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PREFACE

This Memorandum contributes to an aspect of the re-
search program of The RAND Corporation consisting of
basic supporting studies in mathematics. Considered is
the application of a theorem of Fritz John to mathe-
matical programming.

The author, a consultant to The RAND Corporation, is
a Research Assistant at the Operations Research Center,
Richmond, California, where some of the earlier research
was conducted, partlally supported by the Office of
Naval Research, Contract No. Nonr-222(83), with the
University of California. Preparation of the Memorandum

was undertaken under U. S. Air Force Project RAND.
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SUMMARY

In this Memorandum, the author specilalizes a
theorem of Fritz John to the case of mathematical pro-
gramming. It is shown that when a certain multiplier is
positive, the well-known Kuhn-Tucker conditions obtain.
A sufficient condition for the positivity of this multi-

plier is proposed.
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A THEOREM OF FRITZ JOHN IN MATHEMATICAL PROGRAMMING

1. INTRODUCTION

A 1948 article [1] by F. John, entitled "Extremum
Problems with Inequalities as Subsidiary Conditions,"
appears to be the first paper in whlch the classical
theory of equality-constralned extremization is extended
to deal with inequality-constrained extremization. John
establishes a theorem on necessary conditlions for a
minimum and another theorem on sufficlent conditions for
a relative minimum. The remainder of the paper is de-
voted to applications of the results. Only the first
of these two theorems will be mentioned here.

A more widely known paper is "Nonlinear Programming"
by H. W. Kuhn and A. W. Tucker [2] in which John's
article 1is referred to but not discussed in detail. The
Kuhn-Tucker paper treats necessary and sufficlent con-
-ditions for an inequality-constrained maximum.

The purpose of this Memorandum is to point out how
the addition of a suitable regularity condition in John's

theorem enables one to deduce the "Kuhn-Tucker conditions."
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2. THE MATHEMATICAL PROGRAMMING PROBLEM

A typical formulation of the mathematical program-

ming problem is
Maximize f(x) subject to x€E g(x) 20 . (2.1)

Further assumptions on the function f and the mapping
g yield special types of programming, such as linear,
quadratic, concave, etc.

The classical problem referred to earlier 1is
Maximize f£(x) subject to x€E_ g(x) =0 (2.2)
where [ 1s a differentiable function and

g(x) = lgy(x),....g (x)1"

is a vector-valued differentiable mapping on

E (m < n) . In the method of Lagrange (or undetermined)

multipliers, one forms the Lagrangian function

L(x,u) = £(x) + ulg(x) (2.3)

If at a maximum, x° , the Jacobian matrix (agi/axj)

has rank m , the following conditions must hold:
LX(XO,UO) =0 some u° (2.4)

g(x%) = o . (2.5)
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One seeks the solutions of the problem (2.2) among the
extrema of the unconstrained Lagrangian L{x,u) .*

The conditions (2.4) and (2.5) are necessary, though not
sufficient, for an extremum.

We shall state John's theorem below, but &ith cer-
tain notational changes and maximization replacing mini-
mization. The intention is to maintain consistency in
problem statements.

Let R Dbe a set of points in En and [ a real-

valued function on R . Let S be a compact metric

space. Let g(x,0) g,(x) be a real-valued function

on RxS . Now define the set

R = {xeR| g,(x) 2 0 all oes}. (2.6)
We seek XOGR‘ such that
f(xo) = max f(x) .
xeRt (2.7)

Assume that £ and aﬁ/axj are continuous on R
(j =1,...,n) and that g and Bg/kj are continuous
on RxS (j =1,...,n) . Notice that RxS can be

given a metric space structure.t

*See Ref. 3.
See, for example, Ref. 4, p. 91.
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With these notations we are prepared to state

Theorem A:¥ Let xOER' be an interior point of

R , and let

f(xo) = max f(x)
X€ER!

Fay

Then there exists a finite set of points, 01,...,OS€S R

and numbers, uO,uq,...,uS , not all zero, such that

g (x°) =0 = 1,...,s (2.82)
r
Up 20, u >0,...,u, >0 (2.8p)
0<sZ=n (2.8¢c)
the function (2.84)
s
8(x) = upf(x) + T ug (x)
r=1 r

has a critical point at xO ; i.e., @X(XO) =0 .

It is important to notice that the "multiplier"
Ug could be zero and that there are no regularity con-
ditions imposed on the constraint set R!

We shall specialize John's theorem to the case
where S is the set {1,...,m}--which is trivially a
compact metric space--and the variables ij are non-

negative.

*
John, Ref. 1, p. 188.
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Theorem B: Let x, maximize r(x) constrained by

g,(x) 20, 1=1,...,m, and X, 20, J=1...m

Then there exists a semi-positive (i.e., non-negative and

non-zero) vector (uo,ul,...,u‘,vl,...,vn)T such that

m
u.g (xo) =0 1i=1 m (2.9a)
184 yenes .
0 .
v.x:; =0 j=1,...,n (2.9b)
Jd J
the function (2.9¢)
8(x) = ugf(x) + % ug,(x) +
x) = uf(x) +% ug.(x) +2 v.x.
© i=1 +t j=1 I

(@]

‘has a critical point at x
In order to state the analogous theorem of Kuhn

and Tucker, we must first recall the constraint quali-

fication.*

Let xo belong to the boundary of the constraint

set

R' = {xeE lg;(x) 20 1i=1,...,m, ;20 , §=1,...,n}

Let gfl](x) be the mapoing defined by all those com-

ponent functions of g which vanish at xo . Let Il

consist of those rows of the nxn identity matrix cor-

0

responding to components of x which are zero. The

Kuhn-Tucker constraint qualification is satisfied at xo

*
Ref. 2, p. 483,

118



if every vector differential dx satisfying the

homogeneous linear inegualities

dx = 0 (2.10)

(13,0
g, (x7)ax 20, I,dx 2

is tangent to an arc contained in the set R!'. This means
that to any dx satisfying (2.10) there corresponds a
differentiable arc x =a(6) , 0 £ 9 <1, contained in

0. a(C) and some positive scalar A

R' such that x
such that a'(0) = \dx .

Theorem C:¥ Let R' satisfy the constraint quaii—
fication. In order thaf xo maximize f(x) subject to

*xeR' , i1t 1s necessary that xo and some u = (ul,...,um)T

satisfy the following conditlons:

r (x%) + g, (%) Mu z 0 (2.11a)
(XO)T{fX(xO) + [gx(xo)lTu} =0 (2.11v)
x% >0 (2.112)
g(x%) 2 0 (2.114)
uTg(xO) =0 (2.11e)
uzo0 (2.11r)

These relations have also been called the guasi-

saddle point conditions [51. They are necessary condi-

tions of optimality in the program

maximize f£(x) subject to xeR! (2.12)

*
Kuhn-Tucker conditions, Ref. 2, p. 484,
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when R' satisfies the constraint qualification. The

program (2.12) is called the maximum problem [2].

Theorem 1: Let x° solve the problem in Theorem

B. If the multiplier u is positive, then the Kuhn-

0
*
Tucker conditions hold.
Proof Ir Uy > 0 we may assume Ug = 1 . Let
T T .
u = (ul,...,um) and v = (vl,...,vn) Then
0 0, 4T
= -— -]
fx(x ) + [gx(x Y1 u v <0 (2.13)

which is (2.11a). From (2.13) and (2.9b) we get

(XO)T{fX(xO) + [gx(xo)JTu + v}

= ()T, (x) + (g, (x%)TTu} = 0

which is (2.11b). The remainder of the conditions (2.11)

are even more obvious.

3. A SUFFICIENT CONDITION FOR POSITIVE u

0

With all notations as above, let xo solve the
T
problem of Theorem B, and let (uo,ul,...,um,vl,...,vn)

be the associated semi-positive vector of multipliers.

gEl] is the mapping composed of components of g which

vanish at xo . Let X be the vector of components Xj
of x such that xg >0

*
A similar result may be found in Ref. 6, p. 227,

theugnglish translation of Ref. 4; see also Ref. 2,

p. 9.
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The regularity condition we shall impose is that

the equation
yT[gélj(xo)] =0 (2.14)

have no semipositive solution. This conditlon is

slightly more general than the nondegeneracy condition

of* Ref. 5, which is that g%l](xo) be of full rank.
Theorem 2: If g satisfies the regularity con-
dition (2.14), the multiplier Uy in Theorem B is
positive.
Proof. With X "evaluated" at %0 , we get
(i)O > 0 , and consequently v = 0 ; that is, the cor—
responding vector of multipliers is zero. Suppose

Uy = 0O . Then

[gx(xo)]Tu +v =0 (2.15)
and in particular

lex(x”)TTu + 7 = [e(x")T%u = 0 . (2.16)
Let uEl] be the vector of multipliers corresponding to
gtl] Any components in u but not in u[l] must be
zero. Therefore, we conclude

@)l 01 - 0 . (2.17)
Now u[lj is non-negative and cannot be zero, for other-

wise u in (2.15) is zero and then so is Vv .
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But this contradicts the semi-positivity of

(Uo:ul,-..,um, VisesesV )T . Hence, utl] is semi-

n
positive. However, (2.17) contradicts our regularity

assumption. Therefore, U, >0 .
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