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Abstract. A general method of investigation of the uniqueness property for
𝐶∗-algebra equipped with a circle gauge action is discussed. It unifies isomor-
phism theorems for various crossed products and Cuntz-Krieger uniqueness
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1. Introduction

The origins of 𝐶∗-theory and particularly the theory of universal 𝐶∗-algebras gen-
erated by operators that satisfy prescribed relations go back to the work of W.
Heisenberg, M. Bohr and P. Jordan on matrix formulation of quantum mechan-
ics, and among the most stimulating examples are algebras generated by anti-
commutation relations and canonical commutation relations (in the Weyl form).
The great advantage of relations of CAR and CCR type is uniqueness of rep-
resentation. Namely, due to the celebrated Slawny’s theorem, see, e.g., [1], the
𝐶∗-algebras generated by such relations are defined uniquely up to isomorphisms
preserving the generators and relations. This uniqueness property is not only a
strong mathematical tool but also has a significant physical meaning – if we had
no such uniqueness, different representations would yield different physics.

The aim of the present note is to advertise a program of developing a general
approach to investigation of uniqueness property and related problems based on
exploring the symmetries of relations. We focus here, as a first attempt, on circular
symmetries and propose a two-step method of investigation universal 𝐶∗-algebra
𝐶∗(𝒢,ℛ) generated by a set of generators 𝒢 subject to relations ℛ which could be
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schematically presented as follows:

(𝒢,ℛ, {𝛾𝜆}𝜆∈𝕋)
relations, circle action

step 1 �� (ℬ0,ℬ1)
Hilbert bimodule

(reversible dynamics)

step 2�� 𝐶
∗(𝒢,ℛ) = ℬ0 ⋊ℬ1 ℤ
universal 𝐶∗-algebra

– we fix a circle gauge action 𝛾 = {𝛾}𝜆∈𝕋 on 𝐶∗(𝒢,ℛ) which is induced by a
circular symmetry in (𝒢,ℛ); in the first step we associate to 𝛾 a non-commutative
reversible dynamical system which is realized via a Hilbert bimodule (ℬ0,ℬ1), and
in the second step we use this system to determine the uniqueness property for
𝐶∗(𝒢,ℛ).

2. Uniqueness property, universal 𝑪∗-algebras and gauge actions

Suppose we are given an abstract set of generators 𝒢 and a set of ∗-algebraic
relations ℛ that we want to impose on 𝒢. Formally 𝒢 is a set and ℛ is a set
consisting of certain ∗-algebraic relations in a free non-unital ∗-algebra 𝔽 generated
by 𝒢. By a representation of the pair (𝒢,ℛ) we mean a set of bounded operators
𝜋 = {𝜋(𝑔)}𝑔∈𝒢 ⊂ 𝐿(𝐻) on a Hilbert space𝐻 satisfying the relationsℛ, and denote
by 𝐶∗(𝜋) the 𝐶∗-algebra generated by 𝜋(𝑔), 𝑔 ∈ 𝒢. At this very beginning one
faces the following two fundamental problems:

1. (non-degeneracy problem) Do there exists a faithful representation of (𝒢,ℛ),
i.e., a representation {𝜋(𝑔)}𝑔∈𝒢 of (𝒢,ℛ) such that 𝜋(𝑔) ∕= 0 for all 𝑔 ∈ 𝒢?

2. (uniqueness problem) If one has two different faithful representation of (𝒢,ℛ),
do they generate isomorphic 𝐶∗-algebras? More precisely, does for any two
faithful representations 𝜋1, 𝜋2 of (𝒢,ℛ) the mapping

𝜋1(𝑔) �−→ 𝜋2(𝑔), 𝑔 ∈ 𝒢,
extends to the (necessarily unique) isomorphism 𝐶∗(𝜋1) ∼= 𝐶∗(𝜋2)?

The first problem is important and interesting in its own rights, see [2], [3], however
here we would like to focus on the second problem and thus throughout we assume
that all the pairs (𝒢,ℛ) under consideration are non-degenerate. We say that
(𝒢,ℛ) possess uniqueness property if the answer to question 2 is positive.

Any representation 𝜋 of (𝒢,ℛ) extends uniquely to a ∗-homomorphism, also
denoted by 𝜋, from 𝔽 into 𝐿(𝐻). The pair (𝒢,ℛ) is said to be admissible if the
function ∣∣∣ ⋅ ∣∣∣ : 𝔽 → [0,∞] given by

∣∣∣𝑤∣∣∣ = sup{∥𝜋(𝑤)∥ : 𝜋 is a representation of (𝒢,ℛ)}
is finite. Plainly, admissibility is a necessary condition for uniqueness property
and therefore we make it our another standing assumption. Then the function
∣∣∣ ⋅ ∣∣∣ : 𝔽 → [0,∞) is a 𝐶∗-seminorm on 𝔽 and its kernel

𝕀 := {𝑤 ∈ 𝔽 : ∣∣∣𝑤∣∣∣ = 0}
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is a self-adjoint ideal in 𝔽 – it is the smallest self-adjoint ideal in 𝔽 such that the
relations ℛ become valid in the quotient 𝔽/𝕀. We put

𝐶∗(𝒢,ℛ) := 𝔽/𝕀
∣∣∣⋅∣∣∣

and call it a universal 𝐶∗-algebra generated by 𝒢 subject to relations ℛ, cf. [4].
𝐶∗-algebra 𝐶∗(𝒢,ℛ) is characterized by the property that any representation of
(𝒢,ℛ) extends uniquely to a representation of 𝐶∗(𝒢,ℛ) and all representations of
𝐶∗(𝒢,ℛ) arise in that manner. In particular, (𝒢,ℛ) possess uniqueness property if
and only if any faithful representation of (𝒢,ℛ) extends to a faithful representation
of 𝐶∗(𝒢,ℛ).

3. Gauge actions – exploring the symmetries in the relations

We would like to identify the uniqueness property of (𝒢,ℛ) by looking at the
symmetries in (𝒢,ℛ). In order to formalize this we use a natural torus action
{𝛾𝜆}𝜆∈𝕋𝒢 on 𝔽 determined by the formula

𝛾𝜆(𝑔) = 𝜆𝑔 𝑔, for 𝑔 ∈ 𝒢 and 𝜆 = {𝜆ℎ}ℎ∈𝒢 ∈ 𝕋𝒢

where 𝕋 = {𝑧 ∈ ℂ : ∣𝑧∣ = 1} is a unit circle. A closed subgroup 𝐺 ⊂ 𝕋𝒢 may
be considered as a group of symmetries in the pair (𝒢,ℛ) if the restricted action
𝛾 = {𝛾𝜆}𝜆∈𝐺 leaves invariant the ideal 𝕀. Any such group gives rise to a point-
wisely continuous group action on 𝐶∗(𝒢,ℛ) and actions that arise in that manner
are called gauge actions.
Let us from now on consider the case when 𝐺 ∼= 𝕋, that is we have a circle gauge
action 𝛾 = {𝛾𝜆}𝜆∈𝕋 on 𝐶∗(𝒢,ℛ). Then for each 𝑛 ∈ ℤ the formula

ℰ𝑛(𝑏) :=
∫
𝕋

𝛾𝜆(𝑏)𝜆
−𝑛 𝑑𝜆

defines a projection ℰ𝑛 : 𝐶∗(𝒢,ℛ)→ 𝐶∗(𝒢,ℛ), called 𝑛th spectral projection, onto
the subspace

ℬ𝑛 := {𝑏 ∈ 𝐶∗(𝒢,ℛ) : 𝛾𝜆(𝑏) = 𝜆𝑛𝑏}
called 𝑛th spectral subspace for 𝛾, cf., e.g., [5]. Spectral subspaces specify a ℤ-
gradation on 𝐶∗(𝒢,ℛ). Namely, ⊕𝑛∈ℤ ℬ𝑛 is dense in 𝐶∗(𝒢,ℛ), and

ℬ𝑛ℬ𝑚 ⊂ ℬ𝑛+𝑚, ℬ∗𝑛 = ℬ−𝑛 for all 𝑛,𝑚 ∈ ℤ. (1)

In particular, ℬ0 is a 𝐶∗-algebra – the fixed point algebra for 𝛾, and ℰ0 : ℬ → ℬ0 is
a conditional expectation. A circle action on a 𝐶∗-algebra ℬ is called semi-saturated
[5] if ℬ is generated as a 𝐶∗-algebra by its first and zeroth spectral subspaces. We
note that every continuous group endomorphism of 𝕋 is of the form 𝜆 �→ 𝜆𝑛, for
certain 𝑛 ∈ ℤ, and hence it follows that 𝒢 ⊂ ∪𝑛∈ℤℬ𝑛. In particular, we have

Lemma 1. The circle gauge action 𝛾 = {𝛾𝜆}𝜆∈𝕋 on 𝐶∗(𝒢,ℛ) is semi-saturated,
that is 𝐶∗(𝒢,ℛ) = 𝐶∗(ℬ0,ℬ1) if and only if 𝒢 = 𝒢0 ∪𝒢1 for some disjoint sets 𝒢0,
𝒢1 and 𝛾𝜆(𝑔0) = 𝑔0, 𝛾𝜆(𝑔1) = 𝜆𝑔1, for all 𝑔𝑖 ∈ 𝒢𝑖.
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We introduce an important necessary condition for (𝒢,ℛ) to possess unique-
ness property.

Proposition 2. The following conditions are equivalent:

i) each faithful representation of (𝒢,ℛ) give rise to a faithful representation of
the fixed-point algebra ℬ0.

ii) each faithful representation 𝜋 of (𝒢,ℛ) give rise to a faithful representation
of 𝐶∗(𝒢,ℛ) if and only if there is a circle action 𝛽 on 𝐶∗(𝜋) such that

𝛽𝑧(𝜋(𝑔)) = 𝜋(𝛾𝑧(𝑔)), 𝑔 ∈ 𝒢.
Proof. i) =⇒ ii). It suffices to apply the gauge invariance uniqueness for circle
actions, see, e.g., [5, 2.9] or [6, 4.2]. ii) =⇒ i). Assume that 𝜋 is a faithful rep-
resentation of (𝒢,ℛ) such that its extension is not faithful on ℬ0. The spaces
{𝜋(ℬ𝑛)}𝑛∈ℤ form a ℤ-graded 𝐶∗-algebra and thus by [6, 4.2], there is a (unique)
𝐶∗-norm ∥ ⋅∥𝛽 on

⊕
𝑛∈ℤ 𝜋(ℬ𝑛) such that the circle action 𝛽 on

⊕
𝑛∈ℤ 𝜋(ℬ𝑛) estab-

lished by gradation extends onto the 𝐶∗-algebra ℬ =⊕𝑛∈ℤ 𝜋(ℬ𝑛)
∣∣⋅∣∣𝛽

. Composing
𝜋 with the embedding

⊕
𝑛∈ℤ 𝜋(ℬ𝑛) ⊂ ℬ one gets a faithful representation 𝜋′ of

(𝒢,ℛ) which is gauge-invariant but not faithful on 𝐶∗(𝒢,ℛ). □

In the literature the statements showing that the condition ii) in Proposition
2 holds are often called gauge-invariance uniqueness theorems and therefore we
shall say that the triple (𝒢,ℛ, 𝛾) has the gauge-invariance uniqueness property if
each faithful representation of (𝒢,ℛ) give rise to a faithful representation of the
fixed-point algebra ℬ0. In particular, this always holds for triples (𝒢,ℛ, 𝛾) such
that 𝐶∗(𝒢,ℛ) can be modeled as relative Cuntz-Pimsner algebra, see [3, Sect. 9]
and sources cited there.

4. From relations to Hilbert bimodules

Let us fix a pair (𝒢,ℛ) with a circle gauge action 𝛾 = {𝛾𝜆}𝜆∈𝕋. It follows from
(1) that ℬ1 can be naturally viewed as a Hilbert bimodule over ℬ0, in the sense
introduced in [7, 1.8]. Namely, ℬ1 is a ℬ0-bimodule with bimodule operations
inherited from 𝐶∗(𝒢,ℛ) and additionally is equipped with two ℬ0-valued inner
products

⟨𝑎, 𝑏⟩𝑅 := 𝑎∗𝑏, 𝐿⟨𝑎, 𝑏⟩ := 𝑎𝑏∗

that satisfy the so-called imprimitivtiy condition: 𝑎 ⋅ ⟨𝑏, 𝑐⟩𝑅 = 𝐿⟨𝑎, 𝑏⟩ ⋅ 𝑐 = 𝑎𝑏∗𝑐,
for all 𝑎, 𝑏, 𝑐 ∈ ℬ1. Thus we can consider crossed product ℬ1 ⋊ℬ0 ℤ of ℬ0 by the
Hilbert bimodule ℬ1 constructed in [8], which could be alternatively defined as the
universal 𝐶∗-algebra:

ℬ1 ⋊ℬ0 ℤ = 𝐶∗(𝒢𝛾 ,ℛ𝛾)

where 𝒢𝛾 = ℬ0 ∪ ℬ1 and ℛ𝛾 consists of all algebraic relations in the Hilbert
bimodule (ℬ0,ℬ1).
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Proposition 3. We have a natural embedding ℬ1 ⋊ℬ0 ℤ ↪→ 𝐶∗(𝒢,ℛ) which is an
isomorphism if and only if 𝛾 is semi-saturated. Moreover, if 𝛾 is semi-saturated,
then the following conditions are equivalent:

i) (𝒢,ℛ) possess uniqueness property
ii) (𝒢,ℛ, 𝛾) has gauge-invariance uniqueness property and (𝒢𝛾 ,ℛ𝛾) possess

uniqueness property

Proof. Since the homomorphism ℬ1 ⋊ℬ0 ℤ �→ 𝐶∗(𝒢,ℛ) is gauge-invariant and
injective on ℬ0 it is injective onto the whole ℬ1 ⋊ℬ0 ℤ by [5, 2.9]. The rest, in view
of Proposition 2, is clear. □

The Hilbert bimodule (ℬ0,ℬ1) is an imprimitivity bimodule (called also
Morita-Rieffel equivalence bimodule), see [9], if and only if ℬ∗1ℬ1 = ℬ0 and ℬ1ℬ∗1 =
ℬ0. In general, ℬ∗1ℬ1 and ℬ1ℬ∗1 are non-trivial ideals in ℬ0 and we may treat ℬ1

as a ℬ1ℬ∗1 −ℬ∗1ℬ1-imprimitivity bimodule. This means, cf. [9, Cor. 3.33], that the
induced representation functor

ℎ̂ = ℬ1 -Ind

is a homeomorphism ℎ̂ : ℬ∗1ℬ1 → ℬ1ℬ∗1 between the spectra of ℬ∗1ℬ1 and ℬ1ℬ∗1 .
Treating these spectra as open subsets of the spectrum ℬ̂0 of ℬ0 we may treat ℎ̂

as a partial homeomorphism of ℬ̂0. We shall say that (ℬ̂, ℎ̂) is a partial dynamical

system dual to the bimodule (ℬ0,ℬ1). Partial homeomorphism ℎ̂ is said to be

topologically free if for each 𝑛 ∈ 𝑁 the set of points in ℬ̂0 for which the equality

ℎ̂𝑛(𝑥) = 𝑥 (makes sense and) holds has empty interior.

Theorem 4 (main result). Suppose that the partial homeomorphism ℎ̂ = 𝐵1 -Ind
is topologically free. Then the pair (𝒢𝛾 ,ℛ𝛾) possess uniqueness property and in
particular

i) if (𝒢,ℛ, 𝛾) possess gauge-invariance uniqueness property, then any faithful
representation of (𝒢,ℛ) extends to the faithful representation of ℬ1 ⋊ℬ0 ℤ ⊂
𝐶∗(𝒢,ℛ).

ii) if 𝛾 is semi-saturated and (𝒢,ℛ, 𝛾) possess gauge-invariance uniqueness prop-
erty, then (𝒢,ℛ) possess uniqueness property.

Proof. Apply the main result of [10] and Proposition 3. □

5. Applications to crossed products and Cuntz-Krieger algebras

We show that our main result is a generalization of the so-called isomorphisms
theorem for crossed products by automorphisms (see, for instance, [11, pp. 225,
226] for a brief survey of such results) by applying it to a crossed product by an
endomorphisms which is considered to be one of the most successful constructions
of this sort, see [12] and sources cited there. In particular, we shall use this crossed
product to identify the uniqueness property for Cuntz-Krieger algebras.
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5.1. Crossed products by monomorphisms with hereditary range

Let 𝛼 : 𝒜 → 𝒜 be a monomorphism of a unital 𝐶∗-algebra 𝒜. Let 𝒢 = 𝒜 ∪ {𝑆}
and let ℛ consists of all ∗-algebraic relations in 𝒜 plus the covariance relations

𝑆𝑎𝑆∗ = 𝛼(𝑎), 𝑆∗𝑆 = 1, 𝑎 ∈ 𝒜. (2)

Then 𝐶∗(𝒢,ℛ) ∼= 𝒜 ⋊𝛼 ℕ is the crossed product of 𝒜 by 𝛼, which is equipped
with a semi-saturated circle gauge action: 𝛾𝜆(𝑎) = 𝑎, 𝛾𝜆(𝑆) = 𝜆𝑆, 𝑎 ∈ 𝒜. Let us
additionally assume that 𝛼(𝒜) is a hereditary subalgebra of 𝒜. This is equivalent
to 𝛼(𝒜) = 𝛼(1)𝒜𝛼(1). Then we have 𝑆∗𝒜𝑆 ⊂ 𝒜 since for any 𝑎 ∈ 𝒜 there is 𝑏 ∈ 𝒜
such that 𝛼(𝑏) = 𝛼(1)𝑎𝛼(1) and therefore

𝑆∗𝑎𝑆 = 𝑆∗𝛼(1)𝑎𝛼(1)𝑆 = 𝑆∗𝛼(𝑏)𝑆 = 𝑆∗𝑆𝑏𝑆∗𝑆 = 𝑏 ∈ 𝒜.

Hence on one hand 𝒜 = ℬ0 is the fixed point algebra for 𝛾 and ℬ1 = ℬ0𝑆 is
the first spectral subspace. On the other hand the spectrum of the hereditary

subalgebra 𝛼(𝒜) may be naturally identified with an open subset of𝒜, see, e.g., [13,
Thm. 5.5.5], and then the dual 𝛼̂ : 𝛼(𝒜) → 𝒜 to the isomorphism 𝛼 : 𝒜 → 𝛼(𝒜)
becomes a partial homeomorphism of 𝒜. Under this identification one gets

𝛼̂ = ℬ1 -Ind

and hence if the partial system (𝒜, 𝛼̂) dual to (𝒜, 𝛼) is topologically free, then
(𝒢,ℛ) possess uniqueness property.

5.2. Cuntz-Krieger algebras

Let 𝒢 = {𝑆𝑖 : 𝑖 = 1, . . . , 𝑛}, where 𝑛 ≥ 2, and let ℛ consists of the Cuntz-Krieger
relations

𝑆∗𝑖 𝑆𝑖 =
𝑛∑

𝑗=1

𝐴(𝑖, 𝑗)𝑆𝑗𝑆
∗
𝑗 , 𝑆∗𝑖 𝑆𝑘 = 𝛿𝑖,𝑘𝑆

∗
𝑖 𝑆𝑖, 𝑖, 𝑘 = 1, . . . , 𝑛, (3)

where {𝐴(𝑖, 𝑗)} is a given 𝑛 × 𝑛 zero-one matrix such that every row and every
column of 𝐴 is non-zero, and 𝛿𝑖,𝑗 is Kronecker symbol. Then 𝐶∗(𝒢,ℛ) is the Cuntz-
Krieger algebra 𝒪𝐴 and the celebrated Cuntz-Krieger uniqueness theorem, cf. [14,
Thm. 2.13], states that the pair (𝒢,ℛ) possess uniqueness property if and only if
the so-called condition (I) holds:

(I) the space 𝑋𝐴 := {(𝑥1, 𝑥2, . . . ) ∈ {1, . . . , 𝑛}ℕ : 𝐴(𝑥𝑘, 𝑥𝑘+1) = 1} has no
isolated points (considered with the product topology)

We may recover this result applying our method to the standard circle gauge action
on 𝒪𝐴 determined by equations 𝛾𝜆(𝑆𝑖) = 𝜆𝑆𝑖, 𝑖 = 1, . . . , 𝑛. Indeed, the fixed point
𝐶∗-algebra for 𝛾 coincides with the so-called AF-core

ℱ𝐴 = span{𝑆𝜇𝑆∗𝜈 : ∣𝜇∣ = ∣𝜈∣ = 𝑘, 𝑘 = 1, . . . }
where for a multiindex 𝜇 = (𝑖1, . . . , 𝑖𝑘), with 𝑖𝑗 ∈ 1, . . . , 𝑛, we denote by ∣𝜇∣ the
length 𝑘 of 𝜇 and write 𝑆𝜇 = 𝑆𝑖1𝑆𝑖2 ⋅ ⋅ ⋅𝑆𝑖𝑘 . Moreover, any faithful representation
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of the Cuntz-Krieger relations (3) yields a faithful representation of ℱ𝐴, that is
(𝒢,ℛ, 𝛾) possess gauge-invariance uniqueness property. Following [12] we put

𝑆 :=
∑
𝑖,𝑗

1√
𝑛𝑗

𝑆𝑖𝑃𝑗

where 𝑛𝑗 =
∑𝑛

𝑖=1 𝐴(𝑖, 𝑗) and 𝑃𝑗 = 𝑆𝑗𝑆
∗
𝑗 , 𝑗 = 1, . . . , 𝑛. A routine computation

shows that 𝑆ℱ𝐴𝑆
∗ ⊂ ℱ𝐴, 𝑆

∗ℱ𝐴𝑆 ⊂ ℱ𝐴 and 𝑆∗𝑆 = 1 (𝑆 is an isometry). Hence
the mapping ℱ𝐴 ∋ 𝑎 �→ 𝛼(𝑎) := 𝑆𝑎𝑆∗ ∈ ℱ𝐴 is a monomorphism with a hereditary
range. It is uniquely determined by the formula

𝛼
(
𝑆𝑖2𝜇𝑆

∗
𝑗2𝜈

)
=

1√
𝑛𝑖2𝑛𝑗2

𝑛∑
𝑖,𝑗=1

𝑆𝑖 𝑖2𝜇𝑆
∗
𝑗 𝑗2𝜈 . (4)

From the construction any representation of relations (3) yields a representa-
tion of (ℱ𝐴, 𝛼) as introduced in the previous subsection. Conversely, if 𝑆 satis-
fies (2) where 𝒜 = ℱ𝐴, then one gets representation of (3) by putting 𝑆𝑖 :=∑𝑛

𝑗=1 𝐴(𝑖, 𝑗)
√
𝑛𝑗𝑃𝑖𝑆𝑃𝑗 . Thus we have a natural isomorphism

𝒪𝐴
∼= ℱ𝐴 ⋊𝛼 ℕ

under which the introduced gauge actions coincide. Hence we may identify the
partial dynamical system dual to the Hilbert bimodule (ℬ1,ℬ0) where ℬ0 = ℱ𝐴

and ℬ1 = ℱ𝐴𝑆 with the partial dynamical system (ℱ̂𝐴, 𝛼̂) dual to (ℱ𝐴, 𝛼), as
introduced in the previous subsection.

In order to identify the topological freeness of 𝛼̂ we define 𝜋𝜇 ∈ 𝒜 for any
infinite path 𝜇 = (𝑖1, 𝑖2, . . . ), 𝐴(𝑖𝑗 , 𝑖𝑗+1) = 1, 𝑗 ∈ ℕ, to be the GNS-representation
associated to the pure state 𝜔𝜇 : ℱ𝐴 → ℂ determined by the formula

𝜔𝜇(𝑆𝜈𝑆
∗
𝜂) =

{
1 𝜈 = 𝜂 = (𝜇1, . . . , 𝜇𝑛)

0 otherwise
for ∣𝜈∣ = ∣𝜂∣ = 𝑛. (5)

Using description of the ideal structure in ℱ𝐴 in terms of Bratteli diagrams [15],
similarly as in [10], one can show that representations 𝜋𝜇 form a dense subset of

ℱ̂𝐴 and

𝛼̂(𝜋(𝜇1,𝜇2,𝜇3,... )) = 𝜋(𝜇2,𝜇3,... ), for any (𝜇1, 𝜇2, 𝜇3, . . . ).

In particular, it follows that topological freeness of 𝛼̂ is equivalent to condition (I).
Accordingly

our main result, Theorem 4, when applied to Cuntz-Krieger relations is
equivalent to the Cuntz-Krieger uniqueness theorem.
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