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Pseudopotentials via Moutard Transformations
and Differential Geometry

Sergey Leble

Abstract. Darboux-like (Moutard) and generalized Moutard transformations
in two dimensions are applied to construct families of zero range potentials
of scalar and matrix equations of stationary quantum mechanics. The state-
ment about such functionals, defined by closed coordinate curves obtained by
Ribokur-Moutard transforms is formulated. Their applications in physics and
differential geometry of surfaces are discussed.
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1. Introduction

Quite a number of problems in contemporary physics appear when continuous phe-
nomena are joined with discrete one (discrete-continuous models). This concerns
also point particles in quantum theory, mass tensors and Riemannian geometry in
gravitation theory. The Dirac delta-function potential on the axis 𝑥 ∈ (−∞,∞)
was first heuristically introduced by Fermi in a one-dimensional model. Its con-
struction in the context of Neumann operator extension theory was understood in
[1], see [2] for a review. The concept was realized as the theory of distributions
on Schwartz space. A great number of applications of an advanced form of such
potentials (zero-range potentials (ZRP) or pseudopotentials) appear in mesoscopic
physics. Here it models objects whose dimension is small compared with the de
Broglie wavelength of the electron. The generalization to the radial Schrödinger
equation on the half-axis 𝑟 ∈ [0,∞), started with a ZRP for s-states which was
very successful in the application to scattering problems. From the point of a
three-dimensional theory a mathematically rigorous formulation is given in [3].
Introducing the zero-range potential (ZRP) for two-dimensional problems needs
special investigations [4].
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We shall consider such problems from the point of view of a dressing technique
for special cases of the Laplace equation, which allow a dressing procedure [5]. Such
cases are known from the pioneering paper of Moutard [6]. More recent E. Ganzha
applied it to an equation, equivalent to a Goursat equation [7]. Both equations
have a direct link to the two-dimensional Schrödinger and Dirac equations.

As mentioned above, the Moutard and Goursat cases of the Laplace equations
allow a kind of covariance statement which appeared already in [6, 8]. This was
the starting point of the theory of Darboux transformations (DT). The DT in its
original form [8] is a reduction of the Moutard transformation successfully applied
by Darboux to the theory of surfaces.

One of the main observations is that the generalized ZRPs of the radial
Schrödinger equation for arbitrary orbital quantum number 𝑙 (GSRP), see, e.g.,
[3], appear as a result of iterated Darboux transformation in the context of radial
Schrödinger equation theory. Such potentials are equivalent to boundary condi-
tions, different for each 𝑙 [9]. Namely, their three-dimensional description as pseu-
dopotentials is studied in [3].

Two-dimensional ZRPs also may be obtained by DT-type transformations:
the Moutard one and the generalized Moutard one for the Goursat case. The
important feature of the MT is general for DT: the transform is parameterized
by a pair of solutions of the equation and the transform vanishes if the solutions
coincide. The Moutard equation (ME) is covariant with respect to the MT. It was
studied in connection with central problems of classical differential geometry. More
precisely, a chain of derivatives of solutions of the ME solves the system of Lamé
equations for the Ribakur transformations [10].

In soliton theory the ME and GE enters the Lax pairs for nonlinear equa-
tions such as, for example, the Kadomtsev-Petviashvili and the Veselov-Novikov
equation. This fact has important geometrical consequences as “integrable defor-
mations of surfaces” [11].

In Section 2 we explain the general idea on an example of the radial Schrö-
dinger equation along [9]. In Section 3, the Moutard transformation is used to
define a chain of ZRP. The last section is devoted to the matrix ZRP problems of
one of the two-dimensional two-component Dirac equation. The introduction of a
pseudopotential by the generalized MT is traced.

2. General idea of ZRP introduction by dressing procedure

Let us consider a three-dimensional case of a so-called generalized ZRP [9]. Sepa-
ration of variables yields the radial Schrödinger equation(
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)
𝜓𝑙(𝑟) = 0. (1)

where 𝑢𝑙 are potentials for the partial waves. The equation (1) describes scattering

of a particle with energy 𝐸 > 0 and momentum 𝑘 =
√
2𝐸. In the absence of a

potential, partial shifts 𝛿𝑙 = 0 and partial waves can be expressed via Bessel
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functions with half-integer indices. Let us demonstrate how a generalized ZRP
(GZRP) can be introduced by the DT. Thus, the spectral problem for GZRP is
solved for any value 𝑘. On the other hand, the equation (1) is covariant with
respect to the DT that yields the corresponding transformations of the potentials

A GZRP is equivalent to a boundary condition at the singularity point 𝑟 = 0

1

𝑟𝑙+1𝜓

∂2𝑙+1

∂𝑟2𝑙+1

(
𝑟𝑙+1𝜓

)∣∣∣∣
𝑟=0

= − 2𝑙𝑙!

(2𝑙− 1)!!𝑎
2𝑙+1
𝑙 , (2)

where we introduced 𝑎2𝑙+1
𝑙 = − 𝑘2𝑙+1

tan 𝜂𝑙
, with 𝑠𝑙 = exp (2𝑖𝜂𝑙) being a scattering ma-

trix. Such formulas are obtained by an application of an iterated DT to the zero
potential solutions as follows. We start by choosing a spherical Bessel function as
the seed solution 𝜓𝑙(𝑟) = 𝐶𝑗𝑙 (𝑘𝑟) and apply 𝑁th order Darboux transformation
by taking spherical Hankel functions with specific parameters 𝜅𝑚 as prop func-

tions 𝜑𝑚(𝑟) = 𝐶ℎ
(1)
𝑙 (−𝑖𝜅𝑚𝑟), 𝑚 = 1, . . . , 𝑁 . Crum’s formula (e.g., [5]) gives the

transformed solution

𝜓
[𝑁 ]
𝑙 (𝑟) = 𝐶

𝑊 (𝑟𝜙1, . . . , 𝑟𝜙𝑁 , 𝑟𝜓𝑙)

𝑟𝑊 (𝑟𝜙1, . . . , 𝑟𝜙𝑁 )
. (3)

The Wronskians can be computed if we consider the asymptotic behavior of the
spherical functions at 𝑟 → ∞, the Wronskians turn into Vandermond determinants
𝑉 , hence,

𝜓
[𝑁 ]
𝑙 = 𝐶

[
(−1)𝑙 𝑒

𝑖𝑘𝑟

𝑘𝑟

𝑉 (𝜅1, . . . , 𝜅𝑁 , 𝑖𝑘)

𝑉 (𝜅1, . . . , 𝜅𝑁 )
− 𝑒−𝑖𝑘𝑟

𝑘𝑟

𝑉 (𝜅1, . . . , 𝜅𝑁 , −𝑖𝑘)

𝑉 (𝜅1, . . . , 𝜅𝑁)

]
. (4)

The Vandermond determinant can be computed by noticing that 𝑘 = −𝑖𝜅𝑚 (for
𝑚 = 1, . . . , 𝑁) are the roots of the polynomial with respect to 𝑘 equation.
This is obvious from the form of the matrix (replacing 𝑖𝑘 → 𝜅𝑚 yields that
the determinant is zero due to the linear dependencies of the rows). Denoting

𝑠𝑙 =
∏𝑁

𝑚=1 (𝜅𝑚 − 𝑖𝑘) / (𝜅𝑚 + 𝑖𝑘) , we recognize the asymptotics of spherical Han-
kel functions, hence

𝜓
[𝑁 ]
𝑙 (𝑟) = 𝐶

[
𝑠𝑙ℎ

(1)
𝑙 (𝑘𝑟) − ℎ

(2)
𝑙 (𝑘𝑟)

]
. (5)

The effective potential corresponding to this solution tends to zero. Due to the as-
ymptotic behaviour, we observe that the Darboux transformation does not change
the behavior of the potential at 𝑟 → ∞, whereas the singular behavior at the origin
is changed.

To sum up, the Darboux transformations significantly broaden the range
of solvable potentials. In particular, they give a possibility to tune a free-space
solution to potential scattering characteristics. Whilst the same transformation of
the solution at the origin yields generalized zero-range potentials behavior.

Pseudopotentials via Moutard Transformations
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3. Two-dimensional ZRP and Moutard transformation

Let us consider the Moutard equation

𝜓𝜎𝜏 + 𝑢(𝜎, 𝜏)𝜓 = 0 . (6)

The Moutard transformation [6, 5] is a map of Darboux transformation type: it
connects solutions and the coefficient 𝑢(𝜎, 𝜏) of the equation (6) so that if 𝜑 and
𝜓 are different solutions of it (6), then the solution of the twin equation with
𝜓 → 𝜓[1] and 𝑢(𝜎, 𝜏)→ 𝑢[1] can be constructed by the system

(𝜓[1]𝜑)𝜎 = −𝜑2(𝜓𝜑−1)𝜎,

(𝜓[1]𝜑)𝜏 = 𝜑2(𝜓𝜑−1)𝜏 .

In other words,

𝜓[1] = 𝜓 − 𝜑Ω(𝜑, 𝜓)/Ω(𝜑, 𝜑) , (7)

where Ω is the integral of the exact differential form

𝑑Ω = 𝜑𝜓𝜎𝑑𝜎 + 𝜓𝜑𝜏𝑑𝜏 . (8)

The transformed coefficient (potential in mathematical physics) is given by

𝑢[1] = 𝑢− 2(log𝜑)𝜎𝜏 = −𝑢+ 𝜑𝜎𝜑𝜏/𝜑
2 . (9)

Changing variables by the complex substitution 𝜎 = 𝑥+ 𝑖𝑦, 𝜏 = 𝑥− 𝑖𝑦 transforms
(6) to a two-dimensional Schrödinger equation for 𝑥, 𝑦 for potentials linked by
𝑈(𝑥, 𝑦) = −𝑢(𝜎, 𝜏) + 𝐸

−1
4
[𝜓𝑥𝑥 + 𝜓𝑦𝑦] + 𝑈(𝑥, 𝑦)𝜓 = 𝐸𝜓 . (10)

The transformed potential is obtained via (9).
The explicit form of the ZRP depends on a choice of symmetry. For a cylindric

symmetry [3], passing to polar coordinates 𝑥 = 𝜌 cos𝜙, 𝑦 = 𝜌 sin𝜙 and separating
variables exp[𝑖𝜈𝜙]𝑅 yields either 𝑅 as solutions of the modified Bessel equation
for 𝐸 = 𝑘2 > 0, or the Bessel equation for 𝐸 = −𝜅2 < 0. The case may be treated
almost identically as in Section 2 by means of an iterated (multi-kink) MT, see
the Wronskian formulas in [5].

We, however, develop the theory by the MT, extending it to more general
symmetry, rewriting the (9) in polar coordinates

𝑈 [1] = 𝑈 +
1

2
Δ(log𝜑) = 𝑈 +

1

2
[
𝑑2

𝑑𝜌2
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1

𝜌

𝑑

𝑑𝜌
+
1

𝜌2

𝑑2

𝑑𝜙2
](log𝜑), (11)

while 𝜓[1] is the 𝜓 transform by (7) with∫
𝑑Ω =

1

2

∫ 𝜌,𝜙

0,0

[
(𝜓𝜑)𝜌 − 𝑖

𝜑2

𝜌

(
𝜓

𝜑

)
𝜙

]
𝑑𝜌+

[
(𝜓𝜑)𝜙 + 𝑖𝜌𝜑2

(
𝜓

𝜑

)
𝜌

]
𝑑𝜙. (12)

For 𝐸 = 0, the Euler equation case in the 𝜌 variable is obtained, and a general
solution is 𝜓 =

∑+∞
𝜈=−∞ 𝑐𝑛 exp[𝑖𝜈𝜙]𝜌

𝜈 . To demonstrate it by an example, let us
substitute the particular solutions 𝜑 = exp[𝑖𝜈𝜙]𝜌𝜈 into the MT formulas (9). Direct
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differentiation prove a potential invariance 𝑈 [1] = 𝑈 . The same result gives the
special case of 𝜈 = 0, 𝜑 = 𝐶 ln 𝜌+ 𝐴. Studying the case 𝐸 = 0, take as 𝜓 typical
for scattering problems the free particle state 𝜓 = exp[𝑘𝑥𝜌 cos𝜙 + 𝑘𝑦𝜌 sin𝜙]. A
choice of an integration curve in (12) yields∫

𝑑Ω = 1
2 (𝑘𝑥 − 𝑖𝑘𝑦)

(∫ 𝜌
𝑜 𝜌𝜈𝑒𝑘𝑥𝑧 𝑑𝑧 + 𝑖𝜌𝜈+1

∫ 𝜙
0 𝑒[𝑖(𝜈+1)𝛽+𝜌𝑘𝑥 cos𝛽+𝜌𝑘𝑦 sin 𝛽]𝑑𝛽

)
.

Going to a vicinity of 𝜌 = 0, approximating the integral and plugging it into
the MT (7) gives for 𝜈 ∕= −1 a continuous function

𝜓[1] = exp[𝑘𝑥𝜌 cos𝜙+ 𝑘𝑦𝜌 sin𝜙]− 𝜌𝑒−𝑖𝜈𝜙
𝑘𝑥 − 𝑖𝑘𝑦
𝜈 + 1

(
𝑒𝑖𝜙(𝜈+1) + 1

)
. (13)

Consider the Hilbert space 𝐻 = 𝐿2 and a manifold of continuous functions 𝜓 ∈
𝑀 ⊂ 𝐻 . Applying Gauss theorem yields for a disk 𝑆 inside a circumference 𝐿 of
small radius 𝜖,

lim
𝐿→0

∫
𝑆

Δ𝜓𝑑𝑆 + 2

∫
𝑆

𝛼𝛿2(𝜌, 𝜙)𝜓𝜌𝑑𝜌𝑑𝜙 = lim
𝐿→0

∫
𝐿

(�⃗� ⋅ ∇𝜓)𝑑𝐿 + 2𝛼

∫ 2𝜋

0

𝜓(0, 𝜙)𝑑𝜙,

(14)
by definition of 𝛿2(𝜌, 𝜙).

Generalizing to functions with possible singularity in 𝜌 = 0, we arrive at a
boundary condition for the solution (6) with zero potential of the form

lim
𝐿→0

∫
𝐿
(�⃗� ⋅ 𝑔𝑟𝑎𝑑𝜓)𝜌𝑑𝜙∫ 2𝜋

0 𝜓(𝜖, 𝜙))𝑑𝜙
= 2𝛼. (15)

Now we can formulate the approach to ZRP in two dimensions by the following
algorithm. It is known that the set of iterated MT has an explicit link to Ribokur
transformations. This defines solutions of the Lamé equations for coordinate sys-
tems [10], see also [12].

Generalizing (15), let us build a closed curve 𝐿 as a coordinate line ∃𝜖 >
0, 𝑎 = 𝑎0 ∈ [0, 𝜖], 𝑏 ∈ [0, 1] by means of such a construction and define the action
of 𝛿2(𝑎, 𝑏) by

Lemma. The relation
∫
𝑆 𝛿2(𝑎, 𝑏)𝜓(𝑎, 𝑏)𝑑𝑆 =

∫ 1

0 𝜓(0, 𝑏)𝑑𝑏 determines a distribution
𝛿2(𝑎, 𝑏) ∈ 𝐷, if 𝐿 bounds a domain 𝑆 (interior of 𝐿).

For the proof it is enough to recall the isoperimetric inequality and the Jordan
theorem; the functional linearity and continuity is obvious. Going to the set of
coordinate systems 𝑎𝑛, 𝑏𝑛, numbered by the MT iteration number yields the

Theorem 1 (Main). The set of distributions defined by

lim
𝜖→0

∫ 1

0
(�⃗� ⋅ 𝑔𝑟𝑎𝑑𝜓)𝑑𝑏𝑛∫ 1

0 𝜓(𝑎𝑛, 𝑏𝑛)𝑑𝑏𝑛
= 2𝛼 (16)

is dense in a vicinity of 0.

The proof is based on the lemma and the theorem of Ganzha on local com-
pleteness of iterated Moutard transformations [10].

Pseudopotentials via Moutard Transformations
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4. Goursat equation, matrix ZRP and geometry of surfaces

Let us consider the Laplace equation

𝜓𝜎𝜏 + 𝑎 (𝜎, 𝜏)𝜓𝜎 + 𝑏 (𝜎, 𝜏)𝜓 = 0. (17)

The system
𝜓𝜎 = 𝑝𝜒, 𝜒𝜏 = 𝑝𝜓, (18)

is related directly to the Goursat equation

𝜓𝜎𝜏 =
𝑝𝜏
𝑝
𝜓𝜎 + 𝑝2𝜓, (19)

with the obvious constraint between 𝑎, 𝑏 in (17); see [7], where a covariance with
respect to a generalizedMT was established. In [13], the matrix form of the problem

for Ψ =

(
𝜓1 𝜓2

𝜒1 𝜒2

)
was introduced in the variables 𝜉 and 𝜂 as:

∂𝜎 = ∂𝜂 − ∂𝜉, ∂𝜏 = ∂𝜂 + ∂𝜉,

and rewritten (18) in the form of 2x2 Dirac system:

Ψ𝜂 = 𝜎3Ψ𝜉 + 𝑈Ψ, (20)

where 𝑈 = 𝑝(𝜉, 𝜂)𝜎1. The functions 𝜓𝑘 = 𝜓𝑘(𝜉, 𝜂), 𝜒𝑘 = 𝜒𝑘(𝜉, 𝜂) with k=1,2 are
particular solutions of (20) with some 𝑝(𝜉, 𝜂), and 𝜎1,3 are the Pauli matrices.
Let Ψ1 ∕= Ψ be a solution of the equation (20). We define a matrix function
Ξ ≡ Ψ1,𝜉Ψ

−1
1

. The equation (20) is covariant with respect to DT:

Φ[1] = Φ𝜉 − ΞΦ, 𝑈 [1] = 𝑈 + [𝜎3,Ξ]. (21)

Let us consider a closed 1-form

𝑑Ω = ΦΨ𝑑𝜉 + Φ𝜎3Ψ𝑑𝜂.

Lemma. The form is exact if Ψ satisfies (20) and a 2×2 matrix function Φ solves
the conjugate equation:

Φ𝜂 = Φ𝜉𝜎3 − Φ𝑈. (22)

The proof is by direct cross differentiation.

Theorem 2 ([13]). One can verify by a substitution that (22) is covariant with
respect to the transform if

Φ[+1] = Ω(Φ,Ψ1)Ψ
−1
1 . (23)

Now we can alternatively affect 𝑈 , by the following transformation:

𝑈 [+1,−1] = 𝑈 + [𝜎3,Ψ1Ω
−1Φ]. (24)

Relations (23), (24) we call a binary generalized Moutard transformation (BGMT).
Such a formalism gives a new possibility to define ZRP for Dirac equation

via Darboux (21) or BGMT (23) transformation. The construction starts from a
solution with a matrix potential 𝑈 which directly relates to the equation (19) with
constant 𝑝. Therefore we can use the solutions 𝜓𝑘 of the Schrödinger equation (10)



355

with 𝐸 = 𝑝2, constructed in the previous section. The matrices Ψ,Φ, are built from
solutions 𝜓𝑘 and 𝜒𝑘 = 𝑝−1𝜓𝑘.

As geometry is concerned, the original Weierstrass formulas start with two
arbitrary holomorphic functions of complex variables 𝑧, 𝑧 ∈ 𝐶 [12]. They yield
an approach for constructing minimal surfaces. Generalization to the arbitrary
mean curvature case was given by Kenmotsu [14] and Konopelchenko [11] in com-
plex coordinates as in (6), 𝜏 , 𝜎 = −𝜏 . Here 𝑝 is a real-valued function and 𝜓
or 𝜒 as solutions of (18) are complex-valued functions. We define three real-
valued functions 𝑋𝑖, 𝑖 = 1, 2, 3 which are the coordinates of a surface in ℝ3 :

𝑋1 + 𝚤𝑋2 = 2𝚤
∫

Γ

(
𝜓2𝑑𝜎′ − 𝜒2𝑑𝜏 ′

)
, 𝑋3 = −2 ∫

Γ

(
𝜓𝜒𝑑𝜎′ + 𝜒𝜓𝑑𝜏 ′

)
, where Γ is an

arbitrary path of integration in the complex plane. The corresponding first funda-
mental form, the Gaussian curvature 𝐾 and the mean curvature 𝐻 yield:

𝑑𝑠2 = 4𝑁2𝑑𝜏𝑑𝜎 , 𝐾 =
1

𝑁2
∂𝜏∂𝜎 ln𝑁 , 𝐻 =

√
𝑝

𝑁
. (25)

Here 𝑁 =∣ 𝜓 ∣2 + ∣ 𝜒 ∣2. Any analytic surface in ℝ3 can be globally represented by
𝑋𝑖. As it is seen from the solutions nonzero N may yields zero 𝑝 and hence zero
mean curvature on a punctured surface [15].

Remark. Equation (20) is a spectral problem for the Davey-Stewartson (DS) and
Boiti-Martina-Leon-Pempinelli (BMLP) equations and produce explicitly invert-
ible Bäcklund auto-transformations. It also induces deformations of the correspon-
dent surfaces following [11, 13].

5. Discussion and conclusion

The importance in applications of the pseudopotentials, introduced as distribu-
tions, lies in the possibility to solve multicenter scattering or eigenvalue problems
[2]. The dressing procedure also may be applied to such multicenter pseudopoten-
tial. This gives additionally ability to approximate real interaction [5]. Technically
it is applied to a combination of Green functions of the Schrödinger equation
𝜓 =

∑
𝐶𝑖𝐺(∣�⃗� − �⃗�𝑖∣) and, next, substituting the result, to boundary conditions

in each center (�⃗� = �⃗�𝑖). The result is a set of algebraic equations. One of the
interesting problems is related to quantum dots, randomly distributed by place
and size, and modeled by a generalized ZRP. The theorem about a dense cover
of the distribution space in a vicinity of a given point opens a way to developing
new representations in potential theory. The problem of the matrix ZRP introduc-
tion is solved in an example of a two-dimensional Dirac equation. The idea of a
dressing scheme is naturally generalized to other matrix problems as multi-channel
scattering [5] or 4× 4 matrix Dirac eigenvalue problem [16].

Pseudopotentials via Moutard Transformations
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