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PREFACE 

This Memorandum contributes to an aspect of the re

search program of The RAND Corporation consisting of 

basic supporting studies in mathematics. Considered is 

the application of a theorem of Fritz John to mathe

matical prograrrmine;. 

The author, a consultant to The RAND Corporation, is 

a Research Assistant at the Operations Research Center, 

Richmond, California, where some of the earlier research 

was conducted, partially supported by the Office of 

Naval Research, Contract No. Nonr-222(83), with the 

University of California. Preparation of the Memorandum 

was undertaken under U. S. Air Force Project R~ND. 
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SUMMARY 

In this Memorandum, the author specializes a 

theorem of Fritz John to the case of mathematical pro

gramming. It is shown that \'Then a certain multiplier is 

positive, the well-known Kuhn-Tucker conditions obtain. 

A sufficient condition for the positivity of this multi

plier is proposed. 
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A THEOREM OF FRITZ J OHN I N MATHEMATICAL PROGRAMMING

1. I NTRODUCTI ON

A 1948 article [1 ] by F. J ohn, e nt it led "Extremum

Probl ems wi t h Inequal i t i e s aG Subsidiary Condi t i ons, ll

appears t o be the firs t paper in whi ch the class ical

t heor y of equality-constrained e xt r emi za t i on is extended

to deal with inequality-constrained extremi zation . J ohn

establishes a theorem on necessary conditions f or a

mf.nLmurn and anot he r theorem on eurr t ctent condition s 1'O I'

a re lat ive minimum. The rema inder of t he pap er i s de 

voted to applicat ions o f t he results . Only the f i r s t

of these t wo theorems will be mention ed he re .

A more widely known paper is "Non j dnear- Pr'ogr-amrm.ng"

by H. W. Kuhn and A. W. Tuc ke r [2 ] in which John 's

ar t i c l e 1s referred to but not discussed in detai l . The

Kuhn- Tuc ke r paper treats necessary and s uffic ient con

ditions for an inequal i ty-constrained maximum .

The purpose of this Memorandum is t o point out how

the addition of a su i t ab l e regulari ty condi t ion i n J ohn ' s

theo rem enabl e s one to deduce the "Kuhn- Tuc ke r c ondi t i on s. 11
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2. THE HATHEHATICAL PROGRAf•IMING PROBLEH 

A typical formulation of the mathematical program-

ming problem is 

Maximize f(x) subject to x£En , g(x) ~ 0 • (2.1) 

Further assumptions on the function f and the mapping 

g yield special types of programming, such as linear, 

quadratic, concave, etc. 

The classical problem referred to earlier is 

Maximize f(x) subject to x£En , g(x) = 0 (2.2) 

where f is a differentiable function and 

is a vector-valued differentiable mapping on 

En (m < n) . In the method of Lagrange (or undetermined) 

multipliers, one forms the Lagrangian function 

L(x,u) = f(x) + uTg(x) (2.3) 

If at a maximum, x0 , the Jacobian matrix (ogijOxj) 

has rank m , the follovring conditions must hold: 

some (2.4) 

0 . (2.5) 

115



-3-

One seeks the solutions of the problem (2.2) among the 

extrema of the unconstrained Lagrangian L(x,u) .* 

The conditions (2.4) and (2.5) are necessary, though not 

sufficient, for an extremum. 

We shall state John's theorem below, but with cer-

tain.notational changes and maximization replacing mini-

mization. The intention. is to maintain consistency in 

p~oblem statements. 

Let R be a set of points in En and f a real

valued function on R . Let S be a compact metric 

space. Let g(x,o) g 0 (x) be a real-valued function 

on RxS . Now define the set 

(2.6) 

We seek x 0 €R 1 such that 

r(x0 ) = max f(~) . 
X€R 1 (2.7) 

Assume that f and of/ox. are continuous on R 
J 

(j = l, .•. ,n) and that g and agjxj are continuous 

on RxS (j = 1 •... ,n) • Notice that RxS can be 

given a metric space structure.t 

* See Ref. 3. 
t 
See, for example, Ref. 4~ p. 91. 
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With these notations we are prepared to state 

Theorem A:* Let x 0 8R 1 be an interior point of 

R ~ and let 

r(x0 ) = max f(x) . 
X8R 1 

Then there exists a finite set of points, a 1 , ... ,os8S , 

and numbers, u0 ,u1 , ... ,us , not all zero, such that 

r=l, ... ,s 

the function 

has a critical point at i.e., 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

It is important to notice that the "multiplier11 

u 0 could be zero and that there are no regularity con

ditions imposed on the constraint set R' . 

We shall specialize John's theorem to the case 

where S is the set {1, ... ,m}--which is trivially a 

compact metric space--and the variables xj are non

negative. 

*" John, Ref. l, p. 188. 
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Theorem B: Let x0 maximize f(x) constrained by 

gi ( x) ~ 0 , i "' l, ... ,m , and x j :i'; 0 , j = J., .•. , n . 

Then there exists a semi-positive (i.e., non-negative and 

non-zero) vector (u0 ,u1 , ... ,u ,v1 , ... ,v )T such that m n 

uigi(xo) 0 i l, ... ,m (2.9a) 

0 
0 j l, ... ,n vjxj (2.9b) 

the function (2.9c) 

has a critical point at x 0 

In order to state the analogous theorem of Kuhn 

and Tucker, we must first recall the constraint quali-

fication.* 

Let x0 belonG to the boundary of the constraint 

set 

R' 1 , ... ,m , x j > 0 , j 1, ... ,n} 

Let g(l](x) be the mapping defined by all those com-

ponent functions of g which vanish at x 0 

consist of those rovrs of the nxn identity matrix cor

responding to components of x 0 which are zero. The 

Kuhn-Tucker constraint qualification is satisfied at 

* Ref. 2, p. 483. 

0 
X 
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if every vector differential dx satisfying the 

homogeneous linear inequalities 

(2.10) 

is tangent to an arc contained in the set R' . This means 

that to any dx satisfying (2.10) there corre?ponds a 

differentiable arc x = a(B) , 0 ~a~ l , coritained in 

R' such that x 0 a(o) and some positive scalar A 

such that c.' (o) = :A.cix 

Theorem C:* Let R' satisfy the constraint quali

fication. In order that x 0 maximize f(x) subject to 

xe:R 1 _, it is necessary that x 0 and some u = (u1 , ... ,um)T 

satisfy the following conditions: 

(2.11a) 

0 (2.llb) 

0 > 
X = 0 (2.11c) 

g(xo) 2 0 (2.11d) 

uTg(xo) 0 (2 .lle) 

u ~ 0 (2.llf) 

These relations have also been called the quasi

saddle point conditions [S]. They are necessary condi

tions of' optimality in the program 

maximize i' (x) s'.lb,ject to xt:R 1 (2.12) 

* Kuhn-Tucker conditions, Ref. 2, p. 48L!. 
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when R' satisfies the constraint qualification. The 

program (2.12) is called the maximum problem [2]. 

0 Theorem 1: Let x solve the problem in Theorem 

B. If the multiplier u 0 is positive, then the Kuhn

* Tucker conditions hold. 

Proof. If uo > 0 'I'Te may assume uo = 1 .. 

(ul, .•. , urn )T 
T 

u and v (vl, ... ,vn) Then 

fx(xo) + [gx(xo)]Tu = -v .::;:: o 

which is (2.lla). From (2.13) and (2. 9b) we get 

(xO)T{fx(xo) + [gx(xo)JTu + v} 

(xo)T{fx(xo) + [gx(xo)]Tu} o 

Let 

(2.13) 

which is (2.llb). The remainder of the conditions (2.11) 

are even more obvious. 

3. A SUFFICIENT CONDITION FOR POSITIVE u 0 

Hith all notations as above, let x 0 solve the 

problem of Theorem B, and let (u0 ,u1 , ... ,um,v1 , ... ,vn)T 

be the associated semi-positive vector of multipliers. 

g[l] is the mapping composed of components of g which 

vanish at x 0 Let x be the vector of components xj 

0 
of x such that xj > 0 

* A_similar result may be found in Ref. 6, p. 227, 
the English translation of Ref. L~; see also Ref. 2, 
p. 489. 
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The regularity condition '"e shall impose is that 

the equation 

haye no semipositive solution. This condition is 

slightly more general than the nondegeneracy condition 

or Rer. 5, which is that gl1 J(x0 ) be or full rank. 
X 

Theorem 2: If g satisfies the regularity con-

dition (2.14), the multiplier u0 in Theorem B is 

positive. 

Proof. With x 11 evaluated11 at x0 , we get 

(x) 0 > 0 , and consequently v = 0 ; that is, the cor-

responding vector of multipliers is zero. Suppose 

u0 = 0 • Then 

0 (2.15) 

and in particular 

0 T - 0 T [gx(x )] u + v = [gx(x )J u = o . (2.16) 

Let )lJ be the vector of multipliers corresponding to 

g[l] • Any components in u but not in u[l] must be 

zero. Therefore, we conclude 

(2.17) 

is non-negative and cannot be zero, for other-

wise u in (2.15) is zero and then so is v 
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But this contradicts the semi-positivity of 

(u0 ,u1 , ... ,um, v1 , ... ,vn)T Hence, u[l] is semi-

positive. However, (2.17) contradicts our regularity 

assumption. Therefore, u0 > 0 . 
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