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EXTREMUM PROBLENMS WITH INEQUALITIES
AS SUBSIDIARY CONDITIONS

Fritz John

This paper deals with an extension of Lagrange's multiplier
rule to the case, where the subsidiary conditions are inequali-
ties instead of equations, Only extrema of differentiasble func-
tions of a finlte number of variables will be considered, There
may however be an infinite number of inequalities prescribed,
Lagrange's rule for the situation considered here differs from the
ordinary one, in that the multipliers may always be assumed to be
positive, This nmakes 1t possible to obtain sufficient conditions
for the occurence of a minimum in terms of the first derivatives
only,

Two geometric applications will be discussed here, From the
point of view of applications it would seem desirable to extend
the method used here to cases, where the functions involved are
not necessarily differentiable, or where they do not depend on a

finite number of independent variables,

1, Necessary conditions for a minimum,

Let R be a set of points x in a space E, and F(x) a real-
valued function defined in R, We consider a subset R! of R, which
1s described by a system of inequalities with parameter y:

(1) _ G6(x,y) z 0,
where G is a function defined for all x in R and all "values" of

the parameter y. There may be a finite or infinite number of these

543

198



188 FRITZ JOBN

—

inequalities, To gain sufficlent generallty we assume that the

"values"™ of the parameter y vary over a set of points S in a sSpace
H, Then G(x,y) is defined in the set RxS, We are interested in
conditions a point x° of R!' has to satisfy in order that

(2) M = F(x°) = Minimum F(x)
XCR!

In what follows we restrict ourselves to the case, where the
space E containing the set R 1s the n-dimenslonal euclidean space
Ep» and where the set S of parameter values y is a compact set in
a metric space H, We make the further assumptions that F(x) and
G(x,y) have first derivatives Fi and Gi with respect to the coor-

dinates x, of the point (xl,...,xn) = x, and that F(x), G(x,y),

i
1)

Fi(x), Gi(x,y) are continuous functions of (x,y) in RxS,
Given a function ¢ (x) with continuous derivatives ¢i(x) in
R, we denote by

n
(3) §'(x,2z) = S §,(x)z,
i=1

the differential of the function, ¢!'(x,2) is then defined for
all xCR and z =(zl,...,z ) =E_,, and is linear in z.
n

Theorem I,

Let x° be an interior point of R, and belong to the set R! of
all points x of R, which satisfy (1) for all y—=S, Let F(x°)=
Minimum F(x).

XCR! 5
Then there exists a finite set of points yl,...,y in S and
numbers /\o, Al""’ Al which do not all vanish, such that
(La) a(x°,y") = o for r=1,...,8

T) Here continuity in R xS is defined so as to_agree with the
following definition of convergence in R xS: 1im (x¥,yT) = (x,¥),

if 1im x¥ = x and 1lim y¥ = y. r->o®
b o 5 »—>00
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EXTREMUs PROBLEAS WITH INEQUALIT IES 189

(Lb) A, 20, A >

(Le) 0<s
(L4d) the function
s

¢(x) = AF(x) - ZArG(x,yr)
r=1

sescey As >0

N O

n

has a critical point at x° 1.,e.

¢1(x°) =0 fori =1,...,n .

Proof:

Let S!' denote the subset of points y of 8, for which

o
&(x",y) = 0.
We shall first show that the system of inequalities
o
(5a) F'(x,z) <0
(5b) G'(x°,z,y) >0 for all y C St

can have no solution z =(zl,...,zn).

For let (5a,b) be satisfied for a certain z, Denote by S@
the set of all polnts of S having a dlstance < € from sone point
of St', and by Xg the set of all points of R having a distance £ &
from xo, Then there exist positive numbers &,& such that
(6) F1(x,z) < =&, G'(x,z,y)> 8§ for all xCXZ, ycse.

For otherwise there would exist sequences of points % in R, yr

tn s, " in S, such that

lin x¥ = x°, 1im (distance of y* and vlr) =0
r—=0o T —»00

and either
1im inf P (x",z) 20
r—>00 =

or
r
1im sup 6'(x",2,57) 5 0.
r->o
A8 S is compact and G is continuous, S' is compact as well, We can

then form a suitable subsequence of the r, such that yr and \Lr con-
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verge towards a point y of S'. As F! and G' are continuous, 4t

would follow that either F!(x°,z) 2 0 or G'(xo,z,y) < 0, contrary
to (5a,h). ’
Hence (6) holds for suitable positive €,8 . On the other
hand there exists a positive constant /4,:/4(&) such that
(n o(x%,y) > m
for all y of S outside S', For G(xo,y) is non-negative in S (asa
xOCR'), vanishes only on S!', and is continuous on the compact
set S,
As x° is an interior point of R, we have for sufficiently
small positive &
F(x° + t2) = F(x°) + tF1(x° + otz, z)
(}(xo + tz,y) = G(xo,y) + to'(x° + etz,z,y)
where 6 stands for any quantity between O and 1. If here t is

chosen so small that

2
t V= zy <€, teMaximum [G'(x,z,7)| < Mo,
1 yc s
xcx$

we can apply (6), (7) and find that

F(x° + tz) € F(x°) - t§ < F(x°)

G(x° + tz,y) 2 G(xo,y) + t85 >0 for all yCSe'

6(x° + tz,y) 2 pu-t|G'(x%06tz,2,y)] >0 for all y of S outside

s¢

This would however contradict the assumed minimum property of x°,
Consequently, there can be no z satisfying (5a,b).

The non-cxistence of a solution z of the system of linear

homogeneous inequalities (5a,b) can be seen to be equivalent to

the existence of non-negative solutions of a certain system of
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EXTREsUii PROBLEMS WITE INEQUALITIES 191
2)

equations, For this purpose we introduce the "representative"
points corresponding to (5a,b), i.e. the points in n-space given
respectively by
) a =(-F(x°),...,-F (x°))

py = (69(x%,7),...,6,(2%,y))  for y &5t
The non-existence of a solution z of (5a,b) implies that the set
= consisting of q and all py does not lie in an open half-space
bounded by a hyper-plane through the origin, Then the origin is
a point of the convex hull of 2. . As in addition, as a conse-
quence of our assumptions, Z. 1is closed and bounded, 1t follows
that the origin belongs to a simplex with vertices in :E:, where
the point q may be chosen as one of the vertices.B) Then the
origin is center of mass of & +1 non-negative masses (s ¢ n),

located in q and s other points of :E . Equations (la,b,c,d) are
the analytic expression for this fact,

2. Sufficient conditions for & minimum, Equivalence with finite
systems of inequualities,
Theorem II.
Let x° be an interior peint of R and belong to the set R' of
all points x of R, which satisfy
G(x,y) 20 for all yc S,
Let there exist a function ¢ (x) of the form

8
$(x) = AF(x) = > A G(x,3")
r=1

2) See L, L, Dines: "Linear inequalities," Bull, Am. Math,
Soc, vol. L2 (19%6), pr. 552-365. R, W, Stokes: "A geometric the-
ory of linear inequalities,® Trans. Am, Nath, Soc, vol, 33 (19%1),
pp. T782-805. _

3) That one of the vertices can be chosen arbitrarily in :E,
is evident from the proof of the fundemental theorem that any point
of the convex hull of 2. belongs to a simplex with vertices in .
See Bonnesen-Fenchel: "Theorie der konvexen K8rper,' p. 9.
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192 FRITZ Joun

where y €= S, such that (lLa,b,d) hold, Let in addition the matrix
AoF, (x°) 6, (x°,5%) 6, (x%,5%) .....0,(x0,5%)
AR (x") e (=05 e (x°,52).....6,(x0.50)
have rank n,
Then F(x) has a relative minimum at x° in the set defined by
the finite number of inequalities
(9) a(x,55) 20 for r =1,...,8
and has, a fortiori, a relative minimum at x° for the set R!,
Proof:
If F(x) did not have a relative minimum at x° for the set (9),

we could find a sequence of positive numbers tr and a set of points

PR et En’ such that

1im t, O zn (F,)% =1
r->00 r ’ 1 =1 1

Fx° + trzr) < PF(x°)
6(x® + t,27,55) 2 0 for k =1,...,s.
Then with sultable 6 between 0 and 1

P (x° + ot,2",27) £ 0

G(x + 0t 2",2",7%) = 0 for k =1,...,s.
For a suitable subsequence the 2T converge towards a vector 2z #0,
for which then

F1(x%,z) £ 0

k

G'(x°,z,y ) >0 for K =1,.0e45.

But, as ¢ (x) is stationary at x°®, we have

8
0 = &1(x%2) = A_FN(x°,2) - 31 AGH(x0,2,79).
ksl
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EXTRENUM PROBLEMS WITH INEQUALIT IES 193

Hence, making use of (lib), we see that z satisfles the system of
linear homogeneous equations

AF (x%,2) =0, 6'(x°,z,y5) =0 fork=1,...,5.
The existence of a solutlion z # 0 of this system contradicts how-
ever the assumption made on the rank of A, This completes the
proof of theorem II,

Theorem II shows that under suitable conditions a relative
minimum of F(x) for the set R! determined by infinitely many ine-
qualities is at the same time a relative minimum for the set de-
termined by a suitable finite number of these inequalities., An
example will show that this is not the case for every minimum
problem, Consider the problem of findiné the minimum of the func=-
tion

F(x) = -x2

in the set of all x satisfying the inequalities
(10) G(x,y) = ye-yxz =0 for all y with 0 ¢y < 1.
The set R! of all x satisfying (10) consists of the point x =0,
That point then is elso a relative minimum point of F for the set.
If, on the other hand, x 13 only subjectez to a finite nmumber of
inequalities

a(x,v5) 20 for k=1,...,s,
where 0 ¢ yk < 1, then all points of a neighbourhood of x=0 are
admitted, and F(x) has no relative minimum in the resulting set at O.
L)

3. Application to minimum sphere containing a set,

Let S be a bounded set in E,. A sphere in E  may be described

) See H, W, E, Jung: "Ueber die kleinste Kugel, dile eine
rdumiiche Figur einschliesst," Journal flir die reine und angewandte
Mathematik, vol, 123 (1901), pp. 241-257. For a historical account
of this well knwon problem See the paper by L. X. Blumenthal and
G, E. Wahlin: "On the spherical surface of smallest radius enclos-
ing a bounded subset of n-dimensional euclidean space,” Bull, Am,
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194 FRITZ JOHN

by x=(x1""’xm+l)' where XyseeesXy BT the coordinates of its

center and x the square of its radius, Let x° denote the

m+1
sphere of least radius enclosing S, The existence of a sphere of
least positive radius enclosing S 1s evident, 1f the assumption isa
made that S contains at least fwo distinct points,
Then

(11a) F(z) =x .4
has a minimum for x=x° in the set of all x satisfying the inequal-
ities

m
2
(11p) &(x,y) = X1 T 2: (xi-yi) 2 0 for all yCS,
i=1
As every sphere containing S also contains the closure S of S, we
can replace S by S in (11v).

According to theorem I we can find s points (8 €m+1) yl,

vee»¥® of S and numbers A ,..., Ay such that

o
8
(12a) A T2 A
r=1
8 r o
(12b) E Ar(xi-yi) =0 fori=1l,,,.,m
r=1
. o m 2
(12¢) n41 "~ E (xi-y{) =0 for r =1,...,8
i=1
(124) Ao 20, A, >0,...,A >0,

It follows from (12a,d) that A > 0. From (12) we get for any

= (xl""’xm+1)

S m m
2
2 Admpar - 2 (xgevD) ) R R P )
r=1 i=1 1=1
Math, Soc., vol, 47 (1941), pp. T71-777.
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EXTREMUM PROBLEMS WITH INEQUALITIES 195

This 1dentity shows that any sphere containing the points yl,...,
y° has a radius g‘/;z?x_‘fl s Where the = sign only holds, if its
center 1s also at (7{,...,1{2). Hence the smallest sphere contain-
ing S is uniquely determined, and i1s at the same time the smallest
sphere containing the points yl,...,ys of the closure of S,

1f Drt denotes the distance of the points yr and yt (r,t =
1,.0.055), W have from (12)
> a0l - S Aeggh] = 22 8,
r¢t r,t,i
On the other hand

2

AN (T ) w2
Dividing the last two inequalities by each other and observing
that the Ar 7\t are positive, it follows that

(13) = dlameter of S ;Ma:lg%rgum D.. 2 I/ iﬂ_l x0 41

As s ¢ m+1, this leads to "Jung's inequality

(b D > [2m+1) 4

m
between the diameter D of a set S in B, and the radius R of the
smallest sphere containing the set.S)
This result can be extended in varicus directions, Following
L. A, Santaldﬂé) we can consider a set S, which lies on the sur-
face K of the unit=-sphere in Ey and is contained entirely in a
closed subset interior to a heml-sphere of K,
We consider the set yl,...,ys belonging to S through (12).

56% See Jung, l,c,, note L.

"Convex regions on the n-dimensional spherical surface,"
Annels of Mathematies, vol, 47 (1946), pp. LLB=L59.
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196 FRITZ JOEN

1t yl,...,ys do not lie in a hyper=-plane of Em’ then X is the
smallest sphere containing S, for the yr lie on the smallest
sphere and lle only on one sphere, This however is impossible,
as S 1lies in a closed subset interior to a hemlsphere of K, and
hence 18 certainly contained in spheres of radius <1,

Consequently yl,...,ys must lie in an (m-l)~-dimensional lin-
ear space, Then however the inequality (18) between dismeter of
the set of the yr and the radius of the least sphere containing
the yr applies with m replaced by m-l, As the least sphere con-
taining the yr 1s identical with the one containing S, we have for
S

(15) D 2y mf’f R .

We can introduce the "spherical diameter" A of S as the least

upper bound of the lengths of the greatcircle arcs on K jolning any
two points of S, Then obviously
D =2 sin -4 |
2

Similarly we can introduce the "spherical radius" L0 of the least

"spherical" (m-l)-dimensional sphere on K containing S, Obviously
R = sinp,

We then obtain form (15), as analogue of (1) in (m=-1)-dimensional

spherical space of curvature 1, the inequality

2 sin A :_-y 2m sin
2 - -1 £

m
or 2
m co8~ 0 =1
(16) cos A < 5
- m=1

This inequality 1s the best possitle one between o and A as is
seen from the example of a set S on K consisting of the vertices

of an m-dimensional regular simplex.7)
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EXTREMUM PROBLES WITH INEQUALITIES 197

In a different direction an obvious extension of (1l}) to Hil-
bert space suggests itself for m ->o00:
If S is a set in Hilbert-space with the property that any two

points of S have a distance ¢ D, then there exists a point in

=

Hilbert space, from which all points of S have a distance < =D,

/2

For a proof of this statement one forms the projection Sn of
S on the xl....xn-coordinate plane, It 1s easily seen that the
center

(X]3%5,5 ¢4 03%0:0,0,000)

ne

of the smallest sphere containing S, converges for n—> o towards
a polnt of Hilbert space with the desired properties,

The constant f% is again the best possible one in this con-
nestion, as is shown by the example of the set consisting of the

points (1,0,0,...),(0,1,0,....),(0,0,1,0,....), etc.

L. Application to the ellipsoid of least volume containing a set
S in Em.8)
A solid ellipsoid in running coordinates Yys oo,y may be

described by a relation

7) Santald 1l.c, obtains an inequality, which in appearance
is stronger than (16) for A > W/2, The explanation of this dis-
Cregancy must lie in the fact that he uses a different definition
of "spherical diameter" from the one used here, (No definition of
that term 1s given in his paper.) For sets of spherical diameter
>W/2 (as used here) the diameter of the set need not be the same,
88 that of its "spherical convex hull," whereas they seem to be
the same in Santalo's use of the term,

B) Related questions have been considered for m=2 by
F. Behrend: "Ueber einige Affininvarianten konvexer Bereiche", .
kath, Ann,, vol, 113 (1337), pp. T13-7L47; "Ueber die kleinste um-
beschriebene und die grosste einbeschriebens Ellipse eines konvexen
Bereiches™, ibid,, vol. 115 (1958), pp. 379-41l; F, John; "Homents
of inertia of convex regions", Duke Math, J,, vol, 2 (1936), pp.
h}47']452;
for m=3 vy 0, B, ader: "An affine invariant of convex regions",
Duke Math, J. vol. Ly (1938) pp. 291-299; for general m by F, John:
An inequality for convex bodies ", U, of Kentucky Research Club
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198 FRITZ JOBN

m
(17) > X (¥ (yy-x) 21
i,k=1
where
(28) Tk = P
and the X are coefficlients of a positive definite quadratic form,
The volume of the ellipsoid 1s given by
w
V= o ,

ya

where com denotes the volume of the unit-sphere in E; and
a =det(x,,).

If the assumption is made that S is not contained in any
hyper-plane, the existence of an ellipsoid of least volume contain-
ing S can be seen as follows, There is a sphere of radius r >0
contained in the convex hull of S, and hence contained in any el=-
lipsoid, which contains S, Thus any ellipsoid containing S con-
tains the sphere of radius r about the center of the ellipsoid,

We have then for amy Xy, ,Xy satisfying (17) for all y &S

<1

=
B
g
g
™M
M
=
W
#.1

As the x,, are also coefflcients of a definite form, it follows

that

Thus the Xy satisfying (17) for all y &S form a bounded set,

Mor have f th

oreover we e for o0se xik,x1
lim V = oo mrhr“”%%»m,

as the ellipsoid contains the convex hull of S and the point (xl'

Bull. 8 (1942), pp. 8-11.
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EXTREUi PROBLEMS WITH INEQUALIT IES 199

...,xm). Conzequently there exists a set xgk, xg, for which V is
a minimum, among all Xy which satisfy (18) and (17) for all y <
S, and for which the x,;, are coefficlents of a positive definite
form.9)

We are here again more interested in deriving significant
properties of the minimum ellipsold than in actually "determining"
it in terms cf S,

As V and =d tako their least value simultaneously, we can con-
clude from theorem I that there exist non-negative constants Ab’

ey As, which do not all vanish, such that the function
K]
N r s
(18) $(xi= A a+ Z 7&-[1' Z xik(yi-xi)(yk—xk)]
r=1 i,k

of the n = B{m + 3) independent variables

Xy (1t =1,,..,m)

X (i,k =1,..,,m; i< k)

has a critical value at xo, Here yl,...,ys are polnts on the boun-

dary of the convex hull of S, for which
> xf (YI-x%)(3y-x°) = 1.
1,k

As ¢ (x) 1is symmetric in x and X4 the first derivatives of @

1k
with respect to the Xy (1=1,...,m) and all Xy (1,x =1,..,,m)
must vanish at thé critical point, We mey apply an affine trans-
formation to Em, 80 that the minimum ellipsoid becomes the unit
sphere about the érigin:

o _ o _
Xy = Oq 0 *p =0.

——

9) For a2 minimizing sequence the—xi.K cannot tend towards the

coefficients of a non-definte form, as the determinant 4 of the
X4y has to become a maximum, and hence is bounded away from 0.
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200 FRITZ JOEy

(_gg;;>x1k - 5ik = Srt,

As

we obtaln the following relations:

s
rr
(19a) Ao Sik = E ALY Yye for 1,k = 1,..s,m
=1
s
(19b) 0= E Aryi for i =1,.,..,n
r=1
(19¢) A, 20, Ay >0 ,..0,A, >0
o 2
(194) E (yi) =1 for r = 1,,..,3
i=1
Sunming (19a) over all L=k, we obtain from (19d4) the rela-
tion
s
(199) mxo:‘ Z AI‘ )
=1

which shows that Ao is positive., It follows from (19) for any

ellipsoid containing the points yr
r
mA =2 Az AL (> xik(yi_xi)(yxl;_xk))
r r i,k

= A2 Ry R X NR 2 N Ry
1 Tx 1

10
Zm Xo(det xik)l/m . )

Consequently the volume of any ellipsoid containing S is at least

10) For a deinite form the expression >, x,, 18 the sum of

i
the Elgen=-values, d = det(xik) is the product. Hence by the well
known 1inequality between arithmetic and geometric means it follows
that S xis > mdl/m
T i1 =
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EXTREMUM PROBLEMS WITH INEQUALITI=S 201

equal to that of the unit-sphere., This shows that the ellipsoid
of least volume containing S 18 at the same time the ellipsoid of
least volume containing the points yl,...,ys of the boundary of

the convex hull of S, where s < m(m+3) .
2

Let Uypeeesty be any numbers with Zui = 1, Introduce
i
m r
PL= >0 Wy
i=1
Then, because of (19d)
(20) ‘Pr\<___l for r =1,,,.,8.

On the other hand we have for any t, using (19a, b e)

s (p +‘c)2 = ('c2 1 ) L]
z :7& r + = E A -
r=1 r=1

It follows that

(21) Maximum (P + £)2 > 2+
r

=8 L

Hence for any t there exists an r such that

PPr2te -0,
r r m =
The lefthand side of this inequality is a quadratic function of
Pr’ whose roots may be o<, Ff' . We then see that for any OC,@
with <@ = - % , there 1s a P_ outside the interval

x <x < 3,
If we put

(22) M = Ma.x%mum P, -p= M:Ln%mum P,

it follows that

(23) M > % .
Consequently

(2L) M 2 —2

gb- FL = ﬁ ]

and, beczuse of (20),

557
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(25) Mo

B+

: Moz Lo

As M and m are the distances of the two planes of support of the
set formed by the yr in the direction u, it follows that the con-
vex hull of the yr contains the sphere of radius % about the ori-

gin, and that the distance of any two parallel planes of support

of that convex hull is = /é; . The same holds then for the con-
vex hull of S, We have then the following theorem in terms of the
original space before the affine transformation:

Theorem III,

If K i1s the ellipsoid of smallest volume containing a set S
in Em’ then the ellipsoid K' which i1s concentric and homothetic
to K at the ratio 1/m is contained in the convex hull of S,

The example of a simplex shows that the constant % is the
best posslible one in this connection,

As the boundary of the convex hull of S may be an arbitrary
convex surface, we see thaut any closed convex surface liles be-
tween two concentric homothetic ellipsolds of ratio = % . We also
have from (2l):

Any convex body can be transformed by an affine transformation

11
into a body, for which the ratio of diameter and breadth is é-itn

A stronger inequality can be derived in the case, where S 1:
symmetric to a polnt, say the origin, Let K be the ellipsoid of
least volume containing S, which has 1ts center at the origin.

In this case we again obtain A_,..., Ks.yl,...,ys, such that
(19a,c,d) are satisfied, We can conclude that (21) holds for t =

0, i.e. that

11) Here "breadth" is defined as minimum distance of any two
parallel planes of support,
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EXTREMUM PRORLEWS WITH INEQUALITIES 203

Meximum P'2 > L,
T T =m

Then of any two parallel planes of support of the convex hull of

S (after suitable affine transformation) at least one has a dis-

tance from the origin, As however S is symmetric to the

1
Vm
origin, the same holds then for the other plane of support., Hence:

If S is a set symmetric to the point O, and K the ellipsoid
of least volume containing S and having its center at O, then the

ellipsold, which is concentric and homothetic to K at the ratlo
1
is contained in the convex hull of S,
vm

Again is the best possible constant in this connection,
as is seen from the example of the m-dimensional "cube" or of the
m-dimensional analogon to an octahedron,
If the convex hull of S is represented by its "gage function"
("Distanzfunktion"),le) we have the following theorem:
For any function f(x) = f(xl,...,xm), which satisfies the
conditions
fpx) =\l £(x) for all numbers
f(x) >0 for x# 0
f(x +y) < £(x) + £(y)

there exists a positive definite quadratic form Q = Q(x), such that

/E—Q(x) < f(x) <€y/Q(x) for all x,
It 18 tc be expected that for a convex body S the ratio of
minimum circumscribed ellipsoid to the volume of S reaches its
largest value for a simplex (respectively for a cube, in case S is

symmetric to a point). However the author has been unable to prove

—

12) See Bonneéen-Fenchel, loc, cit, p. 21,
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204 FRITZ JOHN
13)

this statement for general m, If true, the statement must be

a consequence of the relations (19), which are characteristic for

the circumscribed ellipsoid of least volume,

13) For m = 2 thils was proved by F, Behrend, loc. cit.
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