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THE PROBLEM OF LAGRANGE WITH DIFFERENTIAL INEQUALITIES
AS ADDED SIDE CONDITIONS

1. Introduction. The problem of the calculus of varia-
tions to be considered here consists in finding in a class of
admissible arcs yi(x) jolning two fixed vpoints and satisfying a

set of differential equations and inequalities of the form

Yo (x, v, 7') =0, Pplxs ¥, 7') 20,

that one which minimizes the integral

Xe

I =/ f(x, y, y')ax.
Xy

The problem consldered 1s for a space of n + 1 dimensions. A
geometric illustration of a three-dimensional problem was sug-
gested Dby Zermelo.l This problem required the rinding of the
shortest distance between two points on a surface subject to the
condition that the direction of the tangent line at any point of
the curve make an angle with the perpendicular which is never
greater than a given constant. Bolza in a paperz issued in 1914
obtained a first necessary condition for a minimum and several

corollaries. However he made no sufficlency proofs.

1E. Zermelo, Jahresberichte der Deutschen Mathematiker-
vereinigung, B 11,(1902).

2
0. Bolza, ﬁber Variationsprobleme mit Ungleichungen als
Nebenbedingungen, Mathematlische Abhandlungen, H., A. Schwarz,
(1914, seite 1.

(407) =1-
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2 VALENTINE: THE PROBLEM OF LAGRANGE (408)

An equilvelent problem is introduced in section 2 of this

paper by considering functions zp(x) such that the equations

¢ﬁ(x’ y, ¥') = zglz

hold. This equivalent problem yields a multiplier rule and
necessafy conditions analogous to those of Welerstrass and Clebsch.
These are given In section 3. However as the equivalent problem
may become singular, as it does for a composite arc, this method
does not provide a complete treatment.

Two sufficiency proofs are made for a composite arc.

Such an arc 1s one without corners composed of two subarcs such
that all but one of the functions ¢?(x, Y, ¥') are greater than
zero on one subarc, whereas all the functions mentioned are
grester than zero on the remaining subarc. An imbedding theorem
and & necessary condition analogous to that of Mayer are proved
in sections 4, 5 and 6. The first sufficiency proof is made in
section 6 and is made with the assumption of normality on sub-
intervals. The second sufficiency proof is made without the
above assumption and in part depends upon a necessary condition
analogous to that of Hestenes for the problem of Rolza.

It should be noted that although the sufficiency proofs
are made for a composite arc, any other subcase which might arise
could be handled in a similar manner. It is not due to the fact
that other subcases present special difficulties that all of them
are not treated, but rather to the fact that each subcase has to
be handléd separately. The case of the composite arc was treated
since it represents a fair sample of the variety of cases which
do exist. The treatment applied to the composite arcs will in
general apply to all other cases. The singularity of the equiv-

alent problem requires the separate treatment of the various
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(409) INTRODUCT ION 3

subcases. The case considered affords a fairly complete treat-
ment of the plane and 3-dimensional problems.

The following section describes the analytic setting of
the problem and introduces the mechanism by means of which all
the necessary conditions, save the analogue of the condition of
Mayer, may be obtained.

2. Formulation of the problem. In the following pages
the set (x, Yys +ees In» yl', veey yn') will be denoted by
(x, ¥, ¥'). The functions yi(x), (1 =1, ..., n), defining the

minimizing arc Ejo and the functions

£f(x, v, v'), @(x, 3, ') =1, ..., m),

(2:1)
Yulx, v, 7') (x =m+ 1, ..., m+p<n)

are required to satisfy the following hypotheses:

(1) The functions yi(x) are continuous on the interval
Xx1Xp and have continuous derivatives on this interval except
possibly at a finite number of corners.

(2) In a neighborhood N of the set of values (x, y, y')
belonging to the arc Ejp the functions (2:1) have continuous
derivatives up to and including those of the third order.

(3) At every element (x, y, y') of the arc E;p the

n x (m + p)-dimensional matrix
(1=1, ..., n)

(p

¢pyi‘(x, ¥, YY) (¢ =m+ 1, N )]

V/“yi.(x, ¥, ¥')

1, ee., m)

has rank m + p.
Henceforth the subscripts i, ,8, and o shall have the

ranges specified in hypothesis (3). Moreover a repeated index
in a term will indicate summation with respect to that index,

unless otherwise stated.
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4 VALENTINE: THE PROBLEM OF LAGRANGE (410)

An admissible arc is one with the continuity properties
(1) and one whose elements (x, y, ¥y') lie in the region N speci-
fied in hypothesis (2).

The problem to be treated here consists in finding in the
class of admissible arcs y4(x), Jjoining two fixed points with
coordinates (x;, yy) and (x5, ¥p), and satisfying the conditions
4? 2 0 and Y, = 0, that one which minimizes the integral

Xz
(2:2) J = /[ f(x, y, y')ax.
X

1

A problem of Bolza with variable end-points which is equivalent

to the problem just formulated may be obtained by setting
2
(2:3) @, =2, (%),

where the functlons zg(x) will obviously have the same continulty
properties as the functions yi(x) in the above problem. The

equivalent problem is stated as follows:

To find in the class of admissible arcs
¥y = 3y(x), oz, = z,(x)

satisfying the differential equations

¢E(X: ¥, ¥') - zg'z(x) =0,
Wa(x’ ¥, ¥') =0,
and satisfying the end-conditions
x) = 8y, v(x1) =7y,
Xg = 89, Y(xz) = To»

that one which minimizes the integral (2:2).
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(411) FORMULATION OF THE PROBLEM ]

In view of hypotheses (1) to (3) 1t follows that the
corresponding hypotheses for this equivalent problem are also
satisfied. Moreover the above end-conditions are independent.
Hence one may apply the theory of the problem of Bolza to this
problem so as to obtain & number of necessary conditions. How-
ever as the equivalent problem may be singular it does not afford
a complete attack. As will be seen later, other methods will be
necessary in some cases to complete the theory. The equivalent
problem is used primarily in sections 3 and 8.

3. First necessary conditions. From the theory for the

problem of Bolza it follows that for every minimizing arc Ejo

there must exist constants Cy, dB and a function
G = Aof + A“(x)‘ll/“ + k’(x)(d)p - z’vz)
such that the equations

x
= dx + Azt =
Gy, fncyi Cy,» 525 a,

are satisfied along Eyo- In the last m equations the repeated
index @ does not denote summation. Moreover from the transver-
sality conditions in the problem of Bolza it follows that at the

end points of Ejp vhe expressions

(¢ - yi'Gyi' - Z"Gzpc)dxs + Gyi'dyis + egdxg
+ bgdysg - 2A‘gze'dzﬁs (s =1, 2)

must be identically zero in dxg, dy;g and dzps. As a consequence
the m conditions
ApZg" X2 = }xpza' ¥ = o, ([ not summed),

must hold. Hence the functions Apza' must be identically zero

along the arc Ejo. Therefore one obtains the



6 VALENTINE: THE PROBLEM OF LAGRANGE (412)

FIRST NECESSARY CONDITION I. For every minimizing arc

Ejo joining the fixed points 1 and 2, there must exist constants

Cy and a function
(3:1) F= Xof + AW + X, (x) ¢,
such that the equations

X
Fyi' = ‘/; Fyidx + Ci,

1
¢5(x1 M) y')zo, %(X, ¥, ¥') =0

(3:2)

hold at every point of E;5. The constant Ao and the functions

X“(x) and Aﬂ(x) cannot vanish simultaneously at any point of

Ejp, and are continuous except possibly at values of x defining

corners of Eyp. Moreover the m functions

Aﬂd% - (B not summed)

vanish at allvpoints of El2'

The following corollary may be obtained as an immediate
consequence of the preceding sentence.

COROLLARY 3:1. If all the functions ¢, sare greater than

zerd#gg every point of Ejp» the minimizing arc is that one which

minimizes the integral (2:2) in the class of admissible arcs

satisfying the differential equations

Yalx, v, 3') = 0.

For this cese the function F in expression (3:2) reduces to

Fl = Aof + Aa\#ﬂ- .

Since this case is an ordinary problem of Lagrange, &

fairly complete treatment of it 1s known.
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(413) FIRST NECESSARY CONDITIONS 7

The following corolleries and further necessary conditions,
with the exception of the necessary condition of Mayer, are ob-
tained for the general problem stated above. In the case of the
Mayer condition the problem considered is the one in which all
but one of the functions QQQ are greater than zero on the inter-
val X1Xg, whereas the remalring function 1s zero on certain sub-
intervals of xjxo and greater than iero on the remaining sub-
intervals. It will be no restriction to label this last function
by qbl. For this problem the function F occurring in the expres-

sion (3:1) has the form
F= Aof + AWy + A\

If a minimizing arc E;, 1s composed of two subarcs Eyz
and Ezp, the functions 4)'9 being
greater than zero on E;z, and zero
on Ezp, 1t follows that the func-
tions Xp are zero on Ejz. Hence
E 3 is normal. The arc E15 is de-

fined by equations (3:2) in which

F has been replaced by the function
Fl occurring in corollary (3:1).

The following corollaries are an immediate consequence of
the first necessary condition.

COROLLARY 3:2. 0On every subarc between corners of a

minimizing arec E;o the differential equations and inequalities
Ay '/ax =Py, Py(x, ¥, ¥) 20, Ylx, 3, 31) =0

must be satisfied, where F is the function (3:1).
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8 VALFNTINE: THE PROBLEM OF LAGRANGE (414

COROLLARY 3:3. At every corner of a minimizing arc Eio

the conditlions
Fyi.(x, ¥, ¥'(x=0), A(x-0)) = Fyi.(x, ¥, ¥'(x+0), A(x+0))

must be satisfied.

The analogue of the Welerstrass necessary condition for

the equivalent problem yields the result that at each element

(x, ¥, 2, ¥', 2', A) of a minimizing arc which is normal, the

inequality

E=06(x, 5, 2, Y,2',A) -06(x, ¥, 2, ' 2', \)

nv
o

- (yy - yi')Gyil - (Zg' - zp')Gzel

must be satisfied for every admissible set (x, y, z, Y', 2') #

(x, y, 2z, y', 2'), satisfying the equations

¢P(x! ¥y, Y') 'Zﬁ'zzo %(X, Y, Y') = 0.

Since the functions Aﬂzﬁ' are identically zero on Eyp one obtains
immediately the
SECOND NECESSARY CONDITION II. At each element

(x, ¥, ¥', A) of 8 minimizing arc E;, which is normal the in-

equality
(355) E(xl Y, y.) Y': )‘gy Aﬁ) - Aﬁ¢p(x, Y, Y') g 0o

the differential equations and inequalities

¢5(KJ ¥y, Y') Z o, 'l//‘(x, ¥, Y') =0,
where E(x, v, 7', ¥', A, Ap) is the function

F(X, Y, Y'J A«; >‘p) - F(X, Y, Y': Au-’ Aﬂ ) - (Yi' = yi')Fyi!-
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(415) FIRST NECESEARY CONDITIONS 9

In a similar manner the analogue of the Clebsch condition
for the equivalent problem gives the following condition.

THIRD NECESSARY CONDITION III. At every element

(x, ¥y, ¥' ,?\) of a minimizing arc Eyjo which is normal the in-

equality

. - >
(3:4) Fyi,yk.ﬂiﬂk 2 XAgK,? 2 0

must be satisfied for every set [y, ..., T, Y., ..., X,] #

[o, ..., 0, 0, ..., 0] and satisfying the equations

%Yi'ﬁi = ¢ﬂyi' Ty - 224" X = 0.

At any point of E o where any one of the functions zﬁ',
say z,', 1s zero, choose (] = [0], and all the X, except X,
zero. Hence at such a point of Ej, the condition )‘l £ 0 nust
hold. Where z;! # 0, it follows from the first necessary condi-
tion that Al = 0. Hence one obtains the following corollary.

COROLLARY 3:4. At every element (x, y, y') of & minimiz-

ing arc Eyp it 1s necessary that the inequalities

Mg

A

0
be satisfled.

As a consequence of the paragraph preceding the above
cordllary the condition III yields the following result.

COROLLARY 3:5. At every element of & minimizing arc Ejgo

which is normal the inequality

(3:5)

must be satisfied for every set [7,, ..., 7 ] # [0, ..., 0] and

satisfying the equations

%71' 7?'1 =0, 47”’1' ﬂi = 0.
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10 VALENTINE: THE PROBLEM OF LAGRANGE (416)

The equivalent problem was used to obtain the preceding
necessary conditlions. 1In the following sections 4 to 7 specisl
methods are used to obtain the necessary condition of Mayer and
a sufficiency proof.

4. Imbedding theorem. 1In the following section en im-

bedding theorem 1s established for the case in which all but one
of the functions d% are greater than zero on Ejp. The remaining
function, which will be denoted by (ﬁl, is to be greater than
zero on one subarc Ejz of Ejo and zero on the remaining subarc

Ezp. Let Ry and Rp represent the determinants
Fyi'yk' %yi' ¢1y1-
> Rg = V@ykl o 0

¢1Y1c' 0 0

Fyi'yk' %yii

(4:1) Ry =
1//8 Vi 0

where (¢, § =m+ 1, ..., m+p)and (1, X =1, ..., n). Let Fy

and F2 denote the functions

)of + Agwx,
Aof + Aq o« + A1¢1.

Py
(4:2)

Fo

The symbol P represents the function F which occurs in the first
necessary condition for the problem in which Ejz is an extremal;
similerly F, denotes the corresponding function for the problem
in which Ezp 18 an extremel. The class of arcs defined by equa-
tions (3:2) with the function F replaced by Fl will be denoted by
A; whereas the class of arcs which are defined by equations (3:2)
with F replaced by Fp, and along which the equation qbl =0 is
satisfied, will be represented by B. A composite arc ii defined

to be one composed of two subarcs, one subarc belonging to A, and

the second belonging to B, such that the functions y;(x) defining
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(417) IMBEDDING THEOREM 11

the entire arc and their derivatives yi'(x) are continuous. From

the first necessary conditlon it follows that the multipliers
Aeu(x) and Al(x) are continuous on a composite arc. With this
definition in mind, one may prove the following theorem.

IMBEDDING THEOREM. (Consider a composite arc Eip = El3 +

Egzp satisfying the conditions that R; and Ry be different from

zero on Ejz and Ez, respectively, and that gbl' #0 on Ey,; at 3.

arcs defined by the equations

¥y < yi(x’ 8y, «.., 8p)

Au = Aa(x, 87, <., ap) [x1 & x € x3z(a)],
Al = Al(x, &l, «eay an)

¥y = Yi(x, 81, «ee) an)

Ao = N x, 81, .., 8p) [xs(a) £x € x2]

Al =Al(x’ 81, ooy an)

for the special values ao of the parameters.

Proof: Henceforth the letter a will stand for the set
(al, «e+y 8p). Consider a com-
posite extremal arc Eyp = El5 + Ezpo.
Since Ry # O on the arc Ey5 it
follows from the theory of the
problem of Lagrange that E13 can
be imbedded in an n-parameter
family of extremals belonging
to A, passing through the point
1 or through a point O on the
extension of Eyz. Similarly it

is ¥nown that if Ry # O on Ezp, then Ezy may be imbedded in a
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12 VALENTINE: THE PROBLEM OF LAGRANGE (418)

1

2n-parameter family of extremals of class™ B. Denote the n-para-

meter family of extremals passing through 1 and containing Eyz by
(4:5) yi = Y1(x: 3)9 . kq = x:x(x.v a): x1 = 0:
and the 2n-parameter family containing Ez, by

yi =Y1(x: c), xa =Au(xp c), Al =A5Sx; c),

where (c Cys eees °2n)’ and Ez, 1s defined for the value of the

parameters ¢ = co. It is also known that at the special values
(xs, co) the condition
Y
:lck

D= £0 (k
uick

«eey 2n)

[}
fan
-

holds, where
uy = Fyi.(x, Y, v', A).
The necessary conditions
¥i(xy, 8) - Y3(xy4, ¢) = O,
Flyi'Ex4’ ¥(xy,a), v'ix,,8), Aix,,a)]

(4:4) = F2y1| [X4, Y(X4,O), Y'(x4lc)l A(X4,G)J =0,

¢1[x4: y(x4,a), Y'(X4,&)] =0

must hold at the point 3, that is for the values X4 = X3, & = ao,
and ¢ = co. The functional determinant of these equations (4:4)
with respect to Xy and ¢ is
(o] ~Y
ick
(4:5) Fiyi.' - Fzyi.‘ Wy | = -¢)1'D.

é,' 0

lG. A. Bliss, Problem of Lagrange in the calculus of -vari-
ations, American Journal of Mathematics, vol, 52 (1930), p. 687.
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(419) IMBEDDING THEOREM 13

The above determinant will be different from zero at 3 if the
function qbl' at x = x5 is different from zero. 1In the theorem
it was assumed that ¢h,' # O holds at x = x3. From the theory of
implicit functions it follows that one may solve equations (4:4)

for x4 and ¢ as functions of a. Denote these solutions by
(4:6) xXq4 = x4(a), c = c(a).

There remains to show that for values of a sufficiently

close to ao, the subarcs defined by the equations

¥y = ¥i(x, 8) [x; € x € x4(a)],

(4:7)

¥; = Yi(x, c(a)) [x,(a) € x € x5],

are tangent along the n-space defined by the first n equations of

(4:3) and by (4:6). To show this consider the equations

uy = FZyi'(x: Y, v, -A):
Yalx, Y, Y1),
(Pl(x, Y, Y').

(4:8) 0o
0

Since Ry &s defined in expression (4:1) is different from zero,
equations (4:8) Have a unique solution for Y', J\, /\1. Moreover

since Y = y is a solution of (4:8) with
u = Flyi‘[x4' v(xg4,a), 7' (xy4,a), A(x4,a)]

it 1s plain that Y' = y', and A=) at x = x4(a). Hence the
arcs defined by equations (4:7) are composite arcs. Thus there
exists an n-parameter family of composite arcs imbedding the

composite arc Eys = Ej3 + Ezg-

329



14 VALENTINE: THE PROBLEM OF LAGRANGE (420)

5. The Mayer condition for a composite minimizing arc.

In developing this condition a geometric argument will be given

first. 1In section 8 another proof is given by means of the ac-

cessory minimum problem associated with the second variation.
Consider an n-parameter family of composite extremals

through the point 1 defined by the equations

¥y = ¥4(x, a) [x1 € x € x4(0)],
(5:1) ¥y = Yi(x, a) [x4(a) £ x< 12],

Y1(x5’ &) = Yj_(xS; &).

Also consider a one-parameter family of these arcs having an

envelope D obtained by letting a = a(t). Let the equation of D be
x=x(t), ¥y, = glt).
The fact that D is tangent at each of its points to an extremal
¥y = Yi[x, a(t)]
may be expressed by the equations
x'(t) = Xk, Yi'x' + Yiajaj' = 8it < kYi' .

These equations have the solution (aj') #(0) if and only if the
determinant

A(x, a) = ]Yiajl

is identically zero in t, when x and a are replaced by x(t) and
a(t).

DEFINITION. A value xg is said to define a point conju-
gate to the point 1 if it is a root of the determinant Z&(i, a)

belonging to an n-parameter family of composite arcs (5:1).
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(421) THE MAYER CONDITION 15

To prove that if /A vanishes at Xxg, the equations (5:1)
do have an envelope to which
Ezo 1s tangent at x = xg, let
Eyp be contained in an n-
perameter family of composite D
extremals with equations of
the form (5:1) for values of
the parameters a = ap. All 3
the extremals satisfy the

equations
yi'(x4, a) =Y1'(x4: a)

where x4(a) is defined by the first of equations (4:6). Let Xg
define a conjugate point to 3 on Ezo. We assume for purposes of
the proof that Z&x(xe, ao) % O. Hence at least some one n - 1
rowed minor of the determinant 'YiaJl is different from zero.

Suppose for example that the determinant
IYkatI (k, t =1, ..., n - 1)

is different from zero. Then the first n differential equations

of the set

[l
o

A _dx + A da, =
x ay ™ (3=1, ..., n),

1l
o

YiaJdaj =
can be solved for dx/da,, day/dan. They determine uniquely a

solution

x = xg(ep), a; = aglay) (t=1, ..., n-1)

through the initial point (xg, 20). The determinant Zl(x, a) 1is
identically zero on this solution since it vanishes at (xe, ao)

and since 1its total derivative with respect to a, is identically
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zero. Hence the last equation 1s also satisfied. A similar
argument can be made for any other n - 1 rowed minor which may

be different from zero. One thus determines
x = xg(t), ag = ag(t) (s =1, ..., n),

t being a properly selected one of the pafameters a.

On the one-parameter family of extremals
(5:2) ¥i = Yy(x, a(t)) = Y4(x, t)
the curve D is define by the equations
x = xg(t), vy = Y3 [xg(t), a(t)] = yy(t),

and satisfies the equations
Yi'x' + Yiajaj' = k-yi|
since
Yi&Ja‘j| = 0.
Hence the family (5:2) is a one-parameter family of composite
extremals with an envelope D, touching the extremal Ez, at the

conjugate point 6.
FOURTH NECESSARY CONDITION IV, Let Eqp = Eq3 + Ezg be 8

composite arc which is normal on every subinterval of x;x, and

which is imbedded in an n-parameter family of composite arcs.

Moreover suppose that Rl and R2 are different from zero on Els

and Ezp respectively. Then if E;o 1s a minimizing arc there can

exist no conjugate point to 1 on the arc Ejp.

In the following proof it is assumedthat the envelope D
of the one-parameter family of arcs (5:1) has a branch projecting
backward from 6 to the point 1, as shown in the figure below. It

is also assumed that the envelope D is not tangent anywhere to
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(423) THE MAYER CONDITION 17

the n-space of tangency defined by the first n equations of (4:3)
and by (4:6). That there can exist no conjugate point to 1 on
Ey3z between 1 and 3 follows from the theory of the problem of
Lagrange which applies to extremals Eyj3. To prove that there can
exist no point conjugate to 1 on Ezo between 3 and 2 consider the

integral
14(17)

I(E), + Eyg + Dgg) = /C £lx, y(x,t), y'(x,t)]ax

1

xs(t)
+/ £lx, ¥(x, t), ¥'(x, t)]ax
x,(t)

to
+ / f[x(u), Y[x(u),u], ¥' [x(u),u]]x'(u) du.
t .

In this expression the equations

A
A

¥y = 34(x, t) (xy & x=x4),

¥y = Yy(x, t) (x4 & x € xp),

define the one-parameter family of composite arcs, having an

envelope D which has the equations
x = xg(t), ¥ = Yy[x5(t), t] = g4(t).

Add A Pi(x, Y, Y') +
Au(x, Y, Y') to the
integrands of the second
and third integrals in
the above expression for
I(Ey, + Eyg + Dgg), and
add AL, to the inte-

grand of the first in-
tegral. Then the deriv-

ative of I with respect to xg 1s
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18 VALENTINE: THE PROBLEM OF LAGRANGE (424)

dl _ dI dt _ 5
_d_xs = E-d—x_g = -E(x, ¥, Y, g', Ac( s Al) + Alq)l(x’ g, 8')'

where g' 1s the slope of D. But since
¥, [x, t] = 8y'
at every point of D, it follows that
a1/axg = 0
in t. Consequently one obtains the result
HEyq + Egp + Ezp) = I(Egzp).

Hence by the usual argumentl I(Eqp) cannot be a minimum.

6. Sufficiency proof. The four necessary conditions have

been denoted by I, II, IITI, IV, the order being the same as they
occur in this paper. The notation II' will be used to deslgnate
the condition II when the equallty sign in expression (3:3) is
omitted. The condition III' is defined for a composite arc as

follows: The normel composite arc will be denoted by Eip =

E1z + Ezos where E13 belongs to A and Ezo belongs to B. For
every element (x, y, y', A) of Ejz the inequality

Flyi'yk' 1Z'1 Tfk > 0
holds for every set (7y) # (0) satisfying the equations

%yi' ’n'i = 0,

whereas for every element (x, y, y', A) of Ezp the inequality

ngi'yk' Ty My > O

is satisfied for every set (7y) # (0) satisfying the equations

%yi' Ty = O, ¢1yi' Ty = O.

1See Bliss, loc. cit., p. 722.
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Condition IV' excludes the point 2 as well as the interior points
of Ejp from being a conjugate point to 1. An arc E;p satisfies

condition ITy 1f the inequality
E(x, ¥, ', ¥y A) = A;¢4(x, 5, ¥') > 0

holds for all sets (x, y, y', Y', A) for which the sets
(x, ¥y, ', A) are in a neighborhood of similar sets belonging

to Eyp, and (x, y, Y') # (x, y, y') satisfies
¢l(x: Y, Y') g 0: wa(x; s Y') = 0.

We can now state the following theorem.
SUFFICIENCY THEOREM FOR A STRONG RELATIVE MINIMUM. If an

admissible composite arc Ejo = Ej3 + Ezg with an extension normal

on every subinterval satisfies the conditions IIﬁ, III', I1IV*,

then there exists a neighborhood M of the points (x, y) of Eio

such that the inequality I(Cyg) > I(E;2) holds for every admis-

sible arc Cio satisfying
¢1§0, w,,=0,

which is in M, and which is not identical with E,,.

In the first place since E o 1s normal and satisfies I it
is true that there exists s unique set of multipliers Ao = 1,
X“, Al and constants c4 which with the equations of E;p satisfy
equations (3:2). In order to complete the proof, the following
lemma is established.

LEMMA 6:1. The condition III' for a composite arc Eyjg =
Ejz + Ezp implies that the determinants R; and Ry defined by

{4:1) are different from sero on Fjz #nd Ezo respectively.
The fact that R; # O on E;z follows from the theory of

the Lagrange problem which applies to Eyjz. However along the
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20 VALENTINE: THE PROBLEM OF LAGRANGE (426)

extremal Ezo if the determinant rRg = O, the equations

(6:1) Fyi'yk' ﬂk + A«‘/fxykt + >\1¢1yk. =0,
(6:2) yq;yk,frk =0, qblyk'frk = o,

would have solutions (., Ax > Al) # (0, 0, 0) with 7, not all

zero since by hypothesis the matrix

\‘ﬁyk'
qblyk‘

must have rank p + l. By multiplying equations (6:1) by

(T oony T,) respectively, and adding the result, one obtains

Pyytye ™ e = ©

on account of equations (6:2). But this contradicts the latter

part of conditlon III' which states that
is satisfied for every set (1ri) # (0) satisfying the equations

%yi' ﬁi =0, ¢ly1' fri = 0.

Thus condition III' implies that Ry # O on Egp.

According to the imbedding theorem in section 4 a point O
can be chosen on the normal extension of Eyz, so that Eqp can be
imbedded in an n-parameter family of composite extremals passing
through 0. From the first n of equations (4:4) it follows that

along the n-space of tangency of this composite family we have
yia(x’ a) = Yia(x’ a)

for values of a close to ao which defines E,p. Hence A(x, 2)
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defined in section 5 is continuous in x. On account of condition
IV' this n-parameter family simply covers a region containing

Eyp = Eyg + Ezp. For A(x, a) # 0 on X1Xg implies from implicit
function theory that there exists a neighborhood M of the points

(x, y) on Ejo in which the equations

A
N
)

¥y = ¥4(x, 2) (xq < x3),

(6:3) ¥y = Yy(x, 8) (xz

A
H
A

xg))
Yi(xaya) = Yi(xfp a),
have solutions

a,; = ay(x, y).

If the region M is taken éufficiently small the values

(x, ¥, P, A\) belonging to M will remain in so small a neighbor-
hood of the sets (x, y, y', A\) of Ejz and Ez, that according to
II& the inequality

E(x, ¥, P, ¥', A) = A Py(x, 7, ¥) >0

will be satisfied for all sets (x, y, y') # (x, ¥, p) in M, where
py(x, §) = y3x or Y,, according as the notation refers to an arc
of class A or B. Hence one may show that I(Ele) is a minimum in
M as follows.

Let any admissible
curve C in M satisfying
the conditions ¢%(x, vy, ¥")
2 0 and yb;(x, ¥, ¥y') =0
be defined by the equations

¥y = gy(x).

~he sntopral I(xg) 1s de-
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22 VALENTINE: THE PROBLEM OF LAGRANGE (428)

X4
I(xg) = / flx, y(x,8), y'(x,a)]dax
*1

+/ f[x, ¥(x,a), ¥'(x,a)]dx
Xg

X2
+/ f[x, g(x,a), 8'(x:3)]dl,
X5

where y(x, a) and Y(x, a) define the unique composite arc an =

B " + E46 joining en arbiltrary point 5 on 012 to the point 0. If

0
the point 5 lies between the point O and the point of tangency 4

on Egy, then I(xg) has the derivative
I'(xg) = =E(x, ¥, 7', 8', Axs Ay),
whereas if 5 lies between 4 and 6 on E,g, then I(xg) has the
derivative .
I'(x5) = -E(x, ¥, Y', &', )“, }1} + )th.!)l(x, g, g').

In either case I'(xg) 1s less than or equal to zero, since

Al = 0 along arcs of class A, Moreover we have the equations

I{xg) I(Eo]_} + I{Elg)-

The condition IIﬁ now implies that I{Ele) is a minimum.

7. Generalizations to more complex arcs. In sections 4,

5, and 6 the composite arc as defined consisted of only two sub-
arcs. The proofs made in these sections for the imbedding
theorem, the Mayer condition, and for the sufficiency proof may
be extended to apply to arcs without corners composed of n sub-
arcs, (ﬁl being zero on some of these subarcs, and greater than
zero on the remaining suhares. An imbedding theorem 1z here

established for an arc without corners consisting of three sub-
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arcs. It will then be obvious how to construct an imbedding
theorem for an arc composed of four or more subercs.

Consider an extremal Ejp = Ejz + Ezq + E42 without cor-
ners along which all the functions q% save one are greater than
zero, The function le is to be greater than zero on the subarcs
Ejz and E4p, but zero on the arc Ez4. Suppose that Ry is differ-
ent from zero on Ejz and Eyp, whereas Rg 1s different from zero
on Ez4. From the imbedding theorem for composite arcs, we know
that the arc Ej4 = Ej3 + Ez4 may be imbedded in an n-perameter
family of composite arcs of the same form. Denote this n-para-

meter family by

= X;_r,);

1
b
]

¥i = hy(x, a) (xq €

A
A

Yy = Yi(x; 8.) (x5
A = Ag(x, 8),
)\1 = Al(x, a).

X4),

Moreover it 1s known
that under the above
hypotheses E o may be
imbedded in a 2n-para-
meter family of arcs
of class A. Let these

extremals be defined

by the equations

¥y = 34(x, b)
A, = Aulx, D) (x4 € x € x5).
A= Xl(x, b)

The following conditions
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24 VALENTINE: THE PROBLEM OF LAGRANGE (430)

Yi(x) B) - yi(x: b) = O:
Foo 1 [x, Y(x,8), Y'(x,8), Mx,8)]
Ty
- Flyi' [x, v(x,p), y'(x,p), A(X,b)] = 0,

¢)1[xr v(x,b), Y'(x,b)] =0

(7:1)

hold at the point 4 on E12' Moreover it is known that the
determinant D satisfiles the condition

J1b),

D = #0 u = F
gy, ’ 1 Ty

at the point 4 on Ep5. The functional determinant of the sbove

expression with respect to x and b is

RERRRES “Vib,
c = Flyi" - Fzyi" -uibk o

@y Pro,

Since at the point 4 we know that

yi(x4) b) = Yi(x4: a),
Y1'(x4r b) = Yi'(xél 5)’

holds, it follows from Corollary 3:2 that the determinant C has
the value

_ Tiby

oA Uib
k

For purposes of the proof we sssume that qblv £ d holds at the
point 4. Hence it is true that ¢ # O at the point 4 on Eyo.
Thus one may solve equations (7:1) for x and b as functions of a.
consequently under the above hypotheses the arc El? = El3 + E34 +

E42 can be imbedded in an n-parameter {eiily of arcs of the same
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kind, that 1s, consisting of three subarcs, two belonging to
class A, and one belonging to class B. A proof similsr to that
given in section 4 shows that the members of this family have no
corners. An imbedding theorem for an arc E;p composed of n sub-
arcs, 451 being greater than zero on every other subarc, and zero
on the remaining subarcs, can now be made by alternately repeat-
ing the processes described in section 6 and in this section.

The proof of the Mayer condition and the sufficiency
proof for the arcs considered in this section are so similar to
those given for a composite arc that they will need no repetition.

8. The analogue of the Mayer condition and the second

veriation. The following section establishes the condition IV,
formulated geometrically in section 6, by means of the second

variation. The equivalent problem stated in section 2 will now

be used again.
For a normal extremal Eyp of the equivalent problem it is
known that if qi(x), fg(x) is a set of admissible variations

satisfying the equations

’}{fq(x, N = Yy, + Yagy ' = 0
(8:1) @ﬂx, 77,77v) - zzpv ¢p‘ = ¢py1771 + ¢By1'771' - 2-zﬂv Qﬂu'
ni(xl) = qi(xg) =0,

then there exists a one-parameter family of admissible arcs
yi = Y1(xs b), Zp = zg(x' b)

containing Ejp for b = bo, and having the set qi(x), Q,(x) as
its variations along Ejg. In this section the second variation
is to be calculated for an admissible arc Ejp without corners

satisfying the equations Iﬂ; = 0 and QDa(x, Yy, ¥') - Zp'z =0,
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26 VALENTINE: THE PROBLEM OF LAGRANGE (432)

and also satisfying the multiplier rule with multipliers Xo = 1,
Ae(x) and A, (x).

When the members of the equations

I(b) = /xzf[x, y(x,b), y'(x,b)]ax,
X1
0 = Y, [x, vix,v), y'(x,b)],
(o] =

¢plx: Y(x,b): Y'(X,b)] - Zﬂ'z(xy b);

are differentiated twice with respect to b, one may obtainl the

equation
(8:2) I"(bo) = /x2[2w(x, 7, 77') -2 8, %) Jax,
x, e e
where
2w

= Fyy e et Py M Fyag o e

The accessory minimum problem for this problem consists
in finding in the class of arcs qi(x), ¢é(x) satisfying the
equations (8:1) that one which minimizes the second variation
(8:2). The case to be considered here is the one in which the
minimizing arc is a composite one Eyjp = Eyz + Eazgp- The extremals
for the accessory minimum problem for this case must satisfy the

differential equations

a '

&y =Ly, S+ 7' =4

@’&(XJ 7)’ 77') =0, ¢1(x, 77; 77') - 221'¢1I =0

(8:3)

where
2
Q2= po(w -§,") +/bu1[fa + (@ - 22§
and d; 1is a constant. From the transversality condition one
finds that
§1‘A1 + /lel'll = qilkl + /ilzl'|2 =0

1See Bliss, loc. cit., p. 723.

342



(433) THE SECOND VARIATION 27

holds. Hence it 1is true that

n
o

]
PRSI '
on XjXg. Since )‘l is zero on E;z and z;' 1is zero on Ezp, it

follows that
'
§1 )‘1

n

/ulzl' =0 (xq xS X5)

holds. The functions 7](1), t’l(x) which define the minimizing

arc for the accessory minimum problem are determined by the

Q [ /x Q dx ’
71 X1 T T
.L[/a =0, ¢1 - 221'§1‘ = 0.

It follows that 7)1' ) /U-«, /(ll are continuous at xz as well as at

equations

all other points on x;x5 since 7]1():) are continuous, and thus
all three terms not involving 7)1', Iu,,, and /‘1 are continuous
since the determinant of coefficients of 771', /a,l, /ul is Ry or
Ry which are different from zero on XzXo and xj;xz respectively.
The functions 77, ?1 are defined for the intervals X1X3

and XzXg by the following equations,

d -
ax 52271' = n21’i’

(8:4) (xz € x € x),
?4 =0, ¢1 - Zzl'tl' = 0,
d =
E Ql’h.' Ql’h’
(8:5) 7[, - o (x; € x £ x3),
where

$4,

Pow + prali,
/-low * ,U'all[/a + /u'1¢1~

R
L]
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Oon the interval xjxz the function tl(x) is defined by the equa-
tion le - 2zl'§1' = 0. The function Cljx) 1s admissible, since

zq! # 0 for (x; € x < xz) and the equations

P lx3, 7(x3-0), 7' (x3-0)) = Py [x5, N(x5+0), 7' (x5+0)] = O,
zl'(’xs) = O)

hold at the point 3. Also the function ?1'(x) is zero at x = x3

since the linit
(8:6) 1m @D, /zq
= -0 1

exists at x = xz and 1s zero. For if the numerator and denomina-

tor of the function
2
P17z

ere differentiated separately, one gets

21 Py (x, 7 )/ Pyt x, s 9.

Since it has élready been assumed that qbl'(XS’ ¥, ¥') # O, it is
true that the limit (8:6) is zero at 3. Thus the minimizing arcs
for the accessory minimum problem are defined by equations (8:5)
and (8:4).

In the following
argument the determinants Ry
and Ry defined by expression
(4:1) are assumed to be dif- 3
ferent from zero on E,5 and
Ezo respectively.

Definition. A value

X4 is said to be conjugate 1 2

to x; on the arc Ejz + E52
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if there exists an extremal of the accessory minimum problem of

the form

I
B
A

n

qi(x) = ui(x)’ /‘Lq, Pq(x) (x]_ XS),

vi(x), e = pu(x)
fa = Prl®)

continuous and having continuous derivatives on x1Xp and satisfying

731 (x)

[
s
A

(XSS XQ)J

but not identicelly zero on XyXg.
ANALOGUE OF THE MAYER CONDITION. Supnose Eyp = Ejz + Ezp

is 8 composite arc which is normel on every subinterval, and

which }_s such that Rl and Ry are different from zero on E13 and

Ezp respectively. If Ej 5 is a minimizing arc there can exist no

point conjugate to 1 between the points 1 and 2.

To prove this statement consider the special solution

Ni(x) = ui(x),  pa(x) = Oulx),  (x3 S xS xg) when x4 € x3,

Ni(x) =0, (x4 € x S xp)

7]1(1) = uy(x), /“‘q(x) s falx), (X S xS xz)

Nulx) = vy(x),  M(x) = @udx), xs €% € %4)Y when xg < %,
/Ll(x) E,ol(x): -

Ni(x) =0, (x4 S x £ xp)

For this choice of r)i(x) the second variation has the value

X3 X4
I"(bo) =/ 2w(x, u, u')dx +/ 2w (x, v, v!')dx,
Xl X5

which has the form
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n = xs '
I (bo) = /xl (\linui + ui Qlui’ + P"(Qlfq +Flﬂlpx)d.x

X
4
+ (v,.2 + v Q2 + 0,81 + )ax.
/XS oy, * V1'8oyr + pallgy, (°19-1p1’
Upon using equations (8:5) and (8:4) this integral may be evalu-
ated to be
3 4
" =
I"(bo) = uyllyy il + Viflevivls-
But since the relation
uiﬂlui. = Vingvi‘
holds at the point 3, I"(bo) has the value
[ - 4 1
1"(0o) = vifloy v 1% - uyClyy 1Y,

or

I"(bo) = vy{l,, = o.

2vy
Since for a minimizing arc 7}1(x) the corner conditions
Sy 1 [xg5 75 7' (24-0), plx4-0)]
-2 X [x4» 75 7" (x440), h(x420)] = 0,
hold,! ana since
Yrix, ') =0, b (x, 7.y =0, Ry #oO,

hold, it is true that

(ngxg x4).

Similarly it follows that

u =uy' = pPx=0

lsee B11ss, loc. cit., p. 725-6.
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for the interval (x; S xS x3). Thus the Mayer condition has

been established.

9. Analogue of the necessary condition of Hestenes. 1In

sections 10 and 11 a sufficiency proof is made for a composite

arc without the assumption of normelity. 1In order to lead up to
this proof another necessary condition, analogous to the necessary
condition IV,, given by Hestenes for the problem of Bolza, is
derived.

As shown in section 8 the minimizing arc T7i(x) for the
accessory minimum problem, when Ejs = Ej3 + Ezp is a composite
arc, is defined by (8:5) for (x; £ x £ xz) and by (8:4) for
(x3 <x < X5). The functional determinant of equations (8:5)
with respect to ni' and /L« is Ry» whereas the functional deter-
minant of equations (8:4) with respect to 171', f@x and le is
Ry, Ry and Ry being defined by (4:1). Since we suppose that Ry

and Ry are different from zero on Eyg and Ez, respectively, the

equations
t =-Q - ’ 'l
(9:1) St S LSNP
o =Yy
have the solutions
' = (x, n, t)
771 Trix 7 (xléxéxs)’
IU-a, = M“(X, 77! t)
and the equations
ti = ﬂz;’il(x, 7’9 77': I“')
(9:2) 0o = P (x3§x§x2),
0 = 951
have the solutions
771' = Ki(x: 7]; t)
/Lu = Nulx, 7, t) (xz £x < x5) .
H1 = Nilx, 71, t)
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Equations (8:5) and (8:4) may be put into the usual canonical
forms by introducing the Hamiltonian functionsl Hy and Hp.

Equations (8:5) will then be equivalent to

M:i' = Higy

til =

(9:3) (%7 € x £ x4),

-H
Ing
and equations (B8:4) will be equivalent to
N1' = Hagy

(9:4) (x5 S x
ti' = ‘H2n
1

A

XZ).

For an arbitraery pair of solutions of (9:3), (qi, ty) and

(qi*, ti*), it is known that
(9:5) qiti* - qi*ti = constant = ¢,

The same relation holds for an arbitrary pair of solutions of (9:4
DEFINITION. The solution (7;*, t4;*) is said to be conju-
gate to the solution (71, ty) if equation (9:5) holds with ¢ = O,
The sets [7y,, ty, ] form a conjugate system if any pair
of them are conjugate to each other.
A conjugate system of solutions (nik, tix) of equations
(9:3) and (9:4) may be found such that (qik, tyy) are continuous.
Suppose 71k = 0 j) and tyy = 83) form a conjugate system of
solutions of (9:4) on (x3 < xS Xp) where £2 has been replaced
by 512. The solutions nik = Uy tik =7ryy of equations (9:3)

with the end conditions

vy (x3) = 04y(x3),

rax(xz) = s4y(x3),

1s. a. Bliss, Problem of Bolza in the Calculus of Varia-
tions, Lecture notes at the University of Chicago, Winter 1935,
P
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on the interval (x; $x S xz) are well defined. The system of

solutions (7ik' tik) thus obtained 1is continuous on the entire
interval (xj E S Xo) and is a conjugate system.

ARNALOGUE OF THE CONDITION OF HYESTENES, IV,. Supnose the

arc Eyjp = Ejz + KEzo satisfies the hypotheses assumed for the cal-

culation of the second variation. The arc 1is said to satlsfy

condition IV; if the inequality
(9:6) (€. uyy, - Jasb, 2 0
: 1 3%k 713%1k/® 5% =

is ral'istied on (x3 € x £ xp), where the constants aj and bJ

satisfy the equeatlons

(9:7) N185 = Yydy

and where the set ( 7ij’ §ij) is a conjugate system of solutlons

of equations (3:3), and (uij’ vij) is a conjugnte syzitem of solu-

tions of equations (9:4). The first set (%744, §;;) is defined

by the transversality and end-conditions for the point 1, whereas

the Eecond set (uij, Vij) is defined by the corresponding condi-

tions for the point 2, Every normal composite minimizing arc

E12 = E13 + Ezp, for which Ry and Ry, are different from zero on

E)z and Ezp respectively, must sutisfy the condition Iv,.

We will first prove the necessity of this condition on Fzo.

Let the set ( 713, tij) be defined as follows

Ni5 = Tiylx)

(x9 £ x £ x1),
tij = rij(x) 1 3
and
= 04 4(x)
71J 130X (xz < x < Xg) .
¢ij = sij(x)

Woreover let

349



34 VALENTINE: THE PROBLEM OF LAGRANGE (440)

Uiy = myplx)
(x3 £ x5 xz),
Vi = nyp(x)
and
Uy = Pix(x)
(xs g X g Xz) .
Vik = Qik(x)

Consider a solution aj, by of (9:7) for a value x4 between xz and

xp, end let the sets (T3, ry), (03, s4), (my, ny) and (pys qy)

represent
‘Ci =11J9.J
r, = r;:a
1 1579 (x1§x§x5),
my = mypby
ny = nypby
0‘1 =O’ijaj
8; = 8448
oA (xz £ x S xp).
Py = Pyyby
Qg = by

The arc defined by Tj(x) on (x3 £ x £ x3), by O;(x) on

x
(xz £x¢ x4), and by py(x) on (x4 £x ¢S xp) 1s continuous by

0

n

(9:7), and satisfies the equations 'l[g = 0 on x3x; and @1

on xzXxg. This arc gives to the second variation (8:2) the value

Xa X4
I"(bo) = 2w(x, T, T')dx + 2w(x, o, o' )dx
X1 x3

X2
+/ 2w(x, p, p')dx.
X4

If ILL,,,_'{I/“ is added to the integrand of the first integral, and if
Iu,“'g/“ + ftlél 1s added to the integrands of the second and third

integrals, I"(bo) will have the form
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X X
I"(bo) =/ ®2Qy(x, 7, T1)ax + / *2Qy(x, o, o)ax
x x3
+/x22ﬂ2(x, p, p')dx.
x4

By the use of the homogeneity property of quadratic forms,l one

may find the value of I"(bo) to be
3 4
I"(bo) = 21£1111.|1 + Oiflgai.ls + p1£22p1"§’

which reduces to

3 4 2
I"(bo) = 21r1| + olsils + piq1|4.

1

Since the equations

ri(xs) = 0-1(13), ri(XS) = si(xs):
73(x3) = py(xg) =0, Ty(x4) = p1(xy),

hold, it follows that
(o) = 51(14)P1(x4) - 01(14)q1(x4),

and this last expression for I"(0) is

(g‘ij“ik = M13Vik) 230k (x5 € x € xp).

A similar proof can be made when the point 4 lies between the
points 1 and 3. In event the point 4 15 taken at the point 3,

the second variation I"(bo) will have the form

x3 X2
I"(bo) =/ 2fd(x, T, T')ax +/ 2(l,(x, p, p')ax,
X1 X3
where 7Tj3(x) and py(x) are defined above. The completion of the
proof for this case is then easily made. Thus the condition v,
has been established.

1Bliss, Problem of Bolza, p. 87.
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10. Sufficiency proof without the assumption of normality.

One may now prove the following theorem with the aid of the pre-
ceding section and some auxiliary lemmas.

THEOREM 10:1. Let Ejp = Ej3z + Ezp be an admissible com-

posite arc, satisfying the conditions IIﬁ, IIr', Ivy', with a se

of multipliers Ao = 1, X,(x), )l(x). Then there exists a

neighborhood F of Ejp = Ejz + Ezp such that J(Cjp) > J(Ejp) for

every admissible arc Cyp in F joining the points 1 and 2, satis-

fying
Yo =0, ¢, 20,
and distiﬂgﬁ from Ejo-

Consider a one-parameter family of composiie arcs

¥y = y4(x, a), A = Adlx, 8) (xy £ xS x3),
(10:1)  yy = Yy4(x, 8), A = Aolx, a) (x3 £ x S xp),
)1 = }\1(X, a)’

and s set of functions x3(t), x,(t), e(t) having continuous
derivatives, and such that y3, Y4, ¥4, Yix’ Aﬁ "and A'L have
continuous first partial derivatives in a neighborhood of the

sets (x, 2) defined by
x1(t) € x € xp(t), a(t) (b' £t S ").

The end points 1 and 2 of the curves describe two arcs C and D,

the equations of C being

X = xl(‘v)y

vy ¥ yl[xl(t): &(t)],

and the curve D being de-

fined by
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x = x5(t), ¥y = Yi[x2(t), a(t)].

The differentials dx, dy; along the curves C and D are given by

the equations

1

dxy

dxy

x3'(t)at, dy; = Jix,0%) + YVigda,
xz‘(t)dt, dyi = Yi

(10:2)

xedx2 + Yiada'

Along the particular composite extremal arc defined by a

value t the integral I has the form

xs(t)
I(t) = Fl[x) y(x,a), Y'(x9a)y A]dx
x,(t)

xp(t)
+ Fg[I: y(x’a): Y'(X»a)’ )‘]dx'
xz(t)

The derivative of I with respect to t i1s

dx ax|3 /x3 da da
—_= .= o+ (F Ve + bl 'y ' —.)dx
dt lat], %1 lyy“1adt © “1y471 aqdt
ax |2 X2 da , da
* Fod 5 +/x3 (Foyiltage * Foyy¥a'agy) &

Upon integrating by parts and using equations (10:2) one gets
H = - \] 2

(10:3) al = [F - y4 Fyi']dx + Fyi.dyill.

The symbol I¥ denotes the integral

™ =/[[F - V4P, lax s Fyi,dyi].

By integrating (10:3) from t' to t" one obtains the following

result.

LuMMA 10:1. 12 the composite extremal arcs 2£ the one

parameter family (10:1) corresponding to the values t' and t" of

the parameter t are Ezy and Egg respectively, then
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I(Ess) - X(E34) = I*(D46) - I*(Css)-

Definition of a Field. A fleld is a reglion ¥ of (x, y)

space with a set of slope-functions and multipliers
0y, Lo=1, Aix, v, Lix, ),

having continuous first partial derivatives in ¥, and such that
the sets (x, y, p) are admissible and satisfy \ = 0, ¢ﬁ 20,

end make the I¥* integral

* =J[{&'- piFyi,]dx + Fyi,dyi}

independent of the path in F.

LEMMALl 10:2. Let E = E + E be a composite arc such
==r B12 13 32 22 2 =<

that Ry # 0 on Eyz and Ry # 0 on Ezp, and having a conjugate sys-

tem of solutions (Ujy, Vi) ) of the accessory equations (9:3) and

(9:4). This solution has the form

U =u
1k ik (x1§X§x3),
Vik = Vik
U = 0.
ik
e (xz xS x2).
Vi = six
Moreover suppose 'Uikl #0 on xyxo. Then Ejo is an extremal of a

field F consistimg of an n-parsmeter family of composite arcs

¥y = yi(x, q'l’ oe ey dn), ry = F1y1| [Xl é x § Xs(d.)],

Y1 = Yi(x.v a-]_! ey dn); Ri = F2y1| ['Xs(q) g x é 12],

and containing E,o for values (x, o) satisfying

(x) € x €x5), o« =0, (k =1, ..., n).

lBliss, loc. cit., Problem of Bolza, p. 103.
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The functions y;, Y4, ¥ix» Yix» T35 Ry have continuous first

partial derivatives in a neighborhood of the values (x, &) be-

longing to Ep, and the variations of that family along Ej;o have

the values

Yimk(x’ 0) = uy,(x), ridk(x’ 0) = vy (x) [Xl £ xE x3(0)],

Yia(k(x’ 0) = a-ik(x)' Rillk(x‘ 0) = sik(x) [x3(0) £x s xg]-

The proof of this lemma can be obtained by an extension
of a lemma given by Bliss for the problem of Bolza. By a proof
whose details are identical with those given for the imbedding
theorem 1n section 4, it may be proved that the composite arc
Eip = E13 + E52 may be imbedded in a 2n-parameter family of com-
posite arcs. As shown by Blissl it 1is true that -this 2n-parameter
famlly may have the form

Vg = ¥4 X%,y eeey 00)
vt g [r € x € x5(e0],

i
[
0

=%, 00, e, &)

= Yi(x, Ays wees o(n)

ed
[
1

[xz(ec) € x & %],

Ry Ri(z,atl, ceey )

containing E;5 for (al, eeey &p) = (0, ..., 0). It follows from

the theory given by Bliss and from the imbedding theorem men-

tioned that the equations
ymk(xs) = Yi&k(x5) = o’ik(xs) = “11{"‘3)

hold. The remainder of the proof of the asbove lemma is so similar

to that made by Bliss that it will not be repeated.

1Bliss, loc. cit., Problem of Bslza, p. 105.
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THEOREM 10:2. A FUNDAMENTAL SUFFIC IENCY THEOREM. If an
arc Ejp = Ejz + Ezpo 1s @& composite arc in a field ¥ and satis-

fies the condition II&, then I(Elg) 1s a minimum as described in

Theorem 10:1.

In view of the assumption that Ejo satisfies the condition
II&, the field F may be restricted to a sufficiently small
neighborhood of Ejp so that all the elements [x, y, p(x,y), £&y)]
belonging to F lie in the neighborhood N. Then at all points of

‘F the condition
E(x, ¥, p(x,5), ¥', £) -4 p(x, 3, ¥') >0
must be satisfied for every set (x, y, Y') ¥ (x, ¥, y') and
satisfying gbl(x, ¥, ¥') 20, Yu(x, y, ¥Y') = 0. Since
I*(Elg) = I(Ejp)
it is true that

. [*

X2
f(x, Y, Y')dx - / ([F - pyFy yJdx + Fy vdyy)
x x i 1

X2
Ll [F ‘jl(pl(x: y, Y') - F(x, v, pj_) - (pg - Yi')Fyi']dx

/XQ[E(X; Y, b, .Y': )) -_[1¢)1(X, Y ‘,")}l])(.
X
1

Hence the theorem is established.
LTMMAI 10:3. Let E1p = Eyz + Eap be an admisgible com-
posite arc nabisfying conditions TIIY, 1V)' with a set of mul-

tioliers Ao =1, A“, Al- Then there exists a conjugate system

lBliss, loc. cit., Problea of Bolza, p. 112.
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of solutions Ujp(x), Vijk(x) of the canonical accessory equations
L o kae a

(9:3) and (9:4) with |Uy,| # 0 on x3x5.

The proof of thils lemms is almost identical with that
given by Bliss in his notes on the problem of Bolza, hence it
will not be repeated.

Now one 1s in a position to prove the sufficiency theorem
10:1. According to Lemma 6:1 an admissible arc Ejp = Eyz + Egzpo
sat1sfying III' must be such that R; and Ry, are different from
zero on Fjz and Egp respectively. Condition IVy!' and Lemma 10:3
imply the existence of & conjugate system of solutions Uyp(x),
Vix(x) of the canonictal equations (9:3) and (9:4) with deter-
minent |Uji(x)| # O on xyXp. Hence by Lemma 10:2 the composite
arc Ejp 1s in s field F, contained in an n-parameter family of
composite arcs. Thus by these conditions and II& it follows that
;he hypotheses of the sufficlency Theorem 10:2 are fuifilled, and

therefore the conclusion of Theorem 10:1 is established.
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