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Preface

The history of mathematics has undergone, in the last decades, a very fast evolution
process. At first cultivated by a narrow group of researchers, from the second half of
the past century it has attracted the interest of a growing number of scholars, several
of them being also researchers in various areas of mathematics. A subsequent
period has been marked by a growing attention towards the specific methods of the
historical research, with the formation of a professional community of historians of
mathematics whose scientific production has often reached an important level, both
from a quantitative and from a qualitative point of view. In the present period the
best products of the historians of mathematics are tending to emphasize the cultural
dimension of their subjects of study, that is the cultural dimension of mathematics
itself, through the historical approach.

Among all the historical contributions, the studies on the evolution of the
so-called applied mathematics are very numerous, even if perhaps more recent
than the studies on the history of the so-called pure mathematics. Nevertheless,
the history of mathematical optimization can cover a long period, as optimization
problems date back to antiquity: the human race, for his daily requirements of
surviving has always met implicit problems of maximum or minimum. This can
be summed up in the words of Leonhard Euler, who wrote: “For since the fabric of
the universe is the most perfect and the work of a most wise Creator, nothing takes
place in the universe in which some rule of maximum or minimum does not appear.”
There are also some references to optimization problems in literature and poetry; a
famous example is the so-called Dido’s Problem, contained in Virgil’s “Aeneid,”
and which may be considered as the first literary appearance of the isoperimetric
problem of the Calculus of Variations.

The words “minimum” and “maximum” are typical of several problems, not only
of mathematics but also of physics, chemistry, engineering, economics, etc. They
are central in some very general principles, such as the “principle of least action”
of Maupertuis. By the mid-seventeenth century, the invention of the “Calculus”
has shifted the barycenter of optimization problems from a geometrical field to
a predominantly analytical field. All the analytical results subsequently obtained
(from Fermat onwards) have given birth to a mathematical theory, more and more
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viii Preface

refined, both from the point of view of its theoretical formulations and from the
point of view of the solution techniques.

The history of the so-called mathematical programming (or also nonlinear
programming, where the word “nonlinear” means “not necessarily linear”) is on the
contrary more recent. If, by mathematical programming or nonlinear programming,
we intend those static optimization problems (usually defined in finite-dimensional
spaces), where a function of n variables (“objective function”) is to be minimized
or maximized, subject to a certain number of constraints, not necessarily given
as equality constraints, we can say that its history began, roughly speaking, in
the twentieth century and in particular, from the years of the Second World
War. Obviously, for mathematical programming problems there is also a sort of
“prehistory,” with individual contributions of high scientific level.

At present mathematical programming problems (and in general optimization
problems) are pervasive in several sciences, such as economics, engineering,
operations research, chemistry, physics, biology, social sciences, and management
sciences. Moreover, they have many important applications in these areas and
promise to have even wider usage in the future.

The present book collects some papers that are, in our opinion, the first basic
stepping stones in nonlinear programming (see the list in the index of the book
and at the end of the introductory chapter). Here we have excluded those papers
exclusively concerned with linear programming, such as the contributions of
G. B. Dantzig and L. V. Kantorovich. Obviously, our choice is subjective and does
not claim to be complete; however, we believe that some contributions could not
have been neglected: this is the case for the Master Thesis of W. Karush (1939),
here published in its full length, the papers of F. John (1948) and of H. W. Kuhn
and A. W. Tucker (1951). Some basic papers of K. J. Arrow, L. Hurwicz, and
H. Uzawa have been included in our list. The paper of Arrow and Hurwicz of
1956 treated, with a more general approach, the equivalence between the usual
nonlinear programming problem and the saddle-point problem of the Lagrangian
function, a question previously analyzed by Kuhn and Tucker in their 1951 paper.
Arrow and Hurwicz (1951) devised a gradient technique for approximating saddle-
points and constrained optima. This is one of the earlier gradient techniques
offered for solving the constrained nonlinear optimization problem. The paper of
Arrow, Hurwicz, and Uzawa (1961) on constraint qualifications is perhaps the first
contribution concerned with the important problem of locating “regular” constraints
and of establishing the relationships between the various constraint qualifications
proposed, a problem which has not lost its importance after 50 years. Equally
important is the paper of Hurwicz of 1958 (but written before), one of the first
treatments of nonlinear programming problems, both for the scalar and for the vector
case, in topological spaces. The papers of L. L. Pennisi (1953) and G. P. McCormick
(1967) are important for their treatment of second-order optimality conditions
for a general nonlinear programming problem. The papers of W. Fenchel (1949),
M. L. Slater (1950), and Uzawa (1958) are important for the case of convex
nonlinear programming problems; in fact, convex analysis is in itself a basic tool
for the development of mathematical programming, as the works of W. Fenchel,
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J. J. Moreau, and R. T. Rockafellar have shown. The paper of 1963 by R. W. Cottle
is perhaps the first “translation” of the original Fritz John optimality conditions
into the setting of the usual nonlinear programming problems. The papers of Bliss
(1938) and Valentine (1937) have been included, due to their historical relevance
in connection with the birth of optimality conditions for a nonlinear programming
problem.

In the introductory chapter, entitled A Historical View of Nonlinear Program-
ming: Traces and Emergence, we have attempted to recapitulate the basic facts in the
history of mathematical programming: “classical” mathematical programming (i.e.,
with only equality constraints), linear programming, and nonlinear programming.
We have also added an Appendix, containing three further contributions, useful to
illuminate further the growth process of optimization theory.

The main purpose of this book is to offer researchers direct access to the original
sources and classics in nonlinear programming, together with an examination of the
historical context regarding the emergence and development of this field of research.
We hope that this collection will be useful and stimulating for all those who are
interested in deepening their knowledge of the emergence and first developments of
nonlinear programming and in general of mathematical optimization.

Pavia, Italy Giorgio Giorgi
Roskilde, Denmark Tinne Hoff Kjeldsen
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A Historical View of Nonlinear Programming:
Traces and Emergence

Giorgio Giorgi and Tinne Hoff Kjeldsen

The historical view we propose in this introductory chapter will point out some of
the technical difficulties of mathematical problems related to nonlinear program-
ming and some features of the economic and social context (also military) that
favored its rootedness in the years of the Second World War and the years immedi-
ately following the war. We recall some of the main definitions and basic results of
mathematical programming and shortly address the “prehistory” of nonlinear pro-
gramming. The main part of the chapter deals with the first ideas and developments
of linear programming, first in the USSR and then in the USA and with the funda-
mental researches of W. Karush, Fritz John, H.W. Kuhn and A.W. Tucker which are
analyzed and discussed with respect to their mathematical and historical features.

Introduction

It is well known that the central problem of nonlinear programming is that of
minimizing or maximizing a given function of several variables subject to a finite
set of inequality and/or equality constraints. The problems, both theoretical and
practical, which can be translated into a nonlinear programming problem, are in fact
countless and arise in different contexts, such as economics, game theory, operations
research, statistics, physics, etc. Nonlinear programming can be viewed as that
field of optimization theory which treats static and finite-dimensional optimization
problems with emphasis on computational aspects. Also the term “mathematical
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2

programming” is used. This term was first introduced by Robert Dorfman in 1949,
according to the reminiscences of G.B. Dantzig on the birth of Linear Programming
(see [91]). The term “nonlinear programming” appears for the first time in the title
of the famous paper of Kuhn and Tucker [85].

As an autonomous field of research, mathematical programming, which draws on
mathematical analysis, numerical analysis, linear algebra, operations research, etc.,
has encouraged or actually generated strong connections and exchanges with other
theories and fields of research, such as nonsmooth analysis, decision theory, games
theory, microeconomic theory, etc. Its main features make obvious its importance
towards the whole economic theory and finance theory. Similarly, it must be stressed
its importance from a didactic point of view: optimization theory stems, historically
and logically, from the research of maximal and/or minimal points for a real function
of one real variable. This is one of the classical subjects of any first-year course
of a scientific university faculty. Then, this problem is generalized in second-year
courses, to the research of free and constrained extremal points for a real function
of several real variables.

This theory which is so “central” and so rich in its linkages to other important
theories and applications, is relatively young: we recall again that the first time that
the word “nonlinear programming” appeared in a printed paper is 1950 (date of
printing, 1951). As is well known, though, aspects of some of the mathematical
questions that are central to mathematical programming were dealt with in some
of these other “connecting” fields of research before mathematical programming
emerged as an autonomous mathematical discipline.

The historical view we propose in this introductory chapter will point out some
of the technical difficulties of these mathematical problems and some features of the
economic and social context (also military) that favored its rootedness in the years
of the Second World War and the years immediately following the war. We begin
by recalling the main definitions and basic results of mathematical programming
theory, treating only finite-dimensional problems. Then, in section “The Prehistory
of Linear and Nonlinear Programming”, we shall be concerned with the “prehistory”
of nonlinear programming, whereas section “Soviet Union and USA the First
Years of Linear Programming” is concerned with the first ideas and developments
of linear programming, first in the USSR and then in the USA. Section “The
Birth of Nonlinear Programming” is the “central section” in which the fundamental
researches of W. Karush, Fritz John, H.W. Kuhn and A.W. Tucker will be analyzed
and discussed with respect to their mathematical and historical features. The final
section presents some further considerations and conclusions.

Basic Results

The simplest mathematical programming problem is that of maximizing or mini-
mizing a function f W Rn �! R on a certain set A � R

n, where A is a proper or
improper subset of the domain of f :

2
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A Historical View of Nonlinear Programming: Traces and Emergence 3

max
x2A f .x/ or min

x2A f .x/ (P1)

The set A is frequently called either the feasible set, the feasible region or the
opportunity set; f is called the objective function or the criterion function and
the vector x D .x1; x2; : : : ; xn/ is the vector of the decision variables or choice
variables; x is also called the vector of instruments. We can restrict our analysis
only to one of the two problems (P1), for example to the maximum problem, as
we have that the problem Maxf .x/ is equivalent to the problem Min.�f .x// and
obviously we have

f .xı/ D Maxf .x/ D �Min.�f .x//

We recall some general and well known results:

1. Weierstrass theorem. Let f W Rn �! R be continuous on the compact (i.e. closed
and bounded) set X � R

n. Then f admits maximum and minimum overX .
This result, which however provides only a sufficient condition for the

existence of maximum and minimum of f , can be generalized in several
directions. We recall only the following generalization:
Let f W Rn �! R be upper (lower) semicontinuous on the compact set X � R

n.
Then f admits maximum (minimum) over X .

2. Let f W Rn �! R be defined on X � R
n. If X is a convex set (i.e. �x1 C .1 �

�/x2 2 X; 8x1; x2 2 X; 8� 2 Œ0; 1�) and f is concave on X , i.e.

f .�x1 C .1 � �/x2/ � �f .x1/C .1 � �/f .x2/; 8x1; x2 2 X; 8� 2 Œ0; 1�

then:

(a) The local maximum points of f are also global maximum points.
(b) The set of (global) maximum points of f is a convex subset of X .
(c) If f is strictly concave onX (i.e. the previous inequality holds with the order

relation “>” for any x1 ¤ x2 and any � 2 .0; 1/), and admits a maximum
point xı, this is unique.

If in .P1/ we have to maximize or minimize the objective function f on an
open feasible set A or if the extremal points xı are interior points of A, we
shall call .P1/ an unconstrained or free mathematical programming problem.
Otherwise we shall call .P1/ a constrained mathematical programming problem
(or mathematical programming problem tout-court).

For an unconstrained mathematical programming problem, the following
results are well known:

3. If xı 2 int.A/ (the interior of A) and f is differentiable at xı, then we have
(Fermat conditions) rf .xı/ D 0, i.e. xı is a stationary or critical point for f .

4. Let xı 2 A be a stationary point for f and let f be twice continuously
differentiable on the open set A. Let us denote by Hf .xı/ the Hessian matrix
of f , evaluated at xı. Then:

3
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(a) If yTHf .xı/y < 0; 8y 2 R
n n f0g, i.e. if the quadratic form with matrix

Hf.xı/ is negative definite, then xı is a strict local maximum point for f .
If yTHf .xı/y > 0; 8y 2 R

n n f0g, then xı is a strict local minimum point
for f .

(b) If the quadratic form yTHf .xı/y is indefinite, then xı is neither a maximum
point, nor a minimum point. Sometimes it is called a “saddle point” for f .

(c) If yTHf .xı/y is a semidefinite quadratic form (positive or negative) we
need further investigations to decide the nature of the stationary point xı.

5. If in the unconstrained problem .P1/ f is differentiable and concave on the open
convex set A � R

n, then every stationary point of f is a global maximum point
for f .

Results (2) and (5) point out the importance of the concavity (and convexity)
in mathematical programming problems. So, optimization theory has been also
one of the main motivations for the introduction and study of various types of
generalized concavity (convexity), where by means of suitable extensions of the
classical definition of concave (convex) functions, various classes of generalized
concave (convex) functions that preserve several properties of concave (convex)
functions have been established. In particular, the result (5) can be obtained also
under the assumption that the (differentiable) function f is pseudoconcave on the
open and convex set A, i.e. f must satisfy the following relation

rf .x/.y � x/ � 0 H) f .y/ � f .x/; 8x; y 2 A:

Another useful and important generalization of concavity (convexity), partic-
ularly useful in mathematical programming problems and meaningful in several
questions of economic theory, is the class of quasiconcave functions, introduced
by de Finetti [31]:

f .�x C .1 � �/y/ � Min ff .x/; f .y/g ; 8x; y 2 A; 8� 2 Œ0; 1�

where A � R
n is a convex set.

If f is differentiable on the open and convex set A, f is quasiconcave on A if
and only if

x; y 2 A; f .y/ � f .x/ H) rf .y/.y � x/ � 0:

This result is due to Arrow and Enthoven [6]. It can be proved that if f is concave
(and differentiable) then f is also pseudoconcave and if f is pseudoconcave, then
it is also quasiconcave. The literature on generalized concavity is quite relevant;
we quote only the books by Avriel et al. [10], by Cambini and Martein [17] and
by Mishra and Giorgi [96]. For a history of quasiconcavity and its applications the

4
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A Historical View of Nonlinear Programming: Traces and Emergence 5

reader may consult Guerraggio and Molho [64], Giorgi and Guerraggio [60] and
Hadjisavvas et al. [66].

A first type of an unconstrained optimization problem is one where the set A is
not open or the optimal point xı is not an interior point of A. In other words A is
an abstract constraint or set constraint. In this case the Fermat necessary condition
rf .xı/ D 0 does not hold. A generalization of this condition can be obtained in
the following way. Consider a subset A of Rn and a vector x 2 A. A vector y 2 R

n

is a feasible direction of A at x if there exists an N̨ > 0 such that x C ˛y 2 A for
all ˛ 2 Œ0; N̨ �. The set of all feasible directions of A at x is a cone, denoted F.A; x/,
containing the origin but not necessarily closed nor open. If A is convex, F.A; x/
consists of the vectors of the form ˛. Nx � x/, with ˛ > 0 and Nx 2 A. Then we have
the following generalized Fermat theorem:

If xı is a local minimum (maximum) point of the differentiable function f over
A, then

rf .xı/y � 0 .rf .xı/y � 0/; 8y 2 F.A; xı/:

If A is convex, then the above condition becomes

rf .xı/.x � xı/ � 0 .� 0/; 8x 2 A

which is a type of variational inequality. Moreover, if f is convex (concave) on
the convex set A, the said variational inequality is both a necessary and sufficient
condition for xı to be a global minimum (maximum) point of f on A.

Sharper conditions can be obtained by means of the so-called Bouligand tangent
cone (or contingent cone): see, e.g. Avriel [9], Bazaraa and Shetty [11], Giorgi
et al. [59].

When the feasible set A is given by the solutions of a finite number of equations,
we have a “classical” mathematical programming problem:

max
x2S f .x/ or min

x2S f .x/ (P2)

where S D ˚
x 2 A; hj .x/ D 0; j D 1; : : : ; r < n

�
, A � R

n is open and
f; hj .j D 1; : : : ; r/ W Rn �! R.

The word “classical” makes reference to the works and discoveries of J.L.
Lagrange, in the eighteenth century (see the next section). If for .P2/ we introduce
the Lagrangian function

L.x; �/ D f .x/ � �h.x/ D f .x/ �
rX

jD1
�j hj .x/;

where the numbers �j 2 R; j D 1; : : : ; r; are the well-known Lagrange
multipliers, we have the following fundamental results.

5
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6. Let xı 2 S be a local solution of .P2/ and let the following assumptions be
satisfied:

(i) f is differentiable at xı;
(ii) Every hj ; j D 1; : : : r; is continuously differentiable in a neighborhood of

xı and the Jacobian matrix Jh.xı/ has full rank, i.e. the vectors rj hj .x
ı/

are linearly independent (the constraints, in this evenience, are said to be
“regular”).

Then there exists a unique vector �ı D .�1
ı; : : : ; �rı/ such that .xı; �ı/ is a

stationary point for the Lagrangian function, i.e.

rf .xı/� �ıJh.xı/ D 0: (1)

Under some additional assumptions (not too restrictive), the vector of multipliers
�ı assumes an interesting meaning, in the sense that its components �j ı; j D
1; : : : ; r , measure the effect that a marginal variation of the jth constraint gives
rise to the optimal value of the objective function (see, e.g., Fiacco [48]). In
economic problems the marginal variation of a constraint usually represents the
variation of the available quantity of a given commodity, whereas the objective
function has the meaning of profit or cost of production. So, economists call the
Lagrange multipliers “shadow prices”: through the values of �j ı; j D 1; : : : ; r;

it is then possible to get an economic evaluation of the “weight” that every
constraint assumes in obtaining the optimal value of .P2/:

7. Let xı 2 S and let .xı; �ı/ verify relation (1). If L.x; �/ is pseudoconcave with
respect to x, then xı is a point of global maximum of f on S .

Problem .P2/ has been the first constrained optimization problem to be
considered by mathematicians (by J.L. Lagrange). When, long after Lagrange,
optimization problems with a feasible region determined by inequality con-
straints (or by equality and inequality constraints), i.e., the modern mathematical
programming problems, have been taken into consideration, the researches have
been done towards two directions. On one hand we had the birth of Linear
Programming problems, i.e. those mathematical programming problems where
the objective function and the constraints are given by linear or affine functions.
On the other hand we had the modern version of the problem .P2/, i.e. a
Nonlinear Programming problem, of the form, e.g.,

max
x2K f .x/ (P3)

K D fx 2 A; gi .x/ � 0; i D 1; : : : ; mg ;where A � R
n is open and f; gi .i D

1; : : : ; m/ W Rn �! R.
For this problem the set of active (or effective) constraints at xı 2 K is

given by

I.xı/ D fi W gi .xı/ D 0g :

6
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The two fundamental results for .P3/ are usually the Fritz John theorem and the
Karush–Kuhn–Tucker theorem.

8. Fritz John Theorem (1948). Let f and every gi .i D 1; : : : ; m/ be differentiable
at xı 2 K and let xı be a local solution of .P3/. Then there exists a vector
.y0; y1; : : : ; ym/ 2 R

mC1, nonnegative and nonzero (i.e. a semipositive vector),
such that

(i) y0rf .xı/� Pm
iD1 yirgi .xı/ D 0

(ii) yigi .xı/ D 0; i D 1; : : : ; m:

The proof of this theorem relies basically on the fact that an optimal point
implies the empty intersection of certain sets, more precisely the inconsistency
of a certain system of linear inequalities. Therefore, a classical theorem of the
alternative applies and the thesis is obtained. This can be given also a geometrical
interpretation: there exists a separating hyperplane (between two convex sets)
whose equation contains, as coefficients, the John multipliers yi ; i D 1; : : : ; m:

If we compare the results (3) and (6), concerning respectively an unconstrained
optimization problem and the problem .P2/, with the Fritz John theorem, we note
that in this last one the sign of the multipliers is no longer “free”: the multipliers
must be all nonnegative but not all zero. Moreover, the relations (i) and (ii) above
can be summarized in the following condition

y0rf .xı/�
X

i2I.xı/

yirgi .xı/ D 0;

where only the active constraints are considered, and where, as before, also the
gradient of the objective function is associated to a multiplier. We have to say that the
conditions of Fritz John for the problem .P2/ were anticipated by Caratheodory [18]
and for a Pareto optimization problem with equality constraints (i.e. the objective
function is a vector-valued function), by de Finetti [29, 30]. The contributions of
this last author have been completely ignored by the mathematical literature (also
Italian). See Giorgi and Guerraggio [60].

The multiplier y0 can be zero. In order to avoid this “degenerate” case, where the
objective function would play no role, some regularity condition must be imposed
on the constraints of the problem .P3/: This is the problem of the “constraint
qualifications”. There are several constraint qualifications, varying in generality and
complexity; see, e.g., Bazaraa and Shetty [11], Peterson [105], and Giorgi et al. [59].
The constraint qualification more similar to the regularity condition we have seen
for .P2/ is: the active gradients rgi .xı/; i 2 I.xı/, are linearly independent.

9. Karush–Kuhn–Tucker theorem (1939 and 1951). Let xı 2 K be a local solution
of .P3/, under the assumption of differentiability at xı of f and every gi ; i D
1; : : : ; m: If a constraint qualification is satisfied, then there exists a vector �
such that

(i) rf .xı/ � Pm
iD1 �irgi .xı/ D 0:

7
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(ii) �igi .xı/ D 0; i D 1; : : : ; m:

(iii) �i � 0; i D 1; : : : m:

The next theorem provides a sufficient condition for xı 2 K to solve
problem .P3/.

10. Let xı 2 K satisfy conditions (i)–(iii) of the theorem of Karush–Kuhn–Tucker.
Let f be pseudoconcave on the open convex set A � R

n and let gi .xı/; i 2
I.xı/ be quasiconvex (i.e. �gi is quasiconcave) on the same set. Then xı solves
.P3/:

By this quite schematic introduction one cannot obviously be informed of all
the results, even important and “classical”, that have grown within mathematical
programming theory. We shall make two exceptions: the first is concerned with
duality theory, especially for linear programming problems, the second one with
vector (or Pareto) optimization problems.

Duality theory allows to deduce some interesting features of a mathematical
programming problem (P), by means of the analysis of another problem, in a certain
sense “specular” to (P), called dual problem, built from (P) following certain rules.

Duality theory was born together with linear programming theory and game
theory (matrix games) and subsequently has been extended also to nonlinear
programming theory. If (P) represents the following linear programming problem

Min cx

Ax � b

x � 0

where A is a .m; n/ matrix, c; x 2 R
n and b 2 R

m, its dual problem (P’) is

Max by

yA � c

y � 0

If (P) is the following linear programming problem

Min cx

Ax D b

x � 0;

its dual problem (P’) is

Max by

yA � c:

8
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Note that in this dual problem there are no sign constraints on y:
In general, given a linear programming problem (P), called also the “primal”

problem, the following properties on (P) and its dual (P’) hold:

(a) The dual (P’) of (P) is unique.
(b) The dual of the dual is again the problem (P).
(c) If (P) is a minimum problem, then (P’) is a maximum problem and conversely.
(d) Coefficients b1; b2; : : : ; bm in the objective function of the dual problem (P’) are

the constants of the right-hand side of (P) and the coefficients c1;c2;:::;cn in the
objective function of (P) are the constants of the right-hand side of the dual (P’).

Duality theory for linear programming is very important, not only from theoret-
ical points of view, but also from computational points of view. A first basic result
states that if (P) and (P’) have both a nonempty feasible set, then both problems
admit solution and the two optimal values are equal.

We give now a slight idea of what is a vector (or Pareto) optimization problem.
If the objective function is given by a vector-valued function f W R

n �! R
m,

we have the class of vector optimization problems or Pareto optimization problems
(from Vilfredo Pareto (1848–1923), the Italian economist and sociologist who first
considered these kinds of problems). In this case, before considering the necessary
and/or sufficient optimality conditions, one has to define and specify the notion
of optimal solution, as the image space of a vector optimization problem is not a
totally ordered set (as the space of real numbers), but only a partially ordered set.
Therefore, it is not possible to “transfer” in an immediate way to the vector case the
basic inequality f .x/ � f .xı/ which characterizes the definition of a maximum
point for the scalar case.

The Prehistory of Linear and Nonlinear Programming

From what we have said in section “Introduction”, it would be clear that we are
treating a theory whose “official” birth lays at the hearth of the twentieth century,
and precisely in the years immediately following the Second World War. However,
all readers who have some recollections of a second course of Mathematical
Analysis, are familiar with the term “Lagrange multipliers”, named after Lagrange
who treated equality constrained optimization problems, that is problems of type
P2, in the second half of the eighteenth century.

Joseph Louis Lagrange (Turin, 25/01/1736, Paris, 10/04/1813) is, in a sense, both
Italian and French: his mother, Teresa Gros, was a daughter of a medical doctor of
Cambiano (a spot near Turin) and his father was of a family coming from France
(Touraine) but settled in Piedmont, in Turin, since the reign of Charles Emmanuel
II, duke of Savoy. Gino Loria, the Italian historian of Mathematics, in his “Storia
delle Matematiche” [92] writes that Lagrange was baptized as “Lagrangia Giuseppe
Ludovico”; subsequently the famous mathematician used different forms of his
family name: De la Grangia Tournier, Tournier de la Grangia, De la Grange, etc.

9
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After his moving to Berlin and finally to Paris (in a time where a noble origin
was not looked favourably upon) he signed his works with the name “Lagrange”.
This perhaps explains the reason why in several textbooks of mathematical analysis
Lagrange is presented as a “French Mathematician”.

Lagrange introduced “his” multipliers in 1788, in the fourth section of the first
part of his famous book Mécanique Analytique [86]. These multipliers were, in the
intention of Lagrange, the basic tool to state the configuration of a stable equilibrium
for a Mechanical system. The problem is to deduce, from the general principle of
Statics Theory [86, p. 77]:

“des formules analytiques qui renferment la solution de tous les problèmes sur l’équilibre
des corps Œ: : :�, en reduisant en quelque manière tous les cas à celui d’un système
entièrement libre”.

In particular, one has to minimize the so-called potential function, taking into
account that the system, individuated in its positions by nCr coordinates, is subject
to constraints of the type h1.x/ D 0; h2.x/ D 0; : : : ; hr .x/ D 0. By differentiating
these equations we have dh1.x/ D 0; dh2.x/ D 0; : : : ; dhr .x/ D 0, and

“comme ces équations ne doivent servir qu’à éliminer un pareil nombre de différentielles
dans la formule générale de l’équilibre, après quoi les coefficients des différentielles
restantes doivent être égalés chacun à zéro, il n’est pas difficile de prouver, par la théorie
de l’élimination des équations linéaires, qu’on aura les mêmes résultats si l’on ajoute
simplement à la formule dont s’agit les différentes équations Œ: : :� multipliées chacune par
un cofficient indéterminé �j ” [86, p. 78]

From this “algebraic” remark, it follows the “extrêmement simple” rule that allows
to state the equilibrium configurations. Lagrange considers the equalities df � �1
dh1 � : : : � �rdhr D 0, where df represents, following the words of Lagrange
[86, p. 78], “la somme des moments de toutes les puissances qui doivent être en
équilibre”. Now, if we choose the multipliers �j in such a way that the coefficients of
dxnCj are zero, we have an equation in dx1; : : : ; dxn whose coefficients must be all
zero. So, we have obtained the nCr conditions (to be added to the r equalities h1 D
0; : : : ; hr D 0) in the n C 2r variables x1; : : : ; xnCr ; �1; : : : ; �r . The multipliers
�j , introduced by Lagrange as an algebraic tool to obtain that “le nombre de ces
équations sera égal à celui de toutes les coordonnées des corps” [86, p. 79] have
also a physical meaning. Indeed Lagrange did not discuss the system of the nC 2r

equations in the nC2r unknowns, obtained by means of the “equations particuliéres
de l’équilibre”; he only remarked that the value of the multipliers [86, p. 79]

“pourra toujours exécuter par les moyens connus, mais il conviendra, dans chaque cas, de
choisir ceux qui pourront conduire aux résultats les plus simples”

Moreover, he pointed out that the various �j dhj represent “les moments de
différentes forces appliquées au même système” [86, p. 80]. It is by means of these
forces, expressed by the constraints, that one can transform the constrained problem
into an unconstrained one:
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“et de là on voit la raison métaphysique pourquoi l’introduction des termes �1dh1 C
�2dh2 C : : : peut ensuite traiter cette équation comme si tous les corps du système étaient
entièrement libres.” [86, p. 82]

In the Théorie des Fonctions Analytiques [87] Lagrange presented his method
of multipliers with a greater generality. Here he introduced the problem without
making reference to some specific question of Mechanics, but directly with regard to
a general constrained optimization problem with equality constraints. In Sect. 58 of
Chap. XI of the second part, we find again the proof of the necessary optimality con-
ditions, a proof performed with the standard of precision that is typical of Lagrange’s
exposition. Lagrange finished the section with the basic general principle:

“il suffira d’ajouter à la fonction proposée les fonctions qui doivent être nulles, multipliées
chacune par une quantité indéterminée, et de chercher ensuite le maximum ou minimum
comme si les variables étaient indépendantes.”

In the same years of Lagrange, we also find a few works on linear equality
constrained optimization problems. We refer to Grattan-Guinness [61, 62] who
records the names of Laplace [88, 89], of Boscovich [16] and of de Prony [33].

Lagrange developed his “multiplier rule” in dealing with optimization problems
subjects to equality constraints. These problems came out of his considerations
regarding stable equilibrium for mechanical systems that were subject to some
equality constraints which where, again, subject to the principle of virtual work.
Lagrange utilized this principle as an axiom for reversible displacements of the
system. The French mathematician J. Fourier (1768–1830) extended the principle
to irreversible displacements in his Mémoire sur la Statique contenant la dé-
monstration du principe des vitesses virtuelles et la théorie des moments published
in 1798. He thereby considered mechanical systems subject to inequality con-
straints. It is unclear what inspired Fourier to consider this extension to irreversible
displacements, maybe it was just a very careful reading of Lagrange’s Mécanique
analytique (1788) that made Fourier aware that Lagrange disregarded displacements
that, even though they did not fulfil the equality constraints, did not violate the
constraints of the mechanical system—at least this was what the Russian mathe-
matician and physicist M.V. Ostrogradsky (1801–1862) discovered when he read
Lagrange’s work: “. . . ce grand géometre [Lagrange] a incompletement énuméré les
déplacements possibles dans la plupart des questions de la premiere partie de la
Mecanique analytique, et il est facile de reconnaitre que les déplacements qu’il a
négligé de considérer, ne sont empeché par aucune condition, . . . ” [102, p. 130].
The displacements left out by Lagrange are precisely the irreversible ones. Instead
of the virtual work, Fourier considered “le moment de la force” [49, p. 479], which
results in a shift in sign (see Prekopa [107] and Franksen [54–56] for further details).
But it was not only in mechanics that Fourier saw a need for a theory of linear
inequalities. In his book Analyse des Équations Déterminées (1831) he explained
that “The principle of the theory of inequalities will be expounded in the seventh and
last of the books. This part of our work is concerned with a new kind of questions,
which offers varied applications to geometry, to algebraic analysis, to mechanics,
and to the theory of probability” [53, p. 71]. Fourier died before he could finish
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linear inequalities. Even though Fourier did not get very far in his development of
a theory for systems of linear inequalities these few publications show that he did
indeed have a geometrical understanding of the set of solutions to such a system
in three variables as a polyhedron. Despite Fourier’s claim of the applicability of
a theory of inequalities to various branches of mathematics the subject seems not
to have raised any real interest at the time. A fact that Darboux clearly pointed
out when he wrote the “Avertissement” of Fourier’s collected work: “Nous avons
aussi, par quelques emprunts à l’Historie de l’Académie pour années 1823 et 1824,
pu faire connaitre d’une maniere assex precise certaines idées sur la theorie des
inégalites auxquelles l’illustre géometre attachait une importance qu’il est permis,
aujourd’hui, de trounver un peu exagérée” [28, pp. v–vi].

In the printed works of Fourier, and also in his unpublished notes, there are some
anticipations of some basic subjects that we now a days think of as belonging to the
modern theory of mathematical programming, but there is no theoretical deepening
nor an organic treatment of the material: there are only some first acquisitions, as the
convexity of the feasible region in optimization problems subject to linear inequality
constraints and, above all, the study of several “practical situations”, where the
“inequality analysis” reveals its utility (for example, the “least squares method”).
These suggestions, notwithstanding the scientific authority of Fourier, did not as
Darboux’s evaluation also made clear cause many reactions and interest at the time.
Apparently only two of Fourier’s students took his suggestions into consideration:
the famous mathematician Navier [101] and the equally famous mathematical
economist Cournot [25, 26], who, in the paper of 1827, without making reference
to the work of Fourier (see [107]), rediscovered the principle of Fourier, giving the
necessary conditions for equilibrium with ad hoc arguments which make specific
reference to the mechanical interpretation of the question.

The same treatment appeared in more general terms in a paper of the Russian
mathematician Ostrogradsky [102, 103]. Ostrogradsky (1801–1862) was a student
in Paris and, before he returned to S. Petersburg, he had attended courses of
Fourier, Poisson, Cauchy and other famous French mathematicians. Ostrogradsky,
strangely without quoting Fourier nor Cournot, asserted that at the minimum point
the gradient of the objective function can be represented as a linear combination,
with nonnegative multipliers, of the gradients of the constraints. The multipliers are
sign free when there are only equality constraints.

From then on there seems to have been practically no other interest, among
mathematicians, for optimization problems with inequality constraints until the
end of the nineteenth century. We can only quote a paper of Gauss of 1829 (see
the complete reference in Grattan-Guinness [62]) where the inequality principle
is “enunciated . . . without mentioning Fourier” (see [107]). Other uses of linear
inequalities were made by G. Boole (1815–1864) on questions regarding Statistics
and the measure of Probability [15]. Also Gibbs [57] considered problems of
dynamics with inequality constraints.

A work by Paul Gordan (1837–1912) from 1873 is included in Theodore
Motzkin’s (1908–1970) list of all known previous literature on linear inequality
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systems which he published in his master thesis Beiträge zur Theorie der linearen
Ungleichungen in 1936. But historically, there seems to be nothing that indicates
that Gordan was interested in the theory of systems of linear inequalities (see [78]).
In the paper listed by Motzkin, Gordan proved a theorem about existence of positive
solutions to a system of linear equations. His main concern seems to have been to
develop a tool for determining when a system of linear Diophantine equations has
a positive solution, a question that came up in his work on the so-called finite basis
problem in invariant theory, which was his main area of interest at the time. Motzkin
interpreted Gordan’s paper in the following way:

“He stated the elegant transposition theorem in disguised form and proved it in a roundabout
way, but then confined himself to Diophantine problems” [100, p. 5].

Gordan did not, however, state a relationship between two systems of equations of
the form of a transposition theorem. Such a theorem can be derived fairly easily,
though, from Gordan’s result, which is probably why later writers have credited a
transposition theorem to Gordan.

The interest in inequality analysis began again towards the end of the nineteenth
century, above all, with the publication of several papers of the Hungarian math-
ematician Julius Farkas, whose role became further emphasized when Kuhn and
Tucker used what is now called the Farkas lemma or Farkas–Minkowski lemma to
prove their famous theorem. Julius Farkas (1847–1930) was professor of theoretical
physics at the University of Kolozvàr and a member of the Hungarian Academy of
Sciences. He was well known in the scientific environments for his contributions
to Mechanics and Termodynamics. His work on systems of linear inequalities was
motivated by problems in physics, as was the case with Fourier. Farkas formulated
the result, later known as Farkas’ lemma, in the paper Über die anwendung des
mechanischen Princips von Fourier [43]. Farkas developed a general method that
could be used to treat all types of problems involving the inequality principle
of Fourier: “Der Hauptzweck vorliegender Arbeit ist zu erweisen, dass mit einer
passenden Modifikation die Methode der Multiplikatoren von Lagrange auch das
Fourier’sche Princip übertragen werden kann” [43, p. 266]. Farkas focused on the
mathematical foundation and developed a theory of homogenous linear inequalities
in a series of papers, culminating with Theorie der einfachen Ungleichungen [44]
which was published in 1901. Here we find the most complete and correct proof of
his lemma, where he proves that every solution of the system of linear inequalities
Ax � 0 (A is a .m; n/ matrix, whose rows will be denoted by Ai ; i D 1; : : : ; m)
is also solution of the inequality bx � 0 if and only if there exist m nonnegative
numbers �i such that b D Pm

iD1 �iAi .
The application of the Farkas “lemma” to the correct solution of the equilibrium

problem (with inequalities) proposed by Fourier, appears quite immediate and “nat-
ural”. Let xı be the minimum point of the potential function V . If xıCdx represents
a different position in the feasible region (i.e. such that gi .xı C dx/ � 0), under
differentiability assumptions we have dgi .xı/ D rgi .xı/dx � 0. The converse
does not hold, but if we impose a suitable constraint qualification (which obviously
is missing in Farkas), we shall have that every dx such that rgi .xı/dx � 0 belongs
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also to the feasible region and, moreover, dV.xı/ D rV.xı/dx � 0. When
the problem has been “linearized”, the Farkas lemma assures the existence of
nonnegative multipliers �i such that rV.xı/ D P

�irgi .xı/:
Hermann Minkowski studied systems of linear inequalities at the same time

but independent of Farkas and in a different context. Minkowski included an
appendix about linear inequalities to the first chapter of his book Geometrie der
Zahlen (first edition: 1896). He treated a system of homogeneous linear inequalities
�1 � 0; : : : ; �n � 0 and proved that every non-trivial solution can be written as a
positive linear combination of what he called “äusserste” (extreme or fundamental)
solutions [95, p. 43]. By such solutions he understood non-trivial solutions that
could not be written as the sum of two solutions that are, what he called, essentially
different, meaning that they are not multiples of each other. Minkowski developed
his theory of linear inequalities so it could be applied directly in his investigations of
reduced forms of positive definite quadratic forms, which was his main motivation
for developing a geometry of numbers (see [78, pp. 480–489]).

The Hungarian mathematician Alfred Haar (1885–1933) presented a paper on
linear inequalities to the Hungarian Academy of Science in 1917 where he gave a
new foundation for the work on inequalities by Farkas and Minkowski. Haar’s work
was published in 1918 and translated into German in 1924. He generalised the result
of Farkas to nonhomogeneous systems of linear inequalities based on the theory of
convexity [65].

Inspired by a paper on “preferential voting” published in The American Mathe-
matical Monthly in 1916 [93] American mathematicians began to develop a theory
for systems of linear inequalities beginning with work of Dines (1917) which was
followed by further works of Dines [34–37], of Carver [19], of Stokes [112] and a
paper of Dines and Mc Coy [38] that was quoted by Karush [75] in his Master Thesis
(see Sect. 5). Another work which has been called a contribution to the prehistory of
linear programming and is mentioned by Dantzig in his recollections on the origins
of the simplex method [27] is a paper of the Belgian mathematician de la Vallée
Poussin [32] who gave a method for finding minimum deviation solutions of systems
of equations.

However, the first effective acknowledgement of the importance of the work
of Farkas is given in the Master Thesis of T. Motzkin, accepted in 1933 at the
University of Basel and published in 1936 [100]. See also the paper of Kjeldsen
[78] for analyses and discussions of the different motivations and goals of the
various contributions to the study of linear inequality systems. The work that led
to mathematical programming was not motivated by these different developments
in systems of linear inequalities, they were just important tools for proving
fundamental results. The actual development of a theory, or theories, for solving
inequality constrained optimization problems, was neither motivated by equilibrium
problems in mechanics, nor by questions related to positive quadratic forms or to
inequality systems as such. The unset of mathematical programming was spurred
by a different set of problems that were “solved” by mathematicians who worked
independently of each other under very different circumstances, first in the Soviet
Union in the late 1930s and second in the USA after the Second World War.
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Soviet Union and USA: The First Years of Linear
Programming

Why does a branch of learning and a certain theory emerge and develop during
a certain period, in a certain country rather than in another period and in another
(equally developed) country? This is indeed a good question, almost always too
general to receive satisfactory answers. Anyhow, the question may be useful and
appropriate to understand the origin of some scientific theories which, usually, do
not spurt out, like mushrooms, from evening to morning. For the case of mathemat-
ical programming, why did Farkas’ lemma remain almost unused for nearly half a
century? Why were there no substantial interests towards optimization theory until
the 1950s of the last century even though the maximization or minimization of a
certain function can be viewed as a “natural” curiosity of the “homo oeconomicus”?
We recall that in those years (first half of twentieth century) Economics had already
reached its status of science since longtime. Why and how did linear programming
and nonlinear programming emerge and develop in the context of the Second World
War?

Perhaps it is possible to give only partial answers and not one comprehensive
answer. The birth of a new scientific field of research, such as mathematical
programming, appears to be correlated with the development of other mathematical
theories and tools and also to the ripening of certain political, sociological and
economic situations. As for what concerns the mathematical tools, it is quite
obvious that the differential calculus for functions of several variables (and also
for functionals defined on abstract topological spaces) was well known since several
years. The same cannot be said for what regards the tools of Convex Analysis, which
are of primary importance in the study of inequalities (especially linear inequalities)
and in establishing some fundamental results in mathematical programming and in
mathematical economics. The war experience, with the natural presence of well
determined tasks to reach, the necessity to consider at the same time a large number
of variables, together with the necessity to get the solution of the problems in the
least time possible, are surely some factors useful to explain the need of general
methods for general but practical problems. Economic and military reasons are the
natural motivations which led to the establishment of Linear Programming in the
Soviet Union and in the USA.

For a good introduction to the history of mathematical programming in the USSR
the reader is referred to Polyak [106]. In the USSR the father of linear program-
ming methods is Leonid Vitalievich Kantorovich (1912–1996). He graduated from
Leningrad University at the age of 18 and taught at the same university from 1934
to 1960. Within the international mathematical community he is remembered not
only for his achievements in linear programming and mathematical economics, but
also for his significant contributions to functional analysis. He was awarded the
Stalin Prize (1949), the Lenin Prize (1965) and the Nobel Prize (1975), together with
T.C. Koopmans. In the Spring of 1939, when Kantorovich was a young professor at
Leningrad University, he was contacted for a scientific advice, by a state firm that

15



16

produced ply-wood and wished to make more efficient the use of its machine tools.
The aim was to increase the production level of five different types of ply-wood,
carried out by eight factories, each with a different production capacity. Kantorovich
realized that the proposed problem had a mathematical structure, common to other
situations and problems one can find in, as he said, the organization and planning in
the field of industry, construction, transportation and agriculture.

In the same year (1939) Kantorovich published a small book (Kantorovich
[72] is the English translation of this essay) where he discussed and numerically
solved variations of optimization problems under inequality constraints. Much later
Kantorovich [73] (original Russian edition: 1959) developed further his ideas on the
mathematical treatment of certain economic problems. This second book was trans-
lated into English and into French, so the Western researchers became acquainted
with the early discoveries of Soviet mathematics on linear programming problems:
in the Soviet Union linear programming was born in relation to requirements
of industry productions, within the third “five-year plan”, with the hope that it
“will play a very useful role in the development of our socialist industry” [73].
In his booklet of 1939 Kantorovich presented several microeconomic problems
(all coming from the production planning of certain industries), framed into three
mathematical schemes. The first of these schemes (the other two are more general
variations of the first one) considers the allocation of nmachines which can produce
items consisting ofm different parts. If machine i is used for output k, it can produce
aik units of part k per time unit. Let hik denote the number of time units of machine
i allocated to produce part k and let zk denote the total number of units produced of
part k. Then zk D Pn

iD1 aikhik, and since one wants to produce complete items the
requirement z1 D z2 D : : : D zm need to be fulfilled.

Kantorovich then formulated the following problem, which he called problem A:
Find hik .i D 1; : : : ; nI k D 1; : : : ; m/ such that

hik � 0

nX

iD1
hik D 1I for i D 1; : : : ; n

z1 D z2 D : : : D zm; where zk D
nX

iD1
aikhik; for k D 1; : : : ; m

These are the constraints of the problem, and the objective is to maximize the
common value of z1 D z2 D : : : D zm.

Kantorovich proved, both in analytical terms and in geometrical terms, the
existence of what he called “resolving multipliers”. His main attention was on
numerical methods, based on the “resolving multipliers”. The proof of the existence
of these multipliers was postponed to the appendix, with the specification that “the
ignorance of the proof Œ: : :� in no way interferes with mastering the method of its
practical applications” [72, p. 419]. The method of “resolving multipliers” must be
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above all “sufficiently simple and effective”, as the problems treated, not only have
a theoretical interest but also a practical importance and require “the solution of ten
of thousands or even millions of systems of equations for completion.”

It has been discussed in the literature whether Kantorovich with his “resolving
multipliers” actually introduced the idea of dual variables. On these matters we
tend to agree with Charnes and Cooper [20, p. 249] when they write: “We cannot
find any place in his piece where he appears to think of his “resolving multipliers”
as anything more than devices for assisting in the solution of what is now called
the “direct” (or primal) problem.” Polyak [106] says that the 1939 revolutionary
booklet of Kantorovich had “little response from economists or mathematicians”
and Tikhomirov [116] adds that “ according to some ideological doctrine, an abstract
subject like mathematics was of no conceivable use to so life-related a subject as
economics”.

We have to wait for the second book of Kantorovich on linear programming
[73] to get a more general formulation of his method in resolving a linear
programming problem. This method, formally different from the simplex algorithm
of G.B. Dantzig, is in fact equivalent to the one of Dantzig, as later proved by van
de Panne and Rahnama [119].

We across Leonid Kantorovich, in the 1930s of the last century, as a young
professor at Leningrad University. It is well known that, in the long run, his scientific
reputation gained more and more recognition, within the Soviet mathematical
community. But in the political environment the diffusion of his ideas on economic
science was not so easy. Leifman in the introduction to the volume he edited in
the memory of Kantorovich (Leifman [90], quoted also by Balinski in Lenstra
et al. [91]) reports the following part of a speech Kantorovich delivered at the
1960 Conference on the Application of Mathematical Methods in Economics and
Planning held in Moscow:

“Here comrade Mstislavskii Œthe previous speaker� was talking about the necessity of
applying mathematical methods in economics. But he did not always say so; not so long
ago he was saying otherwise. And his friend and coauthor Yastremskii at one meeting said
addressing me: “You are talking here about optimum. But do you know who is talking
about optimum? The fascist Pareto is talking about optimum!” You know how that sounded
in 1943. Nevertheless, I did not say that, not to be like the fascist Pareto, let us strive for
maximum of costs and minimum of production”. [90, pp. x–xi]

Through the history of the oppositions to the “new” mathematical economic
methods of Kantorovich we can reconstruct a large part of the controversy (see,
e.g., [42]) of the second post-war period, between the “optimal planners” and the
political and government power, this last much more in line with Marxist dogma.
It is well known that Stalin’s conception of mathematical economics was that this
is nothing but a “game with the numbers”. By this expression, beyond its vulgarity,
he wanted to specify that the planning and organization of economic resources are
not problems of economic analysis or economic theory, but problems of political
economy, and therefore these problems are exclusively pertaining to the political
power. The role of economists (of theoretical economists) was another: as apologists
of the USSR political system, their had the task to elaborate theoretical models that a

17



18

posteriori would justify the choices made by politicians. This situation slowly began
to change in the 1960s, and it is just in this period that the ideas of Kantorovich
on economic science began to be considered also by the rulers of USSR. In 1958
the Central Economics-Mathematics Institute of the Academy of Sciences was
founded, and in the same year Kantorovich was elected corresponding member of
the Academy of Sciences.

The life of the Russian mathematical optimization community in the 1960s was
full of events (see [106]): we mention only the conference in Moscow in 1960 on the
use of mathematical methods in economic science and planning and the conference
in Moscow in 1971 on optimal planning procedures. The work of Kantorovich
was made available in the West in 1960, when Tjalling Charles Koopmans (1910–
1985) managed to publish an English translation of Kantorovich’s work of 1939 in
“Management Science”.

In the meantime, as is well known, a similar line of research in inequality
constrained optimization took place in the USA independent of the work of the
Russians. Koopmans is perhaps the economist who has contributed the most to
the diffusion, especially among economists, of the results of the Western line of
thoughts and results about linear programming, a theory that in the USA responded
to military demands. Koopmans was born in the Netherlands where he studied at the
University of Utrecht and the University of Leiden, and he moved to USA in 1940.
He taught at Chicago University and from 1955 at Yale. From 1961 to 1967 he was
director of the famous “Cowles Foundation”, and in 1975 he was awarded the Nobel
Prize in economics together with Kantorovich.

During the Second World War, from 1942 to 1944, Koopmans worked, as a statis-
tician, at the “Allied Shipping Adjustment Board”, being concerned, in particular,
with some transportation models. In the same period George B. Dantzig (1914–
2005), who is generally recognized as the “Western father” of linear programming,
collaborated with the Pentagon, as an expert of programming methods, developed
with the use of desk calculators. Dantzig finished his studies and became a Ph.D.
in mathematics shortly after the war ended. Employment opportunities came from
the University of California at Berkeley and, above all, from the Pentagon, where
D. Hitchcock and M. Wood proposed him to find a way to mechanize the planning
processes he had previously formalized, by using linear inequality systems as formal
tools to describe the interindustry relations that in economic science had been
studied by Wassily Leontief (1905–1999).

We can say, in this connection, that the development of linear programming
was also influenced by the so-called “economic activity analysis” (see the volumes
edited by Koopmans [81] and by Morgenstern [98]) and by certain aspects of the
theory of games (matrix games). The basic book on the theory of games had been
published by von Neumann and Morgenstern in 1944 [120]. We note also that
another Hitchcock, F.L. Hitchcock, had published in 1941 an important paper on
the so-called “transportation problem”, which anticipated somewhat the subsequent
work of Dantzig and was almost contemporaneous of the work of Kantorovich. At
that time the paper of Hitchcock [69] had little impact on the scientific environments.
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Another modern linear programming formulation was the so-called “diet problem”,
first considered by Stigler [110].

The first Leontief models on interindustry analysis (or input–output analysis)
were, however, static models and “what the Air Force wanted was a highly
dynamic model, one that could change over time.” [27, p. 21]. Moreover, the
military authorities insisted also on the possibility to have multiple choices between
alternatives and to benefit from the possibility of numerical computations:

“Once the model was formulated, there had to be a practical way to compute what quantities
of these activities to engage in that was consistent with their respective input-output
characteristics and with given resources. This would be no mean task since the military
application had to be large scale, with hundreds and hundreds of items and activities.”[27,
p. 21]

The simplex method discovered by Dantzig, in order to solve a linear program-
ming problem was presented for the first time in the Summer of 1947. In June of
the same year Dantzig met with Koopmans, who at once understood the importance
of this new algorithm and took it on his shoulders to bring its potentialities to the
attention of the group of economists with whom he had several collaborations. These
names include K.J. Arrow, P.A. Samuelson, H. Simon, R. Dorfman, L. Hurwicz,
and H. Scarf. In the Fall of the same year Dantzig consulted John von Neumann at
Princeton who, according to Dantzig, introduced him to Farkas’ lemma, to duality,
and to the problems connected with game theory (“matrix games”).

Dantzig became acquainted with Albert Tucker, who later became head of
the Mathematics Department at Princeton, at one of his visits, and when the
Office of Naval Research (ONR) decided to set up a research project to study the
connection between linear programming and game theory, as well as the underlying
mathematical theory, Tucker was asked to undertake the project.

“Soon Tucker and his students Harold Kuhn and David Gale and others like Lloyd Shapley
began their historic work on game theory, nonlinear programming and duality theory. The
Princeton group became the focal point among mathematicians doing research in this field”
[27, p. 25]

The first official presentation of the simplex method took place at the conference
Activity Analysis of Production and Allocation which was held at the University of
Chicago in 1949 and organized by T.C. Koopmans. Later, this conference came to be
called the Zero-th Symposium on Mathematical Programming [23]. In his recollec-
tions Dantzig underlined the importance of this meeting. A simple look at the list of
the participants (T.C. Koopmans, L. Hurwicz, R. Dorfman, N. Georgescu-Roegen,
A.W. Tucker, H.W. Kuhn, D. Gale, etc.) and their sponsors is sufficient to understand
the significance of the Second World War for the emergence of linear programming
and subsequently nonlinear programming in the USA. The conference and the
research done by a majority of the participants were supported by the military.
Dantzig summed it up as follows:

“the advent or rather the promise that the electronic computer would exist soon, the exposure
of theoretical mathematicians and economists to real problems during the war, the interest
in mechanizing the planning process, and last but not least the availability of money for
such applied research all converged during the period 1947-1949. The time was ripe. The
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research accomplished in exactly two years is, in my opinion, one of the remarkable events
of history” [27, p. 26].

All the factors mentioned by Dantzig were directly or indirectly connected with
the U.S. military and its activities during and after the war. (For an exposition of

In the introduction to the proceedings of the conference, Koopmans pointed
towards four distinct lines of research that played a significant role in the emergence
and establishment of linear programming in the USA [81]: the debate on the
construction of models of general economic equilibrium together with their mathe-
matical formalization and the search for solutions, the new welfare economics, the
analysis of the various input–output models of Leontief and, last but not least,
the specific work of Dantzig and Wood, motivated by “the organization of defense,
the conduct of the war, and other specifically war-related allocation problems”. We
can add also the work of von Neumann and Morgenstern on the theory of matrix
games.

In his recollections [27, pp. 29–30], Dantzig says that the name “simplex
method” arose out of a discussion with T. S. Motzkin, who gave a geometric
interpretation of Dantzig’s algorithm: this one is “best described as a movement
from one simplex to a neighboring one”. Also the term “primal problem” was new. It
was proposed by Dantzig’s father, the mathematician Tobias Dantzig, around 1954.

The Birth of Nonlinear Programming

With the ONR-financed project on game theory, linear programming and the
underlying mathematical structure, which began in the summer of 1948 with
Albert Tucker as principal investigator, the linear programming problem moved
into academia and became exposed to academic mathematical research. In this
environment linear programming acted as a starting point for further generalizations,
“naturally” leading to the extension to the nonlinear case which was in fact pursued
almost at once.

According to Tucker himself [2, pp. 342–343], he became involved with the
project by coincidence:

“I just happened to be introduced to him [Dantzig] and offered him a ride [to the train
station after a meeting at Princeton between Dantzig and von Neumann], during which
he gave me a five-minute introduction to linear programming, using as an example the
transportation problem. What caught my attention was the network nature of the example,
and to be encouraging, I remarked that there might be some connections with Kirchhoff’s
Laws for electrical networks, which I had been interested in from the point of view of
combinatorial topology. Because of this five-minute conversation, several days later I was
asked if I would undertake a trial project that summer, and I agreed. The two graduate
students I got to work with me were Harold Kuhn and David Gale.”

Towards the end of 1949 Tucker invited Gale and Kuhn to study a possible
generalization of the results on duality theory, already obtained by the three of them
for the linear case (results that were published in 1951 in the proceedings edited by
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Koopmans) to the quadratic case. Gale declined the offer, but Kuhn accepted, and
the first results of his and Tucker’s joint work were presented in a

“preliminary version (without the constraint qualification) [. . . ] by Tucker at a seminar at
the Rand Corporation in May 1950. A counterexample provided by C.B. Tompkins led
to a hasty revision to correct this oversight. Finally, this work might have appeared in
the published literature at a much later date were it not for a fortuitous invitation from
J. Neyman to present an invited paper at the Second Berkeley Symposium on Probability
and Statistics in the summer of 1950” [82, p. 14].

The paper was published the following year in a proceedings from the symposium
and is the first paper that introduces the term “nonlinear programming”.

It was later discovered that two other mathematicians earlier had proved results
similar to Kuhn’s and Tucker’s, namely William Karush (1917–1997) in his master
thesis from 1939 and Fritz John (1910–1994) who published his results in 1948.
None of these works had any influence on the origin of nonlinear programming, but
today they are considered classics in the field of modern nonlinear programming,
and as such we will discuss their contributions in the following; see also Kjeldsen
[76, 77, 80].

The Contribution of William Karush

In his paper of 1976 on the history of nonlinear programming, Kuhn promptly
declares that the first organic contribution to the theory of nonlinear programming
goes back to 1939, to William Karush’s Master Thesis at the Department of
Mathematics of Chicago University, a thesis that was never published. Kuhn [83,
p. 83] speaks of “a theorem which has often been attributed to Kuhn and Tucker”
and says that he learned for the first time about the existence of this Master Thesis,
through the pages of the book of Takayama [115] on mathematical economics.
In another paper Kuhn [84, p. 133] asserts that: “Takayama’s book was the first
citation of Karush’s work that I read”. In this book, at pages 61, 73 and 100 of the
1974 edition, the author makes several references to the thesis of Karush, writing in
particular:

“Linear programming aroused interest in constraints in the form of inequalities and in
the theory of linear inequalities and convex sets. The Kuhn-Tucker study appeared in the
middle of this interest with a full recognition of such developments. However, the theory
of nonlinear programming when the constraints are all in the form of equalities has been
known for a long time - in fact, since Euler and Lagrange. The inequality constraints
were treated in a fairly satisfactory manner already in 1939 by Karush. Karush’s work is
apparently under the influence of a similar work in the calculus of variations by Valentine.
Unfortunately, Karush’s work has been largely ignored.”

Takayama learned of the existence of Karush’s work from El Hodiri [39, 40]. At
page 100 (1974 edition) Takayama again says:
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“Unfortunately, this work [of Karush] has been unduly ignored. El Hodiri (1967) rediscov-
ered Karush and put it in a better perspective.”

El Hodiri [41] in turn wrote that he became acquainted with Karush’s thesis by
reading Pennisi [104] and that he got the reference to Pennisi from the book of Saaty

of Karush is mentioned also by Fiacco and McCormick [47], in the “Additional
References” to Chap. 2. After its publication, their book immediately became one
of the most quoted books on nonlinear programming.

Karush’s thesis has the title “Minima of Functions of Several Variables with
Inequalities as Side Conditions”, and certainly, a modern reader familiar with
mathematical programming would recognize this as a paper belonging to nonlinear
programming. But the term nonlinear programming did not exist when Karush
wrote his thesis, so in order to understand the mathematical context of his work
we need to go back to the Department of Mathematics at Chicago University in
the 1930s. This was at a time where calculus of variations was one of the high
points of the department’s research—the so-called Chicago School of the Calculus
of Variations, a school that in those years counted mathematicians of the caliber of
G.A. Bliss, L.M. Graves, F.A. Valentine and M.R. Hestenes. When Karush wrote
his thesis, calculus of variation problems with inequalities as side conditions were
under investigation, and his thesis can be seen as a finite-dimensional version of
such problems.

Karush began his thesis with a reference to a paper by Bliss [14] in which
Bliss treated the equality constrained version of the optimization problem to gain
insights into questions about normality and abnormality in the calculus of variations,
explaining that his, i.e. Karush’s thesis “proposes to take up the corresponding
problem” for inequality constrained problems. Karush only referred to works of
Bliss, Dines and Farkas but his thesis was most likely also inspired by Valentine’s
paper from 1937 “The Problem of Lagrange with Differential Inequalities as added
Side Conditions” [118]. Indeed, Karush’s thesis resembles Valentine’s paper both in
its title, its structure, its notation and its approach, so it is very likely, that Karush’s
thesis was inspired by the work of Valentine. A summary of the thesis of Karush
was published, for the first time, as an appendix to Kuhn [82]. The whole thesis is
published for the first time in the present collection.

Karush began his thesis with a clear presentation of the main problem: to
determine necessary and sufficient conditions for a relative minimum of a function
of n variables in the class of points satisfying m inequality conditions. He then
listed three results of Bliss [14] on the classical Lagrange optimization problem.
One of this results had already been given by Caratheodory [18] and is the “Fritz
John version” of the multipliers rule for this problem (see section “Basic Results”).
We have to say that the English translation of Caratheodory [18] appeared only in
1965 (vol. I) and 1967 (vol. II). Karush obtained necessary and sufficient optimality
conditions which involve, at first, first-order partial derivatives and subsequently
second-order partial derivatives. He recalled that the classical Lagrange problem of
constrained optimization had, by that time, received a full satisfactory treatment, at
least for C2-class functions.
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The problem treated by Karush is what is now known as a typical nonlinear
programming problem. The constraints are written in the form gi .x/ � 0; i D
1; : : : ; m, and are considered to be all active at xı (feasible point), as, owing to
continuity, a constraint of the form gi .x

ı/ > 0 does not impose, locally, any
restriction.

The first necessary optimality condition reported by Karush, Proposition 3.1 of
his thesis, if read hastily, may give the impression that the author described a Fritz
John type result:

if xı is a local solution of the problem

Min f .x/

with x 2 S D fx 2 A; gi.x/ � 0; i D 1; : : :mg, A open set of Rn and every function at
least differentiable on A, then there exists a nonzero vector (�0; �1; : : : ; �m/ such that xı is
a stationary point of the following Lagrangian function

L.x; �/ D �0f .x/C
mX

iD1

�igi .x/:

But this, indeed, is not the Fritz John theorem, since Proposition 3.1 of Karush
gives no information on the sign of the multipliers. Giving so “large” results, the
proof of this proposition is quite immediate. For m < n its proof becomes even
“unnecessary”, as in this case the result is a direct consequence of the necessary
optimality conditions of Bliss–Caratheodory. On the other hand, it is always possible
to make reference to this theorem, also for the general case, by means of the device,
used by Karush, of adding to, or subtracting from each inequality the square of a
real number (this was motivated by a similar procedure, used by Valentine [118] in
the Calculus of Variations). For example, the constraints gi .x/ � 0; i D 1; : : :m,
can be converted into the following equality constraints

gi .x/ � ˛2i D 0; i D 1; 2; : : : m:

Karush’s version of what later became known as the Kuhn–Tucker theorem, and
what we, in section “Basic Results”, have called the Karush–Kuhn–Tucker theorem,
appears as Theorem 3.2 in his thesis. Karush introduced the linearizing cone at xı
which he called “the admissible directions”, that is all directions dx ¤ 0 such that
rgi .xı/dx � 0: Then he proved the following necessary optimality conditions:

“Suppose that for each admissible direction . . . [dx] there is an admissible arc issuing from
xı in the direction dx. Then a first necessary condition for f .xı/ to be a minimum is that
there exist multipliers �i � 0 such that the derivatives Lxi of the function L D f CP

�igi
all vanish at xı” [75, p. 13] (Karush used the symbol F instead of L for the Lagrangian.)

The condition on the linearizing cone is just what is now called “the Kuhn–
Tucker constraint qualification”, even if it would be more philologically correct to
call it “the Karush–Kuhn–Tucker constraint qualification”. The reader will note that
the sign condition on the multipliers, as it was given by Karush, is opposed to the
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one given in section “Basic Results”, since Karush considered a minimum problem
and a Lagrangian function L D f C �g.

Thanks to the Farkas lemma, the proof given by Karush is relatively simple.
Karush was aware of the role played by the constraint qualification, which he
referred to as “property Q”, in proving this optimality condition, and he wondered
“what the probability is, roughly, that the functions gi .x/ will satisfy property Q”.
In geometrical terms the Karush–Kuhn–Tucker constraint qualification assumes that
each direction vector of the linearizing cone (roughly speaking, for each “tangent
direction”), there exists a regular arc of the feasible region which approximates
the said “tangent” direction. The conclusion of Karush is quite reassuring: “if the
functions gi .x/ are regular enough, it seems that the satisfaction of property Q is
not a great restriction” [75, p. 14].

It is now well known (see, e.g., [11, 59, 105]), that property Q can be substituted
by other assumptions, varying in generality. Karush considered only one other
constraint qualification:

There exists an admissible direction dx such that rgi .xı/dx > 0; 8i:
This condition is now known as Cottle constraint qualification [21] or also as

Arrow–Hurwicz–Uzawa constraint qualification [5]. The Cottle constraint qualifica-
tion implies the Karush–Kuhn–Tucker constraint qualification, but it is not implied
by it. Karush did not prove this statement but built a two-dimensional numerical
example which satisfies his property Q, but not his second constraint qualification.

Karush also offered some sufficient optimality conditions, of the first order and
of the second order in his thesis. For example, Theorem 4.1 says that xı is a (strict)
local minimum point if m � n, the Jacobian matrix Jg.xı/ has rank n and there
exists a vector of multipliers (�1; �2; : : : ; �m), with all negative elements, such that
rf .xı/C Pm

iD1 �irgi .xı/ D 0:

In the two last sections of his thesis, Karush gave some second-order optimality
conditions; we quote only the Corollary to Theorem 5.1 and to Theorem 6.1. The
Corollary asserts that if xı is a local minimum point for the usual problem, where
now the functions involved are C2; and if the Jacobian matrix Jg.xı/ has rank m,
then a necessary optimality condition is:

rf .xı/C
mX

iD1
�irgi .xı/ D 0;

�i � 0; 8i
.dx/THL.xı/dx � 0;

for each admissible vector dx satisfying the system rgi .xı/dx D 0, where L D
f C P

�igi andHL is the Hessian matrix of L.
Theorem 6.1 assures that xı is a (strict local) solution of the problem if there

exists a vector of multipliers (�1; �2; : : : ; �m/ with all negative components, such
that
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rf .xı/C
mX

iD1
�irgi .xı/ D 0;

.dx/THL.xı/dx > 0;

for each admissible vector dx ¤ 0 such that rgi .xı/dx D 0:

We take the opportunity to correct the second-order sufficient optimality condi-
tions given by El Hodiri [39] and reported also in El Hodiri [40,41] and in Takayama
[115] for the problem

Maxf .x/ subject to gi .x/ � 0; i D 1; : : : ; m:

The “generalization” provided by El Hodiri is correct if the active constraints are
all associated with positive multipliers, with reference to a Lagrangian function of
the formL D f C�g: See, e.g., Giorgi [58]; for second-order optimality conditions
in mathematical programming problems the reader may consult Avriel [9], Ben-Tal
[13], Hestenes [68], Fiacco and McCormick [47] and McCormick [94]; this last
paper is republished in the present collection. We add that the classical second-
order sufficient optimality conditions for a nonlinear programming problem, due to
McCormick, can be derived from a paper of Pennisi [104] on Calculus of Variations,
here republished.

We note also that Hestenes [67] gave more sophisticated second-order necessary
and sufficient optimality conditions, for a general nonlinear programming problem,
by means of the so-called “contingent cone” or “Bouligand tangent cone” (see, e.g.,
[59]).

The Contribution of Fritz John

Fritz John (1910–1994) was a student of Richard Courant at Göttingen University,
where he received a Ph.D. in 1933. He was compelled (like Courant) to leave
Germany for racial reasons. After a short period at Cambridge University (England),
he moved to the United States, where he collaborated from 1943 to 1945 with the
U.S. War Department, and then taught at the Universities of Kentucky, of New York
and at last at the Courant Institute at New York University.

Fritz John was a first-rate mathematician and his scientific production is vast
and generally of a high level. He was mainly concerned with convex geometry,
partial differential equations, elasticity theory and numerical analysis. His papers
are published by Birkhäuser (see [99]).

Kuhn [82] properly delineates the geometric motivations of the paper of John
[71]. The history of this paper is well known, at least among researchers in
optimization theory: it was first rejected by the Duke Mathematical Journal and
later appeared in the Courant anniversary volume of 1948.
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The paper of John is quoted by Kuhn and Tucker in their 1951 paper, but they
surely worked independently of John, as Kuhn [84, p. 133] writes:

“Tucker and I were made aware of the work of John when our paper was in galley proofs;
the evidence of this fact is that when we inserted a reference to this paper in the references,
we did not renumber the bibliography correctly”.

John’s approach is quite general. The problem (P3/, described in section “Basic
Results” of this chapter, is only a “finite version” of the problem considered by John.
John divided his paper into two parts: the first is concerned with finding necessary
and sufficient conditions for the existence of a minimum to a function subject to
inequality constraints, the second part is devoted to two geometrical applications of
the conditions found in the first part. We quote directly from John’s paper [71, pp.
187–188]:

“Let R be a set of points x in a space E , and F.x/ a real-valued function defined in R. We
consider a subset R0 ofR, which is described by a system of inequalities with parameter y W

G.x; y/ � 0;

where G is a function defined for all x in R and all “values” of the parameter y. . . . we
assume that the “values” of the parameter y vary over a set of points S in a space H . . . .
We are interested in conditions a point xı of R0 has to satisfy in order that

M D F.xı/ D minx2R0F.x/:00

John then relaxed the generality of the approach by assuming that E D Rn and S
is a compact subset of a metric space H . Moreover, John required that F and G
are C1, although with an opening towards what, at the end of the 1970s, would be
called “nonsmooth analysis”:

“from the point of view of applications it would seem desirable to extend the methods used
here to cases, where the functions involved are not necessarily differentiable” [71, p. 187].

Again we quote directly the paper of Fritz John [71, pp. 188–189]:

“Theorem 1. Let xı be an interior point of R, and belong to the set R0 of all points x of R,
which satisfy (1) [the constraints G.x; y/ � 0] for all y 2 S . Let

F.xı/ D minx2R0F.x/:

Then there exists a finite set of points y1; : : : ; ys in S and numbers �0; �1; : : : ; �s which do
not all vanish, such that

G.xı; yr / D 0 for r D 1; : : : ; s;

�0 � 0; �1 > 0; : : : ; �s > 0;

0 � s � n;
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the function

�.x/ D �0F.x/�
sX

rD1

�rG.x; y
r /

has a critical point at xı, i.e. [the partial derivatives are zero at xı]

�i .x
ı/ D 0; for i D 1; : : : ; n:00

We note first that the version of this theorem for the usual nonlinear programming
problem, like the problem (P3/ of section “Basic Results”, was first taken into
consideration, at least as far as we are aware, by Cottle [21]. Then, again we point
out that, with relation to a finite-dimensional problem with only equality constraints,
the Fritz John conditions had already been anticipated by Caratheodory [18] and by
Bliss [14]. Always for the case of equality constraints, but for a vector objective
function (i.e. for a Pareto optimization problem) the John conditions had been
anticipated by de Finetti [29, 30]. See Giorgi and Guerraggio [60].

The proof given by John, similarly to the proof given by Karush (also John
surely did not know of Karush’s thesis), makes use of the separation theorems of the
Convex Analysis and of their “algebraic versions”, i.e. theorems of the alternative
for linear systems. But, instead of using Farkas’ lemma as Karush had done, John
made references to recent works of Dines [37] and Stokes [112].

John also gave a first-order sufficient condition for local optimality. If we
“translate” his sufficient conditions for the usual nonlinear programming problem
(P3) of section “Basic Results”, i.e. the problem

Maxf .x/ subject to gi .x/ � 0; i D 1; 2; : : : ; m;

we have the following result (see also Stoer and Witzgall [111]):

If relations i) and ii) of point 8) of “Basic Results” are satisfied by a nonnegative and
nonzero vector .y0; y1; : : : ; ym/ at a feasible point xı and if the rank of the following
matrix, evaluated at xı

2
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@x1
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@xn
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:
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: : :
:
:
:
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is n, then xı is a point of local minimum for (P3).

The reader will note the similarity with the first-order sufficient optimality condi-
tions found by Karush.

In the second part of his paper John was concerned with two geometrical
applications of the results of part one of his paper. Indeed, these applications seem
to be the true motivations that led Fritz John towards a modern mathematical
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programming problem. Concerning this point the following words of Kuhn [82,
p. 15] are sufficiently clear:

“The main impulse came from trying to prove the theorem (which forms the main
application in John (1948) [71]) that asserts that the boundary of a compact convex set S in
R
n lies between two homothetic ellipsoids of ratio � n, and that the outer ellipsoid can be

taken to be the ellipsoid of least volume containing S . The case n D 2 had been settled by
F. Behrend (1938) with whom John had become acquainted in 1934 in Cambridge, England.
A student of John’s, O. B. Ader, dealt with the case n D 3 in 1938 (Ader (1938)). By that
time, John had become deeply interested in convex sets and in the inequalities connected
with them”.

This problem of the ellipsoid of least volume containing a set S of R
n is the

second geometrical application of John’s paper. The first one is concerned with
finding a sphere with minimum radius containing a given bounded set S of R

n.
This problem goes back to Sylvester [114], who in 1857 published a one sentence
note: “It is required to find the least circle which shall contain a given set of points
in the plane”. The history of this problem is expounded by Kuhn [82]. Finally, we
note, following Kjeldsen [76, pp. 341–342], that

“in John’s work, . . . , the theorem was only derived as a tool for deriving general results
about convex sets. The applications guided the formulation of the theorem, which explains
John’s construction of the “parameter set” which clearly is dictated by the applications.
. . . reading the second part of the paper,. . . ,which is concerned with the two geometrical
applications, . . . also explains why John did not touch upon the problem of abnormality
[i.e. the first multiplier �0 D 0] and thereby did not consider the problem of constraint
qualifications . . . [which can] be explained from the fact that both applications are actually
examples of the normal case. In his paper on the history of nonlinear programming Kuhn
wrote about John’s work that it “very nearly joined the ranks of unpublished classics in our
subject” (Kuhn, 1976, p. 15). But John himself apparently did not view this work in this
way, and he never came forward with priority claims”.

The Contribution of Kuhn and Tucker

Albert W. Tucker was born in Canada in 1905 and died in Princeton, New Jersey,
in 1995. He received a bachelor’s degree in mathematics from the University of
Toronto in 1928, and a year later he began his Ph.D. study at Princeton University.
In 1932 he received the Ph.D. with a thesis in the field of topology, and 2 years later
he was appointed assistant professor. In 1938 he became associate professor, and
then full professor in 1946.

Tucker was a leading figure in the American mathematical community and he
was one of those who made in those years Princeton University a world famous
center of mathematical research. In particular, due to the ONR logistic project he
made Princeton the center of mathematical programming and game theory in the
1950s, while chairing the Mathematics Department (1953–1963). Research in these
areas also took place at the RAND Corporation. Tucker had a tremendous influence
on the students who came in contact with him: among his Ph.D. students were

28

G. Giorgi and T.H. Kjeldsen



A Historical View of Nonlinear Programming: Traces and Emergence 29

Michael Balinski, John Nash Jr., David Gale, Alan Goldman, John Isbell, Stephen
Maurer, Marvin Minsky, Lloyd Shapley.

Harold W. Kuhn was born in 1925 in Santa Monica, California. He received a
bachelor’s degree in science from the California Institute of Technology in 1947,
and then moved to Princeton, where he wrote, in 1950, his Ph.D. thesis, entitled
“Subgroup Theorems for Groups Presented by Generators and Relations”, under
the supervision of Ralph Fox. After some travelling and a 7-year appointment at
Bryn Mawr College, Kuhn returned to Princeton as associate professor. Later he
declared [84] that it was his good fortune to be in the right place at the right time to
work with an exceptional man as A.W. Tucker.

The famous paper of Kuhn and Tucker of 1951 was a continuation of the work
they had done in the summer of 1948 on linear programming in the trial project
on linear programming and game theory financed by ONR of which we spoke
previously. Indeed, the paper begins with a formulation of a linear programming
problem and its equivalence with a “saddle-value problem”:

xı is a (global) minimum point for the linear function f , under the restrictions

gi .x/ D bi �
nX

jD1

aij xj � 0; xj � 0; j D 1; : : : ; n;

if and only if there exists a multipliers vector �ı; with nonnegative components and such
that .xı; �ı/ is a saddle point for the Lagrangian function L D f C �g, i.e. the following
inequalities hold:

L.x; �ı/ � L.xı; �ı/ � L.xı; �/;

for all nonnegative vectors x and �:

Kuhn and Tucker then made the connection between the saddle point problem and
game theory, since a saddle point for the Lagrangian provides a solution for a related
two-person zero-sum game. It also, as they wrote in the introduction, “yields the
characteristic duality of linear programming” [85, p. 481]. The declared purpose of
the paper is the extension of the above result to a nonlinear programming problem,
with nonnegativity conditions on the decision variables. More precisely, they
consider the problem to find the maximum of a differentiable function f W Rn �! R

subject to the constraints g1.x/ � 0; : : : ; gm.x/ � 0; x1 � 0; : : : ; xn � 0: Also the
constraints gi W Rn �! R, i D 1; : : : ; m; are assumed to be differentiable.

Their first step is to find necessary and sufficient conditions for a generic
differentiable function '.x; �/ to have a nonnegative saddle point at .xı; �ı/ W

'.x; �ı/ � '.xı; �ı/ � '.xı; �/;

for all x � 0; � � 0: They denote 'ı
x; '

ı
� the partial derivatives of ' evaluated at

xı and �ı and they proved that the conditions
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'ı
x � 0; 'ı

xx
ı D 0; xı � 0 (1)

'ı
� � 0; 'ı

��
ı D 0; �ı � 0 (2)

are necessary for .xı; �ı/ to be a nonnegative saddle point for '.x; �/: The same
conditions (1) and (2) are sufficient for the same problem, if the following conditions
are added:

'.x; �ı/ � '.xı; �ı/C 'ı
x.x � xı/ (3)

'.xı; �/ � '.xı; �ı/C 'ı
�.� � �ı/ (4)

for any x � 0; � � 0:

Kuhn and Tucker felt compelled to, justify relations (3) and (4), so that they
do not seem “as artificial as may appear at first sight”, but that today—after more
than half a century—we recognize as characterizations of concavity (convexity)
of the differentiable function '� with respect to x (with respect to �). Conditions
(1) and (2) later become known as “the Kuhn–Tucker conditions” (for the problem
considered) and now are also known as “the Karush–Kuhn–Tucker conditions”.

As a second step they introduced, just with this name, a “constraint qualification”,
which is the same regularity assumption on the constraints we have already met in
the thesis of Karush. This constraint qualification is needed to get rid of pathological
situations, on the boundary of the feasible region, “such as an outward pointing
cusp”. We know also that a constraint qualification makes y0 > 0 in the first Fritz
John necessary optimality conditions. Let us consider, e.g., the following example,
provided by Kuhn and Tucker:

the feasible region in R
2 is given by g1.x/ D x1 � 0I g2.x/ D x2 � 0I g3.x/ D

.1 � x1/
3 � x2 � 0; and the boundary point xı D .1; 0/: The constraint qualification is

not satisfied, since the feasible region does not contain an arc issuing from this point in
the direction dx1 D 1; dx2 D 0: If the problem is to maximize f .x/ D x1; we see that
xı D .1; 0/ is the optimal solution, but the Kuhn-Tucker conditions (1)-(2) are not satisfied
at the optimal point.

Equipped with all these conditions and assumptions, Kuhn and Tucker stated and
proved the first two of their theorems:

Theorem 1. In order that xı be a solution of the maximum problem, where the
constraint qualification holds, it is necessary that xı and some �ı satisfy conditions
(1) and (2) for some '.x; �/ D f .x/C �g.x/:

Theorem 2. In order that xı be a solution of the maximum problem, is sufficient
that xı and some �ı satisfy conditions (1)–(3) for '.x; �/ D f .x/C �g.x/:

It is worthwhile to examine briefly the proof given by Kuhn and Tucker on the
necessary conditions: it appears at once that the relevant steps are the same ones
used by Karush in his proof of Theorem 3.2 of his thesis. First of all, thanks to
the constraint qualification, every direction dx of the linearizing cone verifies the

30

G. Giorgi and T.H. Kjeldsen



A Historical View of Nonlinear Programming: Traces and Emergence 31

inequality rf .xı/dx � 0, and at this point Kuhn and Tucker invoked Farkas’
lemma to ensure the existence of nonnegative multipliers.

Kuhn and Tucker’s approach to prove the sufficiency part is different from the one
of Karush. Kuhn and Tucker choose the saddle point formulation and then establish
a sort of “loop” between their maximization problem, the nonnegative saddle point
problem for the Lagrangian functionL.x; �/ D f C�g, and the conditions (1)–(2)
and (3); (condition (4), concerning the convexity of L with respect to � is obviously
always satisfied).

The third and last step performed by Kuhn and Tucker in order to reach the
purpose of the paper as they had declared it in section “Introduction”, was to place
restrictions on the functions to ensure the equivalence of solutions of the maximum
problem:

Maxf .x/ subject to gi .x/ � 0; i D 1; : : : ; m; x � 0

and the saddle value problem for the Lagrangian. Indeed, after their Theorem 2, they
proved an “equivalence theorem”, i.e.

Theorem 3. Let the functions f .x/; g1.x/; : : : ; gm.x/ be concave as well as
differentiable for x � 0: Let, as before, the constraint qualification hold. Then, xı
is a solution of the maximum problem if and only if xı and some �ı give a solution
of the saddle value problem for '.x; �/ D f .x/C �g.x/:

Section 6 of the paper of Kuhn and Tucker is concerned with an extension to a vector
maximum problem, Sect. 7 treats the so-called “minimum component maximum
problem” and the final Sect. 8 treats other types of constraints, i.e. without x � 0

and equality constraints (with and without x � 0/:

As for what concerns Sect. 6 on vector optimization, we may say that it is one
of the first accurate mathematical treatments of this kind of problems (see also de
Finetti [29, 30] and, for an historical analysis of the contributions of this author to
vector optimization problems, Giorgi and Guerraggio [60]). We have already said of
the difficulty one has in the definition itself of a maximum point (“efficient point”
in the literature) for a vector-valued function. Usually, a feasible point xı is “Pareto
efficient” or simply “efficient” for a vector maximization problem, when, for each
feasible vector x, there exists an index i such that fi .x/ < fi .x

ı/: Kuhn and
Tucker were the first authors to present a more restrictive definition of efficiency,
a definition which rules out some anomalies occurring in the usual definition of
efficiency (given above). A feasible point xı is said to be properly efficient (in
the sense of Kuhn and Tucker) when it is efficient and for no direction dx of the
linearizing cone at xı we have rfi .xı/dx � 0; with at least one index j for which
rfj .xı/dx > 0 holds.

In the next decades, after this first definition of Kuhn and Tucker, numerous other
definitions of proper efficiency were proposed, almost all more restrictive than the
one of Kuhn and Tucker. Some of these definitions are again based on the notion of
“trade-off”, whereas others are of a more geometrical nature and refer to the image
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space (for the various definitions of proper efficiency and for their comparison, the
reader may consult Guerraggio et al. [63]).

Also the treatment given by Kuhn and Tucker of the vector optimization problem,
follows closely the scheme adopted for the scalar problem. A necessary condition
for xı to be a properly efficient point (in a maximum vector problem) for f D
.f1; f2; : : : ; fp/; under the restrictions gi .x/ � 0; i D 1; : : : ; mI x � 0; is that
there exists a positive vector �ı 2 R

p and a non negative vector �ı 2 R
m; such that

the functionL D �f C�g satisfies conditions (1) and (2) at .xı; �ı; �ı/: The same
conditions become sufficient if, besides (1) and (2), also (3) is satisfied. Finally,
under concavity assumptions on each fs and each gi , xı is a properly efficient
(maximum) point if and only if .xı; �ı/ is a saddle point for the Lagrangian function
L D �ıf C �g: About these subjects, we may note that the constraint qualification
is no longer needed, as in the vector case we always obtain that �ı ¤ 0; because now
we require a stronger definition of a maximum point: the point xı must be properly
efficient. Kuhn and Tucker also provided a useful numerical example which justifies
their definition of proper efficiency.

If we compare the theorems of Karush, and Kuhn and Tucker with Fritz John’s
theorem one gets the impression that the two statements are quite similar. Indeed,
if we add to the assumptions of the Fritz John theorem a constraint qualification,
we are sure that the John multiplier y0, associated with the objective function,
is different from zero, i.e. positive: therefore we obtain the Karush–Kuhn–Tucker
theorem.

However, none of these mathematicians moved further in this direction. Karush
made no remarks on what would happen if his “property Q” does not hold. As we
have seen, due to the nature of the two applications to convex sets, Fritz John did not
even consider the fact that his first multiplier could be zero resulting in a Lagrangian
function without the objective function. Also Kuhn and Tucker made no comments
on the non validity of any constraint qualification and on the consequences of this
fact. Indeed, the studies on “non regular mathematical programming problems”, i.e.
problems where no constraint qualification holds, are recent: see, for example, the
book of Arutyunov [8].

Some Further Considerations and Conclusions

Another important contribution to the theory of nonlinear programming at its
beginning is the non published paper of Slater [109]; in this paper the findings of
Kuhn and Tucker are quoted, 1 year before its publication. Slater reconsidered the
relationship between a nonlinear programming problem and a saddle value problem
for a suitable Lagrangian function. The “novelty” is that Slater did not assume any
differentiability of the functions involved, which are only required to be concave
(or convex, according to the type of problem). Moreover, Slater introduced a new
constraint qualification, which is more easily checked than the one of Kuhn and
Tucker; it is now universally known as the “Slater condition”.

32

G. Giorgi and T.H. Kjeldsen



A Historical View of Nonlinear Programming: Traces and Emergence 33

The proof of Slater is quite intricate and makes use of the Kakutani fixed point
theorem. The results of Slater have been proved in a more elegant and elementary
way by Uzawa [117] and by Karlin [74] by means of classical separation theorems
of Convex Analysis. The constraint qualification used by Karlin is formally different
from the one of Slater, but it can be shown that the two conditions are equivalent:
see Hurwicz and Uzawa [70]. For some comments and corrections of the paper of
Uzawa [117] see Moore [97].

Another important paper from the middle of the 1950s on nonlinear programming
is “Reduction of Constrained Maxima to Saddle-Point Problems” by Arrow and
Hurwicz [3]. As we have seen, Kuhn and Tucker related, under concavity assump-
tions, the solution of a nonlinear programming problem (research of constrained
maxima) to the solution of a saddle point problem. In this paper Arrow and Hurwicz
proved that the mentioned result of Kuhn and Tucker can be extended by relaxing
the concavity assumptions, at the expense of obtaining the results only locally. This
is perhaps the first paper where a “modified Lagrangian function” is introduced
in the study of saddle points problems. Subsequently K.J. Arrow reconsidered
these questions in 1958 (see Solow and Arrow [113]) and, within a more general
framework, in 1973 (see Arrow et al. [7]).

The question of duality was apparently the initial motivation for Tucker to
generalize the results on linear programming obtained by himself, Kuhn, and Gale in
the summer of 1948. Even so, Kuhn and Tucker did not prove a duality result in their
“Nonlinear programming” paper from 1951, but they did prove, as we have seen,
the equivalence between the nonlinear programming problem with concavity and
differentiability conditions of the involved functions and the saddle value problem
for the corresponding Langragian function, which indeed does suggest the existence
of a duality result. The first such result for nonlinear programming was developed at
Princeton University, not by Tucker’s group but by the Danish expert on the theory
of convexity, Werner Fenchel, who was visiting in Princeton in the spring of 1951.
Tucker invited Fechel to give a series of lectures on convexity at the mathematics
department; Fenchel developed the first duality theorem for nonlinear programming
during the course of preparing these lectures (see [80]).

Fenchel used a result from a paper he had published in 1949 in which he
introduced the concept of conjugate convex functions. Here he had shown that
to each convex function f .x1; : : : ; xn/, defined in a convex subset G, of Rn and
satisfying some conditions of continuity, there corresponds in a unique way a convex
subset, � , of Rn and a convex function �.�1; : : : ; �n/, defined in � and with the same
properties as f , such that the inequality

x1�1 C : : :C xn�n � f .x1; : : : ; xn/C �.�1; : : : ; �n/;

is fulfilled for all points x D .x1; : : : ; xn/ in G and all points � D .�1; : : : ; �n/ in � .
The correspondence between G, f and � , � is symmetric, and Fenchel called the
functions f and � for conjugate functions [45, pp. 73–75].
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Fenchel defined � to be the set of all points �, for which the function

nX

iD1
xi �i � f .x/

is bounded from above in G, and defined

�.�/ D sup
x2G

.

nX

iD1
xi �i � f .x//:

The definition of � then ensures that the above inequality makes sense.
He used this concept of conjugate functions to develop his duality result for

nonlinear programming. His notes from the lectures were published by ONR in
1953, and here Fenchel’s duality result for “A generalized Programming Problem”
as he called it, appears in the last section. Here Fenchel argued that also to each
concave function there corresponds a conjugate function, and he considered a closed
convex function f .x/, defined on a convex set C in R

n, and a closed concave
function g.x/, defined on a convex set D. He let � W � �! < and  W � �! <
denote the conjugates of f and g respectively, which allowed him to formulate the
following two (dual) problems [46, p. 105].

“PROBLEM I: To find a point x0 in C \D, such that g.x/� f .x/ as a function in C \D

has a maximum at x0.
PROBLEM II: To find a point �0 in � \�, such that �.�/�  .�/ as a function in � \�

has a minimum at �0.”

From this he derived the Fenchel duality theorem:

If the sets C\D and �\� are non-empty then g.x/�f .x/ is bounded above, �.�/� .�/
is bounded below and under some further conditions on the origin in relation to the sets C ,
D, � and �, then [46, pp. s.105–106]:

sup
x2C\D

.g.x/� f .x// D inf
�2�\�

.�.�/�  .�//:

Fenchel did not explore this further, but the lecture notes from his course
became a huge source of inspiration. They had quite an influence on the following
development of the theory of convexity in the USA and in the development of
convex programming.

The book of 1958 edited by Arrow et al. [4] is perhaps the first important
collection of papers concerned with nonlinear programming (and also with linear
programming). In this collection we find, among others, the paper of L. Hurwicz
“Programming in Linear Spaces” (reproduced in the present collection), which is
one of the first works on optimization problems (both scalar and vector) defined in
topological spaces: here the Karush–Kuhn–Tucker theorem is generalized in various
forms, with and without the use of differentials. This book collects also the studies
of the Stanford mathematical economics community of those years on the gradient
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methods in mathematical programming, which go back to a seminal paper of Arrow
and Hurwicz of 1950 (reproduced in the present collection). We find also some
first interesting economic applications of nonlinear programming: a good motivation
from economics is always given (we point out that K.J. Arrow and L. Hurwicz have
been awarded the Nobel Prize in Economics), but predominantly the book is on
mathematical results.

Other classical papers in nonlinear programming at the beginning of the 1960s
are Arrow et al. [5], who weakened the Kuhn–Tucker constraint qualification and
provided an analysis of the various constraint qualifications proposed since then, and
Arrow and Enthoven [6], who first generalized the sufficient optimality conditions
of Kuhn and Tucker, originally established under the assumption of concavity, to
quasiconcave functions. Since then the literature on nonlinear programming has
grown at an exponential rate; and an entire volume would be necessary just to list
all the contributions that have appeared to date.

At this point it is possible to draw some conclusions on the originality of
the papers of Karush [75] and of Kuhn and Tucker [85] (see also the works of
Kjeldsen [76, 77, 80]). Kuhn and Tucker also obtained “their” conditions for the
case considered by Karush, i.e. when the condition x � 0 is absent (see Sect. 8 of
Kuhn and Tucker [85]). Therefore, the main findings of Karush on one side and of
Kuhn and Tucker on the other side, are similar, very similar, almost equal and also
the methods of proof are similar, both based on the same constraint qualification and
on the use of Farkas’ lemma.

What is different and allows us to speak of “independent” contributions is the
context in which their findings took place, both scientifically and socially. The
way followed by Karush is perhaps more “abstract” and, in a sense, more modern,
because it underlines the analogy between nonlinear programming problems and
the classical unconstrained optimization problems. Indeed Karush gave necessary
optimality conditions of the first and of the second order and sufficient optimality
conditions of the first and of the second order. In this sense the contribution of
Karush is closer to several more recent presentations of the theory of nonlinear
programming. On the other hand, Kuhn and Tucker turned their attention to the
saddle value problem and to the consequent generalization of what had already
been proved for a linear programming problem. Therefore, their approach was more
“productive” for practical applications, particulary in Economics, even though their
work as such was not motivated by application, but by the desire for generalization
for the sake of gaining insights into the mathematical structure of inequality
constrained optimization problems.

Indeed, the paper of Kuhn and Tucker almost at once gave rise to a myriad of
contributions, whereas the papers of Karush and of Fritz John did not have any
influence on the emergence and early development of nonlinear programming. The
trivial reasons for Karush’s work are that his thesis was never published, and he was
an unknown graduate student, but none of these reasons apply to the case of Fritz
John. First, his paper was published in 1948, but the paper became interesting only
after nonlinear programming had become an autonomous field of research. Second,
Fritz John was a well known mathematician at the time, and he was linked with the
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famous school of Richard Courant. A more reasonable explanation is the fact, that
W. Karush and F. John were moved by theoretical aims, in scientific environments
of the calculus of variations and the theory of convexity. Kuhn and Tucker, even
though their work with nonlinear programming was not motivated directly by
applications, but by “pure” mathematical investigations of generalizations, they
nevertheless operated in an environment where practical applications to Economics,
Management Science, Operations Research, Logistics, Engineering, etc., were a
source of new researches.

Kuhn [84, p. 134] recognized three factors which he found were significant for
the rapid development of nonlinear programming after the 1951 paper of Kuhn and
Tucker:

“First, the model of nonlinear programming was flexible enough to encompass a large class
of real-life problems that had not been adequately treated by the techniques then available.
In social terms, after the successes of operations research in the Second World War, a
number of major industries were willing to try out this new model. Second, the necessary
conditions established by Karush, Kuhn and Tucker formed the starting point for a large
number of algorithms to solve nonlinear programs. Third, and perhaps the most necessary
factor, the first half of the 1950s saw the development and rapid expansion of computers
that could be programmed to solve this sort of problem”.

And we might want to add at least one more factor, namely the enormous amount
of research money the government gave to academic research in the post war period
in the USA.

We have already mentioned two great pioneers of mathematical programming,
T.C. Koopmans and L.V. Kantorovich who in 1975 received the Nobel Prize in
Economics. We can add also the names of K.J. Arrow, who was awarded the Nobel
Prize in Economics in 1972, of H.M. Markowitz, who was awarded the same prize
in 1990, for his contributions to quadratic programming, within his famous model of
“portfolio selection”, of L. Hurwicz, who was awarded the Nobel Prize in economics
in 2007, and of L. S. Shapley and A. E. Roth who were awarded the prize in 2012.

With Kuhn’s and Tucker’s paper the theory of nonlinear programming became
an autonomous research field. In a very short time it reached a development (also
towards algorithmic aspects) which is by now impossible to describe in a single
book let alone in a single paper, if one wants to present its present status in a
sufficient analytic way.

We add at this point some brief final conclusions. We think that the history
of the emergence of mathematical programming (linear and nonlinear) is surely a
“great history”, both for the relevance of its contents (melting pot of several research
sectors and stimulating observatory for the didactics), and for the highly esteemed
names of great mathematicians and Nobel prize winners we meet in this history.

In describing the emergence of mathematical programming, we have been
compelled to stress some typical aspects of this birth: the influence of some math-
ematical tools, such as Linear Algebra and Convex Analysis, which proved crucial
for its take-off; the convergence of various mathematical motivations (calculus of
variations, geometrical problems, theory of games, problems of operations research,
etc.) which have led to a “mix”, that has at once proved to be a new and original field
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of research, and finally, the influence of the historical circumstances of the Second
World War and the civilian mobilization of U.S. scientists and mathematicians for
the war effort along with the military support of science in the U.S.A in the post war
period, see also Kjeldsen [79].

From this point of view the emergence of mathematical programming can be
considered as an expression of that great analytical tradition which started from
the key concepts of “function” and differential calculus (with all their modern
developments) to offer the main tool in supporting the study of various problems
arising from real life (especially from social and economic sciences).

Like every history of quite recent facts, also the history of nonlinear program-
ming covers perhaps a too brief period, in order to allow the researcher to see in a
right perspective all its fruits and to distinguish between important results and short-
lived researches. The history of mathematical programming is a history of a topic
“in fieri”, but just for this reason it appears more stimulating, as its topic is still in
progress and not yet embalmed.

Finally, another exciting aspect for those concerned with the history of a contem-
porary field of research, is the possibility to try to contribute to its construction, and
not to be only a passive beneficiary of the results of other researchers.

For the present collection we have chosen the following contributions, as
representative of the emergence process and first developments of nonlinear pro-
gramming: (in alphabetical order of the authors)

1. K. J. ARROW and L. HURWICZ, A gradient method for approximating saddle
points and constrained maxima, RAND Corporation, paper P-223, June 1951.

2. K. J. ARROW and L. HURWICZ, Reduction of constrained maxima to
saddle-point problems; in Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability, University of California Press,
Berkeley, Vol. 5, 1955, 1–20.

3. K. J. ARROW, L. HURWICZ and H. UZAWA, Constraint qualifications in
maximization problems, Naval Res. Logist. Quart., 8, 1961, 175–191.

4. G. BLISS, Normality and abnormality in the calculus of variations, Trans.
Amer. Math. Soc., 43, 1938, 365–376.

5. R. W. COTTLE, A theorem of Fritz John in mathematical programming, RAND
Corporation Memorandum RM-3858-PR, 1963.

6. W. FENCHEL, On conjugate convex functions, Canad. J. Math., 1, 1949,
73–77.

7. L. HURWICZ, Programming in linear spaces; in K. J. Arrow, L. Hurwicz
and H. Uzawa (Eds.), Studies in Linear and Nonlinear Programming, Stanford
University Press, Stanford, 1958, 38–102.

8. F. JOHN, Extremum problems with inequalities as subsidiary conditions; in
K. O. Friedrichs, O. E. Neugebauer and J. J. Stoker (Eds.), Studies and
Essays - Presented to R. Courant on his 60th Birthday, January 8, 1948, Wiley
Interscience, New York, 1948, 187–204.
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9. W. KARUSH, Minima of Functions of Several Variables with Inequalities
as Side Conditions, MSc Thesis, Department of Mathematics, University of
Chicago, 1939.

10. H. W. KUHN and A. W. TUCKER, Nonlinear programming; in J. Neyman
(Ed.), Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, University of California Press, Berkeley, 1951, 481–
492.

11. G. P. McCORMICK, Second-order conditions for constrained minima, SIAM
J. on Applied Mathematics, 15, 1967, 641–652.

12. L. L. PENNISI, An indirect sufficiency proof for the problem of Lagrange with
differential inequalities as added side conditions, Trans. Amer. Math. Soc., 74,
1953, 177–198.

13. M. SLATER, Lagrange multipliers revisited, Cowles Commission Discussion
Paper 403, 1950.

14. H. UZAWA, The Kuhn-Tucker theorem in concave programming; in
K. J. Arrow, L. Hurwicz and H. Uzawa (Eds.), Studies in Linear and Nonlinear
Programming, Stanford University Press, Stanford, 1958, 32–37.

15. F. A. VALENTINE, The problem of Lagrange with differential inequalities as
added side conditions; in Contributions to the Calculus of Variations (1933–
1937), University of Chicago Press, Chicago, 1937, 407–448.

The book is completed with an Appendix containing the following contributions:

(A) L. L. DINES and N. H. McCOY, On linear inequalities, Trans. Roy. Soc.
Canada, 27, 1933, 37–70 [This paper was quoted by Karush in his thesis].

(B) H. W. KUHN, Nonlinear programming: a historical view; in R. W. Cottle
and C. E. Lemke (Eds.), Nonlinear Programming, SIAM-AMS Proceedings,
Vol. XI, American Mathematical Society, Providence, 1976, 1–26. [In this
paper, for the first time, Kuhn admits the priority of the results of Karush and
his ignorance, since then, of these results. In the Appendix of this paper there
is a summary of the thesis of Karush: it is the first time that the main results
of Karush are published. In the present book we omit this Appendix of Kuhn’s
paper].

(C) J.-L. LAGRANGE, Recherches sur la Méthode de Maximis et Minimis,
Miscellanea Taurinesia, Tom 1, 1762, pages 173–195.

38

G. Giorgi and T.H. Kjeldsen

References

1. O. B. ADER (1938), An affine invariant of convex regions, Duke Math. J., 4, 291-299.
2. D. J. ALBERS and G. L. ALEXANDERSON (1985) (Eds.): Mathematical People, Profiles

and Interviews. Boston: Birkhäuser, 1985
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26. A. A. COURNOT (1827), Extension du principe des vitesses virtuelles au cas où les
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A GRADIENT METHOD FOR APPROXIMATING SADDLE POUlTS AND CONSTRAINED MAXD'lA 

Kenneth J. Arrow and Leonid Hurwicz 

l. Introduction. 

In the following, X and Y will be vectors with components 

Xi, Yj. By xz_o will be meant X,2 o for all i. Let g(X), fj(X) 

(j = l, ; · •, m) be functions with suitable differentiability properties, 

where f j (X)~ 0 for all X, and define 

(1) ffi / 1+-··y(,\ • 
F(X, Y) = g(X) +- [ Y. -,' l- rfj(Xf\ -

j=l J I, L J 

Let (X, Y) be a saddle-point of (l) subject to the conditions 

X~ 0, Y ~ 0; assume it unique in X. The function F(X, Y) attains its 

maximum for variation in X subject to the condition X .2':: 0 at the point 

P-22.3 
$-:p-51 

X = X. Since F is a maximum for variation in each component Xi separately, 

it follows that 

(2) 'Fx. 
l 

s·o for all i, and 

(J) X. = 0 if 'Fx. < o. 
J. 

l 

We will refer to those subscripts for which (3) holds as ~ indices and 

the remainder as interior indices. Let xl be the vector of components of 

X with corner indices, and x2 the vector of interior components. Since F 

is also a maximum for variations in x2 alone (holding x1 at 0 and Y at 

Y), and the first-order terms vanish by (2) and (3), it follows, under the 

usual differentiability assumptions, that the matrix, 

(4) FX~2 is negative semi-definite, 
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where F i':? is the matrix of elements 6 2F / 6 Xi oX j , with i and j 

ranging over interior indices, evaluated at (X, Y). 

It is shown in another paper, now in preparation, that for all 1"; 

sufficiently large, X maximizes g(X) subject to the restraints 

(5) F22 
XX 

is negative definite. 

Hence the determination of the constrained maximum is equivalent to finding 

the saddle-point of a function F(X, Y) which is linear in Y and satisfies 

(5). We seek here a convergent process for approximating such a saddle-point. 

The intuitively natural method, in terms of the motivations of the two 

players (interpreting F as the pay-off of a game in ~nich player I chooses 

X and player II chooses Y), is for the player who chooses X to move 

"uphill" with regard to variation in that variable, while the other player 

moves against the gradient with respect to Y. Such proc-esses have been 

investigated by Brown and von Neumann [ 1] 1 for the case where F is linear 

\,umbers in brackets refer to the bibliographY at the end of the paper. 

in both X and Y. In that case, the "naive" gradient method just 

described leads to an oscillatory behavior (see Samuelson [ 21 pp. 17-22) and 

must be modified. In the present case, even if the functions g, fj were 

linear to begin with, the introduction of the power 'J creates a nonlinear 

system satisfying (5); as will be seen, this implies that the naive gradient 

method will be at least locally stable. 
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2. Description or the Gradient Method. 

P-223 

6-13-51 

It must be recalled that the variables X and Y are constrained 

to be non-negative, so that the movements of the players with and against the 

gradients or X and Y, respectively, cannot carry the variables into areas 

of negativity. The gradient method for finding. a saddle-point then is the 

following system of differential equations: 

(1) xi = 0 if Fx. <o and X. • 0, 
·~ 

~ 

(2) = Fx. otherwise; 
~ 

(3) Y. = 0 if Fy_ >O and Y. = o, 
J J 

J 

(4) =- F otherwise; 
yj 

the dot denotes differentiation with respect to time. In this system the 

derivatives are discontinuous .functions of the variables. The usual existence 

theorems for nonlinear differential equations assume continuity (see [3 ], 

Chapter II). If it coulcl be shown that equations (2.1-4) have a unique 

solution for any initial position continuous with respect to variations 

in the starting-point, considerably stronger statements coulcl be made about 

the convergence of the system • 

.3. Theorem. 

Let F(X, Y) be linear in Y, possess a saddle-point (x, "Y> 

under the constraint .X~ J, Y ~ 0, and be analytic in sane neighborhood 

of (x, Y). Suppose further that (a) condition (1.5) holds and 

(b) "4>0 and 'fj>o for every interior index i or j.2 

2Analogously to 0,.;3), j is a corner index for Y if Yj • O, Fy <O; an 
j 

interior index for Y is any subscript which is not a corner index. 
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Then for every initial position in a sufficiently small neighborhood of 

(X, Y), there is a unique solution X(t), Y(t) of the equations (2.1-4), 

such that lim X(t) • X and, for every limit-point Y* of Y(t), (X, Y*) 
t-700 

is a saddle-point of F(X, Y). 

4. Proof. 

If (X*, Y*) were another saddle-point of F(X, Y), then (X*, Y) 

would be still another. That is, X'.<- would maximize F(X, Y) for variation 

in X. Then (1.5) implies that if X* is in a sufficiently small neighbor

hood of X, then X • X*, so that X is at least locally unique. 

In what follows, let x • X -X, y • Y - Y, expanding the 

derivatives of F into power series. Then 

(1) F = F + a(x, y), 
xl xl 

where a(x, y) is a continuous vector function with a(O, 0) = 0. 

In the expansion of F , there are no constantterms by definition. 
x2 

Divide the terms of the expansion into four types: those containing 

components of xl; the terms linear in :2--, the terms linear in y; and the 

terms in x2 and y of degree higher than the first. Define the (variable) 

matrix A as follows: for any interior index i and corner index j, let 

A .. X. 
~J J 

be the sum of all terms in the expansion of FX· which have 
:r. 

X. as 
J 

a factor but do not have ~ as a factor for any corner index k < j. Then, 

is the sum of all terms in the expansion of Fx which 
i 

contain corner components of x, the summation extending only over corner 

indices. The matrix A is a function of x and y. Now consider the fourth 

type of term in the expansion of 

y only. Since F, and therefore 

F 2, the non-linear terms involving ~ and 
X 
F is linear in y, each such term must x2• 
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involve a canponent of x?-. Define the matrix B so that, for every pair of 

interior indices i and j, Bij xj is the sum of all non-linear terms x 

in the expansion of FXi which have xj for a factor but do not have Xk as 

a factor for any corner index k or for any interior index k < j. Then, 

,l B; ~ x. is the sum of all non-linear terms in the expansion o! FX. which 
j2 -.. J ~ 

contain no corner components of x as factors. B therefore is a function 

of .;!- and y; further, since each canponent of J3x2 is non-linear, B 

vanishes if both :2- and y do. 

(2) F 2 = A(x, y) ~ + F ~ 2 ~ + F ~- y + B(~. y) x2, 
X X X x-r 

where A and B are continuous matrix functions, and B(O, 0) = 0. 

Since F is linear in y, F y is independent of y. By a discus

sion similar to the preceding, it follows that 

where C is a continuous matrix function and the vector b(:2-) is of the 

second order with respect to components of x2• 

Now define 

(4) D= (1/2) (x'x + yry). 

D is proportional to the distance in the (X, Y) epace to the saddle-point 

(X, Y}. Differentiate (4) with respect to time. 

(5) DD = x 1x + yty. 

First suppose that for each i either Xi> 0 or Fx. ~ 0 and 
~ 

that for each j either Y > 0 or F y _:::.. o. Then from (2.2), (2.4) and ( 5), 
j J 

( 6) DD = x 1F - y'F X y• 
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Substitute from (l-3) into (6) 

(7) DD = (xl)'Fx1 + (x2)•Fx2 - y'Fy 

P-223 
6-13-51 

= (.xl)•Fxl + (xl)•a(x, y) + (x2)•A(x, y)(.xl) .. (x2)•Fx2x2? + (x2)'Fx2y Y 

+ (x2)•B(x2, y) ? - ytF - y'C(x) z1 - y•F• 2 x2 - y' b(?). y X y 

The last term is homogeneous linear in y ?nd of the second order in x2. Hence, 

it can be written in the form, 

(8) yr b(x2) • (x2)t E(x2, y) (0), 

where E is a continuous matrix function and E(x2, 0) = 0. 

Each term in (7) is a scalar and therefore equal to its transpose. In 

particular, (x2)•F 2 y • y•F•2 x2. Let X Y X Y 

(9) c(x, y) = a(x, y) + At(x, y) x2- c•(x) y, 

(10) G(x2, y) = B(x2, y) - E(x2, y). 

In view of (8-10) and the preceding remarks, (7) can be simplified to the 

following expression: 

From (l) and (9), 

(12) c(O, 0) = o. 
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Let m1 be the minimum of I Fxil over the corner indices i; by 

definition, m1 > 0. By (12), we can choose (_ 1 so that every component of 

c is less than m1 whenever D < E1 • Let L 1 denote summation over the 

corner indices only; then, since xi:;;::: 0 for all corner indices, 

(:0-)rc(x,y)<m1 t1 1xt--(:0-)•Fxl• if ~rO and o<Evor 

(13) (xl)'Fxl + (xl)r c(x, y)< 0 if ~ "f 0 and D<(1 • 

From (1.5), 

Let m2 be the maximum of (x2) If 2 2 x2 subject to the condition D = l, 
X X 

~ the maximum of ~I xi I subject to the same condition. Then, 

(14) 

From (2), (8) and (10), G(O, 0) = O. If D is sufficiently small, (x2, y) 

will be sufficiently close to (0, 0) to insure that the largest of the 

components gij of G is less than - mz/(m3 ) 2 in absolute value. Then, 

from (14), 

(x2)' G(x2, y) x2 S:~~~ gij xixjl~t~2~gij llxill xj~ 
< ( --l!lzlm/)(tz I xi! )2 S- m2 o2 .$ - (x2) 'f x2x2 x2' 

the strict inequality holding provided that izlxi~~o, which 

to ~ f. 0. 

(15) 

is equivalent 

For each corner index j, yj?-0 always, while FY.> 0; 
J 

for interior 
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indices j, Fy. = 0. Hence, 
J 

(16) y'Fy ~ o. 

By (11), (13), (15) and (16), 

- 8-

(17) oo < o if D< f , x r o; on ~ o if o <C, 

F-223 

6-13-51 

where E is chosen smaller than ( 1 or E2 , 

so that, 

and also sufficiently small 

(18) F < O, F ':::> 0 when D ~ E, for all corner indices i and j; 
xi Yj 

(19) E < min:2 xi, E <min2 Y:.. the minima being taken over all interior 
i j J 

indices; 

(20) FX2X2 isnegativedefinitewhen X=X and yty/2<t· 

By assumption (b) of the theorem, (19) is possible with positive t By 

(1.5), Fx2x2 is negative definite when X= X and y = 0; since F is 

certainly continuous in Y, (20) can hold for sufficiently small ( 

We will now show that there does in fact exist a unique solution 

of (2.1-4) continuous in the initial position and in time if, at the initial position 

[xco),Y(o)], o<E. Let so bethesetofallindicesforwhich 

Xi(O) = o, By (19), any index in s0 must be a corner index for X. 

Similarly, let T0 be the set of all indices for which Y.(O) = 0. 
J 

By (18), 

FX. <O, Fy_>o for all indices in s0 and T0 , respectively. By the 
J. J 

differential equation system (s0 , T0 ), we shall mean 

(21) X. = F for i not in s o' 
y =- F for j not in To, 

J. xi j yj 

xi= Yj = 0 for i in so, j in To· 

- 8 -
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In this system, the derivatives are continuous functions of the 

variables. By the Cauchy-Lipschitz Existence Theorem (see [3], Theorem (4.1), 

p, 23), the system (s0 , T0 ) has a solution uniquely defined by the initial 

conditions. Let Z =(X, Y), and let a given solutionbeZ[t, Z(o)], where 

Z(O) is the initial position. Then it is further known ( [3 ], (7 .3), p.30) 

that 

(22) Z [ t, Z(O) J is a continuous function of Z(O) and of t. 

For every i not in s0 , Xi [ t, Z(O)] > 0 in some interval of time; 

similarly, Y j [ t, Z ( 0 )] :>O in some interval for every not in T0 • Since 

Fx. and 
~ 

t there 

in T0 • 

Fy_ are continuous functions of 
J 

is an interval in which Fx_< o, 
J_ 

The solution to system (SO' ro) 

z, which is in turn 

FY. >O for i in 
J 

is then a solution to 

(2.l-4), and further it is clearly the only one. 

continuous in 

so, and 

the system 

Since s0 and T0 contain only corner indices, xi = yj = 0 for 

all i in s0 and in T0 . If we fix these variables at 0, F, 

considered as a function of the remaining variables, has the same properties 

as assumed to begin with. Hence, (17) is valid; since D ~ 0, D [ t, Z(o)] 

(the value of D for the point Z [t, Z(O)]) is non-increasing. Since 

o [o, z(o)] < E o[t,z(o)j<E for all t. Hence, FX. < o, Fy. > 0 
J_ J 

for all points of the solution Z [ t, Z(O)]. for all i in s0 and j in T0 

The solution for (s0 , T0 ) therefore ceases to be a solution for (2.1-4) 

only when Xi [ t, Z(O)] • 0 for some i not in s0 or Yj [ t, Z(O)] = 0 

for some j not in T0 . Let this occur at time t 0 • Since D [ t 0 , Z(O)] < t, 
Xi [ t 0 , Z(O)] > O, Yj [ t 0 , Z(O)] > 0 for all interior indices by (19); 

hence, i or j must be a corner index by (18). Let s1 be now the set of 

all indices for which Xi [ t.0 , Z(O)] = 0, T1 the set of all indices for which 

Y j [ t 0 , Z(O)] = 0. Clearly, S1 includes s0 , Tl includes To• Again, the 
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solution of the syste;;;l (51 , T1 ) is the 1.u-ri.'11J.e so)tltion of (2.1-L) in some 

interval of time beginning with t 0 • The '-'rcument crir; c.· co r~peatid.; since the 

sets Si, Ti ar<" increasing an:: there are e>n::_y " finite nnmber of in1ices, 

only a finite nurnber of systems are involved. It then follows easily that the 

s~stem ( 2•1-4) has a unique solution Z [t, Z( 0 )j continuous in t and in Z(O). 

By (lB), !or each corner index i, there is a number m. <:o 
~ 

that F X. :;; mi whenever D S ( As n [t, z(o)] ~ o for all t, 
~ 

such 

D [t, Z(O)] < f . So long as xJt, Z(O)J > O, xJt, Z(O)] ~ mi' so that 

x1 [t, Z(O)] reaches 0 

Xi [t, Z(O)] = 0 for all 

corner indices of Y. 

in finite time. 

t from then on. 

Since Fx.< 0 for all t, 
~ 

The same argument holds for 

(23) xl [t, Z(O)] • yl [t, Z(O)] = 0 for all t sufficiently large. 

As D [t, Z(O)] ~ 0 for all t, D [ t, z(o)] converges to a limit. 

Let 

(24) lim D [ t, Z(O)] = Dl~. 
t-;.oo 

Let Z* = (X*, Y*) be any limit point of Z [t, Z(O)]. There is a sequence 

{ tn} such that 

(25) lim 
n~co 

tn = co, lim 
n-co 

Z [tn' Z(O)] 

Let Zn = Z [tn, Z(O)] Then, by (22), 

,. Z*. 

(26) Z(t, Z*) • lim z(t, zn) =lim z [t + tn, z(o)]. 
n_:;. co n~ co 

Since D is a continuous function of Z, it follows from (26) and (24) 

that 
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(27) D(t, Z*) = Um D [t + tn, Z(O)] = D*, 
n~oo 

P-223 
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a constant. That is, D(t, Z*) • 0 for all t. By (17), x(t, Z*) = 0 for 

all t, or 

(28) X(t, Z~f) =X for all t. 

In particular, X(O, Z*) =X* =X. Since Z* vtas any limit-pcint of 

Z [t , Z(O)], 

(29) Lim x[t, z(o)J = x. 
t-oo 

Let an asterisk denote evaluation at Z* = (X, Y*). By (23) and 

(18), 

(30) xl=o. F*-' <o , xj_ , 

(31) y;~ = o, F~l > 0. 

By (28), i 2 (t, Z*) = 0; since )(2 > 0 by hypcthesis, it follows from (2.2) 

that 

(32) F*2 = 0. 
X 

By (20), F*2 2 is negative definite. In conjunction with (30 ) and (32), 
X X 

this shows that 

(33) F(X, Y*) has a maximmn at X for variation in X subject to X 2: 0. 

Since F is linear in Y, Fy is independent of Y, so that F~2 = Fy2 = O. 

That is, F(X, Y) is independent of y2, From (31), then, 
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(34) F(X, Y) has a minimum at Y* for variation in Y subject to 

y 2. o. 

(28), (33) and (34) complete the proof of the theorem, 

5. A Remark on the grpotheses of the Theorem. 

Condition (b) of the theorem, that no component of X or Y is at 

the boundary of the. domain of variation unless it is actually a corner extremum 

in the proper sense, is inserted to avoid the possibility that at some point 

Xi = 0 and Fx. = 0 for same i. We have been unable to show, in this 
l. 

situation, either that there exists a solution of (2.1-4) with such an initial 

position or that, if it exists, it is unique. Same experiments with simple 

systems suggest that in fact there is a unique solution beginning at such a 

point; if so, condition (b) could be dropped. 

6. Economic Interpretation. 

Let Xi (i = 1, •••, n) be activity levels of the n different 

possible production activities (measured, e. g., by the outputs of one of the 

products). Let g(X) 

the quantity of input 

be the social utility derived from activities, F .. (X.) 
l.J l. 

j needed to carry on activity i at level Xi, ~j the 

stock of input j available to begin with, and fJ.(X) =I f.j(X.)-"' +1. 
i l. l. j 

The unit of measurement of commodity j should be chosen sufficiently large 

that fj(X) (which is excess demand plus one) will be positive throughout the 

adjustment process. Note that production of an output bymeans of process 

i would be represented by a negative value for the function fij; also, 

~j = 0 for intermediate products. Hence, it is desired to choose a set of 

activity levels X which will ~ize. g(X) subject to the constraints 

that the excess demand or the productive sys.tem for any input does not exceed 

- 12 -

57



- 13 - P-223 

6-13-51 

the initial supply, i.e., L f. . (X) ::; ()(J', or, fJ. (X) S. 1 for all j. By 
i ~J 

definition, Xi ~ 0 for all i. As noted in section 1, if X is the 

optimum set of activity levels, then, there is some Y such that (X, Y) is 

the saddle-point of the function F(X, Y) defined in (1.1). 

It follows then, by the Theorem, that the X-cornponents of the 

solution of the system of differential equations (2.1-4) will approach X. 

The equations (2,1-2) can be written, 

(1) X. = ( dgjdx.)- 2: Y, (1+ ?c/) (f.? (elf . ./dX.), 
~ ~ j J J lJ l 

unless the right-hand side is negative when Xi = 0, in which case the right

hand side is replaced by 0. Let 

(2) 

(3) 

Then, fram(l-3), 

(4) 

=max !o, q1. -" p. (elf . ./dX.) J if X = o - '} J lJ l i . 

By (2.3-4), p. is determined. by (3) in conjunction with the equations, 
J 

(5) YJ. = r.+'? -1 if Y.>o, 
J J 

=max [s+? -1, oJ if yj = o. 

Note that Yj> 0 if f > 1, i. e., if there is excess demand, and Yj < 0 

if there is excess supply (except for free goods). 
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Institutiona.lly, the process can be visualized as follows: there 

is a central board which evaluates the social worth of a given constellation 

of activity levels, and therefore the marginal social valuation qi of each; 

for each activity,. there is a plant manager who determines the activity level 

Xi; for each pr:imary or intermediate product, there is a price-fixing 

authority who determines Pj• The central board announces the marginal 

social valuations ~· and each price-fixing authority announces a price Pj• 

then, each plant manager expands or contracts at a rate equal to the 

difference between the marginal social valuation of the activity, qi' and 

the marginal cost of increasing the activity, L p, (dfi/dX.) (apart .from the 
j J ~ 

corner case of unused activities). At the same time, the price-fixing 

authority adjusts Y. in accordance with the exces.s demand, as given in (5) . J 

and then arrives at pj. 

It is :important ·to observe that these rules of decision~ing 

are highly decentralized. Once ·the prices are announced, the individual 

activity managers need know only their own technologies to determine their 

rate of expansion. Similarly, the price-fixers need know only the excess 

demands on their own markets. 

Even the decisions of the central board in regard to the marginal 

sociaJ. val.uations of the commodities can be simplified. Actually, the social 

valuation depends on the outputs of final products. Let gik(X) be the 

output of final product k if activity i is operated at level 

Xi• gk(X) • ~ gik (X) be the total output of :final product k, and 
l. 

U(Bi, •••, ~) the social utility derived fran having total outputs gl• ···, &m 
of the finaJ. products 1, •••, m, respectively. Then g(X) • u[g1 (x), ••• , ~(x)J, 

so that 
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(6) .1gfdxi =:L ( ~u/dg) (dg. /dX.). 
k k ik ~ 

P-223 
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If the central board announces merely the marginal social valuations of the 

various final products, rk = dU/ 0 gk• the finn can canpute its marginal 

social valuation, 

(7) ~=Irk (dg~dX.), 
k ~ 

by the knowledge of its own technology. 
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REDUCTION OF CONSTRAINED 
MAXIMA TO SADDLE-POINT 

PROBLEMS 
KENNETH J. ARROW AND LEONID HURWICZ 

STANFORD UNIVERSITY 1 UNIVERSITY OF MINNESOTA 

1. Introduction 

1.1. The usual applications of the method of Lagrangian multipliers, used in locating 
constrained extrema (say maxima), involve the setting up of the Lagrangian expression, 

( 1) cp(x, y) = j(x) + y'g(x) 1 

whercj(x) is being (say) maximized with respect lo the (vector) variable x = (xt, · • ·, 
~:N J, su!,jcct Lo the constraint g(x) ""' O, where g(x) maps the poinlH of lhe N-climenaiollaL 
x-spacc into an .M-dimensional space, andy= (y1, · · · , YMl is the Lagrange multiplier 
(vector). Here, ( J indicates a column vector; the prime indicates transposition, so 
that y' is a row vector. 

The essential step of the customary procedure is the solution for X1 as well as y, of the 
pair of (vector) equations, 

(2) cp.,(x1 y) = 0, g(x) = 0 1 

where cp.(x, y) = { acp(x, y)/ dXt, ... I acp(xl y)/ dXN}. Let (xl y) be the solutions of 
equations (2), while~ maximizesj(x) subject to g(x) = 0. Then, under suitable restric
tions, 

(3) 

1.2. In [1] Kuhn and Tucker treat the related problem of maximizingf(x) subject to 
the constraints1 g(x) ~ 0, x ~ 0, where, for an arbitrary K-dimensional vector a= 
{ a1, · · · , ax}, the relation a ~ 0 is here defined to mean ak ~ 0 for k = 1, · · · , K. 
Another definition of vectorial inequalities, permitting greater generality of treatment, 
will be used in later sections of this paper. There we shall treat directly the class of situa
tions where j(x) is to be maximized subject to g(ll(x) ~ 0, g<2l(x) = 0, x[ll ~ 0, xl21 not 
restricted as to sign, x = ( xlll, xl21J. 

Denote by Cu the set of all x satisfying the constraints g(x) ~ 0, x ~ 0. The two re
sults stated below are of fundamental;importance for the problem considered. 

(A) (See theorem 1 [1].) Let g satisfy the following condition (called Constraint 

Most of the work of this paper was done under the auspices of The RAND Corporation, with addi
tional support and assistance from the Cowles Commission for Research in Economics and the Office 
of Naval Research. 

1 In [1] our j and g are respectively writte~ as g and F. The symbol in [1] for the Lagrange multiplb 
(our y) is u. 
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Qualification, here abbreviated as C.Q.).2 If x is a boundary point of Cu and x satisfies 
the relations, 

(4) 

(5) 

~(x - x) !?; 0 , 

xb-?!?;0, 

where"-" over a symbol denotes its evaluation at x = x, g = {gA, gil), gA = 0, gil> 0, 
x = {xA, xb}, ~ > 0, and?= 0, then there exists a differentiable vector-valued func
tion f of the real variable (J whose domain is the closed interval (0, 1) and the range is 
in Cui that is, x = ,Y(O), such that ,Y(O) = x and ,Y'(O) = X(x- x) for some positive 
scalar X. 

Under this condition, if all derivatives used below exist and if x maximizes f(x) for 
x E Cu, there exists y satisfying the conditions 

(6) 

(7) 

X !?; 0, "¢z ~ 0, ii''i[>z = 0 1 

y !?; 0, ¢11 ~ 0, y'¢11 = 0 , 

where ¢z and ([> 11 are partial (vector) derivatives of the Lagrangian expression (1) evalu
ated at (x, y). 

(B). (See theorem 3 [1].) If the hypotheses specified in (A) hold and, in addition, the 
functions f(x), Cm(x), m = 1, · · · , M are concave,3 there exists a pair (x, y), satisfying 
conditions (6) and (7), such that (x, y) is a nonnegative saddle-point (NNSP) of <P(x, y), 
that is, 

(8) .p(x, y) ~ .p(x, y) :5 .p(x, y) for all x G; 0, y ~ 0 ; 

furthermore, any NNSP (x, y) of cf>(x, y) has the property that x maximizesj(x) in Cu. 
According to lemma 1 [1], conditions (6), (7) are implied by (8) regardless of the nature 
of <P(x, y), that is, even if cf>(x, y) is not given by (1). 

2. A modified Lagrangian approach 

2.1. Because of the interesting game theoretical and economic implications of the 
theorem in (B), section 1.2 (which the authors will study elsewhere), the question arises 
as to the possibility of similar results when some of the conditions of the theorem are 
relaxed. 

It turns out that results of such nature can be obtained, though not without some 
sacrifices. The relaxation is primarily with regard to the convexity assumptions which 
fail to hold in some important economic applications (the case of "increasing returns"). 
The main sacrifices are (1) the Lagrangian expression is modified, and (2) the results 
are proved only locally. 

The results are presented below in \.he form of three theorems. Theorem 1 is auxiliary 
in nature; theorems 2 and 3 together imply the existence of a local nonnegative saddle-

• This restriction "is designed to rule out singularities on the boundary of the constraint set, such as 
an outward-pointing 'cusp'" (seep. 483 in [1]). It should be noted, however, that because of (4), C.Q. is 
a property of g, not merely of c •. Thus g(x) "" - (x - 1) 3, x one-dimensional, lacks C.Q., while g(x) = 
-(x- 1), with the same C0 , does have it. 

• A functionf(x) is said to be concave if 

(1 - 8)/(xO) + 8f(x) ;:;; /[(1 - O}:r;O + 8x) 

for all 0 ;:;; 8 ;:;; 1 and all x0 and x in the region wheref(x) is defined (see [1), pp. 10-11). 
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point for the modified Lagrangian expression. Theorem 3 shows this saddle-point to be 
of the type leading to convergence in gradient procedures described by the authors in [3]. 

The notation differs in some detail from that introduced in section 1. To facilitate 
reading, some notational principles are stated in 2.2.1; the main symbols used are listed 
in sections 2.2.2 and 2.3.4. 

2.2.1. Some principles of notation. A K-dimensional column vector [ a1, a2, · · · , ax} 
is denoted by a; dim a denotes the number of components in a. If A is a matrix, A' is its 

X 

transpose. Hence, in particular, a' is a row vector and a' b = 2::: akbk is the inner prod-
k=t 

uct of the vectors a and b; a•b is an alternative, and sometimes more convenient, nota
tion for a'b. 

[at, a2, • • • , ax] is the finite (unordered) set whose elements are at, a2, · ·· · , ax. 
A '"""B is the set of all elements in A but not in B (the set-theoretic difference). 

[ x lp,J denotes the set of all x possessing the property P:c· 
If 

(9) c(a) = [ Ct(a), c2(a), · · · , Cp(a) l , 
( 10) a = [ a1, a2, · · · , ax} , 

then 

(11) P=1,2, .. ·,P; k = 1, 2, · · ·, K. 

Further, c, c. denote, respectively, c(a) and c.(a) = Ca evaluated at a = ii. 
If if;(a, b) is a real-valued (scalar) function of the vectors a= [a1, a2, · · ·,ax}, 

b = [bt, b2, · · ·, bR}, then 

(12) t/:.b =II a::t b; II· k = 1, 2, · · ·, K; r = 1, 2 ·. · · ,R, 

where \Jab denotes t/:ab evaluated at (ii, b). 
SP(x0) = {x ld(x, x0) ;;;::; p} where d(x', x") denotes the Euclidean distance between 

x' and x". 
2.2.2. Some symbols used. 

(N.1.1) 

X is the Euclidean N-space of the x's. 

N = [1, 2, · · · , N] . 

N' is a fixed (possibly empty, not necessarily proper) subset of Jl. As will be seen in. 
(N.1.4), the elements of IV' are the indices of the components of x£11 as defined in the 
first paragraph of section 1.2. 

(N.1.2) Z = { Z11 Z2, ' ' ' 7 ZM} • 

Z is the Euclidean M-space of the z's. 

N = [1, 2, · · · , MJ . 

N' is a fixed (possibly empty, not necessarily proper) subset of M. As will be seen from 
(N.1.4), (N.2), (N.3), the elements of Iff' are the indices of the components of g(1l as 
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defined in the first paragraph of section 1.2; the elements of M"' M' are the indices 
of g<2> (see same paragraph); g will be defined as {g<1>, g<2>}. 
(N.1.3) 'Y = {y1, 'Yt, • • · , 'YM} , 

Y is the Euclidean M-space of the y's. Here Y is the space of the real-valued linear 
functions on Z. Even in the Euclidean case it is convenient to distinguish between the 
two, since our definitions of nonnegativity in the two spaces differ. 

(N.1.4) { 
x,. ~ 0 for n E N' . 

x ~ 0 means 
x,. unrestricted as to sign for n EE N' . 

X+ is the set of all X ~ 0 , 

.z ~ 0 means -{ 
Zm ~ 0 for m E M' . 
z m = o for m a: M' . 

{ 
y m ~ o for m E M' . 

y ~ 0 means 
y m unrestricted as to sign for m EE M' . 

For any vector a= {a1, az, · · ·, ak} ·' 

a = 0 means a1 = O, a2 = 0, · · · , ax = 0 ; 

a > 0 means a1 > 0, iz2 > 0, .· · · , ax > 0 ; 

a < 0 means -a > 0. 

(N.2.1) 1g is a function on X+ to Z. Hence 'g(x) = {'g1(x), 'g2(x), · · ·, 'gM(x)} where 
the 1 gm, m E Mare real-valued functions. 

(N.2.2) We shall find it convenient to work with some of the 'gm, m E Af' replaced by 
their negatives. More precisely, we write 

gm= { 
'gm if mEM"'M-

-'gm if mE.Af-, 

where u- c.;: M"' M' will be defined in section 2.3.4. 

g = { g1, gz, · · · , gM} • 

Note. Since u-c.:.M"' M', it is seen that the conditions 

'g(x) ~ 0, g(x) ~ 0 

are equivalent. For practical purposes, one could consider the problem as given directly 
in terms of g, rather than 'g. We. start with 'g; however, in order to avoid the impression 
of a loss of generality in connection with the assumptions of section 2.3.4. 

(N.3) C, = {x !'g(x) ~ 0, X~ O}c = {x !g(x) ~ 0, X~ 0} 

(the "constraint set"). 

(N.4) fis a real-valued function on X+ (the "maximand"). 

(N.S) O,, = {x' lx' E C, and f(x) & f(x') for all x E C,} 

(the "optimal set"). 

64



SADDLE-POThTT PROBLEMS 

(N.6) x = {x<1l, x<2lj where 

fi/C'l = the set of indices of the components of x<•J, i = 1, 2 

n E JVC1l if n (f /1/' or n E N' and x,. > 0 

n E JVCZ) if n E /1/' and x,. = 0 

for a given x E 01o and either component may be empty. 
N ole 1. When a vector a is partitioned into two subvectors, say 

a= {a*, a**l 
and we say that a* (or a**) is empty, this means that a = a** (or a = a*). 

5 

Note 2. The above partitioning of the vector x obviously depends on the point x in 
010 chosen. The same is true of the partitioning in (N.7) below and of various subsequent 
parlilionings of x and g. It is understood that all these partitionings refer to the same 
choice of x, and that x, once chosen, remains fixed. 

(N.7) 

where 
gtll (x) = o. gt2I (x) > o 

and either component may be empty. 

(N.S) h(x) = 1 - g(x) 

where 1 denotes the M-dimensional vector with l's as components; h!il = 1 - glil, 
i = 1, 2. 

(N.9) ~mPm(x) = 1 - [hm(x))l+~m, m E Af, 

(N.10) 71 = {711, 'r/2, · '·, 1/MJ • 

(N.ll) ~P(x) = { 1/lPI(x), 1/zPz(x), · · · , 1/PM(x) l · 
(N.12) .¢(x, y) = f(x) + y'[71p(x)] (the "modified Lagrangian expression") . 

2.3.1. A reformulation of Kuhn-Tucker theorem 1. This slight generalization of theo
rem 1 (see [1], p. 484) is needed here because of the meaning of inequalities given in 
(N.l.4). [The possibility of this type of generalization is indicated in [1] (see pp. 491-
492).]4 

We shall say that g satisfies the Constraint Qualification (C.Q.) at x, if the require
ments of the definition in (A) of section 1.2 are satisfied with the inequalities (4), (5) in 
the same section interpreted in the sense of (N.1.4). cf>(x, y) is given by (1) in 1.1. (It is 
immaterial whether g or 'g is used.) 

THEOREM. Iff and g are dijferentiable, x E 01o and g satisfy C.Q. at x, then there exists 
a y E Y such that 

5' ~ 0; ¢11 ·5' = 0; CiJv·Y ~ 0 for all y ~ 0 ; 

x ~ 0; Ci).·x = 0; i[J.·x ~ 0 for all x ~ 0 . 

[Note that, by virtue of the definitions in 2.2.2, this means that CiJum ~ 0 if m E N', 
CiJYm = 0 if m (f M', Ci).,. ~ 0 if n E N', Ci).,. = 0 if n (f ;V'. The other inequalities of 
the theorem are also to be interpreted in the sense of (N.1.4).] 

'See also Hurwicz [9], pp. VIII - 2-6. 
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2.3.2. Theorem 1. 
DEFINITION. 6 An M -dimensional 'Vector 11 :;z f 111, 112, • • • , 11M} is said to be acceptable 

if, for each m E M, (1) 1Im !?; O, and (2) "'"'is an even integer if h,.(x) < -1. 
THEOREM 1. If, for some p > 0, X E S,(x), X E o,p, f and g are dijferentiable, and g 

satisfies C.Q. at x, then, for any acceptable 71, there exists a vector y = y(71) such that 

(13) .,¢,.•x & 0 for all x!?; 0; 

( 14) 

( 15) 

(16) 

( 17) 

(18) 

.,'¢,.·x = o; 
x;?;O; 

.,¢u•'J !?; 0 for all y !?; 0 ; 

.,'¢u•Y = 0 i 

y!?:;O. 

The bar over q, denotes evaluation at x = x, y = y(11). 
Note that the relations (13)-(18) are necessary conditions for a nonnegative, in the 

sense of (N.1.4), saddle-point of .,q,(x, y) at (x, y). In particular, the relations (13)-(18) 
are satisfied if one selects y = y(11) such1 that6 

( 19) (l + 'llm);Ym('ll) ==: y,(O) for all m EM. 
If the selection is made in accordance with (19), the equality 

(20) 

will hold. Here or/>(.x, y) is .,q,(.x, y) with 11 = 0; this is obviously the same as q,(x, y) in (1) 
of 1.1. 

PROOF. For 11 = 0, the preceding theorem follows directly from the reformulated ver
sion of the Kuhn-Tucker theorem 1 given in 2.3.1. Thus there exists a vector 

(21) y(O) = {;5il(O), ;5i2(0), ..• 'YM(O) l 
with the required properties. 

Consider now the case 11 ~ 0. We shall show that 5'(71) defined by (19), that is, explicit
ly, by 

(22) 
. 1 

y,. {'II),= 1-1-'llm Ym (0)' 

[where y,(O) is that of (21)], ~atisfies the relations (13)-(20). 
We first observe that (22) yields 

(23) (1 + '~~••):5',(71)[/t.,(x)l""' = y,(O), m EM. 
[When h ... (x) = 1, (23) follows directly from (22). When h.,(x) ;<! 1, we have o'Ci>um = 
g,.(x) > 0, and hence, by (16)-(18), y,(O) = 0; (22) then yields y • .('rr) = 0 and (23) fol
lows.] 

Since 

(24) nEJI, 

'In many applied problems, h,(;,.) ~ 0 for all m and all ;,. ~ 0. It was pointed out by Dr. Masao Fu
kuoka that, in the absence of such an assumption, the requirement of nonnegativity of the components of 
fJ is insufficient for the proof of the theorem. 

1 jj,.(O) = ii in Kuhn-Tucker theorem 1 (see 2.'3.1). 
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formula (23) implies 

(2 5) n E IV. 

Noting that the right member of (25) is identical with o"¢zn~ we conclude that there
lations (l3)-(15) hold for all ?7 with nonnegative components, since they are known to 
hold for 7J = 0. 

Relation (16) is established by the fact that the right member of 

(26) .¢u,. = ~p,.(x) = 'il- (h,(x)]H•m, m E 1.1, 

is nonnegative form E 14', zero form (f /4' when 7J is acceptable (see the definition 
above) since, for any m E ./yf, h,.(x) ;;;; 1, and, furthermore, .¢um = 0 if m (f /J1', in 
which case hm(x) = 1. ' 

Now suppose that, for some mo E /W, ~¢umo > 0, that is, h,.,(x) < 1; then, by (16)
(18) for 7J = 0, y,.,(O) = 0; hence :Ym,(TJ) = P, and, therefore, 

(2 7) 

Since (27) clearly holds in the alternativ,e case.¢ .. , = 0, (17) follows. 
Finally, (18) holds because :Ym(TJ) has the same sign as :Ym(O) and the latter, by (18) 

for 7J = 0, is nonnegative if m E M'. 
2.3.3. THEoREM 2. Let,jor some p > 0, x E Sp(x), x E 01e, such that (13)-(20) are satis

fied. Then 

(28) ~rt>(x, y) ;;;; ~rt>(x, J) for aU y;;;;; 0. 

For we have 

(29) ~rt>(x, y)- .rt>(x, y) = (y- :YhP = y·.P;;;;; 0 for y;;;;; 0 

where, since 

(30) 

the second equality follows from (17) and the inequality from (16). 
2.3.4. Notation. 

(N.13) x<2l = { x(21)' x<22l l 
where 

o"$:(") = 0 , o"$:(n) < 0 

and either component may· be empty. 

(N.14) x = {xr, xii} 

where 

(N.14.1) 
xr = { x(l)' x(21) l 

(Either xr or xrr may be empty.) 
It should be noted that, by (13)-(15) and (N.13), 

(N.l4.2) 
o"$:~=0, 
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2.3.5. Definition of a regular 'onstrained maximum. In theorem 3 below we use the con
cept of a regular constrained maximum. The definition of such a maximum is given in 
the last part of this section. To state it, we must first formulate three regularity condi
tions denoted by Rt, R2, Ra. 

The first regularity 'ondition R1• Let x be~ value maximizing the function f(x) subject 
to 'g(x) ~ 0, x ~ 0, and hence also subject 'to 

g(x) ~ 0 
(31) 

x~O 

where the inequalities are to be interpreted in the sense of (N.1.4). 
From (N.6) and (N.7) it is clear that, for sufficiently small variations of x, the con

straints 
gt2l(x) ~ 0 

(3 2) 
x< 1> ~ 0, 

which are a part of (31), can be disregarded. Hence, at x,f(x) possesses a lo,al maximum 
subject to 

(33) 
g[ll(x) ~ 0, 

x(2)~0. 

Let gt be a subvector of gt1l such that Cg = C1pt,11 l•l 1 and write 

(34) g!ll = {gt, gtt) 

The components of gtt can be disregarded in the 'process of maximization, that is, 
01,p = 0/,!tt.rl•lJ. If the Lagrangian multiplier vector ylll (corresponding to the con
straints gt1l (x) ;::;; 0) is partitioned according to 

(35) ylll = {yt, ytq 

it is always possible to put 

(36) ytt = 0' 

and this will be done in what follows. 
Assuming that the constraints (33) are consistent, we may replace them by 

gl(x) ""'0 
(3 7) 

x(2l;::;; 0. 
The first regularity condition is 

(R1) rank We•>) = dim gt = Mt , 

say. 
Note 1. R 1 corresponds to the requirement of nondegeneracy in linear programming 

(see [4], p. 34.0). 
Note 2. Rt implies C.Q. (see appendix I). 
The second regularity condition R 1• Since, by (N.7), (N.6), (N.14.1), and (34), 

(38) 
gt(x) = o 

x11 =0, 
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it follows that, as a function of xi, j(xi, xTT) = j(xi, 0) has at xi a local maximum subject 
to the constraints 

(39) 
x(21J ~ 0. 

T~e corresponding Lagrangian expression becomes 

(40) orJl(xi, yt) = j(xr, O) + yt. gt(xr, O) • 

Using the reformulation of Kuhn-Tucker theorem 1, given in 2.3.1, we may assert the 
existence of a yt such that · 

( 41) 

( 42) 

xi !;;; 0; o¢~ = 0 ; 

yt ~ 0; o?J~t = 0. 

It might happen that some components of yt vanish. Write yt = {y*, y0J where 
every component of y* is different from zero and 

( 43) yO= 0. 

Let gt be correspondingly partitioned as 

( 44) gt =· {g*, gO} • 

Now suppose that 0cpi(x1 , yt) has a nonnegative saddle-point at (xi, yt). By theorem 3 in 
Kuhn-Tucker, a sufficient condition for this is thatjand g be both concave. One can then 
easily verify that 

( 45) 

has a nonnegative saddle-point at (xi, y*). 
But then xr maximizes j(x1 , 0) subject to g*(x1 , 0) !;;; 0 and x(21l ~ 0. Hence in this 

case the components of g0 could have been disregarded in the original maximation prob
lem (OJ,a = OJ,!c'.ci•J J). 

However, complications might arise if 0rj>I(xi, yt) did not have a nonnegative saddle
point at (xi, yt). To take care of this case, 'one might require that 

( 46) g0 is empty unless 0rj>I(xi, yt) has a local nonnegative saddle-point at (xr, yt) • 

However, to simplify matters we shall impose the seemingly7 stronger condition 

( 4 7) 

It follows that 

( 48) 

g0 is empty. 

M* = dim g* = dim gt = Mt . 

Let M* [= .kft by (47)] denote the set of indices of g*. Clearly, formE M* n 
(M;..., M'), we may have ji,. < 0. 

Now suppose the preceding reasoning had been carried out in terms of 'g instead of g. 
Nothing would he changed, except, possibly, the signs of some components of the La· 
grnngian multiplier, to be denoted by 'Y·. ' 

That is, we would have 'Yn• > 0 for tn E Atr n M' and 'y,. > 0 or 'y,. < 0 for 

T Sec section 2.3.7. 
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m E M* n W"' .Af'). Let .Af· be defined by the relation m E .Af· if and only 
if m E AI* n (M"' AI') and 'y,. < 0. Then, it is clear from (N.2.2) that we may put 

ji,., = 'y ... for m E AI"' Jvf· 
(49) 

;; ... = -'y ... for m E A.f·, 

so that Ym > 0 for all m E AI*· 
Hence, without loss of generality [as compared with (47)] condition (47) may be re

stated as the second regularity condition, 

g0 is empty and 

Ym > 0 f.or all M E M*. 

The first regularity condition then implies 

(SO) rank (g:<•l) = M* 

where 

(51) M* =dim g*. 

The third regularity condition R8• When the first two regularity conditions are satis
fied, second derivatives are continuous, and x1 is nonempty, it is possible to show (see 
appendix II) that a certain quadratic form is nonpositive when some of the variables 
are restricted in sign. The third regularity condition is a strengthening of (71) requiring 
that the quadratic form in question be negative under the same restrictions. This con
dition, analogous to that used by Samuelson (see [5], p. 358) makes it possible to avoid 
going beyond second order terms in the expansions used. 

The third regularity condition is form~lated in terms of a function q(l) of a new vari
able vector 

(52) t = {t*, t**} 

which is obtained by a transformation of coordinates from x1 after the latter has been 
partitioned so that 

(53) x1 = {x*, x**} , 

where x* is a subvector of x<1l, 

We shall (a) defme x* and x*"'; (b) write down the transformation defn1ing { 1*, t*"'} 
in terms of {x"', x*."'l; (c) define q(t); and (d) formulate the third regularity coildilion. 

In the remainder of this section it is assumed that R1 holds; it is also assumed that x1 

is not empty. 
First case: M* = 0. Write 

(54) t = t** = x"'* = x1 , 

so that, by (52) and (53), x* and t* arc empty, and define 

(5 S) q(t) = j(x', x11) = j(t**, O) . 

The third regularity condition for this case is formulated in Rs below. 
Second case: M* > 0. (a) Tlze defit,itiot' ofx*. From R1 it follows that there exists a 

(nonempty) M*-dimensional subvector x* of xr1> such that 

(56) g:. is an M*by M* (M*;?; 1) nonsingular matri]C. 
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We then define x** by (53) and x< 12l by 

(57) 

Clearly 

(58) 

x<IJ = { x*, x(I2J l 

x** = '{ x(I2)' x(2IJ} 

(b) The transformation from xi to t. Let 

(59) It* = 1 - g* 

II 

where 1 is the M*-dimensional vector with (scalar) 1's as components. t = { t*, t**} is 
then defined by the transformation 

(60) 

( 61) 

We also partition t** by 

(6 2) 

where 

(63) 

t* = !t*(x*, x**, xii) 

t** = x** 

t* * ,;. { t(l2)' t(21) l 

t(I2) = x(I2J , 

tC21J = x(2IJ 

This is obviously consistent wilh (57) and (61). 
(c) The definition of q(t). By (59), the Jacobian II of the transformation (58)-(59) is 

(64) H = c%~ ~%:.) = _ (~~: _ ;::.) 

so that, by (56), 

(65) 

thal is, 

(66) 

ill ! = ~ I - it:• I ~ o , 

.ll is nonsingular • 

Hence, locally, (60)-(61) can be solved for x1 in terms of t,- we may write this solu
tion as 

(6 7}' xi= r(t) 

where 

(68) r = {r*, r**} 

and 

(69) x* = r*(t), x** = r**(t) = t**. 

The function q(l) is now defined as f(x) evaluated at xii = xi I and with x1 expressed 
in terms oft, that is, · 

(7 0) q(t) = f[r(f), Xtl] E f[r"'(t"', /**), /**, 0], 

The statement of the third regularity conditio1t. We have now defined q(t) for all M* pro
vided the first regularity condition R 1 ·is satisfied and xl is nonempty. It is shown in ap-
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pendix ll that, assuming R1, R2, and the continuity of the second derivatives, unless x** 
is empty, there exists p > 0 such that, for all t**· E Sp(x**), 

(71) (t**- x**)' qe••i•• (t**- x**) ~ o, if t<21> E:::; o. 
The third regularity condition is a strengthening of the preceding inequality. It states 

that 
(R3) (a) x** is.empty or 

(b) there exists p > 0 such that, for all t** E Sp(x**), (t** - x**)' q, .. , .. (t** -
x**) < 0 if t< 21) E:::; 0 and t** ;;<E x**. 

Note. The situation covered by (a) of Rp is of importance since it permits the treat
ment of a large class of cases where f and g are linear. 

DEFINITION. f(x) is said. to have a regular maximum at x subject to g(x) E:::; 0, x E:::; 0, if 
the three regularity conditions R1, Rs, R3 are satisfied at x and x E 0 Ia· ' 

2.3.6. THEOREM 3. If, for some p > 0, x ,E Sp(x), x a regular maximum8 of f(x) subject 
to g(x) E:::; 0 and x E:::; O,f and g are dijferentiable (with regard to x), and furthermore, when 
,xi is nonempty, have continuotts second order derivatives with regard to xr, then, for aU 
acceptable9 17 sufficiently large in each component, 

(7 2) xi is empty, 

or 

(7 3) ~xr- x')'1'¢:o~:o~(x'- x') < o if x<21> E:::; o, xi ;;<E x', 
and for some p' > 0, and all x E Sp;(x) such that x E:::; 0, x r'f x, 
(7 4) 1 f/>[x, :Y(,)J <::: 1f/>[x, :Y(,)J 

where 1 4> and :Y(~) are defined as in theorem 1. 
Note. 10 Theorem 3 is valid for f, g linear if x** is empty (regardless of whether x* is 

empty), provided the first two regularity conditions hold. However, if both x"' and x"'* 
are empty, x' is empty, and the theorem follows from the first case considered below. If 
x** is empty while x* is nonempty, use the first two cases below together with (90) 
(since g"' is nonempty and t"'* is empty). Note that x"'* is empty at the basic solutions 
of a linear programming problem. 

2.3.7. Proof of theorem 3. First it is shown that (72) or (73) implies (74). Then it is 
shown that (72) or (73) is true. · . 

It can be seen that if theorem 3 is established for the case of {gtt, g0 j empty, then 
theorem 3 is also true if (i) glt is not empty, and/or (ii) g0 is not empty but 0rfl(x', yt) 
hns a nonnc~nt ive saddle-point at (:iY, yt), since in eit.her cnse :v remains unclumged and 
the additional terms in the modified Lagmi1gian expression vanish at :Y [compare equa
tions (36) and (43)]. 

Hence, with no loss of generality, we may henceforth assume {gtt, g0 j to be empty, 
that is, 

(75) gill= g*. 

We now show that (72) or (73) implies (74), that is, that in a sufficiently small neigh
borhood, if (72) or (73) is assumed to be valid and the inequalities X E:::; 0, X ;¢ x, hold, 

s The term "regular maximum" is defined at the end of section 2.3.5. 
9 The term "acceptable" is defined at the beginning of section 2.3.2. 
10 The desirability of explicit treatment of the linear case was emphasized by Dr. Masao Fukuoka. 

72



SADDLE-POINT PROBLEMS I3 

the conclusion of (74) follows. We write cJ> instead of ~cJ> throughout. Also (72) or (73), 
x ;:=::; 0, x ;<' x, is assumed. 

Let 

(7 6) 

(77) 

First case: ~II ;<' 0. By (20) and (N.14.2), 

(7 8) 

i =I, II. 

But then the conclusion of (74) follows r'i:om the well-known "Frechet" property of 
differentials11 which, as applied to the present caae, states that, given any u > 0, there 
exists an f > 0 such that, · 

(79) 

if I~ I < f. 
Choose 

(80) 

which is positive by (78). Then, for a sufficiently small I~ j, we have by (79) 

~81) Jffir<t>Cx,y) -<t>(x,y)+ulJ <cr 
which implies 

(82) 
1 ffi[cp(x, y) -cp(x, y)] <O 

and hence the conclusion of (74). 
If xi is empty, this completes the proof of the theorem 3, since x ? x then implies 

~II;<' 0. If xi is not empty, we must consicler the 
Second case: FI = 0. Since it is assumed that X ? x, FI = 0 implies 

(83) 

In virtue of the existence of the second derivatives of cp with regard to x1 (by definition 
of cp, and the assumptions concerning the second derivatives off and g with regard to xi) 
we have, by Taylor's theorem,. 

(84) cp(x, y) - cp(x, y) = "if;,r·.~I + HF)'~,r,rF, 
where cp,rzr denotes c/>:rJzr evaluated at x = x, x = x + 01;, 0 < 0 < 1. It now· suffices 
to note that W)' cp,r,r~1 is negative at x [since (72) or (73) is assumed to hold and its hy
potheses are satisfied] and contin1..1ous in the neighborhood of x (by the hypotheses of the 
theorem concerning the second derivatives of j and g), so that, for a sufficiently small 
. jl;I I, WYif>zr,rF < 0. Since "if;,r·~I = 0 by (N.14.2), (74) follows. 

We now show that (72) holds if xi is nonempty. 
First case: g* empty. By equation (75), ghl is also empty. Hence, by (13)-(15) in theo-

rem 1, · -

(85) y(q) = yl2l(O)= 0 

uSee Hille [10}, p. 72, definition 4 . .3.4; equation (iii). 
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14 THIRD BERKELEY SYMPOSiuM: ARROW AND HURWICZ 

and, using (N.12), 

(86) ~tJ>[x, y(7J)] = f(x) • 

Since g* is empty, we have M* = O, and, therefore, the definition (SS).of q applies, 
so that (smce x* is empty but x1 is not) t** is not empty and · 

(8 7) 

Equations (86) and (87), together with the third regularity condition R 3, yield (73) for 
·a sufficiently small neighborhood of x. 

Second case: g* nonempty. Write 

(88) Y,(t, y) = tJ>[r(t), xu, y] 

where r(t) is defined in (67). (Where it is desir_ed to indicate the dependence of Y, on 1], 

we may write .!f instead of Y,.) 
Then, by (66), that is, R 1, we have 

(89) 1/itt = !ful~o-i = (ii-1)'.¢z~.,rH-t, l = {h*(x), x**}, 

since .¢z~ = o'¢zi = 0 by (20) and (N.14.2). 
We shall now show that (73) is implied by 

(90) T1?ittT < 0, if T(Zl) ~ 0, and T ;;.£ 0 

where the partitioning ofT corresponds to that oft. We show later that (90) holds. 
To see that (90) implies (73), let xr satisfy the inequalities x<21> ~ 0, xi;;.£ xi, Choose 

(91) h*) ( x*-x*) 
I.,.. x**- x** · 

; 

Since, by (66), I1 is nonsingular, x' ;;.£ xi implies T ;;.£ 0. Also, (91) yields 

(9 2) _T** = X** - X** , 

hence, in particular, 

(93) T(2tJ ·= x<2tJ _ x<2t~. 

But 

(94) x<21J = o' 
since x<21l is a component of x<!J by (N.13), and x<2> = 0 by (N.6). Hence 

(95) 

and thus x<21l ~ 0 implies T<21l ~ 0. 
Having shown that the hypotheses of (73) imply those of (90), we sec that the 

hypotheses of (73), together with the validity of the assertion in (90), yield 

(96) 

But, using in succession (91), _(89), and sunplifying, we have 

(97) T'Y,uT = (xi- W)'H'1fi,tl(xi- xi) 

= (xi- xi)'fi'(H-1)'.tJ>.,r.,rl1-1ii(xr- xi) 

= (xi- xi)'.¢.,r.,r(x1 - xi). 
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Formulas (96) and (97) yield the conclusion of (73). Thus it has been established 

that (90) implies (73). It remains to be shown that (90) is valid. It is convenient to write 
If 11 in the partitioned form 

(98) ~) 
where t** may be empty; t* is assumed nonempty, since the case of t* empty was 
treated earlier. 

It will now be shown that A, that is, \ft•t• [compare (98)], which depends on 1], can 
be made negative definite by a suitable choice of 'II· 

Recalling that .Af* denotes the set of indices of the components of g*, and using 
(N.9) and (60), we see that, form E M*, 

(99) 

where t,. is a component of t*. 
Since, by theorem 1 and equation (75), 

(100) :Ym('l/) = 0 for 'Itt E Af"-' .Af*, 

we have, from the definitions of 'ljl, q, and ~¢,[equations (88), (70), and (N.12), respective
ly], and the preceding relations (99) and (100), the equality 

( 10 1) 

Writing 

(102) 

tf [t, Y ('I/)]= q (t) + L [:Ym (7])](1- t!;~m), 
mEM• 

F = iit*t*, 

we have, from (101) and the definition of A that 

(103) A=.F-D, 

where D = [[dm,m' [[, m E ;}f*, m' E ;1if*, is a diagonal matrix [that is, dm,m' = 0 
form~ m'] with 

( 104) mEM*, 

where the second equality follows from (19). 
Let >. denote the largest characteristic root of F. Since, by the second regularity con

dition R2, :Ym(O) > 0 if m E M*, we may choose 7)~, for each m EM*, to be a positive 
even integer satisfying 

(105) 

so that 

( 106) 

for all acceptable 17m ~ 'II~ • 

7)~ > :h/ym(O) , 

min dm,m > h 
mEM* 

Then, for any t*'~ 0, and each acceptable 7Jm ~ 17~, we have 

(107) t*'Ft*:::;; >.t*'t* =:i>."" t2 <'"" d t2 - ."'--' m £...J m.tm m 
mEM• mEM• 

=t*'Dt*, 
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16 THIRD BERKELEY SYMPOSIUM: AJ.UWW AND HURWICZ 

that is, t* ~ 0 implies t*'(F - 'D)t* < 0 for all sufficiently large acceptable 71, or A is 
negative definite for all sufficiently large acceptable 'II· 

This suffices to establish (90) and, therefore, (73) if t** is empty. 
Now assume t** not empty. Write 

( I - A
1

-1J3) 
(108) P= O 

and 

( 109) ~n = P'~i/iuP. 
Then methods used to show that (90) implies (73) can be used to show that 

( 11 0) w'~nw < 0 for w. ~ 0, w<21> $;; 0 

implies (90). This is because 

(111) 

and, like its analogue fi, performs an identity transformation on t**, so that the condi
tion t<21l $;; 0 is transformed into the condition w<21l $;; 0. It remains to establish (110). 
Now from (109), (108), and (98), we have 

(112) ~n= (
A 0 ) 
0 C-B' A-1B ' 

so that w;nw = w*' Aw* + w**' (C- B' A-1B)w**. 
Now, we may take A as negative definite, and hence, to establish (110), it will suffice 

to show that 

( 113) Q = w**'(C- B' A-1B)w** < 0, if w** ~ 0, w<21> $;; 0. 

Before doing so, we shall obtain an auxiliary result. 
It will now be shown that the norm of A-1 can be made arbitrarily small by choosing 

1J sufficiently large. It does not matter which of the many norms is used (see Bowker [6]). 
Note that, denoting by N(X) the norm of the matrix X, we have N(A +B) ~ N(A) + 
N(B), N(AB) ~ N(A)N(B); if all the elements of a matrix approach 0, so does its norm. 
If I denotes the identity matrix, N(I) = 1. 

I.T1 is a diagonal matrix whose nonzero elements approach zero for 1J large; hence, the 
same is true of Ir1F. Therefore, 1J can be chosen sufficiently large so that, 

. ( 114) 

and 

( 115) 

I- Ir1F is nonsingular, 

N(Ir1F) < 1. 

Following Waugh (seep. 148, [7]), we use the identity, valid because of (114), 

(116) (I- I.T1F)-1 =I+ (I- Ir1F)-1J.rlF, 

and the properties of the norm to derive the relation, 

(117) 

From (117) and (115), it follows that, 

( 118) N [ ( D-1 F- I) -t] :-;;_ - 1;-;:::,-7=-" 
1- N(D 1F). 
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Since A = F- D = D(D-1F- I), it follows that A-1 '"" (D-1F- I)-1D-1, and hence 

(119) N (A-1);:::;; N (D-1) N [ (D- 1F- I)-1) ;:;;3 l _N ~f;1)1F) 
which can be made arbitrarily small for 'Y/ large. 

Consider now the quadratic form Q in (113). We have shown, using (101), that 

( 120) c = ifi, •• , •• = q, •• , ••. 

Hence the third regularity condition, R3, implies 

( 121) w**'Cw** < 0 if w** ~ 0, wC21l ;;;; 0. 

As shown earlier N(B' A-1B) ;:;;3 N(B')N(A-1)N(B) = N(A-1)[N(B))2 can be made 
arbitrarily small by choosing a large enough 71· Now 

( 12 2) lw**'B' A-1Bw** I ;:;;3 N(B' A-1B)w**'w**, 

since the characteristic roots of a matrix are bounded in absolute value by its norm. 
Also, denoting by J.l. the maximum of w**'Cw** subject to w**'w** = 1, wC21l ;;;; 0, 

we have 

( 123) w**'Cw** ;:::;; J.I.W**'w** 

and, by (121), J.1. < 0. With the aid of (122), 

( 124) Q < [J.I. + N(B' A-1B)]w**'w** if w** ~ 0, wC21l ;;;; 0. 

By choosing TJ sufficiently large, so that 

(125) J.l. + N(B'A-tB) < 0, 

we establish (113), which, in turn, yields (110), (90), (73), and hence theorem 3. 

APPENDIX P 2 

Let the first regularity condition R1 hold. Consider x. such that, 

(126) glll(x) = o, gf2l(x) > o, x!:::;; o, 
and x such that, 

( 12 7) 

where all inequalities are to be interpreted in the sense of (N.1.4). Define now the 
function gl of x by 

(128) g'(x) = {gt(x), x**, xii} 

where x** is defined by (58). Notice that assuming g0 to be empty as in (47), g', like x, 
has N dimensions. 

It follows that 

c gJ •• t') (129) gt= ~ I 

0 
and hence 

(130) ikt I = lkl•l ~ o . 
11 This nppcndbt parallels lemma. 76.1 in DliBB [11). 
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18 THIRD BERKELEY SYMPOSIUM: ARROW AND HURWICZ 

Consider now the relation which associates with a real number a the values x of x for 
which the equation 

(131) gl(x) = g#(x) + ag~(x - x) 

is satisfied. In virtue of the implicit functio:n theorem, for sufficiently small values of 
a(131) defines x as a (single-valued) differentiable function of a, say 

(132) x = !f.'t(a), 

such that 

(133) 

Differentiating (131) with respect to a and setting a = 0, we have . 

(134) g~.f,-~(0) = g~(x- x) 

and hence, because of (130), 

( 135) 

We shall now show that 

.f,-~(0) =X- X. 

( 13 6) !f,-1(a) E C, for a !?; 0, a sufficiently small. 

By (131), (126), and (127) 

( 13 7) gt(x) = ag!(x - x) !?; 0 for a !?; 0 . 

It follows that 

( 138) 

which together with 

(139) 

yields 

(140) 

gl1l (x) !?; o for a !?; o , 

g12l [.f,-1( a)] !?; 0 for a ·sufficiently small_, 

g[!f.'t(a)] !?; 0 for a !?; 0 sufficiently small • 

Now, since x* is a subvector of x11l, x<2l is a subvector of.{x**, x11}, hence (127) and 
(131) imply 

( 141) x<2l = !f.'f2' (a) = x<2l + a(x(2) - x12l) !?; 0 for It !?; 0 

which, together with 

( 14 2) x11l = !f.'f1' (a) !?; 0 for a sufficiently small, yields 

(143) !f.'t(a) !?; 0 for a !?; 0, a sufficiently small . 

In tum, (140) and (143) yield (136). 
Now let us interpret "a sufficiently smaW' as 0 ~ a ~ X where X > 0 and define 

the function if; by 

(144) !f,-(fJ) = !f.'t(M) for all 0 ~ 6 ~ 1. 

Then 

( 145) 

.f,-(0) =X I 

.f,-'(0) = Xif;~(O) = >.(x -x) , 

>/;(6) E C, I 

}. > 0' 

0~6~1. 

Since (145) are precisely the requirements of C.Q., it has been shown that R1 implies C.Q. 
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APPENDIX II 

\Ve shall now show that, if the first two regularity conditions hold and if in a neigh
borhood of x, f and g are assumed to possess continuous derivatives of second order with 
regard to xr, then (71) is valid. 

Let x** be nonempty. Then, writing 

( 146) 

( 14 7) 

we have, using Taylor's theorem, 

t* = h*(x) = 1 

t** = x**, 

(a vector of l's) , 

( 14 8) q(l*, t**) - q(l*, l**) = fj t**' (t** - f**) + !(t** - t**)'ift**t••(t** - l**) I 

where"-" over a symbol denotes the evaluation at t = l, while"-" over a symbol denotes 
evaluation at t = 'i, where 7 = t + e (t**- l**), 0 < e < 1. Now suppose it has been 
shown that (a) q(l*, t**) has, as a functioll' oft**, subject to the constraint tC 21l ~ 0, a 
local maximum at t** = l**, and (b) q, •• = 0. From (a) it follows that, in a sufficiently 
small neighborhood, the left member of (148) is nonpositive if tC21 l ~ 0. But then, using 
(b), we see that the quadratic form in the right member of (148) is nonpositive. Since, by 
hypothesis, q, •• , •• is a continuous function of t**, we have, for t< 21l ~ 0, and in a suffi
ciently small neighborhood of t, 

(149) (t**- l**)q_, •• , •• (t** - t**) ~ 0 

which is the desired result (71). Hence it remains to prove (a) and (b). 
(a) q(l*, t**) has, as a function oft**, subject to t<21> ~ 0, a local maximum at t** = l**. 
It follows from the remarks at the beginning of the discussion of the second regularity 

conditionthatf(x1,0), as a function of x1 , has a local maximum at xi= xr, subject to the 
constraints 

(150) gt(xi, 0) = 0, xC21l ~ 0 . 

Hence, subject to the same constraints, q(t) has a local maximum at l. Now we must 
distinguish the two ways in which the "mil?-er" (46) second regularity condition R2 may 
be satisfied. 

First way: 0cJ>1(x1, yt) has a nonnegative saddle-point at (xi, yt), that is, locally, since 
j 0 = 0 by (43), 

(151) f(xr, 0) + y*·g*(xr, O) &.f(Xl, 0) + y*·g*(XI, O) 

for all xi such that xC21l ~ 0. 
But g*(il, 0) = 0 because of (150), and g*(x1 , 0) in the left member of (151) vanishes 

fort* = l*. Hence (151) yields, locally and for tC21> ~ 0, 

( 15 2) j[r*(l*, t**), t**, 0] &. f[r*(l*, l**), l**, 0] 

which means precisely that q(l*, t**) has a local maximum at l** subject only to t<21> ~ 0. 
Second way: g0 is empty. In this case (150) is equivalent to 

(153) g*(xr, 0) = 0, 

( 15 4) x(21) ~ 0. 

But (153) is necessarily satisfied if t* '7' l* and hence can be disregarded. Since q(t) 
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20 THIRD BERKELEY SYMPOSIUM: ARROW AND HURWICZ 

was seen to have a local maximum at l subject to (150), it follows that q(l*, t**) will have 
a local maximum at l** subject only to t<21> ~. 0. 

(b) 

We have 

(155) 

q, •• = 0. 

q, •• =]: •• ;~ •• +]!II·· 
We now evaluate the three expressions on the right-hand side of (155). We start with 
r"f ... Noting that 

(156) f*{[r*(l*, t**), t**], 0} = 0 for all t**, 

we obtain by differentiation with respect to t**, using (60) and (69), and evaluating 
at t = l, 
( 157) 

in virtue of R1 this can be solved yieldi~g 

(158) . . ;"f .. = ;_ (g!·)-lg: ... 
. f 

To find],.., J;.,., we write the conditio~ that o(i>1,.~ = 0, using equation (41) in the form 

( 159) 
J + -* -*- 0 ,.. :g,...y - ' 

; 

The terms involving g0 vanish, of course'. 
Substituting (159) and (158) into (15~), we have 

(160) q, .. =. (-y*·g! .. ) + (-y*·g!·)[-(g!·)-1g!..;J = (-y*·g! .. ) + {y*·g! .. ) = 0. 

This completes the proof of (71). · 
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CONSTRAINT QUALIFICATIONS IN MAXIMIZATION PROBLEMs*t 

Kenneth J. Arrow, Leonid Hurwicz, and Hirofumi Uzawa 

Many problems arising in logistics and in the application of mathematics 
to industrial planning are in the form of constrained maximizations with 
nonlinear maxirnands or constraint functions or both. Thus a depot 
facing random demands for several items may wish to place orders for 
each in such a way as to maximize the expected number of deman\is 
which are fulfilled; the total of orders placed is limited by a b11dget 
constraint. In this case, lhe ma.ximand is certainly nonlinear. The 
constraint would also be nonlinear if, for example, the marginal cost of 
storage of the goods were increasing. Practical methods for solving 
such problems in nonlinear progra:inming almost invariably depends on 
some use of Lagrange multipliers, either by direct solution of the 
resulting system o_f equations or by a gradient method of successive 
approximations (see [5], Part II). This article discusses a part of the 
sufficient conditions for the validity of the multiplier method. 

INTRODUCTION 

This article covers an examination of the_ interrelationships of the additional assump
tions under which the following two propositions, both extensions of the classical Lagrange 

multiplier method ([1], p. 153), are valid. 

Quasi-Saddle-Point Condition 
If x maximizes f(x),. subject to the constraints g (x) 1:: 0, and f (x) and g (x) are dif

ferentiable, then there exists y 1:: 0, such that Ix + y gx = 0, y g (x) = 0. 1 

*Manuscript received January 28, 1959. 
t This work was supported in part" by the Office of Naval Research (Task NR-047 -004) at Stanford 

University. Hurwicz's participation was made possible by a Rockefeller Foundation grant to 
Stanford for mathematiCaJ. ·reSearch in the social sciences. 

lx is a column vector with components XI, ... , xn, y a row vector with m components, .f(x) 
is a real-valued function of x, g (x) a column vector with real-valued components gJ (x), 
(j = 1, ... , m), fx a row vector with components fxi =Of/a xi, gx a matrix with components 

g~. = a gjfa xi' where i varies over colUinns and j over rows. Bars over f and g or their 

de~ivatives denote evaluation at X. If v is a vector, v ~ 0 means that each component of v is 
nonnegative; v > 0 means that each component is positive. 

A function f(x) of a vector variable is said to be differentiable at X, if there is a row 
vector a such that 

lim [f ( x + h) - f ( x) - ah]/1 hI o . 
h-+0 

(Continued) 
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Saddle- Point Criterion 

If f (x) and g (x) are concave, then a necessary and sufficient condition that x maximize 

f(x), subject to the constraints, g(x) ~ 0 is that there exist a y ~ 0, such that (x, y) is a 

saddle-point subject to y ;;; 0, of the Lagrangian function f (x) + y g (x). 

It is !mown that neither proposition is valid without additional assumptions. 2 Kuhn and 

Tucker [11] showed that both propositions are valid if f and g are differentiable and the fol

lowing condition is satisfied. 

Constraint Qualification K T3 

For all x in the constraint set C (defined by the conditions g (x) ~ 0) and all x such 

that g~ · (x- x);;; 0 for each component~ of g(x) for which gk(x) = 0, there exists a dif
ferentiable vector-valued function 1/1 (e) such that 1/1 (O) = x, 1/1 (e) belongs to C for all positive 

e sufficiently small, and 1/1' (O) = x - x. 

Also in this article, further results on the subject are discussed and simplified proofs 

are given. First, Constraint Qualification K T are slightly weakened so that the meaning of 

the qUalification becomes more transparent. Theorem 1 shows that the Lagrangian method can 

be applied to those constrained maxima for which the weaker version of the Constraint Quali

fication is satisfied. Next this article shows that the Constraint Qualification in the present 
formulation is the weakest requirement for the Lagrange method to be applicable; namely, in 

Theorem 2 below, it is proved that if the Lagrange method is justified for all differentiable 

maximands (or even all linear maximands), then the constraint function satisfies the Constraint 
Qualification provided the constraint set is convex. 

The direct verification of the Constraint Qualification in specific cases is difficult, 

and it is useful to find simpler hypotheses which imply it. Several apparently new conditions 
implying the Constraint Qualification and, therefore, the validity of the Saddle-Point Criterion 

and the Quasi-Saddle-Point Condition are proved in a later section (A Sufficient Condition for 

the Constraint Qualification). Note that for differentiable functions f (x) and g (x), the Quasi

Saddle-Point Condition implies the Saddle-Point Criterion. For if f(x) and g(x) are concave, 
the Lagrangian function; f(x) + y g(x), is concave in x for any given y ~ 0; if x maximizes 

1{Continued) 
If this condition holds, then the partial derivatives of f(x) all exist at X and fx = a, but the 
condition '?£ d~ffe_rent~abi_lity at a point is stronger than the existence of partial derivatives. 

'i'lie furi~tic;,;·{'-;:,; said to be concave, if f[tx + (1- t)x]~ tf(x) + (l- t) f(x) for any pair 
of vectors, x, X, and any real number t, 0 ~ t ~ L 

A vector.fllncti6n £ is said to be differentiable {or concave), if each component isa 
A saddle-point, subject to y ~ 0 of a function L (x, y) of two vectors, is defined by the 

properties that X maximizes L(x, Y) andY minimizes L(X, y) for nonnegative y. The con
cept is due to Kubn and Tucker [11]; see their definition of tbe Saddle Value Problem on p. 482 
of Ref. [11]. A_ quasi-saddle-point is a point where the first-order (necessary) conditions for 
a saddle-point are satisfied. 
. In this article, the variables are not necessarily restricted to be nonnegative. Any such 
restrictions are therefore assumed to be included among the conditions g (x) E 0. The formula
tion of the following conditions therefore differs in detail but dot in essence from that of Kuhn 
and·Tucker [11]. 

Zsee, for example, Courant, [7], pp. 189-190 and 192-93. For the case of inequalities, the fol
lowing example is due to Slater [12]: f(x) = x, g(x) = -(1- x)Z;here both f and g are concave 
and differentiable, yet there is no saddle-point and hence no quasi-saddle-point. See also the 
example of Kuhn and Tucker, Ref. [11], pp. 483-84. 

3see Ref. [11], p. 483. For a ·corresponding condition in the context of equality constraints, see 
Bliss, Ref. [6], p. 210, conclusion of Lemma 76.1. 
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f(x) subject to g(x):;:: 0, the Quasi-Saddle-Point Condition implies that the Lagrangian function 
has a zero derivative at x and, therefore, as a concave function, must have a maximum there. 
Since the Lagrangian is linear in y and g(x):;: 0, it is obvious that y g(x) = 0 implies that y 
minimizes f(x) + y g(x) subject to y:;:: 0. The converse part of the Saddle-Point Criterion, 
that if (x, y) is a saddie-point of the Lagrangian for some y, subject to y:;:: 0, then x· is a 
constrained maximum of f(x) subject to g(x):;:: 0, holds without any assumptions on g(x). 

(See Kuhn and Tucker, [11], Theorem 2.) 
Still another constraint qualification has been given by Hurwicz ([5], Chapter 4, Section 

V.3.3.2). In another section (Equivalence of Constraint Qualifications KT and H) it is shown 
to be equivalent to Constraint Qualification K T, at least for finite-dimensional spaces. 

To state these results more precisely and to relate them to other work, we will intro

duce some notation and definitions. In the first place, we define the constraint set, 

(1) c = {x: g (x) :;:: o} • 

In the second place, we will denote x - x by s . Finally, to simplify the statement of 

the conclusion of Constraint Qualification K T which will appear frequently in the following 

discussion, we will find it convenient to introduce the following definitions: 

Definition 1. A contained path (with origin x and direction ~ ) is an n-vector-valued 
function 1/1 ( li} of a real variable which satisfies: 

(2) 1/l(li} is defined for all 0;;; IJ;;; e for some e > 0; 

(3} 1/1(0} =x, 1/l(li)eC for all 0;;; IJ ;;;(j; 

(4) 1/l(li) has a right-hand derivative at 8 = 0 such that 1/J' (0) = ~ 

Definition 2. An n-vector s such that there is a contained path with origin x and 
direction ~ will be referfed·to il.s an attainable direction at x. The set of attainable directions 
(at any given X) will be denoted by ,A. 

The set of indices {1, .•• , ~} is divided into two parts, E and F. E is the set of all 
indices effective at x, namely, 

(5} E = {j: gi (x) = o}, 

and F is the set of all indices ineffective at x, namely, 

(6) F = {j: gi (x) > o}. 

pefinition 3. An n-vector ~ is termed a locally constrained direction if g ~ s :;:: 0 
(i.e., gi s :;:: 0 for all j eE). The set of locally constrained directions will be denoted by ~· 

With these definitions the Kuhn-Tucker Constraint Qualification can be written. 

Constraint Qualification K T 
Every locally constrained direction is attainable, i.e., L c A. 
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(Since the definition of a contained path does not require it to be differentiable through
out, this formulation is apparently weaker than Kuhn and Tucker's [11]. We do not know if the 

weakening is more than apparent when g (x) is differentiable.) 
We now observe that the set L of locally constrained directions is a closed convex cone. 

(By a cone is meant a set which, if it contains any point x, also contains Ax for every scalar 

A i:; 0.) The set A of attainable directions is a cone but is not necessarily convex. 

Definition 4. Let W be th~ closure of the convex cone spanned by A, the set of attain
able directions (i.e., the smallest closed convex cone containing A). The elements of W will 

be termed weakly attainable directions. 
A weakly attainable direction is, then, the limit of a sequence of nonnegative linear 

combinations of attainable directions. We now introduce a weaker constraint qualification: 

Constraint Qualification W 

Every locally constrained direction is weakly attainable, i.e., L c w.4 

It will be shown (Theorem 1) that Constraint Qualification W is sufficient for the 
validity of the Quasi-Saddle-Point Condition and therefore for that of .the Saddle-Point Criterion. 

4To see that A is not necessarily convex and Constraint Qualification W is truly weaker than 
Constraint Qualification K T, consider the constraints xl ~ 0, xz ~ 0, -x1x2 ~ 0. The constraint 
set C consists of the origin and the two positive half-axes. If X is taken to be the origin, the 
set of attainable directions A is the same as C. The set of weakly attainable directions, W, 
is the convex cone spanned by this set; that is,_ t_he .nt;J~egative quadrant. All constraints are 
effective, and 

gE = (~ ~) 
X 0 0 

so that the set of locally constrained directions· L ·is defined by ~ 1 ~ 0, ~ 2 E; 0, and thus is 
again the nonnegative orthant. L is therefore· contained in W but not in A. 

In general, if A were a closed set, then the convex cone spanned by it would also be closed, 
and the words, '1 the closure of, 11 in Definition 4 could be deleted without loss of generality. It 
can be shown fairly easilythat it is closed for convex constraint sets. The referee has supplied 
the following example, which shows that A is not necessarily closed for differentiable g (x) 
in general: 

g (x, 0) 2 
-X ' 

g(x, y) - r2 {e4 sin2 (1/8) +[max (r- sec e tan8,0)]4} for y > 0, 

where 

r = (x2 + y2)1/Z, 0 ~ 8 = arc tan (y/x) ~ rr/2, 

and the domain of definition is the nonnegative qu.adrant. 
Since g (x, y);;: 0 everywhere in the domain of definition, the constraint set 

c = { (x, y): g (x, y) ;:; o} is the union of the segments, 

{(x, y): y = x arc tan (1/nrr), xi:; 0, x 2 ~ y}, 

forallpositiveintegers n. Thus,theattainab1edirectionsfrom (0, 0) include (1, arc tan (1/nrr)) 
for all n, but not ( 1, 0), so that A is not closed. 
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We now turn to some other conditions in the literature which have been found to be suf
ficient for the Quasi-Saddle-Point Condition. In the usual treatment of the Lagrange multiplier 
method in the case of equality constraints (Courant [7], p. 198), it is required that the matrix 
gx of the (partial) derivatives of the constraint functions with respect to the variables have a 
rank equal to the number of constraints. This condition has been extended to the case of 
inequalities in [3], p. 8. We write, in the present notation, the 

Nondegeneracy Condition 

The rank of g~ equals the number of effective constraints. 
(The condition given in [3) is actually slightly weaker.) It was shown in [3], Appendix I, 

that the Nondegeneracy Condition implies Constraint Qualification K T. In a later section (A 

Sufficient Condition for the Constraint Qualification), we will deduce the Nondegenera:cy Con
dition from a more general sufficient condition for Constraint Qualification W. 

In concave programming-that is, where the functions f (x) and g (x) are assumed to pe 
concave-there are theorems which state conditions under which the Saddle-Point Criterion is 
valid but which do not involve Constraint Qualification K T. The simplest case is that of linear 
programming where the functions f (x) and g (x) are assumed to be linear. In this case, the 

Saddle-Point Criterion always holds, as is well known ([10), Chapters XIX and XX). Since the 
constraint qua~ifications are always assumptions about the constraint functions only and do not 
involve f(x), the question ari.ses whether or not it is the linearity of g(x) that is vital. The 

answer is in the affirmative, in the sense that the linearity of g (x) is sufficient for the Quasi
Saddle-Point Condition; see Corollary 2 of Theorem 3. 

Another constraint qualification for concave programming has been proposed by Slater 

[12): 

Constraint Qualification S 
The function g(x) is concave and, for some x*, g(x*) > 0. 

Slater showed that if the function f(x) is concave, his constraint qualification implied 
the Saddle-Point Criterion. A simplified proof was given byUzawa ([5), Chapter 3). Slater's 

theorem was extended to more general spaces by Hurwicz ([5), Chapter 4, Theorem V.3.1). 
(Slater's assumption of continuity is dispensable.) 

Karlin.([9), Chapter 7, Theorem 7.1.1) suggested still another constraint qualification: 

Constraint Qualification K 

The function g (x) is concave and, for every y ~ 0, there is an x such that y g (x) > 0. 
This condition is·clearly implied by Constraint QualificationS; Hurwicz and Uzawa([5), 

Chapter 5) have shown that. in spaces of considerable generality the two conditions are in fact 
equivalent. 

It is natural to investigate the relation between Constraint Qualification S (or K) and 
the more general Constraint Qualifications, such as KT or W. Obviously, conditions S or K 
do not require differentiability of g(x), so that they cannot be completely subsumed under con

ditions KT or W, which do. We may, however, ask whether or not the former do imply the 
latter conditions under the additional assumption that g (x) is differentiable. In the section 

devoted to A Sufficient Condition for the Constraint Qualification, it is shown that such is 
indeed the case; in fact, a single condition (Theorem 3) is given under which all previous con

ditions can be subsumed as speciai cases, as well as some conditions not previously given in 
the literature. 
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A still weaker version of this condition is presented in Theorem 4. In one of its corol

laries, the hypothesis refers to functions which are simultaneously concave and quasi-convex. 

A characterization of such functions and also of functions which are simultaneously quasi

concave and quasi-convex is presented in the section, A Characterization of Functions Simul

taneously Concave and Quasi-Convex; this result may be of interest in other contexts. 
In [5], Chapter 4, Section V.3.3.2, Hurwicz introduces the following constraint quali

fication: 

Constraint Qualification H 

For all xeC and all ~ such that gx ~ + g (x);;; 0, ~ is attainable. 

Since Constraint Qualification H does not identify separate coordinates, it is meaningful 
in all linear topological spaces in which a differentiation operation can be defined.s It has been 

shown ([5], Chapter 4, Theorems V.3.3.2 and V.3.3.3) to be a sufficient condition for both the 

Saddle-Point Criterion and the Quasi-Saddle-Point Condition in spaces of considerable gener

ality. We will show in the section, Equivalence of Constraint Qualifications K T and H, that in 

finite-dimensional spaces, Constraint Qualifications K T and H are equivalent. 

PRELIMINARY LEMMAS AND REMARKS 

LEMMA 1: Every weakly attainable direction is locally constrained. 

PROOF: Let ~ be an attainable direction, 1/1 (e) a contained path with origin x and 
direction ~ . Then for some e > 0 and every j E E, 

gi [1/1(0)] = 0, and gi [1/l(e)];;; 0 (O;; e <e); 

hence, for e = 0, dgi [ 1/1(8)]/d e = g~ 1/1' (0) = g~ ~ ;;; 0 for every j E E, so that~ is locally 
constrained.6 That is, A is included in L. Since L is a convex cone, the convex cone spanned 

by A must also be included in L; and since L is closed, W, the closure of the convex cone 

spanned by A, must also be included in L. (Q.E.D.) 

Let us define, for xeC, 

(7) K = closure of the set {A.(x- x): A. ;;; 0, XEC}. 

K is the union of all half-lines from x through elements of C, together with the boundary of 

the union. K is clearly a closed cone. That the set in braces is not necessarily closed is 

illustrated by the case g(x, y) = y- x2, x = (0, 0), where the x-axis belongs to K but not to 

the set in braces. 

LEMMA 2: If the constraint set C is convex, then K is a closed convex cone, and 
K cW. 

PROOF: The convexity of K follows immediately from that of C. 

5rt is possible, although· we have not investigated this point, that Constraint Qualification K T 
can be extended in a natural form to infinite-dimensional (funct~on) spaces. 

6Note that from the differentiability of gj (x) and from that of 1/1(8) at e = 0, the chain rule for 
differentiation is valid. Theorem 6.14, p.ll3 in [1] may be easily extended to the present case 
of one-sided differentiation. 
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If X€ C, then by the convexity of the set C, 

x + 8 (x - x) e c for all o ;;: 8 ;;: 1 • 

Hence, x- xis attainable and therefore weakly attainable. Since W is a cone, ><(x- x) eW 
for all >< :;; 0. (Q.E.D.) 

Let B be any set of vectors. The negative polar cone, to be denoted by B', is defined by 

B' = {u: ux ;;: 0 for all xeB}. 

We have (Fenchel [8], pp. 8-10), 

(8) B' is a closed convex cone; 

(9) 

(10) if B is a closed convex cone, B" = B . 

LAGRANGE .REGULARITY AND THE CONSTRAINT QUALIFICATION 
Definition 5. An tn-vector-valued function g (x) will be termed Lagrange regular if, 

for any differentiable function f (x), the Quasi-Saddle-Point Condition holds. 

LEMMA 3: If x maximizes f(x) subject to xEC, then 

where W' is the negative polar cone of W. 

PROOF: Let 1/1(8) be a contained path with origin x and direction ~; then 

f[l/1(8)];;: f[l/1(0)] = f(x) for all 0;;: e ;;: e. 
Then 

for any ~ in A and, by continuity and convexity, for any ~ eW (Definitions 2 and 4). (Q.E.D.) 

THEOREM 1: If g (x) satisfies Constraint Qualification W, then g (x) is Lagrange 

regular. 

PROOF: Let f (x) be a differentiable function and x maximize f (x) subject to x E C. 
Then, by Lemma 3, IX ew'. On the other hand, Constraint Qualification w states that L c w 
and therefore implies, from (9), that 

Hence, we have 

(11) 

W' cL'. 

f € L' 
X 
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If B is the closed convex cone consisting of all vectors yE H~ ~) with yE ;:; 0, then 

Definition 3 and (11) show that Ix e B", and by (10), 

-Ix = yE g~ for some -yE ;:; 0 • 

Define 

Then Ix + y gx = 0, y g(x) = -yE gE (x) = 0, from (5), so that the Quasi-Saddle-Point Con

dition is satisfied. (Q.E.D.) 

Theorem 1. is the basic necessity theorem for nonlinear programming ([11], Theorem 1) 

extended to the weaker Constraint Qualification W of this paper. 

THEOREM 2: If g (x) is Lagrange regular and if the constraint set C defined by it is 

a convex set, then g (x) satisfies the Constraint Qualification W. 

PROOF: It will be shown first that 

(12) K' cL'. 

Let aeK'; then from (7), for A = 1, 

(13) a(x- x) ;:; 0 for all xeC . 

Then x maximizes the function f(x) = ax subject to xeC. By the Lagrange regularity of g(x), 

there is an m-vector y such that 

(14) 

and 

(15) yg(x)=o. 

The conditions (14) and (15) imply that y F = 0 and, thus, that 

(16) -E -E -E > a + y gx = 0, y = 0. 

The condition (16) implies that 

a ~ ;:; 0 for all ~ such that g ~ ~ ;:; 0 ; 

i.e., 

a e L'. 

Hence, we have the relation (12). Then, by Eqs. (9) and (10), K ::J L. Applying Lemma 2, 

W::JK::JL. (Q.E.D.) 
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THEOREM 3: If E' is the set of effective constraints which are convex functions, E" 
is the set of all other effective constraints, and if there exists ~ * such that g ~ '~ * ;; 0 , 

g~" ~ * > 0, then Constraint Qualification W holds. 

PROOF: Let ~ be any element of L, a any positive real number, and 

1/1 (e) = x + (~ + a ~ *l e , for e ;; 0 0 

We will show that 1/1 (8) is a contained path for e sufficiently small and, hence, ~ + a ~ * is 
attainable. If we let a approach zero, it will follow from Definition 4 that ~ belongs to W, in 
fact to the closure of A, so that we will have shown that L c W, which is Constraint Qualifi
cation W. 

For any j e E, at e = 0, 

since g ~ ~ ;; 0 by definition of L. If j e E', it follows from the hypothesis of the theorem that 

dgi [1/1(8))/de ;; o at e = o, 

which,,for a convex function, implies that gi [1/1(8)] has its minimum for ;;; 0 at e = 0. 
If j eE , then 

dgi [>/1(8)J/d8 > o at e = o, 

so that gi [l/1(8)] has a local right-hand minimum at e = 0. It follows that 

gE [l/1(8)] ;;; gE [l/1(0)] = gE (x) = 0 for 8 sufficiently small. 

Since, by definition, gF[l/1(0)] > 0, gF[>/1(8)];;; 0 fore sufficiently small, so that 1/I(B)eC 
.for .. 8 .sufficiently small, from. which the theorem follows, as has previously been shown. 

COROLLARY 1: If g (x) · is convex, then g (x) is Lagrange regular. 

" * PROOF: In this case, E is the null set, and it suffices to set ~ 0. The conclusion 
follows from Theorem 1. 

As a special case, we state 

COROLLARY 2: If g (x) is linear, it is Lagrange regular. 

COROLLARY 3: If g (x) is concave, E' the set of effective constraints which are 
linear, E" the set of all other effective constraints, and there exists x* such that gE' (x*);; 0, 
gE" (x *> > 0, then g (x) is Lagrange regular. 
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PROOF: For any concave function, 

Since the only functions which are both concave and convex are linear, the results follow from 

Theorem 3. 
The following special case is precisely Constraint Qualification S. 

COROLLARY 4: If g (x) is concave and g (x *> > 0 for some x *, then g (x) is 
Lagrange regular. 

Corollary 4 was originally stated as Theorem 3 in Ref. [ 4). The following corollary 

generalizes Theorem 2 in Ref. [2) which, in turn, generalized Corollary 4. 

COROLLARY 5: If the constraint set C is convex and possesses an interior, and 

g~ >" 0 for each jeE, then g(x) is Lagrange regular. 

PROOF: By Lemma 2, x - x is weakly attainable for all xe C and therefore belongs to 

L by Lemma 1. Since C possesses an interior, L must possess one also and therefore has 

the full dimensionality of the entire space. If, for some jeE, gi ~ = 0 for all~ in L, it . . X 
follows that g~ ~ = 0 for .all ~ , which means .that gi = 0, c~trary to hypothesis. Hence, for 
each jeE, there exists ;J eL such that g~ ~I>" 0; since g~ ~ i; 0 for all~ in L by defini

tion, we must have 

for j, keE • 

If we let 

* L: ~j' 
j eE 

we see that 

and the conclusion follows trivially from Theorem 3. 

* x; 
REMARK: To establish that C has an interior, it is sufficient that g (x *> > 0 for some 

to establish that C is convex, it is sufficient that g (x) be quasi-concave. 7 

We can also relate the· Nondegeneracy Condition to this analysis. 

COROLLARY 6: If the rank of g~ equals the number of effective constraints, then 

g (x) is Lagrange regular. 

PROOF: Let u be an arbitrary positive column vector; then from the hypothesis, we 
* -E * . can find ~ such that g x ~ = u > 0 . 

7 A function f(x) is quasi-concave if, for all c, the set {x: f(x) ~ c} is convex. A function is 
quasi-convex if it is the negative of a quasi-concave function, so that the sets {x: f(x) ~ c}are 
all convex. 
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If we reconsider the proof of Theorem 3, we see that the convexity assumption for the 
elements of E' is only needed to insure that gi [tjJ (li) J has a minimum at li = 0 for j e E'. For 
the purposes of the proof, a local minimum is sufficient. It would therefore suffice to define 
E' as the set of effective constraints which are locally convex (i.e., which are convex over 

some neighborhood of x), which, for example, would be implied by well-known conditions on 
the matrix of second partial derivatives of the gi (x) evaluated at x = x. It is clear that the 
larger E' is, the weaker the hypothesis of the theorem. 

A somewhat different weakening of Theorem 3 is suggested by observing that if oi is 
the jth unit row vector, then 

(17) -gi +lijgE=O forany jeE. 
X X 

Since oi gE (0) = 0, we see that the Lagrangian conditions for a constrained maximum of . X . 
- gl (X + ~) subject to g E ~- ;:; 0 are satisfied at ~ = 0. Suppose for the moment that the 

X 
Lagrangian conditions (i.e., those in the Quasi-Saddle-Point Condition) were sufficient to 

insure a constrained maximum. Then gi (x + ~) would have a minimum at ~ = 0 for~ e L. 
Since (~ +a. ~ *)IJ e L for all e ;:; 0, this implies that gi [tjJ( li)] ;:; gi (tjl (0)) = 0, and so the 
argument of Theorem 3 is still valid if E' is defined to contain all effective constraints for 
which the Lagrangian conditions are sufficient to insure a constrained maximum for - gi (x). 

A set of hypotheses, under which the Lagrangian conditions are sufficient for a con

strained maximum, is presented in [2], Theorem 1. We state the relevant results as a lemma 
(the statement below is slightly more general in that the domain of definition is not restricted 

to the nonnegative orthant; the previous proof extends easily). 

LEMMA 4: Let f(x) be a differentiable quasi-concave function and g(x) an m-vector 
valued differentiable quasi-concave function defined over some convex domain D. Let x and 

y ;:; 0 satisfy the Lagrangian conditions, fx + y gx = 0, y g (x) = 0, and let one of the following 
conditions be satisfied: 

(a) fx x1 > fx x2 for some x1 eC," x2·eb·; 

(b) Ix "' 0 and f(x) is twice differentiable in a neighborhood of x; 

(c) f(x) is concave. 

Then x maximizes f (x) subject to the constraints g (x) ;:; 0 . 

Lemma 4 can be applied to the preceding argument, with x replaced by ~ , f (x) by 

- gi (x + 0, and g (x) by g~ ~. Since the latter is linear and therefore necessarily quasi
concave, the hypotheses of the lemma are equivalent to requiring that one of (a), (b) or (c) 

hold for the function - gi (x + 0. The application of (b) and (c) is straightforward. Condition 
(a) becomes 

(18) 

for some ~ 1 in ~e constraint _set g~ ~ ;:; 0 and some ~ 2 for which x + ~ 2 is in the domain 
of definition of gl (x). Since g~ ~ ;:; 0 for all~ eL, while OeL, (18) is equivalent to 
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for some x in the domain of definition of gi (x). We can thus state the following generalization 
of Theorem 3: 

THEOREM 4: Let E' be the set of effective constraints gi (x) which are quasi-convex 
functions and which satisfy one of the following three conditions: 

(a) g~ x > g~ x for some x for which gi (x) is defined; 

(b) g ~ "' 0 and gi (x) is twice differentiable in a neighborhood of x = x; 

(c) gi (x) is convex. 

* E' * If E" is the set of all other effective constraints and if there exists ~ such that g x ~ 1:: 0 , 
g~" ~ * > 0, then Constraint Qualification W holds. 

From this theorem can be deduced generalizations of some of the corollaries to 
Theorem 3. Corresponding to Corollary 1 of the latter, we have 

COROLLARY 1. If g (x) is quasi-convex and each effective component satisfies one of 
the conditions (a), (b), or (c) of Theorem 4, then g(x) is Lagrange regular. 

Corollary 3 of Theorem 3 can be generalized to 

COROLLARY .2: Suppose g(x) is concave. Let E' be the set of effective constraints 
which are also quasi-convex and which satisfy one of the following conditions: 

(a) gi (x) > 0 for some x ; 

(b) g ~ "' 0 and gi (x) is twice differentiable in a neighborhood of x = x ; 

(c) gi (x) is linear. 

* E' If E" is the set of all other effective constraints and if there exists 1; such that g (x*) 1:: 0, 
gE" (x*) > 0, then g (x) is Lagrange regular. 

PROOF: If (a) holds, then, since gi (x) is concave, 

gix (x - x) > g}(x) - gi{x) = gi (x) > 0 ' 

so that (a) in Theorem 4 holds. Since (b) is the same in the two statements and (c) here implies 
(c) in the statetnent of Theorem 4, E' as defined here satisfies the conditions of Theorem 4. 
The proof is then the same as ·that of Corollary 3, Theorem 3. 8 

A CHARACTERIZATION OF FUNCTIONS SIMULTANEOUSLY 

CONCAVE AND QUASI-CONVEX 
To better understand the domain of applicability of Corollary 2 of Theorem 4, it is 

useful to give a characterization in Lemma 6 of functions which are simultaneously concave 

and quasi-convex. First, we characterize functions which are simultaneously quasi-concave 

8It should be stated that the case of nonlinear equality constraints is not well handled by these 
theorems and corollaries; these all depend on the construction of a linear contained path, but 
for nonlinear equality constraints none may exist. A form of Corollary 6 to Theorem 3 does 
remain valid in this case ([3]_. Appendix 1). 
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and quasi-convex. In what follows, an indifference set is a set {x: f (x) = c}; a maximal 
(minimal) indifference set is the set on which f(x) attains its maximum (minimum). A set S 
will be said to be bounded by two noncrossing hyperplanes in D if there exist linear functions, 
L 1 (x), L 2 (x), not identically constant in D, such that 

(19) 

and 

(20) L 1 (x) < 0 , L 2 (x) > 0 for no x E D • 

A diagram will show that (19) and (20) are algebraic transcriptions of the geometric concept 
they define. 

LEMMA 5: A function is both quasi-concave and quasi-convex over a convex domain D 
if and only if every indifference set not minimal or maximal is bounded by two noncrossing 
hyperplanes in D. 

PROOF: Without loss of generality, assume that D is the domain of definition of f (x). 
We first note that quasi-convexity implies that {x: f(x) < ci is convex for all c. Suppose 
f(x0 ) < c, f(x1) < c, x2 a convex combination of x0 and x . If c' =max [f(x0 ), f(x1)], we 
have x0 , x1 belonging to the set {x: f (x) ~ c'}, which is convex by definition of quasi
convexity, and hence f (x2) ~ c' < c • 

We suppose, without loss of generality, that the linear space is the smallest containing 
D. Consider any value, c, of f(x), which is neither the maximum nor the minimum. If the 
set {x: f (x) ;;: c} did not have the full dimensionality of the space, there would exist a linear 
function L (x) not identically zero, such that L (x) = 0 whenever f (x) ;;: c. Choose y so that 
L (y) "' 0, and let z = y - x. Then, for any x, L (x + t z) is a linear function of t which is 
nonzero for t = 1 and therefore takes on the value 0 for at most one value of t; hence we can 
find E arbitrarily small for which L (x + E z) ,o 0, L (x - E z) >< 0. Suppose x is an interior 
point of D. Choose E sufficiently small so that x ± EZ ED. Since L(x ± Ez) "' 0, f(x ± EZ) < c; 
by the convexity of {x: f (x) < c}, f (x) < c. Since D is convex, it follows by continuity that 
f(x) ~ .c for all xED, so that c would be the maximum value of f(x), contrary to assumption. 

The set {x: f (x) ;;: c} is convex and has the full dimensionality of the space; the set 
{x: f(x) < c} has been shown to be convex. Hence, there is a separating hyperplane, i.e., a 
linear function, not constant over the entire space and hence not over D, L 1 {x) such that 
L 1 (x) ~ 0 for f(x) < c, L 1 (x) ;;: 0 if f(x) ;;: c ([8], Theorem 28, p. 48). If L 1 (x) = 0 when
ever f(x) ;; c, the set {x: f(x) ;; c} would lie in a hyperplane and therefore not have the full 
dimensionality of the space, a contradiction. Hence, L1 (x0 ) > 0 for some x0 for which 
f(x0 ) ;; c. Suppose L1 (x) = 0 for some x for which f(x) < c. Then for y a convex com
bination of x0 and x sufficiently close to x, we have L 1 (y) > 0, f(y) < c, contrary to the 
separation result. Thus, 

L1 (x) < 0 if f (x) < c , L 1 (x) ;; 0 if f (x) ;; c . 

Since the sets {x: f(x) < c} and {x: f(x) ;;: c} together exhaust D, we have 
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(21) {x: f(x) < c} {x e D: L 1 (x) < 0} , 

(22) {x: f(x) ;'; c} ={xeD: L1 (x) ;'; 0}. 

Similarly, from the quasi-concavity of f(x), we find there exists a linear function, L2 (x), 

such that 

(23) {x: f(x) < c} {xeD: L2 (x) < o}, 

(24) {x: f(x) > c} ={xeD: L 2 (x) > 0}. 

From {22) and (23), (19) holds for the set S = {x: f(x) = c}. Since the set (24) is included in 
the set (22), (20) holds. 

We now prove the converse theorem. First, consider any c which lies strictly between 

the maximum and minimum values of f(x). By assumption, the set S = {x: f(x) = c} satisfies 

i19) and (20) for some linear functions, L1 (x), L2 (x). Let ~ = {x e D: L1 (x) < o}, 
S ={xeD: L 2 (x) > 0}. We will first show that the set {x: f(x) ;'i c} is convex. Since 

c < max f(x), f(x0 ) - c > 0 for some x0 • 
X 

By (19) we must havE: f (x) - c "' 0 for all x e ~. and all x E S. Further, f (x) - c 
cannot assume both signs in S, for, by the convexity of the set and the continuity of f (x), we 

would have f(x)- c = 0 in that set for some x, which has just been shown impossible. 
Similarly, f(x)- c must have a single sign in S. 

Suppose f(x0 )- c > 0 for some x0 in S. We will show that it is impossible that 
f(x 1) - c > 0 for some x1 inS. For then, f(x) - c > 0 for all xeS and all xeS, while 

f (x) = c for all x E S, and therefore f (x) ;'; c for all x e D, contrary to assumption. 

Hence, if f (x0 ) > c for some x0 in S, f (x) > c for all x E S, and only for such x. 
The set {x: f(x);:; c} is then precisely the set {xED: L1 (x) ;'; 0}, which is certainly convex. 

Alternatively, we might have f(x0 ) - c > 0 for some x0 E S. The argument is com

pletely parallel. 

We have shown that {x: f(x) ;'i c} is convex for any c, neither maximal nor minimal. 
The proof that { x: f (x) ;'; c} is convex for such c is completely parallel. There remain the 

cases where c =max f(x) or min f(x). In the first case, the set {x: f(x) ;'i c} is the entire 
X X 

set D and is certainly convex. The set { x: f(x) ;; c} is the intersection of all the sets 
{ x: f (x) ;; c '} for c' < c; it is an intersection of convex sets and therefore convex. The 

case where c = min f (x) is handled by the same argument. 
X 

LEMMA 6: A concave function is also quasi-convex over a convex domain D if and 

only if every indifference set not maximal or minimal is the intersection of D with a hyper
plane. 

PROOF: Let S, as before, be an indifference set, {x: f(x) = c}. We consider five 
cases: 

(a) For some x0 , x1 e S, L1 (x0 ) > 0, L 2 (x1) < 0. From (19), L2 (x0 ) ;'i 0, 

L1 (x1) ;'; 0. In this case, let x2 = (x0 + x1) /2, which belongs to S by convexity, 
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2 2 L 1 (x ) > 0 , L 2 (x ) < 0 • 

For any xeD, let x(ll) = (1- II) x + II x2, g(ll) = f(x(ll)]. Clearly, x(ll) e S for II in the 

neighborhood of 1, so that g (II) = c for all e in the neighborhood of 1, and g' (1) = 0. Since 

g(ll) is concave, it has its maximum at II = 1, and, in particular, f(x) = g(O) ~ g(1) = c, so 

that c = max f(x). 
X 

(b) L 1 (x) = 0 for all x e S, L 2 (x) ~ 0 for all x e D for which L1 (x) 0. In this 

case, xeS, if and only if xeD, L 1 (x) = 0. (Q.E.D.) 

(c) L 2 (x) = 0. for all x e S, L 1 (x) :;:; 0 for all x e D for which L 2 (x) 0. In this 

case, S = {xeD: L 2 (x) = 0}. 

(d) L1 (x) = 0 for all x e S, L 2 (x~ > 0, L 1 (x0 ) = 0, for some x0 e D; First suppose 

L 1 (x) < 0 for some x e D. Then we could find a convex combination of x0 and x for which 

L 1 is negative, L 2 positive, contrary to (20). 

(25) L 1 (x) :;:; 0 for all x e D . 

Since L1 (x) is not identically 0 in D, we can find x 1 so that L1 (x1) > 0. If L 2 (x) < 0 

for some xeS, we can find a convex combination of~. x1 for which L 1 is positive, L 2 nega

tive, contrary to the assumption that L 1 is zero for all x e S. 

(26) L 2 (x) = 0 for all x e S. 

From (25) and (26), the hypotheses of (c) are satisfied. 

(e) L 2 (x) = 0 for all x e s, L 1 (x0 ) < 0, L 2 (x0 ) = 0 for some x0 e D. This case is 

completely parallel to (d). 

Thus, except in case (a), the indifference sets are the intersections of hyperplanes 

with D. 

The converse follows trivially from Lemma 5; by assumption, for every c not maximal 

or minimal, there exists a linear function L (x) such that 

{x: f(x)=c}={xeD: L(x)=O}, 

so that (19) and (20) are satisfied with L 1 (x) = L 2 (x) = L (x). 

EQUIVALENCE OF CONSTRAINT QUALIFICATIONS KT AND H 

THEOREM 5: In finite-dimensional spaces, Constraint Qualifications KT and H are 

equivalent. 

PROOF: Clearly, the hypothesis of Constraint Qualification K T can be inferred from 

that of condition H by considering only those components j for which gi (x) = 0. Since the 

conclusions of the two Constraint Qualifications are the same, the K T condition implies con

dition H. 
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To establish the converse, suppose Constraint Qualification H and the hypothesis of 
Constraint Qualification K T hold. Then for any E > 0, 

(28) 

On the other hand, clearly 

(29) if gi (x) > 0, gi (x) + gix • (c ~) ?: 0 for c sufficiently small. 

Since x e C, gi (X) ?: 0 for all j. From (28) and (29), g(x) + gx(c ~) ?: 0. By Constraint 
Qualification H, there exists a path >J; c (8) such that >/1 c (0) = x, >/1 c (e) e C for e sufficiently 
small, >J;~ (O) = c ~. If we now define >J;'(e) = >/1 E (e /c), we have a contained path at x in 

direction ~ . 
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NORMALITY AND ABNORMALITY IN THE CALCULUS 
OF VARIATIONS* 

BY 

G. A. BLISS 

Within the past few years a number of papers concerning the problem of 
Bolza in the calculus of variations have been published which make it possible 
to carry through the theory of this problem with much simplified assumptions 
concerning what is called the normality of the minimizing arc. I refer es
pecially to papers by Graves [8 ], t Hestenes [11, 14, 16], Reid [15], and 
Morse [13]. These papers and others are also important because they bring 
the theory of problems of the calculus of variations with variable end points 
to a stage comparable with that already attained for the more special case 
in which the end points are fixed. 

In the theories of Bolza [1, chap. 11, 12] and Bliss [2] for the problem 
of Lagrange with fixed end points it was assumed that the minimizing arc 
considered, extended slightly at both ends, was normal on every sub-interval. 
Morse [4] showed that the theory could be carried through on the assumption 
that the arc itself, without extensions, was normal on every sub-interval. The 
most important case, however, turns out to be the one for which the arc as a 
whole is normal relative to the problem considered, but not necessarily nor
mal on sub-intervals. Graves proved the necessary condition of Weierstrass 
for such a normal minimizing arc, and Hestenes deduced further necessary 
conditions and gave sufficiency proofs for a minimum. The importance of 
these results is emphasized by the fact that for the very general problem of 
Mayer, which may be regarded as a sub-case of the problem of Bolza, every 
minimizing arc is abnormal on every sub-interval, even though the arc as a 
whole is normal relative to the problem. Thus the problem of Mayer needs a 
separate treatment, such as was given by Bliss and Hestenes [9, 10], unless 
one has at his command results equivalent to the recent extensions of the 
theory of the problem of Bolza mentioned above. 

In this paper I am attempting to analyze, more explicitly than has been 
done before, the meaning of normality and abnormality for the calculus of 
variations. To do this I have emphasized in §1 below the meaning of normal
ity for the problem of a relative minimum of a function of a finite number 
of variables. In §2 analogous notions are discussed for problems of the cal-

*Presented to the Society, April20, 1935; received by the editors April1, 1937. 
t The numbers in brackets here and elsewhere refer to the bibliography at the end of this paper. 
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culus of variations. From this discussion it will be clear that a normal arc 
for the problem of Bolza is a non-singular arc of the class in which a minimiz
ing one is sought. The singular arcs of the class are the abnormal ones. They 
have an enormous variety of types. It is not likely that a general theory can 
be formulated which would apply to all of them, though one might character
ize and study successfully some very general cases. 

In the papers of Graves and Hestenes mentioned above there is no explicit 
assumption concerning normality. The arc studied is assumed only to have a 
set of multipliers like those which it would have if it were normal for the 
problem of Bolza considered. In the following pages it will be seen that, 
though such an arc may be abnormal for the problem originally considered, 
it is nevertheless normal for a second problem of Bolza obtained from the 
first by suitably extending the class of arcs in which a minimizing one is 
sought. Furthermore the properties characterizing a minimizing arc for the 
original problem are effective for the second, so that the sufficiency theorems 
of Hestenes for arcs which are normal have as easy consequences those for 
the abnormal arcs permitted by his hypotheses. This makes possible a num
ber of simplifications in the details of the proofs. It is not to be expected, of 
course, that new necessary conditions on a minimizing arc can be secured by 
extending the class of arcs in which a minimizing one is sought. The paper of 
Graves, therefore, seems to contain results not attainable by considering only 
normal arcs. 

In the introduction to his paper [13] Morse makes a statement concerning 
priority for the proofs of sufficiency theorems without assumptions of normal
ity which might easily be misunderstood and about which I should like to 
make the following comments. Hestenes had previously proved, in his paper 
[11], three sufficiency theorems (Theorems 9:1, 9:3, 9:5) without explicit 
assumptions of normality, and also a fourth theorem (Theorem 9:4) with 
normality assumptions still undesirably strong, but weaker than those which 
had before been used. Reid [15] and Morse [13] showed independently that 
by means of a further lemma, but aided still essentially by the results of 
Hestenes, this fourth theorem can be brought to a par with the others. The 
condition VI' [11, p. 811] of Theorem 9:4 is analogous to one which I used 
in the paper [5], and which was originally due to A. Mayer. Its statement 
involves the notion of conjugate points and is therefore more closely related 
to the classical conditions of Jacobi for simpler problems than the corre
sponding conditions of the other theorems. I think it should be understood 
that the priority comment of Morse is applicable to Theorem 9:4 of Hestenes, 
but not to the other three theorems of his paper, which are equally important. 
I may add that the theorems of Hestenes were proved with great originality 
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and ingenuity while he was my research assistant at the University of Chicago 
in 1933 [16, p. 543]. When he went away he left a manuscript with me in 
which the theorems were, at my suggestion, deduced only for normal arcs, 
the ones which then, as well as now, seemed to me the most important, even 
though the justification of the arguments of the present paper was at that 
time missing. This manuscript has since appeared in much modified form in 
my mimeographed lectures on the problem of Bolza [12 ]. In his paper [11] 
Hestenes showed that his methods are also effective for the problem of Bolza 
in the form adopted by Morse. 

1. Abnormality for minima of functions of a finite number of . variables. 
The significance of the notion of abnormality in the calculus of variations 
can be indicated by a study of the theory of the simpler problem of finding, 
in the set of points y = (y1, · · · , Yn) satisfying a system of equations of the 
form 

cp13 (y) =0 (!3 = 1, · · · , m<n), 

one which minimizes a function j(y). For a point y0 = (y1°, · · · , y,P) near 
which the functions j and ¢ 13 have continuous partial derivatives of at least 
the second order, and which satisfies the equations ¢ 13 =0, we have the fol
lowing theorems, some of which are, of course, well known. 

THEOREM 1:1. A first necessary condition for j(y0) to be a minimum is that 
there exist constants lo, l13 not all zero such that the derivatives F Y; of the junction 

all vanish at y0• 

To prove this we have only to note that the determinants of the matrix 

II fu.(yO) II 
tP!Iy;(yO) 

must all vanish. Otherwise, according to well known implicit function theo
rems, the equationsj(y) =J(y0) +u, cp11 (y) =Owould have solutions y for nega
tive values of u, and j(y0) could not be a minimum. 

A point y0 has by definition order of abnormality equal to q if there exist q 
linearly independent sets of multipliers of the form lo =0, l13 having the prop
erty of the theorem. When q=O the point y0 is said to be normal. A necessary 
and sufficient condition for abnormality of order q is evidently that the matrix 
llcJ> 11 y;(y0)il have rank m-q. At a normal point y 0 the multipliers lo, l13 of the 
theorem can be divided by l0 and put into the form lo = 1, 113 • In this form they 
are unique, since the non-vanishing difference of two such sets would be a set 
of multipliers implying abnormality. 
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LEMMA 1:1. If a point y0 is normal, then for every set of constants "Y}; 

(i = 1, · · · , n) satisfying the equations 

(1: 1) 

there exists a set of functions y;(b) having continuous second derivatives near 
b = 0, satisfying the equations ¢ 13 = 0, and such that 

y;(O) = y;0 , yf (0) = "Y};. 

The proof can be made by considering the equations 

(1:2) cf>13 (y) = 0, cf>..,(y) = cf>..,(y0) + bs-r ({3 = 1, · · ·, m; 'Y = m + 1, · · ·, n) 

in which the auxiliary functions ¢-r(Y) are selected so that they have con
tinuous second derivatives near y0 and make the functional determinant 
icJ>iyk(y0)i different from zero, and in which the constants s.., are defined by 
the equations 

(1: 3) 

Equations (1: 2) then have solutions y;(b) with continuous derivatives of at 
least the second order near b =0, and such that y;(O) =y;0 • By differentiating 
with respect to b the equations (1: 2) with these solutions substituted, we :find 
the equations 

cPf3y;(y0) yf (0) = 0, 

c/> 1 y;(y0)y( (0) = Scr· 

With equations (1:1) and (1:3) these show that yf(O)=TJ;. 

THEOREM 1 : 2. If y0 is a normal point and j(y0) a minimum then the con
dition 

FYiYk(y0)TJi'T"Jk G 0 

must hold for every set TJ; satisfying the equations (1: 1), where F = f +ltJ¢fJ is the 
function formed with the unique set of multipliers lo = 1, l13 belonging to y 0• 

The conclusion of the theorem is due to the fact that the function 
g(b) =j[y(b) ], formed with the functions y;(b) of the lemma, must have a 
minimum at b =0. Since 

cPf3y.[y(b)] y! (b) = 0 

the derivatives of g(b) are seen to have the values 
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g'(b) = jy;(y(b)]y/ (b)= Fy.[y(b)]y'(b), 

g"(O) = FYiYk(Y0htf/k, 

and for g(O) to be a minimum we must have g"(O) ~0. 

369 

THEOREM 1:3. If a point y 0 has a set of multipliers lo = 1, lfJ for which the 
junction F = J+lfJ¢fJ satisfies the conditions 

(1: 4) 

for all sets 7J; satisfying the equations 

(1: 5) 

then j(y0) is a minimum. 

This can be proved with the help of Taylor's formula with integral form 
of remainder. For every point y near y 0 satisfying the equations ¢fJ =0 we 
have the equations 

(1: 6) 

j(y) - j(y0 ) = !u;(y0 )TJi + fu l (1 - 8)jy;yJy')TJ(YJkd8, 

0 = </>{Jy;(y0 )rJi + Ia l (1 - 8)<f>fJY;Yk(y')rJ,"I]kd8 l 

0 = fu 1
</>{Ju,(Y/)rJid8, 

where y! = yP + e(y;- y;0 ), 7J; = y;- y;0 • From these we find readily 

Since the quadratic form in the integrand of the last integral, thought of 
as a function of independent variables y' and 7), is positive for y' =y0 

and all sets TJ satisfying the equations (1: 5), it will remain positive for 
y'=y0 +0(y-y0) and all sets 7), including 7J=y-y0 , satisfying equations 
(1: 6), provided that y lies in a sufficiently small neighborhood N of the 
point y 0• Thus we see that for all points y in N satisfying the equations 
¢fJ = 0 the difference j(y)-j(y0) is positive. 

The last theorem is analogous to the sufficiency theorems of Hestenes in 
the calculus of variations. In it there is no explicit assumption concerning 
the normality or abnormality of the point y 0• If y 0 has abnormality of order q, 
however, let v be a variable which ranges over a subset of m- q of the num-
bers 1, 0 0 o , m such that the matrix [[¢.y,(y0)[[ has rank m-q, and let p range 
over the complementary subset. Then we have the following theorem: 
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THEOREM 1:4. Let y0 be a point which satisfies the hypotheses of Theorem 
1 :3 with a set of multipliers lo = 1, l~, and let 11 and p be variables ha'Qing the 
ranges described in the last paragraph. Then y 0 is normal for the modified prob
lem of minimizing the function g = f +lpcf>p in the class of points y satisfying the 
restricted system of equations ¢,=0, and y 0 satisfies the hypotheses of Theorem 
1:3 for the modified problem with the multipliers lo = 1, l,. Furthermore if g(y0) 

is a minimum for the modified problem, then f(y 0) is a minimum for the original 
one. 

We see that the point y0 is normal for the modified problem, since the 
matrix II¢•Y;(y0)ll has rank m-q. For the function F =g+l.¢. = f+lf3¢~ of the 
modified problem the conditions (1: 4) are satisfied for all sets 7J satisfying the 
equations 

(1: 7) 

since equations (1: 5) are linear and have a matrix of coefficients of rank 
m-q and hence are consequences of equations (1:7). The set of points y 
satisfying the equations ¢, =0 includes the points satisfying the complete 
system¢~= 0 as a subclass in which g =f. Hence if g(y0) is a minimum for the 
modified problem, the value f(y 0 ) =g(y0 ) must have the same property for 
the original problem. 

From the last theorem it is evident that generality is not lost by proving 
Theorem 1:3 only for points y0 which are normal. Such points are, in fact, 
the non-singular points of the class which satisfy the equations ¢~ = 0. Near 
each of them there are infinitely many points of the class, as is shown by 
Lemma 1.1, and the minimum problem near one of them is therefore never 
trivial. Abnormal points, on the other hand, are the singular points of the 
class, and may occur in a wide variety of types. For some of these points 
the minimum problem is trivial, as, for example, in the case of a point y 0, 

for which c/>1 = 0, which minimizes the function ¢1 in the class of points y 
satisfying the equations c/>2= · · · =c/>m=O. Near such a point y0 there is no 
other point satisfying all of the equations¢~ =0. 

An idea of the great variety of types of abnormal points may be gained 
by considering the problem of minimizing a functionf(yl, y2) of two variables 
in the class of points (y1, y2) satisfying a single equation ¢(y1, y2) =0. The 
variety of abnormal points possible in this case is at least as great as the 
variety of singular points of an algebraic curve. The particular example 
f=2y12 -y1, ¢=yfy2-y23 =0, with minimizing point (0, 0), shows that the 
condition involving the quadratic form in Theorem 1: 3 is not in general 
necessary for a minimum. 
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2. Abnormality in the calculus of variations. The problem to be consid
ered in this section [ 12, p. 4] is that of finding in a class of arcs 

(2: 1) 

satisfying conditions of the form 

cp~(x, y, y') = 0 

1/-~<[xt, y(xt), x2, y(x2)] = 0 

one which minimizes a sum 

(i = 1, · • · , n; X 1 ~ X ~ X2) 

({3 = 1, · · · , m < n), 

(p, = 1, · · · , p ~ 2n + 2) 

A set of values (x, y, y') and end values [x,, y;.] = [x., y;(x,)] (s = 1, 2) is said 
to be admissible if it lies interior to a region of such values in which the func
tions j, g, cf>tJ, 'if;~< have continuous derivatives of at least the fourth order, and 
in which the matrix JJ¢~Y;'JI and the matrix of first derivatives of the functions 
'if;~< have ranks m and p, respectively. An admissible arc C defined by functions 
of the form (2: 1) is one which is continuous and consists of a finite number of 
sub-arcs with continuously turning tangents, and whose elements (x, y, y') 
and end values are admissible. When convenient we may represent by J(C), 
g(C), 1/;~<(C) the values of these functions determined by the arc C. 

The conditions involved in the sufficiency theorems for this problem are 
the following, the numbering being that which I have often used [see, e.g., 12, 
chap. 3]: 

I. THE MULTIPLIER RULE. A set of multipliers to, tfl(x), e~< for an admissible 
arc Eisa set for which the to, e~< are constants and the functions ttJ(x), defined 
on the interval X1X2 belonging to E, are continuous except possibly at values 
of x defining corners of E at which they nevertheless have well-defined for
ward and backward limits. The arc E satisfies the multiplier rule if there exist 
constants c; and multipliers l0, tfJ(x), e~< such that for F =lof+ltJ(x)cf>tJ the equa
tions 

c/J{J = 0 

are satisfied along E, and furthermore such that the end values of E satisfy 
the equations 

(2: 2) 1/-1' = 0 

identically in the differentials dx,, dy;,. 
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It has been proved [12, p. 27] that the identically vanishing set of multi
pliers is the only set having constants lo, ep. all zero, or having functions 
lo, l~(x) which vanish simultaneously at some value x on the interval x1x2. 

n;,. An admissible arc E satisfies the strengthened condition of Weier
strass if for every set of the type (x, y, y', l) in a neighborhood N of those 
belonging to E the inequality 

E(x, y, y', l, Y') > 0 

is satisfied for all admissible sets (x, y, Y') ~ (x, y, y'), where 

E = F(x, y, Y', l) - F(x, y, y', l) - (Y! - y[)F11,,(x, y, y', l). 

III'. An admissible arc E satisfies the strengthened condition of Clebsch 
if at every element (x, y, y', l) belonging toE, the inequality 

is satisfied for all non-vanishing sets 1r; satisfying the equations 

c/>~11.-(x, y, y')1r; = 0. 

If we represent by q, qp. the quadratic forms in dx., dy;. whose coefficients 
are the second derivatives of the functions g, if;p., respectively, the second 
variation of J for an extremal arc E with multipliers lo=1, l~(x), ep. has the 
value 

in which 

with dx, dy; replaced by ~' yf ~+'1• [12, p. 71 ]. The equations of variation 
along E are the equations 

(2 :3) 

in which 

and 'lrp. is dif;p. with dx, dy; replaced as above by ~' y! ~+77• [12, p. 14]. An 
admissible set ~1, ~2, 77;(x) is one for which ~1, ~2 are constants and the functions 
77;(x) have on X1X2 the continuity properties of an admissible arc y;(x). The 
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second variation J2(~, TJ) forE is by definition positive definite if it is positive 
for all non-vanishing admissible sets h, ~2, rJ;(x) satisfying the equations (2: 3). 

IV'. An extremal arc E satisfies the condition IV' if its second variation 
is positive definite. 

The condition IV' is applicable to an admissible arc which has no corners 
and satisfies conditions I and III', since such an arc is necessarily non-singu
lar and an extremal [12, pp. 112, 117]. 

The sufficiency theorem of Hestenes to be considered here is now the fol
lowing one: 

THEOREM 2: 1. If an admissible arc E has no corners and satisfies the condi

tions I, II;_,, III', IV' with a set of multipliers l 0 = 1, l~(x), e" then J (E) is a 
strong relative minimum. 

Every admissible arc E satisfies the multiplier rule with none or a limited 
number of linearly independent non-vanishing sets of multipliers havingl0 = 0, 
It is said to have order of abnormality equal to q if it satisfies I with q and only q 
such sets 10, = 0, l~.(x), e", (IT= 1, · · · , q). When q =0 it is said to be normal. 
A set of non-vanishing multipliers with 10 = 0 will be called an abnormal set 

of multipliers. 
For an admissible arc with order of abnormality equal to q the equation 

(2: 4) 

with F.= l~.(x )¢~is for each IT an identity in the variables ~., rJ;, = rJ;(x.), since 
this is what the first equation (2: 2) becomes for the multipliers /0, = 0, l~.(x), 
e", when the end values of dx, dy; are replaced by those of ~' y[ ~+rJ;. The 
usual integration by parts applied to the sum 

gives the equation 

(2: 5) 

so that for every admissible set of variations satisfying the equations <I>~ =0 
we find with the help of equations (2: 4) and (2: 5) the relations 

(2: 6) 

The matrix of the q sets of values e", (IT= 1, · · · , q) is necessarily of rank 
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q. Otherwise there would be a linear combination of these sets vanishing 
identically, and, according to a remark made above; the same combination 
of the linearly independent complete sets loa, l13a(x), e~a would then also vanish 
identically, which is impossible. In the following paragraphs the variable p 

is understood to have as its range a subset of the numbers f.l. = 1, · · · , p such 
that the determinant I epa I is different from zero, and the variable v will have 
the range complementary to that of p. The second equation (2: 6) then shows 
that for an admissible set ~~, b, 1J;(x) the equations'¥ P = 0 are consequences of 
the equations 4>13 ='¥,=0. 

THEOREM 2:2. Let E be an admissible arc without corners which satisfies 
the hypotheses of Theorem 2: 1 with a set of multipliers l0 = 1, l13 (x), e~, and let p 

and v be variables whose ranges are determined by the linearly independent ab
normal sets of multipliers of E as described in the last paragraph. Then the arc E 
is normal for the modified problem of minimizing the functional J (C)+ epljl P (C) 
in the class of admissible arcs C satisfying the reduced system of equations 
¢ 13 =1/1. =0, and the arc E with the multipliers lo = 1, l13 (x), e, satisfies the hypoth
eses of Theorem 2:1 for the modified problem. Furthermore if J(E)+epljlp(E) 
is a strong relative minimum for the modified problem, then J(E) is a similar 
minimum for the original problem. 

It is easy to see that the arc E is normal for the modified problem. For if E 
had for that problem a set of non-vanishing multipliers of the form lo = 0, 
l13 (x), e,, the set lo=O, l13 (x), ep=O, e, would be multipliers forE and the origi
nalproblern,necessarily linearly expressible in terms of the q sets loa =0, l13a(x), 
e~a (u = 1, · · · , q). This is, however, impossible on account of the fact that 
the determinant I epa I is not zero. 

The arc E satisfies the hypotheses of Theorem 2: 1 for the modified prob
lem with the multipliers l 0 = 1, l 13 (x), e,, as one readily sees by an examination 
of the conditions I, n;,., III', IV'. For the condition IV' one needs to note 
that on account of the second equation (2 :6) the restricted system <t>.a ='¥, =0 
implies the complete system 4>13 ='¥~ =0. 

Since the class of arcs in which a minimizing one is sought for the modified 
problem includes as a subclass those among which a minimizing arc is sought 
for the original problem, and since on the subclass the values of the func
tionals J(C) +epljlp(C) and J(C) are equal, the last statement of the theorem is 
evidently true. 

The remarks made at the end of §1 are now applicable for the most part 
to the problem of Bolza also. As a result of Theorem 2:2 it is clear that no 
generality is lost by proving Theorem 2:1 for normal arcs only, and the proof 
for such arcs turns out to be in some respects simpler than for the abnormal 
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arcs included in the proof of Hestenes. A normal arc is a non-singular arc of 
the class in which a minimizing arc is sought in the sense that near every 
normal arc there are an infinity of other arcs of the class [12, pp. 49, 51]. 
The minimum problem near such an arc is therefore never trivial. Near an 
abnormal arc E, on the other hand, there may be no other arc of the class in 
which a minimizing one is sought, as in the case when 1/ll(E) vanishes and is a 
strong relative minimum or maximum in the class of admissible arcs satisfy
ing the conditions ¢fJ = 1/;2 = · · · = 1/;P = 0. In this case the minimum problem 
near E is trivial. The variety of types of abnormal arcs is evidently very 
great. Those included in the sufficiency theorems of Hestenes are of a special 
type closely related to normal arcs. Other important special types can doubt
less be described and discussed, and it might be useful to have results of this 
kind. But it seems likely that a comprehensive theory would at this time be 
exceedingly elaborate and difficult, and perhaps impossible. 

When the number of the end conditions if;" =0 is equal to the number 
2n+2 of end values x., y;. (s = 1, 2) the problem is said to have fixed end 
points. An admissible arc E is by definition normal on a sub-interval x'x" if 
its corresponding sub-arc is normal relative to the problem with fixed end 
points on that interval. The assumption that an arc E is normal on every 
sub-interval is evidently undesirable, for the same reason that it would be 
undesirable to assume for the problem of §1 that the determinants of order m 
of some particular set belonging to the matrix ll¢fJu;ll are all different from 
zero. For the problem of Mayer, which is the problem of Bolza with integrand 
function j identically zero, every minimizing arc is abnormal on every sub
interval, as has been pointed out by Caratheodory [6, 7] and others. No 
theory based upon the assumption of normality on sub-intervals can there
fore be effective in this important case. 
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PREFACE 

This Memorandum contributes to an aspect of the re

search program of The RAND Corporation consisting of 

basic supporting studies in mathematics. Considered is 

the application of a theorem of Fritz John to mathe

matical prograrrmine;. 
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Richmond, California, where some of the earlier research 
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Naval Research, Contract No. Nonr-222(83), with the 

University of California. Preparation of the Memorandum 
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SUMMARY 

In this Memorandum, the author specializes a 

theorem of Fritz John to the case of mathematical pro

gramming. It is shown that \'Then a certain multiplier is 

positive, the well-known Kuhn-Tucker conditions obtain. 

A sufficient condition for the positivity of this multi

plier is proposed. 
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A THEOREM OF FRITZ J OHN I N MATHEMATICAL PROGRAMMING

1. I NTRODUCTI ON

A 1948 article [1 ] by F. J ohn, e nt it led "Extremum

Probl ems wi t h Inequal i t i e s aG Subsidiary Condi t i ons, ll

appears t o be the firs t paper in whi ch the class ical

t heor y of equality-constrained e xt r emi za t i on is extended

to deal with inequality-constrained extremi zation . J ohn

establishes a theorem on necessary conditions f or a

mf.nLmurn and anot he r theorem on eurr t ctent condition s 1'O I'

a re lat ive minimum. The rema inder of t he pap er i s de 

voted to applicat ions o f t he results . Only the f i r s t

of these t wo theorems will be mention ed he re .

A more widely known paper is "Non j dnear- Pr'ogr-amrm.ng"

by H. W. Kuhn and A. W. Tuc ke r [2 ] in which John 's

ar t i c l e 1s referred to but not discussed in detai l . The

Kuhn- Tuc ke r paper treats necessary and s uffic ient con

ditions for an inequal i ty-constrained maximum .

The purpose of this Memorandum is t o point out how

the addition of a su i t ab l e regulari ty condi t ion i n J ohn ' s

theo rem enabl e s one to deduce the "Kuhn- Tuc ke r c ondi t i on s. 11
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2. THE HATHEHATICAL PROGRAf•IMING PROBLEH 

A typical formulation of the mathematical program-

ming problem is 

Maximize f(x) subject to x£En , g(x) ~ 0 • (2.1) 

Further assumptions on the function f and the mapping 

g yield special types of programming, such as linear, 

quadratic, concave, etc. 

The classical problem referred to earlier is 

Maximize f(x) subject to x£En , g(x) = 0 (2.2) 

where f is a differentiable function and 

is a vector-valued differentiable mapping on 

En (m < n) . In the method of Lagrange (or undetermined) 

multipliers, one forms the Lagrangian function 

L(x,u) = f(x) + uTg(x) (2.3) 

If at a maximum, x0 , the Jacobian matrix (ogijOxj) 

has rank m , the follovring conditions must hold: 

some (2.4) 

0 . (2.5) 
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One seeks the solutions of the problem (2.2) among the 

extrema of the unconstrained Lagrangian L(x,u) .* 

The conditions (2.4) and (2.5) are necessary, though not 

sufficient, for an extremum. 

We shall state John's theorem below, but with cer-

tain.notational changes and maximization replacing mini-

mization. The intention. is to maintain consistency in 

p~oblem statements. 

Let R be a set of points in En and f a real

valued function on R . Let S be a compact metric 

space. Let g(x,o) g 0 (x) be a real-valued function 

on RxS . Now define the set 

(2.6) 

We seek x 0 €R 1 such that 

r(x0 ) = max f(~) . 
X€R 1 (2.7) 

Assume that f and of/ox. are continuous on R 
J 

(j = l, .•. ,n) and that g and agjxj are continuous 

on RxS (j = 1 •... ,n) • Notice that RxS can be 

given a metric space structure.t 

* See Ref. 3. 
t 
See, for example, Ref. 4~ p. 91. 
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With these notations we are prepared to state 

Theorem A:* Let x 0 8R 1 be an interior point of 

R ~ and let 

r(x0 ) = max f(x) . 
X8R 1 

Then there exists a finite set of points, a 1 , ... ,os8S , 

and numbers, u0 ,u1 , ... ,us , not all zero, such that 

r=l, ... ,s 

the function 

has a critical point at i.e., 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

It is important to notice that the "multiplier11 

u 0 could be zero and that there are no regularity con

ditions imposed on the constraint set R' . 

We shall specialize John's theorem to the case 

where S is the set {1, ... ,m}--which is trivially a 

compact metric space--and the variables xj are non

negative. 

*" John, Ref. l, p. 188. 
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Theorem B: Let x0 maximize f(x) constrained by 

gi ( x) ~ 0 , i "' l, ... ,m , and x j :i'; 0 , j = J., .•. , n . 

Then there exists a semi-positive (i.e., non-negative and 

non-zero) vector (u0 ,u1 , ... ,u ,v1 , ... ,v )T such that m n 

uigi(xo) 0 i l, ... ,m (2.9a) 

0 
0 j l, ... ,n vjxj (2.9b) 

the function (2.9c) 

has a critical point at x 0 

In order to state the analogous theorem of Kuhn 

and Tucker, we must first recall the constraint quali-

fication.* 

Let x0 belonG to the boundary of the constraint 

set 

R' 1 , ... ,m , x j > 0 , j 1, ... ,n} 

Let g(l](x) be the mapping defined by all those com-

ponent functions of g which vanish at x 0 

consist of those rovrs of the nxn identity matrix cor

responding to components of x 0 which are zero. The 

Kuhn-Tucker constraint qualification is satisfied at 

* Ref. 2, p. 483. 

0 
X 
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if every vector differential dx satisfying the 

homogeneous linear inequalities 

(2.10) 

is tangent to an arc contained in the set R' . This means 

that to any dx satisfying (2.10) there corre?ponds a 

differentiable arc x = a(B) , 0 ~a~ l , coritained in 

R' such that x 0 a(o) and some positive scalar A 

such that c.' (o) = :A.cix 

Theorem C:* Let R' satisfy the constraint quali

fication. In order that x 0 maximize f(x) subject to 

xe:R 1 _, it is necessary that x 0 and some u = (u1 , ... ,um)T 

satisfy the following conditions: 

(2.11a) 

0 (2.llb) 

0 > 
X = 0 (2.11c) 

g(xo) 2 0 (2.11d) 

uTg(xo) 0 (2 .lle) 

u ~ 0 (2.llf) 

These relations have also been called the quasi

saddle point conditions [S]. They are necessary condi

tions of' optimality in the program 

maximize i' (x) s'.lb,ject to xt:R 1 (2.12) 

* Kuhn-Tucker conditions, Ref. 2, p. 48L!. 
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when R' satisfies the constraint qualification. The 

program (2.12) is called the maximum problem [2]. 

0 Theorem 1: Let x solve the problem in Theorem 

B. If the multiplier u 0 is positive, then the Kuhn

* Tucker conditions hold. 

Proof. If uo > 0 'I'Te may assume uo = 1 .. 

(ul, .•. , urn )T 
T 

u and v (vl, ... ,vn) Then 

fx(xo) + [gx(xo)]Tu = -v .::;:: o 

which is (2.lla). From (2.13) and (2. 9b) we get 

(xO)T{fx(xo) + [gx(xo)JTu + v} 

(xo)T{fx(xo) + [gx(xo)]Tu} o 

Let 

(2.13) 

which is (2.llb). The remainder of the conditions (2.11) 

are even more obvious. 

3. A SUFFICIENT CONDITION FOR POSITIVE u 0 

Hith all notations as above, let x 0 solve the 

problem of Theorem B, and let (u0 ,u1 , ... ,um,v1 , ... ,vn)T 

be the associated semi-positive vector of multipliers. 

g[l] is the mapping composed of components of g which 

vanish at x 0 Let x be the vector of components xj 

0 
of x such that xj > 0 

* A_similar result may be found in Ref. 6, p. 227, 
the English translation of Ref. L~; see also Ref. 2, 
p. 489. 
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The regularity condition '"e shall impose is that 

the equation 

haye no semipositive solution. This condition is 

slightly more general than the nondegeneracy condition 

or Rer. 5, which is that gl1 J(x0 ) be or full rank. 
X 

Theorem 2: If g satisfies the regularity con-

dition (2.14), the multiplier u0 in Theorem B is 

positive. 

Proof. With x 11 evaluated11 at x0 , we get 

(x) 0 > 0 , and consequently v = 0 ; that is, the cor-

responding vector of multipliers is zero. Suppose 

u0 = 0 • Then 

0 (2.15) 

and in particular 

0 T - 0 T [gx(x )] u + v = [gx(x )J u = o . (2.16) 

Let )lJ be the vector of multipliers corresponding to 

g[l] • Any components in u but not in u[l] must be 

zero. Therefore, we conclude 

(2.17) 

is non-negative and cannot be zero, for other-

wise u in (2.15) is zero and then so is v 
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But this contradicts the semi-positivity of 

(u0 ,u1 , ... ,um, v1 , ... ,vn)T Hence, u[l] is semi-

positive. However, (2.17) contradicts our regularity 

assumption. Therefore, u0 > 0 . 
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ON CONJUGATE CONVEX FUNCTIONS 

W. FENCHEL 

1. Since the classical work of Minkowski and Jensen it is well known that 
many of the inequalities used in analysis may be considered as consequences 
of the convexity of certain functions. In several of these inequalities pairs of 
"conjugate" functions occur, for instance pairs of powers with exponents 
a and a related by 1/a + 1/a = 1. A more general example is the pair of 
positively hm;nogeneous convex functions defined by Minkowski and known 
as the distance (or gauge) function and the function of support of a convex 
body. The purpose of the present paper is to explain the general (by the way 
rather elementary) idea underlying this correspondence. Subjected to a more 
precise formulation the result is the following: 

To each convex function j(x1o ... , Xn) defined in a convex region G and 
satisfying certain conditions of continuity there corresponds in a unique way 
a convex region r and a convex function cfJ(h, ... , ~,) defined in r and with 
the same properties such that 

(1) X1b + ... + Xn~n ~ j(Xl, .•. , Xn) + c/l(~h .•• , ~n), 

for all points (x1, ... , Xn) in G and all points (h, ... , ~n) in r. The inequality 
is exact in a sense explained below. The correspondence between G, f and 
r, q, is symmetric, and the functions f and q, are called conjugate.1 

The hypersurfaces y = f(x 1, ••• , Xn) and 11 = cf>(~h ... , ~n) correspond to 
each other in the polarity with respect to the paraboloid 

2y = X12 + ... + Xn2 • 

Let F(x) be strictly increasing for x E; 0. Then f(x) = J: F(x)dx is convex, 

and its conjugate function is q,(~) = J: <P(~)d~ where <I>(~) is the inverse function 

of F(x). The inequality (1) for n = 1 therefore yields the well-known in
equality of W. H. Young2 

x~ ~ J:F(x)dx + J:.P(~)d~. 
(1) may thus be considered as a generalization of this inequality. 

Received March 24, 1948. 
'The case n = 1 has been considered by S. Mandelbrojt [3] under the assumption that the 

ranges G and r are identical with the entire axis - oo < x < oo. This, however, is incom
patible with the complete reciprocity between! and q, which will appear from an example given 
below. Mandelbrojt's formulation of the theorem is thus not quite correct due to the fact 
that the least upper bounds occurring in it may be infinite. 

2See e.g. [2] p. 111. 
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If f(x 1, ••• , Xn) is positively homogeneous of degree one, then G is the entire 
space x11 ••• , Xn while r is closed and bounded, and q,(~t. ... , ~n) is identically 
zero. In this case (1) expresses that j(x1, ... , Xn) is the function of support 
of the convex body r.3 

2. The euclidean spaces with coordinates x1o ... , Xn and X1, •.• , Xn, Y 
will be denoted by Rn and Rn+l respectively, points and vectors in these spaces 
by x and x, y respectively. Furthermore we write 

x' + x" = (x'1 + x"1, ... , x'n + x"n), ~X= (~x1r ... , ~Xn), 

:Zx~ = X1h + • • . + Xn~n· 
(}will always denote a number in the interval 0 < (} < 1. 

The point set G of Rn is supposed to be convex, i.e. if x' and x" belong toG, 
the whole segment (1 - 6)x' + 6x" belongs to G. But G need neither be closed 
nor open nor bounded. The interior points of segments belonging to G are 
shortly called the interior points of G. All other points of accumulation of G, 
belonging toG or not, will be called the boundary or extreme points of G. 

A function f(x) defined in G is called convex if 

(2) f ( (1 - 6)x' + 6x") ~ (1 - 6)f (x') + 6f (x") 

for any two points x' and x" of G and all 6. It is well known that this implies 
thatj{x) is continuous at the interior points of G. For our purpose we have 
also to consider the behaviour of f(x) at the boundary points. Let x* be a 
boundary point of G. For functions of one variable lim f(x) exists or is ro. 

s+x* 
But this is not necessarily the case for functions of several variables. If x* 
belongs to G the only general conclusion to be drawn from (2) is that 

(3) lim f(x) ~ f(x*); 
x+>:* 

for, from 
f ((1 - 6)x + 6x*) ~ (1 - 6)f(x) + 6f(x*) 

it follows that 
lim f(x) ~ limj((1 - 6)x + 9x*) ~ f(x*), 
x+x* B+l 

and (2) remains valid if f(x*) is replaced by any other value satisfying (3). 
If necessary, we now change G and f by adding to G all those boundary 

points x* not yet belonging to G for which lim f(x) is finite and by de
x+x* 

fining fat these and at the boundary points previously belonging to G by 

(4) f(x*) = lim f(x). 
x+x* 

The new G and the function! obtained in this way are obviously again convex; 
for, letx' and x" be arbitrary points of the new G and x' <•> and x"<•>• v= 1, 2, ... , 

•See e.g. [1) p. 23-24. 
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sequences of interior points of G such that 
x' <•> + x', x" <•> + x", j(x' <•>) + j(x'), j(x" <•>) + f(x"), 

then we get from 
J((1- fJ)x'<•> + fJx"<•>) ~ (1 - fJ)j(x'<•>) + Oj(x"<•>) 

for v + oo 

75 

lim f(x) ~ lim J((1-0)x'<•> + Ox"<•>) ~ (1-fJ)j(x') + Oj(x"}, 
x+(l- 8)x' + 6x11 •+"" 

which shows that (1 - O)x' + Ox" belongs to G and that (2) is valid, as the 
left-hand side is f ( (1 - fJ)x' + Ox") . 

With (3) in mind we may say that (4) expresses that the functions which 
will be considered in the following are convex and semi-continuous from below, 
and G is "closed relative to j," i.e. all boundary points at which lim j(x) is 
finite belong to G, or in other words, at each boundary point which does 
not belong to G we have lim j(x) = oo. 

3. The theorem to be proved may now be formulated thus: 
Let G be a convex point set in R" and j(x) a junction defined in G convex and 

semi-continuous from below and such that lim j(x) = oo for each boundary point 
o:+x• 

x* of G which does not belong to G. Then there exists one and only one point set r 
in R,. and one and only one function q,(~) defined in r with exactly the same pro
perties as G and f(x) such that 
(5) ~x~ ~ f(x) + q,(~). 
where to toery interior point x of G there corresponds at least one point ~ of r for 
which equality holds. 

In the same way G,j(x) correspond tor, q,(~). 
We define r as the set of all points~ with the property that the function 

l:x~- j(x) is bounded from above in G, and we define q,(~) in r as the least 
upper bound of this function: 

q,(~) = l.u.b. (~x~- j(x)) . 
o:eG 

Then (5) is valid. The inequality l:x~ - f(x) ~ z or 
f(x) E: ~x~ - z 

means that the hyperplane y = ~x~ - z in R"+1 with the normal vector ~. -1 
lies nowhere above the hypersurface y = j(x), and - z is the intercept of this 
hyperplane on the y-axis. It is a well-known fact that there exists at least 
one hyperplane of support of the convex hypersurface, i.e. a hyperplane which 
contains at least one point of the hypersurface and lies nowhere above it. This 
shows that r is not empty. Further we see that if there exists a hyperplane 
of support with the normal vector ~. -1 and if X 0 , j(x0 ) is a point of contact, 
then we have 

ct>W = ~x·~- f(x0 ), 

and - q,(~) is the y-intercept of this hyperplane. If x0 is an arbitrary 
interior point of G, a hyperplane of support through X0 , f(x•) exists, and 
this proves the assertion on the equality sign in (5). 
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It is evident that r and ¢(~) are convex. In fact, let e and ~" be arbitrary 
points of r, then we have for XEG, 

~x~' - f(x) ~ ¢(~'), ~x~" - f(x) ~ t/>(1;"), 
hence ~x((1- o)e + fJ~") - j(x) ~ (1 - O)q,(e) + Oq,(e') 
which shows that (1 - O)e + 8~" belongs to r and that 

q,( (1 - o)e + o~") ~ (1 - o)q,(~') + oq,(~"). 
Let now 1;* be a boundary point of rand l;ef, XEG. Then it follows from (5) 

that lim ¢(1;) !;;; ~xi;* - f(x) 
~+~* 

and this shows on the one hand that ~*Ef if lim q,(l;) is finite, i.e. that r is closed 

relative to q,(~). and on the other hand that 
lim ct>(l;) !;;; q,(l;*), 
~~* 

i.e. that tJ>W is semi-continuous from below. Hence r and q, have the same 
properties as G and f. 

4. It remains to be proved that if we start with r and ct>(~) the same pro
cedure gives G and j(x) again. We have to consider the set G* of all points x 
for which ~~x - q,(~) is bounded from above in r, together with the function 

f*(x) = l.u.b. (~i;x - ti>W) 
t<r 

defined in G*. 
If xeG we get from (5) 

(6) ~l;x - ct>W ~ f (x) 
for all ~tT, hence G C G* and f*(x) ~ f(x) in G. But to an interior point x of G 
there corresponds a~ such that equality is valid in(6), which impliesj*(x) i?;,f(x). 
Hencef*(x) = f(x) at the interior points of G and, as both functions are convex 
and semi-continuous from below, also at the boundary points of G. 

Let now X 0 be a point of Rn not in G. We have to prove that it does not 
belong toG*, i.e. that 
(7) l. u.b. (~~x0 - q,(~)) = oo. 

f• r 
Since the quantity ~~X0 - tJ>W is the y-coordinate of the point at which the 
hyperplane 

y = ~l;x - q,(~) 

of R"+1 intersects the line x = X 0 parallel to they-axis, we have to show that 
there are hyperplanes below the hypersurface y = f(x) which have arbitrary 
large intercepts on the line x = x0 • Suppose first that x0 is an exterior poirit 
of G. Then there exists a hyperplane H parallel to they-axis which separates 
the line x = X 0 from Gandy = f(x). Consider any hyperplane of supportS 
of y = f(x). LetS turn around the intersection of HandS so that the part 
lying below y = f(x) moves downwards. Then the point at which S intersects 
the line x = X 0 moves upwards and tends to infinity. Suppose next that x0 is 
a boundary point of G but not belonging to G. Then we have f (x) + oo for 
x + X 0 • Consider any segment belonging toG and having X 0 as one of its end 
points. Let x' be a fixed point and x" a variable point of the segment between 
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x' and X 0 such that f(x") > f(x'). A plane of support through x", f(x") then 
intersects the line x = X0 at a point they-coordinate of which is greater than 
f(x") and therefore tends to infinity if x" + X0 • This completes the proof of 
the theorem. 

s. In section 1 it has been asserted that the hypersurfaces y = f(x) and 
'II = q,{E) correspond to each other in the polarity with respect to 2y = :Z:x2. 
This is obviously true in the sense that each of the hypersurfaces is the envelope 
of the polar hyperplanes of the points of the other. For y = f(x) may be 
considered as the envelope of the hyperplanes 

y = :Z:xE - q,(E), 
where cEr is the parameter, and the poles Of these hyperplanes are the points 
E. ,P(E). 

6. Suppose now that y = f(x) is strictly convex, i.e. each hyperplane of 
support contains only one point of y = f(x). Let further 71 = ,P(E) satisfy the 
same condition; for y = f(x) this means that there passes at most one hyper
plane of support through a point of y = f(x). Then f(x) has continuous 
derivatives4 

and we have 

iJf 
f,(x) =ax, 

E• = fi(x). 
These relations establish a continuous one to one correspondence between the 
interior points of G and those of r. Solving them with respect to the x we get 

X;= tPi(E} 
where, for reasons of symmetry, the q,, must be the derivatives of q,. From this 
it is seen that in the case of n = 1 the derivatives of two conjugate convex 
functions are mutually inverse functions. This proves the assertion of sec· 
tion 1 on the inequality of Young. Furthermore we get an explicit expression 
for ,P(c) if f(x) is given, viz. .. 

q,(E) = ~ E,q,,(E) - f ( q,,(E)) 
i-=1 

valid in the interior of r. Hence, our correspondence between f and q, is the 
Legendre transformation of the theory of differential equations. 
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I. Introduction 
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79 
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I.l. The present studv has its ongm in problems of optimal resource 
allocation, especially those related to the possibilities of a price mecha
nism. While for some purposes Pareto-optimality might be the more 
relevant concept, we have confined ourselves here to the case where by 
"optimal" is meant " efficient" resource allocation.' 

The main result of the present chapter is an extension of the Kuhn
Tucker results [31] on "non-linear programming" to more general linear 
topological spaces.' (Numbers in square brackets indicate the references). 
The initial stimulus toward this type of generalization was the paper 
by Rosenbloom [39]. The need for it became apparent in the course of 
a larger study on problems of decentralization in resource allocation 
mechanisms. 

The remainder of the Introduction is devoted to a brief statement of 
the nature of the problem. I.2 is primarily directed at the reader 
interested in the relevance of the study from the viewpoint of economics. 
I.3 provides a summary of some of the results being g·eneralized and 
some of the mathematical issues arising. 

II is devoted to introducing some of the basic concepts and notations. 
III and IV are devoted to the derivation of certain theorems on linear 
inequalities in linear topological spaces, among them the " Minkowski
Farkas Lemma," fundamental in the sequel, and another result of 

1 This study might not have been undertaken, and almost certainly would not have been 

completed, without persevering encouragement by Tjalling C. Koopmans of the Cowles 

Commission for Research in Economics. The author is greatly indebted to· Professor Paul 
Rosenbloom, of the University of Minnesota, for having made him aware of the potentialities 

of the Banach space theory for the problems here treated. He also wishes to acknowledge 

valuable advice received from Professors Bernard R. Gelbaum and Gerhard K. Kalisch, also 

of the University of Minnesota, as well as from Kenneth ]. Arrow and Hirofumi Uzawa of 
Stanford University. Thanks are due a number of readers, and to K. S. Kretschmer in 

particular, for pointing out errors in the first printing; see especially the note on p. 74. 

' Cf. Koopmans [27]. 
a Some of the results, as for instance the generalized '' Minkowski·Farkas Lemma," may 

be of independent interest. 
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importance in relating the theory of programming to that of games of 
strategy. An appendix to III relates the results of III to the theory 
of linear equations in Banach spaces, as formulated in a paper by 
Hausdorff [18).4 (See the NOTE in brackets on page 7 4.) V .1 states 
conditions under which a Lagrangian saddle-point implies maximality 
(efficiency). V.2 deals with the problem of scalarization, i.e., of reduc
ing a vectorial maximization probiem to one of scalar maximization. 
V.3 contains the main results concerning the existence of saddle-points 
and "quasi-saddle-points." The third section, V.3.3 treats situations 
where the differential ("marginal") first-order conditions for the saddle
points are satisfied, while in the first, V.3.1, the differentiability is not 
assumed. (From the economist's viewpoint, the existence of a saddle
point corresponds to the existence of a price-vector equilibrating the 
market.) V.3.2 is devoted to the special ("linear") case which, in view 
of the interest in " linear programming " models, seemed worthy of 
separate direct treatment. The author has not completely avoided rep
etition where he feared that brevity might cause ambiguity. Also, 
many '' obvious '' and '' trivial '' proofs are spelled out in detail. 

I.2. In problems of efficient resource allocation we deal with a model 
where commodities are classified into resources, typically available in 
limited amounts, and desirables in terms of which efficiency is defined. 
The amounts of resources used up and of the desirables produced are 
determined by the decision as to activity levels. Thus the model is of 
the type treated in activity analysis, 5 although not necessarily under 
the assumptions of additivity and linearity. 

Some of the mathematical problems arising in models where linearity 
and additivity are not assumed have been explored by Kuhn and Tucker 
[31], and Slater [41]. The treatment in both papers is confined to the 
case where there is a finite number of commodities and a finite number 
of activities. This, of course, limits their domain of application. In eco
nomics there are many problems where, for instance, an infinity of 
commodities could be more naturally postulated, as in the case of problems 
involving time or location. But there is another reason why an economist 
may be interested in having a theory of resource allocation in which 
the commodity space or the activity space is of a more general nature : 
the logical structure of treatment of the more general situations often 
reveals the " deeper" or "intuitive" bases of important propositions 
and helps focus attention on the more fundamental features of the problem. 

The economic interpretation of the Kuhn-Tucker and Slater results 
(discussed by Kuhn and Tucker) has to do with the possibility of reaching 
positions of efficient resource allocation through the price mechanism. 

4 On a number of occasions we explore the question of the necessity of the underlying 
hypotheses and several theorems are devoted to this. 

o Cf. [27). 
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Roughly speaking, 6 when suitable conditions are satisfied [in the econ
omist's language the main ones could be described as "perfect divisibility" 
(all positive multiples permissible), and absence of "external (dis-) 
economies of scale" and of "increasing returns"], (a) "competitive 
equilibrium" implies that an efficient point has been reached and (b) 
any efficient point can be one of "competitive equilibrium" (provided 
prices are properly selected). When the absence of "increasing returns " 
is not assumed (while the assumptions of " perfect divisibility " and 
absence of "external (dis-) economies of scale" are retained), it is still 
possible to obtain criteria7 permitting classification of certain situations 
as non~efficient. 

Results of the latter type are of considerable importance, for they 
serve as a basis for the development of a theory of resource allocation 
applicable to a class of situations not excluding " increasing returns. " 8 

In attempting to generalize results of this type, the writer was guided 
by his interest in cases where "increasing returns " might prevail and 
hence "marginal" type phenomena would have to be considered. 
Mathematically, this meant working in a space with an operation of 
differentiation possessing most of its usual properties. The Banach 
spaces form the most general class of spaces with which the writer was 
familiar at the time this was written, although a more general theory 
of differentiation does exist. 9 However, in theorems where the differential 
operations were not used, an attempt was made to obtain proofs valid 
for a more general class of linear spaces. In V.3.1, the author has 
treated the case of Lagrangian saddle-points by methods of the type 
used by Slater, i.e., relying on convexity but not using differentiability. 

If one is to treat phenomena of "indivisibilities," one must go beyond 
linear spaces. But since one knows that most of the important results 
valid in linear spaces cannot be expected to hold when " indivisibilities " 
appear, it becomes desirable to reappraise the objectives of the theory 
of resource-allocating mechanisms, especially in their " decentralization" 
aspects. This is done to some extent in another paper now being com
pleted by the writer. 
, 1.3. In this section we give a brief description of some of the results 

·being generalized in the present chapter. 

6 For a more precise statement the reader is referred to Koopmans [27), Kuhn and 
Tucker [31), and Arrow and Hurwicz [2], and Chapter 3 of the present book. 

7 These criteria are of differential ("marginal") first-order nature; they involve prices, 
but not the full conditions of " competitive equilibrium." CL Theorem 1 in Kuhn and 
Tucker [31]. 

·· 8 Cf. the work of Hotelling [21), Lange and Taylor [33), and Lerner [35), especially as 
it involves "marginal cost" pricing. Cf. also Arrow and Hurwicz [2], and Chapter 6 of 
the present book. 

9 Cf. Hyers [22), and its Bibliography. See V. 3.3.8, where results involving differential 
operations are extended to a wider class of linear spaces. 
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Let ,fit", ~, and % be finite-dimensional Euclidean spaces, 10 their 
dimensionalities being respectively nz, nv, n •. 

In each space we define certain ordering relations. If v' = (v~, · • ·, v~ ), 
v" = (v~, • .. , v~) are two vectors in the space '7/' (where ")/'may be ~. 

v 

~.or%), we write 

v' ~ v" to mean v; ~ v;' for i = 1, 2, · · ·, n. , 

v' :2:: v" to mean v' ~ v" and v" ;t v' (i.e., v' =I= v") , 

v' > v" to mean v; > v;' for i = 1, 2, · · ·, n • . 

The ongms of the three spaces treated are denoted by Oz, Ov, 0., but 
the subscripts are omitted where no danger of confusion seems to exist: 

Given a set Y in the space ~ of desirables (Y is the " attainable " 
set, cf. [27], p. 47), we define its maximal ( = "efficient") subset Y by 
the condition 

Y = {y E Y: y' E Y, y' ~ y imply y' ;;i;; y} . 

I.e., y is a maximal(= efficient) element of Y if, and only if, y' :2:: y does 
not hold for any element y' of Y. 

The set Y, however, is given indirectly, since our decision variable is 
x, not y. Thus there are given two (single-valued) functional relations11 

j, g with a common domain in ,fit" and ranges in ~ and % respectively 
and 

Y = f[P, n g-1(P.)J 

where P, and P. are the respective non-negative orthants of ,fit" and %. 
I.e., y E Y if, and only if, y = .f(x) with x ~ 0 and g(x) ~ 0. 

Somewhat inaccurately we shall call an element x maximal when .f(x) 
is maximal and we write X =J-1(Y). 

The problem of finding necessary and sufficient conditions for the 
maximality of a point x in ,fit" is usually called the problem of vectorial 
maximization of .f(x) subject to the constraints x ~ 0, g(x) ~ 0. When 
nv = 1, we are of course dealing with scalar maximization. Correspond
ing to a given maximization problem one may construct its Lagrangian 
(expression) given by 

<P(x, z* ; y* ; j, g) = y*[.f(x)] + z*[g(x)] 

where 

"v 
y*(y) = y*'y = E YiYi 

i-1 

IO In the economic interpretation, z is the space of activity level vectors, Y the space 
of the vectors of desirables, .;; that of resources. 

11 In line with the prevailing practice, we use f where Kuhn and Tucker use g and vice 
versa. 
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and 

"• 
z*(z) = z*' z = E ztz; . 

(In matrix and vector notation A' is the transpose of A. Depending on 
the content, we omit some or all of the detail following the symbol <P.) 

We say that <P has a non-negative saddle-point at (x0, zt; y:) if and 
only if 

X 0 ~ 0, z: ~ 0, Yt > 0, 

and 
<P(x, zt ; y:) ;:;;; <P(xo, z; ; y:) ;:;;; ct>(xo, z* ; y:) , 

for all x ~ 0 and all z* ~ 0. 
<t> is said to have a non-negative quasi-saddle-point at (x0, zt ; Yn if 

and only if 

and 

Xo ~ 0, 

{ <!;>~ ;:;;; 0, 

cp~* ~ 0, 

Yt > 0, 

<P~'x0 = 0, 

<P~~zt = 0 . 

[Here <t>~ = <&cil/ox1, • • ·, B<P/ox,.~> (see fn. 1, p. 2, for this notation) 
with all derivatives evaluated at (x0 , zt; y:); ¢~* = <B<P/Bz~, ·• ·, 
&<P/az: > with all derivatives evaluated at (x0, z; ; y;).] It was shown 
by Kuhn and Tucker ([31], Lemma 1) that a non-negative saddle-point 
is always a non-negative quasi-saddle-point. The converse is false. 

In order to state the main results of Kuhn and Tucker we need three 
concepts: 

a) a function f, with convex domain D in SC' and range in V, is 
said to be concave if, and only if, for any x', x" in D and any 0 < {) < 1 
the inequality (1 - B)f(x') + {}f(x") ;:;;; ![(1 - B)x' + {)x"] holds ; 

b) the function g, with domain in df!!? and range in '#, is said to 
be regular if and only if the "constraint qualification" (cf. Kuhn and 
Tucker [31], p. 483) is satisfied ; 

c) x0 is properly maximal if it is a proper solution of the vector 
maximum problem in the sense of Kuhn and Tucker ([31], p. 488). 12 

The following are results of interest: 
1. (Kuhn and Tucker [31], Theorem 4.) Let x0 be properly maximal, 

f and g differentiable, and g regular for x ~ 0. Then there exist yt, zt 
such that ct>(x, z* ; y*) has a non-negative quasi-saddle-point at (x0 , zt ; y:). 
(Note: For n11 = 1, the term "properly" may be omitted and Theorem 
4 becomes Theorem 1 of Kuhn and Tucker.) 

12 Let f(xo) be properly maximal whenever x0 is. Then the result of Arrow, Barankin, 
and Blackwell [1) seems to show that, at least when Y = f[P, n g-l(P.)] is closed and con· 
vex, the set of properly maximal y's is dense in the set of maximal points. 
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2. (Kuhn and Tucker [31], Theorem 6.) Let both f and g be differ
entiable and concave, and g regular for x ~ 0. Then x0 is properly 
maximal if and only if there exist y;, zt such that <I?(x, z*; y*) has a non: 
negative saddle-point at (x0, z; ; yn (Note: For ~ = 1, the term 
"properly" may be omitted and Theorem 6 becomes Theorem 3 of Kuhn 
and Tucker.) 

The following comments may be found helpful in following the later 
sections of this paper. 

1. The "if " part of Theorem 6 fails to hold when y* >-: 0 instead 
of the stronger y* > 0 which is postulated. This raises a difficulty irl 
generalizing to linear (or even Banach) spaces, since in some of them a 
y* > 0 may not exist. 

2. The "if" part of Theorem 6 remains valid when the assumptions 
of differentiability and concavity of f and g and regularity of g are 
abandoned.15 

3. The " only if " part of Theorem 6 depends on Theorem 4 and the 
concavity off and g. 

4. The proof of Theorem 4 consists in '' scalarizing '' the problem by 
means of an appropriate y* > 0 (which will exist if x0 is properly 
maximal) and then using Kuhn-Tucker Theorem 1 covering the case 
nv = 1. 

5. The crucial step in the proof of the Kuhn-Tucker Theorem 1 
involves the use of the Minkowski-Farkas Lemma which states that if, 
A being an m x n rna trix, 

Ax~ 0 implies b'x ~ 0 for all x, 

then there exists t ~ 0 such that b = A't. (Cf. [31], p. 484.) Thus in 
attempting to generalize the results of Kuhn and Tucker the success 
hinges on finding the cond~tions under which the linear topological space 
counterpart of the Minkowski-Farkas proposition is valid. 

6. The relationship of the present chapter to the results of Kuhn 
and Tucker is similar to that of Goldstine's paper [15] to, say, Bliss's 
discussion in [4], p. 210 ff. Goldstine treats the case of constraints in 
the form of equalities and imposes requirements strict enough to imply 
the existence of unique Lagrangian functionals ("multipliers"). Some 
of these results (in the " relaxed " form where uniqueness need not be 
present) are specialcases of the theorems obtained in the present chapter. 

7. Slater [41], assumes f and g to be continuous and postulates that 
they have a property (which we shall call "almost concavity ")11 implied 
by (but not implying) the concavity of both f and g ; neither f nor g 

13 This suggests itself in reading Slater [41], p. 11 
14 Suppose that, for some y*;;:;: 0, z*;;;;;; 0, y*[ f(x1)] + z*[g(x1)] = y*V(x•)] + z* [g(x2)]. 

Then "almost concavity " of (f, g) requires that y*[f(xJ] + z*[g(x)];;;;;; y*r')] + z*[g(x£)] for 
all x on the segment joining x', x'. 
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is assumed differentiable; instead of requiring that g be regular, it is 
required that, for some x1 ~ 0, g(~) > 0. (When this is so, we shall 
call g Slate;r-regular.) If by a Slater-maximal element of Y = 
f[P., n g-1(P.)] is meant a Yo e Y such that y' > Yo for oo y' e Y, and if 
x0 is called Slater-maximal when f(x0) is Slater-maximal, then Slater's 
main result (Slater [41], Theorem 3) may be stated as follows : 

Let f and g be continuous and almost concave and let g be Slater
regular. Then Xo is Slater-maximal if, and only if, there exist 

Y't ~ 0, z: ~ 0 such that 
<l>(x, Zo* ; Y't) ~ <P(xo, z"t ; Y"t) ~ <P(x0, z* ; Y"t) 

for all x ~ 0 and all z* ~ 0. 
It may be noted that the concept of Slater-maximality is weaker than 

that of maximality (as previously defined) and that it makes the "if" 
part of the theorem valid even though y't > 0 is not required. 

If one wanted to substitute " maximal " for " Slater-maximal " in 
Slater's Theorem 3, it is clear from known examples that one would 
have to require a; to be properly maximal and not merely maximal, as 
well as to specify that y't > 0. 

Slater's Theorem 3 is, of course, a counterpart of the Kuhn and Tucker 
Theorem 6. In the special case n-v = 1 the two concepts of maximality 
coincide ; also y't ~ 0 becomes equivalent to y't > 0. Hence in this case 
the Slater result differs from that of Kuhn and Tucker only with 
regard to the hypotheses, since the assertion is precisely the same. 

ll. Notation, Terminology, and Some Fundamental Lemmas 

II.l.O. This chapter deals with problems arising in spaces here called 
linear topological spaces. These spaces have both an algebraic structure 
(they are linear systems, i.e., sets of vectors, with vector addition and 
scalar multiplication) and a topological structure (they .are topological 
spaces), and, furthermore, the two structures are related by the require
ment that each of the algebraic operations be a (jointly) continuous 
function of its two arguments. :u; 

The concept of a linear topological space, to be introduced more 
formally below, is a natural generalization of the properties of the 
finite-dimensional space (the real line being the simplest case) in its 

16 The definition of a linear topological space used in this paper is exactly the same as 
that used in Bourbaki [7], p. 1, for the term " espace vectoriel topologique." Our concept 
of a linear topological space is, therefore, broader than, e.g., that used by Bourgin (9], 
where the additional assumption is made that the space satisfies the Hausdorff separation 
axiom (i.e., that it is a T2 space). 

On the other hand, there are authors (e.g., Hille [20]) who use a concept broader than 
ours by relaxing slightly the nature of the continuity requirement for the algebraic opera
tions, the continuity being required in each argument separately, but not necessarily jointly. 
Many of our results remain valid for this broader class of spaces. 
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customary Euclidean distance (metric) topology. Since any linear system 

must contain all scalar multiples of all its elements, the scalars used in 

a linear system being real numbers, the set of all integers (or even the 

set of all rational numbers) is not a linear system, hence not a linear 

topological space. From the economist's viewpoint this rules out appli

cations involving indivisibilities. 

II.l.l. Linear topological spaces. A linear topological space is both 

a linear system and a topological space. To avoid ambiguities, and for 

the sake of completeness, we supply some of the standard information 

concerning these concepts. 

II.l.l.l. Linear systems. What we call a linear system is a purely 

algebraic concept. A fuller label would be " real linear system " since 

the scalars used are the reals. (Banach uses the term "linear space," 

Bourbaki " vector space " ; our usage Of the term " linear system " 

agrees with Hille's.) We shall find it convenient to refer to the elements 

of a linear system as vectors. 
Since a linear system is an additive group, we start by defining the 

latter. A set £:' is called an additive group if it satisfies the following 

conditions : 
1. With each pair (x', x") of elements of £:' is associated a unique 

element x of £:' ; x is called the sum of x' with x" and this is written 

as x = x' + x". 
2. Addition is associative; i.e., given any three elements x', x", x"' 

of £:', x' + (x" + x"') = (x' + x") + x"'. 
3. There is in £; an element (the identity element of addition, later 

called the origin) denoted by 0, (or, more simply, by 0) such that 

x + 0, = Ox+ x = x for every element x of £;. 

4. To each element x of £:' corresponds uniquely an element -x 

(called the negative of x) such that x + ( -x) = 0,. [Subtraction is defined 

by the relation x' - x" = x' + ( -x").] The foregoing conditions imply 

that the law of cancellation holds, i.e., that 

x' + x = x" + x implies x' = x" 

for any three elements x', x", x of the group. 
An additive group is called commutative (Abelian) if it satisfies the 

following additional condition : 
5. x' + x" = x" + x' for any two elements of the group. 
A linear system is a commutative additive group in which there is 

further an operation of scalar multiplication (by reals, which we shall 

often call scalars). I.e., 
6. With each pair (a, x) where a is a scalar (real) and x a vector (an 

element of 2"'), there is associated a unique vector x', called their 

scalar product; this is written as x' = a · x. [Scalar multiplication is 
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commutative, i.e., a· x = x ·a; the multiplication symbol (.) is often 
omitted.] 

7. Scalar multiplication is distributive with regard to both scalars and 
vectors, i.e., 

(a'+ a")x = a'x + a"x 
and 

a(x' + x") =ax' + ax" 

for all selections of the scalars and vectors. 
8. Scalar multiplication is associative, i.e., a'(a"x) = (a'a")x for all 

selections of scalars and vectors. 
9. The number one is the identity element of scalar multiplication, i.e. 

' 1 · x = x for all vectors x. 
The preceding conditions imply that ( -1) · x = -x and 0 · x = 0,. [The 

last equation is an example of a situation where both the number 0 
(zero) and the vector 0, (origin) appear together. This is sometimes 
written simply as 0 · x = 0 and one must infer from the context that 0 
denotes a scalar on the left and a vector on the right.] 

Definition. A lineaJr system is a set satisfying condition 1-9 above, 
i.e., an additive commutative group with scalar multiplication which is 
commutative, distributive, and associative, with reals as scalars and 1 
as the identity element of scalar multiplication. 

Algebraic set operations. Let X, X', X" be subsets of a linear system 
and a a scalar (a real number). We write 

Also, 

aX= {ax : x e X} , 

X' + X" = { x' + x" : x' e X', x" e X"} , 
X'- X"= {x'- x": x' eX', x" eX"} 

-X= (-1)X= {-x: xe X}. 

These algebraic operations must be distinguished from the set-theoretic 
operations of union and difference. The union of two sets X' and X" 
is written as X' U X" ; the set-theoretic difference (i.e., the set of all 
elements that are in X' but not in X") is written as X' ,....., X". The 
complement of X (with respect to X') is the difference X'.-.. X. 

We should also note that the algebraic operations do not have some 
of the properties suggested by the symbolism; e.g., it need not be true 
that X+ X= 2X. 

Some geometric terms. Given two vectors x', x", the set {Ax'+ 
(1 - ,l)x": 0::::;: ,l ~ 1} is called the segment joining x' and x". A set is 
called convex if with -any two points x', x" it also contains all points of 
the segment joining them. If - X = X, the set X is called symmetric 
(with respect to the origin). X is said to be star-shaped from the point 
x if, with any point x', it also contains the segmertt joining x and x'. 
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A subset X of the linear system z is called absorbing if, given any 
point x in the system z, there is a point x' in the set X and a positive 
real number ..l such that x = ..lx'.16 

II.1.1.2. Topological spaces. To define a topological space17 it is con
venient to start by introducing the concept of " a topology." A collec
tion S of subsets of a given set A is called a topology for A if it 
satisfies the following conditions : (1) A is an element of S and so is 
the empty set ¢ ; (2) the intersection of any two sets belonging to S 
belongs to S ; (3) the union of the members of any (possibly infinite), 
sub-collection of S belongs to S. The subsets of A which belong to S 
are called open (relative to S, or in S). The union of all open sets 
contained in a given set is called its interior. 

We topologize a set by selecting a topology for it. Any set can be 
topologized, for the two-element collection {¢,A} is a topology for A, 
i.e., it satisfies the above three conditions; such a two-element topology 
will be referred to as the coarse topology for A ; it is sometimes called 
in the literature the indiscrete or trivial topology. On the other hand, 
the power set (sometimes written 2A) of A, i.e., the set of all subsets 
of A, is also a topology for A, to be called the fine (often called discrete) 
topology for A. When A has two or more elements,' the two topologies 
differ ; for instance, one-element sets are open in the fine topology, but 
not in the coarse topology. Given two topologies for a set A, we call 
S' finer than S" (and S" coarser than S') if S" is a proper subset of 
S', i.e., if every set open in S" is also open in S' and there are some 
sets open in S' that are not open in S". (Two topologies are non-com
parable with respect to fineness when neither is a subset of the other.) 
Clearly, the fine topology is the finest topology possible, while the coarse 
topology is the coarsest topology possible. In most cases of applied 
interest, we deal with topologies that are somewhere between the fine 
and the coarse topologies. 

Denote by W the linear system whose elements are all real numbers, 
i.e., the "real line." Its so-called "natural" topology is defined as 
consisting of all subsets B of R~ characterized by the following property : 
each element of B must belong to an "open interval" which is a subset 
of B. (An open interval is defined as the set of all numbers greater 
than some fixed number and less than another fixed number; an open 
interval is an open set in the natural topology, but there are open sets 
which are not open intervals, e.g., the set of all numbers other than 
zero.) A set is closed (in a specified topology) if its complement (with 

16 This usage of the term absorbing, as well as some of the subsequent formulation, is 
due to the author's exposure to lectures by Professor Hans Radstrom of the Royal Institute 

of Technology in Stockholm, to whom the author is also indebted for clarification on certain 
properties of linear spaces. 

17 See, for instance, Kelley [23). 
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respect to A) is open. A set may be both open and closed (e.g., the 
empty set and A), or it may be neither open nor closed (e.g., one-element 
sets in the coarse topology when A has two or more elements). What 
is ordinarily called a closed interval (i.e., one including its end-points) 
is a closed set in the natural topology of the real line. An interval 
including only one of its end-points is neither open nor closed in the 
natural topology. The c~osure of a set is the intersection of all closed 
sets containing it. 

A topological space is defined formally as an ordered pair (A, S) where 
S is a topology for A. Often, when the topologization of A is under
stood, we refer to A itself as a topological space. 

Let (A, S) be a topological space, B a subset of A, x an element of 
B. B is called a neighborhood of x (with respect to the topology S) if 
it contains a subset C which is open (with respect to the topology S). 
Obviously, any open set containing x is a neighborhood of x, but a 
neighborhood need not be open. (Some authors use a narrower concept 
of a neighborhood and require that it be an open set.) The collection of 
all neighborhoods of a given point x is called the complete neighborhood 
system for the point x. For instance, in the fine topology all sets of 
which x is an element constitute a complete neighborhood system for x ; 
in particular, the one-element set consisting of x alone is a neighborhood 
of x. In the coarse topology, on the other hand, a point has only one 
neighborhood, namely, the set A. A topological space (A, S) is called a 
Hausdorff (topological) space if any two distinct points of the space have 
disjoint neighborhoods. Thus the fine topology is Hausdorff, but the coarse 
topology (when there are two or more elements in the space) is not. m 
in its natural topology is Hausdorff, for we can use as disJoint neighborhoods 
open intervals centered on the two points, the width of the intervals 
being less than half the distance of the two points. Most spaces of 
applied interest are Hausdorff. 

Sometimes we are interested in certain subsets of the complete neigh
borhood system of a point. A subset F of the complete neighborhood 
system of a point is called a fundamental system of neighborhoods of 
the point if every neighborhood of the point contains a neighborhood 
belonging to the set F ; if we call the neighborhoods belonging to F 
fundamental, we can say that every neighborhood of a point must 
contain a fundamental neighborhood of that point. 

It is often convenient to define a topology indirectly, viz., by assign
ing to each point a of a set A a (non-empty) collection Fa ·and declar
ing it to be a fundamental neighborhood system of a. The complete 
neighborhood system of a is then defined as the collection Ga of subsets 
of A, each of which contains a fundamental set (i.e., a set belonging 
to F .. ); finally a subset A' of A is declared as open if and only if it 
is a neighborhood of all of its points. 
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In .order for such a procedure to result in a topology for A, the col
lection Fa must, of course, satisfy certain conditions. First, naturally, 
each set belonging to Fa must contain a, otherwise it would not qualify 
as a neighborhood of a; hence every set belonging to Fa is non-empty. 
Second, the collection Fa must sat,isfy the following finite intersection 
requirement: the intersection of any two sets belonging to Fa must 
contain a set belonging to Fa. (The intersection itself need not belong 
to Fa.) A non-empty collection Fa of sets each of which contains a and 
satisfying the preceding finite intersection requirement will be called a 
neighborhood base at a. We shall see that it is convenient to discuss the 
properties of linear topological spaces in terms of fundamental neigh
borhood systems and neighborhood bases. 

It was mentioned earlier that a linear topological space is a set which 
is both a linear system and a topological space, with certain continuity 
conditions imposed on the algebraic operations of addition and scalar mul
tiplication. To be able to state these conditions, we must introduce the 
concept of continuity. 

Let A and B be two sets and let f denote a functional relation whose 
domain is A and whose range is B, i.e., which associates with each 
element a in A a unique element b = f(a) in B. Given a subset A' of 
A, we define the image of A' by f as the set {.f(a) e B: a e A'}. Given 
a subset B' in B, we define as the inverse image of B' by f the set 
{a e A : f(a) e B'}. The image of A' by f is denoted by f(A') ; the 
inverse image of B' by f is denoted by f- 1(B'). 

Now let us topologize A and B, with S denoting the topology for A, 
T the topology for B. The function f is said to be conMnuous if the 
inverse image J-1(B') of every set B' open in T is itself open (in S). 
It is important to realize that continuity depends not only on the nature 
of the function, but also on the manner in which the two spaces have 
been topologized. Thus if S is fine, any function on A is continuous. 
Similarly, the constant function (which has the same value for all 
elements of A) is continuous for any topology, since the inverse image 
of the one-element set (consisting of the constant f value) is the whole 
space A. Now suppose A= B and f is the identity function, i.e., 
f(a) = a for all a in A. (When A = B = Y, the identity function is 
represented by the positively inclined 45° straight line through the 
origin.) Whether f is continuous depends on the topologization of A 
and B. If A and B are given the same topologies (i.e., S = T), then 
f is continuous, since f- 1(B') = B' for all B'. But, even though the sets 
A and B are the same, their topologies may differ. For instance, let 
A= B = R•, with f still the identity function, and let B have the 
natural topology while to A we give the coarse topology. Let B' be a 
finite open interval on the B-axis which is an open set in the natural 
topology. The inverse image of B' is the same interval, taken on the 
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A-axis ; but, in the coarse topology of the real line, a non-empty proper 
subset of the line is not op~n ; hence f-'(B') is not open (in S) ; hence with 
this topologization the identity function is not continuous. 

One more topological concept is essential in discussing the properties 
of linear topological spaces. As was indicated earlier, the continuity of 
the operations in such a space is joint continuity in the two arguments. 
To clarify the point, consider the operation of scalar multiplication. We 
may write, for a scalar (real) a and a vector x, ax = g(a, x), so that 
the scalar product may be viewed as a function of two variables a and 
x. In order to explain what is meant by the joint continuity of g in 
the two variables, we restate the situation as follows : First, we write 
ax= f((a, x)), i.e., we now view the scalar product as a function whose 
domain is the set of ordered pairs (a, x), i.e., the Cartesian product 
R$ x 2, while the range, of course, is the set cfe'. To apply the above 
definition of continuity, we must topologize the product set R$ x :it"'. 
Similarly, addition may be viewed as a function on the Cartesian product 
:it"' x '"''?!=' with the range in 2. Here, again, the product set must be 
topologized. 

In both cases, the appropriate topologization (i.e., the one implicit in 
the definition of a linear topological space) is the so-called product 
topology which we shall now define. 

Let there be two topological spaces (A, S) and (B, T) and let C =A x B. 
The product topology, about to be defined, will be denoted by P[S, T] ; 
hence the topological product space is written as ( C, P[S, T]). To define 
the product topology, it is enough to characterize the open sets of C. 
A set C' is open in the P[S, T] topology if and only if every point c' 
of C' is a member of a set of the form A' x B' where A' is open (inS), 
B' is open (in T), and A' x B' ~ C'. As an illustration, if A = B = R$ 
(the real line), so that C is the Cartesian plane (the set of all ordered 
pairs of real numbers), and S = T = the natural topology for the reals, 
then the product topology P[S, T] is the usual Euclidean topology of the 
plane where a set is open if every one of its points can be enclosed in 
a disk of positive radius wholly belonging to the set. 

Another example is obtained if C is again M x R$ but S = T = coarse 
topology ; here the product topology is the coarse topology of the plane. 
Similarly, the topological product of fine topological spaces is fine. An 
interesting case is obtained if we take A = B = R$ but with different 
topologies on the two spaces, viz., A coarse and B natural. In the 
product topology a one-element set (a point) is not closed and the topology 
is not Hausdorff: every open set must contain an infinite "strip" (of 
positive width) parallel to the A-axis, and any neighborhood containing 
(a', 0) must contain all other points of the form (a, 0). 

II.l.l.3. Linear topological spaces. We now have a sufficient vocabu
lary to provide a precise definition of a linear topological space. 
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Definition. Let X be a linear system and S a topology for X. (X, S) 
is said to- be a linear topological space if (1) addition is continuous in 

the product topology P[S, S], and (2) scalar multiplication is continuous 
in the product topology P[N, S], where N denotes the natural topology 
of the real line. 

To illustrate, let X be the real line R#. As might have been expected, 

(R~, N), i.e., the real line in its natural topology, is a linear topological 
space ; the real line in its coarse topology also turns out to be a linear 
topological space ; the real line in its fine (discrete) topology is not a 
linear topological space, although it is a linear system and a topological 

space. Hence the continuity conditions in the above definition are not 
automatically satisfied for every linear system which is also a topological 
space. 

The verification of the continuity properties of the algebraic operations 
directly from the topology of the space can be quite awkward; the 

situation becomes much more transparent when the properties of linear 
topological spaces are stated in terms of neighborhood systems. Further
more, we may confine ourselves to the discussion of the neighborhood 

system of the origin 0. ; if Go is a collection of neighborhoods of 
the origin, the corresponding coll';;,ction of neighborhoods of any point 

x is given by {x} + G0 = G.. Thus the topology of a linear topo
logical space may be defined in terms of a fundamental neighborhood 
system of the origin, the corresponding complete system of neighborhoods 

then being defined as the collection of sets containing a fundamental set, 
and finally, an open set being defined as a set which is a neighborhood 
of each of its elements. But to follow such procedures we must know 
what types of neighborhoods one may encounter in linear topological spaces. 

The answer to this question is contained in a theorem we shall state 
in a moment. To simplify this statement, we shall coin an ad hoc term ; 
we shall call a non-empty family G of sets acceptable if it satisfies the 
following conditions : (1) if V is in the family G, then the family must 
also contain a set W such that W + W ~ V; (2) every set in the family 
is symmetric, i.e., V = - V for all V in G; (3) every set of the family 
contains the origin, i.e., 0, E V for each V in G ; ( 4) every set of the 
family is star-shaped from the origin, i.e., if a point x is in V, then 

so is the whole segment joining x to the origin ; (5) every set in the 
family is absorbing, i.e., if x is any point of the space X and Vis a 
set in the family G, then V has an element x' such that x = ..lx' for 
some positive number J ; (6) the family G is invariant under homotheties 
(from the origin), i.e.,· if Vis a set in the family and a a real number 

different from zero, then the set a V is also in the family. 

THEOREM (Bourbaki [7], Prop. 5, p. 7). 

A. If (X, S) is a linear topological space, then there exists an accepta-
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ble (i.e., satisfying conditions 1-6 above) fu,ndamental neighborhood system 
of the origin. 

B. In a linear system X, let F be a neighborhood base at 0~ (i.e., a non
empty collection of sets each containing the origin and such that an inter
section o.f any two members of the collection contains a member of the 
collection) and suppose that F is acceptable (i.e., satisfies conditions 1-6 
above). Then there exists a topology (and only one topology) such that F 
is the fundamental neighborhood system of the origin in that topology. In 
this topology, X is a linear topological space. 

[The above six conditions are somewhat redundant, since 3 follows 
from the others. We have chosen this form, however, partly in order 
to show that a linear topological space is a linear topological group, i.e., 
an additive Abelian group with a topology in which addition and sub
traction are both continuous (jointly in the two arguments). Conditions 
1-3 above are precisely those characterizing a fundamental neigh'Qorhood 
system of the origin (identity element of addition) of a topological group. 
Cf. Bourbaki [6], p. 6.] 

We can now verify our statements about the various topologizations 
of the real line. Thus for its coarse topology the neighborhood base at 
the origin consists of the single one-element set {R#}. It may be seen 
that this base is acceptable (i.e., satisfies conditions 1-6). For the 
natural topology of the real line we use the family of all open intervals 
centered on 0 ; again, the family is acceptable. Hence R# is indeed a 
linear topological space in both the coarse and the natural topology. 
But the situation is different when R# is given its fine (discrete) topology. 
Since the one-element set consisting of the origin is open in this topology, 
it is a neighborhood and hence any fundamental neighborhood system 
of the origin must contain {0}. However, {0} is not an absorbing set 
(i.e., condition 6 of acceptability is violated) and hence R# in its fine 
topology does not have an acceptable fundamental system; hence it is 
not a linear topological space. 

A linear topological space satisfying the Hausdorff separation axiom 
(distinct points have disjoint neighborhoods) is called a Hausdorff linear 
(topological) space. It will be noted that the real line, depending on 
its topologization, may fail to be a linear topological space (in the fine 
topology), it may be a Hausdorff linear space (in the natural topology), 
or it may be a non-Hausdorff linear topological space (in the coarse 
topology). Euclidean finite-dimensional spaces are all Hausdorff linear. 

A linear topological space may or may not possess a fundamental 
neighborhood system of the origin consisting of convex neighborhoods. 
If, in a linear topological space, there exists such a fundamental system 
consisting of convex neighborhoods (i.e., every fundamental neighborhood 
is convex), the space is called a locally convex (linear topological) space. 
We may note that the real line forms a locally convex space in both 
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its natural and its coarse topology, This is not accidental: according 
to a theorem due to Tychonoff (cf. [43], p. 769) every finite-dimensional 
linear topological space is locally convex. [A linear system is finite
dimensional, say n-dimensional, if there exists a finite set of elements. 
:lh, x,, · · ·, x,. such that every element x of X can be written in the form 
x = a 1x1 + a,x, + · · · + a,.x,. where the a, are scalars (reals).] Further
more, if a space is finite-dimensional and Hausdorff linear, then its 
topology is Euclidean. 

Most linear topological spaces occurring in applications are locally 
convex, but there do exist linear topological spaces that are not locally• 
convex. Tychonoff's example (loc. cit., p, 768) is the space denoted by l* 
consisting of all the infinite sequences x = (x1, x,, · · ·) of numbers x, 
such that 

The space l 11 , is topologized in the following manner. We construct a 
fundamental neighborhood system of the origin consisting of sets of 
the form 

= 

{x: (B lx,l11')' < P} 
i=l 

with p varying over positive reals. It was shown by Tychonoff that 
(a) this space is a linear topological space, but (b) there does not exist 
a fundamental neighborhood system of the origin consisting of convex 
sets. (The fact that the fundamental system as given does not consist 
of convex sets is by itself inconclusive, since there might exist another 
fundamental system consisting of convex sets and yielding the same 
topology.) Hence l112 is a non-locally convex linear topological space. 
On the other hand, the space is Hausdorff linear ; this can be shown 
by utilizing the ·fact that the function 

= 
q(x) = (L !x,ll'')' 

i-1 

satisfies the inequality q(x' + x") ~ 2[q(x') + q(x")]. Let x, y be two 
distinct elements of the space such that q(x- y) =a, where a is neces
sarily positive. Now select a neighborhood of x to be the set of points 
such that q(x- z') is less than a/6 ; similarly, select a neighborhood of 
y consisting of points such that q(y - z") is less than a/6. Suppose that 
there is a point z belonging to both neighborhoods. Then, in virtue of 
the inequality, q(x- y) ~ 2[a/6 + cc/6] which contradicts the assumption 
made. Hence the space does satisfy the Hausdroff separation axiom. 

We have had examples of spaces that are both Hausdorff and locally 
convex (real line in its natural topology), Hausdorff but not locally 
convex (the space 'l11,), locally convex but not Hausdorff (real line in its 
coarse topology). To complete the picture let us point out that the 
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topological product of l112 with the real line in its coarse topology is 
neither Hausdorff nor locally convex, although it is a linear topological 
space. 

A fundamental neighborhood system of the origin in a locally convex 
space can always be defined (Bourbaki [7], pp. 95-96) by means of a 
set of functions called semi-norms. A semi-norm is defined as a finite 
real-valued function p on a linear system satisfying the following two 
requirements : (1) for any scalar a and any vector x, p(ax) = I a I • p(x) ; 
(2) for any two vectors, p(x' + x") ~ p(x') + p(x"). It follows that 
p(O~) = 0 and p(x) is always non-negative. A semi-norm is called a 
norm if it has the further property (3) p(x) = 0 only if x = Ox. Hence, 
for a norm, p(x) = 0 if, and only if, x = Ox. The norm of x is usually 
written II x 11. For instance, let X be the linear system consisting of all 
ordered pairs (x1 , x,) of real numbers (the Cartesian plane). Then 
p*(x) = lx1 1 + lx,l is a norm, while p**(x) = lx1 1 is a semi-norm, but 
not a norm. 

If p is a semi-norm, the set {x: p(x) < ..l} = [p; .l] is called an open 
strip (of width 2..l). Denote by [p] the set of all open strips [p; ..l], 
obta,ined by keeping p fixed while ..l varies over the positive reals. 
Given a set P of semi-norms, we shall denote by [P] the set of all open 
strips, obtained by taking all the sets [p ; -l] with .l varying over the 
positive reals and p over P. Finally, let F(P) denote the set of all 
finite intersections of members of [P]. The set F(P) is a fundamental 
neighborhood system of the origin, as can be verified from the " accept
ability" conditions 1-6 above; also, the elements of F(P) are convex 
sets, since all strips are convex and so are their intersections. Hence 
F(P) defines a locally convex topology for the linear system on which 
the semi-norms are defined. Conversely (Bourbaki [7], p. 96, Prop. 4), 
every locally convex topology can be defined by a fundamental set F(P) 
for a suitably chosen set of semi-norms P. 

A normed space is a linear system where the fundamental neighborhood 
system of the origin consists of sets (open spheres) S(p) = {x: llxll < p} 
where p is the radius of the sphere. (The spheres are centered at the 
origin.) The system consists of spheres with the radius varying over 
the positive reals, although a smaller system (e.g., with rational radii) 
would be sufficient. That a normed space is a locally convex linear 
space follows from the fact that the spheres constitute an '' acceptable '' 
family (i.e., satisfy conditions 1-6 above) and are convex sets. Also, a 
normed space is Hausdorff. The proof proceeds exactly as in the ease 
of the space l112 above, except that the relevant inequality does not 
have the factor 2 on the right-hand side. 

A linear topological space is called normable if its topology can be 
defined by a norm as just indicated. From what has just been said it 
follows that a normable space must be locally convex Hausdorff. How-
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ever, not every locally convex Hausdorff linear space is normable. 
Because of the convenience in dealing with normed spaces, it is of 
interest to know under what conditions a space is normable. In order 
to do so, we must introduce a new concept, that of a bounded subset· 
of a linear topological space. A subset B is said to be bounded if, 
given any neighborhood V of the origin, there is a positive scalar J 

such that B ~ J V; this is expressed by saying that a bounded set is 
absorbed by every neighborhood. 

We may now state Kolmogoroff's theorem on normability of linear 
topological spaces : a linear topological space is normable if and only if 
it is locally convex Hausdorff and there exists a bounded neighborhood 
of the origin. 

The following is an example of a non-normable locally convex Haus
dorff space. Its elements are all the infinite numerical sequences x = 
(x1 , x,, · · · ). The space is topologized by the set P = {p', p', · · ·} of 
semi-norms where pd(x) =max (\x1 \, \x2 \, • • ·, lxd \). Its topology, being 
based on the family F(P) as the fundamental neighborhood system of 
the origin, is necessarily a locally convex linear space. It is also 
Hausdorff because for each element x other than Oz of the space there 
exists a norm p in P such that p(x) * 0. (Cf. Bourbaki [7], p. 97, 
Prop. 5.) Now if this space were normable, there would exist a bounded 
neighborhood of the origin ; hence, by definition of a fundamental system, 
there would exist a bounded set of the family F(P), since a subset of 
a bounded set is bounded. Hence to establish the non-normability, it 
is enough to show that no member of the family F(P) is bounded. 
Now the members of the family F(P) are formed by finite intersections 
of the open strips defined by the norms pd. Hence it is true for each 
member of F(P) that, starting with, say, the k-th component, the values 
of the components with subscripts ~ k are completely unrestricted. 
Now let Vk be a member of F(P), with.the components whose subscripts 
~ k are unrestricted, while the components 1 through k- 1 cannot 
exceed M (0 < M < oo) in absolute value. We show that Vk is not 
absorbed by a neighborhood Vk+l· This follows from the fact that in 
Vk+l the (k + 1)th component is restricted, while in Vk it is not. Hence, 
no matter what A > 0 we choose, there will be elements in Vk that are 
not in A Vk+l· · Hence Vk is not bounded ; but since Vk is a typical 
member of F(P), no set in F(P) is bounded. By the previous argument 
it follows that there is no bounded neighborhood of the origin, and 
hence the space is not normable. 

Many spaces we deal with are normed; in particular, the finite-dimen
sional Euclidean spaces are normed. The norm of a point x m a 
Euclidean n-dimensional space can be defined in various ways. The 
Euclidean norm of x is defined as 
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another norm (which results in the same topology) can be defined as 
max(lx1 l, Jx,J, ·· ·, Jx.,.J). 

The space of all infinite sequences x = (x1, x2, • • ·) of numbers .x, with 
only finitely many components different from zero can be normed by 
defining 

( 
~ )1/2 

llxll = ~x~ . 

In a normed space it is possible to define a distance function 
d(x', x") = Jlx'- x"JI. In any space on which a distance function has 
been defined one can introduce a "metric" topology, by using as the 
fundamental neighborhood system for x0 the (metric) spheres, i.e., the 
sets {x: d(x, a;0) < p} with the radius p varying over positive reals. 
Because of the triangle inequality satisfied by the distance function a 
metric space is always a Hausdorff topological space, the proof being 
analogous to that sketched above for the normed and Z112 spaces. 

Let (x\ x', · · ·) be an infinite sequence of points x' in a metric space 
with a distance function d. The sequence is said to be a Cauchy 
sequence if, given c > 0, there exists a positive integer N such that 
d(xm, x:n) < c provided both m and n are greater than N. A sequence 
(x\ x•, · · ·) is said to converge to x0 if, for any c > 0, there exists a 
positive integer N such that d(x"', xD) < c provided n is greater than 
N. A sequence is said to be convergent if it converges to some element 
a;0 of the space. It is known that every convergent sequence is a Cauchy 
sequence. On the other hand, there are spaces with non-convergent 
Cauchy sequences. One example of such a space is that of infinite 
sequences with only finitely many components different from zero. A 
space where every Cauchy sequence is convergent is called complete. 
The reals are complete in their natural topology, while the rationals 
with the same topology (i.e., defined by the Euclidean distance or norm) 
form a space that is not complete because there are sequences of reals 
converging to an irrational number. A normed space which is also 
complete is called a Banach space. Thus the reals (as well as all finite
dimensional Euclidean spaces) are Banach, but the above space of infinite 
sequences with only finitely many non-zero components is not Banach, 
though normed. The classic example of an infinite-dimensional Banach 
space is the space Z, of all infinite numerical sequences x = (x1, x,, · · ·) 
such that 

i-.' 

the norm being defined as the square root of the preceding infinite sum; 
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l, belongs to a sub-class of Banach spaces known as Hilbert spaces, where 
with each pair of elements it is possible to associate a number called 
their inner product x' · x", with x' · x" linear in each of its arguments, 
x' · x" = x" · x', x · x always non-negative, and x · x = 0 if and only if 
x = Ox. In a space with such an inner product it is possible to define 
the norm of a vector as llxll = (x · x)112 , and the resulting normed space is 
called Hilbert if it is Banach, i.e., if it is complete. (Some authors 
use somewhat different definitions of a Hilbert space.) According to 
this definition the Euclidean spaces are Hilbert, with the inner product 
defined as 

n 

""" f " Ld xixi . 
i.=! 

The resulting norm is, of course, that corresponding to the Euclidean 
distance. 

As an example of a Banach space which is not a Hilbert space we may 
take the space of all infinite bounded numerical sequences x = (x1, x2, •• • ). 

The norm of this space is defined by II x II = sup (I x1 1, I x, I, .. · ). 
II.1.2. Linear transformations. A function T whose domain is a linear 

system 2 and the range a subset of a linear system ~ is called a 
linear transformation on c'fZ" into :Y if it is additive and homogeneous, 
i.e., if 

T(x' + x") = T(x') + T(x") for all x', x" in £!' , 

and 

T(ax) = aT(x) for all real a and all x in c'fZ" . 

If both spaces are linear topological, ·an additive continuous function 
is homogeneous (Hille [20], Theorem 2.6.1, p. 16). The converse, how
ever, is not true; i.e., there are (in infinite dimensional spaces) linear 
transformations which are not continuous at any point (see Bourbaki 
[7], p. 93). 

If both spaces are Banach, an additive function is continuous if and 
only if it is hounded (i.e., carries bounded sets into bounded sets). 
Hence, in Banach spaces, "linear bounded " as applied to transforma
tions is synonymous with "linear continuous." 

A linear transformation on z- whose range is a subset of the reals 
(i.e., a homogeneous additive real-valued function on 2) is called a 
linear functional on z-. There are linear functionals on locally convex 
spaces that are not continuous at any point (Bourbaki [7], p. 93). Since 
a linear functional is both convex and concave, it follows that, even in 
locally convex spaces, a convex or concave function need not he con
tinuous. This is of interest in connection with results of this chapter 
where only concavity, but not continuity, of a function is assumed, since 
it proves that the concavity assumption is less restrictive ; the same 
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remark applies to results where only linearity, but not continuity, of 
transformations is assumed. 

II.1.3. The con:jugate space. Let c'fii!? be a linear topological space. 
The set !I!?'* of all linear continuous (with respect to the natural topology 
of the reals) functionals on c:?:" is called the conjugate (adjoint, dual) 
space of Jfr. JJr* is a linear system whose typical element will be 
written as x*; the null element (origin) of !I!?'* (i.e., the real-valued 
function on c:?:" whose value is zero for each element of Jfr) is denoted 
by o; or 0, as the occasion demands. 

Two ways of topologizing the conjugate space are of particular interest. 
They are respectively labeled " strong " and " weak star," the latter 
usually being written '' weak*.'' 

In each case the topology is defined through a fundamental neighbor
hood system. 

In the strong topology a fundamental neighborhood of o; is of the 
form 

U(c:, B) = {x* E !I!?'* : lx*(x) I < e for all x E. B} 

where B is a bounded set, taking all neighborhoods U(c:, B) with c: vary
ing over the positive reals and B over the class of all bounded sets in ~. 

In the weak* topology a fundamental neighborhood of o; is also of 
the form 

U(c:, B) = {x* E ,27* : lx*(x) I < e for all x E B} , 

but B here ·is required to be a finite set; the fundamental system is 
again obtained by letting c: vary over positive reals and B over the 
class of all finite sets in JJr. 

Since every finite set is bounded, it follows that every weak* neigh
borhood is also a strong neighborhood, but there may be strong neigh
borhoods that are not weak* neighborhoods. It follows that the strong 
topology is at least as fine as, and possibly finer than, the weak* 
topology. I.e., every set open (resp. closed) in the weak* topology is 
also open (resp. closed) in the strong topology, but the converse need 
not be true. 

In both topologies the conjugate space is a .Hausdorff locally convex 
linear topological space (Bourbaki [8], pp. 16-19). Moreover, when the 
space ,27 is normed, the conjugate space is normable in its strong 
topology, the norm of an element x* of the conjugate space being 
defined by 

llx* II =sup lx*(x) I . 
li"ll:iOl 

In its strong (norm) topology, the conjugate of any normed space is 
complete, hence it is a Banach space. 

In finite-dimensional Euclidean spaces, the strong and weak* topologies 
coincide. But in infinite-dimensional spaces the strong topology is, in 
most cases likely to be considered, actually finer than the weak* topology. 
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In particular, if 2' is an infinite-dimensional normed space, the strong 
topology is finer than the weak* topoiogy. (Cf. Bourbaki [8], p. 111, 
where it is shown that the set of elements of norm one in the conjugate 
space is not closed in the weak* topology, although it is closed in the 
strong topology.) 

II.1.4. Separation by hyperplanes in linear topological spaces. 
II.l.4.1. Let 2' be a linear system. A subset of 2' is called linear 

if it is closed under the operations of addition and scalar multiplication. 
A translate of a linear set M, i.e., a set of the form {x0} + M where 
M is a linear set, is called a (linear) variety. 18 If M is a linear set such 
that M is a proper subset of 2' and there is no linear proper subset 
of 2' in which M is contained, M is called a maximal linear set. A 
translate of a maximal linear set is called a maximal variety. 

With each maximal variety V one may associate a non-null (i.e., =I= o;) 
linear functional x* on 2' and a real number a such that V = 
{x e 2': x*(x) = a}. On the other hand, every pair (x*, a) where x* 
is a linear functional and a a real number defines a maximal variety. 

If 2' is a linear topological space, a maximal variety may· or may 
not be a closed set. We shall call a closed maximal variety a hyperplane. 
(Terminologies of various writers differ. In Bourbaki, hyperplane is 
synonymous with a maximal variety.) In a linear topological space ~, 
a maximal variety V = {x e 2': x*(x) =a}, where x* is a linear func
tional and a a real number, is closed if and only if x* is continuous. I.e., 
a maximal variety is a hyperplane if and only if the functional defining 
the variety is continuous. 

We may now state a theorem underlying a great many results con
cerning convex sets in linear topological spaces. The theorem is variously 
called the Hahn-Banach Theorem (geometric form) (cf. Bourbaki [7], p. 
69) and the Bounding Plane Theorem. 

l'HEOREM ILl. Let 2' be a linear topological space, A an open convex 
(non-empty) subset of 2', and M a linear variety disjoint from A (i.e., 
An M = ¢). Then there exists a hyperplane H containing M and disJ"oint 
from A (i.e., Mb Hand Hn A=¢). 

Hence, under the hypotheses of the Theorem there exists a continuous 
linear functional x* and a real a such that x*(x) = a for all x in M and 
x*(x) < a for all x in A. 

In what follows we shall need the follow~~. 
CoROLLARY ILL Let 2' be a linear topological space and A a convex 

subset with non-empty interior. Then, for any point x0 of .2" which is 
not in the interior of A, there exists a continuous linear functional x[ 
such that :z;*(x) ~ x[(x0) for all x in A. 

18 In particular, every point of the space, view~d as a one-element set, is a linear 
variety. 
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The geometric interpretation of the preceding Corollary is that through 
every point not in the interior of A there is a hyperplane " bounding " 
the set A, provided A is convex and has a non-empty interior. 

In certain contexts, however, we want a somewhat stronger separa
tion property. Given a set A and a point x0 outside the set, we are 
interested in the existence of a hyperplane such that A is wholly on 
one " side " of it (possibly touching H) while x0 is on the other " side " 
(not touching H). I.e., we are looking for a continuous functional xt 
such that 

sup xt(x) < xt(xo) . 
xEA 

It is intuitively clear that we shall have to require that A be a closed 
convex set. But it turns out that restrictions must also be imposed on 
the nature of the linear topological space. The desired result follows 
from Prop. 4 in Bourbaki [7], p. 73. It was established by Mazur for 
Banach spaces and by Bourgin for Hausdorff locally convex spaces ; we 
shall refer to it as the Mazur-Bourgin Theorem. 

THEOREM II.2. (Mazur-Bourgin.) Let ~ be a locally convex linear 
topological space, A a (non-empty) convex closed subset of zr, and Xo a 
point outside A, i.e., x0 ¢ A. Then there exists a hyperplane "strictly 
separating " Xo from A, i.e., there exists a continuous linear functional 
x[ such that the inequality 

( 1) 

holds. 

sup xt(x) < xt(xo) 
xEA 

Following Bourgin/9 we shall refer to a set that can be " strictly 
separated " from points not in it as 1·egularly0 convex. Hence the preced
ing theorem states that in a locally convex space closed convex sets 
are regularly 0 convex. (Also, it is the case that a regularly0 convex set 
is closed and convex.) It may be noted, however, that the class of 
spaces in which a closed convex set is regularly 0 convex is wider than 
that of locally- convex spaces, as shown by Klee ([25], (10.1), p. 459). 
This is of interest since the regular0 convexity of certain sets is a crucial 
property in several results of this chapter. If spaces in which closed 
convex sets are regularly0 convex are called c-regular (as suggested by 
E. Michael, see Klee [26], p. 106), we may note here that many of the 
results of this chapter which presuppose local convexity of the space 
are valid for all c-regular spaces. However, this additional generality 
does not seem of serious applied interest in our problems. 

On the other hand, we may in some cases wish to ensure the regular0 

convexity of certain sets without restricting ourselves to locally convex 
spaces. This can be accomplished by imposing an additional requirement 

19 In a slightly modified fashion: what we call regularlyo convex (regularly circle-convex) 
he c~lls regularly .w convex (where z is the underlying space). 
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on the nature of the ·set A, viz., that it possess a non-empty interior 
(see, for instance, Klee [25], Theorem 9.7, p. 456). However, the as
sumption of a non-empty interior rules out certain worth-while applica
tions. Specifically, the sets in whose regular 0 convexity we are interested 
are those consisting of the vectors with non-negative coordinates (the 
non-negative cones) ; in a Euclidean -space of finite dimension such a set 
(the non-negative orthant) does have an interior, but in infinite-dimensional 
spaces this is not always the case. In particular, for the lp spaces 
(p ~ 1), the non-negative cone has no interior points (cf. Klee [24], p. 
771) ; in other spaces, such as the space (m) of infinite sequences, the 
non-negative cone does have interior points. 

Let ,2" be a linear topological space, ~* its conjugate space. Given 
any element x0 of the space ~. we can define a functional !,.0 on the 
conjugate space ,2"* by the relation 

f,.o<'x*) = x*(xo) for all x* e .;z·* . 

It may be verified that f :.o is additive and homogeneous, hence linear. 
Now it may be noted that f,0 is a continuous functional on Z* if ~* 
is given its weak* topology ; in fact, the weak* topology is the coarsest 
topology for which all functionals f,. are continuous. Since the strong 
topology of the conjugate space is finer than (or at least as fine as) the 
weak* topology, it follows that the functionals f,. are also continuous 
when ~*is given its strong topology. Hence the set of all functionals 
!,. obtained by letting x vary over the whole space ~ is a subset of 
the conjugate of ~*, whether the latter has the weak* or the strong 
topology. When the set of all f,. (as x varies over ~) equals the 
conjugate of 2''*, we call ,2? refierive. (For instance, the Euclidean 
spaces are reflexive and so is l2.) Let .?:" be a linear topological space 
and .Z* its conjugate. A subset X* of 2'* is said to be regularly 
convex (this is not to be confused with the notion of regular0 convexity 
defined earlier) if, given an element xt not in X*, there exists an element 
x0 of the underlying space Jt;P such that 

( 2 ) sup x*(Xo) < xt(Xo) . 
z*e.x• 

The relation (2) can be understood more easily if we rewrite it as 

( 2') 

where !,.0 is defined as above. Now f'"D is a continuous functional on 
2'*, as just shown, whether the topology of the conjugate space is 
weak* or strong. Hence (2') demands that it be possible to strictly 
separate X* from a point xt outside of it by a hyperplane (in either 
topology) and, furthermore, that the hyperplane be of the type defined 
by an f, functional. Now we know that in either topology the conjugate 
space is locally convex; hence, provided X* is convex and closed, there 
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always exists some hyperplane strictly separating the point and the set 
(by the Mazur-Bourgin Theorem). However, it does not follow that the 
separating hyperplane will be of the f, type, i.e., determined by an 
element of the underlying space. It is therefore noteworthy that, as 
shown by Bourgin ([9], Theorem 18, p. 655), if z is a Hausdorff•o 
linear space, X* is regularly convex, if and only if it is convex and 
closed in the weak* topology. Of course, X* is closed in the strong 
topology if it is closed in the weak* topology. 

II.l.4.2. Regularly convex envelope. 
LEMMA ILl. Let J¥ be a collection of regularly convex subsets A of 
~~* and assume the intersection 

I$= n A 
AE$ 

of these sets to be non-empty. Then I""' is also regularly convex. 21 

PROOF. Let w[ ¢ I$. Then w; ¢ Ao for some A0 E..!¥. Since Ao 1s 
regularly convex, there exists w0 E ~ such that 

sup w*(w0 ) < w;(wu) . 
w*EA0 

Now I""'~ A 0 , so that 

sup w*(w0) ~sup w*(w0) , 
w*EI .;e w*EA0 

hence, 

sup w*( w0 ) < w;( Wo) 
w•er~ 

and the conclusion of the Lemma follows. 

If B ~ ~*, we denote by B the intersection of all regularly convex 
sets in ~* containing B. By the preceding Lemma, B is regularly 
convex; it is called the regularly convex envelope of B. 

Clearly, B = B if and only if B is regularly convex. 
II.l.5. If T is a linear continuous transformation on 52? into :Y 

(where both 2:" and :'V are topological linear spaces), we may define a 
functional if on 2!' by the relation 

lf(X) = y:(T(x)] for all x E 2' , 

where y; is a fixed element of V*, i.e., a linear continuous functional 
on $-". We have 

and 

lf(ax) = y[[T(ax)] = y:[aT(x)] = ayt[T(x)] = ai(J(x) 

lf(x' + x") = y:[T(x' + x")] = yt[T(x') + T(x")] 

= y:[T(x')] + y:[T(x")] = lf(x') + lf(x") . 

20 It may be shown that the restriction to Hausdorff spaces may be removed. 
21 This is stated for Banach spaces in Krein and Smulian [30), p. 556. 
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Hence ff is linear ; ff is also continuous,·~ hence it is an element of 
die* and may be denoted by x~0. 

Consider now the functional relation associating with each y* e ~* 
the corresponding x:. e die*, as just defined. This relation is denoted 
by T* and is called the adjoint of T. We write 

x:. = T*(y*) (x:. E die*, y* E ;t/*) , 

where 

x:.(x) = y*[T(x)] for all x e die . 

We note that, for all x e die, 

x.!v*(x) = ay*[T(x)] = ax:.(x) 

and 

x:. +v* (x) = (y[ + y;)[T(x)] = y[[T(x)] + yi[T(x)] 
I > 

I.e., 

T*( ay*) = aT*(y*) 

and 

T*(y[ + y:) = T*(yt) + T*(y~) , 
so that T* is a linear transformation. 

When ~ and P' are Banach spaces, T* is also continuous. (Hille 
[20], Def. 2.13.1 and Theorem 2.13.3, p. 27. Note that here continuity 
is equivalent to boundedness.) 

When ,fi? and P' are finite-dimensional Euclidean spaces, let A denote 
the matrix such that 

T(x) =Ax. 

Here linear functionals belong to their respective spaces (die = ,Ji?*, 
V" = P"*) and x*(x) = x*'x, etc., where the prime denotes transposition. 
Hence the relation x*(x) = y*[T(x)] may be written as x*'x = y*'Ax, i.e., 
x*' = y*'A, so that x* = A'y*. I.e., the adjoint transformation T* 
corresponds to a premultiplication by the transpose A' of the matrix A 
representing the given transformation T. 

II.2.1. Let A be a set and p a transitive binary relation in A. When 
the relation holds for the ordered pair a', a" e A, we write a' p a". 
When it does not, we write a' p a". An element au e A,, A, ~ A is said to 
be p-maximal in A 1 (or, more briefly, maximal) if, for any a' e A, the 
relations a' e A11 a' p a0 imply au p a'. 

Let cp be a real-valued function on A. Then cp is said to be isotone 
(with respect to p) if 

a' p a" implies cp(a') ~ cp(a") ; 

:• Cf. Kuratowski [32], p. 74, (6). 
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¢ is said to be strictly isotone (with respect to p) if, m addition, 

a' p a" and a" p a' imply ¢(a') > cp(a") . 

In what follows we usually deal with transitive reflexive relations 
denoted by;:; or similar symbols. (The denial of ;:; is written ~ .) We 
then write a' 2 a" to mean a' ;:; a" and a" ~ a'. 

II.2.2. If W is a linear system and K ~ W, K is said to be 0 cone'3 if 

w E K, }. ;:; 0 imply ..lw E K. 

K is said to be a convex cone if K is a cone and a convex set. 
A set K ~ ~ is a convex cone if and only if it satisfies 

w E K, }. ;:; 0 imply J.w E K , 

and 

w' E K, w" E K imply w' + w" E K . 

It may be noted that both the space Wand the one-element set {Ow} 
are convex cones. 

II.2.3. Given a convex cone K ~ ~a transitive reflexive relation 
to be denoted by;:; (or ;:;x if we wish to be more explicit) may be 
defined as follows : for any w', w" E "/'F,w' ;:; w" if and only if w'- w" E K. 
(In particular, w ;:; Ow if and only if w E K.) 

Example. Let Wbe the Euclidean two-space of elements w = (wC1l, wC'l) 

where wC 1J, wC'l are real numbers. Then the following convex cones are 
of interest in defining ordering relations : 

We see that 

and 

K1 = {w: wC1l ;:; 0, wC'l ;:; 0} , 

K, = {w: wCll ;:; 0, wC'l = 0} , 

K3 ={Ow}, 

K,=~. 

w ;:;x1 Ow means w 0 l ;:; 0, wC'l ;:; 0, 

w ;:;K, Ow means wC1l ;:; 0, wC'l = 0, 

w ;:;x 3 Ow means wC 1l = 0, wC'l = 0 , 

w ;:;x., Ow holds for all wE '/#,~i.e., it is a vacuous con

straint." Other relations could be obtained by replacing ;:; by > in 
the definitions of K 1 and K 2• Thus we have a great range of possibilities 

23 Ii. would be more precise to speak of a cone with the vertex at origin, but we omit 

the qualifying phrase since no other cones will be considered. (Our use of the term "cone" 

may seem unnatural, but it permits us to define the "convex cone " as a cone which is 
convex.) 

24 This makes it possible to cover simultaneously the cases of unconstrained and (non
vacuously) constrained maximization by orderings based on convex cones. 
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covering equalities, inequalities (~ or > ), and their various combinations. 
This makes it possible to obtain results which can be specialized in a 
variety of ways. 

Let W be a linear topological space and K a convex cone in ~ In 
the applications, we are interested in the topological, as well as the 
algebraic properties of the cone K. In some theorems, we assume that 
the cone K is closed. This is obviously true of the cones K1, K., K 3, K4 

in the natural (Euclidean) topology of the plane. On the other hand, 
the cone 

K5 = {(wClJ, wc•J) : wCl) > 0, wc•J > 0} 

is not closed in the natural topology of the plane. We see that lack 
of closedness may result from using cones corresponding to strict, rather 
than weak, inequalities. In the economic applications the inequalities 
are usually of the weak type, hence the closedness of the corresponding 
cones is not a serious restriction. 

Another topological property assumed for certain convex cones is that 
they have non-empty interiors. Of the preceding examples, using again 
the Euclidean topology of the plane, K1, K,, and K5 have interior points, 
while K2 and K 3 do not. The requirement of a non-empty interior can 
be troublesome in infinite-dimensional spaces. Thus consider a space 
lv(p ~ 1) whose elements are infinite sequences x = (x11 X 2, • • ·) such that 

This space is normable, the norm being of x defined as 

('f lx,IPY'P 

Now consider the convex cone K consisting of all the elements 
x of lJJ whose every coordinate is non-negative, this being the natural 
counterpart of the non-negative orthant in a finite-dimensional space. 
It may be seen that K has no interior, i.e., every element of K is a 
boundary point. To see this, take an arbitrary element x' of K. Given 
a positive number e, however small, one can find an element x" of lJJ 
whose distance from the element x' is less than e and such that x" has 
at least one negative coordinate ; this can be accomplished by taking 
x" such that all but one of the coordinates of x" are the same as the 
corresponding coordinates of x', while one coordinate of x" (with a suf
ficiently high subscript) is the negative of the corresponding coordinate 
of x'. 

On the other hand, let (m) denote the space of infinite bounded 
sequences x = (x1, x,, · • · ), normed by 

llxll =sup Clx,i), 
l:Oi 
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and define K, as in the preceding example, as the set of all x with non
negative coordinates. Here any point x whose coordinates are all 
positive is an interior point of the cone. 

II.2.4. Let K ~ ~/be a convex cone. Then the conjugate KfB of K 

is defined by 

Kff7 = {w* E ~-*: w*(w) ;?; 0 for all w E K} . 

Since KfB is a cone, it is called the conjugate cone of K. Clearly, KfB 

is the set of linear continuous functionals isotone with respect to ;?;x. 

We note that KfB is never empty, since 0* e KfB. 

In accord with the notational principles of II.2.3, we write w* ;?;xfBO! 

(or, more simply, w* ;?; 0), and call w* non-negative on K if w* E KfB. 

Furthermore, we write w* > xfB 0 (or : w* > o;) and call w* strictly 
positive on'5 K if w* ;?;xfB 0, and w :::::x 0 implies w*(w) > 0. It is seen 
that w* > 0 if and only if w* is a linear continuous functional strictly 
isotone with respect to ;?;x. 

II.2.5. LEMMA II.2. 26 Let K be a closed convex cone in a locally convex 
linear space ~ and let W 0 E ~ be such that 

w*( W 0) ;?; 0 for all w* ~ 0 • 

Then W 0 E K. 
PROOF'. Suppose w 0 ¢ K. By virtue of the Mazur-Bourgin Theorem'7 

K is regularly 0 convex, since it is closed and convex and ~is locally 
convex, so that there exists a w: E ~* such that 

sup wt"(w) < wt"(wo) . 
wEK 

Now, since wri(w0) is a fixed number and K a cone, we must have 

sup wt(w) = 0 . 
wEK 

Let w[ =- w:. Then 

w[(w) ;?; 0 for all w e K; i.e., w[ e KfB , 

and 

wf(wo) < 0, 

which contradict the hypothesis of the Lemma, hence the proof is 
completed. 

II.2.6.1. LEMMA II.3. If K ~ ~-is a convex cone, then the conjugate 
cone KfB is regularly convex. 

PROOF. If KfB = ~*,no wt ¢ KfB exists and the condition of regularity 
is (vacuously) satisfied. Now let KfB * :YF"'"* and take w: ¢ KfB. Then 
there exists a w1 e K such that w:( w1) < 0. Write W 0 = - W 1 • Since 

25 The reader should be warned that this term has a somewhat unusual meaning. In 
particular, if K is the origin, every linear functional is strictly positive on K. 

26 For the case of linear normed spaces, cf. Krein and Rutman [29], p. 16. 
zr Cf. Theorem II.2. in II.l.4.1. 
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w*(w1) ~ 0 for all w* E K~IJ (because w1 E K and by definition of KEil), 
we have 

for all w* E KlifJ , 

while 

w[(wo) = - w;(wl) > 0 , 

which shows that KlifJ is regularly convex. This completes the proof. 
II.2.6.2. For the special case of ~linear normed, the preceding result 

follows from Krein and Rutman [29], p. 38, where it is proved that KlifJ 
is weak* closed ; since the convexity of KlifJ is evident, this implies the 
regular convexity of K$; cf. 11.1.4.1. 

II.3.1. A very abstract version of a (partial ordering) maximization 
problem of the type considered in the present chapter in connection 
with the Lagrangian saddle-points can be formulated as follows. 

Let £? be an arbitrary space, X a subset of £?', :V an arbitrary 
space with the transitive relation p, and % a linear system with z' ~ z" 
defined to mean z' - z" e P, where P, is a convex cone. 

Furthermore let f be a function on £? into :V and g a function on 
£?'into%. 

Let the constraints be x E X and g(x) ~ 0,. 
Let Xv denote the permissible x-set, i.e., 

Xo = X n g- 1(P,) = {x E £?' : X E X, g(x) ~ 0,} ' 

while 
Yo = .f\Xo) = {y : y = f(x), x E X, g(x) ~ 0,} 

is the permissible y-set. 

Denote by Yo the p-maximal subset of· Yo ; i.e., 

Yo = {Yo E Yo : y' E Yo, y' P Yo imply Yo P y'} 

and call Yo the maximal y-set, while X0 = [- 1CYo) is called the maximal 
x-set. An element of a (y- or x-) maximal set is called maximal. 

The objective is typically to characterize Xo. Hence a maximization 
problem is uniquely determined by the selection of 

TC =(£?,X; :v, p; %' P,; f. g) 

and we may refer to n as the (partial ordering) maximization problem. 
In some contexts we only need :V, p, and Yo, without reference to 

how Yo is defined. In others specializing assumptions are made with 
regard to the entities defining n. 

II.3.2. For a given maximization problem n, as defined in the preced
ing section, we define a generalized Lagrangian expression <P" or (where 
safe) <P by 

<P = <P, = <P,(x, (* ; 7J*) = 7J*[f(x)] + (*[g(x)] , x E £? , 

where (* and 7J* are real-valued functions on % and :V respectively. 
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That is, cJ:>, is a real-valued function in the Cartesian product space 
2-" x [(*] x [7J*] where [(*] and [7J*] are the spaces of real-valued func
tions on % and :'?" respectively. 

II.3.3. Let % be a topological linear space, %* its conjugate space. 
Symbols such as z*, z;i denote elements of %*. We say that ¢,1 (where 
rr1 differs from rr in that rr1 requires % to be a linear topological space) 
has an isotone saddle-point at (x0 , z;i ; 7Jt} if 

( 1 ) Xu EX, z: ~ 0, 7Jd E [ 7JtJ and 7Jd is strictly isotone with respect to p, 

( 2) C!>,Jx, z[ ; 7);) ~ ¢,1(Xo, z: ; 7);) ~ cJ:>,Jxo, z* ; 7Jd) 

for all x E X and all z* ~ 0 . 

Now specialize the partial ordering maximization problem rr1 to the 
vectorial (ordering) maximization problem rr, as follows. Let di!!? be a 
linear system, P" a convex cone in cffl:"', x ~ 0 be defined as x E P", and 
X= P". Furthermore, let V be a linear topological space, Pv be a 
convex cone in :P', and let p be :2p . (Hence y;; E :'?"*, and y;i > 0 - y 

means y;; is strictly positive on Pv.) 
We then say that the Lagrangian expression cJ:>,, has a non-negative 

saddle-point at (x0 , z;i ; y:) if 

( 1') X 0 ~ 0, z: ~ 0' 

and 

( 2') <:t>,,(x, z: ; yd) ~ cJ:>,,(x0, z;i ; y:) ~ c'!>,,(x0, z* ; yt) 

for all x ~ 0 and all z* ~ 0 . 

II.4. Let di!!? and :P' be linear systems and let f be a (single-valued) 
function with a convex domain 53!~ .:fl? and range .9£ ~ y. Then the 
function f is said to be concave if, given any x', x" E 9 and any real 
number 0 < B < 1, we have 

(1 - B)f(x') + Bf(x") ~ /[(1 - B)x' + 8x"] , 

where y' ~ y" means y' - y" E K for a given convex cone K in &Y. 
II.5.1. Let 'J,;V'- be a Banach space and h a (single-valued) function 

whose domain is a set A of reals and the range a subset of ~. i.e., 

w = h(a), a E A, wE~. 

Following Graves'8 we define the first derivative h'(a0) = _i!_h(a) I of 
da "'-"o 

h with regard to a at a 0 as the element of ~·such that 

lim II h(a) - h(ao) - h'(ao) II = 0 . 
a.-~o a- ao 

28 Reference [17], p. 164. 
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Similarly, 

~h(a) I = _E_ _E_h(a) I , etc. 
da• da da 

!t=tt.o ~»""'!tro 

Now let ~ and ~be Banach spaces and fa function on ~ into 
v-. Then f(x 0 +ax'), a real, x0 , x' E .R:', may be regarded, for fixed 
x 0 and x', as a funcUon of the real variable a with values in V. We 
define the first, second, etc., variation off at x0 with increment x' by 

8f(xo; x') = .!:_ftxo + ax') I , 
da 

a>-0 

d' I 8'f(xo ; x') = daJ(x0 + ax') , etc.'9 

o>=O 

When the domain of f is open and 8f(Xo ; x') exists and is continuous 
in x', 8f(x0 ; x') is called the Frechet differential off at x0 with increment 
x'. It has been shown30 that the Frechet differential 8f(x0 ; x') so defined 
is linear (i.e., homogeneous and additive) as well as continuous in x'; 
also that 

lim -11
1, II llf(xo + x')- f(xo)- 8f(xo; x')ll = 0 

ll•'ll~o X 

for all x in the domain of f. 
II.5.2. The "function of a function rule" is valid for Frechet dif

ferentials31 and may be stated as follows. 
Let ~. ~.% be Banach spaces; fa function on ~ into V, g on 

%into~-

y=f(x), 

x = g(z) , 

Yo =f(x,), 

Xo = g(Zo) , 

and assume that f and g possess Frechet differentials at x0 and z0 re
spectively. Write 

f(g(z)) = h(z) 

so that h is a function in % into ;r. Then, for ( E %, 

ah(zo; C) = (Jf(xo; (Jg(zo; C)) . 

The reader is referred to Frechet [11], [13], Hildebrandt and Graves 

29 An equivalent definition of (]f(x0 ; x') is 

"'f( . ') _ 1. fixo+ax') - f(x0) 
u. xo,:::t:- 1m 

...... o a 

where, for a function w=h(a) of real variable a with values in "$""', we write 

lim h(a) = wo, WoE. "$""' if and only if lim II h(a)-w0 II= 0. 
«--"'o· a-t11-o 

Cf. Hildebrandt and Graves [19), p. 136, and Hille [20],. pp. 71-72. 
3tl Hille [20), p. 73 and p. 72, Def. 4.3.4. 
st Cf. Hildebrandt and Graves [19], pp. 141-44; Graves [17), p. 649. 
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[19], Graves [16], [17], and Hille [20] for an account of the properties 
of Frechet differentials. 82 

II.6.1. Let 2 and 'Y be two Banach spaces. Consider the linear 
system whose elements are the ordered pairs (:x, y), :x E 2, y E V, with 
addition and scalar _multiplication defined by 

( 1') {(:x', y') + (:x", y") = (:x' + :x", y' + y") 

a(:x, y) = (a:x, ay), a real. 

Then the linear system of the ordered pairs (:x, y) will become a Banach 
space if it is normed in such a way that33 

(1") lim :x.,. = :X0 and lim Yn = Yo 

if and only if ~~ IJ (:x,., Yr.) - (:xo, Yo) II = 0 · 

Such a Banach space of the ordered pairs (:x, y) is denoted by 2 x V 
and is called the (Banach) product of 2 and 'Y. Writing, for A~ .2"", 
B ~ 'Y, A x B = {(:x, y): x e A, y E B} we have34 A x B closed if and 
only if both A and B are closed. 

More generally, let 2 and ~ be linear topological spaces and consider 
the linear system of the ordered pairs (x, y) with the operations defined 
by (1') above. 

Then the space of pairs (:x, y), again to be denoted by ~ x 'Y (and 
called linear topological product), may be topologized by choosing as a 
base55 the sets 

{(:x', y'): :x' e U,, y' e 'Y} , 

{(x", y"): x" e 'Y, y" e Uv} , 

{(x'", y"'): x'" e Uz, y'" e 1/v} , 

where U, is any open set in ~, Uv any open set in 'Y. It may be 
noted for later reference that36 with this topology A x B is closed if A 
and B both are. 

It is known 87 that if 2 and 'Y are linear topological spaces, then 
so is 2 x 'Y ; if 2 and 'Y are locally convex, then so is ~ x 'Y. 

II.6.2. Let38 2"' = ~' x 2" be the (Banach) product of the two 
Banach spaces 2"'', 2". The symbols x' and t;' denote elements of Z', 
:x" and t;" those of d/!?", x and r; those of z. Iff is a function on 

82 See also V. 3. 3. 8 for a discussion of differentials in a class of spaces wider than 
Banach. 

83 Banach [3), pp. 181-82, especially eq. (33), where examples of norms satisfying (1) are 
given. Cf. also Hyers [22], pp. 3, 5, and Tychonoff [43], p. 772. 

84 Cf. Kuratowski [32], 24.Il.1, p. 219. 
56 Cf. Lefschetz [34], p. 6 (6.1); p. 10, Section 12. 
sa Lefschetz [34], p. 11 (12. 6). 
57 Tychonoff [43], p. 772; Bourgin [9], p. 639; Hyers [22], pp. 3, 5. In these sources it is 

shown how a linear topological product of an arbitrary ·family of spaces is formed. 
58 We confine ourselves to the product of two spaces. The treatment of 31:"(1) x 31:'(2) x ... 

x z(nJ is quite analogous. 
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~ into the Banach space ~, Bf(x ; r;) will denote the Frechet differential 
off at x with increment f;. 

Then the partial Frechet differential of f with respect to x' at x0 with 
increment f;' is written as B,,f(x0 ; r:') and is defined by 

( 1) B,,f(xo; () = B.f(xo; (r;', 0,,)), X 0 E ~. x', $' E £;"'' . 

We have" the additivity law 

( 2) 3/(xo; (r;', t')) = a,,f(xo; n + a,,f(xo; f") . 

II.6.3. We shall now state the " function of a function " rule for the 
case of a function of several variables. 

Let 
~ = ~(t) X ~(') X • • • X ~(n) 

% = % (t) X % (2) X • • • X % (m) 

where all spaces are Banach and so are the products. Also, let f be a 
function in 2:" into the Banach space ~, g(i) in % into ~Ci>. 

y =f(x), 

xC!> = gCi>(z) ' 

Yo= f(xo) , 
Xo(i) = gCi>(zo) (i = 1, 2, · · ·, n) 

and assume that f and each of the gCi> possess Frechet differentials at 
x0 and Z0 respectively. Write 

h(z) = .f((gC'>(z), gC'>(z), .•• , g(7'l(z))) 

so that h is a function in % in to ~. Then, for ( E %, 
n m 

Bh(zo; () = E 8fxCi)(x0 ; E BzU>gCil(z,; (Ci>) 
i=l 

where (CiJ e %CiJ. 40 

II.6.4. We shall find it convenient to define a "quasi-saddle-point" 
for Lagrangian expressions. We say that 

c:P(x, z* ; y:) = y[[f(x)] + z*[g(x)] 

has a non-negative quasi-saddle-point at (x0 , z[ ; y":) if and only if 
y[ > 0, x0 ~ 0, zt ~ 0, and the following relations hold: 

for all x ~ 0, x = X 0 + f; , 

3,1>((Xo, z:) ; Xo) = 0 , 

a,.G>((xo, zn ; (*) = (*[g(xo)] ~ 0 

a .. G>((xo, zn ; z[) = z[[g(xo)] = 0 . 

for all z* ~ 0, (* = z* - z: , 

It is seen that if c;D has a non-negative saddle-point at (x0, z[ ;-y;), 
then it necessarily has a non-negative quasi-saddle-point there, but the 
converse is not true. 

39 Cf. Hildebrandt and Graves [19], p. 138. 
40 Cf. Frechet [11], pp. 318-21. (The reprinted version in [13] is free of the misprints in 

[11].) 
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III. The " Minkowski· Farkas Lemma " 

III.l. Throughout III, z is a linear topological space, :2/ a locally 
convex" linear space, y' ~ y" means y' - y" e Py, where Py is a closed 
convex cone. T is a linear continuous transformation on 2' into :V. 
~. :V, Py, T are fixed throughout. ~*. V* are the conjugate spaces 
of ~. V, and T* is the adjoint of T. 

III.2. If x* e J;C'* is such that 

( 1 ) x* = T*(y*) for some y* e :V* , 

we say that eq. (1) is solvable. If x* is such that eq. (1) holds for 
some y* ~ 0, we say that eq. (1) is positively" solvable. We then also 
say that x* makes eq. (1) positively solvable. 

The set of all x* e ~* which make eq. (1) positively solvable will 
be denoted by ZT, i.e., 

( 2) ZT = {x* E J;C'*: x* = T*(y*), y* ~ 0} 

Note that, since {y*: y* ~ 0} = P~, we have 

( 3 ) ZT = T*(P~) . 

The point x* is said to be positively normal with regard to T if 
( 4) for all x e 2', T(x) ~ 0 implies x*(x) ~ 0 . 

We shall denote by VT the set of all x* positively normal with regard 
to a given T, i.e., 

( 5) VT = {x* E Z*: for all x E z, T(x) ~ 0 implies x*(x) ~ 0} . 

III.3. THEOREM III.l. If x* makes eq. (1) positively solvable, then x* 
is positively normal with regard to T. In set language, 

( 6) ZT ~ VT. 
PROOF. Let x* = T*(y*) for some y* ~ 0. Then we have, by the 

definition of T*, 

( 7) x*(x) = (T*y*)(x) = y*(Tx), for all x e ~. 

Therefore, since y* ~ 0, T(x) ~ 0 implies x*(x) ~ 0. 
III.4. THEOREM III.2. lf every x* positively normal with regard to 

T makes eq. (1) positively solvable, then the set of all x* which make eq. 
(1) positively solvable is regularly convex. In set language, if VT ~ ZT, 
then ZT is regularly convex. (We may note that, in view of (6), Theorem 
III.2 may be equivalently restated as follows: if VT = ZT, then ZT is 
regularly convex.) 

PROOF. We riote that the set 

( 8) XT = {x E ~: T(x) ~ 0} 

is a convex cone and VT = X'¥, so that, by Lemma II.3 m II.2.6.1, VT 
is regularly convex and hence so is ZT = VT. 

41 Cf. II.l.l. 3. 

•• " Non-negatively " would be more accurate but awkward. 
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III.5. THEOREM III.3. Vr coincides with the regular convex envelope 
of Zr: 

( 9) VT = ZT. 

PROOF. In view of Theorem III.l, it will suffice to establish 

(10) Vr ~ Zr, 
i.e., that x* ¢ Zr implies x* ¢ Vr. 

Consider some x~ ¢ Zr. We shall find x, such that T(x1) ~ 0 while 
x:(x,) < 0. 

Since Zr is regular convex (cf. II.1.4.2), there must exist x 0 E ;;c"' 

such that 

(11) sup x*(x0) < x~(xo) . 
x*EZT 

Since a cone Zr is contained in Zr and 

sup x*(x0 ) 

z*EZT 

is finite, (11) implies 

(12) x*(x0) ~ 0 < xt(x0) for any x* E Zr . 

Now write 

(13) 

Then (12) may be written 

(14) 

and 

(15) x*(x,) = y*(Tx,) = (T*y*)(x,) = - x*(x0 ) ~ 0, for any y* ~ 0, 

since x* = T*(y*) E Zr. 
Now since Pv = {y*: y* ~ 0} is assumed closed and :Y locally convex, 

the Lemma II.2 in II.2.5 applies. It follows that 

(16) T(xJ ~ 0 . 

But (14) and (16) together imply x: ¢ Vr. 
III.6. THEOREM III.4. The positive normality of x* with regard to 

T is equivalent to x* making eq. (1) positively solvable if anil only if the 
set of all x* making eq. (1) solvable is regularly convex. In set language, 

(17) Zr = Vr if and only if Zr is 1·egularly convex. 

PROOF. If Zr = Vr, the regular convexity of Zr follows from Theorem 

III.2. On the other hand, if Zr is regularly convex, we have Zr = Zr 
(cf. Lemma ILl in II.1.4.2). The equality Zr = Vr then follows from 
Theorem III.3. 

III. 7. The finite-dimensional Euclidean case. In a reflexive Banach 
space, a set is regularly convex if and only if it is convex and (strongly) 
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closed · (cf. II.1.4). Sin:ce ZT is always convex, for reflexive Banach 
spaces one may substitute " (strongly) closed " for " regularly convex " 
in Theorem III. 1, 2, 3, and 4. 

In particular, if ~ and 'Y are finite-dimensional Euclidean ·spaces 
(hence Banach and reflexive in the Euclidean distance topology) and T 
is represented by a matrix, ZT is a polyhedral convex cone (cf. Gale in 
[14], p. 290, Dei. 1') which is closed in the Euclidean distance topology. 
Hence for this case ZT is necessarily regularly convex and ZT = VT for 
all T. The Minkowski-Farkas Lemma as usually stated asserts that 
VT <;;; ZT in the finite-dimensional Euclidean case. This follows from 
Theorem III.3, since ZT is known to be regularly convex. 

[Let y = (y1, y., · · ·, y,.) and write I= {1, 2, · · ·, n} . 

Partition I into I' and I" where I' U I" = I, I' n I" = ¢, and either I' 
or I" may be empty. The relation y ~ 0 is interpreted as meaning 

ifiel', 

Y; = 0 if i e I" . 
The Minkowski-Farkas Lemma is usually stated for I= 1', but it is 

clear that P11 = {y E V: y ~ 0}, where the meaning of y ~ 0 is that 
j11st stated, is necessarily closed.] 

III. Appendix: Relationship with Hausdorff's results. [NOTE: 
This appendix is incorrect in its present form and should be ignored. 
For technical reasons, however, it was impossible to eliminate it from 
the present printing.] 

IIIa.l. Suppose that x* is positively normal with regard to T (cf. 
III.2) and let, for some x' e 2"', 

( 1 ) T(x') = 0 . 

Then 

( 2') 

and 
(2") 

T(x') ~ 0 

T(- x') ~ 0. 

Since x* is positively normal, the preceding inequalities yield, respectively, 

( 3') x*(x') ~ 0 

•and 

(3") x*(- x') ~ 0, 

i.e., 

(4) x*(x') = 0. 

Hence, if x* is positively normal with regard to T, we have 

.. ( 5) for all x E 2"', T(x) = 0 implies x*(x) = 0 . 

Call x* satisfying ( 5) normal with regard to T. I.e., we have shown 
that 1! x* is positively normal with regard to T, then it is also normal 
with regard to T. 
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IIIa.2. We shall now show that 
(6) if x* is normal with regard to T, then either x* or - x* is 

positively normal with regard to T. 

75 

For suppose it could happen that (5) holds and neither x* nor -x* 

is positively normal with regard to T. Then there must exist x1 , x, E ~ 
such that 

(7.1) T(x 1) > 0 , 

(7.2) x*(x1) > 0 , 

(8.1) T(x2 ) > 0 , 

(8.2) x*(x2) < 0 . 

[Suppose no such pair x1, x2 exists. Then it must be that either 

T(x) > 0 implies x*(x) ~ 0 or T(x) > 0 implies x*(x) ~ 0. This, in con
junction with (5), would then yield (6).] 

Let 

( 9) ..l = T(xl) . 
T(x,) 

Then 

(10) T(x1 - ),x2) = T(x1) - ..IT(x2) = 0 . 

On the other hand, by (7), (8), and (9) (which imply J. > 0), 

(11) x*(x1 - ..lxz) = x*(x1) - J.x*(x2) > 0 . 

Hence (5) fails to hold for x1 - ..lx2 E Zwhich establishes the validity 
of (6). 

IIIa.3. Write 

(12) FT = {x* : for all x E ~. T(x) = 0 implies x*(x) = 0} 

(the set of x* normal with regard to T) and recall that the set of all 
x* positively normal with regard to T is denoted by VT. Hence the 
results in IIIa.1 and IIIa.2 may be written as 

(13) FT = VT u (- VT) . 

IIIa.4. We shall now show that" 

(14) 

First, 

(15) 

for any element in VT U (- VT) is either of the form x{ - 0;-' where 
x[ E VT or of the form o; + xi' where xi' E (- VT). Note that 0;-' E VT 

nc- VT). 
On the other hand, let x* be an element of VT- VT, i.e., 

(16) x* = x[ + x{, 

By (13), xt EFT (i = 1, 2). But then x* EFT, since FT is a linear set. 

"' A- B is the set of all elements of the form a- b, a E A, b e B. A- A is neither 

empty nor the null element! 
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For let x[ E FT (i = 1, 2). Then T(x) = 0 implies x[(x) = 0. Consider 
x* = a 1xi + a,x-;' and suppose T(x) = 0; then x*(x) = a 1xi(x) + a,xi(x) = 0, 
hence x* E FT. 

IIIa.5.0. From now on we shall assume that 
(17') all the spaces considered are Banach (which implies that both T 

and T* are bounded, since T was assumed continuous) ; 
(17") for every y* E ~*, there exist y~ E P~, y-;' E P~ such that 

y* = y~- y-;'. 
(17") is equivalent to the condition that P11 is a normal cone ; cf. Krein 
and Rutman [29], Def. 2.2, p. 22, and p. 24. 

IIIa.5.1. Example. Let V be the space of all continuous real-valued 
functions y(t) defined on the closed interval [0, 1]. (This space is usually 
denoted by C[O, 1].) Then44 every bounded linear functional y* can be 
defined by 

(a) y*(y) = t y(t)dg (y E V) 

where g is a function of bounded variation. Now define y E Pv (i.e., 
y ;;;; 011) to mean 

(b) y(t);;;; 0 for all 0 ~ t ~ 1 . 

Then y* ;;;; o: (i.e., y* E PB) means that the function gin (a) is monotone 
non-decreasing. But it is well known (e.g., Titchmarsh [42], p. 355, 
Sec. 11.4) that if g is a function of bounded variation, it can be ex
pressed as 

(c) 

where g1, g, are monotone non-decreasing. I.e., the cone Pv is normal. 
IIIa.5.2. The condition (17") may be written as 

(18) 

Now suppose 

(19) 

i.e., 

~* = P'f- p~. 

x* E T*(~*), 

(20) x* = T*(y*) for some y* E V* . 

Then, by using (17"), we have 

(21) 

i.e., 

(22) 

where 

(23) 

x* = T*(y{ - y:) 

x* = xt- x:' 

x[ = T*(y!) 

so that, by definition of ZT (cf. III.2 (2)), 

(24) 

M Banach [3], Section 4.1, pp. 59--61. 

(yi E P'f, i = 1, 2) , 

(y[ E P'f, i = 1,-2) , 

(i = 1, 2) ' 
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i.e., 

hence 

(25) T*(:Y*) f:; z'l' - z'l' . 

On the other hand, let 

(26) x* E ZT - ZT . 

Then the relations (22), (23) hold for some yf E P? (i = 1, 2), and hence 
(20) holds for y* = yf- yt, so that (19) follows and 

(27) T*(~*) ~ z'l' - z'l' . 

(Note that (27) holds even if Pv is not assumed normal.) Equations (25) 

and (27) together yield 

(28) T*(:Y*) = z'l' - z'l' . 

IIIa.5.3. Consider now the case when ZT is regularly convex. We 
know (Theorem III.4) that in this case 

(29) z'l' = v'l'. 

But then, from (14) and (28) we have 

(30) T*(~*) = F'l' . 

When (30) holds, Hausdorff ([18], p. 307) says that the equation 
x* = T*(y*) is nor'I'IWlly solvable; he calls the equation y = T(x) nor'I'IWlly 
solvable if and only if 

(31) T(~) = F'l'. I 

where 

(32) F'I'* = {y: for all y* E ~*, T*(y*) = 0 implies y*(y) = 0} . 

Hausdorff shows (ibid., Theorem X, pp. 308, 310) that in Banach spaces 
the following four properties are equivalent : the normal solvability of 
x* = T"'(y*), the normal solvability of y = T(x), the closedness of T(Z), 
and the cl.osedness of T*(:Y*), i.e., 

(33) (30) ¢::::?. (31) ¢::::? T(~) closed ¢::::? T*(:Y*) closed. 

IIIa.5.4. Now, under the assumption that Pr is normal and ZT reg
ularly convex, we have obtained (30). It follows from (33) that both 
T(Je"") and T*(:Y*) are closed. 

The example below'5 shows that ZT need not be regularly convex 
when P. is normal. This is of importance, since it shows that the 
assumption of regular convexity in the theorems :i.n IV is not automati
cally satisfied. 

Let Z = C[O, 1] and 

y = T(x) 

where 

" Closely related to one suggested by Professor B. Gelbaum. 
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y(t) = ~: x(t)dt . 

Then y is absolutely continuous, hence continuous, and we may take 
:V = C[O, 1] also, As noted earlier, we may define y ;;;; 011 to mean 
y(t) ;;;; 0, 0 s t s 1 in which case Pv is normal. Now take any function 
Yo E C[O, 1] which is not absolutely continuous (e.g., the one given by 
Titchmarsh [42], Sec. 11. 72, p. 366). Then Yo is not46 in the range 
T(~). But Yo is a strong (uniform) limit of a sequence of polynomials/7 

hence Yo is an element of the closure of T(~). Hence T(~) is not 
closed, hence (by (33)), eq. (30) fails, so that ZT cannot be regularly 
convex. 

IIIa.5.5. 

(34) 

Consider now the special case when 

Py = {011} • 

(Pv is (vacuously) normal, but this fact is of no relevance in what 
follows.) Then 

(35) F1' = :V* . 

In this case we have (cf. III, eq. (3)) 

(36) ZT = T*(:V*) . 

Also, using (13), we get 

(37) 

since 

(38) VT = - VT . 

[Let x* E VT. Then T(x) ;;;; 011 implies x*(x) ;;;; 0. But, for P11 = {011}, 

y ;;;; Ov is equivalent to - y ;;;; 011 ; hence T(x) ;;;; 0!1 implies T(- x) ;;;; 011 

which in turn yields x*(- x) ;;;; 0 or - x*(x) ;;;; 0. The latter relation 
means that - x* e VT. Hence VT ~ (- VT). That (- VT) ~ VT is 
shown in the same fashion.] 

Now suppose that 

(39) ZT = VT. 

This is equivalent to 

(40) 

i.e., Hausdorff's normal solvability of the equation x* = T*(y*). 
By Theorem III.4, (39) implies that ZT = FT = T*(:V*) is regularly 

convex; hence (cf. II.l.4.1) T*(:V*) is closed in the weak* topology, 
hence it is (strongly) closed. Thus we have obtained Hausdorff's result 
(part of his Theorem X), viz., that the normal solvability implies the 
closure of T*(:V*), as a special case of our Theorem III.4. On the 
other hand, suppose the space £!" to be reflexive!~!! and let T*(V*) be 

46 Cf. Titchmarsh [42], Section 11.71, p. 364. 
' 7 The "Weierstrass Theorem," cf. Rudin [40], Section 7 .24, p. 131. 
~8 Cf. II. 1.4. 
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closed. In this case (cf. II.l.4) regular convexity is equivalent to regular0 

convexity and the latter is always equivalent to closure with convexity. 
Hence, since T*(V"*) is closed and convex, it is regularly convex and this 
implies, by Theorem III.4, the equalities (39) and (40). 

I.e., we have shown, as a special case of our results in III, when Z 
is reflexive, the (strong) closure of T*(:V*) is a sufficien't condition for 
the normal solvability of the equation x* = T*(y*) which is also a part 
of Hausdorff's Theorem X. 

IV. Further Theorems on Linear Inequalities 

IV.l. In IV all spaces are assumed locally convex linear. Products 
of topological spaces are understood to be linear topological products, 
hence the product spaces are also locally convex linear. 

IV.2. Let U denote a linear continuous transformation on ,2" into %. 
We introduce the transformation T (which is easily seen to be linear 
and will also be shown to be continuous) on ,2" into the product space 
:V = % x ,2" defined by 

( 1') T(x) = (U(x), x) for all x E ,2" . 

In the notation of the type used in matrix calculus we may write 

(1") 

where I(x) = x, for all x E ffe". (I.e., I is the identity transformation 
in ,2".) 

If P,, P. are convex cones in ,2" and % respectively, and- x' ~ x", 
z' ~ z" mean x'- x" E P,., z'- z" e P. respectively, then for y = (z, x), 
we write y' ~ y" if and only if y' - y" e P", where 

( 2) P" = P, X P, = {(z, x) : z ~ 0, x ~ 0} . 

It may be noted that if P. and P,. are closed, then so is· Py (cf. 
II.6.1). 

IV.3. THEOREM IV.l. 
A. Let ffC" be a linear topological space, % locally convex, U a linear 

continuous transformation on ,2" io %, P, and P. closed convex cones 
in ~ and % respectively, and assume that the set 

( 3) x: = {x* e ~*: x* = T*(y*), y* ~ 0} 

is regularly convex. 
B. It follows that, for any x* E ,2"*, if 

( 4) U(x) ~ 0, x ~ 0 imply x*(x) ~ 0 for all x E ~. 

then there exists a z't ~ 0 such that 
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( 5) 

and 
( 6) 

Zo*[U(x)] ~ x*(x) 

x*(x) = 0, U(x) ~ 0, x ~ 0 

PROOF. (5) may be rewritten as 

for x ~ 0, 

imply z:'[U(x)] = 0 . 

( 4') T(x) ~ 0 implies x*(x) ~ 0 for all x E .2" . 
Furthermore, T is continuous in x.49 

Since Xi is assumed regularly convex, Theorem III.4 yields a functional 
Yt ~ 0 such that 

( 7) x*(x) = y;[T(x)] for all x E ,2" . 

Now, since 

( 8) y = (z, x) = (z, 0) + (0, x) , 

we have 

( 9) y-;'(y) = y:((z, 0)) + y;((o, x)) . 

We shall write 

(10.1) y:((z, 0)) = z:(z) for all z E % , 

(10.2) y-;'((0, x)) = x-;'(x) for all x E z , 
where y:((z, 0)) is continuous in z and y-;'((0, x)) is continuous in x. 
Since z ~ 0 implies (z, 0) ~ 0 and x ~ 0 implies (0, x) ~ 0, it follows 
that, for z"t, x"t' defined by (10), y"t ~ 0 yields 

(11.1) z: ~ 0 '. 

(11.2) x: ~ 0 . 

Thus 

(12) x*(x) = yHT(x)] = y:[(U(x), x)] 

= z:CU(x)] + xt(x) for all x E 5r . 

Since x"t ;::::; 0, (5) follows. 

Now let x1 satisfy the hypotheses of (6), i.e., 

(13.1) x*(x1) = 0 
and 

(13.2) 

Equations (13.1) and (5) yield 

(14) 

49 We have T(x) = (U(x), I(x)) where I(x) = x for all x E K. Then (cf. Lefschetz [34], 
p. 7 (8.2)), T is continuous if every inverse image of a member of a sub-base in :Y = z x z 
is open. Such a sub-base is given (cf. Lefschetz [34], p. 10) by the collection of sets 

Y 1 = {y 1 = (z~, x 1): z' EN., x' E .w}, Y" = {y 11 = (:~: 11 , x11): z11 E.>£, x 11 EN.,} 

where N., N., are open sets in .>1: and .w respectively. Now the inverse image T-l(Y1) = 
{x: T(x) E Y 1} = {x: U(x) EN., l(x) E .w} = {x: U(x) EN.} = U-l(N.) which is open since 
N, is open and U continuous. Similarly T-l(Y11) = {x: U(x) E :~<, I(x) EN.,}= N., which 
is open. 

173



PROGRAMMING IN LINEAR SPACES 81 

On the other hand, since U(:;Ih) ~ 0, and Zo* ~ 0, 

(15) zt[U(x1)] ~ 0 . 

Equations (14) and (15) yield the conclusion of (6). 
IV.4. Let all hypotheses under A in Theorem IV.1 hold, except that 

X~ is not assumed regularly convex while £"'and % are taken to be 
normed spaces. Suppose there exists a z't ~ 0 such that (5) holds. 
Then define 

(16) 'f'(x) = x*(x) - z;[U(x)] for all x e £"' . 

Clearly 'f' is linear, and, because of (5), 

(17) x ~ 0 implies 'f'(x) ~ 0 . 

Also, 'P is bounded, since, for any x e .:2"', 

(18) i'f'(x)l = lx*(x)- zt[U(x)] ~ lx*(x)l + lzt[U(x)JI 

Thus 

(19) 

Now define 

~ llx*ll· llxll + llztll· IIUII·llxll 

= Cllx*ll + llztll· IIUIDIIxll-

'f' E Jlf'*, 'P ~ o:. 

(20) cf;(y) = if;((z, x)) = zt(z) + q>(x) for all z e % and all x E £"' , 

which is linear in y, since 

(21.1) rj;(ay) = ¢(a(z, x)) = rj;((az, ax)) = zt(az) + 'f'(ax) 

= az"t(z) + aq>(x) = a¢(y) 

and 

(21.2) ¢(y' + y") = rj;((z' + z", x' + x")) = zt(z' + z") + 'f'(X' + x") 

Also, 

(22) 

= Zo*(z') + z"t(z") + 'f'(x') + 'f'(x") 

= rj;(y') + ¢(y") • 

y ~ 0 implies ¢(y) ~ 0 

since if (z, x) ~ 0 then z ~ 0 and x ~ 0 and both Zo* and 'f' are non
negative functionals. 

Finally, ¢ is continuous. For let (z,., x,.) = y,.-+ Yo = (Zo, Xo), n = 
1, 2, · · · . Then, by II.6.1, eq. (1), z,. -+ Zo and x,.-+ z 0• Hence, since 
zt and 'P are continuous, z"t(z,,.) -+ z't(Zo) and 'f'(x,.} -+ 'f'(X0), and therefore, 
'P(Y,.) -+ 'f'(Yo) · 

Hence 

(23) ¢ E ~* ' Y' ~ o: . 
Because of (16), we have 

(24) x*(x) = zt[U(x)] + 'f'(x) for all x e 2" , 

i.e., by (20), 
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(25) 

or 

x*(x) = ~[(U(x)), x)] 

= ~[T(x)] for all x e ~, 

(26) x* = T*(~) , ~ ~ o; . 
Now (26) holds for all x* e ~*; it follows from Theorem III.4 that 

the set X'; is regularly convex. Thus we have shown that, at least 
in normed spaces, given the other hypotheses under A in Theorem IV.l, 
the assumption of regular convexity of X~ is necessary (as well as suf
ficient) for the validity of the conclusions. We may state this as 

THEOREM IV.2. 
A. Let.%" and % be normed spaces, U a linear bounded transforma

tion on Z to %, P, and P, closed convex cones in ~ and % respec
tively. Then the condition that the set 

(27) X~= {x* E ~*: x* = T*(y*), y* ~ 0} 

be regularly convex is equivalent to the following : for any x* E ~*, if 

(28) U(x) ~ 0, x ~ 0 imply x*(x) ~ 0 for a4l x E 2 , 

then there exists a Zo* ~ 0 such that 

(29) z:[U(x)] ~ x*(x) for x ~ 0 

and 

(30) x*(x) = 0, U(x) ~ 0, x ~ 0 imply z:[U(x)] = 0 . 

IV.5. The following result generalizes Theorem IV.l to situations 
where non-homogeneous inequalities appear. 

THEOREM IV.3. 
A. Let all the hypotheses under A in Theqrem IV.l hold, the transfor

mation T being defined in (37), (38) below. 
B. It follows that if, for some x e ~. 

(3i) x ~ 0 and U(x) - a ~ 0 , 

and if, for some x* e Z*, 

(32) x ~ 0 and U(x) - a ~ 0 imply x*(x) - {1 ~ 0 , 

then there exists a z: ~ 0 such that 

(33) z,*[U(x) - a] ~ x*(x) - {1 for x ~ 0 

'and 

(34) x*(x) = (3, U(x)- a~ 0, x ~ 0 imply z:[U(x) - a] = 0 

PROOF. Consider the product space 

(35) Y= {w: w = (p, x), p real, x e ..2'"'} 

and the linear transformation 

(36) P(w) = P((p, x)) = -ap + U(x) . 

on ~into·%. 
Then define 
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(37) T =( ~)' l(w) = w for all w e "$'', 

i.e., 

(38) T(w) = (P(w), w) or T((p, x)) = ( -ap + U(x), (p, x)) 

and T is a linear transformation on ":¥'into % x ~

Now suppose we have shown that 

(39) T(w) ~ 0 implies w*(w) ~ 0 

where we define w* by 

(40) w*(w) = w*((p, x)) = - (3p + x*(x) . 
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One can ascertain easily that Theorem IV.1 applies, with w replacing 

x, w* replacing x*, and P replacing U. 
Hence there exists a z't ~ 0 such that 

(41) z:[P(w)] ~ w*(w) for w ~ 0 

and 

(42) w*(w) = 0, T(w) ~ 0 imply z't[P(w)] = 0 . 

Equation (41), written out explicitly, yields, by (36) and (40), 

(43) z"t[ -ap + U(x)] ~ - (3p + x*(x) for p ~ 0, x ~ 0 . 

Letting p = 1 we obtain (33). 
Similarly, using (36), (40), and (38) in (42), and putting p = 1, we 

obtain (34). 
Therefore, it remains to establish (39) which, written out explicitly, 

states that 

-ap + U(x) ~ 0 l 
p ~ 0 imply -(3p + x*(x) ~ 0. 

x~O 

(44) 

Suppose (44) is false. Then the hypotheses of (44) must hold and the 

conclusion fail for some Po ~ 0, x0 ~ 0. We shall first consider the case 

Po > 0. I.e., we have 

( 45.1) 

and 

(45.2) 

so that 

(46.1) 

and 

-apo + U(xo) ~ 0 
Po> 0 
X 0 ~ 0 

-a+ uc;:) ~ 0 

~20 
Po -
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(46.2) - P + x*( ~) < 0 . 
Po 

This, however, violates (32). Hence the implication in (44) has been 
established for p > 0. We shall now take up the case p = 0. I.e., 
we must show that 

(47) 
Ui(x) > 0} . = Imply x*(x) ~ 0 . 
x~O 

Let x1 satisfy the hypotheses of (47) and take a real ..l > 0. Then, by ·(31), 

(48) - [a- U(x)]..l + U(x1) ~ 0 
and hence 
(49) 
Note also that 
(50) 

- a.l + U(x1 + ..lx) ~ 0 . 

Hence, for Po= ..l, Xo = x1 + ..lx, the hypotheses of (45.1) are satisfied, 
so that 
(51) - {d.l + x*(xl + .lx) ~ 0 . 
We therefore have 

(52) for all ..l > 0. 

Suppose now that 

(53) x*(xJ = - E < 0 . 

Then (52) is false for any ). > 0 if x*(x) - {3 ;:;;;; 0. 
Hence suppose 

(54) x*(x) - p = 7J > o . 
and take ..l = c/(27J). Then (52) becomes 

(55) 

i.e., 

(56) 

-E+-E-7)>0, 
27] 

__ E_ > Q 
2 

which contradicts (53). Hence 

(57) x*(x1) ~ 0 

which establishes the validity of (47). 

IV.6. Consider now the special case of Theorem IV.3, where P~ = 2", 
so that the restriction x ~ 0 is necessarily satisfied for all x. In this 
case O! is the only non-negative element of Z*. [For otherwise there 
would be some x't e Cii?* with x;(xu) > 0 for some x0 e JF,- hence 
x;( -x0) < 0 even though -x0 e P~, which contradicts xt ~ 0.] Now the 
counterpart of (12) for Theorem IV.3 is 

(58) -fdp + x*(x) = z:[ -ap + U(x)] + r:tp + xt(x) 
for all p and x e ,2". 
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When P,. = ,2"', it follows that xt(x) = 0 and (58) becomes 

(59) -(dp + x*(x) = zt[ -ap + U(x)] + rtp for all p and all x e z. 
Putting p = 0, (59) reduces to 

(60) x*(x) = Zo*[U(x)] 

Furthermore, if U(x) - a ~ 0 and 
then (34) in Theorem IV.3 yields 

for all x e ,2"'. 

x*(x) ~ x*(x) for all U(x) - a ~ 0, 

(61) zt[U(x) - a] = o . 
which, by (60), implies 
(62) x*(x) = zo"'(a) . 

Hence, with (d ~ x*(x) by hypothesis, we have 

(63) x*(x) = z:(a) ~ (d , 

as in Dantzig's Corollary ([10], p. 334). 

We may state these results as 

COROLLARY IV.3. 

A. Let .Jt!' and % be locally convex linear spaces, U a linear transfor
mation on .;J'f!? to %, P. a closed convex cone in %, and assume that 
the set 

(64) Xt = {x* e %~:"'*: x* = U*(z*), z* ~ 0} 

is regularly convex. 

B. It follows that if, for some x e ,Jt;"', 

(65) U(x) - a ~ o , 
and if, for some x* E ,2"'*, 

(66) U(x) - a ~ 0 implies x*(x) - (d ~ 0 , 

then there exists a Zo* ;?; 0 such that 

Z:[U(x)] = x*(x) for all X E z· ; (67) 

furthermore 

(68) min x*(x) = Zo*(a) ~ (d • 
U(:o)<:;a 

It will be noted that, in Banach spaces at least, the assumption of 
regular convexity of X& is necessary as well as sufficient if U is bounded ; 
this follows from Theorem IV.2. 

In finite-dimensional Euclidean spaces the requirement of regular 
convexity of X~ is necessarily satisfied (cf. III.9) and if z ;?; 0 means, 
as usual, that each of its coordinates is non-negative, then P. is closed. 
Hence the hypotheses of the regular convexity of X~ and the closure 
of P. may be omitted, and we obtain, as a special case of Corollary 
IV.3, the Lemma (and its· Corollary) stated by Dantzig in [10], p. 334. 
This, of course, suggests the possibility of generalizing the Dantzig 
result on the equivalence of linear programming and game problems, 
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since the Lemma plays a crucial role in Dantzig's proof and Corollary 
IV .3 above provides its generalization. 

V. The Lagrangian Saddle· Point Theorem 

V.l. Isotone Lagrangian saddle-point implies maximality. 

V.l.O. Contrary to the customary sequence, we find it more convenient 

to start with the theorem indicated in the title, rather than with one 

in which the implication goes in the opposite direction. This is done in 

order that the reason for requiring that the functional on ~ be strictly 

isotone and that on % isotone may become more readily apparent. 

V.l.l. Let rr11 denote the partial ordering maximization problem 

obtained if in rr1 of II.3.3 the following two requirements are added: 

( 1) % is a locally convex linear topological space ; 
( 2 ) P. is closed. 
V.l.2. THEOREM V.O. Let the generalized Lagrangian expression 

c'P"11(x, z* ; 7Jt) have an isotone saddle-point at (x0, z[ ; 1)[). Then X 0 is 

maximal. 
For the sake of convenience, we give a more explicit statement of 

the preceding theorem. 
THEOREM V.l. Let x E £"", while the values of f(x) and g(x) are in 

~ and %, respectively, where ~ is ordered by a relation written as ~ 

and % is a locally convex, linear topological space such that z ~ 0 means 

z E P., P. being a closed convex cone. 
Write 

(1) c'P(x, z*) = 7J:Cf(x)] + z*[g(x)] 

where 1J: is a strictly isotone functional on ~ and z* is linear continuous 

functional on %. Here z* ~ 0 means that z*(z) ~ 0 for all z ~ 0. 

Suppose that, for some X 0 EX, zt ~ 0, (X<:;;; £""), we have 

( 2) c'P(x, zt) :;;; c'P(x0, zt) 2 c'P(x0, z*), for all x E X and all z* ~ 0 . 

Then 
(3.1) 
and, for all x E X, 

(3.2) g(x) ~ 0, f(x) ~ f(xo) imply f(xo) ~ f(x). 

V.l.3. PROOF. 

( 4) 

The right-hand inequality in (2) implies that 

z[[g(x0 )] 2 z*[g(x0)] for all z* ~ 0 ; 

hence, in particular, 

( 5) zt[g(x0)] :;;;; (z: + zt')[g(x0)] for all zt ~ 0 , 

since z: + zt ~ 0 if zt ~ 0. But (5) gives 

( 6 ) 0 :;;;; z[[g(x0 )] for all zt ~ 0 , 

and (3.1) follows from Lemma II.2 in II.2.5 above, based on the Mazur

Bourgin Theorem. 
We shall now show the validity of (3.2). Equation (2) yields 
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( 7) for all x e X and all z* ~ 0 . 
Using z* = o;, this gives 

( 8) 7Jo*[f(x)] + zt[g(x)] ;;:;; 7JtCf(x0)] for all x e X . 

Now let x' eX be such that the hypotheses of (3.2) are satisfied, 
i.e., 

(9.1) 

and 

(9.2) 

g(x') ~ 0 

f(x') ~ f(xo) . 

Suppose that the conclusion of (3.2) is false, i.e., 

(9.3) f(x0) ;f; f(x') . 

Since 7J: is strictly isotone, (9.2) and (9.3) together imply (cf. II.2.1) 

(10) 7Jt[f(x')] > 7Jt(f(xo)] . 

Also, since zt ~ 0, (9.1) gives 

(11) zt[g(x')] ~ 0 . 

From (10) and (11) it follows that 

(12) 7Jt[f(x')] + zt[g(x')] > 7JtCf(xo)] , 

which contradicts (8). Hence (9.3) is false and (3.2) follows. 
It is important to note, that, in this proof, it would not have been 

sufficient to assume 7Jt isotone rather than strictly isotone (cf. V.2.6). 
V.2. Scalarization. 
V.2.1. Let "JiY be a topological linear space and K a convex cone in 

';¥. Then there always exists a linear continuous functional non-negative 
on K, since the null functional [sb(w) = 0 for all w e ~v] has this prop
erty. However, even with additional assumptions on K (viz., that it 
is closed and pointed50), there may not exist any continuous linear func
tional strictly positive on K, as shown by example in Krein and Rutman 
([29], pp. 21-22). On the other hand, it has been shown (ibid., Theorem 
2.1, p. 21) that if K is a closed pointed convex cone and "JiY a separable 
Banach space, a linear continuous (equals bounded, in this case) func
tional strictly positive on K does exist. It is shown below that the 
requirement of pointedness can be removed (Lemma V.2.2 in V.2.5 
below). ["Strictly positive" is defined in II.2.4.] 

When a strictly positive functional exists, it may be used to " scala
rize" the Lagrangian problem. It has been pointed out in V.l.2 that 
a non-negative functional is not adequate for our purposes (cf. also 
V.2.6 below). 

V.2.2. Let Pv <;;;;; :f/ be a convex cone in the linear topological space 
:f/. We write y' ~ y" if and only if y' - y" E Pv. Y denotes the ~ 
-maximal subset of the given permissible set Y. 

5° K is said to be pointed if Ow of= w e K implies -w !t K. 
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An element51 Yo e Y may have the property that there exists a y: = 
0 

y; > 0 such that 

( 1) y e Y implies y"t(y) ~ y't(Yo) . 

In the light of the remarks in V.2.1, such a y_"t will not always exist 
in infinite-dimensional spaces. But even in the two-dimensional Euclidean 
space, where every closed convex cone does possess a strictly positive 
linear continuous functional, and with Pv chosen as the non-negative 
quadrant, the required Yo" may not exist for some Yo· This, of course, 
is not surprising since so far nothing has been assumed about the set 
Y. But even if (as is natural in certain problems) one were to assume 
Y to be convex, closed, and even bounded, yt > 0 may not exist for 
certain elements of Y.52 

Let Y denote the subset of Y such that Yo e Y if and only if there 
exists a y"t such that (1) holds. 

We shall now formulate a necessary condition for membership in Y. 
Suppose that there exists a y't > 0 such that (1) holds for a given 

Yo E Y. Then 
( 2) Yt(y- Yo)~ 0 for all y e Y, 

i. e., 

( 3) y't(y) ~ 0 for all y E Y - Yo • 

Furthermore, by definition of strict positiveness, 

( 4) 

and 

( 5) 

Putting 

( 6) 

Y"t(y) ;;:;; 0 for all y;;:;; 0 

y"t(y) > 0 for all y ~ 0 . 

yf = -y:' 
we may rewrite (3), (4), and (5) as 

(7.1) 
(7.2) 

(7.3) 

respectively. 

y't(Y) ;;:;; 0 

Y"t(Y);;:;; 0 

Y"t'(y) > 0 

for all y e Y - Yo , 

for all y ~ 0, 

for all y ~ 0, 

Now consider the intersection Ko of all convex cones containing the set 

( 8 ) (Y - Yo) U (- Pv) . 

Clearly, Ko is a convex cone, and furthermore 

( 9) y't(y) ;;:;; 0 for ally E ~. 

[This follows from the fact that the set {y: y"t'(Y) ;;:;; 0} is a convex cone 

51 The element y0 in this context need not be ~ -maximal: cf. Theorem V.2.3. 
52 Arrow's example: Y = {y: y = (y1 , y2), Yt ~ 0, y~ + y~;:;;;;; 1}, Yo= (0, 1). Cf. also Kuhn 

and Tucker [31], p. 488, example. 
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which, by (7.1) and (7.2), contains (Y- Yu) U ( -P11), and hence, by 
definition of Ko, it includes Ko.] 

Writing ~ to denote the closure of Ko, we also have 

(10) yf(y) ~ 0 for all y e Ko , 
by continuity of y{. 

[For linear normed (hence Banach) spaces, this has been noted in 
Krein and Rutman ([29], pp. 16-17). When ~ is a linear topological 
space, (10) is proved as follows : Let y' e ~ and suppose y"f(y) < 0, 
say y{(y) = -a. The inverse image by y"f of the open interval (-3a/2, 
-a/2) is an open set containing y', hence containing at least one point, 
say y" of K0• Thus yf(y") < - af2 < 0, which contradicts (9).] 

Now suppose that there exists an element y' with 

(11.1) y' e Ko 
and 
(11.2) y' ?_ 0. 

Define 

(12) y" = -y·' 

so that 

(13) y" s 0. 

Then, by (7.3), 

(14) yt(y") > 0 . 

But because of (11.1) and (10), 

(15) yf(y') ~ 0 ' 

hence 

(16) yf(y") ~ 0 ' 

which contradicts (14). Hence we have 
THEOREM V.2.1. Let ~ be a linear topological space and P 11 a convex 

cone. If, f0'1.oa Yo e Y, there exists Y:' > 0 such that (1) holds, then the 
set Ko [the closure of the intersection of all the convex cones containing 
the set (Y- Yo) U ( -P11)J does not contain any y' such that y' ?. 0. 

V.2.3. Definition. If ~ contains no y' ?. 0 and Yo is ~ -maximal, Yo 
is said to be properly ma:x:imal. 

V.2.4. THEOREM V.2.2. Let ~ be a linear topological space with the 
property that for every closed convex cone K ~ ~. there is a linear 
continuous functional y* e ~* strictly positive on K. . 

Then, for every Yo properly maximal, there exists a y~ > 0 such that 
(1) is satisfied. 

PROOF. By hypothesis, there exists yt strictly positive on Ko. Then 

liB In this Theorem, y0 need not be ~-maximal. But Theorem V.2.3 asserts that Yo 
must be ~·-maximal. 
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(7.1) and (7.2) are satisfied because Ko contains the sets Y....:. Yo and 
- P-u and because y: e (Ko)Ell. Now take y'::;; 0. Then y' e Ko. Sup
pose - y' e Ko also. Then, since Yo is properly maximal, -y' "t 0, which 
contradicts y' ::;; 0. Hence, -y' ¢ ifo. But then, because of yt' > 0, 
y{(y') > 0; i.e., (7.3) also holds. It is seen that 

(17) yt = -yi 
has the required property. 

V.2.5. COROLLARY V.2.2. Let :V be a sepG!l"able linear normed space 
and Yo properly maximal. Then there exists a y: > 0 such that (1) 
holds. 

PROOF. In view of Theorem V. 2. 2, it will suffice to prove the fol
lowing: 

LEMMA V.2.2. For every closed convex cone K in a linear normed 
separable space :V, there is a linear bounded functional strictly positive 
on K. 

To prove the Lemma, we :first note that Theorem 2.1, p. 21, in Krein 
and Rutman [29] is precisely equivalent to our Lemma for the case 
where K is pointed, i.e., where 0 * w e K implies -w ¢ K. Hence, 
it is sufficient to show that the Krein-Rutman proof can be extended 
to cover the case of K not assumed pointed. 

Now the pointedness of K is not used in the Krein-Rutman proof in 
reaching the conclusion that there exists a y"t (in their notation fo) such 
that 

(18) y; e KEll 

and 

(19) Yo e K, Yi(Yo) = 0 imply y*(y0) = 0 for all y* e Kff! . 

We may now use Theorem 1.4, p. 17, in Krein and Rutman [29] which 
asserts54 that for every w0 e C where C is a closed convex cone in .'7?" 
and -w0 ¢ C, there exists w"t e ce such that w:(w0) > 0. This Theorem, 
together with (19), yields the conclusion that 

(20) Yo e K, Yi(Yo) = 0 imply -Yo e K 

which, with (18), makes y: strictly positive on K. 
V.2.6. THEOREM V.2.3. Let :V be a topological linear space and 

y;' strictly positive on the convex cone Pv, and let Ya e Y be such that 
(1) holds, i.e., that y e Y implies y't(y);;:;; Y"t(Y0). Then Yo is maximal 
in Y. 

PROOF. Suppose not. Then, for some y' e Y we have 

(21) y' ~Yo· 

Also, by (1), since y' e Y, 

5' This Theorem follows from the Mazur-Bourgin Theorem (!!.1.4.1) whenever ~Vis locally 
convex. 
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(22) Y"t(y' - Yo) ~ 0 , 

while (21) together with y"t > 0 yields 

-(23) Y'"t(y' - Yo) > 0 . 

The contradiction between (22) and (23) completes the proof. 
It would not have been enough to assume y"t e P11f!3 (or even y: 2 O:> 

instead of Y"t > 0. For in that case (21) would only have yielded 

(23') Y"t(y' - Yo) ~ 0 , 

which does not contradict (22) since equality could hold in both. (E.g., 
in the case of P 71 closed, y' - Yo could be a boundary point of P 11 with 
Y:(y' - Yo) = 0.) 

V.2.7. Noting that the hypotheses of Theorems V.2.1 and V.2.3 
are identical, we summarize the results of V .2 in Theorem V .2.4. 

THEOREM V.2.4. Let ~ be a linear topological space. ordered by the 
relation ~ (where y' ~ y' means y' - y" e P11 , P11 being a convex cone). 

A. If there exists y"t > 0 such that (1) holds for some Yo e Y, then Yo 
is properly ~ -maximal in Y. 55 

B. lf for every closed convex cone K ~ ~ there is a linear continuous 
functional y* e ~* strictly positive on K (as is, for instance, the case 
in a separable linear normed space), then for every Yo properly ~ -maxi
mal there exists a y"t > 0 such that (1) is satisfied. 

V.3. Maximality implies existence of a saddle-point. 

V .3.1. Lagrangian saddle-points without differentiability. 
V.3.1.1. The basic idea of the Theorem presented in this section 

goes back to Slater's paper entitled "Lagrange Multipliers Revisited" 
[41]. The chief accomplishment of Slater's paper was to establish the 
existence of a saddle-point for the Lagrangian expression without using 
differentiability properties in any way whatever, the reliance being 
placed on the concavity properties of the relevant functions. (A more 
detailed comparison is given at the end of Part I of the present chap
ter.) Since the differentiability approach also used the concavity prop
erties, Slater's result was a . significant improvement. The present 
writer extended Slater's result (except for a slight strengthening of 
Slater's concavity requirements to conform with the usual ones) in a 
Cowles Commission Discussion Paper (Economics No. 2110) of September 
1954. The present version differs significantly from the 1954 version. 
A suggestion, due to Hirofumi Uzawa, has made it possible not only 
to simplify the proof tremendously, but also to weaken the assumptions 
on the functions used (which are merely concave, but not necessarily 
continuous) and on the underlying spaces. 

V.3.1.2. THEOREM V.3.1. Let c2"' be a linear system, ~ and % linear 
topological spaces. P 11 , P. are convex cones in ~ and % with non-empty 

56 The point Yo is;;;;; -maximal by V.2.3; proper maximality then follows from V.2.L 
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interiors, Pv * ~. X a (fixed) convex subset of ,2"', fa concave function 
on X to ~, g a concave function on X to %. Let there be a point x* 
in X such that 

(i.e., g(x*) is an element of the interior of P.). 

lf x0 maximizes f(x) subject to g(x) ~ 0 and x EX, then there exist 
linear continuous functionals 

( 2 ) Y"t ?: 0 and zt ~ 0 

such that, for the Lagrangian expression 

( 3) ct>(x, z*) = y*[f(x)] + z*[g(x)] , 

the saddle-point inequalities 

( 4 ) ct>(x, zt) ~ ct>(xo, zn ~ ct>(xo, z*) 

hold for all x E X and all z* ~ 0. 
(We may note that in applications X is usually a convex cone-e.g., 

the non-negative orthant of the system ,2"'.) 

PROOF. Let r be the topological product space ~ X %and consider 
the subset of W defined by 

( 5) A= {(y, z): y E ~. y ~f(x), z E %, z ~ g(x) for some x EX}. 

The set A is convex because of the concavity of the functions f and g 
and the convexity of the set X. Also, A has interior points because 
P. and Pv have non-empty interiors. 

Consider the point (f(xo). o.) = Wo of the space '»: The point Wo is 
an element of A, since, by hypothesis, o. ~ g(x0). On the other hand, 
w 0 ·does not belong to the interior of A; for if w0 were interior to A, 
there would exist an element x in X such thatf(x0) <f(x) and o. ~ g(x), 
which cannot happen because of the assumed maximality of x0 • 

Hence, we may apply the Corollary of the Hahn-Banach (Bounding 
Plane) Theorem (see Corollary II. 1 of II.l.4 above) and obtain a non
null functional wt such that 

wt(w) ~ wt(w0 ) for all w E A . 

Writing wt = (yt, zt), this implies 

( 6) yt(y) + zt(z) ~ yt[f(x)] for all (y, z) in A . 

Since (f(x), g(x)), with x in X, belongs to A, we have in particular 

( 7) yt[f(x)] + zt[g(x)J ~ yt[J(x0)] for all x in X. 

Also, since w 0 = (f(x0 ), O.) is in A, it follows that all ordered pairs of 
the form (f(x0), z) are in A if z ~ 0., which implies zt(z) ~ 0 for all 
z ~ 0, i.e., ' 

(8) z:~o. 

Similarly, because w 0 is in A, so are all pairs of the form (y, O.) for 
y ~ f(x0) ; this implies 

( 9) Yt ~ 0. 
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Now suppose yt = o; (the null functional). It follows from (7) that 
zt[g(x)] ;;;;; 0 for all x in X, hence for x*. Also, since w~ is non-null, 
z; ~ 0. But then zt[g(x*)] = 0 because g(x*) was assumed positive and 
zt- is non-negative. However, since g(z*) is an interior point of the 
cone P. and z"t is non-null, it must be that Zo*[g(x*)] > 0. (This follows 
from an extension of Prop. 5, Bourbaki [7], p. 75, to the case where 
the cone need not be pointed and the space is merely assumed linear 
topological ; that this extension is valid follows directly from Bourbaki 
[7], Prop. 16, p. 52.) Hence we have established that 

(10) y"f ~ 0 . 

Now let x = x0 in (7). It follows that 
(11) z"t[g(x0)] ;;;;; 0 . 
On the other hand, since both g(x0) and zt are non-negative, 
(12) z"f[g(:va)] ;s 0 , 

hence 
(13) z"t[g(x0)] = 0 . 

Since z*[g(x0)] ;s 0 for all z* ;s 0, (13) implies the right-hand saddle
point inequality, while (7) and (13) yield the left-hand inequality. This 
completes the proof. 

V.3.1.3. A case of particular interest is that of ~ being the space 
of reals. Here yt ;::::: 0 is equivalent to y't > 0 and we have a strictly 
isotone functional of the type needed in Theorem V.1.1 (saddle-point 
implies maximality). When ~ is multi-dimensional, however, yt is 
not strictly isotone but merely isotone, which is inadequate in the con
text of Theorem V.l, for example, to establish "efficiency" of a given 
resource allocation. 

V.3.1.4. It was shown by Slater that the condition g(x*) > 0 cannot 
be dispensed with. [In his counter-example, all three spaces are one
dimensional (reals),f(x) = x- 1, g(x) = -(x- 1)2.] A slight modification 
of Slater's counter-example shows that the condition g(x*);?:::: 0 is not 
sufficient : we again take f(x) = x - 1, ~ two-dimensional, with g1(x) = 
-(x- 1)2 , g,(x) = -x + 2. 

V.3.2. Non-negative Lagrangian saddle-points: the linear non-homo
geneous case. 68 

V.3.2.1. Although linear non-homogeneous situations may be handled 
by theorems covering the non-linear situations as well, it seems more 
helpful and simpler to give the direct proofs based on the assumption 
of linearity. 

V.3.2.2. We consider the problem of maximizing the linear non-homo
geneous real-valued function on z to ~ (V reals) 

56 We call a function (P(X) + y0 on z to Y linear non-homogeneous if q>(a:) is linear [i.e., 
if q>(a:) is homogeneous and additive). The possibility that Yo vanishes is not excluded. 
("Affine" might be a more appropriate term.) 
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( 1) f(x) = -x*(x) + v (x* E ~*) 

subject to the linear constraints 

(2.1) g(x) = U(x) - a ~ o. , 
(2.2) X~ 0,., 

where U is a linear transformation on ~ to %, it being assumed that 
~is a linear topological space and % a locally convex space, and the 
convex cones P. = {z: z ~ o.}, P,. = {x: x ~ 0,.} are closed. 

In this case, the Lagrangian expression (cf. II.3.3) can be written 
ass7 

( 3) <I>(x, z*) = [ -x*(x) + v] + z*[U(x)- a]. 

V.3.2.3. THEOREM V.3.2. Le;t; ~ be a linear topological space, and 
% a locally convex linear space, the convex cones P., P,. closed, and as
sume the regular convexity of 

( 4) w~ = {w* E ~: w* = T*(v*), v* ~ 0, v* E ~~*} ' 

where T is the linear continuous transformation on the topological linear 
product space ~of the pairs w = (p, x), p real, x E ~.into the topologi-
cal product space % >< ~ = ~- given by 
( 5) T((p, x)) = ( -ap + U(x), (p, x)) for all p real and all x E ~ • 

Then, for Xo to maximize f(x) subject to the constraints (2), it is neces
sary and sufficient that <P(x, z*) have a non-negative saddle-point at (x0 , z:); 
i.e., for <I> defined by (3), 

(6.1) <I>(x, z:) ~ <I>(x0, Zo*) for all x ~ 0 , 

(6.2) c;Il(x0, Zo*) ~ c;Il(x0, z*) for all z* ~ 0 , 

if and only if 

(7.1) 

(7.2) 

and, for any x E dii!:"', 

U(x0) - a ~ 0. , 

Xo ~ 0,., 

(8) if (2.1) and (2.2) hold, then -x*(x) + v ~ -x*(x0) + v. 
PROOF. In view of Theorem V.1, we need only prove the necessity. 

Inequality (6.1) may be rewritten as 

(6.1') -x*(x) + Zo*[U(x) - a] ~ -x*(x0) + z:[U(Xo) - a] for all x ~ 0 

or as 

(6.1") zt[U(x) - a] ~ x*(x) - x*(x0) + zt[U(Xo) - a] 

Now write 

(8) x*(xo) = {3 • 

Then, for any x ~>atisfying (2), (8) yields 

for all x ~ 0. 

57 In general, the first term of the right member of (3) is y:[ -x*(x) + .!]. In this case, 

since we shall always take Yri > 0, we may put Yri = 1 without loss of generality. [I.e., 

y:(y) = y for all y E Y .] 
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( 9') -x*(x) ~ -(3 , 

or 
( 9") x*(x) - f3 ;?; 0 . 

Hence the hypotheses of Theorem IV.3 are satisfied58 and therefore 
there exists a zt ;?; 0 such that 

(10.1) z;[U(x) - a] ~ x*(x) - f3 for x ;?; 0 

and 

(10.2) zt[U(x0) -a] = 0 

since x0 satisfies the hypotheses of IV (34). Equations (10.1) and (10.2) 
imply (6.1"), hence (6.1). 

Inequality (6.2) may be written as 

(6.2') -x*(x0) + z;[U(x0) - a] ~ -x*(x0) + z*[U(x0 - a)] 

for all z* ~ 0 , 
i.e., because of (10.2), 

(6.2") z*[U(x0 ) - a] ~ 0 for all z* ~ 0 . 

But (6.2") must hold because of (7.1) and z* ~ 0. 

V.3.3. Non-negative Lagrangian saddle-points and quasi-saddle-points: 
the differentiable case. 

V.3.3.1. In this section all spaces are Banach and the functions f 
and g are assumed to possess Frechet differentials. We shall call them 
differentiable. The convex cones Px, Pv, P, are assumed closed. 

V.3.3.2. Definitions. We shall say that the function g on Z into 
% is regular at a point x E z if and only if, for every 

( 1 ) f E Z, ~ * 0"' 
such that the equality 

( 2) 

implies the two inequalities 

( 3) x~O 

and 

(4) ~g(x; f) + g(x) ~ o , 
there exists a function 'l! on the closed (real) interval [0, 1] into z, 
say x' = 'l'(t) (0 s t s 1), with the following properties : 

( 5 ) (a) ~'l"(t; T) exists for all 0 s t s 1 

(b) x = 'l!(O) 

(c) 'l"(t) ;?; 0 for 0 s t s 1 

(d) g['l"(t)] ;?; 0 for 0 s t s 1 

(e) f = ~'l'(O; T) with T > 0 . 

68 Note that x required in IV.3 exists, for x0 has this property by definition of 
rnaximality. 
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It is easily seen that the condition of regularity is closely related to 
the Kuhn and Tucker "constraint qualification" ([31], p. 483). In fact, 
the assertion concerning 'IF is identieal with the corresponding assertion 
in Kuhn and Tucker, while the conditions (1), (2), (3), (4) under which 
'IF must exist are not weaker59 than the correspondL'lg conditions (5), 
[31], Zoe. mt. Therefore z is necessarily regular in our sense if the· 
Kuhn-Tucker. " constraint qualification " is satisfied. 

It should also be noted that our condition of regularity is closely 
related to Goldstine's hypothesis (a) ([15], p. 145) whose relationship to 
the condition in Bliss ([4], Lemma 76.1, p. 210) is similar to that of 
our regularity concept to the Kuhn-Tucker " constraint qualification." 

V.3.3.3. THEOREM V.3.3.1. A. Let f be a real-valued differentiable 
function on the Banach space 2", g a differentiable function on Z into 
the Banach space %. The cones P,. = {x: x;:::;;; 0} and P. = {z: z;:::;;; 0} are 
assumed closed. 

Let X0 maximize f(x) sub:ject to the constraints x ;:::;;; 0, g(x) ;:::;;; 0 and 
suppose g is regular at x0 • 

B. It then follows that the relations 

(6.1) X ;:::;;; 0 

(6.2) bg(x0 ; ,;) + g(x0 ) ;:::;;; 0 (,; = x - Xo) 

imply 
( 7) 

PROOF. Consider the real-valued function h(t), 0 ~ t ~ 1, of the real 
variable t, defined by 
( 8 ) h(t) = /['l"(t)] (0 ~ t ~ 1). 

[The function 'IF exists since, by virtue of (6), the relations (1), (2), 
(3), (4) are satisfied and g is assumed regular at x0.] 

Because of 5(b), (c), (d) and the maximality of x0, h(t) must have a 
maximum at t = 0. It follows that60 for 

T > 0, ( 9) 

(10) 8h(O; -r) = 8/['l"(O) ; 8'l'(O, -r)] ~ 0 , 

whence l>Y 5(e), (7) follows. 61 

THEOREM V.3.3.2. (This Theorem is a generalization of the Kuhn
Tucker Theorem 1 [31], p. 484.) 

A. Let all assumptions under A in Theorem V.3.3.1 hold. Assume 

59 Since Kuhn and Tucker impose their conditions only on certain components of a: and 
g, it should be noted that for those components Ui of g on which Kuhn and Tucker impose 
the constraint (5) ([31], loc. cit.), we have gi(x) = 0. Hence (4) is not weaker than the first 
part of Kuhn-Tucker (5). 

so Using the "function of a function rule" as applied to Frechet differentials, cf. !!.5.2. 
•r .. Theorem V.3.3.1 is implicit in the Kuhn-Tucker proof of their Theorem L The proof 

is suggested (mutatis mutandis) by Goldstine [15]. The writer is indebted to Kenneth J. 
Arrow for clarification on this point. 
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further the regular convexity of the set 

w: = {w* E ~*: w* = T*(v*), v* ~ 0, v* E r*} ' 
where T is given by V.3.2(4), with U and a as in (15) below. 
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B. Then there exists a zt ~ 0 such that the Lagrangian expression 
ct>(x, z*) = f(x) + z*[g(x)] 
has a non-negative quasi-saddle-point at (x0 , zt; yt-), y(! = 1, i.e., it satis
fies the following relations: 

(11.1) 3/P((Xo, zn ~) ~ 0 for all X~ 0, X= Xo + ~ 
(11.2) 3,,<:I>((Xo 1 zrt); Xo) = 0 

(12.1) az*<P((xo,zn (*) = (*[g(xo)] ~ 0 for all z* ~ 0, c.* = z* - zt ' 

(12.2) az*<P((xo, z;); zrt) = zt[g(xo)] = 0 . 

PROOF. Since 3g(x; ~) and 3f(x; ~) are additive in ~. x being fixed, 
the relations (6.1), (6.2), and (7) of Theorem V.3.3.1 may be rewritten 
respectively as 

X~ 0, (13.1) 

(13.2) 

and 

(14) 

-3f(x0 ; x) - [3g(x0 ; Xo) - g(xo)] ~ 0 , 

Since x0 is assumed maximal, Theorem V.3.3.1 states that (13.1), (13.2) 
together imply (14). This corresponds to the implication (34) in Theorem 
IV.3, with the following correspondence: 

(15.1) U(x) = 3g(x0 ; x) for all x E £:' , 

(15.2) a= 3g(x0 ; Xo) - g(x0) , 

(15.3) x*(x) = -3f(x0 ; x) for all x E £:' , 

(15.4) (3 = -8f(xo; Xo) . 

Since all the other hypotheses of Theorem IV.3 are satisfied (in partic
ular, x of IV (31) exists since x0 is maximal and hence has the required 
properties), there exists a zt ~ 0 such that 

(16.1) zt[3g(x0 ; x) - (3g(x0 ; x 0) - g(x0))] ~ -Bf(xo; x) - ( -3f(xo; Xo)) 

and 

(16.2) for x = Xo. 

Equation (16.2) immediately yields 

em ~[g~n=o 

which is (12.2) in Theorem V.3.3.2. 
Since x0 is maximal, 

(18) g(xo) ~ 0 ; 

hence 

(19) z* ~ 0 implies z*[g(x0)] ~ 0 . 
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Hence, because of (17), (12.1) holds for any (*such that(*= z* - z;, 
z*;;;;; 0. 

Using (17) and the additivity of aj(x; ~) and ag(x; f) as functions of 
~. we may rewrite (16.1) as 

(20) zt[ag(x0 ; x - X 0)] ~ -Bf(Xo; x - x0) for all x ;;;;; 0 , 
• 62 I.e., 

(21) Bf(xo; X - X0) + azt'g(xo; X - X 0) ~ 0 for all X ;;;;; 0 , 

which is (11.1) in Theorem V.3.3.2. [z"tg(x) = zt[g(x)] for all x.] 
Now setting x = 0 in (21), we get 

(22) -Bz<P((x0, z:); x0) ~ 0 . 

Rewrite (21) as 

(21') Bz<P((x0 , z:); x) - B.,<P((x0 , zt); x0) ~ 0 

and suppose that · 

(23) 

for all x;;;;; 0 

But using in (21') x = 2x0 , we reach a contradiction since Bz<P((x0 , z"t); x) 
is homogeneous in x. ,I_Ience the equality sign must hold in (22), and 
(11.2) in Theorem V.3.3.1 follows. 

V.3.3.5. THEOREM V.3.3.3. (This Theorem is a generalization of the 
"only if" part of the Kuhn-Tucker Theorem 3. The converse-the 
"if" part of the Kuhn-Tucker Theorem 3-follows from V.l.l.) Let 
all the assumptions under A in Theorem V.3.3.2 hold, and assume further 
that f and g are concave. Then <P(x, z*) has a non-negative saddle-point 
at (x0, z:) where x0 is the maximal point of the hypothesis. 

PROOF. The Kuhn-Tucker proof of the "only if" part· of Theorem 
3 [31], p. 487, is valid under our assumptions. For the sake of com
pleteness we reproduce its major steps in our notation. First, if h(x), 
x e 2", 2" Banach, is a concave function with values in a Banach 
space V, and the ordering relation is given by a closed63 convex cone 
P., we have, for 0 < (} ~ 1 

(24) h(x") - h(x') ~ ! {h[x' + O(x" - x')] - h(x')} . 

1-!ow 

(25') Bh(x'; x" - x') =lim_!_ {h[x' + O(x" - x')] - h(x')} 
e-o (} 

Then, because P. is closed, 

(25") h(x") - h(x') ~ Bh(x'; x" - x') 

which corresponds to Lemma 3 in Kuhn and Tucker [31], p. 485. Hence, 
for x ;;;;; 0 and z"t ;;;;; 0 and using (25), since f and g are concave, 

62 We use the function of a function rule and the fact that, since z* is·linear, Bz*(zo; 0 
= z*((). (Cf. 1!.5.2 and 1!.5.1, footnote 29.) 

Bs Closedness is not used for (24) or (25'), . but only for (25"). 
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(26) <I>(x, z:) ~ f(xo) + z~[g(xo)] + gf(x0 ; x - x0) + zt[gg(x0 ; x - X 0)] 

= <l>(Xo, zt) + g~<f>((Xo, zn; X - Xo) 

~ <I>(xo, Z:) 
where the last inequality is based on (11.1) in Theorem V.3.3.2. 

On the other hand, for z* G; 0, · 

(27) <I>(xo, z*) - ll>(Xo, zt) = (z* - zt)[g(xo)] ~ 0 
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by (12.1) in Theorem V.3.3.2. Relations (26) and (27) together imply 
that <I> has a non-negative saddle-point at (Xo, zt). 

V.3.3.6. THEOREM V.3.3.4. (This Theorem is a generalization of the· 
Kuhn-Tucker Theorem 4.) 

A. · Let !Jf!f', %', P~, P., and g be as in Theorem V.3.3.2 (including 
the assumption of regular convexity of X; and regularity of g but not 
that of concavity) while :V is a Banach space possessing the property 
stated at the beginning of Theorem V.2.2 (e.g., it would suffice to assume 
~ separable). Assume further that f is a differentiahle function on !Jf!f' 
into ~ and also that x0 is properly maximal. 

B. Then for some yt > 0, 
(28) <I>r(x, z*) = y*[f(x)] + z*[g(x)] 

has a non-negative quasi-saddle-point at (x0, z:; yn; i.e., the relations 
(11), (12) hold with f(x) replaced by yt[f(x)]: 

PROOF. Using Theorem V.2.2 with Yo =f(x0) we obtain y't such that 

(29) y e Y implies yt(y) ~ y:(Yo) 

for 

(30) Y = f(P~ n g- 1(P.)) ; 

i.e., the function y'tf, given by 

(31) F(x) = yt[f(x)] for all x e !Jf!f' 

has a maximum at x0 subject to 

(32) X G; 0, g(x) G; 0 . 

Thus we may use Theorem V.3.3.2 as applied to F(x) and the Theorem 
follows. (F(x) is differentiable since f is differentiable and so is yf.) 

V.3.3.7. THEOREM V.3.3.5. (Generalization of the "only if" part of 
the Kuhn-Tucker Theorem 6.) Let all the assumptions under A in 
Theorem V.3.3.4 hold, and assume further that f and g are concave. 
Then the function <l>1(x, z*) as defined by (28) has a non-negative saddle
point at (x0, Z: ; y:) for some y"f > 0. 

PROOF. Use Theorem V.3.3.4, then Theorem V.3.3.3 as applied to 
11>1 • (Note that F, defined in (31), is concave if f is.) 

Note. The converse is found in Theorem V.1 (the "if" part of 
the Kuhn-Tucker Theorem 6). 
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V.3.3.8. In Section V.3.3 the spaces have so far been assumed 
Banach and the differentials Frechet. It appears, however, that by 
using a more general concept of a differential (to be called here the 
MF differential) one can validate the results of V.3.3 for that class of 
linear topological spaces for which the auxiliary results from previous 
sections are valid (i.e., locally convex linear, or the alternatives men
tioned in II.1.4.1). 

The MF differential is that called p (or p*) differential in Michal [38], 
p. 82, and also defined (later but independently) by Frechet [12], pp. 
64-65.6• We shall denote this differential by df(x0 ; h) if evaluated at 
x0 with increment h E 2"'; f(x) is in :Y'; Jf:? and V are Hausdorff linear 
spaces. The MF differential is additive and continuous (hence linear) 
in the increment h and is further characterized by the following prop

erty (c) : There exists a fixed neighborhood W of Oz such that, given 
any neighborhood V of Ov, there is a neighborhood U of Oz (U depends 
on W) such that if 

hE U, nh E W, 
then 

n[f(xo + h) - f(x0) - df(x0 ; h)] E V 

for all positive integers n (or all positive real numbers n). 65 As partly 
stated in [38] and shown in [12], df(x0 ; h) has the important properties 
o£ Lhe Frec:heL dii1:erenLial; in particular, the "function of a function " 
rule is valid and the partial differentials are defined in the usual way 
and are additive. Furthermore, from the remarks and theorems in 
Michal [36], [37] and [38], it follows that when df(x0 ; h) exists, then 
the Gateaux differential, i.e., 

lim l_[f(xo + (}h) - f(xo)] , 
e~o 8 

exists and the two are equal."" Now let c'Z:_? and % be (say) locally 

" 4 One could probably also use the slightly more general F or M differentials; cf. Hyers 
[22], pp. 14-15. 

65 In linear normed spaces the MF differential exists if and only if the Frechet differen
tial exists, and the two are equal. Property (c) is equivalent to that given at the end of 
IL5.1. This is shown in [12], pp. 62-64. 

"" In [38], p. 82, it is stated that in what we called linear spaces the~'-* differential (equiv
alent to the MF differential) is equivalent to what in [38] is called the M 1 differential. In 
[37], Theorem V, the existence of the M 1 differential (called "the differential") is asserted 
to imply the existence of the M differential of [36] and the two are equal. Finally, in 
Theorem 4 of [36] it is stated that the existence of the M differential implies that of the 
Gateaux differential and the two are equal. The precise meaning of the limit in the defini
tion of the Gateaux differential is as follows. Write g(e) = [f(x0 + eh)]je and denote by 
daf(x0 ; h) the Gateaux differential at x0 with increment h. Then for a given neighborhood 
V of Oy there exists a real number (} > 0 such that 

g(e) E daf(xo; h) + V for all 0 < I e I < lJ . 
The equality df(x0 ; h)= daf(x0 ; h) follows easily from property (c) above when the 
"starlike " neighborhood system CZJ is used (see Bourgin [9], pp. 638-39). 
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convex Hausdorff linear spaces (cf. II.1.4.1 for possible alternative assump
tions) and consider the results of V.3.3 with the MF differential df(x0 ; ~), 
etc., substituted for the Frechet differential, 5j(x0 ; ~), etc., throughout. 
Theorem V.3.3.1 obviously remains valid, since the MF differential is 
linear and obeys the " function of a function " rule. Theorem V.3.3.2 
also retains its validity since the partial MF differentials. have the 
required properties. In the proof of Theorem V.3.3.3, the two relations 
(25) remain valid because the MF differential, like the Frechet differen
tial, equals the Gateaux differential, and Theorem V.3.3.3 follows. (It 
can also be shown that relations (11) and (12) in Theorem V.3.3.2 are 
satisfied at a non-negative saddle-point.) The remaining two theorems 
of V.3.3 also go through. 

It may nnally be noted that the MF differential is defined and retains 
many of its important properties when the domain and the range of 
the function whose differential is taken are in topological groups (not 
necessarily linear spaces). Thus a possibility appears of studying a 
broader class of spaces and their Lagrangian expressions from the view
point of differentiability. 
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EXTREMUM PROBLEMS WITH INEQUALITIES 
AS SUBSIDIARY CONDITIONS 

Fritz John 

This paper deals with an extension of Lagrange's multiplier 

rule to the case, where the subsidiary conditions are inequali

ties in~tead of equations. Only extrema of differentiable func

tions of a finite number of variables will be considered. There 

may however be an infinite number of inequalities prescribed. 

Lagrange's rule for the situation considereq here differs from the 

ordinary one, in that the multipliers may always be assumed to be 

positive. This makes it possible to obtain sufficient conditions 

for the occurence or a minimum in terms of the first derivatives 

only. 

Two geometric applications will be discussed here. From the 

point or view of applications it would seem desirable to extend 

the method used here to cases, where the functions involved are 

not necessarily differentiable, or where they do not depend on a 

finite number of independent variables. 

1. Necessary conditions tor a minimum. 

Let R be a set of points x in a space E, and F(x) a real

valued function defined in R. We consider a subset R' of R, which 

is described by a system of inequalities with parameter y: 

(l) G(x,y) li 0, 

where G- is a function defined for all- x in R and all "values" of 

the parameter y. There may be a finite or infinite number of these 

543 

198



188 FRITZ JOHN 

inequalities. To gain sufficient generality we assmne tlmt the 

"values" of the parameter y vary over a set of points S in a space 

H. Then G(x,y) is defined in the set R t s. We are interested in 

conditions a point x0 of R' has to satisfy in order that 

(2) M = F( x0 ) = Minim tun F( x) 
xCRI 

In what follows we restrict ourselves to the cas.e, where the 

space E containing the set R is the n-diroensional euclidean space 

~· and where the set S of parameter values y is a compact set in 

a metric space H. We make the further asstunptions that F(x) and 

G(x,y) have first derivatives Fi and Gi with respect to the coor

dinates xi of the point (~, ••• ,xn) = x, and that F(x), G(x,y), 

Fi(x), Gi(x,y) are continuous functions of (x,y) in R xs.1 l 

Given a function q(x) with continuous derivatives ~i(x) in 

R, we denote by 

( 3) 
n 

~'(x,z) = ~ <h(x)z1 
i=l 

the diff'erential of the function. cjl' ( x, z) is then defined for 

all x c R and z "' ( z1 , ••• , z n) c= En, and is linear in z. 

Theorem I. 

Let x0 be an interior point of R, and belong to the set R' 

all points X Of R, which satisfy (l) for all y c::: S • Let F(x0 ) = 

MinimUlll F(x). 
xc::R 1 

Then there exists a finite set of points ~ •••• ,y8 inS and 

numbers A0 , ~1 •••• , A8 , which do not all vanish, such that 

(4a) G(x0 ,yr) =- o for r:l, ••• ,s 

of 

l) Here continuity in R "S 1s 
f'ollowin~ definition of convergence 
if lim x = x and lim yr = y. 

defined so as to aS!ee with the 
in R x S: lim (xr ,r·> "'(x,y), 

r-+ro 
l"~oo l"--700 
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C4bl }.0 ~ 0 I }.1 > 0, •••• , A 8 > 0 

C4c) 0 ~ s ~n 

C4dl the function 
s 

q (x) = ]\0 F(x) - L ArG(x,yr) 
r"'l 

bas a critical point at x0 i.e. 

for i ::: 1, ••• , n • 

Proof: 

Let s• denote the subset of points y of s, for which 

G(x0 ,y)=o. 

We shall first show that the system of inequalities 

( 5a) 

( 5b) 

0 
F 1 (X , z) < 0 

G' (x0 ,z,y) > 0 

can have no solution z = ( z1,,, .,zn). 

for all y c: s' 

189 

For let (5a,b) be satisfied for a certain z. Denote by SJ 
the set of all points of S having a distance ~ E. from sone point 

of s•, and by X~ the set of all points of R having a distance ~ .f; 

from x0 • Then there exist positive numbers S, E. such that 

(6) F'(x,z)<..-E, G'(x,z,y)>S forallxC:X~ 1 yC:.SJ. 

For otherwise there would exist sequences of points xr in R, ~ 

in s, r 'l in s•, such that 

lim xr = x0 , lim (distance of ? and._{) :. 0 
r-+co r-+oo 

and either 

or 

r 
11m inf F' (x ,z) ;;, 0 

r-oo 

As S is compact and G is continuous, St is compact as well, We can 

then form a suitable subsequence of the r, such that yr and lr con-
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verge towards a point y of s•. As F' and G' are continuous, it 

would follow that either F 1 (x0 ,z)? 0 or G1 (x0 ,z,y) ~ 0, contrary 

to ( 5a, b) • 

Hence (6) holds for suitable positive E.,S. On the other 

hand there exists a positive constant ,.u.=-foi(E..) such that 

{7) 

for all y of S outside S·1 • 
0 

For G(x ,y) is non-negative in s (as 

x0 c: R t), vanishes only on S', and is continuous on the compact 

set S, 

As x0 is an interior point of R, we have for sufficiently 

small positive t 

F(x0 + tz) :: F(x0 ) + tF' (x0 + Stz, z) 

G(x0 + tz,y) = G(x0 ,y) + tGt (x0 + Stz,z,y) 

where e stands for any quantity between 0 and 1. If here t is 

chosen so small that 

t•Maximum IG•(x,z,y)l < ft , 
yC:.S 
x ex~ 

we can apply (6), (7) and find that 

F(x0 + tz) ~ F(x0 ) - t S oe; F(x0 ) 

G(x0 + tz,y) ~ G(x0 ,y) + t 5 > 0 for all y C:: SJ 

G(x0 + tz,y) ~ }'l-tfG' (x0+etz,z,y)J > 0 for all y of S outside 

Sl 
This would however contradict t!:J.a assumed minimum property of x0 • 

Consequently, there can be no z satisfying (5a,b). 

The non-existence of a solution z of the system of linear 

homogeneous inequalities (5a,b) can be seen to be equivalent to 

the existence of non-neF;ative solutions of a certain system of 
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equations.2 > For this purpose we introduce the "representative" 

points corresponding to (5a,b), i.e. the points inn-space given 

respectively by 

q = ( -Fl (xo) • • •. ,-Fn(xo)) 

Py = (G1 (x0 ,y), ••• ,Gn(x0 ,y)) 
(8) 

for y c::s•. 
The non-existence of a solution z of (5a,b) implies that the set 

~ consisting of q and all p does not lie in an open half-space 
y 

bounded by a hyper-plane through the origin. Then the origin is 

a point of the convex hull of ~ • As in addition, as a conse

quence of our assumptions, 2: is closed and bounded, it follows 

that the origin belongs to a simplex with vertices in ~.where 

the point q may be chosen as one of the vertices.;) Then the 

origin is center of mass of s+l non-negative masses (s ~ n), 

located in q and s other points of L: . Equations C4a,b,c,d) are 

the analytic expression for this fact. 

2. Sufficient condi tiona fo:r• a minimum. Equi val enoe with finite 

systems or inequalities. 

Theorem II. 

Let x0 be an intex•ior point of R and belong to the set R' of 

all points x of R, which satisfy 

for all y c: S • 

Let there exist a function «t ( x) of the form 

s 
4> (x} = /\0 F(x) - La }\rG(x,yr) 

r=l 

~) See L. L, Dines: "Linear inequalities," Bull. Am, Math. 
Soc, vol. ~2 (193b), pp. 35,-365. R. w. Stokes: 11A geometric the
ory of linear inequalities, Trans. Am. Math. Soc. vol. 33 (1931), 
PP. 782-805. ""' 

3) Tbat one or the vertices can be chosen arbitrarily in~. 
i~ evident from the proof or the fundamental theorem that any point 
o.r the convex hull of' 'E belongs to a sii!Jplex with vertices in ~. 
See Bonnesen-Fenchel: 11Theorie der konvexen K8rper;• p. 9. 
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where yrcs, such that <4a,b,d) hold. Let in addition the matrix 

~OFl(xo) Gl(xo,yl) Gl(xo,y2) ••••• Gl(xo,ys) 

............ ' ..................................... . 
A= ................................................... 

'\,Fn(xo) 

have rank n. 

Then F(x) has a relative lllinilllum at x0 in the set derined by 

the finite number of inequalities 

(9) for r = 1, ••• ,s 

and has, a fortiori, a relative minilllum at x0 for the set R•. 
Proof: 

If F(x) did not have a relative minimum at x0 for the set (9), 

we could find a sequence of positive numbers tr and a set of points 

zrc:: E such that n' 
lim tr 0, 

r-+c:o 

G(x0 + trzr ,yk) ~ 0 

Then with suitable 9 between 0 and 1 

F1 (x0 + etrzr ,zr) ~ 0 

for k = l,, •• , s. 

for k = 1, ••• , s. 

For a suitable subsequence the zr converse towards a vector z I 0, 

for which then 

for k = 1, ••• , s. 

But, as ~ (x) is stationary at x0 , we have 
s 

0 = ~· (x0 ,z) = 1'1. 0 F• (x0 ,z) - Z: AkG' (x0 ,z,yk). 
k=l 
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Hence, makinp; use of (4b), we see that z satisfies the system of 

linear homogeneous equations 

A0 F1 (x0 ,z) = 0, G'(x0 ,z,yk) = 0 for k = l, ••• , s. 

The existence of a solution z ~ 0 of this system contradicts how

ever the assumption made on the rank of A. This completes the 

proof of theorem II. 

Theorem II shows that undel' sui table condi tio-na a relative 

minimum of F(x) for the set R' determined by infinitely many ine

qualities is at the same time a relative minimum for the set de

termined by a suitable finite number of these inequalities. An 

example will show that this is not the case for every minimum 

problem. Consider the problem of finding the minimum of the func

tion 

F(x) = -x2 

in the set of all x satisfying the inequalities 

(10) G(x,y) = y 2-yx2 ~ 0 for all y with 0 ~ y ~ l. 

The set R' of all x satisfyinp, (10) consists of the point x = 0. 

That point then is also a relative minimum point of F for the set. 

If, on the other hand, xis only subjected to a finite number of 

inequalities 

G(x,yk) 1; 0 fork= l, ••• ,s, 

where 0 ~ yk ~ 1, then all points of a neighbourhood of x = 0 are 

admitted, and F(x) has no relative minimum in the resulting set at 0. 

3. Application to minimum sphere containing a set.4> 

Let S be a bounded ae.t in Em. A sphere in Em may be described 

~) See H. w. E. Jung: "Ueber die kleinste Kugel, die eine 
rliumliche F1gur einschliesst, 11 Journal ftir- die reine und angewandte 
Mathematik, vol. 123 (1901), pp. 241-257. For a historical account 
of this well knwon problem see the paper by L. M. Blumenthal and 
G. E. Wahlin: 11 0n the spherical surface of smallest radius enclos
ing a bounded subset of n-dimensional euclidean apace," Bull. Am. 
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by x = (x1 ,,,, ,xm + 1 ), where ~, , , , ,xm are the coordinates of its 

center and xm + 1 the square of its radius, Let x0 denote the 

sphere of least radius enclosing S, The existence of a sphere of 

least positive radius enclosing S is evident, if the assumption is 

made that S contains at least two distinct points, 

Then 

(lla) F(x) = xm+l 

has a minimum for x = x0 in the set of all x sa tisfyinp; the inequal

ities 
m 

(llb) G(x,y) = X -
ID + 1 ~ for all y C: S, 

i=l 

As every sphere containing S also contains the closure s of s, we 

can replaceS by Sin (11b), 

According to theorem I we can finds points (s ~ m•l) yl, 

••• ,y8 of Sand numbers ~0 ,,,,, ~s such that 

s 
(12a) "o = 2: l\r 

r = 1 

(12b) for 1 = 1, , , , ,m, 

(12c) for r = 1,, •• , s 

(12d) 11.0 ~0, ?.1 >0, •.• ,\>0. 

It follows from (12a,d) that ~0 > 0, From (12) we get for any 

x = (x1 •• ,.,xm+1) 

s 

L. 
r=1 

Math, Soc., vo1, 47 (1941), pp, 771-777, 
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1 This identity shows that any sphere containing the points y , ••• , 

y8 has a radius ~ / x~ + 1 , where the = sip;n only holds, if its 

center is also at (~, ••• ,x:}. Hence the smallest sphere contain

ing S is uniquely determined, and is at the same time the smallest 

sphere containing the points y1 , ••• ,y5 of the closure of s. 

If Drt denotes the distance of the points yr and yt (r,t = 
l, ••• ,s), we have from (12} 

L ~r l\tD;t = L, l\r"t[<x~-yf)-(x~-yi}] 2 = 2 ~~ ~+1 
r*t r,t,i 

On the other hand 

2:: ~r~ =-;- L: ~r 2s L. ( hr- 1\.t) ~ S'" }.o • 
s 1 ( ) 2 - 1 2 s-1 2 

r'f:t r r,t 

Dividing the last two inequalities by each other and observing 

that the hr ht are positive, it follows that 

(1;} D = diameter of S ~ Maximum Drt ~ ,/ ~ ~ + 1 
r,t v· s-1 

As s ~ m + 1, this leads to 11Junp; 1 a inequality" 

(14) 
D ~ /2(m+l) R 

- m 

between the diameter D of a set S in ~ and the radius R of the 

smallest sphere containing the set.5) 

This result can be extended in various directions. Following 

L.A. Santal~, 6 > we can consider a setS, which lies .on the sur

face K or the unit-sphere in Em and is contained entirely in a 

closed subset interior to a hemi-sphere or K. 
1 S We consider the set y , ••• ,y belonging to S through (12}. 

5> See Jung, l.c., note 4. 
b) "Convex regions on then-dimensional spherical surface," 

Annals of Mathematics, vol. 47 (1946), pp. 448-459. 
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1 s If y , ••• ,y do not lie in a hyper-plane of~· then K is the 

smallest sphere containing s. for the r lie on the smallest 

sphere ~nd lie only on one sphere, This however is impossible, 

asS lies in a closed subset interior to a hecisphere-of K, and 

hence is certainly contained in spheres of radius ~ 1. 

Consequently y1 , ••• ,ys must lie in an (m-1)-dimensional lin

ear space. Then however the inequality (18) between diameter of 

the set of the yr and the radius of the least sphere containing 

the r applies with m replaced by m-1, As the least sphere con

taininR the yr is identical with the one containine S, we have for 

s 

(15) D · ~ I 2rnl R • - m-

We can introduce the "spherical diameter" ll of S as the least 

upper bound of the lengths of the greatcircle arcs on K joinine any 

two points of s. Then obviously 

D = 2 sin ...A. 
2 

Similarly we can introduce the "spherical radius" _/) of the least 

"spherical" (m-1)-dimensional sphere on K containing S, Obviously 

R = sin f'. 

We then obtain form (15), as analoeue of (14) in (m-1)-dimenaional 

spherical space of curvature 1, the inequality 

o.r 

(16) 

2 sin J!.. ?!: { 2m 
2 - m-1 

m coa 2 _,c 
cos A <. = m-1 

sin_? 

- 1 

This inequality is the best possible one between p and .A as is 

seen from the example of a set S on K consisting of the vertices 

of an m-dimensional regular simplex.?) 
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In a different direction an obvious extension of (14) to H11-

bert space suggests itself for m -+ oo : 

If S is a set in Hilbert-space with the property that any two 

points of S have a distance ~ D, then there exists a point in 

Hilbert space, from which all points of S have a distance < ~ D, =12 
For a proof of this statement one forms the projection Sn of 

Son the ~····xn-coordinate plane. It is easily seen that the 

center 

of the smallest sphere containing Sn converges for n-r oo towards 

a point of Hilbel't space with the desired properties. 
1 The constant f2 is again the best possible one in this con-

nestion, as is shown by the example of the set consisting of the 

points (1,0,0, ••• ) ,(O,l,O,, ••• ) ,(O,O,l,O, .... ), etc, 

h. Application to the ellipsoid of least volume containing a set 

S in ~·S) 

A solid ellipsoid in running coordinates y1 , ••• ,ym may be 

described by a relation 

-----?l Santald l,c, obtains an inequality, which in appearance 
is stronger than ( 16) for A > f1' /2. The explanation of this dis
cre~ancy must lie in the fact that he uses a different definition 
of spherical diameter" from the one used here, (No definition of 
that term is given in his paper.) For sets of spherical diameter 
>'il'/2 (as used here) the diameter of the set need not be the same, 
as that of its "spherical convex hull," whereas they seem to be 
the same in Santalo's use of the term, 
~) Related questions have been considered for m=2 by 
F • Behrend: "Ueber einige Affininvarianten konvexer Bereiche", 
1iath, Ann,, vol, 113 (1~37), pp, 713-747; "Ueber die kleinste um'
beschriebene und die grosste einbescr~iebene Ellipse eines konvexen 
Bereiches_,', ibid,, vol. 115 ~1938), pp, 379-411; F, John: "Moments Fr inertia of convex regions', Duke Math. J., vol, 2 (1936), pp, 
'+"+7-452; 
for m = 3 by o. 13, Ader: "An affine invariant of convex regions", 
f?uke Math, J. vol, 4 (1938) pp, 2~1-299; for general m by F, John: 

An inequality for convex bodies ', u. of Kentucky Research Club 
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(17) 

where 

(18) 

m 
.L xik(yi-xi)(yi-xi) ~ 1 
i,k=l 

FRITZ JOHN 

and the xik are coefficients of a positive definite quadratic fo~ 

The volume of the ellipsoid is given by 

V= 

where wm denotes the volume of the unit-cphere in Em and 

d ::. det(xik). 

If the assumption is made that S is not contained in any 

hyper-plane, the existence of an ellipsoid of least volume contain

ing S can be seen as follows. There is a sphere of radius r > 0 

contained in the convex hull of s, and hence contained in any el-

lipsoid, which contains s. Thus any ellipsoid containing S con

tains the sphere of radius r about the center of the ellipsoid. 

We have then for any xik'xi satisfying ( 17) for all y c= S 

2:: i,k 

1 

As the xik are also coefficients of a definite form, it follows 

that 

Thus the xik satisfying ( 17) for all y C: S form a bounded set. 

Moreover we have for those xik'xi 

lim V = oo for (~, ••• ,xm) - oo, 

as the ellipsoid contains the convex hull of S and the point (~• 

BU11. 8 (1942), pp. 8-11. 
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0 0 
Con::;equently there exists a set xik• xi' for which V is 

a minimum, a::ong all xik' which satisfy (18) and (17) for all y c:: 

S, and for wr~ch the xik are coefficients of a positive definite 

form,9) 

We are here again more interested in deriving significant 

properties of the minimum ellipsoid than in actually "determining" 

it in terms cf S, 

As V anc1 -d talce their least value simultaneously, we can con

cl·Jde from theorem I that there exist non-nep;ative constants A0 , 

... , 11. 8 , which do not all vanish, such that the function 

s 

(18) q>(x) = i\0 d + L i\.[1- "2: xik(yi-x1 )(y~-'ic)] 
r=l i,k 

of the n = m(m + JJ independent variables 
2 

x1 (i = 1,,. ,,m) 

(i,k = 1, • •• ,m; i ~ k) 

has a critical value at 0 
X • 

1 s Here y ,,,,,y are points on the boun-

dary of the convex hull of s, for which 

:2: x~k (Yl-xo)(y~-xo) = l, 
i,k 

As cf(x) is symmetric in xik and ~i' the first derivatives of cp 

with respect to the xi (i = l,,,,,m) and all xik (i,k =l, ••• ,m) 

must vanish at the critical point. We may apply an affine trans

formation to ~, so that the minimum ellipsoid becomes the unit 

sphere about the origin: 

9) For a minimizinp; sequence the·xik cannot tend towards the 

coefficients of a non-definte form, as the determinant d of the 
xik has to becone a maximum, and hence is bounded away from o. 
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As 

we obtain the followine relations: 

8 

FRI'TZ JOHi 

srt , 

(19a) 
~ r r 

i'.o bik = L '\YiYk for i,k = 1,,, .,m 

(l9b) 

(19c) 

(19d) 

tion 

( 19e) 

r=l 

for i = 1,,,, ,m 

~o ~ 0 ' /\1 > 0 , • • • , :.\ m > 0 

m 
:2:: <Y~)2 = 1 for r = 1,,, .,s 

i=l 
Summing (19a) over all i=k, we obtain from (19d) the rela-

s 
ml\o= Z Ar 

r=l 

which shows that /\0 is positive, It follows from (19) for any 

ellipsoid containing the points yr 

= 1\oL xii-+- m "'2: xikxi xk ~ 
i i,k 

) 1/m 
~ m i\(det x1k • 

10) 

Consequently the volume of any ellipsoid containing S is at least 

10) For a deinite form the expression ~ xii is the sum of 
i 

the Ei£l;en-values, d = det(xik) is the product. Hence by the well 

known inequality between arithmetic and eeometric means it follows 
that ~ xii ~ mdl/rn 

i 
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equal to that of the unit-sphere. This shows that the ellipsoid 

of least volume containinp, S is at the same time the ellipsoid of 
1 s least volume containing the points y , ••• ,y of the boundary of 

the convex hull of S, where s < m( m + 3) 
'"' 2 • 2 

Let u1 , ••• • ~ be any numbers with L; ui = 1. Introduce 
i 

Then, because of (19d) 

(20) for r = 1, ••• , s. 

On the other hand we have for any t, using (19a, b e) 

±\<Pr + t)2 .,. (t2 + ~) ± ~ . 
r~l r=l 

It follows that 

(21) 

Hence for any t there exists an r such that 

P2 + 2tP - !_ > 0 r r m =- • 
The lefthand side of this inequality is a quadratic function of 

Pr• whose roots may be oe., (3 • We then see that for any oe, (3 

with aC~=- ~ , there is aPr outside the interval 

OC<.x-=:.(3. 

If' we put 

(22) M = Max;mwn Pr• -,... = Min~mum Pr 

it follows that 

(23) M,_,. ~ 
1 
m 

Consequently 

<24> M+f-1- ~ 
2 

Vm 
and, beC!lUSe Of (20), 

557 

212



202 

( 25) 
u. > !. 
r- == m 

FRrrz JOHN 

A.s M and fA are the distances of the two planes -of suppo1•t of the 

set formed by the yr in the direction u, it follows that the con

vex hull of the yr contains the sphere of radius ~ about the ori

gin, and that the distance of any two parallel planes of support 
2 

of that convex hull is ~ fro , The sane holds then for the con-

vex hull of S, We have then the following theorem in terms of the 

original space before the affine transformation: 

Theorem III, 

If K is the ellipsoid of smallest volume containing a set s 

in Em' then the ellipsoid K' which is concentric and homothetic 

to K at the ratio 1/m is contained in the convex hull of S, 

The example of a simplex shows that the constant ~ is the 

best possible one in this connection, 

As the boundary of the convex hull of S may be an arbitrary 

convex surface, we see th~t any closed convex surface lies be-

tween two concentric homothetic ellipsoids of ratio =!. 
m 

have from (24): 

We also 

Any convex body can be transformed by an affine transformation 
1 11) 

into a body, for which the r~tio of diameter and breadth is ~ r=' - .,m 
A. stronger inequality can be derived in the case, where S is 

symmetric to a point, say the origin, Let K be the ellipsoid of 

least volume containing s, which has its center at the origin, 
1 s In this case we again obtain ~0 ,.,,, ~s•Y ,,,,,y, such that 

(19a,c,d) are satisfied, We can conclude that (21) holds for t = 

0, i,e, that 

---1-1) Here ''breadth" is defined as minimum distance of any two 
parallel planes of support, 
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2 1 
Max;mum P r ~ iii • 
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Then of any two parallel planes of support of the convex hull of 

S (after suitable affine tr~naformation) at least one has a dia
l 

tance fm from the origin. As however S is symmetric to the 

origin, the same holds then for the other plane of support. Hence: 

If S is a set symmetric to the point o, and K the ellipsoid 

of least volume containing S and having ita center at 0, then the 

ellipsoid, which is concentric and homothetic to K at the ratio 
1 

is contained in the convex hull of s. 

Again ---1- is the best possible constant in this connection, rm 
as is seen from the example of the m-dimensional "cube" or of the 

m-dimensional analogon to an octahedron. 

If the convex hull of S is represented by ita 11 ga8e function" 
12) 

( "Diatanzfunktionn), we have the following theorem: 

For any function f(x) = f(x , ••• ,x ), which satisfies the 
1 m 

conditions 

f( f' :x) = If"" I f( x) for all numbers ,JJ. 

f(x) > 0 for x I- 0 

f(x + y) ~ f(x) + f(y) 

there exists a positive definite quadratic form Q = Q(x), such that 

for all x. 

It is to be expected that for a convex body S the ratio of 

minimum circumscribed ellipsoid to the volume of S reaches its 

largest value for a simplex (respectively for a cube, in case S is 

symmetric to a point). However the author has been unable to prove 

12) See Bonnesen-Fenchel, loc. cit. p. 21. 
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this statement for general m,l3) If true, the statement must be 

a consequence of the relations (19), which are characteristic for 

the circunscribed ellipsoid of least volume. 

-----1-3) Form= 2 this was proved by F. Behrend, loc, cit. 
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MINIMA OF FUNCTIONS OF SEVERAL VARIABLES WITH 

INEQUALITIES AS SI.UE CONDITIONS 

l~ Introduction. The problem of determining necessary 

conditions and sufficient conditions for a relative minimum of a 

tunction f(x1 ,x2 , ••• ,Xn) in the class of points x = (x1 ,Xa•···•XU> 
•atisf'yj.ng the equations g.., (x) = 0 ( !0( = 1,2, ••• ,m), where the 

;functions f and g ... have cont1nuous derivatives of' at least the 

second order, has·been satisfactorily treated [1]*. ~s paper 

proposes to take up the corresponding problem in the class of 

po1nts · x satisfying the 1nequal1 t1es 

(l) > g 0( (x) • 0 («= l,2, ••• ,m), 

where m may be less than, equal to, or greater .than n. 

We shall be interested in a min1m1zing point x0 at whiCh 

all the functions g.., vanish. The reason we l1mit our attention 

i;o this case is that if f(x0 ) -= mini.:artlm and, say, g 1 (x0 ) > 0 then 

by continuity g1 (x) ~ 0 for all x sufficiently close to xo and 

.hence the concn tion g1 (x) ~ 0 puts no restriction on the problem 

•o far as the theory of relative minima is concerned. Hence1'orth 

-:1%1. thie paper whenever we state •:t(xO) is a minimum• or ll,xo is a 

11linim1zing point• we assmne that g..(xO) = 0 for every ""- • 

~umbers in brackets refer to the list of references at the end of the paper. 

-1-
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We shall not limit ourselves to the case when f and g..: 

are of class c•. In Sections 3 and 4 we consider the minimum 

problem under the assumption the.t the functions f and s~ are 

merely .of class C' near a point x = x0 , However in Sections 5 

and 6 we do restrict attention to the case when the functions are 

of class c•. Section 2 will deal with some properties of linear 

inequalities. 

We shall have occasion to use all the results in the first 

part of Bliss's paper [l} and tor convenience we list them here. 

They are concerned with the problem of minimizing f(x) in the class 

of points x satisfying equations 

h..., (x) = 0 (..:= 1,2, ••• ,m < n), 

and may be compared with the results obtained in this paper. One 

needs only continuous first derivativesfor Theorem 1:1 and con-

tinuous second derivatives for the other theorems. 

T.HEORElil 1:1. ! ~ necessar;y condition!.£!: f(:xo) _:!:£be 

!. minimum !,! ~ ~ ~ constants "/.0 , 1. ..._ not ~ ~ ~ 

~ ~ derivatives H~ of ~ function 

all vanish ,!! xo. 

LEMMA 1:1. g II h«Xj_ (x0 ) II ~ rank m, ~ ~ every 

!2.! of constants "t i (1 = 1,2, ••• ,n) satisfyj_ng ~ equations 

~ ~ ~ ~ ~(t) having continuous ~derivatives 

~ t = 0, satisfying the equations hoc. [x.(t)] = 0, and~ that 

~(0) = ~o, 
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THEOREM 1:2. I1' ll h"":lli. (:xO) II has rank m ~ 1'(x0 ) !.!. ~ 

minimum ~ ~ condition 

~~for every set ~i satisfying h ""'"1 (:x0 ) "Ci = 0, ~ 

li = f + ;t .... h-. is the function formed with~ unique~ of 

multipliers "/.0 = 1, 't 01. belongil!S .!£ :z:0 • 

Our final excerpt from Bliss's paper is a sufficiency 

theorem. 

TEEORID! 1:3. If !: point :xo has !: ~~multipliers 'to :::: 1, 

t..: !£!: 'IYhich ~ function H = f + i-. h cc. satisfies the conditions 

!££_ all ~ '1i satisfying ~ equations 

then f{xo) is !: minimum. 

2, Preliminary theorems £!! linear inequalities. To intro

duce the important theorem which is about to follow we consider 

the system of linear inequalities 

{2) 

+ .A.J.nlln ~ 0 

+ Aenun ~ 0 

in which the A1 s are real constants, If for every solution u of 

(2) the inequality 

(2') 

221



is satisfied, then the inequality (2 1 ) is called a consequence of 

the system of inequalities (2). Farkas, in his paper [4}, proved 

the following theorem. (See also Corollary l, p. 47 of Dines and 

McCoy (:S]) • 

THEOREM 2:1. It (2Y) !_!.!consequence of (2) ~ ~ 

~!!££-negative constants C.,.. ~ that 

The solution (u1 ,u2 ,o•••Un) = (0,0, ••• ,0) will be called 

a trivial solution of (2). We note that the theorem does not 

&ssume tr~t there necessarily exists a non-trivial solution of (2). 

We make an inductive proof. If n = 1 the conclusion is 

readily verified. We suppose the theorem true for n-1 variables 

u 1 ,u2••··•Un-1 and make the proof for n variables. If t s 0 

then the conclusion is obvious. Hence we assume some ~ is differ

ent from zero and, for convenience, let An ' 0. Solving 

~ = A1 u1 + A2ua + ••• + AnUn for Un we obtain Un = J.. ~ l:..fA1 u 1 + An Ant 
+ An-1 un-1 ] which we substitute in~· The result is 

(3) L:t = A1:!.U1 + • • • + A1 n-:a.un-1 + ~ ~- !!_n(A1 u 1 + •• • + An-1 un-1 ]~ 0. 

If the coefficient of ~ is different from zero divide both sides 

of {3) by l!:;_nl and obtain an inequality ~ ~ 0 in which the 

eoefficient of ~ is tl. Since L1 is a positive multiple of Lj_ we 

can replace the latter by Li in (2). This we do and, to simplify 

notation, drop the bar over~· With this understanding the system 

(2) can be rewritten as 

L" = ~ + pl. ;r; o, Li:a = ~ + P:a > 0, r.,_r= ~ + Pr ~ o, il. = ..... , 
(4) Lh' =§-~ + NJ. > o, Lj:a =-~+ N:a > o, Ljs E -~ +lis > 0, = ... , 

~1 ZJ. > o, Lk:a Z:a > o, Lkt > 0, - = - = ... , !!! Zt 
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-5-

where r + s + t = m and the P~, Ps, ••• , N~, Ns, ••• , Z1 , Zs, 

are linear forms in u1 , u2, ••• , Un-~· If we consider (4) as a 

system of inequalities with independent variables u 2 , ••• ,~_1 , f 
then from the fact that (2') is a consequence of (2) it follows 

that 

is a consequence of {4). 

There is at least one linear form in (u1 ,us•···•Un-1 .~) of 

the type displayed in the first line of (4). For, if this were 

not the case then (u1 ,u2 , ••• ,un_1 ,~) = (0,0, ••• ,0,-1) would be a 

solution of (4) in contradiction to (4 1 }. We may also assume that 

no one of the P 1 s is identically zero, since if for example P1 = 0 

then~~ ~1 and the conclusion would hold. By adding each in

equality in the first line of (4) to each inequality in the second 

line we obtain 

Lj_l. .. II + p1 ;: o, e • G I Lj_ = ~ + p :::- 0 
r r-

Li:t + Lh = P1 + N1 ;: o, • 0 0' Lj_J. + Ljs = P1 + Ns ~ 0 

Li2 + Lh E Ps + ll1 > 0, ~2 + Lj 8 E P2+ N8 
> 0 = • e • J = (5) ... 

L1r + Lh == Pr+ N1 > o, ~r+ Ljs = Pr+N8 ~ 0 e • • I 

LJc1= zl. ~ o, ~t= > • • 41, Zt = O • 

For each solution (u .. , ••• •Un-l.1~)t~f (5) we must have 

For, let there be a solution with~< 0. Then every P is positive 

and we may suppose, for convenience, that Pl. > 0 is the smallest 

P. Pu~ting ~=-Pl. we still have a solution of (5). But by 
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substituting P1 = -~ in the second line of {5) we see that the 

latter solution is also a solution of (4), which is impossible by 

(4'). Hence (5') is a consequence of (5). 

We now consider the system of inequalities 

pl. a- o, ~ 0 0, Pr ~ 0 

pl. + N:~. ~ o. 9 • Q' pl. + N8 ~ 0 

(6) •• 0 
··~ 

Pr + N1 i: o, Pr + Ns > 0 Q • 0, = 
z1 ~ o, o o & 1 Zt ~ o. 

From the as~ption made above that no P is identically zero we 

see that the system (6) contains at least one form which is not 

identically zero. If (6) has a non-trivial solution then some P 

must vanish for every solution. For, if this were not the case 
(1) (1} 

then for every P1 there would be a solution u 1 .····~-1 of (6) 

for which P1 > o. 
(1) (e) 

(::t} (e) 
The solution (u:u •• ·•Un-1 ) = (u1 + U1 + •••• 

••• ,un-:1. + Un .. 1 + ••• ) makes P1 > 0 for every 1 From 

t~~s we deduce that {5} has a solution with ~ < 0 1 which is a 

contradiction of the fact that (5') is a consequence of (5). 

Hence we may suppose that P1 = 0 for every solution of (6). It 

tollows that 

is a consequence of (6). In the case that (6) has no non-trivial 

solution then (6 1 ) is still a consequence of (6). By our induction 

assumption there exist non-negative constants a, b, c such that 

•P1 = al.P1 + •.• + ~Pr + c1 Z1 + ..• + ctZt 

+ bl.l.(Pl. + N1 ) + b1 2(Pl. + N2) + ••. + bl.s(P1 + Ns) 

+ br:~.(P~ + Nl.) + br2<Pr + N2) + ••• + brs<Pr + Ns)• 
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Employing the identities in (5) we find 

(l+al.+ ••• +ar)(J E (l+al.)L:1_1 + ••• +¥r + c:~.Lk1 + ••• + Ct~t 

+ bu (Lj_ 1 + LJJ.) + bl.a (Li 1 + Lj 2 ) + ••• + bu (L:L 1 + Lj 9 ) 

+ brl.<~r + Lj1) + ·•• + brs<Lir + Ljs)• 

which proves the theorem. 

We define u = (u1 ,u2 , ••• ,un) as a solution of the system 

(7) 

in case A«;iui ~ 0 is satisfied with the strict inequality holding 

tor at least one value of A • A set ot numbers will be called 

positive definite in case every number of the set is positive. 

LID~a 2~1. ~ necessary and sufficient condition ~ (7) 

~ .!!.£ solution u .!!!_ ~ ~ system 2!._ eg_ualities 

(8) (i= l,2, ••• ,n), 

~ ~ nositive definite solution v 

This is Theorem 12 of Dines and McCoy (3]. We employ this 

lemma to obtain the following modification of Theorem 2:1. 

THEOREM 2:2. If ~ ever_x !!£!!-trivial solution u of (2) 

g is~~ I>!!! ~u1>0 ~~~constants c.,.> 0 

~that 

ll ~matrix II Aoc, 1 11 has rank n ~ the converse is also ~· 

To prove the first part of the theorem we note that the 

system of inequalities 
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+ AmnUn > 10 

AnUn > 'o 

b£s no solution u. We use Lemma 2:1 with (7) replaced by this 

system and obtain positive constants C • such that 

(i = l, 2, ••• ,n), 

as desired. If' II A~ 1 tl has rank n then every non-trivial solution 

u of' Ace 1ui ~ 0 is also a solution of' A.,. 1Uj, > 10. Hence 

tec .. L .. >O. 

For simplicity we use the letter U to denote the class 

of al1 non-trivial solutions u of' (2}. 

~OREM 2:3. ~ statements: 

~.!!!. equivalent. 

(i) ~ exists a u satisfy:lpg A cd\i1. > 0 

!£!:_ every o< , 

(ii) U is n-dimensional, 

(iii) U !.!. ~ ~ !E!! !!2~linear -~ Acc illt 

vanishes fE!_ _!!! u belonging j:E U, 

The first statement (1) implies (11) for, by continuity, 

there is ann-dimensional neighborhood of u which belongs to u. 
~e statement (11i) follows from (ii) since if we suppose, for 

example, tPAt A~1 Ui = 0 for all u belonging to U then obviously 

U could not contain n linearly independent vectors u and hence could 

not be n-dimensional. To prove (iii) implies (i} we notice that 

there are solutions ut1 ! u< 2 ! ... , u(m) of (2) such that 
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.A.:1.1. Ui ( :1. ) > 0 

AeiUi (e) > 0 

00~ ••• OO!i 

Hence we need only set~= u1(:1.)+ u1 (e)+ ••• + ~(m}. 
For the next theorem we need to introduce the notion of 

X-rank of a matrix, an integral valued function of a matrix analo

gous to ordinary rank. But first some preliminary remarks are 

necessary. Suppose 

is an mxn matrix whose elements Aj_j are all real •. The matr1.x.mis 

said to be I-definite ~ respect to ~ given column in case the 

elements of that column are all positive, or are all negative• 

lnwill be called !-definite in case it contains at least one 

column with respect to which it is !-definite. 

If ~ is not !-definite with respect to the qth column we 

divide the elements of that column into 3 classes, 

r positive elements ~q (i "" i 1 ,i2•···•ir)• 

s negative eletnents .A.jq (j = jl.,j2•••••js)• 

t zero elements : Aka (k = k:~. ,k:a •••• •kt). 
From l'rl we derive the matrix-~ (q) as follows: 

To each pair of elements ~q• Ajq' the first positive arid 

the seccnd negative, corresponds one row of '11z 1 (q} given by 
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-.Lu-

lA:i.q .A.i1 I 
Ajq Aj:L I 

l~q '~q-11 ,~q ~q+11 
Ajq Ajq-1 1 .A.jq Ajq:t-1 1 

... 

To each zero element Akq corresponds the row 

The matrix ~(q) will consist of the rows so formed, the number 

of rows being rs + t. The order of the rows shall be fixed by 

the rule: (1) each row corresponding to a pair ~q• Ajq shall 

precede every Akq row; (2) of two ~q• Ajq rows that one shall 

precede whiCh has the smaller 1 or (in case the i•s are equal) 

that one which has the smaller ji (3) of two Akq rows that one 

shall precede which has the smaller k. 

Thus l'n1 (q) is well-defined if "m. is not !-definite with 

respect to its qth column. If ~is !-definite with respect to 

its qth column we define 1'11 ( q) as the matrix of 1 row and (n -1) 

columns all of whose elements are + 1 or - 1 according as the 

elements of the qth column of ~ are all positive or all negative. 

The matrixln 1 (q) will be called the !-complement of the qth 

column of m. and the set 

)n1 (n) will be called the 

{1)' (e) 
0J1 Of matriCeS m 1 I 1"1h I • o • I 

I-minors of (n- 1) columns of the 

matrix ~. We notice that if a matrix is I-definite then all its 

!-complements are likewise I-definite. 

Now we form the !-complements for each matrix ~1 (q)' and 

call the set OJ 2 of all such !-complements the I-minors of (n- 2J 

columns oflH. Continuing this process we obtain a finite sequence 

of sets "j:~.• tg 21 ••• I OJ n-1 where each matrix in cap is an I-minor 

of n- p columns of 'Yit. If we define ))'!. as its own I-minor of n 

columns then "J 0 = m and the set OJo + ll1 + ••• + <J n-1 of 

matrices constitute all the I-minors of ln. 
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We are ready to make the definition: A matrix Ynll be 

said to be of I-~~ if it possesses at least one I-::1i::1or of h 

columna which is I-definite, but does not possess any I-minor of 

h + 1 colum."ls which is I~defini te. If none of its I-minors are 

I-defini te then it will be said to be of I-~ £· 
In his paper [2] Dines proves the following theorem, t he 

proof of which we shall omit. 

THEOREM 2:4. ~ nece.ssary,: ~ sufficient condition for 

the existence£!~ solution u= (u~,u2•• · ••Un> of 

... 

3. Necessary conditions involving only first derivatives. 

We make some preliminary definitions. A solution A= ( A1 , A 11 , ••• ,An) 

of 

( oC= 1,2, ••• ,m), 

will be called an admissible direction if ). :l.s not the zero vector. 

A regular arc Xj_ (t} (1 = 1,2, ••• ,ni 0 ~ t ~ t 0 ), will be called 

admissible in case . g .. [x(t)] ~ 0 for every ex and t. A point x0 

is a ~ point in case the matrix 

has rank m. 

THEOREM 3:1. If f(xO) .!.!!. ~ rninilllUlli ~ ~ ~ 

multi plie rs to, t ... ~ ~ ~ such tha t t he derivatives Fxt of 

~ fu."iction 
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F(x) = lof(x) + i.-. g.,. (:x:) 

ill~ at; xo. 

In the class of points (:x:,z) 

satisfying h"' (x,z) = g"" (x} ~ z.: "" 0 the point (:x:,z) = (:x:0 ,0} 

is a minimizing point for t. Hence, by Theorem 1:1, there exist 

constants ios t. not all zero such that the function H(:x,z) = 
f.ot + i .. ho: ""ioi: + t.-. g"' - i .. z; has H"i (xo,o) = o. It 

follows that F(x) "' iof + f..,._ g.,. has F~ (:x0 } "" 0, 

Ue note that if m < n the above proof of Theorem 3:1 is 

unnecessary. For 1 if x 0 is a minimizing point in the class of 

points satisfying g« (x) ~ 0 it certainly is a minimizing point 

in the class satisfying g..,. (x) = 0, and Theorem 1:1 can be ap

plied directly. 

If x 0 is a minimizing point for f which is normal then the 

multiplier /.0 is not zero and can be given the value one by 

d1 vicling each munber of the set lo• 't • by 'to and obtaining a 

new set 'to "' l, i"' which satisfies the conclusion of the theorem. 

Assume, then, that x 0 is a normal minimizing point and lo 1. 

If we suppose, for the moment, that the functions t and g~ have 

continuous second derivatives then by employing the necessary 

condition on the second derivatives of H(x,z) at the minimizing 

point (x,z) = (x0 ,0) ot f as given in Theorem 1:2 we can easily 

show that t ... ~ 0 ( « = 1,2, ••• ,m). For, by the theorem just 

referred to, the quadratic form 
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mu.st be non-negative :for all sets "/ 1 , "{a••••• ?n• !u l"'s••••• l"m 

:for which lig«xi(x0 ) = 0 and. "J"11 :Ta, ... ,.Tm is arbitrary. Set

ting every 'l and :r except r"' equal to zero and substituting 

in the quadratic :form we :find that t-.:;; o. 
However, in this section we shall make proo:fs of the non

positive character of the multipliers t .. which do not involve 

second derivatives, and the case when the minimizing point is 

normal will appear as a special instance (see the proof of the 

corollary to Theorem 5:1). 

We use Theorem 2;1 to obtain the following necessary 

condition. 

THEOREM 3:2. Suppose ~ f££ ~admissible direction 

~ ~ !.! an admissible .!!£.£ issuing from x 0 !!!. the direction A • 

~.!!:~necessary condition £2!: f(xO) ~~!:minimum!!. 

~there~ multipliers toe~ 0 ~that~ derivatives 

Fx1 !2!_ ~ function 

F = f + t-. g.,. 

!1! ~.!!:! xo. 

By a curve.Xi(t) (0 ~ t~ to) 1 11issu1ng from x 0 in the 

direction A 11 we mean, of course, that Xj_ (0) == Xi 0 and ~ 1 (0) = A i 

Consider an admissible direction A and the corresponding admissible 

curve ~(t) given in the hypothesis. Let ?'(t) = f[x(t)]. Since 

1"(0) ~ f(t) for 0 ~ t ~:.t01 it follows tha.t ?' (0) ~ o. But 

1'1 (O) = f.:!Cj_ (x0 ) ).i. Hence f'Xi (x0 ) A i ;:; o. Then f'xi (x0 ) u i ~ 0 

is a consequence of g., xi (x0 }U:t !1:' 0 ( oC = l, 2,.,. ,m), and by 

Theorem 2:1 there exist multipliers t"" ~ 0 such that fxi (x0 )~ + 

t.g.~(x0 )U:t = O. Thus fxi + t .. gO(Xi = 0 for every i, and the 

theorem is proved.. 
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The condition that there exist multipliers 't.c ~ 0 

satisfying the conclusion of Theorem 3:2 will be referred to as 

•the first necessary condition". For brevity, the property that 

for each admissible direction A there is an admissible arc 

issuing .from x 0 in the direction ).. Will be called property ~· 

One would naturally like to know what the probability is, 

roughly, that the functions- g.,. (x) will satisfy property Q, as 

well as some conditions on the functions g. which will ensure the 

satisfaction of Q. In order to partially answer these questions 

we shall briefly discuss one geometric interpretation of an 

admissible direction. 

'l'he tangent planes to-the surfaces g 111 (x) = 0 at their 

common point of intersection xo are given by 

( « = 1,2, ••• ,m). 

'l'he straight line issuing from xo in the admissible direction A 

is 

(9) 

Substituting the equations of Sin T"'(x) we .obtain T .. [x(t)];:: o. 
We conclude that the line S lies in the set of points x near x0 

satisfying '1'01( (x) ~ 0; and since the latter set, in a sense, 

approximates the set of points x near x0 satisfying g. (x) ~ o, 

if the functions g"' are regular enough, it seems that the satis

faction of property Q is not a great restriction on the functions 

go<,. In fact, the following corollary states a condition on g.,. 

which makes the line s an admissible arc. 

CoROLLARY. Suppose~~ every admissible direction A 
it is true that go<xt (xO) Ai = 0 implies ~ g <>lXiXk(x0 ) Ai Ak > o. 
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~if f(x0 ) = minimum the ~necessary condition~ satisfied. 

Consider any admissible direction A and the corresponding 

lineS given in (9). Define g .. (t) = g~[x(t)] («= 1,2 .... ,m; 

0 ;i t ~ t 0 ). We have dg.,. (t)/dt = g<><Xj_ Cx(t)]Xj_ 1 (t} = g.,.;xi [:x:(t)J A1 • 

Hence 

ag.,. (O) { o, , > 0 
dt "' g ..t Xj_ X I A i = • 

If~"' (0)/dt > 0 then g .. (t) is monotonically increasing near 

t = 0 and g .. {t) = goe[:x:(t)] ;;; g .. (:x:0 ) = 0. Hence S lies in the 

set of points x satisfying goc (x) ~ O. If c:lg_. (O)/dt = 0 then 

d7..,. {t)/dt2 = SocXj_xk(x(t)] ..\i ..\k and by hypothesis 

Therefore g~ (t) is monotonically increasing and, as before, 

satisfies ge<. [:x:(t)] ;:;; o. We have shown that with S the hypotheses 

or Theorem 3:2 are satisfied, and the conclusion follows. 

In Theorem 3:3 we obtain the same necessary condition that 

Theorem 3:2 yielded but under a different hypothesis. 

THEOREM 3:3. Suppose there ~ ~ admissible direction 

X. for Which g a<:X:i (;x0 ) Ai > 0 for every Q(. • ~ if' f(XO) = 

minimum~~ necessary condition!! satisfied. 

First we prove that if >.. is such that g "'~ (:x:0 ) ,\ i > 0 

for every ~ then f:x:i (:x:O) >.i ~ o. Let g represent any one of 

the g.,. and define, as before, 

g{t) = g{)t(t)]. l"(t} = ff;t(t)]' 

where x(t) represents the equations of the lineS in (9). Since 

ag(O}/dt = g:x:1 (x0 ) .A 1 > 0, g(t) is monotonically increasing, 

g[x(t)] ·~ g(:x:0 ) = O, and S is an admissible arc, Thus l"(O) ';i l"(t), 
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and consequently 

Now suppose t'i is an admissible direction. We define 

a family of directions 

where A :!.s given in the hypothesis of the theorem. Rewriting 

v 1 (s) = (1= s) 11 + Sf'i• it is clear that g~(:xO) v 1 (s) > 0 

for 0 ~ s < 1. From the first part of the proof, 

(0 ~ s < 1). 

so that 

Hence the inequality fx1 (x0 ) u 1 ~ 0 is a consequence of 

g""'Xi(x0 )u 1 ~ 0 ( « = 1,2, ••• ,m), and the theorem follows fro1:1 

Theorem 2;1. 

Suppose m = n and the determinant of II g 81 Xi (x0 ) II is 

different from zero, For this case we can write the first necessary 

condition in an entirely equivalent form as follows. 

COROLLAR1. Suppose m = n ~ determinant II g 81tXi (x0 ) II:/ o. 
~~necessary condition for f(xO) !2. ~!:minimum !.:!_ ~ 

( ~ = 1,2, ••• ,n), 

~ II Giec II ~~inverse ~ £!_ fl g ·~ (xO) II • 

The system of equations 
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has a solution u = A since determinant II g ue~ (:x0 ) II .f 0. Thus 

snd we can apply Theorem 3:3 to obtain the first necessary condition; 

that is, there exist multipliers i • ~ 0 such that 

Multiplying both aides of the last equation by G1 ~ and surnndng 

with respect to the inde:x 1, we obtain 

as desired. 

The problem of determining necessary and sufficient 

condi tiona for the existence of an admissible direction l satisfy

ing g "'~ (x0 ) "X 1 > 0 naturally arises in the consideration of 

Theorem 3:3, The question is answered by Theorems 2:3 and 2:4. 

In particular, the latter theorem provides a useful method for 

determining in a finite number of steps whether or not such an 

admissible vector A does eXist. 

It is easy to give an exSlllple in which the functions &.c 

satisfy neither the hypothesis of the corollary to Theorem 3:2 

nor the hypothesis of Theorem 3:3, but in vrhich the hypothesis of 

Theorem 3:2 is satisfied. Let 
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g1 (x,y) xe + (y-l)e- 1 ~ 0 

g,; (;x:,y) = 4 - [.x2 + (y -2) 2 ] ;;; 0 

dete~~ne the class of points (x,y) under consideration. At (0,0) 

we have 

S1X thy 

Sex Say 

S3x S3y 

= 
0 

0 

II .L 

-2 

4 

0 

The only admissible direction is (a,O) with a> 0. There is no 

solution of Socx(O,O). A 1 + Sex y(O,O) A e > 0 for all a( • Also 

g 2 xx(O,O)ae < 0 so that the hypothesis of the corollary to 

Theorem 3:2 is not satisfied. However, it is obvious that there 

is an admissible arc issuing from (0,0) in the direction (a,O). 

4. Sufficient conditions involVing only first derivatives. 

By a proper strengthening of the first necessary condition we can 

obtain a sufficiency theorem without resorting to second derivatives. 

THEOR.EM 4:1. SUppose m ~ n ~ II SoeXi (:z:OJ II !!!:!. ~
~ ~ n. g_ x0 !!. .! point satisfying g"' (xO) = 0 ~ ~ 

~~multipliers 't"' < 0 ~ ~ F = f + 't ... g .... B.!!, 

FXi (x0 ) = 0, ~ f(x0 ) !!. !. minii11Ulll. 

By ~aylor•s expansion formula, 

f(x) - f(x0 ) = fxi (x') '7i 

0 ~ g "'(x) = S«Xi_ (x.,.')"/ 1 (c< = 1,2, ••• ,m), 

for x near x0 &nd x satisfying go< (x) ~ o, where l 1 = ~ - Xi o, 
I 

x ~ 1 = xi 0 :+. 9.;;.("1. -.:. ·~ 0 ) • . :6y .hypothesis, 
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(~0} 

where c'"' = - t,.. > o. For convenience suppose 

g~: ~ xo, I ,f 0 • 

~(xo) 

We fix cn+1 •••• ,cm in (10) and solve for c1 , ••• ,cn as continuous 

functions of the coefficients g.,.x1 (x0 ) and fXj_(x0 ). Hence for 

A "'i sufficiently close to g o<xt (xO) and At sufficiently close to 

rx1 (x0 ) there e:r.ists a ·u..."llque solution C:,. > o, c2 > o, •..• em> o 

of 

(i = 1,2, ••• ,n). 

Hence for x sufficiently close to x 0 there exist constants 

C':~. > 0, ••• , ~ > 0 such that 

- i > c..cg«xi(x .... >"?1 = 0, 

We have a sufficiency theorem corresponding to the necessary 

condition in the corollary to Theorem 3:3. 

0 CROLLARY. Suppes e m = n ~ determinant It g o< Zj_ (x0 ) II ,J 0. 

We ~ II G1 ~ II ~ the inverse matrix of II g «Xi II • If x 0 is a 

EOinJ. satisfying g« (xo) = 0 ~ ~ 
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~ f(:x0 } .!,! .!!. minimum. 

We define i"" < 0 by the equation 

Multiplying both sides by g ..c:xj (:x0 ) and sUJT.ming with respect to 

the index el • we obtain 

and the conclusion follows from Theorem 4:1. 

The following sufficiency theorem is entirely equivalent 

to Theo.rem 4~ l. 

THEOREM 4:2. Suppose m ~ n ~ II g ·~ (x0 ) II has ~ n. 

ll ;xo t:l!..!!. point satisfying goe (x0 ) = 0 ~ ~ f::q_ (x0 ).A 1 > 0 

f2!: everz admissible direction ~ 1 then f(:x:0 ) is .!!. minimum. 

This result follows at once from Theorem 2:2 and Theorem 

4;1. 

5. ~ necessarz condition involving ~ derivatives. 

Suppes e 1' (x0 ) is a minimum, II g oe. xi (x0 ) !I h&./3 rank r, and for 

convenience the first r row vectors are linearly independent. We 

also suppose that there exist multipliers i ~ such that 

F"' f + t ... g.,. has F~ (x0 ) = 0 1 that is, 

(i = l,2, •••• n). 

Since all the row vectors are linear combinations of the first r 

we may suppose 'tr+1 = 0, ••• , ~ = O. In this form the multipliers 

i « are unique for, if i.C:. is any other set with tr-:1 = o, ••. , 
.... I .,..t: (..J -' .... 0 1 1- = 0 then 2..: ,.._ - 1-o< }goe:x:i(x ) = 0 and hence ioc = 'toe m oc=l 
( « = l,2, .•• ,r). 
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If the hypotheses of Theorem 3:3 are satisfied and 

11 g «Xi (x0 ) II has rank r = l or 2 we can show that there are 

respectively one or two linearly independent rows whose unique 

multipliers are non-p9sitive. It is obviously sufficient to 

prove the following proposition: If there exists an admissible 

direction A satisfying gtlCXj_(:x.0 )Ai > 0, every row of 

II ~C(Xi (:x0 ) II is a linear combination with non-negative coef'

ficients of some r linearly independent rows (r = 1 or 2). If' r= 1 

the proof .. is __ obvious. If r = 2 we make an inductive proof. The 

case m = 2 is clear •. We assume the proposition for m -1 and make 

the proof form. By our induction·assumption we may suppose that 

the first two rows of II S.c:Xj_ (x0 ) II are linearly independent and 

every other row, except possibly the last, is a linear combination 

with non-negative coefficients of' these two. F9r the last row 

we- have 

S81Xi + bge;xi + CSm;x1 = 0 (i = 1,2,. •. ,n), 

with (a,b,c) I (0,0,0). Hence ag1Xil 1 + bgz~~i + cSmx1:\i = O. 

The numbers a, b, o cannot all be of' the same sign. For, if they 

were then the last expression would be different from zero since 

g "'~ li > 0. Hence one of the three vectors is a linear combina

tion with non-negative coefficients of the aher two, and it follows 

that every row vector is a linear combination with non-negative 

coefficients of the same two. 

That one cannot hope to extend the above proposition to 

the case when r ~ 3 is shown by the following example. Let 

l 
0 
0 

l 

0 
1 
0 

l 
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rhe system of inequalities 

has a solution ():,,A.,, A!, A,.) = (1,1,1,1), If we take the linear 

combination of the rows with respective coefficients -1, -1, +1, 

+1 we obtain the zero vector. Since the rank of II g "'x (:x0 } II is 
i 

three any solution v of g "'~ v.,. = 0 is given by v = k(-1,-l,+l,+l). 

Hence no row can be a linear combination with positive coefficients 

of the other three rows, 

T.he next theorem gives a necessary condition involving 

the second derivatives of the functions f and g«. 

THEOREM 5:1. Suppose f{:x0 ) is ~minimum ~~exist 

-1 ... -1 - ( 0 rnultioliers 1-"" such~ .r· = f + ,_,..g.,. ~ F~ x } = 0. 

Suppose, further, ~ II g oc~ (x0 ) II ~ rank r < n ~ the first 

r ~ linear£[ independent. ~for every admissible direction 

7J satisfyin_g g« Xj_ (xO) ~ 1 = 0 ( oc = 1,2, ••• ,m), ~ ~ ~ 

is ~ admissible ~ x(t) of ~ C11 issuing~ x 0 in the 

direction '>7. 2 satisfying g. [:x(t)] = 0 ~ o< = 1,2, ••• ,r, it 

!.!~~ 

~ F B.~ ~ the unique ~ of multipliers t. <>< belonging 

to ~ ~ r ££!!! £!. II g OCXi_ (:x0 ) II • 

We notice that for any particular '2 satisfying g aCX:!. (x0 }~i = 0 

the selection of the r linearly independent rows that sr~ll satisfy 

with ~ the hypotheses of the theorem, depends upon ~ • In the 

st.atement of the theorem we have taken an '1 and renumbered the 

functions g"" so that the r linearly independent rows going With 

~ are the first r rows. 
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We have g""[x(t)] = 0 and hence g 0cx1Xj, 1 (t)- 0 for 

"'-=l 1 2, ••• ,r. Letl"(t) f[x(t)J. Then 

r 
l(t) = :f'x...[x(t)]Xj_ 1 (t)= (1'-:c.+ ~;(.,.g..cx.lxi 1 (t)=Fx [x(t)]Xj_ 1 (t}, 

--.. --... <~t.=l --.. 1 

? 1 (O) == FX:L [xo) 'Z 1 = 0, 

ut si nee f (x0 ) is a mininrum ?'( 0) ~ l"( t) • f 11 ( O)"" Fxp:k [x0 ] '[ i "l k ~ 0 • 

nd the theorem is proved. 

Theorem 5:1 can be applied in the particular case when 

xo) is a normal point. 

COROLLARY. Suppose x 0 is ~normal ,EOint. ~ necessarz 

onditions f.£!: .i'(x0 ) ~be .! minimum ~~the first necessary 

ondition be satisfied and that 

~ satisfied for every admissible direction '1. satisfying 

g "'x (xO) '?i = 0 ( « = 1,2, ••• ,m), 
i 

The first necessary condition is easily proved by means of 

heorem :3:3. For, since the rank of 11 go<Xj_ II is m there exists 

solution :X of go<Xi(x0 )A 1 = 1 ( o< = 1,2, ••• ,m). and hence a 

elution Of g O(Xi (x0 ) X1 > 0. 

If the rank of llg ot~ (x0 ) II is m = n then the second 

ecessary condition in the corollary is vacuously satisfied since 

o "l eXists for which g u<Xi (x0 } "'li = 0. If m < n the second 

ecessary condition follows if we notice that Lemma 1:1 enables 

s to satisfy the hypotheses of Theorem 5:1. 

6. ~sufficiency theorem involving second derivatives. 

~rresponding to Theorem 1:3 we have the following sufficiency 

:1eorern. 
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THEOREM 6:1. g.!. point x 0 satisfy:!.ng g"' (xO) = o l::!.!!_ ~ 

~ ~ multipliers t 01 < 0 f.££ ~ the function F = f + t ... goc 

1tisfies 

~ ~ admissible directions 'l satisfy:!.ng 

g ex~ (xO) 'h ... o, 

~ :t'(xO) !! !!. minimum. 

The proof consists of verifying that the hypotheses of 

beorem 1:3 are satisfied for the problem of shewing that (x,z) = 
~o,o) is a minimizing point for f in the class of points (x,z) = 
K1 •···•Xn•z1 , ••• ,Zm) satisfying 

h 01 (x,z) = g 01 (x) - z.: = 0 (oc= l,2, ••• ,m). 

~t; H(x,z) =- f + toe hoc = F(x) - t., z:. Then 

:>nsider ElllY set (··-7 1 , j k) :! {0,0) (1 = 1,2, ••• ,n; k· = ]; 1 2, ••• ,m), 

11.ch that 

1at is, such that 

J k arb1 trary. 

1e quadratic form formed With the second derivatives of H is 

1.1 ch reduces to 
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ance (x0 1 0) is a minimizing point. It follows that (x0 } is a 

lnimizing point for the original problem. 

Under the assumption that the functions f and g;,have 

ontinuous derivatives of at least the second order, Theorem 4:1 

s an immediate corollary of Theorem 6:1. However, as observed 

e.t'ore, Theorem 4: l also hol-ds .t'or the case when :f and g oc. have 

ontinuous derivativesof only the first order. 
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NONLINEAR PROGRAMMING 
H. W.KUHN AND A. W. TUCKER 

PRINCETON UNIVERSITY AND STANFORD UNIVERSITY 

1. Introduction 

Linear programming deals with problems such as (see [ 4], [ 5]): to maximize a linear 

functiong(x) = L c;x; of n real variables x1, ... , Xn (forming a vector x) con

strained by m + n linear inequalities, 

h = 1, ... , m; i = 1, ... , n. 

This problem can be transformed as follows into an equivalent saddle value (min
imax) problem by an adaptation of the calculus method customarily applied to con
straining equations [3, pp. 199-201]. Form the Lagrangian function 

Then, a particular vector x0 maximizes g(x) subject to the m + n constraints if, 
and only if, there is some vector u0 with nonnegative components such that 

q, (x, u0) ~ q, (x0, u0) ~ q, (x0, u) for all nonnegative x, u. 

Such a saddle point (x0, u0) provides a solution for a related zero sum two person 
game (8], [9], [12]. The bilinear symmetry of cp(x, u) in x and u yields the charac

teristic duality of linear programming (see section 5, below). 
This paper formulates necessary and sufficient conditions for a saddle value of 

any differentiable function cp(x, u) of nonnegative arguments (in section 2) and 
applies them, through a Lagrangian cp(x, u), to a maximum for a differentiable 
function g(x) constrained by inequalities involving differentiable functions j,.(x) 
mildly qualified (in section 3). Then, it is shown (in section 4) that the above equiva
lence between an inequality constrained maximum for g(x) and a saddle value for 
the Lagrangian cp(x, u) holds when g(x) and the jh(x) are merely required to be 
concave (differentiable) functions for nonnegative x. (A function is concave if linear 
interpolation between its values at any two points of definition yields a value not 
greater than its actual value at the point of interpolation; such a function is the 
negative of a convex function-which would appear in a corresponding minimum 

problem.) For example, g(x) and thej"(x) can be quadratic polynomials ih which 
the pure quadratic terms are negative semidefinite (as described in section 5). 

In terms of activity analysis [11], x can be interpreted as an activity vector, g(x) 
as the resulting output of a desired commodity, and the fh(x) as unused balances 
of primary commodities. Then the Lagrange multiplie!:§_1£ can be interpreted as a 
price vector (13, chap. 8] corresponding to a unit price for the desired commodity, 
and the Lagrangian function q,(x, u) as the combined worth of the output of the de
sired commodity and the unused balances of the primary commodities. These 
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482 SECOND BERKELEY SYMPOSIUM: KUHN AJ\'D TUCKER 

price interpretations seem to relate closely to the price theory in the contemporary 

paper of K. J. Arrow [1]. 
A "vector" maximum--{)£ T. C. Koopmans'@icient point tYPe [11]-for several 

concave functions gt(x), ... , gp(x) can be transformed into a "scalar" maximum 

for g(x) = ~ v2gk(x) by suitable choice of positiveconstants v2 (as described in 

section 6). These positive constants can'be interpreted as prices to be assigned (for 

efficient production) to several desired commodities with outputs gk(x) produced 

by the activity vector x. 
Likewise, a maximum for min [g 1(x), ... , gp(x)] can be transformed into a 

maximum for g(x) = L vggk(x) by suitable choice of nonnegative constants vk with 

unit sum (as described in section 7). Such a maximum of a minimum component, 

example, is the objective of the first player in a zero sum two parson game [12]. 

Modifications resulting from changes in tbe m + n basic constraints are also 

considered (in section 8). 
Throughout this paper it is assumed that the functions occurring are differen

tiable. But it seems to be an interesting c~nsequence of the directional derivative 

properties of general convex (or concave) functions [2, pp. 18-21] that the equiva

lence between an inequality constrained maximum for g(x) and a saddle value for 

the Lagrangian <f>(x, u) still holds when the assumption of differentiability is 

dropped. Then proofs would involve the properties (of linear sum, intersection, 

and polar) of general closed convex "cones" rather than those of the polyhedral 

convex "cones" [7], [14] that occur implicitly in this paper through homogeneous 

linear differential inequalities. However, to assure finite directional derivatives 

at boundary points of the orthant of n?nnegative x, one needs some mild require

ment. For this purpose, it is certainly sufficient to assume that the functions are 

convex (or concave) in some open region containing the orthant of nonnegative x. 

NOTATION. Vectors, denoted usually by lower case roman letters, will be treated 

as one column matrices, unless transposed by an accent ' into one row matrices. 

Vector inequalities or equations stand for systems of such inequalities or equations, 

one for each component. Thus x ~ 0 means that all the components of the vector x 

are nonnegative. Rectangular matrices and mapping operators will be denoted by 

capital letters. 

2. Necessary and sufficient conditions for a saddle value 

Let <j>(x, u) be a differentiable function of an n-vector x with comp~ments 

X; ~ 0 and an m-vector u with components uh ;;; 0. Taking partial derivatives, 

evaluated at a particular point x 0 , u 0 , let 

</>~ = [::.r, 
Here </>~is ann-vector and ¢~an m-vector. 

SADDLE VALUE PROBLEM. To find nonnegative vectors x 0 and u 0 such that 

cf>(x, ~0) ~ q,(x0, u0 ) ~ ¢>(x0 , u) for all x ~ 0, u ~ 0. 

LEMMA 1. The conditions 

(1) 
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(2) 

are necessary that x0, u 0 provide a solution for the saddle value problem. 
PROOF. The components of tj>g and ¢~ must vanish except possibly when the 

corresponding components of x 0 and u0 vanish, in which case they must be non
positive and nonnegative, respectively. Hence (1) and (2) must hold. 

LEMMA 2. Conditions (1), (2) and 

(3) 

( 4) 

tj> (x, u0) ~ tj> (x0, u 0) + tj>~ 1 (x - x0) 

tj> (x0, u) ~ tj> (x0, u0) + tj>~' (u - u0) 

for all x ~ 0, u ~ 0, are sufficient that x 0 , u0 provide a solution for Ike saddle value 
problem. 

PROOF. Applying (3), (1), (2), (4) in turn, one has 

for all x ~ 0, u ~ 0. 

tj> (x, u0) ~ tj> (x0 , u0) + tj>~ 1 (x - x0) 

~ tj> (xo, uo) 

~ tj> (x0, u0) + tj>~' (u - u0 ) 

~ tj> (x0, u) 

Conditions (3) and (4) are not as artificial as may appear at first sight. They are 
satisfied if tj>(x, u 0) is a concave function of x and ¢(x0, u) is a convex function of u 
(see section 4). 

3. Lagrange multipliers for an inequality constrained maximum 

Let x ~ u = ~ be a differentiable mapping of nonnegative n-vectors x into 
m-vectors u. That is, Kx)is an m-vector whose components ]l(x), ... ,fm(x) are 
differentiable functions of x defined for x ~ 0. Let g(x) be a differentiable func
tion of x defined for x ~ 0. Taking partial derivatives, evaluated at x0, let 

F 0 = [ ajh/ ax;]0 , g0 = [ agj ax;]0 • 

Here F 0 is an m by n matrix and g0 ann-vector. 
MAXIMUM PROBLEM. To find an x0 that maximizes g(x) constrained by Ffx)~ 0, 

X~ 0. 
CoNSTRAINT QUALIFICATION. Let x 0 belong to the boundary of the constraint set 

of points x satisfying Fx ~ 0, x ~ 0. Let the inequalities F(x01 ~ 0, lx0 ~ 0 (where 
I is the identity matrix of order n) be separated into 1 

F1x0 = 0, I 1x0 = 0 and F2x0 > 0, l 2x0 > 0. 

It will be assumed for each x0 of the boundary of the constraint set that any vector 
differential dx satisfying the homogeneous linear inequalities 

( 5 ) Fl_dx ~ 0 , l 1dx ~ 0 

is tangent to an arc contained in the constraint set; that is, to any dx satisfying (5) 
there corresponds a differentiable arc x = a(B), 0 ~ 8 ~ 1, contained in the con
straint set, with x0 = a(O), and some positive scalar X such that [dajd8] 0 = Xdx. 
This assumption i!? designed to rule out singularities on the boundary of the con
straint set, such as an outward pointing "cusp." For example, the constraint set in 
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two dimensions determined by 

(1 - x1) 3 - x2 ~ 0, 

does not satisfy the constraint qualification at the boundary point x~ = 1, xg = 0, 
since it does not contain an arc leading from this point in the direction dx1 = 1, 
dx2 = 0. At such a singular point condition (1) in theorem 1, below, may fail to 
hold for any u0-as would be the case for g(x) = x1 subject to the above con
straints. 

Treating the vector u as a set of m nonnegative Lagrange multipliers (10], form 
the function 

cf> (x, u) = g (x) + u'Fx. 
Then 

ct>2 = go+ po'uo' cf>~ = Fxo. 

THEOREM 1. In order that x0 be a solution of the maximum problem, it is necessary 
that x 0 and some u 0 satisfy conditions (1) and (2) for cj>(x, u) = g(x) + u'F~.) 

PROOF. Let x0 maximize g(x) constrained by Fx ~ 0, x ~ 0 (subject to tne above 
constraint qualification). Then, the inequality g0'dx ~ 0 must hold for all vector 
differentials dx satisfying (5). But, it is a fundamental property of homogeneous 
linear inequalities (indicated by H. Minkowski and proved by J. Farkas at the 
turn of the century) that an inequality b'x ~ 0 holds for all n-vectors x satisfying 
a system of m inequalities Ax~ 0 only if b = A't for some m-vector t ~ 0 (6, pp. 
5-7], [7, corollary to theorem 2], [9, lemma 1] and [14, theorem 3]. Hence 

-gO= Ffu~ + I~w~ for some u~ ~ 0, w~ ~ 0 . 

This equation expresses the intuitively evident geometric fact that at the point x0 

the outward normal - g0 to the set of points x for which g(x) ~ g(x0) must belong 

1\ 
I \ 

II \ 

I \ 
I I 

-go 

CONSTRAINT SET 

FX~O, X ~0 
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to the convex polyhedral "cone" of inward normals to the constraint set. Of course, 
if x0 is an interior point of the latter set, then F~ and I 1 are both vacuous. In this 
case x0 maximizes g(x) independent of the constraints, so g0 = 0 ;nd conditions 
(1), (2} hold for u0 = 0. 

The above equation may be rewritten as 

for some u 0 ;;;:; 0 , w0 ;;;:; 0 

by adding zeros as components to u~ and w~ to form u0 and w0• Consequently, 

cf>~ = go+ po'uo ~ go+ po'uO + wo = 0. 

At the same time, since w0'x0 = wri1x0 = 0, 

cp~'xo = gO'xO + uO'FOxO = 0. 
Moreover, 

This completes the proof of theorem 1. 
THEOREM 2. In order that x0 be a solution of the maximum problem, it is sufficient 

that x0 and some u0 satisfy conditions (1), (2), and (3) for cp(x, u) = g(x) + u'Fx. 
PROOF. From (3), (1), and (2) one has that 

g (x) + u0'Fx = cf> (x, u0) ~ cf> (x0 , u0 ) + cp~' (x - x 0) 

~ cp(x0 , u0) = g (x0) + u0'Fx0 = g (x0) for all x ;;;:; 0 . 

But u0'Fx;;;:; 0 for all x satisfying Fx ;;;:; 0. Hence g(x) ~ g(x0 ) for all x satisfying 
the constraints Fx ;;;:; 0, x ;;;:; 0. This proves theorem 2. 

One notes in theorem 2 that (3) need only hold for Fx ;;;:; 0, x ;;;:; 0. 

4. Convexity-concavity properties and the equivalence theorem 

In this section restrictions are placed on Fx and g(x) which will insure the equiva
lence of solutions of the maximum problem and the saddle value problem for 
cf>(x, u) = g(x) + u'Fx. 

DEFINITIONS. A junction J(x) is convex if 

(1 - 0) f (x0) +Of (x) ;;;:; f 1 (1 - 0) x 0 +Ox} 

for 0 ~ 0 ~ 1 and all x0 and x in the (convex) region of definition of f(x). A function 
J(x) is concave if -f(x) is convex (that is, if the interpolation inequality holds with 
~ instead of ;;;:; ) . 

LEMMA 3. If f(x) is convex and differentiable, then 

(where jO = [ ::.r) 
for all x0 and x in the region of definition. [With f(x) concave, the inequality is re
versed.) 

PROOF. From the above definition of convexity one has, for 0 < 8 ~ 1, 
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Hence, in the limit, 

THEOREM 3 (Equivalence theorem). Let the functions f1(x), . .. ,fm (x), g(x) 
be concave as well as differentiable for x G; 0. Then, x 0 is a sohltion of the maximum 
problem if, and only if, x0 and some u 0 give a solution of the saddle mlue problem for 
cp(x, u) = g(x) + u'Fx. . 

PROOF. By lemma 3 (for concavity) 

Fx ;;3 Fx0 + F0 (x - x0) 

g (x) ;;3 g (x0) + g0' (x - x0) 

for all x0 G; 0 and x G; 0. Hence, for any u0 G; 0, 

cp (x, u 0) = g (x) + u 0'Fx 

;;3 g (x0) + u0'Fx0 + (g 0' + u 0'po) (x - x 0) 

= cp (x0, u0) + cp~' (x- x 0) • 

That is, condition (3) holds for all x 0 G; 0 and x G; 0. Under these circumstances, 
theorems 1 and 2 combine to make conditions (1) and (2) both necessary and suffi
cient that x 0 provide a solution for the maximum problem. 

Condition (4) holds automatically, since the linearity of cp(x, u) with respect to 
u implies that 

¢ (x0 , u) = ¢ (x0 , u 0) + ¢~' (u- u 0) 

identically. So lemmas 1 and 2 combine to make conditions (1) and (2) both neces
sary and sufficient that x0 and u 0 provide a solution for the saddle value problem. 
This completes the proof of theorem 3. 

5. Quadratic and linear problems 

LEMMA 4. A quadratic form 

x'Qx = L L q;1x,x1 

is a convex junction for all x, if x'Qx ~ 0 for all x (that is, if the form is positive semi-
definite). --

PRoo:F. From the hypothesis, one has 

8 (x - x 0)' Q (x - x0) G; 82 (x - x0)' Q (x - x0) 

for all 0 ~ 8 ;;3 1 and all x, x0• Hence 
(1 - 8) x 0'Qx0 + 8x'Qx 

= x 0'Qxo + 8xO'Q (x- x0) + (J (x- x 0)' Qx0 + (J (x- x0)' Q (x- x 0) 

G; x 0'Qx0 + 8x0'Q (x- x0) + O(x- x 0)' Qx0 + 82 (x- x 0)' Q (x- x 0) 

{ x0 + 8 (x - x0) }' Q { x 0 + 8 (x - x0)} 

= I (1 - 8) x 0 + 8x}' Q I (1 - 8) x0 + Ox) 

for all 0 ;;3 8 ~ 1 and all x, x0• 
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'QuADRATIC MAXIMUM PROBLEM. To find an x 0 that maximizes 

g (x) = L c;X;- L L c;;X;x; 

constrained by the m + n inequalities 

fh(x)=bh-Lan;X;-LLahjX;X;~O and x;~O. 

It is assumed that the quadratic forms in the above double sums (including the 
preceding sign) are nonpositive for all x (that is, negative semidefinite). 

From lemma 4 it follows that these quadratic functionsjh(x) and g(x) are con
cave for all x, since their linear parts are concave and convex both. Hence, by 
theore~ 3, solution of the quadratic maximum problem is equivalent to solution 
of the saddle value problem for 

cp(x, u) = L c;x;- L L C;;X;x;+ L bhuh- L L ahiuhxi 

\Vhen all of the quadratic terms vanish (an extreme but legitimate special case 
of semid~finiteness), the quadratic maximum problem reduces to the following 
problem of linear programming. 

LINEAR MAXIMUM PROBLEM. To find an x 0 that maximizes L C;X; constrained 

by the m + n linear inequalities 

X;~ 0. 

Now the equivalent saddle point problem concerns the bilinear function 

cp (x, u) = L c;x; + L bhuh- L L ahiuhx;. 

The minimum maximum roles of x and u can be interchanged by replacing cp(x, u) 
by -cp(x, u). Hence, solution of the following dual problem of linear programming 
is equivalent to solution of the saddle point problem for the bilinear function 
cp(x, u). 

LINEAR MINIMUM PROBLEM. To find a u 0 that minimizes L bhuh constrained by 

the n + m inequalities 

6. Extension to a vector maximum problem 

This section extends the previous results to a maximum problem for a vector 
function Gx constrained by Fx ~ 0, x ~ 0. Here the concept of maximum-like 
T. C. Koopmans' efficient point [11]-depends on a ~g of vectors by 
the relation ;:::: , where v;:::: v0 means that v ~ v0 but v r6 v0• 

Let x--+ v = Gx be a differentiable mapping of nonnegative n-vectors x into 
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p-vectors v. That is, Cx is a p-vector whose components g1(x), ... , gp(x) are dif
ferentiable functions of x defined for x ;;; 0. Taking partial derivatives, evaluated 
at a particular x 0, let 

co=[agk]o. 
ax; 

Here C0 is a p by n matrix. Let gZ denote the n-vector whose components form 
the k-th row of C 0• Let Fx have the meaning assigned in section 3. 

VECTOR MAXIMUM PROBLEM. To find an x 0 that maximizes the vector junction Cx 
constrained by Fx G; 0, x ;;; 0---that is, to find an x 0 satisfying the constraints and 
such that Cx 2: Cx0 for no x satisfying the constraints. 

RESTRICTION. Attention will be restricted to solutions x 0 of the vector maximum 
problem that are proper in the sense that C0dx 2: 0 for no vector differential dx if 
x 0 is interior to the constraint set determined by Fx ;;; 0, x ;;; 0, and for no dx 
satisfying 

(5) F~dx;::;; 0, 

if x0 belongs to the boundary of the constraint set (as qualified in section 3). 
Example. To maximize g1(x) ;;; x, g2(x) ;;; 2x- x2, x being a real variable (one 

dimensional vector) constrained only by x ;::;; 0. Here, Cx 2: Cx0 for no x if x 0 ;;; 1, 
and C0dx 2: 0 for no dx except at x 0 = 1, where C0dx 2: 0 for dx > 0. So, any 
x > 1 is a proper solution of this particular vector maximum problem, but x 0 = 1 
is a solution that is not proper. An argument against admitting x 0 = 1 as a 
"proper" solution is that it would usually be natural to accept a second order loss 
in g2(x) ;;; 2x - x2 to achieve a .first order gain in g1(x) ;;; x. (The anomaly indi
cated by x0 = 1 in this example was noticed by C. B. Tompkins. A rather similar 
anomaly occurs in the paper [1] of K. J. Arrow.) 

THEOREM 4. ·In order that x 0 be a proper solution of the vector maximum problem, 
it is necessary that there be some v0 > 0 such that x0 and some u 0 satisfy conditions 
(1) and (2) for cp(x, u) = v0'Cx + u'Fx. 

PROOF. Let x 0 be a proper solution of the vector maximum problem. Then, for 
each k = 1, ... , p, one must have g0'dx ~ 0 for all dx satisfying 

F~dx ~ 0, 

(where F~ and 11 may be vacuous). Hence, by the fundamental property of homo
geneous linear inequalities used in the proof of theorem 1, 

-gg=F~'u~+I~w~+C0'vk forsome u~~O, w1~0, vk~O. 

Now, summing for k = 1, ... , p, and transferring the C0 terms to the left side, 
one has 

where u¥ = L u~ ;;; 0, w~ = 2: wr ;;; 0, and v0 = e + L vk > 0, e being a p
vector whose components are all1's. 

Let g(x) = v0'Cx. Then 

-go= -co'2•o = Ffu~ + I~w~. 

254



NONLINEAR PROGRAMMING 

From this point on the proof of theorem 4 is completed by following the remaining 
steps of theorem 1. 

THEOREM 5. In order that x 0 be a proper solution of the vector maximum problem, 
it is _sUfficient that there be some v0 > 0 such that x 0 and some u 0 satisfy conditions (1), 
(2), and (3) for cf>(x, u) = v0'Gx + u'Fx. 

PROOF. From the proof of theorem 2, with g(x) = v0'Gx, it follows that 

for all x satisfying the constraints Fx ;:;; 0, x ;:;; 0. But v0 > 0, so Gx 2: Gx0 for no x 
satisfying the constraints. 

If x0 is interior to the constraint set, then G0'v 0 = 0 by (1), since x 0 > 0, Fx 0 > 0, 
and u 0 = 0. So G0dx 2: 0 for no dx. If x0 belongs to the boundary of the constraint 
set, then (1) implies that 

-G 0'v0 - F0'u 0 = I:w¥ for some w~ ;:;; 0. 

Through (2) this can be written 

-G0'v0 = F~'u~ + I{w~ for u~;:;; 0. 

Hence G0dx ~ 0 for no dx satisfying 

(5) F¥dx;:;; 0, 

This completes the proof of theorem 5. 
THEOREM 6 (Equivalence theorem). Let the junctions JI(x), ... ,fm(x), g1(x), 

... , gp(x) be concave as well as differentiable for x;:;; 0. Then, x 0 is a proper solution 
of the vector maximum problem if, and only if, there is some v0 > 0 such that x0 and 
some u 0 give a solution of the saddle value problem for cp(x, u) = v0'Gx + u'Fx. 

PROOF. Clearly g(x) = v0'Gx is concave, since v0 > 0. So the proof of theorem 3 
can be duplicated, using theorems 4 and 5 in place of theorems 1 and 2. 

7. Another extension 

Let Fx and Gx be differentiable mappings, as previously defined (with the con
straint qualification ;n Fx;:;; 0, x ;:;; 0 still in effect). Let min [Gx] denote the 
(scalar) function whose value for each x ;:;; 0 is the least among the p values 
g1(x), ... , gp(x) of the components of the vector Gx. 

MINIMUM CoMPONENT MAXIMUM PROBLEM. To find an x 0 that maximizes 
min [Gx] constrained by Fx;:;; 0, x ~ 0. 

THEOREM 7. In order that x 0 be a solution of the minimum component maximum 
problem, it is necessary that there be some nonnegative v0 with unit component sum 
satisfying 

(6) 

and such that x 0 and some u 0 satisfy conditions (1) and (2) for cf>(x, u) = v0'Gx + u'Fx. 
PROOF. Let F 1x0 and l 1x 0 have the meanings assigned them in section 3. Further, 

let Gx0 be separated into G1x0 = min [Gx0] and G2x0 > min [Gx0] (see note pre
ceding theorem 10, below). Then, since x0 is assumed to maximize min [Gx] con
strained by Fx ~ 0, x ~ 0, one must have that G~dx > 0 for no vector differential 

255
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dx satisfying 
F~dx ~ 0, 

(or for no dx at all, ifF~ and / 1 are vacuous). That is, for each k belonging to a cer
tain nonvacuous subset of the set of indices corresponding to the rows of G0 that 
belong toG~ one must have that gg' dx ~ 0 for all dx satisfying 

F~dx ~ 0, G~dx G; 0. 

Hence, by the fundamental property of homogeneous linear inequalities used in the 
·proof of theorem 1, 

-g2 = Pf'u~ + I~w~ + crv1 for some u~ G; 0, w~ G; 0, v~ G; 0. 

Now, summing fork over the nonvacuous subset and transferring the G~ terms to 
the left side, one has 

-Gfv~ = Fru~ + I{w~, 
where u~ = L u~ ~ 0, w~ = L w~ ~ 0, and v~ = e1 + L v~ )~ 0, e1 being a vector 

whose components are O's or 1's-with at least one 1. Here it can be assumed that 
the sum of the components of v~ is one, since the above vector equation is homoge
neous and the sum of the components of i'~ is positive. Form v0 from v~ by adding 
zeros as components. Then 

v0'Gx0 = i'~ 1G 1x0 = min [Gx0) • 

By setting g(x) = v0'Gx, the above vector equation can be rewritten as 

-go= -G0'v~ = -G~'v~ = Ffu~ + 1:w~. 
From this point on the proof of theorem 7 is completed by following the remaining 
steps of theorem 1. 

THEOREM 8. In order that x 0 be a solution of the minimum component maximum 
problem, .it is sufficient that there be some nonnegative v0 with unit component sum 
satisfying condition (6) and such that x0 and some u 0 satisfy conditions (1), (2), and 
(3) for cp(x, u) = v0'Gx + u'Fx. 

PROOF. From the proof of theorem 2 with g(x) = i• 0'Gx, it follows that 

v0'Gx ~ v0'Gx0 

for all x satisfying the constraints Fx G; 0, x G; 0. But v0 is nonnegative with unit 
component sum and satisfies condition (6). Hence 

min [Gx] ~ 11°'Gx ~ v0'Gx0 = min [Gx0] 

for all x satisfying the constraints. This proves theorem 8. 
THEOREM 9 (Equivalence theorem). Let the functions ft(x), ... , fm(x), g1(x), 

... , gp(x) be concave as well as differentiable for x G; 0. Then, x0 is a solution of the 
minimum component maximum problem if, and only if, there is some nonnegative v0 

with unit component sum satisfying condition (6) and such that x0 and some u 0 give a 
solution of the saddle value problem for cp(x, u) = v0'Gx + u'Fx. 

PROOF. Clearly g(x) = v0'Gx is concave, since v0 is nonnegative. The proof of 
theorem 3 can be duplicated, using theorems 7 and 8 in place of theorems 1 and 2. 

The fact tha:t the constraints Fx G; 0 can be written equivalently as min [Fx] G; 0 
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suggests the possibility of interchanging the roles of Fx and Gx. The following 
theorem exploits this possibility. As before, constraints are subject to the con
straint qualification introduced in section 3. (It is to be noted that a con~tant, such 
as min [Gx0], appearing as a vector in a vector inequality or equation is to be in
terpreted as a vector all of whose components equal that constant.) 

THEOREM 10. Let the functions h(x), ... , fm(x), g1(x), ... , gp(x) be concave as 
well as differentiable for x ;;;; 0. Then, in order that x0 maximize min [Gx] constrained 
by Fx;;;; min [Fx0], x ;;;; 0, it is suificient that x0 maximize min [Fx] constrained by 
Gx ;;;; min [Gx0], x ;;;; 0---provided Fx > min [Fx0] for some x ;;;; 0. 

PROOF. Let x0 maximize min [Fx] constrained by (Gx - min [Gx0]) ;;;; 0, 
x ;;;; 0, as hypothesized. Then, by theorem 7 applied to this reversed situation, 
there must be some nonnegative u 0 with unit component sum and some v0 such 
that 

u0'Fx0 = min [Fx0], 

p_o'uo + co'vo ~ 0' uo'poxo + vo'coxo = 0' 

(Gx 0 - min [Gx0] ) ;;;; 0 , v0' (Gx0 - min [Gx0] ) = 0, 

Assume, if possible, that v0 = 0. Then, using the .concavity of the functions form
ing Fx and the above conditions, one has 

u0'Fx ~ u0'Fx0 + u0'F0 (x- x0) ~ u0'Fx0 for all X;;;; 0, 

contradicting the proviso that Fx > min [Fx0] for some x ;;;; 0. Therefore the vec
tor vo ? 0 and one can assume that it has unit component sum by dropping the 
same assumption concerning u0• Under these circumstances 

(Fx0 - min [Fx0] ) ;;;; 0 , u0' (Fx0 - min [Fx0] ) = 0 , 

and v0'Gx0 = min [Gx0] • 

While, by the concavity of the functions forming Fx and Gx, 

v0'Gx + u0'Fx ~ v01Gx0 + u0'Fx0 + (v 0'G 0 + u0'F0) (x - x0) for all X ;;;; 0. 

Consequently, by theorem 8, x0 is a solution of the minimum component maximum 
problem for.Gx constrained by (Fx- min [Fx0]) ;;;; 0, x;;;; 0. This completes the 
proof of theorem 10. 

8. Other types of constramts 

The foregoing results admit simple modifications when the constraints Fx ;;;; 0, 
x ;;;; 0 are changed to: 

(1) Fx ~ 0 , or (2) Fx = 0 , x ;;;; 0 , or (3) Fx = 0 . 

These modifications are outlined below. 
Case 1: Fx;;;; 0. 

Here, using q,(x, u) = g(x) + u'Fx defined for all x and constrained only by 
u ;;;; 0, one must replace condition (1) by 

(1*) q,~=O. 

Case 2: Fx = 0, x ;;;; 0. 
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Here, using f/J (x, u) = g(x) + u'Fx defined for all u and constrained only by x ~ 0, 
one must replace condition (2) by 

(2*) f/J~=O . 

Case 3: Fx = 0. 
Here, using f/J(x, u) = g(x) + u'Fx defined for all x and u without constraints, one 
must replace conditions (1) and (2) by (1 *) and (2*). This corresponds to the cus
tomary use of the method of Lagrange multipliers for side equations [3]. 
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SECOND ORDER CONDITIONS FOR CONSTRAINED 
MINIMA* 

GARTH P. McCORMICKt 

Abstract. This paper establishes two sets of "second order" conditions-one 
which is necessary, the other which is sufficient-in order that a vector x* be a local 
minimum to the constrained optimization problem: minimizef(x) subject to the con
straints g;(x) !;:; 0, i = 1, · · · , m, and h;(x) = 0, j = 1, · · · , p, where the problem 
functions are twice continuously differentiable. The necessary conditions extend the 
well-known results, obtained with Lagrange multipliers, which apply to equality 
constrained optimization problems, and the Kuhn-Tucker conditions, which apply 
to mixed inequality and equality problems when the problem functions are required 
only to have continuous first derivatives. The sufficient conditions extend similar 
conditions which have been developed only for equality constrained problems. Ex
amples of the applications of these sets of conditions are given. 

1. Introduction. Efforts to establish conditions which determine whether 
or not a point solves an optimization problem have been in progress since 
the classical work involving Lagrange multipliers. The Lagrange multi
plier approach is applied to optimization problems with equality con
straints of the form given in Problem L. 

PROBLEM L. Find a vector x* = (x1*, · · ·, x,.*)T that minimizes f(x) 
subject to 

} = 1, ... 'p. 

Although one is interested in the true or global solution to optimization 
problems, in general one can only prove theorems about local solutions. 
A local solution is a point x* such that in a neighborhood about that point 
all other points either do not satisfy the constraints of the problem or give 
values of the objective function greater than or equal to f(x*). 

Using this definition, the basic result of Lagrange multipliers is stated in 
Theorem 1. (Throughout this paper, the symbol V is the differ
entiation operator with respect to the vector x, i.e., "Vj(x) 
= (aj(x)jax1 , • • • , aj(x)jax,.)T; the symbol \72 represents the operator V 
applied twice, "V2j(x) is then X n matrix whose i, jtb, element is a2j(x)/ 
dXjiJX.;. For shorthand, f* will indicate f(x*), vt will indicate Vf(x*); 
for a parameterized function, a' will represent the derivative with respect 
to the parameterizing variable, i.e.,/ ( 0) = df[x( 6) ]/dO.) The term "differ
entiable" will always mean "continuously differentiable." 

'IHEOREM 1 (Lagrange multipliers) [3, p. 100]. If the junctions 

* Received by the editors April 29, 1966. 
t Advanced Research Department, Research Analysis Corporation, McLean, 

Virginia 22101. 

641 

DOI 10.1007/978-3-0348-0439-4 12, © Springer Basel 2014
259G. Giorgi and T.H. Kjeldsen (eds.), Traces and Emergence of Nonlinear Programming,



642 GARTH P. McCORMICK 

f, h1, , hP are differentiable and if x* is a point where the vectors 
'Vh1*, · · · , 'Vh/ are linearly independent, then a necessary condition that x* 
be a local minimum to Problem L is that there exist scalars (called Lagrange 
multipliers) w; *, j = 1, · · · , p, such that 

p 

(1) 'VJ* + L: w/ 'Vh/ = 0. 
j=l 

The proof of this theorem will be a by-product of later developments in 
this paper. 

That the necessary conditions expressed by (1) are not always able to 
distinguish a local minimum from other points is seen in the following 
example. 

Example 1. Minimize -x1 - x2 subject to 

X12 + X22 - 2 = 0. 

Using the necessary condition expressed in (1) we need examine only 
points (x1, x2)T on the circle x12 + x22 - 2 = 0 for which a scalar W1 exists 
satisfying the equation 

(2) ( -1, -1)T + w1(2x1, 2x2)T = (0, O)T. 

Clearly x1 must equal X2, and this leaves the two points ( -1, -l)T and 
( 1, 1) T as possible local minima. For the former point w1 = -! and for 
the latter, w1 = ! would satisfy (2). Just using (1) then, there is no way 
to distinguish algebraically between those two points, although geometri
cally it is clear that ( -1, -1f is not a local minimum. 

The equality constrained optimization problem, Problem L, is a special 
case of the constrained optimization problem, Problem I. 

PROBLEM I. Find a vector x* that minimizes f(x) subject to 

g,(x) ~ 0, i = 1, · · ·, m. 

With respect to Problem I, Fritz John [1] proved a general theorem of 
which the following is a special case. 

THEOREM 2 [1, Theorem 1, p. 188]. If the functions f, U1 , · · · , Um are 
differentiable, then a necessary condition that x* be a local minimum to 
Problem I is that there exist scalars uo*, u0*, · · · , um* (not all zero) 
such that the following inequalities and equalities are satisfied by 
( * * * * *) X1 , • • • , X,. , Uo , U1 , • • • , Um : 

g;(x) ~ 0, i = 1, · ··, m, 
m 

(3) 

(4) Uo 'Vf(x) - L u. 'Vg;(x) = 0, 
i=l 
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(5) 

(6) 
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u,g,(x) = 0, i = 1, · ··, m, 

u, ~ 0, · i = 0, 1, · · · , m. 

The proof is omitted here. 
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With respect to the inequality constraints then, the variables 
u;,*, i = 0, 1, · · ·, m, are always nonnegative. 

In a later paper, Kuhn and Tucker [4] showed that if a condition, called 
the "first order constraint qualification," holds at x*, then Uo * can be taken 
equal to 1. The statement of the first order constraint qualification and the 
proof of the Kuhn-Tucker theorem are given in §2. 

The failure of conditions (3) through (6) to answer questions which 
have proper answers is illustrated in the following example. 

Example 2. Find the values of the parameter k > 0 for which (0, 0) is a 
local minimum to the problem: minimize (x1 - 1)2 + x22 subject to 

-x1 + X22/k ;:;; 0. 

Using (3) through (6) the following equation must be satisfied: 

uo*( -2, O)T- u1*C -1, O)T = (0, O)T. 

Since uo * = 0 implies u1 * = 0, and since Theorem 2 says they both cannot 
be equal to zero, it follows that uo* can be taken equal to 1, and u/ = 2. 
These values of uo* and u/ make the necessary conditions (3) through (6) 
valid for all values of k. But fork = !, (0, O)T is not a local minimum and 
for k = 3, it is. 

These two examples provide the motivation for the remainder of the 
paper. The theorems henceforth will be addressed to the constrained op
timization problem, Problem M, containing a mixture of inequality and 
equality constraints. 

PROBLEM M. Minimizef(x) subject to 

(7) 
g,(x) ~ 0, 

h;(x) = 0, 

i = 1, · · ·, m, 

j = 1, ... 'p. 

In §2, using the first order constraint qualification, the Kuhn-Tucker 
theorem is proved. In §3, by addition of a condition called the "second 
order constraint qualification", additional necessary conditions are placed 
on a local minimum to Problem M when the problem functions are assumed 
twice differentiable. This is a new result although special cases have ap
peared elsewhere. In [5] similar results are obtained for the problem of 
maximizing a quadratic indefinite form subject to linear constraints. Next, 
we prove constructively that the first and second order constraint qualifi
cations are satisfied when a regularity condition is placed on x*. In §4, a 
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sufficiency theorem for a point x* to be a local minimum to Problem M is 
given, extending classical results which are valid only for the equality con
strained problem Problem L. In §5 it is shown how the "second order" 
necessary and sufficient conditions solve the two examples for which the 
first order condition failed. 

2. First order necessary conditions. Use will be made of the following 
lemma which is stated here without proof [2). 

FARKAS' LEMMA.1 If every vector z (n components) which satisfies the 
inequality relations 

and the equality relations 

zTbi = 0, 

also satisfies the inequality 

i = 1, ... 'q, 

} = 1, · · ·, r, 

then there exist nonnegative scalars t1 , · · · , tq and scalars s1 , · · · , sr ( unre
stricted in sign) such that 

q r 

c- L t;ai + L s1b; = 0. 
i=l j=l 

We now state a condition, first introduced by Kuhn and Tucker [4, p. 
483], which will be required to hold at any candidate for a local minimum. 

First order constraint qualification. Let x0 be any point satisfying 
the constraints of Problem M, and assume that the functions 
91, · · · , 9m, h1 , · · · , hP are differentiable at X0 • Then the first order con
straint qualification holds at x0, if for any nonzero vector y such that 
yT \lg;(x0 ) ~ 0 for all i EB0 = {i / 9;(x0 ) = 0}, and yT\lhi( x0 ) = 0, 
j = 1, · · · , p, y is tangent to an arc a( 8) differentiable at x 0 which is 
contained in the constraint region. 

An arc a( 8) is considered here to be a parameterized curve, differentiable 
when 0 ~ 8 ~ E. The first order constraint qualification means that at 
a(O) = x 0, a'(O) = y. 

THEOREM 3 (Kuhn-Tucker). If the functions f, 91 , · · · , gm, h1 , · · · , hp 
are differentiable at a point x* and if the first order constraint qualification 
holds at x *, the necessary conditions that x* be a local minimum to the con
strained optimization problem M are that there exist scalars u/, · · · , Um *, 
w/, · · · , Wp *such that (x*, u*, w* ) satisfies 

1 For convenience Farkas' lemma has been restated here in a form different but 
equivalent to its usual form. 
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(8) 

(9) 

(10) 

(11) 

SECOND ORDER CONDITIONS 

gi(x) ~ 0, 

h;(x) = 0, 

uig;(x) = 0, 

i = 1, · · ·, m, 

J = 1, ... 'p, 

i = 1, · · ·, m, 

i = 1, ···, m, 
m P 

(12) 'Vf(x) - L u; 'Vgi(x) + L w; 'Vh;(x) = 0. 
i=l j=l 
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Proof. Let B* == { i I g.(x*) = 0}. Consider any nonzero vector y such 
that yT 'Vg/ ~ 0 for all iEB* and yT 'Vh/ = 0, J = 1, · · ·, p. By the 
first order constraint qualification y is the tangent of a differentiable arc, 
emanating from x*, which is contained in the constraint region. 

Let a(O) be that arc. Using the chain rule, the rate of change off along 
a(O) ata(O) = x*is 

f[a(O)] = a'(O)T 'Vf(x*) = yT 'Vf(x*). 

By assumption, x* is a local minimum and f must increase or remain the 
same along a(O). Thus, yT 'Vf(x*) ~ 0. 

The hypotheses of Farkas' lemma are satisfied by the vectors 'Vg.(x*) 
for all iEB*, the vectors 'Vhi(x*), j = 1 · · · p, and the vector 'Vf(x*). 
Then there exist values u/ ~. 0 for all iEB*, and w/, j = 1, · · · , p, such 
that 

p 

'Vf(x*) - L u/ 'Vgi(x*) + L w/ 'Vhi(x*) = 0. 
iEB* j=l 

Let u/ = 0 for all i (j: B*, and the theorem is proved. 

3. Second order necessary conditions. The following may be a require
ment on some point in the constraint region. 

Second order constraint qualification. Let x0 be some point satisfying the 
constraints of M, and assume that the functions g1, · · · , Ym, ht, · · · , h11 

are twice differentiable at x0• The second order constraint qualification 
holds at x0 if the following is true. Let y be any nonzero vector such that 
yT 'Vgi0 = 0 for all iEB0 = {i I gi(x0 ) = 0}, and such that yT 'Vh/ = 0, 
j = 1, · · · , p. Then y is the tangent of a twice differentiable arc a( 0) 
(where (J ~ 0) along which g,[a(O)) = 0 for all iEB0, h;[a(O)] = 0 for 
smallO,J = 1, ··· ,p,anda(O) = x0,i.e.,a'(O) = y. 

THEOREM 4 (Second order necessary conditions). If the functions 
f, g1, · · · , Ym, h1, · · · , hp are twice differentiable at a point x*, and if the 
first and second order constraint qualifications hold at x*, then necessary 
conditions that x * be a local minimum to the constrained optimization 
proble:m M are that there exist vectors u* = (u1*, · · · , Um *)T and 
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w* = Cw1*, · · · , w/)T such that (8)-(12) hold, and such that for every 
vector y, where yT 'Vg/ = 0 for all iEB* = {i I g.;(x*) = 0} and such that 
yT 'Vh/ = 0, j = 1, · · · , p, it follows that · 

(13) YT[ \12 !* - ~ U,:* \12 g,* + "'t:. W;* \12 h;* J y E?; 0. 

Proof. (i) The first part of the theorem is a repetition of Theorem 3 
and follows because the first order constraint qualification is assumed to 
hold. 

(ii) Let y be any nonzero vector such that 

(14) yT 'Vg.:* = 0 for all iEB*, 

and such that 

(15) YT 'Vh/ = 0, j = 1, ... 'p. 

(If there are none the theorem is proved.) Let a:(O) be the twice differ
entiable arc guaranteed by the second order constraint qualification where 
a:(O) = x*, a:'(O) = y. Denote a:" (0) by z. Then 

(16) g./'(0) = yT(\12g/)y + zT 'Vg/ = 0 for all iEB*, 

(17) h;" (0) = y~(\12h/) y + ZT 'Vh/ = 0, j = 1, · · · , p. 

Otherwise some (J;, iEB*, or h;, j = 1, · · · , p, would not be equal to 
zero along a:( B). Using the u* and w* given by (i), (14) and (15), 

j'(o) = yT'Vf* = yT (f u,*'Vg/- f w/'Vh/) = 0. 
i=l i=l 

Since x* is a local minimum, and /(0) = 0, /' (0) must be E?; 0. That is, 

(18) l' (0) = YT 'V2fy + ZT 'Vf E?; 0. 

From this, (12), (16) and (17), it follows that 

YT [ \12f*- ~ u/'V2g/ + t; w/'V2h/ J y E?; 0. 

The following example illustrates that the first order constraint qualifi
cation can be satisfied while the second order constraint qualification fails 
to hold. 

Example 3. Minimize x2 subject to 

(Jl = - X19 + X23 ~ 0, 

(/2 = X19 + X23 E?; 0, 

gs = X12 + (x2+1) 2 - 1 E?; 0. 
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The solution is ( ~). Now, \1 g1 *' = \1 g2 * = ( ~ ), 'V g8 * = (~). Since all 

the constraints are equal to zero at (0, O)T, B* = (1, 2, 3). Any vector y 
such that y Vg.,* f;; 0 for all iEB* must be of the form (y1 , y22)T. Clearly, 
any such vector is tangent to an arc pointing into the constraint region. 
Thus, the first order constraint qualification is satisfied. 

Any vector y to be considered for the second order constraint qualifica-

tion is of the form ( ~1) (where y1 7"" 0 since y must be "nonzero"). Since 

there is no arc along which g1 , g2 and g3 remain equal to zero, the second 
order constraint fails to hold. 

Note that the first order Lagrange conditions are only satisfied by 
(u1*, u2*, t), where u1*, uz* are any scalars ;;;; 0. However, 

is negative definite and the second order necessary conditions do not hold. 
That the second order constraint qualification does not imply the first can 
be seen in the following example. 

g1 = -x/ - (x2 - 1)2 + 1 ;;;; 0, 

;;;; 0. 

The point(~) is the solution to any problem with these three constraints. 

Their gradients are(~), (-~),G). 
The second order constraint qualification is satisfied because there are 

no vectors orthogonal to all three gradients. The first order qualification is 
not since there are no arcs pointing into the region of feasibility (which is a 
single point). There are vectors y giving nonnegative inner products, for 

exam ole, y = ( ~). 
In order to use these necessary conditions as criteria for determining if 

a point can be a local minimum, one must determine if the constraint 
qualifications are satisfied. One situation which often occurs where this can 
be done is given in the next theorem. 

THEOREM 5 (Condition implying constraint qualifications). Suppose the 
functions g1, · · · , gm, h1, · · · , hp are twice differentiable. A sufficient con
dition that the first order and second order constraint qualifications be satisfied 
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at a point x* is that the vectors Vg/ for all iEB*, (Vh/, j = 1, · · · , p) 
be linearly independent. 

Proof. We shall prove that the second order constraint qualification 
holds by constructing an arc which satisfies the hypotheses. The proof 
that the first order constraint qualification holds is omitted but is analogous 
to the one given. 

Let y be any nonzero vector satisfying (14) and (15). (If none exist, 
the second order constraint qualification is trivially satisfied.) Let z be 
some vector such that 

(19) 

(20) 

yT('l2g/) y + zT'lg/ = 0 

yT(\l2h/) y + zT'lh/ = 0, 

for all iEB*, 

j = 1, ... 'p. 

Such a z exists because of the independence of the gradients. Assume there 
are q indices in B* and that the inequality constraints are reordered so 
that g1 , • • • , gq are those constraints. Let c = p + q, which, by the as
sumption of linear independence and the existence of a nonzero y satisfying 
(14) and (15), must be less than n. Let 

ag1 ag1 
ax! axe 
:(: t, .. : 
' .. 
agq agq 

Mc(B) 
axl dXc 

ah1 ah1 
axl dXc 

ahp ahp 
L dX1 dXc .J 

let 

ag1 ag1., 

axe+! axn 

agq agq 

Mcn(B) 
dXc+l OXn 

ah1 ah1 
dXc+! dXn 

ahp ahp 
dXc+! dXn.J 

where each partial derivative in Mc(B) and Mcn(B) is evaluated at a(B). 
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We can assume without loss of generality that the vectors in Me(O) at 
0 = 0 are linearly independent. Let 

d(O) 

a' (Ol~ 2gl a' (0) l 
a' (O)T\1 2gq a' (0) j 
a'(o)TT 2hla'(o) , 

a' (O)T\1 2hp a' (0) 

Zm ~ [TJ. 
where each matrix of second partial derivatives in d( 0) is evaluated at 
a(O). The arc is constructed as follows: let a(O) = x*, a'(O) = y, and 

(21) a" (e) = [[Me(o)r1
[ -~=(O)zcn - d(O)]J . 

The existence of a twice differentiable function (arc) satisfying these con
ditions is guaranteed since the right-hand side of (21) is defined and con
tinuous in a neighborhood about x*. (See [6, Theorem 1.2].) It is a non
trivial arc since y was assumed not equal to zero. 

That a" (0) = z follows by solving (19) and (20) for (z1 , · · • , Ze)T 
in terms of Zen . This agrees with ( 21) at 0 = 0. Let e = ( (/1 , 

· · · , (Jq, h1, · · · , hp)r, and let ek be any component of e. Then 

ek(O) = ek(O) + Oek'(O) + (fi/2) ek" (¢), 

where 0 ~ cp ~ 0 in a neighborhood about x *. But e( 0) = 0 = e' ( 0), and 

e"(¢) = dk(cp) + [Mek(¢): M~,(¢)] [{Me(¢)}-1[-Men(cf>)z,.- d(¢)]] 
Zen 

= 0. 

4. Second order sufficient conditions. The following conditions con
stitute an attempt to add as little as possible to the necessary conditions 
of Theorem 4 to create ones which are sufficient that a point be a local 
minimum. 

THEOREM 6 (Second order sufficient conditions) .2 Sufficient conditions 
that a point x* be an isolated local minimum to the constra1:ned optimization 
problem M, where J, g1, · · · , (Jm, h1, · · · , hP are twice differentiable func
tions, are that there exist vectors u*, w* such that 

2 A statement of this theorem when there are no inequality constraints is con
tained in [3, pp. 115-116]. 
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(22) 

(23) 

(24) 

(25) 

(26) 

GARTH P. McCORMICK 

g;(x*) ~ 0, 

h1(x*) = 0, 

u/g;(x*) = 0, 

* "Ui ~ 0, 
m P 

i = 1, · · ·, m, 

j = 1, ... 'p, 

i = 1, · · ·, m, 

i = 1, · · ·, m, 

\lf* - L u/\7 g/ + L w/Vh/ = 0, 
i=l i=l 

and for every nonzero vector y where yr\7 g/ = 0 for alliED* = { i [ u/ > 0) 
and yr'Vh/ = 0, j = 1, · · · , p, it follows that 

(27) yr [ \72f* - ~ u/\72g/ + ~ w/'V 2h/ J > 0. 

Proof. Assume that x* is not an isolated local minimum. Then there 
exists a sequence of points { yk) where lim"_,."' y" = x* such that (i) each 
yk is feasible, and (ii) f(y") ;;::; f(x*). We can rewrite each y" as 
x* + lll (ok > 0), where lis a unit vector. We consider any limit point 
of the sequence {ok, i). Clearly any such limit point is of the form (0, s), 
where sis a unit vector. By (i), 

and by (ii), 

for all i E B*, gi(y") - g;(x*) ~ 0 

h1(y") - h1(x*) = 0, j = 1, ... 'p, 

f(y") - f(x*) ;;::; 0. 

Dividing each equation above by o", and taking the limit as k ~ CXJ (using 
that sequence converging to s), we have, by the assumed differentiability 
properties, that 

(28) \lT .*- > 0 g, 8 = for all i E B*, 

(29) \lrh*s = o 
3 ' 

j = 1, ... 'p, 

(30) vrfs ;;::; o. 
We have two cases to consider, and show a contradiction arises from 

each of them. 
(a) For the unit vectors, \lrg/8 > 0 for at least one i E D*. This as

sumption coupled with (28), (29), (30), (24), (25) and (26) means that 
p 

o ~ vr!*s = I: u1*\lrg1*s + I: w/'Vrh/s > 0. 
iED* i=l 

This is an impossibility. 
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(b) For the unit vector 8, 

\!Tg1*s = 0 for all i E D*., 

Using Taylor's expansion (defining £(x, u, w) = f(x) - L Utgt(x) 
+ L w;h;(x) ), 

£(y", u*, w*) = £(x*, u*, w*) + o"(s")T\7 £(x*, u*, w*) 

(31) + [(o")2/2](s")T[\72£(n", u*, w*)]s", 

where n" = >.x* + (1 - X)o"(s"), 0 ~ X ~ 1. Using properties (i) and 
(ii), (24), (25), (26) to reduce (31) to an inequality, then dividing by 
( o") 2 /2 yields 

(32) 

Taking the limit ask---+ co yields, because of assumption (b), a statement 
contradicting (27). 

6. Examples. The application of these theorems to the earlier examples 
will now be shown. In Example 1, since there is only one equality con
straint, the hypotheses of Theorem 4 (by virtue of Theorem 5) are satis-

fied. If (-1, -1)T is a local minimum, the matrix [-~ -~J must be 

positive semidefinite for all vectors y such that (y1 , y2 ) ( -2, -2) T = 0, 
that is, all vectors of the form (y1, -yt). Multiplying yields -4yl2 < 0 
(when Y1 ~ 0). Thus ( -1, -1)T cannot be a local minimum. Applying 
the sufficiency test of Theorem 6 assures us that ( 1, 1) Tis a local minimum. 
Since it is the only local minimum, it must also be the global minimum. 

In Example 2, [\l 2f- L u;\l2g;] at x* = (0, O)T is [~ ~ _ 41kJ. 
Now since \7 g1 * = ( -1, 0) T' we need only consider vectors y of the form 
(0, y2) T. The number to be investigated is, therefore, y22[2 - 4/k]. By Theo
rem 6, for k > 2, ( 0, 0) T is a local minimum. By Theorem 4, for k < 2, 
( 0, 0) T is not a local minimum. At k = 2, the necessary conditions are 
satisfied, but not the sufficient ones. 
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AN INDIRECT SUFFICIENCY PROOF FOR THE PROBLEM 
OF LAGRANGE WITH DIFFERENTIAL INEQUALITIES 

AS ADDED SIDE CONDITIONS 
BY 

LOUIS L. PENNISI 

1. Introduction. The problem to be considered here consists in finding in 
a class of arcs C: yi(x) (i=l, · · ·, n; x 1 ;;;;;x;;;;;x2) joining two fixed points 
and satisfying a set of differential inequalities and equations of the form 

cf>~(x, y, y) ;::;;; 0, 

that one which minimizes the integral 

if;P(x, y, y) = 0 

f x> 

I(C) = f(x, y, y)dx. 
xl 

Valentine [11](1) has given a brief history of this problem and has derived 
certain necessary conditions by introducing auxiliary functions z~(x) such 
that cf>~(x, y, y) =z~'. His sufficiency theorems depended on assumptions of 
normality and a field theory, and also required all except one of the differential 
inequalities to be satisfied in the strict sense along the minimizing arc Co. 

Using methods developed by McShane [9] and Hestenes [3; 4; 5; 6] 
we shall give an indirect proof of a sufficiency theorem. Instead of demanding 
that all but one of the functions cf>~ is positive along Co we shall impose the 
more general restriction (2.5) to be described in the next section. 

2. Statement of problem and main theorem. Let CJ\. be a region in (2n+ i)
dimensional space of points (x, y, p) = (x, yl, · · · , yn, pt, · · · , pn). By an ad
missible arc C will be meant a set of functions yi(x) ( i = 1, · · · , n; x 1 ;;;;; x ~ x2) 

which are absolutely continuous and have integrable square derivatives 
yi(x) such that the point [x, y(x), y(x)] is in CJ\. for almost all x on x1x2. 
It will be assumed that the functionsf(x, y, p), cf>~(x, y, p), 1/IP(x, y, p) are of 
class C" on CJ\. (,8=1, · · ·, m; p=m+1, · · ·, m+t<n). The subset on CJ\. 
on which ~(x, y, p) ;?;0, 1/IP(x, y, p) =0 will be denoted by V. We shall say 
that C lies in CJ) if the point [x, y(x), y(x)] lies in V for almost all x on x 1x2• 

We shall be concerned with a particular admissible arc Co: yi=y~(x) of 
class C' which lies in C)), satisfies the end conditions 

(2 .1) (i = 1, · · · , n; x1 ;;;;; x ;;;;; x 2 ; s = 1,2) 

and along which the matrix 

Received by the editors April4, 1952. 
( 1) The numbers in brackets refer to the bibliography at the end of the paper. 
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(2. 2) 
II :f: II 

has rank m+t. Suppose that the interval x1x2 can be divided into a finite 
number of open intervals AT: xT<x<xT+l (r=O, 1, · · ·, T), where x 0=xl, 
XT+l =x2, in such a manner that each of the functions¢~ [x, yo(x), :Yo(x)] either 
vanishes identically on AT or is positive everywhere on AT. Let r(x) be the 
set of indices {3 such that ¢~[x, y 0(x), y0 (x)] =0. Then.r(x) is independent of 
X when X is in AT and may be denoted by r T• Let A ({3) be the closure of the 
sum of the intervals AT on which¢~ [x, y0(x), y0(x)] =0. 

Consider now a set of continuous functions A. 0 Ei;; 0, A.~(x), A,P(x) such that if 
we define 

F(x, y, p, >-.) = }..0j(x, y, p) + }..~cJ>~(x, y, p) + >-.PI/;P(x, y, p), 

then the equations 

(2.3) 

(2. 4) X~(x)cJ>~(x, y, y) = 0 (/3 not summed) 

hold along Co with the multipliers A.(x) for some set of constants c'. Let A(x) 
be the set of indices {3 such that A.~(x) ~0 and let B({3) be the set of points x 
for which A.~(x) ~0. It is evident from (2.4) that B({3), the closure of B({3), 
is contained in A({3) and that A(x) is contained in r(x). In fact, A(x) is con
tained in r T for all X in AT. We shall assume that 

(2. 5) r(x) - Ll(x) contains at most one index. 

We shall make a further restriction on our choice of multipliers. Let 
EF(x, y, p, q, A.) be the Weierstrass E-function 

EF = F(x, y, q, >-.) - F(x, y, p, X) - (q'- pi)Fp,(x, y, p, X), 

and define ?'~(x, y, p) as 

?>~(x, y, p) = cJ>~(x, y, p)/[1 + cJ>~'(x, y, p)]l/2, 

It will be assumed that there is a neighborhood D1 of Co relative to the set D 
and a constant b such that 0 <b < 1 and the inequality 

(2. 6) EF(X, y, p, q, >-.) - }..~(x)cJ>~(x, y, q) Ei;; bEL(p, q) - X~(x)?>fJ(x, y, q) 

holds whenever (x, y, q) is in D1, (x, y, q) is in D, and ¢~(x, y, p) =0 in case 
{3 is in A(x). Here L(p) is the integrand (l+P'P') 1i 2 of the length integral and 
EL(p, q) is the E-function 

(2. 7) EL(p, q) = L(q) - (1 + piq')/L(p) 
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for this integrand. We shall call the set of functions ;\. 0 ~0. x~(x), ;\_P(x) an 
admissible set of multipliers when the ·functions are continuous on x 1x 2 and 
the conditions (2.3), (2.4), (2.5), and (2.6) are satisfied under the conditions 
described. 

Let us now consider a set of functions 7Ji(x) which are absolutely continu
ous and have integrable square derivatives ~i(x) on x 1x 2• If such a set of 
functions satisfies with the curve Co and an admissible set of multipliers the 
end conditions 

(2. 8) 77i(x•) = 0, 

the differential equations 

(2. 9) 

for almost all x in B ({3), the differential inequalities 

(2 .10) 

for almost all x in A ({3) -B({3), and the differential equations 

(2 .11) 

for almost all x on x 1x 2, it will be called an admissible variation. For each 
admissible variation, the second variation 

•' 
J2(77) = J 2w(x, 71, ~)dx 

zl 

(2 .12) •• 
= f (F11 <11•77i71k + 2F11 <p•71i~k + Fp<p•~i~k)dx 

zl 

is well defined. 

THEOREM 2.1. Let Co be an arc of class C' which lies in iJJ, satisfies the end 
conditions (2.1), and along which the matrix (2.2) has rank m+t. Suppose an 
admissible set of multipliers can be found for which J2(7J) > 0 for every nonnull 
admissible variation. Then there is a neighborhood 7 of Co in (x, y)-space such 
that the inequality I( C)> I( Co) holds for every admissible arc C in 7 which lies 
in iJJ, satisfies the end conditions (2.1), and is different from Co. 

3. The problem with a finite number of variables. In order to be able to 
draw conclusions from the inequality (2.6) and also to furnish a model for 
the calculus of variations problem, we find it convenient to discuss first the 
problem of minimizing a function f(x) of n variables xi in the class of points 
x satisfying m inequalities cjJ~(x) ~0 and t equations t/;P(x) =0, when m+t <n. 
For the normal case, which is the only one we consider, our results are more 
general than those of Karush [7]. 
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We suppose that the functions f(x), cf>#(x), and tj;P(x) are of class C" in a 
neighborhood '1\ of a point Xo, that cf>~(x 0) ~ 0, tj;P(x 0) = 0 and that the matrix 

(3. 1) 

has rank m + t. 
THEOREM 3.1. If Xo minimizes f(x) in the class of points x near x 0 such 

that cf>~(x) ~0, tj;P(x) =0, then there exist unique multipliers J.i/, J.il such that if 
F(x, M) =f(x)+JJN~(x)+MPtfP(x), then Fx,(Xo, M) =0. Moreover, ,.,~::;;.0 and 
M~cf>~(xo) = 0 for each (3. 

The first sentence of the theorem follows from well known results [1, p. 
210] since the point x 0 is a normal point which minimizes f(x) in the class of 
points x near x 0 for which cf>~(x) =c/>~(x 0), tj;P(x) =0. To prove that 11/ ,&0 we 
pick functions tj;i(x) (j = m +t+ 1, · · · , n) of class C" such that the equations 

(3. 2) 

have a non vanishing functional determinant when x = x 0, v~ = 0, vi= 0. Solu
tions xi(v) of class C" near v=O therefore exist such that xi(O) =xb and so the 
function 

(3. 3) 

is minimized by v = 0 in the class of points v near 0 for which each v~ ~ 0. Its 
derivative with respect to v~, namely - ,.,~, must therefore be non-negative. 
If cf>~(xo) > 0 for some (3, then the function (3.3) has a two-sided minimum 
when regarded as a function of vf3 only and so JJ.~ = 0. Hence Mf3cJ>~(xo) = 0 for 
each (3. 

Let us definer as the set of all indices (3 such that cf>~(x 0) = 0, and Ll as the 
set of all indices (3 such that,.,~ <0. It is clear then that Ll is a subset of r. 

THEOREM 3.2. If x 0 minimizes f(x) in the class of points x near xo such that 
cf>P(x) ~0, tj;P(x) =0, then the function F(x, M) defined by Theorem 3.1 is such 
that 

for every set 11"; such that 

for all p, all 'Y in r -Ll, and all o in fl. 

If 71"; is a set as described in the theorem, we set v#(t) =c/>~<(xo)7rit, vi(t) 
=tJ;;,(x0)7rit and observe that the function J[ x l v(t)} ] , in which x(v) is the 
function constructed in the proof of Theorem 3.1, is minimized by t = 0 in 
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the class of non-negative t near t = 0. The first derivative of this function ob
viously vanishes when t = 0 and so its second derivative must be non-negative 
when t=O, or F~·~·(x 0 , J.L)X~~~O, in which x~=dx•[v(t) ]/dt when t=O. If we 
differentiate equations (3.3) after replacing v by v(t), we discover that 

i i i i 
ifi~•(Xo)Xo = ifi~•(xo)7r. 

It follows that ~=1r• and hence that F.,,.,.(x 0, p.)1ri1rk~O, as desired. 

CoROLLARY. If Xo minimizes f(x) in the class of points x near Xo such that 
¢~(x) ~0, 1/;P(x) =0, and if the set r-.1. contains at most one index, "f, then the 
function F(x, J.L) defined by Theorem 3.1 is such that F.,,.,.(xo, J.L)7ri1rk~O for 
every set 1r' such that ..p;.(x0)1r' = 0, ¢!•(Xo)7r' = 0 for all p and all o in .1.. 

There is nothing new to prove unless 1r' is a set satisfying the conditions 
of the corollary for which ¢i•(x0)7r'<O. In this case we define 'if'= -1r' and 
have a set 'if; satisfying the conditions of Theorem 3.2. Since the quadratic 
form is unaltered when 1r; is replaced by 'if', we see that the corollary is 
true. 

THEOREM 3.3. Suppose there exist multipliers J.L 0 ~0, J.LP~O, J.LP such that if 
F(x, J.L) =J.L0f(x) +J.L~¢~(x) +J.LP-.J;P(x), then Fx<(x0 , J.L) =0, J.L~¢~(x 0) =0 for each 
{3. If the quadratic form F., • .,.(x0, p.)1ri1rk > 0 for all nonnull1ri such that ~.(xo)7r' 
= 0, ¢i <(xo)7r' G; 0, ¢!•(Xo)7ri = 0 for atl p, all 'Y such that p.-r =cp-r(xo) = 0, and all o 
such that J.L6 <0, then there is a neighborhood 7 of Xo such thatf(x)>f(xo) if x 
is any point in 7 different from xofor which cp~(x) ~0, 1/;P(x) =0. 

If this theorem were false, there would be a sequence of points Xr¢XG 
converging to Xo such that cjJP(xr) ~0, 1/;P(xr) =0, f(xr) ~f(x0). Define kr as the 
positive square root of I Xr-xol 2 -p.P¢P(xr). Then kr converges to zero. If we 
define 1r:= (x~-x~)/krr then l1rrl ~ 1 since -J.Lf3¢P(xr) ~0. By passing to a 
subsequence we may therefore suppose that 1r~ converges to a limit 1r~. 
Since p. 0 ~0, we have that 

-2[ (1 p ] 0 ~ kr F(xrr p.) - F(xo, p.) - p. cp (xr) . 

Expanding the right-hand side of this inequality by Taylor's theorem, making 
use of the fact that F:r:<(x0, J.L) =0, and letting r approach oo, we find that 

1 i j -2 (1 (1 ] 
(3.4) 0 ~ ZF.,,.,,(xo, p.)7ro7ro +lim sup [-k, p. cp (x,). 

Moreover, we see from Taylor's theorem and the relations 

q,-r(x,) 
--->0 

k, = ' 
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that ¢!•(xo)11"~ = 0 if u6 <0, tf>I .(x0)1r~;;:; 0 if ¢-r(x0) = 0, and fi•(Xo)11"~ = 0. If the 
set 1r~ were nonnull, it would then follow from the hypothesis of Theorem 3.3 
that F,,,;(x0)11"~~>0 and so (3.4) could not hold since lim sup [ -k; 2JJ-~¢~(x.)] 
;;:;o. Hence 1r~=O. It then follows from (3.4) that 

. -2 {3 {3 
(3.5) hmkrf.'cf>(x.)=O. 

Since we have from the definition of kr that 1 = 111"rl 2 - k; 2JJ-f3¢13(x,), and since 
11"~ = 0, we see that (3.5) cannot hold. We infer the truth of the theorem from 
this contradiction. 

4. Some consequences of the hypotheses. For a fixed x on x 1x 2 it follows 
from our hypotheses (2.4) and (2.6) that the function of q, 

EF(X, y0, y0, q, }.) - bEL(y0, q) - }.13(x)cf>13(x, y0, q) + b}.~(x)(j)13(x, yo, q), 

is minimized by q• = y~ in the class of qi near y~ for which ¢~(x, yo, q);;:; 0, 
1/;P(x, y 0 , q) =0. From Theorem 3.1 we conclude that there exist multipliers 
f.J-13, f.LP such that 

[ {3 {3] {3 p p 
f.' - (1 - b)}. c/>p< + f.' 'if; pi = 0 

when yi=y~(x), p•=y~(x). Since the matrix (2.2) has rank m+t, it follows 
that f.Lf3 = (1-b)X/3, JJ-P=O and since 0 <b < 1, we also conclude from Theorem 
3.1 that }..13 ~ 0. From Theorem 3.3 we have that 

a2 
-.- [EF(x, yo, Yo, q, }.) - bEL(yo, q) ]1ri1rk ;;:; 0 
aq•aqk 

when q•=y~(x) for all1r; such that 1/;;.11"•=0, q,;,1r•;;:;o, ¢!•11"•=0 for all p, all 
'Y in r(x) -..6.(x) and all o in ..6.(x). Since (2.5) holds we have the following 
theorem. 

THEOREM 4.1. If the multipliers satisfy (2.4) and (2.6), then 

(4.1) }.13(x) ~ 0. 

If they also satisfy (2.5), then Fp<p•11"i11"k;;:; bLp,p>11"i11"k holds for every set 1r; for 
which y;;,1!"•=¢!ar•=O for all p and all o in the set .6.(x) for which X6(x) <0. 

CoRoLLARY 1. If the multipliers satisfy (2.4), (2.5), and (2.6), then the 
matrix 

Fp<ph 
'Y 

c/>pi 
p 

'if; pi 

(4. 2) 
'Y 

c/>p• 0 0 

y;~. 0 0 

in which 'Y ranges over the set rn is nonsingular when xis in A" y•=y~(x), 
pi=y~(x). 
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This result is an obvious corollary of Theorem 4.1 when it is remarked 
that .6-(x) is a subset off, when X is in A,. 

The following differentiability theorem is an immediate consequence of 
the preceding corollary. 

CoROLLARY 2. When the multipliers are admissible, they and the functions 
y~(x) are of class C' on each interval A •. 

CoROLLARY 3. There exists a constant e such that if we define 

rp~(x, y, p) = 1./\x)rt/(x, y, p), 

for each {3, and 

[ 
p p fJ fJ ] 

H(x, y, p) = e 1/1 (x, y, p)V; (x, y, p) + r/>o(x, y, p)¢o(x, y, p) , 

then the quadratic form (FP'P"+ Hp<p>)7ri7rk > 0 for all nonnull vectors 1r; and 
each x on x 1x 2• 

This is a consequence of a known result [ 10, p. 679] since Co satisfies the 
differential equations lj;P(x, y, y) =0, rpg(x, y, y) =0 and is such that Fr;<p>1ri7rk 
;;;;o for all nonnull vectors 1r; such that 1/;;rrr;=O, rpgp,7ri=O. 

LEMMA 4.1. There exist functions lj;i(x, y, p) (j=m+t+1, · · ·, n) of class 
C" near C0 such that the determinant 

(4. 3) 

does not vanish on Co. 

This lemma is a well known consequence of the fact that the matrix (2.2) 
has rank m+t along C0 [1, pp. 224-226]. 

5. The equivalence of (2.6) to liN and condition III'. We define the class 
]\{_as the collection of all sets N of points (x, y, p, v) such that there exists a 
neighborhood 'f\.1 of the points (x, y 0, y0) on Co and a positive constant a 
for which (x, y, p, v) is in N if and only if (x, y, p) is in 'R.,1, v0 =A 0, I pP- }..P(x) I 
~a, lvfJ-}..fJ(x)l ~ -a}..IJ(x) if {3 is not in f(x)-.6-(x), -a~v'Y~O if 'Y is in 
f(x) -.6-(x). We shall say that the arc Co with the multipliers A0, }..IJ(x), }..P(x) 
satisfies the condition IIN if there is a set N in ]\{_such that 

(5.1) EF(x, y, p, q, v) - vflcpfl(x, y, q) ~ 0 

for all sets (x, y, p, q, v) such that (x, y, p, v) is inN, (x, y, p) and (x, y, q) 
are in V and ¢fJ(x, y, p) =0 if {3 is in .6-(x). 

We shall say that the arc Co with the multipliers }..0, }..fJ(x), }..P(x) satisfies 
the condition III' in case FP'P•[x, y 0(x), y0(x), X(x) ]1ri1rk>O for every nonnull 
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vector 1r' such that ¥{.[x, Yo(x), yo(x)]7r'=ct>!•[x, Yo(x), y 0(x)]1ri=O for all p 
and all /j in d(x). 

THEOREM 5.1. If the arc Co with the multipliers X0, X~(x), XP(x) satisfies 
equations (2.4), then it satisfies the condition liN and satisfies the condition III' 
if and only if there is a constant b such that 0 <b < 1 and a neighborhood C01 

of Co relative to the set CO such that the inequality (2.6) holds whenever (x, y, p) 
is in Ot, (x, y, q) is in CO, and cp~(x, y, p) =0 if (3 is in d(x). 

The proof of this theorem will follow from a series of lemmas which we now 
proceed to prove. 

LEMMA 5.1. If the arc Co with the multipliers X0, X~(x), XP(x) satisfies the 
condition liN and equations (2.4), then "A~(x) ;;=:;;o. 

This follows directly from Theorem 3.1 when we observe that 

EF(x, yo, yo, q, A) - >.~(x)cp~(x, yo, q) ~ 0 

for any q' such that cp~(x, Yo, q) ~0, 1/IP(x, yo, q) =0. 

LEMMA 5.2. If there is a positive constant b such that the inequality (2.6) 
holds for all (x, y, p) in a neighborhood C01 of Co relative to Cf) for which cp~(x, y, p) 
= 0 if (3 is in d(x) and all (x, y, q) in CO, and if Co with the multipliers A 0, X~(x), 

}.P(x) satisfies the condition liN, then the constant b may be required to be less 
than one. 

If b is not less than one, it follows from Lemma 5.1 that if b' < 1, 

b [EL(p, q) - V(x)if>~(x, y, q)] ~ b' [EL(p, q) - }..P(x)if>~(x, y, q)] 

for all (x, y, q) in CO. Hence the lemma is true. 

LEMMA 5.3. If the arc Co with the multipliers }.0 ~ 0, X~(x) ;;=:;;o, }.P(x) satisfies 
the condition III' and satisfies (2.4), there exists a positive number band a neigh
borhood COo of Co relative to CO such that the inequality (2.6) holds for all (x, y, p) 
in COo such that cp~(x, y, p) = 0 if (3 is in d(x) and all (x, y, q) in COo. 

The lemma may be proved by minor adaptations of the proof of Theorem 
3.3. 

We can easily infer from the identity 

EF(X, y, p, q, >.) - >.~(x)cp~(x, y, q) = EF(x, y, p, q, v) 
(5. 2) 

- p~~(x, y, q) + (AP- pP)Et{IP + (A~- p~)(Ert>~ - cpa) 

and the definition of the class }{that the following lemma is true. 

LEMMA 5.4. If the arc Co with the multipliers X0, "A~(x), }.P(x) satisfies the 
condition liN, there is a neighborhood C01 of Co relative to the set Cf) and a positive 
constant a such that 
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(5. 3) EF(X, y, p, q, X) - x~(x)cf>P(x, y, q) ;:;;; a I Ey!'(X, y, p, q) I 
whenever (x, y, p) is in V 11 cf8x, y, p) =0 if f3 is in .1(x) and (x, y, q) is in V. 
Moreover, the set V 1 can be chosen so that for each closed subset M"Y of B('Y) there 
is a positive constant a"Y such that 

(5 .4) EF(X, y, p, q, X) - Xll(x)cp~(x, y, q) 

;:;;; a'Y I E<t>"~(x, y, p, q) - cp"~(x, y, q) I ('Y not summed) 

whenever (x, y, p) is in V 1, cp~(x, y, p) =0 if {3 is in .1(x), and (x, y, q) is in V, 
and xis in M"~. 

The proof of Theorem 5.1 may now be constructed by modifying the 
method used by Hestenes to prove a similar theorem [3, Theorem 4.3]. If a 
constant band a neighborhood D 1 having the properties described in Theorem 
5.1 cannot be found, it follows from Lemmas 5.2 and 5.3 that there exists a 
sequence (xk, yk, pk, qk) such that (xk, yk, pk) is in D, (xk, yk, qk) is in CJJ -Do, 
cf>P(xk, Yk, Pk) = 0 if f3 is in .1(xk), 

EF [xk, yk, pk, qk, X(xk)) - XP(xk)c/>~(xk, yk, qk) 
(5. 5) 

~ k-1 [EL(pk, qk) - V(xk)(j)11(xk, yk, qk) ], 

and for which (xk, yk, h) converges to a point (x0, y 0 , :Yo) on Co. Since )..ll(x) 
is continuous, we may suppose that 

cpil(xk, yk, pk) = 0 
if (3 is in .1 (xo). 

CAsE I. qk has a finite accumulation point q0• Then q~r"y~ for all i since 
(xo, yo, Yo) is on Co and (x0 , y 0, q0) is not in V 0• It follows from (2. 7) that 

(5. 6) EL(p, q) ~ 2L(q), 

and since ipll(x, y, q) ~ 1, it follows from (5.5) and the condition ILv that 

(5.7) lim {EF[(xk, yk, pk, qk, X(xk)]- V(xk)cf>il(xk, yk, q,.)} = 0. 

Suppose for the moment that the set r(xo) -.1(x0) is void. By Lemma 4.1 
the equations 

( ) q,a(x, y, r) = 0 if o is in D.(x0), q,a(x, y, r) = q,a(x, y, p) + va 
5.8 

· if a is not in r(x0), lj;P(x, y, r) = 0, lj;i(x, y, r) = lj;i(x, y, p) +vi 

have solutions ri(x, y, p, v) of class C' near (x 0, yo, yo, 0) such that 
r'(xo, Yo, :Yo, 0) =y~, (x, y, r) is in V, and cfi(x, y, r) =0 if o is in .1(x). If we 
set r~(v) =ri(xk, yk, pk, v), it follows from the condition liN that for J vI suffi
ciently small, 

lim inf { EF [xk, yk, rk(v), qk, X(xk)] - X11(xk)cf>P(xk, yk, qm)} ;:;;; 0, 
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and hence from (5. 7) 

lim in£ { EF [xk, yk, rk(v), qk, X(xk) 1 - EF [xk, yk, h. qk, X(xk)]} ;:;; 0, 

F[xo, yo, :Yo, X(xo)]- y~p<[Xo, yo, yo, :>-.)(xo)] 

(5. 9) - F[xo, yo, ro(v), X(xo)] + r~(v)FP,[xo, yo, ro(v), ;>..(xo)] 

- q~{FP,[xo, yo, ro(v), X(xo)]- Fp,[xo, yo, yo, :>-.(xo)]} = 0. 

Define v"(e) =¢" [xo, yo, :Yo+e(qo- :Yo)] -¢"(xo, Yo, :Yo) if a is not in r(xo), 
vi(e)=~i[xo, yo, :Yo+e(qo-:Yo)]-~i(xo, Yo, :Yo), ri(e)=r~v(e), 

Q(e) = F [xo, yo, yo, X(xo)] - y~ p< [ Xo, yo, yo, ;\(xo) 1 

- F[xo, yo, r(e), X(xo)] + ri (e)Fp<[xo, yo, r(e), :>-.(xo)] 

- q~{FP,[xo, yo, r(e), X(xo)]- Fp,[xo, yo, :Yo, :>-.(xo)]}. 

By (5.9) and the fact that ri(O) = y~ we see that Q(e);:;; Q(O) =0 for all suffi
ciently small e. Hence Q'(O) =0, or 

(5.10) (Y~- q~)Fp<p•[Xo, yo, yo, X(xo)1r;(O) = 0. 

Now it follows from (5.3) that lim I E.,P(xk, yk, pk,. qk) I =0. Since 
~P(xk, yk, Pk) =~P(xk, yk, qk) =0, it follows that 

(5.11) 
i i p 

(qo - Yo)l{;p<(Xo, yo, :Yo) = 0. 

Similarly, it follows from (5.4) and the fact that ¢~(xk, yk, pk) = 0 if o is in 
Li(xo) that 

(5 .12) 

if o is in Li(x0). If we differentiate the equations satisfied by r(e) and set e=O, 
we find that r'(O) =q~-y~ and hence 

F P'P• [ xo, yo, yo, :>-.( xo) 1ri(O)rk(O) = 0 

although the numbers r•(O) do not all vanish and satisfy 

l{;:,(xo, yo, :Yo)r'(o) = q,:,(xo, yo, yo)r'(o) = 0 

for all p and all o in Li(x0), and this is a contradiction of condition III'. 
If the set r(x0) -Li(x0) is not void, it contains a unique index 'Y· We show 

first that ¢;.(xo, yo, yo)(q~-y~) ;:;;o. We observe that if we set vP=)\P, v~=>..~ 
when (3¢"(, it follows from the identity (5.2) and the condition liN that if 
v-r = -a, then the point (xk, yk, pk, v) is in N for k sufficiently large, and 

EF[Xk, yk, pk, qk, X(xk)]- X~(xk)q,~(xk, yk, qk) 
(5.13) . . 

;:;; -[a+ :>-.-r(xk)][q,-r(xk, yk, pk) + (q~- p~)q,;,(xk, yk, Pk)]. 
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Since (5.7) holds and h'Y(xo) =cp'Y(xo, y 0, y0 ) =0, we find that 

i . i "Y • 
0 ;,:;; - a(qo - Yo)cpp<(Xo, yo, Yo). 

Since a>O, we see that ¢;.(x0, yo, :Yo)(q_~-y~) ~0. 
Suppose cJ>;,(xo, y 0, :Yo)(q_~-:Y~) =0. Then we include the equation 

cp'Y(X, y, r) = 0 with the equations (5.8) and the analysis in the preceding para
graphs is unaltered since ¢;.(x0, y 0 , y0)r'(0) =0. If ¢;.(xo, yo, :Yo)(q_~-y~) >0, 
we include with the equations (5.8) the equation cp'Y(x, y, r) =v-r. Then the 
solutions r'(x, y, p, v) will be such that (x, y, r) will be in D if v'Y ~ 0. We set 
v'Y=cp'Y[xo, yo, :Yo+e(q_0 -y0)], the va and vi being defined as before. Then 
v'Y(e) ~0 if e is positive and sufficiently small and so Q(e);,:;; Q(O) for all non
negative small e. Hence Q'(O)~O, or (y~-q_~)Fp<p•[x0 , y 0 , y0 , A(xo)]ri(O);,:;;O. 
It follows just as above from (5.11) and (5.12) that r'(O) =q_~-y~ and that 
the last inequality cannot hold when Co satisfies condition III'. 

This disposes of the case in which q_k has a finite accumulation point. Next 
consider: 

CASE II. L(q_k)---t+ co. Then the sequences q_i/L(q_k) converge to limits 
1r' and 7r>7r> = 1. It follows from (5.5) and (5.6) that 

(5 .14) lim { EF [xk, yk, pk, qk, :1\(xk)] - V(xk)c/J~(xk, yk, qk)} /L(qk) = 0. 

If the set r(xo) -L1(xo) is void, we define the functions r~(v) as in the bounded 
case. Instead of (5.9) we now get 

- 7r'{FP,[xo, yo, ro(v), :1\(xo)- Fp,[xo, yo, yo, :1\(xo)]} ~ 0. 

We define v«(e) =c/>"(xo, yo, :Yo+e1r) -¢«(xo, yo, y0), vi(e) =1/;i(xo, yo, :Y+e1r) 
-l{;i(xo, Yo, :Yo), r'(e) =r~[v(e)], Q(e) = -1r'{ Fp,[xo, yo, r(e), X(xo)] -Fp<[Xo, Yo, 
yo, ACxo)]}. Then Q(e);,:;; Q(O) = 0 for all sufficiently small e, Q'(O) = 0, and 

(5.15) - 7r'Fp<p>[xo, yo, y0, :1\(xo)]rk(O) = 0. 

Instead of (5.11) and (5.12) we infer from (5.14), (5.3), and (5.4) that 
1/;;,(xo, Yo, :Yo)7r'=¢!•(Xo, yo, y0)1r'=O for all p and all o in L1(xo), and this with 
(5.15) contradicts the nonsingularity hypothesis, since it is easy to see by 
differentiating the equations satisfied by r(e) that r'(O) =1r'. If there is an 
index 'Yin r(xo) -L1(x0), we see from (5.13) and (5.14) that cp;.(xo, yo, :Yo)7r';,:;; 0. 
The modifications in the analysis for the bounded case can be easily carried 
out since this inequality holds. 

To prove the converse of Theorem 5.1 we utilize the following lemma 
which is similar to the Corollary of Hestenes [3, Corollary 1, p. 59]. 

LEMMA 5.5. There is a neighborhood Do of Co relative to D and a positive 
constant b1 such that 

(5 .16) 
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whenever (x, y, p) is in Oo and (x, y, q) is in 0. l'vforeover, if H(x, y, p) is of 
class C" on 'Rand is such that there exists a positive constant Wand a neighbor
hood J1 of Co in (x, y)-space such that WL(p) ~I H(x, y, p) I whenever (x, y) is 
in J1 and (x, y, p) is in 0, then 0 0 and b1 may be chosen so that 

(5 .17) 

whenever (x, y, p) is in 0 0 and (x, y, q) is in 0. 

Since Lp,p>1ri1rk > 0 for all nonnull sets 1ri, it follows from reasoning like 
that used in Lemma 5.3 that there is a neighborhood 'RI of Co in (x, y, p)-space 
and a positive constant b2 such that (5.17) holds with b1 replaced by b2 
whenever (x, y, p) and (x, y, q) are in 'R1 for both Hand¢~. Since¢~~ 0 on 0, 
(5.16) also holds with b1 replaced by b2 whenever (x, y, p) and (x, y, q) are 
in '.RICJJ. Choose a neighborhood 0 0 of C0 relative to f) such that the closure 
of Oo is in '.RI. Then there exists a positive constant ba such that 
L(q) ;i:.baEi{P, q) whenever (x, y, p) is in Oo and (x, y, q) is in CJJ-'.RIO. Let 
b4 be an upper bound for I H(x, y, p)- piJip<(x, y, P) I , I Hp<(X, y, P) I , 
lcfJ~(x, y, P)-pi¢~•(X, y, P)l, lcfJ~<(x, y, P)l whenever (x, y, p) is in Oo. If 
(x, y, p) is in 1J0 and (x, y, q) is in 0-'.RIO, then 

I EH(X, y, p, q) - H(x, y, q) I ;i:, b4(n + 1)L(q) ;i:. baMn + 1)EL(p, q), 

and the same inequality holds if His replaced by¢~. It follows that (5.16) 
is true if b1=b2+bab4(n+1) whenever (x, y, p) is in Oo and (x, y, q) is in CJJ. 
Reduce Oo if necessary so that (x, y) is in J1 if (x, y, p) is in Vo. Then it is 
clear that (5.17) holds if b1=b2+ Wb8+b8b4 (n+1) whenever (x, y, p) is inVo 
and (x, y, q) is in 0. 

We may now complete the proof of Theorem 5.1. Suppose a positive 
constant band a neighborhood 'R1 of Co in (x, y, p) space exist such that the 
inequality (2.6) holds whenever (x, y, p) is in '.RIO, (x, y, q) is in CJJ, and 
cp~(x, y, p) =0 if (3 is in ~(x). By Lemma 5.5 we may find a positive constant 
b1 and reduce 01 if necessary so that I E\1-PI ;i:.b1EL, I E~PI ;i:,b1EL, E<PP-cp~ 
;i:.b1EL if (x, y, p) is in '.RICJJ and (x, y, q) is in CJJ. Define N as the member 
of the class N. determined by the neighborhood 'RI and a positive number a 
such that a<b, ab1[t+1+m max I:V(x)l] <b. If (x, y, p, q, v) is such that 
(x, y, p, v) is inN, (x, y, p) and (x, y, q) are in 0, and cpP(x, y, p) =0 if (3 is 
in ~(x), then p'Y(E<P"f-t/J'Y) ~ -ab1EL if 'Y is in r(x) -~(x), 

(v" - "A01)E;a ~ - ab1 max I "A"(x) I EL, (v" - >..a)cp" ~ a>.."(x)ijj", 

(vP-N)EPJ-P~ -ab1EL. Now if a is in ~(x), then cp"(x, y, p) =ijj 01 (X, y, P) =0, 
¢;,(x, y, p)=cp;.(x, y, p), while if a is not in r(x), then v"=>-"=0. Hence 
(v"-A")(E<Pa-cp") = (v"-A")(E~a-cp") if a is restricted to the set comple
mentary to r(x) -~(x). It follows from these relations and the identity (5.2), 
written in the form 
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EF(x, y, p, q, v) - piJtjJIJ(x, y, q) = EF(x, y, p, q, X) - XfJ(x)tjJIJ(x, y, q) 

+ (vP- XP)E'/IP + 11"~(E.p.,- ¢"~) + (v"- X")E¢"- (v"- A")(/)", 

that the left-hand side of (5.1) is not less than 

b [EL(p, q) - XfJ(x)ij)fJ(x, y, q)) - atb1EL(p, q) - abtEL(p, q) 

- a max I X"(x) I mbtEL(p, q) + aX"(x)ifi"(x, y, q) ;::::; 0 

by virtue of our choice of a. This completes the proof of Theorem 5.1 since 
III' follows from Theorem 4.1. 

6. Convergent sequences of admissible arcs. In the proof of Theorem 2.1 
we shall need to be able to draw conclusions on the convergence of the deriva
tives y~ of a sequence of admissible arcs Cr which converge to Co uniformly 
in (x, y)-space. The particular results needed can be deduced from the fol
lowing theorem. 

THEOREM 6.1. Let Co satisfy the hypotheses of Theorem 2.1. If Cr is a se
quence of admissible arcs in 'D which converge uniformly to Co in (x, y)-space 
such that lim sup J(Cr) ~J(Co), then it is true that lim K(Cr, Co) =0, and 
that there is a subsequence Crk of the sequence Cr such that lim y:k = y~ almost 
uniformly on x1x2. 

Here J(C) and K(C, Co) are defined as 

J(C) = J .,• [F(x, y, y, X) - XfJ(x)tfJP(x, y, y) ]dx, 
:z;l 

f =· K(C, Co) = [L(y - yo) - 1]dx. 
:z;l 

Consider the equations 

(6.1) 
tjJIJ(x, y, P) = tjJIJ(x, y0 , y0), if;P(x, y, P) = 0, 

if;i(x, y, P) = if;i(x, yo, :Yo) 

in which the functions 1/;i are those of Lemma 4.1. By Corollary 2 to Theorem 
4.1 the functions involved in equations (6.1) are of class C' for x on each 
Ar and for (x, y, P) near C0• Hence there exist solutions P'(x, y) of class C' 
ifx is in A. andy is near y 0(x) such that P'[x, yo(x)] = y~(x). Since y~(x) is 
continuous, it follows that equations (6.1) are satisfied when xis an end point 
x. of an interval A. by P'(x.-, y) as well as by P'(x.+, y). Since the equations 
(6.1) admit only one solution near y~(x) when y' is sufficiently near y~(x), it 
follows that P'(x.-, y) =P'(x.+, y), and hence that P'(x, y) is continuous on 
the whole interval x1x2• Differentiating this last equation we see also that 
P!•(x, y) is continuous on x1x2• 

With the help of the functions P'(x, y), J( C) can be written as the sum 
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(6. 2) J(C) = J*(C) + E*(C), 

in which 

,• 
J*(C) = f [F(x, y, P, X) + (yi - Pi)F p<(x, y, P, X) ]dx, 

zl 

,•. 
E*(C) = f [EF(x, y, P, y, X) - X~(x)cp~(x, y, y) ]dx. 

zl 

For any function H(x, y, p) of class C" on'[) we define 
,• 

(6.3) H(C) = f H(x, y, y)dx. 

"' 
We shall be interested only in the case in which there is a positive constant 
c and a neighborhood 'Do of Co relative to ![) such that 

(6.4) EF(X, y, p, q, X) - X~(x)q,~(x, y, q) ~ c I EH(x, y, p, q) I 
whenever (x, y, p) is in Vo, (x, y, q) is in !f), and ¢~(x, y, p) =0 if {3 is in ~(x). 
We shall say that His E*-dominated by F near Co on ![) when this is true. 

We shall also restrict the constant c and the neighborhood 'Do so that 

(6. 5) EF(x, y, p, q, X) - X~(x)cp~(x, y, q) = cEL(p - P, q - P) 

whenever (x, y, p) is in !fJo, (x, y, q) is in !fJ, and cf>~(x, y, p) =0 if !3 is in ~(x). 
The possibility of doing this follows from the E*-dominance of L by F near 
Co on'[) and from Lemma 5.5 when we observe that L(p-P) satisfies the 
hypotheses imposed on H(x, y, p) in that Lemma. 

Theorem 6.1 will be a consequence of the following lemma, whose proof 
is identical with that of a similar lemma of Hestenes [4, Theorem 5.1]. 

LEMMA 6.1. Let C0 satisfy the hypotheses of Theorem 2.1. Given a constant 
E>O, there exists a constant 11>0 and a neighborhood 1 of Co in (x, y)-space such 
that the inequality 

H(C) - H(Co) < E 

holds for every admissible arc C in 1 which lies in 'D, satisfies the end conditions 
(2.1), and is such that 

J(C) ~ J(Co) + 'TJ. 

The first part of Theorem 6.1 will follow from Lemma 6.1 provided that 
H(C) =K(C, Co) has an integrand H(x, y, p) =L(p-y0) -1 which is E*-dom
inated by F near Co on 'D. Since this can be shown just as ( 6.5) was shown, we 
conclude that 

lim K(C., Co) = 0. 
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To prove the second part of the theorem, we observe that Schwarz' inequality 
implies that 

{fz~2 / Yr- Yo/ dx} 
2 

= {fz~2 
[L(:Yr- :Yo)- 1]112[L(:Yr- :Yo)+ 1]112dx} 

2 

f :r;2 

~ K(Cr. Co) [L(:Yr- :Yo) + 1]dx 
zl 

= K(Cr. Co) [2(x2 - x1) + K(C., Co)]. 

It follows that :Y~ converges in mean of order one to y~. The existence of a 
subsequence which converges almost everywhere to y~ (and hence almost 
uniformly to y~) is a well known consequence of convergence in mean [2, 
Theorem 23, p. 242 and Theorem 19, p. 239]. 

7. The variation 'IJ~· Our proof of Theorem 2.1 is indirect. Suppose the 
hypotheses of Theorem 2.1 are fulfilled but that the conclusion is not. Then 
there is a sequence C,: y'=y~(x) of curves in'[) which satisfy the end condi
tions (2.1), are different from C0, and such that 

lim y:(x) = y~(x) 

uniformly on x 1x 2, and yet I(Cr) ;£I(C0). Since C, and Co are in V and 
X 0 ~0, J(Cr) =X0/(C,) ~X0I(C0) =J(C0). By virtue of Theorem 6.1 we may 
replace Cr by a subsequence for which :Y~ converges almost uniformly to 
y~ on x 1x 2 and hence for which lim k, = 0, in which 

k, ~ 0, 
2 fz2 . 

kr = K(Cr, Co) - }/1(x)($ff(x, y., Yr)dx. 
:r;l 

This follows since }.ff(x)($ff(x, y., y,) converges boundedly to }.ff(x)($13(x, yo, :Yo) 
=0 almost everywhere on x1x2• Let us define 

i i i 
7Jr(X) = (Yr- yo)/kr. 

Then it is clear that 

(7 .1) 

in which 

h,(x) = 1 + L(:Yr- :Yo) = k:/ iJr /2/[L(yr- :Yo)- 1]. 

LEMMA 7.1. The integrals of the functions hr(x) are absolutely continuous 
uniformly with respect to r. 

This follows since h,(x) differs by 2 from the integrand of K( C., Co) and 
K( C., C0) tends to zero. 
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LEMMA 7.2. The functions n:(x) are absolutely continuous uniformly with 
respect to r. 

By Schwartz's inequality and (7.1), 

(7.2) If ~:dx/2 ~ J Cl ~rl 2/hr)dxf hrdx ~ J hrdx. 
:M .M M M 

Thus the result follows from Lemma 7.1. 

LEMMA 7 .3. The sequence of arcs Cr may be chosen so that there exists a func
tion ?J~(x) satisfying the end conditions (2.8) and such that lim ?J~(x) =n~(x) 
uniformly on x 1x 2• Moreover, n~(x) is absolutely continuous and 

By Lemma 7.2 the functions n:(x) are absolutely continuous uniformly in 
r. Since ?J~(x 1) =0, the functions n:(x) are also uniformly bounded. By Ascoli's 
theorem [2, p. 122] subsequences can be found which converge uniformly 
to limits ?J~(x) and these limits are obviously absolutely continuous and such 
that ?J~(x•) = 0. 

The proof of the integrability of I ~ol 2 to an integral bounded by two is 
identical with that of the corresponding assertion when there are no dif
ferential inequalities [6, pp. 528-529 ]. 

LEMMA 7.4. If g(x) is bounded and measurable, and if N;r(x) are continuous 
functions which converge uniformly to N;o(x) on x 1x 2, then 

(7. 3) 

(7. 4) 

for every measurable subset M of x 1x 2• If I g(x) 1 2 is integrable, then 

(7. 5) f i ; 
lim M g(x) (~r - ~o)dx = 0 

for every measurable subset M of x 1x 2 on which y~ converges uniformly. 

The relation (7.3) is obvious since n:(x) converges uniformly to ?J~(x). 
If Jg(x)J 2 is integrable, there exists for each e>O a bounded function G(x) 
such that [8, p. 229] 

z' J., I g(x) - G(x) j
2dx < e. 
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If M is a set on which y: converges uniformly toy~ on M, then h,(x) converges 
uniformly to 2 on M and so it follows from (7.1) and Lemma 7.3 that 

if r is sufficiently large. From Schwarz' inequality we then have 

/ J]Jf [g(x) - G(x) ](~:- ~~)dx /2 

~ 2J [g(x) -G(x)] 2dxf CliJ,I 2 +IiJol 2)dx~ 10e. 
M }.f 

To prove (7 .5) it is therefore sufficient to prove it when g(x) is bounded. 
The relation (7.5) when g(x) is bounded and M is any measurable subset of 
x1x 2 and the relation (7.4) follow from known results on Lebesgue-Stieltjes 
integrals [see 2, Theorem 28, p. 285; Theorem 21, p. 280; Corollary to 
Theorem 20, p. 280]. 

8. Some auxiliary functions. Let us recall from §6 the definition of the 
functions Pi(x, y) such that [x, y, P(x, y)] lies in 9) whenever (x, y) is in a 
neighborhood of Co and such that Pi(x, y0)=y~. Define p;(x)=Pi[x, y,(x)], 
"JT"~(x) = [p;(x)- p~(x) ]fk,, "JT"~(x) = P~· [x, Yo(x) ]?J~(x). 

LEMMA 8.1. The following relations hold: 

(8.1) 

(8. 2) 

(8.3) 

t!i(x, Yr, Pr) = cf>~(x, yo, :Yo), 
. i i i . 12 

lrm Pr(x) = Po(x) = yo(x) uniformly on x x, 
• i ; . 1 2 

hm "IT"r(x) = "JT"o(x) uniformly on x x . 

Equations (8.1) are immediate consequences of the definitions. Equations 
(8.2) follow from the uniform convergence of y;(x) to y~(x) and the con
tinuity of P'(x, y) for x on x 1x 2 andy near y0 (x). To prove equations (8.3) 
observe that Taylor's formula yields 

i i v 
"IT",(x) = B.r(X)TJr(x), 

in which 

B~r(x) = i 1 P~· [x, yo + e(yr - yo) ]de. 

Since y: converges uniformly to y~ and since P;,.(x, y) is continuous for x on 
x 1x 2 andy near yo(x), B~(x) converges uniformly toP~ [x, Yo(x) ]. By Lemma 
7.3, ?J~(x) converges uniformly to ?J~(x). Hence equations (8.3) are true. 

As a corollary of Lemmas 8.1 and 7.4 we have the following lemma. 
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LEMMA 8.2. If N.:,(x) are continuous functions which converge uniformly to 
N.:o(x) on x 1x 2, and if I g(x) 1 2 is integrable, then 

lim JM N;,(~~ - 1r;)dx = JM N;o(~~ - 1r~)dx 

for every measurable subset M of x 1x 2, and 

lim J g(x)(~:- 1r;)dx = f g(x)(~~- 1r~)dx 
M M · 

for every measurable subset M of x 1x 2 on which y~ converges uniformly. 

LEMMA 8.3. If cp(x, y, p) is any function of class C' near C0, then 

lim k;1 [cf>(x, Yn p,)- cf>(x, yo, Yo)]= cf>u•7J~ + cf>p<1r'~ 
uniformly on x 1x 2• 

This follows directly from Taylor's theorem and Lemma 8.1. 
If we replace, in Lemma 8.3, ¢ by 1/;P and then by¢~ and use equations 

(8.1) we immediately deduce the following lemma. 

LEMMA 8.4. The functions 17~(x) satisfy with the auxiliary functions 1r~(x) 
the following equations: 

p i p i 
1/;y<7]o + 1/;p<1r'o = 0, 

9. First order terms. Let H(x, y, p) be a function of class C' near Co, 
and define 

H(C, M) = JM H(x, y, y)dx, 

H*(C, M) = JM [H(x, y, P) + (yi- Pi)Hp,(x, y, P)]dx, 

E~(C, M) = JM Eu(x, y, P, y)dx, 

H,(17, M) = JM (H11 ,TJ' + Hp<~')dx. 
It is clear that 

(9.1) * * H(C, M) = H (C, M) + Eu(C, M). 

LEMMA 9.1. If H(x, y, p) is of class C' near Co, then 

lim k;1 [H*(C,, M)- H*(Co, M)] = Ht(-qo, M). 
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This follows at once from Lemmas 8.3 and 8.2. 
Let us define 

195 

By virtue of equation (2.3) and the fact that 77;(x•) = 0, we have the following 
lemma. 

LEMMA 9.2. For each r=O, 1, · · ·, J 1(77r) =Fp<71~1;:=o. 

LEMMA 9.3. We have that 

lim k~1 [J(Cr) - J(Co)] = lim k~ 1 [J*(Cr) - J*(Co)] = lim k~1 E*(Cr) = 0. 

By Lemmas 9.1 and 9.2 we have that 

lim k,-1[J*(Cr) - J*(Co)] = Jl('lJo) = 0. 

From equation (6. 7) we conclude that 

(9.2) 0 ~lim sup k~1 [J(Cr)- J(Co)] =lim sup k~1E*(Cr). 

However, E*( Cr) ~ 0 if r is so large that (x, Yr, Pr) is near enough to Co for 
(2.6) to hold, since both (x, y" Pr) and (x, Yr, :Yr) are in 0 and cf>P(x, Yr, Pr) = 0 
if {3 is in il(x). Hence the right-hand side of (9.2) cannot be negative and so 
the lemma is true. 

LEMMA 9.4. If H(x, y, p) is of class C' near Co and is E*-dominated by F 
near Co on 0, then 

lim k;:-1 [H(Cr. M)- H(Co, M)] = HI(7Jo, M). 

If r is large enough, we may integrate the inequality (6.4) to see that 
I Eif( Cr, M) I ;:£ c-1E*( C,) and so we see from Lemma 9.3 that 

• -1 * lim kr EH(Cr. M) = 0. 

Lemma 9.4 is now an immediate consequence of Lemma 9.1 and equation 
(9.1). 

10. Admissibility of the variation 77~· We have seen in Lemma 7.3 that 
the functions 77~ are absolutely continuous, have integrable square deriva
tives, and satisfy the end conditions (2.8). We complete the proof of the 
admissibility of 77~ in the following lemma. 

LEMMA 10.1. The variation 71~ satisfies (2.9) for almost all x in B(/3), (2.10) 
for almost all x in A(/3), and (2.11) for almost all x on x1x2• 

It follows from Lemma 5.5 that the functions l/;P and CJ)f3 satisfy the condi
tions imposed on H in Lemma 9.4. We thus infer that 
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. -1 f [ p p ] f p i p i 0 = hm kr t/1 (x, Yr. Yr) - t/1 (x, yo, Yo) dx = (fu•'f/o + tfp<~o)dx 
M M 

for every measurable subset M of x 1x 2• Hence (2.11) is satisfied for almost 
all x on x 1x 2• We also have that 

(10 .1) 

for every measurable subset M of A(/3). Hence (2.10) is satisfied for almost 
all x in A(/1). If M is a closed subset of B((:J), there is a number fp(M) such 
that A.P(x) ~- fo(M) <0 on M. Hence it follows from the definition of kr that 

< -1 f {3 , -1 -1 I z2 {3 {3 , 
0 = kr (/) (x, Yr. Yr)dx ~ - kr ~/3 (M) X (x)(/) (x, Xr, Yr)dx 

M --1 
~ kr~{J (M). 

Hence the inequality (10.1) is an equality for every closed subset M of B((:J). 
It follows that (2.9) is satisfied for almost all x in B((:J). 

11. Second order terms. The second variation of J*( C) along Co is 
2 

J2*(1J) = I • [2w(x, 1}, 7ro) + 2(~; - 7r~)w ... (x, 1J, 7ro) ]dx 
zl 

in which 2w is defined in (2.12). It is easy to see that 

* f x2 i i v v 
l2 ('TJ) = l2(1J) - z• Fpzp•(~ - 7ro)(~ - 7ro)dx. 

LEMMA 11.1. We have that lim k; 2 [J*(C,)- J*( Co)]= (1/2)ft(7Jo). 

This follows at once from Taylor's theorem and Lemmas 9.2 and 8.2. 

LEMMA 11.2. If H(x, y, p) is a function of the form 

H = e[y;•(x, y, p)y;•(x, y, p) + ti>~(x, y, p)tf>~(x, y, p)], 

in which 0 is constant and rjJg=A.P(x)rjJP(x, y, p) ((:J not summed), then 

lim k~2 JM EH(x, y., p., Yr)dx = 0 

for every measurable subset M of x 1x 2 on which y~ converges uniformly. 

Since equations (8.1) hold, the lemma is equivalent to proving that 
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for each (3. Since y~ converges uniformly to y~ on M and (2.4) holds, there 
exists for each ~ > 0 an index R(~) such that 

0 ~ <P~(x, Yn Yr) [1 + l (x, Yn Yr) ]112 ~ - E 

for each (3 if r>R(~). By the definition of kr, we have that if r>R(~), 

0 ~ k~2 f <P~(x, yr, Yr)<P~(x, Yn Yr)dx ~ - k~2Ef 'A13(x)([/(x, Yn Yr)dx ~ E 

M M 

for each (3. Hence the lemma is true. 

LEMMA 11.3. We have that 

-2 1 f "2 
i i " " lim inf kr E*(Cr) ~- Fp<p•(~o- 7ro)(~o- 7ro)dx. 

2 xl 

In order to prove this result let M be a measurable subset of x 1x 2 on which 
y; converges uniformly to y~. With the help of Lemma 11.2 and Corollary 3 
to Theorem 4.1 the proof of the relation 

-2J 1 f i i v ·v lim inf kr EF(X, yr, p"' Yn 'A)dx ~- Fp<p•(~o- 7ro)(~o- 7ro)dx 
M 2 M 

can be made by the method of Hestenes [5, Lemma 10.1]. Since 
V(x)¢13(x, Yr, Yr) ~0 and since (2.6) holds, we thus find that 

lim inf k~2E*(Cr) ~lim inf k~2 JM [EF(X, Yr. Pn Yr. 'A)- 'A13 (x)/(x, Yr. Yr)]dx 

~ lim in£ k~2 J EF(X, Yr. Pn Yr• 'A)dx 
M 

1f i v v v 
~ - F p<p•(~o - 7ro)(?jo - 7ro)dx. 

2 M 

Since y~ converges almost uniformly on x1x 2, it follows from our choice of Jv[ 

and the integrability of Jn0 J 2 that this last inequality also holds when M is 
replaced by the whole interval x 1x 2• Hence the lemma is true. 

12. Completion of the proof of Theorem 2.1. By virtue of the definition 
of Cr and equation (6.7), we have that 

(12 .1) 

By Lemmas 11.1, 11.3 and equation above Lemma 11.1, we have that 
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0 f::; J2('1)o). Since 'I)~ is an admissible variation by Lemmas 7.3 and 10.1, it fol
lows from the hypothesis of Theorem 2.1 that 'IJ~(x) = 0. It then follows from 
(12.1) a'nd the non-negativeness of E*(Cr) for sufficiently large r that 
lim k; 2E*(C.) =0. By Lemma 5.5 there exists a positive number b*, which we 
may assume to be less than one, such that EL(p., y.)f::;b*EL(p.-yo, y.-yo) 
for r sufficiently large. It then follows from (2.6) that for sufficiently large r, 

2 

k-;2E*(C.);;;;; bb*k-:2 fx [EL(Pr- :Yo, Yr- :Yo)- x~(x)i[>~(x, y., y.)]dx 
•' -2J"2

[ 1 + k:~:11": J f::; bb*k, L(y,- y 0) - • - X~(x)if>~(x, y., y.) dx 
xl L(Pr- Yo) 

f::; bb*k-;2 Jx'[L(y.- y0) -1-X~(x)i[>~(x,y.,y.)- k!~!7r~. ]ax. 
•' L(Pr- yo) 

By Lemmas 7.4 and 8.1 and the definition of k. we find that 

-2 
lim inf k. E*(C.) f::; bb* > 0 

since '1)~=0, and this is a contradiction from which we infer the truth of 
Theorem 2.1. 
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1. Introdaction 

The present paper was inspired by the work of Kuhn and Tucker [1] 1 

These authors transformed a certain cla:s of constrained maximum pro-

blems into equivalent saddle value (minimax) problems. 

Their work seems to hinge on the consideration of still a third 

type of problem. A very simple but illustrative form of this problec is 

the following: let x E positive orthant of some finite dimensional 

Euclidean space, and let f and g be real valued fUnctions of x with 

the property that whenever f ~ 0 1 then also g ~ D; under what conditions 

can one then conclude that 3 a non-negative constant u such that 

uf ;; g for all x ~ 0? 

Kuhn and Tucker showed that if f is concave and differentiable, if 

g is convex and differentiable, and if the set [x: f(x) ~ 0} satisfies 

certain regularity restrictions, then there does indeed exist such a u. 

Two directions for generalization are presented: 

First of all, the Kuhn-Tucker ar~~~nt rests heavily on the 

1. Nl.U!lerals in brackets refer to the list of references at the end. 
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differentiability of the functions, although they express the opinion 

that their theorems are true without this assumption. Is this the case? 

Secondly, the inequality uf ~ g may be thought of as a relation 

between f and g. From this point of view, it would appear that a best 

possible theorem which concludes that uf ~ g would make assumptions about 

f only in relation to g, and vice versa. 

In this paper it is shown how the second generalization may be part-

ly achieved, and that even with this generalization, differentiability 

may be dispensed with entirely. 

The neY.t section will give a detailed account of the generalized 

theorem hinted at above. The last section will be devoted to an appli-

oation of this theorem to transforming a class of constrained minimum 

problems into equivalent saddle value problems. 

2. The Main Theorem 

Throughout this section, x, u, and v will be points in the positive 

orthants of n, k, and h dimensional Euclidean spaces respectively. 

Theorem 1. Let and gl' ... , ~· be continuous real 

valued functions of x ~ (x1 , 

ing properties: 

... , X ) 
n 

for x ~ 0 with the follow-

1° If at any point x all r1 (x) ~ 0, then for that 

x some gj(x) ~ 0 

2° jx such that all r1 (x) > 0 

3° If for some x1 and x2 ~A1 ~ 0 i ~ 1, •.. , k, Bj a 0 

j~1, ,,, 1 h and C of arbitrary sign such that 

E A1 

and E A1 

then for all 

f 1 (x1 ) + c: r Bj 

2 r1(x) + c; r Bj gj 

X : Gx1 + (1-G) x2 0 < ~ < 1 
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Assertion: 3u1, ••. , ~ ~ O, v1 , ''" vh ~ 0 

such that for all x ~ 0 

~ U; f 1 (x) < Z v. g. (x) 
• = J J 

1 

Before proceeding with the sequence of lemmas necessary to prove 

theorem l some discussion of the hypotheses of that theorem is in order. 

1° is clearly essential for the truth of the theorem. 

2° corresponds to the condition of regularity of the constraint 

set in the Kuhn-Tucker treatment. It may possibly be weakened, but 

certainly not dispensed with altogether as the example 

2 
f (x) = -(x - 1) g (x) = l - x 

shows. Here f (x) is concave, g (x) convex, and 1° is satisfied. 

Nevertheless uf f g for some u ~ 0 is impossible as is easily verified. 

3° is of course the most controversial nypothesis of all. On the 

debit side is the fact that any non-nega~ive linear combination of the 

r1 , say f, must, as a consequence of 3°, be quasi-concave (i.e. for 

all real ~~ [x : f (x) ~ ~} is convex), while any non-negative linear 

combination of the say g, must be quasi-convex (i.e. for all real 

a, {x : g (x) ;ii a} is convex). This is on the debit .side because it 

puts conditions on the r1 which are independent of the gj. 

Parenthetically we observe that a we~~er version of 3° in which 

"Ai ~ O" and "Bj -': 0" are replaced by "Ai > o" and "Bj > O" which 

a priori appears to avoid the above difficulty, actually implies 3°. 

(This can easily be shown.) 
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On the credit side is that if all the fi are concave and all the 

gj convex (the Kuhn-TUcker case), then 3° is automatically satisfied. 

What this amounts to is that if a concave function interpolates a convex 

function at two points, then the concave function dominates the convex 

function in between. 

Moreover, 3° is satisfied by still other functions. Let f and g 

be strictly increasing functions of 8 single real variable x, continuous 

for x ~ 0 and having continuous first and second derivatives for x > D. 

If in addition f'(x) > 0 for all x > 01 then by 8 theorem of M. M. Peixoto 

[1 , f and g satisfy 3° if and only if 

"() d~ g x ~ f'(x) f "(x) for all x > 0. 

Using this theorem, the following ex~~ples were easily constructed: 

(1) f convex, g convex 

f(x) = x2 + x-2 g(x) 
2 

u = 3 
(2) f concave, g concave 

f(x) = fX -1 g(x) fX + x-2 u 

(3) Neither f nor g convex or concave 

f(x) c 2x - cos x- (2rr + 1), 

g(x) " x 
2 

+ Bin X • X COS X - (7T + 7T) 

3 

The main tool in the proof of theorem 1 is the generalized minimax 

theorem of von Neumann [1) and Kakutani [1], which we shall take as 

lemma 1. 
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Lemma l: Let ~(s,~) be a continuous real valued function defined for 

~ € K and ~ € L where K and L are arbitrary bounded closed convex 

sets of Euclidean spaces Rp and Rq respectively. If for every ~ 0 € K 

and every real a 1 the set of all 11 € L such that 'f ( ~ 0 , 11) ~a: is con

vex, and if for every 11° € L and every real ~' the set of all ~ € K 

"' ( o) > then 3 ( 'o' no) such that 1 ~' ~ ., ~ is convex, , ., such that 

Max 'P ( ~, 11°) = min 'f' ( ~ 0 , TJ) 
~€K 11€1 

Throughout section 2 1 the functions f 1 and gj 

given in the hypotheses of theorem 1. 

will be the functions 

Lemma 2: Let L = {x : for all i r1(x) ~ 0}. 

Assertion: jv 'i: 0, L: vj 1 such that 

L:vj gj (x) ~ o for all x € L 

~: Since the fi(x) are quasi concave, L is closed and 

convex. 

Let K • ( v v ~ 0, L: v j -= 1} , 

~ "' [x x E L, L: xi ~ N} 

and 'f(v, x) • L: vj gj (x) 

By hypothesis 3° of theorem l we may apply lemma 1 to 

'f(v, x) for v € K and x € ~· Hence j (v0 , x0 ) such that 

Max 'f(v, x0 ) =min lf'(v0 , x) 
VEK xE~ 

Using the left hand side of the equality, we see that to prove 

'f(v0 , x) ~ 0 for all X € ~ we need only show that for any X E ~ 

jvEK such that 'f(v, x) ~ o. By hypothesis 1° of theorem 1 this is 

clearly the case. Hence f(v 0 , x) ~ 0 for all X e: ~· 
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The v0 thus obtained depends on N. Choose N t ~ with n and 
n 

an associated sequence [v0 (n)} such that 'P(v0 (n) 1 x) ~ 0 for all 

is compact, some subsequence [v0 (n.)} converges 
l 

X E ~ • Since K 
n 

to v, say. Since 

of v we have 

~ 'I 1 with i and '-9 is a continuous function 

ni 

f(v , x) ~ o for all ~ € L q.e.d. 

Notation: The function ~(~, x) : L ~j g(x) defined in lemma 2 will be 

denoted by 'g(x)" for the remainder of section 2. 

Len:u;;a 3: Let 

Assertion: 

for i = 1, ... , k and 
1 

g(x ) < 0. 

such that 

r1 (x0 ) g (x1 ) - f 
o 1o 

f i (x1 ) < 0 and 
0 

(x 1) g(x0 ) ~ 0 

Proof: We restrict our attention to the line segment joining 

x0 to x1 ; a fortiori 1° and 3° are satisfied on the segment. We suppose 

(for definiteness) that it is oriented thus: 

By 1°, g(x0 ) ~ 0. Let x be the right-most zero of g(x). 

(x0 £x <: x1 ). By 1° and the continuity of the r1(x), ji: i 0 such 

that fi (i) ~ 0. 
·o 

We show 

B < 0 such 

first that 

o ~ f 1 <xl 
0 

that 

f. (xl) < 
l 

0 0 
< f' 1 (x ) ' 

0 

o. Suppose false; then j X such that 

and g(xl < o. Hence jA > 0 and 
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Af. 
+o 

Af. 
1 

0 

0 so that by 3 , Af. 
1 

0 

In particular Af. 
1 

0 

fi 
0 

Hence r 1 
0 

1 (x ) < 0, and for 

g(xo) - g(xl) 

(xo) 

(~) 

(x) 

(x) 

(x) 

c = ---------;- > 0' 
(xo) - fi (xl) 

0 

we have 

so that 

f. 
1 

0 

In particular 

c f. (xo) 
1 

0 

c fi (xl) 
0 

c f. (x) 
10 

c fi (X) 
0 

-7-

+ B = g(xo) 

+ B = g(~) 

+ B ~ g(x) 0 for X .:iX fi X· 

+ B £ O, so that 

B 
~ - X> o, 

D = 
f. 

1 
0 

+ D = g(x0 ) 

1 + D = g(x ) 

+ D ~ g(x) 

+ D ~ 0 

a contradiction. 

(xo)g(xl) - g(xo)fi 
0 

fi (xo) - fi (xl) 
0 0 

for 0 1 
X ~X ~X • 

so that D = - c r1 (xl ~ o, and since 
0 

r1 (x0 )g{x1 ) - g(x0 )f1 (x1) ~ 0 
0 0 

q.e.d. 
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Lemma 4; Let lf(x, u) = u1 f1 {x) + ••• + ~ fk(x) - g(x) 

Assertion: j a finite positive constant M such that for 

all x ~ 0 3 u e ~ = [u : u ~ o, E ui :ii M} 

such that 'f>(x, u) ~ 0. 

Proof: If g(x1 ) ;;: 0, 'f(x\ 0) ~ 0 

If g(x1) < 0, proceed as follows: let x0 be the point 

of the hypothesis 2° at which all f.(x) > 0. Apply lemma 3 to 
1 

1 
select i such that f. (x ) < 0 and 

0 1 

Let 

Then 

0 

( 0 1 1 0 
fi x )g(x ) - fi (x )g(x ) ~ 0 

0 0 

u1 "'0 when 

u =~ 
10 fi (xo) 

0 

1 f i 
0 

1 1 
fi (x ) - g(x ) 

0 

0 1 0 l r1 (x )g(x } - g(x )f1 (x ) 
0 0 . - --~----------------------

fi (xo) 
0 

:i.O 

Thus if we take M = ~(~0 ) where A = glb r1 (x0 ) the lemma is proved. 

The next lemma will not be needed for the proof of theorem l, but it is 

convenfent to prove it now. 

Lemma 5: Let r1(x1 ) = ,,, = f~(x1 ) = 0 1 f~+1(x1 ), 

g(x1 ) = o. 

Assertion: 
2 2 2 If r1 (x ), ,,,, f~(x);;: o, then g(x) Oi: 0 

~; As in lemma 3 we consider the functions on the segment. 

1 2 joining x to x ; 
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~---------------1 
1 

X 
2 

X 

If g(x2 ) < 0, it must have a rightmost zero x < x2 . We will show 

that this is impossible. 

First of all, by quasi-concavity, fi(x) ~ 0 for all x in the seg

ment and i ~ ~· If any f 1 (x2 ) ~ 0 for i > ~. then again by quasi-con-

2 cavity fi(x) ~ 0 on the whole segment. Finally, suppose some fp(x ) < 0 

for p > ~· Then JA > 0 such that 

A f (x1 ) 
1 

p 
+ B ~ g(x ) 

A f (i) 
2 so that by 3° 

p 
+ B ~ g(x ) 

A f (x) + B ~ g(x) for 1 2 
X ~X ~X , 

p 

In particular A fP(xl +B~O so that f (xl > o. 
p 

Hence by continuity, f (x) ~ 0 in some right neighborhood of i. 
p 

Combining all this information we see that 3 x > x such that all 

f (x) ~ o, But by 1°, this implies g(x) ~ o, a contradiction. q.e.d. 

Corolla!Y: If all fi(x1 ) > 0 and g(x1 ) co, then g(x) ~ 0 for all x. 

The proof of theorem l is now easy. 

~: Choose M as in lemma 4 and N > 0 arbitrarily. Consider 

the function 

·over xe ~- (x X~ 0 and .r.xl Iii N} 

ue ~= [u u;:; 0 and Eu1 Iii M} 

By lemma 1 and lemma 4 :l 0 0 X € ~,u € ~ such that 

Max 'f(x, uo) =min 'f(xo' u) s: 0 
xe:~ ue:~ 
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Thus 'f (x, u0 ) :; 0 for all x E ~· 

The same kind of compactness argument as in lemma 2 is now used to 

complete the proof: 

Choose N0 j ~ and an associated sequence (u0 (n)} c ~ (it is 

essential to observe that M is independent of N) such that 

lf(x, u0 (n)) :; 0 for all x E KN 
n 

By the compactness of ~ j a subsequence (u0 (n ) ) converging 

to u0 , say. Since f(x, u) is a continuous function of u and 

l1i t P = (x : x ~ 0] we have 'P(x, u 0 ) ~ 0 for all x ~ 0 
ni 

3· Applications 

q.e.d. 

Definition: Let g1 (x), ••. , gh(x) be any set of functions defined 

on a set K. A point x0 E K will be called a mini.Jnal point of g1 , ..• , s;11 

over K if for all x E K it is false that for all j gj(x) < gj{x0 ). 

A point x0 will.be called an essential minimal point of g1, ••• , ~ over 

K if it is minimal and if the deletion of any gj{x) will cause it to fail 

to be minimal. A point x0 will be called a strictly minimal point of 

g1 , ••• , Bh over K if for all x, if all gj(x) ~ gj(x0 ) then all 

gj{x) = gj(x0 ), 

Theorem 2. Let r1 (x), ••• , fk(x) and g1(x), ••• , ~(x) be real 

valued continuous functions Which satisfy conditions 2° and 3° of theorem 1. 

Let K be the set [x: fi(x) ~ 0 i = l 1 ••• ,·k}. Let x0 be an essential 

minimal point of g1{x), ••• , Bh(x) over K. 

Assertion: x0 is a strictly minimal point of g1(x), ••• , ~{x) 

over K. 
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~: The functions fi (xL i = 1, ••. , k and gj(x) - g (xo) 

j "' 1, •• 'J h satisfy all the hypotheses of theorem 1. Hence by lemma 2 

~ vl, ... , yh ~ 0, LVi = 1 such that 

If for some j, vj "'01 then th&t gj(x) may be deleted and x0 will, 

by the above inequality, remain minimal. Hence all vj > 0. But then, 

again by the above inequality, if for any x E K all gj(x) ~ gj(x0 ), 

q_.e.d. 

We now proceed to the last theorem, the equivalence of a constrained 

minimum problem and a certain saddle value problem. 

Theorem 3: Let f 1(x), ..• , fk(x) and g1 (x), ••• , Bt(x) be con

tinuous real valued functions of x which satisfy conditions 2° and 3° 

of theorem 1. Let K = [x : f. (x) ;, 0 i = 1, ···J k} 
l 

Assertion: 0 is a minimal point for X gl (x)' '. 'J gh{x) over 

if and only if 3v~, 
0 0 

= 1, and 0 0 
•• • , vh f: o, .l:vj ~J .. • , '\ ~ 0 

that the function 

(1) 

for all x ~ 0. and u ~ 0, In other words, 'f(x, u) has a saddle 

point at (x0 , u0 ). 

K 

such 

~: Suppose x0 is a minimal point for the gj(x) over K. Then 

the functions fi(x) i = 1, ••• , k and gj(x) - gj(x0 ) j = 1, •.. , h 

By lemma 2 we choose 
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so that tv~(gj(x) - gj(x0 )) ~ 0 for all x E K. Write g(x) 

tv~gj(x). 

Now suppose f1 (x0 ) = ... = f~(x0 ) = 0 and f~+1 (x0 ), ••• , fk(x0 ) > 0. 

By lemma 5 g(x) ~ g(x0 ) for all x such that f 1(x), ... , f~(x) £ 0. (In 

particular, if all f.(x 0 ) > 0, then g(x) ~ g(x0 ) for all x). Hence by 
J. 

theorem 1 ju~, •. ,, u~;;;. 0 such that 

Since f.(x0 ) = 0 for i = 1 1 ••• , ~ this may be rewritten as 
l. 

for all x ~ 0 and all u1 ;, 0, 

Then 

0 
i = 1 1 ••• , ~· Now take u~+l 

for all x ~ 0 and all u "' (u 1 ••• 1 u ) ~ 0 q.e.d. 

Conversely, suppose (1) is satisfied for some v0 and u° From 

the first and last members of the inequality, we find, setting u = 0 

0 = ~ = o. 

Hence if x e K, gj(x) < gj(x0 ) for all j is impossible• This completes 

the proof, 
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3 

THE KUHN-TUCKER THEOREM 

IN CONCAVE PROGRAMMING 

HIROFUMI UZAWA 

1. Introduction 

In order to solve problems of constrained extrema, it is customary 
in the calculus to use the method of the Lagrangian multiplier. Let 
us, for example, consider a problem: maximize f(x1, • • ·, x,.) subject to 
the restrictions gk(x1, · • ·, x,.) = 0 (k = 1, · · ·, m). First, formulate the 
so-called Lagrangian form 

"' cp(x, y) = f(xl, · • ·, x,.) +I:: ykgk(xu • · ·, x,.) 
k=l 

where unknown y11 • • ·, Ym are called the Lagrangian multipliers. Then 
solutions x1, • • ·, x,. are found among extreme points of cp(x, y), with 
unrestricted x and y, which in turn are characterized as the solutions of 

cp./x, y) = aj + l:Yk agk = 0 (i = 1, · • ·, n) , 
ax; k ax; 

(k = 1, · · ·, m) . 

This method, although not necessarily true without certain qualifica
tions, has been found to be useful in many particular problems of con
strained extrema. 

The method is with a suitable modification applied to solve the pro
gramming problems also where we are concerned with maximizing a 
function f(x 11 • • ·, x,.) subject to the restrictions x1 ~ 0 (i = 1, · · ·, n) and 
gk(x1, • • ·, x,.) ~ 0 (k = 1, · · ·, m). Kuhn and Tucker [2] first proved 
that under some qualifications, concave programming is reduced to find
ing a saddle-point of the Lagrangian form cp(x, y). This Kuhn-Tucker 
Theorem was further elaborated by Arrow and Hurwicz [1] so that non
concave programming may be handled. In the present chapter we shall, 
under different qualifications, prove the Kuhn-Tucker Theorem for con
cave programming. 

2. Maximum Problem and Saddle· Point Problem 

Let g(x) = <g1(x), · · ·, g'"'(x)) (see fn. 1, p. 2) be an m-dimensional 
vector-valued function and f(x) be a real-valued function, both defined 
for non-negative vectors x = <x1, • • ·, x,.). 

Consider the following 

MAXIMUM PROBLEM. Find a vector x that maximizes 
( 1) f(x) 

DOI 10.1007/978-3-0348-0439-4 15, © Springer Basel 2014
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THE KUHN-TUCKER THEOREM IN CONCAVE PROGRAMMING 33 

subject to the restrictions 

( 2) X~ 0, g(x) ~ 0 . 

A vector x will be called feasible if it satisfies (2), and a feasible 
vector x maximizing f(x) subject to (2) will be called an optimum vec
tor of, or a solution to, the problem. 

Associated with the Maximum Problem, the Lagrangian form is de
fined by 

( 3 ) rp(x, y) = f(x) + y • g(x) , 

where' 

A pair of vectors (x, y) is called a sOJddle-point of rp(x, y) m x ~ 0, 
y ~ 0, if 

( 4) x ~ 0, :Y ~o. 

( 5 ) rp(x, y) ;:; rp(x, y) ;:; rp(x, y) for all x ~ 0 and y ~ 0 , 

which may be written as follows : 

( 6) rp(x, y) = min max rp(x, y) = max min rp(x, y) . 
v~o x~D x~D y~fJ 

SADDLE-POINT PROBLEM. Find a saddle-point (x, y) of rp(x, y) = f(x) + 
Y • g(x). 

3. Saddle· Point Implies the Optimality 

We are interested in the reduction of a maximum problem to the 
saddle-point problem of the associated Lagrangian form. First, a prop
osition will be noted which is true without any qualification on f and g, 
whenever there exists a saddle-point. 

THEOREM 1. If (x, y) is a saddle-point of rp(x, y) in x ~ 0, y ~ 0, then 
x is an optimum vector of the maxi'l'{&um problem. 

PROOF. Substituting (3) into (5), we have 

( 7 ) .f(x) + y · g(x) ;:; f(x) + y · g(x) ;:; f(x) + y · g(x) 

for all x ~ 0, y ~ 0 . 

1 For two vectors x = <x,, · · ·, x,.> and u = ('1.1.1 , · · ·, un>, we shall, as usual, define 
X-;;;;;; U if X!-;;;;;; Ut , (i = l, · · ·, n), 

X 2 U if X -;;;;;; U and X ~ U , 

X > U if Xi > Ut , 

and x · ?L stands for the inner product 

" X · U = L XtUL . 
i-1 

(i = l, · · ·, n), 
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Since the right-hand inequality holds for any y ~ 0, it follows that 
g(x) cannot have a negative component, and y · g(x) must be zero : 

g(x) ~ o, y . g(x) = o . 
Thus the left-hand inequality of (7) may be written as 

( 8) f(x) + y · g(x) ;;::; f(x) for all x ~ 0. 

Since, for any feasible vector x we have y · g(x) ~ 0, it follows that 
f(x) ;;::; f(x) + y · g(x) ;;::; f(x), which shows that x is optimum, q.e.d. 

4. The Kuhn·Tucker Theorem 

Now a question naturally arises whether, given an optimum vector 
x, it is possible to find a vector y for which (x, y) is a saddle-point of 
cp(x, y). This, of course, is not true in general, e.g., for convex pro
gramming (i.e., where the maximand is a convex function). The fol
lowing simple example shows that it does not hold even for concave 
programming : 

f(x) = x, g(x) = -x'. 

Regarding concave programming, however, the reduction is shown to 
be possible provided f and g satisfy certain regularity conditions, e.g., 
the Kuhn-Tucker Constraint Qualification.' We shall give sufficient con
ditions which make the reduction possible. 

THEOREM 2. Suppose that f(x) and g(x) are concave .functions on x ~ 0, 
and g(x) satisfies the following condition (due to M. Slater [3]) :3 

( 9) There exists an x0 ~ 0 such that g(x0 ) > 0. 

Then a vector x is optimum if, and only 1J, there is a vector y ~ 0 such that 
(x, y) is a saddle-point of cp(x, y). 

PROOF. Let x be optimum. We shall, m the (m +I)-dimensional 
vector space, define A and B by 

Since f(x) and g(x) are concave, the set A is convex. Since x 1s opti-

' See Kuhn and Tucker [2]. p. 483. 
s A seemingly weaker condition: (9') For any u > 0, there exists a vector x ~ 0 such 

that U· g(x) > 0 is due to S. Karlin. The condition, however, is equivalent to the Slater's 
condition (9). For the proof, see Chapter 5, pp. 109-10 of the present volume. 
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mum, A and B have no vector in common. Therefore, by the lemma 
on the separation of convex sets, there is a non-zero vector (v,, v) :f:- 0 

such that 

(10) 

By the definition of B, (10) implies (v,, v) :S 0. Since (f(x), 0) is on the 
boundary of B, we also have, by the definition of A, 

(11) v0f(x) + v · g(x) ~ v,f(x) for all x :S 0 . 

We have V 0 > 0. Otherwise, we have v :2: 0 and v • g(x) ~ 0 for all 
x :S 0, which contradicts (9). 

Let y = v/v,. Then 

y :s 0 ' (12) 

(13) f(x) + y · g(x) ~ f(x) for all x :S 0 . 

Putting x = x in (13), we have y · g(x) ~ 0 . On the other hand, we 
have 

(14) g(x) :s o . 
Hence 

(15) y. g(x) = o. 
Relations (13), (14), and (15) show that (x, y) is a saddle-point of <;o(x, y) 

in x :S 0, y :S 0, q.e.d. 

5. A Modification of the Kuhn·Tucker 'Theorem 

Slater's condition (9), however, excludes the case where part of the 
second half of restriction (2) is 

h(x) :S 0 and -h(x) :S 0 , 

for linear h(x). In order to make the reduction possible for such cases, 
we have to modify the Kuhn-Tucker Theorem. 

Let sub-sets I and II of {1, · · ·, m} be defined by 

(16) I= {k; g,c(x) = 0 for all feasible x} , 

and 

(17) II = {1, .. ·, m} - I . 

We shall assume that 

(18) g~(x) is linear in x, for k E I . 

(19) For any i, the1·e is a feasible vector x' such that 

xi> 0. 
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Then we have as a modification of Theorem 2 the following: 
THEOREM 3. Suppose that f(x), g(x) cure concave, and g(x) satisfies (18) 

and (19). Then a vector x is optimum if, and only if, there is a 
vector y such that (x, y) is a saddle-point of tp(x, y) in x ~ 0 and y ~ 0 
(II). • 

PROOF. It is obvious that, if (x, y) is a saddle-point of tp(x, y) in x ~ 0 
and y ~ 0 (II), then x is optimum. 

In order to prove the converse we may assume that 

(20) dg. , k e I, are linear independent. 
dx 

Let x be optimum. We consider two sets A and B defined by 

A = { (:) ; "' ;';; f(z), z, = g,(z), 'n ;';; grr(z), u ;';; z, for some z} , 

B = { (~) ; z, > f(i), z = 0 (!), z > 0 (I!)) . 
Then A and B are convex, and have no point in common. Therefore, 
there is a vector (v0, v, w) =1=- 0 such that 

(21) V 0 ~ 0, V ~ 0 (II), W ~ 0 , 

and 

(22) v0 f(x) + v · g(x) + w · x ~ Vof(x) for all x. 

It now suffices to prove that v0 > 0. If we had assumed that V 0 = 0, 
then 

(23) v · g(x) + w · x ~ 0 for all x . 

For any k e II, there is a feasible vector x• such that g.(x•) > 0. Hence 

(24) 

By (19) and (23), 

(25) 

for k e II. 

w = 0. 

Using (24) and (25); the inequality (23) may be written as follows : 

(26) for all x, where v1 =1=- 0. 

Since we have assumed that gr(x) is linear, (26) implies 

< The notation y;;;;;; 0 (II) means Y•;;;;;; 0 for all k E II. The point (x, y) is said to be a 
saddle-point of op(x, y) in x;;;;;O and y~O (II) if :v;;;;;o, y;;;;;O (II) and (5) holds for any x;;;;;O and 
y~O (II). 
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(27) Vr • Bgr = 0 
Bx ' 

where v1 =/= 0 , 

which contradicts (20), q.e.d. 
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THE PROBLEM OF LAGRANGE WITH nIPFERENTIAL INEQUALrrI&~

AS ADDED SIDE CONDITIONS

1 .. The problem of the calculus of varia-

tlons to be considered here consists in finding in a cla8~ of

adr.1issible arcs x) joining two fixed 90intB and satisfying a

set of differential equations and inequalities of the form

(x , y, y') :::: 0,

that one which minimizes the integral

(x, s , y') ~ 0,

The problem considered 1s for a space of n + 1 dimensions A

geometric illustration of a three-dimensional problem was sug

gested by Zermelo. 1
This problem required the finding of the

shortest distance between two points on a surface subject to the

condition that the direction of the tangent line at any point of

the curve make an angle with the perpendicular which is never

greater than a given constant. BoIza in a paper2 issued in 1914

obtained a first necessary condition for a minim\ll1 and several

corollaries. However he made no sufficiency proofs

lE Zermelo, Jahresberichte der Deutschen Mathematlker
vereinlgung, B 11 (1902).

2 f1
O. BaIza, Uber Va.riationsprobleme mit UngleichWlgen ~

Nebenbedinifegen, Mathematische Abhandlungen, H. A.. Schwarz,
(1914), se e 1.

(407) -1-
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2 VALENTINE: THE PROBLEM OF LAGRANGE (408) 

An equivalent problem is introduced in section 2 or this 

paper by considering functions z~(x) such that the equations 

z ,2 
I' 

hold. This equivalent problem yields a multiplier rule and 

necessary conditions analogous to those of Weierstrass and Clebsch. 

These are given in section 3. However as the equivalent problem 

may become singular, as it does for a composite arc, this method 

does not provide a complete treatment. 

Two sufficiency proofs are made for a composite arc. 

such an arc is one without corners composed of two subarea such 

that all but one of the functions cf>t, (x, y, y') are greater than 

zero on one subarc, whereas all the functions mentioned are 

gres.ter than zero on the reiiiB.ining subarc. An imbedding theorem 

and a necessary condition analogous to that of Mayer are proved 

in sections 4, 5 and 6. The first sufficiency proof is made in 

section 6 and is made with the assumption of normality on sub

intervals. The second sufficiency proof is made without the 

above assumption and in part depends upon a necessary condition 

analogous to that of Hestenes for the problem of Bolza. 

It should be noted that although the sufficiency proofs 

are made for a composite arc, any other subcase which might arise 

could be handled in a similar manner. It is not due to the fact 

that other subcases present special difficulties that all of them 

are not treated, but rather to the fact that each subcase has to 

be handled separately. The case of the composite arc was treated 

since it represents a fair sample of the variety of cases which 

do exist. The treatment applied to the composite arcs will in 

gene,al apply to all other cases. The singularity or the equiv

alent problem requires the separate treatment of the various 
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(409) INTRODUCTION 

subcases. The case considered affords a fairly complete treat-

ment of the plane and 3-dimensional problems. 

The following section describeR the analytic setting of 

the problem and introduces the mechanism by means of which all 

the necessary conditions, save the analogue of the condition of 

Mayer, may be obtained. 

2. Formulation of the problem. In the following pages 

the set (x, y1 , ••• , Yn• y1 •, •.• , Yn') will be denoted by 

(x, y, y'). The functions yi(x), (i = 1, .•• , n), defining the 

minimizing arc E12 and the functions 

f(x,y,y•), 

lft~..(x, y, Y') 

(~ =l, ... ,m), 
( 2:1) 

(oe. = m + 1, • • • I m + p < n) 

are required to satisfy the following hypotheses: 

(1) The functions yi(x) are continuous on the interval 

x 1x2 and have continuous derivatives on this interval except 

possibly at a finite number of corners. 

(2) In a neighborhood N of the set of values (x, y, y') 

belonging to the arc E12 the functions (2:1) have continuous 

derivatives up to and including those of the third order. 

(3) At every element (x, y, y') of the arc ~12 the 

n x (m + p)-dimensionnl matrix 

I Vi., • (>, 
y, Y') 

( i = 1, ... , 

</>{Jy:,(x, 

<(3 = 1, ... , 
y, Y') (OC. =m + 1, • • • , m + 

has rank m + p. 

Henceforth the subscripts i, f9• and ~ shall have the 

ranges specified in hypothesis (3). Moreover a repeated index 

in a term will indicate summation with respect to that index, 

unless otherwise stated. 

n) 

m) 

p) 
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4 VALENTINE: THE PROBLEM OF LAGRANGE (410) 

An admissible arc is one with the continuity properties 

(1) and one whose elements (x, y, y 1 ) lie in the region N speci-

fied in hypothesis (2). 

The problem to be treated here consists in finding in the 

class of admissible arcs Yi(x), joining two fixed points vTith 

coordinates (x1 , y1 ) snd (~, y2 ), and satisfYing the conditions 

q)p ~ 0 and ~~ = o, that one which minimizes the integral 

(2:2) J = rxs f(x, y, y 1 )dx. 
}x~ 

A problem of Bolzn with vat•iable end-points which is equivalent 

to the problem just formulated may be obtained by setting 

( 2:3) 

where the functions z-(x) will obviously have the same continuity 

properties as the functlons yi(x) in the above problem. The 

equivalent problem is stated as follows: 

To find in the class of admissible arcs 

satisfying the differential equations 

q>P(x, y, y')- zp' 2 (x) o, 

1/Je~.(x, y, Y') O, 

and satisfying the end-conditions 

that one which minimizes the integrnl (2:2). 
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(411) FORMULATION OF THE PROBLEM 

In view of hypotheses (1) to (3) it follows that the 

corresponding hypotheses for this equivalent problem are also 

satisfied. Moreover the above end-conditions are independent. 

Hence one may apply the theory of the problem of Bolza to this 

problem so as to obtain a number of necessary conditions. How-

ever as t~ equivalent problem may be singular it does not afford 

a complete attack. As will be seen later, other methods will be 

necessary in same cases to complete the theory. The equivalent 

problem is used primarily in sections 3 and 8. 

3. First necessary conditions. From the theory for the 

problem of Bolza it follows that for every minimizing arc E12 

there must exist constants Ci, d~ and a function 

such that the equations 

Gy t = (X G..,. dx + Ci, 
i lx1 o~i 

are satisfied along E12 • In the last rn equations the repeated 

index {J does not denote SUJIUI1ation. Moreover from the t:r;oansver

sality conditions in the problem of Bolza it follows that at the 

end points of E12 une expressions 

(G- Yi'Gyi' - z-'Gz,tldxs + GyitdYia + esdxs 

+ bsdYis - 2 >. 11 z 11 ' dzps ( s = 1, 2) 

must be identically zero in dxs, dyis and dz~s· As a consequence 

the m conditions 

>. z ' lxe = .>. z ' IX:~, = 0 II II II II I ( ~ not surmned) , 

muRt hold. Hence the fUnctions .>.pz~t must be identically zero 

along the arc E12 • Therefore one obtains the 
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6 VALENTINE: THE PROBLEM OF LAGRANGE (412) 

FIRST NECESSARY CONDITION I. ~ every minimizing arc 

E12 joining the !"ixed points 1 ~ 2, ~ ~ ~ constants 

ci ~ .! function 

(3:1) 

~ ~ ~ equations 

(3:2) 
¢fJ(x, y, y 1 ) ~ 0, cjl;._(x, y, y') = 0 

~!!every point of E12 • The constant Ao ~ ~ !"unctions 

Aoo:(x) and >. 11 (x) ~~simultaneously at ~point of 

E12 , ~ ~ continuous except possibly at ~ of x defining 

corners ~ E12 • Moreover the m functions 

~ at ~ points £f. E12 • 

The following corollary may be obtained as an immediate 

consequence of the preceding sentence. 

COROLLARY 3:1. If all~ functions c/>fJ ~greater than 

zerc:/!! every point £f. E12 , the minimizing~~~~~ 
minimizes~ integral (2:2) in~~£[ admissible arcs 

satisfying the differential equations 

~u(x, y, y 1 ) = 0. 

For~~~ function F in expression (3:2) reduces to 

Since this case is an ordinary problem of Lagrange, a 

fairly complete treatment of 1t 1s known. 
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(413) FIRST NECESSARY CONDITIONS 7 

The following corollaries and further nece3sary conditions, 

with the exception of the necessary condition of }.'eyer, are ob

tained for the general problem stated above. In the case of the 

Mayer condition the problem considered is the one in which all 

but one of the functions GDp are greater than zero on the inter

val x1x2 , whereas the remaining function is zero on certain sub

intervals of x1x2 and greater than zero on the remaining sub

intervals. It will be no restriction to label this last function 

by qb1 . For this problem the function F occurring in the expres

sion (3:1) has the form 

If a minimiz~ng arc E12 is composed of two subarcs E13 

and E32 , the functions C/Jp being 

greater than zero on E13 , and zero 

on E32 , it follows that the func-

tions A(J are zero on E13 . Hence 

~ ~ E12 is ~ g the ~ 

E13 ~ ~· The arc E13 is de

fined by equations (3:2) in which 

F has been replaced by the function 

F1 occurring in corollary (3:1). 

2 

0 

The following corollaries are an immediate consequence of 

the first necessary condition. 

COROLI,ARY 3:2. QE_ every subarc between corners of a 

minimizing ~ E12 the differential equations and inequalities 

¢ 13 (x, y, y') ~ 0, 1/f"'(x, y, y•) = 0 

~ be satisfied, where F is the funct~.?~ ( 3:1). 
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8 VALF.NTINE: THE PROBLEM OF LAGRANGE (414) 

COROLLARY :3::3. At every ~ of ~minimizing ~ E12 

the conditions 

Fyi 1 (x, y, y 1 (x-0), A(x-0)) 

must be satisfied. ---
The analogue of the Weierstrass necessary condition for 

the equivalent problem yield~ the result that at each element 

(x, y, z, y1, zl, .).) of a minimizing arc which is normal, the 

inequality 

& = G(x, y, z, y1, z1, >.)- G(x, y, z, yl zl, A) 

- (Yi1 - Yi1 lGy 1- (Z 11 1 - z,. 1)Gz 1 
i ' 

> = 0 

must be satisfied for every admissible set (x, y, z, Y1, Z1) I 

(x, y, z, y 1, z 1 ), satisfying the equations 

C/>(1 (x, y, Y 1 l lfot.(x, y, Yl) 0. 

Since the functions >.fJ zl' 1 are identically zero on E12 one obtains 

immediately the 

SECOND NECESSARY CONDITION II. At ~ element 

(x, y, y 1, A) of~ minimizing~ E12 ~is~~ in

equality 

(:3:3) 

~~for!,!!~ (x, y, Y1) I (x, y, y 1 ), and satisfying 

the differential equations and inequalities 

¢s<x, y, Yl) ~ o, 1/f.,_ (x, y, Y1 ) o, 

~ E(x, y, y1, y1, >.,., \s) is the function 

F(x, y, Y 1 , >. .. , A11 ) - F(x, y, Y1 , .A ... A{J)- (Yi'- Yi 1 lFy I• 
. i 
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(415) Flll~3T NECESSARY CONDITIONS 9 

In a similar marmer the analogue of the Clebsch condition 

for the equivalent problem gives the following r.ondition. 

THmD NECESSARY CONDITION III. At every element 

( x, y, y' , A) £.!: !. minimizing ~ E12 ~ .!!_ !.!~ ~ !!,!

equality 

( 3: 4) 

[o, ... , 0, 0, .•• , 0] and satisfying the equations 

0, 

At any point of E12 where any one of the fUnctions z,•, 
say z1 •, is zero, choose [1Ti] = [oJ, snd all the >tf3 exeept x 1 

zero. Renee at sueh a point of E12 the eondition ).1 -a 0 must 

hold. '!'/here z1 • I 0, 1t follows fi'om the first necessary condi

tion that Al = o. Hence one obtains the following eorollary. 

COROLLARY 3:4. At every element (x, y, y') of! minimiz

~ .!!:,£ E12 it !!!, necessary ~ ~ inequalities 

be satisfied. 

As a consequence of the paragraph preceding the above 

cordllary the condition III yields the following result. 

COROLLARY 3:5. !! every element ~!minimizing~ E12 

~ .!,! ~ the inequality 

(3:5) 

~£!satisfied for every~ [fl1 , .••• , 1tnJ I [o, •.. , o] and 

satisfying the equations 
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10 VALENTINE: THE PROBLEM OF LAGRANGE (416) 

The equivalent problem was used to obtain the preceding 

necessary conditions. In the following sections 4 to 7 special 

methods are used to obtain the necessary condition of Mayer and 

a sufficiency proof. 

4. Imbedding theorem. In the following section an im

bedding theorem is established for the case in which all but one 

of the functions cpfl are greater than zero on E12 • The remaining 

function, which will be denoted by qb1 , is to be greater than 

zero on one subarc E13 of E12 and zero on the remaining subarc 

E32· Let R1 and R2 represent the determinants 

F '/t.yi' 
Pyi'Yk' *'Yi' 'A_yi' 

(4:1·) Rl = Yi 1 Yk 1 

R2 = 1/tfyk I 0 0 

1./l'syk' 0 

¢lyk' 0 0 

where(oc. & =m+l, ••• ,m+p)and(i,k=l, ••• ,n). LetF1 

and F2 denote the functions 

(4:2) 

The symbol P1 represents the function F which occurs in the first 

necessary condition for the problem in which E13 is an extremal; 

similarly P2 denotes the corresponding function for the problem 

in which E32 is an extremal. The class of arcs defined by equa

tions (3:2) with the function F replaced by P1 will be denoted by 

A; whereas the class of arcs which are defined by equations (3:2) 

with P replaced by P2 , and along which the equation 9)1 = ~ is 

sa-tisfied, will be represented by B. ~composite ~ !_! defined 

!£~~composed_£!~ subarea, .2.!!!!. ~belonging!£ A, ~ 

~~belonging .!2 B! ~ ~ ~ fUnctions y1 (x) defining 
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(41'1) IMBEDDING THEOREM 11 

the~~ and~ derivatives Yi'(x) are continuous. From 

the first necessary condition it follows that the multipliers 

.A.,(x) and A1(x) are continuous on a composite arc. With this 

definition in mind, one may prove the following theorem. 

IMBEDDING THEOREM. Consider ~ composite ~ E12 = E13 + 

E32 satisfying the conditions that R1 ~ R2 be different from 

~ ~ E13 and E32 respectively, and that ¢ 1 • I 0 .£!?; E13 at 3. 

Such ~ ~ is ~ member of an n parameter family of composite 

~ defined £I the equations 

Yi(x, al, .... , anl 

).. "' ( x, al, ... , an) 

.Al(x, al, .... , an) 

Y i y i ( x' al' • · • ' an) 

.A., .1\. .. (x, a1 , ... , an) 

A1 = .1\.l(x, al, • • •' B.n) 

for the special values a 0 of~ parameters. 

Proof: Henceforth the letter a will stand for the set 

( a1 , ••. , an). Consider a com

posite extremal arc E12 = E13 + E32· 

Since R1 I 0 on the arc E13 it 

follows from the theory of the 

problem of Lagrange that E13 can 

be imbedded in an n-parameter 

family of extremals belonging 

to A, passing through the point 

1 or through a point 0 on the 

extension of E13 • Similarly it 

1 

is known that if R2 I 0 on E32 , then E32 may be imbedded in a 

2 
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12 VALENTINE: THE PROBLEM OF LAGRANGE (4-18) 

2n-parameter family of extremals of class 1 B. Denote the n-para

meter family of extremals passing through 1 and containing E13 by 

( 4:3) A... = A "' ( x, a) , 

and the 2n-parameter family containing E32 by 

A"' = i\. .. < x, c l. 

where (c c1 , •.. , c2n), and E32 is defined for the value of the 

parruneters c = c 0 • It is also known that at the special values 

(x3 , co) the condition 

D (k 1, ••• , 2n) 

holds, where 

ui = F y i 1 ( x, y, y 1 , A ) . 

The necessary conditions 

yi(x4 , a) - Yi(x4 , c) = o, 

( 4:4) 

F1yi 1 [x4 , y(x4,a), yl(x4 ,a), :X(x4,a)] 

- F2yi 1 [x4 , Y(x4 ,c), Y1(x4,c), i\.(x4,c)] o, 

4\(x4 , y(x4 ,a), y 1 (x4 ,a)] = 0 

must hold at the point 3, that is for the values x4 = x3 , a = so, 

and c = c 0 • The functional determinant of these equations (4:4) 

with respect to x4 and c is 

0 -Yick 

( 4:5) :f' I iyil - F2 ~~ yi -uick - cpliD. 

¢11 0 

1 G. A. Bliss, Problem of Lagrange ~ the calculus of·~-
~.American Journal of Mathematics, vol. 52 (1930), p. 687. 
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(4.19) IMBEDDTIW THEOREM 13 

The above determinant will be different from zero at 3 if the 

function ¢\' at x = x3 is different from zero. In the theorem 

it was assumed that ¢ 1 • I 0 holds at x = x3 • From the theory of 

implicit functions it follows that one may solve equations (4:4) 

for x4 and c as functions of a. Denote these solutions by 

( 4:6) c=c(a). 

There remains to show that for values of a sufficiently 

close to ao, the subarcs defined by the equations 

yi = yi(x, a) 
( 4 :7) 

y 1 = Y1(x, c(a)) 

[x1 ~ x ~ x4( a)] , 

[x4 ( a) ~ x ~ x 2], 

are tangent along the n-space defined by the first n equations of 

(4:3) and by (4:6). To show this consider the equations 

ui F2yi' (x, y' Y', ./\.), 

( 4:8) 0 1j/«(x, Y, Y')' 

0 ¢l(x, Y, Y'). 

Since R2 as defined in expression (4:1) is different from zero, 

equations ( 4:8) have a unique solution for Y', A, 1\1 • Moreover 

since Y = y is a solution of (4:8) with 

it is plain that Y' = Y', and J\ = ~at x = x4(a). Hence the 

arcs defined by equations (4:7) are composite arcs. Thus there 

exists an n-parrunet er family of compos! te arcs imbedding the 

composite arc E12 = E13 + E32• 
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l4 VALENTINE: THE PROBLEM OF LAGRANGE (420) 

5. The Mayer condition for~ ~posite minimizing arc. 

In developing this condition a geometric argument will be given 

first. In section 8 another proof is given by means of the ac-

cessory minimum problem associated with the second variation. 

Consider an n-parameter family of composite extremals 

through the point 1 defined by the equations 

( 5:1) 

yi = yi(x, a) 

Yi = Yi(x, a) 

[xl ~ :x ~ x 4(a)], 

[:x4 (a) ~ x ~ x 2 ], 

Also consider a one-parameter family of these arcs having an 

envelopeD obtained by letting a= a(t). Let the equation of D be 

x = x(t), 

The fact that D is tangent at each of its points to an extremal 

may be expressed by the equations 

x 1 (t) = k, 

These equations have the solution (aj') /(0) if and only if the 

determinant 

is identically zero in t, when x and a are replaced by x(t) and 

a( t). 

DEFINITION. A value x6 is said to define a point conju

gate to the point 1 if it is a root of the determinant ~(x, a) 

belonging to ann-parameter family of composite arcs (5:1). 
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(421) THE MAYER CONDrr ION 15 

To prove that if~ vanishes at x 6 , the equations (5:1) 

do have an envelope to which 

E32 is tangent at x = ~, let 

E12 be contained in an n

parameter family of composite 

extremals with equations of 

the form (5:1) for values of 

the parameters a = a 0 • All 

the extremals satisfy the 

eCJuations 
1 

where x4(a) is defined by the first of equations (4:6). Let x6 

define a conjugate point to 3 on E32 • We assume for purposes of 

the proof that ~x(x6 , ao) I 0. Hence at least some one n - 1 

rowed minor of the determinant IYia I is different from zero. 
j 

Suppose for example that the determinant 

(k, t = 1, ••. , n- 1) 

is different from zero. Then the first n differential equations 

of the set 

( j 1, .•. , n), 

can be solved for dx/dan, dat/dan. They determine uniquely a 

solution 

(t = 1, .•. , n - 1) 

through the initial point (xs, ao). The determinant ~(x, a) is 

identically zero on this solution since it vanishes at (x6 , a 0 ) 

and since its total derivative with respect to an is identically 
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16 VALENTINE: THE PROBLEM OF LAGRANGE (422) 

zero. Hence the last equation is also satisfied. A similar 

argument CRn be made for any other n - 1 rowed minor which may 

be different from zero. One thus determines 

( s = 1, •.• , n) , 

t being a properly selected one of the parameters a. 

On the one-parameter family of extremals 

( 5:2) 

the curve D is define by the equations 

X= X5(t), 

and satisfies the equations 

since 

Yiajaj' = o. 

Hence the family (5:2) is a one-parameter family of composite 

extremals with an envelope D, touching the extremal E32 at the 

conjugate point 6. 

FOURTH NECESSARY CONDrriON IV. ~ E12 = E13 + E32 be !. 

composite~~ is~~ every subinterval of x1x2 and 

~ !! imbedded in ~ n-parameter family ££ composite ~· 

Moreover suppose ~ R1 and R2 are different from zero ~ E13 

~ E32 respectively. Then if E12 _!!!. minbizing ~ there ~ 

exist ~ conjugate point to 1 ~ ~ !.!:,£ E12· 

In the following proof it is assumedthat the envelope D 

of the one-parameter family of arcs (5:1) has a branch projecting 

backward from 6 to the point 1, as shown in the figure below. It 

is also assumed that the envelope D is not tangent anywhere to 
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(423) THE MAYER CONDITION 17 

the n-space of tangency defined by the first n equations of (4:3) 

and by (4:6). That there can exist no conjugate point to 1 on 

E13 between 1 and 3 follows from the theory of the problem of 

Lagrange which applies to extremals E13 • To prove that there can 

exist no point conjugate to 1 on E32 between 3 and 2 consider the 

integral 

fxx 5(t) 
+ f(x, Y(x, t), Y'(x, t)]dx 

x 4(t) 

+ hto f[x(u), Y(x(u) ,u). Y' [x(u), uJ]x• (u) du. 

In this expression the equations 

yi = yi(x, t) 

Yi = Yi(x, t) 

(x1 ~ x ~ x 4 ), 

(x4 ~ x ~ x2 ), 

define the one-parameter family of composite arcs, having an 

envelope D which has the equations 

X = x 5( t), 

Add .i\1 cp1(x, Y, Y1 ) + 

.1\,."'.jt .. (x, Y, Y') to the 

integrands of the second 

and third integrals in 

the above expression for 

I(El4 + E45 + Dss>• and 

add A.,.'/J'"' to the inte-

grand of the first in

tegral. Then the deriv
1 

ative of I with respect to x5 is 
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di 
dxs 

VALENTINE: THE PROBLEM OF LAGRANGE 

di dt ( Y' 1 g' , <it dxs = -E x, Y, 

where g' is the slope of D. But since 

at every point of D, it follows that 

in t. Consequently one obtains the result 

Hence by the usual argument1 I(E12 ) cannot be a min~. 

(424) 

6. Sufficiency proof. The four necessary conditions have 

been denoted by I, II, III, IV, the order being the same as they 

occur in this paper. The notation II' will be used to designate 

the condition II when the equality sign in expression (3:3) is 

omitted. The condi-tion III' is defined for a composite arc as 

follows: The ~ composite ~will be denoted by E12 = 

E13 + E32' ~ E13 belongs to A and E32 belongs to B. For 

every element (x, y, y 1 , A) of E13 the inequality 

> 0 

holds for every set ( « i) ;l ( 0) satisfying ~ equations 

whereas~ every element (x, y, y', A) ~ E32 the inequality 

F2yi'Yk' 12"1 1l"k > 0 

is satisfied!.£!:. ever;y set ( 17:i) ;l (0) satisfying the equations 

o, 

1see Bliss, loc. ~., p. 722. 
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condition IV' exc-ludes the point 2 as well as the interior points 

of E12 from being a conjugate point to 1. An arc E12 satisfies 

condition II~ if the inequality 

holds for all sets ( x, y 1 y' 1 Y' 1 A) for which the sets 

(x 1 y 1 Y' 1 A) are in a neighborhood of similar sets belonging 

to E12 , and (x 1 y, Y1 ) I (x, y, y 1 ) satisfies 

~,.(x, y, Y1 ) = 0. 

We can now state the following theorem. 

SUFFICIENCY THEOREM FOR A STRONG RELATIVE MINIMUM. If' an 

admissible composite ~ E12 = E13 + E32 ~ ~ extension ~ 

~every subinterval satisfies~ conditions I~, III', IV', 

~~~!.neighborhood M ~~points (x, y) of E12 

~ ~ the inequality I(C12l > I(E12> ~for every admis

~ !!.!?. c12 satisfying 

~. = o, 

~,!! ~ ll, and~!!~ identical~ E12 • 

In the first place since- E12 is normal and satisfies I it 

is true that there exists a unique set of multipliers Ao = 1, 

A111 , A1 and constants ci which with the equations of E12 satisf'y 

equations (3:2). In order to complete the proof, the following 

lemma is established. 

LEMMA 6:1. The condition III' ~ !_ composite ~ E12 = 

E13 + E32 implies ~ ~ determinants R1 ~ R2 def'ined ~ 

(4:1) ~ dif'f'A~•n~ ~ ~ ~ E13 ~ E32 respect1ve1y. 

The fact that R1 I 0 on E13 follows from the theory of 

the Lagrange problem which applies to E13 • However along the 
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20 VALENTINE: THE PROBLE'M OF LAGRANGE (426) 

extremal E32 if the determinant tl2 = 0, the equations 

( 6 :1) Fyi'Yk' 1Z'k + '>."''f/"'yk' + ),lcplyk' = O, 

'P"or.yk' 1Z"k = o, ¢lyk' rrk = o, 

would have solutions ( fl'i, Ace, A1 ) f. (0, 0, 0) with "Tl'k not all 

zero since by hypothesis the matrix 

must have rank p + 1. By multiplying equations (6:1) by 

(1t'l' •.. , 1t'nl respectively, and adding the result, one obtains 

0 

on account of equations (6:2). But this contradicts the latter 

part of condition III' which states that 

> 0 

is satisfied for every set ( 1Ti) f (0) satisfying the equations 

Thus condition III' implies that R2 f. 0 on E32 . 

According to the imbedding theorem in section 4 a point 0 

can be chosen on the normal extension of E13 , so that E12 can be 

imbedded in an n-parameter family of composite extremals passing 

through 0. From the first n of equations (4:4) it follows that 

along the n-space of tangency of this composite family we have 

tor values of a close to ao which defines E12 • Hence ~(x. a) 

336



(427) SUFFICIENCY PROOF 21 

defined in section 5 is continuous in x. On account of condition 

IV' this n-parameter family simply covers a region containing 

E12 = E13 + E32 . For L\(x, a) I 0 on x1x2 implies from implicit 

function theory that there exists a neighborhood M of the points 

(x, y) on E12 in which the equations 

( 6:3) 

have solutions 

Yi = yi(x, e.) 

yi = Yi(x, a) 

y i ( x~, a) = Y i ( x3, a) , 

(xl ~ :x ~ x3), 

(x3 ~ x ~ x 2 ), 

If the region M is taken sufficiently small the values 

(x, y, p, ~) belonging toM will remain in so small a neighbor

hood of the sets (x, y, y', A) of E13 and E32 that according to 

II~ the inequality 

will be satisfied for all sets (x, y, y') I (x, y, p) in M, where 

Y1x or Yix according as the notation refers to an arc 

of class A or B. Hence one may show that I(E12 ) is a minimum in 

M as foll.ows. 

Let any admissible 

curve C in M satisfying 

the conditions ¢11 <x, y, y') 

~ 0 and ~~(x, y, y') = 0 

be defined by the equations 

0 
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LX4
f (X, ,.( x,a), Y'(x, alJdxx,

+ lX5r [X. Y{x,al. Y' (;o; .a )}dxx.
+ lX2

f [X, g ( x, a ), g ' ( x , al J dx ,
"5

(428 )

where l (x , a) and Y(x, a) define the unique compos i te are E06
E0 4 + E46 joini ng an arbitrary po i n t 5 on C12 t o the poi nt O. If

the point 5 lies be t ween t he point 0 and t he point of t a ngency 4

on E04' then I{xS ) htl! the derivaU ve

wh ereas if 5 Ile a b etween 4 and 6 on E46 • then I{xS ) has t he

derivative

In either case PUtS) ill l e s s than or equal to zero, s i nc e

).1: 0 along arcs of clas s A. Moreover we have the equations

l ( xO) '" I(EOl) + I ( C12 ) ,

l (x2) UROl ) + I{ E1 2 ) ·

The conditi on II~ no w i mplie s t hat I(E12) 15 a mi n lmUIII.

7 . Genera lization s 1£~ complex arcs . In sec tions 4,

5, an d 6 the c omposite arc s a defined c onsi st ed of only two s ub 

arc ~ . Th e proofs made i n t he se s ect ions f or the i mbedd i ng

theorem , the May er cond i tion, an d f or t he suf f i c i enc y proof may

be extended to a pply to arcs "ithout c orners compose d of n s ub 

ar c s , 4>1 being zer o on some of t h ese suba r ea, and greater than

zero on th " r f!maln i ng ""h..%'o. . An i ",bodd t " ll theor em i s here

established for an are " ithout corners con sisting of t hree aub_
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arcs. It will then be obvious how to construct an imbedding 

theorem for an arc composed of four or more subarcs. 

Consider an extremal E12 = E13 + E34 + E42 without cor

ners along which all the functions ¢p save one are greater than 

zero. The function qD 1 is to be greater than zero on the subarea 

E13 and E42• but zero on the arc E34 • Suppose that R1 is differ

ent from zero on E13 and E42 , whereas R2 is different from zero 

on E34· From the imbedding theorem for composite arcs, we know 

that the arc E14 = E13 + E34 may be imbedded in an n-parameter 

family of composite arcs of the same form. Denote this n-para

meter family by 

Moreover it is known 

that under the above 

hypotheses E42 may be 

imbedded in a 2n-para-

meter family of arcs 

of class A. Let these 

extremals be defined 

by the equations 

The following conditions 

Yi = hi(x, 

Y1 = Yi(x, 

>."' = A"( x, 

A1 = .Al(x, 

1 

yi yi(x, 

Ac A.(x, 

).1 = :X1(x, 

a) 

a) 

a), 

a). 

b) 

b) 

b) 

(x1 ~x~x3 ), 

(x3 ~ x ~ x 4 ), 
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('7:1) 

hold at the 

determinant 

VALENTINE: THE PROBLEM OF LAGRANGE 

Yi(x, a) - Yi(x, b) = 0, 

F2,_1 1 [x, Y(x,a), Yl (x,a), A(x,a)] 

- F111 1 [jr, y(x,b), y 1 (x,b), /..(x,b>J 

¢ 1 [x, y(x,b), y'(x,b)) = 0 

o, 

point 4 on E12 • Moreover it is known that the 

D satisfies the condition 

I Yibk I f. o, D = ui Flyil Uibk 

(430) 

at the point 4 on E12 • The fUnctional determinant of the above 

expression with respect to x and b is 

c 

yi 1 - Y1 1 

Flyil I - F2yil I 

¢11 

Since at the point 4 we know that 

yi(x4 , b) = Yi(x4 , a), 

Yi I (x4, b) = yi I (x·4, a)' 

holds, it follows from Corollary 3:2 that the determinant C has 

the value 

c 

For purposes of the proof we assume that Q)1 1 f. 0 holds at the 

point 4. Hence it is true that C f. 0 at the point 4 on E12 • 

Thus one may solve equations (7:1) for x and b as functions of a. 

con~equently under the above hypotheses the arc E12 = E13 + E34 + 

E42 can be imbedded in an n-parameter f!"1r.J ly of arcs of the same 
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kind, that is, consisting of three subarea, two belonging to 

class A, and one belonging to class B. A proof similar to that 

given in section 4 shows that the members of this family have no 

corners. An imbedding theorem for an arc E12 composed of n sub

arcs, qb 1 being greater than zero on every other subarc, and zero 

on the remaining subarea, can now be made by alternately repeat-

ing the processes described in section 6 and in this section. 

The proof of the Mayer condition and the sufficiency 

proof for the arcs considered in this section are so similar to 

those given for a composite arc that they will need no repetition. 

8. ~analogue Ef the Mayer condition!.!!!!~~ 

variation. The following section establishes the condltion IV, 

formulated geometrically in section 6, by means of the second 

variation. The equivalent problem stated in section 2 will now 

be used again. 

For a normal extremal E12 of the equivalent problem it is 

known that if "1i(x), ~11 (x) is a set of admissible variations 

satisfying the equations 

lftor.< X, 7J• ?J I) 
i 

~Yi~i + ~«Yi'"'Ji' = o, 

( 8 :1) rp~(x, "?• TJ') - 2z,' ~~~' = cpfJy{/1 + ¢/Jn'''/1' - 2z,_' ~~', 

then there exists a one-parameter family of admissible arcs 

containing E12 for b == bo, and having the set r11(x), ~, (x) as 

its variations along E12 • In this section the second variation 

is to be calculated for an admissible arc E12 without corners 

satisfying the equations ~or.= 0 and ¢1 (x, y, y') - Zp' 2 = 0, 
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26 VALENTINE: THE PROBLEJ.I OF LAGRANGE (432) 

and also satisfying the multiplier rule with multipliers Ao = 1, 

A .. (x} and A1(x}. 

\'lhen the members of the equations 

I(b} = f~f[x, y(x,b), y'(x,b)]dx, 
fx1 

0 lf'"'[x, y(x,b), y'(x,b)], 

0 = q)plx, y(x,b), y'(x,b)J- z~' 2(x, b), 

are differentiated twice with respect to b, one may obtainl the 

equation 

(8:2) 

where 

The accessory minimum problem for this problem consists 

in finding in the class of arcs 171 ( x), S'"p ( x) satisfying the 

equations (8:1} that one which minimizes the second variation 

(8:2). The case to be considered here is the one in which the 

minimizing s.rc is a composite one E12 = E13 + E32 • The extremals 

for the accessory minimum problem for this case must satisfy the 

differential equations 

(8:3) 
~ nlli' = n.,i. 
1Jr ... (x, '7• '7') = o, 

where 

~1'.>.1 + flzl' = dl 

pl(x, 7]• 7]') - 2zl'~l' 0 

and d1 is a constant. From the transversality condition one 

finds that 

0 

1see Bliss, loc • .=.!.!·• p. 723. 
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holds. Hence it is true that 

on x 1X2. Since A1 is zero on E13 and zl' is zero on E32• it 

follows that 

holds. The functions r; ( x), ~ 1 ( x) which define the minimizing 

arc for the accessory minimum problem are determined by the 

equations 

f11' 
lf!"' = o, 

27 

It follows that 1Ji', JL«• jt1 are continuous at x3 as well as at 

all other points on x 1X:i! since 1J 1 (x) are continuous, and thus 

all three terms not involving fJi', f•"' and f-1 are continuous 

since the determinant of coef'ficien ts of 7J i' , f"', f 1 is R2 or 

R1 which are different from zero on x3~ and x1x3 respectively. 

The functions '/• ~ 1 are defined for the intervals x1x3 

and x3X2 by the following equations, 

(8:4) 
Q2'7i' 

cpl - 2zl' ~ 1' = 0' 

~ nl,i, = nlYfi' 
(8:5) l[r... o, 

where 

fLoW + ~4"1/!a., 

foW + f"'l/loc + fl pl. 
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28 VALF:NT nm: THE PROBLEM OF LAGRANGE (434) 

On the interval x1x3 the function t 1 (x) is dbfined by the equa

tion ifJ1 - 2z1 •t1 ' = 0, The function ~l(x) is admissible, since 

z1 • i 0 for (xl ~ x < x3) and the equationA 

o, 

hold at the point 3. Also the function ~ 1' (x) is zero at x x3 

since the li:r,i t 

(8:6) 

exists at x = x3 and is zero. For if the numerator and deno~ina

tor of the function 

are differentiated separately, one gets 

Since it has already been assumed that qb 1•(x3 , y, y 1 ) i 0, it is 

true that the limit (8:6) is zero at 3. Thus the minimizing arcs 

for the accessory minimu~ problem are defined by equations (8:5) 

and ( 8 :4). 

In the following 

argument the determinants R1 

and R2 defined by expression 

(4:1) are assumed to be dif-

ferent from zero on E13 and 

E32 respectively. 

Definition, A value 

x 4 is said to be conjugate 

to x1 on the arc E13 + E32 

2 
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if there exists an extremal of the accessory minimum problem of 

the form 

f'ot. = p...(x) 

f1 = fl(x) 

continuous and having continuous derivatives on x1x2 and satisfying 

but not identically zero on x1~. 

ANALOGUE OF THE MAYER CONDYriON. Supoose E12 = E13 + E32 

is a composite ~ which is normal on every subinterval, and 

~ ~ such that R1 and R2 ~ different from ~ ~ E13 and 

E32 respectively. If E12 g ~minimizing !!:.,£ ~ can exist ~ 

point conjugate to 1 between the points l and 2. 

To prove this statement consider the special solution 

'Y'/f(X) - ui(x), f'O((x) = p.._(x), (xl ~ x ~ x4 ) 
~ when x4 x3, 

7]i(x) - o, (x4 ~X~ X2) 

ryi ( x) - ui(x), f«(x) = p.._(x), 
(xl ~ x ~ x3) l 

1i(x) - vi(x), f'«( x) :: p...<xl, 
(x3 ~ x ~ 

f1(x) = f1(x)' 
x4) when x3 < x4 . 

"'/i( x) :;; o, (:x4 ~ X ~ x2) 

For this choice of "Ji(x) the second variation has the value 

which has the form 
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30 VALENTINE: THE PROBLEM OF LAGRANGE (436) 

I"(bo) = ~x:3(uiD.lu1 + ui'f2lui' + P01.Qlf., + f1Qlp1 )dx 

+ ~x:4(vifl2vi + vi'il2vi' + p.,,J22p ... +flQ.lp:a.)dx. 

Upon using equations (8:5) and (8:4) this integral may be evalu

ated to be 

But since the relation 

holds at the point 3, I'1(bo) has the value 

or 

Since for a minimizing arc ']i(x) the corner conditions 

.Q'7i' [x4' 7]• 7]' (x4-0), f(x4-0)] 

-U"'Ji' [x4, 1J• r;•(x4+0),f(x4+o)J 0, 

hold, 1 and since 

1Jr<x, '?• 1]') o, o, 

hold, it is true that 

vi s vi' ;: f"' ;: 0 

( x3 ,; x ~ x4 ) • 

Similarly it £allows that 

4 2 

1see Bliss, loc, cit., p. 725-6. 
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for the interval (x1 ~ x ~ x3). Thus the Mayer condition has 

been established. 

9. Analogue~ the necessary condition of Hestenes. In 

sections 10 and 11 a sufficiency proof is made for a composite 

31 

arc without the assumption of normality. In order to lead up to 

this proof another necessary condition, analogous to the necessary 

condition IV1 , given by Hestenes for the problem of Bolza, is 

derived. 

As shovm in section 8 the minimizing arc T]i(x) for the 

accessory minimum problem, when E 12 = E13 + E32 is a composite 

arc, is defined by (8:5) for (x1 ~ x ~ x3) and by (8:4) for 

(x3 ~ x ~ ~). The functional determinant of equations (8:5) 

with respect to 7]i' and jJ-« is R1 , whereas the functional deter

minant of equations (8:4) with respect to '7i', f'« and JL1 is 

R2 , R1 and R2 being defined by (4:1). Since we suppose that R1 

and R2 are different from zero on E13 and E32 respectively, the 

equations 

( 9: 1) 

have the solutions 

and the equations 

{9:2) 

have the solutions 

ti = f2.17)i' (x, 7j, TJ'' fL) 
0 = \[roc. 

TTi(x, 7f• t) 

Mel( x, 1J• t) 

ti = rr2'7i'{x, '7• '7'• f-l 
0 1Jro~. 

0 <f\ 

'7i' = Ki{x, 7f• t) 

f« = N"'{x, 1)• t) 

fLl = Nl{x, 7f' t) 
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32 VALENTINE: THE PROBLEM OF LAGRANGE (438) 

Equations (8:5) and (8:4) may be put into the usual canonical 

forms by introducing the Hamiltonian functions1 H1 and H2 • 

Equations (8:5) will then be equivalent to 

( 9 :3) 

and equations (8:4) will be equivalent to 

( 9: 4) 

For an arbitrary pair of solutions of (9:3), <ryi, ti) and 

Cryi*• ti*l, it is known that 

( 9: 5) 

The same relation holds for an arbitrary pair of solutions of (9:4 

DEFINITION. ~ solution (r/1*, ti*) ~ said .!£ be conju

gate to the solution (TJi• til if equation (9:5) holds with c = 0. 

The sets [~ik• tikJ form a conjugate system if any pair 

of them are conjugate to each other. 

A conjugate system of solutions (ryik• tik) of equations 

(9:3) and (9:4) may be found such that O]ik• tik) are continuous. 

Suppose 1] ik = erik and tik = sik form a conjugate system of 

solutions of (9:4) on (x3 ~ x ~ ~) where f2 has been replaced 

by Sl2 . The solutions ryik = uik• tik = rik of equations (9:3) 

with the end conditions 

cr ik( x3), 

sik( x3)' 

1G. A. Bliss, Problem of Bolza in the Calculus of Varia
tions, Lecture notes at the uniVersity of Chicago, Winter 1935, 
p:-74. 
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on the interval (xl ~ x ~ x 3 ) are well defineri. 'fhe system of 

solutions (7Jik' tik) thus obtained is continuous on the entire 

interval (xl ~ x ~ x2) and is a conjugate syf'tem. 

33 

ANALOGUE OF '!'HE CONDITION OP H1<:s·:r~~NF:R, IV1 • Sup:'ose th.e 

~ E12 = F.13 + E32 satisfies ~ hypotheses ussumerl for the cal

culation of t:he ~ va!"iation. The arc !! s•:>id to satisfy 

condition IV1 if the inequality 

( 9:6) 

1:.1 '''tliaftF:~ on ( x1 ~ x ~ x2), ~ th~ ~t.o.nts aj _f!!ld bj 

sntisfy ~ equations 

( 8 :7) 

and whe!"e the eet 

~equations P:3), ~ (u1 j, vij)!!:: .£_~r:_,il.lglite sy:;tA:n of solu

~ ~equations (9:4). ~first~ ( 'fJij' ~ij) is rlefined 

by the transversality and end-conditions for the point 1, whereas 

the~~ set (uij• vijl is defined~ the corresponoing condi

tions for ~ point 2. Every ~ co'l!posite minimizing arc 

E12 = E13 + E32, ~ ~ R1 and R2 ~ different from ~ ~ 

Eu~ ~ E32 respectively, ~ sHtisfy the condition rv1 • 

We will first prove the necessity of this comli t ion on F.32. 

Let the set ( 7ij, ~ ij) be defined as follows 

"Jij r ij(x) 

~ij rij(x) 

and 

?ij CJ"ij(x) 

~ij sij(x) 

i.\oreover let 
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uik E mik(x) 

vlk s. nik(x) 

ulk = Pik(x) 

vlk = qik(x) 

(440) 

Consider a solution aj, ~ ot (9:7) for a value x4 between x3 and 

x2 , and let the sets ('t'i, ri)• (O'"i• si)• (mi• ni) and (pi, qi) 

represent 

't'i = 't"ijaj 

ri = rijaj 

mi = mikbk 

ni = nikbk 

tri = O"'ijaj 

Si sijaj 

Pi = Pik~ 

qi qik~ 

The arc defined by ~i(x) on (xl ~ x ~ x3 ), by O"'i(x) on 

(x3 ~ x ~ x4), and by Pi(x) on (x4 ~ x ~ x2) is continuous by 

( 9:7), and sal;"isfies the equations ljr... = 0 on x1~ and p1 = 0 

on x3x2. This arc gives to the second variation (8:2) the value 

I"(bo) = {x32w(x,1:, t:•)dx + lx42w(x, (T1 CT')dx 
fxl x3 

+ {~2w(x, p, P' )dx. Jx4 

If jLkVia. is added to the integrand of the first integral, and if 

fo~.'/ta. + f 1 ~l is added to the integrands of' the second and third 

integrals, I"(bo) will have the form 
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I 11 (bo) = 1x32fl1(x, 't', 't'' )dx + {X42Q2 (x, <r, a-• )dx 
xl }~ 
+ {~2fl2(x, p, P' )dx. lx4 

By the use or the homogeneity property of quadratic forms, 1 one 

may find the value of I 11 (bo) to be 

which reduces to 

Since the equations 

'l't(X3) = (1'"i(x3), 

~i(xl) = Pt(~) = O, 

hold, it follows that 

and this last expression for I 11 (0) 1s 

A similar·proof can be made when the point 4 lies between the 

points 1 and 3. In event the point 4 is taken at the point 3, 

the second variation I"(b 0 ) will have the form 

35 

where Ti(x) and Pi(x) are defined above. The completion of the 

proof for this case is then easily made. Thus the condition rv1 

has been established. 

1Bliss, Problem~~. p. 87. 
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10. Sufficiency proof without ~ assumption or normality. 

One may now prove the following theorem with the aid of the pre-

ceding section and some auxiliary lemmas. 

'l'HEOREM 10:1. Let E12 = E13 + E32 be an admissible com

posite~· satisfy~ the conditions liN, III', Iv1 •, ~! ~ 

of multipliers Ao = l, A,.(x), A1 (x). !.!!~~~exists ~ 

neighborho_od F 2f.. E12 = E13 + E32 such ~ J(C12l > J(El2 ) for 

~ ~issible ~ c12 in F joining the points l and 2, satis

fying 

lfot 0 , 

and dist inc!_ from E12. 

Consider a one-pnrarneter family of composite arcs 

yl = yi (x, a)' ;>. :: 
"' 

A. .. (x, a) (xl ~ x ~ x 3 ), 

( 10: 1) y1 "'Yi(x, a), )."' "' AQ((x, a) (x3 ~ x ~ x 2 ), 

:Xl = i.1 (x, a), 

anc'! a set of functions x1(t), x2 (t), a{t-). having continuous 

derivatives, and such thot Yi• Yi, Yix• Yix• ').{3 and ;\ 1 have 

continuous first partial derivatives in a neighborhood of the 

sets ( x, e.) defined by 

a{t) (t' -;:;; t ~ t 11 ). 

The end polntR 1 and 2 of the curves uescribe two arcs C and D, 

the eqnntions of' C being 

x = x 1 ( l), 

and the curve D being de-

fined by 
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x=J12(t), 

The differentials dx, dyi along the curves C and D are given by 

the equations 

( 10:2) 
dx1 = x1 •(t)dt, 

~ = X2' ( t)dt, 

dyi = Yix 1 dxl + Yiada, 

dyi = yixedx2 + Yiada. 

37 

Along the particular composite extremal arc defined by a 

value t the integral I has the form 

The derivative of I with respect to t is 

Upon integrating by parts and using equations (10:2) one gets 

( 10:3) 

The symbol I* denotes the integral 

By integrating (10:3) from t• to t" one obtains the following 

result. 

J,!•:J~/.IA 10:1. If ~ composite extremal ~ !:!!._ the one 

P.E-ramet~!_ family ( 10:1) corresponding to ~ values t• and t" of 

~ ~ter t ~ E34 and E56 respectively, ~ 
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Definition~! Field. A field is a region-,: of (x, y) 

space with a set of slope-functions and multipliers 

.fo = 1, 

having continuous first partial derivatives in 'lf, and such that 

the sets {x, y, p) are admissible and satisfy~~= o, ~l ~ 0, 

and make the I* integral 

independent of the path 1n ~. 

LEMMA1 10:2. ~ E12 = E13 + E3 2 ~ ~ composite ~ ~ 

~ R1 .f 0 ~ E13 and R2 .f 0 ~ E32• ~ having ! conjugate ~

~£!solutions (Uik• Vik) ~~accessory equations (9:3) and 

(9:4). This solution ~ the form 

uik = <Tik 

vik = 8 1k 

field 1r consisti•g of an n-parameter family of composite !!£! 

Y'i = Y'i( x, 0(.1• ••• , cC.n), ri Fly!' [x1 ~ x ~ x3{cC.)], 

Y'i = Yi{x, ac.l, ... , «nl, Rl F2y1' [x3(«) ~ x ~ x2J, 

~ containing E12 for ~ (x, OC.) satisflinfi 

(k 1, ••• , n). 

lsliss, loc. ~., Problem of Bolza, p. 103. 
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The functions Yi, Yi, Yix• Yix• ri, Ri have continuous first 

partial derivatives in ! neighborhood of the ~ (x, <X.) be

longing to E12, and the variations of that family along E12 ~ 

the values -----
Yi«k(x, O) = uik(x), 

Yiot (x, O) = <Tik(x) • 
k 

rict (x, O) 
k 

Rio: (x, 0) 
k 

[x1 ~ x ~ x3 (0)], 

[x3( 0) ~ x ~ ~]. 

The proof of this lemma can be obtained by an extension 

of a lemma given by Bliss for the problem of Bolza. By a proof 

whose details are identical with those given for the imbedrting 

theoren in section 4, it may be proved that the composite arc 

E12 = E13 + E32 may be imbedded in a 2n-parameter family of com

posite arcs. As shown by Bliss1 it i~ true that this 2n-parameter 

family may have the form 

yi yi(x, ocl' ••• , <Xn) 
[xl -a x-a x3 (ot)], 

ri ri (x, oc1 , •. •' G(n) 

yi Y1 (x, !Xp •.• ' O(n) 
[.x3(oc.) ~ X~~], 

Ri Ri(x, a:l, ••• ' G(n) 

containing E12· for (<X1 , ••• , tXnl = ( 0, •.. , 0) • It follows from 

the theory given by Bliss and from the imbedding theorem men-

tioned that the equations 

hold. The remainder of the proof of the above lemma is so similar 

to that made by Bliss that it will not be repeated. 

~liss, loc. ~., Problem of Bclza, p, 105. 
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THEOREM 10:2. A FUNDAMENTAL S ill'J:o'IC IENCY THEOREM. If an 

~ E12 = E13 + E32 ~~composite~ in~ field~ and satis

fies the condition !IN, then I(E12l is ~minimum as described in 

Theorem 10:1. ----
In view of the assu._mption that E 12 satisfies the condition 

!IN, the field T may be restricted to a sufficiently small 

neighborhood of E12 so that all the elements [x, y, p(x,y), ,l(x.y)] 

belonging to 1r lie in the neighborhood N. Then at all pointe of 

7 the condition 

E(x, y, p(x,y), Y1 ,.l) -.11 cp(x, y, Y') >0 

must be satiBfied for every set (x, y, Y') f (;x:, y, y') and 

satisfying <:/\(x, y, Y') ~ 0, 1/Ja.(x, y, Y') = 0. Since 

it is true that 

I(Cl2) - I(El2) -= I(Cl2) - I*(El2) 

{~ ~x~ - ] = j f(x, Y, Y' )dx- ( (P- piFy 1 dx + FYi'dyi) 
x1 x1 i 

,= 1x2lJ, -,/lcjJl(x, y, Y')- F(x, y, Pi)- (pi -Yi')lo'yit]dx 
1 

= r~[E(x, y, p, Y', A) -11 </-\(X, y, Y' l}lx. 
}x1 

Hence tlw theorem is est.,blished. 

L'·~t.1t1A1 10:3. I,et E12 = E13 + E32 ~~ >_0. ~dml_~~l~l-~ ~!!!-

ttoliers 

1BJ.bs, loc. ~-:!,_~--, Proble•·1 of' Bolza, p. 112. 
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(9:3) ~~ (9:4) with luikl I 0 ~ x1x2. 

The pt'oof of this lemma is almoRt identicnl with t.bat 

given by Bliss in his notes on the problem of Bolza, hence it 

will not be repeated. 

41 

Now one is in a position to prove the sufficiency_ theor·em 

10:1. According to Lemma 6:1 an admissible arc E12 = F:13 + F:32 

satisfying III' must be such that R1 and R2 are different. from 

zero on E1~ and E32 resp!'!ctively. Condition rv1 • and Lc:nmn. 10:<. 

imply th., exlste11ee or e eonjugR.tf-> system of solutions Uik( x), 

Vik(x) of tho canonical equntions (9:3) and (9:4) with deter

minant !Uik(x) I I 0 on x1x2. Hence by r.emrna 10:2 the composite 

arc E12 is in a field T, contfd.ned in an n-par•ameter family of 

compoflite arcs. Thus by these conditions and II' 
N it follows that 

the hypotheses or the sufficiency Theorem 10:2 are rulfillen, and 

therefore the conclusion of Theorem 10:1 is established. 
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SECTION III, 1933 [37] TRANS. R.S.C. 

On Linear Inequalities 

By L. L. DINES, F.R.S.C. and N.H. McCoY 

1. Introduction. Linear inequalities were studied with some 
degree of generality at least as early as the time of Fourier (1824). 
However the first significant contribution to their theory was made 
by Minkowski in his Geometrie der Zalzlen in 1896. Since that time 
many papers have appeared in Europe, America, and Japan which 
have to do more or less directly with the subject. But some of these 
have been published in places unexpected or not easily accessible, 
and no general survey has appeared which attempts to take account 
of all of them. The objects of the present paper are: (I) to give a 
somewhat comprehensive account of the subject as it has been de
veloped to date, (2) to supplement and extend the theory by some 
new results, and (3) to supply a more complete bibliography than has 
yet appeared. This bibliography is to be found at the end of the 
paper, and references will frequently be made to the sources there 
listed. To save space in the paper, which is necessarily long, detailed 
proofs will be omitted when they are satisfactory and easily accessible 
in the original sources. 

2. D~fferenf. Types of Algebraic S_vstems. Not all of the authors 
whose works we shall consider have restricted the algebraic systems 
to pure inequalities. The greater number in fact have treated systems 
which involve relations expressed by both of the symbols > and 
If we consider a system of real linear forms 

11 

l1(x) == 2: au:..j, (i=1, 2, ... , m), 
j=l 

the various types of algebraic systems that have been treated are the 
following five: 

(a) 1 l; >o, (i = 1, 2, ... , m) 
(b)~ l; >O, (£=1,2, ... ,111) 
(c)3 I; >'0, (i=1,2, ... 'm) 

------
li\linkowski l, and Haar 1. 
~Dines 1, and Carver 1. 
8Dines, 3 and 11. The symbol >' has the meaning of ~ reinforced by there

quirement that the inequality shall hold for at least one value of the index i. 

DOI 10.1007/978-3-0348-0439-4 17, © Springer Basel 2014
359G. Giorgi and T.H. Kjeldsen (eds.), Traces and Emergence of Nonlinear Programming,
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(d) 4 zi I> o. 
=0, 

(e) 5 11 >0, 
>0, 
=0, 

THE ROYAL SOCIETY OF CANADA 

(i=1, 2, ... 'p) 
(i =P+1, P+2, ... , m) 

(i=l, 2, ... , p) 
(i =P+1, P+2, ... , q_) 
(i=q+1, q+2, ... , m) 6• 

Of course these five types are not mutually exclusive. Indeed (e) 
can be interpreted so as to include all of the others with the possible 
exception of (c). Nevertheless the less general types are worthy of 
some special conSideration, inasmuch as they give rise to certain 
theorems· which do not appear in connection with the general types, 
and it is for the most part these theorems which can be carried over 
to the transcendental cases. 

It may be noted also that, from one point of view, only a super
ficial generality is added by the inclusion of the equations in the 
systems (d) and (e), since these equations can be used immediately 
to reduce the dimensionality of the problem by elimination of certain 
of the variables x. 

3. Types of Res~tlts Obtained. The principal results which have 
been obtained relative to a system of inequalities of any one of the 
above types may be classified as follows: (1) conditions for the exist
ence of a solution, (2) algorithms for obtaining solutions when such 
exist, (3) representation of the general solution, ( 4) relationship 
between the given system and the adjoint system of equations, and 
(5) conditions for the mutual dependence or independence of the 
system. 

These five types of results are not mutually exclusive but they 
indicate the general directions along which the study of systems of 
linear inequalities has been carried out. 

4. Geometric Interpretations. For a system of linear inequalities 
a number of different geometric interpretations are available. Pro
bably the simplest is the one obtained by associating \Vith each 
linear form l (x) the (n -1)-flat or hyperplane defined by the equation 
l(x) = 0 in the n-dimensional space of which the general point has 
coordinates (x 11 X2, ••• , Xn). The inequality l(x)> 0 then restricts 

•Schlauch 1. 
5Stokes 1. 
6Systems of non-homogeneous inequalities of types (a), (b) and (e) have also 

been studied but each of these systems is essentially equivalent to a properly chosen 
homogeneous system of one of the above types. Cf. Dines 11, p. 396; Stokes 1, 
p. 802. 
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the point (x1, x2, ... , xn) to lie in a definite one of the two regions 
in which the n-space is divided by the hyperplane l(x) =0. The 
weaker condition l(x)>-O defines the same set of points augmented 
by the points of the bounding hyperplane. The solution of any one 
of the systems (a), (b), (d), (e) is then represented geometrically by 
the aggregate of points common to the regions defined by the several 
conditions of the system. This interpretation, despite its simplicity 
and suggestiveness, has not proven so directly useful in the theory as 
certain others which will now be described. 

In the second interpretation, the m sets of coefficients 

(1) (a; I, ai2• ... , a;,.), (i = 1, 2, ... , m), 

of the given linear forms are represented by m fixed points in n-di
mensional space. In this space the hyperplanes which contain the 
origin may be represented by equations of the form 

L(y) ==x1y1 +x2y2+ ... +xnYn =0, 

in which x1, x2, ... , x,, are constants. Each such.hyperplane divides 
then-space into two regions, in one of which the corresponding linear 
form L(y) is positive while in the other L(y) is negative. A solution 
cif a system of inequalities 

(b) 
n 

~ ailx1> 0, (i = 1, 2, ... , m), 
J=l 

is then a set of values (x1r x2, ... , Xn.) such that each of the m given 
points (1) lies on that side of the hyperplane L(y) =0 on which 
L(y)> 0. For the other types of systems (a), (d), and (e) the necessary 
modifications are obvious. This geometric interpretation has been 
used by at least two authors, Haar and Stokes. 

A third geometric interpretation7 results from considering the 
given coefficients as components of a vector in n-space. Thus we 
consider m fixed vectors 

and a variable vector 
~== (x1, X2, ••• , X 11 ). 

The given linear forms may then be written 

a,.~, (i=1,2, ... ,m), 

where the notation a;.~ denotes the inner product of the two vectors. 
The given conditions may be interpreted as restrictions upon the 
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magnitude of the angle which the vector ~ may make with each of 
the given vectors ~· 

Obviously there is no loss of generality in assuming that the 
vectors are all normalized, that is that 

ai12 + a;22+ ... +ai;=l, (i=l, 2, ... , m) 
Xt2+x22+ ... +x,~2 =1. 

If this be done, the problem may be interpreted in terms of the 
geometry of the spherical surface 

X12+x22+ ... +xn2 =1. 

Them given vectors £4, (i=l, 2, .... , m) determine m fixed points 
on this sphere. The condition a;. ~=>-0 (or a;.~> 0) restricts the point 
determined by the vector ~ to lie on the bounded (or unbounded) 
hemisphere of which a; is the pole. And the solution to the problem 
is represented by the points of the region common to the m hemis
pheres. 

5. On the Smallest Convex Region Containing a Giz1en Set of Points. 
Before leaving the general topic of geometric interpretations it seems 
best to discuss briefly the above motion which has a very significant 
relation to linear inequalities, and of which use will be made in later 
parts of the paper. The notion seems to have been introduced by 
Minkowski, though he makes no use of it in his treatment of in
equalities. In two and three dimensional spaces it has the naive 
meaning suggested by its name. This meaning has been extended 
logically to n-dimensional spaces by Minkowski and Caratheodory.8 

To arrive at an understanding of this extension, let us consider 
any closed set of points M in n-dimensional Euclidian space. For 
any point Pin this space it is a definite question whether it is possible 
to pass through Pan (n-1)-flat which neither contains points of lJt! 
nor separates points of M. The aggregate of points P for which the 
answer is negative constitutes the smallest convex region containing 
the set M, and will be denoted by RM· It can be shown that the 
point set RM is perfect, that is it coincides with the set of all limit 
points of points of the set. A point of RM is either a boundary point 
or an inner point, according as it is or is not a limit point of points 
not belonging to RM. A further distinction between boundary 
points and inner points of RM is that through each of the former it 
is possible to pass an (n-1)-flat which does not separate points of 

7Dines 2, p. 58. 
8Caratheodory, 1. 
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RM, while every (n-1)-fl.at through an inner point does separate 
points of RM. 

It is now easy to see the significance of this geometric notion with 
reference to linear inequalities. If we denote by M the set of m points 
representing the m sets of coefficients 

ai=(a;I, a;2, ... , ai,.), (i = 1, 2, ... , m) 

of the m linear forms 
11 

l ( ) - "'' i X = "'-' aijXj 1 (1=1. 2, ... , m), 
j=l 

then the question of the existence of a solution of the corresponding 
system of linear inequalities depends entirely upon the position of 
the origin (0, 0, ... , 0) relative to the smallest convex region con
taining M. For the (n -1)-flats through this origin have equations 
of the form 

L(y)-x1Y1 +x2Y2+ ... +x,sn. =0. 

If the origin does not belong to RM, then there is such an (n -1)-fl.at 
which does not contain nor separate points of M, and so there is a 
form L(y) such that L(a;) is positive for every a;. The coefficients 
x = (x1, x2, ... , X 11 ) of this form satisfy the system of inequalities 
li(x) > 0, (i = 1, 2, ... , tn). Conversely, if this system of inequalities 
admits a solution, the solution furnishes coefficients of a linear form 
L(y) such that the (n -1)-fl.at L(y) =0 does not contain nor separate 
points of J11. Hence the origin does not belong to R},f· 

An analogous argument can be made relative to the less restrictive 
condition that the origin be not an inner point of RM. These con
siderations lead to the following results9 

(i) The system of inequalities 

(a) l;>O, (i=l, 2, ... , m) 

admits a non.-tri'IJial solution10 if and only if the origin is not an inne1· 
point of RM. 

(ii) The system 
(b) li>O, (i=l, 2, ... , n~) 

ad·mits a solution if and only if the origin is not a point of RM· 

ncf. Fujiwara 3, p. 331. 
10The solution (0, 0, ... , 0) of the system (a) is called the trivial solution. Any 

other solution will be said to be non-trivial. 
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Caratheodory obtains also the following characterization of the 
set RM, which will be recognized as obvious for the cases n=2 and 
n = 3. The smallest convex region containing a given closed set of 
points M consists of those points, each of which can be the centroid 
of a distribution of positive masses (with total mass unity) at properly 
chosen points of M. He shows further that at most n+l positive 
masses need to be thus distributed to determine any given point of 
RM as a centroid. And indeed if n+l such positive masses are dis
tributed at n+1 points of M which do not lie in a common (n -1)-flat, 
then the centroid so determined is an inner point of RM. This can 
all be expressed analytically as follows: 

The smallest convex region RM containing a given closed set of points 
M in n-dimensional space consists of the points 17 == (171, 112, .•• , 11,.) 
whose coordinates are expressible in the form 

(2) 

where the points 

Tlj ='Zm;aij• (j = 1, 2, ... , n) 
i 

are a properly chosen set of at most n + 1 points of llf, and the coefficients 
m are positive constants of sum unity. Furthermore, those points 17 
whose coordinates are expressible by fomz (2) in terms of n + 1 points a; for 
which the determinant 

is different from zero, are inner points of RM· 

6. Systems of Type (a). We shall now take up in succession the 
various types of systems of linear algebraic inequalities and discuss 
briefly the principal theorems for each type. \Ve consider first a 
system of the form 
(a) l,(x)-=-0 (i=l, 2, ... , m). 

We have already noted in the preceding section a necessary and 
sufficient geometric condition for the existence of a non-trivial solution 
of this system. An elegant analytic theory was given by lVIinkowski 
in 1896. As a matter of fact little has been added to his theory of 
systems of this type, though his results have been obtained by different 
methods and il1" modified form by various authors.ll This section will 
be devoted therefore to a presentation of Minkowski's theory. The 
first two theorems, though of prime importance are stated without 

HFarkas 1, Haar 1, and Stokes 1. 
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proof inasmuch as satisfactory proof can be found in the original 
source. The remaining theorems are proven in some detail, since the 
introduction of certain new notions seems to afford greater clarity. 

First of all, we may assume that among the given linear forms 
l~.(x) there are n which are linearly independent. For suppose that 
only h (h < n) were linearly independent, and for definiteness that 
these were the first h forms. Then by a linear transformation 

Yt =l~.(x), (i = 1, 2, ... , h) 

Yt=X~.(x), (i=h+l, h+2, ... , n), 

where then -h forms A.~.(x) are restricted only by the condition that 
the transformation be non-singular, the system (a) could be replaced 
by an equivalent one of the form 

Y.;>-0 (i=l,2, ... ,h) 
h 

Z bi1y1>-0 (1 =h+1, h+2, ... , m), 
i=l 

which contains only the h variables y 11 y2, ..• , y1,. It will therefore 
be assumed in what follows that the number of linearly independent 
forms in (a) is equal to the number of variables. 

We are now ready to develop the notion of fundamental solutions 
in terms of which Minkowski obtains the general solution of (a). 

If (x1, x2, ... , X 11 ) is any non-trivial solution of (a) and p is any 
positive constant, then (pxlt px2, ... , pxn) is also a solution. Two 
solutions such as these which differ only by a positive factor are not 
considered as essentially different solutions. If (x'1, x'2, ... , x' n) is 
another solution, then (x1 +x'1, x2+x' 2, ... , x,, +x'1J is a solution 
which we shall call the sum of these two solutions. A non-trivial 
solution of the system (a.) which cannot be expressed as the sum of 
two essentially different non-trivial solutions will be called a funda
mental solution. A method of obtaining fundamental solutions is 
indicated by the following important theorem: 

THEOREM 1. A necessary and sufficient condition that a non-trivial 
solution of the system (a) be a fundamental solution is that for this solution 
n -1 linearly independent l;(x) ~•anish. 

That there can be only a finite number of essentially different 
fundamental solutions is now clear. For if a certain set of n -!linearly 
independent li(x) vanish for a given solution, this solution is thereby 
determined to within a positive factor and any other solution for 
which these same forms vanish is not essentially different from the 
first. Hence there are at most as many essentially different funda-
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mental solutions as there are different sets of n -llinearly independent 
forms in the given system. 

Let 
(3) X Cil _(X Cil X Cil x<il) 

- 1 , 2 ' • • • '.L n ' (i=l, 2, ... , N) 

be a set of essentially different fundamental solutions of the system 
(a) such that any fundamental solution of the system is a positive 
multiple of one of these. Such a set of solutions is said to be a com
plete set of fundamental solutions. If we add the conditions, 

11 

l: (X1~il)2 = 1 (i = 1, 2, ... , N) 
11=1 

the set (3) may be said to be the complete set of -normalized funda
mental solutions of the system (a). This set is determined uniquely 
by the given system. The significance of the concept of complete set 
of fundamental solutions is brought out in the 

THEOREM 2. If 

rv Ci> X Cil xul) \A 1 , 2 , • • • n • ( '_1 2 7\T\ 't-.L 1 , ••• 1 lVJ, 

is a complete set of fundamental solutions of the system (a), tlzen the 
general solution is 

Xj=P1Xjll+p2Xj2l+ ... +PNXjNl, (j=l, 2, ... , n) 

where the p's are non--negative pammeters. That is, any solution of the 
system is a linear com,bination, with non-negative 'coefficients, of a com
plete set of fundamental solutions. 

We have seen that there can be only a finite number of fundamental 
solutions. There may be none, in \Vhich case of course the system 
admits no non-trivial solution. Further information as to the number 
of fundamental solutions is contained in the following: 

THEOREM 3. If (i), the system (a) admits at least one jzmdamental 
solution and (ii), no one of the forms l;(x) vanishes for every fundamental 
solution, then the system admits at least n linearly independent funda
mental solutions. 

Before indicating the proof of the theorem, we note that a system 
which satisfies hypothesis (i) but not hypothesis, (ii) can be reduced 
by a suitable linear transformation to an equivalent system which 
explicitly requires that some of the variables be equal to zero. 12 If 
these variables be put equal to zero, the resulting system in n' ( < tt) 

I2l\.1inkowski 1, p. 44. 
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variables will satisfy both hypotheses, and the theorem will apply to 
the new system with n replaced by n'; 

Now to prove the theorem, we note first that the hypotheses 
imply the existence of a solution a= (all a2, ... , a71) such that each 
li(a) is positive. Hence from the continuity of the linear forms it 
follows that for every x = (x1, x2, ... , xn) in a sufficiently restricted 
neighbourhood of a, the forms li(x) will be positive. But in this 
restricted, but still n-dimensional neighbourhood, there are certainly 
n linearly independent sets x<jl = (x1Ul, x 2UJ, .•. , x~il). And these n 
linearly independent solutions cannot be expressed as linear com
binations of less than n linearly independent fundamental solutions. 
So the theorem follows from Theorem 2. 

If the system (a) admits non-trivial solutions, there are two other 
systems of inequalities uniquely determined by (a), which are inti
mately related to it and useful in the study of the properties of (a). 
These we will now define, assuming as we may that hypothesis (ii), 
as well as (i), of Theorem 3 is satisfied. Using the complete set of 
normalized fundamental solutions 

(i) (i) (i) (Xl ' x2 I ••• ' Xn ), (i=l, 2, ... , N) 

of (a) as coefficients, we form the system of inequalities 

" (a') ""' x~i>y. >o 
""' J J = ' (i=l, 2, ... IN) 

j=l 

which will be called the canonical polar system of (a). It will be 
useful to note the following obvious relationship between a system 
and its canonical polar system: The set of coefficients of each linear 
form in one system is a solution of the other system. 

Now using the complete set of normalized fundamental solutions 
of (a') as coefficients, we form the canonical polar system of (a.') 

(a") 
n 

:Z yy>xi >0, (i = 1, 2, ... , M) 
j=l 

which will be called the canonical form of system (a). The name is 
justified by the following: 

THEOREM 4. If the hypotheses of Theorem 3 are satisfied, the system 
(a) and its canonical form (a") admit precisely the same solutions. 
Furthermore the linear forms in (a") are identical except for positive 
numerical factors with a certain subset of the linear forms in (a). 

To prove the theorem we observe first that the system (a") admits 
as solutions the sets of coefficients (X 1(i), X 2(i), ••• , X~l) of (a') 
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and hence admits all solutions of (a). Conversely, every solution of 
(a") satisfies (a). For suppose ~==(.~h. x2, ... , xu) is a solution of 
(a"). Then it is a solution of every inequality 

(4) 

of which the left member is a linear combination of the left members 
of (a") with non-negative coefficients. But this is equivalent to 
saying that~ is a solution of (4) if the coefficients a1, a2, ... , a,z are 
solutions of the system (a'). Since the coefficients of each linear 
form in (a) constitutes a solution of {a') we conclude that xis a solu
~ion of (a). 

It remains to prove that to each linear form in (a") there corres
ponds one in (a) which differs from it only by a positive numerical 
factor. Let Y = ( Y1, Y2, ... , Yn) be the set of coefficients of any 
one of the forms in (a"), and suppose for definiteness that this par
ticular fundamental solution of (a') satisfies the n -1 equations 

(5) 
It 

~xy>yi=O, (i=1,2, ... ,n-1). 
i=l 

Consider the particular solution x = (x1, x2, ... , Xn) of (a) obtained 
from the linear combination of fundamental solutions 

.x==xm + x(2) + ... + x<n-1). 

This solution cannot make all of the linear forms li(x) positive. For 
if it did there would exist an n-dimensional neighbourhood of ~ which 
would consist entirely of solutions of (a), and therefore of solutions 
of (a"). But on the other hand, since 

n 

~ Yj~i =0, 
j""'l 

there are some points in every n-dimensional neighbourhood of x for 
n 

which ~ Yj x1 is negative. The contradiction proves that at least 
j ... l 

one of the forms l(x) v.anishes for the solution ~. and so for each of 
the fundamental solutions x<i>, (i=1, 2, ... , n-1). The coefficients 
of this linear form then satisfy the same n -1 linear homogeneous 
equations (5) which determine the set (Ylt Y2, ••• , Yn). The two 
sets of coefficients are therefore proportional, and the constant of 
proportionality must be positive since the solutions of (a) and (a") 
are the same. This completes the proof of Theorem 4. 

From the relations existing between the given system (a) and its 
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canonical polar system (a') and its canonical form (a") there follow 
almost immediately certain results obtained by Minkowski, Farkas, 
and others. 

CoROLLARY 1. If the system (a) admits 11-on-trivial solutions, a 
necessary and sufficient condition that all such solutions shalt satisfy a 
given inequality 
(6) cf>(x) :=b1x1+bzx2+ ... +b1~xn>-O 

is that cp (x.) be expressible in the form 

cp(x)==ctll(x)+c2lz(x)+ ... +cmZm(x), 

where the ci are non-negative constants. 
The sufficiency of the condition is obvious. The necessity follows 

from the fact that if (6) is satisfied by all solutions of (a) then the 
coefficients of cp must satisfy the canonical polar system (a'), and 
hence cp must be a linear combination with non-negative coefficients 
of the left members of the canonical form (a"). It will be noted 
that the hypothesis (ii} of Theorem 3 is not essential for Corollary 1. 
Nor indeed is our general assumption that the system (a) include at 
least n linearly independent forms. For both of these properties can 
be secured by appropriate non-singular linear transformations, and 
the required form of expression for cp persists under such transforma
tions. 

An inequality cp>Q which is satisfied by all solutions of a system 
(a) is said to be a conseq~tence of (a). A system in which no one of 
the inequalities is a consequence of the others may be called an 
independent system.13 \Ve have then the following condition for 
independence: 

CoROLLARY 2. A system (a) is independent if and only if it is 
identical with its canonical form except for positive numerical factors of 
tlze individual linear forms. 

7. Systems of Type (b). Let us consider now a system of linear 
inequalities of the form, 
(b) l;(x)>O, (i=1, 2, ... , m). 

Fourier studied systems of this type and in 1824 gave an outline 
of a method of solving such systems by successive elimination of the 
unknowns, In 1919, Dines14 considered the problem independently 

13Cf. Farkas 1. 
1~Dines 1. For a more complete general discussion than that given here see also 

Dines 11 where extensions to transcendental inequalities are also considered. 
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from this same point of view and succeeded in systematizing the 
procedure and formulating the conclusions in a manner which brings 
out the analogy with the theory of systems of linear equations. 

The central feature is the introduction of an integral-valued 
function of the coefficients of the system which is called the inequality
rank or I-rank of the matrix \\aii\\. The I-rank of this matrix may 
have any one of the values 0, 1, ... , n. The importance of this 
notion of 1-rank is indicated by: 

THEOREM 5. A necessary and sufficient condition for the existence 
of a solution of the system of inequalities (b) is that the !-rank of the 
matrix 1\ atj \1 be greater than zero. If the ,l-rank of this matrix is 
k (> O), then the system admits a solution in which k -1 of the Xj are 
arbitrary. 

We shall not give here a definition of the I-rank but we may 
remark that the process used in defining the I-rank furnishes a satis
factory algorithm for obtaining the general solution of the system. 

The system (b) can also be profitably considered in its relationship 
to the system (a), as was remarked by Iviinkowski. Obviously ali 
solutions of (b) are included among the solutions of (a). If we assume 
here, as in the preceding section, that the number of linearly inde
pendent forms is equal to the number of variables, the following 
theorem can be proven. 

THEOREM 6.15 Necessary and su.fficient conditions for the existence 
of a solution of (b) are that the system (a) admit fundamental solutions, 
and that no one of the li11Jear forms li(x) vanishes for every fundamental 
solution of (a). If these conditions are satisfied, tlze general solution of 
(b) is 

- x<t> +P x<2> + + x<N) Xj- Pl j 2 j • • • PN j (j=l, 2, ... , n) 
where 

(i) (i) (i) (X1 ,X2 •·:·•Xn), (i=l,2, ... ,N) 

is a complete set of fundamental sol~ttions of (a), and the p's are positive 
parameters. It will be recalled that in the general solution of (a) the 
parameters are only required to be non-negative. 

Still another criterion for the existence of a solution of (b) can 
be obtained by translating into algebraic terms the geometric criterion 
obtained in § 5. This becomes: 

HCf. Stokes 1, p. 793. The firat part of the theorem is obvious, but the second 
part is not. Miss Stokes obtains it by the geometric method which she uses through~ 
out her paper. An algebraic proof will be found as a corollary to Theorem 12 of the 
present paper. 
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THEOREM 7.16 A necessary and sufficient condition for the existence 
of a solution of (b) is that the forms l.;(x) satisfy no identical linear 
relation 

c1l1(x) +c2l2(x) + ... +cmlm(x) =0, 

in which .the coefficients c are non-negative const.ants of unit sum. 

This theorem can be thrown into another interesting form which 
brings into evidence the relationship between a system of linear 
inequalities 

" 
(b) ~ a.;1x1 >0 (i=l, 2, ... , m) 

i=l 

and what may be called the adjoint or associated system of linear 
equations 

(b') 
m 

~ ai.iYl =0 (j=l, 2, ... , n). 
i=l 

A few preliminary definitions are essential. A set of real numbers 
(x1, x2, ... , x") will be said to be positive if each x1 is positive, and 
negative if each x1 is negative. In either case the set may be said to 
be definite. The set will be said to be M-positive (mildly positive) if 
at least one element is positive and none are negative; and M-negative 
(mildly negative) if at least one is negative and none are positive. 
In either of the latter cases the set may be said to be M-definite. 

THEOREM 8. A necessary and sufficient condition for the existence 
of a solution (x1, x2, ... , Xn) of the system of inequalities (b) is that the 
associated system of linear equations (b') admit no M-definite solution 
(yl! Y2• • • • • Yn). 

The following two theorems, due essentially to Carver, are analogues 
of Corollaries 1 and 2 of the preceding section, and can be proven 
with little difficulty from the theorems already developed. 

THEOREM 9. If the system (b) admits solutions, a necessary and 
sufficient condition that all such solutions shall satisfy a given inequality 

cp(x)<5Sb1x1 +b2x2+ ••. +bnxn> 0 

is that cp(x) be expressible in the form 

cp(x) =c1h(x) +c2l2(x) + ... +cmlm(x), 

where the coefficients (c1, c2, ••. , em) form an M-positive set. 

180btained in somewhat different form independently by Stiemke and Carver. 

C4 
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THEOREM 10. If two consistent systems of type (b) are independent 
and equivalent, tften the two systems contain the same number of inequali~ 
ties, and the linear forms in one system are identical except for positive 
numerical factors with those in the other. 

Finally we note the following results, also due to Carver. 

THEOREM 11. If the matrix II aii II of coefficients is of rank m, 
the system (b) certainly admits a solution. If the rar:k of this matrix 
is r( <m), and the system (b) admits no solution, then there is a sub~ 
system consisting of at most r + 1 of the given inequalities which admits 
no solution. 

The truth of the first statement is obvious if the inequalities be 
thought of as equations with positive right members. 

The truth of the second statement is most easily established by 
consideration of the set of m points 

M: (ail• ai2· ... , a.,), (i=l, 2, ... , m). 

If the rank of the matrix \I aii II is r, these points lie in a common 
r~:flat through the origin and hence the smallest convex region RM is 
contained in this r-dimensional manifold. Furthermore, if the system 
(b) admits no solution, the origin is contained in RM. Hence the 
coefficients aii satisfy relations of the form 

~ miai1 =0, (j=l, 2, ... , n) 
i 

where the summation index i ranges over some subset i1, i2, ... , i,+l 
of the numbers 1, 2, ... , m; and the multipliers m; form an M~definite 
set. From Theorem 8 it then follows that the subsystem of inequalities 
l;(x)> 0, (i=i1, i2, ... , '4+1) admits no solution. 

8. Systems of Type (c), and Positive Solutions of Linear Equations. 
The systems considered in this section are of the form 

(c) li(x) > '0, (i = 1, 2, ... , m), 

and differ from those of type (a) only in that the inequality is required 
to hold in at least one instance. If the matrix of coefficients is of 
rank n the two systems are entirely equivalent except that (a) admits 
the trivial solution (0, 0, ... , 0), which does not satisfy the require~ 
ments of (c). Since, as we have seen in § 6 the given system can 
always be reduced by a non~singular linear transformat~on to an 
equivalent one in which the number of variables is equal to the rank 
of the matrix, the system (c) from one point of view offers no new 
interest. Of very particular interest however is the case in which it 

17Cf. Stiemke 1, and Dines 3. 
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admits no solution, inasmuch as that turns out to be precisely the 
case in which the associated system of linear equations admits a 
positive (and hence of course also a negative) solution. The relation
ship is expressed in the following theorem obtained17 independently 
by Stiemke and Dines, a theorem for which interesting analogues and 
generalizations are found in the transcendental cases. 

THEOREM 12. A necessary and sufficient condition that the system 
of inequalities 

(c) 
11 

2j a;JxJ> '0 (i = 1,2, ... , m) 
j=l 

admit no solution (x1, X2, ••• , Xn) is that the associated system of equa
tions 

(c') 
m 

2j a;JYi=O (j=l, 2, ... , n) 
i=l 

admit a definite solution (yl! y2, ... , Ym).18 

The system of inequalities (c) is equivalent to the system of 
equations 

(7) 
" 
2j a;JXJ=b; (i=l, 2, ... , m) 

j=l 

in which the constants b; form an 11£-positive set but are otherwise 
arbitrary. If the rank of the matrix II aiJ II ism this system obviously 
admits a solution, while the associated system of equations (c') 
admits only the trivial solution (0, 0, ; .. , 0). The theorem is there
fore true in this case. 

Suppose that the rank of this matrix is r ( <m). Then the system 
of homogeneous equations (c') admits m -r linearly independent 
solutions which we may denote by 

(YrK, Y2"' · · · , Ym"), (1< = 1, 2, ... , m -r). 
And the non-homogeneous equations (7) admit a solution if and only 
if the constants b; satisfy the m -r conditions 

(8) 2j Y;Kb; =0 (~<=1, 2, ... , m-r). 
i=l 

The system of inequalities (c) therefore admits a solution if and only 
if the system of equations (8) admits an M-positive solution. But 
by Theorem 8, the necessary and sufficient condition for this is that 
the associated system of inequalities (of type (b)) 

18The proof given below is much simpler than the early proofs of Stiemke and 
Dines. The method is essentially that used in proving an analogous theorem in 
General Analysis, Dines 7. Cf.also Fujiwara 3. 
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m-r ' 
(9) 1: YiKc.>O (i=l, 2, ... , m) 

K=l 

admit no solution (ct, Cz, ... , Cm-r)· 
Now the left members of (9) for arbitrary values of the c.'s repre

sent the totality of solutions (y1, Y2, ... , Ym) of the system of equa
tions (c'). Hence a necessary and sufficient condition that the 
system (c) admit a solution is that the system (c') admit no positive 
solution. This is equivalent to the theorem stated. 

This theorem indicates the close relationship between the theory 
of linear inequalities of type (c) and the theory of positive solutions 
of linear equations. For further developments of this idea the reader 
may refer to Dines 3, 4 and 6. 

We are now in a position to give the deferred proof of Theorem 6, 
the statement of which we repeat in the following form: 

CoROLLARY. If the system (b) admits solutions and the number of 
linearly independent forms li (x) is equal to the number of variables, then 
the general solution of the system (b) is 

- x 0 l + x<2) + + x<N> Xj -Pl j P2 j • • • PN j ' (j=l, 2, ... , n) 
where 

(i) (i) (i) (X1 ,X2 , ... ,Xn), (i=l,2, ... ,N) 

is a complete set of fundamental solutions of the system (a), and the p's 
are positive paramete1·s. 

Let 

(a') (i=1,2, ... ,N) 

denote the canonical polar system of (a), and 
n 

(a") ~ y;<,ilx,; >O, (. 1 2 M) kJ ~ ~=' , ... , 
j=l 

the canonical form of system (a). If (y'1. y'2, .•• , y'n) is any non
trivial solution of (a') we have by Theorem 2, 

y'i=q1Y)ll+q2Y)2l+ ... +qMY)M), (j=l, 2, ... , n) 

where the q's form an M-positive set. Thus if (x' 1, x'z, ... , x' n) is 
any solution of the system (b), and thus by Theorem 4 a solution of 
(a") with the inequality holding in each instance, we see that 

n 

1: x'i y'i > 0. 
j=l 
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Hence the system of inequalities 
n 
~ xy>y1 >o, (i=l, 2, ... , N) 

j=l 

n 

-~ x'iYi >O 
j=l 

53 

admits no non-trivial solution. By the above theorem we may there
fore write 

x'J=P1X<j)+p2X)2l+ ... +PNX)Nl (j=l, 2, •.. , n) 

with each Pt> 0, which is the desired result. 
Theorem 12 and the theorem immediately to follow are analogous 

respectively to Theorem 8 and 11 of the preceding section. 

Theorem 13. If the matrix II ati II is of rank m, the system of 
inequalities (c) certainly admits a solution. If the system (c) admits no 
solution, there is a subsystem 

(10) 
n 

~ aiixi > '0, (i =ih i2, ... , i.) 
j ... l 

of s ( :1! m) inequalities which admits no solution, and of which the matrix 
of coefficients is of rank s -1. 

The first statement is obviously true, and the second is also if the 
matrix of (c) happens to be of rank m-1. Let us suppose then that 
the matrix of (c) is of rank r (<m-1); in which case a non-singular 
linear transformation will reduce the system (c) to an equivalent 
system 

r 
~ a'i1 x'1 > '0, (i =1, 2, ... , m), 

i-1 

in which there are only r variables. 
Since by hypothesis this system admits no solution, the associated 

system of equations admits a positive solution (by the preceding 
theorem). That is the origin is the centroid of suitable positive 
masses distributed at the m points (a'tl! a't2• ... , a'tr) in space of r 
dimensions. But from the results of Caratheodory (§5), it follows 
that the origin is then centroid of suitable positive masses distributed 
at a subset of not more than r+1 of these points. Hence there is a 
system of equations 

~aijy~=O (j=l, 2, ... , r) 
• 

in which the subscript i takes only k ( ;;§r+l) of the values 1, 2, ... , m, 
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which admits a positive solution. The .associated system of inequalities 

r 
I I '0 2.: a,ii Xj > , 

j=l 

therefore admits no solution. 
The corresponding inequalities of the system (c) therefore form 

a subsystem which admits no solution. If the rank of the matrix of 
this subsystem is k -1, we have reached the desired conclusion. If 
its rank is less than k -1, the procedure can by repeated successively 
until a subsystem satisfying the required condition is obtained. 

CoROLLARY. The number s of inequalities in the subsystem (10) is 
not greater than n + 1. For the rank s -1 cannot possibly be greater 
than n. 

9. System of Types (d) and (e). A system of inequalities of the 
form, 

(e) 

l>f\ 

li(x) I> o: 
=0, 

(i=l, 2, ... 'p) 
(i=p+l, p+2, ... , q) 
(i =q+l, q+2, ... , m) 

includes those of types (a), (b) and (d) as special cases. Systems of 
type (d) have been studied by Schlauch and those of type (e) by Stokes. 
We limit ourselves to a statement of the main theorem obtained by 
Stokes. 

We assume that there are n linearly independent Z;(x) in the 
given system. For convenience denote the set Z;(x), (i = 1, 2, ... , p) 
by P; the set l1(x), (i=P+l, P+2, ... , q) by Q and the set l1(x), 
(i =q+l, q+2, ... , m) by R. Then a solution of the system (e) is 
a set of real numbers (x'1, x' 2, ... , x;1) such that for these values of 
the variables each member of P is non-negative, each member of Q 
is positive and each member of R vanishes. Necessary and sufficient 
conditions that the set (e) be consistent are that (i) there exist one 
or more fundamental solutions 

(X (i) x (i) x<•l) 
1 , 2 ' • • • r n ' (i=1,2, ... ,s) 

of the system (a) for each of which each member of R vanishes, and 
(ii) no member of Q vanishes for all such fundamental solutions. 

Suppose now that the system (e) is consistent and assume for con
venience of notation that all the members of Q vanish for the first 
r ( <s) of the above mentioned fundamental solutions and only for 
these. Then the general solution of the system (e) is 
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x1 = g1xjl> +q2X)2> + ... +qrX Jr> +Pr+lxf+1> + ... +p.,.x)s>, 
(j=l, 2, ... , n) 

55 

where the q' s are non-negative parameters and the p' s are positive para
meters.19 

10. Generalizations. Just as the theory of systems of linear 
algebraic equations has led by extension and analogy to theories of 
systems of linear equations in infinitely many unknowns and to 
theories of linear integral equations, so the developments described 
in the preceding sections suggest analogous theories of transcendental 
inequalities. 

A more comprehensive view of the possibilities is obtained however 
if we state first an extreme generalization of the algebraic problem 
which will include the more obvious analogies as special cases. This 
is the method used by E. H. Moore in his General Analysis. 

We note first that the generalization may take either of two quite 
distinct forms, depending on whether the linear algebraic forms upon 
which it is based be written 

(11) 

or equivalently 

(12) 

11 

l;(x) ==2": ailxi (i=l, 2, ... , m) 
i-1 

n 
l,(x)==x.+2": a;ixi (i=l, 2, ... , m) . 

.i=l 

To obtain the generalization, we replace the variable subscripts i, 
j by two general variables p, q, whose ranges are classes of elements 
P and Q respectively, and replace the given matrix a;1 (or aii) of 
coefficients by a given real valued function a(p, q) and the set of 
unknowns x1 by a function Hq) to be determined. The summation 
symbol2": is replaced by a linear operator Jr;. of such a nature that the 

i 
result of the operation Jr;.a.(p, g) ~(q) is a real valued function of the 
variable p. The generalizations of the sets of forms (11) and (12) 
may then be written respectively 

(13) l[~[P]==Jqa(p,qH(q), (po1~rangeP) 
and 
(14) l [~IP] == ~(p) +Jaa.(p, q)~(q), (p on range P). 

To each of these forms there corresponds a problem generalizing each 
of the types (a), (b), (c), (d), and (e) in § 1. By analogy with integral 

tDStokes 1, p. 792. 
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equation nomenclature, the inequalities arising from the forms (13) 
and (14) may properly be called linear inequalities of the first kind 
and second kind respectively. 

As in the case of integral equations, so with these general in
equalities, the first kind offers the greater difficulty, and little has 
been done with this problem in its generality. The only known result2o 
for entirely general variables p, q_ generalizes Theorem 12 of § 8. The 
given kernel function a(p, q) is assumed to be representable in the 
form 

(15) 
m 

a(p, q_)= ~ tJ-i(p)vj(q_), 
j=l 

where the functions FJ.i (p) and vi (q). belong respectively to classes of 
real-valued functions NI and N, each of which possess the property 
of linearity,21 Two linear functional operators Jp and J« operate on 
product functions of the types f.l- 1 (p )p.." (p) and v' (q)v" (q) respectively, 
yielding in each case a definite real number. In addition the operators 
and classes of functions satisfy the following three postulates: 
P. For every function _JI of N, Jav(q)v(q_) >O, the equality holding only 

if v(q)==:O. 
N. If p.(p) is an M-definite function (that is if tJ-(P) is not identically 

zero and does not change sign on P) and 1r(p) is a function of M 
which is everywhere positive, then Jpf.L(p)1r(p) ~0. 

E. If (p.1, FJ.2, .•• , FJ.m) is a set of functions of M such that no linear 
combination of them is M-definite, then there exists a positive 
function 1r(p) in M such that JptJ-i(P)7r(p) =0, (i=1, 2, ... , n) 
Upon this basis one obtains the following theorem: 

THEOREM 14. For a given kernel function a(p, q) of form (15), the 
inequality22 

Jqa(p, q) !;(q) > '0 (p on range P) 

admits a solution t(q), if and only tj the associated equation 

Jqa(p, q)'fJ(p) =0 (q on range Q) 

admits no positive solution rJ (p). 

It is certain that the form (15) of the kernel is more restrictive 
than necessary, but no proof of the theorem has been devised which 
does not require this form. 

20Dines 10, p. 145. 
21That is, if f.L'(p) and f.L"(p) belong to M and a and b are real constants then 

ap..'(p) +bp."(p) belong to M. 
22The symbol >' has the meaning of ~ reinforced by the requirement that the 

inequality shall hold for at least one value of p. 
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In view of the complementary character of Theorems 8 and 12 
one naturally expects to find here a generalization of Theorem 8 
analogous to the above generalization of Theorem 12. The fact is 
however that the suggested generalization is not valid, as may be 
shown by an example.23 

Turning now to the inequality of the second kind, we find the 
situation much simpler. No restriction of form such as (15) is neces
sary. The inequality of second kind of type (b) may be written 

(16) ~(p)+Jqa(p, q)Hq)>O (p on range P), 

and a satisfactory theory for this type has been obtained24 upon the 
postulational basis used by E. H. Moore for his generalized integral 
equation theory, with the addition of a few new postulates. The 
reader may refer to the original paper for the complete discussion. 
It will be sufficient here to indicate the method of treatment, which 
is to replace the inequality (16) by an equivalent equation 

HP)+Jqa(p, q) Hq)=7r(p) (p on range P) 

where the function 1r(p) is an arbitrary positive function. An ade
quate theory of the general equation of this type has been developed 
upon a postulational basis by Moore and Hildebrandt. 

It may be noted here that this same method of treatment will 
apply, to some extent at least, to the inequalities of the other types 
(a), (c), (d), and (e), the only difference being in the properties to 
be assigned to the function ~(p). But due to this difference, it is 
only for inequalities of type (b) that we are able to state the following: 

THEOREl\I 15. The inequality 

HP)+Jqa(p, qH(q)>O (p on range P) 

admits a solution ~if and only if the associated equation 

'YJ(q)+Jp'YJ(P)a(p, q) =0 (q on range Q) 

admits no J..1-dejinite solut·ion 'YJ. 
This is a generalization of Theorem 8. 

In the next section we turn our attention to specializations, par
ticularly of the inequalities of the first kind, for which the general 
theory is so incomplete. 

11. Specializations; Q a Finite Range. In this section we consider 
inequalities arising from the form (13) with the restrictions that Q 

2BDines 10, p. 141. 
24Dines 7. 
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is a finite range and la is the finite summation operator. The linear 
form (13) may in this case be written 

(17) 
n 
~ ai (p) ~i• (p on range P). 

j=l 

The range P is entirely unrestricted, the n given functions Oj(p) are 
real valued on this range, and the symbols ~i• (j = 1, 2, ... , n) repre
sent real numbers to be determined from the inequalities imposed. 

The only case that has been treated25 without further restriction 
is that of the inequality 

'n 

(18) ~ ai(P)~i > '0 (p on range P) 
j=l 

which generalizes an algebraic system of type (c). A certain integral 
valued function of the set of functions ai (p) is defined and called 
the M-rank of the set. This is analogous to the l-rank which we have 
already mentioned in connection with algebraic inequalities of type 
(b), and the theorem obtained is analogous to Theorem 5 in §7. 

Vve pass to a consideration of important results which can be 
obtained upon the additional hypothesis of a certain closure property 
for the functions ai(P) in (17). 

Let us denote by M the set of points in n-dimensional space with 
coordinates 
M (a.l(p), adp), ... , a,1 (P)), (p on range P). 

In order that the geometric notions introduced by Caratheodory may 
be applicable, it is necessary to assume that this set of points be closed, 
that is that it contains its limit points. When this condition is satisfied, 
the system of forms (17) will be said to be closed, and any one of the 
various systems of inequalities to which it gives rise will be said to 
be closed. For closed systems, it is possible to generalize a number 
of the results which have been obtained for algebraic systems. 

Haar has given for closed systems a theorem generalizing Min
kowski's Consequence Theorem (our Corollary 1, § 6). But his 
proof is open to some criticism, inasmuch as he assumes that the 
system l[~iP]>O has a solution because the system l [~ip]>-0 has non
trivial solutions. This same assumption is made and justified by 
Minkowski in his proof for the algebraic case, but the justification 
is not quite so simple in the generalization, and the assumption is 
certainly unwarranted if allof the functions a.i(P) vanish for some one 
element of the range P. 

26Dines o. 
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But the argument of § 5 gives immediately the following: 

THEOREM 16. If the set of points M is closed, 
(i) the system of inequalities 

(19) 
n 
~ a.j(PHj~ 0, (p on range P) 

j=l 

59 

admits a non-trivial solution if and only if the origin is not an inner po~nt 
of RM, and 
(ii) the system 

(20) 
n 

~ a; (p) ~j > 0, (p on range P) 
j=l 

admits a solution if and only if the origin is not a point· of RM. 

The analogous theorem for the dosed system (18) is not quite so 
simple, but merits consideration. If the nfunctions a.t(P), a2(p), ... , 
a.n(P) are linearly independent on P, this system is equivalent (except 
for the trivial solution) to the system (19). Suppose then that just 
r( <n) of these functions are linearly independent on P. Then the 
point set M lies in an r-flat L, through the origin, and RM also lies in 
L,. The region RM can therefore have no inner points relative to 
the fundamental n-dimensional space. But let us in this case define 
the 1:nner points of RM relative to L, to be those points of RM which 
are not limit points of points of Lr not belonging to RM. Then these 
inner points of RM relative to Lr are precisely those through which it 
is impossible to pass an (r-1)-flat lying in Lr which does not separate 
points of M. On the basis of these notions it is not difficult to com
plete the proof of the following: 

THEOREM 17. If just r( <n) of the functions a.t(p), a2(p), ... , 
an(P) are linearly independent on P, the point set Ji.1lies in an r-fiat Lr 
through the origin. A necessary and efficient condition tltat the closed 
system 

(21) 
n 

~ a.j(PHj > '0, (p on range P) 
j=l 

admit no solution is that the origin be an inner point of RM relative to L,. 

Generalizing the pertinent part of Theorem 11, we have 

THEOREM 18. Ij r is the number of the junctions ai(P) wh~ch are 
linearly independent on P, and if the closed system (20) admits no solu
tion, then there is a subsystem 
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n 
:z aj(P~Hi > o (i = 1, 2, ... , k) 

j=l 

consisting of at most r + 1 inequalities which admits no solution. 
The proof is identical with that of Theorem 11. 
Similarly generalizing Theorem 13 we have 

THEOREM 19. If r is the number of the functions ai(P) which are 
linearly independent on P, and if the closed system (21) admits no 
solution, then there is a subsystem 

(22) 
n 
:Z ai(Pi)Ei>'O (i=1, 2, ... , k) 

j=l 

consisting of at most r + 1 conditions which admits no solution. 

For from the hypothesis and Theorem 17 it follows that the point 
set M lies in an r-flat Lr through the origin, and the origin is an inner 
point of RM relative to Lr. Hence there is a subset of at most r+1 
points of M, say (a.l(Pi), a2CPi), ... , a,(P;)), (i = 1, 2, ... , k), to which 
one can assign positive masses so that the origin will be the centroid 
of the system. That is, the system of linear equations 

k 

(23) :Z a.i(P;)Y; =0, (j=1, 2, ... , n) 
i=l 

admits a positive solution (y1, y2, ... , Yk). Hence by Theorem 12 the 
associated system of inequalities, which is of form (22) admits no 
solution.26 

It will be noted that the last two theorems provide necessary con
ditions in finite algebraic terms that certain closed systems of in
equalities shall admit no solution. In the case of Theorem 18, it is 
obvious that the condition is also sufficient. But such is not the 
case in Theorem 19. For example in the case of the simple algebraic 
system arising from the three linear forms in two variables 

the subsystem 

26If the origin belongs to the point set lvf, the theorem would be very trivially 
satisfied by taking for the system (22) the single condition corresponding to the 
element P for which each a (p) vanishes. A study of the proof of Caratheodory's 
theorem shows however that under the present hypotheses there will always be 
systems (23) and (22) which are not trivial in the sense just described. 
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admits no solution, while the system 

lt(X) > '0 (i = 1, 2, 3) 

admits the solution x1 = 0, x2 > 0. 
The theorem which follows is designed to give a necessary and 

sufficient finite algebraic criterion for the non-existence of a solution 
of a closed system (21). 

THEOREM 20. If r ( > 0) is the number of the junctions o;(P) which 
are linearly independent on P, and if the system 

n 

(21) ~ a.i(P)~i> '0 (p on range P) 
i=l 

is closed, then a necessary and sufficient condition that this system admit 
no solution is that there be a finite set (pl, P2, ... , Pk) consisting of at 
most 2r elements of P, such that the matrix II o.i(Pi) II is of rank r and 
the algebraic system 

n 

(24) ~ ai(PiHJ > '0, (i = 1, 2, ... , k) 
i•l 

admits no solution. 
We first prove the theorem for the case r = n, and then extend the 

proof to the general case. The condition is sufficient. For if (24) 
admits no solution, any existing solution of (21) would have to annul 
all the left members of (24) which would require that ~i =0, (j = 1, 
2, ... , n). Hence (21) can have no solution. , 

To prove the necessity of the condition, we note that it is obvious 
for 1t = 1, and develop the proof by mathematical induction. If (21) 
admits no solution, we deduce from Theorems 19 and 13 the existence 
of an algebraic system 

n 
(25) ~ a;(P;)~i > '0 (i=l, 2, ... , s), (s~n+l) 

i=l 

with matrix of rank s-1, which admits no solution. If s=n+1, the 
desired conclusion has been reached. If s<n+l, consider the sets 
{ ~} which annul the left members of (25). They are all represented 
by the formulas 

(26) 
n-s+l 

t.= ~ ct(g) (J' 12 n) 'OJ - gt;J = I I • • • I I 

g=l 

where 
t (g) t (g) t(g)) 
t;l I t;2 I • • 'I t; 1J (g=l, 2, ... , n-s+1), 

are n-s+llinearly independent sets. 
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Substituting (26) in (21) we obtain a system which may be written 
in the form 

(27) 

where 

(28) 

n-s+l 
~ f3c(P)cg> '0 (p on range P), 

g=l 

n 
f3c(P)= ~ ai(P)~)cl, (g=1, 2, ... , n-s+l). 

j=l 

The system (27) in the n-s+l unknowns Cg admits no solution. 
Furthermore it may easily be verified that the system is closed, and 
that the functions f3c(P) are linearly independent on P. Hence by 
the assumption of our induction there exists an algebraic subsystem 

11-s+l 

(29) :Z {3g(Pi)cg>'O (i=s+l, s+2, ... , k) 
g=l 

consisting of at most 2(n -s+l) conditions which admits no solution, 
'and with matrix of rank n-s+l. 

Consider now the algebraic system of inequalities in the original 
n unknowns ~i• formed by uniting the system (25) and the system 
obtained from (29) by use of (28) and (26). This may be written in 
the form (24). The number of its members is at most s+2(n-s+l) 
which is at most 2n. And the rank of its matrix is n; for the left 
members of (29) can simultaneously vanish only if every cg is zero, 
and hence in view of (26) the left members of the combined system 
can vanish only if every ~1 is zero. 

This completes the proof of the theorem for the case r = n. Suppose 
now that r<n, and that the first r of the functions a.i(P) are linearly 
independent on P. Then the remaining functions may be expressed 
in the form 

(30) 
r 

a.;(P) = :Z Cjho.h(p), (j=r+l, r+2, . .. , n) 
h=l 

where the coefficients CJh are well defined constants. 
Upon the substitution of (30) in (21) it becomes apparent that 

the resulting system can be written in the form 

(31) 
r 

:Z a.j(p)~ > '0 (p on range P), 
J=l 

where the new variables" e are related to the old by the transformation 
n 

~;=~,+ ~ Cgj~i• (j=l, 2, ... , r), 
g=r+l 

~;=>-1 (~) (j=r+I, r+2, ... , n), 
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the linear forms Aj(~) being restricted only by the condition that the 
transformation be non-singular. 

The systems (21) and (31) are related in the following ways: (i) to 
each soliuton of one corresponds a solution of.the other, (ii) to each 
solution of an algebraic subsystem of one corresponds a solution of 
the corresponding algebraic subsystem of the other, (iii) the rank of the 
matrix of any algebraic subsystem of one is. equal to the rank of the 
matrix of the corresponding subsystem of the other. Hence our 
theorem, which has been proven for the system (31), holds for the 
system (21). 

CoROLLARY. If the function a.1(p), a2(p), . , D.n(P) are linearly 
independent, Theorem 20 remains valid if the symbol > ' be replaced by ~ 
in either one or both of the systems (131) and (24), and trivial solutions be 
disregarded. 

The number 2r occurring in the statement of Theorem 20 cannot 
be replaced by any smaller number as an example will show. In 
view of the preceding remarks it will be sufficient to consider the case 
r=n. 

Let 

h ==x1 +x2+ ... +xn, 

l; ==x1+ .. . +x;-1-x;+xi+l + ... + Xn, (i=2, 3, ... , n) 

li+11==.-l,, (i=l, 2, ... , n). 

The algebraic system 
(32) z. > '0, (i=1, 2, ... , 2n) 

clearly admits no solution. Furthermore the forms z., (i = 1, 2, ... , n) 
are linearly independent and we may consider the system (32) as 
system (21) of Theorem 20, with r =n. 

The system .(32) is based on the two sets of forms lit (i = 1, 2, ... , n) 
and l;+n• (i= 1, 2, ... , n). If any one form lk of either of these sets 
be omitted, the remaining forms in that set vanish for some non
trivial set x = (x1, x2, ... , X11 ) ; and either ±x is a solution of the system 
obtained from (32) by omitting the condition based on Zk. Thus the 
system corresponding to the system (24) of Theorem 20 must in 
this case consist of the entire system (32), which contains 2n con
ditions. 

We pass now to a consideration of those theorems which have to 
do with the relationship of systems of inequalities to their associated 
systems of linear equations. For inequalities based on the specialized 
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type of forms (17) with which we are dealing in this section, the 
associated equations would have the general character 

JpaJ(P)71(P)=0 (j=l, 2, ... , n), 

where 71 (p) is the function to be determined, and Jp is a linear operator 
which operated on products of functions of the type indicated, pro
ducing from each such product a definite constant. Algebraic examples 
of the kind of theorems to be expected are Theorems 8 and 12. Two 
other theorems of the same general nature have been obtained by 
specialization of the range P, the class of functions to which ai and 71 
shall belong, and the operator Jp. In the first of these, Pis taken to 
be the infinite sequence of positive integers, the functions a; and 77 to 
be infinite sequences of real numbers satisfying certain convergence 
conditions, and Jp to be infinite summation operator. This case has 
been treated by Dines,27 and the interested reader may consult the 
original paper. 

In the second and perhaps more interesting case28 the range P is 
a closed linear interval, the functions ai and 7J are real continuous 
functions on this interval and Jp indicates definite integration over 
the interval. We limit ourselves to a statement of the theorem. The 
proof given in the paper to which reference is made is somewhat 
lengthy and difficult, and no adequate simpler proof has beenfound.29 

THEOREM 21. If n real functions a1(x), ct2(x), ... , ct11 (x) are con
tinuous on the interval a~ x ~ b, a necessary and su.fficient condition that 
the ineq_uality 

1! 

~ ai(x)~1 >'0 (a~x~b) 
j=l 

admit no solution (~1, ~2, ... , ~11 ) is that the associated system of integral 
equations J: ai(xh(x)dx=O (j=l, 2, ... , n) 

admit a positive continuous solution 71(x). 
If the given functions a1(x) are assumed to be linearly independent, 

Theorem 21 can be stated in the following interesting form. 

THEOREM 22. A necessary and st~fficient condition that a finite set 
of real functions, continuous and linearly independent on a closed 

27Dines 9. 
28Dines 8. 
29A new proof of Theorem 21 made its appearance while the galley proof was 

being read. See Schoenberg 3. 
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interval, admit a positive continuous function orthogonal to all of them 
is that every linear combination of the junctions change sign on the 
interval. 

The following somewhat similar theorem for more restricted sets 
of functions follows immediately from Theorem 16 (i) and a certain 
very interesting theorem of Kakeya.ao 

THEOREM 23. A necessary and sufficient condition that a finite set 
of teal junctions, continuous and linearly independent on every sub
interval of a closed interval, admit an Nl-positive3 1 continuous junction 
01·thogonal to aU of them is, that every linear combination of the functions 
change sign on the interval. 

In his statement of the theorem in his first paper Kakeya omits 
mention of any restriction as to the linear independence of the func
tions. In his second paper he notes the omission, and states that the 
functions are assumed to be linearly independent on every sub-interval, 
but he apparently has in mind the more restrictive condition that no 
linear combination of the functions is constant on any sub-interval. 
The theorem which he obtains in attempting to remove this restriction 
seems to be in error.32 Apparently he overlooked the fact that when 
the given functions are simultaneously constant on a sub-interval, 
the curve represented parametrically by the equations Yi =aj(x), 
(j = 1, 2, ... , n)"has a peculiar point which invalidates his argument 
relative to the centre of mass. 

The statement of Fujiwara,33 which might be interpreted as im
plying that our Theorem 22 is a· direct consequence of Kakeya's 
theorem, should not be so interpreted. 

In concluding this section, we give two equivalent finite algebraic 
criteria34 for the two properties of sets of functions which have been 
seen to be equivalent in Theorem 22. 

THEOREM 24. A set of real junctions a1(x), a2(x), •.. , an(x), con
tinuous and linearly independent upon a closed interval has the two 
properties proven equivalent in Theorem 22 if and only if there exists a 
point set (x1, x2, ... , xk), consisting of at most 2n points of the interval, 

3°Kakeya 1, I. 
31Jt will be recalled that M-positive means "somewhere positive and nowhere 

negative". 
a2Kakeya 1, II, p. 90. 
33Fujiwara 3, p. 332. 
a•For other conditions which are sufficient to assure the properties in question, 

see Dines 5 and McCoy 1. 

C.5 
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such that the given junctions are linearly independent upon this point 
set and (i) the system of inequalities 

n 
1; aj(xi)~J > '0 (i = 1, 2, ... , k) 
J~l 

admt'ts no solution (b ~2 •••• , ~ .. ) or (ii), what is equivalent, the system 
of equations 

k 

1; aj(xi)"fJi = 0 
i=l 

(j = 1, 2, . . . , n) 

admits a positive solution ('IJl, 'Y/2, ••• , 7Jk). 

This follows immediately from Theorems 21, 20 and 12. 

12. Further Specializations. In the preceding section we have 
considered inequalities which arise from the general form (13) by 
specialization of the range of the variable q to be a finite set. In the 
present section we shall give attention to inequalities which arise from 
this general form by specialization of the range of the variable p to 
be a finite set. In this case the form (13) may be written 

Jqa.i(q)Hq) (i=l, 2, ... , n). 

The range Q of the variable q is entirely unrestricted. The given 
functions a.i(Q) and the unknown function Hq) are to belong to a class 
of real-valued functions F which is assumed to possess the property 
of linearity; and Jq is a linear operator which operates on products of 
functions of F, the result of such operation being in every case a 
definite real unmber. We assume also 

P. For every functionj(q) ofF, Jq/(q) J(q) ~ 0, the equality holding 
if and only if j(q)===.O. 

The following theorem is a generalization of Theorem 12 of § 8. 

THEOREM 25. If the n functions a.1(q), a2(q), ... , an(q) belong to 
the class F, a necessary and sufficient condition that the system. of in
equalities, 
(33) Jqa.1(q)Hq) > '0 (i= 1, 2, ... , n) 

admit no solution ~(q) belonging to F, is that there exist posi#'i!e const:wts 
A1, A2, ... , An such that 

)qal(q)+A.2a.2(q)+ ... +A"a.,.(q) =0, (q on range Q). 

The sufficiency of the condition is almost obvious. To establish 
the necessity of the condition we make use of the 
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LEMMA.35 If a1(q), (i=1, 2, ... , n) are functions ofF linearly 
independent on Q and a1. a2, ... , an are any real constants, then there 
exists afunction ~'(q) ofF such that 

Jqai(qH'(q) =ail (i=l, 2, ... , n). 

If the system (33) admits no solution, then by this Lemma just 
r( <n) of these functions are lineraly independent on Q. Suppose for 
convenience that the first rare linearly independent. Then we have 

(34) 
r 

ai(q) = ~ ciiai(q), (i=r+l, r+2, ... , n) 
j=l 

where the coefficients C;j are well defined constants. 
Now the system of algebraic inequalities, 

(35) 
r 

~ C;jxJ?;, 0, 
j=l 

(i=l, 2, ... , r) 

(i=r+l, r+2, ... , n) 

does not admit a solution for which the inequality holds in at least 
one instance. For suppose (xt, x2, ... , x,.) were such a solution. By 
the lemma, there exists a function I (q) of F such that 

Jqa;(q)"[(q)=xi (i=l, 2, ... , r), 

and it is easily verified that "f(q) is then a solution of (33) contrary to 
hypothesis. Hence by Theorem 12 of§ 8 there exist positive constants 
}q, A2, ... , An such that 

(36) 
n 

~ f...;cti+A.i=O, (j=l, 2, ... , r). 
i=r+l 

From (34) and (36) we now find that 

1l 1' 

~ f...i ai (q) = - ~ AJ ai(q), (q on range Q) 
i=r+l j=l 

that is 
n 

~ A;a;(q) =0, (q on range Q) 
i=l 

as required by the theorem. 
In a similar manner the complementary theorem generalizing 

Theorem 8 of § 7 may be established. 
The following theorem was obtained by Haar36 for the case in 

which F is the class of continuous functions on a closed linear interval, 
and Jq the definite integral over the interval. We omit the proof as 

116Dines 10, pp. 143, 146. 
30Haar 1. 
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the method used by Haar may be immediately extended to establish 
this more general result. 

THEOREM 26. If the linearly independent functions a.1(q), a.2(q), 
•.. , a.11 (q) belong to F, and the system 

Ja Cli(q)Hq) ~ 0, (i = 1, 2, ... , n) 

admits at least one non-zero solution ~(q) belonging to F, then a necessary 
and· sufficient condition that all suck solutions shall satisfy a given 
inequality 

JafJ(qH(q) ~ o, 
where (3(q) belongs to F, is that (3(q) be expressible in the form 

{3(q)==cicH(q) +c2a.2(q) + ... +cma.n(q), (q on range Q) 

where the ci are non-negative constants. 
This theorem is a generalization of Minkowski's Consequence 

Theorem (Corollary 1, § 7). 
In concluding these remarks we may mention one further type 

of specialization. If we restrict both P and Q to be the infinite sequence 
of positive integers and Jq to be the infinite summation operator, the 
form (13) then gives rise to a system of infinitely many inequalities 
in an in.finite number of unknowns. Schoenberg37 and Hildebrandt38 

have studied certain restricted systems of this type along lines sug
gested by Theorem 2 of § 6. The general solution appears in the 
form of Stieltjes integrals, and this form of result is applied to obtain 
and generalize results due to Hausdorff, S. Bernstein, and Widder 
relative to completely monotonic functions. 

13. Linear Differential Inequalities. We conclude our discussion 
of linear inequalities with a brief mention of inequalities of a different 
sort from those referred to previously. Certain linear differential 
inequalities have been studied by Bohl, Kakeya and Fujiwara.39 The 
following problem considered by Kakeya will illustrate sufficiently 
the connection with the general subject of linear inequalities. 

Let the real functions ft(x), ]2(x), ... , j 11 (x), be continuous and 
uniform in the interval a. ~x ::§ {3. To determine under what con• 
ditions there exists a continuous function y(x) having continuous 
n-th derivative ahd satisfying the differential inequality, 

P(x!y) y<n>+fi(x)y<11 - 1)+ ... +fn(x)y~O 
in the interval (a., {3) and also the boundary conditions, 

a>c )-. (i)(t:l)-b c·-o 1 1) Y a. -a., Y "' - ;, ~- , , .•• , n- . 
37Schoenberg 1 and 2,38 Hildebrandt and Schoenberg 1. 
• 0Bohl 1, Kakeya 2, Fujiwara 2, 3. 
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Kakeya reduces this problem to the question of the existence of an 
M-positive solution of a system of integral equations of the type used 
in establishing Theorem 23. The results are stated in terms of the 
geometric notion of smallest convex region containing a certain curve. 
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ABSTRACT 

A historical survey of the origins of nonlinear programming is presented 

with emphasis placed on necessary conditions for optimality. The mathematical 

sources for the work of Karush, John , Kuhn , and Tucker are traced and compared. 

Their results are illustrated by duality theorems for nonlinear programs that 

antedate the modern development of the subject . 

1. INTRODUCTION AND SUMMARY 

The paper [1] that gave the name to the subject of this symposium was 

written almost exactly twenty five years ago. Thus, it may be appr opr iate t o 

take stock of where we are and how we got there. This historical survey has two 

major objectives. 

First, it will trace some of the influences, both mathematical and social, 

that shaped the modern development of the subject. Some of the sources arP 

quite old and long predate the differentiation of nonlinear prQflramming as a 

separate area f c,. research. others are comparatively modem and culminat ) in 

the period a quarter of a century ago when this differentiation t ook place . 
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Secondly, in order to discuss these influences in a precise context, a few 

key results will be stated and "proved". This will be done in an almost self

contained manner in the spirit of the call for this symposium which announced 

that the lectures would be pedagogical. The definitions and st~tements should 

help to ~et the stage for some of the papers to follow by providing a formal 

framework. In addition, these statements will allow the comparison of the 

results of various mathematicians who made early contributions to nonlinear 

programming. This will also give the pleasant opportunity to rewrite some 

history and give w. Karush his proper place in the development. 

In §2, a definition of a nonlinear program is given. It will be seen to be 

a straightforward generalization of a linear program and those experienced in 

this field will recognize that the definition is far too broad to admit very 

much in the way of results. However, the immediate objective is the derivation 

of necessary conditions for a local optimum in the differentiable case. For 

this purpose, it will be seen that the definition includes situations in which 

these conditions are well-known. On the other hand, it will be seen that the 

definition of a nonlinear program hides several implicit traps which have an 

important effect on the form of the correct necessary conditions. 

In §3, an account is given of the duality of linear programming as moti

vation for the generalization to follow. This duality, although it was discovered 

and explored with surprise and delight in the early days of linear programming, 

has ancient and honorable ancestors in pure and applied mathematics. Some of 

these are explored to round out this section. 

With the example of linear programming before us, the nonlinear program of 

§2 is subjected to a natural linearization which yields a set of likely necessary 

conditions for a local optimum in §4. Of course, these conditions do not hold 

in full generality without a regularity condition (conventionally called the 

constraint qualification). When it is invoked, the result is a theorem which 

has been incorrectly attributed to Kuhn and Tucker. This section is completed 

by a description of the background of the 1939 work of W. Karush [2] (which is 

further amplified by an Appendix to this paper). 
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As will be seen in §4, the motivation for Karush's work was different from 

the s:!_Jirit of mathematical programming that prevailed at the end of ti•e 1940's. 

In §5, an atteiL.,'t is made to reconstruct the influences on Kuhn and Tucker that 

led them to Karush's result. These include such diverse sources as electrical 

networks, game theory, and the classical theory of Lagrange multipliers. 

Independent of Karush, and prior to Kuhn and Tucker, John had published a 

result [3] giving necessary conditions for the local optimum of a function 

subject to inequalities. His motivation was different from either of the other 

works and is described in §6. A crucial example that is typical of the tJ~e of 

geometric optimization problem that influenced John is Sylvester's Problem. 

This is given a modern and concise treatment in §7. 

The conclusion of the paper, contained in §8, is a sermon on the nature of 

applied mathematics. It may be appropria-ce in that it was deliveredatthe first 

session of the symposium on a Stu~day morning. 

2. WH.I\.T TS A NONLIW-AR PRCBRAM? 

\h th malice aforethought and considerable historical hindsight, a nonlinear 

~ will be defined as a problem of the following form: 

Maximize f(x1 , ... ,xn) for 11 feasible n solutions to 

for giver: fUnctions f,g1 , ... ,gm and real constants b 1 , ... ,bm. "Feasiblen 

mea..."rJ.s that eac:J X. 
J 

and is required to be noD~egative, zero, or f~ee. 

The :follm·ring examples show that this definition encompasses in a natural 

way a host of _mportant special cases. 

(l) If we spec~fy that all X. 
J 

are zero, then the problem reads: 

are free, all are zero, and all b. 
l 
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Maximize f(x1 , ... ,xn) subject to 

gl(xl, ... ,xn) 0 

gm(xl'' .. ,xn) = o. 

This is the classical case of equality constrained (nonlinear) optimization 

treated ~irst by Lagrange. 

(2) If =cx1···+cx 
l l n n 

is linear, each 

is linear, and all X. 
J 

and yi are required 

to be nonnegative, then the problem reads (in customary vector-matrix notation): 

Maximize c·x subject to Ax~ b, x ~ o. 

This is the familiar case of a linear program in canonical form. 

(3) If f and all of the are linear functions as in (2) and we 

require all xj to be nonnegative and all yi to be zero, then the problem 

reads: 

Maximize c·x subject to Ax b, x ~ o. 

This is a linear program in standard form. 

(4) Let S be any set in Rn and let g1 (x) be the characteristic 

function of S (that is, g1 (x) l for xeS and g1 (x) = 0 otherwise). 

Then, if m = l, b1 = l, all xj are free, and y1 = 0, the problem reads: 

Maximize f(x) subject to xES. 

Of course, the generality of this statement reveals in rather stark form that 

the definition of a nonlinear program is too broad for any but the most 

superficial results. 

A final example will illustrate an important distinction which must be kept 

in mind when a nonlinear program is studied. Example ( l+) shows that, for any 

set S, we can present the problem: "Maximize f(x) subject to XES," as a 

nonlinear program in at least one way. The set S is called the set of 

feasible solutions for the problem and will be the same however the problem is 

presented. However the same problem may have several presentations and some may 

be better behaved than others. 
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(5) Let S be the triangle in the (x1,x2 ) plane with vertices (O,l/2), 

(l,O), and (0,1). Consider the problem: Maximize f(x1 ,x2 ) subject to xES. 

This has two simple algebraic presentations that follow: 

(a) Maximize f(x1,x2) subject to 

x1+x2-l = -y1 , -x1-2x2+l = -y2 

x1 ;:o, x2 ;:o, y1 ;:o, y2 ;:o. 

(b) Maximize f(~,x2 ) subject to 

(xl+x2-l)(xl+2x2-l) = -yl 

x1 ;: 0, x2 ;: 0, y1 ;: o. 

Note that if f is linear then (a) is a linear program in canonical form, and 

so is as well-behaved as one could desire. 

3· DUALITY IN LINE.A.R PROGRAMMING AND BEFORE 

To motivate the derivation of the necessary conditions for optimality to be 

given in the next section, let us place o=selves in the position of mathematical 

programmers in the late 40's. Von Neumann had given a formulation of the dual 

for a linear program [4] and Gale, Ku~~, ~~d Tucker had provided rigorous 

duality theorems and generalizations [;]. These are easily stated in a compact 

form using the terminology of the preceding section. 

Let us start with a linear pror,ram, that is, with f and all linear. 

As before, this may be written: 

Maximize f(x) = c·x :'or "1"easiblc" solutions to 

Ax-b = -y. 

Here, as before, "feasible" is a require:nent that each X. 
J 

and be non-

negative, zero, or free. This specification induces a notion of "dual feasible" 

for a related dual minimum problem on the same data. This problem reads: 

Minimize h(v) = v·b fo:r "aual feasible" solutions to 

vP._-c = u. 

In this dual linear program, each U, 
J 

an C.. 

zero, or free if the corresponding va:ria~le 

v. 
~ 

X. 
J 

is required to be nonnega.ti ve, 

or Yi has been required to be 
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6 ?.BOLD W. KUHN 

nonnegative, free, or zero, respecti7ely, in the original (or primal) linear 

program. 

The pair of programs can be displayed conveniently by a diagram due to 

A. W. Tucker. 

X -1 

v A b =-y 

-1 c 0 = f(ma.x). 

=u =h(min) 

The feasibility re~uirements are that paired variables (at the ends of the same 

row or column) are either both nonnegative or one is zero and the other is free. 

With this diagram available, it is obvious that for all solutions, feasible 

or not, 

h-f = u•x+v·y 

while the definition of feasibility for the dual pair implies that 

h-f ~ 0 

for all feasible solutions. Hence, trivially, h-f = 0 is a sufficient 

condition for the optimality of a pair of feasible solutions. Necessary 

conditions are contained in the following theorem: 

Theorem 3.1: If (x,y) is an optimal feasible solution for the primal 

program then there exists a feasible solution (u,v) for the dual program with 

u·x+v·y = 0 (and hence an optimal feasible solution for the dual program). 

As was said in the introduction, this duality theorem "was discovered and 

explored with surprise and delight in the early days" of our subject. In 

retrospect, it should have been obvious to all of us. Similar situations had 

been recognized much earlier, even in nonlinear programs. The phenomenon had 

even been raised to the level of a method (that is, a trick that has worked more 

than once) by Courant and Hilbert [6] in the following passage (slightly amended 

and with underlining added): 

"The Lagrange multiplier method leads to several transformations which are 
important both theoretically and practically. 

By means of these transformations new problems equivalent to a given problem 
can be so formulated that stationary conditions occur simultaneously in e~ui valent 
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problems. In this way we are led to transformations of the problems which are 
important because of their symnetric character. Moreover, for a given maximum 
problem w.ith maximum M, we shall often be able to find an equivalent minimum 
nroblem w.ith the same value M as minimum; this is a useful tool for b:>unding 
M from above and below. " 

It is a scholarly challenge to discover the first occurence of the elements 

of such duality in the mathematical literature. These elements are: 

(a) A pair of optimization problems, one a maximum problem with objective 

function f and the other a minimum problem with objective function h, based 

on the same data; 

·(b) For feasible solutions to the pair of problems, always h > f; 

(c) Necessary and sufficient conditions for optimality are h f. 

Surely one of the first situations in which this pattern was recognized 

originated-in the problem posed by Fermat early in the 17th century: Given 

three points in the plane, find a fourth point such that the sum of its distances 

to the three given points is a minimum. Previously, on several occasions ([7), 

[8), and [9)), I have incorrectly attributed the dual problem to E. Fasbender 

[10), writing in 1846. Further search has led to earlier sources. In a 

remarkable journal, not much read today, The Ladies Diary S?!: Woman's Almanack 

(1755), the following problem is posed b:;" a Mr. Tho. Moss (p. 47): "In the 

three Sides of an equiangular Field st~~d three Trees, at the Distances of 10, 

12, and 16 Chains from one another: To ~ind the Content of the Field, it being 

the greatest the Data w.ill admit of?" 1-Tl'.:ile there seems to have been no explicit 

recognition of the connection w.ith Fermat's Problem in the Ladies Diary, the 

observation was not long in coming. In t!le Annales de ~·lathematiques Bures et 

Anuliquees, edited by J. D. Gergonne, vol. I ( 1810-11), -vre find the following 

problem posed 0"1 p. 384: "Given any tyi•mgle, circumscyibe the largest possible 

equilateyal triangle about it." In the solutions proposed by Rochat, Vecten, 

Fauguier, and Fi..latte in vol. II (1811-12), pp. 88-93, the observation i ~ made: 

"Thus the largest equilateral triangle ~iYcumscribing a given triangle has sides 

perpendicc.lay to the lines joining the yeytices of the ;;::iven triangle to the 

point sue!: that the sum of the distances to these verti~es is a minimum. (p. 91). 

One can conclude that the altitude of the largest equilateral triangle that can 
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be circumscribed about a given triangle ~s equal to the sum of distances froK 

the vertices of the given triangle to t~e ?Oint at which the sum of distances 

a minirrrwn. (p. 92) ". The credit f:or rec:ognizing this duality, which has all cf 

the elements listed above, appears -co 02 due to Vecten, professor of math<2matiQuee 

speciales at the Lycee de Nismes. Unt~l ~ther evidence is discovered, this 

must stand as the first instance of ~ua~i~y in nonlinear programming! 

4. THE ".?.?1JS:l CONDITIONS 

The generalization of Theorem 3.1 ,,;ill be derived for a nonlinear progrs.c: 

in canonical form (compare Example 2 of 52): 

Maximize f(x) for feasible solutions of 

where feasible means all x_ 
J 

and ~e nonnegative. (Here we have used 

g (x) as a natural notation for the colu= vector of values (g1 (x), ... , gm (xI).-

We seek necessary conditions that must ·ce satisroied by a feasible solution 

(x,y) to be locally optimal. Therero·:ore, it is natural to linearize by 

differentiating to yield a linear progr=: 

Maximize df ~ f'(x)dx for feasible solutions of 

g' (x)dx ~ -dy. 

(Here, we have further restricted the nonlinear program to have differentiable 

f and Furthermore, we have used f'(x) and g' (xl as t-he customary 

notations for the gradient of f and the Jacobian of g, respectively, 

evaluated at x.) 

Some care must be taken with the specification of feasibility in this 

linear program. Intuitively, we are testing directions of change (dx,dy) from 

a feasible solution (x,y) and we want the resulting position (x+dx,y+dy) to 

be feasible (or feasible in some limitL~g sense). This leads naturally to the 

following specification of feasibility Iocr the linearized problem: 

The variable dx, 
J 

dxj and dyi are free. 

(dyi) is nonnegative if X, ~ 0 
J 

otherwise 
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The fact that the linearized problem is a linear program can be presented 

as the following diagram (which includes the variables for the dual linear 

program): 

dx -1 

v g'(xl 0 =-dy 

-1 f'(xl 0 = df(max) 

=u =O(min) 

The specification of feasible (dx,dy) given above induces the following 

specification of feasible (u,v): 

u. 
J 

The variable 

and v 
i 

are zero. 

is nonnegative if xj 0 0); otherwise 

9 

Noting the fact that (x,y) is feasible and hence nonnegative, the specification 

of feasible (u,v) can be rephrased as nonnegativity and orthogonality to 

(X:,Y:l: 

The variables (u,v) are feasible if and only if they are nonnegative and 

u·x+v·y = o. 

Theorem 4.1: Suppose df < 0 for all feasible (dx,dy) for the linearized 

nonlinear program in canonical form at a feasible (x,y). Then there exist 

(u,v) > 0 such that 

vg'(x)-f'(x) = u 

u·x.,.v·y = 0. 

Proof: With the hypothesis of the theorem, the primal ltnear program has 

the optimal solution (dx,dy) = (0,0). Hence, by Theorem 3.1, there exists a 

feasible solution (u, v) for the dual program. The conditions of the theorem 

combine t~e linear equations from the diagram and the characterization of 

feasitility given above. 

To complete the derivation of the necessary conditions, we need to introduce 

assumptions that insure that the linearized problem correctly represents the 

possibilities for variation near (x,y). Since the work of Kuhn and Tucker, 

these assumptions have been called constraint aualifications. 
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Definition 4.1: A nonlinear progr= satisfies the constraint qualificati:m 

(CQ) at a feasible solution (x,y) if for every feasible (dx,dy) for the 

linearized problem there exists a s~quence (xk,yk) of feasible solutions and a 

sequence Ak of nonnegative numbers such that 

k 
X :::: X and dx. 

Theorem 4.2: Suppose a nonlinear ~rogram satisfies the CQ at a feasible 

solution (x,y) at which f achieves a local maximum. Then df < 0 for all 

feasible solutions (dx,dy) for the linearized problem. 

Proof: By the differentiability of f, 

f(xk)-f(x) = f' !x) (xk-x)+Ek[xk-xl 

where lim Ek 
k -HO 

o. Since (x,y) is a local maximum, 

for k large enough. Taking limits 

o > f' (x)dx+( li!ll df. 
k->oo 

These two theorems are combined to yield the necessary conditions that are 

sought. 

Theorem 4.3: Suppose a nonlinear program in canonical form satisfies the 

CQ at a feasible solution (x,y) at which f achieves a local maximum. Then 

there exist (u,v) > o such that 

vg' (x)-f' (xl u 

u·x+v·y = o. 

The result just stated is customarily called the Kuhn-Tucker conditions. 

The following quotation from Takayama [ll] gives a more accurate account of the 

histo~J of these conditions: 

"Linear programming aroused interest in constraints in the form of 
inequalities and in the theory of linear inequalities and convex sets. The 
Kuhn-Tucker study appeared in the middle of this interest with a full 
recognition of such developments. However, the theory of nonlinear programming 
when the constraints are all in the form of equalities has been known for a 
long time -- in fact, since Euler and Lagrange. The inequality constraints were 
treated in a fairly satisfactory manner already in 1939 by Karush. Karush's 
work is apparently under the influence of a similar work in the calculus of 
variations by Valentine. Unfortunately, Karush' s 'wrk has been largely ignored." 
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Although known to a number of people, especially mathematicians with a 

connection with the Chicago school of the calculus of variations, it is certainly 

orue that Karush's work has been ignored. A diligent search of the literature 

tas brought forth citations in [12], [13], [14], and [15] to add to Takayama's 

book referenced above. Of course, one reason is that Karush' s work has not been 

p-ublished; to allow the reader to see for himself that Karush was indeed the 

~irst to prove Theorem 4.3, the Appendix to this paper provides excerpts from 

the original work. Precisely, THEOREM 3:2 is equivalent to Theorem 4.3. 

Karush's work was done as a master's thesis at the University of Chicago 

under 1. M. Graves, who also proposed the problem. It was written in the final 

years of the very influential school of classical calculus of variations that 

had florished at Chicago. One may suppose that the problem was set as a finite

iimensional version of research then proceeding on the calculus of variations 

·,,•ith inequality side conditions [16]. G. A. Bliss was chairman of the department 

2-'ld l·!. R. Hestenes was a young member of the faculty; both of these men influenced 

::arush. (I'C is al!!llsing to note that this group also anticipated the work in 

optimal control theory, popularized under the name of the "Pontryagin" maximum 

~cinciple. For details, see [17].) As a struggling graduate student meeting 

!'equirements for going on to his Ph.D., the thought of publication never occurred 

: c ::arush. Also, at that time, no one anticipated the future interest in these 

~r::iclems a...rld their potential practical application. We shall return to this 

·Juestion in the last section of this paper. 

The constraint qualification employed by Karush is identical to that used 

·cy Kuhn and Tucker and hence is slightly less general than Definition 4.1. 

?!'ecisely, he required that there exist arcs of feasible solutions issuing from 

:x,y) tangent to every (dx,dy). The need for some such regularity condition 

was familiar from the equality constrained case. As the proof of Theorem 4.3 

;iven above shows, the inequality constrained case requires the equality of a 

cone generated by directions that are feasible from (x,y) and the cone of 

:'easible directions (dx,dy) from (x,y). Since the latter cone depends on the 

ccature cf g(x), t·,w problems with the same objective function and the same 
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feasible set but specified in two different ways may behave differently. Exam:;:le ~ 

at the end of §2 illustrates this phenomenon in a striking way. If f(x1 ,x2 ) = x1 

then the problem as formulated in (a) is a linear program with the unique optimal 

solution ~ = l, x2 = O, y1 = o. However, it is easily verified that, as 

formulated in (b), the "same" problem does not satisfy the constraint qualifi

cation at this optimal solution and the conditions of Theorem 4.3 cannot be 

satisfied. 

A full discussion of constraint qualifications and their historical ante

cedents would take us too far afield. However it is appropriate to cite at this 

point another early and important but unpublished contribution to this area. 

This is the work of Morton Slater [18], issued as a Cowles Commission .Discussion 

Paper in November, 1950, and often referenced since then. Slater's main result 

is an elegant regularity condition that implies saddlepoint necessary conditions 

for nonlinear programs without differentiability of f and g. 1'/e shall return 

to this in the next section. 

5· THE KUHN-TUCKER PAPER 

The background of the work of Karush was so different from that of Kuhn and 

Tucker that one must marvel that the same theorem resulted. From the mid 30's, 

Tucker had sustained an interest in the duality between covariant and contra

variant that arises in the tensor calculus and in the duality between homology 

and cohomology that arises in combinatorial topology. He was also aware of the 

pre-topology appearance of such phenomena in the development of the theory of 

electrical networks. However, this intellectual awareness might have lain fallO\< 

except for a happy historical accident. In the May of 1948, G. B. Dantzig 

visited ·John von Neumann in Princeton to discuss potential connections between 

the then very new subject of linear programming and the theory of games. Tucker 

happened to give Dantzig a lift to the train station for his return trip to 

Washington. On the way, Dantzig gave a five minute exposition of what linear 

programming was, using the Transportation Problem as a simple illustrative example. 
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This sounded like Kirkhoff's Laws to Tucker and he made this observation during 

the short ride, but thought little about it until later. Dantzig's visit to 

Princeton resulted in the initiation of a research project which had as its 

original object the study of the relations between linear programs and matrix 

games. (Staffed in the summer of 1948 by David Gale and Kuhn, graduate students 

at Princeton, with Tucker as principal investigator, this project continued in 

various forms under the generous sponsorship of the Office of Naval Research 

until 1972.) Stimulated by a note circulated privately by von Neuman [4], the 

duality theorem for linear programming (Theorem 3.1 above) was proved [5] and 

various connections were established between the solutions of matrix games and 

linear programs. As an example, in the summer of 1949, Kuhn produced a one-page 

working note expressing the duality of linear programming as a saddlepoint 

property of the Lagrangian expression: 

L(x,v) ~ c·x+v(b-Ax) 

defined for x > 0, v ~ 0. Thus formulated, the optimization problems involved 

.,,aximize in x a.nd minimize in v) yielded familiar necessary conditions with 

only minor modifications to take account of the boundaries at 0. Of course, 

:his eAyression generalizes naturally to 

L(x,v) ~ f(x)-v·g(x) 

in the nonlinear case and this saddlepoint problem was later chosen as the 

scarting point for the exposition of the Kuhn-Tucker analysis. 

On leave at Stanford in the fall of 1949, Tucker had a chance to return to 

question: \>/hat was the relation between linear programming and the Kirkhoff

l"'a.XIfell treatment of electrical networks? It was at this point that he recognized 

the parallel bet·ween Maxwell's potentials and Lagrange multipliers and identified 

~he underlying optirrQzation problem of minimizing heat loss (see [19]). Tucker 

then wrote Gale a.'1d Kuhn, inviting the!'- to do a sequel to [5] generalizing the 

duality of linear programs to quadratic programs. Gale declined, Kuhn accepted 

~1d the paper developed by cor~espondence between Stanford and ?rincet~~. As it 

\·;as v.~ri tten, the emphasis shifted fro:::: the quadratic case to the general nonlinear 

::::ase and to prope:!:'ties of convexity that imply t~at the necessary conditions ::;:..,or 

405



14 H.C.BOLD vi. KUHN 

an optimum are also sufficient. Ir: the final version, the quadratic programm:;.ng 

case that figured so prominently in Tucker's research appears beside the duality 

of linear programming as an instance of the application of the general theo~y. 

A ?reliminary version (without the constraint qualification) was presented by 

Tucker at a seminar at the RAND Cor?oration in May 1950. A counterexample 

provided by c. B. Tompkins led to a hasty revision to correct this oversight. 

Finally, this work might have appeared in the published literature at a 

much later date were it not for a fortuitous invitation from J. Neymann to 

present an invited paper at the Second Berkeley Symposium on Probability and 

Statistics in the summer of 1950. 

The paper [l] formulates necessary and sufficient conditions for a saddle

point of any differentiable function ~(x,v) with nonnegative arguments, that 

is, for a pair (x,v) ~ o such that 

~(x,v) ~ ~(x,v) ~ ~(x,v) for all X> 0, V; Q. 

It then applies them, through the Lagrangian L(x,v) f(x)-v·g(x) introduced 

above, to the canonical nonlinear program treated in §4 of this paper. The 

equivalence between the problems, subject to the constraint qualification, is 

shown to hold when f and all are concave functions. It is notr"d, but not 

proved in the paper, that the equivalence still holds when the assumption of 

differentiability is dropped. Of course, for this to be true, the constraint 

qualification must be changed since both Karush' s qualification and Definition 4.1 

use derivatives. As noted above, Slater's regularity condition [18] is an 

elegant way of doing this. It merely requires the existence of an ~ ~ 0 such 

that g(x) < 0, and makes possible a complete statement without differentiability. 

Of course, for most applications, the conditions of the differentiable case 

(Theorem 4.]) are used. 

6. THE JOHN CONDITIONS 

To establish the relation of the paper of F. John [3] to the work discussed 

earlier, we shall paraphrase Takayama again [ll]: 
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"Nex-t to Karush, but still prior to Kul:m and Tucker, Fritz Jol:m considered 
the nonlinear programming problem with inequality constraints. He assumed no 
quali:Cication except that all functions are continuously differentiable. Here 
the Lagrangian expression looks like v0f(x)-v·g(x) instead of f(x)-v·g(x) 
and v0 can be zero in the first order conditions. The Karush-Kul:m-Tucker 
constraint qualification amounts to providing a condition which guarantees 
,.:J > 0 (that is, a normality condition)." 

Tlris expresses the situation quite accurately for our pu_~oses, except to 

record that Karush also considered nonlinear programs without a constraint 

qualification and proved the same first-order conditions. Karush's proof is a 

direct application of a result of Bliss [20] for the equality constrained case, 

combined with a trick used earlier by Valentine [16] to convert inequalities into 

equations by introducing squared slack variables. For the equality constrained 

case, the result also appears in Caratheodory [21] as Theorem 2, p. 177. 

~;uestions of precedence aside, what led Fritz Jol:m to consider this problem? 

L:arvelously, his motives were quite different from those we have met previously. 

::1e main impulse came from trying to prove the theorem (which :'arms the main 

~;·~·lica7,ion in [3]) that asserts that the ~boundary of a compact convex set S 

lies between two homothetic ellipsoids of ration S n, and that the 

::o-cer ellipsoici ca_'l be ta_k:en to be the ellipsoid of least volume containing S. 

~:'e case n = 2 had been settled by F. Behrend [22] with whom John haC. become 

a:~ua~'lteci in 1934 in Cambridge, England. A student of John's, Q. B. Ader, 

:'eeclt ,.,ith the case n = 3 in 1938 [23]. By that time, Joh!< had become deeply 

::"::erested in convex sets and in the inequalities connected Kith them. Stimulation 

ce.·r,e also from the work of Dines and Stokes, i:1 which the duality that pervad.es 

r::.3te:::.s of linear equations and ineque.li ties appears prominently. Ader r s proof 

::~·::c:;;ly suggested that duality was the proper. tool for this geometrical problem 

:..:·, -:he n-dimensional case, a_TJ.d John was able to use these ideas to -write up the 

:.:::-:)::lem for general n. The resulting paper was rejected by the Duke Nathematics 

~:urnal and so very nea:cly joined the :canks of unpublished classics in our 

:-·..:-~ject. Hovrever, t::.is rejection onl:,r gave more time to explore the implications 

:~· :n.~ tech..c'1iq_ue used to derive necessary co:1ditions for the ~inrum of a 

-~c_:::.-c: -:;:y (he2"e the volume of an elli:?s:::.id) subject to i:-J.equalit.::es e.s sicie 
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16 HAROLD \-1. KG:.;:N 

It is poetic justice that Fritz Jop~ was aided in solving this problem by a 

heuristic principle or'ten stressed by Richard Courant that in a variational 

problem where an inequality is a constraint, a solution always behaves as i~ the 

inequality were absent, or satisfies strict equality. It was the occasion of 

Courant's 6oth birthday in 1948 that gave John the opportunity to complete and 

publish the paper [3]. 

In summary, it •,;as not the calculus of variations, programming, optimization, 

or control theory that motiviated Fritz John but rather the direct desire to 

~ind a method that would help to prove inequalities as they occur in geometry. 

In the next section, we shall treat such a problem, used by John as an illustrative 

example, ~rom our present point of view. 

'7. SYLVESTER'S PROBLEM 

In 1857, J. J, Sylves");er published a one sentence note [24]: "It is 

required to find the least circle which shall contain a given set of points in 

the plane." The generalization to an arbitrary bounded set in Rm was used by 

John in [3] as an illustration of the application of his necessary cor.ditions. 

Our purposes in this section are similar to his; we have the advantage of the 

cumulative research in nonlinear programming over the last quarter century. 

Although the problem has an extensive literature (see [25] for some of its 

history), it is only recently that it has been recognized as a quadratic 

program by Elzinga and Hearn [26]. More precisely, Sylvester's problem can be 

formulated as a hybrid program (that is, a linear program with a sum of squares 

added to the objective fUnction [2'7]). As such, it has a natural dual which is 

also a hybrid program. This fact can be discovered very naturally by constructing 

a dual using the theory of conjugate functions [28], then recognizing that the 

dual is a hybrid program. Therefore, Sylvester's Problem must be a hybrid 

program in disguise. The treatment given below reverses this process in 

traditional mathematical style. 
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~t a1 , ... ,am be 

=-z?ace asks for XERm 

n given points in 
_m 
!\. Then Sylvester's Problem in 

where I x-a. I denotes the 
J 

i:>.::::.idean distance from x to aj. This is clearly equivalent to: 

, ~ :' Minimize maxj (x-aj ) 2 /2 for xERm, 

v::e:-e (x-a.) 2 = lx-a.i 2 and the factor of 1/2 has been inserted for 
J J 

r::.:pcifi:!ation later. Problem (1) is equivalent, in turn, to: 

I "l ~ · . .:.· Minimize v+x2/2 subject to 

2 2 
v+x /2 ~ (x-aj) /2 

for VER, XERm, and j = l, •.• ,n. 

;;t· ns.;; rewrite (2), introducing slack variables yj and explicit coordinates 

~"' a. and x, as: 
~ 

:. '. Minimize subject to 

yj = V+Lixiaij-Lia~~/2 ~ 0 

for VER, (xi)ERm, and j = l, ... ,n. 

':"::;.;,-. ~;:lvester's problem is equivalent to a hybrid program in the sense of 

:.,:·c:::e a.t1d Tucker [27]. This program is displayed with its dual in the 

f\ -1 
!: 

v 1 1 1 0 

aln 0 zl 

X aml ar:n 0 z 
m m 

? .... 2/? -1 ai/2 c:..n/- 0 f 

-yl -;,·r_ -h 

~ ··-. zc::-.e:na displays two programs (the fi!"St o:' which is exactly (3)): 

Minimize H = h+x2 .12 :'o!" 

h = v, yj = V+LiXiai:-a~/2 > o, all j. 

? 
Maximize F = f-z-/2 :'"'~r 

z.f,.a~/2, I."A. = 1, ..... i r-::a-= ..:A;, 'A. > o, all i a..\1d j. 
J J J J J J 

17 
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18 HAROLD W. KUHN 

Following the results of Parsons and Tucker, these programs are coupled by a 

duality equation, an identity t~~t is valid for all v, x, A: 

(6) H-? = Z.y.A.+(x-z) 2/2. 
J J J 

Therefore, H > F for feasible solutions of (4) and (5) and H = F for 

feasible solutions if, and only if: 

(7) for all and x = z. 

Caridi tions ( 7) are necessary and sufficient for feasible solutions to be optimal. 

The sufficiency is obvious; the necessity is a direct application of Theorem 4. ::. 

Since the constraints are linear inequalities the constraint qualification is 

trivially satisfied. We have proved (dropping the factor of l/2): 

Theorem 7. l: 

min(max. (x-a. )2 ) 
X J J 

for A ? 0, Z.A. = l and XERm. 
J J 

Of course, by expressing optimality for Sylvester's Problem as the solution 

of conditions (7), we have cast it as a linear complementarity problem. See Eaves' 

paper in 

such that 

and 

these proceedings. Explicitly, conditions (7) 

r: 0 l l vl -l 

0 I -l -l v2 l 
-- _!_ ------·--

l -l ' 

l -l 

Al + -a~/2 

ATA 

A -a2/2 n n 

v1 ~O,v2 ~ O,A1 .:; O, •.• ,An~ 0 

w1 ~ o,w2 ;;- o,y1 ;; o, ... ,yn ;;o 

ask for the 

wl 

w2 

yl 

Yn 

Tr~s formulation opens a number of possibilites for computation. 

solution of 

Finally, by algebraic manipulation, the maximum· program can be given a 

slightly different form with the result: 
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w-here A ? 0, 

NONLINEAR PROGRAMMING: A l:ITSTORICAL VIEW 

max L.A.(L)/},~-a.) 2 =min max(x-a.) 2 
A JJ. J X j J 

L.A.= l, and XE~. In this form, both programs conceal their 
J J 

nature as hybrid programs but exhibit a saddlepoint property that could have 

19 

been discovered by studying the following 0-sum 2-person game: Player 1 chooses 

A? o, L.A.= 1. 
J J 

Player 2 chooses x in the convex hull of (a1 , ••• ,an}. 

Player 2 pays Player 1 the amount 2 
LjAj(x-aj) • If this payoff fUnction is 

denoted by \jr(A,x), then max min 
A X 

\jr(A,x) = min max \jr(A,x) since the strategy 
X A 

sets are compact and convex, and the payoff fUnction \jr is concave in A and 

convex in x. Since, for given A, the minimum over x is achieved at 

x = ~'\~ and, for given x, the ma.xi.mum over A is achieved at a pure 

strategy chosen by max(x-a.) 2 , this saddlepoint statement is exactly (8) 
j J 

again. 

Finally, the expression on the left side of (8) admits a physical interpre-

tation. We wish to distribute weights on the points (a1 , •.• ,an) so that the 

second moment about the center of gravity of those weights is a maximum. This 

moment can be interpreted as the moment of inertia about an axis perpendicular 

to the space in which the points lie. The duality relation then says that the 

radius of the minimal circle enclosing the points is the maximum radius of 

e;y-:ration of the system, the maximum being taken over all possible distributions 

of the unit mass among the points a1 , ••. ,an. Here the radius of gyration is as 

discussed in Goldstein [29]. It would be interesting to ?~ow if this duality 

has been studied in the literature of mechanics or of geometrical optimization. 

There are a number of other observations that could be made about this 

ancient problem. Hmrever, it should be clear by now that we can probe the 

nysteries, both theoretical and computational, of such classical optimization 

problems more efficiently today than we cmlld 25 years ago. 

8. A S:S~ON 

This sermon will be short. We have seen that the same result, which is 

central to the subject of nonlinear progre"""i n::, was found independently by 
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20 HAROLD W. KUHN 

mathematicians •,.;ho ::"2u.:::.d their inspiration in the calculus o:f variac ions, 

geometrical inequaL ties, the theorJ oi' games, duality in topol::>gy, net~wrk 

theory, and linear :;:rogramming. This result which has proved to be use:ful, ac 

least in the sense of suggesting computational algorithms, was sought and :found 

first with no thought given to its application to practical situations. It .,.,as 

rediscovered and reccgJized as important only in the midst o:f the development of 

the applied field o:f ~thematical programming. This, in turn, had a beneficial 

effect. With the i~pec;us o:f evident applicability, the mathematical structure 

o:f the subjects neig~coring mathematical programming has deepened in the last 

quarter century. A scattering of isolated results on linear inequalities has 

been replaced by a respectable area o:f pure mathematics to ••hic!::t this symposium 

bears witness. iJotai:l2 achievements have bee':l recorded in the subjects o:f 

convex analysis, the ~alysis of nonlinear systems, and algorithms to solve 

optimization proole~s. This has been possible only because communication has 

bee~ opened betvreen ~r:hematiciar1s and the potential areas of appltcation, to 

the benefit o:f both. ·me historical record is clear and I believe that the 

moral is equally clear: the lines o:f communication between applied :fields such 

as mathematical programming and the practitioners o:f classical branches o:f 

mathematics should be broadened and not narrowed by specialization. This 

symposium is a constructive step in this direction. 

APPENDIX 

(omitted) 
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RECHERCHES 
SUR LA 

METHODE DE MAXIMIS ET MINIMIS.' 

(Miscellanea Taurinensia, t. I, 17Sg.) 

1. Les Geometres savent depuis longtemps que lorsque Ia premiere 

differentielle d'une variable quelconque disparait sans que Ia seconde 

disparaisse en meme temps, elle devient toujours un maximum ou un 

minimum; et en particulier elle est un maximum, si sa differentielle 

seconde est negative, et un minimum, si cette differentielle est positive. 

Si Ia differentielle seconde disparait en meme temps que Ia premiere, 

alors Ia quantite n'est ni un maximum, ni un minimum, a moins que Ia 

troisieme differentielle ne disparaisse de meme, dans lequel cas Ia pro-· 

posee deviendra un maximum, si Ia differentielle quatrieme est nega

tive, et un minimum, si elle est positive, et ainsi de suite. En general, 

pour qu'une quantite soit un maximum on un minimum, il faut que les 

ordres successifs des differentielles, qui s'evanouissent ensemble, soient 

en nombre impair, et alors elle est surement un maximum ou un mini

mum, sel on que Ia differentielle qui suit Ia derniere evanouissante se 

trouve negative ou positive. Voyez MACLAURIN' Traite des Fluxions' 

p. 238 et 857. 

2. Tout ceci suppose et bien entendu, que Z represente une fonction 

algebrique des variables t, u, x, y, ... , et qu' on se propose de Ia rendre 
un maximum ou un minimum. Soit, selon les regles ordinaires, 

dZ=pdt+ qdu+ rdx +sdy+ .. . , 
r. 
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et I' on aura d'ahord cette equation 

pdt+ qdu + rdx + sdy+ ... . o. 

Mais comme Ia relation entre t, u, x, ... est encore indeterminee, de 

m€nne que celle de leurs differentielles dt, du, dx, ... , et que d'ailleurs 

!'equation donnee doit etre vraie quel que soit leur rapport, il est evi

dent que pour les chasser tout a fait de I' equation, il faut egaler separe

ment a zero chaque membre pelt, qclu, rclx, ... , cl'oi1 l'on tire autant 

d'equations particulieres qu'il y a de variables, savoir: 

p = o, q = o, I'= o, .... 

Parle moyen de toutes ces equations on trouvera les valems de chaque 

inconnue t, u, x, ... , qui, substituees dans Ia fonction proposee Z, Ia 

rendront un max1'mum ou un minimum. 

3. Passons maintenant a l'examen de la seconde differentielle. En 

supposant, ce qui est permis, les premieres differentielles dt, du, d:x:, ... 

constantes, on aura 

d' Z = dpdt + dqdu + drdx + dscly + .... 

So it 
dp = Adt, + B du + D dx + Gdy + ... , 
dq=Bdt-+- Cdu+ Edx+ Hdy+ .. . , 
dr =Ddt+Edu+Fdx+Idy + ... , 
ds =Gdt+Hdu+I dx+Lc(r+ ... , 

ce qui donnera 

d' Z = Aclt' + 2Bdtdu + Cdu' + 2Ddtdx + 2Edudx 

+ Fclx' + 2Gdtdy + 2Hdudy + 2ldxdy + Lc(y' + .... 

Pour commencer par le cas le plus simple, supposons qu'il n'y ait 

qu'une seule variable t, de sorte que cPZ = Aclt2 ; on voit d'abord que, 

puisque dt2 est toujours positif, Ia differentielle d 2 Z doit avoir le meme 

signe que Ia quantite A; done, si A est positif, Z sera un min£mum, et si 
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A est negatif il sera un maximum; si A= o on suivra les ri:"lgles don

nees (1). 

4. Les variables contenues dans Z soient deux, savoir t et u; alors 

d•Z = Adt• + 2Bdtdu + Cdu•. 

II parait au premier aspect bien difficile de connaitre si cette.expression 
d 2 Z doit etre positive ou negative, sans qu'on ait le rapport d{cl dt a du, 

qui n'est pas donne; car, puisqu'en changeant ce rapport Ia fonetion 

d 2 Z doit aussi varier, il semble indubitable qu'elle pourra aussi passer 
du positif au negatif, et du negatif au positif, pendant que les quantites 
A, B, C restent les memes. Qu'on donne cependant a Ia proposee 

Adt• + 2Bdtdu + Cdu• 

cette forme 

( Bdu)' ( B') A dt + -----r + C - A du•; 

et on verra que, comme les earres ( dt +Btu)' et du2 ont toujours le 

meme signe +, toute ·Ia quantite sera necessairement positive si les 

deux coefficients A et C - ~ sont positifs, et au contraire elle deviendra 

negative, lorsque ceux-ci seront tons deux negatifs, quel que soit le rap
port de dt a du. On aura done pour le cas du minimum 

A>o, 
B' 

C- A >o, 

S3VOll' 
B• 

C> A ou CA>B•, 

ee qui donne de meme 

a moins done que les quantites A, B, C n'aient ces conditions 

A> o, C> o et AC> B•, 
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Ia proposee Z ne pourra pas etre un minimum. En second lieu on trou

vera pour le maximum 

A<o, 

savmr 

B' C--<o A , 

puisque A est negatif, ee qui donne encore 

C<o; 

clone les conditions pour le maximum seront en partie les memes, et en 
partie precisement contraires a celles du minimum. 

5. Si A ou C, ou toutes deux sont egales a zero sans que B le so it 

aussi, Ia condition de AC > B2 ne pourra pas suhsister, ainsi Ia quantite 

proposee ne deviendra jamais un vrai maximum ou minimum; la meme 
chose arrivera toutes les fois que A et C seront de signe contraire, car 

puisque B2 est toujours positif Ia condition de AC > B2 devient impos

sible. Si B s'evanouissait encore en meme temps que A ou C, d 2 Z se 

trouverait reduite au cas d'une seule variable, et par consequent pourrait 
etre de nouveau un maximum ou un minimum, ou ni l'un ni l'autre, 

selon ce qu'on a dit pour le premier cas. Enfin, si Ia quantite d 2 Z etait 

toute egale a zero, savoir 

A=o, R=o, C=o, 

il faudrait recourir a Ia differentielle troisieme; que si celle-ci se trouve 

n'etre pas egale a zero, Ia quimtite z ne peut etre ni un maximum ni Ull 

minimum; et au eontraire, si elle evanouit en meme temps que Ia se

conde, on cherchera tout de suite Ia quatrieme; et si elle n' est pas eva

nouissante, il sera facile, par Ia methode dont nons nons sommes servi 

ci-devant, de connaitre si elle est positive ou negative, ce qui determinera 
de nouveau le maximum ou Ie minimum. 
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6. Lorsque les variables sont trois, sa voir t, u, x, Ia differentielle cP Z 

prend cette forme 

d•z = Adt' + 2Bdtdu + Cdu' + 2Ddtdx + 2Edudx + Fdx' 

qu'on reduira d'abord a 

( Bdu Ddx)' ( B') ( BD) ( D') A dt+-r+ --:;r- + C- A du'+2 E-A dudx+ F-A dx'. 

So it pose 

B' 
C- A =a, E- BJ>- b 

A-' 
D' 

F-A =c, 

et on aura 

( Bdu Ddx)' d'Z =A dt + ---;r- + -r + adu' + 2bdudx + cdx'; 

qu'<in opere a present sur ces trois derniers membres, comme on a fait 
ci-dessus ( 4), et toute la differentielle proposee d 2 Z deviendra 

( Rdu Dd.x)' ( bdx)' ( b') . A dt+ y+-r· +a du+a + c-a dx'; 

I , (d Bdu Ddx)' (d bdx)' d 2 , • or, es carres t +·A- + A ' u +a et X etant tOUJOUrS 

positifs, toute la differentielle sera de meme positive si Ies coefficients A, 
b' a et c- - out chacun le signe +; on a done pour Ie minimum !es a 

conditions suivantes 

A>o, a>o, ca>b', 

ou, en remettant au lieu de a, b, c leurs valeurs, 

A>o, ( R') ( D') ( BD)' C- A F-A > E-A ' 

sa voir 

A>o, CA>B' et (CA-B')(FA-D')>(EA-BD)', 
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8 RECHERCHES SUR LA METHODE 

d' oil il resulte encore 

C>o, F>o et FA>D'. 

On trouvera par les memes principes pour le maximum 

A<o, CA>B' et (CA-B')(FA-D')>(EA-BD)', 

et par consequent 

C<o, F<o et FA>D'. 

7. Si les quantites A etC evanouissent seules, ou toutes deux, ou une 
simplement, la seconde condition devient impossible; si c'est F qui eva
nouit, alors Ia troisieme devient inipossihle; car ( CA - B2 ) (- D2 ), qui 

est necessairement negatif a cause de CA > B2, doit toujours se trouver 
moindre de (EA- BD )2 , d'oh il suit que Z ne saurait etre un maximwn 

ou un minimum, si A, C, F prises separement ou ensemble, comme on 
voudra, sont egales a zero. Si par l'evanouissement des termes la diffe
rentielle d 2 Z se reduisait a deux variables, ou a une seuletnent, elle 
tomberait dans le second cas ou dans le premier, et on clevrait suivre les 
regles donnees (3 et suiv.). Enfin, si toute la d2 Z se trouvait egale a zero, 
et que la clifferentielle troisieme ne fut pas de meme egale a zero' on 
serait slit• que Ia proposee Z ne pourrait jamais devenir ni un maximum, 

ni un minimum; et quand cette differentielle troisieme evanouirait avec 
Ia seconde, par des transformations semblables a celles que nous avo~s 
pratiquees, on pourrait dans Ia quatrieme differentielle distinguer le cas 
du minimum et du maximum et ceux qui sont inutiles. 

8. On peut etendre la meme theorie aux fonctions de quatre ou plus 

variables. Quiconque aura bien saisi I' esprit des reductions que j'ai em
ployees jusqu'ici, pourra sans peine decouvrir celles qui conviendront a 
chaque cas particulier. Au reste, pour ne pas se meprendre dans ces 
recherches, il faut remarquer que les transformees pourraient bien venir 
differentes de celles que no us avons donnees; mais en examinant la 
chose de plus pres, on trouvera infailliblement que, quelles qu'elles 

422



DE MAXIMIS ET MINIMIS. 9 

soient, elles pourront toujours se reduire a celles-ci, ou au moins y etre 

comprises. 

9. Com me je crois cette theorie entierement nouvelle, il ne sera peut

€tre pas inutile d'ajouter les reflexions suivantes. Quel que soit le nombre 

des variables qui entrent dans la fonction proposee Z, si on les regarde 

chacune en particulier, et qu'on eherche le maximum ou minimum qui 

lui convient pendant que toutes les autres demeurent les memes, on 

trouvera a part les premieres differentielles pdt' qdu, rdx, ... ' dont 

chaeune etant egalee a zero nous donnerait les memes equations que 

ci-dessus (2) 
p = o, _q = o, r _ o, .. _. 

De la meme maniere passant aux differentielles secondes, on trouverait 

celles-ci separement Adt2 , Cdu2 , Fdx 2 , Ldy 2 , ... , et par consequent si A, 

C, F, L, ... sont toutes positives ou negatives, on pourrait croire que cela 

suffit pour que les va}eurs de t, U, X, ... , tirees des equations p = o, 

q = o, ... , rendent necessairement I a proposee Z un minimum on uu 

maximum. II est vrai, en effet, que par rapport a chacune de ces variables 

considerees a part, la quantite donnee Z devra toujours etre Ia plus 

grande ou Ia plus petite; mais est-il certain que ce qui vaut pour cha

cune prise separement doive aussi valoir pour toutes ensemble? Exami

nons la chose plus intimement. 

10. Que la proposee Z contienne les seules variables t et u, et oll 

pourra Ia regarder comme l'ordonnee a une surface, dont t et u sont Ies 

deux autres; done la question dans ce cas se reduit a trouver Ia plus 

grande ou Ia plus petite ordonnee d'une surface dont !'equation est 

donnee, savoir 

dZ = pdt + qdu. 

Si l'on fait u constant, elle se reduit d'ahord a 

dZ =pelt, 
J. 2 
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et dans ce cas elle exprime toutes les sections de Ia meme superficie 

paralleles a !'axe des t, a mesure que Ia quantite u reQoit des valeurs 

differentes. Soit done pose p = o, et on aura (2) nne valeur de t qui 

donnera Ia plus grande ou Ia plus petite ordonnee Z dans chacune de ces 

sections paralleles; mais, puisque u est constant, si l'on differentie de 

nouveau dZ, on a 
d'Z=Adt', 

et par consequeilt on jugera du maximum ou minimum par Ia seule va

leur de A, apres y avoir cependant substitue a Ia place de t Ia valeur que 

fournit !'equation p = o. Savoir si A se trouve positive ou negative, 

quelle que soit Ia valeur de u, ou bien si, en changeant u, elle peut aussi 

changer de signe, on conclura dans le premier cas que toutes lesdites 

sections ont un maximum ou un minimum, et dans le second qu'elles 

ont entre certaines limites un maximum, entre d'autres un minimum. 

Si A est ega! a zero, quelle que soit la valeur de Ia constante u, alors 

aueune desdites sections n'aura ni un maximum ni un minimum. Mais, 

si A devient seulement egal a zero, lorsque u a de certaines valeurs don

nees, dans ces cas seulement les sections correspondantes seront desti

tuees du maximum ou du minimum. Le lieu de toutes ces ordonnees qui 

sont un maximum ou un minimum, ou ni l'un ni l'autre, sera eontenu 

dans !'equation p = o, en ayant egard a Ia seule variabilite de u; elles 

formeront done dans Ia meme superficie une section qui sera a simple 

ou a double courbure, et qui sera determinee par les deux equations 

conjointes 
dZ=pdt+qdu et p=o, 

ou 
dZ=qdu et p=o. 

On voit par Ia que, pour trouver le maximum ou le minimum de Ia sur

face entiere, il faudra chercher la plus grande ou Ia plus petite ordonnef' 

qui convient a cette meme section; on aura done de nouveau 

q=o, 

ee qui donnera Ia valeur de !'autre variable u. 
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11. Passons maintenant a Ia differentielle de q; elle a ete d'abord 
supposee ( 3) egale a B dt + Cdu; rna is puisque dans ce cas t est de
termine par u dans !'equation p = o, ou bien clans sa clifferentielle 

Ad d d . I , B du . l t + B u = o, test ega a - ~' ce qm rene 

( B' ) dq = - A + C du; 

B' . . . . . B' , . il resulte clone que si - A + C est posttlf, sav01r st C > A, I ordonnee 

sera Ia moinclre; si C < ~, elle sera la plus grande, et si C = ~, elle ne 

sera ni l'une ni !'autre, a moins que les conditions requises dans les dif
ferentielles des genres plus eleves ne soient remplies. Or, en refleehissant 
sur ees maximum et minimum, il sera aise de eomprendre que l' ordon
nee z ne pourra pas etre un maximum entre toutes les autres, a moins 
qu'elle ne soit la plus grande de toutes celles qui sont eontenues dans Ia 
section determinee par dZ = qdu, et de plus que toutes les ordonnees 

qui eomposent eette meme seetion ne soient eneore elles-memes des 
mcucimum dans les seetions paralleles eorrespondantes (10). On prouvera 
de meme que la quantite Z ne saurait etre absolument un minimum sans 
qu'elle soit de m(nne un minimum dans Ia seetion qui eontient tousles 
minimum. Car clans tousles autres cas l'ordonnee serait ou Ia plus grande 
ou la plus petite d'entre eelles qui ne sont niles plus grandes ni les plus 
petites, ou bien entre les plus grancles ou les plus petites, elle ne serait 
ni Ia plus grande ni la plus petite, ou enfin elle serait Ia plus grande 
d'entre les plus petites, ou au contraire, ee qui ne donne pas un vrai 
ma.xinwm ou minimum comme on cherche. De tout ceei je conclus done 
qu'apres avoir tire des equations p = o, q = o, les valeurs de t et u, et 

les a voir substituees dans A et dans C- ~, il faut; pour que Z so it un 

Vl'ai maximum, que A soit negatif et 

C <!', savoir CA > B'; 

2. 
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et au contraire, si Z doit etre un vrai minimum, on doit trouver A positif 
P.t 

B' 
C> A' ou CA>B', 

eonformement a la theorie generale expliquee ( 4 et suiv.). 

12. Si, au lieu de eonsiderer d'abord u constant et t variable, on avait 

fait u variable et t constant, on serait parvenu aux determinations sui
vantes 

pour le maximum, et 

pour le minimum, ce qui revient au meme. Au reste, cette methode que 

nous venous d'employer pour decouvrir les conditions des maximum et 

minimum dans les fonctions a deux seules changeantes, est egalement 
applicable a toutes les autres fonctions plus composees, elle a meme 

l'avantage d'etre plus analytique et plus directe que la premiere, e'est 

pourquoi je tacherai ici de la developper dans toute sa generalite. 

13. Soient les variables contenues dans Zen tel nomhre qu'on voudra; 

je ne considere d'ahord qu'une variable seule, et je tire par la differen
tiation }'equation pour le maximum ou minz~mum qui lui eonvient; puis 

en passant a Ia differentielle seconde, je trouve les eonditions qui rleter

minent la proposee a etre un maximum ou un minimum, ou ni l'un ni 

!'autre. Apres cetle premiere operation, je substitue dans Z ou dans ses 
differentielles simplement Ia valeur de Ia premiere variable trouvee, et 
je procede sur une autre variable de Ia meme maniere; ensuite, mettant 

de nouveau dans la fonction proposee Z la valeur qu'on aura trouvee 

pour cette seconde variable, on passera a l'examen d'une troisieme va
riable, et ainsi de suite, etc. Soit t la premiere variable qu'on veut consi

derer dans Z, et on aura 
dZ=pdt et d'Z=Adt', 
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d' oi.1 p = o, et A > o pour le minimum, A < o pour le maximum ( 1). 

Que t et u soient a present toutes deux variables, il en resultera 

dZ = pdt + qdu, 

qui, a cause de p = o, se reduit a 

dZ = qdu, 

d'ou l'on tire 
d•Z =(Belt+ Cdu) du; 

mais puisque p = o, dp le sera aussi, et par consequent 

Adt+Bdu=o, 

ce qui donne 

cette valeur substituee dans d 2 Z Ia changera en 

d' Z = (- ~ + C) du', 

j'aurai done q = o et 

pour le minimum, et 

pour le max·imum, savoir, puisque A est positif dans le premier cas et 

negatif dans le second, en multipliant par A, il resultera toujours Ia 

meme eondition de AC > B2 • Si, outre les deux precedentes, il y a encore 

une troisi/:nne variable x a considerer, je cherche la valeur de dZ eu 

egard a ces trois variables t, u, x, et je trouve 

dZ = pdt + qdu + J'([x, 
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ce qui, a cause de p = o, q = o, se change en 

dZ=rdx; 

done Ia differentielle seconde sera 

d•Z =(Ddt+ Edu + Fdx) dx. 

A present, par le moyen des equations 

p=o, q=o, 

ou bien de leurs differentielles 

Adt + Bdu + Ddx = P et Bdt + Cdu + Edx = o, 

je cherche des valeurs de dt et du en dx, et je trouve 

BE-CD 
dt= AC-B• dx, 

BD-AE 
du= AC~H' dx; 

je Jes substitue dans I' expression de d 2 Z, ce qui me donne 

( BE-CD BD-AE ) 
d•Z= AC-.1:1' D+ AC-B' E+F dx•. 

II resulte done en premier lieu pour le maximum ou minimum 

r=o; 

ensuite 
BE-CD BD-AE 
AC-B• D+ AC-B• E+F>o 

pour le minimum, et < o pour le maximum; ou bien, en Otant Je deno

minateur AC - B2 qui est toujours positif, on a 

2BDE- CD• -- AE•- FB• + ACF > o 
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pour le minimum, et < o pour le maximum. Soit multipliee cette expres
sion par A, qui est positif dans le premier cas et negatif dans le second, 

et on aura 
zABDE- ACD'- A'E'- AB'F + A'CF> o, 

soit pour le maximum, soit pour le minimum, savoir 

(CA-B') (FA-D')> (EA- BD )'. 

On suivra le meme procede pour un plus grand nombre de variables. 

14. Cette methode, etant generale pour quelque nomln·e de variables 
que ce so it, ne sera pas bornee aux seules fonctions algehriques, mais 
pourra encore s' etendre avec succes aux maximum et minimum qui sont 
d'un genre plus eleve et qui appartiennent a des formules integrales in
definies. Je me reserve de traiter ce sujet, que je crois d'ailleurs entiere
ment nouveau, dans un ouvrage particulier que je prepare sur cette ma
tiere, et dans lequel, apres avoir expose Ia methode generale et analytique 
pour resoudre tous Ies probli:nnes touchant ces sortes de maximum ou 
minimum, j'en deduirai, par le principe de la· moindre quantite d'action, 
toute la mecanique des corps soit solides, soit fluides. 

15. Je finirai ce Memoire"par quelques exemples des plus simples qui 
eclaircissent la theorie qu' on vient d' etahlir. Soient taut de corps qu' on 
voudra parfaitement elastiques et ranges en ligne droite sans se toucher; 
supposons que le premier vienne choquer le second avec une vitesse 
donnee c, le second avec la vitesse acquise du premier choque le troi
sibne, et ainsi de suite; les masses du premier et du dernier etant don
nees, on demande celles des corps intermediaires, afin que le dernier 
re~;oive Ia plus grande vitesse possible. Soit a Ia masse du premier, et 
b ce1le du dernier; soient ensuite t, u, x, y, ... les masses intermediaires 
inconnues; par les lois du choc on trouvera Ia vitesse communiquee par 

le premier COl'pS a au Second t ega}e a Ute ' Celie CJUe donne ceJui-ci au "- a+ t 
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troisieme u egale a ( 2 ·~~ct )' et ainsi de suite; done Ia vitesse que 
a+t t+u 

recevra le dernier b sera exprimee par 

2 ••• 2catuxy ... b 
(a+ t)(t+u)(u+x)(x+J")· .. ' 

expression qui doit devenir un maximum. Pour en trouver plus aisement 
la differentielle, qu' on I a suppose egale a z, et prenant les logarithmes 
d'une part et de )'autre, on trouvera 

l2 ... 2ca+lt+lu+lx+l.r+··· I. 
-l(a+ t) -l(t+ u) -l(u + x) -l(x +.r) - ... 1= lZ, 

ee qui donne par Ia differentiation 

dt du dx dy dt dt + du du + dx dx + d1" dZ -+-+-+-+ ... ---- - . - . - ... =-;c--: 
f lf X J" a+ t t + U U + :x: X+}" Z ' 

d'oil, en mettant ensemble et reduisant au meme .denominateur les 

termes affectes des memes differentielles, l'on tire 

dZ= Z(au-t')dt + Z(tx-u')du + Z(uy-x')dx + .... 
t(a+t)(t+u) u(t+u)(u+x) x(u+x)(x+Jr) 

On aura done en premier lieu pour le maximzlm ou minimum les equa
tions suivantes · 

au·= t', tx =· u', l~Y = :i:', .. . , 

qui donnent les analogies 

a : t = t : u, t : U = U ; X, U : X _.:.. X ; J'• .•. , 

sa vOir 
;.;a:t:u:x:}': ... b; 

d'ou l'on voit que toutes les masses doivent constituer une progression 
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geometrique, dont les deux extremes sont les donnees a et b. Pour juger 

a present du maximum ou minimum, soit fait cl'abord, pour ahreger, 

on aura 

done 

z 
-:-t -;-( £i.,--i -+---,-t"'"')(.-:t-:---+--u---;) = a, 

z 
U ( t + U ){ U +X)= !3, 

z 

............ 0 ••••••• , 

p=a(au- t'), 

q =!3(tx- u'), 

r =y(uy-x'), 
............... , 

dp =(au-t') dO<+ a(adu- ::~ tclt), 

dq = ( tx- tt')df3 + f3 (xclt+ tdx- 2 udu), 

dr= (uy- x•)dy + y(ydx + udy-- 2xdx), 

Or, comme les termes a, t, u. x, y, ... doivent etre en progression con

tinue, si I' on nomme 1: m Ia raison constante cl'un antecedent quelconque 

a son consequent, on trouve 

t = ma, u = m'a, x = 1n•a, y = nl'a, ... , 

de plus 

lesquelles valeurs suhstituees dans les expressions precedentes les redui
ront a 

dp = aa(du- 2mdt), 

( 2du dx) dq =act clt - - + - , - m m' 

dr=aa ---+- , ( du 2clx dy) 
m' 1n• nz' 

3 

431



'l8 RECHERCHES SUR LA METHODE 

et ainsi des autres. On aura done 

A=-2maa, B=aa, 
2aa 

C=--, D=o, 
1n 

2C/.ct (/.({ 
F=--, G=o, H=o, I-~--, .... 

1n' m' 

E _aa __ , 
n~' 

On voit par Ht en premier lieu que A est negatif, et que par consequent 

Ia proposee doit etre un maximum si les autres conditions se trouvent 

remplies. Or 

done 

done 

AC=4a'a' et B'=a'a', 

AC- B' = 3a'a', 

AC>B'; 

FA-D'=4a'a', 
m' 

1? o:·~ att 
(AC-B')(FA- D')= -~-, et 

1n' 

EA BD _ 2a'a' 
_.I- ----, 

1n 

(EA- BD)' =4a'a', 
m' 

et par consequent 

(AC -B')(FA -D')> (EA- BD)'. 

S'il n'y a que deux masses intermediaires t et u, il suffit d'avoir egard a 
la premiere de ces conditions; s'il yen a trois, il faut encore considerer Ia 

seconde; s'il y en avait plusieurs au tres, il faudrait a voir recours a autant 
de conditions qu'il y a de variables. Au reste, dans ce prohleme, on les 

trouvera toutes remplies si on veut bien prendre la peine de pousser plus 

loin le calcul; de sorte qu'on peut franchement assurer que, lorsque les 

masses intennediaires, quel que soit leur nomhre, sont telles qu'elles foi·

ment une progression geometrique entre les deux extremes donnees, Ia 

vitesse que reqoit la derniere par leur moyen est toujours Ia plus grande 

possible. Ce probleme a ete traite par M. Huyghens, le premier, et depuis 
par heaucoup d' autres Geometres; mais sans a voir aucunement egarcl aux 

nouvelles determinations, que nous avons cependant trouvees necessaires 

pour s'assurer de !'existence du maximum ou minimum. 
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16. Soit I' equation generale pour les surfaces de second ordre 

z' = ax• + 2bxy+ cy'- ex- fy; 

qu'on se propose de trouver le point oil l'ordonnee z est Ia plus grande 
ou Ia plus petite; on aura, en differentiant, 

2Zdz= 2axdx + 2bydx + 2bxdy + 2eydy- edx- fdy! 

ce qui fournit d'abord les deux equations suivantes 

d'oi.I l'on tire 

e 
ax+ by=-, 

2 

cr+hx=l, 
. 2 

ec-fb 
x= ' 2(ac- b•) 

eb-fa 
y= 2(ac- b•)' 

Differentions de nouveau la differentielle trouvee, et on aura, puisque 

dz=o, 

2zd'z = 2adx• + 4bdxdy+ 2cdy• 

oil les quantites x, y ne se trouvent plus. Or, afin que l'ordonnee z soit 
un vrai maximum ou minimum, il faut que a et c soient toutes deux 

negatives dans le premier cas, et toutes deux positives dans le second; 
de plus, il faut encore que ca > b2 , car sans cela les valeurs trouvees 
pour les ordonnees x et y ne donneraient jamais ni un maximum, ni un 
minimum; en effet, toutes les fois que ca n'est pas plus grand que b2 , le 
celebre M. Euler a demontre par une autre voie, dans l' Appendice a I' ln

troductz'on a l'Analyse des z'nfinzment petits, que Ia surface proposee 
s'etend a l'infini et qu'elle a une asymptote conique. II parait done clai
rement que la methode pour determiner Ies maximum et minimum, 

3. 
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quand il y a plusieurs variables, en ne les regardant qu'une a Ia fois, 

peut souvent etre tres-fautive. Car, par exemple, dans le cas precedent, 

en traitant d'ahord x comme variahle, on trouve Ia differentielle pre-

miere 2 (ax+ by-;) dx, et Ia seconde 2adx2 ; de meme, en faisant 

varier y, on a pour Ia differentielle premiere 2 ( cy + bx - {) dy, et 

pour la seconde 2cdy2 • Or les deux differentielles premieres posees 

egales a zero donnent les memes equations qu'on a trouvees, et les deux 

secondes font voir que si a et c sont toutes deux positives ou toutes 

deux negatives, l'ordonnee z est un maximum ou un minimum, si on a 

simplement egard a Ia variabilite des x et y considerees separement; 

mais on n'est pas en droit de conclure pour cela que z soit un maximum 

ou un minimum, par rapport a toutes deux ensemble, comme on vient 

de le voir. 
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