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Abstract. A fundamental approach to quantum mechanics is based on the
unitary representations of the group of diffeomorphisms of physical space
(and correspondingly, self-adjoint representations of a local current algebra).
From these, various classes of quantum configuration spaces arise naturally, as
well as the usual exchange statistics for point particles in spatial dimensions
𝑑 ≥ 3, induced by representations of the symmetric group. For 𝑑 = 2, this ap-
proach led to an early prediction of intermediate or “anyon” statistics induced
by unitary representations of the braid group. I review these ideas, and dis-
cuss briefly some analogous possibilities for infinite-dimensional configuration
spaces, including anyonic statistics for extended objects in three-dimensional
space.
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1. Introduction

It is remarkable how slowly physicists gained insight into exotic possibilities for
the statistics of quantum particles. Bose-Einstein and Fermi-Dirac statistics, cor-
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responding respectively to the trivial and alternating one-dimensional represen-
tations of the symmetric group 𝑆𝑁 , have been known of course since the 1920s.
During the 1950s and 1960s, quantum theories were studied obeying “parastatis-
tics,” associated with various families of higher-dimensional representations of 𝑆𝑁
[1, 2]. During this period, Aharonov and Bohm drew attention to what can now be
understand as topological effects in quantum mechanics, associated with charged
particles circling (but not entering) regions of magnetic flux [3]. In 1971, Laidlaw
and DeWitt explicitly connected the topology of 𝑁 -particle configuration spaces
in R3 with the familiar possibilities of Bose and Fermi statistics [4]. But the first
clear suggestion of the possibility of intermediate statistics for indistinguishable
particles in R2 did not come until a 1977 paper by Leinaas and Myrheim [5],
fully half a century after the exchange statistics of bosons and fermions had be-
come standard in quantum mechanics – even though the idea can be obtained and
expressed in elementary ways.

An early, independent prediction of such intermediate statistics in the plane
came from the study by Menikoff, Sharp, and myself of representations of a cer-
tain local current algebra for quantum mechanics, and the associated infinite-
dimensional group [6, 7]. This group is the natural semidirect product of the
additive group 𝒟 = 𝐶∞0 (𝑀) of compactly-supported, real-valued 𝐶∞ scalar func-
tions on the spatial manifold 𝑀 , with the group 𝒦 = Diff0(𝑀) of compactly-
supported 𝐶∞ diffeomorphisms of 𝑀 under composition (where, in the case at
hand, 𝑀 = R2). Particles satisfying intermediate statistics were subsequently
termed “anyons” by Wilczek [8, 9], as wave functions can be multiplied by a fixed
complex number of modulus one – exp 𝑖𝜃, for “any” phase 0 ≤ 𝜃 < 2𝜋 – as a
consequence of the exchange of indistinguishable particles through a single coun-
terclockwise winding in the plane.

Anyons are associated with the equivariance of wave functions under one-
dimensional representations of the braid group 𝐵𝑁 [10, 11]. Their description fits
nicely into the framework of braided tensor products developed by Majid, and
when exp 𝑖𝜃 is a root of unity, generalized exclusion principles occur [12]. Higher-
dimensional braid group representations likewise describe possible quantum parti-
cle systems in two-dimensional space [13]; such particles or excitations have been
termed “nonabelian anyons” or “plektons.”

These ideas have found numerous applications in physics, ranging from the
theory of the quantum Hall effect to high-𝑇𝑐 superconductivity to quantum com-
puting; for a recent, extensive discussion focusing on the latter, see Nayak et
al. [14].

Recently attention has been drawn to possibilities for exotic statistics as-
sociated with configurations of extended objects. For example, Niemi discusses
anyonic statistics that can occur for “leapfrogging” vortex rings, deriving this pos-
sibility in an elementary way that suggests to Niemi that it is generic [15], and
providing inspiration for the present discussion. Here, I hope to indicate how such
possibilities for the exotic statistics of extended objects arise naturally from the
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diffeomorphsim group approach to quantum mechanics. With relatively few equa-
tions, I shall survey some of the key ideas in this approach, unifying in a way the
discussion of extended configuration spaces with that of exotic statistics. More
detail about some of these ideas may be found in the references [16, 17, 18],

Section 2 offers a general description of representations of the semidirect
product group 𝒟×𝒦 modeled on various classes of configuration spaces. Section 3
highlights induced representations and corresponding 1-cocycles in the 𝑁 -particle
case. Finally Section 4 indicates briefly how these ideas are generalized to ex-
tended objects, including configurations of loops and tori. Possible applications
are to those domains of quantum physics where topologically nontrivial objects
are fundamental, such as loops, ribbons, or rings of vorticity, configurations of
magnetic flux, quantized strings, geons, and so forth.

2. Diffeomorphism group representations and quantum
configuration spaces

Let 𝑀 be the manifold of physical space (assumed to be smooth, connected, sep-
arable, locally compact, and 𝜎-compact), and let x denote a general point in 𝑀 .
The support of a diffeomorphism 𝜙 : 𝑀 → 𝑀 is defined to be the intersection
of all closed sets outside of which 𝜙(x) ≡ x. The set of compactly supported dif-
feomorphisms 𝒦 of 𝑀 forms a group under composition: to be precise, we define
𝜙1𝜙2 = 𝜙2 ∘ 𝜙1, where ∘ denotes composition. Then 𝒦 is an infinite-dimensional
topological group in the topology of uniform convergence in all derivatives on com-
pact sets. Similarly, 𝒟 is an infinite-dimensional topological group under addition,
endowed with the topology of uniform convergence in all derivatives on compact
sets. The semidirect product 𝐺 = 𝒟 ×𝒦 is defined by the group law

(𝑓1, 𝜙1)(𝑓2, 𝜙2) = (𝑓1 + 𝑓2 ∘ 𝜙1, 𝜙2 ∘ 𝜙1) . (1)

In an important sense, 𝐺 may be considered a fundamental symmetry group
of physical space for the purpose of defining the kinematics of quantum mechanics.
It is a local symmetry group, in that given any fixed compact region 𝐾 ⊂ 𝑀 , we
have a closed subgroup 𝒟𝐾 ⊂ 𝒟 of functions supported in 𝐾 (i.e., vanishing
outside 𝐾), a closed subgroup 𝒦𝐾 of diffeomorphisms having support in 𝐾, and
the semidirect product 𝐺𝐾 = 𝒟𝐾 ×𝒦𝐾 which is a closed subgroup of 𝐺 = 𝒟×𝒦.

The group 𝐺 is obtained by exponentiating the singular local current alge-
bra proposed in 1968 by Dashen and Sharp [19], interpreted as a Lie algebra of
operator-valued distributions [20]. This algebra, in turn, can be obtained formally
from canonical creation and annihilation fields. The inequivalent, continuous uni-
tary representations of 𝐺 then correspond to distinct quantum systems, infinite
as well as finite, so that their classification and interpretation becomes of cen-
tral physical interest [21, 22]. A consequence is that one can describe – and, in
fact, predict – exotic particle statistics as well as topological quantum effects, in
a mathematically satisfying way. Let us see briefly how this works.
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Let 𝑓 ∈ 𝒟 and 𝜙 ∈ 𝒦, for a particular spatial manifold 𝑀 . A very general
unitary representation of the semidirect product is given by the equations,

(𝛾) = exp 𝑖⟨𝛾, 𝑓⟩Ψ(𝛾) a.e. (𝜇) ,

[𝑉 (𝜙)Ψ](𝛾) = 𝜒𝜙(𝛾)Ψ(𝜙𝛾)

√
𝑑𝜇𝜙
𝑑𝜇
(𝛾) a.e. (𝜇) ,

(2)

which we shall now spend a little time interpreting and discussing.
In (2), the variable 𝛾 ranges over elements of a quantum configuration space Δ

that one has defined (see below). The first equation requires that we have identified
a sense in which 𝛾 also acts as a continuous real-valued linear functional on 𝒟
(i.e., as a distribution over 𝒟). The value of the distribution 𝛾 at 𝑓 ∈ 𝒟 is denoted
⟨𝛾, 𝑓⟩ ∈ R. That is, the elements of Δ are somehow (see below) identified with some
of the elements of the dual space 𝒟 ′. The second equation presupposes a natural,
𝜇-measurable group action of the diffeomorphism group 𝒦 = Diff0(𝑀) on Δ,
denoted by (𝜙, 𝛾)→ 𝜙𝛾, where 𝜇 is a measure on Δ having the important technical
property of quasiinvariance under this group action. To be precise, this is actually
a right group action, so that [𝜙1𝜙2]𝛾 = 𝜙2(𝜙1𝛾). Quasiinvariance means that for
all 𝜙 ∈ 𝐺, the transformed measure 𝜇𝜙 is absolutely continuous with respect to 𝜇.
This implies the existence of the Radon-Nikodym derivative [𝑑𝜇𝜙/𝑑𝜇](𝛾) almost
everywhere (a.e.) – i.e., outside of 𝜇-measure zero sets.

Of course, to have such a measure 𝜇, Δ must be a measurable space, endowed
with a 𝜎-algebra ℬΔ of “measurable” subsets which is closed under countable
unions, countable intersections, and complements. We shall also need ⟨𝛾, 𝑓⟩ to be
a measurable function of 𝛾, for all 𝑓 ∈ 𝒟.

Now, in both equations (2), Ψ belongs to a Hilbert space ℋ, denoted
𝐿2
𝑑𝜇(Δ,𝒲) , and defined to be the space of 𝜇-measurable functions Ψ(𝛾) on Δ,
square-integrable with respect to 𝜇, taking values in a complex inner product
space 𝒲 . The inner product in ℋ is given by

(Φ,Ψ) =

∫
Δ

⟨Φ(𝛾),Ψ(𝛾)⟩𝒲 𝑑𝜇(𝛾) , (3)

where ⟨ , ⟩𝒲 denotes the inner product in 𝒲 . When 𝒲 = ℂ (the complex num-
bers), equation (3) becomes simply (Φ,Ψ) =

∫
Δ Φ(𝛾)Ψ(𝛾) 𝑑𝜇(𝛾); but when 𝒲 is

a higher-dimensional space, Ψ may have (finitely or infinitely many) components.
Finally, 𝜒 is a measurable, unitary 1-cocycle. This means that (for each 𝜙 ∈

𝒦) 𝜒𝜙 is a measurable function of 𝛾 ∈ Δ taking values in the group of unitary
operators on 𝒲 ; and, furthermore, satisfying for each 𝜙1, 𝜙2 ∈ 𝒦 the cocycle
equation,

𝜒𝜙1𝜙2(𝛾) = 𝜒𝜙1(𝛾)𝜒𝜙2(𝜙1𝛾) a. e. (𝜇) . (4)

Note that the system of Radon-Nikodym derivatives 𝛼𝜙(𝛾) = [𝑑𝜇𝜙/𝑑𝜇](𝛾) is a

measurable, positive real-valued cocycle, as is also 𝛼1/2. Let us remark that the
failure sets for cocycle equations here may actually depend on 𝜙1 and 𝜙2 in such
fashion that there is no measure zero set outside of which the equation holds for
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every pair of diffeomorphisms. The factor 𝛼1/2 in equation (2) is precisely what
is needed to ensure that the representation is unitary; indeed, the fact that 𝑉 (𝜙)
preserves the inner product in ℋ is demonstrated simply by making a change of
variable in calculating (𝑉 (𝜙)Φ, 𝑉 (𝜙)Ψ) using equations (2) and (3). Furthermore
the action of the cocycle 𝜒𝜙 in equation(2), being unitary in 𝒲 , does not alter the
value of this inner product.

Unitarily inequivalent representations of 𝐺 are now to be associated with
inequivalent measures 𝜇, and (for equivalent measures) with inequivalent (nonco-
homologous) cocycles 𝜒.

The representation theory of the diffeomorphism group specified by the sec-
ond equation in (2), viewed in this way, thus incorporates and unifies two features:
(1) the class of possible quantum configuration spaces Δ equipped with quasiin-
variant measures, describing the kinds of configurations for which there exists a
consistent quantum theory on 𝑀 (i.e., a consistent quantization of some classi-
cal motion in 𝑀), and (2) the 1-cocycles with respect to the action of the group
Diff0(𝑀) on Δ, describing the possible quantum statistics of such configurations
(in the generalized sense of statistics that includes exotic statistics).

Let us close this section by mentioning briefly some of the approaches to
constructing configuration spaces that are pertinent to this description. More dis-
cussion of some of these may be found in earlier papers and the references therein
[18, 23].

1. Systems of 𝑁 indistinguishable point particles in 𝑀 correspond to configura-
tion spaces Γ(𝑁) of finite (𝑁 -element) subsets of𝑀 . When𝑀 is noncompact,
systems of infinitely many such point particles are described by configura-
tions which are countably infinite but locally finite subsets of 𝑀 , defining
the space Γ(∞). When 𝑀 = R𝑑, this is the usual configuration space for
statistical mechanics [24, 25, 26, 27]. Of course, diffeomorphisms of𝑀 act on
subsets of 𝑀 in the obvious way; they do not create or destroy particles, but
move them around in 𝑀 .

2. General configuration spaces may be defined as orbits or unions of orbits
(under the diffeomorphism group action) in the space 𝒟 ′ of distributions
over 𝑀 (for 𝑀 = R𝑑, one also has the possibility of considering tempered
distributions). Particle configurations, in particular, are associated with linear
combinations of evaluation functionals (𝛿-functions) in this space. Coefficients
of 𝛿-functions may be interpreted as particle masses, allowing configurations
of distinguishable as well as indistinguishable particles to be described in
this way. Here diffeomorphisms of 𝑀 act on 𝒟 as specified by the semidirect
product law in 𝐺, and on distributions by the dual action [20].

3. Letting 𝑁 be a manifold (typically of lower dimension than 𝑀), a class of
configuration spaces may be constructed as spaces of (not necessarily infin-
itely differentiable) embeddings (or, more generally, immersions) of 𝑁 in 𝑀 ;
let us write such a configuration as 𝛽 : 𝑁 → 𝑀 . For example, with 𝑁 = 𝑆1,
we have configuration spaces of loops in 𝑀 .
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Such embeddings or immersions may be parametrized (so that the map
𝛽 itself is the configuration), or unparametrized (so that the image set [𝛽]
of 𝛽 is the configuration; then 𝛽1 ∼ 𝛽2 if they are related by a diffeomor-
phism of 𝑁). For 𝑁 = 𝑆1, we thus have the possibility of parametrized or
unparametrized loops. If 𝑀 is three-dimensional, we also have distinct con-
figuration spaces for different kinds of knots. A prerequisite for the existence
of measures on such spaces that are quasiinvariant under (𝐶∞) diffeomor-
phisms of 𝑀 seems to be that the continuity class of 𝛽 be fixed at a finite
value. To the best of my knowledge, this theory is still incomplete.

4. General configuration spaces may be defined as spaces of closed subsets of
𝑀 , as proposed and developed by Ismagilov; see [28] and references therein.
Note that unparametrized embeddings or immersions of 𝑁 in 𝑀 are special
cases of such closed subsets, while parametrized embeddings or immersions
are not.

5. Still more general configuration spaces may be defined as spaces of count-
able subsets of 𝑀 (without imposing the condition of local finiteness). This
generalizes Γ(∞), in that it allows for infinite-point configurations with accu-
mulation points. It also generalizes Ismagilov’s approach, in that (𝑀 being
separable) a closed subset can be recovered as the closure of many distinct
countable subsets (see [29] and references therein). Parametrized configura-
tions require consideration of ordered countable subsets.

6. Consideration of the coadjoint representation of 𝒦, or of the semidirect prod-
uct group 𝐺 = 𝒟×𝒦, suggests that one construct configuration spaces from
the dual space to the corresponding (infinite-dimensional) Lie algebra – i.e.,
the dual space to the current algebra of compactly-supported scalar func-
tions and vector fields on 𝑀 . Then one needs to introduce a “polarization”
(in the spirit of geometric quantization) in the corresponding coadjoint orbit
or class of orbits, which amounts to selecting certain coordinates as “position-
like” and others as “momentum-like” – with the former defining the quantum
configurations. The additional (symplectic) structure on coadjoint orbits pro-
vides a systematic way to obtain cocycles in this context.

7. Finite or countably infinite subsets of bundles over 𝑀 provide another ap-
proach to configuration spaces. For example, returning to configuration spaces
in 𝒟 ′, derivatives of 𝛿-functions (including higher derivatives) are perfectly
satisfactory configurations, and lead to quantum theories of point-like dipoles,
quadrupoles, etc. [30]. However, these configurations belong not to 𝑀 itself,
but to the jet bundle over 𝑀 , to which the action of diffeomorphisms on 𝑀
lifts naturally.

8. Finally, in the spirit of the approach via bundles over𝑀 , there is a physically
important generalization to what has been termed “marked configuration
spaces.” Here one identifies a compact manifold 𝑆 describing the “internal
degrees of freedom” of a particle, and a compact Lie group 𝐿 that acts on
𝑆. One then associates to each point in an ordinary configuration a value or
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“mark” in 𝑆 [31, 32]. The local symmetry group itself can be correspondingly
enlarged to include compactly supported 𝐶∞ mappings from 𝑀 to 𝐿 under
the pointwise Lie group operation, and/or to include bundle diffeomorphisms
of 𝑀 × 𝑆.

Each of these methods of characterizing quantum configuration spaces has some
significant literature that develops it, and in some instances is associated with
a point of view about quantization or about quantum mechanics. The diffeomor-
phism group approach helps us understand these distinct but overlapping methods
as techniques for the construction of classes of unitary group representations em-
bodying the local symmetry of physical space in the quantum kinematics.

3. Induced representations and particle statistics

Next let us consider briefly the examples of Bose statistics, Fermi statistics, and
parastatistics for 𝑁 indistinguishable particles in R𝑑, 𝑑 ≥ 2, and of anyonic sta-
tistics for 𝑁 (distinguishable or) indistinguishable particles in R2.

The configuration space Γ(𝑁) is the set of𝑁 -point subsets ofR𝑑; we write 𝛾 =
{x1, . . . ,x𝑁} ∈ Γ(𝑁). The space Γ(𝑁) is sometimes written in the more complicated
way [R𝑑𝑁 -𝐷]/𝑆𝑁 ; where R

𝑑𝑁 is the set of ordered 𝑁 -tuples (x1, . . . ,x𝑁 ) of points
in R𝑑, 𝐷 is the “diagonal” set of 𝑁 -tuples for which x𝑖 = x𝑗 for some 𝑖 ∕= 𝑗,

and 𝑆𝑁 is the symmetric group for 𝑁 objects. Thus Γ(𝑁) is the set of ordered
𝑁 -tuples without repeated points, modulo all permutations of the values of the
points. A diffeomorphism 𝜙 acts on Γ(𝑁) by (the right action) 𝛾 = {x1, . . . ,x𝑁} →
𝜙𝛾 = {𝜙(x1), . . . , 𝜙(x𝑁 )}.

Note that for 𝑑 ≥ 2, Γ(𝑁) is multiply connected – indeed, any continuous path
in Γ(𝑁) that begins at a configuration 𝛾0 and non trivially permutes the locations
of the points in 𝛾0 forms a closed loop in the configuration space, based at 𝛾0, that
cannot be continuously contracted to 𝛾0.

First let us consider 𝑑 ≥ 3. The fundamental group 𝜋1(Γ
(𝑁)), which is the

group of distinct homotopy classes of such loops (under composition), is then just
isomorphic to 𝑆𝑁 , according to the particular permutation of the locations of the
points in 𝛾0 implemented by a loop based there. The universal covering space Γ̃(𝑁)

is then the space of ordered 𝑁 -tuples without repeating points; i.e., Γ̃(𝑁) = [R𝑑𝑁 -

𝐷], and we shall write 𝛾 = (x1, . . . ,x𝑁 ) ∈ Γ̃(𝑁). Then we have the projection

𝑝 : Γ̃(𝑁) → Γ(𝑁) from the universal covering space to the base space, given by
𝑝(x1, . . . ,x𝑁 ) = {x1, . . . ,x𝑁}; i.e., 𝑝 tells us to “forget the ordering.” There are,
of course, 𝑁 ! sheets in Γ̃(𝑁) (for 𝑑 ≥ 3), corresponding to the 𝑁 ! elements of the
fundamental group 𝑆𝑁 .

Consider next the action of 𝒦 = Diff0(R
𝑑) on Γ(𝑁). The stability subgroup

𝒦𝛾 ⊂ 𝒦 consists of those compactly-supported diffeomorphisms which leave 𝛾
fixed; i.e., just those which permute the points in 𝛾. Thus 𝒦𝛾 contains 𝑁 ! discon-
nected components, and we obtain a natural homomorphism ℎ𝛾 from 𝒦𝛾 to 𝑆𝑁 .
Referring back to equations (2) and (4), observe that when 𝜙1 and 𝜙2 belong to
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𝒦𝛾 , the cocycle equation at 𝛾 becomes a unitary representation in 𝒲 of 𝒦𝛾 . Thus
we have an association between cocycles describing quantum theories modeled on
R𝑑 (𝑑 ≥ 3) and unitary representations of 𝒦𝛾 . Note too that any unitary repre-
sentation 𝜋 of 𝑆𝑁 in the inner product space𝒲 now gives us a continuous unitary
representation 𝜋 ∘ ℎ𝛾 of 𝒦𝛾 in 𝒲 . Cocycles describing quantum theories of Bose
statistics, Fermi statistics, and parastatistics correspond in this way to inequivalent
representations of 𝑆𝑁 : the trivial (Bose) and alternating (Fermi) one-dimensional
representations (for 𝒲 = ℂ), and additional (para) higher-dimensional represen-
tations described by Young tableaux (with 𝒲 = ℂ𝑛).

The corresponding unitary representations of 𝒟 × 𝒦 can be obtained in a
different way, making use of a generalization of Mackey’s theory of induced rep-
resentations. The action of 𝜙 ∈ 𝒦 on Γ(𝑁) lifts naturally to an action 𝜙 on the
universal covering space Γ̃(𝑁), so that 𝜙(𝑝𝛾) = 𝑝𝜙(𝛾). Diffeomorphisms belonging

to 𝒦𝛾 , in their action on Γ̃
(𝑁), now permute the elements of 𝑝−1𝛾. In the induced

representation approach, the Hilbert space consists of wave functions on Γ̃(𝑁) that
are equivariant with respect to the given unitary representation of the fundamen-
tal group 𝑆𝑁 , and thus with respect to the corresponding unitary representation
of 𝒦𝛾 in its action on Γ̃

(𝑁).

In short, for 𝑑 ≥ 3, we see how the topology of the 𝑁 -particle configura-
tion spaces in R𝑑 gives rise to the possible exchange statistics of indistinguish-
able particles in the representation theory of the group of diffeomorphisms of R𝑑.
Corresponding to the unitary representations of the fundamental group of Δ are
inequivalent cocycles for the action of Diff0(𝑀) on Δ, and different equivariance
conditions for wave functions written on the universal covering space of Δ.

Finally, consider the case 𝑑 = 2. The fundamental group 𝜋1(Γ
(𝑁)(R2)) is

larger than 𝑆𝑁 , because loops based at a configuration 𝛾0 that implement (let
us say) a clockwise exchange of two points of 𝛾0 in R

2 are not homotopically
equivalent to loops that implement a counterclockwise exchange of the same two
points. Here, the fundamental group is Artin’s braid group 𝐵𝑁 , an infinite discrete
group which for 𝑁 > 2 is nonabelian. One may think of the braid group element
𝑏𝑗 , for 𝑗 = 1, . . . , 𝑁 − 1, as exchanging the pair of points x𝑗 ,x𝑗+1 (which are
adjacent with respect to some coordinatization of the plane), in a counterclockwise
direction; the element 𝑏−1

𝑗 then exchanges the same pair of points in a clockwise
direction. The group 𝐵𝑁 is the free group generated by these elements, modulo
the equivalence relation 𝑏𝑗𝑏𝑗+1𝑏𝑗 = 𝑏𝑗+1𝑏𝑗𝑏𝑗+1.

Now the space of ordered 𝑁 -tuples of points in the plane is a covering space
of Γ(𝑁)(R2), but it is no longer the universal covering space; the latter has in-
finitely many sheets. Ultimately wave functions on the universal covering space,
equivariant with respect to a unitary representation of the braid group, define the
Hilbert space for the desired representation of 𝐺.

We omit further details, but close this section by focusing on a key step in
this induced representation construction for anyons, which we shall then indicate
how to generalize to configurations of extended objects. This step is the association
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of the connected components of the stability subgroup 𝒦𝛾 (i.e., the subgroup of
compactly supported diffeomorphisms of the plane that leave fixed the subset of
points 𝛾 = {x1, . . . ,x𝑁}) with elements of the fundamental group 𝐵𝑁 , by means
of a homomorphism ℎ𝛾 .

One way to define this homomorphism, described in Ref. [33], is as fol-
lows. Choose an arbitrary direction in the plane 𝑀 , let us say for specificity the
𝑦-direction with respect to Cartesian coordinate axes 𝑥 and 𝑦, such that for the
points in the configuration 𝛾 no two 𝑥-coordinates coincide. Index the points x𝑗 in
order of increasing 𝑥-coordinate value. Attach to each point in 𝛾 a strand which is
a straight line extending to infinity in the negative 𝑦-direction; the parallel strands
in this set of strands do not intersect. Now a compactly-supported diffeomorphism
𝜙 in the stability subgroup of 𝛾 leaves all of the strands fixed at infinity (be-
cause of the compact support of 𝜙), but can permute their terminal points. Still
more generally, the images of the strands of under 𝜙 constitute a new set of non-
intersecting strands coming in from 𝑦 = −∞ and terminating at the points in 𝛾.
This set of strands may be homotopically inequivalent to the original set, even
when 𝜙(x𝑗) = x𝑗 for all 𝑗; i.e., even when 𝜙 implements no permutation of the
points.

In fact, such sets of strands fall into distinct homotopy classes, encoding the
passages of strands above or below each other (with respect to the coordinate 𝑦)
as one moves in from 𝑦 = −∞ to the points of 𝛾. When no such passage occurs,
we map 𝜙 to the identity element of 𝐵𝑁 . When the only such passage is that the
strand terminating in x𝑗+1 passes once above the strand terminating in x𝑗 , we
map the diffeomorphism to 𝑏𝑗 . In this way, the stability subgroup 𝒦𝛾 is mapped
homomorphically to 𝐵𝑁 .

Then a unitary representation of 𝐵𝑁 in a space 𝒲 immediately implements
a continuous unitary representation of 𝒦𝛾 , which induces the desired represen-
tation of 𝐺. In short, all the needed information about braiding in encoded in
the compactly supported diffeomorphism belonging to the stability subgroup. The
one-dimensional representations of 𝐵𝑁 , in which 𝑏𝑗 is represented by exp 𝑖𝜃, de-
scribe anyons; while the higher-dimensional representations describe nonabelian
anyons.

One draws certain physical inferences immediately from the above construc-
tion.

First, it is not a prerequisite for intermediate statistics in the plane that there
be a hard core potential excluding two or more particles from occupying the same
position in 𝑀 , any more than such a potential is required for ordinary Bose or
Fermi statistics. Diffeomorphisms act transitively on the configuration space Γ(𝑁),
and cannot bring distinct points into coincidence. Thus configuration spaces from
which the diagonal 𝐷 is not excluded may be written as the union of mutually
disjoint orbits under the group action, and the corresponding possible irreducible
unitary representations still include those that are anyonic.

Secondly, it is not a prerequisite for exotic statistics of particles in the plane
that they be indistinguishable. The configuration space of ordered 𝑁 -tuples of
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points in the plane, excluding 𝑁 -tuples with coincident points, is still multiply-
connected. Its fundamental group is the group of “colored braids.” Correspond-
ingly, given such a configuration, the elements 𝜙 of 𝒦 for which 𝜙(x𝑗) = x𝑗 for all 𝑗
form a closed subgroup. Elements of this subgroup map the original set of parallel
strands (from 𝑦 = −∞, terminating at the points x𝑗) to various non-homotopic
sets of strands from 𝑦 = −∞ terminating at the same points.

4. Exotic statistics for extended configurations

The ideas in the preceding sections generalize to consideration of topologically
nontrivial configurations in higher-dimensional physical spaces. Let us consider
just a couple of examples.

Suppose that Δ is a configuration space whose elements are unparametrized
single oriented loops in (for specificity) R3; i.e., a configuration 𝛾 ∈ Δ is a con-
tinuous embedding [𝛽] of 𝑆1 (modulo 𝐶∞ reparametrization) of some smoothness
class, for which (let us say) the arc length in the target space is defined. Diffeomor-
phisms of R3 act on Δ in the obvious way. We remark that we shall not be able to
concentrate a quasiinvariant measure on a single orbit under 𝒦, but will need an
uncountable family of orbits. Nevertheless, we envision being able to infer exotic
statistics by selecting configurations from such a family of orbits in a measurable
way, and describing topological invariants across orbits of the way diffeomorphisms
act on such sets of loops.

For a particular oriented loop 𝛾, consider the stability subgroup 𝒦𝛾 . An
element 𝜙 ∈ 𝒦𝛾 leaves the loop invariant as a set, but not necessarily pointwise.
Thus there is a homomorphism ℎ𝛾 that maps 𝒦 to Diff(𝑆1), with ℎ𝛾(𝜙) specified
straightforwardly by looking at how 𝜙 transforms 𝛾 (parametrized by its own
arc length). A unitary representation of Diff(𝑆1) may then describe the “internal
statistics” of 𝛾. This is, in a sense, analogous to the ordinary statistics of particles
– an equivariance condition for wave functions can be written that depends only
on 𝛾 and 𝜙𝛾.

But 𝜙 encodes still more information. If we introduce a set of continuous, non-
selfintersecting strands that become parallel (say, for specificity, on the surface
of a circular cylinder) in some fixed direction at infinity, and that terminate at
correspondingly ordered points of 𝛾, we see that because 𝜙 is compactly supported,
its action on these strands keeps track of how many times it has, in effect, rotated
the loop. The stability subgroup thus maps not just to Diff(𝑆1), but to a covering
group of Diff(𝑆1). “Bringing the loop in from infinity” (and watching what 𝜙 ∈ 𝒦𝛾

does) tells us how many windings 𝜙 is to be associated with. Diffeomorphisms that
leave every point of 𝛾 fixed still encode the number of rotations, and we have the
possibility of introducing an extra, additional phase for a single directed rotation
of 𝛾. The loop thus can have internal “intermediate statistics.”

If instead of a loop 𝛾 is an embedded torus (the continuous image of 𝑆1×𝑆1)
of some smoothness class, the same idea allows us to associate a pair of winding
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numbers with a compactly-supported diffeomorphism that leave the torus point-
wise fixed. Thus we infer further possibilities for intermediate statistics, associating
distinct phases with each directed rotation.

Next consider a configuration 𝛾 that is the union of a point and an embedded,
oriented loop. Imagine a non-selfintersecting cylindrical membrane from infinity (in
some fixed direction) that is bounded by the loop, and a strand from infinity in
the same direction, intersecting neither itself nor the membrane. Let us say, for
specificity, that at infinity the strand is inside the cylinder, terminating at the
point particle inside the cylinder. Now, consider the image of this strand-cylinder
combination under the action of 𝜙 ∈ 𝒦𝛾 . The image of the strand may now pass
through and around the loop as the image of the membrane is moved to one side,
so that the strand finally reaches the particle from “outside” the membrane. All
such topological complexity takes place within the compact support of 𝜙; outside of
this support, the original strand and cylinder are fixed. We see from the homotopy
class of this image that 𝜙 encodes the net number of times the particle passes
through the oriented loop, and again we can have an arbitrary associated phase.

Finally, consider a configuration 𝛾 that is the union of a pair of oriented loops
in R3; the discussion will readily extend to pairs of closed filaments of vorticity,
vortex rings, or tori. Now we envision two non-intersecting and non-selfintersecting
membranes extending to infinity in a fixed direction, bounded by the respective
loops. Suppose that a compactly-supported diffeomorphism 𝜙 ∈ 𝒦𝛾 exchanges the
loops. The homotopy class of the pair of image membranes is now labeled by the
sequence of passages of one loop through the other. The diffeomorphism encodes
“leapfrogging” as a sequence of such passages. The condition of equivariance of
the wave function on configuration-space with respect to a unitary representation
of 𝒦𝛾 can associate (in particular) a phase with each such passage, leading again
to anyonic statistics.

In conclusion, the idea of describing quantum systems by means of continuous
unitary representations of the infinite-dimensional group 𝐺 = 𝒟 × 𝒦 leads to a
unifying kinematical description of interesting quantum configuration spaces and
associated possibilities for exotic statistics.
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