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Preface

The history of mathematics has undergone, in the last decades, a very fast evolution
process. At first cultivated by a narrow group of researchers, from the second half of
the past century it has attracted the interest of a growing number of scholars, several
of them being also researchers in various areas of mathematics. A subsequent
period has been marked by a growing attention towards the specific methods of the
historical research, with the formation of a professional community of historians of
mathematics whose scientific production has often reached an important level, both
from a quantitative and from a qualitative point of view. In the present period the
best products of the historians of mathematics are tending to emphasize the cultural
dimension of their subjects of study, that is the cultural dimension of mathematics
itself, through the historical approach.

Among all the historical contributions, the studies on the evolution of the
so-called applied mathematics are very numerous, even if perhaps more recent
than the studies on the history of the so-called pure mathematics. Nevertheless,
the history of mathematical optimization can cover a long period, as optimization
problems date back to antiquity: the human race, for his daily requirements of
surviving has always met implicit problems of maximum or minimum. This can
be summed up in the words of Leonhard Euler, who wrote: “For since the fabric of
the universe is the most perfect and the work of a most wise Creator, nothing takes
place in the universe in which some rule of maximum or minimum does not appear.”
There are also some references to optimization problems in literature and poetry; a
famous example is the so-called Dido’s Problem, contained in Virgil’s “Aeneid,”
and which may be considered as the first literary appearance of the isoperimetric
problem of the Calculus of Variations.

The words “minimum” and “maximum’ are typical of several problems, not only
of mathematics but also of physics, chemistry, engineering, economics, etc. They
are central in some very general principles, such as the “principle of least action”
of Maupertuis. By the mid-seventeenth century, the invention of the “Calculus”
has shifted the barycenter of optimization problems from a geometrical field to
a predominantly analytical field. All the analytical results subsequently obtained
(from Fermat onwards) have given birth to a mathematical theory, more and more
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viii Preface

refined, both from the point of view of its theoretical formulations and from the
point of view of the solution techniques.

The history of the so-called mathematical programming (or also nonlinear
programming, where the word “nonlinear” means “not necessarily linear”) is on the
contrary more recent. If, by mathematical programming or nonlinear programming,
we intend those static optimization problems (usually defined in finite-dimensional
spaces), where a function of n variables (“objective function”) is to be minimized
or maximized, subject to a certain number of constraints, not necessarily given
as equality constraints, we can say that its history began, roughly speaking, in
the twentieth century and in particular, from the years of the Second World
War. Obviously, for mathematical programming problems there is also a sort of
“prehistory,” with individual contributions of high scientific level.

At present mathematical programming problems (and in general optimization
problems) are pervasive in several sciences, such as economics, engineering,
operations research, chemistry, physics, biology, social sciences, and management
sciences. Moreover, they have many important applications in these areas and
promise to have even wider usage in the future.

The present book collects some papers that are, in our opinion, the first basic
stepping stones in nonlinear programming (see the list in the index of the book
and at the end of the introductory chapter). Here we have excluded those papers
exclusively concerned with linear programming, such as the contributions of
G. B. Dantzig and L. V. Kantorovich. Obviously, our choice is subjective and does
not claim to be complete; however, we believe that some contributions could not
have been neglected: this is the case for the Master Thesis of W. Karush (1939),
here published in its full length, the papers of F. John (1948) and of H. W. Kuhn
and A. W. Tucker (1951). Some basic papers of K. J. Arrow, L. Hurwicz, and
H. Uzawa have been included in our list. The paper of Arrow and Hurwicz of
1956 treated, with a more general approach, the equivalence between the usual
nonlinear programming problem and the saddle-point problem of the Lagrangian
function, a question previously analyzed by Kuhn and Tucker in their 1951 paper.
Arrow and Hurwicz (1951) devised a gradient technique for approximating saddle-
points and constrained optima. This is one of the earlier gradient techniques
offered for solving the constrained nonlinear optimization problem. The paper of
Arrow, Hurwicz, and Uzawa (1961) on constraint qualifications is perhaps the first
contribution concerned with the important problem of locating “regular’ constraints
and of establishing the relationships between the various constraint qualifications
proposed, a problem which has not lost its importance after 50 years. Equally
important is the paper of Hurwicz of 1958 (but written before), one of the first
treatments of nonlinear programming problems, both for the scalar and for the vector
case, in topological spaces. The papers of L. L. Pennisi (1953) and G. P. McCormick
(1967) are important for their treatment of second-order optimality conditions
for a general nonlinear programming problem. The papers of W. Fenchel (1949),
M. L. Slater (1950), and Uzawa (1958) are important for the case of convex
nonlinear programming problems; in fact, convex analysis is in itself a basic tool
for the development of mathematical programming, as the works of W. Fenchel,
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J. J. Moreau, and R. T. Rockafellar have shown. The paper of 1963 by R. W. Cottle
is perhaps the first “translation” of the original Fritz John optimality conditions
into the setting of the usual nonlinear programming problems. The papers of Bliss
(1938) and Valentine (1937) have been included, due to their historical relevance
in connection with the birth of optimality conditions for a nonlinear programming
problem.

In the introductory chapter, entitled A Historical View of Nonlinear Program-
ming: Traces and Emergence, we have attempted to recapitulate the basic facts in the
history of mathematical programming: “classical” mathematical programming (i.e.,
with only equality constraints), linear programming, and nonlinear programming.
We have also added an Appendix, containing three further contributions, useful to
illuminate further the growth process of optimization theory.

The main purpose of this book is to offer researchers direct access to the original
sources and classics in nonlinear programming, together with an examination of the
historical context regarding the emergence and development of this field of research.
We hope that this collection will be useful and stimulating for all those who are
interested in deepening their knowledge of the emergence and first developments of
nonlinear programming and in general of mathematical optimization.

Pavia, Italy Giorgio Giorgi
Roskilde, Denmark Tinne Hoff Kjeldsen
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A Historical View of Nonlinear Programming:
Traces and Emergence

Giorgio Giorgi and Tinne Hoff Kjeldsen

The historical view we propose in this introductory chapter will point out some of
the technical difficulties of mathematical problems related to nonlinear program-
ming and some features of the economic and social context (also military) that
favored its rootedness in the years of the Second World War and the years immedi-
ately following the war. We recall some of the main definitions and basic results of
mathematical programming and shortly address the “prehistory” of nonlinear pro-
gramming. The main part of the chapter deals with the first ideas and developments
of linear programming, first in the USSR and then in the USA and with the funda-
mental researches of W. Karush, Fritz John, H.-W. Kuhn and A.W. Tucker which are
analyzed and discussed with respect to their mathematical and historical features.

Introduction

It is well known that the central problem of nonlinear programming is that of
minimizing or maximizing a given function of several variables subject to a finite
set of inequality and/or equality constraints. The problems, both theoretical and
practical, which can be translated into a nonlinear programming problem, are in fact
countless and arise in different contexts, such as economics, game theory, operations
research, statistics, physics, etc. Nonlinear programming can be viewed as that
field of optimization theory which treats static and finite-dimensional optimization
problems with emphasis on computational aspects. Also the term “mathematical

G. Giorgi (0<)

Dipto. Ricerche Aziendali, Sez. Matematica Generale, Universita Pavia, Via S. Felice 5,
Pavia 27100, Italy

e-mail: ggiorgi @eco.unipv.it

T.H. Kjeldsen
IMFUFA, NSM, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark
e-mail: thk@ruc.dk

G. Giorgi and T.H. Kjeldsen (eds.), Traces and Emergence of Nonlinear Programming, 1
DOI 10.1007/978-3-0348-0439-4_1, © Springer Basel 2014


mailto:thk@ruc.dk
mailto:ggiorgi@eco.unipv.it

2 G. Giorgi and T.H. Kjeldsen

programming” is used. This term was first introduced by Robert Dorfman in 1949,
according to the reminiscences of G.B. Dantzig on the birth of Linear Programming
(see [91]). The term “nonlinear programming” appears for the first time in the title
of the famous paper of Kuhn and Tucker [85].

As an autonomous field of research, mathematical programming, which draws on
mathematical analysis, numerical analysis, linear algebra, operations research, etc.,
has encouraged or actually generated strong connections and exchanges with other
theories and fields of research, such as nonsmooth analysis, decision theory, games
theory, microeconomic theory, etc. Its main features make obvious its importance
towards the whole economic theory and finance theory. Similarly, it must be stressed
its importance from a didactic point of view: optimization theory stems, historically
and logically, from the research of maximal and/or minimal points for a real function
of one real variable. This is one of the classical subjects of any first-year course
of a scientific university faculty. Then, this problem is generalized in second-year
courses, to the research of free and constrained extremal points for a real function
of several real variables.

This theory which is so “central” and so rich in its linkages to other important
theories and applications, is relatively young: we recall again that the first time that
the word “nonlinear programming” appeared in a printed paper is 1950 (date of
printing, 1951). As is well known, though, aspects of some of the mathematical
questions that are central to mathematical programming were dealt with in some
of these other “connecting” fields of research before mathematical programming
emerged as an autonomous mathematical discipline.

The historical view we propose in this introductory chapter will point out some
of the technical difficulties of these mathematical problems and some features of the
economic and social context (also military) that favored its rootedness in the years
of the Second World War and the years immediately following the war. We begin
by recalling the main definitions and basic results of mathematical programming
theory, treating only finite-dimensional problems. Then, in section “The Prehistory
of Linear and Nonlinear Programming”, we shall be concerned with the “prehistory”
of nonlinear programming, whereas section “Soviet Union and USA the First
Years of Linear Programming” is concerned with the first ideas and developments
of linear programming, first in the USSR and then in the USA. Section “The
Birth of Nonlinear Programming” is the “central section” in which the fundamental
researches of W. Karush, Fritz John, H.-W. Kuhn and A.W. Tucker will be analyzed
and discussed with respect to their mathematical and historical features. The final
section presents some further considerations and conclusions.

Basic Results

The simplest mathematical programming problem is that of maximizing or mini-
mizing a function f : R” — R on a certain set A C R", where A4 is a proper or
improper subset of the domain of f:
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max f(x) or min f(x) (P1)
X€EA xX€A

The set A is frequently called either the feasible set, the feasible region or the
opportunity set; f is called the objective function or the criterion function and
the vector x = (x1,x2,...,X,) is the vector of the decision variables or choice
variables; x is also called the vector of instruments. We can restrict our analysis
only to one of the two problems (P;), for example to the maximum problem, as
we have that the problem Max f(x) is equivalent to the problem Min(— f(x)) and
obviously we have

f(x®) = Max f(x) = —Min(— f(x))

We recall some general and well known results:

1. Weierstrass theorem. Let f : R" —> R be continuous on the compact (i.e. closed

and bounded) set X C R". Then f admits maximum and minimum over X .
This result, which however provides only a sufficient condition for the

existence of maximum and minimum of f, can be generalized in several
directions. We recall only the following generalization:
Let f : R"” — R be upper (lower) semicontinuous on the compact set X C R”.
Then f admits maximum (minimum) over X.

2. Let f : R" — R be defined on X C R”".If X is a convex set (i.e. Ax' 4+ (1 —
Mx2e X, Vx!',x2 € X, YA €[0,1]) and f is concave on X, i.e.

FOX'+ A =D)xH) = Af () + (1 =1 f(x?), Vx',. x> e X, VA e[0,1]

then:

(a) The local maximum points of f are also global maximum points.

(b) The set of (global) maximum points of f is a convex subset of X.

(c) If f is strictly concave on X (i.e. the previous inequality holds with the order
relation “>” for any x! # x? and any A € (0, 1)), and admits a maximum
point x°, this is unique.

If in (P;) we have to maximize or minimize the objective function f on an
open feasible set A or if the extremal points x° are interior points of A, we
shall call (P;) an unconstrained or free mathematical programming problem.
Otherwise we shall call (P)) a constrained mathematical programming problem
(or mathematical programming problem tout-court).
For an unconstrained mathematical programming problem, the following
results are well known:
3. If x° € int(A) (the interior of A) and f is differentiable at x°, then we have
(Fermat conditions) V f(x°) = 0, i.e. x° is a stationary or critical point for f .
4. Let x° € A be a stationary point for f and let f be twice continuously
differentiable on the open set A. Let us denote by Hf (x°) the Hessian matrix
of f, evaluated at x°. Then:
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(@) If yTHf(x°)y <0, Yy € R" \ {0}, i.e. if the quadratic form with matrix
H f(x°) is negative definite, then x° is a strict local maximum point for f.
If yTHf(x°)y >0, Yy € R" \ {0}, then x° is a strict local minimum point
for f.

(b) If the quadratic form y” H f(x°)y is indefinite, then x° is neither a maximum
point, nor a minimum point. Sometimes it is called a “saddle point” for f.

(c) If yTHf(x°)y is a semidefinite quadratic form (positive or negative) we
need further investigations to decide the nature of the stationary point x°.

5. If in the unconstrained problem (P;) f is differentiable and concave on the open
convex set A C R”, then every stationary point of f is a global maximum point
for f.

Results (2) and (5) point out the importance of the concavity (and convexity)
in mathematical programming problems. So, optimization theory has been also
one of the main motivations for the introduction and study of various types of
generalized concavity (convexity), where by means of suitable extensions of the
classical definition of concave (convex) functions, various classes of generalized
concave (convex) functions that preserve several properties of concave (convex)
functions have been established. In particular, the result (5) can be obtained also
under the assumption that the (differentiable) function f is pseudoconcave on the
open and convex set A, i.e. f must satisfy the following relation

VIix)(y—x) <0= f(y) < f(x), Vx,y € A.

Another useful and important generalization of concavity (convexity), partic-
ularly useful in mathematical programming problems and meaningful in several
questions of economic theory, is the class of quasiconcave functions, introduced
by de Finetti [31]:

SAx + (A =A)y) =z Min{f(x), ()}, Vx.y € 4, VA €[0,1]

where A € R” is a convex set.
If f is differentiable on the open and convex set A, f is quasiconcave on A if
and only if

x,y €A f(y) = f(x) = Vf(»(y—x) =0.

This result is due to Arrow and Enthoven [6]. It can be proved that if f is concave
(and differentiable) then f is also pseudoconcave and if f is pseudoconcave, then
it is also quasiconcave. The literature on generalized concavity is quite relevant;
we quote only the books by Avriel et al. [10], by Cambini and Martein [17] and
by Mishra and Giorgi [96]. For a history of quasiconcavity and its applications the
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reader may consult Guerraggio and Molho [64], Giorgi and Guerraggio [60] and
Hadjisavvas et al. [66].

A first type of an unconstrained optimization problem is one where the set A4 is
not open or the optimal point x° is not an interior point of A. In other words A4 is
an abstract constraint or set constraint. In this case the Fermat necessary condition
V f(x°) = 0 does not hold. A generalization of this condition can be obtained in
the following way. Consider a subset 4 of R” and a vector x € A. A vector y € R”
is a feasible direction of A at x if there exists an @ > 0 such that x + oy € A4 for
all o € [0, &]. The set of all feasible directions of A at x is a cone, denoted F (4, x),
containing the origin but not necessarily closed nor open. If A is convex, F (A4, x)
consists of the vectors of the form a(Xx — x), with @ > 0 and X € A. Then we have
the following generalized Fermat theorem:

If x° is a local minimum (maximum) point of the differentiable function f over
A, then

VA(x?)y =0 (Vf(x°)y <0), Vy € F(4,x°).
If A is convex, then the above condition becomes
Vf(x®)(x—x°)>0(<0), Vxe 4

which is a type of variational inequality. Moreover, if f is convex (concave) on
the convex set A, the said variational inequality is both a necessary and sufficient
condition for x° to be a global minimum (maximum) point of f on A.

Sharper conditions can be obtained by means of the so-called Bouligand tangent
cone (or contingent cone): see, e.g. Avriel [9], Bazaraa and Shetty [11], Giorgi
et al. [59].

When the feasible set A is given by the solutions of a finite number of equations,
we have a “classical” mathematical programming problem:

max f(x) or min f(x) (P2)
x€es xX€eS
where § = {xeA, hj(x)zO,jzl,...,r<n},A C R”" is open and

fhy(G=1...r):R"—R.

The word “classical” makes reference to the works and discoveries of J.L.
Lagrange, in the eighteenth century (see the next section). If for (P,) we introduce
the Lagrangian function

L(x.2) = f(x) = 2h(x) = f(x) = Y Ajh;(x).
j=1

where the numbers A; € R, j = 1,...,r, are the well-known Lagrange
multipliers, we have the following fundamental results.
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6. Let x° € S be a local solution of (P,) and let the following assumptions be
satisfied:

(i) f is differentiable at x°;

(ii) Every h;, j = 1,...r, is continuously differentiable in a neighborhood of
x° and the Jacobian matrix J/1(x°) has full rank, i.e. the vectors V;;(x°)
are linearly independent (the constraints, in this evenience, are said to be
“regular”).

Then there exists a unique vector A° = (1,°,...,4,°) such that (x°,1°) is a
stationary point for the Lagrangian function, i.e.

V £(x°) — A°Th(x°) = 0. (1

Under some additional assumptions (not too restrictive), the vector of multipliers
A° assumes an interesting meaning, in the sense that its components A;°, j =
1,...,r, measure the effect that a marginal variation of the jth constraint gives
rise to the optimal value of the objective function (see, e.g., Fiacco [48]). In
economic problems the marginal variation of a constraint usually represents the
variation of the available quantity of a given commodity, whereas the objective
function has the meaning of profit or cost of production. So, economists call the
Lagrange multipliers “shadow prices”: through the values of A;°, j =1,...,r,
it is then possible to get an economic evaluation of the “weight” that every
constraint assumes in obtaining the optimal value of (P,).

7. Let x° € S and let (x°, A°) verify relation (1). If L(x, 1) is pseudoconcave with
respect to x, then x° is a point of global maximum of f on S.

Problem (P,) has been the first constrained optimization problem to be
considered by mathematicians (by J.L. Lagrange). When, long after Lagrange,
optimization problems with a feasible region determined by inequality con-
straints (or by equality and inequality constraints), i.e., the modern mathematical
programming problems, have been taken into consideration, the researches have
been done towards two directions. On one hand we had the birth of Linear
Programming problems, i.e. those mathematical programming problems where
the objective function and the constraints are given by linear or affine functions.
On the other hand we had the modern version of the problem (P,), i.e. a
Nonlinear Programming problem, of the form, e.g.,

max f(x) (P3)

K={xed, gi(x)<0,i=1,...,m},where A C R"isopenand f, g; (i =
1,....,m):R" — R.

For this problem the set of active (or effective) constraints at x° € K is
given by

I(x°) ={i :gi(x°) =0}.
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The two fundamental results for (P3) are usually the Fritz John theorem and the
Karush—Kuhn-Tucker theorem.

8. Fritz John Theorem (1948). Let f andevery g; (i = 1,...,m) be differentiable
at x° € K and let x° be a local solution of (P3). Then there exists a vector
(Y0s Y1»--+» ym) € R"TL nonnegative and nonzero (i.e. a semipositive vector),
such that

@) yoV f(x°) = >/, yiVgi(x°) =0
(i) yigi(x°)=0,i=1,...,m.

The proof of this theorem relies basically on the fact that an optimal point
implies the empty intersection of certain sets, more precisely the inconsistency
of a certain system of linear inequalities. Therefore, a classical theorem of the
alternative applies and the thesis is obtained. This can be given also a geometrical
interpretation: there exists a separating hyperplane (between two convex sets)
whose equation contains, as coefficients, the John multipliers y;, i = 1,...,m.

If we compare the results (3) and (6), concerning respectively an unconstrained
optimization problem and the problem (P,), with the Fritz John theorem, we note
that in this last one the sign of the multipliers is no longer “free”: the multipliers
must be all nonnegative but not all zero. Moreover, the relations (i) and (ii) above
can be summarized in the following condition

V)= D yiVeix©) =0,

iel(x°)

where only the active constraints are considered, and where, as before, also the
gradient of the objective function is associated to a multiplier. We have to say that the
conditions of Fritz John for the problem (P,) were anticipated by Caratheodory [18]
and for a Pareto optimization problem with equality constraints (i.e. the objective
function is a vector-valued function), by de Finetti [29, 30]. The contributions of
this last author have been completely ignored by the mathematical literature (also
Italian). See Giorgi and Guerraggio [60].

The multiplier yo can be zero. In order to avoid this “degenerate” case, where the
objective function would play no role, some regularity condition must be imposed
on the constraints of the problem (P3). This is the problem of the “constraint
qualifications”. There are several constraint qualifications, varying in generality and
complexity; see, e.g., Bazaraa and Shetty [11], Peterson [105], and Giorgi et al. [59].
The constraint qualification more similar to the regularity condition we have seen
for (P,) is: the active gradients Vg, (x°), i € I(x°), are linearly independent.

9. Karush—Kuhn—Tucker theorem (1939 and 1951). Let x° € K be alocal solution
of (P3), under the assumption of differentiability at x° of f and every g;, i =
1,...,m. If a constraint qualification is satisfied, then there exists a vector A
such that

(i) Vf(x°) =YL, A Vgi(x°) =0.
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(11) Aigi(x°) =0,i=1,...,m.
Gi) 4 >0, i=1,...m.

The next theorem provides a sufficient condition for x° € K to solve
problem (Ps3).

10. Let x° € K satisfy conditions (i)—(iii) of the theorem of Karush—Kuhn—Tucker.

Let f be pseudoconcave on the open convex set A € R” and let g;(x°), i €

I(x°) be quasiconvex (i.e. —g; is quasiconcave) on the same set. Then x° solves

(P3).

By this quite schematic introduction one cannot obviously be informed of all
the results, even important and “classical”, that have grown within mathematical
programming theory. We shall make two exceptions: the first is concerned with
duality theory, especially for linear programming problems, the second one with
vector (or Pareto) optimization problems.

Duality theory allows to deduce some interesting features of a mathematical
programming problem (P), by means of the analysis of another problem, in a certain
sense “specular” to (P), called dual problem, built from (P) following certain rules.

Duality theory was born together with linear programming theory and game
theory (matrix games) and subsequently has been extended also to nonlinear
programming theory. If (P) represents the following linear programming problem

Min cx
Ax<b

x>0
where A is a (m, n) matrix, ¢, x € R” and b € R, its dual problem (P’) is

Max by
YA > ¢
y=0

If (P) is the following linear programming problem

Min cx
Ax=b

x>0,
its dual problem (P’) is

Max by
yA > c.
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Note that in this dual problem there are no sign constraints on y.
In general, given a linear programming problem (P), called also the “primal”
problem, the following properties on (P) and its dual (P*) hold:

(a) The dual (P’) of (P) is unique.

(b) The dual of the dual is again the problem (P).

(c) If (P) is a minimum problem, then (P’) is a maximum problem and conversely.

(d) Coefficients by, by, . .., by, in the objective function of the dual problem (P’) are
the constants of the right-hand side of (P) and the coefficients c; c;. . ¢, in the
objective function of (P) are the constants of the right-hand side of the dual (P’).

Duality theory for linear programming is very important, not only from theoret-
ical points of view, but also from computational points of view. A first basic result
states that if (P) and (P’) have both a nonempty feasible set, then both problems
admit solution and the two optimal values are equal.

We give now a slight idea of what is a vector (or Pareto) optimization problem.
If the objective function is given by a vector-valued function f : R” — R”,
we have the class of vector optimization problems or Pareto optimization problems
(from Vilfredo Pareto (1848—1923), the Italian economist and sociologist who first
considered these kinds of problems). In this case, before considering the necessary
and/or sufficient optimality conditions, one has to define and specify the notion
of optimal solution, as the image space of a vector optimization problem is not a
totally ordered set (as the space of real numbers), but only a partially ordered set.
Therefore, it is not possible to “transfer” in an immediate way to the vector case the
basic inequality f(x) < f(x°) which characterizes the definition of a maximum
point for the scalar case.

The Prehistory of Linear and Nonlinear Programming

From what we have said in section “Introduction”, it would be clear that we are
treating a theory whose “official” birth lays at the hearth of the twentieth century,
and precisely in the years immediately following the Second World War. However,
all readers who have some recollections of a second course of Mathematical
Analysis, are familiar with the term “Lagrange multipliers”’, named after Lagrange
who treated equality constrained optimization problems, that is problems of type
P, in the second half of the eighteenth century.

Joseph Louis Lagrange (Turin, 25/01/1736, Paris, 10/04/1813) is, in a sense, both
Italian and French: his mother, Teresa Gros, was a daughter of a medical doctor of
Cambiano (a spot near Turin) and his father was of a family coming from France
(Touraine) but settled in Piedmont, in Turin, since the reign of Charles Emmanuel
II, duke of Savoy. Gino Loria, the Italian historian of Mathematics, in his “Storia
delle Matematiche” [92] writes that Lagrange was baptized as “Lagrangia Giuseppe
Ludovico”; subsequently the famous mathematician used different forms of his
family name: De la Grangia Tournier, Tournier de la Grangia, De la Grange, etc.
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After his moving to Berlin and finally to Paris (in a time where a noble origin
was not looked favourably upon) he signed his works with the name “Lagrange”.
This perhaps explains the reason why in several textbooks of mathematical analysis
Lagrange is presented as a “French Mathematician”.

Lagrange introduced “his” multipliers in 1788, in the fourth section of the first
part of his famous book Mécanique Analytique [86]. These multipliers were, in the
intention of Lagrange, the basic tool to state the configuration of a stable equilibrium
for a Mechanical system. The problem is to deduce, from the general principle of
Statics Theory [86, p. 77]:

“des formules analytiques qui renferment la solution de tous les problemes sur 1’équilibre
des corps [...], en reduisant en quelque maniére tous les cas a celui d’un systéme
enticrement libre”.

In particular, one has to minimize the so-called potential function, taking into
account that the system, individuated in its positions by n 4 r coordinates, is subject
to constraints of the type i1 (x) = 0, ha(x) = 0,..., h.(x) = 0. By differentiating
these equations we have dh;(x) =0, dhy(x) =0,..., dh,(x) =0, and

“comme ces équations ne doivent servir qu’a éliminer un pareil nombre de différentielles
dans la formule générale de 1’équilibre, apres quoi les coefficients des différentielles
restantes doivent étre égalés chacun a zéro, il n’est pas difficile de prouver, par la théorie
de I’élimination des équations linéaires, qu’on aura les mémes résultats si I’on ajoute
simplement 2 la formule dont s’agit les différentes équations [...] multipliées chacune par
un cofficient indéterminé A ;” [86, p. 78]

From this “algebraic” remark, it follows the “extrémement simple” rule that allows
to state the equilibrium configurations. Lagrange considers the equalities df — A}
dhy — ... — A.dh, = 0, where df represents, following the words of Lagrange
[86, p. 78], “la somme des moments de toutes les puissances qui doivent étre en
équilibre”. Now, if we choose the multipliers A ; in such a way that the coefficients of

dx,y; are zero, we have an equation in dxi, . .., dx, whose coefficients must be all
zero. So, we have obtained the n 4 r conditions (to be added to the r equalities 7; =
0,...,h, = 0) in the n + 2r variables xy,..., X+, A1, ..., A,. The multipliers

A, introduced by Lagrange as an algebraic tool to obtain that “le nombre de ces
équations sera égal a celui de toutes les coordonnées des corps” [86, p. 79] have
also a physical meaning. Indeed Lagrange did not discuss the system of the n + 2r
equations in the 7 +2r unknowns, obtained by means of the “equations particuliéres
de I’équilibre”; he only remarked that the value of the multipliers [86, p. 79]

“pourra toujours exécuter par les moyens connus, mais il conviendra, dans chaque cas, de
choisir ceux qui pourront conduire aux résultats les plus simples”

Moreover, he pointed out that the various A;dh; represent “les moments de
différentes forces appliquées au méme systeme” [86, p. 80]. It is by means of these
forces, expressed by the constraints, that one can transform the constrained problem
into an unconstrained one:
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“et de la on voit la raison métaphysique pourquoi I’introduction des termes A;dh; +
Axdh, + ... peut ensuite traiter cette équation comme si tous les corps du systeme étaient
entierement libres.” [86, p. 82]

In the Théorie des Fonctions Analytiques [87] Lagrange presented his method
of multipliers with a greater generality. Here he introduced the problem without
making reference to some specific question of Mechanics, but directly with regard to
a general constrained optimization problem with equality constraints. In Sect. 58 of
Chap. XI of the second part, we find again the proof of the necessary optimality con-
ditions, a proof performed with the standard of precision that is typical of Lagrange’s
exposition. Lagrange finished the section with the basic general principle:

“il suffira d’ajouter a la fonction proposée les fonctions qui doivent étre nulles, multipliées
chacune par une quantité indéterminée, et de chercher ensuite le maximum ou minimum
comme si les variables étaient indépendantes.”

In the same years of Lagrange, we also find a few works on linear equality
constrained optimization problems. We refer to Grattan-Guinness [61, 62] who
records the names of Laplace [88, 89], of Boscovich [16] and of de Prony [33].

Lagrange developed his “multiplier rule” in dealing with optimization problems
subjects to equality constraints. These problems came out of his considerations
regarding stable equilibrium for mechanical systems that were subject to some
equality constraints which where, again, subject to the principle of virtual work.
Lagrange utilized this principle as an axiom for reversible displacements of the
system. The French mathematician J. Fourier (1768-1830) extended the principle
to irreversible displacements in his Mémoire sur la Statique contenant la dé-
monstration du principe des vitesses virtuelles et la théorie des moments published
in 1798. He thereby considered mechanical systems subject to inequality con-
straints. It is unclear what inspired Fourier to consider this extension to irreversible
displacements, maybe it was just a very careful reading of Lagrange’s Mécanique
analytique (1788) that made Fourier aware that Lagrange disregarded displacements
that, even though they did not fulfil the equality constraints, did not violate the
constraints of the mechanical system—at least this was what the Russian mathe-
matician and physicist M. V. Ostrogradsky (1801-1862) discovered when he read
Lagrange’s work: “...ce grand géometre [Lagrange] a incompletement énuméré les
déplacements possibles dans la plupart des questions de la premiere partie de la
Mecanique analytique, et il est facile de reconnaitre que les déplacements qu’il a
négligé de considérer, ne sont empeché par aucune condition, ...” [102, p. 130].
The displacements left out by Lagrange are precisely the irreversible ones. Instead
of the virtual work, Fourier considered “le moment de la force” [49, p. 479], which
results in a shift in sign (see Prekopa [107] and Franksen [54-56] for further details).
But it was not only in mechanics that Fourier saw a need for a theory of linear
inequalities. In his book Analyse des Equations Déterminées (1831) he explained
that “The principle of the theory of inequalities will be expounded in the seventh and
last of the books. This part of our work is concerned with a new kind of questions,
which offers varied applications to geometry, to algebraic analysis, to mechanics,
and to the theory of probability” [53, p. 71]. Fourier died before he could finish
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the project and he only published a short paper [52] and two summaries [50,51] on
linear inequalities. Even though Fourier did not get very far in his development of
a theory for systems of linear inequalities these few publications show that he did
indeed have a geometrical understanding of the set of solutions to such a system
in three variables as a polyhedron. Despite Fourier’s claim of the applicability of
a theory of inequalities to various branches of mathematics the subject seems not
to have raised any real interest at the time. A fact that Darboux clearly pointed
out when he wrote the “Avertissement” of Fourier’s collected work: “Nous avons
aussi, par quelques emprunts a 1’ Historie de I’Académie pour années 1823 et 1824,
pu faire connaitre d’une maniere assex precise certaines idées sur la theorie des
inégalites auxquelles 'illustre géometre attachait une importance qu’il est permis,
aujourd’hui, de trounver un peu exagérée” [28, pp. v—vi].

In the printed works of Fourier, and also in his unpublished notes, there are some
anticipations of some basic subjects that we now a days think of as belonging to the
modern theory of mathematical programming, but there is no theoretical deepening
nor an organic treatment of the material: there are only some first acquisitions, as the
convexity of the feasible region in optimization problems subject to linear inequality
constraints and, above all, the study of several “practical situations”, where the
“inequality analysis” reveals its utility (for example, the “least squares method”).
These suggestions, notwithstanding the scientific authority of Fourier, did not as
Darboux’s evaluation also made clear cause many reactions and interest at the time.
Apparently only two of Fourier’s students took his suggestions into consideration:
the famous mathematician Navier [101] and the equally famous mathematical
economist Cournot [25, 26], who, in the paper of 1827, without making reference
to the work of Fourier (see [107]), rediscovered the principle of Fourier, giving the
necessary conditions for equilibrium with ad hoc arguments which make specific
reference to the mechanical interpretation of the question.

The same treatment appeared in more general terms in a paper of the Russian
mathematician Ostrogradsky [102, 103]. Ostrogradsky (1801-1862) was a student
in Paris and, before he returned to S. Petersburg, he had attended courses of
Fourier, Poisson, Cauchy and other famous French mathematicians. Ostrogradsky,
strangely without quoting Fourier nor Cournot, asserted that at the minimum point
the gradient of the objective function can be represented as a linear combination,
with nonnegative multipliers, of the gradients of the constraints. The multipliers are
sign free when there are only equality constraints.

From then on there seems to have been practically no other interest, among
mathematicians, for optimization problems with inequality constraints until the
end of the nineteenth century. We can only quote a paper of Gauss of 1829 (see
the complete reference in Grattan-Guinness [62]) where the inequality principle
is “enunciated ...without mentioning Fourier” (see [107]). Other uses of linear
inequalities were made by G. Boole (1815-1864) on questions regarding Statistics
and the measure of Probability [15]. Also Gibbs [57] considered problems of
dynamics with inequality constraints.

A work by Paul Gordan (1837-1912) from 1873 is included in Theodore
Motzkin’s (1908-1970) list of all known previous literature on linear inequality
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systems which he published in his master thesis Beitrdge zur Theorie der linearen
Ungleichungen in 1936. But historically, there seems to be nothing that indicates
that Gordan was interested in the theory of systems of linear inequalities (see [78]).
In the paper listed by Motzkin, Gordan proved a theorem about existence of positive
solutions to a system of linear equations. His main concern seems to have been to
develop a tool for determining when a system of linear Diophantine equations has
a positive solution, a question that came up in his work on the so-called finite basis
problem in invariant theory, which was his main area of interest at the time. Motzkin
interpreted Gordan’s paper in the following way:

“He stated the elegant transposition theorem in disguised form and proved it in a roundabout
way, but then confined himself to Diophantine problems” [100, p. 5].

Gordan did not, however, state a relationship between two systems of equations of
the form of a transposition theorem. Such a theorem can be derived fairly easily,
though, from Gordan’s result, which is probably why later writers have credited a
transposition theorem to Gordan.

The interest in inequality analysis began again towards the end of the nineteenth
century, above all, with the publication of several papers of the Hungarian math-
ematician Julius Farkas, whose role became further emphasized when Kuhn and
Tucker used what is now called the Farkas lemma or Farkas—Minkowski lemma to
prove their famous theorem. Julius Farkas (1847-1930) was professor of theoretical
physics at the University of Kolozvar and a member of the Hungarian Academy of
Sciences. He was well known in the scientific environments for his contributions
to Mechanics and Termodynamics. His work on systems of linear inequalities was
motivated by problems in physics, as was the case with Fourier. Farkas formulated
the result, later known as Farkas’ lemma, in the paper Uber die anwendung des
mechanischen Princips von Fourier [43]. Farkas developed a general method that
could be used to treat all types of problems involving the inequality principle
of Fourier: “Der Hauptzweck vorliegender Arbeit ist zu erweisen, dass mit einer
passenden Modifikation die Methode der Multiplikatoren von Lagrange auch das
Fourier’sche Princip iibertragen werden kann” [43, p. 266]. Farkas focused on the
mathematical foundation and developed a theory of homogenous linear inequalities
in a series of papers, culminating with Theorie der einfachen Ungleichungen [44]
which was published in 1901. Here we find the most complete and correct proof of
his lemma, where he proves that every solution of the system of linear inequalities
Ax > 0 (A is a (m,n) matrix, whose rows will be denoted by A4;, i = 1,...,m)
is also solution of the inequality bx > 0 if and only if there exist m nonnegative
numbers A; such thath = >"/L | A; 4;.

The application of the Farkas “lemma” to the correct solution of the equilibrium
problem (with inequalities) proposed by Fourier, appears quite immediate and “nat-
ural”. Let x° be the minimum point of the potential function V. If x°+dx represents
a different position in the feasible region (i.e. such that g; (x° + dx) > 0), under
differentiability assumptions we have dg;(x°) = Vg;(x°)dx > 0. The converse
does not hold, but if we impose a suitable constraint qualification (which obviously
is missing in Farkas), we shall have that every dx such that Vg; (x°)dx > 0 belongs
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also to the feasible region and, moreover, dV(x°) = VV(x°)dx > 0. When
the problem has been “linearized”, the Farkas lemma assures the existence of
nonnegative multipliers A; such that VV(x°) = > 4;Vg; (x°).

Hermann Minkowski studied systems of linear inequalities at the same time
but independent of Farkas and in a different context. Minkowski included an
appendix about linear inequalities to the first chapter of his book Geometrie der
Zahlen (first edition: 1896). He treated a system of homogeneous linear inequalities
& > 0,...,& > 0 and proved that every non-trivial solution can be written as a
positive linear combination of what he called “dusserste” (extreme or fundamental)
solutions [95, p. 43]. By such solutions he understood non-trivial solutions that
could not be written as the sum of two solutions that are, what he called, essentially
different, meaning that they are not multiples of each other. Minkowski developed
his theory of linear inequalities so it could be applied directly in his investigations of
reduced forms of positive definite quadratic forms, which was his main motivation
for developing a geometry of numbers (see [78, pp. 480—489]).

The Hungarian mathematician Alfred Haar (1885-1933) presented a paper on
linear inequalities to the Hungarian Academy of Science in 1917 where he gave a
new foundation for the work on inequalities by Farkas and Minkowski. Haar’s work
was published in 1918 and translated into German in 1924. He generalised the result
of Farkas to nonhomogeneous systems of linear inequalities based on the theory of
convexity [65].

Inspired by a paper on “preferential voting” published in The American Mathe-
matical Monthly in 1916 [93] American mathematicians began to develop a theory
for systems of linear inequalities beginning with work of Dines (1917) which was
followed by further works of Dines [34-37], of Carver [19], of Stokes [112] and a
paper of Dines and Mc Coy [38] that was quoted by Karush [75] in his Master Thesis
(see Sect. 5). Another work which has been called a contribution to the prehistory of
linear programming and is mentioned by Dantzig in his recollections on the origins
of the simplex method [27] is a paper of the Belgian mathematician de la Vallée
Poussin [32] who gave a method for finding minimum deviation solutions of systems
of equations.

However, the first effective acknowledgement of the importance of the work
of Farkas is given in the Master Thesis of T. Motzkin, accepted in 1933 at the
University of Basel and published in 1936 [100]. See also the paper of Kjeldsen
[78] for analyses and discussions of the different motivations and goals of the
various contributions to the study of linear inequality systems. The work that led
to mathematical programming was not motivated by these different developments
in systems of linear inequalities, they were just important tools for proving
fundamental results. The actual development of a theory, or theories, for solving
inequality constrained optimization problems, was neither motivated by equilibrium
problems in mechanics, nor by questions related to positive quadratic forms or to
inequality systems as such. The unset of mathematical programming was spurred
by a different set of problems that were “solved” by mathematicians who worked
independently of each other under very different circumstances, first in the Soviet
Union in the late 1930s and second in the USA after the Second World War.
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Soviet Union and USA: The First Years of Linear
Programming

Why does a branch of learning and a certain theory emerge and develop during
a certain period, in a certain country rather than in another period and in another
(equally developed) country? This is indeed a good question, almost always too
general to receive satisfactory answers. Anyhow, the question may be useful and
appropriate to understand the origin of some scientific theories which, usually, do
not spurt out, like mushrooms, from evening to morning. For the case of mathemat-
ical programming, why did Farkas’ lemma remain almost unused for nearly half a
century? Why were there no substantial interests towards optimization theory until
the 1950s of the last century even though the maximization or minimization of a
certain function can be viewed as a “natural” curiosity of the “homo oeconomicus”?
We recall that in those years (first half of twentieth century) Economics had already
reached its status of science since longtime. Why and how did linear programming
and nonlinear programming emerge and develop in the context of the Second World
War?

Perhaps it is possible to give only partial answers and not one comprehensive
answer. The birth of a new scientific field of research, such as mathematical
programming, appears to be correlated with the development of other mathematical
theories and tools and also to the ripening of certain political, sociological and
economic situations. As for what concerns the mathematical tools, it is quite
obvious that the differential calculus for functions of several variables (and also
for functionals defined on abstract topological spaces) was well known since several
years. The same cannot be said for what regards the tools of Convex Analysis, which
are of primary importance in the study of inequalities (especially linear inequalities)
and in establishing some fundamental results in mathematical programming and in
mathematical economics. The war experience, with the natural presence of well
determined tasks to reach, the necessity to consider at the same time a large number
of variables, together with the necessity to get the solution of the problems in the
least time possible, are surely some factors useful to explain the need of general
methods for general but practical problems. Economic and military reasons are the
natural motivations which led to the establishment of Linear Programming in the
Soviet Union and in the USA.

For a good introduction to the history of mathematical programming in the USSR
the reader is referred to Polyak [106]. In the USSR the father of linear program-
ming methods is Leonid Vitalievich Kantorovich (1912-1996). He graduated from
Leningrad University at the age of 18 and taught at the same university from 1934
to 1960. Within the international mathematical community he is remembered not
only for his achievements in linear programming and mathematical economics, but
also for his significant contributions to functional analysis. He was awarded the
Stalin Prize (1949), the Lenin Prize (1965) and the Nobel Prize (1975), together with
T.C. Koopmans. In the Spring of 1939, when Kantorovich was a young professor at
Leningrad University, he was contacted for a scientific advice, by a state firm that

15
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produced ply-wood and wished to make more efficient the use of its machine tools.
The aim was to increase the production level of five different types of ply-wood,
carried out by eight factories, each with a different production capacity. Kantorovich
realized that the proposed problem had a mathematical structure, common to other
situations and problems one can find in, as he said, the organization and planning in
the field of industry, construction, transportation and agriculture.

In the same year (1939) Kantorovich published a small book (Kantorovich
[72] is the English translation of this essay) where he discussed and numerically
solved variations of optimization problems under inequality constraints. Much later
Kantorovich [73] (original Russian edition: 1959) developed further his ideas on the
mathematical treatment of certain economic problems. This second book was trans-
lated into English and into French, so the Western researchers became acquainted
with the early discoveries of Soviet mathematics on linear programming problems:
in the Soviet Union linear programming was born in relation to requirements
of industry productions, within the third “five-year plan”, with the hope that it
“will play a very useful role in the development of our socialist industry” [73].
In his booklet of 1939 Kantorovich presented several microeconomic problems
(all coming from the production planning of certain industries), framed into three
mathematical schemes. The first of these schemes (the other two are more general
variations of the first one) considers the allocation of n» machines which can produce
items consisting of m different parts. If machine i is used for output k, it can produce
a;r units of part k per time unit. Let /1;; denote the number of time units of machine
i allocated to produce part k and let z; denote the total number of units produced of
part k. Then z; = Z?=1 airhir, and since one wants to produce complete items the
requirement 7; = zp = ... = z,, need to be fulfilled.

Kantorovich then formulated the following problem, which he called problem A:
Find hip (i = 1,...,n;k = 1,...,m) such that

hix =0

n
Zh,-kzl; fori =1,...,n

i=1

n
2l =2 =...= 2y, Wherez, = Za,-kh,-k, fork=1,....m

i=1

These are the constraints of the problem, and the objective is to maximize the
commonvalueofz; =20 = ... = z,.

Kantorovich proved, both in analytical terms and in geometrical terms, the
existence of what he called “resolving multipliers”. His main attention was on
numerical methods, based on the “resolving multipliers”. The proof of the existence
of these multipliers was postponed to the appendix, with the specification that “the
ignorance of the proof [...] in no way interferes with mastering the method of its
practical applications” [72, p. 419]. The method of “resolving multipliers” must be

16
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above all “sufficiently simple and effective”, as the problems treated, not only have
a theoretical interest but also a practical importance and require “the solution of ten
of thousands or even millions of systems of equations for completion.”

It has been discussed in the literature whether Kantorovich with his “resolving
multipliers” actually introduced the idea of dual variables. On these matters we
tend to agree with Charnes and Cooper [20, p. 249] when they write: “We cannot
find any place in his piece where he appears to think of his “resolving multipliers”
as anything more than devices for assisting in the solution of what is now called
the “direct” (or primal) problem.” Polyak [106] says that the 1939 revolutionary
booklet of Kantorovich had “little response from economists or mathematicians”
and Tikhomirov [116] adds that *“ according to some ideological doctrine, an abstract
subject like mathematics was of no conceivable use to so life-related a subject as
economics’.

We have to wait for the second book of Kantorovich on linear programming
[73] to get a more general formulation of his method in resolving a linear
programming problem. This method, formally different from the simplex algorithm
of G.B. Dantzig, is in fact equivalent to the one of Dantzig, as later proved by van
de Panne and Rahnama [119].

We across Leonid Kantorovich, in the 1930s of the last century, as a young
professor at Leningrad University. It is well known that, in the long run, his scientific
reputation gained more and more recognition, within the Soviet mathematical
community. But in the political environment the diffusion of his ideas on economic
science was not so easy. Leifman in the introduction to the volume he edited in
the memory of Kantorovich (Leifman [90], quoted also by Balinski in Lenstra
et al. [91]) reports the following part of a speech Kantorovich delivered at the
1960 Conference on the Application of Mathematical Methods in Economics and
Planning held in Moscow:

“Here comrade Mstislavskii [the previous speaker] was talking about the necessity of
applying mathematical methods in economics. But he did not always say so; not so long
ago he was saying otherwise. And his friend and coauthor Yastremskii at one meeting said
addressing me: “You are talking here about optimum. But do you know who is talking
about optimum? The fascist Pareto is talking about optimum!” You know how that sounded
in 1943. Nevertheless, I did not say that, not to be like the fascist Pareto, let us strive for
maximum of costs and minimum of production”. [90, pp. x—xi]

Through the history of the oppositions to the “new” mathematical economic
methods of Kantorovich we can reconstruct a large part of the controversy (see,
e.g., [42]) of the second post-war period, between the “optimal planners” and the
political and government power, this last much more in line with Marxist dogma.
It is well known that Stalin’s conception of mathematical economics was that this
is nothing but a “game with the numbers”. By this expression, beyond its vulgarity,
he wanted to specify that the planning and organization of economic resources are
not problems of economic analysis or economic theory, but problems of political
economy, and therefore these problems are exclusively pertaining to the political
power. The role of economists (of theoretical economists) was another: as apologists
of the USSR political system, their had the task to elaborate theoretical models that a
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posteriori would justify the choices made by politicians. This situation slowly began
to change in the 1960s, and it is just in this period that the ideas of Kantorovich
on economic science began to be considered also by the rulers of USSR. In 1958
the Central Economics-Mathematics Institute of the Academy of Sciences was
founded, and in the same year Kantorovich was elected corresponding member of
the Academy of Sciences.

The life of the Russian mathematical optimization community in the 1960s was
full of events (see [106]): we mention only the conference in Moscow in 1960 on the
use of mathematical methods in economic science and planning and the conference
in Moscow in 1971 on optimal planning procedures. The work of Kantorovich
was made available in the West in 1960, when Tjalling Charles Koopmans (1910-
1985) managed to publish an English translation of Kantorovich’s work of 1939 in
“Management Science”.

In the meantime, as is well known, a similar line of research in inequality
constrained optimization took place in the USA independent of the work of the
Russians. Koopmans is perhaps the economist who has contributed the most to
the diffusion, especially among economists, of the results of the Western line of
thoughts and results about linear programming, a theory that in the USA responded
to military demands. Koopmans was born in the Netherlands where he studied at the
University of Utrecht and the University of Leiden, and he moved to USA in 1940.
He taught at Chicago University and from 1955 at Yale. From 1961 to 1967 he was
director of the famous “Cowles Foundation”, and in 1975 he was awarded the Nobel
Prize in economics together with Kantorovich.

During the Second World War, from 1942 to 1944, Koopmans worked, as a statis-
tician, at the “Allied Shipping Adjustment Board”, being concerned, in particular,
with some transportation models. In the same period George B. Dantzig (1914—
2005), who is generally recognized as the “Western father” of linear programming,
collaborated with the Pentagon, as an expert of programming methods, developed
with the use of desk calculators. Dantzig finished his studies and became a Ph.D.
in mathematics shortly after the war ended. Employment opportunities came from
the University of California at Berkeley and, above all, from the Pentagon, where
D. Hitchcock and M. Wood proposed him to find a way to mechanize the planning
processes he had previously formalized, by using linear inequality systems as formal
tools to describe the interindustry relations that in economic science had been
studied by Wassily Leontief (1905-1999).

We can say, in this connection, that the development of linear programming
was also influenced by the so-called “economic activity analysis” (see the volumes
edited by Koopmans [81] and by Morgenstern [98]) and by certain aspects of the
theory of games (matrix games). The basic book on the theory of games had been
published by von Neumann and Morgenstern in 1944 [120]. We note also that
another Hitchcock, F.L. Hitchcock, had published in 1941 an important paper on
the so-called “transportation problem”, which anticipated somewhat the subsequent
work of Dantzig and was almost contemporaneous of the work of Kantorovich. At
that time the paper of Hitchcock [69] had little impact on the scientific environments.
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Another modern linear programming formulation was the so-called “diet problem”,
first considered by Stigler [110].

The first Leontief models on interindustry analysis (or input—output analysis)
were, however, static models and “what the Air Force wanted was a highly
dynamic model, one that could change over time.” [27, p. 21]. Moreover, the
military authorities insisted also on the possibility to have multiple choices between
alternatives and to benefit from the possibility of numerical computations:

“Once the model was formulated, there had to be a practical way to compute what quantities
of these activities to engage in that was consistent with their respective input-output
characteristics and with given resources. This would be no mean task since the military
application had to be large scale, with hundreds and hundreds of items and activities.”[27,
p. 21]

The simplex method discovered by Dantzig, in order to solve a linear program-
ming problem was presented for the first time in the Summer of 1947. In June of
the same year Dantzig met with Koopmans, who at once understood the importance
of this new algorithm and took it on his shoulders to bring its potentialities to the
attention of the group of economists with whom he had several collaborations. These
names include K.J. Arrow, P.A. Samuelson, H. Simon, R. Dorfman, L. Hurwicz,
and H. Scarf. In the Fall of the same year Dantzig consulted John von Neumann at
Princeton who, according to Dantzig, introduced him to Farkas’ lemma, to duality,
and to the problems connected with game theory (“matrix games”).

Dantzig became acquainted with Albert Tucker, who later became head of
the Mathematics Department at Princeton, at one of his visits, and when the
Office of Naval Research (ONR) decided to set up a research project to study the
connection between linear programming and game theory, as well as the underlying
mathematical theory, Tucker was asked to undertake the project.

“Soon Tucker and his students Harold Kuhn and David Gale and others like Lloyd Shapley
began their historic work on game theory, nonlinear programming and duality theory. The
Princeton group became the focal point among mathematicians doing research in this field”
[27, p. 25]

The first official presentation of the simplex method took place at the conference
Activity Analysis of Production and Allocation which was held at the University of
Chicago in 1949 and organized by T.C. Koopmans. Later, this conference came to be
called the Zero-th Symposium on Mathematical Programming [23]. In his recollec-
tions Dantzig underlined the importance of this meeting. A simple look at the list of
the participants (T.C. Koopmans, L. Hurwicz, R. Dorfman, N. Georgescu-Roegen,
A.W. Tucker, H-W. Kuhn, D. Gale, etc.) and their sponsors is sufficient to understand
the significance of the Second World War for the emergence of linear programming
and subsequently nonlinear programming in the USA. The conference and the
research done by a majority of the participants were supported by the military.
Dantzig summed it up as follows:

“the advent or rather the promise that the electronic computer would exist soon, the exposure
of theoretical mathematicians and economists to real problems during the war, the interest
in mechanizing the planning process, and last but not least the availability of money for
such applied research all converged during the period 1947-1949. The time was ripe. The
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research accomplished in exactly two years is, in my opinion, one of the remarkable events
of history” [27, p. 26].

All the factors mentioned by Dantzig were directly or indirectly connected with
the U.S. military and its activities during and after the war. (For an exposition of
Dantzig’s research we refer to Cottle [22]).

In the introduction to the proceedings of the conference, Koopmans pointed
towards four distinct lines of research that played a significant role in the emergence
and establishment of linear programming in the USA [81]: the debate on the
construction of models of general economic equilibrium together with their mathe-
matical formalization and the search for solutions, the new welfare economics, the
analysis of the various input—output models of Leontief and, last but not least,
the specific work of Dantzig and Wood, motivated by “the organization of defense,
the conduct of the war, and other specifically war-related allocation problems”. We
can add also the work of von Neumann and Morgenstern on the theory of matrix
games.

In his recollections [27, pp. 29-30], Dantzig says that the name “simplex
method” arose out of a discussion with T. S. Motzkin, who gave a geometric
interpretation of Dantzig’s algorithm: this one is “best described as a movement
from one simplex to a neighboring one”. Also the term “primal problem” was new. It
was proposed by Dantzig’s father, the mathematician Tobias Dantzig, around 1954.

The Birth of Nonlinear Programming

With the ONR-financed project on game theory, linear programming and the
underlying mathematical structure, which began in the summer of 1948 with
Albert Tucker as principal investigator, the linear programming problem moved
into academia and became exposed to academic mathematical research. In this
environment linear programming acted as a starting point for further generalizations,
“naturally” leading to the extension to the nonlinear case which was in fact pursued
almost at once.

According to Tucker himself [2, pp. 342-343], he became involved with the
project by coincidence:

“I just happened to be introduced to him [Dantzig] and offered him a ride [to the train
station after a meeting at Princeton between Dantzig and von Neumann], during which
he gave me a five-minute introduction to linear programming, using as an example the
transportation problem. What caught my attention was the network nature of the example,
and to be encouraging, I remarked that there might be some connections with Kirchhoff’s
Laws for electrical networks, which I had been interested in from the point of view of
combinatorial topology. Because of this five-minute conversation, several days later I was
asked if I would undertake a trial project that summer, and I agreed. The two graduate
students I got to work with me were Harold Kuhn and David Gale.”

Towards the end of 1949 Tucker invited Gale and Kuhn to study a possible
generalization of the results on duality theory, already obtained by the three of them
for the linear case (results that were published in 1951 in the proceedings edited by
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Koopmans) to the quadratic case. Gale declined the offer, but Kuhn accepted, and
the first results of his and Tucker’s joint work were presented in a

“preliminary version (without the constraint qualification) [...] by Tucker at a seminar at
the Rand Corporation in May 1950. A counterexample provided by C.B. Tompkins led
to a hasty revision to correct this oversight. Finally, this work might have appeared in
the published literature at a much later date were it not for a fortuitous invitation from
J. Neyman to present an invited paper at the Second Berkeley Symposium on Probability
and Statistics in the summer of 1950” [82, p. 14].

The paper was published the following year in a proceedings from the symposium
and is the first paper that introduces the term “nonlinear programming’.

It was later discovered that two other mathematicians earlier had proved results
similar to Kuhn’s and Tucker’s, namely William Karush (1917-1997) in his master
thesis from 1939 and Fritz John (1910-1994) who published his results in 1948.
None of these works had any influence on the origin of nonlinear programming, but
today they are considered classics in the field of modern nonlinear programming,
and as such we will discuss their contributions in the following; see also Kjeldsen
[76,77,80].

The Contribution of William Karush

In his paper of 1976 on the history of nonlinear programming, Kuhn promptly
declares that the first organic contribution to the theory of nonlinear programming
goes back to 1939, to William Karush’s Master Thesis at the Department of
Mathematics of Chicago University, a thesis that was never published. Kuhn [83,
p. 83] speaks of “a theorem which has often been attributed to Kuhn and Tucker”
and says that he learned for the first time about the existence of this Master Thesis,
through the pages of the book of Takayama [115] on mathematical economics.
In another paper Kuhn [84, p. 133] asserts that: “Takayama’s book was the first
citation of Karush’s work that I read”. In this book, at pages 61, 73 and 100 of the
1974 edition, the author makes several references to the thesis of Karush, writing in
particular:

“Linear programming aroused interest in constraints in the form of inequalities and in
the theory of linear inequalities and convex sets. The Kuhn-Tucker study appeared in the
middle of this interest with a full recognition of such developments. However, the theory
of nonlinear programming when the constraints are all in the form of equalities has been
known for a long time - in fact, since Euler and Lagrange. The inequality constraints
were treated in a fairly satisfactory manner already in 1939 by Karush. Karush’s work is
apparently under the influence of a similar work in the calculus of variations by Valentine.
Unfortunately, Karush’s work has been largely ignored.”

Takayama learned of the existence of Karush’s work from El Hodiri [39,40]. At
page 100 (1974 edition) Takayama again says:
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“Unfortunately, this work [of Karush] has been unduly ignored. El Hodiri (1967) rediscov-
ered Karush and put it in a better perspective.”

El Hodiri [41] in turn wrote that he became acquainted with Karush’s thesis by
reading Pennisi [104] and that he got the reference to Pennisi from the book of Saaty
and Bram [108], see also Cottle [24]. Even more curious is the fact that the thesis
of Karush is mentioned also by Fiacco and McCormick [47], in the “Additional
References” to Chap. 2. After its publication, their book immediately became one
of the most quoted books on nonlinear programming.

Karush’s thesis has the title “Minima of Functions of Several Variables with
Inequalities as Side Conditions”, and certainly, a modern reader familiar with
mathematical programming would recognize this as a paper belonging to nonlinear
programming. But the term nonlinear programming did not exist when Karush
wrote his thesis, so in order to understand the mathematical context of his work
we need to go back to the Department of Mathematics at Chicago University in
the 1930s. This was at a time where calculus of variations was one of the high
points of the department’s research—the so-called Chicago School of the Calculus
of Variations, a school that in those years counted mathematicians of the caliber of
G.A. Bliss, L.M. Graves, F.A. Valentine and M.R. Hestenes. When Karush wrote
his thesis, calculus of variation problems with inequalities as side conditions were
under investigation, and his thesis can be seen as a finite-dimensional version of
such problems.

Karush began his thesis with a reference to a paper by Bliss [14] in which
Bliss treated the equality constrained version of the optimization problem to gain
insights into questions about normality and abnormality in the calculus of variations,
explaining that his, i.e. Karush’s thesis “proposes to take up the corresponding
problem” for inequality constrained problems. Karush only referred to works of
Bliss, Dines and Farkas but his thesis was most likely also inspired by Valentine’s
paper from 1937 “The Problem of Lagrange with Differential Inequalities as added
Side Conditions” [118]. Indeed, Karush’s thesis resembles Valentine’s paper both in
its title, its structure, its notation and its approach, so it is very likely, that Karush’s
thesis was inspired by the work of Valentine. A summary of the thesis of Karush
was published, for the first time, as an appendix to Kuhn [82]. The whole thesis is
published for the first time in the present collection.

Karush began his thesis with a clear presentation of the main problem: to
determine necessary and sufficient conditions for a relative minimum of a function
of n variables in the class of points satisfying m inequality conditions. He then
listed three results of Bliss [14] on the classical Lagrange optimization problem.
One of this results had already been given by Caratheodory [18] and is the “Fritz
John version” of the multipliers rule for this problem (see section “Basic Results”).
We have to say that the English translation of Caratheodory [18] appeared only in
1965 (vol. I) and 1967 (vol. IT). Karush obtained necessary and sufficient optimality
conditions which involve, at first, first-order partial derivatives and subsequently
second-order partial derivatives. He recalled that the classical Lagrange problem of
constrained optimization had, by that time, received a full satisfactory treatment, at
least for C2-class functions.
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The problem treated by Karush is what is now known as a typical nonlinear
programming problem. The constraints are written in the form g;(x) > 0, i =
1,...,m, and are considered to be all active at x° (feasible point), as, owing to
continuity, a constraint of the form g;(x°) > 0 does not impose, locally, any
restriction.

The first necessary optimality condition reported by Karush, Proposition 3.1 of
his thesis, if read hastily, may give the impression that the author described a Fritz
John type result:

if x° is a local solution of the problem

Min f(x)
withx € S ={x € 4,g:(x) >0, i =1,...m}, A open set of R” and every function at
least differentiable on A, then there exists a nonzero vector (19, A1, ..., M) such that x° is

a stationary point of the following Lagrangian function

L(x.A) = o f(x) + Y digi(x).

i=l1

But this, indeed, is not the Fritz John theorem, since Proposition 3.1 of Karush
gives no information on the sign of the multipliers. Giving so “large” results, the
proof of this proposition is quite immediate. For m < n its proof becomes even
“unnecessary”, as in this case the result is a direct consequence of the necessary
optimality conditions of Bliss—Caratheodory. On the other hand, it is always possible
to make reference to this theorem, also for the general case, by means of the device,
used by Karush, of adding to, or subtracting from each inequality the square of a
real number (this was motivated by a similar procedure, used by Valentine [118] in
the Calculus of Variations). For example, the constraints g;(x) > 0, i = 1,...m,
can be converted into the following equality constraints

gi(x)—a?=0,i=12,..m.

Karush’s version of what later became known as the Kuhn-Tucker theorem, and
what we, in section “Basic Results”, have called the Karush—Kuhn—Tucker theorem,
appears as Theorem 3.2 in his thesis. Karush introduced the linearizing cone at x°
which he called “the admissible directions”, that is all directions dx 7 0 such that
Vgi(x®)dx > 0. Then he proved the following necessary optimality conditions:

“Suppose that for each admissible direction . ..[dx] there is an admissible arc issuing from
x° in the direction dx. Then a first necessary condition for f(x°) to be a minimum is that
there exist multipliers A; < 0 such that the derivatives L,, of the function L = f 4+ ;g;
all vanish at x°” [75, p. 13] (Karush used the symbol F instead of L for the Lagrangian.)

The condition on the linearizing cone is just what is now called “the Kuhn-
Tucker constraint qualification”, even if it would be more philologically correct to
call it “the Karush—Kuhn—Tucker constraint qualification”. The reader will note that
the sign condition on the multipliers, as it was given by Karush, is opposed to the
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one given in section “Basic Results”, since Karush considered a minimum problem
and a Lagrangian function L = f + Ag.

Thanks to the Farkas lemma, the proof given by Karush is relatively simple.
Karush was aware of the role played by the constraint qualification, which he
referred to as “property Q”, in proving this optimality condition, and he wondered
“what the probability is, roughly, that the functions g; (x) will satisfy property Q.
In geometrical terms the Karush—Kuhn—Tucker constraint qualification assumes that
each direction vector of the linearizing cone (roughly speaking, for each “tangent
direction”), there exists a regular arc of the feasible region which approximates
the said “tangent” direction. The conclusion of Karush is quite reassuring: “if the
functions g; (x) are regular enough, it seems that the satisfaction of property Q is
not a great restriction” [75, p. 14].

It is now well known (see, e.g., [11,59, 105]), that property Q can be substituted
by other assumptions, varying in generality. Karush considered only one other
constraint qualification:

There exists an admissible direction dx such that Vg; (x°)dx > 0, Vi.

This condition is now known as Cottle constraint qualification [21] or also as
Arrow—Hurwicz—Uzawa constraint qualification [5]. The Cottle constraint qualifica-
tion implies the Karush—Kuhn—Tucker constraint qualification, but it is not implied
by it. Karush did not prove this statement but built a two-dimensional numerical
example which satisfies his property Q, but not his second constraint qualification.

Karush also offered some sufficient optimality conditions, of the first order and
of the second order in his thesis. For example, Theorem 4.1 says that x° is a (strict)
local minimum point if m > n, the Jacobian matrix Jg(x°) has rank n and there
exists a vector of multipliers (A1, A5, ..., A,,), with all negative elements, such that
V() + Y0 A Vg (x°) = 0.

In the two last sections of his thesis, Karush gave some second-order optimality
conditions; we quote only the Corollary to Theorem 5.1 and to Theorem 6.1. The
Corollary asserts that if x° is a local minimum point for the usual problem, where
now the functions involved are C?2, and if the Jacobian matrix Jg(x°) has rank m,
then a necessary optimality condition is:

V(%) + ) AiVegi(x?) =0,

i=1
Ai <0, Vi
(dx)T HL(x®)dx > 0,

for each admissible vector dx satisfying the system Vg;(x°)dx = 0, where L =
f + > Aigi and HL is the Hessian matrix of L.

Theorem 6.1 assures that x° is a (strict local) solution of the problem if there
exists a vector of multipliers (A1, A2, ..., A,,) with all negative components, such
that
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VIG) + 3 AV =0,

i=1

(dx)T HL(x®)dx > 0,

for each admissible vector dx # 0 such that Vg; (x°)dx = 0.

We take the opportunity to correct the second-order sufficient optimality condi-
tions given by El Hodiri [39] and reported also in El Hodiri [40,41] and in Takayama
[115] for the problem

Max f(x) subjectto g;(x) >0, i =1,...,m.

The “generalization” provided by El Hodiri is correct if the active constraints are
all associated with positive multipliers, with reference to a Lagrangian function of
the form L = f +Ag. See, e.g., Giorgi [58]; for second-order optimality conditions
in mathematical programming problems the reader may consult Avriel [9], Ben-Tal
[13], Hestenes [68], Fiacco and McCormick [47] and McCormick [94]; this last
paper is republished in the present collection. We add that the classical second-
order sufficient optimality conditions for a nonlinear programming problem, due to
McCormick, can be derived from a paper of Pennisi [104] on Calculus of Variations,
here republished.

We note also that Hestenes [67] gave more sophisticated second-order necessary
and sufficient optimality conditions, for a general nonlinear programming problem,
by means of the so-called “contingent cone” or “Bouligand tangent cone” (see, e.g.,
[59D).

The Contribution of Fritz John

Fritz John (1910-1994) was a student of Richard Courant at Gottingen University,
where he received a Ph.D. in 1933. He was compelled (like Courant) to leave
Germany for racial reasons. After a short period at Cambridge University (England),
he moved to the United States, where he collaborated from 1943 to 1945 with the
U.S. War Department, and then taught at the Universities of Kentucky, of New York
and at last at the Courant Institute at New York University.

Fritz John was a first-rate mathematician and his scientific production is vast
and generally of a high level. He was mainly concerned with convex geometry,
partial differential equations, elasticity theory and numerical analysis. His papers
are published by Birkhduser (see [99]).

Kuhn [82] properly delineates the geometric motivations of the paper of John
[71]. The history of this paper is well known, at least among researchers in
optimization theory: it was first rejected by the Duke Mathematical Journal and
later appeared in the Courant anniversary volume of 1948.
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The paper of John is quoted by Kuhn and Tucker in their 1951 paper, but they
surely worked independently of John, as Kuhn [84, p. 133] writes:

“Tucker and I were made aware of the work of John when our paper was in galley proofs;
the evidence of this fact is that when we inserted a reference to this paper in the references,
we did not renumber the bibliography correctly”.

John’s approach is quite general. The problem (P3), described in section “Basic
Results” of this chapter, is only a “finite version” of the problem considered by John.
John divided his paper into two parts: the first is concerned with finding necessary
and sufficient conditions for the existence of a minimum to a function subject to
inequality constraints, the second part is devoted to two geometrical applications of
the conditions found in the first part. We quote directly from John’s paper [71, pp.
187-188]:

“Let R be a set of points x in a space E, and F(x) a real-valued function defined in R. We
consider a subset R’ of R, which is described by a system of inequalities with parameter y :

G(x,y) =0,

where G is a function defined for all x in R and all “values” of the parameter y. ...we
assume that the “values” of the parameter y vary over a set of points S in a space H ....
We are interested in conditions a point x° of R’ has to satisfy in order that

M = F(x°) = mineep F(x).”

John then relaxed the generality of the approach by assuming that E = R" and S
is a compact subset of a metric space H. Moreover, John required that F and G
are C', although with an opening towards what, at the end of the 1970s, would be
called “nonsmooth analysis™:

“from the point of view of applications it would seem desirable to extend the methods used
here to cases, where the functions involved are not necessarily differentiable” [71, p. 187].

Again we quote directly the paper of Fritz John [71, pp. 188-189]:

“Theorem 1. Let x° be an interior point of R, and belong to the set R’ of all points x of R,
which satisfy (1) [the constraints G(x, y) > 0] forall y € S. Let

F(x°) = min,ep F(x).

Then there exists a finite set of points y!, ..., y*in S and numbers Ao, Ay, ..., A, which do
not all vanish, such that

G(x°,y")y=0forr =1,...,s,
Ao
0

A%

0, A1 >0,...,A, >0,

IA

s <mn,
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the function

$(x) = A F(x) =Y A4G(x.y")

r=1

has a critical point at x°, i.e. [the partial derivatives are zero at x°]
¢i(x°)=0,fori =1,...,n."

We note first that the version of this theorem for the usual nonlinear programming
problem, like the problem (P3) of section “Basic Results”, was first taken into
consideration, at least as far as we are aware, by Cottle [21]. Then, again we point
out that, with relation to a finite-dimensional problem with only equality constraints,
the Fritz John conditions had already been anticipated by Caratheodory [18] and by
Bliss [14]. Always for the case of equality constraints, but for a vector objective
function (i.e. for a Pareto optimization problem) the John conditions had been
anticipated by de Finetti [29,30]. See Giorgi and Guerraggio [60].

The proof given by John, similarly to the proof given by Karush (also John
surely did not know of Karush’s thesis), makes use of the separation theorems of the
Convex Analysis and of their “algebraic versions”, i.e. theorems of the alternative
for linear systems. But, instead of using Farkas’ lemma as Karush had done, John
made references to recent works of Dines [37] and Stokes [112].

John also gave a first-order sufficient condition for local optimality. If we
“translate” his sufficient conditions for the usual nonlinear programming problem
(P3) of section “Basic Results”, i.e. the problem

Max f(x) subjectto g;(x) <0, i =1,2,...,m,

we have the following result (see also Stoer and Witzgall [111]):

If relations i) and ii) of point 8) of “Basic Results” are satisfied by a nonnegative and
nonzero vector (Yo, Vi, ..., Vm) at a feasible point x° and if the rank of the following
matrix, evaluated at x°

U o
y03X1 e )0 gx”
981 981
yla)Cl e N1 Dxn
Ymx, oo Ym oy,

is n, then x° is a point of local minimum for (P3).

The reader will note the similarity with the first-order sufficient optimality condi-
tions found by Karush.

In the second part of his paper John was concerned with two geometrical
applications of the results of part one of his paper. Indeed, these applications seem
to be the true motivations that led Fritz John towards a modern mathematical
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programming problem. Concerning this point the following words of Kuhn [82,
p. 15] are sufficiently clear:

“The main impulse came from trying to prove the theorem (which forms the main
application in John (1948) [71]) that asserts that the boundary of a compact convex set S in
R” lies between two homothetic ellipsoids of ratio < n, and that the outer ellipsoid can be
taken to be the ellipsoid of least volume containing S. The case n = 2 had been settled by
F. Behrend (1938) with whom John had become acquainted in 1934 in Cambridge, England.
A student of John’s, O. B. Ader, dealt with the case n = 3 in 1938 (Ader (1938)). By that
time, John had become deeply interested in convex sets and in the inequalities connected
with them”.

This problem of the ellipsoid of least volume containing a set S of R” is the
second geometrical application of John’s paper. The first one is concerned with
finding a sphere with minimum radius containing a given bounded set S of R”".
This problem goes back to Sylvester [114], who in 1857 published a one sentence
note: “It is required to find the least circle which shall contain a given set of points
in the plane”. The history of this problem is expounded by Kuhn [82]. Finally, we
note, following Kjeldsen [76, pp. 341-342], that

“in John’s work, ..., the theorem was only derived as a tool for deriving general results
about convex sets. The applications guided the formulation of the theorem, which explains
John’s construction of the “parameter set” which clearly is dictated by the applications.
...reading the second part of the paper,...,which is concerned with the two geometrical
applications, ...also explains why John did not touch upon the problem of abnormality
[i.e. the first multiplier Ay = 0] and thereby did not consider the problem of constraint
qualifications . .. [which can] be explained from the fact that both applications are actually
examples of the normal case. In his paper on the history of nonlinear programming Kuhn
wrote about John’s work that it “very nearly joined the ranks of unpublished classics in our
subject” (Kuhn, 1976, p. 15). But John himself apparently did not view this work in this
way, and he never came forward with priority claims”.

The Contribution of Kuhn and Tucker

Albert W. Tucker was born in Canada in 1905 and died in Princeton, New Jersey,
in 1995. He received a bachelor’s degree in mathematics from the University of
Toronto in 1928, and a year later he began his Ph.D. study at Princeton University.
In 1932 he received the Ph.D. with a thesis in the field of topology, and 2 years later
he was appointed assistant professor. In 1938 he became associate professor, and
then full professor in 1946.

Tucker was a leading figure in the American mathematical community and he
was one of those who made in those years Princeton University a world famous
center of mathematical research. In particular, due to the ONR logistic project he
made Princeton the center of mathematical programming and game theory in the
1950s, while chairing the Mathematics Department (1953-1963). Research in these
areas also took place at the RAND Corporation. Tucker had a tremendous influence
on the students who came in contact with him: among his Ph.D. students were
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Michael Balinski, John Nash Jr., David Gale, Alan Goldman, John Isbell, Stephen
Maurer, Marvin Minsky, Lloyd Shapley.

Harold W. Kuhn was born in 1925 in Santa Monica, California. He received a
bachelor’s degree in science from the California Institute of Technology in 1947,
and then moved to Princeton, where he wrote, in 1950, his Ph.D. thesis, entitled
“Subgroup Theorems for Groups Presented by Generators and Relations”, under
the supervision of Ralph Fox. After some travelling and a 7-year appointment at
Bryn Mawr College, Kuhn returned to Princeton as associate professor. Later he
declared [84] that it was his good fortune to be in the right place at the right time to
work with an exceptional man as A.W. Tucker.

The famous paper of Kuhn and Tucker of 1951 was a continuation of the work
they had done in the summer of 1948 on linear programming in the trial project
on linear programming and game theory financed by ONR of which we spoke
previously. Indeed, the paper begins with a formulation of a linear programming
problem and its equivalence with a “saddle-value problem™:

x° is a (global) minimum point for the linear function f, under the restrictions

n
g,-(x)=bl-—2a,-jxj ZO, Xj 20, j = 1,...,n,
j=1

if and only if there exists a multipliers vector A°, with nonnegative components and such
that (x°, 1°) is a saddle point for the Lagrangian function L = f + Mg, i.e. the following
inequalities hold:

L(x,A%) < L(x°,1°%) < L(x°,}),
for all nonnegative vectors x and A.

Kuhn and Tucker then made the connection between the saddle point problem and
game theory, since a saddle point for the Lagrangian provides a solution for a related
two-person zero-sum game. It also, as they wrote in the introduction, “yields the
characteristic duality of linear programming” [85, p. 481]. The declared purpose of
the paper is the extension of the above result to a nonlinear programming problem,
with nonnegativity conditions on the decision variables. More precisely, they
consider the problem to find the maximum of a differentiable function f : R — R
subject to the constraints g;(x) > 0,...,gn(x) >0, x; >0,...,x, > 0. Also the
constraints g; : R" — R, i = 1,...,m, are assumed to be differentiable.

Their first step is to find necessary and sufficient conditions for a generic
differentiable function ¢(x, A) to have a nonnegative saddle point at (x°, A°) :

P(x. A7) = (x",2%) < (x°. 2),

forall x > 0, A > 0. They denote ¢°,, ¢°, the partial derivatives of ¢ evaluated at
x° and A° and they proved that the conditions
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@ox S 07 @ox-xo - Os xo 2 O (1)
@2 =0, 9°A°=0,1°>0 (2)

are necessary for (x°, A°) to be a nonnegative saddle point for ¢(x, A). The same
conditions (1) and (2) are sufficient for the same problem, if the following conditions
are added:

P(x,A%) < @(x°, A°) + ¢°(x — x°) (3)
P(x°, ) = o(x°, A°) + @°1(A — 1°) “4)

forany x > 0, A > 0.

Kuhn and Tucker felt compelled to, justify relations (3) and (4), so that they
do not seem “as artificial as may appear at first sight”, but that today—after more
than half a century—we recognize as characterizations of concavity (convexity)
of the differentiable function ¢, with respect to x (with respect to A). Conditions
(1) and (2) later become known as “the Kuhn—Tucker conditions” (for the problem
considered) and now are also known as “the Karush—Kuhn—Tucker conditions”.

As a second step they introduced, just with this name, a “constraint qualification”,
which is the same regularity assumption on the constraints we have already met in
the thesis of Karush. This constraint qualification is needed to get rid of pathological
situations, on the boundary of the feasible region, “such as an outward pointing
cusp”. We know also that a constraint qualification makes yo > 0 in the first Fritz
John necessary optimality conditions. Let us consider, e.g., the following example,
provided by Kuhn and Tucker:

the feasible region in R? is given by g;(x) = x; > 0; g:(x) = x, > 0; g3(x) =

(1 —x;)> — x, > 0, and the boundary point x° = (1,0). The constraint qualification is
not satisfied, since the feasible region does not contain an arc issuing from this point in
the direction dx; = 1,dx, = 0. If the problem is to maximize f(x) = xj, we see that
x° = (1, 0) is the optimal solution, but the Kuhn-Tucker conditions (1)-(2) are not satisfied
at the optimal point.

Equipped with all these conditions and assumptions, Kuhn and Tucker stated and
proved the first two of their theorems:

Theorem 1. In order that x° be a solution of the maximum problem, where the
constraint qualification holds, it is necessary that x° and some A° satisfy conditions

(1) and (2) for some p(x, 1) = f(x) + Ag(x).

Theorem 2. In order that x° be a solution of the maximum problem, is sufficient
that x° and some A° satisfy conditions (1)—(3) for p(x,A) = f(x) + Ag(x).

It is worthwhile to examine briefly the proof given by Kuhn and Tucker on the
necessary conditions: it appears at once that the relevant steps are the same ones
used by Karush in his proof of Theorem 3.2 of his thesis. First of all, thanks to
the constraint qualification, every direction dx of the linearizing cone verifies the
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inequality V f(x°)dx < 0, and at this point Kuhn and Tucker invoked Farkas’
lemma to ensure the existence of nonnegative multipliers.

Kuhn and Tucker’s approach to prove the sufficiency part is different from the one
of Karush. Kuhn and Tucker choose the saddle point formulation and then establish
a sort of “loop” between their maximization problem, the nonnegative saddle point
problem for the Lagrangian function L(x,A) = f + Ag, and the conditions (1)—(2)
and (3); (condition (4), concerning the convexity of L with respect to A is obviously
always satisfied).

The third and last step performed by Kuhn and Tucker in order to reach the
purpose of the paper as they had declared it in section “Introduction”, was to place
restrictions on the functions to ensure the equivalence of solutions of the maximum
problem:

Max f(x) subjectto g;(x) >0,i=1,...,m, x>0

and the saddle value problem for the Lagrangian. Indeed, after their Theorem 2, they
proved an “equivalence theorem”, i.e.

Theorem 3. Let the functions f(x), gi1(x),...,gn(x) be concave as well as
differentiable for x > 0. Let, as before, the constraint qualification hold. Then, x°
is a solution of the maximum problem if and only if x° and some A° give a solution
of the saddle value problem for p(x, 1) = f(x) + Ag(x).

Section 6 of the paper of Kuhn and Tucker is concerned with an extension to a vector
maximum problem, Sect.7 treats the so-called “minimum component maximum
problem” and the final Sect. 8 treats other types of constraints, i.e. without x > 0
and equality constraints (with and without x > 0).

As for what concerns Sect. 6 on vector optimization, we may say that it is one
of the first accurate mathematical treatments of this kind of problems (see also de
Finetti [29, 30] and, for an historical analysis of the contributions of this author to
vector optimization problems, Giorgi and Guerraggio [60]). We have already said of
the difficulty one has in the definition itself of a maximum point (“efficient point”
in the literature) for a vector-valued function. Usually, a feasible point x° is “Pareto
efficient” or simply “efficient” for a vector maximization problem, when, for each
feasible vector x, there exists an index i such that f;(x) < f;(x°). Kuhn and
Tucker were the first authors to present a more restrictive definition of efficiency,
a definition which rules out some anomalies occurring in the usual definition of
efficiency (given above). A feasible point x° is said to be properly efficient (in
the sense of Kuhn and Tucker) when it is efficient and for no direction dx of the
linearizing cone at x° we have V f; (x°)dx > 0, with at least one index j for which
V f;(x°)dx > 0 holds.

In the next decades, after this first definition of Kuhn and Tucker, numerous other
definitions of proper efficiency were proposed, almost all more restrictive than the
one of Kuhn and Tucker. Some of these definitions are again based on the notion of
“trade-off”, whereas others are of a more geometrical nature and refer to the image
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space (for the various definitions of proper efficiency and for their comparison, the
reader may consult Guerraggio et al. [63]).

Also the treatment given by Kuhn and Tucker of the vector optimization problem,
follows closely the scheme adopted for the scalar problem. A necessary condition
for x° to be a properly efficient point (in a maximum vector problem) for f =
(f1. f2...., fp), under the restrictions g;(x) > 0,i = 1,...,m; x > 0, is that
there exists a positive vector 8° € R? and a non negative vector A° € R™, such that
the function L. = 6f + Ag satisfies conditions (1) and (2) at (x°, 8°, A°). The same
conditions become sufficient if, besides (1) and (2), also (3) is satisfied. Finally,
under concavity assumptions on each f; and each g;, x° is a properly efficient
(maximum) point if and only if (x°, 1°) is a saddle point for the Lagrangian function
L = 0° f + Lg. About these subjects, we may note that the constraint qualification
is no longer needed, as in the vector case we always obtain that 6° # 0, because now
we require a stronger definition of a maximum point: the point x° must be properly
efficient. Kuhn and Tucker also provided a useful numerical example which justifies
their definition of proper efficiency.

If we compare the theorems of Karush, and Kuhn and Tucker with Fritz John’s
theorem one gets the impression that the two statements are quite similar. Indeed,
if we add to the assumptions of the Fritz John theorem a constraint qualification,
we are sure that the John multiplier yy, associated with the objective function,
is different from zero, i.e. positive: therefore we obtain the Karush—Kuhn-Tucker
theorem.

However, none of these mathematicians moved further in this direction. Karush
made no remarks on what would happen if his “property Q” does not hold. As we
have seen, due to the nature of the two applications to convex sets, Fritz John did not
even consider the fact that his first multiplier could be zero resulting in a Lagrangian
function without the objective function. Also Kuhn and Tucker made no comments
on the non validity of any constraint qualification and on the consequences of this
fact. Indeed, the studies on “non regular mathematical programming problems”, i.e.
problems where no constraint qualification holds, are recent: see, for example, the
book of Arutyunov [8].

Some Further Considerations and Conclusions

Another important contribution to the theory of nonlinear programming at its
beginning is the non published paper of Slater [109]; in this paper the findings of
Kuhn and Tucker are quoted, 1 year before its publication. Slater reconsidered the
relationship between a nonlinear programming problem and a saddle value problem
for a suitable Lagrangian function. The “novelty” is that Slater did not assume any
differentiability of the functions involved, which are only required to be concave
(or convex, according to the type of problem). Moreover, Slater introduced a new
constraint qualification, which is more easily checked than the one of Kuhn and
Tucker; it is now universally known as the “Slater condition”.
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The proof of Slater is quite intricate and makes use of the Kakutani fixed point
theorem. The results of Slater have been proved in a more elegant and elementary
way by Uzawa [117] and by Karlin [74] by means of classical separation theorems
of Convex Analysis. The constraint qualification used by Karlin is formally different
from the one of Slater, but it can be shown that the two conditions are equivalent:
see Hurwicz and Uzawa [70]. For some comments and corrections of the paper of
Uzawa [117] see Moore [97].

Another important paper from the middle of the 1950s on nonlinear programming
is “Reduction of Constrained Maxima to Saddle-Point Problems” by Arrow and
Hurwicz [3]. As we have seen, Kuhn and Tucker related, under concavity assump-
tions, the solution of a nonlinear programming problem (research of constrained
maxima) to the solution of a saddle point problem. In this paper Arrow and Hurwicz
proved that the mentioned result of Kuhn and Tucker can be extended by relaxing
the concavity assumptions, at the expense of obtaining the results only locally. This
is perhaps the first paper where a “modified Lagrangian function” is introduced
in the study of saddle points problems. Subsequently K.J. Arrow reconsidered
these questions in 1958 (see Solow and Arrow [113]) and, within a more general
framework, in 1973 (see Arrow et al. [7]).

The question of duality was apparently the initial motivation for Tucker to
generalize the results on linear programming obtained by himself, Kuhn, and Gale in
the summer of 1948. Even so, Kuhn and Tucker did not prove a duality result in their
“Nonlinear programming” paper from 1951, but they did prove, as we have seen,
the equivalence between the nonlinear programming problem with concavity and
differentiability conditions of the involved functions and the saddle value problem
for the corresponding Langragian function, which indeed does suggest the existence
of a duality result. The first such result for nonlinear programming was developed at
Princeton University, not by Tucker’s group but by the Danish expert on the theory
of convexity, Werner Fenchel, who was visiting in Princeton in the spring of 1951.
Tucker invited Fechel to give a series of lectures on convexity at the mathematics
department; Fenchel developed the first duality theorem for nonlinear programming
during the course of preparing these lectures (see [80]).

Fenchel used a result from a paper he had published in 1949 in which he
introduced the concept of conjugate convex functions. Here he had shown that
to each convex function f(xi,...,Xx,), defined in a convex subset G, of R” and
satisfying some conditions of continuity, there corresponds in a unique way a convex
subset, I', of R” and a convex function ¢ (£, .. ., &,), defined in I" and with the same
properties as f, such that the inequality

xi€r+ o X < s xn) 6L ),
is fulfilled for all points x = (xy,...,x,) in G and all points £ = (§;,...,&,) in .

The correspondence between G, f and I', ¢ is symmetric, and Fenchel called the
functions f and ¢ for conjugate functions [45, pp. 73-75].
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Fenchel defined T to be the set of all points &, for which the function

S ik - f(x)

i=1

is bounded from above in G, and defined

P() = Slelg(zxi& — f(x).

i=1

The definition of ¢ then ensures that the above inequality makes sense.

He used this concept of conjugate functions to develop his duality result for
nonlinear programming. His notes from the lectures were published by ONR in
1953, and here Fenchel’s duality result for “A generalized Programming Problem”
as he called it, appears in the last section. Here Fenchel argued that also to each
concave function there corresponds a conjugate function, and he considered a closed
convex function f(x), defined on a convex set C in R”, and a closed concave
function g(x), defined on a convex set D. Helet¢p : ' — Rand ¢y : A — N
denote the conjugates of f* and g respectively, which allowed him to formulate the
following two (dual) problems [46, p. 105].

“PROBLEM I: To find a point x* in C N D, such that g(x) — f(x) as a function in C N D
has a maximum at x°.
PROBLEM 1I: To find a point £° in T’ N A, such that ¢ (£) — ¥ (&) as a function in T' N A
has a minimum at £°.”

From this he derived the Fenchel duality theorem:

If the sets C N D and I"N A are non-empty then g(x)— f(x) is bounded above, ¢ (§)—v(§)
is bounded below and under some further conditions on the origin in relation to the sets C,
D, I" and A, then [46, pp. 5.105-106]:

xesnélgD(g(X) —fx) = EeipgA@(é) — ().

Fenchel did not explore this further, but the lecture notes from his course
became a huge source of inspiration. They had quite an influence on the following
development of the theory of convexity in the USA and in the development of
convex programming.

The book of 1958 edited by Arrow et al. [4] is perhaps the first important
collection of papers concerned with nonlinear programming (and also with linear
programming). In this collection we find, among others, the paper of L. Hurwicz
“Programming in Linear Spaces” (reproduced in the present collection), which is
one of the first works on optimization problems (both scalar and vector) defined in
topological spaces: here the Karush—Kuhn—Tucker theorem is generalized in various
forms, with and without the use of differentials. This book collects also the studies
of the Stanford mathematical economics community of those years on the gradient
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methods in mathematical programming, which go back to a seminal paper of Arrow
and Hurwicz of 1950 (reproduced in the present collection). We find also some
first interesting economic applications of nonlinear programming: a good motivation
from economics is always given (we point out that K.J. Arrow and L. Hurwicz have
been awarded the Nobel Prize in Economics), but predominantly the book is on
mathematical results.

Other classical papers in nonlinear programming at the beginning of the 1960s
are Arrow et al. [5], who weakened the Kuhn—Tucker constraint qualification and
provided an analysis of the various constraint qualifications proposed since then, and
Arrow and Enthoven [6], who first generalized the sufficient optimality conditions
of Kuhn and Tucker, originally established under the assumption of concavity, to
quasiconcave functions. Since then the literature on nonlinear programming has
grown at an exponential rate; and an entire volume would be necessary just to list
all the contributions that have appeared to date.

At this point it is possible to draw some conclusions on the originality of
the papers of Karush [75] and of Kuhn and Tucker [85] (see also the works of
Kjeldsen [76, 77, 80]). Kuhn and Tucker also obtained “their” conditions for the
case considered by Karush, i.e. when the condition x > 0 is absent (see Sect. 8 of
Kuhn and Tucker [85]). Therefore, the main findings of Karush on one side and of
Kuhn and Tucker on the other side, are similar, very similar, almost equal and also
the methods of proof are similar, both based on the same constraint qualification and
on the use of Farkas’ lemma.

What is different and allows us to speak of “independent” contributions is the
context in which their findings took place, both scientifically and socially. The
way followed by Karush is perhaps more “abstract” and, in a sense, more modern,
because it underlines the analogy between nonlinear programming problems and
the classical unconstrained optimization problems. Indeed Karush gave necessary
optimality conditions of the first and of the second order and sufficient optimality
conditions of the first and of the second order. In this sense the contribution of
Karush is closer to several more recent presentations of the theory of nonlinear
programming. On the other hand, Kuhn and Tucker turned their attention to the
saddle value problem and to the consequent generalization of what had already
been proved for a linear programming problem. Therefore, their approach was more
“productive” for practical applications, particulary in Economics, even though their
work as such was not motivated by application, but by the desire for generalization
for the sake of gaining insights into the mathematical structure of inequality
constrained optimization problems.

Indeed, the paper of Kuhn and Tucker almost at once gave rise to a myriad of
contributions, whereas the papers of Karush and of Fritz John did not have any
influence on the emergence and early development of nonlinear programming. The
trivial reasons for Karush’s work are that his thesis was never published, and he was
an unknown graduate student, but none of these reasons apply to the case of Fritz
John. First, his paper was published in 1948, but the paper became interesting only
after nonlinear programming had become an autonomous field of research. Second,
Fritz John was a well known mathematician at the time, and he was linked with the
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famous school of Richard Courant. A more reasonable explanation is the fact, that
W. Karush and F. John were moved by theoretical aims, in scientific environments
of the calculus of variations and the theory of convexity. Kuhn and Tucker, even
though their work with nonlinear programming was not motivated directly by
applications, but by “pure” mathematical investigations of generalizations, they
nevertheless operated in an environment where practical applications to Economics,
Management Science, Operations Research, Logistics, Engineering, etc., were a
source of new researches.

Kuhn [84, p. 134] recognized three factors which he found were significant for
the rapid development of nonlinear programming after the 1951 paper of Kuhn and
Tucker:

“First, the model of nonlinear programming was flexible enough to encompass a large class
of real-life problems that had not been adequately treated by the techniques then available.
In social terms, after the successes of operations research in the Second World War, a
number of major industries were willing to try out this new model. Second, the necessary
conditions established by Karush, Kuhn and Tucker formed the starting point for a large
number of algorithms to solve nonlinear programs. Third, and perhaps the most necessary
factor, the first half of the 1950s saw the development and rapid expansion of computers
that could be programmed to solve this sort of problem”.

And we might want to add at least one more factor, namely the enormous amount
of research money the government gave to academic research in the post war period
in the USA.

We have already mentioned two great pioneers of mathematical programming,
T.C. Koopmans and L.V. Kantorovich who in 1975 received the Nobel Prize in
Economics. We can add also the names of K.J. Arrow, who was awarded the Nobel
Prize in Economics in 1972, of H.M. Markowitz, who was awarded the same prize
in 1990, for his contributions to quadratic programming, within his famous model of
“portfolio selection”, of L. Hurwicz, who was awarded the Nobel Prize in economics
in 2007, and of L. S. Shapley and A. E. Roth who were awarded the prize in 2012.

With Kuhn’s and Tucker’s paper the theory of nonlinear programming became
an autonomous research field. In a very short time it reached a development (also
towards algorithmic aspects) which is by now impossible to describe in a single
book let alone in a single paper, if one wants to present its present status in a
sufficient analytic way.

We add at this point some brief final conclusions. We think that the history
of the emergence of mathematical programming (linear and nonlinear) is surely a
“great history”, both for the relevance of its contents (melting pot of several research
sectors and stimulating observatory for the didactics), and for the highly esteemed
names of great mathematicians and Nobel prize winners we meet in this history.

In describing the emergence of mathematical programming, we have been
compelled to stress some typical aspects of this birth: the influence of some math-
ematical tools, such as Linear Algebra and Convex Analysis, which proved crucial
for its take-off; the convergence of various mathematical motivations (calculus of
variations, geometrical problems, theory of games, problems of operations research,
etc.) which have led to a “mix”, that has at once proved to be a new and original field
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of research, and finally, the influence of the historical circumstances of the Second
World War and the civilian mobilization of U.S. scientists and mathematicians for
the war effort along with the military support of science in the U.S.A in the post war
period, see also Kjeldsen [79].

From this point of view the emergence of mathematical programming can be
considered as an expression of that great analytical tradition which started from
the key concepts of “function” and differential calculus (with all their modern
developments) to offer the main tool in supporting the study of various problems
arising from real life (especially from social and economic sciences).

Like every history of quite recent facts, also the history of nonlinear program-
ming covers perhaps a too brief period, in order to allow the researcher to see in a
right perspective all its fruits and to distinguish between important results and short-
lived researches. The history of mathematical programming is a history of a topic
“in fieri”, but just for this reason it appears more stimulating, as its topic is still in
progress and not yet embalmed.

Finally, another exciting aspect for those concerned with the history of a contem-
porary field of research, is the possibility to try to contribute to its construction, and
not to be only a passive beneficiary of the results of other researchers.

For the present collection we have chosen the following contributions, as
representative of the emergence process and first developments of nonlinear pro-
gramming: (in alphabetical order of the authors)

1. K.J. ARROW and L. HURWICZ, A gradient method for approximating saddle
points and constrained maxima, RAND Corporation, paper P-223, June 1951.

2. K. J. ARROW and L. HURWICZ, Reduction of constrained maxima to
saddle-point problems; in Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability, University of California Press,
Berkeley, Vol. 5, 1955, 1-20.

3. K. J. ARROW, L. HURWICZ and H. UZAWA, Constraint qualifications in
maximization problems, Naval Res. Logist. Quart., 8, 1961, 175-191.

4. G. BLISS, Normality and abnormality in the calculus of variations, Trans.
Amer. Math. Soc., 43, 1938, 365-376.

5. R.W. COTTLE, A theorem of Fritz John in mathematical programming, RAND
Corporation Memorandum RM-3858-PR, 1963.

6. W. FENCHEL, On conjugate convex functions, Canad. J. Math., 1, 1949,
73-77.

7. L. HURWICZ, Programming in linear spaces; in K. J. Arrow, L. Hurwicz
and H. Uzawa (Eds.), Studies in Linear and Nonlinear Programming, Stanford
University Press, Stanford, 1958, 38—102.

8. F. JOHN, Extremum problems with inequalities as subsidiary conditions; in
K. O. Friedrichs, O. E. Neugebauer and J. J. Stoker (Eds.), Studies and
Essays - Presented to R. Courant on his 60th Birthday, January 8, 1948, Wiley
Interscience, New York, 1948, 187-204.
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9. W. KARUSH, Minima of Functions of Several Variables with Inequalities
as Side Conditions, MSc Thesis, Department of Mathematics, University of
Chicago, 1939.

10. H. W. KUHN and A. W. TUCKER, Nonlinear programming; in J. Neyman
(Ed.), Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, University of California Press, Berkeley, 1951, 481—
492.

11. G. P. McCORMICK, Second-order conditions for constrained minima, SIAM
J. on Applied Mathematics, 15, 1967, 641-652.

12. L. L. PENNISI, An indirect sufficiency proof for the problem of Lagrange with
differential inequalities as added side conditions, Trans. Amer. Math. Soc., 74,
1953, 177-198.

13. M. SLATER, Lagrange multipliers revisited, Cowles Commission Discussion
Paper 403, 1950.

14. H. UZAWA, The Kuhn-Tucker theorem in concave programming; in
K. J. Arrow, L. Hurwicz and H. Uzawa (Eds.), Studies in Linear and Nonlinear
Programming, Stanford University Press, Stanford, 1958, 32-37.

15. F. A. VALENTINE, The problem of Lagrange with differential inequalities as
added side conditions; in Contributions to the Calculus of Variations (1933—
1937), University of Chicago Press, Chicago, 1937, 407-448.

The book is completed with an Appendix containing the following contributions:

(A) L. L. DINES and N. H. McCOY, On linear inequalities, Trans. Roy. Soc.
Canada, 27, 1933, 37-70 [This paper was quoted by Karush in his thesis].

(B) H. W. KUHN, Nonlinear programming: a historical view; in R. W. Cottle
and C. E. Lemke (Eds.), Nonlinear Programming, STAM-AMS Proceedings,
Vol. XI, American Mathematical Society, Providence, 1976, 1-26. [In this
paper, for the first time, Kuhn admits the priority of the results of Karush and
his ignorance, since then, of these results. In the Appendix of this paper there
is a summary of the thesis of Karush: it is the first time that the main results
of Karush are published. In the present book we omit this Appendix of Kuhn’s
paper].

(C) I.-L. LAGRANGE, Recherches sur la Méthode de Maximis et Minimis,
Miscellanea Taurinesia, Tom 1, 1762, pages 173-195.
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A _GRADIENT METHOD FOR APPROXIMATING SADDLE POINTS AND CONSTRAINED MAXTMA

Kenneth J. Arrow and Leonid Hurwicz

1. Introduction.

In the following, X and Y will be vectors with components

Xy, Yyo By X>0 will be meant X, > O for all i. Let g(X), fj(x)

(; = 1, *++, m) be functions with suitable differentiability properties,
where fj(X)_} O for all X, and define

m e ~ l+"".\
(1) F(X, Y) =g(X) + § Y. 1-[r. ] +7-.

s71 9| [ :

J N .
Let (X, ¥) be a saddle-point of (1) subject to the conditions
X> 0, Y >0; assume it unique in X. The function F(X, Y) attains its
maximum for variation in X subject to the condition X >0 at the point
X = -}E. Since F is a maximum for variation in each component Xi separately,
it follows that
(2) Fx. <0 for all i, and

i

(3) X. =0 if F, <o.

We will refer to those subscripts for which (3) holds as corner indices and

the remainder as interior indices. Let XL be the vector of components of

X with corner indices, and X4 the vector of interior components. Since F
is also a maximum for variations in X° alone (holding ¥ at 0 and Y at
Y), and the first-order terms vanish by (2) and (3), it follows, under the

usual differentiability assumptions, that the matrix,

|

(%)

is negative semi-definite,
2
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where §x2X2 is the matrix of elements o 2F/ Bxiaxj, with i and j
ranging over interior indices, evaluated at (X, Y).

It is shown in another paper, now in preparation, that for all 7/
sufficiently large, X maximizes g(X) subject to the restraints
fj(x)s 1, X 20, and
(5) F 2 2 1s negative definite.

XX
Hence the determination of the constrained maximum is equivalent to finding
the saddle-point of a function F(X, Y) which is linear in Y and satisfies
(5). We seek here a convergent process for approximating such a saddle-point.
The intuitively natural method, in terms of the motivations of the two
players (interpreting F as the pay-off of a game in which player I chooses
X and player II chooses Y), is for the player who chocses X to move
"uphill® with regard to variation in that variable, while the other player
moves against the gradient with respect to Y. Such processes have been

investigated by Brown and von Neumann [l}l for the case where F 1is linear

lNumbers in brackets refer to the bibliography at the end of the paper.

in both X and Y. In that case, the "naive" gradient method just
described leads to an oscillatory behavior (see Samnelson[Z ], pp. 17-22) and
must be modified. In the present case, even if the functions g, i‘j were
linear to begin with, the introduction of the power ‘7 creates a nonlinear

system satisfying (5); as will be seen, this implies that the naive gradient

method will be at least locally stable.
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2. Description of the Gradient Method.

It must be recalled that the variables X and Y are constrained
to be non-negative, so that the movements of the players with and against the
gradients of X and Y, respectively, cannot carry the variables into areas
of negativity. The gradient method for finding a saddle-point then is the
following system of differential equations:

(1) X, =0 if in<0 and xi-o,
(2) = Fy otherwise;
. 1
(3) Yj=0 if ij>o and Yy =0,
(&) = - FY otherwise;
J

the dot denotes differentiation with respect to time. In this system the
derivatives are discontinuous functions of the variables. The usual existence
‘theorems for nonlinear differential equations assume continuity (see [3],
Chapter II). If it could be shown that equations (2.1-4) have a unique
solution for any initial position continuous with respect to variations

in the starting-point, considerably stronger statements could be made about

the convergence of the system.

3.  Theorem.

Let F(X, Y) be linear in Y, possess a saddle-point (X, Y)
under the constraint ¥ 2 ), Y=0, and be analytic in some neighborhood
of (X, Y). Suppose further that (a) condition (1.5) holds and

(b) }_{i>0 and 'Y_J.>O for every interior index i or j.2

2Analogously to 83), Jj is a corner index for Y if 'fj =0, FY <0; an
J

interior index for Y is any subscript which is not a corner index.
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Then for every initial position in a sufficiently small neighborhood of
(X, ¥), there is a unique solution X(t), Y(t) of the equations (2.1-4),
such that lim X(t) = X and, for every limit-point Y% of Y(t), (X, ¥*)

t=>o
is a saddle-point of F(X, Y).

he  Proof.

If (X%, Y*) were another saddle-point of F(X, Y), then (X%, Y)
would be still another. That is, X% would maximize F(X, Y) for variation
in X. Then (1.5) implies that if X* is in a sufficiently small neighbor-
hood of E, then X = X#, so that X is at least locally unique.

In what follows, let x = X - i, y=Y - Y, expanding the

derivatives of F into power series. Then

(1) F_=F_+a(x,y),
2
vhere a(x, y) is a continuous vector function with a(0, 0) = O.

In the expansion of F there are no constantterms by definition.

27
Divide the terms of the expansiofx into four types: those containing
components of xl; the terms linear in x’?‘; the terms linear in y; and the
terms in x° and v of degree higher than the first. Define the (variable)
matrix A as follows: for any interior index i and corner index Jj, let
Aij x5 be the sun of all terms in the expansion of in which have xj as
a factor but do not have xk as a factor for any corner index k < j. Then,
clearly, §1Aij x5 is the sum of all terms in the expansion of FXi which
contain corner components of x, the summation extending only over caorner
indices. The matrix A is a function of x and y. Now consider the fourth

type of term in the expansion of FXZ, the non-linear terms involving X2 and

y only. Since F, and therefore sz, is linear in y, each such term must
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involve a component of x2, Define the matrix B so that, for every pair of

interior indices i and j, Bij Xy is the sum of all non-linear terms x
in the expansion of FX
i

a factor for any corner index k ' or for any interior index k < j. Then,

which have xj for a factor but do not have X, as

is the sum of all non-linear terms in the expansion of F X which
i

contain no corner components of x as factors. B therefore is a function

B.. x.
T 1
J2 J o J

of xX* and y; £further, since each component of BxX? is non-linear, B

vanishes if both x2 and y do.
= = 2
(2 F 5, = Alx y)x1+F X+ F y # B2, v) 2,
) x? ’ X252 X

where A and B are continuous matrix functions, and B(0, 0) = O.
Since F is linear in y, FY is independent of y. By a discus-

sion similar to the preceding, it follows that

(3) Fy = F +C(x) X+ ﬁ;{zY ¥ + b(x2),

where C is a conmtinuous matrix function and the vector b(x?) is of the

second order with respect to camponents of x2.

Now define
(&) D= (1/2) (x'x + y'y).

D is proportional to the distance in the (X, Y) space to the saddle-point

(X, ¥). Differentiate (4) with respect to time.
(5) DD = x'x + y'y.
First suppose that for each 1 either Xi> 0 or FX >0 and
i
that for each j either xj>o or F = 0. Then from (2.2), (2.4) and (5),
J

6 DD = x'F_ - y1
(6) x!F - yF.
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Substitute fram (1-3) into (6)

n

(7) DD (A)'Fq + (,@)epxz - y'F,

GL'F ¢ (R)'alx, 1) ¢ GRAG 7)) « (B)F o0 &+ (A)F oy v
+ 2)BGE, ) o - By - yre(o) wb - pFL, -yt eGP

The last term is homogeneous linear in y and of the second order in x2. Hence,

it can be written in the form,
(8) 7' () = (R) EGR, ¥) (R),
where E is a continuous matrix function and E(x2, 0) = O.

Each term in (7) is a scalar and therefore equal to its transpose. In

particular, (xz)'-fxzy y = y'f)'(zr x2. Let
(9) C(X, Y) = a<x; )') + A'(X, y} XZ - €1 (x) Vs
(20) ¢(=2, y) = B2, y) - B(=2, ¥).

In view of (8-10) and the preceding remarks, (7) can be simplified to the

following expression:

(11) oD = (x‘~>vfxl D elx, v) ¢ (BT p0 2+ ()1 662, v) (B) - y'E.

Fram (1) and (9),

(12) c(0, 0) = 0.
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FX over the corner indices 1i; by
i

definition, ml> 0. By (12), we can choose 61 so that every component of

Let my be the minimum of

¢ is less than m; whenever D< €. Let 21 denote summation over the

corner indices only; then, since xi; 0 for all corner indices,

() re(x, ) <m Xillx-ijﬁ- (xl)'f‘_xl , if x*#0 and D<€y, or
(13) ()1F,y + ()t olx, )< O if xF #0 and D<E.
From (1.5),

(xz)'_F-X2X2 xX*< 0 unless x? = (.

Let m, be the maximum of (x2)'-13x2x2 x2 subject to the condition D =1,

ny the maximum of 22 X5 subject to the same condition. Then,
i

(lh) m2< O, (xz)’i‘.xzxz x2S m2D2, 22 x].JS_m3D.
1

From (2), (8) and (10), G(0, 0) = 0. If D is sufficiently small, (x%, y)
will be sufficiently close to (0, 0) to insure that the largest of the

components g ; of G is less than - m2/ (1113)2 in absolute value. Then,

Xd%

from (14),

&5 1™

<55,

2 2 2
x7)t G < .. X,
(x°)* 6(x%, y) x _|§2§2 85 %%y :

X.

2 2 2\ ¢ 2
< - -
5 = m, D<= (x )'szxzx ’

< <-mz/m32><212

the strict inequality holding provided that 22 x_ |>0, which is equivalent
: i
i

to x* #O0.

(15) (xz)"fxzxz 24 (A 6GR, y) £ <0 if p<é,, % # 0.

For each corner index Jj, Y5 =2 0 always, while FY.> 0; for interior

J
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indices j, -}:Y. = 0. Hence,
J

(16) yrﬁyao.
By (11), (13), (15) and (16),

an DD<0 if D<f, x#0; DD<0 if D<€,

where € is chosen smaller than El or 62, and &lso sufficiently small

so that,

(18) in< 0, FYJ-> O when D << €, for all corner indices i and j;
(19) € < minp X, €<m§n2 T, the minina being taken over all interior
indices;

(20) FX2X2 is negative definite when X = X and yty/2 < €.

By assumption (b) of the thecrem, (19) is possible with positive € . By
(1.5), FX2X2 is negative definite when X = X and y =0; since F is
certainly continuous in Y, (20) can hold for sufficiently small € .

We will now show that there does in fact exist a unique solution
of (2.1-4) continuous in the initial position and in time if, at the initial position
[x(0), ¥(0)], D<€. Let 5, be the set of all indices for which
Xi(O) =0, By (19), any index in Sy must be a corner index for X.

Similarly, let T

o Dbe the set of all indices for which Yj(O) = 0. By (18),

FX <0, FY >0 for all indices in So and TO’ respectively. By the
i J
differential equation system (SO, To), we shall mean
(1) xi = in for i not in SO, Yj = - FYj for j not in TO’
X, =Y, %0 for & in Sy § in To
-8 -

53



- 0 - P-223
’ 6-13-51

In this system, the derivatives are continuous functions of the
variables. By the Cauchy-Lipschitz Existence Theorem (see [3], Theorem (4.1),
P. 23), the system (Sy, T,) has a solution uniquely defined by the initial
conditions. Let Z = (X, Y), and let a given solutionbez[t, Z(0)], where

Z(0) is the initial position. Then it is further known ([ 3], (7.3), p.30)
that

(22) Zl:t, Z(O)] is a continuous function of Z(0) and of t.

For every i not in S, X. [t, 2(0)] >0 in some interval of time;
0" i
similarly, Yj [t, Z(OX]:>O in some interval for every Jj not in T,. Since
FX and FY are continuous functions of Z, which is in turn continuous in
N .

J
t there is an interval in which FX < 0, F, >0 for i in S and J

Y o’

in TO. The solution to system (SO? TO) is ghen a solution to the system
(2.1-4), and further it is clearly the only one.

Since Sy and T, contain only corner indices, x; = yj =0 for
all i in So and j in TO. If we fix these variables at O, F,
considered as a function of the remaining variables, has the same properties
as assumed to begin with. Hence, (17) is valid; since D < o, D[t, z(o)]
(the value of D for the point Z [t, Z(O)]) is non-increasing. Since
> 0

p[o, 2(0] <€, (¢, 2(0)] <€ for all t. Hemce, F, < O, F

X Y.
for all i in S; and j in Tq for all points of the :olution g[:t, Z(O)].
The solution for (Sg, TO) therefore ceases to be a solution for (2.1-4)

only when Xi{:t, Z(0)] = 0 for some i not in Sy or Xﬁ [t, Z(O)] =0

for some j not in T,. Let this occur at time ty. Since D[tg, z(0)] < €,
Xi[to, z(0)] > o, Y, [to, z(0)] > 0 for all interior indices by (19);
hence, i or j must be a corner index by (18). Let Sl be now the set of

all indices for which X;[ tg, 2(0)] = 0, Ty the set of all indices for which

T5[tg, 2(0)] = 0. clearly, S, includes Sy, T, includes Tp. Again, the

-9 -
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solution of the system (Sl, Tl}‘ is the unigue solution of {2.1-l) in some
interval of time beginning with tye The argument can oc repeated; since the
sets Si’ Ti are increasing ani there are only a finite number of indices,
only a finite number of systems are invelved. It then follows easily that the
system (2.1-4) has & unique solution Z[t, z(0)] continuous in t and in z2(0).

By (18), for each corner index i, there is a number o, < 0 such
that FX‘-<- m, whenever D <€ as IS[t, 2(0)] £0 for all t,
D [t, z(é)]< €. Solong as X,[t, z(0)] > o, Xi[t, z(0)] £ m;, so that
x; [, 2(0)] reaches O in finite time. Since Fy < O for all t,
X3 [t, 2(0)] =0 for all t from then on. The samela.rgmnent holds for

corner indices of Y.
(23) xt [t, z(0)] = Y [t, z(0)] =0 for a1l t sufficiently large.

4s D [t, 2(0)] <0 forall t, D[t, 2(0)] converges to a limit.

Let
(24) lim D [t, 2(0)] =D*.
t—> oo

Let Z% = (X%, Y%) be any limit point of Z [t, 7(0)]. There is a sequence
{t } such that
n

(25) lim ty, =0, lim 2 [t 2(0)] =z,
n—> o n-—s 0

Let 2z, =2 [t,, 2(0)] . Then, by (22),

(26) Z(t, z%) = Lim  2(t, ;) =Llim  2[t + b, 2(0)].
n— @ n—

Since D is a continuous function of Z, it follows from (26) and (2L)

that

- 10 -
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S

(27) D(t, 2%) = Lim D[t + t,, 2(0)] = Dw,
n—w

a constant. That is, D(t, Z%) = O for all t. By (17), x(t, Z%¥) = 0 for
all t, or

(28) X(t, Z%) = X for all t.

In particular, X(0, 2#) = X* = X, Since %% was any limit-peint of

2[5, 2(0)],

(29) lim X[, 2(0)] = X.
t—> o

Let an asterisk denote evaluatien at 2# = (X, Y*). By (23) and

(18),

(30) ™=o, o) <g,
3l = 3

(31) Y a, F;l > 0.

By (28), X2(t, Z%) = 0; since X° >0 by hypothesis, it follows from (2.2)

that

32 F#*, = Q.
(32
By (20), F;EXZ is negative definite. In coenjunction with (30) and (32),

this shows that

(33) F(X, ¥#) has a maximum at X for varistion in X subject to X 2 0.

Since F is linear in ¥, Fy is independent of ¥, so that F¥, = ?Yg = 0.

g
That is, F(X, ¥) is independent of ¥2, Fram (31), then,

e 1Y =
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(34) F(i, Y) has a minimun at Y% for variation in Y subject to

Y > 0.

(28), (33) and (34) complete the proof of the theorem.

5. A Remark on the Hypotheses of the Theorem.

Condition (b) of the theorem, that no component of X or Y is at
the boundary of the domain of variation unless it is actually a corner extremum
in the proper sense, is inserted to avoid the possibility that at some point
¥; =0 and Fy =0 for some i. We have been unable to show, in this
situation, eith:r that there exists a solution of (2.1-4) with such an initial
position or that, if it exists, it is unique. Some experiments with simple
systems suggest that in fact there is a unique solution beginning at such a

point; if so, condition (b) could be dropped.

6. Economic Interpretation.

Let X; (i =1, --+, n) be activity levels of the n different
possible production activities (measured, e. g., by the outputs of one of the
products). Let g(X) be the social utility derived from activities, Fij(xi)
the quantity of input j needed to carry on activity 1 at level X, 03 the
stock of input j available to begin with, and rj(x) = % fij(xi) - a<j+1.
The unit of measurement of commodity j should be chosen sufficiently large
that fj(X) (which is excess demand plus one) will be positive throughout the
adjustment process. Note that production of an output Jj by means of process
i would be represented by a negative value for the function fij5 also,

“5 = 0 for intermediate products. Hence, it is desired to choose a set of
activity levels X which will maximize g(X) subject to the constraints

that the excess demand of the productive system for any input does not exceed

- 12 -
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the initial supply, i.e., ) 35 (X) < X, or, rj(x) <1 for all j. By
i -
definition, X; 20 for all i. As noted in section 1, if X is the
optimum set of activity levels, then, there is some Y such that (%, T) is

the saddle-point of the function F(X, Y) defined in (1.1).

It follows then, by the Theorem, that the X-components of the
solution of the system of differential equations (2.1-4) will approach X.
The equations (2.,1-2) can be written,

. ”
(1) X5 = ( de/fox,) - z T, (L+7) (fj)’ (at, /ax,),

unless the right-hand side is negative when Xi = 0, in which case the right-

hand side is replaced by 0. Let

(2) a Qg/ﬁyxi,

(3) P,

PERACE S (fj)y.

Then, from(1-3),

(&) X; S q - }J: py (af ,/dx) if X;> O,

= [ . - i = 0.
max [0, q; %pj (ar, /ax)] £ x
By (2.3-4), pj is determined by (3) in conjunction with the equations,

S LAY L s
(5) iji 1 i ¥.>o,

= max [f‘:ll.'-l_? -1, 0] if Yj=0.

Note that YJ.>O if f£>1, i. e., if there is excess demand, and Yj <0

if there is excess supply (except for free goods).

- 13 -
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Institutionally, the process can be visualized as follows: there
is a central board which evaluates the social worth of a given constellation
of activity levels, and therefore the marginal social valuation gq; of each;
for each activity, there is a plant manager who determines the activity level
X;s; for each primary or intermediate product, there is a price-fixing
authority who determines Pje The central board announces the marginal
social valuations 9y, and each price-fixing authority announces a price pje.
then, each plant manager expands or contracts at a rate equal to the
difference between the marginal social valuation of the activity, d;» and
the marginal cost of increasing the activity, Z pj (dfij/dxi) (apart from the
corner case of unused activities). At the same time, the price~fixing
authority adjusts IJ. in accordance with the excess demand, as given in (5)

and then arrives at pj.

It is important to observe that these rules of decision-making
are highly decentralized. Once the prices are announced, the individual
activity managers need know only their own technologies to determine their
rate of expansion. Similarly, the price-fixers need know only the excess

demands on their own markets.

Even the decisions of the central board in regard to the marginal
social valuations of the commodities can be simplified. Actually, the social
valuation depends on the outputs of final products. Let gik(xi) be the
output of final product k if activity i is operated at level
Xis g (%) = z 85y (X;) be the total output of final product k, and
U(gl, ese, g;) the social utility derived from having total outputs 81, *°"s B
of the final products 1, s, m, respectively. Then g(X) = U[gl(X), veny gn(X) ],

so that

-1 -
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(6) de/ 0, =E (20/9g) (g, /ax ). |

If the central board announces merely the marginal social valuations of the
various final products, Ty = BU/ 3gk, the firm can compute its marginal

social valuation,

(n a =§ 7 (dg; /dX,),

by the knowledge of its own technology.
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REDUCTION OF CONSTRAINED
MAXIMA TO SADDLE-POINT
PROBLEMS

KENNETH J. ARROW anp LEONID HURWICZ
STANFORD UNIVERSITY, UNIVERSITY OF MINNESOTA

1. Introduction

1.1. The usual applications of the method of Lagrangian multipliers, used in locating
constrained extrema (say maxima), involve the setting up of the Lagrangian expression,

(1) oz, ) = f(x) + ¥'g(x),

where f(x) is heing (sny) maximized with respect to the (vector) variable x = {ay, * * +,
an}, subject Lo the constraint g(x) = 0, where g(x) maps the points of the N -dimensional.
x-space into an M-dimensional space,and y = {y;, * *  , ya} is the Lagrange multiplier
(vector). Here, { |} indicates a column vector; the prime indicates transposition, so
that 9’ is a row vector.

The essential step of the customary procedure is the solution for x, as well as y, of the
pair of (vector) equations,

(2) #=(%,y) = 0, g(x) = 0,

where ¢.(x, y) = {9¢(x, ¥)/0x1, - -+, d¢p(x, y)/0xn}. Let (&, 7) be the solutions of-
equations (2), while £ maximizes f(x) subject to g(x) = 0. Then, under suitable restric-
tions,

(3) E=2.

1.2. In [1] Kuhn and Tucker treat the related problem of maximizing f(x) subject to
the constraints' g(x) = 0, « 2 0, where, for an arbitrary XK-dimensional vector ¢ =
{a1, - - -, ak}, the relation @ = 0 is here defined to mean g, Z 0 for k=1, --, K.
Another definition of vectorial inequalities, permitting greater generality of treatment,
will be used in later sections of this paper. There we shall treat directly the class of situa-
tions where f(x) is to be maximized subject to g¥(x) = 0, g®(x) = 0, x = 0, @ not
restricted as to sign, x = {«f1], x@1},

Denote by C, the set of all % satisfying the constraints g(x) = 0, = 0. The two re-
sults stated below are of fundamental importance for the problem consxdered

(A) (See theorem 1 [1].) Let g satxsfy the following condition (called Constraint

Most of the work of this paper was done under the auspices of The RAND Corporation, with addi-
tional support and assistance from the Cowles Commission for Research in Economics and the Office
of Naval Research.

1In 1] our f and g are respectively written as g and 7. The symbol in [1] for the Lagrange multipizr
(our y) is .

G. Giorgi and T.H. Kjeldsen (eds.), Traces and Emergence of Nonlinear Programming, 61
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Qualification, here abbreviated as C.Q.).2 If X is a boundary point of C, and x satisfies
the relations,

(4) glr—%)20,
(5) P—P20,

where “~”" over a symbol denotes its evaluation at x = %, g = {g%, ¢f},2° = 0,2 > 0,
x = {x° 2°}, % > 0, and 2* = 0, then there exists a differentiable vector-valued func-
tion ¢ of the real variable § whose domain is the closed interval (0, 1) and the range is
in Cy; that is, x = y(6), such that ¢(0) = % and ¢'(0) = A(x — %) for some positive
scalar \.

Under this condition, if all derivatives used below exist and if & maximizes f(x) for
x€C,, there exists y satisfying the conditions

(6) £20, .0, &¢.=0,
(7) 320, ‘—ﬁvgoi 5’,‘_1’:/:0:

where ¢, and ¢, are partial (vector) derivatives of the Lagrangian expression (1) evalu-
ated at (%, ).

(B). (See theorem 3 [1].) If the hypotheses specified in (A) hold and, in addition, the
functions f(x), gn(x), m = 1, -+, M are concave,® there exists a pair (%, ), satisfying
conditions (6) and (7), such that (x, y) is a nonnegative saddle-point (NNSP) of ¢(x, y),
that is,

(8) ¢(x, 7) S ¢, 5) S (& 9) forall 220, y20;

furthermore, any NNSP (%, ) of ¢(x, v) has the property that x maximizes f(x) in C,.
According to lemma 1 [1], conditions (6), (7) are implied by (8) regardless of the nature
of ¢(x, v), that is, even if ¢(x, ¥) is not given by (1).

2. A modified Lagrangian approach

2.1, Because of the interesting game theoretical and economic implications of the
theorem in (B), section 1.2 (which the authors will study elsewhere), the question arises
as to the possibility of similar results when some of the conditions of the theorem are
relaxed.

It turns out that results of such nature can be obtained, though not without some
sacrifices. The relaxation is primarily with regard to the convexity assumptions which
fail to hold in some important economic applications (the case of “increasing returns”).
The main sacrifices are (1) the Lagrangian expression is modified, and (2) the results
are proved only locally.

The results are presented below in the form of three theorems. Theorem 1 is auxiliary
in nature; theorems 2 and 3 together imply the existence of a local nonnegative saddle-

2 This restriction “is designed to rule out singularities on the boundary of the constraint set, such as
an outward-pointing ‘cusp’” (see p. 483 in [1]). It should be noted, however, that because of (4), C.Q. is
a property of g, not merely of C,. Thus g(x) = —(x — 1)3, « one-dimensional, lacks C.Q., while g(x) =
—(x — 1), with the same C,, does have it.

3 A function f(x) is said to be concave if
(1 — 0)f(=°) + 6f(x) = fI(1 — 6)2° + 6x]
forall0 £ 6 < 1and all x° and « in the region where f(x) is defined (see [1], pp. 10-11).
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point for the modified Lagrangian expression. Theorem 3 shows this saddle-point to be
of the type leading to convergence in gradient procedures described by the authors in [3].
The notation differs in-some detail from that introduced in section 1. To facilitate
reading, some notational principles are stated in 2.2.1; the main symbols used are listed
in sections 2.2.2 and 2.3.4.
2.2.1. Some principles of notation. A K-dimensional column vector {ai, as, * - -, ax}
is denoted by a; dim @ denotes the number of components in a. If 4 is a matrix, 4’ is its

K
transpose. Hence, in particular, o’ is a row vector and ¢’ b = E a by is the inner prod-
k=1
uct of the vectors @ and &, a+b is an alternative, and sometimes more convenient, nota-
tion for a'b.
lo1, @2+ - -, ax] is the finite (unordered) set whose elements are a;, a, - - -, ax.
A ~ B is the set of all elements in 4 but not in B (the set-theoretic difference).
{x|p-} denotes the set of all x possessing the property $..

It
9) c(a) = {ci(a), c2(a), - - -, cr(a)}

(10) a={aya, " ,ax},

then .

(1) ca—eca(a)gh%, p=1,2,--+,P; k=1,2,- K.

Further, ¢, ¢, denote, respectively, c(a) and c¢,(a) = ¢, evaluated at a = a.

If ¥(a, b) is a real-valued (scalar) function of the vectors ¢ = {ay, a5, - * , ax},
b= {b1, byt v, bR}, then
| 9% - e & - .
(12) wab-u—a;a—b-r . k=1,2,--+,K; r=1,2"-",R,

where ¥ denotes Yo evaluated at (g, b).

Sp(x%) = {x|d(x, 2°) < p} where d(+/, 4”’) denotes the Euclidean distance between
z" and %"/,

2.2.2. Some symbols used.

(N.1.1) = {®, 2, """, XN} .
X is the Euclidean N-space of the &'s .
N= [132;"',N]'

NV is a fixed (possibly_empty, not necessarily proper) subset of A. As will be seen in
(N.1.4), the elements of A/’ are the indices of the components of x!!! as defined in the
first paragraph of section 1.2.

(N.1.2) 2= {21,205, ,2n}.
Z is the Euclidean M-space of the z's .
M=1,2,M].

M isa fixed (possibly empty, not necessarily proper) subset of 4/. As will be seen from
(N.1.4), (N.2), (N.3), the elements of 4/’ are the indices of the components of g as
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4 THIRD BERKELEY SYMPOSIUM: ARROW AND HURWICZ

defined in the first paragraph of section 1.2; the elements of ff~ A/’ are the indices
of g® (see same paragraph); g will be defined as {g®, g®},

(N.1.3) y={y, 95, yu}.

Y is the Euclidean M-space of the y’s. Here ¥ is the space of the real-valued linear
functions on Z. Even in the Euclidean case it is convenient to distinguish between the
two, since our definitions of nonnegativity in the two spaces differ.

2,20 for n€ N .
(N.1.4) x = 0 means
x, unrestricted as to sign for # € N

Xt+isthesetofallx = 0.

2,20 for m€e M.
zéOmeans{
2,=0 for m¢& M'.
Ym0 for m€E M.
9y 2 0 means . .
¥ unrestricted as to sign for m € 4/’ .
For any vector @ = {ay, @3, * *, i},
¢=0meansag; =0,8,=0,'**,8c=0;
a>0meansa; > 0,8:>0,---,ax>0;

a < 0means —a > 0,

(N.2.1) ‘g is a function on X+ to Z. Hence ‘g(x) = {'g1(%), 'go(x), - * - , "gae(x)} where
the ‘gm, m € A are real-valued functions.

(N.2.2) We shall find it convenient to work with some of the 'g., m € ff' replaced by
their negatives. More precisely, we write

‘gm if mE M~
g’"={ —tom if ME M,
where Jf-C M ~ M’ will be defined in section 2.3.4.
g={gy 8y ", 8ul.
Note. Since f-C M ~ A1’ it is seen that the conditions
‘g(x) 20, g(x) =0

are equivalent. For practical purposes, one could consider the problem as given directly
in terms of g, rather than ‘g. We start with ‘g, however, in order to avoid the impression
of a loss of generality in connection with the assumptions of section 2.3.4.

(N.3) Co={x|'gx) 2 0, x = O} = {z]g(x) 2 0, x = 0}
(the “constraint set”’),

(N.4) f is a real-valued function on X* (the “maximand”).
(N.5) Of = {#' |2 € C, and f(x) £ f(z') for all x € C,}
(the “optimal set”).
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(N.6) %z = {x@ 2™} where
/) = the set of indices of the components of (9, i = 1,2
nENVifn¢ Morn€ N andz, >0
n€ NPifn€ H andz, =0

for a given & € Oy, and either component may be empty.
Note 1. When a vector a is partitioned into two subvectors, say

a = {a* a**}
and we say that a* (or a**) is empty, this means that @ = a** (or ¢ = a*).

Nole 2. The above partitioning of the vector x obviously depends on the point % in
Oy, chosen. The same is true of the partitioning in (N.7) below and of various subsequent
partitionings of « and g. It is understood that all these partitionings refer to the same
choice of #, and that &, once chosen, remains fixed.

(N.7) g = {g", g™}
where
gH(#) =0, g¥() >0

and either component may be empty.

(N.8) h(x) = 1 — g(x)

where 1 denotes the M-dimensional vector with 1’s as components; Al = 1 — glil,
i=1,2.

(N.9)  appm(®) = 1 — [m(@)]*1m, m € M.

(N.10) 7= {n, 15, nd .

(N.11)  ap(®) = {mpi(%), mape(x), - - -, npu(x)} .
(N.12) 9=, y) = f(x) + ¥'[np(x)] (the “modified Lagrangian expression”) .

2.3.1. A reformulation of Kuhn-Tucker theorem 1. This slight generalization of theo-
rem 1 (see [1], p. 484) is needed here because of the meaning of inequalities given in
(N.1.4). [The possibility of this type of generalization is indicated in [1] (see pp. 491-
492).]¢ '

We shall say that g satisfies the Constraint Qualification (C.Q.) at x, if the require-
ments of the definition in (A) of section 1.2 are satisfied with the inequalities (4), (5) in
the same section interpreted in the sense of (N.1.4). ¢(x, ¥) is given by (1) in 1.1. (It is
immaterial whether g or ‘g is used.)

THEOREM. If f and g are differentiable, % € Oy, and g satisfy C.Q. at &, then there exists
ay € Y such that

N
v

0; $°9=0; $,,y2 0 forall y= 0;
; P& =0; rx S0 forall =20,
[Note that, by virtue of the definitions in 2.2.2, this means that @,,, = 0 if m € 4,

Gumn =0 m € M, $ey S0if n € N, $zp = 0 if # € A, The other inequalities of
the theorem are also to be interpreted in the sense of (N.1.4).]

4 See also Hurwicz [9], pp. VIII — 2-6.

v
=
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6 THIRD BERKELEY SYMPOSIUM: ARROW AND HURWICZ

2.3.2. Theorem 1.

DEFINITION.S An M-dimensional veclor n = {n1, n2, " * * , nar} is said to be acceptable
if, for eachm € A, (1) nm = 0, and (2) nm, is an even integer if hn(Z) < —1.

THEOREM 1. If, for some p > 0, x € S,(%), £ € Oy, f and g are differentiable, and g
satisfies C.Q. at &, then, for any acceplable n, there exists a vector § = §(n) such that

(13) WP S0 forall 20
(14) WP =0}
(135) £20;

(16) WPy =0 forall y=0;
(17 Pud =0

(18) 520,

The bar over ¢ denotes evaluation at x = %, y = 5(1).

Note that the relations (13)-(18) are necessary conditions for a nonnegative, in the
sense of (N.1.4), saddle-point of ,¢(x, ¥) at (%, ). In particular, the relations (13)—(18)
are satisfied if one selects 5 = 7(n) such, that®

(19) (1 4 9m)im(n) = ¥m(0) forall m € f7.
If the selection is made in accordance with (19), the equality
(20) oz = ,@,

will hold. Here o9 (%, ¥) is y¢(x, ¥) with 1 = 0; this is obviously the same as ¢(x, y) in (1)
of 1.1.

Proor. For g = 0, the preceding theorem follows directly from the reformulated ver-
sion of the Kuhn-Tucker theorem 1 given in 2.3.1. Thus there exists a vector

(2 1) 5’(0) = {5'1(0), 5'2(0)) e 15'1'1(0)}
with the required properties, '
Consider now the case # % 0. We shall show that §(5) defined by (19), that is, explicit-
ly, by )
=r——9m 0 ]  C
(22) Ym(n) =7 e (0 me M

[where $,(0) is that of (21)], satisfies the relations (13)-(20).
We first observe that (22) yields

(23) (1 + ﬂvn)?m(ﬂ)[,’m(jnnm = ym(o) ) m G Mn
(When /(%) = 1, (23) follows directly from (22). When ha(%) # 1, we have opy,, =
gn(%) > 0, and hence, by (16)-(18), 9.(0) = 0; (22) then yields () = 0 and (23) fol-
lows.)

Since

; |
(24 Wea= fot D (1 1) 3 (D U ()1 22 e
m=1 n

¢ In many applied problems, kn,(x) = 0 for all m and all x = 0. It was pointed out by Dr. Masao Fu-
kuoka that, in the absence of such an assumption, the requirement of nonnegativity of the components of
n is insufficient for the proof of the theorem.

% m(0) = ¥ in Kuhn-Tucker theorem 1 (see 2.3.1).
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SADDLE-POINT PROBLEMS 7

formula (23) implies

(25) Pz, = Junt 2 Fm (0)

me==]

6gm(x) nEN.

Noting that the right member of (25) is identical with op.,, we conclude that the re-
lations (13)-(15) hold for all 5 with nonnegative components, since they are known to

hold for » = 0.
Relation (16) is established by the fact that the right member of

(26) Pum = wpm(®) =1 — [h(&)]m me M,

is nonnegative for m € ', zero for m € Af’ when 5 is acceptable (see the definition
above) since, for any m € Af, kn(%) < 1, and, furthermore, ,¢,,, = 0 if m ¢ /W’ i
which case k(%) = 1.

Now suppose that, for some mo € /4, ,,J;,,m > 0, that is, ks, (%) < 1; then, by (16)-
(18) for 7 = 0, 5',..,(0) = 0; hence ¥m,(7) = 0, and, therefore,
(27) $an'jmu(n) = 0 .

Since (27) clearly holds in the alternative case y¢m, = 0, (17) follows.

Finally, (18) holds because J.(y) has the same sign as §,(0) and the latter, by (18)
“for 7 = 0, is nonnegative if m € Af".

2.3.3. THEOREM 2. Let, for some p > 0,x € S,(%), & € Oy,, such that (13)- (20) are salis-
fied. Then

(28) 0% ) S vb(%, y) forall y2 0.

For we have

(29) 16 ) = 18(%,5) = (9 = 5)*sh = y,P 2 0 for y2 0
where, since

(30) by = P,

the second equality follows from (17) and the inequality from (16).
2.3.4. Notation.

(N.13) 2@ = {2}

where
op=() = 0, oz < 0

and either component may be empty.

(N.14) ‘ x = {af, 27T}
where

xl = {x(‘)’ x(ﬂ)}
(N.14.1)

= x2) ,

(Either 27 or #7 may be empty.)
It should be noted that, by (13)-(15) and (N.13),

0‘3_5%':0:

(N.14.2) i
o ot < 0.
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8 - THIRD BERKELEY SYMPOSIUM: ARROW AND HURWICZ

2.3.5. Definition of a regular constrained maximum. In theorem 3 below we use the con-
cept of a regular constrained maximum. The definition of such a maximum is given in
the last part of this section. To state it, we must first formulate three regularity condi-
tions denoted by Ry, R, Rs.

The first regularity condition Ry. Let Z be a value maximizing the function f(x) subject
to’g(x) = 0, x = 0, and hence also subject to

gx) =0
(31)
2z 0

where the inequalities are to be interpreted in the sense of (N.1.4).
From (N.6) and (N.7) it is clear that, for sufficiently small variations of x, the con-
straints ’
£ 2 0
(32)
M =0,

which are a part of (31), can be disregarded. Hence, at %, f(x) possesses a local maximum
subject to

gM(x) 20,
(33)
2 =0.

Let gt be a subvector of g¥ such that C; = C,t ,l*1) and write
(34) g = {g!, g}

The components of gtt can be disregarded in the 'process of maximization, that is,
Ot,0 = Ojstel1)). If the Lagrangian multiplier vector 7 (corresponding to the con-
straints glt!(x) = 0) is partitioned according to

(35) g = {3, 5t
it is always possible to put
(36) jt=0,

and this will be done in what follows.
Assuming that the constraints (33) are consistent, we may replace them by

gl(x) = 0
(37)
2® 20,
The first regularily condilion is
(Ry) rank (gt(n) = dim gt = M1,

say.

Nole 1. R, corresponds to the requirement of nondegeneracy in lincar programming
(see [4], p. 340).

Nole 2, R, implies C.Q. (see appendix I),

The second regularily condition R,. Since, by (N.7), (N.6), (N.14.1), and (34),

gl =0

#1=0,

(38)
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it follows that, as a function of %7, f(a7, #7) = f(s7,0) has at &7 a local maximum subject
to the constraints

gh(at, #11) = gh(x?, 0) =0

39
(39) 22 > 0.

The corresponding Lagrangian expression becomes
(40) o (27, yt) = f(af, 0) + yt-gt(s?, 0) .

Using the reformulation of Kuhn-Tucker theorem 1, given in 2.3.1, we may assert the
existence of a §t such that

(41) &F20; 0 =0;
(42) 1= 0; oyr = 0.

It might happen that some components of 3t vanish. Write yt = {y*, y°} ‘where
every component of 5* is different from zero and

(43) 7 =0.
Let gt be correspondingly partitioned as
(44) gt ={g* g .

Now suppose that o¢?(#7, y1) has a nonnegative saddle-point at (7, 51). By theorem 3 in
Kuhn-Tucker, a sufficient condition for this is that f and g be both concave. One can then
easily verify that

(45) od? (a7, y%) = f(a, 0) + y*-g*(a7, 0)
has a nonnegative saddle-point at (&7, *).

But then #f maximizes f(x7, 0) subject to g*(«7, 0) = 0 and x® = 0. Hence in this
case the componénts of g° could have been disregarded in the original maximation prob-
lem (Or,0 = Op,feel'h))-

However, complications might arise if ¢¢?(#7, yt) did not have a nonnegative saddle-
point at (&7, 3t). To take care of this case,'one might require that

'(46) g° is empty unless ¢¢?(x7, yt) has a local nonnegative saddle-point at (&7, t) .

However, to simplify matters we shall impose the seemingly” stronger condition
(47) g% is empty ,

It follows that .

(48) M* = dim g* = dim gt = M?t.

Let //* [= 4/t by (47)] denote the set of indices of g*. Clearly, form € f£* n
(M~ M), we may have 9, < 0.

Now suppose the preceding reasoning had been carried out in terms of ‘g instead of g.
Nothing would be changed, except, possibly, the signs of some components of the La-
grangian multiplicr, to be denoted by ‘g, '

That is, we would have ', > 0 for m € #/* n Af' and '§,, > 0 or 'y, < O for

7 See section 2.3.7.
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10 THIRD BERKELEY SYMPOSIUM: ARROW AND HURWICZ

mEM*n (M~ M. Let ff- be defined by the relation m € ff- if and only
ifme€M*n (M~ M) and '§, < 0. Then, it is clear from (N.2.2) that we may put

Im = "3m for m € M~ M~

Im = —'§m for m € M-,

so that §,, > 0 for allm € Af*.
Hence, without loss of generality [as compared with (47)] condltxon (47) may be re-
stated as the second regularity condition,

(49)

g° is empty and

(Rz)
Jm > 0 forall M € ff*.

The first regularity condition then implies

(50) rank (F¥m) = M*
where
(51) M* = dim g*.

The third regularity condition Rs. When the first two regularity conditions are satis-
fied, second derivatives are continuous, and a7 is nonempty, it is possible to show (sece
appendix II) that a certain quadratic form is nonpositive when some of the variables
are restricted in sign. The third regularity condition is a strengthening of (71) requiring
that the quadratic form in question be negative under the same restrictions. This con-’
dition, analogous to that used by Samuelson (see [5], p. 358) makes it possible to avoid
going beyond second order terms in the expansions used.

The third regularity condition is formulated in terms of a function ¢(/) of a new vari-
able vector

(52) = {t*, 1)
which is obtained by a transformation of coordinates from 27 after the latter has been
partitioned so that
(53) of = {x* 2a**),
where x* is a subvector of ™,
We shall (a) define #* and &**; (b) write down the transformation defining {¢*, £**}
in terms of {«*, x **} (c) define ¢(t); and (d) formulate the third regularity condition.
In the remainder of this section it is assumed that R, holds; it is also assumed that &7
is not empty.
First case: M* = 0, Write
(54) = R = ¥ = g
so that, by (52) and (53), #* and ¢* are empty, and define
(55) q(t) = f(a!, 217) = f(#**,0) .

The third regularity condition for this case is formulated in Ry below.
Second case: M* > 0. (a) The definitiop of x*. From R, it follows that there exists a
(nonempty) M*-dimensional subvector x* of #® such that : :

(56) g isan M* by M* (M* = 1) nonsingular matrix.
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We then define x** by (53) and #(» by

(57) 50 = {2, 209)
Clearly
(58) a** = (1D g}

(b) The transformation from «f to t. Let
(59) h*=1— g*

where 1 is the M *-dimensional vector with (scalar) 1’s as components. ¢ = {£*, **} is
then defined by the transformation

(60) * = k*tx* x** 5;11)
(61) (R = k¥

We also partition (** by

(62) (= (12 g}
where

02 = a2
(63)
e
This is obviously consistent with (57) and (61).
(c) The definition of ¢(t). By (59), the Jacobian I7 of the transformation (58)-(59) is

B * hX, * ;‘
(64) H=<z* z*>=_<gzt g >
0 I. " \0 -7
so that, by (56), :
(65) || =~|=gh|=0,
that is,
(66) H is nonsingular ,

Hence, locally, (60)-(61) can be solved for #7 in terms of /; we may write this solu-
tion as

(67). 2T = 7(f)

where

(68) r = {r¥, r**}

and

(69) ¥ = r¥((), a** = p¥¥(f) = p**,

The function ¢(f) is now defined as f(x) evaluated at xf7 = %7 and with &7 expressed
in terms of ¢, that is, .

(70) ¢(0) = Jlr(), &1 = Jlr(e*, 0+%), %, 0]

The statement of the third regularity condition. We have now defined ¢(#) for all M *pro-
vided the first regularity condition R, is satisfied and &7 is nonempty. It is shown in ap-
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pendix IT that, assuming R;, Re, and the continuity of the second derivatives, unless x**
is empty, there exists p > 0 such that, for all ** € S,(z**),

(71) . (P — %) G (%% — 5%%) £ 0, i 0.

The third regularity condition is a strengthening of the preceding inequality. It states
that
(R3) (a) 2** is empty or

(b) there exists p > 0 such that, for all £¥* € S,(&**), (I** — &**) Gorpm(t** —
FFK) < 0 If £2) > 0 and (** 3£ F**,

Note. The situation covered by (a) of R‘, is of importance since it permits the treat-
ment of a large class of cases where f and g are linear.

DEFINITION. f(x) is said lo have a regular maximum at % subject to g(x) = 0, x = 0, if
the three regularity conditions Ry, Rs, R; are satisfied at % and & € Oy,.

2.3.6. THEOREM 3. If, for some p > 0, x € S,(%), & a regular maximum?® of f(x) subject
to g(x) Z 0 and x Z 0, f and g are differentiable (with regard to x), and furthermore, when
%7 is nomemply, have continuous second order derivatives with regard to ¥, then, for all
acceptable® y sufficiently large in each component,

(72) xT is emply ,

or

(73) & — &) yParar(al — &) < 04f 2D = 0, af = &7,
and for some p' > 0, and all % € S,'(&) such that x = 0, x % &,
(74) vz, 5(n)] < 10l 5(n)]

where o¢ and 5(n) are defined as in theorem 1.

Note.'® Theorem 3 is valid for f, g lincar if ** is empty (regardless of whether a* is
empty), provided the first two regularity conditions hold. However, if both a* and «**
are empty, «! is empty, and the theorem follows from the first case considered below. If
x** is empty while x* is nonempty, use the first two cases below together with (90)
(since g* is nonempty and £** is empty). Note that #** is empty at the basic solutions
of a linear programming problem.

2.3.7. Proof of theorem 3. First it is shown that (72) or (73) implies (74). Then it is
shown that (72) or (73) is true.

It can be seen that if theorem 3.is established for the case of {gft, g%} empty, then
theorem 3 is also true if (i) git is not empty, and/or (ii) g° is not empty but o’ (!, ¥1)
has a nonnegative saddle-point at (&, 1), since in either case & remaing unchanged and
the additional terms in the modified Lagrangian expression vanish at § [compare equa-.
tions (36) and (43)].

Hence, with no loss of generality, we may henceforth assume {g', g°} to be empty,
that is,

(75) v gl = g*,

We now show that (72) or (73) implies (74), that is, that in a sufficiently small neigh-
borhood, if (72) or (73) is assumed to be valid and the inequalities x = 0, x # %, hold,

8 The term “regular maximum” is defined at the end of section 2.3.5.
. 9 The term “acceptable” is defined at the beginning of section 2.3.2.
10 The desirability of explicit treatment of the linear case was emphasized by Dr. Masao Fukuoka.
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the conclusion of (74) follows. We write ¢ instead of ,¢ throughdut. Also (72) or (73),
%= 0, x# %, is assumed.

Let
(76) f=x—2
n H o= gt — F*, i1=1,1I.

First case: £ 5 0. By (20) and (N.14.42),
(78) ek = Gur A+ GBI <O,
But then the conclusion of (74) follows from the well-known “Fréchet” property of

differentials! which, as applied to the present case, states that, given any o > 0, there
exists an € > 0 such that,

(79) (¢ (%, 5) —¢ (& ) — o £]

if ¢ <e
Choose

(80) o=

IEI

l£]¢z£

which is positive by (78). Then, for a sufficiently small |£|, we have by (79)

which implies
(82) lEl ¢ (x,5) —¢(%,5)] <0

and hence the conclusion of (74).

If &7 is empty, this completes the proof of the theorem 3, since x = & then implies
£ 5 0. If 27 is not empty, we must consider the

Second case: £ = 0. Since it is assumed that x # %, £/ = 0 implies

(83) g#0.

In virtue of the existence of the second derivatives of ¢ with regard to 27 (by definition
of ¢, and the assumptions concerning the second derivatives of f and g with regard to x7 )
we have, by Taylor’s theorem,
(84) o(x, §) — ¢(&, §) = Par+ £ + F(E) Gorart?
where ¢.r.r denotes ¢.r.r evaluated at x = %, & = £ + 6, 0 < 8 < 1. It now suffices
to note that (§7)'¢.r-1£ is negative at % [since (72) or (73) is assumed to hold and its hy-
potheses are satisfied] and continuous in thé neighborhood of % (by the hypotheses of the
theorem concerning the second derivatives of f and g), so that, for a sufficiently small
[ ], () @arart? < 0. Since $or+§f = 0 by (N.14.2), (74) follows.

We now show that (72) holds if 7 is nonempty. .

First case: g* empty. By equation (75), gl is also empty. Hence, by (13)-(15) in theo-
rem 1,

(85) 5(r) = 5(0) = 0

1 See Hille [10], p. 72, defmitionv4.3.4; equation (iii).
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and, using (N.12),
(86) 20lz, 5(n)] = f(x) .
Since g* is empty, we have M* = 0, and, therefore, the definition (55).of ¢ applies,
so that (since x* is empty but #7 is not) #** is not empty and
(87) Guerprx = Jorronx = Pt .

Equations (86) and (87), together with the third regularity condition R, yield (73) for
-a sufficiently small neighborhood of Z.
Second case: g* nonempty. Write

(88) \[’(l) 3’) = ¢[f(l), &1, y]

where 7(¢) is defined in (67). (Where it is desired to indicate the dependence of ¥ on 7,
we may write . instead of ¢.)
Then, by (66), that is, Ry, we have

(89) Ju = Yu ]L—i = (ﬁ“)’@zrztﬁ“, I= {h*(ﬁ), 5?**} ’

since ,¢zr = ozt = 0 by (20) and (N.14.2).
We shall now show that (73) is implied by

(90) T/JHT < 0, lf T(ZI) ; 0, and T # 0

where the partitioning of 7 corresponds to that of ¢, We show later that (90) holds.
To see that (90) implies (73), let &7 satisfy the inequalities ) = 0, ! 5 %!, Choose

T* v 77 il::: }_1;:* x* - 55*
(91) ( >=T=H(x1—§:’)=< )( )

e 0 I Rk Rk
Since, by (66), H is ﬁonsingular, «!f 5 & implies 7 5 0. Also, (91) yields
(92) T** = x** — :‘e** ,

hence, in particular,

(93) £ = D) — e
But

(94) =0,

since 22V is a component of #® by (N.13), and #® = 0 by (N.6). Hence
(95) () = x(zl)

and thus ) = 0 implies 7Y = 0.
Having shown that the hypotheses of (73) imply those of (90), we see that the
hypotheses of (73), together with the validity of the assertion in (90), yield

(96) T’J;;T <‘0.
But, using in succession (91), (89), and simplifying, we have
(97) T’ll/”T = (x’ -_ &r)lglwugz(x! -_— &1)

= (af — &Y BB ypur A H (5 — &)

= (& — &)'spotar(s! — &) .
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Formulas (96) and (97) yield the conclusion. of (73). Thus it has been established
that (90) implies (73). It remains to be shown that (90) is valid. It is convenient to write
Y in the partitioned form

(98) i]; _ <¢m* ';t*i**) _ <A B)
“ —l**t* wt*it** B ! C

where #** may be empty; ¢* is assumed nonempty, since the case of ¢* empty was
treated earlier.

It will now be shown that A4, that is, ¥ s [compare (98)], which depends on 5, can
be made negative definite by a suitable choice of 7.

Recalling that f7* denotes the set of indices of the components of g*, and using
(N.9) and (60), we see that, for m € ff*,

(99) 1 Pm(®) = 1 — f5Fmm

where ¢ is a component of £*.
Since, by theorem 1 and equation (75),

(100) Im(n) = 0 for m € p~ M*,

we have, from the definitions of ¥, ¢, and ,¢.[equations (88), (70), and (N.12), respective-
ly], and the preceding relations (99) and (100), the equality

(101) Viby(ml=g@® + g*wm(nn(i—t%).
Writing k

(102) F = gees,

we have, from (101) and the definition of A that

(103) A=F-D,

where D = ||dnm'||, m € M* m € f*, is a diagonal matrix [that is, dpm' = O
for m £ m'] with

(104) dmm = I + 1m)1m = Fn(0)0m , meM*,

where the second equality follows from (19).

Let \ denote the largest characteristic root of F. Since, by the second regularity con-
dition Rz, (0) > 0if m € A/ *, we may choose 75, for each m € ff*, to be a positive
even integer satisfying

(105) N > )‘/5’M(0) ’

so that

(106) Min dym > A
mE M*

for all acceptable 7, = 73, .
Then, for any ¢*'# 0, and each acceptable 5, = 7%, we have
(107) RS NRR =D 2 < DA, n

mE M meEM*
={* Di*,
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16 THIRD BERKELEY SYMPOSIUM: ARROW AND HURWICZ

that is, £* £ 0 implies #*(F — D)t* < 0 for all sufficiently large acceptable 7, or 4 is
negative definite for all sufficiently large acceptable 7.

This suffices to establish (90) and, therefore, (73) if £** is empty.

Now assume ¢** not empty. Write

I — A7B
(108) P= ( >
0 I
and
(109) W= P JuP.
Then methods used to show that (90) implies (73) can be used to show that
(110) w',Qw < 0 for w0, @) 20
implies (90). This is because
I A-B
(111) Pl= < . )
0 I

and, like its analogue H, performs an identity transformation on ¢**, so that the condi-
tion #2) = 0 is transformed into the condition w®Y = 0. It remains to establish (110).
Now from (109), (108), and (98), we have

A 0
(112) 2= ( >,
0 C—B'A-B

so that w,Qw = w* Aw* + w** (C — B’ A7 'B)w**.
Now, we may take A as negative definite, and hence, to establish (110), it will suffice
to show that

(113) 0 = w*(C — B'A-Byw** < 0, if w** 5 0, w® > 0.

Before doing so, we shall obtain an auxiliary result.

It will now be shown that the norm of A~ can be made arbitrarily small by choosing
7 sufficiently large. It does not matter which of the many norms is used (see Bowker [6]).
Note that, denoting by N(X) the norm of the matrix X, we have N(4 + B) < N(4) +
N(B), N(AB) £ N(A)N(B); if all the elements of a matrix approach 0, so does its norm.
If I denotes the identity matrix, N(I) = 1.

D1 is a diagonal matrix whose nonzero elements approach zero for n large; hence, the
same is true of D'F. Therefore, 9 can be chosen sufficiently large so that,

(114) I — D7'F is nonsingular ,

and

(115) N(D'F) < 1.

Following Waugh (see p. 148, [7]), we use the identity, valid because of (114),
(116) (I = D'F)' = I 4+ (I — D*F)"\D'F,

and the properties of the norm to derive the relation,

(117) NI = DFy] S 1 + N[(I — DF)-)N(D~F).

F;om (117) and (115), it follows that,

(118) N[(D"F—I)_l]élTN—:—ETF)‘-
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Since A = F — D = D(D-'F — I), it follows that A=* = (D~'F — I)~1D~!, and hence

N (DY)

(119) N4 S N(D™) NUD=F~ D= S =3 s

which can be made arbitrarily small for 4 large,
Consider now the quadratic form Q in (113). We have shown, using (101), that

(120) C = Yprpn = Gowegnn
Hence the third regularity condition, R, implies
(121) w*Cw** < 0 if w** 0, w@® = 0,
As shown earlier N(B'4A7*B) £ N(B")N(A™)N(B) = N(4A~Y)[N(B)]* can be made
arbitrarily small by choosing a large enough 5. Now
(122) |w*¥ B’ A1Bw** | < N(B'A-1B)w**w**
since the characteristic 'roéts of a matrix are bounded in absolute value by its norm.

Also, denoting by x the maximum of w*¥*' Cw** subject to w**w** = 1, (™ = Q,
we have

(123) W C** < prp*¥igy*x
and, by (121), u < 0. With the aid of (122),
(124) Q < [p+ N(B'A™1B)Jw**w** if w** = 0, w@ =2 0.

By choosing 7 sufficiently large, so that
(125) u+ N(B'47B) <0,
we establish (113), which, in turn, yields (110), (90), (73), and hence theorem 3.

APPENDIX I
Let the first regularity condition R; hold. Consider & such that,

(126) . g(ll(g';) =0, gm(j:) >0,z= 0,
and « such that, »
(127%) Ber—-820,20-2z020,

where all inequalities are to be interpreted in the sense of (N.1.4). Define now the
function gf of % by

(128) glx) = {gl(x), a**, 71}

where x** is defined by (58). Notice that assuming g° to be empty as in (47), g#, like x,
has N dimensions.
It follows that
g;ﬁ gl“ glll

(129) g={0 I 0
0 0 I

and hence

(130) gt = lgte| 0.

' This appendix purallcls lemma 76.1 in Bliss {11},
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18 THIRD BERKELEY SYMPOSIUM: ARROW AND HURWICZ

Consider now the relation which associates with a real number a the values % of « for
which the equation

(131) g(%) = gH(@) + agf(x — %)

is satisfied. In virtue of the implicit function theorem, for sufficiently small values of
a(131) defines % as a (single-valued) differentiable function of a, say

(132) x = Yi(a),
such that
(133) ¥1(0) = %.
Differentiating (131) with respect to a and setting a = 0, we have
(134) g0 = gz — 7)
and hence, because of (130),
(135) vi(0) =x—%.
We shall now show that
(136) ¥1(a) € C, for a = 0, a sufficiently small,
By (131), (126), and (127) '
(137) gE) =agl(x— %)= 0fora=0.
It follows that
(138) W) =0forazx0,
which together with
(139) g?[Y1(a)] 2 0 for a sufficiently small,
yields
(140) gli(a)] = 0 for a = 0 sufficiently small ,

Now, since x* is a subvector of ™, x® is a subvector of -{x**, x77}, hence (127) and
(131) imply

(141) 0 =y (a) = 7D 4+ a(x® — D) = 0 for a 2 0
which, together with

(142) 0 = ¢ (a) = 0 for « sufficiently small, yields
(143) ¥i(a) = 0 for a = 0, a sufficiently small .

In turn, (140) and (143) yield (136).
Now let us interpret “e sufficiently small” as 0 < a = A where X > 0 and define
the function ¢ by

(144) v(6) = y1(N8) forall 061,

Then
v(0) = %,

(145) Y (0) = MWi(0) = Nz —%), A>0,
¥(0) €Cp, 0561,

Since (145) are precisely the requirements of C.Q., it has been shown that R, implies C.Q.
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APPENDIX II

We shall now show that, if the first two regularity conditions hold and if in a neigh-
borhood of %, f and g are assumed to possess continuous derivatives of second order with
regard to #7, then (71) is valid.

Let x** be nonempty. Then, writing

(146) *=n%z) =1 (a vector of 1's) ,
(147) P¥* = g¥*
we have, using Taylor’s theorem,

(148)  q(%, 1¥%) = q(#*, P**) = qowwe (% — P¥¥) 4 J(E** — P¥) oraem(1¥* — 149

[

where over a symbol denotes the evaluation at ¢ =7, while “ ~”” over a symbol denotes
evaluation at ¢ = , where 7 = {4 6 (/** — I**), 0 < 6 < 1. Now suppose it has been
shown that (a) g(#*, /**) has, as a function of /**, subject to the constraint #20 = 0, a
local maximum at (** = ** and (b) g+« = 0. From (a) it follows that, in a sufficiently
small neighborhood, the left member of (148) is nonpositive if #2) > 0. But then, using
(b), we see that the quadratic form in the right member of (148) is nonpositive. Since, by
hypothesis, gg+p is a continuous function of (¥*, we have, for /2 = 0, and in a suffi-
ciently small neighborhood of Z,

(149) (8% — PF) o (£¥* — §%%) 2 0

which is the desired result (71). Hence it remains to prove (a) and (b).
(a) g(i*, t¥*) has, as a function of t**, subject to {® = 0, a local maximum at t** = {**,
It follows from the remarks at the beginning of the discussion of the second regularity
condition that f(#7,0), as a function of &7, has a local maximum at #7 = #f, subject to the
constraints

(150) g, 0) =0, 20 > 0.

Hence, subject to the same constraints, g(£) has a local maximum at Z. Now we must
distinguish the two ways in which the “milder” (46) second regularity condition R; may
be satisfied. ' '

First way: «¢!(%7, y) has a nonnegative saddle-point at (&', ), that is, locally, since
5 = 0 by (43),

(151) f(at, 0) + §*-g*(a7, 0) < f(&, 0) + 5*-g*(&, 0)

for all a7 such that 22D = 0.
But g*(z7, 0) = 0 because of (150), and g*(«7, 0) in the left member of (151) vanishes
for ¢* = I*, Hence (151) yields, locally and for /2 = 0,

(152) Jlr(@*, 1%%), ¢¥%, 0] < flr*@, 1), 7**, 0]

which means precisely that g(#*, **) has a local maximum at #** subject only to 2 = 0.
Second way: g° is empty. In this case (150) is equivalent to

(153) £*(#,0) =0,
(154) & 20,

But (153) is necessarily satisfied if /* = #* and hence can be disregarded. Since ¢(/)
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20 THIRD BERKELEY SYMPOSIUM: ARROW AND HURWICZ

was seen to have a local maximum at 7 subject to (150), it follows that q(f*, £**) will have
a local maximum at #** subject only to #*V = 0.

(b) qw = 0 .
We have
(155) Gon = f,*f’:n + f,u

We now evaluate the three expressions on the right-hand side of (155). We start with
i, Noting that

(156) FHIP*@*, £%%), 1%4], 0} = 0 for all £**

we obtain by differentiation with respect to £**, using (60) and (69), and evaluating
att =1,

(157) | Gt Fim =0
in virtue of R this can be solved yielding
(158)  Fie= "'(E* gk
To find f.», f,n, we write the condition that o$/,r = 0, using equation (41) in the form
ok ghg* =0,
Jow+iging* = 0.

The terms inv&lving g° vanish, of course.
Substituting (159) and (158) into (155), we have

(160) gum = (=5*gow) + (—F*-ge)[— (@) 7g2m] = (—F*-gim) + (G*-giw) =
This completes the proof of (71). -

(159)
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CONSTRAINT QUALIFICATIONS IN MAXIMIZATION PROBLEMS*'

Kenneth J. Arrow, Leonid Hurwicz, and Hirofumi Uzawa

Many problems arising in logistics and in the application of mathematics
to industrial planning are in the form of constrained maximizations with
nonlinear maximands or constraint functions or both. Thus a depot
facing random demands for several items may wish to place orders for
each in such a way as to maximize the expected number of demands
which are fulfilled; the total of orders placed is limited by a budget
constraint. In this case, the maximand is certainly nonlinear. The
constraint would also be nonlinear if, for example, the marginal cost of
storage of the goods were increasing. Practical methods for solving
such problems in nonlinear programming almost invariably depends on
some use of Lagrange multipliers, either by direct solution of the
resulting system of equations or by a gradient method of successive
approximations (see [5], Part II). This article discusses a part of the
sufficient conditions for the validity of the multiplier method.

INTRODUCTION

This article covers an examination of the interrelationships of the additional assump-
tions under which the following two propositions, both extensions of the classical Lagrange
multiplier method ([1], p. 153), are valid.

Quasi-Saddle-Point Condition
If X maximizes f(x), subject to the constraints g(x) 20, and f(x) and g(x) are dif-
ferentiable, then there exists y Z 0, such that Tx +¥8,=0,¥ g(x)=0.!

*Manuscript received January 28, 1959.

University. Hurwicz's participation was made possible by a Rockefeller Foundation grant to
Stanford for mathematical research in the social sciences.

x is a column vector with components xj, ..., Xp, Y a row vector with m components, _£(x)
is a real-valued function of x, g(x) a column vector with real-valued components gJl(x),

(3=1,...,m), fx a row vector with components fxi =9 f/axi, gy a matrix with components

gl = agj/a X5 where i varies over columns and j over rows. Bars over f and g or their
Xi, . . = . :
derivatives denote evaluation at x. If v is a vector, v 2 0 meansthat each component of v is
nonnegative; v > 0 means that each component is positive.

A function f(x) of a vector variable is said to be differentiable at X, if there is a row
vector a such that

lim [f(xX + h) - £(X) - ah]/|h| = O.
h—0
(Continued)
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176 K. J. ARROW, L. HURWICZ, AND H. UZAWA

Saddle-Point Criterion

If f(x) and g(x) are concave, then a necessary and sufficient condition that X maximize
f(x), subject to the constraints, g(x) =0 is that there exist a ¥ 2 0, such that (%X,y) isa
saddle-point subject to y 20, of the Lagrangian function f(x) +y g(x).

It is known that neither proposition is valid without additional assumptions.2 Kuhn and
Tucker [11] showed that both propositions are valid if f and g are differentiable and the fol-
lowing condition is satisfied.

Constraint Qualification K T>

For all X in the constraint set C (defined by the conditions g(x) Z 0) and all X such
that EI; - (X -X) 20 for each component k of g(x) for which gk(i) = 0, there exists a dif-
ferentiable vector-valued function ¥ (6) such that ¥ (0) =X, ¥ () belongs to C for all positive
6 sufficiently small, and ¥'(0) = X - .

Also in this article, further results on the subject are discussed and simplified proofs
are given. First, Constraint Qualification KT are slightly weakened so that the meaning of
the qualification becomes more transparent. Theorem 1 shows that the Lagrangian method can
be applied to those constrained maxima for which the weaker version of the Constraint Quali-
fication is satisfied. Next this article shows that the Constraint Qualification in the present
formulation is the weakest requirement for the Lagrange method to be applicable; namely, in
Theorem 2 below, it is proved that if the Lagrange method is justified for all differentiable
maximands (or even all linear maximands), then the constraint function satisfies the Constraint
Qualification provided the constraint set is convex.

The direct verification of the Constraint Qualification in specific cases is difficult,
and it is useful to find simpler hypotheses which imply it. Several apparently new conditions
implying the Constraint Qualification and, therefore, the validity of the Saddle-Point Criterion
and the Quasi-Saddle-Point Condition are proved in a later section (A Sufficient Condition for
the Constraint Qualification). Note that for differentiable functions f(x) and g(x), the Quasi-
Saddle-Point Condition implies the Saddle-Point Criterion. For if f(x) and g(x) are concave,
the Lagrangian function, f(x) +y g(x), is concave in x for any given y 2 0; if X maximizes

1(Contmued)
If this condition holds, then the partial derivatives of f(x) all exist at X and f = a, but the
condition of differentiability at a point is stronger than the existence of partlal derivatives.

The function f is said to be concave, if f[tx + (1 - t) %] 2 tf(x) + (1 - t) £(X) for any pair
of vectors, x, X, and any real number t, 0 =t = 1.

A vector function f is said to be differentiable (or concave), if each component is.

A saddle-point, subject to y 20 of a function L(x, y) of two vectors, is defined by the
properties that X maximizes L(x, y) and ¥ minimizes L(%, y) for nonnegative y. The con-
cept is due to Kuhn and Tucker [11]; see their definition of the Saddle Value Problem on p. 482
of Ref. [11]. A quasi-saddle-point is a point where the first-order (necessary) conditions for
a saddle-point are satisfied.

In this article, the variables are not necessarily restricted to be nonnegative. Any such
restrictions are therefore assumed tobe included amongthe conditions g(x) Z 0. The formula-
tion of the following conditions therefore differs in detail but fot in essence from that of Kuhn
and Tucker [11].

2See, for example, Courant, [7], pp. 189-190 and 192-93. For the case of inequalities, the fol-
lowing example is due to Slater [12]: f(x) = x, g(x)=-(1 - x)2;here both f and g are concave
and differentiable, yet there is no saddle-point and hence no quasi-saddle-point. See also the
example of Kuhn and Tucker, Ref. [11], pp. 483-84.

3See Ref. [ll], p. 483. For a’corresponding condition in the context of equality constraints, see
Bliss, Ref. [6], p. 210, conclusion of Lemma 76.1.
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CONSTRAINED MAXIMIZATIONS 177

f(x) subject to g(x) z 0, the Quasi-Saddle-Point Condition implies that the Lagrangian function
has a zero derivative at X and, therefore, as a concave function, must have a maximum there.
Since the Lagrangian is linear in y and g(X)2 0, it is obvious that ¥ g(X) = O implies that y
minimizes f(X) + y g(X) subject to y 2 0. The converse part of the Saddle-Point Criterion,
that if (X, V) is a saddle-point of the Lagrangian for some ¥, subject to y = 0, then X is a
constrained maximum of f(x) subject to g(x) = 0, holds without any assumptions on g(x).

(See Kuhn and Tucker, [11], Theorem 2.)

Still another constraint qualification has been given by Hurwicz ([5], Chapter 4, Section
V.3.3.2). In another section (Equivalence of Constraint Qualifications KT and H) it is shown
to be equivalent to Constraint Qualification KT, at least for finite-dimensional spaces.

To state these results more precisely and to relate them to other work, we will intro-
duce some notation and definitions. In the first place, we define the constraint set,

(1) C ={x gx =z 0}.

In the second place, we will denote X - X by £. Finally, to simplify the statement of
the conclusion of Constraint Qualification KT which will appear frequently in the following
discussion, we will find it convenient to introduce the following definitions:

Definition 1. A contained path (with origin X and direction £) is an n-vector-valued
function Y (6) of a real variable which satisfies:

(2) V() is defined for all 0 =9 =0 for some 8 >0 ;
(3) Y(0)=%, Y(0)eC forall 0S6=7;
(4) Y (0) has a right-hand derivative at ¢ = 0 such that ¥'(0) = ¢ .

Definition 2. An n-vector ¢ such that there is a contained path with origin X and
direction ¢ will be referred to as an attainable direction at X. The set of attainable directions
(at any given X) will be denoted by A.

The set of indices {1, ..., m} is divided into two parts, E and F. E is the set of all
indices effective at X, namely,

(5) E ={j ¢(x) =0},
and F is the set of all indices ineffective at X, namely,
(6) F={; ¢(x >0}.

Definition 3. An n-vector { istermed a locally constrained direction if Ef £ 20
(i.e., Eg{ £ 20 for all jeE). The set of locally constrained directions will be denoted by ;.

With these definitions the Kuhn-Tucker Constraint Qualification can be written.

Constraint Qualification KT
Every locally constrained direction is attainable, i.e., LC A,
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(Since the definition of a contained path does not require it to be differentiable through-
out, this formulation is apparently weaker than Kuhn and Tucker's [11]. We do not know if the
weakening is more than apparent when g(x) is differentiable.)

We now observe that the set L of locally constrained directions is a closed convex cone.
(By a cone is meant a set which, if it contains any point x, also contains A x for every scalar
X 20.) The set A of attainable directions is a cone but is not necessarily convex.

Definition 4. Let W be the closure of the convex cone spanned by A, the set of attain-
able directions (i.e., the smallest closed convex cone containing A). The elements of W will
be termed weakly attainable directions.

A weakly attainable direction is, then, the limit of a sequence of nonnegative linear
combinations of attainable directions. We now introduce a weaker constraint qualification:

Constraint Qualification W

Every locally constrained direction is weakly attainable, i.e., L C w.A

It will be shown (Theorem 1) that Constraint Qualification W is sufficient for the
validity of the Quasi-Saddle-Point Condition and therefore for that of the Saddle-Point Criterion.

4To see that A is not necessarily convex and Constraint Qualification W is truly weaker than
Constraint Qualification K T, consider the constraints x; 0, X2 o0, -X]%p 2 0. The constraint
set C consists of the origin and the two positive half-axes. If X is taken to be the origin, the
set of attainable directions A is the same as C. The set of weakly attainable directions, W,
is the convex cone spanned by this set; that is, the nonnegative quadrant. All constraints are
effective, and

1 o0
SE -
g = 0 1
* 0 o

so that the set of locally constrained directions’ L 'is defined by §l z0, gz 2 0, and thus is
again the nonnegative orthant. L is therefore contained in W but not in A.

In general,if A were a closed set, thenthe convex cone spanned by it would also be closed,
and the words, '"the closure of," in Definition 4 could be deleted without loss of generality. It
can be shown fairly easilythat itis closed for convex constraint sets., The referee has supplied
the following example, which shows that A is not necessarily closed for differentiable g (x)
in general:

glx, 0) = -x%,
glx,y) = - r2{0% sin? (1/0) + [max (r - sec 0 tan6,0)]% for y >0,
where
ro= (x% +y2)Y2, 050 = arc tan (y/x)S 7/2,

and the domain of definition is the nonnegative quadrant.
Since g(x, y)= 0 everywhere in the domain of definition, the constraint set

C = {(x, v): glx, y) 2 0} is the union of the segments,
>

{(X’y): y = x arc tan (1/n7), x 2 0, x =y},

for all positive integers n. Thus, the attainable directions from (0, 0) include (1, arc tan (1/nm))
for all n, but not (1, 0), so that A is not closed.
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We now turn to some other conditions in the literature which have been found to be suf-
ficient for the Quasi-Saddle-Point Condition. In the usual treatment of the Lagrange multiplier
method in the case of equality constraints (Courant [7], p. 198), it is required that the matrix
EX of the (partial) derivatives of the constraint functions with respect to the variables have a
rank equal to the number of constraints. This condition has been extended to the case of
inequalities in [3], p. 8. We write, in the present notation, the

Nondegeneracy Condition

The rank of EE equals the number of effective constraints.

(The condition given in [3] is actually slightly weaker.) It was shown in [3], Appendix I,
that the Nondegeneracy Condition implies Constraint Qualification KT. In a later section (A
Sufficient Condition for the Constraint Qualification), we will deduce the Nondegeneracy Con-
dition from a more general sufficient condition for Constraint Qualification W.

In concave programming—that is, where the functions f(x) and g(x) are assumed to be
concave—there are theorems which state conditions under which the Saddle-Point Criterion is
valid but which do not involve Constraint Qualification KT. The simplest case is that of linear
programming where the functions f(x) and g(x) are assumed to be linear. In this case, the
Saddle-Point Criterion always holds, as is well known ([10], Chapters XIX and XX). Since the
constraint qualifications are always assumptions about the constraint functions only and do not
involve f(x), the question arises whether or not it is the linearity of g(x) that is vital. The
answer is in the affirmative, in the sense that the linearity of g(x) is sufficient for the Quasi-
Saddle-Point Condition; see Corollary 2 of Theorem 3.

Another constraint qualification for concave programming has been proposed by Slater
[12]:

Constraint Qualification S

The function g(x) is concave and, for some x*, g(x*) > 0.

Slater showed that if the function f(x) is concave, his constraint qualification implied
the Saddle-Point Criterion. A simplified proof was given by Uzawa ([5], Chapter 3). Slater's
theorem was extended to more general spaces by Hurwicz ([5], Chapter 4, Theorem V.3.1).
(Slater's assumption of continuity is dispensable.)

Karlin ([9], Chapter 7, Theorem 7.1.1) suggested still another constraint qualification:

Constraint Qualification K

The function g(x) is concave and, for every y =0, there is an x such that y g(x) > 0.

This condition is clearly implied by Constraint Qualification S; Hurwicz and Uzawa ([5],
Chapter 5) have shown that in spaces of considerable generality the two conditions are in fact
equivalent.

It is natural to investigate the relation between Constraint Qualification S (or K) and
the more general Constraint Qualifications, such as KT or W. Obviously, conditions S or K
do not require differentiability of g(x), so that they cannot be completely subsumed under con-
ditions KT or W, which do. We may, however, ask whether or not the former do imply the
latter conditions under the additional assumption that g(x) is differentiable. In the section
devoted to A Sufficient Condition for the Constraint Qualification, it is shown that such is
indeed the case; in fact, a single condition (Theorem 3) is given under which all previous con-
ditions can be subsumed as speciai cases, as well as some cohditions not previously given in
the literature.
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A still weaker version of this condition is presented in Theorem 4. In one of its corol-
laries, the hypothesis refers to functions which are simultaneously concave and quasi-convex.
A characterization of such functions and also of functions which are simultaneously quasi-
concave and quasi-convex is presented in the section, A Characterization of Functions Simul-
taneously Concave and Quasi-Convex; this result may be of interest in other contexts.

In [5], Chapter 4, Section V.3.3.2, Hurwicz introduces the following constraint quali-
fication:

Constraint Qualification H

For all XeC and all ¢ such that Ex £ +g(X)z0, ¢ is attainable.

Since Constraint Qualification H does not identify separate coordinates, it is meaningful
in all linear topological spaces in which a differentiation operation can be defined.> It has been
shown ([5], Chapter 4, Theorems V.3.3.2 and V.3.3.3) to be a sufficient condition for both the
Saddle-Point Criterion and the Quasi-Saddle-Point Condition in spaces of considerable gener-
ality. We will show in the section, Equivalence of Constraint Qualifications KT and H, that in
finite-dimensional spaces, Constraint Qualifications KT and H are equivalent.

PRELIMINARY LEMMAS AND REMARKS
LEMMA 1: Every weakly attainable direction is locally constrained.

PROOF: Let £ be an attainable direction, ¥ (§) a contained path with origin X and
direction £ . Then for some 6 > 0 and every j€eE,

SWO]=0, and & WE)]20  (0=6z8);

hence, for 6 =0, dgj [v(o))/ae ZEJ;( Y'(0) = E; ¢ 20 for every jeE, sothat { is locally
constrained.® That is, A is included in L. Since L is a convex cone, the convex cone spanned
by A must also be included in L; and since L is closed, W, the closure of the convex cone
spanned by A, must also be included in L. (Q.E.D.)

Let us define, for X e€C,
() K = closure of the set {A(x-X): A 2 0, xeC}.

K is the union of all half-lines from X through elements of C, together with the boundary of
the union. K is clearly a closed cone. That the set in braces is not necessarily closed is
illustrated by the case g(x,y) =y - xz, X = (0, 0), where the x-axis belongs to K but not to
the set in braces.

LEMMA 2: If the constraint set C is convex, then K is a closed convex cone, and
K cw.

PROOF: The convexity of K follows immediately from that of C.

5it is possible, although' we have not investigated this point, that Constraint Qualification KT
can be extended in a natural form to infinite-dimensional (function) spaces.

6Note that from the differentiability of gJ (x) and from that of ¥ (0) at 6 = 0, the chain rule for
differentiation is valid. Theorem 6.14, p. 113 in [1] may be easily extended to the present case
of one-sided differentiation.
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If xe C, then by the convexity of the set C,
X+ 0(x-%X)eC forall 026 =1.
Hence, x - X is attainable and therefore weakly attainable. Since W is a cone, A (x - X) €W
for all A 20. (Q.E.D.)
Let B be any set of vectors. The negative polar cone, to be denoted by B', is definedby

B' = {u: ux = 0 for all xeB}.

We have (Fenchel [8], pp. 8-10),

(8) B' is a closed convex cone;
9) B, € B, implies that B} D Bé ;
(10) if B is a closed convex cone, B" = B .

LAGRANGE REGULARITY AND THE CONSTRAINT QUALIFICATION

Definition 5. An m-vector-valued function g(x) will be termed Lagrange regular if,
for any differentiable function f(x), the Quasi-Saddle-Point Condition holds.

LEMMA 3: If X maximizes f(x) subject to x€C, then

Al
fx eW

where W' is the negative polar cone of W.

~ PROOF: Let /(6) be a contained path with origin X and direction £ ; then
f[w(6)] = £[w(0)] = £(X) for all 0 S 9 =9.

Then

A

T & =Txx1/'(o) 0,

X

for any ¢ in A and, by continuity and convexity, for any & €W (Definitions 2 and 4). (Q.E.D.)

THEOREM 1: If g(x) satisfies Constraint Qualification W, then g(x) is Lagrange
regular.

PROOF: Let f(x) be a differentiable function and X maximize f(x) subject to x€C.
Then, by Lemma 3, TXEW'. On the other hand, Constraint Qualification W states that L C W
and therefore implies, from (9), that

Hence, we have

(1) f el .
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If B is the closed convex cone consisting of all vectors yE (-g E) with yE 2 0, then
Definition 3 and (11) show that ?X e B", and by (10),

-Tx=?E EE for some JE z 0.
Define

— —E -F . -F

y=(y",y") with y° =0.

Then Tx + ?EX =0, yg(X) = ’§1E gE (x) = 0, from (5), so that the Quasi-Saddle-Point Con-
dition is satisfied. (Q.E.D.)

Theorem 1 is the basic necessity theorem for nonlinear programming ([11], Theorem 1)
extended to the weaker Constraint Qualification W of this paper.

THEOREM 2: If g(x) is Lagrange regular and if the constraint set C defined by it is
a convex set, then g(x) satisfies the Constraint Qualification W.

PROOF: It will be shown first that
(12) K'cL'.
Let aeK'; then from (7), for A =1,
(13) a(x-X) =0 forall xeC.

Then X maximizes the function f(x) = ax subject to xeC. By the Lagrange regularity of g(x),
there is an m-vector y such that

(14) a+'§r§x=0; yzo0,
and
(15) ve(x)=0.

The conditions (14) and (15) imply that y F_o and, thus, that
(16) a+yogb=0, 78 z0.
The condition (16) implies that

at =0 forall £ suchthat gfg z20;
ie.,
'

ael .

Hence, we have the relation (12). Then, by Egs. (9) and (10), K O L. Applying Lemma 2,

Wo5K>5L. (QE.D)
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A SUFFICIENT CONDITION FOR THE
CONSTRAINT QUALIFICATION

THEOREM 3: If E' is the set of effective constraints Whlch are convex functwns E"
is the set of all other effective constraints, and if there exists g such that g § 20,

g% g > 0, then Constraint Qualification W holds.

PROOF: Let £ be any element of L, o any positive real number, and
—_ *
vE@)=x+ (¢t +at)b, for 6 20.

We will show that ¥ (6) is a contained path for 6 sufficiently small and, hence, { +a §* is
attainable. If we let o approach zero, it will follow from Definition 4 that £ belongs to W, in
fact to the closure of A, so that we will have shown that L, € W, which is Constraint Qualifi-
cation W.

For any j€E, at 6 = 0,

. s * s sk ik
dg’ [(0)]/a0 =8l(t +a £) =8 & +agl & zagl &,
since 'g'J;( £ Z 0 by definition of L. If jéE', it follows from the hypothesis of the theorem that

agl [w(6)]/d6 20 at 6 =0,

which, for a convex function, implies that gJ [¥(6)] has its minimum for 6 2 0 at 6 = 0.
If jeE , then

dgd [W(6)]/d6 >0 at 6=0,
so that gJ [¥(6)] has a local right-hand minimum at 6 = 0. It follows that
E . E S .
g [W(@]zg [WwO]=g (X)=0 for 6 sufficiently small.

Since, by definition, gF [w()] > o0, gF[lI/(e)] Z 0 for 6 sufficiently small, so that ¥ (0)eC
for.. 6 sufficiently small, from which the theorem follows, as has previously been shown.

COROLLARY 1: If g(x) is convex, then g(x) is Lagrange regular.

" *
PROOF: In this case, E is the null set, and it suffices to set ¢ = 0. The conclusion
follows from Theorem 1.

As a special case, we state

COROLLARY 2: If g(x) is linear, it is Lagrange regular.

COROLLARY 3: If g(x) is concave, E the set of effective constramts which are
lmear, E the set of all other effective constraints, and there exists x such that gE (x)z
(x ) > 0, then g(x) is Lagrange regular.
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PROOF: For any concave function,
o, x j, o i ik .
gl - 2 d(x) - g(®) =g ) for jeE.

Since the only functions which are both concave and convex are linear, the results follow from
Theorem 3.
The following special case is precisely Constraint Qualification S.

COROLLARY 4: If g(x) is concave and g(x*) > 0 for some x*, then g(x) is
Lagrange regular.

Corollary 4 was originally stated as Theorem 3 in Ref. [4]. The following corollary
generalizes Theorem 2 in Ref. [2] which, in turn, generalized Corollary 4.

) COROLLARY 5: If the constraint set C is convex and possesses an interior, and
E; #= 0 for each jeE, then g(x) is Lagrange regular.

PROOF: By Lemma 2, x - X is weakly attainable for all x€C and therefore belongs to
L by Lemma 1. Since C possesses an interior, L. must possess one also and therefore has
the full dimensionality of the entire space. If, for some j¢E, §];( £ =0 forall § in L, it
follows that E; £ =0 for all £, which means that gl =0, contrary to hypothesis. Hence, for
each j€E, there exists &) €L such that Eg( £ =0; since E;E 2 0 for all £ in L by defini-
tion, we must have

glelso, gle¥z0 for jkeE.

If we let

" )

£ = ¢!

jeE ’

we see that

—E *

gxg >O:

and the conclusion follows trivially from Theorem 3.

REMARK: To establish that C has an interior, it is sufficient that g (x*) > 0 for some
*
X ; to establish that C is convex, it is sufficient that g(x) be quasi-concave.?

We can also relate the Nondegeneracy Condition to this analysis.

COROLLARY 6: If the rank of EE equals the number of effective constraints, then
g(x) is Lagrange regular.
PROOF: Let u be an arbitrary positive column vector; then from the hypothesis, we
* _ *
can find ¢ such that E& £ = u > 0.
7A function f(x) is quasi-concave if, for all c, the set {x: f(x) 2 c} is convex. A function is

quasi-convex if it is the negative of a quasi-concave function, so that the sets J;x: f(x) = c}are
all convex.
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If we reconsider the proof of Theorem 3, we see that the convexity assumption for the
elements of E' is only needed to insure that g' [’ (6)] has a minimum at 6 = 0 for jeE'. For
the purposes of the proof, a local minimum is sufficient. It would therefore suffice to define
E' as the set of effective constraints which are locally convex (i.e., which are convex over
some neighborhood of X), which, for example, would be implied by well-known conditions on
the matrix of second partial derivatives of the gl (x) evaluated at x =X. It is clear that the
larger E' is, the weaker the hypothesis of the theorem. ‘

A somewhat different weakening of Theorem 3 is suggested by observing that if &) is
the jth unit row vector, then

_gl izE _ ;
) gx+6 gy 0 for any jeE .

Since 5] g (0) =0, we see that the Lagrangian conditions for a constrained maximum of
- gJ X+ &) subject to g £ 20 are satisfied at £ = 0. Suppose for the moment that the
Lagrangian conditions (1 e., those in the Quasi-Saddle-Point Condition) were sufficient to
insure a constrained maximum. Then g’ (X + £) would have a minimum at § =0 for £ € L.
Since (¢ +a. £¥) 0eL for all 6 2 0, this implies that g [¥(6)] Z ¢! [¥(0)] = 0, and so the
argument of Theorem 3 is still valid if E' is defined to contain all effective constraints for
which the Lagrangian conditions are sufficient to insure a constrained maximum for - g;] (x).
A set of hypotheses, under which the Lagrangian conditions are sufficient for a con-
strained maximum, is presented in [2], Theorem 1. We state the relevant results as a lemma
(the statement below is slightly more general in that the domain of definition is not restricted
to the nonnegative orthant; the previous proof extends easily).

LEMMA 4: Let f(x) be a differentiable quasi-concave function and g(x) an m-vector
valued differentiable quasi-concave function defined over some convex domain D. Let X and
Y 2 0 satisfy the Lagrangian conditions, Tx +y EX =0, yg(x) =0, and let one of the following
conditions be satisfied:

(a) Tx x> fx x2 for some xleC, P ;

(b) ?x = 0 and f(x) is twice differentiable in a neighborhood of X ;

(c) f(x) is concave.
Then X maximizes f(x) subject to the constraints g(x) 2 0.

. Lemma 4 can be applied to the preceding argument, with x replaced by £, f(x) by
- g (X+ £), and g(x) by Eg ¢. Since the latter is linear and therefore necessarily quasi-
concave, the hypotheses of the lemma are equivalent to requiring that one of (a), (b) or (c)
hold for the function -gJ (X + £). The application of (b) and (c) is straightforward. Condition
(a) becomes

i gl o5 g2
(18) gy £ <8l &%,

for some § in the constraint set [ .5 2 0 and some § for which X + 52 is in the domain

of definition of gJ (x). Since gx ¢ 20 for all ¢ eL, while OeL, (18) is equivalent to

g x-%) >0,
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for some x in the domain of definition of g] (x). We can thus state the following generalization
of Theorem 3:

THEOREM 4: Let E' be the set of effective constraints gJ (x) which are quasi-convex
functions and which satisfy one of the following three conditions:

(a) EJ;( x> EJ;(')_( for some x for which gj (x) is defined;
(b) EJ;( # 0 and gJ (x) is twice differentiable in a neighborhood of x =X;

(c) gJ (x) is convex.

" . . - *
If @3 is the set of all other effective constraints and if there exists g* such that gg £ 20,

Ex £E*¥>0 , then Constraint Qualification W holds.
From this theorem can be deduced generalizations of some of the corollaries to

Theorem 3. Corresponding to Corollary 1 of the latter, we have

COROLLARY 1. If g(x) is quasi-convex and each effective component satisfies one of
the conditions (a), (b), or (c) of Theorem 4, then g(x) is Lagrange regular.

Corollary 3 of Theorem 3 can be generalized to

COROLLARY 2: Suppose g(x) is concave. Let E' be the set of effective constraints
which are also quasi-convex and which satisfy one of the following conditions:

(a) g(x)> 0 for some x;
(b) §];{ # 0 and gJ (x) is twice differentiable in a neighborhood of x = X ;

() ¢ (%) is linear.

.
Ii E" is the set of all other effective constraints and if there exists &  such that g® (x*) 2 0,
gE (x*) > 0, then g(x) is Lagrange regular.

PROOF: If (a) holds, then, since gj (x) is concave,
BE-Dzd®-d@=6®>0,

so that (a) in Theorem 4 holds. Since (b) is the same in the two statements and (c) here implies
(c) in the statement of Theorem 4, E' as defined here satisfies the conditions of Theorem 4.
The proof is then the same as that of Corollary 3, Theorem 3.8

A CHARACTERIZATION OF FUNCTIONS SIMULTANEOUSLY
CONCAVE AND QUASI-CONVEX
To better understand the domain of applicability of Corollary 2 of Theorem 4, it is
useful to give a characterization in Lemma 6 of functions which are simultaneously concave
and quasi-convex. First, we characterize functions which are simultaneously quasi-concave

8It should be stated that the case of nonlinear equality constraints is not well handled by these

theorems and corollaries; these all depend on the construction of a linear contained path, but
for nonlinear equality constraints none may exist. A form of Corollary 6 to Theorem 3 does
remain valid in this case ([3], Appendix 1).

92



CONSTRAINED MAXIMIZATIONS 187

and quasi-convex. In what follows, an indifference set is a set {x: f(x) = c}; a maximal
(minimal) indifference set is the set on which f(x) attains its maximum (minimum). A set S
will be said to be bounded by two noncrossing hyperplanes in D if there exist linear functions,
L1 (%), L2 (x), not identically constant in D, such that

(19) S={xeD: Li(x) 20, Ly(x) = 0},
and
(20) Ll(x) <0, Lz(x) > 0 forno x€D.

A diagram will show that (19) and (20) are algebraic transcriptions of the geometric concept
they define. )

LEMMA 5: A function is both quasi-concave and quasi-convex over a convex domain D
if and only if every indifference set not minimal or maximal is bounded by two noncrossing
hyperplanes in D.

PROOF: Without loss of generality, assume that D is the domain of definition of f(x).
We first note that quasi-convexity implies that {x: f(x) < C; is convex for all c. Suppose
£1(x% < ¢, f(xl) <e, x% a convex combination of x° and x'. If ¢' = max [f(xo), f(xl)], we
have x°, x~ belonging to the set {x: f(x) = c¢'}, which is convex by definition of quasi-
convexity, and hence f(x“) = ¢' < c.

We suppose, without loss of generality, that the linear space is the smallest containing
D. Consider any value, ¢, of f(x), which is neither the maximum nor the minimum. If the
set {x: f(x) = c} did not have the full dimensionality of the space, there would exist a linear
function L (x) not identically zero, such that L(x) = 0 whenever f(x) 2 c. Choose y so that
L(y) # 0, and let z =y - x. Then, for any x, L(x +tz) is a linear function of t which is
nonzero for t = 1 and therefore takes on the value 0 for at most one value of t; hence we can
find e arbitrarily small for which L(x +€2z) = 0, L(x - €z) = 0. Suppose x is an interior
point of D. Choose € sufficiently small so that x+ €z €D, Since L(x+ €z) = 0, f(x+€z) < ¢;
by the convexity of {x: f(x) < c}, f(x) < c. Since D is convex, it follows by continuity that
f(x) = c for all xeD, sothat ¢ would be the maximum value of f(x), contrary to assumption.

The set {x: f(x) 2 c} is convex and has the full dimensionality of the space; the set
{x: {(x) 4< c} has been shown to be convex. Hence, there is a separating hyperplane, i.e., a
linear function, not constant over the entire space and hence not over D, L1 (x) such that
Ll(x) = 0 for f(x) < c, Ll(x) = 0 if £(x) = ¢ ([8], Theorem 28, p. 48). If Ll(x) = 0 when-
ever f(x) z c, the set {x: f(x) 2 c} would lie in a hyperplane and therefore not have the full
dimensionality of the space, a contradiction. Hence, L1 (xo) > 0 for some x° for which
£(x% 2 c. Suppose Ly (x) = 0 for some x for which f(x) < c. Then for y a convex com-
binatioh of x° and x sufficiently close to x, we have Ly (y) > 0, f(y) < c, contrary to the
separation result. Thus,

\

Ll(x) <0 if f(x) <c, Ll(x) 20 if f(x) zc.

Since the sets {x: f(x) < ¢} and {x: f(x) z c} together exhaust D, we have

93



188 K. J. ARROW, L. HURWICZ, AND H. UZAWA
(21) {x: f(x) < c} = {xeD: Li(® < o},
(22) {xt f(x) 2 ¢} = {xeD: L)z 0} .

Similarly, from the quasi-concavity of f(x), we find there exists a linear function, Lz(x),
such that

0},

A

(23) {x 1(®) = ¢} = {xeD: Ly(x)

i

(24) {x: f(x) > ¢} = {xeD: Ly (x) > 0} .
From (22) and (23), (19) holds for the set S ={x: f(x) = c}. Since the set (24) is included in
the set (22), (20) holds.

We now prove the converse theorem. First, consider any c¢ which lies strictly between
the maximum and minimum values of f(x). By assumption, the set S={x: f(x) = c} satisfies
(19) and (20) for some linear functions, Ly (x), L (x) Let S={xeD: Ll(x) < 0},
S={xeD: L, (x) > 0}y, We will first show that the set {x: f(x) = c} is convex. Since
¢ < max f(x) £(x° - ¢ > 0 for some x°.

By (19) we must have f(x) - ¢ = 0 for all x €S, and all x ¢S. Further, f(x) - ¢
cannot assume both signs in S, for, by the convexity of the set and the continuity of f(x), we
would have f(x) - ¢ = 0 in that set for some x, which has just been shown impossible.
Similarly, f(x) - ¢ must have a single sign in S.

Suppose {(x°) - ¢ > 0 for some x° in S. We will show that it is impossible that
f(xl) - ¢ >0 for some x in S. For then, f(x) - ¢ >0 for all x¢ S and all x e S, while
f(x) = ¢ for all xe S, and therefore f(x) Z ¢ for all x € D, contrary to assumption.

Hence, if £(x°) > ¢ for some x° in 8, f(x) > ¢ for all x ¢ S, and only for such x.
The set {x: f(x) = c} is then precisely the set {x € D: L;(x =z 0}, which is certainly convex.

Alternatively, we might have f(xo) - ¢ >0 for some x°€S. The argument is com-
pletely parallel.

We have shown that {x: f(x) = c} is convex for any c, neither maximal nor minimal.
The proof that {x: f(x) z c} is convex for such c is completely parallel. There remain the

cases where ¢ = max f(x) or min f(x). In the first case, the set {x: f(x) = c} is the entire
X X

set D and is certainly convex. The set {x: f(x) z c} is the intersection of all the sets
{x: f(x) 2z ¢'} for ¢' < c; it is an intersection of convex sets and therefore convex. The

case where ¢ = min f(x) is handled by the same argument.
X

LEMMA 6: A concave function is also quasi-convex over a convex domain D if and
only if every indifference set not maximal or minimal is the intersection of D with a hyper-
plane.

PROOF: Let S, as before, be an indifference set, {x: f(x) = c}. We consider five
cases:

(a) For some x°, xleS L, (x°) > 0 Ly (x ) < 0. From (19), L (x ) =
L;(x7) 2 0. Inthis case, let x2 = (x + X )/2 wh1ch belongs to S by convex1ty,
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L) >0, Lye?) < 0.

For any x €D, let x(6) = (1-6)x + 0 xz, g(0) = £[x(0)]. Clearly, x(6) €S for 6 in the
neighborhood of 1, so that g(8) = ¢ for all 8 in the neighborhood of 1, and g'(1) = 0. Since
g(6) is concave, it has its maximum at 6 = 1, and, in particular, f(x) = g(0) = g(1) = ¢, so
that ¢ = max f(x).
X
(b) Ll(x) = 0 for all x€8, Lz(x) £ 0 for all x €D for which L, (%)
case, x €8, if and only if xe D, Ly (x) = 0. (Q.E.D.)

0. In this

(c) Lz(x) = 0 for all x€ S, Ll(x) 2 0 for all xe D for which Lz(x) = 0. In this
case, S = {xeD: Ly(x) = O}

(@ Ly(x) = 0 forall xe8, Ly(x% > 0, L (x) = 0, for some x°€D. First suppose
L1 (x) < 0 for some x e D. Then we could find a convex combination of x° and x for which
L, is negative, L, positive, contrary to (20).

(25) Ll(x) 20 forall xeD.

Since Ll(x) is not identically 0 in D, we can find x! so that Ly (xl) > 0. If Ly (x) <0
for some x € S, we can find a convex combination of x, x1 for which L1 is positive, L2 nega-
tive, contrary to the assumption that L1 is zero for all x¢€ S.

(26) Ly(x) = 0 forall xeS.

From (25) and (26), the hypotheses of (c) are satisfied.
(e) Lz(x) = 0 for all xe€ S, Ll(xo) <0, Lz(xo) = 0 for some x° ¢ D. This case is
completely parallel to (d).

Thus, except in case (a), the indifference sets are the intersections of hyperplanes
with D.

The converse follows trivially from Lemma 5; by assumption, for every ¢ not maximal
or minimal, there exists a linear function L(x) such that

{x: £(x) = ¢} = {xeD: L(x) = 0},
so that (19) and (20) are satisfied with L, (x) = Lz(x) = L(x).

EQUIVALENCE OF CONSTRAINT QUALIFICATIONS KT AND H

THEOREM 5: In finite-dimensional spaces, Constraint Qualifications KT and H are
equivalent.

PROOF: Clearly, the hypothesis of Constraint Qualification KT can be inferred from
that of condition H by considering only those components j for which g’ (%) = 0. Since the
conclusions of the two Constraint Qualifications are the same, the KT condition implies con-
dition H.
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To establish the converse, suppose Constraint Qualification H and the hypothesis of
Constraint Qualification KT hold. Then for any ¢ > 0,

(28) if gd(X) =0, g cezo.
On the other hand, clearly
(29) if gj(i) >0, gj (x) + gJX -(¢ £) 2 0 for ¢ sufficiently small.
Since X € C, gj(ii) =z 0 for all j. From (28) and (29), g(X) + gx(s t) z 0. By Constraint
Qualification H, there exists a path 4/8(8) such that \PC(O) = X, \UE (6) € C for 6 sufficiently

small, xP'E(O) = ¢ £. If we now define ¥ (9) = IPE(G/ €), we have a contained path at X in
direction £.
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NORMALITY AND ABNORMALITY IN THE CALCULUS
OF VARIATIONS*

BY
GILBERT A. BLISS

Within the past few years a number of papers concerning the problem of
Bolza in the calculus of variations have been published which make it possible
to carry through the theory of this problem with much simplified assumptions
concerning what is called the normality of the minimizing arc. I refer es-
pecially to papers by Graves [8],f Hestenes [11, 14, 16], Reid [15], and
Morse [13]. These papers and others are also important because they bring
the theory of problems of the calculus of variations with variable end points
to a stage comparable with that already attained for the more special case
in which the end points are fixed.

In the theories of Bolza [1, chap. 11, 12] and Bliss [2] for the problem
of Lagrange with fixed end points it was assumed that the minimizing arc
considered, extended slightly at both ends, was normal on every sub-interval.
Morse [4] showed that the theory could be carried through on the assumption
that the arc itself, without extensions, was normal on every sub-interval. The
most important case, however, turns out to be the one for which the arc as a
whole is normal relative to the problem considered, but not necessarily nor-
mal on sub-intervals. Graves proved the necessary condition of Weierstrass
for such a normal minimizing arc, and Hestenes deduced further necessary
conditions and gave sufficiency proofs for a minimum. The importance of
these results is emphasized by the fact that for the very general problem of
Mayer, which may be regarded as a sub-case of the problem of Bolza, every
minimizing arc is abnormal on every sub-interval, even though the arc as a
whole is normal relative to the problem. Thus the problem of Mayer needs a
separate treatment, such as was given by Bliss and Hestenes [9, 10], unless
one has at his command results equivalent to the recent extensions of the
theory of the problem of Bolza mentioned above.

In this paper I am attempting to analyze, more explicitly than has been
done before, the meaning of normality and abnormality for the calculus of
variations. To do this I have emphasized in §1 below the meaning of normal-
ity for the problem of a relative minimum of a function of a finite number
of variables. In §2 analogous notions are discussed for problems of the cal-

* Presented to the Society, April 20, 1935; received by the editors April 1, 1937.
1 The numbers in brackets here and elsewhere refer to the bibliography at the end of this paper.
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culus of variations. From this discussion it will be clear that a normal arc
for the problem of Bolza is a non-singular arc of the class in which a minimiz-
ing one is sought. The singular arcs of the class are the abnormal ones. They
have an enormous variety of types. It is not likely that a general theory can
be formulated which would apply to all of them, though one might character-
ize and study successfully some very general cases.

In the papers of Graves and Hestenes mentioned above there is no explicit
assumption concerning normality. The arc studied is assumed only to have a
set of multipliers like those which it would have if it were normal for the
problem of Bolza considered. In the following pages it will be seen that,
though such an arc may be abnormal for the problem originally considered,
it is nevertheless normal for a second problem of Bolza obtained from the
first by suitably extending the class of arcs in which a minimizing one is
sought. Furthermore the properties characterizing a minimizing arc for the
original problem are effective for the second, so that the sufficiency theorems
of Hestenes for arcs which are normal have as easy consequences those for
the abnormal arcs permitted by his hypotheses. This makes possible a num-
ber of simplifications in the details of the proofs. It is not to be expected, of
course, that new necessary conditions on a minimizing arc can be secured by
extending the class of arcs in which a minimizing one is sought. The paper of
Graves, therefore, seems to contain results not attainable by considering only
normal arcs.

In the introduction to his paper [13] Morse makes a statement concerning
priority for the proofs of sufficiency theorems without assumptions of normal-
ity which might easily be misunderstood and about which I should like to
make the following comments. Hestenes had previously proved, in his paper
[11], three sufficiency theorems (Theorems 9:1, 9:3, 9:5) without explicit
assumptions of normality, and also a fourth theorem (Theorem 9:4) with
normality assumptions still undesirably strong, but weaker than those which
had before been used. Reid [15] and Morse [13] showed independently that
by means of a further lemma, but aided still essentially by the results of
Hestenes, this fourth theorem can be brought to a par with the others. The
condition VI’ [11, p. 811] of Theorem 9:4 is analogous to one which I used
in the paper [5], and which was originally due to A. Mayer. Its statement

involves the notion of conjugate points and is therefore more closely related
to the classical conditions of Jacobi for simpler problems than the corre-
sponding conditions of the other theorems. I think it should be understood
that the priority comment of Morse is applicable to Theorem 9:4 of Hestenes,
but not to the other three theorems of his paper, which are equally important.
I may add that the theorems of Hestenes were proved with great originality
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and ingenuity while he was my research assistant at the University of Chicago
in 1933 [16, p. 543]. When he went away he left a manuscript with me in
which the theorems were, at my suggestion, deduced only for normal arcs,
the ones which then, as well as now, seemed to me the most important, even
though the justification of the arguments of the present paper was at that
time missing. This manuscript has since appeared in much modified form in
my mimeographed lectures on the problem of Bolza [12]. In his paper [11]
Hestenes showed that his methods are also effective for the problem of Bolza
in the form adopted by Morse.

1. Abnormality for minima of functions of a finite number of .variables.
The significance of the notion of abnormality in the calculus of variations
can be indicated by a study of the theory of the simpler problem of finding,
in the set of points y=(y,, - - -, y.) satisfying a system of equations of the
form

¢s(y)=0 (8=1, - - -, m<n),

one which minimizes a function f(y). For a point »°=(y?, - - -, ¥,?) near
which the functions f and ¢s have continuous partial derivatives of at least
the second order, and which satisfies the equations ¢s=0, we have the fol-
lowing theorems, some of which are, of course, well known.

THEOREM 1:1. A first necessary condition for f(y°) to be a minimum is that
there exist constants Lo, lg not all zero such that the derivatives F,; of the function

F=lof+lsps
all vanish at y°.

To prove this we have only to note that the determinants of the matrix

Juil(y%)
¢5u;(y0>

must all vanish. Otherwise, according to well known implicit function theo-
rems, the equations f(y) =f(¥°) +u, $s(y) =0 would have solutions y for nega-
tive values of #, and f(°) could not be a minimum.

A point y° has by definition order of abnormality equal to q if there exist ¢
linearly independent sets of multipliers of the form /o =0, /s having the prop-
erty of the theorem. When ¢ =0 the point 9° is said to be #ormal. A necessary
and sufficient condition for abnormality of order ¢ is evidently that the matrix
ll¢s4: (39| have rank m—g. At a normal point y° the multipliers lo, s of the
theorem can be divided by /, and put into the form Jo=1, /5. In this form they
are unique, since the non-vanishing difference of two such sets would be a set
of multipliers implying abnormality.
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Lemma 1:1. If a point y° is normal, then for every set of constants n;
(=1, - - -, n) satisfying the equations

(1:1) bsy:(y)n: = 0

there exists a set of fumctions yi(b) having continuous second derivatives near
b=0, satisfying the equations ¢g=0, and such that

y:(0) =32, y{(0) =n..

The proof can be made by considering the equations
(1:2) d)ﬂ(y) = 07 ¢1(3’) = ¢7(y0) + bg“r (B = 17 T, My = m + 1) ) 77)

in which the auxiliary functions ¢,(y) are selected so that they have con-
tinuous second derivatives near y° and make the functional determinant
¢ (¥°)| different from zero, and in which the constants {, are defined by
the equations

(1:3) ¢wa(y0)7li = {y.

Equations (1:2) then have solutions y;() with continuous derivatives of at
least the second order near =0, and such that y;(0) =v2. By differentiating
with respect to b the equations (1:2) with these solutions substituted, we find
the equations

¢ﬁm(y0)yi, (0) =0,

G40 (30 y{ (0) = ¢4
With equations (1:1) and (1:3) these show that y/ (0) =7,.

THEOREM 1:2. If 3 is a normal point and f(y°) a minimum then the con-
dition
Fya(¥")nme = 0

must hold for every set n; satisfying the equations (1:1), where F =f+lsps s the
Sfunction formed with the unique set of multipliers lo=1, lg belonging to y°.

The conclusion of the theorem is due to the fact that the function
g() =f[y(®)], formed with the functions y;(b) of the lemma, must have a
minimum at b=0. Since

¢ [y(0) ]y{ (0) = 0

the derivatives of g(b) are seen to have the values
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g0) = fu.ly®) ]y (0) = F,[y(®)]y'(®),
£7(0) = Fyu(9")mime,

and for g(0) to be a minimum we must have g’/(0) 20.

THEOREM 1:3. If a point y° has a set of multipliers lo=1, lg for which the
Sfunction F =f+lgps satisfies the conditions

(1:4) Fw(yoj =0, Fz/fuk(yo)"?i’?k >0
for all sets n; satisfying the equations
(1:5) ¢y, (¥)n: = 0,

then f(v°) is a minimum.

This can be proved with the help of Taylor’s formula with integral form
of remainder. For every point y near y° satisfying the equations ¢s=0 we
have the equations

1) = 169 = fulmi+ [ = Dfuunnmids,
1
(1:6) 0= 6s O+ [ (1= s mensds,

1
0= f d’ﬁu.'(yil )nide,
0

where y! =99 +60(y;—920), n:=v:—vL. From these we find readily

1) = 109 = [t = OF s mansd.

Since the quadratic form in the integrand of the last integral, thought of
as a function of independent variables y’ and 7, is positive for y’=y°
and all sets 7 satisfying the equations (1:5), it will remain positive for
y'=9"4+0(y—9°) and all sets 7, including n=y—3°, satisfying equations
(1:6), provided that y lies in a sufficiently small neighborhood N of the
point »° Thus we see that for all points y in N satisfying the equations
¢5=0 the difference f(y)—f(y°) is positive.

The last theorem is analogous to the sufficiency theorems of Hestenes in
the calculus of variations. In it there is no explicit assumption concerning
the normality or abnormality of the point y°. If y° has abnormality of order g,
however, let v be a variable which ranges over a subset of m—g of the num-
bers 1, - - - , m such that the matrix ||¢,,,(y°)|| has rank 7 —g¢, and let p range
over the complementary subset. Then we have the following theorem:
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THEOREM 1:4. Let ¥° be a point which satisfies the hypotheses of Theorem
1:3 with a set of multipliers lo=1, ls, and let v and p be variables having the
ranges described in the last paragraph. Then y° is normal for the modified prob-
lem of minimizing the function g=f-+1,¢, in the class of poinis y satisfying the
restricted system of equations ¢, =0, and y° satisfies the hypotheses of T heorem
1:3 for the modified problem with the multipliers lo=1, 1,. Furthermore if g(y°)
is a minimum for the modified problem, then f(y°) is a minimum for the original
one.

We see that the point 3° is normal for the modified problem, since the
matrix ||¢,,,(y%)|| has rank m—gq. For the function F =g+1¢, = f+Isps of the
modified problem the conditions (1:4) are satisfied for all sets 7 satisfying the
equations

(1:7) b (¥)n: = 0,

since equations (1:5) are linear and have a matrix of coefficients of rank
m—q and hence are consequences of equations (1:7). The set of points v
satisfying the equations ¢, =0 includes the points satisfying the complete
system ¢ =0 as a subclass in which g=f. Hence if g(y°) is a minimum for the
modified problem, the value f(y°) =g(y°) must have the same property for
the original problem.

From the last theorem it is evident that generality is not lost by proving
Theorem 1:3 only for points y° which are normal. Such points are, in fact,
the non-singular points of the class which satisfy the equations ¢3=0. Near
each of them there are infinitely many points of the class, as is shown by
Lemma 1.1, and the minimum problem near one of them is therefore never
trivial. Abnormal points, on the other hand, are the singular points of the
class, and may occur in a wide variety of types. For some of these points
the minimum problem is trivial, as, for example, in the case of a point y°,
for which ¢; =0, which minimizes the function ¢; in the class of points y
satisfying the equations ¢p= - - - =¢, =0. Near such a point y° there is no
other point satisfying all of the equations ¢ =0.

An idea of the great variety of types of abnormal points may be gained
by considering the problem of minimizing a function f(¥1, v:) of two variables
in the class of points (y1, y») satisfying a single equation ¢(yi, y2) =0. The
variety of abnormal points possible in this case is at least as great as the
variety of singular points of an algebraic curve. The particular example
=292 —y2, ¢ =92y,—9,*=0, with minimizing point (0, 0), shows that the
condition involving the quadratic form in Theorem 1:3 is not in general
necessary for a minimum.
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2. Abnormality in the calculus of variations. The problem to be consid-
ered in this section [12, p. 4] is that of finding in a class of arcs
(2:1) yt(x) (z= 1) y 15 xléxng)

satisfying conditions of the form

1)"'7m<71’>)

ds(x, v, %) =0 G
0 ,- -, p=2n+2)

)
Yulas, (1), 22, y(x2)] = (u

one which minimizes a sum

J = gloy, y(x0), 2, y(@) | + | (%, 9, ¥)da.

A set of values (x, y, y") and end values [x., y:; | = [x,, yi(x.) ] (s=1, 2) is said
to be admissible if it lies interior to a region of such values in which the func-
tions f, g, #s, ¥, have continuous derivatives of at least the fourth order, and
in which the matrix ||¢s, || and the matrix of first derivatives of the functions
¥, have ranks 7 and p, respectively. An admissible arc C defined by functions
of the form (2:1) is one which is continuous and consists of a finite number of
sub-arcs with continuously turning tangents, and whose elements (x, v, y’)
and end values are admissible. When convenient we may represent by J(C),
g(C), ¢.(C) the values of these functions determined by the arc C.

The conditions involved in the sufficiency theorems for this problem are
the following, the numbering being that which I have often used [see, e.g., 12,
chap. 3]:

I. THE MULTIPLIER RULE. A set of multipliers /y, [5(x), e, for an admissible
arc E is a set for which the /,, e, are constants and the functions lg(x), defined
on the interval x;2; belonging to E, are continuous except possibly at values
of x defining corners of E at which they nevertheless have well-defined for-
ward and backward limits. The arc E satisfies the multiplier rule if there exist
constants ¢; and multipliers Zo, J5(x), e, such that for F =1Iof +1s(x)¢s the equa-
tions

Fy. =f Fyidx + c;, ¢ =0
are satisfied along E, and furthermore such that the end values of E satisfy
the equations

(2:2) [ = piFy)dx + Fypdy] + bdg + 6y = 0, %, =0

identically in the differentials dx,, dy.

105



372 G. A. BLISS [May

It has been proved [12, p. 27] that the identically vanishing set of multi-
pliers is the only set having constants /o, ¢, all zero, or having functions
Iy, ls(x) which vanish simultaneously at some value x on the interval x.xs.

IIy. An admissible arc E satisfies the strengthened condition of Weier-
strass if for every set of the type (x, v, y’, I) in a neighborhood N of those
belonging to E the inequality

E(x’ y’ y’) l’ Y’) > O
is satisfied for all admissible sets (x, y, ¥') = (x, v, '), where
E = F(x7 Y, Yl: l) - F(x; Y, y/z l) - (Yi’ - yi’)FW'(x: Y5 y/) Z)

IIT’. An admissible arc E satisfies the strengthened condition of Clebsch
if at every element (z, v, y’, I) belonging to E, the inequality

Flli'l/k'<xy Ys y,J l)7ri7rk >0
is satisfied for all non-vanishing sets ; satisfying the equations
¢ﬁu;’(x: Y, yl)ﬂ'i = 0.

If we represent by ¢, ¢, the quadratic forms in dx,, dy., whose coefficients
are the second derivatives of the functions g, ¥,, respectively, the second
variation of J for an extremal arc E with multipliers lo=1, ls(x), e, has the
value

jZ(E’ 77) = 27 [Ely W(xl); Eny ﬂ(xz)] +f Zw(x, s ﬂ')dx
in which
2w = Fyymme + 2Fy.'yk”7mk’ + Fu;’uk’ni"’llc’ ;
2
2y = [(Fz - y,-'Fw)dx + prdyidx]l + 2¢ + 2euq,

with dx, dy; replaced by £, y/ &+ [12, p. 71]. The equations of variation
along E are the equations

(23) @3(%, 1, 77/) = O: \I/Il[sly ﬂ(x1)7 52) 77(952)] =0
in which
q)ﬂ = ‘i’ﬁw"li + ¢ﬁw"’7i/ )

and ¥, is dy, with dx, dy; replaced as above by £, y/{+n; [12, p. 14]. An
admissible set £1, £, n:(x) is one for which &, & are constants and the functions
n:(x) have on x%; the continuity properties of an admissible arc y:(x). The
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second variation J3(£, 7) for E is by definition positive definite if it is positive
for all non-vanishing admissible sets &, &, 7:(x) satisfying the equations (2:3).

IV’. An extremal arc E satisfies the condition IV’ if its second variation
is positive definite.

The condition IV’ is applicable to an admissible arc which has no corners
and satisfies conditions I and ITI’, since such an arc is necessarily non-singu-
lar and an extremal [12, pp. 112, 117].

The sufficiency theorem of Hestenes to be considered here is now the fol-
lowing one:

THEOREM 2:1. If an admissible arc E has no corners and satisfies the condi-
tions I, Iy, III', IV’ with a set of multipliers lo=1, ls(x), e, then J(E) is a
strong relative minimum.

Every admissible arc E satisfies the multiplier rule with none or a limited
number of linearly independent non-vanishing sets of multipliers havingl,=0,
It is said to have order of abnormality equal to g if it satisfies I with ¢ and only ¢
such sets o, =0, lg, (%), €,o (6=1, - - -, g). When ¢=0 it is said to be normal.
A set of non-vanishing multipliers with J,=0 will be called an abnormal set
of multipliers.

For an admissible arc with order of abnormality equal to ¢ the equation

2
(2:4) [Fd:l."ni]l + eua‘I/;-l =0

with F,=14,(x)¢s is for each o an identity in the variables &, 7:, =7:(x,), since
this is what the first equation (2:2) becomes for the multipliers Zo, =0, Is. (),
e, when the end values of dz, dy; are replaced by those of £, y!&+n.:. The
usual integration by parts applied to the sum

lﬁv(x) Qﬂ = Ftry{'?i + F«y;’ﬂi’
gives the equation

Iz 2
(2:9) [ Thtie = Faend?,

1

so that for every admissible set of variations satisfying the equations $5=0
we find with the help of equations (2:4) and (2:5) the relations

2
(2:6) [Fvw'm] =0, ¥y = 0.

1

The matrix of the ¢ sets of values e,, (¢ =1, - - - , ¢) is necessarily of rank
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¢. Otherwise there would be a linear combination of these sets vanishing
identically, and, according to a remark made above, the same combination
of the linearly independent complete sets lg,, ls, (), €., would then also vanish
identically, which is impossible. In the following paragraphs the variable p
is understood to have as its range a subset of the numbers u=1, - - - , p such
that the determinant |e,,| is different from zero, and the variable » will have
the range complementary to that of p. The second equation (2:6) then shows
that for an admissible set &, &, 7:(x) the equations ¥, =0 are consequences of
the equations =¥, =0.

THEOREM 2:2. Let E be an admissible arc without corners which satisfies
the hypotheses of Theorem 2:1 with a set of multipliers lo=1, lg(x), e., and let p
and v be variables whose ranges are determined by the linearly independent ab-
normal sets of multipliers of E as described in the last paragraph. Then the arc E
is normal for the modified problem of minimizing the functional J(C)+e,(C)
in the class of admissible arcs C satisfying the reduced system of equations
s =y, =0, and the arc E with the multipliers ly=1, ls(x), e, satisfies the hypoth-
eses of Theorem 2:1 for the modified problem. Furthermore if J(E)+e,(E)
is a strong relative minimum for the modified problem, then J(E) is a similar
minimum for the original problem.

It is easy to see that the arc E is normal for the modified problem. For if £
had for that problem a set of non-vanishing multipliers of the form /,=0,
Ig(x), e,, the set 1y =0, Is(x), e,=0, ¢, would be multipliers for E and the origi-
nal problem, necessarily linearly expressible in terms of the ¢ sets Lo, =0, 5. (%),
e.c (@=1, -+, ¢q). This is, however, impossible on account of the fact that
the determinant 16,,, is not zero.

The arc E satisfies the hypotheses of Theorem 2:1 for the modified prob-
lem with the multipliers [, =1, ls(x), e,, as one readily sees by an examination
of the conditions I, IIy, III’, IV’. For the condition IV’ one needs to note
that on account of the second equation (2:6) the restricted system &;=¥,=0
implies the complete system =¥, =0.

Since the class of arcs in which a minimizing one is sought for the modified
problem includes as a subclass those among which a minimizing arc is sought
for the original problem, and since on the subclass the values of the func-
tionals J(C) +e,(C) and J(C) are equal, the last statement of the theorem is
evidently true.

The remarks made at the end of §1 are now applicable for the most part
to the problem of Bolza also. As a result of Theorem 2:2 it is clear that no
generality is lost by proving Theorem 2:1 for normal arcs only, and the proof
for such arcs turns out to be in some respects simpler than for the abnormal
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arcs included in the proof of Hestenes. A normal arc is a non-singular arc of
the class in which a minimizing arc is sought in the sense that near every
normal arc there are an infinity of other arcs of the class [12, pp. 49, 51].
The minimum problem near such an arc is therefore never trivial. Near an
abnormal arc E, on the other hand, there may be no other arc of the class in
which a minimizing one is sought, as in the case when ¥, (E) vanishes and is a
strong relative minimum or maximum in the class of admissible arcs satisfy-
ing the conditions ¢s=y,= - - - =y, =0. In this case the minimum problem
near E is trivial. The variety of types of abnormal arcs is evidently very
great. Those included in the sufficiency theorems of Hestenes are of a special
type closely related to normal arcs. Other important special types can doubt-
less be described and discussed, and it might be useful to have results of this
kind. But it seems likely that a comprehensive theory would at this time be
exceedingly elaborate and difficult, and perhaps impossible.

When the number of the end conditions ¥, =0 is equal to the number
2n+2 of end values x,, y; (s=1, 2) the problem is said to have fixed end
points. An admissible arc E is by definition normal on a sub-interval 'z’ if
its corresponding sub-arc is normal relative to the problem with fixed end
points on that interval. The assumption that an arc E is normal on every
sub-interval is evidently undesirable, for the same reason that it would be
undesirable to assume for the problem of §1 that the determinants of order m
of some particular set belonging to the matrix ||¢g,,|| are all different from
zero. For the problem of Mayer, which is the problem of Bolza with integrand
function f identically zero, every minimizing arc is abnormal on every sub-
interval, as has been pointed out by Carathéodory [6, 7] and others. No
theory based upon the assumption of normality on sub-intervals can there-
fore be effective in this important case.
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SUMMARY

In this Memorandum, the author specilalizes a
theorem of Fritz John to the case of mathematical pro-
gramming. It is shown that when a certain multiplier is
positive, the well-known Kuhn-Tucker conditions obtain.
A sufficient condition for the positivity of this multi-

plier is proposed.
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A THEOREM OF FRITZ JOHN IN MATHEMATICAL PROGRAMMING

1. INTRODUCTION

A 1948 article [1] by F. John, entitled "Extremum
Problems with Inequalities as Subsidiary Conditions,"
appears to be the first paper in whlch the classical
theory of equality-constralned extremization is extended
to deal with inequality-constrained extremization. John
establishes a theorem on necessary conditlions for a
minimum and another theorem on sufficlent conditions for
a relative minimum. The remainder of the paper is de-
voted to applications of the results. Only the first
of these two theorems will be mentioned here.

A more widely known paper is "Nonlinear Programming"
by H. W. Kuhn and A. W. Tucker [2] in which John's
article 1is referred to but not discussed in detail. The
Kuhn-Tucker paper treats necessary and sufficlent con-
-ditions for an inequality-constrained maximum.

The purpose of this Memorandum is to point out how
the addition of a suitable regularity condition in John's

theorem enables one to deduce the "Kuhn-Tucker conditions."
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2. THE MATHEMATICAL PROGRAMMING PROBLEM

A typical formulation of the mathematical program-

ming problem is
Maximize f(x) subject to x€E g(x) 20 . (2.1)

Further assumptions on the function f and the mapping
g yield special types of programming, such as linear,
quadratic, concave, etc.

The classical problem referred to earlier 1is
Maximize f£(x) subject to x€E_ g(x) =0 (2.2)
where [ 1s a differentiable function and

g(x) = lgy(x),....g (x)1"

is a vector-valued differentiable mapping on

E (m < n) . In the method of Lagrange (or undetermined)

multipliers, one forms the Lagrangian function

L(x,u) = £(x) + ulg(x) (2.3)

If at a maximum, x° , the Jacobian matrix (agi/axj)

has rank m , the following conditions must hold:
LX(XO,UO) =0 some u° (2.4)

g(x%) = o . (2.5)
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One seeks the solutions of the problem (2.2) among the
extrema of the unconstrained Lagrangian L{x,u) .*

The conditions (2.4) and (2.5) are necessary, though not
sufficient, for an extremum.

We shall state John's theorem below, but &ith cer-
tain notational changes and maximization replacing mini-
mization. The intention is to maintain consistency in
problem statements.

Let R Dbe a set of points in En and [ a real-

valued function on R . Let S be a compact metric

space. Let g(x,0) g,(x) be a real-valued function

on RxS . Now define the set

R = {xeR| g,(x) 2 0 all oes}. (2.6)
We seek XOGR‘ such that
f(xo) = max f(x) .
xeRt (2.7)

Assume that £ and aﬁ/axj are continuous on R
(j =1,...,n) and that g and Bg/kj are continuous
on RxS (j =1,...,n) . Notice that RxS can be

given a metric space structure.t

*See Ref. 3.
See, for example, Ref. 4, p. 91.
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With these notations we are prepared to state

Theorem A:¥ Let xOER' be an interior point of

R , and let

f(xo) = max f(x)
X€ER!

Fay

Then there exists a finite set of points, 01,...,OS€S R

and numbers, uO,uq,...,uS , not all zero, such that

g (x°) =0 = 1,...,s (2.82)
r
Up 20, u >0,...,u, >0 (2.8p)
0<sZ=n (2.8¢c)
the function (2.84)
s
8(x) = upf(x) + T ug (x)
r=1 r

has a critical point at xO ; i.e., @X(XO) =0 .

It is important to notice that the "multiplier"
Ug could be zero and that there are no regularity con-
ditions imposed on the constraint set R!

We shall specialize John's theorem to the case
where S is the set {1,...,m}--which is trivially a
compact metric space--and the variables ij are non-

negative.

*
John, Ref. 1, p. 188.
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Theorem B: Let x, maximize r(x) constrained by

g,(x) 20, 1=1,...,m, and X, 20, J=1...m

Then there exists a semi-positive (i.e., non-negative and

non-zero) vector (uo,ul,...,u‘,vl,...,vn)T such that

m
u.g (xo) =0 1i=1 m (2.9a)
184 yenes .
0 .
v.x:; =0 j=1,...,n (2.9b)
Jd J
the function (2.9¢)
8(x) = ugf(x) + % ug,(x) +
x) = uf(x) +% ug.(x) +2 v.x.
© i=1 +t j=1 I

(@]

‘has a critical point at x
In order to state the analogous theorem of Kuhn

and Tucker, we must first recall the constraint quali-

fication.*

Let xo belong to the boundary of the constraint

set

R' = {xeE lg;(x) 20 1i=1,...,m, ;20 , §=1,...,n}

Let gfl](x) be the mapoing defined by all those com-

ponent functions of g which vanish at xo . Let Il

consist of those rows of the nxn identity matrix cor-

0

responding to components of x which are zero. The

Kuhn-Tucker constraint qualification is satisfied at xo

*
Ref. 2, p. 483,
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if every vector differential dx satisfying the

homogeneous linear inegualities

dx = 0 (2.10)

(13,0
g, (x7)ax 20, I,dx 2

is tangent to an arc contained in the set R!'. This means
that to any dx satisfying (2.10) there corresponds a
differentiable arc x =a(6) , 0 £ 9 <1, contained in

0. a(C) and some positive scalar A

R' such that x
such that a'(0) = \dx .

Theorem C:¥ Let R' satisfy the constraint quaii—
fication. In order thaf xo maximize f(x) subject to

*xeR' , i1t 1s necessary that xo and some u = (ul,...,um)T

satisfy the following conditlons:

r (x%) + g, (%) Mu z 0 (2.11a)
(XO)T{fX(xO) + [gx(xo)lTu} =0 (2.11v)
x% >0 (2.112)
g(x%) 2 0 (2.114)
uTg(xO) =0 (2.11e)
uzo0 (2.11r)

These relations have also been called the guasi-

saddle point conditions [51. They are necessary condi-

tions of optimality in the program

maximize f£(x) subject to xeR! (2.12)

*
Kuhn-Tucker conditions, Ref. 2, p. 484,

119



~T-

when R' satisfies the constraint qualification. The

program (2.12) is called the maximum problem [2].

Theorem 1: Let x° solve the problem in Theorem

B. If the multiplier u is positive, then the Kuhn-

0
*
Tucker conditions hold.
Proof Ir Uy > 0 we may assume Ug = 1 . Let
T T .
u = (ul,...,um) and v = (vl,...,vn) Then
0 0, 4T
= -— -]
fx(x ) + [gx(x Y1 u v <0 (2.13)

which is (2.11a). From (2.13) and (2.9b) we get

(XO)T{fX(xO) + [gx(xo)JTu + v}

= ()T, (x) + (g, (x%)TTu} = 0

which is (2.11b). The remainder of the conditions (2.11)

are even more obvious.

3. A SUFFICIENT CONDITION FOR POSITIVE u

0

With all notations as above, let xo solve the
T
problem of Theorem B, and let (uo,ul,...,um,vl,...,vn)

be the associated semi-positive vector of multipliers.

gEl] is the mapping composed of components of g which

vanish at xo . Let X be the vector of components Xj
of x such that xg >0

*
A similar result may be found in Ref. 6, p. 227,

theugnglish translation of Ref. 4; see also Ref. 2,

p. 9.
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The regularity condition we shall impose is that

the equation
yT[gélj(xo)] =0 (2.14)

have no semipositive solution. This conditlon is

slightly more general than the nondegeneracy condition

of* Ref. 5, which is that g%l](xo) be of full rank.
Theorem 2: If g satisfies the regularity con-
dition (2.14), the multiplier Uy in Theorem B is
positive.
Proof. With X "evaluated" at %0 , we get
(i)O > 0 , and consequently v = 0 ; that is, the cor—
responding vector of multipliers is zero. Suppose

Uy = 0O . Then

[gx(xo)]Tu +v =0 (2.15)
and in particular

lex(x”)TTu + 7 = [e(x")T%u = 0 . (2.16)
Let uEl] be the vector of multipliers corresponding to
gtl] Any components in u but not in u[l] must be
zero. Therefore, we conclude

@)l 01 - 0 . (2.17)
Now u[lj is non-negative and cannot be zero, for other-

wise u in (2.15) is zero and then so is Vv .
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But this contradicts the semi-positivity of

(Uo:ul,-..,um, VisesesV )T . Hence, utl] is semi-

n
positive. However, (2.17) contradicts our regularity

assumption. Therefore, U, >0 .
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ON CONJUGATE CONVEX FUNCTIONS

WERNER FENCHEL

1. Since the classical work of Minkowski and Jensen it is well known that
many of the inequalities used in analysis may be considered as consequences
of the convexity of certain functions. In several of these inequalities pairs of
‘“‘conjugate’” functions occur, for instance pairs of powers with exponents
a and a related by 1/a + 1/a = 1. A more general example is the pair of
positively homogeneous convex functions defined by Minkowski and known
as the distance (or gauge) function and the function of support of a convex
body. The purpose of the present paper is to explain the general (by the way
rather elementary) idea underlying this correspondence. Subjected to a more
precise formulation the result is the following:

To each convex function f(x, ..., x,) defined in a convex region G and
satisfying certain conditions of continuity there corresponds in a unique way
a convex region T and a convex function ¢(£y, . . ., &,) defined in T and with
the same properties such that

(1) xlsl + LRI + xnfn éf(xly sy xn) + ¢(£ly ce ey En),

for all points (x1, . . ., #») in G and all points.(¢1, . . ., £&)in . Theinequality
is exact in a sense explained below. The correspondence between G, f and
T, ¢ is symmetric, and the functions f and ¢ are called conjugate.!

The hypersurfaces y = f(x1,..., x,) and n = ¢(&y,. .., &) correspond to
each other in the polarity with respect to the paraboloid

2y =x2 4+ ...+ x,2.

Let F(x) be strictly increasing for x = 0. Then f(x) = J-IF(x)dx is convex,
0

3
and its conjugate function is ¢(§) = J ®(£)dt where ®(¢) is the inverse function
0

of F(x). The inequality (1) for n = 1 therefore yields the well-known in-
equality of W. H. Young?

xk < _[:F(x)dx + J :«b@)dz :

(1) may thus be considered as a generalization of this inequality.

Received March 24, 1948.

'The case 7 = 1 has been considered by S. Mandelbrojt [3] under the assumption that the
ranges G and I' are identical with the entire axis — © <x <®. This, however, is incom-
patible with the complete reciprocity between f and ¢ which will appear from an example given
below. Mandelbrojt’s formulation of the theorem is thus not quite correct due to the fact
that the least upper bounds occurring in it may be infinite.

2See e.g. (2] p. 111.
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If f(xy, . .., xa) is positively homogeneous of degree one, then G is the entire
space %1, . . . , ¥, while I' is closed and bounded, and ¢(¢;, . . . , &) isidentically
zero. In this case (1) expresses that f(x, . . ., %) is the function of support

of the convex body T.3

2. The euclidean spaces with coordinates xi,..., %, and x1,..., X0, ¥
will be denoted by R* and R™*! respectively, points and vectors in these spaces
by x and x, y respectively. Furthermore we write

o+ x = x xX), A= (A, L, AXS),
Zxt = x1b1+ ...+ Xnka.
6 will always denote a number in the interval 0 < 6 < 1.

The point set G of R” is supposed to be convex, i.e. if ' and x’’ belong to G,
the whole segment (1 — 8)x’+ 6x'’ belongs to G. But G need neither be closed
nor open nor bounded. The interior points of segments belonging to G are
shortly called the interior points of G. All other points of accumulation of G,

belonging to G or not, will be called the boundary or extreme points of G.
A function f(x) defined in G is called convex if

@ f(A—0x +6x") £ (1 - 0f @) + 6f ()
for any two points x’ and x’’ of G and all §. It is well known that this implies
that f(x) is continuous at the interior points of G. For our purpose we have

also to consider the behaviour of f(x) at the boundary points. Let x* be a
boundary point of G. For functions of one variable lim f(x) exists or is .
xpx*

But this is not necessarily the case for functions of several variables. If x*
belongs to G the only general conclusion to be drawn from (2) is that
3) lim f(x) £ f(x*);
TP xk

for, from

F(A = 0)x +6x%) = (1 — 0)f (%) + 6F (=)
it follows that

lim f(x) < lim f((1 — 0)x + 0x*) < f(x%),

P 1
and (2) remains valid if f(x*) is replaced by any other value satisfying (3).

If necessary, we now change G and f by adding to G all those boundary
points x* not yet belonging to G for which lim f(x) is finite and by de-
xpa
fining f at these and at the boundary points previously belonging to G by
4) f*) = lim f(z).
xPpx*

The new G and the function f obtained in this way are obviously again convex;
for, let x' and x”’ be arbitrary points of the new G and x’(,) and x”',),»=1,2,. ..,

3See e.g. [1] p. 23-24.
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sequences of interior points of G such that

%'y >, x"(v) > 2, f(x' ) > f(x"), f(x" ) > f(x"),
then we get from

f((l - o)x'(v) + ax"(v)) = (1 - O)f (x'(v)) + of(x"(v))
forvy

lim  f() < lim fF((1=0)x'g) + 0x”()) < (1—6)f(x") + 6f(x"),
xP(1 = )z’ + 0x17 ]

which shows that (1 — 6)x’+ 6x"’ belongs to G and that (2) is valid, as the
left-hand side is f ((1 — 6)x’ + 6x"’) .

With (3) in mind we may say that (4) expresses that the functions which
will be considered in the following are convex and semi-continuous from below,
and G is “closed relative to f,” i.. all boundary points at which lim f(x) is
finite belong to G, or in other words, at each boundary point which does
not belong to G we have lim f(x) = «.

3. The theorem to be proved may now be formulated thus:
Let G be a convex point set in R™ and f(x) a function defined in G convex and

semi-continuous from below and such that l_i>m f(x) = o for each boundary point
x* of G which does not belong to G. Then there exists one and only one point set T
in R™ and one and only one function ¢ (&) defined in T with exactly the same pro-
perties as G and f(x) such that
(5) Zxk = f(x) + ¢(8),
where to every interior point x of G there corresponds at least one point £ of T' for
which equality holds.

In the same way G, f(x) correspond to T, -¢(§).

We define T as the set of all points # with the property that the function
Zxt — f(x) is bounded from above in G, and we define ¢(¢) in I' as the least
upper bound of this function:

$(6) = Lub. (Zxt — f@)) .

Then (5) is valid. The inequality Zx¢ — f(x) < z or
fx)2 2zt — 2
means that the hyperplane y = Zx¢ — z in R**! with the normal vector §, —1
lies nowhere above the hypersurface y = f(x), and — z is the intercept of this
hyperplane on the y-axis. It is a well-known fact that there exists at least
one hyperplane of support of the convex hypersurface, i.e. a hyperplane which
contains at least one point of the hypersurface and lies nowhere above it. This
shows that T is not empty. Further we see that if there exists a hyperplane
of support with the normal vector £, —1 and if x°, f(x°) is a point of contact,
then we have
B() = Zx%k — f(x°),

and — ¢(£) is the y-intercept of this hyperplane. If x° is an arbitrary
interior point of G, a hyperplane of support through x°, f(x°) exists, and
this proves the assertion on the equality sign in (5).
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It is evident that T and ¢(¢) are convex. In fact, let ¢ and £ be arbitrary
points of T, then we have for xeG,
Zxf — f(x) £ o), ZxE" — fx) £ o),
hence 2x((1 — 0)F +6¢") — f(x) = (1 — 0)o(&) + 08(¢")
which shows that (1 — )¢’ + 6¢" belongs to T and that
o((1 — )¢ +068") = (1 — 0)$(E") + 66(8").
Let now £* be a boundary point of T and &', xeG. Then it follows from (5)
that lim 6(2) 2 Zxt* — (2)
E>E*
and this shows on the one hand that £*eI if lim ¢(£) is finite, i.e. that T is closed
relative to ¢(¢), and on the other hand that
lim o(8) 2 6(8"),
e
i.e. that ¢(£) is semi-continuous from below. Hence I' and ¢ have the same
properties as G and f.

4. It remains to be proved that if we start with T" and ¢(¢) the same pro-
cedure gives G and f(x) again. We have to consider the set G* of all points x
for which Z¢&x — ¢(¢) is bounded from above in T, together with the function

f*x) = l-Eu.lg- (& — o(8)

defined in G*.

If xeG we get from (5)
(6) ZEx — ¢(§) = f(w)
for all ¢€I', hence G € G* and f*(x) < f(x) in G. But to an interior point x of G
there corresponds a £ such that equality is valid in(6), which implies f*(x) = f(x).
Hence f*(x) = f(x) at the interior points of G and, as both functions are convex
and semi-continuous from below, also at the boundary points of G.

Let now x° be a point of R® not in G. We have to prove that it does not
belong to G*, i.e. that

() Lub. (Ztx° — ¢(})) = .
EeT

Since the quantity Z¢x° — ¢(£) is the y-coordinate of the point at which the
hyperplane
y = 2k — ¢(§)

of R™* intersects the line x = x° parallel to the y-axis, we have to show that
there are hyperplanes below the hypersurface y = f(x) which have arbitrary
large intercepts on the line x = x°. Suppose first that x° is an exterior point
of G. Then there exists a hyperplane H parallel to the y-axis which separates
the line x = x° from G and y = f(x). Consider any hyperplane of support S
of y = f(x). Let S turn around the intersection of H and S so that the part
lying below y = f(x) moves downwards. Then the point at which S intersects
the line x = x° moves upwards and tends to infinity. Suppose next that x° is
a boundary point of G but not belonging to G. Then we have f(x) »» for
x > x° Consider any segment belonging to G and having x° as one of its end
points. Let x’ be a fixed point and %'’ a variable point of the segment between
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x' and x° such that f(x")> f(x'). A plane of support through x", f(x'") then
intersects the line x = x° at a point the y-coordinate of which is greater than
f(x"") and therefore tends to infinity if #” x°. This completes the proof of
the theorem.

5. In section 1 it has been asserted that the hypersurfaces y = f(x) and
n = ¢(£) correspond to each other in the polarity with respect to 2y = 2«
This is obviously true in the sense that each of the hypersurfaces is the envelope
of the polar hyperplanes of the points of the other. For y = f(x) may be
considered as the envelope of the hyperplanes

y = Zxt — ¢(%),
where £eI' is the parameter, and the poles of these hyperplanes are the points
£ ¢(8).

6. Suppose now that y = f(x) is strictly convex, i.e. each hyperplane of
support contains only one point of y = f(x). Let further n = ¢(£) satisfy the
same condition; for y = f(x) this means that there passes at most one hyper-

plane of support through a point of y = f(x). Then f(x) has continuous
derivatives*

filx) = g‘
and we have & = fi(x).

These relations establish a continuous one to one correspondence between the
interior points of G and those of T'. Solving them with respect to the x we get

% = ¢i(£)
where, for reasons of symmetry, the ¢; must be the derivatives of ¢. From this
it is seen that in the case of » = 1 the derivatives of two conjugate convex
functions are mutually inverse functions. This proves the assertion of sec-
tion 1 on the inequality of Young. Furthermore we get an explicit expression
for ¢(§) if f(x) is given, viz.

80 = 3 668 — £ (5:0)

valid in the interior of I'. Hence, our correspondence between f and ¢ is the
Legendre transformation of the theory of differential equations.
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1. Introduction

I1.1. The present study has its origin in problems of optimal resource
allecation, especially those related to the possibilities of a price mecha-
nism. While for some purposes Pareto-optimality might be the more
relevant concept, we have confined ourselves here to the case where by
““ optimal >’ is meant ‘‘ efficient’’ resource allocation.?

The main result of the present chapter is an extension of the Kuhn-
Tucker results [31] on ‘‘ non-linear programming ’’ to more general linear
topological spaces.®? (Numbers in square brackets indicate the references).
The initial stimulus toward this type of generalization was the paper
by Rosenbloom [39]. The need for it became apparent in the course of
a larger study on problems of decentralization in resource allocation
mechanisms.

The remainder of the Introduction is devoted to a brief statement of
the nature of the problem. 1.2 is primarily directed at the reader
interested in the relevance of the study from the viewpoint of economics.
1.8 provides a summary of some of the results being generalized and
some of the mathematical issues arising.

II is devoted to introducing some of the basic concepts and notations.
III and IV are devoted to the derivation of certain theorems on linear
inequalities in linear topological spaces, among them the ‘‘ Minkowski-
Farkas Lemma,”’” fundamental in the sequel, and another result of

1 This study might not have been undertaken, and almost certainly would not have been
completed, without persevering encouragement by Tjalling C. Koopmans of the Cowles
Commission for Research in Economics. The author is greatly indebted to'Professor Paul
Rosenbloom, of the University of Minnesota, for having made him aware of the potentialities
of the Banach space theory for the problems here treated. He also wishes to acknowledge
valuable advice received from Professors Bernard R. Gelbaum and Gerhard K. Kalisch, also
of the University of Minnesota, as well as from Kenneth J. Arrow and Hirofumi Uzawa of
Stanford University. Thanks are due a number of readers, and to K.S. Kretschmer in
particular, for pointing out errors in the first printing; see especially the note on p. 74.

*  Cf. Koopmans [27].

3 Some of the results, as for instance the generalized ‘‘ Minkowski-Farkas Lemma,’’ may
be of independent interest. '

G. Giorgi and T.H. Kjeldsen (eds.), Traces and Emergence of Nonlinear Programming, 131
DOI 10.1007/978-3-0348-0439-4_8, © Springer Basel 2014
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importance in relating the theory of programming to that of games of
strategy. An appendix to III relates the results of III- to the theory
of linear equations in Banach spaces, as formulated in a paper by
Hausdorff [18].% (See the NOTE in brackets on page 74.) V.1 states
conditions under which a Lagrangian saddle-point implies maximality
(efficiency). V.2 deals with the problem of scalarization, i.e., of reduec-
ing a vectorial maximization problem to one of scalar maximization.
V.3 contains the main results concerning the existence of saddle-points
and ‘‘ quasi-saddle-points.”” The third section, V.3.3 treats situations
where the differential (‘‘ marginal ”’) first-order conditions for the saddle-
points are satisfied, while in the first, V.3.1, the differentiability is not
assumed. (From the economist’s viewpoint, the existence of a saddle-
point corresponds to the existence of a price-vector equilibrating the
market.) V.3.2is devoted to the special (‘‘ linear *’) case which, in view
of the interest in ‘‘linear programming’ models, seemed worthy of
separate direct treatment. The author has not completely avoided rep-
etition where he feared that brevity might cause ambiguity. Also,
many ‘‘obvious’’ and ‘‘trivial >’ proofs are spelled out in detail.

1.2. In problems of efficient resource allocation we deal with a model
where commodities are classified into resources, typically available in
limited amounts, and desirables in terms of which efficiency is defined.
The amounts of resources used up and of the desirables produced are
determined by the decision as to activity levels. Thus the model is of
the type treated in activity analysis,® although not necessarily under
the assumptions of additivity and linearity.

Some of the mathematical problems arising in models where linearity
and additivity are not assumed have been explored by Kuhn and Tucker
[81], and Slater [41]. The treatment in both papers is confined to the
case where there is a finite number of commodities and a finite number
of activities. This, of course, limits their domain of application. In eco-
nomics there are many problems where, for instance, an infinity of
commodities could be more naturally postulated, as in the case of problems
involving time or location. But there is another reason why an economist
may be interested in having a theory of resource allocation in which
the commodity space or the activity space is of a more general nature :
the logical structure of treatment of the more general situations often
reveals the ‘‘deeper” or ‘‘intuitive” bases of important propositions
and helps focus attention on the more fundamental features of the problem.

The economic interpretation of the Kuhn-Tucker and Slater results
(discussed by Kuhn and Tucker) has to do with the possibility of reaching
positions of efficient resource allocation through the price mechanism.

¢ On a number of occasions we explore the question of the necessity of the underlying

hypotheses and several theorems are devoted to this.
s Cf. [27].
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Roughly speaking,® when suitable conditions are satisfied [in the econ-
omist’s language the main ones could be described as ‘‘perfect divisibility’’
(all positive multiples permissible), and absence of ‘‘external (dis-)
economies of scale’ and of ‘‘increasing returns’’], (a) ‘‘ competitive
equilibrium ”’ implies that an efficient point has been reached and (b)
any efficient point can be one of *‘competitive equilibrium ’’ (provided
prices are properly selected). When the absence of ‘‘ increasing returns ’’
is not assumed (while the assumptions of ‘‘ perfect divisibility ’’ and
absence of ‘‘ external (dis-) economies of scale ’’ are retained), it is still
possible to obtain criteria” permitting classification of certain situations
as non-efficient.

Results of the latter type are of considerable importance, for they
serve as a basis for the development of a theory of resource allocation
applicable to a class of situations not excluding ‘‘increasing returns.’’®

In attempting to generalize results of this type, the writer was guided
by his interest in cases where ‘‘increasing returns’ might prevail and
hence ‘‘marginal’ type phenomena would have to be considered.
Mathematically, this meant working in a space with an operation of
differentiation possessing most of its usual properties. The Banach
spaces form the most general class of spaces with which the writer was
familiar at the time this was written, although a more general theory
of differentiation does exist.® However, in theorems where the differential
operations were not used, an attempt was made to obtain proofs valid
for a more general class of linear spaces. In V.3.1, the author has
treated the case of Lagrangian saddle-points by methods of the type
used by Slater, i.e., relying on convexity but not using differentiability.

If one is to treat phenomena of ‘‘indivisibilities,”” one must go beyond
linear spaces. But since one knows that most of the important results
valid in linear spaces cannot be expected to hold when ‘‘indivisibilities ”’
appear, it becomes desirable to reappraise the objectives of the theory
of resource-allocating mechanisms, especially in their ‘‘ decentralization ’’
aspects. This is done to some extent in another paper now being com-
pleted by the writer.

. 1.8, In this section we give a brief description of some of the results
‘being generalized in the present chapter. '

I

8 For a more precise statement the reader is referred to Koopmans [27], Kuhn and
Tucker [31], and Arrow and Hurwicz [2], and Chapter 3 of the present book.

7 These criteria are of differential (‘ marginal ’) first-order nature; they involve prices,
but not the full conditions of ¢ competitive equilibrium.”” Cf. Theorem 1 in Kuhn and
Tucker [31].

-8 Cf. the work of Hotelling [21], Lange and Taylor [33], and Lerner [35], especially as
it involves ‘‘marginal cost’ pricing. Cf. also Arrow and Hurwicz [2], and Chapter 6 of
the present book.

® Cf. Hyers [22], and its Bibliography. See V. 3.3.8, where results involving differential
operations are extended to a wider class of linear spaces.
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Let 2, 2, and 2 Dbe finite-dimensional Euclidean spaces,” their
dimensionalities being respectively n,, n,, 7.

In each space we define certain ordering relations. If v" = (v}, -, v,),
v’ = (¢, -+, v, ) are two vectors in the space 2 (where " may be 27,
2/, or 27), we write

’

v =" to mean v; =2 v for+=1,2,---,m,,
v > to mean v = v” and v Z v (l.e.,, v # 0v"),
v > " to mean v; > v fore=1,2,--+,m,.

The origins of the three spaces treated are denoted by 0,0, 0, but
the subscripts are omitted where no danger of confusion seems to exist.

Given a set Y in the space 27 of desirables (Y is the ‘‘attainable ”’
set, cf. [27], p. 47), we define its mazimal (= ‘‘ efficient ’’) subset Y by
the condition

Y={yeY:yeY,y=yimply v <v}.

I.e., y is a maximal (= efficient) element of Y if, and only if, ¥’ > v does
not hold for any element %' of Y.

The set Y, however, is given indirectly, since our decision variable is
xz, not y. Thus there are given two (single-valued) functional relations®
f, g with a common domain in &2 and ranges in 2 and 2 respectively
and

Y = f[P.Ng(P.)]

where P, and P, are the respective non-negative orthants of 2 and 2.
Ie., ye Y if, and only if, y = f(z) with z = 0 and g(z) = 0.

Somewhat inaccurately we shall call an element z mazimal when f(z)
is maximal and we write X =f‘1(17').

The problem of finding necessary and sufficient conditions for the
maximality of a point = in 2 is usually called the problem of wvectorial
maximization of f(z) subject to the comstraints = 0, g(x) = 0. When
n, = 1, we are of course dealing with scalar maximization. Correspond-
ing to a given maximization problem one may construct its Lagrangian
(expression) given by

D(z, 2*; y*; S, 9) = ¥y A=) + 2 o(x)]
where

n,

y*y) = ¥y = Z{ YU

10 In the economic interpretation, 2 is the space of activity level vectors, & the space
of the vectors of desirables, x that of resources.

11 In line with the prevailing practice, we use f where Kuhn and Tucker use g and vice
versa,
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and

nl
) =22 =) 2z .
i=1

(In matrix and vector notation A’ is the transpose of A. Depending on
the content, we omit some or all of the detail following the symbol ®.)

We say that ® has a non-negative saddle-point at (z, zy ; ys) if and
only if

=20, 2 =0, ¥ >0,
and
O(z, 25 5 UF) = P2y, 75 ) = (2, 2% 5 ¥

for all x = 0 and all 2* = 0.

@ is said to have a mon-negative quasi-saddle-point at (xg, 25 ; v5) if
and only if

x020, Z:ZO: y;k>03

and
{(bgc =0, DYw, =0,
Pix = 0, DYzy =0.

[Here @} = <9®/dx,, - -+, 0P/0z, > (see fn. 1, p. 2, for this notation)
with all derivatives evaluated at (z, 2 ; ¥5); @ = <oP/ozf, ---,
0d [0z > with all derivatives evaluated at (x,, 25 ; ¥).] It was shown
by Kuhn and Tucker ([31], Lemma 1) that a non-negative saddle-point
is always a non-negative quasi-saddle-point. The converse is false.

In order to state the main results of Kuhn and Tucker we need three
concepts :

a) a function f, with convex domain D in .2* and range in 27, is
said to be concave if, and only if, for any 2/,2” in D and any 0 < 6 <1
the inequality (1 — 8)f(z’) + 0/(z") < fI(1 — O)z’ + 62" holds ;

b) the function g, with domain in 2° and range in %/, is said to
be regular if and only if the ‘‘ constraint qualification ” (cf. Kuhn and
Tucker [31], p. 483) is satisfied ;

¢) w, is properly mazimal if it is a proper solution of the vector
maximum problem in the sense of Kuhn and Tucker ([31], p. 488).”

The following are results of interest :

1. (Kuhn and Tucker [31], Theorem 4.) Let @, be properly maximal,
f and ¢ differentiable, and ¢ regular for x = 0. Then there exist vy, #
such that ®(z, 2* ; y*) has a non-negative quasi-saddle-point at (z,, 25 ; ¥o).
(Note: For n, =1, the term ‘‘ properly ’’ may be omitted and Theorem
4 becomes Theorem 1 of Kuhn and Tucker.)

12 Let f(xg) be properly maximal whenever z; is. Then the result of Arrow, Barankin,
and Blackwell [1] seems to show that, at least when Y = f[P;N g-4P,)] is closed and con-

vex, the set of properly maximal ¥'s is dense in the set of maximal points.
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2. (Kuhn and Tucker [31], Theorem 6.) Let both f and g be differ-
entiable and concave, and g regular for = 0. Then x, is properly
maximal if and only if there exist ¥, zF such that ®(z, 2* ; ¥*) has a non-
negative saddle-point at (=, zf; wy). (Note: For n, =1, the term
‘“ properly ’’ may be omitted and Theorem 6 becomes Theorem 3 of Kuhn
and Tucker.)

The following comments may be found helpful in following the later
sections of this paper.

1. The ““if 7’ part of Theorem 6 fails to hold when y* > 0 instead
of the stronger y* > 0 which is postulated. This raises a difficulty in
generalizing to linear (or even Banach) spaces, since in some of them a
y* > 0 may not exist.

2. The ““if  part of Theorem 6 remains valid when the assumptions
of differentiability and concavity of f and ¢ and regularity of ¢ are
abandoned.®

3. The “only if ”” part of Theorem 6 depends on Theorem 4 and the
concavity of f and g.

4. The proof of Theorem 4 consists in ‘‘ scalarizing '’ the problem by
means of an appropriate y* > 0 (which will exist if =z, is properly
maximal) and then using Kuhn-Tucker Theorem 1 covering the case
n, = 1.

5. The crucial step in the proof of the Kuhn-Tucker Theorem 1
involves the use of the Minkowski-Farkas Lemma which states that if,
A being an m x n matrix,

Ax =0 implies b’z = 0 for all =,

then there exists ¢ = 0 such that b = A’¢. (Cf. [31], p. 484.) Thus in
attempting to generalize the results of Kuhn and Tucker the success
hinges on finding the conditions under which the linear topological space
counterpart of the Minkowski-Farkas proposition is valid.

6. The relationship of the present chapter to the results of Kuhn
and Tucker is similar to that of Goldstine’s paper [15] to, say, Bliss’s
discussion in [4], p. 210 ff. Goldstine treats the case of constraints in
the form of equalities and imposes requirements strict enough to imply
the existence of unique Lagrangian functionals (‘‘ multipliers’’). Some
of these results (in the ‘‘ relaxed '’ form where uniqueness need not be
present) are special cases of the theorems obtained in the present chapter.

7. Slater [41], assumes f and g to be continuous and postulates that
they have a property (which we shall call ‘“ almost concavity '’)* implied
by (but not implying) the concavity of both f and g; neither f nor g

13 This suggests itself in reading Slater [41], p. 11

4 Suppose that, for some y*=0, 2*=0, y*[f(a1)] + 2*[g(x")] = ¥*[ f(=)] + 2z* [g(=?)].
Then ‘‘almost concavity ”’ of (f, g) requires that y*[f(z)] + 2*[g(z)] gy*@ii)] + z¥[g(z?)] for
all z on the segment joining z!, x2.
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is assumed differentiable; instead of requiring that g be regular, it is
required that, for some x, = 0, g(z;) > 0. (When this is so, we shall
call g Slater-regular.) If by a Slater-mazimal element of Y =
fIP,Ng (P,)] is meant a y, € Y such that ¥’ >y, for no ¥ € Y, and if
x, is called Slater-maximal when f{(=,) is Slater-maximal, then Slater’s
main result (Slater [41], Theorem 3) may be stated as follows :

Let f and g be continuous and almost concave and let g be Slater-
regular. Then #, is Slater-maximal if, and only if, there exist

y¥ > 0, 2z¥ = 0 such that
D, 7' 5 Y) < D@, 25 5 Y) < P, 255 Y)
for all 2 =0 and all 2* = 0.

It may be noted that the concept of Slater-maximality is weaker than
that of maximality (as previously defined) and that it makes the ‘‘if "’
part of the theorem valid even though yF¥ > 0 is not required.

If one wanted to substitute ¢ maximal’’ for ¢ Slater-maximal’’ in
Slater’s Theorem 38, it is clear from known examples that one would
have to require @, to be properly maximal and not merely maximal, as
well as to specify that y& > 0.

Slater’s Theorem 3 is, of course, a counterpart of the Kuhn and Tucker
Theorem 6. In the special case n, =1 the two concepts of maximality
coincide ; also yf > 0 becomes equivalent to yF > 0. Hence in this case
the Slater result differs from that of Kuhn and Tucker only with
regard to the hypotheses, since the assertion is precisely the same.

II. Notation, Terminology, and Some Fundamental Lemmas

I1.1.0. This chapter deals with problems arising in spaces here called
linear topological spaces. These spaces have both an algebraic structure
(they are linear systems, i.e., sets of vectors, with vector addition and
scalar multiplication) and a topological structure (they .are topological
spaces), and, furthermore, the two structures are related by the require-
ment that each of the algebraic operations be a (jointly) continuous
function of its two arguments.®

The concept of a linear topological space, to be introduced more
formally below, is a natural generalization of the properties of the
finite-dimensional space (the real line being the simplest case) in its

15 The definition of a linear topological space used in this paper is exactly the same as
that used in Bourbaki [7], p. 1, for the term ‘' espace vectoriel topologique.’”” Our concept
of a linear topological space is, therefore, broader than, e.g., that used by Bourgin [9],
where the additional assumption is made that the space satisfies the Hausdorff separation
axiom (i.e., that it is a 7% space).

On the other hand, there are authors (e.g., Hille [20]) who use a concept broader than
ours by relaxing slightly the nature of the continuity requirement for the algebraic opera-
tions, the continuity being required in each argument separately, but not necessarily jointly.
Many of our results remain valid for this broader class of spaces.
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customary Euclidean distance (metric) topology. Since any linear system
must contain all scalar multiples of all its elements, the scalars used in
a linear system being real numbers, the set of all integers (or even the
set of all rational numbers) is not a linear system, hence not a linear
topological space. From the economist’s viewpoint this rules out appli-
cations involving indivisibilities.

II.1.1. Linear topological spaces. A linear topological space is both
a linear system and a topological space. To avoid ambiguities, and for
the sake of completeness, we supply some of the standard information
concerning these concepts.

1I.1.1.1. Linear systems. What we call a linear system is a purely
algebraic concept. A fuller label would be ‘¢ real linear system ’’ since
the scalars used are the reals. (Banach uses the term ‘‘linear space,”
Bourbaki ¢ vector space’ ; our usage of the term ‘‘linear system
agrees with Hille’s.) We shall find it convenient to refer to the elements
of a linear system as wvectors.

Since a linear system is an additive group, we start by defining the
latter. A set 2”7 is called an additive group if it satisfies the following
conditions :

1. With each pair (z/, ") of elements of 2° is associated a unique
element z of 2°; z is called the sum of z’ with z” and this is written
as z = + 2.

2. Addition is associative; i.e., given any three elements z’, '/, «'”
of 2, o + (" +2") =& + ")+ 2"

3, There is in 2° an element (the identity element of addition, later
called the origin) denoted by 0, (or, more simply, by 0) such that
z+ 0, =0, + 2 =z for every element = of 2.

4. To each element z of 2 corresponds uniquely an element —2z
(called the negative of &) such that z + (—z) = 0,. [Subtraction is defined
by the relation z' — z’ = &’ + (—=z").] The foregoing conditions imply
that the law of cancellation holds, i.e., that

z + 2z ="+ x implies &' = 2"

for any three elements 2, 2", « of the group.

An additive group is called commutative (Abelian) if it satisfies the
following additional condition :

5. o + z' =" + &' for any two elements of the group.

A linear system is a commutative additive group in which there is
further an operation of scalar multiplication (by reals, which we shall
often call scalars). I.e.,

6. With each pair (a, «) where « is a scalar (real) and z a vector (an
element of .2°), there is associated a unique vector z, called their
scalar product; this is written as ' = @ - x. [Scalar multiplication is
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commutative, i.e., @ -z =z a; the multiplication symbol (-) is often
omitted.]

7. Scalar multiplication is distributive with regard to both scalars and
vectors, i.e.,

(¢ + axe=adz+ a"z
and

a(@ + ') = ax’ + az”
for all selections of the scalars and vectors.

8. Scalar multiplication is associative, i.e., &'(a”z) = (¢’a’)x for all
selections of scalars and vectors.

9. The number one is the identity element of scalar multiplication, i.e. ,
1.2 =z for all vectors z.

The preceding conditions imply that (—1) - 2 = —x and 0 - o = 0,. [The
last equation is an example of a situation where both the number 0
(zero) and the vector 0, (origin) appear together. This is sometimes
written simply as 0 - 2 = 0 and one must infer from the context that 0
denotes a scalar on the left and a vector on the right.]

Definition. A linear system is a set satisfying condition 1-9 above,
i.e., an additive commutative group with sealar multiplication which is
commutative, distributive, and associative, with reals as scalars and 1
as the identity element of scalar multiplication.

Algebraic set operations. Let X, X', X'’ be subsets of a linear system
and « a scalar (a real number). We write

aX = {ax: ze X},

X+ X' ={o+2":2deX,z" e X"},

X - X'={ad —a':2eX,2"e X"} .
Also,

—X=(-1D)X={—-=z:2zc X}.

These algebraic operations must be distinguished from the set-theoretic
operations of union and difference. The union of two sets X' and X"
is written as X' U X"’ ; the set-theoretic difference (i.e., the set of all
elements that are in X' but not in X") is written as X'~ X"”. The
complement of X (with respect to X') is the difference X' ~ X.

We should also note that the algebraic operations do not have some
of the properties suggested by the symbolism ; e.g., it need not be true
that X + X = 2X.

Some geometric terms. Given two vectors z/, '/, the set {la’ +
(1 —2a": 0<2<1} is called the segment joining @’ and z”. A setis
called conver if with -any two points a’, " it also contains all points of
the segment joining them. If — X = X, the set X is called symmetric
(with respect to the origin). X is said to be star-shaped from the point
z if, with any point &/, it also contains the segmernt joining z and z'.
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A subset X of the linear system 2 is called absorbing if, given any
point z in the system .27, there is a point =’ in the set X and a positive
real number 1 such that z = 2z'.*® ‘

I1.1.1.2. Topological spaces. To define a topological space” it is con-
venient to start by introducing the concept of ‘‘a topology.”” A collec-
tion S of subsets of a given set 4 is called a topology for A if it
satisfies the following conditions: (1) A is an element of S and so is
the empty set ¢; (2) the intersection of any two sets belonging to S
belongs to S; (8) the union of the members of any (possibly infinite).
sub-collection of S belongs to S. The subsets of 4 which belong to S
are called open (relative to S, or in S). The union of all open sets
contained in a given set is called its 4nterior.

We topologize a set by selecting a topology for it. Any set can be
topologized, for the two-element collection {¢, A} is a topology for A4,
i.e., it satisfies the above three conditions ; such a two-element topology
will be referred to as the coarse topology for A ; it is sometimes called
in the literature the indiscrete or trivial topology. On the other hand,
the power set (sometimes written 24) of A, i.e., the set of all subsets
of A, is also a topology for A, to be called the fine (often called discrete)
topology for 4. When A has two or more elements,  the two topologies
differ ; for instance, one-element sets are open in the fine topology, but
not in the coarse topology. Given two topologies for a set 4, we call
S’ finer than S (and S” coarser than S’) if S” is a proper subset of
S’, i.e., if every set open in S”.is also open in S’ and there are some
sets open in S’ that are not open in S”. (Two topologies are non-com-
parable with respect to fineness when neither is a subset of the other.)
Clearly, the fine topology is the finest topology possible, while the coarse
topology is the coarsest topology possible. In most cases of applied
interest, we deal with topologies that are somewhere between the fine
and the coarse topologies.

Denote by R* the linear system whose elements are all real numbers,
i.e., the ““real line.”” Its so-called ‘‘natural’ topology is defined as
consisting of all subsets B of R¥ characterized by the following property :
each element of B must belong to an ‘‘ open interval ’’ which is a subset
of B. (An open interval is defined as the set of all numbers greater
than some fixed number and less than another fixed number; an open
interval is an open set in the natural topology, but there are open sets
which are not open intervals, e.g., the set of all numbers other than
zero.) A set is closed (in a specified topology) if its complement (with

16 This usage of the term absorbing, as well as some of the subsequent formulation, is
due to the author's exposure to lectures by Professor Hans Radstrom of the Royal Institute
of Technology in Stockholm, to whom the author is also indebted for clarification on certain
properties of linear spaces.

17 See, for instance, Kelley [23].
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respect to A) is open. A set may be both open and closed (e.g., the
empty set and A), or it may be neither open nor closed (e.g., one-element
sets in the coarse topology when A has two or more elements). What
is ordinarily called a closed interval (i.e., one including its end-points)
is a closed set in the natural topology of the real line. An interval
including only one of its end-points is neither open nor closed in the
natural topology. The closure of a set is the intersection of all closed
sets containing it.

A topological space is defined formally as an ordered pair (4, S) where
S is a topology for A. Often, when the topologization of A is under-
stood, we refer to A itself as a topological space.

Let (A4, S) be a topological space, B a subset of A,z an element of
B. B is called a netghborhood of x (with respect to the topology S) if
it contains a subset C which is open (with respect to the topology S).
Obviously, any open set containing z is a neighborhood of z, but a
neighborhood need not be open. (Some authors use a narrower concept
of a neighborhood and require that it be an open set.) The collection of
all neighborhoods of a given point z is called the complete neighborhood
system for the point x. For instance, in the fine topology all sets of
which z is an element constitute a complete neighborhood system for x ;
in particular, the one-element set consisting of z alone is a neighborhood
of z. In the coarse topology, on the other hand, a point has only one
neighborhood, namely, the set 4. A topological space (4, S) is called a
Hausdorff (topological) space if any two distinct points of the space have
disjoint neighborhoods. Thus the fine topology is Hausdorff, but the coarse
topology (when there are two or more elements in the space) is not. R*
in its natural topology is Hausdorff, for we can use as disjoint neighborhoods
open intervals centered on the two points, the width of the intervals
being less than half the distance of the two points. Most spaces of
applied interest are Hausdorft.

Sometimes we are interested in certain subsets of the complete neigh-
borhood system of a point. A subset F' of the complete neighborhood
system of a point is called a fundamental system of neighborhoods of
the point.if every neighborhood of the point contains a neighborhood
belonging to the set F'; if we call the neighborhoods belonging to F
fundamental, we can say that every neighborhood of a point must
contain a fundamental neighborhood of that point.

It is often convenient to define a topology indirectly, viz., by assign-
ing to each point @ of a set A a (non-empty) collection F, and declar-
ing it to be a fundamental neighborhood system of a. The complete
neighborhood system of a is then defined as the collection G, of subsets
of A, each of which contains a fundamental set (i.e., a set belonging
to F,); finally a subset A’ of 4 is declared as open if and only if it
is a neighborhood of all of its points.
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In order for such a procedure to result in a topology for A4, the col-
lection F, must, of course, satisfy certain conditions. First, naturally,
each set belonging to F, must contain a, otherwise it would not qualify
as a neighborhood of a; hence every set belonging to F', is non-empty.
Second, the collection F, must satisfy the following finite intersection
requirement : the intersection of any two sets belonging to F, must
contain a set belonging to F,. (The intersection itself need not belong
to F,.) A non-empty collection F, of sets each of which contains a and
satisfying the preceding finite intersection requirement will be called - a
netghborhood base at . We shall see that it is convenient to discuss the
properties of linear topological spaces in terms of fundamental neigh-
borhood systems and neighborhood bases.

It was mentioned earlier that a linear topological space is a set which
is both a linear system and a topological space, with certain continuity
conditions imposed on the algebraic operations of addition and scalar mul-
tiplication. To be able to state these conditions, we must introduce the

concept of continuity.
Let 4 and B be two sets and let f denote a functional relation whose

domain is 4 and whose range is B, i.e., which associates with each
element o in 4 a unique element b = f(a) in B. Given a subset A’ of
A, we define the image of A’ by f as the set {fla) e B:a e A’}. Given
a subset B’ in B, we define as the inverse smage of B’ by f the set
{a e A: fla)e B'}). The image of 4’ by f is denoted by f(4"); the
inverse image of B’ by f is denoted by f~%(B’).

Now let us topologize 4 and B, with S denoting the topology for A4,
T the topology for B. The function fis said to be continuwous if the
inverse image f(B’) of every set B’ open in T is itself open (in S).
It is important to realize that continuity depends not only on the nature
of the function, but also on the manner in which the two spaces have
been topologized. . Thus if S is fine, any function on A4 is continuous.
Similarly, the constant function (which has the same value for all
elements of A) is continuous for any topology, since the inverse image
of the one-element set (consisting of the constant f value) is the whole
space A. Now suppose A =B and f is the identity function, i.e.,
fla) =a for all a in A. (When A = B = R¥ the identity function is
represented by the positively inclined 45° straight line through the
origin.) Whether f is continuous depends on the topologization of A
and B. If A and B are given the same topologies (i.e., S =1T'), then
f is continuous, since f~%(B’) = B’ for all B’. But, even though the sets
A and B are the same, their topologies may differ. For instance, let
A =B = R} with f still the identity function, and let B have the
natural topology while to 4 we give the coarse topology. Let B’ be a
finite open interval on the B-axis which is an open set in the natural
topology. The inverse image of B’ is the same interval, taken on the
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A-axis ; but, in the coarse topology of the real line, a non-empty proper
subset of the line is not open ; hence f~'(B’) is not open (in S) ; hence with
this topologization the identity function is not continuous.

One more topological concept is essential in discussing the properties
of linear topological spaces. As was indicated earlier, the continuity of
the operations in such a space is joint continuity in the two arguments.
To clarify the point, consider the operation of scalar multiplication. We
may write, for a scalar (real) « and a vector =z, ax = ¢g(a, x), so that
the scalar product may be viewed as a function of two variables o and
z. In order to explain what is meant by the joint continuity of g in
the two variables, we restate the situation as follows: First, we write
az = f((«, @)), i.e., we now view the scalar product as a function whose
domain is the set of ordered pairs (@, z), i.e., the Cartesian product
R x 22, while the range, of course, is the set 2°. To apply the above
definition of continuity, we must topologize the product set Ef x 2°.
Similarly, addition may be viewed as a function on the Cartesian product
Z x & with the range in 2°. Here, again, the product set must be
topologized.

In both cases, the appropriate topologization (i.e., the one implicit in
the definition of a linear topological space) is the so-called product

topology which we shall now define.
Let there be two topological spaces (4, S) and (B, T) and let C = 4 x B.

The product topology, about to be defined, will be denoted by P[S, T'];
hence the topological product space is written as (C, P[S, T]). To define
the product topology, it is enough to characterize the open sets of C.
A set (' is open in the P[S, T'] topology if and only if every point ¢’
of C’ is a member of a set of the form A’ x B’ where A’ is open (in S),
B’ is open (in T), and A’ x B’ = C'. As an illustration, if A = B = R*
(the real line), so that C is the Cartesian plane (the set of all ordered
pairs of real numbers), and S = T = the natural topology for the reals,
then the product topology P[S, 7] is the usual Euclidean topology of the
plane where a set is open if every one of its points can be enclosed in
a disk of positive radius wholly belonging to the set.

Another example is obtained if Cis again R¥ x R¥ but S = 7 = coarse
topology ; here the product topology is the coarse topology of the plane.
Similarly, the topological product of fine topological spaces is fine. An
interesting case is obtained if we take A = B = R* but with different
topologies on the two spaces, viz., 4 coarse and B natural. In the
product topology a one-element set (a point) is not closed and the topology
is not Hausdorff : every open set must contain an infinite * strip’’ (of
positive width) parallel to the A-axis, and any neighborhood containing
(a’, 0) must contain all other points of the form (g, 0).

11.1.1.8. Linear topological spaces. We now have a sufficient vocabu-
lary to provide a precise definition of a linear topological space.
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Definition. Let X be a linear system and S a topology for X. (X, S)
is said to be a linear topological space if (1) addition is continuous in
the product topology P[S, S], and (2) scalar multiplication is continuous
in the product topology P[N, S], where N denotes the natural topology
of the real line.

To illustrate, let X be the real line R¥. As might have been expected,
(R¥, N), i.e., the real line in its natural topology, is a linear topological
space ; the real line in its coarse topology also turns out to be a linear
topological space; the real line in its fine (discrete) topology is not a
linear topological space, although it is a linear system and a topological
space. Hence the continuity conditions in the above definition are not
automatically satisfied for every linear system which is also a topological
space.

The verification of the continuity properties of the algebraic operations
directly from the topology of the space can be quite awkward; the
situation becomes much more transparent when the properties of linear
topological spaces are stated in terms of neighborhood systems. Further-
more, we may confine ourselves to the discussion of the neighborhood
system of the origin 0,; if G, is a collection of neighborhoods of
the origin, the corresponding collection of neighborhoods of any point
z is given by {z} + G,Jz-—-Gz. Thus the topology of a linear topo-
logical space may be defined in terms of a fundamental neighborhood
system of the origin, the corresponding complete system of neighborhoods
then being defined as the collection of sets containing a fundamental set,
and finally, an open set being defined as a set which is a neighborhood
of each of its elements. But to follow such procedures we must know
what types of neighborhoods one may encounter in linear topological spaces.

The answer to this question is contained in a theorem we shall state
in a moment. To simplify this statement, we shall coin an ad koc term ;
we shall call a non-empty family G of sets acceptable if it satisfies the
following conditions: (1) if V is in the family G, then the family must
also contain a set W such that W 4+ W = V; (2) every set in the family
is symmetric, i.e., V= —V for all V in G; (3) every set of the family
contains the origin, i.e., 0, € V for each V in G; (4) every set of the
family is star-shaped from the origin, i.e., if a point z is in V, then
so is the whole segment joining « to the origin; (5) every set in the
family is absorbing, i.e., if # is any point of the space X and V is a
set in the family G, then V has an element z’ such that z = 12’ for
some positive number 2; (6) the family G is invariant under homotheties
(from the origin), i.e., if V is a set in the family and a a real number
different from zero, then the set aV is also in the family.

THEOREM (Bourbaki [7], Prop. 5, p. 7).
A. If (X, S) is a linear topslogical space, then there ewists an accepta-
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ble (i.e., satisfying conditions 1-6 above) fundamenial neighborhood system
of the origin.

B. In a linear system X, let F' be a neighborhood base at 0, (i.e., a non-
empty collection of sets each comtaining the origin and such that an inter-
section of any two members of the collection contains a member of the
collection) and suppose that F' is acceptable (i.e., satisfies conditions 1-6
above). Then there exists a topology (and only one topology) such that F'
is the fundamental neighborhood system of the origin in that topology. In
this topology, X 1s a linear topological space.

[The above six conditions are somewhat redundant, since 3 follows
from the others. We have chosen this form, however, partly in order
to show that a linear topological space is a linear topological group, i.e.,
an additive Abelian group with a topology in which addition and sub-
traction are both continuous (jointly in the two arguments). Conditions
1-3 above are precisely those characterizing a fundamental neighborhood
system of the origin (identity element of addition) of a topological group.
Cf. Bourbaki [6], p. 6.]

We can now verify our statements about the various topologizations
of the real line. Thus for its coarse topology the neighborhood base at
the origin consists of the single one-element set {Ef}. It may be seen
that this base is acceptable (i.e., satisfies conditions 1-6). For the
natural topology of the real line we use the family of all open intervals
centered on O0; again, the family is acceptable. Hence E* igs indeed a
linear topological space in both the coarse and the natural topology.
But the situation is different when R* is given its fine (discrete) topology.
Since the one-element set consisting of the origin is open in this topology,
it is a neighborhood and hence any fundamental neighborhood system
of the origin must contain {0}. However, {0} is not an absorbing set
(i.e., condition 6 of acceptability is violated) and hence E* in its fine
topology does not have an acceptable fundamental system ; hence it is
not a linear topological space.

A linear topological space satisfying the Hausdorff separation axiom
(distinet points have disjoint neighborhoods) is called a Hausdorff linear
(topological) space. It will be noted that the real line, depending on
its topologization, may fail to be a linear topological space (in the fine
topology), it may be a Hausdorff linear space (in the natural topology),
or it may be a non-Hausdorff linear topological space (in the coarse
topology). Euclidean finite-dimensional spaces are all Hausdorff linear.

A linear topological space may or may not possess a fundamental
neighborhood system of the origin consisting of convex neighborhoods.
If, in a linear topological space, there exists such a fundamental system
consisting of convex neighborhoods (i.e., every fundamental neighborhood
is convex), the space is called a locally convex (linear topological) space.
We may note that the real line forms a locally convex space in both
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its natural and its coarse topology. This is not accidental: according
to a theorem due to Tychonoff (cf. [43], p. 769) every finite-dimensional
linear topological space is locally convex. [A linear system is finite-
dimensional, say n-dimensional, if there exists a finite set of elements
Ty, &y, -+, T, such that every element z of X can be written in the form
T =, + ax, + -+ + a,x, where the «, are scalars (reals).] Further-
more, if a space is finite-dimensional and Hausdorff linear, then its
topology is Euclidean.

Most linear topological spaces occurring in applications are locally
convex, but there do exist linear topological spaces that are not locally:
convex. Tychonoft’s example (loc. cit., p. 768) is the space denoted by I,
consisting of all the infinite sequences z = (=, @,, ---) of numbers =,
such that '

E lxilm < o,
i=1

The space [,, is topologized in the following manner. We construct a
fundamental neighborhood system of the origin consisting of sets of
the form

@ (ol <}

with p varying over positive reals. It was shown by Tychonoff that
(a) this space is a linear topological space, but (b) there does not exist
a fundamental neighborhood system of the origin consisting of convex
sets. (The fact that the fundamental system as given does not consist
of convex sets is by itself inconclusive, since there might exist another
fundamental system consisting of convex sets and yielding the same
topology.) Hence [;;, is a non-locally convex linear topological space.
On the other hand, the space is Hausdorff linear; this can be shown
by utilizing the fact that the function

o(@) = (5 |a |

i=1

satisfies the inequality ¢(z’ + ") < 2[¢(z’) + ¢(z”')]. Let =,y be two
distinct elements of the space such that g(z — ) = @, where a is neces-
sarily positive. Now select a neighborhood of z to be the set of points
such that ¢(x — #') is less than a/6; similarly, select a neighborhood of
y consisting of points such that ¢(y — 2”’) is less than a/6. Suppose that
there is a point z belonging to both neighborhoods. Then, in virtue of
the inequality, ¢(z — ¥) < 2[a/6 + /6] which contradicts the assumption
made. Hence the space does satisfy the Hausdroff separation axiom.

We have had examples of spaces that are both Hausdorff and locally
convex (real line in its natural topology), Hausdorff but not locally
convex (the space’ly,), locally convex but not Hausdorff (real line in its
coarse topology). To complete the picture let us point out that the
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topological product of [, with the real line in its coarse topology is
neither Hausdorff nor locally convex, although it is a linear topological

space.

A fundamental neighborhood system of the origin in a locally convex
space can always be defined (Bourbaki [7], pp. 95-96) by means of a
set of functions called semi-norms. A semi-norm is defined as a finite
real-valued function p on a linear system satisfying the following two
requirements : (1) for any scalar « and any vector z, p(az) = |a| - p(x) ;
(2) for any two vectors, p(z’ + z’) < p(z’) + p(z’’). It follows that
p(0,) =0 and p(x) is always non-negative. A semi-norm is called a
norm if it has the further property (3) p(z) = 0 only if = = 0,. Hence,
for a norm, p(x) = 0 if, and only if, # = 0,. The norm of z is usually
written ||z||. For instance, let X be the linear system consisting of all
ordered pairs (z;, @) of real numbers (the Cartesian plane). Then
p*(x) = |z;| + |z,] is a norm, while p**(z) =|=,| is& a semi-norm, but
not a norm.

If p is a semi-norm, the set {z: p(x) < i} = [p; 1] is called an open
strep (of width 22). Denote by [p] the set of all open strips [p; 4],
obtained by keeping p fixed while 1 varies over the positive reals.
Given a set P of semi-norms, we shall denote by [P] the set of all open
strips, obtained by taking all the sets [p; A] with 2 varying over the
positive reals and p over P. Finally, let F(P) denote the set of all
finite intersections of members of [P]. The set F(P) is a fundamental
neighborhood system of the origin, as can be verified from the ¢ accept-
ability ”’ conditions 1-6 above; also, the elements of F(P) are convex
sets, since all strips are convex and so are their intersections. Hence
F(P) defines a locally convex topology for the linear system on which
the semi-norms are defined. Conversely (Bourbaki [7], p. 96, Prop. 4),
every locally convex topology can be defined by a fundamental set F(P)
for a suitably chosen set of semi-norms P.

A normed space is a linear system where the fundamental neighborhood
system of the origin consists of sets (open spheres) S(p) = {x: |lzl| < o}
where p is the radius of the sphere. (The spheres are centered at the
origin.) The system consists of spheres with the radius varying over
the positive reals, although a smaller system (e.g., with rational radii)
would be sufficient. That a normed space is a locally convex linear
space follows from the fact that the spheres constitute an ‘‘ acceptable ”’
family (i.e., satisfy conditions 1-6 above) and are convex sets. Also, a
normed space is Hausdorff. The proof proceeds exactly as in the case
of the space [, above, except that the relevant inequality does not
have the factor 2 on the right-hand side.

A linear topological space is called normable if its topology can be
defined by a norm as just indicated. From what has just been said it
follows that a normable space must be locally convex Hausdorff. How-
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ever, not every -locally convex Hausdorff linear space is normable.
Because of the convenience in dealing with normed spaces, it is of
interest to know under what conditions a space is normable. In order
to do so, we must introduce a new concept, that of a bounded subset
of a linear topological space. A subset B is said to be bounded if,
given any neighborhood V of the origin, there is a positive scalar 2
such that B € 2V'; this is expressed by saying that a bounded set is
absorbed by every neighborhood.

We may now state Kolmogoroff’s theorem on normability of linear
topological spaces: a linear topological space is normable if and only if
it is locally convex Hausdorff and there exists a bounded neighborhood
of the origin.

The following is an example of a non-normable locally convex Haus-
dorff space. Its elements are all the infinite numerical sequences z =
(2, @, +--). The space is topologized by the set P = {p', p* ---} of
semi-norms where p%(z) = max (||, |z.], -+, |2a). Its topology, being
based on the family F(P) as the fundamental neighborhood system of
the origin, is necessarily a locally convex linear space. It is also
Hausdorff because for each element x other than 0, of the space there
exists a norm p in P such that p(z) + 0. (Cf. Bourbaki [7], p. 97,
Prop. 5.) Now if this space were normable, there would exist a bounded
neighborhood of the origin ; hence, by definition of a fundamental system,
there would exist a bounded set of the family F(P), since a subset of
a bounded set is bounded. Hence to establish the non-normability, it
is enough to show that no member of the family F(P) is bounded.
Now the members of the family F(P) are formed by finite intersections
of the open strips defined by the norms p®. Hence it is true for each
member of F(P) that, starting with, say, the k-th component, the values
of the components with subscripts = k& are completely unrestricted.
Now let V, be a member of F(P), with the components whose subscripts
= k are unrestricted, while the components 1 through % —1 cannot
exceed M (0 < M < =) in absolute value. We show that V, is not
absorbed by a neighborhood V,.,. This follows from the fact that in
V.1 the (k 4+ 1)th component is restricted, while in V, it is not. Hence,
no matter what 2 > 0 we choose, there will be elements in V, that are
not in 1V,,,. - Hence V, is not bounded; but since V, is a typical
member of F(P), no set in F(P) is bounded. By the previous argument
it follows that there is no bounded neighborhood of the origin, and
hence the space is not normable.

Many spaces we deal with are normed ; in particular, the finite-dimen-
sional FEuclidean spaces are normed. The norm of a point z in a
Euclidean n-dimensional space can be defined in various ways. The
Euclidean norm of z is defined as
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2 \1/2 .
(St )=
another norm (which results in the same topology) can be defined as
max (2., @], -+ -, |2 ])-
The space of all infinite sequences =z = (x,, x,, +++) of numbers .z; with
only finitely many components different from zero can be normed by
defining

Izl = (S a)"

=1

In a normed space it is possible to define a distance function
d(z’,2") = ||&’ — z”||. In any space on which a distance function has
been defined one can introduce a ‘‘ metric’’ topology, by using as the
fundamental neighborhood system for z, the (metric) spheres, i.e., the
gsets {x: d(z, 2") < p} with the radius p varying over positive reals.
Because of the triangle inequality satisfied by the distance function a
metric space is always a Hausdorff topological space, the proof being
analogous to that sketched above for the normed and [, spaces.

Let (o', o, ---) be an infinite sequence of points z* in a metric space
with a distance function d. The sequence is said to be a Cauchy
sequence if, given e > 0, there exists a positive integer N such that
d(z™, ™) < ¢ provided both m and n are greater than N. A sequence
(z!, 2%, ---) is said to converge to 2 if, for any e > 0, there exists a
positive integer N such that d(z”, 2°) < ¢ provided = is greater than
N. A sequence is said to be comvergent if it converges to some element
2 of the space. Itis known that every convergent sequence is a Cauchy
sequence. On the other hand, there are spaces with non-convergent
Cauchy sequences. One example of such a space is that of infinite
sequences with only finitely many components different from zero. A
space where every Cauchy sequence is convergent is called complete.
The reals are complete in their natural topology, while the rationals
with the same topology (i.e., defined by the Euclidean distance or norm)
form a space that is not complete because there are sequences of reals
converging to an irrational number. A normed space which is also
complete is called a Banach space. Thus the reals (as well as all finite-
dimensional Euclidean spaces) are Banach, but the above space of infinite
sequences with only finitely many non-zero components is not Banach,
though normed. The classic example of an infinite-dimensional Banach
space is the space [, of all infinite numerical sequences =z = (z,, @, +- )
such that

St < o,

i=]

the norm being defined as the square root of the preceding infinite sum ;
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I, belongs to a sub-class of Banach spaces known as Hilbert spaces, where
with each pair of elements it is possible to associate a number called
their inner product z’' - '/, with o’ - 2’/ linear in each of its arguments,

-2’ =22, x-2 always non-negative, and z -z = 0 if and only if
x=0,. In a space with such an inner product it is possible to define
the norm of a vector as ||z]| = (z - 2)"*, and the resulting normed space is

called Hilbert if it is Banach, i.e., if it is complete. (Some authors
use somewhat different definitions of a Hilbert space.) According to
this definition the Euclidean spaces are Hilbert, with the inner product
defined as

-'n

e
E ;mix,; .
i=1

The resulting norm is, of course, that corresponding to the Euclidean
distance. ,

As an example of a Banach space which is not a Hilbert space we may
take the space of all infinite bounded numerical sequences & = (2, Z,, * ).
The norm of this space is defined by ||z|] = sup (|z.], |z,], = - ).

11.1.2. Linear tramsformations. A function I' whose domain is a linear
system .2° and the range a subset of a linear system 2  is called a
linear tramsformation on 22 into 2/ if it is additive and homogeneous,
le., if

Tz + ') = T(z') + T(z") for all «/, 2" in 2,
and
T(ax) = aT(x) for all real « and all z in 2.

If both spaces are linear topological, an additive continuous function
is homogeneous (Hille [20], Theorem 2.6.1, p. 16). The converse, how-
ever, is not true; i.e., there are (in infinite dimensional spaces) linear
transformations which are not continuous at any point (see Bourbaki
[71, p. 93).

If both spaces are Banach, an additive function is continuous if and
only if it is bounded (i.e., carries bounded sets into bounded sets).
Hence, in Banach spaces, ‘‘linear bounded ”’ as applied to transforma-
tions is synonymous with ‘‘linear continuous.”

A linear transformation on 2 whose range is a subset of the reals
(i.e., a homogeneous additive real-valued function on .2°) is called a
linear functional on 2°. There are linear functionals on locally convex
spaces that are not continuous at any point (Bourbaki [7], p. 93). Since
a linear functional is both convex and concave, it follows that, even in
locally convex spaces, a convex or concave function need not be con-
tinuous. This is of interest in connection with results of this chapter
where only concavity, but not continuity, of a function is assumed, since
it proves that the concavity assumption is less restrictive; the same

150



58 PROGRAMMING IN LINEAR SPACES

remark applies to results where only linearity, but not continuity, of
transformations is assumed.

I1.1.8. The conjugate space. Let 22 be a linear topological space.
The set 27* of all linear continuous (with respect to the natural topology
of the reals) functionals on .2 is called the comjugate (adjoint, dual)
gspace of 2°. 2°* is a linear system whose typical element will be
written as z*; the null element (origin) of 2°* (i.e., the real-valued
function on .2° whose value is zero for each element of .27) is denoted
by 0F or 0, as the occasion demands.

Two ways of topologizing the conjugate space are of particular interest.
They are respectively labeled ‘‘ strong ”’ and ‘‘ weak star,”” the latter
usually being written ¢ weak*.”’

In each case the topology is defined through a fundamental neighbor-
hood system.

In the stromg topology a fundamental neighborhood of 0¥ is of the
form

U, B) = {z* e 27*: |z*(x)| <e  for all z € B}
where B is a bounded set, taking all neighborhoods U(e, B) with e vary-
ing over the positive reals and B over the class of all bounded sets in 2.

In the weak* topology a fundamental neighborhood of 0F is also of

the form

Ule, B) = {z* e 22*: |a*(x)]| < e for all z € B},
but B here is required to be a finite set; the fundamental system is
again obtained by letting ¢ vary over positive reals and B over the
class of all finite sets in 2°.

Since every finite set is bounded, it follows that every weak* neigh-
borhood is also a strong neighborhood, but there may be strong neigh-
borhoods that are not weak* neighborhoods. It follows that the strong
topology is at least as fine as, and possibly finer than, the weak*
topology. I.e., every set open (resp. closed) in the weak* topology is
also open (resp. closed) in the strong topology, but the converse need
not be true.

In both topologies the conjugate space is a Hausdorff locally convex
linear topological space (Bourbaki [8], pp. 16-19). Moreover, when the
space 2 is normed, the conjugate space is normable in its strong
topology, the norm of an element z* of the conjugate space being
defined by

llz*|| = sup |z*(2)| .
N=zll=1

In its strong (norm) topology, the conjugate of any normed space is
complete, hence it is a Banach space.

In finite-dimensional Euclidean spaces, the strong and weak* topologies
coincide. But in infinite-dimensional spaces the strong topology is, in
most cases likely to be considered, actually finer than the weak* topology.
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In particular, if 2° is an infinite-dimensional normed space, the strong
topology is finer than the weak* topology. (Cf. Bourbaki [8], p. 111,
where it is shown that the set of elements of norm one in the conjugate
space is not closed in the weak* topology, although it is closed in the
strong topology.)

11.1.4. Separation by hyperplanes in linear topological spaces.

II.1.4.1. Let 2 be a linear system. A subset of .2 is called linear
if it is closed under the operations of addition and scalar multiplication.
A translate of a linear set M, i.e., a set of the form {z,} + M where
M is a linear set, is called a (linear) wariety.’® If M is a linear set such
that M is a proper subset of 2 and there is no linear proper subset
of = in which M is contained, M is called a mazimal linear set. A
translate of a maximal linear set is called a mazimal variety.

With each maximal variety V one may associate a non-null (i.e., # 0F)
linear functional z* on 2 and a real number « such that V =
{x e & : o*(x) = a}. On the other hand, every pair (z* «) where z*
is a linear functional and « a real number defines a maximal variety.

If 22 is a linear topological space, a maximal variety may- or may
not be a closed set. We shall call a closed maximal variety a hyperplane.
(Terminologies of various writers differ. In Bourbaki, hyperplane is
synonymous with a maximal variety.) In a linear topological space .27,
a maximal variety V = {z € 2°: z*(z) = a}, where z* is a linear func-
tional and « a real number, is closed if and only if z* is continuous. I.e.,
a maximal variety is a hyperplane if and only if the functional defining
the variety is continuous.

We may now state a theorem underlying a great many results con-
cerning convex sets in linear topological spaces. The theorem is variously
called the Hahn-Banach Theorem (geometric form) (cf. Bourbaki [7], p.
69) and the Bounding Plane Theorem.

TeHEOREM II.1. Let 27 be a linear topological space, A an open convex
(non-empty) subset of 22, and M a linear variety disjoint from A (i.e.,
ANM=¢). Thenthere exists a hyperplane H containing M and disjoint
Jrom A (i.e., MS H and HN A = ¢).

Hence, under the hypotheses of the Theorem there exists a continuous
linear functional z* and a real « such that #*(z) = @ for all z in M and
*(x) < a for all = in A.

In what follows we shall need the following

COROLLARY II.1. Let 2 be a linear topological space and A a convex
subset with non-empty interior. Then, for any point x, of 27 which ts
not wn the interior of A, there exists a continuous linear functional zf
such that xF(x) < xf(x,) for all © in A.

18 In particular, every point of the space, viewed as a one-element set, is a linear
variety.
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The geometric interpretation of the preceding Corollary is that through
every point not in the interior of A there is a hyperplane ‘‘ bounding ”’
the set 4, provided A is convex and has a non-empty interior.

In certain contexts, however, we want a somewhat stronger separa-
tion property. Given a set A and a point z, outside the set, we are
interested in the existence of a hyperplane such that A is wholly on
one ‘‘side”’ of it (possibly touching H) while z, is on the other ‘‘ side ”’
(not touching H). I.e., we are looking for a continuous functional =z
such that

sup xf(z) < x3(x) .
TEA

It is intuitively clear that we shall have to require that A be a closed
convex set. But it turns out that restrictions must also be imposed on
the nature of the linear topological space. The desired result follows
from Prop. 4 in Bourbaki [7], p. 73. It was established by Mazur for
Banach spaces and by Bourgin for Hausdorff locally convex spaces; we
shall refer to it as the Mazur-Bourgin Theorem.

THEOREM II1.2. (Mazur-Bourgin.) Let .27 be a locally convex linear
topological space, A a (non-empty) convex closed subset of 27, and z, a
point outside A, t.e., z, ¢ A. Then there exists a hyperplane ¢ strictly
separating >’ x, from A, i.e., there exists a continuous linear functional
oy such that the inequality

(1) sUp z5(z) < @ (x)

holds.

Following Bourgin,” we shall refer to a set that can be *strictly
separated ”’ from points not in it as regularly® convex. Hence the preced-
ing theorem states that in a locally convex space closed convex sets
are regularly® convex. (Also, it is the case that a regularly® convex set
is closed and convex.) It may be noted, however, that the class of
spaces in which a closed convex set is regularly® convex is wider than
that of locally - convex spaces, as shown by Klee ([25], (10.1), p. 459).
This is of interest since the regular® convexity of certain sets is a crucial
property in several results of this chapter. If spaces in which closed
convex sets are regularly® convex are called c-regular (as suggested by
E. Michael, see Klee [26], p. 106), we may note here that many of the
results of this chapter which presuppose local convexity of the space
are valid for all c-regular spaces. However, this additional generality
does not seem of serious applied interest in our problems.

On the other hand, we may in some cases wish to ensure the regular®
convexity of certain sets without restricting ourselves to locally convex
spaces. This can be accomplished by imposing an additional requirement

1 In a slightly Vmodiﬁed fashion: what we call regularly® convex (regularly circle-convex)
he calls regularly & convex (where & is the underlying space).

153



PROGRAMMING IN LINEAR SPACES 61

on the nature of the ‘set A4, viz., that it possess a non-empty interior
(see, for instance, Klee [25], Theorem 9.7, p. 456). However, the as-
sumption of a non-empty interior rules out certain worth-while applica-
tions. Specifically, the sets in whose regular® convexity we are interested
are those consisting of the vectors with non-negative coordinates (the
non-negative cones); in a Euclidean space of finite dimension such a set
(the non-negative orthant) does have an interior, but in infinite-dimensional
spaces this is not always the case. In particular, for the [, spaces
(p > 1), the non-negative cone has no interior points (cf. Klee [24], p.
771); in other spaces, such as the space (m) of infinite sequences, the
non-negative cone does have interior points.

Let 2 be a linear topological space, 2* its conjugate space. Given
any element z, of the space .27, we can define a functional f; on the
conjugate space Z* by the relation

Se®) = 2(20) for all a* e 2% .

It may be verified that f, is additive and homogeneous, hence linear.
Now it may be noted that f, is a continuous functional on 27* if 2=*
is given its weak* topology ; in fact, the weak* topology is the coarsest
topology for which all functionals f, are continuous. Since the strong
topology of the conjugate space is finer than (or at least as fine as) the
weak* topology, it follows that the functionals f, are also continuous
when 2°* is given its strong topology. Hence the set of all functionals
f. obtained by letting « vary over the whole space .2 is a subset of
the conjugate of 2%, whether the latter has the weak* or the strong
topology. When the set of all f, (as z varies over .2°) equals the
conjugate of 2%, we call 22 reflewive. (For instance, the Euclidean
spaces are reflexive and so is [,.) Let .2° be a linear topological space
and 2% its conjugate. A subset X* of .2#* is said to be regularly
conver (this is not to be confused with the notion of regular® convexity
defined earlier) if, given an element zf not in X*, there exists an element
z, of the underlying space .2° such that

(2) sUp x*(zo) < x5 () -

The relation (2) can be understood more easily if we rewrite it as
(2) BUD foo(2*) < o)
TFE X ¥

where f, is defined as above. Now f, is a continuous functional on
Z*, as just shown, whether the topology of the conjugate space is
weak* or strong. Hence (2') demands that it be possible to strictly
gseparate X* from a point zF outside of it by a hyperplane (in either
topology) and, furthermore, that the hyperplane be of the type defined
by an f, functional. Now we know that in either topology the conjugate
space is locally convex; hence, provided X* is convex and closed, there
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always exists some hyperplane strictly separating the point and the set
(by the Mazur-Bourgin Theorem). However, it does not follow that the
separating hyperplane will be of the f, type, i.e., determined by an
element of the underlying space. It is therefore noteworthy that, as
shown by Bourgin ([9], Theorem 18, p. 655), if 2° is a Hausdorff*
linear space, X* is regularly convex, if and only if it is convex and
closed in the weak* topology. Of course, X* is closed in the strong
topology if it is closed in the weak* topology.

11.1.4.2. Regularly convex envelope.

LEMMA I1.1. Let &7 be a collection of regularly conmvexr subsets A of
V* and assume the intersection

I,=NA

A€

of these sets to be nom-empty. Then I is also regularly convex.™
Proor. Let wy ¢ I,.. Then wi ¢ A, for some 4, e . Since 4, is
regularly convex, there exists w, € % such that

sup w*(w,) < wi(wy) .
w*GAU

Now I, < 4, so that

sup w*(w,) < sup w*(wy) ,
WHET o wrEA)

hence,

sup w*(wy) < ws(wo)
WAET o7

and the conclusion of the Lemma follows.

If B 9%, we denote by B the intersection of all reglﬂarly convex
sets in #* containing B. By the preceding Lemma, B is regularly
convex ; it is called the regularly convex emvelope of B.

Clearly, B = B if and only if B is regularly convex.

I1.1.5. If T is a linear continuous transformation on .2 into %
(where both .22 and 2/ are topological linear spaces), we may define a
functional ¢ on .22 by the relation

o(x) = yF[71(x)] for all z e 27,
where yy is a fixed element of 2% i.e., a linear continuous functional
on %. We have ‘
plaz) = yi[T(ax)] = yrlal(@)] = ayf[T(z)] = ap(x)
and
oz’ + o) =y [T + 2")] = v’ [T(@") + T(z")]
=y [T(@)] + v’ [T(z")] = ¢(=) + ¢(z") .

% It may be shown that the restriction to Hausdorff spaces may be removed.
21 This is stated for Banach spaces in Krein and Smulian [30], p. 556.
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Hence ¢ is linear; ¢ is also continuous,” hence it is an element of
Z* and may be denoted by x";?;.

Consider now the functional relation associgting with each y* e Z7*
the corresponding z4 € 2°%, as just defined. This relation is denoted
by T* and is called the adjoint of T'. We write

zk = T*(y*) (xh e 22%, y* e 27%),
where
zh(z) = y*[T(x)] for all z e 2°.
We note that, for all z e 27,
zku@) = ay*[T(x)] = awi(z)

and
T3 +yy (@) = (T + ¥OT(2)] = yi[T(2)] + v [T(=)]
= 3 (@) + 73 (@) .
ILe.,
T*ay*) = aT*y)
and

Ty + v3) = T*(H) + T*wH) ,
so that T* is a linear transformation.

When 2 and % are Banach spaces, T* is also continuous. (Hille
[20], Def. 2.13.1 and Theorem 2.13.3, p. 27. Note that here continuity
is equivalent to boundedness.)

When 2° and %2 are finite-dimensional Euclidean spaces, let 4 denote
the matrix such that

T(x) = Az .

Here linear functionals belong to their respective spaces (27 = 27%,
%2 = Z’*) and z*(x) = 2*'x, etc., where the prime denotes transposition.
Hence the relation z*(z) = y*[7(x)] may be written as z*'z = y* 4z, i.e.,
¥ =y*A4, so that z* = A'y*. I.e., the adjoint transformation 7™*
corresponds to a premultiplication by the transpose 4’ of the matrix A4
representing the given transformation T

II.2.1. Let A be a set and p a transitive binary relation in 4. When
the relation holds for the ordered pair a’,a”’ € A, we write a’ pa’.
When it does not, we write o’ p a”’. An element a, € A4,, 4, & 4 is said to
be p-mazimal in A, (or, more briefly, maximal) if, for any a’'e 4, the
relations a’' e 4,, a’ pa, imply a,p a’.

Let ¢ be a real-valued function on A. Then ¢ is said to be isotone
(with respect to p) if

o' pa’ implies ¢(a’) > P(a”);

22 Cf, Kuratowski [32], p. 74, (6).
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¢ is said to be strictly isotone (with respect to p) if, in addition,
a' pa’ and o’ pa’ imply ¢(a’) > ¢(a”) .
In what follows we usually deal with transitive reflexive relations
denoted by = or similar symbols. (The denial of = is written 2.) We

then write ' > a” to mean o’ = ¢” and a” Z d'.
11.2.2. If 9 is a linear system and K & %, K is said to be a come® if

we K,2=0 imply lwe K.

K is said to be a convex cone if K is a cone and a convex set.
A set K& % is a convex cone if and only if it satisfies

weK,A=0 imply lwe K,
and
w' e K, w' e K imply w’+w”eK_.

It may be noted that both the space % and the one-element set {0,}
are convex COnes.

11.2.8. Given a convex cone K & 9% a transitive reflexive relation
to be denoted by = (or = if we wish to be more explicit) may be
defined as follows : for any w/, w”’ e % w’ = w" if and only if w' —w" € K.
(In particular, w = 0, if and only if w e K.)

Example. Let % be the Euclidean two-space of elements w = (w®, w®)
where w®, w® are real numbers. Then the following convex cones are

of interest in defining ordering relations :
K ={w: w®»® =20,w®» =0},
K ={w: w® =0,w®» =0},

Ka = {Ow} ’
K.; = W .
We see that
w 2, 0, means w® = 0, w® =0,
W 2,0, means w® =0, w® =0,
w gxa 0, means w® = 0, w®» =0,
and

W 2k, 0, holds for all w e 2% i.e., it is a vacuous con-

straint.* Other relations could be obtained by replacing = by > in
the definitions of K, and K,. Thus we have a great range of possibilities

23 Tt would be more precise to speak of a cone with the vertex at origin, but we omit
the qualifying phrase since no other cones will be considered. (Our use of the term ‘‘cone’’
may seem unnatural, but it permits us to define the ‘“convex cone’ as a cone which is
convex.)

24 This makes it possible to cover simultaneously the cases of unconstrained and (non-
vacuously) constrained maximization by orderings based on convex cones.
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covering equalities, inequalities (= or >), and their various combinations.
This makes it possible to obtain results which can be specialized in a
variety of ways.

Let % be a linear topological space and K a convex cone in % In
the applications, we are interested in the topological, as well as the
algebraic properties of the cone K. In some theorems, we assume that
the cone K is closed. This is obviously true of the cones K, K,, K;, K,
in the natural (Euclidean) topology of the plane. On the other hand,
the cone

K = {(w®, w®): w® >0, w® > 0}
is not closed in the natural topology of the plane. We see that lack
of closedness may result from using cones corresponding to strict, rather
than weak, inequalities. In the economic applications the inequalities
are usually of the weak type, hence the closedness of the corresponding
cones is not a serious restriction.

Another topological property assumed for certain convex cones is that
they have non-empty interiors. Of the preceding examples, using again
the Euclidean topology of the plane, K, K,, and K; have interior points,
while K, and K, do not. The requirement of a non-empty interior can
be troublesome in infinite-dimensional spaces. Thus consider a space
l,(p = 1) whose elements are infinite sequences z = (2, ,, - - -) such that

;z:;lxilwoo.

This space is normable, the norm being of z defined as

Lt i/»
(S1ak)”.
Now consider the convex cone K consisting of all the elements
z of [, whose every coordinate is non-negative, this being the natural
counterpart of the non-negative orthant in a finite-dimensional space.
It may be seen that K has no interior, i.e., every element of K is a
boundary point. To see this, take an arbitrary element o’ of K. Given
a positive number e, however small, one can find an element z” of [,
whose distance from the element z' is less than e and such that =’ has
at least one negative coordinate ; this can be accomplished by taking
z” such that all but one of the coordinates of z” are the same as the
corresponding coordinates of ', while one coordinate of «” (with a suf-
ficiently high subscript) is the negative of the corresponding coordinate
of .

On the other hand, let (m) denote the space of infinite bounded
sequences & = (&, &,, +-+), normed by

x|l = sup (lz.]) ,
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and define K, as in the preceding example, as the set of all « with non-
negative coordinates. Here any point z whose coordinates are all
positive is an interior point of the cone.

I1.2.4. Let K< 9% be a convex cone. Then the conjugate K® of K
is defined by

K® = {w*e % *: w¥w) =0 for all we K} .

Since K® is a cone, it is called the conjugate cone of K. Clearly, K®
is the set of linear continuous functionals isotone with respect to =g.
We note that K® is never empty, since 0* ¢ K©,

In accord with the notational principles of I1.2.3, we write w* = 0%
(or, more simply, w* = 0), and call w* non-negative on K if w* e K®,
Furthermore, we write w* >z00 (or: w* > 0}) and call w* strictly
positive on® K if w* =00, and w >0 implies w*(w) > 0. It is seen
that w* > 0 if and only if w* is a linear continuous functional strictly
isotone with respect to =. ‘

11.2.5. LeMMA I11.2.% Let K be a closed convex cone in a locally convex
linear space %% and let w, € % be such that

w¥*(w,) = 0 for all w*=0.
Then w, € K.
ProoF. Suppose w, ¢ K. By virtue of the Mazur-Bourgin Theorem®

K is regularly® convex, since it is closed and convex and % is locally
convex, so that there exists a wi¥ € % * such that

sup wy(w) < wi'(w,) .
wEK

14

Now, since wj(w,) is a fixed number and K a cone, we must have
sup wy(w) = 0.
wWEK

Let wf = — w¥. Then
wH(w) = 0 for all we K; i.e., w¥e K%,
and
wi(wo) <0,
which contradict the hypothesis of the Lemma, hence the proof is
completed.

11.2.6.1. LemMMA I1.3. If K< % 1is a convex cone, then the conjugate
cone K® is regqularly convex.

ProoF. If K® = 927* no w¥ ¢ K® exists and the condition of regularity
is (vacuously) satisfied. Now let K® % %7* and take wf ¢ K® Then
there exists a w, € K such that wi(w,) < 0. Write w, = — w,. Since

25 . The reader should be warned that this term has a somewhat unusual meaning. In
particular, if K is the origin, every linear functional is strictly positive on XK.

%  For the case of linear normed spaces, cf. Krein and Rutman [29], p. 16.
27 Cf. Theorem II.2. in II.1.4.1.
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w*(w,) = 0 for all w* € K® (because w, € K and by definition of K®),
we have
wH(w,) = — w¥(w,) £ 0 for all w* e K9,
while
wi(w,) = — wi(w,) >0,

which shows that K® is regularly convex. This completes the proof.

11.2.6.2. For the special case of % linear normed, the preceding result
follows from Krein and Rutman [29], p. 38, where it is proved that K®
is weak* closed ; since the convexity of K® is evident, this implies the
regular convexity of K®; ef. TI.1.4.1. .

II.8.1. A very abstract version of a (partial ordering) maximization
problem of the type considered in the present chapter in connection
with the Lagrangian saddle-points can be formulated as follows.

Let 2 be an arbitrary space, X a subset of 2%, 27 an arbitrary
space with the transitive relation p, and 2~ a linear system with 2’ = 2"
defined to mean 2z’ — 2"’ ¢ P, where P, is a convex cone.

Furthermore let f be a function on 2 into 2 and ¢ a function on
& into 2. .

Let the constraints be z € X and g(z) = 0,.

Let X, denote the permaissible z-set, i.e.,

X =Xng'P)={rez:ze X 9@x) =20},

while

Yo :f(XD) = {y Y :f(x)r T e X! g(m) = 0,}
is the permissible y-set.

Denote by Y, the p-maximal subset of Y, ; i.e.,

Vo= (e v e Y,y oy imply w09}
and call Y, the mazimal y-set, while X, = f‘l(f'n) is called the mazimal
z-set. An element of a (y- or z-) maximal set is called mazimal.

The objective is typically to characterize X,,. Hence a maximization
problem is uniquely determined by the selection of

n=(2,X;Z,0; 2,P:; 1, 9)
and we may refer to = as the (partial ordering) mawmimization problem.

In some contexts we only need %/, p, and Y, without reference to
how Y, is defined. In others specializing assumptions are made with
regard to the entities defining =.

I1.3.2. For a given maximization problem =z, as defined in the preced-
ing section, we define a gemeralized Lagrangian expression ®, or (where
safe) @ by

® =0, =0z, *; 7)) =7 [Ax)] + L)), ze =2,

where (* and 7* are real-valued functions on 2 and 2’ respectively.
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That is, ®, is a real-valued function in the Cartesian product space
Z° x [£*] x [#*] where [¢*] and [7*] are the spaces of real-valued func-
tions on 2 and 2/ respectively.

11.3.3. Let 2 be a topological linear space, 2 * its conjugate space.
Symbols such as z*, z;° denote elements of 2*. We say that @, (where
m, differs from = in that =, requires 2 to be a linear topological space)
has an 4sotone saddle-point at (w, z5 ; 75) if

(1) meX,zf=0,75e[7F] and 75 is strictly isotone with respect to p,
(2) D@, 20 ;5 70) = P (@0, 27 5 7)) = D (20, 2% 5 70)
for all z e X and all 2* =0 .

Now specialize the partial ordering maximization problem =, to the
vectorial (ordering) mazimization problem m, as follows. Let .27 be a
linear system, P, a convex cone in 27, x = 0 be defined as z € P,, and
X = P,. Furthermore, let 2 be a linear topological space, P, be a
convex cone in %7, and let p be 2, (Hence y& € Z*, and yg >0
means y; is strictly positive on P,.)

We then say that the Lagrangian expression ®,., has a non-negative
saddle-point at (xy, zF ; y&) if

(1,) xoZO, zﬁ*goy y0*>0
and
(2,) q)ﬂz(x! zﬂ* ) yo*) é (D-rtz(mO: z: 5 ?J;:) g (I)-mz(xm Z* ) yl?.)

for all z =0 and all 2* =0 .

II.4. Let 27 and 27 be linear systems and let f be a (single-valued)
function with a convex domain & < .2° and range <% < %/. Then the
Junction f is said to be concave if, given any z/, 2"’ ¢ & and any real
number 0 < 6 < 1, we have

1 = 0)f@) + 0f=") < /I — Oz’ + 627,

where y' = y"" means ¥’ — y” € K for a given convex cone K in .
II.5.1. Let 97" be a Banach space and 4 a (single-valued) function
whose domain is a set A of reals and the range a subset of %7, i.e.,

w = ka) , aeceA,we W .

Following Graves® we define the first derivative b'(a,) = E‘—i—h(a) of
1o

d=¢o

h with regard to « at «, as the element of % such that

h(o) — ha)
a —

lim

&—oﬁo

—h(ay)|=0.

T Reference [17], p. 164.
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Similarly,

@ d d
B ~ 4 d,
Pl o G

2=

Now let .22 and 2 be Banach spaces and f a function on 2° into
2. Then flz, + az’), a real, m, 2 € .2°, may be regarded, for fixed
x, and z', as a function of the real variable @ with values in 2. We
define the first, second, etc., variation of f at x, with increment x’' by

, ete.

o= 20

fime; @) = d_(i_f(x,, + agx)

’

Oflay; &) = @’ A=y + az’)

e , ete.”
104

=0

When the domain of f is open and Jf(z,; z’) exists and is continuous
in o', 0f(z,; «') is called the Fréchet differential of f at x, with increment
z’. It has been shown® that the Fréchet differential 0f(z,; ) so defined
is linear (i.e., homogeneous and additive) as well as continuous in z’;
also that

lim —L
Hati=0 || 2’|

S + 2') — (@) — of(zo; )| =0

for all z in the domain of f.

1I.5.2. The ‘‘function of a function rule’ is valid for Fréchet dif-
ferentials® and may be stated as follows.

Let 2/, 22, 2 be Banach spaces; f a function on 2° into %/, g on
2 into 2.

y=r, w=r=),

=9, =9,
and assume that f and g possess Fréchet differentials at z, and 2z, re-
spectively. Write

Fo(@) = h(2)
so that ~ is a function in 2 into %/. Then, for ¢ € 2,
6z 5 €) = f(@s; 09(z0 5 £))
The reader is referred to Fréchet [11], [18], Hildebrandt and Graves

2 An equivalent definition of §f{z, ; =') is
n—
8flwo ; &) = Hmw
a—0 «
where, for a function w=~"h(a) of real variable @ with values in 9%, we write

lim h(a) = woy, wg € %~ if and only if lim || k(e)—we|| = 0.
a—a

=g, ()
Cf. Hildebrandt and Graves [19], p. 136, and Hille [20], pp. 71-72.
30 Hille [20], p. 73 and p. 72, Def. 4.3.4.
81 Cf. Hildebrandt and Graves [19], pp. 141-44; Graves [17], p. 649.
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[19], Graves [16], [17], and Hille [20] for an account of the properties
of Fréchet differentials.®

11.6.1. Let 2~ and 2 be two Banach spaces. Consider the linear
system whose elements are the ordered pairs (z,v),z € 27,y € %, with
addition and scalar multiplication defined by
(1) {(ﬂv’, V) + @ y) =@ +2" v +y")

alz, y) = (az, ay), « real.

Then the linear system of the ordered pairs (z,y) will become a Banach
space if it is normed in such a way that®

%) lim @, =, and limy, = v,

n—>oo n—rco

if and only if }Ll_I)E “ (@ny Yn) — (@0 Yo) ” =0.

Such a Banach space of the ordered pairs (z,y) is denoted by 2 x &
and is called the (Bamach) product of 27 and 2. Writing, for A = 27,
BSZ,AxB={(vy) :xec A yec B} we have® A x B closed if and
only if both A and B are closed.

More generally, let 22 and 27 be linear topological spaces and consider
the linear system of the ordered pairs (x, y) with the operations defined
by (1’) above.

Then the space of pairs (z, y), again to be denoted by 2”7 x 2 (and
called linear topological product), may be topologized by choosing as a
base® the sets

{&,y):a'elU,y ez},
{@,y):a"ez,y eU},
{@",y") o e U,y e l,},

where U, is any open set in 2%, U, any open set in 2/. It may be
noted for later reference that® with this topology A4 x B is closed if 4
and B both are.

It is known ¥ that if 2 and 2  are linear topological spaces, then
so is 2 x 2; if 2 and % are locally convex, then so is & x 2.

11.6.2. Let® 27 = 2 x 27" be the (Banach) product of the two
Banach spaces 27/, 2. The symbols z’ and & denote elements of 27,
z”’ and &’ those of 27", x and € those of 2°. If f is a function on

32 See also V.3.3.8 for a discussion of differentials in a class of spaces wider than
Banach.

3 Banach [3], pp. 181-82, especially eq. (33), where examples of norms satisfying (1) are
given. Cf. also Hyers [22], pp. 3, 5, and Tychonoff [43], p. 772.

3¢ Cf. Kuratowski [32], 24.11.1, p. 219.

36 Cf. Lefschetz [34], p. 6 (6.1); p. 10, Section 12.

36 Lefschetz [34], p. 11 (12.6).

37 Tychonoff [43], p. 772; Bourgin [9], p. 639; Hyers [22], pp. 3, 5. In these sources it is
shown how a linear topological product of an arbitrary ‘fémily of spaces is formed.

38 We confine ourselves to the product of two spaces. The treatment of &M x 2 () x ...
x 2 (™) is quite analogous.
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£ into the Banach space %/, df(z ; €) will denote the Fréchet differential
of f at =z with increment ¢&.

Then the partial Fréchet differential of f with respect to x' at x, with
increment & is written as 0, f(w,; ¢) and is defined by

(1) 0 f(me; &) = 0Rxe; (€,0:), xe2”, a,&e2.
We have® the additivity law
(2) Of(@y; (€,€") = 00 (@ ; €) + 0unn S5 €7) .
I1.6.3. We shall now state the ‘‘ function of a function ’’ rule for the

case of a function of several variables.
Let
= 20 x 2D % e x FM™

=20 x 20 x ... x /@.,‘(m>
where all spaces are Banach and so are the products. Also, let f be a
function in .2° into the Banach space %/, ¢® in 2 into 22®.

y =fl=), Yo = S(2o) ,
z® =g®@), 2P =g () (@=1,2+--,n)

and assume that f and each of the ¢® possess Fréchet differentials at
z, and gz, respectively. Write

h(z) = (g (2), g®(2), - -+, g™ (2)))
so that & is a function in 2 into 2. Then, for ¢ € &,

Sh(zy; ) = 20 ofaD(my ; 3 6209 W (2, ; C)
i=1 I=1

where (@ e 2™ @
I1.6.4. We shall find it convenient to define a ‘¢ quasi-saddle-point ”’
for Lagrangian expressions. We say that
O(z, 2% ; y5) = yi[S@)] + 2*[g(z)]
has a non-negative quasi-saddle-point at (z, z; ¥-) if and only if
yF > 0,2, = 0,2f =0, and the following relations hold :
0. (@0, %) ;) =0 forall =0,z =2,+¢,
6,@((370, z(;k) ) QZU) = 0 ’
0, DP((zo, 25) 5 C*) = C¥g(zy)] = O for all z* = 0, ¢* = 2* — 2,
82D((0, 7) ; &) = alo(@)] = 0 .
It is seen that if ® has a non-negative saddle-point at (=, 2 ;-vs ),
then it necessarily has a non-negative quasi-saddle-point there, but the
converse is not true.

3 Cf. Hildebrandt and Graves [19], p. 138.
4 Cf. Fréchet [11], pp. 318-21. (The reprinted version in [13] is free of the misprints in

[11})
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III. The ‘‘ Minkowski-Farkas Lemma *’

II1.1. Throughout III, /2”7 is a linear topological space, 2’ a locally
convex™ linear space, ¥’ = ¢ means y — y” € P,, where P, is a closed
convex cone. 7' is a linear continuous transformation on 2° into Z/.
22, % ,P, T are fixed throughout. 27*, 2°* are the conjugate spaces
of 2%, 27, and T* is the adjoint of T.

II1.2. If a* e 2°* is such that
(1) z* = T*(y*) for some y* e 2/*,
we say that eq. (1) is solvable. If z* is such that eq. (1) holds for
some y* = 0, we say that eq. (1) is positively” solvable. We then also
say that x* makes eg. (1) positively solvable.

The set of all z* e 2°* which make eq. (1) positively solvable will
be denoted by Z;, i.e.,

(2) Zy = {x* e 2% : x* = T*@y*), y* = 0} .

Note that, since {y*:y* = 0} = P9, we have
(3) Zyp = T*(PY) .

The point z* is said to be positively normal with regard to T if
(4) for all x € 27, T(z) = 0 implies z*(z) = 0 .

We shall denote by V. the set of all o* positively normal with regard
to a given T, i.e.,

(5) Ve={z*e 2*: for all z ¢ .27, T(x) = 0 implies z*(z) = 0} .

III1.3. THEOREM IIL.1. If a* makes eq. (1) positively solvable, then x*
w8 posttively normal with regard to T. In set language,

(6) Zp S V.

ProoF. Let z* = T™(y*) for some y* = 0. Then we have, by the
definition of T,

(7) z*(z) = (T*y*) (=) = y*(Tx), for all z e .27 .
Therefore, since y* = 0, T(x) = 0 implies x*(z) = 0.

I11.4. TueEOREM IIL.2. If every z* positively normal with regard to
T makes eq. (1) positively solvable, then the set of all =* which make eq.
(1) positively solvable is regularly convex. In set language, if Vg < Zn,
then Zr is regularly convex. (We may note that, in view of (6), Theorem
II1.2 may be equivalently restated as follows: if Vy= Zp, then Zp 1s
regularly convex.)

PROOF. We note that the set
(8) X, = {ze.22: T(z) = 0}
is a convex cone and V, = X¢, so that, by Lemma II.3 in 11.2.6.1, V,
is regularly convex and hence so is Z, = V.

4 Cf, I1.1.1.3.
4 ‘“Non-negatively ’ would be more accurate but awkward.
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II1.5. THEOREM III.3. V., cotncides with the regular convex envelope
of Zyp:

( 9 ) VT = ZT .
Proor. In view of Theorem III.1, it will suffice to establish
(10) Ve S Zo,

i.e., that z* ¢ Z, implies z* ¢ Vo.

Consider some z¥ ¢ Z,. We shall find z, such that T(z,) =0 while
x5 (z,) < 0.

Since Z, is regular convex (cf. I1.1.4.2), there must exist z, € 7
such that
(11) sup z%(z,) < 25 (Z0) -

*€EZp

Since a cone Z;, is contained in Z, and

sup z*(x)
THEZ
is finite, (11) implies
(12) z¥(x) £ 0 < zf(x,) for any z*¥ e Z, .
Now write
(13) = — .
Then (12) may be written
(14) xf (@) = — z(x) <0,
and
(15)  a*(zy) = y*(T'z) = (T*y*) ) = — z¥(z,) = 0, for any y* = 0,

since z* = T*(y*) e Z,.

Now since P, = {y*: y* = 0} is assumed closed and %  locally convex,
the Lemma II.2 in II.2.5 applies. It follows that
(16) T(z) 2 0.
But (14) and (16) together imply zF ¢ V..

II1.6. THEOREM IIl.4. The positive normality of x* with regard to
T 4s equivalent to x* making eq. (1) positively solvable if and only if the
set of all z* making eq. (1) solvable is regularly convex. In set language,

amn Zp= Vyof and only &f Zr is regularly convezx.
Proor. If Z, = V,, the regular convexity of Z, follows from Theorem

III.2. On the other hand, if Z, is regularly convex, we have Z, = Z,
(cf. Lemma II.1 in I1.1.4.2). The equality Z, = V, then follows from
Theorem IIIL.8.

II1.7. The finite-dimensional Euclidean case. In a reflexive Banach
space, a set is regularly convex if and only if it is convex and (strongly)
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closed -(cf. II.1.4). Since Z, is always convex, for reflexive Banach
spaces one may substitute ¢ (strongly) closed ’’ for ‘‘ regularly convex ”’
in Theorem III. 1,2, 3, and 4.

In particular, if 2 and % are finite-dimensional Euclidean spaces
(hence Banach and reflexive in the Euclidean distance topology) and T
is represented by a matrix, Z, is a polyhedral convex cone (cf. Gale in
[14], p. 290, Def. 1’) which is closed in the Euclidean distance topology.
Hence for this case Z, is necessarily regularly convex and Z, = V, for
all 7. The Minkowski-Farkas Lemma as usually stated asserts that
Vs < Z, in the finite-dimensional Euclidean case. This follows from
Theorem III1.3, since Z, is known to be regularly convex.

[Let ¥y = (Y1, Ysy *++, ¥Yn) and write I = {1,2, --+, n} .

Partition I into I’ and I where I' U I”" = I, I' N I = ¢, and either I

or I’ may be empty. The relation y = 0 is interpreted as meaning
y; =0 ifsel,
y, =0 if 9el”.

The Minkowski-Farkas Lemma is usually stated for I =1/, but it is
clear that P, = {ye 2 :y =0}, where the meaning of y = 0 is that
just stated, is necessarily closed.]

III. Appendixz: Relationship with Hausdorf’s results. |[NOTE:
This appendix is incorrect in its present form and should be ignored.
For technical reasons, however, it was impossible to eliminate it from
the present printing.]

IITa.1. Suppose that z* is positively normal with regard to 7' (cf.
II1.2) and let, for some z’ € 2,

(1) T)=0.
Then
(2) T(z') = 0
and
27) T'(—2)=0.
Since x* is positively normal, the preceding inequalities yield, respectively,
(3) @) 2 0
*and
(3) (=) 20,
ie.,
(4) z¥(z')=0.
Hence, if =* is positively normal with regard to 7', we have
(5) for all z € .27, T(x) = 0 implies z*(z) = 0.

Call z* satisfying (5) normal with regard to T. Il.e., we have shown
that of =* 1s positively normal with regard to T, then it is also normal
with regard to T.
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IITa.2. We shall now show that
(6) of x* is normal with regard to T, then either x* or —z* s
positively normal with regard to T'.
For suppose it could happen that (5) holds and neither z* nor —z*
is positively normal with regard to 7. Then there must exist z;, z, € 27
such that

(7.1) T(z) > 0,
(7.2) x*(x) >0,
(8.1) I(z,) > 0,
(8.2) z¥(z,) < 0.

[Suppose no such pair =z, x, exists. Then it must be that either
T(x) > 0 implies z*(z) = 0 or T(x) > 0 implies z*(z) < 0. This, in con-
junction with (5), would then yield (6).] °

Let

(9) 2= L)
T(a.)

Then
(10) Tz, — Axy) = T'(w,) — 2T(x,) = 0.

On the other hand, by (7), (8), and (9) (which imply 2 > 0),
(11) (@, — Az,) = a¥(m) — Ax¥(2) > 0.

Hence (5) fails to hold for z, — Az, € 27 which establishes the validity
of (6).

IITa.3. Write
(12) Fp = {z*: for all z e 27, T(z) = 0 implies z*(z) = 0}

(the set of a* normal with regard to T') and recall that the set of all
z* positively normal with regard to 7' is denoted by V,. Hence the
results in IIla.l and IIla.2 may be written as

(13) Frpo=V, U (=V;).
IIla.4. We shall now show that®

(14) F,=V,— V.
First,

(15) FT:VTU(_VT)QVT_Vz'r

for any element in V, U (—V;) is either of the form zf — 0Ff where
z¥ e V, or of the form 0 + z¥ where zf € (—V,). Note that 0y e V,

N(—Vy).
On the other hand, let z* be an element of V, — V,, i.e.,
(16) s*=gf+aF, afeVy, afe(=Vp.

By (18), z¥ e F, (¢ = 1,2). But then z* € Fy, since F, is a linear set.

$8 4 — B is the set of all elements of the form a — b, a € 4, b € B. 4 — 4 is neither
empty nor the null element!
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For let zf € Fr, (i =1,2). Then T(z) = 0 implies zf(z) = 0. Consider
z* = axf + ax; and suppose T(z) = 0 ; then o*(v) = ez (x) + axf(x) =0,
hence z* € F.

IIIa.5.0. From now on we shall assume that
(17) all the spaces considered are Banach (which implies that both 7T

and 7™ are bounded, since T was assumed continuous) ;
17"y for every y*e Z*, there exist yf e P®, vy e P® such that
v =yt -
(17"") is equivalent to the condition that P, is a mormal cone; cf. Krein
and Rutman [29], Def. 2.2, p. 22, and p. 24.

I11a.5.1. Exzample. Let %/ be the space of all continuous real-valued
functions y(¢) defined on the closed interval [0, 1]. (This space is usually
denoted by C[0,1].) Then* every bounded linear functional y* can be
defined by

(@) vy = || veg (we)

where ¢ is a function of bounded variation. Now define y e P, (i.e.,

y = 0,) to mean

(b) y(t) =0 forall 0 <t<1.

Then y* = 0F (i.e., y* € P®) means that the function g in (a) is monotone

non-decreasing. But it is well known (e.g., Titchmarsh [42], p. 355,

Sec. '11.4) that if ¢ is a function of bounded variation, it can be ex-

pressed as

(c) 9=0— 0

where ¢, g, are monotone non-decreasing. I.e., the cone P, is normal.
IITa.5.2. The condition (17”) may be written as

(18) Z* = PP — P% .
Now suppose
(19) x* e T™zZ™),
ie.,
(20) ¥ = T*(y*) for some y* e Z* .
Then, by using (17), we have
(21) z* = T*(y" — y7) (yFePP 1=12),
ie.,
(22) z* =zf — ¥
where
(23) zf = T™*(y¥) (yf e PP, 1=1,2),
go that, by definition of Z, (cf. II1.2 (2)),
(24) z¥ e Z, (t=1,2),

4 Banach [3], Section 4.1, pp. 59-61.
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ie.,
z*e Z, — Z,;
hence .
(25) T * < Zp — Zy .
On the other hand, let
(26) ¥ e Zpy — Z, .

Then the relations (22), (23) hold for some y¥ € PP (i = 1, 2), and hence
(20) holds for y* = y¥ — y¥, so that (19) follows and

(27) T(Zz*)2 Z, — Z, .
(Note that (27) holds even if P, is not assumed normal.) Egquations (25)
and (27) together yield
(28) T*Z* =2, — Zp .

IITa.5.3. Consider now the case when Z, is regularly convex. We
know (Theorem III.4) that in this case

(29) Zp=Vp.
But then, from (14) and (28) we have
(30) T¥(z*) = Fy .

When (30) holds, Hausdorff ([18], p. 307) says that the equation
z* = T*(y*) is normally solvable ; he calls the equation y = T(x) normally
solvable if and only if
(81) T(2) = Fps
where
(32) Fro = {y: for all y* e 2*, T*(y*) = 0 implies y*(y) = 0} .
Hausdorff shows (ibid., Theorem X, pp. 308, 310) that in Banach spaces
the following four properties are equivalent: the normal solvability of

a* = T*(y™), the normal solvability of y = T'(x), the closedness of T(-2%),
and the closedness of T%(2/%), i.e.,

(83) (30) & (81) & T(27) closed & T*(27*) closed.

IlTa.5.4. Now, under the assumption that P, is normal and Z, reg-
ularly convex, we have obtained (30). It follows from (33) that both
T(#”) and T*(2'*) are closed.

The example below® shows that Z, need not be regularly convex
when P, is normal. This is of importance, since it shows that the
assumption of regular convexity in the theorems in IV is not automati-
cally satisfied.

Let 22 = C[0,1] and

y = I(z)
where

4 Closely related to one suggested by Professor B. Gelbaum.
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() = So o(t)dt .

Then ¥ is absolutely eontinuous, hence continuous, and we may take
27 = C[0,1] also, As noted earlier, we may define y =0, to mean
Y(t) 20,0 <¢ <1 in which case P, is normal. Now take any function
9, € C[0, 1] which is not absolutely continuous (e.g., the one given by
Titchmarsh [42], Sec. 11.72, p. 366). Then ¥y, is not* in the range
T(°). Buty, is a strong (uniform) limit of a sequence of polynomials,*
hence %, is an element of the closure of 7(.2°). Hence 7(2) is not
closed, hence (by (33)), eq. (30) fails, so that Z, cannot be regularly
convex.

II1a.5.5. Consider now the special case when

(34) P, = {0} .
(P, is (vacuously) normal, but this fact is of no relevance in what
follows.) Then

(35) PP =%,
In this case we have (cf. III, eq. (3))
(36) Zy = TXZ™) .
Also, using (13), we get

(37) Ve =Fy
since

(38) Ve=— TV,

[Let =z* € V,. Then T(z) = 0, implies z*(x) = 0. But, for P, = {0,},
y =0, is equivalent to —y = 0,; hence T(z) = 0, implies T(— z) = 0,
which in turn yields 2*(— 2) =0 or — z*(x) = 0. The latter relation
means that — z* e V,. Hence V, < (— V,). That (— V;) & V, is
shown in the same fashion.]

Now suppose that

(39) ZT = VT .
This is equivalent to
(40) Fr=T%2™),

i.e., Hausdorff’s normal solvability of the equation z* = T™(y*).

By Theorem II1.4, (39) implies that Z, = F, = T%(2'*) is regularly
convex ; hence (cf. II.1.4.1) T™(2'*) is closed in the weak* topology,
hence it is (strongly) closed. Thus we have obtained Hausdorft’s result
(part of his Theorem X), viz., that the normal solvability implies the
closure of T%(%2'*), as a special case of our Theorem IIl.4. On the
other hand, suppose the space 2 to be reflexive® and let T"(2/*) be

46 Cf. Titchmarsh [42], Section 11.71, p. 364.
47 The ‘“ Weierstrass Theorem,”’ cf. Rudin [40], Section 7.24, p. 131.
48 Cf II.1.4. :
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closed. In this case (ef. II.1.4) regular convexity is equivalent to regular®
convexity and the latter is always equivalent to closure with convexity.
Hence, since 7%(2*) is closed and convex, it is regularly convex and this
implies, by Theorem III.4, the equalities (39) and (40).

I.e., we have shown, as a special case of our results in III, when 2
is reflexive, the (strong) closure of 7%(2/*) is a sufficient condition for
the normal solvability of the equation z* = T*(y*) which is also a part
of Hausdorff’s Theorem X.

IV. Further Theorems on Linear Inegualities

IV.1. In IV all spaces are assumed locally convex linear. Products
of topological spaces are understood to be linear topological products,
hence the product spaces are also locally convex linear.

IV.2. Let U denote a linear continuous transformation on .2 into 2.
We introduce the transformation 7' (which is easily seen to be linear
and will also be shown to be continuous) on 2° into the product space
Z = 2 x 2 defined by

(19 T(z) = (U(=), z) for all z e 2.
In the notation of the type used in matrix calculus we may write
U
") 7= |,
I

where I(z) = z, for all z e 2°. (l.e., I is the identity transformation
in 22.)

If P,, P, are convex cones in 2 and 2 respectively, and z' = z”,
2 =272 mean ' — 1z’ e P,, 2 — 2’ e P, respectively, then for y = (2, ),
we write ¥ = y” if and only if ¥ — y” € P,, where

(2) P,=P,x P, ={(zx):2=0,2=0}.
It may be noted that if P, and P, are closed, then so is' P, (cf.
11.6.1).

Iv.3. TreoreM IV.1.

A. Let 27 be a linear topological space, 2 locally convex, U a linear
continuors transformation on 2 to 2, P, and P, closed convex cones
in 2 and 2 respectively, and assume that the set

(8) Xr={a"e2: 2" =T*y"), v 2 0}

18 regularly convex.
B. It follows that, for any x* ¢ 2%, if

(4) Ulz)=0,z=0 imply z*(z) = 0 for all z € 27,

then there exists a zy = 0 such that
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(5) a[U@)] =a*@) forxz0,

and

(6) z¥z) =0,U(x)=0,z=0 amply z7[U(x)] =0 .
Proor. (5) may be rewritten as

(4) T(x) =0 implies z*(z) = 0 for all z e 27 .

Furthermore, T is continuous in z.%
Since X7 is assumed regularly convex, Theorem III.4 yields a functional
y& = 0 such that

(7) z¥(z) = yF[T(=)] for all z € 2.
Now, since

(8) y=(22)=(20) + (0, ),

we have

(9) ¥ (W) = ¥, ((2, 0)) + % (0, @) .

We shall write

(10.1) Y7 ((z, 0)) = z3(z) for all ze 2,

(10.2) Y70, z)) = zf(x) for all z € .27,

where y((2, 0)) is continuous in 2z and y¥((0, z)) is continuous in =.
Since z=0 implies (2,0) =0 and z =0 implies (0, ) = 0, it follows
that, for 2, z7° defined by (10), v = 0 yields

(11.1) =0,

(11.2) zF=>0.

Thus

(12) z*(z) = y§[T(2)] = v [(U(=), 2)]

= 2z [U(=)] + =¥ (z) for all z € 2 .
Since zF = 0, (5) follows.
Now let a; satisfy the hypotheses of (6), i.e.,

(13.1) () =0

and

(13.2) T(z) =0 .
Equations (13.1) and (5) yield

(14) 2 [U)] =0.

4 We have T(z)= (U(z), I(xz)) where I(z) =z for all x € 2. Then (cf. Lefschetz [34],
p. 7(8.2)), T is continuous if every inverse image of a member of a sub-base in = & x 2
is open. Such a sub-base is given (cf. Lefschetz [34], p. 10) by the collection of sets

Y' = {y’ = (2}, '): 2' € N}, ' € &}, Y" = {y’ = (=" x'"): 2" € %,z € Nz}
where N, N, are open sets in ¥ and 2 respectively. Now the inverse image 7T-YY’)=
{z: T(z) € Y'} = {z: Ulx) € N,, I(z) € &} = {z: U(x) € N,;} = U-IIN,) which is open since
N, is open and U continuous. Similarly 7-YY") = {z: U(z) € =, I(z) € Nz} = N> which
is open.
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On the other hand, since U(z;) = 0, and zF = 0,
(15) : Z[U(@)] = 0.
Equations (14) and (15) yield the conclusion of (6).

IV.4. Let all hypotheses under A in Theorem IV.1 hold, except that
X% is not assumed regularly convex while .22 and 2  are taken to be

normed spaces. Suppose there exists a zf = 0 such that (5) holds.
Then define

(16) o(x) = z¥(z) — 27 [U(x)] for all z e 27 .
Clearly ¢ is linear, and, because of (5),
amn z=0 implies ¢(z) = 0 .

Also, ¢ is bounded, since for any z e 2%,
(18) le(@)| = |a%(@) — & [Ulz)] = |2¥(@)| + [ U]
< lle*ll - lzll + =gl - LT - ]l
= (lla* |l + ll= ]l - 1T =]
Thus
(19) peZ*, o=0F.
Now define
20)  ¢(y) = ¢((2, 2)) = 25 (2) + o() for all ze 2 and all z e 27,
which is linear in y, since
(21.1) Haw) = Halz, 2)) = H(az, ax)) = 2 (az) + plaz)
= az}(?) + ap(z) = ad(y)
and
(21.2) Sy +y") = ¢(# + 2", 7" + 27) = (7 + 2") + o(a’ + 2")
= 2(%) + & (2') + ¢@) + (@)
= ¢y + ¢ .
Also,
(22) y = 0 implies ¢(y) = 0
since if (2,2) =0 then 2= 0 and # = 0 and both 2y and ¢ are non-
negative functionals.

Finally, ¢ 1is continuous. For let (z,, z,) = Y = ¥ = (7, o), 7 =
1,2,--.. Then, by IL.6.1, eq. (1), 2, =2 and =z, —xz, Hence, since
25 and ¢ are continuous, 27(2,) — zi(2) and ¢(z,) — ¢(x,), and therefore,
P(Yn) = ¢(%).

Hence _

(23) gez*, ¢$=07.
Because of (16), we have

(24) z¥(z) = 2 [U(z)] + o(x) for all z e 2~ ,
e., by (20),
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(25) - a¥(z) = ¢[(U(=)), 2)]

= 9[T(x)] for all z € 2,
or
(26) o =T*¢), ¢=07.

Now (26) holds for all z* ¢ 2°*; it follows from Theorem III.4 that
the set X7 is regularly convex. Thus we have shown that, at least
in normed spaces, given the other hypotheses under A in Theorem IV.1,
the assumption of regular convexity of X% is mecessary (as well as suf-
ficient) for the validity of the conclusions. We may state this as

THEOREM IV.2.

A. Let .7 and 2 be normed spaces, U a linear bounded transforma-
tion on 22 to 2, P, and P, closed comvex comes in 2° and 2 respec-
tively. Then the condition that the set
(27 X7 = {g* e 2% : o* = T*@*), y* = 0}
be regularly convexr is equivalent to the following : for any x* € Z*, if
(28) Uz)=20,2=0  imply 2*(2) =0  for all z e 27,
then there exists a z¥ = 0 such that

(29) Z[U(x)] < z*(x) for =0
and
(30) z¥x) =0,Ux)=0,2=0 smply 2¥[U(x)] =0 .

IV.5. The following result generalizes Theorem IV.1 to situations
where non-homogeneous inequalities appear.

THEOREM IV.3.

A. Let all the hypotheses under A in Theorem IV.1 hold, the tramsfor-
matton T being defined in (87), (88) below.

B. It follows that if, for some T € 2°,

€39 zZ=0and UZ)—a=0,

and if, for some xz* e 2’*,

(32) =20 and Ugx) —a =0 imply a*(z) — B =0,
then there exists o zy = 0 such that

(38) Z[Ux)—al<z*@)—F Sforz=0

and

(34) 2*@)=8U@)~a=20,2=20 imply 2[Ux) —a] =0
Proor. Consider the product space

(35) ¥ = {w:w=(p,x), p real, x € ZF}
and the linear transformation :
(36) P(w) = P((p, x)) = —ap + U(=) .
on % into- 2.

Then define
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37) T =< lI’) . Iw)=w forallwe ¥,

i.e.,

(38) T(w) = (Pw),w) or T((p, )= (—ap+ Uq), (e ﬂ;))

and 7T is a linear transformation on % into & x # . '
Now suppose we have shown that

(39) T(w) =0  implies w*(w) =0 for all we %~
where we define w* by
(40) wX(w) = w*((e, 2)) = — Bp + z¥(x) .

One can ascertain easily that Theorem IV.1 applies, with w replacing
z, w* replacing z*, and P replacing U.
Hence there exists a 27 = 0 such that

(41) Z[P(w)] £ w*(w) for w =0

and

(42) w*(w) = 0, T(w) = 0 imply 2z [P(w)] =0 .
Equation (41), written out explicitly, yields, by (36) and (40),
(43) wl—ap+ U] < —Pp+a*(w) for pz0,z=0.

Letting o = 1 we obtain (33).
Similarly, using (36), (40), and (38) in (42), and putting p =1, we
obtain (34).
Therefore, it remains to establish (89) which, written out explicitly,
states that
—ap+ U(x) =20
(44) pz 0} imply —fp+a"(z)=0.
xz=0
Suppose (44) is false. Then the hypotheses of (44) must hold and the
conclusion fail for some p, = 0, 2, = 0. We shall first consider the case
P> 0. I.e., we have
' —ap, + Ulz) = 0
(45.1) : po> 0

z, =0

and
(45.2) —PBpy + a*(2) <0,
so that
(46.1) Po

& >0

Lo
and
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(46.2) "y x*(—;f*’—) <0.

This, however, violates (32). Hence the implication in (44) has been
established for p > 0. We shall now take up the case p = 0. Il.e.,
we must show that

(47) Ulz) 2 0} imply o*(z) = 0 .
z=0
Let x, satisfy the hypotheses of (47) and take a real 4 > 0. Then, by (31),
(43) — o= U@+ Ulx,) =0
and hence
(49) —ad+ Uz, + i) = 0.
Note also that
(50) . z, +=0.

Hence, for p, = 1, z, = «; + Az, the hypotheses of (45.1) are satisfied,
so that

(51) — BA+ a¥(@, + 23) = 0.
We therefore have

(52) z¥(z,) + Az*(Z) — F]1 =0 for all 2> 0.
Suppose now that

(53) z*z) = —e<O0.

Then (52) is false for any 2 > 0 if z*&) — B < 0.
Hence suppose

(54) z¥x)—B=7>0.

and take A = ¢/(279). Then (52) becomes

(55) —e+—7>0,
27

i.e.,

56 . —f S0

(56) = >

which contradicts (53). Hence
(57) z*(x) = 0
which establishes the validity of (47).

IV.6. Consider now the special case of Theorem IV.3, where P, = 27,
so that the restriction = = 0 is necessarily satisfled for all z. In this
case 0* is the only non-negative element of .2°*. [For otherwise there
would be some zF e 2* with zf(x,) > 0 for some =z, e .27, hence
z¥(—x,) < 0 even though —z, € P,, which contradicts ¥ = 0.] Now the
counterpart of (12) for Theorem IV.3 is
(58) —fp + 2¥(z) = zf[—ap + U(@)] + w'p + z()

for all p and ze 2°.
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When P, = 2, it follows that z¥(x) = 0 and (58) becomes

(59) —PBp + z*(x) = zf[—ap + Ulx)] + =fp for all p and all z € .2~.
Putting o = 0, (59) reduces to '

(60) z¥(@) = 27 [U(=)] for all z e 2.

Furthermore, if U(%) —a =0 and z*(2) < z*(z) for all Ux) —a =0,
then (84) in Theorem IV.3 yields

(61) ZUEZE) —a]l=0.
which, by (60), implies

(62) z*(%) = 2 (a) .
Hence, with 8 < z*(&) by hypothesis, we have
(63) z¥(z) = 2f(a) = B,

as in Dantzig’s Corollary ([10], p. 334).
We may state these results as
COROLLARY IV.3.

A. Let 2 and 2 be locally convex linear spaces, U a linear transfor-
mation on 2 to 2, P, a closed convex come in 2, and assume that
the set

(64) X} = {a* e 2% z* = U*=*), z* = 0}
18 regqularly convex.

B. It follows that if, for some T € 2,

(65) UZ) —az=0,

and if, for some x* e Z¥,

(66) Ulx) —a=0 implies z*(z) — B =0,
then there ewists a zf = 0 such that

(67) w[U=)] = =*(z)  for all x € 27;
Surthermore

9 min #*(e) = @) Z 6.

It will be noted that, in Banach spaces at least, the assumption of
regular convexity of X is necessary as well as sufficient if U is bounded ;
this follows from Theorem IV.2.

In finite-dimensional Euclidean spaces the requirement of regular
convexity of X% is necessarily satisfied (cf. II1.9) and if 2 = 0 means,
as usual, that each of its coordinates is non-negative, then P, is closed.
Hence the hypotheses of the regular convexity of X} and the closure
of P, may be omitted, and we obtain, as a special case of Corollary
IV.3, the Lemma (and its-Corollary) stated by Dantzig in [10], p. 334.
This, of course, suggests the possibility of generalizing the Dantzig
result on the equivalence of linear programming and game problems,
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since the Lemma plays a crucial role in Dantzig’s proof and Corollary
1V.3 above provides its generalization.

V. The Lagrangian Saddle-Point Theorem

V.1. Isotone Lagrangian saddle-point implies mazimality.

V.1.0. Contrary to the customary sequence, we find it more convenient
to start with the theorem indicated in the title, rather than with one
in which the implication goes in the opposite direction. This is done in
order that the reason for requiring that the functional on 2/ be strictly
isotone and that on £ isotone may become more readily apparent.

V.1.1. Let =, denote the partial ordering maximization problem
obtained if in =, of I1.3.3 the following two requirements are added:

(1) 2 is a locally convex linear topological space ;

(2) P, is closed.

V.1.2. THEOREM V.0. Let the generalized Lagrangian expression
@, (z,2*; 75) have an isotone saddle-point at (o, 2 ; 75). Then @, is
maximal.

For the sake of convenience, we give a more explicit statement of
the preceding theorem.

THEOREM V.l. Let x € 27, while the values of f(z) and g(x) are in
2 and %, respectively, where % is ordered by a relation written as =
and 2 is a locally convex, linear topological space such that z = 0 means
z € P,, P, being a closed convex cone.

Write
(1) O(z, 2*) = 75 [A2)] + 2*[o(@)]
where 77 is a strictly isotone functional on Z and 2* 18 linear continuous
Functional on 2. Here z* = 0 means that z*(z) = 0 for all 2 = 0.

Suppose that, for some z, € X, z¢ =0, (X S ), we have
(2) Pz, 2) < Dy, 25) < Do, 27), for all z € X and all z2* =0
Then

(3.1) g(zo) 2 0

and, for all x e X,

(3.2) 9@) =2 0, f(z) = flz)  imply flz) = (@)
V.1.3. PROOF. The right-hand inequality in (2) implies that

(4) 2z l9(w)] = 2*[g(z)]  for all 2 =0

hence, in particular,

(5) Zlo(@)] = (& + &N)o(x)]  for all 2F =0,

since 2zF¥ + 2¥ = 0 if ¥ = 0. But (5) gives

(6) 0= z¥[9(zy)] for all z¥ =0,

and (3.1) follows from Lemma II1.2 in II.2.5 above, based on the Mazur-
Bourgin Theorem.
We shall now show the validity of (3 2). Equatlon (2) ylelds
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(7) D(z, z7) < D(x,, 2¥) for all z € X and all 2 >0.
Using z* = 07, this gives
(8) 2 lf(@)] + 2 [9(@)] < 7 [f(x)] for all ze X.

Now let «' ¢ X be such that the hypotheses of (8.2) are satisfied,
ie.,

(9.1) 9(=) =0
and
(9.2) : f@) = f(x) .
Suppose that the conclusion of (8.2) is false, i.e.,
(9.3) flo) 2f@).
Since 7y is strictly isotone, (9.2) and (9.3) together imply (cf. II.2.1)
(10) [ (@)] > 7 [f (@0)] -
Also, since zF =0, (9.1) gives
(11) zlg(@)] = 0.
From (10) and (11) it follows that
(12) 2L (2)] + 2 lo(=")] > 7 [f (z0)]

which contradicts (8). Hence (9.3) is false and (3.2) follows.

It is important to note, that, in this proof, it would not have been
sufficient to assume %7 isotone rather than strictly isotone (ef. V.2.6).

V.2. Scalarization.

V.2.1. Let % be a topological linear space and K a convex cone in
% . Then there always exists a linear continuous functional non-negative
on K, since the null functional [¢(w) = 0 for all w e %] has this prop-
erty. However, even with additional assumptions on K (viz., that it
is closed and pointed®), there may not exist any continuous linear fune-
tional strictly positive on K, as shown by example in Krein and Rutman
([29], pp. 21—22). On the other hand, it has been shown (i¢bid., Theorem
2.1, p. 21) that if K is a closed pointed convex cone and %~ a separable
Banach space, a linear continuous (equals bounded, in this case) func-
tional strictly positive on K does exist. It is shown below that the
requirement of pointedness can be removed (Lemma V.2.2 in V.2.5
below). [‘‘Strictly positive’’ is defined in II.2.4.]

When a strictly positive functional exists, it may be used to ‘¢ scala-
rize ”’ the Lagrangian problem. It has been pointed out in V.1.2 that
a non-negative functional is not adequate for our purposes (cf. also
V.2.6 below).

V.2.2. Let P, < % be a convex cone in the linear topological space
2. We write y =" if and only if ¥ — y" € P,. Y denotes the =
—maximal subset of the given permissible set Y.

5% K is said to be poinmted if 0, #+ w € K implies —w ¢ K.
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An element™ y, € Y may have the property that there exists a y;“o =
y& > 0 such that
(1) y € Y implies yf(y) = yi'(w) -

In the light of the remarks in V.2.1, such a yF will not always exist
in infinite-dimensional spaces. But even in the two-dimensional Euclidean
space, where every closed convex cone does possess a strictly positive
linear continuous functional, and with P, chosen as the non-negative
quadrant, the required ;' may not exist for some y, This, of course,
is not surprising since so far nothing has been assumed about the set
Y. Buteven if (as is natural in certain problems) one were to assume
Y to be convex, closed, and even bounded, y¥ > 0 may not exist for
certain elements of Y.»

Let Y denote the subset of Y such that y, e Y if and only if there
exists a yF such that (1) holds.

We shall now formulate a necessary condition for membership in ?

Suppose that there exists a yF > 0 such that (1) holds for a given
Yy € Y. Then

(2) Yy —y) <0 foralyel,
i.e.,
(3) Yy) =0 forallye Y —y,.
Furthermore, by definition of strict positiveness,
(4) yr(y) =20 forally=0
and
(5) ys(y) >0 for all y > 0.
Putting
(6) v = -,
we may rewrite (3), (4), and (5) as
(7.1) y¥y) =0 forallye ¥ —y,,
(7.2) yF(y) =0 for all y <0,
(7.3) y¥y) >0 forally<o0,
respectively.
Now consider the intersection K, of all convex cones containing the set
(8) (Y —v) U(—P).
Clearly, K, is a convex cone, and furthermore
(9) y¥y) =0 forallye K,.

[This follows from the fact that the set {y:u{f(y) = 0} is a convex cone
51 The element y, in this context need not be = —maximal: cf. Theorem V.2.3.

52 Arrow’s example: Y = {y: ¥y = (¥, ¥2), %4 =0, 9! + y2 <1}, % = (0, 1). Cf. also Kuhn
and Tucker [31], p. 488, example.
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which, by (7.1) and (7.2), contains (Y — %) U (—P,), and hence, by
definition of K, it includes K,.]

Writing K, to denote the closure of K, we also have

(10) . y¥y)=0 forallye K,
by continuity of yf.

[For linear normed (hence Banach) spaces, this has been noted in
Krein and Rutman ([29], pp. 16-17). When % is a linear topological
space, (10) is proved as follows: Let 4/ € K, and suppose ¥¥(y) < 0,
say yf(y) = —a. The inverse image by v} of the open interval (—3«/2,
—a/2) is an open set containing y’, hence containing at least one point,
say ¥y’ of K,. Thus yf(¥"’) < — a/2 < 0, which contradicts (9).]

Now suppose that there exists an element y’ with

(11.1) vy e K,
and

(11.2) y>0.
Define

(1z) yv'=-y,
so that

(13) ¥ <0.
Then, by (7.3),

(14) yry") > 0.
But because of (11.1) and (10),

(15) _ v@) =0,
hence

(16) ¥y (y) =0,

which contradicts (14). Hence we have

THEOREM V.2.1. Let % be a linear topological space and P, a convex
cone. If, for® y, € Y, there exists yy > 0 such that (1) holds, then the
set K, [the closure of the intersection of all the comvex cones containing
the set (Y — 9,) U (—P,)] does not contain any y' such that y' > 0.

V.2.8. Definition. If ffo contains no ¥’ > 0 and ¥, is = —maximal, y,
is said to be properly mazimal.

V.2.4. THEOREM V.2.2. Let Z be a linear topological space with the
property that for every closed convex cone K = 27, there is a linear
continuous functional y* € Z* strictly positive on K.

Then, for every Y, properly maximal, there exists a yy > 0 such that
(1) s satisfied.

Proor. By hypothesis, there exists y; strictly positive on K,. Then

8 In this Theorem, 7, need not be = —maximal. But Theorem V.2.3 asserts that %o
must be = ‘—maximal.
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(7.1) and (7.2) are satisfied because K, contains the sets Y — 1y, and
— P, and because y¥ e (K,)®. Now take 3 < 0. Then ¥ e K,. Sup-
pose — y' € K, also. Then, since y, is properly maximal, —y’ # 0, which
contradicts ¥ < 0. Hence, —y ¢ K,. But then, because of y¥ >0,
y¥w') > 0; i.e., (7.3) also holds. It is seen that

17 ¥ = —y
has the required property.

V.2.5. COROLLARY V.2.2. Let 2 be a separable linear normed space
and vy, properly maximal. Then there exists a yF > 0 such that (1)
holds.

PrOOF. In view of Theorem V. 2.2, it will suffice to prove the fol-
lowing :

LEMMA V.2.2. For every closed convexr cone K in a linear normed
separable space %7, there is a linear bounded functional strictly positive
on K.

To prove the Lemma, we first note that Theorem 2.1, p. 21, in Krein
and Rutman [29] is precisely equivalent to our Lemma for the case
where K is pointed, i.e., where 0 #+ w € K implies —w ¢ K. Hence,
it is sufficient to show that the Krein-Rutman proof can be extended
to cover the case of K not assumed pointed.

Now the pointedness of K is not used in the Krein-Rutman proof in
reaching the conclusion that there exists a y§ (in their notation f;) such
that

(18) ‘ y¥ e K®
and
(19) ye K, yf(y) =0  imply y*(y) =0  for all y* e K®.

We may now use Theorem 1.4, p. 17, in Krein and Rutman [29] which
asserts® that for every w, € C where C is a closed convex cone in . %~
and —w, ¢ C, there exists wi € C® such that wy(w,) > 0. This Theorem,
together with (19), yields the conclusion that

(20) e Ky (%) =0 imply —y, e K
which, with (18), makes yF strictly positive on K.

V.2.6. THEOREM V.2.3. Let % be a topological linear space and
Yy strictly positive on the comver come P,, and let y, € Y be such that
(1) holds, i.e., that y e Y wmplies y¥(y) < vi(). Then y, is mazimal
wn Y.

Proor. Suppose not. Then, for some ¥ € Y we have
(21) Y =Y.

Also, by (1), since ¥’ € Y,

5 This Theorem follows from the Mazur-Bourgin Theorem (I.1.4.1) whenever % "is locally
convex.
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(22) YW — ) =0,
while (21) together with ¥ > 0 yields
-(23) YW —y)>0.

The contradiction between (22) and (23) completes the proof.

It would not have been enough to assume y¥ ¢ P,® (or even yF > 0f)
instead of y¥ > 0. For in that case (21) would only have yielded
(23") U@ —%) =0,
which does not contradict (22) since equality could hold in both. (E.g.,
in the case of P, closed, ¥’ — y, could be a boundary point of P, with
Y (Y — ) =0.)

V.2.7. Noting that the hypotheses of Theorems V.2.1 and V.2.3
are identical, we summarize the results of V.2 in Theorem V.2.4.

THEOREM V.2.4. Let 27 be a linear topological space ordered by the
relation = (where y' =y means y — y"” € P,, P, being a convex cone).

A. If there exists y& > 0 such that (1) holds for some y, € Y, then y,
is properly = —mazimal in Y.

B. If for every closed convex cone K & % there is a linear continuous
Junctional y* € 27* strictly positive on K (as is, for instance, the case
in o separable linear normed space), then for every y, properly = —maxi-
mal there exists a ys > 0 such that (1) is satisfied.

V.3. Maximality implies existence of a saddle-point.

V.38.1. Lagrangian saddle-points without differentiability.

V.3.1.1. The basic idea of the Theorem presented in this section
goes back to Slater’s paper entitled ‘‘ Lagrange Multipliers Revisited ”’
[41]. The chief accomplishment of Slater’s paper was to establish the
existence of a saddle-point for the Lagrangian expression without using
differentiability properties in any way whatever, the reliance being
placed on the concavity properties of the relevant functions. (A more
detailed comparison is given at the end of Part I of the present chap-
ter.) Since the differentiability approach also used the concavity prop-
erties, Slater’s result was a significant improvement. The present
writer extended Slater’s result (except for a slight strengthening of
Slater’s concavity requirements to conform with the usual ones) in a
Cowles Commission Discussion Paper (Economies No. 2110) of September
1954. The present version differs significantly from the 1954 version.
A suggestion, due to Hirofumi Uzawa, has made it possible not only
to simplify the proof tremendously, but also to weaken the assumptions
on the functions used (which are merely concave, but not necessarily
continuous) and on the underlying spaces.

V.3.1.2. THEOREM V.3.1. Let .27 be a linear system, 2 and 2 linear
topological spaces. P,, P, are convex cones in % and 2 with non-empty

5 The point %, is = —maximal by V.2.3; proper maximality then follows from V.2.1.
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interiors, P, + 2/, X a (fized) convex subset of 27, f a concave function
on X to 27, g a concave function on X to 2. Let there be a point x,
wn X such that

(1) g(xy) >0 (i.e., g(x,) s an element of the interior of P,).

If z, mazimizes f(x) subject to g(x) =0 and z e X, then there exist
linear continuous functionals
(2) yr >0 and 2 =0
such that, for the Lagrangian expression
(3) O(z, 2%) = y*[f (@)] + 2*[9(2)],
the saddle-point tnequalities
(4) D(z, 2F) < O(w,, 20) < Dz, 2¥)
hold for all x € X and all z*¥ = 0.

(We may note that in applications X is usually a convex cone—e.g.,
the non-negative orthant of the system .2°.)

Proor. Let % be the topological product space 2 x 2 and consider
the subset of 9% defined by
(6) A={(w,2):veZ,y=<f(x),ze 2, 2=g) for some v € X}.
The set A is convex because of the concavity of the functions f and g
and the convexity of the set X. Also, A has interior points because
P, and P, have non-empty interiors.

Consider the point (f(x,), 0,) = w, of the space %% The point w, is
an element of A, since, by hypothesis, 0, < g(2,). On the other hand,
w, does not belong to the interior of A ; for if w, were interior to A4,
there would exist an element z in X such that f(x,) < f(z) and 0, < g(x),
which cannot happen because of the assumed maximality of z,.

Hence, we may apply the Corollary of the Hahn-Banach (Bounding
Plane) Theorem (see Corollary II.1 of II.1.4 above) and obtain a non-
null functional wy such that

wi(w) < wy (w,) for all we 4.
Writing w¥ = (¥, z&¥), this implies

(6) Y'() + 2 () S wlf(x)]  for all (y,2) in 4.
Since (f(z), g(z)), with z in X, belongs to A, we have in particular
(7) Ylf(@)] + &lo@)] S wlf(w)]  for all z in X.

Also, since w, = (f(a,), 0,) is in A4, it follows that all ordered pairs of
the form (f(w),#) are in A if z <0, which implies z(z) = 0 for all
z =0, ie.,

(8) 7 =0.

Similarly, because w, is in A4, so are all pairs of the form (y, 0,) for
y < f(=,) ; this implies

(9) ¥ =0.
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Now suppose y& = 0¥ (the null functional). It follows from (7) that
2¥[g9(x)] £ 0 for all  in X, hence for =z,. Also, since w¢ is non-null,
z¥ > 0. But then z¥[g(z,)] = 0 because g(x,) was assumed positive and
27 is non-negative. However, since g(z,) is an interior point of the
cone P, and zf is non-null, it must be that 2zf[g(z,)] > 0. (This follows
from an extension of Prop. 5, Bourbaki [7], p. 75, to the case where
the cone need not be pointed and the space is merely assumed linear
topological ; that this extension is valid follows directly from Bourbaki
[7], Prop. 16, p. 52.) Hence we have established that

(10) ys =>0.
Now let o = x, in (7). It follows that
(11) 2 lg(z)] = 0.
On the other hand, since both g(z;,) and zF are non-negative,
(12) Zlo(x)] =2 0,
hence
(13) zlg(x)] = 0.

Since z*[¢g(x,)] = 0 for all z* = 0, (13) implies the right-hand saddle-
point inequality, while (7) and (13) yield the left-hand inequality. This
completes the proof.

V.3.1.38. A case of particular interest is that of 2’ being the space
of reals. Here y; > 0 is equivalent to y¥ > 0 and we have a strictly
isotone functional of the type needed in Theorem V.1.1 (saddle-point
implies maximality). When 2 is multi-dimensional, however, 7 is
not strictly isotone but merely isotone, which is inadequate in the con-
text of Theorem V.1, for example, to establish ‘‘ efficiency ’’ of a given
resource allocation.

V.3.1.4. It was shown by Slater that the condition g(x,) > 0 cannot
be dispensed with. [In his counter-example, all three spaces are one-
dimensional (reals), f(z) =z — 1, g(z) = —(z — 1)>.] A slight modification
of Slater’s counter-example shows that the condition g(z,) > 0 is not
sufficient : we again take f(z) = ¢ — 1, % two-dimensional, with g,(z) =
—(z — 1), gx) = —a + 2.

V.3.2. Non-negative Lagrangian saddle-points: the linear non-homo-
geneous case.”

V.3.2.1. Although linear non-homogeneous situations may be handled
by theorems covering the non-linear situations as well, it seems more
helpful and simpler to give the direct proofs based on the assumption
of linearity.

V.3.2.2. We consider the problem of maximizing the linear non-homo-
geneous real-valued function on .2° to 27 (2 reals)

5% We call a funclion ¢(x) + % on & to % limear mon-homogerneous if ¢(x) is linear [i.e.,

if ¢(z) is homogeneous and additive]. The possibility that p vanishes is not excluded.
(““ Affine ”’ might be a more appropriate term.)

186



94 PROGRAMMING IN LINEAR SPACES

(1) flx) = —a*(@) + v (z* e 27%)
subject to the linear comstraints

(2.1) g(x) =U@) —a=0,,

(2.2) z=0,,

where U is a linear transformation on .2° to 27, it being assumed that
& is a linear topological space and % a locally convex space, and the
convex cones P, = {z:2=0,}, P, = {z: ¢ = 0,} are closed.

In this case, the Lagrangian expression (cf. I1.8.8) can be written
asﬁ?

(3) O(z, 2*) = [—a*(z) + v] + 2*[U(x) — a] .

V.3.2.3. THEOREM V.3.2. Let 27 be a linear topological space, and
2 a locally convex linear space, the convex cones P, P, closed, and as-
sume the regular convexity of
(4) Wk ={w*e #:w* =T**),v* = 0,v*e ¥ *},
where T 1is the linear continuous transformation on the topological linear
product space % of the pairs w = (p, ), p real, x € 27, into the topologi-
cal product space & X W = ¥ given by
(5) T(p, z)) = (—ap + Ux), (p, x)) Jor all p real and all x € 27 .

Then, for z, to maximize f(x) szibject to the constraints (2), it is neces-
sary and sufficient that ®(x, 2*) have a non-negative saddle-point at (x,, z5);
2.e., for ® defined by (3),

(6.1) D(z, z5) < Pz, 25) Jor all £ =0,
(6.2) D(zy, 25) < D(x, 2%) Jor all 2 =0,
of and only if

(7.1) Ulx) —a=0,,

(7.2) = 0,,

and, for any x e 27,
(8) if (2.1) and (2.2) hold, then —z*(z) + v < —z*(x) + ».

ProOOF. In view of Theorem V.1, we need only prove the necessity.
Inequality (6.1) may be rewritten as

(6.1) —a*x) + 25 [Ulx) — a] £ —a*(m) + 25 [U(zy) — o] for all z =0
or as

6.1") 2f[U(x) — a] < z*(x) — z*(x0) + 25 [U(z,) — a] for all z = 0.
Now write

(8) z* (@) = B .

Then, for any z satisfying (2), (8) yields

57 In general, the first term of the right member of (3) is y:[—x*(w) + 4]. In this case,
since we shall always take y¥ >0, we may put y;" =1 without loss of generality. [Le.,
y;‘(y) =y for all ¥y € %.]
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(9) —a¥(z) = -8,
or
(9) z¥x) — F=0.

Hence the hypotheses of Theorem IV.3 are satisfied® and therefore
there exists a zFf = 0 such that

(10.1) 2z [Ux) — a] < z*(x) — B for x =0
and
(10.2) 2 [Ux) —a]l =0

since z, satisfies the hypotheses of IV (34). Equations (10.1) and (10.2)
imply (6.1”), hence (6.1).

Inequality (6.2) may be written as

(6.2) —z*(@) + & [U(m) — a] = —a*(x) + 2*[Ula, — a)]

for all 2* =0,
i.e., because of (10.2),
(6.2 2¥[U(z,) — a] =0 for all z2* = 0.

But (6.2”) must hold because of (7.1) and z* = 0.

V.3.8. Non-negative Lagrangian saddle-points and quasi-saddle-points :
the differentiable case.

V.8.8.1. In this section all spaces are Banach and the functions f
and g are assumed to possess Fréchet differentials. We shall call them
differentiable. The convex cones P,, P,, P, are assumed closed.

V.3.38.2. Definitions. We shall say that the function g on 2 into
2 is regular at a point r e .2° if and only if, for every
(1) tezr, £+0,
such that the equality
(2) z=Z+¢&
implies the two inequalities
(3) z=0
and
(4) 8g(z; €) +9(x) = 0,
there exists a function ¥ on the closed (real) interval [0, 1] into .27,
say o = ¥(t) (0 <t<1), with the following properties :

(5) (a) o0¥(¢; 1) exists for all 0 <t <1
(b) z="¥(0)
() ¥@E) =0 for0<t<1
(d) o¥@E)]=0 for 0<t<1
(e) &= 0¥(0;7) with > 0.

58 Note that = required in IV.3 exists, for z; has this property by definition of
maximality.
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It is easily seen that the condition of regularity is closely related to
the Kuhn and Tucker ‘‘ constraint qualification ’’ ([81], p. 483). In fact,
the assertion concerning ¥ is identical with the corresponding assertion
in Kuhn and Tucker, while the conditions (1), (2), (8), (4) under which
¥ must exist are not weaker® than the corresponding conditions (5),
[31], loc. cit. Therefore Z is necessarily regular in our sense if the
Kuhn-Tucker ‘‘ constraint qualification ’ is satisfied.

It should also be noted that our condition of regularity is closely
related to Goldstine’s hypothesis (a) ([15], p. 145) whose relationship to
the condition in Bliss ([4], Lemma 76.1, p. 210) is similar to that of
our regularity concept to the Kuhn-Tucker ‘‘ constraint qualification.”’

V.3.3.3. THEOREM V.3.3.1. A. Let f be a real-valued differentiable
Sfunction on the Banach space 27, g a differentiable function on 22 into
the Banach space 2 . The cones P, = {z:x = 0} and P, = {z:2 = 0} are
assumed closed.

Let x, mawimize f(x) subject to the comstraints z =0, g(x) =0 and
suppose ¢ s regular at x,.

B. It then follows that the relations

(6.1) z=0

(6.2) 09(@e; €) 4+ 9(we) = 0 (E=z—ax)
mply

(7) —0f (xy; ) = 0.

Proor. Consider the real-valued function A(¢), 0 < ¢ <1, of the real
variable ¢, defined by
(8) ni) = FI¥ ()] 0<t<1).
[The function ¥ exists since, by virtue of (6), the relations (1), (2),
(3), (4) are satisfied and g is assumed regular at z,.]

Because of 5(b), (¢), (d) and the maximality of =z, A(f) must have a
maximum at ¢ = 0. It follows that® for

(9) >0,
(10) 0h(0; 7) = of[¥(0); 0W(0, )] =0,
whence by 5(e), (7) follows.®
THEOREM V.3.3.2. (This Theorem is a generalization of the Kuhn-

Tucker Theorem 1 [31], p. 484.)
A. Let all assumptions under A in Theorem V.3.3.1 hold. Assume

59 Since Kuhn and Tucker impose their conditions only on certain components of z and
g, it should be noted that for those components g; of g on which Kuhn and Tucker impose
the constraint (5) ([31], loc. cit.), we have gy(z) = 0. Hence (4) is not weaker than the first
part of Kuhn-Tucker (5).

60 Using the * function of a function rule’’ as applied to Fréchet differentials, cf. II.5.2.

81" Theorem V.3.3.1 is implicit in the Kuhn-Tucker proof of their Theorem 1. The proof
is suggested (mutatis mutandis) by Goldstine [15]. The writer is indebted to Kenneth J.
Arrow for clarification on this point.
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further the regular comvexity of the set
Wk = {w*e Z* w* = T*v*),v* =0, v* e ¥*},
where T is given by V.3.2(4), with U and a as in (15) below.
B. Then there exists a 25 = 0 such that the Lagrangian expression
O(x, 2*) = f(z) + #*[g(x)]
has a non-negative quasi-saddle-point at (@, 25; ¥¥), y& = 1, i.e., it satis-
fles the following relations :

(11.1) 0.0((woy #); ) <0 for all 2=0,2=x + &
(11.2) 0:2((20, 2); 20) = 0

(12.1)  0.x®((m,&); ¢*) = ¢*[o(x)] = 0 for all 2* = 0,C* = 2* — 2,
(12.2) 8@ ((o, 25); &) = 25’ [9()] = 0 .

ProoF. Since dg(z; £) and 8f(x; £) are additive in &, =z being fixed,
the relations (6.1), (6.2), and (7) of Theorem V.3.3.1 may be rewritten
respectively as

(13.1) =0,
(13.2) — 8 (@03 @) — [89(ao; @) — 9(2)] 2 0,
and

(14) —0f (@5; ) — [—0f (@; 20)] = O .

Since z, is assumed maximal, Theorem V.3.3.1 states that (13.1), (18.2)
together imply (14). This corresponds to the implication (84) in Theorem
IV.3, with the following correspondence :

(15.1) U(z) = 89(zy; ) for all z ¢ 27,
(15.2) a = 0g(x; To) — 9(x0) ,

(15.3) x¥(x) = —of(x; ) for all z e 27,
(15.4) B = —0f(zo; xp) -

Since all the other hypotheses of Theorem IV.3 are satisfied (in partic-
ular, z of IV (81) exists since z, is maximal and hence has the required
properties), there exists a 2zf = 0 such that

(16.1) 2 [09(@o; @) — (89(z0; %) — 9(20))] = —OF (s ) — (—0S (20; @0))
and
(16.2) 2 [09(2s; @) — (09(%0; @) — 9(@,))] =0 for & = m, .
Equation (16.2) immediately yields
17) z[9(@)] = 0
which is (12.2) in Theorem V.3.3.2.
Since z, is maximal,
(18) g(x) = 0 ;
hence
19) 2* = 0 implies 2*[g(z,)] = 0 .
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Hence, because of (17), (12.1) holds for any ¢* such that ¢* = 2* — 27,
z¥ = 0.

Using (17) and the additivity of 8f(zx; €) and dg(x; £) as functions of
£, we may rewrite (16.1) as

(20) z[0g(@y; & — @0)] = —Of (wy; 0 — )  forall =0,
i.e.,®
(21) Of (wo; x — T,) + 025 g(@e; & — ) < 0 forall z >0,

which is (11.1) in Theorem V.3.3.2. [#fg(z) = #zF[g(x)] for all =.]
Now setting # = 0 in (21), we get

(22) —8,2((20, % ); @) = 0 .

Rewrite (21) as

(21") 0, D((zy, 25); ) — 8,0((mo, 78); 7)) <0 for all z =0
and suppose that

(23) 0D (20, 25°); @) > 0 .

But using in (21') & = 2x,, we reach a contradiction since 8,D((z,, z5); )
is homogeneous in x. Hence the equality sign must hold in (22), and
(11.2) in Theorem V.3.3.1 follows.

V.3.3.5. THEOREM V.3.8.3. (This Theorem is a generalization of the
“only if ’’ part of the Kuhn-Tucker Theorem 3. The converse—the
“if " part of the Kuhn-Tucker Theorem 3—follows from V.1.1.) Let
all the assumptions under A in Theorem V.3.3.2 hold, and assume further
that f and g are concave. Then ®(z, z*) has a non-negative saddle-point
at (2o, 2¢) where x, is the maximal point of the hypothesis.

ProorF. The Kuhn-Tucker proof of the ‘‘only if > part of Theorem
3 [31], p. 487, is valid under our assumptions. For the sake of com-
pleteness we reproduce its major steps in our notation. First, if A(z),
r € 22, 2 Banach, is a concave function with values in a Banach
space V, and the ordering relation is given by a closed® convex cone
P,, we have, for 0<6<1

(24) Ma") — ) < _2_ (1 + 0@ — )] — @)} -
Now )
25') Shia's & — &) = 1}’?% (he + 6" — )] — @)} .

Then, because P, is closed,
(25" h(z") — h(z') < oh(z'; '/ — ')
which corresponds to Lemma 8 in Kuhn and Tucker [31], p. 485. Hence,
for £ = 0 and 2¥ = 0 and using (25), since f and g are concave,

62 We use the function of a function rule and the fact that, since z* is'linear, §z*(zo; ()
= 2*({). (Cf. 11.5.2 and II.5.1, footnote 29.)
8  Closedness is not used for (24) or (25’), .but only for (25//).
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(26)  D(z, 2) = S(@) + 2 [9(@0)] + 0f (20; & — @) + 25°[09(0; & — 0)]
= O(x4, 27) + 0.D((20, 27); & — @0)
= O, %)
where the last inequality is based on (11.1) in Theorem V.3.3.2.
On the other hand, for z* = 0,
(27) O(2y, 2%) — P(@0, 20) = (2% — &) 9(x)] = 0
by (12.1) in Theorem V.3.3.2. Relations (26) and (27) together imply
that ® has a non-negative saddle-point at (a,, zJ).

V.3.3.6. THEOREM V.3.3.4. (This Theorem is a generalization of the:
Kuhn-Tucker Theorem 4.)

A. Let &, 2, P,P,, and g be as in Theorem V.3.3.2 (including
the assumption of regular convexity of XF and regularity of g but not
that of concavity) while 27 is a Banach space possessing the property
stated at the beginning of Theorem V.2.2 (e.g., it would suffice to assume
Z separable). Assume further that f is a differentiable function on 27
wnto 27 and also that x, is properly maximal.

B. Then for some y& > 0,
(28) @y(z, 2¥) = y*[f(2)] + 2*[9(=)]
has a non-negative quasi-saddle-point at (o, 25; Yy); t.e., the relations
(11), (12) hold with f(z) replaced by ysLf(x)]-

ProoF. Using Theorem V.2.2 with y, = f(x,) we obtain y; such that

(29) yeY  implies  vi(y) < v (w)
for

(30) Y =f(P, N g(P));

i.e., the function y¥f, given by

(81) F(x) = y¥[f (z)] for all x ¢ &2
has a maximum at z, subject to

(32) z=20, g=x=0.

Thus we may use Theorem V.3.3.2 as applied to F'(x) and the Theorem
follows. (F'(z) is differentiable since f is differentiable and so is ;')

V.3.8.7. THEOREM V.3.3.5. (Generalization of the ‘‘ only if ”’ part of
the Kuhn-Tucker Theorem 6.) Let all the assumptions under A in
Theorem V.3.3.4 hold, and assume further that f and g are concave.
Then the function ®(x,z*) as defined by (28) has a nom-negative saddle-
point at (o, 25 ; Yo ) for some y& > 0.

ProOF. Use Theorem V.3.3.4, then Theorem V.3.3.3 as applied to
®,. (Note that F, defined in (31), is concave if f is.)

Note. The converse is found in Theorem V.1 (the ¢ if’’ part of
the Kuhn-Tucker Theorem 6). s
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V.3.8.8. In Section V.3.3 the spaces have so far been assumed
Banach and the differentials Fréchet. It appears, however, that by
using a more general concept of a differential (to be called here the
MF differential) one can validate the results of V.3.8 for that class of
linear topological spaces for which the auxiliary results from previous
sections are valid (i.e., locally convex linear, or the alternatives men-
tioned in II.1.4.1).

The MF differential is that called g (or #*) differential in Michal [38],
p. 82, and also defined (later but independently) by Fréchet [12], pp.
64-65."* We shall denote this differential by df(x,; ) if evaluated at
z, with increment 2 € 27; f(z)is in 2/; 2° and 2/ are Hausdorff linear
spaces. The MF differential is additive and continuous (hence linear)
in the increment % and is further characterized by the following prop-
erty (¢): There exists a fixed neighborhood W of 0, such that, given
any neighborhood V of 0,, there is a neighborhood U of 0, (U depends
on W) such that if

heUnhe W,
then
nlf (@ + 2) — f(@) — df (@w; )] € V

for all positive integers n (or all positive real numbers n).® As partly
stated in [38] and shown in [12], df(x; ) has the important properties
of the Fréchel differentlial ; in particular, the ‘‘ function of a function ’
rule is valid and the partial differentials are defined in the usual way
and are additive. Furthermore, from the remarks and theorems in
Michal [36], [37] and [38], it follows that when df(w,; k) exists, then
the Gateaux differential, i.e.,

lim %mzo + 0h) — f(=)]

exists and the two are equal.® Now let .2 and 2 be (say) locally

8 One could probably also use the slightly more general F or M differentials; cf. Hyers
[22], pp. 14-15.

65 In linear normed spaces the MF differential exists if and only if the Fréchet differen-
tial exists, and the two are equal. Property (c) is equivalent to that given at the end of
II.5.1. This is shown in [12], pp. 62-64.

6 In [38], p. 82, it is stated that in what we called linear spaces the p* differential (equiv-
alent to the MF differential) is equivalent to what in [38] is called the M, differential. In
[37], Theorem V, the existence of the M, differential (called ‘‘the differential ’’) is asserted
to imply the existence of the M differential of [36] and the two are equal. Finally, in
Theorem 4 of [36] it is stated that the existence of the M differential implies that of the
Gateaux differential and the two are equal. The precise meaning of the limit in the defini-
tion of the Gateaux differential is as follows. Write g(6) = [f{zo + 6k)]/6 and denote by
dgf(zo; h) the Gateaux differential at xp with increment k. Then for a given neighborhood
V of Oy there exists a real number § > 0 such that

9(6) € dg flwo; h) +V forall 0< 6] < 6.
The equality dflzy; h) = dgf(ze; k) follows easily from property (c) above when the
‘‘ starlike " neighborhood system U is used (see Bourgin [9], pp. 638—39).
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convex Hausdorff linear spaces (cf. I1.1.4.1 for possible alternative assump-
tions) and consider the results of V.3.3 with the MF differential df (x,; &),
ete., substituted for the Fréchet differential, of(z,; ), ete., throughout.
Theorem V.3.3.1 obviously remains valid, since the MF differential is
linear and obeys the ‘‘ function of a function’’ rule. Theorem V.3.3.2
also retains its validity since the partial MF differentials have the
required properties. In the proof of Theorem V.3.3.3, the two relations
(25) remain valid because the MF differential, like the Fréchet differen-
tial, equals the Giteaux differential, and Theorem V.3.3.3 follows. (It
can also be shown that relations (11) and (12) in Theorem V.3.3.2 are
satisfied at a non-negative saddle-point.) The remaining twc theorems
of V.3.3 also go through.

It may finally be noted that the MF differential is defined and retains
many of its important properties when the domain and the range of
the function whose differential is taken are in topological groups (not
necessarily linear spaces). Thus a possibility appears of studying a
broader class of spaces and their Lagrangian expressions from the view-
point of differentiability.
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EXTREMUM PROBLENMS WITH INEQUALITIES
AS SUBSIDIARY CONDITIONS

Fritz John

This paper deals with an extension of Lagrange's multiplier
rule to the case, where the subsidiary conditions are inequali-
ties instead of equations, Only extrema of differentiasble func-
tions of a finlte number of variables will be considered, There
may however be an infinite number of inequalities prescribed,
Lagrange's rule for the situation considered here differs from the
ordinary one, in that the multipliers may always be assumed to be
positive, This nmakes 1t possible to obtain sufficient conditions
for the occurence of a minimum in terms of the first derivatives
only,

Two geometric applications will be discussed here, From the
point of view of applications it would seem desirable to extend
the method used here to cases, where the functions involved are
not necessarily differentiable, or where they do not depend on a

finite number of independent variables,

1, Necessary conditions for a minimum,

Let R be a set of points x in a space E, and F(x) a real-
valued function defined in R, We consider a subset R! of R, which
1s described by a system of inequalities with parameter y:

(1) _ G6(x,y) z 0,
where G is a function defined for all x in R and all "values" of

the parameter y. There may be a finite or infinite number of these
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—

inequalities, To gain sufficlent generallty we assume that the

"values"™ of the parameter y vary over a set of points S in a sSpace
H, Then G(x,y) is defined in the set RxS, We are interested in
conditions a point x° of R!' has to satisfy in order that

(2) M = F(x°) = Minimum F(x)
XCR!

In what follows we restrict ourselves to the case, where the
space E containing the set R 1s the n-dimenslonal euclidean space
Ep» and where the set S of parameter values y is a compact set in
a metric space H, We make the further assumptions that F(x) and
G(x,y) have first derivatives Fi and Gi with respect to the coor-

dinates x, of the point (xl,...,xn) = x, and that F(x), G(x,y),

i
1)

Fi(x), Gi(x,y) are continuous functions of (x,y) in RxS,
Given a function ¢ (x) with continuous derivatives ¢i(x) in
R, we denote by

n
(3) §'(x,2z) = S §,(x)z,
i=1

the differential of the function, ¢!'(x,2) is then defined for
all xCR and z =(zl,...,z ) =E_,, and is linear in z.
n

Theorem I,

Let x° be an interior point of R, and belong to the set R! of
all points x of R, which satisfy (1) for all y—=S, Let F(x°)=
Minimum F(x).

XCR! 5
Then there exists a finite set of points yl,...,y in S and
numbers /\o, Al""’ Al which do not all vanish, such that
(La) a(x°,y") = o for r=1,...,8

T) Here continuity in R xS is defined so as to_agree with the
following definition of convergence in R xS: 1im (x¥,yT) = (x,¥),

if 1im x¥ = x and 1lim y¥ = y. r->o®
b o 5 »—>00
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(Lb) A, 20, A >

(Le) 0<s
(L4d) the function
s

¢(x) = AF(x) - ZArG(x,yr)
r=1

sescey As >0

N O

n

has a critical point at x° 1.,e.

¢1(x°) =0 fori =1,...,n .

Proof:

Let S!' denote the subset of points y of 8, for which

o
&(x",y) = 0.
We shall first show that the system of inequalities
o
(5a) F'(x,z) <0
(5b) G'(x°,z,y) >0 for all y C St

can have no solution z =(zl,...,zn).

For let (5a,b) be satisfied for a certain z, Denote by S@
the set of all polnts of S having a dlstance < € from sone point
of St', and by Xg the set of all points of R having a distance £ &
from xo, Then there exist positive numbers &,& such that
(6) F1(x,z) < =&, G'(x,z,y)> 8§ for all xCXZ, ycse.

For otherwise there would exist sequences of points % in R, yr

tn s, " in S, such that

lin x¥ = x°, 1im (distance of y* and vlr) =0
r—=0o T —»00

and either
1im inf P (x",z) 20
r—>00 =

or
r
1im sup 6'(x",2,57) 5 0.
r->o
A8 S is compact and G is continuous, S' is compact as well, We can

then form a suitable subsequence of the r, such that yr and \Lr con-
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verge towards a point y of S'. As F! and G' are continuous, 4t

would follow that either F!(x°,z) 2 0 or G'(xo,z,y) < 0, contrary
to (5a,h). ’
Hence (6) holds for suitable positive €,8 . On the other
hand there exists a positive constant /4,:/4(&) such that
(n o(x%,y) > m
for all y of S outside S', For G(xo,y) is non-negative in S (asa
xOCR'), vanishes only on S!', and is continuous on the compact
set S,
As x° is an interior point of R, we have for sufficiently
small positive &
F(x° + t2) = F(x°) + tF1(x° + otz, z)
(}(xo + tz,y) = G(xo,y) + to'(x° + etz,z,y)
where 6 stands for any quantity between O and 1. If here t is

chosen so small that

2
t V= zy <€, teMaximum [G'(x,z,7)| < Mo,
1 yc s
xcx$

we can apply (6), (7) and find that

F(x° + tz) € F(x°) - t§ < F(x°)

G(x° + tz,y) 2 G(xo,y) + t85 >0 for all yCSe'

6(x° + tz,y) 2 pu-t|G'(x%06tz,2,y)] >0 for all y of S outside

s¢

This would however contradict the assumed minimum property of x°,
Consequently, there can be no z satisfying (5a,b).

The non-cxistence of a solution z of the system of linear

homogeneous inequalities (5a,b) can be seen to be equivalent to

the existence of non-negative solutions of a certain system of
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2)

equations, For this purpose we introduce the "representative"
points corresponding to (5a,b), i.e. the points in n-space given
respectively by
) a =(-F(x°),...,-F (x°))

py = (69(x%,7),...,6,(2%,y))  for y &5t
The non-existence of a solution z of (5a,b) implies that the set
= consisting of q and all py does not lie in an open half-space
bounded by a hyper-plane through the origin, Then the origin is
a point of the convex hull of 2. . As in addition, as a conse-
quence of our assumptions, Z. 1is closed and bounded, 1t follows
that the origin belongs to a simplex with vertices in :E:, where
the point q may be chosen as one of the vertices.B) Then the
origin is center of mass of & +1 non-negative masses (s ¢ n),

located in q and s other points of :E . Equations (la,b,c,d) are
the analytic expression for this fact,

2. Sufficient conditions for & minimum, Equivalence with finite
systems of inequualities,
Theorem II.
Let x° be an interior peint of R and belong to the set R' of
all points x of R, which satisfy
G(x,y) 20 for all yc S,
Let there exist a function ¢ (x) of the form

8
$(x) = AF(x) = > A G(x,3")
r=1

2) See L, L, Dines: "Linear inequalities," Bull, Am. Math,
Soc, vol. L2 (19%6), pr. 552-365. R, W, Stokes: "A geometric the-
ory of linear inequalities,® Trans. Am, Nath, Soc, vol, 33 (19%1),
pp. T782-805. _

3) That one of the vertices can be chosen arbitrarily in :E,
is evident from the proof of the fundemental theorem that any point
of the convex hull of 2. belongs to a simplex with vertices in .
See Bonnesen-Fenchel: "Theorie der konvexen K8rper,' p. 9.
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where y €= S, such that (lLa,b,d) hold, Let in addition the matrix
AoF, (x°) 6, (x°,5%) 6, (x%,5%) .....0,(x0,5%)
AR (x") e (=05 e (x°,52).....6,(x0.50)
have rank n,
Then F(x) has a relative minimum at x° in the set defined by
the finite number of inequalities
(9) a(x,55) 20 for r =1,...,8
and has, a fortiori, a relative minimum at x° for the set R!,
Proof:
If F(x) did not have a relative minimum at x° for the set (9),

we could find a sequence of positive numbers tr and a set of points

PR et En’ such that

1im t, O zn (F,)% =1
r->00 r ’ 1 =1 1

Fx° + trzr) < PF(x°)
6(x® + t,27,55) 2 0 for k =1,...,s.
Then with sultable 6 between 0 and 1

P (x° + ot,2",27) £ 0

G(x + 0t 2",2",7%) = 0 for k =1,...,s.
For a suitable subsequence the 2T converge towards a vector 2z #0,
for which then

F1(x%,z) £ 0

k

G'(x°,z,y ) >0 for K =1,.0e45.

But, as ¢ (x) is stationary at x°®, we have

8
0 = &1(x%2) = A_FN(x°,2) - 31 AGH(x0,2,79).
ksl
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Hence, making use of (lib), we see that z satisfles the system of
linear homogeneous equations

AF (x%,2) =0, 6'(x°,z,y5) =0 fork=1,...,5.
The existence of a solutlion z # 0 of this system contradicts how-
ever the assumption made on the rank of A, This completes the
proof of theorem II,

Theorem II shows that under suitable conditions a relative
minimum of F(x) for the set R! determined by infinitely many ine-
qualities is at the same time a relative minimum for the set de-
termined by a suitable finite number of these inequalities., An
example will show that this is not the case for every minimum
problem, Consider the problem of findiné the minimum of the func=-
tion

F(x) = -x2

in the set of all x satisfying the inequalities
(10) G(x,y) = ye-yxz =0 for all y with 0 ¢y < 1.
The set R! of all x satisfying (10) consists of the point x =0,
That point then is elso a relative minimum point of F for the set.
If, on the other hand, x 13 only subjectez to a finite nmumber of
inequalities

a(x,v5) 20 for k=1,...,s,
where 0 ¢ yk < 1, then all points of a neighbourhood of x=0 are
admitted, and F(x) has no relative minimum in the resulting set at O.
L)

3. Application to minimum sphere containing a set,

Let S be a bounded set in E,. A sphere in E  may be described

) See H, W, E, Jung: "Ueber die kleinste Kugel, dile eine
rdumiiche Figur einschliesst," Journal flir die reine und angewandte
Mathematik, vol, 123 (1901), pp. 241-257. For a historical account
of this well knwon problem See the paper by L. X. Blumenthal and
G, E. Wahlin: "On the spherical surface of smallest radius enclos-
ing a bounded subset of n-dimensional euclidean space,” Bull, Am,
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by x=(x1""’xm+l)' where XyseeesXy BT the coordinates of its

center and x the square of its radius, Let x° denote the

m+1
sphere of least radius enclosing S, The existence of a sphere of
least positive radius enclosing S 1s evident, 1f the assumption isa
made that S contains at least fwo distinct points,
Then

(11a) F(z) =x .4
has a minimum for x=x° in the set of all x satisfying the inequal-
ities

m
2
(11p) &(x,y) = X1 T 2: (xi-yi) 2 0 for all yCS,
i=1
As every sphere containing S also contains the closure S of S, we
can replace S by S in (11v).

According to theorem I we can find s points (8 €m+1) yl,

vee»¥® of S and numbers A ,..., Ay such that

o
8
(12a) A T2 A
r=1
8 r o
(12b) E Ar(xi-yi) =0 fori=1l,,,.,m
r=1
. o m 2
(12¢) n41 "~ E (xi-y{) =0 for r =1,...,8
i=1
(124) Ao 20, A, >0,...,A >0,

It follows from (12a,d) that A > 0. From (12) we get for any

= (xl""’xm+1)

S m m
2
2 Admpar - 2 (xgevD) ) R R P )
r=1 i=1 1=1
Math, Soc., vol, 47 (1941), pp. T71-777.
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This 1dentity shows that any sphere containing the points yl,...,
y° has a radius g‘/;z?x_‘fl s Where the = sign only holds, if its
center 1s also at (7{,...,1{2). Hence the smallest sphere contain-
ing S is uniquely determined, and i1s at the same time the smallest
sphere containing the points yl,...,ys of the closure of S,

1f Drt denotes the distance of the points yr and yt (r,t =
1,.0.055), W have from (12)
> a0l - S Aeggh] = 22 8,
r¢t r,t,i
On the other hand

2

AN (T ) w2
Dividing the last two inequalities by each other and observing
that the Ar 7\t are positive, it follows that

(13) = dlameter of S ;Ma:lg%rgum D.. 2 I/ iﬂ_l x0 41

As s ¢ m+1, this leads to "Jung's inequality

(b D > [2m+1) 4

m
between the diameter D of a set S in B, and the radius R of the
smallest sphere containing the set.S)
This result can be extended in varicus directions, Following
L. A, Santaldﬂé) we can consider a set S, which lies on the sur-
face K of the unit=-sphere in Ey and is contained entirely in a
closed subset interior to a heml-sphere of K,
We consider the set yl,...,ys belonging to S through (12).

56% See Jung, l,c,, note L.

"Convex regions on the n-dimensional spherical surface,"
Annels of Mathematies, vol, 47 (1946), pp. LLB=L59.
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1t yl,...,ys do not lie in a hyper=-plane of Em’ then X is the
smallest sphere containing S, for the yr lie on the smallest
sphere and lle only on one sphere, This however is impossible,
as S 1lies in a closed subset interior to a hemlsphere of K, and
hence 18 certainly contained in spheres of radius <1,

Consequently yl,...,ys must lie in an (m-l)~-dimensional lin-
ear space, Then however the inequality (18) between dismeter of
the set of the yr and the radius of the least sphere containing
the yr applies with m replaced by m-l, As the least sphere con-
taining the yr 1s identical with the one containing S, we have for
S

(15) D 2y mf’f R .

We can introduce the "spherical diameter" A of S as the least

upper bound of the lengths of the greatcircle arcs on K jolning any
two points of S, Then obviously
D =2 sin -4 |
2

Similarly we can introduce the "spherical radius" L0 of the least

"spherical" (m-l)-dimensional sphere on K containing S, Obviously
R = sinp,

We then obtain form (15), as analogue of (1) in (m=-1)-dimensional

spherical space of curvature 1, the inequality

2 sin A :_-y 2m sin
2 - -1 £

m
or 2
m co8~ 0 =1
(16) cos A < 5
- m=1

This inequality 1s the best possitle one between o and A as is
seen from the example of a set S on K consisting of the vertices

of an m-dimensional regular simplex.7)
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In a different direction an obvious extension of (1l}) to Hil-
bert space suggests itself for m ->o00:
If S is a set in Hilbert-space with the property that any two

points of S have a distance ¢ D, then there exists a point in

=

Hilbert space, from which all points of S have a distance < =D,

/2

For a proof of this statement one forms the projection Sn of
S on the xl....xn-coordinate plane, It 1s easily seen that the
center

(X]3%5,5 ¢4 03%0:0,0,000)

ne

of the smallest sphere containing S, converges for n—> o towards
a polnt of Hilbert space with the desired properties,

The constant f% is again the best possible one in this con-
nestion, as is shown by the example of the set consisting of the

points (1,0,0,...),(0,1,0,....),(0,0,1,0,....), etc.

L. Application to the ellipsoid of least volume containing a set
S in Em.8)
A solid ellipsoid in running coordinates Yys oo,y may be

described by a relation

7) Santald 1l.c, obtains an inequality, which in appearance
is stronger than (16) for A > W/2, The explanation of this dis-
Cregancy must lie in the fact that he uses a different definition
of "spherical diameter" from the one used here, (No definition of
that term 1s given in his paper.) For sets of spherical diameter
>W/2 (as used here) the diameter of the set need not be the same,
88 that of its "spherical convex hull," whereas they seem to be
the same in Santalo's use of the term,

B) Related questions have been considered for m=2 by
F. Behrend: "Ueber einige Affininvarianten konvexer Bereiche", .
kath, Ann,, vol, 113 (1337), pp. T13-7L47; "Ueber die kleinste um-
beschriebene und die grosste einbeschriebens Ellipse eines konvexen
Bereiches™, ibid,, vol. 115 (1958), pp. 379-41l; F, John; "Homents
of inertia of convex regions", Duke Math, J,, vol, 2 (1936), pp.
h}47']452;
for m=3 vy 0, B, ader: "An affine invariant of convex regions",
Duke Math, J. vol. Ly (1938) pp. 291-299; for general m by F, John:
An inequality for convex bodies ", U, of Kentucky Research Club
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m
(17) > X (¥ (yy-x) 21
i,k=1
where
(28) Tk = P
and the X are coefficlients of a positive definite quadratic form,
The volume of the ellipsoid 1s given by
w
V= o ,

ya

where com denotes the volume of the unit-sphere in E; and
a =det(x,,).

If the assumption is made that S is not contained in any
hyper-plane, the existence of an ellipsoid of least volume contain-
ing S can be seen as follows, There is a sphere of radius r >0
contained in the convex hull of S, and hence contained in any el=-
lipsoid, which contains S, Thus any ellipsoid containing S con-
tains the sphere of radius r about the center of the ellipsoid,

We have then for amy Xy, ,Xy satisfying (17) for all y &S

<1

=
B
g
g
™M
M
=
W
#.1

As the x,, are also coefflcients of a definite form, it follows

that

Thus the Xy satisfying (17) for all y &S form a bounded set,

Mor have f th

oreover we e for o0se xik,x1
lim V = oo mrhr“”%%»m,

as the ellipsoid contains the convex hull of S and the point (xl'

Bull. 8 (1942), pp. 8-11.
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...,xm). Conzequently there exists a set xgk, xg, for which V is
a minimum, among all Xy which satisfy (18) and (17) for all y <
S, and for which the x,;, are coefficlents of a positive definite
form.9)

We are here again more interested in deriving significant
properties of the minimum ellipsold than in actually "determining"
it in terms cf S,

As V and =d tako their least value simultaneously, we can con-
clude from theorem I that there exist non-negative constants Ab’

ey As, which do not all vanish, such that the function
K]
N r s
(18) $(xi= A a+ Z 7&-[1' Z xik(yi-xi)(yk—xk)]
r=1 i,k

of the n = B{m + 3) independent variables

Xy (1t =1,,..,m)

X (i,k =1,..,,m; i< k)

has a critical value at xo, Here yl,...,ys are polnts on the boun-

dary of the convex hull of S, for which
> xf (YI-x%)(3y-x°) = 1.
1,k

As ¢ (x) 1is symmetric in x and X4 the first derivatives of @

1k
with respect to the Xy (1=1,...,m) and all Xy (1,x =1,..,,m)
must vanish at thé critical point, We mey apply an affine trans-
formation to Em, 80 that the minimum ellipsoid becomes the unit
sphere about the érigin:

o _ o _
Xy = Oq 0 *p =0.

——

9) For a2 minimizing sequence the—xi.K cannot tend towards the

coefficients of a non-definte form, as the determinant 4 of the
X4y has to become a maximum, and hence is bounded away from 0.
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(_gg;;>x1k - 5ik = Srt,

As

we obtaln the following relations:

s
rr
(19a) Ao Sik = E ALY Yye for 1,k = 1,..s,m
=1
s
(19b) 0= E Aryi for i =1,.,..,n
r=1
(19¢) A, 20, Ay >0 ,..0,A, >0
o 2
(194) E (yi) =1 for r = 1,,..,3
i=1
Sunming (19a) over all L=k, we obtain from (19d4) the rela-
tion
s
(199) mxo:‘ Z AI‘ )
=1

which shows that Ao is positive., It follows from (19) for any

ellipsoid containing the points yr
r
mA =2 Az AL (> xik(yi_xi)(yxl;_xk))
r r i,k

= A2 Ry R X NR 2 N Ry
1 Tx 1

10
Zm Xo(det xik)l/m . )

Consequently the volume of any ellipsoid containing S is at least

10) For a deinite form the expression >, x,, 18 the sum of

i
the Elgen=-values, d = det(xik) is the product. Hence by the well
known 1inequality between arithmetic and geometric means it follows
that S xis > mdl/m
T i1 =
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equal to that of the unit-sphere., This shows that the ellipsoid
of least volume containing S 18 at the same time the ellipsoid of
least volume containing the points yl,...,ys of the boundary of

the convex hull of S, where s < m(m+3) .
2

Let Uypeeesty be any numbers with Zui = 1, Introduce
i
m r
PL= >0 Wy
i=1
Then, because of (19d)
(20) ‘Pr\<___l for r =1,,,.,8.

On the other hand we have for any t, using (19a, b e)

s (p +‘c)2 = ('c2 1 ) L]
z :7& r + = E A -
r=1 r=1

It follows that

(21) Maximum (P + £)2 > 2+
r

=8 L

Hence for any t there exists an r such that

PPr2te -0,
r r m =
The lefthand side of this inequality is a quadratic function of
Pr’ whose roots may be o<, Ff' . We then see that for any OC,@
with <@ = - % , there 1s a P_ outside the interval

x <x < 3,
If we put

(22) M = Ma.x%mum P, -p= M:Ln%mum P,

it follows that

(23) M > % .
Consequently

(2L) M 2 —2

gb- FL = ﬁ ]

and, beczuse of (20),
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(25) Mo

B+

: Moz Lo

As M and m are the distances of the two planes of support of the
set formed by the yr in the direction u, it follows that the con-
vex hull of the yr contains the sphere of radius % about the ori-

gin, and that the distance of any two parallel planes of support

of that convex hull is = /é; . The same holds then for the con-
vex hull of S, We have then the following theorem in terms of the
original space before the affine transformation:

Theorem III,

If K i1s the ellipsoid of smallest volume containing a set S
in Em’ then the ellipsoid K' which i1s concentric and homothetic
to K at the ratio 1/m is contained in the convex hull of S,

The example of a simplex shows that the constant % is the
best posslible one in this connection,

As the boundary of the convex hull of S may be an arbitrary
convex surface, we see thaut any closed convex surface liles be-
tween two concentric homothetic ellipsolds of ratio = % . We also
have from (2l):

Any convex body can be transformed by an affine transformation

11
into a body, for which the ratio of diameter and breadth is é-itn

A stronger inequality can be derived in the case, where S 1:
symmetric to a polnt, say the origin, Let K be the ellipsoid of
least volume containing S, which has 1ts center at the origin.

In this case we again obtain A_,..., Ks.yl,...,ys, such that
(19a,c,d) are satisfied, We can conclude that (21) holds for t =

0, i.e. that

11) Here "breadth" is defined as minimum distance of any two
parallel planes of support,
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Meximum P'2 > L,
T T =m

Then of any two parallel planes of support of the convex hull of

S (after suitable affine transformation) at least one has a dis-

tance from the origin, As however S is symmetric to the

1
Vm
origin, the same holds then for the other plane of support., Hence:

If S is a set symmetric to the point O, and K the ellipsoid
of least volume containing S and having its center at O, then the

ellipsold, which is concentric and homothetic to K at the ratlo
1
is contained in the convex hull of S,
vm

Again is the best possible constant in this connection,
as is seen from the example of the m-dimensional "cube" or of the
m-dimensional analogon to an octahedron,
If the convex hull of S is represented by its "gage function"
("Distanzfunktion"),le) we have the following theorem:
For any function f(x) = f(xl,...,xm), which satisfies the
conditions
fpx) =\l £(x) for all numbers
f(x) >0 for x# 0
f(x +y) < £(x) + £(y)

there exists a positive definite quadratic form Q = Q(x), such that

/E—Q(x) < f(x) <€y/Q(x) for all x,
It 18 tc be expected that for a convex body S the ratio of
minimum circumscribed ellipsoid to the volume of S reaches its
largest value for a simplex (respectively for a cube, in case S is

symmetric to a point). However the author has been unable to prove

—

12) See Bonneéen-Fenchel, loc, cit, p. 21,
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13)

this statement for general m, If true, the statement must be

a consequence of the relations (19), which are characteristic for

the circumscribed ellipsoid of least volume,

13) For m = 2 thils was proved by F, Behrend, loc. cit.
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MINIMA OF FUNCTIONS OF SEVERAL VARIABLES WITH
INEQUALITIES AS SIVDE CONDITIONS

1. Introduction. The problem of determining necessary
conditions and sufficient conditions for a relative minimum of a
function f(z,_,xz,o..,xn) in the class of points x = (xl,xg,.,.,xn)
nntisfying'the equations g (x) = 0 (x = 1,2,...;,m), where the
functions f and g. have continuous derivatives of at least the
second order, has been satisfactorily treated [1]‘”o This paper
proposes to take up the corresponding problem in the class of

points x satlsfylng the inequalities
n Eg(x):o (<= 1,2,...,m),

where m may be less than, equal to, or greater than n.

We shall be interested in a minimizing point x° at which
21l the functions g « vanish. The reason we limit our attention
o this case is that if £(x°) = minimum and, say, g;(x°) > O then
by continuity gy(x) 2 O for all x sufficiently close to x° and
hence the condition g, (x) 20 puts no restriction on the problem
80 far as the theory of relative minime is concerned. Henceforth
@An thie paper whenever we state "f£(x°) is a minimm" or ®x0 is s

winimizing point® we essume thet g (x°) = O for every « ,

*Numbers in brackets refer to the list of references at

the end of the paper.

=l
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We shall not limit ourselves to the case when f and g«
are of clasa C". In Sections 3 and 4 we consider the minimum
problem under ﬁhe assumption that the functions f and g. Aare
merely of class C! near a point x = x°, However in Sections 5
and 6 we do restrict attention to the case when the functions are
of class C"™., Section 2 will deal with some properties of linear
inequalities.

We shall have occasion to use all the results in the first
part of Bliss's paper [1l] and for convenience we 1list them here.
They are concerned with the problem of minimizing f(x) in the class
of points x satisfying equations

he(x) = 0 (x= 1,2,,..,m< n),

and may be compared with the results obtained in this paper. One
needs only continuous first derivatives for Theorem 1l:1 and con-
tinuous second derivatives for the other theorems.

THECREM 1:1. A first necessary condition for f£(xo) to be

a minimum is that there exist constants Xo, X not all zero such

that the derivatives Hx1 of the function

H=Iof+1.¢hu

all vanish at xo.

LEMMA 1:1. If llh,,(xi(x°)ll has rank m, then for every

set of constants M1 (L =1,2,...;,n) satisfying the equations

h‘ x_l(x") '11 =0

there exists a curve xi(t) having continuous second derivatives

near t = 0, satisfying the equations h, [x(t)] = 0, and such that

x;(0) = x4°, x,'(0) = 7,.
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THEOREM 1:2. If Hh,‘x_i(xO)ll has renk m and f(x°) is 2

minirmm then the condition

Hx'ixk(xo) M1k zo0

must hold for every set mn 4 satisfying h,(xi(x") Yy = 0, where

H=f+ Lxhea 13 the function formed with the unique set of

multipliers Zo = 1, X« belonging to xO.
Our final excerpt from Bliss's paper is a sufficiency

theorem.
TEEOREM 1:3, If a point x© bas a set of multipliers Yo = 1,

;{q‘ for which the function H = f + Y« h o« satisfies the conditions

Hxi(;@) = 0, Hzixk(xﬂ“zi?zk >0

for all sets *r“_ satisfying the equations

h -(x.l(xo’ "(1 = 0,

then f£(x°) is a minimum.

2. Preliminary theorems on linear inequalities. To intro-

duce the important theorem which 1s about to follow we consider

the system of linear inequalities

Ly 2 Ajquy 4 AjgeUz + ceo + A;nun : 0
{2) Le = AgiUy + Azalp + coo + Agpup 2 O
Ly S Amay + AmeUz + oo + Agpup 2 O,

in which the A's are real constants. If for every solution u of

(2) the inequality

(21) 0= Auy + Azug + ... 4 AU 2O
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is satisfied, then the inequality (2') is called =a consequence of
the system of inequalities (2). Farkas, in his paper [4], proved
the following theorem. (See also Corollary 1, p. 47 of Dines and
McCoy [3]1). ' }

THEOREM 2:1. If (2°') is a consequence of (2) then there

sxist non-negative constants C, such that

= CyLy 4 Celig + o00 + Cplis

The solution (uj;,ugsoce-sipn) = (0,05...,0) will be called
a trivial solution of (2). We note that the theorem does not
assume that there necessarily exists a non-trivial solution of (2).
We make an inductive proof. If n ='l the conclusion is
readily verified. We suppose the theorem true for n=1 varisbles
U3 ,Uzse.ssUpn.y and meke the proof for n varisbles. If § = 0
then the conclusion 1s obvious. Hence we assume some 44 is differ-
ent from zero and, for convenience, let Ay # O. Solving
® = Ajuy, + Agus + oo + Apu, for u, we obtain u, = i& - %;[Alul +

sao An-iunull which we substitute in L;j. The result is
(3) Ly Afaty + cvo+ AyneqUney + 210 -A_EB[Au +oaet ,u-]zo,
Ly auy an-aln-y + == ) el Lt Ap=yUn=y

If the coefficient of § is different from zero divide both sides
of (3) by |£3.‘.| and obtain an inequality I, 2 O in which the
coefficient of § 1s 41. Since Ei is a positive multiple of Ly we
can replace the latter by fi in (2). This we do and, to simplify

notation, drop the bar over Li‘ With this understanding the system

(2) can be rewritten as

b"'Pl go: Li

Li, o=0+p20, ..., Li, =d+pr. 20,

() Lj-=d+mZo, Ly, =-d+M20, ..., Lj,=-0+x 20,
= > =

Iy, = Z, 50, Ly = 2220, ..., Ly, = 24 2 0,
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where r + s + ¢
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= m and the Plg Pz, eeoy Nl’ Nz, s 00y Zl, Zz, cee

are linear forms in W;, Ugs -ees Upe,. If We consider (4) as a

system of inequalities with independent variables UzseeosWyogs @

then from the fact that (2') is a consequence of (2) it follows

that

{47)

L]
1\
o

is a consequence of {4).

There is at least one linear form in (u;,Ugs..ssUpwysP) Of

the type displayed in the first line of (4). For, if this were

not the case then (U;,ues.-.sUpnmys®) = (0,0,...,0,=1) would be a

golution of (4)

in contradiction to (4'), We may also assume that

no one of the P's is identlcally zero, since if for example P; = O

then § = Ly, and
equeallty in- the

line we obtain

Li,
Li; + le

Ly

(5) =t L3y

Lir + le
Lk,

the conclusion would hold. By adding each in-

first line of (4) to each inequality in the second

EP+2 20, oouy LirE@+Pr2°
ZE P +Ny 2 05 e0os Ly, + Lj, S P+ Ng 2 0
S Pa+Ny 20, vooy Ly, +Lj S Pe+Ng 20
SPr+Ny 2 0, oy Dy + Lig = PpNg 20
s 2:20, ..., Iy, S 2z, 2 O.

For each solution (uz,...,up_y6)of (5) we must heve

(5)

b2 o.

For, let there be a solution with § < O. Then every P is positive

and we may suppose, for convenience, that P, > 0 is the smallest

P. Putting § =

=P, we still have a solution of (5). But by
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substituting P, = =0 in the second line of (5) we see that the
latter solution is also a solution of (4), which is impossible by
{4'). Hence (5') is a consequence of (5).

We now consider the system of inequalities

Py 20, oo P,Z 0
Py + Ny 2 05 ceo, Py +Ng2 O
{6) oes ces N
Pp+ Ny 20, ooy Pn+ Ng2
Zy 205 ooy Z, 2 0.

¥From the sssumption made above that no P is identically zero we
sse that the system (6) contsins at leest one form which is not
identically zero., If (6) has a non-trivial solution then some P

zmst venish for every solution. For, if this were not the case

then for every P4y there would be a solution u1(12°"’un£i) of (6)
for which P4 > 0. The solution (u1v-~‘»“n-;) = (ul(;) + u1(2)+..°,

(2) (=)

osssUnay * Upay ‘+ s0») makes Pi > 0 for every 41 = 1,2,...5r. From
this we deduce that (5) has a solution with § < O, which is a
contradiction of the fact that (5') is a consequence of (5),

Hence we may suppose that P, = O for every solution of (6). It
follows that

(6') -Pl : (0]

is o consequence of (6). In the case that (6) has no non-trivial
solution then (6%') is still a consequence of (6). By our induction

assumption there exist non-negative constants a, b, ¢ such that

=Py = 8Py + «.. + anPr + €12; + ... + Ct2¢

+ b12(Py + N1) + by2(Py + Na) + ... + byg(Py + Ng)

e see see cee

+ bpy (Pr + Ny) + bpg(Pp + Nz) + ... + brg(P. + Ng).
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Employing the identities in (5) we find

1

(A+ar+ coodap)® = (Loay)ly +oeotraply + Caly+ oo + ol
+ bn(Lil-o- le) +b1,a(L--1_1 + sz)+ seat bzs(Id.:."‘ Ljs)

+ bpy(Dy, + L) + .00 * brs(Lir + Ly )s
which proves the theorem.
We define u = (uj;,uzs.<.sup) as a solution of the system

(7) Ag 4wy >10

in case Ay 31y 2 O 1s sabtisfied with the strict inequality holding
for at least one value of &, A set of numbers will be called

positive definite in case every number of the set is positive.

LEMMA 231. A necessary and sufficient condition that (7)

admit no solution w is that the system of equalities

(8) Ay 1¥x =0 (1 =1,2,...,n),

admit a positive definite solution v = (vl,vg,...,vm)o

This is Theorem 12 of Dines and McCoy [3]. We employ this
lemma to obtain the following modification of Theorem 2:1.

THECREM 2:2. If for every non-trivial solution u of (2)

1t is true that = A;u,>0 then there exist constents Co > O

such that
O = CaLy + Cale + ... + Cply.

If the matrix || A-&i" has rank n then the converse is also true.

To prove the first part of the theorem we note that the
system of inequalities
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AzsUy + Ajela + eoo + Agpun > 'O

Ag,Uy + AmgUs + ooo + Agpup > 'O
3

- Alu;_ o= Azug > o060 = Anugl> 0

has no solution u. We use Lemma 2:1 with (7) replaced by this

aystem and obtain positive constants C 4 such that

Co By = B4 =0 (1 =1,2,...,0),

as desired. If llA, 4!l has rank n then every non-trivial solution
n of Ayify = O 1s also a solution of A, uy > ‘0, Hence
P2 C L« > 0.
For simplicity we use the letter U to denote the class
of all non-trivial solutions u &f (2).

THEOREM 2:3. The statements:

(1) there exists a U satisfying A 3Ty > 0

for every «,
(1) U is n-dimensional,
(111) U is not null and po.linear form A juy
venishes for all u belonging to U,
are a2ll squivalent.
The first atatement (i) implies (ii) for, by continuity,
there is an n-dimensional neighborhood of W which belongs to U.
The statement (11i) follows from (i1i) since if we suppose, for
example, that A3 ugy = O for all u belonging to U then obviously
U could not contain n linearly independent vectors u and hence could

not be n-dimensional. To prove (iil) implies (i) we notice that
there are solutions u‘lf u(ag coey u(m) of (2) such that
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Au_ui(:') >0
Aaiui(e) >0
Amiui(_m? > 0.
(), (=) (m)

Hence we need only set wy = ug '+ Wy Tk eee vy

For the next theorem we need to introduce the notion of
I-rank of a matrix, an integral valued function of a matrix analo-
gous to ordinary rank. But first some preliminary remarks are

necessary. Supposse

Ayx Ay see  Ayp
IM = 0o s cee cee -a.l
Ay  Amg  eee  App

is an mxn matrix whose elements Aij are all real, ‘The matrix M is

gaid to be I-definite with respect to a given column in case the

elements of thet column are all positive, or are all negatives
"M will be called I=definite in cese it contains at least one
colum with respect to which it is I-definite.

If ™M is not I-definite with respect to the gth column we

divide the elements of that column into 3 classes,

r positive elements : Ay g (L =1;,1z,...,15)5
8 negative elements 3 Ajq (3= Jasdrseeeslg)s
t zero elements : Apg (k= lky,ke,eea,ky)e
From ™M we derive the matrix —ml(q) as follows:
To each pair of elements Aiq’ qu, the first positive and

the second negative, corresponds one row of ml(‘” given by
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A:l.q Asy

Aiq 452

Asq Asp

4iq 4jn

t

]Aiq,‘iq-z
s e
Ajq Ajgm

A-s,q Aiqﬂ-‘
Ajq Ajg

To each zero element Akq corresponds the row

Akl, Akan 23909 Akq.ll Akq+19 0009 Akna

The wmatrix ml(‘"*" will consist of the rows so formed; the number
of rows being rs+t. The order of the rows shall be fixed by
the rule: {l) each row corresponding to a pair Aiq’ qu shall
precede every Akq row; {(2) of two Aiq’ qu rows that one shall
precede which has the smaller i or (in case the i's are equal)
that one which has the smaller js; (3) of two Akq rows that one
shall precede which has the smaller k.

Thus ‘m;("-) is well-defined if MM is not I-definite with
respect to its gth column, If MWiis I-definite with respect to
its gth column we define Wl(q) as the matrix of 1 row and (n -1)
columns all of whose elements are + 1 or = 1 according as the
elements of the gth column of M are all positive or all negative.
The matrix ml(*’) will be called the I-complement of the gth
column of M, and the set %" of matrices Tn,_(l)-, ml(é), vees
2 ‘™) will be called the I-minors of (n-1) columms of the
matriz M. We notice that if a matrix is I-definite then all its
I-complements are likewise I=-definite.

Now we form the I-complements for each matrix ml(q), and
call the set ng of all such I-complements the I-minors of (n-2)
columns of M. Continuing this process we obtain a finite sequence
of sets ‘}1: %(2, esey %n—:. where each matrix in (yp is an I-minor

of n=-p columns of ML, If we define Ml as 1ts own I-minor of n

columns then %o =M and the set %o + g,_ + ee. + ?n-l of

metrices constitute all the I-minors of M,
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We are ready to meke the definition: A matrix will be

gald to be of I~-ramk h if it possesses at least one I=-minor of h

columns which is I-definite, but does not possess any I-minor of
h+1l columns which is I-definite. If none of its I-minors are
I-definite then it will be sald to be of I-rank 0.

In his paper [2] Dines proves the following theorem; the
proof of which we shall omit.

THEOREM 2:4. A necesgsary and sufficlent condition for

the existence of a solution W = (Uy,Uzs«..slly) of

A0y + Ajels + ses + Agpiln > O
oeoe aeo osa LN ]

Amay + AmeuUs + oo + Appmln > 0

is that the I-rank of A _ ;] be greater than zero.

3. Necessary conditions involving only first derivatives.

We meke some preliminary definitions. A solution A= (A3, Agssse,Ap)
of

quifxo)z\iio (“= 1,2,...,m),

will be called an admissible direction if A 41s not the zero vector.

A regular are xy(t) (1 =1,2,...,03 O S48 to), will be called
admissible in cese g, [x(t)] 2 O for every « and t. A point x°
is a normal point in case the matrix

n sa‘xl(xO)l

has rank n.

THEOREM 3:1. If f(x°) i3 a minimunm then there exist

miltipliers ,l'o, Z'“ not all zero such that the derivatives in of

the function
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F(x) = Lof(x) + X 8 u (%)

all vanish at x9.

In the class of points (x;2) = (Xys:0.5XsZ2900002%p)
satisfying h (X,2) = g (X) = Za = O the point (x,2z) = (x°,0)
is a minimizing point for f. Hence, by Theorem 1l:1, there exist
constants Yo, Lo not all zero such that the function H(x,z) =
Yof + Tuhe = Yof 4+ Yu 8w = X o Zoc has Hxi(xo,O) =0, It
follows that F(x) = Zof + Y« g« has in(xo) = 0,

We note that if m < n the above proof of Theorem 3:1 is
unnecessary. For, if x° is a minimizing point in the class of
points satisfying g (x) 2 O it certainly is a minimizing point
in the class satisfying ge (x) = 0, and Theorem 1:1 can be ap=-
plied directly.

1f x° is a minimizing point for £ which is normal then the
multiplier 7—'0 is not zero and can be given the value one by
dividing each number of the set Xo, Xo by Yo and obtaining a
new set Zo = 1, ;l,x which satisfies the conclusion of the theorem,
Assume, then, that x° 1s a normal minimizing point and Zo = 1.

If we suppose; for the moment, that the functions f and g« have
contlmious second derivatives then by employing the necessary
condition on the second derivatives of H(x,z) at the minimi zing
point (x,z) = (x°,0) of £ as given in Theorem 1:2 we can easily
show that 1, S0 (e = 1,2,...,m). For, by the theorem just

referred to, the quadratic form

’717k3xixk(x°’0) +27 I‘Bxiz_(x°,0) + 3. Jgﬁz,(z,(x"’o) =

N1 7iFxy 2 (52 - 2 e
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rust be non-negative for all sets Ui, Yzseoes Pps J1s Jzseees I
for which "lig“xi(xO) =0 and Y35 Fesec.s Jp 15 arbitrary. Set-
ting every ’( and ¥ except Y, equal to zero and substituting
in the quadratic form we find that X o S O,

However, in this sectlion we shall make proofs of the non-
positive character of the multipliers i,‘ which do not involve
second derivatives, and the case when the minimizing point is
normal will appear as a special instance (see the proof of the
corollary to Theorem 5:1).

We use Theorem 2:1 to obtain the following necessary

condition.

THEOREM 3:2. Suppose that for each admissible direction

) there is an admissible arc issuing from x° in the direction A .

that there exist multipliers Z,‘ § 0 such that the derivatives

Fxy of the function
F=1f+ Zugu

2ll vanish at %0,

By & curve x4(t) (0 S t S to), "issuing from x° in the
direction A " we mean, of course, that x4 (0) = x3° and xiw(O) =Ay.
Consider an ;:.dmissible direction A and the corresponding admissible
curve x;(t) given in the hypothesis. Let F(t) = f£[x(t)]. Since
T(0) € F(t) for 0 S £.S.to, 1t follows that T'(0) 2 0. But
(o) = fxl(xo) A,. Hence fx_i(x°)A1 Z 0. Then fxi(x°)ui 2o
is & consequence of gdxi(x°)u1 20 (X =1,2,...,m), and by
Theorem 2:1 there exist multipliers X,‘ § O such that i‘xi(x°)u1 +
I“g‘xi(x°)u.l = 0. Thus fy, + I,‘g,‘xj‘ = 0 for every i, and the

theorem is proved,
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The condition that there exist multipliers X _ § o)
satisfying the conclusion of Theorem 3:2 will be referred to as
®the first necessary condition". For brevity, the property that
for each admissible direction A there is en admissible arc
issuing from x° in the direction A will be called property Q.

One would naturally like to know what the probability is,
roughly, that the functions g. (x) will satisfy property g, as
wéll as some conditions on the functions ge which will ensure the
gsatisfaction of Q. In order to partially answer these questions
we shall briefly discuss one geometric interpretation of an
admissible direction. v

The tengent planes to-the surfaces g, (x) = O at their

common point of intersection x° are given by

To(x) T gox (x0)(xgy = x°) =0 (o= 1,2,5..,m),

The stralght line issuing from x° in the admissible direction A
is

A
A

(9) S: ox(e) = At xy® (0= t= tos 4 = 1,2,...5m),

Substituting the equations of S in T, (x) we obtain T, [x(t)] 0.

nv

We conclude that the line S lies in the set of points x near x°
satisfying T, (x) 2 0; and since the latter set, in a sense,
approximates thevset of points x near x° satisfying g« (x) 2 0,
if the functions g, are regular enough, it seems that the satis-
faction of property @ is not a great restriction on the functions
8« ¢« In fact, the following corollary states a condition on -9
which makes the line S an admissible arc.

CUROLLARY. Suppose that for every admissible direction A

it is true that ga‘x_l(x") Ay = O implies that 8 axyxy (X°) Ay Ay > 0.
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Then if £(x°) = minimum the first necessary condition is satisfied.

Consider any admissible direction A and the corresponding
1line S given in (9). Define g, (t) = g [x(t)] (x=1,2,...,m;
0SS t,). We have dg, (t)/dt = g,‘xil;x(t)]xi’(t) = Bocxy [x(£)] Ay

Hence

dg . (0) _
at - Baxy

(x°) A N 2 o.

If dg o (0)/dt > O then E . (t) is monotonically increasing near
t=08nd g, (t) =g,x(%)] Z Be (x°) = O. Hence S lies in the
set of points x satisfying g, (x) 2 0. If dg. (0)/dt = O then
4%E  (£)/86® = B oxyx, [2(£)] Ay Ay and by hypothestis

a=g « (0)
Therefore E,‘(t) is monotonically increasing and, as before;
satisfies g, [x(t)] 2 0. We have shown that with S the hypotheses
of Theorem 3:2 are satisfied, and the conclusion follows,

In Theorem 3:3 we obtaln the same necessary condition that
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