∂g

∂Πt

= εimn ε sti
∂h

∂Πm

∂f

∂Πn

∂h

∂Πs

∂g

∂Πt

= ‖∇h‖2∇g · ∇f − (∇f · ∇h)(∇g · ∇h) (15.49)

where in the third equality we have used the identity εimnε sti = δmsδnt − δmtδns.
This coincides with [53, equation (31)].

With the choice S(Π) = ‖Π‖2/2 and the usual rigid body Hamiltonian, the
equations of motion (15.48) are those for the relaxing rigid body given in [53].

Comments

• In three dimensions any Poisson bracket can be written as

{f, g} = J ij
∂f

∂Πi

∂g

∂Πj
= εijkV

k(Π)
∂f

∂Πi

∂g

∂Πj
(15.50)

where i, j, k = 1, 2, 3, and V ∈ R
3. The last equality follows from the

identification of 3×3 antisymmetric matrices with vectors (the hat map discussed
above). Using the well-known fact (which is easy to show directly) that brackets
of the form of (15.50) satisfy the Jacobi identity if

V · ∇ × V = 0 , (15.51)

we conclude that

{F,G}f = {f, F,G}Nambu (15.52)

satisfies the Jacobi identity for any smooth function f ; i.e., unlike the general case
where the theorem of [10] requires f to be the quadratic Casimir, one obtains a
good Poisson bracket for any f . Thus, for the special case of three dimensions,
one can interchange the roles of Hamiltonian and entropy in the metriplectic
formalism.

• Thinking in terms of so(3)∗, the setting arising from reduction (see, e.g., [47]),
this construction leads to a natural geometric interpretation of a metriplectic
system on the manifold P = R

3. With the Poisson bracket on R
3 of (15.52),

the bundle map π : T ∗
R

3 → TR3 has the expression

πf (x,Π) =
(
x,∇f(Π)× (·)�)
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since dH(Π)� = ∇H(Π) (dH(Π) is a row vector and∇H(Π) is its transpose,
a column vector). Now the triple bracket associated with Eq. (15.48) can be used
to generate a symmetric bracket given in [17] as follows:

(F,G)BKMR(Π) = (F,G)κC = κ({Π,C, F}, {Π,C,G})
= (Π ×∇F (Π)) · (Π ×∇G(Π)) . (15.53)

where now C = ||Π ||2/2. Hence the bundle map κ : T ∗
R

3 → TR3 has the
expression

κ(x,Π) = −Π × (Π × (·)�) .
Thus, with the freedom to choose any quantity S = f as an entropy, with the

assurance that (15.51) will be satisfied because∇× V = ∇×∇f = 0, we can
take H = C and have {F, S}f = 0 and (F,H) = 0 for all F ∈ C∞(R3). The
equations of motion for this metriplectic system are

Π̇ = −Π ×∇f(Π)−Π × (Π ×∇f(Π)). (15.54)

The symmetric bracket is the inner product of the two Hamiltonian vector fields
on each concentric sphere. As discussed in [17], this symmetric bracket can
be defined on any compact Lie algebra by taking the normal metric on each
coadjoint orbit.

• The following set of equations were given in [26]:

Π̇ = ∇S(Π)×∇H(Π)−∇H(Π)× (∇H(Π)×∇S(Π)). (15.55)

Yet, this metriplectic system is identical to that obtained from (15.48),
using (15.49), viz.

Π̇ = {Π, S,H}+ κ ({Π, H,Π}, {Π, H, S}) , (15.56)

Replacing H by g in (15.49) gives

(F,G)g((Π)) = κ ({(Π), g, F}, {(Π), g, G})
= (∇g(Π)×∇F (Π)) · (∇g(Π)×∇G(Π)). (15.57)

Thus, the bundle map κ : T ∗
R

3 → TR3 has the expression

κg(x,Π) = −∇g(Π)× (∇Π × (·)�) .
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Examples. Two special cases of the equation (15.55) are of interest.

(i) If we take H = 1
2‖Π‖2 and S = c ·Π , c a constant vector, we obtain

Π̇ = c×Π −Π × (Π × c). (15.58)

(ii) If we take S = 1
2‖Π‖2 and H = c ·Π , c a constant, we obtain

Π̇ = Π × c− c× (c×Π) . (15.59)

The equation of motion (15.58) is an instance of double bracket damping, where
the damping is due to the normal metric, whereas (15.59) gives linear damping
of the sort arising in quantum systems.

• As the above examples indicate, given a Hamiltonian (or Poisson) structure on a
Riemannian manifold M , it is natural to construct a symmetric bracket of the
form (F,G) = g(XF , XG) where XF denotes the Hamiltonian vector field
corresponding to the function F and g is the metric as discussed in [28].

15.4.3 The Toda System Revisited

15.4.3.1 The Toda Lattice Equation Revisited

We note that the Toda lattice equation fits into the metriplectic picture in a
degenerate but interesting fashion since it has a dual Hamiltonian and gradient
character which may be seen by writing it in the double bracket form (15.2).

It may be viewed either as the Hamiltonian part or the dissipative part of a
metriplectic system with Hamiltonian H = 1

2 TrL
2 or entropy function S =

Tr LN , respectively, with the Toda lattice equations in the corresponding form
(15.7) or (15.2), as discussed in Sect. 15.2. This observation may be extended to
the Toda lattice flow on the normal form of any complex semisimple Lie algebra as
can be seen in [14].

15.4.3.2 Full Toda with Dissipation

It is possible to construct an interesting metriplectic system which incorporates the
full Toda dynamics.

We consider again the flow on the vector space of symmetric matrices k⊥ =
sym(n) but now restrict the flow to a generic orbit as discussed in [25] where it was
shown that the flow is integrable. The Hamiltonian is again 1

2 Tr L
2 and the flow on

full symmetric matrices is given by

L̇ = [πsL,L] (15.60)
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with πs being the projection onto the skew symmetric matrices in the lower
triangular–skew decomposition of a matrix. In this setting there are nontrivial
Casimir functions of the bracket (15.9). These are given as follows. For L an n× n
symmetric matrix set for 0 ≤ k ≤ [ 12n]

det(L− λ)k =

n−2k∑
r−0

Erk(L)λ
n−2k−r (15.61)

where the subscript k denotes the matrix obtained by deleting the first k rows and
the last k columns. Then I1k(L) = E1k(L)/E0k(L) are Casimir functions of the
generic orbit in sym(n) as shown in [25].

Thus we obtain the metriplectic systems

L̇ = [πsL,L] + [L, [L,∇I1k]] (15.62)

where the metric is the normal metric on orbits of su(n) restricted to the symmetric
matrices (identified with i times the symmetric matrices) as in [14]. Here H =
1
2 Tr L

2 and S = I1k .

15.4.4 Metriplectic Systems for PDEs: Metriplectic Brackets
and Examples

First we construct a class of metriplectic brackets based on triple brackets for infinite
systems, then we consider in detail an example based on Gardner’s bracket on S1.
Lastly, we mention various generalizations.

15.4.4.1 Symmetric Brackets for PDEs Based on Triple Brackets

Similary to Sect. 15.4.2, we can construct metriplectic flows for infinite-dimensional
systems from completely antisymmetric triple brackets of the form

{E,F,G}
=
∫
S1dθ1

∫
S1dθ2

∫
S1dθ3 Cijk(θ1, θ2, θ3) (PiEu)(θ1) (PjFu)(θ2) (PkGu)(θ3)

(15.63)

where E, F , and G are smooth functions on S1, Cijk is a smooth function on
S1 × S1 × S1 which is completely antisymmetric in its arguments, so as to assure
complete antisymmetry of {E,F,G}. In addition, we denote Eu := δE/δu, etc.
Let Pi, i = 1, 2, 3, be pseudo-differential operators. Evidently, the triple bracket
of (15.63) is trilinear and completely antisymmetric in E,F,G.
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From (15.63) and a HamiltonianH , we construct a symmetric bracket as follows:

(F,G)H =

∫
S1

dθ′
∫
S1

dθ′′ {U(θ′), H, F}G (θ′, θ′′) {U(θ′′), H,G} , (15.64)

where U(θ) in (15.64) denotes the functional

U(θ) : u �→
∫
S1

dθ′u(θ′)δ(θ − θ′). (15.65)

We shall use this notation in subsequent expressions below. The “metric” G is
assumed to be symmetric and positive semidefinite, i.e., the smooth function G :
S1 × S1 → R satisfies G (θ′, θ′′) = G (θ′′, θ′) and

∫
S1

dθ′
∫
S1

dθ′′ G (θ′, θ′′)f(θ′)f(θ′′) ≥ 0 (15.66)

for all functions f ∈ C∞(S1). Therefore, by construction, it is clear that (15.64)
satisfies the following:

(i) (F,G)H = (G,F )H for all F,G,
(ii) (F,H)H = 0 for all F , and

(iii) (F, F )H ≥ 0 for all F .

As a special case, suppose Pi = P for all i = 1, 2, 3; then (15.63) becomes

{E,F,G} =

∫
S1

dθ1

∫
S1

dθ2

∫
S1

dθ3 C (θ1, θ2, θ3)P(θ1)Eu P(θ2)Fu P(θ3)Gu .

(15.67)

As a further specialization, suppose C (θ1, θ2, θ3) is given by

C (θ1, θ2, θ3) = A(θ1, θ2) +A(θ2, θ3) +A(θ3, θ1), (15.68)

where A is any antisymmetric function, i.e.,

A(θ1, θ2) = −A(θ2, θ1) . (15.69)

The form (15.68), assuming (15.69), assures complete antisymmetry of C .
Finally, a particularly interesting self-contained case would be to suppose that

the A’s come from some Poisson bracket, according to

A(θ1, θ2) = {U(θ1), U(θ2)} . (15.70)

It would be quite natural to choose the entropy, S, to be a Casimir function of this
bracket and to choose this bracket as the Hamiltonian part of the metriplectic system
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with symmetric bracket given by (15.64). We give an example of this construction
in Sect. 15.4.4.2.

It is evident that one can construct a wide variety of symmetric brackets based
on triple brackets. For example, one can choose the pseudo-differential operators
from the list {I , d/dθ, (d/dθ)−1,H }, where I is the identity operator, and the
Hamiltonian,H , and entropy (Casimir)C could be one of the following functionals:

H0 =

∫
S1

dθ u (15.71)

H2 =

∫
S1

dθ u2/2 (15.72)

H1 =

∫
S1

dθ u′2/2 (15.73)

HKdV =

∫
S1

dθ
(
u3 + u′2/2

)
. (15.74)

In Sect. 15.4.4.2 we will construct a metriplectic system based on the Gardner
bracket (15.30) of Sect. 15.3.7. To avoid complications, we choose a simple
example, yet one that displays general features of a large class of 1 + 1 energy
conserving dissipative system.

15.4.4.2 Metriplectic Systems Based on the Gardner Bracket

For simplicity we choose Pi = I for all i, and as mentioned above, we suppose
A(θ1, θ2) is generated from the Gardner bracket (15.30), i.e.,

A(θ1, θ2) := {U(θ1), U(θ2)} =
∫
S1

dθ δ(θ − θ1)
d

dθ
δ(θ − θ2) = δ′(θ1 − θ2) ,

(15.75)

where prime denotes differentiation with respect to argument and δ′(θ1 − θ2) is
defined by

∫
S1

dθ1

∫
S1

dθ2δ
′(θ1 − θ2)f(θ1)g(θ2) = −

∫
S1

dθ1

∫
S1

ds δ′(s)f(θ1)g(θ1 − s)

=

∫
S1

dθ1f(θ1)g
′(θ1)

= −
∫
S1

dθ1

∫
S1

dθ2δ
′(θ2 − θ1)f(θ1)g(θ2)
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for any f, g ∈ C∞(S1), which shows that δ′(θ2 − θ1) = −δ′(θ1 − θ2). With this
choice for A we obtain

C (θ1, θ2, θ3) = δ′(θ1 − θ2) + δ′(θ2 − θ3) + δ′(θ3 − θ1) ,

and Eq. (15.67) becomes

{E,F,G} =
∫
S1

dθ1

∫
S1

dθ2

∫
S1

dθ3 [δ′(θ1 − θ2) + δ′(θ2 − θ3) + δ′(θ3 − θ1)] ·

· Eu(θ1)Fu(θ2)Gu(θ3)

=

(∫
S1

dθ̄ Gu(θ̄)

)∫
S1

dθ Fu(θ)E
′
u(θ)

+

(∫
S1

dθ̄ Eu(θ̄)

)∫
S1

dθ Gu(θ)F
′
u(θ)

+

(∫
S1

dθ̄ Fu(θ̄)

)∫
S1

dθ Eu(θ)G
′
u(θ). (15.76)

We shall construct a metriplectic system of the form

Ḟ = {H,F,G} +
∫
S1

dθ′
∫
S1

dθ′′ {U(θ′), S, F}G (θ′, θ′′) {U(θ′′), S,G} ,

using the Gardner bracket (15.30).
Note that if F = H0, the Casimir for the Gardner bracket (15.30), then, since

δH0/δu = 1, we obtain

{F,H0, G} =
∫
S1

dθ FuG
′
u (15.77)

which is precisely the Gardner bracket. To see this, let us compute, for example, the
integral in the third term of (15.76). Changing variables s = θ3 − θ1 we get

∫
S1dθ1

∫
S1dθ2

∫
S1dθ3 δ

′(θ3 − θ1)Eu(θ1)Gu(θ3)

= − ∫
S1ds

∫
S1dθ3δ

′(s)Eu(θ3 − s)Gu(θ3) =
∫
S1 dθ3E

′
u(θ3)Gu(θ3).

A similar computation shows that the first and second terms vanish.
In order to construct the symmetric bracket in (15.64), we need the following,

computed using (15.76):

{U(θ), H,G} = −
(∫

S1

dθ̄ Gu(θ̄)

)
H ′
u(θ) +

∫
S1

dθ̄ Gu(θ̄)H
′
u(θ̄)

+

(∫
S1

dθ̄ Hu(θ̄)

)
G′
u(θ). (15.78)
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Now with the counterpart of (15.78) for the functionalF with U(θ′), a choice for
H , and a choice for G , we can construct (F,G)H . We make the following choices:

H2(u) =

∫
S1

dθ
u2

2
, S(u) := H0(u) =

∫
S1

dθ u (15.79)

G (θ′, θ′′) = δ(θ′ − θ′′) . (15.80)

Now choose H2 from (15.79) and insert it into (15.78) which gives

{U(θ), H2, G} = −
(∫

S1

dθ̄ Gu(θ̄)

)
u′(θ) +

∫
S1

dθ̄ Gu(θ̄)u
′(θ̄) + SG′

u(θ)

(15.81)

and to construct the symmetric bracket (15.64), we need

{U(θ′′), H2, S} = −u′(θ′′). (15.82)

Thus, the equations of motion are

d

dt
F = {F,H0, H2}+ (F, S)H2

where

(
F, S

)
H2

=

∫
S1

dθ′
∫
S1

dθ′′ {U(θ′), H2, F}G (θ′, θ′′) {U(θ′′), H2, S} . (15.83)

This yields

ut − uθ = S uθθ +Q with Q :=

∫
S1

dθ′|uθ′ |2 . (15.84)

Equation (15.84) has several interesting features. For fixed given constant S and
Q, it is a linear equation composed of the heat equation with a source and with the
inclusion of a linear advection term. One can proceed to solve this equation by the
usual method of constructing a temporal Green’s function out of the heat kernel and
expanding in a Fourier series. After such a solution is constructed, one must enforce
the fact that the global quantities S and Q are both time dependent and, importantly,
dependent on the solution so constructed. Only after these constraints are enforced
would one actually have a solution. Pursuing this construction, although interesting,
is outside the scope of this paper and will be treated elsewhere.

We observe that the equation (15.84) is metriplectic. Indeed, by construction,
we have a Poisson bracket (15.77) (the Gardner bracket) and a symmetric bracket
(15.83). Since these were constructed out of triple brackets, property (iii) of
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Definition in Sect. 15.4.1 holds. Positive semidefiniteness of the symmetric bracket
follows from (15.81).

The nature of the dissipation of (15.84) is of particular interest in that it involves
the global quantities S and Q. This is reminiscent of collision operators such as the
Boltzmann, generalized Fokker–Planck, Landau, Lenard–Balescu, and other such
operators (see, e.g., [53]). (Note also that non-local terms occur in the dissipative
brackets discussed in, e.g., [37,39].) However, the usual dissipation in 1+1 systems
is local in nature (see Sect. 15.4.5) and dissipates energy, while (15.84) conserves
energy like any good collision operator and does so in a system with a single spatial
dimension. Thus the metriplectic construction of this section has pointed to a quite
natural type of dynamical system that has dynamical versions of both the first and
second laws of thermodynamics. The pathway for constructing other systems with
nonlinear and dispersive Hamiltonian components, other kinds of dissipation, etc. is
now cleared, and some will be considered in future publications.

15.4.4.3 Some Metriplectic Generalizations

It is evident that many generalizations are possible. We mention a few.

• Without destroying the symmetries or formal metriplectic bracket properties, we
could allow one or both of the functions C and G to depend on the field variable
u or even contain pseudodifferential operations. In fact, such ideas were used in
similar brackets in [28] to facilitate numerical computation.

• It is clear how to generalize (15.64) to preserve more constraints, say I1, I2, . . . ,
in addition to H . One first constructs the completely antisymmetric multilinear
brackets {E,F,G,H, . . . } paralleling (15.63), and then, analogous to (15.64),
constructs

(F,G)H,I1,I2,... =

∫
S1

dθ′
∫
S1

dθ′′ {U(θ′), H, I1, I2, . . . , F}G (θ′, θ′′) ·

· {U(θ′′), H, I1, I2, . . . , G} . (15.85)

The bracket (F,G)H,I1,I2,... is guaranteed to be symmetric, conserve the invari-
ants, and be positive semidefinite.

• It is of general interest to have metriplectic systems of the form

Ḟ = {H,F,G} +
∫
S1

dθ′
∫
S1

dθ′′ {U(θ′), S, F}G (θ′, θ′′) {U(θ′′), S,G}

(such as our example of Sect. 15.4.4.2) for a suitably chosen function G; here H
is the Hamiltonian and S is the entropy. Exploring the mathematics of when this
is possible is an area to pursue.

• The construction here is easily extendable to higher spatial dimensions. For
example, consider the following triple bracket given in [10]:
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{E,F,G} =
∫

D

d6z Ef [Ff , Gf ] , (15.86)

where z = (q, p) is a canonical six-dimensional phase space variable, f(z, t) is
a phase space density, as in Vlasov theory, and the “inner” Poisson bracket is
defined by

[f, g] = fq · gp − fp · gq . (15.87)

We assume that the domain D with boundary conditions enables us to set all
surface terms obtained by integrations by parts to zero, thereby assuring complete
antisymmetry. Inserting the quadratic CasimirC2 :=

∫
D
d6z f2/2 into (15.86) gives

{F,G}V P = {C2, F,G} =
∫

D

d6z f [Ff , Gf ] ,

the Lie–Poisson bracket for the Vlasov–Poisson system, as given in [50]. Thus, this
bracket with the quadratic Casimir is formally akin to the construction given in
Sect. 15.4.2.1 (although we note it reduces to a good bracket for any Casimir and in
this way is like the case of so(3) of Sect. 15.4.2.2). The triple bracket of (15.86) can
be used in a generalization of the bracket of (15.64) to obtain a variety of energy
conserving collision operators, with a wide choice of Casimirs as entropies.

15.4.5 Hybrid Dissipative Structures

Even if a system is not metriplectic, it is of interest to see if it can be obtained from
an equation which consists of a Hamiltonian part and a gradient part with respect to
a suitable Poisson bracket and metric, respectively.

For KdV-like equations, energy (the Hamiltonian) is generally not conserved
when dissipation is added to the system. This is common for physical systems,
but a more complete model would conserve energy while accounting for heat
loss, i.e., entropy production. In the terminology of [55], models that lose energy,
such as those treated here and those described by the double bracket formalism
of Sect. 15.2.1, are incomplete, while those that do represent dynamical models of
the laws of thermodynamics, such as metriplectic systems, are termed complete.
Although incomplete systems do not conserve energy, they may conserve other
invariants, and building this in represents an advantage of various bracket formula-
tions. Thus, we construct incomplete hybrid Hamiltonian and dissipative dynamics
by combining a Hamiltonian and a gradient vector field according to the prescription

ut = {u,H}+ (u, S), (15.88)
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where u �→ {u,H} is a Hamiltonian vector field generated by H and u �→ (u, S)
is a gradient vector field generated by S (which could be H). Thus, ( , ) is, up to a
sign, an inner product on the space of functions u.

Consider the following examples:

• With the usual KdV Hamiltonian of (15.31) and the Gardner bracket of (15.30)
describing the Hamiltonian vector field, together with the choice

S(u) = H1(u) =
1

4π

∫ π

−π
dθ (uθ)

2

we obtain for the gradients of Corollary 15.2

(i) ut = {u,H} − ∇1H1 = −uθθθ + 6uuθ − u
(ii) ut = {u,H} − ∇H1 = −uθθθ + 6uuθ + uθθ

(iii) ut = {u,H} − ∇2H1 = −uθθθ + 6uuθ −H (uθ)

which is the KdV equation of (15.29) with the inclusion of a new term that
describes dissipation. Case (i) corresponds to simple linear damping, case (ii) to
“viscous” diffusion, and case (iii) to the equation of [61] which adds a term to
the KdV equation that describes Landau damping. For these systems the KdV
invariant

∫ π
−πdθ u

2 serves as a Lyapunov function.
• Choosing H = S = H1, the Kähler Hamiltonian flow of (15.34) together with

the dissipative flow generated by (15.21), yields

ut = {u,H1} − ∇2H1 = −uθ −H (uθ)

which describes simple advection with Landau damping. This equation possesses
the damped traveling wave solution.

• We note that we can derive the heat equation from a symmetric bracket of the
form (15.64), again with G (θ′, θ′′) = δ(θ′ − θ′′). Using this G and noting
{U(θ), H0, F} = G′

u(θ), we obtain

(F,G)H0 =

∫
S1

dθ F ′
uG

′
u . (15.89)

Let us compute, for example, Ḟ (u) = (F,−H2)H0 (see (15.72)). Since
δH2/δu = −u, we obtain

∫
S1

d θFu u̇ =
d

dt
F (u) = (F,H2)H0 = −

∫
S1

dθ F ′
uu

′ =
∫
S1

dθ Fuu
′′.

This yields

ut = uxx

which is the heat equation.
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From these examples, it is clear how a variety of hybrid Hamiltonian and dissipative
flows can be constructed from the machinery we have developed. For example, if
we replace the KdV Hamiltonian byH(u) =

∫
S1dθ

(
1
2uH (uθ) +

1
3u

3
)
, we obtain

the Benjamin-Ono equation with the various dissipative terms. Related ideas applied
to fluid dynamics may be found in [30].
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Chapter 16
Boundary Tracking and Obstacle Avoidance
Using Gyroscopic Control

Fumin Zhang, Eric W. Justh, and P.S. Krishnaprasad

Abstract For some time now, control-theoretic studies of collective motion of
particles have shown the effectiveness of gyroscopic interactions in establishing
stable spatiotemporal patterns in free space. This paper is concerned with strategies
(respectively feedback laws) that prescribe (respectively execute) gyroscopic inter-
action of a single unit-speed particle with a fixed obstacle in space. The purpose
of such interaction is to avoid collision with the obstacle and track associated
(boundary) curves. Working in a planar setting, using the language of natural frames,
we construct a steering law for the particle, based on sensing of curvature of the
boundary, to track a Bertrand mate of the same. The curvature data is sensed at the
closest point (image particle) on the boundary curve from the current location of
the unit-speed particle. This construction extends to the three-dimensional case in
which a unit-speed particle tracks a prescribed curve on a spherical obstacle. The
tracking results exploit in an essential way, the method of reduction to shape space,
and stability analysis of dynamics in shape space.
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16.1 Introduction

Tracking the boundary of a fixed structure (obstacle) is a biologically plausible
mechanism for guidance and has applications in robotics. Here we are concerned
specifically with animals (or vehicles) whose motion remains within certain upper
and lower constraints on speed. For locomoting animals (running, flying, or
swimming), there are certain (gait-dependent) ranges of speeds for which the
efficiency of motion is optimized. It is then reasonable to hypothesize that the
primary control input available to the animal to achieve a certain objective through
motion is steering control. Precisely the same situation occurs in vehicles such
as UAVs (unmanned aerial vehicles): speeds are kept within a restricted range
to optimize distance covered or duration in the air, while desired trajectories are
achieved through steering control.

Designing boundary-tracking steering laws in the planar setting is possible using
simple systems of equations involving distances and angles. However, there are sev-
eral major advantages to considering instead the differential geometric techniques
described in this paper. First, using the language of curves and moving frames,
the concepts can be generalized to three-dimensional motion in a straightforward
and appealing way. Second, the filtering and interpretation of biological motion
data (particularly three-dimensional trajectory data) are facilitated by the same
techniques [5, 13]. Finally, the problem of boundary tracking can be placed within
the same framework as successful (and biologically plausible) formulations of
steering laws for formation control and pursuit [6–8, 14].

Here we consider a particle (representing an animal or vehicle) moving at unit
speed in the presence of a fixed rigid body (i.e., an obstacle), and the prototype
problem we consider is boundary tracking with collision avoidance. In the plane,
the moving particle is subject to steering (i.e., curvature) control. From the point of
view of mechanics, we are considering particle motion subject to gyroscopic forces;
i.e., forces which change the direction of motion of the particle without altering
its kinetic energy (and hence its speed). Recently, the idea of using gyroscopic
forces for obstacle avoidance in robotics has gained renewed attention [3, 16, 20],
and similar ideas have also started appearing in behavioral psychology [4]. In
this paper, we draw strong analogies with recent work on two-vehicle interaction
laws for formation control [6, 7] to develop a novel formulation of a gyroscopic
boundary tracking and collision avoidance law. In the planar setting, we prove a
global convergence result for regular obstacle boundaries enclosing convex regions.
The key calculations are also shown to generalize to the three-dimensional setting,
where we consider the interaction of a unit-speed particle with a prescribed curve
on a spherical obstacle surface.

In robotics, two problems related to boundary tracking are curve tracking and
trajectory tracking (where trajectory tracking has the additional requirement that
points on the prescribed curve be reached at specific times). The distinctions
between boundary tracking and curve/trajectory tracking are both mathematical
(due to the noncollision requirement) and practical (due to the differences in sensing
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and processing). Also, formulations of robotic curve/trajectory tracking problems
often use a more detailed model of the vehicle than the unit-speed particle model we
use. Nonetheless, our planar boundary-tracking approach can be viewed as building
on earlier work in planar robotic curve/trajectory tracking (e.g., [11, 15]). For
simultaneously tracking a spherical curve and avoiding collision with the sphere—
the problem treated in Sect. 16.4—features of both boundary tracking and curve
tracking are evident.

This paper is organized as follows. In Sect. 16.2 we introduce the planar model
for boundary tracking in which a unit-speed particle (the “free particle”) interacts
with the closest point (assumed to be unique) on a convex obstacle boundary.
In Sect. 16.3 the concept of a Bertrand mate to a curve is used to describe the
boundary tracking strategy. Next, the steering law employed to achieve planar
boundary tracking is presented and interpreted, along with the Lyapunov function
used to prove convergence. In the convergence proof, a particular choice of variables
is used, foreshadowing the convergence proof for the spherical curve tracking
law of Sect. 16.4. A key step in both the planar and three-dimensional setting is
selecting the boundary tracking law so as to make the closed-loop “shape dynamics”
autonomous, which enables us to use the usual LaSalle invariance principle for
autonomous systems to prove convergence. The spherical curve tracking law
analyzed in Sect. 16.4 can be viewed as a restricted three-body problem in which
the free particle responds to the closest point (guide point) on the spherical
curve (guiding curve), as well as the closest point (shadow point) on the sphere
(obstacle). The free particle thus simultaneously tracks the guiding curve and avoids
collision. Furthermore, the form of the steering law suggests a biologically plausible
mechanism for achieving the simultaneous objectives of curve tracking and obstacle
avoidance in three dimensions.

16.2 Planar Boundary Tracking

It is useful to distinguish between strategies and the feedback laws used to execute
strategies. In particular, when analyzing biological data, it is often desirable to test
hypotheses about what strategy a moving animal is using without having to perform
the modeling and data extraction needed to test hypotheses about specific feedback
laws. The mathematical distinction between strategies and feedback laws is made
precise in Sect. 16.3 (for the planar setting) and Sect. 16.4 (for the spherical obstacle
setting).

16.2.1 Models

In the planar setting, consider a particle (which we will refer to as the “free particle”)
moving at unit speed (and subject to steering control) in the presence of a single
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obstacle (i.e., the region enclosed by a simple closed curve) whose boundary is
twice continuously differentiable. Suppose that at each instant of time, the point
on the obstacle boundary which is closest to (i.e., the minimum Euclidean distance
from) the moving particle is unique. This closest point on the obstacle boundary,
which we call the “shadow point,” moves along the boundary curve. (We assume
uniqueness of the closest point in order to streamline the discussion and bring out
the key ideas. Of course, in dealing with real-world obstacles, nonuniqueness of the
closest point is an important issue.)

Let r1 denote the position of the shadow point, let x1 denote the unit tangent
vector to the boundary curve at the shadow point, and let y1 denote the unit normal
vector. We use the convention that a unit normal vector completes a right-handed
orthonormal frame with the corresponding unit tangent vector. In terms of the arc-
length parameterization, the boundary curve can be described by

r′
1 = x1,

x′
1 = y1κ,

y′
1 = −x1κ, (16.1)

where the prime denotes differentiation with respect to arc-length parameter s; r1,
x1, and y1 are R

2-valued functions of s; and κ is the plane curvature function for
the boundary curve. Using the chain rule, we can express the time-evolution of the
shadow point as

ṙ1 = νx1,

ẋ1 = νy1κ,

ẏ1 = −νx1κ, (16.2)

where ν = ds/dt. Because the shadow point depends on the motion of the free
particle, ν depends on both the boundary curve and on the trajectory of the free
particle.

Letting r2 denote the position of the free particle, x2 the unit tangent vector to its
trajectory, y2 the unit normal vector, and u the steering control for the free particle,
we have the following system of equations for the “formation” consisting of the free
particle and the shadow point:

ṙ1 = νx1, ṙ2 = x2,

ẋ1 = νy1κ, ẋ2 = y2u,

ẏ1 = −νx1κ, ẏ2 = −x2u. (16.3)

Note that x2 describes the heading of the free particle, i.e., its (instantaneous)
direction of motion. In (16.3), κ may be considered given (in practice, κ may be
derived from sensor measurements); ν is a deterministic function of (r1,x1,y1),
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Fig. 16.1 Positions and frames for the trajectory of the moving particle (r2, x2, y2) and for the
closest point on the boundary curve (r1, x1, y1) (from [20])

(r2,x2,y2), and κ; and u is the control input we apply to avoid colliding with the
obstacle and to achieve boundary tracking (see Fig. 16.1). A control law is a feed-
back function u of (r1,x1,y1), (r2,x2,y2), and κ. We seek to prove analytically
that collision avoidance and boundary tracking are achieved for particular choices
of the control law.

16.2.2 Boundary-Curve Frame Convention

We define r = r2−r1 to be the vector from the shadow point on the boundary curve
to the free particle. We assume that initially

|r| > 0, (16.4)

and we will prove that our boundary-tracking steering law then guarantees (16.4)
for all future time. Using |r| = (r · r)1/2, we compute

d

dt
|r| = r · ṙ

|r| =
r

|r| · (x2 − νx1) =

(
r

|r| · x2

)
− ν

(
r

|r| · x1

)
. (16.5)

The first-order necessary conditions for the shadow point to be an extremum of the
Euclidean distance from the free particle to the curve are

r · x1 ≡ 0, (16.6)
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and

y1 ≡ ± r

|r| , (16.7)

where the correct choice of sign depends on whether the boundary curve is to
the right or left of the free particle, and on what convention is chosen for the positive
direction along the boundary curve.

In order to fix a convention for the positive direction of the boundary curve, we
assume that initially

r · y2 �= 0, (16.8)

i.e., that the free particle is not initially heading directly toward or directly away
from the shadow point on the boundary curve. We will prove that under this
assumption (and other appropriate hypotheses), our boundary-tracking steering law
derived below guarantees (16.8) for all future time. We may thus choose the positive
direction of the boundary curve such that

x1 · x2 > 0. (16.9)

With this convention, the choice of sign in (16.7) is determined by whether the
boundary curve is to the left or right of the free particle. Furthermore, because of
our convention that (x1,y1) forms a right-handed frame, (16.9) implies that the
sign of κ depends not just on the boundary curve, but on the position and heading of
the free particle, as well. (Although curvature is a property of an oriented boundary
curve alone, we are allowing the orientation of the boundary curve to depend on the
initial relative position and heading of the free particle.)

We can derive an expression for ν by differentiating (16.6) with respect to time,
to obtain

d

dt
(r · x1) = ṙ · x1 + r · ẋ1

= (x2 − νx1) · x1 + (r · y1) νκ

= x1 · x2 − ν + (r · y1) νκ

= 0. (16.10)

We then have

ν =
x1 · x2

1− (r · y1)κ
, (16.11)

where we assume that 1 − (r · y1)κ > 0. If (r · y1)κ < 0, we say that the
boundary “curves away from” the free particle, and if (r · y1)κ > 0, we say that the
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boundary “curves toward” the free particle. (The intermediate case corresponds to
κ = 0.) We note that there is a singularity in the expression for ν when |r| = 1/|κ|
and the boundary curves inward toward the free particle.

16.3 Planar Bertrand Mate Strategy

In [17] the concept of strategy in the context of pursuit is defined as a particular
submanifold of the configuration space of a pair of particles. Specific steering laws
which leave this submanifold invariant (or approximately invariant), and which
drive the system toward this submanifold from general initial conditions, are also
discussed. Taking this viewpoint, we can identify the boundary-tracking strategy
with the submanifold

M2D(r0) =

{([
x1 y1 r1
0 0 1

]
,

[
x2 y2 r2
0 0 1

])
∈ SE(2)× SE(2)

∣∣∣∣
|r| = |r2 − r1| = r0, x1 = x2, y1 = y2, r · x1 = 0

}
, (16.12)

i.e., the free particle moves along a Bertrand mate of the boundary curve [1,12], with
a separation r0. The control law presented below leaves M2D(r0) invariant, and
furthermore, drives the system to M2D(r0) for a large set of initial conditions. (For
a regular curve r1 parameterized by s as in Eq. (16.1), a Bertrand mate, when one
exists, is a regular curve r2 satisfying

r2 = r1 + λy1, x2 = x1, y2 = y1, (16.13)

where λ > 0 is a constant. The two curves r1 and r2 are then referred to as
a Bertrand pair. The notion of Bertrand pairs generalizes the concept of parallel
straight lines to “parallel” curves.)

16.3.1 Lyapunov Function and Steering Law

Consider the Lyapunov function candidate (from [20])

V2D = − ln(x1 · x2) + h(r · y1), (16.14)

where h(·) is continuously differentiable and satisfies certain hypotheses, to be
specified below. Since y1 = ±r/|r|, we have h(r · y1) = h(±|r|). There are thus
two cases that need to be treated separately. We will focus on the y1 = r/|r| case,
and note that analogous results hold for y1 = −r/|r|.
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The term in (16.14) involving x1 · x2 penalizes heading misalignment between
the free particle and the shadow point moving on the boundary curve. The term
h(|r|) in (16.14) involves the separation between the free particle and the shadow
point. We assume that

lim
ρ→0

h(ρ) =∞, (16.15)

so that V blows up as the free particle approaches collision with the boundary curve.
For y1 = r/|r|, following [20], we take as our steering law

u = μ(x1 · y2)− f(|r|)
(

r

|r| · y2

)
+ νκ, (16.16)

where ν is given by (16.11) and f(ρ) = dh/dρ (Fig. 16.2). One possible choice for
f(·) is

f(|r|) = α

[
1−

(
r0
|r|
)2
]
, (16.17)

where α and r0 are positive constants, and r0 represents the desired separation
between the free particle and the boundary curve during boundary tracking. The
term in (16.16) involving f(·) serves to steer the free particle toward or away from
the boundary curve to achieve the desired separation.

Then differentiating V2D along trajectories of (16.3) for steering law u given by
(16.16) yields

V̇2D = − (ẋ1 · x2 + x1 · ẋ2)

x1 · x2
+ f(|r|) d

dt
|r|

= − [ẋ1 · x2 + (x1 · y2)u]

x1 · x2
+ f(|r|)

(
r

|r| · x2

)

= −x1 · y2

x1 · x2

[
u− νκ+ f(|r|)

(
r

|r| · y2

)]

= −μ(x1 · y2)
2

x1 · x2
, (16.18)

where we have used x2 · y1 = −x1 · y2, and

0 =
r

|r| · x1 =

(
r

|r| · x2

)
(x1 · x2) +

(
r

|r| · y2

)
(x1 · y2) . (16.19)

Thus, for y1 = r/|r|, we have V̇2D ≤ 0 and V̇2D = 0 if and only if
(

r
|r| · x2

)
= 0.
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Fig. 16.2 Examples of
functions h(·) (solid) and f(·)
(dashed) meeting the
requirements (A1), (A2), and
(A3) in Proposition 16.1
(from [20])

Expression (16.16) is simple to interpret. The term μ(x1 · y2) serves to align the
heading of the free particle with the tangent vector to the shadow point trajectory
on the boundary curve. The term involving f(·) serves to steer the free particle
toward or away from the boundary curve to achieve the desired separation. Finally,
the term involving κ enables the free particle to respond to the nonzero curvature of
the boundary curve.

This way of thinking about obstacle avoidance and boundary tracking leads to the
idea that the role of the sensors on a moving vehicle (or animal), represented by the
free particle, is to identify the closest point on the boundary curve, and to estimate
its relative position and the curvature of the boundary at that point (the shadow
point). Once the shadow point is initially identified, it can in principle be tracked
as the interaction of the free particle and shadow point evolves. However, there is
a requirement to periodically scan in other directions, in case the local minimizer
being tracked ceases to be a global minimizer at some point in time.

16.3.2 Shape Variables

Observe that under control (16.16), we have (for y1 = r/|r|)

d

dt
(r · y1) = ṙ · y1 + r · ẏ1 =(x2 − νx1) · y1− νκ(r · x1)=x2 · y1, (16.20)

d

dt
(x2 · x1) = ẋ2 · x1 + x2 · ẋ1 = (y2 · x1)u + (x2 · y1)νκ

= μ(x1 · y2)
2 − (x1 · y2)

(
r

|r| · y2

)
f(|r|), (16.21)

d

dt
(x2 · y1) = ẋ2 · y1 + x2 · ẏ1 = (y2 · y1)u − (x2 · x1)νκ

= μ(x2 · x1)(x1 · y2)− (x2 · x1)

(
r

|r| · y2

)
f(|r|). (16.22)
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Also, note that

r·y2 = (r·x1)(x1·y2)+(r·y1)(y1·y2) = (x2·x1)(r·y1) = (x2·x1)|r|. (16.23)

Thus, if we define the shape variables

0 = r · x1,

z1 = r · y1 = |r|,
z2 = x2 · x1,

z3 = x2 · y1, (16.24)

system (16.20)–(16.22) becomes

ż1 = z3,

ż2 = μz23 + z3z2f(z1),

ż3 = −μz2z3 − z22f(z1), (16.25)

which is an autonomous system. Observe that if initially z22 + z23 = 1 in (16.25),
then z22 + z23 = 1 for all time. Furthermore,

V2D = − ln(z2) + h(z1), (16.26)

and

V̇2D = −μz
2
3

z2
= − μ

z2

(
1− z22

)
. (16.27)

Although (16.24) is not the only possible way to define shape variables, it is the
approach that generalizes most naturally to three dimensions (see Sect. 16.4 below).

16.3.3 Convergence Result

Remark 16.1. Equilibria of (16.25) can be viewed as “relative equilibria” for the
non-autonomous system (16.3) with control law (16.16).

Remark 16.2. For the special case of a circular obstacle, κ is constant, and (16.3)
with control law (16.16) is an autonomous system. This special case is treated
in [20].

Remark 16.3. It has been recently shown in [10] that the control law (16.16)
achieves input-to-state stability (ISS) for the relative equilibria of the nonlinear
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Fig. 16.3 Simulation of a free particle tracking an elliptical boundary curve in the plane using
control law (16.16). Left plot: the free particle starts at coordinates (−11,0) with an initial heading
of +10◦ measured counterclockwise from the x-axis. The free particle follows the boundary curve
to its right, circling the obstacle clockwise. Right plot: the free particle starts at the same initial
position, but with an initial heading of −10◦. Then the free particle follows the boundary curve to
its left, circling the obstacle counterclockwise. In both cases, the desired separation between the
free particle and the boundary curve is set to one distance unit (from [20])

system dynamics (16.3). This ISS property justifies that control law (16.16) has
a certain robustness to disturbances, which agrees with observations in robotic
applications [19].

Proposition 16.1. Consider the planar dynamics (16.3) with control law (16.16)
for a unit-speed free particle and the closest point to it on a boundary curve.
Assume that the boundary curve encloses a convex region in the plane, the free
particle initially lies outside this convex region, and initially (16.9) is satisfied with
y1 = r/|r|. Let (z1, z2, z3) be defined by (16.24). Assume also that

(A1) dh/dρ = f(ρ), where f(ρ) is a Lipschitz continuous function on (0,∞), so
that h(ρ) is continuously differentiable on (0,∞);

(A2) f(ρ) = 0 at a finite number of isolated points;
(A3) limρ→0 h(ρ) =∞, limρ→∞ h(ρ) =∞, and ∃ρ̃ such that h(ρ̃) = 0;
(A4) μ > 0 is a Lipschitz continuous function of (z1, z2, z3).

Then for arbitrary initial conditions satisfying 0 < z2 ≤ 1 and z1 �= 0, system
(16.25) converges to the set of its equilibria for which z2 = 1 and z3 = 0.

Proof. Note that V2D → ∞ as z1 → ∞, z1 → 0, or z2 → 0. Also, z22 + z23 ≡ 1.
Therefore, the sublevel sets of V2D are compact. Hence, V̇2D always exists, satisfies
V̇2D ≤ 0, and V̇2D = 0 if and only if z2 = 1.

Then by LaSalle’s Invariance Principle (for autonomous systems) [9], we
conclude that system (16.25) converges to the largest invariant set with z2 = 1.
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But z2 = 1 implies z3 = 0, and (16.25) reduces to

ż1 = 0, ż2 = 0, ż3 = −f(z1). (16.28)

Thus, (16.25) converges to the set of its equilibria for which z2 = 1, z3 = 0, and
f(z1) = 0. By assumption (A2), these equilibria are isolated, and therefore we can
conclude that (z1, z2, z3) converge to an equilibrium. This equilibrium in the shape
variables (z1, z2, z3) corresponds to the free particle following a trajectory which is
a Bertrand mate to the boundary curve, and at a distance from the boundary curve
given by one of the zeros of the function f(·). ��

Figure 16.3 shows a simulation of a free particle tracking an elliptical boundary
curve in the plane using control law (16.16).

16.4 Curve Tracking with Obstacle Avoidance in Three
Dimensions

One of the major strengths of our planar boundary tracking law is that it can be
generalized to the three-dimensional setting. Suppose there is a free particle moving
in three-dimensional space, and there is a fixed, smooth, two-dimensional obstacle
surface (e.g., a sphere). As the free particle moves at unit speed, the closest point
to it on the obstacle surface (which we assume is unique) also moves along a three-
dimensional trajectory, which is constrained to lie on the obstacle surface. We can
then, as in the planar problem, consider the coupled dynamics of the free particle
and the closest point (shadow point). This two-particle problem with a spherical
obstacle is discussed in [20]).

Here we consider a three-particle problem: a free particle moving at unit speed
in three-dimensional space interacts with the closest point on a prescribed spherical
curve (i.e., a curve constrained to lie on the surface of a sphere of radius R > 0),
which we will refer to as the “guiding curve.” But the free particle also interacts with
the closest point on the sphere, which may or may not coincide with the closest point
on the guiding curve. We will refer to the closest point on the sphere as the “shadow
point” and the closest point on the guiding curve as the “guide point.” The guiding
curve is meant to guide the free particle, while the sphere itself is an obstacle
that the free particle must avoid colliding with. As the free particle approaches
the desired motion state (a non-autonomous relative equilibrium corresponding to
the free particle tracing the projection of the guiding curve onto a concentric sphere
with prescribed radius R + r0, r0 > 0), the shadow point approaches the guide
point. This problem is most effectively formulated using the natural Frenet framing
of three-dimensional curves, as described next.
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16.4.1 Curves and Moving Frames

A single particle moving in three-dimensional space traces out a trajectory γ :
[0,∞) → R

3, which we assume to be at least twice continuously differentiable,
satisfying1 |γ′(s)| = 1, ∀s; i.e., s is the arc-length parameter of the curve (and
the prime denotes differentiation with respect to s). The direction of motion of
the particle at s is the unit tangent vector to the trajectory, T(s) = γ′(s). The
gyroscopic force vector always lies in the plane perpendicular to T, so to describe
the effects of this force, we are compelled to introduce orthonormal unit vectors
which span this normal plane. Taken together with T, these unit vectors constitute
a framing of the curve γ representing the particle trajectory.

One choice for framing the curve is the natural Frenet frame, which is also
referred to as the Fermi–Walker frame or Relatively Parallel Adapted Frame
(RPAF) [1]:

γ′(s) = T(s),

T′(s) = k1(s)M1(s) + k2(s)M2(s),

M′
1(s) = −k1(s)T(s),

M′
2(s) = −k2(s)T(s). (16.29)

In (16.29), M1(s) and M2(s) are unit normal vectors which (along with T(s))
complete a right-handed orthonormal frame. However, there is freedom in the choice
of initial conditions M1(0) and M2(0); once these are specified, the corresponding
natural Frenet frame for a twice-continuously differentiable curve γ is unique. The
benefits of using natural Frenet frames for describing interacting systems of particles
in three dimensions are discussed in [7, 14]. A deeper discussion of the theory
underlying natural Frenet frames can be found in [2].

16.4.2 Spherical Curves and Natural Frames

Spherical curves, i.e., curves constrained to lie on the surface of a sphere in R
3, are

readily described using natural Frenet frames [1]. If the curve γ(s) lies on a sphere
of radius R > 0 centered at p, then for all s,

(γ− p) · (γ − p) = R2. (16.30)

Differentiating (16.30) gives

(γ − p) · γ′ = (γ− p) ·T = 0, (16.31)

1Here and in the rest of the paper, |w| = (w · w)1/2 for any w ∈ R3.
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and differentiating a second time yields

T ·T+ (γ− p) ·T′ = 0, (16.32)

or

(γ− p) ·T′ = −1. (16.33)

From M′
1 = −k1T, we obtain

M′
1 · (γ − p) = −k1T · (γ− p) = 0, (16.34)

and similarly, M′
2 · (γ− p) = 0.

We then observe that

(M1 · (γ − p))′ = M′
1 · (γ − p) +M1 ·T = 0, (16.35)

and similarly, (M2 · (γ− p))
′
= 0, from which we conclude that

M1 · (γ − p) = constant, M2 · (γ − p) = constant, (16.36)

for all s. Suppose that at s = 0, we take

M1(0) =
γ(0)− p

|γ(0)− p| , (16.37)

where we note that |γ− p| = R, for all s. Then from (16.36) and M1 ·M2 = 0, it
follows that

M1 · (γ− p) = R, M2 · (γ− p) = 0. (16.38)

Using T′ = k1M1 + k2M2 and (16.33),

T′ · (γ− p) = (k1M1 + k2M2) · (γ− p) = k1R = −1, (16.39)

so that k1 = −1/R. Thus, a spherical curve is described by (16.29), whereM1 is the
outward-pointing normal to the surface of the sphere, k1 = −1/R, M2 = T×M1,
and k2 can be interpreted as a “steering control” for the curve evolving with respect
to the arc-length parameter along the surface of the sphere (Fig. 16.4).

16.4.3 Free-Particle Interaction with the Spherical Curve

The motion of a free particle moving at unit speed can be described by (16.29),
where the arc-length parameter s is identified with time t. To distinguish the free
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Fig. 16.4 A spherical curve
γ(s) and its natural frame
{T,M1,M2}. The center of
the sphere is denoted by p

particle from the guide point γ confined to the surface of the sphere, we introduce
notation

σ̇ = τ,

τ̇ = um1 + vm2,

ṁ1 = −uτ,
ṁ2 = −vτ, (16.40)

where σ is the position of the free particle (as a function of time), τ is the unit
tangent vector to the trajectory of the free particle, (m1,m2) are corresponding
unit normal vectors (which complete a right-handed orthonormal frame), and (u, v)
are natural curvatures (the three-dimensional analog to steering controls) for the free
particle (Fig. 16.5).

The induced dynamics of the guide point are then

γ̇ = νT,

Ṫ = ν[(−1/R)M1 + k2M2],

Ṁ1 = −ν(−1/R)T,

Ṁ2 = −νk2T, (16.41)

where ν = ds/dt is the speed with which the guide point moves along the guiding
curve. As before, we define r = σ − γ to be the vector from the guide point to the
free particle. The first-order necessary condition for the guide point is r ·T ≡ 0.

16.4.4 Lyapunov Function and Control Law Derivation

System (16.40), for prescribed (u, v) (and prescribed m1(0), m2(0)), describes the
evolution of the free particle trajectory. However, for the free particle interacting
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Fig. 16.5 Positions and frames for the trajectory of the free particle and for the closest point on
the spherical curve

with a spherical curve, (u, v) are considered to be feedback functions of certain
shape variables, to be identified below. To simplify the derivation of the control
law, it is convenient to express (u, v) as

u = a ·m1, v = a ·m2, (16.42)

so that τ̇ = a − (a · τ)τ, where the vector a is a feedback function of the shape
variables. (Expressing (u, v) in the form (16.42) respects the requirement that the
trajectory of the free particle under feedback control be independent of the specific
choice of m1(0) and m2(0).) The projection of the vector a onto the m1-m2

plane can be interpreted as the acceleration of the free particle (which is assumed
to have unit mass): this projection is perpendicular to the direction of motion of the
free particle, and therefore leaves its speed unchanged.

Consider the Lyapunov function candidate

V3D = − ln(T · τ) + h(|σ− p|) + h1(r ·M1) + h2(r ·M2), (16.43)

where h(·) satisfies

(B1) dh/dρ = f(ρ), where f(ρ) is a Lipschitz continuous function on (R,∞),
so that h(ρ) is continuously differentiable on (R,∞);

(B2) f(R+ r0) = 0 at a unique point 0 < r0 <∞;
(B3) limρ→R h(ρ) =∞, limρ→∞ h(ρ) =∞, and h(r0) <∞;

(analogous to hypotheses (A1), (A2), and (A3) of Proposition 16.1), and h1(·) and
h2(·) are continuously differentiable functions satisfying
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Fig. 16.6 Left plot: examples of functions h1(·) and f1(·). Right plot: examples of functions h2(·)
and f2(·)

(B4) dhj/dρ = fj(ρ), where fj(ρ) is a Lipschitz continuous function on
(−∞,∞), so that hj(ρ) is continuously differentiable on (−∞,∞) for j =
1, 2;

(B5) fj(ρj) = 0 at a single point ρj , for j = 1, 2; furthermore, ρ1 > 0 and
ρ2 = 0;

(B6) limρ→∞ hj(ρ) = ∞, limρ→−∞ hj(ρ) = ∞, and h(ρj) is finite, for j =
1, 2.

Figure 16.6 shows examples of suitable functions h1 and h2 with the corresponding
f1 and f2.

Differentiating V3D with respect to time along trajectories of (16.40) and (16.41)
gives

V̇3D = − Ṫ · τ+T · τ̇
T · τ +

(
σ− p

|σ− p| · τ
)
f(|σ− p|)

+(ṙ ·M1 + r · Ṁ1)f1(r ·M1) + (ṙ ·M2 + r · Ṁ2)f2(r ·M2), (16.44)

where we have used dh/dρ = f(ρ), and dhj/dρ = fj(ρ), j = 1, 2. Noting that

ṙ = σ̇− γ̇ = τ− νT, (16.45)

along with the first-order necessary condition r · T = 0 for the guide point, we
further compute

V̇3D = −ν(k1M1 + k2M2) · τ+T · (um1 + vm2)

T · τ +

(
σ − p

|σ − p| · τ
)
f(|σ − p|)

+ (τ · M1)f1(r · M1) + (τ · M2)f2(r · M2)

= − 1

T·τ
[
νk1(τ·M1) + νk2(τ·M2) + u(T·m1) + v(T·m2) − (b·τ)(T·τ)

]

= − 1

T·τ
[
νk1(τ·M1) + νk2(τ·M2) + (a·T) − (a·τ)(T·τ) − (b·τ)(T·τ)

]
,

(16.46)
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where

b = f(|σ− p|) σ− p

|σ− p| + f1(r ·M1)M1 + f2(r ·M2)M2, (16.47)

and we have used the identity

(a ·m1)(T ·m1) + (a ·m2)(T ·m2) = a ·T− (a · τ)(T · τ). (16.48)

Suppose that we take

a = ã− b, (16.49)

where ã consists of terms in the control law for the free particle which are yet to be
specified. Then using b ·T = 0, which follows from M1 ·T = 0, M2 ·T = 0, and

(σ− p) ·T = (r+ (γ− p)) ·T = 0, (16.50)

we obtain

V̇3D = − 1

T · τ
[
νk1(τ ·M1)+νk2(τ ·M2)+(ã ·T)− (ã ·τ)(T ·τ)

]
. (16.51)

Furthermore, for T · τ �= 0 we can take

ã = μT+
νk1M1 + νk2M2

T · τ + η [m2(T ·m1)−m1(T ·m2)] , (16.52)

where μ > 0 is a constant (or else a function of the shape variables defined below),
and η is an arbitrary scalar-valued function, to obtain

V̇3D = − μ

T · τ
[
1− (T · τ)2] . (16.53)

It is clear from (16.53) that V̇3D ≤ 0 for all t, and V̇3D = 0 if and only if T = τ
(provided T · τ > 0). The term involving η in (16.52) will be used below to ensure
that with the feedback law applied, the resulting system of shape variables (i.e., an
appropriate reduced system) is autonomous.

16.4.5 Control Law Interpretation

To summarize (16.47), (16.49), and (16.52), the control law we propose for the free
particle moving in three dimensions while interacting with a spherical curve (i.e.,
guiding curve) is given by (16.42) where



16 Boundary Tracking and Obstacle Avoidance Using Gyroscopic Control 435

a = μT− f(|σ− p|) σ− p

|σ− p| − f1(r ·M1)M1 − f2(r ·M2)M2

+
νk1M1 + νk2M2

T · τ + η [m2(T ·m1)−m1(T ·m2)] , (16.54)

with k1 = −1/R, and the speed ν of the guide point is

ν =
T · τ

1− r · (k1M1 + k2M2)
(16.55)

(which follows from differentiating r ·T ≡ 0 with respect to t).
We can give the terms in a with the following physical interpretations. The term

μT serves to align the heading of the free particle with the heading of the guide
point. The term involving f(·) provides collision avoidance: it serves to steer the
free particle toward the sphere if the free particle is too far away, and steer the free
particle away from the sphere if the free particle comes too close to it. The terms
involving f1(·) and f2(·) serve to steer the free particle toward a sphere concentric
with the sphere on which the guiding curve lies. Finally, the term involving ν, k1 =
−1/R, and k2 enables the free particle to respond to the curvature of the guiding
curve. (As mentioned in the previous subsection, the term involving η is needed to
make the shape dynamics autonomous.)

16.4.6 Strategy and Invariant Submanifold

Similar to (16.12), we can identify the spherical curve-tracking strategy with the
submanifold

M3D =

{([
T M1 M2 γ

0 0 0 1

]
,

[
τ m1 m2 σ

0 0 0 1

])
∈ SE(3)× SE(3)

∣∣∣∣
T = τ, r ·T = 0, r = σ− γ

}
. (16.56)

Note that in contrast to definition (16.12) of M2D(r0), this definition of M3D does
not incorporate a separation parameter r0. While T ≡ τ and r · T ≡ 0 together
imply that |r| ≡ constant, we shall see below that the particular constant is not
determined exclusively by the choice of steering law (specifically, f , f1, and f2).
Initial conditions also play a role.

While (16.12) was invariant under the planar boundary-tracking steering law,
(16.56) is not invariant under the three-dimensional boundary-tracking law (16.54).
Therefore, we define the additional submanifold
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M3DI =

{([
T M1 M2 γ

0 0 0 1

]
,

[
τ m1 m2 σ

0 0 0 1

])
∈M3D

∣∣∣∣
f(|σ− p|)

(
σ− p

|σ− p| ·M1

)
= −f1(r ·M1),

f(|σ− p|)
(

σ− p

|σ− p| ·M2

)
= −f2(r ·M2)

}
, (16.57)

where p is the prescribed constant vector denoting the center of the spherical
obstacle. On M3DI , (16.54) becomes

a = μT+ νk1M1 + νk2M2, (16.58)

which gives

τ̇ = a− (a · τ)τ = νk1M1 + νk2M2 = Ṫ, (16.59)

enforcing T = τ for all future time. Furthermore, it is easily verified that
d
dt |σ− p| = 0 onM3DI , along with d

dt [(σ−γ)·Mi] = 0 and d
dt

(
σ−p
|σ−p| ·Mi

)
= 0,

i = 1, 2, Thus, control law (16.54) leaves M3DI invariant. Below, we show that
(16.54) also gives convergence to M3DI (from initial conditions specified by a
sublevel set of the Lyapunov function V3D), by which we conclude that (16.54)
realizes a curve tracking strategy for spherical guiding curves.

16.4.7 Shape Variables

To apply LaSalle’s Invariance Principle [9] and prove a convergence result for the
dynamics of the free particle interacting with the spherical curve, we need to first
identify appropriate shape variables. Next, we need to derive the shape dynamics,
and choose η such that the shape dynamics are a self-contained, autonomous
system (so that we can apply the usual LaSalle invariance principle for autonomous
systems).

From (16.43), the definition of V3D, we identify the following as being among
the shape variables: (T · τ), |σ − p|, (r ·M1), and (r ·M2). Further calculations,
shown in the Appendix, suggest that a good collection of shape variables to use is

0 = r ·T,
z1 = r ·M1,

z2 = r ·M2,

z3 = τ ·T,
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z4 = τ ·M1,

z5 = τ ·M2,

0 = (σ− p) ·T,
z6 = (σ− p) ·M1,

z7 = (σ− p) ·M2, (16.60)

where they have been arranged so as to emphasize that the shape variables are
simply r, τ, and (σ− p) expressed in the (time-varying) frame of the guide point.

We define η by

η =
−νk1(M2 · τ) + νk2(M1 · τ)

T · τ , (16.61)

so that the shape dynamics become autonomous. The shape dynamics can then be
expressed (see the Appendix) as

ż1 = z4,

ż2 = z5,

ż3 = μ
(
1− z23

)
+ z3χ,

ż4 = −f
(√

z26 + z27

)
z6√

z26 + z27
− f1(z1) + z4(−μz3 + χ),

ż5 = −f
(√

z26 + z27

)
z7√

z26 + z27
− f2(z2) + z5(−μz3 + χ),

ż6 = z4,

ż7 = z5, (16.62)

where

χ = f

(√
z26 + z27

)
(z4z6 + z5z7)√

z26 + z27
+ f1(z1)z4 + f2(z2)z5. (16.63)

Note that if initially z23 + z24 + z25 = 1, then under (16.62), this condition holds for
all future time. Furthermore,

V3D = − ln(z3) + h

(√
z26 + z27

)
+ h1(z1) + h2(z2), (16.64)

and

V̇3D = − μ

z3

(
1− z23

)
. (16.65)
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Thus, closing the loop with the feedback law given by (16.42) and (16.54), we
see that system (16.62) for the shape variables is autonomous, and in addition, the
Lyapunov function can be expressed in terms of shape variables alone.

Observe that z3 → 0, which causes V̇3D to become undefined, also implies
that V3D → ∞. Therefore, the z3 → 0 singularity, which would also prevent η in
(16.61) from being well defined, can be avoided by verifying that V3D is radially
unbounded, and then restricting attention to sublevel sets of V3D.

However, in order for system (16.62) to be properly defined, we also require that
ν be well defined for all time. From (16.55), we see that

r · (k1M1 + k2M2) = 1, (16.66)

or equivalently

k2(r ·M2) = 1 + (1/R)(r ·M1), (16.67)

causes ν to be infinite. Expressed in shape variables, (16.67) becomes

k2z2 = 1 + (1/R)z1, (16.68)

which can be avoided if z2 is sufficiently small, |k2| is bounded, and z1 > 0 is
sufficiently away from zero.

16.4.8 Convergence Result

Proposition 16.2. Suppose that hypotheses (B1)–(B6) are satisfied, along with

(B7) μ > 0 is a Lipschitz continuous function of (z1, . . . , z7);
(B8) |k2| is bounded;
(B9) 0 < R <∞.

Also, suppose that initially z23 + z24 + z25 = 1 with 0 < z3 ≤ 1, and
√
z26 + z27 > R.

Then there exists a finite neighborhoodΛ of a global minimizer for V3D such that for
arbitrary initial conditions in Λ, system (16.62) converges to the set of its equilibria
for which z3 = 1 and z4 = z5 = 0.

Proof. Note that V3D → ∞ as |z1| → ∞, |z2| → ∞, |z6| → ∞, |z7| → ∞,√
z26 + z27 → R, or z3 → 0. Also, z23 + z24 + z25 ≡ 1. Therefore, the sublevel sets of

V3D are compact.
From the form of V3D in (16.64), it is clear that V3D is bounded below, and is

minimized when z1 = ρ1, z2 = 0, z3 = 1, and
√
z26 + z27 = r0. Thus, there exists

a constant ξ > 0 such that

∀z ∈ Λ =

{
z

∣∣∣∣ V3D(z) ≤ V3D(zmin) + ξ

}
, z2 <

1 + (1/R)z1
k2max

, (16.69)
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where z = (z1, z2, z3, z4, z5, z6), zmin is a global minimizer of V3D and k2max > 0
is an upper bound on |k2|.

Hence, ∀z ∈ Λ, V̇3D exists, satisfies V̇3D ≤ 0, and V̇3D = 0 if and only if
z3 = 1.

Then by LaSalle’s Invariance Principle (for autonomous systems) [9], we
conclude that system (16.62) converges to the largest invariant set with z3 = 1.
But z3 = 1 implies z4 = z5 = 0, and (16.62) reduces to

ż1 = 0,

ż2 = 0,

ż3 = 0,

ż4 = −f
(√

z26 + z27

)
z6√

z26 + z27
− f1(z1) = 0,

ż5 = −f
(√

z26 + z27

)
z7√

z26 + z27
− f2(z2) = 0,

ż6 = 0,

ż7 = 0. (16.70)

Thus, (16.62) converges to the set of its equilibria for which z3 = 1, z4 = z5 = 0,

f1(z1) = −f
(√

z26 + z27

)
z6√

z26 + z27
, (16.71)

and

f2(z2) = −f
(√

z26 + z27

)
z7√

z26 + z27
. (16.72)

��
Remark 16.4. If we square both sides of (16.71) and (16.72), and sum the result,
we obtain

f2
1 (z1) + f2

2 (z2) = f2

(√
z26 + z27

)
, (16.73)

with z21 + z22 = constant = r20, where r0 denotes the distance between the free
particle and the closest point on the guiding curve (which is not necessarily the
same as the r0 depicted in Figs. 16.2 and 16.6), and z26 + z27 = constant = R2

0,
where R0 > R denotes the distance between the free particle and the center of the
spherical obstacle. We can thus introduce an angle variable φ and write (16.73) as
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f2
1 (r0 cosφ) + f2

2 (r0 sinφ) = f2 (R0) . (16.74)

A necessary condition for (16.71) and (16.72) to be satisfied is that (16.74) be
satisfied for some r0, R0, and φ. Observe that if r0 in assumption (B2) and ρ1
in assumption (B5) satisfy r0 = ρ1 = r0, and we have R + r0 = R0 and φ = 0,
then (16.74) is satisfied with both sides of the equation equal to zero. (However, this
is not the only possible solution.)

Remark 16.5. A similar approach has been followed in [18] to derive three-
dimensional curve tracking control laws for a particle to track one of the lines of
curvature on a smooth surface viewed as a level surface of a scalar-valued function
on R

3, which is motivated by cooperative sensing applications. The control laws
in [18] have not been designed to avoid collisions since there is no need for this
functionality. In addition, these control laws would have difficulty tracking a specific
curve on a spherical or planar surface, since any curve would be a line of curvature.
The control law (16.54) is more general than the ones used in [18] since it achieves
both collision avoidance and tracking for a specific curve at the same time.

Remark 16.6. A result analogous to Proposition 16.2 can be proved for a planar
rather than spherical obstacle surface (i.e., the limiting situation as R → ∞). In
(16.41), k1 = −1/R ≡ 0, and M1 remains normal to the planar obstacle surface
for all time. The speed of the guide point becomes

ν =
T · τ

1− k2(r ·M2)
, (16.75)

which is well defined for z2 = r ·M2 sufficiently small. The shadow point is now
the closest point on the planar obstacle surface to the free particle, and we replace
|σ− p| in the argument of h(·) in (16.43) by |σ− λ|, where λ denotes the shadow
point. We then note that

|σ− λ| = |r ·M1|, (16.76)

and we may assume without loss of generality that initially r ·M1 > 0. Thus, the
function h1(·) in (16.43) may be set to zero (i.e., h1 may be subsumed into h, where
limρ→0 h(ρ) = ∞ and limρ→∞ h(ρ) = ∞). To summarize, for a planar obstacle
surface, we have

V 3D = − ln(T · τ) + h(r ·M1) + h2(r ·M2), (16.77)

and

a = μT− f(r ·M1)M1 − f2(r ·M2)M2

+
νk2
T · τ

[
M2 + (M1 · τ)

(
m2(T ·m1)−m1(T ·m2)

)]
, (16.78)
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which lead to the shape dynamics

ż1 = z4,

ż2 = z5,

ż3 = μ
(
1− z23

)
+ z3χ,

ż4 = −f(z1) + z4(−μz3 + χ),

ż5 = −f2(z2) + z5(−μz3 + χ), (16.79)

where

χ = f(z1)z4 + f2(z2)z5. (16.80)

Note that the dimension of the shape space is now 5 (rather than 7, as in
Proposition 16.2).

16.4.9 Simulation Example

To illustrate the three-dimensional spherical-curve tracking law, Fig. 16.7 shows a
free particle tracking a circular curve lying on the surface of a sphere. After an initial
transient, the free particle trajectory is observed to converge to a circular orbit on a
sphere concentric to the one shown. The trajectory of the guide point on the circular
curve being tracked is also shown. Observe that during the initial transient, the free
particle approaches, and then feels the influence of, the spherical surface—causing
it to steer away from the sphere to avoid colliding with it.

For the simulation shown in Fig. 16.7, the functions f(·), f1(·), and f2(·) are
given by

f(ρ) = α

[
1− (R + r0)

2 −R2

ρ2 −R2

]
,

f1(ρ) = α tanh(ρ− r0),

f2(ρ) = α tanh(ρ), (16.81)

where r0 is the target separation between the free particle and the guiding curve,
and α is a positive constant. Observe that if the guide point on the guiding curve and
the shadow point on the sphere coincide, and |r| = r0, we have

f(|σ− p|) = f(R+ r0) = 0,

f1(r ·M1) = f1(r0) = 0. (16.82)



442 F. Zhang et al.

Fig. 16.7 Simulation of a free particle interacting with a circular curve lying on the surface of a
sphere (from two different vantage points)

Furthermore, as the distance between the free particle and the surface of the sphere
goes to zero, f(|σ− p|)→∞.

Taking the spherical curve to be a circular curve guarantees that (almost
everywhere) the guide point is unique and given by a simple formula. The natural
curvatures for the guide curve are also constant (recall that k1 = −1/R is constant
for any spherical curve, so what is special about the circular curve is that k2 is also
an easily computed constant).

16.5 Conclusions

In the plane, collision avoidance and boundary tracking are defined with respect to
the same planar boundary curve and are handled together by our choice of feedback
law. Furthermore, if f has a unique zero at r0, then the shape space equilibrium is
unique, with the separation between the free particle and boundary curve equal to
r0, and the corresponding “relative equilibrium” is a Bertrand mate to the boundary
curve.

In three dimensions, collision avoidance with a sphere corresponds to maintain-
ing positive separation from the sphere, distinct from tracking a curve on the sphere.
In particular, the parameters R0 and r0 associated with these two goals are not
uniquely determined (selected) by the shape space equilibrium conditions. But the
confinement to a sublevel set of V3D on the shape space (z-space) implies upper
and lower bounds for R0 and r0, provided some natural specifications are made for
f = dh/dρ and fi = dh/dρi, i = 1, 2. These bounds are dependent on initial
conditions in z-space.
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Modeling high-speed vehicles (or animals) as self-propelled particles sub-
ject to gyroscopic (steering) feedback control has several key advantages. As we
have shown here in the context of boundary tracking, this level of modeling is
amenable to analysis, even in three dimensions with the simultaneous objectives of
curve tracking and obstacle avoidance. Furthermore, the steering laws we propose
have straightforward physical interpretations, and the implications for sensing
follow naturally. This provides a basis for hypothesizing the biological plausibility
of (approximations to) these steering laws.

We speculate that boundary tracking with obstacle avoidance may play an
essential role in various biological schooling/flocking behaviors, where instead of
a fixed, stationary obstacle surface (as we have assumed above for purposes of
analysis), the “obstacle” is actually a perceptual construct encompassing the rest
of the school/flock from the viewpoint of an individual. Just as pursuit at the level
of individuals can lead to cohesion at the level of collective behavior, so too can
boundary tracking (with the correct interpretation assigned to the “boundary”). In
the collective behavior setting, our guiding curve would play the role of a further
perceptual construct for an individual’s desired motion relative to the “boundary”—
for example, tracking the path of a particular neighbor. Indeed, both physical and
perceptual boundaries could drive individuals’ steering, and a basic question is
whether generalizations of the steering laws presented here can explain observed
schooling/flocking patterns in nature.
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Appendix

These are the calculations required to obtain (16.62). First, note that

d

dt
(T · τ) = Ṫ · τ+T · τ̇ = Ṫ · τ+T · (a − (a · τ)τ)

= μ
[
1 − (T · τ)2

]

+ (T · τ)
[
f(|σ − p|) σ − p

|σ − p| + f1(r · M1)M1 + f2(r · M2)M2

]
· τ,

(16.83)
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and

d

dt
(r ·M1) = ṙ ·M1 + r · Ṁ1 =(τ− νT) ·M1− νk1(r ·T)= τ ·M1, (16.84)

d

dt
(r ·M2) = τ ·M2, (16.85)

d

dt
|σ− p| = σ− p

|σ− p| · τ. (16.86)

Furthermore,

d

dt
(M1 · τ) = Ṁ1 · τ+M1 · τ̇ = −νk1(T · τ) + (a ·M1)− (a · τ)(M1 · τ)

= −νk1(T · τ)− f(|σ− p|) σ− p

|σ− p| ·M1 − f1(r ·M1) +
νk1
T · τ

+(M1 · τ)
[
− μT+ f(|σ− p|) σ− p

|σ− p|

+f1(r ·M1)M1 + f2(r ·M2)M2

]
· τ

−νk1(M1 · τ)2 + νk2(M1 · τ)(M2 · τ)
T · τ

+η(M2 · τ), (16.87)

where we have used

[M1 − (M1 · τ)τ] · [m2(T ·m1)−m1(T ·m2)]

= (M1 ·m2)(T ·m1)− (M1 ·m1)(T ·m2)

= M2 · τ. (16.88)

Substituting (16.61) for η, Eq. (16.87) becomes

d

dt
(M1 · τ) = −f(|σ− p|) σ− p

|σ− p| ·M1 − f1(r ·M1)

+(M1 · τ)
[
− μT+ f(|σ− p|) σ− p

|σ− p|

+f1(r ·M1)M1 + f2(r ·M2)M2

]
· τ. (16.89)
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Similarly, we find that

d

dt
(M2 · τ) = −f(|σ− p|) σ− p

|σ− p| ·M2 − f2(r ·M2)

+(M2 · τ)
[
− μT+ f(|σ− p|) σ− p

|σ− p|

+f1(r ·M1)M1 + f2(r ·M2)M2

]
· τ. (16.90)

Finally, we note that [(σ− p) ·T] ≡ 0 implies that

d

dt
[(σ− p) ·T] = 0, (16.91)

and furthermore

d

dt
[(σ− p) ·M1] = τ ·M1 + (σ− p) · (−νk1T) = τ ·M1, (16.92)

d

dt
[(σ− p) ·M2] = τ ·M2 + (σ− p) · (−νk2T) = τ ·M2. (16.93)

Observing that

|σ− p| =
√
[(σ− p) ·M1]2 + [(σ− p) ·M2]2 (16.94)

and that

(σ− p) · τ = [(σ− p) ·M1](M1 · τ) + [(σ− p) ·M2](M2 · τ), (16.95)

we can conclude that (16.83)–(16.85), (16.89), (16.90), (16.92), and (16.93) form a
self-contained, autonomous system of equations.
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Chapter 17
Random Hill’s Equations, Random Walks,
and Products of Random Matrices

Fred C. Adams, Anthony M. Bloch, and Jeffrey C. Lagarias

Dedicated to Jürgen Scheurle on the occasion of his 60th
birthday

Abstract Hill’s equations arise in a wide variety of physical problems, and are
specified by a natural frequency, a periodic forcing function, and a forcing strength
parameter. This classic problem can be generalized by allowing the forcing strength
qk, the frequency λk, and the period (Δτ)k of the forcing function to vary from
cycle to cycle. The growth rates for the solutions are then given by the growth rates
of a matrix transformation, under matrix multiplication, where the elements vary
from cycle to cycle. Simplified models of such problems are given by products of
2× 2 random matrices drawn from a given class.

This paper analyzes two simple classes of models of 2 × 2 random matrices
where the growth rates (Lyapunov exponents) can be computed in an explicit form.
Both models are special cases of random products involving random similarity
transformations. The first of these corresponds to the random Hill’s equation in a
regime where the solutions are highly unstable. This model is a product of random
similarity transformations of a fixed singular matrix. The second class of models is
a two parameter class that studies products of 2 × 2 random symmetric matrices
of a special form which are conjugated by random orthogonal similarities. These
matrices are nonsingular in general, but in a special case they give rank one matrices,
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which may be compared with the first model. In the latter case the two models have
different growth rate behavior, which arises from the different nature of the allowed
similarity transformations in the models.

17.1 Introduction

Random matrices arise in a wide variety of applications. This work is motivated by
consideration of Hill’s equation, a second order periodic differential equation that
describes many physical problems [23]. It takes the form

d2y

dt2
+ [λ+ qQ̂(t)]y = 0 , (17.1)

in which Q̂(t) is periodic with period π and λ and q are constants, where we have
imposed the normalization

∫ π
0 Q̂(t)dt = 1. In addition to its original application

to lunar orbits [15], Hill’s equation describes celestial dynamics [6, 7, 22], orbit
instabilities in dark matter halos [5], particle production at the end of the inflationary
epoch in the early universe [14, 20], the motion of a jogger’s ponytail [18], and
many other physical systems. This problem can be generalized so that its parameters
vary from cycle to cycle, i.e., the differential equation takes the form

d2y

dt2
+ [λk + qkQ̂(t)]y = 0, (k − 1)π ≤ t < kπ, (17.2)

where the parameters (λk, qk) vary from cycle to cycle and are drawn independently
from well-defined distributions. The index k labels the cycle. In general, the period
can vary as well; however, one can show that cycle to cycle variations in Δτ can be
scaled out of the problem and included in the variations of the (λk, qk) by changing
their distributions accordingly (see Theorem 1 of [2]).

The initial motivation for considering random Hill’s equations arose in studies
of orbit problems in astrophysics. Briefly, when an orbit starts in the principal plane
of a triaxial, extended mass distribution (such as a dark matter halo), the motion
is unstable to perturbations in the perpendicular direction (out of the plane). The
development of the instability is described by a random Hill’s equation with the
form given by Eq. (17.2).

Periodic differential equations in this class can be described by a discrete
mapping of the coefficients of the principal solutions from one cycle to the next. In
the special case where the periodic functions Q̂(t) are symmetric about the midpoint
of the period, a condition we assume in this paper, the transformation matrix takes
the form

Mk =

[
hk (h2k − 1)/gk
gk hk

]
, (17.3)
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where the subscript denotes the cycle. The matrix elements for the kth cycle are
given by

hk = y1(kπ) and gk = ẏ1(kπ) , (17.4)

where y1 and y2 are the principal solutions for that cycle. That is,

y1((k − 1)π) = ẏ2((k − 1)π) = 1, ẏ1((k − 1)π) = y2((k − 1)π) = 0.

The index k indicates that the quantities (λk, qk), and hence the solutions (hk, gk),
vary from cycle to cycle. We define the product

M
(N) ≡MNMN−1 · · ·M2M1. (17.5)

Note that the matrix in Eq. (17.3) has only two independent elements (gk, hk)
(not four). Since the Wronskian of the original differential equation (17.1) is unity,
the determinant of the matrix map (17.3) must also be unity, and this constraint
eliminates one independent element. In addition, this paper specializes to the case
where the periodic functions Q̂(t) are symmetric about the midpoint of the period.
This property implies that y1(π) = ẏ2(π) = hk for the kth cycle where y1 and y2
are the principle solutions for that cycle, which eliminates a second independent
matrix element [1, 23]. These two constraints imply that y2(kπ) = (h2k − 1)/gk for
the given cycle, resulting in the form for the matrix given by Eq. (17.3).

The growth rates for Hill’s equation (17.1) are determined by the growth rates
for matrix multiplication of the matrices Mk given by Eq. (17.3). Here we denote
the product of N such matrices as M(N), and the growth rate γ is defined by

γ = lim
N→∞

1

N
log ||M(N)|| . (17.6)

provided the limit exists. If it exists it is independent of the choice of the norm || · ||
(see e.g. [32]).

For a wide range of general random matrix models the limit (17.6) is known to
exist almost surely, as shown in previous work [13, Theorem 2], [12, 21]. In such
models growth rate formulas like (17.6) give the largest Lyapunov exponent of the
random matrix product , as considered in [21,26,27]. Here the Lyapunov exponents
γ1 ≥ γ2 ≥ · · · ≥ γd for d× d random matrix products are determined by

γj := lim
N→∞

1

2N
log
(

j-th largest eigenvalue of (M(N))TM(N)
)

(17.7)

for j = 1, 2. These limits exist almost surely under wide circumstances,
and it is also known that γ1 = γ as given in (17.6), by previous work, see
[26].There are limited families of general examples where they are known
explicitly, see [8, 9, 16, 21, 25–27, 30], and for various 2 × 2 matrix models,



450 F.C. Adams et al.

see [10, 11, 19, 21, 24, 29]. In general Lyapunov exponents of general random matrix
models are hard to approximate and sometimes impossible to compute [32].

In this paper we study two models of random matrix products of 2× 2 matrices.
The first model, as discussed above, was suggested by Hill’s equation in the unstable
regime and was previously considered in the first two authors’ paper [2]. The second
class of models is introduced here and is presented as a contrasting model, to shed
light on features of the models that affect the size of the Lyapunov exponents. A
useful property of these models is that the growth rate (top Lyapunov exponent) can
be determined in closed form in many cases. These give some new cases of exact
formulas for Lyapunov exponents.

The structure of the paper is as follows.
In Sect. 17.2 we present a random matrix model for solutions of the Hill’s

equation in a regime where the solutions are highly unstable. It is a product of
random matrices of the form

Ak ≡
[

1 xk
1/xk 1

]

where the xk are independent identically distributed elements drawn from a given
probability distribution on the real line. This model can be reformulated as studying
products of random similarity transformations of a fixed matrix, with allowed
similarities of the form

Pk ≡
[−xk xk

1 1

]
.

We obtain growth rate formulas valid for a large class of such distributions, and
determine both Lyapunov exponents γ1 and γ2 for these models.

In Sect. 17.3 we present and study a class of 2×2 random matrices, with different
dynamics, which are also products of random similarity transformed matrices,
where the allowed similarities are rotations. This model has two parameters at each
step, a parameter xk describing a matrix and αk describing the rotation angle in the
similarity transformation. The matrices have the form

Ck = Qk

[
1 xk
xk 1

]
Q−1
k , (17.8)

where Qk are orthogonal matrices, so QT = Q−1, encoding random rotations by
angles αk. We obtain explicit formulas for the growth rates for many distributions
of xk and αk. This model is comparable to Sect. 17.2 models in the special case that
all xk = 1 are nonrandom.

In Sect. 17.4 we compare Lyapunov exponents for unstable Hill equations models
of Sect. 17.2, with the special subclass of the random rotation models of Sect. 17.3
which occurs when all variables xk = x = 1. In this case both models consist
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of random similarity transformations of the fixed rank one matrix [
0 0

0 2
]. The

unperturbed model has growth rate γ1 = log 2. We observe that the perturbations in
the two models have opposite effects on the growth rate. The models of Sect. 17.2 for
nonnegative distributions xk increase the growth rate, while the models of Sect. 17.3
decrease it.

17.2 Matrices from Hill’s Equation in the Unstable Regime

This section considers matrices arising from Hill’s equation; these models were
developed in previous work of the first two authors [2–4]. The discrete map for
the general problem can be rewritten in the form

Mk = hk

[
1 xk

1/xk 1

]
+

[
0 −1/gk
0 0

]
≈ hk

[
1 xk

1/xk 1

]
, (17.9)

where we have defined xk ≡ hk/gk. The second equality corresponds to the regime
where hk � 1. The growth due to the leading factors of hk can be found using
standard methods. We thus need to find the growth rate for products of random
matrices of the form

Ak ≡
[

1 xk
1/xk 1

]
. (17.10)

The matrix (17.10) is a singular matrix with eigenvalues 0 and 2 (independent of
xk). The corresponding matrix of eigenvectors can be written as

Pk ≡
[−xk xk

1 1

]
. (17.11)

and the matrix Ak may be written

Ak = PkDP
−1
k where D ≡

[
0 0

0 2

]
, (17.12)

so that this problem is equivalent to analyzing products of a randomly conjugated
fixed (singular) matrix.

The problem of finding growth rates for Hill’s equation in the regime hk � 1
thus motivates study of the problem of finding growth rates for matrices Ak of the
form given by Eq. (17.10). These matrices are specified by only one random variable
xk. For applications to Hill’s equation, xk = hk/gk, and hence the values of xk
depend on the parameters (qk, λk) through the original differential equation.
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We now consider the random matrix model in which the variables xk are modeled
by independent identically distributed variables on the real line, from some specified
distribution. Note that this condition would hold for xk = hk/gk, if the gk
(resp. the hj) were independent and identically distributed, possibly with different
distributions, and the gk were independent of the hj’s. Under this assumption on
the distribution of xk, we can calculate growth rates as shown below. In this case
γ1 = γ as given by (17.6) and furthermore, since all matrices in the product are
singular, we will have γ2 = −∞.

We note that the large hk assumption that we make here leads to a singular model
that has an analysis given below. The more general case can also be handled, in the
sense that one can give recursions for the growth rates of finite matrix products that
will converge to the growth rate, see Theorem 1 of the first two authors’ paper [4].

17.2.1 Growth Rates for Positive Matrix Elements

We first consider the case where the ratios xk that define the discrete map Ak all
have the same sign.

Theorem 17.1. Consider matrices of the form Ak ≡
[

1 xk
1/xk 1

]
with the xk drawn

independently and identically distributed and with the distribution supported on the
positive real line, satisfying

Ex[log(1 + x)] <∞ and Ex[log(1 +
1

x
)] <∞ . (17.13)

Then with probability one the growth rate γ1 exists and is given by

γ1 = Ex1,x2 [log(1 +
x1
x2

)] . (17.14)

where the expectation is taken over two independent draws x1, x2 from the
distribution of x. Here γ2 = −∞.

Proof. The hypothesis (17.13) can be shown to be equivalent toEx[log
+ ||A1||]<∞,

where ||A|| = maxi
∑

j |Ai,j |. Now Theorem 2 of [13] implies the existence
almost everywhere of a limit γ1. The value of γ2 follows from the matrices being of
rank one.

To obtain a formula for γ1, after N cycles, one can show (by an induction
argument) that the product matrix A

(N) takes the form

A
(N) =

N∏
k=1

Ak =

[
Σ

(N)
T x1Σ

(N)
T

Σ
(N)
B /x1 Σ

(N)
B

]
, (17.15)
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where x1 is the value of the variable for the first cycle and where the sums Σ(N)
T

and Σ(N)
B are given by

Σ
(N)
T =

2N−1∑
j=1

rj and Σ
(N)
B =

2N−1∑
j=1

1

rj
,

where the variables rj are ratios of the form

rj =
xa1xa2 . . . xan
xb1xb2 . . . xbn

. (17.16)

The ratios rj arise from repeated multiplication of the matrices Ak, and hence the
indices lie in the range 1 ≤ ai, bi ≤ N . The rj always have the same number of
factors in the numerator and the denominator, but the number of factors (n) varies
from 0 (where rj = 1) up to N/2. This upper limit arises because each composite
ratio rj has 2n values of xj , which must all be different, and because the total
number of possible values is N .

Carrying the induction argument one step further, one finds that from one cycle
to the next the sums Σ(N)

T and Σ(N)
B vary according to

Σ
(N+1)
T = Σ

(N)
T +

x

x1
Σ

(N)
B ,

and

Σ
(N+1)
B = Σ

(N)
B +

x1
x
Σ

(N)
T .

In this notation, the variable x (no subscript) represents the value of the x variable at
the current cycle, whereas x1 represents the value at the initial cycle. Next we note
that the ratio of these two factors reduces to the simple form

Σ
(N+1)
T

Σ
(N+1)
B

=
Σ

(N)
T + (x/x1)Σ

(N)
B

Σ
(N)
B + (x1/x)Σ

(N)
T

=
x

x1
. (17.17)

The growing eigenvalue of the product matrix of Eq. (17.15) is given by

Λ = Σ
(N)
T +Σ

(N)
B . (17.18)

As a result, the eigenvalue (growth factor) varies from cycle to cycle according to

Λ(N+1) =Λ(N) +
x

x1
Σ

(N)
B +

x1

x
Σ

(N)
T =Λ(N)

[
1+

(x/x1)Σ
(N)
B +(x1/x)Σ

(N)
T

Σ
(N)
B +Σ

(N)
T

]
.
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The overall growth factor is then determined by the product

Λ(N) =

N∏
j=1

[
1 +

(x/x1)Σ
(j)
B + (x1/x)Σ

(j)
T

Σ
(j)
B +Σ

(j)
T

]
.

Using Eq. (17.17) to eliminateΣ(j)
T andΣ(j)

B , this factor can be rewritten in the form

Λ(N) =
N∏
j=1

[(
x1 + x

x1 + xj

)(
1 +

xj
x

)]
=

N∏
j=1

(
x1 + xj1
x1 + xj2

) N∏
j=1

(
1 +

xj2
xj1

)
.

(17.19)

In the second equality, we have replaced the random elements x and xj (which are
two elements chosen in succession) with xj1 and xj2 (which are two elements cho-
sen independently). Equality holds because the matrices, and matrix elements, are
independent and identically distributed. The growth rate γ for matrix multiplication
is determined by setting the above product equal to exp[Nγ], which implies that

γ = lim
N→∞

1

N

⎧⎨
⎩log

⎡
⎣ N∏
j=1

(
x1 + xj1
x1 + xj2

)⎤⎦+ log

⎡
⎣ N∏
j=1

(
1 +

xj2
xj1

)⎤⎦
⎫⎬
⎭ ,

which can be rewritten in the form

γ = lim
N→∞

⎧⎨
⎩ 1

N

N∑
j=1

log [x1 + xj1] − 1

N

N∑
j=1

log [x1 + xj2] +
1

N

N∑
j=1

log

[
1 +

xj2

xj1

]⎫⎬
⎭ .

(17.20)

Since the xj1 and xj2 are chosen from the same distribution, under the assumption
Ex(log(1 + x)] < ∞ and Ex(log(1 + 1

x)] < ∞, the first two terms will cancel in
the limit (with probability one), and the growth rate reduces to the form

γ = lim
N→∞

1

N

N∑
j=1

log

[
1 +

xj1
xj2

]
, (17.21)

where xj1 and xj2 are any two independent realizations of the xk. As a result,
we obtain with probability one, the limit exists and is given by the expected value
Ex1,x2 [log(1 +

x1

x2
)]. ��

17.2.2 Matrix Elements with Varying Signs

We now generalize to consider the case in which the signs of the variables xk can
be either positive or negative.
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Theorem 17.2. Consider matrices of the form Ak ≡
[

1 xk
1/xk 1

]
where the xk can

be either positive or negative. Suppose that the values xk are independently and
identically drawn from a distribution satisfying

Ex[log(1 + |x|)] <∞ and Ex[log(1 +
1

|x| )] <∞. (17.22)

Let positive signs occur with probability p and negative signs occur with probability
1− p. Then, with probability one, the growth rate exists and is given by

γ1 =
[
p2 +(1− p)2

]
Ex1,x2

[
log

(
1+

∣
∣∣∣
x1

x2

∣
∣∣∣

)]
+2p(1− p)Ex1,x2

[
log

∣
∣∣∣1−

∣
∣∣∣
x1

x2

∣
∣∣∣

∣
∣∣∣

]
.

(17.23)

where x1, x2 represent two independent draws from the distribution of xk . Here
γ2 = −∞.

Proof. The condition (17.22) guarantees existence of γ1 similarly to Theorem 17.1.
Also, the same arguments leading to Eq. (17.19) in the proof of Theorem 17.1 can
be used, where the signs of the ratios xj1/xj2 must be taken into account. If p
is the probability of the xj variables being positive, the probability of the ratio of
two variables being positive will be given by p2 + (1 − p)2, i.e., the probability of
getting either two positive signs or two negative signs. The probability of the ratio
being negative is then 2p(1 − p). With this consideration of signs, the intermediate
form of Eq. (17.19) is modified to take the form

Λ(N) =

NP∏
j=1

[(
x1 + xj1
x1 + xj2

)(
1 +

∣∣∣∣xj2xj1

∣∣∣∣
)] NQ∏

k=1

[(
x1 + xk1
x1 + xk2

)(
1−

∣∣∣∣xk2xk1

∣∣∣∣
)]

,

(17.24)

where NP is the number of terms where the ratios have positive signs and NQ is
the number of terms where the ratios have negative signs (NP +NQ = N ). To find
the growth rate, we set this product equal to exp[Nγ] and take the limit N → ∞,
which results in six terms, i.e.,

γ = lim
N→∞

1

N

⎧⎨
⎩
NP∑
j=1

log

(
1 +

∣∣∣∣xj2xj1

∣∣∣∣
)
+

NQ∑
k=1

log

∣∣∣∣1−
∣∣∣∣xk2xk1

∣∣∣∣
∣∣∣∣
⎫⎬
⎭
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+ lim
N→∞

1

N

⎧⎨
⎩
NP∑
j=1

log |x1 + xj1| −
NP∑
j=1

log |x1 + xj2|
⎫⎬
⎭ (17.25)

+ lim
N→∞

1

N

⎧⎨
⎩
NQ∑
k=1

log |x1 + xk1| −
NQ∑
k=1

log |x1 + xk2|
⎫⎬
⎭ .

In the limit N → ∞, under the assumption Ex[log(1 + |x|)] < ∞ and Ex[log(1 +
1

|x|)] < ∞, with probability one the second and third limits will be 0, and the first
term will have a limit. Then the growth rate is given by only the first two terms in
Eq. (17.25). By definition, NP /N = p2 + (1 − p)2 and NQ/N = 2p(1 − p), so
the two remaining sums can be converted to sums to N by including these weight
factors. As result, we obtain

γ = lim
N→∞

1

N

⎧
⎨

⎩
[
p2 + (1 − p)2

] N∑

j=1

log

(
1 +

∣
∣∣∣
xj1

xj2

∣
∣∣∣

)
+ 2p(1 − p)

N∑

k=1

log

∣
∣∣∣1 −

∣
∣∣∣
xk1

xk2

∣
∣∣∣

∣
∣∣∣

⎫
⎬

⎭
.

(17.26)

with existence of the limit with probability one. The limit is then given by
Eq. (17.23). ��

17.3 Products of Randomly Rotated Matrices

In this section we study a different two-parameter random matrix model with
parameters xk and αk, which can be viewed as modeling the time 1 solutions of
a different sort of randomly perturbed periodic differential equation, definitely not
of Hill’s equation type. The model considers products of 2 × 2 random matrices of
the form

Ck = QfXkQ
T
k := Qk

[
1 xk
xk 1

]
QTk , (17.27)

where the real entry xk may be random and where

Qk = Q(αk) =

[
cosαk sinαk
− sinαk cosαk

]
(17.28)

are rotation matrices with a possibly random angle αk. In this product are two
parameters xk and αk. In the special case where all xk ≡ x are constant, with
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x = 1, the matrix

X =

[
1 1

1 1

]
= Q

[
0 0

0 2

]
QT , Q =

1√
2

[
1 1

−1 1

]
,

where Q is a rotation with angle α = π/4. This gives a model that has the
same form as (17.12) in the previous model, as similarities Pk = QkQ. Thus,
restricting to the case xk = 1, we have a one-parameter model whose freedom
is to choose a distribution of angles in the random rotations. All such models have
a similar form to the Unstable Hill’s equation model in Sect. 17.2, which differ only
in the allowed form for the similarity transformations. Thus one can compare the
effects on the growth rates of making random rotations versus that of the similarity
transformations Pk [given by (17.11) and (17.12)] considered in Sect. 17.2. We
make such a comparison in Sect. 17.4.

Here we will study this model and show that one can obtain explicit formulas
for the Lyapunov exponents in various cases. Regarding the variables xk, one can
check that matrices of the form

Bk =

[
1 xk
xk 1

]
, (17.29)

pairwise commute. This holds since

[
1 x

x 1

] [
1 y

y 1

]
=

[
1 + xy x+ y

x+ y 1 + xy

]
(17.30)

where the right side is manifestly invariant under interchange of x and y. Thus
the model with no rotations is simple to analyze, and we do this in the Appendix.
The contribution of random rotations to the model makes the products of the Ck

noncommutative in general.
Since we are considering probability models with independent draws of Ck at

each step, the random matrix product

C
(N) := CNCN−1 · · ·C2C1. (17.31)

represents a random walk on the semigroup M2×2(R) of real 2× 2 matrices under
matrix multiplication, using the terminology of [17, Chapter 3]. Geometrically it can
be viewed as a (multiplicative) random walk on the plane, acting on a fixed initial
(column) vector. The symmetric matrix (17.29) acts on a vector in R

2 by reflecting
it around the line x = y, then scaling it by a random factor xk , and adding it to itself.
The matrices Ck add a preliminary rotation through an angle−αk, then application
of (17.29), then rotation back by αk. We then repeat.
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17.3.1 Deterministic Formulas for Product Matrices

It is possible to obtain an explicit expression for the product of N matrices of the
form above. First write out the form of the matrix

Ck =

[
1− xk sin 2αk xk cos 2αk
xk cos 2αk 1 + xk sin 2αk

]
. (17.32)

The eigenvalues of Ck are given by

λ± = (1± xk) .

The corresponding eigenvectors are given by

v+
k =

1√
2

[
cosαk − sinαk
cosαk + sinαk

]
and v−

k =
1√
2

[− cosαk − sinαk
cosαk − sinαk

]
,

(17.33)

where the vectors have been normalized. Now suppose we have a arbitrary vector
ak of unit length, written in the form

ak =

[
cosφk
sinφk

]
.

The vector can also be written in terms of the eigenvectors

ak = C+v
+
k + C−v−

k . (17.34)

Letting the angle

θk := φk − αk . (17.35)

we find that the coefficients are given by

C+ =
1√
2
(cos θk + sin θk) and C− =

1√
2
(− cos θk + sin θk) ,

If we multiply the vector a by the matrix Ck we obtain

Lk+1ak+1 := Ckak = (1 + xk)C+v
+
k + (1− xk)C−v−

k ,

which has length Lk+1 given by

L2
k+1 = (1 + xk)

2C2
+ + (1 − xk)

2C2
− = 1 + x2k + 2xk sin 2θk .
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and new unit vector ak+1 =

[
cosφk+1

sinφk+1

]
with angle φk+1 determined by φk, αk and

xk. We obtain the vector norm

||C(N)(a0)||2 =

N∏
k=1

(1 + x2k + 2xk sin 2θk). (17.36)

This expression is deterministic.
We can use this result to analyze a model of random matrix products.

Theorem 17.3. Consider random matrices Ck of the form Ck = Qk

[
1 xk
xk 1

]
QTk

where the xk are real. Assume that the xk are drawn independently and identically
from a distribution having

Ex[log(1 + |x|)] <∞,

and that the αk are independently and identically distributed angles in [0, 2π], and
that the αk are drawn independent of the xj . Then the corresponding growth rate γ
for matrix multiplication exists with probability one and can be written in the form

γ1 = lim
N→∞

1

2N

N∑
k=1

log
[
1 + x2k + 2xk sin 2θk

]
. (17.37)

where θk = φk − αk, where the αk are the rotation angles, and where the φk
determine the direction of the two-dimensional vector at the kth step of the iteration,
for a given φ0. In addition, the second Lyapunov exponent is given by

γ2 = −γ1 + lim
N→∞

N∑
k=1

log |1− x2k|, (17.38)

where with probability one the second limit exists, on the xk-distribution.

Proof. From the definition, the limit γ = γ1 exists with probability one and is
constant, by the result of Furstenberg and Kesten [13], Theorem 2.

Now the formula (17.37) follows by inserting the product norm formula (17.36)
after N steps. To obtain the second formula, we observe that we have , indepen-
dently of the choice of rotations,

det((C(N))TC(N)) =

N∏
k=1

d2k ≡
N∏
k=1

(1− x2k)
2. (17.39)

This yields
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γ1 + γ2 = lim
N→∞

N∑
k=1

log |1− x2k|, (17.40)

yielding the result. ��
Remark. An feature of this result is that the existence of the limit (17.37) is not
apparent from its general form, due to lack of direct information on the distribution
of θk. Instead we infer the existence of the limit from general results on random
matrix products, which only then implies that the distribution of the θk must be
such that the limit exists with probability one.

17.3.2 Uniformly Distributed Rotations Case

We now treat the special case where the angles αk are uniformly distributed. We
first present a lemma concerning random angles:

Lemma 17.1. Let x be a random variable that is uniformly distributed on [0, 1],
and let y be a random variable on [0, 1] with an arbitrary distribution with
cumulative distribution fy . Consider the composite random variable z = x + y
(mod 1). Then the distribution of z is uniform on [0, 1].

Proof. We construct the cumulative distribution function of z, denoted here as
Pz(t) := Prob[z : z ≤ t] for the variable z. The distribution of interest is then
given by p = dPz(t)/dt. To prove the result in question, we must show that p=
constant.

The cumulative probability is given by integrating over the portion of the unit
square where x+ y < z (mod 1). The integral has three parts, which take the form

Pz(z) =

∫ z

0

fydy

∫ z−y

0

dx+

∫ z

0

fydy

∫ 1

1−y
dx+

∫ 1

z

fydy

∫ 1+z−y

1−y
dx , (17.41)

where we integrate over the variable x first.
Because the distribution of x is uniform, the x-integrals can be evaluated to find

P (z) =

∫ z

0

fydy(z−y)+
∫ z

0

fydy(y)+

∫ 1

z

fydy(z) = z

∫ 1

0

fydy = z . (17.42)

Thus, Pz(z) = z, p = dPz(t)/dt = 1, and hence the distribution of the random
variable Z z is uniform on [0, 1], as claimed. ��

Using the lemma we obtain a formula for the Lyapunov exponents in the
uniformly distributed case. The answers are expressed using Stieltjes integrals as
in [31, 33].
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Theorem 17.4. Consider random matrices Ck of the form Ck = Qk

[
1 xk
xk 1

]
QTk ,

where the xk are real. Suppose that the xk are independently and identically
distributed, with distribution which satisfies

Ex[log(1 + |x|)] <∞.

Suppose that the rotation angles αk are independent of all the xk and are uniformly
distributed. Then the top Lyapunov exponent is given by the Stieltjes integral

γ1 =

∫
(|x|>1)

log |x| dPx(x) , (17.43)

where the integral is taken only over the region where |x| > 1. The second Lyapunov
exponent is given by

γ2 = −γ1 +
∫ ∞

−∞
log |1− x2|dPx(x). (17.44)

The value γ2 = −∞ is permitted.

Proof. An immediate consequence of Lemma 17.1 is: Let the angle α be uniformly
distributed on [0, 2π] and let the angle φ have an arbitrary distribution. Then the
composite variable θ = φ− α is uniformly distributed on [0, 2π].

This fact together with our hypotheses allow us to directly use the for-
mula (17.37) for γ given in Theorem 17.3. Under the assumption that the angles
αk are independent and uniformly distributed over [0, 2π], with no assumption on
the xk , the angles θk defined by Eq. (17.35) are also independent of each other and
are uniformly distributed. If we furthermore assume that the distribution of each
αk is independent of all xj with j ≤ k, then it follows that each variable θk is
independent of variable xk (they depend on αj with j ≤ k and on xj with j < k).
In that case the expression (17.37) for the growth rate converges with probability
one to the Stieltjes integral

γ1 :=
1

2

∫ ∞

−∞
dPx

( 1

2π

∫ 2π

0

log
[
1 + x2 + 2x sin 2θ

]
dθ
)
. (17.45)

Since the αk are uniformly distributed, the angular integral can be evaluated, using
the formula

1

2π

∫ 2π

0

log
[
1 + (2 sin 2θ)x+ x2

]
dθ =

{ log |x| if |x| > 1,

0 if |x| ≤ 1.

The growth rate becomes the Stieltjes integral
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γ1 =

∫
|x|≥1

log |x|dPx(x), (17.46)

The expression for the second Lyapunov exponent then follows using the fact that
with probability one the integral in (17.38) converges to

∫∞
−∞ log |1− x2|dPx(x).

��
Observe that for an absolutely continuous density the formula (17.46) becomes

γ1 =

∫
(|x|>1)

dPx
dx

log |x|dx. (17.47)

17.3.3 Uniformly Distributed Case with Constant xk

We consider the special case where the values xk = x are constant. A complete
analysis can be given for uniformly distributed rotations.

Theorem 17.5. Suppose that all xk = x are real and constant, with |x| �= 1, and
that the rotation angles αk are drawn independently from the uniform distribution
on [0, 2π]. Then the Lyapunov exponents of the product of random Ck :=

Qk

[
1 x

x 1

]
QTk take the form, for |x| > 1,

γ1 = log(|x|) and γ2 = log(|x| − 1

|x| ) (|x| > 1). (17.48)

The Lyapunov exponents take the form, for 0 ≤ |x| < 1,

γ1 = 0 and γ2 = log(1− x2) (|x| < 1) . (17.49)

The Lyapunov exponents for |x| = 1 take the form,

γ1 = 0 and γ2 = −∞ . (17.50)

Remark. This result may be compared with the purely deterministic model with

no rotations present. This case considers products of the matrices

[
1 x

x 1

]
, and has

γ1 = log(1 + |x|) and γ2 = log |1 − |x|| (see Appendix).

Proof. We first suppose |x| �= 1. By Theorem 17.3, the two Lyapunov exponents
exist with probability one. To compute them we apply the recursion given in
Theorem 17.3. One first obtains the intermediate form
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γ1 =
1

2
log(1 + x2) +

1

2

1

2π

∫ 2π

0

log

[
1 +

2x

1 + x2
sin 2θ

]
dθ .

The second integral can be evaluated to obtain

γ1 =
1

2
log(1 + x2) +

1

2
log

[
1 + (1− a2)1/2

2

]
, (17.51)

where we have defined a ≡ 2x/(1 + x2). Since we need to take the positive root
of (1 − a2)1/2, we get different expressions for |x| > 1 and |x| < 1. For x > 1,
one obtains 1 + (1 − a2)1/2 = 2x2/(x2 + 1), whereas for |x| < 1 one obtains
1 + (1− a2)1/2 = 2/(x2 + 1). As a result, the growth rate is given by Eq. (17.48).

We obtain the second Lyapunov exponent using (17.38). It yields

γ2 =
{− log(|x|) + log |1− x2| if |x| > 1,

log |1− x2| if |x| < 1,
(17.52)

from which (17.49) follows.

For the case |x| = 1, where the matrix

[
1 x

x 1

]
is singular, the formula of

Theorem 17.3 still applies to give γ1 = 0. In this case γ2 = −∞ since the matrices
in the product have rank at most one. ��

In this example the top Lyapunov exponent is a piecewise analytic function of
the parameter x in several separate regimes. See [28] for a general discussion of this
phenomenon.

As noted earlier x = 1 is the case that parallels the model considered in
Sect. 17.2. Here we have

Ck = Qk

[
1 1

1 1

]
QTk = Q

′
k

[
0 0

0 2

]
(Q

′
k)
T

where Q
′
k is a new rotation matrix which adds π

4 to the rotation angle Qk. For the
case of uniformly distributed rotations, the distribution of Q

′
k is the same as Qk.

Up to scaling, the matrix

[
0 0

0 2

]
is a one-dimensional projection, so the growth rate

will be γ = 2γ∗ where γ∗ is the growth rate for a random product of uniformly
distributed one-dimensional projections. This latter problem was solved in [16], and
the result is as follows.

Theorem 17.6. Consider matrix products of independent uniformly distributed
random orthogonal projections Dk onto a one-dimensional subspace of R2, drawn
with uniformly distributed angle. The top Lyapunov exponent of such products is
given by
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γ1 = − log 2.

One also has γ2 = −∞.

Proof. The result follows from Theorem 17.5 for the case x = 1, since rescaling of
each matrix by a factor 1

2 to get a projection shifts the top Lyapunov exponent by
− log 2.

A second approach is to directly calculate the Lyapunov exponent. We use the
fact that it is given by the expected value of the logarithm of the length of a random
projection of the unit vector (0, 1)T representing the initial eigenvector, taken over
one step. This is given by

γ1 :=
1

2π

∫ 2π

0

log | cos θ| dθ =
2

π

∫ π/2

0

log cos θ dθ.

One may verify that the integral on the right is − log 2. ��

17.4 Comparison of the Unstable Regime Hill Equation
Model and Random Rotation Model with all xk = 1

The dynamics of the random rotation model of Sect. 17.3 is directly comparable
with that of the model of Sect. 17.2 in one special case, which is that where all
xk = x = 1. In that case the model is equivalent to drawing independent random
matrices

Ck := Qk

[
0 0

0 2

]
Q

−1
k . (17.53)

where Qk := QkQπ/4 are random rotations, with Qk (and hence Qk) being
independent draws from a given distribution of allowed rotations, and Q

T
k = Q

−1
k .

Recall that the model of Sect. 17.2 has

Ak := Pk

[
0 0

0 2

]
P

−1
k . (17.54)

with Pk ≡
[−xk xk

1 1

]
, with each xk drawn independently from a given distribution

on the real line. The unperturbed model in both cases is simply iteration of the singu-

lar matrixD =

[
0 0

0 2

]
. We now observe that the addition of random perturbations has

opposite effects on the top Lyapunov exponents on these models. For the perturbed
Hill’s equation model of Sect. 17.2, in the case of nonnegative random variables it
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always increases the Lyapunov exponent relative to the unperturbed model, while
for the random rotation model it always decreases the Lyapunov exponent relative
to the unperturbed model.

For the unstable Hill’s equation random model of Sect. 17.2 we have the
following easy observation, in the case of nonnegative random variables.

Theorem 17.7. For the unstable Hill’s equation random matrix model (17.54),
where the distribution of xk is on the positive real line, the growth rate satisfies

γ1 ≥ log 2.

Equality holds if and only if the model has no randomness, i.e., a fixed matrix[
1 x

1/x 1

]
is drawn with probability one at each step.

Proof. We assert that

Ex1,x2[log(1 +
x1
x2

)] =
1

2
Ex1,x2[log(1 +

x1
x2

) + log(1 +
x2
x1

)] ≥ log 2.

This holds using the identity

log(1+
x1
x2

)+ log(1+
x2
x1

) = log(1+
x1
x2

)(1+
x2
x1

) = log(2+
x1
x2

+
x2
x1

) ≥ 2 log 2,

together with y + 1
y ≥ 2 when y > 0. To obtain equality one must have x1 = x2

almost everywhere. ��
Note that for the model of Theorem 17.2, allowing xk of both signs, the exponent

γ1 can be larger than or smaller than log 2, depending on the distribution.
Turning to the random rotation model of Sect. 17.3, we show that the addition of

any randomness in this model always decreases the Lyapunov exponent relative to
unperturbed model.

Theorem 17.8. For the random rotation model (17.53), for any fixed distribution
of random rotations the top Lyapunov exponent satisfies

γ1 ≤ log 2.

Equality holds if and only if the model has no randomness, i.e., if with probability

one a fixed rotation Q :=

[
cosα0 − sinα0

sinα0 cosα0

]
is drawn at each step.

Proof. For this model we observe that each matrix 1
2Ck is a rank one orthogonal

projection. The product of N matrices has norm 2N times the product of N rank
one orthogonal projections. But the product of rank one orthogonal projections is a
constant times a rank one orthogonal projection, and this constant is always ≤ 1.
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The inequality above on the Lyapunov exponent follows. To get strict inequality if
the distribution is nontrivial it suffices to observe that there will be some δ > 0 such
that with positive probability the product of projections shrinks by a factor 1 + δ.
This will give a strict decrease in γ1. ��

These models (17.54) and (17.53) illustrate how the form of the allowed random
similarities can affect the long-term dynamics of the model. Rotational similarities
always smooth the instability while the form of the shears Pk in (17.54), in models
with all xk > 0, increases the instability.

17.5 Concluding Remarks

The starting point of this paper was the observation made by the first two authors
in [2] that Hill’s equations can be generalized so that the parameters of the
differential equation vary from cycle to cycle; the time development of the solutions
is then given by the product of matrices with random elements. This motivates the
study of various random matrix models of 2 × 2 matrices. This paper presented
analytic results for the growth rates for two such random matrix models. The first
model describes Hill’s equation in the regime where solutions are highly unstable
(Theorems 17.1 and 17.2). The second, entirely different model, is a two-parameter
model of random matrices and models entirely different dynamics. The models have
the same unperturbed model in one special case, and in Sect. 17.4 we demonstrated
a contrast of the growth rates for the unperturbed and perturbed models in the two
models. The unstable Hill’s equation model increases the growth rate while the other
model decreases it. Finally the Appendix presents a simple special case of the two-
parameter model where the matrices commute.

The paper addresses at two goals. The first is to gain insight into the mechanism
underlying the unstable regime Hill’s equation model. The second is to present
simple random matrix models with explicitly determinable Lyapunov exponents,
which add to the small list of models where such formulas are known.

Appendix: Commuting Matrix Family

We consider the special case of the model in Sect. 17.3 with no rotations present,
i.e., all αk = 0. That is, we consider products of matrices Bk that have the form

Bk =

[
1 xk
xk 1

]
, (17.55)

where the variables xk have an arbitrary distribution. These matrices form a
commuting family, which permits an easy analysis of their growth rates.
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Theorem 17.9. Consider matrices of the form Bk =

[
1 xk
xk 1

]
, where the random

matrix elements are independently and identically drawn from a distribution
supported in (0, 1) 0 ≤ xk < 1. The growth rate for matrix products B(N) takes the
form

γ = lim
N→∞

1

N

N∑
k=1

log(1 + xk) = Ex[log(1 + x)] . (17.56)

so that γ ≥ 0. The second Lyapunov exponent is given by

γ2 = lim
N→∞

1

N

N∑
k=1

log(1− xk) = Ex[log(1− x)] . (17.57)

The value γ2 = −∞ is allowed.

Proof. We first define the determinant of the matrix Bk, dk ≡ 1 − x2k , and rewrite
the matrix in the form

Bk =
√
dk

[
cosh θk sinh θk
sinh θk cosh θk

]
,

where

θk =
1

2
log

(
1 + xk
1− xk

)
.

The product of N such matrices takes the form

B
(N) =

{
N∏
k=1

(1− x2k)
1/2

}[
cosh θN sinh θN
sinh θN cosh θN

]
, (17.58)

where the new angle (argument) θN is given by

θN =
N∑
k=1

θk =
N∑
k=1

1

2
log

(
1 + xk
1− xk

)
,

so that

eθN =

N∏
k=1

(
1 + xk
1− xk

)1/2

.

For simplicity of notation, we define
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PN =

N∏
k=1

d
1/2
k =

N∏
k=1

(1 − x2k)
1/2 .

The largest eigenvalue of the matrix at the Nth iteration in then given by

λN = PNeθN =

N∏
k=1

(1 + xk) . (17.59)

The growth rate for matrix multiplication is then given by

γ = lim
N→∞

1

N

N∑
k=1

log(1 + xk) , (17.60)

as claimed in Eq. (17.56). By the same token, the second eigenvalue is given by

det(B(N))

λN
= PNe

−θN =

N∏
k=1

(1 − xk) . (17.61)

This yields

γ = lim
N→∞

1

N

N∑
k=1

log(1− xk) , (17.62)

which is the smaller exponent since 0 ≤ xk < 1. ��
Remark. Alternatively, Eq. (17.60) provides the growth rate as follows: The matri-
ces have eigenvalues (1 ± xk) and eigenvectors [1, 1] and [1,−1]. Since the
eigenvectors are the same for all k, after repeated matrix multiplications only the
vector component with the first eigenvector [1, 1] survives (since this eigenvector
always corresponds to the larger eigenvalue). Further, the leading coefficient will be∏
(1 + xk). The growth rate of Eq. (17.60) then follows from the definitions.
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16. Högnäs, G.: On products of random projections. Acta Acad. Aboensis Ser. B 44(5), 18

pp. (1984)
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Chapter 18
The Three-Dimensional Globally Modified
Navier–Stokes Equations: Recent Developments

T. Caraballo and P.E. Kloeden

Herrn Prof. Dr. Jürgen Scheurle zu seinem sechzigsten
Geburtstag gewidmet

Abstract The globally modified Navier–Stokes equations (GMNSE) were
introduced by Caraballo, Kloeden and Real (Adv. Nonlinear Stud. 6:411–436,
2006) in 2006 and have been investigated in a number of papers since then, both
for their own sake and as a means of obtaining results about the three-dimensional
Navier–Stokes equations. These results were reviewed by Kloeden et al. (Advances
in Nonlinear Analysis: Theory, Methods and Applications, Cambridge Scientific
Publishers, Cambridge, 2009; pp 11–22.), which was published in 2009, but there
have been some important developments since then, which will be reviewed here.

18.1 Introduction

The three-dimensional Navier–Stokes equations (NSE) are an intriguing system of
partial differential equations. They have been intensively investigated for many
years, but some very basic issues on their solvability remain unresolved. For
example, although weak solutions are known to exist for all future time for each
initial condition in the function space H , it is not known if there is a unique
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weak solution. Nor is it known if a strong solution for each initial condition in the
function space V can exist for more than a short time.

Let Ω ⊂ R
3 be an open bounded set with regular boundary Γ . The system

of Navier–Stokes equations (NSE) on Ω with a homogeneous Dirichlet boundary
condition is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu + (u · ∇)u +∇p = f(t) in (τ,+∞)×Ω,

∇ · u = 0 in (τ,+∞)×Ω,

u = 0 on (τ,+∞)× Γ,

u(τ, x) = u0(x), x ∈ Ω,

(18.1)

where ν > 0 is the kinematic viscosity, u is the velocity field of the fluid, p the
pressure, τ ∈ R the initial time, u0 the initial velocity field, and f(t) a given
external force field.

There have been many modifications of the Navier–Stokes equations, starting
with Leray and mostly involving the nonlinear term, see the review paper of
Constantin [6]. Another modification, called the globally modified Navier–Stokes
equations (GMNSE), was introduced by Caraballo, Kloeden, and Real [1] in 2006.

Fix N ∈ R
+ and define FN : R+→ R

+ by

FN (r) := min

{
1,
N

r

}
, r ∈ R

+.

The system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu + FN (‖u‖) [(u · ∇)u] +∇p = f(t) in (τ,+∞)×Ω,

∇ · u = 0 in (τ,+∞)×Ω,

u = 0 on (τ,+∞)× Γ,

u(τ, x) = u0(x), x ∈ Ω,

(18.2)

is called the globally modified Navier–Stokes equations (GMNSE) with parame-
ter N .

The GMNSE (18.2) are indeed globally modified since the modifying factor
FN (‖u‖) depends on the norm ‖u‖ = ‖∇u‖(L2(Ω))3×3 , which in turn depends
on ∇u over the whole domain Ω and not just at or near the point x ∈ Ω under
consideration. Essentially, it prevents large gradients dominating the dynamics and
leading to explosions. It is worth mentioning that, for a different purpose, Flandoli
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and Maslowski [8] used a similar global cutoff function involving the D(A1/4)
norm for the two-dimensional stochastic Navier–Stokes equations.

The GMNSE (18.2) violate the basic laws of mechanics, but mathematically
they are a well-defined system of equations, just like the modified versions of the
NSE of Leray and others with other mollifications of the nonlinear term. They are
nevertheless interesting mathematically in their own right but are also useful for
obtaining new results about the three-dimensional Navier–Stokes equations, which
will be briefly discussed below.

18.1.1 Notation

The usual notation and abstract framework for the Navier–Stokes equations of
Lions [16] and Temam [22] is used with H denoting the closure of

V =
{
u ∈ (C∞

0 (Ω))3 : div u = 0
}
,

in (L2(Ω))3 with inner product (u, v) =
∑3

j=1

∫
Ω
uj(x)vj(x) dx, for u, v ∈

(L2(Ω))3, with associated norm |·|, and V denoting the closure of V in (H1
0 (Ω))3

with inner product ((u, v)) =
∑3
i,j=1

∫
Ω
∂uj

∂xi

∂vj
∂xi

dx, for u, v ∈ (H1
0 (Ω))3, with

associated norm ‖·‖. In addition, bN and BN are defined by

bN (u, v, w) = FN (‖v‖)b(u, v, w), ∀u, v, w ∈ V.

and

〈BN (u, v), w〉 = bN (u, v, w), ∀u, v, w ∈ V,

respectively, where b is the trilinear form on V × V × V given by

b(u, v, w) =
3∑

i,j=1

∫
Ω

ui
∂vj
∂xi

wj dx, ∀u, v, w ∈ V.

Finally, define A : V → V ′ by 〈Au, v〉 = ((u, v)). Then Au = −PΔu, ∀u ∈
D(A), where D(A) = (H2(Ω))3 ∩ V and P is the orthonormal projector from
(L2(Ω))3 onto H .
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18.2 Existence and Regularity of Solutions

The existence, uniqueness, and regularity theory of strong and weak solutions of
the three-dimensional GMNSE is closer to that of the two-dimensional than the
three-dimensional NSE due to the special properties of bN , which is linear in u
and w, but nonlinear in v, and satisfies bN (u, v, v) = 0 for all u, v ∈ V as well as
the estimate

|bN (u, v, w)| = FN (‖v‖)|b(u, v, w)| ≤ NC1‖u‖‖w‖ ∀u, v, w ∈ V. (18.3)

This and many other estimates, which can be found in Caraballo, Kloeden, and
Real [1], are very similar to those for the two-dimensional NSE and lead to similar
results. In particular, the GMNSE have a unique global strong solution for each
initial condition in the function space V as well as global weak solutions for each
initial condition in the function space H , which instantaneously become strong
solutions. Originally, in [1] it was not known if the weak solutions were unique,
but this was later established by Romito [21] and thus allowed a number of proofs
that had appeared in some papers published in the period between these two to be
simplified.

18.2.1 Weak Solutions

Let u0 ∈ H and f ∈ L2(τ, T ; (L2(Ω))3) for all T > τ be given. A weak solution
of (18.2) is any u ∈ L2(τ, T ;V ) for all T > τ such that

⎧⎨
⎩

d
dt
u(t) + νAu(t) +BN (u(t), u(t)) = f(t) in D ′(τ,+∞;V ′),

u(τ) = u0,

(18.4)

or equivalently

(u(t), w)+ν

∫ t

τ

((u(s), w)) ds+

∫ t

τ

bN (u(s), u(s), w) ds = (u0, w)+

∫ t

τ

(f(s), w) ds,

(18.5)

for all t ≥ τ and all w ∈ V .
Due to (18.3), unlike the three-dimensional NSE, any weak solution u(t) of

GMNSE belongs to C([τ,+∞);H) and satisfies (see Remark 1 in [1]) the energy
equality

|u(t)|2 − |u(s)|2 + 2ν

∫ t

s

‖u(r)‖2 dr = 2

∫ t

s

(f(r), u(r)) dr for all τ ≤ s ≤ t.

(18.6)
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The existence of weak solutions of the GMNSE is contained in Theorem 23.2
below which also considers the existence of strong solutions. The following result
is the counterpart of Serrin’s classical theorem on the three-dimensional NSE which
says that a strong solution, if it exists, is unique in the class of weak solutions. Strong
solutions (to be defined below) for the GMNSE are examples of the weak solutions
in the next theorem.

Theorem 18.1 ([1], Theorem 3). If there exists a weak solution u of (18.2) such
that u ∈ L2(τ, T ;D(A)) for all T > τ , then u is the unique weak solution of (18.2).

This result is not as important as originally thought since the weak solutions of
the GMNSE have been shown to be unique. The proof is similar to the NSE case
and depends on the following result.

Lemma 18.1 ([1], Lemma 6). For all M , N , p, r ∈ R
+ it holds

|FM (p)− FN (r)| ≤ |M −N |
r

+
|p− r|
r

.

18.2.2 Strong Solutions

The following theorem is the basic existence and regularity result for strong and
also weak solutions of the GMNSE.

Theorem 18.2 ([2]). Suppose f ∈ L2(τ, T ; (L2(Ω))3) for all T > τ , and let u0 ∈
H be given. Then, there exists a unique weak solution u of (18.2), which is, in fact,
a strong solution in the sense that

u ∈ C([τ + ε, T ];V ) ∩ L2(τ + ε, T ;D(A)), (18.7)

for all T > τ + ε > τ.
Moreover, if u0 ∈ V , then

u ∈ C([τ, T ];V ) ∩ L2(τ, T ;D(A)), (18.8)

for all T > τ.

The first statement in Theorem 23.1 was originally given as “there exists at least
one weak solution u of the GMNSE” in Theorem 7 of [1], but takes its present form
after Romito showed that “there exists at most one weak solution u of the GMNSE”
in Theorem 1.1 of [21]. Romito used the estimate

| (w,B(u, v)) | ≤ ‖u‖L6‖∇v‖L2‖w‖ 1
2

L2‖w‖
1
2

L6 ≤ c0‖u‖‖v‖|w| 12 ‖w‖ 1
2 , (18.9)
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for u, v, w ∈ V , since ‖u‖L6 ≤ c‖u‖. He used this to show that the nonlinear term
N L (u, v) := FN (‖u‖)B(u, u)− FN (‖v‖)B(v, v) could be estimated by

(w,N L (u, v)) ≤ ν‖w‖2 + C(c0, ν)N
4|w|2,

where w = u− v, the difference of two weak solutions.

18.2.2.1 Continuity of Strong Solutions on Data

Strong solutions u(N)(t, τ, u0) of the GMNSE (18.2) with parameter N depend
continuously on the parameter N as well as on the initial value u0.

Theorem 18.3 ([12], Theorem 8). Suppose that f ∈ L2(τ, T ; (L2(Ω))3) for
all T > τ , and let N,M > 0, and u0, v0 ∈ V be given. Denote by
u(N)(t) = u(N)(t, τ, u0) (respectively, v(M)(t) = u(M)(t, τ, v0)) the solution of
the GMNSE (18.2) corresponding to the parameter N and the initial value u0
(respectively, to the parameter M and the initial condition v0). Then, there exists
a positive constant C > 0 depending only on Ω and ν such that for all t ≥ τ

||v(M)(t)− u(N)(t)||2 ≤ [||v0 − u0||2 + C(M −N)2
∫ t

τ

|Au(N)(s)|2ds ]×

× exp

(
C

(
M4(t− τ) +

∫ t

τ

|Au(N)(s)|2ds
))

(18.10)

and

ν

∫ t

τ

|Av (M)(s) − Au(N)(s)|2ds ≤ [||v0 − u0||2 + C(M −N)2
∫ t

τ

|Au(N)(s)|2ds ]×
[
1 +

(
C

∫ t

τ

(
|Au(N)(s)|2 +M4

)
ds

)
× exp

(
C

(
M4(t− τ) +

∫ t

τ

|Au(N)(s)|2ds
))]

.

(18.11)

As a consequence of the previous theorem, we obtain

Theorem 18.4. Suppose that f ∈ L2(τ, T ; (L2(Ω))3) for all T > τ. Then, for any
u0 ∈ V and N > 0 given,

u(M)(·, τ, v0)→ u(N)(·, τ, u0) in C([τ, T ];V ) ∩ L2(τ, T ;D(A))

as (M, v0)→ (N, u0) in R
+ × V for all T > τ.



18 The Three-Dimensional Globally Modified Navier–Stokes Equations: . . . 479

18.2.2.2 Estimates of Strong Solutions in D(A)

With stronger assumptions on the external forcing term f , estimates of the solution
in the norm of D(A) can be obtained.

Theorem 18.5 ([3], Proposition 4). Suppose that f ∈ W 1,∞(τ,+∞;H), and let
u(N)(t) be a solution of the GMNSE (18.2) with parameter N . Then

u(N)(t) ∈ D(A), ∀ t > τ, (18.12)

and there exist two positive constants R(N)
f and M (N)

f , independent of ε, τ, u0, and
t, and increasing with |f |∞ and |f ′|∞, such that

a) if u(τ) = u0 ∈ V , then

|Au(N)(t)|2 ≤ (1 + ε−1)
[
R

(N)
f +M

(N)
f (1 + t− τ)‖u0‖2e−νλ1(t−τ)

]
,

(18.13)
for all t ≥ τ + ε, ε ∈ (0, 1];

b) in general, if u(τ) = u0 ∈ H , then

|Au(N)(t)|2 ≤ (1+ε−1)R
(N)
f +ε−1(1+ε−1)M

(N)
f (1+ t− τ )(1+ |u0|2)e−νλ1(t−τ),

(18.14)
for all t ≥ τ + 2ε, 0 < ε ≤ 1. In particular, there exists a T0 = T0(|u0|)

depending only on |u0|, R(N)
f and M (N)

f , such that

|Au(N)(t)|2 ≤ 2R
(N)
f , ∀ t ≥ τ + T0(|u0|). (18.15)

Remark 18.1. Observe that (18.14) implies that if f ∈ W 1,∞(τ,+∞;H), then
every solution of GMNSE belongs to L∞(τ + ε,+∞;D(A)) for all ε > 0.
If, moreover, the initial datum u0 ∈ D(A), then it can be proved that the
corresponding solution u = u(N)(t) of GMNSE belongs to L∞(τ,+∞;D(A)),
and more exactly,

sup
t≥τ
|Au(t)| < +∞.

18.3 Global Attractor in V : Existence and Dimension
Estimate

18.3.1 Autonomous Case

Assume now that the forcing term f does not depend on time and for each u0 ∈ V
define S(N)(t)u0 := u(N)(t, u0), where u(N)(t, u0) is the unique strong solution
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u(N)(t) of (18.2) with initial time τ = 0. From Theorems 23.1 and 18.4, it follows
that {S(N)(t)}t≥0 is a C0 semigroup in V . Let u(N)(t) = S(N)(t)u0 with u0 ∈ V .
The same arguments as for the NSE give the inequality

d

dt
|u(N)|2 + νλ1|u(N)|2 ≤ 1

νλ1
|f |2, (18.16)

where λ1 is the first eigenvalue of A, and hence the estimate

|u(N)(t)|2 ≤ |u0|2e−νλ1t +
1

ν2λ21
|f |2 (1− e−νλ1t

)
,

from which it follows that S(N)(t) possesses a set BH in H which absorbs bounded
sets of V , and which is given by BH := {u ∈ H : |u|2 ≤ 1 + 1

ν2λ2
1
|f |2 }.

Similarly, but more complicatedly, S(N)(t) has an absorbing set B
(N)
V in V (i.e.,

which absorbs bounded sets of V ) given by

B
(N)
V :=

{
u ∈ V : ‖u‖2 ≤ 1 +

|f |2
ν2λ1

(
2 +

C(N)

νλ21

)}
. (18.17)

Note that B
(N)
V ⊂ B

(N∗)
V for N ≤ N∗ in view of the definition of the constant

C(N) (see [1] for details).

Moreover, the semigroup S(N)(t) in V is asymptotically compact since it
satisfies the flattening property ([11], see also [20]): “For any bounded set B of
V and for any ε > 0, there exists Tε(B) > 0 and a finite dimensional subspace Vε
of V , such that

{
PεS

(N)(t)B, t ≥ Tε(B)
}

is bounded and

∥∥∥(I − Pε)S
(N)(t)u0

∥∥∥ < ε for t ≥ Tε(B), u0 ∈ B, (18.18)

where Pε : V → Vε is the projection operator.” It thus follows that the
GMNSE (18.2) has a global attractor AN in V for each N . In particular, AN ⊂
B

(N)
V for each N and

Theorem 18.6 ([1], Theorem 10). If f ∈ (L2(Ω))3, then the GMNSE (18.2) has a
global attractor AN in V for each N > 0. Moreover the set-valued mapping N �→
AN is upper semi continuous, i.e.

distV (AM ,AN)→ 0 as M → N, (18.19)

where distV is the Hausdorff semi distance on V .



18 The Three-Dimensional Globally Modified Navier–Stokes Equations: . . . 481

The upper semi continuous dependence of the global attractors AN in N follows
by standard theorems in dynamical systems theory in view of the continuity of the
semigroups S(N) in N established in Theorem 18.4.

18.3.1.1 Global Attractor in D(A)

With time-independent forcing (so that the stronger assumption of Theorem 18.5 is
satisfied) it is possible to obtain an absorbing set BN := {v ∈ D(A) : |Av |2 ≤
2R

(N)
f } in D(A) for the semigroup {S(N)(t)}t≥0 and hence the above global

attractor AN actually belongs to D(A). In fact

Corollary 18.1 ([3], Corollary 7). The global attractor AN of the GMNSE is a
bounded subset of D(A).

18.3.2 Nonautonomous Case

In the nonautonomous case, when f depends on time, the counterpart of a semigroup
is a 2-parameter semigroup of operators U (N)(t, τ), with U (N)(t, τ)u0 =
u(N)(t, τ, u0) the solution of (18.2) for u0 ∈ V . In addition, the counterpart of
an attractor is a pullback attractor, i.e., a family of nonempty compact subsets
{AN(t), t ∈ R}) in V , which is invariant in the sense that S(N)(t, τ)AN (τ) =
AN(t) for all t ≥ τ and is pullback attracting in V , see [12]. Supposing that f
belongs to L2

loc(R; (L
2(Ω))3) and satisfies

∫ t

−∞
eνλ1s|f(s)|2 ds < +∞ for all t ∈ R, (18.20)

the existence of a pullback attractor in V for the GMNSE was established
in [12, Theorem 13]. Among other properties for the pullback attractor in V , a finite
bound on the fractal dimension, which could increase with increasing time, was also
obtained in [12].

Theorem 18.7 ([12], Theorem 22). Suppose that f ∈W 1,2
loc (R;L

2(Ω)3) satisfies

f ∈ L∞(−∞, t0;L
2(Ω)3), and sup

r≤t0

∫ r+1

r

|f ′(s)|2 ds < +∞, for all t0 ∈ R.

(18.21)

Then, for each N > 0 and each t0 ∈ R there exists a d(N)(t0) ∈ [0,+∞)
such that the fractal dimension of the pullback attractor {AN(t), t ∈ R}) of the
GMNSE (18.2) satisfies the bound

dVF (AN (t)) ≤ d(N)(t0) for all t ≤ t0. (18.22)
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Recall that the fractal dimension of a nonempty subset C of a metric space (X, dX)
is given by

dXF (C) := lim sup
ε↓0

log(Nε(C))

log(1/ε)
, (18.23)

where Nε(C) denotes the minimum number of balls in X with radius ε which are
required to cover C.

18.4 Globally Modified NSE with Delays

There are many real situations in which one can consider that a model is better
described if we allow some delay in the equations. These situations may appear, for
instance, when we want to control the system by applying a force which takes into
account not only the present state of the system but also the history of the solutions.
Therefore, it is interesting to consider the following version of GMNSE (we will
refer to it as GMNSED):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− νΔu + FN (‖u‖) [(u · ∇)u] +∇p = g(t, ut) in (τ,+∞)×Ω,

∇ · u = 0 in (τ,+∞)×Ω,

u = 0 on (τ,+∞)× Γ,

u(τ, x) = u0(x), x ∈ Ω,
u(τ + s, x) = φ(s, x), s ≤ 0, x ∈ Ω,

(18.24)
where τ ∈ R is an initial time, the term g(t, ut) is an external force depending
eventually on the history of the solution, where ut denotes the segment of solution
up to time t (in other words, ut : s ∈ (−∞, 0] �→ ut(s) := u(t + s)) and φ is a
given velocity field defined for s ≤ 0.

This is a general formulation when the delay is allowed to be infinite. But on
some occasions it can be finite or bounded. In these cases, we consider the initial
vector field φ defined in a bounded interval [−h, 0] and the segment solution ut is
also defined in the same interval.

Some examples for the delay external force will be given below, but first, it is
important to note that the function g is not defined directly on the phase space but
on some class of continuous functions: either in R × C([−h, 0];H) with the sup
norm (for finite delays), or R × Cγ((−∞, 0];H) (in the infinite delay case) where
the space Cγ(H) := Cγ((−∞, 0];H), defined as

Cγ((−∞, 0];H) :=

{
ϕ ∈ C((−∞, 0];H) : ∃ lim

s→−∞ eγsϕ(s) ∈ H
}
,
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is a Banach space for the norm

‖ϕ‖γ := sup
s∈(−∞,0]

eγs|ϕ(s)|.

1. Constant delay. Consider g(t, ut) := G1(u(t − h)) where G1 : H → H is a
suitable function and h > 0 is the constant delay. Here the function g : R ×
C([−h, 0];H)→ H is defined as:

g(t, ξ) = G1(ξ(−h)), ξ ∈ C([−h, 0];H).

Notice that the time variable t does not play any role, so we are in an autonomous
situation.

2. Variable delay. In this case, the delay term is given by g(t, ut) := G2(t, u(t −
ρ(t))), where ρ(t) ∈ [−h, 0] is a delay function. Now, the function g is given by

g(t, ξ) = G2(ξ(−ρ(t))), ξ ∈ C([−h, 0];H),

where it is clear that the time variable t is necessary for this case. So, we are in a
nonautonomous model.

3. Distributed infinite delay. (cf. [18]) Let us consider the operator g : R ×
Cγ(H)→ (L2(Ω))3 defined as

g(t, ξ) =

∫ 0

−∞
G3(t, s, ξ(s))ds , t ∈ R, ξ ∈ Cγ(H),

where the function G3 : R× (−∞, 0)×R
3 → R

3 satisfies suitable assumptions.
This situation corresponds to the case

g(t, ut) =

∫ 0

−∞
G3(t, s, u(t+ s))ds ,

which is also nonautonomous.

On the one hand, the two first cases (constant and variable delay) have been
analyzed in [5], where the authors proved existence and uniqueness of weak solu-
tions, existence, and asymptotic behavior of stationary solutions, and the existence
of pullback attractor (which becomes the global attractor in the autonomous case).
On the other hand, the infinite delay case is studied in [18], where the existence and
uniqueness of solutions, and the existence and asymptotic behavior of stationary
solutions is proved.

We will only include below some representative results from the paper [5], so we
consider g to be defined as in case (2).
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Assume G2 : R×H −→ H is such that

c1) G2(·, u) : R −→ H is measurable, ∀u ∈ H,
c2) there exists nonnegative function m ∈ Lploc(R) for some 1 ≤ p ≤ +∞, and

a nondecreasing function L : (0,∞) → (0,∞), such that for all R > 0 if
|u| , |v| ≤ R, then

|G2(t, u)−G2(t, v)| ≤ L(R)m1/2(t) |u− v| ,

for all t ∈ R, and
c3) there exists a nonnegative function f ∈ L1

loc(R), such that for any u ∈ H ,

|G2(t, u)|2 ≤ m(t) |u|2 + f(t), ∀ t ∈ R.

Finally, we suppose φ ∈ L2p′
(−h, 0;H) and u0 ∈ H , where 1

p +
1
p′ = 1.

In this situation, we consider a delay function ρ ∈ C1(R) such that 0 ≤ ρ(t) ≤ h
for all t ∈ R, and there exists a constant ρ∗ satisfying

ρ′(t) ≤ ρ∗ < 1 ∀ t ∈ R. (18.25)

Definition 18.1. Let τ ∈ R, u0 ∈ H and φ ∈ L2p′
(−h, 0;H) be given. A weak

solution of (18.24) is a function

u ∈ L2p′
(τ − h, T ;H) ∩ L2(τ, T ;V ) ∩ L∞(τ, T ;H)

for all T > τ , such that

⎧⎪⎪⎨
⎪⎪⎩

d
dt
u(t) + νAu(t) +BN (u(t), u(t)) = G2(t, u(t− ρ(t))) in D ′(τ,+∞;V ′),

u(τ) = u0,

u(t) = φ(t− τ) t ∈ (τ − h, τ),

or equivalently

(u(t), w) + ν

∫ t

τ

((u(s), w)) ds +

∫ t

τ

bN (u(s), u(s), w) ds =
(
u0, w

)

+

∫ t

τ

(G2(s, u(s− ρ(s))), w) ds , (18.26)

for all t ≥ τ and all w ∈ V , and coincides with φ(t) in (τ − h, τ).

The existence and uniqueness of weak (and strong) solutions of our problem is
established in a similar way as we did in the non-delay case, but with necessary
changes due to the delay term.



18 The Three-Dimensional Globally Modified Navier–Stokes Equations: . . . 485

Theorem 18.8 ([5], Theorem 3.1). Under the conditions c1)–c3), assume that τ ∈
R, u0 ∈ H and φ ∈ L2p′

(−h, 0;H) are given. Then, there exists a unique weak
solution u of (18.24) which is, in fact, a strong solution in the sense that

u ∈ C([τ + ε, T ];V ) ∩ L2(τ + ε, T ;D(A)), (18.27)

for all T − τ > ε > 0.
Moreover, if u0 ∈ V , then u ∈ C([τ, T ];V ) ∩ L2(τ, T ;D(A)), for all T > τ.

Next, we state a result about the asymptotic behavior of the solutions of
problem (18.24) when t goes to +∞.

Let us suppose that c1)–c3) hold with m ∈ L∞(R), assume also that

ν2λ21(1 − ρ∗) > |m|∞,

where |m|∞ := ‖m‖L∞(R),
and let us denote by ε > 0 the unique solution of

ε− νλ1 +
|m|∞eεh

νλ1(1− ρ∗)
= 0. (18.28)

We can now formulate the following result (see also [18] for a similar result in the
infinite delay case).

Theorem 18.9 ([5], Theorem 4.1). Under the previous assumptions, for any
(u0, φ) ∈ H × L2(−h, 0;H), and any τ ∈ R, the corresponding solution
u(t; τ, u0, φ) of problem (18.24) satisfies

∣∣u(t; τ, u0, φ)∣∣2

≤
(∣∣u0∣∣2 + |m|∞eεh

νλ1(1− ρ∗)

∫ 0

−h
eεs |φ(s)|2 ds

)
eε(τ−t)

+
e−εt

νλ1

∫ t

τ

eεsf(s) ds , (18.29)

for all t ≥ τ.
In particular, if

∫∞
τ

eεsf(s) ds <∞, then every solution u(t; τ, u0, φ) of (18.24)
converges exponentially to 0 as t→ +∞.

Finally, the existence of pullback attractor is also proved in [5] by following
a similar scheme to the one used in [4] for the two-dimensional Navier–Stokes
equations with delay.
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18.5 Statistical Solutions of GMNSE

The autonomous GMNSE with τ = 0 and f ∈ H , i.e. f is independent of time t,
are considered in this section and N is held fixed here. Let S(N) be the semigroup
in V generated by the autonomous GMNSE and let AN be its global attractor in V .
Probability measures on H here are with respect to the σ-algebra of Borel subsets
of H .

Definition 18.2. A probability measure on H is said to be S(N)-invariant if

μ(V ) = 1 and μ(E) = μ
(
S(N)(t)−1E

)
, ∀ t ≥ 0, (18.30)

for every Borel subset E of V (recall that a Borel set in V is a Borel set in H).

Theorem 18.10 ([3], Theorem 10). The support of any S(N)-invariant measure on
H is included in the global attractor AN .

The existence of such measures is obtained by time averaging. The results
below generalize those of Foias et al. [9] (see also Lukaszewicz [17]) for the
two-dimensional NSE to the GMNSE.

18.5.1 Time-Averages Solutions in the Autonomous Case

Classical ergodic results yield the equivalence of the limit of time averages with a
spatial average with respect to an invariant measure. An analogous results holds
for the NSE and GMNSE, but, following Foias et al. [9], requires the use of a
generalized limit in a Banach space (see [3] for the definition).

Let LIM denote a generalized limit on B([0,∞)), the space of all bounded
real-valued functions on [0,∞).

Definition 18.3. A time-average measure of the solution u(t) of the autonomous
GMNSE is a probability measure μ on H such that C(H) ⊂ L1(H,μ) and

LIMT→∞
1

T

∫ T

0

ϕ(u(t)) dt =

∫
H

ϕ(v) dμ(v), ∀ϕ ∈ C(H). (18.31)

The following results from [3] show first that a time-average measure, if it exists,
has the domain of the operator A as its domain and then that such measures do in
fact exist and are invariant w.r.t. the semigroup S(N).

Proposition 18.1 ([3], Proposition 13). Any time-average measure μ of a solution
u(t) of the autonomous GMNSE is carried by D(A), i.e., μ(D(A)) = 1.
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Proposition 18.2 ([3], Proposition 14). For any solution u(t) of the autonomous
GMNSE such that u(0) ∈ V there exists a time-average measure μ of this solution
such that moreover C(V ) ⊂ L1(H,μ) and

LIMT→∞
1

T

∫ T

0

ϕ(u(t)) dt =

∫
H

ϕ(v) dμ(v) ∀ϕ ∈ C(V ). (18.32)

Proposition 18.3 ([3], Proposition 16). Let u(t) be the solution of the autonomous
GMNSE corresponding to u0 ∈ V and let μ be a time-average measure of u(t) such
that C(V ) ⊂ L1(H,μ) and (18.32) is satisfied for all ϕ ∈ C(V ). Then μ is an
S(N)-invariant measure.

18.5.2 Stationary Statistical Solutions of the Autonomous
GMNSE

Foias et al. [9] also investigated stationary statistical solutions of the autonomous
NSE. Analogous definitions also hold for the GMSE with the operator B replaced
by BN .

Define

GN (v) = −νAv −BN (v, v) + f, ∀ v ∈ V, (18.33)

and let T be the set of real valued functionals Φ = Φ(v) on H such that

(i) cr := sup
|v|≤r

|Φ(v)| < +∞ for all r > 0;

(ii) for any v ∈ V there exists Φ′(v) ∈ V such that

|Φ(v + w)− Φ(v) − (Φ′(v), w)|
|w| → 0 as |w| → 0 with w ∈ V ; (18.34)

(iii) the mapping v �→ Φ′(v) is continuous and bounded as function from V into V .

Definition 18.4. A stationary statistical solution of the GMNSE is a probability
measure μ on H such that

(i)
∫
H

‖v‖2 dμ(v) < +∞;

(ii)
∫
H

〈GN (v), Φ′(v)〉 dμ(v) = 0 for any Φ ∈ T ;

(iii)
∫

{a≤|v|2<b}
{ν‖v‖2 − (f, v)} dμ(v) ≤ 0 for any 0 ≤ a < b ≤ +∞.
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The following results were proved in [3] correspond to those in [9] for the
autonomous NSE, namely that S(N)-invariant probability measure and time-average
measures are stationary statistical solutions of the autonomous GMNSE.

Theorem 18.11 ([3], Theorem 19). Any S(N)-invariant probability measure on H
is a stationary statistical solution of the autonomous GMNSE.

Corollary 18.2 ([3], Corollary 20). Let μ be a time-average measure of a solution
u(t) of the GMNSE such thatC(V ) ⊂ L1(H,μ) holds and (18.32) is satisfied for all
ϕ ∈ C(V ). Then μ is a stationary statistical solution of the autonomous GMNSE.

As partial counterpart of Theorem 18.11 was given in [18].

Theorem 18.12 ([13], Theorem 15). Let μ be a stationary statistical solution of
GMNSE such that there exists a bounded and measurable subset BN of D(A)
satisfying μ(H \BN ) = 0. Then μ is an SN -invariant probability measure on H .

18.6 Numerical Solution of the Globally Modified NSE

There is an extensive literature on the numerical analysis of the three-dimensional
Navier–Stokes equations, much of which is based on the pioneering ideas of
Temam [22]. In this spirit Deugoue and Djoko [7] investigated the implicit Euler
scheme applied to the GMNSE, specifically

um+1 − um

k
+ νAum+1 +BN (um+1, um+1) = fm+1 (18.35)

with time stepsize k, where

fm+1 =
1

k

∫ (m+1)k

mk

f(t) dt .

They establish uniform bounds on um (with respect to m) and its temporal
difference quotient in different function spaces and find conditions under which
um is continuous in N and u0 and for which (18.35) is uniquely solvable. They
also establish the existence of absorbing sets in both H and V spaces, which is the
first step in showing the existence of attractors. Finally they consider the limit as
N →∞ and prove the following theorem.

Theorem 18.13 ([7], Theorem 6.1). Let f ,f ′ ∈ L∞(R+, H) and v0 ∈ D(A)
with k sufficiently small. Then the sequence {um,N}N of solutions of the implicit
Euler scheme (18.35) converges to a weak solution of the following time discrete
three-dimensional Navier–Stokes equations

1

k
(um+1 − um, w) + ν(∇um,∇w) + b(um, um, w) = (fm, w), for all w ∈ V,

(18.36)
as N →∞.



18 The Three-Dimensional Globally Modified Navier–Stokes Equations: . . . 489

18.7 Weak Solutions of the Three-Dimensional
Navier–Stokes Equations

Useful results about the three-dimensional Navier–Stokes equations can be obtained
from the GMNSE.

18.7.1 Weak Kneser Property of the Attainability Set of Weak
Solutions

The Kneser property for ordinary differential equations says that the attainability set
of the solutions emanating from a given initial value is compact and connected. This
property was shown by Kloeden and Valero [14] in a combination of Corollary 3.2
and Theorem 3.3 to hold for the weak solutions of the GMNSE in the strong
topology of space H before it was known that the weak solutions of the GMNSE
for a given initial value were unique, which makes the result trivial. This result
was then used in [14] to show that the attainability set of the weak solutions of
the three-dimensional Navier–Stokes equations satisfying an energy inequality are
weakly compact and weakly connected. A simplified proof, also using properties of
the GMNSE, was later given in [15].

More precisely, for every initial datum u0 ∈ H it is well known that at least one
weak solution of (18.1) exists such that

Vτ (u (t)) ≤ Vτ (u (s)) for all t ≥ s, a.a. s > τ and s = τ , (18.37)

where Vτ (u (t)) := 1
2 |u (t) |2+ ν

∫ t
τ ‖u (r)‖2 dr −

∫ t
τ (f (r) , u (r)) dr . Denote the

corresponding attainability set for t ≥ τ by

Kt (u0) = {u(t) : u(·) is a weak solution of (18.1) satisfying (18.37)}.

We have:

Theorem 18.14 ([14], Theorem 2.1). Let f ∈ L∞ (τ, T ;H) for all T > τ . Then,
for all t ≥ τ and u0 ∈ H , the attainability set Kt (u0) is compact and connected
with respect to the weak topology on H .

18.7.2 Convergence to Weak Solutions
of the Three-Dimensional NSE

Theorem 18.15 ([1], Theorem 13). Suppose that f ∈L2(τ, T ; (L2(Ω))3) for each
T > τ and let u(N)(t) be a weak solution of the GMNSE (18.2) with the initial value

u
(N)
0 ∈H , where u(N)

0 ⇀ u0 weakly in H as N →∞.
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Then, there exists a subsequence
{
u(Nj)(t)

}
which converges as Nj → ∞,

weak-star in L∞(τ, T ;H), weakly in L2(τ, T ;V ) and strongly in L2(τ, T ;H), to a
weak solution u(t) on the interval [τ, T ] of the NSE (18.1) with initial condition u0,
for every T > τ .

The proof is based on the fact that a weak solution of the GMNSE (18.2) with
the initial value u(N)

0 ∈H , where u(N)
0 ⇀ u0 weakly in H as N →∞, satisfies the

energy inequality

d

dt
|u(N)|2 + ν‖u(N)‖2 ≤ 1

νλ1
|f |2 (18.38)

uniformly in N > 0. One easily obtains a convergent subsequence. The main
difficulty is to show that limiting function is a weak solution of the NSE (18.1)
for the given initial condition u0, i.e. satisfies the variational equation (18.4) with
bN replaced by b. The following lemma is required here.

Lemma 18.2 ([1], Lemma 12). For each p ≥ 1, it follows that

FN

(
‖u(N)(s)‖

)
→ 1 in Lp(τ, T ;R), as N →∞.

18.7.3 Existence of Bounded Entire Weak Solutions
of Three-Dimensional NSE

When the forcing term f ∈ (L2(Ω))3 is independent of time, Theorem 18.15 and
the existence of a global attractor AN of the GMNSE (18.2) for each N can be
used to show that the NSE (18.1) have bounded entire weak solutions, that is, weak
solutions which exist and are bounded for all t ∈ R. Such solutions are interesting
as they would belong to a global attractor of the three-dimensional NSE, if such an
attractor were to exist.

Theorem 18.16 ([1], Theorem 11). Suppose that f ∈ (L2(Ω))3. Then there exists
a bounded entire weak solution of the NSE (18.1). More exactly, there exists a
bounded entire weak solution of the NSE (18.1) with initial value u0 for each u0
∈ U0, where U0 is the subset in H consisting of the weak H-cluster points of
sequences u(N)

0 ∈ AN for N →∞.

The set U0 here is obviously a nonempty subset of the closed and bounded
subset BH of H . A similar result holds with essentially the same proof in the
nonautonomous case, as well as for the GMNED analyzed in Sect. 18.4 (see [19]
for more details).
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Chapter 19
Simulation of Hard Contacts with Friction:
An Iterative Projection Method

Christoph Glocker

Abstract An algorithm for the simulation of mechanical systems with hard
contacts and Coulomb friction is presented. The contact laws together with the
switching rules between the different states of the contacts are formulated as normal
cone inclusions and then generalized to contact-impact laws. By using proximal
point methods, the combined contact-impact laws are rewritten as nonlinear equa-
tions and then iteratively solved within an implicit time integration algorithm. As
illustrative examples, a funnel-deflector arrangement with 3,500 rigid balls and
a bobsled simulator software is briefly presented. The theoretical setting is in
accordance with classical Lagrangian mechanics and can be used to model various
set-valued interaction laws in arbitrary finite-dimensional multibody systems.

19.1 Introduction

To understand the dynamics of real systems, models are needed in which the main
effects responsible for a certain dynamic behavior are taken into account. These
models have to be designed specifically, according to the needs of the associated real
life problem. In dynamics, the models contain the so-called bodies that represent
the inertia properties of the real system, but they also have to take into account
the various force interactions between the bodies. These force interactions are
classically represented by springs, dampers, and bilateral constraints. For many
applications, however, the classical force elements are too limited to represent in a
proper way hard stops, sprag clutches, and dry friction, as they occur in nearly every
mechanism or machine. The reason for this deficiency is the ambivalent character
of the said elements, which may act either as a force law allowing for displacements

C. Glocker (�)
IMES - Center of Mechanics, ETH Zurich, CLA J23.1, Tannenstrasse 3, CH-8092 Zurich,
Switzerland
e-mail: glocker@imes.mavt.ethz.ch

A. Johann et al. (eds.), Recent Trends in Dynamical Systems, Springer Proceedings
in Mathematics & Statistics 35, DOI 10.1007/978-3-0348-0451-6 19,
© Springer Basel 2013

493

mailto:glocker@imes.mavt.ethz.ch


494 C. Glocker

or as a constraint preventing them. Despite the practical relevance to have proper
modeling tools and numerical algorithms for the evaluation of such dry friction
and impact processes, no commercial multibody simulation code exists up to date
which would satisfyingly meet these demands. The constraint states of the above
force elements are normally regularized by stiff springs or dampers, which may
fundamentally alter the desired properties of perfect constraints and may even be
combined with poor numerical schemes. For these reasons, an alternative approach
is imperative, which allows for state switching and which deals with the constraints
as they are.

Friction and impact phenomena have to be attributed to non-smooth dynamics.
Research in this area has reached a status, where all the above-mentioned force
elements are formulated as set-valued maximal monotone operators, and the evo-
lution equations as measure differential inclusions. In addition, robust and accurate
algorithms have been developed to solve the underlying inequality problems and
to combine them with implicit time discretization schemes. By the methods as
described in this paper, friction and impact elements can now be used in arbitrary
number and any order to model much sharper such effects in dynamics.

The paper at hand is organized as follows: Normal cones to convex sets and their
relation to proximal points are introduced in Sect. 19.2, and illustrated in Sect. 19.3
by the example of the exact regularization of the set-valued sign function. The
exact regularization is the key to the iterative numerical treatment of spatial friction
elements, as it allows to represent the friction laws by nonlinear equations, including
all the various states as stick and slip and the transition rules between them. Based
on the exact regularization, the iterative projection method as used for the dynamic
simulation of Lagrangian systems with hard contacts and dry friction is explained
in Sect. 19.4–19.9.

With the help of the principle of virtual power, it is shown in Sect. 19.4 and
Sect. 19.5 how the contact forces are included in Lagrange’s equations of second
kind, and how the relative contact velocities have to be calculated. The associated
contact laws are introduced in Sect. 19.6 and formulated as normal cone inclusions.
In particular, models for bilateral and unilateral constraints are discussed as used
in the normal contact direction, as well as force elements for planar and spatial
Coulomb friction in the isotropic and orthotropic case.

In Sect. 19.7 we present how the equations of motion and the contact laws
can be consistently extended to impacts by including, in addition to the Lebesgue
integrable parts, the impulsive forces as Dirac point measures. The resulting
measure differential inclusions are discretized in Sect. 19.8 by a midpoint rule for
the positions and an Euler backward step for the velocities. The discretization of
the velocities has to be performed implicitly to allow for switching actions in the
considered time interval and requires the discretized inclusion problem to be solved,
which is then described in Sect. 19.9. Two application problems, one with many
frictional contacts and the other one with just a few contacts but real time capability,
will finally be presented in Sect. 19.10.
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19.2 The Normal Cone and Proximal Points

The normal cone NC (x) to a convex subset C of Rn at a point x ∈ C consists by
definition [23] of all vectors y, which do not form an acute “angle” with any line
segment emanating from x and arbitrary endpoint x" ∈ C ,

NC (x) = {y | yT(x" − x) ≤ 0, ∀x" ∈ C } . (19.1)

For example, if C is a subset of R2 as in Fig. 19.1 and x1 is a point on a smooth
section of the boundary of C , then the normal cone NC (x1) is formed by a half-
line “orthogonal” to the boundary of C at x1, with its null element located at x1.
In the case of a corner point as for x2, the associated normal cone NC (x2) is
nonnegatively generated by the two half-lines orthogonal to the adjoining smooth
sections of the boundary of C . If a point lies in the interior of C as e.g. x3, then the
normal cone consists of one element only which is null element, NC (x3) = {0}.
This important special case evidently follows from (19.1), as there are no restrictions
on the various directions x" − x. Finally, note that NC (x) as defined in (19.1) is
indeed a cone, because r y ∈ NC (x) whenever y ∈ NC (x) and r ≥ 0.

As above, let C ⊂ R
n be a convex set, and let z be an arbitrary point of Rn. We

denote by

x = proxC (z) (19.2)

the proximal point to z in the set C , i.e. the point x that minimizes for given z the
Euclidean distance f(x) = ‖z− x‖ under the constraint x ∈ C . Figure 19.1 shows
three different points zi together with their proximal points xi ∈ C according to
(19.2).

One observes in the figure that the directed line element zi − xi is always
contained in the normal cone NC (xi). This property has been proven in [12] to
apply for general situations and leads, after multiplication of the cone NC (x) by an
arbitrary positive number r > 0, to the equivalence

x = proxC (z) ⇔ (z− x) ∈ rNC (x) . (19.3)

The latter allows us to replace normal cone inclusions by nonlinear equations: By
setting y := 1

r (z − x) and eliminating z from (19.3), one obtains

y ∈ NC (x) ⇔ x = proxC (r y + x) . (19.4)

The nonlinear map proxC : Rn �→ C ⊂ R
n is continuous, weakly contractive,

and idempotent, and therefore well suited for numerical purposes. Note also that
proxC (z) becomes the identity map when z ∈ C , as for the case z3 = x3 in
Fig. 19.1.
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Fig. 19.1 Shown is the normal cone NC (xi) to a convex set C ⊂ Rn at various points xi ∈ C .
These points determine the distance to the set C of some given points zi, i.e. xi = proxC (zi)

19.3 Exact Regularization of the Set-Valued Sign Function

As an example, we consider the closed interval C := [−1, 1] as a convex subset of
R. The normal cone (19.1) at a chosen x ∈ [−1, 1] is in this case determined by the
variational inequality N[−1,1](x) = {y | y (x"−x) ≤ 0}, which has to hold for any
and all x" ∈ [−1, 1]. For the evaluation of the normal cone, one has to distinguish
between the three structurally different cases that x is in the interior or at the left
or right boundary of the interval, see upper diagram of Fig. 19.2. The normal cone
inclusion (19.4) therefore results in

y ∈ N[−1,1](x) =

⎧⎨
⎩

(−∞, 0] for x = −1
{0} for − 1 < x < 1

[0,+∞) for x = 1

. (19.5)

The graph of the associated set-valued map x �→ N[−1,1](x) is depicted in the lower
diagram of Fig. 19.2 and leads, after inversion, to the set-valued sign function

x ∈ Sgn(y) =

⎧⎨
⎩
−1 for y < 0

[−1, 1] for y = 0

1 for y > 0

, (19.6)

which is shown in the upper diagram of Fig. 19.3. In order to determine now the
proximal point function prox[−1,1](z), which assigns to each point z the point with
minimal distance from z in the interval [−1, 1], one has again to proceed in three
steps: For −1 ≤ z ≤ 1, we have z ∈ [−1, 1], and the closest point to z in [−1, 1]
is z itself. For z > 1, the closest point in the interval is +1, and for z < −1, the
closest point is −1. Together, one obtains
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Fig. 19.2 The upper diagram
shows the normal cone at the
two boundary points of the
interval C = [−1, 1]. With
N[−1,1](x) = {0} for the
interior points of C , the
(maximal monotone) graph of
the associated set-valued map
x �→ N[−1,1](x) is depicted
in the lower diagram

Fig. 19.3 The set-valued
sign function y �→ Sgn(y) as
the inverse of the normal cone
map x �→ N[−1,1](x) is
depicted in the upper
diagram. The lower diagram
shows its exact regularization
z �→ prox[−1,1](z), where
z = ry + x. The point
(y, x) = (0, 1

2
) on the

set-valued branch of the sign
function corresponds to the
point (z, x) = ( 1

2
, 1
2
) of the

prox function: As an interior
point of [−1, 1], one obtains
for z = 1

2
the identity map,

i.e. prox[−1,1](
1
2
) = 1

2

prox[−1,1](z) =

⎧⎨
⎩
−1 for z < −1
z for − 1 ≤ z ≤ 1

1 for z > 1

. (19.7)

The graph of this function is depicted in the lower diagram of Fig. 19.3 and reminds
of a regularized version of the set-valued sign function. However, note the different
entities on the abscissae which is y for the sign function, and z for the prox function
with z = ry + x according to (19.3), (19.4). As a function of y, the graph of the
prox function is horizontally stretched by the value of r, and in addition horizontally
shifted by the value of x, such that a point (y, x) on the graph of the sign function
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precisely ends up on the graph of the prox function. By applying the proximal
point function as described above, the same values are obtained as if the original
sign function would have been used. This method is therefore called an exact
regularization. It is based on the equivalence (19.4), which in the case of the sign
function becomes

y ∈ N[−1,1](x) ⇔ x ∈ Sgn(y) ⇔ x = prox[−1,1](ry + x) . (19.8)

The strategy to formulate and numerically evaluate normal cone inclusions via
proximal point functions allows us even to skip the step (19.5) in which the normal
cone is formulated. In most cases, already a geometric imagination of the normal
cone is sufficient to directly write down the proximal point function (19.7), which
is the only thing needed at the end.

19.4 Equations of Motion in Lagrangian Mechanics

In this section, we briefly review how non-potential forces have to be taken into
account in the equations of motion in Lagrangian dynamics. We will need this
approach in the next section when we introduce the contact forces, because they
do in general not derive from a potential. We consider a mechanical system with
n hard unilateral contacts under the influence of Coulomb friction. In the case
that all contacts are open, the system is assumed to have f degrees of freedom,
parameterized by a tuple of f local coordinates q. The generalized velocities of the
system are denoted by u. As functions of time, u(t) are assumed to be of special
bounded variations, leading to absolutely continuous positions q(t) with u = q̇
almost everywhere. To derive the equations of motion for the impact-free case, the
concept of virtual power δP together with Lagrange equations of second kind is
used, which yields the variational expression

∀δu : 0 = δP = δuT

[
d

dt

(
∂T

∂u

)T

−
(
∂T

∂q

)T

+

(
∂V

∂q

)T

− fNP

]
(19.9)

that is required to hold for all virtual velocities δu. In (19.9), T (q,u, t) denotes the
kinetic energy and V (q, t) the potential energy of the system. All generalized forces
which do not admit for a classical potential are collected in the vector fNP . After
having carried out the differentiation process in (19.9), one obtains the equations of
motion of the system, for which we impose the structure

∀δu : 0 = δP = δuT [M(q, t) u̇− h(q,u, t)− f ] . (19.10)

Here, M(q, t) denotes the symmetric and positive definite mass matrix, which
may be identified from (∂T∂u )

T = M(q, t)u. All gyroscopic accelerations, i.e. the
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Christoffel symbols, all potential forces, and all classical non-potential forces are
collected in the term h(q,u, t), such that only the contact forces remain in the
generalized force vector f . These contact forces are introduced in the next section by
setting up a suitable contact model, together with all the kinematic relations needed
to finally evaluate the associated virtual power expression δuT f .

19.5 The Contact Model

Figure 19.4 shows the model that will be used to formulate hard contacts with
Coulomb friction in the planar case. In the left part, some geometric entities are
displayed as needed to set up the kinematics of the contact. We first discuss the
normal direction. The contact points P and Q are by definition the points on the
(convex) contours of the bodies that share a common normal. As soon as the contact
points are known, one may specify an outward normal vector n(q, t) of unit length
at one of the bodies. The relative velocity γN of the contact points in the normal
direction is then given by the difference of the absolute velocities vQ and vP of the
rigid body points placed at Q and P , projected on the normal n. This gives

γN = nT(vQ − vP ) = wT
N u+ χN , (19.11)

where the two terms wN (q, t) and χN (q, t) may directly be identified when
generalized coordinates and velocities are used. Physically, γN < 0 corresponds
with bodies that are approaching each other, whereas γN > 0 indicates that the
bodies are moving apart from each other. In analogy with (19.11), one obtains for
the virtual velocities

δγN = nTδ(vQ − vP ) = wT
N δu . (19.12)

Note that positions and time have not to be varied when building the virtual
velocities, which leads directly to δn = 0, because the normal n depends on q
and t only, but not on any velocity.

The right part of Fig. 19.4 shows the free body diagram of the contact, with the
contact forces decomposed into a normal and a tangential component each. By using
the normal n, the normal contact forces may be written as

FNQ = −FNP = nλN , (19.13)

where λN is the signed scalar value of these normal forces. The contribution δPN
of these forces to the overall virtual power (19.10) may now easily be calculated by
the invariance of the virtual power under coordinate transformation. With the help
of (19.12) and (19.13), one obtains
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Fig. 19.4 Contact model for a planar situation. Left diagram: Contact points P and Q together
with their absolute velocities vp and vQ. Right diagram: Free body diagram, showing the contact
forces in the normal and the tangential direction

δPN = FT
NQ δvQ + FT

NP δvP = λN nT(δvQ − δvP ) = λN wT
N δu =: fTN δu ,

(19.14)

from which one identifies the generalized force associated with the normal contact
direction as

fN = wN λN . (19.15)

This force is composed of the scalar normal force λN and the generalized force
direction wN (q, t), which we have already met in the expression for the normal
relative velocity (19.11).

For the tangential contact direction, which is defined by the tangent unit vector t
in Fig. 19.4, one proceeds in the same way as in (19.11) and (19.15). The tangential
relative velocity is obtained as γT = tT(vQ − vP ) = wT

T u + χT and describes
for a closed contact precisely the velocity with which the bodies are sliding against
each other. The generalized tangential force results in fT = wT λT and is in the
case of sliding (γT �= 0) the friction force. In the case of sticking, it is the constraint
force that prevents any tangential motion of the boundaries of the bodies relative to
each other.

For spatial friction, another tangent unit vector b = n × t is needed, to project
the velocities in the same way as above, and to set up another generalized friction
force component by γB = bT(vQ − vP ) = wT

B u + χB and fB = wB λB ,
respectively. How all these terms have to be built is described in detail in [4, 22]
for the planar case, and in [5] for spatial configurations. Even pivoting friction
about the n-axis can be included in quite the same way. In order to determine the
generalized friction torque fS = wS λS , one just has to project the difference of the
absolute angular velocitiesΩΩΩQ, ΩΩΩP of the two bodies on the common normal n, i.e.
γS = nT(ΩΩΩQ −ΩΩΩP ) = wT

S u+ χS .
In the most involved case of a spatial contact with pivoting friction, the equations

of motion (19.10) together with the associated relative velocities (19.11) result in
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Mu̇ − h − wN λN − (wT λT +wB λB +wS λS) = 0 ,

γN = wT
N u+ χN , γT = wT

T u+ χT , γB = wT
B u+ χB , γS = wT

S u+ χS ,
(19.16)

where we have taken into account the special structure of the generalized contact
forces according to (19.15).

For contact problems, the individual force components wKλK in (19.16) only
need to be taken into account if the contact is closed. This can be supervised by the
so-called gap function gN (q, t), which measures the signed distance of the contact
points P and Q via

gN = nTrPQ , (19.17)

see Fig. 19.4. Note that the displacement vector rPQ and the always outward normal
n are antiparallel to each other in the case of forbidden overlap, which is then
indicated by values gN < 0. An open contact is represented by gN > 0, and a closed
contact by gN = 0, for which the two bodies just touch each other. Furthermore, it
can be shown [4] that ġN = γN . In other words, the changes in time of the signed
distance agree with the normal relative velocity.

For situations with n contacts, we address the individual normal componentsNj

in increasing order by odd numbers j, and the associated tangential components
(T,B, S)j+1 by the subsequent even numbers j + 1. With the help of the index set

H (q, t) := { j, j + 1 | gNj(q, t) = 0, j = 1, 3, 5, . . . , 2n− 1 } , (19.18)

we may then easily address the normal and tangential components of the closed
contacts, and (19.16) may be written for the multi-contact case as

Mu̇− h−
∑
i∈H

Wiλλλi = 0 ,

γγγi = WT
i u+χχχi .

(19.19)

For an i which is odd and therefore related to a normal component, the matrix Wi

consists of only one column Wi = (wN )i ∈ R
f,1, and all the related vectors

have only one entry, i.e. λλλi = (λN )i ∈ R, γγγi = (γN )i ∈ R, χχχi = (χN )i ∈ R.
For an i which is even and therefore related to the tangential components, one has
for the most advanced case of a spatial contact with pivoting friction Wi =
(wT wB wS)i ∈ R

f,3 and λλλi = (λT λB λS)
T
i ∈ R

3, γγγi = (γT γB γS)
T
i ∈ R

3,
χχχi = (χT χB χS)

T
i ∈ R

3. If a spatial contact is modeled without pivoting
friction, one just has to cancel all entries with index S to obtain Wi ∈ R

f,2 and
λλλi ∈ R

2, γγγi ∈ R
2, χχχi ∈ R

2. In the same way, a planar contact is obtained by
additionally dropping the terms with index B, which gives Wi ∈ R

f,1 and λλλi ∈ R,
γγγi ∈ R, χχχi ∈ R.
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19.6 Formulation of the Contact Laws by Normal Cone
Inclusions

By equation (19.19), the contact forces of the closed contacts are included in the
equations of motion, and all relative velocities required to describe the kinematics of
the contacts are formulated. Equation (19.19), however, provides not yet a complete
description of the dynamics of the system, because the contact laws that determine
the values of the contact forces λλλ have not yet been specified. In this article, we
discuss as possible contact laws the class of kinematic force laws of normal cone
type. They connect the contact forces λλλ and the relative velocities γγγ by a normal
cone inclusion of the form γγγ ∈ NC (−λλλ). Depending on the particular choice
of the sets C , one obtains via (19.1) various normal cones, and hence force laws
of different physical meaning. Six cases which are important for the modeling of
contact problems are collected in Fig. 19.5. For additional cases, we refer to [5,12],
in which also normal cone inclusions on displacement level are discussed.

Figure 19.5a shows the case that the real numbers are chosen as the set C . The
associated normal cone inclusion results in arbitrary values for the force by an
always vanishing relative velocity, which reflects the characteristic of a bilateral
kinematic constraint. Applied on the normal direction of a currently closed contact
gN = 0, the condition of an always vanishing relative velocity γN = 0 means by
ġN = γN ≡ 0 that the contact will stay closed for all succeeding times, which is
mechanically assured by an unbounded reservoir for the associated constraint force
λN ∈ R.

When taking the non-positive real numbers as the set C , one obtains the force–
velocity graph displayed in Fig. 19.5b. This graph is equivalently represented by
the inequality-complementarity conditions γN ≥ 0, λN ≥ 0, γN λN = 0, see,
e.g. [4], and constitutes a unilateral kinematic constraint. This means for the normal
component of a currently closed contact gN = 0 that it stays closed (ġN = γN ≡ 0)
as long as its normal force acts as a compressive magnitude (λN > 0). A lift-off
(γN > 0), which shortly after leads to an open contact (gN > 0) and therefore by
(19.18) to a deletion from the equation (19.19), requires the normal force to vanish
(λN = 0). This force law may therefore be used to describe a hard contact without
adhesion when it stays closed or starts to open.

Figure 19.5c–f shows different types of Coulomb friction as used to model
effects from dry friction in the contact. Note that the size of the set C depends
for all these cases on the normal force, which is unknown in general. For one-
dimensional Coulomb friction as in planar contacts, the reservoir of transferable
tangential forces −λT is taken as C = [−μλN ,+μλN ], where μ denotes the
Coulomb friction coefficient. The force–velocity characteristic shown in Fig. 19.5c
corresponds with the horizontally stretched graph of the inverted set-valued sign
function from Fig. 19.2. Sliding in positive direction (γT > 0) requires the friction
force to be λT = −μλN , whereas sliding in negative direction (γT < 0) changes its
sign to λT = +μλN .
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a b

c d

e f

Fig. 19.5 Various kinematic force laws of normal cone type

Isotropic Coulomb friction as it occurs in spatial contacts may easily be
represented when taking the set C of admissible tangential forces (−λT ,−λB)
as the unit disk stretched by the value μλN . The normal cone law depicted in
Fig. 19.5d yields stick (γT = γB = 0) as long as the friction force (−λT ,−λB)
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is in the interior of C . It allows for slip in the direction opposing the friction force,
if the latter reaches the boundary of C .

A possible model for orthotropic Coulomb friction with a friction coefficient
depending on the sliding direction is shown in Fig. 19.5e. The set C of admissible
tangential forces is here chosen to be an ellipse with the larger principal axis being
of length 1, and the ratio of the principal axes being equal the ratio of the two friction
coefficients μ and ν. Note that the sliding direction as produced by the normal cone
inclusion law is no longer collinear with the friction force, a fact that has been
observed also in various experiments.

Pivoting friction due to differences in angular velocity of the contacting bodies
must in general not be modeled separately. There is a mutual interference between
linear friction and pivoting friction, known as the Contensou effect, that can easily
be visualized on floor polishing machines: As faster the brush disk of such a
machine rotates, as smoother can it be moved along the floor. The maximal
transferable friction forces and friction torques influence each other and lead to a
three-dimensional set C that is displayed in Fig. 19.5f. A detailed derivation of the
normal cone law for such cases, together with an exhaustive physical explanation of
this effect may be found in [6, 11].

In order to complete now equation (19.19) for the impact-free motion, we choose
for each contact two normal cone inclusions, to state the desired contact laws: For
each normal direction, i.e. for each odd i, one takes a characteristic according to
Fig. 19.5a or 19.5b, and for each even i one chooses a friction law from Fig. 19.5c–f.
This finally leads to

Mu̇− h−
∑
i∈H

Wiλλλi = 0 ,

γγγi = WT
i u+χχχi , γγγi ∈ NCi(−λλλi) ,

(19.20)

which completes by the specific choices of the sets Ci according to Fig. 19.5 the
formulation of the impact-free dynamics as second order differential inclusions.

19.7 Embedding Impact Dynamics and the Impact Laws

Transitions from sliding to sticking in systems with dry friction cause the accel-
erations to be discontinuous, and to no longer be defined at such transition points
as a consequence. Strictly speaking, one therefore has to understand u̇ in (19.20)
as the right derivative of the generalized velocities u, and λλλi as the right limit of
the contact forces, if one wants (19.20) to describe the dynamics towards future
events [5]. The situation gets even more involved in the case of impacts. Impacts
lead to impulsive forces and to velocity jumps, which are not at all taken into account
in equation (19.20). In order to treat the impacts, one classically integrates the
equations of motion over the instant of impact and processes the impacts separately.
We basically proceed in the same way, but with the difference that the equations
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of motion are integrated over an entire time interval of arbitrary length, to have in
addition the impact-free motion included in the resulting representation. By carrying
out this approach, one obtains from (19.20)

M du− h dt−
∑
i∈H

Wi dΛΛΛi = 0 ,

γγγ±
i = WT

i u
± +χχχi , (1 + εi)γγγ

−
i + dγγγi ∈ NdAi(−dΛΛΛi) ,

(19.21)

where the individual terms have the following meaning: We explicitly allow for
discontinuities in the generalized velocities u(t). For each time t, we denote by
u+(t) then right limit and by u−(t) the left limit of u(t). If u+(t) = u−(t),
then u(t) is continuous at t. If, however, u+(t) �= u−(t), then t addresses a
discontinuity point of u(t), at which u(t) may not even be defined, but only its
right and left limit. By choosing u(t) as a function of special bounded variation,
the existence of the limits u±(t) is assured for every t, and a countably infinite
number of discontinuities as needed in dynamics to cope with accumulation points
of impacts is provided as well. The generalized coordinates q(t) are, as functions
of time, obtained by integration of u(t). As a consequence, they are continuous,
even absolutely continuous, which excludes position jumps. The discontinuities
in u(t) are carried over to the relative velocities γγγi(t) via the second equation in
(19.20), which is taken into account by the notation of left and right limits (±) in the
second equation of (19.21). The first equation in (19.21) has to be understood as the
time integral of the equations of motion in (19.20). Mathematically, du denotes
the differential measure [15] associated with u, which contains in addition to the
dt-integrable parts also Dirac point measures, which produce the discontinuities in
u(t) at integration,

∫
{t} du = u+(t)− u−(t). In the same fashion, the finite forces

λλλi in (19.20) have to be replaced by their associated force measures dΛΛΛi, which
contain as Dirac measures the impulsive forces needed at the impacts to produce the
velocity jumps. The maybe most challenging task is the consistent generalization of
the normal cone inclusion to impacts, as displayed in the last equation of (19.21).
This is certainly one of the central points in non-smooth dynamics. Each of the
normal cone laws is equipped with a restitution coefficient εi (0 ≤ εi ≤ 1), the
physical meaning of which being discussed later. In the form as written in (19.21),
it still contains the normal cone law for the impact-free motion from (19.20), but it
determines by an additionally implemented impact law how the dynamics evolves
at an impact. In the next section, a time discretization algorithm based on (19.21)
will be presented which simultaneously processes the impact-free motion and the
impacts. In order to show that (19.21) indeed contains both the impact-free motion
according to (19.20) and the impacts, we will extract both cases from (19.21).

For the impact-free motion, the velocities are continuous. One therefore has
u+ = u− = u, γγγ+i = γγγ−

i = γγγi, and there are no more contributions of
Dirac measures in the differential measures du, dγγγi, dΛΛΛi, dAi. The latter can
therefore be expressed by their dt-integrable densities as du = u̇ dt, dγγγi = γ̇γγi dt,
dΛΛΛi = Λ̇ΛΛi dt = λλλi dt, dAi = ˙Ai dt = Ci dt, and (19.21) becomes
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Fig. 19.6 The Newtonian impact law in inequality form for the normal direction: The left diagram
shows the graph of the impact law. In the right diagram, a multi-impact configuration is depicted, in
which the contacts (a) behave according to γ+N = −εN γ−

N , whereas contact (b) does not contribute
to the impact by ΛN = 0

Mu̇dt− h dt−
∑
i∈H

Wi λλλi dt = 0 ,

γγγi = WT
i u+χχχi , (1 + εi)γγγi + γ̇γγi dt ∈ NCi dt(−λλλi dt) .

(19.22)

The second equation in (19.21) is already verified. The first equation is obtained
from (19.22) by factoring out dt and the fact that (19.22) has to hold for any time
interval. We finally consider the normal cone inclusion in (19.22). For smaller and
smaller integration intervals, the term

∫
γ̇γγi dt tends to zero. Furthermore, the set

Ci dt and the force −λλλi dt scale down with the very same factor, such that one
obtains in the limit (1 + εi)γγγi ∈ NCi(−λλλi). Finally, since the right-hand side of
this inclusion is a cone, one may divide by (1 + εi) > 0 to get the normal cone
inclusion precisely in the form as in (19.20).

In order to extract the impact dynamics from (19.21), we integrate (19.21) over
just a singleton {t}. With

∫
{t} dt = 0,

∫
{t} du = u+ − u−,

∫
{t} dγγγi = γγγ+i − γγγ−

i ,∫
{t} dΛΛΛi = ΛΛΛi,

∫
{t} dAi = Ai, one obtains

M(u+ − u−)−
∑
i∈H

WiΛΛΛi = 0 ,

γγγ±
i = WT

i u
± +χχχi , γγγ+i + εi γγγ

−
i ∈ NAi(−ΛΛΛi) .

(19.23)

The first equation, called the impact equation, is the equation of motion for the
impact. It specifies the total impulsive force that is necessary to realize the velocity
jump u+ − u−. The second equation gives the kinematic relation between the
generalized velocities and the local contact velocities and holds in the same form
as for the impact-free motion. The third relation constitutes in the form of normal
cone inclusions the force laws for the impact, which are called the impact laws and
which we want to discuss at least for the normal component of the contact.

By choosing the non-positive real numbers as the set A in the above normal cone
inclusion, one obtains the impact law associated with the contact law of Fig. 19.5b.
The graph of this impact law is depicted in the left diagram of Fig. 19.6 and consists
of two branches which correspond to the following impact cases: For −ΛN < 0,
it holds that γ+N + εN γ−

N = 0. We call this the regular case, for which the value of



19 Simulation of Hard Contacts with Friction: An Iterative Projection Method 507

the normal relative velocity is inverted according to the classical Newtonian impact
law under a compressive impulsive force in normal direction,

ΛN > 0 ⇒ γ+N = −εN γ−
N . (19.24)

The second branch allows for −ΛN = 0 arbitrary values γ+N + εN γ−
N > 0 and is

called the exceptional case,

ΛN = 0 ⇒ γ+N ≥ −εN γ−
N . (19.25)

The exceptional case occurs if a closed contact does not at all participate in the
impact (ΛN = 0), and could therefore be removed from the equations (19.23)
without changing the post-impact results. According to (19.25), all values for the
post-impact relative velocity are admitted in the exceptional case that are larger
than those prescribed by Newton’s impact law for the regular case. The right part
in Fig. 19.6 shows an impact configuration for which both the regular and the
exceptional case occur: A rigid bar is resting on two unilateral obstacles and is
hit by a rigid sphere. We expect an impulsive reaction not only between the sphere
and the bar but also between the bar and the left obstacle. In contrast, the contact
between the bar and the right obstacle is expected to open after the collision with
a strictly positive relative velocity. This separation is solely induced by the overall
impact configuration, and not supported by any local impulsive force.

As for the contact laws normal direction, restitution coefficients are also used
in the friction characteristics. They are needed to model partly reversible impact
processes in tangential direction, as they occur, for example, at highly elastic
super balls when thrown under a table [7]. Even for bilateral kinematic constraints
(Fig. 19.5a), it might be of advantage to equip them with restitution coefficients.
Although useless and superfluous from the theoretical point of view, it allows in the
numerical schemes to switch nifty from a projection algorithm with εN = 0 to a
much less dissipative and drift-sensitive reflection method by taking εN = 1.

In the same way as the force laws, the impact laws in (19.23) are of local
nature and only describe the interaction of the bodies connected by them. Impact
events that are based on distant effects as, e.g., Newton’s cradle with five balls [7],
cannot be modeled by the presented approach. The concept of local restitution
coefficients as introduced above is too limited to parameterize the entire the set
of kinematically and kinetically admissible post-impact velocities. An extension to
nonlocal interactions for the frictionless case can be found in [1, 7, 8].

19.8 Time Discretization

The development of reliable and accurate numerical integration routines for measure
differential inclusions is today one of the central research topics in non-smooth
dynamics. The so-called time stepping methods, the first of which having been the
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Fig. 19.7 Discretization
scheme in Moreau’s
time-stepping algorithm: The
positions q are processed by a
midpoint rule, the velocities u
by an Euler backwards step

midpoint rule introduced by Moreau [14], are difference schemes, which allow for
a combined evaluation of the impacts and the impact-free motion, and which are
designed such that all required inequality laws are taken into account. In contrast to
the event-driven integration, at which a potential switching action is placed at the
end of the time increments, the time stepping schemes collect them in the interior of
the time intervals, such that multiple switching actions and even infinite switching
sequences can be processed within one single increment.

In this section, we briefly review the discretization scheme as originally intro-
duced in [14], and how to apply it to numerically approximate the measure
differential inclusions (19.21). Within this scheme, each time step is evaluated by
a midpoint rule for the positions, and an Euler backwards step for the velocities as
indicated in Fig. 19.7. In order to process one time step, the following problem has
to be solved: For a given start time tA and given initial positions qA := q(tA) and
velocities uA := u(tA), determine approximations of the positions qE := q(tE)
and velocities uE := u(tE) at the end tE of a chosen time interval [tA, tE ]. For the
evaluation of the midpoint rule, one has to proceed as follows, see [16] for additional
comments:

1. Choose a time step Δt and calculate the midpoint tM := tA + 1
2 Δt and the

endpoint tE := tA +Δt of the time interval.
2. Calculate the midpoint positions as qM := qA + 1

2 Δt · uA.
3. Matrix calculation: Calculate M(qM , tM ) and h(qM ,uA, tM ). According to

(19.18), calculate the index set H (qM , tM ) := { j, j + 1 | gNj(qM , tM ) ≤
0 }, consisting of all closed and (numerically) interpenetrated contacts. For all
i ∈H (qM , tM ), calculate Wi(q

M , tM ) andχχχi(qM , tM ).
4. Calculate uE from the discretized version of the inclusion problem (19.21),

M(uE − uA)− hΔt−
∑
i∈H

WiΛΛΛi = 0 ,

γγγAi = WT
i u

A +χχχi , γγγEi = WT
i u

E +χχχi ,

γγγEi + εi γγγ
A
i ∈ NAi(−ΛΛΛi) .

(19.26)

The terms du, dγγγi, dΛΛΛi, dAi, dt in the original problem (19.21) have been
approximated byuE−uA,γγγEi −γγγAi ,ΛΛΛi, Ai, Δt in the discretized version (19.26).
Furthermore, the two upper indices + and − have been replaced by the end time
E and start time A. One inequality solver that can be used to determine uE in
(19.26) is described in Sect. 19.9.

5. Calculate the endpoint positions as qE := qM + 1
2 Δt · uE .
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The above discretization scheme is of first order, and therefore requires relatively
small time steps to achieve a reasonable accuracy. Integrators based on an extrap-
olation method with variable step size and order adjustment have recently been
developed [28], as well as energy preserving codes [13]. Further discretization
schemes are the Θ-method [10] which is a refined midpoint rule, an algorithm
on position level with proven convergence [20, 21], as well as some other well-
developed variants of the midpoint rule [3, 24, 25].

19.9 Numerical Solution of the Inclusion Problem

The inclusion problem (19.26), from which uE is finally determined, can numeri-
cally be solved in various ways. In [16], for example, the forces in each individual
contact are updated sequentially by cycling through all contacts until convergence
is obtained. Another method, originally introduced in [18], splits the entire con-
tact problem into an overall normal subproblem and another overall tangential
subproblem, and solves both problems in turn by methods from optimization
theory until convergence. The variational expressions and minimization problems
associated with the inclusion problem (19.26) can be found for dynamic systems
in [4, 5]. Another powerful approach, again from optimization theory, is the
augmented Lagrangian method, which has been introduced in mechanics by [2] and
successfully applied to inequality problems in contact mechanics. The augmented
Lagrangian method yields at the end the same set of equations (19.33) as the
proximal point method presented here. The latter, however, is even more general,
because no underlying optimization problem is required. A further possibility is
to rewrite (19.26) as a complementarity problem in standard form and to process
it with an adequate solver. Such formulations are very involved and expensive for
the spatial case [5], but they are still used for planar situations [9], for which the
complementarity problem becomes linear. Several formulations are available as the
ones in [19, 25], together with proofs on the existence and uniqueness of solutions.

Before we start to formulate the inclusion problem (19.26) as a system of
proximal point equations, we want not only to comment a bit on its structure in
view of its solvability but also to reveal the combinatorial problem hidden in such
coupled contact problems. In a first step, we solve the first equation in (19.26) foruE

uE = uA +M−1hΔt+
∑
i∈H

M−1WiΛΛΛi , (19.27)

and put it in the term γγγEi + εi γγγ
A
i built from the second line of (19.26), which gives

γγγEi + εi γγγ
A
i =WT

i M
−1WiΛΛΛi+

∑
k �=i

WT
i M

−1WkΛΛΛk +WT
i M

−1hΔt+(1+εi)γγγ
A
i .

(19.28)
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Fig. 19.8 Unique
intersection of the straight
line ξNi = gii ΛNi + ĉi and
the inclusion
ξNi ∈ N

R
−
0
(−ΛNi)

By using the abbreviations

ξξξi := γγγEi +εi γγγ
A
i , Gij := WT

i M
−1Wj , ci := WT

i M
−1hΔt+(1+εi)γγγ

A
i ,

(19.29)

equation (19.28) can be compactly stated together with the normal cone inclusion
from the third line of (19.26) as

ξξξi = GiiΛΛΛi +
∑
k �=i

GikΛΛΛk + ci , ξξξi ∈ NAi(−ΛΛΛi) . (19.30)

Elimination of ξξξi from (19.30) yields an implicit inclusion for the unknown
impulsive forces ΛΛΛi,

GiiΛΛΛi +
∑
k �=i

GikΛΛΛk + ci ∈ NAi(−ΛΛΛi) . (19.31)

After having determined the solution ΛΛΛi from (19.31), the end point velocities uE

are finally calculated from (19.27).
In order to show that (19.31) has indeed very nice solution properties, one should

look at the two conditions in (19.30). Unknown in these two expressions are the
pairs (ξξξi,ΛΛΛi). For each pair i, (19.30) provides one set of linear equations and one
normal cone inclusion. Both together should be enough to finally determine the
values of (ξξξi,ΛΛΛi), which is again best seen from the normal direction of a closed
contact, see Fig. 19.5b and Fig. 19.6: For the normal direction, we have Ai = R

−
0 ,

and the two vectors ξξξi and ΛΛΛi consist of one element only, which are ξNi and
ΛNi. Under the assumption of known impulsive forces ΛΛΛk in all force elements
different from i, the first expression in (19.30) constitutes a linear equation with
slope Gii = (gii) > 0 and axis intercept

∑
k �=iGikΛΛΛk + ci. The graph of this

linear equation in the (−ΛNi, ξNi)-plane is depicted in Fig. 19.8 and is a straight
line. Because of gii > 0, this line is strictly decreasing and intersects in one and
only one point the graph of the normal cone inclusion ξNi ∈ N

R
−
0
(−ΛNi). The

latter is monotonically increasing and continuous and is also depicted in Fig. 19.8.
As a result, one therefore obtains a unique intersection point (−ΛNi, ξNi), which
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determines the solution. The branch on which the graph of the normal cone inclusion
is intersected by the line depends on the axis intercept

∑
k �=iGikΛΛΛk + ci, and

therefore on the impulsive forces ΛΛΛk of the other force elements. By this behavior,
one immediately recognizes the combinatorial problem that is concealed inside
non-smooth dynamics. Unique intersection points (ξξξi,ΛΛΛi) for the individual force
elements are also obtained in the higher-dimensional case if the symmetric matrix
Gii is positive definite, because normal cone maps are always maximal monotone. If
a system consists of only frictionless contacts as in the case of the normal directions
just discussed, the conditions (19.30) reduce to a linear complementarity problem,
consisting of the linear equations ξξξ = GΛΛΛ + c and the inequality-complementarity
conditions ξξξ ≥ 0, ΛΛΛ ≥ 0, ξξξTΛΛΛ = 0. For one-dimensional friction, (19.30) may
still be formulated as a linear complementarity problem by using additional slack
variables [9]. For two-dimensional friction with force reservoirs as in Fig. 19.5d or
e, however, the concept of linear complementarity is too restrictive and therefore
fails. Global statements on the existence and uniqueness of solutions of (19.31) can
be found in the literature but are beyond of the scope of this paper.

The inclusion (19.31) is important for analytical purposes but cannot be used
for a numerical implementation. For the latter, one has to go back to (19.30) and to
replace with the help of (19.4) each normal cone inclusion by its associated proximal
point equation,

ξξξi = GiiΛΛΛi +
∑
k �=i

GikΛΛΛk + ci , −ΛΛΛi = proxAi
(ri ξξξi −ΛΛΛi) . (19.32)

After having eliminated ξξξi from (19.32), one obtains a system of nonlinear equations
which are implicit in ΛΛΛi,

−ΛΛΛi = proxAi

[
(riGii −E)ΛΛΛi + ri

∑
k �=i

GikΛΛΛk + ri ci

]
, (19.33)

and which can be solved by a fixed point iteration, i.e. by taking the left-hand side
as the iterated value of the right-hand side. The values ri > 0 from (19.3) may
here directly be used as relaxation parameters. An extensive treatise on possible
iteration methods, such as Jacobi- and Gauß-Seidel iterations with and without
relaxation, together with some strategies for finding appropriate values for the
relaxation parameters ri may be found in [27]. For contact problems, the Gauß-
Seidel iteration with relaxation has turned out to be the most efficient one.

Note that (19.33) differs from the classical iteration methods for systems of linear
equations only in the additional prox functions, which either project on the sets Ai

or become the identity maps. The latter case always applies for bilateral frictionless
constraints, see Fig. 19.5a, for which one has Ai = R. For n bilateral constraints
and A1 × . . .×An = R

n, equation (19.33) therefore becomes

−ΛΛΛi = (riGii −E)ΛΛΛi + ri
∑
k �=i

GikΛΛΛk + ri ci . (19.34)
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When setting all relaxation parameters ri = 1 in (19.34), one obtains the classical
system of linear equations

0 = GiiΛΛΛi +
∑
k �=i

GikΛΛΛk + ci , (19.35)

from which the constraint forces, here in impulsive form, are calculated. The
efficiency and robustness of the proposed projection method has been proven by
many authors in various applications. Two examples that have been processed at the
author’s institute are briefly presented in the next section.

19.10 Applications

In this section, we present two application problems of very different nature. The
first is the funnel-deflector arrangement of Fig. 19.9 that has been taken from [17]
(see also [26]) and that serves as an example with many contacts to demonstrate
the robustness of the algorithm. The system consists of 3,500 rigid balls that may
contact each other and the surroundings. Each contact is modeled in the normal
direction by a hard unilateral constraint with an impact coefficient of εN = 0.5,
and in the two tangential directions by an isotropic Coulomb friction law with a
friction coefficient of μ = 0.3 and a tangential restitution coefficient of εT = 0.5.
During the evolution of the system, up to about 4,000 simultaneously closed contacts
have been observed, which yields the dimension of (19.33) to be around 12,000.
In order to take advance of parallel computing, the prox iteration (19.33) has been
performed on the graphics card Tesla C2050 of the computer by applying the Jacobi
iteration method. The system has been processed by a time step of Δt = 0.001 s,
which causes the computation time to be about 9 h for one second of real time.
The number of balls was limited by the GPU memory, but not by the convergence
properties of the algorithm.

The second example is a bobsled simulator software with just a few contacts, but
with required real time capability. Figure 19.10 shows a scene from a simulator run
between turns 13 and 14 of the Whistler Sliding Center, at which the 2010 Winter
Olympics in bobsled, luge, and skeleton took place. For the simulator, the entire
track has been remodeled by NURBS and then converted to a triangle mesh, which
then is used in the projection algorithm. The overall track length is 1,450 m, and
the average side length of the triangles is about 20 cm. The model of the bobsled
is composed of several rigid bodies, which sum up to 13 degrees of freedom. Two
contacts per slider, one contact for each bumper, and another five contacts for the
shell to allow for turnovers have been used, which makes 17 contacts in total. For
the contact between the sliders and the ice channel, a modified orthotropic friction
law has been applied, whereas the remaining contacts are standard isotropic. In the
simulator, speeds up to 150 km/h are achieved, and the time for one complete run is
about 50 s.
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Fig. 19.9 A funnel-deflector arrangement with 3,500 rigid balls

Fig. 19.10 Bobsled simulator software: Pilot’s view to the Whistler track between turns 13 and 14
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Dynamics of Second Grade Fluids:
The Lagrangian Approach

M. Paicu and G. Raugel

This paper is dedicated to Professor Jürgen Scheurle on the
occasion of his 60th birthday

Abstract This article is devoted to the mathematical analysis of the second grade
fluid equations in the two-dimensional case. We first begin with a short review
of the existence and uniqueness results, which have been previously proved by
several authors. Afterwards, we show that, for any size of the material coefficient
α > 0, the second grade fluid equations are globally well posed in the space V 3,p

of divergence-free vector fields, which belong to the Sobolev space W 3,p(T2)2,
1 < p < +∞, where T

2 is the two-dimensional torus. Like previous authors, we
introduce an auxiliary transport equation in the course of the proof of this existence
result. Since the second grade fluid equations are globally well posed, their solutions
define a dynamical system Sα(t). We prove that Sα(t) admits a compact global
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that Aα belongs to V 3+β(α),p if the forcing term is in W 1+β(α)(T2)2. We also
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20.1 Introduction

In petroleum industry, in polymer technology, in problems of liquid crystals
suspensions, non-Newtonian (also called Rivlin–Ericksen) fluids of differential type
often arise. The constitutive law of incompressible homogeneous fluids of grade 2
is given by

σ = −pI + 2νA1 + α1A2 + α2A
2
1,

where σ is the Cauchy tensor, A1 and A2 are the first two Rivlin–Ericksen tensors:

A1(u) =
1

2
[∇u+∇uT ], A2(u) =

DA1

Dt
+ (∇u)TA1 +A1(∇u)

and

D

Dt
= ∂t + u.∇.

is the material derivative.
In 1974, Dunn and Fosdick [16] established that a fluid modelled by the

above relations is compatible with thermodynamics (that is, the Clausius–Duhem
inequality and the assumption that the Helmholtz free energy is a minimum when
the fluid is at rest) if the following conditions

α1 + α2 = 0, α1 ≥ 0 ,

are imposed.
Writing then the equation Du

Dt = ut + u.∇u = div σ, one obtains the second
grade fluid equations (20.2) below.

If α1 ≥ 0, the fluid has asymptotic stability properties. In [18], it was showed
that if α1 + α2 is arbitrary and α1 < 0, then the second grade fluid has an
anomalous behaviour (unstable behaviour). There has been an extensive discussion
on the modelling of the second grade fluids and on the restrictions, which have to
be imposed on the coefficients α1 and α2 (see [16–18], for example).

If one does not impose the condition α1 + α2 = 0, the system of second grade
can be written as

∂t(u− α1Δu) − νΔu+ rot (u− (2α1 + α2)Δu) × u

+(α1 +α2)(−Δ(u · ∇u)+ 2u · ∇(Δu))+∇p= f, t > 0, x ∈ Ω,

div u = 0, t > 0, x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω ,

(20.1)
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where α1 ≥ 0. When α1 +α2 = 0, setting α = α1, we obtain the system of second
grade fluids in the simplified form,

∂t(u− αΔu)− νΔu+ rot (u− αΔu)× u+∇p = f, t > 0, x ∈ Ω,
div u = 0, t > 0, x ∈ Ω,
u(0, x) = u0(x), x ∈ Ω ,

(20.2)

where Ω is either a bounded simply connected regular enough domain in R
d,

or the d-dimensional torus T
d, d = 2, 3. In the two-dimensional case, we use

the convention that rotu ≡ curl u = (0, 0, ∂1u2 − ∂2u1) and we identify each
2-component vector-field u = (u1, u2) with the 3-component vector field u =
(u1, u2, 0) and each scalar m with the 3-component vector field w = (0, 0,m).
If Ω is a bounded domain in R

d, the equations (20.2) are completed with boundary
conditions. In most of the papers, one assumes that the fluid adheres to the boundary
∂Ω, that is, one requires homogeneous Dirichlet boundary conditions

u(x, t) = 0 , t > 0, x ∈ ∂Ω . (20.3)

The condition (20.3) is sufficient to determine a unique local solution of the system
(20.2) despite the fact that the nonlinearity in (20.2) contains derivatives of higher
order than 2. One can also consider the system (20.2) with non-homogeneous
Dirichlet boundary conditions

u(x, t) = g(x, t) , t > 0, x ∈ ∂Ω , (20.4)

where g must satisfy the compatibility condition
∫
∂Ω

g · nds = 0, n being the
outward normal to the boundary ∂Ω. For such boundary conditions, in the case of
three-dimensional bounded domains Ω, Galdi et al. [26] proved the existence of
local solutions of the system (20.2). They showed the uniqueness of the solutions,
when the boundary is impermeable, that is, when g · n ≡ 0. In the case where the
boundary is impermeable, Girault and Scott [27] proved the existence of stationary
solutions, when Ω is a two-dimensional domain. Under additional smallness
conditions on the data, Girault and Scott obtained the uniqueness of the stationary
solutions. The second grade fluid model with fully non-homogeneous Dirichlet
boundary conditions is actually not well posed. For example, Gupta and Rajagopal
[29] have given examples in which the stationary problem has multiple solutions.
For this reason, it is important to require that g · n ≡ 0.

C. Le Roux [45] has studied the system (20.2) subject to non-linear partial
slip boundary conditions in a bounded simply-connected domain in R

3. Under
appropriate growth restrictions on the data, he has proved the existence and
uniqueness of a classical solution.

Before describing the contents of this paper, we briefly recall the main known
existence and uniqueness results of the solutions of (20.2) in the case of the
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homogeneous Dirichlet boundary conditions (20.3). Since there are many papers
devoted to this case, we cannot quote all of them. In particular, we will not recall
the results concerning the stationary solutions (see, for example, [4, 7, 21, 24, 27]).

The first general existence and uniqueness results of solutions of (20.2) are due
to Cioranescu and Ouazar in 1984 (see [13] and [14]). Assuming that the initial data
u0 belong to the space W = {v ∈ H3(Ω)d | div v = 0, v|∂Ω = 0} and that the
force f belongs to L2((0, T ), H1(Ω)d) and using a Galerkin method with a special
basis, Cioranescu and Ouazar proved that (20.2) has a unique (weak) solution
u ∈ L∞((0, T ∗),W ) ∩ W 1,∞((0, T ∗),W ′), where T ∗ = T in the case d = 2
and 0 < T ∗ ≤ T in the case d = 3. Later, in 1997, Ciorasnecu and Girault [12]
completed these results by showing the global existence of weak solutions in the
three-dimensional case under the assumption that the data are small enough and
showed that these solutions are more regular if the data are smoother. In 1993, Galdi,
Grobbelaarvandalsen and Sauer [25] have shown the local existence and uniqueness
of classical solutions of (20.1) and also the global existence of solutions of (20.1)
under a smallness condition of the data, when α1 is large enough. These local and
global existence of classical solutions results have been improved in 1994 by Galdi
and Sequeira [23] and, in particular, the requirement thatα be large enough has been
removed. In [25] (resp. [23]), the local (or global) existence of classical solutions
has been proved by writing an equation for the auxiliary variable v = u − αΔu
(resp. v = curl(u − αΔu)) and by applying the Leray–Schauder fixed point
theorem. For instance, in [23], assuming that the forcing term f vanishes and that
v0 = curl(u0 − αΔu0) belongs to Xm = {v ∈ Hm(Ω)3 | div v = 0}, m ≥ 1, the
authors have proved the local existence and uniqueness of the solution u of (20.2) in
C0((0, T ), Xm+2) ∩L∞((0, T ), Hm+3(Ω)3) with du

dt ∈ L∞((0, T ), Hm+2(Ω)3),
where T > 0. Under a smallness condition on u0, they proved that the solution is
global.

Later in 1998, Bernard [3] has generalized the existence result of (weak)
solutions of (20.2) to the system (20.1) by using a Galerkin method with the special
basis as in [12] or [14]. Roughly speaking, assuming that f and u0 belong to
L1((0,+∞), H1(Ω)3)∩L∞((0,+∞), L2(Ω)3) and toW respectively and are both
small enough, Bernard has proved the global existence and uniqueness of a solution
u ∈ L∞((0,+∞),W ) and that dudt ∈ L∞((0,+∞), H1(Ω)3).

Also in 1998, in the three-dimensional case, Bresch and Lemoine [8] have
obtained the existence and uniqueness of solutions of (20.2), when f ∈
Lr((0, T ), Lr(Ω)3) and u0 is a divergence-free vector field in X1 ∩ W 2,r(Ω)3,
where r > 3. More precisely, under these hypotheses, they showed that there
exists a (unique) solution u(t) ∈ C0([0, T ∗],W 2,r(Ω)3 ∩ X1), with du

dt ∈
Lr((0, T ∗),W 1,r(Ω)3) where 0 < T ∗ ≤ T . If f is in L∞((0,+∞), Lr(Ω)3),
f and u0 ∈ X1 ∩ W 2,r(Ω)3 are small enough and α is larger than a constant
depending only on r and Ω, then the solution u(t) is global and belongs to
C0
b ([0,+∞),W 2,r(Ω)3 ∩ X1), with du

dt ∈ L∞((0,+∞),W 1,r(Ω)3). In their
proof, given u, the authors introduce the unique solution w of the linear equation
wt+(ν/α)w+u ·∇w+∇u ·w = (ν/α)u+f , with w(0) = u(0)−αΔu(0). Then,
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they consider the unique solution (z, π) of the “Stokes” problem z−αΔz+∇π = w,
where z is divergence-free and the mean value of π vanishes. Finally, applying the
Leray–Schauder fixed point theorem, they show that the map u �→ z has a fixed
point. Of course, arguing in the same way, one can prove similar existence and
uniqueness results when Ω is a bounded domain in R

2 and r > 2. One notices
that Bresch and Lemoine have used a similar strategy in [9] to prove the existence
and uniqueness of a solution for third grade fluids. For other existence results in
W 2,r(Ω)3, r > 3, see also [6].

In 2007, Girault and Saadouni [28] considered the equations of grade two (20.2)
on a two-dimensional Lipschizian domain Ω. They proved the existence of a weak
solution of (20.2) and obtained the uniqueness of the solution if Ω is a convex
polygon. Introducing the auxiliary variable z = rot (u− αΔu), they have replaced
the system (20.2) by the equivalent system

∂t(u− αΔu)− νΔu+ z × u+∇p = f, t > 0, x ∈ Ω,
α∂tz + νz + αu · ∇z = αrot f + νrotu, t > 0, x ∈ Ω,
div u = 0, t > 0, x ∈ Ω,
u(0, x) = u0(x), x ∈ Ω .

(20.5)

The authors proved the existence of a (weak) solution by using a semi-discretization
in time of the system (20.5).

For the asymptotic behaviour in time of the solutions of (20.2), when Ω is
replaced by R

2 (respectively, R3), we refer the reader the papers [40, 41] and
[15] (respectively [15] and [51]). Additional interesting related results about non-
Newtonian second grade or third grade fluids are contained in [5, 22, 39, 48, 57, 59].

We would like to notice that the equations (20.2) differ from the so-called
α-Navier–Stokes system (see, e.g., [20] and the references therein). Indeed, the
α-Navier–Stokes model contains the strong regularizing term −νΔ(u − αΔu)
instead of −νΔu, and thus is a semilinear problem, which is much easier to solve
than the second grade fluid equations where the dissipation is weaker.

In the inviscid case ν = 0, the local existence and uniqueness of regular solutions
still hold and, in the two-dimensional case, these solutions are global (see [10] for
example). For the convergence of the solutions uν of (20.2) towards the solution
u∗ of Eq. (20.2) for ν = 0, when ν goes to zero, we refer the reader to [60]. For
additional results in the inviscid case, we also refer to [47].

Until now, only few papers have been devoted to the dynamics of second grade
fluids. In 1998, Moise, Rosa and Wang [50] have considered the second grade
fluid equations (20.2) with time-independent forcing term f ∈ H1(Ω)2, where
Ω is a bounded simply-connected domain in R

2. In this case, we can introduce
the dynamical system Sα(t) on W , defined by Sα(t)u0 = u(t), where u(t) is
the solution of (20.2). Moise, Rosa and Wang have shown that the map u0 ∈
W �→ Sα(t)u0 ≡ u(t) ∈ W is continuous and that every solution u of (20.2)
belongs to C0([0,+∞),W ). Applying the method of functionals of J. Ball, they
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have proved that Sα(t) is asymptotically compact in W , which implies, since Sα
has an absorbing set in W , that Sα(t) admits a compact global attractor Aα in W
(for the notions of asymptotic compactness and absorbing set, see Sect. 20.3 below).

In [55], Paicu, Raugel and Rekalo have proved that there exists a positive
constant δ = δ(α, ‖f‖H1) such that the compact global attractor Aα in W is
actually bounded in H3+δ(Ω)2, when f belongs to H1+δ(Ω)2. Moreover, Aα is
bounded in H3+m(Ω)2, m ≥ 0, provided α is small enough and f belongs to
H1+m(Ω)2. They have also shown that, on the attractor, the second grade fluid
equations (20.2) reduce to a finite number of ordinary differential equations with
an infinite delay term [55, Sect. 5]. From these properties, they deduced that, as for
the Navier–Stokes equations, the property of finite number of determining modes
holds. Let us recall that the global attractor contains all the interesting asymptotic
dynamics, in particular the equilibrium points and the periodic orbits. We would
like to emphasize that the regularity property of the global attractor has important
consequences. For example, they allow to prove persistence of non-degenerate
equilibrium points or periodic orbits, when various parameters in the system (20.2)
vary, such as the coefficient α or the domain Ω (see [35, 36, 40, 49]). In particular,
if the Navier–Stokes equations admit a non-degenerate periodic orbit of minimal
period ω > 0, using these regularity properties, one obtains that, for α > 0 small
enough, (20.2) has a unique periodic orbit, which is close to the corresponding one
of the Navier–Stokes equations and has minimal period ωα close to ω [35]. If Ω is
a three-dimensional bounded domain, there exists a compact attractor if f is small
enough. But this attractor is a local one, since we do not know if the solutions exist
globally for any size of the initial data. Thus, the study of this (local) attractor is less
interesting. The above-mentioned regularity properties are certainly still true for the
local attractor.

In this paper, we consider the equations of second grade, when the forcing term
belongs to L∞((0,+∞),W 1,p(Ω)2) and the initial data are divergence free and
belong to W 3,p(Ω)2, where p > 1. First, we prove the existence and uniqueness
of the weak solution of (20.2), give some a priori estimates and show that the
equation (20.2) generate a dynamical system Sα(t) on the subspace of divergence-
free vector fields of W 3,p(Ω)2. In Sect. 20.3, we show that the dynamical system
Sα(t) admits a compact global attractor Aα, which is bounded in a more regular
space. We prove the existence and regularity of Aα by using the Lagrangian
coordinates. By adopting the Lagrangian approach, we simplify the previous proofs
of the existence and the regularity of the compact global attractor.

For the sake of simplicity, we will only prove the results in the case where
Ω = T

2.
Before we briefly describe these results, we introduce the needed notation. We

denote V m,p, m ∈ N, p ≥ 1, the closure of the space

{u ∈ [C∞(T2)]2 |u is periodic , div u = 0,

∫
T2

u dx = 0},
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in Wm,p(T2)2 . If p = 2, we set V m ≡ V m,2 and we simply write H = V 0. We
equip the space Vm,p with the classical Wm,p(T2)2-norm, denoted ‖ · ‖Vm,p ≡
‖ · ‖Wm,p . We will also use the usual L2(T2)2-scalar product (·, ·).

Finally, we denote Wm,p
per ≡ Wm,p

per (T2)2 the space of vector fields u ∈
Wm,p(T2)2, which are periodic and whose mean value vanishes.

If m ∈ N, we define the spaces W−m,p
per as the dual space of Wm,p∗

per , where
1
p +

1
p∗ = 1.

As several authors have already done it (see, e.g., [12, 23, 27, 45]), we consider
the auxiliary variable ω = curl(u − αΔu) ≡ rot (u − αΔu). Applying the curl
(also called rotational) operator to the first equation in (20.2), we formally obtain
the equation

∂tω +
ν

α
ω + u · ∇ω = rot f +

ν

α
rotu, t > 0, x ∈ Ω. (20.6)

We thus replace the system (20.2) by the following system

∂tω +
ν

α
ω + u · ∇ω = rot f +

ν

α
rotu, t > 0, x ∈ Ω,

ω(0, x) = rot (u0(x) − αΔu0(x)), x ∈ Ω ,

ω = rot (u− αΔu), t > 0, x ∈ Ω,
div u = 0, t > 0, x ∈ Ω,

(20.7)

where rot f ∈ L∞((0,+∞), Lpper) and u0 ∈ V 3,p.
In Sect. 20.2, we will prove that (20.2) (or (20.7)) has a solution u by showing

that the map J : u ∈ L∞((0,+∞), V 3,p) �→ ω �→ z ∈ L∞((0,+∞), V 3,p) has
a fixed point, where, given u, ω is the solution of the affine equation (20.6) and
z is the solution of the equation ω = rot (z − αΔz). The fixed point is obtained
by applying the Leray–Schauder fixed point theorem and by adopting a Lagrangian
point of view. As it was recalled in the above lines, the idea of applying the Leray–
Schauder fixed point theorem is not new (however, the existence result below is new
to our knowledge). Elementary a priori estimates will show that the solution u is
unique in L∞((0,+∞), V 2,2). This will lead us to the following theorem.

Theorem 20.1. (i) Assume that p > 1 and that the forcing term f is in
L∞((0,+∞),W 1,p

per). Then, for every u0 ∈ V 3,p, there exists a unique solution
u(t) of the equations (20.2) such that u(t) ∈ C0([0,+∞), V 3,p) and d

dtu(t) ∈
L∞((0,+∞), V 2,p). Moreover, for any t ≥ 0, the map u0 ∈ V 3,p �→ u(t) ∈
V 3,p is continuous.

(ii) Likewise, if f belongs to L∞(R,W 1,p
per), then, for every u0 ∈ V 3,p, there exists

a unique solution u(t) of the equations (20.2) such that u(t) ∈ C0(R, V 3,p)
and d

dtu(t) ∈ L∞((0,+∞), V 2,p) ∩ L∞
loc(R, V

2,p). Moreover, for any t ∈ R,
the map u0 ∈ V 3,p �→ u(t) ∈ V 3,p is continuous.
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More precise upper bounds of the solutions are given in Sect. 20.2.4. Likewise,
by adopting the Lagrangian point of view, one could also prove the existence of
a unique solution u(t) and the boundedness of it, when the viscosity ν vanishes.
We will give the details in this case in a subsequent paper.

Assume now that f ∈ W 1,p
per is time-independent, then (20.2) is an autonomous

system and the map Sα(t) : u0 ∈ V 3,p �→ Sα(t)u0 ≡ u(t) ∈ V 3,p (where u(t)
is the solution of (20.2)) is a dynamical system and even a non-linear continuous
group, that is, Sα(t) has the following properties

1. Sα(t)Sα(s) = Sα(t+ s), for any t, s ∈ R,
2. u0 ∈ V 3,p �→ Sα(t)u0 ≡ u(t) ∈ V 3,p is continuous from V 3,p into V 3,p, for

any t ∈ R,
3. t �→ Sα(t)u0 ∈ V 3,p belongs to C0(R, V 3,p), for any u0 ∈ V 3,p.

The proof of Theorem 20.1 implies that Sα(t) admits a bounded absorbing set, that
is, there exists a bounded set Bα in V 3,p, such that, for any bounded set B ∈ V 3,p,
there exists a time τ(B) such that, for t ≥ τ(B),

Sα(t)B ⊂ Bα .

From the proof of Theorem 20.1, one deduces that, in the case where f is time-
independent, d

dtu belongs to C0(R, V 2,p), which allows to state the following
corollary.

Corollary 20.1. Assume that p > 1 and that the forcing term f ∈ W 1,p
per is time-

independent, then for every u0 ∈ V 3,p, there exists a unique solution u(t) of
the equations (20.2) such that u(t) ∈ C0(R, V 3,p) and d

dtu(t) ∈ C0(R, V 2,p) ∩
L∞((0,+∞), V 2,p)∩L∞

loc(R, V
2,p). Moreover, the dynamical system Sα(t) admits

a bounded absorbing set in V 3,p.

A dynamical system which has an absorbing set is called bounded dissipative
(for further details, see [31], [32] or [58], for example). If a dynamical system
is bounded dissipative, one may wonder if it has also asymptotic compactness
properties, which will imply that it admits a compact global attractor (see [32,
Theorem 3.4.6] or [58, Theorem 2.26], for example). Before stating the existence
theorem of a compact global attractor, we recall its definition.

Definition 20.1. Let X be a Banach space and S(t) be a dynamical system on X .
A compact set A ∈ X is a compact global attractor if

• A is invariant, that is, S(t)A = A , for any t ≥ 0,
• A attracts all bounded sets of X , that is, for any ε > 0, for any bounded set B in

X , there exists a time T = T (ε,B) such that

S(t)B ⊂NX(A ; ε) , for any t ≥ T ,

where NX(A ; ε) denotes the ε-neighbourhood of A in X .
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The compact global attractor plays an important role, since all the asymptotic (and
interesting) dynamics are contained in it. In Sect. 20.3, we are going to show that
Sα(t) is asymptotically smooth or asymptotically compact.

We recall that a dynamical system S(t) on a Banach space X is asymptotically
compact (or asymptotically smooth; for an equivalent definition of asymptotic
smoothness, see [32, Chap. 3.2] or [58, Definition 2.12 and Proposition 2.15]) if,
for any bounded subset B of X such that ∪t≥0S(t + τ)(B) is bounded for some
τ ≥ 0, every set of the form {S(tn)zn}, with zn ∈ B and tn ≥ τ , tn →n→+∞ +∞,
is relatively compact in X . For further general concepts of dissipative systems, we
refer the reader to [31–33, 38, 58, 61].

Since the equation (20.2) is fully non-linear (and not only semi-linear), the
asymptotic compactness of Sα(t) is not straightforward. In [50], for the case p = 2,
Moise, Rosa and Wang had proved it by using the method of functionals of J. Ball.
Here, using the Lagrangian point of view, we will be able to write Sα(t) as the sum
Sα(t)u0 = Σα(t)u0+Kα(t)u0, whereΣα(t)u0 is a map, which is “asymptotically
contracting” on V 3,p and Kα(t) is a compact map from V 3,p into itself (see
Sect. 20.3 for more details). This property implies by [32, Lemma 3.2.6] or [58,
Theorem 2.31] that Sα(t) is asymptotically compact. Since Sα(t) is also bounded
dissipative, [32, Theorem 3.4.6] or [58, Theorem 2.26] then imply that Sα(t) has a
compact global attractor in V 3,p, which is also connected.

Theorem 20.2. For p > 1, if the forcing term f is time-independent and belongs
to W 1,p

per , then Sα(t) admits a compact global attractor Aα in V 3,p and Aα is
connected.

The fact that Sα(t) is a non-linear group prevents smoothing properties in
finite time. Thus, in view of the applications (persistence of equilibrium points,
of periodic orbits, of local stable and unstable manifolds under perturbations of the
equation (20.2), it is interesting to know if the elements or trajectories on the global
attractor Aα are more regular.

Numerous authors have shown regularity properties of the compact global
attractor in the case of dynamical systems which are not smoothing in finite time.
Such results were obtained already more than 30 years ago for retarded functional
differential equations in R

n with finite delay or neutral functional differential
equations by Hale [30] and Nussbaum [53]. For dissipative evolutionary equations,
which admit a compact global attractor, regularity results have later been proved by
several authors, using different methods (see [34] and [55] for references). We recall
that one of the first regularity results applicable to partial differential evolutionary
equations has been shown by Hale and Scheurle [37] in 1985, who considered the
equation

u̇ = Au+ f(u) , u(0) = u0 ∈ X , (20.8)

on a Banach space X , whereA is the generator of a (linear)C0 semi-group and f(·)
is a smooth map on X . It is known that, for any u0 ∈ X , there exists a unique local



526 M. Paicu and G. Raugel

mild solution u(t) ∈ C0([0, T );X) of (20.8). Let us assume that all the solutions
exist on [0,+∞). Then, (20.8) defines a dynamical system S(t) on X , given by
S(t)u0 = u(t) where u(t) is the solution of (20.8). Hale and Scheurle have proved
that if S(t) has a compact invariant set J in X , then there exists a positive number
η such that if ‖Df(v)‖L(X,X) ≤ η for any v in a small neighborhood of J , the
mapping t ∈ R → S(t)u ∈ X , for any u ∈J , is as smooth as f . The smoothness
in the time variable implies smoothness in the spatial variable if (20.8) is the abstract
version of a PDE. In particular, if the restriction of S(t) to J is of class C1, then
J is bounded in the domain D(A), which usually is a smoother space than X .

The system of second grade (20.2) is more complex than the abstract equa-
tion (20.8) and one cannot deduce spatial regularity properties from the time
regularity results. In [60], using Lagrangian coordinates, Shkoller has proved
time regularity properties of all the solutions of (20.2). However, from these time
regularity results, one cannot deduce spatial regularity properties.

In [55, Sect. 2], in the special case where p = 2, we have proved the regularity
of the attractor Aα by establishing a series of appropriate a priori estimates
for the solutions of the linear equation (which is the analogous of the transport
equation (20.6))

∂t(w
∗ − αΔw∗) − νΔw∗ + rot (w∗ − αΔw∗) × u∗ + ∇p∗ = f, t > 0, x ∈ T

2,

divw∗ = 0, t > 0, x ∈ T
2,

w∗(0, x) = u0(x), x ∈ T
2 ,

(20.9)

where f ∈ Hm+1
per and u∗ ∈ L∞((0,+∞), V m+2)∩C0([0,+∞), V 2) and by using

the decomposition of Sα(t)u0 into Sα(t)u0 = vn(t) + (Sα(t)u0 − vn(t)), where
vn(t) is the solution at time t of the equation (20.2) satisfying v(sn) = 0 and where
sn is a sequence converging to −∞. In the course of this proof, we have obtained
“good” estimates of the size of the elements of Aα in various norms. However, the
proofs were long.

Here, using the system (20.7) for p > 1 and the Lagrangian coordinates, we are
proving the regularity of Aα in a more elegant way (see Sect. 20.3). Notice that,
in the case m = 1 below, we recover the same condition as in [55, Theorem 1.1].
In the case m > 1, we obtain a better condition for the regularity than in [55,
Theorem 1.1].

Theorem 20.3. Let p > 1.

1) Let f ∈ W 2,p
per . Assume that supv∈Aα

‖∇v‖L∞ < ν
α and let a1 ≡ ν

α −
supv∈Aα

‖∇v‖L∞ > 0. Then, the following upper bound holds for any u
belonging to the global attractor

‖∇(rotu− αΔrotu)‖Lp ≤ a−1
1 (‖rot f‖W 1,p +

ν

α
Mα(p)) ,

where Mα(p) is given in (20.84) below.
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2) There always exists 0 < θ ≤ 1 such that a1,θ ≡ ν
α − θ supv∈Aα

‖∇v‖L∞ > 0.
If f ∈ W 1+θ,p

per , then the following estimate is true for any u belonging to the
global attractor

‖rotu− αΔrotu‖W θ,p ≤ a−1
1,θ(‖rot f‖W θ,p +

ν

α
Mα(p)) .

3) More generally, if f ∈W 1+m,p
per and am ≡ ν

α−(2m−1) supv∈Aα
‖∇v‖L∞ > 0,

then the following upper bound holds for any u belonging to the global attractor

‖rotu− αΔrotu‖Wm,p ≤ a−1
m Mm,α(p) ,

where Mm,α(p) is a positive constant.

The paper is organized as follows. Section 20.2 is devoted to the proof of
Theorem 20.1 and to several remarks about the solutions of (20.2). In Sect. 20.3,
we first prove that Sα(t) is asymptotically smooth in V 3,p and thus admits a
compact global attractor Aα in V 3,p. Afterwards, we prove Theorem 20.3, that is,
the regularity properties of Aα if the forcing term is smoother.

20.2 Existence Results for the Second Grade Fluid Equations

Theorem 20.1 can be proved in different ways. For example, we could remark that
the local existence result [8, Theorem 1] can be extended to the two-dimensional
case and the periodic boundary conditions, when the initial data belong to V 2,q ,
q > 2 and the forcing term f is in L∞((0,+∞), Lqper). Since W 1,p(T2), p > 1,
is continuously embedded into the space Lq0(T2), where q0 > 2, we could deduce
from Theorem 1 of [8] that, for every u0 ∈ V 3,p, there exists a unique local solution
u(t) ∈ C0([0, T ), V 2,q0) of (20.2), where T > 0. Afterwards, we could show that
this solution is unique and is actually more regular.

However, since we want to emphasize the important role of the transport
equation (20.6), we will give a complete direct proof of Theorem 20.1.

20.2.1 The Transport Equation

Since the existence of the solution of (20.2) will be proved by a fixed point argument
involving the solution ω of the transport equation (20.6), we first study the following
general transport equation (where ν > 0 and α > 0),

∂tw +
ν

α
w + u · ∇w = g , t > 0, x ∈ T

2 ,

w(0, x) = w0(x) , x ∈ T
2 ,

(20.10)
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where, for the sake of simplicity (and in view of the applications), u ∈
C0([0,+∞), V 2,p) ∩ L∞((0,+∞), V 3,p), p > 1.

Before stating an existence and uniqueness result of solutions of (20.10), we
introduce the “Lagrangian coordinates”, that is, the following ordinary differential
equation, for t, τ ∈ [0,+∞), x ∈ T

2,

∂tϕ(t; τ, x) = u(t, ϕ(t; τ, x)) , ϕ(τ ; τ, x) = x ∈ T
2 . (20.11)

Since u ∈ C0([0,+∞) × T
2,T2) ∩ L∞((0,+∞), V 1,∞), the classical Cauchy–

Lipschitz theorem implies that, for every x ∈ T
2, there exists a unique solution

ϕ(t; τ, x) ∈ C1([0,+∞),T2) and the function ϕ(t; τ, x) : x ∈ T
2 �→ ϕ(t; τ, x) ∈

T
2 is Lipschitz-continuous with respect to x, where the Lipschitz constant may

depend on t. Moreover, the function ϕ(t; τ, x) : (t, τ, x) �→ ϕ(t; τ, x) belongs to
C1([0,+∞)2 × T

2,T2). The integral form of the equation (20.11) is as follows

ϕ(t; τ, x) = x+

∫ t

τ

u(s, ϕ(s; τ, x))ds . (20.12)

Of course, the solution ϕ(t; τ, x) also depends on u. If we want to emphasize
that ϕ(t; τ, x) also depends on u or when we let u vary, we will use the notation
ϕu(t; τ, x) instead of ϕ(t; τ, x).

In what follows, we will often use the following estimates without further notice.
Below Jacϕ denotes the Jacobian matrix of ϕ.

Lemma 20.1. Let u ∈ C0([0,+∞), V 2,p) ∩ L∞((0,+∞), V 3,p), p > 1.

1) Then,

(det Jac ϕ)(t; τ, x)) = 1 , ∀τ , ∀t , ∀x , (20.13)

2) The following estimate holds, for any 1 ≤ q ≤ +∞ , any t ≥ τ (resp. τ ≥ t)

‖∇ϕ(t; τ, ·)‖Lq ≤ exp(

∫ t

τ

‖∇u(s)‖L∞ds ) (20.14)

(resp. ‖∇ϕ(t; τ, ·)‖Lq ≤ exp(
∫ τ
t
‖∇u(s)‖L∞ds)).

3) Let ui, i = 1, 2 be two elements in C0([0,+∞), V 2,p) ∩ L∞((0,+∞), V 3,p),
p > 1 and denote ϕui(t; τ, x) the corresponding solutions of (20.10). Then, for
any 1 ≤ q, any t ≥ τ (resp. τ ≥ t)

‖ϕu1(t; τ, ·)− ϕu2(t; τ, ·)‖Lq ≤ ‖u1 − u2‖L∞((τ,t),Lq) exp(

∫ t

τ

‖∇u1(s)‖L∞ds )

(20.15)

(resp. ‖ϕu1(t; τ, ·) − ϕu2(t; τ, ·)‖Lq ≤ ‖u1 − u2‖L∞((t,τ),Lq) exp(
∫ τ

t
‖∇u1(s)‖L∞ds)).
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Proof. 1) The property (20.13) is well known. It is a consequence of the fact that
div u = 0 (see, for example, [11]).

2) Let t ≥ τ . We set

ψk(t; τ, x) =
∂

∂xk
ϕ(t; τ, x) .

and notice that

∂tψk(t; τ, x) =

2∑
i=1

∂u

∂xi
(t, ϕ(t; τ, x))

∂ϕi
∂xk

(t; τ, x) ,

which implies that, for t ≥ τ ,

‖ψk(t; τ, ·)‖Lq ≤ ‖ψk(τ ; τ, ·)‖Lq +

∫ t

τ

‖∇u(s)‖L∞‖ψk(s; τ, ·)‖Lqds .

Noticing that ψk(τ ; τ, x) = I for any x and using the Gronwall inequality, we
deduce the estimate (20.14) from the above inequality.

The statement of 3) is proved in the same way.
��

Theorem 20.4. 1) Let p > 1. Let k = 0, 1, for any w0 ∈ W k,p
per and

any g ∈ L∞((0, T ),W k,p
per ), there exists a unique (mild) solution w(t) ∈

C0([0, T ],W k,p
per ) of (20.10) and ∂tw belongs to L∞((0, T ),W k−1,p

per ), where
T > 0.

2) For k ≥ 2, assume that u belongs to C0([0, +∞), V k+1,p) ∩ L∞((0, +∞),
V k+2,p), then, for any w0 ∈ W k,p

per and any g ∈ L∞((0, T ),W k,p
per), there exists

a unique (mild) solution w(t) ∈ C0([0, T ],W k,p
per ) of (20.10) and ∂tw belongs

to L∞((0, T ),W k−1,p
per ), where T > 0.

3) Moreover, we have the following estimate, for any 0 ≤ t ≤ T ,

‖w(t)‖Lp ≤e− ν
α
t‖w0‖Lp +

α

ν
(1 − e− ν

α
t)‖g‖L∞(I,LP )

‖∂tw(t)‖W−1,p ≤( ν
α

+ ‖u‖L∞(I,L∞)

)(
e− ν

α
t‖w0‖Lp +

α

ν
(1 − e− ν

α
t)‖g‖L∞(I,LP )

)

+ ‖g‖L∞(I,LP ) ,

(20.16)

where I = (0, T ). These inequalities hold for any t ≥ 0, if w0 ∈ W 0,p
per and

g ∈ L∞((0,+∞),W 0,p
per).

Proof. To prove this theorem, we proceed as Beirão da Veiga [2], but replace the
Dirichlet boundary conditions by the periodic ones. Let us consider the equation
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∂tw + aw + u · ∇w = g , t > 0, x ∈ T
2 ,

w(0, x) = w0(x) , x ∈ T
2 ,

(20.17)

where for simplicity a is a given constant. To solve this equation, Beirão da Veiga
considered the differential operator

Ãa(t)w ≡ aw + u · ∇w , t ∈ [0, T ] ,

acting in the distributional sense on the functions w on Ω ≡ T
2. For k ≥ 1, he

introduced the space

Dk(t) ≡ {w ∈W k,p
per |u · ∇w ∈ W k,p

per},

and defined the operator

Aka(t)w ≡ Ãa(t)w , ∀w ∈ Dk(t) . (20.18)

In the case k = 0, one defines the operator A0
a as the closure in Lp of the operator

A1
a : Dk(t)→W 1,p

per .
In [2], Beirão da Veiga proved that, under the above regularity hypotheses made

on u(t), the family {Aka(t)}t∈I , where I = [0, T ] is (1, θk)-stable in the sense of
Kato ([42, 43] and also [56]), with θk ≥ 0. Thus, the evolution operator Ua(t, s)
associated with the family {Aka(t)}t∈I is strongly continuous in W k,p

per , for k ≥ 0

(see [2, Theorem 2.2 and Sects. 3 and 4]) and, for any w0 ∈ W k,p
per and any g ∈

L∞((0, T ),W k,p
per ), there exists a unique (mild) solution w(t) ∈ C0([0, T ],W k,p

per)
of (20.17) given by

w(t) = Ua(t, 0)w0 +

∫ t

0

Ua(t, s)g(s)ds . (20.19)

Moreover,w(t) is a strong solution in W k−1,p
per , that is, the equality (20.17) holds in

W k−1,p
per a.e. in t.
One remarks that

Ua(t, s) = e−a(t−s)U(t, s) , (20.20)

where U(t, s) ≡ U0(t, s) and thus

w(t) = e−atU(t, 0)w0 +

∫ t

0

e−a(t−s)U(t, s)g(s)ds . (20.21)
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Theorem 2.2 of [2] implies that, for any k ≥ 0, one has, for 0 ≤ t ≤ T ,

‖w(t)‖Wk,p ≤ exp(θkT )(‖w0‖Wk,p +

∫ T

0

‖g(s)‖Wk,pds) . (20.22)

In [2], Beirão da Veiga also proved that the evolution operator Ua(t, s) is strongly
continuous from W−k,p

per into itself, for k ≥ 0, which implies that the estimate
(20.22) still holds if k is replaced by −k, that is, one has, for 0 ≤ t ≤ T ,

‖w(t)‖W−k,p ≤ exp(θkT )(‖w0‖W−k,p +

∫ T

0

‖g(s)‖W−k,pds) . (20.23)

We apply the above results with a = ν
α . In our case, we obtain a better estimate

for k = 0. Indeed, assume first that w0 ∈ W 1,p
per and g ∈ L∞((0, T ),W 1,p

per). We
first take the inner product of the equality (20.10) with (δ + |w|2)(p−2)/2w, where
δ > 0 is small, then integrate by parts by taking into account that div u = 0 and that
u ∈ L∞((0, T ),W 1,∞(T2)2), and finally let δ go to zero. Then, we obtain that, for
0 ≤ t ≤ T ,

∂t‖w(t)‖Lp +
ν

α
‖w(t)‖Lp ≤ ‖g‖Lp . (20.24)

Integrating (20.24) with respect to the time variable and applying the Gronwall
lemma, we deduce from (20.24) that, for 0 ≤ t ≤ T ,

‖w(t)‖Lp ≤ e− νt
α ‖w0‖Lp +

∫ t

0

e
ν
α
(s−t)‖g(s)‖Lpds ≤ e− νt

α ‖w0‖Lp +
α

ν
‖g‖L∞(I,Lp) .

(20.25)

This inequality is also valid in the case where the interval I ≡ (0, T ) is replaced by
[0,+∞) in the statement of the theorem.

Arguing by density, one readily shows that the inequality (20.25) still holds if w0

and g only belong to Lpper and L∞((0, T ), Lpper).
By the general theory developed in [43] or [56, Chap. 5], we also know that

∂tw belongs to L∞((0, T ),W k−1,p). If moreover g is in C0([0, T ],W k,p), then
∂tw belongs to C0([0, T ],W k−1,p). Using the equality (20.10) and the inequality
(20.25), we also show by density as above that, for t ≥ 0,

‖∂tw(t)‖W−1,p ≤ ( ν
α
+ ‖u‖L∞(I,L∞)

)(
e− ν

α t‖w0‖Lp+
α

ν
(1− e− ν

α t)‖g‖L∞(I,LP )

)

+ ‖g‖L∞(I,LP ) . (20.26)

Finally, let w̃ be the solution of the equation (20.10), where u, g, andw0 are replaced
by ũ, g̃ and w̃0, respectively. Then, W = w̃ − w is a solution of the equation
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∂tW +
ν

α
W + ũ · ∇W = g̃ − g + (u− ũ) · ∇w , t > 0, x ∈ T

2 ,

W (0, x) = w̃0(x) − w0(x) , x ∈ T
2 ,

(20.27)

Assume that w0, w̃0 and g, g̃ belong to W 1,p
per and L∞((0, T ),W 1,p

per), respectively.
Applying the estimate (20.24) to the equation (20.27), we obtain, that, for 0 ≤
t ≤ T ,

∂t‖W (t)‖Lp +
ν

α
‖W (t)‖Lp ≤(‖(ũ− u)∇w‖Lp + ‖g̃ − g‖Lp

)

≤‖(ũ− u)(t)‖L∞‖w(t)‖W 1,p + ‖(g̃ − g)(t)‖Lp .

(20.28)

Integrating with respect to t and taking into account the inequality (20.22), we
finally get the following estimate, for 0 ≤ t ≤ T ,

‖W (t)‖Lp ≤e− νt
α ‖w0 − w̃0‖Lp +

α

ν
‖g − g̃‖L∞(I,Lp)

+
α

ν
‖(ũ− u)(t)‖L∞(I,L∞)

[
exp(θ1T )(‖w0‖W 1,p

+

∫ T

0

‖g(s)‖W 1,pds)
]
. (20.29)

Using the estimates (20.23) and (20.25), we also show that, for 0 ≤ t ≤ T ,

‖W (t)‖W−1,p ≤ eθ1T
[
‖w0 − w̃0‖W−1,p + ‖g − g̃‖L1(I,W−1,p)

+‖(ũ− u)(t)‖L1(I,L∞)(e
− νt

α ‖w0‖Lp + α
ν ‖g‖L∞(I,Lp))

]
.

(20.30)

By density, the above inequality also holds if w0, w̃0 and g, g̃ only belong to Lpper
and L∞((0, T ), Lpper), respectively. ��
Remark 20.1. In [44], Ladyzenskaya and Solonnikov proved that, if the data w0

and f are regular enough, the solution w of (20.17) with a = 0 is given by

w(t, x) = w0(ϕ(0; t, x)) +

∫ t

0

g(s, ϕ(s; t, x))ds . (20.31)

This implies by uniqueness of the solution that, if w0 ∈ W k,p
per and g ∈

L∞((0, T ),W k,p
per ), for k ≥ 0, the solution w of the equation (20.10) is given by

w(t, x) = e− ν
α tw0(ϕ(0; t, x)) +

∫ t

0

e− ν
α (t−s)g(s, ϕ(s; t, x))ds (20.32)
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The integral formula allows to prove the above estimates in another (elegant)
way, without using the inequalities of [2]. Let W be the solution of (20.27). It
satisfies the integral equation:

W (t, x) =e− ν
α t
(
w̃0(ϕ̃(0; t, x))− w0(ϕ̃(0; t, x))

)

+

∫ t

0

e− ν
α (t−s)(g̃(s, ϕ̃(s; t, x))− g(s, ϕ̃(s; t, x)))ds

+

∫ t

0

e− ν
α (t−s)(u− ũ)(s, ϕ̃(s; t, x)) · ∇w(ϕ̃(s; t, x))ds ,

(20.33)

where ϕ and ϕ̃ are the solutions of the equation (20.11) associated with u and ũ,
respectively. From the equality (20.33), we at once deduce, by applying Lemma 20.1
and (20.25), that, for 0 ≤ t ≤ T ,

‖W (t)‖W−1,p ≤C∗(T, ũ)
(
e− ν

α t‖w0 − w̃0‖W−1,p +
α

ν
‖g − g̃‖L∞(I,W−1,p)

+
α

ν
‖(ũ− u)(t)‖L∞(I,L∞)‖w‖L∞(Lp)

)

≤C∗(T, ũ)
[
e− ν

α t‖w0 − w̃0‖W−1,p +
α

ν
‖g − g̃‖L∞(I,W−1,p)

+
α

ν
‖(ũ− u)(t)‖L∞(I,L∞)

(‖w0‖Lp +
α

ν
‖g‖L∞(I,Lp)

)]
,

(20.34)

where C∗(T, ũ) = exp
∫ T
0
‖∇ũ(s)‖L∞ds.

We point out that the above inequality also holds if w0, w̃0 and g, g̃ only belong
to Lpper and L∞((0, T ), Lpper), respectively.

We are actually interested in the solution of the following transport equation

∂tω +
ν

α
ω + u · ∇ω = rot f +

ν

α
rotu, t > 0, x ∈ T

2

ω(0, x) = ω0(x) , x ∈ T
2 ,

(20.35)

where u ∈ C0([0,+∞), V 2,p) ∩ L∞((0,+∞), V 3,p), p > 1.
As an immediate consequence of Theorem 20.4, we obtain the following

corollary.

Corollary 20.2. Let p > 1. For any ω0 ∈ Lpper and rot f ∈ L∞((0, T ), Lpper),
there exists a unique (mild) solution ω ∈ C0([0, T ], Lpper) (with ∂tω ∈
L∞((0, T ),W−1,p

per )) of the equation (20.35). Moreover, the following estimate
holds, for t ≥ 0,

‖ω(t)‖Lp ≤ e− ν
α t‖ω0‖Lp +

α

ν
‖rotf‖L∞(I,LP ) + (1− e− ν

α t)‖rotu‖L∞(I,LP ) .

(20.36)
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This inequality holds for any t ≥ 0, if I ≡ (0, T ) is replaced above by I ≡ (0,+∞).

The upper bound for ‖∂tω‖W−1,p follows from (20.26).

20.2.2 An Auxiliary Problem

In Corollary 20.2 we have obtained the solution ω of the equation (20.35). We next
want to show that there exists a unique divergence-free vector field z such that ω =
z − αΔz. This will be an easy consequence of the following two lemmas.

Lemma 20.2. 1) For any w ∈ W k,p
per , k ≥ 0, there exists a unique vector field

ψ ∈ V k+1,p such that

rotψ(x) = w(x) , ∀x ∈ T
2. (20.37)

Moreover, there exists a positive constant C0(k) such that,

‖ψ‖Wk+1,p ≤ C0(k)‖u‖Wk,p . (20.38)

2) Likewise, for anyw ∈ Wm,∞((0, T ),W k,p
per ) (resp. inCm([0, T ],W k,p

per )), k ≥ 0,
m ≥ 0, there exists a unique vector field ψ ∈ Wm,∞((0, T ), V k+1,p) (resp. in
Cm([0, T ], V k+1,p)) such that the equality (20.37) holds.

Proof. 1) For any w ∈W k,p
per , following [1, Lemma 2.3] for example, we construct

the vector field

ψ = ∇⊥G(w) , (20.39)

where G(w) is the solution of the problem: to find G(w) ∈W 1,p
per such that,

ΔG(w) = w . (20.40)

The solution G(w) is unique in W 1,p
per . The regularity of ψ is a consequence of

the regularity properties of the solutions of the Laplace equation.
We remark that the vector field ψ is unique in V 0,p

per . Indeed, if ψ1 and ψ2 are
two solutions of (20.37), then Δ(ψ1 − ψ2) = 0, which has a unique solution in
V 0,p
per . Statement 2) is proved in the same way.

��
We next show that w ∈ W k,p

per can be written in the form w = z − αΔz, where
z ∈ V k+3,p.

Lemma 20.3. 1) For any w ∈ W k,p
per , k ≥ 0, there exists a unique vector field

z ∈ V k+3,p such that

rot (z − αΔz)(x) = w(x) , ∀x ∈ T
2 . (20.41)
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Moreover, there exists a positive constant C1(k, α) such that,

‖z‖Wk+3,p ≤ C1(k, α)‖u‖Wk,p . (20.42)

2) Likewise, for anyw ∈ Wm,∞((0, T ),W k,p
per ) (resp. inCm([0, T ],W k,p

per )), k ≥ 0,
m ≥ 0, there exists a unique vector field z ∈ Wm,∞((0, T ), V k+3,p) (resp. in
Cm([0, T ], V k+3,p)) such that the equality (20.41) holds.

Proof. 1) By Lemma 20.2, we know that there exists a unique vector field ψ ∈
V k+1,p such that rotψ = w (and ψ is unique in V 1,p). But, it is well known that
the problem: to find z ∈ V 1,p such that

z − αΔz = ψ (20.43)

has a unique solution. Moreover, the regularity properties of the Laplacian
operator imply that z ∈ V k+3,p and that the inequality (20.42) holds. Statement
2) is proved in the same way.

��
From the Corollary 20.2 and the Lemmata 20.2 and 20.3, we at once deduce the

following corollary.

Corollary 20.3. Let p > 1. For any ω0 ∈ Lpper and rot f ∈ L∞((0, T ), Lpper),
there exists a unique z ∈ C0([0, T ], V 3,p) (with ∂tz ∈ L∞((0, T ), V 2,p)) such that

ω = rot (z − αΔz) (20.44)

is the unique (mild) solution of the equation (20.35). Moreover, the following
estimates hold, for 0 ≤ t ≤ T ,

‖z(t)‖W3,p ≤C1(0, α)
[
e− ν

α
t‖ω0‖Lp + (1 − e− ν

α
t)(
α

ν
‖rot f‖L∞(I,Lp)

+ ‖rotu‖L∞(I,Lp))
]

‖∂tz(t)‖W2,p ≤C2(α)
[( ν
α

+ ‖u‖L∞(I,Lp)

)

× (
e− ν

α
t‖ω0‖Lp + (1 − e− ν

α
t)(
α

ν
‖rot f‖L∞(I,Lp) + ‖rotu‖L∞(I,Lp))

)

+ ‖rot f‖L∞(I,Lp) +
ν

α
‖rot u‖L∞(I,Lp)

]
,

(20.45)

where C2(α) is a positive constant depending only on α.
These inequalities hold for any t ≥ 0, if I ≡ (0, T ) is replaced above by I ≡

(0,+∞).

Proof. The existence and uniqueness of z(t) ∈ C0([0, T ],W 3,p
per), such that

ω = rot (z − αΔz) is the mild solution of (20.35), is a direct consequence of
Corollary 20.2 and of Lemma 20.3.
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Taking the derivative of (20.44) with respect to t, we obtain the equality

rot∂tz − αΔrot ∂tz = ∂tω .

Since ∂tω belongs to W−1,p
per , the regularity properties of the above equation imply

that rot∂tz is in W 2,p
per and thus ∂tz belongs to W 3,p

per . The inequalities (20.45) are a
direct consequence of the inequalities of Corollary 20.2 and of Lemma 20.3 and of
(20.26). ��

20.2.3 Local Existence and Uniqueness of Solutions in V 3,p,
p > 1

Let u0 ∈ V 3,p be given. We first remark that, if ω is a solution of the transport
equation (20.35) with ω0 = rot(u0 − αΔu0) and z is the solution of (20.44), then
there exists a unique pressure p ∈W 1,p

per such that,

∂t(z − αΔz)− νΔz + rot (z − αΔz)× u+∇p = f, t > 0, x ∈ Ω,
div u = 0, t > 0, x ∈ Ω,
z(0, x) = u0(x), x ∈ Ω .

(20.46)

Local Existence of the Solution of (20.2)

Now we are ready to show the local existence of solutions of (20.2). Let T > 0
be fixed (the choice of T will be made more precise below). Let u0 ∈ V 3,p and
f ∈ L∞((0, T ),W 1,p

per) be given.
As we have explained in the introduction, we define the following map JT :

L∞((0, T ), V 3,p) ∩C0([0, T ], V 2,p) into itself as follows

u ∈ L∞((0, T ), V 3,p) ∩ C0([0, T ], V 2,p) �→ ω ∈ C0([0, T ], Lp
per) �→ z ∈ C0([0, T ], V 2,p) ,

(20.47)

where ω is the solution of the equation (20.35) with ω0 = rot(u0−αΔu0) and z is
the solution of the equation (20.44). We will show that JT is a continous compact
map from a closed convex subset ET of L∞((0, T ), V 3,p) ∩ C0([0, T ], V 2,p) into
ET . Then applying the Leray–Schauder fixed point theorem, we deduce that JT has
a fixed point u∗. We notice that the idea of introducing such a type of map and of
using the Leray–Schauder theorem goes back to [25], where the local existence of
solutions has been proved (see also [8, 23, 45], for example). The map, constructed
in these papers differs from the one here. Indeed, these authors considered the map
F : w �→ u �→ F (w) = ω, where u satisfies div u = 0 and w = rot (u − αΔu)
and where ω is the solution of (20.35). In [25], and [23], the authors work in more



20 Dynamics of Second Grade Fluids: The Lagrangian Approach 537

regular spaces. Even if there are some differences, our proof follows the same main
lines.

First we introduce the positive constant K given by

K ≡ C1(0, α)
(‖ω0‖Lp +

α

ν
‖rotf‖L∞(I,LP )

)
, (20.48)

where C1(0, α) is given in Corollary 20.3 and then choose T > 0 such that

2KC1(0, α)(1 − e− ν
αT ) < K . (20.49)

Finally, we define the (non empty) set

ET ≡{v ∈ L∞((0, T ), V 3,p)∩C0([0, T ], V 2,p) | v(0)=u0 , ‖v‖L∞(W 3,p)≤ 2K} .
(20.50)

We equip ET with the classical topology of the space XT = C0([0, T ], V 2,p).
First, one checks that ET is a closed subset of XT . As in [23] or in [9], one

considers a sequence vn, n ∈ N, in XT converging to v. Since the sequence vn
is bounded in L∞((0, T ), V 3,p), it converges in L∞((0, T ), V 3,p) weak ∗ to an
element U in L∞((0, T ), V 3,p) and

‖U‖L∞((0,T ),V 3,p) ≤ 2K .

Due to the uniqueness of the limit in the space of distributions in (0, T )×T
2, U = v

and thus v belongs to ET .
With the above choice of K , Corollary 20.3 at once implies that J(ET ) ⊂ ET .
Actually, J(ET ) is relatively compact in ET . Indeed, by Corollary 20.3, J(ET )

is bounded in W 1,∞((0, T ),W 2,p
per)∩L∞((0, T ), V 3,p). Since the injection of W 3,p

into W 2,p is compact, we deduce from [46, Assertion(12.10), page 142] that every
bounded set in W 1,∞((0, T ),W 2,p(T2)) ∩ L∞((0, T ),W 3,p(T2)) is relatively
compact in C0([0, T ],W 2,p(T2)). Thus, J(ET ) is relatively compact in ET .

It remains to verify that the map J : u ∈ ET �→ ω �→ z ∈ ET is continuous
for the topology of XT . Let u1 and u2 be two elements of ET , let ω1 and ω2 be the
two corresponding solutions of the equation (20.35) and finally let z1, z2 be the two
corresponding solutions of (20.44). From the estimate (20.34) in Remark 20.1, we
deduce that, for 0 ≤ t ≤ T ,

‖(ω1 − ω2)(t)‖W−1,p

≤ C∗(T, u2)
[α
ν
‖u1 − u2‖L∞(I,L∞)

(‖ω1(0)‖Lp + ‖rot f‖L∞(I,Lp)

+
ν

α
‖rotu1‖L∞(I,Lp)

)
+ ‖u1 − u2‖L∞(I,Lp)

]

≤ C(K)‖u1 − u2‖L∞(I,W 2,p) ,

(20.51)
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where C(K) is a positive constant depending on K . Using the regularity properties
of the Laplacian and arguing as in Corollary 20.3, one deduces from the inequality
(20.51) that, for 0 ≤ t ≤ T ,

‖(z1 − z2)(t)‖W 2,p ≤ C‖(ω1 − ω2)(t)‖W−1,p ≤ CC(K)‖u1 − u2‖L∞(I,W 2,p) .
(20.52)

From the inequality (20.52), one at once deduces that the map J is continuous for
the topology of XT .

Now we may apply the Leray–Schauder fixed point theorem to the map J .
Thus, there exists a fixed point u of J , that is, a function u ∈ ET satisfying
the system (20.7). Moreover, by Theorem 20.4 and by Corollary 20.3, u belongs
to C0([0, T ], V 3,p) ∩ W 1,∞((0,+∞),W 2,p

per) and u ≡ z satisfies the estimates
(20.45). Moreover, applying Theorem 2.2 of [2] in the “negative order Sobolev
space” W−1,p

per , we deduce that ∂tu actually belongs to C0([0, T ],W 2,p
per). Finally,

introducing the pressure term as in (20.46), we have proved that the system (20.2)
admits a solution (u, p) if T > 0 is small enough (T depending only on u0 and f ).

The propagation of the regularity of u is a direct consequence of Theorem 20.4.
Assume that u0 ∈ V 4,p and f ∈ L∞((0, T ),W 2,p

per), then, in the equation (20.35),
ω0 and rot f + ν

α rotu belong to V 1,p and L∞((0, T ),W 1,p
per), respectively. Thus,

by Theorem 20.4, the solution ω of (20.35) belongs to C0((0, T ),W 1,p
per). Since

ω = rot (u−αΔu), it follows that u belongs to C0((0, T ), V 4,p
per ). When k ≥ 2, we

proceed by recursion on k. Indeed, if u0 ∈ V k+3,p, f ∈ L∞((0, T ),W k+1,p
per ),

then, by Theorem 20.4, u belongs to C0([0, T ], V k+3,p), provided that u is in
C0([0, T ], V k+1,p) ∩ L∞((0, T ),W k+2,p

per ). But this regularity property is known
by application of Theorem 20.4 at the order k − 1.

Uniqueness of the Solution of (20.2)

The proof of the uniqueness of the solutions of (20.2) is well known and goes back
to [14]. For the sake of completeness, we give a quick proof of it. Actually, we will
prove a more general continuity result. Let ui(t) ∈ C0([0, T ], V 3,p) (with ∂tui(t) ∈
L∞((0, T ), V 2,p)), i = 0, 1, be two solutions of (20.2). Then, U = u1−u2 satisfies
the equation

∂t(U − αΔU)− νΔU + rot (U − αΔU)× u1 + rot (u2 − αΔu2)× U

= −∇(p1 − p2) , t > 0, x ∈ Ω ,

U(0, x) = u1(0)− u2(0) , x ∈ Ω .

(20.53)
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In [55, Theorem A.1], we have shown the following equality

(rotΔU × u1, U) ≡
∫
T2

rotU
(
Δu11U

2 −Δu21U
1
)
dx

+ 2

∫
T2

rotU
(∇u11 · ∇U2 −∇u21 · ∇U1

)
dx.

(20.54)

Taking the inner product of the first equation in (20.53) with U in L2 and using
the equality (20.54) together with classical Sobolev inequalities, we obtain, for
0 ≤ t ≤ T ,

∂t(‖U(t)‖2
L2 + α‖∇U(t)‖2

L2 ) + ν‖∇U(t)‖2
L2

≤2|
∫
T2

(rot (U − αΔU) × u1)Udx|

≤C1

(
‖u1(t)‖L∞ ‖U‖L2‖∇U‖L2 +α‖∇u1(t)‖L∞ ‖∇U‖2

L2

+α‖∇U‖L2‖Δu1‖W1,p‖U‖
L

p
p−1

)

≤C2

(
‖u1(t)‖L∞ ‖U‖L2‖∇U‖L2 +α‖∇u1(t)‖L∞ ‖∇U‖2

L2 +α‖∇U‖2
L2‖Δu1‖W1,p

)

≤C3‖u1(t)‖W3,p (
1 + α

α
)
(‖U‖2

L2 + α‖∇U‖2
L2 ) .

(20.55)

Integrating with respect to t and applying the Gronwall lemma, we obtain that,
for 0 ≤ t ≤ T ,

‖U(t)‖2L2 + α‖∇U(t)‖2L2 ≤
[‖u1(0)−u2(0)‖2L2 + α‖∇(u1 − u2)(0)‖2L2 ]

× exp

∫ T

0

C3(
1 + α

α
)‖u1(s)‖W 3,pds .

(20.56)

If u1(0) = u2(0), then (20.56) implies that U(t) ≡ 0, that is, that the solution u(t)
of (20.2) is unique.

Continuity of the Map u0 ∈ V 3,p �→ u(t) ∈ V 3,p

Let f ∈ L∞((0, T ),W 1,p
per) (resp. f ∈ L∞((0,+∞),W 1,p

per)) be given. In the next
section, we will show that the solution u(t, x) ≡ u(t, x;u0), with u(0, x;u0) =
u0(x) of (20.2) exists on (0, T ) (resp. (0,+∞)) and is uniformly bounded in time
for u0 belonging to bounded sets of V 3,p. So we do not need to worry about blow-
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up in finite time. To simplify the notation, we will sometimes only write u(t;u0)
instead of u(t, x;u0).

Assume that f belongs to L∞((0, T ),W 1,p
per). The estimate (20.56) implies that

the map u0 ∈ V 3,p �→ u(t;u0) ∈ V 1,p is continuous and even Lipschitzian on
the bounded sets of V 3,p. Since, for any bounded set B0 in V 3,p, there exists a
bounded set γ+(B0) ∈ V 3,p such that u(t;u0) ∈ γ+(B0) for any 0 ≤ t ≤ T and
any u0 ∈ B0, we deduce, by interpolation, that, for every 0 ≤ θ < 3, the map
u0 �→ u(t;u0) ∈ V θ,p is Hölder continuous on the bounded sets of V 3,p and, in
particular, u0 → u(t) belongs to C0(V 3,p, V θ,p)∩L∞(V 3,p, V 3,p). We next prove
that actually u0 → u(t) belongs to C0(V 3,p, V 3,p).

Below, we set ω(t, x;u0) = rot (u(t, x;u0) − αΔu(t, x;u0)), ω(x;u0) =
rot (u0(x) − αΔu0(x)) and we denote ϕu0(t; τ, x) the solution of the equa-
tion (20.11), where u(t) is replaced by u(t, x;u0). We recall that ω(t, x;u0) writes,
for 0 ≤ t ≤ T ,

ω(t, x;u0) = e−
ν
α tω(ϕu0(0; t, x);u0)

+

∫ t

0

e−
ν
α (t−s)(rot f(s, ϕu0(s; t, x)) +

ν

α
rotu(s, ϕu0(s; t, x);u0)

)
ds .

(20.57)

Let u0n be a sequence converging to u0 in V 3,p; we want to show that ω(t;u0n)
converges to ω(t;u0) in L∞((0, T ), Lp) when n goes to +∞. We at once remark
that, for 0 ≤ t ≤ T ,

‖ω(ϕu0(0; t, x);u0)− ω(ϕu0n(0; t, x);u0n)‖Lp

≤ ‖ω(ϕu0(0; t, x);u0)− ω(ϕu0n(0; t, x);u0)‖Lp + (1 + α)‖u0 − u0n‖V 3,p

≤ ‖ωm(ϕu0(0; t, x))− ωm(ϕu0n(0; t, x))‖Lp + (1 + α)‖u0 − u0n‖V 3,p

+ 2‖ω(·;u0)− ωm(·)‖Lp ,

(20.58)

where ωm is a sequence in W 3,p
per converging to ω in Lp. Next we use the Taylor

formula and apply Lemma 20.1 to obtain, for 0 ≤ t ≤ T ,

‖ωm(ϕu0 (0; t, x))−ωm(ϕu0n (0; t, x))‖Lp ≤ C(T )‖∇ωm‖L∞‖ϕu0(0; t, ·)−ϕu0n (0; t, ·)‖Lp

≤ C(T, ‖u0‖V 3,p )C(T )‖∇ωm‖L∞‖u0n−u0‖W2,p

(20.59)

The inequalities (20.58) and (20.59) show that the map u0 ∈ V 3,p �→
ω(t, x;u0) ∈ Lp is continuous. In the same way, we prove that the map u0 ∈
V 2,p �→ rot f(s, ϕu0(s; t, x)) is continuous (uniformly with respect to s). To show
the continuity (uniformly with respect to s) of rotu(s, ϕu0(s; t, x);u0), we argue
in the same way and in addition we use the fact that there exists 0 < θ < 3 such
that ‖rotu(s, y;u0)− rotu(s, y;u0n)‖Lp ≤ C(θ, u0)‖u0 − u0n‖V θ,p .
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Remark 20.2. We notice that the local existence of solutions as well as the
continuity properties also hold for negative time, if the force f belongs to
L∞((−T, 0),W k+1,p), k ≥ 0, 1 < p < +∞.

Remark 20.3. Mutadis mutandis, one can also use the above method of proof to
show the corresponding local existence and continuity of the solutions of (20.2),
when the periodic boundary conditions are replaced by homogeneous Dirichlet
ones, provided the domain Ω is smooth enough (of class C2) and simply connected.
We emphasize that the proof of Bresch and Lemoine [8] of local existence of
solutions u in the spaces V 2,q , q > 2, requires less regularity of the domain Ω
since they do not consider the transport equation satisfied by ω.

20.2.4 Global Existence of Solutions in V 3,p, p > 1

Let u0 be given in V 3,p. We assume here that f belongs to L∞(R+,W 1,p
per). We set

T ∗(u0) = sup{T > 0 | (20.7) has a solution ω = (u− αΔu) ∈ C0([0, T ], Lpper)} .

The proof of the local existence implies that T ∗(u0) > 0. If T ∗(u0) < +∞, then
‖ω(t)‖Lp goes to infinity, when t goes to T ∗(u0). Indeed, if this is not true, then
there exist r > 0 and a sequence tn converging to T ∗(u0), with tn < T ∗(u0) such
that ‖ω(tn)‖Lp ≤ r, for any n. Due to the proof of the local existence (in particular,
see the choices of K and T in (20.48) and in (20.49)), there exists T̃ (r) > 0 such
that, for any n, ω(t), which exists on [0, tn] extends to [0, tn + T̃ (r)]. But, for n
large enough, tn + T̃ (r) > T ∗(u0), which is a contradiction. Thus ‖ω(t)‖Lp goes
to infinity, when t goes to T ∗(u0).

By the inequality (20.16) in Theorem 20.4, ω = rot (u − αΔu) satisfies the
following estimate for 0 ≤ t < T ∗(u0),

‖rot (u− αΔu)(t)‖Lp ≤ e− ν
α t‖rot (u0 − αΔu0)‖Lp +

α

ν
‖rotf‖L∞(R+,Lp)

+ ‖rotu‖L∞((0,t),Lp) .

(20.60)

It remains to bound the term ‖rotu‖L∞(R+,Lp). We will first estimate this term for
1 < p ≤ 2. We proceed as in the proof of the uniqueness (see also [55]). Taking the
inner product of the first equation in (20.2) with u and using the Young inequality,
we obtain, for 0 ≤ t < T ∗(u0),

∂t(‖u(t)‖2L2 + α‖∇u(t)‖2L2) + ν‖∇u(t)‖2L2 ≤ 1

νλ1
‖f(t)‖2L2 ,

where λ1 > 0 is the first eigenvalue of the Stokes operator in Lp. From the above
inequality, we deduce that, for 0 ≤ t < T ∗(u0),
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∂t(‖u(t)‖2L2 + α‖∇u(t)‖2
L2 ) +

ν

2(λ−1
1 + α)

(‖u(t)‖2
L2 + α‖∇u(t)‖2

L2 ) +
ν

2
‖∇u(t)‖2

L2

≤ 1

νλ1
‖f(t)‖2

L2 .

(20.61)

Integrating the inequality (20.61) and applying the Gronwall lemma, we obtain, for
0 ≤ t < T ∗(u0),

‖u(t)‖2L2 + α‖∇u(t)‖2L2 +
ν

2

∫ t

0

exp(
ν

2(λ−1
1 + α)

(s− t))‖∇u(s)‖2L2ds

≤ exp(− ν

2(λ−1
1 + α)

t)
[‖u0‖2L2 + α‖∇u0‖2L2 ]

+
2(1 + λ1α)

λ21ν
2
‖f‖2L∞(R+,L2) .

(20.62)

From the estimates (20.60) and (20.62), we at once deduce that, for 0 ≤ t < T ∗(u0),
for 1 < p ≤ 2,

‖rot (u− αΔu)(t)‖Lp ≤ exp(− ν

α
t)‖rot (u0 − αΔu0)‖Lp

+ α−1/2 exp(− νλ1
4(1 + λ1α)

t)
[‖u0‖L2 +

√
α‖∇u0‖L2

]

+
α

ν
‖rot f‖L∞(R+,Lp) +

√
2(1 + λ1α)

1/2

λ1ν
√
α

‖f‖L∞(R+,L2) ,

(20.63)

This inequality implies the global existence of u in the case 1 < p ≤ 2.
In the case where p = 2, we obtain a better estimate than (20.63). Indeed,

replacing ω by rot (u − αΔu) in the equality (20.35) and taking the inner product
of this equation with rot (u− αΔu), we readily obtain, for t ≥ 0,

‖rot (u− αΔu)(t)‖2L2 ≤ exp(− νλ1
2(1 + 2αλ1)

t)‖rot (u0 − αΔu0)‖2L2

+
2(1 + 2αλ1)

2

λ21ν
2

‖rot f‖2L∞(R+,L2) . (20.64)

For more details, we refer the reader to [55, Sect. 2.2]. In the case where 2 < p <
+∞, we remark that the continuous Sobolev embedding H1(T2) ⊂ Lp(T2) holds
for any 1 < p < +∞. Thus, we directly deduce from the inequalities (20.60) and
(20.64) that, for 2 < p < +∞, for 0 ≤ t < T ∗(u0),
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‖rot (u− αΔu)(t)‖Lp

≤ exp (− ν

α
t)‖rot (u0 − αΔu0)‖Lp +

α

ν
‖rot f‖L∞(R+,Lp)

+ CS(p)min(α−1, α− 1
2 )
[
exp(− νλ1

4(1 + 2αλ1)
t)‖rot (u0 − αΔu0)‖L2

+

√
2(1 + 2αλ1)

λ1ν
‖f‖L∞(R+,L2)

]
,

(20.65)

where CS(p) is a positive constant depending on the above-mentioned Sobolev
embedding. This inequality implies the global existence of u in the case where
2 < p < +∞.

Notice that the existence of solutions on the time interval (−∞, 0] also holds if
the forcing term belongs to L∞((−∞, 0),W k+1,p), k ≥ 0, 1 < p < +∞. But the
solution u(t) may blow-up at −∞.

Assume now that the forcing term f ∈W 1,p
per does not depend on the time. Then,

we introduce the map Sα(t) : u0 ∈ V 3,p �→ u(t) ∈ V 3,p, where u(t) is the
solution of the system (20.2). The properties that we obtained in Sects. 20.2.3 and
20.2.4 imply that Sα(t) is a dynamical system (and also a non-linear continuous
group). Moreover, due to the estimates (20.63) to (20.65), Sα(t) admits a bounded
absorbing set Bα. We can choose for Bα the ball BV 3,p(0, Cα−1Rα(p)) of center
0 and radius Cα−1Rα(p) in V 3,p, where C is a positive constant and where

Rα(p) =
α

ν
‖rot f‖Lp +

√
2(1 + λ1α)

1/2

λ1ν
√
α

‖f‖L2 if 1 < p < 2

Rα(p) =

√
2(1 + 2αλ1)

λ1ν
‖rot f‖L2 if p = 2

Rα(p) =
α

ν
‖rot f‖Lp +CS(p)min(α−1, α− 1

2 )

√
2(1 + 2αλ1)

λ1ν
‖f‖L2 if 2 < p < +∞ .

(20.66)

Remark 20.4. The norm ‖rot (u − αΔu)‖Lp is appropriate for estimating
the V 3,p-norm of the solution u of the second grade fluid equations (20.2).
The estimates (20.63), (20.64) and (20.65) are good if α > 0 is fixed or bounded
away from zero. However, when α goes to 0, these estimates can be improved as
we did it in [55, Sect. 2, Estimates (2.27) and (2.28)]. In order to obtain better
estimates in the case where α is small, one proceeds in the following way. Instead
of introducing the variable ω = rot (u − αΔu), one introduces the variable
ω∗ = −rotΔu and one performs a priori estimates for ω∗ by considering the
transport equation:

∂tω
∗ + u · ∇ω∗ +

ν

α
ω∗ +

1

α
∂trotu =

1

α
u · ∇rotu+

1

α
rot f , (20.67)

and using the above estimates.
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In [55, Sect. 4], using these better upper bounds, we have proved the convergence
of the solutions of (20.2) to those of the Navier-Stokes equations on finite time
intervals when α goes to 0. We have also obtained convergence results for the global
attractors. For the comparison of periodic orbits or other invariant sets of (20.2)
with those of the Navier-Stokes equations, when α is small, we refer to [35, 49].
For another convergence result of solutions of (20.2) to those of the Navier-Stokes
equations, we refer to [39].

Remark 20.5. The above global existence of solutions of (20.2) is still true, when
the periodic boundary conditions are replaced by homogeneous Dirichlet ones,
provided the domain Ω is smooth enough (of class C2) and simply connected.

20.3 Dynamics of the Second Grade Fluids in the 2D Torus

In the whole section, we assume that the forcing term f ∈ W 1,p
per does not depend

on the time variable t. By (20.32), the solution u(t) of (20.2) writes, for any t ∈ R,

(u− αΔu)(t, x) = ω(t, x) =e− ν
α
tω0(ϕ(0; t, x))

+

∫ t

0

e− ν
α
(t−s)

(
rot f(ϕ(s; t, x))+

ν

α
rotu(s, ϕ(s; t, x))

)
ds .

(20.68)

20.3.1 Existence of a Compact Global Attractor

In the previous section, we have seen that Sα(t) admits a bounded absorbing set Bα

and that the trajectories of bounded sets are bounded. Thus, by [32, Theorem 3.4.6]
or [58, Theorem 2.26], in order to establish the existence of a compact global
attractor in V 3,p, it suffices to show that Sα(t) is asymptotically compact (or
asymptotically smooth). Due to [32, Lemma 3.2.6] or [58, Theorem 2.31]), it is
enough to prove that Sα(t) can be written as a sum

Sα(t) = Σα(t) +Kα(t) , (20.69)

whereΣα(t) is an asymptotically uniformly contracting map on the bounded sets of
V 3,p andKα(t) is a compact map from V 3,p into itself. Actually, due to the equality
(20.68), it suffices to show that, for any u0 ∈ V 3,p,

Sα(t)u0 − αΔSα(t)u0 ≡ ω(t;u0) = Σ∗
α(t)u0 +K∗

α(t)u0 , (20.70)

where Σ∗
α(t) is an asymptotically uniformly contracting map on the bounded sets

of V 3,p into V 0,p and K∗
α(t) is a compact map from V 3,p into V 0,p.
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The proof of the property (20.70) is simple. According to the equality (20.68),
we set, for any u0 ∈ V 3,p,

Σ∗
α(t)u0 ≡ e− ν

α
tω0(ϕu0 (0; t, x); u0)

K∗
α(t)u0 ≡ Kα,1(t)u0 +Kα,2(t)u0

≡
∫ t

0

e− ν
α
(t−s)rot f(ϕu0 (s; t, x))ds+

∫ t

0

e− ν
α
(t−s) ν

α
rotu(s, ϕu0(s; t, x);u0)ds .

(20.71)

Since ‖ω0(ϕu0 (0; t, x);u0)‖Lp = ‖ω0(x;u0)‖Lp , it follows that, for any bounded
set B0 ∈ V 3,p, for any u0 ∈ B0, for any t ≥ 0,

‖Σ∗
α(t)u0‖Lp ≤ C1(‖B0‖V 3,p)e− ν

α t , (20.72)

where C1(‖B0‖V 3,p) depends only on the norm of B0 in V 3,p.
We next show that Kα,1(t) is a compact map from V 3,p into Lpper. Let B0 be

a bounded subset of V 3,p. The set [0, 1] × B0 is a compact subset of R+ × V 2,p.
Since the map (s, u0) ∈ [0, t] × B0 �→ rot f(ϕu0(s; t, ·)) ∈ Lp is a continuous
mapping, the image is a compact subset ofLpper. By Mazur’s theorem, it follows that∫ t
0
e− ν

α (t−s)rot f(ϕu0(s; t, x))ds belongs to a compact set of Lpper. Thus Kα,1(t)
is a compact map.

Finally, we prove that Kα,2(t) is a compact mapping from V 3,p into Lpper by
showing that Kα,2(t) maps every bounded set B0 ⊂ V 3,p into a compact set of
W 1,p
per and thus into a relatively compact set of Lpper. Since, by Lemma 20.1, the

following estimate holds

‖rotu(s, ϕu0(s; t, ·);u0)‖W 1,p ≤ ‖rot u(s, ·;u0, ‖W 1,p exp(

∫ t

0

‖∇u(σ, ·; u0)‖L∞dσ ,

(20.73)

and that

‖rotu(·, ·;u0)‖L∞((0,t),W 1,p) exp(

∫ t

0

‖∇u(σ, ·;u0)‖L∞dσ ≤ C2(t, ‖B0‖V 3,p) ,

(20.74)

(where C2(t, ‖B0‖V 3,p) depends only on t and on the norm of B0 in V 3,p), it
follows that

∫ t
0
e− ν

α (t−s) ν
α rotu(s, ϕu0(s; t, x);u0)ds belongs to a bounded set of

W 1,p
per and thus to a compact set of Lpper. And then Kα,2(t) is a compact mapping

from V 3,p into Lpper.
We have thus proved that Sα(t) is asymptotically compact in V 3,p.

Remark 20.6. We can prove in the same way that Sα(t) admits a compact global
attractor when the periodic boundary conditions are replaced by homogeneous
Dirichlet ones, provided the domain Ω is smooth enough (of class C2) and simply
connected.
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20.3.2 Regularity of the Compact Global Attractor

We now consider a complete bounded orbit u(t) (with u(0) = u0) contained in the
global attractor Aα. In particular, we know that ω(t) ≡ rot(u − αΔu)(t) satisfies
the following inequality, for any 1 < p < +∞,

‖rot(u − αΔu)(t)‖V 1,p ≤ Rα(p) , ∀t ∈ R . (20.75)

Let τ < 0. Since ω(t) ∈ V 1,p exists for any t ∈ R and, by (20.75), is uniformly
bounded on R, using the formula (20.68), we can write, for t ≥ τ ,

ω(t, x) =e− ν
α (t−τ)ω(τ, ϕ(τ ; t, x))

+

∫ t

τ

e− ν
α (t−s)

(
rot f(ϕ(s; t, x)) +

ν

α
rotu(s, ϕ(s; t, x))

)
ds .

(20.76)

Letting τ go to −∞, one deduces from (20.75) and (20.76) that, for any t ∈ R,

ω(t, x) =

∫ t

−∞
e− ν

α (t−s)
(
rot f(ϕ(s; t, x)) +

ν

α
rotu(s, ϕ(s; t, x))

)
ds . (20.77)

If f ∈ W 2,p
per , the right-hand side member of (20.77) belongs to a smoother space

than Lpper. We now want to prove that indeed ω(t) is bounded in a smoother space
W θ,p, where 0 < θ ≤ 1. To this end, we introduce the integral

I(t, s, x) ≡
∫ t

s

e− ν
α (t−σ)g(σ, ϕ(σ; t, x))dσ , g(σ, x) = rot f(x)+

ν

α
rotu(σ, x) .

Since

∂

∂xk
I(t, s, x) =

∫ t

s

e− ν
α (t−σ)

( 2∑
i=1

∂xig(σ, ϕ(σ; t, x))∂xk
ϕi(σ; t, x)

)
dσ ,

(20.78)
thus, by Lemma 20.1,

‖ ∂

∂xk
I(t, s, x)‖Lp ≤

∫ t

s

e− ν
α (t−σ)‖∇g‖Lp‖∇ϕ(σ; t, ·)‖L∞dσ

≤‖∇g‖L∞(Lp)

∫ t

s

e− ν
α (t−σ) exp

( ∫ t

σ

‖∇u(τ)‖L∞dτ
)
dσ .

(20.79)

Assume now that

sup
t∈R

‖∇u(t)‖L∞ <
ν

α
, (20.80)
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and set a0 ≡ ν
α − supτ∈R

‖∇u(τ)‖L∞ > 0. From the estimate (20.79) and the
hypothesis (20.80), we deduce that, for any s ≤ t,

‖ ∂

∂xk
I(t, s, x)‖Lp ≤ a−1

0

(
‖rot f‖W 1,p +

ν

α
sup
τ∈R

‖rotu(τ)‖W 1,p

)
. (20.81)

Since this inequality holds for any t, s, we conclude that, for any t ∈ R,

‖∇(rotu− αΔrotu)(t)‖Lp ≤ a−1
0

(
‖rot f‖W 1,p +

ν

α
sup
τ∈R

‖rotu(τ)‖W 1,p

)
.

(20.82)
Assume now that supv∈Aα

‖∇v‖L∞ < ν
α and set a1 ≡ ν

α−supv∈Aα
‖∇v‖L∞ > 0.

From the estimates (20.82) and (20.64), we deduce the following upper bound for
any element u0 in the global attractor

‖∇(rotu0 − αΔrotu0)‖Lp ≤ a−1
1 (‖rot f‖W 1,p +

ν

α
Mα(p)) , (20.83)

where

Mα(p) = CS

√
2(1 + 2αλ1)

max(
√
α, α)λ1ν

‖rot f‖L2 if 2 < p < +∞

Mα(p) = CS

√
2(1 + 2αλ1)

αλ1ν
‖rot f‖L2 if p ≥ 2 ,

(20.84)

where CS > 0 is a Sobolev embedding constant.
Assume now that, for the complete bounded orbit u(t), the condition (20.80)

is not true. Then we are not able to conclude that ‖∇(rotu − αΔrotu)(t)‖Lp is
uniformly bounded for t ∈ R. However, we can still show that there exists a positive
number 0 < θ < 1, such that ‖(rotu − αΔrotu)(t)‖W θ,p is bounded by using an
interpolation argument. Indeed, let 0 < θ < 1 such that

aθ ≡ ν

α
− θ sup

τ∈R

‖∇u(τ)‖L∞ > 0 . (20.85)

We next define the continuous linear map T : h ∈ L∞(R, Lpper) �→ w ∈
L∞(R, Lpper), which is the solution of the integral equation

T (h)(t, x) ≡ w(t, x) =

∫ t

−∞
e− ν

α (t−σ)h(σ, ϕ(σ; t, x))dσ .

We remark that the vorticity ω, satisfying the equality (20.77), is given by
ω = T (g). The above computations show that T is also a continous map from
L∞(R,W 1,p

per) into itself, and thus, by interpolation, a continuous linear map from
L∞(R,W θ,p

per) into itself, for 0 ≤ θ ≤ 1. Moreover, for any t ∈ R, we have,
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‖T (h)(t, ·)‖W θ,p ≤
∫ t

−∞
e− ν

α (t−σ)‖h(σ, ϕ(σ; t, ·))‖W θ,pdσ .

As we will see, due to the condition (20.85), g(σ, ϕ(σ; t, ·)) belongs to
L∞(R,W θ,p

per) and thus ω(t, ·) satisfies the above inequality.
Remarking that

‖g(σ, ϕ(σ; t, ·))‖Lp ≤‖g(σ, ·)‖Lp

‖g(σ, ϕ(σ; t, ·))‖W 1,p ≤‖g(σ, ·)‖W 1,p exp
( ∫ t

σ

‖∇u(τ)‖L∞dτ
) (20.86)

we obtain by interpolation that,

‖ω(t, ·)‖W θ,p ≤
∫ t

s

e− ν
α (t−σ) exp θ

( ∫ t

σ

‖∇u(τ)‖L∞dτ
)‖g(σ, ·)‖W θ,pdσ

≤a−1
θ

(
‖rot f‖W θ,p +

ν

α
sup
τ∈R

‖rotu(τ)‖W θ,p

)
.

(20.87)

And we conclude that, for any t ∈ R,

‖(rotu− αΔrotu)(t)‖W θ,p ≤ a−1
θ

(
‖rot f‖W θ,p +

ν

α
sup
τ∈R

‖rotu(τ)‖W θ,p

)
.

(20.88)

If supv∈Aα
‖∇v‖L∞ ≥ ν

α , we take 0 < θ < 1 so that

a1,θ ≡ ν

α
− θ sup

v∈Aα

‖∇v‖L∞ > 0 .

We obtain the following upper bound for any u0 in the global attractor

‖rotu0 − αΔrotu0‖W θ,p ≤ a−1
1,θ(‖rotf‖W θ,p +

ν

α
Mα(p)) , (20.89)

Remark 20.7. One may wonder if the compact global attractors depend on p. Let
1 < p1 < p2 < +∞ and assume that the forcing term f belongs to W 1+θ,p2 ,
0 < θ < 1. We denote Aα(p1) and Aα(p2) the corresponding global attractors. It is
clear that Aα(p2) ⊂ Aα(p1). Taking into account the above regularity argument, we
may show by using Sobolev embeddings and a bootstrap argument that Aα(p1) ⊂
Aα(p2) and thus Aα(p1) = Aα(p2).

Next we consider higher order derivatives of ω(t). Differentiating ∂
∂xk

I(t, s, x)
with respect to xl, we obtain



20 Dynamics of Second Grade Fluids: The Lagrangian Approach 549

∂2

∂xk∂xl
I(t, s, x) =

∫ t

s

e− ν
α
(t−σ)

[ 2∑

i,j=1

∂2
xixj

g(σ, ϕ(σ; t, x))∂xkϕi(σ; t, x)∂xlϕj(σ; t, x)

+
2∑

i=1

∂xig(σ, ϕ(σ; t, x))∂
2
xkxl

ϕi(σ; t, x)
]
dσ ,

(20.90)

from which we deduce that, for any s ≤ t,

‖D2
xI(t, s, ·)‖Lp ≤

∫ t

s

e− ν
α (t−σ)[‖∇g‖Lp‖D2

xϕ(σ; t, ·)‖L∞

+ ‖D2
xg‖Lp‖∇ϕ(σ; t, ·)‖2L∞

]
dσ .

(20.91)

Arguing as in Lemma 20.1 and using the inequality (20.14) of Lemma 20.1, we get
the following estimate, for any σ ≤ t,

‖D2
xϕ(σ; t, ·)‖L∞ ≤ ‖D2

xu(σ)‖L∞ exp
(
3

∫ t

σ

‖∇u(τ)‖L∞dτ
)
. (20.92)

The estimates (20.91) and (20.92) imply, for any s ≤ t,

‖D2
xI(t, s, ·)‖Lp ≤‖∇g‖L∞(Lp)‖u‖L∞(W2,∞)

∫ t

s

e− ν
α
(t−σ) exp

(
3

∫ t

σ

‖∇u(τ )‖L∞dτ
)
dσ

+ ‖D2
xg‖L∞(Lp)

∫ t

s

e− ν
α
(t−σ) exp

(
2

∫ t

σ

‖∇u(τ )‖L∞dτ
)
dσ .

(20.93)

Assume now that

sup
t∈R

3‖∇u(t)‖L∞ <
ν

α
, (20.94)

and set a2 ≡ ν
α − 3 supτ∈R

‖∇u(τ)‖L∞ > 0. Then, it follows from (20.93) and
(20.94) that, for any t ∈ R,

‖(rotu− αΔrotu)(t)‖W2,p ≤a−1
2

[
(‖rot f‖W1,p +

ν

α
‖rotu(·)‖L∞(W1,p))‖u(·)‖L∞(W2,∞)

+ (‖rot f‖W2,p +
ν

α
‖rotu(·)‖L∞(W2,p))

]
≡a−1

2 M2,α(p) .

(20.95)

If a2 ≡ ν
α − 3 supv∈Aα

‖∇v‖L∞ > 0, then the estimate (20.95) holds for any
element u of Aα. By a recursion argument, we finally obtain the third assertion of
Theorem 20.3.
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Remark 20.8. The above regularity results of Aα still hold, when the periodic
boundary conditions are replaced by homogeneous Dirichlet ones, provided the
domain Ω is smooth enough (of class C2) and simply connected.

Remark 20.9. In the above regularity proofs, in order to get the V 3+m regularity,
we need to assume that να −m supv∈Aα

‖∇v‖L∞ > 0. This method does not allow
to show that the attractor is bounded in C∞ or in the set of analytic functions, even
if f is analytic. So these regularity properties remain an open question. Note that
if f is integrable in time and is in a Gevrey class in the spatial variable and if the
initial data are in a Gevrey class in the spatial variable, then the solutions of (20.2)
also have Gevrey regularity (see [52] and [54]).

20.3.3 Finite-Dimensional Properties

We can also wonder if the dynamics of (20.2) has finite-dimensional properties.
Using the methods of [61], we can certainly prove that the Hausdorff dimension of
Aα is finite. We leave it to the reader to check it.

We next want to recall a “finite-dimensional” property, which is well adapted
to the Hilbert space setting, that is, to the case p = 2. Let P denote the
classical orthogonal projection of (L2

per(T
2))2 onto the subspace H ≡ V 0,2 of

L2-divergence-free vector fields. We also introduce the orthogonal projection Pn
in H onto the space spanned by the eigenfunctions corresponding to the first n
eigenvalues of the Stokes operator A = −PΔ. Finally, we introduce the projection
Qn = I − Pn.

In [55], we have shown that there exists an integer N , such that, on the compact
global attractor, the dynamics of (20.2) reduces to the dynamics of a system of N
ordinary differential equations defined on PNV 3,2 (see [55, Theorem 1.2]).

In [55], like in [34, Theorem 2.7], we deduced, from [55, Theorem 1.2], the
so-called “finite number of determining modes property” for the system (20.2),
when α is small enough. The property of “finite number of determining modes”
was introduced and proved for the two-dimensional Navier–Stokes equations by
Foias and Prodi in 1967 [19]. This property means that the asymptotic behaviour in
time of the second grade fluid system depends only on a finite number of parameters
(called the determining modes).

Theorem 20.5. Let f be given in W 1+d,2
per , d > 0.

We assume that ν − 2α(supz∈Aα
‖∇z‖L∞) > 0. Then System (20.2) has the

property of finite number of determining modes, that is, there exists a positive integer
N0 such that, for any u0, u1 in V 3,2, the property

‖PN0Sα(t)u0 − PN0Sα(t)u1‖V 3 −→t→+∞ 0

implies that

‖Sα(t)u0 − Sα(t)u1‖V 3 −→t→+∞ 0 .
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One also could directly prove Theorem 20.5, by performing appropriate a priori
estimates. But, showing Theorem 20.5 as a consequence of [55, Theorem 1.2] and
of the proof of [34, Theorem 2.7] is more elegant.
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Chapter 21
Dissipative Quantum Mechanics
Using GENERIC

Alexander Mielke

Dedicated to Jürgen Scheurle, who exited my love for geometric
mechanics, on the occasion of his 60th birthday

Abstract Pure quantum mechanics can be formulated as a Hamiltonian system
in terms of the Liouville equation for the density matrix. Dissipative effects are
modeled via coupling to a macroscopic system, where the coupling operators
act via commutators. Following Öttinger (Phys. Rev. A 82:052119(11), 2010) we
use the GENERIC framework (General Equations for Non-Equilibrium Reversible
Irreversible Coupling) to construct thermodynamically consistent evolution equa-
tions as a sum of a Hamiltonian and a gradient-flow contribution, which satisfy a
particular non-interaction condition:

q̇ = J(q)DE (q) +K(q)DS (q).

One of our models couples a quantum system to a finite number of heat baths
each of which is described by a time-dependent temperature. The dissipation
mechanism is modeled via the canonical correlation operator, which is the inverse
of the Kubo–Mori metric for density matrices and which is strongly linked to the
von Neumann entropy for quantum systems. Thus, one recovers the dissipative
double-bracket operators of the Lindblad equations but encounters a correction term
for the consistent coupling to the dissipative dynamics. For the finite-dimensional
and isothermal case we provide a general existence result and discuss suffi-
cient conditions that guarantee that all solutions converge to the unique thermal
equilibrium state. Finally, we compare our gradient flow structure for quantum
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systems with the Wasserstein gradient flow for the Fokker–Planck equation and the
entropy gradient flow for reversible Markov chains.

21.1 Introduction

A fundamental problem in nanoscience is a consistent coupling of quantum
mechanics with effects on larger scales. In particular, one is interested in combining
quantum and continuum mechanical models with dissipative effects in such a way
that the fundamental axioms of thermodynamics and quantum mechanics are still
satisfied. We refer to [33, 35] for general physical modeling of quantum dissipative
systems. We follow [27, 28] in modeling the coupling between classical dissipative
systems and reversible quantum systems formulated in terms of the Liouville
equation for the density matrix. The basis is the theory of GENERIC systems,
which stands for the acronym General Equations for Non-Equilibrium Reversible
Irreversible Coupling. It provides systems that are thermodynamically correct in the
sense that the total energy is preserved while the total entropy is nondecreasing.
Moreover, the evolution has an additive split into the reversible dynamics driven by
a co-symplectic structure (Poisson bracket) acting on the energy and the irreversible
dynamics given as a gradient flow with the total entropy as the driving functional.

Evolution of the quantum mechanical system is given in terms of the density
matrix ρ = ρ∗ ≥ 0 such that it can be coupled to more macroscopic dissipative
components z. Thus, the total state q = (ρ, z) lies in the state space Q = R × Z
defined below, and the evolution is given by the GENERIC system (Q, E ,S , J,K).
Here E and S are the conserved energy functional and the entropy functional. The
mapping J defines a Poisson structure, i.e. J(q) = −J(q)∗ and the Jacobi identity
holds, while K defines an Onsager structure, i.e. K(q) = K(q)∗ ≥ 0. The evolution
is given via

q̇ = J(q)DE (q) +K(q)DS (q), (21.1)

where the crucial structural condition is the mutual non-interaction condition

J(q)DS (q) ≡ 0 and K(q)DE (q) ≡ 0. (21.2)

We discuss the main properties of GENERIC systems in Sect. 21.2. For the history
and the motivation of the GENERIC framework, we refer to [7, 8, 24, 26]. For
applications in continuum mechanics, see [19].

Here we follow the approach pioneered in [27, 28] and analyze the system
proposed there mathematically. Our aim is to provide existence results as well
as conditions guaranteeing that the solutions converge into thermal equilibrium.
We will restrict to the case that the underlying complex Hilbert space H is
finite dimensional, i.e. dimH < ∞, and thus can be identified by C

dimH .
However, we hope that in future works we can treat the infinite-dimensional case
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as well. To be more precise we consider GENERIC systems where the coupling
occurs only through the Onsager operator K. With q = (ρ, z) we assume that E , S ,
and J have the form

E (q) = 〈〈 ρ ‖H 〉〉+E(z), S (q) = −kB〈〈 ρ ‖ log ρ 〉〉+S(z), J(q) =

(
j[ρ,�] 0

0 0

)
,

where j = i/� and “�” indicates the slot where the argument should be inserted.
By 〈〈A ‖B 〉〉 = tr(AB∗) we denote the operator scalar product on Lin(H). In
particular, the quantum system is described by the Liouville equation ρ̇ = j[ρ,H ] for
the density matrix ρ ∈ Lin(H). Here, −kB〈〈 ρ ‖ log ρ 〉〉 is the quantum mechanical
von Neumann entropy, while S(z) is assumed to be a concave macroscopic entropy.

The coupling between the components ρ and z occurs through K which is most
easily formulated in terms of the dual dissipation potential Ψ∗(q; ξ) = 1

2 〈K(q)ξ, ξ〉
and is assumed to have the form

Ψ∗(ρ, z; η, ζ) =
1

2

N∑
n=1

||| [Qn(z), η−〈αn(z), ζ〉H]|||2Cn(ρ,z)
,

where Qn(z), n = 1, .., N are coupling operators and |||A|||2C := 〈〈CA ‖A 〉〉. The
dissipative coupling via Q, and hence the interaction of the quantum system with
the z component, occurs only through the commutators

[Q,Ξ] := QΞ − Ξ Q.

The coefficients αm are assumed to satisfy the relation 〈αn(z),DE(z)〉 ≡ 1
such that Ψ∗(q,DE (q)) ≡ 0, which implies the second relation in (21.2). Since
J(q)DS (q) ≡ 0 also holds we have a GENERIC system.

In particular, we consider the case that z describes a finite number of macroscopic
heat baths, each of which is fully characterized by its temperature θm(t) and its fixed
heat capacity cm > 0, i.e. with z = θ := (θ1, . . . , θM ) ∈ ]0,∞[

M we have

E(θ) = c · θ =

M∑
m=1

cmθm and S(θ) =

M∑
m=1

cm log θm.

Note that E is a linear functional in q = (ρ, θ) while S is strictly concave. Thus, for
each given energy level E0 there is a unique maximizer of S subject to E (ρ, θ) =
E0 called the thermodynamic equilibrium, which is given as

qeq = (ρeq, θeq) with θeq = θ∗(1, , . . . , 1) and ρeq = 1
Z exp

( −1
kBθ∗

H
)
,
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where Z and θ∗ depend on E0 only. By the abstract theory of GENERIC (cf.
Sect. 21.2.2) this qeq is an equilibrium independently of the choice of J and K

if (21.2) holds.
To prove a global existence result for the associated evolutionary system (21.1)

we further specify the dissipation by choosing the super-operators Cm suitably.
We follow [6, 27, 28] and use the inverse of the so-called Bogoliubov–Kubo–Mori
metric (cf. [23, 31, 32]) given by

CρA :=

∫ 1

0

ρsAρ1−sds and C−1
ρ B =

∫ ∞

0

(ρ+sI)−1B(ρ+sI)−1 ds.

We call Cρ the canonical correlation operator and refer to the above references for
the relevance of this metric. There is a strong relation between the von Neumann
entropy and Cρ encoded in the commutator relations

[
CρA, log ρ

]
=
[
A, ρ] = Cρ

[
A, log ρ

]
, (21.3)

for all A = A∗ and ρ ∈ R. Recall that DρS = −kB log ρ and note that D2
ρS =

C −1
ρ , see [3,23]. A proof of (21.3) is given in Sect. 21.4.1, where also the continuity

of the mapping R - ρ �→ Cρ is established.
In the case of M heat baths the mth heat bath may be coupled to the quantum

system by the Nm coupling operatorsQnm and Cn
m, such that N = N1+ . . .+NM .

Choosing Cn
m = Cρ for all n and m and αj = 1

cm(j)
em(j) ∈ R

M we arrive at the
system

ρ̇ = j[ρ,H ]−
M∑
m=1

Nm∑
n=1

[
Qnm , kB[Q

n
m, ρ] +

1

θm
Cρ[Q

n
m, H ]

]
, (21.4a)

θ̇ = κ
(
cm
θm

)
m=1,...,M

+
( 1

cm

Nm∑
n=1

〈〈 kB[Qnm, ρ]+ 1
θm

Cρ[Q
n
m, H ] ‖ [Qnm, H ] 〉〉

)
m
,

(21.4b)

which will be discussed in Sect. 21.4. The equation for ρ displays dissipative double
commutators [Q, [Q, ρ]] of the Lindblad type in (21.4a) with a correction term
involving the nonlinear term ρ �→ [Q,Cρ[Q,H ]]. The latter term is continuous
but not Lipschitz continuous on R. Moreover, we see a clear coupling to the
temperatures θm in the different heat baths.

In Sect. 21.6 we discuss the isothermal case where the underlying Hilbert space
H is finite-dimensional, i.e. H = C

dimH , which leads to the system

ρ̇ = j[ρ,H ]−
N∑
n=1

[
Qn, kB[Q

n, ρ] +
1

θ∗
Cρ[Q

n, H ]
]
, (21.5)
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where now the temperature θ∗ > 0 is fixed. This is a dissipative Hamiltonian system
of the form ρ̇ =

(
J(ρ)− 1

θ∗
K(ρ)

)
DF (ρ) for the free energy

F (ρ) = 〈〈 ρ ‖H 〉〉+ kBθ∗〈〈 ρ ‖ log ρ 〉〉.

Global existence of solutions is established in Theorem 21.3, and Theorem 21.4
provides conditions on the coupling operators Qn such that all solutions satisfy
ρ(t) → ρeq for t → ∞. In Sect. 21.5.3 we discuss the case dimH = 2 in detail
and display the dynamics in suitable coordinates as an ODE in R

3.
The linear Lindblad systems (cf. [6,15,16]) can be understood as approximations

of (21.5) after replacing the super-operator Cρ by the constant Cρeq . Using (21.3)
we have Cρeq [Q,H ] = −kBθ∗[Q, ρeq] and arrive at (see Sect. 21.4.4),

ρ̇ = j[ρ,H ]−
N∑
n=1

[
Qn, kB[Q

n, ρ− ρeq]
]

with ρeq =
1

Z
exp

( −1
kBθ∗

H
)
.

(21.6)
In the recent work [3] Carlen and Maas consider a special version of this

equation. First they assume H = 0 giving ρeq = 1
Z I , and second they work on

the special Hilbert space H = Fa(H), which is the antisymmetric Fock space of
a given finite-dimensional Hilbert space H, i.e. dimH = 2J where J = dimH.
Choosing a set {Qj | j = 1, .., J } satisfying the canonical anticommutation
relations one defines the set of all coupling operators {Qα = Qα1

1 · · ·QαJ

J | α ∈
{0, 1}J } with N := 2J elements. Then, the equation (21.6) turns into the
dissipative system ρ̇ = −N ρ, where N denotes the Fermionic number operator.

Section 21.7 discusses analogies between the gradient structure ρ̇ =
K

Q(ρ)DSqm(ρ) used here and in [3] and two other entropy gradient structures
for stochastic problems, namely that for the Fokker–Planck equation introduced
in [11, 25] and that for reversible Markov chains introduced in [4, 17, 20]. All
structures have the common feature that the mapping ρ �→ K(ρ) is homogeneous of
degree 1, i.e. K(λρ) = λK(ρ). Moreover,K is defined in terms of couplings in the
discrete case or derivatives relating to transportation in the continuous case. In [34]
there is a related transport formulation of the Schrödinger equation, which is based
on the Madelung form of quantum mechanics. This is a single-particle model, while
the approach here and in [3] uses the many-particle formulation in terms of density
matrices, which is necessary for couplings to exterior dissipative systems.

21.2 The GENERIC Framework

The framework of GENERIC was introduced by Öttinger and Grmela in [8, 24].
It is based on a quintuple (Q, E ,S , J,K), where the smooth functionals E and
S on the state space Q denote the total energy and the total entropy, respectively.
Moreover, Q carries two geometric structure, namely a Poisson structure J and a
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dissipative structure K, i.e. for each q ∈ Q the operators J(q) and K(q) map the
cotangent space T∗

qQ into the tangent space TqQ. The evolution of the system is
given by the differential equation

q̇ = J(q)DE (q) +K(q)DS (q), (21.7)

where DE and DS are the differentials taking values in the cotangent space.
We refer to [7, 8, 24] for applications in fluid mechanics, to [10] for electro-

magnetism, to [19] for applications of GENERIC in elastoplastic materials. The
book [26] contains a general introduction with an emphasis towards numerical
simulation, while [22] surveys modeling aspects. Subsequently we will mainly
dwell on the quantum mechanical papers [27, 28].

21.2.1 The Structure of GENERIC

The basic conditions on the geometric structures J and K are the symmetries

J(q) = −J(q)∗ and K(q) = K(q)∗ (21.8)

and the structural properties

J satisfies Jacobi’s identity,

K(q) is positive semi-definite, i.e., 〈ξ,K(q)ξ〉 ≥ 0.
(21.9)

Jacobi’s identity for J holds, if for all functions Fj : Q → R we have

{{F1,F2}J ,F3}J + {{F2,F3}J ,F1}J + {{F3,F1}J ,F2}J ≡ 0,

where the Poisson bracket is defined via {F ,G }
J
(q) := 〈DF (q), J(q)DG (q)〉.

Finally, the central condition states that the energy functional does not contribute
to dissipative mechanisms and that the entropy functional does not contribute to
reversible dynamics, which is the following non-interaction condition (NIC):

∀ q ∈ Q : J(q)DS (q) = 0 and K(q)DE (q) = 0. (21.10)

Of course, the structure of GENERIC is geometric in the sense that it is invariant
under coordinate transformations, see [19, 22].
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21.2.2 Properties of GENERIC Systems

The first observation is that (21.9) and (21.10) imply energy conservation and
entropy increase:

d

dt
E (q(t)) = 〈DE (q), q̇〉 = 〈DE (q), JDE +KDS 〉 = 0 + 0 = 0, (21.11)

d

dt
S (q(t)) = 〈DS (q), q̇〉 = 〈DS (q), JDE +KDS 〉 = 0 + 〈DS ,KDS 〉 ≥ 0.

(21.12)

Note that we would need much less than the two conditions (21.9) and (21.10) to
guarantee these two properties. However, the next property needs (21.10) in its full
strength.

Next, we show that equilibria can be obtained by the maximum entropy principle.
If xeq maximizes S under the constraint E (q) = E0, then we obtain a Lagrange
multiplier λeq ∈ R such that DS (qeq) = λeqDE (qeq). Assuming that λeq �= 0
we immediately find that qeq is an equilibrium of (21.7). Indeed, J(qeq)DE (qeq) =
1
λeq

J(qeq)DS (qeq) = 0 and K(qeq)DS (qeq) = λeqK(qeq)DE (qeq) = 0, where
we have used the NIC (21.10).

Vice versa, for every steady state qeq of (21.7) we must have

J(qeq)DE (qeq) = 0 and K(qeq)DS (qeq) = 0. (21.13)

Thus, in a steady state there cannot be any balancing between reversible and irre-
versible forces, both have to vanish independently. To see this we simply recall the
entropy production relation (21.12), which implies 〈DS (qeq),K(qeq)DS (qeq)〉 =
0 for any steady state. Since K(qeq) is positive semidefinite, this implies the second
identity in (21.13). The first identity then follows from q̇ ≡ 0 in (21.7).

21.2.3 Isothermal Systems

Often temperature effects can be neglected and the model can be approximated by
an isothermal system. We show here how this can be deduced consistently from the
GENERIC form if we add some coupling to an external heat bath fixed to a given
temperature θ∗ > 0. In particular, we will replace the two functionals E and S by
one, namely the free energy F∗ at the given temperature θ∗.

We start from a general system for the variable q = (y, θ) in the form

(
ẏ

θ̇

)
=

(
J α

−αT 0

)(
DyE

DθE

)
+

(
K β

βT Λ

)(
DyS

DθS

)
−
(

0

A(θ−θ∗)

)
, (21.14)



562 A. Mielke

where the coupling operator A is assumed to be positive definite. Defining the
functional F ◦(y, θ) = E (y, θ)− θ∗S (y, θ), the system (21.14) takes the form

(
ẏ

θ̇

)
=

(
J − 1

θ∗
K α− 1

θ∗
β

−αT − 1
θ∗ β

T − 1
θ∗Λ

)(
DyF ◦

DθF ◦

)
−
(

0

A(θ−θ∗)

)
.

The equation for ẏ reads ẏ =
(
J − 1

θ∗
K
)
DF ◦ +

(
α− 1

θ∗
β
)
DθF ◦, where the last

term vanishes to order O(‖θ−θ∗‖), see [19, Sect. 2.6] for more details. Defining
the isothermal free energy F∗(y) = F ◦(y, θ∗) and neglecting all terms of order
O(θ−θ∗) we arrive at the isothermal damped Hamiltonian system

ẏ =
(
J(y, θ∗)− 1

θ∗
K(y, θ∗)

)
DF∗(y). (21.15)

Note that J still defines a Poisson structure and that K is positive semi-definite.
Hence, F∗ is a Liapunov function for (21.15).

21.3 Coupling of Quantum and Dissipative Mechanics

21.3.1 Quantum Mechanics

The quantum mechanical system is described by states in a complex Hilbert space
H with scalar product 〈 · | · 〉 and a Hamiltonian (operator)H : D(H)→H , which
is assumed to be selfadjoint and semi-bounded, namely

∃hmin ∈ R ∀ψ ∈ D(H) : 〈Hψ|ψ〉 ≥ hmin‖ψ‖2.

The associated Hamiltonian dynamics is given via the Schrödinger equation

ψ̇ = −jHψ, where j =
i

�
, (21.16)

which has the solution ψ(t) = e−jtHψ(0).
We denote by L p(H) the Banach space of compact operators A from H into

itself, such that

‖A‖p :=
( ∞∑
j=1

σj(A)
p
)1/p

<∞,

where σj is the jth singular value of A (i.e., the jth largest eigenvalue of
(A∗A)1/2). We refer to [5, Ch. III] for this and the following standard properties.
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Moreover, L ∞(H) is the set of bounded linear operators with ‖A‖∞ denoting the
standard operator norm. For 1 ≤ p1 < p2 <∞ we have

L p1(H) ⊂ L p2(H) and ‖A‖p1 ≥ ‖A‖p2 for all A ∈ L p1(H).

Moreover, if 1/p = 1/p1 + 1/p2 ≤ 1, then Hölder’s estimate holds

‖AB‖q ≤ ‖A‖p1‖B‖p2 for all A ∈ L p1(H), B ∈ L p2(H). (21.17)

On L 1(H) the trace operator tr : L 1(H) → C, A �→ ∑∞
j=1〈Aφj |φj〉 is well

defined, where {φj | j ∈ N } is an arbitrary complete orthonormal system in H .
Using the dual pairing

〈〈A ‖B 〉〉 := tr(AB∗),where tr(ψ⊗φ) = 〈ψ|φ〉,

we see that L 2(H) is a Hilbert space and L p(H)′ ∼
= L q(H) for 1 < p, q < ∞

with 1/p+ 1/q = 1. We will need the following elementary commutator relations:

〈〈A ‖BC 〉〉 = 〈〈B∗A ‖C 〉〉 = 〈〈AC∗ ‖B 〉〉, giving

〈〈A ‖ [B,C] 〉〉 = 〈〈 [B∗, A] ‖C 〉〉 = −〈〈 [A,B∗] ‖C 〉〉 = 〈〈 [A,C∗] ‖B 〉〉.
(21.18)

To couple a quantum system to a macroscopic one we need to describe it in terms
of the multi-particle form using the density matrices

ρ ∈ R := { ρ ∈ L 1(H) | ρ = ρ∗ ≥ 0, tr ρ = 1 }.

Hence, each ρ ∈ R has the representation

ρ =

∞∑
j=1

rj ψj ⊗ψj , (21.19)

where rj ≥ 0,
∑∞

1 rj = 1, and {ψj | j ∈ N } is an orthonormal set. (Note that
(ψ⊗φ)a := 〈a|φ〉ψ and (ψ⊗φ)A = ψ⊗A∗

φ.) Using (21.16) the evolution of ρ
is given via the Liouville equation

ρ̇ = j[ρ,H ], where [ρ,H ] := ρH−Hρ. (21.20)

This is consistent with (21.16) if each of the ψj solves (21.16) while all rj are
constant.

Below we will use the von Neumann entropy

Sqm(ρ) = −kB〈〈 ρ ‖ log ρ 〉〉 = −kB tr(ρ log ρ) = −kB
∞∑
j=1

rj log rj . (21.21)
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It is easy to see that the entropy remains constant for the Hamiltonian
system (21.20).

While the single-commutator equation (21.20) gives rise to Hamiltonian dynam-
ics, the following double-commutator equation leads to dissipative dynamics:

η̇ = −[Q, [Q, η]] = −(Q2η − 2QηQ+ ηQ2), (21.22)

where Q ∈ L p
S (H) := {A ∈ L p(H) | A = A∗ } is a given operator. As Q

can be written in the form
∑∞

n=1 qnφn⊗φn with qn ∈ R we easily find that
the corresponding coefficients ηnm(t) = 〈ρ(t)φn|φm〉 ∈ C satisfy the ODE
η̇nm = −(qn−qm)2ηnm . Thus, the double-commutator evolution diminishes all
off-diagonal elements, while the diagonal elements of η (and hence the trace)
remain unchanged. Hence, an often used dissipative quantum system is the Lindblad
equation of the form

ρ̇ = j[ρ,H ]−
N∑
n=1

[
Qn, [Qn, ρ− ρeq]

]
. (21.23)

While it is well known that this equation preserves the property that ρ(t) ∈ R it is
less clear what the longtime dynamics is and what suitable Liapunov function are.
We will see later that the GENERIC framework leads to a correction of (21.23), see
Sect. 21.4.4.

21.3.2 Dissipative Evolution

We assume that an additional variable z is present in the model that is dissipative.
For simplicity, we assume that z lies in a closed subset Z ⊂ R

N . The evolution is
assumed to be purely dissipative in the sense that it is a gradient flow with respect
to the entropy S : Z → R, namely

ż = K(z)DS(z), where K(z) = K(z)T ≥ 0. (21.24)

We immediately obtain entropy production in the form

d

dt
S(z(t)) = DS(z) ·K(z)DS(z) ≥ 0.

If an energy E : Z → R is conserved along solutions z of (21.24), then the
relation DE(z) ·K(z)DS(z) ≡ 0 has to hold. Very often one imposes the stronger
condition K(z)DE(z) ≡ 0, which is certainly sufficient, but not at all necessary.
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21.3.3 Coupling of the Models

We now couple the quantum and the dissipative system in the GENERIC sense. The
joint state space is Q = R × Z ⊂ L 1

S (H) × R
N , where the state is given by the

pair (ρ, z). The energy functional E and the entropy functional S take the form

E (ρ, z) = 〈〈H(z) ‖ ρ 〉〉+ E(z) and S (ρ, z) = −kB〈〈 ρ ‖ log ρ 〉〉+ S(z).

In the general case, the HamiltonianH may depend on the dissipative variable z, but
for our mathematical results we assume that H is independent of z. For the Poisson
structure we assume that the variable z is totally dissipative, which means that J has
block structure on the form

J(ρ, z) =

(
j[ρ, � ] 0

0 0

)
,

where � indicates, where the corresponding component of the vector applied from
the right has to be inserted. The dissipation operator K will be defined in terms of
the dissipation potential, which is quadratic in the driving forces

(
μ

ζ

)
= DS (ρ, z) =

(
DρS (ρ)

DzS (ρ, z)

)
=

(−kB log ρ

DS(z)

)
.

In the following we use a special ansatz for the dissipation potential that is based
on the physical observation that a quantum mechanical system interacts with its
environment only via the commutators with respect to suitable coupling operators
Qm(z) ∈ L ∞

S (H). This leads to

〈
K(ρ, z)

(
μ

ζ

)∣∣
∣

(
μ

ζ

)
〉
= ζ ·Kdiss(ρ, z)ζ +

M∑

m=1

|||[Qm(z), μ−αm(ρ, z) · ζ H(z)]|||2Cm(ρ,z),

whereαm(ρ, z) ∈ R
N ,Kdiss(ρ, z) ∈ R

N×N is symmetric and positive semidefinite,
and the super-operators Cm(ρ, z) are symmetric and positive semidefinite on
L 2(H). (Here super-operators are linear operator on L p(H).) The norm ||| · |||C is
defined via

|||A|||C := 〈〈CA ‖A 〉〉1/2 = ‖C1/2A‖2.

To simplify the following notations we introduce another super-operator

K
Q
C : A �→ [Q∗,C[Q,A]].
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Using (21.18) the associated linear operator K takes the form

K(q) =

(
0 0

0 Kdiss

)
+

M∑
m=1

(
K
Qm

Cm
−(αm ·�)KQm

Cm
H

−〈〈KQm

Cm
� ‖H 〉〉αm 〈〈KQm

Cm
H ‖H 〉〉αm⊗αm

)
,

where we have omitted the arguments ρ and z for simplicity. The occurrence of
double commutators KQm

Cm
indicates the dissipative nature of K .

To satisfy the NIC (21.10) we still need an assumption on K, namely

Kdiss(ρ, z)DzE (ρ, z)) = 0 and αm(ρ, z) ·DzE (ρ, z)) = 1 for all m, ρ, z.
(21.25)

These assumptions guarantee K(q)DE (q) ≡ 0. Thus, J(ρ, z) and the symmetric
and positive linear operator K satisfy the NIC (21.10), i.e. J(ρ, z)DS (ρ, z) ≡ 0
and K(ρ, z)DE (ρ, z) ≡ 0. Now the GENERIC formalism provides the evolutionary
system for q = (ρ, z), namely

ρ̇ = j[H(z), ρ]−
M∑
1

K
Qm(z)
Cm(ρ,z)

(
kB log ρ+αm(ρ, z) ·DS(z)H(z)

)
,

ż = Kdiss(ρ, z)DS(z)+

+

M∑
1

〈〈KQm(z)
Cm(ρ,z)

(
kB log ρ+αm(ρ, z) ·DS(z)H(z)

) ‖H(z) 〉〉αm(ρ, z).

(21.26)

In the following we will reduce the generality in order to obtain more structure.

21.4 Canonical Correlation

21.4.1 The Kubo–Mori Metric

Following [6, 28] we introduce a canonical correlation operator which associates
with the density matrix ρ in the following way: for each ρ ∈ R we define

Cρ :

{
L ∞(H)→ L 1(H),

A �→ ∫ 1

0
ρsAρ1−sds.

(21.27)

The boundedness follows from Hölder’s estimate (21.17) giving

‖CρA‖q ≤ ‖ρ‖p1‖A‖p2 for
1

q
=

1

p1
+

1

p2
.
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We further have the identity (CρA)∗ = Cρ(A∗) (using reparametrization and ρ =
ρ∗). If ρ has the representation

∑
rjψj ⊗ψj , then we have

CρA =

dimH∑

j,k=1

Λ(rj , rk)〈Aψk |ψj〉ψj ⊗ψk and 〈〈 CρA ‖A 〉〉 =
dimH∑

j,k=1

Λ(rj , rk)
∣∣〈Aψk |ψj〉

∣∣2,

(21.28)

where the continuous function Λ : [0,∞[2 → [0,∞[ is given by

Λ(a, b) =

∫ 1

0

asb1−sds =

⎧⎪⎨
⎪⎩

a−b
log a−log b for a, b > 0 and a �= b,

a for a = b ≥ 0,

0 for min{a, b} = 0.

(21.29)

Note that Λ satisfies the bounds min{a, b} ≤ √ab ≤ Λ(a, b) ≤ 1
2 (a+b) ≤

max{a, b}.
Thus, we have on L ∞(H) the relations

〈〈CρA ‖B 〉〉 = 〈〈A ‖CρB 〉〉 and 〈〈CρA ‖A 〉〉 ≥ 0,

which induce the scalar product (A,B) �→ 〈〈CρA ‖B 〉〉. This scalar product is
called the canonical correlation between A and B for the given state ρ in [12, 28].

For ρ > 0 and dimH <∞ the operator Cρ is invertible, namely

GρA := C −1
ρ A =

∫ ∞

0

(ρ+sI)−1A(ρ+sI)−1 ds. (21.30)

This formula is easily derived from (21.28) using 1/Λ(a, b) =
∫∞
0

(
(a+s)

(b+s)
)−1

ds. The tensor Gρ defines the Bogoliubov–Kubo–Mori metric on the set of
density matrices as follows, see [23,29,30]. For a curve [0, 1] - s �→ ρ̃(s) we define
its Kubo–Mori length '(ρ̃) via

'(ρ̃)2 =

∫ 1

0

〈〈 ρ̃′(s) ‖Gρ̃(s)ρ̃
′(s) 〉〉ds.

The relevance of the Bogoliubov–Kubo–Mori metric as a generalization of the
Fisher information metric is discussed in the above references. For our usage, the
most important fact is the connection to the von Neumann entropy Sqm, see (21.21).
In fact, Gρ can be identified by its Hessian, namely

〈〈A ‖D2Sqm(ρ)B 〉〉 = −kB〈〈A ‖GρB 〉〉.
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Open problem 1. Is the mapping R - ρ �→ 〈〈A ‖CρA 〉〉 concave for all A? A
positive answer would give good metric properties for the Riemannian manifold
(R,Gρ), see [14].

The following identities, which go back to [13], play an important role in the
field of dissipative effects in quantum mechanics and manifest the relation between
the von Neumann entropy Sqm and the canonical correlation operator Cρ. See also
[3, Lem. 3.1], where a general calculus for operator functions is developed.

Proposition 21.1. For all A ∈ L ∞
S (H) and all ρ ∈ R with log ρ ∈ L ∞

S (H) we
have

[
CρA, log ρ

]
=
[
A, ρ] = Cρ

[
A, log ρ

]
. (21.31)

Proof. For the convenience of the reader we give a full proof. With P = log ρ we
have ρ = eP and

[
CρA, log ρ

]
=

∫ 1

0

[
esPAe(1−s)P , P

]
ds =

∫ 1

0

esPA(e(1−s)PP ) − (P esP )Ae(1−s)P ds

=

∫ 1

0

d

ds

( − esPAe(1−s)P )ds = −(
esPAe(1−s)P )1

0
=

[
A, eP

]
=

[
A,ρ

]
.

With slightly different grouping, we also obtain the second identity, namely

Cρ

[
A, log ρ

]
=

∫ 1

0

esP (AP − PA)e(1−s)P ds =

∫ 1

0

esPA(P e(1−s)P ) − (esPP )Ae(1−s)P ds

=

∫ 1

0

d

ds

( − esPAe(1−s)P
)
ds = . . . =

[
A, ρ

]
.

Thus, both identities are established. ��
The following result shows that Cρ ∈ Lin(L∞

S (H),L1
S(H)) depends continu-

ously on ρ ∈ R ∈ L1
S(H) with respect to the norm topology. This result will be

crucial for our existence theory. This property is derived from Phillips’ result on
Hölder continuity for ρ �→ ρs in the appropriate norms.

Proposition 21.2. For all ρ1, ρ2 ∈ L1
S(H) with ρ1, ρ2 ≥ 0 and all A ∈ L∞

S (H)
we have

‖Cρ1A−Cρ2A‖1 ≤ ω
(

‖ρ1−ρ2‖1

‖ρ1‖1+‖ρ2‖1

)(‖ρ1‖1+‖ρ2‖1)‖A‖∞, ω(ν)=2 1−ν
| log ν| .

(21.32)

Proof. The proof relies on Phillips’ inequality (see [2, Thm. 4]):

X = X∗ ≥ Y = Y ∗ ≥ 0 and p ≥ 1 =⇒ ‖X1/p − Y 1/p‖p ≤ ‖X−Y ‖1/p1 .
(21.33)
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We need the result for the two non-ordered operators ρ1 and ρ2. For this we define
V = ρ2 − ρ1 and decompose it into its positive and negative parts, namely V =
V+ − V− with V+, V− ≥ 0. With Z := ρ1 + V+ we have

Z = ρ1 + V+ ≥ ρ1 ≥ 0 and Z = ρ2 + V− ≥ ρ2 ≥ 0.

Applying Phillips’ inequality (21.33) to these two ordered pairs we obtain

‖Z1/p−ρ1/p1 ‖p ≤ ‖Z−ρ1‖1/p
1 =‖V+‖1/p

1 , ‖Z1/p−ρ1/p2 ‖p ≤ ‖Z−ρ2‖1/p
1 = ‖V−‖1/p

1 .

Thus, the triangle estimate gives the desired generalization of (21.33), namely

‖ρ1/p2 −ρ1/p1 ‖p ≤ ‖V+‖1/p1 +‖V−‖1/p1 ≤ 21−1/p‖V ‖1/p1 = 21−1/p‖ρ1−ρ2‖1/p1 ,
(21.34)

where we have used ‖V+‖1 + ‖V−‖1 = ‖V ‖1 and

α1/p + β1/p ≤ 21−1/p(α+β)1/p for all p ≥ 1, α, β ≥ 0. (21.35)

We now estimate Cρ1A− Cρ2A in L1
S(H) as follows:

‖Cρ1A−Cρ2A‖1 ≤
∫ 1

s=0

‖ρs1Aρ1−s
1 −ρs2Aρ1−s

1 ‖1 + ‖ρs2Aρ1−s
1 −ρs2Aρ1−s

2 ‖1ds

≤
∫ 1

s=0

‖ρs1−ρs2‖1/s‖A‖∞‖ρ1−s
1 ‖1/(1−s) + ‖ρs2‖1/s‖A‖∞‖ρ1−s

1 −ρ1−s
2 ‖1/(1−s) ds

≤ ‖A‖∞

∫ 1

r=0

‖ρr1−ρr2‖1/r

(‖ρ1‖1−r
1 +‖ρ2‖1−r

1

)
dr

≤ ‖A‖∞

∫ 1

r=0

21−r‖ρ1−ρ2‖r
1 2

1−(1−r)(‖ρ1‖1+‖ρ2‖1

)1−r
dr,

where we have used (21.34) and (21.35) for the last estimate. Calculating the integral
in the last expression gives the desired estimate (21.32) and the proposition is
proved. ��

We emphasize that R - ρ �→ Cρ ∈ Lin(L∞
S (H),L1

S(H)) is continuous,
if R is equipped with the norm of L1

S(H). Moreover, assuming dimH < ∞
and writing intR = { ρ | ρ > 0 } we see that intR - ρ �→ Cρ is an analytic
function. For this we use that R = log ρ is an analytic function on intR and that
CρA =

∫ 1

0 esRAe(1−s)R ds.

21.4.2 GENERIC Systems with Canonical Correlation

We now specialize the general system (21.26) by choosing all the operators Cm

equal to Cρ, as suggested in [28]. However, we note that the dissipative bracket
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in [28, Eqn. (10)] differs from the form assumed here. The point is now that the
interaction of Cρ with log ρ simplifies the evolutionary system considerably by
invoking (21.31) giving

K
Q
Cρ

log ρ =
[
Q, [Q, ρ]

]
,

where the right-hand side is continuous, in contrast to log ρ. We arrive at the system

ρ̇ = j
[
H(z), ρ

] −
M∑

1

(
kB

[
Qm(z), [Qm(z), ρ]

]
+ αm(ρ, z) · DS(z)KQm(z)

Cρ
H(z)

)
,

ż = Kdiss(ρ, z)DS(z)

+

M∑

1

〈〈 kB
[
Qm(z), [Qm(z), ρ]

]
+ αm(ρ, z) · DS(z)KQm(z)

Cρ
H(z) ‖H(z) 〉〉αm(ρ, z).

(21.36)

The most important feature of this system is that the singular term log ρ in the
right-hand side has disappeared. Under suitable further assumptions the right-hand
side forms a continuous vector field, which wasn’t the case for (21.26).

We simplify the above system even further by assuming that it consists of M
heat baths with temperatures θ = (θ1, . . . , θM ) and heat capacities c1, . . . , cM > 0.
Each heat bath can interact with the quantum system by a finite number of coupling
operators Qnm, which are independent of θ. Writing shortly c = (cm) we have the
following GENERIC system (Q, E ,S , J,K) with

Q = R× ]0,∞[
M
, q = (ρ, θ), (21.37a)

E (q) = tr(ρH) + c · θ, S (q) = −kB tr(ρ log ρ) +
∑M

m=1 cm log θm,
(21.37b)

J(q) =

(
j[ρ,�] 0

0 0

)
, K(q) = D2Ψ∗

(ξ,τ)(q; ξ, τ), (21.37c)

where the dual dissipation potential Ψ∗ is given by

Ψ∗(ρ, θ; ξ, τ) = 1
2

∑M
m=1

∑Nm

n=1 |||[Qnm, ξ− τmcmH ]|||2Cρ
+ 1

2τ · κτ,

where κ ∈ R
M×M
sym is positive semidefinite with kernelκ = span c. A typical choice

for κ is given by τ · κτ =
∑M−1

m=1

∑M
l=m+1 κml

(
τm
cm
− τlcl

)2
, where the positive

coefficients κml give the direct heat transfer between the heat baths m and l. We
have the NIC (21.10) because (i) DE (q) = (H, c) and Ψ∗(q; (H, c)) ≡ 0 imply
K(q)DE (q) ≡ 0 and (ii) DS (q) = (−kB log ρ, ∗) implies J(q)DS (q) ≡ 0.
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The differential equation generated by the GENERIC system (Q, E ,S , J,K) is

ρ̇ = j[ρ,H ]−
M∑
m=1

Nm∑
n=1

[
Qnm , kB[Q

n
m, ρ] +

1

θm
Cρ[Q

n
m, H ]

]
, (21.38a)

θ̇= κ
(
cm
θm

)
m
+
( 1

cm

Nm∑
n=1

〈〈 kB[Qnm, ρ] + 1
θm

Cρ[Q
n
m, H ] ‖ [Qnm, H ] 〉〉

)
m
.

(21.38b)

We nicely see the correction terms 1
θm

[
Qnm,Cρ[Q

n
m, H ]

]
to the otherwise linear

Lindblad system ρ̇ = j[ρ,H ]− kB
∑M
m=1

∑Nm

n=1

[
Qnm, [Q

n
m, ρ]

]
.

If dimH<∞ the right-hand side of (21.38) is analytic in the interior of Q, i.e. in
intR×]0,∞[

M , while it is continuous on Q. Hence, solutions starting in the interior
are unique as long as they stay in the interior. In [21] the global existence of solutions
for (21.38) will be established. The difficulties arise if solutions reach the boundary
of Q, where the extension is nontrivial and may be nonunique. Section 21.6 provides
an existence result for the simplified model presented in Sect. 21.5.

21.4.3 Steady States

We finally discuss the steady states for (21.38). By strict convexity of S there is
a unique maximizer qeq = (ρeq, θeq) ∈ Q subject to the constraint E (q) = E0,
as soon as E0 > λmin(H). The latter condition is needed to make the admissible set
{ q ∈ Q | E (q) = E0 } nonempty. The unique maximizer takes the form

θeq(E0) = θ∗(E0)(1, . . . , 1) and ρeq =
1

Z(E0)
exp

( −1
kBθ∗(E0)

H
)
.

(21.39)

By Sect. 21.2.2 we know that all qeq(E0) are steady states of (21.38).
The following result provides conditions showing that the family qeq(E0)

provides the only steady states q = (ρ, θ) of (21.38) satisfying ρ > 0.

Theorem 21.1. Assume kernelκ = span c and that (Qnm) m=1,...,M
n=1,...,Nm

and H satisfy:

If A = A∗ ∈ Lin(H), [H,A] = 0,
and ∀m,n : [Qnm, A] = 0,

}
then A = αI for some α ∈ R. (21.40)

Then, all steady states q = (ρ, θ) ∈ Q of (21.38) satisfying ρ > 0 have the form
qeq(E0) for some E0 ∈ R.
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Proof. If q is a steady state with q = (ρ, θ) with ρ > 0, then 2Ψ∗(q,DS (q)) =
d
dtS (q) = 0. Hence, we have

0 = κDθS (q) = κ
(
cm
θm

)
m=1,...,M

, 0 = ‖[Qnm,−kB log ρ− 1
θm

H ]‖Cρ .

Using kernelκ = span c we obtain θ = (θ0, . . . , θ0). Since ρ > 0 we have
‖A‖Cρ = 0 if and only if A = 0, whence

∀m = 1, . . . ,M ∀n = 1, . . . , Nm : [Qnm, kB log ρ+ 1
θ0
H ] = 0.

Inserting this into (21.38a) with ρ̇ = 0 (for a steady state) we also find [ρ,H ] = 0.
The latter implies [H, kB log ρ+ 1

θ0
H ], and we can apply (21.40) to A = kB log ρ+

1
θ0
H . Now kB log ρ + 1

θ0
H = αI implies the desired result, and the theorem is

proved. ��
In general it seems difficult to exclude steady states q = (ρ, θ) with det ρ = 0.

We refer to Section 21.5.3 for an example where (21.40) does not hold and where a
whole segment of equilibria exists for each E0.

Open problem 2. Provide minimal assumptions on H , Qnm, and κ to guarantee
that there are no steady states with det ρ = 0.

21.4.4 Comparison to the Lindblad Equation

Most often dissipative quantum mechanics is described in terms of the Lindblad
equation (cf. [6, 15, 16]). In the isothermal case θm = θ∗, our equation (21.38a)
takes the nonlinear form

ρ̇ = j[ρ,H ]−
M∑
m=1

Nm∑
n=1

[
Qnm, kB[Q

n
m, ρ] +

1

θ∗
Cρ[Q

n
m, H ]

]
, (21.41)

where now the free energy F∗(ρ) = kBθ∗〈〈 ρ ‖ log ρ 〉〉 + 〈〈 ρ ‖H 〉〉 is a Liapunov
function.

The corresponding linear Lindblad equation is obtained from (21.41) simply
by replacing Cρ by Cρeq where we take the ρeq = 1

Z exp
( −1
kBθ∗

H
)
. Using the

commutator relation (21.31) we have Cρeq [Q
n
m, H ] = −kBθ[Qnm, ρeq] and arrive at

ρ̇ = j[ρ,H ]−
M∑
m=1

Nm∑
n=1

[
Qnm , kB [Qnm , ρ− ρeq ]

]
. (21.42)
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The striking advantage of the Lindblad equation is its linearity. We will see in
Sect. 21.6 that it also leaves R invariant, i.e. it preserves the trace condition tr ρ = 1,
the symmetry ρ = ρ∗, and the positivity ρ ≥ 0.

However, for the coupling to the exterior like heat baths it is less useful. Note
that ρeq has to be known already. In general, the equilibrium ρeq will depend in a
complicated and nonlinear way on the other variables, e.g. ρeq(θ) in (21.38). More
importantly, one has to model the influence of ρ−ρeq(θ) on the other variables in
a self-consistent way. In particular, energy conservation and nonnegative entropy
production rates have to be guaranteed.

21.5 A Simple Coupled System

21.5.1 The Case of One Heat Bath

We simplify the above problem even further, by assuming that there is only
one dissipative interaction term (i.e., M = 1) with one coupling operator Q
(i.e., N1 = 1). Moreover, the matrix κ disappears as c > 0 and κc = 0. The system
reduces to

ρ̇ = j
[
H, ρ

]− [Q, kB[Q, ρ]+ 1

θ
Cρ
[
Q,H

]]
,

θ̇ =
1

c
〈〈 kB

[
Q, ρ

]
+

1

θ
Cρ
[
Q,H

] ‖ [Q,H] 〉〉.
(21.43)

Energy and entropy are given by

E (ρ, θ) = 〈〈 ρ ‖H 〉〉 + cθ and S (ρ, θ) = −kB tr(ρ log ρ) + c log θ

It is easy to check that E is conserved along solutions while S is nondecreasing.
For this, set Φ = −kB log ρ − 1

θH , where Φ can be seen as the driving force for
irreversible processes as DS − 1

θDE = (Φ, 0)T, see [19]. With these abbreviations
system (21.43) takes the form

ρ̇ = j
[
H, ρ

]
+K

Q
ρ Φ, θ̇ = −1

c
〈〈KQ

ρ Φ ‖H 〉〉.

Hence, we easily find

d

dt
E (ρ(t), θ(t)) = 〈〈 ρ̇ ‖H 〉〉+ cθ̇ = 0 + 〈〈KQ

ρ Φ ‖H 〉〉 − 〈〈KQ
ρ Φ ‖H 〉〉 = 0,

d

dt
S (ρ(t), θ(t)) = 〈〈 ρ̇ ‖−kB log ρ 〉〉 + c

θ̇

θ
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= 0 + 〈〈KQ
ρ Φ ‖−kB log ρ 〉〉 − 1

θ
〈〈KQ

ρ Φ ‖H 〉〉

= 〈〈KQ
ρ Φ ‖Φ 〉〉 = 〈〈Cρ

[
Q,Φ

] ‖ [Q,Φ] 〉〉 ≥ 0.

21.5.2 Elimination of the Temperature

Since θ > 0 is only a scalar, we may eliminate it by using the invariance of the
energy by assuming E (ρ, θ) = E0. Then, θ = (E0 − 〈〈 ρ ‖H 〉〉)/c and we can
reduce system (21.43) to the single equation for ρ:

ρ̇ = j
[
H, ρ

]− [Q, kB[Q, ρ]+ c

E0 − 〈〈 ρ ‖H 〉〉 Cρ
[
Q,H

]]
, (21.44a)

which has the negative entropy −S̃ as a Liapunov functional, where

S̃ (ρ) = −kB〈〈 ρ ‖ log ρ 〉〉+ c log
(
E0−〈〈 ρ ‖H 〉〉

)
. (21.44b)

Note that S̃ is still a strictly concave function on the compact set R. Hence,
assuming that E0 is given such that S̃ is finite at least at one point in R, then
there is a unique maximizer ρ∗ given via

θ∗ = (E0 − 〈〈 ρ∗ ‖H 〉〉)/c > 0 and ρ∗ =
1

Z
exp

(− 1
kBθ∗H

)
. (21.45)

In fact, we are now easily able to pass to the isothermal limit in the sense of
Sect. 21.2.3. We assume thatE0 and c tend to∞whileH andQ are fixed. Assuming
E0/c→ θ∗ > 0 we find the expansion

c log
(
E0−〈〈 ρ ‖H 〉〉

)
= c logE0 − c

E0
〈〈 ρ ‖H 〉〉 +O(c/E2

0 ),

where we use that ρ ∈ R is bounded. Thus, we find the free energy

F∗(ρ) = lim
c,E0→∞
E0/c→θ∗

(
E0 logE0 − θ∗S̃ (ρ)

)
= 〈〈 ρ ‖H 〉〉+ kBθ∗〈〈 ρ ‖ log ρ 〉〉,

(21.46a)
and the simplified isothermal evolutionary system

ρ̇ = j
[
H, ρ

]− [Q, kB[Q, ρ]+ 1

θ∗
Cρ
[
Q,H

]]
. (21.46b)
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21.5.3 The Case dimH = 2

In the case that the basic Hilbert space H is two-dimensional, i.e. H = C
2, we can

write (21.46) explicitly by introducing suitable coordinates. While in the general
case H = C

n the set R can be seen as a real (n2−1)-dimensional manifold with
piecewise smooth boundary, the case n = 2 is special, because R has a smooth
boundary and can be identified by the closed ball A = B1/2(0) ⊂ R

3 as follows:

R = { ρ = ρ̂(a) | a ∈ A }, where ρ̂(α, β, γ) =

(
1
2 + α β + iγ

β − iγ 1
2 − α

)
.

Using z = β + iγ and r = |a| the eigenvalues r± and eigenvectors ψ± of ρ̂(a) are

r± =
1

2
± r, ψ± =

1√
2r(r∓α)

(
z

−α± r

)
.

Thus, Cρ̂(a) can be written out explicitly using (21.28). In particular, choosing
H and Q we are able to write (21.44) and (21.46b) as explicit ODE systems in the
three variables (α, β, γ). For didactical purposes we will do this for the special case

H =

(
h1 0

0 h2

)
and Q =

(
0 q

q 0

)
,

where h1, h2, q ∈ R. In treating this example, we will see some of the difficulties
in proofing the existence of solutions and the convergence of all solutions into the
unique thermodynamic equilibrium ρ∗. We first note that the free energy F∗ has the
form F̂ (a) := F∗(ρ̂(a)) with

F̂ (a) = kBθ∗
(
(12+r) log(

1
2+r) + (12−r) log(12−r)

)
+ 1

2 (h1+h2)− (h2−h1)α.

Some lengthy calculations, using the explicit form of r±, ψ± and (21.28), give

Cρ̂(a)

(
0 1

−1 0

)
=

( −iγ(1 + 1−2λ
2r2 α

)
λ+ 1−2λ

2r2 γ2 − i 1−2λ
2r2 β

−λ− 1−2λ
2r2 γ2 − i 1−2λ

2r2 β iγ
(
1−2λ
2r2 α− 1

)
)
,

where λ = λ(r) = Λ(12+r,
1
2−r). Using λ(0) = 1/2 we see that r �→

(λ(r), 1−2λ(r)
2r2 ) is analytic on [0, 1/2[ and continuous on [0, 1/2]. Thus, we see that

a �→ Cρ̂(a)
(

0 1
−1 0

)
is smooth in the interior of A and continuous on the closed ball

A , as predicted by Proposition 21.2. Inserting this into (21.46b) leads to the system

⎛
⎝ α̇

β̇

γ̇

⎞
⎠ =

⎛
⎝ 0

(h2−h1)γ
(h1−h2)β

⎞
⎠− kBq

2

⎛
⎝4α

0

4γ

⎞
⎠+

q2(h2−h1)
θ∗

⎛
⎝2λ+ 1−2λ

r2 γ2

0

− 1−2λ
r2 αγ

⎞
⎠ .

(21.47)
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It is also instructive to see the isothermal form of the GENERIC system as given
in (21.15). Using the coordinates a = (α, β, γ)T ∈ A and r = |a| we have

DF̂ (a) =
2kBθ∗
λ(r)

⎛
⎝α

β

γ

⎞
⎠−

⎛
⎝h2−h1

0

0

⎞
⎠ , Ĵ(a) =

⎛
⎝ 0 γ −β
−γ 0 α

β −α 0

⎞
⎠ ,

K̂(a) = q2

⎛
⎝2λ(r) 0 0

0 0 0

0 0 2λ(r)

⎞
⎠+

q2(1−2λ(r))
r2

⎛
⎝ γ2 0 −αγ

0 0 0

−αγ 0 α2

⎞
⎠ .

It is now easy to see that (21.47) is given in the form ȧ =
(
Ĵ(a)− 1

θ∗ K̂(a)
)
DF̂ (a).

Moreover, we see that the Poisson structure Ĵ on A is the classical Lie–Poisson
structure on R

3 used for Euler’s equation for rigid bodies, cf. [1, 18]. Moreover,
we see that there is no dissipation in the β-component, since its direction is parallel
to Q and, thus, vanishes in the commutator.

In particular, we see that all solutions starting in A remain there. In fact,

1
2

d
dtr

2 = 1
2

d
dt |a|2 = a · ȧ = −4kBq2(α2+γ2) + 2q2

θ∗
(h2−h1)αλ(|a|) (21.48)

implies that for a ∈ ∂A (i.e., r = |a| = 1/2) we have ṙ ≤ 0 because of
λ(1/2) = 0. Moreover, solutions immediately move into the interior of A except
when starting in a(0) = (0,±1/2, 0)T, where ȧ = ±(0, 0, (h1−h2)/2)T. Hence,
except for the case h1 = h2 also in this case the solutions leave the boundary of A .

The following general result on the dynamics of the simple ODE system (21.47)
is an immediate consequence of the above derivations.

Theorem 21.2. System (21.47) has for each initial condition a(0) ∈ A a global
solution, along which F̂ is nonincreasing. Solutions with |a(0)| < 1/2 are unique
and never touch the boundary ∂A .

In the purely Hamiltonian case q = 0 the solution are periodic with α(t) = α(0)

and r(t) = r(0), i.e. the free energy F̂ (a(t)) is constant.
For q �= 0 all solutions a(t) converge to a steady state for t → ∞. If h1 �= h2,

this is the unique steady state a∗ corresponding to ρ∗ = ρ̂(a∗) given in (21.45) and
minimizing F̂ .

If h1 = h2, then β(t) = β(0) while (α(t), γ(t)) = e−4kBq
2t(α(0), γ(0)).

Finally, we compare the solutions of the GENERIC system (21.47) with the
corresponding linear Lindblad system, where the nonlinear term [Q,Cρ[Q,H ]] is
replaced by the constant term [Q,Cρeq [Q,H ]] = −kBθ∗[Q, [Q, ρeq]] = const.
in (21.46b), namely

⎛
⎝ α̇

β̇

γ̇

⎞
⎠ =

⎛
⎝ 0

(h2−h1)γ
(h1−h2)β

⎞
⎠− 4kBq

2

⎛
⎝α− αeq

0

γ

⎞
⎠ , (21.49)
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where αeq depends on θ∗ and h2−h1. Note that the dynamics of α and (β, γ) are
mutually uncoupled, which is certainly not the case in (21.47).

21.6 Existence and Convergence into Equilibrium

Here we restrict ourselves to the finite-dimensional setting 2 ≤ dimH < ∞.
To keep notations simple we study the case without temperature, i.e. we either
consider the isothermal case (21.46) or the full case (21.44) for a given value of
E0, see Sect. 21.5.2. In both cases the driving functional (now being a Liapunov
functional) has the form

F (ρ) = e 〈〈 ρ ‖ log ρ 〉〉+ Υ (〈〈 ρ ‖H 〉〉),

where e > 0 and Υ : R→ R∪ {∞} is continuous convex function. Our state space
is the compact set R and the equation we study is

ρ̇ = V (ρ) := j[H, ρ]−
N∑
n=1

[
Qn,Cρ[Q

n,DF (ρ)]
]

= j[H, ρ]− e

N∑
n=1

[
Qn, [Qn, ρ]

]− Υ ′(〈〈 ρ ‖H 〉〉)
N∑
n=1

[
Qn,Cρ[Q

n, H ]
]
.

(21.50)

21.6.1 Existence via a Modified Explicit Euler Scheme

The construction of solutions uses an explicit Euler scheme with a slight modifica-
tion to keep the property ρ ∈ R. Consider the time interval [0, t0], choose an integer
k > 1, and define the time step δ = t0/k. For a given initial condition q0 we define
incrementally

ρj+1 = PR

(
ρj + δV (ρj)

)
, j = 0, . . . , k−1. (21.51)

Here we introduced the projection operator PR that maps arbitrary matrices with
trace 1 to elements in R in the following way

PR

( dimH∑
i=1

riψi⊗ψi
)
=

1∑dimH
j=1 max{0, rj}

dimH∑
i=1

max{0, ri}ψi⊗ψi.

The necessary properties of PR are given in the following lemma.
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Lemma 21.1. The nonlinear projector PR satisfies:

(i) ∃ C > 0 ∀ ρ1, ρ2 ∈ L 1
S (H) with tr ρj = 1:

dist(ρj ,R) ≤ 1/2 =⇒ ‖PR(ρ1)−PR(ρ2)‖ ≤ C‖ρ1 − ρ2‖.
(ii) If R - ρk → ρ ∈ R and δk ↘ 0, then 1

δk

(
PR

(
ρk+δkV (ρk)

) − ρk
) →

V (ρ).

Proof. Assertion (i) is clear by the classical Lipschitz continuity of orthogonal
projections. For assertion (ii) we distinguish the cases ρ > 0 and ρ ∈ ∂R. In the first
case convergence (ii) follows easily by the continuity of V , because for sufficiently
large k the projection PR acts as identity.

Now assume ρ =
(
σ 0
0 0

)
with σ > 0. In particular, we split the space H =

H1 ⊕ H2 and write all operators as 2 × 2-block operators with respect to this
splitting. We find

Cρ

(
A11 A12

A21 A22

)
=

(
CσA11 0

0 0

)
(21.52)

and conclude that V (ρ) =
(
α β
β∗ 0

)
. To show (ii) we use the decomposition

1
δk

(
PR

(
ρk+δkV (ρk)

)− ρk
)
= V 1

k + V 2
k + V (ρ),

where V 1
k := 1

δk

(
PR

(
ρk+δkV (ρk)

)−PR

(
ρk+δkV (ρ)

))

and V 2
k := 1

δk

(
PR

(
ρk+δkV (ρ)

)− (ρk+δkV (ρ)
))
,

which means that we have to show V 1
k → 0 and V 2

k → 0. By the Lipschitz continu-
ity (i) and the continuity of V on R we have ‖V 1

k ‖ ≤ C‖V (ρk)−V (ρ)‖ → 0.
For the second term we establish the decomposition

ρk := ρk + δkV (ρ) = ρ̃k + δkWk with ρ̃k ∈ R and Wk → 0. (21.53)

Then, PR(ρ̃k) = ρ̃k implies the estimate

‖V 2
k ‖ = 1

δk
‖PR(ρk) − ρk‖ ≤ 1

δk
‖PR(ρk)−PR(ρ̃k)‖ + 1

δk
‖ρ̃k−ρk‖ ≤ (C+1)‖Wk‖ → 0,

which establishes the convergence in (ii).
It remains to show (21.53). We use the notation

ρk =

(
σk bk
b∗k ck

)
and ρk = ρk + δkV (ρ) =

(
Σk Bk
B∗
k ck

)
,
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i.e. Σk = σk + δkα and Bk = bk + δkβ. As an intermediate decomposition we let

ρk = ρ̂k +

(
0 0

0 δkγk

)
, where γk = 1

δk

(
b∗kσ

−1
k bk−B∗

kΣ
−1
k Bk

)
.

Here ρ̂k is positive semidefinite because of

ρ̂k =

(
Σk Bk
B∗
k B

∗
kΣ

−1
k Bk

)
+

(
0 0

0 ck − b∗kσ
−1
k bk

)
,

where the first and second operator are positive semidefinite because of σ ≈ Σk > 0
and ρk ≥ 0, respectively. Using tr ρ̂k = 1− δk tr γk ≈ 1, we now let

ρk = ρ̃k + δkWk with ρ̃k = 1
1−δk tr γk

ρ̂k and Wk =

(
0 0

0 γk

)
− (tr γk) ρ̃k.

By construction we have ρ ≈ ρ̃k ∈ R and it remains to be shown that γk → 0.
Using ρk → 0 we have bk → 0 and, hence, obtain

‖γk‖ ≤ C1
δk

(‖Bk−bk‖(‖bk‖+‖Bk‖)+‖σk−Σk‖(‖Bk‖+‖bk‖)2) ≤ C2(‖bk‖+δk) → 0.

This completes the proof of the lemma. ��
With this lemma at hand, we obtain our global existence result. In contrast

to the subsequent convergence result, we don’t need any specific properties of
H, Q1, ..QN . In [21] we will show that the existence result can be extended to
more general systems containing several heat baths, e.g. (21.38).

Theorem 21.3. Consider e, Υ , H , and arbitrary coupling operators Qn as defined
at the beginning of this section. Then, for all initial conditions ρ0 ∈ R there is a
global solution ρ ∈ C1([0,∞[ ;R) of (21.50) with ρ(0) = ρ0.

Proof. The proof follows easily using the incremental approach based on the
modified explicit Euler scheme (21.51). Since the vector field V is continuous on
the compact set R it is bounded. For a given time increment δ = t0/k > 0 we obtain
the incremental approximations ρjδ via (21.51) and form two interpolants, namely
ρ̂δ : [0,∞[→ R and ρδ : [0,∞[→ R, where ρ̂δ is continuous and piecewise affine,
whereas ρδ is piecewise constant and continuous from the right, i.e. ρδ(t) = ρjδ for
jδ ≤ t < (j+1)δ. These interpolants satisfy

d

dt
ρ̂δ(t) =

1

δ

(
PR

(
ρδ+δVR(ρδ)

)− ρδ

)
for all t ∈ [0, t0] \ { δj | j ∈ N }.

(21.54)

Moreover, the sequence ρ̂δ is uniformly Lipschitz continuous and, thus, admits a
uniformly converging subsequence with δ = δk → 0 and a limit ρ : [0, t0] → R.
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Moreover, we may assume d
dt ρ̂δ

∗
⇀ w in L∞([0, t0]; L

2
S(H)). Using Lemma 21.1

and the uniform convergence of ρδ to ρ, the right-hand side in (21.54) converges
uniformly to V (ρ(t)). Standard ODE arguments show that ρ ∈ C1([0, t0]; L

2
S(H))

with ρ̇ = w, such that ρ̇ = V (ρ). Hence, ρ is a solution of (21.50). Since t0 was
arbitrary global existence follows, and the theorem is proved. ��
Open problem 3. Do we have uniqueness if every solution leaves the boundary of
R immediately? What are the conditions on H and Qn to guarantee this property?

21.6.2 Convergence into the Thermodynamic Equilibrium

One problem in our system is that the functional F (or more general the entropy
S (ρ, θ)) is not differentiable on the boundary ∂R of R. Thus, it is not clear how to
show that F is a strict Liapunov function along solutions staying on ∂R. Thus, we
will first provide some general conditions on the coupling operators Qn such that
∂R is transversally repelling, i.e. each solution leaves the boundary to the inside
with a positive speed.

For a family Q = (Q1, . . . , QN ) ∈ L2
S(H)Nwe define

μ(Q) := inf{ fQ(ψ,φ) | |ψ| = |φ| = 1, 〈ψ|φ〉 = 0 } where fQ(ψ, φ) =

N∑

n=1

|〈Qnψ|φ〉|2.

Clearly, we have μ(Q) = 0 if Q = (Q) and dimH ≥ 2, since then we may choose
two orthogonal eigenvectors of Q. However, for Q = (Q1, Q2) with

Q1 =

(
1 0

0 −1

)
and Q2 =

(
0 1

1 0

)

we find μ(Q) > 0.

Open problem 4. What is the minimal number N for a given dimH such that
there exists Q = (Q1, . . . , QN ) with μ(Q) > 0 ?

Proposition 21.3. Assume that (21.50) satisfies additionally μ(Q) > 0, then all
solutions ρ : [0,∞[→ R with ρ(0) ∈ intR satisfy inf{ dist(ρ(t), ∂R)|t ≥ 0 }> 0.
Moreover, there exist t0 > 0 such that for each solutions with ρ(0) ∈ ∂R we have
dist(ρ(t), ∂R) ≥ eμ(Q)t > 0 for t ∈ ]0, t0].

Proof. Since ρ =
∑dimH

k=1 rkψk ⊗ψk we have ρ ∈ ∂R if and only if det ρ =∏dimH
k=1 rk = 0. This implies dist(ρ, ∂R) ≥ min{ rk | k = 1, . . . , dimH }.

Moreover, from the equation ρ̇ = V (ρ) and ρ(t) =
∑dimH

k=1 rk(t)ψk(t)⊗ψk(t)
we obtain easily the relation

ṙk(t) = 〈〈V (ρ(t)) ‖ψk(t)⊗ψk(t) 〉〉 = 〈V (ρ(t))ψk(t)|ψk(t)〉.
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Now assume ρ(t)∈ ∂R, i.e. that there exists k with rk(t)= 0. For the three terms
of V in (21.50) we find 〈〈 [ρ,H ] ‖ψk(t)⊗ψk(t) 〉〉= 〈〈H ‖ [ρ, ψk(t)⊗ψk(t)] 〉〉=0
by using (21.18). Invoking the block structure (21.52) with H2 = spanψk we
obtain (CρA)ψk(t)⊗ψk(t) = ψk(t)⊗ψk(t)(CρA) = 0 for all A, and we conclude

〈〈 [Q,CρB] ‖ψk(t)⊗ψk(t) 〉〉 = 〈〈 [CρB,ψk(t)⊗ψk(t)] ‖Q 〉〉 = 〈〈 0−0 ‖Q 〉〉 = 0.

Thus, only the Lindblad terms in V (ρ) remain. Using the abbreviation Ej =
ψj(t)⊗ψj(t) and rk(t) = 0 we obtain the relation

ṙk(t) = −e
N∑
n=1

〈〈 [Qn, [Qn, ρ]] ‖Ek 〉〉 = −e
dimH∑
j=1

rj

N∑
n=1

〈〈 [Qn, [Qn, Ej ]] ‖Ek 〉〉

= 2e
∑
j �=k

rj

N∑
n=1

|〈Qnψj |ψk〉|2 ≥ 2e
∑
j �=k

rj μ(Q) = 2eμ(Q),

where we used 〈〈 [Q, [Q,Ej ]] ‖Ek 〉〉 = −2|〈QΨj|Ψk〉|2 for j �=k and rk = 0 to
drop the term for j = k. By the assumptions e > 0 and μ(Q) > 0 and the
compactness of ∂R, the continuity of V guarantees that ṙk(t) ≥ eμ(Q) > 0
whenever dist(ρ(t), ∂R) ≤ δ for some δ > 0. Now all the assertions of the
proposition follow by standard ODE arguments. ��

The above proposition shows that we only need to consider solutions lying in the
interior of R, where F is smooth and where the dissipation relation

d

dt
F (ρ(t)) = −2Ψ∗(ρ,DF (ρ)) = −

N∑
n=1

|||[Qn, e log ρ+ Υ ′(〈〈 ρ ‖H 〉〉)H]|||2Cρ

holds. Hence, F is a Liapunov function but not necessarily a strict Liapunov
function. The latter means that F is strictly decreasing along t �→ ρ(t) whenever ρ
is not constant (recall that we have uniqueness of solutions in the interior of R). In
fact, (21.50) still allows for (linear) Hamiltonian dynamics in a subspace H0 if this
subspace is left invariant by H and Qn|H0

= 0 for all n.
The following result shows that a slight strengthening of the commutator

condition (21.40), which was used to establish the uniqueness of steady states, is
sufficient to show that F is a strict Liapunov function.

Theorem 21.4. Assume that the system (21.50) satisfies μ(Q) > 0 and the
strengthened commutator relation

(
A ∈ L2

S(H) and ∀n = 1, . . . , N : [Qn, A] = 0
)

=⇒ ∃α ∈ R: A = αI.

(21.55)
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Then, all solutions ρ : [0,∞[ → R of (21.50) satisfy ρ(t) → ρeq, where ρeq is the
unique minimizer of F .

Proof. It remains to show that F is a strict Liapunov function. For this we have
to investigate the set Ψ∗(ρ,DF (ρ)) = 0. Using Cρ > 0 for ρ ∈ intR condition
(21.55) gives e log ρ+ Υ ′(..)H = αI . Thus, we have ρ = c exp(−γH) with eγ =
Υ ′(〈〈 ρ ‖H 〉〉), where c > 0 and γ ∈ R have to satisfy 1 = c tr exp(−γH) and
eγ = Υ ′(c〈〈 exp(−γH) ‖H 〉〉). Because of the monotonicity of Υ ′ (convexity of Υ )
there is exactly one solution which defines ρeq. Now, the convergence to the unique
steady state follows by the principle of Krasovskii and La Salle, cf. [9], and the
theorem is proved. ��
Open problem 5. What are weaker conditions that guarantee that all solutions
converge into some steady state? When is F a strict Liapunov function?

21.7 Comparison to Stochastic Gradient Structures

In this section we restrict ourselves to purely dissipative systems, which do not
have any Hamiltonian part JDE. Our aim is to highlight analogies between the
dissipative evolution of the density operator ρ and certain other gradient flows
arising in probabilistic systems. First, we compare to the Fokker–Planck equation
with the Wasserstein gradient structure introduced in [11, 25]. Second, we show the
analogy to the entropic gradient structure for reversible Markov chains introduced
in [4, 17, 20].

In general, a gradient system consists of a basic space X with a differential
structure, a differential potential F : X → R, and a metric G such that G (u) :
TuX → T∗

uX is a linear, symmetric, and positive definite operator. As in the
GENERIC framework we will use the inverse operator K(u) = G (u)−1 and will
denote the gradient system by (X,F ,K). The gradient flow is then defined by the
evolutionary equation

0 = G (u)u̇+DF (u) ⇐⇒ u̇ = −∇G F (u) =: −K(u)DF (u).

Thus neglecting the Hamiltonian part j[ρ,H ] in our dissipative quantum system
(21.50) we have the gradient system (R,Fqm,K

Q
qm) with

Fqm(ρ) := 〈〈 ρ ‖ log ρ 〉〉+ 〈〈 ρ ‖H 〉〉 and K
Q
qm(ρ)Ξ :=

N∑
n=1

[
Qn,Cρ[Q

n, Ξ]
]
.

Hence, the operator K
Q
qm is associated with the dual dissipation potential

Ψ∗
qm(ρ,Ξ) = 1

2

∑N
1 ‖[Qn, Ξ]‖2Cρ

.
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We now compare this with the Fokker–Planck equation

u̇ = div(M(∇u+ u∇H)), t > 0, x ∈ R
d,

where M ∈ R
d×d is a symmetric and positive definite matrix and H ∈ C2(Rd)

is a suitable potential. This equation can be understood as the gradient system
(L2(Rd),FFP,KFP) with

FFP(u) :=

∫
Rd

u log u+ uH dx and KFP(u)ξ := −
∑
i,j

∂xi

(
uMij∂xjξ

)
.

The analogy between Fqm and FFP is obvious, whereas for Kqm and KFP we see
that the operators Ξ �→ [Qn, Ξ] are replaced by directional derivatives ξ �→ q · ∇ξ.
Moreover the multiplication factor u ≥ 0, which is the core of the Wasserstein
theory, is replaced by the canonical correlation operator Cρ ≥ 0, which also is
homogeneous of degree 1 in the state variable ρ, i.e. Cλρ = λCρ.

Finally, we consider Markov chains on a finite number of sites, namely
{1, . . . , N}. If pn denotes the probability to be in site n, then the states
p = (p1, . . . , pN )T lie in the state space XN = {p ∈ [0, 1]N | p · e = 1 },
where e = (1, . . . , 1)T. The evolution is given in terms of the linear ODE

ṗ = Ap, where A ∈ R
N×N with Aij ≥ 0 for i �= j and ATe = 0.

Here Aij ≥ 0 denotes the transition rate from j to i, and ATe = 0 guarantees that
p stays in XN .

We assume that the Markov chain ṗ = Ap is irreducible, which means that
the kernel of A is one-dimensional such that there is a unique steady state w =
(w1, . . . , wN )T ∈ XN . An irreducible Markov chain is reversible (or is said to
satisfy the “condition of detailed balance”), if

Anmwm = Amnwn for all n,m ∈ {1, . . . , N}.

For such Markov chains ṗ = Ap it was shown in [4, 17, 20] that they can be
understood as the gradient system (XN ,FMv,KMv) with

FMv(p) =

N∑
n=1

pn log(pn/wn) and

KMv(p) =
1

2

N∑
n,m=1

AnmwmΛ
(
pn
wn

, pmwm

)
(en−em)⊗(en−em) ∈ R

N×N
≥0 ,

where Λ is defined in (21.29) and en denotes the n-th unit vector in R
N . Note that

KMv again is homogeneous of degree 1, namely KMv(λp) = λKMv(p).
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In fact, one can see the Markov chain as the restriction of the quantum
mechanical density functional theory to the case that ρ is a diagonal matrix, i.e.
ρ = diag(p) ∈ R. Thus, we restrict the non-commutative operator theory in
L2
S(C

N ) to the commutative case in XN . Note that the dual dissipation potential
Ψ∗
Mv can be rewritten using the canonical correlation operator and commutators as

follows:

Ψ∗
Mv(p,π) =

1
2π ·KMv(p)π = 1

2

∑N
n,m=1 ||| [Qnm , diag(π)] |||2Cρ̂(p)

,

where ρ̂(p) = diag(pn/wn) and Qnm = (Anmwm)1/2 1
2 (e

n⊗em+em⊗en). This
form shows clearly the analogy between reversible Markov chains and dissipative
quantum mechanics.

Open problem 6. It would be interesting to find sets of commutators (Qn)n=1,..,N

such that the distance dKqm can be characterized in more detail. In particular, one
would be interested in an explicit characterization like for the Wasserstein distance
dKFP . A particularly promising situation is the case discussed in [3].

It would be interesting to see whether the optimal-transport formulation of [34]
of the Schrödinger equation can be used to define suitable many-particle versions
and to study their couplings to dissipative macroscopic systems.
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Chapter 22
Modelling of Thin Martensitic Films
with Nonpolynomial Stored Energies

Martin Kružı́k and Johannes Zimmer

Dedicated to Jürgen Scheurle on the occasion of his 60th
birthday

Abstract A study of the thin film limit of martensitic materials is presented, with
the film height tending to zero. The behaviour of the material is modelled by a stored
elastic energy which grows to infinity if the normal to the deformed film tends to
zero. We show that the macroscopic behaviour of the material can be described
by gradient Young measures if Dirichlet boundary conditions are prescribed at the
boundary of the film. In this situation, we also formulate a rate-independent problem
describing evolution of the material. A second approach, perhaps useful in case of
non-Dirichlet loading, is presented as well, relying on suitable generalised Young
measures.

22.1 Introduction

In this article, we consider the thin film limit of a model for shape-memory alloys.
Shape-memory alloys have been the focus of many investigations in the last decade.
This interest can partially be attributed to the shape-memory effect itself (see
Sect. 22.1.1), but even more the nonconvexity of the Helmholtz energy density
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due to the co-existence of several variants, which poses a significant mathematical
challenge.

Here, our motivation is to address one typical difficulty of modelling shape
memory alloys. Namely, a common framework for such models is three-dimensional
elasticity, and more specifically hyperelasticity, which means that the first Piola-
Kirchhoff stress tensor has a potential W . Static equilibria are minimisers of the
elastic energy; one is thus led to solve

minimise J(y) :=
∫
Ω

W (∇y(x)) dx , (22.1)

whereΩ ⊂ R
n denotes the reference configuration of the material,∇ is the gradient

operator, y ∈ W 1,p(Ω;Rn) is the deformation, with 1 < p < +∞, y = y0 on ∂Ω,
and W : Rn×n → R is the stored energy density.

A central point of interest of this paper is to incorporate the important physical
assumption

W (F )→ +∞ whenever det(F )↘ 0 (22.2)

(this is related to the physical constraint that an elastic deformation of a body has to
be orientation-preserving, which means det(∇y(x)) > 0 almost everywhere).

One class of materials where this constraint can be included is that of polyconvex
W , i.e.,W (F ) can be written as a convex function of all minors of F . The existence
of minimisers to (22.1) was proved by J. M. Ball in his pioneering paper [4].
The existence theory for polyconvex energy densities can deal with the growth
behaviour (22.2). We refer, e.g., to [12, 14] for various results in this direction.

However, materials cannot be modelled by polyconvex stored energies. Promi-
nent examples are materials with microstructure, such as shape-memory mate-
rials [6, 32], and we see this analysis as a prototype of modelling materials
whose stored energy is not polyconvex (or quasiconvex, see below). We develop
a framework in which the constraint (22.2) can be included, even in the presence of
oscillations and concentrations of minimising functions. Other than the theory for
polyconvex functions, there are few results. For a limit leading to a one-dimensional
equation (where it is not a significant constraint to be a gradient), Freddi and Paroni
develop a comprehensive Young measure approach [20], building on earlier work
by Acerbi, Buttazzo and Percivale [1]. The requirement (22.2) also appears in the
relaxation result by Ben Belgacem [5], which is also inspired by [1]. For the full
vectorial case, we refer to recent results in this direction by one of the authors and
coworkers [9]. Here, we pursue a different line of thought, by considering a thin-
film equivalent of (22.2) (see (22.10) below). We exploit the fact that the related
quasiconvex envelope has polynomial growth; this allows us to study both the static
case and a rate-independent evolution.
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22.1.1 Shape Memory Alloys

Some materials can, after a deformation, recover their original shape upon heating,
and this is called the shape memory effect. We summarise key properties of
this effect here; see [28] for a more extensive discussion. It is based on the
ability of the shape-memory alloy to rearrange atoms in different crystallographic
configurations (in particular, with different symmetry groups). Such materials have
a high-temperature phase called austenite and a low-temperature phase called
martensite. Since austenite is more symmetric, the martensitic phase exists in several
variants, with the number of variants M , say, being the quotient of the order of
the austenitic symmetry group and the order of the martensitic group. So for a
cubic high-symmetry phase, M = 3, 6, 12, or 4 for the tetragonal, orthorhombic,
monoclinic, respectively, triclinic martensites. We denote the stress-free strains of
the variants U�, ' = 1, 2, . . . ,M , and U0 stands for the stress-free strain of the
austenite. Since the martensitic phase exists in several symmetry related variants, it
can form a microstructure by mixing those variants (possibly also with the austenitic
variant) on a fine scale. Examples of these coherent combinations are twins of two
variants, which is often called a laminate. This ability to form microstructures is one
reason why shape memory alloys, as, for example, Ni-Ti, Cu-Al-Ni or In-Th, have
various technological applications.

22.1.2 Variational Models for Shape Memory Alloys

Variational models for microstructures assume that formed structure has some
optimality property. The reason for the formation of microstructures is that no exact
optimum can be achieved and optimising sequences have to develop finer and finer
oscillations. A typical example is a microstructure in a shape memory alloy.

We confine ourselves to the case of negligible hysteretic behaviour. This leads
to a multidimensional vectorial variational problem, whose relaxation (i.e., suit-
able extension) is not yet satisfactorily understood. We study microstructures
on mesoscopical level, which means that we do not only take care of some
macroscopic effective response of the material but also provide some information
on optimising sequences. In the last decade, similar mesoscopical models equipped
with suitable dissipative potentials have been developed to treat materials with
significant hysteresis; see [22, 30]. For a review of various mathematical problems
related to martensitic crystals, we refer the reader to [32].

For shape memory alloys, W is not quasiconvex [29]. We recall that quasicon-
vexity means that for all ϕ ∈W 1,∞

0 (Ω;Rn) and all F ∈ R
n×n

|Ω|W (F ) ≤
∫
Ω

W (F +∇ϕ(x)) dx ; (22.3)

we introduce for later use the notation Qv : Rm×n → R for the quasiconvex
envelope of v : Rm×n → R. That is,
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Qv(F ) |Ω| := inf
ϕ∈W 1,∞

0 (Ω;Rm)

∫
Ω

v(F +∇ϕ(x)) dx .

For energies which are not quasiconvex, minimisers to J in (22.1) do not
necessarily exist. However, if we give up (22.2) and suppose that W has polynomial
growth at infinity, so that for c, C > 0

c (−1 + |F |p) ≤W (F ) ≤ C (1 + |F |p) , (22.4)

the existence of a solution to (22.1) is guaranteed if W is quasiconvex. Here and
below, |F | :=√tr(F�F ) denotes the Frobenius norm of the matrix F .

Yet, quasiconvexity is a complicated property and difficult to verify in most
concrete cases. Moreover, as mentioned above, the stored energy densities of
materials with microstructure are not quasiconvex. As a result, solutions to (22.1)
might not exist. Various relaxation techniques were developed [14, 32, 33] to
overcome this drawback. One is to extend the notion of solutions from Sobolev
mappings to parametrised measures called Young measures [3, 33–35]. The idea is
to describe limit behaviour of {J(yk)}k∈N along a minimising sequence {yk}k∈N.
Nevertheless, the growth condition (22.4) is still a key ingredient in these consider-
ations. We sketch in this article a new approach to deal with more general growth
conditions, allowing to incorporate (22.2).

22.2 Thin Films

22.2.1 Static Problems

Bhattacharya and James [7] considered the following problem of a thin film limit.
Let ω ⊂ R

2 be an open, bounded domain with Lipschitz boundary. We write I :=
(0, 1) and define Ωε := ω × εI as the reference state for the space occupied by
a specimen. Let {e1, e2, e3} be an orthonormal basis in R

3; we suppose that e3 is
perpendicular to the plane of the film, whereas e1, e2 lie in the film plane.

The plane gradient ∇1,2 of a (weakly differentiable) map y : ω → R
3 denoting

the deformation is defined as

∇1,2y = y,1 ⊗ e1 + y,2 ⊗ e2 ,

where y,i denotes the vector of derivatives of y with respect to xi, i = 1, 2.
Moreover, having a matrix F ∈ R

3×3, we write F := (f1|f2|f3) if F =
f1 ⊗ e1 + f2 ⊗ e2 + f3 ⊗ e3, where fi ∈ R

3 for i = 1, 2, 3.
Bhattacharya and James study the problem

minimise Jκε (y) =
1

ε

∫
Ωε

[
W (∇y(x)) + κ

∣∣∇2y(x)
∣∣2] dx , (22.5)
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where κ > 0 is a constant describing the surface energy and

y ∈ {u ∈ W 2,2(Ωε;R
3)
∣∣ y(x) = Ax if x ∈ ∂Ωε} ,

with A ∈ R
3×3 fixed. It is shown that (up to a subsequence), minimisers yε, say, of

Jκε satisfy for ε→ 0

∇2
1,2y

ε → ∇2
1,2ȳ in L2(Ω1) ,

1

ε
∇yε,3 → ∇,3b̄ in L2(Ω1) ,

1

ε2
yε,33 → 0 in L2(Ω1) .

Moreover, (ȳ, b̄) ∈W 2,2(ω;R3)×W 1,2(ω;R3) minimise the energy

Jκ0 (y, b) :=

∫
ω

[
W (y,1(x)|y,2(x)|b(x)) + κ

(∣∣∇2
1,2y(x)

∣∣2 + |∇1,2b|2
)]

dS

(22.6)

subject to the boundary conditions y(x1, x2) = (a1|a2)x and b(x1, x2) = a3
if (x1, x2) ∈ ∂ω. The coefficients (a1|a2|a3) ∈ R

3×3 are fixed. Physically,
y : ω → R

3 describes the average deformation of the film, while b : ω → R
3

describes the shear of the cross-section of the film. Since κ is small, we may consider
the model without the surface energy, i.e., the elastic energy stored in the film is now

J0(y, b) :=

∫
ω

W (y,1(x)|y,2(x)|b(x)) dS . (22.7)

The functional J̄0 is nonconvex and minimiser does not have to exist in the set
W 1,2(ω;R3)× L2(ω;R3) equipped with affine boundary conditions.

There is a central difference to the analogous model for the bulk material.
Namely, let us consider the situation where ω = ω1 ∪ ω2 ∪ L, with ω1 and ω2

being disjoint subsets of ω, and L being a line interface between them, and that

(y,1|y,2|b) =
{
RiFi in ω1

RjFj in ω2 ,

where Ri, Rj ∈ SO(3) and Fi, Fj are zero energy deformation gradients. One
further requires that y is continuous in ω, while y,1, y,2 as well as bmay suffer jumps
across the interface L. It is shown in [7] that in order to satisfy these requirements,
the following thin-film twinning equation must be satisfied

RiFi −RjFj = a⊗ n+ c⊗ e3 , (22.8)
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where a, n ∈ R
3, n · e3 = 0 and c ∈ R

3 denotes the jump of b across the interface.
The vector n is normal to the line interface. Thus, we say that martensitic variants
i and j can form a linear thin-film interface if there are rotations Ri, Rj and vectors
a, n, c as above that (22.8) holds. We note that this condition is much weaker than the
bulk situation, where rank(RiFi−RjFj) = 1 has to hold. Namely, it is a necessary
and sufficient condition that one can construct a piecewise affine but continuous
map whose gradient only takes values RiFi and RjFj , i �= j. As a consequence,
there are interfaces between martensitic variants in the thin film which cannot exist
in the bulk material.

Since the surface energy of the film is not considered here, the model includes
only b, but not its gradient. Therefore we can eliminate b from the theory by setting

W̄ (f1|f2) := min
b∈R3

W (f1|f2|b) . (22.9)

The continuity, coercivity and boundedness of W in the form of (22.4) ensure
that a minimum exists. Hence, we can rewrite (22.7) as

J(y) :=

∫
ω

W̄ (y,1(x)|y,2(x)) dS ,

because then the minima of J and J0 are the same.
If we want to include a condition analogous to (22.2) in the thin-film model,

we immediately see that f1, f2 in (22.9) should not be parallel, since otherwise
det(|f1|f2|b) = 0. Namely, f1×f2 is the normal vector to the thin-film surface in the
deformed configuration y(ω) and |f1 × f2| measures area changes. More precisely,
if y : ω → R

3 is invertible, then for O ⊂ ω measurable

meas(y(O)) =

∫
O

|y,1 × y,2| dS .

Thus, taking r > 1, we define the following modified thin-film energy density
Ŵ : R3×2 → R ∪ {+∞}

Ŵ (f1|f2) := W̄ (f1|f2) + 1

|f1 × f2|r . (22.10)

Consider y0 : ω̄ → R
3, a continuous and piecewise affine mapping, and set

W 1,p
y0 (ω;R3) := {z ∈W 1,p(ω;R3); z = y0 on ∂ω} .

Moreover, let us define I : W 1,p
y0 (ω;R3)→ R ∪ {+∞},

I(y) :=

∫
ω

Ŵ (y,1(x)|y,2(x)) dS
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and IQ : W 1,p
y0 (ω;R3)→ R ∪ {+∞},

IQ(y) :=

∫
ω

QŴ (y,1(x)|y,2(x)) dS .

We immediately see that Ŵ does not satisfy polynomial growth assumptions and
standard coercivity conditions. Nevertheless, we have the following relaxation result
due to Anza Hafsa and Mandallena [2, Th. 1.2].

Proposition 22.1. Assume that (22.10) holds, and let +∞ > p > 1. Then
inf{I(u); u ∈ W 1,p

y0 (ω;R3)} = min{IQ(u); u ∈ W 1,p
y0 (ω;R3)}. Moreover, if

{uk} ⊂ W 1,p
y0 (ω;R3) is a minimising sequence for I and uk ⇀ u in W 1,p(ω;R3),

then u is a minimiser to IQ. On the other hand, if ū ∈ W 1,p
y0 (ω;R3) is a minimiser

to IQ, then there is a minimising sequence {ūk} ⊂W 1,p
y0 (ω;R3) of I which weakly

converges to ū in W 1,p(ω;R3).

The proof of the proposition relies on the fact that QŴ has a polynomial growth

at infinity, i.e., for all F ∈ R
3×2,

∣∣∣QŴ (F )
∣∣∣ ≤ C(1 + |F |p), with some C > 0.

In general, it is not possible to determine the quasiconvex envelope in closed
form. There is, however, its representation in terms of gradient Young measures.
While finding such a representation is an equally difficult problem, there are known
subsets and supsets of gradient Young measures which can be exploited efficiently
in numerical calculations [8, 26].

Let us denote by G p,r
y0 (ω;R3×2) the set of gradient Young measures μ =

{μx}x∈ω generated by sequences of gradients of mappings fromW 1,p
y0 (ω;R3)} such

that for F = (f1|f2) ∈ R
3×2,

∫
ω

∫
R3×2

(|F |p + |f1 × f2|−r)μx(dF ) dx < +∞ .

Then we can define the integral functional J : G p,r(ω;R3×2)→ R as

J (ν) =

∫
ω

∫
R3×2

Ŵ (F )νx(dF ) dx .

Proposition 22.2. Let (22.10) hold and let p > 1 be finite. Then

min{IQ(u); u ∈W 1,p
y0 (ω;R3)} = inf{I(u); u ∈ W 1,p

y0 (ω;R3)}
= min{J (μ); μ ∈ G p,r

y0 (ω;R3×2)} .

Moreover, if ν minimises J and ∇u(x) =
∫
R3×2 F̂ νx(dF ) for almost all x ∈ ω

and some u ∈ W 1,p
y0 (ω;R3), then u minimises IQ. On the other hand, if y ∈

W 1,p
y0 (ω;R3) minimises IQ and QŴ (∇y(x)) =

∫
R3×2 Ŵ (F )μx(dF ) for some

μ ∈ G p,r
y0 (ω;R3×2), then μ minimises J .
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Proof. We use the fact that if {yk} ⊂ Lp(Ω;Rm×n) and ν is the associated Young
measure, then for every normal integrand ψ : Ω × R

m×n → (−∞;∞] bounded
from below it holds that [17, Theorem 8.2]

lim inf
k→∞

∫
Ω

ψ(x, yk(x)) dx ≥
∫
Ω

∫
Rm×n

ψ(x, s)νx(ds) dx . (22.11)

The first equality in the proposition then follows from Proposition 22.1. Indeed,
combining Proposition 22.1 with (22.11), we obtain for a minimising sequence
{uk} ⊂ W 1,p

y0 (ω;R3) of I converging weakly to u, a minimiser of IQ, and
generating a Young measure ν such that

∫
Ω

QŴ (∇u(x)) dx = lim
k→∞

I(uk) ≥
∫
ω

∫
R3×2

Ŵ (F )νx(dF ) dx . (22.12)

At the same time,∇u(x) = ∫
R3×2 Fνx(dF ) for almost all x ∈ Ω and [23]

QŴ (∇u(x)) ≤
∫
R3×2

QŴ (F )νx(dF ) dx ≤
∫
R3×2

Ŵ (F )νx(dF ) . (22.13)

By combining (22.12) and (22.13), we get that for almost all x ∈ Ω

QŴ (∇u(x)) =
∫
R3×2

Ŵ (F )νx(dF ) (22.14)

and that νx is supported on the set {F ∈ R
3×2; QŴ (F ) = Ŵ (F )} for a.a. x ∈ Ω.

Thus we showed that min IQ ≥ inf J . Assume that there is μ ∈ G p,r
y0 (ω;R3×2)

such that J (μ) < min IQ. Then there is {yk} ∈ W 1,p
y0 (ω;R3) such that {∇yk}

generates μ and yk ⇀ y. Since Ŵ ≥ QŴ , it follows that

lim
k→∞

I(yk) ≥J (μ) =

∫
ω

∫
R3×2

Ŵ (F )μx(dF ) ≥
∫
ω

∫
R3×2

QŴ (F )μx(dF )

≥
∫
ω

QŴ (∇y(x)) dx ≥ min IQ , (22.15)

hence J (μ) ≥ min IQ in contradiction to our assumption that J (μ) < min IQ.
The second but last inequality in (22.15) follows from Jensen’s inequality (for
quasiconvex functions, as in the characterisation of gradient Young measures given

by Kinderlehrer and Pedregal [23]) since
∣∣∣QŴ (F )

∣∣∣ ≤ C(1+|F |p), as proved in [2].
��
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22.2.2 Evolutionary Problems

Changes of external conditions typically lead to evolution of material deformation
and may initiate phase transformations. This phenomenon is usually connected with
energy dissipation. Hence, we enrich our static relaxed model, i.e., the one defined
on Young measures ν by a suitable dissipation mechanism and time-dependent
loading via Dirichlet boundary conditions.

22.2.2.1 Dissipation Related to Phase Transitions

The dissipation mechanism we describe to model phase transition is a two-dimen-
sional version of a common one, for example described in [28]. For completeness,
we give a summary, following the presentation in [28]. In order to describe
dissipation due to transformations we adopt, as, e.g., [30], the standpoint that the
amount of dissipated energy associated with a particular phase transition between
austenite and a martensitic variant or between two martensitic variants can be
described by a specific energy (of the dimension J/m

2). For an explicit definition
of the transformation dissipation, we need to identify the particular phases or phase
variants. To do so, we define a continuous mapping L : R3×2 →1, where

1 :=
{
ζ ∈ R

1+M
∣∣ ζ� ≥ 0 for ' = 1, . . . ,M + 1, and

M+1∑
�=1

ζ� = 1
}

is a simplex with M +1 vertices, with M being the number of martensitic variants.
Here L is related to the material itself and thus has to be frame indifferent. We
assume, besides ζ� ≥ 0 and

∑M+1
�=1 ζ� = 1, that the coordinate ζ� of L (F ) takes

the value 1 if there is b ∈ R
3 such that (F |b) is in the 'th (phase) variant, that

is, (F |b) is in a vicinity of the 'th well SO(n)U� of W , which can be identified
by the stretch tensor (F |b)�(F |b) being close to U�

� U�. Here, U�
� U� denotes the

right Cauchy–Green strain tensors of the stress-free strain states. They represent
particular martensitic variants and the austenite. If L (F ) is not in any vertex of1,
then it means that F is in the spinodal region where no definite phase or variant is
specified. We assume, however, that the wells are sufficiently deep and the phases
and variants are geometrically sufficiently far from each other that the tendency
for minimisation of the stored energy will essentially prevent F to range into the
spinodal region. Thus, the concrete form of L is not important as long as L enjoys
the properties listed above. We remark that L plays the rôle of what is often called
a vector of order parameters or a vector-valued internal variable.

For two states q1 and q2, with qj = (yj , νj , λj) (deformation, Young mea-
sure, and volume fraction) for j = 1, 2, we now define the dissipation due to
martensitic transformation which “measures” changes in the volume fraction λ ∈
L∞ (Ω;RM+1

)
. Although λj is given by νj , it is convenient to consider them here
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as a pair of independent variables and put their relationship as a constraint to the set
of admissible states. This dissipation is given by

D (q1, q2) :=

∫
ω

|λ1(x)− λ2(x)|RM+1dx , (22.16)

where

λj(x) :=

∫
R3×2

L (F )νj,x(dF ) (22.17)

and |·|
RM+1 is a norm on R

M+1. As λj(x) represents the volume fraction of the jth
phase in the material point x we inevitably get

∑M+1
j=1 λj = 1 and we call λ the

vector-valued volume fraction as it gives us relative portions of variants at almost
every x ∈ Ω. In what follows, we will assume that the norm on R

M+1 defining the
dissipation in (22.16) is given as

|X |
RM+1 :=

M+1∑
i=1

ci
∣∣X i
∣∣ , X = (X1, . . . , XM+1) (22.18)

where |·| is the absolute value and ci > 0 for all i. The physical meaning of ci is the
specific energy dissipated if X i changes from zero to one (or vice versa).

22.2.2.2 Energetic Solution

Combining the previous considerations, we arrive at the energy functional i of the
form

i(t, q) :=

∫
ω

∫
R3×2

Ŵ (F +∇y0(t, x))νx(dF )dx+ ε ‖∇λ‖L2(ω;R(1+M)×2) ,

(22.19)

where the term ∇λ is included to regularise the problem. It penalises spatial jumps
of the volume fraction λ and introduces a length scale to the problem, depending on
the parameter ε > 0. In particular, it allows us to pass to the limit in the dissipation
term. In order to define an admissible set where we look for a solution triple q =
(y, ν, λ), we put

y ∈W 1,p
y0 (ω;R3) (22.20)

Here y0(t) ∈W 1,p(ω;R3) with piecewise affine boundary conditions and t ∈ [0;T]
ranges within the process time interval, with T > 0 being the final time.

Then we look for q ∈ Q := W 1,p(ω;Rm)×G p,r
0 (ω;Rm×n)×W 1,2(ω;RM+1)

and restrict the space further by imposing the admissibility condition
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Q :=
{
q ∈ Q

∣∣ λ = L • ν and∇y = I • ν} , (22.21)

where, for almost all x ∈ Ω, [L • ν](x) := ∫
Rm×n L (F )νx(dF ).

Following [18], we assume that there are constants C0, C1 > 0 such that

|∂ti(t, q)| ≤ C0(C1 + i(t, q)) . (22.22)

We also assume uniform continuity of t �→ ∂ti(t, q) in the sense that there is
ω : [0,T]→ [0,+∞) nondecreasing such that for all t1, t2 ∈ [0,T]

|∂ti(t1, q)− ∂ti(t2, q)| ≤ ω(|t1 − t2|) . (22.23)

Finally, we suppose that q �→ ∂ti(t, q) is weakly continuous for all t ∈ [0,T].
We seek to analyse the time evolution of a process q(t) ∈ Q during the time

interval [0,T]. The following two properties are key ingredients of the so-called
energetic solution [31].

(i) Stability inequality: for every t ∈ [0,T] and every q̃ ∈ Q, it holds that

I (t, q(t)) ≤ I (t, q̃) + D (q(t), q̃) . (22.24)

(ii) Energy balance: For every 0 ≤ t ≤ T,

I (t, q(t))+diss(D , q; [0, t]) = I (0, q(0))+

∫ t

0

∂tI (ξ, q(ξ)) dξ , (22.25)

where

diss(D , q; [s, t]) := sup

{
N∑

j=1

D (q (tj−1) , q (tj))
∣∣ {tj}N

j=0 is a partition of [s, t]

}

is the variation of the dissipation.

Definition 22.1. The mapping q : [0,T] → Q is an energetic solution to the
problem (I ,D) with the energy functional I as in (22.19) and the dissipation D
if the stability inequality (22.24) and energy balance (22.25) are satisfied for every
t ∈ [0,T].

Further, we define the set of stable states at time t ∈ [0,T] as

S(t) := {q ∈ Q; ∀q̃ ∈ Q : I (t, q) ≤ I (t, q̃) + D (q, q̃)} .

In particular, we will always assume that the initial condition is stable, i.e.,
q0 ∈ S(0). The following theorem regarding the existence of an energetic solution
can be proved using a general strategy described in [18].
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Theorem 22.1. Let p > 2, and let assumptions (22.4), (22.22), and (22.23) hold.
Then there is a process q : [0,T] → Q with q(t) = (y(t), ν(t), λ(t)) such that q is
an energetic solution according to Definition 22.1 for a given stable initial condition
q0 ∈ Q.

Proof. The proof of this theorem follows a now well-established route and we thus
omit any details [30]. The argument proceeds via semidiscretisations in time for
decreasing time steps, by a limit passage in the stability inequality (22.24) and in the
energy equality (22.25); cf. also [18] for a general strategy how to prove existence
of energetic solutions. ��

22.3 Problems Involving Concentration

The previous result relies on the specific form (22.10) of the thin film energy
and on applied Dirichlet boundary conditions. An advantage of this approach
is that the analysis remains in the realm of Young measures, and established
tools from analysis can be applied to the quasiconvexified problem. This is just
possible because minimizing sequences {yk} to J J are such that {W (∇yk}k∈N is
weakly relatively compact in L1(ω). Sometimes it is desirable to study problems
where concentration effects may appear as well; then Young measures prove to
be insufficient and DiPerna–Majda measures are an appropriate tool. This might
perhaps happen for energies satisfying (22.26) if we require additionally that
det∇y > 0 in Ω. We sketch a corresponding framework and give a simple
application. It is worth pointing out that while in spirit the approach is the same
as the one taken in Sect. 22.2.1, we there start with a specific two-dimensional
energy. Here, we consider a class of three-dimensional energy densities satisfying
some growth conditions, and then pass to a two-dimensional setting by considering
scaled versions.

Our goal is to tailor the relaxation to functions satisfying (22.2) in the situation
of a thin film. The key new idea is that we allow W to depend on the inverse of its
argument. Specifically, we suppose that W is continuous on regular matrices and
that there exist positive constants c, C > 0 such that

c
(
−1 + |F |p + ∣∣F−1

∣∣p) ≤W (F ) ≤ C
(
1 + |F |p + ∣∣F−1

∣∣p) . (22.26)

We point out that (22.26) implies (22.2) and that W has polynomial growth in
|F | and

∣∣F−1
∣∣ at infinity. Hence, in our setting we have an Lp bound not only

on the deformation gradient but also on its inverse. Different and even negative
powers of F (called the Seth–Hill family of strain measures) are frequently
used to describe deformation strain, see, e.g., the survey [13]. Notice that if
y : Ω → R

3 is a deformation map and its inverse, y−1 : y(Ω) → R
3 is smooth,

then (∇y(x))−1 = ∇y−1(y(x)). Hence, exchanging the role of the reference and
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the deformed configuration, the growth condition on F−1 just expresses that the
gradient of the inverse deformation has the same integrability as the gradient of the
original deformation.

A simple example of a function satisfying (22.26) is, e.g., a stored energy density
describing martensitic materials:

W (F ) := min
i=1,...,M

(∣∣F�F − F�
i Fi

∣∣2 + ∣∣F−1F−� − F−1
i F−�

i

∣∣2) ,

where Fi ∈ R
3×3, i = 1, . . . ,M , are positions of the minima of the multiwell

energy. Due to the lack of convexity of W , the existence of a minimiser is typically
not guaranteed in the Sobolev space W 1,p(Ω;R3); we only trace the behaviour of
minimising sequences of J . We describe the necessary tools in the next subsection.

22.3.1 DiPerna–Majda Measures

Prior to developing the new framework, we sketch the established theory, which
is described in greater detail in, for example, [27]. Unless stated otherwise, Ω
is an open domain in R

n. The definition of DiPerna–Majda measures involves
a compactification; so let us take a separable completely regular algebra R of
continuous bounded functions Rn×n → R. We recall that an algebra is completely
regular if it contains the constants, separates points from closed subsets and
is closed with respect to the maximum (Chebyshev) norm. It is known [16,
Sect. 3.12.21] that there is a one-to-one correspondence R �→ βRR

n×n between
such subalgebras of bounded continuous functions and metrisable compactifications
of Rn×n; by a compactification we mean here a compact set, denoted by βRR

n×n,
into which R

n×n is homeomorphically and densely embedded. For simplicity, we
shall not distinguish between R

n×n and its image in βRR
n×n. Similarly, we do

not distinguish between elements of R and their unique continuous extensions on
βRR

n×n. The reader can, for instance, think about a one point compactification
corresponding to the algebra of functions which have limits if the norm of its
argument diverges to infinity. Another example is a compactification by the sphere
generated by functions which have limits along rays arising from the origin.

Let σ be a positive Radon measure on Ω̄, σ ∈ M(Ω̄). We consider a map ν̂
mapping x ∈ Ω̄ to a Radon measure νx ∈ M(βRR

n×n). We recall that such a
map ν̂ : x �→ ν̂x is weakly* σ-measurable if for any v0 ∈ C0(R

n×n), the mapping
Ω̄ → R, x �→ ∫

βRRn×n v0(s)ν̂x(ds) is σ-measurable in the usual sense; the space of

weakly* measurable functions is denoted L∞
w (Ω̄, σ;M(βRR

n×n)). If additionally
ν̂x is a probability measure, νx ∈ Prob(βRR

n×n) for σ-a.a. x ∈ Ω̄, then the
collection {ν̂x}x∈Ω̄ is a Young measure on (Ω̄, σ) [36]; see also [3, 33–35]. Young
measures can record oscillations in minimising sequences but not concentration
effects; an extension developed by DiPerna and Majda is capable of describing
concentration effects as well.
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Specifically, DiPerna and Majda [15] have shown that for a bounded sequence
{yk}k∈N in Lp(Ω;Rn×n) with 1 ≤ p < +∞, there exists a subsequence (not
relabelled), a positive Radon measure σ ∈M(Ω̄) and a Young measure ν̂ : x→ ν̂x
on (Ω̄, σ) such that (σ, ν̂) is attainable by {yk}k∈N in the sense that for every g ∈
C(Ω̄) and for every v0 ∈ R

lim
k→∞

∫
Ω

g(x)v(yk(x))dx =

∫
Ω̄

∫
βRRn×n

g(x)v0(s)ν̂x(ds)σ( textrmdx) ,

(22.27)
where

v ∈ Υ pR(Rm×n) :=
{
v0(1 + |·|p)

∣∣ v0 ∈ R
}
. (22.28)

We remark that it is easy to see that (22.27) can be also written in the form

lim
k→∞

∫
Ω

h(x, yk(x))dx =

∫
Ω̄

∫
βRRn×n

h0(x, s)ν̂x(ds)σ(dx) , (22.29)

where h(x, s) := h0(x, s)(1 + |s|p) and h0 ∈ C(Ω̄ ⊗ βRR
n×n).

In particular, setting v0 = 1 ∈ R in (22.27), we can see that

lim
k→∞

(1 + |yk|p) = σ weakly* in M(Ω̄) . (22.30)

We say that {yk}∈N generates (σ, ν̂) if (22.27) holds. Let us write DM p
R(Ω;Rm×n)

for the set of all DiPerna–Majda measures, that is, the set of all pairs (σ, ν̂) ∈
M(Ω̄) × L∞

w (Ω̄, σ;M(βRR
n×n)) attainable by sequences from Lp(Ω;Rn×n).

Note that, taking v0 = 1 in (22.27), one can see that these sequences must
inevitably be bounded in Lp(Ω;Rn×n). The explicit description of the elements
from DM p

R(Ω;Rm×n) for unconstrained sequences is given in [24, Theorem 2] or
in [25].

Here the energy depends on the deformation gradient and its inverse. We first
ignore the latter dependence and return to this central point at the end of this
section. We thus consider the subset of DM p

R(Ω;Rm×n) which are generated
by {∇yk}k∈N for some bounded {yk}k∈N ⊂ W 1,p(Ω;Rm); this subset is here
denoted as G DM p

R(Ω;Rm×n). Elements of G DM p
R(Ω;Rm×n) generated by

gradients of mappings with the same trace on ∂Ω are characterised in the following
theorem, which is proved in [21]. To formulate the statement, we introduce the
notation dσ ∈ L1(Ω) for the absolutely continuous part of σ in the Lebesgue
decomposition of σ, with respect to the Lebesgue measure. We recall that Qv
denotes the quasiconvex envelope of a function v.

Theorem 22.2. Let Ω ⊂ R
n be a bounded Lipschitz domain , 1 < p < +∞

and (σ, ν̂) ∈ DM p
R(Ω;Rm×n). Then there is a bounded sequence {yk}k∈N ⊂

W 1,p(Ω;Rm) such that yk − yj ∈ W 1,p
0 (Ω;Rm) for any j, k ∈ N (i.e., all have
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the same trace) and {∇yk}k∈N generates (σ, ν̂) if and only if the following three
conditions hold:

1. There exists y ∈ W 1,p(Ω;Rm) such that for Lebesgue-almost every x ∈ Ω

∇y(x) = dσ(x)

∫
βRRn×n

s

1 + |s|p ν̂x(ds) . (22.31)

2. For all v ∈ Υ pR(Rm×n) as defined in (22.28), it holds that Lebesgue-almost
everywhere

Qv(∇y(x)) ≤ dσ(x)

∫
βRRn×n

v(s)

1 + |s|p ν̂x(ds) . (22.32)

3. For σ-almost all x ∈ Ω̄ and all v ∈ Υ pR(Rm×n) with Qv > −∞ it holds that

0 ≤
∫
βRRn×n\Rn×n

v(s)

1 + |s|p ν̂x(ds) . (22.33)

22.3.2 DiPerna–Majda Measures Depending on the Inverse

We now consider the case where the energy depends on the deformation gradient
and its inverse. An existence result for the DiPerna–Majda measures generated by
functions with this dependence is required; we state the equivalent to (22.27) for
this case. In what follows, Rn×n

inv denotes the set of invertible matrices. The proof of
the following theorem is exactly the same as the proof of [33, Theorem 3.2.12].

Theorem 22.3. Let Ω ⊂ R
n be open and bounded, and let {Yk}k∈N, {Y −1

k }k∈N ⊂
Lp(Ω;Rn×n) be bounded, for some p with 1 ≤ p < +∞. Then there are a subse-
quence of {Yk}k∈N (not relabeled), π ∈ M(Ω̄) and μ̂ ∈ L∞

w (Ω̄, π;M(βRR
n×n))

such that for every g ∈ C(Ω̄) and every v(s) = v1(s)(1 + |s|p +
∣∣s−1

∣∣p) with
v1 : R

n×n
inv → R which can be continuously extended to v0 ∈ R, it holds that

lim
k→∞

∫
Ω

g(x)v(Yk(x)) dx =

∫
Ω̄

∫
βRRn×n

g(x)v0(s)μ̂x(ds)π(dx) . (22.34)

Moreover, π = w∗ − limk→∞ 1 + |Yk|p +
∣∣Y −1
k

∣∣p in M(Ω̄).

We will denote the set of pairs (π, μ̂) defined in Theorem 22.3 by DM p,−p
R (Ω;

R
n×n) and its subset generated by gradients of functions from W 1,p(Ω;Rn), i.e., if

Yk := ∇yk, by G DM p,−p
R (Ω;Rn×n).

The classic DiPerna–Majda measures are fully characterised, as stated in Theo-
rem 22.2. For measures depending on the inverse as defined in Theorem 22.3, there
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is no full characterisation available; this is since the nonlinearity introduced by the
inverse rules out the application of existing tools for the characterisation of DiPerna–
Majda measures. We now give a partial characterisation. Taking v(s) := 1 + |s|p,
we have v0(s) = 1 in (22.27); we claim that

v0(s) :=

{
1+|s|p

1+|s|p+|s−1|p if s ∈ R
n×n
inv

0 otherwise
(22.35)

in (22.34). To see this, we set

v1(s) =
1 + |s|p

1 + |s|p + |s−1|p

and notice that

lim
|s−1|→∞
|s| bounded

v1(s) = 0

exists; thus we can first extend v1 by continuity to the set of non-invertible matrices
and obtain v0 as in (22.35). Comparing (22.27) and (22.34), we then find for
π-almost all x ∈ Ω̄

dσ

dπ
(x) =

∫
βRRn×n

1 + |s|p
1 + |s|p + |s−1|p μ̂x(ds) . (22.36)

Using this and choosing arbitrary v0 ∈ R we obtain

∫
βRRn×n

v0(s)ν̂x(ds)

=

(∫
βRRn×n

1 + |s|p
1 + |s|p + |s−1|p μ̂x(ds)

)−1 ∫
βRRn×n

v0(s)(1 + |s|p)
1 + |s|p + |s−1|p μ̂x(ds) .

(22.37)

To ensure that the DiPerna–Majda measure is generated by a sequence of gra-
dients (and their inverses), we use this characterisation in terms of (σ, ν̂). Namely,
we require that the DiPerna–Majda measure (σ, ν̂) defined by (22.36), (22.37) must
belong to G DM p

R(Ω;Rm×n); that is, the conditions in Theorem 22.2 must be
fulfilled. We remark that then the gradient of the macroscopic deformation∇y can
be expressed for almost all x ∈ Ω as

∇y(x) = dπ(x)

∫
βT R

n×n
inv

s

1 + |s|p + |s−1|p μ̂x(ds) , (22.38)

where dπ is the density of the absolutely continuous part of π with respect to the
Lebesgue measure.
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Then the relaxation of J reads

minimise
∫
Ω̄

∫
βRR

n×n
inv

W (s)

1 + |s|p + |s−1|p μ̂x(ds)π(dx) , (22.39)

where (π, μ̂) ∈ G DM p,−p
R (Ω;Rn×n), where μ̂x is supported on the set of matrices

with positive determinant for π-almost all x ∈ Ω̄.

22.3.3 Application to a Thin Film Model

We now describe a setting for the analysis of thin martensitic films. A similar
framework has been analysed by Bocea [10]; while the description of the thin film
bears many resemblances, there are two crucial differences. We allow the energy to
depend on the inverse, with the growth condition as in (22.26). This has the benefit
that the important physical constraint (22.2) is satisfied. However, a price to pay
is we cannot apply a decomposition lemma as used by Bocea [10]; it is an open
problem whether a decomposition lemma holds for measures generated by gradients
and their inverses. We recall the classical decomposition lemma, which can be found
in [19].

Lemma 22.1. Let 1 < p < +∞ and Ω ⊂ R
n be an open bounded set and let

{uk}k∈N ⊂W 1,p(Ω;Rm) be bounded. Then there is a subsequence {uj}j∈N and a
sequence {zj}j∈N ⊂W 1,p(Ω;Rm) such that

lim
j→∞

|{x ∈ Ω; zj(x) �= uj(x) or∇zj(x) �= ∇uj(x)}| = 0 (22.40)

and {|∇zj |p}j∈N is relatively weakly compact in L1(Ω). In particular, {∇uj} and
{∇zj} generate the same Young measure.

It is, however, not known if an analogous lemma hold when a bound on the
gradient inverse is also required. Thus we cannot rule out concentration effects and
have to resort to a variant of DiPerna–Majda measures as described in Sect. 22.3.2.
(The special case discussed in Sect. 22.2.1, with the specific energy given in (22.10),
is an example where we have shown that no concentrations occur, so there the
framework of Young measures is suitable).

We recall that ω ⊂ R
2 is an open, bounded domain with Lipschitz boundary, and

that we set I := (0, 1) andΩε := ω×εI as the reference state for the space occupied
by a specimen. Further, yε : Ωε → R

3 is the deformation and uε : Ωε → R
3 is the

displacement, which are related to each other via the identity yε(xε) = xε+uε(x
ε),

where xε ∈ Ωε. Hence the deformation gradient is Fε := ∇yε = I + ∇uε. Here,
I ∈ R

3×3 is the identity matrix.
The total stored energy in the bulk occupying, in its reference configuration, the

domain Ωε, is then
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V (yε) :=

∫
Ωε

W (∇yε(xε)) dxε . (22.41)

Here the bulk free energy density W is a function W : Rn×n
inv+ → R, taking the

deformation gradient as its argument. In reality,W also depends on the temperature,
but we restrict here the analysis to the isothermal case of a temperature below the
critical temperature, since the difficulty of non-convexity appears here as isolated
as possible from other effects. Then several martensitic variants coexist, and this is
what we want to capture.

The usual symmetry requirements will be made, namely frame indifference

W (QF ) = W (F ) for every Q ∈ SO(3) and F ∈ R
n×n
inv+ (22.42)

and crystalline symmetry

W (FP ) = W (F ) for every P ∈P and F ∈ R
n×n
inv+ , (22.43)

here P denotes the point group of the austenitic phase. The set of minimisers of
W is given by the martensitic variants U1, . . . , UM . The frame indifference (22.42)
then implies that W is minimised on ∪Mj=1SO(3)Uj , the union of the orbits of Uj
under the operation of SO(3) from the left.

It is convenient to consider Ω := ω × I which originates from Ωε via dilatation
by 1

ε in the direction of the third component. So, if the coordinates in Ωε are
(xε1, x

ε
2, x

ε
3), then the coordinates in Ω are (x1, x2, x3) with

x1 = xε1, x2 = xε2, x3 =
1

ε
xε3 .

The deformation yε : Ωε → R
3 then gives in a natural way rise to the rescaled

deformation y : Ω → R
3 via y(x) = yε(x

ε(x)). A rescaling of the energy (22.41)
by a factor 1

ε yields then

Vε(y) :=

∫
Ω

W
(∇1,2y(x)

∣∣ 1
ε∇3y(x)

)
dx ; (22.44)

we recall that ∇1,2 is the 3 × 2 matrix of partial derivatives yj,k =
∂yj
∂xk

with j ∈
{1, 2, 3} and k ∈ {1, 2} and ∇3y = y,3 is the (column) vector containing the
derivatives of y with respect to x3 and (F |f) denotes the 3×3 matrix formed of the
3× 2 matrix F as the first two columns and the vector f as the third column.

We assume that W satisfies (22.26), that is,

c(−1 + |F |p + ∣∣F−1
∣∣p) ≤W (F ) ≤ C(1 + |F |p + ∣∣F−1

∣∣p)
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for some p ∈ N. This is a central difference to the work in [10], where the growth
condition is in terms of F alone rather than both F and F−1.

Definition 22.2 (Scaled DiPerna–Majda measures). Let A = (a1|a2|a3) ∈
R

3×3 be given. Let {yk}k∈N be a sequence of functions with affine boundary data
in the sense that yk(x) = Aεkx := (a1|a2|εka3)x for x ∈ ∂ω × I . Suppose

further that
(∇1,2yk(x)

∣∣ 1
ε∇3yk(x)

)
and

(∇1,2yk(x)
∣∣ 1
ε∇3yk(x)

)−1
are both

uniformly bounded in Lp(Ω;Rn×n), for some p with 1 ≤ p < +∞. Then there
is a subsequence which generates a measure (π, μ̂) ∈ DM p,−p

R (Ω;Rn×n); this
measure is called a scaled DiPerna–Majda measure.

The existence of a scaled DiPerna–Majda measure follows directly from
Theorem 22.3 .

As an application of the theory developed, we formulate the following result.
A related result was given in [10].

Proposition 22.3. Let W satisfy the growth condition (22.26). Let {εk}k∈N be a
sequence of real numbers with εk → 0 as k → ∞ and {yk}k∈N be a sequence
of functions with affine boundary data, yk(x) = Aεkx := (a1|a2|εka3)x for x ∈
∂ω × I . Suppose that {yk}k∈N is a minimising sequence for (22.44), in the sense
that

Vε(yk) =

∫
Ω

W
(
∇1,2yk(x)

∣∣ 1
εk
∇3yk(x)

)
dx < Ik + εk ,

where

Ik := inf
{
Vεk(y)

∣∣ y ∈ W 1,p(Ω,R3), y(x) = Aεkx for x ∈ ∂ω × I
}
.

Then a subsequence of {yk}k∈N (not relabeled) generates a scaled DiPerna–Majda
measure (π, μ̂) ∈ DM p,−p

R (Ω;Rn×n), and (π, μ̂) (π, μ̂) minimises the effective
film energy

∫
Ω̄

∫
βRR

n×n
inv

W (s)

1 + |s|p + |s−1|p μ̂x(ds)π(dx) , (22.45)

among all scaled gradient measures in DM p,−p
R (Ω;Rn×n).

Proof. The growth assumption (22.26) yields that

(∇1,2yk(x)
∣∣ 1
ε∇3yk(x)

)
and

(∇1,2yk(x)
∣∣ 1
ε∇3yk(x)

)−1

are both uniformly bounded in Lp(Ω;Rn×n). The existence of a scaled DiPerna–
Majda measure follows then from Theorem 22.3, and it is a standard fact that
minimising sequences {yk}k∈N generate a minimiser of the relaxed functional,
which is here (22.45). ��
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22.4 Open Problems

The analysis of problems satisfying the physically natural growth assumption (22.2)
is currently not well developed; we highlight some avenues of possible future
research.

For the full vectorial case (i.e., m,n > 1), in [9], a relaxation theory in terms of
Young measures is given. One challenge is the characterisation of the measures
involved; a second one is the inclusion of possible concentrations. This would
lead to a description of DiPerna–Majda measures depending on the inverse, as
introduced in Sect. 22.3. There again, the characterisation of the measures obtained
is a mathematical problem in its own right. A further problem is that at present we do
not know under which conditions a decomposition lemma holds (see Sect. 22.3.3).

From the point of view of applications, the existence theory for models with
energies satisfying the growth assumption (22.2) is a natural source of problems.
In addition, the analysis of limits is open; for example, which thin-film energies
of type (22.2) can be obtained from three-dimensional equations, in the limit of
vanishing film thickness? Similarly as in bulk materials positivity of the determinant
plays a crucial role, not only the length of the normal but also its orientation is
important in thin films. We refer to [11] for a recent result in this direction using the
notion of surface polyconvexity.
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Chapter 23
Linear Stability of Steady Flows of Jeffreys
Type Fluids

Michael Renardy

Abstract We establish a rigorous criterion for linear stability of a class of
viscoelastic flows. The analysis is based on recent results for advective systems.

23.1 Introduction

For linear autonomous systems of ordinary differential equations, ẋ = Ax, the
stability of the zero solution can be inferred from the eigenvalues of the matrix
A. In the analogous infinite-dimensional situation, where A is the infinitesimal
generator of a semigroup, the situation is much less straightforward. Although
spectrally determined growth is known to hold for broad classes of semigroups,
e.g. differentiable or compact semigroups, it is general not true for C0-semigroups
[3, 15], and, in particular, it is in general not true for hyperbolic partial differential
equations [7].

One approach to overcoming this difficulty is to search for criteria which, in
addition to the spectrum of A, would characterize stability. For the Euler equations
and similar related equations of inviscid fluid mechanics, such a criterion has
been developed [2, 4, 5, 14]. The information needed to characterize flow stability
involves the solution of a certain system of ODEs along streamlines of the base
flow. Shvydkoy [11] has generalized this approach to a class of equations which he
calls “advective.” See also [12, 13]. Advective equations are of the form

q̇ + (V · ∇)q = L q. (23.1)

Here q is a vector-valued quantity defined on Rn and assumed periodic in space.
V is a given velocity field, and L is a pseudodifferential operator of zeroth order.
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Recent work by the author has shown that Shvydkoy’s result is applicable to
creeping flows of multimode Maxwell fluids. The equation of motion for such
fluids is

divT−∇p+ f = 0, (23.2)

where T is the extra stress tensor, p is the pressure, and f is a body force driving the
flow. The fluid is incompressible,

div v = 0, (23.3)

and the extra stress is related to the motion by a nonlinear system of differential
equations:

T =

M∑
i=1

Ti,

(
∂

∂t
+ (v · ∇))Ti = Gi(∇v,T1, . . . ,TM ). (23.4)

It is assumed that, for a given body force f , a stationary solution of (23.2), (23.3)
and (23.4) exist. The problem is to give a necessary and sufficient condition for the
linear stability of this solution. In [8], this is addressed for spatially periodic flows.
A discussion of nonlinear stability for small perturbations is given in [9]. In [10],
the analysis is extended to problems posed on bounded domains, with homogeneous
Dirichlet conditions for the velocity.

The objective of the current paper is to extend similar results to fluids of Jeffreys
type, but with the inclusion of inertial effects. For such fluids, the extra stress has
an additional Newtonian contribution. Thus, the equation of momentum balance is
changed to

ρ(
∂v

∂t
+ (v · ∇)v) = ηΔv + divT−∇p+ f , (23.5)

while the incompressibility condition (23.3) and the constitutive relation (23.4)
remain as above.

The main result of this paper characterizes stability in terms of the spectrum
of the linearized operator and, in addition, a growth bound associated with a
bicharacteristic system of ODEs along streamlines which formally arises from a
short wave analysis (see [8, 10]). It is a natural question whether this short wave
asymptotics yields instabilities which are “missed” by the study of the spectrum. In
[8], it is shown that, for a Johnson–Segalman fluid, short wave instabilities occur in
the linearization about shear flow when the constitutive behavior is non-monotone.
Elongational flows with stagnation points are discussed in [10]. In this case, the
choice of norm is essential. For the upper convected Maxwell model, there are no
instabilities in the L2 setup, but there are in higher Sobolev spaces. This is still the
case for the Oldroyd B model.
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23.2 Statement of Results

We consider (23.5), (23.3), and (23.4) on a bounded domain Ω ⊂ Rn with smooth
boundary. We impose homogeneous Dirichlet boundary conditions for the velocity.
We assume that there exists a stationary solution v = V(x), T = S(x), p = P (x).
We linearize at this stationary solution. The linearized system has the form

ρ(
∂v

∂t
+ (V · ∇)v + (v · ∇)V) = ηΔv + div (

M∑
i=1

Ti) − ∇p,

divv = 0,

(
∂

∂t
+ (V · ∇))Ti = −(v · ∇)Si + A i(x) :: ∇v +

M∑
j=1

Bij(x) :: Tj .

(23.6)

Here A i and Bij are fourth order tensors related to the derivatives of Gi at the
stationary solution, and the double dots indicate tensor multiplication, i.e.

(B :: T)mn =
∑
p,q

BmnpqTpq. (23.7)

We shall write this system in the abstract form

Qt = LQ, (23.8)

where Q = (v,T) and our goal is to characterize the growth abscissa ω for the
semigroup exp(L t). The function space is L2(Ω) (in the interest of not cluttering
the notation, we shall use notations such as L2(Ω), H1(Ω) etc. for scalar as well
as vector-valued functions). We recall that the growth abscissa is determined by
isolated eigenvalues of exp(L t) (corresponding to isolated eigenvalues of L )
and possibly by an essential growth bound which cannot be moved by compact
perturbations. We shall first prove the following result.

Theorem 23.1. The essential growth bound for L is the same as for the system

ηΔv + div (

M∑
i=1

Ti)−∇p = 0,

div v = 0,

(
∂

∂t
+ (V · ∇))Ti = A i(x) :: ∇v +

M∑
j=1

Bij(x) :: Tj . (23.9)
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This system is the same as for creeping flow without inertia. It can be analyzed
using the same techniques as in [10]. In this analysis the critical growth bound [1,6]
played as essential role. The critical growth bound may be less than the essential
growth bound, but any difference is spectrally determined. For a strongly continuous
semigroup generated by L , the critical growth bound is defined as

δ = lim
t→∞

1

t
log lim sup

h→0
‖ exp(L (t+ h))− exp(L t)‖. (23.10)

With (23.9), we associate the following bicharacteristic amplitude system:

ẋ = V(x),

ξ̇ = −(∇V(x))T ξ,

Ḃi = A i(x) :: (wξT ) +

M∑
j=1

Bij(x) :: Bj,

0 = η|ξ|2w+
M∑
i=1

Biξ − ψξ,

0 = ξ ·w. (23.11)

In this amplitude system, w, ψ, and Bi are the amplitudes associated, respectively,
with the variables v, p, and Ti. Let b = (B1,B2, . . . ,BM ) and consider the
solution b(x0, ξ0,b0, t) of (23.11) with initial conditions x = x0, ξ = ξ0, b = b0.
We define

μ = lim
t→∞

1

t
log sup

x0,ξ0,b0

|b(x0, ξ0,b0, t)|
|b0| . (23.12)

Here the supremum is taken over all x0 ∈ Ω, all nonzero ξ0 and all nonzero b0.
In [10], we establish the following result.

Theorem 23.2. The essential growth bound associated with (23.9) is at least equal
to μ, while the critical growth bound is at most equal to μ.

Taking the two theorems together, we obtain

Theorem 23.3. The growth abscissa for the semigroup defined by L is the
maximum of μ and supremum of the real part of the spectrum of L .
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23.3 Proof of Theorem 23.1

We denote by S the solution operator for the Stokes problem, i.e. S f is the solution
(u, p) of the problem

ηΔu−∇p+ f = 0,

divu = 0,

u = 0 on ∂Ω. (23.13)

We recall the following facts about S :

1. If f ∈ L2(Ω), then u ∈ H2(Ω) ∩H1
0 (Ω), p ∈ H1(Ω).

2. If f ∈ H−1(Ω), then u ∈ H1
0 (Ω), p ∈ L2(Ω).

Consider now the system (23.6) and define

(w, p∗) = S ( div

M∑
i=1

Ti), u = v −w, p̃ = p− p∗. (23.14)

We obtain the new momentum balance equation

ρ(
∂u

∂t
+ (V · ∇)u+ (u · ∇)V) = ηΔu−∇p̃− ρ(∂w

∂t
+ (V · ∇)w+ (w · ∇)V).

(23.15)

We note that if Ti ∈ L2(Ω), then w ∈ H1(Ω), i.e. that last term on the right-hand
side is a compact perturbation. However, we need to further discuss the term

W =
∂w

∂t
+ (V · ∇)w. (23.16)

We note that

divW = tr[(∇V)(∇w)] ∈ L2(Ω), (23.17)

and

ηΔW − ∇(∂p
∗

∂t
+ (V · ∇)p∗) = (

∂

∂t
+ (V · ∇))(ηΔw −∇p∗)

+η[(ΔV · ∇)w + 2(∇V : ∂2)w]− (∇V)(∇p∗). (23.18)

Here the notation∇V : ∂2 stands for
∑

j,k(∂Vj/∂xk)(∂
2/∂xj∂xk).
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We note that for Ti ∈ L2(Ω), we have w ∈ H1(Ω) and p∗ ∈ L2(Ω), i.e. all the
terms in the second row of (23.18) are in H−1(Ω). Hence the contribution to W
resulting from these terms, as well as from the inhomogeneous term in (23.17), is in
H1(Ω), i.e. it also leads to a compact perturbation in (23.15). Hence we need to be
further concerned only with the term

(
∂

∂t
+ (V · ∇))(ηΔw −∇p∗) = −( ∂

∂t
+ (V · ∇))( div

M∑
i=1

Ti). (23.19)

We further note that

(
∂

∂t
+ (V · ∇))( div

M∑
i=1

Ti) = div
( M∑
i=1

(∂∂t+ (V · ∇))Ti

)
+ F, (23.20)

where F is a term involving first derivatives of the Ti, i.e. a term which is also in
H−1(Ω) if the Ti are in L2. Finally, we have

div
( M∑
i=1

(
∂

∂t
+ (V · ∇))Ti

)

= div
( M∑
i=1

−(v · ∇)Si + A i(x) :: ∇(w + u) +

M∑
j=1

Bij(x) :: Tj
)
. (23.21)

The terms on the right-hand side of this equation are also in H−1(Ω), with the only
exception of the term

div
( M∑
i=1

A i(x) :: ∇u
)
. (23.22)

We therefore find that, up to compact perturbations, the system (23.6) is
equivalent to the following decoupled system:

ρ(
∂u

∂t
+ (V · ∇)u+ (u · ∇)V) = ηΔu−∇p̃− ρW,

divu = 0,

ηΔW −∇p̂ = div
( M∑
i=1

A i(x) :: ∇u
)
,

divW = 0, (23.23)
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with the boundary conditions u = W = 0 on ∂Ω, and

(
∂

∂t
+ (V · ∇))Ti = −(u · ∇)Si + A i(x) :: ∇(u+w) +

M∑
j=1

Bij(x) :: Tj ,

ηΔw −∇p∗ = − div (

M∑
i=1

Ti),

divw = 0. (23.24)

The first problem (23.23) is a lower order perturbation of the Stokes problem, which
does not have an essential spectrum. Hence the theorem follows.

23.4 Some Comments on the Proof of Theorem 23.2

The proof of Theorem 23.2 is given in [10], and we shall only give some hints
of the main ideas. We can embed Ω in a rectangular box and extend this box
periodically. We now extend our equations (23.9) to this periodic box. For this
extended problem, the essential growth bound is given by μe, where μe is defined
as μ in (23.12), but now with x0 ranging over all of space. We can modify the
equations outside of Ω to make μe − μ as small as we want, this is Lemma 2
of [10]. Now the difference between the periodically extended problem and the
original one is that v does not satisfy the Dirichlet conditions on ∂Ω. For given
stresses, the difference u between the two velocities satisfies a homogeneous Stokes
equation with an inhomogeneous boundary condition. Moreover, (V · ∇)u satisfies
an inhomogeneous Stokes problem with a homogeneous boundary condition (since
V vanishes on ∂Ω).

Now let L be the infinitesimal generator of the semigroup associated with (23.9),
let L e be the infinitesimal generator for the periodically extended problem, and let
R be the restriction toΩ. The difference LR−RL e is not only a bounded operator,
but it maps to the domain of (V · ∇) (Lemma 3 in [10]) as well. The claim about
the critical spectral bound follows from this (Lemma 4 of [10]).
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