
A GRADIE1'T METHOD FOR APPROXIMATING SADDLE POINTS 
AND CONSTRAINED HAXD~ 

Kenneth J. Arrow and Leonid Eurwicz 

P-223 

l3 June 1951 

------~----~~R~nD~ 
SANtA MONICA • CALifOINIA------

DOI 10.1007/978-3-0348-0439-4 2, © Springer Basel 201
45G. Giorgi and T.H. Kjeldsen (eds.), Traces and Emergence of Nonlinear Programming,

4



- 1 -

A GRADIENT METHOD FOR APPROXIMATING SADDLE POUlTS AND CONSTRAINED MAXD'lA 

Kenneth J. Arrow and Leonid Hurwicz 

l. Introduction. 

In the following, X and Y will be vectors with components 

Xi, Yj. By xz_o will be meant X,2 o for all i. Let g(X), fj(X) 

(j = l, ; · •, m) be functions with suitable differentiability properties, 

where f j (X)~ 0 for all X, and define 

(1) ffi / 1+-··y(,\ • 
F(X, Y) = g(X) +- [ Y. -,' l- rfj(Xf\ -

j=l J I, L J 

Let (X, Y) be a saddle-point of (l) subject to the conditions 

X~ 0, Y ~ 0; assume it unique in X. The function F(X, Y) attains its 

maximum for variation in X subject to the condition X .2':: 0 at the point 

P-22.3 
$-:p-51 

X = X. Since F is a maximum for variation in each component Xi separately, 

it follows that 

(2) 'Fx. 
l 

s·o for all i, and 

(J) X. = 0 if 'Fx. < o. 
J. 

l 

We will refer to those subscripts for which (3) holds as ~ indices and 

the remainder as interior indices. Let xl be the vector of components of 

X with corner indices, and x2 the vector of interior components. Since F 

is also a maximum for variations in x2 alone (holding x1 at 0 and Y at 

Y), and the first-order terms vanish by (2) and (3), it follows, under the 

usual differentiability assumptions, that the matrix, 

(4) FX~2 is negative semi-definite, 
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where F i':? is the matrix of elements 6 2F / 6 Xi oX j , with i and j 

ranging over interior indices, evaluated at (X, Y). 

It is shown in another paper, now in preparation, that for all 1"; 

sufficiently large, X maximizes g(X) subject to the restraints 

(5) F22 
XX 

is negative definite. 

Hence the determination of the constrained maximum is equivalent to finding 

the saddle-point of a function F(X, Y) which is linear in Y and satisfies 

(5). We seek here a convergent process for approximating such a saddle-point. 

The intuitively natural method, in terms of the motivations of the two 

players (interpreting F as the pay-off of a game in ~nich player I chooses 

X and player II chooses Y), is for the player who chooses X to move 

"uphill" with regard to variation in that variable, while the other player 

moves against the gradient with respect to Y. Such proc-esses have been 

investigated by Brown and von Neumann [ 1] 1 for the case where F is linear 

\,umbers in brackets refer to the bibliographY at the end of the paper. 

in both X and Y. In that case, the "naive" gradient method just 

described leads to an oscillatory behavior (see Samuelson [ 21 pp. 17-22) and 

must be modified. In the present case, even if the functions g, fj were 

linear to begin with, the introduction of the power 'J creates a nonlinear 

system satisfying (5); as will be seen, this implies that the naive gradient 

method will be at least locally stable. 
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2. Description or the Gradient Method. 

P-223 

6-13-51 

It must be recalled that the variables X and Y are constrained 

to be non-negative, so that the movements of the players with and against the 

gradients or X and Y, respectively, cannot carry the variables into areas 

of negativity. The gradient method for finding. a saddle-point then is the 

following system of differential equations: 

(1) xi = 0 if Fx. <o and X. • 0, 
·~ 

~ 

(2) = Fx. otherwise; 
~ 

(3) Y. = 0 if Fy_ >O and Y. = o, 
J J 

J 

(4) =- F otherwise; 
yj 

the dot denotes differentiation with respect to time. In this system the 

derivatives are discontinuous .functions of the variables. The usual existence 

theorems for nonlinear differential equations assume continuity (see [3 ], 

Chapter II). If it coulcl be shown that equations (2.1-4) have a unique 

solution for any initial position continuous with respect to variations 

in the starting-point, considerably stronger statements coulcl be made about 

the convergence of the system • 

.3. Theorem. 

Let F(X, Y) be linear in Y, possess a saddle-point (x, "Y> 

under the constraint .X~ J, Y ~ 0, and be analytic in sane neighborhood 

of (x, Y). Suppose further that (a) condition (1.5) holds and 

(b) "4>0 and 'fj>o for every interior index i or j.2 

2Analogously to 0,.;3), j is a corner index for Y if Yj • O, Fy <O; an 
j 

interior index for Y is any subscript which is not a corner index. 
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Then for every initial position in a sufficiently small neighborhood of 

(X, Y), there is a unique solution X(t), Y(t) of the equations (2.1-4), 

such that lim X(t) • X and, for every limit-point Y* of Y(t), (X, Y*) 
t-700 

is a saddle-point of F(X, Y). 

4. Proof. 

If (X*, Y*) were another saddle-point of F(X, Y), then (X*, Y) 

would be still another. That is, X'.<- would maximize F(X, Y) for variation 

in X. Then (1.5) implies that if X* is in a sufficiently small neighbor­

hood of X, then X • X*, so that X is at least locally unique. 

In what follows, let x • X -X, y • Y - Y, expanding the 

derivatives of F into power series. Then 

(1) F = F + a(x, y), 
xl xl 

where a(x, y) is a continuous vector function with a(O, 0) = 0. 

In the expansion of F , there are no constantterms by definition. 
x2 

Divide the terms of the expansion into four types: those containing 

components of xl; the terms linear in :2--, the terms linear in y; and the 

terms in x2 and y of degree higher than the first. Define the (variable) 

matrix A as follows: for any interior index i and corner index j, let 

A .. X. 
~J J 

be the sum of all terms in the expansion of FX· which have 
:r. 

X. as 
J 

a factor but do not have ~ as a factor for any corner index k < j. Then, 

is the sum of all terms in the expansion of Fx which 
i 

contain corner components of x, the summation extending only over corner 

indices. The matrix A is a function of x and y. Now consider the fourth 

type of term in the expansion of 

y only. Since F, and therefore 

F 2, the non-linear terms involving ~ and 
X 
F is linear in y, each such term must x2• 
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involve a canponent of x?-. Define the matrix B so that, for every pair of 

interior indices i and j, Bij xj is the sum of all non-linear terms x 

in the expansion of FXi which have xj for a factor but do not have Xk as 

a factor for any corner index k or for any interior index k < j. Then, 

,l B; ~ x. is the sum of all non-linear terms in the expansion o! FX. which 
j2 -.. J ~ 

contain no corner components of x as factors. B therefore is a function 

of .;!- and y; further, since each canponent of J3x2 is non-linear, B 

vanishes if both :2- and y do. 

(2) F 2 = A(x, y) ~ + F ~ 2 ~ + F ~- y + B(~. y) x2, 
X X X x-r 

where A and B are continuous matrix functions, and B(O, 0) = 0. 

Since F is linear in y, F y is independent of y. By a discus­

sion similar to the preceding, it follows that 

where C is a continuous matrix function and the vector b(:2-) is of the 

second order with respect to components of x2• 

Now define 

(4) D= (1/2) (x'x + yry). 

D is proportional to the distance in the (X, Y) epace to the saddle-point 

(X, Y}. Differentiate (4) with respect to time. 

(5) DD = x 1x + yty. 

First suppose that for each i either Xi> 0 or Fx. ~ 0 and 
~ 

that for each j either Y > 0 or F y _:::.. o. Then from (2.2), (2.4) and ( 5), 
j J 

( 6) DD = x 1F - y'F X y• 
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Substitute from (l-3) into (6) 

(7) DD = (xl)'Fx1 + (x2)•Fx2 - y'Fy 

P-223 
6-13-51 

= (.xl)•Fxl + (xl)•a(x, y) + (x2)•A(x, y)(.xl) .. (x2)•Fx2x2? + (x2)'Fx2y Y 

+ (x2)•B(x2, y) ? - ytF - y'C(x) z1 - y•F• 2 x2 - y' b(?). y X y 

The last term is homogeneous linear in y ?nd of the second order in x2. Hence, 

it can be written in the form, 

(8) yr b(x2) • (x2)t E(x2, y) (0), 

where E is a continuous matrix function and E(x2, 0) = 0. 

Each term in (7) is a scalar and therefore equal to its transpose. In 

particular, (x2)•F 2 y • y•F•2 x2. Let X Y X Y 

(9) c(x, y) = a(x, y) + At(x, y) x2- c•(x) y, 

(10) G(x2, y) = B(x2, y) - E(x2, y). 

In view of (8-10) and the preceding remarks, (7) can be simplified to the 

following expression: 

From (l) and (9), 

(12) c(O, 0) = o. 
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Let m1 be the minimum of I Fxil over the corner indices i; by 

definition, m1 > 0. By (12), we can choose (_ 1 so that every component of 

c is less than m1 whenever D < E1 • Let L 1 denote summation over the 

corner indices only; then, since xi:;;::: 0 for all corner indices, 

(:0-)rc(x,y)<m1 t1 1xt--(:0-)•Fxl• if ~rO and o<Evor 

(13) (xl)'Fxl + (xl)r c(x, y)< 0 if ~ "f 0 and D<(1 • 

From (1.5), 

Let m2 be the maximum of (x2) If 2 2 x2 subject to the condition D = l, 
X X 

~ the maximum of ~I xi I subject to the same condition. Then, 

(14) 

From (2), (8) and (10), G(O, 0) = O. If D is sufficiently small, (x2, y) 

will be sufficiently close to (0, 0) to insure that the largest of the 

components gij of G is less than - mz/(m3 ) 2 in absolute value. Then, 

from (14), 

(x2)' G(x2, y) x2 S:~~~ gij xixjl~t~2~gij llxill xj~ 
< ( --l!lzlm/)(tz I xi! )2 S- m2 o2 .$ - (x2) 'f x2x2 x2' 

the strict inequality holding provided that izlxi~~o, which 

to ~ f. 0. 

(15) 

is equivalent 

For each corner index j, yj?-0 always, while FY.> 0; 
J 

for interior 
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indices j, Fy. = 0. Hence, 
J 

(16) y'Fy ~ o. 

By (11), (13), (15) and (16), 

- 8-

(17) oo < o if D< f , x r o; on ~ o if o <C, 

F-223 
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where E is chosen smaller than ( 1 or E2 , 

so that, 

and also sufficiently small 

(18) F < O, F ':::> 0 when D ~ E, for all corner indices i and j; 
xi Yj 

(19) E < min:2 xi, E <min2 Y:.. the minima being taken over all interior 
i j J 

indices; 

(20) FX2X2 isnegativedefinitewhen X=X and yty/2<t· 

By assumption (b) of the theorem, (19) is possible with positive t By 

(1.5), Fx2x2 is negative definite when X= X and y = 0; since F is 

certainly continuous in Y, (20) can hold for sufficiently small ( 

We will now show that there does in fact exist a unique solution 

of (2.1-4) continuous in the initial position and in time if, at the initial position 

[xco),Y(o)], o<E. Let so bethesetofallindicesforwhich 

Xi(O) = o, By (19), any index in s0 must be a corner index for X. 

Similarly, let T0 be the set of all indices for which Y.(O) = 0. 
J 

By (18), 

FX. <O, Fy_>o for all indices in s0 and T0 , respectively. By the 
J. J 

differential equation system (s0 , T0 ), we shall mean 

(21) X. = F for i not in s o' 
y =- F for j not in To, 

J. xi j yj 

xi= Yj = 0 for i in so, j in To· 
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In this system, the derivatives are continuous functions of the 

variables. By the Cauchy-Lipschitz Existence Theorem (see [3], Theorem (4.1), 

p, 23), the system (s0 , T0 ) has a solution uniquely defined by the initial 

conditions. Let Z =(X, Y), and let a given solutionbeZ[t, Z(o)], where 

Z(O) is the initial position. Then it is further known ( [3 ], (7 .3), p.30) 

that 

(22) Z [ t, Z(O) J is a continuous function of Z(O) and of t. 

For every i not in s0 , Xi [ t, Z(O)] > 0 in some interval of time; 

similarly, Y j [ t, Z ( 0 )] :>O in some interval for every not in T0 • Since 

Fx. and 
~ 

t there 

in T0 • 

Fy_ are continuous functions of 
J 

is an interval in which Fx_< o, 
J_ 

The solution to system (SO' ro) 

z, which is in turn 

FY. >O for i in 
J 

is then a solution to 

(2.l-4), and further it is clearly the only one. 

continuous in 

so, and 

the system 

Since s0 and T0 contain only corner indices, xi = yj = 0 for 

all i in s0 and in T0 . If we fix these variables at 0, F, 

considered as a function of the remaining variables, has the same properties 

as assumed to begin with. Hence, (17) is valid; since D ~ 0, D [ t, Z(o)] 

(the value of D for the point Z [t, Z(O)]) is non-increasing. Since 

o [o, z(o)] < E o[t,z(o)j<E for all t. Hence, FX. < o, Fy. > 0 
J_ J 

for all points of the solution Z [ t, Z(O)]. for all i in s0 and j in T0 

The solution for (s0 , T0 ) therefore ceases to be a solution for (2.1-4) 

only when Xi [ t, Z(O)] • 0 for some i not in s0 or Yj [ t, Z(O)] = 0 

for some j not in T0 . Let this occur at time t 0 • Since D [ t 0 , Z(O)] < t, 
Xi [ t 0 , Z(O)] > O, Yj [ t 0 , Z(O)] > 0 for all interior indices by (19); 

hence, i or j must be a corner index by (18). Let s1 be now the set of 

all indices for which Xi [ t.0 , Z(O)] = 0, T1 the set of all indices for which 

Y j [ t 0 , Z(O)] = 0. Clearly, S1 includes s0 , Tl includes To• Again, the 
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solution of the syste;;;l (51 , T1 ) is the 1.u-ri.'11J.e so)tltion of (2.1-L) in some 

interval of time beginning with t 0 • The '-'rcument crir; c.· co r~peatid.; since the 

sets Si, Ti ar<" increasing an:: there are e>n::_y " finite nnmber of in1ices, 

only a finite nurnber of systems are involved. It then follows easily that the 

s~stem ( 2•1-4) has a unique solution Z [t, Z( 0 )j continuous in t and in Z(O). 

By (lB), !or each corner index i, there is a number m. <:o 
~ 

that F X. :;; mi whenever D S ( As n [t, z(o)] ~ o for all t, 
~ 

such 

D [t, Z(O)] < f . So long as xJt, Z(O)J > O, xJt, Z(O)] ~ mi' so that 

x1 [t, Z(O)] reaches 0 

Xi [t, Z(O)] = 0 for all 

corner indices of Y. 

in finite time. 

t from then on. 

Since Fx.< 0 for all t, 
~ 

The same argument holds for 

(23) xl [t, Z(O)] • yl [t, Z(O)] = 0 for all t sufficiently large. 

As D [t, Z(O)] ~ 0 for all t, D [ t, z(o)] converges to a limit. 

Let 

(24) lim D [ t, Z(O)] = Dl~. 
t-;.oo 

Let Z* = (X*, Y*) be any limit point of Z [t, Z(O)]. There is a sequence 

{ tn} such that 

(25) lim 
n~co 

tn = co, lim 
n-co 

Z [tn' Z(O)] 

Let Zn = Z [tn, Z(O)] Then, by (22), 

,. Z*. 

(26) Z(t, Z*) • lim z(t, zn) =lim z [t + tn, z(o)]. 
n_:;. co n~ co 

Since D is a continuous function of Z, it follows from (26) and (24) 

that 
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(27) D(t, Z*) = Um D [t + tn, Z(O)] = D*, 
n~oo 
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a constant. That is, D(t, Z*) • 0 for all t. By (17), x(t, Z*) = 0 for 

all t, or 

(28) X(t, Z~f) =X for all t. 

In particular, X(O, Z*) =X* =X. Since Z* vtas any limit-pcint of 

Z [t , Z(O)], 

(29) Lim x[t, z(o)J = x. 
t-oo 

Let an asterisk denote evaluation at Z* = (X, Y*). By (23) and 

(18), 

(30) xl=o. F*-' <o , xj_ , 

(31) y;~ = o, F~l > 0. 

By (28), i 2 (t, Z*) = 0; since )(2 > 0 by hypcthesis, it follows from (2.2) 

that 

(32) F*2 = 0. 
X 

By (20), F*2 2 is negative definite. In conjunction with (30 ) and (32), 
X X 

this shows that 

(33) F(X, Y*) has a maximmn at X for variation in X subject to X 2: 0. 

Since F is linear in Y, Fy is independent of Y, so that F~2 = Fy2 = O. 

That is, F(X, Y) is independent of y2, From (31), then, 
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(34) F(X, Y) has a minimum at Y* for variation in Y subject to 

y 2. o. 

(28), (33) and (34) complete the proof of the theorem, 

5. A Remark on the grpotheses of the Theorem. 

Condition (b) of the theorem, that no component of X or Y is at 

the boundary of the. domain of variation unless it is actually a corner extremum 

in the proper sense, is inserted to avoid the possibility that at some point 

Xi = 0 and Fx. = 0 for same i. We have been unable to show, in this 
l. 

situation, either that there exists a solution of (2.1-4) with such an initial 

position or that, if it exists, it is unique. Same experiments with simple 

systems suggest that in fact there is a unique solution beginning at such a 

point; if so, condition (b) could be dropped. 

6. Economic Interpretation. 

Let Xi (i = 1, •••, n) be activity levels of the n different 

possible production activities (measured, e. g., by the outputs of one of the 

products). Let g(X) 

the quantity of input 

be the social utility derived from activities, F .. (X.) 
l.J l. 

j needed to carry on activity i at level Xi, ~j the 

stock of input j available to begin with, and fJ.(X) =I f.j(X.)-"' +1. 
i l. l. j 

The unit of measurement of commodity j should be chosen sufficiently large 

that fj(X) (which is excess demand plus one) will be positive throughout the 

adjustment process. Note that production of an output bymeans of process 

i would be represented by a negative value for the function fij; also, 

~j = 0 for intermediate products. Hence, it is desired to choose a set of 

activity levels X which will ~ize. g(X) subject to the constraints 

that the excess demand or the productive sys.tem for any input does not exceed 
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the initial supply, i.e., L f. . (X) ::; ()(J', or, fJ. (X) S. 1 for all j. By 
i ~J 

definition, Xi ~ 0 for all i. As noted in section 1, if X is the 

optimum set of activity levels, then, there is some Y such that (X, Y) is 

the saddle-point of the function F(X, Y) defined in (1.1). 

It follows then, by the Theorem, that the X-cornponents of the 

solution of the system of differential equations (2.1-4) will approach X. 

The equations (2,1-2) can be written, 

(1) X. = ( dgjdx.)- 2: Y, (1+ ?c/) (f.? (elf . ./dX.), 
~ ~ j J J lJ l 

unless the right-hand side is negative when Xi = 0, in which case the right­

hand side is replaced by 0. Let 

(2) 

(3) 

Then, fram(l-3), 

(4) 

=max !o, q1. -" p. (elf . ./dX.) J if X = o - '} J lJ l i . 

By (2.3-4), p. is determined. by (3) in conjunction with the equations, 
J 

(5) YJ. = r.+'? -1 if Y.>o, 
J J 

=max [s+? -1, oJ if yj = o. 

Note that Yj> 0 if f > 1, i. e., if there is excess demand, and Yj < 0 

if there is excess supply (except for free goods). 
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Institutiona.lly, the process can be visualized as follows: there 

is a central board which evaluates the social worth of a given constellation 

of activity levels, and therefore the marginal social valuation qi of each; 

for each activity,. there is a plant manager who determines the activity level 

Xi; for each pr:imary or intermediate product, there is a price-fixing 

authority who determines Pj• The central board announces the marginal 

social valuations ~· and each price-fixing authority announces a price Pj• 

then, each plant manager expands or contracts at a rate equal to the 

difference between the marginal social valuation of the activity, qi' and 

the marginal cost of increasing the activity, L p, (dfi/dX.) (apart .from the 
j J ~ 

corner case of unused activities). At the same time, the price-fixing 

authority adjusts Y. in accordance with the exces.s demand, as given in (5) . J 

and then arrives at pj. 

It is :important ·to observe that these rules of decision~ing 

are highly decentralized. Once ·the prices are announced, the individual 

activity managers need know only their own technologies to determine their 

rate of expansion. Similarly, the price-fixers need know only the excess 

demands on their own markets. 

Even the decisions of the central board in regard to the marginal 

sociaJ. val.uations of the commodities can be simplified. Actually, the social 

valuation depends on the outputs of final products. Let gik(X) be the 

output of final product k if activity i is operated at level 

Xi• gk(X) • ~ gik (X) be the total output of :final product k, and 
l. 

U(Bi, •••, ~) the social utility derived fran having total outputs gl• ···, &m 
of the finaJ. products 1, •••, m, respectively. Then g(X) • u[g1 (x), ••• , ~(x)J, 

so that 
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(6) .1gfdxi =:L ( ~u/dg) (dg. /dX.). 
k k ik ~ 

P-223 
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If the central board announces merely the marginal social valuations of the 

various final products, rk = dU/ 0 gk• the finn can canpute its marginal 

social valuation, 

(7) ~=Irk (dg~dX.), 
k ~ 

by the knowledge of its own technology. 
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