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Solution Hierarchies for the Painlevé IV Equation . . . . . . . . . . . . . . . . . . . 199

A. Bohm and H.V. Bui
The Marvelous Consequences of Hardy Spaces
in Quantum Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

S. Cruz y Cruz
Factorization Method and the Position-dependent Mass Problem . . . . 229

G.A. Goldin
Quantum Configuration Spaces of Extended Objects,
Diffeomorphism Group Representations and Exotic Statistics . . . . . . . . 239

B. Mielnik
Convex Geometry: A Travel to the Limits of Our Knowledge . . . . . . . . 253



Contents vii

M. Przanowski, M. Skulimowski and J. Tosiek
A Time of Arrival Operator on the Circle
(Variations on Two Ideas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

O. Rosas-Ortiz, S. Cruz y Cruz and N. Fernández-Garćıa
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Löwner-Kufarev Evolution in the Segal-Wilson Grassmannian . . . . . . . 367
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Preface

The Workshop on Geometric Methods in Physics – the Bial̷owieża Workshop is an
annual conference in the fields of mathematical physics and mathematics, orga-
nized by the Department of Mathematical Physics of the University of Bial̷ystok,
Poland. The XXXth Workshop was held during the period June 26–July 2, 2011.

Bial̷owieża, the traditional conference site, is a tiny village in the eastern
part of Poland. It is famous for its bison reserve and remaining ancient Euro-
pean primeval forest. The beautiful surroundings help the participants maintain
close contact and enjoy a variety of activities together, including excursions and
the late evening “campfire”, creating a special atmosphere of collaboration and
understanding.

The scientific program of the workshop generally covers such subjects as
quantization, integrable systems, coherent states, non-commutative geometry,
Poisson and symplectic geometry, infinite-dimensional Lie groups and Lie algebras.
In 2011, the conference included three special sessions devoted to the achievements
of three mathematical physicists: Felix Alexandrovich Berezin, Bogdan Mielnik,
and Stanisl̷aw Lech Woronowicz, and their impact on present-day research.

Berezin Memorial Session: Representations, Quantization and Supergeometry.
Felix Alexandrovich Berezin (1931–1980) made important contributions to such
classical subjects as group representation theory, the spectral theory of operators,
quantum mechanics, statistical physics, and constructive quantum field theory. He
also created new concepts, such as a general approach to the quantization prob-
lem, the formulation of second quantization in terms of functional integrals, and
especially what became known as “supermathematics”, i.e., the theory of super-
manifolds and Lie supergroups. More than 30 years after his death, his ideas are
still alive and play an important role in mathematical physics. These points are dis-
cussed in the special paper included in this volume: “Felix Alexandrovich Berezin
and his work” by Alexander Karabegov, Yuri Neretin and Theodore Voronov.

Special session devoted to Bogdan Mielnik. Bogdan Mielnik, the outstanding Pol-
ish physicist, turned 75 in 2011. His main line of research has been in the founda-
tions of quantum mechanics. Here, he has always taken an unorthodox and very
general approach, based on original ideas such as the convex structure of the space
of quantum states or the algebraic manipulation of quantum states. Mielnik has
been professor at the Institute of Theoretical Physics of the Warsaw University,
and since 1981 has been professor at the Centro de Investigación y de Estudios
Avanzados in Mexico City, his current position. His research directions and achieve-
ments are described in the special paper included in this volume: “Bogdan Mielnik:
contributions to quantum control” by David J. Fernández C.

Special session devoted to Stanisl̷aw Lech Woronowicz. We also celebrated the
70th birthday of Stanisl̷aw Lech Woronowicz, the outstanding Polish mathemati-

ix
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cian and mathematical physicist, one of the discoverers of quantum groups (to-
gether with V.G. Drinfeld and M. Jimbo). Unlike the algebraic approach to quan-
tum groups, the approach put forward by Woronowicz is based on ideas of func-
tional analysis and operator algebras. Since this volume does not contain a special
contribution about Woronowicz’s life and activity, we present some information
here.

Woronowicz already demonstrated exceptional abilities as an undergraduate
student, and was given the position of Assistant at Warsaw University even be-
fore graduating (M.S.). He joined the Department of Mathematical Methods in
Physics, and at the beginning worked on mathematical aspects of quantum the-
ory, axiomatic quantum field theory and operator algebras. In 1968, he received
his Ph.D. after presenting the thesis “Causal spaces”. In 1972, he received the
habilitation (D.Sc.) on the basis of his paper “Foundations of axiomatic quantum
field theory”. Beginning in 1979, Woronowicz has been mainly interested in the
theory of quantum groups, and is regarded as one of its founders.

In 1979, in a talk at the International Conference on Mathematical Physics
in Lausanne, he presented the idea and gave the necessary definitions for replacing
the commutative 𝐶∗-algebra of functions on a compact topological space by a non-
commutative algebra, which forms the dual description of the space corresponding
to the non-commutative group. Numerous examples implementing these ideas were
contained in papers on quantum deformations of groups and spaces published over
the next 15 years by Woronowicz and his co-workers. Later Woronowicz also in-
vestigated quantum deformations of non-compact groups, such as the group 𝐸(2)
of motions of Euclidean space, and the Lorentz group. Woronowicz has received
many awards, both Polish and international: the Stefan Banach Prize of the Polish
Mathematical Society (1972), the Alfred Jurzykowski Prize (New York, 1989), the
Prize of the Foundation for Polish Science (1993), and the Humboldt Research
Award (2008). Since 1992, he has been a member of the Polish Academy of Sci-
ences. Since 2011, Woronowicz has been professor at the Institute of Mathematics
of the University of Bial̷ystok.

Acknowledgment. The organizers of WGMP XXX gratefully acknowledge finan-
cial support from the University of Bial̷ystok, and the European Science Founda-
tion (ESF) Research Networking Programme “Harmonic and Complex Analysis
and its Applications” (HCAA). The U.S. National Science Foundation (NSF grant
no. 1124929) supported the U.S. participants (which, in particular, allowed a num-
ber of young American researchers to attend the meeting). The Russian Founda-
tion for Basic Research (RFBR) supported the participation of mathematicians
and physicists from Russia. We would like to thank them all. Last but not the
least, the organizers would like to acknowledge the extraordinary amount of work
done by students and young researchers from Bial̷ystok during the meeting, to
make the conference a success.

March 2012 The Editors



Address of Professor Krzysztof Maurin

In 1982, the first Workshop on Geometric Methods in Physics was inaugurated
by Professor Krzysztof Maurin, who is the founder of the Department of Math-
ematical Methods in Physics at Warsaw University. Professor Maurin has been
the teacher of many generations of mathematical physicists; his students include
Anatol Odzijewicz, the founder of the Bial̷owieża Workshop, and S.L. Woronowicz,
the outstanding Polish mathematical physicist.

We invited Professor Maurin to give the opening address at WGMP XXX,
but regretfully he was unable to travel due to his fragile health, and consequently
could not participate. Nevertheless he sent a special address to the participants,
which we include here (translated from the Polish).

Ladies and Gentlemen,

Today we begin the XXXth jubilee conference in Bial̷owieża. Thirty years ago, when
I opened the first conference organized by Dr. Anatol Odzijewicz, I could not have
known that I was witness to the creation of a very vital structure, a conference
series that would become an ongoing meeting point for theoretical physicists and
mathematicians.

One other, comparable Polish initiative of this type is the “Copernicus Name
Day”, which was initiated by Roman Ingarden and his disciples in Toruń. The
most famous European forum for mathematicians and physicists may be the con-
ferences in Oberwolfach in Schwarzwald, where for the whole year there takes place
a meeting every week devoted to a different subject of mathematics or mathematical
physics. Anyone who has attended such international gatherings will never forget
them. The Institute in Oberwolfach has, of course, a wonderful library. Bial̷owieża
is grateful to Anatol for the extraordinary “skansen” whose creation he has led –
proof of his deep devotion to the beautiful landscape, the ancient forest, and the
local culture. And at none of the other conferences are there unforgettable night
campfires, or soccer games between the participants.

The present XXXth Workshop also has a special character. Three days of the
workshop will be devoted to discussion of the achievements of three mathematical
physicists: Felix A. Berezin, Bogdan Mielnik and Stanisl̷aw Lech Woronowicz. I
hope the program will not be overloaded, and that there will also be time for personal
contacts. The large number of participants is proof of how popular and highly valued
the Workshop is.

With these words I complete my short address, and wish everyone a fruitful
and enjoyable conference.

xi
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The Bial̷owieża Workshop on Geometric
Methods in Physics: An Impression
of Three Extraordinary Decades

Gerald A. Goldin

“I cannot see what flowers are at my feet,
Nor what soft incense hangs upon the boughs,
But, in embalmèd darkness, guess each sweet

Wherewith the seasonable month endows
The grass, the thicket, and the fruit-tree wild;

. . . ”
John Keats (1795–1821), Ode to a Nightingale

Abstract. The beauty of nature and an extraordinary spirit of shared scientific
inquiry have combined in the environs of Bial̷owieża Forest, leading to an
extraordinary workshop series that marks its thirtieth anniversary with this
volume.

Mathematics Subject Classification (2010). Primary 01-06; Secondary 51-03.

Keywords. Beauty, geometric methods, physics, primeval forest, workshop.

Each year at the end of June or the beginning of July, the Workshop on Geo-
metric Methods in Physics (WGMP) takes place in Bial̷owieża National Park, the
location of the last true lowland primeval forest in Europe. Here ancient trees
tower majestically over meadows, lush wetlands, and woodland paths. And here
for one week every summer, mathematicians and physicists from all over the world
gather to present our work, share ideas, and come to know each other in ways that
transcend the ordinary.

In accepting the invitation to write this article, I have been drawn to reflect
on my twenty years of participation in the WGMP, and the thirty years altogether
during which it has been held.

Partial support was provided by the U.S. National Science Foundation (NSF), grant no. 1124929.

Any opinions or conclusions expressed are solely those of the author, and do not necessarily reflect
the views of the NSF.



xiv G.A. Goldin

Poland, Europe, and indeed the world have changed in these decades, in the
wake of vast political upheavals. In 1995 (at WGMP-XIV), international visitors
found that the new zl̷oty had suddenly replaced 10,000 old zl̷otych. Nine years
later in 2004 (not long before WGMP-XXIII), Poland became a member of the
European Union. By then the border with Belarus, which actually runs through
the forest preserve, had effectively become the new political boundary between
East and West.

During the 1990s, Warsaw too changed visibly and quickly, and subsequently
continued to do so. But change arrived more gradually in the picturesque town
of Bial̷owieża. Most of the modest houses have been refurbished over the past
10–15 years. Several small hotels have opened near the park, accommodating the
workshop participants in a variety of settings. Yet Bial̷owieża Forest remains serene
and timeless, inspiring as ever the creative spirit of those attending the WGMP.

Indeed, in the early morning hours – when the lush landscape is enveloped in
mist and (it is said) the żubry (European bison) are most likely to allow themselves
to be seen – one easily imagines that one has been transported back in time several
hundred years. The occasional horse-drawn buggy along a country road contributes
to the vividness of this impression.

According to Anatol Odzijewicz at the University of Bial̷ystok, a founder and
unquestionably the prime mover of the WGMP series, the workshop had a rather
local character for most of its first decade (from 1982 to 1990). During this period,
the major organizational effort was provided by Odzijewicz and his colleagues at
the Institute of Physics in Bial̷ystok – Andrzej Kryszen, and Klara Gilewicz (now
Janglajew). One of the people mainly responsible for the scientific program at
this time was Krzysztof Maurin in the Chair of Mathematical Methods in Physics
in Warsaw. Coworkers from both groups (including Stanisl̷aw Woronowicz from
Warsaw) participated in the workshops.

The shift from a local workshop toward one with significant international
participation took place in 1991 (WGMP-X). At that point, members of the or-
ganizing committee included Jean-Pierre Antoine, Thomas Friedrich, Jean-Pierre
Gazeau, Ivailo Mladenov, and Mikhail Shubin. In particular Mladenov, Gazeau,
and others played major roles in inviting non-Polish participants.

As Gazeau recalls, he met Odzijewicz for the first time during a winter school
in Srni, former Czechoslovakia, in January 1989. He remembers one evening when
Odzijewicz gave a highly-appreciated Belorussian song performance with his gui-
tar. They were both working then on coherent states for the Poincaré group, so
they exchanged invitations to visit and Odzijewicz went to Paris for one month in
September 1990. When Gazeau came to Bial̷ystok in March 1991 he experienced
much singing and dancing, and a group picnic in Bial̷owieża in one of the old houses
(now part of the open-air museum, or skansen). Back in Paris, Gazeau recruited
others, including my close friend S. Twareque Ali, who came to the WGMP for
the first time in 1991. For some of the succeeding workshops, Gazeau was even
able to secure financial support from the French Embassy in Warsaw for inviting
foreign scientists.
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Soon colleagues such as Antoine, Stephan De Bièvre, Ugo Moschella, and
others became enthusiastic participants, and Ali began to serve as another leading
international proponent of the workshop series. The subsequent scientific secre-
taries of the conference have been Wojciech Lisiecki, Aleksander Strasburger, Piotr
Kielanowski, and Tomasz Goliński (who is the current scientific secretary). The or-
ganizing committee today (as WGMP-XXXI is being planned) consists of Odzijew-
icz (chairman), Goliński, Ali, and Kielanowski, as well as Victor Buchstaber, Alina

Dobrogowska, Martin Schlichenmaier, Aneta Śliżewska, and Theodore Voronov.

Thus I came to the workshop for the first time in 1992 (WGMP-XI), invited
with great enthusiasm by Ali who had attended the year before. The scientific
ambience was unlike any other I had experienced – and the WGMP became, for
me, a kind of annual, peaceful “fixed point” in the swirl of scientific meetings and
academic responsibilities. I might attend other conference series occasionally or
frequently, but the week in Bial̷owieża was never to be missed. So I participated
for twenty consecutive years.

How can I describe the essence of this ambience? Perhaps the remoteness of
the location (four hours’ travel from Warsaw), the hospitality of the local organiz-
ers, and the silent majesty of the forest combine to generate an unusual openness
to intimate conversation and sharing among the participants. Distinctions of aca-
demic status, which in many contexts impose social boundaries, rules, restrictions
and priorities on our patterns of inquiry – and what Keats called “the weariness,
the fever, and the fret” – seem to disappear into the canopy of leaves overhead. And
for a full, glorious week we think, talk, envision new possibilities, and (hopefully)
discover the best scientific insights dwelling inside us.

Certain themes associated with geometric methods in physics thread like
strands of silver through the tapestry of the workshops. As I write, I have be-
fore me assorted Proceedings from meetings I attended. There are books pub-
lished through PWN (Polish Scientific Publishers), Plenum, World Scientific, and
AIP (American Institute of Physics Conference Series). The contributions of some
years are featured in a supplement to Journal of Nonlinear Mathematical Physics
(WGMP-XXI and WGMP-XXII), and in special issues of the Journal of Geometry
and Symmetry in Physics (WGMP-XXIV).

Opening a few of these books randomly, one finds that in 1992 (WGMP-XI)
there were contributions on geometric quantization, loop spaces and path integral
quantization, infinite-dimensional systems and the theory of vortices, Berry phase,
and related topics. In 1998 (WGMP-XVII),the highlighted topics include coherent
states, wavelets, deformation and geometric quantization, gravity and quantum
gravity, and geometrical methods for field theory.

A special volume was published following WGMP-XX, entitled Twenty Years
of Bial̷owieża: A Mathematical Anthology, edited by Ali et al. [1], containing in-
vited articles on some of the most featured topics of WGMP across its first two
decades: diffeomorphism groups and Lie algebras of vector fields, quantization
and coherent states, symplectic and Poisson geometry, quantum groups, and other
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topics. In 2007 (WGMP-XXVI) and 2008 (WGMP-XXVII), major themes include
quantization, field theory, Poisson geometry and Hamiltonian systems, noncom-
mutative geometry, integrable systems, Lie algebras, and quantum deformations
of groups. Through WGMP-XXX (the present volume) and WGMP-XXXI (an-
nounced for June 2012), most of these topics continue to be explored. The perma-
nent website of the conference at http://wgmp.uwb.edu.pl/ contains not only the
announcement of the next workshop, but links to posters and photographs from
earlier workshops going back nearly twenty years, displaying these and related
themes.

Some prominent individual participants are associated with memorable work-
shop talks and discussions. Among the distinguished mathematicians and physi-
cists with whom we have been privileged to share time in Bial̷owieża, in addi-
tion to those already mentioned, have been Dmitri Anosov, Francesco Calogero,
Alberto Cattaneo, Bryce DeWitt and Cécile DeWitt-Morette, David Elworthy,
Gerard Emch, Boris Fedosov, Moshe Flato, Roy Glauber, John Klauder, Martin
Kruskal, Kirill MacKenzie, Varghese Mathai, George Mackey, Bogdan Mielnik,
and Alexander Veselov. This abbreviated list omits many more, and only begins
to convey the high level of the science. Yet each day, the casual, informal ambi-
ence encourages everyone to talk with (and sing with, dance with, and share with)
everyone else – from graduate students just starting out to senior scientists with
interesting stories to tell.

In fact, the WGMP has consistently subsidized the participation of graduate
students. For many graduate students in mathematics and physics, the meeting in
Bial̷owieża actually provided the first opportunity to interact seriously with the
international mathematics and physics communities.

And it does not stop in the summer. The WGMP international advisory com-
mittee draws most of its participants from the invited conference speakers, leading
in turn to the creation of informal networks collaborating on various scientific re-
search and education development activities. This is, perhaps, the less visible part
of Bial̷owieża’s world-wide influence.

For example, Rutgers University formed a partnership with Université d’Abo-
mey-Calavi (Cotonou, Benin), initiated with fellow-advisory board member M.
Norbert Hounkonnou, that has led to reciprocal faculty visits including talks and
workshops on mathematics education in Benin and the USA, and contributed lec-
tures in Cotonou for graduate students across sub-Saharan Africa. Other examples
include numerous research collaborations and student exchanges between Africa,
the former Soviet republics, Canada, and European countries such as France, Bel-
gium, and Poland.

A few personal recollections from particular workshops probably typify the
experiences of many of the WGMP participants.

In the summer of 1996 (WGMP-XV), Bryce and Cécile DeWitt and George
and Alice Mackey came for the week. I had first met GeorgeMackey decades earlier,
at the Battelle Seattle 1969 Rencontres, after having been greatly influenced in my
undergraduate study and graduate work on current algebras by Mackey’s work on

http://wgmp.uwb.edu.pl/
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induced representations and systems of imprimitivity. Subsequently Cécile DeWitt,
in a 1971 paper with Michael Laidlaw, had laid groundwork for my independent
development of intermediate statistics for quantum particles in two-space (with
Ralph Menikoff and David Sharp at Los Alamos National Laboratory). And Bryce
DeWitt had, of course, influenced my entire generation of physics students in
our thinking about gravity. So this was a rare opportunity. There occurred an
incomparable week of conversation about ways of thinking in mathematics and
physics, that affects me to this day.

In a subsequent summer, not too long afterward, my daughter Rebecca (then
pursuing graduate study in symplectic geometry at Massachusetts Institute of
Technology) attended the WGMP – and found considerable inspiration in learn-
ing from Cécile DeWitt about her early experiences as a woman in the field of
mathematics.

A number of my scientific collaborations originated at WGMP – for example,
with Robert Owczarek and with ShahnMajid. In 2006 (WGMP-XXV), my Rutgers
colleague Martin Kruskal came to the Bial̷owieża meeting. Surprisingly, perhaps,
this was our first-ever opportunity to talk in depth. Sadly, it turned out to have
been our only opportunity, as Kruskal passed away the following winter. His talk at
WGMP was not about solitons, but about “surreal numbers” – hardly “geometric
methods in physics” – yet it was greatly appreciated by the participants. I recall
the long walk we took together on the beautiful path circling the park, discussing
surreal numbers and some topics pertaining to the foundations of mathematics.

Then, of course, I remember some fascinating non-mathematical moments
that reflect the welcoming informality and rare spirit of the workshops. One sum-
mer Nicolaas (Klaas) Landsman gave a spontaneous talk on what an effective
scientific presentation should look like, characterizing the best technique as re-
sembling the act of “peeling an onion.” The same year, Katherine Brading (then
an Oxford philosophy of science graduate student) offered an unplanned, histor-
ical/philosophical talk about Emmy Noether, Hermann Weyl, local symmetries
and conserved quantities.

Another summer Roger Picken, who had given a talk about braids, knots,
and tangles, provided everyone with outdoor lessons in Scottish country dancing
to the delight of the group.

And on a different occasion, Carl Bender and I took a walk around the park.
Bender, whom I have known since high school when we competed in the same chess
league, had presented an interesting survey about the convergence and asymptotic
behavior of perturbation series. But what I remember vividly is his reciting to me
entirely from memory the long “nonsense” poem by Edward Lear, “The Courtship
of the Yonghy-Bonghy Bo,” which he recalled from childhood – a surprisingly
moving poem to hear, as we walked in the beautiful setting of Bial̷owieża Park.

In short, if the scientific themes are the silver strands in the complex fabric
of the Bial̷owieża workshops, then the individual participants – whether returning
frequently, or occasionally, or joining the workshop only once – are indeed the
golden ones.
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I have mentioned a unique attraction, located just at the edge of the village
of Bial̷owieża – the skansen, a kind of spacious outdoor museum that includes
fields and wetlands, old houses, windmills, and farm and household implements
characteristic of an earlier age. Some strikingly beautiful photographs of this re-
creation can be found at a various websites, for example,

http://pl.wikipedia.org/wiki/Skansen w Bial̷owieży.

As with the WGMP series itself, the existence of this skansen – which has been
created over the same thirty-year time period as the workshops – is in large measure
due to the energy, patience, and perseverance of Odzijewicz.

Certain activities have become ritual events during the workshops. Early in
the week, there is always a bonfire – with music, dancing, Polish sausages and
grilled meats, pickles, rye bread, beer and special vodkas as well as softer drinks,
and plenty of the delicious cabbage stew called bigos. It takes place in the skansen,
where a special structure offers picnic tables, benches, and a little protection in
case of rain. Some of the younger workshop participants, or those of us young at
heart, stay up nearly till dawn – posing a challenge to attendance at the next
morning’s talks.

One afternoon later in the week is free, devoted to a traditional guided ex-
cursion into the protected part of the forest (or to other leisure activity). Another
evening, the workshop banquet takes place – a veritable feast of delicious Polish
dishes, in extraordinary variety, again with music and dancing. This time early
lectures are not scheduled the next morning, allowing the “night owls” an oppor-
tunity to sleep late. This banquet is also the occasion for impromptu recitations
of original poetry or limericks, for folk-singing and dancing, and for the offering
of toasts – to the organizers, the speakers, the students, and best of all, to Anatol
Odzijewicz, whose spirit of scientific inquiry and warmth of friendship have (we
have come to understand) infused the atmosphere of the workshop.

One may read more about the WGMP series in the marvelous feature by Ali
and Voronov [2] in the European Mathematical Society Newsletter, March 2010,
also offering interesting and historic photographs by Goliński; see

http://www.ems-ph.org/journals/newsletter/pdf/2010-03-75.pdf

Finally, at the end of the week, the workshop comes to a close. Saturday
night in Bial̷owieża is typically Kupala Night (Noc Kupal̷y), when a festival of re-
gional folk dances and music attracts hundreds of local visitors. And early Sunday
morning, as the sun comes up, the special bus stands ready to carry the partic-
ipants to Warsaw Central Station and to Warsaw Chopin Airport. Our suitcases
are packed. Our goodbyes are said with unusual emotion. And our thoughts dwell
on the science, the mathematics, the people we have met for the first time, the
colleagues with whom we have reconnected, and the awe we have felt walking in
the shadows of the ancient trees which grew up long before we were born, and
which will endure long after we have gone.

http://pl.wikipedia.org/wiki/Skansen_w_Bia%CC%B7lowiezy.
http://www.ems-ph.org/journals/newsletter/pdf/2010-03-75.pdf
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And the final verses of Keats’ Ode to a Nightingale echo in our minds as we
leave the forest,

“Was it a vision, or a waking dream?
Fled is that music: – do I wake or sleep?”
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1. Preface

This text has resulted from our participation in the XXXth Workshop on Geomet-
ric Methods in Physics held in Bial̷owieża in summer 2011. Part of this conference
was a special Berezin Memorial Session: Representations, Quantization and Su-
pergeometry. F.A. Berezin, who died untimely in 1980 in a water accident during
a trip to Kolyma, would have been eighty in 2011.

This is an attempt to give a survey of Berezin’s remarkable work and its
influence for today. Obviously, we could not cover everything. This survey concen-
trates on three topics: representation theory, quantization and supermathematics.
Outside of its scope remained, in particular, some physical works in which Berezin
was applying his approach to second quantization and his theory of quantiza-
tion. Also, we did not consider two important but somewhat stand-alone topics
of the latest period of Berezin’s work devoted to an interpretation of equations
such as KdV from the viewpoint of infinite-dimensional groups [49, 50] (joint with
A.M. Perelomov) and a method of computing characteristic classes [53] (joint with
V.S. Retakh).

For a sketch of Berezin’s life and personality, we refer to a brilliant text by
R.A. Minlos [93].

Sections 2 and 3 below were written by Yu.A. Neretin. Section 4 was written
by A.V. Karabegov. Section 5 was written by Th.Th. Voronov, who also proposed
the general plan of the paper and made the final editing.



4 A. Karabegov, Y. Neretin and T. Voronov

2. Laplace operators on semisimple Lie groups

The main scientific activity of F.A. Berezin was related with mathematical physics,
quantization, infinite-dimensional analysis and infinite-dimensional groups, and su-
permathematics. But in 1950s he started in classical representation theory (which
at that time was new and not yet classical).

2.1. Berezin’s Ph.D. thesis: characters of complex semisimple Lie groups
and classification of irreducible representations

Our first topic1 is the cluster of papers 1956–57: announcements [7], [8], [40], [9],
the main text [10], and an addition in [16]. This work has a substantial overlap
with Harish-Chandra’s papers of the same years, see [76]. F.A. Berezin in 1956
claimed that he classified all irreducible representations of complex semisimple
Lie groups in Banach spaces. We shall say a few words about this result and the
approach, which is interesting no less than the classification.

The technology for construction representations of semisimple groups (para-
bolic induction and principal series) was proposed by I.M. Gelfand and M.A. Nai-
mark in book [70]. On the other hand, Harish-Chandra [75] in 1953 proved the
‘subquotient theorem’: each irreducible representation is a subquotient of a repre-
sentation of the principal (generally, non-unitary) series.

Consider a complex semisimple (or reductive) Lie group 𝐺, its maximal com-
pact subgroup 𝐾 and the symmetric space 𝐺/𝐾. For instance, consider 𝐺 =
GL(𝑛,ℂ); then 𝐾 = U(𝑛) and 𝐺/𝐾 is the space of positive definite matrices of
order 𝑛. A Laplace operator is a 𝐺-invariant partial differential operator on 𝐺/𝐾.
Let us restrict a Laplace operator to the space of 𝐾-invariant functions (for in-
stance, in the example above it is the space of functions depending on eigenvalues
of matrices). The radial part of Laplace operator is such a restriction.

Berezin described explicitly the radial parts of the Laplace operators on𝐺/𝐾.
He showed that in appropriate coordinates2 𝑡1, . . . , 𝑡𝑛 on 𝐾 ∖ 𝐺/𝐾 each radial
part has the form

𝑝
( ∂

∂𝑡1
, . . .

∂

∂𝑡𝑛

)
, (1)

where 𝑝 is a symmetric (with respect to the Weyl group) polynomial.

The first application was a proof of the formula for spherical functions on
complex semisimple Lie groups from Gelfand and Naimark’s book [70]. One of
the possible definitions of spherical functions: they are 𝐾-invariant functions on
𝐺/𝐾 that are joint eigenfunctions for the Laplace operators. I.M. Gelfand and
M.A. Naimark proved that for 𝐺 = GL(𝑛,ℂ) such functions can be written in the

1This was not the first work of Berezin. The paper [39] of Berezin and I.M. Gelfand (1956) on
convolution hypergroups was one of the first attacks on the Horn problem; in particular they
showed a link between eigenvalue inequalities and tensor products of irreducible representations

of semisimple groups, see [86], [69].
2We also allow change 𝑓(𝑡) �→ 𝛼(𝑡)𝑓(𝑡).
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terms of the eigenvalues 𝑒𝑡𝑘 as

Φ𝜆(𝑡) = const(𝜆) ⋅ det𝑘,𝑚{𝑒𝜆𝑘𝑡𝑚}
det𝑘,𝑚{𝑒𝑘𝑡𝑚} (2)

as in the Weyl character formula3 for finite-dimensional representations of
GL(𝑛,ℂ), but the exponents 𝜆𝑗 are complex. They wrote the same formula for
other complex classical groups, but it seems that their published calculation4 can
be applied only for GL(𝑛,ℂ). Berezin reduced the problem to a search of common
eigenvalues of operators (1) and solved it.

Next, consider Laplace operators on a complex semisimple Lie group 𝐺, i.e.,
differential operators invariant with respect to left and right translations on 𝐺. We
can consider 𝐺 as a symmetric space, it acts on itself by left and right translations,
𝑔 �→ ℎ−1

1 𝑔ℎ2, the stabilizer of the point 1 ∈ 𝐺 is the diagonal diag(𝐺) ⊂ 𝐺 × 𝐺,
i.e., we get the homogeneous space 𝐺×𝐺/diag(𝐺). Note also that 𝐺×𝐺/diag(𝐺)
is the complexification of the space 𝐺/𝐾. We again can consider the radial parts
of Laplace operators as the restrictions of Laplace operators to the space of func-
tions depending on eigenvalues 𝜆𝑗 . Since now eigenvalues are complex, the formula
transforms to

𝑝

(
∂

∂𝑡1
, . . .

∂

∂𝑡𝑛
;

∂

∂𝑡1
, . . .

∂

∂𝑡𝑛

)
, (3)

where 𝑝 is separately symmetric with respect to holomorphic and anti-holomorphic
partial derivatives 5.

Recall that for infinite-dimensional representations 𝜌 the usual definition of
the character 𝜒(𝑔) = tr 𝜌(𝑔) makes no sense, because an invertible operator has
no trace. However, for irreducible representations of semisimple Lie groups and
smooth functions 𝑓 with compact supports the operators 𝜌(𝑓) =

∫
𝑓(𝑔)𝜌(𝑔) are

of trace class. Therefore 𝑓 �→ tr 𝜌(𝑓) is a distribution on the group in the sense of
L. Schwartz. This is the definition of the character of an irreducible representation.

A character is invariant with respect to the conjugations 𝑔 �→ ℎ𝑔ℎ−1. Also, it
is easy to show that a character is an eigenfunction of all Laplace operators. The
radial parts of Laplace operators were evaluated, so we can look for characters
as joint eigenfunctions of operators (3). Algebraically the problem is similar to
calculation of spherical functions and final formulas are also similar (but there are
various additional analytic difficulties).

For a generic eigenvalue, a symmetric solution is unique. It has the form∑
𝜎∈𝑆𝑛

(−1)𝜎𝑒
∑

𝑘(𝑝𝑘𝑡𝜎(𝑘)+𝑞𝑘𝑡𝜎(𝑘)) ,

for 𝐺 = GL(𝑛,ℂ), here 𝑆𝑛 is the symmetric group. This is the character of a repre-
sentation of the principal series. For ‘degenerate’ cases there are finite subspaces of

3The function 𝛼 from a previous footnote is the denominator of (2).
4It is very interesting, an integration in the Jacobi elliptic coordinates.
5The eigenfunctions of (3) are exponential and we have to symmetrize them because we need
symmetric solutions.
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solutions. Berezin showed that all characters are linear combinations of the charac-
ters of representations of principal series. In the introduction to [10], he announced
without proof a classification of all irreducible representations. The restriction of
a representation of the principal series to 𝐾 contains a unique subrepresentation
with the minimal possible highest weight6. We must choose a unique subquotient
containing this representation of 𝐾.

A formal proof of the classification of representations was not presented
in [10], but the theorem about characters and the classification theorem are equiv-
alent7.

Paper [10] was written in an enthusiastic style and was not always careful. J.M.G.
Fell, Harish-Chandra, A.A. Kirillov, and G.M. Mackey formulated two critical arguments;
Berezin responded in a separate paper [16].

Firstly, the original Berezin work contains a non-obvious and unproved lemma (on
the correspondence between solutions of the systems of PDE in distributions on the group
and the system of PDE in radial coordinates). A proof was a subject of the additional
paper [16].

Secondly, Berezin actually worked with irreducible representations whose𝐾-spectra
have finite multiplicities (i.e., the irreducible Harish-Chandra modules). He formulated
the final result as the “classification of all irreducible representations in Banach spaces”
and at this point he claimed that the equivalence of the two concepts had been proved
by Harish-Chandra. But this is not correct8. He had to formulate the statement as the
“classification of all completely irreducible9 representations in Banach spaces”, with the
necessary implication proved by R. Godement [71] in 1952.

Recall that the stronger version of classification theorem was proved by Zh-
elobenko near 1970. For real semisimple groups, the classification was announced
by R. Langlands in 1973 and proofs were published by A. Borel and N. Wallach
in 1980.

2.2. Radial parts of Laplace operators

Spherical functions, the spherical transform, and the radial parts of Laplace opera-
tors appeared in representation theory in the 1950s. Later they became important
in integrable systems. On the other hand, they gave a new start for the the-
ory of multivariable special functions (I.G. Macdonald, H. Heckman, E. Opdam,
T. Koornwinder, I. Cherednik, and others).

6In 1966 D.P. Zhelobenko and M.A. Naimark [127] announced the classification theorem in
a stronger form. Later (1967–1973) D.P. Zhelobenko published a series of papers on complex

semisimple Lie groups, e.g., [126], where he, in particular, presented a proof of this theorem
(with a contribution of M. Duflo).
7It is not difficult to show that the distinct subquotients have different characters. The tran-
sition matrix between the characters of the principal series and the characters of irreducible
representations is triangular with units on the diagonal.
8These two properties are not equivalent, see Soergel’s counterexample [117].
9There are many versions of irreducibility for infinite-dimensional non-unitary representations.

A representation is completely irreducible if the image of the group algebra is weakly dense in
the algebra of all operators.
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Consider a real semisimple Lie group 𝐺, its maximal compact subgroup 𝐾
and the Riemannian symmetric space 𝐺/𝐾. If the group 𝐺 is complex, then the
spherical functions are elementary functions, as we have seen above.

But for the simplest of the real groups, 𝐺 = SL(2,ℝ), the spherical functions
are the Legendre functions. In this case, the radial part of the Laplace operator is a
hypergeometric differential operator (with some special values of the parameters).
General spherical functions are higher analogs of the Gauss hypergeometric func-
tions. Respectively, the radial parts of the Laplace operators are higher analogs
of hypergeometric operators (see expressions in [112] and [77], Chapter 1). The
first attack in this direction was made by F.A. Berezin and F.I. Karpelevich [44]
in 1958.

Berezin and Karpelevich found a semi-elementary case, the pseudounitary
group 𝐺 = U(𝑝, 𝑞). In this case the radial parts of Laplace operators are also
symmetric expressions of the form

𝑟
(
𝐿(𝑥1), . . . , 𝐿(𝑥𝑝)

)
,

but 𝐿(𝑥) is now a second-order (hypergeometric) differential operator,

𝐷 := 𝑥(𝑥 + 1)
𝑑2

𝑑𝑥2
+
[
(𝑞 − 𝑝+ 1) + (𝑞 − 𝑝)𝑥

] 𝑑

𝑑𝑥
+
1

4
(𝑞 − 𝑝+ 1)2 .

They also evaluated the spherical functions on U(𝑝, 𝑞) as eigenfunctions of the
radial Laplace operators. In appropriate coordinates the functions have the form

Φ𝑠(𝑥) = const ⋅
det
𝑘,𝑗

{
2𝐹1

[ 1
2 (𝑞 − 𝑝+ 1) + 𝑖𝑠𝑗,

1
2 (𝑞 − 𝑝+ 1)− 𝑖𝑠𝑗

𝑞 − 𝑝+ 1
;−𝑥𝑘

]}
∏

1≤𝑘<𝑙≤𝑝(𝑠
2
𝑘 − 𝑠2

𝑙 )
∏

1≤𝑘<𝑙≤𝑝(𝑥𝑘 − 𝑥𝑙)
.

Here 2𝐹1[. . . ] is the Gauss hypergeometric function, 𝑥1, . . . , 𝑥𝑝 are coordinates
on the Cartan subgroup of U(𝑝, 𝑞), and 𝑠1, . . . , 𝑠𝑝 are parameters of spherical
functions.

This paper was accepted by Doklady in June 1957. Near that time Berezin’s
scientific interests had changed and he left the classical representation theory10,11.

(The next step was done by M.A. Olshanetsky and A.M. Perelomov [101]
in 1976; see also [102]. They wrote the radial part of the second-order Laplace
operator. Quite soon J. Sekiguchi [112] obtained a general formula for the groups
GL.)

10In 1976 paper [27] and the five ITEP preprints of 1977 included in the English version of [38],
Berezin returned to the study of Laplace operators and considered the radial parts of Laplace
operators for Lie supergroups (see Subsection 5.5). They are usual (non-super) partial differential
operators. This topic is not well understood up to now; A.N. Sergeev and A.P. Veselov produced
from this standpoint new operators of Calogero–Moser type whose eigenfunctions are super-Jack
functions (which also are functions of even variables), see [113]. On an analog of the group case,
see [78].
11In 1970s, Berezin made a work on the harmonic analysis in Hilbert spaces of holomorphic

functions [23], [26], [34] for a discussion of this work and its continuations, see [118], [97], and
[99], Chapter 7.
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3. Method of second quantization

Our next topic is the famous book “The method of second quantization” [14] (and
the announcements [11, 48, 12, 13]). A more detailed discussion of the intellectual
history of this work and its influence is in [98].

3.1. Prehistory

It is known that at the end of 1950s Berezin started to learn physics and to
participate in theoretical physics seminars in Moscow. He had to decide between
numerous possible ways in this new world and his choice was the problem about
the automorphisms of the canonical commutation and anticommutation relations
formulated in the book ‘Mathematical aspects of the quantum theory of fields’ by
K.O. Friedrichs [68] of 1953.

Let 𝑃1, . . . , 𝑃𝑛, 𝑄1,. . . , 𝑄𝑛 be self-adjoint operators in a Hilbert space sat-
isfying the conditions

[𝑃𝑘, 𝑃𝑙] = [𝑄𝑘, 𝑄𝑙] = 0, [𝑃𝑘, 𝑄𝑙] = 𝑖𝛿𝑘,𝑙 (4)

and without a common invariant subspace. Such conditions are called the canonical
commutation relations, abbreviation CCR. According to the Stone–von Neumann
theorem, such a system of operators is unique up to a unitary equivalence (for
a precise forms of the theorem, see, e.g., [15]). In fact, our Hilbert space can
be identified with 𝐿2(ℝ𝑛) and the operators with 𝑥𝑘, 𝑖

∂
∂𝑥𝑘
, respectively. Now let

𝑔 =

(
𝛼 𝛽
𝛾 𝛿

)
be a symplectic 2𝑛× 2𝑛 matrix. Evidently, the operators

𝑃 ′𝑘 =
∑
𝑙

𝛼𝑘𝑙𝑃𝑙 +
∑
𝑙

𝛽𝑘𝑙𝑄𝑘𝑙, 𝑄′𝑘 =
∑
𝑙

𝛾𝑘𝑙𝑃𝑙 +
∑
𝑙

𝛿𝑘𝑙𝑄𝑘𝑙 (5)

satisfy the same relations (4). Therefore there is a unitary operator 𝑈 = 𝑈(𝑔) such
that 12

𝑃 ′𝑘 = 𝑈(𝑔)𝑃𝑘𝑈(𝑔)
−1, 𝑄′𝑘 = 𝑈(𝑔)𝑄𝑘𝑈(𝑔)

−1 . (6)

By a version of the Schur Lemma, this operator is unique up to a scalar factor. It
is easy to see that

𝑈(𝑔)𝑈(ℎ) = 𝜆(𝑔, ℎ)𝑈(𝑔, ℎ) ,

where 𝜆(⋅, ⋅) is a complex scalar. Apparently, Friedrichs decided that there was
nothing to discuss here and asked what would happen if the number 𝑛 of the
operators were ∞. He showed that there are many nonequivalent representations
of CCR besides the well-known Fock representation. Next, Friedrichs asked, for
which symplectic matrices the system of operators 𝑃 ′𝑘, 𝑄

′
𝑘 are equivalent to 𝑃𝑘,

𝑄𝑘. He formulated a correct conjecture and tried to find explicit formulas for 𝑈(𝑔).

12Now the mapping 𝑔 �→ 𝑈(𝑔) is called the Weil representation, see A. Weil’s paper [125], 1964.

The term is common and convenient, but historically it was a construction due to K.O. Friedrichs
and I. Segal.
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3.2. Operators and divergences

Consider the usual Fourier transform ℱ in 𝐿2(ℝ), 𝑓(𝜉) =
∫
𝑒𝑖𝑥𝜉𝑓(𝑥) 𝑑𝑥. Its defi-

nition is not completely straightforward, since the integral can be divergent, and
some regularization dance is necessary. If we want to find ℱ2, we must calculate
the kernel

𝐾(𝑥, 𝑦) =

∫
𝑒𝑖𝑦𝜉𝑒𝑖𝑥𝜉 𝑑𝜉

Since we know the answer, we can believe that it is obvious. In any case, the
integral diverges . . .

These difficulties are usual for the work with integral operators in 𝐿2(ℝ𝑛).
Field theory requires functions of infinite number of variables and passing to the
limit 𝑛 → ∞ only multiplies the problems. Berezin noticed that in the space 𝐹𝑛

of entire functions on ℂ𝑛 with the inner product

⟨𝑓, 𝑔⟩ = 1

(2𝜋)𝑛

∫
𝑓(𝑧)𝑔(𝑧)𝑒−∣𝑧∣

2

𝑑ℜ(𝑧) 𝑑ℑ(𝑧)

we can realize our operators as

𝑃𝑘 =
1√
2

(
𝑧𝑘 +

∂

∂𝑧𝑘

)
, 𝑄𝑘 =

1√
2𝑖

(
𝑧𝑘 − ∂

∂𝑧𝑘

)
.

Therefore this space can be identified with 𝐿2(ℝ𝑛). Berezin observed that in the
space 𝐹𝑛 any bounded operator is an integral operator of the form

𝐴𝑓(𝑧) =

∫
ℂ𝑛

𝐾(𝑧, 𝑢)𝑓(𝑢)𝑒−∣𝑢∣
2

𝑑𝑢 𝑑𝑢

and the integral is convergent. Also the kernel of a product of integral operators
is defined by a convergent integral. Next, Berezin showed that this ‘holomorphic
model’ perfectly survives as 𝑛 → ∞ (only the case 𝑛 =∞ is discussed in book [14],
Berezin uses the term ‘generating functional’ for the function assigned to an oper-
ator). In particular, we can work with bounded operators without any divergences.

Certainly, we need also unbounded operators, where divergent expressions
have to appear. But, again, the ‘level of divergences’ is minimal.

In parallel, Berezin proposed an almost equivalent formalism of Wick sym-
bols. Algebraically, they looks similar to the well-known since 1930s expressions
of operators as 𝐴 = 𝑝(𝑥, ∂

∂𝑥 ), where all 𝑥’s are at the left and all
∂
∂𝑥 ’s are at the

right. But only few operators can be written in this form if we understand ‘func-
tions’ literally. In contrast, we can express an operator as 𝐴 = 𝑝(𝑧, ∂

∂𝑧 ) more or
less always.

3.3. Weil representation

Using this operator formalism, Berezin wrote explicit formulas for the operators
𝑈(𝑔). He interpreted the conditions (6) as a first-order system of PDEs for the
kernels 𝐾 of 𝑈(⋅), solved the equations and got the expressions of the form

𝐾(𝑧, 𝑢) = exp
{
𝑆(𝑧, 𝑢)

}
, (7)
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where 𝑆 is an explicit quadratic form. Thus we obtain a projective representation
of an infinite-dimensional symplectic group by integral operators acting in the
space of functions of infinite number of variables. We also can replace∞ �→ 𝑛 and
obtain a construction that was completely new in that time.

In particular, Berezin proved the Friedrichs conjecture about the domain of
definition of this representation.

3.4. Fermionic Fock space

For us a fermionic Fock space is a space of functions of anticommuting variables.
This idea, now common, originated from Berezin’s book [14]. Berezin also found
that there is a natural integral over anticommuting variables ([11]). We say more
about that in Section 5. Berezin showed that an operator in the fermionic Fock
space is determined by a function (the ‘generating functional’) depending on a
double collection of anticommuting variables and that it is convenient to express
operators in a fermionic Fock space as integral operators, with respect to that
peculiar integral.

In [68], Friedrichs also formulated a problem about the canonical anticom-
mutation relations (abbreviation CAR)

{𝑃𝑘, 𝑃𝑙} = {𝑄𝑘, 𝑄𝑙} = 0, {𝑃𝑘, 𝑄𝑙} = 𝑖𝛿𝑘,𝑙 (8)

and their symmetries (5). Now the matrix 𝑔 =

(
𝛼 𝛽
𝛾 𝛿

)
is orthogonal. Berezin

solved this problem as well and wrote a formula for the kernels of 𝑈(⋅),
𝐾(𝜉, 𝜂) = exp{𝑆(𝜉, 𝜂)} , (9)

where 𝑆 is an explicit quadratic expression. Note that the formulas for 𝑆 in (7)
and (9) are similar.

In fact, both theorems are results in the representation theory of infinite-
dimensional Lie groups. Berezin’s book can be regarded as a mathematization of
field theory. However, it was also (Chapters 2 and 3) the first book on infinite-dim-
ensional groups and the start of this theory. For a more detailed discussion, see [98].

3.5. History and references

Main Berezin’s results with outlined proofs were announced in Doklady paper [11],
of March 1961 (accepted in November 1960). The text was written in the tele-
graphic style usual for Doklady of that time: the allowed four pages were all used
up to one line. In September 1962, Berezin submitted a large paper to Uspehi
(that is, Russian Mathematical Surveys). The paper was rejected. In the follow-
ing years, Berezin published more short announcements: [12], [13] and [48]. In
1965 13 the book “The method of second quantization” was published, addressed
to physicists14.

13The English version appeared in 1966.
14In spite of its physical language, the book is a rigorous, maybe not detailed, mathematical
text.
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Friedrichs’s questions also attracted Irving Segal, who had worked in mathe-
matical field theory since the beginning of 1950s. (In particular, Segal introduced
a model of the Fock space as 𝐿2 on a Gaussian measure [110], 1956; later J. Feld-
man [67], 1959, constructed the action of an infinite-dimensional GL on that space.)
In 1959, Segal obtained explicit formulas for the ‘Weil representation’ for finite 𝑛
in the space 𝐿2, [111]. In 1961, he proposed a holomorphic model for the boson
Fock space (this was also done by V. Bargmann [2] in the same year). In 1962,
D. Shale [114] published the solution of the Friedrichs problem for CCR, and in
1965, D. Shale and W.F. Stinespring published their solution for CAR15 [115].

However these papers did not cover Berezin’s results. His book and Berezin
himself immediately became famous.

3.6. Berezin’s book in physics

Besides the formal results concerning CCR and CAR, the interest of physicists to
this text had two additional reasons.

First, the new operator formalism (both bosonic and fermionic) was very
convenient. It became easier to write formulas and to calculate.

The second reason was the mysterious parallelism between the bosonic and
fermionic spaces which was emphasized in the book. For Berezin himself this was
the starting point of his work leading to the creation of supermathematics (see
Section 5).

4. Berezin’s general concept of quantization

One of the main directions of Berezin’s research was mathematical formulation
of the concept of quantization as a deformation of a classical mechanical system.
In [18] Berezin interpreted the universal enveloping algebra of a Lie algebra as
a quantization of the Poisson algebra of polynomial functions on the dual of the
Lie algebra. In [24] and [25] Berezin introduced a general concept of quantization
based upon algebras of operator symbols depending on a small parameter.

Quoting from [59], “according to the main idea of these works, quantization
has the following precise mathematical meaning: the algebra of quantum observ-
ables is a deformation of the algebra of classical observables, so that the Planck
constant plays the role of the deformation parameter and the direction of deforma-
tion (the first derivative in the parameter at zero) is given by the Poisson bracket”.

In [26], Berezin studied quantization of complex symmetric spaces. The op-
erator symbols used in quantization were introduced and studied in [20], [21], and
[22]. In [34], Berezin obtained the spectral decomposition of the operator connect-
ing covariant and contravariant symbols on classical complex symmetric spaces,
now called the Berezin transform. In [19] and [37], Berezin constructed finite ap-
proximations of Feynman path integrals with the use of operator symbols. See

15Note that the famous mathematicians D. Shale, W.F. Stinespring and J. Feldman were all
I. Segal’s students.
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also Berezin and M.A. Shubin [54] and their joint book “The Schrödinger Equa-
tion” [55], which Shubin prepared for publication after Berezin’s death.

Let us consider these works in greater detail.

4.1. Poisson bracket and quantization on the dual of a Lie algebra

In the fundamental paper [18] Berezin constructed an integral transform 𝛿 from
generalized functions on a neighborhood of the identity of a Lie group 𝐺 to func-
tions on the dual �̃� of its Lie algebra𝔊 and expressed the symmetrization mapping

Λ from the symmetric algebra 𝑆 of 𝔊 to the universal enveloping algebra 𝑆 of 𝔊
through the mapping 𝛿. Let {�̂�𝑝} be a basis in 𝔊, {𝑡𝑝} the corresponding coordi-
nates on 𝔊, {𝑦𝑝} the dual coordinates on �̃�. The mapping 𝛿 is defined as follows:

𝛿 : 𝑠(𝑔) �→ 𝛿
𝑠 (𝑦) =

∫
𝑒−𝑖𝑡𝑦𝑠(𝑔(𝑡))𝜌(𝑡)𝑑𝑡, 𝑡𝑦 =

∑
𝑝

𝑡𝑝𝑦𝑝,

where 𝑡 �→ 𝑔(𝑡) is the exponential mapping and 𝜌(𝑡) is the density of the right-
invariant measure on𝐺 in the canonical coordinates {𝑡𝑝}. The symmetric algebra 𝑆
of 𝔊 is identified with the space of polynomials on �̃� and Λ maps 𝑦𝑝 to 𝑦𝑝 = −𝑖�̂�𝑝.
The generalized functions supported at the identity of 𝐺 form an algebra with
respect to the convolution. This algebra is naturally identified with the universal
enveloping algebra 𝑆. Berezin proved that under this identification the inverse
mapping Λ−1 is given by the mapping 𝛿. The mapping 𝛿 allows to transfer the
convolution of generalized functions supported on a small neighborhood 𝑈 of the
identity of the group 𝐺 to an operation on functions on the dual �̃� of the Lie
algebra 𝔊. Berezin gave an integral formula for this operation. Given generalized

functions 𝑠1, 𝑠2 supported on 𝑈 and their convolution 𝑠, set 𝜎1 =
𝛿
𝑠1, 𝜎2 =

𝛿
𝑠2 and

𝜎 =
𝛿
𝑠. Then

𝜎(𝑦) =

∫
𝐾𝑈 (𝑦∣𝑦1, 𝑦2)𝜎1(𝑦1)𝜎2(𝑦2)𝑑𝑦1𝑑𝑦2,

where

𝐾𝑈 (𝑦∣𝑦1, 𝑦2) =
1

(2𝜋)2𝑛

∫
𝑔(𝑡1)∈𝑈, 𝑔(𝑡2)∈𝑈

𝑒−𝑖𝑦 log(𝑔(𝑡1)𝑔(𝑡2))+𝑖𝑦1𝑡1+𝑖𝑦2𝑡2𝑑𝑡1𝑑𝑡2.

Berezin noted that this integral formula can be extended to the space 𝑆 of poly-
nomials on �̃� and the resulting algebra is isomorphic to the universal enveloping
algebra 𝑆 of 𝔊. Moreover, the leading term of the commutator of polynomials
leads to a natural Poisson bracket on the dual of the Lie algebra 𝔊. For arbitrary
smooth functions on �̃� it is possible to write

{𝑓1, 𝑓2} =
∑

𝐶𝑘
𝑖𝑗𝑦𝑘

∂𝑓1

∂𝑦𝑖

∂𝑓2

∂𝑦𝑗
,

where 𝐶𝑘
𝑖𝑗 are the structure constants of the Lie algebra 𝔊. About the same time,

this Poisson bracket on �̃� (in the form of a symplectic structure on the coad-
joint orbits) was discovered in the orbit method. Therefore it became known as
the Berezin–Kirillov or Berezin–Kirillov–Kostant bracket. (Later Alan Weinstein
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found out that the bracket had been known already to S. Lie, so the name ‘Lie–
Poisson bracket’ became more standard.)

Thus the universal enveloping algebra of 𝔊 can be interpreted as a quan-
tization of the corresponding Poisson algebra on �̃� consisting of the polynomial
functions endowed with the Berezin–Kirillov–Kostant Poisson bracket.

In fact, by rescaling this operation by a formal parameter ℏ, one can obtain from
above Berezin’s formula the following integral formula for what is now known as the
‘Baker–Campbell–Hausdorff star product’ on �̃� :

(𝑓1 ∗ 𝑓2)(𝑦) = 1

(2𝜋ℏ)𝑛

∫∫
𝑑𝑦1 𝑑𝑡1 𝑑𝑦2 𝑑𝑡2 𝑓1(𝑦1) 𝑓2(𝑦2) 𝑒

− 𝑖
ℏ
(⟨𝑡1,𝑦1⟩+⟨𝑡2,𝑦2⟩−⟨𝐻(𝑡1,𝑡2),𝑦⟩).

(10)
Here 𝐻(𝑡1, 𝑡2) is the formal BCH power series on 𝔊 and the integration extends over

�̃�×𝔊× �̃�×𝔊. The functions 𝑓1 and 𝑓2 can be arbitrary smooth functions on �̃� due to
the presence of a formal parameter ℏ 16.

4.2. General concept of quantization as deformation

In [24] and [25] Berezin gave a general definition of quantization of a Poisson
manifold (𝑀, {⋅, ⋅}) as an algebra (𝔄, ∗) of sections of a field of noncommutative
algebras (𝒜ℎ, ∗ℎ) parameterized by the elements ℎ of a set 𝐸 of positive numbers
that has zero as an accumulation point. The Correspondence Principle for this
quantization is expressed in terms of a homomorphism

𝜑0 : 𝔄 → 𝐶∞(𝑀) (11)

such that for 𝑓, 𝑔 ∈ 𝔄,

𝜑0

(
1

ℎ
(𝑓 ∗ 𝑔 − 𝑔 ∗ 𝑓)

)
= 𝑖{𝜑0(𝑓), 𝜑0(𝑔)}.

Then he considered a special case when 𝒜ℎ ⊂ 𝐶∞(𝑀), the elements of 𝔄 are
functions 𝑓(ℎ, 𝑥) on 𝐸 ×𝑀 , and

𝜑0(𝑓) = lim
ℎ→0

𝑓(ℎ, 𝑥).

4.3. Berezin’s quantization using symbols

Berezin studied a number of examples of such special quantizations where 𝒜ℎ for a
fixed ℎ is an algebra of symbols of operators in a Hilbert space. To this end, Berezin
introduced covariant and contravariant symbols related to an overcomplete family
of vectors in a reproducing kernel space. Namely, consider a Hilbert space 𝐻 and
a set 𝑀 with measure 𝑑𝛼 whose elements parameterize a system of vectors {𝑒𝛼}
in 𝐻 . Let 𝑃𝛼 be the orthogonal projection operator onto 𝑒𝛼 and

𝑑𝜇(𝛼) = ∣∣𝑒𝛼∣∣2𝑑𝛼

16We obtained formula (10) around 1998 (Th.V., unpublished) and then realized that it can be
deduced from Berezin [18].
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be another measure on 𝑀 . The vectors {𝑒𝛼} form an overcomplete family in 𝐻 if∫
𝑃𝛼 𝑑𝜇(𝛼) = 𝐸

is the identity operator in 𝐻 . Then 𝐻 is isometrically embedded into 𝐿2(𝑀,𝑑𝛼)
by the mapping 𝐻 ∋ 𝑓 �→ ⟨𝑓, 𝑒𝛼⟩. The projectors 𝑃𝛼 are used to define covariant
and contravariant symbols of operators in 𝐻 as follows. The covariant symbol of
an operator 𝐴 is the function

𝐴(𝛼) = tr𝐴𝑃𝛼

on 𝑀 . A function
∘
A (𝛼) on 𝑀 is a contravariant symbol of 𝐴 if

𝐴 =

∫
𝑃𝛼

∘
A (𝛼)𝑑𝜇(𝛼).

The measure 𝜇 defines a trace functional on appropriate classes of covariant and
contravariants symbols that agrees with the operator trace (see [21]),

tr𝐴 =

∫
𝐴𝑑𝜇 =

∫ ∘
A 𝑑𝜇.

The covariant and contravariant symbols 𝐴 and
∘
A of the same operator 𝐴 are

connected via the Berezin transform 𝐼,

𝐴(𝛼) = (𝐼
∘
A)(𝛼) =

∫
tr (𝑃𝛼𝑃𝛽)

∘
A (𝛽)𝑑𝜇(𝛽).

An overcomplete system of vectors {𝑒𝛼} in 𝐻 may admit a symmetry group
𝐺 that acts upon 𝐻 by a unitary representation 𝑔 �→ 𝑈𝑔 and upon 𝑀 by transfor-
mations preserving the equivalence class of the measure 𝑑𝛼 so that

𝑈𝑔𝑒𝛼 = 𝑠(𝛼, 𝑔)𝑒𝑔𝛼,

where 𝑠 :𝑀 ×𝐺 → ℂ is a measurable cocycle satisfying

𝑑𝑔𝛼

𝑑𝛼
= ∣𝑠(𝛼, 𝑔)∣2.

Then 𝑈𝑔𝑃𝛼𝑈
−1
𝑔 = 𝑃𝑔𝛼, the measure 𝑑𝜇 is 𝐺-invariant, the symbol mappings

𝐴 �→ tr𝐴𝑃𝛼 and
∘
A (𝛼) �→

∫
𝑃𝛼

∘
A (𝛼)𝑑𝜇(𝛼)

are 𝐺-equivariant and the Berezin transform 𝐼 is 𝐺-invariant.
Berezin studied spectral properties of covariant and contravariant symbols

in [21] and then used algebras of covariant symbols to define a quantization of a
special class of Kähler manifolds in [24] using the saddle-point method. He started
with a Kähler manifold 𝑀 of complex dimension 𝑚 with a Kähler form 𝜔 and the
Liouville measure 𝜔𝑚. He assumed that there exists a global Kähler potential Φ
of the form 𝜔 and introduced an ℎ-parameterized family of measures

𝑑𝛼ℎ = e
− 1

ℎΦ𝜔𝑚
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on 𝑀 . Then he considered the Hilbert space 𝐻ℎ of holomorphic functions on 𝑀
square integrable with respect to the measure 𝑑𝛼ℎ. The Bergman reproducing

kernel of 𝐻ℎ defines an overcomplete system of vectors {𝑒(ℎ)
𝛼 } in 𝐻ℎ. In order to

prove the Correspondence Principle, Berezin imposed a severe assumption on 𝑀
that

𝑒(ℎ)
𝛼 (𝑧) = 𝑐(ℎ)e

1
ℎΦ(𝑧,�̄�)

for 𝛼 = (𝑤,𝑤) ∈ 𝑀 and some constant 𝑐(ℎ). This assumption is satisfied on Kähler
manifolds with a transitive symmetry group which allowed Berezin to quantize
complex symmetric spaces (see [26]).

4.4. Influence of Berezin’s work

In the following decades Berezin’s work on quantization attracted a lot of at-
tention. His results were expanded and generalized by many mathematicians and
mathematical physicists in two major directions. First, Berezin’s definition of quan-
tization in the special case when 𝒜ℎ ⊂ 𝐶∞(𝑀) was extended to incorporate de-
formation quantization of Flato et al. [6] as a formal asymptotic expansion in ℎ
of the product ∗ℎ in the algebra 𝒜ℎ. In the general case this can be achieved by
extending the homomorphism (11) in the general definition of quantization to a
homomorphism

𝜑 = 𝜑0 + 𝜈𝜑1 + ⋅ ⋅ ⋅ : 𝔄 → 𝐶∞(𝑀)[[𝜈]]
to the star-algebra of some formal deformation quantization on the Poisson man-
ifold (𝑀, {⋅, ⋅}) such that 𝜑(ℎ𝑓) = 𝜈𝜑(𝑓)17. Examples of such quantizations of
Kähler manifolds were first given in [96] and [63, 64]. The second direction was to
remove the restrictions on the Kähler manifold in Berezin’s quantization. Based on
the microlocal technique developed by Boutet de Monvel and Guillemin in [62], it
was shown in [60] that Berezin–Toeplitz quantization18 on general compact Kähler
manifolds satisfies an analog of the Correspondence Principle. Then in [106] the
existence of the corresponding Berezin–Toeplitz star product was established. In
[80] all star products “with separation of variables” on an arbitrary Kähler man-
ifold were classified and in [81] the Berezin–Toeplitz star product was completely
identified in terms of this classification. In [66] M. Englǐs showed the existence
of Berezin star-product on a quite general class of inhomogeneous complex do-
mains. Berezin–Toeplitz quantization was recently studied by microlocal methods
developed in [89] and [65]. Applications of Berezin–Toeplitz quantization in the
topological quantum field theory were given in [1].

Much work has been done to generalize Berezin’s quantization on Kähler
manifolds to other spaces. Berezin’s first doctoral student Vladimir Molchanov de-
veloped harmonic analysis and quantization on para-Hermitian symmetric spaces
(see [94], [95]). Berezin’s quantization on quantum Cartan domains was considered
in [116]. Berezin’s quantization was generalized to supermanifolds in [61], [73]. In

17Here 𝜈 is a formal parameter.
18Berezin–Toeplitz quantization is defined in terms of operators with given contravariant symbols.
Such operators are generalizations of Toeplitz operators.
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the framework of this publication it is impossible to give a comprehensive survey
of the growing body of papers building upon Berezin’s work on quantization and
many important papers are inevitably left out.

5. Supermathematics

5.1. Introductory remarks

Without doubt, Berezin is the creator of supermathematics, though it was not
him who introduced the name. (More about the origin of the name in 5.4.) In
hindsight, it is possible to trace the origins of what became supermathematics
in various areas of pure mathematics and theoretical physics, but it only due to
Berezin’s vision and his conscious effort that these previously disjoint pieces be-
came parts of a great unified picture together with a lot of new mathematics
discovered by Berezin himself and by those who followed him. Speaking about
Berezin’s work in supermathematics, it is worth pointing out that it was inter-
rupted by his untimely death when supermathematics was still in the early stages
of its development; therefore, the loss caused by Berezin’s sudden departure was
greater for supermathematics than for other areas of his work.

Berezin’s publications related to supermathematics can be divided into two
groups corresponding to the two periods: the gestation period (1961–1975) and
the ‘super’ period 19 (1975–1980).

We can formulate the main idea of supermathematics as follows. The system-
atic consideration of ℤ2-graded objects such as Abelian groups, vector spaces, alge-
bras and modules with the corresponding sign convention (“Koszul’s sign rule” 20)
allows to construct a natural extension of the ‘usual’ linear algebra including gen-
eralizations of commutative algebras and Lie algebras. This goes further to the ex-
tension of differential and integral calculus of many variables and, geometrically,
to the extensions of the notions of differentiable manifold, Lie group, algebraic
variety (or scheme) and algebraic group.

Two things should be said.
Firstly, Berezin came to his program of supermathematics (without such a

name, which appeared later) motivated by physics, more precisely, by his studies
of the formalism of second quantization, which lies in the foundations of quantum
field theory. The influence of physics was also decisive for the passage of super-
mathematics from its gestation stage to the modern stage.

Secondly, the ‘supermathematical’ generalization of the usual notions is not
arbitrary, but indeed reflects the nature of things: the ‘superanalogs’ of various ob-
jects fit together in the same way as their prototypes do (but may also show non-

19The ‘super’ period is marked by the emergence of the names such as supermanifold, super-
algebra, etc. As the borderline we may take the discovery of supersymmetric physical models
followed by the introduction of the notion of a supermanifold in mathematics. This division is
partly conventional.
20From an abstract viewpoint, the sign rule used in supermathematics is a very special example
of a “commutativity constraint” or “braiding” in tensor categories.
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trivial new phenomena). Moreover, this generalization is rigid and unique. There
are no known further generalizations based on other gradings or more compli-
cated commutativity constraints. That is, there are quantum groups and quantum
spaces; however, they are isolated examples unified philosophically but not by a
general theory such as a (non-existing) ‘quantum’ or ‘braided’ geometry, although
these terms are sometimes applied.

5.2. Analysis on a Grassmann algebra

As already said, Berezin’s program of supermathematics has its roots in his book
[14] and the related articles [11, 48, 12, 13]. (See the historical remarks in 3.5.)
In order to construct a ‘calculus of functionals’ for the Fermi fields that can be
parallel to the functional calculus used for describing the Bose fields, Berezin in-
troduced differentiation and integration on a Grassmann algebra. He did it first for
the Grassmann algebras with finite numbers of generators and then extended the
results to the infinite-dimensional ‘functional’ case that he needed for his problem.
This calculus allowed Berezin to obtain a ‘functional realization’ of the fermionic
Fock space similar to the realization of the bosonic Fock space by holomorphic
or antiholomorphic functions (or functionals) and to construct the spinor repre-
sentation of the canonical transformations in the fermionic case (i.e., the spinor
representations of certain infinite-dimensional versions of the orthogonal group).
These representations were discussed in Section 3 and we shall not repeat it here.

A striking feature of Berezin’s calculus on a Grassmann algebra was, as he
noted in [14], that “differently from the usual rule for a change of variables, the in-
dependent variables and their differentials transform by reciprocal matrices”. Here
Berezin refers to his formulas∫

𝑥 𝑑𝑥 = 1 ,

∫
𝑑𝑥 = 0

(where 𝑥 is a Grassmann generator), which imply 𝑑(𝑎𝑥) = 1
𝑎 𝑑𝑥. The ‘differential

𝑑𝑥’ is the quantity appearing under the integral sign, which we would now call
the Berezin volume element and denote by 𝐷𝑥 to distinguish it from the genuine
differential of the variable 𝑥. We can see here the origins of superdeterminant (now
called Berezinian), which was discovered some years later 21. Another remarkable
fact noted and used by Berezin in [14] was the appearance of the (square root of
the) determinant of the quadratic form for a ‘fermionic Gaussian integral’ in the
numerator, not in the denominator:∫

𝑒
∑

𝑎𝑖𝑘𝑥𝑖𝑥𝑘 𝑑𝑥𝑛 . . . 𝑑𝑥1 = (det ∥2𝑎𝑖𝑘∥)1/2 ,

where 𝑎𝑖𝑘 = −𝑎𝑘𝑖, in a sharp contrast with the familiar (“bosonic”) case (equa-
tion 3.16 in [14]).

Integration on a Grassmann algebra introduced by Berezin was soon applied
by Faddeev and Popov in their famous work on quantization of the Yang–Mills

21When only odd variables are present, the Berezinian of their linear homogeneous transformation
reduces simply to the inverse of the determinant.
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field: they expressed the Jacobian factor arising from the separation of the gauge
degrees of freedom by a fermionic Gaussian integral over ‘ghosts’ (the “Faddeev–
Popov ghosts”) and thus they were able to deduce the Feynman rules including
ghosts as following from a local Lagrangian field theory. By contrast, Bryce De-
Witt, who obtained close results at the same time, did not know Berezin’s inte-
gration and because of that failed to arrive to such a natural formulation 22.

At this point it makes sense to discuss the question about Berezin’s predeces-
sors. It is sometimes claimed that the use of anticommuting variables for the clas-
sical description of fermions was familiar to quantum physicists since 1950s (and
hence Berezin did not introduce anything particularly new). Typically Schwinger’s
name is mentioned in this regard. In reality, the ideas of Schwinger and his disci-
ples such as DeWitt about anticommuting variables were quite vague and did not
go any further than the introduction of ‘left’ and ‘right’ derivatives with respect
to generators of a Grassmann algebra (see, e.g., [108, 109]). Partial differentia-

tion with respect to exterior generators had been already known to Élie Cartan
in connection with his method of repère mobile (physicists were probably unaware
of that). The novelty of Berezin’s work in comparison with earlier and simulta-
neous works by physicists was in the mathematical clarity and power with which
he developed the analogy between usual functions and elements of a Grassmann
algebra, but the main new feature was integration over Grassmann generators with
its striking properties. There is a saying 23 that “derivatives are algebra; analysis
begins with integrals”. It was Berezin who made this decisive step. It took some
time for this achievement to be absorbed by the physical community: the example
of DeWitt is a clear evidence.

One person who can be counted as a true predecessor of Berezin, is the British
physicist J.L. Martin. In two papers [90, 91] of 1959, Martin introduced the notion of
a general Hamiltonian system on a Poisson manifold (in the modern terminology) and
suggested to extend it to more general algebras; in particular, he showed how to introduce
what we would call a Poisson superalgebra structure on a Grassmann algebra and applied
that to obtain a Lagrangian classical counterpart of a quantum particle of spin 1/2 ; in
the second paper, he started from a general algebraic formalism linking matrix calculus
with nilpotent variables and applied it to constructing a Feynman integral over histories
for fermionic systems. With hindsight, we may observe that Martin in these two works
published together introduced the integral over anticommuting variables. Strangely, he
applied the name ‘integral’ only for the functional case treated in [91]. For the finite-
dimensional case, he spoke about cosets modulo total differentials in [90] or an unnamed
‘operation 𝑆𝜆’ in [91], 𝜆 being a Grassmann algebra generator or, more generally, an
abstract nilpotent variable. Martin did not consider transformations of variables and the
corresponding properties of the integral. It is amazing that the remarkable works [90, 91]
were not continued and remained completely unnoticed. (Berezin learned about them
only around 1976, see [46]. He gives a very generous reference to [90] in the first sentence
of [35].)

22DeWitt explicitly admits that in the preface to the Russian translation (1985) of his influential
book ‘The dynamic theory of groups and fields’.
23I learned it from A.A. Kirillov.
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5.3. From Grassmann algebras to supermanifolds

Berezin’s calculus on a Grassmann algebra as constructed in [11, 48, 12, 13] was
not yet supermathematics in the proper sense. Ordinary variables and Grassmann
algebra generators were considered in parallel but still separately. There was no
mixture of them nor transformations of Grassmann variables other than linear.
However, as Berezin described it later, “the striking coincidence of the main for-
mulas of the operator calculus in the Fermi and Bose variants of the second quan-
tization method . . . led to the idea of the possibility of a generalization of all the
main notions of analysis so that generators of a Grassmann algebra would be on
an equal footing with real or complex variables” [35, 38].

This was the program of supermathematics 24.
The main steps of its implementation were as follows.

In [17], Berezin considered non-linear transformations of anticommuting vari-
ables in a clear departure from the standard viewpoint on the exterior algebra as a
ℤ-graded object associated with a linear space. Now the emphasis is shifted to the
algebra itself and the transformations are supposed to preserve only ℤ2-grading
and not necessarily ℤ-grading. Berezin studied the effect of such transformations
on the integral over anticommuting variables and proved that there appears the
inverse of the determinant of the Jacobi matrix. This was a generalization of the
formula in [14] and a step towards the discovery of Berezinian. No mixture with
“ordinary” variables yet, but the whole logic leads in this direction.

Algebras generated by even and odd variables appeared in a joint paper
of Berezin and G.I. Kac [43], who introduced – in modern language – formal Lie
supergroups and Lie superalgebras and established their 1–1 correspondence. They
used the results of Milnor and Moore [92]. It should be said that a version of Lie
superalgebras where the ℤ2-grading arises as the reduction of a ℤ-gradingmodulo 2
had been long familiar to topologists and differential geometers under the confusing
name of “graded Lie algebras” 25. The understanding that graded (co)commutative
Hopf algebras played the role of the corresponding group objects was topologists’
folklore 26. In algebraic topology, Hopf algebras arise as homology or cohomology
of topological spaces, so in that context ℤ-grading is natural. Unlike that, the
algebras considered in [43] were supposed to play the role of algebras of functions
and the natural grading is ℤ2. Though [43] was devoted to the analogs of formal
groups, the authors explained what the analog of a non-formal Lie group should
be and gave two examples: in modern language, the general linear supergroup
GL(𝑛∣𝑚) and the diffeomorphism supergroup Diff(ℝ0∣𝑚).

(The notion of a Hopf algebra was discovered by Milnor, motivated by the study
of cohomology operations. G.I. Kac, who should not be confused with V.G. Kac of Kac–
Moody algebras, independently came to a close notion, which he called a ‘ring group’,

24Of course, the name came after the program was actually fulfilled.
25A possible confusion with the ordinary Lie algebras possessing a grading.
26As S.P. Novikov told to the writer of these words many years ago, much of Milnor and Moore’s
paper had been part of folklore before its publication.
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working in representation theory. It was instrumental for his generalization of the Pon-
trjagin duality and the Tannaka–Krein duality. Works of G.I. Kac, who died untimely in
1978, anticipated the discovery of quantum groups; incidentally, before quantum groups
no good examples of Hopf algebras that are neither commutative nor cocommutative
were known. So the collaboration of Berezin and G.I. Kac on [43] was not accidental.
Before [43], Nijenhuis came very close to the concept of a Lie supergroup in deformation
theory. Nijenhuis used pairs consisting of a Lie superalgebra – of course, ℤ2 was ℤ modulo
2 – and a Lie group corresponding to its even part, which is an ordinary Lie algebra.
Such pairs are equivalent to Lie supergroups and are nowadays sometimes referred to by
the name ‘Harish-Chandra pairs’, borrowed from representation theory.)

After [17, 43], everything seems ready for the introduction of “spaces” for
which the elements of ℤ2-graded algebras would be “functions”. But in fact it
required a few more years and some extra steps.

Such “spaces” remain implicit in paper [79] by G.I. Kac and A.I. Koronkevich,
submitted shortly after [43], where a superanalog of Frobenius theorem in the
language of differential forms was stated and proved.

A preliminary step was made in the setting of algebraic geometry. In pa-
per [87], submitted in February 1973, Berezin’s student D.A. Leites introduced a
generalization of affine schemes (over a field) to the case of ℤ2-graded algebras.
In particular, he introduced affine group schemes in this context and defined their
Lie algebras (in the sense of [43], i.e., Lie superalgebras).

The missing ingredient – before differentiable supermanifolds would become
possible – was transformations of variables mixing the ordinary variables with
Grassmann generators. Berezin came to the idea of such transformations studying
his integral: about the same time as [43] was written, he arrived at a formula for a
general change of variables in the integral over a collection of anticommuting and
ordinary variables. According to Minlos [93], the conjectural statement originally
appeared in 1971 in a letter to G.I. Kac. It contained, in particular, the notion of
a ‘superdeterminant’ (this name emerged only later 27):

sdet

(
𝐴 𝐵
𝐶 𝐷

)
:= det(𝐴−𝐵𝐷−1𝐶) (det𝐷)−1 . (12)

Here the entries of 𝐴, 𝐷 are even and the entries of 𝐵, 𝐶, odd. The change of
variables formula reads (in the notation close to Berezin’s own notation):∫

𝑓(𝑦, 𝜂) 𝑑𝜂𝑑𝑦 =

∫
𝑓(𝑦(𝑥, 𝜉), 𝜂(𝑥, 𝜉))𝐽(𝑥, 𝜉) 𝑑𝜉𝑑𝑥 , (13)

where

𝐽(𝑥, 𝜉) = sdet

(
∂𝑦
∂𝑥

∂𝜂
∂𝑥

∂𝑦
∂𝜉

∂𝜂
∂𝜉

)
. (14)

The integral is extended to all values of the variables 𝑦 and the function 𝑓(𝑦, 𝜂)
must be vanishing at the infinity of 𝑦.

27Now the term ‘Berezinian’ and the notation Ber are universally adopted.
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It is a curious fact that Berezin did not publish the definition of superdetermi-
nant and the change of variables formula himself. Berezin suggested a proof of (13)
as a problem to his student V.F. Pakhomov, in whose paper [103], submitted in
December 1973, the above formulas first appeared in print 28.

Allowing changes of variables in the Berezin integral implied considering or-
dinary coordinates and Grassmann generators on an equal footing as generators
of the algebra 𝐶∞(ℝ𝑛)⊗Λ(ℝ𝑚), denoted 𝔅𝑛,𝑚 in [103] (in modern language it is

𝐶∞(ℝ𝑛∣𝑚)). This was probably the final step towards supermanifolds.
An algebraic proof of the multiplicativity of “Berezin’s function” (12) was

given by D.A. Leites in a short note [88], submitted in May 1974.

5.4. Emergence of supersymmetric models and the explicit introduction
of supermanifolds

The analysis in the previous subsection amply demonstrates that Berezin’s pro-
gram had been mainly fulfilled by himself and his collaborators by around 1973.
The notion of a supermanifold was for them “in the air”, though it had not ap-
peared in the publications explicitly. The same can be said about supergroups.
Still, according to Leites, Berezin felt reluctant to publish the definition of a su-
permanifold and was forced to do so only in order not to lose the priority. So what
happened?

The momentum came again from theoretical physics and it was supersym-
metry. Now this name is used very widely and sometimes outside of its precise
original meaning, which is transformations of fields mixing the fermionic fields
(usually describing ‘matter’) with bosonic fields (usually describing ‘interaction’).

In parallel with Berezin’s work, the breakthrough was preparing in 1971–
1974. Supersymmetry appeared, in the context of ‘dual-resonance models’ (later,
string theory), in Ramond [104] and Neveu–Schwarz [100]; and, in the context
of four-dimensional gauge theory, in Golfand–Likhtman [72], Volkov et al. [119,
120, 121] (who explicitly quoted Berezin and G.I. Kac [43]), and finally in Wess–
Zumino [123, 124], whose work resulted in an explosion. Physicists started to look
around for mathematical foundations of the new theory. Salam and Strathdee [105]
were the first to formulate the concept of a ‘superspace’ on an operational level.

In such a context, Berezin was forced to act quickly. Berezin and Leites
published [45]. This paper contained the definition of a supermanifold as a local
ringed space modeled on open domains of ℝ𝑝 endowed with the ℤ2-graded algebra
𝐶∞(ℝ𝑝)⊗Λ(ℝ𝑞); the notions of morphisms of supermanifolds, subsupermanifolds
and the direct products; the coordinate description by local charts and coordinate
transformations; the notion of what we now call Berezin volume density and the
construction of the Berezin integral over a supermanifold; specifying superman-
ifolds by equations in ℝ𝑛∣𝑚 and a conjecture that this may be possible for an
arbitrary supermanifold (analog of Whitney’s theorem); Lie supergroups (global)
and their Lie superalgebras (so renamed from the ‘Lie algebras’ of [43]). Quite a

28Without any particular name and notation for the function sdet.
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lot! Of course, the big work remained to elaborate the details and to make them
available to the public.

It is time to say something about the terminology which involves the pre-
fix ‘super-’: supermanifold, superalgebra, supergroup, superspace. . . In physical
context, the term “supersymmetry” has a direct meaning as a “superior sym-
metry” exceeding other symmetries that keep bosons and fermions separate. In
mathematics, the prefix ‘super-’ should be understood as an abbreviation from su-
persymmetry, – as having something to do with physical supersymmetries. Berezin
himself did not overuse this prefix. It was done by others, and this made an unfor-
tunate aftertaste. Nevertheless, such is the universally adopted terminology and
there is no other choice but follow it.

5.5. Berezin’s work on supermathematics in 1975–1980

There were several directions of Berezin’s work after the introduction of super-
manifolds.

The physical papers by Berezin and Marinov [46, 47] were devoted to the
description of spin by means of supermathematics. These works are still on the
borderline with the previous period: they do not use the word ‘supermanifold’
yet; the earlier paper [46] was submitted for publication just one month after [45].
There is an interesting historical material (mainly physical) in [47], in particu-
lar, references to Martin [90, 91]. Berezin came to this subject again in a joint
paper with V.L. Golo [41] of 1980. It appeared only a few days before Berezin
died; he could not see it published. One can also mention here the posthumous
publication [42] on a chiral supersymmetric sigma-model.

A central topic of Berezin’s research in 1975–1980 was the theory of Lie
superalgebras and Lie supergroups, especially their representations and invariants.
Berezin’s methods were global, geometric and analytic (e.g., used tools such as
invariant integral) rather than infinitesimal.

In a short article [27], Berezin studied the Lie supergroup U(𝑝 ∣𝑞) and its
unitary representations 29. In particular, Berezin found the invariant integral and
the radial parts of Laplace operators; he introduced “non-degenerate” or “typical”
irreducible representations and found their characters.

The method sketched in [27] was elaborated and generalized in a series of
five preprints [28, 29, 30, 31, 32] of 1977. They contain very interesting material; it
would be fair to say that much of it has unfortunately remained not well understood
yet. These preprints, originally published in a small number of copies, were later
included in the expanded English edition 30 of [38].

Two joint papers of Berezin and V.S. Retakh [51, 52] of 1978 were devoted
to classification of Lie superalgebras whose even part is semisimple. (The classifi-
cation of simple Lie superalgebras over ℂ was obtained by V.G. Kac around 1975,

29Berezin’s own notation for this Lie supergroup was 𝑈(𝑝, 𝑞) and this should not lead to a
confusion with the ordinary Lie group of pseudounitary matrices.
30We should be thankful to the editors for that. The quality of the English translation is some-
times poor: e.g., “resultant” is confused with “result”, but it is still readable.
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who interacted actively with Berezin at that time. Kac’s classification remarkably
brings forward superanalogs of classical matrix Lie algebras and the Lie algebras of
vector fields, which is one more evidence for the “naturalness” of supergeometry.)

Berezin’s last publication on representations of Lie supergroups was the pa-
per with V.N. Tolstoy [56] dealing with a certain real compact form of the Lie
supergroup OSp(1∣2). (It appeared already after his death.)

Besides the Lie supergroups, Berezin actively worked on the general theory
of supermanifolds. We should mention the expository preprint [33] and the survey
paper [35] (both of 1979), and of course Berezin’s work on a book on supermani-
folds, which was incomplete at the time of his death. It was to appear only as a
posthumous publication [38], compiled and edited by his friends such as A.A. Kir-
illov and V.P. Palamodov. (Palamodov, in particular, included there his own new
results on the structure of supermanifolds.) The Russian version appeared in 1983
and the expanded English translation in 1987.

Three mathematical questions that attracted Berezin’s attention are worth
mentioning.

The first was the question about “points of supermanifolds”. No doubt,
the fact that “functions” on supermanifolds contain nilpotents makes it harder
to understand them as compared to ordinary manifolds. Supermanifolds cannot
be treated as sets with some structure. For example, the supermanifold ℝ0∣𝑚,
whose “algebra of functions” is the Grassmann algebra with 𝑚 generators, set-
theoretically consists of a single point; clearly, the structure of ℝ0∣𝑚 cannot be
attributed to this one-point set. At the same time, physicists working with “su-
perspace” freely used “points” such as (𝑥𝑎, 𝜉𝜇) with the odd coordinates 𝜉𝜇, what-
ever that could mean. Berezin’s solution to that was in the introduction of an
auxiliary Grassmann algebra 𝔊(𝑁) with a large or infinite number of generators
𝑁 and in considering, for each supermanifold 𝑀 , the ordinary manifold 𝑀(𝑁)
(of large dimension) obtained by replacing abstract even and odd coordinates
in the coordinate transformations for 𝑀 by elements of 𝔊(𝑁) of corresponding
parities. The manifold 𝑀(𝑁), by construction, has a special structure called by
Berezin a Grassmann-analytic structure 31. If 𝑁 is large enough, the superman-
ifold 𝑀 can be recovered from 𝑀(𝑁) taken with this structure. At the same
time, the ‘Grassmann-analytic manifold’ 𝑀(𝑁) is a set-theoretic object and can
be described by its points. Berezin used this idea widely, in particular for repre-
sentations of Lie superalgebras and Lie supergroups, which he replaced by (in his
terminology) their ‘Grassmann envelopes’.

Berezin’s idea about the manifolds 𝑀(𝑁) and ‘Grassmann-analytic mani-
folds’ in general contained the roots of several later developments (some probably
independent of him). If one fixes a Grassmann algebra 𝔊(𝑁) and considers mani-
folds over it endowed with some class of ‘Grassmann-analytic functions’, there is

31This exactly means that the coordinate transformations on 𝑀(𝑁) are given by transformations

of elements of the algebra 𝔊(𝑁) taken as whole quantities – like complex numbers instead of their
real and imaginary parts taken separately. This is a particular case of what is called a ‘manifold
over an algebra’.
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a temptation to forget about supermanifolds defined as ringed spaces altogether.
Two versions of this idea were put forward, by B. DeWitt and by Alice Rogers, but
in spite of all intuitive attractiveness, it was later found that its consistent devel-
opment takes one back to the sheaf-theoretic approach to supermanifolds. Another
option is not to fix 𝔊(𝑁), but consider the manifolds 𝑀(𝑁) as a functor of 𝔊(𝑁).
Together they represent the original supermanifold 𝑀 . This was suggested by
A.S. Schwarz. It allows to consider objects more general than supermanifolds.

The second question concerned general classification of supermanifolds. It is
obvious that the case in which the coordinate changes for a given supermanifold
do not mix odd variables with the even variables and the odd variables trans-
form linearly is the simplest and it corresponds to a vector bundle over an ordi-
nary manifold. The question is how general this case is, i.e., whether it is always
possible to reduce coordinate transformations to this simple form by a choice of
atlas. The answer is, yes, – for smooth supermanifolds. This statement is often re-
ferred to as the Batchelor theorem after Marjorie Batchelor who proved it in 1979.
No doubt that Berezin knew it independently: he mentions it in [33, 35]. As for
complex-analytic supermanifolds, the answer is, no; there are obstructions. The
corresponding theory and examples of “non-retractable” complex-analytic super-
manifolds are due to V.P. Palamodov (a slightly different approach was developed
by Yu.I. Manin).

Finally, the third question concerned integration on supermanifolds and dif-
ferential forms. It is clear that Berezin’s transformation law for the element of
volume is different from what one gets for the differentials of coordinates defined
in a straightforward way. So on supermanifolds, differential forms and integration
theory seem to split. The problem was tackled by J.N. Bernstein and D.A. Leites,
who introduced ‘integral forms’ [57], incorporating volume elements, as a replace-
ment of differential forms for the purpose of integration and ‘pseudodifferential
forms’ [58] as not necessarily polynomial expressions in differentials (which also
opens way for integration).

Berezin in [36] introduced a further generalization of the Bernstein–Leites
pseudodifferential forms, studied their duality transformations and sketched a
Weil-type construction of characteristic classes. Berezin’s aim was future appli-
cation to super gauge theory. Paper [36] seems to be Berezin’s last paper on su-
permanifolds. It is worth mentioning that [36] contained a construction very close
to what is now known as the ‘homological interpretation’ of Berezinian.

5.6. Influence. Later developments

The influence of Berezin’s work on supermathematics remains different in physics
and in pure mathematics. Physicists have completely absorbed the idea of work-
ing with supermanifolds. For them, supergeometry is a tool on the same footing
as tensor calculus: physicists use it without even noticing it. Unlike that, in pure
mathematics, Berezin’s ideas have spread far less widely. Supermanifolds for many
remain something exotic (except for those directly working in supergeometry).
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Quite characteristic is that representations of Lie superalgebras became a well-
established area, but those working in it rarely consider Lie supergroups or turn
to global methods used by Berezin. No doubt, the landscape would be quite dif-
ferent, had Berezin not died in 1980. However, the situation is slowly changing.
“Supermethods” start to spread in differential geometry. Of course, this develop-
ment is more significant in areas closer to or more influenced by physics. Two
Fields medals awarded in 1990 and 1998, to E. Witten and M.L. Kontsevich, re-
spectively, were related with works where supergeometry played a role. (Morse
theory and differential forms, in the case of Witten, and deformation theory and
quantization of Poisson manifolds, in the case of Kontsevich.)

One general trend worth mentioning is a certain shift from “supersymmetry”
(roughly, transformations squaring to ordinary symmetries) to “BRST-symmetry”
and “𝑄-manifolds” (where, roughly, there are transformations with square zero). A
central role has been played here by the Batalin–Vilkovisky formalism in quantum
field theory [3, 4, 5] and its modern generalizations. Geometrically, that means
considering supermanifolds endowed with an odd symplectic structure and odd
Laplacians on them. (The study of such geometry was pioneered by H.M. Khu-
daverdian [82], see also [83, 84].)

Another trend is the growth of importance of graded manifolds – not in the
sense synonymous with supermanifolds as the usage in the early period sometimes
was 32, – but meaning supermanifolds endowed with extra ℤ- or ℤ+-grading, which
in physics may be for example, ‘ghost number’. If one recalls topologists’ ℤ-graded
algebras and the replacement of ℤ-grading by ℤ2-grading as a step in development
of supermathematics, as described above, the reintroduction of ℤ-gradings (but
now as additional structure) completes the circle, but at a higher level.

We would like to finish this section by two interesting pieces of mathematics
related with Berezin integration and Berezinian (superdeterminant), which were
discovered after Berezin.

In the previous subsection, we considered the works on integration theory and
differential forms by Bernstein–Leites and by Berezin [36]. In search of objects suit-
able for integration over (multidimensional) paths or surfaces in supermanifolds, a
variational approach to “forms on supermanifolds” was developed (Th.Th. Voronov
and A.V. Zorich, see [122]; building on earlier works by A.S. Schwarz and his stu-
dents): analogs of forms were constructed as Lagrangians satisfying certain restric-
tions. An amazing fact discovered along these lines and not fully understood yet is
the following link with integral geometry in the sense of Gelfand–Gindikin–Graev:
the equation of the form 33

∂2𝑓

∂𝑤𝑖
𝑎∂𝑤

𝑗
𝑏

+ (−1)�̃�𝚥+�̃�(�̃�+𝚥) ∂2𝑓

∂𝑤𝑗
𝑎∂𝑤𝑖

𝑏

= 0 , (15)

32In the Western literature, when the foundations of supermanifolds were thought to be not fully
established yet, ‘supermanifolds’ were often used for DeWitt or Rogers’s versions of manifolds over

Grassmann algebras, while ‘supermanifolds’ in Berezin’s sense were called ‘graded manifolds’.
33 The tilde over an index denotes the parity of the corresponding variable.
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for a function of a rectangular supermatrix ∥𝑤𝑖
𝑎∥, arises in the de Rham the-

ory on supermanifolds as a condition replacing skew-symmetry and multilinearity
(see [122]) and at the same time it is a generalization of ‘hypergeometric equations’
in the sense of Gelfand (the odd-odd part of (15) is the F. John equation arising
in relation with the Radon transform).

Another beautiful development related with the notion of Berezinian is as
follows. Th. Schmitt [107] discovered that the expansion of Berezinian leads to
exterior powers:

Ber(1 + 𝑧𝐴) = 1 + 𝑧 str𝐴+ 𝑧2 str Λ2𝐴+ ⋅ ⋅ ⋅ .
Here 𝐴 is an even supermatrix,

𝐴 =

(
𝐴00 𝐴01

𝐴10 𝐴11

)
,

Λ𝑘𝐴 stands for its action on the 𝑘th exterior power and str denotes the supertrace:
str𝐴 = tr𝐴00 − tr𝐴11. As it was found in [85], by comparing the expansions of
Ber(1 + 𝑧𝐴) at zero and at infinity one arrives at certain universal recurrence
relations satisfied by the differences of the respective coefficients. In particular, for
a 𝑝 ∣𝑞 × 𝑝 ∣𝑞 matrix, there are relations∣∣∣∣∣∣

𝑐𝑘(𝐴) . . . 𝑐𝑘+𝑞(𝐴)
. . . . . . . . .

𝑐𝑘+𝑞(𝐴) . . . 𝑐𝑘+2𝑞(𝐴)

∣∣∣∣∣∣ = 0 ,
where 𝑐𝑘(𝐴) = strΛ

𝑘𝐴, satisfied for all 𝑘 > 𝑝− 𝑞. (This replaces the vanishing of
the 𝑘th exterior powers for an 𝑛-dimensional space with 𝑘 > 𝑛). Similar relations
hold in the Grothendieck ring of a general linear supergroup, and there is a formula

Ber𝐴 =
∣ 𝑐𝑝−𝑞(𝐴) . . . 𝑐𝑝(𝐴) ∣𝑞+1

∣ 𝑐𝑝−𝑞+2(𝐴) . . . 𝑐𝑝+1(𝐴) ∣𝑞 ,

with Hankel’s determinants at the top and at the bottom, expressing Berezinian
as the ratio of polynomial invariants 34.
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Some Non-standard Examples
of Coherent States and Quantization

S. Twareque Ali

Abstract. We look at certain non-standard constructions of coherent states,
viz., over matrix domains, on quaternionic Hilbert spaces and C*-Hilbert
modules and their possible use in quantization. In particular we look at fam-
ilies of coherent states built over Cuntz algebras and suggest applications to
non-commutative spaces. The present considerations might also suggest an
extension of Berezin-Toeplitz and coherent state quantization to quaternionic
Hilbert spaces and Hilbert modules.

Mathematics Subject Classification (2010). Primary 81R30; Secondary 81S99.

Keywords. Coherent states, Hilbert modules, quantization.

1. Standard coherent states

Coherent states are a much used concept, both physically and mathematically.
Generically, they are obtained from a reproducing kernel subspace (see, for exam-
ple, [1]) of an 𝐿2-space,

ℌ𝐾 ⊂ ℌ = 𝐿2(𝑋,𝜇),

where 𝜇 is a finite measure on the Borel 𝜎-field of a locally compact topological
space 𝑋 . If

Φ0,Φ1, . . . ,Φ𝑛, . . .

is any orthonormal basis of ℌ𝐾 , then the reproducing kernel is given by

𝐾(𝑥, 𝑦) =
∑
𝑘

Φ𝑘(𝑥)Φ𝑘(𝑦) . (1)

Using this fact and taking another Hilbert space 𝔎 of the same dimension as that
of ℌ𝐾 , the non-normalized coherent states are defined as

∣ 𝑥⟩ =
∑
𝑘

𝜓𝑘 Φ𝑘(𝑥), (2)

where 𝜓1, 𝜓2, . . . , 𝜓𝑛, . . . is an orthonormal basis of 𝔎.
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It is then easy to verify that

⟨𝑥 ∣ 𝑦⟩ = 𝐾(𝑥, 𝑦) and

∫
𝑋

∣ 𝑥⟩⟨𝑥 ∣ 𝑑𝜇(𝑥) = 𝐼𝔎 , (3)

the integral converging in the weak operator topology. If, furthermore,

𝐾(𝑥, 𝑥) =
∑
𝑘

∣Φ𝑘(𝑥)∣2 := 𝒩 (𝑥) > 0,

for all 𝑥 ∈ 𝑋 , normalized CS can be defined as:

∣̂ 𝑥⟩ = 𝒩 (𝑥)− 1
2 ∣ 𝑥⟩ ,

which then satisfy the conditions,

∥∣̂ 𝑥⟩∥ = 1 and

∫
𝑋

∣̂ 𝑥⟩⟨̂𝑥 ∣ 𝒩 (𝑥) 𝑑𝜇(𝑥) = 𝐼𝔎 .

These are the physical coherent states.
Berezin-Toeplitz quantization or, coherent state quantization, of functions 𝑓

on the space 𝑋 is given by the operator association (see, for example, [2] and
references cited therein),

𝑓 �−→ 𝑓 =

∫
𝑋

𝑓(𝑥)∣𝑥⟩⟨𝑥∣ 𝑑𝜇(𝑥) , (4)

provided the integral exists in some appropriate sense.
In view of their usefulness and interest in various areas of physics and math-

ematics, it is natural to look for generalizations of the above concept of coherent
states.

One such possibility is to construct analogous objects on a Hilbert 𝐶∗-
module, which is analogous to a Hilbert space, but has an inner product taking
values in a 𝐶∗-algebra. We shall call the resulting vectors module-valued coher-
ent states (MVCS). In simple terms, we shall replace both the set of functions

Φ𝑘(𝑥) and the vectors 𝜓𝑘, in the definition of coherent states in (2) by elements
of Hilbert modules. Another possibility for generalization could be to construct
coherent states on quaternionic Hilbert spaces.

Since the field of complex numbers ℂ is trivially a 𝐶∗-algebra, coherent states
on Hilbert spaces are special cases of MVCS.

2. Module-valued coherent states

The discussion of this section is based mainly on [3]. Consider two unital 𝐶∗-
algebras 𝒜 and ℬ and a Hilbert 𝐶∗-correspondence E from 𝒜 to ℬ. This means
that E is a Hilbert 𝐶∗-module over ℬ, with a left action from 𝒜, i.e., there is a
∗-homomorphism from 𝒜 into ℒ(E), the bounded adjointable operators on E. Let
(𝑋,𝜇) be a finite measure space and consider the set of functions,

𝔽 = {𝐹 : 𝑋 �−→ E ∣ 𝐹 is a strongly measurable function} .
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Then clearly, for any two 𝐹,𝐺 in 𝔽, 𝑥 �−→ ⟨𝐹 (𝑥) ∣ 𝐺(𝑥)⟩E is a strongly measurable
function. Let

𝕳 = {𝐹 ∈ 𝔽 ∣ the function⟨𝐹 (𝑥) ∣ 𝐹 (𝑥)⟩ is Bochner integrable} . (5)

Given a strongly measurable function 𝐹 , a necessary and sufficient condition
for ⟨𝐹 (𝑥) ∣ 𝐹 (𝑥)⟩ to be Bochner integrable is that∫

𝑋

∥⟨𝐹 (𝑥) ∣ 𝐹 (𝑥)⟩E∥ℬ 𝑑𝜇(𝑥) < ∞ .

This immediately shows that 𝕳 is a complex vector space. Also, 𝕳 is an inner
product module over ℬ, where the right multiplication and the inner product
respectively are

(𝐹 ⋅ 𝑏)(𝑥) = 𝐹 (𝑥)𝑏 for all 𝑏 ∈ ℬ, ⟨𝐹 ∣ 𝐺⟩ℌ =
∫
𝑋

⟨𝐹 (𝑥) ∣ 𝐺(𝑥)⟩E 𝑑𝜇(𝑥).

Its completion in the resulting norm ∥𝐹∥ℌ = ∥⟨𝐹 ∣ 𝐹 ⟩ℌ∥
1
2

ℬ is a Hilbert 𝐶
∗-module

over ℬ and can be identified with 𝐿2(𝑋)⊗ E. There is a natural left action of 𝒜
on 𝕳 because E is an 𝒜− ℬ correspondence.

For 𝑒 ∈ E, we define the map ⟨𝑒∣ : E −→ ℬ, by
⟨𝑒∣(𝑓) = ⟨𝑒 ∣ 𝑓⟩E , 𝑓 ∈ E .

This is an adjointable map. We shall denote its adjoint by ∣𝑒⟩. Then ∣𝑒⟩ : ℬ −→ E
has the action

∣𝑒⟩(𝑏) = 𝑒𝑏 , 𝑏 ∈ ℬ ,

so that for 𝑒1, 𝑒2 ∈ E,
∣𝑒1⟩⟨𝑒2∣(𝑓) = 𝑒1⟨𝑒2 ∣ 𝑓⟩E . (6)

Thus formally, one may use the standard bra-ket notation for Hilbert modules as
one does for Hilbert spaces.

Let us choose a set of vectors

𝐹0, 𝐹1, . . . , 𝐹𝑛, . . . ,

(finite or infinite) in the function space 𝕳, which are pointwise defined (for all
𝑥 ∈ 𝑋) and which satisfy the orthogonality relations,∫

𝑋

∣ 𝐹𝑘(𝑥)⟩⟨𝐹ℓ(𝑥) ∣ 𝑑𝜇(𝑥) = 𝐼E 𝛿𝑘ℓ . (7)

We now introduce module-valued coherent states for two separate situations,
highlighting the fact that a Hilbert 𝐶∗-module is a generalization of both a Hilbert
space and a 𝐶∗-algebra. The resulting MVCS depend on an auxiliary object G,
which in the first instance is a Hilbert space and in the second, the Cuntz algebras
𝒪𝑛 or 𝒪∞.

To proceed with the first construction of MVCS let G be a Hilbert space of
the same dimension as the cardinality of the 𝐹𝑘. In G we choose an orthonormal
basis, 𝜙0, 𝜙1, . . . , 𝜙𝑛, . . . . Let H = E⊗G denote the exterior tensor product of E
and G, which is then itself a Hilbert module over ℬ.
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For each 𝑥 ∈ 𝑋 and co-isometry 𝑎 ∈ 𝒜 (i.e., 𝑎𝑎∗ = id𝒜), we define the
vectors,

∣ 𝑥, 𝑎⟩ =
∑
𝑘

𝑎𝐹𝑘(𝑥)⊗ 𝜙𝑘 ∈ H , (8)

assuming of course that the sum converges in the norm of H. We call these vectors
(non-normalized) module-valued coherent states (MVCS).

Proposition 2.1. The MVCS in (8) satisfy the resolution of the identity,∫
𝑋

∣ 𝑥, 𝑎⟩⟨𝑥, 𝑎 ∣ 𝑑𝜇(𝑥) = 𝐼H, (9)

the integral converging in the sense that for any two ℎ1, ℎ2 ∈ H,∫
𝑋

⟨ℎ1 ∣ 𝑥, 𝑎⟩H⟨𝑥, 𝑎 ∣ ℎ2⟩H 𝑑𝜇(𝑥) = ⟨ℎ1 ∣ ℎ2⟩H ,

as a Bochner integral.

This construction may easily be modified to obtain normalized MVCS under
certain conditions. For that, we fix a notation for a certain positive element of ℬ.
Let

𝒩 (𝑥, 𝑎) := ⟨𝑥, 𝑎 ∣ 𝑥, 𝑎⟩H =
∑
𝑘

⟨𝐹𝑘(𝑥) ∣ 𝑎∗𝑎𝐹𝑘(𝑥)⟩E . (10)

Proposition 2.2. If 𝜙1, 𝜙2, . . . is an orthonormal basis for G and 𝑎 is a unitary
element of 𝒜 and 𝒩 (𝑥, id𝒜) is invertible, then the MVCS constructed above can

be normalized, i.e., we can construct MVCS ∣̂ 𝑥, 𝑎⟩ =∣ 𝑥, 𝑎⟩ ⊗ 𝒩 (𝑥, id𝒜)− 1
2 which

along with (7) also satisfy

⟨̂𝑥, 𝑎 ∣ 𝑥, 𝑎⟩ = idℬ ⊗ id𝒞 . (11)

The well-known vector coherent states [4, 5] (or multi-component coherent
states), used in nuclear and atomic physics, can all be obtained from module-
valued coherent states using the above construction. Furthermore, one can define
adjointable operators on the Hilbert module H following a Berezin-Toeplitz type
prescription as in (4):

𝑓 −→ 𝑓 =

∫
𝑋

𝑓(𝑥)∣𝑥, id𝒜⟩⟨𝑥, id𝒜∣ 𝑑𝜇(𝑥) ,
and study the resulting quantization problem.

3. MVCS from certain Cuntz algebras

We now construct MVCS using the notion of Cuntz algebras [6] (see also [7]).
Let 𝑆1, 𝑆2, . . . be isometries on a complex separable Hilbert space 𝒦 (necessarily
infinite-dimensional) such that

∞∑
𝑗=1

𝑆𝑗𝑆
∗
𝑗 = 𝐼𝒦
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where the sum converges in the strong operator topology of ℬ(𝒦). Multiplying
both sides by 𝑆∗𝑖 , we get

𝑆∗𝑖 + 𝑆∗𝑖
∑
𝑗 ∕=𝑖

𝑆𝑗𝑆
∗
𝑗 = 𝑆∗𝑖

so that

𝑆∗𝑖
∑
𝑗 ∕=𝑖

𝑆𝑗𝑆
∗
𝑗 = 0 .

But
∑

𝑗 ∕=𝑖 𝑆𝑗𝑆
∗
𝑗 is the projection onto the closure of the span of the ranges of 𝑆𝑗

for 𝑗 ∕= 𝑖. So the range of 𝑆𝑖 is orthogonal to the range of 𝑆𝑗 for all 𝑗 ∕= 𝑖. This is
a representation of the Cuntz algebra 𝒪∞ with infinitely many generators.

We take G to be the 𝐶∗-algebra generated by the isometries 𝑆1, 𝑆2, . . .. The
coherent states are defined as

∣𝑥, 𝑎⟩ =
( ∞∑
𝑘=1

𝑎 ⋅ 𝐹𝑘(𝑥)⊗ 𝑆𝑘

)
(퓝 (𝑥)−1/2 ⊗ 𝐼). (12)

An explicit example of a Cuntz algebra is as follows. Let

𝜔 : ℕ>0 −→ ℕ>0 × ℕ>0

be a bijection (ℕ>0 denoting the set of positive integers). Consider a Hilbert space
ℌ and let {𝜙𝑛}𝑛∈ℕ>0 be an orthonormal basis of it. Writing 𝜔(𝑛) = (𝑘, ℓ) we define
a re-transcription of this basis in the manner

𝜓𝑘ℓ := 𝜙𝑛 = 𝜓𝜔(𝑛) , 𝑘, 𝑛, ℓ ∈ ℕ>0 . (13)

The 𝐶∗-algebra 𝒪∞, generated by these isometries, is then a Cuntz algebra.
The MVCS obtained using these 𝑆𝑘 in (12) have an immediate physical ap-

plication. We consider the non-normalized version (with 𝑎 set to the unit element
of 𝒜),

∣𝑥⟩ =
∞∑
𝑘=1

𝐹𝑘(𝑥) ⊗ 𝑆𝑘.

Let

𝑋 = ℂ and E = 𝐿2

(
ℂ,

𝑒−∣𝑧∣
2

2𝜋
𝑑𝑥 𝑑𝑦

)
, 𝑧 =

1√
2
(𝑥 + 𝑖𝑦) ,

and let 𝐹𝑘 : ℂ −→ ℂ be the functions,

𝐹𝑘(𝑧) =
𝑧𝑘−1√
(𝑘 − 1)! , 𝑘 = 1, 2, 3, . . . .

Next let 𝜓𝑘ℓ be the complex Hermite polynomials,

𝜓𝑘ℓ(𝑧, 𝑧) =
(−1)𝑛+𝑘−2√
(ℓ− 1)!(𝑘 − 1)! 𝑒

∣𝑧∣2∂ℓ−1
𝑧 ∂𝑘−1

𝑧 𝑒−∣𝑧∣
2

, 𝑘, ℓ = 1, 2, 3, . . . , (14)
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which form an orthonormal basis of 𝐿2
(
ℂ, 𝑒−∣𝑧∣

2

2𝜋 𝑑𝑥 𝑑𝑦
)
. The module-valued

coherent states now become

∣𝑧⟩ =
∞∑
𝑘=1

𝑧𝑘−1√
(𝑘 − 1)!𝑆𝑘 . (15)

Let 𝜙𝑛 be as in (13), consider the vectors

𝜉𝑧′, 𝑛 =
𝑧′𝑛−1√
(𝑛− 1)!𝜙𝑛 .

Then the vectors (in 𝐿2(ℂ, 𝑒−∣𝑧∣
2

2𝜋 𝑑𝑥 𝑑𝑦)),

∣𝑧, 𝑧′, 𝑛⟩ =
∞∑
𝑘=1

𝑧𝑘−1√
(𝑘 − 1)!𝑆𝑘𝜉𝑧

′, 𝑛 = 𝑧′𝑛−1
∞∑
𝑘=1

𝑧𝑘−1√
(𝑘 − 1)! (𝑛− 1)! 𝜓𝑘𝑛 , (16)

(ℓ = 1, 2, 3, . . . ,∞,) are just the non-normalized versions of the infinite component
vector CS found in [5] and associated to the energy levels (the so-called Landau
levels) of an electron in a constant magnetic field.

4. Matrix-valued and quaternionic MVCS

In [4] analytic vector coherent states, built using powers of matrices fromℳ𝑁 (ℂ),
were defined:

∣ ℨ, 𝑖⟩ =
∑
𝑘

ℨ𝑘√
𝑐𝑘

𝜒𝑖 ⊗Φ𝑘 , ℨ ∈ ℳ𝑁 (ℂ) , (17)

where the 𝑐𝑘 are the numbers,

𝑐𝑘 =
1

(𝑘 + 1)(𝑘 + 2)

⎡⎣𝑘+1∏
𝑗=1

(𝑁 + 𝑗)−
𝑘+1∏
𝑗=1

(𝑁 − 𝑗)

⎤⎦ , 𝑘 = 0, 1, 2, . . . ,

Let 𝑧𝑖𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑁 be the matrix elements of ℨ. Then, writing

𝐹𝑘(ℨ) =
ℨ𝑘√
𝑐𝑘

and 𝑧𝑖𝑗 = 𝑥𝑖𝑗 + 𝑖𝑦𝑖𝑗 ,

it can be shown that,∫
ℳ𝑁 (ℂ)

𝐹𝑘(ℨ)𝐹ℓ(ℨ)
∗ 𝑑𝜇(ℨ,ℨ∗) = 𝛿𝑘ℓ𝕀𝑁 ,

where

𝑑𝜇(ℨ,ℨ∗) =
𝑒−Tr[ℨ∗ℨ]

(2𝜋)
𝑁

𝑁∏
𝑖,𝑗=1

𝑑𝑥𝑖𝑗 𝑑𝑦𝑖𝑗 .

Using this fact, it is easy to prove the resolution of identity,

𝑁∑
𝑖=1

∫
ℳ𝑁 (ℂ)

∣ ℨ, 𝑖⟩⟨ℨ, 𝑖 ∣ 𝑑𝜇(ℨ,ℨ∗) = 𝕀𝑁 ⊗ 𝐼ℌK .
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To construct the related MVCS, we take E = ℬ = ℳ𝑁 (ℂ). The module
𝕳, containing the functions 𝐹𝑘, then consists of functions from ℳ𝑁(ℂ) to itself.
Considering ℌK as a module over ℂ, we may define MVCS inH =ℳ𝑁 (ℂ)⊗ℌK as

∣ ℨ, 𝑎⟩ =
∑
𝑘

𝑎𝐹𝑘(ℨ)⊗Φ𝑘 =
∑
𝑘

𝑎
ℨ𝑘√
𝑐𝑘

⊗Φ𝑘 , (18)

where 𝑎 is a unitary element in ℳ𝑁 (ℂ). These then satisfy the resolution of the
identity, ∫

ℳ𝑁 (ℂ)

∣ ℨ, 𝑎⟩⟨ℨ, 𝑎 ∣ 𝑑𝜇(ℨ,ℨ∗) = 𝐼H . (19)

In the particular case when 𝑁 = 2 the set ℳ𝑁(ℂ), of all complex 2 × 2
matrices, can be identified with the space of complex quaternions. The resulting
MVCS may then be called complex quaternionic MVCS.

Although a Hilbert space over the quaternions is not a Hilbert module, we
may still build coherent states in such a space using the above construction on
Hilbert modules. Such coherent states also have interesting physical applications
[8]. Suppose that 𝕳quat is a Hilbert space over the quaternions. (Multiplication
by elements of ℍ from the right is assumed, i.e., if Φ ∈ 𝕳quat and 𝔮 ∈ ℍ, then
Φ𝔮 ∈ 𝕳quat). The well-known canonical coherent states [1] may then be readily
generalized to quaternionic coherent states over𝕳quat. Indeed take an orthonormal

basis {Ψquat
𝑛 }∞𝑛=0 in 𝕳quat and define the vectors

∣ 𝔮⟩ = 𝑒−
𝑟2

2

∞∑
𝑛=0

Ψquat
𝑛

𝔮𝑛√
𝑛!

∈ 𝕳quat, 𝔮 ∈ ℍ, ⟨𝔮 ∣ 𝔮⟩ℌquat = 𝕀2 . (20)

They satisfy the resolution of the identity,∫
ℍ

∣ 𝔮⟩⟨𝔮 ∣ 𝑑𝜈(𝔮, 𝔮†) = 𝐼ℌquat , 𝑑𝜈(𝔮, 𝔮†) =
1

4𝜋2
𝑟𝑑𝑟 𝑑𝜉 sin 𝜃𝑑𝜃 𝑑𝜙 . (21)

In [8] these coherent states were obtained using a group theoretical argument. Here
they appear as a special case of our more general construction.

5. Some possible applications

We end this discussion by mentioning some possible applications of the above
general constructions of non-standard families of coherent states.

∙ Coherent states are naturally associated to positive definite kernels [1], com-
ing from the reproducing kernel Hilbert spaces used to build them. It would
be interesting to study such kernels for the MVCS and the coherent states
on quaternionic Hilbert spaces. Then there would also be related positive
operator-valued measures and a Naimark type dilation theorem. One could
also study subnormal operators in this context.

∙ As already mentioned, a Berezin-Toeplitz type quantization on Hilbert mod-
ules would be a natural problem to study.
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∙ Module-valued coherent states have been used to define localization on non-
commutative spaces [3], which is another direction for further investigation.
Indeed, it is in this direction, where standard quantum mechanics might not
be readily applicable, that we see greater possibility of application of this
general concept.
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Classical and Quantum Evolution
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Abstract. Under a homogeneous Kähler transform, the Kähler two-form on
the Siegel-Jacobi disk 𝒟𝐽

1 (upper half-plane 𝒳𝐽
1 ) splits into the sum of the

Kähler two-form on ℂ and Kähler two-form on the Siegel disk𝒟1 (respectively,
the Siegel upper half-plane 𝒳1). Similar considerations are presented in the
case of the Jacobi group acting on Sigel-Jacobi ball 𝒟𝐽

𝑛 and Siegel-Jacobi
space 𝒳𝐽

𝑛. We describe the classical and quantum evolution on the Siegel-
Jacobi manifolds determined by a linear Hamiltonian in the generators of the
Jacobi group.
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1. Introduction

We consider the Jacobi group 𝐺𝐽
𝑛 = 𝐻𝑛 ⋊ Sp(𝑛,ℝ)ℂ [1, 2, 3, 4, 5], where 𝐻𝑛

denotes the Heisenberg group. 𝐺𝐽
𝑛 acts transitively on the Siegel-Jacobi ball 𝒟

𝐽
𝑛 =

𝐻𝑛/ℝ × Sp(𝑛,ℝ)ℂ/U(𝑛) = ℂ𝑛 × 𝒟𝑛, where the Siegel ball is realized as 𝒟𝑛 :=
{𝑊 ∈ 𝑀(𝑛,ℂ)∣𝑊 = 𝑊 𝑡, 1 − 𝑊�̄� > 0}. 𝑀(𝑛,𝔽) denotes the set of 𝑛 × 𝑛
matrices with entries in the field 𝔽. We reserve the name of Siegel-Jacobi disk
for 𝒟𝐽

1 . We have attached coherent states [6] to 𝐺𝐽
𝑛, based on 𝒟𝐽

𝑛 [7]. The case
𝐺𝐽

1 = 𝐻1⋊SU(1, 1) was considered in [8, 9]. Previously, similar constructions were
done in [10],[11]. The squeezed states [12, 13, 14, 15] in quantum optics [16, 17, 18]
can be constructed as coherent states attached to the Jacobi group. We have
determined the 𝐺𝐽

𝑛-invariant Kähler two-form 𝜔𝑛 on 𝒟𝐽
𝑛 [7]. 𝜔𝑛 is a particular

case of the Kähler two-form obtained in [19], written in a condensed form. In [20]
we have determined the Kähler invariant two-form 𝜔′𝑛 on the Siegel-Jacobi space
𝒳𝐽
𝑛 := 𝒳𝑛 × ℝ2𝑛, also studied in detail by Yang in a larger context coming from
an extended Heisenberg group [21]. 𝜔′𝑛 generalizes the expression of the Kähler
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two-form 𝑤′1 obtained by Kähler and Berndt [22, 5]. 𝒳𝑛 denotes the Siegel upper
half-plane (of order 𝑛).

In this note we report on the homogeneous Kähler transform which splits
𝜔𝑛 into the sum of the group-invariant Kähler two-forms on 𝒟𝑛 and the one on
ℂ𝑛, and we interpret this change of coordinates in the context of the celebrated
Gindikin-Vinberg [23] fundamental conjecture for homogeneous Kähler manifold
[24] (Proposition 7). The case of 𝒟𝐽

1 is treated separately because is simpler to be
presented (cf. Proposition 3); more details are given in [25].

We also investigate the motion on the Siegel-Jacobi manifolds 𝒟𝐽
𝑛 and 𝒳𝐽

𝑛

generated by a hermitian Hamiltonian𝑯 linear in the generators of 𝐺𝐽
𝑛. Following

Berezin’s dequantization recipe [26, 27], we attache to 𝑯 its covariant symbol ℋ.
Using a technique developed in [28, 29] for a linear Hamiltonian in the generators of
a Lie group 𝐺 acting on a Kähler homogeneous manifold 𝐺/𝐻 in the case when the
generators admit a realization as first-order holomorphic differential operators with
polynomial coefficients (Proposition 4), we write down the equations of motion on
the Siegel-Jacobi manifolds. Under the homogeneous Kähler transform which splits
the Kähler two-forms on the Siegel-Jacobi manifolds, the equations of motion on
ℂ𝑛 decouples of those on Siegel-Jacobi ball and space. In the case 𝑛 = 1 the
solution of the differential equations of motion are written down explicitly in the
autonomous case.

In Section 2 we recall some notation and results from [8]. Proposition 3 es-
tablishes the homogeneous Kähler diffeomorphism for the Siegel-Jacobi manifolds
in the case 𝑛 = 1. The classical and quantum evolution on 𝒟𝐽

1 and 𝒳𝐽
1 are sum-

marized in Proposition 6 of Section 4. In the case of 𝐺𝐽
𝑛 we get first-order matrix

differential equations of motion on the Siegel-Jacobi manifolds. The motions on
𝒟𝑛 and 𝒳𝑛 are described by matrix Riccati equations, solved in [28, 29], while
the decoupled equations of motion on ℂ𝑛 are complex first-order linear differential
equations. More details will be published later.

2. Coherent states attached to the Jacobi group 𝑮𝑱
1

The Jacobi algebra is the semi-direct sum 𝔤𝐽1 := 𝔥1 ⋊ 𝔰𝔲(1, 1) [8, 9], where the
Heisenberg algebra 𝔥1 is generated by the boson operators 𝑎, 𝑎

† and 1, [𝑎, 𝑎†] = 1,
𝔰𝔲(1, 1) is generated by 𝐾±,0, and

[𝑎,𝐾+] = 𝑎†,
[
𝐾−, 𝑎†

]
= 𝑎,

[
𝐾+, 𝑎†

]
= [𝐾−, 𝑎] = 0,[

𝐾0, 𝑎
†] = 1

2
𝑎†, [𝐾0, 𝑎] = −1

2
𝑎.

For 𝑋 ∈ 𝔤, we denote 𝑿 = 𝑑𝜋(𝑋), where 𝜋 is unitary irreducible represen-
tation of a Lie group 𝐺 with Lie algebra 𝔤. We impose to the cyclic vector 𝑒0 to
verify simultaneously the conditions

𝒂𝑒0 = 0, 𝑲−𝑒0 = 0, 𝑲0𝑒0 = 𝑘𝑒0; 𝑘 > 0, 2𝑘 = 2, 3, . . . , (1)

and 𝑘 indexes the positive discrete series representations 𝐷+
𝑘 of SU(1, 1) [30].
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Perelomov’s coherent state vectors are vectors in the Hilbert space of the
representation of the group 𝐺𝐽

1 , based on Siegel-Jacobi disk 𝒟𝐽
1 :

𝑒𝑧,𝑤 := e
𝑧𝒂†+𝑤𝑲+𝑒0, 𝑧, 𝑤 ∈ ℂ, ∣𝑤∣ < 1. (2)

We consider the squeezed CS vector Ψ𝛼,𝑤 := 𝐷(𝛼)𝑆(𝑤)𝑒0 [13], where

𝐷(𝛼) = exp(𝛼𝒂† − �̄�𝒂) = exp

(
−1
2
∣𝛼∣2
)
exp(𝛼𝒂†) exp(−�̄�𝒂),

𝑆(𝑧) = exp(𝑧𝑲+ − 𝑧𝑲−) = exp(𝑤𝑲+) exp(𝜂𝑲0) exp(−�̄�𝑲−),

𝑤 =
𝑧

∣𝑧∣ tanh (∣𝑧∣), 𝜂 = log(1− 𝑤𝑤).

Proposition 1. The kernel 𝐾 = (𝑒𝑧,�̄�, 𝑒𝑧,�̄�) : 𝒟
𝐽
1 × �̄�𝐽

1 → ℂ is

𝐾 = (1 − 𝑤�̄�)−2𝑘 exp
2𝑧𝑧 + 𝑧2�̄� + 𝑧2𝑤

2(1− 𝑤𝑤)
, 𝑧, 𝑤 ∈ ℂ, ∣𝑤∣ < 1. (3)

The normalized squeezed state vector and the un-normalized Perelomov’s co-
herent state vector are related by the relation

Ψ𝛼,𝑤 = (1− 𝑤𝑤)𝑘 exp
(
− �̄�

2
𝑧
)
𝑒𝑧,𝑤, 𝑧 = 𝛼− 𝑤�̄�. (4)

The composition law in the Jacobi group 𝐺𝐽
1 := 𝐻𝑊 ⋊ 𝑆𝑈(1, 1) is

(𝑔1, 𝛼1, 𝑡1) ∘ (𝑔2, 𝛼2, 𝑡2) = (𝑔1 ∘ 𝑔2, 𝑔
−1
2 ⋅ 𝛼1 + 𝛼2, 𝑡1 + 𝑡2 + ℑ(𝑔−1

2 ⋅ 𝛼1�̄�2).

The action of (𝑔, 𝛼) ∈ 𝐺𝐽
1 on (𝑧, 𝑤) ∈ 𝒟𝐽

1 is given by

𝑧1 =
𝛼− �̄�𝑤 + 𝑧

𝑞𝑤 + 𝑝
; 𝑤1 =

𝑝𝑤 + 𝑞

𝑞𝑤 + 𝑝
, 𝑔 =

(
𝑝 𝑞
𝑞 𝑝

)
∈ SU(1, 1). (5)

The Kähler two-form 𝜔1 on 𝒟𝐽
1 , 𝐺

𝐽
1 -invariant to the action (5), is

−i𝜔1=
2𝑘

(1 − 𝑤�̄�)2
𝑑𝑤 ∧ 𝑑�̄� +

𝐴 ∧ 𝐴

1− 𝑤𝑤
,𝐴=𝑑𝑧 + 𝜂𝑑𝑤, 𝜂=

𝑧 + 𝑧𝑤

1− 𝑤�̄�
. (6)

Let us consider the real Jacobi group 𝐺𝐽
1 (ℝ) := SL2(ℝ) ⋉ ℝ2 acting on the

Siegel-Jacobi upper half-plane 𝒳𝐽
1 := 𝒳1 × ℂ, where 𝒳1 is the Siegel upper half-

plane 𝒳1 := {𝑣 ∈ ℂ∣ℑ(𝑣) > 0} [8],[22]. If 𝑀 ∈ SL2(ℝ) then 𝑀∗ ∈ SU(1, 1),
where

𝑀∗ = 𝐶−1𝑀𝐶, 𝐶 =

(
i i
−1 1

)
. (7)

Remark 2. We have the biholomorphic map: 𝒳𝐽
1 → 𝒟𝐽

1

𝑤 =
𝑣 − i
𝑣 + i

; 𝑧 =
2i𝑢

𝑣 + i
, 𝑤 ∈ 𝒟1, 𝑣 ∈ 𝒳1, 𝑧, 𝑢 ∈ ℂ. (8)

Under the partial Cayley transform (8), 𝜔1 (6) becomes

−i 𝜔′1 = − 2𝑘

(𝑣 − 𝑣)2
𝑑𝑣 ∧ 𝑑𝑣 +

2

i(𝑣 − 𝑣)
𝐺 ∧ �̄�, 𝐺 = 𝑑𝑢− 𝑢− 𝑢

𝑣 − 𝑣
𝑑𝑣. (9)
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𝜔′1 is Kähler homogeneous under the action of 𝐺
𝐽
1 (ℝ) on 𝒳𝐽

1 :

𝑣1 =
𝑎𝑣+𝑏

𝑐𝑣+𝑑
, 𝑢1 =

𝑢+𝑛𝑣+𝑚

𝑐𝑣+𝑑
, ℎ =

(
𝑎 𝑏
𝑐 𝑑

)
∈ SL(2,ℝ), 𝛼 =𝑚+ i𝑛, (10)

where the matrices 𝑔 in (5) and ℎ in (10) are related by (7).

3. The homogeneous Kähler diffeomorphisms for 𝓓𝑱
1 , 𝓧𝑱

1

In the formulation of Dorfmeister and Nakajima [24], the fundamental conjecture
for homogeneous Kähler manifolds (Gindikin -Vinberg [23]) essentially asserts that:
every homogeneous Kähler manifold, as a complex manifold, is the product of a
compact simply connected homogeneous manifold (generalized flag manifold), a
homogeneous bounded domain, and ℂ𝑛/Γ, where Γ denotes a discrete subgroup of
translations of ℂ𝑛. In our case, we have:

Proposition 3. Let us consider the Kähler two-form 𝜔1 (6), 𝐺𝐽
1 -invariant under

the action (5) of 𝐺𝐽
1 on the homogeneous Kähler Siegel-Jacobi disk 𝒟𝐽

1 . We have
the homogeneous Kähler diffeomorphism

𝐹𝐶 : (𝒟𝐽
1 , 𝜔1)→ (𝒟1 × ℂ, 𝜔0) = (𝒟1, 𝜔𝒟1)⊗ (ℂ, 𝜔ℂ), 𝜔0 = 𝐹𝐶(𝜔1),

𝐹𝐶 : 𝑧 = 𝜂 − 𝑤𝜂, 𝐹𝐶−1 : 𝜂 =
𝑧 + 𝑤𝑧

1− ∣𝑤∣2 , (11)

𝜔0 = 𝜔𝒟1 + 𝜔ℂ; −i𝜔𝒟1 =
2𝑘

(1− 𝑤𝑤)2
𝑑𝑤 ∧ 𝑑𝑤, −i𝜔ℂ = 𝑑𝜂 ∧ 𝑑𝜂. (12)

The Kähler two-form (12) is invariant at the action (𝑔, 𝛼) ⋅ (𝜂, 𝑤)→ (𝜂1, 𝑤1)
of 𝐺𝐽

1 on ℂ×𝒟1, where

𝜂1 = 𝑎(𝜂 + 𝛼) + 𝑏(𝜂 + �̄�), 𝑤1 =
𝑎𝑤 + 𝑏

�̄�𝑤 + �̄�
, 𝑔 =

(
𝑎 𝑏
�̄� �̄�

)
∈ SU(1, 1). (13)

We have also the homogeneous Kähler diffeomorphism

𝐹𝐶1 : (𝒳
𝐽
1 , 𝜔

′
1)→ (𝒳1 × ℂ, 𝜔′0) = (𝒳1, 𝜔𝒳1)× (ℂ, 𝜔ℂ), 𝜔′0 = 𝐹𝐶1(𝜔

′
1),

𝐹𝐶1 : 2i𝑢 = (𝑣 + i)𝜂 − (𝑣 − i)𝜂; 𝐹𝐶−1
1 : 𝜂 =

𝑢𝑣 − �̄�𝑣 + i(�̄�− 𝑢)

𝑣 − 𝑣
, (14)

where 𝜔′1 is the Kähler two-form (9), 𝐺𝐽
1 (ℝ)-invariant to the action (10), and

𝜔′0 = 𝜔𝒳1 + 𝜔ℂ, i𝑑𝜔𝒳1 =
2𝑘

(𝑣 − 𝑣)2
𝑑𝑣 ∧ 𝑑𝑣. (15)

Proof. We use the transformation (8) and the (Eichler-Zagier) coordinates [5] 𝑣 =
𝑥 + 𝑖𝑦; 𝑢 = 𝑝𝑣 + 𝑞, 𝑥, 𝑝, 𝑞, 𝑦 ∈ ℝ, 𝑦 > 0, and come back from 𝑣 to 𝑤. Let 𝑧 =
2i(i+𝑣)−1(𝑝𝑣+𝑞), where 𝑣 = −i(𝑤−1)−1(𝑤+1). We have 𝑧 = 𝑞+i𝑝+𝑤(−𝑞+i𝑝), and
if denote 𝜂 = 𝑞+i𝑝, where 𝑞, 𝑝 ∈ ℝ, then 𝑧 = 𝜂−𝑤𝜂, with the same 𝜂 as in (6), and
𝐴 = 𝑑𝜂−𝑤𝑑𝜂. The last term in (6) becomes (1−∣𝑤∣2)−1𝐴∧𝐴 = 𝑑𝜂∧𝑑𝜂 = 2i𝑑𝑝∧𝑑𝑞.
Vice-versa, we have 𝑑𝜂 = (1 − ∣𝑤∣2)−1(𝐴+ 𝑤𝐴), with 𝐴 given in (6).
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For the second assertion, we introduce the transformation (8) 𝑧 = 2i𝑢(𝑣+i)−1

in (11) and we get: 2i(𝑢 − �̄�) = (𝜂 − 𝜂)(𝑣 − 𝑣). Than 𝐺 in (9) becomes 𝐺 =
1
2i [(𝑣 + i)𝑑𝜂 − (𝑣 − i)𝑑𝜂] and we get (15). □

4. Motion on the Siegel-Jacobi manifolds 𝓓𝑱
1 and 𝓧𝑱

1

We consider a homogeneous manifold 𝑀 = 𝐺/𝐻 endowed with a 𝐺-invariant
Kähler two-form 𝜔(𝑧) deduced form the scalar product of coherent state vectors
𝑒𝑧 ∈ ℌ, obtained from a unitary irreducible representation of 𝐺 on the Hilbert
space ℌ [6]. Passing on from the dynamical system problem in the Hilbert space
ℌ to the corresponding one on 𝑀 (dequantization), the dynamical system on 𝑀
is a classical one. The motion on the classical phase space 𝑀 can be described
by the Hamiltonian equations of motion �̇�𝛼 = i {ℋ, 𝑧𝛼} , 𝛼 ∈ Δ+, where ℋ =

⟨𝑒𝑧, 𝑒𝑧⟩−1 ⟨𝑒𝑧∣𝑯 ∣e𝑧⟩ is the classical Hamiltonian (the covariant symbol) attached
to the quantum Hamiltonian 𝑯 [26],[27]. We consider an algebraic Hamiltonian
linear in the generators 𝑿𝜆 of the group of symmetry 𝐺, 𝑯 =

∑
𝜆∈Δ 𝜖𝜆𝑿𝜆.

Let us suppose that 𝑿𝜆 can be expressed in a local system of coordinates as a
holomorphic first-order differential operator with polynomial coefficients,

𝕏𝜆 = 𝑃𝜆 +
∑
𝛽∈Δ+

𝑄𝜆,𝛽
∂

∂𝑧𝛽
, 𝜆 ∈ Δ. (16)

We recall that [29]

Proposition 4. On the homogeneous manifold 𝑀 = 𝐺/𝐻 on which the holomor-
phic representation (16) is true, the classical motion and the quantum evolution
generated by the linear Hamiltonian 𝑯 are described by the same equation of mo-
tion (17)

i�̇�𝛼 =
∑
𝜆∈Δ

𝜖𝜆𝑄𝜆,𝛼, 𝛼 ∈ Δ+, (17)

We consider a linear hermitian Hamiltonian in the generators of the group𝐺𝐽
1

𝑯 = 𝜖𝑎𝒂+ �̄�𝑎𝒂
† + 𝜖0𝑲0 + 𝜖+𝑲+ + 𝜖−𝑲−, 𝜖+ = 𝜖: 𝜖0 = 𝜖0. (18)

The general scheme [28, 29] associates to elements of the Lie algebra 𝔤 first-order
holomorphic differential operators with polynomial coefficients, 𝑋 ∈ 𝔤 → 𝕏, and
for 𝐺𝐽

1 we have [8]:

Lemma 5. The differential action of the generators of the Jacobi algebra 𝔤𝐽1 is
given by the formulas:

𝒂 =
∂

∂𝑧
;𝒂+=𝑧 + 𝑤

∂

∂𝑧
, 𝑧, 𝑤 ∈ ℂ, ∣𝑤∣ < 1;

𝕂− =
∂

∂𝑤
,𝕂0 = 𝑘 +

1

2
𝑧
∂

∂𝑧
+ 𝑤

∂

∂𝑤
,𝕂+ =

1

2
𝑧2 + 2𝑘𝑤 + 𝑧𝑤

∂

∂𝑧
+ 𝑤2 ∂

∂𝑤
.

With Lemma 5, Proposition 4, and Proposition 3, we get
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Proposition 6. The linear hermitian Hamiltonian (18) generates:

a) the differential equations of motion on the Siegel-Jacobi disk 𝒟𝐽
1 :

𝑖�̇� = 𝜖𝑎 + 𝜖𝑎𝑤 + (
𝜖0
2 + 𝜖+𝑤)𝑧,

𝑖�̇� = 𝜖− + 𝜖0𝑤 + 𝜖+𝑤2;
(19)

b) the equations of motion in (𝑣, 𝑢) on the manifold 𝒳𝐽
1 , obtained from the equa-

tions (19) by the partial Cayley transform (8):

2�̇� = (𝜖0+𝜖++𝜖−)𝑣2 + 2i(𝜖−−𝜖+)𝑣+𝜖0−𝜖−−𝜖+,
2�̇� = (𝜖𝑎+𝜖𝑎)𝑣+i(𝜖𝑎−𝜖𝑎)+[(𝜖0+𝜖++𝜖−)𝑣+i(𝜖−−𝜖+)]𝑢;

(20)

c) the decoupled equations of motion in (𝜂, 𝑤) ∈ ℂ×𝒟1:

𝑖�̇� = 𝜖𝑎 + 𝜖−𝜂 + 𝜖0
2 𝜂,

𝑖�̇� = 𝜖− + 𝜖0𝑤 + 𝜖+𝑤2;
(21)

d) and the decoupled differential equations in (𝜂, 𝑤) ∈ ℂ× 𝒳1:

𝑖�̇� = 𝜖𝑎 + 𝜖−𝜂 + 𝜖0
2 𝜂, 𝜂 ∈ ℂ,

−2�̇� = (𝜖0 + 𝜖+ + 𝜖−)𝑣2 + 2i(𝜖− − 𝜖+)𝑣 + 𝜖0 − 𝜖− − 𝜖+.
(22)

For constant coefficients, the Riccati equation in (19) has the solution

𝑤(𝑡)=
𝑤1𝐶1e

i
√

Δ
2 𝑡+𝑤2𝐶2e

− i
√

Δ
2 𝑡

𝜖+(𝐶1e
i
√

Δ
2 𝑡+𝐶2e−

i
√

Δ
2 𝑡)

, 𝑤1,2=
−𝜖0 ±

√
Δ

2
,Δ=𝜖2

0−4𝜖+𝜖−, (23)

and the condition 𝑤(𝑡) ∈ 𝒟1 imposes the restrictions:

∣𝐶1

𝐶2
∣ >
√

𝑤2

𝑤1
=
1 +

√
1− 𝛿√
𝛿

, 𝜖0 > 0, Δ > 0, 𝛿 = 4
𝜖+𝜖−
𝜖2
0

< 1. (24)

The solution 𝜂(𝑡) of the first differential equation (21) is:

𝜂(𝑡) =𝑀ei
√

Δ
2 𝑡 +𝑁e−i

√
Δ
2 𝑡 + 𝑃, where (25a)

𝑀 = −i 𝑞𝛼

𝑟
√
Δ
(𝜖− + 𝑤1); 𝑁 = i

𝑞𝛽

𝑟
√
Δ
(𝜖− + 𝑤2), (25b)

𝛼

𝛽
=

𝜖−(𝜖+ + 𝑤2)

𝑤2(𝜖− + 𝑤1)
=

𝑤1(𝜖+ + 𝑤2)

𝜖+(𝜖− + 𝑤1)
, (25c)

𝑃 =
4𝜖−𝜖𝑎 − 2𝜖0𝜖𝑎

Δ
, 𝑟 =

1

2
(𝜖− + 𝜖+ − 𝜖𝑜), (25d)

𝑞 = − 𝜖0

4
(𝜖𝑎 + 𝜖𝑎) +

1

2
(𝜖𝑎𝜖+ + �̄�𝑎𝜖−). (25e)

The solution 𝑧 of the first differential equation (19) is given by 𝑧(𝑡) = 𝜂(𝑡) −
𝑤(𝑡)𝜂(𝑡), where 𝜂(𝑡) has the expression given by (25), while the solution 𝑤(𝑡) of
second equation (19) is given by (23).

The solution 𝑣 of the second equation (22) is obtained from the solution 𝑤(𝑡)
(23) of second equation (19) via the Cayley transform 𝑣 = i(1− 𝑤)−1(1 + 𝑤).
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The second equation (19) in 𝑤 (the first equation in 𝑣 in (20)) is a Riccati
equation on 𝒟1 (respectively, on 𝒳1). Remark that the dynamics on the Siegel
disk 𝒟1, determined by the Hamiltonian (18), linear in the generators of the Ja-
cobi group 𝐺𝐽

1 , depends only on the generators of the group SU(1, 1). The Riccati
equation on 𝒟1 in 𝑤 appears in literature, see, e.g., equation (18.2.8) in [6] in the
context of quantum oscillator with variable frequency.

5. The fundamental conjecture for the Siegel-Jacobi manifolds

We consider the Lie algebra 𝔤𝐽𝑛 := 𝔥𝑛⋊𝔰𝔭(𝑛,ℝ)ℂ of the Jacobi group𝐺𝐽
𝑛, generated

by 𝑎†𝑖 , 𝑎𝑖,𝐾
0,+,−
𝑖𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑛, and the coherent state vectors [7]

𝑒𝑧,𝑊 = exp(𝑿)𝑒0, 𝑿 =
∑
𝑖

𝑧𝑖𝒂
†
𝑖 +
∑
𝑖𝑗

𝑤𝑖𝑗𝑲
+
𝑖𝑗 , 𝑧 ∈ ℂ𝑛, 𝑊 ∈ 𝒟𝑛,

defined on the Siegel-Jacobi ball 𝒟𝐽
𝑛. The Kähler two-form on 𝒟𝐽

𝑛

−i𝜔𝑛=
𝑘
2Tr(𝐹 ∧ 𝐹 )+Tr(𝐴𝑡�̄� ∧ 𝐴), 𝐴 = d 𝑧+d𝑊𝜂,

𝐹 =𝑀 d𝑊,𝑀 =(1−𝑊�̄� )−1, 𝜂 =𝑀(𝑧 +𝑊𝑧),
(26)

is 𝐺𝐽
𝑛-invariant under the action (𝑔, 𝛼) ⋅ (𝑧,𝑊 )→ (𝑧1,𝑊1) ∈ ℂ𝑛 ×𝒟𝑛, where:

𝑧1 = (𝑊𝑏∗ + 𝑎∗)−1(𝑧 + 𝛼−𝑊�̄�), 𝑔 =

(
𝑎 𝑏
�̄� �̄�

)
∈ Sp(𝑛,ℝ)ℂ,

𝑊1 = (𝑎𝑊 + 𝑏)(�̄�𝑊 + �̄�)−1 = (𝑊𝑏∗ + 𝑎∗)−1(𝑏𝑡 +𝑊𝑎𝑡).

(27)

If 𝐴 is matrix, then 𝐴𝑡 denotes its transpose, and 𝐴∗ = 𝐴𝑡.
We consider also the real Jacobi group 𝐺𝐽

𝑛(ℝ) = Sp(𝑛,ℝ) ⋉ 𝐻𝑛 and the
Siegel-Jacobi space 𝒳𝐽

𝑛 := 𝒳𝑛 × ℝ2𝑛 [20], where 𝒳𝑛 is the Siegel upper half-plane
realized as

𝒳𝑛 := {𝑣 ∈ 𝑀(𝑛,ℂ)∣𝑣 = 𝑠+ i𝑟, 𝑠, 𝑟 ∈ 𝑀(𝑛,ℝ), 𝑟 > 0, 𝑠𝑡 = 𝑠; 𝑟𝑡 = 𝑟}.
Let 𝑔 = (𝑉, 𝑙) ∈ 𝐺𝐽

𝑛(ℝ)0, i.e., 𝑉 ∈ Sp(𝑛,ℝ), 𝑙 = (𝑙1, 𝑙2) ∈ ℝ2𝑛, and 𝑣 ∈
ℋ𝑛, 𝑢 ∈ ℂ𝑛 ≡ ℝ2𝑛. The action of the group 𝐺𝐽

𝑛(ℝ)0 on 𝒳
𝐽
𝑛, (𝑉, 𝑙)⋅(𝑣, 𝑢)→ (𝑣1, 𝑢1),

is given by the formulae:

𝑣1 = (𝐴𝑣+𝐵)(𝐶𝑣+𝐷)−1, 𝑢1 = (𝑣𝐶
𝑡+𝐷𝑡)−1(𝑢+𝑣𝑙1+𝑙2), 𝑉 =

(
𝐴 𝐵
𝐶 𝐷

)
. (28)

Under the partial Cayley transform 𝒳𝐽
𝑛 → 𝒟𝐽

𝑛,

𝑊 = (𝑣 − 𝑖)(𝑣 + 𝑖)−1; 𝑧 = (𝑣 + 𝑖)−12𝑖𝑢, (29)

the Kähler two-form 𝜔𝑛 on 𝒟𝐽
𝑛 (26) becomes the 𝐺𝐽

𝑛(ℝ)0-invariant Kähler two-
form on 𝒳𝐽

𝑛,

−i𝜔′𝑛 =
𝑘

2
Tr(𝐻 ∧ �̄�) +

2

i
Tr(𝐺𝑡𝐷 ∧ �̄�), where

𝐷 =(𝑣 − 𝑣)−1, 𝐻 = 𝐷𝑑𝑣; 𝐺 = 𝑑𝑢− 𝑑𝑣𝐷(�̄� − 𝑢).
(30)
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In (29), we make the change of variables 𝑢 = 𝑣𝑝 + 𝑞, 𝑝, 𝑞 ∈ ℝ𝑛 and 𝑣 = −i(𝑊 +
1)−1(𝑊 + 1). Then

𝑧 = 𝜂 −𝑊𝜂, (31)

where 𝜂 = 𝑞 + i𝑝 ∈ ℂ𝑛, and 𝐴 in (26) is 𝐴 = d 𝜂 − 𝑊 d 𝜂. We get for 𝐺𝐽
𝑛 the

analogous of Proposition 3:

Proposition 7. Under the homogeneous Kähler transform 𝐹𝐶 (31), the Kähler two-
form (26) on 𝒟𝐽

𝑛, 𝐺𝐽
𝑛-invariant to the action (27), becomes the Kähler two-form

on 𝒟𝑛 × ℂ𝑛

−i𝜔𝑛,0 =
𝑘
2Tr(𝐹 ∧ 𝐹 ) + Tr(d 𝜂𝑡 ∧ d 𝜂), (32)

invariant to the 𝐺𝐽
𝑛-action on 𝒟𝑛 ×ℂ𝑛, (𝑔, 𝛼) ⋅ (𝜂,𝑊 )→ (𝜂1,𝑊1), with 𝑊1 given

in (27) and

𝜂1 = 𝑎(𝜂 + 𝛼) + 𝑏(𝜂 + �̄�). (33)

Under the homogeneous Kähler transform

𝐹𝐶−1
1 : 𝜂 = (𝑣 − i)(𝑣 − 𝑣)−1(𝑣 − i)[(𝑣 − i)−1𝑢− (𝑣 − i)−1�̄�]. (34)

the Kähler two-form (30) becomes a Kähler two-form on 𝒳𝑛 × ℂ𝑛

−i𝜔′𝑛,0 = 𝑘
2Tr(𝐻 ∧ �̄�) + Tr(d 𝜂𝑡 ∧ d 𝜂), 𝐻 = (𝑣 − 𝑣)−1 d 𝑣. (35)

Now we consider a hermitian Hamiltonian linear in the generators of the
group 𝐺𝐽

𝑛

𝑯 = 𝜖𝑖𝒂𝑖 + 𝜖𝑖𝒂
+
𝑖 + 𝜖0

𝑖𝑗𝑲
0
𝑖𝑗 + 𝜖−𝑖𝑗𝑲

−
𝑖𝑗 + 𝜖+

𝑖𝑗𝑲
+
𝑖𝑗 , where

(𝜖0)† = 𝜖0; 𝜖− = (𝜖−)𝑡; 𝜖+ = (𝜖+)𝑡; (𝜖+)† = 𝜖−.
(36)

With Proposition 4, the differential realization of the generators of 𝐺𝐽
𝑛 [7], and

Proposition 7, we get

Proposition 8. The linear hermitian Hamiltonian (36) generates:

a) the matrix equations of motion on 𝒟𝐽
𝑛:

i�̇� = 𝜖 +𝑊𝜖+
1

2
(𝜖0)𝑡𝑧 +𝑊𝜖+𝑧, 𝑧 ∈ ℂ𝑛,

i�̇� = 𝜖− +
1

2
[𝑊𝜖0 + (𝜖0)𝑡𝑊 ] +𝑊𝜖+𝑊, 𝑊 ∈ 𝒟𝑛;

(37)

b) the coupled matrix equations in (𝑢, 𝑣) on 𝒳𝐽
𝑛 = ℂ𝑛 × 𝒳𝑛:

−2�̇�=𝑣(𝜖+𝜖)+i(𝜖−𝜖)+

[
𝑣

(
𝜖0+(𝜖0)𝑡

2
+𝜖++𝜖−

)
+i

(
(𝜖0)𝑡−𝜖0

2
+𝜖−−𝜖+

)]
𝑢,

−2�̇�= 𝜖0+(𝜖0)𝑡

2
−(𝜖−+𝜖+)+i𝑣

(
𝜖0−(𝜖0)𝑡

2
+𝜖−−𝜖+

)
+i

(−𝜖0+(𝜖0)𝑡

2
+𝜖−−𝜖+

)
𝑣+𝑣

(
𝜖0+(𝜖0)𝑡

2
+𝜖−+𝜖+

)
𝑣; (38)



Evolution on the Siegel-Jacobi Manifolds 51

c) the decoupled equations in (𝜂,𝑊 ) ∈ ℂ𝑛 ×𝒟𝑛:

i�̇� = 𝜖+ 𝜖−𝜂 + 1
2 (𝜖

0)𝑡𝜂,

i�̇� = 𝜖− + 1
2 [𝑊𝜖0 + (𝜖0)𝑡𝑊 ] +𝑊𝜖+𝑊 ;

(39)

d) and the decoupled matrix equations in (𝜂, 𝑣) ∈ ℂ𝑛 × 𝒳𝑛:

i�̇� = 𝜖+ 𝜖−𝜂 +
1

2
(𝜖0)𝑡𝜂,

−2�̇� = 𝜖0 + (𝜖0)𝑡

2
− (𝜖− + 𝜖+) + i𝑣

(
𝜖0 − (𝜖0)𝑡

2
+ 𝜖− − 𝜖+

)
+ i

(−𝜖0 + (𝜖0)𝑡

2
+ 𝜖− − 𝜖+

)
𝑣 + 𝑣

(
𝜖0 + (𝜖0)𝑡

2
+ 𝜖− + 𝜖+

)
𝑣.

(40)
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Exhausting Formal Quantization Procedures

Vasily A. Dolgushev

Abstract. In paper [1] the author introduced stable formality quasi-isomor-
phisms and described the set of its homotopy classes. This result can be
interpreted as a complete description of formal quantization procedures. In
this note we give a brief exposition of stable formality quasi-isomorphisms and
prove that every homotopy class of stable formality quasi-isomorphisms con-
tains a representative which admits globalization. This note is loosely based
on the talk given by the author at XXX Workshop on Geometric Methods in
Physics in Bial̷owieża, Poland.
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1. Introduction

In seminal paper [2] M. Kontsevich constructed an 𝐿∞ quasi-isomorphism from the
graded Lie algebra of polyvector fields on the affine space ℝ𝑑 to the dg Lie algebra
of Hochschild cochains 𝐶∙(𝐴) for the polynomial algebra 𝐴 = ℝ[𝑥1, 𝑥2, . . . , 𝑥𝑑] .
This result implies that equivalence classes of star-products on ℝ𝑑 are in bijection
with the equivalence classes of formal Poisson structures on ℝ𝑑 . This theorem also
implies that Hochschild cohomology of a deformation quantization algebra is iso-
morphic to the Poisson cohomology of the corresponding formal Poisson structure.

In view of these consequences, we will think about 𝐿∞ quasi-isomorphisms
from the graded Lie algebra of polyvector fields on the affine space ℝ𝑑 to the dg
Lie algebra of Hochschild cochains 𝐶∙(𝐴) as formal quantization procedures.

Following [3] one can define a natural notion of homotopy equivalence on
the set of 𝐿∞-morphisms between dg Lie algebras (or even 𝐿∞-algebras). Further-
more, according to Lemma B.5 from [4], homotopy equivalent 𝐿∞ quasi-morphisms
for 𝐶∙(𝐴) give the same bijection between the set of equivalence classes of star-
products and the set of equivalence classes of formal Poisson structures. Thus, for
the purposes of applications, we should only be interested in homotopy classes of
formality quasi-isomorphisms.
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In paper [1] the author developed a framework of what he calls stable formal-
ity quasi-isomorphisms (SFQ) and showed that homotopy classes of such SFQ’s
form a torsor for the group which is obtained by exponentiating the Lie algebra
𝐻0(GC) where GC is the graph complex introduced by M. Kontsevich in [5, Sec-
tion 5]. Any SFQ gives us an 𝐿∞ quasi-isomorphism for the Hochschild cochains
of 𝐴 = ℝ[𝑥1, 𝑥2, . . . , 𝑥𝑑] in all1 dimensions 𝑑 simultaneously. Moreover, homo-
topy equivalent SFQ’s give homotopy equivalent 𝐿∞ quasi-isomorphisms for the
Hochschild cochains of 𝐴 = ℝ[𝑥1, 𝑥2, . . . , 𝑥𝑑] . Thus the main result (Theorem 6.2)
of [1] can be interpreted as a complete description of formal quantization proce-
dures in the stable setting.

In the next section we remind the full (directed) graph complex and its rela-
tion to Kontsevich’s graph complex GC [5, Section 5]. In Section 3 we give a brief
exposition of stable formality quasi-isomorphisms (SFQ). Finally, in Section 4 we
prove that every SFQ is homotopy equivalent to an SFQ which admits globaliza-
tion.

Notation and conventions. In this note we assume that the ground field 𝕂 contains
the field of reals. For most of algebraic structures considered in this note, the
underlying symmetric monoidal category is the category of unbounded cochain
complexes of 𝕂-vector spaces. For a cochain complex 𝒱 we denote by s𝒱 (resp. by
s−1𝒱) the suspension (resp. the desuspension) of 𝒱 . In other words,(

s𝒱)∙ = 𝒱∙−1 ,
(
s−1𝒱)∙ = 𝒱∙+1 .

𝐶∙(𝐴) denotes the Hochschild cochain complex of an associative algebra (or more
generally an 𝐴∞-algebra) 𝐴 with coefficients in 𝐴 . For a commutative ring 𝑅 and
an 𝑅-module 𝑉 we denote by 𝑆𝑅(𝑉 ) the symmetric algebra of 𝑉 over 𝑅 .

Given an operad 𝒪, we denote by ∘𝑖 the elementary operadic insertions:
∘𝑖 : 𝒪(𝑛) ⊗𝒪(𝑘)→ 𝒪(𝑛+ 𝑘 − 1) , 1 ≤ 𝑖 ≤ 𝑛 .

The notation Sh𝑝,𝑞 is reserved for the set of (𝑝, 𝑞)-shuffles in 𝑆𝑝+𝑞 . A graph is
directed if each edge carries a chosen direction. A graph Γ with 𝑛 vertices is called
labeled if Γ is equipped with a bijection between the set of its vertices and the set
{1, 2, . . . , 𝑛} . 𝜀 denotes a formal deformation parameter.

2. The full directed graph complex dfGC

In this section we recall from [6] an extended version dfGC of Kontsevich’s graph
complex GC [5, Section 5]. For this purpose, we first introduce a collection of
auxiliary sets {dgra(𝑛)}𝑛≥1 . An element of dgra𝑛 is a directed labeled graph Γ with
𝑛 vertices and with the additional piece of data: the set of edges of Γ is equipped
with a total order. An example of an element in dgra4 is shown in Figure 1.

Next, we introduce a collection of graded vector spaces {dGra(𝑛)}𝑛≥1 . The

space dGra(𝑛) is spanned by elements of dgra𝑛, modulo the relation Γ
𝜎 = (−1)∣𝜎∣Γ

1In fact they are also defined for any ℤ-graded affine space.
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4

1 3 2

Figure 1. The edges are equipped with the order
(3, 1) < (3, 2) < (2, 3) < (2, 2).

where the graphs Γ𝜎 and Γ correspond to the same directed labeled graph but
differ only by permutation 𝜎 of edges. We also declare that the degree of a graph
Γ in dGra(𝑛) equals −𝑒(Γ), where 𝑒(Γ) is the number of edges in Γ . For example,
the graph Γ on figure 1 has 4 edges. Thus its degree is −4 .

Following [6], the collection {dGra(𝑛)}𝑛≥1 forms an operad. The symmetric
group 𝑆𝑛 acts on dGra(𝑛) in the obvious way by rearranging labels and the operadic
multiplications are defined in terms of natural operations of erasing vertices and
attaching edges to vertices.

The operad dGra can be upgraded to a 2-colored operad KGra whose spaces2

are formal linear combinations of graphs used by M. Kontsevich in [2].

We define the graded vector space dfGC by setting

dfGC =
∏
𝑛≥1

s2𝑛−2
(
dGra(𝑛)

)𝑆𝑛
. (1)

Next, we observe that the formula

Γ ∙ Γ̃ =
∑

𝜎∈Sh𝑘,𝑛−1

𝜎
(
Γ ∘1 Γ̃

)
(2)

Γ ∈
(
dGra(𝑛)

)𝑆𝑛
, Γ̃ ∈

(
dGra(𝑘)

)𝑆𝑘
defines a degree zero 𝕂-bilinear operation on

⊕
𝑛≥1

s2𝑛−2
(
dGra(𝑛)

)𝑆𝑛
which extends

in the obvious way to the graded vector space dfGC (1).
It is not hard to show that the operation (2) satisfies axioms of the pre-Lie

algebra and hence dfGC is naturally a Lie algebra with the bracket give by the
formula

[𝛾, 𝛾] = 𝛾 ∙ 𝛾 − (−1)∣𝛾∣∣𝛾∣ 𝛾 ∙ 𝛾 , (3)

where 𝛾 and 𝛾 are homogeneous vectors in dfGC .
A direct computation shows that the degree 1 vector

Γ∙−∙ =
1 2

+
2 1

(4)

satisfies the Maurer-Cartan equation [ Γ∙−∙,Γ∙−∙ ] = 0 .

2For more details, we refer the reader to [1, Section 3].
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Thus, dfGC forms a dg Lie algebra with the bracket (3) and the differential

∂ = [Γ∙−∙, ] . (5)

Definition 1. The cochain complex (dfGC, ∂) is called the full directed graph com-
plex.

Let us observe that every undirected labeled graph Γ with 𝑛 vertices and with
a chosen order on the set of its edges can be interpreted as the sum of all directed
labeled graphs Γ𝛼 in dgra(𝑛) from which the graph Γ is obtained by forgetting
directions on edges. For example,

Γ∙−∙ =
1 2

(6)

Thus, using undirected labeled graphs we may form a suboperad Gra inside
dGra and the sub- dg Lie algebra

fGC =
∏
𝑛≥1

s2𝑛−2
(
Gra(𝑛)

)𝑆𝑛 ⊂ dfGC (7)

Definition 2 (M. Kontsevich, [5]). Kontsevich’s graph complex GC is the subcom-
plex

GC ⊂ fGC (8)

formed by (possibly infinite) linear combinations of connected graphs Γ satisfying
these two properties: each vertex of Γ has valency ≥ 3, and the complement to any
vertex is connected.

It is easy to see that GC is a sub- dg Lie algebra of fGC . Furthermore,
following3 [6] we have

Theorem 1 (T. Willwacher, [6]). The cohomology of dfGC can be expressed in terms
of cohomology of GC . More precisely,

𝐻∙(dfGC) = s−2 𝑆
(
s2 ℋ) (9)

where

ℋ = 𝐻∙(GC) ⊕
⊕
𝑚≥0

s4𝑚−1𝕂 .

Using decomposition (9), it is not hard to see that

𝐻0(dfGC) ∼= 𝐻0(GC) (10)

and the Lie algebra 𝐻0(dfGC) is pro-nilpotent.

3See lecture notes [7] for more detailed exposition.
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3. Stable formality quasi-isomorphisms

Let 𝐴 = 𝕂[𝑥1, 𝑥2, . . . , 𝑥𝑑] be the algebra of functions on the affine space 𝕂𝑑 and
let 𝑉 ∙𝐴 be the algebra of polyvector fields on 𝕂𝑑

𝑉 ∙𝐴 = 𝑆𝐴
(
sDer(𝐴)

)
. (11)

Recall that 𝑉 ∙𝐴 = 𝕂[𝑥1, 𝑥2, . . . , 𝑥𝑑, 𝜃1, 𝜃2, . . . , 𝜃𝑑] is a free commutative algebra over
𝕂 in 𝑑 generators 𝑥1, 𝑥2, . . . , 𝑥𝑑 of degree zero and 𝑑 generators 𝜃1, 𝜃2, . . . , 𝜃𝑑 of
degree one.

It is know that 𝑉 ∙+1
𝐴 is a graded Lie algebra. The Lie bracket on 𝑉 ∙+1

𝐴 is
given by the formula:

[𝑣, 𝑤]𝑆 = (−1)∣𝑣∣
𝑑∑

𝑖=1

∂𝑣

∂𝜃𝑖

∂𝑤

∂𝑥𝑖
− (−1)∣𝑣∣∣𝑤∣+∣𝑤∣

𝑑∑
𝑖=1

∂𝑤

∂𝜃𝑖

∂𝑣

∂𝑥𝑖
. (12)

It is called the Schouten bracket.
In plain English an 𝐿∞-morphism 𝑈 from 𝑉 ∙+1

𝐴 to 𝐶∙+1(𝐴) is an infinite
collection of maps

𝑈𝑛 :
(
𝑉 ∙+1
𝐴

)⊗𝑛 → 𝐶∙+1(𝐴) , 𝑛 ≥ 1 (13)

compatible with the action of symmetric groups and satisfying an intricate se-
quence of quadratic relations. The first relation says that 𝑈1 is a map of cochain
complexes, the second relation says that 𝑈1 is compatible with the Lie brackets
up to homotopy with 𝑈2 serving as a chain homotopy and so on.

Kontsevich’s construction of such a sequence (13) is “natural” in the following
sense: given polyvector fields 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ 𝑉 ∙+1

𝐴 , the value

𝑈𝑛

(
𝑣1, 𝑣2, . . . , 𝑣𝑛

)
(𝑎1, 𝑎2, . . . , 𝑎𝑘) (14)

of the cochain 𝑈𝑛(𝑣1, 𝑣2, . . . , 𝑣𝑛) on polynomials 𝑎1, 𝑎2, . . . , 𝑎𝑘 ∈ 𝐴 is obtained via
contracting all indices of derivatives of various orders of 𝑣1, . . . , 𝑣𝑛, 𝑎1, . . . , 𝑎𝑘 in
such a way that the resulting map

(𝑉 ∙𝐴)
⊗𝑛 ⊗𝐴⊗ 𝑘 → 𝐴

is 𝔤𝔩𝑑(𝕂)-equivariant. Thus each term in 𝑈𝑛 can be encoded by a directed graph
with two types of vertices: vertices of one type are reserved for polyvector fields
and vertices of another type are reserved for polynomials.

Motivated by this observation, the author introduced in [1] a notion of stable
formality quasi-isomorphism (SFQ) which formalizes 𝐿∞ quasi-isomorphisms𝑈 for
Hochschild cochains satisfying this property: each term in 𝑈𝑛 is encoded by a graph
with two types of vertices and all the desired relations on 𝑈𝑛’s hold universally,
i.e., on the level of linear combinations of graphs.

The precise definition of SFQ is given in terms of 2-colored dg operads OC
and KGra . The later operad KGra is a 2-colored extension of the operad dGra which
is “assembled” from graphs used by M. Kontsevich in [2]. This operad comes with
a natural action on the pair (𝑉 ∙+1

𝐴 , 𝐴 = 𝕂[𝑥1, . . . , 𝑥𝑑]) . The operad OC governs
open-closed homotopy algebras introduced in [8] by H. Kajiura and J. Stasheff. We
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recall that an open-closed homotopy algebra is a pair (𝒱 ,𝒜) of cochain complexes
equipped with the following data:

∙ An 𝐿∞-structure on 𝒱 ;
∙ an 𝐴∞-structure on 𝒜; and
∙ an 𝐿∞-morphism from 𝒱 to the Hochschild cochain complex 𝐶∙(𝒜) of the

𝐴∞-algebra 𝒜 .
Since the operad KGra acts on the pair (𝑉 ∙+1

𝐴 , 𝐴 = 𝕂[𝑥1, . . . , 𝑥𝑑]), any mor-
phism of dg operads

𝐹 : OC → KGra (15)

gives us an 𝐿∞-structure on 𝑉 ∙+1
𝐴 , an 𝐴∞-structure on 𝐴 and an 𝐿∞ morphism

from 𝑉 ∙+1
𝐴 to 𝐶∙(𝐴) .
An SFQ is defined as a morphism (15) of dg operads satisfying three bound-

ary conditions. The first condition guarantees that the 𝐿∞-algebra structure on
𝑉 ∙+1
𝐴 induced by 𝐹 coincides with the Lie algebra structure given by the Schouten
bracket (12). The second condition implies that the 𝐴∞-algebra structure on 𝐴
coincides with the usual associative (and commutative) algebra structure on poly-
nomials. Finally, the third condition ensures that the 𝐿∞-morphism

𝑈 : 𝑉 ∙+1
𝐴 ⇝ 𝐶∙+1(𝐴)

induced by 𝐹 starts with the Hochschild-Kostant-Rosenberg embedding. In par-
ticular, the last condition implies that 𝑈 is an 𝐿∞ quasi-isomorphism.

Kontsevich’s construction [2] provides us with an example of an SFQ over
any extension of the field of reals.4

In paper [1] the author also defined the notion of homotopy equivalence for
SFQ’s. This notion is motivated by the property that 𝐿∞ quasi-isomorphisms

𝑈,𝑈 : 𝑉 ∙+1
𝐴 ⇝ 𝐶∙+1(𝐴)

corresponding to homotopy equivalent SFQ’s 𝐹 and 𝐹 are connected by a homo-
topy which “admits a graphical expansion” in the above sense.

Following [5] we have a chain map Θ from the full (directed) graph complex
dfGC to the deformation complex of the dg Lie algebra 𝑉 ∙+1

𝐴 of polyvector fields. In

particular, every degree zero cocycle in dfGC produces an 𝐿∞-derivation of 𝑉 ∙+1
𝐴 .

Exponentiating these 𝐿∞-derivations we get an action of the (pro-unipotent) group

exp
(
dfGC0 ∩ ker ∂)

on the set of 𝐿∞ quasi-isomorphisms

𝑈 : 𝑉 ∙+1
𝐴 ⇝ 𝐶∙+1(𝐴) (16)

for 𝐴 = 𝕂[𝑥1, . . . , 𝑥𝑑] . Namely, given a cocycle 𝛾 ∈ dfGC0, the action of exp(𝛾) is
defined by the formula

𝑈 �→ 𝑈 ∘ exp (−Θ(𝛾)) , (17)

where Θ is the chain map from dfGC to the deformation complex of 𝑉 ∙+1
𝐴 .

4The existence of an SFQ over rationals is proved in papers [9] and [10].
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In [1], it was proved that the action (17) descends to an action of the (pro-
unipotent) group

exp
(
𝐻0(dfGC)

)
(18)

on the set of homotopy classes of SFQ’s. Moreover,

Theorem 2 (Theorem 6.2, [1]). The group (18) acts simply transitively on the set
of homotopy classes of SFQ’s.

In the view of philosophy outlined in the Introduction, this result can be
interpreted as a complete description of formal quantization procedures.

Remark 3. According to a recent result [6, Thm. 1] of T. Willwacher, exp
(
𝐻0(GC)

)
is isomorphic to the Grothendieck-Teichmueller group GRT introduced by V. Drin-
feld in [11]. Thus, combining this result with Theorem 2, we conclude that formal
quantization procedures are “governed” by the group GRT.

Remark 4. In recent preprint [12] ThomasWillwacher computes stable cohomology
of the graded Lie algebra of polyvector fields with coefficients in the adjoint rep-
resentation. His computations partially justify the name “stable formality quasi-
isomorphism” chosen by the author in [1]. In particular, Thomas Willwacher men-
tions in [12] a possibility to deduce the part about transitivity from Theorem 2 in
a more conceptual way.

4. Globalization of stable formality quasi-isomorphisms

Given an 𝐿∞ quasi-isomorphism (16) for 𝐴 = 𝕂[𝑥1, . . . , 𝑥𝑑] we can ask the ques-
tion of whether we can use it to construct a sequence of 𝐿∞ quasi-isomorphisms
which connects the sheaf 𝑉 ∙+1

𝑋 of polyvector fields to the sheaf 𝒟∙+1
𝑋 of polydiffer-

ential operators on a smooth algebraic variety 𝑋 over 𝕂 . There are several similar
constructions [13], [14], [15] which allow us to produce such a sequence under the
assumption that the 𝐿∞ quasi-isomorphism (16) satisfies the following properties:

A) One can replace 𝐴 = 𝕂[𝑥1, . . . , 𝑥𝑑] in (16) by its completion 𝐴formal =
𝕂[[𝑥1, . . . , 𝑥𝑑]];

B) the structure maps 𝑈𝑛 of 𝑈 are 𝔤𝔩𝑑(𝕂)-equivariant;
C) if 𝑛 > 1 then

𝑈𝑛(𝑣1, 𝑣2, . . . , 𝑣𝑛) = 0 (19)

for every set of vector fields 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ Der(𝐴formal);
D) if 𝑛 ≥ 2 and 𝑣 ∈ Der(𝐴formal) has the form

𝑣 =

𝑑∑
𝑖,𝑗=1

𝑣𝑖𝑗𝑥
𝑗 ∂

∂𝑥𝑖
, 𝑣𝑖𝑗 ∈ 𝕂

then for every set 𝑤2, . . . , 𝑤𝑛 ∈ 𝑉 ∙+1
𝐴𝑓𝑜𝑟𝑚𝑎𝑙

𝑈𝑛(𝑣, 𝑤2, . . . , 𝑤𝑛) = 0 . (20)
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In paper [16] it was shown that for every degree zero cocycle 𝛾 ∈ GC the
structure maps Θ(𝛾)𝑛 of the 𝐿∞-derivation Θ(𝛾) satisfy these properties:

a) Θ(𝛾) can be viewed as an 𝐿∞-derivation of 𝑉 ∙+1
𝐴formal

with

𝐴formal = 𝕂[[𝑥1, . . . , 𝑥𝑑]];

b) the structure maps Θ(𝛾)𝑛 of Θ(𝛾) are 𝔤𝔩𝑑(𝕂)-equivariant;
c) if 𝑛 > 1 then

Θ(𝛾)𝑛(𝑣1, 𝑣2, . . . , 𝑣𝑛) = 0 (21)

for every set of vector fields 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ Der(𝐴formal);
d) if 𝑛 ≥ 2 and 𝑣 ∈ Der(𝐴formal) has the form

𝑣 =

𝑑∑
𝑖,𝑗=1

𝑣𝑖𝑗𝑥
𝑗 ∂

∂𝑥𝑖
, 𝑣𝑖𝑗 ∈ 𝕂

then for every set 𝑤2, . . . , 𝑤𝑛 ∈ 𝑉 ∙+1
𝐴formal

Θ(𝛾)𝑛(𝑣, 𝑤2, . . . , 𝑤𝑛) = 0 . (22)

Properties a) and b) are obvious, while properties c) and d) follow from the fact
that each graph in the linear combination 𝛾 ∈ GC has only vertices of valencies
≥ 3 .

Using these properties of Θ(𝛾) together with Theorems 1 and 2 we deduce
the main result of this note:

Theorem 5. Every homotopy class of SFQ’s contains a representative which can be
used to construct a sequence of 𝐿∞ quasi-isomorphisms connecting the sheaf 𝑉 ∙+1

𝑋

of polyvector fields to the sheaf 𝒟∙+1
𝑋 of polydifferential operators on a smooth

algebraic variety 𝑋 over 𝕂 .

Proof. Let 𝐹 ′ be an SFQ. Our goal is to prove that the homotopy class of 𝐹 ′ con-
tains a representative 𝐹 whose corresponding 𝐿∞ quasi-isomorphism (16) satisfies
Properties A)–D) listed above.

Let us denote by 𝐹𝐾 an SFQ whose corresponding 𝐿∞ quasi-isomorphism

𝑈𝐾 : 𝑉
∙+1
𝐴 ⇝ 𝐶∙+1(𝐴) (23)

satisfies Properties A)–D). (For example, we can choose the SFQ coming from
Kontsevich’s construction [2].)

Theorem 2 implies that there exists a degree zero cocycle 𝛾′ ∈ dfGC such
that 𝐹 ′ is homotopy equivalent to the SFQ

exp(𝛾′)
(
𝐹𝐾

)
. (24)

On the other hand, we have isomorphism (10). Therefore, 𝛾′ is cohomologous
to a cocycle 𝛾 ∈ GC and hence 𝐹 ′ is homotopy equivalent to

exp(𝛾)
(
𝐹𝐾

)
. (25)
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Since the 𝐿∞-derivation Θ(𝛾) satisfies Properties a)–d) and the 𝐿∞ quasi-
isomorphism (23) satisfies Properties A)–D), we conclude that the 𝐿∞ quasi-iso-
morphism corresponding to the SFQ (25) also satisfies Properties A)–D).

Theorem 5 is proved. □
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I was glad to participate in a program dedicated to the 80th birthday of my
deceased friend Felix Alexandrovich Berezin whom his friends called just Alik. I
recalled many moments from the 25 years which I knew him. I remember very well
how I (as an 18 years old undergraduate student) saw him for the first time in
January of 1956 at the 2nd conference on functional analysis in Moscow. The first
one was before the war and not too many mathematical events were happening
at that time in Moscow. Functional analysis was then one of the most fashionable
areas of mathematics and the organization of the conference illustrated the special
role which Gelfand played in Moscow’s mathematical life. I believe that almost all
mathematicians in Moscow attended the plenary sessions. The conference opened
with a lecture of Landau on quantum physics and was concluded by Gelfand’s talk
on problems of functional analysis. Between them there were a few (as I understand
now!) carefully selected talks of outstanding mathematicians (I recall M. Krein,
Kantorovich, Sobolev, Shilov, Naimark, Vishik and a few foreign participants).
Among those speakers one looked different. He was a young man, looking like a
boy (with pink cheeks and without a tie!). It was Alik Berezin, who was then
25 years old and have not yet received his PhD degree. He delivered the principal
talk on the theory of representations and his coauthors were Gelfand, Naimark
and Graev. Of course, the choice of Alik as the presenter showed that Gelfand
considered him as a leader in representations at this moment.

This was the time when Alik started to work at Moscow University after sev-
eral years of work at a high school. I started to attend Gelfand’s seminar and re-
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member as Gelfand discussed with Alik his course, which he was going to give at the
university. He wanted to give a course on the theory of representations for 2 years,
planning to cover all aspects of the theory starting from finite and compact groups
up to infinite-dimensional representations. Gelfand explained that such a plan was
not realistic. Of course, he was right, but probably he did not choose a diplomatic
way of explaining it. It was clear that Alik was not happy. At any rate he announced
the course for one year and I was one of the few of its permanent participants. We
started to discuss some problems. He has just finished his most important work
on representations: the radial parts of Laplace operators on symmetric spaces. It
was his PhD thesis. The course lived only one semester. Alik started to move in
the direction of physics and I attended his first seminar on quantum mechanics.
Later we also met often in Dynkin’s seminar on Lie groups. The first “edition”
of this seminar was very important in the early steps of Alik’s mathematical life.
Around 1957 it was already a second version of the seminar for mathematicians of
my generation, but Alik, as well as Karpelevich and Piatetskii-Shapiro, at some
point returned to the seminar and played an active role. I believe that it was one
of the best seminars for young people starting their mathematical life.

Alik liked mathematical conversations. He was full of mathematical ideas and
was happy to share them. I want mention that he was unhappy if somebody later
did not give him credit for suggested ideas. I think we most actively discussed
special functions of several variables and explicit calculations of spherical func-
tions. He thought a lot about how one must look on this theory and made several
remarkable contributions (his and Karpelevich’s explicit formulas on Grassman-
nians are my favorite). It started to be clear that a reduction to one-dimensional
hypergeometric functions is rarely possible. We both did computations for the
zonal spherical function for 𝑆𝐿(3;ℝ). We received different intermediate expres-
sions through elliptic integrals. Alik lived with his mother and I remember our
long talks in his room. He had an interesting view on the basic problem: to find
an integral representations of order equal to the rank of zonal functions through
elementary functions.

Alik had a strong interest in my work with Karpelevich on the asymptotic of
zonal spherical functions. I recall some of his remarks which to me seemed inter-
esting and deep. First, he compared Laplace operators on symmetric spaces with
Schrödinger operators for many particles and the possibility to compute explicitly
the asymptotics of the zonal spherical functions with “the weakening of interac-
tions on infinity”. He mentioned that it was possible to generalize the potentials
at the radial parts of the Laplace operators in such a way that only for some spe-
cial values of the parameters (“multiplicities”) they give operators on symmetric
spaces but the results about the asymptotics (𝑐-functions, at particular) must be
true in the general case. I do not think that Alik worked systematically on this
project or broadly promoted it. So when many years later Opdam and Heckman
realized such a possibility they probably did not know about Alik’s ideas.

When Alik moved to Physics our mathematical contacts decreased, but we
talked from time to time. We had permanent social contacts. We had several joint
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friends, often went together for weekend trips outside Moscow and also for a few
longer trips. Alik very much liked conversations, not necessarily mathematical
ones. Out of several occasions I remember especially clearly our rafting trip on a
small Siberia river Mana after a conference, our long talks when we shared a hotel
room during a conference in Minsk, not long time before his death. He thought a
lot about life and needed to talk about it with his friends.

I remember very well the telephone call on July 1980 from my friend Galya
Korpelervich who just learned from Lyalya, Alik’s wife, about Alik’s death in
Kolyma, at a geological expedition. Lyalya described in her memoirs her days at
Magadan when she tried to organize the transportation of Alik’s body to Moscow. I
remember this story from the other side. At this moment I had to stay permanently
at home with my mother who was recovering after a stroke. I recall telephone
conversations with Alik’s friend Misha at Magadan (8 hours difference in time!).
The arrival was postponed many times. Those were the last days before the Moscow
Olympic Games. The mood of the communist bosses was depraved by the boycott
of the USA as a reaction to the Afghanistan aggression. The situation was nervous;
the police stopped private cars and without any reason removed license plates.
When all problems at Magadan were solved and we expected the plane with Alik’s
casket it turned out that on the same day Moscow expected the olympic torch
and it was practically impossible to obtain the permission to transport a casket
through Moscow. It seemed to me that it was the last stupid, but terrible jolt of the
Soviet power whose hostile pressure Alik painfully felt throughout his whole life.

I want to recall my last mathematical contact with Alik Berezin in 1973–74.
I remember that he asked me some questions about several complex variables.
He invited me to give talks at his seminar about Penrose twistors. I do not re-
member the exact sequence of events. Around this time his wife Lyalya moved to
an apartment very close to the place where I lived. I remember how happy Alik
was at the birth of his daughter Natasha (I believe) at 1976. My younger son
was 2 years younger than she. We walked a few times together with the children.
Several times we walked together from the university to our homes having long
conversations about mathematics and life. Once with a big excitement he talked
about his new results on quantizations on classical symmetric complex domains.
He was very impressed that such quantizations exist for Planck’s constant from a
half-line plus a finite number of isolated points. I could not estimate the beauty
of this fact from the point of view of the quantization, but it turns out that it can
be completely stated in the language of the theory of representations. There are
holomorphic discrete series of representations of groups of automorphisms of com-
plex symmetric domains. The fact which was discovered by Alik is that for each
such group there is a finite number of unitary representations realized at holomor-
phic functions which do not participate in the Plancherel formula – the extensions
of the holomorphic discrete series. For this reason these representations were not
discovered earlier. Several years later these extensions started to be very popular
after the works of Rossi-Vergne and Wallach, but Alik never received appropriate
credit for his discovery from the representations community.
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Let us start from the case of 𝐺 = 𝑆𝐿(2;ℝ). We have the upper half-plane
ℂ+ = {𝑧 = 𝑥+𝑖𝑦, 𝑦 > 0} where the group𝐺 acts by fraction-linear transformations
𝑧 �→ 𝑔𝑧 = (𝑎𝑧 + 𝑑)/(𝑐𝑧 + 𝑑). We consider Hilbert spaces of holomorphic functions
on ℂ+ with the norms

∣∣𝑓 ∣∣2𝜆 =
∫
ℂ+

∣𝑓(𝑧)∣2𝑦𝜆−2𝑑𝑥𝑑𝑦.

For 𝜆 > 1 this norm is positive and is invariant relative to the representation

𝑓 �→ 𝑓(𝑔𝑧)(𝑐𝑧 + 𝑑)−𝜆.

For natural numbers 𝜆 we have just holomorphic discrete series of 𝐺. If we consider
representations of the universal covering group of 𝐺 we can take arbitrary 𝜆 > 1.
However, there is one more unitary representation of 𝐺 which in a sense corre-
sponds to 𝜆 = 1. It is realized on the Hardy space of holomorphic functions with
𝐿2-norm on the boundary {𝑦 = 0}; they have 𝐿2-boundary values. This represen-
tation does not participate in the decomposition of the regular representation of 𝐺
and it is the simplest example of an extension of the holomorphic discrete series.

Alik considered the generalization of this situation to the case of classical
symmetric complex domains. E. Cartan proved that there are four classical series
of domains at ℂ𝑛 (their groups are classical) and 2 exceptional domains. Alik in-
vestigated invariant Hilbert spaces of holomorphic functions on classical domains
depending on a parameter 𝜆 (he associated it with Planck’s constant) and con-
jectured the existence of such spaces for a half-line and some isolated values of
𝜆 explicitly described. He proved this conjecture for 1st and 4th class of classical
domains and in the case of the other two classes he could give only a weaker esti-
mate. So his question to me was if I had ideas how to prove his conjecture in these
cases as well and, perhaps also for the exceptional two symmetric domains. Alik
gave me a manuscript of an almost ready paper [1].

Alik considered, following E. Cartan, the bounded realizations of classical
domains of “disc” type in which the isotropy subgroup acts linearly and the focus
is on the harmonic analysis of this subgroup. His principal source of tools was
the remarkable book of L.K. Hua on classical domains where there were explicitly
computed the Bergman and Cauchy-Szegö kernels for classical domains with exact
constants. The book contained beautiful explicit formulas in the style of classical
analysis and it impressed many mathematicians.

At this point of my mathematical life I knew that in some cases another
way of explicit computations is more effective: through the Siegel domain real-
izations of Piatetskii-Shapiro-multidimensional versions of upper half-planes. Here
the principal role is played not by the compact subgroup, but by the maximal
solvable one. Using that technology I could compute Bergman and Cauchy-Szegö
kernels for all symmetric domains (not only the classical ones) and moreover for
all complex homogeneous symmetric domains [2]. Pretty soon I understood that
Berezin’s conjecture was one such problem and I had the tools ready to prove it,
again not only for all symmetric domains, but also generalizing it to all complex
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homogeneous domains. On Alik’s insistence I published a note [3] about this and
he made a reference in his publication [1]. I focused on the maximally general case
and worry that, as a result, I missed an opportunity to explain the nature of Alik’s
remarkable observation on relatively simple examples. I will try to fill this gap now
with the example of classical domains of 3rd Cartan type.

Let us start with a remark about 𝑆𝐿(2;ℝ). Let ∣∣𝑓 ∣∣2(𝑦) be the usual 𝐿2-norm
of a holomorphic function 𝑓(𝑧) = 𝑓(𝑥+ 𝑖𝑦), 𝑧 ∈ ℂ+ for a fixed 𝑦 > 0. Then

∣∣𝑓 ∣∣2𝜆 =
∫ ∞

0

∣∣𝑓 ∣∣2(𝑦)𝑦𝜆−2𝑑𝑦.

So we apply for 𝜆 > 1 the regular positive distribution 𝑦𝜆−2 to ∣∣𝑓 ∣∣2(𝑦). If we divide
this distribution by Γ(𝜆 − 1) we have a distribution which admits a holomorphic
extension on all 𝜆 ∈ ℂ. For 𝜆 = 1 we have 𝛿(𝑦) which is positive yet and gives
Hardy norm on holomorphic functions. For other 𝜆 the distribution is not positive
and we do not have norms.

It turns out that there is a similar situation for all symmetric domains. The
classical domains of 3rd type can be realized as Siegel half-planes 𝑆𝑙: manifolds of
complex symmetric matrices 𝑍 = 𝑋 + 𝑖𝑌 of order 𝑙 with positive imaginary parts
𝑌 , if the real symplectic group 𝑆𝑝(𝑙;ℝ) is realized as matrices of order 2𝑙

𝑔 =

(
𝐴 𝐵
𝐶 𝐷

)
with the blocks of order 𝑙 such that

𝑔⊤𝐽𝑔 = 𝐽, 𝐽 =

(
0 𝐼
−𝐼 0

)
,

where 𝐼 is the unit matrix of order 𝑙.
The Siegel half-plane 𝑆𝑙 is invariant relative to the matrix linear-fractional

action of these matrices

𝑔𝑍 = (𝐴𝑍 +𝐵)(𝐶𝑍 +𝐷)−1.

There is also a holomorphically equivalent bounded realization – the Siegel disk
(also in the space of symmetric matrices): 𝐼 −𝑍𝑍 >> 0. Berezin worked with this
realization.

We define for holomorphic functions the norms ∣∣𝑓 ∣∣(𝑌 ) for fixed 𝑌 and

∣∣𝑓 ∣∣2𝜆 =
∫
𝑆𝑙

∣𝑓(𝑋 + 𝑖𝑌 )∣2(det 𝑌 )𝜆−𝑙−1𝑑𝑋𝑑𝑌 =

∫
𝑌 >>0

∣∣𝑓 ∣∣2(det 𝑌 )𝜆−𝑙−1𝑑𝑌.

For natural numbers 𝜆, that are big enough (𝜆 > (𝑙+1)/2), these norms are
invariant relative to the representation

𝑓 �→ 𝑓(𝑔𝑍)(det(𝐶𝑍 +𝐷))−𝜆.

For arbitrary positive 𝜆 we can consider representations of the universal covering
of the symplectic group. These are unitary holomorphic discrete series of repre-
sentations. Let 𝑉𝑙 be the convex homogeneous cone of positive symmetric ma-
trices. The group 𝐺𝐿(𝑙;ℝ) acts transitively by the transforms 𝑌 �→ 𝑢⊤𝑌 𝑢 and
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(det𝑌 )𝜆−(𝑙+1)/2𝑑𝑌 is the invariant measure relative to this action. It explains the
structure of the weight in the norm. It is possible to show that the product of this
function on the characteristic function 𝜒(𝑌 ) of 𝑉𝑙 is a regular positive distribution
and as in the one-dimensional case it “likes” to be divided by an appropriate gen-
eralization of the gamma-function. Siegel introduced such a function for the cone
of symmetric matrices 𝑉 ;

Γ𝑉 (𝜇) =

∫
𝑉

exp(−𝑡𝑟(𝑌 ))(det 𝑌 )𝜇−(𝑙+1)/2𝑑𝑌.

He found that it can be expressed through the one-dimensional Euler gamma-
function:

Γ𝑉 (𝜇) = 𝜋𝑙(𝑙−1)/2
∏

1≤𝑖≤𝑙
Γ(𝜇− (𝑙 − 𝑖)/2).

Siegel computed this integral using orthogonal matrices. My observation was
that everything looks much simpler if one uses triangular matrices: the substi-
tution 𝑌 = 𝑡𝑡⊤, where 𝑡 is an upper triangular matrix with positive diagonal
elements, transforms this multidimensional integral in a product of several inte-
grals

∫∞
−∞ exp(−𝑥2)𝑑𝑥 and several one-dimensional Euler integrals Γ- functions. It

gave a possibility essentially to generalize Siegel’s construction: for all symmetric
and convex homogeneous cones and make Γ𝑉 dependent on 𝑙 parameters. Then
the distributions

𝜅𝑉 (𝜇;𝑌 ) = 𝜒𝑉 (𝑌 )(det 𝑌 )
𝜆−(𝑙+1)/2/Γ𝑉 (𝜇),

where 𝜒𝑉 is the characteristic function of the cone 𝑉 , extends holomorphically on
all 𝜇. Again, it is easy to see after the triangular substitution and averaging over
non diagonal elements of triangular matrices. Then this distribution transforms to
the product

𝑐
∏

1≤𝑖≤𝑙
(𝑠𝑖)

𝜇−(𝑙−𝑖)/2−1
+ /Γ(𝜇− (𝑙 − 𝑖)/2),

where 𝑠𝑖 are the squares of diagonal elements.

This construction has many interesting applications. This family of distribu-
tions depending on the parameter 𝜇 is a group relative to the convolution. The
convolutions with them are analogues of the Riemann-Liouville operators. For
𝜇 = 0 our distribution is the 𝛿-function. Among these convolution operators there
are some remarkable differential operators.

For our purpose we need to understand when these distributions are positive.
We apply results for one-dimensional distributions. We start from the represen-
tations through triangular matrices 𝑌 ∈ 𝑉 where it is unique. Then we need to
investigate it on the boundary 𝑉 where it exists but is already not unique. We
can choose canonical triangular matrices which have zero columns if the diagonal
elements are zero.

Of course, 𝜅𝑉 are positive for 𝜇 > (𝑙 − 1)/2. Then the support of the dis-
tribution is the closure 𝑐𝑙(𝑉𝑙) of the cone 𝑉𝑙. For 𝜆 = 𝑙 − 1 our distribution on
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the triangular matrices has support in the matrices with 𝑠1 = 𝑡11 = 0 and at 𝑌 -
coordinates the support will coincide with the boundary of the cone ∂𝑉𝑙. Using the
𝐺𝑙(𝑙;ℝ)-invariance it easy to see that this distribution coincides with the 𝛿(∂𝑉𝑙)-
𝛿-function supported on the boundary of the cone 𝑉𝑙 (det𝑌 = 0). Decreasing 𝜇
and investigating non unique decompositions of points 𝑌 of the boundary of the
cone in the product of triangular matrices we can see that the distribution will be
positive only for the integer points

𝜇 =
𝑙 − 1
2

,
𝑙 − 2
2

, . . . ,
1

2
, 0

and our distribution will coincide with the 𝛿-function 𝛿(𝑉 𝑗) of the submanifolds
of matrices of rank not exceeding 𝑗, 0 ≤ 𝑗 ≤ 𝑙− 1; 𝑉 0 = {0}.

It means that the norms

∣∣𝑓 ∣∣𝜆/Γ𝑉 (𝜆− (𝑙 + 1)/2),
holomorphically extended for the parameter 𝜆, are positive norms for 𝜆 > (𝑙+1)/2
and for

𝜆 = 𝑙 − (𝑖 − 1)/2, 1 ≤ 𝑖 ≤ 𝑙.

We obtained 𝑙 norms on the spaces of holomorphic functions which were discovered
by Berezin and which extend representations of holomorphic discrete series corre-
sponding to 𝜆 > (𝑙+1)/2. We can interpret these norms as intermediate Bergman-
Hardy norms with the integration on invariant submanifolds of the boundary of
Siegel half-space: rank(Im𝑍) ≤ 𝑖. For 𝑖 = 0 we have the Hardy space with the
integration on the edge ℝ𝑙(𝑙+1) of real symmetric matrices of the tube 𝑆𝑙.

For all complex symmetric domains and, more generally, for all complex ho-
mogeneous bounded domains at ℂ𝑛 all components of these constructions are
present, starting with some generalized triangular matrices. In such a way we have
shown that the generalized Berezin conjecture is true [3].
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In this paper we construct a quantization in the spirit of Berezin on para-Hermitian
symmetric spaces 𝐺/𝐻 , we lean on [6], [8], [9].

1. Berezin quantization

Recall the concept of quantization proposed by Berezin, see [1], [2]. We restrict
ourselves to a rather simplified version.

Let𝑀 be a symplectic manifold. Then 𝐶∞(𝑀) is a Lie algebra with respect to
the Poisson bracket {𝐴,𝐵}, 𝐴,𝐵 ∈ 𝐶∞(𝑀). Quantization in the sense of Berezin
consists of the following two steps.

(I) To construct a family 𝒜ℎ of associative algebras contained in 𝐶∞(𝑀) and
depending on a parameter ℎ > 0 (called the Planck constant), with a mul-
tiplication denoted by ∗ (depending on ℎ also). These algebras must satisfy
the conditions (a) through (d):
(a) limℎ→0 𝐴1 ∗𝐴2 = 𝐴1𝐴2;
(b) limℎ→0

𝑖
ℎ (𝐴1 ∗𝐴2 −𝐴2 ∗𝐴1) = {𝐴1, 𝐴2};

where the multiplication on the right-hand side of (a) is the pointwise mul-
tiplication, conditions (a) and (b) together are called the correspondence
principle (CP);

Supported by grants of RFBR: 09-01-00325-a, Sci. Progr. RNP: 1.1.2/9191, Fed. Progr.:
14.740.11.0349 and Templan 1.5.07.
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(c) the function 𝐴0 ≡ 1 is the unit element of each algebra 𝒜ℎ;
(d) the complex conjugation 𝐴 �→ 𝐴 is an anti-involution of any 𝒜ℎ;

(II) To construct representations 𝐴 �→ 𝐴 of the algebras 𝒜ℎ by operators in a
Hilbert space.

Berezin mainly considered the case when 𝑀 is a Hermitian symmetric space
𝐺/𝐾. Hence 𝑀 has a complex structure. Let us realize it as a bounded domain in
ℂ𝑚. The functions in question are functions 𝐴(𝑧, 𝑧), 𝑧 ∈ 𝑀 , analytic on 𝑧 and 𝑧
separately. In this case complex conjugation reduces to the permutation of 𝑧 and
𝑧: 𝐴(𝑧, 𝑧) = 𝐴(𝑧, 𝑧).

Let 𝐵(𝑧, 𝑧) be the Bergman kernel of the domain 𝑀 . An initial object in the
Berezin construction is the so-called super complete system (the system of coherent
states):

Φ𝑤(𝑧) = Φ(𝑧, 𝑤) = Φ𝜆(𝑧, 𝑤) = 𝐵(𝑧, 𝑤)−𝜆/ϰ ,

where 𝜆 < 𝜆0 (𝜆0 is some number), ϰ is the genus of the corresponding Jordan
algebra. Let ℱ𝜆 be the Fock space, it is a Hilbert space of analytic functions on𝑀
square integrable with respect to the measure 𝑐(𝜆) ⋅ 𝐵(𝑧, 𝑧)𝜆/ϰ𝑑𝜈(𝑧), where 𝑐(𝜆)
is a normalizing factor (depending on 𝜆 analytically), 𝑑𝜈(𝑧) an invariant measure
on 𝑀 . Let (𝑓1, 𝑓2) be the inner product in ℱ𝜆. As a function of 𝑧, the function
Φ𝑤(𝑧) belongs to ℱ𝜆 and has the reproducing property:

(𝑓,Φ𝑤) = 𝑓(𝑤).

Let 𝐴 be a bounded operator on ℱ . Associate to it the function of two
variables 𝑧, 𝑤 ∈ 𝑀 :

𝐴(𝑧, 𝑤) =
1

Φ(𝑧, 𝑤)

(
𝐴Φ𝑤

)
(𝑧).

Its restriction to the diagonal, i.e., the function 𝐴(𝑧, 𝑧) is a function on 𝑀 , it

is called the covariant symbol of the operator 𝐴. The former function 𝐴(𝑧, 𝑤) is
recovered from 𝐴(𝑧, 𝑧) using analyticity.

The operator 𝐴 is completely determined by its covariant symbol:

(𝐴𝑓)(𝑧) = 𝑐(𝜆)

∫
𝑀

𝐴(𝑧, 𝑤)
Φ(𝑧, 𝑤)

Φ(𝑤,𝑤)
𝑓(𝑤) 𝑑𝜈(𝑤).

The multiplication of operators yields a multiplication of symbols:

(𝐴1 ∗𝐴2)(𝑧, 𝑧) =

∫
𝑀

𝐴1(𝑧, 𝑤)𝐴2(𝑤, 𝑧)ℬ𝜆(𝑧, 𝑧;𝑤,𝑤) 𝑑𝜈(𝑤), (1)

where

ℬ𝜆(𝑧, 𝑧;𝑤,𝑤) = 𝑐(𝜆)
Φ(𝑧, 𝑤)Φ(𝑤, 𝑧)

Φ(𝑧, 𝑧)Φ(𝑤,𝑤)
.

This kernel is called the Berezin kernel, the operator ℬ𝜆 with this kernel is called
the Berezin transform, it acts on functions on𝑀 . Berezin ([2], see also [3]) obtained
a remarkable formula expressing the Berezin transform ℬ𝜆 in terms of the Laplace
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operators Δ1, . . . ,Δ𝑟 on 𝐺/𝐾, (generators in the algebra of invariant differential
operators on 𝑀). This formula implies

ℬ𝜆 ∼ 1− 1

𝜆
Δ, 𝜆 → −∞, (2)

where Δ is the Laplace–Beltrami operator on𝑀 . Thus, quantization on𝑀 = 𝐺/𝐾
is completed: as the Planck constant, one has to take ℎ = −1/𝜆, algebras 𝒜ℎ

consist of covariant symbols of bounded operators on the Fock space ℱ𝜆 with the
multiplication (1), the asymptotic (2) implies that CP holds.

Besides it, Berezin introduces contravariant symbols: a function 𝐹 (𝑧, 𝑧) on

𝑀 is called the contravariant symbol of a Toeplitz type operator 𝐴 defined by(
𝐴𝑓
)
(𝑧) = 𝑐(𝜆)

∫
𝑀

𝐹 (𝑤,𝑤)
Φ(𝑧, 𝑤)

Φ(𝑤,𝑤)
𝑓(𝑤) 𝑑𝜈(𝑤).

It turns out that the passage from the contravariant symbol to the covariant symbol
of the same operator is given just by the Berezin transform.

2. Para-Hermitian symmetric spaces

Let 𝐺/𝐻 be a semisimple symmetric space. Here 𝐺 is a connected semisimple
Lie group with an involutive automorphism 𝜎 ∕= 1, and 𝐻 is an open subgroup
of 𝐺𝜎, the subgroup of fixed points of 𝜎. We consider that groups act on their
homogeneous spaces from the right, so that 𝐺/𝐻 consists of right cosets 𝐻𝑔.
There exists a Cartan involution 𝜏 of 𝐺 commuting with 𝜎. Set 𝐾 = 𝐺𝜏 .

Let 𝔤 be the Lie algebra of 𝐺 and 𝐵𝔤 its Killing form. Automorphisms of
𝔤 generated by automorphisms of 𝐺 are denoted by the same letters. There is a
decomposition of 𝔤 into direct sums of +1, −1-eigenspaces of 𝜎 and 𝜏 : 𝔤 = 𝔥 + 𝔮
and 𝔤 = 𝔨 + 𝔭. Subspaces 𝔥 are 𝔨 the Lie algebras of 𝐻 and 𝐾 respectively. The
subspace 𝔮 is invariant with respect to 𝐻 and 𝔥 in the adjoint representation. It
can be identified with the tangent space to 𝐺/𝐻 at the point 𝑥0 = 𝐻𝑒. The rank 𝑟
of 𝐺/𝐻 is the dimension of Cartan subspaces of 𝔮 (maximal Abelian subalgebras
in 𝔮 consisting of semisimple elements).

Now let 𝐺/𝐻 be a symplectic manifold. Then 𝔥 has a non-trivial center 𝑍(𝔥).
For simplicity we assume that 𝐺/𝐻 is an orbit Ad𝐺 ⋅𝑍0 of an element 𝑍0 ∈ 𝔤. In
particular, then 𝑍0 ∈ 𝑍(𝔥).

Further, we can also assume that 𝐺 is simple. Such spaces𝐺/𝐻 are divided [4]
into four classes: (a) Hermitian symmetric spaces; (b) semi-Kählerian symmetric
spaces; (c) para-Hermitian symmetric spaces; (d) complexifications of class (a)
spaces. Spaces of class (a) are Riemannian, of other three classes are pseudo-
Riemannian (not Riemannian).

We focus on class (c). Here dim 𝑍(𝔥) = 1, so that 𝑍(𝔥) = ℝ𝑍0, and 𝑍0

can be normalized so that the operator 𝐼 = (ad𝑍0)𝔮 on 𝔮 has eigenvalues ±1.
Therefore, 𝑍0 ∈ 𝔭 ∩ 𝔥. A symplectic structure on 𝐺/𝐻 is defined by the bilinear
form 𝜔(𝑋,𝑌 ) = 𝐵𝔤(𝑋, 𝐼𝑌 ) on 𝔮. The ±1-eigenspaces 𝔮± ⊂ 𝔮 of 𝐼 are Lagrangian,
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𝐻-invariant, and irreducible. They are Abelian subalgebras of 𝔤. So 𝔤 becomes a
graded Lie algebra:

𝔤 = 𝔮− + 𝔥+ 𝔮+ (= 𝔤−1 + 𝔤0 + 𝔤+1).

Let us introduce a character ℎ �→ 𝑏(ℎ) of the group 𝐻 :

𝑏(ℎ) = det(Ad ℎ)∣𝔮+ .

The pair (𝔮+, 𝔮−) is a Jordan pair [5] with multiplication

{𝑋𝑌 𝑍} = (1/2) [[𝑋,𝑌 ], 𝑍].

Let ϰ be its genus. Ranks of (𝔮+, 𝔮−), 𝐺/𝐻 and 𝐾/𝐾 ∩ 𝐻 coincide (so that in
particular 𝐺/𝐻 has a discrete series).

Set 𝑄± = exp 𝔮±. The subgroups 𝑃± = 𝐻𝑄± = 𝑄±𝐻 are maximal parabolic
subgroups of 𝐺, with 𝐻 as a Levi subgroup. One has the following decompositions:

𝐺 = 𝑄+𝐻𝐾, 𝐺 = 𝑄−𝐻𝐾. (3)

Let us call them the Iwasawa and the anti-Iwasawa decomposition (allowing some
slang). For an element in 𝐺 the first factors in right-hand sides in (3) are defined
uniquely, whereas the second and the third factors are defined up to an element
of 𝐾 ∩𝐻 .

The space 𝑆 = 𝐾/𝐾∩𝐻 is a compact manifold. Decompositions (3) give two
actions 𝑠 �→ 𝑠 and 𝑠 �→ 𝑠 of 𝐺 on 𝑆. Namely, let 𝑠 = 𝑠0𝑘 where 𝑠0 = (𝐾 ∩𝐻)𝑒 is
the basic point; decompose 𝑘𝑔, 𝑔 ∈ 𝐺, in accordance with (3):

𝑘𝑔 = exp𝑌 ⋅ ℎ̃ ⋅ 𝑘, 𝑘𝑔 = exp𝑋 ⋅ ℎ̂ ⋅ 𝑘; (4)

then 𝑠 = 𝑠0𝑘, 𝑠 = 𝑠0𝑘. Thus, the group 𝐺 acts on 𝑆× 𝑆 by (𝑠, 𝑡) �→ (𝑠, �̂�). Writing
𝑠 = 𝑠 ⋅ 𝑔 we get 𝑠 = 𝑠 ⋅ 𝜏(𝑔). The stabilizer of the point (𝑠0, 𝑠0) is 𝐻 , so that we
obtain an equivariant embedding

𝐺/𝐻 ↪→ 𝑆 × 𝑆. (5)

Let us call 𝑠, 𝑡 horospherical coordinates on 𝐺/𝐻 . The image 𝑀 of (5) is a single
open dense orbit. Thus, 𝑆 × 𝑆 is a compactification of 𝐺/𝐻 . For the 𝐺-orbit
structure of 𝑆 × 𝑆, see [6]. Note that 𝐺/𝐻 can be represented as the tangent (or
cotangent) bundle of the manifold 𝑆.

We now define an important function ∥𝑠, 𝑡∥ on 𝑆 × 𝑆. For 𝑠, 𝑡 ∈ 𝑆 take 𝑘𝑠, 𝑘𝑡
in 𝐾 so that 𝑠 = 𝑠0𝑘𝑠, 𝑡 = 𝑠0𝑘𝑡, and decompose 𝑘𝑠𝑘

−1
𝑡 as follows (the Gauss

decomposition):

𝑘𝑠𝑘
−1
𝑡 = exp𝑌 ⋅ ℎ ⋅ exp𝑋, (6)

where 𝑌 ∈ 𝔮+, 𝑋 ∈ 𝔮−. For this ℎ, the character 𝑏(ℎ) depends only on 𝑠, 𝑡, but
not on the choice of 𝑘𝑠, 𝑘𝑡. We set

∥𝑠, 𝑡∥ = ∣𝑏(ℎ)∣−1/ϰ , (7)

where ℎ is taken from (6). Formula (7) defines ∥𝑠, 𝑡∥ on an open dense subset of
𝑆 × 𝑆. This function is continuous, symmetric and invariant with respect to the
diagonal action of 𝐾. It can be expanded on the whole 𝑆 × 𝑆, keeping all these
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properties. The orbit 𝑀 is characterized by the condition ∥𝑠, 𝑡∥ ∕= 0. Let 𝑑𝑠 be a
𝐾-invariant measure on 𝑆, then the 𝐺-invariant measure on 𝐺/𝐻 is:

𝑑𝑥 = 𝑑𝑥(𝑠, 𝑡) = ∥𝑠, 𝑡∥−ϰ 𝑑𝑠 𝑑𝑡.

3. Maximal degenerate series representations

For 𝜆 ∈ ℂ, we take the character of 𝐻 :

𝜔𝜆(ℎ) = ∣𝑏(ℎ)∣−𝜆/ϰ

and extend this character to the subgroups 𝑃±, setting it equal to 1 on 𝑄±. Then
we consider induced representations of 𝐺:

𝜋±𝜆 = Ind
𝐺
𝑃∓ 𝜔∓𝜆.

In the compact picture, these representations act on 𝒟(𝑆) by(
𝜋−𝜆 (𝑔)𝜑

)
(𝑠) = 𝜔𝜆(ℎ̃)𝜑(𝑠),(

𝜋+
𝜆 (𝑔)𝜑

)
(𝑠) = 𝜔𝜆(ℎ̂

−1)𝜑(𝑠),

we use (4); note that 𝜔𝜆(ℎ̃) and 𝜔𝜆(ℎ̂
−1) are well defined because 𝜔𝜆(𝑙) = 1 for

𝑙 ∈ 𝐾∩𝐻 . For the same 𝜆, the representations 𝜋±𝜆 are connected by 𝜏 : 𝜋±𝜆 = 𝜋∓𝜆 ∘𝜏 ,
so that if 𝜏 is an inner automorphism, then 𝜋+

𝜆 and 𝜋−𝜆 are equivalent.
Consider the following Hermitian form in 𝒟(𝑆):

(𝜓, 𝜑)𝑆 =

∫
𝑆

𝜓(𝑠)𝜑(𝑠) 𝑑𝑠.

This form is 𝐺-invariant for the pairs
(
𝜋+
𝜆 , 𝜋+

−𝜆−ϰ

)
and
(
𝜋−𝜆 , 𝜋−−𝜆−ϰ

)
. Therefore,

for Re 𝜆 = −ϰ/2 the representations 𝜋±𝜆 are unitarizable, and we obtain two

continuous series of unitary representations. In a generic case, 𝜋±𝜆 are irreducible:
the reducibility is possible only for real 𝜆 satisfying some integrality conditions.

On 𝐶∞(𝑆) define the operator 𝐴𝜆:

(𝐴𝜆𝜑)(𝑠) =

∫
𝑆

∥𝑠, 𝑡∥−𝜆−ϰ 𝜑(𝑡) 𝑑𝑡,

the integral converges absolutely for Re𝜆 < −ϰ+1 and is extended on 𝜆-plane as
a meromorphic function. This operator intertwines 𝜋±𝜆 with 𝜋∓−𝜆−ϰ :

𝐴𝜆𝜋
±
𝜆 (𝑔) = 𝜋∓−𝜆−ϰ(𝑔)𝐴𝜆.

Moreover,

𝐴−𝜆−ϰ𝐴𝜆 = 𝑐(𝜆)−1 𝐸, (8)

where 𝐸 is the identity operator and 𝑐(𝜆) is a meromorphic function.

We can extend 𝜋±𝜆 and 𝐴𝜆 to the space 𝒟′(𝑆) of distributions on 𝑆.
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4. Super complete systems and symbols

In this Section we give main constructions of a quantization in the spirit of Berezin
on para-Hermitian symmetric spaces 𝐺/𝐻 . Conditions (𝑎)–(𝑑) from § 1 have to
be slightly changed: the factor 𝑖 in (𝑏) has to be omitted, instead of the complex
conjugation of functions one has to take some permutation of arguments, finally,
we abandon the Hilbert structure in representation spaces.

In general, there is an analogy between classes (𝑎) and (𝑐) (see § 2). At
the coordinate level we have an analogy between coordinates 𝑧, 𝑧 from § 1 and
horospherical coordinates 𝑠, 𝑡. For 𝐺/𝐻 , the role of the Fock space is played by a
space of functions 𝜑(𝑠) of one of these coordinates, we take the space 𝒟(𝑆). As a
super complete system we take the kernel of the intertwining operator from § 3,
i.e., the function

Φ(𝑠, 𝑡) = Φ𝜆(𝑠, 𝑡) = ∥𝑠, 𝑡∥𝜆.
It has the reproducing property, which is formula (8) written in another form:

𝜑(𝑠) = 𝑐(𝜆)

∫
𝑆×𝑆

Φ(𝑠, 𝑣)

Φ(𝑢, 𝑣)
𝜑(𝑢) 𝑑𝑥(𝑢, 𝑣).

Let 𝐴 be an operator acting on functions on 𝑆. Define the covariant symbol

𝐴(𝑠, 𝑡) of 𝐴 as follows:

𝐴(𝑠, 𝑡) =
(𝐴⊗ 1)Φ(𝑠, 𝑡)

Φ(𝑠, 𝑡)
.

We can regard it as a function 𝐴(𝑥) on 𝐺/𝐻 , using (5). The operator is recovered
by its symbol: (

𝐴𝜑
)
(𝑠) = 𝑐(𝜆)

∫
𝑆×𝑆

𝐴(𝑠, 𝑣)
Φ(𝑠, 𝑣)

Φ(𝑢, 𝑣)
𝜑(𝑢) 𝑑𝑥(𝑢, 𝑣).

The identity operator has 1 as its symbol. The multiplication 𝐴1𝐴2 of operators
gives rise to the multiplication 𝐴1 ∗𝐴2 of the symbols:

(𝐴1 ∗𝐴2) (𝑠, 𝑡) =

∫
𝑆×𝑆

𝐴1(𝑠, 𝑣)𝐴2(𝑢, 𝑡)ℬ𝜆(𝑠, 𝑡;𝑢, 𝑣) 𝑑𝑥(𝑢, 𝑣), (9)

where

ℬ𝜆(𝑠, 𝑡;𝑢, 𝑣) = 𝑐(𝜆)
Φ(𝑠, 𝑣)Φ(𝑢, 𝑡)

Φ(𝑠, 𝑡)Φ(𝑢, 𝑣)
.

Let us call this kernel the Berezin kernel. By (5) it can be regarded as a function
ℬ𝜆(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝐺/𝐻 .

On the other hand, let 𝐹 (𝑠, 𝑡) be a function on 𝑆 × 𝑆. It gives rise to a

Toeplitz type operator 𝐴 by(
𝐴𝜑
)
(𝑠) = 𝑐(𝜆)

∫
𝑆×𝑆

𝐹 (𝑢, 𝑣)
Φ(𝑠, 𝑣)

Φ(𝑢, 𝑣)
𝜑(𝑢) 𝑑𝑥(𝑢, 𝑣).

Let us call the function 𝐹 (𝑠, 𝑡) contravariant symbol of the operator 𝐴. We get

a correspondence chain: 𝐹 �→ 𝐴 �→ 𝐴. We call the composition ℬ𝜆 : 𝐹 �→ 𝐴
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the Berezin transform. It is defined by the same kernel as the multiplication of
covariant symbols:

𝐴(𝑠, 𝑡) =

∫
𝑆×𝑆

ℬ𝜆(𝑠, 𝑡;𝑢, 𝑣)𝐹 (𝑢, 𝑣) 𝑑𝑥(𝑢, 𝑣).

Thus, we have a method for constructing a family of algebras𝒜ℎ: they consist
of the covariant symbols 𝐴(𝑠, 𝑡) = 𝐴(𝑥) of operators from some class, the multipli-

cation in 𝒜ℎ is given by (9), the representations by operators are 𝐴 �→ 𝐴. For the
Planck constant we take ℎ = −1/𝜆 (with suitable normalizations of measures).

In particular, if for the initial algebra of operators, we take the algebra of
operators 𝜋−𝜆 (𝑋), where 𝑋 runs the universal enveloping algebra of 𝔤, then we
obtain polynomial quantization, see, for example, [7]. Here co- and contravariant
symbols turn out to be polynomials on 𝐺/𝐻 ⊂ 𝔤.

Let 𝐴′ be the operator conjugated to an operator 𝐴 with respect to the
bilinear form whose kernel is the kernel of 𝐴𝜆. Then their covariant symbols are
connected by the transposition of the arguments: 𝐴′(𝑠, 𝑡) = 𝐴(𝑡, 𝑠). The map
𝐴 �→ 𝐴′ changes the order of the factors: (𝐴1 ∗ 𝐴2)

′ = 𝐴′2 ∗ 𝐴′1, so it is an anti-
involution of any 𝒜ℎ.

5. Canonical representations and quantization

The main tool for studying quantization is the so-called canonical representations
(this term was introduced in [8]). For Hermitian symmetric spaces 𝐺/𝐾, these rep-
resentations were introduced by Vershik, Gelfand, Graev [8] (for the Lobachevsky
plane) and Berezin [1], [2] (in classical case). These representations act by trans-
lations in functions on 𝐺/𝐾 and are unitary with respect to some non-local inner
product (now called a Berezin form).

We define canonical representations of a group 𝐺 in a more general setting.
We give up the condition of unitarity (as too narrow) and let these representa-
tions act on sufficiently extensive spaces, in particular, on spaces of distributions.
Moreover, we permit also non transitive actions of a group 𝐺. Our approach uses
the notion of an “overgroup” and consists in the following.

Let 𝐺 and �̃� be semisimple Lie groups and 𝐺 is a spherical subgroup of the

“overgroup” �̃� (i.e., 𝐺 is the fixed point subgroup of an involution of �̃�). Let 𝑃 be

a maximal parabolic subgroup of �̃�, let �̃�𝜆, 𝜆 ∈ ℂ, be a series of representations
of �̃� induced by characters of 𝑃 . They can depend on some discrete parameters,

we do not write them. As a rule, representations �̃�𝜆 are irreducible. They act on

a compact manifold Ω (a flag manifold for �̃�).

Restrictions 𝑅𝜆 of �̃�𝜆 to 𝐺 are called canonical representations of 𝐺. They
act on functions on Ω. In general, Ω is not a homogeneous space for 𝐺, there are
several open 𝐺-orbits on Ω. They are semisimple symmetric spaces 𝐺/𝐻𝑖. The
manifold Ω is the closure of the union of open orbits. The series of canonical
representations 𝑅𝜆 has an intertwining operator 𝑄𝜆 called the Berezin transform.
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One can consider a different version of canonical representations, namely, the
restriction of canonical representations in the first sense to some open orbit 𝐺/𝐻𝑖.
Both variants deserve to be investigated. The first variant is in some sense more
natural. But for quantization we need just the second variant.

Let 𝐺/𝐾 be a Hermitian symmetric space. Then �̃� is the complexification

𝐺ℂ of 𝐺, a parabolic subgroup 𝑃 is such that 𝐺 ∩ 𝑃 = 𝐾. Representations �̃�𝜆 of

�̃� form a maximal degenerate series, they act on 𝒟(Ω) where Ω = �̃� ∩ 𝑃 = 𝑈/𝐾,

𝑈 a maximal compact subgroup of �̃�. A canonical representations 𝑅𝜆 acts on the
space 𝒟(𝑀), see § 1, by translations and preserves the Berezin form, i.e., the form
with the Berezin kernel. An explicit computation of the Plancherel measure for
the Berezin form just gives explicit expressions of the Berezin transform in terms
of Laplace operators.

Now let 𝐺/𝐻 be a para-Hermitian symmetric space, see § 2. Then �̃� is the
direct product 𝐺 × 𝐺, it contains 𝐺 as the diagonal {(𝑔, 𝑔), 𝑔 ∈ 𝐺}. A parabolic
subgroup 𝑃 consists of pairs (𝑧ℎ, ℎ𝑛), 𝑧 ∈ 𝑄−, ℎ ∈ 𝐻 , 𝑛 ∈ 𝑄+. Let �̃�𝜆 be a charac-

ter of 𝑃 equal to 𝜔𝜆(ℎ) at these pairs. The representation of �̃� induced by �̃�−𝜆−ϰ

is denoted by �̃�𝜆. The restriction 𝑅𝜆 of �̃�𝜆 to 𝐺 (a canonical representation) is
nothing but the tensor product 𝜋−−𝜆−ϰ ⊗ 𝜋+

−𝜆−ϰ . It acts on 𝒟(Ω), Ω = 𝑆 × 𝑆, and
preserves the following sesqui-linear form:

(𝜑1, 𝜑2)𝜆 = 𝑐(𝜆)

∫
𝜑1(𝑠, 𝑡)𝜑2(𝑢, 𝑣) (∥𝑠, 𝑣∥ ⋅ ∥𝑢, 𝑡∥)𝜆 𝑑𝑠 𝑑𝑡 𝑑𝑢 𝑑𝑣. (10)

An operator 𝑄𝜆 on 𝒟(Ω) with the same kernel intertwines 𝑅𝜆 with 𝑅−𝜆−ϰ .

Let us restrict 𝑅𝜆 to 𝒟(𝑀), 𝑀 = 𝐺/𝐻 , see § 2, and define a map 𝜑 �→ 𝑓 on
𝒟(𝑀) by

𝑓(𝑠, 𝑡) = 𝜑(𝑠, 𝑡)∥𝑠, 𝑡∥𝜆+ϰ .

It turns 𝑅𝜆 into the representation 𝑈 by translations on 𝒟(𝑀):

(𝑈(𝑔)𝑓) (𝑠, 𝑡) = 𝑓(𝑠, �̂�),

the form (10) to the form 𝐸𝜆 with the Berezin kernel (the Berezin form) and the
operator 𝑄𝜆 to the Berezin transform ℬ𝜆.

We can regard the Berezin function ℬ(𝑥, 𝑥0) as a 𝐻-invariant distribution on
𝐺/𝐻 . Suppose that we succeed expanding ℬ(𝑥, 𝑥0) in terms of spherical functions
(distributions) on 𝐺/𝐻 . This is equivalent to writing a Plancherel formula for 𝐸𝜆.
Then we can write expressions of 𝐸𝜆 in terms of Laplace operators Δ1, . . . ,Δ𝑟

on every single series of representations occurring in 𝐿2(𝐺/𝐻). This gives us in-
formation about the behavior of 𝐸𝜆 on this series as 𝜆 → −∞, and we can say
whether CP is true on this series. The CP is equivalent to the asymptotic relation
ℬ𝜆 ∼ 1− (1/𝜆)Δ, where Δ is the Laplace–Beltrami operator.
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6. Quantization on rank one spaces

We consider here the spaces 𝐺/𝐻 , where 𝐺 = SL(𝑛,ℝ), 𝐻 = GL(𝑛 − 1,ℝ).
Now it is more convenient to realize 𝐺/𝐻 as the orbit of the 𝑛 × 𝑛 matrix 𝑥0 =
diag{0, . . . , 0, 1} under the action 𝑥 �→ 𝑔−1𝑥𝑔 of 𝐺. Then 𝐺/𝐻 consists of matrices
𝑥 of rank one and trace one. It has rank 𝑟 = 1 and genus ϰ = 𝑛. The stabilizer 𝐻
of 𝑥0 consists of matrices diag {𝑎, 𝑏} where 𝑎 ∈ G𝐿(𝑛− 1,ℝ), 𝑏 = (det 𝑎)−1.

These spaces 𝐺/𝐻 exhaust all para-Hermitian symmetric spaces of rank one
up to coverings.

Let us take in ℝ𝑛 the Euclidean inner product ⟨𝑥, 𝑦⟩ = 𝑥1𝑦1+ ⋅ ⋅ ⋅+𝑥𝑛𝑦𝑛 and

the norm ∣𝑥∣ =√⟨𝑥, 𝑥⟩. The manifold 𝑆 is the unit sphere ∣𝑠∣ = 1 in ℝ𝑛 with the
identification of points ±𝑠, i.e., 𝑆 is the (𝑛− 1)-dimensional real projective space.
We have ∥𝑠, 𝑡∥ = ∣⟨𝑠, 𝑡⟩∣, so that Φ(𝑠, 𝑡) = ∣⟨𝑠, 𝑡⟩∣𝜆. The embedding (5) is given by

𝑥 =
𝑡′𝑠
⟨𝑡, 𝑠⟩ ,

with ⟨𝑡, 𝑠⟩ ∕= 0, the prime denotes matrix transposition. The metric tr (𝑑𝑥2) on
𝐺/𝐻 is𝐺-invariant. It generates the Laplace–Beltrami operator Δ and the measure

𝑑𝑥 = ∣⟨𝑡, 𝑠⟩∣−𝑛 𝑑𝑡 𝑑𝑠,

where 𝑑𝑠 is the Euclidean measure on 𝑆. The manifold𝑀 = 𝐺/𝐻 and its boundary
(a Stiefel manifold) are given by the conditions ⟨𝑠, 𝑡⟩ ∕= 0 and ⟨𝑠, 𝑡⟩ = 0 respectively.
In terms of matrices the Berezin kernel is:

ℬ𝜆(𝑥, 𝑦) = 𝑐(𝜆) ∣ tr(𝑥𝑦)∣𝜆,
where

𝑐(𝜆) =
{
2𝑛+1𝜋𝑛−2Γ(−𝜆− 𝑛+ 1)Γ(𝜆+ 1)

[
cos
(
𝜆+

𝑛

2

)
𝜋 − cos 𝑛𝜋

2

]}−1

.

The quasi regular representation 𝑈 of 𝐺 on 𝐺/𝐻 decomposes into irreducible
unitary representations of two series (for definiteness, let 𝑛 ⩾ 3): the continuous
series representations 𝑇𝜎,𝜀, 𝜎 = (−𝑛+ 1)/2 + 𝑖𝜌, 𝜌 ∈ ℝ, 𝜀 = 0, 1, and the discrete
series representations 𝑇𝜎(𝑚), 𝜎(𝑚) = (−𝑛 + 2)/2 + 𝑚, 𝑚 = 0, 1, 2, . . . ; all with
multiplicity 1, see [9]. Let us write the expression of the Berezin transform for
Re 𝜆 < (−𝑛+ 1)/2 in terms of Δ:

ℬ𝜆 =
Γ(−𝜆+ 𝜎)Γ(−𝜆 − 𝜎 − 𝑛+ 1)

Γ(−𝜆)Γ(−𝜆− 𝑛+ 1)

×
[1− cos𝜆𝜋] ⋅

[
sin
(
𝜆+

𝑛

2

)
+ (−1)𝜀 sin

(
𝜎 +

𝑛

2

)]
sin𝜆𝜋 ⋅

[
cos

𝑛𝜋

2
− cos

(
𝜆+

𝑛

2

)
𝜋
] .

The right-hand side should be regarded as a function of Δ = 𝜎(𝜎 + 𝑛 − 1). The
first fraction behaves as 1− 𝜆−1Δ when 𝜆 → −∞. It is just what we need for CP.
In the second fraction, the term with (−1)𝜀 disappears on the discrete spectrum.
So we have CP on the discrete spectrum for 𝑛 even.
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1. Introduction

The history of the reduction method dates back to works in celestial mechanics,
Jacobi simplified the Kepler problem by reducing the number of variables using
rotational symmetry. The general method of Meyer-Marsden-Weinstein gives a
symplectic reduction of systems with a free group action and constraint. Generally,
the group action may be not free and the constraint set need not to be smooth.
The singular points are often the most interesting because they have smaller orbits
and a larger symmetry. There are several approaches to this situation. An example
of algebraic singular symplectic reduction was considered in [1]. The problem of
singular symplectic reduction of the angular moment was studied in [2],[3] by
geometric methods. The problem of systems with constraints in quantum field
theory comes to Dirac [4]. BRST method and Batalin-Vilkovisky-Fradkin’s theory
are proposed for gauge systems. They are based on rather complicated homological
construction with a crowd of ghosts, see surveys [5], [6] and a recent development in
[7]. We consider here few simple examples where the method of algebraic singular
reduction ends up to a singular Poisson algebraic variety to be quantized.

2. Regular symplectic reduction

Let 𝑋 be a smooth manifold with a symplectic form 𝜔; the corresponding Poisson
bracket is defined in a space (sheaf) of smooth functions 𝐴 in 𝑋 by 𝑞 (𝑓, 𝑔) =
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𝜔∗ (d𝑓, d𝑔) , 𝑓, 𝑔 ∈ 𝐴 where 𝜔∗ is the dual 2-form on the cotangent bundle. Suppose
that a Lie group 𝐺 acts in 𝑋 preserving the form 𝜔. Let 𝔤 be the Lie algebra of 𝐺
and 𝔤∗ be its dual space. Any element 𝛾 ∈ 𝔤 acts by a vector field 𝑡 (𝛾) in 𝑋. The
form 𝑡 (𝛾)∨𝜔 is closed since 𝐺 preserves 𝜔 (∨ denotes the contraction operation).
A moment map for the action of 𝐺 on (𝑋,𝜔) is a smooth map 𝐽 : 𝑋 → 𝔤∗ such
that

d𝐽 (𝛾) = 𝑡 (𝛾) ∨ 𝜔, 𝛾 ∈ 𝔤.

The moment map is assumed 𝐺-equivariant that is 𝐽 (𝑔 (𝑥)) = ad 𝑔 (𝐽 (𝑥)) for any
𝑔 ∈ 𝐺. Then the group 𝐺 acts in the set 𝑌 = 𝐽−1 (0) which is called constraint
locus. The ideal 𝐼 generated by the components of 𝐽 is closed under the bracket 𝑞
(that is, 𝑌 is a first class constraint). A 𝐺-action is called Hamiltonian if for any
𝛾 ∈ 𝔤 there exists a smooth function 𝐻𝛾 in 𝑋 such that 𝑡 (𝛾) ∨ 𝜔 = d𝐻𝛾 and the
map

𝔤 → (𝐴, 𝑞) ; 𝛾 �→ 𝐻𝛾

is a Lie algebra homomorphism.

Theorem ((Meyer-Marsden-Weinstein)[8]). Let (𝑋,𝜔,𝐺, 𝐽) be a symplectic man-
ifold with Hamiltonian action of a compact Lie group 𝐺 and a moment map 𝐽
such that the constraint locus 𝑌 = 𝐽−1 (0) is a submanifold. Suppose that 𝐺 acts
freely on 𝑌 (that is all stabilizers are trivial). Then the orbit space 𝑋red = 𝑌/𝐺 is
a manifold, 𝜋 : 𝑌 → 𝑋red is a principal 𝐺 -bundle, and there is a symplectic form
𝜔red on 𝑋red satisfying 𝑖∗ (𝜔) = 𝜋∗ (𝜔red) where 𝑖 : 𝑌 → 𝑋 is the inclusion map.

The pair (𝑋red, 𝜔red) is called a symplectic reduction (symplectic quotient)
of (𝑋,𝜔) with respect to (𝐺, 𝐽). The condition of free group action is violated in
several important cases where orbits of the group have various dimensions and the
local topological structure of orbits is complicated.

3. Singular reduction

In the general case a pure algebraic method reveals main features of the foot-
ing geometry at least in the case of a compact group action. One advantage of
this method is simplicity of all constructions. Moreover an algebraic symplectic
reduction can be quantized in purely algebraic terms.

Let 𝑋 be a real algebraic variety endowed with a Poisson bracket 𝑞 defined in
the algebra 𝐴 of rational functions in 𝑋. In a more general setting, let (𝑋,𝑂) be
a real algebraic scheme with a Poisson biderivation 𝑞 : 𝑂 ⊗ 𝑂 → 𝑂. An algebraic
action of a classical compact group 𝐺 in 𝑋 is given such that 𝑞 is 𝐺-invariant. Let
𝐽 : 𝑋 → 𝔤∗ be an algebraic moment map where 𝔤∗ is the dual space to the Lie
algebra 𝔤 of 𝐺. Let {0} be the zero point of 𝔤∗ and 𝑌 = 𝑋 ×𝔤∗ {0} . Then (𝑌,𝑂𝑌 )
is an algebraic subscheme of 𝑋 and 𝑂𝑌 = 𝑂/ℐ, ℐ denotes the ideal in the sheaf
𝑂 generated by the sections 𝐽∗ (𝑡𝑖) and 𝑡1, . . . , 𝑡𝑟 ∈ 𝔤∗ are coordinate functions in
𝔤. Let 𝒪𝐺

𝑌 be the sheaf of all 𝐺-invariant sections of 𝑂𝑌 . It is called a sheaf of
observables on the constraint locus 𝑌 . Suppose that the sheaf 𝑂𝐺

𝑌 is generated by
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global sections 𝑎1, . . . , 𝑎𝑚. Then there is defined a homomorphism of sheaves of
ℝ-algebras

𝑂 (ℝ𝑚)→ 𝑂𝐺
𝑌 , 𝑠𝑖 �→ 𝑎𝑖, 𝑖 = 1, . . . ,𝑚

where 𝑠1, . . . , 𝑠𝑚 are coordinate functions in ℝ𝑚. If 𝒦 is the kernel of this homo-
morphism, then 𝑂𝐺

𝑌
∼= 𝑂 (ℝ𝑚) /𝒦. The maximal spectrum 𝑋red

.
= Specm𝑂𝐺

𝑌 is
isomorphic to the zero set of the ideal 𝒦 in ℝ𝑚. This is typically a singular alge-
braic variety unless the group acts freely. The bracket 𝑞 can be lifted to a Poisson
bracket 𝑞red in 𝑂𝐺

𝑌 . We call the singular Poisson space
(
𝑋red, 𝑂

𝐺
𝑌 , 𝑞red

)
algebraic

symplectic reduction of (𝑋,𝑂, 𝑞,𝐺, 𝐽). The locus 𝑋 can be a superspace where a
supergroup acts, then 𝑂 is a sheaf of regular functions of even and odd variables.

An algebraic reduction can be explicitly constructed in several cases. We do
not need a Hamiltonian structure of the action.

4. Poisson bracket in singular surfaces

Let 𝑂 (ℝ𝑚) be the sheaf of algebraic (analytic or smooth) functions in ℝ𝑚 and
𝜑1, . . . , 𝜑𝑚−2 ∈ 𝑂 (ℝ𝑚) . The surface

𝑉 = {𝑠 ∈ ℝ𝑚;𝜑1 (𝑠) = ⋅ ⋅ ⋅ = 𝜑𝑚−2 (𝑠) = 0}
may have singular points. The bilinear operator

𝑞 (𝑎, 𝑏) = det

⎛⎜⎜⎜⎜⎝
∂1𝑎 ∂2𝑎 . . . ∂𝑚𝑎
∂1𝑏 ∂2𝑏 . . . ∂𝑚𝑏
∂1𝜑1 ∂2𝜑1 . . . ∂𝑚𝜑1

. . . . . . . . . . . .
∂1𝜑𝑚−2 ∂2𝜑𝑚−2 . . . ∂𝑚𝜑𝑚−2

⎞⎟⎟⎟⎟⎠ , ∂𝑘𝑎 = ∂𝑎/∂𝑠𝑘

is well defined in the sheaf 𝑂𝑉 = 𝑂 (ℝ𝑚) / (𝜑1, . . . , 𝜑𝑘) . This is a skew-symmetric
map 𝑂𝑉 ⊗𝑂𝑉 → 𝑂𝑉 .

Proposition 1. [9] For arbitrary sections 𝜑1, . . . , 𝜑𝑚−2, 𝜓 the operator 𝜓𝑞 generates
a Poisson bracket in 𝑂𝑉 .

In other words the determinant of the Jacobian matrix defines a bracket that
satisfies the Jacobian identity.

Example 1. A space 𝑋 = ℂ2 is supplied with the symplectic form 𝜔 = 𝑖d𝑧1 ∧
d𝑧1 +𝑖d𝑧2 ∧ d𝑧2. Let 𝐽 (𝑧) = −

(
𝑘 ∣𝑧1∣2 + 𝑙 ∣𝑧2∣2

)
+ 𝜆, 𝜆 > 0 be a moment map

for some relatively prime integers 𝑘, 𝑙. The group SO (2) acts in 𝑋 by 𝑒𝑖𝜃 ⋅ 𝑧 =(
𝑒𝑖𝑘𝜃𝑧1, 𝑒

𝑖𝑙𝜃𝑧2

)
, 𝔤 = ℝ. Any point (𝑧1, 0) , 𝑧1 ∕= 0 has stabilizer ℤ𝑘 and any point

(0, 𝑧2) , 𝑧2 ∕= 0 has stabilizer ℤ𝑙; other points have trivial stabilizers. The algebra
𝑂𝐺 of observables is generated by the polynomials

𝑎1 = ∣𝑧1∣2 , 𝑎2 = ∣𝑧2∣2 , 𝑎3 = Re 𝑧
𝑙
1𝑧

𝑘
2 , 𝑎4 = Im 𝑧𝑙1𝑧

𝑘
2

with the only relation 𝑎𝑙1𝑎
𝑘
2 − 𝑎2

3 − 𝑎2
4 = 0 that is

𝑂𝐺
𝑌
∼= 𝑂

(
ℝ4
)
/ (𝑓, 𝑔)
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where 𝑓 (𝑠) = 𝑠𝑙1𝑠
𝑘
2 − 𝑠2

3 − 𝑠2
4 and 𝑔 (𝑠) = 𝑘𝑠1 + 𝑙𝑠2 − 𝜆. The space Specm𝑂𝐺

𝑌 is
the algebraic surface 𝑋red = {𝑠 ∈ ℝ4; 𝑓 (𝑠) = 𝑔 (𝑠) = 0} with two singular points
𝑝1 = {𝑠 ∈ 𝑋red; 𝑠1 = 0} , 𝑝2 = {𝑠 ∈ 𝑋red; 𝑠2 = 0}. Any Poisson bracket in 𝑂𝐺

𝑌 is
equal to ℎ𝑞 where ℎ is a regular function and

𝑞 (𝑎, 𝑏) = det

⎛⎜⎜⎝
∂1𝑎 ∂2𝑎 ∂3𝑎 ∂4𝑎
∂1𝑏 ∂2𝑏 ∂3𝑏 ∂4𝑏
∂1𝑓 ∂2𝑓 ∂3𝑓 ∂4𝑓
∂1𝑔 ∂2𝑔 ∂3𝑔 ∂4𝑔

⎞⎟⎟⎠
where ∂𝑘 = ∂/∂𝑠𝑘. It is easy to check that the algebraic reduction of the space(
ℝ4, 𝜔,SO (2) , 𝐽

)
is isomorphic to (𝑋red, 𝑞).

Example 2. The phase space 𝑇 ∗ (ℝ𝑛) = ℝ𝑛 × ℝ𝑛 is supplied with the standard
Poisson bracket

{𝑓, 𝑔} =
∑ ∂𝑓

∂𝑞𝑖
∂𝑔

∂𝑝𝑖
− ∂𝑓

∂𝑝𝑖

∂𝑔

∂𝑞𝑖
. (1)

The moment map is given by

𝐽 : ℝ𝑛 × ℝ𝑛 → ∧2ℝ𝑛

where 𝐽 (𝑞, 𝑝) = 𝑞 × 𝑝. The action of the orthogonal group 𝑶 (𝑛) in ℝ𝑛 × ℝ𝑛

(𝑞, 𝑝) �→ (𝑈𝑞, 𝑈𝑝) , 𝑈 ∈ O (𝑛) preserves the Poisson bracket and commutes with
the moment map: 𝐽 (𝑈𝑞, 𝑈𝑝) = ∧2𝑈𝐽 (𝑞, 𝑝) where ∧2𝑈 denotes the action of the
group in its Lie algebra 𝔬 (𝑛) ∼= ∧2ℝ𝑛. This means that 𝐽 (𝑒𝑗𝑘) = 𝑞𝑗𝑝𝑘 − 𝑞𝑘𝑝𝑗 for
elements 𝑒𝑗𝑘 = 𝑞𝑗∂𝑘−𝑞𝑘∂𝑗 , 𝑗, 𝑘 = 1, . . . , 𝑛 of the Lie algebra. The constraint locus
𝑌 = 𝐽−1 (0) consists of pairs (𝑞, 𝑝) such that the vectors 𝑞 and 𝑝 are proportional.

Let 𝑃 be the algebra of all real polynomials in ℝ𝑛. The algebra of observables
is then the subalgebra 𝑃𝐺 of all polynomials invariant with respect to the action
of the orthogonal group restricted to 𝑌. In the case 𝑛 > 2 the algebra 𝑃𝐺 is
generated by 𝑎1 = ∣𝑞∣2 , 𝑎2 = ∣𝑝∣2 , 𝑎3 = ⟨𝑞, 𝑝⟩ with no syzygy, that is 𝑃𝐺 ∼=
ℝ [𝑠1, 𝑠2, 𝑠3]. The restriction 𝑃𝐺

𝑌 of the algebra 𝑃
𝐺 to 𝑌 has kernel generated by the

equation 𝑓 (𝑎)
.
= 𝑎2

3 − 𝑎1𝑎2 = 0 which defines a quadratic cone 𝑉 = {𝑠; 𝑓 (𝑠) = 0}.
This implies that 𝑃𝐺

𝑌
∼= ℝ [𝑠1, 𝑠2, 𝑠3] / (𝑓) . A Poisson bracket 𝑄 in the algebra

𝑃𝐺
𝑌 of observables is obtained by the calculation of the brackets (1) for invariant
polynomials

{𝑎1, 𝑎2} = 4𝑎3, {𝑎1, 𝑎3} = 2𝑎1, {𝑎2, 𝑎3} = −2𝑎2

which yields

𝑄 (𝑎, 𝑏) = 2 det

⎛⎝ ∂1𝑎 ∂2𝑎 ∂3𝑎
∂1𝑏 ∂2𝑏 ∂3𝑏
∂1𝑓 ∂2𝑓 ∂3𝑓

⎞⎠ = 2det
⎛⎝ ∇𝑎

∇𝑏
∇𝑓

⎞⎠
where 𝑎, 𝑏 ∈ ℝ [𝑠1, 𝑠2, 𝑠3] are arbitrary polynomials. The biderivation 𝑄 generates
a Poisson bracket in the algebra 𝑃𝐺

𝑌 since 𝑄 (𝑓𝑎, 𝑏) = 𝑄 (𝑎, 𝑓𝑏) = 𝑓𝑄 (𝑎, 𝑏) .
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5. Commuting matrices

Example 3. Let 𝕊 be the space of symmetric 𝑛× 𝑛-matrices with real entries. The
cotangent bundle is 𝑇 ∗ (𝕊) = 𝕊× 𝕊 with the Poisson bracket

𝑞 (𝑓, 𝑔) =

𝑛∑
𝑖,𝑗=1

∂𝑓

∂𝑎𝑖𝑗

∂𝑔

∂𝑏𝑖𝑗
− ∂𝑓

∂𝑏𝑖𝑗

∂𝑔

∂𝑎𝑖𝑗

where 𝐴 = {𝑎𝑖𝑗} , 𝐵 = {𝑏𝑖𝑗} and (𝐴,𝐵) is a point of the space

𝕊× 𝕊 (𝑎𝑗𝑖 = 𝑎𝑖𝑗 , 𝑏𝑗𝑖 = 𝑏𝑖𝑗) .

Let SO (𝑛) act by conjugation on 𝕊 and on the cotangent bundle 𝕊×𝕊. This action
is Hamiltonian with the moment map

𝐽 : 𝕊× 𝕊 → ∧2ℝ𝑛 = 𝔰𝔬 (𝑛)
∗
, (𝐴,𝐵) �→ [𝐴,𝐵]

where ∧2ℝ𝑛 is identified with the space of antisymmetric matrices. The constraint
locus is 𝑌 = {[𝐴,𝐵] = 0}.
Case 𝒏 = 2. The constraint locus is specified as

𝑌 = {(𝐴,𝐵) : 𝑎3 (𝑏1 − 𝑏2) = 𝑏3 (𝑎1 − 𝑎2)}
where

𝐴 =

(
𝑎1 𝑎3

𝑎3 𝑎2

)
, 𝐵 =

(
𝑏1 𝑏3

𝑏3 𝑏2

)
.

There are five invariant polynomials

𝛼1 = tr𝐴,𝛼2 = det𝐴, 𝛽1 = tr𝐵, 𝛽2 = det𝐵, 𝛾 = 𝑎1𝑏2 + 𝑎2𝑏1 − 2𝑎3𝑏3

which generate the algebra 𝑃𝐺 of invariant polynomials in 𝕊× 𝕊. Calculating the
Poisson bracket

𝑞 =
∂

∂𝑎1
∧ ∂

∂𝑏1
+

∂

∂𝑎2
∧ ∂

∂𝑏2
+
1

2

∂

∂𝑎3
∧ ∂

∂𝑏3

for the invariant polynomials yields

𝑞red = 2
∂

∂𝛼1
∧ ∂

∂𝛽1
+ 𝛽1

∂

∂𝛼1
∧ ∂

∂𝛽2
− 𝛼1

∂

∂𝛽1
∧ ∂

∂𝛼2
+ 𝛿

∂

∂𝛼2
∧ ∂

∂𝛽2

+

(
𝛼1

∂

∂𝛼1
+ ∣𝐴∣2 ∂

∂𝛼2
− 𝛽1

∂

∂𝛽1
− ∣𝐵∣2 ∂

∂𝛽2

)
∧ ∂

∂𝛾

where 𝛿 = 𝛼1𝛽1 −𝛾 = 𝑎2𝑏2+𝑎1𝑏1+2𝑎3𝑏3. The matrix of the form 𝑞red has rank 4.
The polynomials 𝛾 and 𝛿 are algebraic over the algebra 𝑆 = ℝ [𝛼1, 𝛼2, 𝛽1, 𝛽2] since
𝛿 + 𝛾 = 𝛼1𝛽1 and

𝛾2 − 𝛼1𝛽1𝛾 + 𝛼2 ∣𝐵∣2 + 𝛽2 ∣𝐴∣2 = 0. (2)

Therefore the algebra 𝑃𝐺
𝑌 is an extension of degree 2 of the free commutative

algebra 𝑆. The discriminant of this extension is the discriminant of (2)

𝐷 =
(
(𝑎1 − 𝑎2)

2
+ 4𝛼2

3

)(
(𝑏1 − 𝑏2)

2
+ 4𝑏2

3

)
= 𝐷𝐴𝐷𝐵.
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Here the factor 𝐷𝐴 (and 𝐷𝐵) is the discriminant of the characteristic polynomial
of 𝐴 (respectively of 𝐵). In geometrical terms, the spectrum of the complexified
algebra 𝑃𝐺 ⊗ℝ ℂ is a two-fold covering of ℂ4 ramified over the direct product of
zero sets of 𝐷𝐴 and 𝐷𝐵.

Conclusion 2. The singular reduction of the variety (𝑋,SO (2) , 𝑞) of commuting
symmetric 2 × 2-matrices restricted to 𝑌 is a singular hypersurface 𝑉 ⊂ ℝ5 de-
fined by equation (2) with respect to the variables 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾 with the Poisson
bracket 𝑞red.

General case. We have (𝑛+ 1) (𝑛+ 2) /2 − 1 invariant polynomials tr𝑘.𝑖 (𝐴,𝐵)
where

tr∧𝑘 (𝐴+ 𝜆𝐵) =
∑

𝜆𝑖 tr𝑘.𝑖 (𝐴,𝐵) , 𝑖 = 0, . . . , 𝑘, 𝑘 = 1, . . . , 𝑛

tr𝑘,0 (𝐴,𝐵) = tr𝑘 (𝐴) , tr𝑘,𝑘 (𝐴,𝐵) = tr𝑘 (𝐵) .

Conjecture. Let 𝑌 be the constraint locus for the moment map 𝐽 (𝐴,𝐵) = [𝐴,𝐵] .
Then

(1) The algebra 𝑃𝐺
𝑌 is generated by the polynomials tr𝑘,𝑖 (𝐴,𝐵), 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛

and is an algebraic extension of degree 𝑛! of the algebra 𝑆 = 𝑆𝐴 ⊗ 𝑆𝐵.
Here 𝑆𝐴 (𝑆𝐵) is an algebra freely generated by 𝑛 polynomials 𝛼𝑘 = tr𝑘 (𝐴)
(𝛽𝑘 = tr𝑘 (𝐵)) , 𝑘 = 1, 2, . . . , 𝑛.

(2) The discriminant ideal of the extension 𝑃𝐺
𝑌 → 𝑆 is generated by the prod-

uct 𝐷𝐴𝐷𝐵 where 𝐷𝐴 ∈ 𝑆𝐴 is the discriminant of a matrix 𝐴 written as a
polynomial of 𝛼1, . . . , 𝛼𝑛, similarly for 𝐷𝐵.

In geometrical terms this means that the singular reduction of the variety of
commuting symmetric 𝑛 × 𝑛-matrices over the field ℂ is an algebraic variety of
dimension 2𝑛 which is 𝑛!-fold covering of ℂ𝑛 × ℂ𝑛. The discriminant set is equal
to the product of discriminant sets 𝐷𝐴 and 𝐷𝐵.

Added in proof: Conjecture (1) was shown to be true. A proof kindly was given by
Florian Eisele [10] is based on the Quillen-Suslin theorem on Serre’s hypothesis.

6. Deformation quantization of a singular surface

Let 𝑓 be a polynomial in ℝ3; the Poisson bracket

𝑝1 (𝑎, 𝑏) = det

⎛⎝ ∇𝑎
∇𝑏
∇𝑓

⎞⎠ .
= det

⎛⎝ ∂1𝑎 ∂2𝑎 ∂3𝑎
∂1𝑏 ∂2𝑏 ∂3𝑏
∂1𝑓 ∂2𝑓 ∂3𝑓

⎞⎠
is well defined in the polynomial algebra 𝑃 = ℝ [𝑠1, 𝑠2, 𝑠3]. A deformation quanti-
zation (or star product) of this algebra with the bracket 𝑝1 is a product operation
in 𝑃 [[𝑡]]

𝑎 ∗ 𝑏 = 𝑎𝑏+ 𝑡𝑝1 (𝑎, 𝑏) + 𝑡2𝑝2 (𝑎, 𝑏) + ⋅ ⋅ ⋅ (3)
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(𝑡 is a formal variable) that is bilinear with respect to the subalgebra ℝ [[𝑡]] and
fulfills the associativity condition

(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) . (4)

Here 𝑝2, 𝑝3, . . . are bilinear operators in 𝑃 and 𝑝1 is as above. This operation
turns the space 𝑃 [[𝑡]] in an associative algebra over the algebra 𝒮 .

= ℝ[[𝑡]] such
that 𝑎 ∗ 𝑏 = 𝑎𝑏 + 𝑡𝑝1 (𝑎, 𝑏) mod

(
𝑡2
)
for any 𝑎, 𝑏 ∈ 𝑃. The quantization problem is

to find bidifferential operators 𝑝2, 𝑝3, . . . defined in 𝑃 (or in sheaf algebra 𝑂) to
fulfill the associativity condition in all degrees of 𝑡.

On the first step, the problem is to find a solution 𝑝2 to the cohomological
equation

𝑎𝑝2 (𝑏, 𝑐)−𝑝2 (𝑎𝑏, 𝑐) + 𝑝2 (𝑎, 𝑏𝑐)− 𝑝2 (𝑎, 𝑏) 𝑐

= 𝑝1 (𝑝1 (𝑎, 𝑏) , 𝑐)− 𝑝1 (𝑎, 𝑝1 (𝑏, 𝑐)) , 𝑎, 𝑏, 𝑐 ∈ 𝑃.
(5)

The Jacobi identity for the bracket 𝑝1 implies that the right-hand side of the
equation is a cocycle.

Proposition 3. The operator

𝑝2 (𝑎, 𝑏) =
1

2
det

3

⎛⎝ ∇2𝑎
∇2𝑏

∇𝑓 ⊗∇𝑓

⎞⎠+ det
3

⎛⎝ ∇2𝑎
∇𝑓 ⊗∇𝑏

∇2𝑓

⎞⎠+ det
3

⎛⎝ ∇𝑓 ⊗∇𝑎
∇2𝑏
∇2𝑓

⎞⎠ (6)

always satisfies (5), hence the equation (4) is fulfilled up to 𝑂
(
𝑡3
)
.

7. Next steps

Definition. For an arbitrary 𝑛 ≥ 2 we call 𝑛-dimensional matrix of order 3 over a
field k an element of the space Φ𝑛 =

(
k3
)⊗𝑛

. The factors 𝜙𝑖 = k
3, 𝑖 = 1, . . . , 𝑛

are called faces of the space Φ𝑛. We write below a 𝑛+ 1-dimensional matrix 𝐴 in
block form

𝐴 =

⎛⎝ 𝐴1

𝐴2

𝐴3

⎞⎠
where 𝐴1, 𝐴2, 𝐴3 are 𝑛-dimensional matrices of order 3 over k,

𝐴𝑝 = {𝑎𝑝,𝑖1,𝑖2,...,𝑖𝑛 , 𝑖𝑘 = 1, 2, 3}, 𝑝 = 1, 2, 3.

We define the determinant of 𝐴 to be the k-number

det
n+1

𝐴 =
∑

𝜀1,...,𝜀𝑛

(−)𝜎(𝜀1)+⋅⋅⋅+𝜎(𝜀𝑛)
𝑎1,𝑖1,...,𝑖𝑛𝑎2,𝑗1,...,𝑗𝑛𝑎3,𝑘1,...,𝑘𝑛

where 𝜀𝑞 denotes a permutation of the three elements such that 𝜀𝑞 (𝑖𝑞, 𝑗𝑞, 𝑘𝑞) =
(1, 2, 3) , and 𝜎 (𝜀𝑞) is the parity of the permutation; 𝑞 = 1, . . . , 𝑛. For a smooth
function 𝑎 : ℝ3 → ℂ and a natural 𝑘 we consider a differential ∇𝑘𝑎 as a 𝑘-
dimensional matrix with entries

(∇𝑘𝑎
)
𝑖1,...,𝑖𝑘

= ∂𝑘𝑎/∂𝑥𝑖1 . . . ∂𝑥𝑖𝑘 .
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Proposition 4. The star product (3) starting with the bracket 𝑝1 can be defined by
means of bilinear differential operators

𝑝𝑛 (𝑎, 𝑏) =
1

𝑛!
det
𝑛+1

⎛⎝ ∇𝑛𝑎
∇𝑛𝑏

(∇𝑓)
⊗𝑛

⎞⎠+ 1

(𝑛− 2)! det𝑛+1

⎛⎝ ∇𝑛𝑎
∇𝑓 ⊗∇𝑛−1𝑏

∇2𝑓 ⊗ (∇𝑓)
⊗𝑛−1

⎞⎠
+

1

(𝑛− 2)! det𝑛+1

⎛⎝ ∇𝑓 ⊗∇𝑛−1𝑎
∇𝑛𝑏

∇2𝑓 ⊗ (∇𝑓)
⊗𝑛−1

⎞⎠+ 𝑞𝑛 (𝑎, 𝑏) (7)

where 𝑞𝑛 (𝑎, 𝑏) is a sum of bidifferential operators of order (𝑖, 𝑗) , 𝑖 + 𝑗 ≤ 2𝑛 − 2
and 𝑛 = 2, 3, . . . , 𝑞2 = 0.

Here each of the three blocks is a 𝑛-dimensional matrix of order 3. In the
second term the factor ∇𝑓 in the second block belongs to the same face as one
of the faces of the tensor ∇2𝑓 in the third block. The third term has a similar
meaning.

The structure of formula (7) is related to the well-known Kontsevich con-
struction [11] which represents all the terms of 𝑝𝑛 of a star product for arbitrary
Poisson bracket. Note that (7) provides an explicit evaluation for the highest order
coefficients of our construction.

The operators 𝑝𝑛, 𝑛 = 2, 3, . . . are not defined on the quotient algebra 𝑃𝑉 =
𝑃/ (𝑓) whereas the bracket 𝑝1 is. The construction (7) is a step towards a star
product in the algebra ℝ [𝑠1, 𝑠2, 𝑠3] . With this star product, any quadratic cone
𝑉 = {𝑠; 𝑓 (𝑥) =∑ 𝑎𝑖𝑗𝑠𝑖𝑠𝑗 = 0} would generate a non-commutative submanifold

𝒱 = {𝐹 (𝑠, 𝑡) .
=
∑

𝑎𝑖𝑗 (𝑡) 𝑠𝑖 ∗ 𝑠𝑗 = 0}
in the space Specℝ [𝑠1, 𝑠2, 𝑠3] [[𝑡]. It will be a quantization of 𝑉.
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Abstract. Supercurves are a generalization to supergeometry of Riemann sur-
faces or algebraic curves. They naturally appear in pairs related by a duality.
The super Riemann surfaces appearing as worldsheets in perturbative su-
perstring theory are precisely the self-dual supercurves. I will review known
results and open problems in the geometry of supercurves, with a focus on
Abel’s Theorem.
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1. Introduction

A supercurve is a generalization to supergeometry of the classical notion of an
algebraic curve or Riemann surface. In the smooth case, it is a complex super-
manifold of dimension 1∣1. Supercurves naturally occur in pairs connected by a
duality generalizing in some sense the Serre duality of line bundles on a Riemann
surface. The self-dual supercurves are just the super Riemann surfaces studied
extensively during the 1980s in connection with superconformal field theories and
string theory. General supercurves have additional applications, for example to
supersymmetric integrable systems [1].

In this article I review the definitions and basic examples of supercurves,
explain how they generalize both Riemann surfaces and super Riemann surfaces,
and describe some work in progress on the “super” analogues of classical results
about Riemann surfaces. Section 2 gives the definition and two classes of examples:
split supercurves, and super elliptic curves. Section 3 introduces divisors and the
duality they lead to: supercurves naturally occur in pairs such that the points of
one are the irreducible divisors of the other. Section 4 explains contour integration
of differentials on supercurves, and the resulting theory of periods, Jacobians and
the Abel map. Section 5 is a sketch of work in progress with Mitchell Rothstein,
on Abel’s Theorem and the Jacobi Inversion Theorem for supercurves. Section 6
mentions some open problems, such as a theory of theta functions for supercurves.
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2. Definitions and examples

I will assume general familiarity with both supermanifolds ([2, 3]) and the clas-
sical theory of Riemann surfaces ([4, 5]). Fix a complex Grassmann algebra Λ =
ℂ[𝛽1, 𝛽2, . . . , 𝛽𝑛], to be thought of as the supercommutative “ring of constants”
over which we are working. For us, a (smooth) supercurve𝑋 will be a family of 1∣1-
dimensional complex supermanifolds over SpecΛ = (pt,Λ). (More general families
are possible, but this already displays the characteristic “super” phenomena and
is consistent with the viewpoint of physicists.) That is, 𝑋 is a Riemann surface
𝑋red with a sheaf 𝒪 of functions locally isomorphic to 𝒪red ⊗ Λ[𝜃], where 𝜃 is an
additional odd generator. More explicitly, the holomorphic functions on an open
set 𝑈 , 𝒪(𝑈), have the form 𝐹 (𝑧, 𝜃) = 𝑓(𝑧) + 𝜃𝜙(𝑧). Here we show explicitly the
dependence on the coordinates 𝑧, 𝜃 while hiding that on the parameters 𝛽𝑖. This
is in keeping with the viewpoint of physicists that 𝑧, 𝜃 are true (even and odd)
variables while the 𝛽𝑖 are merely “anticommuting constants”.

The global structure of 𝑋 is described by invertible parity-preserving transi-
tion functions on chart overlaps, having the form 𝑧 = 𝐹 (𝑧, 𝜃), 𝜃 = Ψ(𝑧, 𝜃). Here
the reduced part, or “body”, of 𝐹 (𝑧, 𝜃), namely 𝑓red(𝑧), is the transition function
for 𝑋red on the same overlap. There is no requirement that the transition functions
be “superconformal” as there would be for a super Riemann surface.

We view the transition functions as giving the transformation law for Λ-
valued points of 𝑋 . A Λ-valued point in some chart 𝑈 is a parity-preserving Λ-
algebra homomorphism that evaluates functions on 𝑈 to give elements of Λ. The
“constants” 𝛽𝑖 must of course evaluate to themselves. Since 𝑧 and 𝜃 are themselves
local functions, we give such a homomorphism by first specifying the elements of
Λ to which they evaluate, say 𝑧0 and 𝜃0. The reduced part of 𝑧0 is the coordinate
of the underlying reduced point of 𝑋red. A general function 𝐺(𝑧, 𝜃) must then
evaluate to 𝐺(𝑧0, 𝜃0), so a Λ-valued point may indeed be identified with a pair of
Λ-valued coordinates (𝑧0, 𝜃0) in each chart. When charts overlap, their Λ-valued
points are identified if they give the same evaluation of every function on the
overlap. This defines a transformation rule of their coordinates (𝑧0, 𝜃0), coinciding
with the transition functions. Physicists tend to think of supermanifolds in the
familiar terms of their Λ-valued points.

The simplest examples of supercurves are the split supercurves. To construct
one, choose a Riemann surface to serve as 𝑋red. Fix some “soul” line bundle 𝒮 on
𝑋red and define 𝑋 by transition functions

𝑧 = 𝑓(𝑧), 𝜃 = 𝜃𝑔(𝑧),

where 𝑓(𝑧) are transition functions for 𝑋red and 𝑔(𝑧) are transition functions for
𝒮. In effect, 𝑋 becomes the total space of the dual bundle, with 𝜃 as (odd) fiber
coordinate. For example, if 𝑋red is the complex plane ℂ and 𝒮 is the trivial line
bundle, then 𝑋 is the affine superspace ℂ1∣1.

A set of nonsplit examples is provided by super elliptic curves. Fix an even
element 𝜏 ∈ Λ with Im 𝜏red > 0, and two odd elements 𝜖, 𝛿 ∈ Λ. 𝑋 will be ℂ1∣1/𝐺,
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where the group 𝐺 ∼= ℤ× ℤ has generators 𝐴,𝐵 acting on ℂ1∣1 by

𝐴(𝑧, 𝜃) = (𝑧 + 1, 𝜃), 𝐵(𝑧, 𝜃) = (𝑧 + 𝜏 + 𝜃𝜖, 𝜃 + 𝛿). (1)

Then 𝑋red is the torus with lattice generated by 1 and 𝜏red. Associated to a
supercurve 𝑋 there is always a split supercurve 𝑋/(𝛽1, 𝛽2, . . . , 𝛽𝑛), obtained by
“setting the 𝛽𝑖 equal to zero”, and in this case it is the torus with the trivial line
bundle on it.

We use these examples to highlight some differences in the behavior of coho-
mology for ordinary curves and supercurves. For a split supercurve, it is easy to see
that the global functions are 𝐻0(𝑋,𝒪) = (ℂ∣Γ(𝒮)) ⊗ Λ. This notation indicates
the even and odd subspaces of a super vector space over Λ. That is, the “even
functions” of the form 𝑓(𝑧) are the even constants from Λ as expected, but there
are also “odd” global holomorphic functions 𝜃𝑠(𝑧) coming from the global sections
𝑠(𝑧) of 𝒮, if any. Of course, one can take Λ-linear combinations of these, respecting
parity, as well. The presence of nonconstant global functions is a counterintuitive
but important feature of supergeometry.

For a super elliptic curve, it is not hard to see that global functions are either
constants 𝑎 or of the form 𝜃𝛼 with 𝛼 constant, but not all of the latter are 𝐺-
invariant, because of the action 𝜃 �→ 𝜃 + 𝛿 of the generator 𝐵. In this way one
computes that

𝐻0(𝑋,𝒪) = {𝑎+ 𝜃𝛼 : 𝛼𝛿 = 0}. (2)

Because of the restriction on 𝛼, the cohomology is not freely generated as a
Λ-module. This is typical for nonsplit supercurves and is a major complication
in dealing with them. It means, for example, that there is no simple result like
the Riemann-Roch theorem that characterizes cohomology modules by computing
their ranks.

Fortunately Serre duality does work for supercurves:𝐻1(𝑋,𝒪)∼=𝐻0(𝑋,Ber)∗

as Λ-modules, as shown in [6]. Here the dual space consists of the Λ-linear func-
tionals on 𝐻0(𝑋,Ber). Earlier work had established Serre duality in the sense of
ℂ-linear functionals on individual supermanifolds rather than families [7, 8]

Here the dualizing Berezinian or “canonical” sheaf Ber is the line bundle (see
Section 4) on 𝑋 with transition functions

ber

[
∂𝑧𝐹 ∂𝑧Ψ
∂𝜃𝐹 ∂𝜃Ψ

]
=

∂𝑧𝐹 − ∂𝑧Ψ(∂𝜃Ψ)
−1∂𝜃𝐹

∂𝜃Ψ
. (3)

Serre duality is parity-reversing: even elements of 𝐻1(𝑋,𝒪) correspond to odd
linear functionals.

In the split case, Ber = 𝐾𝒮−1∣𝐾 (we omit the ⊗Λ by abuse of notation).
That is, the sections of Ber are generated by even sections 𝑓(𝑧) of 𝐾𝒮−1, where 𝐾
is the canonical bundle of differentials on 𝑋red, and odd sections having the form
𝜃𝑠(𝑧) with 𝑠(𝑧) itself a differential on 𝑋red.

In general, 𝐻0(𝑋,𝒪), respectively 𝐻1(𝑋,𝒪), is always a submodule, respec-
tively a quotient, of a free Λ-module. The free modules in question are isomorphic



94 J.M. Rabin

to the cohomologies of the associated split supercurve, and their ranks can be
found from the Riemann-Roch theorem applied to 𝑋red and 𝒮.

The validity of Serre duality for supercurves can be traced to the fact that
the Grassmann algebra Λ is a self-injective, or Gorenstein, ring [9, 10]. This means
that linear functionals behave almost as nicely as they do on a vector space: any
Λ-linear functional on an ideal 𝐼 ⊂ Λ is given by multiplication by an element of
Λ, modulo those elements that annihilate the ideal.

3. Divisors and the dual curve

We use the standard basis for vector fields on a supercurve, ∂ = ∂𝑧, 𝐷 = ∂𝜃+𝜃∂𝑧 ,
and observe that 𝐷2 = 1

2 [𝐷,𝐷] = ∂. A divisor on 𝑋 is a subvariety of dimension
0∣1, locally given by an even equation 𝐺(𝑧, 𝜃) = 0 with 𝐺red not identically zero.
For example, 𝑧 − 𝑧0 − 𝜃𝜃0 = 0 locally defines a divisor. In general, near a simple
zero of 𝐺red, 𝐺(𝑧, 𝜃) contains a factor 𝑧 − 𝑧0 − 𝜃𝜃0 with the parameters 𝑧0, 𝜃0

determined by the conditions

𝐺(𝑧0, 𝜃0) = 𝐷𝐺(𝑧0, 𝜃0) = 0. (4)

This follows from the Taylor series expansion in the form

𝐺(𝑧, 𝜃) =
∞∑
𝑗=0

1

𝑗!
(𝑧 − 𝑧0 − 𝜃𝜃0)

𝑗 [∂𝑗𝐺(𝑧0, 𝜃0) + (𝜃 − 𝜃0)𝐷∂𝑗𝐺(𝑧0, 𝜃0)]. (5)

Although irreducible divisors depend on two parameters (𝑧0, 𝜃0) just like Λ-
valued points, a crucial observation is that they are not points. To see this, we ask
how the parameters of the same divisor are related in two overlapping charts. This
is easily computed by using the transition functions to write

𝑧 − 𝑧0 − 𝜃𝜃0 = 𝐹 (𝑧, 𝜃)− 𝑧0 −Ψ(𝑧, 𝜃)𝜃0, (6)

and applying the conditions (4) to this function 𝐺 to obtain

𝑧0 = 𝐹 (𝑧0, 𝜃0) +
𝐷𝐹 (𝑧0, 𝜃0)

𝐷Ψ(𝑧0, 𝜃0)
Ψ(𝑧0, 𝜃0), 𝜃0 =

𝐷𝐹 (𝑧0, 𝜃0)

𝐷Ψ(𝑧0, 𝜃0)
. (7)

Thus the parameters of a divisor have their own transformation rule distinct from
that of points. It is automatic that these new transition functions satisfy a cocycle
condition and thus they define a new supercurve denoted �̂� and called the dual
to 𝑋 . It has the same reduced curve, and due to the symmetry of the function
𝑧 − 𝑧0 − 𝜃𝜃0 between (𝑧, 𝜃) and (𝑧0, 𝜃0), the dual of �̂� is necessarily 𝑋 again.
Thus, supercurves naturally occur in pairs, with the points of each representing
the irreducible divisors of the other [11]. Not only does either supercurve determine
the other, but a chosen atlas on one determines an associated atlas with the same
collection of charts on the other.

We easily determine the duals of our basic examples of supercurves. For split
𝑋 , we find �̂� = (𝑋red,𝐾𝒮−1). That is, this duality simply acts as Serre duality
on the line bundle characterizing 𝑋 . The dual of the super elliptic curve 𝑋 with
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parameters 𝜏, 𝜖, 𝛿 is again a super elliptic curve, with parameters 𝜏 + 𝜖𝛿, 𝛿, 𝜖. Note
in particular the interchange 𝜖 ↔ 𝛿.

Riemann surfaces are special among algebraic varieties in that their irre-
ducible divisors coincide with their points. We have seen that general supercurves
do not share this property. The super-analog of a Riemann surface would thus be
a self-dual supercurve. These are the “super Riemann surfaces” (also known as
superconformal manifolds or SUSY curves) introduced in connection with string
theory in the 1980s. From (7) we find that the transition functions of a super Rie-
mann surface are “superconformal”, meaning that 𝐷𝐹 = Ψ𝐷Ψ. For split 𝑋 this
means 𝒮2 = 𝐾, so that the Serre self-dual line bundle 𝒮 defines a spin structure
on 𝑋red. For super elliptic curves self-duality means 𝜖 = 𝛿.

4. Differentials, integration, line bundles

The fundamental exact sequence underlying contour integration theory for super-
curves is

0→ Λ→ 𝒪 𝐷→ B̂er→ 0. (8)

It is the analog of the sequence

0→ ℂ → 𝒪 𝑑→ Ω1 → 0 (9)

on a Riemann surface. That is, given representatives 𝐹 (𝑧, 𝜃) of a function in some
local charts on 𝑋 , one can check that the derivatives 𝐷𝐹 (𝑧, 𝜃) transform as local

sections of the canonical bundle B̂er of the dual curve �̂� [following the cosmetic

replacement of the arguments (𝑧, 𝜃) by (𝑧, 𝜃)]. Sections �̂� of B̂er should be viewed

as “holomorphic differentials” on �̂�, and locally have antiderivatives with respect
to 𝐷, which are functions on 𝑋 determined up to a constant. An antiderivative of

𝑓(𝑧)+𝜃𝜙(𝑧) is 𝜃𝑓(𝑧)+
∫ 𝑧

𝜙. Note that integration is parity-reversing, in addition to
mapping between a curve and its dual. Once we have local antiderivatives, contour

integrals of the form
∫ 𝑄
𝑃 �̂� make sense, as follows. If the points 𝑃 and 𝑄 of 𝑋 lie in

a single (contractible) chart, and 𝐹 is an antiderivative of �̂� in this chart, then the
integral is defined to be 𝐹 (𝑄)− 𝐹 (𝑃 ). More generally, we define a super contour
𝐶 as the pair of points 𝑃,𝑄 together with a contour from 𝑃red to 𝑄red on 𝑋red,
and we choose a sequence of points 𝑃 = 𝑃1, 𝑃2, . . . , 𝑃𝑘 = 𝑄 along this contour
such that each consecutive pair lies in a common chart. Then the contour integral
is defined to be ∫

𝐶

�̂� =

𝑘−1∑
𝑖=1

∫ 𝑃𝑖+1

𝑃𝑖

�̂�. (10)

As for Riemann surfaces, this is independent of the choice of intermediate points.
Similarly, periods and residues of a meromorphic differential make sense: the

former is the integral around a nontrivial homology cycle (for example, one of the
basis 𝐴 and 𝐵 cycles) and the latter is the integral around a closed contour encir-
cling a pole. Among the classical facts about Riemann surfaces which generalize
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to this context, I point out the Riemann bilinear period relation for holomorphic
differentials, which here takes the form

𝑔∑
𝑖=1

[𝐴𝑖(𝜔)𝐵𝑖(�̂�)−𝐵𝑖(𝜔)𝐴𝑖(�̂�)] = 0. (11)

Here 𝑔 is the genus of the (reduced) curve, 𝜔 and �̂� are arbitrary and indepen-

dent holomorphic differentials on 𝑋 and �̂� respectively, and the notation 𝐴𝑖(𝜔)
denotes the period of 𝜔 around the cycle 𝐴𝑖. On a Riemann surface, this relation
is responsible for the symmetry of the period matrix.

As usual, a line bundle on 𝑋 is defined by even, invertible transition functions
𝑔𝑖𝑗(𝑧, 𝜃) in chart overlaps 𝑈𝑖 ∩𝑈𝑗, satisfying a cocycle condition, and line bundles
are therefore classified by 𝐻1(𝑋,𝒪×ev). The usual exponential exact sequence

0→ ℤ → 𝒪ev
exp 2𝜋𝑖⋅−→ 𝒪×ev → 0 (12)

holds, and shows that degree-zero bundles are classified by the component of the
Picard group Pic0(𝑋) = 𝐻1(𝑋,𝒪ev)/𝐻

1(𝑋,ℤ). By means of Serre and Poincaré
duality, this is isomorphic to the Jacobian

Jac(𝑋) = 𝐻0(𝑋,Ber)∗odd/𝐻1(𝑋,ℤ).

This isomorphism is given explicitly by the Abel map: a degree-zero bundle
on 𝑋 can be described by the divisor

∑
𝑎 𝑛𝑎𝑃𝑎 of a meromorphic section, and cor-

responds to the odd linear functional on holomorphic differentials (on 𝑋) given by∑
𝑎

𝑛𝑎

∫ 𝑃𝑎

𝑃0

modulo periods. Here
∑

𝑎 𝑛𝑎 = 0, and 𝑃0 is an arbitrary basepoint on �̂�. Abel’s
Theorem is due to [12] in the (free) super Riemann surface case, and to [6] in
general.

5. Abel’s theorem and Jacobi inversion

The classical Abel’s Theorem characterizes those divisors of degree zero which are
the divisor of some meromorphic function on a Riemann surface. The analog for
supercurves was proved in [6] and states that a degree-zero divisor Δ =

∑
𝑎 𝑛𝑎𝑃𝑎

is the divisor of a meromorphic function 𝐹 if and only if the associated linear

functional
∑

𝑎 𝑛𝑎
∫ 𝑃𝑎
𝑃0
acting on 𝐻0(𝑋,Ber) vanishes modulo periods. That is, the

value of this linear functional on any holomorphic differential is equal to the period
of the differential around some fixed cycle which is the same for all differentials.
Among many classical proofs of Abel’s Theorem, that in [5] is based on criteria for
the existence of meromorphic differentials with specified poles and residues on 𝑋 .
In order to better understand such criteria in the super case, M. Rothstein and I
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(work in progress) are adapting this proof to supercurves. A key ingredient is the
Riemann reciprocity law generalizing the above bilinear relation:

𝑔∑
𝑖=1

[𝐴𝑖(𝜔)𝐵𝑖(𝜂)−𝐵𝑖(𝜔)𝐴𝑖(𝜂)] = 2𝜋𝑖
∑
𝑎

res𝑃𝑎(𝜂)

∫ 𝑃𝑎

𝑃0

𝜔. (13)

Here 𝜔 is a holomorphic differential on 𝑋 , 𝜂 is a meromorphic differential on �̂� ,
and the equation holds on the simply-connected interior of the 2𝑔-sided polygon
obtained by cutting 𝑋 open along the cycles 𝐴𝑖, 𝐵𝑖.

Here is a sketch of the proof of Abel’s Theorem in the case of split 𝑋 , which
is technically simplest. The “easy” direction assumes that the divisor Δ is that of
a meromorphic function 𝐹 , in which case we set 2𝜋𝑖𝜂 = 𝐷 log𝐹 and apply (13).
The right side becomes the Abel map associated to the divisor, and the left side
is an integer combination of periods of 𝜔.

For the “hard” direction we have a divisor Δ whose associated linear func-
tional is zero mod periods, and we must construct a meromorphic 𝐹 with this
divisor, which we do by first constructing the differential 2𝜋𝑖𝜂 which would be
𝐷 log𝐹 . Recall that the sum of residues of a meromorphic differential at all poles
vanishes. If 𝜂 is such a differential on �̂� then so is �̂�𝜂 for any holomorphic function
�̂�. The new ingredient in the super case is that ℎ0(𝒮) such nonconstant holomor-
phic functions do generally exist. Thus, the residues of 𝜂 must satisfy 1∣ℎ0(𝒮)
vanishing conditions, which turn out to be sufficient as well as necessary for the
existence of such a differential. These conditions can be shown to hold for the
differential we seek, because the divisor has degree zero (1 condition) and because
the Abel linear functional is assumed to vanish on the holomorphic differentials
𝐷�̂� (ℎ0(𝒮) conditions). Now that we have a differential with appropriate residues
to be (𝐷 log𝐹 )/2𝜋𝑖, its periods can be adjusted to be integers by adding a suitable
combination of holomorphic differentials from 𝐻0(𝑋,Ber); we then reconstruct 𝐹
by integration and exponentiation. This is all as in the classical proof.

We have not completed the proof in the general case, but believe that it
presents only technical obstacles. The major complication is that 𝐻0(𝑋,Ber) is
not freely generated; in particular it does not have a basis 𝜔𝑗 normalized as in the
classical case to have A-periods 𝐴𝑖(𝜔𝑗) = 𝛿𝑖𝑗 . One must show that nevertheless
there are enough holomorphic differentials to adjust the periods of 𝜂 as required
in the last step of the proof.

More information about the Abel map is provided by the classical Jacobi
Inversion Theorem, which is also the subject of work in progress. The naive super
analog would say that every point in the Jacobian of𝑋 is the image under the Abel
map of a “𝑔-point divisor” having the form Δ =

∑𝑔
𝑎=1(𝑃𝑎 −𝑃0). This is not quite

true as stated; again we can only sketch the situation in the split case thus far.

Let the points 𝑃𝑎 have coordinates (𝑧𝑎, 𝜃𝑎) in some chart. The divisor Δ
corresponds to the linear functional that sends the odd holomorphic differentials

𝜃𝜔𝑗 to
∑

𝑎

∫ 𝑧𝑎
𝑧0

𝜔𝑗 , and the even differentials 𝑠𝑗 to
∑

𝑎 𝜃𝑠𝑗(𝑧)∣𝑃𝑎𝑃0
. Given the images

of all these differentials, the Jacobi Inversion Problem is to determine the 𝑔 points
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𝑃𝑎. In the split case, their even and odd coordinates can be found separately. The

classical Jacobi Inversion Theorem determines the 𝑧𝑎 from the values of
∑

𝑎

∫ 𝑧𝑎
𝑧0

𝜔𝑗 .

Knowing these, the prescribed values of
∑

𝑎 𝜃𝑠𝑗(𝑧)∣𝑃𝑎𝑃0
give a system of ℎ0(𝒮) linear

equations in 𝑔 unknowns for the 𝜃𝑎. Thus, the divisor is determined uniquely if
ℎ0(𝒮) = 𝑔 and the coefficient matrix 𝑠𝑗(𝑧𝑎) has maximal rank. The solution is

nonunique, and the Abel map has a nontrivial fiber, if ℎ0(𝒮) < 𝑔. Finally, if

ℎ0(𝒮) > 𝑔 one generally needs to allow for more than 𝑔 points in the divisor Δ.

6. Open problems

Most of the classical theory of Riemann surfaces was extended to super Riemann
surfaces during the 1980s, at least under the simplifying assumption that relevant
cohomology groups were free modules. Much has now been further extended to
general supercurves, and without restriction on the cohomology, but many inter-
esting questions remain open. For lack of space I mention just two.

Can the duality between 𝑋 and �̂� be described explicitly in terms of clas-
sical algebraic geometry? That is, if 𝑋 is given explicitly as the solution set of
some polynomial equations in a projective superspace, can the equations of �̂� be
constructed?

Theta functions for supercurves need to be better understood. Such theta
functions exist when the Jacobian is free, and are related to the super tau func-
tions associated to supersymmetric integrable systems [6, 13]. They can also be
constructed on super elliptic curves, for example

𝐻(𝑧, 𝜃) =
∑
𝑛∈ℤ

exp𝜋𝑖

(
2𝑛𝑧 + 𝑛2𝜏 + 𝑛𝜃𝜖+ 𝑛2𝜃𝜖+

1

3
𝑛3𝛿𝜖

)
(14)

is such a theta function. By this I mean that it is invariant under the 𝐴 transfor-
mation but acquires a phase linear in the coordinates under 𝐵:

𝐻(𝑧 + 𝜏 + 𝜃𝜖, 𝜃 + 𝛿) = 𝐻(𝑧, 𝜃) exp−𝜋𝑖

(
2𝑧 + 𝜏 + 2𝜃𝜖+

1

3
𝛿𝜖

)
. (15)

One can define a theta subvariety of the Jacobian as the image by the Abel map
of (𝑔− 1)-point divisors. Assuming free cohomology, it would be expected to have
codimension 1∣0, making it a true theta divisor, if ℎ1(𝑋red,𝒮) = 𝑔−1. Its properties
are completely unexplored.

References

[1] J.M. Rabin. The geometry of the super KP flows. Commun. Math. Phys., 137:533–
552, 1991.

[2] P. Deligne and J. Morgan. Notes on supersymmetry (following Joseph Bernstein).
In P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D. Morrison,



Duality and the Abel Map for Complex Supercurves 99

and E. Witten, editors, Quantum Fields and Strings, A Course for Mathematicians,
volume 1, pages 41–97. American Mathematical Society, Providence, 1999.

[3] Yu.I. Manin. Gauge Field Theory and Complex Geometry, volume 289 of Grundlehren
Math. Wiss. Springer-Verlag, Berlin, 1988.

[4] H.M. Farkas and I. Kra. Riemann Surfaces. Springer-Verlag, New York, second edi-
tion, 1991.

[5] P. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley, New York, 1978.

[6] M.J. Bergvelt and J.M. Rabin. Supercurves, their Jacobians, and super KP equa-
tions. Duke Math. J., 98(1):1–57, 1999.

[7] C. Haske and R.O. Wells Jr. Serre duality on complex supermanifolds. Duke Math.
J., 54:493–500, 1987.

[8] O.V. Ogievetsky and I.B. Penkov. Serre duality for projective supermanifolds. Funct.
Analysis Appl., 18:78–79, 1984.
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1. Introduction

Coherent states are quite well known, wide-spread and extremely useful tools.
Their definition depends on the context of the theory and the objects. It is not
the intention of this review to give another overview of this huge subject. For this
I refer to the existing ones, e.g., see [1], [2].

Coherent states techniques were always one of the important topics of the
Bial̷owieża meetings. Berezin contributed in an essential manner to the theory
of coherent states on Kähler manifolds [3], [4], [5], [6], [7]. Starting from coherent
states he introduced co- and contravariant symbols, the Berezin transform relating
these and deduced important results on the deformation quantization (star prod-
ucts) of Kähler manifolds. To be more precise, Berezin only considered certain
homogeneous spaces, like certain open domains in ℂ𝑛, e.g., the unit disk.

Rawnsley, and Cahen, Gutt, and Rawnsley extended these objects to the
case of Kähler manifolds which are not necessarily open domains in ℂ𝑛 [8], [9],
[10], [11], [12]. In these cases one needs the existence of a quantum line bundle.
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If such a quantum line bundle exists the manifold is called quantizable. In this
approach the coherent vectors are parametrized by the elements of the total space
of the quantum line bundle. Covariant symbols can be defined. Under restrictive
conditions on the manifolds the authors obtain a star product.

In this review we give the definitions and the results for compact quantizable
Kähler manifolds without any restriction whatsoever. Starting from a compact
Kähler manifold admitting a quantum line bundle we will recall the definition and
the results about the Berezin-Toeplitz operator and deformation quantization. We
will introduce coherent vectors and states in the spirit of Berezin-Rawnsley. There
is only a small modification, as our coherent vectors are parametrized by the
elements of the total space of the dual of the quantum line bundle. This has the
advantage that taking the semi-classical limit (by considering all tensor powers of
the quantum line bundle) will be easier. With the help of the coherent states we will
introduce covariant and contravariant symbols, and the Berezin transform relating
them. We will present strong asymptotic approximation results for the Berezin
transform based on an asymptotic expansion of the Bergman kernel outside the
diagonal. In particular, the existence of the Berezin transform (which we will show)
gives a way to define what generalizes the Berezin star product also to the case of
arbitrary (quantizable) compact Kähler manifolds. We obtain for every quantizable
compact Kähler manifold three different star product, the Berezin-Toeplitz ★𝐵𝑇 ,
the Berezin ★𝐵, and the star product of geometric quantization ★𝐺𝑄. It turns
out that they are all equivalent. We give the equivalence transformations between
them. For example, the equivalence between ★𝐵𝑇 and ★𝐵 is given by the (formal)
Berezin transform. Moreover, the Berezin transform will be helpful to calculate
coefficients for the star products.

These results are obtained partly in joint work with M. Bordemann and E.
Meinrenken, resp. with Alexander Karabegov [13], [14], [15], [16], [17], [18]. Despite
the fact that some of the presented results (suitably modified) are valid also for
certain non-compact situations, due to space limitation we will concentrate here
from the very beginning on the compact Kähler case.

As far as the basics of the Berezin-Toeplitz quantization technique are con-
cerned see additionally the reviews [19], [20].

2. The geometric setup

We will only consider phase-space manifolds which carry the structure of a compact
Kähler manifold (𝑀,𝜔). Recall that 𝑀 is a complex manifold (say of complex
dimension 𝑛) and 𝜔, the Kähler form, is a non-degenerate closed positive (1, 1)-
form.

Denote by 𝐶∞(𝑀) the algebra of complex-valued (arbitrary often) differen-
tiable functions with point-wise multiplication as associative product. If we forget
the complex structure of 𝑀 , our form 𝜔 will become a symplectic form and we
can introduce on 𝐶∞(𝑀) a Lie algebra structure, the Poisson bracket {., .}, in the
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following way. First we assign to every 𝑓 ∈ 𝐶∞(𝑀) its Hamiltonian vector field
𝑋𝑓 , and then to every pair of functions 𝑓 and 𝑔 the Poisson bracket {., .} via

𝜔(𝑋𝑓 , ⋅) = 𝑑𝑓(⋅), { 𝑓, 𝑔 } := 𝜔(𝑋𝑓 , 𝑋𝑔) . (1)

In this way 𝐶∞(𝑀) becomes a Poisson algebra.

The next step in the geometric set-up is the choice of a quantum line bundle.
In the Kähler case a quantum line bundle for (𝑀,𝜔) is a triple (𝐿, ℎ,∇), where 𝐿
is a holomorphic line bundle, ℎ a Hermitian metric on 𝐿, and ∇ a connection com-
patible with the metric ℎ and the complex structure, such that the (pre)quantum
condition

curv𝐿,∇(𝑋,𝑌 ) := ∇𝑋∇𝑌 −∇𝑌 ∇𝑋 −∇[𝑋,𝑌 ] = − i𝜔(𝑋,𝑌 ),

in other words curv𝐿,∇ = − i𝜔 (2)

is fulfilled. Note that by the compatibility ∇ is uniquely fixed. In fact, with respect
to a local holomorphic frame of the bundle the metric ℎ will be represented by a

function ℎ̂. In this case the curvature of the bundle is given by ∂∂ log ℎ̂ and the
quantum condition reads as

i ∂∂ log ℎ̂ = 𝜔 . (3)

Remark. Not all Kähler manifolds are quantizable. For example, only those higher-
dimensional complex tori are quantizable which admit “enough theta functions”,
i.e., which are abelian varieties. This is due to the fact, that an important con-
sequence from the quantization condition (2) is that 𝐿 is a positive line bundle.
By the Kodaira embedding theorem there exists a positive tensor power 𝐿⊗𝑚0

which has enough global holomorphic sections to embed the manifold 𝑀 via these
sections into a projective space ℙ𝑁(ℂ). Such a bundle 𝐿⊗𝑚0 is called very ample.
In the following we will always assume that the quantum bundle 𝐿 itself is already
very ample. This is not a restriction as 𝐿⊗𝑚0 will be a quantum line bundle for
the rescaled Kähler form 𝑚0𝜔.

Next, we consider all positive tensor powers of the quantum line bundle:
(𝐿𝑚, ℎ(𝑚),∇(𝑚)), here 𝐿𝑚 := 𝐿⊗𝑚. We introduce a scalar product on the space of
sections. First we take the Liouville form Ω = 1

𝑛!𝜔
∧𝑛 as volume form on 𝑀 and

then set for the scalar product and the norm

⟨𝜑, 𝜓⟩ :=
∫
𝑀

ℎ(𝑚)(𝜑, 𝜓) Ω , ∣∣𝜑∣∣ :=
√
⟨𝜑, 𝜑⟩ , (4)

on the space Γ∞(𝑀,𝐿𝑚) of global 𝐶∞-sections. Let L2(𝑀,𝐿𝑚) be the L2-com-
pleted space of sections with respect to this norm. Furthermore, let Γhol(𝑀,𝐿𝑚)
be the (finite-dimensional) subspace consisting of global holomorphic section and

Π(𝑚) : L2(𝑀,𝐿𝑚)→ Γhol(𝑀,𝐿𝑚) (5)

the corresponding orthogonal projection.
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3. Berezin-Toeplitz operators

One of the important mathematical aspects of quantization is to replace the clas-
sical observable, which is mathematically a function on the phase space, by an
operator, which acts on a certain Hilbert space. In the Berezin-Toeplitz (BT) op-
erator quantization this is done like follows.

For a function 𝑓 ∈ 𝐶∞(𝑀) the associated Toeplitz operator 𝑇
(𝑚)
𝑓 (of level

𝑚) is defined by

𝑇
(𝑚)
𝑓 := Π(𝑚) (𝑓 ⋅) : Γhol(𝑀,𝐿𝑚)→ Γhol(𝑀,𝐿𝑚) . (6)

In words: One takes a holomorphic section 𝑠 and multiplies it with the differentiable
function 𝑓 . The resulting section 𝑓 ⋅ 𝑠 will only be differentiable. To obtain a
holomorphic section, one has to project it back on the subspace of holomorphic
sections.

The space Γhol(𝑀,𝐿𝑚) is the quantum space (of level 𝑚). The linear map

𝑇 (𝑚) : 𝐶∞(𝑀)→ End
(
Γhol(𝑀,𝐿𝑚)

)
, 𝑓 → 𝑇

(𝑚)
𝑓 = Π(𝑚)(𝑓 ⋅) ,𝑚 ∈ ℕ0 (7)

is the Toeplitz or Berezin-Toeplitz quantization map (of level 𝑚). It will neither
be a Lie algebra homomorphism nor an associative algebra homomorphism as in
general

𝑇
(𝑚)
𝑓 𝑇 (𝑚)

𝑔 = Π(𝑚) (𝑓 ⋅)Π(𝑚) (𝑔⋅)Π(𝑚) ∕= Π(𝑚) (𝑓𝑔⋅)Π = 𝑇
(𝑚)
𝑓𝑔 .

As 𝑀 is a compact Kähler manifold the space Γhol(𝑀,𝐿𝑚) is finite-dimensional.
Hence, on a fixed level 𝑚 the BT quantization is a map from the infinite-dimen-
sional commutative algebra of functions to a non-commutative finite-dimensional
(matrix) algebra. A lot of classical information will get lost. To recover this infor-
mation one has to consider not just a single level 𝑚 but all levels together as done
in the

Definition 1. The Berezin-Toeplitz (BT) quantization is the map

𝐶∞(𝑀)→
∏

𝑚∈ℕ0

End(Γhol(𝑀,𝐿(𝑚))), 𝑓 → (𝑇
(𝑚)
𝑓 )𝑚∈ℕ0 . (8)

In this way a family of finite-dimensional (matrix) algebras and a family of
maps are obtained, which in the classical limit should “converges” to the algebra
𝐶∞(𝑀). That this is indeed the case and what “convergence” means will be made
precise in the following.

We denote for 𝑓 ∈ 𝐶∞(𝑀) by ∣𝑓 ∣∞ the sup-norm of 𝑓 on 𝑀 and by

∣∣𝑇 (𝑚)
𝑓 ∣∣ := sup

𝑠∈Γhol(𝑀,𝐿𝑚)
𝑠∕=0

∣∣𝑇 (𝑚)
𝑓 𝑠∣∣
∣∣𝑠∣∣ (9)

the operator norm with respect to the norm (4) on Γhol(𝑀,𝐿𝑚).
The following theorem was shown in 1994.
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Theorem 1 (Bordemann, Meinrenken, Schlichenmaier, [13]).

(a) For every 𝑓 ∈ 𝐶∞(𝑀) there exists a 𝐶 > 0 such that

∣𝑓 ∣∞ − 𝐶

𝑚
≤ ∣∣𝑇 (𝑚)

𝑓 ∣∣ ≤ ∣𝑓 ∣∞ . (10)

In particular, lim𝑚→∞ ∣∣𝑇 (𝑚)
𝑓 ∣∣ = ∣𝑓 ∣∞.

(b) For every 𝑓, 𝑔 ∈ 𝐶∞(𝑀)

∣∣𝑚 i [𝑇 (𝑚)
𝑓 , 𝑇 (𝑚)

𝑔 ]− 𝑇
(𝑚)
{𝑓,𝑔}∣∣ = 𝑂

(
1

𝑚

)
. (11)

(c) For every 𝑓, 𝑔 ∈ 𝐶∞(𝑀)

∣∣𝑇 (𝑚)
𝑓 𝑇 (𝑚)

𝑔 − 𝑇
(𝑚)
𝑓 ⋅𝑔 ∣∣ = 𝑂

(
1

𝑚

)
. (12)

See also [19] for a sketch of the proof. These results can be rephrased that the
BT operator quantization has the correct semi-classical limit, or that it is a strict
quantization in the sense of Rieffel.

Let us mention that for real-valued 𝑓 the Toeplitz operator 𝑇
(𝑚)
𝑓 will be

selfadjoint. Beside other results from [13] the following will be also useful

Proposition 2. On every level 𝑚 the Toeplitz map

𝐶∞(𝑀)→ End(Γhol(𝑀,𝐿(𝑚))), 𝑓 → 𝑇
(𝑚)
𝑓 ,

is surjective.

There exists another quantum operator in the geometric setting, the operator
of geometric quantization introduced by Kostant and Souriau. In a first step the
prequantum operator associated to the bundle 𝐿𝑚 for the function 𝑓 ∈ 𝐶∞(𝑀)
is defined as 𝑃

(𝑚)
𝑓 := ∇(𝑚)

𝑋
(𝑚)
𝑓

+ i 𝑓 ⋅ 𝑖𝑑. Here 𝑋
(𝑚)
𝑓 the Hamiltonian vector field

of 𝑓 with respect to the Kähler form 𝜔(𝑚) = 𝑚 ⋅ 𝜔. Next one has to choose a
polarization. In general it will not be unique. But in our complex situation there is
a canonical one by taking the projection to the space of holomorphic sections. This
polarization is called Kähler polarization. The operator of geometric quantization
is then defined by

𝑄
(𝑚)
𝑓 := Π(𝑚)𝑃

(𝑚)
𝑓 . (13)

By the surjectivity of the Toeplitz map there exists a function 𝑓𝑚, depending on

the level 𝑚, such that 𝑄
(𝑚)
𝑓 = 𝑇

(𝑚)
𝑓𝑚
. The Tuynman lemma [21] gives

𝑄
(𝑚)
𝑓 = i ⋅ 𝑇 (𝑚)

𝑓− 1
2𝑚Δ𝑓

, (14)

where Δ is the Laplacian with respect to the Kähler metric given by 𝜔. It should
be noted that for (14) the compactness of 𝑀 is essential.

As a consequence the operators 𝑄
(𝑚)
𝑓 and the 𝑇

(𝑚)
𝑓 have the same asymptotic

behavior.
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4. The Berezin-Toeplitz deformation quantization

There is another approach to quantization. One deforms the commutative algebra
of functions “into non-commutative directions given by the Poisson bracket”. It
turns out that this can only be done on the formal level. One obtains a deformation
quantization, also called star product. This notion was around quite a long time.
In particular, also Berezin approached the quantization of Kähler manifolds from
this perspective, see [7], [3], [4], [5], [6]. Finally, the notion was formalized in [22].

Recall that for a given Poisson algebra (𝐶∞(𝑀), ⋅, { , }) of smooth functions
on a manifold𝑀 , a star product for 𝑀 is an associative product ★ on 𝐶∞(𝑀)[[𝜈]],
the space of formal power series with coefficients from 𝐶∞(𝑀), such that for
𝑓, 𝑔 ∈ 𝐶∞(𝑀)

1. 𝑓 ★ 𝑔 = 𝑓 ⋅ 𝑔 mod 𝜈,
2. (𝑓 ★ 𝑔 − 𝑔 ★ 𝑓) /𝜈 = i{𝑓, 𝑔} mod 𝜈.

It can be expressed as

𝑓 ★ 𝑔 =

∞∑
𝑘=0

𝜈𝑘𝐶𝑘(𝑓, 𝑔), 𝐶𝑘(𝑓, 𝑔) ∈ 𝐶∞(𝑀). (15)

It is called differential (or local) if the 𝐶𝑘( , ) are bidifferential operators with
respect to their entries.

Two star products ★ and ★′ for the same Poisson structure are called equiva-
lent if and only if there exists a formal series of linear operators

𝐵 =
∞∑
𝑖=0

𝐵𝑖𝜈
𝑖, 𝐵𝑖 : 𝐶

∞(𝑀)→ 𝐶∞(𝑀),

with 𝐵0 = 𝑖𝑑 such that 𝐵(𝑓) ★′ 𝐵(𝑔) = 𝐵(𝑓 ★ 𝑔).

To every equivalence class of a star product its Deligne-Fedosov class can be
assigned. It is a formal deRham class of the form 𝑐𝑙(★) ∈ 1

i (
1
𝜈 [𝜔]+H

2
𝑑𝑅(𝑀,ℂ)[[𝜈]]).

This assignment gives a 1:1 correspondence between equivalence classes of star
products and such formal forms.

In the Kähler case we might look for star products adapted to the complex
structure. Karabegov [23] introduced the notion of star products with separation
of variable type for differential star products. The star product is of this type if
in 𝐶𝑘(., .) for 𝑘 ≥ 1 the first argument is only differentiated in holomorphic and
the second argument in anti-holomorphic directions. Bordemann and Waldmann
in their construction [24] used the name star product of Wick type.1 All such star
products ★ are uniquely given by their Karabegov form 𝑘𝑓(★) which is a formal
closed (1, 1) form.

1In Karabegov’s original approach the role of holomorphic and antiholomorphic variables are
switched, i.e., in the approach of Bordemann-Waldmann they are of anti-Wick type.
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Theorem 3 ([13], [15], [25], [17], [14]). There exists a unique differential star product

𝑓 ★𝐵𝑇 𝑔 =
∑

𝜈𝑘𝐶𝑘(𝑓, 𝑔) (16)

such that

𝑇
(𝑚)
𝑓 𝑇 (𝑚)

𝑔 ∼
∞∑
𝑘=0

(
1

𝑚

)𝑘
𝑇

(𝑚)
𝐶𝑘(𝑓,𝑔). (17)

This star product is of separation of variables type with classifying Deligne-Fedosov
class 𝑐𝑙 and Karabegov form 𝑘𝑓

𝑐𝑙(★𝐵𝑇 ) =
1

i

(
1

𝜈
[𝜔]− 𝛿

2

)
, 𝑘𝑓(★𝐵𝑇 ) =

−1
𝜈

𝜔 + 𝜔can. (18)

First, the asymptotic expansion in (17) has to be understood in a strong operator
norm sense. Second, the used forms, resp. classes are defined as follows. Let 𝐾𝑀

be the canonical line bundle of 𝑀 , i.e., the 𝑛th exterior power of the holomorphic
bundle of 1-differentials. The canonical class 𝛿 is the first Chern class of this
line bundle, i.e., 𝛿 := 𝑐1(𝐾𝑀 ). If we take in 𝐾𝑀 the fiber metric coming from
the Liouville form Ω then this defines a unique connection and further a unique
curvature (1, 1)-form 𝜔can. In our sign conventions we have 𝛿 = [𝜔can].

Using Theorem 1 and the Tuynman relation (14) one can show that there
exists a star product ★𝐺𝑄 given by asymptotic expansion of the product of geo-
metric quantization operators. The star product ★𝐺𝑄 is equivalent to ★𝐵𝑇 , via the

equivalence 𝐵(𝑓) := (𝑖𝑑 − 𝜈 Δ
2 )𝑓 . In particular, it has the same Deligne-Fedosov

class. But it is not of separation of variable type.

5. The disc bundle

Before we can discuss coherent vectors, states, etc. in our general Kähler manifold
setting we have to introduce the disc bundle. Recall that our quantum line bundle
𝐿 was assumed to be already very ample. We pass to its dual line bundle (𝑈, 𝑘) :=
(𝐿∗, ℎ−1) with dual metric 𝑘. In the example of the projective space, the quantum
line bundle is the hyperplane section bundle and its dual is the tautological line
bundle. Inside the total space 𝑈 , we consider the circle bundle

𝑄 := {𝜆 ∈ 𝑈 ∣ 𝑘(𝜆, 𝜆) = 1},
and denote by 𝜏 : 𝑄 → 𝑀 (or 𝜏 : 𝑈 → 𝑀) the projections to the base manifold
𝑀 .

The bundle 𝑄 is a contact manifold, i.e., there is a 1-form 𝜈 such that 𝜇 =
1

2𝜋 𝜏
∗Ω ∧ 𝜈 is a volume form on 𝑄. Moreover,∫

𝑄

(𝜏∗𝑓)𝜇 =
∫
𝑀

𝑓 Ω, ∀𝑓 ∈ 𝐶∞(𝑀). (19)

Denote by L2(𝑄,𝜇) the corresponding 𝐿2-space on 𝑄. Let ℋ be the space of
(differentiable) functions on 𝑄 which can be extended to holomorphic functions on
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the disc bundle (i.e., to the “interior” of the circle bundle), and ℋ(𝑚) the subspace
of ℋ consisting of 𝑚-homogeneous functions on 𝑄. Here 𝑚-homogeneous means
𝜓(𝑐𝜆) = 𝑐𝑚𝜓(𝜆). For further reference let us introduce the following (orthogonal)

projectors: the Szegö projector Π : L2(𝑄,𝜇) → ℋ, and its components Π̂(𝑚) :
L2(𝑄,𝜇)→ ℋ(𝑚), the Bergman projectors.

The bundle 𝑄 is a 𝑆1-bundle, and the 𝐿𝑚 are associated line bundles. The
sections of 𝐿𝑚 = 𝑈−𝑚 are identified with those functions 𝜓 on 𝑄 which are
homogeneous of degree 𝑚. This identification is given on the level of the L2 spaces
by the map

𝛾𝑚 : L
2(𝑀,𝐿𝑚)→ L2(𝑄,𝜇), 𝑠 �→ 𝜓𝑠 where (20)

𝜓𝑠(𝛼) = 𝛼⊗𝑚(𝑠(𝜏(𝛼))). (21)

Restricted to the holomorphic sections we obtain the unitary isomorphism 𝛾𝑚 :
Γhol(𝑀,𝐿𝑚) ∼= ℋ(𝑚).

6. Coherent vectors and states

Let us look again at (21) but now from the point of view of the linear evaluation
functional. This means, we fix 𝛼 ∈ 𝑈 ∖ 0 and vary the sections 𝑠.

The coherent vector (of level 𝑚) associated to the point 𝛼 ∈ 𝑈 ∖ 0 is the
element 𝑒

(𝑚)
𝛼 of Γhol(𝑀,𝐿𝑚) with

⟨𝑒(𝑚)
𝛼 , 𝑠⟩ = 𝜓𝑠(𝛼) = 𝛼⊗𝑚(𝑠(𝜏(𝛼))) (22)

for all 𝑠 ∈ Γhol(𝑀,𝐿𝑚). A direct verification shows 𝑒
(𝑚)
𝑐𝛼 = 𝑐𝑚 ⋅ 𝑒(𝑚)

𝛼 for 𝑐 ∈ ℂ∗ :=
ℂ ∖ {0}. Moreover, as the bundle is very ample we get 𝑒(𝑚)

𝛼 ∕= 0.
Hence the following definition is possible.

The coherent state (of level 𝑚) associated to 𝑥 ∈ 𝑀 is the projective class

e(𝑚)
𝑥 := [𝑒(𝑚)

𝛼 ] ∈ ℙ(Γhol(𝑀,𝐿𝑚)), 𝛼 ∈ 𝜏−1(𝑥), 𝛼 ∕= 0. (23)

Finally, the coherent state embedding is the antiholomorphic embedding

𝑀 → ℙ(Γhol(𝑀,𝐿𝑚)) ∼= ℙ𝑁(ℂ), 𝑥 �→ [𝑒
(𝑚)
𝜏−1(𝑥)]. (24)

See [26] for some geometric properties of the coherent state embedding.

7. Covariant Berezin symbol

For an operator 𝐴 ∈ End(Γhol(𝑀,𝐿(𝑚))) its covariant Berezin symbol 𝜎(𝑚)(𝐴) (of
level 𝑚) is defined as the real-analytic function

𝜎(𝑚)(𝐴) :𝑀 → ℂ, 𝑥 �→ 𝜎(𝑚)(𝐴)(𝑥) :=
⟨𝑒(𝑚)

𝛼 , 𝐴𝑒
(𝑚)
𝛼 ⟩

⟨𝑒(𝑚)
𝛼 , 𝑒

(𝑚)
𝛼 ⟩

, 𝛼 ∈ 𝜏−1(𝑥) ∖ {0}. (25)
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Using the coherent projectors

𝑃 (𝑚)
𝑥 =

∣𝑒(𝑚)
𝛼 ⟩⟨𝑒(𝑚)

𝛼 ∣
⟨𝑒(𝑚)

𝛼 , 𝑒
(𝑚)
𝛼 ⟩

, 𝛼 ∈ 𝜏−1(𝑥) (26)

it can be rewritten as 𝜎(𝑚)(𝐴) = Tr(𝐴𝑃
(𝑚)
𝑥 ).

Under very restrictive conditions on the manifold it is possible to construct
the Berezin star product with the help of the covariant symbol map. This was done
by Berezin himself [5], [6] and later by Cahen, Gutt, and Rawnsley [9], [10], [11],
[12] for more examples.

Denote by 𝒜(𝑚) ≤ 𝐶∞(𝑀), the subspace of functions which appear as level
𝑚 covariant symbols of operators. From the surjectivity of the Toeplitz map follows
the injectivity of the symbol map (see Section 9). Hence for the two symbols
𝜎(𝑚)(𝐴) and 𝜎(𝑚)(𝐵) the operators 𝐴 and 𝐵 are uniquely fixed, and we set as
deformed product

𝜎(𝑚)(𝐴) ★(𝑚) 𝜎
(𝑚)(𝐵) := 𝜎(𝑚)(𝐴 ⋅𝐵). (27)

Now ★(𝑚) defines on 𝒜(𝑚) an associative and non-commutative product. The cru-
cial problem is, how to obtain from ★(𝑚) a star product ★ for the functions (or
symbols) independent from the level 𝑚? In general this is only possible for very
limited classes of manifolds.

Using the Berezin transform and its properties discussed in the next section
(at least in the case of quantizable compact Kähler manifolds) we will introduce a
star product dual to the by Theorem 3 existing ★𝐵𝑇 . It will generalizes the above
star product.

8. Berezin transform

If we start with a function 𝑓 ∈ 𝐶∞(𝑀), take its Toeplitz operator 𝑇 (𝑚)
𝑓 , and then

calculate the covariant symbol we obtain a map

𝐼(𝑚) : 𝐶∞(𝑀)→ 𝐶∞(𝑀), 𝑓 �→ 𝐼(𝑚)(𝑓) := 𝜎(𝑚)(𝑇
(𝑚)
𝑓 ), (28)

which we call the Berezin transform (of level 𝑚).

Theorem 4 ([14]). Given 𝑥 ∈ 𝑀 then the Berezin transform 𝐼(𝑚)(𝑓) has a complete
asymptotic expansion in powers of 1/𝑚 as 𝑚 → ∞

𝐼(𝑚)(𝑓)(𝑥) ∼
∞∑
𝑖=0

𝐼𝑖(𝑓)(𝑥)
1

𝑚𝑖
, (29)

where 𝐼𝑖 : 𝐶
∞(𝑀)→ 𝐶∞(𝑀) are maps with 𝐼0(𝑓) = 𝑓, 𝐼1(𝑓) = Δ𝑓.
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Here Δ is the Laplacian with respect to the metric given by the Kähler form 𝜔.
By complete asymptotic expansion the following is understood. Given 𝑓 ∈ 𝐶∞(𝑀),
𝑥 ∈ 𝑀 and an 𝑟 ∈ ℕ then there exists a positive constant 𝐴 such that∣∣∣∣∣𝐼(𝑚)(𝑓)(𝑥)−

𝑟−1∑
𝑖=0

𝐼𝑖(𝑓)(𝑥)
1

𝑚𝑖

∣∣∣∣∣
∞

≤ 𝐴

𝑚𝑟
.

The proof of this theorem is quite involved. An important intermediate step of in-
dependent interest is the off-diagonal asymptotic expansion of the Bergman kernel
function in the neighborhood of the diagonal, see [14]. The Bergman projectors

Π̂(𝑚) : L2(𝑄,𝜇) → ℋ(𝑚), were introduced above. They have smooth integral ker-
nels, the Bergman kernels ℬ𝑚(𝛼, 𝛽) on 𝑄×𝑄, i.e.,

Π̂(𝑚)(𝜓)(𝛼) =

∫
𝑄

ℬ𝑚(𝛼, 𝛽)𝜓(𝛽)𝜇(𝛽).

In fact they can by expressed with the help of the coherent vectors as

ℬ𝑚(𝛼, 𝛽) = 𝜓
𝑒
(𝑚)
𝛽

(𝛼) = 𝜓
𝑒
(𝑚)
𝛼
(𝛽) = ⟨𝑒(𝑚)

𝛼 , 𝑒
(𝑚)
𝛽 ⟩.

The Berezin transform can be given as integral over 𝑄(
𝐼(𝑚)(𝑓)

)
(𝑥) =

1

ℬ𝑚(𝛼, 𝛼)

∫
𝑄

ℬ𝑚(𝛼, 𝛽)ℬ𝑚(𝛽, 𝛼)𝜏
∗𝑓(𝛽)𝜇(𝛽). (30)

Take 𝑥 = 𝜏(𝛼), 𝑦 = 𝜏(𝛽), 𝛼, 𝛽 ∈ 𝑄 and set 𝑢𝑚(𝑥) := ℬ𝑚(𝛼, 𝛼), 𝑣𝑚(𝑥, 𝑦) :=
ℬ𝑚(𝛼, 𝛽)ℬ𝑚(𝛽, 𝛼). These are well-defined functions on 𝑀 , resp. 𝑀 × 𝑀 and we
obtain another description of the Berezin transform now as integral over 𝑀(

𝐼(𝑚)(𝑓)
)
(𝑥) =

1

𝑢𝑚(𝑥)

∫
𝑀

𝑣𝑚(𝑥, 𝑦) 𝑓(𝑦)Ω(𝑦). (31)

For more information see [14], or [18] for an overview. Of course, for certain re-
stricted but important non-compact cases the Berezin transform was already intro-
duced and calculated by Berezin. It was a basic tool in his approach to quantization
[4]. For other types of non-compact manifolds similar results on the asymptotic ex-
pansion of the Berezin transform are also known. See the extensive work of Englis,
e.g., [28].

The theorem above has important applications. First, the Property (10) in
Theorem 1 is an easy consequence of the existence of the asymptotic expansion
of the Berezin transform. Due to place limitations I will skip it and refer only to
[16], [14]. Instead we will discuss applications to star products.

8.1. Application: Berezin star products

As promised we will now introduce for general quantizable compact Kähler mani-
folds the Berezin star product. We extract from the asymptotic expansion of the
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Berezin transform (29) the formal expression

𝐼 =

∞∑
𝑖=0

𝐼𝑖 𝜈
𝑖, 𝐼𝑖 : 𝐶

∞(𝑀)→ 𝐶∞(𝑀), (32)

called the formal Berezin transform, and set

𝑓 ★𝐵 𝑔 := 𝐼(𝐼−1(𝑓) ★𝐵𝑇 𝐼−1(𝑔)). (33)

As 𝐼0 = 𝑖𝑑 this ★𝐵 is a star product for our Kähler manifold, which we call the
Berezin star product. Obviously, the formal map 𝐼 gives the equivalence transfor-
mation to ★𝐵𝑇 . Hence, the Deligne-Fedosov classes will be the same. It will be of
separation of variable type now but with the role of the variables switched. When
the definition with the covariant symbol works (explained in Section 7) it will
coincide with the star product defined there.

Let us summarize. By the presented techniques we obtain for quantizable
compact Kähler manifolds three different naturally defined star products ★𝐵𝑇 ,
★𝐺𝑄, and ★𝐵. All three are equivalent and have classifying Deligne-Fedosov class

𝑐𝑙(★𝐵𝑇 ) = 𝑐𝑙(★𝐵) = 𝑐𝑙(★𝐺𝑄) =
1

i

(
1

𝜈
[𝜔]− 𝛿

2

)
. (34)

But all three are distinct. In fact ★𝐵𝑇 is of separation of variables type (Wick-
type), ★𝐵 is of separation of variables type with the role of the variables switched
(anti-Wick-type), and ★𝐺𝑄 neither. For their Karabegov forms we obtain (see [14],
[19])

𝑘𝑓(★𝐵𝑇 ) =
−1
𝜈

𝜔 + 𝜔can. 𝑘𝑓(★𝐵) =
1

𝜈
𝜔 + 𝔽(i ∂∂ log 𝑢𝑚). (35)

The function 𝑢𝑚 was introduced above. It is the Bergman kernel evaluated along
the diagonal in 𝑄 × 𝑄. The symbol 𝔽(𝑤𝑚) denotes the formal series expansion
corresponding to the asymptotic expansion of 𝑤𝑚 in terms of 1/𝑚 for 𝑚 → ∞
(i.e., if we replace 1/𝑚 by 𝜈).

In (35) we gave the Karabegov form for the star product in the convention of
Karabegov’s original definition. Hence 𝑘𝑓(★𝐵) is the direct definition. For 𝑘𝑓(★𝐵𝑇 )
this should be interpreted as the Karabegov form of the opposite star product
𝑓 ★opp

𝐵𝑇 𝑔 := 𝑔 ★𝐵𝑇 𝑓 . This is a star product with separation of variables in the
original Karabegov convention but now for the pseudo-Kähler manifold (𝑀,−𝜔).
Hence, the minus sign in (35).

Remark. Based on Fedosov’s method Bordemann and Waldmann [24] constructed
also a unique star product ★𝐵𝑊 which is of Wick type. The opposite star product
has Karabegov form 𝑘𝑓(★opp

𝐵𝑊 ) = (1/𝜈)𝜔 and it has the same Deligne Fedosov class
𝑐𝑙(★𝐵𝑊 ) as the other star products in (34). This was shown by Karabegov in [29].
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8.2. Application: Calculation of the coefficients of the star products

The proof of Theorem 3 gives a recursive definition of the coefficients 𝐶𝑘(𝑓, 𝑔). Un-
fortunately, it is not very constructive. For their calculation the Berezin transform
will also be of help. Theorem 4 shows for quantizable compact Kähler manifolds
the existence of the asymptotic expansion of the Berezin transform (29). The op-
erators 𝐼𝑖 can be expressed (at least in principle) by the asymptotic expansion
of expressions formulated in terms of the Bergman kernel. From (29) we get the
formal Berezin transform 𝐼 = 𝔽(𝐼(𝑚)) (32). If we know 𝐼 explicitly we obtain ex-
plicitly ★𝐵 by giving the coefficients 𝐶

𝐵
𝑘 (𝑓, 𝑔) of ★𝐵. For this the knowledge of the

coefficients 𝐶𝐵𝑇
𝑘 (𝑓, 𝑔) for ★𝐵𝑇 will not be needed. All we need is the existence of

★𝐵𝑇 to define ★𝐵.

We have to recall from [14] some additional information. The formal Berezin
transform 𝐼 associated to (29), which is defined with the help of the BT operators,
was identified in [14] with the formal Berezin transform in the sense of Karabegov
[23] associated to the star product dual and opposite to ★𝐵𝑇 . By its definition (33)
it is the Berezin star product ★𝐵. It is a star product of separation of variables
type (in the convention of Karabegov).

As it is a differential star product it makes sense to restrict it to open subsets.
The formal Berezin transform 𝐼 = 𝐼★ (associated to a fixed such star product ★)
is uniquely given by the condition that

𝑓 ★ 𝑔 = 𝐼(𝑔 ⋅ 𝑓) = 𝐼(𝑔 ★ 𝑓), (36)

for all local functions 𝑓, 𝑔 , 𝑓 anti-holomorphic, 𝑔 holomorphic. The last equality
is automatic and is due to the fact, that by the separation of variables property
𝑔 ★ 𝑓 is the point-wise product 𝑔 ⋅ 𝑓 . Taking the formal series for ★𝐵 (15) and for
𝐼 (32) we get

𝐶𝐵
𝑘 (𝑓, 𝑔) = 𝐼𝑘(𝑔 ⋅ 𝑓). (37)

The 𝐶𝑘 can now be obtained by “polarizing” 𝐼𝑘.

In more detail: It was shown by Karabegov, that 𝐼𝑘 is a differential operator.
In local complex coordinates it has certain derivatives in holomorphic and certain
derivatives in anti-holomorphic directions. It is a differential operator of type (𝑘, 𝑘).
The 𝐶𝑘 are bidifferential operators of order (0, 𝑘) in the first argument and order
(𝑘, 0) in the second argument. As 𝑓 is anti-holomorphic, in 𝐼𝑘 it will only see the
anti-holomorphic derivatives. The corresponding is true for the holomorphic 𝑔.

If we write 𝐼𝑘 as summation over multi-indices (𝑖) and (𝑗) we get

𝐼𝑘 =
∑

(𝑖),(𝑗)

𝑎𝑘(𝑖),(𝑗)
∂(𝑖)+(𝑗)

∂𝑧(𝑖)∂𝑧(𝑗)
, 𝑎𝑘(𝑖),(𝑗) ∈ 𝐶∞(𝑀) (38)

and obtain for the coefficient in the star product ★𝐵

𝐶𝐵
𝑘 (𝑓, 𝑔) =

∑
(𝑖),(𝑗)

𝑎𝑘(𝑖),(𝑗)
∂(𝑗)𝑓

∂𝑧(𝑗)

∂(𝑖)𝑔

∂𝑧(𝑖)
, (39)
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where the summation is limited by the order condition. Hence, knowing the com-
ponents 𝐼𝑘 of the formal Berezin transform 𝐼 gives us 𝐶𝐵

𝑘 . Moreover, from 𝐼 we can
recursively calculate the coefficients of the inverse 𝐼−1 as 𝐼 starts with 𝑖𝑑. From
𝑓 ★𝐵𝑇 𝑔 = 𝐼−1(𝐼(𝑓) ★𝐵 𝐼(𝑔)), which is the Relation (33) inverted, we can calculate
(at least recursively) the coefficients 𝐶𝐵𝑇

𝑘 . In practice, the recursive calculations
turned out to become quite involved.

I like to point out that the chain of arguments was based on the existence of
the Berezin transform and its asymptotic expansion for every quantizable compact
Kähler manifold. The asymptotic expansion of the Berezin transform itself is again
based on the asymptotic off-diagonal expansion of the Bergman kernel. Indeed, the
Toeplitz operator can also be expressed via the Bergman kernel. Based on this it is
clear that the same procedure will work also work for non-compact manifold cases
if we have at least the same (suitably adapted) objects and corresponding results.

In the purely formal star product setting studied by Karabegov [23] the set of
star products of separation of variables type, the set of formal Berezin transforms,
and the set of formal Karabegov forms are in 1:1 correspondence. Given 𝐼★ the
star product ★ can be recovered via the correspondence (38) with (39). What
generalizes ★𝐵𝑇 is the dual and opposite of ★.

9. Contravariant symbols

We need Rawnsley’s epsilon function to introduce contravariant symbols in the
general Kähler manifold setting. It is defined as

𝜖(𝑚) :𝑀 → 𝐶∞(𝑀), 𝑥 �→ 𝜖(𝑚)(𝑥) :=
ℎ(𝑚)(𝑒

(𝑚)
𝛼 , 𝑒

(𝑚)
𝛼 )(𝑥)

⟨𝑒(𝑚)
𝛼 , 𝑒

(𝑚)
𝛼 ⟩

, 𝛼 ∈ 𝜏−1(𝑥). (40)

In the classical homogeneous case considered by Berezin himself the 𝜖(𝑚) was
always constant. As 𝜖(𝑚) > 0 we introduce the modified measure

Ω(𝑚)
𝜖 (𝑥) := 𝜖(𝑚)(𝑥)Ω(𝑥)

on the space of functions on 𝑀 .
Given an operator 𝐴 ∈ End(Γhol(𝑀,𝐿(𝑚))) then a contravariant Berezin

symbol �̌�(𝑚)(𝐴) ∈ 𝐶∞(𝑀) of 𝐴 is defined by the representation of the operator 𝐴
as an integral

𝐴 =

∫
𝑀

�̌�(𝑚)(𝐴)(𝑥)𝑃 (𝑚)
𝑥 Ω(𝑚)

𝜖 (𝑥), (41)

if such a representation exists.
As a first result we quote from [19, Prop. 6.8] that the Toeplitz operator

𝑇
(𝑚)
𝑓 admits such a representation with �̌�(𝑚)(𝑇

(𝑚)
𝑓 ) = 𝑓 . This says, the function

𝑓 itself is a contravariant symbol of the Toeplitz operator 𝑇
(𝑚)
𝑓 . Note that the

contravariant symbol is not uniquely fixed by the operator.
As an immediate consequence from the surjectivity of the Toeplitz map it

follows that every operator 𝐴 has a contravariant symbol, i.e., every operator 𝐴
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has a representation (41). We have to keep in mind, that our Kähler manifolds are
compact.

Now we introduce on End(Γhol(𝑀,𝐿(𝑚))) the Hilbert-Schmidt norm

⟨𝐴,𝐶⟩𝐻𝑆 = 𝑇𝑟(𝐴∗ ⋅ 𝐶).
In [20], [16] we showed that

⟨𝐴, 𝑇
(𝑚)
𝑓 ⟩

𝐻𝑆
= ⟨𝜎(𝑚)(𝐴), 𝑓⟩(𝑚)

𝜖 . (42)

This says that the Toeplitz map 𝑓 → 𝑇
(𝑚)
𝑓 and the covariant symbol map 𝐴 →

𝜎(𝑚)(𝐴) are adjoint. By the adjointness property from the surjectivity of the
Toeplitz map the injectivity of the covariant symbol map follows.

As other consequences of the adjointness we get the important results about

the trace of the Toeplitz operators (of course related to eigenvalues of 𝑇
(𝑚)
𝑓 )

tr(𝑇
(𝑚)
𝑓 ) =

∫
𝑀

𝑓 Ω(𝑚)
𝜖 =

∫
𝑀

𝜎(𝑚)(𝑇
(𝑚)
𝑓 ) Ω(𝑚)

𝜖 . (43)

To show this we have to plug into (42) 𝐴 = 𝐼, resp. 𝑓 = 1 and 𝐴 = 𝑇
(𝑚)
𝑓

∗
.

Moreover from (43) we get for 𝑓 = 1

dimΓhol(𝑀,𝐿𝑚) =

∫
𝑀

Ω(𝑚)
𝜖 =

∫
𝑀

𝜖(𝑚)(𝑥) Ω. (44)

In particular, in the special case that 𝜖(𝑚)(𝑥) = const then

𝜖(𝑚) =
dimΓhol(𝑀,𝐿𝑚)

volΩ(𝑀)
. (45)
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1. Introduction

Deformation quantization was born in the first half of the previous century as a
physical theory. E.P. Wigner [1] introduced a quasiprobability distribution. This
distribution, known as Wigner function, represents a quantum state of the system.
In contrast to the Hilbert space version of quantum mechanics the Wigner function
is defined on a classical phase space. Some years later Groenewold [2] and Moyal [3]
proposed a ∗-product called the Moyal product, which is an analog of the product
of linear operators.

In this way, two basic elements of an alternative approach to quantum me-
chanics were formulated. The next natural step in the development of deformation
quantization as a physical theory would have been to establish application proce-
dures. But, as can be read in reviews on this topic [4], [5], nowadays researchers
working on deformation quantization are focusing mainly on mathematical aspects
of this theory such as existence of ∗-products or their equivalence.

Hence we decided to return to the physical origin of deformation quantiza-
tion and to consider the problem of solving an eigenvalue equation. As it can be
observed, usually some of solutions of the eigenvalue equation have no physical
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meaning. Thus it seems to be necessary to establish a procedure for eliminating
nonphysical eigenfunctions.

Our contribution is devoted to presenting applicable methods of classifying
solutions of eigenvalue equations. We present several criteria which are useful in
recognizing nonphysical results. Especially useful seems to be Theorem 4, giving a
sufficient and necessary condition for a function to be a Wigner function of a pure
state. We consider only the case of systems with phase space ℝ2. The results can
be generalized easily to spaces ℝ2𝑛, 𝑛 > 1. Some of presented properties of Wigner
functions are valid also for systems with an arbitrary phase space. However, we
were not able to find a practical criterion analogous to Theorem 4 for such systems.

This paper is partially based on the more extended work [6].

2. States in quantum mechanics

This section contains a brief review about states in quantum theory. We divide its
content into two subsections. The first of them is devoted to the traditional for-
mulation of quantum mechanics in frames of a Hilbert space and linear operators.
The latter is focused on quantum states in deformation theory.

2.1. A density operator

As it is widely known [7], [8], in the Hilbert space formulation of quantum mechan-
ics the maximal information about a system is contained in some linear operator
called a density operator or a statistical operator. Let H denote the Hilbert space
of a quantum system. By definition

Definition 1. An operator 𝜚 : H→ H is a density operator, if it is

(a) self-adjoint,
(b) positively defined, i.e., ∀∣𝜑⟩∈H ⟨𝜑∣ 𝜚 ∣𝜑⟩ ≥ 0,
(c) its trace equals one.

Not normalizable density operators can also be considered but in the context
of this paper they are beyond our interest.

Time evolution of the density operator 𝜚 is determined by the Liouville-von
Neumann equation

∂𝜚(𝑡)

∂𝑡
=
1

𝑖ℏ
[�̂�, 𝜚], (1)

where �̂� is the Hamilton operator of the system.

The mean value of an observable𝐴 in a state determined by a density operator
𝜚 is given by the formula 〈

𝐴
〉
= Tr(𝐴𝜚). (2)

A straightforward consequence of this relation is the observation, that the proba-
bility of a detection of a quantum system characterized by the density operator 𝜚
in a normalized state ∣𝜑⟩ ∈ H , ⟨𝜑∣𝜑⟩ = 1, equals to

Tr (∣𝜑⟩ ⟨𝜑∣ 𝜚) . (3)
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Definition 2. An eigenvalue equation for a linear operator

𝐴 : H ⊃ 𝐷(𝐴)→ H is

𝐴∣𝜓𝑗

〉
= 𝑎𝑗 ∣𝜓𝑗

〉
, ∣𝜓𝑗

〉 ∈ 𝐷(H).

Complex numbers 𝑎𝑗 , 𝑗 ∈ ℕ are called eigenvalues and vectors ∣𝜓𝑗

〉
are eigenvec-

tors of the operator 𝐴. By 𝐷(𝐴) we denote a domain of the operator 𝐴.

Since the density operator 𝜚 is self-adjoint, its eigenvalues are real. Moreover,
the Hilbert spaceH is spanned by the density operator eigenvectors ∣𝜓1

〉
, ∣𝜓2

〉
, . . . .

As the density operator is positively defined, its eigenvalues are non negative and,
from the property Tr 𝜚 = 1, their sum equals 1.

Let us denote eigenvalues of the density operator 𝜚 by 𝑝𝑖, 𝑖 ∈ ℕ. From the
formula (3) we see that 𝑝𝑖 is the probability of detecting the system in the eigen-
state ∣𝜓𝑖⟩ .

Assume that we are interested in calculating the average value of a density
operator 𝜚1 in a state determined by another density operator 𝜚2. Since eigenvalues
of any density operator are non negative numbers, we immediately obtain that

∀ 𝜚1, 𝜚2

〈
𝜚1

〉
= Tr

(
𝜚1 ⋅ 𝜚2

) ≥ 0. (4)

Moreover, as every density operator is bounded and its trace equals 1, we can see

∀ 𝜚1, 𝜚2 Tr
(
𝜚1 ⋅ 𝜚2

2

) ≤ 1. (5)

States of quantum systems are divided in two groups: pure states, which are rep-
resented by vectors from a Hilbert space H and mixed states which cannot be
identified with any direction in the space H. Eigenstates of an operator 𝐴 are by
definition pure states.

There exists a convenient criterion to decide if a state described by the sta-
tistical operator 𝜚 is pure. Namely the density operator 𝜚 represents a pure state
if and only if

𝜚 ⋅ 𝜚 = 𝜚 or Tr
(
𝜚2
)
= 1. (6)

We would like to stress that the relations (6) are not of a purely theoretical char-
acter and they can be applied in practical considerations.

Detailed analysis of the geometry of pure and mixed states has been done by
B. Mielnik in his pioneer work [9].

2.2. Wigner functions for systems in the phase space ℝ2

For systems in a phase space ℝ2 isomorphisms between an algebra of functions in
the phase space and an algebra of linear operators in a Hilbert space are known
(see [10]–[11]). We consider the isomorphism determined by the Weyl ordering.

From the Weyl correspondence [11] we see that the density operator 𝜚 in the
phase space ℝ2 is represented by a function

𝑊−1(𝜚) =

∫ +∞

−∞

〈
𝑞 − 𝜉

2
∣𝜚∣𝑞 + 𝜉

2

〉
exp

(
𝑖𝜉𝑝

ℏ

)
𝑑𝜉 (7)
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or equivalently

𝑊−1(𝜚) =

∫ +∞

−∞

〈
𝑝− 𝜂

2
∣𝜚∣𝑝+ 𝜂

2

〉
exp

(
− 𝑖𝜂𝑞

ℏ

)
𝑑𝜂. (8)

The image 𝑊−1(𝜚) of the density operator 𝜚 contains maximal information about
the quantum system.

Definition 3. The function 𝑊 (𝑞, 𝑝) := 1
2𝜋ℏ𝑊

−1(𝜚) represents the state of a quan-
tum system and it is called the Wigner function.

Applying this definition we derive several properties of a Wigner function.
These properties have been already known (see, e.g., [12]), but we quote them, as
they can be used to distinguish between physical and non physical solutions of an
eigenvalue equation.

(i)
∫
ℝ2 𝑊 (𝑞, 𝑝)𝑑𝑞𝑑𝑝 = 1. Indeed, as Tr(𝜚) = 1, from (7) we immediately obtain
the result.

(ii) A Wigner function 𝑊 (𝑞, 𝑝) is real, i.e., 𝑊 (𝑞, 𝑝) =𝑊 (𝑞, 𝑝). From formula (7)

𝑊 (𝑞, 𝑝) =
1

2𝜋ℏ

∫ +∞

−∞

〈
𝑞 − 𝜉

2
∣𝜚∣𝑞 + 𝜉

2

〉
exp

(−𝑖𝜉𝑝

ℏ

)
𝑑𝜉

(𝜉→−𝜉)
=

1

2𝜋ℏ

∫ +∞

−∞

〈
𝑞 − 𝜉

2
∣𝜚+∣𝑞 + 𝜉

2

〉
exp

(
𝑖𝜉𝑝

ℏ

)
𝑑𝜉.

The density operator 𝜚 is self-adjoint. Hence we see that the last expression
equals 𝑊 (𝑞, 𝑝).

(iii)
∫ +∞
−∞ 𝑊 (𝑞, 𝑝)𝑑𝑝 represents the spatial density of probability.∫ +∞

−∞
𝑊 (𝑞, 𝑝)𝑑𝑝

(7)
= ⟨𝑞∣𝜚∣𝑞⟩ = Tr(∣𝑞 ⟩⟨ 𝑞∣𝜚)

which can be interpreted as the spatial density of probability.

(iv) It can be analogously proved that
∫ +∞
−∞ 𝑊 (𝑞, 𝑝)𝑑𝑞 is the density of probability

for momentum.

Let us consider a relation between a trace of an operator 𝐴 and the definite
integral

∫
ℝ2 of the image of this operator in the Weyl correspondence 𝐴(𝑞, 𝑝) :=

𝑊−1(𝐴).∫
ℝ2

𝐴(𝑞, 𝑝)𝑑𝑝𝑑𝑞 =

∫
ℝ2

𝑑𝑝𝑑𝑞

∫
ℝ

𝑑𝜂
〈
𝑝− 𝜂

2
∣𝐴∣𝑝+ 𝜂

2

〉
exp

(
− 𝑖𝜂𝑞

ℏ

)
= 2𝜋ℏ

∫
ℝ

𝑑𝑝

∫
ℝ

𝑑𝜂𝛿(𝜂)
〈
𝑝− 𝜂

2
∣𝐴∣𝑝+ 𝜂

2

〉
= 2𝜋ℏ

∫
ℝ

𝑑𝑝
〈
𝑝∣𝐴∣𝑝

〉
= 2𝜋ℏ Tr(𝐴).

Therefore the mean value of the observable 𝐴(𝑞, 𝑝) equals〈
𝐴(𝑞, 𝑝)

〉
=

∫
ℝ2

𝐴(𝑞, 𝑝) ∗𝑊 (𝑞, 𝑝)𝑑𝑝𝑑𝑞. (9)
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Moreover, since the Moyal product ∗ is closed [12], in fact
(v)
〈
𝐴(𝑞, 𝑝)

〉
=
∫
ℝ2 𝐴(𝑞, 𝑝) ⋅𝑊 (𝑞, 𝑝)𝑑𝑝𝑑𝑞.

(vi) The time evolution of a Wigner function is determined by the relation

𝑑𝑊 (𝑞, 𝑝)

𝑑𝑡
=, {𝐻,𝑊}𝑀 (10)

where the symbol {𝐻,𝑊 (𝑞, 𝑝)}𝑀 := 1
𝑖ℏ (𝐻 ∗𝑊 −𝑊 ∗𝐻) denotes the Moyal

bracket.
(vii) For two arbitrary Wigner functions

∀𝑊1,𝑊2

∫
ℝ2

𝑊1𝑊2𝑑𝑝𝑑𝑞 ≥ 0. (11)

This property follows from the fact that the density operator is positively
defined.

(viii) As the density operator is bounded,

∀𝑊1,𝑊2

∫
ℝ2

𝑊1

(
𝑊2 ∗𝑊2

)
𝑑𝑝𝑑𝑞 =

∫
ℝ2

𝑊2

(
𝑊1 ∗𝑊2

)
𝑑𝑝𝑑𝑞

=

∫
ℝ2

𝑊2

(
𝑊2 ∗𝑊1

)
𝑑𝑝𝑑𝑞 ≤ 1

(2𝜋ℏ)2
. (12)

The previous relation also implies

∀𝑊1,𝑊2

∫
ℝ2

𝑊2 {𝑊2,𝑊1}𝑀𝑑𝑝𝑑𝑞 = 0. (13)

Properties of Wigner functions presented above are necessary but not suf-
ficient conditions for functions to be quasiprobability distributions. Thus even if
an investigated function satisfies all tested properties, we cannot say that it is
definitely a representation of a physical state.

3. Physical solutions of an eigenvalue equation

With the use of the Weyl correspondence we see that an eigenvalue equation for a
function 𝐴 in the phase space is of the form

𝐴 ∗𝑊𝑗 = 𝑎𝑗𝑊𝑗 , {𝐴,𝑊𝑗}𝑀 = 0 (14)

where 𝑎𝑗 is an eigenvalue of 𝐴 assigned to a Wigner eigenfunction 𝑊𝑗 (see, e.g.,
[13]). The eigenfunctions𝑊𝑗 represent pure states. It means that they are images of
projective operators in the Weyl correspondence. Thus from (7) we immediately
obtain a necessary and sufficient condition for a real function to be a Wigner
function of a pure state.

Theorem 1. A real function 𝑊 (𝑞, 𝑝) defined in the phase space ℝ2 is a Wigner
function of a pure state if and only if

(a)
∫
ℝ2 𝑑𝑞𝑑𝑝𝑊 (𝑞, 𝑝) = 1 and

(b) 𝑊 (𝑞, 𝑝) ∗𝑊 (𝑞, 𝑝) = 1
2𝜋ℏ𝑊 (𝑞, 𝑝).



122 J. Tosiek

This condition can be applied in an arbitrary phase space. Unfortunately, as
the Wigner function contains negative powers of the deformation parameter ℏ, in
cases when the ∗-product is determined by bidifferential operators, Theorem 1 is
hardly applicable.

Only in the phase space ℝ2, when an integral form of the Moyal product is
known, we arrive to the useful conclusion that

Theorem 2. A necessary and sufficient condition for a real function 𝑊 (𝑞, 𝑝) to
represent a pure quantum state is that

∫
ℝ2 𝑑𝑞𝑑𝑝𝑊 (𝑞, 𝑝) = 1 and

2

𝜋ℏ

∫
ℝ4

𝑑𝑞′𝑑𝑝′𝑑𝑞′′𝑑𝑝′′𝑊 (𝑞′, 𝑝′)𝑊 (𝑞′′, 𝑝′′)

× exp
[
2𝑖

ℏ

{
(𝑞′ − 𝑞)(𝑝′′ − 𝑝)− (𝑞′′ − 𝑞)(𝑝′ − 𝑝)

}]
=𝑊 (𝑞, 𝑝).

Notice that from Theorems 1 or 2 it follows that a necessary condition for a
function 𝑊 (𝑞, 𝑝) to be a Wigner function of a pure state is∫

ℝ2

𝑑𝑞𝑑𝑝𝑊 2(𝑞, 𝑝) =
1

2𝜋ℏ
. (15)

There exists an elegant and very useful necessary and sufficient condition for a
Wigner function to be a Wigner function of a pure state.

Theorem 3 ([12]). The necessary condition for a Wigner function 𝑊 (𝑞, 𝑝) to rep-
resent a pure state is that the function

𝜚(𝑞1, 𝑞2) :=

∫ +∞

−∞
𝑑𝑝𝑊 (𝑝,

𝑞1 + 𝑞2

2
) exp

(
𝑖𝑝(𝑞1 − 𝑞2)

ℏ

)
satisfies

∂2 ln 𝜚(𝑞1, 𝑞2)

∂𝑞1∂𝑞2
= 0.

We were able to modify significantly this theorem to obtain a necessary and
sufficient condition for an arbitrary function to be a Wigner function of a pure
state (see [6] for detail).

Theorem 4. A real function 𝑊 (𝑞, 𝑝) defined in the phase space ℝ2 is a Wigner
function of a pure state if and only if

(a) at every point (𝑞, 𝑝) ∈ ℝ2 it is continuous with respect to 𝑞 and with respect
to 𝑝,

(b)
∫
ℝ2 𝑑𝑞𝑑𝑝𝑊 (𝑞, 𝑝) = 1,

(c) for every 𝑞1, 𝑞2 ∈ ℝ there is 𝜚(𝑞1, 𝑞2) = 𝑓(𝑞1)𝑔(𝑞2), where

𝜚(𝑞1, 𝑞2) :=

∫
ℝ

𝑑𝑝𝑊

(
𝑞1 + 𝑞2

2
, 𝑝

)
exp

[
𝑖𝑝(𝑞1 − 𝑞2)

ℏ

]
.
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A Classification Theorem and a
Spectral Sequence for a Locally Free
Sheaf Cohomology of a Supermanifold

E.G. Vishnyakova

To our team coach Yu.A. Kirillov on his 70th birthday

Abstract. This paper is based on the paper [1], where two classification the-
orems for locally free sheaves on supermanifolds were proved and a spectral
sequence for a locally free sheaf of modules ℰ was obtained. We consider
another filtration of the locally free sheaf ℰ , the corresponding classification
theorem and the spectral sequence, which is more convenient in some cases.
The methods, which we are using here, are similar to [1, 2].

The first spectral sequence of this kind was constructed by A.L. Oni-
shchik in [2] for the tangent sheaf of a supermanifold. However, the spectral
sequence considered in this paper is not a generalization of Onishchik’s spec-
tral sequence from [2].

Mathematics Subject Classification (2010). Primary 32C11; Secondary 58A50.

Keywords. Locally free sheaf, supermanifold, spectral sequence.

1. Main definitions and classification theorems

1.1. Main definitions

Let (𝑀,𝒪) be a supermanifold of dimension 𝑛∣𝑚, i.e., a ℤ2-graded ringed space
that is locally isomorphic to a superdomain in ℂ𝑛∣𝑚. The underlying complex man-
ifold (𝑀,ℱ) is called the reduction of (𝑀,𝒪). The simplest class of supermani-
folds constitute the so-called split supermanifolds. We recall that a supermanifold
(𝑀,𝒪) is called split if 𝒪 ≃ ⋀ℱ 𝒢, where 𝒢 is a locally free sheaf of ℱ -modules
on 𝑀 . With any supermanifold (𝑀,𝒪) one can associate a split supermanifold

This work was partially supported by MPI Bonn, SFB TR ∣12, DFG 1388 and by the Russian
Foundation for Basic Research (grant no. 11-01-00465a).
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(𝑀, �̃�) of the same dimension which is called the retract of (𝑀,𝒪). To construct
it, let us consider the ℤ2-graded sheaf of ideals 𝒥 = 𝒥0̄ ⊕ 𝒥1̄ ⊂ 𝒪 generated by
odd elements of 𝒪. The structure sheaf of the retract is defined by

�̃� =
⊕
𝑝≥0

�̃�𝑝, where �̃�𝑝 = 𝒥 𝑝/𝒥 𝑝+1, 𝒥 0 := 𝒪.

Here �̃�1 is a locally free sheaf of ℱ -modules on𝑀 and �̃�𝑝 =
⋀𝑝
ℱ �̃�1. By definition,

the following sequences

0→ 𝒥 ∩𝒪0̄ → 𝒪0̄
𝜋→ �̃�0 → 0,

0→ 𝒥 2 ∩ 𝒪1̄ → 𝒪1̄
𝜏→ �̃�1 → 0.

(1)

are exact. Moreover, they are locally split. The supermanifold (𝑀,𝒪) is split iff
both sequences are globally split.

Denote by 𝒮0̄ and 𝒮1̄ the even and the odd parts of a ℤ2-graded sheaf of
𝒪-modules 𝒮 on𝑀 , respectively; by Π(𝒮) we denote the same sheaf of 𝒪-modules
𝒮 equipped with the following ℤ2-grading: Π(𝒮)0̄ = 𝒮1̄, Π(𝒮)1̄ = 𝒮0̄. A ℤ2-graded
sheaf of 𝒪-modules on 𝑀 is called free (locally free) of rank 𝑝∣𝑞, 𝑝, 𝑞 ≥ 0 if it is
isomorphic (respectively, locally isomorphic) to the ℤ2-graded sheaf of 𝒪-modules
𝒪𝑝 ⊕ Π(𝒪)𝑞 . For example, the tangent sheaf 𝒯 of a supermanifold (𝑀,𝒪) is a
locally free sheaf of 𝒪-modules.

Let now ℰ = ℰ0̄ ⊕ ℰ1̄ be a locally free sheaf of 𝒪-modules of rang 𝑝∣𝑞 on an
arbitrary supermanifold (𝑀,𝒪). We are going to construct a locally free sheaf of
the same rank on (𝑀, �̃�). First, we note that ℰred := ℰ/𝒥 ℰ is a locally free sheaf
of ℱ -modules on𝑀 . Moreover, ℰred admits the ℤ2-grading ℰred = (ℰred)0̄⊕(ℰred)1̄,
by two locally free sheaves of ℱ -modules

(ℰred)0̄ := ℰ0̄/𝒥ℰ ∩ ℰ0̄ and (ℰred)1̄ := ℰ1̄/𝒥ℰ ∩ ℰ1̄

of ranks 𝑝 and 𝑞, respectively. Further, the sheaf ℰ possesses the filtration
ℰ = ℰ(0) ⊃ ℰ(1) ⊃ ℰ(2) ⊃ ⋅ ⋅ ⋅ , where ℰ(𝑝) = 𝒥 𝑝ℰ0̄ + 𝒥 𝑝−1ℰ1̄, 𝑝 ≥ 1. (2)

Using this filtration, we can construct the following locally free sheaf of �̃�-modules
on 𝑀 :

ℰ̃ =⊕𝑝 ℰ̃𝑝, where ℰ̃𝑝 = ℰ(𝑝)/ℰ(𝑝+1).

The sheaf ℰ̃ is also a locally free sheaf of ℱ -modules. In other words, ℰ̃ is a sheaf of
sections of a certain vector bundle. The following exact sequence gives a description
of ℰ̃ .

0→ �̃�𝑝 ⊗ (ℰred)0̄ → ℰ̃𝑝 → �̃�𝑝−1 ⊗ (ℰred)1̄ → 0.

We also have the following two exact sequences, which are locally split:

0→ ℰ(1)0̄ → ℰ(0)0̄
𝛼→ ℰ̃0 → 0;

0→ ℰ(2)1̄ → ℰ(1)1̄
𝛽→ ℰ̃1 → 0.

(3)
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The sheaf ℰ̃ is ℤ-graded by definition. Unlike the ℤ2-grading considered in [1], the
natural ℤ2-grading is compatible with this ℤ-grading.

(ℰ̃)0̄ :=
⊕
𝑝=2𝑘

ℰ̃𝑝, (ℰ̃)1̄ :=
⊕
𝑝=2𝑘1

ℰ̃𝑝.

1.2. Classification theorem for locally free sheaves 퓔 on supermanifolds
with given 퓔̃

Our objective now is to classify locally free sheaves ℰ of 𝒪-modules on supermani-
folds (𝑀,𝒪) which have the fixed retract (𝑀, �̃�) and such that the corresponding
locally free sheaf ℰ̃ is fixed.

Let (𝑀,𝒪) and (𝑀,𝒪′) be two supermanifolds, ℰ , ℰ ′ be locally free sheaves
of 𝒪-modules and 𝒪′-modules on 𝑀 , respectively. Suppose that Ψ : 𝒪 → 𝒪′ is
a superalgebra sheaf morphism. A vector space sheaf morphism ΦΨ : ℰ → ℰ ′ is
called a quasi-morphism if

ΦΨ(𝑓𝑣) = Ψ(𝑓)ΦΨ(𝑣), 𝑓 ∈ 𝒪, 𝑣 ∈ ℰ .
As usual, we assume that ΦΨ(ℰ�̄�) ⊂ ℰ ′̄

𝑖
, �̄� ∈ {0̄, 1̄}. An invertible quasi-morphism

is called a quasi-isomorphism. A quasi-isomorphism ΦΨ : ℰ → ℰ is also called a
quasi-automorphism of ℰ . Denote by 𝒜𝑢𝑡ℰ the sheaf of quasi-automorphisms of ℰ .
It has a double filtration by the subsheaves

𝒜𝑢𝑡(𝑝)(𝑞)ℰ := {ΦΨ ∈ 𝒜𝑢𝑡ℰ ∣ ΦΨ(𝑣) ≡ 𝑣mod ℰ(𝑝), Ψ(𝑓) = 𝑓 mod𝒥 𝑞

for 𝑣 ∈ ℰ , 𝑓 ∈ 𝒪}, 𝑝, 𝑞 ≥ 0.
We also define the following subsheaf of 𝒜𝑢𝑡ℰ̃ :

𝒜𝑢𝑡ℰ̃ := {ΦΨ ∣ ΦΨ ∈ 𝒜𝑢𝑡(ℰ̃), ΦΨ preserves the ℤ-grading of ℰ̃}. (4)

If ΦΨ ∈ 𝒜𝑢𝑡ℰ̃ , then Ψ : �̃� → �̃� also preserves the ℤ-grading. The 0th cohomology
group 𝐻0(𝑀,𝒜𝑢𝑡ℰ̃) acts on the sheaf 𝒜𝑢𝑡ℰ̃ by the automorphisms 𝛿 �→ 𝑎∘𝛿 ∘𝑎−1,

where 𝑎 ∈ 𝐻0(𝑀,𝒜𝑢𝑡ℰ̃) and 𝛿 ∈ 𝒜𝑢𝑡ℰ̃ . It is easy to see that this action leaves in-
variant the subsheaves 𝒜𝑢𝑡(𝑝)(𝑞)ℰ̃ and hence induces an action of 𝐻0(𝑀,𝒜𝑢𝑡ℰ̃) on
the cohomology set 𝐻1(𝑀,𝒜𝑢𝑡(𝑝)(𝑞)ℰ̃). The unit element 𝜖 ∈ 𝐻1(𝑀,𝒜𝑢𝑡(𝑝)(𝑞)ℰ ′)
is a fixed point with respect to the action of 𝐻0(𝑀,𝒜𝑢𝑡ℰ ′).

Let ℰ be a locally free sheaf of 𝒪-modules on 𝑀 . Denote

[ℰ ] = {ℰ ′ ∣ ℰ ′ is quasi-isomorphic to ℰ}.
The total space of the bundle corresponding to a locally free sheaf ℰ will be
denoted by 𝔼. It is a supermanifold. The locally free sheaf ℰ̃ corresponding to
ℰ has the following property: The retract �̃� of 𝔼 is the total space of the bundle
corresponding to ℰ̃ .
Theorem 1.1. Let (𝑀,𝒪′) be a split supermanifold and ℰ ′ be a locally free sheaf of

𝒪′-modules on 𝑀 such that ℰ ′ ≃ ℰ̃ ′. Then

{[ℰ ] ∣ �̃� = 𝒪′, ℰ̃ = ℰ ′} 1:1←→ 𝐻1(𝑀,𝒜𝑢𝑡(2)(2)ℰ ′)/𝐻0(𝑀,𝒜𝑢𝑡ℰ ′).
The orbit of the unit element 𝜖, which is 𝜖 itself, corresponds to ℰ ′.
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Proof. Let ℰ be a locally free sheaf of 𝒪-modules on (𝑀,𝒪) and 𝒰 = {𝑈𝑖} be an
open covering of 𝑀 such that (1) and (3) are split over 𝑈𝑖 and ℰ∣𝑈𝑖 are free. In
this case, ℰ̃ ∣𝑈𝑖 are free sheaves of �̃�-modules. We fix homogeneous bases (even and
odd, respectively) (𝑒𝑖𝑗) and (𝑓

𝑖
𝑗) of the free sheaves of �̃�-modules ℰ̃ ∣𝑈𝑖 , 𝑈𝑖 ∈ 𝒰 .

Without loss of generality, we may assume that 𝑒𝑖𝑗 ∈ ℰ̃0 and 𝑓 𝑖𝑗 ∈ ℰ̃1. We are going

to define an isomorphism 𝛿𝑖 : ℰ∣𝑈𝑖 → ℰ̃∣𝑈𝑖 .
Let 𝑒𝑖𝑗 ∈ ℰ(0)0̄ be such that 𝛼(𝑒

𝑖
𝑗) = 𝑒𝑖𝑗 and 𝑓 𝑖𝑗 ∈ ℰ(0)1̄ be such that 𝛽(𝑓

𝑖
𝑗) = 𝑓 𝑖𝑗 ,

see (3). Then (𝑒𝑖𝑗 , 𝑓
𝑖
𝑗) is a local basis of ℰ∣𝑈𝑖 . A splitting of (1) determines a local

isomorphism 𝜎𝑖 : 𝒪∣𝑈𝑖 → �̃�∣𝑈𝑖 , see [3]. We put
𝛿𝑖

(∑
ℎ𝑗𝑒

𝑖
𝑗 +
∑

𝑔𝑗𝑓
𝑖
𝑗

)
=
∑

𝜎𝑖(ℎ𝑗)𝑒
𝑖
𝑗 +
∑

𝜎𝑖(𝑔𝑗)𝑓
𝑖
𝑗 , ℎ𝑗 , 𝑔𝑗 ∈ 𝒪.

Obviously, 𝛿𝑖 is an isomorphism. We put 𝛾𝑖𝑗 := 𝜎𝑖 ∘ 𝜎−1
𝑗 and (𝑔𝑖𝑗)𝛾𝑖𝑗 := 𝛿𝑖 ∘ 𝛿−1

𝑗 .

Moreover, (𝛾𝑖𝑗) ∈ 𝑍1(𝒰 ,𝒜𝑢𝑡(2)�̃�), see [3] for more details. We want to show that
((𝑔𝑖𝑗)𝛾𝑖𝑗 ) ∈ 𝑍1(𝒰 ,𝒜𝑢𝑡(2)(2)ℰ̃).

Let us take 𝑣 ∈ ℰ̃∣𝑈𝑗 , 𝑣 =
∑

ℎ𝑘𝑒
𝑖
𝑘 +
∑

𝑔𝑘𝑓
𝑖
𝑘, ℎ𝑗 , 𝑔𝑗 ∈ �̃�. Then by definition we

have

𝛿−1
𝑗 (𝑣) =

∑
𝜎−1
𝑗 (ℎ𝑘)𝑒

𝑗
𝑘 +
∑

𝜎−1
𝑗 (𝑔𝑘)𝑓

𝑗
𝑘 .

The transition functions of ℰ̃ may be expressed in 𝑈𝑖 ∩ 𝑈𝑗 as follows:

𝑒𝑗𝑘 =
∑

𝑎𝑘𝑠𝑒
𝑖
𝑠 +
∑

𝑏𝑘𝑠𝑓
𝑖
𝑠, 𝑓 𝑗𝑘 =

∑
𝑐𝑘𝑠𝑒

𝑖
𝑠 +
∑

𝑑𝑘𝑠𝑓
𝑖
𝑠, 𝑎𝑘𝑠 , 𝑑

𝑘
𝑠 ∈ 𝒪0̄, 𝑏𝑘𝑠 , 𝑐

𝑘
𝑠 ∈ 𝒪1̄.

Further,

𝛼(𝑒𝑗𝑘) = 𝑒𝑗𝑘 =
∑

𝜋(𝑎𝑘𝑠 )𝑒
𝑖
𝑠, 𝛽(𝑓 𝑗𝑘 ) = 𝑓 𝑗𝑘 =

∑
𝜏(𝑐𝑘𝑠 )𝑒

𝑖
𝑠 +
∑

𝜋(𝑑𝑘𝑠 )𝑓
𝑖
𝑠.

We have

𝛿𝑗 ∘ 𝛿−1
𝑗 (𝑣) =

∑
𝑘
𝛾𝑖𝑗(ℎ𝑘)

(∑
𝑠
𝜎𝑖(𝑎

𝑘
𝑠 )𝑒

𝑖
𝑠 +
∑

𝑟
𝜎𝑖(𝑏

𝑘
𝑠)𝑓

𝑖
𝑠

)
+
∑

𝑘
𝛾𝑖𝑗(𝑔𝑘)

(∑
𝑠
𝜎𝑖(𝑐

𝑘
𝑠 )𝑒

𝑖
𝑠 +
∑

𝑠
𝜎𝑖(𝑑

𝑘
𝑠 )𝑓

𝑖
𝑠

)
=
∑

𝑘
ℎ𝑘

(∑
𝑠
𝜋(𝑎𝑘𝑠 )𝑒

𝑖
𝑠

)
+
∑

𝑘
𝑔𝑘

(∑
𝑠
𝜏(𝑐𝑘𝑠 )𝑒

𝑖
𝑠 +
∑

𝑠
𝜋(𝑑𝑘𝑠 )𝑓

𝑖
𝑠

)
mod ℰ̃(2)

= 𝑣mod ℰ̃(2).

The rest of the proof is the direct repetition of the proof of Theorem 2 from [1]. □

2. The spectral sequence

2.1. Quasi-derivations

Quasi-derivations were defined in [1]. Let us briefly recall that construction. Con-
sider a locally free sheaf ℰ on a supermanifold (𝑀,𝒪). An even vector space sheaf
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morphism 𝐴Γ : ℰ → ℰ is called a quasi-derivation if 𝐴Γ(𝑓𝑣) = Γ(𝑓)𝑣 + 𝑓𝐴Γ(𝑣),
where 𝑓 ∈ 𝒪, 𝑣 ∈ ℰ and Γ is a certain even super vector field. Denote by Der ℰ
the sheaf of quasi-derivations. It is a sheaf of Lie algebras with respect to the
commutator [𝐴Γ, 𝐵Υ] := 𝐴Γ ∘𝐵Υ − 𝐵Υ ∘𝐴Γ. The sheaf Der ℰ possesses a double
filtration

Der(0)(0) ℰ ⊃ Der(2)(0) ℰ ⊃ ⋅ ⋅ ⋅
∪ ∪

Der(0)(2) ℰ ⊃ Der(2)(2) ℰ ⊃ ⋅ ⋅ ⋅
...

...

,

where

Der(𝑝)(𝑞) ℰ := {𝐴Γ ∈ Der ℰ ∣ 𝐴Γ(ℰ(𝑟)) ⊂ ℰ(𝑟+𝑝), Γ(𝒥 𝑠) ⊂ 𝒥 𝑠+𝑞, 𝑟, 𝑠 ∈ ℤ},
where 𝑝, 𝑞 ≥ 0. The map defined by the usual exponential series

exp : Der(𝑝)(𝑞) ℰ → 𝒜𝑢𝑡(𝑝)(𝑞)ℰ , 𝑝, 𝑞 ≥ 2,
is an isomorphism of sheaves of sets, because operators from Der(𝑝)(𝑞) ℰ , 𝑝, 𝑞 ≥ 2,
are nilpotent. The inverse map is given by the logarithmic series. Define the vector
space subsheaf Der𝑘,𝑘 ℰ̃ of Der(𝑘)(𝑘) ℰ̃ for 𝑘 ≥ 0 by
Der𝑘,𝑘 ℰ̃ := {𝐴Γ ∈ Der(𝑘)(𝑘) ℰ̃ ∣ 𝐴Γ(ℰ̃𝑟) ⊂ ℰ̃𝑟+𝑘, Γ(�̃�𝑠) ⊂ �̃�𝑠+𝑘, 𝑟, 𝑠 ∈ ℤ}.

For an even 𝑘 ≥ 2, define a map
𝜇𝑘 : 𝒜𝑢𝑡(𝑘)(2)ℰ̃ → Der𝑘,𝑘 ℰ̃ , 𝜇𝑘(𝑎𝛾) =

⊕
𝑞

pr𝑞+𝑘 ∘𝐴Γ ∘ pr𝑞,

where 𝑎𝛾 = exp(𝐴Γ) and pr𝑘 : ℰ̃ → ℰ̃𝑘 is the natural projection. The kernel of this
map is 𝒜𝑢𝑡(𝑘+2)(2)ℰ̃ . Moreover, the sequence

0→ 𝒜𝑢𝑡(𝑘+2)(2)ℰ̃ −→ 𝒜𝑢𝑡(𝑘)(2)ℰ̃ 𝜇𝑘−→ Der𝑘,𝑘 ℰ̃ → 0,

where 𝑘 ≥ 2 is even, is exact. Denoting by 𝐻(𝑘)(ℰ̃) the image of the natural
mapping 𝐻1(𝑀,𝒜𝑢𝑡(𝑘)(2)ℰ̃)→ 𝐻1(𝑀,𝒜𝑢𝑡(2)(2)ℰ̃), we get the filtration

𝐻1(𝑀,𝒜𝑢𝑡(2)ℰ̃) = 𝐻(2)(ℰ̃) ⊃ 𝐻(4)(ℰ̃) ⊃ ⋅ ⋅ ⋅ .
Take 𝑎𝛾 ∈ 𝐻(2)(ℰ̃). We define the order of 𝑎𝛾 to be the maximal number 𝑘 such that

𝑎𝛾 ∈ 𝐻(𝑘)(ℰ̃). The order of a locally free sheaf ℰ of 𝒪-modules on a supermanifold
(𝑀,𝒪𝑀 ) is by definition the order of the corresponding cohomology class.

2.2. The spectral sequence

A spectral sequence connecting the cohomology with values in the tangent sheaf
𝒯 of a supermanifold (𝑀,𝒪) with the cohomology with values in the tangent
sheaf 𝒯gr of the retract (𝑀, �̃�) was constructed in [2]. Here we use similar ideas
to construct a new spectral sequence connecting the cohomology with values in a
locally free sheaf ℰ on a supermanifold (𝑀,𝒪) with the cohomology with values
in the locally free sheaf ℰ̃ on (𝑀, �̃�). Note that our spectral sequence is not a



130 E.G. Vishnyakova

generalization of the spectral sequence obtained in [2] because 𝒯gr is not in general

isomorphic to 𝒯 .
Let ℰ be a locally free sheaf on a supermanifold (𝑀,𝒪) of dimension 𝑛∣𝑚.

We fix an open Stein covering 𝔘 = (𝑈𝑖)𝑖∈𝐼 of 𝑀 and consider the corresponding
Čech cochain complex 𝐶∗(𝔘, ℰ) =⊕𝑝≥0 𝐶𝑝(𝔘, ℰ). The ℤ2-grading of ℰ gives rise
to the ℤ2-gradings in 𝐶∗(𝔘, ℰ) and 𝐻∗(𝑀, ℰ) given by

𝐶0̄(𝔘, ℰ) =
⊕
𝑞≥0

𝐶2𝑞(𝔘, ℰ0̄)⊕
⊕
𝑞≥0

𝐶2𝑞+1(𝔘, ℰ1̄),

𝐶1̄(𝔘, ℰ) =
⊕
𝑞≥0

𝐶2𝑞(𝔘, ℰ1̄)⊕
⊕
𝑞≥0

𝐶2𝑞+1(𝔘, ℰ0̄).

𝐻0̄(𝑀, ℰ) =
⊕
𝑞≥0

𝐻2𝑞(𝑀, ℰ0̄)⊕
⊕
𝑞≥0

𝐻2𝑞+1(𝑀, ℰ1̄),

𝐻1̄(𝑀, ℰ) =
⊕
𝑞≥0

𝐻2𝑞(𝑀, ℰ1̄)⊕
⊕
𝑞≥0

𝐻2𝑞+1(𝑀, ℰ0̄).

(5)

The filtration (2) for ℰ gives rise to the filtration
𝐶∗(𝔘, ℰ) = 𝐶(0) ⊃ ⋅ ⋅ ⋅ ⊃ 𝐶(𝑝) ⊃ ⋅ ⋅ ⋅ ⊃ 𝐶(𝑚+2) = 0 (6)

of this complex by the subcomplexes

𝐶(𝑝) = 𝐶∗(𝔘, ℰ(𝑝)).

Denoting by𝐻(𝑀,ℰ)(𝑝) the image of the natural mapping𝐻
∗(𝑀,ℰ(𝑝))→𝐻∗(𝑀,ℰ),

we get the filtration

𝐻∗(𝑀, ℰ) = 𝐻(𝑀, ℰ)(0) ⊃ ⋅ ⋅ ⋅ ⊃ 𝐻(𝑀, ℰ)(𝑝) ⊃ ⋅ ⋅ ⋅ . (7)

Denote by gr𝐻∗(𝑀, ℰ) the bigraded group associated with the filtration (7); its
bigrading is given by

gr𝐻∗(𝑀, ℰ) =
⊕
𝑝,𝑞≥0

gr𝑝 𝐻
𝑞(𝑀, ℰ).

By the (more general) Leray procedure, we get a spectral sequence of bigraded
groups 𝐸𝑟 converging to 𝐸∞ ≃ gr𝐻∗(𝑀, ℰ). For convenience of the reader, we
recall the main definitions here.

For any 𝑝, 𝑟 ≥ 0, define the vector spaces
𝐶𝑝
𝑟 = {𝑐 ∈ 𝐶(𝑝) ∣ 𝑑𝑐 ∈ 𝐶(𝑝+𝑟)}.

Then, for a fixed 𝑝, we have

𝐶(𝑝) = 𝐶𝑝
0 ⊃ ⋅ ⋅ ⋅ ⊃ 𝐶𝑝

𝑟 ⊃ 𝐶𝑝
𝑟+1 ⊃ ⋅ ⋅ ⋅ .

The 𝑟th term of the spectral sequence is defined by

𝐸𝑟 =

𝑚⊕
𝑝=0

𝐸𝑝
𝑟 , 𝑟 ≥ 0, where 𝐸𝑝

𝑟 = 𝐶𝑝
𝑟 /𝐶

𝑝+1
𝑟−1 + 𝑑𝐶𝑝−𝑟+1

𝑟−1 .
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Since 𝑑(𝐶𝑝
𝑟 ) ⊂ 𝐶𝑝+𝑟

𝑟 , 𝑑 induces a derivation 𝑑𝑟 of 𝐸𝑟 of degree 𝑟 such that 𝑑
2
𝑟 = 0.

Then 𝐸𝑟+1 is naturally isomorphic to the homology algebra 𝐻(𝐸𝑟, 𝑑𝑟). The ℤ2-
grading (5) in 𝐶∗(𝔘, ℰ) gives rise to certain ℤ2-gradings in 𝐶𝑝

𝑟 and 𝐸𝑝
𝑟 , turning

𝐸𝑟 into a superspace. Clearly, the coboundary operator 𝑑 on 𝐶∗(𝔘, ℰ) is odd. It
follows that the coboundary 𝑑𝑟 is odd for any 𝑟 ≥ 0.

The superspaces 𝐸𝑟 are also endowed with a second ℤ-grading. Namely, for
any 𝑞 ∈ ℤ, set

𝐶𝑝,𝑞
𝑟 = 𝐶𝑝

𝑟 ∩ 𝐶𝑝+𝑞(𝔘, ℰ), 𝐸𝑝,𝑞
𝑟 = 𝐶𝑝,𝑞

𝑟 /𝐶𝑝+1,𝑞−1
𝑟−1 + 𝑑𝐶𝑝−𝑟+1,𝑞+𝑟−2

𝑟−1 .

Then

𝐸𝑟 =
⊕
𝑝,𝑞

𝐸𝑝,𝑞
𝑟 and 𝑑𝑟(𝐸

𝑝,𝑞
𝑟 ) ⊂ 𝐸𝑝+𝑟,𝑞−𝑟+1

𝑟 for any 𝑟, 𝑝, 𝑞. (8)

Further, for a fixed 𝑞, we have 𝑑(𝐶𝑝,𝑞
𝑟 ) = 0 for all 𝑝 ≥ 0 and all 𝑟 ≥ 𝑚 + 2. This

implies that the natural homomorphism 𝐸𝑝,𝑞
𝑟 → 𝐸𝑝,𝑞

𝑟+1 is an isomorphism for all 𝑝
and 𝑟 ≥ 𝑟0 = 𝑚+ 2. Setting 𝐸𝑝,𝑞∞ = 𝐸𝑝,𝑞

𝑟0 , we get the bigraded superspace

𝐸∞ =
⊕
𝑝,𝑞

𝐸𝑝,𝑞
∞ .

Lemma 2.1. The first two terms of the spectral sequence (𝐸𝑟) can be identified with
the following bigraded spaces:

𝐸0 = 𝐶∗(𝔘, ℰ̃), 𝐸1 = 𝐸2 = 𝐻∗(𝑀, ℰ̃).
More precisely,

𝐸𝑝,𝑞
0 = 𝐶𝑝+𝑞(𝔘, ℰ̃𝑝), 𝐸𝑝,𝑞

1 = 𝐸𝑝,𝑞
2 = 𝐻𝑝+𝑞(𝑀, ℰ̃𝑝).

We have 𝑑2𝑘+1 = 0 and, hence, 𝐸2𝑘+1 = 𝐸2𝑘+2 for all 𝑘 ≥ 0.
Proof. The proof is similar to the proof of Proposition 3 in [2]. □

Lemma 2.2. There is the following identification of bigraded algebras:

𝐸∞ = gr𝐻∗(𝑀, ℰ), where 𝐸𝑝,𝑞
∞ = gr𝑝 𝐻

𝑝+𝑞(𝑀, ℰ).
If 𝑀 is compact, then dim𝐻𝑘(𝑀, ℰ) =∑𝑝+𝑞=𝑘 dim𝐸𝑝,𝑞∞ .

Proof. The proof is a direct repetition of the proof of Proposition 4 in [2]. □

Now we prove our main result concerning the first non-zero coboundary oper-
ators among 𝑑2, 𝑑4, . . .. Assume that the isomorphisms of sheaves 𝛿𝑖 : ℰ∣𝑈𝑖 → ℰ̃∣𝑈𝑖

from Theorem 1.1 are defined for each 𝑖 ∈ 𝐼. By Theorem 1.1, a locally free sheaf
of 𝒪-modules ℰ on 𝑀 corresponds to the cohomology class 𝑎𝛾 of the 1-cocycle

((𝑎𝛾)𝑖𝑗) ∈ 𝑍1(𝔘,𝒜𝑢𝑡(2)(2)ℰ̃), where (𝑎𝛾)𝑖𝑗 = 𝛿𝑖 ∘ 𝛿−1
𝑗 . If the order of (𝑎𝛾)𝑖𝑗 is equal

to 𝑘, then we may choose 𝛿𝑖, 𝑖 ∈ 𝐼, in such a way that ((𝑎𝛾)𝑖𝑗) ∈ 𝑍1(𝔘,𝒜𝑢𝑡(𝑘)(2)ℰ̃).
We can write 𝑎𝛾 = exp𝐴Γ, where 𝐴Γ ∈ 𝐶1(𝔘,Der(𝑘)(2) ℰ̃).
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We will identify the superspaces (𝐸0, 𝑑0) and (𝐶
∗(𝔘, ℰ̃), 𝑑) via the isomor-

phism of Lemma 2.1. Clearly, 𝛿𝑖 : ℰ(𝑝)∣𝑈𝑖 → ℰ̃(𝑝)∣𝑈𝑖 =
∑

𝑟≥𝑝 ℰ̃𝑟∣𝑈𝑖 is an isomor-
phism of sheaves for all 𝑖 ∈ 𝐼, 𝑝 ≥ 0. These local sheaf isomorphisms permit us to
define an isomorphism of graded cochain groups

𝜓 : 𝐶∗(𝔘, ℰ)→ 𝐶∗(𝔘, ℰ̃)
such that

𝜓 : 𝐶∗(𝔘, ℰ(𝑝))→ 𝐶∗(𝔘, (ℰ̃)(𝑝)), 𝑝 ≥ 0.
We put

𝜓(𝑐)𝑖0...𝑖𝑞 = 𝛿𝑖0(𝑐𝑖0...𝑖𝑞 )

for any (𝑖0, . . . , 𝑖𝑞) such that 𝑈𝑖0∩⋅ ⋅ ⋅∩𝑈𝑖𝑞 ∕= ∅. Note that 𝜓 is not an isomorphism of
complexes. Nevertheless, we can explicitly express the coboundary 𝑑 of the complex
𝐶∗(𝔘, ℰ) by means of 𝑑0 and 𝑎𝛾 .

The following theorem permits to calculate the spectral sequence (𝐸𝑟) when-
ever 𝑑0 and the cochain 𝑎𝛾 are known. It also describes certain coboundary oper-
ators 𝑑𝑟, 𝑟 ≥ 1.
Theorem 2.3. For any 𝑐 ∈ 𝐶∗(𝔘, ℰ̃𝑞) = 𝐸𝑞

0 , we have

(𝜓(𝑑𝜓−1(𝑐)))𝑖0...𝑖𝑞+1 = (𝑑0𝑐)𝑖0...𝑖𝑞+1 + ((𝑎𝛾)𝑖0𝑖1 − id)(𝑐𝑖1...𝑖𝑞+1).

Suppose that the locally free sheaf of 𝒪-modules ℰ on 𝑀 has order 𝑘 and
denote by 𝑎𝛾 the cohomology class corresponding to ℰ by Theorem 1.1. Then 𝑑𝑟 = 0
for 𝑟 = 1, . . . , 𝑘 − 1, and 𝑑𝑘 = 𝜇𝑘(𝑎𝛾).

Proof. The proof is similar to the proof of Theorem 7 in [1]. □
Acknowledgment
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1. Introduction

I would like to describe here the genesis and development of the quantum control
group created by Bogdan Mielnik (BM) at the Center for Advanced Studies (Cin-
vestav) in Mexico City. Indeed, the beginning of this story is strongly tied to the
birth of our Physics Department at Cinvestav, which deserves some words.

In 1962, while working at the Institute of Theoretical Physics of Warsaw
University, Jerzy Plebański was invited by the outstanding Mexican physiologist
Arturo Rosenblueth to develop a Physics Department at the recently created Cin-
vestav, at the north of Mexico City. In that invitation, it was suggested that
Jerzy should also invite a younger assistant from Poland, to help him do the job.
Plebański accepted Rosenblueth’s invitation, and he arrived to Mexico in the late
summer of 1962. His younger fellow, who turned out to be Bogdan Mielnik, arrived
to Mexico on November 13th, 1962 as Jerzy’s assistant and his Ph.D. student. From
this period (1963) is the photograph in which Jerzy Plebański, Bogdan Mielnik and
Anna Plebańska stay in front of the Pyramid of Quetzalcóatl, at the Teotihuacán
ceremonial center (see Figure 1).
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Figure 1. Jerzy Plebański, Bogdan Mielnik and Anna Plebańska in
front of the Pyramid of Quetzalcóatl, at the Teotihuacán ceremonial
center (1963).

During his first stay at Mexico, Mielnik taught courses on the mathematical
foundations of quantum mechanics. As for research, he was working on the finite
difference calculus and pseudo-hermitian operators. On October 22nd, 1964, he
submitted his PhD Thesis entitled Analytic functions of the displacement opera-
tor [1] (see also [2]). Incidentally, it is worth mentioning that Bogdan Mielnik was
the first Ph.D. graduate of our Physics Department at Cinvestav. A copy of the
official document is shown in Figure 2.

In April 1965, after finishing his PhD, Mielnik returned to Poland. In the
following years, he maintained interest in the operator calculus, leading to the ex-
plicit algebraic solution of the continuous Baker-Campbell-Hausdorff (BCH) prob-
lem [3,4], which remained open for about 60 years since the original BCH papers.
In the period 1966–1976, Mielnik wrote and published his seminal papers on the
geometric structure of quantum theories [5–8]. Due to the wide impact of these
works, he was invited, in the period 1975–1980, to several prestigious institutions,
both in Europe and in the United States, such as the Institute of Theoretical
Physics in Gothenburg and the Royal Institute of Technology in Stockholm (Swe-
den), King’s College and Imperial College (United Kingdom), Rockefeller Univer-
sity (USA), among others (see, e.g., [9,10]). In particular, in 1976 and 1978 he got
back to Mexico to deliver talks at the International Symposium on Mathematical
Physics in the old Hotel del Prado, destroyed by the earthquake in 1985, and the
Latin American Symposium on General Relativity (Silarg) [11,12]. From that time
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Figure 2. The copy of the Mielnik’s Ph.D. certificate (October 22nd,
1964) from the official Cinvestav roster (from S. Quintanilla, Recordar
hacia el mañana. Creación y primeros años del Cinvestav 1960–1970,
Cinvestav, Mexico, 2002).

(1976) is the nice photograph in which Bogdan Mielnik, Anna Plebańska, Virginia
T. Rosenblueth and Pleblański’s daughter Magdalena appear in front of some al-
ready non-existent buildings in the Reforma Avenue in Mexico City (see Figure 3).

In November 1981, Mielnik visited Cinvestav, in what was supposed to be a
short-term visit. This seemingly current event became crucial for our Department
and for Mielnik’s life. In December 13th, 1981, while he was still in Mexico, the
martial law was declared in Poland. The situation seemed to be hard in Warsaw
and thus Augusto Garćıa, at the time Head of the Department, proposed Mielnik
to stay longer at Cinvestav. He decided to accept this invitation which, as the years
passed by, turned into a permanent stay. During that time Mielnik pursued his
studies on dynamical manipulation [13], and he also wrote his short seminal article,
about the generation of new Hamiltonians isospectral to the harmonic oscillator
through a variant of the factorization method [14]. In the early 1983 I met Bogdan
Mielnik as a student of his course in quantum mechanics. I was subsequently
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Figure 3. Bogdan Mielnik, Anna Plebańska, Virginia T. Rosenblueth
and Magdalena Plebański in Paseo de la Reforma, Mexico City (January
1976).

involved, already as Mielnik’s MSc student, in applying the recently developed
modified factorization to the Coulomb potential. The photograph of Mielnik in his
office in F́ısica II (see Figure 4) is from that time (1986). In the following years
1986–1987, he spent a sabbatical leave at the Institute of Theoretical Physics of
Warsaw University.

In the period 1987–1990, Mielnik got a double appointment at the Physics
Department of Cinvestav and the Institute of Theoretical Physics of Warsaw Uni-
versity. In 1989 he was nominated the Full Professor at the Institute of Theoretical
Physics of Warsaw University. In parallel he has been a Permanent Professor at
Cinvestav.

During all the time that he spent in Mexico, Mielnik has produced outstand-
ing works, becoming the founder of the quantum control school currently existing
at Cinvestav. The motivation of this subject is to control typically quantum phe-
nomena such as diffraction, interference, wave-packet spreading, decoherence, etc.
Our dream is to build a handbook of unitary operations that can be dynamically
achieved.

On the other hand, for stationary systems the equivalent goal would be to
construct Hamiltonians with an a priori prescribed spectrum. The first steps in
that direction have been given by employing the well-known factorization method,
which is worth describing shortly.
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Figure 4. Bogdan Mielnik at his office in F́ısica II, Cinvestav (1986).

2. Control of systems with time-independent Hamiltonians

When dealing with stationary systems, an obvious target to manipulate is the
Hamiltonian spectrum. The simplest available technique for spectral manipulation
is the factorization method, which is equivalent to the intertwining technique, Dar-
boux transformation and supersymmetric quantum mechanics. The way in which
the factorization method works can be simply illustrated through the harmonic
oscillator potential.

The harmonic oscillator Hamiltonian in natural units, with ℏ = 𝑚 = 𝜔 = 1,
reads

𝐻 = −1
2

𝑑2

𝑑𝑥2
+

𝑥2

2
. (1)

The standard factorizations in terms of the annihilation 𝑎 and creation 𝑎+ opera-
tors are given by:

𝐻 = 𝑎𝑎+ − 1

2
, (2)

𝐻 = 𝑎+𝑎+
1

2
, (3)

where

𝑎 =
1√
2

(
𝑑

𝑑𝑥
+ 𝑥

)
, (4)

𝑎+ =
1√
2

(
− 𝑑

𝑑𝑥
+ 𝑥

)
. (5)
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From these expressions the following intertwining relationships can be derived:

𝐻𝑎+ = 𝑎+(𝐻 + 1), (6)

𝐻𝑎 = 𝑎(𝐻 − 1), (7)

which imply that, by acting the operator 𝑎 (𝑎+) onto an eigenfunction of 𝐻 with
eigenvalue 𝐸, a new eigenfunction of 𝐻 is obtained with eigenvalue 𝐸− 1 (𝐸+1).
By using all these ingredients, it is straightforward to derive the complete set of
eigenfunctions 𝜓𝑛(𝑥) and eigenvalues 𝐸𝑛 = 𝑛+ 1/2 of 𝐻 , for 𝑛 = 0, 1, . . .

In 1983 Mielnik asked a simple question [14]: Is the factorization of the har-
monic oscillator Hamiltonian given in equation (2) unique? In order to answer, he
looked for more general first-order differential operators

𝑏 =
1√
2

[
𝑑

𝑑𝑥
+ 𝛽(𝑥)

]
, (8)

𝑏+ =
1√
2

[
− 𝑑

𝑑𝑥
+ 𝛽(𝑥)

]
, (9)

such that

𝐻 = 𝑏𝑏+ − 1

2
. (10)

It turns out that the unknown function 𝛽(𝑥) must satisfy the Riccati equation

𝛽′ + 𝛽2 = 𝑥2 + 1, (11)

whose general solution is given by

𝛽 = 𝑥+
𝑒−𝑥

2

𝜆+
∫ 𝑥

0
𝑒−𝑦2𝑑𝑦

. (12)

The key point now is that the product 𝑏+𝑏, in general, is no longer reduced to the
harmonic oscillator Hamiltonian, but it leads to a different operator:

�̃� = 𝑏+𝑏+
1

2
= −1

2

𝑑2

𝑑𝑥2
+ 𝑉 (𝑥), (13)

where

𝑉 (𝑥) =
𝑥2

2
− 𝑑

𝑑𝑥

[
𝑒−𝑥

2

𝜆+
∫ 𝑥

0 𝑒−𝑦2𝑑𝑦

]
. (14)

However, there are still intertwining relationships that look similar to those of
equations (6) and (7),

�̃�𝑏+ = 𝑏+(𝐻 + 1), (15)

𝐻𝑏 = 𝑏(�̃� − 1). (16)

Thus, the eigenfunctions 𝜓𝑛 of �̃� can be easily constructed from those of 𝐻 :

𝜓𝑛+1 =
𝑏+𝜓𝑛√
𝑛+ 1

, 𝑛 = 0, 1, . . . (17)
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Moreover, there is an additional eigenstate of �̃� associated to the eigenvalue 𝐸0 =
1/2 and simultaneously annihilated by 𝑏, which is given by:

𝜓0 ∝ exp
[
−
∫ 𝑥

0

𝛽(𝑦)𝑑𝑦

]
. (18)

In order to avoid singularities in 𝑉 (𝑥) and in 𝜓𝑛(𝑥), 𝑛 = 0, 1, . . . , the inequality

∣𝜆∣ >
√
𝜋/2 must hold. Thus, in this 𝜆-domain it turns out that �̃� is a new

Hamiltonian isospectral to the harmonic oscillator.

Figure 5. Bogdan Mielnik, David Fernández and Oscar Rosas, dur-
ing a break at the Conference Symmetries in quantum mechanics and
quantum optics, Burgos (Spain), September of 1998.

It is worth noting that the modified factorization described here represented a
breakthrough in the generation of exactly solvable quantum mechanical potentials.
Indeed, the intertwining relation (15) admits several generalizations that were
proposed shortly after. An obvious one consists in departing from a given generic

Schrödinger Hamiltonian 𝐻 of the form (13) and look for a new one �̃� such that

�̃�𝐵+ = 𝐵+𝐻, (19)

where the initial potential 𝑉 (𝑥) and the intertwining operator 𝐵+ are not neces-
sarily the harmonic oscillator and a first-order operator respectively. In particular,
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Figure 6. Boris Samsonov, David Fernández, Bogdan Mielnik and Os-
car Rosas at Mielnik’s office (March of 2001).

the generalization for 𝐵+ being of first-order and general 𝑉 (𝑥) was proposed by
Sukumar in 1985, who proved that a solution of the stationary Schrödinger equa-
tion associated to𝐻 and a given factorization energy 𝜖 such that 𝜖 ≤ 𝐸0 is required

to generate the new potential 𝑉 (𝑥) through non-singular transformations. On the
other hand, Andrianov, Ioffe and Spiridonov (1993) suggested that 𝐵+ should be
of order greater than one with general 𝑉 (𝑥), and this suggestion was later stud-
ied by Andrianov, Ioffe, Cannata, Dedonder (1995), Bagrov and Samsonov (1995)
and a member of our research group (Fernández 1997). It is important to notice
that in the higher-order case several seed solutions of the stationary Schrödinger
equation associated to diverse factorization energies are required in order to im-
plement the transformation (for a review containing further discussion, the reader
can consult [15]).

The case where 𝑉 (𝑥) is the harmonic oscillator potential and 𝐵+ is of second-
order was explored in detail in 1998 by members of our group [16]. A photograph
taken during a break at the Conference Symmetries in quantum mechanics and
quantum optics which was held at Burgos, Spain, can be seen on Figure 5. Sub-
sequently, the so-called confluent algorithm, for which the involved factorization
energies tend to a common value, was explored in 2000 by Mielnik, Nieto and
Rosas-Ortiz [17], and later by Fernández and Salinas-Hernández. The situation
when 𝑉 (𝑥) is periodic has been also analyzed in the interval 2000–2010 (see,



Mielnik’s Quantum Control 143

e.g., [18, 19]). Some members of our team elaborating the last problem appear
on the photo of Figure 6.

Before finishing this section, I would like to remark that in 2003 the Con-
ference Progress in supersymmetric quantum mechanics took place at Valladolid,
Spain. An overview article opening the special issue of J. Phys. A: Math. Gen.
dedicated to the topic of the Conference, that has quickly became a hit of the
factorization subject, is strongly recommended (see [15]).

3. Control of systems with time-dependent Hamiltonians

For systems ruled by time-dependent Hamiltonians the quantum control has to
be implemented in a different way. First of all, it is well known that the evolution
operator induced by a self-adjoint Hamiltonian is unitary. Thus, it is natural to
consider the inverse problem: Can any unitary operator be achieved as the re-
sult of a dynamical evolution? In other words, can a set of prescribed external
conditions be designed for the system to evolve in such a way that its evolution
operator becomes, at a certain time, the required unitary operator? The answer to
this question was suggested by Mielnik in 1977 [20]: provided there are no supers-
election rules, any unitary operator can be dynamically approximated. Moreover,
there is a generic prescription, proposed in 1986, in order to induce an arbitrary
unitary evolution [21, 22]: (i) first of all, let us choose the system that performs a
circular dynamical process such that 𝑈0(𝜏) = 𝐼, that is called an evolution loop
(EL); (ii) then, by perturbing the EL, the small deviations of this process will
eventually induce any given unitary operation (see an illustration of this process
in Figure 7).

U( )=I

U0( )=I

Figure 7. The deviation of the evolution loop induced by a perturbation.
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3.1. One-dimensional systems

Let us note that the one-dimensional harmonic oscillator is the simplest system
having an EL. Thus, it is natural first to look for EL in one-dimensional systems
ruled by Hamiltonians of the form

𝐻(𝑡) =
𝑝2

2
+ 𝑔(𝑡)

𝑞2

2
, (20)

where 𝑞, 𝑝 are the quantum mechanical coordinate and momentum operators such
that

[𝑞, 𝑝] = 𝑖, (21)

and the evolution operator 𝑈(𝑡) of the system satisfies

𝑑𝑈(𝑡)

𝑑𝑡
= −𝑖𝐻(𝑡)𝑈(𝑡), 𝑈(0) = 𝐼. (22)

A curious and interesting result that was found in 1977 deserves some discussion
[20]. For the periodic sequence of pulses such that

𝑔(𝑡) =
1

𝜆
𝛿(𝑡− 𝜆) for 0 < 𝑡 ≤ 𝜆, (23)

periodically extended for 𝑡 > 𝜆, the following holds

𝑒−𝑖
1
𝜆
𝑞2

2 𝑒−𝑖𝜆
𝑝2

2 ⋅ ⋅ ⋅ 𝑒−𝑖 1
𝜆
𝑞2

2 𝑒−𝑖𝜆
𝑝2

2︸ ︷︷ ︸ ≡ 𝐼,

12 factors
(24)

where the equivalence symbol ≡ interrelates any two unitary operators which differ
only by a 𝑐-number phase factor. This means that the system has an evolution loop
of period 𝜏 = 6𝜆. A schematic representation of this dynamical process is given
in Figure 8. Notice that, as a bonus, it is possible now to invert the natural free
evolution:

𝑒𝑖𝜆
𝑝2

2 ≡ 𝑒−𝑖
1
𝜆
𝑞2

2 𝑒−𝑖𝜆
𝑝2

2 ⋅ ⋅ ⋅ 𝑒−𝑖𝜆 𝑝2

2 𝑒−𝑖
1
𝜆
𝑞2

2︸ ︷︷ ︸ .
11 factors

(25)

Let us stress that the evolution loop of equation (24) is not the only one that
can be produced through Hamiltonians of the form (20) [22]. In particular, it turns
out that (

𝑒−𝑖3𝜏
𝑝2

2 𝑒−𝑖
1
𝜏
𝑞2

2

)3

≡ 𝐼, (26)

which implies that it is possible once again to invert the natural free evolution:

𝑒𝑖3𝜏
𝑝2

2 ≡ 𝑒−𝑖
1
𝜏
𝑞2

2 𝑒−𝑖3𝜏
𝑝2

2 𝑒−𝑖
1
𝜏
𝑞2

2 𝑒−𝑖3𝜏
𝑝2

2 𝑒−𝑖
1
𝜏
𝑞2

2 . (27)

A representation of the evolution loop of equation (26) is also given in Figure 8 [23].
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Figure 8. Representation of the evolution loops of equations (24) (left)
and (26) (right).

3.2. Three-dimensional systems

As our three-dimensional system let us consider a charged particle interacting
with homogeneous time-dependent magnetic fields. A possible experimental setup
is illustrated in Figure 9. In a neighborhood of the origin, the magnetic field can be
considered approximately homogeneous, and the corresponding Hamiltonian takes

Figure 9. An experimental setup to manipulate charged particles.
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the form:

𝐻(𝑡) =
1

2𝑚

(
p+

𝑒

2𝑐
r×B(𝑡)

)2

=
1

2𝑚

[
p2 +

(
𝑒B(𝑡)

2𝑐

)2

r2⊥

]
− 𝑒B(𝑡) ⋅ L

2𝑚𝑐
, (28)

a non-relativistic Hamiltonian with time dependent B(𝑡) representing the first step
of the Einstein-Infeld-Hoffman (EIH) method in classical electrodynamics (see the
discussion in [24]). Our first choice was the following rotating magnetic field [25]:

B(𝑡) = 𝐵 cos(𝜔𝑡)m+𝐵 sin(𝜔𝑡)n, (29)

for which we wanted to find the evolution loops. Unfortunately, we were unable to
find them for this system. Despite that, the corresponding quantum mechanical
problem was explicitly solved. We found a regime where the charged particle is
confined to a neighborhood of the origin (the trapping region). However, there ex-
ists also the domain of parametric resonance, where the charged particle is quickly
ejected off the trapping zone (see also [26–28]). These results constitute the core of
my PhD Thesis [29], supervised by Mielnik. The dissertation was delivered on Sep-
tember 19th, 1988 (a photograph of José Luis Lucio, Bogdan Mielnik and David
Fernández, after the event, can be seen in Figure 10).

Figure 10. José Luis Lucio, Bogdan Mielnik and David Fernández at
F́ısica I, September 19th, 1988.
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An alternative magnetic field was explored afterwards [30] (see also [31–33]):

B(𝑡) =

⎧⎨⎩
𝐵(𝑡)m for 𝑡 ∈ [0, 2𝑇 )
𝐵(𝑡− 2𝑇 )n for 𝑡 ∈ [2𝑇, 4𝑇 )

𝐵(𝑡− 4𝑇 )s for 𝑡 ∈ [4𝑇, 6𝑇 )

, (30)

where

𝐵(𝑡) =

⎧⎨⎩
𝐵1 for 𝑡 ∈ [0, 𝑡1), 0 < 𝑡1 < 𝑇,

𝐵2 for 𝑡 ∈ [𝑡1, 𝑇 ),
−𝐵2 for 𝑡 ∈ [𝑇, 𝑇 + 𝑡2), 𝑡2 = 𝑇 − 𝑡1,

−𝐵1 for 𝑡 ∈ [𝑇 + 𝑡2, 2𝑇 ).

(31)

For the three-dimensional system we were particularly interested, as in the
one-dimensional case, in inverting the natural free evolution. In order to do that,
we first of all switched to the following dimensionless quantities:

𝛾1 = 𝛼1𝑡
′
1, 𝛾2 = 𝛼2𝑡

′
2, 𝛼1 =

𝑒𝐵1𝑇

2𝑚𝑐
, (32)

𝛼2 =
𝑒𝐵2𝑇

2𝑚𝑐
, 𝑡′1 =

𝑡1
𝑇
, 𝑡′2 =

𝑡2
𝑇
. (33)

It turns out that the free evolution is induced when the previous parameters satisfy
the following relationships:

𝛼1 =
𝛾1 tan(𝛾1)− 𝛾2 tan(𝛾2)

tan(𝛾1)
, 𝛼2 =

𝛾1 tan(𝛾1)− 𝛾2 tan(𝛾2)

− tan(𝛾2)
, (34)

𝑡′1 =
𝛾1 tan(𝛾1)

𝛾1 tan(𝛾1)− 𝛾2 tan(𝛾2)
, 𝑡′2 =

−𝛾2 tan(𝛾2)

𝛾1 tan(𝛾1)− 𝛾2 tan(𝛾2)
. (35)

The evolution operator, at the time 𝜏 = 6𝑇 where the application of the magnetic
field ends, thus becomes:

𝑈(𝜏 = 6𝑇 ) = exp

(
− 𝑖

ℏ

𝑝2

2𝑚
𝑇 ′
)
= exp

(
− 𝑖

ℏ

𝑝2

2𝑚
𝜏𝜒

)
, (36)

where the effective time 𝑇 ′ = 𝜏𝜒 = 6𝑇𝜒 depends on the distortion parameter 𝜒,
which in turn depends on the angles 𝛾1 and 𝛾2 in the following way:

𝜒 =
1

3
+
2

3
cos2(𝛾2)

tan2(𝛾1)− tan2(𝛾2)

𝛾1 tan(𝛾1)− 𝛾2 tan(𝛾2)
. (37)

Notice that the required restrictions 𝑡′1 > 0 and 𝑡′2 > 0 are satisfied for 𝑛𝜋 <
𝛾1 < (𝑛 + 1/2)𝜋 and (𝑚 − 1/2)𝜋 < 𝛾2 < 𝑚𝜋, or for (𝑚 − 1/2)𝜋 < 𝛾1 < 𝑚𝜋 and
𝑛𝜋 < 𝛾2 < (𝑛+ 1/2)𝜋, 𝑚,𝑛 ∈ Z+. Moreover, depending on the values taken by 𝜒
in the admissible domain of (𝛾1, 𝛾2), three physically different situations arise:⎧⎨⎩

𝜒 > 1 accelerating the free evolution

0 ≤ 𝜒 ≤ 1 slowing the free evolution

𝜒 < 0 inverting the free evolution

(38)
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Figure 11. The chessboard of distorted time, where the manipulated
free evolution is induced for a charged particle in the magnetic field of
equations (30)–(31).

A plot summarizing these results is shown in Figure 11 [32]. In particular, it is
worth noticing the existence of regions where the inversion of the natural free
evolution is produced (see the domain in which 𝜒 < 0).

A photograph of Bogdan Mielnik, at the time of elaborating [30], is shown in
Figure 12.

I have illustrated here, with the example of the free evolution, the way in
which we learned to implement the dynamical manipulation. Of course, there are
other unitary operations which have been of interest for our group. In particular,
it is worth mentioning the squeezing operations, which were explored in detail by
Francisco Delgado during the elaboration of his MSc and PhD Thesis [34], under
the supervision of Mielnik as well (see also [35–37]). A photograph of both, taken
after the MSc dissertation of Francisco Delgado, February 2nd, 1992, is shown in
Figure 13.

On the other hand, with Sara Cruz the possible physical meaning of the
Floquet operator and its usefulness to achieve several interesting unitary operators
was explored in [38]. As a result of its originality and the large amount of new facts
contained in Sara’s Thesis [39–41] (also under BM supervision), in April 2006 she
was awarded the 2005 Arturo Rosenblueth prize to the best PhD thesis written at
Cinvestav (see photograph in Figure 14).
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Figure 12. The tea time at Paranagua 42-4 in 1993, during some dis-
cussions on magnetic control.

Figure 13. Bogdan Mielnik and Francisco Delgado, in front of Physics
Department, Cinvestav (February 2nd, 1992).



150 D.J. Fernández C.

Figure 14. Sara Cruz was awarded (April, 2006) the 2005 Arturo
Rosenblueth Prize to the best PhD Thesis defended at Cinvestav during
the year 2005 (here with her Thesis adviser, Bogdan Mielnik).

In addition, after studying physical problems leading to indefinite Hilbert spa-
ces and non-hermitian Hamiltonians [42], Bogdan Mielnik and Alejandra Ramı́rez
have explored some non-commutative coordinate operators naturally arising when
dealing with a charged particle interacting with several magnetic field configura-
tions [43]. Their most recent papers [24, 44,45] contain several results reported in
Alejandra’s Thesis. A photograph of Alejandra Ramı́rez and Bogdan Mielnik, dur-
ing their participation at the XXII Workshop on Geometrical Methods in Physics
which was held at Bial̷owieża in 2003 is shown in Figure 15.

It is important to notice that the school of quantum control at Cinvestav
also involves colleagues who only did their MSc Thesis under Mielnik’s advice.
Although they obtained PhDs later on in other areas, we guess that they still
conserve some interdisciplinary spirit. I would like to mention specifically:

Gerardo Herrera (September 1987): his MSc Thesis has to do with the dy-
namical manipulation of a one-dimensional Schrödinger particle in a quadratic
potential with a time-dependent frequency [46], the corresponding Hamiltonian is
given in equation (20). It was shown that the parity, scale and Fourier transforma-
tions can be dynamically induced. A photograph taken after the presentation of
the documentary about Plebański’s life, January 26th, 2005, containing Gerardo
Herrera (at the time Head of the Physics Department), Rosalinda Contreras (then
Director of Cinvestav) and Bogdan Mielnik, is shown in Figure 16.
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Figure 15. Alejandra Ramı́rez and Bogdan Mielnik at Bial̷owieża,
June 2003.

Figure 16. Gerardo Herrera (Head of the Physics Department), Ros-
alinda Contreras (Director of Cinvestav) and Bogdan Mielnik in front
of the Arturo Rosenblueth Auditorium, Cinvestav, January 26th, 2005.
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Diego Sanjinés (May 23th, 1990): his MSc Thesis addresses the connection
between the stationary one-dimensional Schrödinger equation and the classical
dynamical problem of an oscillator with time-dependent frequency [47]. It was
shown that the stability of the classical problem is closely related to the quantum
mechanical problem of eigenvalues.

Francisco Solis (August 1990): in this MSc Thesis, the stability of the motion
of charged particles in the vicinity of the nodal points of a monochromatic standing
plane wave was analyzed [48]. These results were compared with those obtained
from the ponderomotrix potential of Kapitza and Landau.

Marco Antonio Reyes (February 1992): his MSc Thesis has to do with a non-
perturbative numerical approach designed for calculating the energy levels of one-
dimensional or spherically symmetric potentials [49]. The method was implemented
with the angular form of the Riccati equation as a starting point [50].

Since one of the aims of this Conference was to celebrate the 70th and 75th
Birthdays of Lech Woronowicz and Bogdan Mielnik respectively, I find interesting
to show a photograph (see Figure 17) containing both, along with Jerzy Plebański,
at the Conference to celebrate the Jerzy Plebański’s 75th Birthday which was held
in Mexico City in September of 2002 [51].

Figure 17. Lech Woronowicz, Bogdan Mielnik and Jerzy Plebański
(September of 2002).
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Figure 18. The group of quantum control at the Physics Department
of Cinvestav (December 8th, 2010). From left to right and top to bot-
tom: Bogdan Mielnik, Rodrigo Muñoz (upper row); David Bermúdez,
Nicolás Fernández, Oscar Rosas, Alonso Contreras, David Fernández,
Encarnación Salinas (second row); Sara Cruz, Iván Cabrera, Gerardo
Herrera (front row).

In order to provide a global view of Mielnik’s scientific work, I would like to
close this section by mentioning that he has also contributed substantially to a
better understanding of conceptual and polemic problems in quantum mechanics
[37, 52–56].

4. Conclusions

By means of these specific examples I have tried to illustrate the way in which we
approach the problem of quantum control at the Physics Department of Cinvestav.
It is always difficult to evaluate which scientific results will turn important for the
future theories or applications, but undoubtedly Professor Bogdan Mielnik has
been quite essential in growing up a quantum control group which we hope can
compete on the international arena (see Figure 18). On behalf of the group, I
would like to express our best wishes to him:

For teaching us the way of doing science.
For teaching us that work has to be done patiently and carefully.
For an atmosphere of permanent creation and discussion.
Long live Professor Bogdan Mielnik!
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nuevas soluciones exactas y sus implicaciones para resonancia semiclásica, PhD The-
sis, Cinvestav, 1988.

[30] D.J. Fernández, B. Mielnik, Controlling quantum motion, J. Math. Phys. 35 (1994)
2083–2104.

[31] B. Mielnik, Hunting George Gamow Gazelle, in Particles and Fields, H.D. Doebner
et al Eds., World Scientific, Singapore (1993) 245–264.

[32] D.J. Fernández, B. Mielnik, Manipulation of quantum evolution, in Proceedings of
the Third International Workshop on Squeezed States and Uncertainty Relations,
NASA CP-3286, D. Han and K.B. Wolf Eds., NASA, USA (1994) 173–178.

[33] B. Mielnik, D.J. Fernández, Exponential Formulae and Effective Operations, in Pro-
ceedings of the Fourth International Conference on Squeezed States and Uncertainty
Relations, NASA CP-3322, D. Han et al., eds., NASA, USA (1996) 241–251.

[34] F. Delgado, Operaciones selectivas de control cuántico, PhD Thesis, Cinvestav, 1999.
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Abstract. In order to obtain a rigorous version of the Dirac formulation of
quantum mechanics, one has to go beyond Hilbert space and one usually
resorts to a Rigged Hilbert space (RHS). However, this is a particular case
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1. Introduction

When dealing with singular functions, one generally turns to distributions, most
often to tempered distributions. In the latter case, one is in fact working in the
triplet (Rigged Hilbert space or RHS)

𝒮(ℝ) ⊂ 𝐿2(ℝ, d𝑥) ⊂ 𝒮×(ℝ), (1)

where 𝒮(ℝ) is the Schwartz space of smooth functions of fast decay and 𝒮×(ℝ)
is the space of tempered distributions, taken as antilinear continuous functionals
over 𝒮(ℝ), so that the embeddings in (1) are linear (we restrict ourselves to one
dimension, for simplicity, but the argument is general).

The problem with the triplet (1) is that, besides the Hilbert space vectors, it
contains only two types of elements, “very good” functions in 𝒮 and “very bad”
ones in 𝒮×. To get a fine control on the behavior of individual elements, one has
to interpolate somehow between the two extreme spaces, thus getting a chain of
intermediate spaces (see [1] for the Schwartz case).

In fact, this is not at all an isolated case. Indeed many function spaces that
play a central role in analysis come in the form of families, indexed by one or several
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parameters that characterize the behavior of functions (smoothness, behavior at
infinity, . . . ). The typical structure is a chain of Hilbert or (reflexive) Banach
spaces. Let us give two familiar examples.

(i) The Lebesgue 𝐿𝑝 spaces on [0, 1], ℐ = {𝐿𝑝([0, 1], d𝑥), 1 ⩽ 𝑝 ⩽ ∞}; here
the 𝐿2 inner product ⟨𝑓 ∣𝑔⟩ is not well defined for two arbitrary functions
𝑓, 𝑔 ∈ 𝐿1. Thus, on 𝐿1, ⟨⋅∣⋅⟩ defines only a partial inner product.

(ii) The scale of Hilbert spaces {ℋ𝑛}𝑛∈ℤ built on the powers of a positive self-
adjoint operator 𝐴 ≥ 1 in a Hilbert space ℋ0. Here ℋ𝑛 is 𝐷(𝐴

𝑛), the domain
of 𝐴𝑛, equipped with the graph norm ∥𝑓∥𝑛 = ∥𝐴𝑛𝑓∥, 𝑓 ∈ 𝐷(𝐴𝑛), for 𝑛 ∈ ℕ
or 𝑛 ∈ ℝ+, and ℋ−𝑛 = ℋ×𝑛 (conjugate dual). In this case also, the inner
product of ℋ0 extends to each pair ℋ𝑛,ℋ−𝑛, but on ℋ−∞(𝐴) :=

∪
𝑛ℋ𝑛 it

yields only a partial inner product.

Thus, in both cases, one gets a partial inner product space (pip-space). In this
paper, we shall give a quick overview of pip-spaces and operators on them. A
complete information may be found in the monograph [2].

2. Partial inner product spaces

2.1. Basic definitions

The basic question may be stated as follows: Given a vector space 𝑉 and two
vectors 𝑓, 𝑔 ∈ 𝑉 , when does their inner product make sense? A way of formalizing
the answer is given by the idea of linear compatibility [3, 2], by which we mean a
symmetric binary relation # on 𝑉 which preserves linearity:

𝑓#𝑔 ⇐⇒ 𝑔#𝑓, ∀ 𝑓, 𝑔 ∈ 𝑉,

𝑓#𝑔, 𝑓#ℎ =⇒ 𝑓#(𝛼𝑔 + 𝛽ℎ), ∀ 𝑓, 𝑔, ℎ ∈ 𝑉, ∀𝛼, 𝛽 ∈ ℂ.

As a consequence, for any subset 𝑆 ⊂ 𝑉 , the set 𝑆# = {𝑔 ∈ 𝑉 : 𝑔#𝑓, ∀ 𝑓 ∈ 𝑆} is
a vector subspace of 𝑉 and one has 𝑆## = (𝑆#)# ⊇ 𝑆, 𝑆### = 𝑆#. Thus one
gets the following equivalences:

𝑓#𝑔 ⇐⇒ 𝑓 ∈ {𝑔}# ⇐⇒ {𝑓}## ⊆ {𝑔}#. (2)

From now on, we will call assaying subspace of 𝑉 a subspace 𝑆 such that 𝑆## = 𝑆
and denote by ℱ(𝑉, #) the family of all assaying subsets of 𝑉 , ordered by inclusion.
Let 𝐹 be the isomorphy class of ℱ , that is, ℱ considered as an abstract partially
ordered set. Elements of 𝐹 will be denoted by 𝑟, 𝑞, . . ., and the corresponding
assaying subsets 𝑉𝑟, 𝑉𝑞, . . .. By definition, 𝑞 ≤ 𝑟 if and only if 𝑉𝑞 ⫅ 𝑉𝑟. We also
write 𝑉𝑟 = 𝑉 #

𝑟 , 𝑟 ∈ 𝐹 . Thus the relations (2) mean that 𝑓#𝑔 if and only if there
is an index 𝑟 ∈ 𝐹 such that 𝑓 ∈ 𝑉𝑟, 𝑔 ∈ 𝑉𝑟. In other words, vectors should not
be considered individually, but only in terms of assaying subspaces, which are the
building blocks of the whole structure.

It is easy to see that the map 𝑆 �→ 𝑆## is a closure, in the sense of uni-
versal algebra, so that the assaying subspaces are precisely the “closed” subsets.
Therefore one has the following standard result [4].
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Theorem. The family ℱ(𝑉, #) = {𝑉𝑟, 𝑟 ∈ 𝐹} of all assaying subspaces, ordered by
inclusion, is a complete involutive lattice, under the following operations, arbitrar-
ily iterated:

∙ involution: 𝑉𝑟 ↔ 𝑉𝑟 := (𝑉𝑟)
#,

∙ infimum: 𝑉𝑝∧𝑞 := 𝑉𝑝 ∧ 𝑉𝑞 = 𝑉𝑝 ∩ 𝑉𝑞, (𝑝, 𝑞, 𝑟 ∈ 𝐹 )

∙ supremum: 𝑉𝑝∨𝑞 := 𝑉𝑝 ∨ 𝑉𝑞 = (𝑉𝑝 + 𝑉𝑞)
##.

The smallest element of ℱ(𝑉, #) is 𝑉 # =
∩

𝑟 𝑉𝑟 and the greatest element is
𝑉 =

∪
𝑟 𝑉𝑟 . By definition, the index set 𝐹 is also a complete involutive lattice; for

instance,

(𝑉𝑝∧𝑞)# = 𝑉𝑝∧𝑞 = 𝑉𝑝∨𝑞 = 𝑉𝑝 ∨ 𝑉𝑞.

A partial inner product on (𝑉, #) is a hermitian form ⟨⋅∣⋅⟩, not necessarily
positive definite, defined exactly on compatible pairs of vectors. A partial inner
product space (pip-space) is a vector space 𝑉 equipped with a linear compatibility
and a partial inner product.

The partial inner product clearly defines a notion of orthogonality: 𝑓 ⊥ 𝑔
if and only if 𝑓#𝑔 and ⟨𝑓 ∣𝑔⟩ = 0. We require the partial inner product to be non
degenerate, that is, (𝑉 #)⊥ = {0}, i.e., ⟨𝑓 ∣𝑔⟩ = 0 for all 𝑓 ∈ 𝑉 # implies 𝑔 = 0.
As a consequence, (𝑉 #, 𝑉 ) is a dual pair in the sense of topological vector spaces
[5, 6], and so is every couple (𝑉𝑟, 𝑉𝑟), 𝑟 ∈ 𝐹 . In the sequel, we also assume that
the partial inner product is positive definite.

Next, one wants the topological structure to match the algebraic structure.
Thus the topology t(𝑉𝑟) of 𝑉𝑟 should be such that the dual of 𝑉𝑟 is precisely 𝑉𝑟,
that is, t(𝑉𝑟) must be a topology of the dual pair ⟨𝑉𝑟 , 𝑉𝑟⟩. Therefore t(𝑉𝑟) must
be finer than the weak topology 𝜎(𝑉𝑟 , 𝑉𝑟) and coarser than the Mackey topology
𝜏(𝑉𝑟 , 𝑉𝑟):

𝜎(𝑉𝑟 , 𝑉𝑟) ⪯ t(𝑉𝑟) ⪯ 𝜏(𝑉𝑟 , 𝑉𝑟).

From now on, we assume that every 𝑉𝑟 carries its Mackey topology 𝜏(𝑉𝑟 , 𝑉𝑟). As
a consequence, if 𝑉𝑟[t(𝑉𝑟)] is a Hilbert space or a reflexive Banach space, then
𝜏(𝑉𝑟 , 𝑉𝑟) coincides with the norm topology. Next, 𝑟 < 𝑠 implies 𝑉𝑟 ⊂ 𝑉𝑠, and
the embedding operator 𝐸𝑠𝑟 : 𝑉𝑟 → 𝑉𝑠 is continuous and has dense range. In
particular, 𝑉 # is dense in every 𝑉𝑟.

Typical examples are the following:

(1) Let 𝑉 be the space 𝜔 of all complex sequences 𝑥 = (𝑥𝑛) and define on it
(i) a compatibility relation by 𝑥#𝑦 ⇔∑∞

𝑛=1 ∣𝑥𝑛 𝑦𝑛∣ < ∞; (ii) a partial inner
product ⟨𝑥∣𝑦⟩ = ∑∞

𝑛=1 𝑥𝑛 𝑦𝑛, for 𝑥#𝑦. Then 𝜔# = 𝜑, the space of finite
sequences, and ℓ2 is the unique central, self-dual, Hilbert space.

(2) Let now 𝑉 be 𝐿1
loc(ℝ, d𝑥), the space of Lebesgue measurable functions, inte-

grable over compact subsets. Define a compatibility relation on it by 𝑓#𝑔 ⇔∫
ℝ
∣𝑓(𝑥)𝑔(𝑥)∣ d𝑥 < ∞ and a partial inner product ⟨𝑓 ∣𝑔⟩ = ∫

ℝ
𝑓(𝑥)𝑔(𝑥) d𝑥,

for 𝑓#𝑔. Then 𝑉 # = 𝐿∞c (ℝ), the space of bounded measurable functions of
compact support and the central, self-dual, Hilbert space is 𝐿2(ℝ, d𝑥).
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2.2. Lattices of Hilbert or Banach spaces

The previous examples show that ℱ(𝑉, #) is a huge lattice (it is complete!) and that
assaying subspaces may be complicated, such as Fréchet spaces, non metrizable
spaces, etc. This situation suggests to choose a sublattice ℐ of ℱ , indexed by 𝐼,
such that

(i) ℐ is generating, that is, 𝑓#𝑔 iff ∃ 𝑟 ∈ 𝐼 such that 𝑓 ∈ 𝑉𝑟, 𝑔 ∈ 𝑉𝑟 ;
(ii) every 𝑉𝑟, 𝑟 ∈ 𝐼, is a Hilbert space or a reflexive Banach space;
(iii) ℐ contains a unique self-dual Hilbert space 𝑉𝑜 = 𝑉𝑜.

In that case, the structure 𝑉𝐼 := (𝑉, ℐ, ⟨⋅∣⋅⟩) is called, respectively, a lattice of
Hilbert spaces (LHS) or a lattice of Banach spaces (LBS). Both types are particular
cases of the so-called indexed pip-spaces [7], but they are sufficient for our present
purposes. Note that 𝑉 #, 𝑉 themselves usually do not belong to the family {𝑉𝑟, 𝑟 ∈
𝐼}, but they can be recovered as 𝑉 # =

∩
𝑟∈𝐼 𝑉𝑟, 𝑉 =

∑
𝑟∈𝐼 𝑉𝑟.

In the LBS case, the lattice structure takes the following form

∙ 𝑉𝑝∧𝑞 = 𝑉𝑝 ∩ 𝑉𝑞, with the projective norm ∥𝑓∥𝑝∧𝑞 = ∥𝑓∥𝑝 + ∥𝑓∥𝑞 ;
∙ 𝑉𝑝∨𝑞 = 𝑉𝑝 + 𝑉𝑞, with the inductive norm

∥𝑓∥𝑝∨𝑞 = inf𝑓=𝑔+ℎ (∥𝑔∥𝑝 + ∥ℎ∥𝑞) , 𝑔 ∈ 𝑉𝑝, 𝑓 ∈ 𝑉𝑞.

These norms are usual in interpolation theory [8]. In the LHS case, one takes
similar definitions with squared norms, in order to get Hilbert norms.

This construction raises the question of comparison between two compati-
bilities, thus two pip-space structures, on the same vector space. Coarsening of a
compatibility means selecting an involutive sublattice of ℱ . But the refinement of
a compatibility is not always possible, in any case, there is no canonical solution.
For a LHS, however, one may proceed by interpolation or with the spectral theo-
rem for self-adjoint operators. An important case is that of refining a RHS into a
LHS, e.g., the Schwartz triplet 𝒮 ⊂ 𝐿2 ⊂ 𝒮×.
2.3. Examples

We list a series of concrete examples of LBSs (in one dimension, for simplicity).
The first two are those described in the Introduction

(i) Scales of Hilbert or Banach spaces

(a) The Lebesgue 𝐿𝑝 spaces on [0, 1], ℐ = {𝐿𝑝([0, 1], d𝑥), 1 ⩽ 𝑝 ⩽ ∞}.
(b) The scale of Hilbert spaces built on the powers of a positive self-adjoint

operator 𝐴 ≥ 1 in a Hilbert space ℋ0. The following examples, all three in
ℋ0 = 𝐿2(ℝ, d𝑥) are standard:

∙ (𝐴p𝑓)(𝑥) = (1 + 𝑥2)1/2𝑓(𝑥);

∙ (𝐴m𝑓)(𝑥) = (1− 𝑑2

𝑑𝑥2 )
1/2𝑓(𝑥);

∙ (𝐴osc𝑓)(𝑥) = (1 + 𝑥2 − 𝑑2

𝑑𝑥2 )𝑓(𝑥).

In the case of 𝐴m, the intermediate spaces are the Sobolev spaces 𝐻𝑠(ℝ), 𝑠 ∈
ℤ or ℝ. Note that both ℋ∞(𝐴p) ∩ ℋ∞(𝐴m) and ℋ∞(𝐴osc) coincide with the
Schwartz space 𝒮(ℝ) of smooth functions of fast decay, and ℋ−∞(𝐴osc) with the
space 𝒮×(ℝ) of tempered distributions.
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(ii) Sequence spaces
In 𝜔, we may take the lattice ℐ = {ℓ2(𝑟)} of the weighted Hilbert spaces defined as

ℓ2(𝑟) =
{
(𝑥𝑛) :

∑∞
𝑛=1

∣𝑥𝑛∣2 𝑟−1
𝑛 < ∞

}
, 𝑟 = (𝑟𝑛), 𝑟𝑛 > 0,

with the lattice operations

∙ infimum: ℓ2(𝑝 ∧ 𝑞) = ℓ2(𝑝) ∧ ℓ2(𝑞) = ℓ2(𝑟), 𝑟𝑛 = min(𝑝𝑛, 𝑞𝑛),
∙ supremum: ℓ2(𝑝 ∨ 𝑞) = ℓ2(𝑝) ∨ ℓ2(𝑞) = ℓ2(𝑠), 𝑠𝑛 = max(𝑝𝑛, 𝑞𝑛),
∙ involution: ℓ2(𝑟)↔ ℓ2(𝑟) = ℓ2(𝑟)×, 𝑟𝑛 = 1/𝑟𝑛.

(these norms are equivalent to the projective, resp. inductive norms).

(iii) Spaces of locally integrable functions
In 𝐿1

loc(ℝ, d𝑥), we may take the lattice ℐ = {𝐿2(𝑟)} of the weighted Hilbert spaces
defined as

𝐿2(𝑟) =

{
𝑓 ∈ 𝐿1

loc(ℝ, 𝑑𝑥) :

∫
ℝ

∣𝑓(𝑥)∣2 𝑟(𝑥)−1 d𝑥 < ∞
}
,

with 𝑟, 𝑟−1 ∈ 𝐿2
loc(ℝ, 𝑑𝑥), 𝑟(𝑥) > 0 a.e. and the lattice operations

∙ infimum: 𝐿2(𝑝 ∧ 𝑞) = 𝐿2(𝑝) ∧ 𝐿2(𝑞) = 𝐿2(𝑟), 𝑟(𝑥) = min(𝑝(𝑥), 𝑞(𝑥)),
∙ supremum: 𝐿2(𝑝 ∨ 𝑞) = 𝐿2(𝑝) ∨ 𝐿2(𝑞) = 𝐿2(𝑠), 𝑠(𝑥) = max(𝑝(𝑥), 𝑞(𝑥)),
∙ involution: 𝐿2(𝑟) ↔ 𝐿2(𝑟), 𝑟 = 1/𝑟.

(iv) The spaces 𝑳𝒑(ℝ, d𝒙), 1 ⩽ 𝒑 ⩽ ∞
The spaces 𝐿𝑝(ℝ, d𝑥), 1 ⩽ 𝑝 ⩽ ∞, do not constitute a scale, since one has only
the inclusions 𝐿𝑝 ∩ 𝐿𝑞 ⊂ 𝐿𝑠, 𝑝 < 𝑠 < 𝑞. Thus one has to consider the lattice they
generate, with the following lattice operations:

∙ 𝐿𝑝 ∧ 𝐿𝑞 = 𝐿𝑝 ∩ 𝐿𝑞, with the projective norm;
∙ 𝐿𝑝 ∨ 𝐿𝑞 = 𝐿𝑝 + 𝐿𝑞, with the inductive norm;
∙ For 1 < 𝑝, 𝑞 < ∞, both spaces 𝐿𝑝 ∧ 𝐿𝑞 and 𝐿𝑝 ∨ 𝐿𝑞 are reflexive Banach
spaces and (𝐿𝑝 ∧ 𝐿𝑞)× = 𝐿𝑝 ∨ 𝐿𝑞, (𝐿𝑝 ∨ 𝐿𝑞)× = 𝐿𝑝 ∧ 𝐿𝑞.

Thus one gets a genuine lattice of Banach spaces, reflexive for 1 < 𝑝, 𝑞 < ∞.

3. Operators on pip-spaces

3.1. Basic idea

As already mentioned, the basic idea of (indexed) pip-spaces is that vectors should
not be considered individually, but only in terms of the subspaces 𝑉𝑟 (𝑟 ∈ 𝐹 or
𝑟 ∈ 𝐼), the building blocks of the structure. Correspondingly, an operator on a
pip-space should be defined in terms of assaying subspaces only, with the proviso
that only bounded operators between Hilbert or Banach spaces are allowed. Thus
we state:

Given a LHS or LBS 𝑉𝐼 = {𝑉𝑟, 𝑟 ∈ 𝐼}, an operator on 𝑉𝐼 is a map 𝐴 from a
subset 𝒟 ⊆ 𝑉 into 𝑉 , where

(i) 𝒟 is a nonempty union of assaying subsets of 𝑉𝐼 ;
(ii) for every assaying subset 𝑉𝑞 contained in 𝒟, there exists a 𝑝 ∈ 𝐼 such that

the restriction 𝐴𝑝𝑞 of 𝐴 to 𝑉𝑞 is linear and continuous into 𝑉𝑝;
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(iii) 𝐴 has no proper extension satisfying (i) and (ii), i.e., it is maximal.

The linear bounded operator 𝐴𝑝𝑞 : 𝑉𝑞 → 𝑉𝑝 is called a representative of 𝐴. In terms
of the latter, the operator𝐴may be characterized by the set j(𝐴) := {(𝑞, 𝑝) ∈ 𝐼×𝐼 :
𝐴𝑝𝑞 exists}. Thus the operator 𝐴 may be identified with the (coherent) collection
of its representatives,

𝐴 ≃ {𝐴𝑝𝑞 : 𝑉𝑞 → 𝑉𝑝 : (𝑞, 𝑝) ∈ j(𝐴)}.
We also need the two sets

d(𝐴) := {𝑞 ∈ 𝐼 : there is a 𝑝 such that 𝐴𝑝𝑞 exists},
i(𝐴) := {𝑝 ∈ 𝐼 : there is a 𝑞 such that 𝐴𝑝𝑞 exists}.

The following properties are immediate:

∙ d(𝐴) is an initial subset of 𝐼: if 𝑞 ∈ d(𝐴) and 𝑞′ < 𝑞, then 𝑞′ ∈ d(𝐴), and
𝐴𝑝𝑞′ = 𝐴𝑝𝑞𝐸𝑞𝑞′ , where 𝐸𝑞𝑞′ is a representative of the unit operator.

∙ i(𝐴) is a final subset of 𝐼: if 𝑝 ∈ i(𝐴) and 𝑝′ > 𝑝, then 𝑝′ ∈ i(𝐴) and 𝐴𝑝′𝑞 =
𝐸𝑝′𝑝𝐴𝑝𝑞.

∙ j(𝐴) ⊂ d(𝐴)× i(𝐴), with strict inclusion in general.

We denote by Op(𝑉𝐼) the set of all operators on 𝑉𝐼 . A similar definition may be
given for operators 𝐴 : 𝑉𝐼 → 𝑌𝐾 between two LHSs or LBSs.

3.2. Algebraic operations on operators

Since 𝑉 # is dense in 𝑉𝑟 , for every 𝑟 ∈ 𝐼, an operator may be identified with a
separately continuous sesquilinear form on 𝑉 # × 𝑉 #. Equivalently, an operator
may be identified with a continuous linear map from 𝑉 # into 𝑉 . But the idea
behind the notion of operator is to keep also the algebraic operations on operators,
namely:

(i) Adjoint 𝐴×: every 𝐴 ∈ Op(𝑉𝐼) has a unique adjoint 𝐴× ∈ Op(𝑉𝐼):
⟨𝐴×𝑥∣𝑦⟩ = ⟨𝑥∣𝐴𝑦⟩, for 𝑦 ∈ 𝑉𝑟 , 𝑟 ∈ d(𝐴), and 𝑥 ∈ 𝑉𝑠, 𝑠 ∈ i(𝐴),

that is, (𝐴×)𝑟𝑠 = (𝐴𝑠𝑟)
∗ (usual Hilbert/Banach space adjoint).

It follows that 𝐴×× = 𝐴, for every 𝐴 ∈ Op(𝑉𝐼): no extension is allowed, by
the maximality condition (iii) of the definition.

(ii) Partial multiplication: 𝐴𝐵 is defined if and only if there is a 𝑞 ∈ i(𝐵)∩ d(𝐴),
that is, if and only if there is a continuous factorization through some 𝑉𝑞:

𝑉𝑟
𝐵−→ 𝑉𝑞

𝐴−→ 𝑉𝑠, i.e., (𝐴𝐵)𝑠𝑟 = 𝐴𝑠𝑞𝐵𝑞𝑟 .

It is worth noting that, for a LHS/LBS, the domain 𝒟 of an operator is always a
vector subspace of 𝑉 (this is not true for a general pip-space).

4. Special classes of operators on pip-spaces

Exactly as for Hilbert or Banach spaces, one may define various types of operators
between pip-spaces, in particular LBS/LHS.
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4.1. Homomorphisms

An operator 𝐴 ∈ Op(𝑉𝐼 , 𝑌𝐾) is called a homomorphism if

(i) for every 𝑟 ∈ 𝐼 there exists 𝑢 ∈ 𝐾 such that both 𝐴𝑢𝑟 and 𝐴𝑢𝑟 exist;
(ii) for every 𝑢 ∈ 𝐾 there exists 𝑟 ∈ 𝐼 such that both 𝐴𝑢𝑟 and 𝐴𝑢𝑟 exist.

We denote by Hom(𝑉𝐼 , 𝑌𝐾) the set of all homomorphisms between the two LHS
𝑉𝐼 , 𝑌𝐾 . The following properties are immediate:

(i) 𝐴 ∈ Hom(𝑉𝐼 , 𝑌𝐾) if and only if 𝐴× ∈ Hom(𝑌𝐾 , 𝑉𝐼).
(ii) If 𝐴 ∈ Hom(𝑉𝐼 , 𝑌𝐾), then j(𝐴×𝐴) contains the diagonal of 𝐼 × 𝐼 and j(𝐴𝐴×)

contains the diagonal of 𝐾 ×𝐾.
(iii) If 𝐴 ∈ Hom(𝑉𝐼), then 𝑓#𝑔 implies 𝐴𝑓#𝐴𝑔.

A homomorphism 𝐴 ∈ Hom(𝑉𝐼 , 𝑌𝐾) is an isomorphism if there exists 𝐵 ∈
Hom(𝑌𝐾 , 𝑉𝐼) such that 𝐵𝐴 = 1𝑉 , 𝐴𝐵 = 1𝑌 (identity operators).

An operator 𝑈 is unitary if 𝑈×𝑈 and 𝑈𝑈× are defined and 𝑈×𝑈 = 1𝑉 ,
𝑈𝑈× = 1𝑌 . We emphasize that unitary operators need not be homomorphisms!
In particular, this implies that the natural setting for group representations in a
LHS is that of unitary isomorphisms [2, Sec. 3.3.4].

4.2. Symmetric operators

An operator 𝐴 is symmetric if 𝐴× = 𝐴. Symmetric operators satisfy a generalized
KLMN theorem, stating when a symmetric operator has a self-adjoint restriction
to the central Hilbert space 𝑉𝑜 [2, Sec. 3.3.5]. Actually, the concept of pip-space
operator allows to treat on the same footing all kinds of operators, from bounded
ones to very singular ones. Take, for instance,

𝑉𝑟 ⊂ 𝑉𝑜 ≃ 𝑉𝑜 ⊂ 𝑉𝑠 (𝑉𝑜 = Hilbert space).

Then three cases may arise:

∙ if 𝐴𝑜𝑜 exists, then 𝐴 corresponds to a bounded operator 𝑉𝑜 → 𝑉𝑜;
∙ if 𝐴𝑜𝑜 does not exist, but only 𝐴𝑜𝑟 : 𝑉𝑟 → 𝑉𝑜, 𝑟 < 𝑜, then 𝐴 corresponds to
an unbounded operator, with Hilbert space domain containing 𝑉𝑟;

∙ if no 𝐴𝑜𝑟 exists, but only 𝐴𝑠𝑟 : 𝑉𝑟 → 𝑉𝑠, 𝑟 < 𝑜 < 𝑠, then 𝐴 corresponds to a
singular operator, with Hilbert space domain possibly reduced to {0}.

A nice application of this machinery is a rigorous analysis of singular quantum
Hamiltonians (e.g., rigorous versions of the Kronig–Penney crystal model or of 𝛿
interactions) [2, Sec. 7.1.3].

4.3. Orthogonal projections

An orthogonal projection on a non degenerate pip-space 𝑉 is a homomorphism
that satisfies the relations 𝑃 2 = 𝑃 = 𝑃× [9]. The set Proj(𝑉 ) of all orthogonal
projections in 𝑉 is a partially ordered set, as in a Hilbert space. However, it is a
lattice only under additional conditions, yet to be determined. The problem is still
open.

These projection operators enjoy several properties similar to those of Hilbert
space projectors. Two of them are of special interest here.



164 J.-P. Antoine

(i) Given a non degenerate pip-space 𝑉 , there is a natural notion of pip-subspace,
called orthocomplemented, which guarantees that such a subspace 𝑊 of 𝑉 is
again a non degenerate pip-space with the induced compatibility relation and
the restriction of the partial inner product. Then the basic theorem about
projections states that a pip-subspace 𝑊 of 𝑉 is orthocomplemented if and
only if𝑊 is the range of an orthogonal projection 𝑃 ∈ Proj(𝑉 ), i.e.,𝑊 = 𝑃𝑉 .
Then 𝑉 =𝑊 ⊕ 𝑍, where 𝑍 is another orthocomplemented pip-subspace.

(ii) An orthogonal projection 𝑃 is of finite rank if and only if 𝑊 = Ran𝑃 ⊂
𝑉 # and 𝑊 ∩𝑊⊥ = {0}. This property has an important consequence for
the structure of bases and frames, used for representing and approximating
arbitrary elements of a Hilbert space ℋ. Indeed it implies that the basis
or frame vectors must belong to the “small” space 𝑉 # of any pip-space 𝑉
containing ℋ as central Hilbert space. For the spaces 𝐿𝑝(ℝ), 1 < 𝑝 < ∞,
e.g., this means that the basis vectors must belong to 𝑉 # = ∩1<𝑝<∞𝐿𝑝(ℝ).
Wavelets, for instance, yield unconditional bases for all the spaces 𝐿𝑝(ℝ),
1 < 𝑝 < ∞.
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Abstract. In the paper the so-called “Resonance-Decay Problem in Quan-
tum Mechanics” is solved for a selected class of Hamiltonians: The absolutely
continuous part of the Hamiltonian is unitarily equivalent to a selfadjoint op-
erator 𝐻 on the Hilbert space ℋ+ := 𝐿2(ℝ+,𝒦, 𝑑𝜆),𝒦 the multiplicity space,
such that 𝐻 together with the multiplication operator on ℋ+ forms an as-
ymptotic complete scattering system such that the scattering matrix 𝑆(⋅) is
holomorphic in the upper half-plane and satisfies certain conditions at 0, at
infinity and on the rim ℝ− + 𝑖0. The proof uses methods of the Lax-Phillips
scattering theory.
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1. Introduction

The origin of the resonance-decay problem in non-relativistic quantum mechanics
is the observation of bumps in scattering cross-sections. The successful description
of a bump by the celebrated Breit-Wigner formula – essentially the modulus of
the Breit-Wigner amplitude – with a resonance energy 𝐸0 and a resonance width
Γ, where Γ > 0 is small, suggested first the idea to associate with this physical
resonance an unstable or decaying state with energy 𝐸0 and lifetime 1/Γ and with
exponential decay law 𝑡 → e−Γ𝑡. Second, the form of the Breit-Wigner amplitude
led to the idea to associate with an hypothetical decaying state of a physical
resonance a pole 𝐸0 − 𝑖Γ/2 of the scattering matrix, i.e., a pole in the lower half-
plane near the real axis.

The consequence of this idea is that if it turned out that these ideas can be
realized then the same properties should be also true for poles with a larger imag-
inary part, which cannot be identified as a physical resonance, i.e., with a bump.
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Therefore, the challenge is to construct the decaying states as eigenstates
associated with the poles as corresponding eigenvalues of a non-selfadjoint operator
𝐵 related to the Hamiltonian. Conversely, the poles should be the only eigenvalues
of that operator. That is, this hypothetical operator depends on the scattering
operator and it characterizes the set of all poles as its eigenvalue spectrum.

The problem of the construction of an non-selfadjoint operator 𝐵, depending
on𝐻 and characterizing the set of all poles of the scattering matrix as its eigenvalue
spectrum, where all eigenvectors satisfy the exponential decay law is called the
resonance-decay problem.

2. Decay

The deterministic time-evolution of the non relativistic Quantum Mechanics is
given by ℝ ∋ 𝑡 → e−𝑖𝑡𝐻𝜙, where 𝜙 is a normed vector (a state) of a sep-
arable Hilbert space ℱ and where 𝐻 is the Hamiltonian, a selfadjoint opera-
tor on ℱ , which is bounded below. The unitary e−𝑖𝑡𝐻 is defined by e−𝑖𝑡𝐻 =∫∞
𝑐 e−𝑖𝑡𝜆𝐸(𝑑𝜆), 𝑐 > −∞, 𝐸(⋅) the spectral measure of 𝐻 . The transition proba-

bility w.r.t. 𝜙 and e−𝑖𝑡𝐻𝜙 is given by ∣(𝜙, e−𝑖𝑡𝐻𝜙)∣2. A state 𝜙 is called decaying
for 𝑡 → ∞ if lim𝑡→∞(𝜙, e−𝑖𝑡𝐻𝜙) = 0.

The first assumption on 𝐻 requires that the absolutely continuous spectrum
has constant multiplicity and coincides with [0,∞). Further – for simplicity – it is
assumed that 𝐻 has no singular-continuous spectrum. Then ℱ = 𝑃 acℱ⊕ℰ , where
𝑃 ac denotes the projection onto the absolutely continuous subspace of 𝐻 and ℰ
the closure of all eigenstates. The absolutely continuous part of 𝐻 , i.e., 𝐻 ↾ 𝑃 acℱ ,
is denoted by 𝐻ac.

The lemma of Riemann-Lebesgue implies that all states 𝜙 from ℱac are de-
caying,

lim
𝑡→∞(𝜙, e

−𝑖𝑡𝐻𝜙) = 0, 𝜙 ∈ ℱac,

whereas the eigenstates of 𝐻 are stable because (𝜙, e−𝑖𝑡𝐻𝜙) = e−𝑖𝑡𝛼, where 𝛼 ≥ 𝑐
is a corresponding eigenvalue of 𝜙. The function

𝑤(𝑡) := ∣(𝜙, e−𝑖𝑡𝐻𝜙)∣2, 𝑡 ≥ 0, 𝜙 ∈ ℱac, (1)

is called its decay law.

3. Resonances

In scattering systems in addition to 𝐻 there appears a second Hamiltonian 𝐻0,
in the present context also without singular-continuous spectrum, called the un-
perturbed one, also defined on ℱ . The second assumption on 𝐻 requires that
the system {𝐻,𝐻0} is asymptotically complete. This implies that the absolutely
continuous part 𝐻ac

0 := 𝐻0 ↾ 𝑃 ac
0 ℱ is unitarily equivalent with 𝐻ac. There-

fore, without restriction of generality, it can be assumed that 𝑃 ac
0 ℱ is given by

ℋ+ := 𝐿2(ℝ+,𝒦, 𝑑𝜆), where 𝐻0 acts on this space as the multiplication opera-
tor 𝑀+ and 1 ≤ dim𝒦 ≤ ∞ is the multiplicity. That is, the consideration can
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be based on the spectral representation of 𝐻ac
0 . Then ℱ = ℋ+ ⊕ ℰ0, where ℰ0

is the eigenspace of 𝐻0. The unitary equivalence between 𝐻ac and 𝐻ac
0 can be

realized by the so-called (isometric) wave operators 𝑊± from ℋ+ onto 𝑃 acℱ . The
(unitary) scattering operator 𝑆 := 𝑊 ∗

+𝑊− acts on ℋ+ and the action is realized
by the (unitary) operators ℝ+ ∋ 𝜆 → 𝑆(𝜆) on 𝒦, called scattering matrix, via
𝑆𝑓(𝜆) := 𝑆(𝜆)𝑓(𝜆).

As already mentioned, bumps in cross-sections of scattering experiments can
be approximately described by the Breit-Wigner formula, which is essentially given
as the modulus of the Breit-Wigner amplitude

Γ/2

𝜆− (𝜆0 − 𝑖Γ/2)
, 𝜆0 > 0, Γ > 0, Γ small. (2)

Eq. (2) suggests to consider the Breit-Wigner amplitude as a term in the scattering
amplitude 𝑆(𝜆)−�𝒦, i.e., to conjecture that 𝜆0−𝑖Γ/2 could be a pole of 𝑆(⋅) in the
lower half-plane near the real axis, provided 𝑆(⋅) is analytically continuable. That
is, the physical resonances correspond to poles near the real axis, and the conjec-
ture is that for these poles it is possible to construct the mentioned hypothetical
decaying states. As it is pointed out before, then the same procedure should be
possible also for poles with larger imaginary part, which cannot be identified as a
physical resonance. Therefore the following consideration is restricted to scatter-
ing systems where the scattering matrix is analytically continuable into the lower
half-plane across the positive half-line and for brevity we use the terms resonance
and pole of 𝑆(⋅) synonymously.

In particular as the third assumption the following condition is required:

(i) The scattering matrix 𝑆(⋅) is given by

𝑆(𝜆) = s-lim𝜖→+0 𝑆(𝜆+ 𝑖𝜖), 𝜆 > 0, 𝜖 > 0,

where ℂ+ ∋ 𝑧 → 𝑆(𝑧) is a holomorphic operator function.

Then 𝑆(⋅) is automatically analytically continuable into ℂ− across ℝ+ by

𝑆(𝑧) := (𝑆(𝑧)∗)−1, 𝑧 ∈ ℂ−. (3)

Thus 𝑆(⋅) is a meromorphic operator function on ℂ ∖ (−∞, 0], i.e., in ℂ− there
are at most poles as singularities (examples of scattering systems from potential
scattering satisfying condition (i) are considered in [1] and in Reed-Simon [2]). In
the following it is assumed that there is at least one pole.

Since it is required that the set of all poles of 𝑆(⋅) coincides with the eigen-
value spectrum of the hypothetical operator 𝐵, and further that the corresponding
eigenvectors satisfy the exponential decay law, the ansatz is suggested that 𝐵 is the
generator of a so-called decay-semigroup. Then 𝐵 can be considered as a desired
modification of the Hamiltonian and the requirement is satisfied.

Definition. A contractive strongly continuous semigroup 0 ≤ 𝑡 → e−𝑖𝑡𝐴 on a
Hilbert space ℒ with s-lim𝑡→0 e

−𝑖𝑡𝐴𝑓 = 𝑓, 𝑓 ∈ ℒ is called a decay-semigroup if
s-lim𝑡→∞ e−𝑖𝑡𝐴 = 0, 𝑓 ∈ ℒ. (4)
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This means that, if 𝐴 has an eigenvalue 𝜁, then a normed eigenvector 𝑓 ∈ ℒ
for this eigenvalue satisfies

(𝑓, e−𝑖𝑡𝐴𝑓) = e−𝑖𝑡𝜁 . (5)

4. Spectral theoretic approach to resonances

In the course of the study of resonances of 𝐻 – having in mind that one has to
identify them as eigenvalues of 𝐵 – it turned out that there is a close relationship
of resonances and eigenvalues of 𝐻 . In many cases the resonances satisfy the same
relations as the eigenvalues – of course via analytic continuation (see, e.g., [1, 3, 4]).
Therefore, in this spectral theoretic approach the aim is to characterize resonances
as generalized eigenvalues of a suitable extension of 𝐻ac resp. e−𝑖𝑡𝐻 ↾ ℱac using
Gelfand triplets or Rigged Hilbert Spaces (RHS).

The extension approach for e−𝑖𝑡𝐻 ↾ ℱac or, without restriction of generality,
for e−𝑖𝑡𝑀+ on ℋ+ is due to Bohm and Gadella (see, e.g., Bohm-Gadella [5], Bohm-
Harshman [6], Bohm [7] and further literature, quoted there; for the extension
approach for 𝐻 only see also [8]). Their deductions start with a transfer of the
problem from ℝ+ to ℝ using the fact that 𝑃+ℋ2

+ ⊂ ℋ+ is dense inℋ+. 𝑃± denotes
the projections ofℋ := 𝐿2(ℝ,𝒦, 𝑑𝜆) given by multiplication with the characteristic
function of ℝ±. The subspaceℋ2

+ ⊂ ℋ is called the Hardy space (for the upper half-

plane), it is given by ℋ2
+ := 𝐹𝑃−ℋ where 𝐹 is the Fourier transform. The one has

e−𝑖𝑡𝑀𝑔 = e−𝑖𝑡𝑀+𝑔 for 𝑔 ∈ 𝑃+ℋ2
+ and 0 ≤ 𝑡 → e+𝑖𝑡𝑀+ is a semigroup on 𝑃+ℋ2

+.
The Gelfand space 𝒢+ ⊂ 𝑃+ℋ2

+ of the RHS used is given by 𝒢+ := 𝑃+(ℋ2
+ ∩ 𝒮),

where 𝒮 is the Schwartz space of ℋ. Since 𝑃+ is invertible on ℋ2
+ it seems – at

first sight – that one can work equivalently with 𝒢 := ℋ2
+ ∩ 𝒮 ⊂ ℋ2

+ itself. 𝒢 is
invariant w.r.t. the semigroup 0 ≤ 𝑡 → e𝑖𝑡𝑀 on ℋ. (Obviously, the whole space ℋ2

+

is invariant w.r.t. to this semigroup and this is the reason why the introduction
of 𝒢 in this connection is unnecessary.) The Hardy functions 𝑓 ∈ ℋ2

+ are special
continuous antilinear forms on 𝒢 and one obtains in this case

⟨𝑔∣(e−𝑖𝑡𝑀 )×𝑓⟩ = ⟨e𝑖𝑡𝑀𝑔, 𝑓⟩ = (e𝑖𝑡𝑀𝑔, 𝑓)

= (𝑔, e−𝑖𝑡𝑀 ) = (𝑔,𝑄+e
−𝑖𝑡𝑀𝑄+𝑓), 𝑔 ∈ 𝒢,

where 𝑄+ denotes the projection onto ℋ2
+. This means that for 𝑓 ∈ ℋ2

+ the “ex-

tension” of e−𝑖𝑡𝑀 ↾ ℋ2
+, 𝑡 ≥ 0 (these operators do not form a semigroup for

𝑡 ∈ ℝ+) is nothing else than the semigroup

ℝ+ ∋ 𝑡 → 𝑄+e
−𝑖𝑡𝑀 ↾ ℋ2

+ =: 𝐶+(𝑡), (6)

which is the adjoint semigroup of the semigroup 0 ≤ 𝑡 → e𝑖𝑡𝑀 ↾ ℋ2
+ (see also [9]).

That is, the evolution e−𝑖𝑡𝑀 on ℋ acts for 𝑡 ≤ 0 as an isometric semigroup on
ℋ2

+, but for 𝑡 ≥ 0 a semigroup action is given by the decay-semigroup 𝑄+e
−𝑖𝑡𝑀 ↾

ℋ2
+, the adjoint semigroup of the former one. This decay-semigroup is called the

characteristic semigroup in [10].
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The appearance of this semigroup in the course of the deductions of Bohm
and Gadella (see [5]–[7]) is an essential step for the solution of the resonance-decay
problem:

First, it points to a close connection of this problem to the Lax-Phillips
scattering theory (see Lax-Phillips [11]), where the characteristic semigroup plays
an important part in the deduction of the famous Lax-Phillips-semigroup. This
aspect – the connection with the Lax-Phillips theory – was first emphasized by Y.
Strauss (see Strauss [12], see also [10]). Second, the step from ℋ+ to ℋ2

+ in the
deductions of Bohm and Gadella, which is only motivated by the density of 𝑃+ℋ2

+

in ℋ+ raises the question on the status of the problem attained by this step. The
spectral theory of the characteristic semigroup is well known

Proposition 1. The generator 𝐶+ of the characteristic semigroup (6) has the fol-
lowing properties:

(i) res 𝐶+ = ℂ+,
(ii) the eigenvalue spectrum of 𝐶+ coincides with ℂ−,
(iii) the eigenspace of the eigenvalue 𝜁 ∈ ℂ− is given by the subspace

ℰ𝜁 :=
{
𝑓 ∈ ℋ2

+ : 𝑓(𝑧) :=
𝑘

𝑧 − 𝜁
, 𝑘 ∈ 𝒦

}
and one has 𝐶+(𝑡)𝑓 = e−𝑖𝑡𝜁𝑓, 𝑓 ∈ ℰ𝜁 .

For the proof see, e.g., [13].
This means: the spectrum of 𝐶+ contains not only the resonances but the

whole lower half-plane, i.e., it contains too many undesired eigenvalues. For exam-
ple, this point is emphasized in Horwitz-Sigal [14]. A second question refers to the
actual meaning of the characteristic semigroup for the resonance-decay problem
in the context of ℋ+. First this requires a transfer of the characteristic semigroup
from ℋ2

+ to ℋ+.

5. Canonical transfer of the characteristic semigroup to ℋ+

The semigroup (6) can be canonically transferred from ℋ2
+ to ℋ+ by means of the

projections 𝑃+ and 𝑄+ of ℋ.
Since this Hilbert space can be considered as the tensor product of ℋℂ and

𝒦, i.e., ℋ = ℋℂ ⊗ 𝒦, where ℋℂ; = 𝐿2(ℝ,ℂ, 𝑑𝜆) and 𝑃+ and 𝑄+ act only on the
first factor, the operators 𝑋 considered in the following are always of the form
𝑋 = 𝑋ℂ ⊗ �𝒦.

The polar decomposition of 𝑃+𝑄+ reads

𝑃+𝑄+ = 𝑇 1/2𝑅, (7)

where 𝑅 := sgn(𝑃+𝑄+) is a partial isometry with initial projection 𝑄+ and final
projection 𝑃+ and 𝑇 := 𝑃+𝑄+𝑃+. The operator 𝑇 is invertible onℋ+ and ima 𝑇 ⊂
ℋ+ is dense (see Strauss [14]). These facts are due to the density of 𝑃+ℋ2

+ ⊂ ℋ+.
Note that

𝑃+ℋ2
+ = 𝑇 1/2ℋ+,
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because of

𝑃+𝑓 = 𝑃+𝑄+𝑓 = 𝑇 1/2𝑅𝑓 = 𝑇 1/2𝑓+, 𝑓+ = 𝑅𝑓, 𝑓 ∈ ℋ2
+.

Then

𝐶𝑅
+ (𝑡) := 𝑅e−𝑖𝑡𝑀𝑅∗, 𝑡 ≥ 0 (8)

is the transferred semigroup corresponding to 𝐶+(⋅). Its relation to the evolution
𝑡 → e−𝑖𝑡𝑀+ on ℋ+ is given by

Proposition 2. The semigroup 𝐶𝑅
+ acts on 𝑇 1/2ℋ+ by

𝐶𝑅
+(𝑡)𝑇

1/2𝑓 = 𝑇 1/2(e−𝑖𝑡𝑀+𝑓), 𝑓 ∈ ℋ+. (9)

The eigenspace of 𝐶𝑅
+ for 𝜁 ∈ ℂ− is given by ℰ+

𝜁 := 𝑅ℰ𝜁 .
Proof. One obtains by calculation

𝑅e−𝑖𝑡𝑀𝑅∗𝑓 = 𝑇−1/2𝑃+𝑄+e
−𝑖𝑡𝑀𝑄+𝑃+𝑇−1/2𝑇 1/2𝑓

= 𝑇−1/2𝑃+𝑄+e
−𝑖𝑡𝑀𝑄+𝑃+𝑓 = 𝑇−1/2𝑃+𝑄+e

−𝑖𝑡𝑀𝑃+𝑓

= 𝑇−1/2𝑃+𝑄+𝑃+e
−𝑖𝑡𝑀+𝑓 = 𝑇 1/2(e−𝑖𝑡𝑀+𝑓), 𝑓 ∈ ℋ+,

because of 𝑄+e
−𝑖𝑡𝑀𝑄+ = 𝑄+e

−𝑖𝑡𝑀 . The second assertion is obvious. □

Equation (9) means that the action of e−𝑖𝑡𝑀+ can be described by

e−𝑖𝑡𝑀+𝑓 = 𝑇−1/2𝐶𝑅
+(𝑡)𝑇

1/2𝑓 𝑓 ∈ ℋ+ (10)

Corollary 1. For all 𝜁 ∈ ℂ− the intersection of ℰ+
𝜁 and 𝑇 1/2ℋ+ contains only 0,

i.e.,

𝑅ℰ𝜁 ∩ 𝑇 1/2ℋ+ = {0}.
Proof. Assume that there is an 𝑓 ∕= 0 with 𝑓 = 𝑅𝑒𝜁 and 𝑓 = 𝑇 1/2𝑓+, 𝑓+ ∈ ℋ+.

Then 𝐶𝑅
+ (𝑡)𝑓 = e

−𝑖𝑡𝜁𝑓 = e−𝑖𝑡𝜁(𝑇 1/2𝑓+). Together with (9) this gives

𝑇 1/2(e−𝑖𝑡𝑀+𝑓+) = 𝑇 1/2(e−𝑖𝑡𝜁𝑓+),

thus one obtains e−𝑖𝑡𝑀+𝑓+ = e−𝑖𝑡𝜁𝑓+, but this contradicts to the unitarity of
e−𝑖𝑡𝑀+ . □

The decay law of vectors 𝑓+ ∈ 𝑇 1/2ℋ+ is given by

𝑡 → ∣(𝑇 1/2𝑓, e−𝑖𝑡𝑀+𝑇 1/2𝑓)∣2, 𝑓 ∈ ℋ+.

According to (9) one has

(𝑇 1/2𝑓, e−𝑖𝑡𝑀+𝑇 1/2𝑓) = (𝑓, 𝐶𝑅
+ (𝑡)𝑇𝑓).

This suggests that there is almost no chance to construct vectors from 𝑇 1/2ℋ+

such that the corresponding decay law is exactly an exponential one. However,
since 𝑇ℋ+ is also dense in ℋ+ one obtains an approximate exponential decay law
if one chooses vectors 𝑇 1/2𝑓+ such that 𝑇𝑓+ is “near” to an eigenvector 𝑅𝑒𝜁. where
𝑒𝜁 ∈ ℰ𝜁 .



The Resonance-Decay Problem 171

Corollary 2. Let 𝑓+ ∈ ℋ+ and 𝑇𝑓+ an approximation for an eigenvector of the
transformed characteristic semigroup, i.e., there is an 𝑒𝜁 ∈ ℰ𝜁 such that ∥𝑇𝑓+ −
𝑅𝑒𝜁∥ < 𝜖 for some 𝜖 > 0. Then

∣(𝑇 1/2𝑓+, e−𝑖𝑡𝑀+𝑇 1/2𝑓+)∣ ≤ ∥𝑓+∥(e−𝑡∣ Im 𝜁∣ + 𝜖).

Proof. Obvious because of

(𝑇 1/2𝑓+, e−𝑖𝑡𝑀+𝑇 1/2𝑓+) = (𝑓+, 𝑅e−𝑖𝑡𝑀𝑅∗(𝑇𝑓+ −𝑅𝑒𝜁)) + e
−𝑖𝑡𝜁(𝑓+, 𝑅𝑒𝜁). □

Remark. Since 𝑇𝑓+ is an approximation of 𝑅𝑒𝜁 , e.g., for ∥𝑒𝜁∥ = 1, then ∥𝑇𝑓+∥2 =∫ 1

0 𝜆2(𝑓+, 𝐸(𝑑𝜆)𝑓+) is a number 𝑎 near to 1, where 𝐸(⋅) denotes the spectral
measure of 𝑇 , and ∥𝑓+∥2 =

∫ 1

0
(𝑓+, 𝐸(𝑑𝜆)𝑓+), which can be much larger. That is,

the better the approximation, i.e., the smaller 𝜖, the larger can be ∥𝑓+∥.

6. Time-dependent characterization of the set of all resonances

The first question at the end of Section 4, the characterization of the poles by the
characteristic semigroup can be solved by the construction of an suitable invariant
subspace depending on the scattering operator.

Every invariant subspace 𝒯 ⊂ ℋ2
+ for the semigroup 𝐶+(⋅) defines a sub-

semigroup 𝐷+(⋅) on 𝒯 :
𝐷+(𝑡) := e

−𝑖𝑡𝐶+ ↾ 𝒯 = e−𝑖𝑡𝐷+

where 𝐷+ denotes the generator of the restricted semigroup. Obviously spec 𝐷+ ⊆
spec 𝐶+, or res 𝐶+ ⊆ res 𝐷+, i.e., ℂ+ ⊆ res 𝐷+, 𝐷+(⋅) is again contractive and
decaying. In particular, the eigenvalue spectrum of 𝐷+ is a subset of ℂ−.

The decisive idea for the construction of an invariant subspace such that the
eigenvalue spectrum coincides with the set of all resonances is to consider the linear
manifold 𝒩+ ⊂ ℋ2

+ of all 𝑔 ∈ ℋ2
+ such that

sup
𝑦>0

∫ ∞
−∞

∥𝑆(𝑥+ 𝑖𝑦)𝑔(𝑥+ 𝑖𝑦)∥2
𝒦𝑑𝑥 < ∞ (11)

Then, according to the theorem of Paley-Wiener, the vector-function

𝑧 → 𝑓(𝑧) := 𝑆(𝑧)𝑔(𝑧)

defines also an element 𝑓 ∈ ℋ2
+. The set of all such vector-functions is again a

linear manifold ℳ+ ⊂ ℋ2
+ and

𝒯+ := ℋ2
+ ⊖ℳ+ (12)

is a subspace. Obviously 𝒯+ ⊃ {0} and one has
Proposition 3. The subspace 𝒯+ is invariant w.r.t. 𝐶+(⋅).
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Proof. Let 𝑔 ∈ ℳ+ and 𝑓 ∈ 𝒯+. Then

(𝐶+(𝑡)𝑓, 𝑔) = (𝑄+e
−𝑖𝑡𝑀𝑓, 𝑔) = (𝑓, e𝑖𝑡𝑀𝑔)

and e𝑖𝑡𝑀𝑔 ∈ ℳ+ because of 𝑆(𝑧)e𝑖𝑡𝑧𝑔(𝑧) = e𝑖𝑡𝑧𝑆(𝑧)𝑔(𝑧). Hence (𝑓, e𝑖𝑡𝑀𝑔) = 0
and 𝐶+(𝑡)𝑓 ∈ 𝒯+ for all 𝑡 ≥ 0. □

The generator of 𝐶+(⋅) ↾ 𝒯+ is denoted by 𝐵+. It depends on the scattering
operator 𝑆.

In order to obtain a smooth result, in the following it is assumed that

dim𝒦 < ∞. (13)

The reason is that in this case 𝜁 ∈ ℂ− is a pole of 𝑆(⋅) if and only if ker 𝑆(𝜁)∗ ⊃ {0}.
Proposition 4. Let (13) be true. If 𝜁 is a resonance then it is an eigenvalue of 𝐵+

and the corresponding eigenvectors are the functions 𝑓 :

𝑓(𝜆) :=
𝑘

𝜆− 𝜁
, 𝑆(𝜁)∗𝑘 = 0.

Proof. First 𝑓 is an eigenvector of 𝐶+ with eigenvalue 𝜁. That is, only 𝑓 ∈ 𝒯+,
i.e., (𝑓, 𝑔) = 0 for all 𝑔 ∈ ℳ+ is to be proved. One has

(𝑓, 𝑔) =

∫ ∞
−∞

(
𝑘

𝜆− 𝜁
, 𝑔(𝜆+ 𝑖0)

)
𝒦
𝑑𝜆 =

∫ ∞
−∞

1

𝜆− 𝜁
(𝑘, 𝑔(𝜆+ 𝑖0))𝒦𝑑𝜆

= 2𝜋𝑖(𝑘, 𝑔(𝜁))𝒦 = 2𝜋𝑖(𝑘, 𝑆(𝜁)𝑓(𝜁))𝒦𝑑𝜆 = 2𝜋𝑖(𝑆(𝜁)∗𝑘, 𝑓(𝜁))𝒦 = 0. □

Therefore, the crucial question with regard to the characterization problem
of the resonances is under which conditions for 𝑆 the following statement is true:

Conjecture. Let 𝒯+, 𝐵+ be as before and assume (13). Then

(I) 𝜁 is a resonance iff 𝜁 is an eigenvalue of 𝐵+.

(II) 𝑆(⋅) is holomorphic at 𝜁 iff 𝜁 ∈ res 𝐵+.

The following conditions for 𝑆 are sufficient for the validity of the conjecture.

Theorem. Let 𝒯+, 𝐵+ be as before. Assume (13) and that 𝑆(⋅) satisfies the following
additional conditions:

(i) 𝑆(⋅) is meromorphic on the rim ℝ− + 𝑖0 and there are at most finitely many
poles at ℝ− + 𝑖0,

(ii) 𝑆(⋅) is bounded at 𝑧 = 0 and 𝑧 =∞, i.e.,

sup
𝑧∈𝒢

∥𝑆(𝑧)∥ < ∞, 𝒢 := {𝑧 ∈ ℂ+ : ∣𝑧∣ < 𝑟0, ∣𝑧∣ > 𝑟}, 0 < 𝑟0 < 𝑟.

Then the assertions (I) and (II) of the conjecture are true and moreover one has
ℝ ⊂ res 𝐵+.

The proof uses methods of the Lax-Phillips-theory (see [11]). It is given in [10].
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Examples for Hamiltonians 𝐻 such that the conditions (i), (ii) are satisfied
are selected trace class perturbations 𝐻 := 𝑀+ + 𝑉 (see [10]), also Hamiltonians
of potential scattering (see [2]).

Remark. Condition (i) of the theorem implies that a function 𝑔 ∈ ℳ+, given by
the function 𝑧 → 𝑆(𝑧)𝑓(𝑧), 𝑓 ∈ ℋ2

+, in the upper half-plane and defined on ℝ
by 𝑔(𝜆) := s-lim𝜖→+0 𝑆(𝜆 + 𝑖𝜖)𝑓(𝜆 + 𝑖𝜖) is nothing else than the function 𝑔(𝜆) =
𝑆(𝜆 + 𝑖0)𝑓(𝜆 + 𝑖0), which is defined almost everywhere on ℝ where the possible
poles are points from the exceptional set. The theorem says that the subspace 𝒯+,
defined by (12), equals the closure of the linear span of all eigenvectors 𝑒𝜁,𝑘 of
the characteristic semigroup for the points 𝜁, which are poles of 𝑆(⋅) and where
𝑘 satisfies the equation 𝑆(𝜁)∗𝑘 = 0. If, for example, 𝒩+ ⊂ ℋ2

+ is dense then the
condition (12) means simply that 𝑓 ∈ 𝒯+ if and only if

𝑆∗𝑓 ∈ ℋ2
−, (14)

where 𝑆∗ on ℝ− + 𝑖0 is defined by 𝑆∗(𝜆 + 𝑖0) = 𝑆(𝜆 + 𝑖0)∗ = 𝑆(𝜆 − 𝑖0)−1, i.e.,
the condition (14) for some 𝑓 ∈ ℋ2

+ is sufficient for the property that 𝑓 is in the
closure of all linear combinations of certain eigenvectors (note the condition for
the vectors 𝑘) of the characteristic semigroup for the poles of 𝑆(⋅).

For the scattering operators 𝑆 with the properties (i), (ii) this theorem pre-
sents a solution of the resonance-decay problem: The “non-selfadjoint operator 𝐵
related to 𝐻” required in the formulation of the problem is the generator of the
constructed restriction of the transformed characteristic semigroup to the subspace
𝑅𝒯+, where 𝒯+ is defined by the conditions (11) and (12).

Concerning the calculation of the normed eigenvectors for 𝜁, given by

𝑓𝜁(𝜆) := 𝑅

(
𝑘

⋅ − 𝜁

)
(𝜆),

where ∥𝑓𝜁∥ = ∥𝑘∥𝒦
(
∣ Im 𝜁∣

𝜋

)1/2

, note that

𝑇𝑓(𝜆) = (𝑃+𝑄+𝑃+)𝑓(𝜆) =
1

2𝜋𝑖
𝜒ℝ+(𝜆)

∫ ∞
0

𝑓(𝜇)

𝜇− (𝜆+ 𝑖0)
𝑑𝜇.

This is a positive operator and since 𝑅𝑔 = 𝑇−1/2𝑃+𝑔, 𝑔 ∈ ℋ2
+, in order to get 𝑓𝜁

one has to solve the operator equation

(𝑇 1/2𝑓𝜁)(𝜆) = 𝜒ℝ+(𝜆)
𝑘

𝜆 − 𝜁
.

This points to the problem to calculate the spectral measure of 𝑇 resp. the corre-
sponding “generalized eigenfunctions” of this operator.

7. Conclusion

First of interest is the question for further sufficient conditions such that the
conjecture is true, also the investigation of the case that the multiplicity space is
infinite-dimensional.
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Abstract. The set of quantum states consists of density matrices of order
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1. Introduction

Quantum information processing differs significantly from processing of classical
information. This is due to the fact that the space of all states allowed in the
quantum theory is much richer than the space of classical states [1, 2, 3, 4, 5, 6].
Thus an author of a quantum algorithm, writing a screenplay designed specially
for the quantum scene, can rely on states and transformations not admitted by
the classical theory.

For instance, in the theory of classical information the standard operation of
inversion of a bit, called the NOT gate, cannot be represented as a concatenation of
two identical operations on a bit. But the quantum theory allows one to construct
the gate called

√
NOT, which performed twice is equivalent to the flip of a qubit.
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This simple example can be explained by comparing the geometries of clas-
sical and quantum state spaces. Consider a system containing 𝑁 perfectly distin-
guishable states. In the classical case the set of classical states, equivalent to 𝑁 -
point probability distributions, forms a regular simplex Δ𝑁−1 in 𝑁−1 dimensions.
Hence the set of pure classical states consists of 𝑁 isolated points. In a quantum
set-up the set of states 𝒬𝑁 , consisting of hermitian, positive and normalized den-
sity matrices, has 𝑁2 − 1 real dimensions. Furthermore, the set of pure quantum
states is connected, and for any two pure states there exist transformations that
take us along a continuous path joining the two quantum pure states. This fact is
one of the key differences between the classical and the quantum theories [7].

The main goal of the present work is to provide an easy-to-read description
of similarities and differences between the sets of classical and quantum states.
Already when 𝑁 = 3 the geometric structure of the eight-dimensional set 𝒬3

is not easy to analyse nor to describe [8, 9]. Therefore we are going to use an
apophatic approach, in which one tries to describe the properties of a given object
by specifying simple features it does not have. Then we use a more conventional [10,
11, 12] constructive approach and investigate two-dimensional cross-sections and
projections of the set 𝒬3 [13, 14, 15]. Thereby a cross-section is defined as the
intersection of a given set with an affine space. We happily recommend a very
recent work for a more exhaustive discussion of the cross-sections [16].

2. Classical and quantum states

A classical state is a probability vector �⃗� = (𝑝1, 𝑝2, . . . , 𝑝𝑁 )
T, such that

∑
𝑖 𝑝𝑖 = 1

and 𝑝𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑁 . Assuming that a pure quantum state ∣𝜓⟩ belongs to
an 𝑁 -dimensional Hilbert space ℋ𝑁 , a general quantum state is a density matrix
𝜌 of size 𝑁 , which is hermitian, 𝜌 = 𝜌†, with positive eigenvalues, 𝜌 ≥ 0, and
normalized, Tr𝜌 = 1. Note that any density matrix can be diagonalised, and then
it has a probability vector along its diagonal. But clearly the space of all quantum
states 𝒬𝑁 is significantly larger than the space of all classical states – there are
𝑁−1 free parameters in the probability vector, but there are𝑁2−1 free parameters
in the density matrix.

The space of states, classical or quantum, is always a convex set. By definition
a convex set is a subset of Euclidean space, such that given any two points in the
subset the line segment between the two points also belongs to that subset. The
points in the interior of the line segment are said to be mixtures of the original
points. Points that cannot be written as mixtures of two distinct points are called
extremal or pure. Taking all mixtures of three pure points we get a triangle Δ2,
mixtures of four pure points form a tetrahedron Δ3, etc.

The individuality of a convex set is expressed on its boundary. Each point on
the boundary belongs to a face, which is in itself a convex subset. To qualify as a
face this convex subset must also be such that for all possible ways of decomposing
any of its points into pure states, these pure states themselves belong to the subset.
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We will see that the boundary of 𝒬𝑁 is quite different from the boundary of the
set of classical states.

2.1. Classical case: the probability simplex

The simplest convex body one can think of is a simplex Δ𝑁−1 with 𝑁 pure states
at its corners. The set of all classical states forms such a simplex, with the proba-
bilities 𝑝𝑖 telling us how much of the 𝑖th pure state that has been mixed in. The
simplex is the only convex set which is such that a given point can be written as
a mixture of pure states in one and only one way.

The number 𝑟 of non-zero components of the vector 𝑝 is called the rank of
the state. A state of rank one is pure and corresponds to a corner of the simplex.
Any point inside the simplex Δ𝑁−1 has full rank, 𝑟 = 𝑁 . The boundary of the set
of classical states is formed by states with rank smaller than 𝑁 . Each face is itself
a simplex Δ𝑟−1. Corners and edges are special cases of faces. A face of dimension
one less than that of the set itself is called a facet.

It is natural to think of the simplex as a regular simplex, with all its edges
having length one. This can always be achieved, by defining the distance between
two probability vectors 𝑝 and 𝑞 as

𝐷[𝑝, 𝑞] =

√√√⎷1
2

𝑁∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2 . (1)

The geometry is that of Euclid. With this geometry in place we can ask for the
outsphere, the smallest sphere that surrounds the simplex, and the insphere, the
largest sphere inscribed in it. Let the radius of the outsphere be 𝑅𝑁 and that of
the insphere be 𝑟𝑁 . One finds that 𝑅𝑁/𝑟𝑁 = 𝑁 − 1.
2.2. The Bloch ball

Another simple example of a convex set is a three-dimensional ball. The pure
states sit on its surface, and each such point is a zero-dimensional face. There are
no higher-dimensional faces (unless we count the entire ball as a face). Given a
point that is not pure it is now possible to decompose it in infinitely many ways
as a mixture of pure states.

Remarkably this ball is the space of states 𝒬2 of a single qubit, the simplest
quantum mechanical state space. For concreteness introduce the Pauli matrices
𝜎1 =

(
0 1
1 0

)
, 𝜎2 =

(
0 −i
i 0

)
, 𝜎3 =

(
1 0
0 −1

)
. These three matrices form an orthonormal

basis for the set of traceless Hermitian matrices of size two, or in other words for
the Lie algebra of 𝑆𝑈(2). If we add the identity matrix 𝜎0 = � =

(
1 0
0 1

)
, we can

expand an arbitrary state 𝜌 in this basis as

𝜌 =
1

2
�+

3∑
𝑖=1

𝜏𝑖𝜎𝑖 , (2)

where the expansion coefficients are 𝜏𝑖 = Tr 𝜌𝜎𝑖/2. These three numbers are real
since the matrix 𝜌 is Hermitian. The three-dimensional vector �⃗� = (𝜏1, 𝜏2, 𝜏3)

T
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Figure 1. The set of mixed states of a qubit forms the Bloch ball with pure
states at the boundary and the maximally mixed state 𝜌∗ = 1

2� at its center: The
Hilbert–Schmidt distance between any two states is the length of the difference
between their Bloch vectors, ∣∣�⃗�𝑎 − �⃗�𝑏∣∣.

is called the Bloch vector (or coherence vector). If �⃗� = 0 we have the maximally
mixed state. Pure states are represented by projectors, 𝜌 = 𝜌2.

Since the Pauli matrices are traceless the coefficient 1
2 standing in front of the

identity matrix assures that Tr𝜌 = 1, but we must also ensure that all eigenvalues
are non-negative. By computing the determinant we find that this is so if and only
if the length of the Bloch vector is bounded, ∣∣�⃗� ∣∣2 ≤ 1

2 . Hence 𝒬2 is indeed a solid
ball, with the pure states forming its surface – the Bloch sphere.

A simple but important point is that the set of classical states Δ1, which is
just a line segment in this case, sits inside the Bloch ball as one of its diameters.
This goes for any diameter, since we are free to regard any two commuting projec-
tors as our classical bit. Two commuting projectors sit at antipodal points on the
Bloch sphere. To ensure that the distance between any pair of antipodal equals
one we define the distance between two density matrices 𝜌𝐴 and 𝜌𝐵 to be

𝐷HS(𝜌𝐴, 𝜌𝐵) =

√
1

2
Tr[(𝜌𝐴 − 𝜌𝐵)2] . (3)

This is known as the Hilbert-Schmidt distance. Let us express this in the Cartesian
coordinate system provided by the Bloch vector,

𝐷HS[𝜌𝐴, 𝜌𝐵] =

√√√⎷ 3∑
𝑖=1

(𝜏𝐴𝑖 − 𝜏𝐵𝑖 )
2 = ∣∣�⃗�𝐴 − �⃗�𝐵 ∣∣ . (4)

This is the Euclidean notion of distance, see Figure 1.

2.3. Quantum case: 퓠𝑵

When 𝑁 > 2 the quantum state space is no longer a solid ball. It is always a convex
set however. Given two density matrices, that is to say two positive hermitian
matrices 𝜌, 𝜎 ∈ 𝒬𝑁 . It is then easy to see that any convex combination of these
two states, 𝑎𝜌 + (1 − 𝑎)𝜎 ∈ 𝒬𝑁 where 𝑎 ∈ [0, 1], must be a positive matrix too,
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and hence it belongs to 𝒬𝑁 . This shows that the set of quantum states is convex.
For all 𝑁 the face structure of the boundary can be discussed in a unified way.
Moreover it remains true that 𝒬𝑁 is swept out by rotating a classical probability

simplex Δ𝑁−1 in �
𝑁2−1, but for 𝑁 > 2 there are restrictions on the allowed

rotations.
To make these properties explicit we start with the observation that any

density matrix can be represented as a convex combination of pure states

𝜌 =

𝑘∑
𝑖=1

𝑝𝑖 ∣𝜙𝑖⟩⟨𝜙𝑖∣, (5)

where 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑘) is a probability vector. In contrast to the classical case
there exist infinitely many decompositions of any mixed state 𝜌 ∕= 𝜌2. The number
𝑘 can be arbitrarily large, and many different choices can be made for the pure
states ∣𝜙𝑖⟩. But there does exist a distinguished decomposition. Diagonalising the
density matrix we find its eigenvalues 𝜆𝑖 ≥ 0 and eigenvectors ∣𝜓𝑖⟩. This allows us
to write the eigendecomposition of a state,

𝜌 =
𝑁∑
𝑗=1

𝜆𝑗 ∣𝜓𝑗⟩⟨𝜓𝑗 ∣ . (6)

The number 𝑟 of non-zero components of the probability vector �⃗� is called the
rank of the state 𝜌, and does not exceed 𝑁 . This is the usual definition of the
rank of a matrix, and by happy accident it agrees with the definition of rank in
convex set theory: the rank of a point in a convex set is the smallest number of
pure points needed to form the given point as a mixture.

Consider now a general convex set in 𝑑 dimensions. Any point belonging to
it can be represented by a convex combination of not more than 𝑑 + 1 extremal
states. Interestingly, 𝒬𝑁 has a peculiar geometric structure since any given density
operator 𝜌 can be represented by a combination of not more than 𝑁 pure states,
which is much smaller than 𝑑 + 1 = 𝑁2. In Hilbert space these 𝑁 pure states
are the orthogonal eigenvectors of 𝜌. If we adopt the Hilbert-Schmidt definition of
distance (3) they form a copy of the classical state space, the regular simplex Δ𝑁−1.

Conversely, every density matrix can be reached from a diagonal density ma-
trix by means of an 𝑆𝑈(𝑁) transformation. Such transformations form a subgroup
of the rotation group 𝑆𝑂(𝑁2−1). Therefore any density matrix can be obtained by
rotating a classical probability simplex around the maximally mixed state, which
is left invariant by rotations. However, when 𝑁 > 2 𝑆𝑈(𝑁) is a proper subgroup
of 𝑆𝑂(𝑁2 − 1), which is why 𝒬𝑁 forms a solid ball only if 𝑁 = 2. The relative
sizes of the outsphere and the insphere are still related by 𝑅𝑁/𝑟𝑁 = 𝑁 − 1.

The boundary of the set 𝒬𝑁 shows some similarities with that of its classical
cousin. It consists of all matrices whose rank is smaller than 𝑁 . There will be faces
of rank 1 (the pure states), of rank 2 (in themselves they are copies of 𝒬2), and so
on up to faces of rank 𝑁 − 1 (copies of 𝒬𝑁−1). Note that there are no hard edges:
the minimal non-extremal faces are solid three-dimensional balls. The largest faces
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Figure 2. The set 𝒬3 of quantum states of a qutrit contains positive semi-definite
matrices with spectrum from the simplex Δ2 of classical states. The corners of the
triangle become the 4𝐷 set of pure states, the edges lead to the 7𝐷 boundary ∂𝒬3,
while interior of the triangle gives the interior of the 8𝐷 convex body. The set 𝒬3

is inscribed inside a 7-sphere of radius 𝑅3 =
√
2/3 and it contains an 8-ball of

radius 𝑟3 = 1/
√
6.

have a dimension much smaller than the dimension of the boundary of 𝒬𝑁 . As in
the classical case, any face can be described as the intersection of the convex set
with a bounding hyperplane in the container space. In technical language one says
that all faces are exposed. Note also that every point on the boundary belongs to
a face that is tangent to the insphere. This has the interesting consequence that
the area 𝐴 of the boundary is related to the volume 𝑉 of the body by

𝑟𝐴/𝑉 = 𝑑 , (7)

where 𝑟 is the radius of the insphere and 𝑑 is the dimension of the body (in this
case 𝑑 = 𝑁2 − 1) [17]. This implies that 𝒬𝑁 has a constant height [17] and can be
decomposed into pyramids of equal height having all their apices at the centre of
the inscribed sphere. Incidentally the volume of 𝒬𝑁 is known explicitly [18].

There are differences too. A typical state on the boundary has rank 𝑁 − 1,
and any two such states can be connected with a curve of states such that all
states on the curve have the same rank. In this sense 𝒬𝑁 is more like an egg than
a polytope [19]. See Figure 2 about spheres and the boundary of 𝒬𝑁 compared to
those of Δ𝑁−1.

We can regard the set of 𝑁 by 𝑁 matrices as a vector space (called Hilbert-
Schmidt space), endowed with the scalar product

⟨𝐴∣𝐵⟩HS =
1
2 Tr𝐴

†𝐵 . (8)

The set of hermitian matrices with unit trace is not a vector space as it stands,
but it can be made into one by separating out the traceless part. Thus we can
represent a density matrix as

𝜌 =
1

𝑁
�+ 𝑢 , (9)
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where 𝑢 is traceless. The set of traceless matrices is an Euclidean subspace of
Hilbert-Schmidt space, and the Hilbert-Schmidt distance (3) arises from this scalar
product. In close analogy to equation (2) we can introduce a basis for the set of
traceless matrices, and write the density matrix in the generalized Bloch vector
representation,

𝜌 =
1

𝑁
�+

𝑁2−1∑
𝑖=1

𝑢𝑖𝛾𝑖 . (10)

Here 𝛾𝑖 are hermitian basis vectors. The components 𝑢𝑖 must be chosen such that
𝜌 is a positive definite matrix.

2.4. Dual and self-dual convex sets

Both the classical and the quantum state spaces have the remarkable property
that they are self-dual. But the word duality has many meanings. In projective
geometry the dual of a point is a plane. If the point is represented by a vector �⃗�,
we can define the dual plane as the set of vectors 𝑦 such that

�⃗� ⋅ 𝑦 = −1 . (11)

The dual of a line is the intersection of a one-parameter family of planes dual
to the points on the line. This is in itself a line. The dual of a plane is a point,
while the dual of a curved surface is another curved surface – the envelope of the
planes that are dual to the points on the original surface. To define the dual of a
convex body with a given boundary we change the definition slightly, and include
all points on one side of the dual planes in the dual. Thus the dual 𝑋∗ of a convex
body 𝑋 is defined to be

𝑋∗ = {�⃗� ∣ 1 + �⃗� ⋅ 𝑦 ≥ 0 ∀�⃗� ∈ 𝑋} . (12)

The dual of a convex body including the origin is the intersection of half-spaces
{�⃗� ∣ 1+ �⃗� ⋅ �⃗� ≥ 0} for extremal points �⃗� of 𝑋 [20]. If we enlarge a convex body the
conditions on the dual become more stringent, and hence the dual shrinks. The
dual of a sphere centred at the origin is again a sphere, so a sphere (of suitable
radius) is self-dual. The dual of a cube is an octahedron. The dual of a regular
tetrahedron is another copy of the original tetrahedron, possibly of a different size.
Hence this is a self-dual body. Convex subsets 𝐹 ⊂ 𝑋 are mapped to subsets of
𝑋∗ by

𝐹 �→ 𝐹 := {�⃗� ∈ 𝑋∗ ∣ 1 + �⃗� ⋅ 𝑦 = 0 ∀�⃗� ∈ 𝐹} . (13)

Geometrically, 𝐹 equals 𝑋∗ intersected with the dual affine space (11) of the affine
span of 𝐹 . If the origin lies in the interior of the convex body 𝑋 then 𝐹 �→ 𝐹 is
a one-to-one inclusion-reversing correspondence between the exposed faces of 𝑋
and of 𝑋∗ [21]. If 𝑋 is a tetrahedron, then vertices and faces are exchanged, while
edges go to edges.

What we need in order to prove the self-duality of 𝒬𝑁 is the key fact that a
hermitian and unit trace matrix 𝜎 is a density matrix if and only if

Tr 𝜎𝜌 ≥ 0 (14)
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for all density matrices 𝜌. It will be convenient to think of a density matrix 𝜌
as represented by a “vector” 𝑢, as in equation (9). As a direct consequence of
equation (14) the set of quantum states 𝒬𝑁 is self-dual in the precise sense that

𝒬𝑁 − �/𝑁 = {𝑢 ∣ 1/𝑁 +Tr(𝑢𝑣) ≥ 0 ∀𝑣 ∈ 𝒬𝑁 − �/𝑁}. (15)

In this equation the trace is to be interpreted as a scalar product in a vector space.
Duality (13) exchanges faces of rank 𝑟 (copies of𝒬𝑟) and faces of rank𝑁−𝑟 (copies
of 𝒬𝑁−𝑟).

Self-duality is a key property of state spaces [22, 23], and we will use it
extensively when we discuss projections and cross-sections of 𝒬𝑁 . This notion is
often introduced in the larger vector space consisting of all hermitian matrices,
with the origin at the zero matrix. The set of positive semi-definite matrices forms
a cone in this space, with its apex at the origin. It is a cone because any positive
semi-definite matrix remains positive semi-definite if multiplied by a positive real
number. This defines the rays of the cone, and each ray intersects the set of unit
trace matrices exactly once. The dual of this cone is the set of all matrices 𝑎 such
that Tr𝑎𝑏 ≥ 0 for all matrices 𝑏 within the cone – and indeed the dual cone is
equal to the original, so it is self-dual.

3. An apophatic approach to the qutrit

For 𝑁 = 3 we are dealing with the states of the qutrit. The Gell-Mann matrices are
a standard choice [16] for the eight matrices 𝛾𝑖, and the expansion coefficients are
𝜏𝑖 =

1
2 Tr 𝜌𝛾𝑖. Unfortunately, although the sufficient conditions for �⃗� to represent

a state are known [9, 24, 25], they do not improve much our understanding of the
geometry of 𝒬3.

We know that the set of pure states has 4 real dimensions, and that the faces
of 𝒬3 are copies of the 3D Bloch ball, filling out the seven-dimensional boundary.
The centres of these balls touch the largest inscribed sphere of 𝒬3. But what does
it all really look like?

We try to answer this question by presenting some 3D objects, and explaining
why they cannot serve as models of 𝒬3. Apart from the fact that our objects are
not eight-dimensional, all of them lack some other features of the set of quantum
states.

Figure 3 presents a hairy set which is nice but not convex. Figure 4 shows a
ball, and we know that 𝒬3 is not a ball. It is not a polytope either, so the polytope
shown in Figure 5 cannot model the set of quantum states.

Let us have a look at the cylinder shown in Figure 6, and locate the extremal
points of the convex body shown. This subset consists of the two circles surrounding
both bases. This is a disconnected set, in contrast to the connected set of pure
quantum states. However, if one splits the cylinder into two halves and rotates one
half by 𝜋/2 as shown in Figure 7, one obtains a body with a connected set of pure
states. A similar model can be obtained by taking the convex hull of the seam of a
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Figure 3. Apophatic
approach: this object is
not a good model of the
set 𝒬3 as it is not a
convex set.

Figure 4. The set 𝒬3 is
not a ball. . .

Figure 5. The set 𝒬3 is
not a polytope. . .

Figure 6. The set of pure states in 𝒬3

is connected, but for the cylinder the
pure states form two circles.

Figure 7. This is now the convex hull
of a single space curve, but one cannot
inscribe copies of the classical set Δ2

in it.

tennis ball: the one-dimensional seam contains the extremal points of this set and
forms a connected set.

Thus the seam of the tennis ball (look again at Figure 4) corresponds to the
4𝐷 connected set of pure states of 𝑁 = 3 quantum system. The convex hull of the
seam forms a 3𝐷 object which is easy to visualize, and serves as our first rough
model of the solid 8𝐷 body 𝒬3 of qutrit states. However, a characteristic feature
of the latter is that each one of its points belongs to a cross-section which is an
equilateral triangle Δ2. (This is the eigenvector decomposition.) The convex set
determined by the seam of the tennis ball, and the set shown in Figure 7, do not
have this property.

As we have seen 𝒬3 can be obtained if we take an equilateral triangle Δ2

and subject it to 𝑆𝑈(3) rotations in eight dimensions. We can try to do something
similar in three dimensions. If we rotate a triangle along one of its bisections we
obtain a cone, for which the set of extremal states consists of a circle and an apex
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Figure 8. a) The space curve �⃗�(𝑡) modelling pure quantum states is obtained
by rotating an equilateral triangle according to equation (16) – three positions of
the triangle are shown; b) The convex hull 𝐶 of the curve models the set of all
quantum states.

(see Figure 10 b)), a disconnected set. We obtain a better model if we consider the
space curve

�⃗�(𝑡) =
(
cos(𝑡) cos(3𝑡), cos(𝑡) sin(3𝑡), − sin(𝑡))T . (16)

Note that the curve is closed, �⃗�(𝑡) = �⃗�(𝑡 + 2𝜋), and belongs to the unit sphere,
∣∣�⃗�(𝑡)∣∣ = 1. Moreover

∣∣�⃗�(𝑡)− �⃗�(𝑡+ 1
32𝜋)∣∣ =

√
3 (17)

for every value of 𝑡. Hence every point �⃗�(𝑡) belongs to an equilateral triangle with
vertices at

�⃗�(𝑡), �⃗�(𝑡+ 1
32𝜋), and �⃗�(𝑡+ 2

32𝜋) .

They span a plane including the 𝑧-axis for all times 𝑡. During the time Δ𝑡 = 2𝜋
3

this plane makes a full turn about the 𝑧-axis, while the triangle rotates by the
angle 2𝜋/3 within the plane – so the triangle has returned to a congruent position.
The curve �⃗�(𝑡) is shown in Figure 8 a) together with exemplary positions of the
rotating triangle, and Figure 8 b) shows its convex hull 𝐶. This convex hull is
symmetric under reflections in the (𝑥-𝑦) and (𝑥-𝑧) planes. Since the set of pure
states is connected this is our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary of 𝐶. There are three
flat faces, two triangular ones and one rectangular. The remaining part of the
boundary consists of ruled surfaces: they are curved, but contain one-dimensional
faces (straight lines). The boundary of the set shown in Figure 7 has similar prop-
erties. The ruled surfaces of 𝐶 have an analogue in the boundary of the set of
quantum states 𝒬3, we have already noted that a generic point in the boundary
of 𝒬3 belongs to a copy of 𝒬2 (the Bloch ball), arising as the intersection of 𝒬3

with a hyperplane. The flat pieces of 𝐶 have no analogues in the boundary of 𝒬3,
apart from Bloch balls (rank two) and pure states (rank one) no other faces exist.
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Still this model is not perfect: Its set of pure states has self-intersections.
Although it is created by rotating a triangle, the triangles are not cross-sections of
𝐶. It is not true that every point on the boundary belongs to a face that touches
the largest inscribed sphere, as it happens for the set of quantum states [17]. Indeed
its boundary is not quite what we want it to be, in particular it has non-exposed
faces – a point to which we will return. Above all this is not a self-dual body.

4. A constructive approach

The properties of the eight-dimensional convex set 𝒬3 might conflict if we try to
realize them in dimension three. Instead of looking for an ideal three-dimensional
model we shall thus use a complementary approach. To reduce the dimensionality
of the problem we investigate cross-sections of the 8𝐷 set 𝒬3 with a plane of
dimension two or three, as well as its orthogonal projections on these planes – the
shadows cast by the body on the planes, when illuminated by a very distant light
source. Clearly the cross-sections will always be contained in the projections, but
in exceptional cases they may coincide.

What kind of cross-sections arise? In the classical case it is known that every
convex polytope arises as a cross-section of a simplex Δ𝑁−1 of sufficiently high
dimension [21]. It is also true that every convex polytope arises as the projection
of a simplex. But what are the cross-sections and the projections of 𝒬𝑁? There
has been considerable progress on this question recently. The convex set is said to
be a spectrahedron if it is a cross-section of a cone of semi-positive definite matri-
ces of some given size. In the branch of mathematics known as convex algebraic
geometry one asks what kind of convex bodies that can be obtained as projections
of spectrahedra. Surprisingly, the convex hull of any trigonometric space curve in
three dimensions can be so obtained [26]. This includes our set 𝐶, which can be
shown to be a projection of an eight-dimensional cross-section of the 35𝐷 set 𝒬6

of quantum states of size 𝑁 = 6. We do so in the Appendix.

4.1. The duality between projections and cross-sections

In the vector space of traceless hermitian matrices we choose a linear subspace
𝑈 . The intersection of the convex body 𝒬𝑁 of quantum states with the subspace
𝑈 + �/𝑁 through the maximally mixed state �/𝑁 is the cross-section 𝑆𝑈 , and
the orthogonal projection of 𝒬𝑁 down to 𝑈 is the projection 𝑃𝑈 . There exists
a beautiful relation between projections and cross-sections, holding for self-dual
convex bodies such as the classical and the quantum state spaces [14]. For them
cross-sections and projections are dual to each other, in the sense that

𝑆𝑈 − �/𝑁 = {𝑢 ∣ 1/𝑁 +Tr(𝑢𝑣) ≥ 0 ∀𝑣 ∈ 𝑃𝑈} (18)

and
𝑃𝑈 = {𝑢 ∣ 1/𝑁 +Tr(𝑢𝑣) ≥ 0 ∀𝑣 ∈ 𝑆𝑈 − �/𝑁} . (19)

This is best explained in a picture (namely Figure 9). A special case of these
dualities is the self-duality of the full state-space, equation (15).
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U

a

A
b

B

Figure 9. The triangle is self-dual. We intersect it with a one-dimensional sub-
space through the centre, 𝑈 , and obtain a cross-section extending from 𝑎 to 𝑏.
The dual of this line in the plane is a two-dimensional strip, and when we project
this onto 𝑈 we obtain a projection extending from 𝐴 to 𝐵, which is dual to the
cross-section within 𝑈 .

Let us look at two examples for 𝒬3, choosing the vector space 𝑈 to be three-
dimensional. In Figure 10 a) we show the cross-section containing all states of the
form

𝜌 =

⎛⎝ 1/3 𝑥 𝑦
𝑥 1/3 𝑧
𝑦 𝑧 1/3

⎞⎠ , 𝜌 ≥ 0 . (20)

They form an overfilled tetrapak cartoon [8], also known as an elliptope [27] and an
obese tetrahedron [16]. Like the tetrahedron it has six straight edges. Its boundary
is known as Cayley’s cubic surface, and it is smooth everywhere except at the four
vertices. In the picture it is surrounded by its dual projection, which is the convex
hull of a quartic surface known as Steiner’s Roman surface. To understand the
shape of the dual, start with a pair of dual tetrahedra (one of them larger than
the other). Then we “inflate” the small tetrahedron a little, so that its facets turn
into curved surfaces. It grows larger, so its dual must shrink – the vertices of the
dual become smooth, while the facets of the dual will be contained within the
original triangles. What we see in Figure 10 a) is a “critical” case, in which the
facets of the dual have shrunk to four circular disks that just touch each other in
six special points.

In Figure 10 b) we see the cross-section containing all states (positive matri-
ces) of the form

𝜌 =

⎛⎝ 1/3 + 𝑧/
√
3 𝑥− i𝑦 0

𝑥+ i𝑦 1/3 + 𝑧/
√
3 0

0 0 1/3− 2𝑧/√3

⎞⎠ . (21)

This cross-section is a self-dual set, meaning that the projection to this three-
dimensional plane coincides with the cross-section. In itself it is the state space of
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Figure 10. a) The cross-section 𝑆𝑈 − �/3 defined in (20) of the qutrit quantum
states 𝒬3 is drawn inside the projection 𝑃𝑈 of 𝒬3. b) The cone is self-dual, it is a
cross-section and a projection of 𝒬3 with 𝑆𝑈 − �/3 = 𝑃𝑈 .

a real subalgebra of the qutrit obervables. There exist also two-dimensional self-
dual cross-sections, which are simply copies of the classical simplex Δ2 – the state
space of the subalgebra of diagonal matrices.

4.2. Two-dimensional projections and cross-sections

To appreciate what we see in cross-sections and projections we will concentrate on
two-dimensional screens.

We can compute 2D projections using the fact that they are dual to a cross-
section. But we can also use the notion of the numerical range 𝑊 of a given
operator 𝐴, a subset of the complex plane [28, 29, 30]

𝑊 (𝐴) = {𝑧 ∈ � : 𝑧 = Tr 𝜌𝐴, 𝜌 ∈ 𝒬𝑁} . (22)

If the matrix𝐴 is hermitian its numerical range reduces to a line segment, otherwise
it is a convex region of the complex plane. To see the connection to projections,
observe that changing the trace of 𝐴 gives rise to a translation of the whole set,
so we may as well fix the trace to equal unity. Then we can write for some 𝜆 ∈ �

𝐴 = 𝜆�+ 𝑢+ i𝑣 , (23)

where 𝑢 and 𝑣 are traceless hermitian matrices. It follows that the set of all possible
numerical ranges 𝑊 (𝐴) of arbitrary matrices 𝐴 of order 𝑁 is affinely equivalent
to the set of orthogonal projections of 𝒬𝑁 on a 2-plane [15, 31]. Thus to under-
stand the structure of projections of 𝒬𝑁 onto a plane it is sufficient to analyze
the geometry of numerical ranges of any operator of size 𝑁 . For instance, in the
simplest case of a matrix 𝐴 of order 𝑁 = 2, its numerical range forms an elliptical
disk, which may reduce to an interval. These are just possible (not necessarily
orthogonal) projections of the Bloch ball 𝒬2 onto a plane.

In the case of a matrix 𝐴 of order 𝑁 = 3 the shape of its numerical range was
characterized algebraically in [32, 33]. Regrouping this classification we divide the
possible shapes into four cases according to the number of flat boundary parts:
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Figure 11. The drawings are dual pairs of planar cross-sections 𝑆𝑈 −�/3 (dark)
and projections 𝑃𝑈 (bright) of the convex body of qutrit quantum states 𝒬3.
Drawing a) is obtained from the 3D dual pair in Figure 10 a) and b)–d) are
derived from the self-dual cone in Figure 10 b). The cross-sections in b)–d) have
an elliptic, parabolic and hyperbolic boundary piece, respectively.

The set 𝑊 is compact and its boundary ∂𝑊

1. has no flat parts. Then 𝑊 is strictly convex, it is bounded by an ellipse or
equals the convex hull of a (irreducible) sextic space curve;

2. has one flat part, then 𝑊 is the convex hull of a quartic space curve – e.g.,
𝑊 is the convex hull of a trigonometric curve known as the cardioid;

3. has two flat parts, then 𝑊 is the convex hull of an ellipse and a point out-
side it;

4. has three flat parts, then 𝑊 is a triangle with corners at eigenvalues of 𝐴.

In case 4 the matrix 𝐴 is normal, 𝐴𝐴† = 𝐴†𝐴, and the numerical range is
a projection of the simplex Δ2 onto a plane. Looking at the planar projections of
𝒬3 shown in Figure 11 we recognize cases 2 and 3. All four cases are obtained as
projections of the Roman surface in Figure 10 a) or the cone shown in Figure 10 b).
A rotund shape and one with two flats are obtained as a projection of both 3D
bodies. A triangle is obtained from the cone and a shape with one flat from the
Roman surface.

In order to actually calculate a 2𝐷 projection 𝑃 := {(Tr𝑢𝜌,Tr 𝑣𝜌)T ∈ �
2 ∣

𝜌 ∈ 𝒬3} of the set 𝒬3 determined by two traceless hermitian matrices 𝑢 and 𝑣 one
may proceed as follows [28]. For every non-zero matrix 𝐹 in the real span of 𝑢 and
𝑣 we calculate the maximal eigenvalue 𝜆 and the corresponding normalized eigen-
vector ∣𝜓⟩ with 𝐹 ∣𝜓⟩ = 𝜆∣𝜓⟩. Then (⟨𝜓∣𝑢∣𝜓⟩, ⟨𝜓∣𝑣∣𝜓⟩)T belongs to the projection
𝑃 , and these points cover all exposed points of 𝑃 .
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Exemplary sets disk 𝑎) drop 𝑏)
truncated
disk 𝑐)

truncated
drop 𝑑)

non-exposed points (∗) no yes no yes

non-polyhedral
corners (𝑜)

no no yes yes

set is self-dual yes no no yes

Figure 12. Exemplary convex sets and their duals. Symbols: non-exposed point
(∗), polyhedral corners (+) and non-polyhedral corners (𝑜). Sets a) and d) are
self-dual, while b) and c) is a dual pair. Sets a) and c) have properties like 2D
cross-sections of𝒬𝑁 , while sets a) and b) could be obtained from𝒬𝑁 by projection.

4.3. Exposed and non-exposed faces

Cross-sections and projections of the convex body 𝒬𝑁 of quantum states have a
more subtle boundary structure than 𝒬𝑁 itself.

An exposed face of a convex set 𝑋 is the intersection of 𝑋 with an affine
hyperplane 𝐻 such that 𝑋 ∖𝐻 is convex, i.e., 𝐻 intersects 𝑋 only at the boundary.
Examples in the plane are the boundary points of the disk in Figure 12 a) or the
boundary segments in panels b) and d). A non-exposed face of 𝑋 is a face of 𝑋
that is not an exposed face. In dimension two non-exposed faces are non-exposed
points, they are the endpoints of boundary segment of 𝑋 which are not exposed
faces by themselves. Examples are the lower endpoints of the boundary segments
in Figure 12 b) or d).

It is known that cross-sections of 𝒬𝑁 have no non-exposed faces. On the
other hand the twisted cylinder (see Figure 7) and the convex hull 𝐶 of the space
curve (Figure 8) do have non-exposed faces of dimension one. In contrast to cross-
sections, projections of 𝒬𝑁 can have non-exposed points, see, e.g., the planar
projections of𝒬3 in Figure 11. They are related to discontinuities in certain entropy
functionals (in use as information measures) [34].

The dual concept to exposed face is normal cone [13]. The normal cone of a
two-dimensional convex set 𝑋 ⊂ �

2 at (𝑥1, 𝑥2)
T ∈ 𝑋 is

{(𝑦1, 𝑦2)
T ∈ �

2 ∣ (𝑧1 − 𝑥1)𝑦1 + (𝑧2 − 𝑥2)𝑦2 ≤ 0 ∀(𝑧1, 𝑧2)
T ∈ 𝑋}.
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The normal cone generalizes outward pointing normal vectors of a smooth bound-
ary curve of 𝑋 to points (𝑥1, 𝑥2)

T where this curve is not smooth. Then the
dimension of the normal cone is two and we call (𝑥1, 𝑥2)

T a corner. The examples
in Figure 12 have 0, 1, 2, 3 corners from left to right. There are different types
of corners: The top corners of Figure 12 b) and d) are polyhedral, i.e., they are
intersections of two boundary segments. If a corner is not the intersection of two
boundary segments we call it non-polyhedral. The bottom corners of c) and d) are
non-polyhedral corners. Polyhedral and non-polyhedral corners are characterized
in [35] in terms of normal cones. From this characterization it follows that any cor-
ner of a two-dimensional projection of𝒬𝑁 is polyhedral [13]. An analogue property
holds in higher dimensions but it cannot be formulated in terms of polyhedra. Fig-
ure 11 shows that two-dimensional cross-sections of 𝒬3 can have non-polyhedral
corners.

Given a two-dimensional convex body including the origin in the interior, the
duality (13) maps non-exposed points onto the set of non-polyhedral corners of
the dual convex body. There will be one or two non-exposed points in each fiber
depending on whether the corner does or does not lie on a boundary segment of
the dual body [35]. We conclude that a two-dimensional self-dual convex set has
no non-exposed points if and only if all its corners are polyhedral.

5. When the dimension matters

So far we have discussed the qutrit, and properties of the qutrit that generalise
to any dimension 𝑁 . But what is special about a quantum system whose Hilbert
space has dimension 𝑁? The question gains some relevance from recent attempts
to find direct experimental signatures of the dimension,

One obvious answer is that if and only if 𝑁 is a composite number, the
system admits a description in terms of entangled subsystems. But we can look
for an answer in other directions too. We emphasised that a regular simplex Δ𝑁−1

can be inscribed in the quantum state space 𝒬𝑁 . But in the Bloch ball we can
clearly inscribe not only Δ1 (a line segment), but also Δ2 (a triangle) and Δ3 (a
tetrahedron). If we insist that the vertices of the inscribed simplex should lie on
the outsphere of 𝒬𝑁 , and also that the simplex should be centred at the maximally
mixed state, then this gives rise to a non-trivial problem once the dimension𝑁 > 2.
This is clear from our model of the latter as the convex hull of the seam of a tennis
ball, or in other words because the set of pure states form a very small subset of
the outsphere. Still we saw, in Figure 10 a), that not only Δ2 but also Δ3 can
be inscribed in 𝒬3, and as a matter of fact so can Δ5 and Δ8. But is it always
possible to inscribe the regular simplex Δ𝑁2−1 in 𝒬𝑁 , in such a way that the
𝑁2 vertices are pure states? Although the answer is not obvious, it is perhaps
surprising to learn that the answer is not known, despite a considerable amount
of work in recent years.
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The inscribed regular simplices Δ𝑁2−1 are known as symmetric information-
ally complete positive operator-valued measures, or SIC-POVMs for short. Their
existence has been established, by explicit construction, in all dimensions 𝑁 ≤ 16
and in a handful of larger dimensions. The conjecture is that they always exist [36].
But the available constructions have so far not revealed any pattern allowing one
to write down a solution for all dimensions 𝑁 . Already here the quantum state
space begins to show some 𝑁 -dependent individuality.

Another question where the dimension matters concerns complementary bases
in Hilbert space. As we have seen, given a basis in Hilbert space, there is an (𝑁−1)-
dimensional cross-section of 𝒬𝑁 in which these vectors appear as the vertices of
a regular simplex Δ𝑁−1. We can – for instance for tomographic reasons [37] – de-
cide to look for two such cross-sections placed in such a way that they are totally
orthogonal with respect to the trace inner product. If the two cross-sections are
spanned by two regular simplices stemming from two Hilbert space bases {∣𝑒𝑖⟩}𝑁−1

𝑖=0

and {∣𝑓𝑖⟩}𝑁−1
𝑖=0 , then the requirement on the bases is that

∣⟨𝑒𝑖∣𝑓𝑗⟩∣2 = 1

𝑁
(24)

for all 𝑖, 𝑗. Such bases are said to be complementary, and form a key element in
the Copenhagen interpretation of quantum mechanics [38]. But do they exist for
all 𝑁?

The answer is yes. To see this, let one basis be the computational one, and let
the other be expressed in terms of it as the column vectors of the Fourier matrix

𝐹𝑁 =
1√
𝑁

⎡⎢⎢⎢⎢⎢⎣
1 1 1 . . . 1
1 𝜔 𝜔2 . . . 𝜔𝑁

1 𝜔2 𝜔4 . . . 𝜔2(𝑁−1)

...
...

...
...

1 𝜔𝑁−1 𝜔2(𝑁−1) . . . 𝜔(𝑁−1)2

⎤⎥⎥⎥⎥⎥⎦ , (25)

where 𝜔 = 𝑒2𝜋𝑖/𝑁 is a primitive root of unity. The Fourier matrix is an example of
a complex Hadamard matrix, a unitary matrix all of whose matrix elements have
the same modulus.

We are interested in finding all possible complementary pairs up to unitary
equivalences. The latter are largely fixed by requiring that one member of the
pair is the computational basis, since the second member will then be defined by
a complex Hadamard matrix. The remaining freedom is taken into account by
declaring two complex Hadamard matrices 𝐻 and 𝐻 ′ to be equivalent if they can
be related by

𝐻 ′ = 𝐷1𝑃1𝐻𝑃2𝐷2 , (26)

where 𝐷𝑖 are diagonal unitary matrices and 𝑃𝑖 are permutation matrices.
The task of classifying pairs of cross-sections of 𝒬𝑁 forming simplices Δ𝑁−1

and sitting in totally orthogonal 𝑁 -planes is therefore equivalent to the problem
of classifying complementary pairs of bases in Hilbert space. This problem in turn
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is equivalent to the problem of classifying complex Hadamard matrices of a given
size. But the latter problem has been open since it was first raised by Sylvester
and Hadamard, back in the nineteenth century. It has been completely solved only
for 𝑁 ≤ 5, and it was recently almost completely solved for 𝑁 = 6 [39].

More is known if we restrict ourselves to continuous families of complex
Hadamard matrices that include the Fourier matrix. Then it has been known
for some time [40] that the dimension of such a family is bounded from above by

𝑑𝐹𝑁 =

𝑁−1∑
𝑘=0

gcd(𝑘,𝑁)− (2𝑁 − 1) , (27)

where gcd denotes the largest common divisor, and gcd(0, 𝑁) = 𝑁 . We subtracted
the 2𝑁−1 dimensions that arise trivially from equation (26). Moreover, if 𝑁 = 𝑝𝑘

is a power of prime number 𝑝 this bound is saturated by families that have been
constructed explicitly. In particular, if 𝑁 is a prime number 𝑑𝐹𝑝 = 0, and the
Fourier matrix is an isolated solution. For 𝑁 = 4 on the other hand there exists a
one-parameter family of inequivalent complex Hadamard matrices.

Further results on this question were presented in Bial̷owieża [41]. In partic-
ular the above bound is not achieved for any 𝑁 not equal to a prime power and
not equal to 6. It turns out that the answer depends critically on the nature of the
prime number decomposition of 𝑁 . Thus, if 𝑁 is a product of two odd primes the
answer will look different from the case when 𝑁 is twice an odd prime. However,
at the moment, the largest non-prime power dimension for which the answer is
known – even for this restricted form of the problem – is 𝑁 = 12.

At the moment then, both the SIC problem and the problem of complemen-
tary pairs of bases highlight the fact that the choice of Hilbert space dimension
𝑁 has some dramatic consequences for the geometry of 𝒬𝑁 . Now the basic in-
tuition that drove Mielnik’s attempts to generalize quantum mechanics was the
feeling that the nature of the physical system should be reflected in the geometry
of its convex body of states [1]. Perhaps this intuition will eventually be vindi-
cated within quantum mechanics itself, in such a way that the individuality of the
system is expressed in the choice of 𝑁?

6. Concluding remarks

As discussed in our work the convex geometry of the set of mixed states of size 𝑁 is
simple for 𝑁 = 2 only and in spite of all our efforts it becomes slightly mysterious
already for 𝑁 ≥ 3. This observation was also emphasized in a recent paper by
Mielnik [42].

Let us try to summarize basic properties of the set 𝒬𝑁 of mixed quantum
states of size 𝑁 ≥ 3 analyzed with respect to the flat, Hilbert-Schmidt geometry,
induced by the distance (3).

a) The set 𝒬𝑁 is a convex set of 𝑁
2−1 dimensions. It is topologically equivalent

to a ball and does not have pieces of lower dimensions (’no hairs’).
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b) The set 𝒬𝑁 is inscribed in a sphere of radius 𝑅𝑁 =
√
(𝑁 − 1)/2𝑁 , and it

contains the maximal ball of radius 𝑟𝑁 = 1/
√
2𝑁(𝑁 − 1) in the Hilbert-

Schmidt distance.
c) The set 𝒬𝑁 is neither a polytope nor a smooth body.
d) The set of mixed states is self-dual (15).
e) All cross-sections of 𝒬𝑁 have no non-exposed faces.
f) All corners of two-dimensional projetions of 𝒬𝑁 are polyhedral.
g) The boundary ∂𝒬𝑁 contains all states of less than maximal rank.
h) The set of extremal (pure) states forms a connected 2𝑁 − 2-dimensional set,
which has zero measure with respect to the 𝑁2 − 2-dimensional boundary
∂𝒬𝑁 .

i) Explicit formulae for the volume 𝑉 and the area 𝐴 of the 𝑑 = 𝑁2 − 1-
dimensional set 𝒬𝑁 are known [18]. The ratio 𝐴𝑟/𝑉 is equal to the dimension
𝑑, which implies that 𝒬𝑁 has a constant height [17], see (7).
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and helpful remarks. I.B. and K.Ż. are thankful for an invitation for the workshop
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Appendix. Trigonometric curves

We write the convex hull 𝐶 of the trigonometric space curve in Section 3 as a
projection of a cross-section of the 35-dimensional set 𝒬6 of density matrices.
Up to the trace normalization, this problem is solved in [26] for the convex hull
of any trigonometric curve [0, 2𝜋) → �

𝑛. The assumptions are that each of the
𝑛 coefficient functions of the curve is a trigonometric polynomial of some finite
degree 2𝑑,

𝑡 �→ ∑𝑑
𝑘=1(𝛼𝑘 cos(𝑘𝑡) + 𝛽𝑘 sin(𝑘𝑡)) + 𝛾

for real coefficients 𝛼𝑘, 𝛽𝑘, 𝛾.

The space curve (16) lives in dimension 𝑛 = 3, we denote its coefficients by
�⃗� = (𝑥1, 𝑥2, 𝑥3)

T. Using trigonometric formulas and the parametrization cos(𝑡) =
𝑦2
0−𝑦2

1

𝑦2
0+𝑦2

1
and sin(𝑡) = 2𝑦0𝑦1

𝑦2
0+𝑦2

1
we have

1
def.
= (𝑦2

0 + 𝑦2
1)

4 ,
𝑥1 = (𝑦2

0 − 𝑦2
1)

2[(𝑦2
0 − 𝑦2

1)
2 − 3(2𝑦0𝑦1)

2] ,
𝑥2 = (𝑦2

0 − 𝑦2
1)(2𝑦0𝑦1)[3(𝑦

2
0 − 𝑦2

1)
2 − (2𝑦0𝑦1)

2] ,
𝑥3 = −(𝑦2

0 + 𝑦2
1)

3(2𝑦0𝑦1) .
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A basis vector of 𝑚-variate forms of degree 2𝑑 = 8 is given by

𝜉 = (𝑥8
0, 𝑥

7
0𝑥1, 𝑥

6
0𝑥

2
1, 𝑥

5
0𝑥

3
1, 𝑥

4
0𝑥

4
1, 𝑥

3
0𝑥

5
1, 𝑥

2
0𝑥

6
1, 𝑥0𝑥

7
1, 𝑥

8
1)

T

for the number 𝑚 = 1 used in [26] for the degrees of freedom of the projective
coordinates (𝑦0 : 𝑦1) in the circle �

1(�)) and we have

(1, 𝑥1, 𝑥2, 𝑥3)
T = 𝐴𝜉

for the 4× 9-matrix

𝐴 =

( 1 0 4 0 6 0 4 0 1
1 0 −16 0 30 0 −16 0 1
0 6 0 −26 0 26 0 −6 0
−1 0 −2 0 0 0 2 0 1

)
.

Let us denote by𝑀 ર 0 that a complex square matrix𝑀 is positive semi-definite.
The 5× 5 moment matrix of �⃗� = (𝑢1, . . . , 𝑢9) is given by

𝑀4(�⃗�) =

(
𝑢1 𝑢2 𝑢3 𝑢4 𝑢5
𝑢2 𝑢3 𝑢4 𝑢5 𝑢6
𝑢3 𝑢4 𝑢5 𝑢6 𝑢7
𝑢4 𝑢5 𝑢6 𝑢7 𝑢8
𝑢5 𝑢6 𝑢7 𝑢8 𝑢9

)
.

Now [26] provides the convex hull representation

𝐶
def.
= conv{�⃗�(𝑡) ∈ �

3 ∣ 𝑡 ∈ [0, 2𝜋)}

= {
(
𝑣1
𝑣2
𝑣3

)
∈ �

3 ∣ ∃�⃗� ∈ �
9 s.t.

(
1
𝑣1
𝑣2
𝑣3

)
= 𝐴�⃗� and 𝑀4(�⃗�) ર 0} (28)

which we shall simplify by eliminating the variables 𝑢1, . . . , 𝑢4.
A particular solution of (1, 𝑣1, 𝑣2, 𝑣3)

T = 𝐴�⃗� is

𝑢1 = 1
5 (4 + 𝑣1) , 𝑢2 = 1

44 (3𝑣2 − 13𝑣3) ,

𝑢3 = 1
20 (1− 𝑣1) , 𝑢4 = 1

44 (−𝑣2 − 3𝑣3) ,

𝑢5 = 𝑢6 = 𝑢7 = 𝑢8 = 𝑢9 = 0. The reduced row echelon form of 𝐴 being( 1 0 0 0 54/5 0 0 0 1
0 1 0 0 0 39/11 0 2/11 0
0 0 1 0 −6/5 0 1 0 0
0 0 0 1 0 −2/11 0 3/11 0

)
and regarding 𝑢5, . . . , 𝑢9 as free variables we have

𝑢1 = 𝑢1 − 54
5 𝑢5 − 𝑢9 , 𝑢2 = 𝑢2 − 39

11𝑢6 − 2
11𝑢8 ,

𝑢3 = 𝑢3 +
6
5𝑢5 − 𝑢7 , 𝑢4 = 𝑢4 +

2
11𝑢6 − 3

11𝑢8 .

One problem remains, the matrix𝑀4 parametrized by 𝑣1, 𝑣2, 𝑣3 and 𝑢5, . . . , 𝑢9

does not have trace one,

Tr𝑀4 = 𝑢1 + 𝑢3 + 𝑢5 + 𝑢7 + 𝑢9 =
1
20 (17− 172𝑢5 + 3𝑣1) .

This we correct by adding a direct summand to 𝑀4 and by defining

𝑀 =

(
𝑀4 0
0 172

20 𝑢5 +
3
20 (1− 𝑣1)

)
.
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If 𝑀4 ર 0 then 𝑢5 ≥ 0 follows because 𝑢5 is a diagonal element of 𝑀4 and
−1 ≤ 𝑣1 ≤ 1 follows from (28) because (𝑣1, 𝑣2, 𝑣3)

T ∈ 𝐶 is included in the unit
ball of �3. This proves 𝑀 ર 0 ⇐⇒ 𝑀4 ર 0 and we get

𝐶 = {
(
𝑣1
𝑣2
𝑣3

)
∈ �

3 ∣ ∃
(

𝑢5

...
𝑢9

)
∈ �

5 s.t. 𝑀 ર 0} .

We conclude that 𝐶 is a projection of the eight-dimensional spectrahedron

{(𝑣1, 𝑣2, 𝑣2, 𝑢5, . . . , 𝑢9)
T ∈ �

3+5 ∣ 𝑀 ર 0},
which is a cross-section of 𝒬6.
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[41] N. Barros e Sá, talk at the XXX Workshop on Geometric Methods in Physics.

[42] Bogdan Mielnik, Convex Geometry: a travel to the limits of our knowledge, in this
volume and preprint arxiv.org 1202.2164.

Ingemar Bengtsson
Stockholms Universitet, Fysikum
Roslagstullsbacken 21
S-106 91 Stockholm, Sweden
e-mail: ingemar@fysik.su.se

Stephan Weis
Max Planck Institute for Mathematics in the Sciences
Inselstrasse 22
D-04103 Leipzig, Germany
e-mail: sweis@mis.mpg.de
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1. Introduction

The Painlevé equations can be seen as the nonlinear analogues of the classical
linear equations associated to the well-known special functions [1, 2]. They have
been identified as the most important non-linear ordinary differential equations [3].
Although discovered by strictly mathematical considerations, nowadays they are
widely used to describe several physical phenomena [4]. In particular, the Painlevé
IV equation (𝑃𝐼𝑉 ) is relevant in fluid mechanics, non-linear optics, and quantum
gravity [5].

On the other hand, since its birth supersymmetric quantum mechanics (SUSY
QM) catalyzed the study of exactly solvable Hamiltonians and gave a new insight
into the algebraic structure characterizing these systems. Historically, the essence
of SUSY QM was developed first as Darboux transformation in mathematical
physics [6] and as factorization method in quantum mechanics [7, 8]. Moreover,
through SUSY QM one can obtain quantum systems described by second-order
polynomial Heisenberg algebras (PHA), whose Hamiltonians have the standard
Schrödinger form and their differential ladder operators are of third order. It
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has been shown that there is a connection between these systems and solutions
𝑔(𝑥; 𝑎, 𝑏) of 𝑃𝐼𝑉 [2].

The 𝑃𝐼𝑉 solutions can be grouped into several hierarchies, according to the
family of special functions they are related with. This classification can be easily
done for the class of real solutions [9], but it can be as well performed for the
recently found complex solutions [10], which is our aim here. To do that, we have
arranged this paper as follows: in Section 2 we shall present the general framework
of SUSY QM and PHA. In the next section we will generate the real and complex
solutions to 𝑃𝐼𝑉 ; then, in Section 4 we will study the real solution hierarchies
and we shall analyze the domain of the parameter space (𝑎, 𝑏) where they are to
be found. In Section 5 we do the same for the complex solution. We present our
conclusions in Section 6.

2. General framework of SUSY QM and PHA

In the 𝑘th order SUSY QM one starts from a given solvable Hamiltonian

𝐻0 = −1
2

𝑑2

𝑑𝑥2
+ 𝑉0(𝑥), (1)

and generates a chain of first-order intertwining relations [11, 12, 13]

𝐻𝑗𝐴
+
𝑗 = 𝐴+

𝑗 𝐻𝑗−1, 𝐻𝑗−1𝐴
−
𝑗 = 𝐴−𝑗 𝐻𝑗 , (2)

𝐻𝑗 = −1
2

𝑑2

𝑑𝑥2
+ 𝑉𝑗(𝑥), 𝐴±𝑗 =

1√
2

[
∓ 𝑑

𝑑𝑥
+ 𝛼𝑗(𝑥, 𝜖𝑗)

]
, 𝑗 = 1, . . . , 𝑘. (3)

By plugging equations (3) into equation (2) we obtain

𝛼′𝑗(𝑥, 𝜖𝑗) + 𝛼2
𝑗 (𝑥, 𝜖𝑗) = 2[𝑉𝑗−1(𝑥)− 𝜖𝑗 ], 𝑉𝑗(𝑥) = 𝑉𝑗−1(𝑥)− 𝛼′𝑗(𝑥, 𝜖𝑗). (4)

We are interested in the final Riccati solution 𝛼𝑘(𝑥, 𝜖𝑘), which turns out to be
determined either by 𝑘 solutions 𝛼1(𝑥, 𝜖𝑗) of the initial Riccati equation

𝛼′1(𝑥, 𝜖𝑗) + 𝛼2
1(𝑥, 𝜖𝑗) = 2[𝑉0(𝑥)− 𝜖𝑗 ], 𝑗 = 1, . . . , 𝑘, (5)

or by 𝑘 solutions 𝑢𝑗 ∝ exp(
∫
𝛼1(𝑥, 𝜖𝑗)𝑑𝑥) of the associated Schrödinger equation

𝐻0𝑢𝑗 = −1
2
𝑢′′𝑗 + 𝑉0(𝑥)𝑢𝑗 = 𝜖𝑗𝑢𝑗 , 𝑗 = 1, . . . , 𝑘. (6)

Thus, there is a pair of 𝑘th order operators interwining the initial 𝐻0 and
final Hamiltonians 𝐻𝑘, namely,

𝐻𝑘𝐵
+
𝑘 = 𝐵+

𝑘 𝐻0, 𝐻0𝐵
−
𝑘 = 𝐵−𝑘 𝐻𝑘, 𝐵+

𝑘 = 𝐴+
𝑘 . . . 𝐴+

1 , 𝐵−𝑘 = 𝐴−1 . . . 𝐴−𝑘 . (7)

The normalized eigenfunctions 𝜓
(𝑘)
𝑛 of 𝐻𝑘, associated to the eigenvalues 𝐸𝑛, and

the 𝑘 additional eigenstates 𝜓
(𝑘)
𝜖𝑗 associated to the eigenvalues 𝜖𝑗 which are anni-

hilated by 𝐵−𝑘 (𝑗 = 1, . . . , 𝑘), are given by [9, 14]:

𝜓(𝑘)
𝑛 =

𝐵+
𝑘 𝜓𝑛√

(𝐸𝑛 − 𝜖1) . . . (𝐸𝑛 − 𝜖𝑘)
, 𝜓(𝑘)

𝜖𝑗 ∝𝑊 (𝑢1, . . . , 𝑢𝑗−1, 𝑢𝑗+1, . . . , 𝑢𝑘)

𝑊 (𝑢1, . . . , 𝑢𝑘)
. (8)
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Note that, in this formalism the obvious restriction 𝜖𝑗 < 𝐸0 = 1/2 naturally arises
if we want to avoid singularities in 𝑉𝑘(𝑥).

On the other hand, a𝑚th order PHA is a deformation of the Heisenberg-Weyl
algebra of kind [14, 15, 16]:

[𝐻,𝐿±] = ±𝐿±, [𝐿−, 𝐿+] ≡ 𝑄𝑚+1(𝐻 + 1)−𝑄𝑚+1(𝐻) = 𝑃𝑚(𝐻), (9)

𝑄𝑚+1(𝐻) = 𝐿+𝐿− = (𝐻 − ℰ1) . . . (𝐻 − ℰ𝑚+1) , (10)

where 𝑃𝑚(𝑥) is a polynomial of order 𝑚 in 𝑥 and ℰ𝑖 are the zeros of 𝑄𝑚+1(𝐻),
which correspond to the energies associated to the extremal states of 𝐻 .

Now, in the differential representation of the second-order PHA (𝑚 = 2), 𝐿+

is a third-order differential ladder operator, chosen by simplicity as [17]:

𝐿+ = 𝐿+
1 𝐿+

2 , 𝐿+
1 =

1√
2

[
− 𝑑

𝑑𝑥
+ 𝑓(𝑥)

]
, 𝐿+

2 =
1

2

[
𝑑2

𝑑𝑥2
+ 𝑔(𝑥)

𝑑

𝑑𝑥
+ ℎ(𝑥)

]
. (11)

These operators satisfy the following relationships:

𝐻𝐿+
1 = 𝐿+

1 (𝐻a + 1), 𝐻a𝐿
+
2 = 𝐿+

2 𝐻 ⇒ [𝐻,𝐿+] = 𝐿+, (12)

𝐻a being an auxiliary Schrödinger Hamiltonian. Using the standard first and
second-order SUSY QM one obtains

𝑓 = 𝑥+ 𝑔, ℎ = −𝑥2 +
𝑔′

2
− 𝑔2

2
− 2𝑥𝑔 + 𝑎, (13)

𝑉 =
𝑥2

2
− 𝑔′

2
+

𝑔2

2
+ 𝑥𝑔 + ℰ1 − 1

2
, (14)

𝑔′′ =
𝑔′2

2𝑔
+
3

2
𝑔3 + 4𝑥𝑔2 + 2

(
𝑥2 − 𝑎

)
𝑔 +

𝑏

𝑔
. (15)

The last one is the Painlevé IV equation (𝑃𝐼𝑉 ) with parameters

𝑎 = ℰ2 + ℰ3 − 2ℰ1 − 1, 𝑏 = −2(ℰ2 − ℰ3)
2. (16)

If the ℰ𝑖, 𝑖 = 1, 2, 3 are real, we will obtain real parameters 𝑎, 𝑏 for equation (15).

3. Real and complex solutions of 𝑷𝑰𝑽 with real parameters

It is well known that the first-order SUSY partner Hamiltonians of the harmonic
oscillator are naturally described by second-order PHA, which are connected with
𝑃𝐼𝑉 . Furthermore, there is a theorem stating the conditions for the hermitian
higher-order SUSY partner Hamiltonians of the harmonic oscillator to have this
kind of algebras (see [9]). The main requirement is that the 𝑘 Schrödinger seed
solutions have to be connected in the way

𝑢𝑗 = (𝑎
−)𝑗−1𝑢1, 𝜖𝑗 = 𝜖1 − (𝑗 − 1), 𝑗 = 1, . . . , 𝑘, (17)

where 𝑎− is the standard annihilation operator of 𝐻0 so that 𝑢1 is the only free
seed.

If 𝑢1 is a real solution of equation (6) without zeros, associated to a real
factorization energy 𝜖1 such that 𝜖1 < 𝐸0 = 1/2, then all 𝑢𝑗 are also real and,
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consequently, the solutions to 𝑃𝐼𝑉 are also real. On the other hand, if we use the
formalism as in [9] with 𝜖1 > 𝐸0, we would obtain only singular SUSY transforma-
tions. In order to avoid this we will instead employ complex SUSY transformations.
The simplest way to implement them is to use a complex linear combination of
the two standard linearly independent real solutions which, up to an unessential
factor, leads to the following complex solutions depending on a complex constant
Λ = 𝜆+ 𝑖𝜅 (𝜆, 𝜅 ∈ ℝ) [18]:

𝑢(𝑥; 𝜖) = 𝑒−𝑥
2/2

[
1𝐹1

(
1− 2𝜖
4

,
1

2
;𝑥2

)
+ 𝑥Λ 1𝐹1

(
3− 2𝜖
4

,
3

2
;𝑥2

)]
, (18)

where 1𝐹1 is the confluent hypergeometric function. The results for the real case
[19] are obtained by making 𝜅 = 0 and expressing Λ = 𝜆, with 𝜈 ∈ ℝ, as

Λ = 𝜆 = 2𝜈
Γ(3−2𝜖

4 )

Γ(1−2𝜖
4 )

. (19)

Note that the extremal states of 𝐻𝑘 and their corresponding energies are
given by

𝜓ℰ1 ∝ 𝑊 (𝑢1, . . . , 𝑢𝑘−1)

𝑊 (𝑢1, . . . , 𝑢𝑘)
, ℰ1 = 𝜖𝑘 = 𝜖1 − (𝑘 − 1), (20)

𝜓ℰ2 ∝ 𝐵+
𝑘 𝑒−𝑥

2/2, ℰ2 =
1

2
, (21)

𝜓ℰ3 ∝ 𝐵+
𝑘 𝑎+𝑢1, ℰ3 = 𝜖1 + 1. (22)

Recall that all the 𝑢𝑗 satisfy equation (17) and 𝑢1 corresponds to the general
solution given in equation (18).

Hence, through this formalism we will obtain a 𝑘th order SUSY partner
potential 𝑉𝑘(𝑥) of the harmonic oscillator and a 𝑃𝐼𝑉 solution 𝑔𝑘(𝑥; 𝜖1), both of
which can be chosen real or complex, in the way

𝑉𝑘(𝑥) =
𝑥2

2
− {ln[𝑊 (𝑢1, . . . , 𝑢𝑘)]}′′, (23)

𝑔𝑘(𝑥; 𝜖1) = −𝑥− {ln[𝜓ℰ1(𝑥)]}′. (24)

For 𝑘 = 1, the first-order SUSY transformation and equation (24) lead to
what is known as one-parameter solutions to 𝑃𝐼𝑉 , due to the restrictions im-
posed by equation (16) onto the parameters 𝑎, 𝑏 of 𝑃𝐼𝑉 which make them both
depend on 𝜖1 [20]. For this reason, this family of solutions cannot be found in any
point of the parameter space (𝑎, 𝑏), but only in the subspace defined by the curve
{(𝑎(𝜖1), 𝑏(𝜖1)) , 𝜖1 ∈ ℝ} consistent with equations (16). Then, by increasing the
order of the transformation to an arbitrary integer 𝑘, we will expand this sub-
space for obtaining 𝑘 different families of one-parameter solutions. This procedure
is analogous to iterated auto-Bäcklund transformations [21]. Note also that by
making cyclic permutations of the indices of the three energies ℰ𝑖 and the corre-
sponding extremal states of equations (20)–(22) (when they have no nodes), we
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expand the solution families to three different sets, defined by

𝑎1 = −𝜖1 + 2𝑘 − 3

2
, 𝑏1 = −2

(
𝜖1 +

1

2

)2

, (25)

𝑎2 = 2𝜖1 − 𝑘, 𝑏2 = −2𝑘2, (26)

𝑎3 = −𝜖1 − 𝑘 − 3

2
, 𝑏3 = −2

(
𝜖1 − 𝑘 +

1

2

)2

, (27)

where we have added an index corresponding to the extremal state given by
equations (20)–(22). Therefore we obtain three different solution families of 𝑃𝐼𝑉

through equations (18)–(24). The first family includes non-singular real and com-
plex solutions, while the second and third ones can give just non-singular strictly
complex solutions, with singularities appearing in the real case.

4. Real solution hierarchies

The solutions 𝑔𝑘(𝑥; 𝜖1) of the Painlevé IV equation can be classified according to
the explicit functions on which they depend [20]. In the real case, see equations (18)
and (24) with the condition given in equation (19), the solutions are expressed in
terms of the confluent hypergeometric function 1𝐹1, although for specific values of
the parameter 𝜖1 they can be reduced to the error function erf(𝑥). Moreover, for
particular parameters 𝜖1 and 𝜈1, they simplify further to rational solutions.

Let us remark that we are interested in non-singular SUSY partner potentials
and the corresponding non-singular solutions of 𝑃𝐼𝑉 . Note that the same set of
real solutions to 𝑃𝐼𝑉 can be obtained through inverse scattering techniques [4]
(compare the solutions of [20] with those of [9]).

4.1. Confluent hypergeometric function hierarchy

In general, the solutions of 𝑃𝐼𝑉 are expressed in terms of two confluent hypergeo-
metric functions. For example, let us write down the explicit formula for 𝑔1(𝑥; 𝜖1) in
terms of the parameters 𝜖1, 𝜈1 (with 𝜖1 < 1/2 and ∣𝜈1∣ < 1 to avoid singularities):

𝑔1(𝑥, 𝜖1)

=
2𝜈1Γ

(
3−2𝜖1

4

) [
3 1𝐹1

(
3−2𝜖1

4 , 3
2 ;𝑥

2
)− (2𝜖1 + 3)𝑥

2
1𝐹1

(
3−2𝜖1

4 , 5
2 ;𝑥

2
)]

3Γ
(

1−2𝜖1
4

)
1𝐹1

(
1−2𝜖1

4 , 1
2 ;𝑥

2
)
+ 6𝜈1𝑥Γ

(
3−2𝜖1

4

)
1𝐹1(

3−2𝜖1
4 , 3

2 ;𝑥
2)

+
3𝑥(2𝜖1 + 1)Γ

(
1−2𝜖1

4

)
1𝐹1

(
1−2𝜖1

4 , 3
2 ;𝑥

2
)

3Γ
(

1−2𝜖1
4

)
1𝐹1

(
1−2𝜖1

4 , 1
2 ;𝑥

2
)
+ 6𝜈1𝑥Γ

(
3−2𝜖1

4

)
1𝐹1(

3−2𝜖1
4 , 3

2 ;𝑥
2)

. (28)

The explicit analytic formulas for higher-order solutions 𝑔𝑘(𝑥; 𝜖1) can be obtained
from expression (24), and they have a similar form as in equation (28).
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4.2. Error function hierarchy

It is interesting to analyze the possibility of reducing the explicit form of the 𝑃𝐼𝑉

solution to the error function. To do that, let us fix the factorization energy in
such a way that any of the two hypergeometric series of equation (18) reduces to
that function. This can be achieved for 𝜖1 = −(2𝑚+1)/2, with 𝑚 ∈ ℕ. By defining
𝜑𝜈1(𝑥) ≡

√
𝜋𝑒𝑥

2

[1 + 𝜈1 erf(𝑥)], we can write down simple expressions for 𝑔𝑘(𝑥, 𝜖1)
for some specific parameters 𝑘 and 𝜖1:

𝑔1(𝑥;−5/2) = 4[𝜈1 + 𝑥𝜑𝜈1(𝑥)]

2𝜈1𝑥+ (1 + 2𝑥2)𝜑𝜈1(𝑥)
, (29)

𝑔2(𝑥;−1/2) = 4𝜈1[𝜈1 + 6𝑥𝜑𝜈1(𝑥)]

𝜑𝜈1(𝑥)[𝜑
2
𝜈1 (𝑥) − 2𝜈1𝑥𝜑𝜈1 (𝑥)− 2𝜈2

1 ]
. (30)

4.3. Rational hierarchy

Now, let us look for the restrictions needed to reduce the explicit form of equa-
tion (24) to non-singular rational solutions. To achieve this, once again the fac-
torization energy 𝜖1 has to be a negative half-integer, but depending on the 𝜖1

taken, just one of the two hypergeometric functions is reduced to a polynomial.
Thus, we need to choose additionally the parameter 𝜈1 = 0 or 𝜈1 → ∞ to keep
the appropriate hypergeometric function. However, 𝑢1 have a zero at 𝑥 = 0 when
𝜈1 → ∞, which will produce one singularity for the corresponding 𝑃𝐼𝑉 solution.
Hence, we should take 𝜈1 = 0 and 𝜖1 = −(4𝑚+ 1)/2 with 𝑚 ∈ ℕ. Departing from
Schrödinger solutions with these 𝜈1, 𝜖1 we get some explicit expressions for the
𝑔𝑘(𝑥; 𝜖1) of the rational hierarchy:

𝑔1(𝑥;−5/2) = 4𝑥

1 + 2𝑥2
, (31)

𝑔2(𝑥;−5/2) = − 4𝑥

1 + 2𝑥2
+

16𝑥3

3 + 4𝑥4
, (32)

𝑔3(𝑥;−5/2) = − 16𝑥3

3 + 4𝑥4
+

12(3𝑥+ 4𝑥3 + 4𝑥5)

9 + 18𝑥2 − 12𝑥4 + 8𝑥6
, (33)

which are plotted in Figure 1.

4.4. First kind modified Bessel function hierarchy

Another interesting case associated to a special function arises for 𝜖1 = −𝑚,𝑚 ∈ ℕ,
which leads to the modified Bessel function of first kind. We write down an example
of one solution belonging to such a hierarchy:

𝑔1(𝑥; 0) =
𝜈1(1 − 𝑥2)𝐼 1

4

(
𝑥2

2

)
+ 𝑥2

[
−𝐼− 1

4

(
𝑥2

2

)
+ 𝐼 3

4

(
𝑥2

2

)
+ 𝜈1𝐼 5

4

(
𝑥2

2

)]
𝑥
[
𝐼− 1

4

(
𝑥2

2

)
+ 𝜈1𝐼 1

4

(
𝑥2

2

)] . (34)
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Figure 1. The 𝑃𝐼𝑉 solutions given by equations (31)–(33).
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Figure 2. Parameter space for real 𝑃𝐼𝑉 solutions. The lines represent
solutions of the confluent hypergeometric function hierarchy, the black
dots of the error function hierarchy, and the white dots of the rational
and error function hierarchies.
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5. Complex solution hierarchies

Let us study the complex solutions subspace, i.e., we use the complex linear com-
bination of equation (18) and the associated 𝑃𝐼𝑉 solution of equation (24). This
allows the use of seeds 𝑢1 with 𝜖1 ≥ 1/2 but without producing singularities. More-
over, the complex case is richer than the real one, since all three extremal states
of equations (20)–(22) lead to non-singular complex 𝑃𝐼𝑉 solution families.

5.1. Confluent hypergeometric hierarchy

As in the real case, in general the solutions of 𝑃𝐼𝑉 are expressed in terms of two
confluent hypergeometric functions. In particular, the explicit formula for the first
family 𝑔1(𝑥; 𝜖1) in terms of the parameters 𝜖1, Λ is given by

𝑔1(𝑥, 𝜖1) =
Λ
[
3 1𝐹1

(
3−2𝜖1

4 , 3
2 ;𝑥

2
)− (2𝜖1 + 3)𝑥

2
1𝐹1

(
3−2𝜖1

4 , 5
2 ;𝑥

2
)]

3 1𝐹1

(
1−2𝜖1

4 , 1
2 , 𝑥

2
)
+ Λ 𝑥 1𝐹1

(
3−2𝜖1

4 , 3
2 , 𝑥

2
)

− 3𝑥(2𝜖1 + 1) 1𝐹1

(
1−2𝜖1

4 , 3
2 ;𝑥

2
)

3 1𝐹1

(
1−2𝜖1

4 , 1
2 , 𝑥

2
)
+ Λ 𝑥 1𝐹1

(
3−2𝜖1

4 , 3
2 , 𝑥

2
) . (35)

Once again, for all families the explicit analytic formulas for the higher-order
solutions 𝑔𝑘(𝑥; 𝜖1) can be obtained through the formula (24).

5.2. Error function hierarchy

If we choose the parameter 𝜖1 = −(2𝑚 + 1)/2 with 𝑚 ∈ ℕ, as in the real case,
we obtain the error function hierarchy. In terms of the auxiliary function 𝜙Λ =

e𝑥
2

[4 + Λ𝜋1/2erf(𝑥)], a solution from the third family is written as:

𝑔1(𝑥;−5/2) = 4Λ + 4𝑥𝜙Λ(𝑥)

2Λ𝑥+ (1 + 2𝑥2)𝜙Λ(𝑥)
. (36)

5.3. Imaginary error function hierarchy

Different to the real case, now we can use 𝜖1 ≥ 1/2, giving place to more solution
families. This is clear by comparing the real and complex parameter spaces of
solutions from Figure 2 and Figure 3. By defining a new auxiliary function 𝜙𝑖Λ =

e−𝑥
2

[4 +Λ𝜋1/2erfi(𝑥)], where erfi(𝑥) is the imaginary error function, we can write
down an explicit solution from the third family

𝑔1(𝑥; 5/2) =
4Λ(1− 𝑥2) + 2𝑥(−3 + 2𝑥2)𝜙𝑖Λ(𝑥)

2Λ𝑥+ (1− 2𝑥2)𝜙𝑖Λ(𝑥)
. (37)

5.4. First kind modified Bessel function hierarchy

Let us write down an example of the solution of this hierarchy for 𝜆 = 0, 𝜅 = 1,
Λ = 𝑖, i.e., 𝑢1 is a purely imaginary linear combination of the two standard real
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Figure 3. Parameter space for complex solution hierarchies. The lines
correspond to the confluent hypergeometric function, the black dots to
the error function or the imaginary error function, and the white dots
to the first kind modified Bessel function.

solutions associated to 𝜖1 = 0:

𝑔1(𝑥; 0) =
𝑥Γ
(

3
4

) [
𝐼 3

4

(
𝑥2

2

)
− 𝐼− 1

4

(
𝑥2

2

)]
+ 2𝑖𝑥Γ

(
5
4

) [
𝐼− 3

4

(
𝑥2

2

)
− 𝐼 1

4

(
𝑥2

2

)]
Γ
(

3
4

)
𝐼− 1

4

(
𝑥2

2

)
+ 2𝑖Γ

(
5
4

)
𝐼 1

4

(
𝑥2

2

) .

(38)
Its real and imaginary parts are plotted in Figure 4.
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Figure 4. Real (solid curve) and imaginary (dashed curve) parts of a
complex solution to 𝑃𝐼𝑉 . The plot corresponds to 𝑘 = 1, 𝜖1 = 0, 𝜆 = 0,
and 𝜅 = 1.



208 D. Bermúdez and D.J. Fernández C.

6. Conclusions

In this paper we have discussed a general method to obtain real and complex so-
lutions of Painlevé IV equation by using SUSY QM, which is closely related to the
factorization method. Through this scheme we have shown that real factorization
energies can be used to obtain 𝑃𝐼𝑉 solutions with real parameters 𝑎, 𝑏. We have
shown the existence of more solutions in the complex case than in the real one by
studying in detail the parameter space (𝑎, 𝑏).

We have classified the solutions into hierarchies arising both in the real and in
the complex cases. Both classifications became very similar, except for a hierarchy
which cannot be obtained in the real case. A further study of the Painlevé IV
equation with complex parameters is currently under development.
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Arno Bohm and Hai Viet Bui

Abstract. Dynamical differential equations, like the Schrödinger equation for
the states, or the Heisenberg equation for the observables, need to be solved
under boundary conditions. The original boundary condition of von Neu-
mann, the Hilbert space axiom, required that the allowed wave functions
are Lebesgue square integrable. This leads by a mathematical theorem of
Stone-von Neumann to the unitary group evolution meaning the time 𝑡 ex-
tends over −∞ < 𝑡 < +∞. Physicists do not use Lebesgue integrals but
followed a different path using almost exclusively the Dirac formalism and
well-behaved (Schwartz) functions. This led the mathematicians to Schwartz-
Rigged Hilbert spaces (Gelfand triplets), which are the mathematical core of
Dirac’s bra-ket formalism. This is insufficient for a theory that includes reso-
nance and decay phenomena, which requires analytic continuation in energy 𝐸
in order to accommodate exponentially decaying Gamow kets, Breit-Wigner
(Lorentzian) resonances, and Lippmann-Schwinger kets. This leads to a pair
of Rigged Hilbert Spaces of smooth Hardy functions, one representing the pre-
pared states of scattering experiments (preparation apparatus) and the other
representing detected observables (registration apparatus). A mathematical
consequence of the Hardy space axiom is that the time evolution is asymmet-
ric given by the semi-group, i.e., 𝑡0 ≤ 𝑡 < +∞, with a finite 𝑡0. What would
the meaning of that 𝑡0 be?

Mathematics Subject Classification (2010). 81-06; 81P16; 81R99; 34L10.

Keywords. Time asymmetry, unitary group, semigroup, rigged Hilbert space,
Hardy space.

1. Introduction

The fundamental idea of quantum physics is the division of an experiment into
the preparation of a state, represented by a self-adjoint state operator 𝜌 or 𝑊 (or
by a vector 𝜙 if 𝑊 =∣𝜙⟩⟨𝜙 ∣), and the registration of an observable, represented by
self-adjoint operators 𝐴, 𝐵, . . . , (or in a special case represented by a vector 𝜓 if
the observable is given by 𝐴 =∣𝜓⟩⟨𝜓 ∣).
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The experimental quantities are the Born probabilities 𝒫𝑊 (𝐴(𝑡)) to measure
(or “register”) the observable 𝐴 in the state𝑊 . They are measured in experiments

as ratios of large numbers 𝑁(𝑡)
𝑁 of detector counts and calculated in quantum theory

as the Born Probabilities

𝒫𝑊 (𝐴(𝑡)) = Tr(𝑊0 𝐴(𝑡)) = Tr(𝑊 (𝑡)𝐴) (1)

In the special case of

𝐴(𝑡) = ∣𝜓(𝑡)⟩⟨𝜓(𝑡) ∣ 𝑊 = ∣𝜙⟩⟨𝜙 ∣ (Heisenberg picture)

or in the case of

𝐴 = ∣𝜓⟩⟨𝜓 ∣ 𝑊 = ∣𝜙(𝑡)⟩⟨𝜙(𝑡) ∣ (Schrödinger picture) ,

these probabilities are given by

𝒫𝜙(∣𝜓(𝑡)⟩) =∣⟨𝜓 ∣𝜙(𝑡)⟩∣2=∣⟨𝜓(𝑡) ∣𝜙⟩∣2 . (2)

The comparison between 𝒫𝑊 (𝐴(𝑡)) which is calculated in theory, and
𝑁(𝑡)
𝑁 ,

which are observed in the experiment by detector counts, tests the agreement
between theory and experiment:

𝒫𝑊 (𝐴(𝑡)) ≃ 𝑁(𝑡)

𝑁
. (3)

The probabilities of the observable 𝐴(𝑡) in a state 𝑊 are thus compared with the

experimental value 𝑁(𝑡)
𝑁 .1

In a scattering experiment, for example, the preparation consists of the ac-
celeration and the collimation of the projectile, which interacts with the target,
perhaps forming a resonance. The registration consists of the detection of scat-
tered particles, e.g., the decay products of the resonance which, e.g., decays into
different channels characterized by 𝐴. To distinguish what is prepared in the prepa-
ration process from what is detected in the registration process, one uses different
words: state for what is prepared and observable for what is detected or registered
(counted by a detector). Despite this experimental distinction between prepared
state and detected observable, conventional quantum mechanics does usually not
distinguish in the mathematical description between a state and an observable. For
instance, a pure state is represented by the projection operator ∣𝜙⟩⟨𝜙 ∣ with 𝜙 ∈ ℋ,
the Hilbert space. But any 𝜙 ∈ ℋ could as well represent an observable ∣𝜙⟩⟨𝜙 ∣.

Thus under the conventional, orthodox axioms of quantum theory, any vector
𝜙 ∈ ℋ can represent a state, but it could as well represent an observable ∣𝜙⟩⟨𝜙 ∣.
And any ∣𝜙⟩⟨𝜙 ∣ or 𝜙 can represent an observable but it could as well represent a
state. In contrast to this:

Experimentally, an observable is defined by a registration apparatus (e.g., a
detector or counter) and a state is defined by a preparation apparatus (e.g., ac-
celerator). Thus, observables and states are different physical concepts. Therefore,

1The sign ≃ indicates that this comparison between the continuous function of 𝑡 calculated in

the theory on the l.h.s of (3) and the rational numbers on the r.h.s of (3) of counting rate can
in principle only be confirmed to a certain level of accuracy.
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they should also be distinguished in their mathematical description. For instance,
would it not be better if the set of observables and the set of states came from dif-
ferent subspace of the Hilbert space? It could even be the case that these different
subspaces are “dense” in the same Hilbert space.2

2. The mathematics of time symmetric quantum mechanics
and its conflict with causality

2.1. The Hilbert space boundary condition of the dynamical equations

Time evolution in quantum mechanics is described in various ways, called pictures.
In the Schrödinger picture, the time evolution is described as the evolution of the
state vector 𝜙(𝑡) (or of the state operator𝑊 (𝑡) also called density operator with the
property𝑊 (𝑡) =𝑊 †(𝑡), Tr 𝑊 (𝑡) = 1). The dynamical equation is the Schrödinger
equation for the state vector 𝜙(𝑡)

𝑖ℏ
∂

∂𝑡
𝜙(𝑡) = 𝐻𝜙(𝑡) . (4a)

The Hamiltonian 𝐻 is a self-adjoint or essentially self-adjoint operator; it
represents the energy operator or Hamiltonian of the quantum mechanical system.

The dynamical equation for the statistical operator𝑊 (𝑡) is the von-Neumann
equation

𝑖ℏ
∂

∂𝑡
𝑊 (𝑡) = [𝐻,𝑊 (𝑡)] , (4b)

which leads to (4a) in case that 𝑊 (𝑡) =∣𝜙(𝑡)⟩⟨𝜙(𝑡) ∣ is a pure state. In the Heisen-
berg picture, the dynamics is described by the Heisenberg equation for the observ-
ables represented by a hermitian operator Λ(𝑡) ( Λ† = Λ)

𝑖ℏ
∂

∂𝑡
Λ(𝑡) = −[𝐻,Λ(𝑡)] . (5a)

If the observable is the special “property” Λ =∣𝜓⟩⟨𝜓 ∣, the time evolution of the
Heisenberg equation for this “observable vector” 𝜓(𝑡) is

𝑖ℏ
∂

∂𝑡
𝜓(𝑡) = −𝐻𝜓(𝑡) . (5b)

To solve these differential equations (the Heisenberg or Schrödinger equa-
tions3), one needs to impose “boundary conditions”. The boundary conditions
specify the set of vectors {𝜙(𝑡)} or {𝜓(𝑡)} that are solutions of the differential equa-
tion (4a) or (5b). The original boundary condition introduced by von-Neumann is
the “Hilbert space boundary condition”:

2This will turn out to be the case for the subspace of detected out-observables Φ+ and the
subspace of prepared in-states Φ−, which we shall introduce below.
3Usually one calls (4a) the Schrödinger equation and (5a) the Heisenberg equation; (4a) is the
special case 𝑊 (𝑡) =∣𝜙(𝑡)⟩⟨𝜙(𝑡) ∣ of (4b) and (5b) is the special case 𝐴(𝑡) =∣𝜓(𝑡)⟩⟨𝜓(𝑡) ∣ of (5a).
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Find

Set of states: with 𝜙 ∈ Hilbert spaceℋ ,
(all possible solutions of (4a))

and
(6a)

Set of observables: with 𝜓 ∈ Hilbert spaceℋ .
(all possible solutions of (5b))

(6b)

It follows from a theorem of Stone and von Neumann [1] that the solutions of the
Schrödinger equation (4a) under this boundary condition (6a) are:

𝜙(𝑡) = 𝑈 †(𝑡)𝜙 = e−𝑖𝐻𝑡/ℏ𝜙 −∞ < 𝑡 < +∞ (7a)

where 𝜙 = 𝜙(𝑡 = 0) .4

Similarly by the same theorem follows that all solutions of Heisenberg equa-
tion (5b) for observable vector 𝜓 under the condition (6b) are given by

𝜓(𝑡) = 𝑈(𝑡)𝜓 = e𝑖𝐻𝑡/ℏ𝜓, with −∞ < 𝑡 < +∞. (7b)

where 𝜓 = 𝜓(𝑡 = 0) .
Equations (7) describe the unitary group evolution given by the unitary operator
𝑈 †(𝑡) = e−𝑖𝐻𝑡/ℏ, or by 𝑈(𝑡) = e𝑖𝐻𝑡/ℏ. These operators form a one-parameter group
of unitary operators: 𝑈 †(𝑡) = 𝑈(−𝑡) = 𝑈−1(𝑡).

The solutions of (5a) and (4b) are also given by the unitary group:

Λ(𝑡) = e𝑖𝐻𝑡/ℏΛ0 e
−𝑖𝐻𝑡/ℏ , −∞ < 𝑡 < +∞ (8a)

and

𝑊 (𝑡) = e−𝑖𝐻𝑡/ℏ𝑊0 e
𝑖𝐻𝑡/ℏ , −∞ < 𝑡 < +∞ . (8b)

Here Λ0 and 𝑊0 are the observable Λ and density operator 𝑊 at a time 𝑡0 (any
finite time, e.g., 𝑡0 = 0 as chosen in (8)).

The Hilbert space ℋ is a linear scalar product space in which the scalar
products are defined by Lebesgue integrals

(𝜓∣𝜙) =
∫ ∞

0
Lebesgue

𝑑𝐸 𝜓(𝐸) 𝜙(𝐸) (9a)

Here we have chosen the energy wave functions 𝜓(𝐸) and 𝜙(𝐸), but the same kind
of integration is assumed also for the position wave functions 𝜙(𝑥), the momentum
wave functions 𝜙(𝑝) and the function of any continuous variable.

The Hilbert space ℋ is a complete space, this means all Cauchy sequences in
ℋ have a limit point in this spaceℋ. The convergence is defined with respect to the
norm defined in (10) below. However, in order that ℋ is complete, the integration
in the norm

∣∣𝜙∣∣2 = (𝜙∣𝜙) =
∫ ∞

0
Lebesgue

𝑑𝐸 ∣𝜙(𝐸)∣2 (9b)

4Instead of 𝑡 = 0 one could choose any finite 𝑡 = 𝑡0 and 𝜙(𝑡) = e−𝑖𝐻𝑡/ℏ𝜙(𝑡0) .
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and in the scalar product (9a) need to be defined in terms of Lebesgue integrals,
not Riemann integrals. Since most physicists do not work with Lebesgue integrals;
the complete Hilbert space is hardly ever used by physicists.

2.2. Dirac formalism and the Schwartz space boundary conditions

The Hilbert space ℋ is not the most suitable space to use for the theory of quan-
tum physics for the following reasons. Physicists use linear scalar product spaces in
which the scalar product is defined by Riemann integrals (𝜓, 𝜙) =

∫∞
0 Riemann

𝑑𝐸⟨𝜓 ∣
𝐸⟩⟨𝐸 ∣𝜙⟩. These spaces are not complete.5 A scalar product space (or linear topo-
logical space) is complete if every Cauchy sequence has a limiting element in the
space. This is not the case if norm and scalar product are defined by Riemann
integrals and convergence is defined with respect to the norm; i.e.,

𝜙𝑛 → 𝜙 iff ∣∣𝜙𝑛 − 𝜙∣∣→ 0 for 𝑛 → ∞
where

∣∣𝜙∣∣2= (𝜙, 𝜙) = ∫
Riemann

𝑑𝐸 𝜙(𝐸) 𝜙(𝐸) .
(10)

In order to keep using Riemann integrals for the scalar product (⋅ , ⋅) one cannot
define the meaning of convergence by one norm or scalar product, it has to be
defined in a different way.

Following Dirac (1925), physicists use Dirac kets which are not defined in
Hilbert space. Dirac kets ∣𝐸⟩ have shown the way towards spaces which are com-
plete spaces and in which the scalar product can be defined by Riemann integrals.

Dirac [2] used the kets ∣𝐸⟩ to write 𝜙(𝐸) as ⟨𝐸 ∣𝜙⟩ and 𝜓(𝐸) as ⟨𝜓 ∣𝐸⟩ = ⟨𝐸 ∣𝜓⟩
and treated the integral as Riemann integral.

It took about 20 years to give a mathematical meaning to the Dirac kets
∣𝐸⟩. By 1950 L. Schwartz had created the theory of distributions [3] and Dirac
kets ∣𝐸⟩ were defined as continuous antilinear functionals on the Schwartz space
𝐹𝐸(𝜙) = ⟨𝐸 ∣𝜙⟩. In the Schwartz space, usually denoted by Φ, the convergence of
vectors is defined not by one scalar product as in (10), but by a countable number
of scalar products [4]. One can justify most of Dirac’s formalism of kets and bras
[2], using the mathematics of locally convex linear topological spaces [3, 5, 4, 6]
and their continuous functionals.

According to the Dirac formalism, an observable 𝐴 (e.g., 𝐴 = 𝐻) has a
system of eigenvectors

𝐻 ∣ 𝐸𝑛) = 𝐸𝑛 ∣ 𝐸𝑛) for discrete eigenvalue 𝐸𝑛 (11a)

𝐻 ∣𝐸⟩ = 𝐸 ∣𝐸⟩ for continuous eigenvalue 𝐸 , (11b)

and every state vector 𝜙, fulfilling (4a) or vector 𝜓 fulfilling (5b) can be expanded
with respect to the energy kets (11) and/or with respect to eigenkets of other
observables 𝐴. The Dirac basis vector expansion of state vector 𝜙 is

𝜙 =
∑

𝑛=integer

∣ 𝐸𝑛)(𝐸𝑛 ∣𝜙⟩ +
∫

𝑑𝐸 ∣𝐸⟩⟨𝐸 ∣𝜙⟩ , (12a)

5With respect to the norm-convergence of the Hilbert space defined with (9a).
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or, if there are no discrete eigenvectors ∣ 𝐸𝑛) representing bound states – the case
discussed in these notes – the basis vector expansion is

𝜙 =

∫ ∞
0

𝑑𝐸 ∣𝐸⟩⟨𝐸 ∣𝜙⟩ . (12b)

The eigenvectors ∣ 𝐸𝑛) for discrete eigenvalues 𝐸𝑛 fulfill the orthonormality con-
dition

(∣ 𝐸𝑛), ∣ 𝐸𝑚)) ≡ (𝐸𝑛 ∣ 𝐸𝑚) = 𝛿𝑛𝑚. (13)

The eigenvectors ∣𝐸⟩ for the continuous eigenvalue expansion (12b) were postulated
to fulfill the new orthogonality condition called “Dirac orthogonality condition” [2]

⟨𝐸 ∣𝐸′⟩ = 𝛿(𝐸 − 𝐸′) , (14)

where 𝛿(𝐸 − 𝐸′) is defined as the mathematical entity which fulfills the identity∫ +∞

−∞
𝑑𝐸′⟨𝐸 ∣𝐸′⟩⟨𝐸′ ∣𝜙⟩ = ⟨𝐸 ∣𝜙⟩ (15a)∫ +∞

−∞
𝑑𝐸′𝛿(𝐸 − 𝐸′)𝜙(𝐸′) = 𝜙(𝐸) (15b)

for the set {𝜙(𝐸)} of “well-behaved” function 𝜙(𝐸) = ⟨𝐸 ∣𝜙⟩.
Well-behaved means that 𝜙(𝐸) is infinitely differentiable and rapidly de-

creasing for increasing ∣𝐸 ∣. This set of functions is the Schwartz function space,
{𝜙(𝐸)} ≡ 𝑆, of rapidly decreasing and infinitely differentiable functions [3, 5].

This Schwartz function space 𝑆 is a dense subspace of the space 𝐿2 of Lebesgue
square integrable function: 𝑆 ⊂ 𝐿2.6 This means that all functions 𝜙(𝐸) ∈ 𝑆 are
members of the subset of some classes of 𝐿2-functions, i.e., 𝜙(𝐸) ∈ 𝐿2.7 But in
addition to these classes with 𝜙(𝐸) ∈ 𝑆, there are sets of functions {ℎ(𝐸)} ∈ 𝐿2

which contain no Schwartz space function. Thus 𝑆 ⊂ 𝐿2. Since according to the
Fréchet-Riesz theorem: 𝐿2 = (𝐿2)×, (where (𝐿2)× denotes the space of antilinear
Hilbert space- continuous functionals on 𝐿2). It follows that one has the triplet of
function spaces [5, 4, 6]:

{𝜙(𝐸)} = 𝑆 ⊂ 𝐿2 = (𝐿2)× ⊂ 𝑆× . (16)

The Dirac 𝛿-“function” 𝛿(𝐸 − 𝐸′) ∈ 𝑆× is not a function, like a well-behaved
𝜙(𝐸) ∈ 𝑆, but a “distribution” defined by its property (15) for all 𝜙(𝐸) ∈ 𝑆
(Schwartz space).

Here (𝐿2)× and 𝑆× denote the linear spaces of continuous antilinear func-
tionals on 𝐿2 and on 𝑆, respectively. The triplet (16) is the Rigged Hilbert Space
(RHS) of Schwartz space functions. It gives a mathematical meaning to the Dirac
kets ∣𝐸⟩ ∈ Φ×, as continuous, antilinear functionals on Φ.
6This means starting with 𝑆 (smooth, rapidly decreasing functions) and adjoining to 𝑆 all limit
points of Cauchy sequences with respect to the Hilbert space convergence, one obtains 𝐿2.
7The element of 𝐿2 is not a function but a class of Lebesgue square integrable functions. Some
of these classes contain a continuous rapidly decreasing function 𝜙(𝐸) which is an element of 𝑆.



The Marvelous Consequences of Hardy Spaces in Quantum Physics 217

The abstract Schwartz space Φ is the set of vectors {𝜙} of (12b) for which
the ⟨𝐸 ∣𝜙⟩ fulfills ⟨𝐸 ∣𝜙⟩ ∈ 𝑆; it is according to (16) the dense subspace of the
abstract Hilbert space ℋ: {𝜙} ≡ Φ ⊂ ℋ. The space Φ has a stronger definition of
convergence (also called stronger topology 𝜏Φ) than the Hilbert space convergence

8

𝜏ℋ; this means [4]:

from 𝜙𝜈
𝜏Φ−→ 𝜙 with respect to 𝜏Φ follows 𝜙𝜈

𝜏ℋ−−→ 𝜙 with respect
to 𝜏ℋ, but not vice versa.

(17)

Therefore Φ ⊂ ℋ and consequently for the continuous functionals ℋ× ⊂ Φ×.
Therefore, in correspondence to the triplet of the Schwartz space functions

(16), one obtains the triplet of the abstract Schwartz space, called the Rigged
Hilbert Space (RHS) or Gelfand Triplet:9

{𝜙} = Φ ⊂ ℋ = ℋ× ⊂ Φ× . (18)

The Schwartz space Φ is a nuclear space; this means for the Schwartz space, the
Dirac basis vector expansion (12b) hold as the nuclear spectral theorem [3, 5, 4].
This theorem states that every vector 𝜙 ∈ Φ can be expanded with respect to a
complete set of generalized eigenvectors ∣𝐸⟩ ∈ Φ× in a unique way

𝜙 =

∫
𝑑𝐸 ∣𝐸⟩⟨𝐸 ∣𝜙⟩, (19a)

and 𝜙 = 0 if and only if 𝜙(𝐸) = ⟨𝐸 ∣𝜙⟩ = 0 for all 𝐸 . (19b)

This justifies Dirac’s expansion (12):
There exists a complete set ∣𝐸⟩ of eigenkets ∣𝐸⟩ ∈ Φ× which are generalized
eigenvectors of the Hamiltonian 𝐻 with continuous eigenvalues 𝐸 ∈ ℝ; i.e.,

𝐻× ∣𝐸⟩ = 𝐸 ∣𝐸⟩
∣𝐸⟩ ∈ Φ× precisely

⟨𝐻𝜓 ∣𝐸⟩ ≡ ⟨𝜓 ∣ 𝐻× ∣𝐸⟩ = 𝐸⟨𝜓 ∣𝐸⟩
for all 𝜓 ∈ Φ , (20)

such that every 𝜙 ∈ Φ can be expanded with respect to the ∣𝐸⟩ as in (19).
The operator 𝐻 is “essentially self-adjoint” and 𝐻× ⊃ 𝐻† = 𝐻 ⊃ 𝐻 is the

unique extension of 𝐻† to the conjugate space Φ× (the space of all antilinear con-
tinuous functionals of the Schwartz space Φ). Therewith Dirac eigenket expansion
(12b) has been given a mathematical meaning (19).

The abstract Schwartz space Φ is a linear topological space with the conver-
gence defined by a countable number of norms ∣∣𝜙∣∣𝑝. 𝑝 = 1 , 2 , . . . . E.g., for the
oscillator, these norms are given by:

∣∣𝜙∣∣𝑝= (𝜙∣(𝑁 + 1)𝑝∣𝜙) where 𝑁 = 1
ℏ 𝜔 (𝐻 − 1/2)

and
𝜙𝜈 → 𝜙 for 𝜈 → ∞ means ∣∣𝜙𝜈 − 𝜙∣∣𝑝→ 0 for 𝜈 → 0 for all 𝑝 .

(21)

8The convergence in Φ is defined by a countable number of norms, e.g., (21) below.
9The triplet (16) of function spaces is a “realization” of the RHS (15b) by function spaces in the

same way as the coordinates 𝑥𝑖 (𝑖 = 1, 2, 3) are “realizations” of the vector −→𝑥 =
∑3

𝑖=1
−→𝑒𝑖 𝑥𝑖 in

a 3-dimension space.
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These countable norms are chosen such that the algebra of observables called
𝒜 (in the case (21) for the oscillator, the algebra is generated by the momentum
𝑃 , position 𝑄, and the energy operator 𝐻) is represented by continuous operators
in all of the space Φ.[4]

But the algebra of observables of a quantum physical system can usually not
be represented by an algebra of continuous operators in ℋ (e.g., momentum 𝑃 and
position 𝑄 of the oscillator are not continuous operators in Hilbert space ℋ).

Using the Schwartz space (18) and Dirac’s bra-ket formalism, the set of
vector-states {𝜙} fulfilling (4a) and the set of vector-observables {𝜓} fulfilling
(5b) are both described by the same Schwartz space Φ which is a dense subspace
of the Hilbert space ℋ (Φ differs from ℋ by limit points of Hilbert space Cauchy
sequences).

One can now ask for all solutions 𝜙(𝑡) of the Schrödinger equation (4a) under
the Schwartz space boundary condition. Similarly, one can ask for all solutions 𝜓(𝑡)
of the Heisenberg equation (5b) under the Schwartz space boundary condition:

Set of state vectors {𝜙} = Φ = Schwartz space ⊂ ℋ ⊂ Φ× (22a)

Set of observable vectors {𝜓} = Φ = Schwartz space ⊂ ℋ ⊂ Φ× (22b)

Requiring this Schwartz space boundary conditions (22) for the dynamical
equation (4a) and (5b), means only the vectors 𝜙 ∈ Φ (not all vector ofℋ) represent
physical states prepared, (e.g., by a preparation device or preparation apparatus
in an experimental setup) and the same set of vectors 𝜓 ∈ Φ represent also the
observables detected by the registration apparatus, e.g., a detector.

Using equations (22) as an axiom for the solutions for the Schrödinger equa-
tion (4a) and for the Heisenberg equation (5b) one obtains by a mathematical
theorem (Proposition 𝐼𝐼 page 82 of [6]) (like the Stone-von Neumann result (7),)
that the time evolution is given by a group, (the unitary group in (7) restricted
to Φ). This means for the solution of the Schrödinger equation (4a) under the
boundary conditions (22a) one obtains

𝜙(𝑡) = 𝑈 †Φ(𝑡) 𝜙 = e
−𝑖𝐻𝑡/ℏ𝜙 −∞ < 𝑡 < +∞ (23a)

And for the solutions for the Heisenberg equation (5b) under the boundary con-
ditions (22b) one obtains

𝜓(𝑡) = 𝑈Φ(𝑡) 𝜓 = e
𝑖𝐻𝑡/ℏ𝜓, with −∞ < 𝑡 < +∞ (23b)

In (23), 𝑈 †Φ(𝑡) and 𝑈Φ(𝑡) are the restriction of the unitary operator 𝑈
†(𝑡) in (7a)

and of 𝑈(𝑡) in (7b) to the dense Schwartz-subspace Φ of the Hilbert space ℋ:
𝑈 †Φ(𝑡) = 𝑈 †ℋ(𝑡)∣Φ [6].

For the time evolution of the Dirac kets ∣𝐸⟩ (Schwartz space functional) one
has then

∣𝐸 ; 𝑡⟩ = e−𝑖𝐻×𝑡/ℏ ∣𝐸⟩ = e−𝑖𝐸𝑡/ℏ ∣𝐸⟩, with −∞ < 𝑡 < +∞ . (24)
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The Born probabilities (1), 𝒫𝑊 (Λ(𝑡)), to measure an observable Λ(𝑡) in a state 𝑊
under the Schwartz space axiom are thus again predicted for all 𝑡: −∞ < 𝑡 < +∞:

𝒫𝑊 (Λ(𝑡)) = Tr(𝑊 Λ(𝑡)) = Tr(𝑊 (𝑡) Λ) for all −∞ < 𝑡 < +∞ . (25)

For the case that 𝑊 is a pure state 𝑊 =∣𝜙⟩⟨𝜙 ∣ and the observable is given by
Λ =∣𝜓⟩⟨𝜓 ∣, this probability is written as

𝒫𝜙(∣𝜓⟩⟨𝜓 ∣) = Tr(∣𝜓⟩⟨𝜓 ∣𝜙(𝑡)⟩⟨𝜙(𝑡) ∣)
=∣⟨𝜓 ∣𝜙(𝑡)⟩∣2=∣⟨𝜓(𝑡) ∣𝜙⟩∣2 for all −∞ < 𝑡 < +∞ .

(26)

This means that the theory based on the Hilbert space boundary condition (6) as
well as the theory based on the Schwartz space boundary condition (22) predict
a probability ∣⟨𝜓 ∣𝜙(𝑡)⟩∣2 to detect the observable Λ =∣𝜓⟩⟨𝜓 ∣ in the state 𝜙(𝑡), for
arbitrary negative times, i.e., even for time before the state 𝜙(𝑡) had been prepared
at the time 𝑡 = 𝑡0 = 0.

It is this kind of theorems, particularly the Stone-von Neumann theorem for
the Hilbert space, which made us think that in quantum physics of scattering and
decay, the time needs to extend from −∞ < 𝑡 < +∞.
2.3. A causality condition for quantum mechanics

In contrast to the mathematical prediction (26) for the Hilbert space boundary
condition (6) as well as for the Schwartz space boundary condition (22), in the
laboratory, the situation is quite different, because of the causality principle. This
empirical principle states:

A state 𝜙 needs to be prepared first at a time 𝑡0 before an ob-
servable ∣𝜓(𝑡)⟩⟨𝜓(𝑡) ∣ can be measured in that state 𝜙 with the
probability 𝒫𝜙(∣𝜓(𝑡)⟩⟨𝜓(𝑡) ∣) .

(27)

The principle (27) means: only for times 𝑡 > 𝑡0, where 𝑡0 is the time at which the
state 𝜙 is prepared, can one detect the observable ∣𝜓(𝑡)⟩⟨𝜓(𝑡) ∣ or any observables
𝐴(𝑡) in the state 𝜙, but not at any arbitrary time 𝑡 < 𝑡0 in the distant past.
Therefore, the time symmetric group evolution (7) as well as (23) – predicted
by mathematics from the boundary condition (6) and also from the boundary
condition (22) – is in contradiction with the causality principle (27). Causality
(27) means that an observable cannot be detected in a state before this state exits,
i.e., before it has been prepared (by a preparation apparatus or, may be, by a big
bang): Born probabilities 𝒫𝑊 (Λ(𝑡)) to measure observables Λ(𝑡) in states𝑊 make
sense experimentally only for 𝑡 ≥ 𝑡0 = preparation time of the state 𝑊 .

Therefore, a new boundary condition is needed in place of (22), or (6), which
predicts the Born probabilities

𝒫𝜙(∣𝜓⟩⟨𝜓 ∣) = Tr(∣𝜓⟩⟨𝜓 ∣𝜙(𝑡)⟩⟨𝜙(𝑡) ∣)
=∣⟨𝜓 ∣𝜙(𝑡)⟩∣2=∣⟨𝜓(𝑡) ∣𝜙⟩∣2 only for 𝑡 > 𝑡0 .

(28)

Here 𝑡0 is a finite time, namely the time at which the state 𝜙(𝑡) had been prepared
and after which an observable ∣𝜓⟩⟨𝜓 ∣ can be measured in this state.
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Summarizing: In order to have a theory that agrees with causality as formu-
lated by (27), one needs to find boundary conditions for the Schrödinger or for
Heisenberg equation which predict the solutions of the dynamical equations (4a)
or (5b) only for 𝑡 ≥ 𝑡0, where 𝑡0 is finite. Thus, one needs to solve the dynamical
differential equation10 under new boundary conditions which are based on the ex-
istence of this finite time 𝑡0. The results will be time asymmetric solutions of the
dynamical equations, which distinguish the finite time 𝑡0.

The mathematics of this problem will be presented in the following section;
it is based on the Hardy space boundary condition for the dynamical equation and
constitutes no problem. The interpretation and the observation of this finite 𝑡0 is
an other matter and may require some introductory remarks:

As is usually the situation in quantum physics, where one does not deal with
one quantum system but with an ensemble, this beginning of time 𝑡0 is realized
as an ensemble of times. Experiments are made on an ensemble of micro-system,

and an ensemble of micro-systems is usually prepared at an ensemble of times 𝑡
(𝑖)
0 ,

on the clock at the laboratory walls (or even in different laboratories at different

times). This ensemble of times 𝑡
(𝑖)
0 is the preparation time 𝑡0 of the state described

by the vector 𝜙(𝑡) = 𝑒−𝑖(𝑡−𝑡0)𝐻/ℏ 𝜙(𝑡0); 𝑡0 represents the ensemble of quantum

systems in a pure state 𝜙 prepared at an ensemble of time 𝑡
(𝑖)
0 . Therefore, the time

𝑡0 is also likely to be detected as an ensemble of times, and one should look for

experiments where one could observe these times {𝑡(𝑖)0 }. Furthermore, ensembles of
a micro-systems of the same quantum system are often prepared at different times

and often in different labs at different places. Still the {𝑡(𝑖)0 } are the beginnings of
time for the ensemble of identical micro-system.

In conventional scattering theory, e.g., [7], one distinguishes between an in-
state and an out-“state” vector. The in-state is prepared as an accelerator beam
but the out-state is detected or registered by a registration apparatus. This means
the so-called “out-state” is really a detected observable 𝜓(𝑡) and therefore should
obey the Heisenberg equation (5b) and not the Schrödinger equation (5a) (as would
be the standard interpretation for an in-state in conventional scattering theory).
The accelerator prepares a state 𝜙(𝑡) while the registration apparatus (detector)
registers the observable 𝜓(𝑡) by counts of a detector, thus 𝐴(𝑡) =∣𝜓(𝑡)⟩⟨𝜓(𝑡) ∣ obeys
the Heisenberg equation (5a) and 𝜓(𝑡) obeys the equation (5b).

From the above re-interpretation of the time evolution for experiments on an
ensemble of quantum particles, we get the idea to use two different mathematical
spaces: one for the space of prepared in-states 𝜙 or 𝑊 , the other mathematical
space for the space of detected out-observables 𝜓 or 𝐴. This suggests that the
mathematical theory for the scattering process needs to use two different mathe-
matical spaces instead of the one Schwartz space Φ of (22), or the Hilbert space ℋ
of (6). In any case, the mathematical Hilbert space ℋ is never used by physicists,
except to justify the unitary group evolution (7a) or/and (7b) by the Stone-von
Neumann theorem [1].

10In the Schrödinger picture or in the Heisenberg picture.
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3. In-states, out-observables, and the Lippmann-Schwinger kets
suggest the Hardy space axiom

In standard scattering theory [7] one speaks of in-states 𝜙in “controlled” in the
remote past and of out-states 𝜓out “controlled” in the distance future. Both, the in-
state 𝜙in, as well as the out-states 𝜓out are thought to obey the Schrödinger equa-
tion (4a) (under the Hilbert space boundary condition (6a)) for states. However,
the controlled, so-called out-state vectors 𝜓 are controlled by a registration appara-
tus (e.g., a detector). This means that the “controlled out vectors” represent really
observables registered by the detector. Therefore, the so-called “out-state” is really
an observable which should be governed by the Heisenberg equation (5b) with the
solutions given by (7b) or (23b), not governed by the Schrödinger equation (7a).

Under the standard boundary condition (6b) and (22b), the solutions of the
Heisenberg equation for the observables are predicted for all time 𝑡:−∞ < 𝑡 < +∞.
This is in conflict with the causality principle (28): According to (28) the observable
∣𝜓⟩⟨𝜓 ∣ in the state 𝜙 can be predicted only for times 𝑡 > 𝑡0 where 𝑡0 is the time at
which 𝜙 has been prepared. To avoid violation of the causality principle, we need
to find boundary conditions for the solutions of the dynamical equations (4) and
(5), which will be different from the Hilbert space boundary condition (6) and also
different from the Schwartz space boundary condition (22).

These new boundary conditions need to use different representation spaces
than the Hilbert space ℋ or the Schwartz space Φ. These new spaces we call (in
anticipation of our conclusion):
Φ− for the solutions of the Schrödinger equation of the states {𝜙+}.
Φ+ for the solutions of the Heisenberg equation of the observables {𝜓−}.
This means, one needs to modify the Hilbert space axiom (6) of von Neumann.

Similarly, the Schwartz space axiom of the Dirac formalism, which is summarized
by the mathematical statement (22), has to be modified, if (26) is to be avoided and
if the causality principle (28) is to be obeyed. Thus we replace the axiom (22) (or
(6)) for the dynamical equations by a new axiom that distinguishes mathematically
between:

The prepared states which are represented by the set of prepared in-state
vectors {𝜙+}, obeying the Schrödinger equation (4a), and the detected observables
which are represented by the set of registered out-observables {𝜓−}, obeying the
Heisenberg equations (5b).

The + and − labels have been chosen to refer to the in-state vector {𝜙+} and
to the out-vectors {𝜓−}. This is the standard notation of scattering theory for the
in-vectors 𝜙+ referring to the prepared states, and for the out-vector 𝜓− or the
operators ∣𝜓−⟩⟨𝜓− ∣ referring to the detected observables11.

11But the out-vectors (or so-called out-“states”) can be many things and what one detects
as the Born probability ∣ (𝜓−, 𝜙+) ∣2 depends upon the choice of the particular registration
apparatus (detector) which is built such that a particular property ∣𝜓−⟩⟨𝜓− ∣ (or by a more

general observable represented by 𝐴− =
∑

𝑖 𝜆𝑖 ∣𝜓−𝑖 ⟩⟨𝜓−𝑖 ∣ or by ∫
𝑑𝜆 ∣𝜓−𝜆 ⟩⟨𝜓−𝜆 ∣) is detected.
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The Dirac basis vector expansion12 of in-state vectors 𝜙+ ∈ Φ− is given by

𝜙+ =
∑
𝑏

∫ ∞
0

𝑑𝐸∣𝐸, 𝑏+⟩⟨+𝐸, 𝑏∣𝜙+⟩ =
∫ ∞

0

𝑑𝐸∣𝐸+⟩⟨+𝐸∣𝜙+⟩ (29a)

And for the out-observable vector 𝜓− the Dirac basis vector expansion is given by

𝜓− =
∑
𝑏

∫ ∞
0

𝑑𝐸∣𝐸, 𝑏−⟩⟨−𝐸, 𝑏∣𝜓−⟩ =
∫ ∞

0

𝑑𝐸∣𝐸−⟩⟨−𝐸∣𝜓−⟩ (29b)

Here the energy eigenkets ∣𝐸+⟩ ∈ Φ×− are continuous antilinear functionals on the
space Φ− of prepared states. They fulfill

⟨𝐻𝜙+ ∣𝐸+⟩ = ⟨𝜙+ ∣ 𝐻× ∣𝐸+⟩ = 𝐸⟨𝜙+ ∣𝐸+⟩ for all 𝜙+ ∈ Φ− , (30a)

Similarly, the ∣𝐸−⟩ ∈ Φ×+ of (29b) are continuous antilinear functions on Φ+:

⟨𝐻𝜓− ∣𝐸−⟩ = ⟨𝜓− ∣ 𝐻× ∣𝐸−⟩ = 𝐸⟨𝜓− ∣𝐸−⟩ for all 𝜓− ∈ Φ+ . (30b)

Though the mathematical spaces Φ−, Φ+ had not been defined previously,
the kets ∣𝐸+⟩ and ∣𝐸−⟩ have been used extensively for a long time in scattering
theory. They are the Lippmann-Schwinger kets [8] of (31) below.

Since the space of in-states Φ− and the space of out-observables Φ+ are
different subspaces of ℋ, the nuclear spectral theorem for the basis vector expan-
sion (29a) of in-states 𝜙+ ∈ Φ− and (29b) of out-observables 𝜓− ∈ Φ+ require
that each space has its own basis. In (29a), the basis kets for Φ− have been de-
noted by ∣𝐸+⟩ ∈ Φ×− and the basis kets in (29b) for Φ+ have been denoted by

∣𝐸−⟩ ∈ Φ×+. The question now is: What is the mathematical space Φ− which
represent the in-states {𝜙+} and what is the mathematical space Φ+ which repre-
sent the out-observables {𝜓−}? They will turn out to be the pair of Hardy spaces
[6, 9, 10, 11, 12, 13, 14, 15, 16].

Before the Hardy spaces were used in quantum physics, kets like the ∣𝐸±⟩
had been introduced in the phenomenological scattering theory as the in- and out-
plane wave kets ∣𝐸±⟩ which fulfill the Lippmann-Schwinger equation [7, 9, 8]:
∣𝐸, 𝑏±⟩ = ∣𝐸 ± 𝑖𝜖, 𝑏±⟩ = ∣𝐸, 𝑏⟩+ 1

𝐸 −𝐻 ± 𝑖𝜖
𝑉 ∣𝐸, 𝑏⟩ = Ω±∣𝐸, 𝑏⟩, 𝜖 → +0 . (31)

The kets ∣𝐸, 𝑏±⟩ are eigen-kets of the “exact” Hamiltonian 𝐻 = 𝐾 + 𝑉 ,

𝐻 ∣𝐸, 𝑏±⟩ = 𝐸𝑏 ∣𝐸, 𝑏±⟩ = 𝐸𝑏 ∣𝐸, 𝑗, 𝑗3, 𝜂
±⟩ , (32)

and the kets ∣𝐸, 𝑏⟩ in (31) are the eigen-kets of the interaction free Hamiltonian
𝐾: 𝐾 ∣𝐸, 𝑏⟩ = 𝐸 ∣𝐸, 𝑏⟩. The label 𝑏 represents additional quantum numbers such
as the angular momentum number 𝑗, its third component 𝑗3, and other quantum
number, e.g., channel quantum numbers 𝜂 or particle species labels, etc. . . . The
operator 𝑉 = 𝐻 −𝐾 is the interaction Hamiltonian or perturbation Hamiltonian,
and Ω± are the Möller operators [7, 9].

12Though the properties of the spaces are not yet known, the assumption that Φ± will be nuclear
spaces is reasonable, so that the nuclear spectral theorem (29) will hold.
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The Lippmann-Schwinger kets (31)(32) need to be given a mathematical
definition before one can use them to calculate mathematical predictions.

The + 𝑖𝜖 in the ket ∣𝐸+⟩ =∣𝐸+ 𝑖𝜖⟩ of the Lippmann-Schwinger equation (31)
suggested that the energy wave function of the in-states 𝜙+ of (29a),

𝜙+(𝐸) ≡ ⟨+𝐸 ∣𝜙+⟩ = ⟨+𝐸, 𝑏 ∣𝜙+⟩ = ⟨𝜙+ ∣𝐸, 𝑏+⟩ (33a)

are the boundary value of an analytic function in the lower complex energy semi-
plane ℂ− on the second sheet of the 𝒮-matrix, cf. Figure 1.

Similarly, the − 𝑖𝜖 sign of the Lippmann-Schwinger ket ∣𝐸−⟩ =∣𝐸 − 𝑖𝜖⟩ indi-
cates that the energy wave function of the observable ∣𝜓−⟩⟨𝜓− ∣ in (29b),

𝜓−(𝐸) ≡ ⟨−𝐸 ∣𝜓−⟩ = ⟨−𝐸, 𝑏 ∣𝜓−⟩ = ⟨𝜓− ∣𝐸, 𝑏−⟩ (33b)

are the boundary value of an analytic function on the upper complex energy semi-
plane ℂ+ for complex energy 𝑧 = 𝐸 − 𝑖𝜖 = 𝐸+𝑖𝜖, above the real axis of the second

sheet of the 𝒮-matrix. Consequently, its complex conjugate 𝜓−(𝐸) = ⟨𝜓− ∣𝐸, 𝑏−⟩
is analytic on the lower complex energy plane second sheet of 𝒮-matrix.

This means that the energy density ⟨𝜓− ∣𝐸−⟩𝒮𝑗(𝐸)⟨+𝐸 ∣𝜙+⟩ in the 𝒮-matrix
element (𝜓−, 𝜙+):

(𝜓−, 𝜙+) =

∫ ∞
𝐸0(=0)

𝑑𝐸⟨𝜓− ∣𝐸−⟩𝒮𝑗(𝐸)⟨+𝐸 ∣𝜙+⟩ (34)

can be analytically continued into the lower complex energy plane second sheet of
the 𝒮-matrix as shown in Figure 1. This is the sheet at which the resonance pole
of the 𝒮-matrix element 𝑆𝑗(𝐸) is located at 𝑧𝑅.

This means that the space Φ∓ of the states {𝜙±} will be mathematically
defined as Hardy space of the lower and upper complex semi-plane, respectively.
The ∣𝐸±⟩ will now be defined as Hardy space functionals13: ∣𝐸±⟩ ∈ Φ×∓. The
new axiom replacing the Hilbert space axiom (6), or replacing the Schwartz space
axiom (22) for the Dirac formulation, is now introduced as the new Hardy space
axiom of quantum mechanics:

The set of prepared (in-)states obeying Schrödinger equation {𝜙+}
is mathematically represented by Φ−, the Hardy space of the lower
complex energy plane of the second sheet of the 𝒮-matrix:

{𝜙+} .
= Φ− . (35a)

The set of detected or registered observables obeying Heisenberg equa-
tion {𝜓−} is mathematically represented by Φ+, the Hardy space of
the upper complex energy plane of the second sheet of the 𝒮-matrix:

{𝜓−} .
= Φ+ . (35b)

13The odd notation ∣𝐸±⟩ ∈ Φ×∓ comes from the miss-match of the notation which the physicists

use for the phenomenological Lippmann-Schwinger kets of (31) and the mathematical convention
for the Hardy spaces [12, 13]. That the phenomenologically introduced Lippmann-Schwinger kets
∣𝐸±, 𝑏⟩ of scattering theory [8] turned out to be anti-linear continuous functionals on Hardy

space [9, 10, 13], is an example of what Wigner [17] called “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences”.
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This Hardy space axiom means that the energy wave functions 𝜙+(𝐸) =
⟨+𝐸 ∣𝜙+⟩ and 𝜓−(𝐸) = ⟨−𝐸 ∣𝜓−⟩ in the Dirac basis vector expansion (29) are
not just functions of the Schwartz space, but that 𝜙+(𝐸) can also be analytically
continued into the lower complex energy plane second sheet of the 𝒮-matrix and
𝜓−(𝐸) can be analytically continued into the upper complex plane. Therefore
⟨𝜓− ∣𝐸−⟩ ⟨+𝐸 ∣𝜙+⟩ = 𝜓−(𝐸)𝜙+(𝐸), which appears in the 𝒮-matrix element (34),
can be analytically continued into the second sheet, where the poles of the 𝒮-
matrix, which represent resonances (with angular momentum 𝑗), are located; cf.
Figure 1, where the special case of one resonance pole is considered.

𝑧 first sheet

𝑧 second sheet

E0 = 0

×

cut

��
�

C−

��
C∞

���

C∞

�
�
�
�𝑧R = ER − 𝑖Γ/2

�	

C1

L1 L2

Figure 1. Complex energy plane in which one first-order pole 𝑧𝑅 is
located on the second sheet of the 𝑆𝑗-matrix.

In terms of the energy wave functions of the Dirac basis vector expansion
(29), the Hardy space axiom (35) is also stated as:

𝜙+(𝐸) = ⟨+𝐸 ∣𝜙+⟩ ∈ (ℋ2
− ∩ 𝑆) ∣ℝ+ ⊂ 𝐿2(ℝ+) ⊂ (ℋ2

− ∩ 𝑆) ∣ℝ+)
× (36a)

𝜓−(𝐸) = ⟨−𝐸 ∣𝜓−⟩ ∈ (ℋ2
+ ∩ 𝑆) ∣ℝ+ ⊂ 𝐿2(ℝ+) ⊂ (ℋ2

+ ∩ 𝑆) ∣ℝ+)
× . (36b)

Here (ℋ2
± ∩ 𝑆)ℝ+ denotes the space of Hardy classes ℋ2

± intersected with the
Schwartz space function 𝑆 and then restricted to the positive semi-axis ℝ+, where
the cut of the 𝒮-matrix is located, cf., Figure 1.

The Hardy space axiom in the energy representation (36) thus says vaguely
that the energy wave functions are very well-behaved functions: Schwartz functions
that can also be analytically continued into the complex energy plane second sheet
of the 𝒮-matrix element 𝒮𝑗(𝐸) of angular momentum 𝑗, where the resonance poles
of the 𝒮-matrix are located; cf., Figure 1.

We consider the case that there is one resonance pole at 𝑧𝑅, as shown in
Figure 1. One can deform the contour of integration in (34) from the cut along the
positive real energy axis 0 ≤ 𝐸 < ∞ to an integral around the resonance pole 𝑧𝑅
and an integral along the contour 𝐶− (the integrals along 𝐿1 and 𝐿2 cancel each
other and the integral along 𝐶∞ vanishes as a consequence of the Hardy space
properties (36)).



The Marvelous Consequences of Hardy Spaces in Quantum Physics 225

The new Hardy space axioms (35) conjectured from the phenomenological
Lippmann-Schwinger equation (31), suggests that the energy wave functions of
the prepared in-state 𝜙+(𝐸) and the energy wave functions of the detected out-
observable 𝜓−(𝐸) are not only smooth, rapidly decreasing and infinitely differen-
tiable functions on the real axis, as they would be under the Schwartz space axiom
(22). But 𝜙+(𝐸) and 𝜓−(𝐸) are also analytic in the lower complex energy semi-
plane on the second sheet of the 𝒮-matrix, where a resonance pole of the 𝒮-matrix
is located, in Figure 1. These functions are by axiom (36) postulated to be smooth
Hardy functions ℋ2

∓ ∩ 𝑆 of the lower and upper complex plane second sheet of
the 𝒮-matrix, restricted to the positive real axis. These energy wave functions of
the in-state 𝜙+(𝐸) = ⟨+𝐸 ∣𝜙+⟩ and of the out-observable 𝜓−(𝐸) = ⟨−𝐸 ∣𝜓−⟩ are
elements of the spaces which are an intersection of two space: the Schwartz space
𝑆 and the upper and lower Hardy class space ℋ2

∓, respectively

⟨+𝐸 ∣𝜙+⟩ ∈ (ℋ2
− ∩ 𝑆) ∣ℝ+ or ⟨+𝐸 ∣𝜙+⟩ = ⟨𝜙+ ∣𝐸+⟩ ∈ (ℋ2

+ ∩ 𝑆) ∣ℝ+ (37a)

⟨−𝐸 ∣𝜓−⟩ ∈ (ℋ2
+ ∩ 𝑆) ∣ℝ+ or ⟨−𝐸 ∣𝜓−⟩ = ⟨𝜓− ∣𝐸−⟩ ∈ (ℋ2

− ∩ 𝑆) ∣ℝ+ . (37b)

This means that the energy wave functions are smooth Hardy class functions ℋ∓
which are also in Schwartz spaces, i.e., they are smooth rapidly decreasing functions
on the positive real axis ℝ+, which can be analytically continued into the upper
or lower complex semi planes and vanish rapidly going towards the infinite semi-
circles 𝐶∞. The conditions (37), which in the vector notation are the conditions
(35), constitute an axiom, (which we call the Hardy space axiom). Like the Hilbert
space axiom (6), these kinds of axioms can only be justified by its success with
experimental data.

The smooth Hardy space wave functions of (37) posses many properties
needed for the analytic 𝒮-matrix and the phenomenological theory of resonances
and decay. In this paper, we conjectured their property from the Lippmann-
Schwinger equation (31), re-interpreting the out-plane wave ∣ 𝐸−⟩ as the kets
for an out-observable ∣𝜓−⟩ which obeys the Heisenberg equation (5b), not the
Schrödinger equation (4a) as usually assumed. With the Hardy space properties
(37) of the energy wave functions, one can associate to the 𝒮-matrix pole a reso-
nance state vector [9]. All this is fine and fits well together, with the conventional
ideas except for one shocking consequence: the time-asymmetry that will result if
one solves the Schrödinger or the Heisenberg equation under Hardy space bound-
ary condition (35) or (36).

4. Conclusion: Time asymmetry of quantum physics
from the Hardy space axiom

Solutions of differential equations require boundary conditions, which specify the
properties that these solutions will fulfill. In the same way as the unitary group
evolution (7a) for the solutions of the dynamical equations (4a) and (5b) follow
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from the Hilbert space boundary condition by the Stone-von Neumann theorem14,
there is a similar theorem in the mathematical literature from which the solutions
of (4a) and (5b) follow under the Hardy space boundary conditions (35). This
theorem is the Paley-Wiener theorem [18], and from the Paley-Wiener theorem
follows that the solutions of the Schrödinger equation (4a) under the new Hardy
space boundary condition (35a) are given by the semigroup of operator 𝑈−(𝑡):

𝜙+(𝑡) = 𝑈 †Φ−(𝑡)𝜙
+ = 𝑒−𝑖𝐻𝑡/ℏ 𝜙+(0) with 0 ≤ 𝑡 < ∞ for 𝜙+ ∈ Φ− . (38a)

Similarly, by the Paley-Wiener theorem, the solution of the Heisenberg equation
(5b) are given by the semigroup of operator 𝑈+(𝑡)

15

𝜓−(𝑡) = 𝑈Φ+(𝑡)𝜓
− = 𝑒𝑖𝐻𝑡/ℏ 𝜓−(0) with 0 ≤ 𝑡 < ∞ for 𝜓− ∈ Φ+ . (38b)

As a consequence of (38) follows:

The Born probabilities to detect the observable 𝜓−(𝑡) in the state 𝜙+ under Hardy
space boundary conditions are given by

𝒫𝜙+(𝜓−(𝑡)) =∣⟨𝜓−(𝑡) ∣𝜙+⟩∣2=∣⟨𝜓− ∣𝜙+(𝑡)⟩∣2=∣⟨𝑒𝑖𝐻𝑡/ℏ𝜓− ∣𝜙+⟩∣2
=∣⟨𝜓− ∣𝑒−𝑖𝐻𝑡/ℏ𝜙+⟩∣2 for only 𝑡 ≥ 𝑡0 = 0

(39)

This means that from the Hardy space boundary condition (35a) follows the semi-
group time evolutions (38a) for the solutions in the Schrödinger picture. Or sim-
ilarly in the Heisenberg picture, from the Hardy space axiom (35b) follows the
semigroup evolution (38b) for the observables. Therefore, the Born probabilities
(39) are predicted under the Hardy space axiom only for 𝑡 ≥ 𝑡0, i.e., only for a time
𝑡 after the finite time 𝑡0 at which the state has been prepared. This prediction is
in agreement with the causality principle (27) and (28).

The time 𝑡0 is chosen as the finite time 𝑡0 = 0 . It represents the time at
which the state 𝜙+ has been prepared, e.g., by an accelerator beam and target,
and after which the observable 𝜓− can be registered, e.g., by a detector with the
counting rates 𝑁(𝑡)/𝑁 proportional to the probability (39).

Solutions of differential equations require boundary conditions, which specify
general properties that these solutions are to fulfill. The traditional boundary
conditions (6a) for the Schrödinger- and equation (6b) for the Heisenberg-equation
require, that these solutions are the (complete) Hilbert space (with the scalar
product defined by the Lebesgue integral, von Neumann’s great contribution to
quantum mechanics). If one would use these Hilbert space boundary conditions
(6), the solutions would be given by the time symmetric, unitary group evolution
(7), according to the famous theorem for the Hilbert space by Stone and von
Neumann [1].

Using, instead of the Hilbert space, the Schwartz space boundary conditions
(22) of the Dirac formulation, one also obtains a time symmetric group evolution

14And the group evolution for the Schwartz space boundary condition followed from another
mathematical theorem (page 82 [6])).
15The operators 𝑈±(𝑡) form semigroups since their inverse operators 𝑈−1

± (𝑡) do not exist.
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(23) by another mathematical theorem ([6, Prop. II p. 82]. But the Hilbert space
and the Schwartz space are not the only possible boundary conditions for the
dynamical differential equations (4a) and (5b) of quantum mechanics.

The Hardy spaces used in the Lax-Phillips scattering theory [19], were applied
to scattering of classical (e.g., electromagnetic) waves. They have also been applied
to quantum resonance and decay phenomena [14, 15, 16, 20, 21, 22].

In this paper we have discussed how different boundary conditions for the
dynamical equations lead to different time evolution, the unitary group (23) and
the semigroup evolution (38) for Hardy spaces, which is the only axiom compatible
with causality.

The Hardy space axiom (35) or (33) provides the mathematical theory [22]
that associates as a mathematical relation, the first-order poles of the 𝒮-matrix
at the complex energy 𝑧𝑅 = 𝐸𝑅 − 𝑖Γ/2 on the second sheet of the 𝒮-matrix
(Figure 1), a generalized eigenvector ∣𝑧−𝑅 ⟩ =∣𝐸𝑅− 𝑖Γ/2−⟩ ∈ Φ×+ of the Hamiltonian
𝐻 with the complex eigenvalue 𝑧𝑅 = 𝐸𝑅−𝑖Γ/2 and with a Breit-Wigner resonance
distribution of width Γ:

∣𝑧−𝑅 ⟩
√
2𝜋Γ = −1

𝑖

(
Γ

2𝜋

)1/2 ∫ +∞

−∞𝐼𝐼

𝑑𝐸 ∣𝐸−⟩ 1

𝐸 − 𝑧𝑅
. (40)

From this one calculates the probability (39) for an observable 𝜓−(𝑡) of (38b) in
the “first-order-𝒮-matrix-pole-state” ∣𝑧−𝑅 ⟩

𝒫𝑧−𝑅
(𝜓−(𝑡)) =∣⟨𝜓−(𝑡) ∣𝑧−𝑅 ⟩∣2=∣⟨𝑒𝑖𝐻𝑡/ℏ 𝜓− ∣𝐸𝑅 − 𝑖Γ/2−⟩∣2

=∣⟨𝜓− ∣ 𝑒−𝑖𝐻×𝑡/ℏ ∣𝐸𝑅 − 𝑖Γ/2−⟩∣2
=∣𝑒−𝑖𝐸𝑅𝑡/ℏ 𝑒−(Γ/2)𝑡/ℏ⟨𝜓− ∣𝐸𝑅 − 𝑖Γ/2−⟩∣2
= 𝑒−Γ𝑡/ℏ ∣⟨𝜓− ∣𝑧−𝑅 ⟩∣2 for 𝑡 ≥ 0 only for all 𝜓− ∈ Φ+ .

(41)

To a 𝒮-matrix pole resonance of width Γ is associated a state vector
∣ 𝑧𝑅 = 𝐸𝑅 − 𝑖Γ/2−⟩ with exponential time evolution of lifetime 𝜏 = ℏ/Γ [9].
The Hardy space boundary condition for the dynamical equations provides the
mathematical theory that unifies resonance and decay phenomena of quantum
physics.
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Abstract. The dynamics of position-dependent mass systems is considered
from both, classical and quantum mechanical points of view, by means of the
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1. Introduction

The problem of describing the motion of systems endowed with position-dependent
mass (PDM) has attracted interest since they appear in many physical problems.
These include, e.g., the study of the electronic properties of semiconductors [1–3],
quantum dots [4], the description of the dynamics of non linear oscillators [5, 6]
as well as classical systems in curved spaces [7], just to mention few ones. The
very concept of a PDM system is a fundamental problem which is far from be-
ing completely understood. Many contributions have been developed over the last
years in different approaches [8–19]. In the quantum mechanical regime, it is well
known that an ambiguity in ordering of the mass and the momentum operators
appears and the goal is to choose the proper Hamiltonian. Some arguments have
been given to this respect, e.g., the Galilean invariance [8] and the correspondence
between classical and quantum PDM potentials [16]. In some other cases the or-
dering is fixed by the boundary conditions imposed on a particular system [19].
The generation of exactly solvable PDM problems has also been considered. The
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factorization method [20–22] has been explored in [10–17]. In this work we present
the factorization method applied to the solution of the PDM problem in the classi-
cal as well as in the quantum mechanical frames. The paper is organized as follows.
In Section 2 the classical case is considered and some examples are presented for
the harmonic oscillator algebra. In Section 3 the quantum mechanical problem is
discussed and some new PDM potentials isospectral to the harmonic oscillator are
constructed. We end this contribution with some general remarks.

2. Classical position-dependent mass systems

Consider the classical position-dependent mass system described by the standard
Hamiltonian

ℋ =
𝑝2

2𝑚(𝑥)
+ 𝒱(𝑥) (1)

where 𝑥 and 𝑝 are the canonical variables of position and linear momentum. The
mass 𝑚(𝑥) > 0 and the potential 𝒱(𝑥) are position-dependent functions setting
the domain of definition 𝒟(ℋ) of the Hamiltonian. The problem can be addressed
from two points of view: in the first one 𝒱 and 𝑚 are known and the phase space
motion is determined by reducing the PDM problem to an equivalent CM one;
in the second case, it is assumed that there is an algebraic structure fixing the
potential and the phase space trajectories in terms of 𝑚(𝑥) [23] (see also [16]). In
this work, the second approach is considered: the explicit form of the potential as
well as the dynamics are determined from the algebraic properties of the system,
by the factorization method.

Suppose that the Hamiltonian ℋ can be factorized in terms of two complex
functions [23]

𝒜± = ∓𝑖𝑓(𝑥)
𝑝√
2𝑚(𝑥)

+𝒲(𝑥)𝜙(ℋ) (2)

in the form

ℋ = 𝒜−𝒜+ + 𝜖 = 𝒜+𝒜− + 𝜖, (3)

with 𝜖 the factorization constant, 𝑓 , 𝒲 functions of the position and 𝜙 a function
of the energy of the system.

Suppose, additionally, that 𝒜±, ℋ close the following algebra in terms of
Poisson brackets{𝒜−,𝒜+

}
= 𝑖𝛾𝜙(ℋ), {𝒜±,ℋ} = ±𝑖𝛾𝜙(ℋ)𝒜±, (4)

where 𝛾 is a constant. Observe that two complex-conjugate, non autonomous in-
tegrals of motion can be constructed in the form

𝒬± = 𝒜±𝑒∓𝑖𝛾𝜙(ℋ)𝑡, (5)

whose values 𝑞± fulfill 𝑞−𝑞+ = ∣𝑞±∣2 = ℰ−𝜖, ℰ being the total energy of the system.
Thus, making 𝑞± =

√ℰ − 𝜖𝑒±𝑖𝜑0 , the phase space trajectories can be written in
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terms of two parameters (ℰ , 𝜑0) as

𝑥(𝑡) =𝒲−1

(√ℰ − 𝜖

𝜙(ℋ) cos (𝛾𝜙(ℋ)𝑡+ 𝜑0)

)
, (6)

𝑝(𝑡) = − 1

𝑓(𝑥)

√
2 (ℰ − 𝜖)𝑚(𝑥) sin (𝛾𝜙(ℋ)𝑡+ 𝜑0) . (7)

As an example, let us consider the harmonic oscillator of frequency 𝜔. One can
find that for this simple system 𝑓(𝑥) = 1, 𝜙(ℋ) = 1 and 𝛾 = 𝜔, leading to

𝒲(𝑥) =
√

𝑚0𝜔2

2

∫
𝐽(𝑥)𝑑𝑥, 𝒱(𝑥) = 𝑚0𝜔

2

2

(∫
𝐽(𝑥)𝑑𝑥

)2

+ 𝜖 (8)

with 𝐽(𝑥) =
√

𝑚(𝑥)/𝑚0 and𝑚0 a constant with dimensions of mass. Hence, under
the transformation

𝒫(𝑥, 𝑝) = 𝑝/𝐽(𝑥), 𝒳 (𝑥) =
∫
𝐽(𝑥)𝑑𝑥 (9)

the Hamiltonian takes the form of a CM harmonic oscillator of position 𝒳 and
momentum 𝒫 . Note, however, that for some choices of 𝑚(𝑥) the transformation
(9) may not map 𝒟(ℋ) onto the whole real line as required if 𝒳 should represent
the position of the CM oscillator [16], meaning that there are important differences
between PDM and CM problems for those cases. Below, we will consider two mass
functions in order to illustrate this approach.

In the first place consider the regular mass 𝑚1 leading to the potential 𝒱1

𝑚1(𝑥) =
𝑚0

1 + (𝑘𝑥)2
, 𝒱1(𝑥) =

𝑚0𝜔
2

2𝑘2
arcsinh2𝑘𝑥 (10)

with 𝑘 a constant in inverse position units (observe that the case of constant mass
is recovered in the limit 𝑘 → 0). In this case we have

𝑥1(𝑡) =
1

𝑘
sinh

⎡⎣√2(ℰ − 𝜖)

𝑚0

𝑘

𝜔
cos (𝜔𝑡+ 𝜑0)

⎤⎦ (11)

𝑝1(𝑡)− =
√
2𝑚0 (ℰ − 𝜖)

1 + (𝑘𝑥(𝑡))2
sin (𝜔𝑡+ 𝜑0) . (12)

Figure 1 shows the potential 𝒱1 and some phase trajectories for different val-
ues of the total energy of the system. One can note that they are soft deformations
of that of the CM oscillator, with the position and momentum taking, in principle,
arbitrary values.

Next, we consider the singular mass 𝑚2 with potential 𝒱2

𝑚2(𝑥) =
𝑚0

(𝑘𝑥)2
, 𝒱2(𝑥) =

𝑚0𝜔
2

2𝑘2
ln2 𝑘𝑥 (13)
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Figure 1. The potential and phase space trajectories for 𝑚1 with ℰ =
0.1, 0.3, 0.5 and𝑚2 for ℰ = 0.1, 0.2, 0.3. In these graphics𝑚0 = 2, 𝑘 = 2,
𝜔 = 0.8, 𝜖 = 0.5 and 𝜙 = 𝜋. Inner curves correspond to lower energies.

for which

𝑥2(𝑡) =
1

𝑘
exp

⎡⎣√2(ℰ − 𝜖)

𝑚0

𝑘

𝜔
cos (𝜔𝑡+ 𝜑0)

⎤⎦ (14)

𝑝2(𝑥) = −
√
2𝑚0(ℰ − 𝜖)

𝑘𝑥(𝑡)
sin (𝜔𝑡+ 𝜙0) . (15)

Figure 1 shows the potential and phase trajectories for 𝑚2. In contrast to the
previous case, it is evident the presence of a singularity, confining the motion of
the system to a region given by the domain of definition of 𝑚(𝑥). It is worthwhile
to mention that, even the unusual form of the mass, the behavior of the phase
space variables is quite regular. The presence of a divergence in the mass function
appears as a potential barrier suggesting that one can define oscillators in bounded
domains by introducing masses with singularities.

3. Quantum position-dependent mass systems

In the quantum mechanical regime, it is well known that the canonical variables
𝑥, 𝑝 do not commute and an ambiguity ordering appears in expressions containing
products of these variables. A general hermitian Hamiltonian in this case can be
defined as

𝐻𝑎 =
1

2
𝑚𝑎 𝑝𝑚2𝑏 𝑝𝑚𝑎 + 𝑉𝑎(𝑥), 𝑎+ 𝑏 = −1

2
, (16)

with 𝑎 the ordering parameter (𝑏 = −𝑎 − 1/2). As mentioned before, the choice
of this parameter has been addressed in several ways [8, 16, 19]. In this work it is
kept arbitrary, with no more assumptions on a particular ordering of 𝑝 and 𝑚.
Similar to the classical case, the form of the potential is found from the algebraic
structure underlying the system. Therefore, the eigenvalue equation

𝐻𝑎𝜓(𝑥) = 𝐸𝜓(𝑥) (17)

for which the spectrum is well known, can be studied by means of the factorization
method.
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Suppose then that 𝐻𝑎 can be factorized in terms of two linear operators

𝐴+
𝑎 = − 𝑖√

2
𝑚𝑎 𝑝𝑚𝑏 +𝑊𝑎(𝑥), 𝐴−𝑎 =

𝑖√
2
𝑚𝑏 𝑝𝑚𝑎 +𝑊𝑎(𝑥) (18)

in the form

𝐻𝑎 = 𝐴+
𝑎 𝐴−𝑎 + 𝜖. (19)

In the position representation 𝑝 = −𝑖ℏ𝑑/𝑑𝑥; hence, defining the differential oper-
ator

D =
1√
𝑚(𝑥)

𝑑

𝑑𝑥
, (20)

one may write

𝐴+
𝑎 = − ℏ√

2
D+

√
2ℏ

(
𝑎+

1

2

)
D (ln 𝐽(𝑥)) +𝑊𝑎(𝑥) (21)

𝐴−𝑎 =
ℏ√
2
D+

√
2ℏ𝑎D (ln 𝐽(𝑥)) +𝑊𝑎(𝑥). (22)

It is not difficult to show that the function𝑊𝑎(𝑥) must satisfy the Riccati equation

− ℏ√
2
D𝑊𝑎 + 2

√
2ℏ

(
𝑎+

1

4

)
(D ln 𝐽)𝑊𝑎 +𝑊 2

𝑎 = 𝑉𝑎 − 𝜖 (23)

while [
𝐴−𝑎 , 𝐴+

𝑎

]
=

√
2ℏD𝑊𝑎 + 2ℏ

2

(
𝑎+

1

4

)
D2 ln 𝐽. (24)

For the case in which the factorizing operators close the harmonic oscillator alge-
bra, i.e., [𝐴−𝑎 , 𝐴+

𝑎 ] = ℏ𝜔, we have

𝑊𝑎(𝑥) =

√
𝑚0𝜔2

2

∫
𝐽(𝑥)𝑑𝑥 −√

2ℏ

(
𝑎+

1

4

)
D ln 𝐽(𝑥), (25)

fixing 𝑉𝑎(𝑥) as

𝑉𝑎(𝑥) =
𝑚0𝜔

2

2

(∫
𝐽(𝑥)𝑑𝑥

)2

+ ℏ2

(
𝑎+

1

4

)
D2 ln 𝐽(𝑥)

− 2ℏ2

(
𝑎+

1

4

)2

(D ln 𝐽(𝑥))2 , (26)

which is isospectral to the CM harmonic oscillator: 𝑆𝑝(𝐻𝑎) =
{
𝐸𝑛 =

(
𝑛+ 1

2

)
ℏ𝜔
}
,

and lead to wave functions 𝜓𝑛(𝑥) given by

𝜓𝑛(𝑥) =
1√
𝑛!

(
𝐴+
𝑎

)𝑛
𝜓0(𝑥) (27)

where 𝜓0(𝑥) is the ground state defined by 𝐴−𝑎 𝜓0(𝑥) = 0.
At this point, it is important to stress that the subscript 𝑎 in 𝑉𝑎 distinguishes

different potentials for different orderings of the kinetic term. However, the Hamil-
tonian 𝐻𝑎 is the same for any value of 𝑎, and the subscript only labels different
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orderings of 𝑝 and 𝑚. Therefore, neither the spectrum, nor the eigenfunctions of
𝐻𝑎 should depend on 𝑎. Indeed, the substitution of (25) into (18) gives

𝐴±𝑎 = 𝐴± = ∓ ℏ√
2
D± ℏ

2
√
2
(D ln 𝐽) +

√
𝑚0𝜔2

2

∫
𝐽𝑑𝑥 (28)

which are actually independent of the ordering parameter (see [17]). Note also that

𝐴±𝐽1/2 = 𝐽1/2

(
∓ ℏ√

2
D+

√
𝑚0𝜔2

2

∫
𝐽𝑑𝑥

)
= 𝐽1/2a±, (29)

where we can identify to a± as the ladder operators of the CM harmonic oscillator
by making the correspondence

∫
𝐽𝑑𝑥 → 𝑦(𝑥),

√
𝑚0D→ 𝑑

𝑑𝑦 .

In this way, if 𝜓0(𝑥) =
√

𝐽(𝑥)𝜙0(𝑦(𝑥)), then 𝜙0(𝑦) must satisfy(
ℏ√
2𝑚0

𝑑

𝑑𝑦
+

√
𝑚0𝜔2

2
𝑦

)
𝜙0(𝑦) = 0 (30)

which is nothing but the equation defining the ground state of the CM harmonic
oscillator. The whole set of wave functions 𝜓𝑛(𝑥) are hence constructed as

𝜓𝑛(𝑥) = 𝐽1/2(𝑥)𝜙𝑛

(∫
𝐽(𝑥)𝑑𝑥

)
, (31)

with 𝜙𝑛(𝑦) the wave functions of the constant mass harmonic oscillator, consis-
tently with the point canonical transformation [9]. Some plots of potential and
corresponding wave functions are presented in Figure 2.

Figure 2. Position-dependent mass potentials and its corresponding
first 4 wave functions for masses 𝑚1 (left) and 𝑚2 (right). Observe
that the potentials depend on the ordering parameter 𝑎, upper curves
correspond to smaller values of 𝑎. Note though, that the wave functions
are the same for any value of 𝑎. Here we have used 𝑚0 = 2, 𝑘 = 2,
𝜔 = 0.8 and 𝑎 = 0, 0.25, 0.35, 0.5.

Observe that the PDM harmonic oscillator Hamiltonian 𝐻𝑎 can be also fac-
torized as

𝐻𝑎 = 𝐴−𝐴+ − ℏ𝜔

2
. (32)
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It is well known, for the CM case, that the operators 𝐴± are not unique [20]. It is
not difficult to prove this fact also for the PDM potentials, indeed, 𝑊𝑎(𝑥) fulfills
the Riccati equation

ℏ√
2
D𝑊𝑎+2

√
2ℏ

(
𝑎+

1

4

)
(Dln𝐽)𝑊𝑎+𝑊 2

𝑎 =𝑉𝑎−2ℏ2

(
𝑎+

1

4

)
D2 ln𝐽+

ℏ𝜔

2
(33)

with the general solution

𝑊𝑎(𝑥,Γ) =

√
𝑚0𝜔2

2

∫
𝐽(𝑥)𝑑𝑥 −

√
2ℏ

(
𝑎+

1

4

)
D ln 𝐽(𝑥)

+
ℏ2

√
2
D ln

[
Γ +

√
𝑚0𝜔

ℏ

∫ ∫
𝐽𝑑𝑥

0

𝑒−
𝑚0𝜔

ℏ
𝑡2𝑑𝑡

]
, (34)

leading to new (𝑎-independent) operators

𝐵± = 𝐴± +
ℏ2

√
2
D ln

[
Γ +

√
𝑚0𝜔

ℏ

∫ ∫
𝐽𝑑𝑥

0

𝑒−
𝑚0𝜔

ℏ
𝑡2𝑑𝑡

]
(35)

such that 𝐻𝑎 = 𝐵−𝐵+ − ℏ𝜔/2. It is clear that these operators do not close the
Heisenberg algebra, meaning that we can construct new Hamiltonians �̃�𝑎 by ap-
plying a Darboux transformation [20]

�̃�𝑎(Γ) = 𝐵+𝐵− +
ℏ𝜔

2
=
1

2
𝑚𝑎𝑝𝑚2𝑏𝑝𝑚𝑎 + 𝑉𝑎(𝑥,Γ) (36)

with

𝑉𝑎(𝑥,Γ) = 𝑉𝑎(𝑥)− ℏ2D2 ln

[
Γ +

√
𝑚0𝜔

ℏ

∫ ∫
𝐽𝑑𝑥

0

𝑒−
𝑚0𝜔

ℏ
𝑡2𝑑𝑡

]
, (37)

which is non singular whenever ∣Γ∣ >
√
𝜋

2 . Some plots for the new potentials are
shown below.

Figure 3. Some new PDM potentials isospectral to the harmonic os-
cillator for different choices of the new parameter Γ. Plots on (a) cor-
respond to 𝑚1 while those in (b) to 𝑚2. In this graphics 𝑚0 = 2,
𝑘 = 2,𝜔 = 0.8, 𝑎 = 0, Γ = 0.75, 0.8, 1 and Γ→ ∞.
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Additionally, both Hamiltonians show the intertwining relations 𝐻𝑎𝐵
− =

𝐵−�̃�𝑎, 𝐵
+𝐻𝑎 = �̃�𝑎𝐵

+, and the wave functions 𝜃𝑛(𝑥) of �̃�𝑎 can be easily con-
structed by the application of 𝐵± on the wave functions of 𝐻𝑎:

𝜃𝑛(𝑥) = 𝐵+𝜓𝑛−1(𝑥), 𝑛 = 1, 2, 3, . . . (38)

corresponding to the spectral values 𝐸𝑛. There is, though, an isolated eigenvector
𝜃0(𝑥) of �̃�𝑎, orthonormal to the whole set {𝜃𝑛(𝑥), 𝑛 = 1, 2, . . .}, but not connected
to {𝜓𝑛(𝑥), 𝑛 = 0, 1, 2, . . .} by 𝐵± defined as

𝐵−𝜃0(𝑥) = 0, (39)

and corresponding to the eigenvalue 𝐸0 [20].

4. Concluding remarks

We have considered the PDM harmonic oscillator from classical and quantum me-
chanical points of view. In both cases the problem was addressed by means of the
factorization method. The technique is consistent with the point canonical trans-
formation. Some examples were presented in order to show the effect of a regular
and singular variable mass in the dynamics of the system. In the quantum case,
the solution was given for a generalized ordering between𝑚 and 𝑝. New potentials,
isospectral to the CM harmonic oscillators, were obtained from the intertwining
relations. The factorization method can be also generalized for different underly-
ing algebraic structure of both, classical and quantum PDM problems [23]. In the
quantum case, new PDM supersymmetric partners can be also defined [22,24], and
different families of PDM coherent states can be constructed [25]. Results of these
generalizations can be found elsewhere [26].
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México D.F., Mexico
e-mail: sgcruzc@ipn.mx

mailto:sgcruzc@ipn.mx


Geometric Methods in Physics. XXX Workshop 2011

Trends in Mathematics, 239–251
c⃝ 2013 Springer Basel

Quantum Configuration Spaces
of Extended Objects,
Diffeomorphism Group Representations
and Exotic Statistics

Gerald A. Goldin

Presented at the Felix Berezin Memorial Session,
XXX Workshop on Geometric Methods in Physics, Bial̷owieża, Poland,
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Abstract. A fundamental approach to quantum mechanics is based on the
unitary representations of the group of diffeomorphisms of physical space
(and correspondingly, self-adjoint representations of a local current algebra).
From these, various classes of quantum configuration spaces arise naturally, as
well as the usual exchange statistics for point particles in spatial dimensions
𝑑 ≥ 3, induced by representations of the symmetric group. For 𝑑 = 2, this ap-
proach led to an early prediction of intermediate or “anyon” statistics induced
by unitary representations of the braid group. I review these ideas, and dis-
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1. Introduction

It is remarkable how slowly physicists gained insight into exotic possibilities for
the statistics of quantum particles. Bose-Einstein and Fermi-Dirac statistics, cor-
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responding respectively to the trivial and alternating one-dimensional represen-
tations of the symmetric group 𝑆𝑁 , have been known of course since the 1920s.
During the 1950s and 1960s, quantum theories were studied obeying “parastatis-
tics,” associated with various families of higher-dimensional representations of 𝑆𝑁
[1, 2]. During this period, Aharonov and Bohm drew attention to what can now be
understand as topological effects in quantum mechanics, associated with charged
particles circling (but not entering) regions of magnetic flux [3]. In 1971, Laidlaw
and DeWitt explicitly connected the topology of 𝑁 -particle configuration spaces
in R3 with the familiar possibilities of Bose and Fermi statistics [4]. But the first
clear suggestion of the possibility of intermediate statistics for indistinguishable
particles in R2 did not come until a 1977 paper by Leinaas and Myrheim [5],
fully half a century after the exchange statistics of bosons and fermions had be-
come standard in quantum mechanics – even though the idea can be obtained and
expressed in elementary ways.

An early, independent prediction of such intermediate statistics in the plane
came from the study by Menikoff, Sharp, and myself of representations of a cer-
tain local current algebra for quantum mechanics, and the associated infinite-
dimensional group [6, 7]. This group is the natural semidirect product of the
additive group 𝒟 = 𝐶∞0 (𝑀) of compactly-supported, real-valued 𝐶∞ scalar func-
tions on the spatial manifold 𝑀 , with the group 𝒦 = Diff0(𝑀) of compactly-
supported 𝐶∞ diffeomorphisms of 𝑀 under composition (where, in the case at
hand, 𝑀 = R2). Particles satisfying intermediate statistics were subsequently
termed “anyons” by Wilczek [8, 9], as wave functions can be multiplied by a fixed
complex number of modulus one – exp 𝑖𝜃, for “any” phase 0 ≤ 𝜃 < 2𝜋 – as a
consequence of the exchange of indistinguishable particles through a single coun-
terclockwise winding in the plane.

Anyons are associated with the equivariance of wave functions under one-
dimensional representations of the braid group 𝐵𝑁 [10, 11]. Their description fits
nicely into the framework of braided tensor products developed by Majid, and
when exp 𝑖𝜃 is a root of unity, generalized exclusion principles occur [12]. Higher-
dimensional braid group representations likewise describe possible quantum parti-
cle systems in two-dimensional space [13]; such particles or excitations have been
termed “nonabelian anyons” or “plektons.”

These ideas have found numerous applications in physics, ranging from the
theory of the quantum Hall effect to high-𝑇𝑐 superconductivity to quantum com-
puting; for a recent, extensive discussion focusing on the latter, see Nayak et
al. [14].

Recently attention has been drawn to possibilities for exotic statistics as-
sociated with configurations of extended objects. For example, Niemi discusses
anyonic statistics that can occur for “leapfrogging” vortex rings, deriving this pos-
sibility in an elementary way that suggests to Niemi that it is generic [15], and
providing inspiration for the present discussion. Here, I hope to indicate how such
possibilities for the exotic statistics of extended objects arise naturally from the
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diffeomorphsim group approach to quantum mechanics. With relatively few equa-
tions, I shall survey some of the key ideas in this approach, unifying in a way the
discussion of extended configuration spaces with that of exotic statistics. More
detail about some of these ideas may be found in the references [16, 17, 18],

Section 2 offers a general description of representations of the semidirect
product group 𝒟×𝒦 modeled on various classes of configuration spaces. Section 3
highlights induced representations and corresponding 1-cocycles in the 𝑁 -particle
case. Finally Section 4 indicates briefly how these ideas are generalized to ex-
tended objects, including configurations of loops and tori. Possible applications
are to those domains of quantum physics where topologically nontrivial objects
are fundamental, such as loops, ribbons, or rings of vorticity, configurations of
magnetic flux, quantized strings, geons, and so forth.

2. Diffeomorphism group representations and quantum
configuration spaces

Let 𝑀 be the manifold of physical space (assumed to be smooth, connected, sep-
arable, locally compact, and 𝜎-compact), and let x denote a general point in 𝑀 .
The support of a diffeomorphism 𝜙 : 𝑀 → 𝑀 is defined to be the intersection
of all closed sets outside of which 𝜙(x) ≡ x. The set of compactly supported dif-
feomorphisms 𝒦 of 𝑀 forms a group under composition: to be precise, we define
𝜙1𝜙2 = 𝜙2 ∘ 𝜙1, where ∘ denotes composition. Then 𝒦 is an infinite-dimensional
topological group in the topology of uniform convergence in all derivatives on com-
pact sets. Similarly, 𝒟 is an infinite-dimensional topological group under addition,
endowed with the topology of uniform convergence in all derivatives on compact
sets. The semidirect product 𝐺 = 𝒟 ×𝒦 is defined by the group law

(𝑓1, 𝜙1)(𝑓2, 𝜙2) = (𝑓1 + 𝑓2 ∘ 𝜙1, 𝜙2 ∘ 𝜙1) . (1)

In an important sense, 𝐺 may be considered a fundamental symmetry group
of physical space for the purpose of defining the kinematics of quantum mechanics.
It is a local symmetry group, in that given any fixed compact region 𝐾 ⊂ 𝑀 , we
have a closed subgroup 𝒟𝐾 ⊂ 𝒟 of functions supported in 𝐾 (i.e., vanishing
outside 𝐾), a closed subgroup 𝒦𝐾 of diffeomorphisms having support in 𝐾, and
the semidirect product 𝐺𝐾 = 𝒟𝐾 ×𝒦𝐾 which is a closed subgroup of 𝐺 = 𝒟×𝒦.

The group 𝐺 is obtained by exponentiating the singular local current alge-
bra proposed in 1968 by Dashen and Sharp [19], interpreted as a Lie algebra of
operator-valued distributions [20]. This algebra, in turn, can be obtained formally
from canonical creation and annihilation fields. The inequivalent, continuous uni-
tary representations of 𝐺 then correspond to distinct quantum systems, infinite
as well as finite, so that their classification and interpretation becomes of cen-
tral physical interest [21, 22]. A consequence is that one can describe – and, in
fact, predict – exotic particle statistics as well as topological quantum effects, in
a mathematically satisfying way. Let us see briefly how this works.
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Let 𝑓 ∈ 𝒟 and 𝜙 ∈ 𝒦, for a particular spatial manifold 𝑀 . A very general
unitary representation of the semidirect product is given by the equations,

(𝛾) = exp 𝑖⟨𝛾, 𝑓⟩Ψ(𝛾) a.e. (𝜇) ,

[𝑉 (𝜙)Ψ](𝛾) = 𝜒𝜙(𝛾)Ψ(𝜙𝛾)

√
𝑑𝜇𝜙
𝑑𝜇
(𝛾) a.e. (𝜇) ,

(2)

which we shall now spend a little time interpreting and discussing.
In (2), the variable 𝛾 ranges over elements of a quantum configuration space Δ

that one has defined (see below). The first equation requires that we have identified
a sense in which 𝛾 also acts as a continuous real-valued linear functional on 𝒟
(i.e., as a distribution over 𝒟). The value of the distribution 𝛾 at 𝑓 ∈ 𝒟 is denoted
⟨𝛾, 𝑓⟩ ∈ R. That is, the elements of Δ are somehow (see below) identified with some
of the elements of the dual space 𝒟 ′. The second equation presupposes a natural,
𝜇-measurable group action of the diffeomorphism group 𝒦 = Diff0(𝑀) on Δ,
denoted by (𝜙, 𝛾)→ 𝜙𝛾, where 𝜇 is a measure on Δ having the important technical
property of quasiinvariance under this group action. To be precise, this is actually
a right group action, so that [𝜙1𝜙2]𝛾 = 𝜙2(𝜙1𝛾). Quasiinvariance means that for
all 𝜙 ∈ 𝐺, the transformed measure 𝜇𝜙 is absolutely continuous with respect to 𝜇.
This implies the existence of the Radon-Nikodym derivative [𝑑𝜇𝜙/𝑑𝜇](𝛾) almost
everywhere (a.e.) – i.e., outside of 𝜇-measure zero sets.

Of course, to have such a measure 𝜇, Δ must be a measurable space, endowed
with a 𝜎-algebra ℬΔ of “measurable” subsets which is closed under countable
unions, countable intersections, and complements. We shall also need ⟨𝛾, 𝑓⟩ to be
a measurable function of 𝛾, for all 𝑓 ∈ 𝒟.

Now, in both equations (2), Ψ belongs to a Hilbert space ℋ, denoted
𝐿2
𝑑𝜇(Δ,𝒲) , and defined to be the space of 𝜇-measurable functions Ψ(𝛾) on Δ,
square-integrable with respect to 𝜇, taking values in a complex inner product
space 𝒲 . The inner product in ℋ is given by

(Φ,Ψ) =

∫
Δ

⟨Φ(𝛾),Ψ(𝛾)⟩𝒲 𝑑𝜇(𝛾) , (3)

where ⟨ , ⟩𝒲 denotes the inner product in 𝒲 . When 𝒲 = ℂ (the complex num-
bers), equation (3) becomes simply (Φ,Ψ) =

∫
Δ Φ(𝛾)Ψ(𝛾) 𝑑𝜇(𝛾); but when 𝒲 is

a higher-dimensional space, Ψ may have (finitely or infinitely many) components.
Finally, 𝜒 is a measurable, unitary 1-cocycle. This means that (for each 𝜙 ∈

𝒦) 𝜒𝜙 is a measurable function of 𝛾 ∈ Δ taking values in the group of unitary
operators on 𝒲 ; and, furthermore, satisfying for each 𝜙1, 𝜙2 ∈ 𝒦 the cocycle
equation,

𝜒𝜙1𝜙2(𝛾) = 𝜒𝜙1(𝛾)𝜒𝜙2(𝜙1𝛾) a. e. (𝜇) . (4)

Note that the system of Radon-Nikodym derivatives 𝛼𝜙(𝛾) = [𝑑𝜇𝜙/𝑑𝜇](𝛾) is a

measurable, positive real-valued cocycle, as is also 𝛼1/2. Let us remark that the
failure sets for cocycle equations here may actually depend on 𝜙1 and 𝜙2 in such
fashion that there is no measure zero set outside of which the equation holds for
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every pair of diffeomorphisms. The factor 𝛼1/2 in equation (2) is precisely what
is needed to ensure that the representation is unitary; indeed, the fact that 𝑉 (𝜙)
preserves the inner product in ℋ is demonstrated simply by making a change of
variable in calculating (𝑉 (𝜙)Φ, 𝑉 (𝜙)Ψ) using equations (2) and (3). Furthermore
the action of the cocycle 𝜒𝜙 in equation(2), being unitary in 𝒲 , does not alter the
value of this inner product.

Unitarily inequivalent representations of 𝐺 are now to be associated with
inequivalent measures 𝜇, and (for equivalent measures) with inequivalent (nonco-
homologous) cocycles 𝜒.

The representation theory of the diffeomorphism group specified by the sec-
ond equation in (2), viewed in this way, thus incorporates and unifies two features:
(1) the class of possible quantum configuration spaces Δ equipped with quasiin-
variant measures, describing the kinds of configurations for which there exists a
consistent quantum theory on 𝑀 (i.e., a consistent quantization of some classi-
cal motion in 𝑀), and (2) the 1-cocycles with respect to the action of the group
Diff0(𝑀) on Δ, describing the possible quantum statistics of such configurations
(in the generalized sense of statistics that includes exotic statistics).

Let us close this section by mentioning briefly some of the approaches to
constructing configuration spaces that are pertinent to this description. More dis-
cussion of some of these may be found in earlier papers and the references therein
[18, 23].

1. Systems of 𝑁 indistinguishable point particles in 𝑀 correspond to configura-
tion spaces Γ(𝑁) of finite (𝑁 -element) subsets of𝑀 . When𝑀 is noncompact,
systems of infinitely many such point particles are described by configura-
tions which are countably infinite but locally finite subsets of 𝑀 , defining
the space Γ(∞). When 𝑀 = R𝑑, this is the usual configuration space for
statistical mechanics [24, 25, 26, 27]. Of course, diffeomorphisms of𝑀 act on
subsets of 𝑀 in the obvious way; they do not create or destroy particles, but
move them around in 𝑀 .

2. General configuration spaces may be defined as orbits or unions of orbits
(under the diffeomorphism group action) in the space 𝒟 ′ of distributions
over 𝑀 (for 𝑀 = R𝑑, one also has the possibility of considering tempered
distributions). Particle configurations, in particular, are associated with linear
combinations of evaluation functionals (𝛿-functions) in this space. Coefficients
of 𝛿-functions may be interpreted as particle masses, allowing configurations
of distinguishable as well as indistinguishable particles to be described in
this way. Here diffeomorphisms of 𝑀 act on 𝒟 as specified by the semidirect
product law in 𝐺, and on distributions by the dual action [20].

3. Letting 𝑁 be a manifold (typically of lower dimension than 𝑀), a class of
configuration spaces may be constructed as spaces of (not necessarily infin-
itely differentiable) embeddings (or, more generally, immersions) of 𝑁 in 𝑀 ;
let us write such a configuration as 𝛽 : 𝑁 → 𝑀 . For example, with 𝑁 = 𝑆1,
we have configuration spaces of loops in 𝑀 .
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Such embeddings or immersions may be parametrized (so that the map
𝛽 itself is the configuration), or unparametrized (so that the image set [𝛽]
of 𝛽 is the configuration; then 𝛽1 ∼ 𝛽2 if they are related by a diffeomor-
phism of 𝑁). For 𝑁 = 𝑆1, we thus have the possibility of parametrized or
unparametrized loops. If 𝑀 is three-dimensional, we also have distinct con-
figuration spaces for different kinds of knots. A prerequisite for the existence
of measures on such spaces that are quasiinvariant under (𝐶∞) diffeomor-
phisms of 𝑀 seems to be that the continuity class of 𝛽 be fixed at a finite
value. To the best of my knowledge, this theory is still incomplete.

4. General configuration spaces may be defined as spaces of closed subsets of
𝑀 , as proposed and developed by Ismagilov; see [28] and references therein.
Note that unparametrized embeddings or immersions of 𝑁 in 𝑀 are special
cases of such closed subsets, while parametrized embeddings or immersions
are not.

5. Still more general configuration spaces may be defined as spaces of count-
able subsets of 𝑀 (without imposing the condition of local finiteness). This
generalizes Γ(∞), in that it allows for infinite-point configurations with accu-
mulation points. It also generalizes Ismagilov’s approach, in that (𝑀 being
separable) a closed subset can be recovered as the closure of many distinct
countable subsets (see [29] and references therein). Parametrized configura-
tions require consideration of ordered countable subsets.

6. Consideration of the coadjoint representation of 𝒦, or of the semidirect prod-
uct group 𝐺 = 𝒟×𝒦, suggests that one construct configuration spaces from
the dual space to the corresponding (infinite-dimensional) Lie algebra – i.e.,
the dual space to the current algebra of compactly-supported scalar func-
tions and vector fields on 𝑀 . Then one needs to introduce a “polarization”
(in the spirit of geometric quantization) in the corresponding coadjoint orbit
or class of orbits, which amounts to selecting certain coordinates as “position-
like” and others as “momentum-like” – with the former defining the quantum
configurations. The additional (symplectic) structure on coadjoint orbits pro-
vides a systematic way to obtain cocycles in this context.

7. Finite or countably infinite subsets of bundles over 𝑀 provide another ap-
proach to configuration spaces. For example, returning to configuration spaces
in 𝒟 ′, derivatives of 𝛿-functions (including higher derivatives) are perfectly
satisfactory configurations, and lead to quantum theories of point-like dipoles,
quadrupoles, etc. [30]. However, these configurations belong not to 𝑀 itself,
but to the jet bundle over 𝑀 , to which the action of diffeomorphisms on 𝑀
lifts naturally.

8. Finally, in the spirit of the approach via bundles over𝑀 , there is a physically
important generalization to what has been termed “marked configuration
spaces.” Here one identifies a compact manifold 𝑆 describing the “internal
degrees of freedom” of a particle, and a compact Lie group 𝐿 that acts on
𝑆. One then associates to each point in an ordinary configuration a value or
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“mark” in 𝑆 [31, 32]. The local symmetry group itself can be correspondingly
enlarged to include compactly supported 𝐶∞ mappings from 𝑀 to 𝐿 under
the pointwise Lie group operation, and/or to include bundle diffeomorphisms
of 𝑀 × 𝑆.

Each of these methods of characterizing quantum configuration spaces has some
significant literature that develops it, and in some instances is associated with
a point of view about quantization or about quantum mechanics. The diffeomor-
phism group approach helps us understand these distinct but overlapping methods
as techniques for the construction of classes of unitary group representations em-
bodying the local symmetry of physical space in the quantum kinematics.

3. Induced representations and particle statistics

Next let us consider briefly the examples of Bose statistics, Fermi statistics, and
parastatistics for 𝑁 indistinguishable particles in R𝑑, 𝑑 ≥ 2, and of anyonic sta-
tistics for 𝑁 (distinguishable or) indistinguishable particles in R2.

The configuration space Γ(𝑁) is the set of𝑁 -point subsets ofR𝑑; we write 𝛾 =
{x1, . . . ,x𝑁} ∈ Γ(𝑁). The space Γ(𝑁) is sometimes written in the more complicated
way [R𝑑𝑁 -𝐷]/𝑆𝑁 ; where R

𝑑𝑁 is the set of ordered 𝑁 -tuples (x1, . . . ,x𝑁 ) of points
in R𝑑, 𝐷 is the “diagonal” set of 𝑁 -tuples for which x𝑖 = x𝑗 for some 𝑖 ∕= 𝑗,

and 𝑆𝑁 is the symmetric group for 𝑁 objects. Thus Γ(𝑁) is the set of ordered
𝑁 -tuples without repeated points, modulo all permutations of the values of the
points. A diffeomorphism 𝜙 acts on Γ(𝑁) by (the right action) 𝛾 = {x1, . . . ,x𝑁} →
𝜙𝛾 = {𝜙(x1), . . . , 𝜙(x𝑁 )}.

Note that for 𝑑 ≥ 2, Γ(𝑁) is multiply connected – indeed, any continuous path
in Γ(𝑁) that begins at a configuration 𝛾0 and non trivially permutes the locations
of the points in 𝛾0 forms a closed loop in the configuration space, based at 𝛾0, that
cannot be continuously contracted to 𝛾0.

First let us consider 𝑑 ≥ 3. The fundamental group 𝜋1(Γ
(𝑁)), which is the

group of distinct homotopy classes of such loops (under composition), is then just
isomorphic to 𝑆𝑁 , according to the particular permutation of the locations of the
points in 𝛾0 implemented by a loop based there. The universal covering space Γ̃(𝑁)

is then the space of ordered 𝑁 -tuples without repeating points; i.e., Γ̃(𝑁) = [R𝑑𝑁 -

𝐷], and we shall write 𝛾 = (x1, . . . ,x𝑁 ) ∈ Γ̃(𝑁). Then we have the projection

𝑝 : Γ̃(𝑁) → Γ(𝑁) from the universal covering space to the base space, given by
𝑝(x1, . . . ,x𝑁 ) = {x1, . . . ,x𝑁}; i.e., 𝑝 tells us to “forget the ordering.” There are,
of course, 𝑁 ! sheets in Γ̃(𝑁) (for 𝑑 ≥ 3), corresponding to the 𝑁 ! elements of the
fundamental group 𝑆𝑁 .

Consider next the action of 𝒦 = Diff0(R
𝑑) on Γ(𝑁). The stability subgroup

𝒦𝛾 ⊂ 𝒦 consists of those compactly-supported diffeomorphisms which leave 𝛾
fixed; i.e., just those which permute the points in 𝛾. Thus 𝒦𝛾 contains 𝑁 ! discon-
nected components, and we obtain a natural homomorphism ℎ𝛾 from 𝒦𝛾 to 𝑆𝑁 .
Referring back to equations (2) and (4), observe that when 𝜙1 and 𝜙2 belong to
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𝒦𝛾 , the cocycle equation at 𝛾 becomes a unitary representation in 𝒲 of 𝒦𝛾 . Thus
we have an association between cocycles describing quantum theories modeled on
R𝑑 (𝑑 ≥ 3) and unitary representations of 𝒦𝛾 . Note too that any unitary repre-
sentation 𝜋 of 𝑆𝑁 in the inner product space𝒲 now gives us a continuous unitary
representation 𝜋 ∘ ℎ𝛾 of 𝒦𝛾 in 𝒲 . Cocycles describing quantum theories of Bose
statistics, Fermi statistics, and parastatistics correspond in this way to inequivalent
representations of 𝑆𝑁 : the trivial (Bose) and alternating (Fermi) one-dimensional
representations (for 𝒲 = ℂ), and additional (para) higher-dimensional represen-
tations described by Young tableaux (with 𝒲 = ℂ𝑛).

The corresponding unitary representations of 𝒟 × 𝒦 can be obtained in a
different way, making use of a generalization of Mackey’s theory of induced rep-
resentations. The action of 𝜙 ∈ 𝒦 on Γ(𝑁) lifts naturally to an action 𝜙 on the
universal covering space Γ̃(𝑁), so that 𝜙(𝑝𝛾) = 𝑝𝜙(𝛾). Diffeomorphisms belonging

to 𝒦𝛾 , in their action on Γ̃
(𝑁), now permute the elements of 𝑝−1𝛾. In the induced

representation approach, the Hilbert space consists of wave functions on Γ̃(𝑁) that
are equivariant with respect to the given unitary representation of the fundamen-
tal group 𝑆𝑁 , and thus with respect to the corresponding unitary representation
of 𝒦𝛾 in its action on Γ̃

(𝑁).

In short, for 𝑑 ≥ 3, we see how the topology of the 𝑁 -particle configura-
tion spaces in R𝑑 gives rise to the possible exchange statistics of indistinguish-
able particles in the representation theory of the group of diffeomorphisms of R𝑑.
Corresponding to the unitary representations of the fundamental group of Δ are
inequivalent cocycles for the action of Diff0(𝑀) on Δ, and different equivariance
conditions for wave functions written on the universal covering space of Δ.

Finally, consider the case 𝑑 = 2. The fundamental group 𝜋1(Γ
(𝑁)(R2)) is

larger than 𝑆𝑁 , because loops based at a configuration 𝛾0 that implement (let
us say) a clockwise exchange of two points of 𝛾0 in R

2 are not homotopically
equivalent to loops that implement a counterclockwise exchange of the same two
points. Here, the fundamental group is Artin’s braid group 𝐵𝑁 , an infinite discrete
group which for 𝑁 > 2 is nonabelian. One may think of the braid group element
𝑏𝑗 , for 𝑗 = 1, . . . , 𝑁 − 1, as exchanging the pair of points x𝑗 ,x𝑗+1 (which are
adjacent with respect to some coordinatization of the plane), in a counterclockwise
direction; the element 𝑏−1

𝑗 then exchanges the same pair of points in a clockwise
direction. The group 𝐵𝑁 is the free group generated by these elements, modulo
the equivalence relation 𝑏𝑗𝑏𝑗+1𝑏𝑗 = 𝑏𝑗+1𝑏𝑗𝑏𝑗+1.

Now the space of ordered 𝑁 -tuples of points in the plane is a covering space
of Γ(𝑁)(R2), but it is no longer the universal covering space; the latter has in-
finitely many sheets. Ultimately wave functions on the universal covering space,
equivariant with respect to a unitary representation of the braid group, define the
Hilbert space for the desired representation of 𝐺.

We omit further details, but close this section by focusing on a key step in
this induced representation construction for anyons, which we shall then indicate
how to generalize to configurations of extended objects. This step is the association
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of the connected components of the stability subgroup 𝒦𝛾 (i.e., the subgroup of
compactly supported diffeomorphisms of the plane that leave fixed the subset of
points 𝛾 = {x1, . . . ,x𝑁}) with elements of the fundamental group 𝐵𝑁 , by means
of a homomorphism ℎ𝛾 .

One way to define this homomorphism, described in Ref. [33], is as fol-
lows. Choose an arbitrary direction in the plane 𝑀 , let us say for specificity the
𝑦-direction with respect to Cartesian coordinate axes 𝑥 and 𝑦, such that for the
points in the configuration 𝛾 no two 𝑥-coordinates coincide. Index the points x𝑗 in
order of increasing 𝑥-coordinate value. Attach to each point in 𝛾 a strand which is
a straight line extending to infinity in the negative 𝑦-direction; the parallel strands
in this set of strands do not intersect. Now a compactly-supported diffeomorphism
𝜙 in the stability subgroup of 𝛾 leaves all of the strands fixed at infinity (be-
cause of the compact support of 𝜙), but can permute their terminal points. Still
more generally, the images of the strands of under 𝜙 constitute a new set of non-
intersecting strands coming in from 𝑦 = −∞ and terminating at the points in 𝛾.
This set of strands may be homotopically inequivalent to the original set, even
when 𝜙(x𝑗) = x𝑗 for all 𝑗; i.e., even when 𝜙 implements no permutation of the
points.

In fact, such sets of strands fall into distinct homotopy classes, encoding the
passages of strands above or below each other (with respect to the coordinate 𝑦)
as one moves in from 𝑦 = −∞ to the points of 𝛾. When no such passage occurs,
we map 𝜙 to the identity element of 𝐵𝑁 . When the only such passage is that the
strand terminating in x𝑗+1 passes once above the strand terminating in x𝑗 , we
map the diffeomorphism to 𝑏𝑗 . In this way, the stability subgroup 𝒦𝛾 is mapped
homomorphically to 𝐵𝑁 .

Then a unitary representation of 𝐵𝑁 in a space 𝒲 immediately implements
a continuous unitary representation of 𝒦𝛾 , which induces the desired represen-
tation of 𝐺. In short, all the needed information about braiding in encoded in
the compactly supported diffeomorphism belonging to the stability subgroup. The
one-dimensional representations of 𝐵𝑁 , in which 𝑏𝑗 is represented by exp 𝑖𝜃, de-
scribe anyons; while the higher-dimensional representations describe nonabelian
anyons.

One draws certain physical inferences immediately from the above construc-
tion.

First, it is not a prerequisite for intermediate statistics in the plane that there
be a hard core potential excluding two or more particles from occupying the same
position in 𝑀 , any more than such a potential is required for ordinary Bose or
Fermi statistics. Diffeomorphisms act transitively on the configuration space Γ(𝑁),
and cannot bring distinct points into coincidence. Thus configuration spaces from
which the diagonal 𝐷 is not excluded may be written as the union of mutually
disjoint orbits under the group action, and the corresponding possible irreducible
unitary representations still include those that are anyonic.

Secondly, it is not a prerequisite for exotic statistics of particles in the plane
that they be indistinguishable. The configuration space of ordered 𝑁 -tuples of
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points in the plane, excluding 𝑁 -tuples with coincident points, is still multiply-
connected. Its fundamental group is the group of “colored braids.” Correspond-
ingly, given such a configuration, the elements 𝜙 of 𝒦 for which 𝜙(x𝑗) = x𝑗 for all 𝑗
form a closed subgroup. Elements of this subgroup map the original set of parallel
strands (from 𝑦 = −∞, terminating at the points x𝑗) to various non-homotopic
sets of strands from 𝑦 = −∞ terminating at the same points.

4. Exotic statistics for extended configurations

The ideas in the preceding sections generalize to consideration of topologically
nontrivial configurations in higher-dimensional physical spaces. Let us consider
just a couple of examples.

Suppose that Δ is a configuration space whose elements are unparametrized
single oriented loops in (for specificity) R3; i.e., a configuration 𝛾 ∈ Δ is a con-
tinuous embedding [𝛽] of 𝑆1 (modulo 𝐶∞ reparametrization) of some smoothness
class, for which (let us say) the arc length in the target space is defined. Diffeomor-
phisms of R3 act on Δ in the obvious way. We remark that we shall not be able to
concentrate a quasiinvariant measure on a single orbit under 𝒦, but will need an
uncountable family of orbits. Nevertheless, we envision being able to infer exotic
statistics by selecting configurations from such a family of orbits in a measurable
way, and describing topological invariants across orbits of the way diffeomorphisms
act on such sets of loops.

For a particular oriented loop 𝛾, consider the stability subgroup 𝒦𝛾 . An
element 𝜙 ∈ 𝒦𝛾 leaves the loop invariant as a set, but not necessarily pointwise.
Thus there is a homomorphism ℎ𝛾 that maps 𝒦 to Diff(𝑆1), with ℎ𝛾(𝜙) specified
straightforwardly by looking at how 𝜙 transforms 𝛾 (parametrized by its own
arc length). A unitary representation of Diff(𝑆1) may then describe the “internal
statistics” of 𝛾. This is, in a sense, analogous to the ordinary statistics of particles
– an equivariance condition for wave functions can be written that depends only
on 𝛾 and 𝜙𝛾.

But 𝜙 encodes still more information. If we introduce a set of continuous, non-
selfintersecting strands that become parallel (say, for specificity, on the surface
of a circular cylinder) in some fixed direction at infinity, and that terminate at
correspondingly ordered points of 𝛾, we see that because 𝜙 is compactly supported,
its action on these strands keeps track of how many times it has, in effect, rotated
the loop. The stability subgroup thus maps not just to Diff(𝑆1), but to a covering
group of Diff(𝑆1). “Bringing the loop in from infinity” (and watching what 𝜙 ∈ 𝒦𝛾

does) tells us how many windings 𝜙 is to be associated with. Diffeomorphisms that
leave every point of 𝛾 fixed still encode the number of rotations, and we have the
possibility of introducing an extra, additional phase for a single directed rotation
of 𝛾. The loop thus can have internal “intermediate statistics.”

If instead of a loop 𝛾 is an embedded torus (the continuous image of 𝑆1×𝑆1)
of some smoothness class, the same idea allows us to associate a pair of winding
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numbers with a compactly-supported diffeomorphism that leave the torus point-
wise fixed. Thus we infer further possibilities for intermediate statistics, associating
distinct phases with each directed rotation.

Next consider a configuration 𝛾 that is the union of a point and an embedded,
oriented loop. Imagine a non-selfintersecting cylindrical membrane from infinity (in
some fixed direction) that is bounded by the loop, and a strand from infinity in
the same direction, intersecting neither itself nor the membrane. Let us say, for
specificity, that at infinity the strand is inside the cylinder, terminating at the
point particle inside the cylinder. Now, consider the image of this strand-cylinder
combination under the action of 𝜙 ∈ 𝒦𝛾 . The image of the strand may now pass
through and around the loop as the image of the membrane is moved to one side,
so that the strand finally reaches the particle from “outside” the membrane. All
such topological complexity takes place within the compact support of 𝜙; outside of
this support, the original strand and cylinder are fixed. We see from the homotopy
class of this image that 𝜙 encodes the net number of times the particle passes
through the oriented loop, and again we can have an arbitrary associated phase.

Finally, consider a configuration 𝛾 that is the union of a pair of oriented loops
in R3; the discussion will readily extend to pairs of closed filaments of vorticity,
vortex rings, or tori. Now we envision two non-intersecting and non-selfintersecting
membranes extending to infinity in a fixed direction, bounded by the respective
loops. Suppose that a compactly-supported diffeomorphism 𝜙 ∈ 𝒦𝛾 exchanges the
loops. The homotopy class of the pair of image membranes is now labeled by the
sequence of passages of one loop through the other. The diffeomorphism encodes
“leapfrogging” as a sequence of such passages. The condition of equivariance of
the wave function on configuration-space with respect to a unitary representation
of 𝒦𝛾 can associate (in particular) a phase with each such passage, leading again
to anyonic statistics.

In conclusion, the idea of describing quantum systems by means of continuous
unitary representations of the infinite-dimensional group 𝐺 = 𝒟 × 𝒦 leads to a
unifying kinematical description of interesting quantum configuration spaces and
associated possibilities for exotic statistics.
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Questions about the structure

Physical theories are usually created by accumulating some fragments of infor-
mation which at the beginning do not allow to predict the final structures. The
classical mechanics was formulated by Isaac Newton in terms of mass, force, accel-
eration and the three dynamical laws. It was not immediate to see the Lagrangians,
Hamilton equations and the simplectic geometry behind. We cannot guess the re-
action of Newton if he were informed that he was just describing the classical
phase spaces defined by the simplectic manifolds. . .

Quite similarly, Max Planck, Niels Bohr, Louis de Broglie, Erwin Schrödinger
and Werner Heisenberg could not see from the very beginning that the physical
facts which they described would be reduced by Born’s statistical interpretation
to the Hilbert space geometry (as it seems, neither Hilbert could predict that).
Yet, once accepted that the pure states of a quantum system can be represented
by vectors of a complex linear space and the expectation values are just qua-
dratic forms, the Hilbert spaces entered irremediably into the quantum theories.
Together appeared the “density matrices” as the mathematical tools representing
either pure or mixed quantum ensembles. Their role is now so commonly accepted
that its origin is somehow lost in some petrified parts of our subconsciousness:
an obligatory element of knowledge which the best university students (and the
future specialists) learn by heart. However, is it indeed necessary? Can indeed the
interference pictures of particle beams limit the fundamental quantum concepts to
vectors in linear spaces and “density matrices”?
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Quantum logic?

The desire to find some deeper reasons led a group of authors to postulate the ex-
istence of an “intrinsic logic” of quantum phenomena, called the quantum logic [1,
2, 3]. Generalizing the classical ideas, it was understood as the collection 𝑄 of all
statements (informations) about a quantum object, possible to check by elemen-
tary “yes-no measurements”. Following the good traditions, 𝑄 should be endowed
with implication (⇒), and negation 𝑎 → 𝑎′. The implication defines the partial
order in 𝑄 (𝑎 ⇒ 𝑏 reinterpreted as 𝑎 ≤ 𝑏), suggesting the next axioms about the
existence of the lowest upper bound 𝑎 ∨ 𝑏 (“or” of the logic) and the greatest
lower bound 𝑎 ∧ 𝑏 (“and” of the logic) for any 𝑎, 𝑏 ∈ 𝑄. The “negation” was as-
sumed to be involutive, 𝑎′′ ≡ 𝑎, satisfying de Morgan law: (𝑎 ∨ 𝑏)′ ≡ 𝑎′ ∧ 𝑏′ as well
as other axioms granting that 𝑄 is an orthocomplemented lattice [1]. Until now,
the whole structure looked quite traditional. With one exception: in contrast to
the classical measurements, the quantum ones do not commute, which traduces
itself into breaking the distributive law (𝑎 ∨ 𝑏) ∧ 𝑐 ≠ (𝑎 ∧ 𝑐) ∨ (𝑏 ∧ 𝑐) obligatory
in any classical logic. The quantum logic was non-Boolean! An intense search for
an axiom which would generalize the distributive law, admitting both classical
and quantum measurements, in agreement with Birkhoff, von Neumann, Finkel-
stein [1, 2, 3] and thanks to the mathematical studies of Varadarajan [4] convinced
C. Piron to propose the weak modularity as the unifying law. To some surprise,
the subsequent theorems [4, 5] exhibit certain natural completeness: the possible
cases of “quantum logic” are exhausted by the Boolean and Hilbertian models, or
by combinations of both. As pointed out by many authors this gives the theoret-
ical physicists some reasonable confidence that the formalism they develop (with
Hilbert spaces, density matrices, etc.) does not overlook something essential, so
there will be no longer need to think too much about abstract foundations.

However, isn’t this confidence a bit too scholastic? It can be noticed that
the general form of quantum theory, since a long time, is the only element of our
knowledge which does not evolve. While the “quantization problem” is formulated
for the existing (or hypothetical) objects of increasing dimension and flexibility
(loops, strings, gauge fields, submanifolds or pseudo-Riemannian spaces, non-linear
gravitons, etc.), the applied quantum structure is always the same rigid Hilbertian
sphere or density matrix insensitive to the natural geometry of the “quantized”
systems. The danger is that (in spite of all “spin foams”) we shall invest a lot
of effort to describe the relativistic space-times in terms of perfectly symmetric,
“crystalline” forms of Hilbert spaces, like rigid bricks covering a curved highway.
Is there any other option?. . .

Convex geometry

The alternatives arise if one decides to describe the statistical theories in terms
of geometrical instead of logical concepts. What is the natural geometry of the
statistical theory? It should describe the pure or mixed particle ensembles (also



Convex Geometry: A Travel to the Limits of Our Knowledge 255

ensembles of multiparticle systems, including the mesoscopic or macroscopic ob-
jects). Suppose that one is not interested in the total number of the ensemble
individuals, but only in their “average properties”. Two ensembles with the same
statistical averages cannot be distinguished by any statistical experiments: we thus
say that they define the same state. Now consider the set 𝑆 of all states for certain
physical objects. Even in absence of any analytic description, there must exist in
𝑆 some simple empirical geometry. Given any two states 𝑥1, 𝑥2 ∈ 𝑆 (corresponding
to certain ensembles E1, E2) and two numbers 𝑝1, 𝑝2 ≥ 0, 𝑝1 + 𝑝2 = 1, consider a
new ensemble E formed by choosing randomly the objects of E1 and E2 with prob-
abilities 𝑝1 and 𝑝2; its state, denoted 𝑥 = 𝑝1𝑥1 + 𝑝2𝑥2 is the mixture of 𝑥1 and 𝑥2

in proportions 𝑝1, 𝑝2. If in turn both 𝑥1, 𝑥2 are mixtures of 𝑦1, 𝑦2 ∈ 𝑆, then some
more information is needed to determine the contents of 𝑦1 and 𝑦2 in 𝑥. It can be
most simply provided by representing 𝑆 as a subset of a certain affine space Γ, so
that 𝑝1𝑥1 + 𝑝2𝑥2 becomes a linear combination. For any two points 𝑥1, 𝑥2 ∈ 𝑆 all
mixtures 𝑝1𝑥1 + 𝑝2𝑥2 (𝑝1, 𝑝2 ≥ 0, 𝑝1 + 𝑝2 = 1) form then the straight line interval
between 𝑥1 and 𝑥2, contained in 𝑆. Hence, 𝑆 is a convex set [6, 7]. To describe the
limiting transitions, Γ must possess a topology and 𝑆 should be closed in Γ.

The information encoded in the convex structure of 𝑆 might seem poor: it tells
only which states are mixtures of which other states (see Figure 1). Yet it turns
out that it contains all essential information about both, logical and statistical
aspects of quantum theory.

x2

x1

y2
1y

mixed

pure

z

pure

pure

S

Figure 1. A convex set in 2D. Supposing that it could represent the
states of some hypothetical ensembles, all border points except the
straight line interval joining 𝑥1 and 𝑦1 would represent the pure states.
All points in the interior are mixed states and do not allow a unique
definition of the pure components. Thus, e.g., the state 𝑧 could be rep-
resented as a mixture of 𝑥1 and 𝑥2 or 𝑦1 and 𝑦2 or in any other way.
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Logic of properties

The boundary of 𝑆 contains some special points 𝑥, which are not nontrivial com-
binations 𝑝1𝑥1+𝑝2𝑥2 with 𝑝1, 𝑝2 > 0 of any two different points 𝑥1 ≠ 𝑥2 of 𝑆. These
points, called extremal, represent the physical ensembles which are not mixtures of
different components, and so are called pure. All subensembles of a pure ensemble
define the same pure state 𝑥, which therefore represents also the quality of each
single ensemble individual.

The convex geometry permits to describe as well more general ensemble prop-
erties which might be attributed to the single individuals. Note that, in general, the
property of ensemble is not shared by the individuals (e.g., a human ensemble can
contain 50% of men and 50% of women, but each individual, in general, has only
one of these qualities). We say that the subset 𝑃 ⊂ 𝑆 defines a property of the single
objects if: 1. it resists mixing, i.e., 𝑦1, 𝑦2 ∈ 𝑃 , 𝑝1, 𝑝2 ≥ 0, 𝑝1+𝑝2 = 1⇒ 𝑝1𝑦1+𝑝2𝑦2 ∈ 𝑃
(meaning that 𝑃 is a convex subset of 𝑆), 2. if the property of mixture is shared
by every mixture components, i.e., 𝑦 ∈ 𝑃 , 𝑦 = 𝑝1𝑦1 + 𝑝2𝑦2, 𝑦1, 𝑦2 ∈ 𝑆, 𝑝1, 𝑝2 > 0 ⇒
𝑦1, 𝑦2 ∈ 𝑃 . The subset 𝑃 ⊂ 𝑆 which satisfies 1. and 2. is called a face of 𝑆. The whole
𝑆 and the empty set ∅ are the improper faces: all other faces are plane fragments
of various dimensionalities on the boundary of 𝑆 (See Figure 2). In particular, each
extremal point of 𝑆 is a one point face. In what follows, we shall be most interested
in the topologically closed faces of 𝑆 representing the “continuous properties” of
the ensemble objects. Further on by faces we shall mean closed faces. Their whole
family P admits a partial ordering ≤ identical with the set theoretical inclusion:
the relation 𝑃1 ≤ 𝑃2 ⇔ 𝑃1 ⊂ 𝑃2 means that the property 𝑃1 ismore restrictive than
𝑃2, or 𝑃1 implies 𝑃2. As easily seen, the intersection of any family of faces is again
a face of 𝑆. Hence, for any two faces 𝑃1, 𝑃2 ⊂ 𝑆 there exists also their smallest up-
per bound, or union 𝑃1∨𝑃2, defined as the intersection of all faces containing both
𝑃1 and 𝑃2. The set P with the partial order ≤ (i.e., implication) and operations
∨, ∧ is thus a complete lattice generalizing the “quantum logic” of the orthodox
quantum mechanics: it might be called the logic of properties. Although it does not
necessarily include negation, but it admits a natural concept of orthogonality [6, 8].

Counters

A natural counterpart of quantum ensembles are the measuring devices and the
simplest such devices are particle counters. By a counter we shall understand
any macroscopic body sensitive (either perfectly or partly) to the presence of
quanta. Our assumption is also, that each counter reacts only to the properties of
each single ensemble individual, without depending on the rest. In mathematical
terms, each counter can be described by a certain functional 𝜙 ∶ 𝑆 → [0,1]. whose
values 𝜙𝑥 for any 𝑥 ∈ 𝑆 mean the fraction of particles in the state 𝑥 detected
by the counter 𝜙. If 𝜙𝑥 = 1, then the counter 𝜙 detects perfectly all 𝑥-particles,
if 0 < 𝜙𝑥 < 1, it overlooks a part, but if 𝜙𝑥 = 0, then 𝜙 is completely blind to
the 𝑥-particles. Moreover, if 𝜙 reacts only to single ensemble individuals, then
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1P
2P

S

Figure 2. “Faces” on the border of 𝑆 represent properties of the single
ensemble individuals. The picture in perspective permits to see that 𝑃1

and 𝑃2 are not orthogonal.

for any mixed state 𝑥 = 𝑝1𝑥1 + 𝑝2𝑥2 it will detect independently both mixture
components: 𝜙𝑥 = 𝑝1𝜙𝑥1 + 𝑝2𝜙𝑥2, meaning that 𝜙 is a linear functional on 𝑆. We
shall assume, that the values of counters permit to distinguish the different points
𝑥 ∈ 𝑆 and moreover, they induce a physically meaningful topology, in which they
are eo ipso continuous. Each continuous, linear functional 𝜙 taking on 𝑆 the values
0 ≤ 𝜙𝑥 ≤ 1 will be called normal. Mathematically, the counters are, therefore, the
normal functionals. To get their geometric image, assume that the surrounding
affine space Γ ⊃ 𝑆 is spanned by 𝑆. Hence, every linear functional 𝜙 on 𝑆 defines
a unique linear functional on Γ which will be denoted by the same symbol 𝜙. If
𝜙 ≡ const. on 𝑆, then 𝜙 ≡ const. on Γ. If not, then the equations 𝜙𝑥 = 𝑐, (𝑐 ∈ ℝ) split
Γ into a continuum of parallel hyperplanes on which 𝜙 accepts distinct constant
values. Due to the linearity, 𝜙 is completely defined by the pair of hyperplanes
on which it takes the values 0 and 1. If 𝜙 is normal, 𝑆 is contained in the closed
belt of space between both planes. The question arises, how ample is the set of
physical counters? Since no restrictions are evident, we shall assume that each
normal functional represents a particle counter which at least in principle can be
constructed. All distinct ways of counting particles can be thus read from the
convex geometry of 𝑆 [8]. They turn out closely related with the collection of
hyperplanes and those are related with faces. Indeed, the hyperplanes 𝜙 = 1 and
𝜙 = 0 of a counter do not cross the interior of 𝑆, but can “touch” its boundary. As
one can easily show, their common parts with the border ∂𝑆 are two “opposite”
faces (properties) of 𝑆, which awake completely different reactions of the counter:
while detecting all particles on one of them, it ignores completely the particles on
the other. Any two faces 𝑃1, 𝑃2, for which there exists at least one, so sharply
discriminating counter, will be called excluding or orthogonal (𝑃1 ⊥ 𝑃2). The
“logic of properties”, therefore, is a lattice with the relations of inclusion (≤) and
exclusion (⊥) though without a unique ortho-complement (since for any 𝑃 ∈ P ,
amongst all elements orthogonal to 𝑃 no greatest one must exist).
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Detection ratios

Apart from orthogonality, the next geometry element of 𝑆 describes the selectivity
limits of quantum measurements. Given a pair of pure states 𝑥, 𝑦 ∈ 𝑆, consider the
family of all counters 𝜙 detecting unmistakeably all particles of the state 𝑥, i.e.,
𝜙𝑥 = 1. Can they ignore completely the particles of the state 𝑦? In general, the
answer is negative. The following lower bound over the counters 𝜙:

𝑦 ∶ 𝑥 = inf𝜙𝑥=1 𝜙𝑦 (1)

called the “detection ratio” [8], if non-vanishing, describes a minimal fraction of 𝑦-
particles which must infiltrate any experiment programmed to detect the 𝑥-state.
The geometric character of this quantity is defined just by convex structure of 𝑆,
which determines the support planes (see Figure 3). The information contained

1

0 z
z’

x

S
y

1
2

𝜒 = 0

𝜒 = 1

Figure 3. The could be convex set 𝑆 for some hypothetical ensembles.
The parallel support lines 𝜒 = 1 and 𝜒 = 0 represent a counter detecting
all 𝑥-particles, blind to 𝑧′-particles, while the lines 𝜙 = 1 and 𝜙 = 0
correspond to another counter, detecting all 𝑥-particles, but the minimal
possible fraction 𝜙𝑦 = 1

2
of the 𝑦-particles. Hence, the detection ratio

𝑦 ∶ 𝑥 = 1
2
.

in (1) might be significantly weaker if the pure state 𝑥 were not exposed, i.e.,
determined completely as the intersection of 𝑆 and at least one support hyperplane.
Such cases do not occur in the orthodox QM, but belong to the general convex set
geometry (see [9, Fig. 12]).

The orthodox geometry

In the orthodox theory the pure states are represented by vectors in a complex,
linear space (an inspiration from the observed interference patterns) and all mea-
sured expectation values are real, quadratic forms of the state vectors 𝜓 (the con-
sequence of Born’s statistical interpretation). The mixed states are the probability
measures on the manifold of pure states (the projective Hilbert sphere). However,
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since the statistical averages are no more than quadratic forms, the ample classes
of probability measures (interpreted as the prescriptions of forming mixtures) are
physically indistinguishable. The faithful representation of the mixed states as
the equivalence classes of probability measures explains the origin of the “density
matrices” [8].

The elements of the convex geometry provide also an alternative interpreta-
tion of the unitary invariants ∣⟨𝜓,𝜑⟩∣2 called currently the “transition probabili-
ties”. In fact if 𝑆 is the convex set of density matrices in a Hilbert space and if
two pure states are represented as 𝑥 = ∣𝜓⟩⟨𝜓∣ and 𝑦 = ∣𝜑⟩⟨𝜑∣ (∥𝜓∥ = ∥𝜑∥ = 1) then
the elementary lemma shows that

∣𝜑⟩⟨𝜑∣ ∶ ∣𝜓⟩⟨𝜓∣ = ∣⟨𝜓,𝜑⟩∣2 (2)

i.e., the commonly used invariant turns out the detection ratio [8], revealing an
additional sense of the “transition probabilities”. In fact, as once noticed by Peter
Bergman, the deepest picture of a physical theory is obtained not so much by
telling what is possible, but rather by “no go principles”, defining what is ruled
out (e.g., the equivalence principle in General Relativity, or the uncertainty prin-
ciple in QM). One such law emerges from the identity (2). Indeed, ∣⟨𝜓,𝜑⟩∣2 not
only defines the fraction of the 𝜑-particles accepted by the 𝜓-filter, but also the
fundamental impossibility of accepting less! Every physical process which leads
to a certain macroscopic effect for all 𝜓-particles, must lead to the same effect

=1=0
circular

circular

S

Figure 4. Multiple experiments justify the representation of the pho-
ton polarization states in form of the 1-qubit (Bloch) sphere in ℝ3. Once
fixed the image, the geometry of 𝑆 determines uniquely the “transition
probabilities” between any pair of pure states. On the figure: the pair
of support planes 𝜙 = 1 and 𝜙 = 0 illustrates the maximally selective
counter which detects all photons in the vertical polarization ↕, but
none in the horizontal ↔. The intermediate values of 𝜙 on the congru-
ence of parallel planes intersecting 𝑆 define the transition probabilities
from all other states to the vertical one ↕.
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at least for the fraction ∣⟨𝜓,𝜑⟩∣2 of 𝜑-particles. The purely geometric nature of
this law, independent of any analytic expression can be best illustrated by the
Bloch sphere of the photon polarization states (see Figure 4) on which the linear
polarizations occupy a great circle (the “equator”), circular polarizations are the
poles, and the remaining surface points are the elliptic polarizations. The interior
of the sphere collects the mixed polarizations, the center 𝜃 representing the com-
plete polarization chaos. The pair of tangent planes 𝜙 = 1 and 𝜙 = 0 represents a
maximally selective counter detecting all photons in the vertical polarization and
rejecting the orthogonal one. The geometry of the sphere 𝑆 determines immedi-
ately the “transition probabilities” between any two pure states without the need
of using the analytic ∣𝜑⟩⟨𝜑∣ representation (thus, e.g., the detection ratio between
any linear and circular polarization is 1/2).

In case of any non-classical ensembles, the geometry of 𝑆 expresses still more
fundamental law about the indistinguishability of quantum mixtures, the phenom-
enon which appears if 𝑆 is not a simplex. Given a mixed ensemble of non-classical
objects, one cannot, in general, retrospect and find out how the mixture has been
prepared. Two mixtures composed of different collections of pure states can be phys-
ically indistinguishable (see also Figure 1).

In the Bloch sphere of polarization states (Figure 4) this effect is exceptionally
simple for the center 𝜃 which can be represented equivalently as a mixture of any
pair of orthogonal linear polarizations, or two opposite circular polarizations or in
any other way:

𝜃 ≡
1

2
↕ +
1

2
↔

≡
1

2
⤡ +

1

2
⤢

≡
1

2
⤾+

1

2
⤿

≡ ⋯⋯

(3)

Hence, once having the mixed state 𝜃 one cannot go back and identify its pure
components: a kind of statistical no go principle making it quite difficult to check
experimentally some semantic curiosities of the existing theory!

Generalized geometries: are they possible?

The structures reported here contain a certain puzzle. It is basically not strange
that the convex geometry is a language of statistical theories. Yet, it was not ex-
pected that the structure of an arbitrary convex set 𝑆 contains the equivalents of
principal quantum mechanical concepts. Their properties are distorted, but their
meaning is similar. Thus, the logic of properties is an analogue of the quantum
logic [1] and the detection ratios are equivalents of the orthodox “transition prob-
abilities”. In many aspect the Hilbertian schemes are distinguished by their maxi-
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mal regularity and almost crystalline symmetry: to each face of 𝑆, (read subspace),
corresponds a unique ortho-complement, etc. Might this resemble the relation be-
tween the Euclidean and Riemannian geometries? If so then could it happen that
in some circumstances the quantum systems could obey the generalized convex
geometry, dissenting from the Hilbertian structure?

In the intents of finding a synthesis of the lattice (“logical”) and probabilistic
interpretations (since J. von Neumann [2]) the statistical aspects, in general, were
subordinated to the assumed structure of the orthocomplemented lattice, and the
answer of the axiomatic approach was always the same: the quantum mechanics
must be exactly as it is. This belief turned even stronger due to the theorem of
Gleason [10], as well as due to the profound and elegant generalizations of the al-
gebraic approaches of Gel’fand and Naimark [11], Haag and Kastler [12], Pool [13],
Araki [14], Haag [15], and other authors, who never resigned from the Hilbert space
representations. Curiously, until today, these convictions find also a strong sup-
port in the well-known book of G. Mackey [16] in which, however, the axiomatic
approach has some self-annihilating aspects: after a laborious presentation of six
axioms on quantum logic L, the seventh axiom tells flatly that the elements of
the logic are closed vector subspaces of a Hilbert space, thus making all previous
axioms redundant! (a short report on this school of axiomatics, see H. Primas [17,
p. 211]). Some opposition is not so surprising. . .

The first descriptions of QM based exclusively on the convex geometry be-
long to G. Ludwig [18], though he adopted axioms in fact limiting the story to
the orthodox scheme. The hypothesis about the possibility of quantum mixtures
obeying non-Hilbertian geometries was formulated by the present author [6, 8],
then by Davies and Lewis [19]. The hypothetical geometries succeeded to awake
both positive and hostile reactions. Roger Penrose at some moment hoped that the
atypical structures might tell something about the nonlinear graviton [20], though
later on he complained [21] that they give a pure statistical interpretation, without
any analytical entity behind (though inversely, the nonlinear graviton of Penrose
is a pure analytical entity without any statistical interpretation!). T.W. Kibble
and S. Randjbar-Daemi followed [8] describing the classical gravity in interaction
with the generalized quantum structure [22]. Some other authors in philosophy of
physics stay firmly on the ground of the orthodox theory. Nonetheless, they don’t
escape objections. While Putnam considers the orthocomplemented structure of
Hilbert spaces the “truth of quantum mechanics” [23] (taking the side of Mackey?),
John Bell and Bill Hallet [24] adopt the generalized design proposed in [6] to show
the weakness of Putnam’s argument. However, the deformed geometries, if real,
must occur in some concrete physical circumstances. Where should we look for
them?

As it seems, the most natural possibility is to look for nonlinear variants
of quantum mechanics. In fact, already some simple nonlinear cases of the Schrö-
dinger’s equation admit non quadratic, positive, absolutely conservative quantities
which could be used to define the probability densities [8]. The quantum mechanics
with logarithmic non-linearity permits to define consistently the reduction of the
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wave packets [25]. Yet, as shown by Haag and Bannier [26], subsequently also
in [27], the nonlinear wave equations lead to high mobility of quantum states,
breaking the quantum impossibility principles.

The most basic difficulty was noticed by N. Gisin, who had shown that if
the linear evolution law of quantum states were amended by adding some non-
linear operations, then the breaking of the mixture indistinguishability would
make possible to read the instantaneous messages between parts of the entan-
gled particle systems [28, 29]. The simplest case would occur in a variant of EPR
experiment for the sequences of photon pairs in the singlet polarization state
∣Ξ⟩ = 1√

2
(∣ ↕⟩∣ ↔⟩ − ∣ ↔⟩∣ ↕⟩) emitted in two opposite directions. According to

the present day theory the polarization measurements on the left photons can pro-
duce at distance (due to the correlation mechanism) any desired mixture (3) of
the right photons (or vice versa). As long as mixtures (3) are indistinguishable,
this does not transmit information. However, if the observer of the right photon
states could cause their nonlinear evolution, he could distinguish the quantum
mixtures (3), thus reading hidden information and reconstructing without delay
the measurements performed by his distant counterpart on the left EPR photons.
So, is the nonlinear QM impossible?

Perhaps, we should not overestimate the axiomatic approaches. What they
usually tell is that we cannot modify just one element of the theory, while leaving
the whole rest intact. If in the last decade of XIX century some excellent axiomati-
cians tried to formulate reasonable axioms defining the space-time structure, they
would prove beyond any doubt that the space-time must be Galilean! Yet, it is not.
The deviations (in our normal conditions) are very small, but rather important. . .

What can be impossible in QM, is to conserve the orthodox representation
of pure states as the “rays” in a complex Hilbert space, together with the tensor
product formalism, and with the unitary background evolution, but to extend it by
adding some nonlinear evolution operations and to expect that the instantaneous
information transfers will be still blocked. However, the whole deduction might be
already overloaded by too many axioms. If the evolution were extended by some
nonlinear operations, then in the first place, we would loose the Hilbert space
orthogonality together with the trace rules for probabilities even without worrying
about the superluminal messages. . .

Returning to the spin or polarization qubits, the possibilities of generalizing
the Hilbertian structures depends not so much on axioms but rather on precise
knowledge of probabilities. If indeed exactly orthodox, then may be, the qubits
can only rigidly rotate. . .

The problems of systems traditionally described by multi- or infinitely-dimen-
sional Hilbert spaces are more difficult. The questions of Hans Primas, perhaps are
still waiting for a good answer: Does quantum mechanics apply to large molecular
systems?. . . Why do so many stationary states not exist? (see [18, pp. 11 and 12]).
Indeed, even the problem of how to create in practice the one particle states
described by arbitrary wave packets deserves systematic studies [30, 31, 32, 33].
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As recently noticed, the non-linear modifications of quantum dynamics in-
stead of just extending the techniques of the state manipulation might introduce
constrains, with the restricted 𝑆 no longer obeying the Hilbertian geometry [34];
an option which might be worth exploring.

All the attempts to see more freedom in quantum structures need some em-
pirical criteria, which would permit to detect the new geometries if they exist. In
case of classical state structures such criteria were found by John Bell, in form
of Bell inequalities expressing the Boolean geometry of the state mixtures. Their
breaking was the sign that the ensembles are non-classical. The problems of quan-
tum ensembles, e.g., whether they indeed obey the Hilbert space geometry, are
significantly more involved. The initiative of our colleagues [9] to describe them
in terms of “apophatic” (forbidden) properties continues indeed the effort of John
Bell on the new theory level. Some interesting cases might be the “cross sections”
of 𝑆, resembling the “constrained QM” discussed in [34], and the projections (the
collapsed 𝑆 caused by deficiency of observables?). Simultaneously, the mathemat-
ical research presented in [7, 9] is an unexpected school of modesty for all of us,
who believed to understand so well the property of nice objects called the “density
matrices”. Now it turns out that we did not even know the properties of the simple
qutrit! Needless to say, should any of the “forbidden properties” be detected for
any statistical ensemble in some physical conditions, this will be the proof that the
theory is at the new conceptual level. Interesting, what about all that will think
the physicists of XXII century?
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Abstract. Using the orthodox Weyl-Wigner-Stratonovich-Cohen (WWSC)
quantization rule we construct a time of arrival operator for a free particle on
the circle. It is shown that this operator is self-adjoint but the careful analysis
of its properties suggests that it cannot represent a ‘physical’ time of arrival
observable. The problem of a time of arrival observable for the ‘waiting screen’
is also considered. A method of avoiding the quantum Zeno effect is proposed
and the positive operator-valued measure (POV-measure) or the generalized
positive operator-valued measure (GPOV-measure) describing quantum time
of arrival observable for the waiting screen are found.
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1. Introduction

We begin with some sentences by St. Augustine taken from his ‘Confessions’ [1]:

What, then, is time? If no one ask of me, I know; if I wish to explain to
him who asks, I know not. (Book 11, chapter XIV)

and

When, therefore, they say that things future are seen, it is not them-
selves, which as yet are not (that is which are future); but their causes
or their signs perhaps are seen, the which already are. Therefore, to
those already beholding them, they are not future, but present, from
which future things conceived in the mind are foretold. (Book 11, chap-
ter XVIII)
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A shadow of these two phrases can be easily recognized in two contemporary
works. One of them, ‘“Time operator”: the challenge persists’ by Bogdan Miel-
nik and Gabino Torres Vega [2] shows essential difficulties with a definition of a
quantum time observable and the authors conclude that: ‘While the future of the
subject is unknown, it becomes clear, that all intents to obtain the time observable
in the orthodox form of a self-adjoint operator (in spite of the best stratagems
to avoid the Pauli theorem [. . . ]) lead to a blind alley. The resulting operators
are typically plagued by some little but persistent difficulties which might look
accidental; besides they all suffer some basic defect which seems common for the
whole family.’ ([2], p. 90)

The main question of the second work ‘The screen problem’ by Bogdan Miel-
nik [3] can be stated as follows: ‘One of the crucial statements of quantum me-
chanics is that the state vector contains complete non contradictory information
about the system’ [3, p. 1128], so Mielnik asks, where is the information about the
time coordinate of the event of absorption of a wave packet by the waiting screen
(see [3, Fig. 1]).

The problem of understanding time or, in particular, time of arrival as a
quantum observable, and not as a parameter only, has a long history and a vast
bibliography which starts with distinguished works by W. Pauli [4], Y. Aharonov
and D. Bohm [5], M. Razavy [6], G.R. Allcock [7], E.P. Wigner [8], J. Kijowski [9],
to mention some of them (see also a nice review of this matter by J.G. Muga and
C.R. Leavens [10]).

Although a big effort has been done to solve the problem, we are still far
from a convincing solution. We have no satisfactory time of arrival operator as it
is very clearly stressed in Ref. [2] and we have no explicit solution of the waiting
screen problem described in Ref. [3].

The aim of the present work is to study these two questions once more. In
Section 2, using the ‘orthodox’ Weyl-Wigner-Stratonovich-Cohen (WWSC) quan-
tization rule we find a time of arrival operator for a free particle on a circle. It is
shown that this operator has nice mathematical properties, namely it is bounded,
self-adjoint and of Hilbert-Schmidt type. However, it cannot be interpreted as the
operator representing the physical time of arrival observable since it is ‘plagued by
some little but persistent difficulties.’ In Section 3 we consider the waiting screen
(detector) problem for a free particle. Using the ‘orthodox’ reduction of state as-
sumption in quantum mechanics and avoiding the quantum Zeno effect we find
a formula for the average time of arrival, which in turn defines the (generalized)
positive operator-valued measure

(
(G)POV-measure

)
.

Our considerations are similar to the ones related to the decoherent histories
approach to quantum mechanics developed by J.J. Halliwell and J.M. Yearsley
[11, 12].

The present paper has, in fact, the form of two variations on the themes given
by Mielnik [3], then Mielnik and Torres Vega [2] and it is an honor and a great
pleasure to dedicate these variations to Bogdan Mielnik on the occasion of his 75th
birthday.
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2. A time of arrival operator on the circle

Consider first a free particle on the 𝑥-axis. If the coordinate of the particle at the
initial moment 𝑡0 = 0 is 𝑥 then the time of arrival of this particle at the point
𝑋 = 0 (screen) in classical mechanics reads

𝑇 = −𝑚
𝑥

𝑝
, (1)

where 𝑚 is the mass of the particle and 𝑝 stands for its momentum. Quantization
of (1) in the symmetric ordering leads to the Aharonov-Bohm time of arrival
operator [5]

𝑇 = −𝑚

2

(
𝑥𝑝−1 + 𝑝−1�̂�

)
= −𝑖

𝑚

ℏ

1√
𝑘

𝑑

𝑑𝑘

1√
𝑘
, 𝑘 =

𝑝

ℏ
(2)

which is maximally symmetric but has no self-adjoint extensions. The natural way
out from that difficulty has been found by N. Grot, C. Rovelli and R.S. Tate
[13], and it consists in an appropriate regularization of the operator (2) in a small
neighborhood of the singular point 𝑘 = 0. Thus one gets the regulated time of
arrival operator

𝑇𝜀 = −𝑖
𝑚

ℏ

√
𝑓𝜀(𝑘)

𝑑

𝑑𝑘

√
𝑓𝜀(𝑘), (3)

where 𝜀 > 0 is an arbitrary small positive number and 𝑓𝜀(𝑘) is a real bounded
continuous function such that

𝑓𝜀(−𝑘) = −𝑓𝜀(𝑘) , 𝑓𝜀(𝑘) =
1

𝑘
for ∣𝑘∣ > 𝜀 , ∀𝑘 ∕=0 𝑓𝜀(𝑘) ∕= 0 (4)

(for instance 𝑓𝜀(𝑘) =
1
𝑘 for ∣𝑘∣ > 𝜀 and 𝑓𝜀(𝑘) =

𝑘
𝜀2 for ∣𝑘∣ < 𝜀). It has been shown

in [13] that 𝑇𝜀 is self-adjoint. This is a very good news. However, there are also
bad news:

(i) J. Oppenheim, B. Reznik andW.G. Unruh [14] have shown that if the particle

is in an eigenstate of 𝑇𝜀 corresponding to some eigenvalue 𝜏 of 𝑇𝜀, then at
the moment 𝜏 , i.e., at the predict time of arrival at the screen this particle
can be detected far away from the screen with probability 1

2

(ii) Eigenstates ∣𝜏,±⟩ (note the degeneration !) of 𝑇𝜀 are not time translation
invariant, i.e.,

exp

{
− 𝑖

ℏ

𝑝2

2𝑚
𝑡

}
∣𝜏,±⟩ ∕= ∣𝜏 − 𝑡,±⟩. (5)

(This is a consequence of Pauli’s theorem [4].)

(iii) Eigenvalues 𝜏 of 𝑇𝜀 can be both positive and negative. It seems that from the
experimental point of view the negative time of arrival, 𝜏 < 0, is questionable
in quantum mechanics.

The above-mentioned points show that one can hardly consider 𝑇𝜀 as a correct
time of arrival operator. Our first idea is to avoid the objection iii.

news:
news:
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To this end we propose to deal with a free particle on the circle. Let −𝜋 <
Θ ≤ 𝜋 denote the angle coordinate of a particle at the moment 𝑡 = 0 on the circle
of radius 𝑟 and let 𝐿 be the angular momentum of the particle. Then the time
of arrival of this particle at the point Θ = 0 (screen) is given by the following
function

𝑇 (Θ, 𝐿) = 𝑚𝑟2 ⋅

⎧⎨⎩
− 2𝜋+Θ

𝐿 for Θ < 0 , 𝐿 < 0

−Θ
𝐿 for Θ > 0 , 𝐿 < 0 or Θ < 0 , 𝐿 > 0

2𝜋−Θ
𝐿 for Θ > 0 , 𝐿 > 0

𝑔(Θ) ≥ 0 for 𝐿 = 0.

(6)

Of course 𝑇 (Θ, 𝐿) describes the first passage time [10].

An arbitrary non negative function 𝑔(Θ) ≥ 0 plays the analogous role as the
function 𝑓𝜀(𝑘) in (3), i.e., 𝑔(Θ) regularizes the classical function 𝑇 (Θ, 𝐿) at the
point 𝐿 = 0.We quantize 𝑇 (Θ, 𝐿) according to the WWSC method [15], [16], [17],
[18]. Thus we arrive at the operator

𝑇(K) =

∞∑
𝑛=−∞

∫ 𝜋

−𝜋
𝑇 (Θ, 𝑛ℏ) Ω̂(K)(Θ, 𝑛)

𝑑Θ

2𝜋
(7)

where Ω̂(K)(Θ, 𝑛) is the generalized Stratonovich-Weyl quantizer, which in the
case of a circle reads [19]–[23]

Ω̂(K)(Θ, 𝑛) =

∞∑
𝑙=−∞

∫ 𝜋

−𝜋
K(𝜎, 𝑙) exp {−𝑖(𝜎𝑛+ 𝑙Θ)} �̂�(𝜎, 𝑙)𝑑𝜎

2𝜋
(8)

with

�̂�(𝜎, 𝑙) = exp

{
− 𝑖

2
𝑙𝜎

}
exp

{
𝑖

ℏ
𝜎�̂�

}
exp
{
𝑖𝑙Θ̂
}

= exp

{
𝑖

2
𝑙𝜎

}
exp
{
𝑖𝑙Θ̂
}
exp

{
𝑖

ℏ
𝜎�̂�

}
=

∞∑
𝑘=−∞

exp

{
𝑖

(
𝑘 +

𝑙

2

)
𝜎

}
∣𝑘 + 𝑙⟩⟨𝑘∣

(9)

where ∣𝑘⟩, 𝑘 = 0,±1, . . . , stands for the normalized eigenvector of �̂�

�̂�∣𝑘⟩ = 𝑘ℏ∣𝑘⟩ , ⟨𝑘∣𝑘′⟩ = 𝛿𝑘𝑘′ . (10)

The kernel function K = K(𝜎, 𝑙), −𝜋 < 𝜎 ≤ 𝜋, 𝑙 ∈ ℤ determines an ordering of
operators. For example if K = 1 then one gets theWeyl ordering, for K = cos

(
𝑙𝜎
2

)
one obtains the symmetric ordering. Therefore, using (7), (8) and (9) with K =
cos
(
𝑙𝜎
2

)
and performing simple but rather tedious manipulations we find the time
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of arrival operator in the symmetric ordering for a free particle on the circle

𝑇𝑆 = 𝑚𝑟2⋅
{
1

2𝑖ℏ

∞∑
𝑗,𝑘=−∞,
𝑗 ∕=0, 𝑘 ∕=0,

𝑗 ∕=𝑘

𝑗 + 𝑘

𝑗𝑘(𝑗 − 𝑘)
∣𝑗⟩⟨𝑘∣+ 𝜋

ℏ

∞∑
𝑘=−∞
𝑘 ∕=0

1

∣𝑘∣ ∣𝑘⟩⟨𝑘∣

+

∞∑
𝑘=−∞,
𝑘 ∕=0

[
1

2𝑖ℏ𝑘2
+
1

4𝜋

∫ 𝜋

−𝜋
𝑔(Θ) exp{−𝑖𝑘Θ}𝑑Θ

]
∣𝑘⟩⟨0∣

+

∞∑
𝑘=−∞,
𝑘 ∕=0

[
− 1

2𝑖ℏ𝑘2
+
1

4𝜋

∫ 𝜋

−𝜋
𝑔(Θ) exp{𝑖𝑘Θ}𝑑Θ

]
∣0⟩⟨𝑘∣

+
1

2𝜋

∫ 𝜋

−𝜋
𝑔(Θ)𝑑Θ∣0⟩⟨0∣

}
.

(11)

One can show that the operator 𝑇𝑆 has nice mathematical properties. It is defined
on the all Hilbert space 𝐿2(𝑆1). Then it is self-adjoint, bounded and of Hilbert-
Schmidt type so it is also a completely continuous (compact) operator. Hence, due

to the Hilbert-Schmidt theorem 𝑇𝑆 can be represented as follows

𝑇𝑆 =
∞∑
𝑘=1

𝜏𝑘∣𝜏𝑘⟩⟨𝜏𝑘∣, (12)

𝜏𝑘 ∈ ℝ ,

∞∑
𝑘=1

𝜏2
𝑘 < ∞ , ⟨𝜏𝑘∣𝜏𝑙⟩ = 𝛿𝑘𝑙 ,

∞∑
𝑘=1

∣𝜏𝑘⟩⟨𝜏𝑘∣ = 1̂.

One can also show that the time of arrival operator in the Weyl ordering has the
same properties. We expect that these properties will be recovered for any time of
arrival operator of a free particle on the circle which is constructed by quantizing
some classical time of arrival function corresponding to the first passage time.

Further analysis of the properties of the time of arrival operator 𝑇𝑆 leads to
the conclusions

(a) 𝑇𝑆 has a discrete spectrum with the accumulation point 0. For every 𝜆 > 0

there exists a finite number of eigenvalues 𝜏𝑘 of 𝑇𝑆 such that ∣𝜏𝑘∣ > 𝜆. The

spectrum of 𝑇𝑆 depends on the mass of the particle, what means, for instance,
that the participants of the Bial̷owieża conference are not able to arrive at
Bial̷owieża at the same time. Moreover, we should consider the ‘clock time’
which appears to be continuous and the arrival time which for a given particle
is discreet.

(b) In general

exp

{
− 𝑖

ℏ
𝑡�̂�

}
∣𝜏𝑘⟩ ≁ ∣𝜏𝑘 − 𝑡⟩ (13)

for any Hamiltonian �̂� , i.e., 𝑇𝑆 is not a time translation invariant (compare
with (5)).
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(c) Numerical (computer) results show that for 𝑔(Θ) = const. ≥ 0 even so the

classical time of arrival function 𝑇 (Θ, 𝑝) ≥ 0 the operator 𝑇𝑆 has positive as
well as negative eigenvalues. The remedy for this could be the definition of

the time of arrival operator
√

𝑇𝑆 (see also [11], [12]). However, this does not
cure the lack of the time translation invariance. Moreover, our preliminary
calculations lead to the arguments analogous to those by J. Oppenheim,
B. Reznik and W.G. Unruh [14], i.e., assuming 𝑔(Θ) = const. ≥ 0, at the
predict time of arrival the particle can be detected far away from the point
Θ = 0 (screen) with considerable probability.

Most likely the statements a–c hold true for any time of arrival operator con-
structed by the WWSC method from a classical time of arrival function for a
free particle on the circle. Although further investigations for an arbitrary 𝑔(Θ)
are needed (we are working on this problem) one can repeat Mielnik’s and Torres
Vega’s words: ‘“Time operator” The challenge persists’.

Moreover, contrary to some suggestions [13], [24] it seems that one cannot
‘forget time’ and that 𝑥 and 𝑡 cannot be treated on equal footing in quantum
mechanics.

3. A waiting screen

Here we deal with a particle in ℝ3 which can be detected by a waiting screen
(detector). We assume that the particle is absorbed (detected) if and only if it falls
into some domain 𝑉 ⊂ ℝ3. Define two projectors

𝐸 :=

∫
𝑉

∣�⃗�⟩𝑑3𝑥⟨�⃗�∣ , �̂�′ = 1̂− 𝐸. (14)

Consider then a time interval [0, 𝑡] and choose the moments of time 0 = 𝑡0 < 𝑡1 <
⋅ ⋅ ⋅ < 𝑡𝑛 = 𝑡. If the initial state of a particle is ∣Φ𝑖𝑛⟩ , ⟨Φ𝑖𝑛∣Φ𝑖𝑛⟩ = 1, and one
assumes the orthodox doctrine of quantum mechanics about a state reduction also
for measurements performed without touching the object, then straightforward
calculations show that the probability P𝑗 , 𝑗 = 0, 1, . . . , 𝑛 of absorption at the
moment 𝑡𝑗 reads

P𝑗 = ⟨Φ𝑖𝑛∣�̂�′ exp
{

𝑖

ℏ
(𝑡1 − 𝑡0)�̂�

}
�̂�′ exp

{
𝑖

ℏ
(𝑡2 − 𝑡1)�̂�

}
⋅ ⋅ ⋅ �̂�′ exp

{
𝑖

ℏ
(𝑡𝑗 − 𝑡𝑗−1)�̂�

}
�̂� exp

{
− 𝑖

ℏ
(𝑡𝑗 − 𝑡𝑗−1)�̂�

}
�̂�′

⋅ ⋅ ⋅ exp
{
− 𝑖

ℏ
(𝑡2 − 𝑡1)�̂�

}
�̂�′ exp

{
− 𝑖

ℏ
(𝑡1 − 𝑡0)�̂�

}
�̂�′∣Φ𝑖𝑛⟩,

(15)

where �̂� is the Hamiltonian (see B. Misra and E.C.G. Sudarshan [25] and [11, 12]).
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Taking 𝑡𝑗 − 𝑡𝑗−1 =
𝑡
𝑛 , 𝑗 = 1, . . . , 𝑛 we obtain

P𝑗 = ⟨Φ𝑖𝑛∣
(
𝐸′ exp

{
𝑖

ℏ

𝑡

𝑛
�̂�

})𝑗
�̂�

(
exp

{
− 𝑖

ℏ

𝑡

𝑛
�̂�

}
�̂�′
)𝑗

∣Φ𝑖𝑛⟩. (16)

If �̂� is self-adjoint and semi-bounded then [25], [26]

lim
𝑛→∞P𝑛 = 0. (17)

This is, of course, the famous quantum Zeno effect which in our case states that if
the particle is not absorbed at the moment 𝑡0 = 0 then it will not be absorbed at
all. To avoid this paradoxical statement one can assume that

(I) �̂�′ is not a projector 1̂ − �̂�. This corresponds to the assumption that there
exists a complex potential [7], [11], −𝑖𝑉0, 𝑉0 > 0, such that

𝐸′ = exp
{
− 𝑖

ℏ

𝑡

𝑛
(−𝑖𝑉0�̂�)

}
= 1̂− �̂� + exp

{
−𝑉0

ℏ

𝑡

𝑛

}
𝐸 ,

𝑉0

ℏ

𝑡

𝑛
≫ 1. (18)

Alternatively one can assume that only a partial state reduction has place when
the measurement without interaction is performed and �̂�′ describes such a partial
state reduction (�̂�′ ⋅ �̂�′ ∕= �̂�′).
(II) Continuous measurement is not allowed and

𝜂 :=
𝑡

𝑛
> 𝜏𝑧 =

(
⟨Φ𝑖𝑛∣�̂�2∣Φ𝑖𝑛⟩ − (⟨Φ𝑖𝑛∣�̂� ∣Φ𝑖𝑛⟩)2

)− 1
2

ℏ (19)

where 𝜏𝑧 is the Zeno time.

Note that Mielnik considers in [3] this last argument as ‘visibly unfair’ (see [3,
p. 1123]). We guess that it is not so unfair if one takes into account that any
measurement device has a specific dead time. The assumption (19) is given also in
[11, 12].

Suppose that
∞∑
𝑗=0

P𝑗 = 1 (20)

where from (16) with (19) we have

P𝑗 = ⟨Φ𝑖𝑛∣
(
�̂�′ exp

{
𝑖

ℏ
𝜂�̂�

})𝑗
�̂�

(
exp

{
− 𝑖

ℏ
𝜂�̂�

}
𝐸′
)𝑗

∣Φ𝑖𝑛⟩. (21)

Then the average time of arrival reads

⟨𝜏⟩ =
∞∑
𝑗=0

𝑗𝜂P𝑗 . (22)

Therefore, one arrives at the conclusion that in the present case quantum time of
arrival is defined by the positive operator-valued measure (POV-measure)

ℕ ∋ 𝑗 �−→
(
�̂�′ exp

{
𝑖

ℏ
𝜂�̂�

})𝑗
�̂�

(
exp

{
− 𝑖

ℏ
𝜂�̂�

}
�̂�′
)𝑗

ℕ = {0, 1, . . .}. (23)
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(About POV-measures see, e.g., [27, 28].) If (20) does not hold, i.e., the particle
can be not absorbed at all then

∑∞
𝑗=0P𝑗 < 1 and the average time of arrival can

be defined as

⟨𝜏⟩ =
∑∞

𝑗=0 𝑗𝜂P𝑗∑∞
𝑗=0P𝑗

(24)

and, consequently, the formula (23) gives now a generalized positive operator-valued
measure (GPOV-measure).

All results given hitherto in this section can be easily generalized on the case
of a particle moving on some submanifold of ℝ3. In particular one can quickly carry
over the last result to the case of a particle on the circle with the waiting screen.
Assuming now that we deal with multiple crossing the screen by the particle we
can state that (20) holds true and, consequently, quantum time of arrival for a
particle on the circle is given by the POV-measure (23).

Finally, according to our considerations, a partial answer to the question
asked by Mielnik in [3] could be the following: The information about the time
coordinate of the event of absorption of a wave packet by the waiting screen is
contained in the formula (22) or, in general, in (24).
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Abstract. It is reported that the phase time of particles which are reflected
by a one-dimensional semi-harmonic well includes a time delay term which
is negative for definite intervals of the incoming energy. In this interval, the
absolute value of the negative time delay becomes larger as the incident energy
becomes smaller. The model is a rectangular well with zero potential energy
at its right and a harmonic-like interaction at its left.
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The time taken by a particle to traverse a given spatial region is one of the most
striking features of quantum theory [1, 2]. In the case of tunneling through a one-
dimensional barrier of height 𝑉0 and width 𝜉, the transmission time of a wave
packet centered at the average total energy 𝐸 = ℏ𝜔 = ℏ2𝑘2/(2𝑚) < 𝑉0 is indepen-
dent of the barrier thickness [3]. Thus, the peak value of the packet propagates with
the effective group velocity 𝑣𝑔 = 𝑑𝜔/𝑑𝑘 = ℏ𝑘/𝑚, which must increase with 𝜉 across
the barrier. Using electromagnetic analogues, superluminal (“anomalously large”)
group velocities have been observed for evanescent modes [4], microwave pulses [5],
and in the tunneling of photons through 1D photonic band gaps [6]. Indeed, this
‘abnormal behavior’ of light [7] has stimulated the designing of high-speed devices
based on the tunneling properties of semiconductors (see, e.g., Chs. 11 and 12 of
Ref. [1]). In the stationary phase approximation [8], the phase time (group delay)

is defined as the energy derivative of the transmission phase 𝜏𝑊 = ℏ 𝑑𝜑
𝑑𝐸 =

1
𝑣𝑔

𝑑𝜑
𝑑𝑘 .

This gives information of the time taken by the peak of the transmitted packet
to appear, measured from the moment the peak of the incident packet strikes a
given barrier. Another well-established notion of time considers the average time
spent by the particles in the barrier. It is called the dwell time and is defined as
the ratio 𝜏𝐷 = 𝑛/𝑗, with 𝑛 the number of particles within the barrier and 𝑗 the
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incident flux [9]. Yet, 𝜏𝑊 and 𝜏𝐷 are not necessarily related with each other; they
are comparable only if the barrier is almost transparent [10].

While the quantum tunneling of rectangular barriers has attracted a lot of
attention in recent years (see, e.g., [11,12] and references quoted therein), the scat-
tering properties of rectangular wells have been underestimated. Quite recently,
however, nonevanescent propagation has been predicted for potential wells [13].
In contradistinction with the tunneling exponential attenuation, the scattering at
quantum wells attenuates the outgoing wave packets only because of the multiple
reflections at the well boundaries. Negative phase times are then expected under
certain conditions of the incident energy and the thickness of the well [13,14], a phe-
nomenon which should be observable for electromagnetic wave propagation [15].
Thereby, rectangular wells may lead to much larger advancements than rectangular
barriers in the context of traversal times [16].

Figure 1. Schematic representation of the one-dimensional semi-
harmonic square well as a function of the dimensionless position 𝑥. The
wave 𝑒−𝑖𝑘𝑥 colliding the well from the right is reflected to give 𝑆𝑒𝑖𝑘𝑥,
with 𝑆 = 𝑒𝑖𝛿 the reflection amplitude and 𝛿(𝐸) the reflection phase
shift.

The purpose of this contribution is to report negative time delay for a one-
dimensional well which reduces the scattering process to the case of purely wave
reflection. The absolute value of this negative time delay becomes larger as the
energy of the incident particle becomes smaller. To begin with, consider the sta-
tionary Schrödinger equation (𝐻−𝐸)𝜓(𝑥) = 0, where 𝑉 (𝑥) is the one-dimensional
potential depicted in Figure 1. This last is a rectangular well in a semi-harmonic
background integrated by zero potential energy (flat potential) to the right and a
harmonic-like potential to the left of the well. Our model corresponds to a system
(the rectangular well) embedded in an environment (the parabolic plus flat poten-
tials), and the issue is the study of the modifications on the physical properties of
the system due to the environment [17]. For instance, the number 𝑁 +1 of bound
states 𝜓𝑛(𝑥), 𝑛 = 0, 1, . . . , 𝑁 , is determined by the area 𝐴 = (𝑎+ 𝑏)𝑉0 of the rect-
angular well. Here, 𝑎+ 𝑏 and −𝑉0 are respectively the width and depth of the well
with 𝑉0 > 0, 𝑎 ≥ 0, and 𝑏 ≥ 0. Once the semi-harmonic background is added, the
number 𝑁 +1 is preserved but the corresponding energies 𝐸0, 𝐸1, . . . , 𝐸𝑁 , are dis-
placed towards the positive threshold. This last property does not depend on the
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geometry of the rectangle; the wells having the same area admit the same number
of bound states. In this context, remark that the wells of unit area 𝑉0 = 𝑎+𝑏 admit
only one bound state and constitute a family of compact support functions which
converge to the delta well in the sense of distribution theory [18]. Then, the single
bound state (dimensionless) energy 𝐸0 = −0.25 of the delta well becomes less
negative 𝐸0 = −0.0797104 in the presence of the semi-harmonic background [17]
(compare with [19]).
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Figure 2. The reflection phase shift 𝛿(𝐸) of a semi-harmonic well of
unit area as a function of the dimensionless energy 𝐸 for the parameters
𝑎 = 𝑏 = 5/2, and 𝑉0 = 1/5. A detail of the behavior of 𝛿(𝐸) for low
energies is shown at the bottom figure.

On the other hand, the isolated resonances of a rectangular well are easily
identified by expressing the transmission amplitude 𝑇 as a superposition of Breit-
Wigner distributions [20]. The center 𝐸𝑟

𝑘 > 0 and width Γ𝑘 of each of these peaks
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𝑎 𝐸𝑎 𝑎 𝐸𝑎

2.5 0.03406092 1.0 0.10100123
2.0 0.05056413 0.5 0.16473112
1.5 0.07205970 0.0 0.45727096

Table 1. The (dimensionless) energy 𝐸𝑎 defining the change of sign in
the time delay for a semi-harmonic well of unit area.

define the resonance complex eigenvalue 𝜖𝑘 = 𝐸𝑟
𝑘 − 𝑖Γ𝑘/2, and induce time delays

in the scattering process [21]. A rapid increasing of the transmission phase is then
expected in the vicinity of the resonance position 𝐸𝑟

𝑘. According to Wigner, the in-
creases of the phase should be balanced by the appropriate decreases [8]. Therefore,
the slope of the transmission phase can be even negative in order to compensate
for the phase increases associated with each of the resonances. This effect is more
important near the energy threshold, below the position of the first Breit-Wigner
peak of 𝑇 [14]. In other words, the negative phase times predicted in [13] are in
complete agreement with the conditions to get at least one isolated resonance in
rectangular wells [14, 20]. If the semi-harmonic environment is activated, all the
scattering states become more excited and their wave functions cancel at 𝑥 = −∞.
As the potential includes neither sources nor shrinks, the probability is conserved
and all the incoming waves are reflected. Then, the reflection phase shift 𝛿(𝐸)
encodes all the information of the scattering process. This phase is depicted in
Figure 2 for a unit area semi-harmonic square well with 𝑎 = 𝑏 = 5/2. Notice the
strong negative slope in the interval of dimensionless energies (0, 0.16208517), so
that negative time delay is expected for wave packets colliding the well from the
right at the appropriate energy.

The straightforward calculation shows that the phase time is given by 𝜏𝑊 =
𝜏𝑝− 𝜏𝐸 , with 𝜏𝑝 = 2𝑎/𝑣𝑔 the classical flight time to traverse a distance 2𝑎, and the
time delay 𝜏𝐸 written in the form

𝜏𝐸 =
1

𝑣𝑔

∂

∂𝑘

[
arctan

(
2𝜙1𝜙2

𝜙2
1 − 𝜙2

2

)]
.

Here the functions 𝜙1 and 𝜙2 are given by

𝜙1 = − 𝑞

2
sin 2𝑞𝑎+

𝜓′

𝜓

∣∣∣∣
𝑥=−𝑎

cos 2𝑞𝑎, 𝜙2 = −𝑘 cos 2𝑞𝑎− 1

𝑞

𝜓′

𝜓

∣∣∣∣
𝑥=−𝑎

sin 2𝑞𝑎,

with

𝜓(𝑥) = 𝑒−𝑥
2/2

[
1𝐹1

(
1− 𝑘2

4
,
1

2
;𝑥2

)
+ 2𝑥

Γ(3−𝑘2

4 )

Γ(1−𝑘2

4 )
1𝐹1

(
3− 𝑘2

4
,
3

2
;𝑥2

)]
,

and 𝑞 =
√
𝑉0 + 𝑘2. The expression 1𝐹1(𝑎, 𝑐; 𝑧) stands for the confluent hypergeo-

metric function.
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Figure 3. Time delay 𝜏𝐸 of a unit area semi-harmonic well for 𝑎 = 0.4
(red curve), 𝑎 = 0.03 (blue curve) and 𝑎 = 0 (black curve). A detail of
the behavior at low energies is shown at the bottom figure.

Figure 3 shows the behavior of the time delay 𝜏𝐸 for some semi-harmonic
wells of unit area but different geometries. Given 𝑎, there is an interval of scat-
tering energies (0, 𝐸𝑎) where 𝜏𝐸 is negative (for definite values see Table 1). In
this interval, the absolute value of the negative time delay becomes larger as the
incident energy becomes smaller. Thus, it is clear the dependence of 𝜏𝐸 on the
energy 𝐸 of the incident particles and on the rectangular well thickness 2𝑎. For
a given value of 𝑎, the maxima of the time delay are localized at the real part
of the resonance eigenvalues 𝜖𝑘 = 𝐸𝑟

𝑘 − 𝑖Γ𝑘/2, as expected. The energies 𝐸𝑟
𝑘 are

displaced to more excited values as 𝑎 → 0. In the very limit 𝑎 = 0, the time delay
changes its sign at the scattering energy 𝐸𝑎=0 = 0.45727096 and oscillates around
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the asymptotic value 𝜋
2 for 𝐸 > 𝐸𝑎=0. It should be pointed out that the interval

of scattering energies (0, 𝐸𝑎=0) is the largest one in which 𝜏𝐸 is negative for any
of the unit area semi-harmonic wells (see Table 1 and Figure 3).

Let us close this contribution with some remarks on the optical analogs ap-
plied in the study of particles passing through a rectangular well [13,15]. Of partic-
ular interest, negative phase times have been confirmed for electromagnetic wave
propagation in waveguides filled with different dielectrics [15]. The negative time
delay 𝜏𝐸 of the semi-harmonic wells could be studied in a similar way by tak-
ing 𝑏 = 0 and 𝑎 ≥ 0. Once the energy baseline of the rectangular well is shifted
by the constant value 𝐸0 = ℏ𝜔0, the cutoff frequency 𝜔0 of the first waveguide
section is defined. Then, waveguide sections with different cutoff frequencies can
be constructed to approximate the parabolic part of the potential by a series of
Riemann rectangles. As a result, the semi-harmonic well can be connected to a
piecewise frequency 𝜔𝑐(𝑥). Following [15], the solution to the propagation problem
(i.e., the Helmholtz equation for 𝜔𝑐) is obtained if the wave functions and the
electromagnetic fields satisfy identical boundary conditions. Further details will
be given elsewhere.
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[20] N. Fernández-Garćıa and O. Rosas-Ortiz, Gamow-Siegert functions and Darboux-
deformed short range potentials, Ann. Phys. 323 (2008) 1397.
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1. Introduction

The dynamics of open quantum systems attracts nowadays increasing attention
[1–3]. It is relevant not only for better understanding of quantum theory but it
is fundamental in various modern applications of quantum mechanics. Since the
system-environment interaction causes dissipation, decay and decoherence it is
clear that dynamics of open systems is fundamental in modern quantum technolo-
gies, such as quantum communication, cryptography and computation [4]. The
usual approach to the dynamics of an open quantum system consists in applying
an appropriate Born-Markov approximation leading to the celebrated quantum
Markov semigroup [5, 6] which neglects all memory effects. However, recent theo-
retical studies and technological progress call for a more refined approach based
on non-Markovian evolution.

Non-Markovian systems appear in many branches of physics, such as quan-
tum optics [1,7], solid state physics, quantum chemistry, and quantum information
processing. Since non-Markovian dynamics modifies monotonic decay of quantum
coherence it turns out that when applied to composite systems it may protect
quantum entanglement for longer time than standard Markovian evolution. It is
therefore not surprising that the non-Markovian dynamics was intensively studied
during last years [8–19].
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In the present paper we perform further analysis of this problem. We analyze
two recently proposed measures of non-Markovianity: one based on the concept of
divisibility of the dynamical map and the other one based on the distinguishability
of quantum states. Let us observe that the evolution of the system living in the
Hilbert space ℋ may be considered as a reduced dynamics of some composed
system living in ℋ⊗ℋR governed by the Hamiltonian 𝐻 . If 𝜔 is a fixed state of
the reservoir then one may define

𝜌𝑡 = trR [𝑒
−𝑖𝐻𝑡(𝜌⊗𝜔)𝑒𝑖𝑡𝐻 ] , (1)

where 𝜌 is an initial state of the system and trR denotes the partial trace over
the reservoir degrees of freedom. The above formula establishes a linear map
Λ𝑡 : ℬ(ℋ)→ℬ(ℋ) such that 𝜌𝑡 = Λ𝑡𝜌. This map may be regarded as a math-
ematical representation of the system evolution. We stress that Λ𝑡 defined by (1)
is completely positive and trace preserving (see Section 2) but it does not possesses
any further special properties. In particular it is not true that Λ𝑡 satisfies so-called
composition law: Λ𝑡+𝑢 = Λ𝑡Λ𝑢 for 𝑡, 𝑢 ≥ 0. Only after suitable approximation the
formula (1) may lead to a Markovian semigroup satisfying composition law.

In this paper we study further properties of the dynamical map Λ𝑡. In par-
ticular we analyze when Λ𝑡 defines a (non)Markovian evolution.

2. Positive linear maps

Let Φ : 𝒜 → ℬ(ℋ) be a linear map from the ℂ∗-algebra𝒜 into the space of bounded
operators in the Hilbert space ℋ. A map Φ is hermitian iff Φ(𝑎∗) = (Φ(𝑎))∗. One
calls Φ a positive map [20] if Φ(𝑎) ≥ 0 for all 𝑎 ≥ 0. Any positive map is necessarily
hermitian. A map Φ is 𝑘-positive if

id𝑘 ⊗Φ :𝑀𝑘⊗𝒜 → 𝑀𝑘⊗ℬ(ℋ) , (2)

is positive. In the above formula id𝑘 denotes the identity map in the algebra of 𝑘×𝑘
complex matrices 𝑀𝑘. Finally, Φ is completely positive (CP) if it is positive for
𝑘 = 1, 2, 3, . . .. Due to the celebrated Stinespring theorem [20] CP maps are fully
characterized: Φ is CP if there exists a Hilbert space 𝒦 and a ∗-homomorphism
𝜋 : 𝒜 → ℬ(𝒦) such that

Φ(𝑎) = 𝑉 𝜋(𝑎)𝑉 † , (3)

for some linear operator 𝑉 : 𝒦 → ℋ. If 𝒜 = ℬ(ℋ′) and both ℋ and ℋ′ are finite-
dimensional, then the Stinespring representation implies the existence of a set of
so-called Kraus operators 𝐾𝛼 : ℋ′ → ℋ such that

Φ(𝑎) =
∑
𝛼

𝐾𝛼𝑎𝐾
†
𝛼 . (4)

Note that Φ is trace preserving if
∑

𝛼 𝐾†
𝛼𝐾𝛼 = 𝕀 (by CPT we denote CP trace

preserving maps). Moreover, Φ is unital, i.e., Φ(𝕀) = 𝕀, if
∑

𝛼 𝐾𝛼𝐾
†
𝛼 = 𝕀 . Interest-

ingly, in spite of considerable effort, the structure of positive maps is rather poorly
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understood. Positive but not CP maps play an important role in entanglement
theory [21]. Recall, that a state 𝜌 ∈ ℬ(ℋ𝐴⊗ℋ𝐵) is separable if

𝜌 =
∑
𝛼

𝑝𝛼 𝜌(𝐴)
𝛼 ⊗ 𝜌(𝐵)

𝛼 , (5)

where 𝑝𝛼 ≥ 0 with
∑

𝛼 𝑝𝛼 = 1, and 𝜌
(𝐴)
𝛼 , 𝜌

(𝐵)
𝛼 are density operators in ℋ𝐴 and

ℋ𝐵, respectively. One proves [21] the following

Proposition 1. A state 𝜌 ∈ ℬ(ℋ𝐴⊗ℋ𝐵) is separable iff (id ⊗Φ)𝜌 ≥ 0 for all
positive maps Φ : ℬ(ℋ𝐵)→ℬ(ℋ𝐴).

Let {𝑒1, . . . , 𝑒𝑛} denote an orthonormal basis in ℋ and introduce ∣𝜓+⟩ =
𝑛−1/2

∑𝑛
𝑖=1 𝑒𝑖⊗ 𝑒𝑖 together with the corresponding projector 𝑃+ = ∣𝜓+⟩⟨𝜓+∣.

Recall that Φ : ℬ(ℋ)→ ℬ(ℋ) is CP if the so-called Choi matrix
𝐶Φ := (id ⊗Φ)𝑃+ , (6)

is semi-positive definite. Now, if Φ is trace preserving then tr𝐶Φ = 1 and Φ is
CPT iff ∣∣𝐶Φ∣∣1 = 1, where ∣∣𝑎∣∣1 = tr ∣𝑎∣ denotes the trace norm. The simplest
example of positive but not CP map is a matrix transposition 𝜏 : 𝑀𝑛→𝑀𝑛 in a
given basis: 𝜏(𝐴) = 𝐴R. One finds for 𝑛 = 2

𝐶𝜏 = (id ⊗ 𝜏)𝑃+ =
1

2

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ , (7)

which is not positive definite and hence 𝜏 being a positive map is not CP. A
positive map Φ is decomposable if

Φ = Φ1 +Φ2 ∘ 𝜏 , (8)

where Φ1 and Φ2 are CP. It was shown by Woronowicz [22] that all positive maps
Φ :𝑀𝑚→𝑀𝑛 with (𝑚,𝑛) given by (2, 2), (2, 3) and (3, 2) are decomposable. It is
not known how to construct positive maps which are not decomposable (see recent
papers [23–25]).

3. Dynamical maps

Consider now a quantum system living in a 𝑛-dimensional Hilbert space ℋ.
Definition 1. By the time evolution of a quantum system we mean a family of
CPT maps Λ𝑡 : ℬ(ℋ)→ ℬ(ℋ) for 𝑡 ≥ 0 such that Λ0 = id.

The simplest example of a dynamical map consists in unitary evolution

Λ𝑡𝜌 := 𝑈𝑡𝜌𝑈
†
𝑡 , (9)

where 𝑈𝑡 = 𝑒−𝑖𝐻𝑡. If 𝜌 represents an initial state then 𝜌𝑡 := Λ𝑡𝜌 defines its time
evolution and it satisfies the standard von-Neumann equation

𝑖�̇�𝑡 = [𝐻, 𝜌𝑡] , 𝜌0 = 𝜌 . (10)
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Actually, unitary dynamics is reversible Λ−1
𝑡 := Λ−𝑡 and hence Λ𝑡 is defined for all

𝑡 ∈ ℝ. Much more sophisticated example is provided by the Markovian semigroup
which generalizes unitary evolution. In this case Λ𝑡 := 𝑒𝐿𝑡, where the generator 𝐿
is defined by

𝐿𝜌 = −𝑖[𝐻, 𝜌] +
1

2

∑
𝛼

(
[𝑉𝛼, 𝜌𝑉

†
𝛼 ] + [𝑉𝛼𝜌, 𝑉

†
𝛼 ]
)

. (11)

In the above formula 𝐻 represents system Hamiltonian and 𝑉𝛼 : ℋ → ℋ is the
collection of arbitrary operators encoding the interaction between the system living
in ℋ and the environment. One proves [5,6] that Λ𝑡 = 𝑒𝐿𝑡 is CPT if and only if 𝐿
is defined by (11). We stress that Λ𝑡 is no longer reversible, i.e., Λ−𝑡 is no longer
CP (unless all 𝑉𝛼 = 0).

Consider a general quantum evolution described by

Λ̇𝑡 = 𝐿𝑡Λ𝑡 , Λ0 = id . (12)

One of the main problems in the theory of open systems dynamics is to characterize
properties of time-dependent generator 𝐿𝑡 which gives rise to a legitimate quantum
dynamics, that is,

Λ𝑡 = T exp

(∫ 𝑡

0

𝐿𝑢𝑑𝑢

)
, (13)

is CPT, where T denotes chronological operator.

4. Markovianity versus divisibility

Definition 2. Dynamical map Λ𝑡 is divisible if

Λ𝑠 = 𝑉𝑡,𝑠 Λ𝑡 , (14)

where the propagators 𝑉𝑡,𝑠 are CPT for all 𝑡 ≥ 𝑠 ≥ 0.
This mathematical property enables one to introduce the notion of Markovianity

Definition 3. Quantum evolution represented by the dynamical map Λ𝑡 is Mar-
kovian if Λ𝑡 is divisible.

It is clear that both unitary dynamics and Markovian semigroup satisfy (14) and
hence they are Markovian. Moreover, 𝑉𝑠,𝑡 = 𝑉𝑠−𝑡 := e(𝑠−𝑡)𝐿. Let us observe that
any dynamical map Λ𝑡 satisfies the following local equation

Λ̇𝑡 = 𝐿𝑡Λ𝑡 , Λ0 = id , (15)

with some time-dependent generator 𝐿𝑡. Knowing Λ𝑡 one formally finds the fol-
lowing formula for the corresponding generator 𝐿𝑡 = Λ̇𝑡Λ

−1
𝑡 , where we assume the

existence of the inverse Λ−1
𝑡 . Note, however, that even if Λ

−1
𝑡 exists it needs not be

CPT. Now, if Λ𝑡 is divisible one obtains the following equation for the propagator

∂𝑡𝑉𝑡,𝑠 = 𝐿𝑡𝑉𝑡,𝑠 , 𝑉𝑠,𝑠 = id . (16)
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One has the following

Theorem 2. 𝑉𝑡,𝑠 is CPT iff 𝐿𝑡 is of the Lindblad form for all 𝑡 ≥ 𝑠.

It shows that Markovian dynamics is fully characterized by the properties of the
corresponding local generator 𝐿𝑡.

𝑉𝑡,𝑠 is CPT iff ∣∣(id ⊗𝑉𝑡,𝑠)𝑃
+∣∣1 = 1. It is shown [17] that the quantity

𝑔(𝑡) = lim
𝜖→0+

∣∣(id ⊗𝑉𝑡+𝜖,𝑡)𝑃
+∣∣1 − 1

𝜖
, (17)

enjoys 𝑔(𝑡) > 0 if and only if the original map Λ𝑡 is indivisible. This formula may
be equivalently rewritten in terms of the local generator 𝐿𝑡:

𝑔(𝑡) = lim
𝜖→0+

∣∣𝑃+ + 𝜖(id ⊗𝐿𝑡)𝑃
+∣∣1 − 1

𝜖
. (18)

Hence one may define the following measure [17]

𝒩 (Λ𝑡) = ℐ
ℐ + 1 , (19)

where ℐ = ∫∞
0

𝑔(𝑡)𝑑𝑡.

Example. Consider the following generator in ℬ(ℂ2):

𝐿𝑡𝜌 =
1

2
𝛾(𝑡)(𝜎3𝜌𝜎3 − 𝜌) , (20)

where 𝜎𝑘 denote Pauli matrices:

𝜎1 =

(
0 1
1 0

)
, 𝜎2 =

(
0 −𝑖
𝑖 0

)
, 𝜎3 =

(
1 0
0 −1

)
.

Note that 𝐿𝑡𝕀 = 𝐿𝑡𝜎3 = 0 and

𝐿𝑡𝜎1 = −𝛾(𝑡)𝜎1 , 𝐿𝑡𝜎2 = −𝛾(𝑡)𝜎2 , (21)

One easily finds for the dynamics

𝜌 =

(
𝜌11 𝜌12

𝜌21 𝜌22

)
−→ 𝜌𝑡 =

(
𝜌11 𝑒−Γ(𝑡)𝜌12

𝑒−Γ(𝑡)𝜌21 𝜌22

)
, (22)

where

Γ(𝑡) :=

∫ 𝑡

0

𝛾(𝑢)𝑑𝑢 . (23)

It is clear that 𝐿𝑡 generates the Markovian semigroup if 𝛾(𝑡) = 𝛾0 > 0. It generates
Markovian dynamics if 𝛾(𝑡) ≥ 0 for all 𝑡 ≥ 0. Finally, 𝐿𝑡 provides legitimate
generator if Γ(𝑡) ≥ 0. Hence, if Γ(𝑡) ≥ 0 but 𝛾(𝑡) attains strictly negative values the
corresponding dynamics is truly non-Markovian. Taking for example 𝛾(𝑡) = 𝛾0 sin 𝑡
one finds Γ(𝑡) = 𝛾0(1−cos 𝑡) ≥ 0. And hence the evolution is non-Markovian (even
periodic, Γ(𝑡+ 2𝜋) = Γ(𝑡)).

This simple example shows that Markovian evolution defines only a special
class of quantum evolution characterized by the special property of 𝐿𝑡. The generic
evolution is non-Markovian and the corresponding properties of 𝐿𝑡 are not known.
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5. Markovianity versus flow of information

Recently, another criterion of non-Markovianity was proposed by Breuer, Laine
and Piilo in [16]. This criterion identifies non-Markovian dynamics with certain
physical features of the system-reservoir interaction. They define non-Markovian
dynamics as a time evolution for the open system characterized by a temporary
flow of information from the environment back into the system. This backflow of
information may manifest itself as an increase in the distinguishability of pairs of
evolving quantum states. Recall, that if Φ : ℬ(ℋ)→ ℬ(ℋ) is a linear positive trace
preserving map then

∣∣Φ𝜌1 − Φ𝜌2∣∣1 ≤ ∣∣𝜌1 − 𝜌2∣∣1 , (24)

for any pair of density operators 𝜌1, 𝜌2 ∈ ℬ(ℋ). It shows that
∣∣Λ𝑡(𝜌1 − 𝜌2)∣∣1 ≤ ∣∣𝜌1 − 𝜌2∣∣1 , (25)

that is, the distinguishability of quantum states 𝐷[𝜌1, 𝜌2] measured by the trace
distance

𝐷[𝜌1, 𝜌2] := ∣∣𝜌1 − 𝜌2∣∣1 , (26)

never increases in time. BLP [16] define the flux of information

𝜎(𝜌1, 𝜌2; 𝑡) :=
𝑑

𝑑𝑡
∣∣Λ𝑡(𝜌1 − 𝜌2)∣∣1 , (27)

to control the time evolution of ∣∣Λ𝑡(𝜌1 − 𝜌2)∣∣1. It is easy to show that for unitary
dynamics 𝜎(𝜌1, 𝜌2; 𝑡) = 0, whereas for the Markovian semigroup 𝜎(𝜌1, 𝜌2; 𝑡) < 0. It
is therefore natural to adopt the following definition [16]: evolution Λ𝑡 is Markovian
iff 𝜎(𝜌1, 𝜌2; 𝑡) ≤ 0 for all pairs of initial states 𝜌1 and 𝜌2, and all 𝑡 ≥ 0.

Now comes the natural question: how these two definitions of Markovianity
are related. It turns out that if Λ𝑡 is divisible then 𝜎(𝜌1, 𝜌2; 𝑡) ≤ 0. However, the
converse is not true. It was shown recently [19] that it is possible to construct a
simple model of quantum dynamics of a 2-level system such that 𝜎(𝜌1, 𝜌2; 𝑡) ≤ 0
but Λ𝑡 is not divisible. However, both approaches to (non)Markovianity may be
easily reconciled [19]: let us define

∣∣Φ∣∣1 := sup
∣∣𝑎∣∣1=1

∣∣Φ(𝑎)∣∣1 , (28)

and so-called diamond norm

∣∣Φ∣∣⋄ := ∣∣ id ⊗Φ∣∣1 . (29)

One proves

Theorem 3. The following conditions are equivalent

1. 𝑉𝑡,𝑠 is CPT, i.e., Λ𝑡 is divisible,
2. 𝑉𝑡,𝑠 satisfies ∣∣(id ⊗𝑉𝑡,𝑠)𝑋 ∣∣1 ≤ ∣∣𝑋 ∣∣1 for 𝑋† = 𝑋 ∈ ℬ(ℋ⊗ℋ),
3. ∣∣𝑉𝑡,𝑠∣∣⋄ = 1.
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Note, that introducing complete information flow

𝜎(𝑋 ; 𝑡) :=
𝑑

𝑑𝑡
∣∣(id ⊗Λ𝑡)𝑋 ∣∣1 , (30)

one has the following

Corollary 4. Λ𝑡 is divisible iff 𝜎(𝑋 ; 𝑡) ≤ 0 for all 𝑋† = 𝑋 ∈ ℬ(ℋ) and 𝑡 ≥ 0.

6. Heisenberg picture

Consider now quantum dynamics in the Heisenberg picture, that is, 𝑎𝑡 := Λ
#
𝑡 𝑎,

where
tr(Λ#

𝑡 𝑎 ⋅ 𝜌) := tr(𝑎 ⋅ Λ𝑡𝜌) . (31)

Note, that Λ𝑡 is CPT iff the dual map Λ
#
𝑡 is unital CP, i.e., Λ

#
𝑡 𝕀 = 𝕀. Recall, that

for any unital positive map Φ one has ∣∣Φ∣∣ = 1, where ∣∣Φ∣∣ = sup∣∣𝑎∣∣=1 ∣∣Φ(𝑎)∣∣ ,
and ∣∣𝑎∣∣ stands for an operator norm in ℬ(ℋ). It shows that Λ#

𝑡 defines a family
of contractions, that is,

∣∣Λ#
𝑡 𝑎∣∣ ≤ ∣∣𝑎∣∣ , (32)

for any 𝑎 ∈ ℬ(ℋ). Now, for Markovian dynamics one has
Proposition 5. If Λ𝑡 is Markovian then

𝑑

𝑑𝑡
∣∣Λ#

𝑡 𝑎∣∣ ≤ 0 , (33)

for any 𝑎 ∈ ℬ(ℋ), and 𝑡 ≥ 0.
Example. Consider once more the generator defined in (20). Note that 𝐿#

𝑡 = 𝐿𝑡.
One has

∣∣Λ𝑡𝜎1∣∣ = ∣∣𝑒−Γ(𝑡)𝜎1∣∣ = 𝑒−Γ(𝑡)∣∣𝜎1∣∣ = 𝑒−Γ(𝑡) , (34)

and hence
𝑑

𝑑𝑡
∣∣Λ𝑡𝜎1∣∣ = −Γ̇(𝑡) = −𝛾(𝑡) , (35)

which shows that Markovianity of Λ𝑡 implies 𝛾(𝑡) ≥ 0.
Let us recall that if Φ : ℬ(ℋ)→ℬ(ℋ) is unital and 2-positive the following Kadison
inequality holds

Φ(𝑎𝑎∗) ≥ Φ(𝑎)Φ(𝑎∗) . (36)

This inequality may be used to characterize Markovian generators. Note, that

Markovian dynamics Λ#
𝑡 satisfies

∂𝑡𝑉
#
𝑡,𝑠 = 𝑉 #

𝑡,𝑠𝐿
#
𝑡 , 𝑉 #

𝑠,𝑠 = id , (37)

where 𝑉 #
𝑡,𝑠 denotes the dual propagator. Now, differentiating the Kadison inequality

𝑉 #
𝑡,𝑠(𝑎𝑎

∗) ≥ 𝑉 #
𝑡,𝑠(𝑎)𝑉

#
𝑡,𝑠(𝑎

∗) , (38)

one finds

𝑉 #
𝑡,𝑠𝐿

#
𝑡 (𝑎𝑎

∗) ≥ 𝑉 #
𝑡,𝑠𝐿

#
𝑡 (𝑎) ⋅ 𝑉 #

𝑡,𝑠(𝑎
∗) + 𝑉 #

𝑡,𝑠(𝑎) ⋅ 𝑉 #
𝑡,𝑠𝐿

#
𝑡 (𝑎

∗) . (39)
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Taking 𝑡 = 𝑠 and using 𝑉 #
𝑡,𝑡 = id one gets

𝐿#
𝑡 (𝑎𝑎

∗) ≥ 𝐿#
𝑡 (𝑎) ⋅ 𝑎∗ + 𝑎 ⋅ 𝐿#

𝑡 (𝑎
∗) . (40)

Definition 4. A hermitian map Ψ : ℬ(ℋ) → ℬ(ℋ) is dissipative iff
Ψ(𝑎𝑎∗) ≥ Ψ(𝑎) ⋅ 𝑎∗ + 𝑎 ⋅Ψ(𝑎∗) ,

for all 𝑎 ∈ ℬ(ℋ). Ψ is completely dissipative if id ⊗Ψ is dissipative.
Actually, there is equivalent formulation of dissipativity of Ψ which generalizes
classical result of Kolmogorov. One proves [5]

Proposition 6. Let {𝑃1, . . . , 𝑃𝑛} be a family of orthogonal projectors 𝑃𝑖𝑃𝑗 = 𝑃𝑖𝛿𝑖𝑗
such that 𝑃1+⋅ ⋅ ⋅+𝑃𝑛 = 𝕀 in the Hilbert space ℋ. A hermitian map Ψ:ℬ(ℋ)→ℬ(ℋ)
is dissipative iff the real matrix 𝐿𝑖𝑗 := tr(𝑃𝑖Ψ(𝑃𝑗)) satisfies the classical Kol-
mogorov conditions:

𝐿𝑖𝑗 ≥ 0 (𝑖 ∕= 𝑗) ,

𝑛∑
𝑖=1

𝐿𝑖𝑗 = 0 ,

for any {𝑃1, . . . , 𝑃𝑛}.
Theorem 7. Λ𝑡 is Markovian iff 𝐿#

𝑡 is completely dissipative.

Corollary 8. If Λ𝑡 is CPT and 𝐿#
𝑡 is not completely dissipative, then Λ𝑡 represents

non-Markovian evolution.

7. Conclusions

We have analyzed the concept of (non)Markovianity of quantum evolution. One
based on the divisibility property of the dynamical map and the other based upon
the distinguishability of quantum states. It turns out that these two criteria do
not coincide. However, they may be easily reconciled [19]. We provided the char-
acterization of Markovian evolution in terms of the corresponding time-dependent
local generator. Both Schrödinger and Heisenberg pictures are analyzed. The pre-
sentation is illustrated by simple example of qubit (2-level system) dynamics.
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1. Introduction

In recent years, there is an increasing interest in the application of non-commut-
ative (NC) geometry to physical problems [1] in solid-state and particle physics [2],
mainly motivated by the idea of a strong connection of non-commutativity with
field and string theories. Besides, the evidence coming from the latter and other
approaches to the issues of quantum gravity suggests that attempts to unify gravity
and quantum mechanics could ultimately lead to a non-commutative geometry
of spacetime. The phase space of ordinary quantum mechanics is a well-known
example of non-commuting space [3]. The momenta of a system in the presence of a
magnetic field are non-commuting operators as well. Since the non-commutativity
between spatial and time coordinates may lead to some problems with unitarity
and causality, usually only spatial non-commutativity is considered. Besides, so far
quantum theory on the NC space has been extensively studied, the main approach
is based on the Weyl-Moyal correspondence which amounts to replacing the usual
product by a ★-product in the NC space. Therefore, deformation quantization has
special significance in the study of physical systems on the NC space. Moreover, the
problem of quantum mechanics on NC spaces can be understood in the framework
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of deformation quantization [4, 5]. In the same vein, some works on harmonic
oscillators (ho) in the NC space from the point of view of deformation quantization
have been reported in [6, 7] and references therein.

In this paper, we consider different representations of a harmonic oscillator
in a general full non-commutative phase space with both the spatial and mo-
mentum coordinates being non-commutative. Indeed, non-commutativity between
momenta arises naturally as a consequence of non-commutativity between coor-
dinates, as momenta are defined to be the partial derivatives of the action with
respect to the non-commutative coordinates. This work continues the investiga-
tions stated in [6, 8] and [9] devoted to the study of a quantum exactly solvable
𝐷-dimensional NC oscillator with quasi-harmonic behavior. We intend to extend
previous results presenting a similar analysis to the quantum version of the two-
dimensional NC system with non-vanishing momentum components. For addi-
tional details on the motivation, see [6]. The physical model resembles the Landau
problem in NC quantum mechanics extensively studied in the literature. See [10]
and [11] and references therein for more details. Broadly put, it is worth noticing
that the description of a system of a two-dimensional ho in a full 2D NC phase
space is equivalent to that of the same ho in a constant magnetic field in some NC
space.

2. Deformation Quantization (DQ) in NC phase space

Consider a 2𝐷 general NC phase space. The coordinates of position and mo-
mentum, 𝑥 = (𝑥1, 𝑥2) and 𝑝 = (𝑝1, 𝑝2), modeling the classical system of a two-
dimensional ho maps into their respective quantum operators �̂� and 𝑝 giving rise
to the Hamiltonian operator

�̂� =
1

2

(
𝑝𝜇𝑝

𝜇 + 𝑥𝜇𝑥
𝜇
)

(1)

with commutation relations

[�̂�𝜇, 𝑝𝜈 ] = 𝑖ℏeff𝛿
𝜇𝜈 , [�̂�𝜇, 𝑥𝜈 ] = 𝑖Θ𝜇𝜈 , [𝑝𝜇, 𝑝𝜈 ] = 𝑖Θ̄𝜇𝜈 , 𝜇, 𝜈 = 1, 2 (2)

where Θ𝜇𝜈 and Θ̄𝜇𝜈 are skew-symmetric tensors carrying the dimensions of
(length)2 and (momentum)2, respectively. The effective Planck constant is given by

ℏeff = ℏ
(
1 +

Θ𝜇𝜈Θ̄𝜇𝜈

4𝐷ℏ2

)
, (3)

where 𝐷 = 2 is the dimension of the NC space. The operators �̂�𝜇 and 𝑝𝜈 can be
rewritten as

𝑝𝜇 = �̂�𝜇 +
1

2ℏ
Θ̄𝜇𝜈𝑞𝜈 , 𝑥𝜇 = 𝑞𝜇 − 1

2ℏ
Θ𝜇𝜈 �̂�𝜈 (4)

in terms of �̂�𝜇 and 𝑞𝜈 that obey the standard Weyl-Heisenberg algebra

[𝑞𝜇, �̂�𝜈 ] = 𝑖ℏ𝛿𝜇𝜈 ; [𝑞𝜇, 𝑞𝜈 ] = 0 = [�̂�𝜇, �̂�𝜈 ]. (5)

In the deformation quantization theory of a classical system in the non-
commutative space, one treats (𝑥, 𝑝) and their functions as classical quantities,
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but replaces the ordinary product between these functions by the following gener-
alized ★-product:

★ = ★ℏeff
★Θ ★Θ̄ (6)

= exp
[ 𝑖ℏeff

2

(←−
∂ 𝑥𝜇

−→
∂ 𝑝𝜇 −←−

∂ 𝑝𝜇
−→
∂ 𝑥𝜇

)
+

𝑖Θ𝜇𝜈

2

←−
∂ 𝑥𝜇

−→
∂ 𝑥𝜈 +

𝑖Θ̄𝜇𝜈

2

←−
∂ 𝑝𝜇

−→
∂ 𝑝𝜈

]
.

The variables 𝑥𝜇, 𝑝𝜇 on the NC phase space satisfy the following commutation
relations similar to (2):

[𝑥𝜇, 𝑝𝜈 ]★ = 𝑖ℏeff𝛿
𝜇𝜈 , [𝑥𝜇, 𝑥𝜈 ]★ = 𝑖Θ𝜇𝜈 , [𝑝𝜇, 𝑝𝜈 ]★ = 𝑖Θ̄𝜇𝜈 𝜇, 𝜈 = 1, 2 (7)

with the following uncertainty relations:

Δ𝑥1Δ𝑥2 ≥ Θ

2
Δ𝑝1Δ𝑝2 ≥ Θ̄

2
(8)

Δ𝑥1Δ𝑝1 ≥ ℏeff

2
Δ𝑥2Δ𝑝2 ≥ ℏeff

2
. (9)

The first two uncertainty relations show that measurements of positions and mo-
menta in both directions 𝑥1 and 𝑥2 are not independent. Taking into account
the fact that Θ and Θ̄ have dimensions of (length)2 and (momentum)2 respec-

tively, then
√
Θ and

√
Θ̄ define fundamental scales of length and momentum which

characterize the minimum uncertainties possible to achieve in measuring these
quantities. One expects these fundamental scales to be related to the scale of the
underlying field theory (possible the string scale), and thus to appear as small
corrections at the low-energy level or quantum mechanics. Commonly, the time
evolution function for a time-independent Hamiltonian 𝐻 of a system is described

by the ★-exponential function denoted here by 𝑒
(.)
★ :

𝑒
𝐻𝑡
𝑖ℏeff
★ :=

∞∑
𝑛=0

1

𝑛!

( 𝑡

𝑖ℏeff

)𝑛 n times︷ ︸︸ ︷
𝐻 ★ 𝐻 ★ ⋅ ⋅ ⋅ ★ 𝐻, (10)

which is the solution of the following time-dependent Schrödinger equation

𝑖ℏeff
𝑑

𝑑𝑥
𝑒

𝐻𝑡
𝑖ℏeff
★ = 𝐻(𝑥, 𝑝) ★ 𝑒

𝐻𝑡
𝑖ℏeff
★ (11)

= 𝐻
(
𝑥𝜇 +

𝑖ℏeff

2
∂𝑝𝜇 +

𝑖Θ𝜇𝜌

2
∂𝑥𝜌 , 𝑝

𝜈 − 𝑖ℏeff

2
∂𝑥𝜈 +

𝑖Θ̄𝜇𝜎

2
∂𝑥𝜎
)
𝑒

𝐻𝑡
𝑖ℏeff
★ .

There corresponds the generalized ★-eigenvalue time-independent Schrödinger
equation:

𝐻 ★𝒲𝑛 =𝒲𝑛 ★ 𝐻 = ℰ𝑛𝒲𝑛 (12)

where 𝒲𝑛 and ℰ𝑛 stand for the Wigner function and the corresponding energy
eigenvalue of the system. The Fourier-Dirichlet expansion for the time-evolution
function defined as

𝑒
𝐻𝑡
𝑖ℏeff
★ =

∞∑
𝑛=0

𝑒
−𝑖ℰ𝑛𝑡
ℏeff 𝒲𝑛 (13)

links the Wigner function to the ★-exponential function.

Deformation Quantization of a Harmonic Oscillator
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Provided the above, the operators on a NC Hilbert space can be represented
by the functions on a NC phase space, where the operator product is replaced by
relevant star-product. The algebra of functions of such non-commuting coordinates
can be replaced by the algebra of functions on ordinary spacetime, equipped with
a NC star-product. So, considering the transformations (4) and leaving out the
operator symbol ,̂ we arrive at (𝑞, 𝜋) phase space and the commutation relations
change into (5), with the star-product defined in the following way.

Definition 1. Let 𝐶∞(ℝ4) be the space of smooth functions 𝑓 : ℝ4 → ℂ. For
𝑓, 𝑔 ∈ 𝐶∞(ℝ4), the formal star product is defined by

𝑓 ★ 𝑔 = 𝑓 exp
[ 𝑖ℏ
2

←−
∂ 𝜇𝐽

𝜇𝜈−→∂ 𝜈

]
𝑔. (14)

Here the smooth functions 𝑓 and 𝑔 depend on the real variables 𝑞1, 𝑞2, 𝜋1 and 𝜋2,
and

←−
∂ 𝜇𝐽

𝜇𝜈−→∂ 𝜈 =

( ←−
∂

∂𝑞1
,

←−
∂

∂𝜋1
,

←−
∂

∂𝑞2
,

←−
∂

∂𝜋2

)⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝

−→
∂
∂𝑞1−→
∂

∂𝜋1−→
∂
∂𝑞2−→
∂

∂𝜋2

⎞⎟⎟⎟⎟⎠
=

←−
∂

∂𝑞1

−→
∂

∂𝜋1
−

←−
∂

∂𝜋1

−→
∂

∂𝑞1
+

←−
∂

∂𝑞2

−→
∂

∂𝜋2
−

←−
∂

∂𝜋2

−→
∂

∂𝑞2
.

(15)

Therefore, the star product 𝑓 ★ 𝑔 represents a deformation of the classical
product 𝑓𝑔. This deformation depends on the Planck constant ℏ. In terms of
physics, the difference 𝑓 ★ 𝑔 − 𝑓𝑔 describes quantum fluctuation depending on ℏ.
For the present case,

𝑞𝜇★𝜋𝜈−𝑞𝜇𝜋𝜈 =
𝑖ℏ

2
𝛿𝜇𝜈 , 𝜋𝜈 ★𝑞𝜇−𝜋𝜈𝑞𝜇 = − 𝑖ℏ

2
𝛿𝜇𝜈 . Hence [𝑞𝜇, 𝜋𝜈 ]★ = 𝑖ℏ𝛿𝜇𝜈 . (16)

Let us examine now the ho eigenvalue equation in different representations.

2.1. Harmonic oscillator eigenvalue equation in annihilation
and creation operator representation

Building, in the standard manner, the creation and annihilation operators of ho
system as

𝑎𝑙 =
𝑞𝑙 + 𝑖𝜋𝑙√

2
�̄�𝑙 =

𝑞𝑙 − 𝑖𝜋𝑙√
2

𝑙 = 1, 2 (17)

and using the polar coordinates such that

𝑞𝑙 = 𝜌𝑙 cos𝜑𝑙, 𝜋𝑙 = 𝜌𝑙 sin𝜑𝑙, (18)

we solve the right and left eigenvalue equations

𝑎𝑙 ★ 𝑓𝑚𝑛 =
√
𝑚ℏ𝑓𝑚−1,𝑛 �̄�𝑙 ★ 𝑓𝑚𝑛 =

√
(𝑚+ 1)ℏ𝑓𝑚+1,𝑛

𝑓𝑚𝑛 ★ 𝑎𝑙 =
√
(𝑛+ 1)ℏ𝑓𝑚,𝑛+1 𝑓𝑚𝑛 ★ �̄�𝑙 =

√
𝑛ℏ𝑓𝑚,𝑛−1

(19)
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to find the eigenfunctions 𝑓𝑚𝑛 as

𝑓𝑚𝑛 ≡ 2(−1)𝑚
√

𝑚!

𝑛!
𝑒𝑖(𝑛−𝑚)𝜑𝑙

(2𝜌2
𝑙

ℏ

)𝑛−𝑚
2

𝐿𝑛−𝑚
𝑚

(2𝜌2
𝑙

ℏ

)
𝑒−

𝜌2𝑙
ℏ , 𝑚, 𝑛 ∈ ℕ (20)

with
𝑓00 = 2𝑒

−𝜌2𝑙 /ℏ. (21)

𝐿𝑛−𝑚
𝑚 are the generalized Laguerre polynomials defined for 𝑛 = 0, 1, 2, . . . , 𝛼 > 1,
by

𝐿𝛼
𝑛(𝑥) =

1

𝑛!
𝑒𝑥𝑥−𝛼

𝑑𝑛

𝑑𝑥𝑛
(𝑥𝑛+𝛼𝑒−𝑥) =

𝑛∑
𝑘=0

Γ(𝑛+ 𝛼+ 1)

Γ(𝑘 + 𝛼+ 1)

(−𝑥)𝑘

𝑘!(𝑛− 𝑘)!
. (22)

Then the states defined by 𝑏
(4)
𝑚𝑛 = 𝑓𝑚1𝑛1𝑓𝑚2𝑛2 , where 𝑚 = (𝑚1,𝑚2), 𝑛 = (𝑛1, 𝑛2),

𝑚1,𝑚2, 𝑛1, 𝑛2 ∈ ℕ, exactly solve the right and left eigenvalue problems of the
Hamiltonian 𝐻0 =

∑2
𝑙=1 �̄�𝑙𝑎𝑙 as

𝐻0 ★ 𝑏(4)
𝑚𝑛 = ℏ(∣𝑚∣+ 1)𝑏(4)

𝑚𝑛 and 𝑏(4)
𝑚𝑛 ★ 𝐻0 = ℏ(∣𝑛∣+ 1)𝑏(4)

𝑚𝑛 (23)

where ∣𝑚∣ = 𝑚1 +𝑚2.

2.2. Harmonic oscillator eigenvalue equation in (𝒒, 𝝅)-representation

Now, consider the Hamiltonian (1) and use the relation (5) to re-express it with
the help of variables 𝑞 and 𝜋 as follows:

𝐻 = 𝐻0 +𝐻𝐿 +𝐻𝑞(Θ̄) +𝐻𝜋(Θ) (24)

where

𝐻0 =
1

2

(
(𝑞1)2 + (𝑞2)2 + (𝜋1)2 + (𝜋2)2

)
(25)

𝐻𝐿 = −Θ+ Θ̄
2ℏ

−→𝑞 ∧ −→𝜋 −→𝑞 ∧ −→𝜋 = 𝑞1𝜋2 − 𝑞2𝜋1 (26)

and

𝐻𝑞(Θ̄) =
Θ̄2

8ℏ2

(
(𝑞1)2 + (𝑞2)2

)
𝐻𝜋(Θ) =

Θ2

8ℏ2

(
(𝜋1)2 + (𝜋2)2

)
. (27)

It is a matter of computation to verify that the Hamiltonians 𝐻0 and 𝐻𝐿 ★-
commute. Idem for the Hamiltonians 𝐻𝐿 and 𝐻𝐼 = 𝐻𝑞(Θ̄)+𝐻𝜋(Θ). Therefore, the
Hamiltonians of family {𝐻0, 𝐻𝐿}, (respectively {𝐻𝐿, 𝐻𝐼}) can be simultaneously
measured. There follow two relevant situations.

2.2.1. Case Θ = −Θ̄. The Hamiltonian 𝐻 can be expressed as

𝐻 =
(
1 +

Θ2

4ℏ2

)
𝐻0 (28)

and the states 𝑏
(4)
𝑚𝑛 solve the right and left eigenvalue problems of 𝐻 as

𝐻 ★ 𝑏(4)
𝑚𝑛 = ℰ𝑅𝑚0𝑏

(4)
𝑚𝑛 ℰ𝑅𝑚0 = ℏ

(
1 +
(
Θ2/4ℏ2

))
(∣𝑚∣+ 1) (29)

and

𝑏(4)
𝑚𝑛 ★ 𝐻 = ℰ𝐿0𝑛𝑏(4)

𝑚𝑛 ℰ𝐿0𝑛 = ℏ
(
1 +
(
Θ2/4ℏ2

))
(∣𝑛∣+ 1) (30)

where 𝑚 = (𝑚1,𝑚2), 𝑛 = (𝑛1, 𝑛2), 𝑚1,𝑚2, 𝑛1, 𝑛2 ∈ ℕ, ∣𝑚∣ = 𝑚1 +𝑚2.

Deformation Quantization of a Harmonic Oscillator
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2.2.2. Case Θ = Θ̄. The Hamiltonian 𝐻 can be rewritten as

𝐻 =
(
1 +

Θ2

4ℏ2

)
𝐻0 − Θ

ℏ
−→𝑞 ∧ −→𝜋 . (31)

The eigenvectors of 𝐻0 and 𝐻𝐿 are eigenvectors of 𝐻, (as they commute each with
other), with eigenvalues

ℰ𝑅𝑚𝑛 = ℏ
(
1 +

Θ2

4ℏ2

)
(∣𝑚∣+ 1)− (∣𝑛∣ − ∣𝑚∣)Θ (32)

and

ℰ𝐿𝑚𝑛 = ℏ
(
1 +

Θ2

4ℏ2

)
(∣𝑛∣+ 1)− (∣𝑚∣ − ∣𝑛∣)Θ (33)

corresponding to the right and left eigenvalue equations

𝐻 ★ 𝑏(4)
𝑚𝑛 = ℰ𝑅𝑚𝑛𝑏

(4)
𝑚𝑛 (34)

and
𝑏(4)
𝑚𝑛 ★ 𝐻 = ℰ𝐿𝑚𝑛𝑏

(4)
𝑚𝑛. (35)

2.3. Harmonic oscillator eigenvalue equation in a general (𝒒, 𝝅)-representation

The problem to be solved is equivalent to that of a two-dimensional Landau prob-
lem in a symmetric gauge on a non-commutative space. Indeed, the Hamiltonian
H can be re-transcribed as

𝐻 =
𝛼2

2

(
(𝑞1)2 + (𝑞2)2

)
+

𝛽2

2

(
(𝜋1)2 + (𝜋2)2

)
− 𝛾−→𝑞 ∧−→𝜋 =: 𝐻♮

0 +𝐻𝐿 (36)

where

𝛼2 = 1+
Θ̄2

4ℏ2
, 𝛽2 = 1 +

Θ2

4ℏ2
, 𝛾 =

Θ+ Θ̄

2ℏ
(37)

Remark that the Hamiltonian terms𝐻♮
0 and𝐻𝐿 commute. Therefore, the eigenvec-

tors of {𝐻♮
0, 𝐻𝐿} are automatically eigenvectors of 𝐻 . As matter of convenience,

to solve the Schrödinger eigen-equation, let us choose the polar coordinates

𝑞1 = 𝜌 cos𝜑 𝑞2 = 𝜌 sin𝜑 (38)

and assume the variable separability to write

𝑓(𝜌, 𝜑) = 𝜉(𝜌)𝑒𝑖𝑘𝜑, 𝑘 = 0,±1,±2, ⋅ ⋅ ⋅ (39)

Then, from the static Schrödinger equation on NC space, 𝐻 ★ 𝑓(𝜌, 𝜑) = ℰ𝑓(𝜌, 𝜑),
we deduce the radial equation as follows:[

− ℏ2𝛽2

2

( ∂2

∂𝜌2
+
1

𝜌

∂

∂𝜌

)
+

𝛼2

2
𝜌2 − 𝛾ℏ𝑘

]
𝜉(𝜌, 𝜑) = ℰ𝜉(𝜌, 𝜑) (40)

yielding the spectrum of 𝐻 under the form

ℰ = ℏ
𝛼2

𝛽2
(𝑛+ 1)− ℏ𝛾𝑘, 𝑛 = 0, 1, 2, . . . (41)

with

𝜉(𝜌, 𝜑) ∝ 𝑒−
𝛼
ℏ𝛽 𝜌

2

𝐻𝑛

(
𝛼

ℏ𝛽
𝜌2

)
. (42)
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The last term of the energy spectrum ℰ falls down when 𝛾 = 0, i.e., Θ = −Θ̄.
In this case, 𝛼2 = 𝛽2 and we recover the discrete spectrum of the usual two-
dimensional harmonic oscillator as expected. The results obtained here can be
reduced to specific expressions reported in the literature [6] for particular cases.
Besides, the formalism displayed in this work permits to avoid the appearance
of infinite degeneracy of states observed when ℏ2

eff − ΘΘ̄ = 0 in [10] where the
phase space is divided into two phases based on the following conditions on the
deformation parameters:

∙ Phase I for ℏ2
eff −ΘΘ̄ > 0

∙ Phase II for ℏ2
eff −ΘΘ̄ < 0.

Finally, let us mention that the direct computation of the energy spectrum from
the relation (24) instead of (36) introduces an unexpectable feature, i.e., the energy
spectrum depends on the phase space variables as it should not be with respect
to the study performed in [11]. Such a pathology is generated by the phase space
variable dependence of the commutator

[𝐻0, 𝐻𝐼 ]★ = 𝑖
Θ2 − Θ̄2

4ℏ
(𝑞1𝜋1 + 𝑞2𝜋2). (43)

This could explain why previous investigations (see [6], [12] and [13] and references
therein) were restricted to the cases Θ = ±Θ̄.
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Uniqueness Property for 𝑪∗-algebras Given
by Relations with Circular Symmetry

B.K. Kwaśniewski

Abstract. A general method of investigation of the uniqueness property for
𝐶∗-algebra equipped with a circle gauge action is discussed. It unifies isomor-
phism theorems for various crossed products and Cuntz-Krieger uniqueness
theorem for Cuntz-Krieger algebras.
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1. Introduction

The origins of 𝐶∗-theory and particularly the theory of universal 𝐶∗-algebras gen-
erated by operators that satisfy prescribed relations go back to the work of W.
Heisenberg, M. Bohr and P. Jordan on matrix formulation of quantum mechan-
ics, and among the most stimulating examples are algebras generated by anti-
commutation relations and canonical commutation relations (in the Weyl form).
The great advantage of relations of CAR and CCR type is uniqueness of rep-
resentation. Namely, due to the celebrated Slawny’s theorem, see, e.g., [1], the
𝐶∗-algebras generated by such relations are defined uniquely up to isomorphisms
preserving the generators and relations. This uniqueness property is not only a
strong mathematical tool but also has a significant physical meaning – if we had
no such uniqueness, different representations would yield different physics.

The aim of the present note is to advertise a program of developing a general
approach to investigation of uniqueness property and related problems based on
exploring the symmetries of relations. We focus here, as a first attempt, on circular
symmetries and propose a two-step method of investigation universal 𝐶∗-algebra
𝐶∗(𝒢,ℛ) generated by a set of generators 𝒢 subject to relations ℛ which could be
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schematically presented as follows:

(𝒢,ℛ, {𝛾𝜆}𝜆∈𝕋)
relations, circle action

step 1 �� (ℬ0,ℬ1)
Hilbert bimodule

(reversible dynamics)

step 2�� 𝐶
∗(𝒢,ℛ) = ℬ0 ⋊ℬ1 ℤ
universal 𝐶∗-algebra

– we fix a circle gauge action 𝛾 = {𝛾}𝜆∈𝕋 on 𝐶∗(𝒢,ℛ) which is induced by a
circular symmetry in (𝒢,ℛ); in the first step we associate to 𝛾 a non-commutative
reversible dynamical system which is realized via a Hilbert bimodule (ℬ0,ℬ1), and
in the second step we use this system to determine the uniqueness property for
𝐶∗(𝒢,ℛ).

2. Uniqueness property, universal 𝑪∗-algebras and gauge actions

Suppose we are given an abstract set of generators 𝒢 and a set of ∗-algebraic
relations ℛ that we want to impose on 𝒢. Formally 𝒢 is a set and ℛ is a set
consisting of certain ∗-algebraic relations in a free non-unital ∗-algebra 𝔽 generated
by 𝒢. By a representation of the pair (𝒢,ℛ) we mean a set of bounded operators
𝜋 = {𝜋(𝑔)}𝑔∈𝒢 ⊂ 𝐿(𝐻) on a Hilbert space𝐻 satisfying the relationsℛ, and denote
by 𝐶∗(𝜋) the 𝐶∗-algebra generated by 𝜋(𝑔), 𝑔 ∈ 𝒢. At this very beginning one
faces the following two fundamental problems:

1. (non-degeneracy problem) Do there exists a faithful representation of (𝒢,ℛ),
i.e., a representation {𝜋(𝑔)}𝑔∈𝒢 of (𝒢,ℛ) such that 𝜋(𝑔) ∕= 0 for all 𝑔 ∈ 𝒢?

2. (uniqueness problem) If one has two different faithful representation of (𝒢,ℛ),
do they generate isomorphic 𝐶∗-algebras? More precisely, does for any two
faithful representations 𝜋1, 𝜋2 of (𝒢,ℛ) the mapping

𝜋1(𝑔) �−→ 𝜋2(𝑔), 𝑔 ∈ 𝒢,
extends to the (necessarily unique) isomorphism 𝐶∗(𝜋1) ∼= 𝐶∗(𝜋2)?

The first problem is important and interesting in its own rights, see [2], [3], however
here we would like to focus on the second problem and thus throughout we assume
that all the pairs (𝒢,ℛ) under consideration are non-degenerate. We say that
(𝒢,ℛ) possess uniqueness property if the answer to question 2 is positive.

Any representation 𝜋 of (𝒢,ℛ) extends uniquely to a ∗-homomorphism, also
denoted by 𝜋, from 𝔽 into 𝐿(𝐻). The pair (𝒢,ℛ) is said to be admissible if the
function ∣∣∣ ⋅ ∣∣∣ : 𝔽 → [0,∞] given by

∣∣∣𝑤∣∣∣ = sup{∥𝜋(𝑤)∥ : 𝜋 is a representation of (𝒢,ℛ)}
is finite. Plainly, admissibility is a necessary condition for uniqueness property
and therefore we make it our another standing assumption. Then the function
∣∣∣ ⋅ ∣∣∣ : 𝔽 → [0,∞) is a 𝐶∗-seminorm on 𝔽 and its kernel

𝕀 := {𝑤 ∈ 𝔽 : ∣∣∣𝑤∣∣∣ = 0}
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is a self-adjoint ideal in 𝔽 – it is the smallest self-adjoint ideal in 𝔽 such that the
relations ℛ become valid in the quotient 𝔽/𝕀. We put

𝐶∗(𝒢,ℛ) := 𝔽/𝕀
∣∣∣⋅∣∣∣

and call it a universal 𝐶∗-algebra generated by 𝒢 subject to relations ℛ, cf. [4].
𝐶∗-algebra 𝐶∗(𝒢,ℛ) is characterized by the property that any representation of
(𝒢,ℛ) extends uniquely to a representation of 𝐶∗(𝒢,ℛ) and all representations of
𝐶∗(𝒢,ℛ) arise in that manner. In particular, (𝒢,ℛ) possess uniqueness property if
and only if any faithful representation of (𝒢,ℛ) extends to a faithful representation
of 𝐶∗(𝒢,ℛ).

3. Gauge actions – exploring the symmetries in the relations

We would like to identify the uniqueness property of (𝒢,ℛ) by looking at the
symmetries in (𝒢,ℛ). In order to formalize this we use a natural torus action
{𝛾𝜆}𝜆∈𝕋𝒢 on 𝔽 determined by the formula

𝛾𝜆(𝑔) = 𝜆𝑔 𝑔, for 𝑔 ∈ 𝒢 and 𝜆 = {𝜆ℎ}ℎ∈𝒢 ∈ 𝕋𝒢

where 𝕋 = {𝑧 ∈ ℂ : ∣𝑧∣ = 1} is a unit circle. A closed subgroup 𝐺 ⊂ 𝕋𝒢 may
be considered as a group of symmetries in the pair (𝒢,ℛ) if the restricted action
𝛾 = {𝛾𝜆}𝜆∈𝐺 leaves invariant the ideal 𝕀. Any such group gives rise to a point-
wisely continuous group action on 𝐶∗(𝒢,ℛ) and actions that arise in that manner
are called gauge actions.
Let us from now on consider the case when 𝐺 ∼= 𝕋, that is we have a circle gauge
action 𝛾 = {𝛾𝜆}𝜆∈𝕋 on 𝐶∗(𝒢,ℛ). Then for each 𝑛 ∈ ℤ the formula

ℰ𝑛(𝑏) :=
∫
𝕋

𝛾𝜆(𝑏)𝜆
−𝑛 𝑑𝜆

defines a projection ℰ𝑛 : 𝐶∗(𝒢,ℛ)→ 𝐶∗(𝒢,ℛ), called 𝑛th spectral projection, onto
the subspace

ℬ𝑛 := {𝑏 ∈ 𝐶∗(𝒢,ℛ) : 𝛾𝜆(𝑏) = 𝜆𝑛𝑏}
called 𝑛th spectral subspace for 𝛾, cf., e.g., [5]. Spectral subspaces specify a ℤ-
gradation on 𝐶∗(𝒢,ℛ). Namely, ⊕𝑛∈ℤ ℬ𝑛 is dense in 𝐶∗(𝒢,ℛ), and

ℬ𝑛ℬ𝑚 ⊂ ℬ𝑛+𝑚, ℬ∗𝑛 = ℬ−𝑛 for all 𝑛,𝑚 ∈ ℤ. (1)

In particular, ℬ0 is a 𝐶∗-algebra – the fixed point algebra for 𝛾, and ℰ0 : ℬ → ℬ0 is
a conditional expectation. A circle action on a 𝐶∗-algebra ℬ is called semi-saturated
[5] if ℬ is generated as a 𝐶∗-algebra by its first and zeroth spectral subspaces. We
note that every continuous group endomorphism of 𝕋 is of the form 𝜆 �→ 𝜆𝑛, for
certain 𝑛 ∈ ℤ, and hence it follows that 𝒢 ⊂ ∪𝑛∈ℤℬ𝑛. In particular, we have

Lemma 1. The circle gauge action 𝛾 = {𝛾𝜆}𝜆∈𝕋 on 𝐶∗(𝒢,ℛ) is semi-saturated,
that is 𝐶∗(𝒢,ℛ) = 𝐶∗(ℬ0,ℬ1) if and only if 𝒢 = 𝒢0 ∪𝒢1 for some disjoint sets 𝒢0,
𝒢1 and 𝛾𝜆(𝑔0) = 𝑔0, 𝛾𝜆(𝑔1) = 𝜆𝑔1, for all 𝑔𝑖 ∈ 𝒢𝑖.
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We introduce an important necessary condition for (𝒢,ℛ) to possess unique-
ness property.

Proposition 2. The following conditions are equivalent:

i) each faithful representation of (𝒢,ℛ) give rise to a faithful representation of
the fixed-point algebra ℬ0.

ii) each faithful representation 𝜋 of (𝒢,ℛ) give rise to a faithful representation
of 𝐶∗(𝒢,ℛ) if and only if there is a circle action 𝛽 on 𝐶∗(𝜋) such that

𝛽𝑧(𝜋(𝑔)) = 𝜋(𝛾𝑧(𝑔)), 𝑔 ∈ 𝒢.
Proof. i) =⇒ ii). It suffices to apply the gauge invariance uniqueness for circle
actions, see, e.g., [5, 2.9] or [6, 4.2]. ii) =⇒ i). Assume that 𝜋 is a faithful rep-
resentation of (𝒢,ℛ) such that its extension is not faithful on ℬ0. The spaces
{𝜋(ℬ𝑛)}𝑛∈ℤ form a ℤ-graded 𝐶∗-algebra and thus by [6, 4.2], there is a (unique)
𝐶∗-norm ∥ ⋅∥𝛽 on

⊕
𝑛∈ℤ 𝜋(ℬ𝑛) such that the circle action 𝛽 on

⊕
𝑛∈ℤ 𝜋(ℬ𝑛) estab-

lished by gradation extends onto the 𝐶∗-algebra ℬ =⊕𝑛∈ℤ 𝜋(ℬ𝑛)
∣∣⋅∣∣𝛽

. Composing
𝜋 with the embedding

⊕
𝑛∈ℤ 𝜋(ℬ𝑛) ⊂ ℬ one gets a faithful representation 𝜋′ of

(𝒢,ℛ) which is gauge-invariant but not faithful on 𝐶∗(𝒢,ℛ). □

In the literature the statements showing that the condition ii) in Proposition
2 holds are often called gauge-invariance uniqueness theorems and therefore we
shall say that the triple (𝒢,ℛ, 𝛾) has the gauge-invariance uniqueness property if
each faithful representation of (𝒢,ℛ) give rise to a faithful representation of the
fixed-point algebra ℬ0. In particular, this always holds for triples (𝒢,ℛ, 𝛾) such
that 𝐶∗(𝒢,ℛ) can be modeled as relative Cuntz-Pimsner algebra, see [3, Sect. 9]
and sources cited there.

4. From relations to Hilbert bimodules

Let us fix a pair (𝒢,ℛ) with a circle gauge action 𝛾 = {𝛾𝜆}𝜆∈𝕋. It follows from
(1) that ℬ1 can be naturally viewed as a Hilbert bimodule over ℬ0, in the sense
introduced in [7, 1.8]. Namely, ℬ1 is a ℬ0-bimodule with bimodule operations
inherited from 𝐶∗(𝒢,ℛ) and additionally is equipped with two ℬ0-valued inner
products

⟨𝑎, 𝑏⟩𝑅 := 𝑎∗𝑏, 𝐿⟨𝑎, 𝑏⟩ := 𝑎𝑏∗

that satisfy the so-called imprimitivtiy condition: 𝑎 ⋅ ⟨𝑏, 𝑐⟩𝑅 = 𝐿⟨𝑎, 𝑏⟩ ⋅ 𝑐 = 𝑎𝑏∗𝑐,
for all 𝑎, 𝑏, 𝑐 ∈ ℬ1. Thus we can consider crossed product ℬ1 ⋊ℬ0 ℤ of ℬ0 by the
Hilbert bimodule ℬ1 constructed in [8], which could be alternatively defined as the
universal 𝐶∗-algebra:

ℬ1 ⋊ℬ0 ℤ = 𝐶∗(𝒢𝛾 ,ℛ𝛾)

where 𝒢𝛾 = ℬ0 ∪ ℬ1 and ℛ𝛾 consists of all algebraic relations in the Hilbert
bimodule (ℬ0,ℬ1).
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Proposition 3. We have a natural embedding ℬ1 ⋊ℬ0 ℤ ↪→ 𝐶∗(𝒢,ℛ) which is an
isomorphism if and only if 𝛾 is semi-saturated. Moreover, if 𝛾 is semi-saturated,
then the following conditions are equivalent:

i) (𝒢,ℛ) possess uniqueness property
ii) (𝒢,ℛ, 𝛾) has gauge-invariance uniqueness property and (𝒢𝛾 ,ℛ𝛾) possess

uniqueness property

Proof. Since the homomorphism ℬ1 ⋊ℬ0 ℤ �→ 𝐶∗(𝒢,ℛ) is gauge-invariant and
injective on ℬ0 it is injective onto the whole ℬ1 ⋊ℬ0 ℤ by [5, 2.9]. The rest, in view
of Proposition 2, is clear. □

The Hilbert bimodule (ℬ0,ℬ1) is an imprimitivity bimodule (called also
Morita-Rieffel equivalence bimodule), see [9], if and only if ℬ∗1ℬ1 = ℬ0 and ℬ1ℬ∗1 =
ℬ0. In general, ℬ∗1ℬ1 and ℬ1ℬ∗1 are non-trivial ideals in ℬ0 and we may treat ℬ1

as a ℬ1ℬ∗1 −ℬ∗1ℬ1-imprimitivity bimodule. This means, cf. [9, Cor. 3.33], that the
induced representation functor

ℎ̂ = ℬ1 -Ind

is a homeomorphism ℎ̂ : ℬ∗1ℬ1 → ℬ1ℬ∗1 between the spectra of ℬ∗1ℬ1 and ℬ1ℬ∗1 .
Treating these spectra as open subsets of the spectrum ℬ̂0 of ℬ0 we may treat ℎ̂

as a partial homeomorphism of ℬ̂0. We shall say that (ℬ̂, ℎ̂) is a partial dynamical

system dual to the bimodule (ℬ0,ℬ1). Partial homeomorphism ℎ̂ is said to be

topologically free if for each 𝑛 ∈ 𝑁 the set of points in ℬ̂0 for which the equality

ℎ̂𝑛(𝑥) = 𝑥 (makes sense and) holds has empty interior.

Theorem 4 (main result). Suppose that the partial homeomorphism ℎ̂ = 𝐵1 -Ind
is topologically free. Then the pair (𝒢𝛾 ,ℛ𝛾) possess uniqueness property and in
particular

i) if (𝒢,ℛ, 𝛾) possess gauge-invariance uniqueness property, then any faithful
representation of (𝒢,ℛ) extends to the faithful representation of ℬ1 ⋊ℬ0 ℤ ⊂
𝐶∗(𝒢,ℛ).

ii) if 𝛾 is semi-saturated and (𝒢,ℛ, 𝛾) possess gauge-invariance uniqueness prop-
erty, then (𝒢,ℛ) possess uniqueness property.

Proof. Apply the main result of [10] and Proposition 3. □

5. Applications to crossed products and Cuntz-Krieger algebras

We show that our main result is a generalization of the so-called isomorphisms
theorem for crossed products by automorphisms (see, for instance, [11, pp. 225,
226] for a brief survey of such results) by applying it to a crossed product by an
endomorphisms which is considered to be one of the most successful constructions
of this sort, see [12] and sources cited there. In particular, we shall use this crossed
product to identify the uniqueness property for Cuntz-Krieger algebras.
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5.1. Crossed products by monomorphisms with hereditary range

Let 𝛼 : 𝒜 → 𝒜 be a monomorphism of a unital 𝐶∗-algebra 𝒜. Let 𝒢 = 𝒜 ∪ {𝑆}
and let ℛ consists of all ∗-algebraic relations in 𝒜 plus the covariance relations

𝑆𝑎𝑆∗ = 𝛼(𝑎), 𝑆∗𝑆 = 1, 𝑎 ∈ 𝒜. (2)

Then 𝐶∗(𝒢,ℛ) ∼= 𝒜 ⋊𝛼 ℕ is the crossed product of 𝒜 by 𝛼, which is equipped
with a semi-saturated circle gauge action: 𝛾𝜆(𝑎) = 𝑎, 𝛾𝜆(𝑆) = 𝜆𝑆, 𝑎 ∈ 𝒜. Let us
additionally assume that 𝛼(𝒜) is a hereditary subalgebra of 𝒜. This is equivalent
to 𝛼(𝒜) = 𝛼(1)𝒜𝛼(1). Then we have 𝑆∗𝒜𝑆 ⊂ 𝒜 since for any 𝑎 ∈ 𝒜 there is 𝑏 ∈ 𝒜
such that 𝛼(𝑏) = 𝛼(1)𝑎𝛼(1) and therefore

𝑆∗𝑎𝑆 = 𝑆∗𝛼(1)𝑎𝛼(1)𝑆 = 𝑆∗𝛼(𝑏)𝑆 = 𝑆∗𝑆𝑏𝑆∗𝑆 = 𝑏 ∈ 𝒜.

Hence on one hand 𝒜 = ℬ0 is the fixed point algebra for 𝛾 and ℬ1 = ℬ0𝑆 is
the first spectral subspace. On the other hand the spectrum of the hereditary

subalgebra 𝛼(𝒜) may be naturally identified with an open subset of𝒜, see, e.g., [13,
Thm. 5.5.5], and then the dual �̂� : 𝛼(𝒜) → 𝒜 to the isomorphism 𝛼 : 𝒜 → 𝛼(𝒜)
becomes a partial homeomorphism of 𝒜. Under this identification one gets

�̂� = ℬ1 -Ind

and hence if the partial system (𝒜, �̂�) dual to (𝒜, 𝛼) is topologically free, then
(𝒢,ℛ) possess uniqueness property.

5.2. Cuntz-Krieger algebras

Let 𝒢 = {𝑆𝑖 : 𝑖 = 1, . . . , 𝑛}, where 𝑛 ≥ 2, and let ℛ consists of the Cuntz-Krieger
relations

𝑆∗𝑖 𝑆𝑖 =
𝑛∑

𝑗=1

𝐴(𝑖, 𝑗)𝑆𝑗𝑆
∗
𝑗 , 𝑆∗𝑖 𝑆𝑘 = 𝛿𝑖,𝑘𝑆

∗
𝑖 𝑆𝑖, 𝑖, 𝑘 = 1, . . . , 𝑛, (3)

where {𝐴(𝑖, 𝑗)} is a given 𝑛 × 𝑛 zero-one matrix such that every row and every
column of 𝐴 is non-zero, and 𝛿𝑖,𝑗 is Kronecker symbol. Then 𝐶∗(𝒢,ℛ) is the Cuntz-
Krieger algebra 𝒪𝐴 and the celebrated Cuntz-Krieger uniqueness theorem, cf. [14,
Thm. 2.13], states that the pair (𝒢,ℛ) possess uniqueness property if and only if
the so-called condition (I) holds:

(I) the space 𝑋𝐴 := {(𝑥1, 𝑥2, . . . ) ∈ {1, . . . , 𝑛}ℕ : 𝐴(𝑥𝑘, 𝑥𝑘+1) = 1} has no
isolated points (considered with the product topology)

We may recover this result applying our method to the standard circle gauge action
on 𝒪𝐴 determined by equations 𝛾𝜆(𝑆𝑖) = 𝜆𝑆𝑖, 𝑖 = 1, . . . , 𝑛. Indeed, the fixed point
𝐶∗-algebra for 𝛾 coincides with the so-called AF-core

ℱ𝐴 = span{𝑆𝜇𝑆∗𝜈 : ∣𝜇∣ = ∣𝜈∣ = 𝑘, 𝑘 = 1, . . . }
where for a multiindex 𝜇 = (𝑖1, . . . , 𝑖𝑘), with 𝑖𝑗 ∈ 1, . . . , 𝑛, we denote by ∣𝜇∣ the
length 𝑘 of 𝜇 and write 𝑆𝜇 = 𝑆𝑖1𝑆𝑖2 ⋅ ⋅ ⋅𝑆𝑖𝑘 . Moreover, any faithful representation
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of the Cuntz-Krieger relations (3) yields a faithful representation of ℱ𝐴, that is
(𝒢,ℛ, 𝛾) possess gauge-invariance uniqueness property. Following [12] we put

𝑆 :=
∑
𝑖,𝑗

1√
𝑛𝑗

𝑆𝑖𝑃𝑗

where 𝑛𝑗 =
∑𝑛

𝑖=1 𝐴(𝑖, 𝑗) and 𝑃𝑗 = 𝑆𝑗𝑆
∗
𝑗 , 𝑗 = 1, . . . , 𝑛. A routine computation

shows that 𝑆ℱ𝐴𝑆
∗ ⊂ ℱ𝐴, 𝑆

∗ℱ𝐴𝑆 ⊂ ℱ𝐴 and 𝑆∗𝑆 = 1 (𝑆 is an isometry). Hence
the mapping ℱ𝐴 ∋ 𝑎 �→ 𝛼(𝑎) := 𝑆𝑎𝑆∗ ∈ ℱ𝐴 is a monomorphism with a hereditary
range. It is uniquely determined by the formula

𝛼
(
𝑆𝑖2𝜇𝑆

∗
𝑗2𝜈

)
=

1√
𝑛𝑖2𝑛𝑗2

𝑛∑
𝑖,𝑗=1

𝑆𝑖 𝑖2𝜇𝑆
∗
𝑗 𝑗2𝜈 . (4)

From the construction any representation of relations (3) yields a representa-
tion of (ℱ𝐴, 𝛼) as introduced in the previous subsection. Conversely, if 𝑆 satis-
fies (2) where 𝒜 = ℱ𝐴, then one gets representation of (3) by putting 𝑆𝑖 :=∑𝑛

𝑗=1 𝐴(𝑖, 𝑗)
√
𝑛𝑗𝑃𝑖𝑆𝑃𝑗 . Thus we have a natural isomorphism

𝒪𝐴
∼= ℱ𝐴 ⋊𝛼 ℕ

under which the introduced gauge actions coincide. Hence we may identify the
partial dynamical system dual to the Hilbert bimodule (ℬ1,ℬ0) where ℬ0 = ℱ𝐴

and ℬ1 = ℱ𝐴𝑆 with the partial dynamical system (ℱ̂𝐴, �̂�) dual to (ℱ𝐴, 𝛼), as
introduced in the previous subsection.

In order to identify the topological freeness of �̂� we define 𝜋𝜇 ∈ 𝒜 for any
infinite path 𝜇 = (𝑖1, 𝑖2, . . . ), 𝐴(𝑖𝑗 , 𝑖𝑗+1) = 1, 𝑗 ∈ ℕ, to be the GNS-representation
associated to the pure state 𝜔𝜇 : ℱ𝐴 → ℂ determined by the formula

𝜔𝜇(𝑆𝜈𝑆
∗
𝜂) =

{
1 𝜈 = 𝜂 = (𝜇1, . . . , 𝜇𝑛)

0 otherwise
for ∣𝜈∣ = ∣𝜂∣ = 𝑛. (5)

Using description of the ideal structure in ℱ𝐴 in terms of Bratteli diagrams [15],
similarly as in [10], one can show that representations 𝜋𝜇 form a dense subset of

ℱ̂𝐴 and

�̂�(𝜋(𝜇1,𝜇2,𝜇3,... )) = 𝜋(𝜇2,𝜇3,... ), for any (𝜇1, 𝜇2, 𝜇3, . . . ).

In particular, it follows that topological freeness of �̂� is equivalent to condition (I).
Accordingly

our main result, Theorem 4, when applied to Cuntz-Krieger relations is
equivalent to the Cuntz-Krieger uniqueness theorem.
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[10] B.K. Kwaśniewski. Cuntz-Krieger uniqueness theorem for crossed products by
Hilbert bimodules. Preprint arXiv:1010.0446.

[11] A.B. Antonevich and A.V. Lebedev. Functional differential equations: I. 𝐶∗-theory.
Longman Scientific & Technical, Harlow, Essex, England, 1994.

[12] A.B. Antonevich, V.I. Bakhtin, and A.V. Lebedev. Crossed product of 𝐶∗-algebra
by an endomorphism, coefficient algebras and transfer operators. Sb. Math., 202(9):
1253–1283, 2011.

[13] G.J. Murphy. 𝐶∗-Algebras and operator theory. Academic Press, Boston, 1990.

[14] J. Cuntz and W. Krieger. A class of 𝐶∗-algebras and topological markov chains.
Inventiones Math., 56:251–268, 1980.

[15] O. Bratteli. Inductive limits of finite dimensional 𝐶∗-algebras. Trans. Amer. Math.
Soc., 171:195–234, 1972.

B.K. Kwaśniewski
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On Maximal ℝ-split Tori Invariant
under an Involution

Catherine A. Buell

Abstract. Symmetric 𝑘-varieties have been a topic of interest in several fields
of mathematics and physics since the 1980’s. For 𝑘 = ℝ, symmetric ℝ-varieties
are commonly called real symmetric spaces; however, the generalization over
other fields play a role in the study of arithmetic subgroups, geometry, singu-
larity theory, Harish Chandra modules and most importantly representation
theory of Lie groups.

The preliminary study of the rationality properties of these spaces over
various base fields was published by Helminck and Wang [1]. In order to study
the representations associated with these symmetric 𝑘-varieties one needs a
thorough understanding of the orbits of parabolic 𝑘-subgroups, 𝑃𝑘, acting on
the symmetric 𝑘-varieties, 𝐺𝑘/𝐻𝑘. This paper’s contribution is the classifi-
cation of the orbits of 𝑃 ∖ 𝐺/𝐻 which are determined by the 𝐻-conjugacy
classes of 𝜎-stable maximal quasi 𝑘-split tori.

Mathematics Subject Classification (2010). Primary 53C35; Secondary 20C33.

Keywords. Symmetric varieties, involutions, conjugacy classes, maximal tori.

1. Introduction and notation

Symmetric 𝑘-varieties are the homogeneous spaces defined 𝐺𝑘/𝐻𝑘 where 𝐺𝑘 and
𝐻𝑘 are the 𝑘-points of a reductive group 𝐺 and 𝐻 , the fixed point group of some
involution. They play a role in geometry, singularity theory, and the cohomol-
ogy of arithmetic groups. However, they are probably best known for their role
in representation theory. The first breakthrough was made when Harish-Chandra
commenced his study of general semisimple Lie groups, which finally led to the
Plancherel formula. The next step was to study the representation theory of the
general semisimple symmetric spaces which has been considered by Brylinski, De-
lorme, Carmona, Matsuki, Oshima, Schlichtkrull, van der Ban and many others.
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The orbits of parabolic 𝑘-subgroups acting on a symmetric 𝑘-variety are of
fundamental importance in the study of induced representations. The character-
ization of these orbits involves conjugacy classes of 𝜎-stable maximal 𝑘-split tori
and for each of these 𝜎-stable maximal 𝑘-split tori a quotient of Weyl groups.

There are descriptions of some of these orbit decompositions in [1], the focus
is on the orbits of parabolic 𝑘-subgroups acting on a variety, 𝑃𝑘 ∖ 𝐺𝑘/𝐻𝑘. Such
a decomposition can be characterized as the 𝑃𝑘-orbits action on 𝐺𝑘/𝐻𝑘, the 𝐻𝑘-
orbits on 𝑃𝑘∖𝐺𝑘 or the orbits of 𝑃𝑘×𝐻𝑘 on 𝐺. While these orbits are characterized
for any field 𝑘 the actually classification requires first the classification of orbit
decompositions of the related 𝑃 ∖ 𝐺/𝐻 . There exists a map between the orbits
of 𝑃𝑘 ∖ 𝐺𝑘/𝐻𝑘 onto orbits of 𝑃 ∖ 𝐺/𝐻 . After classifying the orbits of the latter
one determines the fibers of the representatives and find the classification of the
former. This paper’s will discuss the classification of the orbits of 𝑃 ∖𝐺/𝐻 which
are determined by the 𝐻-conjugacy classes of 𝜎-stable maximal quasi 𝑘-split tori;
however, there are 171 cases to consider and the! classification is quite long. Please
see [2] for the full classification.

Helminck and Wang described the double cosets as follows:

Theorem 1 ([1, Proposition 6.10]). Let {𝐴𝑖 ∣ 𝑖 ∈ 𝐼} be representatives of the 𝐻𝑘-
conjugacy classes of 𝜎-stable maximal 𝑘-split tori in 𝐺. Then

𝑃𝑘 ∖𝐺𝑘/𝐻𝑘
∼=
∪
𝑖∈𝐼

𝑊𝐺𝑘
(𝐴𝑖)/𝑊𝐻𝑘

(𝐴𝑖).

The goal will be to explicitly determine the set I for 𝑘 = ℝ in order to
calculate the Weyl groups, 𝑊𝐺𝑘

(𝐴𝑖) and 𝑊𝐻𝑘
(𝐴𝑖).

1.1. Notation

Definition 1. A torus, 𝑇 , is called 𝜎-stable if 𝜎(𝑇 ) = 𝑇 . Then 𝑇 = 𝑇+
𝜎 𝑇−𝜎 , where

𝑇+
𝜎 = (𝑇 ∩𝐻)0 and 𝑇−𝜎 = {𝑥 ∈ 𝑇 ∣𝜎(𝑥) = 𝑥−1}0

A torus, 𝐴, is called 𝜎-split if 𝜎(𝑎) = 𝑎−1 for all 𝑎 ∈ 𝐴. A quasi 𝑘-split torus
is a torus that is 𝐺-conjugate to a 𝑘-split torus. Last, a torus, 𝑆, is called 𝜎-fixed
if 𝜎(𝑠) = 𝑠 for all 𝑠 ∈ 𝑆. Note, a (𝜎, 𝑘)-split torus is both 𝜎-split and 𝑘-split.

Let 𝔄
(𝜃,𝜎)
𝑘 be the set of all (𝜃, 𝜎)-stable maximal 𝑘-split tori. 𝔄(𝜃,𝜎) be the set of

(𝜃, 𝜎)-stable maximal quasi 𝑘-split tori. Also, 𝔄
(𝜃,𝜎)
0 be the set of quasi 𝑘-split tori

that are 𝐻-conjugate with a 𝑘-split torus.
Since we will be looking at the 𝐻+

𝑘 or 𝐻-conjugacy classes of these various

sets, we will denote these classes by: 𝔄
(𝜎,𝜃)
𝑘 /𝐻+

𝑘 , 𝔄
(𝜃,𝜎)/𝐻 , and 𝔄

(𝜃,𝜎)
0 /𝐻 , respec-

tively.
We will call Φ(𝐴) = Φ𝜃 the root system of a torus 𝜃-split torus 𝐴 with

associated Weyl group 𝑊 (𝐴). In general, the Weyl group of a torus, 𝑇 , will be
𝑊 (𝑇, 𝐿𝑘) = 𝑊𝐿𝑘(𝑇 ) = 𝑁𝐿𝑘(𝑇 )/𝑍𝐿𝑘(𝑇 ), where

𝑁𝐿𝑘(𝑇 ) = {𝑥 ∈ 𝐿𝑘 ∣ 𝑥𝑇𝑥−1 ⊂ 𝑇 },
𝑍𝐿𝑘(𝑇 ) = {𝑥 ∈ 𝐿𝑘 ∣ 𝑥𝑡 = 𝑡𝑥 for all 𝑡 ∈ 𝑇 }.
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We will also be looking at Φ𝜃,𝜎 = Φ(𝐴,𝐴−𝜎 ) = Φ(𝐴)∩Φ(𝐴−𝜎 ). For 𝑤 ∈ 𝑊 (𝐴),
Φ(𝑤) = {𝛼 ∈ Φ(𝐴) ∣ 𝑤(𝛼) = −𝛼}.

The following sections will highlight important portions of the final classifi-
cation. The goal is to determine the 𝐻𝑘-conjugacy classes of maximal ℝ-split tori
for the orbit decomposition 𝑃ℝ ∖𝐺ℝ/𝐻ℝ. The following steps will be discussed.

1. A Cartan involution, 𝜃, commuting with 𝜎 will convert the problem into a
pair, (𝜃, 𝜎), of commuting involutions over ℂ while simplifying the ℝ-split
requirement. One involution over ℝ becomes a pair of commuting involutions
over ℂ.

2. All tori can be put into standard position and each torus can be associated
with a Weyl group element.

3. Classify the 𝐻-conjugacy classes of 𝜎-stable maximal quasi ℝ-split tori on
route to the 𝐻ℝ-conjugacy classes of 𝜎-stable maximal ℝ-split tori.

4. Employ the use of the associated pair (𝜃, 𝜎𝜃) and classify the 𝐻ℝ-conjugacy
classes of 𝜎-stable maximal ℝ-split tori.

This paper will demonstrate 1. through 3. and end with a description of
associated pairs and the role played to determine 4. My current research is to
complete the 𝐻ℝ-conjugacy classes of 𝜎-stable maximal ℝ-split tori.

2. Cartan involutions

Definition 2. Let 𝔤0 = 𝔨0⊕𝔭0 be the decomposition into the +1 and −1-eigenspaces
of 𝜃. Then 𝜃 ∈ Aut(𝔤0) is called a Cartan involution if 𝔨0 is a maximal compact
subalgebra of 𝔤0. A subalgebra be called compact if the Killing form restricted to
𝔨0 is negative definite.

The Cartan involution plays an important role, when 𝑘 = ℝ, in the classifica-
tion of the representatives of the 𝐻ℝ-conjugacy classes of 𝜎-stable maximal ℝ-split
tori. A Cartan involution, 𝜃, commuting with 𝜎 will simplify the into a pair, (𝜃, 𝜎),
of commuting involutions over ℂ while simplifying the ℝ-split requirement. This
changes the problem from one involution to commuting involutions over ℂ.

In our discussion, we have a fixed involution 𝜎 and can find a Cartan involu-
tion that will commute with 𝜎.

Theorem 2 ([3, Lemma 10.2]). Let 𝔤0 be a real semisimple Lie algebra, 𝜃 a Cartan
involution, and 𝜎 any involution. Then there exists 𝜙 ∈ Int(𝔤0) such that 𝜙𝜃𝜙−1

commutes with 𝜎.

Theorem 3 ([4, Theorem 10.6]). The inner isomorphism classes of semisimple
locally symmetric pairs (𝔤0, 𝔥) correspond bijectively to the inner isomorphism
classes of ordered pairs of commuting involutions (𝜃, 𝜎) of 𝔤 or Aut(𝔤)0. The outer
isomorphism classes correspond bijectively as well.

For 𝑘 = ℝ one studies the structure of real reductive algebraic groups in
the complex case with a pair of commuting involutions (where one is a Cartan
involution) instead of one involution of a real reductive algebraic group.
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Let 𝜃 be a Cartan involution of 𝐺 over 𝑘 and 𝜎 a 𝑘-involution with 𝜎𝜃 = 𝜃𝜎.
Consider the following propositions from [1]:

1. (Proposition 11.18) Given any 𝜎-stable maximal 𝑘-split torus 𝐴 of 𝐺, there
is a ℎ ∈ 𝐻𝑘 such that ℎ𝐴ℎ−1 is 𝜃-stable.

2. Any 𝜃-stable 𝑘-split torus is 𝜃-split.
3. (Lemma 11.5) Any maximal 𝜃-split 𝑘 torus of 𝐺 is maximal (𝜃, 𝑘)-split.

Therefore, any 𝜎-stable maximal ℝ-split torus of 𝐺 can be viewed as a (𝜎, 𝜃)-
stable maximal ℝ-split torus (or 𝜃-split torus) of 𝐺. An important corollary follows
from Theorem 1 when using this relation.

Corollary 4 ([1, Corollary 12.11]). Let 𝐾 be the fixed point group of 𝜃, H a 𝑘-open
subgroup of the fixed point group of 𝜎 and 𝐻+ = 𝐻 ∩𝐾. Then

𝑃𝑘∖𝐺𝑘/𝐻𝑘
∼=
∪
𝑖∈𝐼

𝑊𝐺𝑘
(𝐴𝑖)/𝑊𝐻+

𝑘
(𝐴𝑖)

where {𝐴𝑖 ∣ 𝑖 ∈ 𝐼} are the representatives of the 𝐻+
𝑘 -conjugacy classes of (𝜎, 𝜃)-

stable maximal 𝑘-split tori in 𝐺.

In fact, pairs of commuting involutions over complex groups were classified
in [4]. The notation from that paper will used to represent involutions through
this section and next. Each involution has a Cartan type and each type has a
diagram representation. From these diagrams, which were created using an ordered
basis, one determines the type of the maximal ℝ-split (𝜃-split) torus (Φ𝜃 with
basis Δ𝜃) and the 𝜎-split torus in the maximal ℝ-split (Φ𝜎,𝜃 with basis Δ𝜎,𝜃) for
each pair of commuting involutions. There are 171 irreducible pairs to consider.
Knowing the type and dimension of the maximal (𝜎,ℝ)-split torus is necessary for
the classification.

3. Characterizing standard involutions

As seen in the previous section, we can find the type and dimension of the maximal

(𝜎,ℝ)-split torus in the set 𝔄(𝜃,𝜎)
𝑘 .

3.1. Standard position

Definition 3. For 𝐴1, 𝐴2 ∈ 𝔄
(𝜃,𝜎)
𝑘 , the pair (𝐴1, 𝐴2) is called standard if 𝐴

−
1 ⊂ 𝐴−2

and 𝐴+
1 ⊃ 𝐴+

2 . We say that 𝐴1 is standard with respect to 𝐴2.

Theorem 5 ([5, Theorem 3.6]). Let (𝐴1, 𝐴2) be a standard pair of (𝜃, 𝜎)-stable
ℝ-split (or quasi ℝ-split) tori of 𝐺. Then the following hold:

1. There exists 𝑔 ∈ 𝑍(𝐴−1 𝐴+
2 ) such that 𝑔𝐴1𝑔

−1 = 𝐴2.
2. If 𝑛1 = 𝑔−1𝜎(𝑔) and 𝑛2 = 𝜎(𝑔)𝑔−1, then 𝑛1 ∈ 𝑁(𝐴1) and 𝑛2 ∈ 𝑁(𝐴2).
3. Let 𝑤1 and 𝑤2 be the images of 𝑛1 and 𝑛2 in 𝑊 (𝐴1) and 𝑊 (𝐴2) respectively.

Then 𝑤2
1 = 𝑒, 𝑤2

2 = 𝑒, and (𝐴1)
+
𝑤1
= (𝐴2)

+
𝑤2
= 𝐴−1 𝐴+

2 which characterizes 𝑤1

and 𝑤2.
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Corollary 6. Fix an element 𝐴 ∈ 𝔄
(𝜃,𝜎)
𝑘 such that 𝐴−𝜎 is maximal. Let 𝐴1 be put

in standard position with 𝐴 where 𝐴− is a maximal (𝜎,ℝ)-split torus of 𝐺 Then
the following hold:

1. There exists 𝑔 ∈ 𝑍(𝐴−1 𝐴+) such that 𝑔𝐴1𝑔
−1 = 𝐴.

2. If 𝑛 = 𝜎(𝑔)𝑔−1, then 𝑛 ∈ 𝑁(𝐴).
3. Let 𝑤 be the image of 𝑛 in 𝑊 (𝐴). Then 𝑤2 = 𝑒, and (𝐴)+𝑤 = 𝐴−1 𝐴+ which

characterizes 𝑤.

For any tori 𝐴1, 𝐴2 ∈ 𝔄
(𝜃,𝜎)
𝑘 put in standard position with 𝐴, there is an

associated element in 𝑊 (𝐴). Each has an element 𝑔 which is associated with an
𝑛 ∈ 𝑁(𝐴) whose image in 𝑊 (𝐴) is 𝑤. These images 𝑤1 and 𝑤2 are called the
𝐴1-standard and 𝐴2-standard involutions, respectively.

Let 𝑤1 and 𝑤2 be the 𝐴1-standard and 𝐴2-standard involutions, respectively,
in 𝑊 (𝐴). Now, we can discuss the tori based on these elements of the finite Weyl
group.

Proposition 7 ([1, Proposition 12.6]). Assume that 𝐴1, 𝐴2 ∈ 𝔄
(𝜃,𝜎)
𝑘 are both stan-

dard with respect to 𝐴. Let 𝑤1 and 𝑤2 be the 𝐴1-standard and 𝐴2-standard invo-
lutions, respectively, in 𝑊 (𝐴). Then 𝐴1 and 𝐴2 are 𝐻+

𝑘 -conjugate if and only if

𝑤1 and 𝑤2 are conjugate under 𝑊 (𝐴,𝐻+
𝑘 )

Corollary 8. Assume that 𝐴′1, 𝐴
′
2 ∈ 𝔄(𝜃,𝜎) are both standard with respect to 𝐴. Let

𝑤′1 and 𝑤′2 be the 𝐴′1-standard and 𝐴′2-standard involutions, respectively, in 𝑊 (𝐴).
Then 𝐴′1 and 𝐴′2 are 𝐻-conjugate if and only if 𝑤1 and 𝑤2 are conjugate under
𝑊 (𝐴,𝐻).

3.2. Singular involutions

What remains is to determine which involutions in 𝑊 (𝐴) are 𝐴𝑖-standard involu-

tions for some 𝐴𝑖 ∈ 𝔄(𝜃,𝜎) or 𝔄
(𝜃,𝜎)
𝑘 .

Definition 4. Let 𝐴 ∈ 𝔄(𝜎,𝜃), 𝑤 ∈ 𝑊 (𝐴) and 𝐺𝑤 = 𝑍(𝐴+
𝑤). 𝑤 is called 𝜎-singular

when following properties hold.

1. 𝑤2 = 𝑒.
2. 𝜎𝑤 = 𝑤𝜎.
3. 𝜎∣[𝐺𝑤 , 𝐺𝑤] is 𝑘-split.

𝑤 is called (𝜃, 𝜎)-singular if 𝑤 if 𝜎-singular and 𝜎𝜃∣[𝐺𝑤 , 𝐺𝑤] is 𝑘-split. A
root 𝛼 ∈ Φ(𝐴) is called 𝜎-singular ((𝜃, 𝜎)-singular) if the corresponding reflection
𝑠𝛼 ∈ 𝑊 (𝐴) is 𝜎-singular ((𝜃, 𝜎)-singular).

Proposition 9. An involution 𝑤 ∈ 𝑊 (𝐴) is a 𝜎-singular ((𝜎, 𝜃)-singular) involution

iff 𝑤 is an 𝐴𝑖-standard involution for some 𝐴𝑖 ∈ 𝔄(𝜃,𝜎) (𝔄
(𝜎,𝜃)
𝑘 ).

Proposition 10. Let 𝐴 ∈ 𝔄(𝜃,𝜎) (𝔄
(𝜃,𝜎)
𝑘 ) with 𝐴−𝜎 maximal. Then there is a one-

to-one correspondence between the 𝑊 (𝐴,𝐻)-(𝑊 (𝐴,𝐻+
𝑘 ))-conjugacy classes of 𝐴𝑖-

standard involutions in 𝑊 (𝐴) and the 𝑊 (𝐴,𝐻)-(𝑊 (𝐴,𝐻+
𝑘 ))-conjugacy classes of

𝜎-singular ((𝜃, 𝜎)-singular) involutions in 𝑊 (𝐴).
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Now the goal is to classify the singular involutions in 𝑊 (𝐴). A complete
discussion of conjugacy classes of elements in the Weyl group can be found in [5].
In summary, let Φ(𝐴) be irreducible and 𝑤 ∈ 𝑊 (𝐴) an involution, then Φ(𝑤) is of
type 𝑟 ⋅ 𝐴1 +𝑋ℓ, where either 𝑋ℓ = ∅ or one of 𝐵ℓ(ℓ ≥ 1), 𝐶ℓ(ℓ ≥ 1), 𝐷ℓ(ℓ ≥ 1),
𝐸7, 𝐸8, 𝐹4, or 𝐺2, where 𝑟 ⋅ 𝐴1 = 𝐴1 +𝐴1 + ⋅ ⋅ ⋅+𝐴1 𝑟 times.

Let𝔚 be the set of all 𝑊 -conjugacy classes of involutions in 𝑊 . If we define
an order > on 𝔚 then for [𝑤1], [𝑤2] ∈ 𝔚 we have [𝑤1] > [𝑤2] if and only if
Δ(𝑤1) ⊂ Δ(𝑤2) for some representatives 𝑤𝑖 of [𝑤𝑖](𝑖 = 1, 2).

One builds diagrams of these conjugacy classes as seen in [6]. Once the 𝐴𝑖-
standard involutions in 𝑊 (𝐴) are identified the diagram describes the conjugacy
classes and types of tori. If 𝑤1, 𝑤2 ∈ 𝑊 (𝐴) are 𝐴1 and 𝐴2-standard involutions of
𝐴1 and 𝐴2 then

𝐴−1 ⊂ 𝐴−2 ⇐⇒ 𝐴−𝑤1
⊃ 𝐴−𝑤2

.

Hence,

[𝐴1] < [𝐴2] ⇐⇒ [𝑤1] < [𝑤2].

Example. Suppose Φ𝜃 is of type 𝐵3, let Δ𝜃 = {𝛼1, 𝛼2, 𝛼3} be a basis for Φ𝜃. Then
Φ(𝑤) is some subset of Φ𝜃. The following list describes possible types of the basis
for Φ(𝑤), Δ(𝑤). We use the notation 𝐵1 to designate the unique shortest root of
type 𝐴1.

∙ Type Δ(𝑤) = empty.
∙ Type Δ(𝑤) = 𝐴1.

∙ Type Δ(𝑤) = 𝐵1.

∙ Type Δ(𝑤) = 2 ⋅𝐴1.

∙ Type Δ(𝑤) = 𝐵2.

∙ Type Δ(𝑤) = 𝐵3.
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Figure 1. Conjugacy classes of involutions
in Weyl group of Φ type 𝐵3
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4. 𝑯-conjugacy classes of 𝕬(𝜽,𝝈)

Proposition 11. 𝛼 ∈ Φ(𝐴) is a 𝜎-singular root if and only if 𝛼 ∈ Φ(𝐴) ∩ Φ(𝐴−𝜎 ).
Lemma 12 ([5, Theorem 4.6]). Let 𝐴 be a (𝜃, 𝜎)-stable ℝ-split torus of 𝐺 with 𝐴−𝜎
a maximal (𝜎,ℝ)-split torus of 𝐺 and 𝑤 ∈ 𝑊 (𝐴), 𝑤2 = 𝑒. Then the following are
equivalent:

1. 𝑤 is 𝜎-singular.
2. 𝐴−𝑤 ⊂ 𝐴−𝜎 .

Proof. (=⇒) 𝛼 is a 𝜎-singular root then by Lemma 12, 𝐴𝑠𝛼 ⊂ 𝐴−𝜎 . Therefore,
𝛼 ∈ Φ(𝐴−𝜎 ). Since 𝛼 ∈ Φ(𝐴) then 𝛼 ∈ Φ(𝐴) ∩ Φ(𝐴−𝜎 ).

(⇐=) 𝛼 ∈ Φ(𝐴) ∩ Φ(𝐴−𝜎 ), then 𝛼 ∈ Φ(𝐴) and 𝑤 = 𝑠𝛼 ∈ 𝑊 (𝐴) so 𝑤2 = 𝑒.
Since 𝛼 ∈ Φ(𝐴−𝜎 ), 𝐴−𝑠𝛼 ⊂ 𝐴−𝜎 . By Lemma 12, 𝑠𝛼 is 𝜎-singular and 𝛼 is a 𝜎-singular
root. □

Theorem 13. Let 𝐴 ∈ 𝔄(𝜃,𝜎) with 𝐴−𝜎 maximal. Then there is a one-to-one corre-
spondence between the 𝑊 (𝐴)-conjugacy classes of 𝜎-singular involutions in 𝑊 (𝐴)
and the 𝑊 (𝐴)-conjugacy classes of elements in 𝑊 (𝐴,𝐴−𝜎 ) where 𝑊 (𝐴,𝐴−𝜎 ) is the
Weyl group of Φ(𝐴,𝐴−𝜎 ) = Φ(𝐴) ∩ Φ(𝐴−𝜎 ).
Example.

Ex. Type (𝜃, 𝜎) Type Φ𝜃 Type Φ𝜎,𝜃 ∩ Φ𝜃 max. involution
Φ(𝐴) Φ(𝐴,𝐴−𝜎 ) Φ𝜎,𝜃 ∩ Φ𝜃

(1) 𝐴2ℓ+1,ℓ
2ℓ+1 (I, II) 𝐴2ℓ+1 ∅ id

(2) 𝐴2ℓ,2ℓ−1,𝜖0
4ℓ−1 (IIIb, II) 𝐶2ℓ ℓ ⋅ 𝐴1 ℓ ⋅ 𝐴1

ℓ = 2 𝐴4,3
7 (IIIb, II, 𝜖0) 𝐶4 2 ⋅𝐴1 2 ⋅𝐴1

(3) 𝐵𝑞,𝑝
ℓ (Ia, Ia, 𝜖i) 𝐵𝑞 𝐵𝑝 𝐵𝑝

ℓ = 5 𝐵4,3
5 (Ia, Ia, 𝜖i) 𝐵4 𝐵3 𝐵3

Table 1

In Ex. (1), Φ(𝐴,𝐴−𝜎 ) = ∅ and 𝑊 (𝐴,𝐴−𝜎 ) = id. There is only one 𝑊 (𝐴)-
conjugacy class of 𝜎-singular roots; therefore, there is only one 𝐻-conjugacy class
(𝜎, 𝜃)-stable maximal quasi ℝ-split tori. In Ex. (2), seen in Figure 2, there is only
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Figure 2. 𝔄(𝜃,𝜎)/𝐻 for Ex. (2) & Ex. (3)
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one 𝑊 (𝐴)-conjugacy class of 𝜎-singular roots at each dimension; therefore, there
is only one 𝐻-conjugacy class (𝜎, 𝜃)-stable maximal quasi ℝ-split tori for each
dimension. Last, in Ex. (3), as seen in Figure 2, one sees the 𝑊 (𝐴)-conjugacy
class of 𝜎-singular roots at each dimension from the diagram. Also, ones count the
𝐻-conjugacy classes (𝜎, 𝜃)-stable maximal quasi ℝ-split tori for each dimension.

The complete classification of 𝔄(𝜃,𝜎)/𝐻 in all 171 cases is quite long and can
be found in [2]. This classification will help to determine the 𝐻ℝ-conjugacy classes
of (𝜃, 𝜎)-stable maximal ℝ-split tori.

5. 𝑯𝒌-conjugacy classes of (𝜽, 𝝈)-stable maximal 𝒌-split tori

The classification of the 𝐻ℝ-conjugacy classes of 𝜎-stable maximal tori can be sim-
plified into a classification of objects in the Weyl group. However, determining the
(𝜃, 𝜎)-singular involutions and the appropriate conjugacy classes requires deeper
investigation.

5.1. Associated Pairs

(𝔤, 𝔥)
(𝜃, 𝜎)

← associated → (𝔤, 𝔥𝑎)
(𝜃, 𝜎𝜃)

← dual → (𝔤𝑎𝑑, 𝔥𝑑)
(𝜎𝜃, 𝜃)

↑ ↑
dual associated
↓ ↓

(𝔤𝑑, 𝔥𝑑)
(𝜎, 𝜃)

← associated → (𝔤𝑑, 𝔥𝑎)
(𝜎, 𝜎𝜃)

← dual → (𝔤𝑎𝑑, 𝔥)
(𝜎𝜃, 𝜎)

Previously, we used the action of 𝜎 on Φ𝜃 to determine the 𝜎-split portion
inside the 𝜃-split torus. Similarly, we look at the action of 𝜎𝜃 on Φ𝜃 to find the
𝜎𝜃-split portion inside the 𝜃-split torus. Let the maximal ℝ-split torus for (𝜃, 𝜎)
be 𝐴 (as usual) and the maximal ℝ-split torus for (𝜃, 𝜎𝜃), 𝑆. So 𝑆−𝜎𝜃 is maximal
𝜎𝜃-split and 𝜃-split which is equivalent to 𝑆+

𝜎 which is a maximal in the fixed point
group.

Definition 5. Let 𝐴 and 𝑆 be as above. The singular rank is the difference in
rank of the (𝜎, 𝜃)-stable maximal (𝜎,ℝ)-split torus and the (𝜎, 𝜃)-stable maximal
ℝ-split, 𝜎-fixed torus. The singular rank is calculated as follows:

singular rank = dim(𝐴−𝜎 ) + dim(𝑆
−
𝜎𝜃)− dim(𝐴).

The singular rank helps to determine the maximal singular involution. From
there we determine the appropriate structure of the remaining classes between the
maximal 𝜎-split and the maximal 𝜎-fixed (𝜃𝜎-split). It has been shown that under
certain conditions of 𝐻𝑘 (namely 𝐻𝑘 pseudo-connected), one uses representatives
of the same conjugacy classes in the 𝐻𝑘 or 𝐺𝜎𝜃 (the fixed point group of 𝜎𝜃).
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Proposition 14 ([6, Proposition 9.24]). Let 𝑤1 and 𝑤2 be (𝜎, 𝜃)-singular involutions
and let 𝐻𝑘 be pseudo-connected. Then the following are equivalent.

1. 𝑤1 and 𝑤2 are conjugate under 𝑊 (𝐴,𝐻+
𝑘 ).

2. 𝑤1 and 𝑤2 are conjugate under 𝑊 (𝐴−𝜎 , 𝐻+
𝑘 ).

3. 𝑤1 and 𝑤2 are conjugate under 𝑊 (𝐴,𝐺𝜎𝜃).
4. 𝑤1 and 𝑤2 are conjugate under 𝑊 (𝐴−𝜎 , 𝐺𝜃𝜎).

In some cases, the number of 𝐻𝑘-conjugacy classes is determined quickly
because the singular rank is maximal or 0. The final caveat is that while the
structure from the 𝐴(𝜃,𝜎)/𝐻 conjugacy classes is useful here when one considers
the𝐻ℝ-conjugacy classes in𝑊 (𝐴), then involutions that were previously conjugate
split as demonstrated in the following example.

Example. Consider the case for ℓ = 7, 𝑝 = 2, 𝑞 = 4, 𝑖 = 1 from he general case in
Table 2.

∙ Φ𝜃 = Φ(𝐴) = 𝐵𝐶2 and Φ𝜃,𝜎 = Φ(𝐴,𝐴−𝜎 ) = 𝐵𝐶2.
∙ The rank of the maximal 𝜎-split torus is 2 and the rank of the maximal 𝜎-
fixed torus is also 2, but the rank of the maximal ℝ-split (i.e., 𝜃-split) torus
is also 2. Then the “top” the maximal ℝ-split torus is a 𝜎-split torus and the
“bottom” the torus is a 𝜎-fixed torus.

∙ Consider the tori that are standard to 𝐴 where dim((𝐴𝑖)
−
𝜎 )= 2,1, and 0.

Through direction computation on the six roots in Φ(𝐴,𝐴−𝜎 )
+ (𝑒1 ± 𝑒2, 𝑒1,

2𝑒1, 𝑒2, 2𝑒2) the two (𝜃, 𝜎)-singular roots can be determined. These roots are the
unique short roots, usually denoted 𝑒1 and 𝑒2.

In 𝑊 (𝐴), roots of type 𝐴1 are conjugate. So the conjugacy classes of (𝜎, 𝜃)-
singular roots in 𝑊 (𝐴) are the blackened dots in the diagram in Figure 3. This
classifies the quasi ℝ-split tori that are 𝐻-conjugate to a maximal ℝ-split torus.
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Figure 3. 𝐴
(𝜃,𝜎)
0 /𝐻 & 𝐴

(𝜃,𝜎)
ℝ /𝐻ℝ

There is one conjugacy class at each level. So all tori 𝐴𝑖 ∈ 𝐴
(𝜎,𝜃)
0 such that

dim((𝐴𝑖)
−
𝜎 ) = 2 are conjugate. Similarly those with dimension 1 and 0. However,

if we consider the conjugacy classes of these singular involutions in 𝑊 (𝐴,𝐻+
ℝ ) =

𝐵𝐶1+𝐵𝐶1, then 𝑒1 and 𝑒2 are both type 𝐴1 but no longer conjugate. So the one-
dimensional level will split and there will two 𝐻+

ℝ -conjugacy classes of tori where
the rank of the 𝜎-split portion is 1. It should be noted that these calculations are
done in the associated Lie algebra and lifted to the group.

My current research is to complete the classification of the 𝐻+
ℝ -conjugacy

classes thus completing the classification of orbits of parabolic ℝ-subgroups on the
symmetric space 𝐺ℝ/𝐻ℝ, 𝑃ℝ ∖𝐺ℝ/𝐻ℝ.
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Pencils of Conics as a Classification Code

Vladimir Dragović

Abstract. We collect several subjects of the modern Mathematical Physics
like integrable quad-graphs, discriminantly separable polynomials, the Petrov
classification, the algebro-geometric approach to the Yang-Baxter equation
and quadrirational maps since they all lead to the same geometric background.
The geometry is related to pencils of conics, and the classification code follows
the types of pencils.

Mathematics Subject Classification (2010). 14H70, 37K20, 37K60 (82A69,
83C20).

Keywords. Pencil of conics, Petrov classification, integrable quad-graphs,
discrminantly separable polynomials, Yang-Baxter equation, quadrirational
maps.

1. Pencils of conics

Given two conics in the plane, the set of all conics sharing the same intersection
with the two, forms a pencil of conics. We will denote general pencils of conics
having four simple common points of intersection as (1, 1, 1, 1), or of type [A].
The case with two simple points of intersection and one double with a common
tangent at that point is denoted (1, 1, 2) or [B]. The case with two double points
of intersection and with a common tangent in each of them is (2, 2), or [C]. The
case (1, 3), denoted also as [D] is defined by one simple and one triple point of
intersection. Finally (4), the case of one quadruple point is denoted as [E]. The
following Figures 1–5 illustrate these possible configurations of pencils.
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Figure 1. Pencil of type A Figure 2. Pencil of type B

Figure 3. Type C Figure 4. Type D Figure 5. Type E

The transition from a more general pencil to a more special one is represented
by the diagram, which is usually associated with Penrose:

𝐴

𝐵 𝐶

𝐷 𝐸 𝑂
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� 	
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(1)

We will need a classical notion of the Darboux coordinates in a projective plane.
We fix a conic 𝐶 in the plane, with a rational parametrization. For a given point
𝑃 in the plane, there are two tangents from 𝑃 to the conic 𝐶. Let the two values
of the rational parameter of the two points of tangency of the tangent lines with
the conic 𝐶 be (𝑥1, 𝑥2). Then, the pair (𝑥1, 𝑥2) gives the Darboux coordinates of
the point 𝑃 associated with the parametrized conic 𝐶.
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2. Petrov classification

We will start with historically the first of the stories. The Petrov 1954 classification
describes the algebraic symmetries of the Weyl tensor at a point in a Lorentzian
manifold (see [1], [2]). It is well known due to its applications to the theory of
relativity, in the study of the exact solutions of the Einstein field equations.

The Weyl tensor, is a (2, 2)-tensor, evaluated at some point, and it acts on
the space of bivectors at that point as a linear operator:

𝑊 : 𝑌 𝛼𝛽 �→ 1

2
𝑊𝛼𝛽

𝑝𝑞 𝑌 𝑝𝑞. (2)

The equation

𝑊𝛼𝛽
𝑝𝑞 𝑌 𝑝𝑞 = 2𝜆𝑌 𝛼𝛽

defines the eigenvalues and the eigenbivectors. In the case of a space-time of di-
mension four, the space of antisymmetric bivectors at a point is of dimension six,
and, due to the symmetries of the Weyl tensor, the eigenbivectors lie in a subspace
of dimension four. Thus, the Weyl tensor at each point has at most four linearly
independent eigenbivectors. The eigenbivectors of the Weyl tensor can occur with
multiplicities, indicating a kind of algebraic symmetry of the tensor at the point.
The multiplicities reflect the structure of zeros of a certain polynomial of degree
four. The eigenbivectors are associated with null vectors in the original space-
time, the principal null directions at point. According to the Petrov classification
theorem, there are six possible types of algebraic symmetry, the six Petrov types:

[I] four simple principal null directions;
[II] two simple principal null directions and one double;
[D] two double principal null directions;
[III] one simple and one triple principal null direction;
[N] one quadruple principal null direction.
[O] the case where the Weyl tensor vanishes.

A relationship between the Petrov classification and the pencils of conics has
been elaborated in [3]. It has been represented by a diagram of type (1) by Penrose,
see [4], with the following correspondence

(𝐴,𝐵,𝐶,𝐷,𝐸, 0)→ (I, II,D, III,N, 0).

3. Integrable quad-graphs

Let us denote by 𝒫𝑛
𝑑 the set of polynomials in 𝑑 variables of degree at most 𝑛 in

each.
Recall that the basic building blocks of systems on quad-graphs from works

of Adler, Bobenko, Suris [5] are the equations on quadrilaterals of the form

𝑄(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 0 (3)
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Figure 7. A 3D consistency.

where 𝑄 ∈ 𝒫1
4 . Equations of type (3) are called quad-equations. The field variables

𝑥𝑖 are assigned to four vertices of a quadrilateral as in Figure 6.
Following [5] we consider the idea of integrability as consistency, see Figure

7. We assign six quad-equations to the faces of coordinate cube. The system is
said to be 3D-consistent if three values for 𝑥123 obtained from equations on right,
back and top faces coincide for arbitrary initial data 𝑥, 𝑥1, 𝑥2, 𝑥3. Then, applying
discriminant-like operators introduced in [5] 𝛿𝑥,𝑦 : 𝒫1

4 → 𝒫2
2 , 𝛿𝑥 : 𝒫2

2 → 𝒫4
1 by

formulae

ℎ(𝑧, 𝑤) := 𝛿𝑥,𝑦(𝑄) = 𝑄𝑥𝑄𝑦 −𝑄𝑄𝑥𝑦, 𝑃 (𝑧) := 𝛿𝑤(ℎ) = ℎ2
𝑤 − 2ℎℎ𝑤𝑤, (4)

there is a descent from the faces to the edges and then to the vertices of the cube:
from a polynomial 𝑄(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝒫1

4 to a biquadratic polynomial ℎ ∈ 𝒫2
2 and

further, to a polynomial 𝑃 ∈ 𝒫4
1 of one variable of degree 4.

A biquadratic polynomial ℎ(𝑥, 𝑦) ∈ 𝒫2
2 is said to be non degenerate if no poly-

nomial in its equivalence class with respect to fractional linear transformations is
divisible by a factor of the form 𝑥 − 𝑐 or 𝑦 − 𝑐, with 𝑐 = const. A multiaffine
function 𝑄(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝒫1

4 is said to be of type 𝑄 if all four of its accompa-
nying biquadratic polynomials ℎ𝑗𝑘 are non degenerate. Otherwise, it is of type 𝐻 .
Previous notions were introduced in [5], where the classification list of mulitiaffine
polynomials of type 𝑄 has been obtained, based on the structure of zeros of the
associated nonzero polynomial 𝑃 of degree four. There are five cases, [A], [B], [C],
[D], [E]. For example, in the case [𝐵] = (1, 1, 2):

𝑄𝐵 = (𝛼 − 𝛼−1)(𝑥1𝑥2 + 𝑥3𝑥4) + (𝛽 − 𝛽−1)(𝑥1𝑥4 + 𝑥2𝑥3)

− (𝛼𝛽 − 𝛼−1𝛽−1)(𝑥1𝑥3 + 𝑥2𝑥4)

+
𝛿

4
(𝛼− 𝛼−1)(𝛽 − 𝛽−1)(𝛼𝛽 − 𝛼−1𝛽−1)

for 𝛿 ∕= 0. In the case [𝐶] = (2, 2) 𝑄𝐶 is obtained from 𝑄𝐵 with 𝛿 = 0.
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4. Discriminantly separable polynomials

The notion of discriminantly separable polynomials has been introduced in [6]. A
family of such polynomials has been constructed there as pencil equations from the
theory of conics ℱ(𝑤, 𝑥1, 𝑥2) = 0, where 𝑤, 𝑥1, 𝑥2 are the pencil parameter and
the Darboux coordinates respectively. The key algebraic property of the pencil
equation, as quadratic equation in each of three variables 𝑤, 𝑥1, 𝑥2 is: all three
of its discriminants are expressed as products of two polynomials in one variable
each:

𝒟𝑤(ℱ) = 𝑃 (𝑥1)𝑃 (𝑥2), 𝒟𝑥1(ℱ) = 𝐽(𝑤)𝑃 (𝑥2)𝒟𝑥2(ℱ) = 𝑃 (𝑥1)𝐽(𝑤), (5)

where 𝐽, 𝑃 are polynomials of degree up to 4, and the elliptic curves Γ1 : 𝑦
2 =

𝑃 (𝑥), Γ2 : 𝑦
2 = 𝐽(𝑠) are isomorphic (see Proposition 1 of [6]).

A classification of strongly discriminantly separable polynomials

ℱ(𝑥1, 𝑥2, 𝑥3) ∈ 𝒫2
3 ,

which are those satisfying the above relations 5 with 𝑃 = 𝐽 , has been performed
modulo a gauge group of the following fractional-linear transformations 𝑥𝑖 �→
(𝑎𝑥𝑖 + 𝑏)/(𝑐𝑥𝑖 + 𝑑), 𝑖 = 1, 2, 3 in [7], where more details can be found.

The classification of such polynomials, following [7], goes along the study of
structure of zeros of a nonzero polynomial 𝑃 ∈ 𝒫4

1 . There are five cases: [A] with
four simple zeros; [B] with a double zero and two simple zeros; [C] corresponds to
polynomials with two double zeros; [D] is the case of one triple and one simple
zero; finally, [E] is the case of one zero of degree four. The corresponding families of
polynomials ℱ𝐴, ℱ𝐵, ℱ𝐶1, ℱ𝐶2, ℱ𝐷, ℱ𝐸1, ℱ𝐸2, ℱ𝐸3, ℱ𝐸4 are listed in Theorem 4
of [7]. Here, we are giving an example.

[B] (1, 1, 2): two simple zeros and one double zero, for a canonical form of the
polynomial 𝑃 (𝑥) = 𝑥2 − 𝜖2, the corresponding discriminantly separable poly-
nomial is ℱ𝐵 = 𝑥1𝑥2𝑥3 + (𝜖/2)(𝑥

2
1 + 𝑥2

2 + 𝑥2
3 − 𝜖2).

The relationship between the discriminantly separable polynomials of degree
two in each of three variables, and integrable quad-graphs of Adler, Bobenko and
Suris has been established in [7]. The key point is the following formula, which
defines an ℎ, a biquadratic ingredient of quad-graph integrability, starting form a

discriminantly separable polynomial ℱ : ℎ̂(𝑥1, 𝑥2, 𝛼) = ℱ(𝑥1, 𝑥2, 𝛼)/
√

𝑃 (𝛼).

5. Quantum Yang-Baxter equation

The next subject is devoted to the Yang–Baxter equation

𝑅12(𝑡1 − 𝑡2, ℎ)𝑅
13(𝑡1, ℎ)𝑅

23(𝑡2, ℎ) = 𝑅23(𝑡2, ℎ)(𝑅
13(𝑡1, ℎ)𝑅

12(𝑡1 − 𝑡2, ℎ). (6)

Here 𝑡 is so-called spectral parameter and ℎ is Planck constant. Here we assume that
𝑅(𝑡, ℎ) is a linear operator from 𝑉 ⊗𝑉 to 𝑉 ⊗𝑉 and 𝑅𝑖𝑗 : 𝑉 ⊗𝑉 ⊗𝑉 → 𝑉 ⊗𝑉 ⊗𝑉
is an operator acting on the 𝑖th and 𝑗th components as 𝑅(𝑡, ℎ) and as identity on
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Figure 8. The Euler-Chasles correspondence

the third component. For example 𝑅12(𝑡, ℎ) = 𝑅⊗ 𝐼𝑑. In the first nontrivial case,
matrix 𝑅(𝑡, ℎ) is 4× 4 and the space 𝑉 is two-dimensional.

Krichever’s approach is based on the vacuum vector representation of a 4× 4
matrix 𝐿, understood as a 2 × 2 matrix with blocks of 2 × 2 matrices. In other
words, 𝐿 = 𝐿𝑖𝛼

𝑗𝛽 is a linear operator in the tensor product 𝐶
2 ⊗ 𝐶2. The vacuum

vectors 𝑋,𝑌, 𝑈, 𝑉 satisfy, by definition, the relation

𝐿𝑋 ⊗ 𝑈 = ℎ𝑌 ⊗ 𝑉. (7)

The vacuum vectors are parametrized by the vacuum curve Γ𝐿. In [8] Krichever
proved that in the case of general position, the vacuum curve is elliptic, and rank
one solutions are equivalent to the Baxter 𝑅-matrix. In [9], [10] the cases of rational
vacuum curves have been studied.

The geometric background of the above algebro-geometric classification is
connected with pencils of conics. It is based on the fact that the vacuum curve is
a biquadratic, or the Euler-Chasles 2-2 correspondence (see [11]) of the form

𝐸 : 𝑎𝑥2𝑦2 + 𝑏(𝑥2𝑦 + 𝑥𝑦2) + 𝑐(𝑥2 + 𝑦2) + 2𝑑𝑥𝑦 + 𝑒(𝑥+ 𝑦) + 𝑓 = 0. (8)

Using the Darboux coordinates, we visualize the Euler-Chasles correspon-
dence (8) by Figure 8 and a relationship with pencils of conics becomes obvious.
Thus, again, the classification follows the Penrose diagram (1) where the case [A]
corresponds to the Baxter 𝑅-matrix, [B] to the Cherednik 𝑅-matrix, and [C] to
the six-vertex 𝑅-matrix of Yang.

6. Quadrirational maps

The last section is devoted to quadrirational maps on ℂℙ1 which are introduced
and classified in [12]. Following Adler, Bobenko and Suris, we consider a rational

map 𝐹 : ℂℙ1 × ℂℙ1 → ℂℙ1 × ℂℙ1 and its graph as an algebraic variety Γ𝐹 ⊂
(ℂℙ1)4. Such a map is called quadrirational if for any fixed pair (𝑋,𝑌 ) ∈ ℂℙ1 ×
ℂℙ1 (modulo some closed subvariety of co-dimension at least one) the graph Γ𝐹
intersects each of the sets ℂℙ1 × ℂℙ1 × {𝑋} × {𝑌 }, {𝑋} × {𝑌 } × ℂℙ1 × ℂℙ1,
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ℂℙ1 × {𝑌 } × {𝑋}×ℂℙ1 exactly once. In that case Γ𝐹 defines four rational maps

𝐹, 𝐹−1, 𝐹 , 𝐹−1 : ℂℙ1 × ℂℙ1 → ℂℙ1 × ℂℙ1. It has been proven in [12] that for
a quadrirational map, its graph is defined by polynomial equations 𝑓(𝑥, 𝑦, 𝑢) = 0
and ℎ(𝑦, 𝑥, 𝑣) = 0, where the degrees of 𝑓 in 𝑥 and of ℎ in 𝑦 are one or two. We will
consider further only the case when both of the degrees are equal to two, denoted
in [12] as [2 : 2]. Then, the following classification takes place:

Theorem (Adler, Bobenko, Suris 2004). Any quadrirational map of type [2 : 2] is,
up to Möbius gauge transformations on variables, equivalent to one and only one
of the five maps:

[A] 𝐹𝐴 : 𝑢 = 𝑎𝑦𝑃, 𝑣 = 𝑏𝑥𝑃, 𝑃 =
(1− 𝑏)𝑥+ 𝑏− 𝑎+ (𝑎− 1)𝑦

𝑏(1− 𝑎)𝑥+ (𝑎− 𝑏)𝑦𝑥+ 𝑎(𝑏− 1)𝑦 ;

[B] 𝐹𝐵 : 𝑢 =
𝑦

𝑎
𝑃, 𝑣 =

𝑥

𝑏
𝑃, 𝑃 =

𝑎𝑥− 𝑏𝑦 + 𝑏− 𝑎

𝑥− 𝑦
;

[C] 𝐹𝐶 : 𝑢 =
𝑦

𝑎
𝑃, 𝑣 =

𝑥

𝑏
𝑃, 𝑃 =

𝑎𝑥− 𝑏𝑦

𝑥− 𝑦
;

[D] 𝐹𝐷 : 𝑢 = 𝑦𝑃, 𝑣 = 𝑥𝑃, 𝑃 =
𝑥− 𝑦 + 𝑏− 𝑎

𝑥− 𝑦
;

[E] 𝐹𝐸 : 𝑢 = 𝑦 + 𝑃, 𝑣 = 𝑥+ 𝑃, 𝑃 =
𝑏− 𝑎

𝑥− 𝑦
;

where 𝑎, 𝑏 are given constants.

The mappings 𝐹𝐴, 𝐹𝐵, 𝐹𝐶 , 𝐹𝐷, 𝐹𝐸 are related with pencils of conics of types
𝐴,𝐵,𝐶,𝐷,𝐸 respectively, in the following way: given two conics 𝐶1, 𝐶2 of a pencil,
with fixed rational parametrizations. For a pair of points 𝑥 ∈ 𝐶1, 𝑦 ∈ 𝐶2, 𝑥 ∕= 𝑦,
the line they define intersects conics 𝐶1 and 𝐶2 in other two points 𝑢, 𝑣. Then, as
it has been shown in [12], 𝐹 (𝑥, 𝑦) = (𝑢, 𝑣) is a quadrirational mapping, with the
formula given above.
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[7] V. Dragović, K. Kukić, Integrable Kowalevski type systems, discriminantly separable
polynomials and quad graphs 2011 arXiv: 1106.5770.

[8] I.M. Krichever, Baxter’s equation and algebraic geometry, Func. Anal. Appl. 15
(1981), 92–103 (in Russian).

[9] V. I. Dragovich, Solutions to the Yang equation with rational spectral curves, St.
Petersb. Math. J. 4:5 (1993), 921–931.

[10] V. I. Dragovich, Solutions to the Yang equation with rational irreducible spectrual
curves, Russ. Acad. Sci., Izv., Math. 42:1 (1994), 51–65.
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Geodesic Mappings and Einstein Spaces

Irena Hinterleitner and Josef Mikeš

Abstract. In this paper we study fundamental properties of geodesic map-
pings with respect to the smoothness class of metrics. We show that geodesic
mappings preserve the smoothness class of metrics. We study geodesic map-
pings of Einstein spaces.
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1. Introduction

First we study the general dependence of geodesic mappings of (pseudo-) Riemann-
ian manifolds in dependence on the smoothness class of the metric. We present
well-known facts, which were proved by Beltrami, Levi-Civita, Weyl, Sinyukov,
etc., see [1–5]. In these results no details about the smoothness class of the metric
were discussed. They were formulated “for sufficiently smooth” geometric objects.

In the last section we present proofs of some facts about geodesic mappings
of Einstein spaces.

2. Geodesic mappings theory for 𝑽𝒏 → 𝑽𝒏 of class 𝑪1

Assume the (pseudo-) Riemannian manifolds 𝑉𝑛 = (𝑀, 𝑔) and 𝑉𝑛 = (�̄�, 𝑔) with
metrics 𝑔 and 𝑔, and Levi-Civita connections ∇ and ∇̄, respectively. Here 𝑉𝑛, 𝑉𝑛
∈ 𝐶1, i.e., 𝑔, 𝑔 ∈ 𝐶1 which means that their components 𝑔𝑖𝑗 , 𝑔𝑖𝑗 ∈ 𝐶1.

Definition 1. A diffeomorphism 𝑓 : 𝑉𝑛 → 𝑉𝑛 is called a geodesic mapping of 𝑉𝑛
onto 𝑉𝑛 if 𝑓 maps any geodesic in 𝑉𝑛 onto a geodesic in 𝑉𝑛.

The paper was supported by grant P201/11/0356 of The Czech Science Foundation and by

the Council of the Czech Government MSM 6198959214, research & development project No.
0021630511.
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Let there exist a geodesic mapping 𝑓 : 𝑉𝑛 → 𝑉𝑛. Since 𝑓 is a diffeomorphism,
we can assume the existence of local coordinate maps on 𝑀 or �̄� , respectively,
such that locally, 𝑓 : 𝑉𝑛 → 𝑉𝑛 maps points onto points with the same coordinates,
and �̄� =𝑀 . A manifold 𝑉𝑛 admits a geodesic mapping onto 𝑉𝑛 if and only if the
Levi-Civita equations

∇̄𝑋𝑌 = ∇𝑋𝑌 + 𝜓(𝑋)𝑌 + 𝜓(𝑌 )𝑋 (1)

hold for any tangent fields 𝑋,𝑌 and where 𝜓 is a differential form. If 𝜓 ≡ 0 than
𝑓 is affine or trivially geodesic.

In a local form: Γ̄ℎ𝑖𝑗 = Γ
ℎ
𝑖𝑗 + 𝜓𝑖𝛿

ℎ
𝑗 + 𝜓𝑗𝛿

ℎ
𝑖 , where Γ

ℎ
𝑖𝑗(Γ̄

ℎ
𝑖𝑗) are the Christoffel

symbols of 𝑉𝑛 and 𝑉𝑛, 𝜓𝑖 are components of 𝜓 and 𝛿ℎ𝑖 is the Kronecker delta.
Equations (1) are equivalent to the following equations

𝑔𝑖𝑗,𝑘 = 2𝜓𝑘𝑔𝑖𝑗 + 𝜓𝑖𝑔𝑗𝑘 + 𝜓𝑔𝑖𝑘 (2)

where “ , ” denotes the covariant derivative in 𝑉𝑛. It is known that

𝜓𝑖 = ∂𝑖Ψ, Ψ =
1

2(𝑛+ 1)
ln

∣∣∣∣det 𝑔det 𝑔

∣∣∣∣ , ∂𝑖 = ∂/∂𝑥𝑖.

Sinyukov [5] proved that the Levi-Civita equations are equivalent to

𝑎𝑖𝑗,𝑘 = 𝜆𝑖𝑔𝑗𝑘 + 𝜆𝑗𝑔𝑖𝑘, (3)
where

𝑎𝑖𝑗 = e 2Ψ𝑔𝛼𝛽𝑔𝛼𝑖𝑔𝛽𝑗; 𝜆𝑖 = − e 2Ψ𝑔𝛼𝛽𝑔𝛽𝑖𝜓𝛼.

From (3) follows 𝜆𝑖 = ∂𝑖𝜆 = ∂𝑖(
1
2 𝑎𝛼𝛽𝑔

𝛼𝛽). On the other hand [4, p. 63]:

𝑔𝑖𝑗 = e 2Ψ𝑔𝑖𝑗 , Ψ =
1

2
ln

∣∣∣∣det 𝑔det 𝑔

∣∣∣∣ , ∥𝑔𝑖𝑗∥ = ∥𝑔𝑖𝛼𝑔𝑗𝛽𝑎𝛼𝛽∥−1. (4)

The above formulas are the criterion for geodesic mappings 𝑉𝑛 → 𝑉𝑛 globally
as well as locally.

3. Geodesic mappings theory for 𝑽𝒏 → 𝑽𝒏 of class 𝑪2

Let 𝑉𝑛 and 𝑉𝑛 ∈ 𝐶2, then for geodesic mappings 𝑉𝑛 → 𝑉𝑛 the Riemann and the
Ricci tensors transform in the following way

(a) �̄�ℎ
𝑖𝑗𝑘 = 𝑅ℎ

𝑖𝑗𝑘 + 𝛿ℎ𝑘𝜓𝑖𝑗 − 𝛿ℎ𝑗 𝜓𝑖𝑘; (b) �̄�𝑖𝑗 = 𝑅𝑖𝑗 + (𝑛− 1)𝜓𝑖𝑗 , (5)

where 𝜓𝑖𝑗 = 𝜓𝑖,𝑗 − 𝜓𝑖𝜓𝑗 , and the Weyl tensor of projective curvature, which is
defined in the following form 𝑊ℎ

𝑖𝑗𝑘 = 𝑅ℎ
𝑖𝑗𝑘 − 1

𝑛−1

(
𝛿ℎ𝑘𝑅𝑖𝑗 − 𝛿ℎ𝑗 𝑅𝑖𝑘

)
, is invariant.

The integrability conditions of the Sinyukov equations (3) have the following
form

𝑎𝑖𝛼𝑅
𝛼
𝑗𝑘𝑙 + 𝑎𝑗𝛼𝑅

𝛼
𝑖𝑘𝑙 = 𝑔𝑖𝑘𝜆𝑗,𝑙 + 𝑔𝑗𝑘𝜆𝑖,𝑙 − 𝑔𝑖𝑙𝜆𝑗,𝑘 − 𝑔𝑗𝑙𝜆𝑖,𝑘. (6)

After contraction with 𝑔𝑗𝑘 we get [5]

𝑛𝜆𝑖,𝑙 = 𝜇𝑔𝑖𝑙 + 𝑎𝑖𝛼𝑅
𝛼
𝑙 − 𝑎𝛼𝛽𝑅

𝛼
𝑖𝑙
𝛽 (7)

where 𝑅𝛼
𝑖𝑗
𝛽 = 𝑔𝛽𝑘𝑅𝛼

𝑖𝑗𝛽 ; 𝑅
𝛼
𝑗 = 𝑔𝛼𝛽𝑅𝛽𝑗 and 𝜇 = 𝜆𝑖,𝑗𝑔

𝑖𝑗 .
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4. Geodesic mappings between 𝑽𝒏 ∈ 𝑪𝒓 (𝒓 > 2) and 𝑽𝒏 ∈ 𝑪2

Theorem 1. If 𝑉𝑛 ∈ 𝐶𝑟 (𝑟 > 2) admits geodesic mappings onto 𝑉𝑛 ∈ 𝐶2, then 𝑉𝑛
∈ 𝐶𝑟.

The proof of this theorem follows from the following lemmas.

Lemma 2. Let 𝜆ℎ ∈ 𝐶1 be a vector field and 𝜚 a function.
If ∂𝑖𝜆

ℎ − 𝜚 𝛿ℎ𝑖 ∈ 𝐶1 then 𝜆ℎ ∈ 𝐶2 and 𝜚 ∈ 𝐶1.

Proof. The condition ∂𝑖𝜆
ℎ − 𝜚 𝛿ℎ𝑖 ∈ 𝐶1 can be written in the following form

∂𝑖𝜆
ℎ − 𝜚𝛿ℎ𝑖 = 𝑓ℎ𝑖 (𝑥), (8)

where 𝑓ℎ𝑖 (𝑥) are functions of class 𝐶
1. Evidently, 𝜚 ∈ 𝐶0. For fixed but arbitrary

indices ℎ ∕= 𝑖 we integrate (8) with respect to 𝑑𝑥𝑖:

𝜆ℎ = Λℎ +

∫ 𝑥𝑖

𝑥𝑖𝑜

𝑓ℎ𝑖 (𝑥
1, . . . , 𝑥𝑖−1, 𝑡, 𝑥𝑖+1, . . . , 𝑥𝑛) 𝑑𝑡,

where Λℎ is a function, which does not depend on 𝑥𝑖.
Because of the existence of the partial derivatives of the functions 𝜆ℎ and the

above integrals (see [6, p. 300]), also the derivatives ∂ℎΛ
ℎ exist; in this proof we

don’t use the Einstein’s summation convention. Then we can write (8) for ℎ = 𝑖:

𝜚 = −𝑓ℎℎ + ∂ℎΛ
ℎ +

∫ 𝑥𝑖

𝑥𝑖𝑜

∂ℎ𝑓
ℎ
𝑖 (𝑥

1, . . . , 𝑥𝑖−1, 𝑡, 𝑥𝑖+1, . . . , 𝑥𝑛) 𝑑𝑡. (9)

Because the derivative with respect to 𝑥𝑖 of the right-hand side of (9) exists, the
derivative of the function 𝜚 exists, too. Obviously ∂𝑖𝜚 = ∂ℎ𝑓

ℎ
𝑖 − ∂𝑖𝑓

ℎ
ℎ , therefore

𝜚 ∈ 𝐶1 and from (8) follows 𝜆ℎ ∈ 𝐶2. □

In a similar way we can prove the following: if 𝜆ℎ ∈ 𝐶𝑟 (𝑟 ≥ 1) and ∂𝑖𝜆
ℎ −

𝜚𝛿ℎ𝑖 ∈ 𝐶𝑟 then 𝜆ℎ ∈ 𝐶𝑟+1 and 𝜚 ∈ 𝐶𝑟.

Lemma 3. If 𝑉𝑛∈𝐶3 admits a geodesic mapping onto 𝑉𝑛∈𝐶2, then 𝑉𝑛∈𝐶3.

Proof. In this case the Sinyukov’s equations (3) and (7) hold. According to the
assumptions 𝑔𝑖𝑗 ∈ 𝐶3 and 𝑔𝑖𝑗 ∈ 𝐶2. Then by a simple check-up we find Ψ ∈ 𝐶2,
𝜓𝑖 ∈ 𝐶1, 𝑎𝑖𝑗 ∈ 𝐶2, 𝜆𝑖 ∈ 𝐶1 and 𝑅ℎ

𝑖𝑗𝑘, 𝑅
ℎ
𝑖𝑗
𝑘, 𝑅𝑖𝑗 , 𝑅

ℎ
𝑖 ∈ 𝐶1.

From the above-mentioned conditions we easily convince ourselves that we
can write equation (7) in the form (8), where 𝜆ℎ = 𝑔ℎ𝛼𝜆𝛼 ∈ 𝐶1, 𝜚 = 𝜇/𝑛 and
𝑛𝑓ℎ𝑖 = −𝜆𝛼Γℎ𝛼𝑖 + 𝑔ℎ𝛾𝑎𝛼𝛾𝑅

𝛼
𝑖 − 𝑎𝛼𝛽𝑅

ℎ
𝛼𝛽𝑖 ∈ 𝐶1.

From Lemma 2 follows that 𝜆ℎ ∈ 𝐶2, 𝜚 ∈ 𝐶1, and evidently 𝜆𝑖 ∈ 𝐶2.
Differentiating (3) twice we demonstrate that 𝑎𝑖𝑗 ∈ 𝐶3. From this and formula (4)
follows that also Ψ ∈ 𝐶3 and 𝑔𝑖𝑗 ∈ 𝐶3. □

Further we notice that for geodesic mappings between 𝑉𝑛 and 𝑉𝑛 of class 𝐶
3

holds the third set of Sinyukov equations:

(𝑛− 1)𝜇,𝑖 = 2(𝑛+ 1)𝜆𝛼𝑅𝛼
𝑘 + 𝑎𝛼𝛽(2𝑅

𝛼
𝑘,
𝛽 −𝑅𝛼𝛽

,𝑘). (10)
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If 𝑉𝑛 ∈ 𝐶𝑟 and 𝑉𝑛 ∈ 𝐶2, then by Lemma 3, 𝑉𝑛 ∈ 𝐶3 and (10) hold. Because
Sinyukov’s system (3), (7) and (10) is closed, we can differentiate equations (3)
(𝑟−1) times. So we convince ourselves that 𝑎𝑖𝑗 ∈𝐶𝑟, and also 𝑔𝑖𝑗∈𝐶𝑟 (≡𝑉𝑛∈𝐶𝑟).

Remark 4. Because for holomorphically projective mappings of Kähler (and also
hyperbolic and parabolic Kähler) spaces hold equations analogical to (3) and (7),
see [3, 5, 7], from Lemma 2 follows an analog to Theorem 1 for these mappings.

5. On geodesic mappings of Einstein spaces

Geodesic mappings of Einstein spaces were studied by many authors starting with
A.Z. Petrov (see [8]). Einstein spaces 𝑉𝑛 are characterized by the condition Ric =
const ⋅ 𝑔, so 𝑉𝑛∈ 𝐶2 would be sufficient. But many properties of Einstein spaces
occur when 𝑉𝑛 ∈ 𝐶3 and 𝑛 > 3. An Einstein space 𝑉3 is a space of constant
curvature.

We continue with geodesic mappings of Einstein spaces 𝑉𝑛 ∈ 𝐶3. On basis
of Theorem 1 it is natural to suppose that 𝑉𝑛∈ 𝐶3. In 1978 (see PhD. thesis [9]
and [10]) Mikeš proved that under these conditions the following theorem holds:

Theorem 5. If the Einstein space 𝑉𝑛 admits a nontrivial geodesic mapping onto a
(pseudo-) Riemannian space 𝑉𝑛, then 𝑉𝑛 is an Einstein space.

Proof. Let the Einstein space 𝑉𝑛 ∈ 𝐶3 (for which 𝑅𝑖𝑗 = −𝐾 (𝑛 − 1) 𝑔𝑖𝑗) admit a
nontrivial geodesic mapping onto 𝑉𝑛 ∈ 𝐶2. Then the Sinyukov equations (3) hold;
their integrability conditions have the form given in (6). Taking (3) into account,
we differentiate (6) with respect to 𝑥𝑚, contract the result with 𝑔𝑙𝑚, and then we
alternate with respect to 𝑖, 𝑘. By (8), we get 𝜆𝛼𝑅

𝜆
𝑖𝑗𝑘 = 𝑔𝑖𝑗𝜉𝑘 − 𝑔𝑖𝑘𝜉𝑗 , where 𝜉𝑖 is

some vector. Contracting the latter with 𝑔𝑖𝑗 and using (8) we see that 𝜉𝑖 = 𝐾𝜆𝑖,
that is, the formula reads 𝜆𝛼𝑅

𝜆
𝑖𝑗𝑘 = 𝐾(𝑔𝑖𝑗𝜆𝑘 − 𝑔𝑖𝑘𝜆𝑗).

We contract (6) with 𝜆𝑙. Considering the last formula, we get

𝑔𝑘𝑖Λ𝑗𝛼𝜆
𝛼 + 𝑔𝑘𝑗Λ𝑖𝛼𝜆

𝛼 − 𝜆𝑖Λ𝑗𝑘 − 𝜆𝑗Λ𝑖𝑘 = 0, (11)

where Λ𝑖𝑗 = 𝜆𝑖,𝑗−𝐾𝑎𝑖𝑗 . It is easy to show that 𝜆
𝑎Λ𝛼𝑖 = 𝜇𝜆𝑖, where 𝜇 is a function.

Since 𝜆𝑖 ∕= 0, we find from (11) that
𝜆𝑖,𝑗 = 𝜇 𝑔𝑖𝑗 +𝐾 𝑎𝑖𝑗 . (12)

Differentiating (12) and considering (3), (7), it is easy to obtain the following
equation:

𝜓𝑖𝑗 ≡ 𝜓𝑖,𝑗 − 𝜓𝑖𝜓𝑗 = �̄� 𝑔𝑖𝑗 −𝐾𝑔𝑖𝑗, (13)

where �̄� is a function. Then from (5), by virtue of the last relation, and considering
𝑅𝑖𝑗 = −𝐾 (𝑛 − 1) 𝑔𝑖𝑗 , we get that �̄�𝑖𝑗 = (𝑛 − 1)�̄� 𝑔𝑖𝑗 . Hence 𝑉𝑛 is an Einstein
space. The theorem is proved. □

Theorem 5 was proved “locally” but it is easy to show that when the domain
of validity of equations (13) border with a domain where 𝜓𝑖 ≡ 0, then in this
domain 𝜓𝑖 ≡ 0. Assume a point 𝑥0 on the border between these domains, then
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𝜓𝑖(𝑥0) = 0 and 𝜓𝑖𝑗 = 0. Indeed a) If 𝐾 ∕= 0 or �̄� ∕= 0 then 𝑔𝑖𝑗(𝑥0) = �̄�/𝐾 𝑔𝑖𝑗(𝑥0).
From these properties follows that the system of equations (2) and (13) has a
unique solution 𝑔𝑖𝑗 = �̄�/𝐾 𝑔𝑖𝑗 and 𝜓𝑖 = 0. b) If 𝐾 = �̄� = 0 then equations (13):
𝜓𝑖,𝑗 = 𝜓𝑖𝜓𝑗 have a unique solution for 𝜓𝑖(𝑥0) = 0: 𝜓𝑖 = 0.

This Theorem was used for geodesic mappings of four-dimensional Einstein
spaces (Mikeš, Kiosak [11]) and to find metrics of Einstein spaces that admit
geodesic mappings (Formella, Mikeš [12]).
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[4] Zh. Radulovich, J. Mikeš, M.L. Gavril’chenko, Geodesic mappings and deformations
of Riemannian spaces. (Russian) Podgorica: CID. Odessa: OGU, 1997.

[5] N.S. Sinyukov, Geodesic mappings of Riemannian spaces. M., Nauka, 1979.

[6] L.D. Kudrjavcev, Kurs matematicheskogo analiza. Moscow, Vyssh. skola, 1981.
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1. Racah operators for a product of three representations

Let let𝐺 be a locally compact group with the “nice” dual space �̂� (“nice” means, in
particular, that any unitary representation of 𝐺 admits a unique decomposition in
irreducible representations) and {𝐻𝑐}, 𝑐 ∈ �̂�, – a family of Hilbert spaces carrying

representations 𝑇𝑐 of equivalence class 𝑐 ∈ �̂� (these families also are assumed to

be “nice”). Let for any pair 𝑎1, 𝑎2 ∈ �̂� be given a fixed decomposition of the
product 𝑇𝑎1 ⊗𝑇𝑎2 into irreducible representations. More exactly we have a unitary
isomorphisms

𝐻𝑎1 ⊗𝐻𝑎2 ≃
∫
�̂�

(𝐻𝑐 ⊗ 𝑉 𝑎1,𝑎2
𝑐 )𝑑𝜏𝑎1,𝑎2(𝑐).

Here {𝑉 𝑎1,𝑎2
𝑐 , 𝑐 ∈ �̂�} denotes a family of Hilbert spaces (this family is “nice” of

course as well as the mapping (𝑎1, 𝑎2) �→ 𝜏𝑎1,𝑎2). The group 𝐺 acts in 𝐻𝑐⊗𝑉 𝑎1,𝑎2
𝑐

as 𝑇𝑐 ⊗ 𝐼𝑐 where 𝐼𝑐 denotes the trivial representation in 𝑉 𝑎1,𝑎2
𝑐 .

Then take a product 𝑇𝑎1 ⊗ 𝑇𝑎2 ⊗ 𝑇𝑎3 and decompose it following the usual
“Racah strategy”: first we decompose 𝑇𝑎1 ⊗ 𝑇𝑎2 as indicated and then decompose

products 𝑇𝑐⊗𝑇𝑎3 for any 𝑐 ∈ �̂�. We obtain a measure 𝑑𝜏(𝑐, 𝑙) = 𝑑𝜏𝑐,𝑎3(𝑙)⋅𝑑𝜏𝑎1,𝑎2(𝑐)

on �̂�× �̂� and an isomorphism

𝐻𝑎1 ⊗𝐻𝑎2 ⊗𝐻𝑎3 ≃
∫

�̂�×�̂�

(𝐻𝑙 ⊗ 𝑉 𝑎1,𝑎2
𝑐 ⊗ 𝑉 𝑐,𝑎3

𝑙 )𝑑𝜏(𝑙, 𝑐).
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We can rewrite this as

𝐻𝑎1 ⊗𝐻𝑎2 ⊗𝐻𝑎3 ≃
∫
�̂�

(𝐻𝑙 ⊗𝑀𝑙)𝑑𝜃(𝑙), (1)

where

𝑀𝑙 =

∫
�̂�

(𝑉 𝑎1,𝑎2
𝑐 ⊗ 𝑉 𝑐,𝑎3

𝑙 )𝑑𝜇𝑙(𝑐).

We now repeat this construction decomposing first 𝑇𝑎2⊗𝑇𝑎3 in {𝑇𝑐} and then
decomposing the products 𝑇𝑎1 ⊗ 𝑇𝑐 for any 𝑐. This gives another isomorphism

𝐻𝑎1 ⊗𝐻𝑎2 ⊗𝐻𝑎3 ≃
∫
�̂�

(𝐻𝑙 ⊗𝑁𝑙)𝑑𝜎(𝑙), (2)

where

𝑁𝑙 =

∫
�̂�

(𝑉 𝑎1,𝑐
𝑙 ⊗ 𝑉 𝑎2,𝑎3

𝑐 )𝑑𝜈𝑙(𝑐).

Equations (1) and (2) lead to a unitary isomorphism∫
�̂�

(𝐻𝑙 ⊗𝑀𝑙)𝑑𝜃(𝑙) ≃
∫
�̂�

(𝐻𝑙 ⊗𝑁𝑙)𝑑𝜎(𝑙), (3)

compatible with the action of 𝐺. The measures 𝜃 and 𝜎 are equivalent and we
can take 𝜃 = 𝜎. So the isomorphism (3) is determined by a family of unitary
isomorphisms 𝑅𝑙 :𝑀𝑙 → 𝑁𝑙 or

𝑅𝑙 :

∫
�̂�

(𝑉 𝑎1,𝑎2
𝑐 ⊗ 𝑉 𝑐,𝑎3

𝑙 )𝑑𝜇𝑙(𝑐)→
∫
�̂�

(𝑉 𝑎1,𝑐
𝑙 ⊗ 𝑉 𝑎2,𝑎3

𝑐 )𝑑𝜈𝑙(𝑐). (4)

These are (by definition) the Racah operators.
In the most transparent case when all the products 𝑇𝑎1 ⊗ 𝑇𝑎2 have a simple

spectra (so all the 𝑉 𝑎1,𝑎2
𝑐 are one-dimensional) the Racah operators are

𝑅𝑙 : 𝐿2(�̂�, 𝑑𝜇𝑙(𝑐))→ 𝐿2(�̂�, 𝑑𝜈𝑙(𝑐))

with some measures 𝜇𝑙, 𝜈𝑙 on �̂�.

2. Racah operators for a product of many representations

As we can see the Racah operators arise if one writes the product 𝑇1 ⊗ 𝑇2 ⊗ 𝑇3

first as (𝑇1 ⊗ 𝑇2) ⊗ 𝑇3 and then as 𝑇1 ⊗ (𝑇2 ⊗ 𝑇3) and step by step decomposes
the products of two representations contained between two brackets (opening and
closing). Consider now a product 𝑇𝑎1⊗𝑇𝑎2⊗⋅ ⋅ ⋅⊗𝑇𝑎𝑛 , 𝑛 ≥ 3. It also can be thought
of as a result of step by step multiplication of two representations obtained by using
a system of brackets (opening and closing); if for example 𝑛 = 4 then the product
𝑇1⊗𝑇2⊗𝑇3⊗𝑇4 can be written as (𝑇1⊗𝑇2)(⊗𝑇3 ⊗𝑇4), ((𝑇1 ⊗𝑇2))⊗𝑇3)⊗𝑇4 and



Racah Operators 339

so on. Any system of brackets gives a decomposition of 𝑇𝑎1 ⊗𝑇𝑎2 ⊗⋅ ⋅ ⋅⊗𝑇𝑎𝑛 , 𝑛 ≥ 3
in irreducible representations. Given two different system of brackets we naturally
come to a set of unitary operators relating these two decompositions (as we had
above for (𝑇1⊗𝑇2)⊗𝑇3 and 𝑇1⊗(𝑇2⊗𝑇3)); these are the desired Racah operators.

3. The case of the motion group; construction for Racah operators

Let 𝐺 be the group of motions of R3. Its elements are 𝑔 = (𝑢, 𝑎), where 𝑢 ∈
𝑆𝑂(3), 𝑎 ∈ R3; (so 𝑔 acts on R3 as 𝑥 �→ 𝑥 ⋅ 𝑢 + 𝑎).The subgroup 𝑆𝑂(3) acts on
the sphere 𝑆2 = {𝑥 ∈ R3 : (𝑥, 𝑥) = 1} by 𝑥 ⋅ 𝑢. The representation of 𝐺 (which is
not trivial on R3 ⊂ 𝐺,) is determined by a pair (𝑚, 𝑙), where 𝑚 ∈ Z and 𝑙 > 0;
denote it by 𝑇𝑚,𝑙. It acts in 𝐿2(𝑆

2); the subgroup R3 acts by multiplications
𝑥 �→ exp(𝚤𝑙(𝑎, 𝑥)) and on the subgroup 𝑆𝑂(3) the representation is induced by the
character 𝑧 �→ 𝑧𝑚 of the subgroup 𝑇 1 = {𝑧 ∈ C : ∣𝑧∣ = 1}.

The product 𝑇𝑚1,𝑙1 ⊗ 𝑇𝑚2,𝑙2 is decomposed as

𝑇𝑚1,𝑙1 ⊗ 𝑇𝑚2,𝑙2 ≃
∫
Z

∫
Δ

𝑇 𝑟,𝑠𝑑(𝑟, 𝑠).

Here Δ = (∣𝑙1 − 𝑙2∣, 𝑙1 + 𝑙2) and integration on Z means summing.
In order to decompose 𝑇𝑚1,𝑙1 ⊗ 𝑇𝑚2,𝑙2 ⊗ 𝑇𝑚3,𝑙3 we need the domain 𝐷1 in

the (𝑠, 𝑙) -plane given by ∣𝑙1− 𝑙2∣ ≤ 𝑠 ≤ 𝑙1+ 𝑙2, ∣𝑠− 𝑙3∣ ≤ 𝑙 ≤ 𝑠+ 𝑙3. Let ℎ0 = min{𝑙 :
(𝑠, 𝑙) ∈ 𝐷1}, ℎ1 = max{𝑙 : (𝑠, 𝑙) ∈ 𝐷1}. Then ℎ1 = 𝑙1 + 𝑙2 + 𝑙3. Take the interval
Δ = (ℎ0, ℎ1) and for any point 𝑙 ∈ Δ take the interval 𝜔1(𝑙) = {𝑠 : (𝑠, 𝑙) ∈ 𝐷1}.
Then the desired decomposition is

𝑇𝑚1,𝑙1 ⊗ 𝑇𝑚2,𝑙2 ⊗ 𝑇𝑚3,𝑙3 ≃
∫

Z×Δ

𝑇𝑚,𝑙 ⊗ 𝐼𝑚,𝑙
1 𝑑(𝑚, 𝑙), (5)

where 𝐼𝑚,𝑙
1 denotes the trivial representation in 𝐿2(Z× 𝜔1(𝑙)).

Similarly, decomposing first 𝑇𝑚2,𝑙2 ⊗ 𝑇𝑚3,𝑙3 and then decomposing

𝑇𝑚1,𝑙1 ⊗ 𝑇 𝑟,𝑠

for all (𝑟, 𝑠) we come to another decomposition

𝑇𝑚1,𝑙1 ⊗ 𝑇𝑚2,𝑙2 ⊗ 𝑇𝑚3,𝑙3 ≃
∫

Z×Δ

𝑇𝑚,𝑙 ⊗ 𝐼𝑚,𝑙
2 𝑑(𝑚, 𝑙). (6)

Instead of the previous domain 𝐷1 we take in the formula (6) the domain

𝐷2 given by ∣𝑙2 − 𝑙3∣ ≤ 𝑠 ≤ 𝑙2 + 𝑙3, ∣𝑠 − 𝑙1∣ ≤ 𝑙 ≤ 𝑙1 + 𝑠. 𝐼𝑚,𝑙
2 denotes the trivial

representation in 𝐿2(Z × 𝜔2(𝑙)), where 𝜔2(𝑙) = {𝑠 : (𝑠, 𝑙) ∈ 𝐷2}.
The decompositions (5) and (6) give the following isomorphism:∫

Z×Δ

𝑇𝑚,𝑙 ⊗ 𝐼𝑚,𝑙
1 𝑑(𝑚, 𝑙) ≃

∫
Z×Δ

𝑇𝑚,𝑙 ⊗ 𝐼𝑚,𝑙
2 𝑑(𝑚, 𝑙). (7)

So the Racah operators are 𝑅(𝑚, 𝑙) : 𝐿2(Z× 𝜔1(𝑙))→ 𝐿2(Z× 𝜔2(𝑙)).
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Now we pass to a more convenient realization of these operators. To do so
replace any function (𝑟, 𝑠) �→ 𝑓(𝑟, 𝑠) taken from the Hilbert space 𝐿2(Z×𝜔𝑘(𝑙)), 𝑘 =
1, 2, by the Fourier series

(𝜃, 𝑠) �→ 𝑓∘(𝜃, 𝑠) =
∑

𝑟
𝑓(𝑟, 𝑠)𝜃−𝑟, (𝜃, 𝑠) ∈ 𝑇 1 × 𝜔𝑘(𝑙), 𝑘 = 1, 2.

So the Hilbert spaces 𝐿2(Z× 𝜔𝑘(𝑙)) are replaced by 𝐿2(𝑇
1 × 𝜔𝑘(𝑙)), 𝑘 = 1, 2, and

the Racah operators 𝑅(𝑙, 𝜆) act as

𝑅∘(𝑚, 𝑙) : 𝐿2(𝑇
1 × 𝜔1(𝑙))→ 𝐿2(𝑇

1 × 𝜔2(𝑙)). (8)

We retain the name Racah operators for these actions and in next sections we will
describe them.

4. Hinge transformation and explicit form for Racah operators
for three representations

Fix positive numbers 𝑎𝑖, 1 ≤ 𝑖 ≤ 4 such that any of them is less than the sum of
others. Let ℳ denote the set of polygons (in general position) (𝐴1 ⋅ ⋅ ⋅𝐴4) with
∣𝐴𝑖, 𝐴𝑖+1∣ = 𝑎𝑖, 1 ≤ 𝑖 ≤ 3, ∣𝐴1, 𝐴4∣ = 𝑎4. These polygons are considered up to
motions of the space R3. They are the hinge polygons (by definition). ℳ is a
smooth manifold (after removing the singular points). It can be parametrized in
three ways: first we can take as parameters the values ∣𝐴1, 𝐴3∣, ∣𝐴2, 𝐴4∣, second
– the values ∣𝐴1, 𝐴3∣, 𝜃13 where 𝜃13 is the angle between the planes determined
by (𝐴1, 𝐴2, 𝐴3) and (𝐴1, 𝐴4, 𝐴3) and third – the values ∣𝐴2, 𝐴4∣, 𝜃24 determined
similarly. For any of these three parametrization introduce a 2-form by

(24𝑉 )−1𝑑∣𝐴1, 𝐴3∣2 ∧ 𝑑∣𝐴2, 𝐴4∣2, 𝑑∣𝐴1, 𝐴3∣ ∧ 𝑑𝜃13, 𝑑∣𝐴2, 𝐴4∣ ∧ 𝑑𝜃24;

here 𝑉 denotes the volume of the tetrahedron – the convex hull of our polygon.
It turns out that these three 2-forms coincide. Thus they lead to the same

2-form 𝜔2 on ℳ – the surface form. It follows that the mapping

(∣𝐴1, 𝐴3∣, 𝜃13) �→ (∣𝐴2, 𝐴4∣, 𝜃24)

preserves the two-dimensional Lebesque measure.
Return now to Racah operators. Let 𝜏𝑗𝑘 = exp(𝚤𝜃𝑗𝑘).

Theorem. The Racah operator (8) is

(𝑅∘(𝑚, 𝑙)𝑓)(∣𝐴2𝐴4∣, 𝜏24) = (𝜏12)
𝑚1(−𝜏23)

𝑚2(𝜏34)
𝑚3(𝜏14)

𝑚𝑓(∣𝐴1𝐴3∣,−𝜏13),

𝑓 ∈ 𝐿2(𝑇
1 × 𝜔1(𝑙)).

5. Hinge transformation and explicit form for Racah operators
for many representations

Consider a tensor product 𝑇𝑚1,𝑙1 ⊗ 𝑇𝑚2,𝑙2 ⋅ ⋅ ⋅ ⊗ 𝑇𝑚𝑛,𝑙𝑛 , 𝑛 > 3. As was explained
above to follow the Racah strategy we must arrange the pairs of opening and clos-
ing brackets (. . .) between these 𝑇𝑚𝑖,𝑙𝑖 and then step by step decompose represen-
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tations standing between two brackets into irreducible ones. Taking two systems
of brackets we come to Racah operator which relates the corresponding decompo-
sition. In order to realize this operator we need a generalization of the Hinge con-
struction described above. More precisely consider a manifold ℳ𝑛 of 𝑛-polygons
with fixed lengths ∣𝐴𝑖, 𝐴𝑖+1∣ = 𝑎𝑖, 𝑖 = 1, . . . , 𝑛− 1, ∣𝐴1, 𝐴𝑛∣ = 𝑎𝑛. Consider these
polygons as images of the fixed convex polygon 𝑃 0

𝑛 on the plane embedded into
R3 isometrically on each 𝐴𝑖𝐴𝑖+1 and on 𝐴1𝐴𝑛. Triangulate 𝑃

0
𝑛 by using diagonals

and transport these diagonals to our polygon. So we come to parametrization of
ℳ𝑛 by pairs ∣𝐴𝑖, 𝐴𝑖+1∣, 𝜃𝑖,𝑖+1 and ∣𝐴1, 𝐴𝑛∣, 𝜃1,𝑛 as we did above for 𝑛 = 4. This
leads to the volume-form onℳ𝑛 defined as a product of forms 𝑑∣𝐴𝑖, 𝐴𝑖+1∣∧𝑑𝜃𝑖,𝑖+1

and 𝑑∣𝐴1, 𝐴𝑛∣ ∧ 𝑑𝜃1,𝑛. Two systems of parameters (which correspond to different
triangulations of 𝑃 0

𝑛) are related by measure preserving transformation (Hinge
transformation).

The crucial fact is that the two constructions described here (the first for
representations and the second one for polygons) are closely related. Moreover the
Racah operators are realized as unitary operators in Hilbert spaces of 𝐿2 type
given by hinge transformation of polygons (and by multiplication operator).

The symplectic 2-form on ℳ𝑛 was discovered by A. Klyachko [1]. This also
leads to a volume form: it turns out however that this volume form is not the same
one, which we have constructed in Sections 4 and 5.

The general consideration of Racah operators is contained in [2] where also
the case of the group 𝐺 = 𝑃𝑆𝐿(2,C) is described.
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1. Introduction

One of the most intriguing topics in recent investigations of quantum information
theory is the problem of quantifying correlations in composite quantum systems [1–
4]. Especially interesting is the problem of establishing correlations which has pure
quantum origin [5]. One of a possible measure of such correlations is a quantum
discord introduced in [6, 7] and recently investigated in many aspects [8–20].

In what follows we will consider a bipartite system consisting of parts A and
B described by finite-dimensional Hilbert spaces ℋ𝐴 and ℋ𝐵 , respectively. As a
consequence, the Hilbert space of the total system is a tensor productℋ𝐴⊗ℋ𝐵 and
any state of the system is represented by a Hermitian, non negative semi-definite
density matrix 𝜌𝐴𝐵 with Tr𝜌𝐴𝐵 = 1.

It is a common agreement that the most suitable quantity to measure cor-
relations between subsystems is the mutual information (mutual entropy). This
quantity is usually defined in terms of von Neumann entropy

𝑆(𝜌𝐴𝐵) = −Tr(𝜌𝐴𝐵 log 𝜌𝐴𝐵)
as

𝐼(𝐴 : 𝐵) = 𝑆(𝐴) + 𝑆(𝐵)− 𝑆(𝐴𝐵) , (1)

where 𝑆(𝐴) = 𝑆(𝜌𝐴), 𝑆(𝐵) = 𝑆(𝜌𝐵), 𝑆(𝐴𝐵) = 𝑆(𝜌𝐴𝐵), 𝜌𝐴 = Tr𝐵(𝜌𝐴𝐵), 𝜌𝐵 =
Tr𝐴(𝜌𝐴𝐵) being reduced density matrices. Due to the subadditivity property (SA)
of the von Neumann entropy [1, 21]

𝑆(𝐴𝐵) ≤ 𝑆(𝐴) + 𝑆(𝐵) (2)
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mutual information is non negative

𝐼(𝐴 : 𝐵) ≥ 0 .
Clearly, 𝐼(𝐴 : 𝐵) contains information about all correlations present in the state
𝜌𝐴𝐵 and one can put forward an equation displaying, which correlations are of
classical origin and which are pure quantum. One can decompose (in a non unique
way) the total correlations 𝐼(𝐴 : 𝐵) as

𝐼(𝐴 : 𝐵) = 𝐷(𝐴 : 𝐵)
quantum

+ 𝐶(𝐴 : 𝐵)
classical

.

The classical part 𝐶(𝐴 : 𝐵), as proposed in [6], can be determined in the following
way: consider the set {Π𝑘} of one-dimensional projectors fulfilling

∑
𝑘 Π𝑘 = �,

acting on the subsystem B and corresponding to some measurement procedure.
The post-measurement states constitute an ensemble {𝑝𝑘, 𝜌𝑘}, where

𝜌𝑘 =
1

𝑝𝑘
(�⊗Π𝑘)𝜌𝐴𝐵(�⊗Π𝑘)

† , 𝑘 = 0, 1, . . . ,

and 𝑝𝑘 = Tr(�⊗Π𝑘)𝜌𝐴𝐵, which can be used to define the conditional entropy with
respect to the measurement

𝑆(𝐴∣{Π𝑘}) =
∑
𝑘

𝑝𝑘𝑆(𝜌𝑘) .

Finally, the so-called Holevo quantity with respect to the measurement

𝜒(𝐴∣{Π𝑘}) = 𝑆(𝐴)− 𝑆(𝐴∣{Π𝑘})
quantifies the amount of Π-type information contained in 𝐴 and corresponds to
some classical correlations between A and B provided by the measurement. Hence,
quantum correlations with respect to the measurement are contained in the quantity

𝐷(𝐴 : 𝐵∣{Π𝑘}) = 𝐼(𝐴 : 𝐵)− 𝜒(𝐴∣{Π𝑘}), (3)

which is called the quantum discord with respect to {Π𝑘}.
Now, classical correlations correspond to the maximal value of Holevo quan-

tities obtained for different measurement procedures, i.e.,

𝐶(𝐴 : 𝐵) = sup
{Π𝑘}

𝜒(𝐴∣{Π𝑘}).

The strong subadditivity (SSA) of von Neumann entropy (see [1, 21])

𝑆(𝐴𝐵𝐶) + 𝑆(𝐵) ≤ 𝑆(𝐴𝐵) + 𝑆(𝐵𝐶)

results in the following pattern of implications

SSA ⇒ 𝐷(𝐴 : 𝐵∣Π) ≥ 0 ⇒ SA. (4)

As a consequence of (4) the quantum discord is non negative [6, 7], i.e.,

𝐷(𝐴 : 𝐵) = 𝐼(𝐴 : 𝐵)− 𝐶(𝐴 : 𝐵) ≥ 0.
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2. 𝒒-discord

The following question gives some motivations in our further investigations: can
one generalize the notion of quantum discord to more general entropy functions?
Going in this direction we consider the two-parameter family of entropy func-
tions [22]

𝐻𝑞,𝑠(𝜌) =
1

𝑠(1− 𝑞)

[
(Tr𝜌𝑞)𝑠 − 1

]
, 𝑞, 𝑠 > 0,

which covers most of known entropies such as

∙ Renyi entropy for 𝑠 → 0,
∙ Tsallis entropy for 𝑠 = 1,
∙ von Neumann entropy for 𝑠 = 1 and 𝑞 → 1.

All the entropy functions 𝐻𝑞,𝑠 are non negative, concave and, if 𝜌𝐴𝐵 is pure then
𝐻𝑞,𝑠(𝜌𝐴) = 𝐻𝑞,𝑠(𝜌𝐵), but 𝐻𝑞,𝑠 are no longer additive with respect to the tensor
product, i.e.,

𝐻𝑞,𝑠(𝜌1 ⊗ 𝜌2) = 𝐻𝑞,𝑠(𝜌1) +𝐻𝑞,𝑠(𝜌2) + 𝑠(1− 𝑞)𝐻𝑞,𝑠(𝜌1)𝐻𝑞,𝑠(𝜌2),

hence subadditivity (SA) fails in general, i.e., for arbitrary 𝑞, 𝑠. Note however that
for Tsallis entropy 𝑇𝑞 ≡ 𝐻𝑞,1 with 𝑞 > 1 one obtains [23–26]

𝑇𝑞(𝜌1 ⊗ 𝜌2) = 𝑇𝑞(𝜌1) + 𝑇𝑞(𝜌2) + (1− 𝑞)𝑇𝑞(𝜌1)𝑇𝑞(𝜌2) ≤ 𝑇𝑞(𝜌1) + 𝑇𝑞(𝜌2)

and moreover [27]

for 𝑞 > 1 𝑇𝑞(𝜌𝐴𝐵) ≤ 𝑇𝑞(𝜌𝐴) + 𝑇𝑞(𝜌𝐵), (5)

hence SA holds.
Motivated by the validity of the property (5) for von Neumann entropies, in

analogy to (3), we introduce the notion of a 𝑞-discord with respect to the measure-
ment {Π𝑘} as

𝐷𝑞(𝐴 : 𝐵∣{Π𝑘}) = 𝐼𝑞(𝐴 : 𝐵)− 𝜒𝑞(𝐴∣{Π𝑘})
where

𝐼𝑞(𝐴 : 𝐵) = 𝑇𝑞(𝐴) + 𝑇𝑞(𝐵)− 𝑇𝑞(𝐴𝐵) (6)

represents 𝑞-deformed total correlations and

𝜒𝑞(𝐴∣{Π𝑘}) = 𝑇𝑞(𝐴)− 𝑇𝑞(𝐴∣{Π𝑘})
is 𝑑-deformed Holevo quantity. Hence the 𝑞-discord is defined as

𝐷𝑞(𝐴 : 𝐵) = 𝐼𝑞(𝐴 : 𝐵)− 𝐶𝑞(𝐴 : 𝐵),

where 𝑞-deformed classical correlations reads

𝐶𝑞(𝐴 : 𝐵) = sup{Π𝑘} 𝜒𝑞(𝐴∣{Π𝑘}).
Recall that 𝑇𝑞 is SA for 𝑞 > 1 but unfortunately fails to be SSA, in general, so
we cannot use (4) in order to prove non negativity of 𝐷𝑞(𝐴 : 𝐵∣{Π𝑘}). In fact,
𝑞-discord takes negative values for some states and for some 𝑞 (see [28]) but it
remains non negative for 𝑞 = 2 [28], i.e.,

𝐷2(𝐴 : 𝐵∣Π) ≥ 0 as well as 𝐷2(𝐴 : 𝐵) ≥ 0
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3. Final remarks

There is, however, another way to define total correlations given by (6). Starting
from the Tsallis entropy

𝑇𝑞(𝐴∣𝐵𝑗) =
1

𝑞 − 1
[
1−
∑
𝑖

𝑝𝑞𝑖∣𝑗
]

for classical conditional probability distribution

𝑝𝑖∣𝑗 :=
𝑝𝑖𝑗
𝑝𝐵𝑗

,

where
𝑝𝐵𝑗 =

∑
𝑖

𝑝𝑖𝑗

one defines conditional Tsallis entropy as so-called 𝑞-expectation value with respect
to the marginal probability distribution 𝑝𝐵𝑗 , as [24]

𝑇𝑞 =
∑
𝑗

𝑢𝑗𝑇𝑞(𝐴∣𝐵𝑗) ,

where

𝑢𝑗 =
(𝑝𝐵𝑗 )

𝑞∑
𝑘(𝑝

𝐵
𝑘 )

𝑞
.

See [29] for details. As a result one obtains

𝑇𝑞(𝐴∣𝐵) = 𝑇𝑞(𝐴𝐵) − 𝑇𝑞(𝐵)

1 + (1− 𝑞)𝑇𝑞(𝐵)

and

𝐼(𝐴 : 𝐵) = 𝑇𝑞(𝐴)− 𝑇𝑞(𝐴𝐵)

=
𝑇𝑞(𝐴) + 𝑇𝑞(𝐵) − 𝑇𝑞(𝐴𝐵) + (1 − 𝑞)𝑇𝑞(𝐴)𝑇𝑞(𝐵)

1 + (1− 𝑞)𝑇𝑞(𝐵)
. (7)

All the quantities on the right-hand side of (7) are well defined also in quantum
case. Another 𝑞-discord based on (7) can be defined as

�̃�𝑞(𝐴 : 𝐵) := 𝐼𝑞(𝐴 : 𝐵)− 𝐶𝑞(𝐴 : 𝐵) , 𝑞 > 1 ,

where in 𝐶𝑞-calculation probabilities 𝑢𝑗 were taken into account. Although there

is no proof yet that �̃�𝑞(𝐴 : 𝐵) is positive, it is the case at least for Werner states.
In [29] it is proved that for

𝜌𝑊 = (1− 𝑐)
𝐼

4
+ 𝑐∣𝜓⟩⟨𝜓 ∣ , 0 ≤ 𝑐 ≤ 1

with ∣𝜓⟩ = (∣01⟩ − ∣10⟩)/√2, one obtains
�̃�𝑞(𝐴 : 𝐵) =

1

𝑞 − 1
[1
2

(1− 𝑐

2

)𝑞
+
1

2

(1 + 3𝑐
2

)𝑞
−
(1 + 𝑐

2

)𝑞]
≥ 0 .

The 𝑞-discord �̃�𝑞(𝐴 : 𝐵) as a function of the parameter 𝑐 is shown in Figure 1.
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Figure 1. 𝑞-discord �̃�𝑞(𝐴 : 𝐵) for Werner states
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Abstract. Darboux-like (Moutard) and generalized Moutard transformations
in two dimensions are applied to construct families of zero range potentials
of scalar and matrix equations of stationary quantum mechanics. The state-
ment about such functionals, defined by closed coordinate curves obtained by
Ribokur-Moutard transforms is formulated. Their applications in physics and
differential geometry of surfaces are discussed.
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1. Introduction

Quite a number of problems in contemporary physics appear when continuous phe-
nomena are joined with discrete one (discrete-continuous models). This concerns
also point particles in quantum theory, mass tensors and Riemannian geometry in
gravitation theory. The Dirac delta-function potential on the axis 𝑥 ∈ (−∞,∞)
was first heuristically introduced by Fermi in a one-dimensional model. Its con-
struction in the context of Neumann operator extension theory was understood in
[1], see [2] for a review. The concept was realized as the theory of distributions
on Schwartz space. A great number of applications of an advanced form of such
potentials (zero-range potentials (ZRP) or pseudopotentials) appear in mesoscopic
physics. Here it models objects whose dimension is small compared with the de
Broglie wavelength of the electron. The generalization to the radial Schrödinger
equation on the half-axis 𝑟 ∈ [0,∞), started with a ZRP for s-states which was
very successful in the application to scattering problems. From the point of a
three-dimensional theory a mathematically rigorous formulation is given in [3].
Introducing the zero-range potential (ZRP) for two-dimensional problems needs
special investigations [4].
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We shall consider such problems from the point of view of a dressing technique
for special cases of the Laplace equation, which allow a dressing procedure [5]. Such
cases are known from the pioneering paper of Moutard [6]. More recent E. Ganzha
applied it to an equation, equivalent to a Goursat equation [7]. Both equations
have a direct link to the two-dimensional Schrödinger and Dirac equations.

As mentioned above, the Moutard and Goursat cases of the Laplace equations
allow a kind of covariance statement which appeared already in [6, 8]. This was
the starting point of the theory of Darboux transformations (DT). The DT in its
original form [8] is a reduction of the Moutard transformation successfully applied
by Darboux to the theory of surfaces.

One of the main observations is that the generalized ZRPs of the radial
Schrödinger equation for arbitrary orbital quantum number 𝑙 (GSRP), see, e.g.,
[3], appear as a result of iterated Darboux transformation in the context of radial
Schrödinger equation theory. Such potentials are equivalent to boundary condi-
tions, different for each 𝑙 [9]. Namely, their three-dimensional description as pseu-
dopotentials is studied in [3].

Two-dimensional ZRPs also may be obtained by DT-type transformations:
the Moutard one and the generalized Moutard one for the Goursat case. The
important feature of the MT is general for DT: the transform is parameterized
by a pair of solutions of the equation and the transform vanishes if the solutions
coincide. The Moutard equation (ME) is covariant with respect to the MT. It was
studied in connection with central problems of classical differential geometry. More
precisely, a chain of derivatives of solutions of the ME solves the system of Lamé
equations for the Ribakur transformations [10].

In soliton theory the ME and GE enters the Lax pairs for nonlinear equa-
tions such as, for example, the Kadomtsev-Petviashvili and the Veselov-Novikov
equation. This fact has important geometrical consequences as “integrable defor-
mations of surfaces” [11].

In Section 2 we explain the general idea on an example of the radial Schrö-
dinger equation along [9]. In Section 3, the Moutard transformation is used to
define a chain of ZRP. The last section is devoted to the matrix ZRP problems of
one of the two-dimensional two-component Dirac equation. The introduction of a
pseudopotential by the generalized MT is traced.

2. General idea of ZRP introduction by dressing procedure

Let us consider a three-dimensional case of a so-called generalized ZRP [9]. Sepa-
ration of variables yields the radial Schrödinger equation(

−1
2

𝑑2

𝑑𝑟2
− 1

𝑟

𝑑

𝑑𝑟
+

𝑙(𝑙 + 1)

2𝑟2
+ 𝑢𝑙 − 𝐸

)
𝜓𝑙(𝑟) = 0. (1)

where 𝑢𝑙 are potentials for the partial waves. The equation (1) describes scattering

of a particle with energy 𝐸 > 0 and momentum 𝑘 =
√
2𝐸. In the absence of a

potential, partial shifts 𝛿𝑙 = 0 and partial waves can be expressed via Bessel



351

functions with half-integer indices. Let us demonstrate how a generalized ZRP
(GZRP) can be introduced by the DT. Thus, the spectral problem for GZRP is
solved for any value 𝑘. On the other hand, the equation (1) is covariant with
respect to the DT that yields the corresponding transformations of the potentials

A GZRP is equivalent to a boundary condition at the singularity point 𝑟 = 0

1

𝑟𝑙+1𝜓

∂2𝑙+1

∂𝑟2𝑙+1

(
𝑟𝑙+1𝜓

)∣∣∣∣
𝑟=0

= − 2𝑙𝑙!

(2𝑙− 1)!!𝑎
2𝑙+1
𝑙 , (2)

where we introduced 𝑎2𝑙+1
𝑙 = − 𝑘2𝑙+1

tan 𝜂𝑙
, with 𝑠𝑙 = exp (2𝑖𝜂𝑙) being a scattering ma-

trix. Such formulas are obtained by an application of an iterated DT to the zero
potential solutions as follows. We start by choosing a spherical Bessel function as
the seed solution 𝜓𝑙(𝑟) = 𝐶𝑗𝑙 (𝑘𝑟) and apply 𝑁th order Darboux transformation
by taking spherical Hankel functions with specific parameters 𝜅𝑚 as prop func-

tions 𝜑𝑚(𝑟) = 𝐶ℎ
(1)
𝑙 (−𝑖𝜅𝑚𝑟), 𝑚 = 1, . . . , 𝑁 . Crum’s formula (e.g., [5]) gives the

transformed solution

𝜓
[𝑁 ]
𝑙 (𝑟) = 𝐶

𝑊 (𝑟𝜙1, . . . , 𝑟𝜙𝑁 , 𝑟𝜓𝑙)

𝑟𝑊 (𝑟𝜙1, . . . , 𝑟𝜙𝑁 )
. (3)

The Wronskians can be computed if we consider the asymptotic behavior of the
spherical functions at 𝑟 → ∞, the Wronskians turn into Vandermond determinants
𝑉 , hence,

𝜓
[𝑁 ]
𝑙 = 𝐶

[
(−1)𝑙 𝑒

𝑖𝑘𝑟

𝑘𝑟

𝑉 (𝜅1, . . . , 𝜅𝑁 , 𝑖𝑘)

𝑉 (𝜅1, . . . , 𝜅𝑁 )
− 𝑒−𝑖𝑘𝑟

𝑘𝑟

𝑉 (𝜅1, . . . , 𝜅𝑁 , −𝑖𝑘)

𝑉 (𝜅1, . . . , 𝜅𝑁)

]
. (4)

The Vandermond determinant can be computed by noticing that 𝑘 = −𝑖𝜅𝑚 (for
𝑚 = 1, . . . , 𝑁) are the roots of the polynomial with respect to 𝑘 equation.
This is obvious from the form of the matrix (replacing 𝑖𝑘 → 𝜅𝑚 yields that
the determinant is zero due to the linear dependencies of the rows). Denoting

𝑠𝑙 =
∏𝑁

𝑚=1 (𝜅𝑚 − 𝑖𝑘) / (𝜅𝑚 + 𝑖𝑘) , we recognize the asymptotics of spherical Han-
kel functions, hence

𝜓
[𝑁 ]
𝑙 (𝑟) = 𝐶

[
𝑠𝑙ℎ

(1)
𝑙 (𝑘𝑟) − ℎ

(2)
𝑙 (𝑘𝑟)

]
. (5)

The effective potential corresponding to this solution tends to zero. Due to the as-
ymptotic behaviour, we observe that the Darboux transformation does not change
the behavior of the potential at 𝑟 → ∞, whereas the singular behavior at the origin
is changed.

To sum up, the Darboux transformations significantly broaden the range
of solvable potentials. In particular, they give a possibility to tune a free-space
solution to potential scattering characteristics. Whilst the same transformation of
the solution at the origin yields generalized zero-range potentials behavior.

Pseudopotentials via Moutard Transformations
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3. Two-dimensional ZRP and Moutard transformation

Let us consider the Moutard equation

𝜓𝜎𝜏 + 𝑢(𝜎, 𝜏)𝜓 = 0 . (6)

The Moutard transformation [6, 5] is a map of Darboux transformation type: it
connects solutions and the coefficient 𝑢(𝜎, 𝜏) of the equation (6) so that if 𝜑 and
𝜓 are different solutions of it (6), then the solution of the twin equation with
𝜓 → 𝜓[1] and 𝑢(𝜎, 𝜏)→ 𝑢[1] can be constructed by the system

(𝜓[1]𝜑)𝜎 = −𝜑2(𝜓𝜑−1)𝜎,

(𝜓[1]𝜑)𝜏 = 𝜑2(𝜓𝜑−1)𝜏 .

In other words,

𝜓[1] = 𝜓 − 𝜑Ω(𝜑, 𝜓)/Ω(𝜑, 𝜑) , (7)

where Ω is the integral of the exact differential form

𝑑Ω = 𝜑𝜓𝜎𝑑𝜎 + 𝜓𝜑𝜏𝑑𝜏 . (8)

The transformed coefficient (potential in mathematical physics) is given by

𝑢[1] = 𝑢− 2(log𝜑)𝜎𝜏 = −𝑢+ 𝜑𝜎𝜑𝜏/𝜑
2 . (9)

Changing variables by the complex substitution 𝜎 = 𝑥+ 𝑖𝑦, 𝜏 = 𝑥− 𝑖𝑦 transforms
(6) to a two-dimensional Schrödinger equation for 𝑥, 𝑦 for potentials linked by
𝑈(𝑥, 𝑦) = −𝑢(𝜎, 𝜏) + 𝐸

−1
4
[𝜓𝑥𝑥 + 𝜓𝑦𝑦] + 𝑈(𝑥, 𝑦)𝜓 = 𝐸𝜓 . (10)

The transformed potential is obtained via (9).
The explicit form of the ZRP depends on a choice of symmetry. For a cylindric

symmetry [3], passing to polar coordinates 𝑥 = 𝜌 cos𝜙, 𝑦 = 𝜌 sin𝜙 and separating
variables exp[𝑖𝜈𝜙]𝑅 yields either 𝑅 as solutions of the modified Bessel equation
for 𝐸 = 𝑘2 > 0, or the Bessel equation for 𝐸 = −𝜅2 < 0. The case may be treated
almost identically as in Section 2 by means of an iterated (multi-kink) MT, see
the Wronskian formulas in [5].

We, however, develop the theory by the MT, extending it to more general
symmetry, rewriting the (9) in polar coordinates

𝑈 [1] = 𝑈 +
1

2
Δ(log𝜑) = 𝑈 +

1

2
[
𝑑2

𝑑𝜌2
+
1

𝜌

𝑑

𝑑𝜌
+
1

𝜌2

𝑑2

𝑑𝜙2
](log𝜑), (11)

while 𝜓[1] is the 𝜓 transform by (7) with∫
𝑑Ω =

1

2

∫ 𝜌,𝜙

0,0

[
(𝜓𝜑)𝜌 − 𝑖

𝜑2

𝜌

(
𝜓

𝜑

)
𝜙

]
𝑑𝜌+

[
(𝜓𝜑)𝜙 + 𝑖𝜌𝜑2

(
𝜓

𝜑

)
𝜌

]
𝑑𝜙. (12)

For 𝐸 = 0, the Euler equation case in the 𝜌 variable is obtained, and a general
solution is 𝜓 =

∑+∞
𝜈=−∞ 𝑐𝑛 exp[𝑖𝜈𝜙]𝜌

𝜈 . To demonstrate it by an example, let us
substitute the particular solutions 𝜑 = exp[𝑖𝜈𝜙]𝜌𝜈 into the MT formulas (9). Direct
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differentiation prove a potential invariance 𝑈 [1] = 𝑈 . The same result gives the
special case of 𝜈 = 0, 𝜑 = 𝐶 ln 𝜌+ 𝐴. Studying the case 𝐸 = 0, take as 𝜓 typical
for scattering problems the free particle state 𝜓 = exp[𝑘𝑥𝜌 cos𝜙 + 𝑘𝑦𝜌 sin𝜙]. A
choice of an integration curve in (12) yields∫

𝑑Ω = 1
2 (𝑘𝑥 − 𝑖𝑘𝑦)

(∫ 𝜌
𝑜 𝜌𝜈𝑒𝑘𝑥𝑧 𝑑𝑧 + 𝑖𝜌𝜈+1

∫ 𝜙
0 𝑒[𝑖(𝜈+1)𝛽+𝜌𝑘𝑥 cos𝛽+𝜌𝑘𝑦 sin 𝛽]𝑑𝛽

)
.

Going to a vicinity of 𝜌 = 0, approximating the integral and plugging it into
the MT (7) gives for 𝜈 ∕= −1 a continuous function

𝜓[1] = exp[𝑘𝑥𝜌 cos𝜙+ 𝑘𝑦𝜌 sin𝜙]− 𝜌𝑒−𝑖𝜈𝜙
𝑘𝑥 − 𝑖𝑘𝑦
𝜈 + 1

(
𝑒𝑖𝜙(𝜈+1) + 1

)
. (13)

Consider the Hilbert space 𝐻 = 𝐿2 and a manifold of continuous functions 𝜓 ∈
𝑀 ⊂ 𝐻 . Applying Gauss theorem yields for a disk 𝑆 inside a circumference 𝐿 of
small radius 𝜖,

lim
𝐿→0

∫
𝑆

Δ𝜓𝑑𝑆 + 2

∫
𝑆

𝛼𝛿2(𝜌, 𝜙)𝜓𝜌𝑑𝜌𝑑𝜙 = lim
𝐿→0

∫
𝐿

(�⃗� ⋅ ∇𝜓)𝑑𝐿 + 2𝛼

∫ 2𝜋

0

𝜓(0, 𝜙)𝑑𝜙,

(14)
by definition of 𝛿2(𝜌, 𝜙).

Generalizing to functions with possible singularity in 𝜌 = 0, we arrive at a
boundary condition for the solution (6) with zero potential of the form

lim
𝐿→0

∫
𝐿
(�⃗� ⋅ 𝑔𝑟𝑎𝑑𝜓)𝜌𝑑𝜙∫ 2𝜋

0 𝜓(𝜖, 𝜙))𝑑𝜙
= 2𝛼. (15)

Now we can formulate the approach to ZRP in two dimensions by the following
algorithm. It is known that the set of iterated MT has an explicit link to Ribokur
transformations. This defines solutions of the Lamé equations for coordinate sys-
tems [10], see also [12].

Generalizing (15), let us build a closed curve 𝐿 as a coordinate line ∃𝜖 >
0, 𝑎 = 𝑎0 ∈ [0, 𝜖], 𝑏 ∈ [0, 1] by means of such a construction and define the action
of 𝛿2(𝑎, 𝑏) by

Lemma. The relation
∫
𝑆 𝛿2(𝑎, 𝑏)𝜓(𝑎, 𝑏)𝑑𝑆 =

∫ 1

0 𝜓(0, 𝑏)𝑑𝑏 determines a distribution
𝛿2(𝑎, 𝑏) ∈ 𝐷, if 𝐿 bounds a domain 𝑆 (interior of 𝐿).

For the proof it is enough to recall the isoperimetric inequality and the Jordan
theorem; the functional linearity and continuity is obvious. Going to the set of
coordinate systems 𝑎𝑛, 𝑏𝑛, numbered by the MT iteration number yields the

Theorem 1 (Main). The set of distributions defined by

lim
𝜖→0

∫ 1

0
(�⃗� ⋅ 𝑔𝑟𝑎𝑑𝜓)𝑑𝑏𝑛∫ 1

0 𝜓(𝑎𝑛, 𝑏𝑛)𝑑𝑏𝑛
= 2𝛼 (16)

is dense in a vicinity of 0.

The proof is based on the lemma and the theorem of Ganzha on local com-
pleteness of iterated Moutard transformations [10].

Pseudopotentials via Moutard Transformations
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4. Goursat equation, matrix ZRP and geometry of surfaces

Let us consider the Laplace equation

𝜓𝜎𝜏 + 𝑎 (𝜎, 𝜏)𝜓𝜎 + 𝑏 (𝜎, 𝜏)𝜓 = 0. (17)

The system
𝜓𝜎 = 𝑝𝜒, 𝜒𝜏 = 𝑝𝜓, (18)

is related directly to the Goursat equation

𝜓𝜎𝜏 =
𝑝𝜏
𝑝
𝜓𝜎 + 𝑝2𝜓, (19)

with the obvious constraint between 𝑎, 𝑏 in (17); see [7], where a covariance with
respect to a generalizedMT was established. In [13], the matrix form of the problem

for Ψ =

(
𝜓1 𝜓2

𝜒1 𝜒2

)
was introduced in the variables 𝜉 and 𝜂 as:

∂𝜎 = ∂𝜂 − ∂𝜉, ∂𝜏 = ∂𝜂 + ∂𝜉,

and rewritten (18) in the form of 2x2 Dirac system:

Ψ𝜂 = 𝜎3Ψ𝜉 + 𝑈Ψ, (20)

where 𝑈 = 𝑝(𝜉, 𝜂)𝜎1. The functions 𝜓𝑘 = 𝜓𝑘(𝜉, 𝜂), 𝜒𝑘 = 𝜒𝑘(𝜉, 𝜂) with k=1,2 are
particular solutions of (20) with some 𝑝(𝜉, 𝜂), and 𝜎1,3 are the Pauli matrices.
Let Ψ1 ∕= Ψ be a solution of the equation (20). We define a matrix function
Ξ ≡ Ψ1,𝜉Ψ

−1
1

. The equation (20) is covariant with respect to DT:

Φ[1] = Φ𝜉 − ΞΦ, 𝑈 [1] = 𝑈 + [𝜎3,Ξ]. (21)

Let us consider a closed 1-form

𝑑Ω = ΦΨ𝑑𝜉 + Φ𝜎3Ψ𝑑𝜂.

Lemma. The form is exact if Ψ satisfies (20) and a 2×2 matrix function Φ solves
the conjugate equation:

Φ𝜂 = Φ𝜉𝜎3 − Φ𝑈. (22)

The proof is by direct cross differentiation.

Theorem 2 ([13]). One can verify by a substitution that (22) is covariant with
respect to the transform if

Φ[+1] = Ω(Φ,Ψ1)Ψ
−1
1 . (23)

Now we can alternatively affect 𝑈 , by the following transformation:

𝑈 [+1,−1] = 𝑈 + [𝜎3,Ψ1Ω
−1Φ]. (24)

Relations (23), (24) we call a binary generalized Moutard transformation (BGMT).
Such a formalism gives a new possibility to define ZRP for Dirac equation

via Darboux (21) or BGMT (23) transformation. The construction starts from a
solution with a matrix potential 𝑈 which directly relates to the equation (19) with
constant 𝑝. Therefore we can use the solutions 𝜓𝑘 of the Schrödinger equation (10)
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with 𝐸 = 𝑝2, constructed in the previous section. The matrices Ψ,Φ, are built from
solutions 𝜓𝑘 and 𝜒𝑘 = 𝑝−1𝜓𝑘.

As geometry is concerned, the original Weierstrass formulas start with two
arbitrary holomorphic functions of complex variables 𝑧, 𝑧 ∈ 𝐶 [12]. They yield
an approach for constructing minimal surfaces. Generalization to the arbitrary
mean curvature case was given by Kenmotsu [14] and Konopelchenko [11] in com-
plex coordinates as in (6), 𝜏 , 𝜎 = −𝜏 . Here 𝑝 is a real-valued function and 𝜓
or 𝜒 as solutions of (18) are complex-valued functions. We define three real-
valued functions 𝑋𝑖, 𝑖 = 1, 2, 3 which are the coordinates of a surface in ℝ3 :

𝑋1 + 𝚤𝑋2 = 2𝚤
∫

Γ

(
𝜓2𝑑𝜎′ − 𝜒2𝑑𝜏 ′

)
, 𝑋3 = −2 ∫

Γ

(
𝜓𝜒𝑑𝜎′ + 𝜒𝜓𝑑𝜏 ′

)
, where Γ is an

arbitrary path of integration in the complex plane. The corresponding first funda-
mental form, the Gaussian curvature 𝐾 and the mean curvature 𝐻 yield:

𝑑𝑠2 = 4𝑁2𝑑𝜏𝑑𝜎 , 𝐾 =
1

𝑁2
∂𝜏∂𝜎 ln𝑁 , 𝐻 =

√
𝑝

𝑁
. (25)

Here 𝑁 =∣ 𝜓 ∣2 + ∣ 𝜒 ∣2. Any analytic surface in ℝ3 can be globally represented by
𝑋𝑖. As it is seen from the solutions nonzero N may yields zero 𝑝 and hence zero
mean curvature on a punctured surface [15].

Remark. Equation (20) is a spectral problem for the Davey-Stewartson (DS) and
Boiti-Martina-Leon-Pempinelli (BMLP) equations and produce explicitly invert-
ible Bäcklund auto-transformations. It also induces deformations of the correspon-
dent surfaces following [11, 13].

5. Discussion and conclusion

The importance in applications of the pseudopotentials, introduced as distribu-
tions, lies in the possibility to solve multicenter scattering or eigenvalue problems
[2]. The dressing procedure also may be applied to such multicenter pseudopoten-
tial. This gives additionally ability to approximate real interaction [5]. Technically
it is applied to a combination of Green functions of the Schrödinger equation
𝜓 =

∑
𝐶𝑖𝐺(∣�⃗� − �⃗�𝑖∣) and, next, substituting the result, to boundary conditions

in each center (�⃗� = �⃗�𝑖). The result is a set of algebraic equations. One of the
interesting problems is related to quantum dots, randomly distributed by place
and size, and modeled by a generalized ZRP. The theorem about a dense cover
of the distribution space in a vicinity of a given point opens a way to developing
new representations in potential theory. The problem of the matrix ZRP introduc-
tion is solved in an example of a two-dimensional Dirac equation. The idea of a
dressing scheme is naturally generalized to other matrix problems as multi-channel
scattering [5] or 4× 4 matrix Dirac eigenvalue problem [16].

Pseudopotentials via Moutard Transformations
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Proving the Jacobi Identity the Hard Way

Kirill Mackenzie

Abstract. Vector fields on smooth manifolds may be regarded as derivations
of the algebra of smooth functions, as infinitesimal generators of flows, or
as sections of the tangent bundle. The last point of view leads to a formula
for the bracket which is not used very often and in terms of which such
a basic matter as proving the Jacobi identity seems difficult. We present a
conceptually simple proof of the Jacobi identity in terms of this formulation.
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Keywords. Vector fields, Jacobi identity, double vector bundles, triple vector
bundles.

There are three global formulas by which the bracket of vector fields can be calcu-
lated. Usually one interprets vector fields as derivations on the algebra of smooth
functions, and the bracket is then the commutator of derivations. There is also the
flow formula in which the bracket of vector fields is regarded as the Lie derivative
of one field by the other.

Thirdly, for vector fields 𝑋,𝑌 on a manifold 𝑀 , and 𝑚 ∈ 𝑀 , there is:

[𝑋,𝑌 ](𝑚) = 𝑇 (𝑌 )(𝑋(𝑚)) − 𝐽(𝑇 (𝑋)(𝑌 (𝑚))). (1)

Here 𝐽 : 𝑇 2𝑀 → 𝑇 2𝑀 is the canonical involution. This formula involves some
abuse: the RHS is a vertical vector in 𝑇𝑌 (𝑚)(𝑇𝑀) and therefore can be identified
with an element of 𝑇𝑚𝑀 . For convenience we refer to (1) as the ‘section formula’
for the bracket.

Formula (1) is much less widely used than the other two; one place in which
it appears is [1, p. 297]. A proof can be extracted from [2, §3.4].

By using derivations the proof of the Jacobi identity can be done in one line; a
few moments experimentation with (1) may leave the reader with the impression
that using the section formula is unnatural and unwieldy. The purpose of this
paper is to show that there is a diagrammatic proof, very easy to visualize, starting
from (1), using double and triple vector bundles. This will be important in work
elsewhere – since (1) uses only the tangent functor 𝑇 and the canonical involution
𝐽 , it can be formulated in more abstract settings.
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The result is given, in a different language, in a paper of Nishimura [3]. I am
grateful to Anders Kock who, many years ago, told me about this paper and gave
me an offprint. The proof we give here in §4 is essentially a proof in coordinates. An
intrinsic proof requires considerable length to be convincing and we may present
it elsewhere.

1. Preliminaries on double vector bundles

Consider a square of vector bundle structures as in Figure 1(a). It is a double vector
bundle if the operations which define the structure in 𝐷 → 𝐵 are morphisms with
respect to the structures on 𝐷 → 𝐴 and 𝐵 → 𝑀 . A detailed working-out of this
definition is given in [2, Chap. 9].

For any vector bundle 𝑞 : 𝐴 → 𝑀 , applying the tangent functor to its op-
erations gives a vector bundle structure on 𝑇𝐴 with base 𝑇𝑀 . This results in
the double vector bundle shown in Figure 1(b). The projection is 𝑇 (𝑞), the zero
section is 𝑇 (0), and the addition 𝑇𝐴×𝑇𝑀 𝑇𝐴 → 𝑇𝐴 is the tangent of the addition
𝐴×𝑀 𝐴 → 𝐴.

𝐷

��

�� 𝐵

��
𝐴 �� 𝑀

𝑇𝐴

𝑝𝐴

��

𝑇 (𝑞) �� 𝑇𝑀

𝑝

��
𝐴

𝑞 �� 𝑀

𝑇 2𝑀

𝑝𝑇

��

𝑇 (𝑝) �� 𝑇𝑀

𝑝

��
𝑇𝑀

𝑝 �� 𝑀

(a) (b) (c)

Figure 1. Note that these diagrams show individual structures; they
should not be read as diagrams of morphisms. We denote the projections
of tangent bundles by 𝑝 with suffixes as needed.

In particular one may take 𝐴 to be the tangent bundle 𝑇𝑀 and thus obtain
the double or iterated tangent bundle 𝑇 2𝑀 = 𝑇 (𝑇𝑀) shown in Figure 1(c).

Return to the general case of Figure 1(a). The set of elements 𝑑 ∈ 𝐷 which
project to zero under both projections 𝐷 → 𝐴 and 𝐷 → 𝐵 is the core of 𝐷,
denoted 𝐶; the two vector bundle structures on 𝐷 coincide on 𝐶 and make it a
vector bundle on 𝑀 . In the case 𝐷 = 𝑇𝐴 the core is 𝐴 itself, identified with the
vertical vectors along the zero section.

A horizontal linear section of a general double vector bundle 𝐷 is a pair of
sections 𝜉 : 𝐵 → 𝐷 and 𝑋 : 𝑀 → 𝐴 such that 𝜉 is a morphism of vector bundles
over 𝑋 . One defines a vertical linear section (𝜂, 𝑌 ) of 𝐷 in the analogous way.

Suppose given both a horizontal and a vertical linear section. Then, for 𝑚 ∈
𝑀 , the projections of 𝜉(𝑌 (𝑚)) and 𝜂(𝑋(𝑚)) to both 𝐴 and 𝐵 coincide, and they
therefore differ by a unique element of 𝐶, which we denote 𝑤(𝜉, 𝜂)(𝑚). This defines
a section 𝑤(𝜉, 𝜂) of 𝐶, which we call the warp of (𝜉,𝑋) and (𝜂, 𝑌 ).
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For the proofs below, we need to formulate this precisely. Denote the additions
in 𝐷 → 𝐴 and 𝐷 → 𝐵 by +

𝐴
and +

𝐵
, and the subtractions likewise. Then

𝜂(𝑋(𝑚))−
𝐴

𝜉(𝑌 (𝑚)) = 𝑤(𝜉, 𝜂)(𝑚) +
𝐵
0𝐷𝑋(𝑚), (2)

𝜂(𝑋(𝑚))−
𝐵

𝜉(𝑌 (𝑚)) = 𝑤(𝜉, 𝜂)(𝑚) +
𝐴
0𝐷𝑌 (𝑚), (3)

where 0𝐷𝑋(𝑚) is the zero element of 𝐷 → 𝐴 in the fibre over 𝑋(𝑚) and 0𝐷𝑌 (𝑚) is

the zero element of 𝐷 → 𝐵 in the fibre over 𝑌 (𝑚). We rely on the notation for
elements to indicate the bundle.

Now (1) applied to 𝑇 2𝑀 shows that [𝑋,𝑌 ] is the warp of (𝐽 ∘ 𝑇 (𝑋), 𝑋) and
(𝑇 (𝑌 ), 𝑌 ).

The map 𝐽 : 𝑇 2𝑀 → 𝑇 2𝑀 is the canonical involution, which interchanges
the two structures on 𝑇 2𝑀 ; it is an isomorphism from the standard structure to
the tangent prolongation structure and is an isomorphism of double vector bundles
from 𝑇 2𝑀 to 𝑇 2𝑀 with the two structures interchanged.

Given a vector field 𝑋 on 𝑀 , applying the tangent functor gives 𝑇 (𝑋), a
section of 𝑇 (𝑝) : 𝑇 2𝑀 → 𝑇𝑀 , as in Figure 1(b). Applying 𝐽 gives a section of 𝑝𝑇 ;

that is, a vector field on 𝑇𝑀 , called the complete lift of 𝑋 . We write �̃� = 𝐽 ∘𝑇 (𝑋).

2. Triple vector bundles

To deal with the terms in the Jacobi identity, we consider the triple tangent bundle
as shown in Figure 2(a). The bottom face is the double tangent bundle of 𝑀 , and
the top face is the result of applying the tangent functor to it. The vertical arrows
represent standard tangent bundle structures; we usually omit 𝑝 = 𝑝𝑀 .

𝑇 3𝑀

𝑝2

��

𝑇 (𝑝𝑇 ) �����
��� 𝑇 2(𝑝)

�� 𝑇 2𝑀

𝑝𝑇
��

𝑇 (𝑝)

�����
���

𝑇 2𝑀
𝑇 (𝑝)

��

𝑝𝑇
��

𝑇𝑀

��

𝑇 2𝑀
𝑇 (𝑝)

��

𝑝𝑇 �����
���

𝑇𝑀

�����
���

𝑇𝑀 �� 𝑀

𝐸1,2,3

��

�������
�� 𝐸1,3

��

����
��

�

𝐸2,3 ��

��

𝐸3

��

𝐸1,2 ��

�����
���

𝐸1

���
��

��

𝐸2
�� 𝑀

(a) (b)

Figure 2. Oblique arrows should be read as coming out of the page.

We also need the general concept of triple vector bundle [4]. A triple vector
bundle 𝐸 is a cube of vector bundle structures, as shown in Figure 2(b), such that
each face is a double vector bundle.
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Each face of 𝐸 has a core. For the three faces 𝐸𝑖,𝑗 which involve𝑀 , we denote
the cores by deleting the comma; thus the core of the bottom face is 𝐸12. The core
of the left face is denoted 𝐸13,2, of the rear face is 𝐸1,23, and of the top face is
𝐸12,3. (This notation was developed in [4] to handle the 𝑛-fold case efficiently.)

The projection 𝐸1,2,3 → 𝐸1,2, together with the parallel projections, is a
morphism of double vector bundles; that is, 𝐸1,2,3 → 𝐸1,2 is a morphism of vector
bundles over both 𝐸2,3 → 𝐸2 and 𝐸1,3 → 𝐸1, and each of these is a morphism of
vector bundles over 𝐸3 → 𝑀 . It follows that 𝐸1,2,3 → 𝐸1,2 restricts to a map of
the cores, 𝐸12,3 → 𝐸12. Further, the vector bundle structure of 𝐸1,2,3 over 𝐸1,2

restricts to give 𝐸12,3 a vector bundle structure over 𝐸12. And further, together
with core vector bundle structures on 𝐸12,3 and 𝐸12, this forms a core double vector
bundle, as shown in Figure 3(a). A detailed proof is given in [5].

𝐸12,3

��

�� 𝐸3

��
𝐸12

�� 𝑀
(a)

𝐸1,2,3 𝐸1,3
𝑌1,3��

𝐸2,3

𝑋2,3

		�����

𝐸3
𝑌3��

𝑋3


�����

𝐸1,2

𝑍1,2

��

𝐸1
𝑌1

��

𝑍1

��

𝐸2

𝑍2

��

𝑋2

		������
𝑀

𝑌
��

𝑍

��

𝑋
�������

(b)

Figure 3.

The same construction can be carried out with the left-right structures and
with the rear-front structures. Each of these core double vector bundles has a core,
and the three cores coincide. This is the ultracore of 𝐸, denoted 𝐸123.

Consider Figure 3(b). A bottom-top linear double section of 𝐸 is a collection
of sections

𝑍1,2 : 𝐸1,2 → 𝐸1,2,3, 𝑍1 : 𝐸1 → 𝐸1,3, 𝑍2 : 𝐸2 → 𝐸2,3, 𝑍 : 𝑀 → 𝐸3,

which form a morphism of double vector bundles. We write 𝑍0 : 𝐸12 → 𝐸12,3 for
the morphism of the cores. We define left-right and front-rear linear double sections
in the corresponding ways.

Definition 1. A grid on 𝐸 is a set of three double linear sections, one in each
direction, as shown in Figure 3(b).

Consider a grid (𝑋,𝑌, 𝑍). In the top face, the warp of the sections (𝑋2,3, 𝑋3)
and (𝑌1,3, 𝑌3) is a section of 𝐸12,3 → 𝐸3. In the bottom face, the warp of the
sections (𝑋2, 𝑋) and (𝑌1, 𝑌 ) is a section of 𝐸12 → 𝑀 , and the two warps form a
horizontal linear section of the core double vector bundle in Figure 3(a). Together
with the linear section (𝑍0, 𝑍) this defines a pair of linear sections in the core
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double vector bundle, and the warp is the core section corresponding to

(𝑌1,3 ∘𝑋3 −𝑋2,3 ∘ 𝑌3) ∘ 𝑍 − 𝑍0 ∘ (𝑌1 ∘𝑋 −𝑋2 ∘ 𝑌 ). (4)

For brevity we denote the corresponding core section by 𝑤(𝑋,𝑌, 𝑍)top. It is a
section of the ultracore.

In the same way we obtain 𝑤(𝑋,𝑌, 𝑍)left and 𝑤(𝑋,𝑌, 𝑍)rear, which are the
sections of the ultracore corresponding respectively to

(𝑋2,3 ∘ 𝑍2 − 𝑍1,2 ∘𝑋2) ∘ 𝑌 − 𝑌0 ∘ (𝑋3 ∘ 𝑍 − 𝑍1 ∘𝑋), (5)

(𝑍1,2 ∘ 𝑌1 − 𝑌1,3 ∘ 𝑍1) ∘𝑋 −𝑋0 ∘ (𝑍2 ∘ 𝑌 − 𝑌3 ∘ 𝑍). (6)

Theorem 1. The sum of these three warps is zero,

𝑤(𝑋,𝑌, 𝑍)top + 𝑤(𝑋,𝑌, 𝑍)left + 𝑤(𝑋,𝑌, 𝑍)rear = 0. (7)

It is tempting to think that we need only replace 𝑋0, 𝑌0, 𝑍0 by 𝑋2,3, 𝑌3,1,
𝑍1,2, so that the second terms of (4), (5), (6) can be expanded out, and that then
the sum will cancel. However, the subtraction signs in (4), (5), (6) refer to different
structures.

We prove Theorem 1 in §4.

3. Proof of the Jacobi identity

First we apply Theorem 1 to the triple tangent bundle. Because we will need it
below, we give a proof from (1) of the skew-symmetry of the bracket.

Lemma 2. For vector fields 𝑋,𝑌 on 𝑀 , [𝑌,𝑋 ] = −[𝑋,𝑌 ].

Proof. Using (2) to state (1) carefully, we have

𝑇 (𝑌 )(𝑋(𝑚)) −
𝑇 (𝑝)

𝐽(𝑇 (𝑋)(𝑌 (𝑚)) = [𝑋,𝑌 ](𝑚) + 𝑇 (0)(𝑌 (𝑚)).

Here −
𝑇 (𝑝)

denotes subtraction in the bundle with projection 𝑇 (𝑝). Applying 𝐽 to

both sides, we have

𝐽(𝑇 (𝑌 )(𝑋(𝑚)))− 𝑇 (𝑋)(𝑌 (𝑚)) = [𝑋,𝑌 ](𝑚) +
𝑇 (𝑝)

0𝑌 (𝑚),

since 𝐽 is the identity on the core of 𝑇 2𝑀 . Now the left-hand side is

−([𝑌,𝑋 ](𝑚) +
𝑇 (𝑝)

0𝑌 (𝑚)) = (−[𝑌,𝑋 ](𝑚)) +
𝑇 (𝑝)

0𝑌 (𝑚). □

Now let 𝑋,𝑌, 𝑍 be vector fields on 𝑀 . They induce a grid, as shown in
Figure 4.

In detail, the vector field 𝑋 lifts across the bottom face to the complete lift

�̃�. Across the right face it ‘lifts’ (though not to another vector field) to 𝑇 (𝑋). The

complete lift lifts in the same way across the left face to 𝑇 (�̃�).

For 𝑌 we obtain 𝑇 (𝑌 ) twice and 𝑇 2(𝑌 ). In the case of 𝑍 we obtain 𝑍 twice

and the complete lift of the complete lift, which we denote
≈

𝑍.
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𝑇 3𝑀 𝑇 2𝑀
𝑇 2(𝑌 )��

𝑇 2𝑀

𝑇 (�̃�)
		������

𝑇𝑀
𝑇 (𝑌 )��

𝑇 (𝑋)		������

𝑇 2𝑀

≈

𝑍

��

𝑇𝑀
𝑇 (𝑌 )

��

𝑍

��

𝑇𝑀

𝑍

��

�̃�

������
𝑀

𝑌
��

𝑍

��

𝑋
		������

Figure 4.

In the bottom face the warp is of course [𝑋,𝑌 ]. The top face is the result
of applying the tangent functor to the bottom face, and the warp is accordingly

𝑇 ([𝑋,𝑌 ]). The core of
≈

𝑍 is 𝑍 and so we have Figure 5(a). Thus

𝑤(𝑍, 𝑇 ([𝑋,𝑌 ])) = [𝑍, [𝑋,𝑌 ]]. (8)

𝑇 2𝑀 𝑇𝑀
𝑇 ([𝑋,𝑌 ])��

𝑇𝑀

𝑍

��

𝑀
[𝑋,𝑌 ]��

𝑍

�� 𝑇 2𝑀 𝑇𝑀
𝑇 (𝑌 )��

𝑇𝑀

[̃𝑍,𝑋]

��

𝑀
𝑌��

[𝑍,𝑋]

�� 𝑇 2𝑀 𝑇𝑀
𝑇 ([𝑍,𝑌 ])��

𝑇𝑀

�̃�

��

𝑀
[𝑍,𝑌 ]��

𝑋

��

(a) (b) (c)

Figure 5.

From the right face we obtain [𝑍,𝑋 ]. The left face is the double tangent
bundle of the manifold 𝑇𝑀 and, as with any manifold, we have

𝑇 (�̃�) ∘ 𝑍 − 𝐽𝑇 ∘ 𝑇 (𝑍) ∘ �̃� = [𝑍, �̃� ], (9)

where 𝐽𝑇 is the canonical involution for the manifold 𝑇𝑀 . The flows of a complete

lift �̃� are the tangents of the flows of 𝑋 and it thereby follows that [𝑍, �̃� ] = [̃𝑍,𝑋 ].
The core section of 𝑇 2(𝑌 ) is 𝑇 (𝑌 ) and so we have Figure 5(b). Substituting into
(5) we have

[̃𝑍,𝑋 ] ∘ 𝑌 − 𝑇 (𝑌 ) ∘ [𝑍,𝑋 ] = −[[𝑍,𝑋 ], 𝑌 ] = [𝑌, [𝑍,𝑋 ]]. (10)

The rear face is not a double tangent bundle, but is rather Figure 1(b) for
the vector bundle 𝐴 = 𝑇 2𝑀 → 𝑇𝑀 with the tangent prolongation structure. We
use canonical involutions to transform it into a double tangent bundle.

Figure 6(a) shows the rear face of Figure 4, and Figure 6(b) shows the
tangent double vector bundle of the manifold 𝑇𝑀 . These are isomorphic under
𝑇 (𝐽) : 𝑇 3𝑀 → 𝑇 3𝑀 , with 𝐽 on the lower left manifolds and identities on the other
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two manifolds. That 𝑇 (𝑝𝑇 ) ∘ 𝑇 (𝐽) = 𝑇 2(𝑝) follows trivially from 𝑝𝑇 ∘ 𝐽 = 𝑇 (𝑝),
and 𝑝2 ∘ 𝑇 (𝐽) = 𝐽 ∘ 𝑝2 is part of the statement that 𝑇 (𝐽) is the tangent of 𝐽 .

In Figure 6(b) we have, as with the previous case, that

𝑤(
≈

𝑍, 𝑇 (𝑌 )) = [𝑍, 𝑌 ] = [̃𝑍, 𝑌 ]. (11)

Now the core of the isomorphism between Figure 6(a) and (b) is 𝐽 so the warp we
actually want is

𝑤(
≈

𝑍, 𝑇 2(𝑌 )) = 𝐽 ∘ [̃𝑍, 𝑌 ] = 𝑇 ([𝑍, 𝑌 ]). (12)

We now have Figure 5(c) and substituting into (6) we have

−𝑇 ([𝑌, 𝑍]) ∘𝑋 + �̃� ∘ [𝑌, 𝑍] = −[𝑋, [𝑍, 𝑌 ]] = [𝑋, [𝑌, 𝑍]]. (13)

Together with Theorem 1 this proves that:

Corollary 3. For vector fields 𝑋,𝑌, 𝑍 on 𝑀 ,

[𝑍, [𝑋,𝑌 ]] + [𝑌, [𝑍,𝑋 ]] + [𝑋, [𝑌, 𝑍]] = 0.

𝑇 3𝑀

𝑝2

��

𝑇 2(𝑝) �� 𝑇 2𝑀

𝑝𝑇

��
𝑇 2𝑀

𝑇 (𝑝) �� 𝑇𝑀

𝑇 3𝑀

𝑝2

��

𝑇 (𝑝𝑇 ) �� 𝑇 2𝑀

𝑝𝑇

��
𝑇 2𝑀

𝑝𝑇 �� 𝑇𝑀
(a) (b)

Figure 6.

4. Proof of Theorem 1

Given three vector bundles 𝐸1, 𝐸2, 𝐸12 on a manifold 𝑀 , there is a double vector
bundle structure on the pullback manifold 𝐸 := 𝐸1 ∗ 𝐸2 ∗ 𝐸12 (in this section ∗
denotes pullback over𝑀). First, give 𝐸 the inverse image vector bundle structure
𝑞!
1(𝐸2 ⊕𝐸12) of the Whitney sum 𝐸2 ⊕𝐸12 across the bundle projection 𝑞1 : 𝐸1 →

𝑀 . Likewise, give 𝐸 the inverse image vector bundle structure 𝑞!
2(𝐸1⊕𝐸12). These

two structures make 𝐸 a double vector bundle with side bundles 𝐸1 and 𝐸2 and
core bundle 𝐸12; in [4] it is called the decomposed double vector bundle with building
bundles 𝐸1, 𝐸2, 𝐸12. Every double vector bundle is isomorphic to a decomposed
double vector bundle [6], though not usually in any natural way.

In the same way, every triple vector bundle is isomorphic to a decomposed
triple vector bundle, formed of seven building bundles 𝐸1, 𝐸2, 𝐸3, 𝐸12, 𝐸23, 𝐸13,
𝐸123, with structures defined from inverse images of Whitney sums as in the double
case. For details see [4].
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It is sufficient to prove Theorem 1 for decomposed triple vector bundles. We
first express linear sections in decomposed terms. Suppose given a linear section

𝑋 : 𝑀 → 𝐸1, 𝑋2 : 𝐸2 → 𝐸1,2, 𝑋3 : 𝐸3 → 𝐸1,3, 𝑋2,3 : 𝐸2,3 → 𝐸1,2,3.

Then 𝑋2 : 𝐸2 → 𝐸1,2 is a morphism of ordinary vector bundles over 𝑋 and can
be written as

𝑋2(𝑒2) = (𝑋(𝑚), 𝑒2, 𝜉2(𝑒2)) ∈ 𝐸1 ∗ 𝐸2 ∗ 𝐸12

where 𝜉2 : 𝐸2 → 𝐸12 is a vector bundle morphism over 𝑀 . Likewise 𝑋3 can be
written as

𝑋3(𝑒3) = (𝑋(𝑚), 𝑒3, 𝜉3(𝑒3)) ∈ 𝐸1 ∗ 𝐸3 ∗ 𝐸13

where 𝜉3 : 𝐸3 → 𝐸13 is a vector bundle morphism over 𝑀 .

Lastly, 𝑋2,3 : 𝐸2,3 → 𝐸1,2,3 is a morphism of decomposed double vector
bundles over 𝑋2, 𝑋3 and 𝑋 . In terms of the decomposition, 𝑋2,3 is

𝑋2,3(𝑒2, 𝑒3, 𝑒23) = (𝑋(𝑚), 𝑒2, 𝑒3, 𝜉2(𝑒2), 𝑒23, 𝜉3(𝑒3), 𝑋23(𝑒23) + 𝜑23(𝑒2, 𝑒3)),
(14)

where 𝜉2 and 𝜉3 are as above, 𝑋23 : 𝐸23 → 𝐸123 is a morphism of ordinary vector
bundles over𝑀 . and 𝜑23 : 𝐸2 ∗𝑀 𝐸3 → 𝐸123 is bilinear. If 𝑋2,3 were not a section
of the bundle projection, there would be additional terms in (14).

Likewise, for linear sections 𝑌, 𝑌1, 𝑌3, 𝑌1,3 and 𝑍,𝑍1, 𝑍2, 𝑍1,2 we have

𝑌1,3(𝑒1, 𝑒3, 𝑒13) = (𝑒1, 𝑌 (𝑚), 𝑒3, 𝜂1(𝑒1), 𝜂3(𝑒3), 𝑒13, 𝑌13(𝑒13) + 𝜓13(𝑒1, 𝑒3)),

where 𝜂1 : 𝐸1 → 𝐸12, 𝜂3 : 𝐸3 → 𝐸23, 𝑌13 : 𝐸13 → 𝐸123, 𝜓13 : 𝐸1 ∗𝑀 𝐸3 → 𝐸123,
and

𝑍1,2(𝑒1, 𝑒2, 𝑒12) = (𝑒1, 𝑒2, 𝑍(𝑚), 𝑒12, 𝜁2(𝑒2), 𝜁1(𝑒1), 𝑍12(𝑒12) + 𝜃12(𝑒1, 𝑒2)),

where 𝜁1 : 𝐸1 → 𝐸13, 𝜁2 : 𝐸2 → 𝐸23, 𝑍12 : 𝐸12 → 𝐸123 and 𝜃12 : 𝐸1∗𝑀𝐸2 → 𝐸123.

We work out the core section corresponding to (4). First,

𝑌1(𝑋(𝑚))−
1
𝑋2(𝑌 (𝑚)) = (𝑋(𝑚), 0

2, 𝜂1(𝑋(𝑚))− 𝜉2(𝑌 (𝑚))).

Apply 𝑍1,2 to this. We get that 𝑍1,2(𝑋(𝑚), 𝑒2, (𝜂1𝑋 − 𝜉2𝑌 )(𝑚)) is

(𝑋(𝑚), 02, 𝑍(𝑚), (𝜂1𝑋−𝜉2𝑌 )(𝑚), 0
23, 𝜁1(𝑋(𝑚)), 𝑍12((𝜂1𝑋−𝜉2𝑌 )(𝑚)))), (15)

where 023 is a zero of the ordinary vector bundle 𝐸23.

Next we calculate

𝑌1,3(𝑋3(𝑍(𝑚))) −
1,3

𝑋2,3(𝑌3(𝑍(𝑚))).

For the first term, 𝑌1,3(𝑋(𝑚), 𝑍(𝑚), 𝜁3(𝑍(𝑚))), we have

(𝑋(𝑚), 𝑌 (𝑚), 𝑍(𝑚), 𝜂1(𝑋(𝑚)), 𝜂3(𝑍(𝑚)), 𝜉3(𝑍(𝑚)),

𝑌13(𝜉3(𝑍(𝑚))) + 𝜓13(𝑋(𝑚), 𝑍(𝑚))),
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For the second term, 𝑋2,3(𝑌 (𝑚), 𝑍(𝑚), 𝜂3(𝑍(𝑚))), we have

(𝑋(𝑚), 𝑌 (𝑚), 𝑍(𝑚), 𝜉2(𝑌 (𝑚)), 𝜂3(𝑍(𝑚)), 𝜉3(𝑍(𝑚)),

𝑋23(𝜂3(𝑍(𝑚))) + 𝜑23(𝑌 (𝑚), 𝑍(𝑚))),

We now subtract over 1, 3; that is, we keep the 𝐸1, 𝐸3 and 𝐸13 entries fixed. We
obtain

(𝑋(𝑚), 02, 𝑍(𝑚), (𝜂1𝑋 − 𝜉2𝑌 )(𝑚), 0
23, 𝜉3(𝑍(𝑚)),

𝑌13(𝜉3(𝑍(𝑚))) + 𝜓13(𝑋(𝑚), 𝑍(𝑚))−𝑋23(𝜂3(𝑍(𝑚)))− 𝜑23(𝑌 (𝑚), 𝑍(𝑚))). (16)

Finally we subtract (16) from (15) over 1, 2. This gives

(𝑋(𝑚), 02, 03, (𝜂1𝑋 − 𝜉2𝑌 )(𝑚), 0
23, 𝜁1(𝑋(𝑚))− 𝜉3(𝑍(𝑚)),

𝑍12((𝜂1𝑋 − 𝜉2𝑌 )(𝑚)) − (𝑌13(𝜉3(𝑍(𝑚))) + 𝜓13(𝑋(𝑚), 𝑍(𝑚))

−𝑋23(𝜂3(𝑍(𝑚))) − 𝜑23(𝑌 (𝑚), 𝑍(𝑚)))).

The final entry is the ultracore coordinate 𝐸123, and simplifies to

𝑋23(𝜂3(𝑍(𝑚)))− 𝑌13(𝜉3(𝑍(𝑚))) + 𝑍12((𝜂1𝑋 − 𝜉2𝑌 )(𝑚))

− 𝜓13(𝑋(𝑚), 𝑍(𝑚)) + 𝜑23(𝑌 (𝑚), 𝑍(𝑚)). (17)

In the same way we obtain the ultracore coordinates for (5) and (6). They are

𝑌13(𝜁1(𝑋(𝑚)))− 𝑍12(𝜂1(𝑋(𝑚))) +𝑋23((𝜁2𝑌 − 𝜂3𝑍)(𝑚))

− 𝜃12(𝑋(𝑚), 𝑌 (𝑚)) + 𝜓13(𝑋(𝑚), 𝑍(𝑚)), (18)

and

𝑍12(𝜉2(𝑌 (𝑚)))−𝑋23(𝜁2(𝑌 (𝑚))) + 𝑌13((𝜉3𝑍 − 𝜁1𝑋)(𝑚))

− 𝜑23(𝑌 (𝑚), 𝑍(𝑚)) + 𝜃12(𝑋(𝑚), 𝑌 (𝑚)). (19)

Adding (17), (18) and (19) gives zero. This concludes the proof.

5. Concluding remarks

It is not surprising that the LHS of the Jacobi identity can be interpreted in terms
of the triple structure on 𝑇 3𝑀 ; what does seem unexpected is that the identity
itself follows from a general result which does not involve the specific properties
of brackets or vector fields, but only the ‘combinatorics’ of the situation.

The calculation in this paper is special in several ways. In other situations,
the warp (in one particular direction) of a grid may be of independent interest,
and the fact that the three warps sum to zero may serve mainly as a check. The
application of these ideas to other structures will be developed elsewhere.
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Löwner-Kufarev Evolution in the
Segal-Wilson Grassmannian

Irina Markina and Alexander Vasil’ev

Abstract. We consider a homotopic evolution in the space of smooth shapes
starting from the unit circle. Based on the Löwner-Kufarev equation we give a
Hamiltonian formulation of this evolution and provide conservation laws. The
symmetries of the evolution are given by the Virasoro algebra. The ‘positive’
Virasoro generators span the holomorphic part of the complexified tangent
bundle over the space of conformal embeddings of the unit disk into the
complex plane and smooth on the boundary. In the covariant formulation they
are conserved along the Hamiltonian flow. The ‘negative’ Virasoro generators
can be recovered by an iterative method making use of the canonical Poisson
structure. We study an embedding of the Löwner-Kufarev trajectories into the
Segal-Wilson Grassmannian. This gives a way to construct the 𝜏 -function, the
Baker-Akhiezer function, and finally, to give a class of solutions to the KP
equation.

Mathematics Subject Classification (2010). Primary 81R10, 17B68, 30C35; Sec-
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1. Introduction

This work is a short version of a plenary lecture given at the XXX Workshop on
Geometric Methods in Physics held in Bial̷owieża, June 26–July 02, 2011. The
main idea of these short notes is to show that smooth shape evolution possesses
an integrable structure. The first evidence of this was provided by the Laplacian
growth (or the Hele-Shaw problem), where the process being dissipative possesses
a countable number of conserved quantities, the harmonic (Richardson) moments,
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see [1]. Moreover, recently it became clear that the Laplacian growth is embedded
in the dispersionless Toda hierarchy, see [2, 3]. An overview on Hele-Shaw flows and
Laplacian growth one can find in [4]. The Laplacian growth represents a typical
field problem, in which the evolution is defined by fixing an initial condition, the
initial shape in this case. By shape we understand a smooth simple closed curve in
the complex plane dividing it into two simply connected domains. The study of 2D
shapes is one of the central problems in the field of applied sciences. A program
of such study and its importance was summarized by Mumford at ICM 2002 in
Beijing [5].

Another group of models, in which the evolution is governed by an infinite
number of parameters, can be observed in infinite-dimensional controllable dy-
namical systems, where the infinite number of degrees of freedom follows from
the infinite number of driving terms. Surprisingly, the same algebraic structural
background appears again in this type of models. We develop this viewpoint in
the present paper.

One of the general approaches to the homotopic evolution of shapes starting
from a canonical shape, the unit disk in our case, was provided by Löwner and
Kufarev [6, 7, 8]. The shape evolution is described by a time-dependent conformal
parametric map from the canonical domain onto the domain bounded by a shape at
any fixed instant. In fact, these one-parameter conformal maps satisfy the Löwner-
Kufarev differential equation, or an infinite-dimensional controllable system, for
which the infinite number of conservation laws is given by the Virasoro generators
in their covariant form.

Recently, Friedrich and Werner [9], and independently Bauer and Bernard
[10], found relations between SLE (stochastic- or Schramm-Löwner evolution) and
the highest weight representation of the Virasoro algebra. Moreover, Friedrich
developed the Grassmannian approach to relate SLE with a singular highest weight
representation of the Virasoro algebra in [11].

All above results encourage us to conclude that the Virasoro algebra is a
common algebraic structural basis for these and possibly other types of contour
dynamics and we present the development in this direction here. At the same time,
the infinite number of conservation laws suggests a relation with exactly solvable
models.

The geometry underlying classical integrable systems is reflected in Sato’s [12]
and Segal-Wilson’s [13] constructions of the infinite-dimensional Grassmannian
Gr. Based on the idea that the evolution of shapes in the plane is related to an
evolution in a general universal space, the Segal-Wilson Grassmannian in our case,
we provide an embedding of the Löwner-Kufarev evolution into a fiber bundle with
the cotangent bundle over ℱ0 as a base space, and with the smooth Grassmannian
Gr∞ as a typical fiber. Here ℱ0 denotes the space of all conformal embeddings 𝑓
of the unit disk into ℂ normalized by 𝑓(𝑧) = 𝑧 (1 +

∑∞
𝑛=1 𝑐𝑛𝑧

𝑛) smooth on the
boundary 𝑆1, and under the smooth Grassmannian Gr∞ we understand a dense
subspace Gr∞ of Gr.
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We develop a Hamiltonian formalism for the Löwner-Kufarev evolution and
define the Poisson structure. The main result gives an embedding of the Löwner-
Kufarev evolution into the Segal-Wilson Grassmannian. We prove that the Vira-
soro generators in their covariant form are conserved along the Hamiltonian flow.
Then we present the 𝜏 -function which gives the relation of the shape evolution to
integrable systems. Then the powerful machinery of Segal-Wilson construction [13]
can be switched on, and through the Baker-Akhiezer function and the definition
of the KP flows one finds explicitly a new class of solutions to the KP hierarchy,
see details in [14].

2. Löwner-Kufarev evolution

The pioneering idea of Löwner [7] in 1923 contained two main ingredients: subor-
dination chains and semigroups of conformal maps. This far-reaching program was
created in the hopes to solve the Bieberbach conjecture [15] and the final proof
of this conjecture by de Branges [16] in 1984 was based on Löwner’s parametric
method. The modern form of this method is due to Kufarev [6] and Pommerenke
[17, 8]. Omitting review over subordination chains we concentrate our attention
on the other ingredient, i.e., on evolution families relating them to semigroups as
in [18, 19, 8].

Let us consider a semigroup 𝒫 of conformal univalent maps from the unit
disk 𝔻 into itself with superposition as a semigroup operation. This makes 𝒫 a
topological semigroup with respect of the topology of local uniform convergence
on 𝔻. We impose the natural normalization for such conformal maps Φ(𝑧) =
𝑏1𝑧+𝑏2𝑧

2+ ⋅ ⋅ ⋅ about the origin, 𝑏1 > 0. The unity of this semigroup is the identity
map. A continuous homomorphism from ℝ+ to 𝒫 with a parameter 𝜏 ∈ ℝ+ gives
a semiflow {Φ𝜏}𝜏∈ℝ+ ⊂ 𝒫 of conformal maps Φ𝜏 : 𝔻 → Ω ⊆ 𝔻, satisfying the
properties

∙ Φ0 = 𝑖𝑑;
∙ Φ𝜏+𝑠 = Φ𝑠 ∘ Φ𝜏 ;
∙ Φ𝜏 (𝑧)→ 𝑧 locally uniformly in 𝔻 as 𝜏 → 0.

In particular, Φ𝜏 (𝑧) = 𝑏1(𝜏)𝑧 + 𝑏2(𝜏)𝑧
2 + ⋅ ⋅ ⋅ , and 𝑏1(0) = 1. This semi-flow is

generated by a vector field 𝑣(𝑧) if for each 𝑧 ∈ 𝔻 the function 𝑤 = Φ𝜏 (𝑧), 𝜏 ≥ 0 is
a solution to an autonomous differential equation 𝑑𝑤/𝑑𝜏 = 𝑣(𝑤), with the initial

condition 𝑤(𝑧, 𝜏)

∣∣∣∣
𝜏=0

= 𝑧. This vector field, called infinitesimal generator, is given

by 𝑣(𝑧) = −𝑧𝑝(𝑧) where 𝑝(𝑧) is a regular Carathéodory function in the unit disk,
with Re 𝑝(𝑧) > 0 in 𝔻.

We call a subset Φ𝑡,𝑠 of 𝒫 , 0 ≤ 𝑠 ≤ 𝑡 an evolution family if

∙ Φ𝑡,𝑡 = 𝑖𝑑;
∙ Φ𝑡,𝑠 = Φ𝑡,𝑟 ∘ Φ𝑟,𝑠, for 0 ≤ 𝑠 ≤ 𝑟 ≤ 𝑡;
∙ Φ𝑡,𝑠(𝑧)→ 𝑧 locally uniformly in 𝔻 as 𝑡− 𝑠 → 0.
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In particular, if Φ𝜏 is a one-parameter semiflow, then Φ𝑡−𝑠 is an evolution family.
Given an evolution family {Φ𝑡,𝑠}𝑡,𝑠, every function Φ𝑡,𝑠 is univalent and there
exists an essentially unique infinitesimal generator, called the Herglotz vector field
𝐻(𝑧, 𝑡), such that

𝑑Φ𝑡,𝑠(𝑧)

𝑑𝑡
= 𝐻(Φ𝑡,𝑠(𝑧), 𝑡), (1)

where the function 𝐻 is given by 𝐻(𝑧, 𝑡) = −𝑧𝑝(𝑧, 𝑡) with a Carathéodory function
𝑝 for almost all 𝑡 ≥ 0. The converse is also true. Solving equation (1) with the
initial condition Φ𝑠,𝑠 = id, we obtain an evolution family. In particular, we can
consider the situation when 𝑠 = 0. Let 𝑓(𝑧, 𝑡) = 𝑒𝑡𝑤(𝑧, 𝑡). A remarkable property
of evolution families is that any conformal embedding 𝑓 of the unit disk 𝔻 to ℂ
normalized by 𝑓(𝑧) = 𝑧 + 𝑐1𝑧

2 + ⋅ ⋅ ⋅ in 𝔻 can be obtained as a one-parameter
homotopy from the identity map, i.e.,

𝑓(𝑧) = lim
𝑡→∞ 𝑓(𝑧, 𝑡) = lim

𝑡→∞ 𝑒𝑡𝑤(𝑧, 𝑡),

where the function

𝑤(𝑧, 𝑡) = 𝑒−𝑡𝑧

(
1 +

∞∑
𝑛=1

𝑐𝑛(𝑡)𝑧
𝑛

)
,

solves the Cauchy problem for the Löwner-Kufarev ODE

𝑑𝑤

𝑑𝑡
= −𝑤𝑝(𝑤, 𝑡), 𝑤(𝑧, 𝑡)

∣∣∣∣
𝑡=0

= 𝑧, (2)

and with the function 𝑝(𝑧, 𝑡) = 1 + 𝑝1(𝑡)𝑧 + ⋅ ⋅ ⋅ which is holomorphic in 𝔻 for
almost all 𝑡 ∈ [0,∞), measurable with respect to 𝑡 ∈ [0,∞) for any fixed 𝑧 ∈ 𝔻,
and such that Re 𝑝 > 0 in 𝔻, see [8]. The function 𝑤(𝑧, 𝑡) = Φ𝑡,0(𝑧) is univalent
and maps 𝔻 into 𝔻.

Lemma 1. Let the function 𝑤(𝑧, 𝑡) be a solution to the Cauchy problem (2). If the
driving function 𝑝(⋅, 𝑡), being from the Carathéodory class for almost all 𝑡 ≥ 0, is
𝐶∞ smooth in the closure �̂� of the unit disk 𝔻 and summable with respect to 𝑡,
then the boundaries of the domains Ω(𝑡) = 𝑤(𝔻, 𝑡) ⊂ 𝔻 are smooth for all 𝑡 and
𝑤(⋅, 𝑡) extended to 𝑆1 is injective on 𝑆1.

Lemma 2. With the above notations let 𝑓(𝑧) ∈ ℱ0. Then there exists a function

𝑝(⋅, 𝑡) from the Carathéodory class for almost all 𝑡 ≥ 0, and 𝐶∞ smooth in �̂�, such
that 𝑓(𝑧) = lim𝑡→∞ 𝑓(𝑧, 𝑡) is the final point of the Löwner-Kufarev trajectory with
the driving term 𝑝(𝑧, 𝑡).

3. Hamiltonian formalism

Let the driving term 𝑝(𝑧, 𝑡) in the Löwner-Kufarev ODE (2) be from the Carathéo-

dory class for almost all 𝑡 ≥ 0, 𝐶∞-smooth in �̂�, and summable with respect to 𝑡 as
in Lemma 1. Then the domains Ω(𝑡) = 𝑓(𝔻, 𝑡) = 𝑒𝑡𝑤(𝔻, 𝑡) have smooth boundaries
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∂Ω(𝑡) and the function 𝑓 is injective on 𝑆1, i.e.; 𝑓 ∈ ℱ0. So the Löwner-Kufarev

equation can be extended to the closed unit disk �̂� = 𝔻 ∪ 𝑆1.
Let us consider the sections 𝜓 of 𝑇 ∗ℱ0 ⊗ ℂ, that are from the class 𝐶∞∥⋅∥2 of

smooth complex-valued functions 𝑆1 → ℂ endowed with 𝐿2 norm,

𝜓(𝑧) =
∑
𝑘∈ℤ

𝜓𝑘𝑧
𝑘−1, ∣𝑧∣ = 1.

We also introduce the space of observables on 𝑇 ∗ℱ0 ⊗ ℂ, given by integral func-
tionals

ℛ(𝑓, 𝜓, 𝑡) =
1

2𝜋

∫
𝑧∈𝑆1

𝑟(𝑓(𝑧), 𝜓(𝑧), 𝑡)
𝑑𝑧

𝑖𝑧
,

where the function 𝑟(𝜉, 𝜂, 𝑡) is smooth in variables 𝜉, 𝜂 and measurable in 𝑡.
We define a special observable, the time-dependent pseudo-Hamiltonian ℋ,

by

ℋ(𝑓, 𝜓, 𝑝, 𝑡) =
1

2𝜋

∫
𝑧∈𝑆1

𝑧2𝑓(𝑧, 𝑡)(1− 𝑝(𝑒−𝑡𝑓(𝑧, 𝑡), 𝑡))𝜓(𝑧, 𝑡)
𝑑𝑧

𝑖𝑧
, (3)

with the driving function (control) 𝑝(𝑧, 𝑡) satisfying the above properties. The
Poisson structure on the space of observables is given by the canonical brackets

{ℛ1,ℛ2} = 2𝜋
∫
𝑧∈𝑆1

𝑧2

(
𝛿ℛ1

𝛿𝑓

𝛿ℛ2

𝛿𝜓
− 𝛿ℛ1

𝛿𝜓

𝛿ℛ2

𝛿𝑓

)
𝑑𝑧

𝑖𝑧
,

where 𝛿
𝛿𝑓 and

𝛿
𝛿𝜓
are the variational derivatives, 𝛿

𝛿𝑓ℛ = 1
2𝜋

∂
∂𝑓 𝑟,

𝛿
𝛿𝜓

ℛ = 1
2𝜋

∂
∂𝜓

𝑟.

Representing the coefficients 𝑐𝑛 and 𝜓𝑚 of 𝑓 and 𝜓 as integral functionals

𝑐𝑛 =
1

2𝜋

∫
𝑧∈𝑆1

𝑧𝑛+1𝑓(𝑧, 𝑡)
𝑑𝑧

𝑖𝑧
, 𝜓𝑚 =

1

2𝜋

∫
𝑧∈𝑆1

𝑧𝑚−1𝜓(𝑧, 𝑡)
𝑑𝑧

𝑖𝑧
,

𝑛 ∈ ℕ, 𝑚 ∈ ℤ, we obtain {𝑐𝑛, 𝜓𝑚} = 𝛿𝑛,𝑚, {𝑐𝑛, 𝑐𝑘} = 0, and {𝜓𝑙, 𝜓𝑚} = 0, where
𝑛, 𝑘 ∈ ℕ, 𝑙,𝑚 ∈ ℤ.

The infinite-dimensional Hamiltonian system is written as

𝑑𝑐𝑘
𝑑𝑡
= {𝑐𝑘,ℋ}, (4)

𝑑𝜓𝑘

𝑑𝑡
= {𝜓𝑘,ℋ}, (5)

where 𝑘 ∈ ℤ and 𝑐0 = 𝑐−1 = 𝑐−2 = ⋅ ⋅ ⋅ = 0, or equivalently, multiplying by
corresponding powers of 𝑧 and summing up,

𝑑𝑓(𝑧, 𝑡)

𝑑𝑡
= 𝑓(1− 𝑝(𝑒−𝑡𝑓, 𝑡)) = 2𝜋

𝛿ℋ
𝛿𝜓

𝑧2 = {𝑓,ℋ}, (6)

𝑑𝜓

𝑑𝑡
= −(1− 𝑝(𝑒−𝑡𝑓, 𝑡)− 𝑒−𝑡𝑓𝑝′(𝑒−𝑡𝑓, 𝑡))𝜓 = −2𝜋 𝛿ℋ

𝛿𝑓
𝑧2 = {𝜓,ℋ}, (7)

where 𝑧 ∈ 𝑆1. So the phase coordinates (𝑓, 𝜓) play the role of the canonical Hamil-
tonian pair. Observe that the equation (6) is the Löwner-Kufarev equation (2) for
the function 𝑓 = 𝑒𝑡𝑤.
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Let us set up the generating function 𝒢(𝑧) =∑𝑘∈ℤ 𝒢𝑘𝑧𝑘−1, such that

𝒢(𝑧) := 𝑓 ′(𝑧, 𝑡)𝜓(𝑧, 𝑡).

Consider the ‘non-positive’ (𝒢(𝑧))≤0 and ‘positive’ (𝒢(𝑧))>0 parts of the Laurent
series for 𝒢(𝑧):
(𝒢(𝑧))≤0 = (𝜓1 + 2𝑐1𝜓2 + 3𝑐2𝜓3 + ⋅ ⋅ ⋅ )

+ (𝜓2 + 2𝑐1𝜓3 + ⋅ ⋅ ⋅ )𝑧−1 + ⋅ ⋅ ⋅ =
∞∑
𝑘=0

𝒢𝑘+1𝑧
−𝑘.

(𝒢(𝑧))>0 = (𝜓0 + 2𝑐1𝜓1 + 3𝑐2𝜓2 + ⋅ ⋅ ⋅ )𝑧

+ (𝜓−1 + 2𝑐1𝜓0 + 3𝑐2𝜓1 ⋅ ⋅ ⋅ )𝑧2 + ⋅ ⋅ ⋅ =
∞∑
𝑘=1

𝒢−𝑘+1𝑧
𝑘.

Proposition 1. Let the driving term 𝑝(𝑧, 𝑡) in the Löwner-Kufarev ODE be from

the Carathéodory class for almost all 𝑡 ≥ 0, 𝐶∞-smooth in �̂�, and summable with
respect to 𝑡. The functions 𝒢(𝑧), (𝒢(𝑧))<0, (𝒢(𝑧))≥0, and all coefficients 𝒢𝑛 are
time-independent for all 𝑧 ∈ 𝑆1.

Proof. It is sufficient to check the equality ˙̄𝒢 = {𝒢,ℋ} = 0 for the function 𝒢, and
then, the same holds for the coefficients of the Laurent series for 𝒢. □

Proposition 2. The conjugates 𝒢𝑘, 𝑘 = 1, 2, . . ., to the coefficients of the generat-
ing function satisfy the Witt commutation relation {𝒢𝑚,𝒢𝑛} = (𝑛 −𝑚)𝒢𝑛+𝑚 for
𝑛,𝑚 ≥ 1, with respect to our Poisson structure.

The isomorphism 𝜄 : 𝜓𝑘 → ∂𝑘 =
∂
∂𝑐𝑘
, 𝑘 > 0, is a Lie algebra isomorphism

(𝑇 ∗
(0,1)

𝑓 ℱ0, { , }) → (𝑇
(1,0)
𝑓 ℱ0, [ , ]). It makes a correspondence between the con-

jugates 𝒢𝑛 of the coefficients 𝒢𝑛 of (𝒢(𝑧))≥0 at the point (𝑓, 𝜓) and the Kirillov

vectors 𝐿𝑛[𝑓 ] = ∂𝑛 +
∞∑
𝑘=1

(𝑘 + 1)𝑐𝑘∂𝑛+𝑘, 𝑛 ∈ ℕ, see [20]. Both satisfy the Witt

commutation relations
[𝐿𝑛, 𝐿𝑚] = (𝑚− 𝑛)𝐿𝑛+𝑚.

4. Curves in Grassmannian

Let us recall, that the underlying space for the universal smooth Grassmannian
Gr∞(𝐻) is 𝐻 = 𝐶∞∥⋅∥2(𝑆

1) with the canonical 𝐿2 inner product of functions defined

on the unit circle. Its natural polarization

𝐻+ = span𝐻{1, 𝑧, 𝑧2, 𝑧3, . . . }, 𝐻− = span𝐻{𝑧−1, 𝑧−2, . . . },
was introduced before. The pseudo-Hamiltonian ℋ(𝑓, 𝜓, 𝑡) is defined for an arbi-
trary 𝜓 ∈ 𝐿2(𝑆1), but we consider only smooth solutions of the Hamiltonian sys-
tem, therefore, 𝜓 ∈ 𝐻 . We identify this space with the dense subspace of 𝑇 ∗𝑓ℱ0⊗ℂ,
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𝑓 ∈ ℱ0. The generating function 𝒢 defines a linear map 𝒢 from the dense subspace
of 𝑇 ∗𝑓ℱ0 ⊗ ℂ to 𝐻 , which being written in a block matrix form becomes⎛⎝ 𝒢>0

𝒢≤0

⎞⎠ =
⎛⎝ 𝐶1,1 𝐶1,2

0 𝐶1,1

⎞⎠⎛⎝ 𝜓>0

𝜓≤0

⎞⎠ , (8)

where

(
𝐶1,1 𝐶1,2

0 𝐶1,1

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⋅ ⋅ ⋅ 0 1 2𝑐1 3𝑐2 4𝑐3 5𝑐4 6𝑐5 7𝑐6 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 1 2𝑐1 3𝑐2 4𝑐3 5𝑐4 6𝑐5 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 0 1 2𝑐1 3𝑐2 4𝑐3 5𝑐4 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 0 0 1 2𝑐1 3𝑐2 4𝑐3 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 0 0 0 1 2𝑐1 3𝑐2 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 0 0 0 0 0 1 2𝑐1 ⋅ ⋅ ⋅
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proposition 3. The operator 𝐶1,1 : 𝐻+ → 𝐻+ is invertible.

The generating function also defines a map 𝒢 : 𝑇 ∗ℱ0 ⊗ ℂ → 𝐻 by

𝑇 ∗ℱ0 ⊗ ℂ ∋ (𝑓(𝑧), 𝜓(𝑧)) �→ 𝒢 = 𝑓 ′(𝑧)𝜓(𝑧) ∈ 𝐻.

Observe that any solution
(
𝑓(𝑧, 𝑡), 𝜓(𝑧, 𝑡)

)
of the Hamiltonian system is mapped

into a single point of the space 𝐻 , since all 𝒢𝑘, 𝑘 ∈ ℤ are time-independent by
Proposition 1.

Consider a bundle 𝜋 : ℬ → 𝑇 ∗ℱ0 ⊗ ℂ with a typical fiber isomorphic to
Gr∞(𝐻). We are aimed at construction of a curve Γ: [0, 𝑇 ]→ ℬ that is traced by
the solutions to the Hamiltonian system, or in other words, by the Löwner-Kufarev
evolution. The curve Γ will have the form

Γ(𝑡) =
(
𝑓(𝑧, 𝑡), 𝜓(𝑧, 𝑡),𝑊𝑇𝑛(𝑡)

)
in the local trivialization. Here𝑊𝑇𝑛 is the graph of a finite rank operator 𝑇𝑛 : 𝐻+ →
𝐻−, such that 𝑊𝑇𝑛 belongs to the connected component of 𝑈𝐻+ of virtual dimen-
sion 0. In other words, we build a hierarchy of finite rank operators 𝑇𝑛 : 𝐻+ → 𝐻−,
𝑛 ∈ ℤ+, whose graphs in the neighborhood 𝑈𝐻+ of the point 𝐻+ ∈ Gr∞(𝐻) are

𝑇𝑛((𝒢(𝑧))>0) = 𝑇𝑛(𝒢1,𝒢2, . . . ,𝒢𝑘, . . . ) =

⎧⎨⎩
𝐺0(𝒢1,𝒢2, . . . ,𝒢𝑘, . . . )
𝐺−1(𝒢1,𝒢2, . . . ,𝒢𝑘, . . . )
. . .

𝐺−𝑛+1(𝒢1,𝒢2, . . . ,𝒢𝑘, . . . ),
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with 𝐺0𝑧
−1+𝐺−1𝑧

−2+ ⋅ ⋅ ⋅+𝐺−𝑛+1𝑧
−𝑛 ∈ 𝐻−. Let us denote by 𝐺𝑘 = 𝒢𝑘, 𝑘 ∈ ℕ.

The elements 𝐺0, 𝐺−1, 𝐺−2, . . . are constructed so that all {�̄�𝑘}∞𝑘=−𝑛+1 satisfy
the truncated Witt commutation relations

{�̄�𝑘, �̄�𝑙}𝑛 =
{
(𝑙 − 𝑘)�̄�𝑘+𝑙, for 𝑘 + 𝑙 ≥ −𝑛+ 1,

0, otherwise,

and are related to Kirillov’s vector fields [20] under the isomorphism 𝜄. The pro-
jective limit as 𝑛 ← ∞ recovers the whole Witt algebra and the Witt com-
mutation relations. Then the operators 𝑇𝑛 such that their conjugates are 𝑇𝑛 =

(𝐵(𝑛) +𝐶
(𝑛)
2,1 ) ∘𝐶−1

1,1 , are operators from 𝐻+ to 𝐻− of finite rank and their graphs
𝑊𝑇𝑛 = (id+𝑇𝑛)(𝐻+) are elements of the component of virtual dimension 0 in
Gr∞(𝐻). We can construct a basis {𝑒0, 𝑒1, 𝑒2, . . . } in 𝑊𝑇𝑛 as a set of Laurent
polynomials defined by means of operators 𝑇𝑛 and 𝐶1,1 as a mapping

{𝜓1, 𝜓2, . . . } 𝐶1,1−→ {𝐺1, 𝐺2, . . . } id +𝑇𝑛−→ {𝐺−𝑛+1, 𝐺−𝑛+2, . . . , 𝐺0, 𝐺1, 𝐺2, . . . },
of the canonical basis {1, 0, 0, . . .}, {0, 1, 0, . . .}, {0, 0, 1, . . .},. . .

Let us formulate the result as the following main statement.

Proposition 4. The operator 𝑇𝑛 defines a graph 𝑊𝑇𝑛 = span{𝑒0, 𝑒1, 𝑒2, . . . } in the
Grassmannian Gr∞ of virtual dimension 0. Given any

𝜓 =

∞∑
𝑘=0

𝜓𝑘+1𝑧
𝑘 ∈ 𝐻+ ⊂ 𝐻,

the function

𝐺(𝑧) =

∞∑
𝑘=−𝑛

𝐺𝑘+1𝑧
𝑘 =

∞∑
𝑘=0

𝜓𝑘+1𝑒𝑘,

is an element of 𝑊𝑇𝑛 .

Proposition 5. In the autonomous case of the Cauchy problem (2), when the func-
tion 𝑝(𝑧, 𝑡) does not depend on 𝑡, the pseudo-Hamiltonian ℋ plays the role of
time-dependent energy and ℋ(𝑡) = �̄�0(𝑡) + const, where �̄�0

∣∣
𝑡=0

= 0. The constant

is defined as
∑∞

𝑛=1 𝑝𝑘𝜓𝑘(0).

Remark 1. The Virasoro generator 𝐿0 plays the role of the energy functional in
CFT. In the view of the isomorphism 𝜄, the observable �̄�0 = 𝜄−1(𝐿0) plays an
analogous role.

Thus, we constructed a countable family of curves Γ𝑛 : [0, 𝑇 ] → ℬ in the
trivial bundle ℬ = 𝑇 ∗ℱ0 ⊗ℂ × Gr∞(𝐻), such that the curve Γ𝑛 admits the form
Γ𝑛(𝑡) =

(
𝑓(𝑧, 𝑡), 𝜓(𝑧, 𝑡),𝑊𝑇𝑛(𝑡)

)
, for 𝑡 ∈ [0, 𝑇 ] in the local trivialization. Here(

𝑓(𝑧, 𝑡), 𝜓(𝑧, 𝑡)
)
is the solution of the Hamiltonian system (4)–(5). Each operator

𝑇𝑛(𝑡) : 𝐻+ → 𝐻− that maps 𝒢>0 to(
𝐺0(𝑡), 𝐺−1(𝑡), . . . , 𝐺−𝑛+1(𝑡)

)
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defined for any 𝑡 ∈ [0, 𝑇 ], 𝑛 = 1, 2, . . ., is of finite rank and its graph 𝑊𝑇𝑛(𝑡) is a
point in Gr∞(𝐻) for any 𝑡. The graphs 𝑊𝑇𝑛 belong to the connected component
of the virtual dimension 0 for every time 𝑡 ∈ [0, 𝑇 ] and for fixed 𝑛. The coordinates
(𝐺−𝑛+1, . . . , 𝐺−2, 𝐺−1, 𝐺0, 𝐺1, 𝐺2, . . .) of a point in the graph 𝑊𝑇𝑛 considered as
a function of 𝜓 are isomorphic to the Kirillov vector fields

(𝐿−𝑛+1, . . . , 𝐿−2, 𝐿−1, 𝐿0, 𝐿1, 𝐿1, 𝐿2, . . .)

under the isomorphism 𝜄.

5. 𝝉 -function

Remind that any function 𝑔 holomorphic in the unit disc, non vanishing on the
boundary and normalized by 𝑔(0) = 1 defines the multiplication operator 𝑔𝜑,
𝜑(𝑧) =

∑
𝑘∈ℤ 𝜑𝑘𝑧

𝑘, that can be written in the matrix form(
𝑎 𝑏
0 𝑑

)(
𝜑≥0

𝜑<0

)
. (9)

All these upper triangular matrices form a subgroup 𝐺𝐿+
𝑟𝑒𝑠 of the group of auto-

morphisms 𝐺𝐿𝑟𝑒𝑠 of the Grassmannian Gr∞(𝐻).
With any function 𝑔 and any graph 𝑊𝑇𝑛 constructed in the previous section

(which is transverse to 𝐻−) we can relate the 𝜏 -function 𝜏𝑊𝑇𝑛
(𝑔) by the following

formula
𝜏𝑊𝑇𝑛

(𝑔) = det(1 + 𝑎−1𝑏𝑇𝑛),

where 𝑎, 𝑏 are the blocks in the multiplication operator generated by 𝑔−1. If we
write the function 𝑔 in the form 𝑔(𝑧) = exp(

∑∞
𝑛=1 𝑡𝑛𝑧

𝑛) = 1 +
∑∞

𝑘=1 𝑆𝑘(t)𝑧
𝑘,

where the coefficients 𝑆𝑘(t) are the homogeneous elementary Schur polynomials,
then the coefficients t = (𝑡1, 𝑡2, . . . ) are called generalized times. For any fixed
𝑊𝑇𝑛 we get an orbit in Gr∞(𝐻) of curves Γ𝑛 constructed in the previous section
under the action of the elements of the subgroup 𝐺𝐿+

𝑟𝑒𝑠 defined by the function
𝑔. On the other hand, the 𝜏 -function defines a section in the determinant bundle
over Gr∞(𝐻) for any fixed 𝑓 ∈ ℱ0 at each point of the curve Γ𝑛.
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The pre-Maxwell Equations

Josef Mikeš, Sergey Stepanov and Marek Jukl

Abstract. For space-time we consider linear differential equations from which
the Maxwell equations follow. These equations we call pre-Maxwell equations.
If the pre-Maxwell equations hold then the tensor of the electromagnetic field
𝐹 , the four-current 𝐽 and the energy-momentum tensor 𝑇 will have some
interesting properties which we present. Finally we identify integrals of the
pre-Maxwell equations in flat and in de Sitter space-time.
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1. The definition of the pre-Maxwell equations

Let (𝑀, 𝑔) be a space-time of General Relativity, which means𝑀 is a smooth four-
dimensional manifold endowed with a metric tensor 𝑔 of Lorentzian signature (− +
++) with respect to which 𝑀 is time oriented and with Levi-Civita connection
∇ (see [1]).

Suppose that 𝜔 is the electromagnetic field 2-form. In terms of local co-
ordinates {𝑥0, 𝑥1, 𝑥2, 𝑥3} the electromagnetic field 2-form 𝜔 may be written as
𝜔 = 1

2 𝐹𝑖𝑗 𝑑𝑥
𝑖∧𝑑𝑥𝑗 , where 𝐹𝑖𝑗 = 𝐹 (∂𝑖, ∂𝑗) are local components of the electromag-

netic field tensor 𝐹 for ∂𝑘 = ∂/∂𝑥𝑘 and 𝑖, 𝑗, 𝑘 = 0, 1, 2, 3.

It is well known that 𝜔 is a closed 2-form, i.e.,

∇𝑖𝐹𝑗𝑘 +∇𝑗𝐹𝑘𝑖 +∇𝑘𝐹𝑖𝑗 = 0,

and obeys the Maxwell equations in the presence of a charge (see [1])

∇𝑘𝐹𝑘𝑗 = 4 𝜋 𝐽𝑗

for local coordinates 𝐽𝑗 of the current 4-vector 𝐽 .
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Definition 1. The following equations

∇𝑖𝐹𝑗𝑘 = 4/3 𝜋 (𝐽𝑗𝑔𝑖𝑘 − 𝐽𝑘𝑔𝑖𝑗) (1)

for 𝑔𝑖𝑗 = 𝑔(∂𝑖, ∂𝑗) are called the pre-Maxwell equations.

From the pre-Maxwell equations (1) we automatically obtain the Maxwell
equations in the presence of a charge.

Remark 1. If the electromagnetic field tensor 𝐹 satisfies equations (1) then it is a
closed skew-symmetric conformal Killing 2-tensor (see [2]).

2. Properties of space-times admitting the pre-Maxwell equations

If the pre-Maxwell equations (1) hold then the tensor 𝐹 of electromagnetic field,
current 4-vector 𝐽 and the energy-momentum tensor 𝑇 have the following prop-
erties.

Proposition 2. The electromagnetic field tensor F is parallel along integrals curves
of the current 4-vector 𝐽 .

Proof. From (1) we have 𝐽𝑘∇𝑘𝐹𝑖𝑗 = 0 which means ∇𝐽𝐹 = 0. Hence the tensor
𝐹 is parallel along integral curves of the 4-vector 𝐽 . □
Proposition 3. The current 4-vector 𝐽 is a Killing vector if and only if (𝑀, 𝑔) is
an Einstein manifold, i.e., Ric = 𝜆 𝑔 for 𝜆 = const.

Proof. We use the following the Ricci identities for the electromagnetic field tensor
𝐹 in coordinate form (see [3])

∇𝑖∇𝑗𝐹𝑘𝑙 −∇𝑗∇𝑖𝐹𝑘𝑙 = −𝐹𝑚𝑙𝑅
𝑚
𝑘𝑖𝑗 − 𝐹𝑘𝑚𝑅𝑚

𝑙𝑖𝑗 (2)

for local components 𝑅𝑚
𝑘𝑖𝑗 of the curvature tensor 𝑅 of (𝑀, 𝑔). Substituting (1) in

the Ricci identities we have

∇𝑖𝐽𝑘 =
3

8𝜋
(𝐹𝑚𝑙𝑅𝑚𝑙𝑘𝑖 − 𝐹𝑘𝑚𝑅𝑚

𝑖 ). (3)

for components 𝑅𝑖𝑗 = 𝑅𝑚
𝑖𝑚𝑗 of the Ricci tensor Ric (see [3]). □

A vector field 𝑋 on (𝑀, 𝑔) is called a Killing vector if the local flows generated
by 𝑋 act by a 1-parameter group of isometric transformations (see [3]). This
translates into the following simple equations ∇𝑖𝑋𝑘 +∇𝑘𝑋𝑖 = 0. The current 4-
vector 𝐽 generates a 1-parameter group of isometric transformations if and only
if 𝐹𝑘𝑚𝑅𝑚

𝑖 + 𝐹𝑖𝑚𝑅𝑚
𝑘 = 0. From these identities we conclude that Ric = 𝜆 𝑔 for

𝜆 = const.

Proposition 4. Let (𝑀, 𝑔) be a de Sitter space-time, i.e., a Lorentzian manifold
of constant section curvature 𝐶 = 𝜀

𝑟2 with 𝜀 = ±1 depending on the kind of the
space. Then the following holds:

𝐹𝑖𝑗 =
4𝜀𝜋

3𝑟2
∇𝑖𝐽𝑗 . (4)
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Proof. If (𝑀, 𝑔) is a de Sitter space-time then the covariant curvature tensor 𝑅
has the following components

𝑅𝑖𝑗𝑘𝑙 =
𝜀

𝑟2
(𝑔𝑖𝑘𝑔𝑗𝑙 − 𝑔𝑖𝑙𝑔𝑗𝑘). (5)

Using (1), (2) and (5) we obtain (4). □

Proposition 5. The energy-momentum tensor of the electromagnetic field is a con-
formal Killing symmetric tensor.

Proof. The energy-momentum tensor of the electromagnetic field has the local
components (see [1])

𝑇𝑖𝑗 =
1

4𝜋
(𝐹𝑖𝑘𝐹

𝑘
𝑗 − 1

4
𝐹𝑘𝑙𝐹

𝑘𝑙 𝑔𝑖𝑗).

We can see that the energy-energy tensor 𝑇 is the trace-free part of the tensor
field

𝐺𝑖𝑗 = 𝑇𝑖𝑗 +
𝜋

8
𝐹𝑘𝑙𝐹

𝑘𝑙 𝑔𝑖𝑗 .

A symmetric covariant tensor field 𝐾 on (𝑀, 𝑔) is said to be Killing (see [4]) if
the completely symmetric part of ∇𝐾 vanishes. Then, returning to pre-Maxwell
equations (1), we can write ∇𝑖𝐺𝑗𝑘+∇𝑗𝐺𝑘𝑖+∇𝑘𝐺𝑖𝑗 = 0. Now, using the preceding
definition, we obtain that 𝐺 is a Killing tensor field (see [4]). A trace-free symmetric
tensor field 𝐺 on (𝑀, 𝑔) is said to be conformal Killing (see [4]) therefore the
energy-momentum tensor 𝑇 is a conformal Killing tensor. □

If 𝜂 is the skew-symmetric Levi-Civita pseudo-tensor (see [4]) with compo-
nents 𝜂𝑖𝑗𝑘𝑙 then we obtain the following property of the electromagnetic field ten-
sor 𝐹 .

Proposition 6. The tensor 𝑌 with components 𝑌𝑘𝑙 = 𝜂𝑖𝑗𝑘𝑙𝐹𝑖𝑗 is a Killing-Yano
tensor.

Proof. Operating ∇𝑘 to 𝑌𝑘𝑙 = 𝜂𝑖𝑗𝑘𝑙𝐹𝑖𝑗 we get

∇𝑚𝑌𝑘𝑙 = ∇𝑚(𝜂
𝑖𝑗
𝑘𝑙𝐹𝑖𝑗) = 𝜂𝑖𝑗𝑘𝑙∇𝑚𝐹𝑖𝑗

=
4𝜋

3
𝜂𝑖𝑗𝑘𝑙(𝐽𝑖𝑔𝑚𝑗 − 𝐽𝑗𝑔𝑚𝑖) =

8𝜋

3
𝜂𝑖𝑚𝑘𝑙𝐽

𝑖.
(6)

A Killing-Yano tensor is a skew-symmetric tensor 𝑌 with components 𝑌𝑖𝑗 satisfying
the Killing-Yano equations ∇𝑘𝑌𝑖𝑗 +∇𝑖𝑌𝑘𝑗 = 0 (see [4]). The equations (6) show
that 𝑌 with components 𝑌𝑘𝑙 = 𝜂𝑖𝑗𝑘𝑙𝐹𝑖𝑗 is a Killing-Yano tensor. □

3. Integrals of the pre-Maxwell equations in a flat space-time

We will consider the pre-Maxwell equations (1.1) with the Ricci identities (2.2) as
a closed system of differential equations of Cauchy type on (𝑀, 𝑔) where 𝐹𝑖𝑗 and
𝐽𝑖 are local components of unknown the tensor 𝐹 and vector 𝐽 (see [5]). For initial
Cauchy conditions 𝐹𝑖𝑗(𝑝0) = 𝐹 0

𝑖𝑗 and 𝐽𝑖(𝑝0) = 𝐽0
𝑖 , where 𝑝0 ∈ 𝑀 , the system of
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equations (1.1) and (2.2) has at most one solution. Moreover, the general solution
of the system of equations (1.1) and (2.2) depends no more on 8 real parameters.

Let us consider a flat space-time with a Lorentzian coordinate system
{𝑥0, 𝑥1, 𝑥2, 𝑥3}. It is clear that equations (3) may be rewritten as ∂𝑗𝐽𝑖 for all
𝑖, 𝑗 = 0, 1, 2, 3. Then the integrals of the pre-Maxwell equations (1) will take the
form

𝐹𝑖𝑗 =
4𝜋

3
(𝐶𝑖𝑥

𝑗 − 𝐶𝑗𝑥
𝑖 + 𝐶𝑖𝑗), (7)

where 𝐶𝑖 are constant components of the current 4-vector 𝐽 and 𝐶𝑖𝑗 are constant
components of arbitrary skew-symmetric 2-tensor. It means the following: For a
flat space-time (𝑀, 𝑔) the system of equations (1.1) and (2.2) is complete integrable
system and the number of real parameters of the general solution of the system
reaches its maximum.

Using the classical notation (see [1]) we introduce the electric field intensity
vector E and magnetic induction vector B:

E = {𝐹10, 𝐹20, 𝐹30} and B = {𝐹23, 𝐹31, 𝐹21}.
Then from formulas above we obtain

∂E/∂𝑡 = {−𝐶1,−𝐶2,−𝐶3} and ∂B/∂𝑡 = {0, 0, 0}
where 𝑥0 is interpreted as the time 𝑡.

4. Integrals of the pre-Maxwell Equations in a de Sitter
Space-Time

Let (𝑀, 𝑔) be a de Sitter space-time. Then (see [6]) there exists a local coordinate
system {𝑥0, 𝑥1, 𝑥2, 𝑥3} in which an arbitrary Killing-Yano 2-tensor 𝑌 has com-

ponents 𝑌𝑖𝑗 = e3𝜓 (𝐴𝑚𝑖𝑗𝑥
𝑚 + 𝐵𝑖𝑗) where 𝜓 = 1

10 ln ∣ det 𝑔∣ and 𝐴𝑚𝑖𝑗 , 𝐵𝑖𝑗 are

components of arbitrary two constants skew-symmetric tensors on (𝑀, 𝑔).
On the other hand, an arbitrary closed conformal Killing 2-tensor 𝐹 has

following local components 𝐹𝑘𝑙 = 𝜂𝑖𝑗𝑘𝑙 𝑌𝑖𝑗 for components 𝑌𝑖𝑗 of some Killing-Yano
2-tensor 𝑌 (see [6], [7]). Therefore the integrals of the pre-Maxwell equations (1.1)
have the form 𝐹𝑘𝑙 = ∗𝑌𝑘𝑙 = 𝜂𝑖𝑗𝑘𝑙𝑌𝑖𝑗 which implies 𝐹𝑖𝑗 = e

3𝜓(𝐴𝑚𝑘𝑙𝑥
𝑚+ �̄�𝑘𝑙) where

𝐴𝑚𝑘𝑙 = 𝜂𝑖𝑗𝑘𝑙𝐴𝑚𝑖𝑗 and �̄�𝑘𝑙 = 𝜂𝑖𝑗𝑘𝑙𝐵𝑖𝑗 (see the remark in the first paragraph).
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[5] J. Mikeš, A. Vanžurová, I. Hinterleitner, Geodesic Mappings and Some Generaliza-
tions. Olomouc, Palacky Univ. Press, 2009.

[6] S.E. Stepanov, The Killing-Yano tensor. Theoretical and Mathematical Physics 134:3
(2003), 333–338.

[7] S.E. Stepanov, On conformal Killing 2-form of the electromagnetic field. J. of Ge-
ometry and Physics 33 (2000), 191–209.

Josef Mikeš
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Abstract. Here we apply our original scheme for the reconstruction of plane
curves whose curvatures are specified by functions of the radial coordinate to
the curves introduced by J.-A. Serret. These curves are associated with the
natural numbers and we extend their definition in order to include them into
a family of curves depending on two continuous real parameters. The explicit
parametrization of this new class of curves is presented as well.
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Keywords. Classical differential geometry, plane curves, curvature, Frenet-
Serret equations.

1. Introduction

Long time ago Serret [1] has described a family of plane algebraic curves in response
to a question raised by Legendre. The problem was to find algebraic curves other
than the lemniscate, such that their arc lengths are expressed by elliptic integrals
of the first kind, and Serret claimed that he has found all such rational curves.
Besides he provides a mechanical procedure [2] for their construction which will
be described in the next Section. Before that we will mention that the original
Serret curves were indexed by natural numbers but Liouville [3] had recognized
immediately that rational numbers are suited as well as they also lead to algebraic
curves. This has been further elucidated in Krohs’ dissertation [4]. Here, we extend
the definition of Serret’s curves from discrete to continuous two-parameter family
and present their explicit parametrizations.

Actually, the organization of the paper is as follows. The next section presents
the mechanical construction of Serret’s curves followed by another one in which the
Frenet-Serret equations are formulated in Cartan moving frame. Then we outline
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the general scheme for the reconstruction of the plane curves whose curvature is
given as a function of the radial coordinate and exemplify it by deriving the explicit
parametrization of the Serret’s curves.

2. Serret’s curves

These curves were introduced as a trace of the end point 𝑀 of the plane linkage
bar shown in Figure 1. The lengths of the hinged rods 𝑂𝑃 and 𝑃𝑀 are specified

Figure 1. Serret’s construction.

by a natural number 𝑛 ∈ ℕ via the formulas
√
𝑛 and

√
𝑛+ 1 respectively, the point

𝑂 is fixed at the origin of the Cartesian coordinate system 𝑋𝑂𝑍 and the point 𝑀
describing the curve 𝒮𝑛 moves according to the rule

cos𝜔 = cos(𝑛𝛼− (𝑛+ 1)𝛽), (1)

where the angles 𝛼, 𝛽 and 𝜔 are shown in Figure 1. Their analytical treatment is
based on the application of the cosine theorem to the triangle 𝑂𝑀𝑃 which gives

cos𝛼 =
𝑟2 − 1
2
√
𝑛𝑟

, cos𝛽 =
𝑟2 + 1

2
√
𝑛+ 1𝑟

⋅ (2)

Following Liouville’s observation we obtain an algebraic curve even after re-
placing the index 𝑛 with the rational number 𝜈 = 𝑝/𝑞, where 𝑝, 𝑞 ∈ ℕ. This can
be seen to be true by expressing the right-hand side of (1) as a polynomial in
sin𝛼, cos𝛼, sin𝛽 and cos𝛽 and then by making use of the geometrical relations (2)
to obtain the algebraic relations between 𝑥 and 𝑟 and 𝑧 and 𝑟 in the form of
polynomial equations, i.e.,

𝑃 (𝑥, 𝑟) = 0, 𝑄(𝑧, 𝑟) = 0. (3)

Eliminating 𝑟 between them one ends with some polynomial relation

𝐹 (𝑥, 𝑧) = 0 (4)

and this proves that the curve 𝒮𝜈 is algebraic.

I.M. Mladenov, M.T. Hadzhilazova, P.A. Djondjorov and V.M. Vassilev
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We should note that recently Lipkovski [5] was able to prove that all Serret’s
curves 𝒮𝑛 are rational ones, i.e., they admit rational parametrizations.

Going back to the original Serret’s writings one can find in [2] a formula for
the curvature of the curve 𝒮𝑛, namely

𝜅(𝑟) =
3𝑟

2
√

𝑛(𝑛+ 1)
− 2𝑛+ 1

2
√

𝑛(𝑛+ 1)𝑟
(5)

which depends solely on the radial coordinate 𝑟.
As we shall see this formula is a crucial one for the present paper but before

that in the next two Sections we will review shortly the geometry of the plane
curves and the scheme for reconstruction of the curve from its curvature.

3. The Frenet-Serret equations

If 𝑥(𝑠), 𝑧(𝑠) and 𝜃(𝑠) denote the Cartesian coordinates of a curve in the plane
𝑋𝑂𝑍 and the slope of the tangent to it with respect to the 𝑂𝑋 axis regarded as
functions of the arc-length parameter 𝑠 one has the following geometrical relations

d𝜃(𝑠)

d𝑠
= 𝜅(𝑠),

d𝑥(𝑠)

d𝑠
= cos 𝜃(𝑠),

d𝑧(𝑠)

d𝑠
= sin 𝜃(𝑠) (6)

which can be deduced from the Frenet-Serret equations (see [6] and [7])

dx

d𝑠
= T,

dT

d𝑠
= 𝜅N,

dN

d𝑠
= −𝜅T (7)

as well (see also Figure 2) in which x = (𝑥, 𝑧), T and N are respectively the
position, the tangent and the normal vectors to the curve.

Figure 2. Geometry of the plane curve.

Let us recall that

T = (cos 𝜃, sin 𝜃) , N = (− sin 𝜃, cos 𝜃) . (8)

We will proceed by going to the so-called co-moving frame (T,N) associated
with the curve in which

x = 𝜉T+ 𝜂N. (9)
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According to the Frenet-Serret equations (7), the components 𝜉(𝑠) and 𝜂(𝑠) of
the position vector with respect to the co-moving frame obey to the following
equations

𝜉 = 𝜅𝜂 + 1, �̇� = −𝜅𝜉. (10)

Hereafter, the dot indicates a differentiation with respect to 𝑠. Below, it will be
shown that in all cases in which the curvature of the plane curve depends solely
on the distance from the origin, the above equations lead to explicit expressions
(up to quadratures) for the slope angle 𝜃 and the position vector x.

4. Reconstruction of the plane curve from its curvature

There are several ways for performing this task and for alternatives and illustra-
tions the reader can see [8, 9, 10, 11, 12] and [13]. Here we will follow the scheme
presented in [10] and start it by multiplying the first equation in (10) by 𝜉, the
second one by 𝜂 and summing the so obtained expressions in order to find

𝜉 = 𝑟�̇� (11)

since one easily recognized that

𝜉2 + 𝜂2 = 𝑟2 (12)

which follows from equation (9) and the very definition of the radial coordinate

𝑟 = ∣x∣ = √
𝑥2 + 𝑧2. Substituting the expression (11) back into the second of the

equations (10) and integrating we obtain

𝜂 = 𝑚(𝑟) +
∘
𝑐 (13)

where

𝑚(𝑟) = −
∫

𝑟𝜅(𝑟)d𝑟 (14)

and
∘
𝑐 is the integration constant. In view of equations (11) and (13), relation (12)

leads to the following first-order ordinary differential equation

�̇�2 =
1

𝑟2

[
𝑟2 − (𝑚(𝑟) + ∘

𝑐)2
]

(15)

for the radial coordinate 𝑟.
Thus, given explicitly the curvature 𝜅 of a plane curve as a function of the

radial coordinate 𝑟, one can try to express the general solution of equation (15) in
a suitable analytical form. If such an attempt is successful, then the components 𝜉
and 𝜂 of the position vector can be found explicitly from equations (11), (13)–(15),
while the expression for the slope angle 𝜃 can be obtained by solving the integral
in the right-hand side of the relation

𝜃(𝑠) =

∫
𝜅(𝑟(𝑠))d𝑠 (16)

which is implied by the first of the equations (6).
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In this way, the parametric equations according to formulas (8) and (9) can
be written in the form

𝑥(𝑠) = 𝜉(𝑠) cos 𝜃(𝑠)− 𝜂(𝑠) sin 𝜃(𝑠)

𝑧(𝑠) = 𝜉(𝑠) sin 𝜃(𝑠) + 𝜂(𝑠) cos 𝜃(𝑠)
(17)

in which all necessary ingredients are specified (up to integrations) from equa-
tions (11), (13) and (16).

5. Generalized Serret’s curves and their explicit parametrization

The expression for the curvature of Serret’s curves (5) suggests immediately a
generalization of the form

𝜅(𝑟) = 3𝜆𝑟 − 𝜎

𝑟
, 𝜆 > 0, 𝜎 > 1. (18)

Substitution of (18) in (13) produces

𝜂 = −𝜆𝑟3 + 𝜎𝑟 (19)

but one has to notice that the integration constant in (13) is taken to be zero. In
these circumstances the differential equation (15) reduces to the equation

d𝑟√
(𝑎2 − 𝑟2)(𝑟2 − 𝑐2)

= 𝜆d𝑠 (20)

in which the real parameters 𝑎 and 𝑐 are given by the formulas

𝑎 =

√
𝜎 + 1

𝜆
, 𝑐 =

√
𝜎 − 1
𝜆

⋅ (21)

The integration of (20) can be performed in terms of the Jacobian elliptic function
dn(⋅, ⋅), namely

𝑟(𝑠) = 𝑎dn(𝑎𝜆𝑠, 𝑘), 𝑘 =

√
2

𝜎 + 1
(22)

in which the first slot is occupied by its argument and the second one by the so-
called elliptic modulus. More about elliptic functions and integrals can be found
in [14] and [15].

The next step in the scheme amounts to the evaluation of the integral in (16)
and this gives

𝜃(𝑠) = 3am(
√

𝜆(𝜎 + 1) 𝑠, 𝑘)− 𝜎√
𝜎2 − 1 arccos

cn(
√

𝜆(𝜎 + 1) 𝑠, 𝑘)

dn(
√

𝜆(𝜎 + 1) 𝑠, 𝑘)
(23)

where am(𝑡, 𝑘) is the Jacobian amplitude function and cn(𝑡, 𝑘) = cos am(𝑡, 𝑘).
Having at disposal (11), (19), (22) and (23) one can enter into (17) and

this gives the parametrization of the generalized Serret’s curves. Obviously the
parametrization of the classical Serret’s curves can be obtained by taking

𝜆 =
1

2
√

𝑛(𝑛+ 1)
, 𝜎 =

2𝑛+ 1

2
√

𝑛(𝑛+ 1)
, 𝑛 ∈ ℕ (24)
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and in this case the slope angle turns out to be

𝜃𝑛(𝑠) = 3am(𝜇𝑛𝑠, 𝑘𝑛)− (2𝑛+ 1) arccos cn(𝜇𝑛𝑠, 𝑘𝑛)
dn(𝜇𝑛𝑠, 𝑘𝑛)

(25)

where

𝜇𝑛 =
1

2

√
2
√

𝑛(𝑛+ 1) + 2𝑛+ 1

𝑛(𝑛+ 1)
, 𝑘𝑛 = 2

√ √
𝑛(𝑛+ 1)

2
√

𝑛(𝑛+ 1) + 2𝑛+ 1
⋅ (26)

Several plots of both classical and generalized Serret’s curves are presented in
Figure 3 and Figure 4.

Figure 3. The classical Serret’s curves 𝒮1 (left), 𝒮2 (middle) and 𝒮3 (right).

Figure 4. Three examples of the generalized Serret’s curves 𝒞1 (left),
𝒞2 (middle) and 𝒞3 (right) generated respectively with parameter sets
𝜆 = 1/3, 𝜎 = 7/5, 𝜆 = 4/3, 𝜎 = 9/7 and 𝜆 = 1/7, 𝜎 = 5/3.
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6. Concluding remarks

From the viewpoint of the curve engineering the curvature in (18) is a superposi-
tion of the Bernoulli’s lemniscate [9] and Sturmian spiral [12]. On the other side
Serret states that the curve 𝒮1 coincides with Bernoulli’s lemniscate but looking
at Figure 3 one can see that besides the lemniscate there exists an extra part of
the curve. This discrepancy suggests also a more deep study of the whole family
of Serret’s curves and we hope to report on this subject elsewhere.

Acknowledgment

This research is partially supported by the contract # 35/2009 between the Bul-
garian and Polish Academies of Sciences. The second named author would like to
acknowledge the support from the HRD Programme – # BG051PO001-3.3.04/42,
financed by the European Union through the European Social Fund. The first
named author would like to thank Professor Andreas Müller (Duisburg-Essen Uni-
versity) for providing a copy of Krohs’ thesis.

References
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Harmonic Spheres Conjecture
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Abstract. We discuss the harmonic spheres conjecture, relating the space of
harmonic maps of the Riemann sphere into the loop space of a compact Lie
group 𝐺 with the moduli space of Yang–Mills 𝐺-fields on four-dimensional
Euclidean space.
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Introduction

There is a formal similarity between two classes of objects, arising in theoreti-
cal physics. These are harmonic maps of Riemann surfaces into Kähler manifolds
(known in physics as classical solutions of sigma-model theory) and Yang–Mills
fields. Both harmonic maps and Yang–Mills fields are critical points of some func-
tionals – the energy functional in the case of harmonic maps and Yang–Mills action
in the case of Yang–Mills fields. A similarity between these objects was noticed
long ago by physicists but no mathematical explanation for this phenomena was
known until in 1984 Atiyah found a relation between local minima of the above
functionals. Namely, a theorem of Atiyah [1] establishes a 1–1 correspondence be-
tween the space of based holomorphic maps of the Riemann sphere ℙ1 into the
loop space Ω𝐺 of a compact Lie group 𝐺 and the moduli space of 𝐺-instantons
on four-dimensional Euclidean space ℝ4. The harmonic spheres conjecture is ob-
tained from this formulation by switching from local minima to critical points.
Namely, it asserts that it should exist a natural 1–1 correspondence between the

While preparing this paper the author was partly supported by the RFBR grants 10-01-00178,
11-01-12033-ofi-m-2011, the program of supporting the Leading Scientific Schools (grant NSh-
7675.2010.1), and the Scientific Program of the Russian Academy of Sciences “Nonlinear dynam-
ics”.

This paper is an exposition of a talk presented at Bial̷owieża 2011, based on the author’s paper,
published in “Theor. Math. Physics” 164(2010), 1140–1150.



392 A. Sergeev

space of based harmonic maps of ℙ1 into the loop space Ω𝐺 and the moduli space
of Yang–Mills 𝐺-fields on ℝ4. In our paper we discuss this conjecture and present
an idea of its proof.

The paper is organized in the following way. In Section 1 we introduce the
harmonic spheres, i.e., harmonic maps of the Riemann sphere into Riemannian
manifolds, starting with a simple, but instructive, example of harmonic maps from
the Riemann sphere into itself. In Section 2 the Yang–Mills fields and instantons
are defined in such a way which demonstrates explicitly a similarity between these
objects and harmonic and holomorphic spheres respectively. The Atiyah theorem
and harmonic spheres conjecture depend heavily on twistor interpretations of the
introduced objects presented in Sections 3 and 4. In Section 3 we give a construc-
tion of the twistor bundle over ℝ4 and formulate the theorems of Atiyah–Ward
and Donaldson, yielding twistor interpretations of the moduli space of instantons
on ℝ4. In Section 4 a general definition of the twistor bundle over an arbitrary
even-dimensional Riemannian manifold, due to Atiyah–Hitchin–Singer, is given to-
gether with the twistor interpretation of harmonic spheres, due to Eells–Salamon.
As an application of the latter result we present in Section 5 the twistor inter-
pretation of harmonic spheres in complex Grassmann manifolds. In Section 6 we
switch to harmonic spheres in an infinite-dimensional Kähler manifold, namely, the
loop space of a compact Lie group. We formulate the Atiyah theorem, mentioned
above, and give an idea of its proof. The harmonic spheres conjecture is formu-
lated in Section 7. In Section 9 we present an idea of its proof under additional
assumptions, still to be checked.

1. Harmonic maps

Let us start from a simple model example arising in ferromagnetic theory. We
consider a smooth map 𝜑 : ℝ2 → 𝑆2 and define its energy by the Dirichlet integral

𝐸(𝜑) =
1

2

∫
ℝ2

∣𝑑𝜑∣2𝑑𝑥1𝑑𝑥2.

We look for the maps 𝜑 with 𝐸(𝜑) < ∞ which are extremal with respect to the
energy functional. Because of the finite energy condition it is natural to consider
the maps stabilizing at infinity, i.e., 𝜑(𝑥) → 𝜑0 for ∣𝑥∣ → ∞. Such maps extend
continuously to the compactification 𝑆2 = ℝ2 ∪∞ of ℝ2.

The extended maps 𝜑 : 𝑆2 → 𝑆2 have a topological invariant, called the
degree, which may be computed by the formula

deg𝜑 =

∫
ℝ2

𝜑∗𝜔

where 𝜔 is the normalized volume form on 𝑆2.

It is convenient to introduce the complex coordinate 𝑧 = 𝑥1 + 𝑖𝑥2 on the
definition domain ℝ2 of 𝜑 and stereographic complex coordinate 𝑤 on the target
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Figure 1

sphere 𝑆2 ∖ {∞}. The energy of the map 𝜑 = 𝑤(𝑧) in these coordinates will
rewrite as

𝐸(𝜑) = 2

∫
ℂ

∣∂𝑧𝑤∣2 + ∣∂𝑧𝑤∣2
(1 + ∣𝑤∣2)2 ∣𝑑𝑧 ∧ 𝑑𝑧∣ ,

while the degree of 𝜑 will be given by

deg𝜑 =
1

2𝜋

∫
ℂ

∣∂𝑧𝑤∣2 − ∣∂𝑧𝑤∣2
(1 + ∣𝑤∣2)2 ∣𝑑𝑧 ∧ 𝑑𝑧∣ .

Comparing the last two formulas, we arrive at the inequality

𝐸(𝜑) ≥ 4𝜋∣deg𝜑∣.
The equality here is attained for deg 𝜑 ≥ 0 only on holomorphic functions 𝜑 =
𝑤(𝑧), and for deg 𝜑 < 0 only on anti-holomorphic functions 𝜑 = 𝑤(𝑧). It fol-
lows that these functions realize local minima of the energy. To describe these
minima more explicitly, we set the asymptotic value 𝜑0 equal to 1, using the
SO(3)-invariance of the problem, and assume for definiteness that 𝑘 := deg 𝜑 > 0.
Then all minima of 𝐸(𝜑) with fixed degree 𝑘 will be given by rational functions
of the form

𝜑 = 𝑤(𝑧) =

𝑘∏
𝑗=1

𝑧 − 𝑎𝑗
𝑧 − 𝑏𝑗

where 𝑎𝑗 ∕= 𝑏𝑗 are arbitrary complex numbers.
The smooth maps 𝜑 : ℝ2 → 𝑆2 with 𝐸(𝜑) < ∞, which are critical points

of the energy functional, will be called harmonic. It may be shown that in the
considered case this functional has no other critical points apart from the described
local minima. Identifying 𝑆2 with the Riemann sphere ℙ1, we can reformulate this
result as follows: all harmonic maps 𝜑 : ℙ1 → ℙ1 are given either by holomorphic
or anti-holomorphic maps.



394 A. Sergeev

Generalizing this model example, we shall consider smooth maps 𝜑 : ℙ1 → 𝑁
from the Riemann sphere ℙ1 into oriented Riemannian manifolds 𝑁 .

Definition 1. A smooth map 𝜑 : ℙ1 → 𝑁 is called harmonic if it is a critical point
of the energy functional given by the formula

𝐸(𝜑) =
1

2

∫
ℂ

∣𝑑𝜑∣2𝑁
∣𝑑𝑧 ∧ 𝑑𝑧∣
(1 + ∣𝑧∣2)2

where the modulus of differential 𝑑𝜑 is computed with respect to the Riemannian
metric of 𝑁 .

Harmonic maps 𝜑 : ℙ1 → 𝑁 will be called also harmonic spheres in 𝑁 .
If the manifold 𝑁 is Kähler, i.e., has a complex structure, compatible with the

Riemannian metric, then holomorphic and anti-holomorphic maps 𝜑 : ℙ1 → 𝑁 will
realize again local minima of the energy 𝐸(𝜑). But, in contrast with the considered
case 𝑁 = ℙ1, for Kähler manifolds of dimℂ𝑁 > 1 there exist usually harmonic
maps which are not locally minimal.

2. Instantons and Yang–Mills fields

Let 𝐺 be a compact Lie group and 𝐴 is a 𝐺-connection (gauge potential) on ℝ4

given by the 1-form of type

𝐴 =

4∑
𝜇=1

𝐴𝜇(𝑥)𝑑𝑥𝜇

with smooth coefficients 𝐴𝜇(𝑥), taking values in the Lie algebra 𝔤 of 𝐺. Denote by
𝐹𝐴 the curvature of 𝐴 (gauge field) given by the 2-form

𝐹𝐴 =

4∑
𝜇,𝜈=1

𝐹𝜇𝜈(𝑥)𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈

with coefficients, computed by the formula

𝐹𝜇𝜈 = ∂𝜇𝐴𝜈 − ∂𝜈𝐴𝜇 + [𝐴𝜇, 𝐴𝜈 ]

where ∂𝜇 := ∂/∂𝑥𝜇, 𝜇 = 1, 2, 3, 4, and [⋅, ⋅] denotes the commutator in the Lie
algebra 𝔤.

Define the Yang–Mills action functional by the formula

𝑆(𝐴) =
1

2

∫
ℝ4

tr(𝐹𝐴 ∧ ∗𝐹𝐴)

where ∗ is the Hodge operator on ℝ4, and the trace tr is computed with the help
of a fixed invariant inner product on the Lie algebra 𝔤.

The functional 𝑆(𝐴) is invariant under gauge transformations given by

𝐴 �−→ 𝐴𝑔 := 𝑔−1𝑑𝑔 + 𝑔−1𝐴𝑔
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where 𝑔 : ℝ4 → 𝐺 is a smooth map, and 𝐺 acts on its Lie algebra 𝔤 by the adjoint
representation. It follows from the invariance of 𝑆(𝐴) under gauge transformations
that the functional 𝑆(𝐴) depends in fact only on the class of connection 𝐴 modulo
gauge transformations.

Definition 2. Gauge fields with finite action 𝑆(𝐴) < ∞, which are critical points
of the functional 𝑆(𝐴), are called Yang–Mills fields.

Yang–Mills fields have an integer-valued topological invariant, called the topo-
logical charge, which is given by the formula

𝑘(𝐴) =
1

8𝜋2

∫
ℝ4

tr(𝐹𝐴 ∧ 𝐹𝐴).

If we write down the form 𝐹𝐴 as

𝐹𝐴 = 𝐹+ + 𝐹−
with 𝐹± = 1

2 (∗𝐹𝐴 ± 𝐹𝐴) then the formulae for the action and charge will rewrite
in the following form

𝑆(𝐴) =
1

2

∫
ℝ4

(∥𝐹+∥2 + ∥𝐹−∥2
)
𝑑4𝑥,

𝑘(𝐴) =
1

8𝜋2

∫
ℝ4

(−∥𝐹+∥2 + ∥𝐹−∥2
)
𝑑4𝑥

where the norm ∥ ⋅ ∥2 is computed with the help of invariant inner product on the
Lie algebra 𝔤.

Comparing these two formulae, we arrive at the inequality

𝑆(𝐴) ≥ 4𝜋2∣𝑘(𝐴)∣.
Equality here is attained for 𝑘 > 0 only on solutions of the equation

∗𝐹𝐴 = −𝐹𝐴, (1)

and for 𝑘 < 0 only on solutions of the equation

∗𝐹𝐴 = 𝐹𝐴. (2)

Definition 3. Solutions of equation (1) with finite action 𝑆(𝐴) < ∞ are called
instantons, and solutions of equation (2) with finite action 𝑆(𝐴) < ∞ are called
anti-instantons.

(Anti)instantons realize local minima of the action 𝑆(𝐴), however, there exist
also non-minimal critical points of this functional.

Comparing harmonic maps with Yang-Mills fields, we notice immediately an
evident analogy between:

{(anti)holomorphic maps} ←→ {(anti)instantons}
and

{harmonic maps} ←→ {Yang–Mills fields} .
We shall see later on that this evident analogy has, in fact, a deep meaning.
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3. Twistor interpretation of instantons

We start from the construction of the twistor bundle over the Euclidean space ℝ4

(cf. [2]). For that we compactify ℝ4 to the Euclidean sphere 𝑆4 = ℝ4 ∪ {∞} and
identify 𝑆4 with the quaternion projective line ℍℙ1. Points of ℍℙ1 are given by
pairs [𝑧1 + 𝑧2𝑗, 𝑧

′
1 + 𝑧′2𝑗] of quaternions, not equal to zero simultaneously, which

are defined up to the multiplication from the right by a nonzero quaternion.
The twistor bundle over ℍℙ1 has the form

𝜋 : ℙ3 ℙ1−→ ℍℙ1,

where ℙ3 is the three-dimensional complex projective space, and may be considered
as a complex analogue of the Hopf bundle

𝑆7 𝑆3−→ 𝑆4.

It is defined by the tautological formula

[𝑧1, 𝑧2, 𝑧3, 𝑧4] �−→ [𝑧1 + 𝑧2𝑗, 𝑧3 + 𝑧4𝑗]

where the 4-tuple [𝑧1, 𝑧2, 𝑧3, 𝑧4] of complex numbers is defined up to multiplication
by a nonzero complex number while the pair [𝑧1 + 𝑧2𝑗, 𝑧3 + 𝑧4𝑗] of quaternions
is defined up to multiplication by a nonzero quaternion. The fibre of 𝜋 coincides
with the complex projective line ℙ1.

The restriction of twistor bundle 𝜋 : ℙ3 → 𝑆4 to the Euclidean space ℝ4 =
𝑆4 ∖∞ yields the twistor bundle

𝜋 : ℙ3 ∖ ℙ1
∞ −→ ℝ4 (3)

where the eliminated projective line ℙ1
∞ coincides with the fibre of 𝜋 : ℙ3 → 𝑆4 at

infinity.
According to Atiyah–Hitchin–Singer [3], the fibre of (3) at 𝑥 ∈ ℝ4 can be

identified with the space of complex structures on the tangent space 𝑇𝑥ℝ4 ∼= ℝ4,
compatible with metric and orientation. Smooth sections of (3) may be considered,
respectively, as almost complex structures on ℝ4.

In terms of the twistor bundle 𝜋 : ℙ3 ∖ ℙ1 → ℝ4 the moduli space of 𝐺-
instantons, i.e., the quotient of the space of all 𝐺-instantons on ℝ4 modulo gauge
transformations, can be described by the following Atiyah–Ward theorem:{

moduli space of 𝐺-
instantons on ℝ4

}
←→

⎧⎨⎩(based) equivalence classes of holomor-phic 𝐺ℂ-bundles over ℙ3, holomorphi-
cally trivial on 𝜋-fibers

⎫⎬⎭ .

Here, the term “based” means that the transformations, defining the equivalence
of holomorphic 𝐺ℂ-bundles over ℙ3, should be identical on ℙ1∞.

This result has the following two-dimensional reduction to the space ℙ1 × ℙ1

given by Donaldson theorem:{
moduli space of 𝐺-
instantons on ℝ4

}
←→

⎧⎨⎩(based) equivalence classes of holomor-phic 𝐺ℂ-bundles over ℙ1 × ℙ1, holomor-
phically trivial on the union ℙ1

∞ ∪ ℙ1
∞

⎫⎬⎭ .
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4. Twistor interpretation of harmonic spheres

Using an interpretation of the twistor bundle ℙ3 → 𝑆4, given in Section 3, we
can define a twistor bundle over any even-dimensional oriented Riemannian man-
ifold 𝑁 . By definition, it is the bundle of complex structures on the manifold
𝑁 , compatible with metric and orientation. In other words, 𝜋 : 𝑍 → 𝑁 is the
bundle, associated with the bundle of oriented orthonormal frames on 𝑁 , with
fibre at 𝑥 ∈ 𝑁 given by the space of complex structures 𝐽𝑥 on the tangent space
𝑇𝑥𝑁 , compatible with metric and orientation. This fibre can be identified with
the homogeneous space SO(2𝑛)/U(𝑛) where 2𝑛 is the dimension of 𝑁 . According
to Atiyah–Hitchin–Singer [3], the twistor space 𝑍 can be provided with a natu-
ral almost complex structure, denoted by 𝒥 1. This almost complex structure is
integrable if the manifold 𝑁 is conformally flat.

However, for the description of harmonic spheres in 𝑁 we have to employ
another almost complex structure which is defined in the following way. The Levi-
Civita connection on 𝑁 generates a connection on the twistor bundle 𝜋 : 𝑍 → 𝑁 .
In terms of this connection a new almost complex structure on 𝑍, denoted by 𝒥 2,
is defined as

𝒥 2 =

{
−𝒥 1 along vertical 𝜋-directions ,

𝒥 1 along horizontal 𝜋-directions .

This structure was introduced by Eells–Salamon [4] and is always non integrable.
Harmonic spheres in 𝑁 have the following interpretation in its terms.

Theorem 1 (Eells–Salamon [4]). Projections 𝜑 = 𝜋 ∘ 𝜓

𝑍

𝜋

��
ℙ1

𝜓
���

�
�

�

𝜑
�� 𝑁

of the maps 𝜓 : ℙ1 → 𝑍, holomorphic with respect to the almost complex structure
𝒥 2, are harmonic spheres in 𝑁 .

This theorem allows us to construct harmonic spheres in 𝑁 from almost
holomorphic spheres in the twistor space 𝑍. So the original “real” problem of con-
struction of harmonic spheres in the Riemannian manifold 𝑁 is partially reduced
to a “complex” problem of construction of holomorphic spheres in the almost com-
plex manifold 𝑍. It seems from the first glance that the latter problem is in no
sense easier than the original one, especially taking into account that the almost
complex structure 𝒥 2 is never integrable. And there are examples of non-integrable
almost complex structures which have no non-constant holomorphic functions even
locally. However, we are dealing not with holomorphic functions 𝑓 : 𝑍 → ℂ but
rather with dual objects given by the maps 𝜓 : ℂ → 𝑍, holomorphic with respect
to the almost complex structure 𝒥 2. Such maps are solutions of the ∂̄𝐽 -equation on
ℂ where 𝐽 := 𝜓∗(𝒥 2) is an almost complex structure on ℂ, induced by the map 𝜓
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(which is integrable as any almost complex structure on a Riemann surface). In
this way construction of holomorphic spheres in the space (𝑍,𝒥 2) is reduced to
the solution of a nonlinear Cauchy–Riemann equation on ℂ with respect to the
complex structure 𝐽 . In particular, such an equation has many local solutions.

5. Harmonic spheres in complex Grassmann manifolds

We apply this twistor approach to the problem of construction of harmonic spheres
in the complex Grassmann manifold 𝐺𝑟(ℂ𝑑). Since 𝐺𝑟(ℂ𝑑) is a homogeneous space
of the unitary group U(𝑑), it is natural to take for the twistor bundle in this case
the bundle of complex structures on 𝐺𝑟(ℂ𝑑) which are invariant under the action
of U(𝑑). Such a bundle coincides with a flag bundle over 𝐺𝑟(ℂ𝑑) defined below.

Definition 4. The flag manifold 𝐹 r(ℂ𝑑) in ℂ𝑑 of type r = (𝑟1, . . . , 𝑟𝑛) with 𝑑 =
𝑟1 + ⋅ ⋅ ⋅ + 𝑟𝑛 consists of the flags 𝒲 = (𝑊1, . . . ,𝑊𝑛), i.e., nested sequences of
complex subspaces

𝑊1 ⊂ ⋅ ⋅ ⋅ ⊂ 𝑊𝑛 = ℂ𝑑

such that the dimension of the subspace 𝑉1 := 𝑊1 is equal to 𝑟1 and dimensions
of the subspaces 𝑉𝑖 :=𝑊𝑖 ⊖𝑊𝑖−1 are equal to 𝑟𝑖 for 1 < 𝑖 ≤ 𝑛.

The flag manifold 𝐹 r(ℂ𝑑) admits the following description as a homogeneous
space of the unitary group U(𝑑):

𝐹 r(ℂ
𝑑) = U(𝑑)/U(𝑟1)× ⋅ ⋅ ⋅ ×U(𝑟𝑛).

It is a compact complex manifold which has an U(𝑑)-invariant complex structure,
denoted again by 𝒥 1.

In order to construct the twistor flag bundle over the Grassmann manifold
𝐺𝑟(ℂ𝑑) we fix an ordered subset 𝜎 ⊂ {1, . . . , 𝑛} such that∑𝑖∈𝜎 𝑟𝑖 = 𝑟, and define
the flag bundle

𝜋𝜎 : 𝐹 r(ℂ
𝑑) −→ 𝐺𝑟(ℂ

𝑑)

by setting

𝜋𝜎 :𝒲 = (𝑊1, . . . ,𝑊𝑛) �−→ 𝑊 :=
⊕
𝑖∈𝜎

𝑉𝑖.

As in Section 4, we can provide the flag bundle 𝜋𝜎 with an almost complex structure
𝒥 2
𝜎 so that the following analogue of Theorem 1 will hold.

Theorem 2 (Burstall–Salamon [5]). The flag bundle

𝜋𝜎 : (𝐹 r(ℂ
𝑑),𝒥 2

𝜎 ) −→ 𝐺𝑟(ℂ
𝑑),

provided with an almost complex structure 𝒥 2
𝜎 , is a twistor bundle, i.e., the projec-

tion 𝜑 = 𝜋𝜎 ∘ 𝜓 of any almost holomorphic sphere 𝜓 : ℙ1 → 𝐹 r(ℂ𝑑) to 𝐺𝑟(ℂ𝑑) is
a harmonic sphere 𝜑 : ℙ1 → 𝐺𝑟(ℂ𝑑) in 𝐺𝑟(ℂ𝑑). Moreover, the converse assertion
is also true: any harmonic sphere 𝜑 : ℙ1 → 𝐺𝑟(ℂ𝑑) in 𝐺𝑟(ℂ𝑑) may be obtained in
this way from some flag bundle 𝜋𝜎 : 𝐹 r(ℂ𝑑)→ 𝐺𝑟(ℂ𝑑).
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So in this case the problem of construction of harmonic spheres in 𝐺𝑟(ℂ𝑑) is
completely reduced to the problem of construction of almost holomorphic spheres
in flag bundles. Using this reduction, it was shown in [5] that any harmonic sphere
in 𝐺𝑟(ℂ𝑑) may be obtained by a Bäcklund-type transform combining holomorphic
and anti-holomorphic spheres.

6. Atiyah theorem

We switch now to the case when our target manifold 𝑁 is an infinite-dimensional
Kähler manifold, namely the loop space of a compact Lie group.

Definition 5. The loop space of a compact Lie group 𝐺 is

Ω𝐺 := 𝐿𝐺/𝐺

where 𝐿𝐺 = 𝐶∞(𝑆1, 𝐺) is the group of smooth loops in the group 𝐺 and 𝐺 in the
denominator is identified with the subgroup of constant maps 𝑆1 → 𝑔0 ∈ 𝐺.

The space Ω𝐺 is a Kähler Frechet manifold which has an 𝐿𝐺-invariant com-
plex structure. This structure is induced from the representation of Ω𝐺 as the
quotient of the complex loop group 𝐿𝐺ℂ:

Ω𝐺 = 𝐿𝐺ℂ/𝐿+𝐺ℂ

where 𝐺ℂ is the complexification of 𝐺 and the subgroup 𝐿+𝐺ℂ consists of the
loops 𝛾 ∈ 𝐿𝐺ℂ which can be smoothly extended to holomorphic maps of the unit
disc Δ into 𝐺ℂ.

To formulate the Atiyah theorem, we recall the interpretation of the moduli
space of 𝐺-instantons given by Donaldson theorem:{

moduli space of 𝐺-
instantons on ℝ4

}
←→

⎧⎨⎩(based) equivalence classes of holomor-phic 𝐺ℂ-bundles over ℙ1 × ℙ1, holomor-
phically trivial on the union ℙ1

∞ ∪ ℙ1
∞

⎫⎬⎭ .

The Atiyah theorem asserts that the right-hand side of this correspondence may
be identified with the space of holomorphic spheres in Ω𝐺. More precisely, there
is a 1–1 correspondence between:⎧⎨⎩(based) equivalence classes of holomor-phic𝐺ℂ-bundles over ℙ1×ℙ1, holomor-

phically trivial on the union ℙ1
∞ ∪ ℙ1

∞

⎫⎬⎭←→

⎧⎨⎩
based holomorphic
spheres 𝑓 : ℙ1 → Ω𝐺,
sending ∞ into the
origin of Ω𝐺

⎫⎬⎭ .

The proof of Atiyah theorem is based on the following construction.
Consider the restriction of a holomorphic 𝐺ℂ-bundle over ℙ1 × ℙ1 to a pro-

jective line ℙ1
𝑧 which is parallel to 𝑃 1∞ and goes through the point ℙ1 × {𝑧}. It is

determined by the transition function

𝑓𝑧 : 𝑆
1 −→ 𝐺ℂ
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Figure 2

in the covering ℙ1
𝑧 = Δ+ ∪Δ− by lower and upper hemispheres of the sphere ℙ1

𝑧

and 𝑓𝑧 is holomorphic in a neighborhood of the equator 𝑆1 = Δ+ ∩ Δ−. Hence,
𝑓𝑧 ∈ 𝐿𝐺ℂ and we obtain a composite map

𝑓 : ℙ1 ∋ 𝑧 �−→ 𝑓𝑧 ∈ 𝐿𝐺ℂ �−→ 𝑓(𝑧) ∈ Ω𝐺 = 𝐿𝐺ℂ/𝐿+𝐺ℂ.

This map is holomorphic and based if and only if the original 𝐺ℂ-bundle over
ℙ1 × ℙ1 is holomorphic and trivial on the union ℙ1∞ ∪ ℙ1∞.

7. Harmonic spheres conjecture

The Donaldson and Atiyah theorems imply that there is a 1–1 correspondence
between: {

moduli space of 𝐺-
instantons on ℝ4

}
←→

{
based holomorphic spheres
𝑓 : ℙ1 → Ω𝐺

}
.

So we have a correspondence between local minima of two functionals, which were
introduced before, namely{

Yang–Mills action, defined
on 𝐺-fields on ℝ4

}
and

{
energy, defined on smooth
spheres in Ω𝐺

}
whose local minima are given respectively by{

(anti)instantons on ℝ4
}
and {(anti)holomorphic spheres in Ω𝐺} .

Replacing local minima by critical points of these functionals, we arrive at har-
monic spheres conjecture asserting that it should exist a 1–1 correspondence be-
tween: {

moduli space of Yang–Mills
𝐺-fields on ℝ4

}
←→

{
based harmonic spheres
𝜑 : ℙ1 → Ω𝐺

}
.

This replacement of local minima by the critical points can be interpreted as
a “realification” procedure. Indeed, if we replace smooth spheres in the right-hand
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side of the diagram by smooth functions 𝑓 : ℂ → ℂ then the above procedure will
reduce to the replacement of holomorphic and anti-holomorphic functions by ar-
bitrary harmonic functions (which can be represented as sums of holomorphic and
anti-holomorphic functions). In the case of smooth spheres in Ω𝐺 this switching
from holomorphic and anti-holomorphic spheres to harmonic ones becomes non-
trivial due to the non-linear character of Euler–Lagrange equations for the energy.

Unfortunately, a direct generalization of Atiyah–Donaldson proof to the har-
monic case is not possible since the proof of Donaldson theorem, using the monad
method, is purely holomorphic and does not extend directly to the harmonic case.
However, one can try to reduce the proof of harmonic spheres conjecture to the
holomorphic setting by “pulling-up” the both sides of the correspondence in the
conjecture to the associated twistor spaces. The problem is that, while having a
good description of the twistor space of harmonic spheres in Ω𝐺 (presented in the
next Section), we do not know such a description for the moduli space of Yang–
Mills fields on ℝ4. So, apart from the proof of the harmonic spheres conjecture,
we are also interested in obtaining the twistor description of this moduli space.

8. Twistor bundle over the loop space

For the construction of the twistor bundle over the loop space Ω𝐺 we first embed
the space Ω𝐺 into an infinite-dimensional Grassmannian, and then construct the
twistor bundle over this Grassmannian by analogy with the finite-dimensional case.
The role of an infinite-dimensional Grassmannian will be played by the Hilbert–
Schmidt Grassmannian of a complex Hilbert space.

Let 𝐻 be a complex Hilbert space, having for its model the space 𝐿2
0(𝑆

1,ℂ)
of square integrable functions on the circle with zero average. Suppose that 𝐻 has
a polarization, i.e., a decomposition

𝐻 = 𝐻+ ⊕𝐻−

into the direct orthogonal sum of closed infinite-dimensional subspaces. In the case
of 𝐻 = 𝐿2

0(𝑆
1,ℂ) one can take for such subspaces

𝐻± = {𝛾 ∈ 𝐻 : 𝛾 =
∑
±𝑘>0

𝛾𝑘𝑒
𝑖𝑘𝜃}.

Definition 6. The Hilbert–Schmidt Grassmannian GrHS(𝐻) consists of closed sub-
spaces 𝑊 ⊂ 𝐻 such that the orthogonal projection 𝜋+ : 𝑊 → 𝐻+ is Fredholm
and the orthogonal projection 𝜋− :𝑊 → 𝐻− is Hilbert–Schmidt.

For a given subspace 𝑊 ∈ GrHS(𝐻) the Fredholm index of the projection
𝜋+ :𝑊 → 𝐻+ is called the virtual dimension of the subspace 𝑊 .

The Hilbert–Schmidt Grassmannian GrHS(𝐻) admits a homogeneous repre-
sentation of the form

GrHS(𝐻) =
UHS(𝐻)

U(𝐻+)×U(𝐻−)
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where the unitary Hilbert–Schmidt group UHS(𝐻) is

UHS(𝐻) = {𝐴 ∈ U(𝐻) : 𝜋− ∘𝐴 ∘ 𝜋+ is Hilbert–Schmidt}.
The Grassmannian GrHS(𝐻) is a Hilbert Kähler manifold, consisting of a

countable number of connected components of a fixed virtual dimension:

GrHS(𝐻) =
∪
𝑑

𝐺𝑑(𝐻) where 𝐺𝑑(𝐻) = {𝑊 ∈ GrHS(𝐻) : virt.dim𝑊 = 𝑑}.

The virtual flag manifold 𝐹 𝑑
r(𝐻) is defined by analogy with the finite-dim-

ensional case.

Definition 7. The virtual flag manifold 𝐹 𝑑
r(𝐻) in 𝐻 of type r = (𝑟1, . . . , 𝑟𝑛) with

𝑑 = 𝑟1 + ⋅ ⋅ ⋅ + 𝑟𝑛 consists of flags 𝒲 = (𝑊1, . . . ,𝑊𝑛), i.e., nested sequences of
complex subspaces

𝑊1 ⊂ ⋅ ⋅ ⋅ ⊂ 𝑊𝑛 ⊂ 𝐻

such that the virtual dimension of the subspace 𝑉1 := 𝑊1 is equal to 𝑟1, and
dimensions of subspaces 𝑉𝑖 :=𝑊𝑖 ⊖𝑊𝑖−1 are equal to 𝑟𝑖 for 1 < 𝑖 ≤ 𝑛.

For the construction of the twistor flag bundle over the Grassmann manifold
𝐺𝑟(𝐻) we fix again an ordered subset 𝜎 ⊂ {1, . . . , 𝑛} such that ∑𝑖∈𝜎 𝑟𝑖 = 𝑟, and
define the virtual flag bundle

𝜋𝜎 : 𝐹
𝑑
r(𝐻) −→ 𝐺𝑟(𝐻),

by setting

𝜋𝜎 :𝒲 = (𝑊1, . . . ,𝑊𝑛) �−→ 𝑊 :=
⊕
𝑖∈𝜎

𝑉𝑖.

As in the finite-dimensional case, the virtual flag bundle 𝜋𝜎 can be provided with
an almost complex structure 𝒥 2

𝜎 so that the following analogue of Theorem 2 will
hold.

Theorem 3. The virtual flag bundle

𝜋𝜎 : (𝐹
𝑑
r(𝐻),𝒥 2

𝜎 ) −→ 𝐺𝑟(𝐻),

provided with the almost complex structure 𝒥 2
𝜎 , is a twistor bundle, i.e., the pro-

jection 𝜑 = 𝜋𝜎 ∘ 𝜓 of any almost holomorphic sphere 𝜓 : ℙ1 → 𝐹 𝑑
r(𝐻) to 𝐺𝑟(𝐻)

is a harmonic sphere 𝜑 : ℙ1 → 𝐺𝑟(𝐻) in 𝐺𝑟(𝐻).

We think that the second part of Theorem 2, namely, the conversion of the
above theorem is also true in this situation.

We construct now an isometric embedding of the loop space into a Hilbert–
Schmidt Grassmannian. We suppose that the compact Lie group 𝐺 is realized as
a subgroup of the unitary group U(𝑁) and construct an embedding of Ω𝐺 into
the Grassmannian GrHS(𝐻) where we take for the Hilbert space 𝐻 the space
𝐿2

0(𝑆
1,ℂ𝑁 ).
We construct first an embedding of the loop group 𝐿𝐺 into the unitary

Hilbert–Schmidt group UHS(𝐻). For that we associate with a loop 𝛾, belonging
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to the space 𝐿𝐺 = 𝐶∞(𝑆1, 𝐺) ⊂ 𝐶∞(𝑆1,U(𝑁)), a multiplication operator 𝑀𝛾 in
the Hilbert space 𝐻 = 𝐿2

0(𝑆
1,ℂ𝑁 ), acting by the formula:

ℎ ∈ 𝐻 = 𝐿2
0(𝑆

1,ℂ𝑁 ) �−→ 𝑀𝛾ℎ(𝑧) := 𝛾(𝑧)ℎ(𝑧), 𝑧 ∈ 𝑆1.

In other words, 𝑀𝛾ℎ is a vector function from 𝐻 = 𝐿2
0(𝑆

1,ℂ𝑁 ), obtained by
the pointwise application of the matrix function 𝛾 ∈ 𝐶∞(𝑆1,U(𝑁)) to the vector
function ℎ ∈ 𝐻 = 𝐿2

0(𝑆
1,ℂ𝑁 ). It is easy to check (cf. [6], Sec. 6.3) that the operator

𝑀𝛾 belongs to the unitary group UHS(𝐻) if 𝛾 ∈ 𝐶∞(𝑆1,U(𝑁)).
The embedding 𝐿𝐺 ↪→ UHS(𝐻) generates an isometric embedding

Ω𝐺 −→ GrHS(𝐻).

9. Back to harmonic spheres conjecture

Using the isometric embedding Ω𝐺 ↪→ GrHS(𝐻), defined in the last section, we
can consider a harmonic map 𝜑 : ℙ1 → Ω𝐺 as taking values in the Grassman-
nian GrHS(𝐻), hence, in one of the connected components 𝐺𝑟(𝐻) of the manifold
GrHS(𝐻). To describe harmonic maps 𝜑 : ℙ1 → 𝐺𝑟(𝐻), we can proceed by analogy
with the finite-dimensional case.

We formulate first the harmonic analogue of Atiyah theorem which asserts
that there is a 1–1 correspondence between:⎧⎨⎩(based) equivalence classes of har-monic 𝐺ℂ-bundles over ℙ1 ×ℙ1, triv-

ial on the union ℙ1∞ ∪ ℙ1∞

⎫⎬⎭←→
{
based harmonic spheres
𝑓 : ℙ1 → Ω𝐺, sending ∞
into the origin

}
.

To construct a harmonic 𝐺ℂ-bundle over ℙ1 × ℙ1, we proceed as in the holo-
morphic case. Suppose that a harmonic sphere 𝜑 : ℙ1 → Ω𝐺 ⊂ GrHS(𝐻) is the
projection of some harmonic sphere �̃� : ℙ1 → 𝐿𝐺ℂ so that we have the following
commutative diagram

𝐿𝐺ℂ

pr

��
ℙ1

�̃�
����������

𝜑
�� Ω𝐺 .

Then 𝜑(𝑧) ∈ 𝐿𝐺ℂ may be considered as the transition function for some harmonic
bundle over ℙ1

𝑧 so that we have the following composite map

{𝜑(𝑧) ∈ Ω𝐺} �−→ {𝜑(𝑧) ∈ 𝐿𝐺ℂ
} �−→ {transition function of a

harmonic bundle over ℙ1
𝑧

}
.

The obtained bundle over ℙ1
𝑧 is the restriction of a harmonic bundle over ℙ

1 × ℙ1,
associated with the original harmonic map 𝜑 : ℙ1 → Ω𝐺.

In terms of Grassmannian GrHS(𝐻) the image 𝜑(𝑧) ∈ Ω𝐺 ⊂ GrHS(𝐻) is
identified with the subspace

𝑊𝑧 :=𝑀𝜑(𝑧)𝐻+

where 𝑀 is the multiplication operator, introduced at the end of Section 7.
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The twistor interpretation of this construction has the following form. A har-
monic sphere in Ω𝐺 may be considered as a harmonic sphere in the Grassmannian
𝐺𝑟(𝐻) ⊂ GrHS(𝐻), consisting of subspaces 𝑊 ⊂ 𝐻 of some fixed virtual dimen-
sion 𝑟. Assume that the harmonic sphere 𝜑 : ℙ1 → 𝐺𝑟(𝐻) is the projection of some
𝒥 2
𝜎 -holomorphic sphere 𝜓 : ℙ1 → 𝐹 𝑑

r(𝐻) so that there is a commutative diagram

𝐹 𝑑
r(𝐻)

𝜋𝜎

��
ℙ1

𝜓
�����������

𝜑
�� 𝐺𝑟(𝐻) .

The image 𝜓(𝑧) = (𝜓1(𝑧), . . . , 𝜓𝑛(𝑧)) of a point 𝑧 ∈ ℙ1 under the map 𝜓 : ℙ1 →
𝐹 𝑑

r(𝐻) is a virtual flag 𝒲𝑧 = (𝑊
1
𝑧 , . . . ,𝑊

𝑛
𝑧 ). Assume that every map 𝜓𝑖 : ℙ1 →

𝐺𝑟𝑖(𝐻) is the projection of a map 𝜓𝑖 : ℙ1 → 𝐿𝐺ℂ so that

𝑊 𝑖
𝑧 =𝑀𝜓𝑖

𝐻+.

Each of the maps 𝜓𝑖 can be considered as the transition function of some bundle
over ℙ1

𝑧. It follows from the description of the almost complex structure 𝒥 2
𝜎 on

the twistor bundle 𝜋𝜎 that the maps 𝜓𝑖 determine either holomorphic, or anti-
holomorphic bundles over ℙ1 × ℙ1. So by Donaldson theorem such bundles corre-
spond either to instantons, or anti-instantons on ℝ4. This may be considered as
a twistor construction of the moduli space of Yang–Mills fields on ℝ4, associating
with such a field a finite collection of instantons and anti-instantons on ℝ4.
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Abstract. Given a Lax system of equations with the spectral parameter on a
Riemann surface we construct a projective unitary representation of the Lie
algebra of Hamiltonian vector fields by Knizhnik-Zamolodchikov operators.
This provides a prequantization of the Lax system. The representation op-
erators of Poisson commuting Hamiltonians of the Lax system projectively
commute. If Hamiltonians depend only on the action variables then the cor-
responding operators commute
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1. Introduction

In [1] I. Krichever proposed a new notion of Lax operator with a spectral param-
eter on a Riemann surface. He has given a general and transparent treatment of
Hamiltonian theory of the corresponding Lax equations. This work has called into
being the notion of Lax operator algebras [2] and consequent generalization of the
Krichever’s approach on Lax operators taking values in the classical Lie algebras
over ℂ [3]. The corresponding class of Lax integrable systems contains Hitchin
systems and their analog for pointed Riemann surfaces, integrable gyroscopes and
similar examples.

In the present paper, given a Lax integrable system of the just mentioned
type, we construct a unitary projective representation of the corresponding Lie
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algebra of Hamiltonian vector fields. For the Lax equations in question, we pro-
pose a way to represent Hamiltonian vector fields by covariant derivatives with re-
spect to the Knizhnik-Zamolodchikov connection. It is conventional that Knizhnik-
Zamolodchikov-Bernard operators provide a quantization of Calogero-Moser and
Hitchin second-order Hamiltonians. Unexpectedly, we have observed such relation
for all Hamiltonians, and, in a sense, for all observables of the Hamiltonian system
given by the Lax equations in question.

The problem of a correspondence between an integrable system and a con-
nection on a certain moduli space first has been addressed in the classical work
[4] due to N. Hitchin. Two problems of N. Hitchin’s approach are noted there:
taking into account the marked points on Riemann surfaces and unitarity of the
connection. It was pointed out that the Knizhnik-Zamolodchikov connection could
be a solution of the first problem. As it is shown below, it resolves also the second
one.

A large number of works is devoted to quantum integrable systems. Due to the
space limitations we are not able to give all references. We restrict ourselves here
with a (non complete) list of authors having contributed to the subject: B. Feigin
and E. Frenkel, A. Beilinson and V. Drinfeld, A.P. Veselov, A.N. Sergeev, G. Felder,
M.V. Feigin. The idea of quantization of Hitchin systems by means Knizhnik-
Zamolodchikov connection was also addressed, or at least mentioned, many times
in the theoretical physics literature (D. Ivanov, G. Felder and Ch. Wieczerkowski,
M.A. Olshanetsky and A.M. Levin) but only the second-order Hamiltonians were
involved.

The main results of the article are presented in Sections 3, 4. A review of
the needed previous results is given in Section 2. We refer to [5] for more details,
proofs, and missing references.

2. Phase space and Hamiltonians of a Lax integrable system

An integrable system considered here is given by the following data: a complex
Riemann surface Σ, a classical Lie algebra 𝔤 over ℂ, fixed points 𝑃1, . . . , 𝑃𝑁 , 𝑃∞

∈ Σ (𝑁 ∈ ℤ+), a positive divisor 𝐷 =
𝑁∑
𝑖=1

𝑚𝑖𝑃𝑖 +𝑚∞𝑃∞, points 𝛾1, . . . , 𝛾𝐾 ∈ Σ
(𝐾 ∈ ℤ+), and vectors 𝛼1, . . . , 𝛼𝐾 ∈ ℂ𝑛 associated with 𝛾’s. It is assumed that
𝛼’s are given up to a common right action of the classical group 𝐺 corresponding
to 𝔤. The last two items (𝛾’s and 𝛼’s) are joined under the name Tyurin data [6].

2.1. Lax operators on Riemann surfaces

Let {𝛼} = {𝛼𝑖}, {𝛾} = {𝛾𝑖}, {𝜅} = {𝜅𝑖 ∈ ℂ}, {𝛽} = {𝛽𝑖 ∈ ℂ𝑛}, where 𝑖 =
1, . . . ,𝐾. Below, we avoid indices using 𝛼 instead 𝛼𝑖, etc.

Consider a function 𝐿(𝑃, {𝛼}, {𝛽}, {𝛾}, {𝜅}) (𝑃 ∈ Σ) such that 𝐿 is mero-
morphic on Σ, has simple or double (depending on 𝔤) poles at 𝛾’s, may have poles
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at 𝑃𝑖’s, is holomorphic elsewhere, and at every 𝛾 is of the form

𝐿(𝑧) =
𝐿−2

(𝑧 − 𝑧𝛾)2
+

𝐿−1

(𝑧 − 𝑧𝛾)
+ 𝐿0 + 𝐿1(𝑧 − 𝑧𝛾) +𝑂((𝑧 − 𝑧𝛾)

2)

where 𝑧 is a local coordinate at 𝛾, 𝑧𝛾 = 𝑧(𝛾), and the following relations hold:

𝐿−2 = 𝜈𝛼𝛼𝑡𝜎, 𝐿−1 = (𝛼𝛽
𝑡 + 𝜀𝛽𝛼𝑡)𝜎, 𝛽𝑡𝜎𝛼 = 0, 𝐿0𝛼 = 𝜅𝛼 (1)

where 𝛼 is associated with 𝛾, 𝛽 is arbitrary, 𝜈 ∈ ℂ, 𝜎 is a 𝑛× 𝑛 matrix. Besides,
𝛼𝑡𝛼 = 0 for 𝔤 = 𝔰𝔬(𝑛), and 𝛼𝑡𝜎𝐿1𝛼 = 0 for 𝔤 = 𝔰𝔭(2𝑛). 𝐿 is called a Lax operator
with a spectral parameter on the Riemann surface Σ. The 𝜈, 𝜀, 𝜎 in (1) depend
on 𝔤 as follows: 𝜈 ≡ 0, 𝜀 = 0, 𝜎 = 𝑖𝑑 for 𝔤 = 𝔤𝔩(𝑛), 𝔰𝔩(𝑛); 𝜈 ≡ 0, 𝜀 = −1, 𝜎 = 𝑖𝑑
for 𝔤 = 𝔰𝔬(𝑛); 𝜀 = 1, and 𝜎 is a matrix of the symplectic form for 𝔤 = 𝔰𝔭(2𝑛) for
𝔤 = 𝔰𝔭(2𝑛).

2.2. Lax operator algebras

Theorem 1 (Lie algebra structure, [2]). For fixed Tyurin data the space of Lax oper-
ators is closed with respect to the point-wise commutator [𝐿,𝐿′](𝑃 ) = [𝐿(𝑃 ), 𝐿′(𝑃 )]
(𝑃 ∈ Σ) (in the case 𝔤 = 𝔤𝔩(𝑛) also with respect to the point-wise multiplication).

It is called Lax operator algebra and denoted by 𝔤.
Let 𝑁 = 1, 𝔤 be simple. Then the following two theorems take place.

Theorem 2 (almost graded structure, [2]). There exist subspaces 𝔤𝑚 ⊂ 𝔤 such that

(1) 𝔤 =

∞⊕
m=−∞

𝔤m; (2) dim 𝔤m = dim 𝔤; (3) [𝔤k, 𝔤l] ⊆
k+l+g⊕
m=k+l

𝔤m.

Theorem 3. 𝔤 has only one almost graded central extension, up to equivalence [7].
It is given by the cocycle 𝛾(𝐿,𝐿′) = − res𝑃∞ tr(𝐿𝑑𝐿′− [𝐿,𝐿′]𝜃) where 𝜃 is a certain
1-form [2].

Theorem 2 and Theorem 3 hold true, with certain modifications, for a reduc-
tive 𝔤 (see [2] for 𝔤 = 𝔤𝔩(𝑛)), and for 𝑁 > 1 [8].

2.3. Lax equations

Let 𝑀 =𝑀(𝑧, {𝛼}, {𝛽}, {𝛾}, {𝜅}) be defined by the same constrains as 𝐿, exclud-
ing 𝛽𝑡𝜎𝛼 = 0, and 𝐿0𝛼 = 𝜅𝛼, namely

𝑀 =
𝑀−2

(𝑧 − 𝑧𝛾)2
+

𝑀−1

𝑧 − 𝑧𝛾
+𝑀0 +𝑀1(𝑧 − 𝑧𝛾) +𝑂((𝑧 − 𝑧𝛾)

2)

where
𝑀−2 = 𝜆𝛼𝛼𝑡𝜎, 𝑀−1 = (𝛼𝜇

𝑡 + 𝜀𝜇𝛼𝑡)𝜎 (2)

𝑀 also takes values in 𝔤, 𝜆 ∈ ℂ, 𝜇 ∈ ℂ𝑛.
For varying Tyurin data, let us consider the classical dynamics system having

{𝛼}, {𝛽}, {𝛾}, {𝜅}, and the main parts of 𝐿 at {𝑃𝑖∣𝑖 = 1, . . . , 𝑁} as dynamical
variables. The equations of motion are given by the relation

�̇� = [𝐿,𝑀 ] (3)
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called Lax equation. In particular, the equations of motion of Tyurin data are as
follows:

�̇�𝛾 = −𝜇𝑡𝜎𝛼, �̇� = −𝑀0𝛼+ 𝜅𝛼.

For a positive divisor 𝐷 =
∑

𝑚𝑖𝑃𝑖 (𝑖 = 1, . . . , 𝑁,∞) such that supp D ∩ {𝛾} = ∅,
let ℒ𝐷 = {𝐿 ∈ 𝔤 ∣(𝐿) +𝐷 ≥ 0 outside 𝛾’s}. Under a certain (effective) condition
[1, 3] the Lax equation defines a flow on ℒ𝐷.

2.4. Examples

1) 𝑔 = 0, 𝛼 = 0 (i.e., Σ = ℂ𝑃 1, the bundle is trivial), 𝑃1 = 0, 𝑃2 = ∞. Then
𝔤 = 𝔤 ⊗ ℂ[𝑧, 𝑧−1] is a loop algebra, (3) is a conventional Lax equation with
rational spectral parameter:

𝐿𝑡 = [𝐿,𝑀 ], 𝐿,𝑀 ∈ 𝔤⊗ ℂ[𝑧−1, 𝑧), 𝑧 ∈ ℂ.

The majority of known integrable cases of motion and hydrodynamics of a
solid body belong to this class.

2) Elliptic curves: the above construction yields classical elliptic Calogero-Moser
systems [3].

3) Arbitrary genus: for 𝐷 ∈ 𝒦, 𝔤 = 𝔰𝔩(𝑛) the construction gives the series 𝐴𝑛

Hitchin system [1]. The similar should hold true for 𝔤 = 𝔰𝔬(𝑛), 𝔰𝔭(2𝑛).

2.5. Hierarchy of commuting flows, and Hamiltonians

Theorem 4 ([1, 3]). Given a generic 𝐿 and effective divisor 𝐷 =
∑

𝑚𝑖𝑃𝑖 (𝑖 =
1, . . . , 𝑁,∞), there is a family of 𝑀 -operators 𝑀𝑎 = 𝑀𝑎(𝐿) (𝑎 = (𝑃𝑖, 𝑛,𝑚),
𝑛 > 0, 𝑚 > −𝑚𝑖), unique up to normalization, such that outside the 𝛾-points 𝑀𝑎

has a pole at the point 𝑃𝑖 only, and in the neighborhood of 𝑃𝑖

𝑀𝑎(𝑤𝑖) = 𝑤−𝑚𝑖 𝐿𝑛(𝑤𝑖) +𝑂(1),

The equations ∂𝑎𝐿 = [𝐿,𝑀𝑎] (∂𝑎 = ∂/∂𝑡𝑎) define a family of commuting flows on
an open subset of ℒ𝐷.

Given 𝐿, define matrices Ψ,𝐾 (where 𝐾 is diagonal) by Ψ𝐿 = 𝐾Ψ. Let
Ω = tr(𝛿Ψ ∧ 𝛿𝐿 ⋅Ψ−1 − 𝛿𝐾 ∧ 𝛿Ψ ⋅ Ψ−1) where 𝛿 is the differential in 𝛼, 𝛽 etc., 𝜛
be a holomorphic 1-form on Σ, and 2𝜔 = − (∑ res𝛾𝑠 Ω𝜛 +∑ res𝑃𝑖 Ω𝜛). Assume
𝜛 to be non-vanishing at the 𝛾-points. Then 𝜔 is a symplectic form on a certain
closed invariant submanifold 𝒫𝐷 ⊂ ℒ𝐷 [1, 3].

Theorem 5 ([1, 3]). The equations ∂𝑎𝐿 = [𝐿,𝑀𝑎] are Hamiltonian with respect
to the symplectic structure on 𝒫𝐷 given by 𝜔, and the Hamiltonians given by
𝐻𝑎 = −(𝑛+ 1)−1 res𝑃𝑖 𝑡𝑟(𝑤

−𝑚
𝑖 𝐿𝑛+1)𝑑𝑤𝑖.

Example (Further details of the example in Subsection 2.4). Let 𝔤 = 𝔰𝔩(𝑛), 𝐷 be
the divisor of 𝜛. Then ℒ𝐷 ≃ 𝑇 ∗(ℳ0) where ℳ0 is an open subset of the moduli
space of holomorphic vector bundles on Σ, 𝐻𝑎 are Hitchin Hamiltonians.
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3. Conformal field theory related to a Lax integrable system

By conformal field theory we mean a family of Riemann surfaces, a finite rank
bundle (of conformal blocks) on this family, and a projectively flat connection
(Knizhnik-Zamolodchikov connection) on this bundle. Given a Lax integrable sys-
tem, we take the family of spectral curves over its phase space 𝒫𝐷 for this purpose.
In this section, following [9, 10], and references there, we prepare ingredients for the
construction of the analog of Knizhnik-Zamolodchikov connection on this family.

3.1. Spectral curves, and the Kodaira–Spencer cocycle

For every 𝐿 ∈ 𝒫𝐷 (all arguments of 𝐿 are fixed except for 𝑧) the curve Σ𝐿 given
by the equation det(𝐿(𝑧) − 𝜆) = 0 is called a spectral curve of 𝐿. It is a 𝑛-fold
branch covering of Σ.

Given an arbitrary Riemann surface with marked points, the Lie algebra of
meromorphic vector fields on it holomorphic outside the marked points is called
Krichever-Novikov vector field algebra. Let 𝒱𝐿 be the Krichever-Novikov vector
field algebra on Σ𝐿, with the preimages of 𝑃1, . . . , 𝑃𝑁 , 𝑃∞ as marked points. 𝒱𝐿
is almost graded in the same sense as in Theorem 2.

Our next goal is to define a map 𝜌 : T𝐿𝒫𝐷 → 𝒱𝐿. Fix a certain point,
say 𝑃∞ ∈ Σ𝐿, and think of 𝑃∞ as of analytically depending on 𝐿. Choose a
local family of transition functions 𝑑𝐿 giving the complex structure on Σ𝐿 and
analytically depending on 𝐿. Let us take 𝑋 ∈ T𝐿𝒫𝐷 and a curve 𝐿𝑋(𝑡) in 𝒫𝐷

with the initial point 𝐿 and the tangent vector 𝑋 at 𝐿. By definition

𝜌(𝑋) = 𝑑−1
𝐿 ⋅ ∂𝑋𝑑𝐿. (4)

We consider 𝜌(𝑋) as a local vector field on the Riemann surface Σ𝐿. Summarizing
the results of [10, Sect. 5.1] we obtain

Proposition 6. There exist 𝑒 ∈ 𝒱𝐿 such that in the neighborhood of 𝑃∞ 𝜌(𝑋) = 𝑒.

The vector field 𝑒 is defined modulo 𝒱(1)
𝐿 ⊕𝒱reg

𝐿 where 𝒱(1)
𝐿 is the sum of subspaces

of non negative degree in 𝒱𝐿, and 𝒱reg
𝐿 ⊂ 𝒱𝐿 consists of vector fields vanishing at

𝑃∞. Both 𝒱(1)
𝐿 and 𝒱reg

𝐿 are Lie subalgebras.

Below, we always regard 𝜌(𝑋) as an element of 𝒱reg
𝐿 ∖𝒱𝐿/𝒱(1)

𝐿 .
As a local vector field in the annulus centered at 𝑃∞, 𝜌(𝑋) gives a certain

Cech 1-cocycle of the Riemann surface Σ with coefficients in the tangent sheaf
called Kodaira-Spencer cocycle of 𝑋 . Its cohomology class is responsible for the
deformation of moduli of the pointed surface along 𝑋 .

3.2. Commutative Krichever–Novikov algebra, and its representation

Here, we canonically associate a commutative Krichever–Novikov algebra to a
generic element 𝐿 ∈ 𝔤. We need it for the Sugawara construction below. Indeed,
the Sugawara construction [11, 12, 13, 9] requires that the current algebra splits
to the tensor product of a functional algebra and a finite-dimensional Lie algebra.
Krichever–Novikov algebras are of this type, and Lax operator algebras are not.
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Given 𝐿, let Ψ,𝐾 be as in Section 2.5. Ψ is defined modulo normalization and
permutations of its rows (such normalization descends to the left multiplication Ψ
by a diagonal matrix). By [3], in the neighborhood of a 𝛾

Ψ(𝑧) =
𝜀𝛽𝛼𝑡𝜎

𝑧 − 𝑧𝛾
+Ψ0 + ⋅ ⋅ ⋅ , Ψ−1(𝑧) =

𝛼𝛽𝑡𝜎

𝑧 − 𝑧𝛾
+ Ψ̃0 + ⋅ ⋅ ⋅ , (5)

Ψ0𝛼 = 0, 𝜀𝛼𝑡𝜎Ψ̃0 = 0. (6)

By [3, Lemma 7.4]𝐾 is a meromorphic diagonal matrix-valued function on Σ
holomorphic outside 𝑃𝑖’s (i.e., a Krichever–Novikov matrix function). Conversely,
let 𝒜 be the Krichever–Novikov function algebra on Σ, and 𝔥 = 𝔥⊗𝒜.
Lemma 7. For any ℎ ∈ 𝔥 we have Ψ−1ℎΨ ∈ 𝔤.

Let 𝒜𝐿 be the Krichever–Novikov function algebra on Σ𝐿 having pre-images
of the points 𝑃𝑖 as the collection of poles. An arbitrary element of 𝒜𝐿 can be
pushed down to Σ as a diagonal matrix ℎ. Every sheet is assigned with a certain
row of ℎ. The permutation 𝜔 of rows descends to the transformations Ψ → 𝑤Ψ
(which is easily verified for 𝑤 to be a transposition), and ℎ → 𝑤ℎ𝑤−1. Thus
𝐿 = Ψ−1ℎΨ is invariant, and we get a well-defined mapping 𝒜𝐿 → 𝔤.

By Lemma 7 any representation of 𝔤 induces the corresponding representation
of 𝔥. Since Ψ is meromorphic at 𝑃𝑖’s, the mapping 𝔥 → 𝔤 preserves degree. Hence
an almost graded 𝔤-module induces the almost-graded 𝔥-module.

Consider the following canonical representation of 𝔤. Let ℱ be the space of
meromorphic vector-valued functions 𝜓 holomorphic except at 𝑃1, . . . , 𝑃𝑁 , 𝑃∞,
and 𝛾’s, such that 𝜓(𝑧) = 𝜈𝛼𝑧−1+𝜓0+ ⋅ ⋅ ⋅ at any point 𝛾. ℱ is an almost graded
𝔤-module with respect to the Krichever-Novikov base introduced in [14]. Consider
the semi-infinite degree ℱ∞/2 of this module also constructed in [14]. The induced
𝔥-module is what we need. This is an admissible module in the sense that every its
element annihilates having been multiply operated by an element of 𝔥 of a positive
degree. Moreover, it is generated by a vacuum vector. By the above constructed
mapping 𝒜𝐿 → 𝔥 we also consider ℱ∞/2 as an 𝒜𝐿-module.

3.3. Sugawara representation

We present here the simplest (commutative) version of the Sugawara construction
[12] (see also [13] for 𝑁 > 1), in connection with 𝒜𝐿.

Any admissible 𝒜𝐿-module is equipped with a projective 𝒱𝐿-action T canon-
ically defined by the relation

[𝑇 (𝑒), 𝜋(𝐴)] = −𝑐 ⋅ 𝜋(𝑒𝐴), 𝐴 ∈ 𝒜𝐿, 𝑒 ∈ 𝒱𝐿,
𝜋(𝐴), 𝑇 (𝑒) are the corresponding representation operators, 𝑒𝐴 denotes the natural
action of a vector field on a function, 𝑐 is the level of the 𝒜𝐿-module From now on
𝑉 = ℱ∞/2. For the effective definition of the representation 𝑇 , more details, and
generalizations see [13, 9, 10].
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4. Representation of the algebra of Hamiltonian vector fields

Here we construct the Knizhnik-Zamolodchikov connection on the family of spec-
tral curves. The Knizhnik-Zamolodchikov operators give a unitary projective rep-
resentation of the Lie algebra of Hamiltonian vector fields. The behavior of the
operators corresponding to the family of commuting Hamiltonians is investigated.

4.1. Conformal blocks and Knizhnik-Zamolodchikov connection

Let us consider the sheaf of𝒜𝐿-modules ℱ∞/2 on 𝒫𝐷. Let 𝔥𝑟𝑒𝑔 ⊂ 𝔥 be a subalgebra
consisting of the functions regular at 𝑃∞. The sheaf of quotients ℱ∞/2/𝔥𝑟𝑒𝑔 on
𝒫𝐷 is called the sheaf of covariants (over a different base it was defined in [9] in
this way).

Let 𝑋 be a vector field on 𝒫𝐷. By definition

∇𝑋 = ∂𝑋 + 𝑇 (𝜌(𝑋)) (7)

where 𝜌 is the Kodaira-Spencer mapping, 𝑇 is the Sugawara representation in
ℱ∞/2/𝔥𝑟𝑒𝑔.

Theorem 8 ([9, 10]). ∇ is a projective flat connection on the sheaf of coinvariants:

[∇𝑋 ,∇𝑌 ] = ∇[𝑋,𝑌 ] + 𝜆(𝑋,𝑌 ) ⋅ 𝑖𝑑
where 𝜆 is a certain cocycle, 𝑖𝑑 is the identity operator.

We refer to ∇ as to Knizhnik-Zamolodchikov connection. The horizontal sec-
tions of the sheaf of covariants, with respect to ∇, are called conformal blocks.

4.2. Representation of Hamiltonian vector fields and commuting
Hamiltonians. Unitarity

By Theorem 8 𝑋 → ∇𝑋 is a projective representation of the Lie algebra of vector
fields on 𝒫𝐷 in the space of sections of the sheaf of covariants. Denote this rep-
resentation by ∇. The restriction of ∇ to the subalgebra of Hamiltonian vector
fields gives the projective representation of that.

Theorem 9. If 𝑋, 𝑌 are Hamiltonian vector fields such that their Hamiltonians
Poisson commute then [∇𝑋 ,∇𝑌 ] = 𝜆(𝑋,𝑌 ) ⋅ 𝑖𝑑. If the Hamiltonians depend only
on the action variables, then [∇𝑋 ,∇𝑌 ] = 0.

We refer to [5] for the proof of this theorem, as well as of Theorem 10.
Let 𝒢 be a complex Lie algebra with an antilinear anti-involution †, and 𝑇

be its representation in the space 𝑉 . An hermitian scalar product in 𝑉 is called
contravariant if 𝑇 (𝑋)† = 𝑇 (𝑋†) where the † on the left-hand side means the
hermitian conjugation. A pair consisting of 𝑇 and a contravariant scalar product is
called a unitary representation of 𝒢 [11]. The restriction of 𝑇 to the Lie subalgebra
of the elements such that 𝑋† = −𝑋 is unitary in the classical sense.

The Lie algebra of tangent vector fields on 𝒫𝐷 belongs to the just defined
class. Its antilinear anti-involution is pushed down from 𝒱𝐿 with the help of the
inverse to the Kodaira–Spencer mapping and the double-coset construction.
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To construct a contravariant hermitian scalar product in the space of the
representation ∇, first introduce a point-wise scalar product in the sheaf of co-
variants by declaring semi-infinite monomials with basis entries to be orthonormal
([11, p. 39], [12]). Then we integrate it over 𝒫𝐷 by the volume form 𝜔𝑝/𝑝! which is
invariant by the Poincaré theorem on absolute integral invariants of Hamiltonian
phase flows.

Theorem 10. The representation ∇ : 𝑋 → ∇𝑋 of the Lie algebra of Hamiltonian
vector fields on 𝒫𝐷 in the subspace of smooth sections in ℒ2(𝐶, 𝜔𝑝/𝑝!) is unitary.
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Abstract. In view of the asymptotic analysis to be carried out (for evolu-
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integral approach to the study of heat kernel asymptotics and heat trace
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Wiener path integral representation for heat kernel

Let 𝑈(𝑡) = exp(𝑡𝐻) be a Schrödinger semigroup generated by an operator

𝐻 = 𝐻0 + 𝑉 =
1

2
Δ + 𝑉 (𝑥) , 𝑥 ∈ ℝ𝑑 ,

with complex-valued potential 𝑉 supposed to be bounded and continuous. The
action of the semigroup is expressed by the Feynman-Kac formula (see, e.g., [1])

𝑈(𝑡)𝑓(𝑥) =

∫
Ω𝑥

𝑓(𝜔(𝑡)) exp

(∫ 𝑡

0

𝑉 (𝜔(𝑠)) 𝑑𝑠

)
𝑑𝜇𝑥(𝜔),

where the integral with respect to Wiener measure 𝜇𝑥 is taken over the set Ω𝑥 =
{paths 𝜔(𝑠) : 𝑠 ∈ [0, 𝑡], 𝜔(0) = 𝑥}.

The Feynman-Kac representation can be derived from the Duhamel equation

𝑈(𝑡) = 𝑈0(𝑡) +

∫ 𝑡

0

𝑈0(𝑠)𝑉 𝑈(𝑡− 𝑠)𝑑𝑠 , 𝑈0(𝑡) = exp(𝑡𝐻0) ,
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by iteration procedure and in fact it can be viewed as a summation formula for
the perturbation theory series (Phillips-Dyson expansion)

𝑈(𝑡) =

∞∑
𝑛=0

𝑈𝑛(𝑡) , 𝑈𝑛(𝑡) =

∫ 𝑡

0

𝑈0(𝑠)𝑉 𝑈𝑛−1(𝑡− 𝑠) 𝑑𝑠 .

It follows that the Schrödinger semigroup integral kernel 𝑝𝑉 (𝑥, 𝑦, 𝑡) (also
known as a heat kernel) is given by the formula

𝑝𝑉 (𝑥, 𝑦, 𝑡) =

∫
Ω𝑡
𝑥,𝑦

exp

(∫ 𝑡

0

𝑉 (𝜔(𝑠))𝑑𝑠

)
𝑑𝜇𝑡𝑥,𝑦(𝜔) . (1)

The integration here is taken over the set Ω𝑡
𝑥,𝑦 of paths 𝜔(𝑠) starting from point

𝑥 and coming to 𝑦 at time 𝑡 with respect to conditional Wiener measure 𝜇𝑡𝑥,𝑦
of the full mass 𝑝0(𝑥, 𝑦, 𝑡).

The path integral representation enables one to derive short-time asymptotics
of the heat kernel:

𝑝𝑉 (𝑥, 𝑦, 𝑡) ∼ 𝑝0(𝑥, 𝑦, 𝑡)

{
1 +

∞∑
𝑛=1

𝑐𝑛(𝑥, 𝑦)𝑡
𝑛

}
, 𝑡 ↓ 0 .

To this end one should first expand the integrand in (1) into the time-power series
and then carry out integration with respect to conditional Wiener measure. This
approach gives explicit (i.e., non-recurrent) formulas for the coefficients 𝑐𝑛(𝑥, 𝑦)
related to the so-called heat invariants. On the diagonal, heat kernel asymptotics
takes the form

𝑝𝑉 (𝑥,𝑥,𝑡)=(2𝜋𝑡)
−3/2

{
1+ 𝑡𝑉 (𝑥)+

𝑡2

2

(
1

6
Δ𝑉 (𝑥)+𝑉 (𝑥)2

)
+

𝑡3

6

(
1

40
Δ2𝑉 (𝑥)+

1

4
⟨∇𝑉 (𝑥)⟩2+ 1

2
𝑉 (𝑥)Δ𝑉 (𝑥)+𝑉 (𝑥)3

)
+𝑂(𝑡4)

}
.

Coefficients here are homogeneous in the potential and its derivatives if we agree
that each differentiation adds 1/2 to the homogeneity degree of the corresponding
summand (cf., [2]).

Formula (1) provides also an approach to estimating the regularized heat
trace

Tr(𝑈(𝑡)− 𝑈0(𝑡)) =

∫
(𝑝𝑉 (𝑥, 𝑥, 𝑡) − 𝑝0(𝑥, 𝑥, 𝑡)) 𝑑𝑥

based on its path integral representation∫
𝑑𝑥

∫
Ω𝑡
𝑥,𝑥

{
exp

(∫ 𝑡

0

𝑉 (𝜔(𝑠)) 𝑑𝑠

)
− 1
}

𝑑𝜇𝑡𝑥,𝑥(𝜔) ,

application of convexity-type inequality and taking advantage of phase space
bounds technique (cf., [1]). Such estimates are obtained in a similar way as their
counterparts are derived within Berezin’s Wick and anti-Wick symbolic calculus.
To be compared with Theorem 4 below, the corresponding heat trace asymptotic
estimate is presented here in the case of three-dimensional phase space (cf., [3]).
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Theorem 1. Given continuous bounded real-valued potential 𝑉 ∈ L1(ℝ3) the dif-
ference 𝑈(𝑡)− 𝑈0(𝑡) is of trace class and the following inequalities

(2𝜋)−3/2𝑡−1/2

∫
𝑉 (𝑥) 𝑑𝑥 ⩽ Tr(𝑈(𝑡)− 𝑈0(𝑡)) ⩽ (2𝜋𝑡)−3/2

∫ (
𝑒𝑡𝑉 (𝑥) − 1) 𝑑𝑥

hold for arbitrary 𝑡 > 0 ; moreover, the short-time asymptotic formula is valid:

Tr(𝑈(𝑡)− 𝑈0(𝑡)) = (2𝜋)−3/2𝑡−1/2

∫
𝑉 (𝑥) 𝑑𝑥 + 𝑂(

√
𝑡) .

As regards the upper bound of the regularized heat trace, it is known (see [4])
that for potentials 𝑉 (𝑥) decaying sufficiently rapidly the estimate

∣Tr(𝑈(𝑡)− 𝑈0(𝑡))∣ ⩽ 𝐶(𝑉 ) 𝑡−1/2

holds provided 𝐻 has purely continuous spectrum and point 0 is not a spectral
singularity of 𝐻. Theorem 1 supplements this estimate and shows how sharp it
is; note that the lower bound of the regularized trace turns out to be exact in the
sense that it cannot be further improved due to the short-time asymptotics.

Two-sided estimates for the regularized trace of Schrödinger semigroup were
derived in [5] by the application of a trace formula expressed in terms of the
spectral shift function. One of the results obtained there is a simple corollary to
the lower bound in Theorem 1, which was found by the author in [6] with the
usage of path integral technique.

Diffusion with a drift: Feynman-Kac-Itô formula

The path integral approach proves to be useful in a rather general setting. Thus
it does work in the case of diffusion with a drift when the semigroup generator is
of the form

𝐻 = 𝐻0 +𝐴 =
1

2
Δ + ⟨𝑎(𝑥)∇⟩ , 𝑥 ∈ ℝ𝑑.

The corresponding heat kernel 𝑝𝑎(𝑥, 𝑦, 𝑡) is then given by Feynman-Kac-Itô for-
mula

𝑝𝑎(𝑥, 𝑦, 𝑡) =

∫
Ω𝑡
𝑥,𝑦

exp

(∫ 𝑡

0

〈
𝑎(𝜔(𝑠)) 𝑑𝜔(𝑠)

〉 − 1

2

∫ 𝑡

0

𝑎2(𝜔(𝑠)) 𝑑𝑠

)
𝑑𝜇𝑡𝑥,𝑦(𝜔) (2)

where the first summand in the exponent argument makes sense as an Itô stochastic
integral.

This representation may be derived from an appropriately rearranged per-
turbation theory expansion of the semigroup 𝑒𝑡𝐻 obtained by iterations from the
Duhamel equation

𝑒𝑡𝐻 = 𝑒𝑡𝐻0 +

∫ 𝑡

0

𝑒𝑠𝐻0𝐴𝑒(𝑡−𝑠)𝐻 𝑑𝑠 .
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For example, the second term

∫ 𝑡

0

𝑒𝑠𝐻0𝐴𝑒(𝑡−𝑠)𝐻0 𝑑𝑠 in the corresponding iteration

series has the integral kernel∫ 𝑡

0

𝑑𝑠

∫
𝑝0(𝑥, 𝜉, 𝑠) ⟨𝑎(𝜉)∇𝜉𝑝0(𝜉, 𝑦, 𝑡− 𝑠)⟩ 𝑑𝜉

=

∫ 𝑡

0

∫
𝑝0(𝑥, 𝜉, 𝑠) 𝑑𝜉

∫
𝑝0(𝜉, 𝜂, 𝑑𝑠) ⟨𝑎(𝜉)(𝜂 − 𝜉)⟩ 𝑝0(𝜂, 𝑦, 𝑡− (𝑠+ 𝑑𝑠)) 𝑑𝜂

=

∫
Ω𝑡
𝑥,𝑦

(∫ 𝑡

0

⟨𝑎(𝜔(𝑠)) 𝑑𝜔(𝑠)⟩
)

𝑑𝜇𝑡𝑥,𝑦(𝜔) .

The corresponding heat kernel 𝑝𝑎(𝑥, 𝑦, 𝑡) is known [7] to possess the asymp-
totics

𝑝𝑎(𝑥, 𝑦, 𝑡) ∼ 𝑝0(𝑥, 𝑦, 𝑡) exp

(∫ 1

0

〈
𝑎(𝜉(𝑠)) (𝑦 − 𝑥)

〉
𝑑𝑠

)
, 𝑡 ↓ 0 .

Integral representation (2) enables us to specify this formula. For the sake of
simplicity let 𝑑 = 3 here.

Theorem 2. Provided that drift coefficient 𝑎(𝑥) ∈ C3(ℝ3) is bounded the following
asymptotics holds

𝑝𝑎(𝑥, 𝑦, 𝑡) = 𝑝0(𝑥, 𝑦, 𝑡) exp

(∫ 1

0

〈
𝑎(𝜂(𝑠)) (𝑦 − 𝑥)

〉
𝑑𝑠

)
×
{
1 + 𝑡

(
1

2

∫ 1

0

〈
Δ𝑎(𝜂(𝑠))(𝑦 − 𝑥)

〉
𝑠(1 − 𝑠)𝑑𝑠 −

∫ 1

0

𝑎2(𝜂(𝑠)) 𝑑𝑠

−
∫ 1

0

⟨∇𝑎⟩(𝜂(𝑠)) 𝑠 𝑑𝑠 +
∫ 1

0

(1− 𝑠)𝑑𝑠

∫ 𝑠

0

[〈∇×𝑎 (𝜂(𝑠))∇×𝑎 (𝜂(𝑟))
〉
(𝑦 − 𝑥)2

− 〈∇×𝑎 (𝜂(𝑠))(𝑦 − 𝑥)
〉〈∇×𝑎 (𝜂(𝑟))(𝑦 − 𝑥)

〉]
𝑟 𝑑𝑟

)
+ 𝑂(𝑡5/4)

}
where 𝜂(𝑠) = 𝑥+ (𝑦 − 𝑥)𝑠.

To outline the proof recall that conditional Wiener measure 𝜇𝑡𝑥,𝑦 is supported
(see [1]) on Brownian paths 𝜔(𝑠) starting from point 𝑥 and coming to 𝑦 at time
𝑡. Such paths are the trajectories of the process

𝜔(𝑠) = 𝜂(𝑠/𝑡) +
√
𝑡 𝑏(𝑠/𝑡)

where 𝑏(𝜏) stands for three-dimensional Brownian bridge, i.e., Gaussian process
with zero mean and covariance matrix

cov{𝑏𝑖(𝜎), 𝑏𝑗(𝜏)} = (min{𝜎, 𝜏} − 𝜎𝜏) 𝛿𝑖𝑗 .
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Thus formula (2) can be rewritten in the form

𝑝𝑎(𝑥, 𝑦, 𝑡) = 𝑝0(𝑥, 𝑦, 𝑡)𝔼

{
exp

(∫ 1

0

⟨𝑎(𝜂(𝑠) +√
𝑡𝑏(𝑠))(𝑦 − 𝑥)⟩ 𝑑𝑠

+
√
𝑡

∫ 1

0

⟨𝑎(𝜂(𝑠) +√
𝑡𝑏(𝑠)) 𝑑𝑏(𝑠)⟩ − 𝑡

2

∫ 1

0

𝑎2(𝜂(𝑠) +
√
𝑡𝑏(𝑠)) 𝑑𝑠

)}
where 𝔼 denotes the expectation associated with Brownian bridge process. Now
in order to extract short-time asymptotics one should expand the argument of
the functional 𝔼 into time-power series and then calculate expectations of its
coefficients making use of stochastic integral formulas such as the following one
(which is essentially due to Itô):

𝔼

{∫ 1

0

⟨𝐴(𝑠)𝑏(𝑠) 𝑑𝑏(𝑠)⟩
}
= −

∫ 1

0

Tr𝐴(𝑠) 𝑠𝑑𝑠 .

Semigroups generated by perturbation of bi-Laplacian

Evolutionary semigroups which are beyond the diffusion type class will be consid-
ered now in the model setting when 𝑈(𝑡) = exp(𝑡𝐻) is generated by

𝐻 = 𝐻0 + 𝑉 = −𝑃 (𝑖∇) + 𝑉 (𝑥)

where 𝑃 (𝜉) = ∣𝜉∣4/4; in fact bi-Laplacian 𝐻0 may be replaced by an arbitrary
elliptic operator with constant coefficients. Here we confine ourselves to three-
dimensional case for the sake of simplicity.

The Schwartz kernel of the unperturbed semigroup 𝑈0(𝑡) = exp(𝑡𝐻0) is given
by the formula

𝐺0(𝑥− 𝑦, 𝑡) = (2𝜋)−3

∫
exp
(− 𝑡𝑃 (𝜉) + 𝑖⟨(𝑥− 𝑦) 𝜉⟩) 𝑑𝜉 (3)

and admits the estimate

∣𝐺0(𝑥− 𝑦, 𝑡)∣ ⩽ (2𝜋)−3𝑡−3/4 exp
(
− ∣𝑥− 𝑦∣4/3

4𝑡1/3

)∫
𝑒−𝑃 (𝜉)/10 𝑑𝜉 .

The properties of the unperturbed semigroup integral kernel in a rather gen-
eral situation when 𝑃 (𝜉) is a positive definite form have been investigated in [8]
and [9] (see also [10]). In order to study short-time asymptotic behavior of the
kernel 𝐺0 one can make use of the steepest descent (or saddle point) method
applied to integral representation (3). It proves that as 𝑡 ↓ 0 the kernel 𝐺0 is
expressed by the asymptotic expansion

𝐺0(𝑥− 𝑦, 𝑡) ∼ 2√
3

(2𝜋)−3/2

∣𝑥− 𝑦∣√𝑡

× Im

{
exp

(
3

4

∣𝑥− 𝑦∣4/3

𝑡1/3
𝑒−2𝜋𝑖/3

)(
1 +

∞∑
𝑘=1

𝑎𝑘

(
𝑡1/3

∣𝑥− 𝑦∣4/3

)𝑘)}
.
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Thus kernel 𝐺0(𝑥 − 𝑦, 𝑡) decays exponentially and oscillates as 𝑡 ↓ 0 so that (in
contrast with the diffusion case) the kernel of the unperturbed semigroup 𝑈0(𝑡)
cannot be treated as a density of transition probability for a stochastic process.

In this situation the lack of path integral representation is supplemented by
the parametrix expansion

𝐺𝑉 (𝑥, 𝑦, 𝑡) = 𝐺0(𝑥− 𝑦, 𝑡) +

∞∑
𝑛=1

𝐺(𝑛)(𝑥, 𝑦, 𝑡) (4)

which is just the perturbation theory series derived from the corresponding
Duhamel equation by iteration procedure. The iterated kernels

𝐺(𝑛)(𝑥, 𝑦, 𝑡) =

∫ 𝑡

0

𝑑𝑠

∫
𝐺0(𝑥− 𝑧, 𝑠)𝑉 (𝑧)𝐺(𝑛−1)(𝑧, 𝑦, 𝑡− 𝑠) 𝑑𝑧

for 𝑡 sufficiently small (and a certain constant𝑀 large enough) admit the following
estimates

∣𝐺(𝑛)(𝑥, 𝑦, 𝑡)∣ ⩽ 𝑀𝑛+1

Γ((𝑛+ 1)/2)
𝑡(𝑛−1)/2𝑝(𝑥, 𝑦, 𝑡)

which imply the asymptotics∑
𝑛>2

𝐺(𝑛)(𝑥, 𝑦, 𝑡) = 𝑂
(
𝑡 𝑝(𝑥, 𝑦, 𝑡)

)
, 𝑝(𝑥, 𝑦, 𝑡) = exp

(
− 3

8

∣𝑥− 𝑦∣4/3

𝑡1/3

)
.

A somewhat more delicate separate treatment of the second iterated kernel 𝐺(2)

enables one to insert it into the estimate:∑
𝑛⩾2

𝐺(𝑛)(𝑥, 𝑦, 𝑡) = 𝑂
(
𝑡3/4𝑝(𝑥, 𝑦, 𝑡)

)
.

Thus the principal (apart from 𝐺0 ) term of the short-time asymptotics for the
kernel 𝐺𝑉 is determined by the first correction in the corresponding perturbation
theory expansion (4), also known as Born approximation:

𝐺(1)(𝑥, 𝑦, 𝑡) =

∫ 𝑡

0

𝑑𝑠

∫
𝐺0(𝑥− 𝑧, 𝑠)𝑉 (𝑧)𝐺0(𝑧 − 𝑦, 𝑡− 𝑠) 𝑑𝑧 .

Schwartz kernel short-time asymptotics

To deal with the Born approximation of the kernel 𝐺𝑉 we will make use of quasi-
probabilistic approach. Although the kernel 𝐺0 is by no means a transition prob-
ability of a stochastic process some of its fundamental properties remain valid. For
example the following mean value formula proves to be true∫

𝐺0(𝑥− 𝑧, 𝑠) 𝑧 𝐺0(𝑧 − 𝑦, 𝑡− 𝑠) 𝑑𝑧 = 𝐺0(𝑥− 𝑦, 𝑡) (𝑥+ (𝑦 − 𝑥)𝑠/𝑡) .

This relationship may be viewed as an analogue of mathematical expectation for-
mula for the location (at an instant 𝑠) of the trajectory starting from 𝑥 and
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coming to 𝑦 at the instant 𝑡. Thus the Born approximation can be decomposed
into the sum of the principal term and the mean deviation

𝐺(1)(𝑥, 𝑦, 𝑡) = 𝐺0(𝑥− 𝑦, 𝑡)

∫ 𝑡

0

𝑉 (𝜂(𝑠/𝑡)) 𝑑𝑠

+

∫ 𝑡

0

𝑑𝑠

∫
𝐺0(𝑥− 𝑧, 𝑠)

(
𝑉 (𝑧)− 𝑉 (𝜂(𝑠/𝑡))

)
𝐺0(𝑧 − 𝑦, 𝑡− 𝑠) 𝑑𝑧

= 𝑡𝐺0(𝑥 − 𝑦, 𝑡)

∫ 1

0

𝑉 (𝜂(𝜏)) 𝑑𝜏 + 𝑂
(
𝑡7/12𝑝(𝑥, 𝑦, 𝑡)

)
provided that 𝑉 (𝑥) is twice continuously differentiable. Summing up we formulate

Theorem 3. Let potential 𝑉 (𝑥) ∈ C2(ℝ3) ∩ L1(ℝ3) be bounded. Then an off-
diagonal short-time asymptotics

𝐺𝑉 (𝑥, 𝑦, 𝑡) = 𝐺0(𝑥− 𝑦, 𝑡)

(
1 + 𝑡

∫ 1

0

𝑉 (𝑥+ (𝑦 − 𝑥)𝜏) 𝑑𝜏

)
+ 𝑂

(
𝑡7/12 exp

(
− 3

8

∣𝑥− 𝑦∣4/3

𝑡1/3

))
is valid where

𝐺0(𝑥− 𝑦, 𝑡) =
2√

3(2𝜋)3/2

𝑡−1/2

∣𝑥− 𝑦∣ exp
(
− 3

8

∣𝑥− 𝑦∣4/3

𝑡1/3

)
×
{
sin

(
3
√
3

8

∣𝑥− 𝑦∣4/3

𝑡1/3

)
+ 𝑂
(
𝑡1/3
)}
;

besides, on the diagonal 𝑥 = 𝑦 one has

𝐺𝑉 (𝑥, 𝑥, 𝑡) = (2𝜋)−3𝑡−3/4
(
1 + 𝑉 (𝑥)

) ∫
𝑒−𝑃 (𝜉) 𝑑𝜉 + 𝑂(

√
𝑡), 𝑡 ↓ 0.

Short-time behavior of the regularized trace can be qualified under even
weaker assumptions.

Theorem 4. Given bounded potential 𝑉 (𝑥) ∈ L1(ℝ3) the difference 𝑈(𝑡) − 𝑈0(𝑡)
is of trace class and

Tr
(
𝑈(𝑡)− 𝑈0(𝑡)

)
= 𝑡𝐺0(0, 𝑡)

∫
𝑉 (𝑥) 𝑑𝑥 + 𝑂(

√
𝑡) , 𝑡 ↓ 0.

Validity of this formula (without any smoothness assumptions being imposed
upon 𝑉 ) is due to the fact that the Born approximation integrated over the
diagonal can be calculated explicitly:∫

𝐺(1)(𝑥, 𝑥, 𝑡) 𝑑𝑥 =

∫
𝑑𝑥

∫ 𝑡

0

𝑑𝑠

∫
𝐺0(𝑥− 𝑧, 𝑠)𝑉 (𝑧)𝐺0(𝑧 − 𝑥, 𝑡− 𝑠) 𝑑𝑧

=

∫ 𝑡

0

𝑑𝑠

∫
𝑉 (𝑧) 𝑑𝑧

∫
𝐺0(𝑥− 𝑧, 𝑠)𝐺0(𝑧 − 𝑥, 𝑡− 𝑠) 𝑑𝑥 = 𝑡𝐺0(0, 𝑡)

∫
𝑉 (𝑧) 𝑑𝑧.
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Bureaucratic World: Is it Unavoidable?

Bogdan Mielnik

Abstract. An excess and inefficiency of the control mechanisms in the present
day societies is commented.

Esteemed Colleagues:
The remarks below concern a certain lack of equilibrium in the present day

legislation, affecting the life and science, with rather adverse consequences for
our work. The disequilibrium seems to privilege the fashionable problems such
as the “political correctness”, “sexual harassment, etc. While those are visibly
exaggerated, some urgent subjects are left unattended. One of them is the

Bureaucratic Harassment,

an epidemic phenomenon, which grows without any reasonable limit.
Though the trouble is not new, its consequences in the present day society

are increasingly awkward, causing serious doubts whether the democracy is indeed
the best of the systems. The human life is affected by too many unnecessary and
obviously absurd regulations which could be easily avoided by an enlightened me-
dieval autocrat. (The whole problem is, of course, how to assure that the autocrat
will be indeed enlightened!) Yet, we often feel that some of our problems would be
solved in few minutes by a despotic ancient king, whereas they need some months
or even years of struggles in our present day institutions.

The disease affects all areas, though it seems specially damaging for the
activities which require some peace of mind, concentration and creative work. We
refer, of course, to the arts and science. The damage to the science consists not
only in our loss of time, but much more in the fact that the scientist of today
is forced to subordinate himself to some counter-intellectual patterns of reports
and planning, forcing him indeed to accept the professional dishonesty. The most
absurd demand he faces is to present the program (and the time-table) of his future
discoveries. Such plans can bring the best results if they fail, since only then they
can reveal something new. In fact, the discoveries of radioactivity by Becquerel and
by Pierre and Marie Curie, or penicillin by Alexander Fleming, occurred thanks
to the frustrations of their initial projects. Neither the excursion of Christopher
Columbus could accomplish his original plan to discover the shortest way to India.
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The only thing discovered by CC was an obstacle, on which we live today!. . . When
composing his irrelevant projects, ironically, the scientist is a victim of an almost
paranoid suspicion, obliged to document every little detail of any routine spending,
precisely when he intensely tries to be honest, at least in frames of the obligatory
bureaucratic fiction!. . . (Needless to say, the truly significant frauds occur much
above the bureaucratic control levels).

The abstract pollution. . .

More inconsistencies. While the urgent need to protect our natural environment
is already recognized [1, 2, 3], the destruction of our lives by too many rules,
documents, etc., that is, the pollution of abstract environment, progresses without
any defense. . . The examples are abundant and increasingly alarming.

El Pais [4] describes the executives of one of the Town Councils increasing
the bureaucratic demands – to enforce bribes for “resolving the problem”. . . The
journal Rzeczpospolita, Poland, August 2011, reports a tragic error in an oncol-
ogy clinic where the doctors removed the healthy kidney instead of the cancerous
one. The journal comments: “the good specialists escape, but the administration
grows”. About a year ago, a bureaucratic homicide was committed in one of hos-
pitals. A middle age man had a heart attack on the street. Somehow, he was still
able to walk to the near hospital, but was not admitted because of the lack of
obligatory documents. He died on the hospital steps. Unfortunately, such “inci-
dents” are not exceptional. . . Meanwhile, the scientists cannot work, since they
are too busy with bureaucratic plans and reports. The engineers cannot construct
highways, since they are too busy navigating through the jungles of regulations.
New forms of business appear: the enterprises which help the scientists to formu-
late their grant requests in terms convincing for the bureaucrats. (The corruptive
consequences are not difficult to guess!. . . )

We think, you can easily provide a collection of your own examples. A ques-
tion arises, how such phenomena could at all develop? To explain this, we formu-
lated 4 laws of bureaucracy which you might find relevant:

Four Laws of Bureaucracy:

I. All attempts of the state administrations to improve the scientific work by
bureaucratic projects, reports, etc. will be reduced to zero by the social or-
ganism – though not gratis: the price is an enormous increase of socially
useless work.

II. What is the source of the incredible facility of public administrations in mul-
tiplying endlessly the prescriptions, formalities and obligatory documents?
The reason is that the bureaucrats do not perform the bureaucratic work:
they leave it to their victims.

III. In the bureaucratic environment the problems of little importance are always
infinitely more urgent than the truly important ones. This is why thou will
never do anything important.

IV. The knowledge of the four bureaucracy laws won’t help you in anything.
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Our formulations are deliberately simplified, just to illustrate the center of the
problem. But. . . how can we break the law of impotence IV? Should we support
the spontaneous rebellions? Do we dream to live in a complete anarchy? This,
most evidently, cannot be the solution. The public administration must always
exist. The only problem is to have a good administration instead of an excessive
one. While the question is simple, the answer is not. The “bureaucratic disease” is
a deep civilization crisis marking the “childhood’s end” of humanity. Our distant
and recent past shows how it developed.

From prehistory to the dark age

The prehistoric population obeyed shamans and tribal leaders. There was still no
much bureaucracy. The subsequent evolution subordinated the human masses to
the formal laws, assuring some stability in turbulent epochs. The industrial revo-
lutions of the XVIII and XIX c. in Europe and America created new bureaucratic
classes emerging from some (more or less) credible elections. It is interesting that
the passports still did not exist at the beginning of XIX c.; they were invented
by governments (supposedly) to facilitate travels. In XX c., some countries were
affected by highly despotic types of bureaucracy. One, introduced in Russia by the
communist party, was supposed to represent higher social formation, next after
the capitalism, granting the social equality by eliminating the private property.
To assure the universal equality, the soviet state was organized as a hierarchy of
party levels, each higher supervising each lower one, with the corresponding ad-
ministrative privileges. (But the majority of soviet citizens could not even dream
about passports. The Soviet workers needed special permissions to travel inside of
the Soviet state). Far from constituting a superior, post-capitalist society, the sys-
tem developed only a highly unproductive economy, based on compulsive work in
collective farms. In contrast with the neo-liberal ideas, it was indeed a neo-feudal
society which could survive only due to an extreme bureaucratic control and ter-
ror, but finally collapsed, leaving in ruins one of the richest countries of the world.
Equally disastrous results were achieved by the ‘national socialism’ in Germany
with its ideology of hate and racial superiority. Both show how the brainwashed
populations (including the scientists) can be dominated to the obsessive ideologies
[5, 6], the danger which should not be forgotten.

Is the democracy failing?

When the totalitarian systems collapsed, it could seem that the best structure
for modern society was at hand: it should follow the design of western democ-
racies, with all its imperfections. This, of course, does not mean that all dreams
of equality can be fulfilled. Since people are different, the “demos” cannot assure
the equal status to everybody. It is enough to imagine an angry crowd marching
and demanding: “One Mercedes Benz for each poor, one Mercedes Benz for each
poor!”. . . to understand the impossibility of the truly egalitarian society. Even
if the Mercedes factories had a sufficient production power, do you imagine the
Earth surface devastated by billions of cars?
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The democratic systems, henceforth, cannot achieve an authentic equality.
At the best, they can be the “soft” versions of the “Brave New World” of Aldous
Huxley [7]. The power should be in hands of enlightened elites. The rest of citizen
(the demos) must have some decent jobs and salaries, but indeed, they are just
a kind of biological reserve, which should live happy, without unnecessary ambi-
tions. . . More precisely: to live in a harmless passivity (if not idiocy?), entertained
by sport games, competitions of singers, etc., with some elementary education, suf-
ficient to choose talented youngsters to renew the government, to the satisfaction
of the demos.

Yet, even this design suffers some destructive mechanisms. One of them is a
constant increase of bureaucracy, caused by the rapid growth of the human crowds,
with inflationary phenomena visible in all areas of life, in particular, in science.
The present day professionals are evaluated according to the number of publica-
tions rather than results. Under the bureaucratic pressure, this number blows up
so fast, that the world journals have not enough experienced referees to evalu-
ate the papers. So, the inexperienced authors must serve as the referees for their
equally inexperienced colleagues. The editors are in trouble. They organize con-
ferences asking to reduce the avalanche of publications, but the bureaucratically
inflated bubble of “productivity” grows practically without any control. Recently,
the editors of some journals took the task in their own hands, rejecting most of
papers which do not seem to follow the promising trends, even though the method
has some corruptive aspects (forming the privileged influence groups inside of the
scientific community). Looking for some better criteria, the science administrators
estimate the papers by their impact (citations). However, this too turns question-
able (a lot of authors cite papers which they never read!). In the hasty, superficial
development, the top achievements of the past become too difficult for the new
generations and are left in oblivion (though from time to time rediscovered). In the
bureaucratically organized science, many specialists feel that they will never ad-
vance if they won’t occupy executive positions (and they are probably right!). The
interdependence between the scientific and politico-bureaucratic levels extends ev-
erywhere. The well-known University rankings are based rather on public relations
than on scientific status, and so are the titles of “Doctor honoris causa”, offered
usually to the politicians. So, did our civilization reached the top of its creative
possibilities like the civilization of ants or termites? Perhaps not, but the future
remains unclear.

Heavy or light pathologies?. . .

By trying to complete the picture, one cannot escape conclusion that the bureau-
cracy has no natural limits. Of course, apart of exceptions, the bureaucrats are
not evil. They simply try to fulfill their work in peace, even if their peace destroys
the peace of others. The results, though, are not at all innocent.

One of obsessive bureaucratic problems in European Union was the polemic
about the legal definition of a carrot. Is the carrot a fruit or a vegetable? Of course,
the question was motivated by financial problems which we skip here. The final
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verdict, after more than one decade of costly debates, was that the carrot is a
fruit if cultivated in Portugal, otherwise it is a vegetable. Pleased by this success,
the European bureaucracy invested the next efforts to define the legal parameters
(size and curvature) of cucumbers and bananas. . . Worse, since the present day
administrations try to apply the same method to define a good scientist: request-
ing the numbers of publications in prestigious journals, the numbers of graduated
students, the list of financially supported “projects”, etc. etc. . . . The detailed
demands differ in various countries and institutions, but everywhere the scientists
have a full time job reporting their numerical parameters. The phenomenon is not
limited to the science. In almost all areas, the employees must report their param-
eters to demonstrate that they are enough productive (but not too conflictive!) to
advance in hierarchies, to become directors, secretaries, government consultants,
etc., etc. . . . (Poor human carrots?. . . ).

Crisis and consequences

The situation is additionally complicated by the economical crisis, much deeper
than the famous collapse of 1928. One of problems seems to be that the economy
of the rich countries was too dependent on the redundant (unnecessary) goods.
Only thanks to an enormous self-confidence (if not arrogance) of the consumers
these products could be sold. . . Simultaneously, it turns out obvious that money is
illusionary (even if the lack of money can be real!). The mega-frauds are so spec-
tacular, that even pumping billions of illusionary money into illusionary goods
might require some patience to save the situation. . . Worse, since the bureaucrats
in panic try now to apply an inverse doctrine, by cutting funds for all areas, in-
cluding the science (the famous “austerity”!), They also try to introduce some
utilitarian principles into the scientific research. As turns out now, the scientists
should not waste their time for abstract problems, but they should show their ca-
pacities by looking for innovations, patents, technological solutions, to improve the
financial results of the decaying industries. The recipe, though, seems questionable:

1. The crisis started precisely in countries which were leaders in technology and
innovation.

2. Around 1905 Albert Einstein was working in the Swiss patent office. Were
he forced to dedicate his attention to invent patents, he might have no time
and energy to write down his historical works on quantum theory of light
and special relativity, with enormous looses for all patents of the future. . .

3. The innovations are not necessarily benign. The sequence of discoveries in the
food conservation techniques permitted to achieve high profits in the industry
of fast food and refreshments. However, the chemically conserved products
are not neutral for the health of the consumers; they cause the overweight,
diabetes, and many other troubles.

4. The modern industries are literally infested by innovations, so the examples
can be multiplied at will. One of most typical situations is observed in med-
ical industries which besides the impressive discoveries contains also a list
of failures, from the well-known case of “Thalomid”, up to the recent affair
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of the plastic breast implants. (For other deceptions, see John le Carré, Big
Pharma, Google.)

The present day crises might be indeed an occasion to invest (see Paul Krug-
man), but the investments should be the results of careful, long term projects,
creating perdurable goods, and not of precipitate campaigns trying to convince the
scientists to change their profession, converting themselves into the “innovation
champions”. While the problem of healthy interaction between the fundamental
and applied science is not yet solved, the situation was still more complicated by
the recent progress of modern technology.

The informatics revolution

Some time ago, a persistent idea was that the youngsters cannot contribute to the
public opinion. However, the informatics revolution abolished a lot of mythologies.
Today, the teenagers have their personal lives and personal opinions. Together with
young adults, communicated by blogs and twitters, they form a volatile mass with
high capacity of mobilizing, either with constructive or destructive aims. At the
moment, the e-revolution had some spectacular effects, such as the collapse of sev-
eral authoritarian regimes. Yet, it also awoke fears. . . The world administrations
are scared. Under various arguments (e.g., the copyright defense) they try to in-
troduce the global inter-net censorship. The copyright problem of course should be
solved, but without affecting the freedom of communication. If not, then by inten-
sifying the press and internet controls, the state bureaucracies can create a dark,
neo-totalitarian future exceeding even the fantasies of Aldous Huxley [7] or George
Orwell [8], or hybrids of both [9]. In fact, if our recent crisis proves something, it
shows that the truly weak point of the bureaucratic system is not an insufficient
control of the human masses (including the scientists) but rather the complete
lack of control on the upper social levels (banks, governments, parliaments, etc.).
So, perhaps, the e-revolution could be the needed equilibrium factor?

The Anti-parliament?

Indeed, while our adult generation may be too busy or too tired, the blogging
and twitting masses of youngsters, even without legislative powers, form already a
world Forum, a kind of Anti-parliament able to identify the symptoms of our social
diseases. Given enough time, some talented youngsters, instead of the dangerous
sport of hacking might make their contribution to the future, collecting data about
our structural and legal problems, detecting cases of bureaucratic and legislative
nonsense all over the world. Indeed, it would be excellent to establish the Guinness
records and prizes for the most talented absurd hunters!

A tempting idea would be also to create the archives of the bureaucratic
abuses. In fact, in all countries the public life is infested by excessive demands
facilitating the work of the bureaucratic apparatus, but the trouble caused by
these demands exceeds massively the administrative gains they can bring. The
detailed archive of such redundant laws would be of significant help.
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In fact, one can only wonder, how could it happen that amongst enormous
variety of sociological sciences, the studies of the bureaucratic pathology are still
missing in the research institutes?

We are aware that many ideas presented here are not precisely defined, yet,
they might be useful to defend some residues of our freedom. We live in a turbulent
epoch of early prehistory, facing the challenges which only the future can resolve.
Our Anti-bureaucratic web-page will be open for your opinions and ideas. Are we
ready to say: Vive la liberté? Best regards.
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