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Duality and the Abel Map
for Complex Supercurves

Jeffrey M. Rabin

Abstract. Supercurves are a generalization to supergeometry of Riemann sur-
faces or algebraic curves. They naturally appear in pairs related by a duality.
The super Riemann surfaces appearing as worldsheets in perturbative su-
perstring theory are precisely the self-dual supercurves. I will review known
results and open problems in the geometry of supercurves, with a focus on
Abel’s Theorem.
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1. Introduction

A supercurve is a generalization to supergeometry of the classical notion of an
algebraic curve or Riemann surface. In the smooth case, it is a complex super-
manifold of dimension 1∣1. Supercurves naturally occur in pairs connected by a
duality generalizing in some sense the Serre duality of line bundles on a Riemann
surface. The self-dual supercurves are just the super Riemann surfaces studied
extensively during the 1980s in connection with superconformal field theories and
string theory. General supercurves have additional applications, for example to
supersymmetric integrable systems [1].

In this article I review the definitions and basic examples of supercurves,
explain how they generalize both Riemann surfaces and super Riemann surfaces,
and describe some work in progress on the “super” analogues of classical results
about Riemann surfaces. Section 2 gives the definition and two classes of examples:
split supercurves, and super elliptic curves. Section 3 introduces divisors and the
duality they lead to: supercurves naturally occur in pairs such that the points of
one are the irreducible divisors of the other. Section 4 explains contour integration
of differentials on supercurves, and the resulting theory of periods, Jacobians and
the Abel map. Section 5 is a sketch of work in progress with Mitchell Rothstein,
on Abel’s Theorem and the Jacobi Inversion Theorem for supercurves. Section 6
mentions some open problems, such as a theory of theta functions for supercurves.
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2. Definitions and examples

I will assume general familiarity with both supermanifolds ([2, 3]) and the clas-
sical theory of Riemann surfaces ([4, 5]). Fix a complex Grassmann algebra Λ =
ℂ[𝛽1, 𝛽2, . . . , 𝛽𝑛], to be thought of as the supercommutative “ring of constants”
over which we are working. For us, a (smooth) supercurve𝑋 will be a family of 1∣1-
dimensional complex supermanifolds over SpecΛ = (pt,Λ). (More general families
are possible, but this already displays the characteristic “super” phenomena and
is consistent with the viewpoint of physicists.) That is, 𝑋 is a Riemann surface
𝑋red with a sheaf 𝒪 of functions locally isomorphic to 𝒪red ⊗ Λ[𝜃], where 𝜃 is an
additional odd generator. More explicitly, the holomorphic functions on an open
set 𝑈 , 𝒪(𝑈), have the form 𝐹 (𝑧, 𝜃) = 𝑓(𝑧) + 𝜃𝜙(𝑧). Here we show explicitly the
dependence on the coordinates 𝑧, 𝜃 while hiding that on the parameters 𝛽𝑖. This
is in keeping with the viewpoint of physicists that 𝑧, 𝜃 are true (even and odd)
variables while the 𝛽𝑖 are merely “anticommuting constants”.

The global structure of 𝑋 is described by invertible parity-preserving transi-
tion functions on chart overlaps, having the form 𝑧 = 𝐹 (𝑧, 𝜃), 𝜃 = Ψ(𝑧, 𝜃). Here
the reduced part, or “body”, of 𝐹 (𝑧, 𝜃), namely 𝑓red(𝑧), is the transition function
for 𝑋red on the same overlap. There is no requirement that the transition functions
be “superconformal” as there would be for a super Riemann surface.

We view the transition functions as giving the transformation law for Λ-
valued points of 𝑋 . A Λ-valued point in some chart 𝑈 is a parity-preserving Λ-
algebra homomorphism that evaluates functions on 𝑈 to give elements of Λ. The
“constants” 𝛽𝑖 must of course evaluate to themselves. Since 𝑧 and 𝜃 are themselves
local functions, we give such a homomorphism by first specifying the elements of
Λ to which they evaluate, say 𝑧0 and 𝜃0. The reduced part of 𝑧0 is the coordinate
of the underlying reduced point of 𝑋red. A general function 𝐺(𝑧, 𝜃) must then
evaluate to 𝐺(𝑧0, 𝜃0), so a Λ-valued point may indeed be identified with a pair of
Λ-valued coordinates (𝑧0, 𝜃0) in each chart. When charts overlap, their Λ-valued
points are identified if they give the same evaluation of every function on the
overlap. This defines a transformation rule of their coordinates (𝑧0, 𝜃0), coinciding
with the transition functions. Physicists tend to think of supermanifolds in the
familiar terms of their Λ-valued points.

The simplest examples of supercurves are the split supercurves. To construct
one, choose a Riemann surface to serve as 𝑋red. Fix some “soul” line bundle 𝒮 on
𝑋red and define 𝑋 by transition functions

𝑧 = 𝑓(𝑧), 𝜃 = 𝜃𝑔(𝑧),

where 𝑓(𝑧) are transition functions for 𝑋red and 𝑔(𝑧) are transition functions for
𝒮. In effect, 𝑋 becomes the total space of the dual bundle, with 𝜃 as (odd) fiber
coordinate. For example, if 𝑋red is the complex plane ℂ and 𝒮 is the trivial line
bundle, then 𝑋 is the affine superspace ℂ1∣1.

A set of nonsplit examples is provided by super elliptic curves. Fix an even
element 𝜏 ∈ Λ with Im 𝜏red > 0, and two odd elements 𝜖, 𝛿 ∈ Λ. 𝑋 will be ℂ1∣1/𝐺,
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where the group 𝐺 ∼= ℤ× ℤ has generators 𝐴,𝐵 acting on ℂ1∣1 by

𝐴(𝑧, 𝜃) = (𝑧 + 1, 𝜃), 𝐵(𝑧, 𝜃) = (𝑧 + 𝜏 + 𝜃𝜖, 𝜃 + 𝛿). (1)

Then 𝑋red is the torus with lattice generated by 1 and 𝜏red. Associated to a
supercurve 𝑋 there is always a split supercurve 𝑋/(𝛽1, 𝛽2, . . . , 𝛽𝑛), obtained by
“setting the 𝛽𝑖 equal to zero”, and in this case it is the torus with the trivial line
bundle on it.

We use these examples to highlight some differences in the behavior of coho-
mology for ordinary curves and supercurves. For a split supercurve, it is easy to see
that the global functions are 𝐻0(𝑋,𝒪) = (ℂ∣Γ(𝒮)) ⊗ Λ. This notation indicates
the even and odd subspaces of a super vector space over Λ. That is, the “even
functions” of the form 𝑓(𝑧) are the even constants from Λ as expected, but there
are also “odd” global holomorphic functions 𝜃𝑠(𝑧) coming from the global sections
𝑠(𝑧) of 𝒮, if any. Of course, one can take Λ-linear combinations of these, respecting
parity, as well. The presence of nonconstant global functions is a counterintuitive
but important feature of supergeometry.

For a super elliptic curve, it is not hard to see that global functions are either
constants 𝑎 or of the form 𝜃𝛼 with 𝛼 constant, but not all of the latter are 𝐺-
invariant, because of the action 𝜃 �→ 𝜃 + 𝛿 of the generator 𝐵. In this way one
computes that

𝐻0(𝑋,𝒪) = {𝑎+ 𝜃𝛼 : 𝛼𝛿 = 0}. (2)

Because of the restriction on 𝛼, the cohomology is not freely generated as a
Λ-module. This is typical for nonsplit supercurves and is a major complication
in dealing with them. It means, for example, that there is no simple result like
the Riemann-Roch theorem that characterizes cohomology modules by computing
their ranks.

Fortunately Serre duality does work for supercurves:𝐻1(𝑋,𝒪)∼=𝐻0(𝑋,Ber)∗

as Λ-modules, as shown in [6]. Here the dual space consists of the Λ-linear func-
tionals on 𝐻0(𝑋,Ber). Earlier work had established Serre duality in the sense of
ℂ-linear functionals on individual supermanifolds rather than families [7, 8]

Here the dualizing Berezinian or “canonical” sheaf Ber is the line bundle (see
Section 4) on 𝑋 with transition functions

ber

[
∂𝑧𝐹 ∂𝑧Ψ
∂𝜃𝐹 ∂𝜃Ψ

]
=

∂𝑧𝐹 − ∂𝑧Ψ(∂𝜃Ψ)
−1∂𝜃𝐹

∂𝜃Ψ
. (3)

Serre duality is parity-reversing: even elements of 𝐻1(𝑋,𝒪) correspond to odd
linear functionals.

In the split case, Ber = 𝐾𝒮−1∣𝐾 (we omit the ⊗Λ by abuse of notation).
That is, the sections of Ber are generated by even sections 𝑓(𝑧) of 𝐾𝒮−1, where 𝐾
is the canonical bundle of differentials on 𝑋red, and odd sections having the form
𝜃𝑠(𝑧) with 𝑠(𝑧) itself a differential on 𝑋red.

In general, 𝐻0(𝑋,𝒪), respectively 𝐻1(𝑋,𝒪), is always a submodule, respec-
tively a quotient, of a free Λ-module. The free modules in question are isomorphic
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to the cohomologies of the associated split supercurve, and their ranks can be
found from the Riemann-Roch theorem applied to 𝑋red and 𝒮.

The validity of Serre duality for supercurves can be traced to the fact that
the Grassmann algebra Λ is a self-injective, or Gorenstein, ring [9, 10]. This means
that linear functionals behave almost as nicely as they do on a vector space: any
Λ-linear functional on an ideal 𝐼 ⊂ Λ is given by multiplication by an element of
Λ, modulo those elements that annihilate the ideal.

3. Divisors and the dual curve

We use the standard basis for vector fields on a supercurve, ∂ = ∂𝑧, 𝐷 = ∂𝜃+𝜃∂𝑧 ,
and observe that 𝐷2 = 1

2 [𝐷,𝐷] = ∂. A divisor on 𝑋 is a subvariety of dimension
0∣1, locally given by an even equation 𝐺(𝑧, 𝜃) = 0 with 𝐺red not identically zero.
For example, 𝑧 − 𝑧0 − 𝜃𝜃0 = 0 locally defines a divisor. In general, near a simple
zero of 𝐺red, 𝐺(𝑧, 𝜃) contains a factor 𝑧 − 𝑧0 − 𝜃𝜃0 with the parameters 𝑧0, 𝜃0

determined by the conditions

𝐺(𝑧0, 𝜃0) = 𝐷𝐺(𝑧0, 𝜃0) = 0. (4)

This follows from the Taylor series expansion in the form

𝐺(𝑧, 𝜃) =
∞∑
𝑗=0

1

𝑗!
(𝑧 − 𝑧0 − 𝜃𝜃0)

𝑗 [∂𝑗𝐺(𝑧0, 𝜃0) + (𝜃 − 𝜃0)𝐷∂𝑗𝐺(𝑧0, 𝜃0)]. (5)

Although irreducible divisors depend on two parameters (𝑧0, 𝜃0) just like Λ-
valued points, a crucial observation is that they are not points. To see this, we ask
how the parameters of the same divisor are related in two overlapping charts. This
is easily computed by using the transition functions to write

𝑧 − 𝑧0 − 𝜃𝜃0 = 𝐹 (𝑧, 𝜃)− 𝑧0 −Ψ(𝑧, 𝜃)𝜃0, (6)

and applying the conditions (4) to this function 𝐺 to obtain

𝑧0 = 𝐹 (𝑧0, 𝜃0) +
𝐷𝐹 (𝑧0, 𝜃0)

𝐷Ψ(𝑧0, 𝜃0)
Ψ(𝑧0, 𝜃0), 𝜃0 =

𝐷𝐹 (𝑧0, 𝜃0)

𝐷Ψ(𝑧0, 𝜃0)
. (7)

Thus the parameters of a divisor have their own transformation rule distinct from
that of points. It is automatic that these new transition functions satisfy a cocycle
condition and thus they define a new supercurve denoted �̂� and called the dual
to 𝑋 . It has the same reduced curve, and due to the symmetry of the function
𝑧 − 𝑧0 − 𝜃𝜃0 between (𝑧, 𝜃) and (𝑧0, 𝜃0), the dual of �̂� is necessarily 𝑋 again.
Thus, supercurves naturally occur in pairs, with the points of each representing
the irreducible divisors of the other [11]. Not only does either supercurve determine
the other, but a chosen atlas on one determines an associated atlas with the same
collection of charts on the other.

We easily determine the duals of our basic examples of supercurves. For split
𝑋 , we find �̂� = (𝑋red,𝐾𝒮−1). That is, this duality simply acts as Serre duality
on the line bundle characterizing 𝑋 . The dual of the super elliptic curve 𝑋 with
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parameters 𝜏, 𝜖, 𝛿 is again a super elliptic curve, with parameters 𝜏 + 𝜖𝛿, 𝛿, 𝜖. Note
in particular the interchange 𝜖 ↔ 𝛿.

Riemann surfaces are special among algebraic varieties in that their irre-
ducible divisors coincide with their points. We have seen that general supercurves
do not share this property. The super-analog of a Riemann surface would thus be
a self-dual supercurve. These are the “super Riemann surfaces” (also known as
superconformal manifolds or SUSY curves) introduced in connection with string
theory in the 1980s. From (7) we find that the transition functions of a super Rie-
mann surface are “superconformal”, meaning that 𝐷𝐹 = Ψ𝐷Ψ. For split 𝑋 this
means 𝒮2 = 𝐾, so that the Serre self-dual line bundle 𝒮 defines a spin structure
on 𝑋red. For super elliptic curves self-duality means 𝜖 = 𝛿.

4. Differentials, integration, line bundles

The fundamental exact sequence underlying contour integration theory for super-
curves is

0→ Λ→ 𝒪 𝐷→ B̂er→ 0. (8)

It is the analog of the sequence

0→ ℂ → 𝒪 𝑑→ Ω1 → 0 (9)

on a Riemann surface. That is, given representatives 𝐹 (𝑧, 𝜃) of a function in some
local charts on 𝑋 , one can check that the derivatives 𝐷𝐹 (𝑧, 𝜃) transform as local

sections of the canonical bundle B̂er of the dual curve �̂� [following the cosmetic

replacement of the arguments (𝑧, 𝜃) by (𝑧, 𝜃)]. Sections �̂� of B̂er should be viewed

as “holomorphic differentials” on �̂�, and locally have antiderivatives with respect
to 𝐷, which are functions on 𝑋 determined up to a constant. An antiderivative of

𝑓(𝑧)+𝜃𝜙(𝑧) is 𝜃𝑓(𝑧)+
∫ 𝑧

𝜙. Note that integration is parity-reversing, in addition to
mapping between a curve and its dual. Once we have local antiderivatives, contour

integrals of the form
∫ 𝑄
𝑃 �̂� make sense, as follows. If the points 𝑃 and 𝑄 of 𝑋 lie in

a single (contractible) chart, and 𝐹 is an antiderivative of �̂� in this chart, then the
integral is defined to be 𝐹 (𝑄)− 𝐹 (𝑃 ). More generally, we define a super contour
𝐶 as the pair of points 𝑃,𝑄 together with a contour from 𝑃red to 𝑄red on 𝑋red,
and we choose a sequence of points 𝑃 = 𝑃1, 𝑃2, . . . , 𝑃𝑘 = 𝑄 along this contour
such that each consecutive pair lies in a common chart. Then the contour integral
is defined to be ∫

𝐶

�̂� =

𝑘−1∑
𝑖=1

∫ 𝑃𝑖+1

𝑃𝑖

�̂�. (10)

As for Riemann surfaces, this is independent of the choice of intermediate points.
Similarly, periods and residues of a meromorphic differential make sense: the

former is the integral around a nontrivial homology cycle (for example, one of the
basis 𝐴 and 𝐵 cycles) and the latter is the integral around a closed contour encir-
cling a pole. Among the classical facts about Riemann surfaces which generalize
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to this context, I point out the Riemann bilinear period relation for holomorphic
differentials, which here takes the form

𝑔∑
𝑖=1

[𝐴𝑖(𝜔)𝐵𝑖(�̂�)−𝐵𝑖(𝜔)𝐴𝑖(�̂�)] = 0. (11)

Here 𝑔 is the genus of the (reduced) curve, 𝜔 and �̂� are arbitrary and indepen-

dent holomorphic differentials on 𝑋 and �̂� respectively, and the notation 𝐴𝑖(𝜔)
denotes the period of 𝜔 around the cycle 𝐴𝑖. On a Riemann surface, this relation
is responsible for the symmetry of the period matrix.

As usual, a line bundle on 𝑋 is defined by even, invertible transition functions
𝑔𝑖𝑗(𝑧, 𝜃) in chart overlaps 𝑈𝑖 ∩𝑈𝑗, satisfying a cocycle condition, and line bundles
are therefore classified by 𝐻1(𝑋,𝒪×ev). The usual exponential exact sequence

0→ ℤ → 𝒪ev
exp 2𝜋𝑖⋅−→ 𝒪×ev → 0 (12)

holds, and shows that degree-zero bundles are classified by the component of the
Picard group Pic0(𝑋) = 𝐻1(𝑋,𝒪ev)/𝐻

1(𝑋,ℤ). By means of Serre and Poincaré
duality, this is isomorphic to the Jacobian

Jac(𝑋) = 𝐻0(𝑋,Ber)∗odd/𝐻1(𝑋,ℤ).

This isomorphism is given explicitly by the Abel map: a degree-zero bundle
on 𝑋 can be described by the divisor

∑
𝑎 𝑛𝑎𝑃𝑎 of a meromorphic section, and cor-

responds to the odd linear functional on holomorphic differentials (on 𝑋) given by∑
𝑎

𝑛𝑎

∫ 𝑃𝑎

𝑃0

modulo periods. Here
∑

𝑎 𝑛𝑎 = 0, and 𝑃0 is an arbitrary basepoint on �̂�. Abel’s
Theorem is due to [12] in the (free) super Riemann surface case, and to [6] in
general.

5. Abel’s theorem and Jacobi inversion

The classical Abel’s Theorem characterizes those divisors of degree zero which are
the divisor of some meromorphic function on a Riemann surface. The analog for
supercurves was proved in [6] and states that a degree-zero divisor Δ =

∑
𝑎 𝑛𝑎𝑃𝑎

is the divisor of a meromorphic function 𝐹 if and only if the associated linear

functional
∑

𝑎 𝑛𝑎
∫ 𝑃𝑎
𝑃0
acting on 𝐻0(𝑋,Ber) vanishes modulo periods. That is, the

value of this linear functional on any holomorphic differential is equal to the period
of the differential around some fixed cycle which is the same for all differentials.
Among many classical proofs of Abel’s Theorem, that in [5] is based on criteria for
the existence of meromorphic differentials with specified poles and residues on 𝑋 .
In order to better understand such criteria in the super case, M. Rothstein and I
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(work in progress) are adapting this proof to supercurves. A key ingredient is the
Riemann reciprocity law generalizing the above bilinear relation:

𝑔∑
𝑖=1

[𝐴𝑖(𝜔)𝐵𝑖(𝜂)−𝐵𝑖(𝜔)𝐴𝑖(𝜂)] = 2𝜋𝑖
∑
𝑎

res𝑃𝑎(𝜂)

∫ 𝑃𝑎

𝑃0

𝜔. (13)

Here 𝜔 is a holomorphic differential on 𝑋 , 𝜂 is a meromorphic differential on �̂� ,
and the equation holds on the simply-connected interior of the 2𝑔-sided polygon
obtained by cutting 𝑋 open along the cycles 𝐴𝑖, 𝐵𝑖.

Here is a sketch of the proof of Abel’s Theorem in the case of split 𝑋 , which
is technically simplest. The “easy” direction assumes that the divisor Δ is that of
a meromorphic function 𝐹 , in which case we set 2𝜋𝑖𝜂 = 𝐷 log𝐹 and apply (13).
The right side becomes the Abel map associated to the divisor, and the left side
is an integer combination of periods of 𝜔.

For the “hard” direction we have a divisor Δ whose associated linear func-
tional is zero mod periods, and we must construct a meromorphic 𝐹 with this
divisor, which we do by first constructing the differential 2𝜋𝑖𝜂 which would be
𝐷 log𝐹 . Recall that the sum of residues of a meromorphic differential at all poles
vanishes. If 𝜂 is such a differential on �̂� then so is �̂�𝜂 for any holomorphic function
�̂�. The new ingredient in the super case is that ℎ0(𝒮) such nonconstant holomor-
phic functions do generally exist. Thus, the residues of 𝜂 must satisfy 1∣ℎ0(𝒮)
vanishing conditions, which turn out to be sufficient as well as necessary for the
existence of such a differential. These conditions can be shown to hold for the
differential we seek, because the divisor has degree zero (1 condition) and because
the Abel linear functional is assumed to vanish on the holomorphic differentials
𝐷�̂� (ℎ0(𝒮) conditions). Now that we have a differential with appropriate residues
to be (𝐷 log𝐹 )/2𝜋𝑖, its periods can be adjusted to be integers by adding a suitable
combination of holomorphic differentials from 𝐻0(𝑋,Ber); we then reconstruct 𝐹
by integration and exponentiation. This is all as in the classical proof.

We have not completed the proof in the general case, but believe that it
presents only technical obstacles. The major complication is that 𝐻0(𝑋,Ber) is
not freely generated; in particular it does not have a basis 𝜔𝑗 normalized as in the
classical case to have A-periods 𝐴𝑖(𝜔𝑗) = 𝛿𝑖𝑗 . One must show that nevertheless
there are enough holomorphic differentials to adjust the periods of 𝜂 as required
in the last step of the proof.

More information about the Abel map is provided by the classical Jacobi
Inversion Theorem, which is also the subject of work in progress. The naive super
analog would say that every point in the Jacobian of𝑋 is the image under the Abel
map of a “𝑔-point divisor” having the form Δ =

∑𝑔
𝑎=1(𝑃𝑎 −𝑃0). This is not quite

true as stated; again we can only sketch the situation in the split case thus far.

Let the points 𝑃𝑎 have coordinates (𝑧𝑎, 𝜃𝑎) in some chart. The divisor Δ
corresponds to the linear functional that sends the odd holomorphic differentials

𝜃𝜔𝑗 to
∑

𝑎

∫ 𝑧𝑎
𝑧0

𝜔𝑗 , and the even differentials 𝑠𝑗 to
∑

𝑎 𝜃𝑠𝑗(𝑧)∣𝑃𝑎𝑃0
. Given the images

of all these differentials, the Jacobi Inversion Problem is to determine the 𝑔 points
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𝑃𝑎. In the split case, their even and odd coordinates can be found separately. The

classical Jacobi Inversion Theorem determines the 𝑧𝑎 from the values of
∑

𝑎

∫ 𝑧𝑎
𝑧0

𝜔𝑗 .

Knowing these, the prescribed values of
∑

𝑎 𝜃𝑠𝑗(𝑧)∣𝑃𝑎𝑃0
give a system of ℎ0(𝒮) linear

equations in 𝑔 unknowns for the 𝜃𝑎. Thus, the divisor is determined uniquely if
ℎ0(𝒮) = 𝑔 and the coefficient matrix 𝑠𝑗(𝑧𝑎) has maximal rank. The solution is

nonunique, and the Abel map has a nontrivial fiber, if ℎ0(𝒮) < 𝑔. Finally, if

ℎ0(𝒮) > 𝑔 one generally needs to allow for more than 𝑔 points in the divisor Δ.

6. Open problems

Most of the classical theory of Riemann surfaces was extended to super Riemann
surfaces during the 1980s, at least under the simplifying assumption that relevant
cohomology groups were free modules. Much has now been further extended to
general supercurves, and without restriction on the cohomology, but many inter-
esting questions remain open. For lack of space I mention just two.

Can the duality between 𝑋 and �̂� be described explicitly in terms of clas-
sical algebraic geometry? That is, if 𝑋 is given explicitly as the solution set of
some polynomial equations in a projective superspace, can the equations of �̂� be
constructed?

Theta functions for supercurves need to be better understood. Such theta
functions exist when the Jacobian is free, and are related to the super tau func-
tions associated to supersymmetric integrable systems [6, 13]. They can also be
constructed on super elliptic curves, for example

𝐻(𝑧, 𝜃) =
∑
𝑛∈ℤ

exp𝜋𝑖

(
2𝑛𝑧 + 𝑛2𝜏 + 𝑛𝜃𝜖+ 𝑛2𝜃𝜖+

1

3
𝑛3𝛿𝜖

)
(14)

is such a theta function. By this I mean that it is invariant under the 𝐴 transfor-
mation but acquires a phase linear in the coordinates under 𝐵:

𝐻(𝑧 + 𝜏 + 𝜃𝜖, 𝜃 + 𝛿) = 𝐻(𝑧, 𝜃) exp−𝜋𝑖

(
2𝑧 + 𝜏 + 2𝜃𝜖+

1

3
𝛿𝜖

)
. (15)

One can define a theta subvariety of the Jacobian as the image by the Abel map
of (𝑔− 1)-point divisors. Assuming free cohomology, it would be expected to have
codimension 1∣0, making it a true theta divisor, if ℎ1(𝑋red,𝒮) = 𝑔−1. Its properties
are completely unexplored.
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