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1. Introduction 

Linear programming deals with problems such as (see [ 4], [ 5]): to maximize a linear 

functiong(x) = L c;x; of n real variables x1, ... , Xn (forming a vector x) con

strained by m + n linear inequalities, 

h = 1, ... , m; i = 1, ... , n. 

This problem can be transformed as follows into an equivalent saddle value (min
imax) problem by an adaptation of the calculus method customarily applied to con
straining equations [3, pp. 199-201]. Form the Lagrangian function 

Then, a particular vector x0 maximizes g(x) subject to the m + n constraints if, 
and only if, there is some vector u0 with nonnegative components such that 

q, (x, u0) ~ q, (x0, u0) ~ q, (x0, u) for all nonnegative x, u. 

Such a saddle point (x0, u0) provides a solution for a related zero sum two person 
game (8], [9], [12]. The bilinear symmetry of cp(x, u) in x and u yields the charac

teristic duality of linear programming (see section 5, below). 
This paper formulates necessary and sufficient conditions for a saddle value of 

any differentiable function cp(x, u) of nonnegative arguments (in section 2) and 
applies them, through a Lagrangian cp(x, u), to a maximum for a differentiable 
function g(x) constrained by inequalities involving differentiable functions j,.(x) 
mildly qualified (in section 3). Then, it is shown (in section 4) that the above equiva
lence between an inequality constrained maximum for g(x) and a saddle value for 
the Lagrangian cp(x, u) holds when g(x) and the jh(x) are merely required to be 
concave (differentiable) functions for nonnegative x. (A function is concave if linear 
interpolation between its values at any two points of definition yields a value not 
greater than its actual value at the point of interpolation; such a function is the 
negative of a convex function-which would appear in a corresponding minimum 

problem.) For example, g(x) and thej"(x) can be quadratic polynomials ih which 
the pure quadratic terms are negative semidefinite (as described in section 5). 

In terms of activity analysis [11], x can be interpreted as an activity vector, g(x) 
as the resulting output of a desired commodity, and the fh(x) as unused balances 
of primary commodities. Then the Lagrange multiplie!:§_1£ can be interpreted as a 
price vector (13, chap. 8] corresponding to a unit price for the desired commodity, 
and the Lagrangian function q,(x, u) as the combined worth of the output of the de
sired commodity and the unused balances of the primary commodities. These 
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482 SECOND BERKELEY SYMPOSIUM: KUHN AJ\'D TUCKER 

price interpretations seem to relate closely to the price theory in the contemporary 

paper of K. J. Arrow [1]. 
A "vector" maximum--{)£ T. C. Koopmans'@icient point tYPe [11]-for several 

concave functions gt(x), ... , gp(x) can be transformed into a "scalar" maximum 

for g(x) = ~ v2gk(x) by suitable choice of positiveconstants v2 (as described in 

section 6). These positive constants can'be interpreted as prices to be assigned (for 

efficient production) to several desired commodities with outputs gk(x) produced 

by the activity vector x. 
Likewise, a maximum for min [g 1(x), ... , gp(x)] can be transformed into a 

maximum for g(x) = L vggk(x) by suitable choice of nonnegative constants vk with 

unit sum (as described in section 7). Such a maximum of a minimum component, 

example, is the objective of the first player in a zero sum two parson game [12]. 

Modifications resulting from changes in tbe m + n basic constraints are also 

considered (in section 8). 
Throughout this paper it is assumed that the functions occurring are differen

tiable. But it seems to be an interesting c~nsequence of the directional derivative 

properties of general convex (or concave) functions [2, pp. 18-21] that the equiva

lence between an inequality constrained maximum for g(x) and a saddle value for 

the Lagrangian <f>(x, u) still holds when the assumption of differentiability is 

dropped. Then proofs would involve the properties (of linear sum, intersection, 

and polar) of general closed convex "cones" rather than those of the polyhedral 

convex "cones" [7], [14] that occur implicitly in this paper through homogeneous 

linear differential inequalities. However, to assure finite directional derivatives 

at boundary points of the orthant of n?nnegative x, one needs some mild require

ment. For this purpose, it is certainly sufficient to assume that the functions are 

convex (or concave) in some open region containing the orthant of nonnegative x. 

NOTATION. Vectors, denoted usually by lower case roman letters, will be treated 

as one column matrices, unless transposed by an accent ' into one row matrices. 

Vector inequalities or equations stand for systems of such inequalities or equations, 

one for each component. Thus x ~ 0 means that all the components of the vector x 

are nonnegative. Rectangular matrices and mapping operators will be denoted by 

capital letters. 

2. Necessary and sufficient conditions for a saddle value 

Let <j>(x, u) be a differentiable function of an n-vector x with comp~ments 

X; ~ 0 and an m-vector u with components uh ;;; 0. Taking partial derivatives, 

evaluated at a particular point x 0 , u 0 , let 

</>~ = [::.r, 
Here </>~is ann-vector and ¢~an m-vector. 

SADDLE VALUE PROBLEM. To find nonnegative vectors x 0 and u 0 such that 

cf>(x, ~0) ~ q,(x0, u0 ) ~ ¢>(x0 , u) for all x ~ 0, u ~ 0. 

LEMMA 1. The conditions 

(1) 
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(2) 

are necessary that x0, u 0 provide a solution for the saddle value problem. 
PROOF. The components of tj>g and ¢~ must vanish except possibly when the 

corresponding components of x 0 and u0 vanish, in which case they must be non
positive and nonnegative, respectively. Hence (1) and (2) must hold. 

LEMMA 2. Conditions (1), (2) and 

(3) 

( 4) 

tj> (x, u0) ~ tj> (x0, u 0) + tj>~ 1 (x - x0) 

tj> (x0, u) ~ tj> (x0, u0) + tj>~' (u - u0) 

for all x ~ 0, u ~ 0, are sufficient that x 0 , u0 provide a solution for Ike saddle value 
problem. 

PROOF. Applying (3), (1), (2), (4) in turn, one has 

for all x ~ 0, u ~ 0. 

tj> (x, u0) ~ tj> (x0 , u0) + tj>~ 1 (x - x0) 

~ tj> (xo, uo) 

~ tj> (x0, u0) + tj>~' (u - u0 ) 

~ tj> (x0, u) 

Conditions (3) and (4) are not as artificial as may appear at first sight. They are 
satisfied if tj>(x, u 0) is a concave function of x and ¢(x0, u) is a convex function of u 
(see section 4). 

3. Lagrange multipliers for an inequality constrained maximum 

Let x ~ u = ~ be a differentiable mapping of nonnegative n-vectors x into 
m-vectors u. That is, Kx)is an m-vector whose components ]l(x), ... ,fm(x) are 
differentiable functions of x defined for x ~ 0. Let g(x) be a differentiable func
tion of x defined for x ~ 0. Taking partial derivatives, evaluated at x0, let 

F 0 = [ ajh/ ax;]0 , g0 = [ agj ax;]0 • 

Here F 0 is an m by n matrix and g0 ann-vector. 
MAXIMUM PROBLEM. To find an x0 that maximizes g(x) constrained by Ffx)~ 0, 

X~ 0. 
CoNSTRAINT QUALIFICATION. Let x 0 belong to the boundary of the constraint set 

of points x satisfying Fx ~ 0, x ~ 0. Let the inequalities F(x01 ~ 0, lx0 ~ 0 (where 
I is the identity matrix of order n) be separated into 1 

F1x0 = 0, I 1x0 = 0 and F2x0 > 0, l 2x0 > 0. 

It will be assumed for each x0 of the boundary of the constraint set that any vector 
differential dx satisfying the homogeneous linear inequalities 

( 5 ) Fl_dx ~ 0 , l 1dx ~ 0 

is tangent to an arc contained in the constraint set; that is, to any dx satisfying (5) 
there corresponds a differentiable arc x = a(B), 0 ~ 8 ~ 1, contained in the con
straint set, with x0 = a(O), and some positive scalar X such that [dajd8] 0 = Xdx. 
This assumption i!? designed to rule out singularities on the boundary of the con
straint set, such as an outward pointing "cusp." For example, the constraint set in 
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two dimensions determined by 

(1 - x1) 3 - x2 ~ 0, 

does not satisfy the constraint qualification at the boundary point x~ = 1, xg = 0, 
since it does not contain an arc leading from this point in the direction dx1 = 1, 
dx2 = 0. At such a singular point condition (1) in theorem 1, below, may fail to 
hold for any u0-as would be the case for g(x) = x1 subject to the above con
straints. 

Treating the vector u as a set of m nonnegative Lagrange multipliers (10], form 
the function 

cf> (x, u) = g (x) + u'Fx. 
Then 

ct>2 = go+ po'uo' cf>~ = Fxo. 

THEOREM 1. In order that x0 be a solution of the maximum problem, it is necessary 
that x 0 and some u 0 satisfy conditions (1) and (2) for cj>(x, u) = g(x) + u'F~.) 

PROOF. Let x0 maximize g(x) constrained by Fx ~ 0, x ~ 0 (subject to tne above 
constraint qualification). Then, the inequality g0'dx ~ 0 must hold for all vector 
differentials dx satisfying (5). But, it is a fundamental property of homogeneous 
linear inequalities (indicated by H. Minkowski and proved by J. Farkas at the 
turn of the century) that an inequality b'x ~ 0 holds for all n-vectors x satisfying 
a system of m inequalities Ax~ 0 only if b = A't for some m-vector t ~ 0 (6, pp. 
5-7], [7, corollary to theorem 2], [9, lemma 1] and [14, theorem 3]. Hence 

-gO= Ffu~ + I~w~ for some u~ ~ 0, w~ ~ 0 . 

This equation expresses the intuitively evident geometric fact that at the point x0 

the outward normal - g0 to the set of points x for which g(x) ~ g(x0) must belong 

1\ 
I \ 

II \ 

I \ 
I I 

-go 

CONSTRAINT SET 

FX~O, X ~0 
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to the convex polyhedral "cone" of inward normals to the constraint set. Of course, 
if x0 is an interior point of the latter set, then F~ and I 1 are both vacuous. In this 
case x0 maximizes g(x) independent of the constraints, so g0 = 0 ;nd conditions 
(1), (2} hold for u0 = 0. 

The above equation may be rewritten as 

for some u 0 ;;;:; 0 , w0 ;;;:; 0 

by adding zeros as components to u~ and w~ to form u0 and w0• Consequently, 

cf>~ = go+ po'uo ~ go+ po'uO + wo = 0. 

At the same time, since w0'x0 = wri1x0 = 0, 

cp~'xo = gO'xO + uO'FOxO = 0. 
Moreover, 

This completes the proof of theorem 1. 
THEOREM 2. In order that x0 be a solution of the maximum problem, it is sufficient 

that x0 and some u0 satisfy conditions (1), (2), and (3) for cp(x, u) = g(x) + u'Fx. 
PROOF. From (3), (1), and (2) one has that 

g (x) + u0'Fx = cf> (x, u0) ~ cf> (x0 , u0 ) + cp~' (x - x 0) 

~ cp(x0 , u0) = g (x0) + u0'Fx0 = g (x0) for all x ;;;:; 0 . 

But u0'Fx;;;:; 0 for all x satisfying Fx ;;;:; 0. Hence g(x) ~ g(x0 ) for all x satisfying 
the constraints Fx ;;;:; 0, x ;;;:; 0. This proves theorem 2. 

One notes in theorem 2 that (3) need only hold for Fx ;;;:; 0, x ;;;:; 0. 

4. Convexity-concavity properties and the equivalence theorem 

In this section restrictions are placed on Fx and g(x) which will insure the equiva
lence of solutions of the maximum problem and the saddle value problem for 
cf>(x, u) = g(x) + u'Fx. 

DEFINITIONS. A junction J(x) is convex if 

(1 - 0) f (x0) +Of (x) ;;;:; f 1 (1 - 0) x 0 +Ox} 

for 0 ~ 0 ~ 1 and all x0 and x in the (convex) region of definition of f(x). A function 
J(x) is concave if -f(x) is convex (that is, if the interpolation inequality holds with 
~ instead of ;;;:; ) . 

LEMMA 3. If f(x) is convex and differentiable, then 

(where jO = [ ::.r) 
for all x0 and x in the region of definition. [With f(x) concave, the inequality is re
versed.) 

PROOF. From the above definition of convexity one has, for 0 < 8 ~ 1, 

251



486 SECOND BERKELEY SYMPOSIUM: KUHN AND TUCKER 

Hence, in the limit, 

THEOREM 3 (Equivalence theorem). Let the functions f1(x), . .. ,fm (x), g(x) 
be concave as well as differentiable for x G; 0. Then, x 0 is a sohltion of the maximum 
problem if, and only if, x0 and some u 0 give a solution of the saddle mlue problem for 
cp(x, u) = g(x) + u'Fx. . 

PROOF. By lemma 3 (for concavity) 

Fx ;;3 Fx0 + F0 (x - x0) 

g (x) ;;3 g (x0) + g0' (x - x0) 

for all x0 G; 0 and x G; 0. Hence, for any u0 G; 0, 

cp (x, u 0) = g (x) + u 0'Fx 

;;3 g (x0) + u0'Fx0 + (g 0' + u 0'po) (x - x 0) 

= cp (x0, u0) + cp~' (x- x 0) • 

That is, condition (3) holds for all x 0 G; 0 and x G; 0. Under these circumstances, 
theorems 1 and 2 combine to make conditions (1) and (2) both necessary and suffi
cient that x 0 provide a solution for the maximum problem. 

Condition (4) holds automatically, since the linearity of cp(x, u) with respect to 
u implies that 

¢ (x0 , u) = ¢ (x0 , u 0) + ¢~' (u- u 0) 

identically. So lemmas 1 and 2 combine to make conditions (1) and (2) both neces
sary and sufficient that x0 and u 0 provide a solution for the saddle value problem. 
This completes the proof of theorem 3. 

5. Quadratic and linear problems 

LEMMA 4. A quadratic form 

x'Qx = L L q;1x,x1 

is a convex junction for all x, if x'Qx ~ 0 for all x (that is, if the form is positive semi-
definite). --

PRoo:F. From the hypothesis, one has 

8 (x - x 0)' Q (x - x0) G; 82 (x - x0)' Q (x - x0) 

for all 0 ~ 8 ;;3 1 and all x, x0• Hence 
(1 - 8) x 0'Qx0 + 8x'Qx 

= x 0'Qxo + 8xO'Q (x- x0) + (J (x- x 0)' Qx0 + (J (x- x0)' Q (x- x 0) 

G; x 0'Qx0 + 8x0'Q (x- x0) + O(x- x 0)' Qx0 + 82 (x- x 0)' Q (x- x 0) 

{ x0 + 8 (x - x0) }' Q { x 0 + 8 (x - x0)} 

= I (1 - 8) x 0 + 8x}' Q I (1 - 8) x0 + Ox) 

for all 0 ;;3 8 ~ 1 and all x, x0• 
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'QuADRATIC MAXIMUM PROBLEM. To find an x 0 that maximizes 

g (x) = L c;X;- L L c;;X;x; 

constrained by the m + n inequalities 

fh(x)=bh-Lan;X;-LLahjX;X;~O and x;~O. 

It is assumed that the quadratic forms in the above double sums (including the 
preceding sign) are nonpositive for all x (that is, negative semidefinite). 

From lemma 4 it follows that these quadratic functionsjh(x) and g(x) are con
cave for all x, since their linear parts are concave and convex both. Hence, by 
theore~ 3, solution of the quadratic maximum problem is equivalent to solution 
of the saddle value problem for 

cp(x, u) = L c;x;- L L C;;X;x;+ L bhuh- L L ahiuhxi 

\Vhen all of the quadratic terms vanish (an extreme but legitimate special case 
of semid~finiteness), the quadratic maximum problem reduces to the following 
problem of linear programming. 

LINEAR MAXIMUM PROBLEM. To find an x 0 that maximizes L C;X; constrained 

by the m + n linear inequalities 

X;~ 0. 

Now the equivalent saddle point problem concerns the bilinear function 

cp (x, u) = L c;x; + L bhuh- L L ahiuhx;. 

The minimum maximum roles of x and u can be interchanged by replacing cp(x, u) 
by -cp(x, u). Hence, solution of the following dual problem of linear programming 
is equivalent to solution of the saddle point problem for the bilinear function 
cp(x, u). 

LINEAR MINIMUM PROBLEM. To find a u 0 that minimizes L bhuh constrained by 

the n + m inequalities 

6. Extension to a vector maximum problem 

This section extends the previous results to a maximum problem for a vector 
function Gx constrained by Fx ~ 0, x ~ 0. Here the concept of maximum-like 
T. C. Koopmans' efficient point [11]-depends on a ~g of vectors by 
the relation ;:::: , where v;:::: v0 means that v ~ v0 but v r6 v0• 

Let x--+ v = Gx be a differentiable mapping of nonnegative n-vectors x into 
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p-vectors v. That is, Cx is a p-vector whose components g1(x), ... , gp(x) are dif
ferentiable functions of x defined for x ;;; 0. Taking partial derivatives, evaluated 
at a particular x 0, let 

co=[agk]o. 
ax; 

Here C0 is a p by n matrix. Let gZ denote the n-vector whose components form 
the k-th row of C 0• Let Fx have the meaning assigned in section 3. 

VECTOR MAXIMUM PROBLEM. To find an x 0 that maximizes the vector junction Cx 
constrained by Fx G; 0, x ;;; 0---that is, to find an x 0 satisfying the constraints and 
such that Cx 2: Cx0 for no x satisfying the constraints. 

RESTRICTION. Attention will be restricted to solutions x 0 of the vector maximum 
problem that are proper in the sense that C0dx 2: 0 for no vector differential dx if 
x 0 is interior to the constraint set determined by Fx ;;; 0, x ;;; 0, and for no dx 
satisfying 

(5) F~dx;::;; 0, 

if x0 belongs to the boundary of the constraint set (as qualified in section 3). 
Example. To maximize g1(x) ;;; x, g2(x) ;;; 2x- x2, x being a real variable (one 

dimensional vector) constrained only by x ;::;; 0. Here, Cx 2: Cx0 for no x if x 0 ;;; 1, 
and C0dx 2: 0 for no dx except at x 0 = 1, where C0dx 2: 0 for dx > 0. So, any 
x > 1 is a proper solution of this particular vector maximum problem, but x 0 = 1 
is a solution that is not proper. An argument against admitting x 0 = 1 as a 
"proper" solution is that it would usually be natural to accept a second order loss 
in g2(x) ;;; 2x - x2 to achieve a .first order gain in g1(x) ;;; x. (The anomaly indi
cated by x0 = 1 in this example was noticed by C. B. Tompkins. A rather similar 
anomaly occurs in the paper [1] of K. J. Arrow.) 

THEOREM 4. ·In order that x 0 be a proper solution of the vector maximum problem, 
it is necessary that there be some v0 > 0 such that x0 and some u 0 satisfy conditions 
(1) and (2) for cp(x, u) = v0'Cx + u'Fx. 

PROOF. Let x 0 be a proper solution of the vector maximum problem. Then, for 
each k = 1, ... , p, one must have g0'dx ~ 0 for all dx satisfying 

F~dx ~ 0, 

(where F~ and 11 may be vacuous). Hence, by the fundamental property of homo
geneous linear inequalities used in the proof of theorem 1, 

-gg=F~'u~+I~w~+C0'vk forsome u~~O, w1~0, vk~O. 

Now, summing for k = 1, ... , p, and transferring the C0 terms to the left side, 
one has 

where u¥ = L u~ ;;; 0, w~ = 2: wr ;;; 0, and v0 = e + L vk > 0, e being a p
vector whose components are all1's. 

Let g(x) = v0'Cx. Then 

-go= -co'2•o = Ffu~ + I~w~. 
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From this point on the proof of theorem 4 is completed by following the remaining 
steps of theorem 1. 

THEOREM 5. In order that x 0 be a proper solution of the vector maximum problem, 
it is _sUfficient that there be some v0 > 0 such that x 0 and some u 0 satisfy conditions (1), 
(2), and (3) for cf>(x, u) = v0'Gx + u'Fx. 

PROOF. From the proof of theorem 2, with g(x) = v0'Gx, it follows that 

for all x satisfying the constraints Fx ;:;; 0, x ;:;; 0. But v0 > 0, so Gx 2: Gx0 for no x 
satisfying the constraints. 

If x0 is interior to the constraint set, then G0'v 0 = 0 by (1), since x 0 > 0, Fx 0 > 0, 
and u 0 = 0. So G0dx 2: 0 for no dx. If x0 belongs to the boundary of the constraint 
set, then (1) implies that 

-G 0'v0 - F0'u 0 = I:w¥ for some w~ ;:;; 0. 

Through (2) this can be written 

-G0'v0 = F~'u~ + I{w~ for u~;:;; 0. 

Hence G0dx ~ 0 for no dx satisfying 

(5) F¥dx;:;; 0, 

This completes the proof of theorem 5. 
THEOREM 6 (Equivalence theorem). Let the junctions JI(x), ... ,fm(x), g1(x), 

... , gp(x) be concave as well as differentiable for x;:;; 0. Then, x 0 is a proper solution 
of the vector maximum problem if, and only if, there is some v0 > 0 such that x0 and 
some u 0 give a solution of the saddle value problem for cp(x, u) = v0'Gx + u'Fx. 

PROOF. Clearly g(x) = v0'Gx is concave, since v0 > 0. So the proof of theorem 3 
can be duplicated, using theorems 4 and 5 in place of theorems 1 and 2. 

7. Another extension 

Let Fx and Gx be differentiable mappings, as previously defined (with the con
straint qualification ;n Fx;:;; 0, x ;:;; 0 still in effect). Let min [Gx] denote the 
(scalar) function whose value for each x ;:;; 0 is the least among the p values 
g1(x), ... , gp(x) of the components of the vector Gx. 

MINIMUM CoMPONENT MAXIMUM PROBLEM. To find an x 0 that maximizes 
min [Gx] constrained by Fx;:;; 0, x ~ 0. 

THEOREM 7. In order that x 0 be a solution of the minimum component maximum 
problem, it is necessary that there be some nonnegative v0 with unit component sum 
satisfying 

(6) 

and such that x 0 and some u 0 satisfy conditions (1) and (2) for cf>(x, u) = v0'Gx + u'Fx. 
PROOF. Let F 1x0 and l 1x 0 have the meanings assigned them in section 3. Further, 

let Gx0 be separated into G1x0 = min [Gx0] and G2x0 > min [Gx0] (see note pre
ceding theorem 10, below). Then, since x0 is assumed to maximize min [Gx] con
strained by Fx ~ 0, x ~ 0, one must have that G~dx > 0 for no vector differential 
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dx satisfying 
F~dx ~ 0, 

(or for no dx at all, ifF~ and / 1 are vacuous). That is, for each k belonging to a cer
tain nonvacuous subset of the set of indices corresponding to the rows of G0 that 
belong toG~ one must have that gg' dx ~ 0 for all dx satisfying 

F~dx ~ 0, G~dx G; 0. 

Hence, by the fundamental property of homogeneous linear inequalities used in the 
·proof of theorem 1, 

-g2 = Pf'u~ + I~w~ + crv1 for some u~ G; 0, w~ G; 0, v~ G; 0. 

Now, summing fork over the nonvacuous subset and transferring the G~ terms to 
the left side, one has 

-Gfv~ = Fru~ + I{w~, 
where u~ = L u~ ~ 0, w~ = L w~ ~ 0, and v~ = e1 + L v~ )~ 0, e1 being a vector 

whose components are O's or 1's-with at least one 1. Here it can be assumed that 
the sum of the components of v~ is one, since the above vector equation is homoge
neous and the sum of the components of i'~ is positive. Form v0 from v~ by adding 
zeros as components. Then 

v0'Gx0 = i'~ 1G 1x0 = min [Gx0) • 

By setting g(x) = v0'Gx, the above vector equation can be rewritten as 

-go= -G0'v~ = -G~'v~ = Ffu~ + 1:w~. 
From this point on the proof of theorem 7 is completed by following the remaining 
steps of theorem 1. 

THEOREM 8. In order that x 0 be a solution of the minimum component maximum 
problem, .it is sufficient that there be some nonnegative v0 with unit component sum 
satisfying condition (6) and such that x0 and some u 0 satisfy conditions (1), (2), and 
(3) for cp(x, u) = v0'Gx + u'Fx. 

PROOF. From the proof of theorem 2 with g(x) = i• 0'Gx, it follows that 

v0'Gx ~ v0'Gx0 

for all x satisfying the constraints Fx G; 0, x G; 0. But v0 is nonnegative with unit 
component sum and satisfies condition (6). Hence 

min [Gx] ~ 11°'Gx ~ v0'Gx0 = min [Gx0] 

for all x satisfying the constraints. This proves theorem 8. 
THEOREM 9 (Equivalence theorem). Let the functions ft(x), ... , fm(x), g1(x), 

... , gp(x) be concave as well as differentiable for x G; 0. Then, x0 is a solution of the 
minimum component maximum problem if, and only if, there is some nonnegative v0 

with unit component sum satisfying condition (6) and such that x0 and some u 0 give a 
solution of the saddle value problem for cp(x, u) = v0'Gx + u'Fx. 

PROOF. Clearly g(x) = v0'Gx is concave, since v0 is nonnegative. The proof of 
theorem 3 can be duplicated, using theorems 7 and 8 in place of theorems 1 and 2. 

The fact tha:t the constraints Fx G; 0 can be written equivalently as min [Fx] G; 0 
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suggests the possibility of interchanging the roles of Fx and Gx. The following 
theorem exploits this possibility. As before, constraints are subject to the con
straint qualification introduced in section 3. (It is to be noted that a con~tant, such 
as min [Gx0], appearing as a vector in a vector inequality or equation is to be in
terpreted as a vector all of whose components equal that constant.) 

THEOREM 10. Let the functions h(x), ... , fm(x), g1(x), ... , gp(x) be concave as 
well as differentiable for x ;;;; 0. Then, in order that x0 maximize min [Gx] constrained 
by Fx;;;; min [Fx0], x ;;;; 0, it is suificient that x0 maximize min [Fx] constrained by 
Gx ;;;; min [Gx0], x ;;;; 0---provided Fx > min [Fx0] for some x ;;;; 0. 

PROOF. Let x0 maximize min [Fx] constrained by (Gx - min [Gx0]) ;;;; 0, 
x ;;;; 0, as hypothesized. Then, by theorem 7 applied to this reversed situation, 
there must be some nonnegative u 0 with unit component sum and some v0 such 
that 

u0'Fx0 = min [Fx0], 

p_o'uo + co'vo ~ 0' uo'poxo + vo'coxo = 0' 

(Gx 0 - min [Gx0] ) ;;;; 0 , v0' (Gx0 - min [Gx0] ) = 0, 

Assume, if possible, that v0 = 0. Then, using the .concavity of the functions form
ing Fx and the above conditions, one has 

u0'Fx ~ u0'Fx0 + u0'F0 (x- x0) ~ u0'Fx0 for all X;;;; 0, 

contradicting the proviso that Fx > min [Fx0] for some x ;;;; 0. Therefore the vec
tor vo ? 0 and one can assume that it has unit component sum by dropping the 
same assumption concerning u0• Under these circumstances 

(Fx0 - min [Fx0] ) ;;;; 0 , u0' (Fx0 - min [Fx0] ) = 0 , 

and v0'Gx0 = min [Gx0] • 

While, by the concavity of the functions forming Fx and Gx, 

v0'Gx + u0'Fx ~ v01Gx0 + u0'Fx0 + (v 0'G 0 + u0'F0) (x - x0) for all X ;;;; 0. 

Consequently, by theorem 8, x0 is a solution of the minimum component maximum 
problem for.Gx constrained by (Fx- min [Fx0]) ;;;; 0, x;;;; 0. This completes the 
proof of theorem 10. 

8. Other types of constramts 

The foregoing results admit simple modifications when the constraints Fx ;;;; 0, 
x ;;;; 0 are changed to: 

(1) Fx ~ 0 , or (2) Fx = 0 , x ;;;; 0 , or (3) Fx = 0 . 

These modifications are outlined below. 
Case 1: Fx;;;; 0. 

Here, using q,(x, u) = g(x) + u'Fx defined for all x and constrained only by 
u ;;;; 0, one must replace condition (1) by 

(1*) q,~=O. 

Case 2: Fx = 0, x ;;;; 0. 
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Here, using f/J (x, u) = g(x) + u'Fx defined for all u and constrained only by x ~ 0, 
one must replace condition (2) by 

(2*) f/J~=O . 

Case 3: Fx = 0. 
Here, using f/J(x, u) = g(x) + u'Fx defined for all x and u without constraints, one 
must replace conditions (1) and (2) by (1 *) and (2*). This corresponds to the cus
tomary use of the method of Lagrange multipliers for side equations [3]. 
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