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Pencils of Conics as a Classification Code

Vladimir Dragović

Abstract. We collect several subjects of the modern Mathematical Physics
like integrable quad-graphs, discriminantly separable polynomials, the Petrov
classification, the algebro-geometric approach to the Yang-Baxter equation
and quadrirational maps since they all lead to the same geometric background.
The geometry is related to pencils of conics, and the classification code follows
the types of pencils.
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1. Pencils of conics

Given two conics in the plane, the set of all conics sharing the same intersection
with the two, forms a pencil of conics. We will denote general pencils of conics
having four simple common points of intersection as (1, 1, 1, 1), or of type [A].
The case with two simple points of intersection and one double with a common
tangent at that point is denoted (1, 1, 2) or [B]. The case with two double points
of intersection and with a common tangent in each of them is (2, 2), or [C]. The
case (1, 3), denoted also as [D] is defined by one simple and one triple point of
intersection. Finally (4), the case of one quadruple point is denoted as [E]. The
following Figures 1–5 illustrate these possible configurations of pencils.
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Figure 1. Pencil of type A Figure 2. Pencil of type B

Figure 3. Type C Figure 4. Type D Figure 5. Type E

The transition from a more general pencil to a more special one is represented
by the diagram, which is usually associated with Penrose:
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(1)

We will need a classical notion of the Darboux coordinates in a projective plane.
We fix a conic 𝐶 in the plane, with a rational parametrization. For a given point
𝑃 in the plane, there are two tangents from 𝑃 to the conic 𝐶. Let the two values
of the rational parameter of the two points of tangency of the tangent lines with
the conic 𝐶 be (𝑥1, 𝑥2). Then, the pair (𝑥1, 𝑥2) gives the Darboux coordinates of
the point 𝑃 associated with the parametrized conic 𝐶.
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2. Petrov classification

We will start with historically the first of the stories. The Petrov 1954 classification
describes the algebraic symmetries of the Weyl tensor at a point in a Lorentzian
manifold (see [1], [2]). It is well known due to its applications to the theory of
relativity, in the study of the exact solutions of the Einstein field equations.

The Weyl tensor, is a (2, 2)-tensor, evaluated at some point, and it acts on
the space of bivectors at that point as a linear operator:

𝑊 : 𝑌 𝛼𝛽 �→ 1

2
𝑊𝛼𝛽

𝑝𝑞 𝑌 𝑝𝑞. (2)

The equation

𝑊𝛼𝛽
𝑝𝑞 𝑌 𝑝𝑞 = 2𝜆𝑌 𝛼𝛽

defines the eigenvalues and the eigenbivectors. In the case of a space-time of di-
mension four, the space of antisymmetric bivectors at a point is of dimension six,
and, due to the symmetries of the Weyl tensor, the eigenbivectors lie in a subspace
of dimension four. Thus, the Weyl tensor at each point has at most four linearly
independent eigenbivectors. The eigenbivectors of the Weyl tensor can occur with
multiplicities, indicating a kind of algebraic symmetry of the tensor at the point.
The multiplicities reflect the structure of zeros of a certain polynomial of degree
four. The eigenbivectors are associated with null vectors in the original space-
time, the principal null directions at point. According to the Petrov classification
theorem, there are six possible types of algebraic symmetry, the six Petrov types:

[I] four simple principal null directions;
[II] two simple principal null directions and one double;
[D] two double principal null directions;
[III] one simple and one triple principal null direction;
[N] one quadruple principal null direction.
[O] the case where the Weyl tensor vanishes.

A relationship between the Petrov classification and the pencils of conics has
been elaborated in [3]. It has been represented by a diagram of type (1) by Penrose,
see [4], with the following correspondence

(𝐴,𝐵,𝐶,𝐷,𝐸, 0)→ (I, II,D, III,N, 0).

3. Integrable quad-graphs

Let us denote by 𝒫𝑛
𝑑 the set of polynomials in 𝑑 variables of degree at most 𝑛 in

each.
Recall that the basic building blocks of systems on quad-graphs from works

of Adler, Bobenko, Suris [5] are the equations on quadrilaterals of the form

𝑄(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 0 (3)
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Figure 6. Quad-
equation
𝑄(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 0.
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Figure 7. A 3D consistency.

where 𝑄 ∈ 𝒫1
4 . Equations of type (3) are called quad-equations. The field variables

𝑥𝑖 are assigned to four vertices of a quadrilateral as in Figure 6.
Following [5] we consider the idea of integrability as consistency, see Figure

7. We assign six quad-equations to the faces of coordinate cube. The system is
said to be 3D-consistent if three values for 𝑥123 obtained from equations on right,
back and top faces coincide for arbitrary initial data 𝑥, 𝑥1, 𝑥2, 𝑥3. Then, applying
discriminant-like operators introduced in [5] 𝛿𝑥,𝑦 : 𝒫1

4 → 𝒫2
2 , 𝛿𝑥 : 𝒫2

2 → 𝒫4
1 by

formulae

ℎ(𝑧, 𝑤) := 𝛿𝑥,𝑦(𝑄) = 𝑄𝑥𝑄𝑦 −𝑄𝑄𝑥𝑦, 𝑃 (𝑧) := 𝛿𝑤(ℎ) = ℎ2
𝑤 − 2ℎℎ𝑤𝑤, (4)

there is a descent from the faces to the edges and then to the vertices of the cube:
from a polynomial 𝑄(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝒫1

4 to a biquadratic polynomial ℎ ∈ 𝒫2
2 and

further, to a polynomial 𝑃 ∈ 𝒫4
1 of one variable of degree 4.

A biquadratic polynomial ℎ(𝑥, 𝑦) ∈ 𝒫2
2 is said to be non degenerate if no poly-

nomial in its equivalence class with respect to fractional linear transformations is
divisible by a factor of the form 𝑥 − 𝑐 or 𝑦 − 𝑐, with 𝑐 = const. A multiaffine
function 𝑄(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝒫1

4 is said to be of type 𝑄 if all four of its accompa-
nying biquadratic polynomials ℎ𝑗𝑘 are non degenerate. Otherwise, it is of type 𝐻 .
Previous notions were introduced in [5], where the classification list of mulitiaffine
polynomials of type 𝑄 has been obtained, based on the structure of zeros of the
associated nonzero polynomial 𝑃 of degree four. There are five cases, [A], [B], [C],
[D], [E]. For example, in the case [𝐵] = (1, 1, 2):

𝑄𝐵 = (𝛼 − 𝛼−1)(𝑥1𝑥2 + 𝑥3𝑥4) + (𝛽 − 𝛽−1)(𝑥1𝑥4 + 𝑥2𝑥3)

− (𝛼𝛽 − 𝛼−1𝛽−1)(𝑥1𝑥3 + 𝑥2𝑥4)

+
𝛿

4
(𝛼− 𝛼−1)(𝛽 − 𝛽−1)(𝛼𝛽 − 𝛼−1𝛽−1)

for 𝛿 ∕= 0. In the case [𝐶] = (2, 2) 𝑄𝐶 is obtained from 𝑄𝐵 with 𝛿 = 0.



Pencils of Conics as a Classification Code 327

4. Discriminantly separable polynomials

The notion of discriminantly separable polynomials has been introduced in [6]. A
family of such polynomials has been constructed there as pencil equations from the
theory of conics ℱ(𝑤, 𝑥1, 𝑥2) = 0, where 𝑤, 𝑥1, 𝑥2 are the pencil parameter and
the Darboux coordinates respectively. The key algebraic property of the pencil
equation, as quadratic equation in each of three variables 𝑤, 𝑥1, 𝑥2 is: all three
of its discriminants are expressed as products of two polynomials in one variable
each:

𝒟𝑤(ℱ) = 𝑃 (𝑥1)𝑃 (𝑥2), 𝒟𝑥1(ℱ) = 𝐽(𝑤)𝑃 (𝑥2)𝒟𝑥2(ℱ) = 𝑃 (𝑥1)𝐽(𝑤), (5)

where 𝐽, 𝑃 are polynomials of degree up to 4, and the elliptic curves Γ1 : 𝑦
2 =

𝑃 (𝑥), Γ2 : 𝑦
2 = 𝐽(𝑠) are isomorphic (see Proposition 1 of [6]).

A classification of strongly discriminantly separable polynomials

ℱ(𝑥1, 𝑥2, 𝑥3) ∈ 𝒫2
3 ,

which are those satisfying the above relations 5 with 𝑃 = 𝐽 , has been performed
modulo a gauge group of the following fractional-linear transformations 𝑥𝑖 �→
(𝑎𝑥𝑖 + 𝑏)/(𝑐𝑥𝑖 + 𝑑), 𝑖 = 1, 2, 3 in [7], where more details can be found.

The classification of such polynomials, following [7], goes along the study of
structure of zeros of a nonzero polynomial 𝑃 ∈ 𝒫4

1 . There are five cases: [A] with
four simple zeros; [B] with a double zero and two simple zeros; [C] corresponds to
polynomials with two double zeros; [D] is the case of one triple and one simple
zero; finally, [E] is the case of one zero of degree four. The corresponding families of
polynomials ℱ𝐴, ℱ𝐵, ℱ𝐶1, ℱ𝐶2, ℱ𝐷, ℱ𝐸1, ℱ𝐸2, ℱ𝐸3, ℱ𝐸4 are listed in Theorem 4
of [7]. Here, we are giving an example.

[B] (1, 1, 2): two simple zeros and one double zero, for a canonical form of the
polynomial 𝑃 (𝑥) = 𝑥2 − 𝜖2, the corresponding discriminantly separable poly-
nomial is ℱ𝐵 = 𝑥1𝑥2𝑥3 + (𝜖/2)(𝑥

2
1 + 𝑥2

2 + 𝑥2
3 − 𝜖2).

The relationship between the discriminantly separable polynomials of degree
two in each of three variables, and integrable quad-graphs of Adler, Bobenko and
Suris has been established in [7]. The key point is the following formula, which
defines an ℎ, a biquadratic ingredient of quad-graph integrability, starting form a

discriminantly separable polynomial ℱ : ℎ̂(𝑥1, 𝑥2, 𝛼) = ℱ(𝑥1, 𝑥2, 𝛼)/
√

𝑃 (𝛼).

5. Quantum Yang-Baxter equation

The next subject is devoted to the Yang–Baxter equation

𝑅12(𝑡1 − 𝑡2, ℎ)𝑅
13(𝑡1, ℎ)𝑅

23(𝑡2, ℎ) = 𝑅23(𝑡2, ℎ)(𝑅
13(𝑡1, ℎ)𝑅

12(𝑡1 − 𝑡2, ℎ). (6)

Here 𝑡 is so-called spectral parameter and ℎ is Planck constant. Here we assume that
𝑅(𝑡, ℎ) is a linear operator from 𝑉 ⊗𝑉 to 𝑉 ⊗𝑉 and 𝑅𝑖𝑗 : 𝑉 ⊗𝑉 ⊗𝑉 → 𝑉 ⊗𝑉 ⊗𝑉
is an operator acting on the 𝑖th and 𝑗th components as 𝑅(𝑡, ℎ) and as identity on
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Figure 8. The Euler-Chasles correspondence

the third component. For example 𝑅12(𝑡, ℎ) = 𝑅⊗ 𝐼𝑑. In the first nontrivial case,
matrix 𝑅(𝑡, ℎ) is 4× 4 and the space 𝑉 is two-dimensional.

Krichever’s approach is based on the vacuum vector representation of a 4× 4
matrix 𝐿, understood as a 2 × 2 matrix with blocks of 2 × 2 matrices. In other
words, 𝐿 = 𝐿𝑖𝛼

𝑗𝛽 is a linear operator in the tensor product 𝐶
2 ⊗ 𝐶2. The vacuum

vectors 𝑋,𝑌, 𝑈, 𝑉 satisfy, by definition, the relation

𝐿𝑋 ⊗ 𝑈 = ℎ𝑌 ⊗ 𝑉. (7)

The vacuum vectors are parametrized by the vacuum curve Γ𝐿. In [8] Krichever
proved that in the case of general position, the vacuum curve is elliptic, and rank
one solutions are equivalent to the Baxter 𝑅-matrix. In [9], [10] the cases of rational
vacuum curves have been studied.

The geometric background of the above algebro-geometric classification is
connected with pencils of conics. It is based on the fact that the vacuum curve is
a biquadratic, or the Euler-Chasles 2-2 correspondence (see [11]) of the form

𝐸 : 𝑎𝑥2𝑦2 + 𝑏(𝑥2𝑦 + 𝑥𝑦2) + 𝑐(𝑥2 + 𝑦2) + 2𝑑𝑥𝑦 + 𝑒(𝑥+ 𝑦) + 𝑓 = 0. (8)

Using the Darboux coordinates, we visualize the Euler-Chasles correspon-
dence (8) by Figure 8 and a relationship with pencils of conics becomes obvious.
Thus, again, the classification follows the Penrose diagram (1) where the case [A]
corresponds to the Baxter 𝑅-matrix, [B] to the Cherednik 𝑅-matrix, and [C] to
the six-vertex 𝑅-matrix of Yang.

6. Quadrirational maps

The last section is devoted to quadrirational maps on ℂℙ1 which are introduced
and classified in [12]. Following Adler, Bobenko and Suris, we consider a rational

map 𝐹 : ℂℙ1 × ℂℙ1 → ℂℙ1 × ℂℙ1 and its graph as an algebraic variety Γ𝐹 ⊂
(ℂℙ1)4. Such a map is called quadrirational if for any fixed pair (𝑋,𝑌 ) ∈ ℂℙ1 ×
ℂℙ1 (modulo some closed subvariety of co-dimension at least one) the graph Γ𝐹
intersects each of the sets ℂℙ1 × ℂℙ1 × {𝑋} × {𝑌 }, {𝑋} × {𝑌 } × ℂℙ1 × ℂℙ1,



Pencils of Conics as a Classification Code 329

ℂℙ1 × {𝑌 } × {𝑋}×ℂℙ1 exactly once. In that case Γ𝐹 defines four rational maps

𝐹, 𝐹−1, 𝐹 , 𝐹−1 : ℂℙ1 × ℂℙ1 → ℂℙ1 × ℂℙ1. It has been proven in [12] that for
a quadrirational map, its graph is defined by polynomial equations 𝑓(𝑥, 𝑦, 𝑢) = 0
and ℎ(𝑦, 𝑥, 𝑣) = 0, where the degrees of 𝑓 in 𝑥 and of ℎ in 𝑦 are one or two. We will
consider further only the case when both of the degrees are equal to two, denoted
in [12] as [2 : 2]. Then, the following classification takes place:

Theorem (Adler, Bobenko, Suris 2004). Any quadrirational map of type [2 : 2] is,
up to Möbius gauge transformations on variables, equivalent to one and only one
of the five maps:

[A] 𝐹𝐴 : 𝑢 = 𝑎𝑦𝑃, 𝑣 = 𝑏𝑥𝑃, 𝑃 =
(1− 𝑏)𝑥+ 𝑏− 𝑎+ (𝑎− 1)𝑦

𝑏(1− 𝑎)𝑥+ (𝑎− 𝑏)𝑦𝑥+ 𝑎(𝑏− 1)𝑦 ;

[B] 𝐹𝐵 : 𝑢 =
𝑦

𝑎
𝑃, 𝑣 =

𝑥

𝑏
𝑃, 𝑃 =

𝑎𝑥− 𝑏𝑦 + 𝑏− 𝑎

𝑥− 𝑦
;

[C] 𝐹𝐶 : 𝑢 =
𝑦

𝑎
𝑃, 𝑣 =

𝑥

𝑏
𝑃, 𝑃 =

𝑎𝑥− 𝑏𝑦

𝑥− 𝑦
;

[D] 𝐹𝐷 : 𝑢 = 𝑦𝑃, 𝑣 = 𝑥𝑃, 𝑃 =
𝑥− 𝑦 + 𝑏− 𝑎

𝑥− 𝑦
;

[E] 𝐹𝐸 : 𝑢 = 𝑦 + 𝑃, 𝑣 = 𝑥+ 𝑃, 𝑃 =
𝑏− 𝑎

𝑥− 𝑦
;

where 𝑎, 𝑏 are given constants.

The mappings 𝐹𝐴, 𝐹𝐵, 𝐹𝐶 , 𝐹𝐷, 𝐹𝐸 are related with pencils of conics of types
𝐴,𝐵,𝐶,𝐷,𝐸 respectively, in the following way: given two conics 𝐶1, 𝐶2 of a pencil,
with fixed rational parametrizations. For a pair of points 𝑥 ∈ 𝐶1, 𝑦 ∈ 𝐶2, 𝑥 ∕= 𝑦,
the line they define intersects conics 𝐶1 and 𝐶2 in other two points 𝑢, 𝑣. Then, as
it has been shown in [12], 𝐹 (𝑥, 𝑦) = (𝑢, 𝑣) is a quadrirational mapping, with the
formula given above.

Acknowledgment

The author uses the opportunity to congratulate Professor Anatol Odzijewicz and
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Mathematical Institute SANU
Kneza Mihaila 36
11000 Belgrade, Serbia

and

Mathematical Physics Group
University of Lisbon, Portugal
e-mail: vladad@mi.sanu.ac.rs

mailto:vladad@mi.sanu.ac.rs

	Pencils of Conics as a Classification Code
	1. Pencils of conics
	2. Petrov classification
	3. Integrable quad-graphs
	4. Discriminantly separable polynomials
	5. Quantum Yang-Baxter equation
	6. Quadrirationalma ps
	Acknowledgment

	References


