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Questions about the structure

Physical theories are usually created by accumulating some fragments of infor-
mation which at the beginning do not allow to predict the final structures. The
classical mechanics was formulated by Isaac Newton in terms of mass, force, accel-
eration and the three dynamical laws. It was not immediate to see the Lagrangians,
Hamilton equations and the simplectic geometry behind. We cannot guess the re-
action of Newton if he were informed that he was just describing the classical
phase spaces defined by the simplectic manifolds. . .

Quite similarly, Max Planck, Niels Bohr, Louis de Broglie, Erwin Schrödinger
and Werner Heisenberg could not see from the very beginning that the physical
facts which they described would be reduced by Born’s statistical interpretation
to the Hilbert space geometry (as it seems, neither Hilbert could predict that).
Yet, once accepted that the pure states of a quantum system can be represented
by vectors of a complex linear space and the expectation values are just qua-
dratic forms, the Hilbert spaces entered irremediably into the quantum theories.
Together appeared the “density matrices” as the mathematical tools representing
either pure or mixed quantum ensembles. Their role is now so commonly accepted
that its origin is somehow lost in some petrified parts of our subconsciousness:
an obligatory element of knowledge which the best university students (and the
future specialists) learn by heart. However, is it indeed necessary? Can indeed the
interference pictures of particle beams limit the fundamental quantum concepts to
vectors in linear spaces and “density matrices”?
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Quantum logic?

The desire to find some deeper reasons led a group of authors to postulate the ex-
istence of an “intrinsic logic” of quantum phenomena, called the quantum logic [1,
2, 3]. Generalizing the classical ideas, it was understood as the collection 𝑄 of all
statements (informations) about a quantum object, possible to check by elemen-
tary “yes-no measurements”. Following the good traditions, 𝑄 should be endowed
with implication (⇒), and negation 𝑎 → 𝑎′. The implication defines the partial
order in 𝑄 (𝑎 ⇒ 𝑏 reinterpreted as 𝑎 ≤ 𝑏), suggesting the next axioms about the
existence of the lowest upper bound 𝑎 ∨ 𝑏 (“or” of the logic) and the greatest
lower bound 𝑎 ∧ 𝑏 (“and” of the logic) for any 𝑎, 𝑏 ∈ 𝑄. The “negation” was as-
sumed to be involutive, 𝑎′′ ≡ 𝑎, satisfying de Morgan law: (𝑎 ∨ 𝑏)′ ≡ 𝑎′ ∧ 𝑏′ as well
as other axioms granting that 𝑄 is an orthocomplemented lattice [1]. Until now,
the whole structure looked quite traditional. With one exception: in contrast to
the classical measurements, the quantum ones do not commute, which traduces
itself into breaking the distributive law (𝑎 ∨ 𝑏) ∧ 𝑐 ≠ (𝑎 ∧ 𝑐) ∨ (𝑏 ∧ 𝑐) obligatory
in any classical logic. The quantum logic was non-Boolean! An intense search for
an axiom which would generalize the distributive law, admitting both classical
and quantum measurements, in agreement with Birkhoff, von Neumann, Finkel-
stein [1, 2, 3] and thanks to the mathematical studies of Varadarajan [4] convinced
C. Piron to propose the weak modularity as the unifying law. To some surprise,
the subsequent theorems [4, 5] exhibit certain natural completeness: the possible
cases of “quantum logic” are exhausted by the Boolean and Hilbertian models, or
by combinations of both. As pointed out by many authors this gives the theoret-
ical physicists some reasonable confidence that the formalism they develop (with
Hilbert spaces, density matrices, etc.) does not overlook something essential, so
there will be no longer need to think too much about abstract foundations.

However, isn’t this confidence a bit too scholastic? It can be noticed that
the general form of quantum theory, since a long time, is the only element of our
knowledge which does not evolve. While the “quantization problem” is formulated
for the existing (or hypothetical) objects of increasing dimension and flexibility
(loops, strings, gauge fields, submanifolds or pseudo-Riemannian spaces, non-linear
gravitons, etc.), the applied quantum structure is always the same rigid Hilbertian
sphere or density matrix insensitive to the natural geometry of the “quantized”
systems. The danger is that (in spite of all “spin foams”) we shall invest a lot
of effort to describe the relativistic space-times in terms of perfectly symmetric,
“crystalline” forms of Hilbert spaces, like rigid bricks covering a curved highway.
Is there any other option?. . .

Convex geometry

The alternatives arise if one decides to describe the statistical theories in terms
of geometrical instead of logical concepts. What is the natural geometry of the
statistical theory? It should describe the pure or mixed particle ensembles (also



Convex Geometry: A Travel to the Limits of Our Knowledge 255

ensembles of multiparticle systems, including the mesoscopic or macroscopic ob-
jects). Suppose that one is not interested in the total number of the ensemble
individuals, but only in their “average properties”. Two ensembles with the same
statistical averages cannot be distinguished by any statistical experiments: we thus
say that they define the same state. Now consider the set 𝑆 of all states for certain
physical objects. Even in absence of any analytic description, there must exist in
𝑆 some simple empirical geometry. Given any two states 𝑥1, 𝑥2 ∈ 𝑆 (corresponding
to certain ensembles E1, E2) and two numbers 𝑝1, 𝑝2 ≥ 0, 𝑝1 + 𝑝2 = 1, consider a
new ensemble E formed by choosing randomly the objects of E1 and E2 with prob-
abilities 𝑝1 and 𝑝2; its state, denoted 𝑥 = 𝑝1𝑥1 + 𝑝2𝑥2 is the mixture of 𝑥1 and 𝑥2

in proportions 𝑝1, 𝑝2. If in turn both 𝑥1, 𝑥2 are mixtures of 𝑦1, 𝑦2 ∈ 𝑆, then some
more information is needed to determine the contents of 𝑦1 and 𝑦2 in 𝑥. It can be
most simply provided by representing 𝑆 as a subset of a certain affine space Γ, so
that 𝑝1𝑥1 + 𝑝2𝑥2 becomes a linear combination. For any two points 𝑥1, 𝑥2 ∈ 𝑆 all
mixtures 𝑝1𝑥1 + 𝑝2𝑥2 (𝑝1, 𝑝2 ≥ 0, 𝑝1 + 𝑝2 = 1) form then the straight line interval
between 𝑥1 and 𝑥2, contained in 𝑆. Hence, 𝑆 is a convex set [6, 7]. To describe the
limiting transitions, Γ must possess a topology and 𝑆 should be closed in Γ.

The information encoded in the convex structure of 𝑆 might seem poor: it tells
only which states are mixtures of which other states (see Figure 1). Yet it turns
out that it contains all essential information about both, logical and statistical
aspects of quantum theory.
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Figure 1. A convex set in 2D. Supposing that it could represent the
states of some hypothetical ensembles, all border points except the
straight line interval joining 𝑥1 and 𝑦1 would represent the pure states.
All points in the interior are mixed states and do not allow a unique
definition of the pure components. Thus, e.g., the state 𝑧 could be rep-
resented as a mixture of 𝑥1 and 𝑥2 or 𝑦1 and 𝑦2 or in any other way.
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Logic of properties

The boundary of 𝑆 contains some special points 𝑥, which are not nontrivial com-
binations 𝑝1𝑥1+𝑝2𝑥2 with 𝑝1, 𝑝2 > 0 of any two different points 𝑥1 ≠ 𝑥2 of 𝑆. These
points, called extremal, represent the physical ensembles which are not mixtures of
different components, and so are called pure. All subensembles of a pure ensemble
define the same pure state 𝑥, which therefore represents also the quality of each
single ensemble individual.

The convex geometry permits to describe as well more general ensemble prop-
erties which might be attributed to the single individuals. Note that, in general, the
property of ensemble is not shared by the individuals (e.g., a human ensemble can
contain 50% of men and 50% of women, but each individual, in general, has only
one of these qualities). We say that the subset 𝑃 ⊂ 𝑆 defines a property of the single
objects if: 1. it resists mixing, i.e., 𝑦1, 𝑦2 ∈ 𝑃 , 𝑝1, 𝑝2 ≥ 0, 𝑝1+𝑝2 = 1⇒ 𝑝1𝑦1+𝑝2𝑦2 ∈ 𝑃
(meaning that 𝑃 is a convex subset of 𝑆), 2. if the property of mixture is shared
by every mixture components, i.e., 𝑦 ∈ 𝑃 , 𝑦 = 𝑝1𝑦1 + 𝑝2𝑦2, 𝑦1, 𝑦2 ∈ 𝑆, 𝑝1, 𝑝2 > 0 ⇒
𝑦1, 𝑦2 ∈ 𝑃 . The subset 𝑃 ⊂ 𝑆 which satisfies 1. and 2. is called a face of 𝑆. The whole
𝑆 and the empty set ∅ are the improper faces: all other faces are plane fragments
of various dimensionalities on the boundary of 𝑆 (See Figure 2). In particular, each
extremal point of 𝑆 is a one point face. In what follows, we shall be most interested
in the topologically closed faces of 𝑆 representing the “continuous properties” of
the ensemble objects. Further on by faces we shall mean closed faces. Their whole
family P admits a partial ordering ≤ identical with the set theoretical inclusion:
the relation 𝑃1 ≤ 𝑃2 ⇔ 𝑃1 ⊂ 𝑃2 means that the property 𝑃1 ismore restrictive than
𝑃2, or 𝑃1 implies 𝑃2. As easily seen, the intersection of any family of faces is again
a face of 𝑆. Hence, for any two faces 𝑃1, 𝑃2 ⊂ 𝑆 there exists also their smallest up-
per bound, or union 𝑃1∨𝑃2, defined as the intersection of all faces containing both
𝑃1 and 𝑃2. The set P with the partial order ≤ (i.e., implication) and operations
∨, ∧ is thus a complete lattice generalizing the “quantum logic” of the orthodox
quantum mechanics: it might be called the logic of properties. Although it does not
necessarily include negation, but it admits a natural concept of orthogonality [6, 8].

Counters

A natural counterpart of quantum ensembles are the measuring devices and the
simplest such devices are particle counters. By a counter we shall understand
any macroscopic body sensitive (either perfectly or partly) to the presence of
quanta. Our assumption is also, that each counter reacts only to the properties of
each single ensemble individual, without depending on the rest. In mathematical
terms, each counter can be described by a certain functional 𝜙 ∶ 𝑆 → [0,1]. whose
values 𝜙𝑥 for any 𝑥 ∈ 𝑆 mean the fraction of particles in the state 𝑥 detected
by the counter 𝜙. If 𝜙𝑥 = 1, then the counter 𝜙 detects perfectly all 𝑥-particles,
if 0 < 𝜙𝑥 < 1, it overlooks a part, but if 𝜙𝑥 = 0, then 𝜙 is completely blind to
the 𝑥-particles. Moreover, if 𝜙 reacts only to single ensemble individuals, then
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Figure 2. “Faces” on the border of 𝑆 represent properties of the single
ensemble individuals. The picture in perspective permits to see that 𝑃1

and 𝑃2 are not orthogonal.

for any mixed state 𝑥 = 𝑝1𝑥1 + 𝑝2𝑥2 it will detect independently both mixture
components: 𝜙𝑥 = 𝑝1𝜙𝑥1 + 𝑝2𝜙𝑥2, meaning that 𝜙 is a linear functional on 𝑆. We
shall assume, that the values of counters permit to distinguish the different points
𝑥 ∈ 𝑆 and moreover, they induce a physically meaningful topology, in which they
are eo ipso continuous. Each continuous, linear functional 𝜙 taking on 𝑆 the values
0 ≤ 𝜙𝑥 ≤ 1 will be called normal. Mathematically, the counters are, therefore, the
normal functionals. To get their geometric image, assume that the surrounding
affine space Γ ⊃ 𝑆 is spanned by 𝑆. Hence, every linear functional 𝜙 on 𝑆 defines
a unique linear functional on Γ which will be denoted by the same symbol 𝜙. If
𝜙 ≡ const. on 𝑆, then 𝜙 ≡ const. on Γ. If not, then the equations 𝜙𝑥 = 𝑐, (𝑐 ∈ ℝ) split
Γ into a continuum of parallel hyperplanes on which 𝜙 accepts distinct constant
values. Due to the linearity, 𝜙 is completely defined by the pair of hyperplanes
on which it takes the values 0 and 1. If 𝜙 is normal, 𝑆 is contained in the closed
belt of space between both planes. The question arises, how ample is the set of
physical counters? Since no restrictions are evident, we shall assume that each
normal functional represents a particle counter which at least in principle can be
constructed. All distinct ways of counting particles can be thus read from the
convex geometry of 𝑆 [8]. They turn out closely related with the collection of
hyperplanes and those are related with faces. Indeed, the hyperplanes 𝜙 = 1 and
𝜙 = 0 of a counter do not cross the interior of 𝑆, but can “touch” its boundary. As
one can easily show, their common parts with the border ∂𝑆 are two “opposite”
faces (properties) of 𝑆, which awake completely different reactions of the counter:
while detecting all particles on one of them, it ignores completely the particles on
the other. Any two faces 𝑃1, 𝑃2, for which there exists at least one, so sharply
discriminating counter, will be called excluding or orthogonal (𝑃1 ⊥ 𝑃2). The
“logic of properties”, therefore, is a lattice with the relations of inclusion (≤) and
exclusion (⊥) though without a unique ortho-complement (since for any 𝑃 ∈ P ,
amongst all elements orthogonal to 𝑃 no greatest one must exist).
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Detection ratios

Apart from orthogonality, the next geometry element of 𝑆 describes the selectivity
limits of quantum measurements. Given a pair of pure states 𝑥, 𝑦 ∈ 𝑆, consider the
family of all counters 𝜙 detecting unmistakeably all particles of the state 𝑥, i.e.,
𝜙𝑥 = 1. Can they ignore completely the particles of the state 𝑦? In general, the
answer is negative. The following lower bound over the counters 𝜙:

𝑦 ∶ 𝑥 = inf𝜙𝑥=1 𝜙𝑦 (1)

called the “detection ratio” [8], if non-vanishing, describes a minimal fraction of 𝑦-
particles which must infiltrate any experiment programmed to detect the 𝑥-state.
The geometric character of this quantity is defined just by convex structure of 𝑆,
which determines the support planes (see Figure 3). The information contained
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Figure 3. The could be convex set 𝑆 for some hypothetical ensembles.
The parallel support lines 𝜒 = 1 and 𝜒 = 0 represent a counter detecting
all 𝑥-particles, blind to 𝑧′-particles, while the lines 𝜙 = 1 and 𝜙 = 0
correspond to another counter, detecting all 𝑥-particles, but the minimal
possible fraction 𝜙𝑦 = 1

2
of the 𝑦-particles. Hence, the detection ratio

𝑦 ∶ 𝑥 = 1
2
.

in (1) might be significantly weaker if the pure state 𝑥 were not exposed, i.e.,
determined completely as the intersection of 𝑆 and at least one support hyperplane.
Such cases do not occur in the orthodox QM, but belong to the general convex set
geometry (see [9, Fig. 12]).

The orthodox geometry

In the orthodox theory the pure states are represented by vectors in a complex,
linear space (an inspiration from the observed interference patterns) and all mea-
sured expectation values are real, quadratic forms of the state vectors 𝜓 (the con-
sequence of Born’s statistical interpretation). The mixed states are the probability
measures on the manifold of pure states (the projective Hilbert sphere). However,
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since the statistical averages are no more than quadratic forms, the ample classes
of probability measures (interpreted as the prescriptions of forming mixtures) are
physically indistinguishable. The faithful representation of the mixed states as
the equivalence classes of probability measures explains the origin of the “density
matrices” [8].

The elements of the convex geometry provide also an alternative interpreta-
tion of the unitary invariants ∣⟨𝜓,𝜑⟩∣2 called currently the “transition probabili-
ties”. In fact if 𝑆 is the convex set of density matrices in a Hilbert space and if
two pure states are represented as 𝑥 = ∣𝜓⟩⟨𝜓∣ and 𝑦 = ∣𝜑⟩⟨𝜑∣ (∥𝜓∥ = ∥𝜑∥ = 1) then
the elementary lemma shows that

∣𝜑⟩⟨𝜑∣ ∶ ∣𝜓⟩⟨𝜓∣ = ∣⟨𝜓,𝜑⟩∣2 (2)

i.e., the commonly used invariant turns out the detection ratio [8], revealing an
additional sense of the “transition probabilities”. In fact, as once noticed by Peter
Bergman, the deepest picture of a physical theory is obtained not so much by
telling what is possible, but rather by “no go principles”, defining what is ruled
out (e.g., the equivalence principle in General Relativity, or the uncertainty prin-
ciple in QM). One such law emerges from the identity (2). Indeed, ∣⟨𝜓,𝜑⟩∣2 not
only defines the fraction of the 𝜑-particles accepted by the 𝜓-filter, but also the
fundamental impossibility of accepting less! Every physical process which leads
to a certain macroscopic effect for all 𝜓-particles, must lead to the same effect

=1=0
circular

circular

S

Figure 4. Multiple experiments justify the representation of the pho-
ton polarization states in form of the 1-qubit (Bloch) sphere in ℝ3. Once
fixed the image, the geometry of 𝑆 determines uniquely the “transition
probabilities” between any pair of pure states. On the figure: the pair
of support planes 𝜙 = 1 and 𝜙 = 0 illustrates the maximally selective
counter which detects all photons in the vertical polarization ↕, but
none in the horizontal ↔. The intermediate values of 𝜙 on the congru-
ence of parallel planes intersecting 𝑆 define the transition probabilities
from all other states to the vertical one ↕.
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at least for the fraction ∣⟨𝜓,𝜑⟩∣2 of 𝜑-particles. The purely geometric nature of
this law, independent of any analytic expression can be best illustrated by the
Bloch sphere of the photon polarization states (see Figure 4) on which the linear
polarizations occupy a great circle (the “equator”), circular polarizations are the
poles, and the remaining surface points are the elliptic polarizations. The interior
of the sphere collects the mixed polarizations, the center 𝜃 representing the com-
plete polarization chaos. The pair of tangent planes 𝜙 = 1 and 𝜙 = 0 represents a
maximally selective counter detecting all photons in the vertical polarization and
rejecting the orthogonal one. The geometry of the sphere 𝑆 determines immedi-
ately the “transition probabilities” between any two pure states without the need
of using the analytic ∣𝜑⟩⟨𝜑∣ representation (thus, e.g., the detection ratio between
any linear and circular polarization is 1/2).

In case of any non-classical ensembles, the geometry of 𝑆 expresses still more
fundamental law about the indistinguishability of quantum mixtures, the phenom-
enon which appears if 𝑆 is not a simplex. Given a mixed ensemble of non-classical
objects, one cannot, in general, retrospect and find out how the mixture has been
prepared. Two mixtures composed of different collections of pure states can be phys-
ically indistinguishable (see also Figure 1).

In the Bloch sphere of polarization states (Figure 4) this effect is exceptionally
simple for the center 𝜃 which can be represented equivalently as a mixture of any
pair of orthogonal linear polarizations, or two opposite circular polarizations or in
any other way:

𝜃 ≡
1

2
↕ +
1

2
↔

≡
1

2
⤡ +

1

2
⤢

≡
1

2
⤾+

1

2
⤿

≡ ⋯⋯

(3)

Hence, once having the mixed state 𝜃 one cannot go back and identify its pure
components: a kind of statistical no go principle making it quite difficult to check
experimentally some semantic curiosities of the existing theory!

Generalized geometries: are they possible?

The structures reported here contain a certain puzzle. It is basically not strange
that the convex geometry is a language of statistical theories. Yet, it was not ex-
pected that the structure of an arbitrary convex set 𝑆 contains the equivalents of
principal quantum mechanical concepts. Their properties are distorted, but their
meaning is similar. Thus, the logic of properties is an analogue of the quantum
logic [1] and the detection ratios are equivalents of the orthodox “transition prob-
abilities”. In many aspect the Hilbertian schemes are distinguished by their maxi-
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mal regularity and almost crystalline symmetry: to each face of 𝑆, (read subspace),
corresponds a unique ortho-complement, etc. Might this resemble the relation be-
tween the Euclidean and Riemannian geometries? If so then could it happen that
in some circumstances the quantum systems could obey the generalized convex
geometry, dissenting from the Hilbertian structure?

In the intents of finding a synthesis of the lattice (“logical”) and probabilistic
interpretations (since J. von Neumann [2]) the statistical aspects, in general, were
subordinated to the assumed structure of the orthocomplemented lattice, and the
answer of the axiomatic approach was always the same: the quantum mechanics
must be exactly as it is. This belief turned even stronger due to the theorem of
Gleason [10], as well as due to the profound and elegant generalizations of the al-
gebraic approaches of Gel’fand and Naimark [11], Haag and Kastler [12], Pool [13],
Araki [14], Haag [15], and other authors, who never resigned from the Hilbert space
representations. Curiously, until today, these convictions find also a strong sup-
port in the well-known book of G. Mackey [16] in which, however, the axiomatic
approach has some self-annihilating aspects: after a laborious presentation of six
axioms on quantum logic L, the seventh axiom tells flatly that the elements of
the logic are closed vector subspaces of a Hilbert space, thus making all previous
axioms redundant! (a short report on this school of axiomatics, see H. Primas [17,
p. 211]). Some opposition is not so surprising. . .

The first descriptions of QM based exclusively on the convex geometry be-
long to G. Ludwig [18], though he adopted axioms in fact limiting the story to
the orthodox scheme. The hypothesis about the possibility of quantum mixtures
obeying non-Hilbertian geometries was formulated by the present author [6, 8],
then by Davies and Lewis [19]. The hypothetical geometries succeeded to awake
both positive and hostile reactions. Roger Penrose at some moment hoped that the
atypical structures might tell something about the nonlinear graviton [20], though
later on he complained [21] that they give a pure statistical interpretation, without
any analytical entity behind (though inversely, the nonlinear graviton of Penrose
is a pure analytical entity without any statistical interpretation!). T.W. Kibble
and S. Randjbar-Daemi followed [8] describing the classical gravity in interaction
with the generalized quantum structure [22]. Some other authors in philosophy of
physics stay firmly on the ground of the orthodox theory. Nonetheless, they don’t
escape objections. While Putnam considers the orthocomplemented structure of
Hilbert spaces the “truth of quantum mechanics” [23] (taking the side of Mackey?),
John Bell and Bill Hallet [24] adopt the generalized design proposed in [6] to show
the weakness of Putnam’s argument. However, the deformed geometries, if real,
must occur in some concrete physical circumstances. Where should we look for
them?

As it seems, the most natural possibility is to look for nonlinear variants
of quantum mechanics. In fact, already some simple nonlinear cases of the Schrö-
dinger’s equation admit non quadratic, positive, absolutely conservative quantities
which could be used to define the probability densities [8]. The quantum mechanics
with logarithmic non-linearity permits to define consistently the reduction of the
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wave packets [25]. Yet, as shown by Haag and Bannier [26], subsequently also
in [27], the nonlinear wave equations lead to high mobility of quantum states,
breaking the quantum impossibility principles.

The most basic difficulty was noticed by N. Gisin, who had shown that if
the linear evolution law of quantum states were amended by adding some non-
linear operations, then the breaking of the mixture indistinguishability would
make possible to read the instantaneous messages between parts of the entan-
gled particle systems [28, 29]. The simplest case would occur in a variant of EPR
experiment for the sequences of photon pairs in the singlet polarization state
∣Ξ⟩ = 1√

2
(∣ ↕⟩∣ ↔⟩ − ∣ ↔⟩∣ ↕⟩) emitted in two opposite directions. According to

the present day theory the polarization measurements on the left photons can pro-
duce at distance (due to the correlation mechanism) any desired mixture (3) of
the right photons (or vice versa). As long as mixtures (3) are indistinguishable,
this does not transmit information. However, if the observer of the right photon
states could cause their nonlinear evolution, he could distinguish the quantum
mixtures (3), thus reading hidden information and reconstructing without delay
the measurements performed by his distant counterpart on the left EPR photons.
So, is the nonlinear QM impossible?

Perhaps, we should not overestimate the axiomatic approaches. What they
usually tell is that we cannot modify just one element of the theory, while leaving
the whole rest intact. If in the last decade of XIX century some excellent axiomati-
cians tried to formulate reasonable axioms defining the space-time structure, they
would prove beyond any doubt that the space-time must be Galilean! Yet, it is not.
The deviations (in our normal conditions) are very small, but rather important. . .

What can be impossible in QM, is to conserve the orthodox representation
of pure states as the “rays” in a complex Hilbert space, together with the tensor
product formalism, and with the unitary background evolution, but to extend it by
adding some nonlinear evolution operations and to expect that the instantaneous
information transfers will be still blocked. However, the whole deduction might be
already overloaded by too many axioms. If the evolution were extended by some
nonlinear operations, then in the first place, we would loose the Hilbert space
orthogonality together with the trace rules for probabilities even without worrying
about the superluminal messages. . .

Returning to the spin or polarization qubits, the possibilities of generalizing
the Hilbertian structures depends not so much on axioms but rather on precise
knowledge of probabilities. If indeed exactly orthodox, then may be, the qubits
can only rigidly rotate. . .

The problems of systems traditionally described by multi- or infinitely-dimen-
sional Hilbert spaces are more difficult. The questions of Hans Primas, perhaps are
still waiting for a good answer: Does quantum mechanics apply to large molecular
systems?. . . Why do so many stationary states not exist? (see [18, pp. 11 and 12]).
Indeed, even the problem of how to create in practice the one particle states
described by arbitrary wave packets deserves systematic studies [30, 31, 32, 33].
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As recently noticed, the non-linear modifications of quantum dynamics in-
stead of just extending the techniques of the state manipulation might introduce
constrains, with the restricted 𝑆 no longer obeying the Hilbertian geometry [34];
an option which might be worth exploring.

All the attempts to see more freedom in quantum structures need some em-
pirical criteria, which would permit to detect the new geometries if they exist. In
case of classical state structures such criteria were found by John Bell, in form
of Bell inequalities expressing the Boolean geometry of the state mixtures. Their
breaking was the sign that the ensembles are non-classical. The problems of quan-
tum ensembles, e.g., whether they indeed obey the Hilbert space geometry, are
significantly more involved. The initiative of our colleagues [9] to describe them
in terms of “apophatic” (forbidden) properties continues indeed the effort of John
Bell on the new theory level. Some interesting cases might be the “cross sections”
of 𝑆, resembling the “constrained QM” discussed in [34], and the projections (the
collapsed 𝑆 caused by deficiency of observables?). Simultaneously, the mathemat-
ical research presented in [7, 9] is an unexpected school of modesty for all of us,
who believed to understand so well the property of nice objects called the “density
matrices”. Now it turns out that we did not even know the properties of the simple
qutrit! Needless to say, should any of the “forbidden properties” be detected for
any statistical ensemble in some physical conditions, this will be the proof that the
theory is at the new conceptual level. Interesting, what about all that will think
the physicists of XXII century?
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