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Some Non-standard Examples
of Coherent States and Quantization

S. Twareque Ali

Abstract. We look at certain non-standard constructions of coherent states,
viz., over matrix domains, on quaternionic Hilbert spaces and C*-Hilbert
modules and their possible use in quantization. In particular we look at fam-
ilies of coherent states built over Cuntz algebras and suggest applications to
non-commutative spaces. The present considerations might also suggest an
extension of Berezin-Toeplitz and coherent state quantization to quaternionic
Hilbert spaces and Hilbert modules.
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1. Standard coherent states

Coherent states are a much used concept, both physically and mathematically.
Generically, they are obtained from a reproducing kernel subspace (see, for exam-
ple, [1]) of an 𝐿2-space,

ℌ𝐾 ⊂ ℌ = 𝐿2(𝑋,𝜇),

where 𝜇 is a finite measure on the Borel 𝜎-field of a locally compact topological
space 𝑋 . If

Φ0,Φ1, . . . ,Φ𝑛, . . .

is any orthonormal basis of ℌ𝐾 , then the reproducing kernel is given by

𝐾(𝑥, 𝑦) =
∑
𝑘

Φ𝑘(𝑥)Φ𝑘(𝑦) . (1)

Using this fact and taking another Hilbert space 𝔎 of the same dimension as that
of ℌ𝐾 , the non-normalized coherent states are defined as

∣ 𝑥⟩ =
∑
𝑘

𝜓𝑘 Φ𝑘(𝑥), (2)

where 𝜓1, 𝜓2, . . . , 𝜓𝑛, . . . is an orthonormal basis of 𝔎.
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It is then easy to verify that

⟨𝑥 ∣ 𝑦⟩ = 𝐾(𝑥, 𝑦) and

∫
𝑋

∣ 𝑥⟩⟨𝑥 ∣ 𝑑𝜇(𝑥) = 𝐼𝔎 , (3)

the integral converging in the weak operator topology. If, furthermore,

𝐾(𝑥, 𝑥) =
∑
𝑘

∣Φ𝑘(𝑥)∣2 := 𝒩 (𝑥) > 0,

for all 𝑥 ∈ 𝑋 , normalized CS can be defined as:

∣̂ 𝑥⟩ = 𝒩 (𝑥)− 1
2 ∣ 𝑥⟩ ,

which then satisfy the conditions,

∥∣̂ 𝑥⟩∥ = 1 and

∫
𝑋

∣̂ 𝑥⟩⟨̂𝑥 ∣ 𝒩 (𝑥) 𝑑𝜇(𝑥) = 𝐼𝔎 .

These are the physical coherent states.
Berezin-Toeplitz quantization or, coherent state quantization, of functions 𝑓

on the space 𝑋 is given by the operator association (see, for example, [2] and
references cited therein),

𝑓 �−→ 𝑓 =

∫
𝑋

𝑓(𝑥)∣𝑥⟩⟨𝑥∣ 𝑑𝜇(𝑥) , (4)

provided the integral exists in some appropriate sense.
In view of their usefulness and interest in various areas of physics and math-

ematics, it is natural to look for generalizations of the above concept of coherent
states.

One such possibility is to construct analogous objects on a Hilbert 𝐶∗-
module, which is analogous to a Hilbert space, but has an inner product taking
values in a 𝐶∗-algebra. We shall call the resulting vectors module-valued coher-
ent states (MVCS). In simple terms, we shall replace both the set of functions

Φ𝑘(𝑥) and the vectors 𝜓𝑘, in the definition of coherent states in (2) by elements
of Hilbert modules. Another possibility for generalization could be to construct
coherent states on quaternionic Hilbert spaces.

Since the field of complex numbers ℂ is trivially a 𝐶∗-algebra, coherent states
on Hilbert spaces are special cases of MVCS.

2. Module-valued coherent states

The discussion of this section is based mainly on [3]. Consider two unital 𝐶∗-
algebras 𝒜 and ℬ and a Hilbert 𝐶∗-correspondence E from 𝒜 to ℬ. This means
that E is a Hilbert 𝐶∗-module over ℬ, with a left action from 𝒜, i.e., there is a
∗-homomorphism from 𝒜 into ℒ(E), the bounded adjointable operators on E. Let
(𝑋,𝜇) be a finite measure space and consider the set of functions,

𝔽 = {𝐹 : 𝑋 �−→ E ∣ 𝐹 is a strongly measurable function} .
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Then clearly, for any two 𝐹,𝐺 in 𝔽, 𝑥 �−→ ⟨𝐹 (𝑥) ∣ 𝐺(𝑥)⟩E is a strongly measurable
function. Let

𝕳 = {𝐹 ∈ 𝔽 ∣ the function⟨𝐹 (𝑥) ∣ 𝐹 (𝑥)⟩ is Bochner integrable} . (5)

Given a strongly measurable function 𝐹 , a necessary and sufficient condition
for ⟨𝐹 (𝑥) ∣ 𝐹 (𝑥)⟩ to be Bochner integrable is that∫

𝑋

∥⟨𝐹 (𝑥) ∣ 𝐹 (𝑥)⟩E∥ℬ 𝑑𝜇(𝑥) < ∞ .

This immediately shows that 𝕳 is a complex vector space. Also, 𝕳 is an inner
product module over ℬ, where the right multiplication and the inner product
respectively are

(𝐹 ⋅ 𝑏)(𝑥) = 𝐹 (𝑥)𝑏 for all 𝑏 ∈ ℬ, ⟨𝐹 ∣ 𝐺⟩ℌ =
∫
𝑋

⟨𝐹 (𝑥) ∣ 𝐺(𝑥)⟩E 𝑑𝜇(𝑥).

Its completion in the resulting norm ∥𝐹∥ℌ = ∥⟨𝐹 ∣ 𝐹 ⟩ℌ∥
1
2

ℬ is a Hilbert 𝐶
∗-module

over ℬ and can be identified with 𝐿2(𝑋)⊗ E. There is a natural left action of 𝒜
on 𝕳 because E is an 𝒜− ℬ correspondence.

For 𝑒 ∈ E, we define the map ⟨𝑒∣ : E −→ ℬ, by
⟨𝑒∣(𝑓) = ⟨𝑒 ∣ 𝑓⟩E , 𝑓 ∈ E .

This is an adjointable map. We shall denote its adjoint by ∣𝑒⟩. Then ∣𝑒⟩ : ℬ −→ E
has the action

∣𝑒⟩(𝑏) = 𝑒𝑏 , 𝑏 ∈ ℬ ,

so that for 𝑒1, 𝑒2 ∈ E,
∣𝑒1⟩⟨𝑒2∣(𝑓) = 𝑒1⟨𝑒2 ∣ 𝑓⟩E . (6)

Thus formally, one may use the standard bra-ket notation for Hilbert modules as
one does for Hilbert spaces.

Let us choose a set of vectors

𝐹0, 𝐹1, . . . , 𝐹𝑛, . . . ,

(finite or infinite) in the function space 𝕳, which are pointwise defined (for all
𝑥 ∈ 𝑋) and which satisfy the orthogonality relations,∫

𝑋

∣ 𝐹𝑘(𝑥)⟩⟨𝐹ℓ(𝑥) ∣ 𝑑𝜇(𝑥) = 𝐼E 𝛿𝑘ℓ . (7)

We now introduce module-valued coherent states for two separate situations,
highlighting the fact that a Hilbert 𝐶∗-module is a generalization of both a Hilbert
space and a 𝐶∗-algebra. The resulting MVCS depend on an auxiliary object G,
which in the first instance is a Hilbert space and in the second, the Cuntz algebras
𝒪𝑛 or 𝒪∞.

To proceed with the first construction of MVCS let G be a Hilbert space of
the same dimension as the cardinality of the 𝐹𝑘. In G we choose an orthonormal
basis, 𝜙0, 𝜙1, . . . , 𝜙𝑛, . . . . Let H = E⊗G denote the exterior tensor product of E
and G, which is then itself a Hilbert module over ℬ.
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For each 𝑥 ∈ 𝑋 and co-isometry 𝑎 ∈ 𝒜 (i.e., 𝑎𝑎∗ = id𝒜), we define the
vectors,

∣ 𝑥, 𝑎⟩ =
∑
𝑘

𝑎𝐹𝑘(𝑥)⊗ 𝜙𝑘 ∈ H , (8)

assuming of course that the sum converges in the norm of H. We call these vectors
(non-normalized) module-valued coherent states (MVCS).

Proposition 2.1. The MVCS in (8) satisfy the resolution of the identity,∫
𝑋

∣ 𝑥, 𝑎⟩⟨𝑥, 𝑎 ∣ 𝑑𝜇(𝑥) = 𝐼H, (9)

the integral converging in the sense that for any two ℎ1, ℎ2 ∈ H,∫
𝑋

⟨ℎ1 ∣ 𝑥, 𝑎⟩H⟨𝑥, 𝑎 ∣ ℎ2⟩H 𝑑𝜇(𝑥) = ⟨ℎ1 ∣ ℎ2⟩H ,

as a Bochner integral.

This construction may easily be modified to obtain normalized MVCS under
certain conditions. For that, we fix a notation for a certain positive element of ℬ.
Let

𝒩 (𝑥, 𝑎) := ⟨𝑥, 𝑎 ∣ 𝑥, 𝑎⟩H =
∑
𝑘

⟨𝐹𝑘(𝑥) ∣ 𝑎∗𝑎𝐹𝑘(𝑥)⟩E . (10)

Proposition 2.2. If 𝜙1, 𝜙2, . . . is an orthonormal basis for G and 𝑎 is a unitary
element of 𝒜 and 𝒩 (𝑥, id𝒜) is invertible, then the MVCS constructed above can

be normalized, i.e., we can construct MVCS ∣̂ 𝑥, 𝑎⟩ =∣ 𝑥, 𝑎⟩ ⊗ 𝒩 (𝑥, id𝒜)− 1
2 which

along with (7) also satisfy

⟨̂𝑥, 𝑎 ∣ 𝑥, 𝑎⟩ = idℬ ⊗ id𝒞 . (11)

The well-known vector coherent states [4, 5] (or multi-component coherent
states), used in nuclear and atomic physics, can all be obtained from module-
valued coherent states using the above construction. Furthermore, one can define
adjointable operators on the Hilbert module H following a Berezin-Toeplitz type
prescription as in (4):

𝑓 −→ 𝑓 =

∫
𝑋

𝑓(𝑥)∣𝑥, id𝒜⟩⟨𝑥, id𝒜∣ 𝑑𝜇(𝑥) ,
and study the resulting quantization problem.

3. MVCS from certain Cuntz algebras

We now construct MVCS using the notion of Cuntz algebras [6] (see also [7]).
Let 𝑆1, 𝑆2, . . . be isometries on a complex separable Hilbert space 𝒦 (necessarily
infinite-dimensional) such that

∞∑
𝑗=1

𝑆𝑗𝑆
∗
𝑗 = 𝐼𝒦
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where the sum converges in the strong operator topology of ℬ(𝒦). Multiplying
both sides by 𝑆∗𝑖 , we get

𝑆∗𝑖 + 𝑆∗𝑖
∑
𝑗 ∕=𝑖

𝑆𝑗𝑆
∗
𝑗 = 𝑆∗𝑖

so that

𝑆∗𝑖
∑
𝑗 ∕=𝑖

𝑆𝑗𝑆
∗
𝑗 = 0 .

But
∑

𝑗 ∕=𝑖 𝑆𝑗𝑆
∗
𝑗 is the projection onto the closure of the span of the ranges of 𝑆𝑗

for 𝑗 ∕= 𝑖. So the range of 𝑆𝑖 is orthogonal to the range of 𝑆𝑗 for all 𝑗 ∕= 𝑖. This is
a representation of the Cuntz algebra 𝒪∞ with infinitely many generators.

We take G to be the 𝐶∗-algebra generated by the isometries 𝑆1, 𝑆2, . . .. The
coherent states are defined as

∣𝑥, 𝑎⟩ =
( ∞∑
𝑘=1

𝑎 ⋅ 𝐹𝑘(𝑥)⊗ 𝑆𝑘

)
(퓝 (𝑥)−1/2 ⊗ 𝐼). (12)

An explicit example of a Cuntz algebra is as follows. Let

𝜔 : ℕ>0 −→ ℕ>0 × ℕ>0

be a bijection (ℕ>0 denoting the set of positive integers). Consider a Hilbert space
ℌ and let {𝜙𝑛}𝑛∈ℕ>0 be an orthonormal basis of it. Writing 𝜔(𝑛) = (𝑘, ℓ) we define
a re-transcription of this basis in the manner

𝜓𝑘ℓ := 𝜙𝑛 = 𝜓𝜔(𝑛) , 𝑘, 𝑛, ℓ ∈ ℕ>0 . (13)

The 𝐶∗-algebra 𝒪∞, generated by these isometries, is then a Cuntz algebra.
The MVCS obtained using these 𝑆𝑘 in (12) have an immediate physical ap-

plication. We consider the non-normalized version (with 𝑎 set to the unit element
of 𝒜),

∣𝑥⟩ =
∞∑
𝑘=1

𝐹𝑘(𝑥) ⊗ 𝑆𝑘.

Let

𝑋 = ℂ and E = 𝐿2

(
ℂ,

𝑒−∣𝑧∣
2

2𝜋
𝑑𝑥 𝑑𝑦

)
, 𝑧 =

1√
2
(𝑥 + 𝑖𝑦) ,

and let 𝐹𝑘 : ℂ −→ ℂ be the functions,

𝐹𝑘(𝑧) =
𝑧𝑘−1√
(𝑘 − 1)! , 𝑘 = 1, 2, 3, . . . .

Next let 𝜓𝑘ℓ be the complex Hermite polynomials,

𝜓𝑘ℓ(𝑧, 𝑧) =
(−1)𝑛+𝑘−2√
(ℓ− 1)!(𝑘 − 1)! 𝑒

∣𝑧∣2∂ℓ−1
𝑧 ∂𝑘−1

𝑧 𝑒−∣𝑧∣
2

, 𝑘, ℓ = 1, 2, 3, . . . , (14)
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which form an orthonormal basis of 𝐿2
(
ℂ, 𝑒−∣𝑧∣

2

2𝜋 𝑑𝑥 𝑑𝑦
)
. The module-valued

coherent states now become

∣𝑧⟩ =
∞∑
𝑘=1

𝑧𝑘−1√
(𝑘 − 1)!𝑆𝑘 . (15)

Let 𝜙𝑛 be as in (13), consider the vectors

𝜉𝑧′, 𝑛 =
𝑧′𝑛−1√
(𝑛− 1)!𝜙𝑛 .

Then the vectors (in 𝐿2(ℂ, 𝑒−∣𝑧∣
2

2𝜋 𝑑𝑥 𝑑𝑦)),

∣𝑧, 𝑧′, 𝑛⟩ =
∞∑
𝑘=1

𝑧𝑘−1√
(𝑘 − 1)!𝑆𝑘𝜉𝑧

′, 𝑛 = 𝑧′𝑛−1
∞∑
𝑘=1

𝑧𝑘−1√
(𝑘 − 1)! (𝑛− 1)! 𝜓𝑘𝑛 , (16)

(ℓ = 1, 2, 3, . . . ,∞,) are just the non-normalized versions of the infinite component
vector CS found in [5] and associated to the energy levels (the so-called Landau
levels) of an electron in a constant magnetic field.

4. Matrix-valued and quaternionic MVCS

In [4] analytic vector coherent states, built using powers of matrices fromℳ𝑁 (ℂ),
were defined:

∣ ℨ, 𝑖⟩ =
∑
𝑘

ℨ𝑘√
𝑐𝑘

𝜒𝑖 ⊗Φ𝑘 , ℨ ∈ ℳ𝑁 (ℂ) , (17)

where the 𝑐𝑘 are the numbers,

𝑐𝑘 =
1

(𝑘 + 1)(𝑘 + 2)

⎡⎣𝑘+1∏
𝑗=1

(𝑁 + 𝑗)−
𝑘+1∏
𝑗=1

(𝑁 − 𝑗)

⎤⎦ , 𝑘 = 0, 1, 2, . . . ,

Let 𝑧𝑖𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑁 be the matrix elements of ℨ. Then, writing

𝐹𝑘(ℨ) =
ℨ𝑘√
𝑐𝑘

and 𝑧𝑖𝑗 = 𝑥𝑖𝑗 + 𝑖𝑦𝑖𝑗 ,

it can be shown that,∫
ℳ𝑁 (ℂ)

𝐹𝑘(ℨ)𝐹ℓ(ℨ)
∗ 𝑑𝜇(ℨ,ℨ∗) = 𝛿𝑘ℓ𝕀𝑁 ,

where

𝑑𝜇(ℨ,ℨ∗) =
𝑒−Tr[ℨ∗ℨ]

(2𝜋)
𝑁

𝑁∏
𝑖,𝑗=1

𝑑𝑥𝑖𝑗 𝑑𝑦𝑖𝑗 .

Using this fact, it is easy to prove the resolution of identity,

𝑁∑
𝑖=1

∫
ℳ𝑁 (ℂ)

∣ ℨ, 𝑖⟩⟨ℨ, 𝑖 ∣ 𝑑𝜇(ℨ,ℨ∗) = 𝕀𝑁 ⊗ 𝐼ℌK .
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To construct the related MVCS, we take E = ℬ = ℳ𝑁 (ℂ). The module
𝕳, containing the functions 𝐹𝑘, then consists of functions from ℳ𝑁(ℂ) to itself.
Considering ℌK as a module over ℂ, we may define MVCS inH =ℳ𝑁 (ℂ)⊗ℌK as

∣ ℨ, 𝑎⟩ =
∑
𝑘

𝑎𝐹𝑘(ℨ)⊗Φ𝑘 =
∑
𝑘

𝑎
ℨ𝑘√
𝑐𝑘

⊗Φ𝑘 , (18)

where 𝑎 is a unitary element in ℳ𝑁 (ℂ). These then satisfy the resolution of the
identity, ∫

ℳ𝑁 (ℂ)

∣ ℨ, 𝑎⟩⟨ℨ, 𝑎 ∣ 𝑑𝜇(ℨ,ℨ∗) = 𝐼H . (19)

In the particular case when 𝑁 = 2 the set ℳ𝑁(ℂ), of all complex 2 × 2
matrices, can be identified with the space of complex quaternions. The resulting
MVCS may then be called complex quaternionic MVCS.

Although a Hilbert space over the quaternions is not a Hilbert module, we
may still build coherent states in such a space using the above construction on
Hilbert modules. Such coherent states also have interesting physical applications
[8]. Suppose that 𝕳quat is a Hilbert space over the quaternions. (Multiplication
by elements of ℍ from the right is assumed, i.e., if Φ ∈ 𝕳quat and 𝔮 ∈ ℍ, then
Φ𝔮 ∈ 𝕳quat). The well-known canonical coherent states [1] may then be readily
generalized to quaternionic coherent states over𝕳quat. Indeed take an orthonormal

basis {Ψquat
𝑛 }∞𝑛=0 in 𝕳quat and define the vectors

∣ 𝔮⟩ = 𝑒−
𝑟2

2

∞∑
𝑛=0

Ψquat
𝑛

𝔮𝑛√
𝑛!

∈ 𝕳quat, 𝔮 ∈ ℍ, ⟨𝔮 ∣ 𝔮⟩ℌquat = 𝕀2 . (20)

They satisfy the resolution of the identity,∫
ℍ

∣ 𝔮⟩⟨𝔮 ∣ 𝑑𝜈(𝔮, 𝔮†) = 𝐼ℌquat , 𝑑𝜈(𝔮, 𝔮†) =
1

4𝜋2
𝑟𝑑𝑟 𝑑𝜉 sin 𝜃𝑑𝜃 𝑑𝜙 . (21)

In [8] these coherent states were obtained using a group theoretical argument. Here
they appear as a special case of our more general construction.

5. Some possible applications

We end this discussion by mentioning some possible applications of the above
general constructions of non-standard families of coherent states.

∙ Coherent states are naturally associated to positive definite kernels [1], com-
ing from the reproducing kernel Hilbert spaces used to build them. It would
be interesting to study such kernels for the MVCS and the coherent states
on quaternionic Hilbert spaces. Then there would also be related positive
operator-valued measures and a Naimark type dilation theorem. One could
also study subnormal operators in this context.

∙ As already mentioned, a Berezin-Toeplitz type quantization on Hilbert mod-
ules would be a natural problem to study.
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∙ Module-valued coherent states have been used to define localization on non-
commutative spaces [3], which is another direction for further investigation.
Indeed, it is in this direction, where standard quantum mechanics might not
be readily applicable, that we see greater possibility of application of this
general concept.
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