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1. Since the classical work of Minkowski and Jensen it is well known that 
many of the inequalities used in analysis may be considered as consequences 
of the convexity of certain functions. In several of these inequalities pairs of 
"conjugate" functions occur, for instance pairs of powers with exponents 
a and a related by 1/a + 1/a = 1. A more general example is the pair of 
positively hm;nogeneous convex functions defined by Minkowski and known 
as the distance (or gauge) function and the function of support of a convex 
body. The purpose of the present paper is to explain the general (by the way 
rather elementary) idea underlying this correspondence. Subjected to a more 
precise formulation the result is the following: 

To each convex function j(x1o ... , Xn) defined in a convex region G and 
satisfying certain conditions of continuity there corresponds in a unique way 
a convex region r and a convex function cfJ(h, ... , ~,) defined in r and with 
the same properties such that 

(1) X1b + ... + Xn~n ~ j(Xl, .•. , Xn) + c/l(~h .•• , ~n), 

for all points (x1, ... , Xn) in G and all points (h, ... , ~n) in r. The inequality 
is exact in a sense explained below. The correspondence between G, f and 
r, q, is symmetric, and the functions f and q, are called conjugate.1 

The hypersurfaces y = f(x 1, ••• , Xn) and 11 = cf>(~h ... , ~n) correspond to 
each other in the polarity with respect to the paraboloid 

2y = X12 + ... + Xn2 • 

Let F(x) be strictly increasing for x E; 0. Then f(x) = J: F(x)dx is convex, 

and its conjugate function is q,(~) = J: <P(~)d~ where <I>(~) is the inverse function 

of F(x). The inequality (1) for n = 1 therefore yields the well-known in­
equality of W. H. Young2 

x~ ~ J:F(x)dx + J:.P(~)d~. 
(1) may thus be considered as a generalization of this inequality. 

Received March 24, 1948. 
'The case n = 1 has been considered by S. Mandelbrojt [3] under the assumption that the 

ranges G and r are identical with the entire axis - oo < x < oo. This, however, is incom­
patible with the complete reciprocity between! and q, which will appear from an example given 
below. Mandelbrojt's formulation of the theorem is thus not quite correct due to the fact 
that the least upper bounds occurring in it may be infinite. 

2See e.g. [2] p. 111. 
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If f(x 1, ••• , Xn) is positively homogeneous of degree one, then G is the entire 
space x11 ••• , Xn while r is closed and bounded, and q,(~t. ... , ~n) is identically 
zero. In this case (1) expresses that j(x1, ... , Xn) is the function of support 
of the convex body r.3 

2. The euclidean spaces with coordinates x1o ... , Xn and X1, •.• , Xn, Y 
will be denoted by Rn and Rn+l respectively, points and vectors in these spaces 
by x and x, y respectively. Furthermore we write 

x' + x" = (x'1 + x"1, ... , x'n + x"n), ~X= (~x1r ... , ~Xn), 

:Zx~ = X1h + • • . + Xn~n· 
(}will always denote a number in the interval 0 < (} < 1. 

The point set G of Rn is supposed to be convex, i.e. if x' and x" belong toG, 
the whole segment (1 - 6)x' + 6x" belongs to G. But G need neither be closed 
nor open nor bounded. The interior points of segments belonging to G are 
shortly called the interior points of G. All other points of accumulation of G, 
belonging toG or not, will be called the boundary or extreme points of G. 

A function f(x) defined in G is called convex if 

(2) f ( (1 - 6)x' + 6x") ~ (1 - 6)f (x') + 6f (x") 

for any two points x' and x" of G and all 6. It is well known that this implies 
thatj{x) is continuous at the interior points of G. For our purpose we have 
also to consider the behaviour of f(x) at the boundary points. Let x* be a 
boundary point of G. For functions of one variable lim f(x) exists or is ro. 

s+x* 
But this is not necessarily the case for functions of several variables. If x* 
belongs to G the only general conclusion to be drawn from (2) is that 

(3) lim f(x) ~ f(x*); 
x+>:* 

for, from 
f ((1 - 6)x + 6x*) ~ (1 - 6)f(x) + 6f(x*) 

it follows that 
lim f(x) ~ limj((1 - 6)x + 9x*) ~ f(x*), 
x+x* B+l 

and (2) remains valid if f(x*) is replaced by any other value satisfying (3). 
If necessary, we now change G and f by adding to G all those boundary 

points x* not yet belonging to G for which lim f(x) is finite and by de­
x+x* 

fining fat these and at the boundary points previously belonging to G by 

(4) f(x*) = lim f(x). 
x+x* 

The new G and the function! obtained in this way are obviously again convex; 
for, letx' and x" be arbitrary points of the new G and x' <•> and x"<•>• v= 1, 2, ... , 

•See e.g. [1) p. 23-24. 
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sequences of interior points of G such that 
x' <•> + x', x" <•> + x", j(x' <•>) + j(x'), j(x" <•>) + f(x"), 

then we get from 
J((1- fJ)x'<•> + fJx"<•>) ~ (1 - fJ)j(x'<•>) + Oj(x"<•>) 

for v + oo 
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lim f(x) ~ lim J((1-0)x'<•> + Ox"<•>) ~ (1-fJ)j(x') + Oj(x"}, 
x+(l- 8)x' + 6x11 •+"" 

which shows that (1 - O)x' + Ox" belongs to G and that (2) is valid, as the 
left-hand side is f ( (1 - fJ)x' + Ox") . 

With (3) in mind we may say that (4) expresses that the functions which 
will be considered in the following are convex and semi-continuous from below, 
and G is "closed relative to j," i.e. all boundary points at which lim j(x) is 
finite belong to G, or in other words, at each boundary point which does 
not belong to G we have lim j(x) = oo. 

3. The theorem to be proved may now be formulated thus: 
Let G be a convex point set in R" and j(x) a junction defined in G convex and 

semi-continuous from below and such that lim j(x) = oo for each boundary point 
o:+x• 

x* of G which does not belong to G. Then there exists one and only one point set r 
in R,. and one and only one function q,(~) defined in r with exactly the same pro­
perties as G and f(x) such that 
(5) ~x~ ~ f(x) + q,(~). 
where to toery interior point x of G there corresponds at least one point ~ of r for 
which equality holds. 

In the same way G,j(x) correspond tor, q,(~). 
We define r as the set of all points~ with the property that the function 

l:x~- j(x) is bounded from above in G, and we define q,(~) in r as the least 
upper bound of this function: 

q,(~) = l.u.b. (~x~- j(x)) . 
o:eG 

Then (5) is valid. The inequality l:x~ - f(x) ~ z or 
f(x) E: ~x~ - z 

means that the hyperplane y = ~x~ - z in R"+1 with the normal vector ~. -1 
lies nowhere above the hypersurface y = j(x), and - z is the intercept of this 
hyperplane on the y-axis. It is a well-known fact that there exists at least 
one hyperplane of support of the convex hypersurface, i.e. a hyperplane which 
contains at least one point of the hypersurface and lies nowhere above it. This 
shows that r is not empty. Further we see that if there exists a hyperplane 
of support with the normal vector ~. -1 and if X 0 , j(x0 ) is a point of contact, 
then we have 

ct>W = ~x·~- f(x0 ), 

and - q,(~) is the y-intercept of this hyperplane. If x0 is an arbitrary 
interior point of G, a hyperplane of support through X0 , f(x•) exists, and 
this proves the assertion on the equality sign in (5). 
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It is evident that r and ¢(~) are convex. In fact, let e and ~" be arbitrary 
points of r, then we have for XEG, 

~x~' - f(x) ~ ¢(~'), ~x~" - f(x) ~ t/>(1;"), 
hence ~x((1- o)e + fJ~") - j(x) ~ (1 - O)q,(e) + Oq,(e') 
which shows that (1 - O)e + 8~" belongs to r and that 

q,( (1 - o)e + o~") ~ (1 - o)q,(~') + oq,(~"). 
Let now 1;* be a boundary point of rand l;ef, XEG. Then it follows from (5) 

that lim ¢(1;) !;;; ~xi;* - f(x) 
~+~* 

and this shows on the one hand that ~*Ef if lim q,(l;) is finite, i.e. that r is closed 

relative to q,(~). and on the other hand that 
lim ct>(l;) !;;; q,(l;*), 
~~* 

i.e. that tJ>W is semi-continuous from below. Hence r and q, have the same 
properties as G and f. 

4. It remains to be proved that if we start with r and ct>(~) the same pro­
cedure gives G and j(x) again. We have to consider the set G* of all points x 
for which ~~x - q,(~) is bounded from above in r, together with the function 

f*(x) = l.u.b. (~i;x - ti>W) 
t<r 

defined in G*. 
If xeG we get from (5) 

(6) ~l;x - ct>W ~ f (x) 
for all ~tT, hence G C G* and f*(x) ~ f(x) in G. But to an interior point x of G 
there corresponds a~ such that equality is valid in(6), which impliesj*(x) i?;,f(x). 
Hencef*(x) = f(x) at the interior points of G and, as both functions are convex 
and semi-continuous from below, also at the boundary points of G. 

Let now X 0 be a point of Rn not in G. We have to prove that it does not 
belong toG*, i.e. that 
(7) l. u.b. (~~x0 - q,(~)) = oo. 

f• r 
Since the quantity ~~X0 - tJ>W is the y-coordinate of the point at which the 
hyperplane 

y = ~l;x - q,(~) 

of R"+1 intersects the line x = X 0 parallel to they-axis, we have to show that 
there are hyperplanes below the hypersurface y = f(x) which have arbitrary 
large intercepts on the line x = x0 • Suppose first that x0 is an exterior poirit 
of G. Then there exists a hyperplane H parallel to they-axis which separates 
the line x = X 0 from Gandy = f(x). Consider any hyperplane of supportS 
of y = f(x). LetS turn around the intersection of HandS so that the part 
lying below y = f(x) moves downwards. Then the point at which S intersects 
the line x = X 0 moves upwards and tends to infinity. Suppose next that x0 is 
a boundary point of G but not belonging to G. Then we have f (x) + oo for 
x + X 0 • Consider any segment belonging toG and having X 0 as one of its end 
points. Let x' be a fixed point and x" a variable point of the segment between 
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x' and X 0 such that f(x") > f(x'). A plane of support through x", f(x") then 
intersects the line x = X0 at a point they-coordinate of which is greater than 
f(x") and therefore tends to infinity if x" + X0 • This completes the proof of 
the theorem. 

s. In section 1 it has been asserted that the hypersurfaces y = f(x) and 
'II = q,{E) correspond to each other in the polarity with respect to 2y = :Z:x2. 
This is obviously true in the sense that each of the hypersurfaces is the envelope 
of the polar hyperplanes of the points of the other. For y = f(x) may be 
considered as the envelope of the hyperplanes 

y = :Z:xE - q,(E), 
where cEr is the parameter, and the poles Of these hyperplanes are the points 
E. ,P(E). 

6. Suppose now that y = f(x) is strictly convex, i.e. each hyperplane of 
support contains only one point of y = f(x). Let further 71 = ,P(E) satisfy the 
same condition; for y = f(x) this means that there passes at most one hyper­
plane of support through a point of y = f(x). Then f(x) has continuous 
derivatives4 

and we have 

iJf 
f,(x) =­ax, 

E• = fi(x). 
These relations establish a continuous one to one correspondence between the 
interior points of G and those of r. Solving them with respect to the x we get 

X;= tPi(E} 
where, for reasons of symmetry, the q,, must be the derivatives of q,. From this 
it is seen that in the case of n = 1 the derivatives of two conjugate convex 
functions are mutually inverse functions. This proves the assertion of sec· 
tion 1 on the inequality of Young. Furthermore we get an explicit expression 
for ,P(c) if f(x) is given, viz. .. 

q,(E) = ~ E,q,,(E) - f ( q,,(E)) 
i-=1 

valid in the interior of r. Hence, our correspondence between f and q, is the 
Legendre transformation of the theory of differential equations. 
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