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THE KUHN-TUCKER THEOREM 

IN CONCAVE PROGRAMMING 

HIROFUMI UZAWA 

1. Introduction 

In order to solve problems of constrained extrema, it is customary 
in the calculus to use the method of the Lagrangian multiplier. Let 
us, for example, consider a problem: maximize f(x1, • • ·, x,.) subject to 
the restrictions gk(x1, · • ·, x,.) = 0 (k = 1, · · ·, m). First, formulate the 
so-called Lagrangian form 

"' cp(x, y) = f(xl, · • ·, x,.) +I:: ykgk(xu • · ·, x,.) 
k=l 

where unknown y11 • • ·, Ym are called the Lagrangian multipliers. Then 
solutions x1, • • ·, x,. are found among extreme points of cp(x, y), with 
unrestricted x and y, which in turn are characterized as the solutions of 

cp./x, y) = aj + l:Yk agk = 0 (i = 1, · • ·, n) , 
ax; k ax; 

(k = 1, · · ·, m) . 

This method, although not necessarily true without certain qualifica­
tions, has been found to be useful in many particular problems of con­
strained extrema. 

The method is with a suitable modification applied to solve the pro­
gramming problems also where we are concerned with maximizing a 
function f(x 11 • • ·, x,.) subject to the restrictions x1 ~ 0 (i = 1, · · ·, n) and 
gk(x1, • • ·, x,.) ~ 0 (k = 1, · · ·, m). Kuhn and Tucker [2] first proved 
that under some qualifications, concave programming is reduced to find­
ing a saddle-point of the Lagrangian form cp(x, y). This Kuhn-Tucker 
Theorem was further elaborated by Arrow and Hurwicz [1] so that non­
concave programming may be handled. In the present chapter we shall, 
under different qualifications, prove the Kuhn-Tucker Theorem for con­
cave programming. 

2. Maximum Problem and Saddle· Point Problem 

Let g(x) = <g1(x), · · ·, g'"'(x)) (see fn. 1, p. 2) be an m-dimensional 
vector-valued function and f(x) be a real-valued function, both defined 
for non-negative vectors x = <x1, • • ·, x,.). 

Consider the following 

MAXIMUM PROBLEM. Find a vector x that maximizes 
( 1) f(x) 
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subject to the restrictions 

( 2) X~ 0, g(x) ~ 0 . 

A vector x will be called feasible if it satisfies (2), and a feasible 
vector x maximizing f(x) subject to (2) will be called an optimum vec­
tor of, or a solution to, the problem. 

Associated with the Maximum Problem, the Lagrangian form is de­
fined by 

( 3 ) rp(x, y) = f(x) + y • g(x) , 

where' 

A pair of vectors (x, y) is called a sOJddle-point of rp(x, y) m x ~ 0, 
y ~ 0, if 

( 4) x ~ 0, :Y ~o. 

( 5 ) rp(x, y) ;:; rp(x, y) ;:; rp(x, y) for all x ~ 0 and y ~ 0 , 

which may be written as follows : 

( 6) rp(x, y) = min max rp(x, y) = max min rp(x, y) . 
v~o x~D x~D y~fJ 

SADDLE-POINT PROBLEM. Find a saddle-point (x, y) of rp(x, y) = f(x) + 
Y • g(x). 

3. Saddle· Point Implies the Optimality 

We are interested in the reduction of a maximum problem to the 
saddle-point problem of the associated Lagrangian form. First, a prop­
osition will be noted which is true without any qualification on f and g, 
whenever there exists a saddle-point. 

THEOREM 1. If (x, y) is a saddle-point of rp(x, y) in x ~ 0, y ~ 0, then 
x is an optimum vector of the maxi'l'{&um problem. 

PROOF. Substituting (3) into (5), we have 

( 7 ) .f(x) + y · g(x) ;:; f(x) + y · g(x) ;:; f(x) + y · g(x) 

for all x ~ 0, y ~ 0 . 

1 For two vectors x = <x,, · · ·, x,.> and u = ('1.1.1 , · · ·, un>, we shall, as usual, define 
X-;;;;;; U if X!-;;;;;; Ut , (i = l, · · ·, n), 

X 2 U if X -;;;;;; U and X ~ U , 

X > U if Xi > Ut , 

and x · ?L stands for the inner product 

" X · U = L XtUL . 
i-1 

(i = l, · · ·, n), 
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Since the right-hand inequality holds for any y ~ 0, it follows that 
g(x) cannot have a negative component, and y · g(x) must be zero : 

g(x) ~ o, y . g(x) = o . 
Thus the left-hand inequality of (7) may be written as 

( 8) f(x) + y · g(x) ;;::; f(x) for all x ~ 0. 

Since, for any feasible vector x we have y · g(x) ~ 0, it follows that 
f(x) ;;::; f(x) + y · g(x) ;;::; f(x), which shows that x is optimum, q.e.d. 

4. The Kuhn·Tucker Theorem 

Now a question naturally arises whether, given an optimum vector 
x, it is possible to find a vector y for which (x, y) is a saddle-point of 
cp(x, y). This, of course, is not true in general, e.g., for convex pro­
gramming (i.e., where the maximand is a convex function). The fol­
lowing simple example shows that it does not hold even for concave 
programming : 

f(x) = x, g(x) = -x'. 

Regarding concave programming, however, the reduction is shown to 
be possible provided f and g satisfy certain regularity conditions, e.g., 
the Kuhn-Tucker Constraint Qualification.' We shall give sufficient con­
ditions which make the reduction possible. 

THEOREM 2. Suppose that f(x) and g(x) are concave .functions on x ~ 0, 
and g(x) satisfies the following condition (due to M. Slater [3]) :3 

( 9) There exists an x0 ~ 0 such that g(x0 ) > 0. 

Then a vector x is optimum if, and only 1J, there is a vector y ~ 0 such that 
(x, y) is a saddle-point of cp(x, y). 

PROOF. Let x be optimum. We shall, m the (m +I)-dimensional 
vector space, define A and B by 

Since f(x) and g(x) are concave, the set A is convex. Since x 1s opti-

' See Kuhn and Tucker [2]. p. 483. 
s A seemingly weaker condition: (9') For any u > 0, there exists a vector x ~ 0 such 

that U· g(x) > 0 is due to S. Karlin. The condition, however, is equivalent to the Slater's 
condition (9). For the proof, see Chapter 5, pp. 109-10 of the present volume. 

309



THE KUHN-TUCKER THEOREM IN CONCAVE PROGRAMMING 35 

mum, A and B have no vector in common. Therefore, by the lemma 
on the separation of convex sets, there is a non-zero vector (v,, v) :f:- 0 

such that 

(10) 

By the definition of B, (10) implies (v,, v) :S 0. Since (f(x), 0) is on the 
boundary of B, we also have, by the definition of A, 

(11) v0f(x) + v · g(x) ~ v,f(x) for all x :S 0 . 

We have V 0 > 0. Otherwise, we have v :2: 0 and v • g(x) ~ 0 for all 
x :S 0, which contradicts (9). 

Let y = v/v,. Then 

y :s 0 ' (12) 

(13) f(x) + y · g(x) ~ f(x) for all x :S 0 . 

Putting x = x in (13), we have y · g(x) ~ 0 . On the other hand, we 
have 

(14) g(x) :s o . 
Hence 

(15) y. g(x) = o. 
Relations (13), (14), and (15) show that (x, y) is a saddle-point of <;o(x, y) 

in x :S 0, y :S 0, q.e.d. 

5. A Modification of the Kuhn·Tucker 'Theorem 

Slater's condition (9), however, excludes the case where part of the 
second half of restriction (2) is 

h(x) :S 0 and -h(x) :S 0 , 

for linear h(x). In order to make the reduction possible for such cases, 
we have to modify the Kuhn-Tucker Theorem. 

Let sub-sets I and II of {1, · · ·, m} be defined by 

(16) I= {k; g,c(x) = 0 for all feasible x} , 

and 

(17) II = {1, .. ·, m} - I . 

We shall assume that 

(18) g~(x) is linear in x, for k E I . 

(19) For any i, the1·e is a feasible vector x' such that 

xi> 0. 
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Then we have as a modification of Theorem 2 the following: 
THEOREM 3. Suppose that f(x), g(x) cure concave, and g(x) satisfies (18) 

and (19). Then a vector x is optimum if, and only if, there is a 
vector y such that (x, y) is a saddle-point of tp(x, y) in x ~ 0 and y ~ 0 
(II). • 

PROOF. It is obvious that, if (x, y) is a saddle-point of tp(x, y) in x ~ 0 
and y ~ 0 (II), then x is optimum. 

In order to prove the converse we may assume that 

(20) dg. , k e I, are linear independent. 
dx 

Let x be optimum. We consider two sets A and B defined by 

A = { (:) ; "' ;';; f(z), z, = g,(z), 'n ;';; grr(z), u ;';; z, for some z} , 

B = { (~) ; z, > f(i), z = 0 (!), z > 0 (I!)) . 
Then A and B are convex, and have no point in common. Therefore, 
there is a vector (v0, v, w) =1=- 0 such that 

(21) V 0 ~ 0, V ~ 0 (II), W ~ 0 , 

and 

(22) v0 f(x) + v · g(x) + w · x ~ Vof(x) for all x. 

It now suffices to prove that v0 > 0. If we had assumed that V 0 = 0, 
then 

(23) v · g(x) + w · x ~ 0 for all x . 

For any k e II, there is a feasible vector x• such that g.(x•) > 0. Hence 

(24) 

By (19) and (23), 

(25) 

for k e II. 

w = 0. 

Using (24) and (25); the inequality (23) may be written as follows : 

(26) for all x, where v1 =1=- 0. 

Since we have assumed that gr(x) is linear, (26) implies 

< The notation y;;;;;; 0 (II) means Y•;;;;;; 0 for all k E II. The point (x, y) is said to be a 
saddle-point of op(x, y) in x;;;;;O and y~O (II) if :v;;;;;o, y;;;;;O (II) and (5) holds for any x;;;;;O and 
y~O (II). 
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(27) Vr • Bgr = 0 
Bx ' 

where v1 =/= 0 , 

which contradicts (20), q.e.d. 
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