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A _GRADIENT METHOD FOR APPROXIMATING SADDLE POINTS AND CONSTRAINED MAXTMA

Kenneth J. Arrow and Leonid Hurwicz

1. Introduction.

In the following, X and Y will be vectors with components

Xy, Yyo By X>0 will be meant X, > O for all i. Let g(X), fj(x)

(; = 1, *++, m) be functions with suitable differentiability properties,
where fj(X)_} O for all X, and define

m e ~ l+"".\
(1) F(X, Y) =g(X) + § Y. 1-[r. ] +7-.

s71 9| [ :

J N .
Let (X, ¥) be a saddle-point of (1) subject to the conditions
X> 0, Y >0; assume it unique in X. The function F(X, Y) attains its
maximum for variation in X subject to the condition X >0 at the point
X = -}E. Since F is a maximum for variation in each component Xi separately,
it follows that
(2) Fx. <0 for all i, and

i

(3) X. =0 if F, <o.

We will refer to those subscripts for which (3) holds as corner indices and

the remainder as interior indices. Let XL be the vector of components of

X with corner indices, and X4 the vector of interior components. Since F
is also a maximum for variations in X° alone (holding ¥ at 0 and Y at
Y), and the first-order terms vanish by (2) and (3), it follows, under the

usual differentiability assumptions, that the matrix,

|

(%)

is negative semi-definite,
2
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where §x2X2 is the matrix of elements o 2F/ Bxiaxj, with i and j
ranging over interior indices, evaluated at (X, Y).

It is shown in another paper, now in preparation, that for all 7/
sufficiently large, X maximizes g(X) subject to the restraints
fj(x)s 1, X 20, and
(5) F 2 2 1s negative definite.

XX
Hence the determination of the constrained maximum is equivalent to finding
the saddle-point of a function F(X, Y) which is linear in Y and satisfies
(5). We seek here a convergent process for approximating such a saddle-point.
The intuitively natural method, in terms of the motivations of the two
players (interpreting F as the pay-off of a game in which player I chooses
X and player II chooses Y), is for the player who chocses X to move
"uphill® with regard to variation in that variable, while the other player
moves against the gradient with respect to Y. Such processes have been

investigated by Brown and von Neumann [l}l for the case where F 1is linear

lNumbers in brackets refer to the bibliography at the end of the paper.

in both X and Y. In that case, the "naive" gradient method just
described leads to an oscillatory behavior (see Samnelson[Z ], pp. 17-22) and
must be modified. In the present case, even if the functions g, i‘j were
linear to begin with, the introduction of the power ‘7 creates a nonlinear

system satisfying (5); as will be seen, this implies that the naive gradient

method will be at least locally stable.
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2. Description of the Gradient Method.

It must be recalled that the variables X and Y are constrained
to be non-negative, so that the movements of the players with and against the
gradients of X and Y, respectively, cannot carry the variables into areas
of negativity. The gradient method for finding a saddle-point then is the
following system of differential equations:

(1) X, =0 if in<0 and xi-o,
(2) = Fy otherwise;
. 1
(3) Yj=0 if ij>o and Yy =0,
(&) = - FY otherwise;
J

the dot denotes differentiation with respect to time. In this system the
derivatives are discontinuous functions of the variables. The usual existence
‘theorems for nonlinear differential equations assume continuity (see [3],
Chapter II). If it could be shown that equations (2.1-4) have a unique
solution for any initial position continuous with respect to variations

in the starting-point, considerably stronger statements could be made about

the convergence of the system.

3.  Theorem.

Let F(X, Y) be linear in Y, possess a saddle-point (X, Y)
under the constraint ¥ 2 ), Y=0, and be analytic in some neighborhood
of (X, Y). Suppose further that (a) condition (1.5) holds and

(b) }_{i>0 and 'Y_J.>O for every interior index i or j.2

2Analogously to 83), Jj is a corner index for Y if 'fj =0, FY <0; an
J

interior index for Y is any subscript which is not a corner index.
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Then for every initial position in a sufficiently small neighborhood of
(X, ¥), there is a unique solution X(t), Y(t) of the equations (2.1-4),
such that lim X(t) = X and, for every limit-point Y% of Y(t), (X, ¥*)

t=>o
is a saddle-point of F(X, Y).

he  Proof.

If (X%, Y*) were another saddle-point of F(X, Y), then (X%, Y)
would be still another. That is, X% would maximize F(X, Y) for variation
in X. Then (1.5) implies that if X* is in a sufficiently small neighbor-
hood of E, then X = X#, so that X is at least locally unique.

In what follows, let x = X - i, y=Y - Y, expanding the

derivatives of F into power series. Then

(1) F_=F_+a(x,y),
2
vhere a(x, y) is a continuous vector function with a(0, 0) = O.

In the expansion of F there are no constantterms by definition.

27
Divide the terms of the expansiofx into four types: those containing
components of xl; the terms linear in x’?‘; the terms linear in y; and the
terms in x° and v of degree higher than the first. Define the (variable)
matrix A as follows: for any interior index i and corner index Jj, let
Aij x5 be the sun of all terms in the expansion of in which have xj as
a factor but do not have xk as a factor for any corner index k < j. Then,
clearly, §1Aij x5 is the sum of all terms in the expansion of FXi which
contain corner components of x, the summation extending only over caorner
indices. The matrix A is a function of x and y. Now consider the fourth

type of term in the expansion of FXZ, the non-linear terms involving X2 and

y only. Since F, and therefore sz, is linear in y, each such term must
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involve a component of x2, Define the matrix B so that, for every pair of

interior indices i and j, Bij Xy is the sum of all non-linear terms x
in the expansion of FX
i

a factor for any corner index k ' or for any interior index k < j. Then,

which have xj for a factor but do not have X, as

is the sum of all non-linear terms in the expansion of F X which
i

contain no corner components of x as factors. B therefore is a function

B.. x.
T 1
J2 J o J

of xX* and y; £further, since each component of BxX? is non-linear, B

vanishes if both x2 and y do.
= = 2
(2 F 5, = Alx y)x1+F X+ F y # B2, v) 2,
) x? ’ X252 X

where A and B are continuous matrix functions, and B(0, 0) = O.
Since F is linear in y, FY is independent of y. By a discus-

sion similar to the preceding, it follows that

(3) Fy = F +C(x) X+ ﬁ;{zY ¥ + b(x2),

where C is a conmtinuous matrix function and the vector b(x?) is of the

second order with respect to camponents of x2.

Now define
(&) D= (1/2) (x'x + y'y).

D is proportional to the distance in the (X, Y) space to the saddle-point

(X, ¥). Differentiate (4) with respect to time.
(5) DD = x'x + y'y.
First suppose that for each 1 either Xi> 0 or FX >0 and
i
that for each j either xj>o or F = 0. Then from (2.2), (2.4) and (5),
J

6 DD = x'F_ - y1
(6) x!F - yF.
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Substitute fram (1-3) into (6)

n

(7) DD (A)'Fq + (,@)epxz - y'F,

GL'F ¢ (R)'alx, 1) ¢ GRAG 7)) « (B)F o0 &+ (A)F oy v
+ 2)BGE, ) o - By - yre(o) wb - pFL, -yt eGP

The last term is homogeneous linear in y and of the second order in x2. Hence,

it can be written in the form,
(8) 7' () = (R) EGR, ¥) (R),
where E is a continuous matrix function and E(x2, 0) = O.

Each term in (7) is a scalar and therefore equal to its transpose. In

particular, (xz)'-fxzy y = y'f)'(zr x2. Let
(9) C(X, Y) = a<x; )') + A'(X, y} XZ - €1 (x) Vs
(20) ¢(=2, y) = B2, y) - B(=2, ¥).

In view of (8-10) and the preceding remarks, (7) can be simplified to the

following expression:

(11) oD = (x‘~>vfxl D elx, v) ¢ (BT p0 2+ ()1 662, v) (B) - y'E.

Fram (1) and (9),

(12) c(0, 0) = 0.
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FX over the corner indices 1i; by
i

definition, ml> 0. By (12), we can choose 61 so that every component of

Let my be the minimum of

¢ is less than m; whenever D< €. Let 21 denote summation over the

corner indices only; then, since xi; 0 for all corner indices,

() re(x, ) <m Xillx-ijﬁ- (xl)'f‘_xl , if x*#0 and D<€y, or
(13) ()1F,y + ()t olx, )< O if xF #0 and D<E.
From (1.5),

(xz)'_F-X2X2 xX*< 0 unless x? = (.

Let m, be the maximum of (x2)'-13x2x2 x2 subject to the condition D =1,

ny the maximum of 22 X5 subject to the same condition. Then,
i

(lh) m2< O, (xz)’i‘.xzxz x2S m2D2, 22 x].JS_m3D.
1

From (2), (8) and (10), G(0, 0) = 0. If D is sufficiently small, (x%, y)
will be sufficiently close to (0, 0) to insure that the largest of the

components g ; of G is less than - m2/ (1113)2 in absolute value. Then,

Xd%

from (14),

&5 1™

<55,

2 2 2
x7)t G < .. X,
(x°)* 6(x%, y) x _|§2§2 85 %%y :

X.

2 2 2\ ¢ 2
< - -
5 = m, D<= (x )'szxzx ’

< <-mz/m32><212

the strict inequality holding provided that 22 x_ |>0, which is equivalent
: i
i

to x* #O0.

(15) (xz)"fxzxz 24 (A 6GR, y) £ <0 if p<é,, % # 0.

For each corner index Jj, Y5 =2 0 always, while FY.> 0; for interior

J
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indices j, -}:Y. = 0. Hence,
J

(16) yrﬁyao.
By (11), (13), (15) and (16),

an DD<0 if D<f, x#0; DD<0 if D<€,

where € is chosen smaller than El or 62, and &lso sufficiently small

so that,

(18) in< 0, FYJ-> O when D << €, for all corner indices i and j;
(19) € < minp X, €<m§n2 T, the minina being taken over all interior
indices;

(20) FX2X2 is negative definite when X = X and yty/2 < €.

By assumption (b) of the thecrem, (19) is possible with positive € . By
(1.5), FX2X2 is negative definite when X = X and y =0; since F is
certainly continuous in Y, (20) can hold for sufficiently small € .

We will now show that there does in fact exist a unique solution
of (2.1-4) continuous in the initial position and in time if, at the initial position
[x(0), ¥(0)], D<€. Let 5, be the set of all indices for which
Xi(O) =0, By (19), any index in Sy must be a corner index for X.

Similarly, let T

o Dbe the set of all indices for which Yj(O) = 0. By (18),

FX <0, FY >0 for all indices in So and TO’ respectively. By the
i J
differential equation system (SO, To), we shall mean
(1) xi = in for i not in SO, Yj = - FYj for j not in TO’
X, =Y, %0 for & in Sy § in To
-8 -
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In this system, the derivatives are continuous functions of the
variables. By the Cauchy-Lipschitz Existence Theorem (see [3], Theorem (4.1),
P. 23), the system (Sy, T,) has a solution uniquely defined by the initial
conditions. Let Z = (X, Y), and let a given solutionbez[t, Z(0)], where

Z(0) is the initial position. Then it is further known ([ 3], (7.3), p.30)
that

(22) Zl:t, Z(O)] is a continuous function of Z(0) and of t.

For every i not in S, X. [t, 2(0)] >0 in some interval of time;
0" i
similarly, Yj [t, Z(OX]:>O in some interval for every Jj not in T,. Since
FX and FY are continuous functions of Z, which is in turn continuous in
N .

J
t there is an interval in which FX < 0, F, >0 for i in S and J

Y o’

in TO. The solution to system (SO? TO) is ghen a solution to the system
(2.1-4), and further it is clearly the only one.

Since Sy and T, contain only corner indices, x; = yj =0 for
all i in So and j in TO. If we fix these variables at O, F,
considered as a function of the remaining variables, has the same properties
as assumed to begin with. Hence, (17) is valid; since D < o, D[t, z(o)]
(the value of D for the point Z [t, Z(O)]) is non-increasing. Since
> 0

p[o, 2(0] <€, (¢, 2(0)] <€ for all t. Hemce, F, < O, F

X Y.
for all i in S; and j in Tq for all points of the :olution g[:t, Z(O)].
The solution for (Sg, TO) therefore ceases to be a solution for (2.1-4)

only when Xi{:t, Z(0)] = 0 for some i not in Sy or Xﬁ [t, Z(O)] =0

for some j not in T,. Let this occur at time ty. Since D[tg, z(0)] < €,
Xi[to, z(0)] > o, Y, [to, z(0)] > 0 for all interior indices by (19);
hence, i or j must be a corner index by (18). Let Sl be now the set of

all indices for which X;[ tg, 2(0)] = 0, Ty the set of all indices for which

T5[tg, 2(0)] = 0. clearly, S, includes Sy, T, includes Tp. Again, the

-9 -
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solution of the system (Sl, Tl}‘ is the unigue solution of {2.1-l) in some
interval of time beginning with tye The argument can oc repeated; since the
sets Si’ Ti are increasing ani there are only a finite number of indices,
only a finite number of systems are invelved. It then follows easily that the
system (2.1-4) has & unique solution Z[t, z(0)] continuous in t and in z2(0).

By (18), for each corner index i, there is a number o, < 0 such
that FX‘-<- m, whenever D <€ as IS[t, 2(0)] £0 for all t,
D [t, z(é)]< €. Solong as X,[t, z(0)] > o, Xi[t, z(0)] £ m;, so that
x; [, 2(0)] reaches O in finite time. Since Fy < O for all t,
X3 [t, 2(0)] =0 for all t from then on. The samela.rgmnent holds for

corner indices of Y.
(23) xt [t, z(0)] = Y [t, z(0)] =0 for a1l t sufficiently large.

4s D [t, 2(0)] <0 forall t, D[t, 2(0)] converges to a limit.

Let
(24) lim D [t, 2(0)] =D*.
t—> oo

Let Z% = (X%, Y%) be any limit point of Z [t, 7(0)]. There is a sequence
{t } such that
n

(25) lim ty, =0, lim 2 [t 2(0)] =z,
n—> o n-—s 0

Let 2z, =2 [t,, 2(0)] . Then, by (22),

(26) Z(t, z%) = Lim  2(t, ;) =Llim  2[t + b, 2(0)].
n— @ n—

Since D is a continuous function of Z, it follows from (26) and (2L)

that

- 10 -
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S

(27) D(t, 2%) = Lim D[t + t,, 2(0)] = Dw,
n—w

a constant. That is, D(t, Z%) = O for all t. By (17), x(t, Z%¥) = 0 for
all t, or

(28) X(t, Z%) = X for all t.

In particular, X(0, 2#) = X* = X, Since %% was any limit-peint of

2[5, 2(0)],

(29) lim X[, 2(0)] = X.
t—> o

Let an asterisk denote evaluatien at 2# = (X, Y*). By (23) and

(18),

(30) ™=o, o) <g,
3l = 3

(31) Y a, F;l > 0.

By (28), X2(t, Z%) = 0; since X° >0 by hypothesis, it follows from (2.2)

that

32 F#*, = Q.
(32
By (20), F;EXZ is negative definite. In coenjunction with (30) and (32),

this shows that

(33) F(X, ¥#) has a maximum at X for varistion in X subject to X 2 0.

Since F is linear in ¥, Fy is independent of ¥, so that F¥, = ?Yg = 0.

g
That is, F(X, ¥) is independent of ¥2, Fram (31), then,

e 1Y =
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(34) F(i, Y) has a minimun at Y% for variation in Y subject to

Y > 0.

(28), (33) and (34) complete the proof of the theorem.

5. A Remark on the Hypotheses of the Theorem.

Condition (b) of the theorem, that no component of X or Y is at
the boundary of the domain of variation unless it is actually a corner extremum
in the proper sense, is inserted to avoid the possibility that at some point
¥; =0 and Fy =0 for some i. We have been unable to show, in this
situation, eith:r that there exists a solution of (2.1-4) with such an initial
position or that, if it exists, it is unique. Some experiments with simple
systems suggest that in fact there is a unique solution beginning at such a

point; if so, condition (b) could be dropped.

6. Economic Interpretation.

Let X; (i =1, --+, n) be activity levels of the n different
possible production activities (measured, e. g., by the outputs of one of the
products). Let g(X) be the social utility derived from activities, Fij(xi)
the quantity of input j needed to carry on activity 1 at level X, 03 the
stock of input j available to begin with, and rj(x) = % fij(xi) - a<j+1.
The unit of measurement of commodity j should be chosen sufficiently large
that fj(X) (which is excess demand plus one) will be positive throughout the
adjustment process. Note that production of an output Jj by means of process
i would be represented by a negative value for the function fij5 also,

“5 = 0 for intermediate products. Hence, it is desired to choose a set of
activity levels X which will maximize g(X) subject to the constraints

that the excess demand of the productive system for any input does not exceed

- 12 -
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the initial supply, i.e., ) 35 (X) < X, or, rj(x) <1 for all j. By
i -
definition, X; 20 for all i. As noted in section 1, if X is the
optimum set of activity levels, then, there is some Y such that (%, T) is

the saddle-point of the function F(X, Y) defined in (1.1).

It follows then, by the Theorem, that the X-components of the
solution of the system of differential equations (2.1-4) will approach X.
The equations (2.,1-2) can be written,

. ”
(1) X5 = ( de/fox,) - z T, (L+7) (fj)’ (at, /ax,),

unless the right-hand side is negative when Xi = 0, in which case the right-

hand side is replaced by 0. Let

(2) a Qg/ﬁyxi,

(3) P,

PERACE S (fj)y.

Then, from(1-3),

(&) X; S q - }J: py (af ,/dx) if X;> O,

= [ . - i = 0.
max [0, q; %pj (ar, /ax)] £ x
By (2.3-4), pj is determined by (3) in conjunction with the equations,

S LAY L s
(5) iji 1 i ¥.>o,

= max [f‘:ll.'-l_? -1, 0] if Yj=0.

Note that YJ.>O if f£>1, i. e., if there is excess demand, and Yj <0

if there is excess supply (except for free goods).

- 13 -
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Institutionally, the process can be visualized as follows: there
is a central board which evaluates the social worth of a given constellation
of activity levels, and therefore the marginal social valuation gq; of each;
for each activity, there is a plant manager who determines the activity level
X;s; for each primary or intermediate product, there is a price-fixing
authority who determines Pje The central board announces the marginal
social valuations 9y, and each price-fixing authority announces a price pje.
then, each plant manager expands or contracts at a rate equal to the
difference between the marginal social valuation of the activity, d;» and
the marginal cost of increasing the activity, Z pj (dfij/dxi) (apart from the
corner case of unused activities). At the same time, the price~fixing
authority adjusts IJ. in accordance with the excess demand, as given in (5)

and then arrives at pj.

It is important to observe that these rules of decision-making
are highly decentralized. Once the prices are announced, the individual
activity managers need know only their own technologies to determine their
rate of expansion. Similarly, the price-fixers need know only the excess

demands on their own markets.

Even the decisions of the central board in regard to the marginal
social valuations of the commodities can be simplified. Actually, the social
valuation depends on the outputs of final products. Let gik(xi) be the
output of final product k if activity i is operated at level
Xis g (%) = z 85y (X;) be the total output of final product k, and
U(gl, ese, g;) the social utility derived from having total outputs 81, *°"s B
of the final products 1, s, m, respectively. Then g(X) = U[gl(X), veny gn(X) ],

so that

-1 -
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(6) de/ 0, =E (20/9g) (g, /ax ). |

If the central board announces merely the marginal social valuations of the
various final products, Ty = BU/ 3gk, the firm can compute its marginal

social valuation,

(n a =§ 7 (dg; /dX,),

by the knowledge of its own technology.

Bibliography
1. G. W. Brown and J. von Neumann, "Solutions of Games by

Differential Equations," P-142, 19 April 1950, RAND.

2. P. A. Samuelson, "Market Mechanisms and Maximizations,"

P-69, 28 March 1949, RAND.

3. S. Lefschetz, Lectures on Differential Equations,

Princeton: Princeton University Press, 1946, 209 pp.

/ebe

- 15 -

60



	A GRADIENT METHOD FOR APPROXIMATING SADDLE POUlTS AND CONSTRAINED MAXIMlA
	l. Introduction
	2. Description of the Gradient Method
	3. Theorem
	4. Proof
	5. A Remark on the Hypotheses of the Theorem
	6. Economic Interpretation
	Bibliography


