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Abstract. In this article two main aspects of quantum control, which require
basically different mathematical techniques will be addressed. In the first one
the systems are characterized by stationary Hamiltonians, while in the second
they are ruled by time-dependent ones. Both trends were initiated in Mexico
by Bogdan Mielnik, who has played a central role in the development of a
research group on quantum control at Cinvestav.
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1. Introduction

I would like to describe here the genesis and development of the quantum control
group created by Bogdan Mielnik (BM) at the Center for Advanced Studies (Cin-
vestav) in Mexico City. Indeed, the beginning of this story is strongly tied to the
birth of our Physics Department at Cinvestav, which deserves some words.

In 1962, while working at the Institute of Theoretical Physics of Warsaw
University, Jerzy Plebański was invited by the outstanding Mexican physiologist
Arturo Rosenblueth to develop a Physics Department at the recently created Cin-
vestav, at the north of Mexico City. In that invitation, it was suggested that
Jerzy should also invite a younger assistant from Poland, to help him do the job.
Plebański accepted Rosenblueth’s invitation, and he arrived to Mexico in the late
summer of 1962. His younger fellow, who turned out to be Bogdan Mielnik, arrived
to Mexico on November 13th, 1962 as Jerzy’s assistant and his Ph.D. student. From
this period (1963) is the photograph in which Jerzy Plebański, Bogdan Mielnik and
Anna Plebańska stay in front of the Pyramid of Quetzalcóatl, at the Teotihuacán
ceremonial center (see Figure 1).
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Figure 1. Jerzy Plebański, Bogdan Mielnik and Anna Plebańska in
front of the Pyramid of Quetzalcóatl, at the Teotihuacán ceremonial
center (1963).

During his first stay at Mexico, Mielnik taught courses on the mathematical
foundations of quantum mechanics. As for research, he was working on the finite
difference calculus and pseudo-hermitian operators. On October 22nd, 1964, he
submitted his PhD Thesis entitled Analytic functions of the displacement opera-
tor [1] (see also [2]). Incidentally, it is worth mentioning that Bogdan Mielnik was
the first Ph.D. graduate of our Physics Department at Cinvestav. A copy of the
official document is shown in Figure 2.

In April 1965, after finishing his PhD, Mielnik returned to Poland. In the
following years, he maintained interest in the operator calculus, leading to the ex-
plicit algebraic solution of the continuous Baker-Campbell-Hausdorff (BCH) prob-
lem [3,4], which remained open for about 60 years since the original BCH papers.
In the period 1966–1976, Mielnik wrote and published his seminal papers on the
geometric structure of quantum theories [5–8]. Due to the wide impact of these
works, he was invited, in the period 1975–1980, to several prestigious institutions,
both in Europe and in the United States, such as the Institute of Theoretical
Physics in Gothenburg and the Royal Institute of Technology in Stockholm (Swe-
den), King’s College and Imperial College (United Kingdom), Rockefeller Univer-
sity (USA), among others (see, e.g., [9,10]). In particular, in 1976 and 1978 he got
back to Mexico to deliver talks at the International Symposium on Mathematical
Physics in the old Hotel del Prado, destroyed by the earthquake in 1985, and the
Latin American Symposium on General Relativity (Silarg) [11,12]. From that time
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Figure 2. The copy of the Mielnik’s Ph.D. certificate (October 22nd,
1964) from the official Cinvestav roster (from S. Quintanilla, Recordar
hacia el mañana. Creación y primeros años del Cinvestav 1960–1970,
Cinvestav, Mexico, 2002).

(1976) is the nice photograph in which Bogdan Mielnik, Anna Plebańska, Virginia
T. Rosenblueth and Pleblański’s daughter Magdalena appear in front of some al-
ready non-existent buildings in the Reforma Avenue in Mexico City (see Figure 3).

In November 1981, Mielnik visited Cinvestav, in what was supposed to be a
short-term visit. This seemingly current event became crucial for our Department
and for Mielnik’s life. In December 13th, 1981, while he was still in Mexico, the
martial law was declared in Poland. The situation seemed to be hard in Warsaw
and thus Augusto Garćıa, at the time Head of the Department, proposed Mielnik
to stay longer at Cinvestav. He decided to accept this invitation which, as the years
passed by, turned into a permanent stay. During that time Mielnik pursued his
studies on dynamical manipulation [13], and he also wrote his short seminal article,
about the generation of new Hamiltonians isospectral to the harmonic oscillator
through a variant of the factorization method [14]. In the early 1983 I met Bogdan
Mielnik as a student of his course in quantum mechanics. I was subsequently
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Figure 3. Bogdan Mielnik, Anna Plebańska, Virginia T. Rosenblueth
and Magdalena Plebański in Paseo de la Reforma, Mexico City (January
1976).

involved, already as Mielnik’s MSc student, in applying the recently developed
modified factorization to the Coulomb potential. The photograph of Mielnik in his
office in F́ısica II (see Figure 4) is from that time (1986). In the following years
1986–1987, he spent a sabbatical leave at the Institute of Theoretical Physics of
Warsaw University.

In the period 1987–1990, Mielnik got a double appointment at the Physics
Department of Cinvestav and the Institute of Theoretical Physics of Warsaw Uni-
versity. In 1989 he was nominated the Full Professor at the Institute of Theoretical
Physics of Warsaw University. In parallel he has been a Permanent Professor at
Cinvestav.

During all the time that he spent in Mexico, Mielnik has produced outstand-
ing works, becoming the founder of the quantum control school currently existing
at Cinvestav. The motivation of this subject is to control typically quantum phe-
nomena such as diffraction, interference, wave-packet spreading, decoherence, etc.
Our dream is to build a handbook of unitary operations that can be dynamically
achieved.

On the other hand, for stationary systems the equivalent goal would be to
construct Hamiltonians with an a priori prescribed spectrum. The first steps in
that direction have been given by employing the well-known factorization method,
which is worth describing shortly.
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Figure 4. Bogdan Mielnik at his office in F́ısica II, Cinvestav (1986).

2. Control of systems with time-independent Hamiltonians

When dealing with stationary systems, an obvious target to manipulate is the
Hamiltonian spectrum. The simplest available technique for spectral manipulation
is the factorization method, which is equivalent to the intertwining technique, Dar-
boux transformation and supersymmetric quantum mechanics. The way in which
the factorization method works can be simply illustrated through the harmonic
oscillator potential.

The harmonic oscillator Hamiltonian in natural units, with ℏ = 𝑚 = 𝜔 = 1,
reads

𝐻 = −1
2

𝑑2

𝑑𝑥2
+

𝑥2

2
. (1)

The standard factorizations in terms of the annihilation 𝑎 and creation 𝑎+ opera-
tors are given by:

𝐻 = 𝑎𝑎+ − 1

2
, (2)

𝐻 = 𝑎+𝑎+
1

2
, (3)

where

𝑎 =
1√
2

(
𝑑

𝑑𝑥
+ 𝑥

)
, (4)

𝑎+ =
1√
2

(
− 𝑑

𝑑𝑥
+ 𝑥

)
. (5)
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From these expressions the following intertwining relationships can be derived:

𝐻𝑎+ = 𝑎+(𝐻 + 1), (6)

𝐻𝑎 = 𝑎(𝐻 − 1), (7)

which imply that, by acting the operator 𝑎 (𝑎+) onto an eigenfunction of 𝐻 with
eigenvalue 𝐸, a new eigenfunction of 𝐻 is obtained with eigenvalue 𝐸− 1 (𝐸+1).
By using all these ingredients, it is straightforward to derive the complete set of
eigenfunctions 𝜓𝑛(𝑥) and eigenvalues 𝐸𝑛 = 𝑛+ 1/2 of 𝐻 , for 𝑛 = 0, 1, . . .

In 1983 Mielnik asked a simple question [14]: Is the factorization of the har-
monic oscillator Hamiltonian given in equation (2) unique? In order to answer, he
looked for more general first-order differential operators

𝑏 =
1√
2

[
𝑑

𝑑𝑥
+ 𝛽(𝑥)

]
, (8)

𝑏+ =
1√
2

[
− 𝑑

𝑑𝑥
+ 𝛽(𝑥)

]
, (9)

such that

𝐻 = 𝑏𝑏+ − 1

2
. (10)

It turns out that the unknown function 𝛽(𝑥) must satisfy the Riccati equation

𝛽′ + 𝛽2 = 𝑥2 + 1, (11)

whose general solution is given by

𝛽 = 𝑥+
𝑒−𝑥

2

𝜆+
∫ 𝑥

0
𝑒−𝑦2𝑑𝑦

. (12)

The key point now is that the product 𝑏+𝑏, in general, is no longer reduced to the
harmonic oscillator Hamiltonian, but it leads to a different operator:

�̃� = 𝑏+𝑏+
1

2
= −1

2

𝑑2

𝑑𝑥2
+ 𝑉 (𝑥), (13)

where

𝑉 (𝑥) =
𝑥2

2
− 𝑑

𝑑𝑥

[
𝑒−𝑥

2

𝜆+
∫ 𝑥

0 𝑒−𝑦2𝑑𝑦

]
. (14)

However, there are still intertwining relationships that look similar to those of
equations (6) and (7),

�̃�𝑏+ = 𝑏+(𝐻 + 1), (15)

𝐻𝑏 = 𝑏(�̃� − 1). (16)

Thus, the eigenfunctions 𝜓𝑛 of �̃� can be easily constructed from those of 𝐻 :

𝜓𝑛+1 =
𝑏+𝜓𝑛√
𝑛+ 1

, 𝑛 = 0, 1, . . . (17)
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Moreover, there is an additional eigenstate of �̃� associated to the eigenvalue 𝐸0 =
1/2 and simultaneously annihilated by 𝑏, which is given by:

𝜓0 ∝ exp
[
−
∫ 𝑥

0

𝛽(𝑦)𝑑𝑦

]
. (18)

In order to avoid singularities in 𝑉 (𝑥) and in 𝜓𝑛(𝑥), 𝑛 = 0, 1, . . . , the inequality

∣𝜆∣ >
√
𝜋/2 must hold. Thus, in this 𝜆-domain it turns out that �̃� is a new

Hamiltonian isospectral to the harmonic oscillator.

Figure 5. Bogdan Mielnik, David Fernández and Oscar Rosas, dur-
ing a break at the Conference Symmetries in quantum mechanics and
quantum optics, Burgos (Spain), September of 1998.

It is worth noting that the modified factorization described here represented a
breakthrough in the generation of exactly solvable quantum mechanical potentials.
Indeed, the intertwining relation (15) admits several generalizations that were
proposed shortly after. An obvious one consists in departing from a given generic

Schrödinger Hamiltonian 𝐻 of the form (13) and look for a new one �̃� such that

�̃�𝐵+ = 𝐵+𝐻, (19)

where the initial potential 𝑉 (𝑥) and the intertwining operator 𝐵+ are not neces-
sarily the harmonic oscillator and a first-order operator respectively. In particular,
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Figure 6. Boris Samsonov, David Fernández, Bogdan Mielnik and Os-
car Rosas at Mielnik’s office (March of 2001).

the generalization for 𝐵+ being of first-order and general 𝑉 (𝑥) was proposed by
Sukumar in 1985, who proved that a solution of the stationary Schrödinger equa-
tion associated to𝐻 and a given factorization energy 𝜖 such that 𝜖 ≤ 𝐸0 is required

to generate the new potential 𝑉 (𝑥) through non-singular transformations. On the
other hand, Andrianov, Ioffe and Spiridonov (1993) suggested that 𝐵+ should be
of order greater than one with general 𝑉 (𝑥), and this suggestion was later stud-
ied by Andrianov, Ioffe, Cannata, Dedonder (1995), Bagrov and Samsonov (1995)
and a member of our research group (Fernández 1997). It is important to notice
that in the higher-order case several seed solutions of the stationary Schrödinger
equation associated to diverse factorization energies are required in order to im-
plement the transformation (for a review containing further discussion, the reader
can consult [15]).

The case where 𝑉 (𝑥) is the harmonic oscillator potential and 𝐵+ is of second-
order was explored in detail in 1998 by members of our group [16]. A photograph
taken during a break at the Conference Symmetries in quantum mechanics and
quantum optics which was held at Burgos, Spain, can be seen on Figure 5. Sub-
sequently, the so-called confluent algorithm, for which the involved factorization
energies tend to a common value, was explored in 2000 by Mielnik, Nieto and
Rosas-Ortiz [17], and later by Fernández and Salinas-Hernández. The situation
when 𝑉 (𝑥) is periodic has been also analyzed in the interval 2000–2010 (see,
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e.g., [18, 19]). Some members of our team elaborating the last problem appear
on the photo of Figure 6.

Before finishing this section, I would like to remark that in 2003 the Con-
ference Progress in supersymmetric quantum mechanics took place at Valladolid,
Spain. An overview article opening the special issue of J. Phys. A: Math. Gen.
dedicated to the topic of the Conference, that has quickly became a hit of the
factorization subject, is strongly recommended (see [15]).

3. Control of systems with time-dependent Hamiltonians

For systems ruled by time-dependent Hamiltonians the quantum control has to
be implemented in a different way. First of all, it is well known that the evolution
operator induced by a self-adjoint Hamiltonian is unitary. Thus, it is natural to
consider the inverse problem: Can any unitary operator be achieved as the re-
sult of a dynamical evolution? In other words, can a set of prescribed external
conditions be designed for the system to evolve in such a way that its evolution
operator becomes, at a certain time, the required unitary operator? The answer to
this question was suggested by Mielnik in 1977 [20]: provided there are no supers-
election rules, any unitary operator can be dynamically approximated. Moreover,
there is a generic prescription, proposed in 1986, in order to induce an arbitrary
unitary evolution [21, 22]: (i) first of all, let us choose the system that performs a
circular dynamical process such that 𝑈0(𝜏) = 𝐼, that is called an evolution loop
(EL); (ii) then, by perturbing the EL, the small deviations of this process will
eventually induce any given unitary operation (see an illustration of this process
in Figure 7).

U( )=I

U0( )=I

Figure 7. The deviation of the evolution loop induced by a perturbation.
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3.1. One-dimensional systems

Let us note that the one-dimensional harmonic oscillator is the simplest system
having an EL. Thus, it is natural first to look for EL in one-dimensional systems
ruled by Hamiltonians of the form

𝐻(𝑡) =
𝑝2

2
+ 𝑔(𝑡)

𝑞2

2
, (20)

where 𝑞, 𝑝 are the quantum mechanical coordinate and momentum operators such
that

[𝑞, 𝑝] = 𝑖, (21)

and the evolution operator 𝑈(𝑡) of the system satisfies

𝑑𝑈(𝑡)

𝑑𝑡
= −𝑖𝐻(𝑡)𝑈(𝑡), 𝑈(0) = 𝐼. (22)

A curious and interesting result that was found in 1977 deserves some discussion
[20]. For the periodic sequence of pulses such that

𝑔(𝑡) =
1

𝜆
𝛿(𝑡− 𝜆) for 0 < 𝑡 ≤ 𝜆, (23)

periodically extended for 𝑡 > 𝜆, the following holds

𝑒−𝑖
1
𝜆
𝑞2

2 𝑒−𝑖𝜆
𝑝2

2 ⋅ ⋅ ⋅ 𝑒−𝑖 1
𝜆
𝑞2

2 𝑒−𝑖𝜆
𝑝2

2︸ ︷︷ ︸ ≡ 𝐼,

12 factors
(24)

where the equivalence symbol ≡ interrelates any two unitary operators which differ
only by a 𝑐-number phase factor. This means that the system has an evolution loop
of period 𝜏 = 6𝜆. A schematic representation of this dynamical process is given
in Figure 8. Notice that, as a bonus, it is possible now to invert the natural free
evolution:

𝑒𝑖𝜆
𝑝2

2 ≡ 𝑒−𝑖
1
𝜆
𝑞2

2 𝑒−𝑖𝜆
𝑝2

2 ⋅ ⋅ ⋅ 𝑒−𝑖𝜆 𝑝2

2 𝑒−𝑖
1
𝜆
𝑞2

2︸ ︷︷ ︸ .
11 factors

(25)

Let us stress that the evolution loop of equation (24) is not the only one that
can be produced through Hamiltonians of the form (20) [22]. In particular, it turns
out that (

𝑒−𝑖3𝜏
𝑝2

2 𝑒−𝑖
1
𝜏
𝑞2

2

)3

≡ 𝐼, (26)

which implies that it is possible once again to invert the natural free evolution:

𝑒𝑖3𝜏
𝑝2

2 ≡ 𝑒−𝑖
1
𝜏
𝑞2

2 𝑒−𝑖3𝜏
𝑝2

2 𝑒−𝑖
1
𝜏
𝑞2

2 𝑒−𝑖3𝜏
𝑝2

2 𝑒−𝑖
1
𝜏
𝑞2

2 . (27)

A representation of the evolution loop of equation (26) is also given in Figure 8 [23].
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Figure 8. Representation of the evolution loops of equations (24) (left)
and (26) (right).

3.2. Three-dimensional systems

As our three-dimensional system let us consider a charged particle interacting
with homogeneous time-dependent magnetic fields. A possible experimental setup
is illustrated in Figure 9. In a neighborhood of the origin, the magnetic field can be
considered approximately homogeneous, and the corresponding Hamiltonian takes

Figure 9. An experimental setup to manipulate charged particles.
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the form:

𝐻(𝑡) =
1

2𝑚

(
p+

𝑒

2𝑐
r×B(𝑡)

)2

=
1

2𝑚

[
p2 +

(
𝑒B(𝑡)

2𝑐

)2

r2⊥

]
− 𝑒B(𝑡) ⋅ L

2𝑚𝑐
, (28)

a non-relativistic Hamiltonian with time dependent B(𝑡) representing the first step
of the Einstein-Infeld-Hoffman (EIH) method in classical electrodynamics (see the
discussion in [24]). Our first choice was the following rotating magnetic field [25]:

B(𝑡) = 𝐵 cos(𝜔𝑡)m+𝐵 sin(𝜔𝑡)n, (29)

for which we wanted to find the evolution loops. Unfortunately, we were unable to
find them for this system. Despite that, the corresponding quantum mechanical
problem was explicitly solved. We found a regime where the charged particle is
confined to a neighborhood of the origin (the trapping region). However, there ex-
ists also the domain of parametric resonance, where the charged particle is quickly
ejected off the trapping zone (see also [26–28]). These results constitute the core of
my PhD Thesis [29], supervised by Mielnik. The dissertation was delivered on Sep-
tember 19th, 1988 (a photograph of José Luis Lucio, Bogdan Mielnik and David
Fernández, after the event, can be seen in Figure 10).

Figure 10. José Luis Lucio, Bogdan Mielnik and David Fernández at
F́ısica I, September 19th, 1988.
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An alternative magnetic field was explored afterwards [30] (see also [31–33]):

B(𝑡) =

⎧⎨⎩
𝐵(𝑡)m for 𝑡 ∈ [0, 2𝑇 )
𝐵(𝑡− 2𝑇 )n for 𝑡 ∈ [2𝑇, 4𝑇 )

𝐵(𝑡− 4𝑇 )s for 𝑡 ∈ [4𝑇, 6𝑇 )

, (30)

where

𝐵(𝑡) =

⎧⎨⎩
𝐵1 for 𝑡 ∈ [0, 𝑡1), 0 < 𝑡1 < 𝑇,

𝐵2 for 𝑡 ∈ [𝑡1, 𝑇 ),
−𝐵2 for 𝑡 ∈ [𝑇, 𝑇 + 𝑡2), 𝑡2 = 𝑇 − 𝑡1,

−𝐵1 for 𝑡 ∈ [𝑇 + 𝑡2, 2𝑇 ).

(31)

For the three-dimensional system we were particularly interested, as in the
one-dimensional case, in inverting the natural free evolution. In order to do that,
we first of all switched to the following dimensionless quantities:

𝛾1 = 𝛼1𝑡
′
1, 𝛾2 = 𝛼2𝑡

′
2, 𝛼1 =

𝑒𝐵1𝑇

2𝑚𝑐
, (32)

𝛼2 =
𝑒𝐵2𝑇

2𝑚𝑐
, 𝑡′1 =

𝑡1
𝑇
, 𝑡′2 =

𝑡2
𝑇
. (33)

It turns out that the free evolution is induced when the previous parameters satisfy
the following relationships:

𝛼1 =
𝛾1 tan(𝛾1)− 𝛾2 tan(𝛾2)

tan(𝛾1)
, 𝛼2 =

𝛾1 tan(𝛾1)− 𝛾2 tan(𝛾2)

− tan(𝛾2)
, (34)

𝑡′1 =
𝛾1 tan(𝛾1)

𝛾1 tan(𝛾1)− 𝛾2 tan(𝛾2)
, 𝑡′2 =

−𝛾2 tan(𝛾2)

𝛾1 tan(𝛾1)− 𝛾2 tan(𝛾2)
. (35)

The evolution operator, at the time 𝜏 = 6𝑇 where the application of the magnetic
field ends, thus becomes:

𝑈(𝜏 = 6𝑇 ) = exp

(
− 𝑖

ℏ

𝑝2

2𝑚
𝑇 ′
)
= exp

(
− 𝑖

ℏ

𝑝2

2𝑚
𝜏𝜒

)
, (36)

where the effective time 𝑇 ′ = 𝜏𝜒 = 6𝑇𝜒 depends on the distortion parameter 𝜒,
which in turn depends on the angles 𝛾1 and 𝛾2 in the following way:

𝜒 =
1

3
+
2

3
cos2(𝛾2)

tan2(𝛾1)− tan2(𝛾2)

𝛾1 tan(𝛾1)− 𝛾2 tan(𝛾2)
. (37)

Notice that the required restrictions 𝑡′1 > 0 and 𝑡′2 > 0 are satisfied for 𝑛𝜋 <
𝛾1 < (𝑛 + 1/2)𝜋 and (𝑚 − 1/2)𝜋 < 𝛾2 < 𝑚𝜋, or for (𝑚 − 1/2)𝜋 < 𝛾1 < 𝑚𝜋 and
𝑛𝜋 < 𝛾2 < (𝑛+ 1/2)𝜋, 𝑚,𝑛 ∈ Z+. Moreover, depending on the values taken by 𝜒
in the admissible domain of (𝛾1, 𝛾2), three physically different situations arise:⎧⎨⎩

𝜒 > 1 accelerating the free evolution

0 ≤ 𝜒 ≤ 1 slowing the free evolution

𝜒 < 0 inverting the free evolution

(38)
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Figure 11. The chessboard of distorted time, where the manipulated
free evolution is induced for a charged particle in the magnetic field of
equations (30)–(31).

A plot summarizing these results is shown in Figure 11 [32]. In particular, it is
worth noticing the existence of regions where the inversion of the natural free
evolution is produced (see the domain in which 𝜒 < 0).

A photograph of Bogdan Mielnik, at the time of elaborating [30], is shown in
Figure 12.

I have illustrated here, with the example of the free evolution, the way in
which we learned to implement the dynamical manipulation. Of course, there are
other unitary operations which have been of interest for our group. In particular,
it is worth mentioning the squeezing operations, which were explored in detail by
Francisco Delgado during the elaboration of his MSc and PhD Thesis [34], under
the supervision of Mielnik as well (see also [35–37]). A photograph of both, taken
after the MSc dissertation of Francisco Delgado, February 2nd, 1992, is shown in
Figure 13.

On the other hand, with Sara Cruz the possible physical meaning of the
Floquet operator and its usefulness to achieve several interesting unitary operators
was explored in [38]. As a result of its originality and the large amount of new facts
contained in Sara’s Thesis [39–41] (also under BM supervision), in April 2006 she
was awarded the 2005 Arturo Rosenblueth prize to the best PhD thesis written at
Cinvestav (see photograph in Figure 14).
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Figure 12. The tea time at Paranagua 42-4 in 1993, during some dis-
cussions on magnetic control.

Figure 13. Bogdan Mielnik and Francisco Delgado, in front of Physics
Department, Cinvestav (February 2nd, 1992).
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Figure 14. Sara Cruz was awarded (April, 2006) the 2005 Arturo
Rosenblueth Prize to the best PhD Thesis defended at Cinvestav during
the year 2005 (here with her Thesis adviser, Bogdan Mielnik).

In addition, after studying physical problems leading to indefinite Hilbert spa-
ces and non-hermitian Hamiltonians [42], Bogdan Mielnik and Alejandra Ramı́rez
have explored some non-commutative coordinate operators naturally arising when
dealing with a charged particle interacting with several magnetic field configura-
tions [43]. Their most recent papers [24, 44,45] contain several results reported in
Alejandra’s Thesis. A photograph of Alejandra Ramı́rez and Bogdan Mielnik, dur-
ing their participation at the XXII Workshop on Geometrical Methods in Physics
which was held at Bial̷owieża in 2003 is shown in Figure 15.

It is important to notice that the school of quantum control at Cinvestav
also involves colleagues who only did their MSc Thesis under Mielnik’s advice.
Although they obtained PhDs later on in other areas, we guess that they still
conserve some interdisciplinary spirit. I would like to mention specifically:

Gerardo Herrera (September 1987): his MSc Thesis has to do with the dy-
namical manipulation of a one-dimensional Schrödinger particle in a quadratic
potential with a time-dependent frequency [46], the corresponding Hamiltonian is
given in equation (20). It was shown that the parity, scale and Fourier transforma-
tions can be dynamically induced. A photograph taken after the presentation of
the documentary about Plebański’s life, January 26th, 2005, containing Gerardo
Herrera (at the time Head of the Physics Department), Rosalinda Contreras (then
Director of Cinvestav) and Bogdan Mielnik, is shown in Figure 16.



Mielnik’s Quantum Control 151

Figure 15. Alejandra Ramı́rez and Bogdan Mielnik at Bial̷owieża,
June 2003.

Figure 16. Gerardo Herrera (Head of the Physics Department), Ros-
alinda Contreras (Director of Cinvestav) and Bogdan Mielnik in front
of the Arturo Rosenblueth Auditorium, Cinvestav, January 26th, 2005.
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Diego Sanjinés (May 23th, 1990): his MSc Thesis addresses the connection
between the stationary one-dimensional Schrödinger equation and the classical
dynamical problem of an oscillator with time-dependent frequency [47]. It was
shown that the stability of the classical problem is closely related to the quantum
mechanical problem of eigenvalues.

Francisco Solis (August 1990): in this MSc Thesis, the stability of the motion
of charged particles in the vicinity of the nodal points of a monochromatic standing
plane wave was analyzed [48]. These results were compared with those obtained
from the ponderomotrix potential of Kapitza and Landau.

Marco Antonio Reyes (February 1992): his MSc Thesis has to do with a non-
perturbative numerical approach designed for calculating the energy levels of one-
dimensional or spherically symmetric potentials [49]. The method was implemented
with the angular form of the Riccati equation as a starting point [50].

Since one of the aims of this Conference was to celebrate the 70th and 75th
Birthdays of Lech Woronowicz and Bogdan Mielnik respectively, I find interesting
to show a photograph (see Figure 17) containing both, along with Jerzy Plebański,
at the Conference to celebrate the Jerzy Plebański’s 75th Birthday which was held
in Mexico City in September of 2002 [51].

Figure 17. Lech Woronowicz, Bogdan Mielnik and Jerzy Plebański
(September of 2002).
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Figure 18. The group of quantum control at the Physics Department
of Cinvestav (December 8th, 2010). From left to right and top to bot-
tom: Bogdan Mielnik, Rodrigo Muñoz (upper row); David Bermúdez,
Nicolás Fernández, Oscar Rosas, Alonso Contreras, David Fernández,
Encarnación Salinas (second row); Sara Cruz, Iván Cabrera, Gerardo
Herrera (front row).

In order to provide a global view of Mielnik’s scientific work, I would like to
close this section by mentioning that he has also contributed substantially to a
better understanding of conceptual and polemic problems in quantum mechanics
[37, 52–56].

4. Conclusions

By means of these specific examples I have tried to illustrate the way in which we
approach the problem of quantum control at the Physics Department of Cinvestav.
It is always difficult to evaluate which scientific results will turn important for the
future theories or applications, but undoubtedly Professor Bogdan Mielnik has
been quite essential in growing up a quantum control group which we hope can
compete on the international arena (see Figure 18). On behalf of the group, I
would like to express our best wishes to him:

For teaching us the way of doing science.
For teaching us that work has to be done patiently and carefully.
For an atmosphere of permanent creation and discussion.
Long live Professor Bogdan Mielnik!
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