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Exhausting Formal Quantization Procedures
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Abstract. In paper [1] the author introduced stable formality quasi-isomor-
phisms and described the set of its homotopy classes. This result can be
interpreted as a complete description of formal quantization procedures. In
this note we give a brief exposition of stable formality quasi-isomorphisms and
prove that every homotopy class of stable formality quasi-isomorphisms con-
tains a representative which admits globalization. This note is loosely based
on the talk given by the author at XXX Workshop on Geometric Methods in
Physics in Bial̷owieża, Poland.
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1. Introduction

In seminal paper [2] M. Kontsevich constructed an 𝐿∞ quasi-isomorphism from the
graded Lie algebra of polyvector fields on the affine space ℝ𝑑 to the dg Lie algebra
of Hochschild cochains 𝐶∙(𝐴) for the polynomial algebra 𝐴 = ℝ[𝑥1, 𝑥2, . . . , 𝑥𝑑] .
This result implies that equivalence classes of star-products on ℝ𝑑 are in bijection
with the equivalence classes of formal Poisson structures on ℝ𝑑 . This theorem also
implies that Hochschild cohomology of a deformation quantization algebra is iso-
morphic to the Poisson cohomology of the corresponding formal Poisson structure.

In view of these consequences, we will think about 𝐿∞ quasi-isomorphisms
from the graded Lie algebra of polyvector fields on the affine space ℝ𝑑 to the dg
Lie algebra of Hochschild cochains 𝐶∙(𝐴) as formal quantization procedures.

Following [3] one can define a natural notion of homotopy equivalence on
the set of 𝐿∞-morphisms between dg Lie algebras (or even 𝐿∞-algebras). Further-
more, according to Lemma B.5 from [4], homotopy equivalent 𝐿∞ quasi-morphisms
for 𝐶∙(𝐴) give the same bijection between the set of equivalence classes of star-
products and the set of equivalence classes of formal Poisson structures. Thus, for
the purposes of applications, we should only be interested in homotopy classes of
formality quasi-isomorphisms.
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In paper [1] the author developed a framework of what he calls stable formal-
ity quasi-isomorphisms (SFQ) and showed that homotopy classes of such SFQ’s
form a torsor for the group which is obtained by exponentiating the Lie algebra
𝐻0(GC) where GC is the graph complex introduced by M. Kontsevich in [5, Sec-
tion 5]. Any SFQ gives us an 𝐿∞ quasi-isomorphism for the Hochschild cochains
of 𝐴 = ℝ[𝑥1, 𝑥2, . . . , 𝑥𝑑] in all1 dimensions 𝑑 simultaneously. Moreover, homo-
topy equivalent SFQ’s give homotopy equivalent 𝐿∞ quasi-isomorphisms for the
Hochschild cochains of 𝐴 = ℝ[𝑥1, 𝑥2, . . . , 𝑥𝑑] . Thus the main result (Theorem 6.2)
of [1] can be interpreted as a complete description of formal quantization proce-
dures in the stable setting.

In the next section we remind the full (directed) graph complex and its rela-
tion to Kontsevich’s graph complex GC [5, Section 5]. In Section 3 we give a brief
exposition of stable formality quasi-isomorphisms (SFQ). Finally, in Section 4 we
prove that every SFQ is homotopy equivalent to an SFQ which admits globaliza-
tion.

Notation and conventions. In this note we assume that the ground field 𝕂 contains
the field of reals. For most of algebraic structures considered in this note, the
underlying symmetric monoidal category is the category of unbounded cochain
complexes of 𝕂-vector spaces. For a cochain complex 𝒱 we denote by s𝒱 (resp. by
s−1𝒱) the suspension (resp. the desuspension) of 𝒱 . In other words,(

s𝒱)∙ = 𝒱∙−1 ,
(
s−1𝒱)∙ = 𝒱∙+1 .

𝐶∙(𝐴) denotes the Hochschild cochain complex of an associative algebra (or more
generally an 𝐴∞-algebra) 𝐴 with coefficients in 𝐴 . For a commutative ring 𝑅 and
an 𝑅-module 𝑉 we denote by 𝑆𝑅(𝑉 ) the symmetric algebra of 𝑉 over 𝑅 .

Given an operad 𝒪, we denote by ∘𝑖 the elementary operadic insertions:
∘𝑖 : 𝒪(𝑛) ⊗𝒪(𝑘)→ 𝒪(𝑛+ 𝑘 − 1) , 1 ≤ 𝑖 ≤ 𝑛 .

The notation Sh𝑝,𝑞 is reserved for the set of (𝑝, 𝑞)-shuffles in 𝑆𝑝+𝑞 . A graph is
directed if each edge carries a chosen direction. A graph Γ with 𝑛 vertices is called
labeled if Γ is equipped with a bijection between the set of its vertices and the set
{1, 2, . . . , 𝑛} . 𝜀 denotes a formal deformation parameter.

2. The full directed graph complex dfGC

In this section we recall from [6] an extended version dfGC of Kontsevich’s graph
complex GC [5, Section 5]. For this purpose, we first introduce a collection of
auxiliary sets {dgra(𝑛)}𝑛≥1 . An element of dgra𝑛 is a directed labeled graph Γ with
𝑛 vertices and with the additional piece of data: the set of edges of Γ is equipped
with a total order. An example of an element in dgra4 is shown in Figure 1.

Next, we introduce a collection of graded vector spaces {dGra(𝑛)}𝑛≥1 . The

space dGra(𝑛) is spanned by elements of dgra𝑛, modulo the relation Γ
𝜎 = (−1)∣𝜎∣Γ

1In fact they are also defined for any ℤ-graded affine space.
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Figure 1. The edges are equipped with the order
(3, 1) < (3, 2) < (2, 3) < (2, 2).

where the graphs Γ𝜎 and Γ correspond to the same directed labeled graph but
differ only by permutation 𝜎 of edges. We also declare that the degree of a graph
Γ in dGra(𝑛) equals −𝑒(Γ), where 𝑒(Γ) is the number of edges in Γ . For example,
the graph Γ on figure 1 has 4 edges. Thus its degree is −4 .

Following [6], the collection {dGra(𝑛)}𝑛≥1 forms an operad. The symmetric
group 𝑆𝑛 acts on dGra(𝑛) in the obvious way by rearranging labels and the operadic
multiplications are defined in terms of natural operations of erasing vertices and
attaching edges to vertices.

The operad dGra can be upgraded to a 2-colored operad KGra whose spaces2

are formal linear combinations of graphs used by M. Kontsevich in [2].

We define the graded vector space dfGC by setting

dfGC =
∏
𝑛≥1

s2𝑛−2
(
dGra(𝑛)

)𝑆𝑛
. (1)

Next, we observe that the formula

Γ ∙ Γ̃ =
∑

𝜎∈Sh𝑘,𝑛−1

𝜎
(
Γ ∘1 Γ̃

)
(2)

Γ ∈
(
dGra(𝑛)

)𝑆𝑛
, Γ̃ ∈

(
dGra(𝑘)

)𝑆𝑘
defines a degree zero 𝕂-bilinear operation on

⊕
𝑛≥1

s2𝑛−2
(
dGra(𝑛)

)𝑆𝑛
which extends

in the obvious way to the graded vector space dfGC (1).
It is not hard to show that the operation (2) satisfies axioms of the pre-Lie

algebra and hence dfGC is naturally a Lie algebra with the bracket give by the
formula

[𝛾, 𝛾] = 𝛾 ∙ 𝛾 − (−1)∣𝛾∣∣𝛾∣ 𝛾 ∙ 𝛾 , (3)

where 𝛾 and 𝛾 are homogeneous vectors in dfGC .
A direct computation shows that the degree 1 vector

Γ∙−∙ =
1 2

+
2 1

(4)

satisfies the Maurer-Cartan equation [ Γ∙−∙,Γ∙−∙ ] = 0 .

2For more details, we refer the reader to [1, Section 3].
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Thus, dfGC forms a dg Lie algebra with the bracket (3) and the differential

∂ = [Γ∙−∙, ] . (5)

Definition 1. The cochain complex (dfGC, ∂) is called the full directed graph com-
plex.

Let us observe that every undirected labeled graph Γ with 𝑛 vertices and with
a chosen order on the set of its edges can be interpreted as the sum of all directed
labeled graphs Γ𝛼 in dgra(𝑛) from which the graph Γ is obtained by forgetting
directions on edges. For example,

Γ∙−∙ =
1 2

(6)

Thus, using undirected labeled graphs we may form a suboperad Gra inside
dGra and the sub- dg Lie algebra

fGC =
∏
𝑛≥1

s2𝑛−2
(
Gra(𝑛)

)𝑆𝑛 ⊂ dfGC (7)

Definition 2 (M. Kontsevich, [5]). Kontsevich’s graph complex GC is the subcom-
plex

GC ⊂ fGC (8)

formed by (possibly infinite) linear combinations of connected graphs Γ satisfying
these two properties: each vertex of Γ has valency ≥ 3, and the complement to any
vertex is connected.

It is easy to see that GC is a sub- dg Lie algebra of fGC . Furthermore,
following3 [6] we have

Theorem 1 (T. Willwacher, [6]). The cohomology of dfGC can be expressed in terms
of cohomology of GC . More precisely,

𝐻∙(dfGC) = s−2 𝑆
(
s2 ℋ) (9)

where

ℋ = 𝐻∙(GC) ⊕
⊕
𝑚≥0

s4𝑚−1𝕂 .

Using decomposition (9), it is not hard to see that

𝐻0(dfGC) ∼= 𝐻0(GC) (10)

and the Lie algebra 𝐻0(dfGC) is pro-nilpotent.

3See lecture notes [7] for more detailed exposition.
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3. Stable formality quasi-isomorphisms

Let 𝐴 = 𝕂[𝑥1, 𝑥2, . . . , 𝑥𝑑] be the algebra of functions on the affine space 𝕂𝑑 and
let 𝑉 ∙𝐴 be the algebra of polyvector fields on 𝕂𝑑

𝑉 ∙𝐴 = 𝑆𝐴
(
sDer(𝐴)

)
. (11)

Recall that 𝑉 ∙𝐴 = 𝕂[𝑥1, 𝑥2, . . . , 𝑥𝑑, 𝜃1, 𝜃2, . . . , 𝜃𝑑] is a free commutative algebra over
𝕂 in 𝑑 generators 𝑥1, 𝑥2, . . . , 𝑥𝑑 of degree zero and 𝑑 generators 𝜃1, 𝜃2, . . . , 𝜃𝑑 of
degree one.

It is know that 𝑉 ∙+1
𝐴 is a graded Lie algebra. The Lie bracket on 𝑉 ∙+1

𝐴 is
given by the formula:

[𝑣, 𝑤]𝑆 = (−1)∣𝑣∣
𝑑∑

𝑖=1

∂𝑣

∂𝜃𝑖

∂𝑤

∂𝑥𝑖
− (−1)∣𝑣∣∣𝑤∣+∣𝑤∣

𝑑∑
𝑖=1

∂𝑤

∂𝜃𝑖

∂𝑣

∂𝑥𝑖
. (12)

It is called the Schouten bracket.
In plain English an 𝐿∞-morphism 𝑈 from 𝑉 ∙+1

𝐴 to 𝐶∙+1(𝐴) is an infinite
collection of maps

𝑈𝑛 :
(
𝑉 ∙+1
𝐴

)⊗𝑛 → 𝐶∙+1(𝐴) , 𝑛 ≥ 1 (13)

compatible with the action of symmetric groups and satisfying an intricate se-
quence of quadratic relations. The first relation says that 𝑈1 is a map of cochain
complexes, the second relation says that 𝑈1 is compatible with the Lie brackets
up to homotopy with 𝑈2 serving as a chain homotopy and so on.

Kontsevich’s construction of such a sequence (13) is “natural” in the following
sense: given polyvector fields 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ 𝑉 ∙+1

𝐴 , the value

𝑈𝑛

(
𝑣1, 𝑣2, . . . , 𝑣𝑛

)
(𝑎1, 𝑎2, . . . , 𝑎𝑘) (14)

of the cochain 𝑈𝑛(𝑣1, 𝑣2, . . . , 𝑣𝑛) on polynomials 𝑎1, 𝑎2, . . . , 𝑎𝑘 ∈ 𝐴 is obtained via
contracting all indices of derivatives of various orders of 𝑣1, . . . , 𝑣𝑛, 𝑎1, . . . , 𝑎𝑘 in
such a way that the resulting map

(𝑉 ∙𝐴)
⊗𝑛 ⊗𝐴⊗ 𝑘 → 𝐴

is 𝔤𝔩𝑑(𝕂)-equivariant. Thus each term in 𝑈𝑛 can be encoded by a directed graph
with two types of vertices: vertices of one type are reserved for polyvector fields
and vertices of another type are reserved for polynomials.

Motivated by this observation, the author introduced in [1] a notion of stable
formality quasi-isomorphism (SFQ) which formalizes 𝐿∞ quasi-isomorphisms𝑈 for
Hochschild cochains satisfying this property: each term in 𝑈𝑛 is encoded by a graph
with two types of vertices and all the desired relations on 𝑈𝑛’s hold universally,
i.e., on the level of linear combinations of graphs.

The precise definition of SFQ is given in terms of 2-colored dg operads OC
and KGra . The later operad KGra is a 2-colored extension of the operad dGra which
is “assembled” from graphs used by M. Kontsevich in [2]. This operad comes with
a natural action on the pair (𝑉 ∙+1

𝐴 , 𝐴 = 𝕂[𝑥1, . . . , 𝑥𝑑]) . The operad OC governs
open-closed homotopy algebras introduced in [8] by H. Kajiura and J. Stasheff. We
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recall that an open-closed homotopy algebra is a pair (𝒱 ,𝒜) of cochain complexes
equipped with the following data:

∙ An 𝐿∞-structure on 𝒱 ;
∙ an 𝐴∞-structure on 𝒜; and
∙ an 𝐿∞-morphism from 𝒱 to the Hochschild cochain complex 𝐶∙(𝒜) of the

𝐴∞-algebra 𝒜 .
Since the operad KGra acts on the pair (𝑉 ∙+1

𝐴 , 𝐴 = 𝕂[𝑥1, . . . , 𝑥𝑑]), any mor-
phism of dg operads

𝐹 : OC → KGra (15)

gives us an 𝐿∞-structure on 𝑉 ∙+1
𝐴 , an 𝐴∞-structure on 𝐴 and an 𝐿∞ morphism

from 𝑉 ∙+1
𝐴 to 𝐶∙(𝐴) .
An SFQ is defined as a morphism (15) of dg operads satisfying three bound-

ary conditions. The first condition guarantees that the 𝐿∞-algebra structure on
𝑉 ∙+1
𝐴 induced by 𝐹 coincides with the Lie algebra structure given by the Schouten
bracket (12). The second condition implies that the 𝐴∞-algebra structure on 𝐴
coincides with the usual associative (and commutative) algebra structure on poly-
nomials. Finally, the third condition ensures that the 𝐿∞-morphism

𝑈 : 𝑉 ∙+1
𝐴 ⇝ 𝐶∙+1(𝐴)

induced by 𝐹 starts with the Hochschild-Kostant-Rosenberg embedding. In par-
ticular, the last condition implies that 𝑈 is an 𝐿∞ quasi-isomorphism.

Kontsevich’s construction [2] provides us with an example of an SFQ over
any extension of the field of reals.4

In paper [1] the author also defined the notion of homotopy equivalence for
SFQ’s. This notion is motivated by the property that 𝐿∞ quasi-isomorphisms

𝑈,𝑈 : 𝑉 ∙+1
𝐴 ⇝ 𝐶∙+1(𝐴)

corresponding to homotopy equivalent SFQ’s 𝐹 and 𝐹 are connected by a homo-
topy which “admits a graphical expansion” in the above sense.

Following [5] we have a chain map Θ from the full (directed) graph complex
dfGC to the deformation complex of the dg Lie algebra 𝑉 ∙+1

𝐴 of polyvector fields. In

particular, every degree zero cocycle in dfGC produces an 𝐿∞-derivation of 𝑉 ∙+1
𝐴 .

Exponentiating these 𝐿∞-derivations we get an action of the (pro-unipotent) group

exp
(
dfGC0 ∩ ker ∂)

on the set of 𝐿∞ quasi-isomorphisms

𝑈 : 𝑉 ∙+1
𝐴 ⇝ 𝐶∙+1(𝐴) (16)

for 𝐴 = 𝕂[𝑥1, . . . , 𝑥𝑑] . Namely, given a cocycle 𝛾 ∈ dfGC0, the action of exp(𝛾) is
defined by the formula

𝑈 �→ 𝑈 ∘ exp (−Θ(𝛾)) , (17)

where Θ is the chain map from dfGC to the deformation complex of 𝑉 ∙+1
𝐴 .

4The existence of an SFQ over rationals is proved in papers [9] and [10].
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In [1], it was proved that the action (17) descends to an action of the (pro-
unipotent) group

exp
(
𝐻0(dfGC)

)
(18)

on the set of homotopy classes of SFQ’s. Moreover,

Theorem 2 (Theorem 6.2, [1]). The group (18) acts simply transitively on the set
of homotopy classes of SFQ’s.

In the view of philosophy outlined in the Introduction, this result can be
interpreted as a complete description of formal quantization procedures.

Remark 3. According to a recent result [6, Thm. 1] of T. Willwacher, exp
(
𝐻0(GC)

)
is isomorphic to the Grothendieck-Teichmueller group GRT introduced by V. Drin-
feld in [11]. Thus, combining this result with Theorem 2, we conclude that formal
quantization procedures are “governed” by the group GRT.

Remark 4. In recent preprint [12] ThomasWillwacher computes stable cohomology
of the graded Lie algebra of polyvector fields with coefficients in the adjoint rep-
resentation. His computations partially justify the name “stable formality quasi-
isomorphism” chosen by the author in [1]. In particular, Thomas Willwacher men-
tions in [12] a possibility to deduce the part about transitivity from Theorem 2 in
a more conceptual way.

4. Globalization of stable formality quasi-isomorphisms

Given an 𝐿∞ quasi-isomorphism (16) for 𝐴 = 𝕂[𝑥1, . . . , 𝑥𝑑] we can ask the ques-
tion of whether we can use it to construct a sequence of 𝐿∞ quasi-isomorphisms
which connects the sheaf 𝑉 ∙+1

𝑋 of polyvector fields to the sheaf 𝒟∙+1
𝑋 of polydiffer-

ential operators on a smooth algebraic variety 𝑋 over 𝕂 . There are several similar
constructions [13], [14], [15] which allow us to produce such a sequence under the
assumption that the 𝐿∞ quasi-isomorphism (16) satisfies the following properties:

A) One can replace 𝐴 = 𝕂[𝑥1, . . . , 𝑥𝑑] in (16) by its completion 𝐴formal =
𝕂[[𝑥1, . . . , 𝑥𝑑]];

B) the structure maps 𝑈𝑛 of 𝑈 are 𝔤𝔩𝑑(𝕂)-equivariant;
C) if 𝑛 > 1 then

𝑈𝑛(𝑣1, 𝑣2, . . . , 𝑣𝑛) = 0 (19)

for every set of vector fields 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ Der(𝐴formal);
D) if 𝑛 ≥ 2 and 𝑣 ∈ Der(𝐴formal) has the form

𝑣 =

𝑑∑
𝑖,𝑗=1

𝑣𝑖𝑗𝑥
𝑗 ∂

∂𝑥𝑖
, 𝑣𝑖𝑗 ∈ 𝕂

then for every set 𝑤2, . . . , 𝑤𝑛 ∈ 𝑉 ∙+1
𝐴𝑓𝑜𝑟𝑚𝑎𝑙

𝑈𝑛(𝑣, 𝑤2, . . . , 𝑤𝑛) = 0 . (20)
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In paper [16] it was shown that for every degree zero cocycle 𝛾 ∈ GC the
structure maps Θ(𝛾)𝑛 of the 𝐿∞-derivation Θ(𝛾) satisfy these properties:

a) Θ(𝛾) can be viewed as an 𝐿∞-derivation of 𝑉 ∙+1
𝐴formal

with

𝐴formal = 𝕂[[𝑥1, . . . , 𝑥𝑑]];

b) the structure maps Θ(𝛾)𝑛 of Θ(𝛾) are 𝔤𝔩𝑑(𝕂)-equivariant;
c) if 𝑛 > 1 then

Θ(𝛾)𝑛(𝑣1, 𝑣2, . . . , 𝑣𝑛) = 0 (21)

for every set of vector fields 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ Der(𝐴formal);
d) if 𝑛 ≥ 2 and 𝑣 ∈ Der(𝐴formal) has the form

𝑣 =

𝑑∑
𝑖,𝑗=1

𝑣𝑖𝑗𝑥
𝑗 ∂

∂𝑥𝑖
, 𝑣𝑖𝑗 ∈ 𝕂

then for every set 𝑤2, . . . , 𝑤𝑛 ∈ 𝑉 ∙+1
𝐴formal

Θ(𝛾)𝑛(𝑣, 𝑤2, . . . , 𝑤𝑛) = 0 . (22)

Properties a) and b) are obvious, while properties c) and d) follow from the fact
that each graph in the linear combination 𝛾 ∈ GC has only vertices of valencies
≥ 3 .

Using these properties of Θ(𝛾) together with Theorems 1 and 2 we deduce
the main result of this note:

Theorem 5. Every homotopy class of SFQ’s contains a representative which can be
used to construct a sequence of 𝐿∞ quasi-isomorphisms connecting the sheaf 𝑉 ∙+1

𝑋

of polyvector fields to the sheaf 𝒟∙+1
𝑋 of polydifferential operators on a smooth

algebraic variety 𝑋 over 𝕂 .

Proof. Let 𝐹 ′ be an SFQ. Our goal is to prove that the homotopy class of 𝐹 ′ con-
tains a representative 𝐹 whose corresponding 𝐿∞ quasi-isomorphism (16) satisfies
Properties A)–D) listed above.

Let us denote by 𝐹𝐾 an SFQ whose corresponding 𝐿∞ quasi-isomorphism

𝑈𝐾 : 𝑉
∙+1
𝐴 ⇝ 𝐶∙+1(𝐴) (23)

satisfies Properties A)–D). (For example, we can choose the SFQ coming from
Kontsevich’s construction [2].)

Theorem 2 implies that there exists a degree zero cocycle 𝛾′ ∈ dfGC such
that 𝐹 ′ is homotopy equivalent to the SFQ

exp(𝛾′)
(
𝐹𝐾

)
. (24)

On the other hand, we have isomorphism (10). Therefore, 𝛾′ is cohomologous
to a cocycle 𝛾 ∈ GC and hence 𝐹 ′ is homotopy equivalent to

exp(𝛾)
(
𝐹𝐾

)
. (25)
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Since the 𝐿∞-derivation Θ(𝛾) satisfies Properties a)–d) and the 𝐿∞ quasi-
isomorphism (23) satisfies Properties A)–D), we conclude that the 𝐿∞ quasi-iso-
morphism corresponding to the SFQ (25) also satisfies Properties A)–D).

Theorem 5 is proved. □
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