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Preface

The theory of inferences and oppositions among categorical propositions, based on Aris-
totelian term logic, is pictured in a striking square diagram. The graphic representation
of contradictories, contraries, subcontraries and subalterns intended as a foundation for
syllogistic logic can be understood and applied in many different ways with interesting
implications for various disciplines, notably including epistemology, linguistics, math-
ematics, psychology. The square can also be generalized in other two-dimensional and
multi-dimensional graphic depictions of logical and other relations, extending in breath
and depth the original Aristotelian theory. The square of opposition is accordingly a very
attractive theme which has persisted down through the centuries with no signs of disap-
pearing or even diminishing in fascination. For the last 10 years, there has been a new
growing interest for the square due to new discoveries and challenging interpretations.
This book presents a collection of previously unpublished papers by well-regarded spe-
cialists on the theory and interpretation of the concept and application of the square of
opposition from all over the world. We thank all the authors who have contributed a paper
to this book, and the referees who have analyzed, commented on, and made invaluable
recommendations for improving the essays.

Jean-Yves Béziau
Dale Jacquette

Rio de Janeiro, Brazil
Bern, Switzerland
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Part I
Historical and Critical Aspects of the Square



The New Rising of the Square of Opposition

Jean-Yves Béziau

Abstract In this paper I relate the story about the new rising of the square of opposi-
tion: how I got in touch with it and started to develop new ideas and to organize world
congresses on the topic with subsequent publications. My first contact with the square
was in connection with Slater’s criticisms of paraconsistent logic. Then by looking for
an intuitive basis for paraconsistent negation, I was led to reconstruct S5 as a paraconsis-
tent logic considering ¬� as a paraconsistent negation. Making the connection between
¬� and the O-corner of the square of opposition, I developed a paraconsistent star and
hexagon of opposition and then a polyhedron of opposition, as a general framework to un-
derstand relations between modalities en negations. I also proposed the generalization of
the theory of oppositions to polytomy. After having developed all this work I have begun
to promote interdisciplinary world events on the square of opposition.

Keywords Square of opposition · Paraconsistent logic · Negation · Modal logic

Mathematics Subject Classification Primary 03B53 · Secondary 03B45 · 03B20 ·
03B22

One can never tell when a old, discarded theory will suddenly burst
into renewed life.

Brendan Larvor [35]

1 The Square Adventure

In June 2007 I organized the first world congress on the square of opposition in Montreux,
Switzerland. In June 2010 was organized a second edition of this event in Corsica and
presently a third edition is on the way for June 2012 in Beirut, Lebanon. After the first
event was published a special issue of the journal Logica Universalis dedicated to the
square of about 200 pages with 13 papers [15] and the book The Square of Opposition—
A General Framework for Cognition of about 500 pages with 18 papers [19]. Most of the
papers in the present book Around and Beyond the Square of Opposition are related to
the talks presented at the second congress in Corsica and a double special issue of Logica
Universalis [18] of about 250 pages with 10 papers has also been released following
this event. Thus about 1500 pages have been recently published based on the square of
opposition, a very productive tool.

J.-Y. Béziau, D. Jacquette (eds.), Around and Beyond the Square of Opposition, 3–19
Studies in Universal Logic, DOI 10.1007/978-3-0348-0379-3_1, © Springer Basel 2012
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4 J.-Y. Béziau

The aim of this paper is to tell how all this square animation did arise. In this paper I
will speak about my first encounter with this creature and how our relation has developed
changing the shape of both of us. There are mainly four stages in this square adventure:
Los Angeles, CA, 1995; Fortaleza, Brazil, 1997; Stanford, CA, 2001; and Neuchâtel,
Switzerland, 2003.

2 The Slater Affair (Los Angeles 1995)

In 1995 I was spending some time in Los Angeles, CA, as a Fulbright scholar at the
Department of Mathematics of UCLA (invited by Herb Enderton). I was 30 years old and
had never yet met the square face to face. Like any logician I had heard about it, but didn’t
know exactly what it was. For me it was connected with Aristotelian logic and syllogistic,
something out-of-date, of historical interest, if any, similar to astrology.

I was then asked to write a Mathematical Review of a paper by Hartley Slater enti-
tled “Paraconsistent logics?” [49] challenging the very existence of paraconsistent logics,
a bunch of organisms I had been working on since a couple of years. I was quite interested
to know up to which point I had been wasting time studying non-existent beings.

The weapon used by Slater to annihilate the paraconsistent ghosts was related to the
square of opposition, a good reason to study this magic stick. In his paper the notions of
contradictories and subcontraries, essential features of the square, are used to discuss the
question whether a paraconsistent negation is a negation or not. Slater recalls that Priest
and Routley did argue at some point that da Costa’s negation is not a negation because it
is a subcontrary functor but not a contradictory functor: in the paraconsistent logic C1 of
da Costa, p and ∼p cannot be false together, but sometimes can be true together, this is
exactly the definition of subcontrariety.

An essential feature of a paraconsistent negation ∼ is to allow the rejection of the ex-
contradictio sequitur quod libet: p, ∼p �|� q . If we interpret this semantically, this means
that there is a model (valuation, world) in which both p and ∼p are true and in which q is
false, for one p and for one q . This means therefore that ∼ is not a contradictory forming
functor, but a subcontrary forming functor. So what applies to da Costa’s paraconsistent
negation seems to apply to any paraconsistent negation. That is on this basis that Slater
argues that there is no paraconsistent negation at all, using the very idea of Priest and
Routley that a negation should be a contradictory forming functor.

How can then the two pseudo-Australians argue that their paraconsistent negations
are negations but not the Brazilian ones? That sounds quite impossible, unless there is
a play on words, that’s what Slater emphasizes. Priest has developed a paraconsistent
logic LP with three-values, the difference with Łukasiewicz’s logic is that the third value
is considered as designated, that is the reason why in LP, we have p,∼p �|� q , since p

and ∼p can both have this third value. Now how can Priest argue that the paraconsistent
negation of LP is a contradictory forming functor? It is because he is not calling the third
value “true”, despite the fact that it is designated. In my paper “Paraconsistent logic!”
I comment the situation as follows:

Priest’s conjuring trick is the following: on the one hand he takes truth to be only 1 in order to say
that his negation is a contradictory forming relation, and on the other hand he takes truth to be 1

2
and 1 to define LP as a paraconsistent logic. However it is reasonable to demand to someone to
keep his notion of truth constant, whatever it is. ([13], p. 21)
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The subtitle of the quoted paper is “A reply to Slater”. In this paper I argue that a con-
tradictory forming functor is necessarily a classical negation, with a proof of a general the-
orem sustaining this fact. This entails that: (1) a paraconsistent negation cannot be a con-
tradictory functor but not that: (2) a paraconsistent negation is not a negation—unless we
admit that a negation has to be a classical negation. For me Slater is wrong arguing that:

If we called what is now ‘red’, ‘blue’, and vice versa, would that show that pillar boxes are blue,
and the sea is red? Surely the facts wouldn’t change, only the mode of expression of them. Likewise
if we called ‘subcontraries’, ‘contradictories’, would that show that ‘it’s not red’ and ‘it’s not
blue’ were contradictories? Surely the same points hold. And that point shows that there is no
‘paraconsistent’ logic. ([49], p. 451)

A paraconsistency negation like the one of C1 is not definable in classical logic, so in this
logic there is a new operator, it is not just a question of shifting names:

It is important to note, against Slater, that the paraconsistent negations in the logics of da Costa and
Priest (. . .) cannot be defined in classical logic. Thus paraconsistent logic is not a result of a verbal
confusion similar to the one according to which we will exchange “point” for “line” in geometry,
but rather the shift of meaning of “negation” in paraconsistent logic is comparable to the shift of
meaning of “line” in non-Euclidean geometry. ([4], this idea was further developed in [8])

Nevertheless one should have good reasons to sustain that such new operators are indeed
negations, one cannot define a paraconsistent negation only negatively by the rejection
of the ex-contradictio. This is what I have explained at length in my papers “What is
paraconsistent logic?” [5] showing also that it was not easy to find a bunch of positive
criteria for positively define a paraconsistent negation. The square can help to picture a
positive idea of paraconsistent negation: the very notion of subcontrariety can be used to
support the existence of paraconsistent negations rather than their non-existence. I was
led to this conclusion not by a mystical contemplation of the square, nor by a philological
study of this legendary figure, but indirectly by trying to find a meaningful semantics for
paraconsistent logics.

3 S5 Is a Paraconsistent Logic (Fortaleza/Rio de Janeiro 1997)

Paraconsistent logic was my point of departure for exploring the logic world. I did a
Master thesis in mathematical logic on da Costa’s paraconsistent logic C1 at the university
of Paris 7 under the supervision of Daniel Andler in 1990 (see [3]). As I have explained
elsewhere [14] my interest for paraconsistent logic was based on questions regarding the
foundations of logic rather than by a childish attraction to paradoxes. If the principle of
(non)contradiction is not a fundamental principle, what are the fundamental principles of
logic, if any? How is it possible to reason without the principle of contradiction? Those
were the questions I was exploring.

Investigating these questions I did study in details various paraconsistent logics and
I noticed that generally they were ad hoc artificial constructions or/and had some prob-
lematic features. I was wondering if there was any intuitive idea corresponding to the no-
tion of paraconsistent negation nicely supported by, or expressed through, a mathematical
framework. In August 1997 I was taking part to the 4th WOLLIC (Workshop on Logic,
Language, Information and Computation) in Fortaleza, Brazil and I was discussing the
question of intuitive basis for paraconsistent negation with my colleague Arthur de Val-
lauris Buchsbaum. Influenced by The Kybalion [34], he was telling me that something can
be considered true from a certain point of view and false from another viewpoint.
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I was sympathetic to this idea having worked on the philosophy of quantum mechanics
during my Maîtrise de Philosophie at the Sorbonne under the supervision of Bernard
d’Espagnat (see [2]). I had been in particular studying the work of Heisenberg, Bohr
and Bohm. From a certain viewpoint an object o is a particle, from another viewpoint
it is a wave. Since a particle is something that cannot be a wave, this means that from
a viewpoint it is true that o is a particle and from another viewpoint it is true that o is
not a particle. Using classing negation this means that from this other viewpoint it is
false that o is a particle. Bohr developed complementarity to explain this paradoxical
situation, saying that there is no contradiction here since these two viewpoints are distinct
visions that are not conflicting since the two contradictory features do not manifest in
the same experiment. But what is then the reality beyond these two viewpoints? The
Copenhagen interpretation eludes the problem, rejecting the idea of an objective reality
beyond experiments. This can lead to a relativism not in the sense of Einstein, but in
the sense of post-modernism, as caricatured by Sokal in his hoax quoting in fact Bohr:
“A complete elucidation of one and the same object may require diverse points of view
which defy a unique description” and Heisenberg: “As a final consequence, the natural
laws formulated mathematically in quantum theory no longer deal with the elementary
particles themselves but with our knowledge of them. Nor is it any longer possible to ask
whether or not these particles exist in space and time objectively” ([52], p. 218).

David Bohm, like d’Espagnat, had a different philosophical idea, more Kantian, in the
sense that for him these contradictory viewpoints are the expression of the limitations of
our thought to capture the unthinkable noumenal reality. Bohm uses metaphors to explain
paradoxes of quantum physics, for example he explains inseparability by the metaphor
of an aquarium in a room with a fish filmed by two perpendicular cameras. In another
room someone may see the two movies on two different screens trying to understand the
strange interaction between the two fishes without knowing that it is in fact the same fish
(see [24]).

Discussing with Arthur, I was disagreeing with him saying that everything can be con-
sidered as true form a certain viewpoint and false from another viewpoint. This seems
to me too easy, too trivial. I had then the following idea: the negation of p is false if
and only if p is considered true from all viewpoints. If p can be considered as true from
a viewpoint and false from another viewpoint, then ∼p can be considered also as true.
What does this mean exactly, true from which viewpoint? This can be clarified using a
Kripkean semantics. Viewpoints are considered as worlds and we say:

∼p is false in a world w iff p is true in all worlds accessible to w.

To simplify I decided to consider a universal accessibility relation, then we have:

∼p is false in a world w iff p is true in all worlds.

If p is not true in all worlds, this trivially means that there is a world w in which p is
false, but this also means that ∼p is true in all the worlds and we may have a world w in
which p is true, so, in this world, p and ∼p are both true.

Back to Rio de Janeiro where I was living I started to work the details of this semantics.
I decided to call Z the logic with such a paraconsistent negation by reference to LeibniZ,
because it was connected to the semantics of possible worlds. I developed this paper in
view of the projected conference in July 1998 in Torun commemorating the 50 years
of Jaśkowski’s paper on paraconsistent logic [32]. Jaśkowski’s logic is called discussive
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Fig. 1 Paraconsistent
negation as a modality

logic because the motivation was to formalize the logic of people discussing together.
Different people may have different ideas, according to someone the proposition p may
be true, according to someone else the proposition p may be false. The worlds of the logic
Z can be considered as different opinions people may have. According to Z if everybody
agrees that the proposition p is true, then everybody has to agree that the proposition ∼p
is false, but if someone thinks that the proposition p is false, then the proposition ∼p is
true for everybody and someone may also think that the proposition p is true, then for him
p and ∼p are both true. So my paper was called “The paraconsistent logic Z—a possible
solution to Jaśkowski’s problem” and presented at the Jaśkowski’s commemorative con-
ference. For a reason I ignored the paper was not subsequently published in the double
issue of Logic and Logical Philosophy related with the conference, but much later in a
issue of this same journal [12] and is having a certain success (cf. [38, 43–45]).

The main result of this paper is to axiomatize the logic Z which has, as primary connec-
tives, classical conjunction, disjunction and implication and the negation ∼p defined ac-
cording to the above possible worlds semantical condition. In this paper I give a Hilbert’s
style axiomatization for Z, proving the completeness theorem generalizing the method of
completeness for modal logic. I also show that it is possible to translate Z into S5, by
interpreting ∼p as ¬�p. This is easily shown by checking that:

¬�p is false in a world w iff p is true in all worlds.

I wrote this paper in December 1997 and then discussed these questions with Claudio
Pizzi, who was visiting Rio at this time. The results of this discussion are described as
follows in my paper “Adventures in the paraconsistent jungle”:

I discussed my discovery with the Italian logician Claudio Pizzi, who has a little castle in Co-
pacabana and uses to come there frequently. Pizzi told me two important things: one right and one
wrong. The wrong was that the operator ¬� corresponds to contingency, the right was that S5
and Z are equivalent since it is possible in S5 to define classical negation and necessity with ¬�,
conjunction and implication. ([14], p. 71)

This discussion will lead to my paper “S5 is a paraconsistent logic and so is first-order
logic” [9], where I show how possible worlds semantics can be used to develop para-
consistent logics. Despite the fact that Z is the same logic as S5, it is a quite interesting
construction, since it gives a very different picture of the situation: we have a logic with
conjunction, disjunction, implication and a paraconsistent negation as the only primitive
connectives. And after discussing with Pizzi I was on the way to develop a connection
between the modal square and an intuitive interpretation of paraconsistent negation, with
the picture shown in Fig. 1. The modality ¬�, i.e. impossible, is considered as a para-
complete negation, whose intuitionistic case is a particular case. This is connected with
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Gödel’s result: it is possible to translate intuitionistic logic into the modal logic S4 [26].
I presented a talk on this subject in March 1998 at the PUC-Rio before presenting it in
Poland in July 1998 at the Jaśkowski’s event. The following year I was again in Poland
taking part to the 11th International Congress of Logic, Methodology and Philosophy
of Science (Kraków, August 20–26, 1999), where I had the opportunity to meet Slater
in flesh and blood, being convinced of his existence, but this didn’t convince me of the
non-existence of paraconsistent negations.

4 The O-Corner (Stanford 2001)

In 2000 and 2001 I was a visiting scholar at the CSLI/EPGY at Stanford University invited
by Patrick Suppes. During this time I had the opportunity to discuss the question of ¬�
and the square with various people at Stanford and also circulating around the world.

At Stanford University I discussed the question of ¬� with Johan van Benthem during
Spring 2001, who oriented me, as Pizzi did it before, to contingency in particular the
work of Lloyd Humberstone from Melbourne. So at the beginning of May 2001 I wrote
to Humberstone. Discussing with him I was led to completely clarify the relation between
¬� and contingency. Here is the e-mail exchange I had with Humberstone (May 8, 2001):

JYB: I have been interested recently on the logic of contingency and Johan van Benthem told me
that perhaps you can give me some information about the subject. I was led to the study of the
operator of contingency defined standardly as ¬�, because it has some interesting properties from
the point of view of paraconsistent logic. It is in fact dual of the intuitionistic negation considered
as �¬.
LH: Now in fact as far as I know, nobody has ever proposed that contingency is definable as ¬�,
since ¬� is consistent with (indeed follows from) being impossible �¬ and so is not a notion of
contingency. The standard definition is rather: ¬�∧¬�¬ or alternatively � ∧ �¬.

So ¬� was not contingency. What it was, what was a good name for it, other than the pure
negative name “not necessary”? This question would be clarified a couple of months later
when still at Stanford I attended a talk by Seuren. Anyway at this time I just had learned
more about contingency, had a look at Humberstone’s work, who has also been working
on non-contingency [29]—the contingent theme being a long time Australian topic, Rout-
ley was one of the first to work on the subject [48]. At this time I remembered the work of
Blanché about the hexagon [20] that I read several years ago before. I was thus facing the
picture shown in Fig. 2. This picture replaces the wrong picture that can be found in many
different papers or books, and that I had in mind (see Fig. 3). The mistake has been cleared
up in the 1950s by Robert Blanché reconstructing the square within two triangles form-
ing an hexagon (see [20–22]). Jean-Louis Gardies, a follower of Blanché, explains that
during the history of logic since Aristotle there was a confusion about modalities, people
having in mind rather a triangle but trying to express the relation between the modalities
with a square similar to the square of quantifiers (see [25]). Blanché was nevertheless
able to keep the parallel between quantifiers and modalities by elaborating a hexagon of
modalities which also clarifies some confusions about the theory of quantifiers (making
the difference between “at least one” and “some but not all”). The triangle of modalities is
shown in Fig. 4. According to this triangle, contingent is the same as possible and means
not necessary, where “not” is interpreted as a contrary negation: “it is necessary that god
exists” and “it is contingent that god exists” cannot be true together, but they can be false
together, in this case “it is impossible that god exists” is true.
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Fig. 2 Hexagon of
modalities

Fig. 3 Wrong square of
modalities

Fig. 4 Triangle of
contrary modalities

Fig. 5 Triangle of
subcontrary modalities

But “not necessary” as ¬� appears as one of the vertices of the dual triangle, the trian-
gle of subcontrariety (Fig. 5), where possible here has the standard meaning given by the
modal square, not excluding necessity. My idea was to go on studying ¬�, a primitive
and fundamental connective of the paraconsistent logic Z. The Australians, like Routley
and Humberstone, have been working on modal logic based on contingency as primitive,
but have they been working with ¬� as primitive? Humberstone wrote me: “I don’t know
of any work specifically on taking ¬� as a primitive” (e-mail 18.05.2001). Bob Meyer
that I met at the Annual Meeting of the Society for Exact Philosophy (Montreal, May
11–14, 2001) also told me that he had never heard about this or/and the fact that ¬�
could be considered as a paraconsistent negation.
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June 25–28, 2001, I organized, jointly with Darko Sarenac a workshop on paracon-
sistent logic in Las Vegas, part of the International Conference on Artificial Intelligence
(IC-AI’2001). I wrote for this event the paper “The logic of confusion” and presented it
in Las Vegas. This paper is a generalization of the techniques used in my Z paper and
I decided to talk about viewpoints rather than possible worlds, here is a summarize of it:

The logic of confusion is a way to handle together incompatible “viewpoints”. These viewpoints
can be information data, physical experiments, sets of opinions or believes. Logics of confusion
are obtained by generalizing Jaśkowski-type semantics and combining it with many-valued se-
mantics. In this paper we will present a general way to handle together incompatible viewpoints
which promotes objectivism via paraconsistent logic. This general framework will be called logic
of confusion. The reason for the name is that we want to put (fusion) together (con) different
viewpoints. ([7], p. 821)

I then went to the Annual Meeting of the Australasian Association of Philosophy in Tas-
mania (Hobart, July 1–6, 2001) and to Melbourne for a one day workshop (July 12, 2001)
at the philosophy department with Graham Priest, Ross Brady, Otávio Bueno, and where
I met Humberstone. I gave in Melbourne a talk about modality and paraconsistency based
on the square which I presented few days later in Perth at the University of Western Aus-
tralia where I was visiting Slater.

Back to Stanford via South-Africa and Brazil presenting talks about this theme, I at-
tended in the Fall 2001 an interesting lecture by Pieter Seuren from Max Planck Institute
for Psycholinguistics (Language and Cognition Group), Nijmegen, The Netherlands. It
was a talk entitled “Aristotelian predicate calculus restored” presented at CSLI CogLunch
on 25 October 2001.

This was the first time I heard about the non-lexicalization of the O-corner. “O-corner”
is the traditional name for the corner where ¬� is positioned in the square of modality.
As A, E, I, this is an artificial name, all being mnemotechnic abbreviations of some Latin
expressions describing the corners of the square of quantification. Larry Horn, author
of the famous book A Natural History of Negation [28], has shown that there was no
known languages in the world where there is a primitive word for the O-corner of the
quantificational square. Horn’s analysis is summarized as follows by Hoeksema in a paper
dedicated to JFAK for his 50th birthday:

Striking is the observation in [Horn 1989, p. 259] that natural languages systematically refuse
to lexicalize the O-quantifier, here identified with “not all”. There are no known cases of natural
languages with determiners like “nall”; meaning “not all”. Even in cases that look very promising
(like Old English, which has an item nalles, derived from alles, “all”; by adding the negative prefix
ne- the same that is used in words like never, naught, nor, neither), we end up empty-handed. Nalles
does not actually mean “not all” or “not everything”, but “not at all” [Horn 1989, p. 261]. Jespersen
[1917] suggested that natural language quantifiers form a Triangle, rather than a Square. ([27], p. 2)

Based on the non-lexicalization of the O-corner, Seuren was arguing, following the Danish
linguist Jespersen, that the O-corner didn’t make sense, that the square was wrong. I was
no really convinced by such linguistical argument telling him that the equation

exists = has a natural name

seems wrong to me, and that a concept may exist even if he has no name in natural lan-
guage, like many mathematical concepts, for example the number 0 (funny because of the
similarity with the “O” of the O-corner which can be seen as a zero corner). Mathemat-
ics is an intelligent way to develop new concepts. The square is a simple mathematical
construction and the O-corner makes sense within this mathematical construction. But of
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course it is always interesting to make the bridge between mathematics and reality, to
turn mathematics reality. For me the fact that paraconsistent negation was exactly at the
location of the O-corner in the modal square was interesting: these two attacked concepts
could mutually be strengthened by sitting together.

At this time I was also working on a four-valued modal logic influenced by
Łukasiewicz who in his last paper [36] presents a four-valued system of modal logic
starting with the modal square of opposition. Łukasiewicz’s logic has several defects,
I started to rethink the problem with the same starting point: the square of opposition.
I present this work at the Annual Meeting of the Australasian Logic Society, November
28–30, 2001, in Wellington, New Zealand. I have developed this work along the years and
it was finally published in 2011 [16]. Before that I wrote another paper entitled “Paracon-
sistent logic from a modal viewpoint” [11] mixing the idea of this four modal logic and
the square vision of paraconsistent logic, contents of which was presented at a paraconsis-
tent workshop organized by João Marcos at the 14th European Summer School in Logic,
Language and Information (ESSLLI), August 5–16, 2002 in Trento, Italy (João Marcos
has been extending my work in different directions, see [39] and [40]).

5 Polyhedron and Polytomy of Oppositions (Neuchâchel 2003)

I settled down in August 2002 in my country of origin, Switzerland, where I would be
a SNF (Swiss National Science Foundation) Professor for six years at the University of
Neuchâchel. This is during this period that I fully expanded the square activities:

• raising the ideas of polyhedron of oppositions and polytomy of oppositions (2002–
2003),

• directing Alessio Moretti’s PhD thesis “The geometry of logical opposition” (2004–
2008),

• organizing the first world congress on the square of opposition in Montreux in June
2007.

Arriving in Neuchâchel, I finished to elaborate the ideas that will lead to the paper
“New light on the square of oppositions and its nameless corner” [10], published in Log-
ical Investigations in 2003, the logic journal of the Russian Academy of Sciences where
had been previously published in 2002 my paper on S5 as a paraconsistent logic.

In this paper I systematically developed the parallel between the three oppositions of
the square (contradiction, contrariety, subcontrariety) and three kinds of negations (clas-
sical, paracomplete and paraconsistent) and I argued that subalternation is not really an
opposition (since the square is about three oppositions, I decided to use the expression
“square of oppositions”, rather than the standard “square of opposition”).

For this reason the square diagram seemed to me quite artificial and that was one
more reason for me to emphasize the hexagon. I started to use colors for a better visual
representation, deciding to have contradiction in red, contrariety in blue, subcontrariety
in green, and choosing black for subalternation (see Fig. 6).

Considering subalternation as secondary I was most of the time rather picturing the
Star of David (Fig. 7).

In the Fall 2002 I gave a series of lectures in Italy presenting a talk entitled “The square
of oppositions, modal logic and paraconsistent logic”:
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Fig. 6 Colored hexagon of
oppositions

Fig. 7 Star of David of
oppositions

Fig. 8 Octagon of
oppositions

Fig. 9 Paraconsistent star of
oppositions

Fig. 10 Paracomplete star of
oppositions

• on November 12, 2002 in Cagliari, invited by Francesco Paoli,
• on November 15, 2002 in Napoli, invited by Nicola Grana,
• on November 20, 2002 in Siena, invited by Claudio Pizzi, with whom I had discussed

these questions in Rio in 1999.
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Fig. 11 Linking the stars

Fig. 12 Stellar dodecahedron
of oppositions

Back to Switzerland, during the winter 2002–2003, I started to conceive a polyhedron
of oppositions. I was led to this polyhedron by trying to systematically picture the rela-
tions between the 4 modalities and p and ¬p. It is nice to say that the three notions of
opposition of the square correspond to three notions of negation, but in the modal square
there is not the proposition p itself that can be confronted to these three negations. The
simplest idea is to picture the octagon (Fig. 8), where ¬p also appears. But I was dissat-
isfied with this picture mainly for esthetic reasons.

I thought that stars were more beautiful and had the idea to draw the two stars shown
in Figs. 9 and 10. I saw then that a way to put together the three stars according to the
links—as shown in Fig. 11— was to construct a polyhedron. My intuitive idea was that
this polyhedron was the stellar dodecahedron shown in Fig. 12.

I was still in touch with Humberstone and at this time he sent me a preliminary draft
of [30] where two other hexagons corresponding to these two stars are presented. The
difference with my work is that no paraconsistent and/or paracomplete interpretations are
provided and one cannot find here the idea to put the three hexagons together building
a three-dimensional object (influenced by my work Humberstone wrote later on [31]).
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Fig. 13 Double square of
oppositions

Fig. 14 Double square in
Hagia Sofia

Not a specialist of polyhedra, I was looking on the web and I found a webpage on this
topic produced by Hans Smessaert, a linguist from the Catholic University of Leuven,
Belgium. I e-mailed him, explaining my discovery, he kindly replied to me, describing a
fourth hexagon. At the same time I discussed this question with my friend Alessio Moretti
who independently arrived at the same conclusion. And both Hans and Alessio were led
to consider a tetradecahedron rather than a stellar dodecahedron in particular because they
were figuring subalternations. An improvement of this polyhedron was constructed later
on by Régis Pellissier (see details of the story in [42] and see the references of the work
of Smessaert, Pellissier and Luzeaux in the bibliography [37, 46, 47, 50, 51]).

I had met Alessio at the ESSLLI 2000 in Birmingham where he was attending my tu-
torial on paraconsistent logic and we met again at the ESSLLI in Trento in 2002. He was
quite interested by the square and I proposed him to supervise a PhD on this theme at the
University of Neuchâchel. The title of his PhD is: “The geometry of logical opposition”
(see [42]), but he generally prefers to use the expression “Theory of n-opposition” (see
e.g. [41]) to name the work he is developing around the square (an ambiguous terminol-
ogy, as pointed out by Alexandre Costa-Leite, since this theory is not about multiplication
of oppositions). This is related with an idea I had at the same time I was developing
the polyhedron of oppositions early in 2003. My idea was to generalize the hexagon of
Blanché into the double square shown in Fig. 13.

Later on in 2003 I would have the pleasure to see plenty of double squares when vis-
iting Turkey. I was taking part to the 21st World Congress of Philosophy at the Congress
center in Istanbul (August 10–17, 2003) and the floor was covered by such squares and I
also saw such squares visiting the famous temple Hagia Sophia. A picture I took is shown
in Figure 14.

Later on Alessio told me that it is better to figure the idea beyond this double square by
a bi-simplex, since we have then the same distances between the vertices of each “square”.
The generalization from the hexagon to a double square or a bi-simpex is quite natural
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Fig. 15 Truth-valued square
of contrariety

from a mathematical viewpoint, it is like going from trivalent logic to quadrivalent logic.
And we are facing the same problem: does this make sense? Can we find interesting
philosophical motivations and applications of these generalizations? In his logic book
Kant argues that only dichotomy is a priori, polytomy is a posteriori (see [33]). But
Blanché’s masterpiece Structures intellectuelles. Essai sur l’organisation systématique
des concepts gives us good reasons to think that trichotomy can be put on the a priori side:
a ternary structure is ruling conceptualization (see [23]). However it is difficult to find
some systematic n-tomic (n > 3) structures and we can agree with Kant that at some point
polytomy is rather empirical, maybe though the case of quadritomy can reasonably put on
the a priori side, considering for example the square of contrariety (Fig. 15) corresponding
to the famous four-valued logic of Dunn-Belnap [1].

Having developed these new ideas about the square, I gave in 2003 a series of lectures
on this topic around the world:

• March 6, in Brussels (Belgium),
• March 10, in Lausanne (Switzerland),
• April 11, in Rio de Janeiro,
• April 24, in Florianópolis (Brazil),
• May 17, in Vancouver (at the 31st Annual Meeting of the Society for Exact Philoso-

phy),
• May 29, in Moscow at the 4th Smirnov’s Readings,
• August 10, in Oviedo (Spain) at the 12th International Congress of Logic, Methodology

and Philosophy of Science,
• September 9, at the Second Principia International Symposium, Santa Catarina, Brazil,
• September 16, at the Academy of Science of Buenos Aires, Argentina,
• October 15, in Geneva,
• October 18, in Amsterdam.

6 Squaring the World (2007–2011)

In 2003, 2004 and 2005 I was working intensively to develop universal logic. After hav-
ing organized an international workshop on universal logic In Neuchâtel in October 6–8,
2003, I started the preparation of a big world congress and school on universal logic in
Montreux in 2005 (UNILOG’05) and then launched the journal Logica Universalis and
the book series Studies in Universal Logic with Birkhäuser. Universal logic is a general
theory of logical systems trying in particular to study concepts that are beyond specific
systems of logic and that can be therefore applied to a huge variety of logics (see my paper
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[6] that can be seen as a complement to the present one). The square of opposition is typ-
ically a universal tool, as explained in the preface of a special issue of Logica Universalis
on the square I edited with Gillman Payette:

The square of opposition is something which is very much in the spirit of universal logic. It is
a general framework than can be used to appraise existing logics and develop new ones (. . . ) It
can be applied to logical notions such as: quantifiers, negation and all kinds of modalities (ontic,
deontic, alethic, epsitemic).
The square of opposition helps to turn logic more universal. The square can not only be used as
a tool for a systematic study of classes of logics and for developing bridges between logics but
also as a central logical key to semiotics, ethnology, linguistics, psychology, artificial intelligence,
computer science. ([15], p. 1)

UNILOG’05 was a great success with more than 200 participants from about 50 dif-
ferent countries. Everybody enjoyed very much the atmosphere of Montreux and the
friendly hotel Helvétie in which the event took place. I decided therefore to organize
the first world congress on the square of opposition in the same location. However the
event was projected in a different way, a small interdisciplinary 3 day congress: the event
took place June 1–3, 2007, in Montreux. We had 10 invited speakers, among them: Larry
Horn, Pascal Engel, Alessio Moretti, Pieter Seuren, Hans Smessaert, Terence Parsons, Jan
Woleński, and we had plenty of good contributors (about 60 people from all around the
world). I wanted to really develop interdisciplinarity, gathering people from philosophy,
linguistics, mathematics, computer science (the basic square), but also form psychology,
ethnology and art. Since we were in Montreux, jazz was natural. We had a jazz show with
compositions based on the square. This was organized by my friend Michael Frauchiger,
from the Lauener Foundation in Bern.1 We also presented a movie we had produced es-
pecially for the event, a remake of the Biblical story of Salomé, the square being used to
articulate the relationships between the four main characters: Herod, Herodias, Salomé,
Saint John the Baptist.

1Henri Lauener was a Swiss philosopher who liked very much music, after his death a philosophy prize
was created and during the award ceremony there is always a band playing music.
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The trailer of the movie and extract of the square jazz show can be seen in the DVD which
was produced after the event by Catherine Chantilly, included in the book The Square of
Opposition—A General Framework for Cognition [19] that I have edited with Gillman
Payette after the event.

At the final round square table of the first congress in Montreux it was discussed if
there would be future editions of the event, where and when. Among the participants
there was a colleague, Pierre Simonnet, working at the University Pascal Paoli in Corté,
Corsica, who suggested to organize the event there. I liked the idea since I had been liv-
ing in Corsica as a child and had wonderful time. I visited Pierre in Corsica in March
2008 and again in October 2009 to prepare the event. The event took place in Corsica in
June 17–20, 2010, with the same format as in Montreux. Among the participants, there
were Damian Niwinski, Stephen Read, Dale Jacquette and Pierre Cartier—the famous
Bourbachic mathematician, and many old and new contributors. At the end of this second
event we discussed the organization of the third world congress on the square of oppo-
sition, and it seems that this series of events is now launched for many years. The third
square event is scheduled in June 2012 at the American University of Beirut and the fourth
square congress will probably happen in Munich in 2014.

Working on the organization of these events, I have also been continuously working on
the square, always having new ideas, applying the square to various fields. Among many
talks on the square around the world I presented “Extensions of the square of opposition
and their applications” at ECAP08 (6th European Conference on Computing and Philos-
ophy, June 16–18, 2008, Montpellier, France), “The logical geometry of economy” at a
congress on Epistemology of Economical Sciences (October 1–2, 2009, Buenos Aires,
Argentina). I also applied the square to semiotics (talk at Dany Jaspers’s CRISSP seminar
in Brussels, October 28, 2010) and music (talk at the seminar mamuphi—mathematics,
music and philosophy—organized by François Nicolas at the ENS Ulm in Paris, Novem-
ber 5, 2011).

I see the square as a way to go beyond dichotomy. Dichotomy is a thinking method-
ology, promoted by the Pythagoreans, which was essential for the development of sci-
ence. But dichotomy is limited and many dichotomic pairs are quite artificial. Blanché has
rightly pointed out that trichotomy is more interesting and this is the basis of the hexagon
of oppositions. In the hexagon, trichotomy appears at two levels: there are the two tri-
chotomic triangles, but there are also the three notions of oppositions from the square of
oppositions: contrariety which is the basis of the blue triangle, subcontrariety, which is the
basis of the dual green triangle and contradiction linking these two trichotomic triangles.
Blanché’s hexagon is a really powerful tool based on trichotomy (see [17]).
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Logical Oppositions in Arabic Logic:
Avicenna and Averroes

Saloua Chatti

Abstract In this paper, I examine Avicenna’s and Averroes’ theories of opposition and
compare them with Aristotle’s. I will show that although they are close to Aristotle in
many aspects, their analysis of logical oppositions differs from Aristotle’s by its semantic
character, and their conceptions of opposition are different from each other and from Aris-
totle’s conception. Following Al Fārābı̄, they distinguish between propositions by means
of what they call their “matter” modalities, which are determined by the meanings of
the propositions. This consideration gives rise to a precise distribution of truth-values for
each kind of proposition, and leads in turn to the definitions of the logical oppositions.
Avicenna admits the four traditional oppositions, while Averroes, who seems closer to
Aristotle and especially to Al Fārābı̄, does not mention subalternation, but admits sub-
contrariety. Nevertheless, we can find that Averroes defends what Parsons calls SQUARE
and [SQUARE], because he holds E and I-conversions and the truth conditions he ad-
mits are just those that make all the relations of the square valid, while Avicenna defends
SQUARE and [SQUARE] only for the was.fı̄ reading of assertoric propositions. They also
give a special attention to the indefinite which in Averroes’ view is ambiguous, while
Avicenna treats it as a particular. Some points of their analysis prefigure the medieval
concepts and distinctions, but their opinion about existential import is not as clear as the
medieval one and does not really escape the modern criticisms.

Keywords Logical oppositions · Matter necessity · Possibility and impossibility ·
Existential import · Indefinites · was.fı̄ vs d. ātı̄ readings of propositions

Mathematics Subject Classification Primary 03A05 · Secondary 03B10

1 Introduction

In this paper, I will examine Avicenna’s and Averroes’ views on the specific topic of the
so-called logical oppositions in order to compare between them both on the one hand and
between them and Aristotle on the other hand. As is well known, Aristotle identifies oppo-
sition with incompatibility, since the only logical relations that he holds to be oppositions
are contradiction and contrariety. But can one say the same thing about Avicenna and
Averroes? Are their respective accounts of the notion of opposition distinct from Aristo-
tle’s one? Are they distinct from each other? How are logical oppositions characterized in
their respective systems? And how is the notion of opposition itself viewed in these sys-
tems? In order to answer these questions, I will start by analyzing Avicenna’s system then
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I will turn to Averroes’ one and finally, I will compare between them both and Aristotle
in order to determine the way they define this notion. This comparative analysis shows
that the notion of opposition is different in the three systems, and gives rise to three quite
distinct figures.

2 Avicenna’s Analysis of the Logical Oppositions

The logical oppositions are analyzed by Avicenna (980–1037) in his book entitled
al-shifā’ (The Cure), more precisely in al-Maqūlāt (Categories) and al-‘Ibāra (Peri
Hermeneias). In al-‘Ibārā, he defends his views on oppositions and presents what we
would consider as a square of oppositions since he analyzes the four traditional rela-
tions which are: contradiction, contrariety, subcontrariety and subalternation. But before
turning to his analysis of these relations let us first see how he defines the notion of op-
position itself. This definition is presented in al-Maqūlāt (Categories) where Avicenna
considers many types of oppositions which could concern the terms or the propositions.
He defines opposition in general by saying that “The opposites do not conjoin in the
same subject by any aspect in any time” [12, p. 241].1 The opposites could be terms or
propositions expressed by sentences, and opposition itself could be expressed by means of
negation or by other means; as examples, he gives the following pairs: “horse/non-horse”
and “even/odd”. Avicenna follows here Aristotle’s Categories (10) when he distinguishes
between oppositions by virtue of correlation such as “double” and “half”, of possession
and privation, of contrariety such as “sick” and “healthy” and finally the opposition of
truth-values. This last one affects propositions and is expressed by means of a negation;
thus singular propositions such as “Zayd is a man” and “Zayd is not a man” are opposed
because they do not have the same truth-value. The real opposition between propositions
is, then, the opposition between truth-values. This opposition in truth-values is specifically
made by the negation since Avicenna, like Aristotle, thinks that sentences that contain op-
posite predicates are not contradictories when the subject does not exist, because in that
case, they are both false. Avicenna gives the following example: “Zayd who does not exist
[al ma‘dūm] is seeing” does not contradict “Zayd who does not exist is blind”, but it does
contradict “Zayd who does not exist is not seeing” [12, p. 259], because this last sentence
is true. In the same vein, the sentence “Stones are sick” does not contradict “Stones are
healthy” but it does contradict “Stones are not sick” [12, p. 258], because the first two
sentences are false while the last one is true. But the notion of opposition is more gen-
eral than contradiction, contrariety or correlation. It can be seen as a genus that includes
several species [12, p. 245].

How can we apply this to the different kinds of propositions that are expressed by sin-
gular, quantified or non quantified sentences? To answer this question let us see what Avi-
cenna says in al-‘Ibāra. In this book, he classifies propositions into three kinds: (1) Sin-
gulars, (2) Indefinites (i.e. not quantified) and (3) Quantified, i.e. Universal and Particular
propositions. We have to notice here that Avicenna uses a specific term to indicate the
presence of a quantification. The quantifier is expressed by the word ‘sūr’ [14, p. 52] and

1Wilfrid Hodges in [19, p. 13] translates this passage in the following way: “We say: opposing pairs are
those which don’t combine in a single subject from a single aspect at a single time together.”
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the quantified propositions by ‘musawwara’.2 This word ‘sūr’ is also used by Al Fārābı̄ in
al-Qawl fi al-‘Ibārā, for instance. Al Fārābı̄ explicitly mentions Alexander of Aphrodisias
and other commentators of Aristotle in many of his writings, which could explain the
closeness of his terminology to the Greek commentators’ one.3 He defines the quantifier
in the following way: “It is the word that indicates that the judgment made by the predicate
is about part of the subject or about the total subject” [1, p. 118] he adds that there are four
quantifiers, which are “All, None (lā’ wāh. id), Some and Not all” [1, p. 118] and are used
in the four kinds of propositions. Avicenna mentions the same classification in al-‘Ibāra
[14, p. 54], but Averroes seems to be clearer on that point since he talks about only two
quantifiers by saying: “I mean by quantifier the words «all» and «some»” [9, p. 91]. This
generic word ‘sūr’ is not, however, exactly equivalent to the modern quantifier, for (1) in
Avicenna’s and Al Farabi’s account, such words may be mixed with negation, the sepa-
ration from negation occurs only in Averroes’ account, (2) the particular quantifier does
not stress specifically on existence, as is the case with the modern existential quantifier.
But this grouping may be seen as prefiguring the medieval distinction between two sepa-
rate kinds of terms: the syncategorematic and the categorematic terms. As it is expressed
by Jean Buridan, this distinction occurs between terms that signify by themselves, and
“may be subject or predicate per se” in propositions (the categorematic terms), and terms
that do not signify in isolation but only in connection with other terms in the proposition
(the syncategorematic terms, e.g. ‘not’, ‘or’ and the like). Terms like ‘nobody’, ‘nothing’,
‘somewhere’ are said to be ‘mixed’ [17, p. 96]. As noted by [24, section 4], the origin
of the words ‘syncategorematic’ and ‘categorematic’ is grammatical and can be found in
“Priscian’s Institutiones grammaticae II, 15”. The grammatical distinctions are also made
by Arabic logicians, since they distinguish between the noun, the verb and the particle,
which is defined exactly like the syncategorematic terms: the particle does not signify in
isolation but only in connection with something else. But they do not provide a complete
listing of logical syncategorematic terms.

Let us now turn to the logical oppositions as they are defined by Avicenna. We will fo-
cus here on his al-‘Ibāra, since we find them stated there quite systematically, but we will
mention also al-Qiyās. Not surprisingly, Avicenna considers the singular propositions as
being contradictories, that is, they never share the same truth-value. Whenever a singular
proposition is negated, it becomes false if the affirmative is true and vice versa.4 However,
with respect to other kinds of propositions, that is, the quantified and the non quantified
propositions, Avicenna distinguishes between several possibilities which are treated in
much detail. This treatment reveals many kinds of oppositions, which are all related in
one way or another with the notion of truth-value.

Let us start by the quantified propositions. These are the particular and the universal
propositions; they are explicitly quantified by adding in one case ‘some’ and in the other

2Avicenna uses also the expression ‘mad.kūrat as sūr’ and the word ‘mah. s.ūra’ to designate the quantified
propositions. As to Al Fārābı̄, he uses the expression ‘d. awāt al aswār’ (i.e. those that contain quantifiers)
[2, p. 121].
3I thank one anonymous referee who drew my attention to the fact that the word ‘sūr’ is “heir to the
notion of «prosdiorismos» in the Greek commentators of Aristotle”.
4However in [14, p. 70], Avicenna says that the singular propositions which are in the future are not
necessarily true or false and seems to agree with Aristotle in his treatment of the problem of the “future
contingents”, although he gives more details on the possible propositions.
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case ‘all’. When we add negations, the universal negative is expressed by “No A is B”
and the particular negative by “Not all A are B”. As in the Aristotelian tradition, Avi-
cenna considers that the universal negative (E) and the particular affirmative (I) on the
one side, and the universal affirmative (A) and the particular negative (O) on the other
are contradictories, that is, they never share the same truth-value. But what is added is the
subdivision of these quantified propositions into three kinds which are: Necessary, Impos-
sible and Possible. Necessary, Possible and Impossible must be understood here in terms
of the relation between the subject and the predicate. The necessity, possibility or impos-
sibility is internal and is not expressed by a specific word. As an example of a necessary
proposition, Avicenna gives the following: “Every man is an animal”, this proposition is
necessary because of the fact that being an animal is an essential attribute of men. The
example corresponding to an impossible proposition is the following: “No man is a stone”
[14] which expresses the fact that “stone” cannot be a feature of the subject “man”. This
sentence expresses an impossible proposition because Avicenna defines material impos-
sibility in this way: it is “what is permanent and whose affirmation is necessarily false”
[14, p. 47].5 This means that in an impossible proposition, the predicate is never adequate
for the subject, which makes the affirmative proposition always false (and consequently
the negative one always true). In a possible proposition, the predicate does not express an
essential attribute of the subject, but could be predicated of it; the example is a sentence
where the subject is “man” and the predicate “writer”. When we add the universal quanti-
fier, we obtain the following proposition “All men are writers” which is false as well as the
corresponding universal negative which is “No man is a writer” [14, p. 46]. These modal-
ities are called “matter”6 modalities because they are related to the essences of the objects
concerned and express material necessity or impossibility or possibility. When the inher-
ence of the predicate into the subject is permanent, the proposition is necessary, when it is
not, the proposition is possible, when the predicate is never convenient for the subject, the
proposition is impossible. Necessity and impossibility are related to the notion of perma-
nence, while in the notion of possibility, there is no permanence. These modalities must,
however, be distinguished from the explicit (verbal) modalities which are expressed by
specific words such as “necessary” (= wājib), “possible” (= mumkin) and “impossible”
(= mumtana‘). Avicenna makes a clear distinction between the two kinds of modalities
by saying that a sentence which contains an explicit modality could be false as is the
case with the following example “All men are necessarily writers” [14, p. 112], while a
sentence with a matter modality is never false when it is affirmative and necessary, for
instance. The falsity of this sentence is explained by the fact that it has “a modality which
disagrees with its matter” [14, p. 112]. “Matter” modalities are considered in the general
theory of (categorical) syllogisms while explicit modalities are studied in the theory of

5The Arabic sentence is the following: “. . . yadūmu wa-yajibu kadhibu ı̄jābihi . . .yusammā māddat
al- imtinā‘.”
6We find the expression “matter modalities” in Al Fārābı̄’s text too and the word matter seems to have a
long history starting from Aristotle and his Greek commentators. The matter (hūlē) in Aristotle is opposed
to the tropos, which has a rather vague sense and could mean the form of the proposition (see [18, p. 298]).
In Ammonius’ text, it is related to modalities since he says in his De Interpretatione: “These relations
<between subject and predicate> they call the matter of propositions and they say they are necessary,
impossible or possible” (cited in [8, p. 233]). The necessity, possibility or impossibility are, according to
this author, “due to the very nature of the objects” [8, p. 233]. In Avicenna’s text, the modal sense is clear
as we have seen.
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modal syllogisms. This notion of “matter” modalities could be related to the medieval
notions “materia necessaria”, “materia contingenti”, and “materia impossibili”, which
were discussed by many authors “in early medieval logic and <were> dealt with in mid-
thirteenth-century books”, for instance, in Thomas Aquinas’ writings “who wrote that
universal propositions are false and particular propositions are true in contingent matter
(In Perihem.I. 13, 168)” [21, Sect. 3]. Similar distinctions are made by William of Sher-
wood, according to the same author [21]. This distribution of truth-values is exactly the
same in Avicenna’s (and Al Fārābı̄’s) analysis, as will appear in the following list:

A necessary: True E necessary: False
A impossible: False E impossible: True
A possible: False E possible: False

I necessary: True O necessary: False
I impossible: False O impossible: True
I possible: True O possible: True

These truth conditions follow directly from what Avicenna says about the truth-values of
the considered propositions [14, p. 47]. It shows that the contradictory propositions which
never share the same truth-value in any matter are, when they are quantified, A and O on
the one hand and E and I on the other. We have thus six contradictory propositions which
are: (1) Necessary A and Necessary O, (2) Impossible A and Impossible O, (3) Possible
A and Possible O, (4) Necessary E and Necessary I, (5) Impossible E and Impossible I,
and (6) Possible E and Possible I.7

All these oppositions are contradictions since in all these pairs, only one proposition
is true, the other being false. Avicenna explains this very precisely by saying exactly
which one is true and which one is false in all the cases. They are then totally opposed
whatever matter they may have as he notes in the chapter devoted to the analysis of the
contradictory propositions [14, pp. 66–75]. This means that contradiction is the strongest
kind of opposition.

The second kind of opposition is contrariety. The contrary propositions are as in the
Aristotelian tradition the two universal propositions, that is, A and E. As we can see, they
do not share the same truth-value when they are Necessary and when they are Impossible
since Necessary A: “Every man is an animal” is true and opposed to Necessary E: “No
man is an animal” which is false. Impossible A: “Every man is a stone” is false and
opposed to Impossible E: “No man is a stone” which is true. But these propositions do
share the same truth-value when they are Possible, since Possible A: “Every man is a
writer” and Possible E: “No man is a writer” are both false. Contrariety is, then, defined in
the traditional way: it is the relation between propositions that are never true together but
might be false together. But the cases of truth and falsity are determined more precisely by
taking into consideration the matter of the propositions. It is less strong than contradiction
because it concerns only two propositions (A and E) opposed in two modes.

Then, he considers subcontrary propositions which are the two particular propositions.
As the table shows, these do not share the same truth-value when they are Necessary and
when they are Impossible; but they are both true when they are Possible. Thus, I nec-
essary: “Some men are animals” is true and opposed to O Necessary: “Not all men are

7Unlike Aristotle, Avicenna does not use the word “contingency” in [14, p. 122].
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animals” which is false, and I impossible: “Some men are stones” is false and opposed
to O Impossible: “Not all men are stones” which is true. Possible particulars are exem-
plified by: “Some men are writers” and “Not all men are writers” which are both true.
Subcontrariety is then an opposition which makes the propositions never false together
but sometimes true together. This is even less strong than contrariety since we have two
propositions opposed in two modes, but the propositions are true in the third mode, thus
not opposed at all in that mode: this makes subcontrariety less strong than contrariety.

Finally, we have the subaltern propositions which are A and I on the one hand and E
and O on the other, the word used for subalternation being “Tadākhul”. These are opposed
when they are possible as we can see in the following examples: A possible: “Every man
is a writer” is false, while I possible: “Some men are writers” is true. The same holds
with E possible: “No man is a writer”, which is false, while O Possible: “Not all men are
writers”, is true. But they do share the same truth-value when they are Necessary (they
are both true) and when they are Impossible (they are both false).

What is interesting here is the way Avicenna expresses this relation, since he says: “As
to those that differ in quantity but not in quality, let us call them subalterns, we find that
those which are affirmative are true in the Necessary, and that the negative subalterns are
true in the Impossible, and both do not share the same truth-value in the Possible, but the
particulars are true in that case, and examine that by yourself” [14, p. 48, my emphasis].
This shows that his characterization of this kind of opposition and the other ones follows
from the observation of the distribution of the propositions’ truth-values which in turn
depends upon the senses of the propositions involved: this makes it even more semantic
than in Aristotle’s account. The semantic character is related both to the consideration
of the meanings of the propositions and to the distribution of truth-values which is quite
systematic in Avicenna’s account, while it is not in Aristotle’s and the traditional logi-
cians’ one, even if they define also the oppositions by considering the truth-values of the
propositions. Avicenna, unlike Aristotle and the traditional logicians, does not say: since
the contrary propositions are never true together therefore, when one of them is true, the
other must be false; rather, he finds that, in consideration of the distribution of the truth-
values of all kinds of propositions that they are never true together. He presents then a
kind of truth table similar to the well known contemporary semantic method, though less
achieved since only the cases of truth are considered, but not all the cases. We see then
that his method is the ancestor of the semantic contemporary method of truth tables.

Regarding subalternation, it is not defined exactly as in Aristotle’s text since Aristotle
says: “For in demolishing or establishing a thing universally we also prove it in particular;
for if it belongs to all, it belongs also to some, and if to none, not to some” [5, III, 6, 119a,
34–36]. Aristotle does not mention any differences in truth-values between the proposi-
tions, but rather relations of implication. Moreover, he does not consider subalternation as
an opposition at all. But we can notice that, according to Avicenna, subalternation, even
if characterized in a different way, is the less strong opposition since only two pairs of
propositions in the Possible matter are opposed by their truth-values. We can notice also
that the Arabic word used by Avicenna to express this relation, which is “Tadākhul” is not
synonymous with the traditional word “Subalternation” since it does not have the same
linguistic meaning. While “Subalternation” derives from the Latin words “alter” which
means “other” and “sub” which means “under” and evokes the notion of dependence
(upon the other) and thus implication, the Arabic word comes from the root “dakhala”
which is a verb meaning “to enter”, the other verb, which is closer to the word used, is
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“tadākhala” and means “to enter into each other”. The ideas involved then are the ideas of
inclusion and of the relation between the whole and the part: the part is included into the
whole, therefore what is true of the whole is true of the part. It seems that Avicenna has
chosen this word by himself without relying on a specific tradition, which appears clearly
in the preceding quotation where he says: “let us call them [. . .]”.8

The oppositions involve more or less differences in truth-values but the differences are
either total or partial i.e. concern only some cases. The strongest opposition is contradic-
tion since it involves all the pairs of propositions concerned and all the modes or matters
but the other ones are different in degree so that we can say that subalternation is the less
strong one, while contrariety, which involves one pair of propositions and two matters (the
propositions being false in the third matter), and subcontrariety, which involves also one
pair of propositions and two matters, are intermediates. As we can see, the oppositions
between quantified propositions lead to a Square of oppositions in Avicenna’s view since
he admits the four oppositions.

Regarding the indefinites, Avicenna tends to defend an Aristotelian position according
to which these propositions should be considered as particulars even though they do not
contain explicitly any quantification. This opinion is expressed explicitly at page 51 of
al-‘Ibāra where he says “the indefinite has the force of the particular”. But he spends
much time and place to explain why this should be so. Being perfectly aware that this
kind of propositions might be considered, in ordinary usage, as universal propositions,
he tries to explain that one should avoid this kind of interpretation because it might be
confusing and even misleading. For when we add a universal quantifier to an indefinite
proposition, it might become false while it was true without quantification. For instance,
when we say “White is necessarily white” this is true, but when a quantifier is added, we
obtain the following sentence: “All what is described as white is necessarily white” [14,
p. 52] which is false according to him, since what is white now might not be white later.

But what happens if we negate an indefinite proposition? Does it become false if its
corresponding affirmative is true? According to Avicenna, the indefinite when negated,
is not the contradictory of its corresponding affirmative. He says that at page 67 where
he claims: “the indefinite has no contradictory” and also “the indefinites [. . .] are like the
particulars, they should be said to be subcontraries” [14, p. 66, my translation] since they
might be true together as witnessed by the two following sentences: “Men are beautiful”,
“Men are not beautiful” [14, p. 67]. But Avicenna gives examples of indefinite sentences
which do not share the same truth-value, such as “Stones are sick” and “Stones are not
sick” [12, p. 258], and he says explicitly that such sentences are contradictory, as appears
in the following quotation: “Two contradictories are not false together [such as] when we
say: ‘Stones (or Zayd who does not exist) are seeing’, ‘Stones (or Zayd who does not
exist) are not seeing’ ” [12, p. 259]. In other passages of al-‘Ibāra, he defends the opinion
that, although the indefinites seem contradictory in impossible and necessary matters, one
should treat them in general without focusing on the different matters, since he says: “One
must treat the indefinites as propositions, which is more general than the three matters,
and not consider them matter by matter. So the indefinite in the necessary matter, in so
far as it is an indefinite, is a particular judgment” [14, p. 69]. From these quotations,
one can conclude the following: the indefinites are true in the possible, but they do not

8As far as I know, there is no mention of this word in Al Fārābı̄’s texts; Al Fārābı̄ does not mention nor
include subalternation in his treatment of oppositions.
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share the same truth-value in the impossible and the necessary. Their truth conditions are
then the same as those of the two particulars. But this is not quite satisfying since if we
consider the indefinite as a particular and only as a particular, first it should behave as such
in all circumstances, which is not obvious nor warranted, secondly, the particular has a
contradictory which is the universal negative and this does not fit with what Avicenna says
about the fact that the indefinite has no contradictory and makes his opinion somewhat
confused as we will show in the last part. But we could say the same thing about Aristotle
himself who tends to consider the indefinite as a particular without treating it exactly as a
particular.

The shape corresponding to this analysis of the opposition is then a square since the
four oppositions are admitted and the indefinite is not characterized with enough precise-
ness. This square is the following:

It seems then that Avicenna defends what Terence Parsons calls SQUARE, that is, all
the relations of the square for the propositions he examined in that first treatise. But the
question remains to determine whether or not he defends SQUARE, as well as [SQUARE]
i.e. the relations of the square plus E and I conversions, for all the readings of the proposi-
tions that he talks about in al-Qiyās. We have also to examine his treatment of the question
of existential import. We will return to both topics in the last section.

3 Averroes’ Views on the Oppositions

Regarding Averroes (1126–1198), things are different because his aim in writing his trea-
tises was to comment on Aristotle’s logical writings. These treatises are the following:
(1) Talkhı̄s. Kitāb al-Maqūlāt [Paraphrase of the Categories], (2) Talkhı̄s. Kitāb al-‘Ibāra
[Paraphrase of the Peri Hermeneias], (3) Talkhı̄s. Kitāb al Analitı̄qa al Awwil (or al-Qiyās)
[Paraphrase of the Prior Analytics], (4) Talkhı̄s. Kitāb al Analitı̄qa at thānı̄ (or al-Burhān)
[Paraphrase of the Posterior Analytics), (5) Talkhı̄s. Kitāb al-Jadal [Paraphrase of The Top-
ics], (6) Talkhı̄s. Kitāb al-Moughālat.a [Paraphrase of the Sophistical Refutations]. They
have been grouped and edited recently by Gérard Jehamy under the title Talkhı̄s. Man-
tiq Aristū (Lebanon, 1982). We will also mention the Cairo editions of these different
treatises.

As we can see from the very beginning, Averroes follows Aristotle’s text faithfully.
But this does not mean that his opinions are exactly similar to Aristotle’s as we will see in
the following. For it happens to him to diverge from Aristotle’s text even if his aim is to
explain it. For instance, he writes sometimes “He (i.e. Aristotle) says. . . and we say. . .”
[9, p. 92, p. 137, etc.] which shows that when commenting the text, he gives his opinion
on it.

Averroes says that there are exactly six oppositions between the different kinds of
propositions. These kinds are the following: (1) The singular propositions, (2) The indef-
inite propositions, (3) The quantified propositions which are the particular and the uni-
versal propositions. The first opposition is the one between the two singular propositions



Logical Oppositions in Arabic Logic: Avicenna and Averroes 29

which is, as in Avicenna and Aristotle’s views, a contradiction without any doubt. The
second is the opposition between the two indefinites or non quantified propositions: these
are in Averroes’ view either contraries when they are meant to be universal propositions,
or subcontraries if they are meant to be particular propositions. The indefinites could be
true in possible “matters”, in which case they are particular and would be subcontraries,
but if in that same matter they are interpreted as universal, then they are contraries [9,
pp. 92–93]. The example he gives to illustrate this fact is “Men are white” and “Men are
not white” both propositions are true if they are interpreted as particular, but if they are
interpreted as universal, both are false. Their relation depends then upon how one inter-
prets the possible indefinites, since when the matters of the indefinite propositions are
impossible or necessary, they never share the same truth-value, whether they are universal
or particular. For instance “Men are animals” and “Men are not animals” differ in their
truth-values: the first is true, the second is false, whether they are particular or universal,
and we can say the same thing about “Men are stones” which is false and “Men are not
stones” which is true. This means that, according to Averroes, the indefinites are ambigu-
ous because in the vernacular language both interpretations are admissible. He does not
share Aristotle’s opinion, nor Avicenna’s and Al Fārābı̄’s [1, p. 122] one, because all of
them treat the indefinite as a particular, which makes the two indefinites be subcontraries.
However, this position is not quite convincing for several reasons that we will examine in
the last section.

The third is the opposition between quantified propositions. These are the following:
the contradictories, the contraries and the subcontraries. If we consider that there are two
pairs of contradictories, we have really six oppositions, which are: (1) Singulars, (2) Indef-
inites, (3) Contradictories1, (4) Contradictories2, (5) Contraries, and (6) Subcontraries.

The contradictories are those which never share the same truth-value such as the singu-
lar propositions. Other contradictories are the quantified propositions which never share
the same truth value “in all matters” [9, p. 92]. These are A and O on the one side and E
and I on the other. To illustrate this, he gives the following example: “All men are white”
and “Not all men are white”. Then we have the contraries which are the two universal
propositions and do not share the same truth value “in the Necessary and the Impossible”
[9, p. 92] but are both false when they are Possible. The examples given are the following:
“Every man is white”, “No man is white” which are both false. The subcontraries are the
two particular propositions, which are never true or false together in the Impossible and
the Necessary but are true together in the Possible.

However, like Aristotle (and Al Fārābı̄), Averroes does not mention the subalterns
which he seems to ignore completely. This might be explained by the fact that he is com-
menting on the Peri Hermeneias in which we don’t find any mention of the subalterns.
Regarding the treatise corresponding to the Topics, which is al-Jadal [10, p. 558], Aver-
roes does not say anything different from Aristotle for he just summarizes his ideas by
saying that what is true of the whole (or is false of it) is also true (or false) of the part,
without entering into more details. He does not even use the word “Tadākhul” which was
used by Avicenna and so known by the Arabic logicians. This shows that he probably
does not consider subalternation as an opposition or else that he did not want to adopt
Avicenna’s views but rather to return to Aristotle’s ones (even if it is with some modifi-
cations) and probably to Al Fārābı̄’s opinions, since Al Fārābı̄ admits exactly the same
kinds of oppositions: contradiction, contrariety and subcontrariety and differs from Aver-
roes only in his treatment of the indefinites which, according to him, are subcontrary.
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It seems then that he follows Al Fārābı̄’s and Avicenna’s views by adopting the same
classification of matters, but he is closer to Aristotle and especially to Al Fārābı̄ in his
classification of the kinds of oppositions. He differs from Aristotle by considering sub-
contrariety as a real opposition while it is only a verbal opposition in Aristotle’s view
and from Aristotle, Al Fārābı̄ and Avicenna by considering explicitly the indefinites as
ambiguous while in these authors’ view they ought to be considered as particulars. The
shape corresponding to this classification is, then, the following if we do not include the
singulars:

This shape is different from Aristotle’s and Avicenna’s ones. It shows that the indef-
inite might be included inside the square since it has the specificity of being ambiguous
and could not be assimilated either to the particular or to the universal. If we add the sin-
gular propositions, we have an even more extended shape which will contain one more
horizontal line similar to the diagonals. However, if ‘or’ is taken as an inclusive disjunc-
tion, the proposition ‘A or I’ is equivalent to ‘I’ and the proposition ‘E or O’ is equivalent
to O,9 when A and E have existential import, given that both I and O have existential
import. This makes these two vertices superfluous, hence there is no hexagon since the
ambiguous character of the indefinites disappears. However when A and E do not have
existential import, while I and O do have it, there is no equivalence and the proposi-
tions ‘A or I’ and ‘E or O’ remain ambiguous and different respectively from I and O.
The problem is then to determine whether A, E, I and O have existential import or not
in Averroes’ theory. It makes no doubt that existential import is attributed to A and to
I as is the case with Aristotle and Al Fārābı̄, but what about E and O? According to
many authors, Aristotle himself gives to both universals an existential import, but others
such as Terence Parsons, say on the contrary that only affirmatives have existential im-
port in Aristotle’s theory, the two negatives being free of it, because O is expressed in
the following way: “Not all S are P”, which allows it not to have an import (see [23]).
As to Averroes, he says that O might be expressed either by “Not all S are P” or by
“Some S are not P” (the example given is: “Not all men are white”, and “Some men
are not white” [9, p. 92]) which suggests that, according to him, both formulations are
equivalent since he adds “as to the particular negative, it is expressed in both ways” [9,
p. 92]. But the second formulation means that O does have an existential import; if it

9This observation is due to Fabien Schang. I thank him for having pointed it out to me in an informal
discussion.
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is equivalent to the first one, then O has an import according to Averroes. As to Aris-
totle’s text, if we follow Tricot, the French translator of De Interpretatione, then O has
an import since he says in [6, note 1, p. 90]: “The following Aristotle’s example: oύ
πας ανθρωπoς λευκoς is translated in Latin by non omnis homo est halbus, which is
equivalent to quidam homo non est albus, which we have expressed in French by quelque
homme n’est pas blanc”. In the English translation, however, the same example is trans-
lated simply as: “Not every man is white” [3, p. 5]. And the ancient Arabic translation is
also the same as the English one since Aristotle’s example is expressed as: “Not all men
are white” [7, p. 106]. This means that regarding Aristotle’s text, the Latin translation
is ambiguous, but the other ones corroborate Parsons’ theory. As to Averroes, however,
the text is clear: O could be expressed both ways, and this means that it can have an
existential import. Regarding the singular proposition, Averroes defends Aristotle’s posi-
tion, saying that whenever the subject does not exist, the sentences “Socrates is sick” and
“Socrates is healthy” are both false, while the negative sentence “Socrates is not sick”
is true [9, p. 66]. So if we generalize this to the universal negative, we would say that
it does not have an existential import in Averroes’ account. But things are not so clear
for Averroes seems to treat both universals in the same way in al-Qiyās, for instance,
since he states that “the universal negative is the one where the predicate is negated from
the whole of the subject as when we say ‘no single man is a stone’ ” ([9, p. 138], [11,
p. 62]), while “the universal affirmative is the one where the predicate is affirmed of the
whole subject” ([11, p. 138], [9, p. 62]). This way of expressing things suggests that in
the negative universal, the negation puts on the predicate. If this is so, then E has an im-
port as well as A. Therefore if the disjunction is inclusive, ‘E or O’ will be equivalent
to O.

But if we consider ‘or’ as an exclusive disjunction i.e. ‘A or I but not both’ and ‘E or
O but not both’, the indefinites remain also ambiguous and different from the quanti-
fied propositions. However, this creates other problems which we will consider in our
last part. Anyway the figure is more complex then Aristotle’s and Avicenna’s ones since
we could also add the singular propositions which are explicitly included by Averroes
into the class of opposed propositions and construct a new kind of hexagon where the
new line is horizontal. The problem is that Averroes did not specify precisely the logi-
cal relations between the singulars and the other types of propositions, so we could not
really credit him with the discovery of this kind of hexagon. Furthermore, he did not
consider subalternation as an opposition which makes his figure different from a closed
hexagon.

But Averroes’ position about the notion of opposition itself is different from both Avi-
cenna’s and Aristotle’s ones. For in Aristotle’s view, the notion of opposition is meant to
be incompatibility since he admits only contradiction and contrariety while in Avicenna’s
view, the opposition is defined by the difference in truth-values but there are different op-
positions which are more or less strong depending on the number of propositions involved.
In Averroes’ view subcontrariety is considered as an opposition but subalternation is not,
which means that he considers opposition as a plural notion but it is limited to three main
patterns: it is thus less extended than Avicenna’s notion but more extended than Aristo-
tle’s. In the last part, we will try to characterize the differences and the affinities between
these three theories.
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4 Differences and Affinities Between the Three Views

According to Aristotle, only contradiction and contrariety are considered as oppositions
and the shape he admits is not really a square but just a fragment of it as has been shown by
Terence Parsons [23] and other people. This means that the notion of opposition according
to him must be understood in the following way:

Two propositions are opposed to each other if and only if:

(1) They have the same subject and the same predicate but one of them is affirmative and
the other is negative

(2) Either they never share the same truth-value or they are never true together

By admitting only contradictory propositions which never share the same truth-value,
and contrary propositions which are never true together, Aristotle considers opposition
as being incompatibility. This shows as Jean-Yves Béziau, for instance, has noted that
Aristotle “defends an asymmetrical view, privileging the principle of contradiction over
the principle of excluded middle” [15, p. 224] since contrariety respects the first principle
but not the second (contrariety is true when the two propositions are false and false when
they are true, which is not in accordance with the principle of excluded middle), while
subcontrariety respects the second principle. This creates according to J.-Y. Béziau, some
kind of “asymmetry” which is not legitimate if we consider that both principles have the
same importance and are “dual”. Moreover, we can demonstrate that the two principles
are equivalent to each other by using De Morgan’s laws and the law of double negation. If
we consider this equivalence, J.-Y. Béziau is right in saying that “it makes no sense” [15,
p. 224] to admit contrariety and reject subcontrariety at least in a bivalent system, which
makes Aristotle’s view incomplete or even somewhat incoherent.

Regarding Avicenna, as we have seen, the notion of opposition could be seen as the
difference of truth-values. Whenever there is such a difference, there is some kind of
opposition; the propositions might then be opposed to each other totally or partially and
there is some kind of graduation in the oppositions as we have seen in the first section.
The notion of opposition itself seems then to be plural unlike Aristotle’s notion and it
goes from the strongest kind to the less strong one, which is subalternation. We could
say that in this theory the opposition is either total (complete) or partial. This shows
that both principles are respected: there is accordingly no asymmetry in the theory. The
oppositions are characterized semantically by the distribution of the truth-values in the
table lines corresponding to each of them. In his distribution of truth-values, Avicenna
makes contradiction correspond to classical negation, contrariety to incompatibility (|)
(or to the negation of conjunction ∼(∧)) since the values he retains are the three lines
where this relation is true, subcontrariety to inclusive disjunction (∨), and subalternation
to implication (⊃), for the values he retains are just those which make these operators true.
The distribution that Avicenna presents corresponds to the truth cases of these different
operators, which shows that his characterization of the oppositions does not differ from
the classical one but is more precise in that it determines exactly the cases of truth and
falsity of the propositions.

We could then define opposition by distinguishing between a complete opposition and
partial oppositions in the following way:
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(I) Two propositions are opposed completely if and only if:
(1) They have the same subject and the same predicate but one of them is affirmative

and the other is negative
(2) They never share the same truth-value whatever matter they have

(II) Two propositions are partially opposed if and only if:
(1) They have the same subject and the same predicate but one of them may deny

the other
(2) They do not share the same truth-value in one or two matters

This distinction between the two kinds of oppositions is justified by the fact that Avi-
cenna considers contradiction as the most important opposition and that he says that the
opposition is “a genus which could be divided into species” [12, p. 245]. The attention he
pays to the matter of the propositions could be justified by his definition of logic which,
in his view, is a very general study which analyzes not only the forms of the arguments
but also the matter of the propositions involved in them. He compares the logician to an
architect who must take care not only of the shapes of his buildings but also of the ma-
terials he is using in order to arrive to a good result. In the same way the logician must
take care of the form and the matter in order for the argument to be conclusive, for if the
form is good but not convenient for the matter the argument will not be conclusive [13,
pp. 6–7].

Avicenna agrees with Aristotle in giving a great importance to the principle of contra-
diction since he devotes a whole chapter [14, chapter 10] to the notion of contradiction
and defines opposition by means of it. In his view, contradiction is the most complete
opposition because it respects the principle of contradiction. He agrees with him also by
considering that the opposition between propositions is introduced (most of the times) by
negation.

However, his position regarding the indefinites, which are considered as particulars and
are said to have no contradictory, is not very convincing. First, there is no reason why one
kind of propositions could not have a contradictory, secondly if the affirmative indefinite
is particular, its negation would be universal, which contradicts the general opinion that
the indefinites (affirmative or negative) must be seen as particulars.

Averroes seems to be closer to Aristotle and to Al Fārābı̄ than Avicenna is, for as
we have seen, he follows Aristotle and his text faithfully and agrees with him in many
points, for instance, in not considering subalternation as an opposition. Furthermore, the
figure that corresponds to what he says about oppositions is very close to the one that
could represent Al Fārābı̄’s opinion about oppositions, the only difference being related
to the indefinite, which would not be included in Al Fārābı̄’s figure if it were drawn. But
the theory he defends about opposition is, in the final analysis, slightly different from
Aristotle’s theory. For he admits subcontrariety as an opposition, which distinguishes him
from Aristotle and he uses the same way as Avicenna in classifying the propositions into
Necessary, Possible and Impossible, which we do not find in Aristotle’s texts. Moreover,
he distributes the truth-values in the same way as Avicenna. Regarding the indefinites,
his opinion is different from the other ones since he considers it explicitly as ambiguous
and not only as a particular. His opinion seems to be plural but restricted to three main
kinds of oppositions, which makes it less limited than Aristotle’s notion but more limited
than Avicenna’s one. The reason for that may be that he is not convinced by Aristotle’s
claim that subcontrariety is a verbal opposition, although he does not comment explicitly
on this claim. But he thinks like Aristotle, that opposition involves a difference in the



34 S. Chatti

quality of the propositions concerned: this is clear from the conditions he states himself
in order for an opposition to hold. These conditions are the following: (1) The subject
and the predicate must be the same in all aspects in both propositions, (2) There must be
only one affirmation and one negation, (3) There is only one negation opposed to a single
affirmation [9, p. 94]. We could, then, define his notion of opposition in the following
way:

Two propositions are opposed to each other if and only if:

(1) They have the same subject and the same predicate but one of them is affirmative and
the other is negative

(2) Either they never share the same truth-value or they are never true together or they
are never false together

But his treatment of the indefinites is not very convincing even if it does not contain
incoherencies. For in his view, the indefinite has either a subcontrary or a contrary propo-
sition depending on what it says; he does not say what its contradictory is and seems to
share Avicenna’s opinion that it does not have any contradictory. But as we have already
noted, (1) there is no reason why one kind of proposition should not have a contradictory,
(2) if we consider the disjunction as inclusive, the indefinite is no more ambiguous; there-
fore we could try to save this ambiguous character by considering that ‘or’ is exclusive so
that the affirmative indefinite would mean “A or I but not both” and the negative one “E or
O but not both”. This “solution”, however, is not quite satisfying because the indefinites
would be in this case equivalent and not contraries nor subcontraries as we can show by
considering their formulas.

A ∨ I is formalized by:
[
(∃x)Sx ∧ (x)(Sx ⊃ Px)

]∨ (∃x)(Sx ∧ Px),

where A has existential import.
E ∨ O is formalized by:

[
(∃x)Sx ∧ (x)(Sx ⊃∼Px)

]∨∼(x)(Sx ⊃ Px).

If we consider a universe containing only two elements, that is, {x1,x2}, then A ∨ I
would be rendered thus:

{
(Sx1 ∨ Sx2)∧

[
(Sx1 ⊃ Px1)∧ (Sx2 ⊃ Px2)

]}∨ [
(Sx1 ∧ Px1)∨ (Sx2 ∧ Px2)

]
.

And E ∨ O is rendered thus if E has existential import:
{
(Sx1 ∨ Sx2)∧

[
(Sx1 ⊃∼Px1)∧ (Sx2 ⊃∼Px2)

]}∨∼[
(Sx1 ⊃ Px1)∧ (Sx2 ⊃ Px2)

]
.

If we construct the truth table of A∨ I, and that of E∨O10 we find that both formulas
are just equivalent since the exclusive disjunction in both cases is false in all the lines
except lines 2 and 3 where they are both true. This result does not correspond to Averroes’
opinion and is not intuitively satisfying. If on the other hand, we consider that A and E
have no existential import and the indefinites are expressed by ‘A ∨ I’ and ‘E ∨ O’, then
we find by constructing the truth tables that the propositions are subcontraries since the
inclusive disjunction is valid but no other relation expressing the square oppositions is
valid, for ⊃ is false in lines 1 + 5 + 6 + 9, ∼(∧) is false in lines 2 + 3 + 13 to 16,

10The reader can check the values of this relation by himself.



Logical Oppositions in Arabic Logic: Avicenna and Averroes 35

and ∨ is false in lines 2 + 3 + 13 to 16. Even if this interpretation is more satisfying
intuitively than the preceding one, it does not correspond either to Averroes’ text which
says that the indefinites are either subcontrary or contrary. Here, they are only subcontrary.
Furthermore, it is highly improbable that A does not have an import in Averroes’ view,
even if things are more ambiguous regarding E. Averroes’ opinion seems then confused
and not very convincing despite its plausibility.

What about the problem of existential import in Averroes’ and Avicenna’s theories?
As we have seen earlier, their wording of O is indeed “Not all A are B”, but Averroes
equates this wording with “Some A are not B”, which seems to give existential import
to O. We can add that it happens also to Avicenna to express O as follows: “Some men
are not writers” [14, p. 51], which raises also the problem of existential import for him;
elsewhere he also says: “Not all men are writers, but rather some of them” [14, p. 54],
which shows even more clearly that O has existential import, and seems close to the Y
vertex defended by Blanché (see [16, p. 97]). So what Terence Parsons says about Aris-
totle, that is: “Aristotle’s articulation of the O form is not the familiar ‘Some S is not P’
or one of its variants; it is rather ‘Not every S is P’. With this wording Aristotle’s doctrine
automatically escapes the modern criticism” [23, section 2.2] does not seem to apply to
our two Arabic logicians even if their wording is indeed ‘Not all S are P’. According to
Parsons, this wording of O solves all the problems about existential import. Parsons’ ar-
gument is the following: if S is empty, I will be false, therefore, E will be true and then,
“O must be true” because it is entailed by E; moreover, since A “has existential import”,
“if S is empty the A form must be false” [23, section 2.2]. This argument leads to the
opinion that “affirmatives have existential import, and negatives do not” [23, section 2.2].
But (1) it is circular because it presupposes what has to be proved, that is, the validity
of the relations of the square, (2) Parsons does not show how one can formalize the par-
ticular negative in a way that neutralizes its existential import. For if we formalize A by
(∃x)Sx∧ (x)(Sx ⊃ Px) [20, chapter 2, §26] and O by ∼ (x)(Sx ⊃ Px) (which corresponds
literally to “Not all S are P”) and construct a truth table by considering that there are only
x1 and x2 in the universe, the following line of the table (where 1 means true, and 0 means
false):

{
(Sx1∨Sx2 )∧

[
(Sx1 ⊃Px1)∧ (Sx2 ⊃Px2)

]}∨ ∼[
(Sx1 ⊃Px1)∧ (Sx2 ⊃Px2)

]

0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0

shows that there is no contradiction since, as we can see, there is a case of falsity under ∨
which means that ∨, which is the exclusive disjunction, is not valid. This shows that “Not
all S are P” should be formalized in another way since, when it is expressed as above (i.e.
by ∼(x)(Sx ⊃ Px)), it is exactly equivalent to (∃x)(Sx∧∼Px) and does not neutralize the
existential import of O. So Parsons’ solution would be convincing only if one gives the
right formalization of O when it has no import.11 Besides that, it is not obvious that the
Aristotelian reading of E makes it free of existential import. On the contrary, many authors
assume that Aristotle, as well as most traditional logicians, regards E as having existential
import. This is, for instance, what Mark McIntire says in the following: “Classical logi-
cians typically presupposed that universal propositions do have existential import” [22].
And this is also the opinion reported by Michael Wreen who says: “The chief difference

11The right reading of O when it is without import, is given by Parsons in [24]. It is the following: “Either
nothing is A, or something is A that is not B” [24, p. 6].
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between classical (Aristotelian) logic and modern (Russellian) logic, it’s often said, is a
difference of existential import. (1) In classical logic, all categorical propositions (“All
S is P”; “Some S is P”; and so on) have existential import; in modern logic, particular
affirmative (PA) and particular negative (PN) propositions do while universal affirmative
(UA) and universal negative (UN) do not, have existential import” [26, p. 59]. According
to that opinion, there is no difference between the universal affirmative and the univer-
sal negative regarding existential import since he says “all categorical propositions. . .”.
This interpretation of E-propositions is corroborated by Aristotle’s text itself which says:
“By universal, I mean a statement that something belongs to all or none of something;
by particular that it belongs to some or not to some or not to all. . .” [4, I, 1, 24a, 17–19]
and where he talks about E-propositions in the same way as about A-propositions: they
both concern the whole of a certain class, A affirms something of that whole and E denies
something of that same whole. But if E has existential import in Aristotelian framework,
then the solution given by Parsons is not really Aristotelian as he says, but corresponds
only to the Medieval theories. As we have seen, O without import is expressed by: “Either
nothing is A, or something is A that is not B”, and this wording corresponds to Ockham’s
and Buridan’s interpretation of O (see [24, p. 5]).

As to the other relations, subalternation between A and I holds when A has an ex-
istential import, but the one between E and O does not hold when O is expressed by
∼(x)(Sx ⊃ Px) (i.e. when O has existential import), as is shown by this line of the table:

[
(Sx1⊃∼Px1 )∧ (Sx2 ⊃∼Px2)

]⊃ ∼[
(Sx1 ⊃Px1 )∧ (Sx2 ⊃Px2)

]

0 1 1 1 0 1 1 0 0 0 1 0 1 0 1 0

If E has an existential import, subalternation holds indeed. Regarding subcontrariety,
which is expressed by: (∃x)(Ax ∧ Bx) ∨ ∼(x)(Ax ⊃ Bx) when both propositions have
existential import, things are not much better since it does not hold in that case. This
means that the Aristotelian as well as the traditional views are still confused and contain
some incoherencies. These incoherencies are not avoided by Avicenna and Averroes, who
do not say explicitly that E and O are free of existential import and seem to assume that
they do have an import.

But the medieval formalization of O, given by Parsons in [24], which could be
expressed in the modern symbolism by: “∼(∃x)Sx ∨ ∼(x)(Sx ⊃ Px)” or equivalently
“∼(∃x)Sx∨(∃x)(Sx∧∼Px), even if it is a good way to render O when it has no import and
appears to solve all the relations of the square, could be also challenged. This formaliza-
tion is equivalent by De Morgan’s law to the following one:12 ∼[(∃x)Sx∧ (x)(Sx ⊃ Px)],
which says simply: it is not the case that there are S and that all these S are P. It neutralizes
the existential import of O since what it says is just ∼A when A has existential import.
With this formalization, and if A has existential import, E has no import and I has existen-
tial import, the relations of the square, i.e. ∼(A ∧ E), A ∨ O, E ∨ I, A ⊃ I, E ⊃ O, O ∨ I
are all valid as the truth-tables show very clearly. To see this, let us take A∨O and O∨ I
when O is formalized in that way, we have the following formulas where we consider a
universe of only one element {x1} (but even with two elements, the relation is valid):

A : (∃x)Sx ∧ (x)(Sx ⊃ Px)= Sx1 ∧ (Sx1 ⊃ Px1) (with one element)
O : ∼[(∃x)Sx ∧ (Sx ⊃ Px)] = ∼[Sx1 ∧ (Sx1 ⊃ Px1)] (under the same conditions).

12This formalization of O comes from a suggestion made by Fabien Schang in an informal discussion.
I thank him for fruitful discussion about this topic.
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The exclusive disjunction is expressed by: [Sx1 ∧ (Sx1 ⊃ Px1)] ∨ ∼[Sx1 ∧ (Sx1 ⊃ Px1)]
and is without any doubt valid. If we formalize I by: (∃x)(Sx ∧ Px), subcontrariety is
expressed by the following: ∼[Sx1 ∧ (Sx1 ⊃ Px1)] ∨ (Sx1 ∧ Px1).13 This formula is also
valid. In the same way all the other relations of the square are valid, which means that
these formalizations are the ones that show the validity of Parsons’ and Buridan’s solution.
But we can show that this solution is not the only one that saves the relations of the square,
since there are other alternatives that have the same effect, i.e. make all the relations of
the square valid. These alternatives may be exhibited by a systematic examination14 and
they do not all require O to lack an import.

Now, as we have said earlier, this solution may be challenged, since the aforementioned
formalization of O might seem to some people counter-intuitive. As a matter of fact,
O may have an existential import in some cases. An example of such cases is mentioned
by an anonymous referee who considers the following sentence: “Some politicians do not
tell the truth”. He rightly notes that if we translate O in the way Parsons and the medieval
logicians translate it, this would lead to the following formulas: (∃x)Sx ⊃∼(x)(Sx ⊃ Px),
which means: “If there are politicians, then not all of them tell the truth”. This in turn
leads to its equivalent formula by contraposition, that is: (x)(Sx ⊃ Px)⊃∼(∃x)Sx, which
means: “If all the politicians tell the truth, then there are no politicians”. This last formula
seems very counter-intuitive, so the proposed formalization of O seems to be unaccept-
able, because of its undesirable consequences. We can answer by saying that this counter-
intuitive character is related to the way the sentence is expressed, since that sentence has
the following structure: “Some S are not P”. And obviously, when one expresses O in that
way one gives an import to it. But the formula we have given is not supposed to express
O with import, on the contrary, it expresses an O which does not have an import. Our for-
mula, as well as Terence Parsons’ one is indeed a reformulation of O by “Not all S are P”,
which is supposed to account for an O without import. So the consequences seem in that
case quite natural: they reflect the lack of import of that kind of negative particular. But
this criticism shows above all that O should not be taken to always lack an import, and
this is quite right, since in many cases, O does have an import. Anyway, this solution does
not seem to be Averroes’ and Avicenna’s one, since what they say about the existential
import of O is not as clear as what the medieval logicians say. Their wording of O does
not mean that they do not give it an import.

What about their opinion about conversion? Let us start by Averroes, since his opinion
is clearer than Avicenna’s one. According to Averroes, E-conversion holds as well as
I-conversion. E-conversion is stated very clearly in the following quotation: “As to the
absolute universal premises, the negative converts in a way that preserves its quantity”
([11, p. 70], [9, p. 144]) and, I-conversion is also stated in the following: “As to the
particular affirmative, I say also that it converts to a particular” ([9, p. 145], [11, p. 72]).
So, if we consider that, despite the fact that Averroes does not talk about subalternation, he
admits the same truth conditions for the different propositions as Avicenna, then we could
say that he defends SQUARE as well as [SQUARE]. For these truth conditions state just
the values that make true the implication between A and I on the one hand, and between E
and O on the other. So we can say that subalternation holds indeed in his system even if it

13The reader may check the validity of this relation and all the others by constructing truth tables with
the given formulas.
14This examination is made in another article written with Fabien Schang, which is under consideration.
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is not really an opposition. Since he admits both conversions, we can say that he defends
[SQUARE] too.

But things are more complex with Avicenna. We have seen that he holds SQUARE
for the propositions he talks about in al-Ibāra. He also admits I-conversion for assertoric
propositions. However, his opinion about E-conversion and about assertoric propositions
in general is not the same as those defended by Aristotle and Averroes, since the analysis
he presents in al-Qiyās distinguishes between two readings of this kind of propositions,
and invalidates E-conversion in one of these two readings. To understand this, let us con-
sider those readings. In [13], Avicenna defines the assertoric by saying that “it is more
general than the necessary” [13, p. 28] because an assertoric sentence does not contain
any modal word, so that what is important in that kind of sentences it does not require any
necessity or non necessity in the relation between the subject and the predicate [13, p. 26].
Even if its matter is necessary, its necessity is different from perpetuity. For instance, the
sentence “Every man is an animal” does not mean “Every man is perpetually an animal”
(as when we say that “God is perpetually existent”) but rather that “All men are animals as
long as they exist” [mā’ dāma d. ātuhu wa jawharuhu mawjūdan] [13, pp. 21–22]. In other
absolute (or assertoric) sentences, we could have ‘at some times’ instead of ‘as long as
they exist’ as in the following example: “All who wake sleep, (at some times)” [13, p. 23]
(i.e. not necessarily ‘as long as they exist’). This reading is called the d. ātı̄ reading and is
translated by Tony Street by the word ‘substantial’ [25, p. 551]. It is different from the
was.fı̄ reading (translated as the “descriptional” reading [25, p. 551] which says the fol-
lowing: “All what is white is visible, as long as it is white” [13, p. 22] (one can also say:
“while white” (see [25, p. 551]). Now in the d. ātı̄ reading, the negative universal absolute
does not convert, for if we take the following A-sentence: “All men are laughing (at some
times)”, which is an absolute one, and is true since it happens to everyone to laugh from
time to time, we may have a corresponding absolute E-sentence, which would say: “No
man is laughing, (at some times)”, which means that no man could be said to laugh all
the time, so that one can say that it happens to everyone not to laugh, at some times. This
seems to be the way Avicenna understands this sentence since he says: “the predicate ‘is
laughing’ can be negated from every man, at some times” [13, p. 82]. This sentence does
not convert, because its conversion would lead to the following sentence: “No laughing
thing is a man, (at some times)”, which cannot be true, since “it is impossible to negate
the predicate ‘man’ from what is laughing in effect” [13, p. 82] because a laughing thing
cannot be said not to be a man. So for the d. ātı̄ reading of absolute sentences, [SQUARE]
does not hold, because conversion does not hold. Note that even SQUARE does not hold
for this reading, since as we can see from the examples given (that is: “All men are laugh-
ing (at some times)” and “No man is laughing (at some times)”) A and E may be true
together, so they are no more contraries. But for the was.fı̄ reading, conversion may hold
when we express E-sentences in the following way: “No As are Bs, while As”. This may
convert as: “No Bs are As, while Bs” [25, p. 551]. For instance: “Nothing that sleeps,
wakes, while sleeping”, which converts as “Nothing that wakes, sleeps while awake” [25,
p. 551]. So, in this interpretation of absolute sentences [SQUARE] would hold as well as
SQUARE, since when we say “All men are laughing, while men” and “No man is laugh-
ing, while being a man”, both sentences are false together, and we can say that A and E,
in this was.fı̄ reading, are contraries.
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5 Conclusion

It follows from the above that Avicenna’s and Averroes’ treatment of the notion of oppo-
sition and of the opposed propositions are quite different from each other and different
from Aristotle’s treatment too. The notion of opposition appears to be stronger in Aristo-
tle’s view, it is considered as plural in Averroes’ and Avicenna’s views, but these authors
differ in that Avicenna distinguishes between a strong opposition which is contradiction
and other species which are less strong and seem to be partial oppositions while Averroes
considers that the difference of quality is fundamental to define opposition and does not
admit for this reason subalternation although he does admit subcontrariety unlike Aris-
totle. Their analysis seems also to prefigure the medieval distinctions and classifications
and it is based on a method which we could characterize as semantic since it relies on a
distribution of truth-values which follows itself from the meanings of the sentences. They
seem to give an existential import to the quantified propositions, so their theories do not
escape the modern criticisms. Nevertheless, each of them defends, in his own way, what
Terence Parsons calls SQUARE and [SQUARE]. Avicenna’s analysis is more subtle and
complex than the two others, since it shows that for the substantive reading of the abso-
lute propositions (the so-called d. ātı̄ reading), neither SQUARE, nor [SQUARE] hold. But
for the descriptive (or was.fı̄) reading of the assertoric E-propositions, he defends both
SQUARE and [SQUARE].
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Boethius on the Square of Opposition

Manuel Correia

Abstract This article intends to reconstruct the textual tradition of the square of op-
positions from the earliest textual sources just as treated in Boethius’ commentaries on
Aristotle’s De Interpretatione and his treatises on syllogistic, De syllogismo categorico
and Introductio ad syllogismos categoricos. The research discovers two different tracks.
One way comes from Plato’s Sophist and Aristotle’s De Interpretatione, and the aim is
to distinguish contrariety from contradiction. The second influence also starts from Aris-
totle, but now in connection with his Prior Analytics and its commentaries and treatises
on categorical syllogistic, where the aim is to show the square as one of the three main
chapters of the complete theory of categorical logic. I suggest that this double ingredient
has accompanied the development of the square from the very original beginning of logic.

Keywords Categorical logic · Square of oppositions · Logical/material truths · Tradition
of commentaries and treatises on Aristotelian logic · Theory of oppositions

Mathematics Subject Classification Primary 03-02 · Secondary 03B65

Even though the earliest known source for the square of opposition is the treatise Peri
Hermeneias [6], which has been attributed to the Platonic philosopher Apuleius of
Madaura, Boethius is a primary source for the study of the square, since he says to be
following the earlier doctrine of some ancient Peripatetics, in particular Theophrastus,
who is also named in Apuleius’ treatise.1 Boethius does not presume to be an author-
ity in logic, he rather assumes to be selecting and translating into Latin the most serious
Greek material of Peripatetic provenance he had at his disposal. That makes interesting
his logical writings, for he is an essential source of information in some specific areas of

1Boethius names Theophrastus in many places of his commentaries on Aristotle’s De Interpretatione
[16]. Here (in Int 2, 12, 3ff.), he characterizes Theophrastus as a critical commentator of Aristotle, able to
go beyond Aristotle’s teaching. In another passage, Boethius refers to Theophrastus as a vir doctissimus
(in Int 2, 389, 19), a phrase he uses only to refer to the Neoplatonist Porphyry (cf. doctissimus vir:
in Int 2, 15, p. 276). In his treatises on syllogistic [18, 19], Boethius refers to Theophrastus indirectly
when suggesting that he would be one of the ancient Greeks who “have bequeathed much to posterity in
their learned treatises” (translation by Thomsen Thörnqvist [18, p. 102]). But he also refers to his name in
connection with the five indirect syllogistic moods Theophrastus added to those ones Aristotle had found
in his Prior Analytics [9]. Apuleius in his Peri Hermeneias [6] names Theophrastus twice and both in a
more distant relation. One concerns the five indirect moods Theophrastus found in addition (cf. 193, 8).
The other relates to the case of a second Darapti in the third direct figure (cf. 189, 26).
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Aristotelian logic. This is the case with the square of Oppositions, which plays a central
part in his work on categorical logic.2 Indeed, the square is referred to in his (i) expo-
sitions of Aristotelian categorical syllogistic, [18, 19], and his (ii) two commentaries on
Aristotle’s De Interpretatione (= De Int), [16].3 As a result, the square is examined from
two different aspects:

(a) As a theory of negation. (Here, the square is related to the opposition of categorical
propositions, which goes back to Plato’s seminal discussion on negation in his dialog
Sophist.)

(b) As a theory of logical consequence. (Here, the square is related to the syllogistic
theory as one of its essential preambles.)

I suggest that (a) and (b) accompanied the commentaries and the treatises on the square
from the original and first development of the Peripatetic tradition in logic. It is also
likely that (a) is more related to the tradition of commentaries on De Int and (b) takes its
essentials from the tradition on Aristotle’s Prior Analytics [9].

1 The Square and the Tradition of De Interpretatione

In (a), the question is which categorical opposition is the strongest and divides more com-
pletely or exclusively truth from falsity. In his commentaries on De Int (= in Int), [16],
Boethius suggests that Aristotle resolved this question when he went beyond Plato’s
Sophist [26] in distinguishing contrariety from contradiction. Indeed, Plato in this dialog
did not distinguish one concept from another, when he defines negation of being as the
other than being (Sophist 257c–258c).4 According to Boethius, Aristotle’s phrase “nor
is there any correct name for it <for the indefinite name>”,5 and a similar one for the
indefinite verb (De Int 16b13), are claims that the past was unable to explain satisfac-
torily the indefinite signification of name and verbs, negation, and not-being within the
categorical proposition. Boethius’ reference to some more ancient authors (antiquiores)6

points out some ancient philosophers, in particular Plato, as those who fail in this attempt.
Boethius’ commentary insists that these more ancient authorities (antiquiores) did not
make an explicit difference (nuncupata differentia) between being and non-being. Simi-
larly, the commentary makes manifest that the imposition of the name ‘indefinite verb’,

2Boethius is also the author of one treatise on hypothetical or conditional logic. In his De hypotheticis
syllogismis [17] Boethius gives an idea of the first Peripatetic developments and later systematization.
Boethius and his sources understand categorical logic as the logic of single sentences that can be true or
false, without any condition (cf. in Int 2, 186, 13ff.: Categoricas propositiones Graeci vocant, quae sine
aliqua condicione positionis pronuntur (. . .); cf. also in Int 2, p. 112, 10–26), [16].
3Boethius wrote a minor and a major commentary on Aristotle’s De interpretatione (= in Int), [16].
His treatises on syllogistic are also double (De syllogismo categorico and Introductio ad syllogismos
categoricos: [18, 19]), but in this case their unity is problematic. See [17–19].
4As is generally accepted Aristotle bore in mind Plato’s Sophist [26] when he addressed his criticism to
the old-fashioned way of solving the problem of the existence of being and plurality (cf. Metaphysics N,
2, 1088b. 28–1089a 6, [7]). To this concern, cf. [5, 9, 12, 14, 20, 27].
5De Int 16a29: ou men oude keitai ónoma, [8, 11].
6Antiquiores: cf. in Int, p. 58, 18; in Int, p. 59, 18–26; in Int 2, p. 63, 5–14, [16].
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made by Aristotle historically, is a remarkable fact, because a name for these expressions
had not been imposed by the ancients (ab antiquis), despite the difference between this
kind of verb and the simple and pure one.7 Boethius suggests that these antiquiores were
not Peripatetics but some more ancient authors than Aristotle, who are found in the late
Parmenidean tradition, and Plato’s discussion in Sophist 257c–258c [26] appears to be
the immediate precedent of Aristotle’s discussion on the nature of the indefinite terms
and negation. Boethius’ comments suggest that the lack of a specific denomination for
expressions like ‘not-man’ and ‘non-being’ is due to the fact that nobody before Aris-
totle had become really cognizant of the nature of that kind of expressions (et usque ad
Aristotelem nullus noverat quid esset id quod non homo diceretur). Here noscere must
signify a real knowledge and it should imply Aristotle’s disapproval of Plato’s solution
in Sophist. Thus, while it is unquestionable that Plato in the Sophist tries to determine
the nature of not-being and even that he, as a product of this attempt, remains able to
give a certain account of the nature of expressions like ‘non-beautiful’, ‘non-being’ and
similar ones, Boethius suggests that Aristotle’s attempt would be an accurate account of
those expressions and that would be tested by the technical name that Aristotle gave to the
difference (differentia) between simple terms and terms with a negative particle, which de-
notes the explicit difference (nuncupata differentia). Thus, in Boethius’ commentary we
find a history of negation, while Ammonius Hermeias,8 the Alexandrian contemporary of
Boethius, prefers a non-historical recount.

Non-being and the nature of negation have been also put at examination by Aristotle’s
De Int [8]. Here Aristotle would also criticize Plato’s Sophist [26] because non-being is
rather the absence of being and not the other than being.9 The absence of being would be a

7in Int 18–26, p. 59: haec enim differentia quae est non currit et non laborat, quae a verbo puro et
simplici distat, nulla apud antiquiores vocabulo nuncupata est differentia. differentiam autem vocavit id
quod dicitur non currit et non laborat ab eo quod est currit et laborat. sed quoniam his nullum est ab
antiquis nomen impositum, Aristoteles nomen ipse constituit dicens: sit verbum infinitum, [16].
8Ammonius and all the post-Ammonian commentators refer to certain palaioteroi, but they interpret their
existence in the mythical way that Proclus’ commentary on Plato’s Cratylus suggested. Ammonius makes
a passing allusion to these ancient authors at in Int, p. 41, 16–20, [4]. His allusion also supposes that they
were more ancient than Aristotle, which is clear from his use of the adjective comparative palaioteroi.
But Ammonius seems to have understood the existence of these ancient men in a non-historical sense,
since when he comments on this point, he says that even though there is an obvious difference between
a definite and an indefinite verb, this last name was disregarded (pareóratai: p. 52, 6) by those who have
given the names, and some lines later he adds that this difference should have been established by the
‘fathers of the names’ (p. 52, 9). So it is evident that Ammonius’ comments on this point lead to a non-
historical interpretation, which was probably influenced by Proclus’ interpretation of Plato’s Cratylus (see
Cratylus 389a 2 et passim).
9Berti [14, p. 122] remarks that Aristotle in Metaphysics �, 7, [7], when he explains and defends the
validity of the principle of tertium exclusum, maintains in his argument that being and not-being are a
contradictory pair (1012a. 5–8). Similarly, some lines later (1012a. 15–18), Aristotle will affirm that not-
being is the denial of being. In this passage, as is known, Aristotle says that “when a man, on being
asked whether a thing is white, says ‘no’, he has denied nothing except that it is; and its not being is a
negation” (translation by Ross [7]). Tricot [10]—whose translation Berti follows—says “et le Non-être est
une negation”, which seems to be an assertion of equivalence, and too general. On the other hand, Berti
[14] has also observed that Aristotle (Met. �, 2, 1004a 2; and I, 3, 1054a 30, [14]) includes ‘the same’
and ‘the other’ in his division of contraries, which implies that Aristotle thinks that they are opposite by
contrariety and not by contradiction. Berti has also shown that Aristotle distinguishes clearly ‘the other’
from not-being, because ‘the other’ is one of the forms or species of multiple, and it is opposite to ‘the
same’, which is a species of the one.
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strict negation (= contradiction), whereas the other than being would be the accidental or
general negation (= contrariness). This is the closest reference to the essence of negation,
for Plato assures plurality by denying being (and so making a parricide over Parmenides,
Sophist 241d3) while Aristotle would think that this is not the specific function of a denial,
but to show the contradictory opposite of affirmation.

According to Aristotle’s criticism of Metaphysics N, 2, [7] Plato’s error is the same
as that of the ancients (cf. the archaic solution: Metaphysics 1089a1–2), namely, to think
that it was necessary to prove that not-being exists and has a certain reality, i.e. a certain
being, in order to prove the existence of plural things.10 But, according to Aristotle, it was
not necessary, in order to derive the plurality of beings, to show that non-being is, since
being and non-being are already multiple by themselves. In fact, as Aristotle implies in
Met. N, 2, being and not-being have already many senses as there are categories, and in
addition to this they are used to mean what is true and false, and finally to express what is
actual and potential (cf. 1089a 26–31).

By means of this sort of history of logic, Boethius suggests that Aristotle’s De Int,
[8, 11], through his insistent saying that a single affirmation has only one single negation
(cf. 17a33–34; 17b37; 18a8; 20b3–4), is calling attention to the fact that Aristotle has a
formal concept of opposition and that Plato’s theory of negations has been completed by
Aristotle by distinguishing contrariety from contradiction.

This would explain why the Neoplatonic commentators embarks in a complete classi-
fication and calculus of the number of categorical oppositions,11 since they would attempt
to confirm the thesis that every affirmation has its own negation by means of that expe-
dient. This classification and calculus would be implicit in Aristotle’s saying that “there
will not be any more opposition than these” (De Int 20a1: Ackrill translation [11]). From
this argument, it follows that Aristotle wants to outline a square to display the different
concepts of categorical opposition. The expedient is rather common in De Int [8, 11], for
Aristotle adds another diagram (De Int 19b20–24) that aims at stating that simple negation
follows from indefinite affirmation and indefinite affirmation follows from privative affir-
mation (i.e., not being X follows from being non-X and this follows from being un-X).12

Actually, in the square of opposition, he would be purposely interested in representing
diagonal relations where contradictory pairs are described, since Plato might only express
contrary and subcontrary oppositions: the A/E and I/O relations of opposition.13 Plato’s
advance in the Sophist [26] had given a first difference in opposite pairs of categorical
propositions when he defined not being, i.e., the negation of being, as the other than be-
ing, for this allows him to define non being, negation, and falsity, but he did not recognize
kinds of opposition. Aristotle, on his hand, defines negation as the absence of the thing
that has been affirmed (cf. Metaphysics 1004a16, [10]) and finds a clear distinction be-
tween contrariety and contradiction, namely, contradiction never fails in dividing truth

10Met. 1089a. 4–6. “They <the Platonics> thought it necessary to prove that what is not is; for only in this
way—from being and from something else—would it be possible for there to be many existing things”
(translation by Annas [5, p. 119]).
11For example, Ammonius in his commentary on Aristotle’s De Int argues so. Cf. in Int, p. 86, 26–p. 87,
7; p. 159, 24–29; p. 214, 6–24, [4].
12For the history of this diagram, see Correia [21, pp. 41–56].
13We follow later tradition of naming the universal affirmative proposition an A, the universal negation
an E, the particular affirmation an I, and the particular negation an O.
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and falsity, and so contradiction must be defined as the specific and strongest negation in
categorical propositions. By contrast, contrary propositions can be false together.

This doctrine of negation has a Peripatetic provenance but a Neoplatonic consent
and it is what Boethius introduces in Latin terms through his commentaries on De Int
[15, 16, 18]. Aristotle’s square of opposition would present contradiction as the strongest
opposition between two opposite categorical propositions, since it divides entirely truth
and falsity, whereas contrariety divides truth and falsity but not completely, because if the
matter of the proposition is merely possible and one proposition is false (e.g., “Every man
is just”) the other is not necessarily true (i.e., “No man is just”).14 Subcontrariety is clearly
the weakest opposition, for it does not even divide truth and falsity, although if one of two
is false, the other must be true.15 This is the reason why in Aristotle’s De Int [8, 11] and, as
I think, in the amplitude of the Aristotelian logic, the denial of a categorical proposition
is its contradictory opposition; and so when we need to deny a categorical proposition,
what we actually need is to find its contradiction.16 Aristotle knows that while A and E
propositions, which are contrary opposites, are also mutually exclusive (and so a per ab-
surdum argument could rest on contrary propositions),17 contrariety is only a secondary
and accidental opposition.

2 The Square and the Tradition of Prior Analytics

In (b), the square appears to be related to the tradition of commentaries on Aristotle’s
Prior Analytics [9] and now Boethius’ teaching seems to stem from Theophrastus’ own
Prior Analytics and perhaps own square. As told, Boethius develops this perspective in his
syllogistic treatises [18, 19], which owe much to Alexander of Aphrodisias, Theophrastus

14As I will explain in detail in the second part of this paper, the most ancient Peripatetic tradition of
commentaries think that Aristotle would determine the truth values of opposition by supposing that every
proposition has a signification given by the matter of the proposition. The matter of the proposition is
an ancient doctrine also accepted by Neoplatonic commentators of Aristotelian logic. Cf. Correia [22,
p. 397, n. 22].
15Subcontrariety is presented by Aristotle in De Int 17b29–33, [8, 11].
16In other words, Ammonius Hermeias in his commentary on Aristotle’s De Int [4] illustrates this with
the position of the negative particle in the proposition that will be denied: “Now, that the negation arises
when the affirmation takes on the negative particle, is clear. But where in the affirmation one must place
it, in order to make the negation, and why this is so, we must specify. I say, therefore, that one must not
join it to the subject, but to the predicate; first, because the predicate is more important, as has been said
(70, 4f.), and prior to the subject, which is also why the whole sentence is called ‘predicative’ (so, if we
want to destroy the affirmation and make a negation, we must not attach the negative particle, which is the
cause of the destruction, to the less important of the parts, but to the more important, since in animals too,
more than in other living things, the whole does not perish if just any part is destroyed, but only if one of
the more important part <is destroyed>” (Blank’s translation, [15]). This biological comparison can stem
from Dionysius Thrax (Scholia, p. 516, 28–36), [31], where the name and the verb are compared to the
brain and the heart in the human body, and the other parts of the phrase to such parts as a hand or a foot:
a man can live without a hand, but not without brain and heart.
17In De syllogismo categorico 96, 6ff., Boethius defends this doctrine by saying “And we should not
be disturbed because in some syllogisms the conclusion is opposed to the contrary proposition, while in
others to the contradictory proposition. Since the error will be committed in both cases: either accepting
both contrary propositions or accepting both contradictory propositions” [18].
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and Eudemus, and also to the Neoplatonic Porphyry, who is said to have made a sort of ap-
praisal of Theophrastus’ critical review of Aristotle’s logic.18 It is accepted that Boethius
found his Greek material for commenting on the square in this work in Porphyry’s writ-
ings on Aristotle’s logic.19

As a result, in every ancient Aristotelian commentator, either Peripatetic or Neopla-
tonic, the square is made to come from a division of the categorical proposition. The
division can be traced as early as Alexander of Aphrodisias and Apuleius. It does not in-
tend to divide propositions in species according to their properties (quality, quantity, etc.),
but intends to divide the categorical propositions that do not have terms in common from
those that have some or both terms in common either in the same order or in the converse
one.20

Thus, a propositional pair can always be divided into whether (a) it does not have
any terms in common or (b) it does have some terms in common. For there are some
propositions that have no term in common with another, e.g. ‘Every man is an animal’
and ‘Virtue is good’; but there are some others that certainly have some terms in common,
e.g. ‘Every man is wise’ and ‘No man is just’; or both terms in common, as in ‘Every man
is wise’ and ‘Every wise (being) is a man’. Accordingly, Boethius accepts that the pair
having no term in common cannot be studied by logic, but the pair having either one or
both terms in common can be studied by logic.21

The second level divides propositions into (b.1) both terms in common and (b.2) one
term in common. And these propositions that have both terms in common are divided
into (b.1.1) both common terms with the same order of terms (e.g., ‘Every man is an
animal’/‘No man is an animal’) or (b.1.2) both common terms with a change of order
(e.g., ‘Every man is an animal’/‘Every animal is a man’). Finally, as to those proposi-
tions that (b.2) have only one term in common, Boethius finds three types: the common
term is (b.2.1) subject in one proposition and predicate in the other (e.g., ‘Every man is
animal’/‘Every Greek is a man’), or the common term is (b.2.2) the predicate in both, or
(b.2.3) the subject in both.

18Boethius, De syllogismo categorico 101, 6–11: “And I took over these things from an introduction to
the Categorical Syllogisms, by following Aristotle and borrowing certain things from Theophrastus and
Porphyry, as much as the brevity of an introduction allowed me” (my translation from [18]).
19I would like to refer here to Shiel [28] and the special proof he gives to prove this sifting place occupied
by Porphyry. See also Thomsen Thörnqvist [18, p. 141].
20This is the reason why the most likely author of this division is Theophrastus. Indeed, before Boethius,
Alexander of Aphrodisias already assumed this division in his comment on Aristotle’s Prior Analytics [1]
and Apuleius [6] also gives textual evidence of being dependent of this division in his Peri Hermeneias.
21Indeed, the division is in Boethius’ De syllogismo categorico 17, 10ff., [18], but it is neither in the
commentaries on De Int [16] nor at any other ancient commentary on this treatise, but a similar division
takes place in Introductio ad syllogismos categoricos 26, 7–8, [19]; in Apuleius’ Peri Hermeneias 183,
9–19, [6]. Also “the procedure is closely paralleled”, as Thomsen Thörnqvist [18, xxii] has recently
corroborated it, in the commentaries on Analytics by Alexander (in An Pr 45, 10ff.), [1], Ammonius
(in An Pr 35, 36ff.), [3], and Philoponus (in An Pr 40, 31ff.), [25]. This certainly proves that syllogistic
treatises by Boethius belong to the tradition of commentaries on Aristotle’s Prior Analytics [9], rather
than to the commentaries on Aristotle’s De Int. See also Lee [24, 65–74].
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This division gives theoretical unity to De syllogismo categorico (against McKinlay’s
conjecture that this treatise is rather an editorial phenomenon than a book designed by
Boethius),22 for the most important logical operations of the Aristotelian logic find their
place in it. Indeed, (b.1.1) gives room to the doctrine of the square of Opposition, while
(b.1.2) classifies the theory of conversion both simple and by contraposition. Finally, the
theory of syllogism is under (b.2), where the three figures of the syllogism correspond to
(b.2.1), (b.2.2) and (b.2.3). In this point, I differ from De Rijk [23, p. 18], since he thinks
that (b.2) does not play any further role in De syllogismo categorico [18].23

According to this tradition, the square of Opposition can be identified with the logic
of the propositions having both terms in common, the subject and the predicate, in the
same order. When two categorical propositions are in this situation (e.g., ‘Every man is
just’ and ‘Some man is not just’), the differences of quality and quantity are of relevance
to logical truth. This is certainly the origin of the two kinds of logical relations that com-
mentators distinguished in their comments on the square: relations of opposition (when
quality and quantity are important) and relations of the parts and the whole (when quantity
is important).

Boethius goes to prove the logical relations between opposite propositions in the
square. The methodology used by all of the commentators, either Peripatetic or Neo-
platonic, is based on the matters of the proposition, a doctrine that can be represented in
the following points: (i) every well-formed categorical proposition has its own matter of
signification. (ii) The signification of a proposition is given by the matters of the propo-
sition, i.e., the relation between the nature of the subject term and of the predicate term.

22Cf. Correia [22, p. 395, n. 14].
23Thomsen Thörnqvist ([18, p. 164] and [19, pp. 140–143]) and Correia [22, p. 394, n. 13] have been
independently stated that this remark by De Rijk [23, p. 18] is not convincing. What really happens is
that the account of pairs of propositions having one term in common anticipates the three figures of the
categorical syllogism.
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(iii) It is always possible to calculate the truth-value of a proposition when its matter has
been identified. (iv) There are only three matters: necessary, possible and impossible.

This doctrine is known by Alexander of Aphrodisias [2],24 Porphyry [16],25 Syri-
anus,26 and it is a commonplace in Boethius [16, 18, 19].27 Ammonius even gives a
report of this doctrine in his commentary on De Int [4].28 It seems to be based on the
doctrine of predicabilia, according to which the relation between the subject and the
predicate in a categorical proposition depends on definite semantic categories that define
the ambit of understanding the significations of terms: the contingent, the impossible and
the necessary relation.

The doctrine of the matter of the propositions seems to demonstrate that a formal truth
in Aristotelian logic is the result of applying proofs related to the three matters of the
propositions. The universal necessity of this kind of proof seems to be supported by the
syntactic truth that, within a categorical proposition, there are no more ways to relate a
significant predicate term to a significant subject term than those given by the necessary,
impossible and possible matters. This amounts to say that the subject whether is entirely
contained in the predicate or entirely separated of he predicate or partially included en
the predicated. Apuleius of Madaura, in his Peri Hermeneias [6] called the matter of the
propositions significationes and when he opened to the question of how a logical truth
can be based on significations that seems to be indefinite in number, he points out that
these significations are not innumerable but perfectly countable, since they are no more

24Cf. Alexander in Top, p. 192, 7–8, [2]. Also Boethius in Int 21–24, p. 136. Also in in An Pr 84, 16–20,
[16].
25Boethius [16] follows Porphyry (in Int 2, 2–6, pp. 279–283) in using the doctrine of the matter of
propositions for proving results.
26Boethius names Syrianus on this concern in: in Int 2, p. 322, 29–p. 323, 13. There is no clarity con-
cerning whether Syrianus is distinguishing matter from mode. The vagueness of the expression used by
Boethius in his report of Syrianus, namely, qualitates propositionum, makes difficult to decide whether
Syrianus was thinking of what Ammonius called later the matters of the proposition, or of the modal
propositions. Zimmermann [32, p. lxxxix, n. 3] thinks that Syrianus refers here to modalities and not to
matters. Lack of textual material here is decisive.
27E.g., Introductio ad syllogismos categoricos 29, 9ff. Also in Int, p. 137, 15–16; and in Int 2, p. 148,
3–155, 16, [16, 18].
28Ammonius Hermeias [3], in Int, p. 88, 12–23, gives an eloquent confirmation of the importance and
interest of this doctrine for the development of ancient logic when he says: “I am talking about the relation
according to which the predicate term either always holds of the subject term, as when we say the sun
moves or man is an animal, or never holds <of it>, as when we say ‘The sun stands still’ or ‘Man is
winged’, or sometimes holds and sometimes does not hold, as when we say Socrates walks or reads.
Those who care about the technical treatment of these things call these relations the matters (hulai) of
the propositions, and they say that one of them is necessary (anagkaia), another impossible (adunatos),
and the third contingent (endekhomenê). The reason for these names is obvious, but they decided to call
these relations ‘matters’ in the first place because they are seen together with the things which underlie
(hupokeimena) the propositions and are not obtained from our thinking or predicating, but from the very
nature of the things” (Blank’s translation, [15]).
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than five.29 The doctrine of significations is the most likely antecedent of the doctrine of
matters of propositions.

That the matter of the proposition is not the same as the three modalities of categorical
propositions, distinguished by Aristotle in De Int, Chaps. 11 and 12 [4], is also affirmed by
Ammonius, although the difference between one and another seems to have been confused
sometimes.30

If this is so, ancient Aristotelian logic seems to keep away from both a formalistic
dependence on rules and a psychological dependence on matters and significations, and
this is why I would rather consider misleading the explanation of what is a logical truth
for ancient logicians given recently by Barnes [13] in terms that “any logical form will
determine a formal rule and any formal rule will conversely determine a logical form”.31

It would be also an error to suppose that ancient Aristotelian logic accepted a sort of
material logic, as Sullivan [6, pp. 71–75] advances in his appraisal of this special charac-
teristic of Apuleian logic. He says that there are two logics in Apuleius, one material, the
other formal.32 But ancient Aristotelian logic is neither a sort of material logic nor a sort
of formal-rule logic. Differently to both positions, ancient Peripatetic and Neoplatonic
logicians are relating the syntactic concept of logical consequence to the semantic one. In
this relation, formal rules are related to the matters of the proposition, and somehow to
the capacity of the human mind of conceiving examples in the three different signification
forms. There is no psychologism in this ancient doctrine, for the aim is to prove that an
inference or conclusion is a logical truth when it is true in every matter of categorical
predication. Boethius is eloquent in distinguishing material truth from logical truth when
he defines the conversion of categorical propositions: “In general, by ‘propositional con-
version’ I mean conversion without exception, that is, in every material instance” (p. 32,
9, Thomsen Thörnqvist’s translation, [18]).

29In Peri Hermeneias VI, 4–6, p. 182, [6], Apuleius adds that the doctrine consists of verifying each
proposition, with the help of the significations of terms (significationes), whether the truth and falsity
keep identical once the proposition is converted. And he lists the significations for, he says, they are not
innumerable (innumerae): the property, the genus, the difference, the essence and the accident. These are
transformed into necessary, impossible and contingent matters already in Ammonius.
30in Int, p. 215, 9–16, [18]. It is worth noting that Philoponus’ commentary on Aristotle’s Prior Analytics,
by following Ammonius, says that Aristotle established this distinction between matter (hulai) and mode
(tropos) in De Int. Cf. Philoponus in An Pr, pp. 44–45, [25]: “It must be said that we consider the matters
<of the propositions> in the very nature of the facts stated in the proposition (because it is necessary
that what is predicated of the subject either always belongs to it, or never, or sometimes belongs and
sometimes does not, and this is the reason why we call these ‘matters’: for without these the principle
of understanding of propositions does not subsist either. On the other hand, we say that the modes are
put in the very expression that we make and that they are put from outside to the terms that complete the
proposition and maintain what is predicated.”
31Barnes [13, p. 79] says that “An argument—I conjecture—concludes methodically provided that there
is some formal rule which validates it. And there will be such a formal rule just in case the argument
is valid in virtue of a logical form. (For any logical form will determine a formal rule and any formal
rule will conversely determine a logical form.) Hence methodically concluding arguments are, in effect,
formally valid arguments; and unmethodically concluding arguments are materially valid arguments.”
32Sullivan [30, pp. 71–75].
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If we leave aside the unusual formulae Boethius uses to describe the notion of the
matters of the proposition,33 and we follow Ammonius’ easier formulation dividing the
matter into three, the square could be reconstructed as follows:

Where UNIVERSAL OPPOSITION = it does divide completely truth and falsity (as
contradiction does) in any matter; and NON-UNIVERSAL OPPOSITION = it does not
divide completely truth and falsity but only in some matters. And where I, P, N are the
matters of the propositions and I = impossible, P = possible and N = necessary. Di-
agonal relations correspond to contradictory opposite pairs and they are UNIVERSAL
OPPOSITIONS in any matter. The brackets indicates that since this relation of opposi-
tion, when every matter is considered, is valid only in two instances, the relation is not a
logical truth.

Two final and last observations: (i) The accidental or possible matter is what generates
the rule for contrary and subcontrary propositions. And that seems to be the reason why
Aristotle and Boethius propose the squares’ propositions with accidental matter, i.e., with
‘white’ said of ‘man’, as Aristotle, and with ‘just’ said of ‘man’, as Boethius. It is because
both ‘white’ and ‘just’ are accidental or possible predicates of man. Ammonius Hermeias
also uses an accidental matter: Every man walks. And (ii) within the square, the rule is not
properly speaking a rule; it is just the description of the exception of a true contradiction
(= UNIVERSAL OPPOSITION). Here, so to speak, the exception makes the rule. For
example, if one says, “contrary propositions cannot be true together but they can be false
together”, what one is pointing out is that contrary propositions behave differently from
contradictory propositions, which are mutually exclusive. In this square, contradiction,
which is represented by diagonal propositions, is a perfect relation of opposition, because
it divides completely truth and falsity. Accordingly, opposition and negation are primarily
said of contradiction. Let us take I = The man is a stone; P = The man is a grammarian;
N = The man is an animal. When the A is true in any or every matter, then its contradic-
tion, the O, is false in any or every matter, and vice versa, when the first is false the other
must be true. This is both the original result and the actual unique rule.

33For example, in the case of impossible matter, Boethius uses the formula: At si id de subiecto praedice-
tur quod vel numquam subiecto valeat convenire, ut lapis homini. (“But if <we take> this <matter> that
never is true when predicated of the subject, as ‘stone’ of ‘man’, then (. . .)”, cf. Introductio ad syllogis-
mos categoricos, p. 53, 10–15.) Similar formulae are used to describe the notion off the other matters of
proposition, [19].
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3 Conclusions

In the third place and lastly, I summarize by concluding that: (i) The square of Opposition
finds its roots in the dialectical discussions on negation, falsity and non-being in Plato’s
Sophist [26], and so the square finally stems from Plato’s solution to the problem of how
non being is, if one does neither accept that everything is true nor that everything is false.
But Aristotle criticizes Plato’s solution that non-being is the other than being, because
one should start from the plurality of being as given and not to pursuit it as an aim. Also,
because what is a non-being is not the other than being, but the absence of what has been
affirmed; opposition in this way becomes a complex concept that must be further divided.
This being the case, quality and quantity are the properties to be studied, and that explains
why Aristotle divides opposition into contradiction, contrariety and subcontrariety. Thus,
the square illustrates Aristotle’s refutation of Platonic logic by showing that contradiction
is the strongest opposition of those that can affect a simple or categorical affirmation;
then, contrariety and finally subcontrariety.

On the other hand, (ii) the tradition of commentaries on Prior Analytics already as-
sumes Aristotle’s teaching on negation and takes the square as a description34 of the logi-
cal inferences there are when propositions have the same subject—and predicate terms in
the same order. There are many relations of inference and proofs become very important.
The doctrine of the matter of the propositions supports these proofs and shows that there
are logical or universal relations of opposition and material or non-universal relations of
opposition. This doctrine also makes the general conviction that ancient Aristotelian logic
(whether Peripatetic or Neoplatonic) aimed at organizing syntactical and semantic aspects
of logical truth and it is neither a material logic nor a formal-rule one.
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Leibniz, Modal Logic and Possible World
Semantics: The Apulean Square as a Procrustean
Bed for His Modal Metaphysics

Jean-Pascal Alcantara

Abstract Even if Leibniz didn’t have the opportunity to actually conceive an explicit
modal logic system, remains the fact that he had worked out a modal metaphysics, of
which the inaugural act, in his Elementa juris naturalis (c. 1671) was an obvious refer-
ence to the Apulean square of opposition. Later, scholars acknowledged in this passage
probably one of the first sketch of deontic logic of norms. His modal metaphysics rather
deals with the so-called alethic modalities, sometimes expounded through a language such
as R.M. Adams wondered whether Leibniz could be “a sort of grandfather of possible
worlds semantics for modal logic”. In the following study, the Apulean square is used as
a hermeneutic tool: however, is the square really well-fitted to express some basic impli-
cations of the modal metaphysics? The most remarkable point is that Leibniz was well
aware of the K-distributive axiom �(p ⊃ q) ⊃ (�p ⊃ �q) common to the main modal
systems today. This awareness dissuaded him to trust the too easy solution of the necessi-
tarianism issue grounded on the well-known distinction coming from Boethius between a
“necessitas consequentiae” and a “necessitas consequentis”.

Thus Leibniz must consider a proof-theory solution style (for a contingent proposition,
the reducibility of the predicate to its subject cannot be achieved). A new square could be
making up, however implying a difficulty: if the modal metaphysics cannot admit the
logical convertibility of the contingent propositions of which the dictum of one is exactly
the negation of the dictum of the other, known since Aristotle. This is the reason for what
the Apulean square could represent a Procrustean bed for Leibniz’ modal metaphysics.
At the end, a new modality square may be drawn, according to which each modality in
the corner is expressed by quantifications on possible worlds. Whether possible worlds
semantics could supersedes Leibniz’ own explanation of contingency thanks to this new
square of modalities, i.e. a possible worlds square of modalities, will be the topic of a
second part of this study.

Keywords Deontic logic · K-Distributive axiom of modal logic systems · Blanché’s
hexagon · Necessitarianism · Proof theory · Modal metaphysics · Algebra of concepts ·
Convertibility of the contingent propositions · Possible worlds semantics · Boethius ·
Calvin · Leibniz
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As Leibniz had not himself developed a logical modal calculus, given that he did not even
devoted time for constituting a propositional calculus (but after all, he was still a logician
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of terms, so inclined to an intensional treatment of concepts) however he obviously had
done more than merely to sketch some logical calculus. Particularly Wolfgang Lenzen
demonstrated that Leibniz’s strict implication calculus, inferred from algebra of concepts
isomorphic to the one then built by Boole, amounted to either of the weakest Lewis’s
systems, S2 or S3 (which cannot encapsulate the necessitation rule: p ⊃�p) ([20], [22]:
38–39).

Most certainly Leibniz remains the master-builder of a modal metaphysics of which
the inaugural act, since the Elementa juris naturalis (1671), was the position of some in-
terdefinissability relations which are obtained inside the alethic modalities between the
deontic categories, then recognized by G.H. Von Wright and G. Kalinowski at the foun-
dation of deontic logic ([13], [14, VI, 1: 465–480], [29]). Here the explicit recourse to the
Apulean square grounded the first elements of logic of norms.

Further, as it was often argued, Leibniz could gather all the necessary and sufficient
tools which would make him the founder of a possible worlds semantics before her time
and more accurately, the one fitted for S5, which is the more powerful of the classic sys-
tems of modal logic. At the beginning of his synthetic great book Leibniz. Determinist,
Theist, Idealist, Robert Merrihew Adams wondered if Leibniz would not be “a sort of
grandfather of possible worlds semantics for modal logic” before he appreciably with-
drawed his hypothesis at the end of an analysis of the diverse sides of Leibniz’s modal
metaphysics ([1]: 9).

Though as still the author of differential analysis, Leibniz preferred to explain
contingency—that is, the main theological attribute of the created world—as the result
of a divine calculus of a kind of utility function, as to say (representing the best series of
the compatible possibilia together), inside the frame of a proof theory.

Although he appealed to the venerable theological as well as modal distinction, in-
herited from Boethius, between a necessity of the consequence and a necessity of the
consequent, nowadays we may uphold the thesis according to which Leibniz was fully
aware that this distinction runned up against an equivalence of the entailment:

�(p ⊃ q)⊃ (�p ⊃�q)
where we identify the basis axiom of K modal system.

The so-called analytical truth theory, determining that a predicate must be contained
into the subject of any true proposition, supposes in the case of the contingent truths, that
the algorithm of the resolution to an identity goes on indefinitely (process compared by
Leibniz himself to the infinite development of an irrational number by the mean of con-
tinuous fractions), whereas the demonstration of necessary truths always may be achieved
in a finite number of steps.

Both modalities of possibility and contingency depend on the excess of demonstrabil-
ity with respect to the effectibility of a computation. Thus it will be the touchstone of the
length of the conceptual analysis which completes the discernment of modalities. How-
ever isn’t there something unusual, in spite of the attractive power of this theory on the
modern logicians as Tarski, noticeably highlighted thanks to the notion of ω-consistence
([28]: 288)—we intend to deal with this issue in the future second part of this paper—?

On the other hand, some commentators, Benson Mates or Hidé Ishiguro, didn’t be-
lieve that the criterion of the infinite complexity concerning the analysis of the contingent
propositions was so trusty in order to switch a modality into another. The scope of the
above criterion was even not appraised worthy to be considered by Bertrand Russell along
his chapter dealing with the contingent propositions ([25]: 28–34).
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Then the way of possible worlds semantics seemed to provide a more suitable expres-
sion of the modal notions in the still relatively recent English-speaking interpretations of
Leibniz’s metaphysics.

Before to draw the new issues arising from the recourse of those semantical ap-
proaches, I intend in this paper to consider some of the following points (however un-
fortunately keeping for another occasion the points 4 and 5):

1. Does the Apulean square, which explicitly appears in the first writings about law, con-
stitute a suitable hermeneutical tool to track the elaboration of the Leibnizian modal
metaphysics?

2. Was Leibniz aware that the compatibilist solution, provided by some religious thinkers
as Thomas of Aquino, Calvin or Pascal, to the problem of the coherency of a contingent
creation by a necessary being, could not itself agree with the distributive axiom of
modal logic?

3. If the answer would affirmative, we could be recognize under this trouble a motiva-
tion to enquire for another solution, which would rebuild the modal though, thus the
Apulean square, from a proof-theory.

4. According to the possible worlds semantics, we have to leave the syntactical method,
where all true proposition is derivable inside the considered system, for a semantical
conception, the truth of a proposition holding with respect to a model.

5. So a new generation of issues is brought to light, particularly this one: may the S5
system, involving the axiom ∼�p ⊃�∼�p, agree with the Leibnizian thesis (fol-
lowing from the point 3) by virtue of it could be the case for a proposition to be
undemonstrable without being demonstratibly undemonstrable?

1 Is the Apulean Square Compatible with Leibniz’s Modal
Metaphysics?

The founders of modern juridical logic, i.e. G.H. Von Wright, had never missed to recall
that they had had a precursor. As a young lawyer, Leibniz indeed had conceived a logic
system of norms, connecting the deontic categories of obligatory (debitum), allowed (lici-
tum), prohibited (illicitum) and facultative (indifferentum) with the Aristotelian modalities
marshalled by Apuleius in his square of oppositions.

Modalities: deontic alethic potest + negation epistemic

Justum, Licitum
(allowed)

possible potest fieri a quodam viro
bono

That which is understandable

Injustum, Illicitum
(prohibited)

impossible non potest fieri a nullo (seu
non quodam) viro bono

That which is not understandable

Aequum, Debitum
(obligatory)

necessary non potest non fieri a (omni,
seu non quodam non) viro
bono

That which the opposite is not
understandable

Indebitum, Omissibile
(facultative)

contingent potest non fieri a (quodam
non) viro bono

That which the opposite is
understandable
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On this table which can be read in Elementa juris naturalis (1671), we see that Leibniz
exhibited a semantic analysis of the deontic modalities from the notion of possibility
diversely combined with the negation.

Upholding that one might in safety “transposes” (transferre) from the alethic modali-
ties to the so-called “juris modalia” all the complications, transpositions and oppositions
noticeable in Aristotle’s syllogistic and his followers, Leibniz revealed an isomorphism
on the ground which he might have drawn the deontic square:1

In a paper entitled “Leibniz on alethic and deontic modal logic”, W. Lenzen asserted that
this square becomes analogous to the one of alethic modalities interpreted in words of
possible worlds, if we mean “world” by casus:

According to W. Lenzen, the possible worlds semantics which supports the interpretation
of the square in Elementa juris naturalis lays over the following fundamental relations
[23, §4].

NEC 1 �p↔∼�∼p
NEC 2 ∼♦p↔�∼p
NEC 3 �p→ ♦p
NEC 4 ∼♦p→∼�p

The academic edition shows us that during the years 1687–1690, Leibniz resurrected his
first juridical works, however passing from the mode of a square to the mode of a triangle,

1“Omnes ergo Modalium complicationes et transpositiones et oppositiones, ab Aristotle alisque in Logicis
demonstratae ad haec nostra Juris Modalia non inutiliter transferri possint” [14, VI, 1: 465–485]. This text
came to the fore thanks to Blanché, as it is remembered by Kalinowski, post-scriptum of ([11]: 207) (in
the same book, see also chapters ii and iii, about the analogy between the alethic and deontic modalities).
See further [10, 26].
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which has as vertex what is obligatory (officium), allowed (licitum) and sin, that is, which
is forbidden to commit (peccatum).2

So we obtain that what G. Kalinowski called the “triangle of contraries”, with licitum
in the position of bilateral allowed: both permission to do/not to do ([12]: 13).

In this triangle, the lines express the contrariety relations, on the basis of which may
obviously be written these interdefinibility formulas:

[1] O ≡∼(P ∨ A)
[2] P ≡∼(O ∨ A)
[3] I ≡∼(P ∨ O)

All we have to do is to split what is allowed with the result that the triangle returns to a
square: A being that which is unilaterally allowed to do and F that which is unilaterally
facultative, i.e. that which is allowed not to do.

Symmetrically, permission to do becomes a subaltern of the obligation, permission not
to do representing a subaltern of prohibition.

Adding R, the bilateral obligatory (ordered or prohibited) and renewing with the bilateral
meaning of allowed under the mode of indifferent I, one constitutes a six rays star in
which the arrows, in this case, express the contradictory relations, where we obviously
recognize Blanché’s hexagon if the vertices are linked.

A fourth interdefinissability formula completes the characterization of the deontic
modalities:

[4] F ≡∼(O ∨ P)

J.-L. Gardies, who intended to elaborate deontic algebra, however has advised to give
up the term R, because of missing a “perceptive coherency” in respect of both the gathered

2Aphorismi de felicitate, sapientia, caritate, justitia [14, VI, 4-D: 2800].
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contraries, further missing of usefulness other than marking the opposition with indiffer-
ent ([9]: 66).

Philosophers of law emphasize that it differently works at the other opposite of the
hexagon, where it is, at the contrary, the unifying pole I which carries off considering the
relevance with respect to the subcontraries [3, §12]. Indeed, it happens that a permission
to do, as disconnected from a permission not to do, amounts to an obligation. And recip-
rocally, the permission not to do, being not associated to the permission to do, amounts to
a prohibition, that is, in formulas:

(
(Ap ∧∼Fp)→ Op

)→ (Ap↔ Op) and
(
(Fp ∧∼Ap)→ Pp

) → (Fp↔ Pp)

Putting a bilateral allowed, I such as I ↔ (Ap∨Fp) and on the bounce, the degeneration
of the square in a deontic triangle, observable in the above Leibnizian extract, may be
considered.

If we would translate the deontic triangle of contraries to the modal metaphysics, some
confusion should follow between the modalities of possible and contingent.

Does not yet it remain essential, under the scheme of modal metaphysics, to keep un-
touched the Apulean square? Yes in one sense, because the square displays the inferior
vertex of the triangle; no in another sense, because the concept of existence introduces a
dissymmetry between that which is possible and that which is contingent.

Whilst Leibniz called forth a combination of essences inside God’s understanding dur-
ing the best world calculus, he referred to the “country of possible”.3 Thus possible is
characterized by a relation to existence without reciprocity, existence entailing possibility
whereas possibility itself does not imply existence. Every possible strives for existence
and this striving in any case amounts to an entailment, otherwise possible would not be in
excess in respect with that which exists.

Such is the very definition of the necessitarianism attributed by Leibniz to Hobbes or
Spinoza and even Descartes: if possible and existence coincide, all entia become nec-
essary.4 The existential import inherent to contingency cannot be represented onto the
Apulean square. That is exactly that which is noticed by the equivalence under Leibniz’s
pen, between the existential truths and the contingent truths which bears on the order
of realities coming to existence because of their consistency with the greater number of
beings, i.e. their compossibility.5

3De rerum originatione radicali (1697) [16, 3: 302–318].
4Origo veritatum contingentium (1689) ([15]: 325–326).
5“Ajo igitur Existens esse quod cum plurimis compatibile est; seu Ens maxime possibile. Itaque omnia
coexistentia aeque possibilia sunt” (Generales inquisitiones de analysi notionum et veritate, 1686, §73,
[19]: 248).
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According to the modal metaphysics, contingency inherits from possibility, given that
each contingent being cannot lack of a previous possibility. This implication of contin-
gency by possibility at its turn, cannot either be represented on the Apuleius’ square,
which at the contrary, discloses an implication of the subaltern:

Quia omne necessarium est possibile, omne impossibile est contingens seu potest non fieri.6

Theology finds among modalities the suitable operator likely to underline the Christian
precariousness of the existence. So contingency and possibility tend to stretch one towards
another: existing is said “ens maxime possibile”, namely possible being at the highest
degree—because of the coherence with the greater number of beings.

That what is contingent shows beings deprived of all kind of necessity, and this fea-
ture may be well readable on the Apulean square with the contradictory relation. It is the
modality of the precarious at the highest degree being (underlined with the theological
doctrine of the continuous creation). The Apuleius’ square cannot account for this under-
lying dynamism of a Leibnizian modality. Indeed Leibniz’s possibility arises from this
equality: possible = essence = quantity of perfection.

Thus we must admit all sorts of degrees of possible since there are degrees of perfec-
tion. Possibility means not only a modality; it must be understood as an intensive mag-
nitude: it is a matter of “existentiability”. Excluded from the Apulean square, existence
nevertheless interjects on the axis of subcontraries as a limit in the sense of the infinite
series theory: upper bound for the growth of degrees of possibilities, lower bound of the
perfection of the created beings under contingency of the best world. But whatever their
rank in the hierarchy of beings, whatever the degree of perfection, all the existents share
the same precariousness in respect with the necessary being. Even natural laws are marked
by the seal of contingency.

However, the preservation of contingency (similarly than permission of evil by a per-
fectly good being) deserves a particular explanation: how is it possible to save contingency
of the world, given that contingent beings follow from a necessary being? How may we
conceive an entailment where the Apulean square let us in front of a mere contradiction?

2 Is the K-Distributive Axiom Compatible with Leibniz’s Modal
Metaphysics?

To create the world consists in presenting freely into being that which existence is not
necessary. How contingency of God’s work (with the future contingents holding to human
freedom) may be conceived as compatible with the absolute necessity of God’s existence?
How could the world not inherit of the modality of which it is the effect?

In spite of all the reservations that humanists and reformationists had kept against
medieval logic, neither Calvin nor Luther could neglect, in order to save contingency, to
appeal to the concept of conditional necessity devised by the theologians during the XIIIth
century, from Boethius’s reading of Aristotle’s Peri hermeneias, Chap. 9, likely to receive
three main interpretations ([30]: 161–162).

6[14, VI, 4: 2759] (probably that is the rewriting circa 1679, of an extract soon given in [15], Elementa
of 1671, quoted by Lenzen about the contraposition of the axiom NEC 3 to NEC 4).
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1. In the first place, conditional necessity is merged with the necessity of the consequent:
“if p is the case, thus it is necessary that q is the case” (or: p ⊃�q).

2. A second interpretation refers to the necessity of the consequence: “it is necessary that,
if p is the case, q is the case” (or: �(p ⊃ q)).

The first interpretation is tantamount to put a brute necessity, de re, even if this is
formally hypothetical, since the second one, de dicto, offers an alternative to necessitari-
anism.

3. Further there is also a third interpretation, as necessity, de re again, here involves a
temporal condition: “if p happens during the moment t , it is necessary that p happens
during the moment t”.

This reading was considered by Aristotle in his De interpretatione (19a 23, [3]: 102)
and then was reenacted by Boethius in his Consolatio philosophiae (V, vi, 27, [5]: 316–
317) with the aim to preserve the contingency of human action in respect with the divine
foreknowledge, in such a way that: “a conditioned necessity equals to the necessity of
present”.7

The Boethian version of the conditional necessity cannot be reduced to the position
of a necessity of the consequence for the reason that, faithful to the Aristotelian logic of
terms, Boethius could not conceive that the logical constants could bear on propositions
themselves.

Dealing with the predetermination of contingent events, finally in a same sense, Calvin
granted that one must not neglect, from an outlook similarly compatibilist:

[. . .] the manners of speaking which would used in the schools, concerning the absolute necessity
from the one which comes from another presupposed thing [secundum quid].

And he added in a same way:

[. . .] similarly, about the consequent [de consequentis], and about the consequence [de consequen-
tiae]” ([8]: 239).

Taking again advantage of the medieval logic of consequences, he went ahead, in his
Institution chrétienne:

[. . .] there is a mere or absolute necessity, and a necessity in some regard to. Similarly, there is a
necessity of what follows from and of consequence” ([7]: I, XVI, 9).

Necessitarianism is avoided as long as modality bears on the nexus, the implicative link
itself.

The entailment thus becomes comparable to C.I. Lewis’ strict implication, given that
one undertakes to express the relation of consequence in a way more acceptable for our
intuition than it was allowed with the material implication of the Russellian propositional
calculus. We know that Russell’s material implication, noted “p ⊃ q =df. ∼(p ∧ ∼q)”,
means that it is actually impossible to conjugate the truth of p with the falsity of q . Lewis’
strict implication (“Diodorian” or “strict conditional”) introduces a modal functor in order
to signify for this time the logical impossibility that p may be true whilst a proposition as
q is wrong. Thus, in accordance with the interdefinibility of the modal functors:

pq =df. ∼♦(p ∧∼q)=�(p ∧ q)

7([24]: 40) Boethius supported a similar version in his own commentary of Aristotle’s De interpretatione.
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The rebirth of modal logic in the XXth century thereby was associated to a new way of
understanding the nature of implication.

Leibniz fighted himself too against the necessitarianist involvements of Christian theol-
ogy, involvements which were soon contested by the reformationists, asserting the rebirth
of the liberty of the Christians freed from the constraints of the Mosaic Law. He ex-
plained, at the occasion of one of his first essay of theodicy, Confessio philosophi (1673),
the necessitarianism reasoning in this manner:

God’s existence is necessary; from this existence follow the sins nested in the [actual] series of
things; that which follows from necessity is necessary; thus sins are necessary [14, VI, 3: 127].

Otherwise said, sins become necessary exactly in the same meaning according to which
God is asserted to be necessary. Leibniz will improve towards a solution only but calling
into question the univocity of modalities: there will be in one side a per se modality and
in the other, a modality in respect with another thing.

Then in a first draft dated 1673, Leibniz appraised the modal situation by virtue of an
analogy with propositional logic and syllogistic reasoning.

1. The first analogy disproves the solution of the compatibilist issue by referring to an
hypothetical necessity: if it is true that from truth anything follows but that which is
true, Leibniz explained, from per se necessary should thus follows only that wich is is
per se necessary.

2. A second analogy pleads for this time in support of conditional necessity: just as in
the syllogistic modes of Darapti (universal affirmative premises) and of Felapton (one
universal negative premise and the other universal positive premise), a particular con-
clusion follows from merely universal premises. So why some contingent thing could
not follow from some necessary thing?

Such analogies might bring to light a few uncertainties about the handling of log-
ical modalities. However a more flattering hypothesis can be contrived: Leibniz could
be aware that the distinction between necessity of the consequent and necessity of the
consequence, that is, of �(p→ q) and (p→�q), was not susceptible to overcome the
necessitarianist issue.

Actually, we cannot deny that the combination of hypothetical necessity with necessity
of the antecedent implies a necessity of the consequent:

[1] �p
[2] �(p ⊃ q)

[3] �p ∧�(p ⊃ q)⊃�q
Exactly that is what we can find in propositional modal logic under the distributive

axiom K, at the basis of the ordinary modal systems:

K �(p ⊃ q)⊃ (�p ⊃�q)
As yet are enough textual clues for admitting that Leibniz was actually aware of the modal
axiom?

Some commentators as Adams, Sleigh and Griffin have agreed to identify an equiv-
alent of the K-axiom in an extract dated of December 1675, De mente, de universo,
de Deo, written between Confessio philosophi dated 1673 and some noticeable rectifi-
cations brought in 1677, following a series of discussions that Leibniz had in Hanover
with the Danish geologist Stenon (who was meantime become theologian), rectifications
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whose result was, in the margins of Confessio, the explicitation “per se” linked to “nec-
essary”, read in the final writing, so that the bearing of a modality is divided in two.

The equivalent of K-axiom is enunciated thereby in Latin: “Quicquid necessario in-
compatibile est, impossibile est”.8 All which is uncompatible with that which is necessary
is in a same way reckoned as impossible:

[1] �p
[2] ∼(p ∧ q)

[3] �p ∧∼(p ∧ q)⊃∼♦q
Concerning that which is given as equivalent in Leibniz’s extract in [14, VI, 3: 464]

to the K-axiom, its contraposition must be: all q compatible with p which is necessary,
is necessary, and not “is possible”, for the reason that otherwise, the K-axiom would no
more represent any threat against contingency of the world.

[1] �p
[2] (p ∧ q)

[3] �p ∧ (p ∧ q)⊃�q
Indeed a mention of a quasi K-axiom concludes a whole paragraph in De mente, de

universo, de Deo where Leibniz threw into relief, about impossible, than one had to dis-
tinguish two meanings:

Impossible is a two-fold concept: that which does not have essence, and that which does not have
existence, i.e., that which neither was, is, nor will be because it is incompatible with God, or, with
the existence or reason which brings it about that things exist rather than do not exist. One must
see if it can be proved that there are essences which lake existence, so that it cannot be said that
nothing can be conceived which will not exist at some time in the whole eternity. All things which
are, will be, and have been, constitute a whole. Whatever is incompatible with what is necessary
is impossible.9

Thus impossibility has two roots:

1. the one which holds to the essence, in the case of something in itself contradictory;
2. the other which holds to existence, without however its essence is not in itself contra-

dictory, but lacking of existence because of its incompatibleness with the contingent
existence which flows from the necessary existence.

The consequence would be that this dividing in two of the meaning of “impossible”
should bring to detail the principle put some lines lower, according to which all which is
incompatible with what is necessary, is impossible!

Indeed, the impossibility in the sense (2) certainly does not imply the impossibility
in the sense (1): there is possible independently of any perspective of actualization, non-
Diodorian possibles of course compatible with the necessary existence, as Leibniz up-
holded in Confessio philosophi two years ago:

8De mente, de universo, de Deo, December 1675 [14, VI, 3: 464].
9“Impossibilis duplex notio, id quod essentiam non habet, et id quod Existentiam non habet seu quod
nec fuit nec erit, quod incompatibile est deo, sive existentiae sive rationi quae facit ut res sint potius
quam non sint. Videndum an demonstrari possit esse Essentias quae Existentia careant. Ne quis dicat
nihil concipi posse quod non aliquando futurum sit in tota aeternitate. Omnia quae sunt erunt et fuerunt
totum constituunt. Quicquid necessario incompatibile est, impossibile est” [14, VI, 3: 463–464].
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So they are wrong, all the ones who declare absolutely impossible, that is to say by itself, all that
which was not, is not, or will be.10

A thing remains possible functions of its own nature, because even if it would be not
compatible with God’s will, it is at least with her understanding.

But if possible is defined as that which does imply in itself any contradiction, it follows
a reconsideration of the formula (2) and through it, of the K-axiom, as we can check
reading a paramount passage, first partially disclosed by Grua, entitled De libertate et
necessitate, composed, according the academic publishing, circa 1680–1684:

I concede this, yet, such a thing remains possible in its nature, even if it is not possible with
respect to the divine will, since we have defined as in its nature possible anything that, in itself,
implies no contradiction, even though its coexistence with God can in some way be said to imply
a contradiction [I underline]. But it will be necessary to use unequivocal meanings for words in
order to avoid every kind of absurd locution.11

Thus Leibniz was led to reform the quasi K-axiom according to which all that which is
incompatible with that which is necessary is impossible, since it is written in the quoted
lines that it may be the case of a nature, possible in itself but contradictory in some way
(aliquo modo) with God’s existence as the root of the existence of the world.

Necessity must be understood morally or metaphysically, and this nuance cannot be
expressed by the K-axiom. Hence, for something impossible, to be incompatible with
that which is necessary may mean:

1. to be not compatible in respect with the understanding of the being by itself necessary
(impossibility of essence);

2. to be not compatible in respect with the will of the being by itself necessary (impossi-
bility of existence).

The consequence on Leibniz’s modal thought was of an outstanding importance, since
in a new version of the writing dated 1673, the philosopher could advance a dividing in
two of the modalities, modalities per se in one hand, “unqualified modalities” (as named
by Sleigh ) on the other hand.

The threat represented by the distributive axiom now depends on the appreciation of
the necessity per se (or in se, again in sua natura) which is not conveyed by the antecedent
thanks to the implication. That which flows from God’s necessary existence thus will be
“by itself contingent and only hypothetically necessary”.12

Nevertheless, the validity of the axiom (�p ∧�(p ⊃ q))⊃�q would remain if each
operator “�” means “metaphysically necessary”: q is metaphysically necessary if and
only if p is metaphysically necessary and if it is metaphysically necessary than p entails q .

10“Quare errant quicunque <absolutè id est per se> impossibile pronuntiant, quicquid nec fuit, nec est,
nec erit” ([17]: 56).
11“Quia sua natura possibile definivimus, quod in se non implicat contradictionem, etsi ejus coexistentia
cum Deo aliquo modo dici possit implicare contradictionem. Sed opus erit constantes adhibere vocabu-
lorum significationes ut species omnis absurdae locutionis evitetur” [15, VI, 4: 1447]. This text appeared
in ([14]: 289), but cut of the part of the sentence here underlined, which is of the highest importance for
our purpose, happily restored in the academic edition (equally in its English translation in ([18]: 21)).
12“[. . .] indeed, here, we call necessary only but necessary by itself, namely that which possesses in itself
the reason of its existence and of its truth, such are truths of geometry” ([17]: 57).
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3 The Square of Modalities from the Outlook of a Proof Theory

If our analysis is right, the knowledge of the K-axiom does not more obstruct the solution
of the compatibilist issue. Then the conceptual analysis at the ground of the Characteris-
tica universalis demands an enlightenment concerning the nature of modalities: how can
be the square of modalities expressed from a theory of demonstration?

Using the Apulean square as a metaphysical panoramic map, we see that Leibnizian
modal metaphysics is built from the right low vertex, instead of the left upper vertex
as Spinoza. This supremacy of possible even takes in Leibniz the shape of a sort of a
modal optimism: everything must be held for possible until its impossibility is proved
[16, 3: 444]. Leibniz’s possibilism is understood from a redundancy of possible in respect
with being. “Why is there something rather than nothing?” amounts to ask “Why is there
possibility rather than nothing?” To be possible means to be, that is, postulates there are
essences existing in some way into the divine understanding.13

The presumption of possibility corresponds to the mutual implication of possibility
and the notion of to be not contradictory. In Generales inquisitiones de analysi notionum
et veritatum (1686), this is the very criterion of non contradiction which provides a syn-
tactical definition of the modalities, without the need of appealing to a theory of possible
worlds (§§61, 67, 74, 130, 133). This is the criterion of non contradiction which implies
the synonymy of to be true, to be res or ens. So Leibniz would perhaps be in a position to
advance a new modal square.

Leibniz intended to build a logical calculus under the form of an algebra of concepts
where a term expresses either a concept or a proposition ([21]: 28–83). Then the square
must be considered on two levels: level of the complex terms and level of the uncomplex
terms, namely propositions.

Thereby, a term as A is possible if it is not contradictory, that is to say if, at the end
of an analytic process, it does not contain <B non-B>. Therefore it results that an un-
complex term, absolutely simple, would not be otherwise than in itself possible. “To be
impossible” means, for an uncomplex term, merely not to be (Gen. Inq. §32). In the or-
der of complex terms, “impossible” signifies “to be wrong”, Leibniz warned (Gen. Inq.
§32bis).

The consequence is that a possible proposition, which implies any contradiction, must
be true. So every true proposition must be reducible to the form of a universal affirmative
proposition written A=AB . The sign of equality here refers to a relation of coincidence

13“ [. . .] pays des réalités possibles”: to Arnauld, 1st July 1686 [16, 2: 55].
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which covers, from an intensional point of view in logic, a relation of containing and
contained (Gen. Inq. §83). Thus this logical equality, in order to be true, implies that the
subject as A contains a predicate as B .

The universal negative proposition will be expressed by the inequality:A �=AB . Quan-
tification of subalterns further demands the symbol of a notion supposed well-known but
indeterminate: AY = B noting a particular affirmative proposition, and AY �= B noting a
particular negative proposition (Gen. Inq. §§47–50).14

Everything being possible in virtue of a presumption, until its impossibility is not
demonstrated, the ascription of modalities lays on a very demonstration. Thus, to demon-
strate a proposition amounts to reduce some disparate terms, as well complex as uncom-
plex, until an identity is found.

Here takes place the famous Leibniz’s law: a proposition keeps the same “valor” (his
meaning) as we substitute one of its terms by a definition which analyzes this term, ex-
cept in the case of contexts which we call today intensional, named “reflexive” by Leib-
niz.15

So that happens when occurs a reduplicative proposition (with expressions as: insofar
inasmuch as, hold as. . .), which specifies the particular aspect under which the value of a
subject must be taken.

To demonstrate, indeed, is nothing else than to show a certain equation or coincidence of a predi-
cate with a subject in a reciprocal proposition, resolving the terms of the proposition, and substi-
tuting, to the definite, the definition or a part of this-one.16

One succeeds in demonstrating the truth of the universal affirmative A=AB if the anal-
ysis of A and of B discloses the same components. In this situation, A = CDFG and
B = CDFG. The substitution makes explicit a perfect coincidence, given the idempotent
law A=AA:

AB =ACGDF =AA=A

However, the coincidence can also be only partial, i.e. if B = CDF . Nevertheless, the
inclusion of the predicate into the subject will be demonstrated. In order to achieve the
demonstration, it is sufficient to exhibit a whole or partial coincidence between a subject
and its predicate, every proposition, even hypothetical, being reducible to a categorical
form intensionally understood.

Likewise, a conditional proposition such as “if A is B entails C is D”, can be rewrit-
ten under the form: “D-eity of C is enclosed into B-eity of A”, to save the universality
of the predicative schema (Gen. Inq. §§197–198, [19]: 301). In the depths, any contin-
gent proposition may provide the matter of such a rewriting, where the antecedent of a
condition would systematically express the creation of the best of all possible world by
God.

Hence a big mistake would consist in holding the contingent propositions as undecid-
able statement, and that is exactly what it is categorically excluded by the principle de

14If A is “man” and B is “mortal”, A = AB expresses well the equality of the extensions “man” and
“mortal man”, hence the inclusion of “mortal man” in “man”, thus, of “mortal” in “man” in virtue of the
idempotent law. If then A is “man” and B is “wise”, AY = B: every man associated to an undetermined
quality is wise. If Y = B , this quality may be but wisdom, so all men are not wise.
15General Notations [14, VI 4-A: 752].
16Note on freedom (1689?) [14, VI 4-B: 1655–1656].
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sufficient reason. Thus one must put the excluded middle in respect with demonstrability
and refutability, without that this potentiality, for a human knowledge, is actualized in the
case of contingent propositions.

It ensues that the modalities may systematically vary according to demonstrability,
which one may show, with uncomplex terms (i.e. propositions), thanks to the following
distribution.

1. A proposition is said necessary when the resolution to identity of the concepts of sub-
ject and of predicate happens in a finite number of steps in order to conclude with the
coincidence of the values salva veritate.

Leibniz often wrote that are necessary the propositions of which the opposites may be
reducible to some contradictory terms, or in other words, what it is necessary is that of
which its opposite is impossible (Gen. Inq. §61, [19]: 237; see also §§67, 130, 133).

Thus we find again, following the way of a proof theory, the interdefinibility of the
modal operators, which allows apagogical demonstrations of necessary propositions.

2. If one demonstrates that a proposition implies a contradiction (that is, if it is showed
that A contains <B non-B>), this proposition is qualified as impossible.

3. A proposition is possible when it can be demonstrated that it implies in itself a contra-
diction.

“Possible” in its logical sense names as well necessary as contingent, since it partakes
of non contradictory, even if possible must be distinguished from contingent as providing
the matter of a demonstration.

As for sheer possibilia which are essences, or the first elements of what is thinkable,
thus their name conceals mere necessity. They are just possibilities to be, not possibilities
to be something else. So nothing seems amazing about the fact that statements concerning
possibilia constitute only necessary propositions.

4. A proposition is contingent if one cannot demonstrate that neither it nor its negation
implies a contradiction; it is never conceivable, indeed, to reduce it to some identical
expressions (Gen. Inq. §56), no more than its opposite, given the infinite length of its
analysis.

As for uncomplex terms, nothing seems amazing that they never are qualified of con-
tingent. They can be only possible: contingency bears only on complex terms.

Thus it is impossible to take into account the negation of a contingent proposition
with the aim to demonstrate the later in virtue of the apagogical way: obviously, the
fact that Spinoza is not dead in Paris cannot prove that he actually died in The Hague!
Both propositions remain of course contingent, one about the true is granted by an
empirical knowledge (trusty because of agreeing testimonies), the other contingent and
wrong.

Notwithstanding, there is now an issue to deal with: does modal metaphysics admit the
usual logical convertibility of the contingent propositions from which it results that the
dictum of one is exactly the negation of the dictum of the other17?

17By opposition to the modum, of which negation refers to what is necessary (Aristotle, First Analytics,
I, chapter 13, 32a-30, [2]: 61).
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The possibility of such a logical operation is metaphysically supported by the very
Aristotelian notion of accident, bounded by an only contingent link to its substance. Thus
it is, in any way, an issue that a proposition as “it is contingent that Socrates is sitting
down” is converted into “it is contingent that Socrates is not sitting down”.

That occurring, how would it be possible to distinguish, as Leibniz presumably wished
to do, the true contingent propositions, which are explicitly existential, from the false
contingent propositions18?

A demonstration by resolution to identity of contingent propositions could take an in-
finite time, but the mere testimony of existence provides a valuable shortcut to establish
their truthfulness—so the criterion of truth no more lays on the simple non contradic-
tion.

Divorcing from modal logic, modal metaphysics binds us to reason in this man-
ner: if it is contingent that p, thus p exists; thus it is not contingent than not-p,
however it is possible that not-p—entailment which is not readable on the Apulean
square.

The truth of a contingent proposition does not suspend the possibility of the truth of its
negation, in the exact sense where its opposite is not in itself contradictory.19 Otherwise if
we keep convertibility, a proposition would be contingent whilst it would not be the case
that the correspondent state of affairs would occur.

Leibniz summed up the whole thing in a very important passage at the §61 in Generales
inquisitiones:

Possible is that which one can show that the resolution will never meet a contradiction. Contingent
and true are that which the resolution demands to be continued at the infinite. On the contrary
contingent and false is that which one cannot demonstrate the falsity except by the fact that one
cannot demonstrate its true. It seems doubtful that it suffices, to demonstrate a truth, to be sure
that one never will meet any contradiction during its resolution. Because it results that all which is
possible is true.20

Inside the frame of the algebra of concepts, modalities are inclined to be confused with
the truth values ([13]: 259). However, in an anti-Spinozist modal metaphysics where God
does not carry to existence all possibles, a proposition must be possible without to become
likewise true ([17]: 57; Gen. Inq., note of §66, [19]: 243–245).

Possible is not reducible to the true as well as the true is not reducible to necessary: of
course, if coincidence of the true with necessary does not make any trouble in mathematics
and logic, that goes differently in the topic of natural sciences, history and politics.21 In
the order of contingent, a true proposition is so at the condition that it could be false too;
otherwise this one would become necessary.

“Is contingent and true that which the resolution demands to be continued at the in-
finite” (Gen. Inq. §61): however some times, Leibniz upholded that a contingent true

18Gen. Inq. §§74, 134, 143, 144. “An existential proposition tertii adjecti is: every man is (namely
exists) exposed to the sin; and this proposition certainly is existential namely contingent” (§144,
[19]: 285).
19“However, in this case, this is a contingent proposition, namely it is possible that it would be true or
that it would be false” (note of §66, [19]: 245).
20[19]: 237, 239. The French translation is: “Est possible ce dont on peut montrer. . .” [ibid.]. However the
corresponding Latin verb exactly is: “demonstrare”, that appears to be more demanding (see also §§66,
134).
21This point is widely commentated by J. Bouveresse ([6]: 91).
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proposition may be proved, whereas it appears that its resolution approaches indefinitely
close to an identity without reaching it (Gen. Inq. §134, [19]: 277). But as Sleigh oppor-
tunely remembers, it is here convenient to enlarge the meaning of “proof” beyond the
reducibility to an identity.

The theory of contingency lays on the idea that to have an a priori proof, for a propo-
sition, is a wider property than to be likely of a demonstration. Sleigh sets forth an un-
published draft (L Br. 68-68v) extracted from a letter to Arnauld dated 14 July 1686, very
explicit about this point:

Contingent truths do not have demonstrations, properly speaking, however they must have a priori
proofs ([21]: 88).

When Leibniz used referring to the notion of proof, he vacillated between three possible
meanings:

1. the reducibility to identity, that is, a formal demonstration;
2. sequences of infinite identities where a coincidence is approached as a limit;
3. meta-proofs ([27]: 87).

According to the meaning (1), only necessary truths possesses a demonstration. Let a
proposition p be an ordered pair with a first term which is the subject and a second term,
predicate of p.

An identical proposition has for predicate a subset of the subject. Nowadays we would
understand by a “meta-proof” of a proposition p:

(a) either the proof that exists a sequence S of ordered pairs with as first term p and as
second term, a term which would be all over identical with p excepting a concept
replaced by a set which constitutes its analysis step by step;

(b) or the proof that exists an infinite sequence S′. The perspective for obtaining a proof
does not pertain to the proposition itself, but the process of demonstration itself be-
comes the topic of a proof.

However if a meta-proof remains of a finite length, to admit a meta-proof of contingent
truths would amount to assert that there would exist a demonstration of the contingent
truths, thanks to the middle excluded between (a) and (b).

In mathematics, since the posing of Cauchy’s criterion in the XIXth century, the theory
of series shows that there are indeed meta-proofs, as it can be demonstrated that some
sequences of infinite length are convergent.

We know that it was not the current custom before: series were handled without the
rule of checking their convergence. For instance, Leibniz succeeded in determining the
area of the quarter of a circle with a radius equal to the unity by the mean of the following
well-known series:

π

4
=

∞∑

k=1

(−1)k−1

2k− 1
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
. . .

In the absence of a general proof of convergence, nevertheless it was possible to determine
step by step with a suited calculation that the error could be reduced to a ratio less than
all given error.

This calculation step by step of the values of the series by the way here disclosed the
slowness of the convergence. Leibniz was used to call upon the theory of irrational pro-
portions and the geometrical example of asymptotes, in the aim of bringing an illustration
to the process of an infinite proof in the demonstration of contingent propositions.
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Thereof wouldn’t Leibniz be a victim of the devil of analogy criticized by J. Bou-
veresse, in a different context [4]? Wouldn’t Leibniz take in metaphysics much as liberty
with the theory of series than the contemporary philosophers mocked by Bouveresse about
Gödel’s theorems?

So, there is all the more so as interesting to pay close attention to the §136 of Gen-
erales inquisitiones where Leibniz appraised what are the limits of his own analogy. The
outcome indicated concerning the labyrinth of contingency meets the following objection
formulated by Leibniz himself: is it not true that we have in mathematics some demonstra-
tions about the behavior of an asymptote? However Leibniz was stuck by it: contingency
holds as long as one cannot protract the asymptote or complete the calculation of a series,
even if a certainty bearing on the mathematical knowledge that one cannot miss to have
about this kinds of process, remains within human’s reach.

Now the problem consists in knowing wether we have only but a certainty, insofar as
an epistemic modality such as certainty does not in any way imply demonstrability (in
the sense 1) of what it is certain. Indeed Leibniz assiduously explained that if it is certain
that our world is the best, however it is in any way necessary that it is so, for the very
reason that this proposition, “This actual world is the best”, cannot be said demonstrable
(De contingentia, [15]: 336).

We may think that Leibniz, having not at his disposal any conception of a meta-proof
for the mathematical theory of series, could good-faith argue, by analogy, that there is
any meta-proof for the contingency of a truth, and that would be rather some good news
about the coherency of his doctrine of contingency.22 However, if some meta-proofs of
contingent truths could be given, a finite mind could come into possession of an a priori
knowledge of the contingent truths.

Admittedly the Apulean square is not deducible from the square of epistemic modali-
ties, but if there are demonstrations in mathematics dealing with the infinite (and Leibniz
actually was aware of some of them, asserting against Descartes that the infinite is com-
prehensible) with all the features of the required necessity, Leibniz played with fire, as
to say, eliciting as a model of contingency some mathematical processes, paradigms of
necessary truths.

4 Conclusion: Towards a Possible Worlds Semantics

At the end of the first part of this inquity, we hope to better understand why possible
worlds semantics then seemed to provide a more suitable expression of the modal no-
tions in Leibniz’s recent English-speaking exegesis, in order to ground more firmly the
conception of contingency, not without generating a new metamorphosis of the Apulean
square.

22Sleigh ([27]: 88) believes that Leibniz did not confess to Arnauld his mathematical analogy on the topic
of the contingency considering the strong reluctances of his interlocutor for agreeing the containment
theory; however nothing, in the Discours de métaphysique as in the correspondence with Arnauld, would
be incoherent with this analogy.
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Instead of the modalities tending, as it was the case in the concept algebra, to express
the truth values, quantification over possible worlds makes a restitution of the modal op-
erators from the truth values.

Modal metaphysics had favored since Aristotle the axis necessary/contingency on the
Apulean square, because this axis allowed reflecting the strength or at the contrary the
weakness of the predication. Possible, prima facie without any ontological counterpart
generated by the predicative link was doubly reappraised in Leibniz, by the theory of
prima possibilia as well as by the theory of possible worlds.
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Thinking Outside the Square of Opposition Box

Dale Jacquette

Abstract The graphic meaning and formal implications of the canonical Aristotelian
square of opposition are favorably compared with alternative ways of representing sub-
syllogistic logical relations among the four categorical AEIO propositions of syllogistic
logic. The canonical arrangement of AEIO propositions in the square is justified by an
exhaustive survey of graphically nonequivalent alternatives. The conspicuous omission
in a modified expanded Aristotelian square of inversions involving complements of sub-
ject terms is critically considered. Two of the four inversions are shown to be logically
equivalent to two of the AEIO propositions, and are consequently discounted as offering
no potential significant revision of the canonical square. The remaining two inversions
are logically distinct from any of the AEIO propositions, and the advantages of adding
them to an expanded square are explored. It is shown that the two AEIO-distinct inver-
sions are inferentially, and as contraries, subcontraries, subalterns or contradictories, log-
ically isolated from the AEIO propositions. From this it seems reasonable to conclude
that no inversion makes a contribution to the subsyllogistic logical relations represented
in an expanded version of the square. The investigation leaves the traditional Aristotelian
square unchanged, but affords a deeper appreciation of the canonical square’s optimal
two-dimensional diagramming of subsyllogistic logical relations among the four fixed
AEIO propositions, and of why inversions of the AEIO propositions are appropriately
excluded from the square. The limits and disadvantages of subsyllogistic logic are made
conspicuous in the use of contemporary classical logic to translate and verify in alge-
braic terms all potential square of opposition relations, as a formal basis for excluding
inversions, where they are otherwise manifestly excluded without explanation from the
canonical square.

Keywords AEIO propositions · AEIO inversions · Canonical Aristotelian square of
opposition · Graphic equivalences · Subsyllogistic logic · Surveyability

Mathematics Subject Classification 03A05 · 03B05 · 03B10 · 03B20 · 03B65

1 Canonical Square

The beauty and utility of the canonical square of opposition is largely attributable to its
easy surveyability. In a glance we can take it all in and grasp the logical relations it repre-
sents among four types of quantified predications and their predicate term complements.
The pragmatics of applied term logic in turn prepares propositions by paraphrase and
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syntactical manipulation into specific categories of quantified subject-predicate forms, so
that all logical reasoning is theoretically representable in terms of logical relations among
just those four types of propositions. We can see combinatorially how many possibilities
there are, if all logical expressions and inferences can be formulated as truth-preserving
relations between exactly these types of propositions, made up of a quantifier (all, some),
a subject term, S, (optional) copula (are), and predicate term, P , or complement (inter-
nal negation, non-P ) of a predicate term P . Constructing all four basic proposition types
out of the different possible arrangements of four terms and predicate complementation
begins to challenge surveyability, but remains systematically manageable with simple
memory devices like a checklist of the combinatorial possibilities considered for their
properties.1

The canonical square has this form, with AEIO propositions also expressed in contem-
porary first-order predicate-quantificational logic, respectively, for the two subject and
predicate terms S and P : (A) All S’s are P ’s; (E) All S’s are non-P ’s; (I) Some S’s are
P ’s; (O) Some S’s are non-P ’s:

Canonical Aristotelian Square of Opposition

The four logical relations indicated in the square are still known and used today, al-
though the original terminology has become somewhat antiquated. While it is traditionally
considered that A logically implies I and E logically implies O, the inferences are not de-
ductively valid if A is interpreted as ∀x[Sx → Px] and I is interpreted as ∃x[Sx ∧ Px],
and if E is interpreted as ∀x[Sx →¬Px] and O is interpreted as ∃x[Sx ∧¬Px]. The in-
ferences would hold only if A and E were interpreted as indicated, but for I interpreted as
∃x[Sx → Px] and O interpreted as ∃x[Sx →¬Px]. The latter symbolizations of I and O
propositions evidently do not represent the propositions that Some S’s are P ’s and Some
S’s are non-P ’s. Since the present purpose is to move as smoothly as possible between
traditional and contemporary logical concepts depicted in the square of opposition, it is
expedient in this version of the square to include the information both that A and I, E
and O are traditionally interpreted as subalterns in the sense of A logically implying I and

1See Aristotle’s Prior Analytics and De Interpretatione in [1], [24], [25], [27], [4], [5], [18, 17–65],
[19].
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E logically implying O, and that the inferences are deductively invalid as conventionally
formalized.

Logical Relations in Canonical Square of Opposition

contraries cannot both be true, but can both be false
contradictories cannot both be either true or false
subcontraries cannot both be false, but can both be true
subalterns one logically implies the other

Such easy surveyability generally comes at a price, and typically by oversimplifying
the logical relations that actually obtain. No one is surprised today to hear that the canon-
ical Aristotelian square of opposition is expressively limited in ways that in the past must
have been accepted with a shrug in lieu of a superior kind of logic.2

The canonical square is an instrument for representing subsyllogistic logical reason-
ing between any combination of two among a total of four categorical propositions. Like
any instrument, the square of opposition as a diagram of logical relations facilitates cer-
tain tasks but confers only limited usefulness. We need to understand the expressive and
calculative power that the square of opposition represents within its limitations. One con-
straint is that the square itself does not teach us how to interpret and represent the AEIO
structure of the basic propositions involved in a complex chain of syllogistic reasoning.
If we do not know how to translate ordinary thinking and colloquial predicational and
inferential expression into the most appropriate AEIO forms involving only subject and
predicate terms and their converses in all and some quantifications, then knowing from the
square’s graphic depiction how the AEIO forms are logically interrelated as implications,
contraries, subcontraries, and contradictions of one another will not support applications
of the square to everyday thought and discourse. We must first know of a sentence in an
argument whether it is an A, E, I, or O form of proposition, and this is not always obvious
or easy to decide. For we do not always, in fact we probably seldom, think and express
ourselves in terms of just these four categorical propositions. Perfectly reasonable argu-
ments are sometimes encountered in raw, so to speak, unsyllogismized, thinking, speaking
and writing, and they can turn on a logical connection between two propositions that on
the face of things do not immediately belong to any one of the AEIO forms. An obvious
example from a more contemporary algebraic rather than Aristotelian term logic stand-
point is the inference: All S are either P or Q; No Q is P ; therefore, some S are P only
if no S are Q.

Here, then, is an expressive limitation of the square of opposition as a general instru-
mental aid in understanding logical inference. Clearly, there is a more basic propositional
and predicate-quantificational logic underlying even Aristotelian syllogistic term logic,
if we can validly reason but not logically justify a wide range of inferences involving
the logic’s categorical propositions built out of a relatively small number of terms. The
square’s limitation to AEIO propositions is already a conspicuous constraint on its useful-
ness in understanding logical relations in the most general sense, even among the AEIO
propositions, let alone the unlimitedly many extra-AEIO propositions, that are encoun-
tered in scientific as well as most everyday reasoning. The canonical square of opposition,
possessing at least these kinds of limitations, should make us wonder whether there are

2[2, 3, 10, 17, 21].
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others. How can we systematically study the scope and limits of the canonical square of
opposition?

2 Logical Memory Device and Calculation Aid

The simplest answer as to why there is a square of opposition is that the idea of the dia-
gram is to graphically display in two spatial dimensions the subsyllogistic logical interre-
lations between any two of the four categorical AEIO proposition types. Placing each one
of the four AEIO propositions in a plane amounts to setting the corners for a four-sided
polygon, of which a square is the simplest figure.

The diagram could in principle be drawn as a nonrectangular parallelogram or as a
trapezoid, rhombus or other parallelogram or quadrilateral, but nothing is representation-
ally gained thereby over the default square. It is how the four propositions stand logically
to one another that further determines how the square is arranged and with which AEIO
propositions in which corners displaying particular logical relations to one another within
the square. The same logical inclusion and exclusion relations among the extensions of
two or three (and more) predicates can be graphically represented in other ways also, for
example, by Euler, Venn, or Lewis Carroll diagrams.3 The AEIO proposition-limited syl-
logisms and logical basis for the square are already found in Aristotle. The square merely
arranges them as further unanalyzable items, like the tokens on a game board, for which
there are only so many possibilities to consider.4

The canonical square of opposition is evidently a logical device. But in what exact
sense? Moreover, is it only or even primarily a logical device? We can use the square,
once we have it available, as a shortcut way of checking on the inference relations be-
tween any two categorical propositions that could occur in any classical syllogism. Since
a syllogism is a logical relation between three propositions, two assumptions and a con-
clusion, the canonical square of opposition as such constitutes at most a graphic repre-
sentation of subsyllogistic logical relations. Despite its historical role in the teaching and
application of a term logic that precedes syllogistic, there are no instructions for building
the square step by step as itself a logical construction. With A propositions situated in
the upper lefthand corner of the box, for example, why not put E propositions below A
or diagonally across from A instead of at shoulder height? We are always presented with
the square already dressed for dinner, so that we do not know from the square itself and
cannot historically reconstruct exactly how the square came to be discovered in precisely
the form it has. We cannot straightforwardly reverse-engineer the square to see how it
was designed and assembled. We ‘construct’ the square on paper or by drawing it in the
sand after making its acquaintance only in the sense of remembering how it is all sup-
posed to go. We are accordingly led to ask to what extent if any the original Aristotelian

3[8, 9, 26].
4After Frege, Peano and Boole there is increasingly less interest in syllogistic logic, and so with the canon-
ical Aristotelian square of opposition. See [16, especially 177–198, 404–427]. Boole [6, 7] in particular
marks the turning point in logic, beginning with an expanded formulation of Aristotelian syllogistic logic,
enhanced especially by William Hamilton to a four term logic, which Boole then converts to algebraic for-
mulation at exactly the transitional midpoint between Aristotelian-Scholastic and contemporary symbolic
logic.
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square of opposition is a matter of logical inevitability or aesthetic graphic stylistic pref-
erence.

3 Square Topological Combinatorics

For each of 4 items to be arranged at the corners of a square, there will be 2 combinations
for each planar paired (not diagonally opposed) items in the square, left or right of, or
above or below, each other. For each of both of these combinations, there will always be
3 other items remaining in the square to enter into further combinations involving each
distinct pair. It follows that there are 2 × 3 = 6 distinct combinations for each of 4 items,
making a total of 6× 4 = 24 possible arrangements of any 4 items (AEIO propositions of
syllogistic logic) in a plane. Now we ask: Are all of these possibilities distinct, and, if so,
in what sense? Here are the 24 combinations:

AEIO Graphic Topology

4 Graphic Equivalences and Basic Forms

Of these possibilities, we know that 1 is the Aristotelian choice for what is now known as
the canonical square. We shall say that forms 4, 8, 11, 14, 17, 22 and 24, are graphically
equivalent to 1, in the sense that they have the same relative configuration of propositions
and relations as 1, if 1 were to be shown on its left side, or its right side, or upsidedown,
plus the reversals or mirror-images of all of these repositionings, of what we can see to be
essentially the same graphically equivalent square. Together with 1, these 7 forms suggest
(what is easily confirmed), that of the 24 square forms, there are only 24/8 = 3 graphically
distinct nonequivalent forms, here, 1, 2 and 3, the first of which is the Aristotelian. The
graphic equivalents to the Aristotelian canonical square of opposition 1 are indicated by
sympathetic shading in the following diagram:



78 D. Jacquette

Graphic Equivalents to Canonical AEIO Square 1 (Original Aristotelian Square)

This leaves us with possibilities 2 and 3 to compare with the Aristotelian choice 1 (and
their 7 equivalences each across the field) to see if his decision could be improved upon.
Square arrangement 2 in turn is graphically equivalent to forms 5, 7, 9, 16, 18, 20, and 23,
which we do not bother to illustrate; form 3 is graphically equivalent to forms 6, 10, 12,
13, 15, 19, and 20.

We thereby reduce the burden of evaluating alternative squares of opposition from 24
to 3. We take advantage of this more manageable set of choices to ask and hopefully an-
swer whether the Aristotelian square is wisely chosen, whether there are any advantages
to 1 over 2 and 3, or the reverse. In trying the experiment, we are nevertheless soon per-
suaded of the preferability of 1 over 2 or 3 for the most compact intelligible presentation
of AEIO logical interrelations.

Noncanonical Alternative Square of Opposition 2

Combination 2 has the contradictories running up and down the vertical sides of the
square, in place of the subalterns that now cross in the middle, and contraries and sub-
contraries remaining as in canonical square 1. There is nevertheless something more sat-
isfying, perhaps more dramatic and memorable about placing the AEIO propositions as
in square 1 with contradictories rather than subalterns crossing in the middle. This is par-
ticularly the case because we do not get double-headed arrows connecting subalterns as
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we do for contradictories, making their opposition graphically expressed as more funda-
mental in square 1 than in square 2. Form 3 also features contradictories up and down the
square’s vertical sides, but opposes contraries and subcontraries as double-headed arrows
crossing in the square’s center. The visual disappointment here is that contraries and sub-
contraries are obviously different logical relations, so that their crossing in the middle of
the square does not place the propositions so related on the same footing, as in the con-
sequently more stable appearing canonical square. We see this in the alternative version
presented here as square 3:

Noncanonical Alternative Square of Opposition 3

The AEIO symbolism by itself (in contrast with the entire square) is evidently at most
a memory device, rather than a logical instrument. The Aristotelian square 1 might also
be preferred over squares 2 and 3, by virtue of its alphabetical mnemonic. Square 1 has
the distinct advantage over 2 and 3 in this regard, for any language-users recognizing
the AEIO vowel group in exactly that order, and in whose culture the reading of text is
standardly scanned from left to right and top to bottom. Had noncanonical squares 2 or 3
been preferred for other reasons over canonical square 1, it obviously remains expedient
to simply rename the original propositions, making I E or O E, etc., since these labels are
only conventional anyway. The alphabetical mnemonic could remain while referring to at
least some different propositions than the canonical AEIO in the canonical square.

5 Utility of the Canonical Square

Although the AEIO propositions represent an interesting choice for a combinatorially
manageable construction and analysis of basic argument forms in a logic of four term
types, they do not exhibit the logical structures of all reasoning and argumentation.

• A: All S’s are P ’s
• E: All S’s are non-P ’s (No S’s are P ’s)
• I: Some S’s are P ’s
• O: Some S’s are non-P ’s
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The canonical square comprehends all four combinations of terms in two-term propo-
sitions with unnegated subject term and predicate or negated predicate term for the syl-
logistic quantifiers ‘All’ and ‘Some’. The question remains how AEIO propositions are
to be topographically understood in their interrelations. The canonical square offers one
answer in the form of a two-dimensional display of the interesting subsyllogistic rela-
tions between AEIO proposition forms. We have already seen that the canonical square
more appropriately represents exactly these relations than either of the two graphically
nonequivalent alternatives.

The square, as previously observed, compactly represents the AEIO logical relations,
but plays no part in the logical development of syllogistic logic. The square is in this
sense entirely a logical afterthought, a two-dimensional graphic method of depicting syl-
logistic relations. It is the prosaic version of more abstractly graphic Euler and Venn or
Lewis Carroll diagrams for the same choice of logical relations. The square, to conjure
a Wittgensteinian analogy, can be used as something like a tides table. We consult it for
convenience to remind ourselves of the subsyllogistic logical relations holding between
any two AEIO propositions. Like the tides table, the square no more logically determines
syllogistic relations than the tides table causally determines the tides. They are merely
pictures of independently obtaining facts. Although the canonical square can be used as
an external aid in syllogistic reasoning, reasoning generally is better conducted without
external aids altogether, by internalizing a dispositional understanding of logical interre-
lations to the point where it becomes instinctive.

Internalization of logical principles that are not simply innate is largely a matter of
learning through memory, practice and correction. The square provides a memory device
for this purpose, and as such can be thought of largely as a crutch for students to lean
on when they are first learning syllogistic logic and the subsyllogistic relations among
the four categorical AEIO propositions represented by the square. The square can help
students to achieve both of these conditions in reinforcing subsyllogistic principles. The
square accordingly functions as a mnemonic device and fixed external check on our efforts
to learn and apply subsyllogistic logical principles as a prelude to working with three-
proposition syllogisms. With time, in the practical mastery of these subsyllogistic logical
relations, we may hope that we can eventually construct and analyze logical inferences
reliably correctly and without excessive deliberation, and in particular without having to
stop and think in every instance about whether or not our thinking is correct.

The square itself, by virtue of its logical isomorphism with fundamental syllogistic
logical relations, in addition to being a memory device and paper ’calculator’ for check-
ing and constructing two-proposition subsyllogistic AEIO inferential relations, is also the
graphic embodiment of a commonly proposed formal Aristotelian subsyllogistic logic,
at a comparatively shallow depth of formal analysis. Euler, Venn, and Lewis Carroll
diagramming methods take us to a logically and semantically deeper two-dimensional
graphic display of the extensions of predicate terms in classical syllogisms by virtue of
which the AEIO subsyllogistics are logically interrelated as the square presents. They
do so by portraying the objects comprehended by general subject and predicate terms in
AEIO propositions, to which these later graphic techniques are logically limited, and by
which the propositions are made true or made false. Properly applied, logic diagrams in
Euler, Venn and Carroll, in comparison with the canonical square of opposition, provide
an effective decision method for classical subsyllogistic, and even syllogistic inferences
among the AEIO propositions.
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6 Graphic Limitations of the Canonical Square

Although the square is a graphic device, there are still too many words in it for it to be as
purely graphically informative as it might be, when compared with other two-dimensional
diagrams of AEIO subsyllogistic relations. Specifically, the square contains logically un-
analyzed terms for logical relations, and the AEIO propositional forms themselves are
understood as any propositions of the form ‘All S’s are P ’s (non-P ’s)’ or ‘Some S’s are
P ’s (non-P ’s)’.

The square by itself only tells us, for example, that A and O are contradictories; that I
is the subaltern of A, as is O of E, that A and E are contraries, and I and O subcontraries.
Unfortunately, the square does not and cannot in and of itself tell us exactly why these
relations hold. In contrast, contemporary algebraic logic does not need the kinds of mem-
ory devices associated with classical Aristotelian syllogistic logic. It has more powerful
methods of dealing with the combinatorics of repeating significant terms occurring in log-
ical expressions and reasoning chains of virtually unlimited inner complexity and length.
Algebraic logic, moreover, is interpreted by means of a rigorously developed formal se-
mantics, accessorized with equally powerful and practically useful decision methods for
judging logical relations by calculation, rather than by consulting the information dia-
grammed in a memory chart of deductively valid or invalid inferences and other logical
relations, such as the square provides.

Beyond memorizing truth tables for the five most useful (noble) truth-functions, work-
ing with contemporary algebraic logic is primarily a matter of syntactical skill in applying
a convenient number of formal algorithms. In comparison to the freedom afforded by al-
gebraic approaches to formal logic, the original Aristotelian square of opposition often
requires reasoning to be forced into a logical straitjacket, accommodating inferences to a
particularly non-ergonomic Procrustean Bed. The square has accordingly been relegated
to the category of historical curiosity in the early development of symbolic logic. An im-
portant exception is the fact that familiarity with the square is useful for logicians today
as a kind of lingua franca, when adapted as a shorthand to express logical relations in
specialized applied logics with specialized domains. These may include the principles of
a deontic, doxastic or temporal logic, or the like. Versions of the square, when the con-
cepts in question cooperate, can make basic logical relations readily surveyable in a single
glance, and thereby make it also easier to hold their components before the eye and mind
for comparison in grasping their interrelations intuitively, conditioned by familiarization
with the canonical square in its original subsyllogistic context. Thus, one occasionally
sees square-like diagrams even in contemporary logical research, as well as the square
itself being discussed as an historical topic. Contemporary uses of the square are often
very cleverly done; they can be graphically highly informative as a map presenting a cer-
tain set of formal logical relations among concepts that can be squared off or otherwise
polygonalized against one another in two- or even three-dimensional space in ways that
neither Aristotle nor the medieval Scholastic tradition in logic anticipated.

Lest we conclude too quickly that the canonical square of opposition deserves its place
on the dusty shelf of horse-and-buggy formal logical devices, and, at that, primarily as
a memory device with minimal if any calculative potential, we should consider that the
square can still teach us something interesting about classical logic that we might not
otherwise have fully appreciated, even if only because in all likelihood we would not
otherwise have thought about it in quite these terms.
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7 Square Without Inversions

The first thing that commands attention when considering the square of opposition from
a more contemporary algebraic perspective is that the diagram appears combinatorially
incomplete in one crucial respect. What are conspicuously missing from the canonical
square are the so-called inverted forms or inversions of AEIO:

• All/Some non-S is P
• All/Some non-S is non-P

The inverses (versos) of (recto) AEIO propositions are these:

• A(V): All non-S is P
• E(V): All non-S is non-P
• I(V): Some non-S is P
• O(V): Some non-S is non-P

Why are these propositions not included in or added to the square? Few logicians have
missed them or wondered where they belong, with some important exceptions considered
further below. Almost alone among contemporary historians of syllogistic logic, Robert
N. McLaughlin, in his book, On the Logic of Ordinary Conditionals, offers the following
puzzling comments about the AEIO Inversions in Aristotle’s syllogistic:

The question of inversion was not one that Aristotle had to consider directly. He doubted the
equivalence of ‘non-S’ and ‘not S’ and his system did not admit of forms expressing negative
terms. But there is some point in asking whether, had he accepted negative terms, he would have
welcomed the inconsistency of ‘All S is P ’ and ‘All non-S is P ’. He could have reasoned for
the view that they are inconsistent by an argument similar to the one he used to show that if
the statement A necessitates the statement B , then it cannot be true that the denial of A also
necessitates B: “If ‘A necessitates B’ and ‘Not A necessitates B’ were both true, then not B would
necessitate B”. Aristotle considered the consequent absurd and therefore rejected the possibility
of the antecedent. But if one allows negative terms, and if we accept the consistency of ‘All S is
P ’ and ‘All non-S is P ’, a similar result follows. From ‘All S is P ’ and ‘All non-P is not S’ and
from this and ‘All non-S is P ’ we obtain ‘All non-P is P ’. It seems likely that Aristotle would
have regarded this consequent as nonsense and that he would have concluded that ‘All S is P ’ is
incompatible with ‘All non-S is P ’ and that the former thus entails ‘Some non-S is not P ’.5

5[20, 105–106]. On 105, McLaughlin rightly asks: ‘Writers have also criticized the traditional process
called ‘inversion,’ which licenses the inference from ‘All S is P ’ to ‘Some non-S is not P ’—in our terms,
from s[p(N)] to −(−s[p(N)]) or −s[−p(M)]. Why must it be the case that if all S is P , some non-S is
not P ? After all, if it were the case that everything is P , then all things S and non-S alike would be P . But
when ‘All S is P ’ is taken to mean that a thing’s being S warrants the conclusion that it is P , and when
the problem is addressed from the point of view of OC [McLaughlin’s theory of Ordinary Conditionals],
the inference becomes entirely natural. Because s[p(N)] means only that the presence of s ensures the
presence of p.’ McLaughlin’s final remark suggests that N plays no role in the meaning of s[p(N)],
which would need to be explained. McLaughlin says that s[p(N)] means that the ‘presence’ of s ensures
the ‘presence’ of p, which is patently a metaphysical relation of ontic dependence or supervenience. It is
a metaphysical relation, if ‘presence’ means as it appears ‘existence’, anyway, surely not just presence to
us at a particular time, rather than the expected logical or semantic relation by which an inversion at least
of an AEIO proposition might first be explicated. McLaughlin’s interpretation supports an interesting
and plausible interpretation by which, for example, the meaning of the A proposition, ‘All whales are
mammals’, is directly bound to specific truth conditions by which the presence of whales ensures the
presence of mammals, and, indeed, the presence of any whale ensures the presence of a mammal.
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If not-B necessitates B because both A and not A necessitate B , it is presumably
because B is independently logically necessary. One might argue, for example, that the
proposition that 2 + 2 = 4 is necessitated both by the proposition that 1 + 1 = 2 and by
the proposition that 1 + 1 �= 2, since the proposition that 2 + 2 = 4 is necessarily true
in either case. The fact that a proposition is conditionally true both on the grounds of
a proposition and its negation might reasonably be taken as a formal semantic criterion
for necessary truth in general, but not obviously as a justification for disallowing AEIO
inversions containing negated or complement subject terms. If not-B necessitating B is
absurd, which is not clearly true even in Aristotle’s logic, and if not-B necessitating B

follows logically from A necessitating B and not-A necessitating B , then presumably the
argument’s starting place, that A necessitates B and not-A necessitates B , must also be
absurd. The logical connection from the imagined absurdity of not-B necessitating B ,
which seems in any case to be a propositional relation, to the impermissibility of non-
B as a subject property term in the inversion of a categorical AEIO proposition, is as
undemonstrated as it is intuitively implausible and unjustified in contemporary formal
semantics. More pointedly, why should Aristotle have regarded the proposition in the
consequent McLaughlin mentions as nonsensical? Does it not make sense, for example,
to deduce from any permissible assumptions that all non-spatiotemporal entities are ab-
stract?

Since there are exactly four categorical two-term AEIO propositions, there is combi-
natorially a total of 256 different syllogisms, of which 24 are deductively valid, and of
which only a further 15 are deductively valid if subject terms in AEIO propositions are
permitted to be empty in the sense of ostensibly referring to something nonexistent. Do
the math if the number of terms to be considered in combination is increased by a factor
of the negations of subject as well as predicate terms with AEIO propositions + their
two distinct inversions. There must be 512 still surveyable combinations. Of the addi-
tional 512 − 128 = 384, are there any logically interesting combinations? If in classical
or scholastic times there was no practical way to identify two of the AEIO inversions as
logically equivalent to two of the AEIO propositions, as is afforded algebraically, then it
would have appeared, if logicians also had the arithmetical capacity without an algebra
of exponential combinatorics to calculate the total, that there would be 2,048 syllogisms
with all four AEIO propositions and all four AEIO inversions.

Few logicians have wondered or worried about the AEIO inversions. Have they been
right not to bother with AEIO inversions? Or do the AEIO inversions have interesting
logical properties that the canonical square simply does not include? We should not accept
the answer that AEIO inversions are not incorporated in the traditional square because
they are not AEIO in form. The picture is more complicated and hence logically more
interesting, given, as we shall show, that two inverses of AEIO propositions are logically
equivalent to two other AEIO propositions, while the other two inverses are not.6

6Lukasiewicz [12] does not even consider AEIO inversions in his second edition of Aristotle’s Syllogistic
from the Standpoint of Modern Formal Logic. Among the few available sources for the topic is [11];
a valuable study in its own right that is not concerned with the particular questions that I have been
investigating. Prior [22, 23] discusses negative terms in Boethius’s syllogistic logic, citing the latter’s
Introductio ad Syllogismos Categoricos, but does not mention inversions by that name. See especially
[23, Part II, Chapter II—Categorical Forms with Negative, Complex, and Quantified Terms, 126–156;
including §1 Negative Terms in Boethius and de Morgan, 126–134].
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8 Case for AEIO Inversions

We argue first for the inclusion of AEIO inversions within an expanded syllogistic logic
in this way. We note that we can construct a (hackneyed) syllogism in BARBARA:

1. All whales are mammals.
2. All mammals are warm-blooded animals.

____________________
3. All whales are warm-blooded animals.

In an expanded ‘syllogistic’ logic incorporating irreducible inverses, we should then pre-
sumably be able similarly to reason:

1. All non-abstract entities are spatiotemporal.
2. All spatiotemporal entities are extended.

_________________
3. All non-abstract entities are extended.

This first example works because it is already an instance of BARBARA, in which
we have uniformly replaced the inverted subject term ‘non-abstract’ for ‘S’, in effect
allowing the inversion ‘non-abstract’ to play the same logical role in the syllogism as a
positive subject term would do, but in which no negation, complementarity or contrariety
is explicit. We can get away with such a deductively valid inference here only because
there is no interplay between the predicates ‘abstract’ and ‘non-abstract’ in this particular
syllogism. The ‘non-’ of predicate complementation in such instances does not matter
syllogistically, just as it would not in standard first-order logic. We can simply replace
the term ‘non-abstract’ uniformly throughout with a positive rather than negative term
without jeopardizing the argument’s logical validity.

Are there other inference forms to be considered in which AEIO and A(V), E(V), I(V)
and O(V) inversions interact in more interestingly ways? Are the A(V), E(V), I(V), O(V)
inversions of AEIO propositions logically independent of AEIO forms, or are at least
some AEIO inversions logically reducible to AEIO forms? Reverting for convenience to
the notation of contemporary first-order symbolic logic or the ‘functional calculus’, we
find a quantificational form of contraposition in the following theorem, whereby an E(V)
form reduces to a logically equivalent A form:

∀x[¬Sx →¬Px] ↔ ∀x[Px → Sx]
Nevertheless, we also discover:

∀x[¬Sx → Px] ↔ ∀x[¬Px → Sx]
in which the A(V) form is irreducible to any other AEIO form. Similarly:

∃x[¬Sx ∧ Px] ↔ ∃x[Px ∧¬Sx]
whereby I(V) reduces to a logically equivalent O form. Yet we also have as a theorem of
standard first-order logic:

∃x[¬Sx ∧¬Px] ↔ ∃x[¬Px ∧¬Sx]
in which O(V) by the same method is manifestly irreducible.

Inversion forms of AEIO, E(V) and I(V) are reducible (respectively, to A and O);
whereas inversion forms A(V) and O(V) are irreducible to any of the AEIO categorical
propositions. This result narrows the search space considerably for logical interrelations
between A(V) and O(V), as the only AEIO inversions that need to be considered in their
logical relations if any to the four AEIO forms.
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9 Three Questions of Logical Interrelations

There are three questions to be addressed with respect to the logical interrelations between
A(V) and O(V) with AEIO forms, inspired by the three categories of logical relations
displayed and labeled in the canonical square of opposition. The questions are these:

(1) What deductively valid one-way logical inferences or subalternations, if any, obtain
between A(V) and AEIO and between O(V) and AEIO?

(2) What contradictories or logical inconsistencies, if any, obtain between A(V) and
AEIO and between O(V) and AEIO?

(3) What contrarieties or subcontrarieties, if any, obtain between A(V) and AEIO and
between O(V) and AEIO?

We address these questions by applying standard predicate-quantificational logical
methods to the relevant propositions to determine their logical relationships. Below for
each category of question we present only the results, validated by algebraic logical deci-
sion methods and algorithms.

Question 1 Antitheorems
Answer to question (1): NONE.
There are exactly 16 cases to consider:

∀x[¬Sx → Px] ⊥ ∀x[Sx → Px] − A(V) does not imply A
∀x[¬Sx → Px] ⊥ ∀x[Sx →¬Px] − A(V) does not imply E
∀x[¬Sx → Px] ⊥ ∃x[Sx ∧ Px] − A(V) does not imply I
∀x[¬Sx → Px] ⊥ ∃x[Sx ∧¬Px] − A(V) does not imply O
∀x[Sx → Px] ⊥ ∀x[¬Sx → Px] − A does not imply A(V)
∀x[Sx →¬Px] ⊥ ∀x[¬Sx → Px] − E does not imply A(V)
∃x[Sx ∧ Px] ⊥ ∀x[¬Sx → Px] − I does not imply A(V)
∃x[Sx ∧¬Px] ⊥ ∀x[¬Sx → Px] − O does not imply A(V)
∃x[¬Sx ∧¬Px] ⊥ ∀x[Sx → Px] − O(V) does not imply A
∃x[¬Sx ∧¬Px] ⊥ ∀x[Sx →¬Px] − O(V) does not imply E
∃x[¬Sx ∧¬Px] ⊥ ∃x[Sx ∧ Px] − O(V) does not imply I
∃x[¬Sx ∧¬Px] ⊥ ∃x[Sx ∧¬Px] − O(V) does not imply O
∀x[Sx → Px] ⊥ ∃x[¬Sx ∧¬Px] − A does not imply O(V)
∀x[Sx →¬Px] ⊥ ∃x[¬Sx ∧¬Px] − E does not imply O(V)
∃x[Sx ∧ Px] ⊥ ∃x[¬Sx ∧¬Px] − I does not imply O(V)
∃x[Sx ∧¬Px] ⊥ ∃x[¬Sx ∧¬Px] − O does not imply O(V)

Question 2 Compossibilities
Answer to question (2): NONE.
There are exactly 8 cases to consider:

♦[∀x[¬Sx → Px] ∧ ∀x[Sx → Px]] − A and A(V) are logically consistent
♦[∀x[¬Sx → Px] ∧ ∀x[Sx →¬Px]] − E and A(V) are logically consistent
♦[∀x[¬Sx → Px] ∧ ∃x[Sx ∧ Px]] − I and A(V) are logically consistent
♦[∀x[¬Sx → Px] ∧ ∃x[Sx ∧¬Px]] − O and A(V) are logically consistent
♦[∃x[¬Sx ∧¬Px] ∧ ∀x[Sx → Px]] − A and O(V) are logically consistent
♦[∃x[¬Sx ∧¬Px] ∧ ∀x[Sx →¬Px]] − E and O(V) are logically consistent
♦[∃x[¬Sx ∧¬Px] ∧ ∃x[Sx ∧ Px]] − I and O(V) are logically consistent
♦[∃x[¬Sx ∧¬Px] ∧ ∃x[Sx ∧¬Px]] − O and O(V) are logically consistent
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Question 3 Compossibilities
Answer to question (3): NONE.
There are exactly 8 cases to consider:

The cases in this final category are the same as those that arise for Question 2. Logical
consistency establishes not only that the propositions are not contradictories, but also that
they are not contraries or subcontraries of one another; they are not such that at most one
of them can be true. The answer to Question 2 also shows that neither A(V) nor O(V) are
contraries or subcontraries of any of the AEIO forms. The reason is that A(V) and O(V)
are mutually contradictory, while A(V) and O(V) are each logically consistent with all
four AEIO forms. It follows, then, that it is logically impossible for A(V) and any of the
AEIO propositions to be conjointly true, and for O(V) and any of the AEIO propositions
to be conjointly true. Thus, it is logically impossible for A(V) or O(V) to be subcontraries
of any of the AEIO forms. The proof is an application of the standard modal theorem,
[¬♦[p ∧ q] ∧♦[q ∧ r]]→¬♦[p ∧ r].

The result of inquiry is to show that inversions A(V) and O(V) are in every category
of logical relationship represented in the canonical square of opposition as logically mu-
tually independent. For the AEIO forms, it is logically just as though the A(V) and O(V)
inversions simply did not exist. We represent the resulting square of opposition, revised
and expanded to include the mutually contradictory inversions A(V) and O(V) in the fol-
lowing way, giving their relationship arrow a mere ghostly presence in grey, transecting
the canonical square:

Revised and Expanded Square of Opposition with A(V) and O(V) Inversions

In terms of the logical relations of one-way implication or subalternation, contradic-
tion, contrariety, and subcontrariety, in the canonical square, the logic of AEIO-irreducible
categorical propositional inversions A(V) and O(V) are logically altogether independent
of the AEIO syllogistic logic, except with respect to the antitheorems that can be demon-
strated concerning the failure of implication or subaltern relations, contradictories and
contraries, involving A(V) and O(V) modulo AEIO.

The logic of A(V), E(V), I(V), and O(V) does not have its own parallel square of oppo-
sition, in which all the square relations that obtain among AEIO obtain also among A(V),
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E(V), I(V), and O(V). The obvious reason is that E(V)↔ A and I(V)↔ O. What is in-
teresting is that there is no positive logical relation as represented in the canonical square
between the AEIO and A(V), O(V) propositions. A(V), O(V) subsyllogistic logic exists
in a logical space of its own, parallel to that of AEIO, with no logical interconnection
linking any of the propositions in either canonical square or parallel inverse-expanded
square, by any of the relations represented in the square, except that by which A(V) and
O(V) are themselves contradictories, precisely as are A and O in the classical square, as
we see clearly when we abstract the mutually contradictory AEIO inversions A(V) and
O(V):

Diagram for Contradictory AEIO Inversions A(V) and O(V)

The two logics thus have a partially parallel but subsyllogistically independent inter-
nal logical structure, given that there are only two logically distinct inversions of AEIO
propositions, A(V) and O(V). What is formally and philosophically curious is that the
two logics do not touch one another by virtue of any recognized traditional syllogistic
logical relation (subalternation, contradiction, contrariety, subcontrariety). The subsyllo-
gistic logic of AEIO inversions is a shadow image of only one of the AEIO relations in
the canonical square. The canonical square of opposition by implication establishes two
parallel but logically isolated, non-interacting sub-subsyllogistic logics for four categori-
cal propositions and two of their logically distinct irreducible inversions. The existence of
such a partial parallelism between a term logic proposition and its inversion suggests inter-
esting possible applications in the formal modeling of distinct computer software logics,
mutually inaccessible memory cachés, and the like, in parallel dimensions, functioning
logically altogether independently of one another within the same syllogistic logic.

10 Keynes-Johnson Octagon of Opposition

The possibility of AEIO inversions, while largely neglected in syllogistic logic, has not
gone entirely unnoticed. Most prominently, J.N. Keynes in his (1906) Studies and Exer-
cises in Formal Logic: Including a Generalisation of Logical Processes in Their Appli-
cation to Complex Inferences, and W.E. Johnson in his three volume (1921–1924) Logic,
remark on the occurrence of AEIO variants with negated subject terms.

Keynes, in the Preface to the Fourth Edition of his book, promises: ‘the treatment of
negative names has been revised’.7 Keynes begins with AEIO propositions, which he

7[15, v].
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transforms by means of logical operations, generally contraposition, conversion and ob-
version, into formulas containing negated subjects not considered in the canonical square.
He explains in §84 Extension of the Doctrine of Opposition: ‘Two propositions may be
equivalent or equipollent, each proposition being formally inferable from each other . . .
For example, as will presently be shown, All S is P and All not-P is not-S stand to each
other in this relation.’8 Elsewhere he writes: ‘All S is P and Some not-S is not-P are
another pair of subalterns.’9 ‘For example, the contraries All S is P and All not-S is P
are equivalent to No not-P is S and All not-P is S.’10 Attributing the terminology to
William Stanley Jevons’s (1879) Elementary Lessons in Logic, Keynes defines ‘Inver-
sion’ as ‘a process of immediate inference in which from a given proposition another
proposition is inferred having for its subject the contradictory of the original subject’.11

Keynes presents the inversions designated as A′, E′, I′, O′ (in the above exposition,
A(V), E(V), I(V), O(V)), in an ‘octagon of opposition’, possesing this form:

Keynes credits the octagon to Johnson, although presumably to another ancillary
source than Johnson’s Logic, where the octagon does indeed appear in Volume I, but
which was only published in 1921, approximately fifteen years after Keynes’ Studies and
Exercises in Formal Logic.12 What is interesting about the Keynes-Johnson octagon of op-
position is that it includes inversions E′ and I′ (E(V) and I(V)) as contradictories, without
collapsing these forms as logically equivalent, or, as Keynes also likes to say, equipollent,
respectively, to A and O in the canonical square. These inversions are instead given their

8[15, 147].
9[15, 118].
10[15, 119].
11[15, 139]. Keynes refers to Jevons [13, 185–186].
12[15, 144], [14, (vol. I) 142]. Keynes does not refer to a specific source prior to the publication of
Johnson’s 1921 from which he might have derived the octagon of opposition.
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own places in the octagon, where they are further interrelated by the invented relations
of ‘Complementaries’, ‘Sub-complementaries’, and ‘Contra-complementaries’, it would
seem, to have something to call them. The octagon in its inclusion of E′ and I′ represents
all four inversions at a relatively superficial level, in the sense of depicting logical rela-
tions between only a purely syntactical individuation of distinct propositions. Moreover,
the Keynes-Johnson octagon does not graphically represent the important fact that E′ is
the contradictory of O, and that I′ is the contradictory of A. The diagram preferred here is
both simpler and more essential, if less geometrically engaging, in presenting the actual
logical relations and their lack of classical square of opposition relations to the standard
AEIO forms. Although Keynes recognizes the logical equivalence or equipollence be-
tween E′ and A and between I′ and O, the Keynes-Johnson octagon does not reductively
illustrate the semantic equivalences of two of the inversions with the categorical proposi-
tions already included in the canonical square.13

11 Intriguesting (Intriguing + Interesting) Question

Can we produce a deductively valid genuine syllogism involving inversion forms A(V)
or O(V) that satisfies the conditions for a canonical syllogism, and is not merely sub-
syllogistic, with no logically unutilized inessential premise in deriving the syllogism’s
conclusion?

To answer this question, we must consider what an expanded classical Aristotelian
syllogism allowing negated subject as well as predicate terms requires:

• Three propositions: two premises and one conclusion.
• Premises and conclusion consisting collectively of three terms, including (classically)

negations of predicate terms and (non-classically) negations of subject terms.
• Premises constituted as propositions of two terms (major, minor or middle) each.
• Each premise having exactly one term in common with the conclusion, the major term

of the major premise providing the conclusion’s predicate term, and the minor term of
the minor premise providing the conclusion’s subject term, and where the middle term
is the predicate term of the minor premise.

Experimenting briefly with the syntax for the expanded syllogistic logic with A(V)
and O(V) inversions reveals a number of syllogisms that appear to offer opportunities for
A and O inversions to participate in genuinely syllogistic inferences. Contrariwise, there
appear to be no deductively valid genuine syllogisms containing inversions, reinforcing

13Keynes is explicit about the logical equivalence or equipollence of the E′ (E(V)) and A and between I′
(I(V)) and O inversions with their canonical categorical propositional forms. Johnson [14, (vol. I), 140]
defines the inversions equivalent, using a short horizontal bar above subject and predicate terms to indicate
their internal ‘negations’ or complements. Having presented the equivalences, however, he appears to
deny that there are any equivalences between the inversions and the standard AEIO propositions, when he
concludes immediately thereafter on the same page, that the enumeration provides ‘a list of eight distinct
[Johnson’s emphasis] (i.e. non-equipollent) [Johnson’s parenthetical clarification] general categoricals,
as an extension of the usual four.’ This certainly seems false, at least from a more contemporary logical
perspective, as well as being at odds with Keynes’ understanding.
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the general conclusion that inversions lack syllogistic significance, and as such are appro-
priately excluded from the canonical square of opposition. Here are several representative
and easily identified illustrations that appear to meet the requirements:

Canonical Syllogism with A(V) and A(O) Inversions

∀x[¬Sx → Px] A(V)
∃x[Qx ∧ Sx] I

∀x[Qx → Px] A

This argument is deductively invalid, but, by the above criteria, genuinely syllogistic.
Similar inferences are available involving O(V) as a major premise. This example suf-
fices to show that there are genuine syllogisms involving logically independent AEIO
inversions A(V) and O(V).

Finally, as an example suggested by algebraic logic, building on the so-called para-
doxes of strict implication, we may also consider:

Extrasyllogistic Ex Falso Quodlibet with A(V) and O(V)

∀x[¬Sx → Px] A(V)
∃x[¬Sx ∧¬Px] O(V)

∀ny conclusion you fancy

This case also represents a deductively valid but technically extrasyllogistic as well as
subsyllogistic inference including AEIO inversions A(V) and O(V).

12 Vindicating the Canonical Square of Opposition for the Relations
It Proposes to Represent

The square of opposition is a logical device and memory aid. Its value, however, is only
secondarily in the subsyllogistic logical relations it represents. For these are of interest
primarily because they involve the propositions from which classical syllogisms are as-
sembled. Adding inversions of the square’s AEIO propositional forms to the square does
not enhance its inferential range among the canonical + inversion syllogisms, except in a
narrow technical sense, and then only if logically unutilized premises are permitted in a
deductively valid syllogism, assuming for the moment that such constructions are allowed
to count as genuine syllogisms.

Otherwise, the AEIO inversions are: (a) in two cases logically reducible to one of the
AEIO forms (E(V) = A, I(V) = O); while (b) the other two cases, A(V) and O(V), are
contradictories, and therefore contraries and subcontraries, a relation represented only im-
plicitly, even in the canonical square, but are otherwise logically isolated from the AEIO
forms in the square of opposition sense of not being subalterns of one another, nor of
being contraries or subcontraries of one another. These relations are excluded in every
case by virtue of their joint logical consistency, expressible as the logical possibility of
their conjunction, which is generally a matter of purely formal decision-method decidable
logical consistency.
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There can be different systems of rules for logically valid syllogisms once we have
identified a class of ‘All’ and ‘Some’ propositions of definite internal logical construc-
tion out of basic terms like those of the canonical syllogisms. The inverse axial crossing
the canonical square, supported by independent logical inquiry, transcends the square as
representing only a partial highly truncated mirror image of only one logical relation rep-
resented by the square, the contradiction between A and O, respectively, and A(V) and
O(V). There is therefore no logical justification for including inversions graphically in
the square of opposition. One-half of the AEIO inversions are already included under
other logically equivalent designations, and the other half are mutually contradictory but
otherwise logically isolated from each other and from all the AEIO forms.

With this conception, we are back where we started in a sense, but at least in the pro-
cess we have learned why inversions are absent from the canonical square of opposition. It
is interesting to speculate about why certain decisions were made in developing syllogis-
tic logic, limiting syllogisms to propositions with two terms, and to inferences with three
propositions including exactly one with a distributed middle term. The reasons undoubt-
edly have much to do with the combinatorial explosion that occurs when working with
anything larger than three or maximally four subject and predicate terms. One neverthe-
less wonders, among other things, how Aristotle and the scholastic tradition in logic could
have overlooked the Boolean operators and later truth-functions ‘AND’, ‘OR’ and (later)
‘IF-THEN’ as essential to the logical structure of propositions also found in scientific and
everyday reasoning.

Thanks again to the surveyability of subsyllogistic relations represented in the canoni-
cal square of opposition, there is a relatively small number of cases to check individually.
The task is easily accomplished in a relatively short amount of real time. When the nec-
essarily individual checks are made, we find the results to be as we have reported them in
summary here. What we know at the end of the inquiry is this:

• As far as the canonical square of opposition is concerned, the AEIO propositions are
pre-given.

• There are only so many different ways in which four such tokens of distinct categories
can be laid out on a plane.

• The most pleasing or satisfying arrangement that also lends itself to the most com-
pact, convenient, and informationally complete presentation of subsyllogistic relations
among the AEIO propositions is already found in the canonical Aristotelian square. (If
we exhaustively consider the other arrangements, we see their disadvantages explicitly
in comparison with the consequently preferred form of the canonical square.)

• The canonical square of opposition is correct not to include inversions of the AEIO
propositional forms, which are either equivalent to one of the AEIO forms; or, while
mutually logically contradictory, do not have any of the other logical relations to any
of the AEIO propositions graphically depicted in the canonical square.
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John Buridan’s Theory of Consequence
and His Octagons of Opposition

Stephen Read

Abstract One of the manuscripts of Buridan’s Summulae contains three figures, each
in the form of an octagon. At each node of each octagon there are nine propositions.
Buridan uses the figures to illustrate his doctrine of the syllogism, revising Aristotle’s
theory of the modal syllogism and adding theories of syllogisms with propositions con-
taining oblique terms (such as ‘man’s donkey’) and with propositions of “non-normal
construction” (where the predicate precedes the copula). O-propositions of non-normal
construction (i.e., ‘Some S (some) P is not’) allow Buridan to extend and systematize the
theory of the assertoric (i.e., non-modal) syllogism. Buridan points to a revealing anal-
ogy between the three octagons. To understand their importance we need to rehearse the
medieval theories of signification, supposition, truth and consequence.

Keywords Octagons of opposition · Assertoric syllogism · Modal syllogism · Oblique
syllogism · Signification · Buridan

Mathematics Subject Classification 01A35 · 03-03 · 03A05

John Buridan was born in the late 1290s near Béthune in Picardy. He studied in Paris
and taught there as Master of Arts from the mid-1320s, and wrote his Treatise on Conse-
quences sometime after 1335. He composed his Summulae de Dialectica (Compendium
of Dialectic) from the late 1330s onwards, in eight (or nine) treatises with successive
revisions into the 1350s. His Sophismata, the ninth treatise of the Summulae (sometimes
presented as a separate work) has been much studied in the last fifty years. He wrote many
other works, mostly commentaries on Aristotle and died around 1360.

Three intriguing figures occur in one of the manuscripts of Buridan’s Summulae. They
are Octagons. In addition, there is a particularly elaborate Square of Opposition. See
Fig. 1.1 In order to understand what doctrines Buridan is setting out in these figures, we
need first to fill in some background in Aristotle’s theory of the syllogism and in medieval
theories of signification, supposition and consequence.

1The images come from Vatican ms. Pal.Lat. 994, ff. 6ra , 11[10]v , 7r and 1v , respectively. Reproduced
by permission of the Biblioteca Apostolica Vaticana.
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Fig. 1 Buridan’s square of
opposition

1 The Assertoric Syllogism

For Aristotle, according to Buridan, a syllogism consists of two premises, a major premise
and a minor premise, made up of three terms. The major premise, containing the major
term, is the first premise. The middle term appears in both premises. Aristotle’s goal is to
identify which pairs of premises, that is, figures, yield a conclusion:

It seems to me that Aristotle takes a syllogism not to be composed of premises and conclusion, but
composed only of premises from which a conclusion can be inferred. [9, Book III, ch. 4, p. 92]

Hence there are three figures:

• Figure 1 where the middle term is subject of one premise and predicate of the other;
• Figure 2 where the middle term is predicate of both premises; and
• Figure 3 where the middle term is subject in both premises.

Each proposition (or declarative sentence) is of one of four forms, a-, e-, i- and o-
propositions, forming the traditional Square of Opposition. Validity of the Aristotelian
syllogism is based on the dictum de omni et nullo:

We say that one term is predicated of all of another when no examples of the subject can be found
of which the other term cannot be asserted. In the same way, we say that one term is predicated of
none of another. (Prior Analytics I 1, 24a28-30)

These establish the validity of the direct moods in the first figure: Barbara, Celarent, Darii
and Ferio. The validity of all remaining syllogisms can be reduced to the direct moods in
the first figure by conversion or reduction per impossibile:2

• Simple conversion: AiB implies BiA and AeB implies BeA

2The names of the moods in the medieval mnemonic record the reduction procedure (see, e.g., [8, p. 52]):

Barbara Celarent Darii Ferio Baralipton
Celantes Dabitis Fapesmo Frisesomorum;
Cesare Camestres Festino Baroco; Darapti
Felapton Disamis Datisi Bocardo Ferison.
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• Conversion per accidens: AaB implies BiA3

• Reduction per impossibile: showing that the premises are incompatible with the con-
tradictory of a putative conclusion.

2 Aristotle’s Theory of the Modal Syllogism

Aristotle extended his theory of the syllogism to include the modal operators ‘necessarily’,
‘contingently’ and ‘possibly’. He endorsed the K-principles:

If, for example, one should indicate the premises by A and the conclusion by B , it not only follows
that if A is necessary B is necessary, but also that if A is possible, B is possible. (Prior Analytics
I 15, 34a22-24)

that is:

• from �(A→ B) infer �A→�B , and
• from �(A→ B) infer ♦A→ ♦B
Aristotle also explicitly accepts the characteristic thesis of necessity: �A → A (“that
which is of necessity is actual”—De Interpretatione 13, 23a21), and the thesis relating
necessity and possibility: ¬♦A↔�¬A (“when it is impossible that a thing should be, it
is necessary . . . that it should not be” and vice versa—22b5-6).

Mixed syllogisms allow premises with different modality. There are two Barbaras with
one modal premise:

Necessarily all M are P
All S are M

So necessarily all S are P

All M are P
Necessarily all S are M

So necessarily all S are P

In Prior Analytics I 9, Aristotle says the first, Barbara LXL, is valid, but the second,
Barbara XLL, is not. The natural interpretation (adopted by the medievals, and probably
due to Peter Abelard) is that he reads ‘Necessarily all M are P ’ de re, that is, as ‘All
M are necessarily P ’. But that conflicts with I 3, where he says that ‘Necessarily all M
are P ’ converts accidentally to ‘Necessarily some P are M’, which seems only to be valid
de dicto. So a major problem for the medievals was to try to produce a coherent account
of the modal syllogism.

3 Signification

In De Interpretatione 1, Aristotle distinguished three kinds of terms, written, spoken and
mental:

Spoken [words] are signs (notae) of impressions (passionum) in the soul, and written of spoken.
(16a3-4)

3We can also convert AeB per accidens to BoA, although Aristotle does not call this a conversion (since
AeB converts to BeA). For BeA implies its subaltern BoA, for Aristotle writes at 26b15: “‘P does not
belong to some S’ is . . . true whether P applies to no S or does not belong to every S.”
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Boethius [4, p. 37] glossed this as: “thing, concept, sound and letter are four: the con-
cept conceives the thing, spoken sounds are signs of the concept, and letters signify the
sounds.” But according to Augustine, words signify things, by means of the concepts.
The medievals were left to ask: do words signify concepts or things? On the one hand, if
words signified things, empty names would be impossible. But on the other, when I say
Socrates runs, I mean that Socrates, not some concept of Socrates runs. The thirteenth
century insight was that the concept is itself a sign. In the later words of Buridan:

Categorematic words . . . signify things by the mediation of their concepts, according to which con-
cepts, or similar ones, they were imposed to signify. So we call the things conceived by those con-
cepts ‘ultimate significata’ . . . but the concepts we call ‘immediate significata’. [6, IV 3, p. 253-4]

We can picture Buridan’s theory of signification as follows:

spoken sound, e.g., ‘human’

mental concept, human

� �
�

�
�

�
�

�
���� individual men

conceives

(natural likeness)

ultimately signifies

immediately
signifies

But what of the signification of propositions? Abelard had spoken of the dictum of a
proposition, what it signified. We find this idea in the anonymous Ars Burana, dating from
the 12th C.:

We speak about the dictum of a proposition or of the significate of the proposition or of an enuntia-
bile . . . For example: ‘A human is an animal’ is true because what it signifies is true, and that true
thing is the enuntiabile . . . Some enuntiabilia are of the present, some are of the past and some are
of the future. [2, p. 208]

In the 14th C., Ockham tried to explain everything without recourse to such entities. What,
he asked, is the object of knowledge? The question was the focus of the London debate in
the 1320s between the Franciscans, William Ockham, Walter Chatton and Adam Wode-
ham. Ockham put forward his “Razor”: “No plurality should be assumed unless it can be
proved by reason, or experience, or by some infallible authority.” 4 Accordingly, Ockham
says that the object of knowledge is the mental proposition (complexum) that is, the ac-
tus sciendi is sufficient on its own, just as the actus intellectus is the only universal he
recognizes. Chatton countered with his “Anti-Razor”: if n things are not enough to ex-
plain something, posit n+ 1. So Chatton claimed that the object of knowledge was the
thing or things signified by the terms in the proposition.5 Adam Wodeham’s via media
(1331) introduced the notion of the complexe significabile, things’ being a certain way:
the object of knowledge is the state of affairs (modus rei) signified by the proposition, the
“complexly signifiable” (complexe significabile) that can only be signified in a complex
way, that is, by a proposition.6

4See, e.g., [1, p. 1008].
5See, e.g., [12, p. 25].
6See [21].
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The theory came to Paris through Gregory of Rimini (1344): we must recognize enun-
tiabilia or complexe significabilia as things: “every complex or incomplex signifiable,
whether true or false, is said to be a thing (res) and to be something (aliquid).” 7 Buri-
dan rejected all talk of complexe significabilia. It turns on taking truth to be a matter of
signification, when it is really one of supposition:

If we can explain everything by fewer, we should not . . . posit many, because it is pointless to do
with many what can be done with fewer. Now everything can be easily explained without positing
such complexe significabilia, which are not substances, nor accidents, nor subsistent per se, nor
inherent in anything else. Therefore, they should not be posited.8

4 Truth and Consequence

Buridan states his theory of truth in terms of supposition, not signification. First, we need
to recall the main divisions of supposition:

• Material supposition: that of a term standing for itself or a similar expression, which it
was not imposed to signify9

• Personal supposition: that of a term standing for the singulars of which it is truly pred-
icated

In addition, there are various modes of personal supposition:

• Discrete supposition: that of a discrete, or singular term
• Common supposition, that of a common (or general) term, defined by the terminists

using the notions of ascent and descent:
– Determinate supposition: when one can descend to a disjunction of singulars, and

ascend from any singular, with respect to that term; otherwise:
– Confused and distributive supposition: when one can descend to an indefinite con-

junction of singulars with respect to that term; otherwise:
– Merely confused supposition (allowing descent to a disjunct term).

Thus, e.g., ‘Some A is not B’ is equivalent to ‘This A is not B or that A is not B and so on
for all the As’ (i.e., ‘

∨
i (Ai is not B)’), so ‘A’ has determinate supposition, and to ‘Some

A is not this B and some A is not that B and so on for all the Bs’ (i.e., ‘
∧

j (Some A is
not Bj )’), so ‘B’ has confused and distributive supposition—where

∨∅ is false and
∧∅

is true.10 Thus, e.g., ‘Every A is B’ is equivalent to ‘This A is B and that A is B and so
on for all the As’ (i.e., ‘

∧
i (Ai is B)’), so ‘A’ has confused and distributive supposition,

and to ‘Every A is this B or that B and so on for all the Bs’ (i.e., ‘Every A is
∨

j Bj ’), so
‘B’ has merely confused supposition).

Moreover, some words have the effect of widening or narrowing the supposition of
other terms in a proposition. The past tense ampliates the subject to include past as well

7Cited in [21, p. 221].
8Buridan, Commentary on Aristotle’s Metaphysics, cited in [21, p. 224].
9Simple supposition, of a term for a universal or concept, was subsumed by Buridan under material
supposition.
10See [17].
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as present supposita. For example, ‘A white thing was black’ means that something which
is now white or was white in the past was black. The future tense ampliates the subject
to include future as well as present supposita. Modal verbs ampliate the subject to possi-
ble supposita,11 as do verbs such as ‘understand’, ‘believe’, and verbal nouns ending in
‘-ble’: ‘possible’, ‘audible’, ‘credible’, ‘capable of laughter’. Other expressions restrict
the supposition of terms, e.g., qualifying ‘horse’ with the adjective ‘white’ restricts the
supposition of ‘horse’ in ‘A white horse is running’ to white horses.

Buridan notes that some say a proposition is true if things are as it signifies they
are (qualitercumque ipsa significat ita est).12 He objects: if Colin’s horse cantered well,
‘Colin’s horse cantered well’ is true, but his horse is now dead, so nothing at all is sig-
nified. So perhaps a proposition is true if things are, were or will be as it signifies they
are, were or will be. But, given his rejection of complexe significabilia, ‘A human is a
donkey’ signifies humans and donkeys, which are indeed humans and donkeys, but is not
true.13 The moral is that to assign truth and falsity, we have to go beyond signification and
consider supposition. A particular affirmative is true if subject and predicate supposit for
the same; a particular negative is true if subject and predicate do not supposit for the same
things; a universal affirmative is true if the predicate supposits for everything the subject
supposits for; and so on.14

Turning to the theory of consequence, Buridan notes that some say a consequence
is valid if the premise cannot be true without the conclusion’s being true.15 He objects:
‘Every human runs, so some human runs’ is valid, but it’s possible for the premise to be
true without the conclusion even existing, and so without it being true. We might therefore
say that a consequence is valid if the premise cannot be true without the conclusion’s
being true, when both are formed together. But ‘No proposition is negative, so no donkey
is running’ is not valid (for its contrapositive is not valid), but the premise cannot be true,
and so cannot be true without the conclusion’s being true. Finally, we could say that a
consequence is valid if it is impossible that however the premise signifies to be it is not
however the conclusion signifies, when they are formed together. Buridan accepts this,
provided that ‘however it signifies’ is not taken literally, but in the sense previously given.

Buridan contrasts formal and material consequence, but gives them an unusually mod-
ern gloss:

A consequence is called formal if it is valid in all terms retaining a similar form . . . A material
consequence, however, is one where not every proposition similar in form would be a good conse-
quence, or, as it is commonly put, which does not hold in all terms retaining the same form; e.g.,
‘A human runs, so an animal runs’, because it is not valid with these terms: ‘A horse walks, so
wood walks’. [9, I 4, p. 23]

Finally, he distinguishes absolute from ut nunc (or “as a matter of fact”) consequence:

Some material consequences are called simple consequences (consequentiae simplices) because
they are simply good consequences, since it is not possible for the antecedent to be true the con-
sequent being false. Others, which are not simply good, are called as-of-now consequences (con-
sequentiae ut nunc) because it is possible for the antecedent to be true without the consequent, but

11As Aristotle noted: Prior Analytics I 13, 32b25-28.
12[9, I 1, p. 17].
13[6, Sophismata 2, sophism 5, pp. 847–848].
14[6, Sophismata 2, conclusion 14, p. 858].
15[9, I 3, p. 21].
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are good as-of-now, because, things being as a matter of fact as they are, it is impossible for the
antecedent to be true without the consequent. [9, I 4, p. 23]

So much for background. We can now consider what doctrines Buridan is illustrating in
his figures.

5 Non-normal Form

Besides the further complication of the octagons, even the simple Square of Opposition in
Pal.lat. 994 is more complex than usual, in containing several propositions at each node.
(See Fig. 1.) The set of propositions at each node are equivalents, or at least of the same
sort. For example, at the top left node we read:

• ‘Every human is running’ (Omnis homo currit)
• ‘No human is not running’ (Nullus homo non currit)
• ‘Not any human is not running’ (Non quidam homo non currit)
• ‘Each of these is running’ (Uterque istorum currit)
• ‘The whole [of] human is an animal’ (Totus homo est animal)
• ‘Any human is an animal’ (Quilibet homo est animal)

In the octagons, each of the eight nodes contains nine equivalent propositions (or again,
of the same sort). For example, in the octagon of non-normal propositions (see Fig. 2), we
read:

• ‘Every B every A is’ (Omne B omne A est)
• ‘Every B no A is not’ (Omne B nullum A non est)
• ‘No B not every A is’ (Nullum B non omne A est)
• . . .

This “non-normal construction” (or “unusual way of speaking”—de modo loquendi in-
consueto) consists in placing the predicate before the copula. Placing the predicate before
the copula often has the effect of changing the sense: e.g., ‘Some animal a human is not’
means, not that some animal is not a human, but that some animal is not some human:

I call it normal form where an external negation precedes the predicate, e.g., ‘No B is A’, ‘Some
B is not A’. But I call the form non-normal where the predicate precedes the negation and so is
not distributed by it, e.g., ‘Every B [some] A is not’, ‘Some B [some] A is not’. [9, I 8, p. 44]

This is an example of the increasing use in late medieval logic of regimented vernacular
forms. What Buridan here calls the non-normal form is in fact the normal form used by,
e.g., Apuleius and Boethius.16 What Buridan does is to interpret the so-called non-normal
form non-normally, so that, for example, A in ‘Every B [some] A is not’ and ‘Some B
[some] A is not’ is not distributed by the negation, and so does not have confused and
distributive supposition. One can see it as a further regimentation similar to that made by
Aristotle in Prior Analytics I 46 when he distinguished ‘me einai leukon’ (‘is not white’)
from ‘einai me leukon’ (‘is not-white’).

Using non-normal propositions, Buridan is able to extend accidental conversion (i.e.,
conversion per accidens) from universal propositions to particular propositions. Then

16See [16] and [19].
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Fig. 2 Buridan’s octagon of opposition for non-normal propositions

each categorical (better, “subject-predicate” or “predicative”—propositio categorica) as-
sertoric proposition can be converted, either simply or accidentally:

• ‘Every A is B’ converts accidentally to ‘Some B is A’
• ‘No A is B’ converts simply to ‘No B is A’ and accidentally to ‘Some B is not A’
• ‘Some A is B’ converts simply to ‘Some B is A’
• ‘Some A is not B’ converts accidentally to ‘Every B [some] A is not’ (e.g., ‘Some

animal is not a human, so every human [some] animal is not’—quoddam animal non
est homo, igitur omnis homo animal non est)

Accidental conversion involves changing the predicate into the subject and the subject into the
predicate while preserving the quality but changing the quantity. [6, I 6, p. 51]
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Buridan deploys these ideas in his theory of the syllogism. In the fourteenth century,
the syllogism was brought under a general theory of consequence. Buridan treats the syl-
logism as a special case of formal consequence. He demonstrates all of these by ecthesis
(or “setting-out”), a hypothetical method which Aristotle mentions for a couple of third-
figure syllogisms.17 But he introduces a novel approach to demonstrating the validity of
assertoric syllogisms, noting that the following are severally necessary and jointly suffi-
cient tests for syllogistic validity:

• No valid syllogism has two negative premises
• In every valid syllogism, the middle term is distributed (that is, has confused and dis-

tributive supposition) at least once
• A proposition with a distributed term entails the same proposition with the term undis-

tributed, but never vice versa

These tests for validity were preserved in the traditional rules of the syllogism.18 Then
Buridan can go systematically through all combinations of premises and conclusion and
identify the valid syllogisms.

These include syllogisms with “non-normal” propositions. Using such propositions,
Buridan extends the assertoric syllogism to additional cases, so that there are eight valid
moods in each of the first and second figures, and nine in the third.19 Remember that here
by ‘mood’, Buridan means ‘combination of premises’. To the first figure (with the four
perfect moods, Barbara, Celarent, Darii and Ferio), he adds:

• MiP , SoM : SPo (Some M is P , some S is not M , so some S some P is not)
• MaP , SoM : SPo (Every M is P , some S is not M , so some S some P is not)

and he counts Fapesmo (MaP , SeM : PoS) and Frisesomorum (MiP , SeM : PoS) as
making up the eight (direct and indirect) valid moods in the first figure. Thus, e.g., Bar-
alipton (in the mnemonic) and Barbari (not in the mnemonic) do not count for Buridan as
additional to Barbara. So the order of the premises counts for Buridan, but whether the
conclusion is direct or indirect does not: the crucial question is whether the premises yield
a syllogistic conclusion (any conclusion) or not.

To the four traditional second-figure moods (Cesare, Camestres, Festino and Baroco),
Buridan adds four more:

If the premises of Festino and Baroco are transposed, there will be two more moods concluding
only indirectly, which can be called ‘Tifesno’ and ‘Robaco’, which are proved by reduction to Fes-
tino and Baroco simply by transposing the premises. The other two moods can only be concluded
according to the non-normal construction, namely, if both premises are particular, one affirmative
and the other negative. [9, III i 4, p. 93]

To the six traditional third-figure moods (Darapti, Felapton, Disamis, Datisi, Bocardo and
Ferison), he adds three more:

17Lagerlund [15, §7] and King [14, p. 71] mistakenly identify these principles as Aristotle’s dictum de
omni et nullo.
18See, e.g., [13, III 4, §114]. The necessity of the first was known even to Boethius [5, p. 316]. But
Buridan seems to have been the first to recognize that the three conditions were jointly sufficient.
19Aristotle identified four direct and two indirect moods in the first figure, four in the second figure and
six in the third figure.
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Fig. 3 Buridan’s octagon of opposition for propositions containing oblique terms

Darapti, Disamis and Datisi are valid for concluding both directly and indirectly; but Felapton,
Bocardo and Ferison are only valid for concluding directly. But conversion of these three, namely,
Lapfeton, Carbodo and Rifeson, are valid for concluding only indirectly, and are reduced to direct
ones by transposition of the premises. [9, III i 4, p. 93]

We can explain the validity of the consequences here by using Buridan’s account of
supposition and of distribution. For example, take the conversion of the O-form ‘Some A
is not B’: ‘A’ has determinate supposition, and ‘B’ has confused and distributive suppo-
sition, since we can descend both to

‘This A is not B or that A is not B and so on for all As’

(and ascend from any disjunct) and to
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‘Some A is not this B and some A is not that B and so on for all Bs’

Buridan claims the O-proposition converts accidentally to ‘Every B [some] A is not’: take
the above disjunction, and descend on each disjunct ‘This A is not B’. ‘B’ is distributed
(by ‘not’), so we end up with a disjunction of conjuncts of the form ‘This A is not this B’.
This disjunction entails the corresponding conjunction of negated disjuncts, that is,

∨

j

∧

i

Ai �= Bj (i.e., Some A is not B)

converts (partially, so it entails but is not entailed by) to
∧

j

∨

i

Bj �=Ai (i.e., Every B [some] A is not)

The “non-normal” conclusions in Buridan’s extra syllogisms are all of the form ‘SPo’,
that is, ‘Some S [some] P is not’. Here ‘P ’ has determinate supposition (whereas in
‘SoP ’, i.e., ‘Some S is not P ’, ‘P ’ has confused and distributive supposition on account
of the preceding negation). Take this non-normal syllogism in the second figure:

PoM

SiM

SPo

Some P is not M
Some S is M

Some S [some] P is not

Only one premise is negative, and so is the conclusion (Buridan’s condition 2). ‘M’ is
distributed at least once—namely, in the first premise (Buridan’s condition 6). Neither
term is distributed in the conclusion—they both have determinate supposition (Buridan’s
condition 8). So by Buridan’s conclusions 2, 6 and 8, the syllogism is valid.

6 Oblique Terms

Another example of syllogisms containing propositions in non-standard form takes propo-
sitions with oblique terms (see Fig. 3), e.g.:

No human’s donkey (i.e., no donkey of a human) is running
A human is an animal
So some animal’s donkey is not running.20

An oblique term is any term in a proposition not in the nominative. The cases Buridan
mostly considers are terms in the accusative and in the genitive, e.g.,

‘Some human [it’s] every horse [he or she] is seeing’ (Homo omnem equum
est videns—‘equum’ is in the accusative case)

‘Every man’s donkey is running’ (‘Omnis asinus hominis currit—‘hominis’ is
in the genitive)

20Cf. Prior Analytics I 36.
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Buridan notes that sometimes the whole subject is distributed, as in the second example
here; but sometimes only the term in the nominative, or in the genitive is, as in ‘Of every
man a donkey is running’ (Cuiuslibet hominis asinus currit)—‘man’ has confused and
distributive supposition but ‘donkey’ has determinate supposition. The interesting syllo-
gisms arise in this latter case, e.g., when the middle term is only part of the subject.

At each node of the octagon of propositions with oblique terms we find nine equivalent
propositions (72 in all). E.g., at the top rightmost node we have:

• ‘Of every human no donkey is running’ (Cuiuslibet hominis nullus asinus currit)
• ‘Of every human every donkey is not running’ (Cuiuslibet hominis quilibet asinus non

currit)
• ‘Of every human not any donkey is running’ (Cuiuslibet hominis non quidam asinus

currit)
• ‘Of no human [is it] not [that] no donkey is running’ (Nullius hominis non nullus asinus

currit)
• ‘Of no human not every donkey is not running’ (Nullius hominis non quilibet asinus

non currit)
• ‘Of no human is some donkey running’ (Nullius hominis aliquius asinus currit)
• ‘Not of any human is [it] not [that] no donkey is running’ (Non alicuius hominis non

nullus asinus currit)
• ‘Not of any human is not every donkey not running’ (Non alicuius hominis non quilibet

asinus non currit)
• ‘Not of any human is some donkey running’ (Non alicuius hominis aliquis asinus cur-

rit)

There are 28 possible relations between the nodes (= 8!
(8−2)!2! ). Buridan’s octagon with

oblique terms draws the 24 logical relations which hold (there are also 4 disparate pairs):

Buridan proceeds to discuss syllogisms with oblique terms:

Consider ‘Every human’s donkey is running’ (i.e., ‘Of every human some donkey is running’—
Cuiuslibet hominis asinus currit): ‘human’ is distributed and ‘donkey’ is not distributed, nor [is]
the whole ‘human’s donkey’ (hominis asinus). It would be the same if I said ‘A donkey of ev-
ery human is running’. For here ‘donkey’ supposits determinately, because no cause of confused
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[supposition] precedes it. Nonetheless, ‘donkey’ does not supposit alone but restricted by the dis-
tributed oblique [term] following it; so the said proposition would not be true if no donkeys were
running or no donkey running were a donkey of any human. [9, III ii 1, p. 99]

Just as the whole subject (e.g., ‘human’s donkey’) may not be distributed, or have a single
mode of supposition, so the subject may not be either extreme nor the middle term in
a syllogism. In his Treatise on Consequences, Buridan’s approach, like other medieval
logicians, is to rephrase the proposition so that the middle term, or the extreme, appears
as the subject in the nominative. E.g., ‘Of some human a donkey is running’ is equivalent
to ‘Some human is one of whom a donkey is running’.

But in the Summulae, Buridan seems happy to proceed without need for paraphrase.
Consider:

Of no human is a horse running (Nullius hominis equus currit)
Of every human an animal is running (Cuiuslibet hominis animal currit)
So of no human is [some] animal a human’s horse (Ergo nullius hominis
animal est hominis equus)

This is invalid, he claims, since ‘animal’ is distributed in the conclusion but was not
distributed in the premises. As we saw in the octagon, ‘Of no human is [some] animal
. . . ’ is equivalent to ‘Of every human no animal . . . ’,21 that is,

∧

i

¬
∨

j

φ(i, j)≡
∧

i

∧

j

¬φ(i, j)

What does follow, Buridan observes, is

So of every human some animal is not a human’s horse (Ergo cuiuslibet
hominis animal non est hominis equus)

He writes:

It is clear that in this syllogism, the middle term is ‘running’, the major extreme is ‘human’s horse’,
and the minor extreme is ‘animal of a human’, whatever you take to be the subject or the predicate
in these propositions. [6, V 8, pp. 368–369]

Recall De Morgan famous criticism of traditional logic as incapable of explaining the
validity of the following inference:22

Every horse is an animal
So every horse’s head is an animal’s head.

Buridan’s theory can show that this is valid. It’s an enthymeme, not formally valid, but
valid simpliciter, that is, absolutely valid. The suppressed premise is the necessary truth:
‘Every horse’s head is a horse’s head’. Then the argument has this form:

Every M is a P Every horse is an animal
Every horse’s head is an M’s head Every horse’s head is a horse’s head
So every horse’s head is a P ’s head So every horse’s head is an animal’s head.

‘M’ is distributed in the first premise, but ‘P ’ is not distributed in the conclusion, nor is
‘M’ in the second premise.

21The octagon has ‘Of no human is [some] donkey . . . ’ and ‘Of every human no donkey . . . ’
22[7, pp. 29 and 216]. Cf. [20]. Bochenski [3, p. 95] claims that Aristotle himself could have shown the
inference valid.
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Fig. 4 Buridan’s modal octagon

7 Modal Propositions

Buridan shows how the logical relations hold analogously between propositions with
oblique terms, non-normal propositions, and modal propositions (see Fig. 4), e.g.,

Every human necessarily runs is contrary to Some human necessarily does not run

just as

Of every human every donkey runs is contrary to Of every human some donkey
does not run

He writes:

We match the oblique term before the nominative in the propositions with oblique terms, and the
subject term of the non-normal propositions, with the subject term of modal propositions, and
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likewise, we match the nominative term of the propositions with oblique terms, and the predicate
of the non-normal propositions, with the mode of modal propositions. In the three octagons, the
careful observer will clearly see how the propositions with oblique terms distributable indepen-
dently of their nominatives, or the non-normal propositions sharing both terms in the same order,
are related to one another with respect to one or other of the laws of opposition. [6, I 5, p. 43]

Klima presents Buridan’s octagons in a composite table:23

Modal Oblique Non-normal

1. Every human necessarily runs Of every human every donkey
runs

Every human every runner is

2. Every human possibly runs Of every human some donkey
runs

Every human some runner is

3. Every human necessarily does
not run

Of every human every donkey
does not run

Every human every runner is not

4. Every human possibly does not
run

Of every human some donkey
does not run

Every human some runner is not

5. Some human necessarily runs Of some human every donkey
runs

Some human every runner is

6. Some human possibly runs Of some human some donkey
runs

Some human some runner is

7. Some human necessarily does
not run

Of some human every donkey
does not run

Some human every runner is not

8. Some human possibly does not
run

Of some human some donkey
does not run

Some human some runner is not

According to Buridan’s analysis of modal propositions, all modal propositions are ei-
ther taken in the composite sense (that is, de dicto), or in the divided sense (that is, de re).
Nothing follows from composite modal premises where the mode is ‘possible’ or ‘contin-
gent’. From composite modal premises of necessity, the conclusion follows in the same
mode. Buridan claims that all divided modal propositions ampliate their subject. Thus,
e.g., ‘Every A is necessarily B’ is true iff everything which is or might be A must be B .
Similarly, ‘Some A is possibly B’ is true iff something which is or might be A might
be B . We can override this ampliation by replacing the subject by a ‘what is’-phrase, e.g.,
‘Everything which is A is necessarily B’.

Paul Thom [18, p. 17] uses the following key to represent the ampliation of terms and
the forms of assertoric and modal categorical propositions. It makes the semantics explicit
in the form: ‘→’ represents inclusion and ‘|’ exclusion.

‘Every A is B’: a→ b a: indicates existential import
‘No A is B’: a|b a†: what is A or possibly A
‘Some A is B’: a � b (a overlaps b, i.e., ∃d ,

a← d → b)
a∗: what is necessarily A

‘Not every A is B’: a �→ b

23I have adapted this table from Klima’s by interchanging nodes 2 and 5, and 4 and 7, in line with the
mss. The 28 relations between the eight equivalence classes of modal propositions, analogous to those
described in Sect. 6 between oblique propositions, are discussed clearly and at length in [11].
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Using Thom’s notation, we can set out Buridan’s modal octagon as follows:24

In a series of twenty-four theorems, Buridan takes us through all the various combina-
tions of modal and assertoric propositions. E.g., Theorem 15 says:

In the first figure, from an assertoric major and a minor of necessity there does not follow a con-
clusion of necessity, or even assertoric except in Celarent. [9, IV 2, p. 123]

In particular, Barbara XLL is invalid. Suppose God is, as it happens, creating:

Every God is creating
Any first cause is of necessity God
But not every first cause is of necessity creating.

Celarent XLL is also invalid. But Celarent XLX is valid: m|p, s† → m∗, so s|p. For
s → s† →m∗ →m|p, so s|p.

In fact, Buridan also rejects Barbara LXL as invalid, by Theorem 16:

In the first figure, from a major of necessity and an assertoric minor there is always a valid syl-
logism to a particular conclusion of necessity, but not to a universal conclusion of necessity. [9,
IV 2, p. 124]

The reason is Buridan’s interpretation of necessity propositions as ampliating their sub-
ject. From m† → p∗ and s → m, s† → p∗ does not follow. For something could be s

which could not be m. For example, suppose only donkeys are white. All donkeys neces-
sarily bray (if it could be a donkey, it is a donkey). But although on this assumption, all
actual white things are donkeys, not everything which could be white (say, a horse) could
be a donkey, so the conclusion (‘All white things necessarily bray’) is false.

8 Conclusion

Medieval logicians extended Aristotle’s theory of the syllogism to a general theory of
consequence. Within consequence, they distinguished formal from material consequence,

24Buridan’s modal octagon was described in detail in [10].
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and absolute from ut nunc consequence. They developed a theory of properties of terms,
in particular, of signification, supposition and ampliation, which played a central role in
their theory of consequence. Much of their work on the modal syllogism was an attempt
to correct and clarify Aristotle’s theory. John Buridan’s theory of consequence and of
the syllogism was the most sophisticated and extensive in its theoretical organization. By
the use of non-normal propositions, he was able to extend accidental conversion to allow
O-propositions to convert, and to extend and systematize the assertoric syllogism. By
giving a systematic account of propositions with oblique terms, he was able to show the
validity of further consequences, such as De Morgan’s notorious alleged counterexample.
Finally, by making explicit Aristotle’s brief remarks about the ampliation of terms in
tensed and modal propositions, Buridan was able to give a more systematic account of the
modal syllogism, and to exhibit a strong analogy between modal, oblique and non-normal
propositions in his three octagons.
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Why the Fregean “Square of Opposition” Matters
for Epistemology

Raffaela Giovagnoli

Abstract A relevant issue for epistemology is the distinction between expression of a
“judgeable content” and “judgment”. We would suggest that Frege’s enterprise in the Be-
griffsschrift seems to be devoted to describe this difference from a formal point of view.
For, he considers an expression as a simple or complex sign characterized by the func-
tion/argument structure. In our contribution, we try to elucidate Frege’s effort by analyz-
ing his variation of the Aristotelian “square of opposition” and by following his logical
steps from an “epistemological” point of view which overcome the classical Aristotelian
syllogism but plausibly respects the fundamental distinction between “judgeable content”
and “judgment”.

Keywords Square of opposition · Syllogism · Judgment · Judgeable content

Mathematics Subject Classification 03Axx

1 The Variation of the Aristotelian Square of Opposition

Frege formulated the modern predicate logic that incorporates the traditional theory of
the syllogism but enriches it to give a useful account of sentences of multiple generality
[1]. Traditionally, we say that every judgment is basically composed of a subject and a
predicate such as ‘Rossella is a dog’. This very structure was supposed to have fundamen-
tal implications for metaphysics and epistemology because it would be applicable also to
general propositions such as ‘Every man is mortal’ and ‘Some men are Greek’ with ‘every
man’ and ‘some men’ being considered to be subjects and ‘mortal’ and ‘Greek’ predicates
of two sentences. As it is well known, Frege replaced the syllogism with a formal struc-
ture divided into ‘function’ and ‘argument’: “If in an expression (. . .) a simple or complex
sign occurs in one or more places, and we consider it replaceable in one or more of these
places by something, but everywhere by the same thing, then we call the part of the ex-
pression which hereby appears as unchangeable the function and the replaceable part its
argument” [1, p. 16].

The distinction of function (the fixed part of an expression) and argument (the variable
part of an expression) takes the important epistemological task to indicate when the ar-
gument is ‘determinate’ or ‘indeterminate’. The fundamental ‘indeterminateness’ of the
argument is evident in the case of a complex expression such as “being representable as
a sum of four square” which is always s correct for any arbitrary positive whole number
we put as argument.
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Let’s show the Fregean notation and the new square of opposition he introduced [1,
§12]

The concavity is the place for the gothic letter, which indicates the indeterminateness
of the argument. The distinction of function and argument is relevant for general sentences
as, for instance, to say that ‘Everything is φ’ is to say that ‘the function is a fact whatever
one might take as its argument’. Consequently, a general statement is a statement about
a function. The change of terminology implies a change in the interpretation of the Aris-
totelian syllogism. The statement ‘All men are mortal’ is not a statement about all men
but one about the function ‘If a is a man, then a is mortal’ and it specifies of it that it is a
fact for anything we substitute for ‘a’. In our previous example ‘Everything is φ’ could be
‘Everything is mortal’ and to say that the sentence ‘a is mortal’ turns into a true sentence
whatever we substitute for a.

There are also important theoretical implications, which derive from Frege’s notation
about existential statements. Following the Kantian thought, Frege maintains that ‘exis-
tence’ is not a predicate or property of a thing. ‘Being’ is merely a ‘positing’ of a thing or
of certain determinations as existing in themselves. Existence is for Frege a second-level
concept namely a concept having instances or a concept that can be predicated truly of an
object. It distinguishes itself from the concept of ‘actuality’ that identifies existence in a
spatio-temporal field and enters into causal chains. In this sense, logic has not to do with
the notion of actuality but with the ones of existence and objectivity.

2 The Priority of Judgment

From an epistemological point of view, we can say that Frege’s original notation provides
a view of the relation of the judgment with its parts completely different from traditional
logic that rest on an ‘aggregative’ strategy. In this sense, judgment is formed by aggrega-
tion out of previously given constituent concepts. Frege inherits the Kantian conception
according to which there could not be any combination of ideas unless there were already
an original unity that made possible such combination. According to Sluga [2, p. 91],
Kant anticipates the Fregean doctrine of concepts: “Concepts, as predicates of possible
judgments, relate to some representation of a not yet determined object. Thus the con-
cept of body means something, for instance, metal, which can be known by means of the
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concept. It is therefore a concept solely in virtue of its comprehending other representa-
tions, by means of which it can relate to objects. It is therefore the predicate of a possible
judgment, for instance, ‘every metal is a body’ ” [3, p. 69].

What remains unclear in syllogistic is the crucial problem of ‘concept formation’ as it
starts from the assumption that concepts are formed by abstraction from individual things
and that judgments express comparison of concepts like inferences. According to Frege,
Boole’s logic presents the same problem. In the letter to Marty [4] Frege maintains that
for Boole only concepts exist, but the subordination of a concept under another concept is
quite different from that of an individual’s falling under a concept. Frege’s theory intro-
duces sophisticated logical relations among concepts that rests on the fundamental notion
of ‘unsaturedness’. Here, we can represent the falling of an individual under a concept by
F(x), where x is the subject (argument) and F( ) is the predicate (function), and where the
empty place in the parentheses after F indicates non-saturation.

This logical option aims at criticizing the Boolean distinction between ‘primary propo-
sitions’ and ‘secondary propositions’. The former express the sorts of relations between
concepts studied in Aristotelian logic (calculus of concepts) and the latter concern the
sorts of relations between judgments studied in sentential logic (calculus of judgments).
However, the two calculi are syntactically identical because they derive from the impo-
sition of an interpretation onto what is originally an uninterpreted formalism, namely a
pure syntactic abstract algebra [5]. For example, both contain expressions of the form
‘A × B’ or ‘A + B’. In the calculus of concepts we must consider the letters as denoting
classes or extensions of concepts and the operations as set-theoretically interpreted. In
our case, multiplication is intersection and addition is union. The original idea of Boole
is to reduce the calculus of judgments to that of concepts that is secondary propositions
to primary propositions. In Boole words: “Let us take, as an instance for examination,
the conditional proposition “If the proposition X is true, the proposition Y is true”. An
undoubted meaning of this proposition is, that the time in which the proposition X is true,
is time in which the proposition Y is true [6, ch. XI, §5].

If we interpret this idea in an Aristotelian sense, we obtain a universal affirmative
judgment namely ‘All times at which X is true are times at which Y is true’.

The strategy of Boole was to treat sentential operators as expressing set-theoretic oper-
ations on sets of times. Frege rejects the Boolean reduction of the secondary propositions
to the primary ones because there are ‘organic’ relationships between them that must be
make logically explicit [5]. For instance, Boole’s strategy cannot account for the relation-
ship between universal affirmative propositions and hypothetical judgments. In Frege’s
notation these are represented as

and

In Boolean logic we can represent both as, e.g., F×G = F even though the letters that
occur in the two cases have nothing to do with one another.

Another problem in Boole’s logic is the reduction of atomic sentences to universal
affirmative propositions, namely to one sort of primary propositions: “To say, ‘The sun
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shines’, is to say, ‘The sun is that which shines’, and it expresses a relation between two
classes of things, viz. ‘the sun’ and ‘things which shine’ ” [6, ch. IV, §1].

Frege thinks that this account of atomic propositions is misconceived: “The relation of
subordination of a concept under a concept is quite different from that of an individual’s
falling under a concept. It seems that logicians have clung too long to the linguistic schema
of subject and predicate, which surely contains what are logically quite different relations.
I regard it as essential for a concept that the question whether something falls under it has
a sense” [7, pp. 100–101].

Frege’s account of general propositions in the Begriffsschrift solves the Kantian prob-
lem of the unity of judgment in a logical form [2, ch. 3]. For instance, in the two sen-
tences:

(a) The number 20 can be represented as the sum of four squares

and

(b) Every positive integer can be represented as the sum of four squares

we cannot consider ‘the number 20’ and ‘every positive integer’ as the subjects of their
respective sentences. According to Frege, they are not concepts of the same rank. Thus
we cannot assert ‘in the same sense’ of the number 20 what can be asserted of ‘every pos-
itive integer’. Actually, the number 20 yields an independent idea whereas ‘every positive
integer’ acquires its meaning from the ‘context’ of the sentence [1, p. 17].

In the Begriffsschrift we can find an anticipation of the notion of judgment presented
in the later work Function and Concept [8]. The main point is that functions, concepts
and relations are incomplete and require variables in their expression to indicate places of
arguments. To establish a correspondence between function and concept Frege maintains
that the linguistic form of an equation or identity is an assertoric sentence. It embeds a
thought as its sense or, more precisely, we can say that it ‘raises a claim’ to have one.
Generally speaking, the thought is true or false namely it possesses a truth-value that
could be considered as the meaning of the sentence like the number 4 is the meaning
of the expression ‘2 + 2’ and London is the meaning of the expression ‘the capital of
England’.

The assertoric sentences can be decomposed into two parts: the ‘saturated’ and the
‘unsaturated’ one. For instance, in the sentence ‘Caesar conquered Gaul’ the second part
is unsaturated and it must be filled up with a proper name (in our case Caesar) to give the
expression a complete sense.

3 From Epistemology to Speech Acts

In this last section, I’d like to show that Frege’s analysis of the pure thought opens an
important space to a plausible view of the speaker’s behavior in dialogical situation, which
aims at reaching the truth. We have underscored the crucial difference between expression
of a ‘judgeable content’ and ‘judgment’. This distinction is further clarified by following
some issues from his latest writings. When we perform an assertion we raise a claim to its
validity namely we express a sentence that possesses a judgeable content. Consequently,
our speech act will be either valid if our judgment will be recognized to have the truth-
value 1 or not valid if it comes to have truth-value 0.
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The notion of judgeable content plays a fundamental role not only in assertions but
also in the speech acts of question and negation [9]. In the former, we ought to distinguish
between our demand for a judgment that is simply connected with the use of words and
the content or sense of the question that is subject to our judgment. This distinction is
relevant for the possibility to acknowledge the truth of a thought or reject it as false. It
also allows the impossibility to judge a thought such as ‘two is bigger than three’ for the
grammatical subject is empty.

Another fundamental point is that because of the fact that the sense of a question is
also inherent to an assertoric sentence that gives the answer to our question we must
distinguish between the acts of grasping a sense and of judging also for the assertoric
sentences. This is because the nature of a thought (namely a ‘sense’ or a ‘judgeable con-
tent’) does not consist in its being true namely, the content of a question is that as to
which we must judge. If we perform the interrogative sentence ‘Is the sun bigger than the
Moon?’ we cannot say that its sense is a truth otherwise we contradict the very nature of
a question.

The distinction between judgeable content and judgment provides also an ontological
thesis about the nature of the thoughts. Actually, science is the particular field that tends to
discover truths about the world. But often the scientists simply perform the act of grasping
a thought and this is not the same as performing a judgment. From this fact follows that it
is possible to discover that one grasped a false thought, so we can admit the ‘existence’ of
false thoughts. The fact that we can grasp false thoughts is exemplified by our possibility
to distinguish between ‘senseless’ and ‘falsity’: “The teacher says ‘Suppose a were not
equal to b’. A beginner at once thinks ‘What nonsense! I can see that a is equal to b’; he
is confusing the senselessness of a sentence with the falsity of the thought expressed in it
[9, p. 348].

A thought could be “complex’ i.e. composed by other thoughts. For instance in condi-
tionals (if . . . then . . .), we have a single acts of judgment and two thoughts that cannot be
uttered ‘assertively’ in a separate way. A very clear example to explain the nature of false
thought is the procedure of ‘contraposition’: “For thoughts consisting in an antecedent
and a consequent there obtains the law that, without prejudice to the truth, the opposite
of the antecedent may become the consequent, and the opposite of the consequent the
antecedent” [9, p. 349].

The logical devices are not sufficient to explain the sense of expression such as ‘Christ
is immortal’, ‘Christ lives forever’, ‘Christ is mortal’, ‘Christ does not live for ever’. For
this reason, we must suppose in a Kantian sense that the nature of thoughts is ‘outside’
logic. Consequently, negation namely the act of negating does not turn a true thought into
a false one. The thought is self-sufficient but the negation needs to be completed by a
thought. To express this thesis we write ‘the negation of . . .’ where the blank after ‘of’
indicates the place of the thought. The language of thought can therefore be linguistically
expressed and we can put the definite article ‘the’ before negation so that ‘the negation
of’ designates a single thing i.e. a thought (for instance, ‘the negation of the thought that
3 is greater than 5’).

4 Conclusion

Our analysis shows continuity between the Begriffsschrift and the latest writings of Frege.
The distinction between judgeable content and judgment can be considered the most im-
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portant result of Frege’s epistemology. This idea emerged from our discussion of three
fundamental points.

First, the distinction between function, namely the fixed part of an expression and
argument, namely the variable part of it, plays the fundamental epistemological role to
indicate when the argument is ‘determinate’ or ‘indeterminate’. This very distinction is
relevant for specifying a new notation of generality, which differs from the Aristotelian
one and rests on a substitutional strategy.

Second, the change of the Aristotelian notation gives rise to a criticism of the aggrega-
tive strategy presented by Boole. Judgment is not formed by aggregation out of previ-
ously given constitutive concepts. Frege’s notation admits differences of concept’s level
that overcome the classical distinction between subject and predicate. The logical form,
composed of unsaturated and saturated parts could be considered by itself as predication;
consequently we do not need to some additional factor to relate them predicationally.

Third, we pointed on the role of the difference between judgment and judgeable content
in different kinds of speech acts. The functions of the use of linguistic devices together
with the recognition of a content to be judged gives us the possibility to understand what is
the subject of our judgment and thus the possibility to acknowledge the truth of a thought
or reject it as false. Moreover, we notice that the same thought could be expressed in
different way and underscore the role of assertions, questions and negations that represent
the fundamental structure of dialogical situations and help the speakers to reach the truth.
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Two Concepts of Opposition, Multiple Squares

John T. Kearns

Abstract This paper uses the resources provided by systems of illocutionary logic to
characterize an opposition among assertive illocutionary acts that is parallel to incompat-
ibility or inconsistency among statements. It is argued that opposition, or incoherence,
among assertive illocutionary acts is more fundamental than inconsistency, and that our
understanding of incoherence “underwrites” our conception of inconsistency. Diagrams
are provided to illustrate relations of incoherence that are like such traditional diagrams
as the square of opposition, which displays relations among statements.

Keywords Illocutionary logic · Speech acts · Logic of speech acts · Inconsistency ·
Incoherence

Mathematics Subject Classification 03B42 · 03B60 · 03B80

1 Language Acts and Rational Commitment

When we speak, write, or think with words, we are performing speech acts, or language
acts. Some language acts are performed with whole sentences, and some whole-sentence
acts are true or false. (What occurs as a whole and separate sentence on one occasion can
occur as a clause in a larger sentence on another occasion, and the clause will still be used
to perform a distinct sentential act when the larger sentence is used.) I will understand a
statement to be a language act that employs a whole sentence or sentential clause, that is
true or false; it is true if it “fits” the world, and false if it fails to fit. This is a stipulated
meaning for the word ‘statement,’ because this word is often used as a near-synonym for
‘assertion.’

Certain language acts performed with whole sentences are illocutionary acts, these
are intentional acts, and are constituted by performing a sentential act with a certain,
illocutionary, force. An illocutionary act is a complete intentional act (it is not simply an
abstraction from a complete act), and it is the act a language user intends in performing a
sentential act. Illocutionary acts include promises, threats, apologies, requests, assertions,
and denials. Not every sentential act is used, by itself, to constitute an illocutionary act;
some sentential acts are merely components of larger sentential acts which are used to
constitute illocutionary acts.

As I have characterized statements, they are not illocutionary acts. But a statement can
be performed with one or another illocutionary force, and will then constitute one or an-
other kind of illocutionary act. Informally, we might regard the statement as a component
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of the illocutionary act, as the “content” of the act perhaps. More accurately, the statement
is the illocutionary act abstractly conceived. However, not all statements are performed
with illocutionary force. Anyway, the point of considering statements is to abstract away
from considerations of illocutionary force.

Although discussions of illocutionary acts commonly regard them all as communica-
tive acts, so that they are performed by agents and aimed at addressees, I am understanding
illocutionary acts to constitute a larger class. For some illocutionary acts such as direc-
tives and promises, an addressee is essential. You can’t give someone an order if there is
no someone there. But I think what is essential to an assertion is that the speaker/writer/
thinker produces (performs) a statement and accepts it as being or representing what is the
case. A speaker can address her assertion to someone else, but I count it as an assertion if
a speaker accepts a statement in the privacy of her office, without telling anyone.

Statements are true or false, and have truth conditions. Customary logical theories
investigate statements, their logical forms, and semantic features that can be defined in
terms of truth conditions and logical forms. A statement is logically true, for example, if
it has a logical form such that the truth conditions associated with that form can’t fail to
be satisfied. A group of statements imply a further statement if it isn’t possible to satisfy
the truth conditions associated with the logical forms of the first statements without also
satisfying the truth conditions associated with the logical form of the further statement.

Ordinarily, a person using language is performing illocutionary acts, whether she is
addressing someone else, or just thinking things through on her own. If she is considering
how things are, trying to determine what is the case, she might be asserting some state-
ments and denying others. She can also suppose a statement to be the case, to determine
what follows from doing this. In carrying out deductive arguments, it is common to make
and discharge suppositions in ways that are familiar from systems of natural deduction.
As well as devising logical systems for investigating statements and their truth condi-
tions, we can develop systems of illocutionary logic for investigating illocutionary acts
and certain of their features.

The subject, or field, of illocutionary logic was introduced by John Searle and Daniel
Vanderveken in [2]; they have pursued what might be called a “top down” approach to this
subject, developing a theory to characterize all illocutionary acts. They regard illocution-
ary logic as a kind of supplement, or appendix, to standard logic. I take a rather different
approach, a “bottom up” approach that calls for developing many different systems of
illocutionary logic. I regard illocutionary logic as a very broad field, one which encom-
passes standard logic as a proper part. A system of logic for assertive illocutionary acts
(these include assertions, denials, and suppositions, among others) contains two levels, an
ontological, or ontic, level that is concerned with statements and features of statements
determined by their truth conditions, and an epistemological, or epistemic, level that is
concerned with assertive illocutionary acts and their features. An epistemic-level illocu-
tionary system deals with speech-act arguments which proceed from illocutionary acts as
premises to illocutionary act conclusions.

In order to use language properly, and effectively, a person must understand the truth
conditions of statements that she either encounters or produces. But it is her recognition
of the truth conditions that matters, and not simply the truth conditions “by themselves.”
If statement A implies statement B , the person who asserts A may not know, she may not
realize, that A implies B . The fact that she accepts A does not determine her to accept B ,
and need have no effect on her attitude toward B . However, once she comes to know
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that A implies B , then, so long as she continues to accept A, she is committed, rationally
committed, to accept B . This commitment is conditional, for she is not required to think
about B at all, or to adopt any position about B . But if the matter comes up, and she gives
it some thought, then she is committed to accept B . It is irrational to accept A, realize
that A implies B , and refuse to accept B .

Rational commitment can motivate a person to act, can rationally “require” that person
to act. But it is important to distinguish immediate from remote, or mediate, commitment.
If a person is immediately committed to doing X1, and doing X1 will immediately com-
mit her to doing X2, while doing X2 will immediately commit her to doing X3, and so
on, down to, say, X9, then doing X1 may not immediately commit her to doing X9. Doing
X1 may leave her indifferent with respect to X9. It is immediate commitment that moti-
vates a person to act, for immediate commitment is evident to the person for whom it is
immediate—if she gives the matter her attention.

Asserting some statements, and denying others, will commit a person to assert still
others, and to deny others. If someone begins by supposing one or more statements to
be the case, and then reasons to a conclusion based on these suppositions, her conclu-
sion also has the status of a supposition, and I call it a supposition. In constructing a
deductive argument, a person traces the immediate commitments of her initial assertions,
denials and suppositions to reach an assertion, denial, or supposition as conclusion. But
commitment, and our “respecting” commitment, are important for all language use, and
not simply for constructing deductive arguments. We can’t appreciate the import of what
people (including ourselves) say without taking account of rational commitment.

In a system of standard logic, we might determine that some statements imply a fur-
ther statement. In a system of illocutionary logic, I use the expression ‘logically require’
for the relation between some illocutionary acts and a further act to which the first acts
commit the speaker. Logical requiring is the illocutionary counterpart to the implication
which links statements. In real life, where we say things and mean them, it is logical
requiring which links the steps in our correct deductive arguments. The components of
those arguments are illocutionary acts rather than simply statements.

Semantic inconsistency is a feature of statements which can’t be true together. I use
the word ‘incoherence’ for the illocutionary counterpart to semantic inconsistency. It is
incoherent to both assert and deny a single statement, it is also incoherent to both sup-
pose a statement to be the case and suppose that statement to be false. Illocutionary acts
that commit a person to perform incoherent acts are themselves incoherent. It is a ra-
tional requirement for all of us to achieve coherence among our assertions and denials;
incoherence is a sign of error, and not a license to infer no matter what conclusion. The
requirement to achieve coherence also applies to suppositions, but it can be strategically
useful to make incoherent suppositions, in order, say, to show that some statement sup-
posed to be true must actually be false, or to show the reverse.

2 Complex Illocutionary Acts

When a statement is accepted, it is accepted as being, or representing, things as they
are. For an act of asserting/accepting a statement to be successful, the statement must be
true, and the person who accepts the statement must have adequate grounds for accepting
it. But in making, and accepting, a statement A, a language user is not saying anything
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about A. She is not accepting the statement “It is true that A”; neither is she accepting the
statement “I know that A” or “I have good grounds for A.” (If she accepts A, then she is
committed to accept “It is true that A,” and, if she is epistemically responsible, she will
also be committed to accept “I have good grounds for A.”)

Although statements can either be asserted/accepted or denied, there is a sense in which
statements are “designed” for being asserted. In a simple statement, where an expression
is predicated of one or more objects, the predicate expression is associated with a crite-
rion, and is truly predicated of an object or objects that satisfy this criterion. The whole
“idea” of a predicate expression is to be applied to objects which satisfy its criterion. The
statement constituted by predicating the expression of the object or objects is fully suc-
cessful as a statement if it presents or represents things as they are. Asserting or accepting
is what “comes naturally” to statements, because these assertions endorse the statements
for their success.

But then, how shall we understand denials? Although we might say that in denying a
statement we are rejecting that statement, what is really being rejected is the illocutionary
act that the statement is designed for performing. To deny a statement is to rule out the
assertion of that statement, to rule this out because the statement is deficient. There are
different respects in which a statement can be deficient, but the simplest and most frequent
deficiency is that the statement fails to fit the world. In many natural languages, it is
common to “carry out” a denial by interfering with the formation of the statement that is
denied. For example, someone might use the sentence ‘Marseille is not in Corsica’ to deny
that Marseille is in Corsica. If they do, the ‘not’ is not functioning as the negation operator
in familiar systems of propositional logic. Instead, the ‘not’ acts as an illocutionary-force
indicating expression, which separates (divides) the act of referring to Marseille from the
act of predicating being in Corsica.

In simple systems of illocutionary logic, I use the following illocutionary operators:

� the sign of assertion
� the sign of denial¬the sign of positive supposition
¬ the sign of negative supposition

and prefix them to sentences with no illocutionary operators so that the complete sen-
tences represent illocutionary acts of the speaker/language user. Although I am the one
using language as I talk and write about language acts and illocutionary logic, in design-
ing an artificial language, I am providing expressions for the speakers of that language
to use to indicate the force of their own illocutionary acts. I regard sentences in that lan-
guage, when they are prefixed with illocutionary operators, as if they were produced by
some other person than myself.

John Searle, and Frege before him, regards statement negation as prior to denial, so
that the denial of a statement A has this significance:

�A= (def) �∼A
However, I think that denial is prior to statement negation, and is in fact the source of
significance for statement negation via these inference principles:

∼ Introduction ∼ Elimination
�A

�∼A
�∼A
�A
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(Similar principles apply to positive and negative supposition.) To negate a statement is
to characterize the statement as being objectively unsuited for assertion (because of its
failure to fit the facts).

Some illocutionary acts logically require others, and some illocutionary acts are logi-
cally incoherent. Logical requiring and incoherence are semantic features proper to illo-
cutionary acts. These features affect the way we use language, for people frequently act
on the basis of rational commitment, including the commitment to avoid and to eliminate
incoherence. While statements which are semantically inconsistent might be regarded as
opposing one another, I think that incoherent illocutionary acts are opposed in a more
fundamental sense. Statements that are semantically opposed are statements that can’t all
be coherently accepted. It is this incoherence which we are rationally required to avoid or
to eliminate.

A simple assertion or denial involves a single, simple statement. In [1] I have proposed
(and argued) that we need to recognize conjoined or conjunctive assertions, where a sin-
gle sentence is used to make two (or more) distinct and separate assertions, as well as
disjunctive assertions in which a person disjunctively accepts two (or more) statements—
“narrowing down” the way things are to the disjoined statements. This understanding
brings assertive illocutionary acts “in line” with other forms of illocutionary acts, such
as directive and commissive acts. For example, we might advise someone to do X and
to do Y , we could also request her to do X or to do Y . I think that conjunctive and dis-
junctive assertions are logically prior to the statement-forming operators for conjunction
and disjunction, and can be used to introduce and inferentially characterize the statement-
forming operators in much the same way that the operator for denial was used earlier to
characterize statement negation.

In making a conjunctive assertion, a person uses a sentence like this one:

James was at the party, and Karen was also at the party.

to make two separate assertions rather than using the sentence to conjoin two statements,
and then accept that conjunction. A conjunctive denial uses one sentence to make two
separate denials:

Ken wasn’t at the party, and neither was Kathy.

With a disjunctive assertion or denial, a single sentence is used to perform an illocution-
ary act which “complexly disjoins” two statements, rather than performing a disjunctive
statement with an illocutionary force.

If we use these operators for conjunctive assertion and denial, and for disjunctive as-
sertion and denial:

Conjunctive Disjunctive
assertion denial assertion denial

�∧ �∧ �∨ �∨
then we can use these expressions to represent the complex illocutionary acts:

�∧ [A,B] �∧ [A,B] �∨ [A,B] �∨ [A,B]
Conjunctive and disjunctive assertions could be used to introduce and inferentially char-
acterize statement-forming operators as follows:



124 J.T. Kearns

Fig. 1 Conjunctive-disjunctive square of opposition

& Introduction & Elimination
�∧[A,B]
�[A & B]

�[A & B]
�∧[A,B]

∨ Introduction ∨ Elimination
�∨[A,B]
�[A∨B]

�[A∨B]
�∨[A,B]

The simple assertion of a statement: �A, and its denial: �A, are illocutionary acts
that are exactly opposed to one another. An illocutionary act which consists in ruling
out an assertion is exactly opposed to that assertion. Interestingly, a conjunctive denial:
�∧[A,B], is not exactly opposed to a conjunctive assertion: �∧[A,B]. The two acts are
incoherent with one another, so they are opposed. But the conjunctive denial does not
simply rule out the conjunctive assertion; it separately rules out the assertion of each
conjunct. The conjunctive assertion of two statements is exactly opposed to the disjunctive
denial: �∨[A,B], of those statements. And the conjunctive denial is exactly opposed to
the disjunctive assertion: �∨[A,B]. These four illocutionary acts give us the square of
opposition shown in Fig. 1.

It isn’t clear to me that English possess a simple and idiomatic expression for mak-
ing disjunctive denials. Many of my undergraduate students, for example, recognize no
difference between saying “not both” and “both not.” (“Mary and Joan are not both phi-
losophy majors” vs “Mary and Joan are both not philosophy majors.”) In any case, our
square provides a place for such acts. In this square each top corner logically requires the
bottom corner beneath it.

Conjunctive and disjunctive assertions and denials, as well as conjunctive and disjunc-
tive directives and commissives, are all examples of what I will call complex illocution-
ary acts. This label is somewhat misleading, because complex illocutionary acts do not
contain other illocutionary acts as components. As we understand illocutionary acts, no
illocutionary acts have illocutionary act components. (I have had no success in thinking
of a more apt expression than ‘complex illocutionary act.’) The complex assertions can
be used to introduce and characterize statement-forming operators for conjunction and
disjunction; and those operators can be used to form complex statements which do con-
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Fig. 2
Conjunctive-disjunctive
square of inconsistency

tain other statements as parts. We can use the statements to construct the different square
shown in Fig. 2.

This is not a square of opposition, if we understand opposition to be a relation between
illocutionary acts. It is a square of inconsistency or of incompatibility. But the assertions
of these statements would be opposed. However, we should not think that all cases of
incoherence involve statements which are inconsistent or incompatible. The assertions
shown here (which figure in Moore’s Paradox):

�A �∼I believc A

are incoherent, even though the statements they “contain” are consistent (with one an-
other):

I have also argued that we must distinguish conditional assertions from the assertion
of conditional statements. I think that we don’t so often make non-modal conditional
statements in English, but we commonly do make conditional assertions and conditional
denials. I represent the assertion of B on the condition A like this:

�[A]/B
and the denial of B on the condition A like this: �[A]/B .

A conditional assertion or denial establishes an inference principle (for the speaker)
from asserting the antecedent to asserting, or to denying, the consequent. For the speaker,
if the inference principle is in force for her, then, once she accepts the antecedent, she has
an immediate commitment to assert, or to deny, the consequent. The assertion of B on the
condition A is conditionally opposed to the denial of B on the condition A. English does
not possess an idiomatic and convenient device for performing an illocutionary act which
is exactly opposed to a conditional assertion, though perhaps we can regard a conjunctive
assertion as exactly opposed to a conditional denial. It seems more-or-less idiomatic to
deny someone’s conjunctive assertion that both A and B are F by saying “If A is F , then
B isn’t.”

This provides the incomplete square of opposition shown in Fig. 3.
Perhaps the incomplete square is better described as a triangle. But the missing corner

marks a place which might be filled by an illocutionary act which is directly opposed to
the conditional assertion. Although such acts are conceivable, English does not provide an
idiomatic way to perform such an act. The conditional opposition between the top corners
is not complete opposition, for both acts can legitimately be performed by a person who
knows A to be false. The top left corner does not logically require the corner beneath it.
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Fig. 3 Incomplete
conditional square of
opposition

A universal assertion is still another form of complex illocutionary act. Someone who
asserts that, say, every F is a G, establishes an inference principle from accepting or
supposing that some particular object is an F to accepting or supposing that that object
is a G. Perhaps we could say that the speaker asserts a thing to be a G on the condition
of its being an F. A universal assertion can be used to introduce and inferentially charac-
terize an operator for forming universal statements, just as other illocutionary operators
can provide a basis for introducing statement-forming operators. In English, a universal
assertion (normally) involves an existential presumption. We don’t assert a thing to be a
G on the condition of its being an F unless we think there are F s. There is no point in
establishing an inference principle if we think it has no application.

We often deny a simple statement by dividing its predicate from its subject. In a uni-
versal denial, we make a “wholesale” division: we entirely divide the F s from the Gs,
for there is no F that can correctly be asserted to be a G. The universal denial establishes
an inference principle from an assertion that some particular object is an F to a denial
that that object is a G. A universal denial is opposed to a universal assertion, but it is not
the exact opposite of a universal assertion. A universal denial is the exact opposite of an
existential, or particular, assertion. An existential assertion that some F is a G establishes
a kind of inference principle: the speaker is committed to the consequences of an arbi-
trary assertion that a particular F is a G—these are the consequences common to every
assertion to the effect that some particular F is a G.

English does not seem to possess an idiomatic form for making a denial which is ex-
actly opposed to a universal assertion. We can imagine circumstances in which sentences
of the form

Not every F is a G.

were used to make such denials. One of these denials would have as a consequence the
disjunctive assertion that either there are no F s or some F is not a G. While they are
possible, such denials don’t figure in our actual practice.

English also lacks a form for making denials which are counterparts to existential
assertions, such denials would rule out assertions of a kind we don’t make in English:
These would be assertions that every/any F is a G, which assertions are always acceptable
if it is known or believed that there are no F s. A sentence ‘Some F is not a G’ is not one
that can appropriately be used to make such a denial, or any denial. A singular sentence
‘George is not a plumber’ can be used to make a denial, because when ‘not’ is used to
block the predication of ‘is a plumber’ of George, this can serve to rule out the assertion
that George is a plumber. In the sentence ‘Some man is not a plumber,’ the ‘not’ will
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Fig. 4 Incomplete
universal-existential square of
opposition

not block the predication of ‘is a plumber’ of some man—the sentence will not be used
to rule out the existential assertion “Some man is a plumber.” The sentence ‘Some man
is not a plumber’ is suited for an existential assertion but not for any kind of denial. If,
say, ‘Any F is a G’ were used to make a universal assertion that is always in order if it
is known/believed that there are no F s, then ‘Not any F is a G’ might be used for the
denial of this assertion, which denial would commit the speaker to assert that there is an
F which isn’t a G. But this isn’t how English works at present.

If we represent universal assertions and denials like this: �∀Fx/Gx, �∀Fx/Gx, and
existential assertions like this: �∃Fx/Gx, we have another incomplete square (Fig. 4) for
the assertions and denials available in English.

I think the opposition that is most important to our use of language is the opposition be-
tween illocutionary acts which are incoherent with one another. The requirement to avoid
incoherence and to achieve coherence is a fundamental principle of rationality. There are
a variety of forms of complex assertions, and many of them give rise to oppositions which
can be organized as squares, complete or otherwise, though these squares don’t have all
the features attributed to the traditional square of opposition.
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Does a Leaking O-Corner Save the Square?

Pieter A.M. Seuren

Abstract It has been known at least since Abelard (12th century) that the classic Square
of Opposition suffers from so-called undue existential import (UEI) in that this system of
predicate logic collapses when the class denoted by the restrictor predicate is empty. It is
usually thought that this mistake was made by Aristotle himself, but it has now become
clear that this is not so: Aristotle did not have the Conversions but only one-way entail-
ments, which ‘saves’ the Square. The error of UEI was introduced by his later commenta-
tors, especially Apuleius and Boethius. Abelard restored Aristotle’s original logic. After
Abelard, some 14th- and 15th-century philosophers (mainly Buridan and Ockham) meant
to save the Square by declaring the O-corner true when the restrictor class is empty. This
‘leaking O-corner analysis’, or LOCA, was taken up again around 1950 by some Ameri-
can philosopher-logicians, who now have a fairly large following. LOCA does indeed save
the Square from logical disaster, but modern analysis shows that this makes it impossible
to give a uniform semantic definition of the quantifiers, which thus become ambiguous—
an intolerable state of affairs in logic. Klima (Ars Artium, Essays in Philosophical Se-
mantics, Medieval and Modern, Institute of Philosophy, Hungarian Academy of Sciences,
Budapest, 1988) and Parsons (in Zalta (ed.), The Stanford Encyclopedia of Philosophy,
http://plato.standford.edu/entries/square/, 2006; Logica Univers. 2:3–11, 2008) have tried
to circumvent this problem by introducing a ‘zero’ element into the ontology, standing for
non-existing entities and yielding falsity when used for variable substitution. LOCA, both
without and with the zero element, is critically discussed and rejected on internal logical
and external ontological grounds.

Keywords Abelard · Aristotle · Boethius · Buridan · Existential import · Null element ·
O-Corner · Predicate negation · Restricted quantification · Square of Opposition

Mathematics Subject Classification Primary 03B65 · Secondary 03B50

1 Letting the O-Corner Leak

Some 14th-century nominalist philosophers, such as Buridan and Ockham and a bevy of
15th-century philosophers (Ashworth [1]), and then again some 20th-century American
philosophers, notably Moody [4], Thompson [10], Klima [3] and Parsons [5, 6], were
struck by the fact that the classic Square of Opposition (henceforth the Boethian Square
or just the Square) is saved from the logical defect of undue existential import (UEI) if
it proves possible to assign existential import only to the affirmative left-hand side of
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the Square but not to the negative right-hand side. This way, existential import depends
on what is traditionally called the quality of the sentence type and not on its quantity:
when the restrictor predicate F has a null extension (�F� = Ø),1 falsity is assigned to
A- and I-type sentences but truth to A*- and I*-type sentences.2 This proposal is often
characterized as the proposal to let the O-corner ‘leak’, in that the O-corner (I* or ¬A)
drops its existential import. In fact, however, it is not just the O-corner that is made to
‘leak’ but also the E-corner (A* or ¬I) of the Square. To avoid any possible negative
connotations, the less suggestive acronym LOCA will be used instead of the full phrase
‘leaking O-corner analysis’.

Many modern philosophers of this school, including Parsons, and to a lesser extent
also Moody, claim that LOCA is the way the Square was interpreted by Aristotle and
throughout the Middle Ages. This claim, however, is unsustainable. Aristotle proposed a
logic, later elaborated by Abelard (Seuren, [8]: Ch. 5), without the defect of UEI. This
Aristotelian-Abelardian system does not contain the classic Conversions (A* ≡ ¬I and
I* ≡ ¬A) but only one-way entailments (A entails ¬I and I* entails ¬A but not vice versa;
see Fig. 3). So there is no question of a ‘leaking’ O-corner there. As regards the pro-
posals made by Buridan and Ockham, they were not only tentative and barely elaborated
but also highly controversial in their day.3 The extreme scarcity of passages in the 14th-
century philosophical literature actually attesting LOCA shows the tenuousness of this
claim as far as the 14th century is concerned (Seuren, [8]: 158–168).4 Ashworth ([1]:
144) shows that throughout the 15th century, up till the early 16th century, there was a
group of philosophers who saw a parallel between singular sentences with an empty sub-
ject term, such as (1a) and the corresponding existentially quantified sentence (1b), which
were both considered false in the absence of any chimera.

(1) a. This chimera is a mammal.
b. Some chimera is a mammal.
c. This chimera is not a mammal.
d. Some chimera is not a mammal.
e. No chimera is a mammal.

1The standard double bracket notation is used for predicate extensions: �F� stands for all elements in the
universe of entities ENT for which the predicate F delivers truth.
2The eight sentence types used are A (All F is G), I (Some F is G), their external negations ¬A and ¬I,
their internal negations A* and I* (All/Some F is not G), and their external and internal negations ¬A* and
¬I* (Seuren, [8]: 31–37). The old E-corner is thus split up into ¬I and A* and the old O-corner into ¬A
and I*. ¬I and A* and ¬A and I* can thus be distinguished in systems where the members of each pair
are not equivalent.
3“Ockham’s Summa Logicae (The Logic Handbook), written ca. 1323, is a manifesto masquerading as a
textbook” (King, [2]: 243).
4It is difficult to find a 14th-century text actually stating LOCA, instead of merely playing with the
idea. One such text is Ockham, Summa Logicae, beginning of Chap. II.3 (http://individual.utoronto.ca/
pking/resources/Ockham?Summa_logicae.txt):

<Q>uandoque sufficit quod subiectum indefinitae vel particularis negativae pro nullo supponat.
(<S>ometimes it suffices for the truth of a negative indefinite or particular proposition that the
subject refers to nothing.)

For ample commentary and a full text of the passage in question, see Seuren ([8]: 163–166).

http://individual.utoronto.ca/pking/resources/Ockham?Summa_logicae.txt
http://individual.utoronto.ca/pking/resources/Ockham?Summa_logicae.txt


Does a Leaking O-Corner Save the Square? 131

Fig. 1 The predicate logic in terms of LOCA

They reasoned that, just as (1c), the negation of (1a), is true, the apparent quantificational
analog (1d) should, therefore, also be true. What these late medieval philosophers over-
looked, however, is that whereas (1c) is the negation of (1a), (1d) is not the negation of
(1b). The negation of (1b) is (1e), which destroys the analogy. After c. 1500 nothing is
heard of this misguided analysis any more, until it was revived in America around 1950.

Apart from this historical claim, however, it is true that, on the face of it, LOCA saves
the Square. We then get a logic that preserves all logical relations of the Square. That
this is so is shown by Fig. 1, which shows the LOCA-based VS-model on the left and the
corresponding octagon on the right,5 which is identical with the octagon corresponding to
the Square, shown in Fig. 2 (where space 4 in Fig. 2a has been left blank owing to UEI).
This makes LOCA look interesting. The question is: is this tenable?

One immediate reason for not considering LOCA tenable is that it fails at least one
test for logical soundness, the MODULO-*-PRINCIPLE. This principle says that the logic
of quantifiers is independent of whether the restrictor or F-predicate and/or the matrix or
G-predicate are or are not negated. That is, the semantics of the quantifiers must be the
same whether or not the F- or G-predicate are negated. A violation of this principle means
that the logic at hand is no longer definable in terms of the meanings of its operators. Thus,
if, in cases where �F� = Ø, All F is G and Some F is G are declared false but All F is not-G
and Some F is not-G true, it follows that the semantic definitions of the universal and
the existential quantifiers vary depending on whether a positive or a negative predicate

5For explicit exposés of Valuation Space (VS) modeling and corresponding polygonal representations
of logical systems, see Seuren ([8]: 46–50; [9]: Ch. 6). Intuitively, the notions are clear enough. A VS
model splits up the universe U of possible situations into classes of situations in which each sentence type
of a logical system is true. The valuation space /S/ of a sentence S is the set of situations in which S is
true. For example, in Fig. 2, /A/ = {1}, /I/ = {1, 2}, etc. A polygonal representation is a polygon with as
many vertices as there are sentence types in the system (without vacuous repetitions of negations). Lines
between vertices stand for logical relations (equivalence or =, entailment or >, contradictoriness or CD,
contrariety or C, subcontrariety or SC).
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Fig. 2 The VS-model and the octagonal representation of the classic Square

is chosen. This makes it impossible to provide a uniform definition for the quantifiers
concerned that is valid for all situations and for all values for the matrix G-predicate. It is
shown below that this is borne out dramatically by Parsons’ attempt at saving the Square.

No distinction can be made between the compound but single negative predicate
not-P—with the so-called ‘predicate negation’—and not P (without the hyphen), for any
predicate P, as the only negation defined in the system is the logical negation ¬ and a
‘predicate negation’, as in not-P, is simply defined by saying that �not-P� is �¬(P(x)�, the
complement of �P�, or �P�, in the universe of all entities ENT. The hyphen in not-P thus
cannot make any logical difference, given the formal means at our disposal within the
framework of a bivalent extensional logic. Yet in LOCA, Some F is not G is considered
true but Some F is not-G (with the single predicate not-G) false, when �F� = Ø, which
means that the hyphen does make a logical difference there.6

The question is important because, in LOCA, the distinction between not-P and not
P has stridently counterintuitive consequences, as it implies that Some mermaids are un-
married is false in this world but Some mermaids are not married is true. Moreover,
a sentence like Some mermaid is not a mermaid would have to be considered true but
Some mermaid is a mermaid false. This is, in fact, sufficient to reject out of hand this
solution for the purpose of establishing a natural predicate logic. Yet it is worth our while
to have a further look.

6When the logic turns presuppositional, the hyphen will make a logical difference. As Aristotle already
observed, the only generalization that can be made for a predicate P and its negative counterpart not-P
(or unP, or whatever morphological or lexical means the language has available for creating negative
predicates) is that they make for contrary sentences, which cannot both be true, but can both be false.
A relation of contradiction between sentences made with P and not-P is restricted to those predicates that
are nongradable and have no presuppositional preconditions, such as existent and nonexistent. In presup-
positional logic, this means that the predicate-internal negation can only be presupposition-preserving.
But the not in not P, without the hyphen, can be the radical presupposition-canceling not that yields truth
in cases of presupposition failure.
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Fig. 3 The VS-model and the octagon for AAPL

Moody ([4]: 51–52) admits the counterintuitiveness of the proposal, adding that, there-
fore, the O-corner should be read as ‘not all’ rather than as ‘some not’, thereby implicitly,
but, it seems, unknowingly, giving up the Boethian Square with its Conversions for the
Abelardian Square with its one-way entailments (see Fig. 3). Thompson ([10]: 253) says,
implicitly confessing to the misconception that logic is predestined for all eternity instead
of being defined by the meanings of its operators:

Even if we agree with the new defenders of Aristotle that the decision which leads to the modern
analysis is repugnant to ordinary speech, we can still argue that this is more desirable than a
decision repugnant to logical analysis itself.

Parsons declares ([6]: 5):

What is important is that the logical notation be coherent and useful. If it does not perfectly match
the usage of ordinary language, that is not on its own important for a system of logic. Indeed,
if you are sure that ordinary language universal affirmatives should be false when their subject
term is empty, then you may represent that fact by translating them into modern logical notation
adding a conjunct. Instead of symbolizing ‘Every A is B’ by ‘∀x(Ax → Bx)’, symbolize it as
‘∃xAx & ∀x(Ax → Bx)’.

Here again, both authors are, apparently, unaware that Aristotle did not have the Conver-
sions but only one-way entailments, which, far from being ‘repugnant to logical analysis
itself’, stays well within the range of natural intuitions and keeps the logic sound as well
as free from undue existential import. Then, while Thompson uncritically takes it for
granted that saving natural logical intuitions leads to logical disaster, Parsons overlooks
the fact that adding a nonnull condition to the semantic definition of ∀ yields a different
logic, Aristotelian-Abelardian predicate logic (AAPL), shown in Fig. 3.

But apart from the intuitively rebarbative character of the proposal, let us have a look
at the more technical details. Klima ([3]: 18–2) and Parsons [6] are the only authors who
actually present a logical system incorporating LOCA, rather than just stating that I*-type
sentences should be considered true when �F� = Ø. Klima resorts to an old medieval
device (revived, it seems, by the late 19th-century British philosopher Hugh MacColl,
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referred to in Russell, [7]: 491) of introducing a null or zero element ø standing for any
nonexistent entity. Some late medieval philosophers (followed, apparently, by MacColl)
used ø to solve what is now known as the problem of reference failure. They posited that
the definite description the unicorn in a sentence like The unicorn is running refers to the
null element ø when, as in the actual world, there are no unicorns. This made it possible
to assign falsity to this sentence and thus to escape the predicament caused by reference
failure, while maintaining strict bivalence.

Klima and Parsons, interpreting ø model-theoretically, posit that zero-element substi-
tution in the range �P� of an extensional predicate P (no account is taken of intensional
predicates) is admissible when �P� = Ø, but leads not to truth but to falsity. This is at
least remarkable because, by definition, substitution restricted to the extension �P� of a
predicate P simply lists all members of �P� and thus always yields truth.

Around 1950, the machinery of variable substitution had become widely known and
was seen as the center-piece of the semantics for the Russellian language of predicate
logic, where it seemed to work well (provided ENT �= Ø). At that time, the British philoso-
pher Peter Geach was making headlines opposing the Russellian system of unrestricted
quantification, so called because in this system every variable ranges over the whole of
ENT. Geach proposed the theory of restricted quantification, where variables rotate not
over the whole of ENT but only over �F�, the extension of the restrictor predicate. This,
however, landed Geach and his followers in the predicament that in cases where �F� = Ø
no substitution is possible for the matrix predicate G(x), so that the truth value of propo-
sitions like ∃x:F(x) | [G(x)] or ∀x:F(x) | [G(x)] must remain undecided when �F� = Ø.7

Geach never solved this problem, but Klima saw that, with the help of medieval ø, these
propositions turn out false—good enough, it would seem, for a respectable predicate logic.

Klima follows Geach’s system of restricted quantification. This means that the variable
in a formula like ∀x:F(x) | [G(x)], or ‘for all x such that x is an F, G(x)’, is allowed to rotate
only over �F�.8 As has been said, substitution of ø is considered legitimate whenever
�F� = Ø, but it yields falsity.

Now consider the I*-type Some F is not G, formulated, in the language of restricted
quantification, as (2):

(2) ∃x:F(x) | ¬[G(x)]
Suppose �F� = Ø, which, in Klima’s analysis, means that ø is the only admissible sub-
stitution. Substitution of ø for x makes G(x) false and thus ¬[G(x)] true. Therefore, one
might feel justified to conclude that there is one substitution that produces truth for the

7A formula like ∀x:F(x) | [G(x)] is read as ‘for all x such that x is an F, G(x)’, and ∃x:F(x) | [G(x)] as
‘for some x such that x is an F, G(x)’. In this restricted quantification notation, the part between the colon
and the upright stroke is the range of the restricted quantifier (∀x or ∃x) and the part after the upright
stroke is the argument. It should be noted that the use of a first-order logical language in no way implies
the use of the a particular first-order logical system. When the Russellian language is used here, it is
because it has been found satisfactory for the present purpose. The language of restricted quantification is
used when it is found useful for that purpose. A given formal logical language can be used with different
semantic interpretations according to the logical system under discussion. The important thing is that
the set-theoretical basis underlying any logical system is made explicit in a convenient, consistent and
unambiguous way.
8Klima’s own notation is slightly different, but amounts to the same. I skip a discussion of Klima’s
elaborate formal and semantic description of his system, as it easily reduces to restricted quantification.
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function ¬[G(x)]. And since the satisfaction of the existential quantifier ∃ requires that
there be at least one truth-yielding substitution for x, the substitution of ø for x makes (2)
true despite (or perhaps because of) the fact that �F� = Ø.

The same result follows for A*-type sentences formulated as:

(3) ∀x:F(x) | ¬[G(x)]
Again, ¬[G(ø)] (with ø for x) is true, and since ø is the only admissible substitution, all
admissible substitutions produce truth, which makes (3) true. Truth thus results vacuously
for I*-type and A*-type sentences when �F� = Ø.

Although this looks good at first sight, there are serious problems connected with the
zero element ø. First, if ø makes for falsity under any (extensional) predicate, how about
the predicate be the zero element? When I say “ø is the zero element,” then this should be
false despite the fact that ø is the zero element! But apart from this paradox, a set-theoretic
problem arises when it is asked whether ø does or does not belong to the extension of a
predicate P. If it does, why does it produce falsity? If it does not, why is it an admissible
substitution within the range of �P�? From the point of view of ontology, ø is likewise
highly problematic. No ontology will come up with such an element on independent
grounds. It is merely an artifice, introduced for the sake of getting logic out of trouble
without sacrificing the Bivalence Principle.

Critical readers might well ask why the null element should be considered so objec-
tionable while the null set is fully accepted and treated with respect. The answer is that the
null set is solidly anchored in modern set theory and makes for straightforward and sound
systems of predicate logic, such as modern standard predicate logic or AAPL, whereas
the null element would upset set theory no end and prevents a uniform semantic definition
of the quantifiers in all logical languages except the language of restricted quantifica-
tion. Yet, the objectors may observe, ontologically speaking, the null set is every bit as
questionable as the null element: no ontologist would come up with such a notion on
independent grounds. And here we can only agree. In fact, when the logic is made inten-
sional, allowing, as it should, for virtual or intensional entities, the null set is written out
of the script altogether. The assumption into the ontology of virtual entities, along with
the screening off of presupposition failure by means of a special radical negation, obviates
the need for both the null set and the null element. But this aspect cannot be addressed in
the present paper (for a full discussion see Seuren, [8]: Ch. 10).

Parsons [6] tries to achieve the same as Klima, but in a different and rather far-fetched
formalism, which, however, again boils down to restricted quantification. For Parsons,
all categorical sentences center around the identity formula x = y. Both variables must
be bound by a quantifier (EVERY or SOME) for a proposition (sentence) to arise.9 The
negation (NOT) can be inserted in front of the whole sentence, between quantifiers, and in
front of x = y. The substitution mechanism is again of the restricted kind: variable ranges
are restricted to a given predicate extension. When either x or y in x = y fails to find a
value in their range, x = y is reckoned to be false. Parsons uses the phrase “when nothing
is assigned to x or to y,” but this cannot be taken literally, because when an element e is
substituted for y and nothing is substituted for x, all one has is a formula ‘x = e’, which
is a sentential function (or predicate) and thus cannot have a truth value. It is hard to see

9Parsons has a third quantifier NO, but, as far as I can make out, this NO is equivalent with NOT SOME, in
his system.
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how this obstacle can be removed without positing a zero element, with all the problems
it brings along.10 Since Parsons uses the hyphen (‘−’) as his symbol for null assignment,
we may assume that he does indeed work with Klima’s zero or null element, even if he
does not say so. Given the typographical oddness of the hyphen notation, I will go on
using ø for the null element. But let us follow Parsons and see where it takes us.

Given his formal system, (4) is a proposition, where F is the restrictor predicate and G
the matrix predicate:

(4) (some F x) not (some G y) x = y
(for some x that is F, it not so that for some y that is G, x = y, or: Some F is not G)

Now, according to Parsons, when �F� = Ø, so that, in Parsons’ phrase, ‘nothing’ is as-
signed to the variable x (though, in fact, ø is assigned to x), the part (some G y) x = y is
false for any value e ∈ �G� for the variable y, simply because x has received the value ø.
More precisely, since the existential quantifier some is defined, for cases where �F� = Ø,
as requiring for truth that the scope of (some G y)—in this case x = y—is true with e for
y and ø for x, and since x = y is always false when ø stands for either x or y, it follows that
ø = y is false for any e ∈ �G� substituted for y, so that (some G y) ø = y is false. Since
(some G y) ø = y is preceded by the negation, the part not (some G y) ø = y is true. The
same procedure is now repeated for (some F x): since the scope of (some F x)—in this
case not (some G y) ø = y—is true, the whole sentence (4) is true, even though �F� = Ø.

Curiously, Parsons gives double definitions for the quantifiers, one for cases where
the extension of the restrictor predicate is nonnull and one for cases where it is null.
The universal quantifier every is defined as requiring for truth either, when �F� �= Ø, that
every substitution for the variable bound by it delivers truth or, when �F� = Ø, that its
scope turns out true. Analogously, the existential quantifier some is defined as requiring
for truth either, when �F� �= Ø, that at least one substitution for the variable bound by it
delivers truth or, when �F� = Ø, that its scope turns out true.

However, the distinction between cases where �F� �= Ø and cases where �F� = Ø van-
ishes when it is admitted that null assignment amounts to the substitution of the null
element ø. Then EVERY can be defined uniformly as requiring that every admissible sub-
stitution for the variable bound by it delivers truth, and SOME as requiring that at least
one admissible substitution delivers truth. This shows better than anything else that, as
long as one stays within the bounds of a regular ontology without ø, it is not possible, in
Parsons’ system, to provide the quantifiers with single uniform definitions respecting the
MODULO-*-PRINCIPLE formulated above. But with the introduction of the ontologically
vicious element ø, uniform definitions become possible. LOCA is, therefore, spoiled by
its ontology.

But does it save the Square? My answer is that it does not. According to Aristotle (Prior
Analytics 25a8–14), I and I! (Some G is F—the inversion of I) are equivalent. That this is
so, is easily seen: I is true just in case �F� ∩ �G� �= Ø; I! is true just in case �G� ∩ �F� �= Ø;

10Parsons seems to make use of the ploy used by Odysseus in Homer’s Odyssey, when he escaped from
the Cyclops Polyphemus, whose single eye he had just pierced with a red-hot club, by telling the Cyclops
that his name was ‘No-one’. When the blinded Polyphemus called on his fellow Cyclopes for help and
revenge, he told them that No-one had pierced his eye, which made the other Cyclopes think that Polyphe-
mus had been punished by the gods. In an epilogue called ‘epicycle’, Parsons discusses the philosophical
question of the reification of ‘nothing’, quoting various ancient, medieval and modern authors. But he
does not come to any clear conclusion.
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�G� ∩ �F� = �F� ∩ �G�; hence, I! is true just in case �F� ∩ �G� �= Ø. Likewise for the
equivalence of I* (Some F is not-G) and I*! (Some not-G is F): I* is true just in case
�F� ∩ �G� �= Ø; I*! is true just in case �G� ∩ �F� �= Ø; �F� ∩ �G� = �G� ∩ �F�; hence, I*!
is true just in case �F� ∩ �G� �= Ø. In Aristotelian-Boethian and Aristotelian-Abelardian
logic, as well as in standard modern logic, all of which have a symmetrical existential
quantifier, both I and I* are thus equivalent with their inversions I! and I*!, respectively. In
these logics, the following principle holds:

• Under the existential quantifier, the restrictor term and the matrix term (range and ar-
gument) are freely interchangeable salva veritate.

In the ø-variant of LOCA, however, which is claimed by its authors to be the proper
analysis of the Square, this does not hold—unless the function ¬G(x) is (arbitrarily)
banned and only lexically negative predicates like non-G(x) are allowed. This is shown as
follows. Take a situation 
 where �F� = {a,b, c} (a,b, c ∈ ENT) and �G� = Ø. Some F is
not G (I*), analyzed as ∃x:F(x) | ¬G(x), is true in 
, since a, b and c are the legitimate
substitutions for x in G(x) and ¬G(a), ¬G(b) and ¬G(c) are all true, which satisfies the
truth condition for I* as formulated above. However, Some not-G is F (I*!), analyzed as
∃x:¬G(x) | F(x), is false in 
, since, given that �G� = Ø, the only legitimate substitution
for x in F(x) is the zero element ø yielding falsity for F(x). LOCA thus not only fails to
save the Square, it also undermines the set-theoretic foundations of the entire system.

One could propose to modify the substitution conditions for ø in such a way that all
elements e in ENT are admitted in G(x), since all e in ENT satisfy the range ¬G(x),
which would make the range of the formula ∃x:¬G(x) | F(x) equal to ENT. This would
make I*! true, just like I*. But now the problem reappears for a situation 
′, in which,
again, �F� = {a,b, c} but �G� = ENT. Now I* is false but I*! is undecidable since now all
elements in ENT yield falsity for the range ¬G(x) of ∃x:¬G(x) | F(x), which leaves this
formula without any legitimate substitution for x in F(x) and hence with its truth value
undecided.

Despite the contortions of Parsons’ formal system, it is clear that, in the end, it reduces
again to the simple system of restricted quantification enriched with the zero element as
shown above in the examples (2) and (3). And this system is, in the end, untenable for
the reasons given. We will, therefore, not regard LOCA as a viable avenue of research.
It is a typical example of a logic that works in a purely technical sense but is vitiated by
a paradoxical and vicious ontological element which makes the system run into logical
aporia.

If the Square is to be saved—and this is indeed a worthy ambition—a totally different
approach is to be followed, involving presupposition theory combined with an admission
of virtual entities into the ontology and of a third truth value (radical falsity) into the
logic.11 This requires no zero element and no restricted quantification, and it steers clear
of the crass violation of natural intuitions perpetrated in LOCA. The Square is fully saved
as a default bivalent logical system for those situations where all presuppositions of the
sentences processed in the logic are fulfilled. The situations not fulfilling presuppositional
truth conditions are then covered by a second, radical, negation which requires special

11This is not the place to elaborate the presuppositional solution to UEI. For an up-to-date and full dis-
cussion, see Seuren ([8]: Ch. 10).
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emphasis and a special intonation contour for the sentence as a whole, restoring truth for
sentences suffering from presupposition failure.

The question is thus: what price is one prepared to pay for saving the Square?
The choice is between, on the one hand, the introduction of an ontologically and set-
theoretically untenable null element plus a strident violation of natural intuitions and, on
the other, the admission of virtual entities into the ontology and of two kinds of falsity
into the logic, in strict adherence to natural intuitions. The former may deserve a place in
abstract logical space, but it is sterile and without any wider interest; the latter produces a
logic that is organically embedded in the human ecology of language, mind and world and
helps explaining crucial facts of language and cognition. It is clear where our preferences
should lie.
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The Right Square

Hartley Slater

Abstract It is shown that there is a way of interpreting the traditional Square of Op-
position that overcomes the main historic problem that led to the present supremacy of
modern predicate logic over Aristotelian Syllogistic: handing multiply quantificational,
relational expressions like ‘All boys love some girls’. The interpretation has other ad-
vantages, is plausibly Aristotle’s own, original view, and was certainly known by several
significant Aristotelian logicians in the late nineteenth century, and the early part of the
twentieth century, when Syllogistic was falling from favour. That leads to a puzzle about
why the proposed interpretation was not seen to overcome the problem of multiple gen-
erality at the time, and some points are made showing what might need to change before
the interpretation is more widely accepted.

Keywords Square of Opposition · Conditional probability · Logically proper names ·
Epsilon terms

Mathematics Subject Classification Primary 03A05 · Secondary 03B48 · 03B10

1 A Historical Puzzle

The recent resurgence of interest in Aristotle’s Square of Opposition is surprising in view
of the disregard with which it has been held in modern logic for nearly a century. On
the reading of the statement forms in the Square of Opposition given in most logic texts
of today, the only traditional relations that hold are the contradictoriness of the A and O
forms, and the contradictoriness of the E and I forms. The contrariety of A and E, the
subcontrariety of I and O, and the implications of I by A, and of O by E, have gained no
support in the tradition that has grown up since Frege’s and Russell’s day. But not only
that makes the present resurgence of interest in the Square surprising, since, also, little if
any defense of the traditional relations has been common, let alone agreed, in the present
resurgence of interest. Yet, as we shall see in this paper, a much more viable one is easily
obtained through a reading of Aristotle’s initial views.

But that leaves us with a considerable historical puzzle. For, given the defense avail-
able, what is most surprising is that the appropriate analysis was lost sight of by the gen-
erality of logicians in the early twentieth century, when concentration on merely universal
quantifiers and their negations took over public attention in modern logic. Syllogistic
Logic reigned from Aristotle’s day for many centuries, and it was only in the latter part of
the nineteenth century that it started to lose its place. Extensions with negative and com-
plex terms were developed around then, but it could, in the end, provide no competition
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to the complexities and rigour that modern logic has derived from the work of Frege and
Peirce. By the middle of the twentieth century Syllogistic was no longer respected. One
supposed difficulty with Aristotelian Syllogistic, for instance, was its seeming restriction
to monadic predicate logic. In this area the polyadic logics developed by Peirce and Frege
were taken to win out. How could Aristotelian Syllogistic handle relational expressions
like ‘All boys love some girls’, for example? That was, and continues to be, thought a
great stumbling block. But not only can the appropriate interpretation easily overcome
this problem, it also solves a substantial problem that contemporary predicate logic has
made no attempt to address.

2 Aristotle’s Understanding

Let us look at some central aspects of the problem of Existential Import, as it was under-
stood in the early twentieth century.

An extended analysis of the possibilities of defending the traditional relations in the
Square of Opposition by means of a rendering in the language of modern logic is to be
found in P.F. Strawson Introduction to Logical Theory [6]. This book appeared just about
the time when Aristotelian Logic was losing its traditional pre-eminent public place. On
page 167 Strawson gives the standard modern view, but then he considers two further
possibilities, on pages 169 and 173, the latter of which does verify all the traditional
relations—though at a severe cost. The standard rendering has the A form as a universal
quantification ‘(x)(Sx ⊃ Px)’, the E form as a universal quantification ‘(x)(Sx ⊃ ¬Px)’,
the I form as an existential quantification ‘(∃x)(Sx&Px)’, and the O form as an existential
quantification ‘(∃x)(Sx & ¬Px)’. This reproduces just the contradictories, as before. By
adding existential import just to the universal forms, i.e. by conjoining each of them with
‘(∃x)Sx’, Strawson then gets his second interpretation:

A (x)(Sx ⊃ Px)& (∃x)Sx

E (x)(Sx ⊃¬Px)& (∃x)Sx

I (∃x)(Sx & Px)

O (∃x)(Sx & ¬Px).

By adding further expressions of existential import to the universal forms, and then the
negatives of all such additions to the particular forms, he gets his third interpretation:

A (x)(Sx ⊃ Px)& (∃x)Sx & (∃x)¬Px

E (x)(Sx ⊃¬Px)& (∃x)Sx & (∃x)Px

I (∃x)(Sx & Px) v (x)¬Sx v (x)¬Px

O (∃x)(Sx & ¬Px) v (x)¬Sx v (x)Px.

The second interpretation saves the contrariety of A and E, and the implication relations
between A and I, and between E and O, but loses the contradictoriness of A and O, and E
and I, and also the subcontrariety of I and O. The third interpretation fares better formally,
because, as before, it does render all the traditional relations within the Square valid.
But it loses out completely on natural language plausibility, since, for instance, Strawson
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has this to say about it: ‘It is quite implausible to suggest that if someone says “Some
students of English will get Firsts this year”, it is a sufficient condition of his having made
a true statement, that no one at all should get a First. But this would be a consequence of
accepting the above interpretation for I’ [6, 173].

Strawson took all this to be a part of his motivation for introducing his pre-
suppositional approach, for which he is famous. But that move, whatever its other merits,
is not justified on the basis of the other analyses Strawson presented, since there is further
analysis available that delivers all the traditional relations within the Square, and which
does not suffer any natural language implausibility. What might have persuaded Strawson
to neglect this further analysis is the fact that, in addition to considering representations
of the Square of Opposition he also was concerned to assess the validity of other Laws of
the Syllogism on the various interpretations. So he was concerned to assess laws such as
Conversion, Conversion per Accidens, Obversion, and Contraposition, as well as the 24
valid Syllogistic moods themselves. Only the last of his proffered interpretations justifies
the totality of all of these laws, and that is quite implausible as we have seen. Even the
alternative interpretation we shall now consider will not render valid all of the traditional
‘Laws of the Syllogism,’ so if the search was to find a way to do that, then this fourth
formal analysis would fare no better in total than the two interpretations Strawson first
considered. Nevertheless there is a very good reason why this further interpretation is to
be preferred.

For, in direct response to Strawson’s story, Manley Thompson, in the Philosophical Re-
view for 1953 [7], put forward a further account of Aristotle’s four forms. This was Aristo-
tle’s view of the situation according to Thompson, although others have had some doubts
(see [2, 169], for instance). Certainly the account was well backed up by the passages
from Aristotle himself that Thompson presented, and indeed this further interpretation
was recommended by several notable Aristotelian logicians in the immediately preceding
period such as Keynes, Johnson, and Popper [2, 169 n1].

One Aristotelian logician who kept to the further interpretation even wrote a whole
text book using a version of it. That was Lewis Carroll, author of the ‘Alice’ books. In
professional life Carroll was Charles Dodgson, a logician at the University of Oxford,
and he produced several significant articles on logic, as well as a substantial book. On
Carroll’s analysis it is the positive forms A and I that carry existential import while their
contradictories do not. Thus he says [1, 74]:

A Proposition of Relation, beginning with “All” asserts (as we already know) that “All Members
of the Subject are members of the Predicate.” This evidently contains, as a part of what it tells us,
the smaller Proposition “Some Members of the Subject are Members of the Predicate.” [Thus, the
Proposition “All bankers are rich men” evidently contains the smaller Proposition “Some bankers
are rich men.”] The question now arises “What is the rest of the information which this Proposition
gives us?”

After some investigation he concludes:

Hence a Proposition of Relation, beginning with “All” is a Double Proposition, and is equivalent
to (i.e. gives the same information as) the two propositions Some Members of the Subject are
Members of the Predicate; No Members of the Subject are members of the Class whose Differentia
is contradictory to that of the Predicate. [Thus, the Proposition “All bankers are rich men” is a
Double Proposition, and is equivalent to the two Propositions (1) “Some bankers are rich men”;
(2) “No bankers are poor men.”]
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That means that all the relations in the Square of Opposition are validated, along with the
24 Syllogistic moods, although, in tune with many of Aristotle’s remarks, not all the laws
of Obversion, or the laws of Contraposition, for instance, hold, on the following account:

A (x)(Sx ⊃ Px)& (∃x)(Sx & Px)

E (x)(Sx ⊃¬Px)

I (∃x)(Sx & Px)

O (∃x)(Sx & ¬Px) v (x)(Sx ⊃¬Px).

Thus SEP does not imply SA¬P, and SOP does not imply SI¬P; and neither does SAP
imply ¬PA¬S, or SOP imply ¬PO¬S (see [7, 262–265]). The lack of implication in the
latter case, for instance, is because the O form is now read with an external negation:
‘Not all Ss are Ps’, in place of ‘Some Ss are not Ps’, which has an internal or predicate
negation. ‘Not all Ss are Ps’, as can be seen, is the disjunction of ‘Some Ss are not Ps’ and
‘No Ss are Ps’ (or ‘There are no Ps’). What has come down to us from antiquity is a mix of
this account together with additions probably provided by Boethius amongst others (see
[2, 126f]), and it is the totality of this whole tradition that Strawson was trying to justify,
without success. Indeed it is not justifiable at all, once one takes a more rigorous look at
it than the medievalists evidently took.

What additionally substantiates the above as Aristotle’s reading, according to Thomp-
son, is that he applied the principle of it to other cases. For Aristotle applied the dis-
tinction between external and internal negations to singular statements, saying that both
‘Socrates is well’ and ‘Socrates is ill’ would be false if ‘Socrates does not exist’ was true
[7, 254-5]. Taking ‘Socrates’ to be a ‘disguised description’, in the manner of Russell
(cf. [3]), this shows that Russell’s analysis of definite descriptions followed both Aristo-
tle’s and Carroll’s line of analysis. In fact it is well known that Russell thought highly of
Lewis Carroll’s work, so it could well have been one inspiration for Russell’s Theory of
Descriptions. Thus, for Russell, ‘The king of France is bald’ entails ‘Some king of France
is bald’. But ‘It is not the case that the king of France is bald’ does not entail ‘The king
of France is not bald’. The former contains an external negation, and in it ‘the king of
France’ has a ‘secondary occurrence’ as a result. The latter contains an internal, or predi-
cate negation, and in it ‘the king of France’ has a ‘primary occurrence’ as a result.

3 Multiple Generality

So how does this account overcome the standard objection that Aristotelian Syllogis-
tic cannot be extended to relational expressions? It is because it parallels a probabilistic
account. For a probabilistic analysis of the Aristotelian forms also supports the variant
reading. Thus pr(Yx/Xx)= 1 (i.e. ‘All Xs are Ys’) entails Pr(Yx/Xx) > 0 (i.e. ‘Some Xs
are Ys’). But pr(Yx/Xx) �= 1 (i.e. ‘Not all Xs are Ys’) does not entail Pr(¬Yx/Xx) > 0
(i.e. ‘Some Xs are not Ys’), since it is possible that pr(Xx)= 0 (i.e. ‘there are no Xs’) in
which case the probability is not defined. That means that the pr(Yx/Xx) is certainly not 1,
although it is not greater than 0, since it cannot be given a value at all. The probabilistic
analysis is applicable also, of course, to many other quantifiers. Thus

Most Xs are Ys
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can be represented as

pr(Yx/Xx) > 1/2,

and

Few Xs are not Ys

(where by ‘Few Xs’ I do not mean ‘Few, if any, Xs’) can be represented as

pr(¬Yx/Xx) < 1/2.

This latter facility is a feat that standard predicate logic has no means of tackling, and yet
it is supported by everyday facts about many other quantifiers. Indeed there is very strong
supporting evidence for the probabilistic interpretation of the A and O forms, when one
considers other quantifiers. For ‘Almost all Xs are Ys’, ‘Most Xs are Ys’, and ‘A lot of Xs
are Ys’ surely all entail ‘Some Xs are Ys’. Also a negative form like ‘Not a lot of Xs are
Ys’, for instance, unlike the related positive form ‘A few Xs are not Ys’, allows it to be
possible that no Xs are Ys (or that there are no Xs at all). So, unlike with the form where
there is an internal negation (‘A few Xs are not Ys’), there is no entailment from the form
with the external negation (‘Not a lot of Xs are Ys’), to ‘Some Xs are not Ys’. All of this
parallels the behaviour of ‘all’ and ‘some not’ on the probabilistic interpretation.

But not only can probabilistic analyses handle cases involving ‘all’ and ‘some not’
appropriately, they also can be easily generalised to relations involving these as well as
many other quantifiers, which is a feat quite out of the question using just the devices in
modern logic. Thus not only is

All boys love some girls,

re-expressible as

pr
([

pr(Lxy/Gy) > 0
]
/Bx

)= 1,

but

Most boys love few girls

is

pr
([

pr(Lxy/Gy) < 1/2
]
/Bx

)
> 1/2.

(If probabilities are given in terms of proportions of existent cases, there is no difficulty
with these nested probabilities.) So, whatever it was that made Carroll, Keynes, Johnson,
Popper, and many others, miss these generalisations, clearly on the right interpretation of
the Square there is a distinct possibility of Aristotelian Syllogistic competing much more
strongly with the current paradigm, and maybe even regaining the crown that it lost.

4 Proper Names

But it can only do that if the current paradigm gives ground on the logic of individual
statements. For, despite Russell, proper names like ‘Socrates’ are not treated as disguised
descriptions in standard texts on modern logic, which leads to the internal relation be-
tween ‘Socrates is well’ and ‘Socrates is ill’ being unrepresentable. Only each of these



144 H. Slater

expressions separately, together with their contradictories is part of the modern system,
becoming, for instance, ‘Ws’, ‘Is’, ‘¬Ws’, ‘¬Is’. If ‘Socrates’ is taken to be a disguised
description, on the other hand, we can exhibit the four Aristotelian interrelated forms thus:

Socrates is well: (∃x)(Sx & Wx), Socrates is ill: (∃x)(Sx & ¬Wx),
Socrates is not well: (x)(Sx ⊃¬Wx), Socrates is not ill: (x)(Sx ⊃ Wx),

all under the condition that there is at most one S, i.e. that (y)(z)((Sy & Sz)⊃ y = z).
In fact, from the standpoint of Russell, the use of ordinary proper names in place of

variables is logically impossible, since the only name that could replace a variable would
be a ‘logically proper name’ in Russell’s terminology, i.e. a name for something whose
existence cannot be questioned. But the text-book tradition seems to have forgotten this
more strict understanding of the matter. And Russell cannot escape blame for the mix-up.
For in Principia Mathematica [4], not only were logically proper names not provided,
but also descriptive terms were allowed into what otherwise would be the place for logi-
cally proper names, in such expressions as ‘(∃y)(y = ιxKx)’. So what else were Russell’s
followers to use as substitutes for variables but ordinary proper names and the like?

The reprehensibility of the text-book tradition, and especially its leaders, is heightened
once it is realised that there is in fact no difficulty in finding the required logically proper
names in classical logic. I have pointed this out in a large number of publications starting
in 1986 (for instance, most recently [5]). For one classical theorem is:

(∃x)
(
(∃y)Ky ⊃ Kx

)
,

so the existence of certain objects is guaranteed in classical logic, and in the epsilon
calculus they are given names: epsilon terms. Thus

(∃y)Ky ⊃ KεxKx,

is a theorem in the epsilon calculus, and

(∃y)(y = εxKx),

containing what Russell called a ‘complete’ term for an individual [3], is also a theorem
there, while

(∃y)(y = ιxKx),

containing Russell’s ‘incomplete’ iota term still isn’t. Certainly it is contingent whether
anyone is a sole king of France (i.e. (∃y)(y = ιxKx)), but what is not contingent is that
there is something that is a sole king of France if anything is (i.e. (∃y)(y = εxKx)).

It is because of the ready availability of ‘logically proper names’ in this straightfor-
ward way that it is particularly unfortunate that Russell allowed his iota expressions to be
thought of as individual terms in his system. For from this it too easily seems that contin-
gently descriptive terms—and even ordinary names, and indeed any other singular term
or phrase that is only contingently applicable—can take the place of variables. It is this,
therefore, that primarily needs to be corrected in current predicate logic if there is to be
a recovery of the Aristotelian system. For it is the common use of ordinary proper names
as substitutes for individual variables in modern logic that has led to the abandonment of
the Aristotelian four fold logic for contingent individuals.
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Oppositions and Opposites

Fabien Schang

Abstract A formal theory of oppositions and opposites is proposed on the basis of a non-
Fregean semantics, where opposites are negation-forming operators that shed some new
light on the connection between opposition and negation. The paper proceeds as follows.

After recalling the historical background, oppositions and opposites are compared from
a mathematical perspective: the first occurs as a relation, the second as a function. Then
the main point of the paper appears with a calculus of oppositions, by means of a non-
Fregean semantics that redefines the logical values of various sorts of sentences. A num-
ber of topics are then addressed in the light of this algebraic semantics, namely: how
to construct value-functional operators for any logical opposition, beyond the classical
case of contradiction; Blanché’s “closure problem”, i.e. how to find a complete structure
connecting the sixteen binary sentences with one another.

All of this is meant to devise an abstract theory of opposition: it encompasses the
relation of consequence as subalternation, while relying upon the use of a primary “proto-
negation” that turns any relatum into an opposite. This results in sentential negations that
proceed as intensional operators, while negation is broadly viewed as a difference-forming
operator without special constraints on it.

Keywords INRC Group · Negation · Opposite-forming operators · Opposition ·
Proto-negation

Mathematics Subject Classification Primary 03B35 · Secondary 03B05 · 03B65

1 The Historical Background of Logical Oppositions

To begin with, everyone knows the “famous square of opposition”, but what it consists
in is less clear. Moreover, almost everyone wrongly equates this polygon with the entire
theory of opposition. Let us see this into detail.

1.1 Aristotle’s Square?

The theory of opposition is to be traced back from Aristotle’s logical corpus [1–3], where
the Stagirite wanted to examine the whole list of necessary conclusions that could be
derived from any pair of sentences varying with respect to their quantity (universal or
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Fig. 1 The logical squares
and triangles of contraries for
quantified and modal
sentences

particular) or quality (affirmative or negative). But contrary to the current expression of
“Aristotelian square”, Aristotle never used and wouldn’t have accepted the logical square
as a proper diagram for logical oppositions.1

One main reason why this theory hardly went beyond traditional logic is that Aristotle
sticked to two sorts of opposition, viz. contradiction and contrariety. The former follows
the laws of contradiction and excluded middle: two contradictory sentences cannot be
true together and cannot be false together, while the latter follows the second law only
(two contrary propositions can be false together). Furthermore, why bother with a theory
of opposition if the only proper task of logic is to state what follows from what in a
consequence relation? Be that as it may, the history of logic can testify to the relative
poverty of developments about logical opposition taken in isolation. Despite a special
attention to opposition in the medieval works (Abelardus, Buridan, Burley, Ockam, Paul
of Venice, Peter of Spain, William of Sherwood), all seems to show that the theory of
opposition is nothing but a minor section within the area of logic.

1.2 Beyond and Beneath the Square

Nevertheless, a certain revival of the subject-matter occurred during the fifties under the
impetus of two French philosophers: Augustin Sesmat [18] and Robert Blanché [5], who
independently gave rise to an extension of the well-known Aristotelian square of opposi-
tion AEIO. In a nutshell, Blanché claimed that the ambiguous meaning of possibility in
the Aristotelian modal syllogistics justifies a further distinction between pure or one-sided
and two-sided possibility (contingency): the former means that a possible proposition is
not impossible but can be necessary, whereas the latter means that a possible proposition is

1Actually, the geometrical presentation of logical oppositions has been inspired by Apuleius (∼=123–170
C.E.): in his Peri Hermeneias, he added the symmetric relation of subcontrariety as paralleling the line
of contrariety; this didn’t still result in a square, but a crossed polygon. Then Boethius (480–525 C.E.)
turned this quadrilateral into a genuine square by introducing the further relation of subalternation.
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Fig. 2 The two logical triangles and in Blanché’s logical hexagon

neither impossible nor necessary. Blanché added that possibility and existential quantifi-
cation share a common feature in the so-called “reflexive” or natural (informal) reading:
their sentential expression is expected to exclude necessity and universality, respectively,
so that Blanché and Sesmat favored the use of triangles rather than the Aristotelian square
(including the unnatural one-sided possibility I). (See Fig. 1.)

Opposition essentially proceeds by means of the classical (or standard) negation ∼,
given the dual relation between universal and existential quantifiers (∼∀∼ ↔ ∃) or be-
tween necessity and possibility (∼�∼ ↔ ♦). It entails that the above square of quan-
tification assumes a relation of logical consequence from ∀ to ∃. That this relation fails
whenever the subject term is empty has been largely discussed in the literature under the
name of “existential import”, contributing to the decline of traditional logic; but it could
be replied that such a failure is not so much due to the logical square as to its lexicaliza-
tion. Indeed, the logical square can be seen to be fully valid when only negative sentences
are used to express the vertices O and I.2

As opposition is closely related to negation, a care for symmetry led Blanché to sup-
plement his triangle of contraries with an opposite triangle of subcontraries whose sixth
uppermost edge U is an unnatural expression of determinacy; U corresponds to the con-
tradictory of two-sided possibility Y = ∼U and eventually extends the debated square
into a logical hexagon of oppositions AUEIYO. (See Fig. 2.)

However, a strict combination of the two above triangles should not lead to the right-
sided hexagon as presented with its arrowed lines; these correspond to the fourth op-
position of subalternation. At the same time, Aristotle never mentioned the latter in his
logical works about opposition, and Jean-Yves Béziau supported this point in [4] in order
to leave subalternation aside and reduce the hexagon to a more restricted star of logical
oppositions. (See Fig. 3.)

1.3 Is Subalternation an Opposition?

Why not to include subalternation among the logical oppositions? It is usually assumed
that logical opposition refers to incompatibility and means that two opposite sentences
cannot be true together. Now given that such is the case in a subalternation, where the

2See e.g. [16] in this respect, where an illocutionary reading of statements entails that the denial of the
universal affirmative A is not equivalent with the assertion of its particular negative O. See also [8] for a
classical defence of the square.
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Fig. 3 Béziau’s logical star
of oppositions

subaltern is necessarily true whenever its superaltern is, it naturally follows that Aristotle
could not include it among his theory of opposition because the latter is closely related to
negation.

But if so, why not to exclude subcontrariety by the same token? Two subcontrary
propositions cannot be false together but can be true together; and if a necessary con-
dition for being an opposite is to differ in truth-value, then subalternation also fulfills
this requirement since a subaltern can be true whereas its superaltern is false. [4] fol-
lows Aristotle’s stringent view of opposition as incompatibility, however, which states
that two opposite sentences can never be true together. While noting that subcontraries
are merely “verbal” oppositions according to [3, 4] still includes them into the class of
oppositions whether for indirect or constructive reasons: indirect, in the sense that sub-
contraries amount to contradictories of contraries and are thus defined in terms of direct
or genuine opposites; constructive, in the sense that refusing subcontrariety leads to in-
complete polygons that cannot yield a full geometrical presentation of logical oppositions.

In the light of these preliminaries, the paper wants to give a broader analysis of logical
oppositions. Rather than restricting opposition to a relation of incompatibility between
two propositions, a more comprehensive presentation should include some other sorts of
syntactic object (beyond quantified sentences) and relation (beyond incompatibility). For
this purpose, let us abstract from the Aristotelian context and construct a purely formal
theory of logical opposition.

2 Opposition and Opposites

To begin with, it is worthwhile noticing that no opposition can occur without opposites:
any two concepts, terms, propositions or whatever else express an opposition if and only
if either of these is the opposite of the other one. However, no genuine theory of opposites
has ever been proposed in support of the current theory of opposition. In order to do
justice to this logical primacy of opposites over oppositions, let us consider the difference
between the two related concepts from a mathematical point of view.

2.1 Two Mathematical Notions

Take the opposition between black and white as an example. It is well known that these
stand into a relation of contrariety, which entails that black is the contrary of white just as
white is the contrary of black. Furthermore, such an opposition between concepts can be
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transferred to the sentential level by saying that the related sentences “This table is black”
and “This table is white” cannot be true together but can be false together (whenever the
table is neither white nor black). The mathematical difference between an opposition and
an opposite is that the former is a relation, the latter a function. In the sentence “Tom
and Jim are mutual brothers”, brotherhood is the expression of a relation between the two
individuals Tom and Jim. In logical symbols:3

(∃x)(∃y)B
(
T(y), J(x)

)

If this sentence is true, then it is the case that both Jim is Tom’s brother and Tom is Jim’s
brother; this means that the two-place relation of brotherhood can be translated into a
function of being brother of. It results in two synonymous sentences as follows:

(∃x)(∃y)
(
J(x)= B

(
T(y)

))

(∃x)(∃y)
(
T(y)= B

(
J(x)

))

By analogy, the same logical reformulation can be applied to the higher-order sentence
“The sentences α and ψ are mutual contradictories” once quantification over sentential
variables is allowed:

(∃α)(∃ψ)C(α,ψ)
Again, this entails that ψ is the contradictory of α and, conversely, that α is the contra-
dictory of ψ :

(∃α)(∃ψ)(ψ = C(α)
)

(∃α)(∃ψ)(α = C(ψ)
)

Oppositions and opposites can be further described in a syntactic and semantic way.
Syntactically speaking, opposition is a sentence-forming relation attached to predicate

variables if its arguments are concepts, or sentence variables if its arguments are sen-
tences; it is usually presented as a two-place predicate, but more than two arguments can
be related by it.4 As to the opposite, it is a one-place function that yields another concept
if attached to a concept, or another sentence if attached to a sentence. Only concepts and
sentences are the syntactic objects concerned with oppositions and opposites: it does not
make sense to say that a given individual is logically opposed to another one, so that we
restrict the theory of opposition to predicate or sentence variables as its arguments.

Semantically speaking, a relation of opposition proceeds as a mapping from V × V

to V (where V is a set of truth-values). In the sentence “Black and white are contrary to
each other”, for instance, contrariety is a relation that is attached to a pair of propositions
like {this table is black, this table is white} and makes the whole sentence true in V .
By contrast, a function of opposite is a mapping from V to V that turns the truth-value
associated to a sentence into another one in V . In the sentence “ψ is the contrary of α”,

3Tom and Jim are normally treated as individual constants, but they are taken here to be predicates fol-
lowing the Quinean paraphrase. This helps to compare these with the next opposite-forming operators,
given that both grammatical categories proceed as one-place predicates or functors.
4Returning to Blanché’s triangle of contraries, this can be seen as either a set of three 2-place relations
({�α,�∼α}, {�α,♦α ∧ ♦∼α} and {�∼α,♦α ∧ ♦∼α}), or a single 3-place relation ({�α,�∼α,♦α ∧
♦∼α}).
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contrariety is attached to the truth-value of α and results into the truth-value of ψ . The
entire sentence is true only if either α is false whenever ψ is true, or α and ψ are both
false.

2.2 Opposition and Truth-Values

Nevertheless, such a purely formal presentation could be blamed for not taking the senten-
tial content into account: formal logic is topic-neutral, but the traditional precondition for
logical opposition is that opposite sentences to differ with respect to quality or quantity
while being about the same subject and predicate. Thus “Every raven is black” and “Some
raven is not black” are properly opposed to each other by differing only with respect to
quality and quantity, the former affirming blackness of every raven and the latter negat-
ing it of some of these. Consequently, a purely formal characterization fails by reducing
the relation of opposition to a relation between contentless truth-values. We challenge
the content-dependent approach of opposition in the following, and the motivation for a
purely formal theory of oppositions and opposites will be detailed in the next section.

More generally, a logical opposition is meant to be a relation between a sentence α

and its opposite ψ . Letting OP stand for the relation of opposition and O for the opposite-
forming function (or operator), it thus follows from it this general logical form:

OP(α,ψ)= OP
(
α,O(α)

)

2.3 Towards a Calculus of Logical Oppositions

That an opposition is taken to be logical should also mean that it deals with some given
calculus upon values.

Truth-values are the expected values for a logic of opposition, and the appropriate cal-
culus will be discussed later on. Let us recall that Aristotle also mentioned several addi-
tional oppositions between concepts outside his logical works, especially in [1]: “double”
and “half” are said to be opposed by correlation, but nothing logical occurs in this op-
position and the same holds for the oppositions by contrariety (“black” and “white”) and
privation (“blind” and “sighted”). It could strike one as surprising to say now that oppo-
sition by contrariety is not a logical opposition, given that it is a crucial component of the
logical square. But again, contrariety is a logical relation only when applied to sentences
rather than concepts: only the former can be said to be true or false.

What of its calculus? In standard sentential logic, some oppositions are expressed by
truth-functions, i.e. binary connectives that assign truth-values to complex sentences in V .
For instance, conjunction is a two-place sentential function that assigns truth to a whole
sentence whenever its two arguments are also true, and falsity otherwise. Negation is the
only one-place function (or operator) at hand in standard logic, since it turns any true
single sentence into a false one and conversely.

Can it be said that each logical connective corresponds to a relation of opposition, and
negation to an opposite-forming function? It seems so, while noting at the same time that
standard logic cannot give a complete calculus for oppositions and opposites.
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Fig. 4 The four logical
oppositions and their
corresponding four binary
connectives

On the one hand, to each relation of opposition corresponds one of the sixteen standard
connectives.5 (See Fig. 4.)

This can be easily depicted by means of the standard truth-tables, where the various
truth-value assignments for any combination of sentential arguments characterize the re-
sulting oppositional relation between these. Thus α and ψ are opposed to each other
through the truth-conditions of the standard connectives. (See Fig. 5.)

On the other hand, nothing is said here about the remaining twelve connectives of
standard logic. Which opposition is established by an arbitrary standard connective ⊕
upon its arguments α and ψ in the whole sentence α ⊕ ψ cannot be answered unless a
mechanical procedure is found for this purpose. A least information is given by the above
logical square, however: subcontraries have been previously said to be the contradictories
of contraries, and this is shown by the opposition between the contrary pairs {α,ψ} and the
subcontrary pairs {∼α,∼ψ}. This entails two things: ∼α and ∼ψ are the contradictories
of α and ψ , respectively; classical negation ∼ is a contradictory-forming operator, since
the relation OP(α,∼α) is a contradiction.

Let us symbolize the four traditional oppositions with capital letters, such that
{CT,CD,SCT,SB} is the set of logical oppositions OP including the four elements of
contrariety (CT), contradiction (CD), subcontrariety (SCT), and subalternation (SB). Two
questions remain unanswered thus far.

Firstly, classical negation ∼ is a contradictory-forming operator in the relation
CD(α,∼α); but what is O for the other three relations? O is a unary operator, but standard
logic includes only one such non-trivial function that is classical negation; this means that
another theory has to be constructed to identify the other opposite-forming operators.

Secondly, every relation of opposition is symmetrical except for subalternation, given
that SB(α,ψ) �= SB(ψ,α). How to account for this peculiarity?

Fig. 5 The four binary connectives and their truth-tables

5The number of the logical connectives in any logical system is m(m
n
), where m is the number of truth-

values and n is the number of arguments combined by n-ary connectives. In the standard logic of binary
connectives, m = n = 2, hence a total number of 2(2

2
) = 24 = 16 connectives. Now some alternative

cases may be entertained, by changing either the number of truth-values or the number of combined
sentences. Piaget focused upon the second option in [13] by considering the 2(2

3
) = 28 = 256 ternary

connectives within the standard two-valued logic.
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A non-standard semantics will be presented in the next section, in order to answer these
questions and even more.

3 Question-Answer Semantics

A first step towards the formalization of oppositions has been suggested by Alessio
Moretti’s n-opposition theory (N.O.T.) in his so-called “Aristotelian PQ-semantics” [11],
where P refers to the number of answers and Q to the number of questions in a question-
answer game.

3.1 The Legacy of N.O.T.

This game was meant to characterize the Aristotelian theory of opposition by means of a
combinatorial set of ordered questions and answers.

Thus every given opposition results from a set of two ordered answers to questions
about the compossibility of two arbitrary sentences. Let Q1: “Can α and ψ be both false?”,
Q2: “Can α and ψ both true?”, and let P = 1 and P = 0 the two sorts of answers to be
given accordingly: “yes” or “no”, respectively. It results in a combinatorial set of four
ordered pairs of answers, namely: [1|0], [0|0], [0|1], and [1|1]. Moretti argues that each
of these pairs characterizes a logical opposition: contrariety, contradiction, subcontrariety,
and subalternation.

While giving rise to a new relevant research field, this semantics suffers from two
main defaults: on the one hand, a calculus for the PQ-semantics is still to be found since
no operator has been suggested to turn any paired value into another one; on the other
hand, the characterization of subalternation as [1|1] is too broad since it includes the
biconditional α ↔ ψ and cannot explain why ψ cannot be false once α is true in the
relation SB(α,ψ).

Another question-answer game is purported to fulfill these two requirements: Question-
Answer semantics (thereafter: QAS), which proceeds as an algebraic semantic frame.

3.2 Disjunctive Normal Forms and Logical Values

First and foremost, QAS is a non-Fregean semantics: the sense of any sentence α is an
ordered finite set of n questions Q(α)= 〈q1(α), . . . ,qn(α)〉 (where n≥ 1) about this sen-
tence; its reference is not a variable truth-value but another sort of constant logical value,
viz. an ordered finite set of answers A(α)= 〈a1(α), . . . ,an(α)〉 to the corresponding ques-
tions.6

Just as in Moretti’s semantics, there are mn different logical values for a specific set
of sentences (where m is the number of the different sorts of answers available for each

6For a more detailed presentation and application of this semantics, see e.g. [15–17].
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of the n questions) and, accordingly, 24 = 16 logical values for any two-place sentential
function α ⊕ ψ . The n = 4 ordered questions relate to the Disjunctive Normal Form of
any such complex sentence, so that the following expresses the sense of a binary sentence
by the truth-conditions of its arguments α and ψ : Q1: “Can “α and ψ be both true?”, Q2:
“Can α be true and ψ be false?”, Q3: “Can α be false and ψ be true?”, and Q4: “Can α and
ψ be both false?”. Symbolizing again a yes-answer by 1 and a no-answer by 0, we thus
obtain a set of 16 logical values that refer to the meaning of a binary sentence Φ = α⊕ψ .
Its logical value A(Φ) = 〈a1(Φ), . . . ,an(Φ)〉 results in the following combinatorial set
(omitting the brackets for sake of convenience):

(1) A(⊥)= 0000 (antilogy);
(2) A(α ∧ψ)= 1000 (conjunction);
(3) A(α�ψ)= 0100 (negated conditional);
(4) A(α�ψ)= 0010 (negated reverted conditional);
(5) A(α ↓ψ)= 0001 (rejection, or negated disjunction);
(6) A(α)= 1100 (truth of α);
(7) A(α�ψ)= 0110 (negated biconditional);
(8) A(∼α)= 0011 (negated truth of α);
(9) A(α↔ψ)= 1001 (biconditional);

(10) A(ψ)= 1010 (truth of ψ );
(11) A(∼ψ)= 0101 (negated truth of ψ );
(12) A(α ∨ψ)= 1110 (disjunction);
(13) A(α←ψ)= 1101 (reverted conditional);
(14) A(α→ψ)= 1011 (conditional);
(15) A(α ↑ψ)= 0111 (incompatibility, or negated conjunction);
(16) A(�)= 1111 (tautology).

It is well known that the half of these values stand for the classical negation of the
remaining half: (1) = ∼(16), (2) = ∼(15), (3) = ∼(14), (4) = ∼(13), (5) = ∼(12),
(6) = ∼(8), (7) = ∼(9), and (10) = ∼(11). This means that one half of the above list
already results from the application of one contradictory-forming operator to one com-
plex sentence from the other half.

3.3 Piaget’s INRC Group and Opposites

Jean Piaget showed in [14] that some further opposite-forming operators also help to
turn a binary sentence into another one in addition to the function of classical negation.
According to his so-called “theory of reversibility”, here is the INRC Group that proceeds
as follows in the line of Klein’s Vierergruppe. For every binary sentence Φ of standard
logic and its logical value A(Φ)= abcd , there are four sorts of higher-order operators to
be applied as follows:

Identity A(I(Φ))= abcd

Inversion A(N(Φ))= a′b′c′d ′
Reciprocity A(R(Φ))= dcba

Correlation A(C(Φ))= d ′c′b′a′
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Fig. 6 Piaget’s matrix for the
INRC Group

Just as the operator of inversion N corresponds to the truth-function of standard negation,
the operator of identity I corresponds to the trivial truth-function of affirmation, turning
its argument into itself. And just as the truth-function of affirmation is to be strictly dis-
tinguished from a yes-answer in QAS, the truth-function of classical negation applied
to sentences differs from the metalinguistic operation of denial: denying a given answer
ai (Φ)= x (where x = 1 or 0) results in x′ and means that the initial yes- or no-answer is
reverted into a no- or yes-answer. Actually, denial is logically prior to negation in the sense
that it helps to define the truth-functional operation of standard negation in QAS, where
the latter consists in denying each component ai (Φ) of a logical value A(Φ) through the
operator N.

3.4 Non-truth-functional, but Value-Functional Operators

In addition to the truth-functional affirmation I and negation N, the remaining two oper-
ators of reciprocity R and correlation C don’t appear within the standard theory of truth-
functions.

A conjecture is to the effect that these are non-truth-functional versions of negation, or
non-classical negations whose properties can be made value-functional within our non-
Fregean semantics, i.e. a Boolean algebra of non-Fregean logical values.

For one thing, the set {I,N,R,C} includes a group of four commutative and involutive
opposite-forming operators whose relative product results in another operator. That is,
for any such operations X, Y, Z we have XY = YX = Z and XX = YY = ZZ = I. This
accounts for the standard law of double negation, when X = N: NN(Φ) = Φ , and the
same holds for the remaining three operators. (See Fig. 6.)

Furthermore, the properties of INRC help to answer to our preceding three questions
about OP.

Firstly, it turns out that R proceeds alternatively as a contrary-, contradictory- or
subcontrary-forming operator, depending upon which value its argument Φ is given: R is
a contrary-forming operator when the logical value of Φ contains only one yes-answer,
a contradictory-forming operator when applying to two yes-answers, a subcontrary-
forming operator upon three yes-answers, and even collapsing with I when its argument
includes only yes- or no-answers (i.e. when α is either a tautology or an antilogy).7

7E.g. R(1000) = 0001, and OP(1000,0001) = OP(α ∧ ψ,α ↓ ψ) = CT(Φ,Ψ ); R(1100) = 0011,
and OP(1100,0011) = OP(α,∼α) = CD(Φ,Ψ ); R(1110) = 0111, and OP(1110,0111) = OP(α ∨ ψ,

α ↑ ψ) = SCT(Φ,Ψ ); R(1111) = 1111, and OP(1111,1111) = OP(�,�) = SB(Φ,Ψ ); R(0000) =
0000, and OP(0000,0000)= OP(⊥,⊥)= SB(Φ,Ψ ). See note 13 about the last two cases.
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Secondly, SCT can be seen as a sort of mixed double negation applied to both the
whole sentence and its arguments: the definition of subcontraries as “contradictories of
contraries” amounts to the equation SCT(α,ψ)= CT(N(α),N(ψ)), where the relation of
contrariety CT includes two complex arguments with contradictory-forming operators N.8

It is in this sense that subcontrariety occurs as an “indirect” opposition: its arguments α
and ψ can be both true, but its syntactic construction calls for negation-forming operators
in O.

Thirdly, the asymmetry of SB entails that no operator O can be said to be a subalter-
nation-forming operator per se: although OP(α,C(α)) = SB(α,ψ) for some α, a nec-
essary condition for subalternation is this relation of opposition to be ordered since
OP(C(α),α) �= SB(ψ,α). Given that ordering cannot be accounted for by the operation
itself, this means that something more must be added to the characterization of subalter-
nation.

Actually, a Boolean algebra of logical oppositions shows that subalternation cannot be
properly defined in usual terms of compossible truth-values. Let ∩ and ∪ be the Boolean
operations of meet and join such that 1 ∩ x = 0 ∪ x = x, 0 ∩ x = 0, 1 ∪ x = 1, and
A(α) ◦A(ψ)= 〈a1(α) ◦ a1(ψ), . . . ,an(α) ◦ an(ψ)〉 for any ◦ ∈ {∩,∪}. Then we have the
four possible cases of logical opposition OP(α,ψ) in QAS: α and ψ can be both true
only if there is at least one common yes-answer about their truth-conditions, and they
can be both false if they share at least one common no-answer. This can be expressed
algebraically as follows, where join and meet proceed pointwisely upon the elements of
each logical value:

OP(α,ψ)= CT(α,ψ) iff A(α)∩ A(ψ)= A(⊥) and A(α)∪ A(ψ) �= A(�)
OP(α,ψ)= CD(α,ψ) iff A(α)∩ A(ψ)= A(⊥) and A(α)∪ A(ψ)= A(�)
OP(α,ψ)= SCT(α,ψ) iff A(α)∩ A(ψ) �= A(⊥) and A(α)∪ A(ψ)= A(�)
OP(α,ψ)= NCD(α,ψ) iff A(α)∩ A(ψ) �= A(⊥) and A(α)∪ A(ψ) �= A(�)

3.5 Consequence in Opposition

The fourth relation NCD is a weaker relation of mere non-contradiction, corresponding
to the general case in which the two opposite sentences can be both true or both false.
Subalternation generally appears as a subcase of non-contradiction, but it requires another
condition to be satisfied.

Blanché states it in his own vocabulary of truth-cases and indeterminate sentences
(those including three truth-cases, i.e. yes-answers):

The indeterminates are implied by the determinates whose truth-case they contain: since each has
three truth-cases, the latter is thus implied by three determinates (. . .)9

8Note the logical difference between “contraries of contradictories” and “the contrary of the con-
tradictory”: the first plural expression includes one relation SCT and two functions N in the form
CT(N(α),N(ψ)), whereas the second singular expression includes no relation and two functions R and
N in the form R(N(α)).
9[7, p. 137]. Let A(α ∧ψ)= 1000 be a case of determinate with only one truth-case, i.e. the yes-answer
a1(α) = 1; accordingly, this sentence entails the three indeterminates A(α ∨ ψ) = 1110, A(α ← ψ) =
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Fig. 7 Czeżowski’s logical
hexagon for binary sentences

In other words, SB(α,ψ) is true if and only if every truth-case for α is also a truth-case
for ψ ; but the converse needn’t hold, and this does account for the asymmetry of the
relation of subalternation unlike that of non-contradiction. This characterization of subal-
ternation as a containment relation between the truth-cases of α and ψ can be rephrased
as follows:

OP(α,ψ)= SB(α,ψ) iff A(α)∩ A(ψ)= A(α) and A(α)∪ A(ψ)= A(ψ)

It clearly appears now why SB is an asymmetric relation: the truth of SB(α,ψ) entails
that each truth-case of α is also a truth-case of ψ , whereas the truth of SB(ψ,α) would
require the converse to hold and this cannot be the case unless α and ψ express one
and the same sentence. Unlike the other three logical oppositions, subalternation should
not be formed by a standard connective: while being frequently confused with the con-
ditional →, the criterion of containment that characterizes SB makes it similar to the
metalinguistic relation of entailment or consequence. In other words, a parallel can be
made between the general properties of subalternation and Tarski’s logical consequence
as truth-preservation. That is, for any α, ψ :

α |�ψ iff ν(ψ)= T whenever ν(α)= T

SB(α,ψ) iff ai (ψ)= 1 whenever ai (α)= 1

There are at least two reasons why NCD has never been mentioned thus far as a proper
logical opposition. On the one hand, most of the literature on logical opposition merely
focused upon the logical square and its limited stock of sentences where any two sentences
that can be both true and both false happen to stand into a relation of subalternation.
However, not every pair of such non-contradictories collapses into SB with some more
complex logical polygons like Tadeusz Czeżowski’s hexagon [9], for instance.10 (See
Fig. 7.)

Taking again the binary sentences of standard logic, the above relation between α and
ψ is a case in point: these can be both true and both false, but not every truth-case of α is
also a truth-case ofψ . On the other hand, the content-dependent view of logical opposition
seems to reject that α and ψ could be properly opposed to each other; but again, our
purely formal and embracing presentation of logical opposition wants to go beyond these

1101, and A(α→ψ)= 1011. Note that this containment relation can be extended to what Blanché called
as “semi-determinates”, i.e. the binary sentences with two truth-cases or yes-answers: the determinate
A(α�ψ)= 0100 entails the two semi-determinates A(α)= 1100 and A(α�ψ)= 0110, for instance.
10Initially, Czeżowski’s hexagon was about quantified sentences and consisted in supplementing universal
{A,U,E} and particular {I,Y,O} with singular sentences {Ü, Ÿ} (Sa ∧ Pa, Sa ∧ ∼Pa). But again, our
purely formal approach of oppositions abstracts from the content of the sentences and uniquely takes the
logical values into account.
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preconditions and includes the cases in which any two sentences are compatible while
differing by their content.

Let us explore further the algebraic properties of oppositions and opposites, by return-
ing upon the binary connectives of standard logic and developing some new opposite-
forming operators in the following.

4 A Theory of Opposites

It is recognized in [7] that [14] developed a famous problem of standard logic, namely:
the interconnection between the standard connectives, and its visual presentation within
an extended polygon of logical oppositions. Initially, a number of interpreted squares
depicted the oppositions between binary sentences instead of quantifiers or modalities.
It has been noted earlier that some of the related connectives embed the four standard
relations of opposition, but they occur as arguments in these interpreted squares.

4.1 Functional Completeness

It is well known that functional completeness obtains in standard sentential logic: each
logical connective can be defined in terms of basic ones by a number of intermediary steps.
Thus incompatibility can be defined as a negated conjunction, for instance. But that does
not mean that any such connective can be defined by any other one: although the single
connective of incompatibility suffices to define any other connective, conjunction and
negation are usually taken to be the two basic connectives for a definition of the remaining
ones: rejection can be translated as a conjunction of negated sentences, disjunction as a
negation of negated conjuncts, and so on.

At the same time, one hardly sees how any connective could be turned directly into
any other one: how to turn rejection into tautology, for instance? This is not an impossible
task, however: standard negation contributes to functional completeness, but its limited
properties prevent one from having a direct definition between any two standard connec-
tives. Such is the goal of the present section, in the light of the theory of opposites.

4.2 Blanché’s “Closure Problem”

Let us call by “closure problem” the following one: how to relate any elements of a ex-
haustive set to each other into a closed logical structure? To begin with, a logical hexagon
cannot suffice to structure a complete set of relations between binary sentences: for every
set of n sentences, the number of oppositions between these corresponds to the decreas-
ing sequence (n − 1) + (n − 1) − 1 + · · · + 1 or, equivalently, (n × (n − 1))/2. Since
there are n = 16 elements in the set of binary sentences, a closed structure of their log-
ical oppositions should include (16 − 1) + (15 − 1) + · · · + 1 = 120 (or, equivalently,
(16 × 15)/2 = 120) instances of relation OP(α,ψ).
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Fig. 8 Piaget’s four quaterns and their logical values in QAS

Fig. 9 Logical square of
oppositions, logical quatern
of opposites

Blanché noted in [6, 7] that [14] failed to find a closed structure in this respect:

This problem has hardly been addressed thus far and never, to our knowledge, in a fully satisfying
way. A quadratic shape of the four junctions can be found in Bocheński, but the idea has not been
pushed farther. More developed are Piaget and Gottschalk’s investigations. Unfortunately, they
remain incomplete in that, while they organize the connectives into some well structured groups,
these very groups remain isolated from each other without being into a whole structure.11

Indeed, [7] split the various logical interconnections into four independent quadratic
structures: the logical quaterns, supplemented with their logical values in QAS. (See
Fig. 8.)

[6, 7] blamed these squares from being plainly wrong: not only are the contraries and
subcontraries inverted in (A) and (B), but several sentences are opposed to themselves
in (C) and (D). Actually, Blanché was wrong himself by taking these figures for logical
squares of opposition: these are quaterns of opposites, where the relation obtaining be-
tween the edges does not count as much as the operators by means of which they are
constructed. Here is a way to depict the difference of perspective between a square of
opposition and a quatern of opposites. (See Fig. 9.)

Despite this, [7] relevantly proposed a more structured polygon of oppositions that
helps to link some of Piaget’s quaterns. This polygon is called by him a “double hexadic
structure”, where two logical hexagons are connected in an indefinitely repeated sequence
(see Fig. 10). As the whole structure includes a restricted set of 10 binary sentences, it
cannot contain more than 45 relations of opposition instead of the expected 120 ones.

11[7, p. 122] (the author’s translation).
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Fig. 10 Blanché’s double helix of logical oppositions, their corresponding logical values in QAS, and
their incomplete opposite-forming operators among INRC

Fig. 11 Pellissier’s tetraicosahedron of logical oppositions for binary sentences, and their corresponding
logical values in QAS

Moreover, it can be seen that the “functional” counterpart of this polygon contains some
blanks: not every relation OP can be constructed by means of an operator O in the right-
sided structure, as witnessed by its unknown functions? (α⊕ψ ).

Actually, a solution to the closure problem has been found after [7]: each of the 16 bi-
nary sentences can be related to each other within a more complex polygon than Blanché’s
double hexadic structure. This solution has been discovered by Régis Pellissier in [12],
illustrated by Dominique Luzeaux, Jean Sallantin and Christopher Dartnell in [10], and
improved by Hans Smessaert in [20] with a closed structure that is a 3D tetraicosahedron
(Fig. 11).12

12The choice of such a 3D polygon is motivated by a basic construction rule in [11], namely: a geometrical
structure of logical oppositions is to be constructed so that its contradictory lines must intersect each other
in the center of the polygon without overlapping each other.
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Here is a complete list of the 120 relations OP(α,ψ) between any binary sentences α
and ψ , according to the logical values of the binary sentences and the algebraic definitions
of the oppositions in QAS.

• CT(α,ψ) (18 instances):

{1000,0100}; {1000,0010}; {1000,0001}; {1000,0110}; {1000,0011}; {1000,0101};
{0100,0010}
{0100,0001}; {0100,0011}; {0100,1001}; {0100,1010};
{0010,0001}; {0010,1100}; {0010,1001}; {0010,0101};
{0001,1100}; {0001,0110}; {0001,1010}

• CD(α,ψ) (8 instances):
For every α: {α,N(α)}

• SCT(α,ψ) (18 instances):

{1100,1011}; {1100,0111};
{0110,1101}; {0110,1011};
{0011,1110}; {0011,1101};
{1001,1110}; {1001,0111};
{1010,1101}; {1010,0111}; {1010,1110}; {1010,1011};
{1110,1101}; {1110,1011}; {1110,0111};
{1101,1011}; {1101,0111};
{1011,0111}

• SB(α,ψ) (65 instances)13

For every α: 〈⊥, α〉; 〈α,�〉
〈1000,1100〉; 〈1000,1001〉; 〈1000,1010〉; 〈1000,1110〉; 〈1000,1101〉; 〈1000,1011〉
〈0100,1100〉; 〈0100,0110〉; 〈0100,0101〉; 〈0100,1110〉; 〈0100,1101〉; 〈0100,0111〉
〈0010,0110〉; 〈0010,0011〉; 〈0010,1010〉; 〈0010,1110〉; 〈0010,1011〉; 〈0010,0111〉
〈0111,0011〉; 〈0001,1001〉; 〈0001,0101〉; 〈0001,1101〉; 〈0001,1011〉; 〈0001,0111〉
〈1100,1110〉; 〈1100,1101〉
〈0110,1110〉; 〈0110,0111〉
〈0011,1011〉; 〈0011,0111〉
〈1001,1011〉; 〈1001,1011〉
〈1010,1110〉; 〈1010,1011〉
〈0101,1101〉; 〈0101,0111〉

13OP(α,α) is not counted among the range of SB, because it is assumed there that the two relata are dif-
ferent sentences. But strictly speaking, the relation of self-identity can be seen as a kind of subalternation
since it satisfies its definition: A(α)∩ A(α)= A(α) and A(α)∪ A(α)= A(α). See note 6.
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• NCD(α,ψ) (12 instances)

{1100,0110}; {1100,1001}; {1100,1010}; {1100,0101}
{0110,0011}; {0110,1010}; {0110,0101}
{0011,1001}; {0011,1010}; {0011,0101}
{1001,1010}; {1001,0101}

4.3 Global and Local Opposites

This is not the whole story, however, since the closure problem for oppositions can be ex-
tended to the case of opposites as follows: how to extend the exhaustive range of opposite-
forming operators such that, for any two binary sentences α, ψ of standard logic, there is
a O such that ψ = O(α)? Piaget could not have thought of the double hexadic structure
suggested by Blanché, because the latter does not stand for a polygon of opposites (based
on the operators O) but, rather, a polygon of oppositions (based on the relations OP). Ac-
tually, no operator from the INRC Group can be used to construct the relata of Blanché’s
hexagons such that, for every side X of the square AEIO, O(X)= U and O(X)= Y.

A solution to this problem requires an extension of the set O to new opposite-forming
functions beyond Piaget’s subset of the three non-trivial elements {N,R,C}. For this pur-
pose, let us make a distinction between global and local operations.

A function O is said to be global if and only if it applies the same sort of transformation
to every element ai (α) of a logical value A(α). Thus N is a global operation that inverts
every element of ai (α) (from 1 to 0, and conversely); R is a global operation that proceeds
by permutation for every such element; and C is a composed operation of inversion and
permutation, following the equation C = NR. N and R are primitive with respect to C,
since permutation and inversion are basic operations that help to define the operation of
C (while the converse is not the case).

A function is said to be local if and only if it is not global, i.e. it applies the same sort
of transformation to some element(s) ai (α) of A(α) but not all. For every A(α)= abcd ,
we have an inversion function Nk

j (where k is the number of inverted elements ai (α) in
A(α), and j the j th case of the kth subset) such that, for any pair of binary sentences α,
ψ , ψ = Nk

j (α). This results in a difference between inversion and contradiction, since
only the Piagetian global inversion function N is still a contradictory-forming operator as
depicted in the following:

• Global inversion: N = N4
1

A
(
N(α)

) = A
(
N4

1(α)
) = a′b′c′d ′

• Local inversions:

A
(
N1

1(α)
) = a′bcd; A

(
N1

2(α)
) = ab′cd; A

(
N1

3(α)
) = abc′d; A

(
N1

4(α)
) = abcd ′

A
(
N2

1(α)
) = a′b′cd; A

(
N2

2(α)
) = ab′c′d; A

(
N2

3(α)
) = abc′d ′;

A
(
N2

4(α)
) = a′bcd ′; A

(
N2

5(α)
) = a′bc′d;

A
(
N2

6(α)
) = ab′cd ′;
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Fig. 12 A complete set of local opposite-forming operators Nk
j for Blanché’s double helix of logical

oppositions

A
(
N3

1(α)
) = a′b′c′d; A

(
N3

2(α)
) = ab′c′d ′; A

(
N3

3(α)
) = a′b′cd ′;

A
(
N3

4(α)
) = a′bc′d ′

Accordingly, it can be seen that the generic operation of inversion can solve the clo-
sure problem for opposite-forming operators by means of local applications. Returning
to Blanché’s double helix, the unknown functions are then to be replaced by new local
functions in the right-sided polygon of opposites. (See Fig. 12.)

It must be noted that the use of local functions entails a complete relativization of
the correspondences between opposites and oppositions: every relation of opposition OP
can be constructed by means of any local opposition Ok

j . While this holds only for some
sentences α and some operators of INRC, in the sense that OP(Φ,R(Φ))= OP(Φ,N(Φ))
or OP(Φ,C(Φ))= OP(Φ,N(Φ)) only when Φ ∈ {α,ψ,∼α,∼ψ,⊥,�}, this is the case
for every binary sentence Φ whenever O is a local function. The preceding case has been
restricted to the localization of inversion N, but the same process can be safely applied to
the other two local functions of reciprocity R and correlation C. Taking conjunction as an
arbitrary starting point, here is a tetraicosahedron of opposites that exhaustively describes
the way in which any relation of opposition OP(α⊕ψ,O(α⊕ψ)) can be constructed by
means of any local operator Nk

j . (See Fig. 13.)
Following Piaget’s matrix for the group of global functions INRC, each of these func-

tions equates with the relative product of two other ones Ok
j × Ok

j . Here is a more
fine-grained matrix for this group of commutative local functions, such that XY = YX.
(See Fig. 14.)

The preceding patently shows how opposition proceeds from negation. But it is not
clear which sort of negation one talks about in this theory of logical opposites. Actually,
the enlarged group Ok

j contains a set of negation-forming operators without any special
constraint: it can be considered as a set of “proto-negations”, i.e. unary operators that give
rise to proper negations without being logical negations themselves (see Sect. 5.5). But
what do they amount to exactly, if so?
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Fig. 13 A complete set of local functions Nk
j for Pellissier’s tetraicosahedron of binary connectives,

where the basic argument is α ∧ψ

Fig. 14 A matrix for the commutative group of local functions Nk
j

5 Opposition and Negation

It is taken to be granted that opposition is closely related to negation, since the relation
OP(α,N(α)) relies upon the opposite-forming operator N. Moreover, it can be shown that
N corresponds to the classical negation: OP(α,N(α)) = CD(α,ψ). But what about the
other opposite-forming operators beyond N?
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Fig. 15 Three sorts of logical negation within three hexagons of opposition for alethic modalities: clas-
sical negation (I), paracomplete negation (II), and paraconsistent negation (III)

5.1 A Theory of Negations?

Hartley Slater famously claimed in [19] that there cannot be true contradictions, insofar
as every such negation should result in a relation of incompatible truth-values. It has
been variously replied that paraconsistent negation needn’t rely upon dialetheia, and [4]
developed this objection by arguing that a modal hexagon implicitly includes three distinct
negations in the classical (I), paracomplete (II), and paraconsistent (III) hexagons. (See
Fig. 15.)

Following [20], QAS helps to algebraize the language of modal atomic sentences ♣α
by means of an alternative question-answer game: instead of questions about the truth-
conditions of α⊕ψ , Smessaert’s Modal Quantified Algebra MQA2 considers modalities
♣ as generalized quantifiers and asks questions about how often an atomic sentence α is
true or false. It results in an ordered set of four alternative questions Q1: “Is α always
false?”, Q2: “Is α sometimes (but not always) false?”, Q3: “Is α sometimes (but not
always) true?”, and Q4: “Is α always true?”, together with their 24 = 16 ordered answers:

(1) A(⊥)= 0000;
(2) A(�∼α)= 1000;
(3) A(∼α ∧∼�∼α)= 0100;
(4) A(α ∧∼�α)= 0010;
(5) A(�α)= 0001;
(6) A(∼α)= 1100;
(7) A(∼�α ∧∼�α)= 0110;
(8) A(α)= 0011;
(9) A(�∼α ∨�α)= 1001;

(10) A(�∼α ∨ (α ∧∼�α))= 1010;
(11) A((∼α ∧∼�∼α)∨�α)= 0101;
(12) A(∼�α)= 1110;
(13) A(∼α ∨�α)= 1101;
(14) A(�∼α ∨ α)= 1011;
(15) A(∼�∼α)= 0111;
(16) A(�)= 1111

These logical values of the modal sentences shed some light upon the connection be-
tween logical negations and oppositions. Here are the algebraic counterparts of the above
hexagons, where each modal sentence is replaced by its logical value in QAS. (See
Fig. 16.)
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Fig. 16 The three logical hexagons and their corresponding logical values in QAS

Now according to [4], (I) is a classical logical hexagon because it essentially ex-
emplifies the classical negation through the relation of contradiction CD(�α,∼�α) =
CD(�α,N(�α)); (II) expresses the paracomplete negation through the contrary relation
CT(α,�∼α), provided that � stands for the necessity from S4; and (III) exemplifies the
paraconsistent negation through the relation of subcontrariety SCT(α,∼�α), assuming
that � is the necessity from S5. How to account for such a correlation between opposi-
tions and negations?

5.2 Non-standard Negations Are Local Opposites

To begin with, it is argued in [4] that a negation is paracomplete whenever a sentence and
its paracomplete negation can be both false, paraconsistent if these can be both true. Such
criteria match with the main theorems of intuitionistic and paraconsistent logics as well
as the definitions of contrariety and subcontrariety.

Moreover, a difference made between the three preceding hexagons is that only the first
negation in (I) can be constructed by means of a Piaget’s opposite-forming operator. Two
remarks can be addressed to this comparison between oppositions and negations, however.
For one thing, each of the aforementioned negations can be constructed by means of a
local opposite function instead of the global ones: thus

CD(�α,∼�α)= OP
(
�α,N4

1(�α)
)

CT(α,�∼α)= OP
(
α,N3

4(α)
)

SCT(α,∼�α)= OP
(
α,N3

3(α)
)

At the same time, negation needn’t be equated with a modal unary operator: although
[4] identified paracomplete and paraconsistent negations with the contrary and subcon-
trary relations of the hexagons (II) and (III), it can be replied that a proper paracomplete
negation of any sentence α needn’t be rendered as �∼α, just as its proper paraconsistent
negation needn’t be ∼�α. Actually, a paracomplete negation is any opposite-forming op-
erator O such that α and O(α) cannot be both true, and a paraconsistent negation is such
that these can be both true. In the semantics of QAS, this means that the negations of α
are variously defined in terms of their compatible answers ai (α):

• Classical negation: ∼
OP(α,ψ)= OP(α,∼α)= CD(α,ψ) iff ai (α)= 1 ⇔ ai (∼α)= 0
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Fig. 17 A complete set of local functions Nk
j for Pellissier’s tetraicosahedron of alethic modalities,

where the basic argument is �α

• Paracomplete negation: ¬
OP(α,ψ)= OP(α,¬α)= CT(α,ψ) iff ai (α)= 1 ⇒ ai (¬α)= 0

• Paraconsistent negation: −
OP(α,ψ)= OP(α,−α)= SCT(α,ψ) iff ai (α)= 0 ⇒ ai (−α)= 1

Therefore, each of the three preceding hexagons actually contains the three sorts of nega-
tion among their oppositional relations since each of the contrary or subcontrary relations
relies upon the use of an opposite-forming operator O, such that the opposites α and O(α)
cannot be both true or both false. This entails that there can be more than three exemplifi-
cations of negation in the modal hexagons, in the sense that there can be more than three
ways not to be both true or false. Hence the seven modal hexagons that can be added to
the preceding three ones, thus yielding a combined tetraicosahedron of modalities.14 (See
Fig. 17.)

14See [11], where the logical tetracosahedron is presented as a gathering of one logical cube and ten
logical hexagons. Six of these hexagons are Blanché’s, Béziau’s and Smessaerts’s strong hexagons, i.e.
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Again, the connection made between negation and modalities is merely convenient but
not crucial: the syntactic translation of negations holds beyond the sole fragment of modal
sentences and equally holds for the preceding language of binary non-modal sentences.

5.3 Non-standard Negations Are Intensional Functions

The main difference between contradiction and the three other relations of opposition
is that only the former is a truth-function: to each truth-value α corresponds only one
truth-value for the bijection N(α), whereas there can be several values associated to the
injection R(α).

This accounts for the non-truth-functional behavior of the non-standard negations con-
structed by means of R, insofar as these proceed as intensional rules by associating a set
of values to an initial value. This helps to explain why paracomplete and paraconsistent
negations are formed by means of R without being identifiable with it; the validity of
RR = I shows evidence of this difference, since the iteration of a paracomplete negation
does not result in the corresponding affirmation: ¬¬α � α, i.e. not SB(¬¬α,α).

More generally, the intensional application of ∼ (or −) to α maps α to the set of
formulas that cannot be true (or false) together with α. This equally holds for ∼, but with
the crucial difference that the classical negation ∼ maps to a single value and accounts
for its involutivity.

But just as the intensional modalities in a possible-world semantics, R can be exten-
sionalized by changing the set of truth-values into a set of alternative logical values. This
has been done with QAS, so that this non-Fregean semantics turns O into a set of inten-
sional functions similar with the modal operators of a Fregean (truth-functional) seman-
tics.

Using opposites as negations, contrary-forming operators proceed as paracomplete
negations of either modal or non-modal sentences, e.g. in the relation OP(α � ψ,

α ↓ ψ) = OP(α � ψ,N2
3(α � ψ)) = OP(α � ψ,¬(α � ψ)) or in OP(�α,∼α ∧

∼�α) = OP(�α,N2
6(�α)) = OP(α � ψ,¬(α � ψ)); subcontrary-forming opera-

tors proceed as paraconsistent negations, e.g. in the relation OP(α → ψ,α � ψ) =
OP(α → ψ,N3

3(α → ψ)) = OP(α → ψ,−(α → ψ)) or in OP(∼�∼α,∼α ∨ �α) =
OP(∼�∼α,N2

5(∼�∼α))= OP(∼�∼α,−(∼�∼α)).
It is worthwhile recalling that, except for the contradictory-forming operator N4

1, no
single operator O (whether global or, a fortiori, local) results in only one relation of op-
position: the nature of OP(α,O(α)) crucially depends upon the value of the argument
α it applies upon. To compare with the preceding examples, N2

3 is not a contrary- but
subcontrary-forming operator when applied to α ∨ ψ or ∼α ∧ ∼�∼α. And conversely,
N2

5 is not a subcontrary- but contrary-forming operator when applied to α�ψ or �∼α.
Finally, some sentences are such that their logical values prevent them from stand-

ing into a contrary or subcontrary relation; this relies upon the number of inversions
applied by the local function Nk

j . Letting i be this number such that i(x) = x′ (where
x ∈ {0,1}), here are the resulting oppositions OP(α,O(α) for the 16 sentences A(α) =
〈a1(α),a2(α),a3(α),a4(α)〉:

such that A(U)= A(A)∪A(E) and A(Y)= A(∼I)∩A(∼E); and the remaining four ones are Pellissier’s
weak hexagons such that A(U) �= A(A)∪ A(E) and A(Y) �= A(∼I)∩ A(∼E).
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• i = 1: OP(α,O(α))= SB(α,ψ) for every α
• i = 2: OP(α,O(α))= CT(α,ψ)× 2, SCT(α,ψ)× 2, NC(α,ψ)× 4, SB(α,ψ)× 8
• i = 3: OP(α,O(α))= CT(α,ψ)× 6, SCT(α,ψ)× 6, SB(α,ψ)× 4
• i = 4: OP(α,O(α))= SB(α,ψ)× 2, CD(α,ψ) for every α

This characterization of SB accounts for the peculiar fact that CD and SB don’t differ
when α = ⊥ and ψ = �. For SB does not state that its two opposite terms can be true
and false together, which would be incompatible with CD. Rather, SB states that every
truth-case (or yes-answer) of the superaltern α is also a truth-case (or yes-answer) of the
subaltern ψ . But given that this definition of SB doesn’t require for the superaltern to
include at least one truth-case (or yes-answer), the same situation appears here as with
the empty class: its set of truth-cases (or yes-answers) is empty and, thus, is included into
every other set of truth-cases (or yes-answers); hence A(⊥) is included into A(ψ) for
every ψ . Consequently, ⊥ and � satisfy both CD and SB without entailing any paradox-
ical situation but a peculiar case in which two opposites satisfy two different relations of
opposition.

5.4 Subalternation and Double Negations

Subalternation has not been mentioned yet in this section about negation, although it al-
ways occurs in the above oppositions and irrespective of i. Now assuming that O proceeds
as an operator of negation, why not to conclude from it that subalternation equally results
from the relation of a sentence and one of its negations?

Actually, the functional approach to oppositions through opposite-forming operators
justifies the general reluctance to consider subalternation as a proper opposition: the latter
concept is closely related to negation, whereas subalternation is used to preserve truth
and proceeds as a sort of mixed double negation or weak affirmation. This clearly appears
in the light of Piaget’s INRC Group of global operators O, where correlation C helps
to construct subalternation and is defined as the product of inversion N and reciprocity
R: C = NR = RN; C is a subalternation-forming operator, N a contradictory-forming
operator that behaves like a classical negation, and R an operator whose behavior crucially
depends upon the value of its argument. Let y(α) be the number of yes-answers to Q(α);
it results in a number of distinctive unary operators formed by R according to y(α):

• Affirmation
R(α)= α with y(α)= 0, or y(α)= 2 and a1(α)= a4(α), or y(α)= 4

• Classical negation
R(α)=∼α with y(α)= 2 and a1(α) �= a4(α)

• Paracomplete negation
R(α)=¬α with y(α)= 1

• Paraconsistent negation
R(α)=−α with y(α)= 3
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According to the nature of the unary operator formed by R, it is easily verified that the
relation of subalternation SB needn’t result from the operator C = NR:

OP
(
α,C(α)

) = OP(α,∼α) when y(α)= 0, or y(α)= 2 and
a1(α)= a4(α)

OP
(
α,C(α)

) = OP(α,∼¬α) when y(α)= 1
OP

(
α,C(α)

) = OP(α,∼∼α)= OP(α,α) when y(α)= 2 and a1(α) �= a4(α)

OP
(
C(α),α

) = OP(∼− α,α) when y(α)= 3
OP

(
α,C(α)

) = OP(∼α,α) when y(α)= 4

These constructions betray two exceptions in Piaget’s matrix INRC (see Sect. 3).
Firstly, the contradictory-forming operator N can also yield a relation of subalternation

when applied to ⊥ (i.e. with y(α)= 0) or � (i.e. with y(α)= 4). It means that two oppo-
site sentences can stand into a relation of subalternation without being non-contradictory
to each other, in the sense that they are contradictories when y(α)= 0 or y(α)= 4. This
special feature has not been taken seriously by Blanché, but it should not be neglected in
a complete formal theory of oppositions and opposites.

Secondly, the cases where y(α)= 2 and a1(α)= a4(α) are such that NR(α)= NI(α)=
N(α), so that C(α)= N(α) with these two values.

Apart from these peculiarities, subalternation typically results from the standard nega-
tion of a non-standard negation (or the converse).

Finally, the intensional aspect of the non-standard negations • = {¬,−} entails that
these cannot be safely commuted; they can be so only with the extensional, standard
negation ∼. That is:

For every • ∈ {¬,−} : ∼•α = •∼α, but ¬−α �= −¬α

5.5 A Theory of “Proto-negations”!

All of this could relevantly shed some new light on the connection between opposition
and negation.

On the one hand, the view of subalternation as a mixed double negation could rele-
vantly justify the usual rejection of subalternation by whoever considers opposition to be
essentially related to negation while excluding the opposite operator of affirmation. But
such a mixed double negation needn’t lead to a plain affirmation, depending upon the
value of its arguments.

On the other hand, a reference to Piaget’s INRC Group has shown that any opposi-
tion somehow resorts to negation through the application of opposite-forming operators:
although subcontrariety and subalternation admit their opposites α and ψ to be true to-
gether, ψ results from the application of a kind of “proto-negation” O to α such that
O(α) = ψ . Whether global or local, the family of O turns the Disjunctive Normal Form
of any sentence into another one and this seems to be how opposition is always related to
negation as change: opposition essentially works as a change- or difference- rather than
an incompatibility- or falsity-forming operator in the light of QAS, turning yes-answers
into no-answers (or conversely) in every case (with N4

1 = N) or in some case(s) (with R
or C, or any Nk

j , where k �= 4).
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6 Conclusion and Prospects

Let us recapitulate the main theses of this paper:

(i) Opposition is a relation OP(α,ψ) between two opposite terms α and ψ , the second
of which results from the first one by applying an opposite-forming operator O such
that O(α) = ψ ; the properties of OP and O can be investigated within such a non-
Fregean semantics as QAS, where the logical value of a sentence is an ordered set of
answers to corresponding questions about it.

(ii) With respect to the theory of binary sentences α⊕ψ , the logical value of a sentence
characterizes its Disjunctive Normal Form; Piaget’s INRC Group roughly expresses
the various properties of O, where the operation N is a contradictory-forming opera-
tor corresponding to the standard negation.

(iii) The case of correlation C has led to the result that subalternation is a special subcase
of opposition: the compossibility of truth and falsity for its opposite terms is a nec-
essary, but not sufficient condition for it. The definition of subalternation in terms
of yes-answers-containment shows that opposition includes the Tarskian relation of
entailment among its components.

(iv) It is possible to turn any given sentence into any other one by means of O, provided
that O includes a more fine-grained set of local functions. For this purpose, Piaget’s
three global operations N, R, C have been collapsed into a unique set of 16 local
operations Nk

j which correspond to proto-negations: they are the basic operations
by means of which logical negations can be constructed.

(v) Following Béziau’s translation of logical negations within modal logic, it has been
shown that the connection between negations and oppositions is sufficient for an al-
gebraic definition of standard and non-standard negations. Subcontrariety and subal-
ternation deserve to be included among the proper range of oppositions, in the sense
that they essentially proceed from the application of opposite-forming operators to
their argument(s).

A number of problems remains to be investigated within this new theory of opposites,
among which the following ones: Is there an informal meaning for the opposite-forming
operators O? Can the various features of O be generalized for an arbitrary logical value?
What about the counterparts of local reciprocity Rk

j or local correlation Ck
j , in addition

to the functions of local inversion Nk
j ? How to characterize the logical value of any

structured sentence, in addition to the binary or modal unary sentences; what is the logical
value of a modal binary sentence like �(α ∧ ψ), for instance? What of many-valued
oppositions? Non-standard negations have been defined within the standard frame of a
Boolean algebra, but what about the converse; that is: how to define classical negation
within a non-standard frame; does this require the use of a non-Boolean algebra?

A lot is still to be accomplished before giving a more substantial role to this introduc-
tory theory of opposites within the area of logic.
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27, 45–75 (2011)
18. Sesmat, A.: Logique—II. Les raisonnements, la logistique. Hermann, Paris (1951)
19. Slater, H.: Paraconsistent logics? J. Philos. Log. 24, 451–454 (1995)
20. Smessaert, H.: On the 3D visualization of the logical relations. Logica Univers. 3, 212–231 (2009)

F. Schang (�)
LHSP Henri Poincaré (UMR7117), Université de Lorraine, Nancy, France
e-mail: schang.fabien@voila.fr
e-mail: fabien.schang@univ-nancy2.fr

mailto:schang.fabien@voila.fr
mailto:fabien.schang@univ-nancy2.fr


Pluralism in Logic: The Square of Opposition,
Leibniz’ Principle of Sufficient Reason
and Markov’s Principle

Antonino Drago

Abstract According to the present pluralism in mathematical logic, I translate from
classical logic to non-classical logic the predicates of the classical square of opposition.
A similar unique structure is obtained. In order to support this new logical structure, I in-
vestigate on the rich legacy of the non-classical arguments presented by ingenuity by sev-
eral authors of scientific theories. A comparative analysis of their ways of arguing shows
that each of these theories is severed in two parts; the former one proves a universal pred-
icate by an ad absurdum proof. This conclusion of every theory results to be formalised
by the A thesis of the new logical structure. Afterwards, this conclusion is changed in
the corresponding affirmative predicate, which in the latter part plays the role of a new
hypothesis for a deductive development. This kind of change is the same suggested by
Leibniz’ principle of sufficient reason. Instead, Markov’s principle results to be a weaker
logical change, from the intuitionist thesis I in the affirmative thesis I. The relevance of
all the four theses of the new logical structure is obtained by studying all the conversion
implications of intuitionist predicates. In the Appendix, I analyse as an example of the
above theories, Markov’s presentation of his theory of real numbers.

Keywords Square of opposition · Non-classical logic · Doubly negated statements ·
Logical principles

Mathematics Subject Classification Primary 01A20 · Secondary 03A05 · 03B20

1 The Present Pluralism in Logic

Even few decades ago the kinds of logic which differ from the classical one were called
‘deviant logic’.1 Instead, at present time a plethora of kinds of logic appear to be relevant
at least in some particular situations.2

In philosophy we can trace back this logical pluralism to the ancient times. A recent
study on Aristotle’s logic concludes: “Thus the first logic was at least in the spirit of an
intuitionist logic” [43], which is the most relevant non-classical logic. In last century the
mathematical logicians introduced a formal pluralism in mathematical logic. The works
by Glyvenko, Kolmogorov and Goedel started to put on the same par of classical logic the

1The last instance of this qualification is the otherwise excellent text by [23].
2I supported this view by the paper [11]. About the pluralism in science, see my paper [8].

J.-Y. Béziau, D. Jacquette (eds.), Around and Beyond the Square of Opposition, 175–189
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intuitionist one [21]. Some more studies established a borderline between classical logic
and almost all kinds of non-classical logic; this borderline is constituted by the failure of,
better than the law of the excluded middle, the law of double negation [18, 22, 37, 38, 42];
hence, a doubly negated sentence which is not equivalent to the corresponding affirmative
sentence (= DNS) belongs to non-classical logic,3 whose a first instance is intuitionist
logic.

Let us remark that a doubly negated sentence may be a DNS for several reasons; within
scientific theories the most important reason is the lack of operative-experimental evi-
dence supporting the corresponding affirmative sentence. This test is easily applied to
sentences belonging to scientific theories (which usually include, beyond affirmative sen-
tences about experimental data, also DNSs for theoretical reasons). Hence, this test when
applied to a scientific text reveals the author’s choice on the kind of mathematical logic
governing his theory. Notice that even a sole, essential DNS plays a discriminating role
in an argument or in a text, its presence entails that this argument or this text is governed
by non-classical logic. This crucial test, by relying on the evidence of a sentence, links
the variety of the kinds of logic to reality in an unprecedented way. No surprise if in the
following some important consequences will result.

In the following Sect. 2 the three translations from classical logic to non-classical logic
are exploited for defining a SO-like. In order to support such a logical structure, in Sect. 3
I will investigate on the rich legacy of the arguments manifested by the original texts of
past scientific theories, through their use of DNSs belonging to non-classical logic. In
fact, each of these theories is severed in two parts; in the former part several DNSs play
essential roles. In this part a final ad absurdum proof states a doubly negated predicate of
universal validity on all the cases at issue. In Sect. 4 the conclusions of the more relevant
theories are quoted and then formalised in logical terms; all them result to be equivalent
to a non-classical predicate which is the same of the predicate formalising Leibniz’ prin-
ciple of sufficient reason. In Sect. 5 I illustrate how the author changes this conclusion in
the corresponding affirmative predicate, that he then considers as a new hypothesis-axiom
from which in the latter part of the theory he deductively develops all consequences ac-
cording to classical logic; this change is formally the same as the change from the prin-
ciple of sufficient reason to the corresponding affirmative statement. In Sect. 6 I will take
an advantage from Markov’s paper on the theory of constructive mathematics, for inves-
tigating on what justifies an author of the above theories to change the kind of logic.
Markov performed a similar change of a doubly negated existential predicate, which is
both a decidable one and proved by an ad absurdum proof, in the corresponding affirma-
tive predicate (Markov’s principle). In Sect. 7 this change is shown to be a change of the I
thesis of the SO-like in the corresponding I of SO, whereas the principle of sufficient rea-
son, together with all previous changes, does the same for the stronger A thesis. In Sect. 8
the list of all valid conversion implications between the couple of intuitionist predicates
shows the relevance of the four theses of the SO-like among all the intuitionist predicates.

3Let us recall that the relationships of an affirmative proposition of propositional classical logic with the
corresponding DNS of intuitionist logic is assured by a well-known theorem on their relationship—i.e.
once a formula A is true in classical logic, then evenly ¬¬A is true in the latter logic. Instead, to translate
a DNSs in an affirmative sentences, owing to the failure of the law of the double negation, is a problematic
move [41, 56ff]. Notice also that in intuitionist logic an ad absurdum proof ends by a DNS; to change it
in an affirmative sentence is allowed by classical logic only [18, p. 27].
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Table 1 The versions of the four theses of the SO in both classical and non-classical logic

Classical SO Goedel SOg Kolmogorov SOk Kuroda SOq

A ∀x A(x) ∀x ¬¬A(x) ¬¬∀x ¬¬A(x) ¬¬∀x ¬¬A(x)

E ¬∃x A(x) ¬¬∀x ¬A(x) ¬∃x ¬¬A(x) ¬∃x A(x)

I ∃x A(x) ¬∀x ¬A(x) ¬¬∃x ¬¬A(x) ¬¬∃x A(x)

O1 ∃x ¬A(x) ¬∀x ¬¬A(x) ¬¬∃x ¬A(x) ¬¬∃x ¬A(x)

O2 ¬∀x A(x) ¬∀x ¬¬A(x) ¬∀x ¬¬A(x) ¬∀x ¬¬A(x)

In the Appendix Markov’s paper will be analysed as an example of the above theories
through its DNSs.

2 Translations of the Square of Opposition in Non-classical Logic

Let us recall that by introducing in various ways double negations Glyvenko-Goedel,
Kolmogorov and Kuroda suggested easy rules for translating predicates of classical logic
in the corresponding ones in both intuitionist logic and minimal logic. The first translation
adds two negations to each prime and substitutes (in shortened notation) ¬∀¬ for the
existential quantifier ∃ (plus the negation of the de Morgan version of the LEM). The
second translation is obtained “by simultaneously inserting ¬¬ in front to all subformulas
of X (including X itself)”; the third one is obtained by inserting “¬¬ after each occurrence
of ∀ and in front to the entire formula”.4

Let us apply the above three translations to the four predicates of the classical SO
(recall that a triple negation is equivalent to a single negation; the classical thesis O is
considered in both versions: “Some S is not P” and “Not every S is P”). I present all them
by means of Table 1, where A(x) summarises “S is P”.5

I call respectively SOg, SOk, SOq the three SO-like so obtained.
Which relationships among the corresponding predicates of the three translations of

SO in non-classical logic? The answer is not easy because whereas the classical predicate
logic is a calculus, the intuitionist predicate logic not.

However, there exist some equivalences theorems between the different translations of
classical logic to intuitionist predicate logic.6 In this logic Pg ↔ Pk (where P is any predi-
cate). Moreover, the Corollary 3.6 of the previous reference states that negative predicates

4[41, pp. 57–59]. In a previous paper [12] I introduced a square of opposition including at the same
time two classical predicates (the theses A and E) and two non-classical predicates (the theses I and O)
which differ from the traditional ones because the copula ‘is’ is changed in ‘it is not true that it is not’, or
‘is equivalent’; this addition of double negations is not enough to represent one of the above-mentioned
translations; however the results of the Sects. 7 and 8 of this paper agree with the above-mentioned
translations.
5According to modern logicians Aristotle’ square of opposition did not take in account the existential
import of the theses. A more accurate investigation by authoritative scholars showed that instead Aristotle
did it [33].
6The same translations hold true for minimal predicate logic, i.e. when the logical law ex falso quodlibet
(P → (¬P → Q), where P and Q are whatsoever predicates) is weakened in the law P → (¬P →¬Q),
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Table 2 The equivalence
relationships among the
translations in intuitionist
logic of the theses of the
classical SO

Ag ↔ (3.8,3.6) Ak = Aq

Eg ↔ (3.8) Ek ↔ (3.8) Eq

Ig ↔ (11,12) Ik ↔ (3.8) Iq

O1
g ↔ (D) O1

k = O1
q

O2
g = O2

k = O2
q

(i.e. the predicates without ∃ and v and whose prime is negative) enjoys the property
P ↔ ¬¬P [41, p. 59]. In the following these result will be recalled by merely writing
respectively 3.8 and 3.6. In addition, we refer to the list of implications offered by two
classical presentations of intuitionism.7 As a result, all the three translations of a thesis of
SO are mutually equivalent.

Table 2 summarises the mutual relationships among the three translations of each thesis
of the classical square of opposition in intuitionist logic.

Result 1 The three doubly negated translations of the four theses of SO in intuitionist
logic give a unique SO-like which is baptised SOgkq.

3 The Use of Non-classical Logic in the Original Texts of Some Past
Scientific Theories

In order to discover the possible use of this SO-like logical structure I will follow Troel-
stra’s suggestion for a similar question: “to gain further insight into the acquisition of
mathematical [and scientific] experience by historical studies” [40, p. 223]. I will inves-
tigate on the scientific theories because they represent thinking structures at the highest
level as possible of the logical rationality. I will explore the rich legacy of scientific theo-
ries in the aim to find out the commonly accepted patterns of arguing suggested by their
founders. In other terms, I will deal with an experimental logic whose experimental data
are the arguing patterns of some past scientific theories.

Along forty years I investigated on the original texts illustrating scientific theo-
ries. I discovered several theories instantiating a specific use of non-classical logic in
their respective presentations since they rely on some essential DNSs. These theories
are the following ones: L. Carnot’s theories of calculus and geometry, Lagrange’s me-
chanics, Lavoisier’s chemistry, Avogadro’s atomic theory, S. Carnot’s thermodynam-
ics, Lobachevsky’s non-Euclidean geometry, Galois’ theory of groups, Klein’s Erlangen

hence the latter logic is strictly weaker than intuitionist logic [41, p. 57]. One may guess that an experi-
mental scientist is not allowed to deduce ex falso everything, included the true; but the false only; hence,
his logic is the minimal one. In such a case the above translations in minimal predicate logic give distinct
results from those in intuitionist logic when one claims that the copula “is” of a thesis of SO is better
translated in logical terms by an equivalence, i.e. a double implication. In such a case the three transla-
tions of the theses of SO in minimal predicate logic are not equivalent in both E and I theses. However,
according to the next footnote 18, the following results seem hold true for the minimal SO-like too even
in the latter case.
7Reference [25] lists 14 valid implications among couples of predicates. In the following an implication
between two predicates will be denoted by putting in round bracket its number in the list of this section
[18, p. 29].
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program, Poincaré’s theory of integer numbers, Einstein’s theory of special relativity,
Planck’s theory of quanta, Kolmogorov’s foundation of minimal logic, Church’s thesis,
Markov’s theory of constructive functions.

In each text presenting one of these theories the author argues in a little noticed way.
By ingenuity he makes use of DNSs so that their mere sequence gives the logical thread
of the author’s entire illustration.8 Moreover, a comparative analysis on the kind of de-
velopment shared by the above scientific theories using DNSs, shows that each theory
does not begin by stating some axioms from which to draw deductions; that is, it is
not organised according to that ideal model of an apodictic (= deductive) theory, which
was first suggested by Aristotle, then applied by Euclid in geometry, subsequently con-
firmed by Newton in mechanics and eventually improved by Hilbert to the model of an
axiomatic theory.9 Instead, such a theory presents as first a universal problem which at
that time was unsolvable by current scientific techniques; to look for a solution requires
to find out a new scientific method; which the development of the theory goes to dis-
cover.

In the texts written by the above-mentioned scientists a former part concludes, by
means of an ad absurdum proof, a doubly negated predicate of an universal validity on all
the cases considered by the theory.10 Of course, this way of organising a theory is mani-
festly a non-deductive one. I call such a specific organisation of a theory a problem-based
organisation (PO).

By summarising, in his construction of a PO theory a scientist follows a specific logical
strategy; he argues by means of DNSs belonging to non-classical logic and he wants to
prove by an ad absurdum proof an universal predicate.

Let us recall Leibniz’ logico-philosophical principle of sufficient reason:

Two are the principles of the human mind: the principle of non-contradiction and the principle of
the sufficient reason . . . , [that is] nothing is without reason, or everything has its reason, although

we are not always capable of discovering this reason . . .11

The above sentence (“Nothing is without reason”) is a DNS, as the same Leibniz ex-
plains why by means of the next sentence: Leibniz wants to conclude “everything has
a reason”, but he underlines that not always we have sufficient evidence for affirming
with certainty this reason; hence, only the doubly negated sentence holds true. Hence, the

8In the past, this way of arguing joining together the DNSs was ignored. Rather some philosophers argued
by considering at the same time the three values of a sole proposition A, i.e. A, ¬A and ¬¬A. Cusanus
claimed to argue through an opposite’s coincidence of A and ¬A; Hegel through an almost mechanical
addiction of a negation to a ¬A sentence. See my paper [15].
9It is by appealing to the past experiences of scientific theories that I improved the unsuccessful Beth’s
research for a non-deductive way of organising a mathematical theory [2]. D’Alembert first stressed that
there exists two kinds of theory organisation; he suggested that, beyond the “rational” kind, an “empirical”
one exists [6]. Subsequently, for illustrating these two different models L. Carnot devoted two pages of
each his two books on mechanics [3, 4]; he claimed to develop his theory in an “empirical” way. In past
century both H. Poincaré [34, 35] and independently A. Einstein again suggested two similar kinds of
theory organisation [27, 32].
10Some of the above-mentioned authors wrote texts which are less structured in logical terms; e.g.
L. Carnot’s calculus, Lavoisier’s chemistry, Galois’ theory of groups, Klein’s Erlangen program, Ein-
stein’s theory of special relativity all lack of ad absurdum theorems.
11[29]. Here and in the following, emphasis is added for manifesting to the reader the two negations
within a doubly negated sentence.
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above logical strategy may be considered as summarised by Leibniz’ principle of suffi-
cient reason.

4 Qualifying in Formal Terms the Predicate Concluding
a Problem-Based Theory

Let us list the universal conclusions of some PO theories (in order to facilitate the reader,
I will add to two conclusions their translations in more plain words).

Lobachevsky: “. . . without leading to any contradiction in the results”; i.e. No

contradiction results.12

S. Carnot: “. . . no change of temperature inside the bodies employed for obtaining the
motrice power of heat occurs without a change in the volume”.13

Poincaré: “If the absence of contradiction of a syllogism whose number is entire
implies the absence of contradiction of the following one, one has to not fear any
contradiction for each syllogism whose number is entire”.14

Kolmogorov: “None of the conclusions of ordinary mathematics that are based on the
use outside the domain of the finitary . . . . can be regarded as firmly established” (and
also: “No contradiction from the use of the principle of excluded middle”).15

We remark that each above conclusion is formalised by a same logical formula:

¬∃S is ¬P.

Some authors achieved conclusions of a different kind. Avogadro: “[All] The propor-
tions among the quantities in the combinations of the substances do not seem depend
other than both the relative number of molecules which combine themselves and the
number of the composed molecules which result from them”,16 i.e., All proportions

12[30, Proposition 19]. This book was analysed through its DNSs by my paper [14]. Lobachevsky’s main
text puts the problem of how much parallel lines to a straight line exist. In order to obtain evidence for his
guess—i.e. two parallel lines—he proves through DNSs five theorems, most of which are ad absurdum
theorems. At the end of the prop. 22, shown by an ad absurdum theorem, he concludes that his supposition
with respect to Euclid’s hypothesis, receives an equivalent evidence in both all points and in all figures in
the space.
13[5, p. 23]. S. Carnot’s thermodynamics puts the problem of the maximum efficiency in the heat/work
conversions; in order to solve it, he looks for a new method by arguing through DNSs about his celebrated
cycle of four transformations. The list of DNSs ends by means of his well-known ad absurdum theorem
about the maximum efficiency in all heat/work conversions. Carnot’s book was analysed through its DNSs
by the paper [17].
14[36, p. 187]. Poincaré criticism to Formalists’ attempt to prove by finitist means the principle of math-
ematical induction concludes by essentially the following DNS: “. . . does not exist contradiction” for all
entire numbers. The current version of this principle changes it in the corresponding affirmative predicate.
See my paper [7].
15[28]. Kolmogorov’s foundation of the minimal logic argues by means DNSs and an ad absurdum theo-
rem stating the above conclusion. Afterwards, Kolmogorov thinks that nothing opposes to always deduc-
tively argue by means of pseudotruths from the axioms of the type A of Hilbert’s formalisation of logic.
See also [10].
16[1, p. 58]. The subsequent sentence (“Hence, it is necessary thus to admit that [there it is not true that
do not exist] there exist simple relationships also among the volumes of [all] the gaseous substances
and the number of the simple or composed molecules which compose them) constitutes the celebrated
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among the quantities in the combinations of the substances do not depend other than
. . .”.

Kleene’s statement on Church’s thesis: “Every general recursive function cannot
conflict with the intuitive notion which is supposed to complete . . .” [26, pp. 318–319].

Each of the above statements is formalised by the following formula:

∀S are ¬¬P.

It is a remarkable fact that the latter formula is equivalent to the former formula
(6 and 7); both represent the Agkq thesis.

More in general, this fact gives a very important conclusion: a PO theory, searching a
new method capable to solve a basic problem, argues according to a sequence of DNSs
aimed to eventually obtain an instance of the predicate Agkq.17

Result 2 A PO theory is a goal-oriented logical theory to state an universal predicate
concluding the last ad absurdum proof of its former part. This predicate is formalised by
the thesis Agkq of the SOgk.18

Let us add that a Leibniz’ principle of sufficient reason (“Nothing is without reason”)
may be formalised by calling S an “event” and P “connected to some events”; the follow-
ing formula is obtained:

¬∃S is ¬P

Result 3 Even the principle of sufficient reason is represented by the same predicate of
all previous conclusions of the PO theories, i.e. by a thesis Agkq.

Hence, Leibniz’ logico-philosophical principle appears to be the specific principle ad-
dressing an author of a PO theory in his non-classical arguing for achieving the final
conclusion of.

5 The Change of Kind of Logic and Leibniz’ Principle

The universal nature of the last DNS suggests the author to have ended his inductive
arguing and to accept the corresponding affirmative predicate as a new hypothesis for
the subsequent part of the theory, to be deductively developed in classical logic. In fact,

“Avogadro’s law” on the molecular constitution of whatsoever kind of matter. An analysis of the paper
through its DNSs is given by [16].
17Reference [20] studies a similar problem in various kinds of logic, but at the propositional level only.
18Remarkably, Agkq is the same in both minimal logic and intuitionist logic. Notice that one may guess
that when an author of a PO theory obtains, by arguing in minimal logic, the universal predicate Agkq,
he governs by this final DNS the entire universe of his logical arguing with respect to the basic problem.
At this stage, he, when meeting a false sentence, can consider it as belonging to a purely theoretical
universe; hence, he can apply the intuitionist law on the false, according to which everything of this
theoretical universe follows from it. In other words, when he achieves this predicate, at the same time he
implicitly changes the kind of logic from the minimal one to the intuitionist one.
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the author changes this predicate in the corresponding affirmative predicate; which in the
latter part is considered as an hypothesis, from which a lot of theorems are deductively
drawn in classical logic.

It is remarkable that both the first instance of a PO theory in the history of
mathematics—Lobachevsky’s non-Euclidean geometry—, and the first instance of a
PO theory in the history of modern theoretical physics—Einstein’s special relativity—
originated two scientific revolutions. Each of these celebrated authors declared a change
of the organisation of his theory. Lobachevsky wrote in his most relevant work: “[My
supposition of two parallel lines] can likewise be admitted [as a principle-axiom for the
following, deductive part of my theory] without leading to any contradiction in the results
and [deductively] founds a new geometry . . . .” (emphasis added) [30, Proposition 19].
Einstein wrote in his celebrated paper: “We will raise this conjecture (the substance of
which will be hereafter called the “[axiom-]principle of relativity”). . .”.19

In the following, I will investigate on the question, how qualify in formal terms this
change of kind of logic, occurring in the texts of the PO theories.

Each of the above theories makes use of two kinds of logic; in the former part, the
non-classical logic and in the latter part, the classical logic. In fact, the author changes the
non-classical predicate Agkq, which is representative of the new method discovered by the
former part of the PO theory, in a classical predicate A, which is representative of just the
beginnings of a deductive theory.

Result 4 The authors of PO theories changed their universal conclusions in the corre-
sponding affirmative predicates of classical logic: Agkq ⇒ A.

Let us now recall that in order to obtain classical logic from intuitionist logic there exist
four ways, each constituted by the addition of one of the following logical features to the
intuitionist logic: (i) the law of the excluded middle, (ii) the law of the double negation,
(iii) the dilemma and (iv) the change of a conclusion of an ad absurdum argument ¬¬T
in an affirmative T [24, 39].

We recognise that all scientists of the quoted PO theories, practiced the last way, by
adding a qualification; the predicate ¬¬T is universal in nature with respect to all the
problems involved by the basic problem.

Let us now recall Leibniz’s statement for the principle of sufficient reason. He too
stated as a first sentence a universal DNS which subsequently changed in the correspond-
ing affirmative sentence “. . . everything has its reason” (although afterwards he remarked
that this sentence may be unsupported by sufficient evidence). Let us call this change
PSR°. Remarkably, this change also is represented by the same formula Agkq → A for-
malising the final move of a PO theory. Notice in addition that even Leibniz’ principle of
sufficient reason PSR° is implicitly justified by an ad absurdum argument: “It is absurd
to reject it”; which, in its turn, implicitly relies on the principle “It is impossible that the
reality is not rational”.

Result 5 The above logical strategy is summarised by Leibniz’ first two sentences of his
version of the principle of sufficient reason. Hence, Leibniz’ PSR° may be considered as

19[19]. An analysis of the text through its DNSs is given by my paper [13].



Pluralism in Logic 183

the logico-philosophical scheme inspiring the change occurring in the final part of a PO
theory.20

6 Markov’s Principle in His PO Theory on Constructive
Mathematics

Fortunately, a further qualification of this change in logic was suggested by a recent
Markov’s paper (1962) founding a theory of constructive mathematics [31]. Let us analyse
this paper.

A former part (pp. 1–5) includes several DNSs (40; see the Appendix). By scrutinising
them, one sees that the first three DNSs present the main problem of the paper, i.e. how
the rational numbers may be extended to the real numbers according to the constructive
method; that is, without the “use of the abstractions of actual infinity” and “the so-called
pure existence theorems”.

In the middle of the paper (p. 6) Markov illustrates the constructive way to build mathe-
matics. Actually, he refers to Church’s thesis on all algorithms; we saw that this thesis—as
Kleene writes it—is a DNS. In the following part of Markov’s paper few DNSs (8 out the
48 DNSs in the entire paper) occur and moreover in an occasional way; that means that
the logical sequence of the DNSs connected one to another is terminated by the previ-
ous universal statement and he is substantially following classical logic. In conclusion,
also Markov followed the same theoretical organisation, PO, as the previously mentioned
authors did.

This paper deserves further attention because he adds a novelty to the constructive
theory of real numbers. At the end of p. 4 he introduces in loose terms a specific problem,
when the application of an algorithm A to a word P of an alphabet has an end in a finite
number of steps. He introduces his solution by the following words (DNSs nos. 27, 28,
35):

I consider it [is] possible [= is not true that it is false] to apply here an argument “by contradiction”,
i.e. to assert that the [read: every] algorithm A is applicable to the word P if the assumption that the
process of applying A to P continues indefinitely leads to a contradiction. . . . [In other words,] If we
assert on the basis of the proved impossibility of the indefinite continuation of a given procedure
that this procedure ends, then this yields a perfectly well-defined method of construction . . .

i.e. the algorithm is applicable. In other terms, he claims that this predicate is equivalent
to its affirmative version (Markov principle, in short MP). In the following of the paper
he considers the latter one as a new axiom-principle for the development of the theory in
a deductive way (in particular in the middle of p. 7).

20The two requirements on the predicate on which MP is applied suggests that PRS° would have to be
applied according to the same requirements, i.e. on a predicate which is decidable one and it is obtained
as the result of an ad absurdum theorem. Such requirements surely would avoid all criticisms to the
application of PSS°, first of all the criticism to be a metaphysical principle. In the past, a great debate
aimed to clarify the use of the PSR°. From the above we conclude that PSR is not a heuristic principle
for validating a mere guess on an isolated event, but an architectural principle, to be applied to an entire
PO theory (see my paper [9]). Its theory-dependence explains why in the ancient times, when an analysis
on PO theories was premature, it was ignored; and why in modern times, when scholars devoted little
attention to both non-deductive theories and non-classical logic, it was misinterpreted.
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Let us analyse the above quotation. In fact, Markov changes a doubly negated pred-
icate of intuitionist logic—“the assumption that the process applying A to P continues
indefinitely leads to a contradiction. . .”, i.e. it is contradictory that the process has no
end—in the corresponding affirmative predicate of classical logic—“the algorithm is ap-
plicable to the word P”. Markov claims that this change is a valid logical step, although
apparently it is supported neither by the constructive method he declared in the begin-
nings of his paper, nor in logical terms by intuitionist logic, where the double negation
law fails.21

7 Qualifying in Formal Terms Markov’s Principle Changing
Predicates from Intuitionist Logic to Classical Logic

Let us scrutinise Markov’s justifications for the change (DNS no. 30). Apart his “intu-
ition [which] finds it sufficiently clear” and apart the advantage that “arguments of this
type make it possible to construct a constructive mathematics that is well able to serve
contemporary natural science”, let us consider the third justification: “I see no reasonable
basis for rejecting it [= the resulting affirmative predicate]”. It is easy to recognise that,
as suggested by Dummett, [18, p. 19] Markov’s claim constitutes an intuitive application
of the principle of sufficient reason, concluded by its affirmative version—I accept it. In
fact, the logical structure of the above justification is the same of that of PSR: ¬∃S is ¬P.

The usual interpretation of Markov’s paper concludes that his claim concerns a de-
cidable, doubly negated existential predicate which ends an ad absurdum proof—or, in
Markov’s terms, it is proved by contradiction.

Without the former requirement on the predicate—to be a decidable one—, Anselm’s
proof of God’s existence would be a decisively valid one. Without the latter requirement—
to be the conclusion of an ad absurdum proof—, the application of this principle to two
co-planar straight lines, conceived as ever more prolonged segments, would erroneously
state that they always have a meeting point.22

However, for supporting his change Markov does not exhibit a general ad absurdum
proof on his predicate; he appeals to its possibility only; nor textbooks suggest the logical
origin of Markov’s both requirements. Instead, the two requirements receive support by
the past experience of arguing in scientific PO theories, as illustrated in the above. In
particular, within a PO theory this requirement is obvious; indeed, a PO theory, in order to
achieve a final result which is not assured in experimental terms, has to rely its arguments
on concrete, decidable objects.

21[41, p. 27], [42, p. 274]: “. . . a patently non-intuitionist principle”. In fact, he applies a classical law to
a specific non-classical predicate.
22It is just after a chain of ad absurdum proofs (propositions nos. 17–22) that Lobachevsky stated the
existence of two parallel lines, conceived as ever more prolonged segments, as an alternative hypothesis
to the Euclidean one. Markov’s two requirements enlightens the implicit requirements of the common
move performed by all the above authors of a PO theory, which of course concerns a method which has
to rely on decidable predicates; also the common move occurring at the end of the former parts of OP
theories is implicitly justified by not having reason for excluding the affirmative conclusion. Moreover,
notice that the same implicit ad absurdum argument that justifies PRS° holds true for Markov’s move:
“. . . otherwise the reality is absurd”.
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Result 6 Markov principle, being a tentative application of Leibniz’ principle of sufficient
reason, is a similar change of that occurring inside a PO theory; but it is not the result of
a specific theory about the algorithms.

MP is usually formalised as follows:

¬¬∃x A(x)→∃x A(x). (MP)

We recognise that in intuitionist logic the former member ¬¬∃x A(x) is the non-
classical Igkq, whereas the latter member is the thesis I of SO.

Markov’s principle states no more than the existence of one value of a predicate,
whereas PRS° states that all values of a predicate hold true. Owing to the relationship
between theses A and I, the change from Igkq to I is weaker than the change of PRS°.

In particular, MP is not enough to change the logic of a PO theory, because the addition
of an existential affirmative predicate does not change the entire set of the predicates in
the classical ones.23

Result 7 Markov’s change of an existential predicate from non-classical logic to the cor-
responding affirmative predicate of classical logic concerns the thesis Igkq. This change is
weaker than PRS°; it alone is not enough for changing the kind of logic.

8 The Relevance of the Four Theses of the Square of Opposition
in Intuitionist Predicate Logic

Both minimal predicate logic and predicate intuitionist logic have no calculus and a com-
pleteness theorem (stating that if P is valid, P is derivable) either. Being the logical frame-
work of a PO theory so dubious, its sequence of DNS constructed by its author forms a
highly creative arguing, possibly facilitated by the specific subject of his theory. However
I will prove that to refer to SOgkq enlightens author’s arguing in a PO theory.

First of all, it is a remarkable fact that two above two kinds of change in logical predi-
cates concern the left part (“AffIrmo”) of the SOgkq.

Moreover, the four theses of SOgkq enjoy a specific logical property. Let us consider in
intuitionist logic all conversion relationships between a total predicate and an existential
predicate. The only equivalence relationships are the following ones:

∀¬↔ (3 and 4)¬∃; ∀¬¬↔ (6 and 7)¬∃¬;
¬∀¬↔ (11 and 12)¬¬∃; ¬∀¬¬↔¬¬∃¬;

the last one relationship being obtained by external negation of the second one relation-
ship. Remarkably, these four equivalence relationships concern just the four theses of
SOgkq: Agkq, Igkq, Egkq, Ogkq.

Result 8 Only the four theses of the non-classical square of opposition SOgkq enjoy the
property of convertibility. Hence, the square of opposition SOgkq enjoys a formal rele-
vance in non-classical predicate logic too.

23Also Markov states that by means of the DNSs nos. 32, 33, 34.
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9 Conclusions

According to Brouwer, mathematics precedes logic. In this vein the present paper discov-
ers some logical features by pondering on the logical experiences of some mathematised
theories of the past. It proves that there exists a historical tradition of a way of arguing
in non-classical predicate logic; this tradition is formalised by a logical framework which
is similar to the classical SO, includes Leibniz’ principle, addressing the arguing of the
non-deductive theory to a conclusive non-classical thesis Agkq, which then is changed in
the affirmative thesis A. The logical framework includes also Markov’s principle, which
does the same but weaker change in the thesis Igkq. However, all four non-classical theses
corresponding to those of the classical SO and moreover are shown to be the most relevant
predicates of this logical framework.

These results support the first quotation [43] about Aristotle’s logic with respect to
the non-classical predicate logic. As a consequence, logical pluralism is traced back to
ancient times and the Aristotle’s suggestion of a square of opposition has to be intended
as a seminal hint for capturing the basic predicates of all kinds of logic.

Acknowledgements I acknowledge two anonymous referees for an improvement of my previous logi-
cal framework, and David Braithwhaite for the correction on my English text.

Appendix: The analysis through the double negations of [31]

Notice that modal words are equivalent, via S4 translation, to DNSs; these words are wave
underlined.

(1) Recently the constructive trend in mathematics has been significantly developed.
Its goal is to base all investigations on constructive objects and to carry them out
within the bounds of the abstraction of potential realizability and without use of the
abstraction of actual (= not potential) infinity; . . .

(2) . . . it rejects the so-called pure existence [= not constructive] theorems, . . .
(3) . . . since the existence of an object with given properties is considered proved only

when a potentially realizable method for the construction of an object with those
properties bas been indicated . . . .

(4) . . . We do not define the concept of a constructive object, but rather only clarify it.
(5) In constructive mathematical theories we limit ourselves to the consideration of con-

structive objects of some standard type, which frees us from the necessity of formu-
lating a general definition of a constructive object.

(6) The abstraction of identity is used here in a natural way; we identify the words (1)
and (2); we abstract away from their having any differences; we say that they are the
same word . . . .

(7) . . . When considering words in a given alphabet we are forced into an abstraction of
another kind—into the abstraction of potential existence . . . .

(8) . . . It consists in abstracting away from the practical limits of our possibilities in
space, time and material when it comes to the existence of words . . . .

(9) . . . We cannot write on a given blackboard of a given dimension words of arbitrary
[= unlimited] length . . . .
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(10) . . . We abstract away from this practical impossibility and begin to argue as if this
were possible.

(11) This does not at all mean that we begin to consider the “sequence of naturals” as an
infinite “object.” . . .

(12) . . . Such a consideration would involve an abstraction of an actual infinity, . . .
(13) . . . taking us beyond the limits of constructive mathematics and into something char-

acteristic of the so-called “classical” mathematics.
(14) In “classical” mathematics there have been many “pure existence theorems,” which

consist in assertions about the “existence” of objects with certain properties even
despites a complete ignorance of means to construct such an object.

(15) Constructive mathematics rejects such propositions [on pure existence] . . .
(16) . . . In constructive mathematics the existence of an object with certain properties is

only considered proved when a potentially realizable method has been given for the
construction of an object with the given properties.

(17) This understanding of disjunction does not permit one to take as true the law of the
excluded middle: “P or not P.”. . .

(18) . . .2. The formulation and development of the constructive trend took place on the
basis of work that appeared in the 1930s which made precise the concept of an
algorithm, freeing this concept from vagueness and subjectivity. . . .

(19) As we know, this vague concept of a was made precise in the 30s in the work of
several men, who took different approaches: Church, Kleene, Turing, Post. The the-
ories constructed by these men—Kleene’s theory of recursive functions, Church’s
calculus of λ-conversion, the theory of Turing machines and Post’s theory of finite
combinatory processes—turned out to be equivalent to one another and to lead to
essentially the same formulation of the concept of an algorithm . . .

(20) . . . New formulations of this concept, also equivalent to the previous ones, were
constructed one after another by other authors, . . .

(21) . . . and even in the present time new theories of algorithms are continually being
published that are equivalent to the previous theories . . . .

(22) . . . It is not necessary for us at this time to look into these theories to try to find the
best one.

(23) The algorithm also determines the end of the procedure which may or may not occur.
(24) The theory of normal algorithms is constructed which in the framework of abstract

potential existence . . . .
(25) . . . The words in the alphabet A under consideration and the schemes of the normal

algorithms in A are potentially realizable constructive objects . . . .
(26) . . . The procedure itself of applying a normal algorithm to a given word is considered

by us to be a potentially realizable procedure.
(27) I consider it [is] possible to apply here an argument “by contradiction”,
(28) . . . i.e. to assert that the algorithm A is applicable to the word P if the assumption

that the process of applying A to P continues indefinitely leads to a contradiction.
(29) If I defend this means of argument here, it is not because I find it without error

according to my intuition, . . .
(30) . . . but rather, firstly, because I see no reasonable reason for rejecting it, . . .
(31) . . . and secondly, because arguments of this type make it possible to construct a

constructive mathematics that is well able to serve contemporary natural Science
. . . .
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(32) . . . I insist that this does not go beyond the bounds of the constructive direction: . . .
(33) . . . the abstraction of actual infinity is not made, . . .
(34) . . . existence continues to coincide with a potentially realizable construction . . .
(35) . . . If we assert on the basis of the proved impossibility of the indefinite contin-

uation of a given procedure that this procedure ends, then this yields a perfectly
well-defined method of construction: continue the process until its completion . . . .

(36) . . . The circumstance that the number of steps cannot be bounded “in advance”, here
changes nothing of importance . . . .

(37) . . . It is even doubtful that the requirement that this number be bounded in advance
will ever be formulated precisely and objectively . . . .

(38) . . . It is not difficult to see that this method for proving the applicability of an algo-
rithm . . .

(39) . . . allows one to justify the following method of argument . . . .
(40) . . . Let P a property, ad let there be an algorithm that decide for every natural

number n whether or not n has the property P. If the proposition that no number has
the property P leads to a contradiction there is a natural number with the property P.

The analysis of this list of DNS is easy. The list presents one only ad absurdum proof;
it is exposed wordily by the DNSs 29 and 30. Hence, there is one unit of arguing only.
The following DNSs are aimed to illustrate the result obtained. After the DNS 40 the
development of the theory assumes the last DNS as a new hypothesis.
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The Square of Opposition in Orthomodular Logic

H. Freytes, C. de Ronde, and G. Domenech

Abstract In Aristotelian logic, categorical propositions are divided in Universal Affir-
mative, Universal Negative, Particular Affirmative and Particular Negative. Possible re-
lations between two of the mentioned type of propositions are encoded in the square of
opposition. The square expresses the essential properties of monadic first order quantifi-
cation which, in an algebraic approach, may be represented taking into account monadic
Boolean algebras. More precisely, quantifiers are considered as modal operators acting on
a Boolean algebra and the square of opposition is represented by relations between certain
terms of the language in which the algebraic structure is formulated. This representation is
sometimes called the modal square of opposition. Several generalizations of the monadic
first order logic can be obtained by changing the underlying Boolean structure by another
one giving rise to new possible interpretations of the square.

Keywords Square of opposition · Modal orthomodular logic · Classical consequences
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1 Introduction

In Aristotelian logic, categorical propositions are divided into four basic types: Universal
Affirmative, Universal Negative, Particular Affirmative and Particular Negative. The pos-
sible relations between each two of the mentioned propositions are encoded in the famous
Square of Opposition. The square expresses the essential properties of the monadic first
order quantifiers ∀, ∃. In an algebraic approach, these properties can be represented within
the frame of monadic Boolean algebras [8]. More precisely, quantifiers are considered as
modal operators acting on a Boolean algebra while the Square of Opposition is repre-
sented by relations between certain terms of the language in which the algebraic structure
is formulated. This representation is sometimes called Modal Square of Opposition and is
pictured as follows:
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The interpretations given to ♦ from different modal logics determine the correspond-
ing versions of the modal Square of Opposition. By changing the underlying Boolean
structure we obtain several generalizations of the monadic first order logic (see for exam-
ple [9]). In turn, these generalizations give rise to new interpretations of the Square.

The aim of this paper is to study the Square of Opposition in an orthomodular structure
enriched with a monadic quantifier known as Boolean saturated orthomodular lattice [5].
The paper is structured as follows. Section 2 contains generalities on orthomodular lat-
tices. In Sect. 3, the physical motivation for the modal enrichment of the orthomodular
structure is presented. In Sect. 4 we formalize the concept of classical consequence with
respect to a property of a quantum system. Finally, in Sect. 5, logical relationships be-
tween the propositions embodied in a square diagram are studied in terms of classical
consequences and contextual valuations.

2 Basic Notions

We recall from [1, 12, 13] some notions of universal algebra and lattice theory that will
play an important role in what follows. Let L= 〈L,∨,∧,0,1〉 be a bounded lattice. An
element c ∈ L is said to be a complement of a iff a ∧ c = 0 and a ∨ c = 1. Given a, b, c
in L, we write: (a, b, c)D iff (a ∨ b)∧ c= (a ∧ c)∨ (b∧ c); (a, b, c)D∗ iff (a ∧ b)∨ c=
(a ∨ c)∧ (b ∨ c) and (a, b, c)T iff (a, b, c)D, (a, b, c)D∗ hold for all permutations of a,
b, c. An element z of a lattice L is called central iff for all elements a, b ∈ L we have
(a, b, z)T and z is complemented. We denote by Z(L) the set of all central elements of L
and it is called the center of L.

A lattice with involution [11] is an algebra 〈L,∨,∧,¬〉 such that 〈L,∨,∧〉 is a lattice
and ¬ is a unary operation on L that fulfills the following conditions: ¬¬x = x and
¬(x ∨ y) = ¬x ∧ ¬y. An orthomodular lattice is an algebra 〈L,∧,∨,¬,0,1〉 of type
〈2,2,1,0,0〉 that satisfies the following conditions

1. 〈L,∧,∨,¬,0,1〉 is a bounded lattice with involution,
2. x ∧¬x = 0,
3. x ∨ (¬x ∧ (x ∨ y))= x ∨ y.

We denote by OML the variety of orthomodular lattices. Let L be an orthomodular
lattice and a, b ∈ L. Then a commutes with b if and only if a = (a ∧ b) ∨ (a ∧ ¬b).
A non-empty subset A is called a Greechie set iff for any three different elements of A,
at least one of them commutes with the other two. If A is a Greechie set in L then 〈A〉L,
i.e. the sublattice generated by A, is distributive [7]. Boolean algebras are orthomodular
lattices satisfying the distributive law x ∧ (y ∨ z)= (x ∧ y)∨ (x ∧ z). We denote by 2 the
Boolean algebra of two elements. Let A be a Boolean algebra. Then, as a consequence
of the application of the maximal filter theorem for Boolean algebras, there always exists
a Boolean homomorphism f : A→ 2. If L is a bounded lattice then Z(L) is a Boolean
sublattice of L [13, Theorem 4.15].

3 Modal Propositions About Quantum Systems

In the usual terms of quantum logic [2, 10], a property of a system is related to a subspace
of the Hilbert space H of its (pure) states or, analogously, to the projector operator onto
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that subspace. A physical magnitude M is represented by an operator M acting over the
state space. For bounded self-adjoint operators, conditions for the existence of the spec-
tral decomposition M = ∑

i aiPi = ∑
i ai |ai〉〈ai | are satisfied. The real numbers ai are

related to the outcomes of measurements of the magnitude M and projectors |ai〉〈ai | to
the mentioned properties. Thus, the physical properties of the system are organized in the
lattice of closed subspaces L(H). Moreover, each self-adjoint operator M has associated
a Boolean sublattice WM of L(H) which we will refer to as the spectral algebra of the
operator M. More precisely, the family {Pi} of projector operators is identified as ele-
ments of WM. Assigning values to a physical quantity M is equivalent to establishing a
Boolean homomorphism v :WM → 2 which we call contextual valuation. Thus, we can
say that it makes sense to use the “classical discourse”—this is, the classical logical laws
are valid—within the context given by M.

Modal interpretations of quantum mechanics [3, 4, 15] face the problem of finding
an objective reading of the accepted mathematical formalism of the theory, a reading “in
terms of properties possessed by physical systems, independently of consciousness and
measurements (in the sense of human interventions)” [4]. These interpretations intend to
consistently include the possible properties of the system in the discourse establishing a
new link between the state of the system and the probabilistic character of its properties,
namely, sustaining that the interpretation of the quantum state must contain a modal as-
pect. The name modal interpretation was used for the first time by B. van Fraassen [14]
following modal logic, precisely the logic that deals with possibility and necessity. The
fundamental idea is to interpret “the formalism as providing information about properties
of physical systems”. A physical property of a system is “a definite value of a physical
quantity belonging to this system; i.e., a feature of physical reality” [3] and not a mere
measurement outcome. As usual, definite values of physical magnitudes correspond to
yes/no propositions represented by orthogonal projection operators acting on vectors be-
longing to the Hilbert space of the (pure) states of the system [10].

The proposed modal system [5, 6] over which we now develop an interpretation of the
Square of Opposition, is based on the study of the “classical consequences” that result
from assigning values to a physical quantity. In precise terms, we enriched the orthomod-
ular structure with a modal operator taking into account the following considerations:

(1) Propositions about the properties of the physical system are interpreted in the or-
thomodular lattice of closed subspaces of H. Thus, we retain this structure in our
extension.

(2) Given a proposition about the system, it is possible to define a context from which
one can predicate with certainty about it together with a set of propositions that are
compatible with it and, at the same time, predicate probabilities about the other ones
(Born rule). In other words, one may predicate truth or falsity of all possibilities at the
same time, i.e. possibilities allow an interpretation in a Boolean algebra. In rigorous
terms, for each proposition p, if we refer with ♦p to the possibility of p, then ♦p
will be a central element of a orthomodular structure.

(3) If p is a proposition about the system and p occurs, then it is trivially possible that p
occurs. This is expressed as p ≤ ♦p.

(4) Let p be a property appertaining to a context M. Assuming that p is an actual prop-
erty (for example the result of a filtering measurement) we may derive from it a set of
propositions (perhaps not all of them encoded in the original Hilbert lattice of the sys-
tem) which we call classical consequences. For example, let q be another property of
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the system and assign to q the probability prob(q)= r via the Born rule. Then equal-
ity prob(q)= r will be considered as a classical consequence of p. In fact, the main
characteristic of this type of classical consequences is that it is possible to simultane-
ously predicate the truth of all of them (and the falsity of their negations) whenever
p is true. The formal representation of the concept of classical consequence is the
following: A proposition t is a classical consequence of p iff t is in the center of an
orthomodular lattice containing p and satisfies the property p ≤ t . These classical
consequences are the same ones as those which would be obtained by considering
the original actual property p as a possible one ♦p. Consequently ♦p must precede
all classical consequences of p. This is interpreted in the following way: ♦p is the
smallest central element greater than p.

From consideration 1, it follows that the original orthomodular structure is maintained.
The other considerations are satisfied if we consider a modal operator ♦ over an ortho-
modular lattice L defined as

♦a = Min
{
z ∈Z(L) : a ≤ z

}

with Z(L) the center of L. When this minimum exists for each a ∈ L we say that L is
a Boolean saturated orthomodular lattice. We have shown that this enriched orthomodu-
lar structure can be axiomatized by equations conforming a variety denoted by OML♦

[5]. More precisely, each element of OML♦ is an algebra 〈L,∧,∨,¬,♦,0,1〉 of type
〈2,2,1,1,0,0〉 such that 〈L,∧,∨,¬,0,1〉 is an orthomodular lattice and � satisfies the
following equations:

S1 x ≤ ♦x
S2 ♦0 = 0
S3 ♦♦x = ♦x
S4 ♦(x ∨ y)= ♦x ∨♦y
S5 y = (y ∧♦x)∨ (y ∧¬♦x)
S6 ♦(x ∧♦y)= ♦x ∧♦y
S7 ¬♦x ∧♦y ≤ ♦(¬x ∧ (y ∨ x))

Orthomodular complete lattices are examples of Boolean saturated orthomodular lat-
tices. We can embed each orthomodular lattice L in an element L♦ ∈ OML♦ see [5,
Theorem 10]. In general, L♦ is referred as a modal extension of L. In this case we may
see the lattice L as a subset of L♦.

4 Modal Extensions and Classical Consequences

We begin our study of the Square of Opposition analyzing the classical consequences
that can be derived from a proposition about the system. This idea was suggested in the
condition 4 of the motivation of the structure OML♦. In what follows we express the no-
tion of classical consequence as a formal concept in OML♦. We first need the following
technical results:

Proposition 4.1 Let L be an orthomodular lattice. If A is a Greechie set in L such that
for each a ∈A, ¬a ∈A then, 〈A〉L is Boolean sublattice.
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Proof It is well known from [7] that 〈A〉L is a distributive sublattice of L. Since dis-
tributive orthomodular lattices are Boolean algebras, we only need to see that 〈A〉L is
closed by ¬. To do that we use induction on the complexity of terms of the subuni-
verse generated by A. For comp(a) = 0, it follows from the fact that A is closed by
negation. Assume validity for terms of the complexity less than n. Let τ be a term such
that comp(τ ) = n. If τ = ¬τ1 then ¬τ ∈ 〈A〉L since ¬τ = ¬¬τ1 = τ1 and τ1 ∈ 〈A〉L.
If τ = τ1 ∧ τ2, ¬τ = ¬τ1 ∨ ¬τ2. Since comp(τi) < n, ¬τi ∈ 〈A〉L for i = 1,2 resulting
¬τ ∈ 〈A〉L. We use the same argument in the case τ = τ1 ∨ τ2. Finally 〈A〉L is a Boolean
sublattice. �

Since the center Z(L♦) is a Boolean algebra, it represents a fragment of discourse
added to L in which the laws of the classical logic are valid. Thus the modal extension
L ↪→ L♦ is a structure that rules the mentioned fragment of classical discourse and the
properties about a quantum system encoded in L. Let W be a Boolean sub-algebra of L
(i.e. a context). Note that W ∪ Z(L♦) is a Greechie set closed by ¬. Then by Proposi-
tion 4.1, 〈W ∪ Z(L♦)〉L♦ is a Boolean sub-algebra of Z(L♦). This represents the possi-
bility to fix a context and compatibly add a fragment of classical discourse. We will refer
to the Boolean algebra W♦ = 〈W ∪Z(L♦)〉L♦ as a classically expanded context. Taking
into account that assigning values to a physical quantity p is equivalent to fix a context W
in which p ∈W and establish a Boolean homomorphism v :W → 2 such that v(p)= 1,
we give the following definition of classical consequence.

Definition 4.2 Let L be an orthomodular lattice, p ∈ L and L♦ ∈OML♦ a modal exten-
sion of L. Then z ∈ Z(L♦) is said to be a classical consequence of p iff for each Boolean
sublattice W in L (with p ∈W ) and each Boolean valuation v :W♦ → 2, v(z)= 1 when-
ever v(p)= 1.

v(p) = 1 implies v(z) = 1 in Definition 4.2 is a relation in a classically expanded
context that represents, in an algebraic way, the usual logical consequence of z from p. We
denote by ConsL♦(p) the set of classical consequences of p in the modal extension L♦.

Proposition 4.3 Let L be an orthomodular lattice, p ∈ L and L♦ ∈ OML♦ a modal
extension of L. Then we have that

ConsL♦(p)= {
z ∈ Z

(
L♦) : p ≤ z

} = {
x ∈Z

(
L♦) : ♦p ≤ z

}

Proof {z ∈ Z(L♦) : p ≤ z} = {z ∈ Z(L♦) : ♦p ≤ z} follows from definition of ♦. The
inclusion {z ∈ Z(L♦) : ♦p ≤ z} ⊆ ConsL♦(p) is trivial. Let z ∈ ConsL♦(p) and suppose
that p �≤ z. Consider the Boolean sub-algebra of L given by W = {p,¬p,0,1}. By the
maximal filter theorem, there exists a maximal filter F in W♦ such that p ∈ F and z /∈ F .
If we consider the quotient Boolean algebra W♦/F = 2, the natural Boolean homomor-
phism f :W♦ → 2 satisfies that f (p)= 1 and f (z)= 0, which is a contradiction. Hence
p �≤ z and z ∈ ConsL♦(p). �

The equality ConsL♦(p)= {x ∈ Z(L♦) : ♦p ≤ z} given in Proposition 4.3 states that
the notion of classical consequence of p results independent of the choice of the context
W in which p ∈W . In fact, each possible classical consequence z ∈ Z(L♦) of p is only
determined by the relation ♦p ≤ z. Thus Z(L♦) is a fragment of the classical discourse
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added to L which allows to “predicate” classical consequences about the properties of
the system encoded in L independently of the context. It is important to remark that the
contextual character of the quantum discourse is only avoided when we refer to “classical
consequences of properties about the system” and not when referring to the properties in
themselves, i.e. independently of the choice of the context. In fact, in our modal extension,
the discourse about properties is genuinely enlarged, but the contextual character remains
a main feature of quantum systems even when modalities are taken into account.

5 Square of Opposition: Classical Consequences and Contextual
Valuations

In this section we analyze the relations between propositions encoded in the scheme of the
Square of Opposition in terms of the classical consequences of a chosen property about
the quantum system. To do this, we use the modal extension. Let L be an orthomodular
lattice, p ∈ L and L♦ ∈ OML♦ a modal extension of L. We first study the proposi-
tion ¬♦¬p denoted by �p. Note that �p = ¬♦¬p = ¬Min{z ∈ Z(L♦) : ¬p ≤ z} =
Max{¬z ∈ Z(L♦) : ¬p ≤ z} = Max{¬z ∈Z(L♦) : ¬z≤ p}. Considering t =¬z we have
that

�p =¬♦¬p = Max
{
t ∈Z

(
L♦) : t ≤ p

}

When W is a Boolean sublattice of L such that p ∈W (i.e. we are fixing a context contain-
ing p), �p is the greatest classical proposition that implies p in the classically expanded
context W♦. More precisely, if p is a consequence of z ∈ L♦ then �p is consequence
of z.

Remark 5.1 It is important to notice that Proposition 4.3 allows us to refer to classical
consequences of a property of the system independently of the chosen context. But in
order to refer to a property which is implied by a classical property, we need to fix a
context and consider the classically expanded context.

Lemma 5.2 Let L be an orthomodular lattice, p ∈ L and L♦ be a modal extension of L.
If ♦p ∧♦¬p = 0 then p ∈Z(L).

Proof ♦p and ♦¬p are central elements in L♦. Taking into account that 1 = p ∨¬p ≤
♦p ∨ ♦¬p, if ♦p ∧ ♦¬p = 0 then ¬♦p = ♦¬p since the complement is unique in
Z(L♦). Hence �p =¬♦¬p = ♦p, p ∈ Z(L♦) and p ∈ Z(L). �

Now we can interpret the relation between propositions in the Square of Opposition. In
what follows we assume that L is an orthomodular lattice and p ∈ L such that p /∈ Z(L),
i.e. p is not a classical proposition in a quantum system represented by L. Let L♦ be a
modal extension of L, W be a Boolean subalgebra of L, i.e. a context, such that p ∈W

and consider a classically expanded context W♦.

• ¬♦¬p contraries ¬♦p
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¬♦p =¬♦¬¬p =�¬p. Thus, the contrary proposition is the greatest classical proposi-
tion that implies p, i.e. �p, with respect to the greatest classical proposition that implies
¬p, i.e. �¬p, in each possible classically expanded context containing p, ¬p.

In the usual explanation, two propositions are contrary iff they cannot both be true
but can both be false. In our framework we can obtain a similar concept of contrary
propositions. Note that �p ∧�¬p ≤ p ∧¬p = 0. Thus, there is not a maximal Boolean
filter containing �p and �¬p. Hence there is not a Boolean valuation v :W♦ → 2 such
that v(�p) = v(�¬p) = 1, i.e. �p and �¬p “cannot both be true” in each possible
classically expanded context.

Since p /∈ Z(L), by Lemma 5.2, ♦p ∧ ♦¬p �= 0. Then there exists a maximal
Boolean filter F in W♦ containing ♦p and ♦¬p. �p /∈ F otherwise �p ∧ ♦¬p ∈ F

and �p ∧ ♦¬p = ♦(�p ∧ ¬p) ≤ ♦(p ∧ ¬p) = 0 which is a contradiction. With the
same argument we can prove that �¬p /∈ F . If we consider the natural homomorphism
v :W♦ →W♦/F ≈ 2 then v(�p)= v(�¬p)= 0, i.e. �p and �¬p can both be false.

• ♦p subcontraries ♦¬p
The sub-contrary proposition is the smallest classical consequence of p with respect to the
smallest classical consequence of ¬p. Note that sub-contrary propositions do not depend
on the context.

In the usual explanation, two propositions are sub-contrary iff they cannot both be false
but can both be true. Suppose that there exists a Boolean homomorphism v :W♦ → 2
such that v(♦p) = v(♦¬p) = 0. Consider the maximal Boolean filter given by Ker(v).
Since Ker(v) is a maximal filter in W♦, p ∈ Fv or ¬p ∈ Fv . If p ∈ Fv then v(♦p) = 1
which is a contradiction, if ¬p ∈ Fv then v(♦¬p)= 1 which is a contradiction too. Hence
v(♦p) �= 0 or v(♦¬p) �= 0, i.e. they cannot both be false. Since p /∈ Z(L), by Lemma 5.2,
♦p ∧ ♦¬p �= 0. Then there exists a maximal Boolean filter F in W♦ containing ♦p and
♦¬p. Hence the Boolean homomorphism v :W♦ →W♦/F ≈ 2 satisfies that v(♦p) =
v(♦¬p)= 1, i.e. ♦p and ♦¬p can both be true.

• ¬♦¬p subalterns ♦p and ¬♦p subalterns ♦¬p
The notion of sub-contrary propositions is reduced to the relation between �p and ♦p.
The subaltern proposition is the greatest classical proposition that implies p with respect
to the smallest classical consequence of p.

In the usual explanation, a proposition is subaltern of another one called superaltern,
iff it must be true when its superaltern is true, and the superaltern must be false when
the subaltern is false. In our case ¬♦¬p =�p is superaltern of ♦p and ¬♦p =�¬p is
superaltern of ♦¬p. Since �p ≤ p ≤ ♦p, for each valuation v :W♦ → 2, if v(�p)= 1
then v(♦p)= 1 and if v(♦p)= 0 then v(�p)= 0.

• ¬♦¬p contradictories ♦¬p and ♦p contradictories ¬♦p
The notion of contradictory proposition can be reduced to the relation between ♦p and
�¬p. The contradictory proposition is the greatest classical proposition that implies
¬p with respect to the smallest classical consequence of p. In the usual explanation,
two propositions are contradictory iff they cannot both be true and they cannot both be
false. Due to the fact that ker(v) is a maximal filter in W♦, each maximal filter F in
W♦ contains exactly one of {♦p,¬♦p} for each Boolean homomorphism v :W♦ → 2,
v(♦p)= 1 and v(¬♦p)= 0 or v(♦p)= 0 and v(¬♦p)= 1. Hence, ♦p and ♦p cannot
both be true and they cannot both be false.
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No Group of Opposition for Constructive Logics:
The Intuitionistic and Linear Cases

Baptiste Mélès

Abstract The aim of this work is to show that no group of opposition can be built
for constructive logics like intuitionistic or linear logics. Moreover, the attempt to apply
the square of opposition to linear logic shows that the lack of subcontrariety and the
asymmetry of contradiction are not equivalent properties. The former property, not the
latter, is the general reason why there can be no group of opposition for constructive
logics.

Keywords Square of opposition · Linear logic · Intuitionistic logic

Mathematics Subject Classification Primary 03F52 · Secondary 03B47 · 03B20

1 Introduction

1.1 Argument

The purpose of this paper is to show that:

1. there can be no group of oppositions for constructive logics, for example intuitionistic
and linear logics, even though there can be one for classical logic;

2. the lack of subcontrariety provides a finer definition of constructivity than the asym-
metry of contradiction, since both properties can be distinguished in some constructive
logical systems—linear logic in this case—even though they can not be in classical and
intuitionistic logics.

In order to prove it, we will use the sequent calculus systems for classical logic (LK),
intuitionistic logic (LJ) and classical linear logic (CLL).

1.2 Definitions

The logical relations of the square of opposition will be defined as follows:
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• contrariety: B is A’s contrary if every atomic assertion of A is negated in B . Following
this definition, ¬P ∧¬Q is the contrary of P ∧Q, and ∀x¬P is the contrary of ∀xP .
This relation is not always symmetrical; for instance, in intuitionistic logic, ¬P is P ’s
contrary, but P is not ¬P ’s contrary, since �LJ ¬¬P → P ;

• subalternation: B is A’s subaltern if A→ B is provable; this relation is generally not
symmetrical, since implication is not commutative;

• contradiction: B is A’s contradictory if ¬A → B is provable. Contradiction is not
necessarily symmetrical, since �LJ (¬A→ B)→ (¬B →A);

• subcontrariety:B is A’s subcontrary if A∨B is provable; if disjunction is commutative,
which is generally the case, this relation is symmetrical.

Every relation in the square will be represented by a simple arrow (→), and by a double
arrow (⇔) when it is symmetrical. Then, a complete square would be as follows:

All men are mortal
contrariety

contradictionsubalternation

No man is mortal

contradiction subalternation

Some men are mortal
subcontrariety

Some men are not mortal

2 Classical Logic (LK)

2.1 The Complete Square

Following these definitions, the square of classical logic is obviously complete, what can
be demonstrated in propositional calculus as well as in predicate calculus:

A∧B ¬A∧¬B

A∨B ¬A∨¬B

∀xA ∀x¬A

∃xA ∃x¬A
This means that all following statements are provable (in predicate calculus, let us assume,
as usual, that the set of x’s is not empty):

�LK ¬¬A→A ←-contrariety �LK ∀x¬¬A→∀xA
�LK A∧B →A∨B left-subalternation �LK ∀xA→∃xA
�LK ¬A∧¬B →¬A∨¬B right-subalternation �LK ∀x¬A→∃x¬A
�LK ¬(A∧B)→¬A∨¬B ↘-contradiction �LK ¬∀xA→∃x¬A
�LK ¬(A∨B)→¬A∧¬B ↗-contradiction �LK ¬∃xA→∀x¬A
�LK ¬(¬A∧¬B)→A∨B ↙-contradiction �LK ¬∀x¬A→∃xA
�LK ¬(¬A∨¬B)→A∧B ↖-contradiction �LK ¬∃x¬A→∀xA
�LK (A∨B)∨ (¬A∨¬B) subcontrariety �LK ∃xA∨ ∃x¬A
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The →-contrariety

�LK ¬(A)→¬A
�LK ∀x¬(A)→∀x¬A

is true by definition; from now on, it will not even be mentioned any more. The ←-
contrariety is nothing but the involutivity of classical negation, A ↔ ¬¬A, which is
proved as follows (one of the rules, ¬l , will later appear as problematic):

ax
A �A ¬l
A,¬A � ¬r
A � ¬¬A →r�A→¬¬A

ax
A �A ¬r�A,¬A ¬l¬¬A �A →r� ¬¬A→A ∧r�A↔¬¬A

The four types of contradiction (↘, ↗, ↙, ↖) reveal the perfect duality of conjunction
and disjunction in classical logic. Some rules play a very important role in the proofs, as
we shall see later:

↘-contradiction

ax
A �A weakl

A,B �A

ax
B � B weakl

A,B � B ∧r
A,B �A∧B ¬l¬(A∧B),A,B � ¬r ×2¬(A∧B) � ¬A,¬B ∨r¬(A∧B) �¬A∨¬B →r� ¬(A∧B)→¬A∨¬B

↙-contradiction

ax
A �A weakr

A �A,B ¬r�A,B,¬A

ax
B � B weakr

B �A,B ¬r�A,B,¬B ∧r�A,B,¬A∧¬B ¬l¬(¬A∧¬B) �A,B ∨r¬(¬A∧¬B) �A∨B →r�¬(¬A∧¬B)→A∨B

↗-contradiction

ax
A �A weakr

A �A,B ∨r
A �A∨B ¬l¬(A∨B),A � ¬r¬(A∨B) � ¬A

ax
B � B weakr

B �A,B ∨r
B �A∨B ¬l¬(A∨B),B � ¬r¬(A∨B) � ¬B ∧r¬(A∨B) � ¬A∧¬B →r� ¬(A∨B)→¬A∧¬B
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↖-contradiction
ax

A �A weakl
A,B �A ¬r × 2� ¬A,¬B,A ∨r�¬A∨¬B,A ¬l¬(¬A∨¬B) �A

ax
B � B weakl

A,B � B ¬r × 2� ¬A,¬B,B ∨r� ¬A∨¬B,B ¬l¬(¬A∨¬B) � B ∧r¬(¬A∨¬B) �A∧B →r� ¬(¬A∨¬B)→A∧B

One can easily notice that:

• every left-right contradiction (↘ or ↗) requires ¬r ;
• every right-left contradiction (↙ or ↖) requires ¬l ;
• every top-bottom contradiction (↘ or ↙) requires ∨r ;
• every bottom-top contradiction (↗ or ↖) requires ∧r .

Subalternation can be proved, mainly due to weakening:

ax
A �A weakl , weakr

A,B �A,B ∧l
A∧B �A,B ∨r
A∧B �A∨B →r�A∧B →A∨B

ax
A �A ¬l¬A,A � ¬r¬A � ¬A weakl , weakr¬A,¬B � ¬A,¬B ∧l¬A∧¬B � ¬A,¬B ∨r¬A∧¬B � ¬A∨¬B →r� ¬A∧¬B →¬A∨¬B

Finally, subcontrariety is true, using weakening and ∨r :
ax

A �A weakr , weakl
A,B �A,B ¬r × 2�A,B,¬A,¬B ∨r ×2�A∨B,¬A∨¬B ∨r� (A∨B)∨ (¬A∨¬B)

One can therefore summarize the square of opposition in more modern terms:

All men are mortal
¬-involutivity

dualityweakening

No man is mortal

duality weakening

Some men are mortal
non-constructivity

Some men are not mortal

2.2 The Group of Opposition

Let us see what are the requirements for the square of opposition to be considered as a
group.

As such, it seems not to be possible, since one of the relations, namely subalternation,
is not symmetrical; if some mappings have no inverse element, it can not be a group.
But with a light redefinition of subalternation, this problem can be get round. Say for
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instance that subalternation is the mapping exchanging conjunction and disjunction, and
it suddenly becomes symmetrical, involutive. The classical square of opposition may then
be seen as a complete graph, i.e. a graph where every vertex is linked to every other vertex,
and obviously to itself:

· ·

· ·

This graph is a group, since all group axioms are respected:

1. closure: the target of every arrow belongs to the set;
2. identity element: due to the principle of identity A → A, for all statement A, there

always is an arrow ι :A→A:

A

∃ιA

3. inverse element: every arrow has an inverse element, which is itself, for all relations
are symmetrical (involutive); i.e. for each opposition f , f ◦ f = ι:

Ā

f

A

f

ιA
A

4. associativity: given two consecutive arrows f and g, there always is a shortcut h =
g ◦ f , i.e. producing the same result:

B

g

A

f

∃h C

As a consequence, there is—retrospectively—nothing surprising if Piaget recognized
here the INRC group, which is isomorphic to the Klein group (Z2 ×Z2,+):

I

I

N

R C

N

C R

I

R
N

I

C

I

(0,0)

+(0,0)
+(0,1)

+(1,0) +(1,1)

(0,1)

+(1,1) +(1,0)

+(0,0)

(1,0) +(0,1)
+(0,0)

(1,1)

+(0,0)

◦ I N R C

I I N R C

N N I C R

R R C I N

C C R N I

+ (0,0) (0,1) (1,0) (1,1)

(0,0) (0,0) (0,1) (1,0) (1,1)
(0,1) (0,1) (0,0) (1,1) (1,0)
(1,0) (1,0) (1,1) (0,0) (0,1)
(1,1) (1,1) (1,0) (0,1) (0,0)
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Starting from this fact, one can legitimately wonder whether the set of oppositions of
every logical system can be expressed as a group. Let us show that it is not the case,
particularly when the system is constructive, which is the case with intuitionistic and
linear logics.

3 Intuitionistic Logic (LJ)

3.1 The Intuitionistic Incomplete Square

In intuitionistic logic, the square is clearly incomplete:

A∧B ¬A∧¬B

A∨B ¬A∨¬B

∀xA ∀x¬A

∃xA ∃x¬A
Actually, a lot of formulae are not provable:

�LJ ¬¬A→A ←-contrariety �LJ ∀x¬¬A→∀xA
�LJ A∧B →A∨B left-subalternation �LJ ∀xA→∃xA
�LJ ¬A∧¬B →¬A∨¬B right-subalternation �LJ ∀x¬A→∃x¬A
�LJ ¬(A∨B)→¬A∧¬B ↗-contradiction �LJ ¬∃xA→∀x¬A
�LJ ¬(A∧B)→¬A∨¬B ↘-contradiction �LJ ¬∀xA→∃x¬A
�LJ ¬(¬A∧¬B)→A∨B ↙-contradiction �LJ ¬∀x¬A→∃xA
�LJ ¬(¬A∨¬B)→A∧B ↖-contradiction �LJ ¬∃x¬A→∀xA
�LJ (A∨B)∨ (¬A∨¬B) subcontrariety �LJ ∃xA∨ ∃x¬A

First, intuitionistic negation is not involutive. Only A→¬¬A can be proved, but not
the converse. Let us write “!!!” whenever a sequent is not provable:

ax
A �A ¬l
A,¬A � ¬r
A � ¬¬A →r�A→¬¬A

!!!¬¬A �A →r� ¬¬A→A ∧r�A↔¬¬A
Then, only one of the four types of contradiction is provable:

↗-contradiction
ax

A �A ∨r
A �A∨B ¬l¬(A∨B),A � ¬r¬(A∨B) � ¬A

ax
B � B ∨r

B �A∨B ¬l¬(A∨B),B � ¬r¬(A∨B) �¬B ∧r¬(A∨B) �¬A∧¬B →r� ¬(A∨B)→¬A∧¬B
The three other proofs actually fail quite quickly:
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↘-contradiction

!!!¬(A∧B) �¬A∨¬B →r� ¬(A∧B)→¬A∨¬B
↙-contradiction

!!!¬(¬A∧¬B) �A∨B →r� ¬(¬A∧¬B)→A∨B

↖-contradiction

!!!¬(¬A∨¬B) �A∧B →r� ¬(¬A∨¬B)→A∧B

Why is there in intuitionistic logic only one valid type of contradiction? The classical ∨r

and ¬l rules can not be taken as such in intuitionistic logic, for they would prevent, during
the bottom-up search of a proof, the right part of the sequent from having at most one for-
mula, which is the fundamental characteristic of intuitionistic sequent calculus LJ as it was
defined by Gentzen [1, 2].1 Since the ↙-contradiction and the ↖-contradiction use ¬l ,
their classical-like proof fails in intuitionistic sequent calculus. For the same reason, since
the ↘-contradiction and (once again) the ↙-contradiction use ∨r , their classical-like
proofs also fail. Only the ↗-contradiction remains; its proof is essentially the same as in
classical logic. This is why there is no left-right symmetry in the intuitionistic square. Let
us call this the intuitionistic gap in contradiction.

Subalternation is still provable, for LJ maintains weakening:

ax
A �A weakl

A,B �A ∧l
A∧B �A ∨r

A∧B �A∨B →r�A∧B →A∨B

ax
A �A ¬l¬A,A � ¬r¬A � ¬A weakl¬A,¬B � ¬A ∧l¬A∧¬B � ¬A ∨r¬A∧¬B � ¬A∨¬B →r� ¬A∧¬B →¬A∨¬B

Finally, subcontrariety is obviously not provable, since there is no tertium non datur:

!!!� (A∨B)∨ (¬A∨¬B)
Let us call this the intuitionistic lack of subalternation.

1The classical “multiplicative” rule
� �A,B ∨r
� �A∨B

can not be used, and has to be replaced by the

“additive” rule
� �A ∨r .

� �A∨B
But the issue is not symmetrical: the classical multiplicative rule

�,A,B � C ∧l
�,A∧B � C

can be maintained in intuitionistic logic.
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3.2 No Group for Intuitionistic Logic

Is it possible to build a group of opposition for the incomplete square of intuitionistic
logic? Following the same method as for the classical square, it can not be done. Since
the graph is

· ·

· ·

the following group axioms are not respected:

• inverse element: no relation is symmetrical—except, of course, identity; therefore, the
set of intuitionistic oppositions is not a group;

• associativity: the composition of oppositions is generally not associative. Even though
the →-contrariety is a shortcut for the ↗-contradiction of a subalternation

A∧B
∃ ¬A∧¬B

A∨B

there is no shortcut for the subalternation of a ↗-contradiction:

¬A∧¬B

A∨B ¬∃ ¬A∨¬B
As a consequence, the structure of this set of opposition is not even an associative
monoid. At most, it is a non-associative monoid—probably the least interesting alge-
braic structure that can be imagined;

• closure: but it is not even a monoid, since there is no closure; for example, the contrary
of ¬A∧¬B is not even defined inside the square.

3.3 The Trivial Intuitionistic Square

Is it at least possible to modify some definitions, in order to get a complete square, as we
did with respect to subalternation in the classical square? Of course, one could draw a
perfect square, modulo some translations, namely changing each formula A into ¬¬A:

¬¬A∧¬¬B ¬A∧¬B

¬¬A∨¬¬B ¬A∨¬B
But this solution is trivial, since its only ground is the Gödel-translation of classical logic
into intuitionistic logic [3]. There is also nothing more than the classical square.
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Therefore, even though there can be a group for intuitionistic logic, it has to cancel its
very specificity, namely constructivity. Concerning intuitionistic logic, the philosophical
and algebraic interests can not be conciliated: one has to choose between them. Either you
get a constructive system, or you get an interesting algebraic structure.

But what is precisely causing the intuitionistic square to be incomplete? It first seems
to be constructivity, and only constructivity; this would imply a strong correlation be-
tween the lack of subcontrariety and the gap in contradiction. But as we shall see, even
though constructivity is responsible for the lack of subcontrariety, it is not for the gap in
contradiction. Both can be separated: linear logic will be used to prove it.

4 Classical Linear Logic (CLL)

4.1 Principles of Linear Logic

The main feature of linear logic is to control severely weakening and contraction; for
this reason, it belongs to the so-called substructural logics (see Appendix A). Because
of this control, there are two conjunctions, “times” (⊗) and “with” (&). The first one
behaves like an accumulation of resources, the second one like a choice between re-
sources.

�,A,B �� ⊗l
�,A⊗B ��

� �A,� �′ � B,�′
⊗r

�,�′ �A⊗B,�,�′

�,A ��
&l

�,A&B ��

� �A,� � � B,�
&r

� �A&B,�

Both rules are just one in classical logic, due to weakening or contraction:

�,A ��
weakl

�,A,B �� ∧l
�,A∧B ��

� �A,� � � B,� ∧r
�,� �A∧B,�,�

contrl , contrr
� �A∧B,�

For the same reason, there are two disjunctions in linear logic. The first disjunction,
“par” (`), denotes some kind of causal dependance, without any chronological order,
between two processes. The second disjunction, “plus” (⊕), is a type of choice I am not
responsible for, for example some choice left to somebody else.

�,A �� �′,B ��′ `l
�,�′,A`B ��,�′

� �A,B,� `r
� �A`B,�

�,A �� �,B �� ⊕l
�,A⊕B ��

� �A,� ⊕r
� �A⊕B,�

They also are the same disjunction in LK, because of weakening and contraction:

�,A �� �,B �� ∨l
�,�,A∨B ��,�

contrl , contrr
�,A∨B ��

� �A,�
weakr

� �A,B,� ∨r
� �A∨B,�

There are thus two conjunctions (⊗ and &) and two disjunctions (` and ⊕), one of
each using a kind of weakening or contraction (& and ⊕), whereas the other one does not



210 B. Mélès

(⊗ and `). “Times” (⊗) and “par” (`) are called multiplicative connectives; in each of
their rules, the number of formulae is exactly the same before and after using the rule (as
an example, there are four letters on the top of ⊗l , and the same number on the bottom of
this rule). It is never the case with “with” (&) and “plus” (⊕), which are called additive:
there are always more, or less, letters on the bottom than on the top (for instance, there
are three letters on the top of &l , and four on the bottom).

As a consequence, two fragments may be distinguished in linear logic: the multiplica-
tive one (MLL, Multiplicative Linear Logic) and the additive one (MALL, Multiplicative
Additive Linear Logic, from which the additive part will almost exclusively be used in
this paper).

The linear negation A⊥ behaves exactly like the classical one; in particular, it is invo-
lutive. The linear implication A� B is, like in classical logic, equivalent with A⊥ ` B .
The main linear connectives are thus:

conjunction disjunction implication

multiplicative times (⊗) par (`) implication (�)
additive with (&) plus (⊕)

4.2 The Multiplicative Fragment (MLL)

Let us first examine the multiplicative fragment of linear logic (see Appendix B). Only
the following statements may be proved:

�LL (A
⊥)⊥ �A ←-contrariety

�LL (A⊗B)⊥ �A⊥ `B⊥ ↘-contradiction

�LL (A`B)⊥ �A⊥ ⊗B⊥ ↗-contradiction

�LL (A
⊥ ⊗B⊥)⊥ �A`B ↙-contradiction

�LL (A
⊥ `B⊥)⊥ �A⊗B ↖-contradiction

But some statements are not provable:

�LL A⊗B �A`B left-subalternation

�LL A
⊥ ⊗B⊥ �A⊥ `B⊥ right-subalternation

�LL (A`B)` (A⊥ `B⊥) subcontrariety

This implies that the square of multiplicative linear logic is even less complete than the
intuitionistic one:

A⊗B A⊥ ⊗B⊥

A`B A⊥ `B⊥

This incompleteness does not prevent the multiplicative connectives ⊗ and ` from re-
specting a perfect duality. This is a first example of a logical system where the lack of
subcontrariety does not imply a gap in contradiction.
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No more than in intuitionistic logic, there can be a group of oppositions for MLL. Not
even a monoid: once the square is not complete, there can be no associativity.

4.3 The Additive Fragment (MALL)

What about the additive fragment of linear logic? As one can see, the square is incomplete,
as well as linear quantifiers’ square (see the proofs in Appendix C)

A&B A⊥ &B⊥

A⊕B A⊥ ⊕B⊥

∧
xA

∧
xA⊥

∨
xA

∨
xA⊥

since the following sequents can be proved:

�LL (A
⊥)⊥ �A ←-contrariety �LL

∧
x(A⊥)⊥ �

∧
xA

�LL A&B �A⊕B left-subalternation �LL
∧
xA�

∨
xA

�LL A
⊥ &B⊥ �A⊥ ⊕B⊥ right-subalternation �LL

∧
xA⊥ �

∨
xA⊥

�LL (A&B)⊥ �A⊥ ⊕B⊥ ↘-contradiction �LL (
∧
xA)⊥ �

∨
xA⊥

�LL (A⊕B)⊥ �A⊥ &B⊥ ↗-contradiction �LL (
∨
xA)⊥ �

∧
xA⊥

�LL (A
⊥ &B⊥)⊥ �A⊕B ↙-contradiction �LL (

∧
xA⊥)⊥ �

∨
xA

�LL (A
⊥ ⊕B⊥)⊥ �A&B ↖-contradiction �LL (

∨
xA⊥)⊥ �

∧
xA

Like in intuitionistic logic, there is a lack of subcontrariety:

�LL (A⊕B)⊕ (
A⊥ ⊕B⊥)

subcontrariety �LL

∨
xA⊕

∨
A⊥

But, unlike intuitionistic logic, there is no gap in contradiction any more, since we can
prove all types of contradiction. This is therefore another example of a logical fragment
where the lack of subcontrariety does not imply a gap in contradiction.

4.4 The Non-standard Linear Squares (MELL and MLL+mix)

However, the generalization of the multiplicative fragment, namely the Multiplicative Ex-
ponential Linear Logic (MELL, see Appendix B), where

!A=A⊗A⊗ · · ·
?A=A`A` · · · ,

does have a full square, as well as classical logic:

!A !A⊥

?A ?A⊥
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All following statements actually are provable:

�LL !(A⊥)⊥ � !A ←-contrariety

�LL (!A)⊥ � ?A⊥ ↘-contradiction

�LL (?A)⊥ � !A⊥ ↗-contradiction

�LL (!A⊥)⊥ � ?A ↙-contradiction

�LL (?A⊥)⊥ � !A ↖-contradiction

�LL !A� ?A left-subalternation

�LL !A⊥ � ?A⊥ right-subalternation

�LL ?A` ?A⊥ subcontrariety

This complete square can not be found in MLL, except if we just add the “mix” rule to
the set of linear rules, which “merges” different proofs:

� �� �′ ��′
mix

�,�′ ��,�′

Using this rule, we can prove

�LL+mix A⊗B �A`B left-subalternation

�LL+mix A
⊥ ⊗B⊥ �A⊥ `B⊥ right-subalternation

�LL+mix (A`B)` (A⊥ `B⊥) subcontrariety

as can be seen on the following proof-trees

ax
A �A

ax
B � B

mix
A,B �A,B ⊗l
A⊗B �A,B `r
A⊗B �A`B �r�A⊗B �A`B

ax
A �A

ax
B � B

mix
A,B �A,B ⊥l × 2

A⊥,B⊥,A,B � ⊥r × 2
A⊥,B⊥ �A⊥,B⊥

⊗l
A⊥ ⊗B⊥ �A⊥,B⊥ `r
A⊥ ⊗B⊥ �A⊥ `B⊥

�r�A⊥ ⊗B⊥ �A⊥ `B⊥

ax
A �A

ax
B � B

mix
A,B �A,B ⊥r × 2�A,B,A⊥,B⊥ `r × 2�A`B,A⊥ `B⊥ `r� (A`B)` (A⊥ `B⊥)

and thus find a complete square for MLL+mix:

A⊗B

mix

A⊥ ⊗B⊥

mix

A`B
mix

A⊥ `B⊥

Except in these last cases, the square of opposition in Linear Logic is incomplete. To
become complete, it requires either the generalization of its multiplicative connectives
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(exponentials), or a non-standard rule (“mix”). In both cases, the completeness of the
square does not belong to basic linear logic. Once linear logic is deprived of its “essen-
tialist”2 or strange rules, it respects the symmetry of contradiction (duality) but not the
subcontrariety. Since the square is not complete, there can be no associativity; and with-
out associativity, there can be no group of opposition in standard linear logic.

5 Conclusion

Let us summarize the different squares we have drawn in this paper:

Logical system Square Group conditions

Classical Logic (LK) symmetrical subalternation

Intuitionistic Logic (LJ) Gödel-translation

Linear Logic mix or exponentials

MLL

MALL
Quantified MALL

MLL+mix
MELL

However different they may be, all the linear squares show a perfect left-right sym-
metry, i.e. a perfect duality between connectives, which does not prevent this logic from
being constructive. Consequently, even though constructivity is responsible for the lack
of subcontrariety, it is absolutely innocent with respect to the gap in contradiction: weak-
ening and contraction, more than constructivity, are responsible of it. Dropping subcon-
trariety and nothing else, linear logic exhibits what may be the minimal price to pay to
save constructivity.

Moreover, a set of oppositions is a group if and only if every opposition is defined
and involutive. Since it is not the case in constructive logics, there can be no group of
opposition preserving their fundamental philosophical properties.

2Girard [4] calls “essentialism” the assumption that truth is eternal, and can be duplicated at will; in linear
logic, a “truth” can not be used an infinite number of times without the help of exponentials.
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Appendix A: Rules for Classical Linear Logic (CLL)

Axiom and Cut

ax
A �A

� �A,� �′,A ��′
cut

�,�′ ��,�′

Structural Rules

� �� exchangelσ (�) ��

� �� exchanger� � σ(�)

Rules for Logical Connectives

�,A,B �� ⊗l
�,A⊗B ��

� �A,� �′ � B,�′
⊗r

�,�′ �A⊗B,�,�′

�,A ��
&l
l�,A&B ��

�,B �� &r
l�,A&B ��

� �A,� � � B,�
&r

� �A&B,�

�,A �� �′,B ��′ `l
�,�′,A`B ��,�′

� �A,B,� `r
� �A`B,�

�,A �� �,B �� ⊕l
�,A⊕B ��

� �A,� ⊕l
r� �A⊕B,�

� � B,� ⊕r
r� �A⊕B,�

� �A,� �′,B ��′
�l

�,�′,A� B ��,�′
�,A � B,� �r
� �A� B,�

� �A,� ⊥l

�,A⊥ ��

�,A �� ⊥r

� �A⊥,�

Exponentials

� �� !weak
�, !A ��

� �� ?weak
� � ?A,�

�, !A, !A ��
!contr

�, !A ��

� � ?A, ?A,�
?contr

� � ?A,�

�,A ��
!der

�, !A ��

� �A,�
?der

� � ?A,�

!� �A, ?�
!prom

!� � !A, ?�
!�,A � ?�

?prom
!�, ?A � ?�

Mix (in LL+mix)

� �� �′ ��′
mix

�,�′ ��,�′
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Appendix B: Proofs for MLL±mix and MELL

Subalternation

ax
A �A

ax
B � B

mix
A,B �A,B ⊗l
A⊗B �A,B `r
A⊗B �A`B �r�A⊗B �A`B

ax
A �A !der
!A �A

?der
!A � ?A �r� !A� ?A

ax
A �A

ax
B � B

mix
A,B �A,B ⊥l × 2

A⊥,B⊥,A,B � ⊥r × 2
A⊥,B⊥ �A⊥,B⊥

⊗l
A⊥ ⊗B⊥ �A⊥,B⊥ `r
A⊥ ⊗B⊥ �A⊥ `B⊥

�r�A⊥ ⊗B⊥ �A⊥ `B⊥

ax
A �A ⊥l
A,A⊥ � ⊥r
A⊥ �A⊥

!der
!A⊥ �A⊥

?der
!A⊥ � ?A⊥

�r� !A⊥ � ?A⊥

Contradiction

ax
A �A

ax
B � B ⊗r

A,B �A⊗B ⊥l
(A⊗B)⊥,A,B � ⊥r × 2
(A⊗B)⊥ �A⊥,B⊥ `r
(A⊗B)⊥ �A⊥ `B⊥

�r� (A⊗B)⊥ �A⊥ `B⊥

ax
A �A ⊥r�A,A⊥

?der�A, ?A⊥
!prom� !A, ?A⊥
⊥l

(!A)⊥ � ?A⊥
�r� (!A)⊥ � ?A⊥

ax
A �A ⊥r�A⊥,A

ax
B � B ⊥r� B⊥,B ⊗r�A⊥,B⊥,A⊗B `r�A⊥ `B⊥,A⊗B ⊥l

(A⊥ `B⊥)⊥ �A⊗B �r� (A⊥ `B⊥)⊥ �A⊗B

ax
A �A ⊥r�A⊥,A

?der� ?A⊥,A
!prom� ?A⊥, !A ⊥l

(?A⊥)⊥ � !A �r� (?A⊥)⊥ � !A

ax
A �A ⊥r�A,A⊥

ax
B � B ⊥r� B,B⊥

⊗r�A,B,A⊥ ⊗B⊥ `r�A`B,A⊥ ⊗B⊥
⊥l

(A`B)⊥ �A⊥ ⊗B⊥
�r� (A`B)⊥ �A⊥ ⊗B⊥

ax
A �A ⊥r�A,A⊥

?der� ?A,A⊥
!prom� ?A, !A⊥
⊥l

(?A)⊥ � !A⊥
�r� (?A)⊥ � !A⊥
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ax
A �A ⊥r�A⊥,A

ax
B � B ⊥r� B⊥,B ⊗r�A⊥ ⊗B⊥,A,B `r�A⊥ ⊗B⊥,A`B ⊥l

(A⊥ ⊗B⊥)⊥ �A`B �r� (A⊥ ⊗B⊥)⊥ �A`B

ax
A �A ⊥r�A⊥,A

?der�A⊥, ?A
!prom� !A⊥, ?A ⊥l

(!A⊥)⊥ � ?A �r� (!A⊥)⊥ � ?A

Subcontrariety

ax
A �A

ax
B � B

mix
A,B �A,B ⊥r × 2�A,B,A⊥,B⊥ `r × 2�A`B,A⊥ `B⊥ `r� (A`B)` (A⊥ `B⊥)

ax
A �A ⊥r�A,A⊥

?der�A, ?A⊥
!prom� !A, ?A⊥ `r� !A` ?A⊥

Appendix C: Proofs for MALL and Quantified MALL

Subalternation

ax
A �A &l

A&B �A ⊕r
A&B �A⊕B �r�A&B �A⊕B

ax
A �A ∧

l∧
xA �A ∨

r∧
xA � ∨

xA �r� ∧
xA�

∨
xA

ax
A �A ⊥r�A,A⊥

⊥l
A⊥ �A⊥

&l
A⊥ &B⊥ �A⊥ ⊕r

A⊥ &B⊥ �A⊥ ⊕B⊥
�r�A⊥ &B⊥ �A⊥ ⊕B⊥

ax
A �A ⊥r�A,A⊥

⊥l
A⊥ �A⊥ ∧

l∧
xA⊥ �A⊥ ∨

r∧
xA⊥ � ∨

xA⊥
�r� ∧

xA⊥ �
∨
xA⊥

Contradiction

ax
A �A ⊥r�A,A⊥

⊕r�A,A⊥ ⊕B⊥

ax
B � B ⊥r� B,B⊥

⊕r� B,A⊥ ⊕B⊥
&r�A&B,A⊥ ⊕B⊥

⊥l
(A&B)⊥ �A⊥ ⊕B⊥

�r� (A&B)⊥ �A⊥ ⊕B⊥

ax
A �A ⊥r�A,A⊥ ∨

r�A,
∨
xA⊥ ∧

r�∧
xA,

∨
xA⊥

⊥l
(
∧
xA)⊥ � ∨

xA⊥
�r� (

∧
xA)⊥ �

∨
xA⊥
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ax
A �A ⊥r�A,A⊥

⊕r�A⊕B,A⊥

ax
B � B ⊥r� B,B⊥

⊕r�A⊕B,B⊥
&r�A⊕B,A⊥ &B⊥

⊥l
(A⊕B)⊥ �A⊥ &B⊥

�r� (A⊕B)⊥ �A⊥ &B⊥

ax
A �A ⊥r�A,A⊥ ∨

r� ∨
xA,A⊥ ∧

r�∨
xA,

∧
xA⊥

⊥l
(
∨
xA)⊥ � ∧

xA⊥
�r� (

∨
xA)⊥ �

∧
xA⊥

ax
A �A ⊥r�A⊥,A ⊕r�A⊥,A⊕B

ax
B � B ⊥r� B⊥,B ⊕r� B⊥,A⊕B

&r�A⊥ &B⊥,A⊕B ⊥l
(A⊥ &B⊥)⊥ �A⊕B �r� (A⊥ &B⊥)⊥ �A⊕B

ax
A �A ⊥r�A⊥,A ∨

r�A⊥,
∨
xA ∧

r� ∧
xA⊥,

∨
xA ⊥l

(
∧
xA⊥)⊥ � ∨

xA �r� (
∧
xA⊥)⊥ �

∨
xA

ax
A �A ⊥r�A,A⊥

⊕r�A,A⊥ ⊕B⊥

ax
B � B ⊥r� B,B⊥

⊕r� B,A⊥ ⊕B⊥
&r�A&B,A⊥ ⊕B⊥

⊥l
(A⊥ ⊕B⊥)⊥ �A&B �r� (A⊥ ⊕B⊥)⊥ �A&B

ax
A �A ⊥r�A⊥,A ∨

r�∨
xA⊥,A ∧

r� ∨
xA⊥,

∧
xA ⊥l

(
∨
xA⊥)⊥ � ∧

xA �r� (
∨
xA⊥)⊥ �

∧
xA
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The Square of Opposition and Generalized
Quantifiers

Duilio D’Alfonso

Abstract In this paper I propose a set-theoretical interpretation of the logical square
of opposition, in the perspective opened by generalized quantifier theory. Generalized
quantifiers allow us to account for the semantics of quantificational Noun Phrases, and of
other natural language expressions, in a coherent and uniform way. I suggest that in the
analysis of the meaning of Noun Phrases and Determiners the square of opposition may
help representing some semantic features responsible to different logical properties of
these expressions. I will conclude with some consideration on scope interactions between
quantifiers.

Keywords Generalized quantifiers · Semantics · Logical duality

Mathematics Subject Classification Primary 03B65 · Secondary 68Q55

1 Noun Phrases as Generalized Quantifiers

Let M be a non-empty set, the universe, of a model M and QM any set of subsets of M .
Then, in the Lindström terms [3], QM is a type 〈1〉 Generalized Quantifier (GQ, here and
henceforth) whose meaning is given by:

QM(A) is true iff A ∈QM (1)

where theQM on the left side of the iff-statement is meant to be a quantificational operator
of the functional type (et)t (a function mapping predicates onto truth-values, A being a
first-order predicate, of type et), and the QM on the right side is to be interpreted as a
subset of ℘(M), the power set of M (QM is a second order unary predicate).

The type 〈1〉 generalized quantifier is a straightforward illustration of the “set-
theoretical” conception of quantifiers in the GQ theoretical framework: a quantifier is con-
ceived as a second order n-ary relation between sets (i.e. between first-order predicates).
For instance, a type 〈k1 . . . kn〉 quantifier, where k1 = k2 = · · · = kn =m, is a second order
n-ary relation between m-ary predicates.

Generalized quantifiers can be written as a variable-binding operators. As a simple
case, a type 〈1〉 quantifiers QM can be notated in the usual way as Q(x)φ(x). Let M � φ
be the satisfaction relation between a model and a formula, and �φ(x)�M the “extension”
of φ(x) in M (the set of the elements satisfying φ). The following statement provides
the semantics of a formula in which x is bound by the generalized quantifier QM , as
variable-binding operator:

M �Qxφ(x) iff �φ(x)�M ∈QM (2)

J.-Y. Béziau, D. Jacquette (eds.), Around and Beyond the Square of Opposition, 219–227
Studies in Universal Logic, DOI 10.1007/978-3-0348-0379-3_15, © Springer Basel 2012
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This notation suggests a compositional account for the first-order logic formulas with
quantifiers. It is well-known that standard universal and existential quantifiers do not have
a denotation in the predicate calculus, and that, as a consequence, it is not possible to com-
positionally interpret formulas in which they occur. But, as type 〈1〉 quantifiers, standard
universal and existential quantifiers denote sets of sets:

∀M = {M}
∃M = {A⊆M :A �= ∅}

Now, we can easily express, in a “compositional fashion”, the meaning of a formulas such
as ∀xφ(x):

M � ∀xφ(x) iff �φ(x)�M ∈ �∀M � iff �φ(x)�M =M (3)

The denotation of ∀xφ(x) is constructed out by applying the denotation of the quantifier
to the denotation of the open formula. So conceived, standard quantifiers end up to show
the same functional property of Noun Phrases in natural languages.

1.1 Noun Phrases as Type 〈1〉 Quantifiers

Noun Phrases (NP), typed (et)t , are uniformly interpreted (following Montague) as type
〈1〉 quantifiers, in their role of mapping the predicates expressed by the Verb Phrases onto
{True,False}. The following ‘parse tree’ illustrates the point.

This tree is the representation of the syntactic and semantic structure of the nuclear sen-
tence1 (in English, but also in other natural languages). As well as a sentence is con-
structed out by combining a NP with a VP, its meaning, a truth-value, is obtained by a
step of functional application of the meaning of the NP to the meaning of the VP. In
the following, is showed this process of meaning computation, for a simple sentence like
“every sailor drink”:

�[every sailor]NP[drink]VP �t

iff �every sailor�(et)t
(

�drink�et
)

iff drink ∈ {A⊆M : sailor ⊆A}⇔ drink ⊆ sailor (4)

provided that the meaning of “every sailor” is conceived as a generalized quantifier:

�every sailor�(et)t = (every sailor)M = {A⊆M : sailor ⊆A} (5)

The uniform treatment of NPs as type 〈1〉 quantifiers (Mostowski GQ, [5]) is assured
by the “type-raising” of the meaning of proper names, as showed by the meaning compu-
tation for a sentence like “John drinks”:

1S is the symbol for the syntactic category of ‘sentence’, VP for ‘verb phrase’.
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�[john]NP[drinks]VP �t

iff �john�(et)t
(

�drink�et
)

iff drink ∈ {A⊆M : john ∈A}⇔ john ∈ drink (6)

provided that the meaning of “John” is conceived as a generalized quantifier:

�john�(et)t = (john)M = {A⊆M : john ∈A} (7)

1.2 Determiners as Type 〈1,1〉 Quantifiers

As a natural consequence of Lindström generalization of type 〈1〉 quantifiers to type
〈k1 . . . kn〉 quantifiers, it is possible to semantically construe NPs as the result of the com-
bination of Determiners (DET) with common nouns (that are first-order predicates). DETs
are interpreted as type 〈1,1〉 quantifiers, i.e. functions mapping predicates into type 〈1〉
quantifiers. As for sentences, the meaning of NPs is the result of a compositional process,
in which the meaning of a DET is applied to that of a common noun:

Type 〈1,1〉 quantifiers can be defined along the same line of the previous definition
for type 〈1〉 quantifiers. Let M be the universe of a model M and QM any set of pairs of
subsets of M . Then QM is a type 〈1,1〉 GQ whose meaning is given by:

QM(A,B) is true iff 〈A,B〉 ∈QM (8)

where QM(A,B) on the left side of the iff-statement is a quantificational operator of type
(et)((et)t) and QM(A,B) on the right side is a subset of ℘(M)×℘(M).

Again, an example could help illustrating this definition at work. Let consider the
meaning of a definite NP like “the boy”, resulting from the application of the meaning
of “the” to the meaning of “boy”:

�the boy�(et)t = �the�(et)((et)t)
(

�boy�et
)

Since the meaning of the definite determiner is:

the(A,B) is true iff A⊆ B ∧ |A| = 1 (9)

we have the following semantic computation for deriving the meaning of the definite NP:

�the�
(

�boy�
)

iff the(boy,B)

iff boy ⊆ B ∧ |boy| = 1 (10)

In the last line of this derivation there is a type 〈1〉 quantifier that can equivalently be writ-
ten as: the(boy)M = {A ⊆M : boy ⊆ A ∧ |boy| = 1}. Moreover, note that (9) explicates
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the meaning of the singular the; for the plural case we have to modify the expression as
follows:

thepl(A,B) iff A⊆ B ∧ |A|> 1 (11)

In order to show the expressive power of GQ theory, and its wide applicability to the
analysis of the semantics of natural language determiners, a list of DETs as type 〈1,1〉
quantifiers is presented. The four quantifiers of the Aristotelian square of opposition are:

all(A,B)⇔A⊆ B

no(A,B)⇔A∩B = ∅
some(A,B)⇔A∩B �= ∅
not all(A,B)⇔A−B �= ∅

(12)

Below some other well-known quantifiers are listed:

(
QR

)
M

⇔ |A|> |M|
2

(the Rescher quantifier for finite universe)

most(A,B)⇔ |A∩B|> |A−B|
ten(A,B)⇔ |A∩B| ≥ 10

the ten(A,B)⇔ |A| = 10 ∧A⊆ B

John’s(A,B)⇔A∩ {
b : owner(j, b)

} ⊆ B ∧ ∣
∣A∩ {

b : owner(j, b)
}∣∣> 1

(in the last line is represented the case of possessive construction in plural NPs, like
“John’s bikes”, while |A ∩ {b : owner(j, b)}| = 1 holds in the case of singular NP, like
“John’s bike”).

2 Squaring Generalized Quantifiers

As set-theoretical entities, generalized quantifiers can be the object of application of the
boolean operations. In what follows I will focus on negative operations and on the struc-
tural and logical properties showed by quantifiers when they are undergoing those opera-
tions. The two negative operations on GQs are the outer negation and the inner negation.

Let Q be a GQ. We adopt the following notational convention:

i. ¬Q is the outer negation of Q
ii. Q¬ is the inner negation of Q

iii. ¬Q¬=Qd is the dual of Q (outer negation of the inner negation).

A quantifier, together with its outer negation, inner negation and dual forms a natural unit,
the square:

square(Q)= {
Q,¬Q,Q¬,Qd

}
(13)

Since a type 〈1〉 quantifier QM , on a domain M , is a subset of ℘(M), the square of Q
may straightforwardly be characterized in terms of set-theoretical formulas as follows:

i. ¬QM(A)= {℘(M)−Q(A)}
ii. QM¬(A)= {Q(M −A)}
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Fig. 1 On the left is showed the classical square of opposition, on the right the modern interpretation.
The logical relations in the classical square involve the existential import

iii. Qd(A)= {℘(M)−Q(M −A)}
This square is naturally extensible for a type 〈1,1〉 quantifier Q(A,B):

i. ¬QM(A,B)= {℘(M)2 −Q(A,B)}
ii. QM¬(A,B)= {Q(A,M −B)}

iii. Qd(A,B)= {℘(M)2 −Q(A,M −B)}
The following are some obvious general facts about square(Q):

• if Q is non-trivial (QM �= ℘(M) and QM �= ∅), so are the other quantifiers in its square
• if Q′ ∈ square(Q) then square(Q′)= square(Q)

• square(Q) has either two or four members
• if Q′ =Qd then Q and Q′ are inter-definable.

2.1 Classical vs Modern Square

The debate on the difference between classical and modern square of opposition (as
showed in Fig. 1) is nowadays still on (see [7] and [6] for a wide discussion on the topic).
The classical square represents logical relations among sentences in which a single quan-
tificational determiners occurs in subject position, the so-called “categorical judgments”.
The modern version is intended to represent the “span” of a quantifier when undergoing
the negative operations.

Clearly, the modern version is a generalization of the classical square of opposition.
By interpreting the modern square in set-theoretical terms, the logical relations holding
among quantifier of the classical square are easily reproducible, under some conditions on
the set-theoretical objects involved. The main case is that of the existential import of ALL
in the classical square. In the modern sense, ALL is conceived without existential import,
but, given that ALLM(A,B)⇔A⊆ B and ALLM¬(A,B)⇔A⊆M −B , to ensure that
they can not both be true (for reproducing the contrary relation) is simply required that A
is not empty.

Other consequence of the more generality of the modern square is that it is applicable
to every quantifier and thus it displays more utility for investigating the semantics of NPs.
Moreover, it is worth noting that, in many natural languages, there are pairs of quantifi-
cational expressions (DETs), but also of expressions belonging to other categories, like
adverbials (still/already) or conjunctions (because/although), whose denotation exhibits
the pattern of duality. This may be a sign that the square of logical duality codifies some
deep and pervasive pattern of the semantics of natural languages expressions embodying
some quantificational feature.
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Fig. 2 Using the modern version of the square, we can easily visualize different patterns of logical
relations in the square(Q) of a quantifier Q. From left to right, the first square sketches the logical
pattern for ultrafilters (Q and Q¬ are contradictory), the second for filters (Q and Q¬ are contrary), the
third for intersective quantifiers (Q and Q¬ are compatible)

3 Squaring NPs Properties

The semantic homogeneity of NPs is due to their functional homogeneity as type 〈1〉
generalized quantifiers. But type 〈1〉 quantifiers have different logical properties, splitting
them into three fundamental categories: ultrafilter, filter and “intersective” quantifiers, as
outlined in the following table:

ultrafilter Proper Names, definite NPsgs, Pronouns
John, the boy, I, etc.

filter definite quantified NPs
every boy, no student, etc.

intersective indefinite quantified NPs
some boys, a boy, two boys, etc.

Briefly, what distinguishes a filter Q from an intersective quantifier Q′ is that Q and
Q¬ cannot be both true (they are contrary), while Q′ and Q′¬ do (they are compati-
bles). What distinguishes an ultrafilter Q from a filter Q′ is that Q and Q¬ cannot be
neither both true nor both false (they are contradictory), while Q′ and Q′¬ can be both
false.2 As visualized in Fig. 2, this way of distinguishing filters from ultrafilters and inter-
sective quantifiers suggests the use of the square in order to figure out logical properties
of these classes of NPs. Ultrafilters are individuals, inner and outer negation having the
same effect of determining contradiction. Filters and intersective quantifiers are “quan-
tirelations”: they have the so-called “isomorphism” (ISOM) property, whereas ultrafilters
are non-ISOM. ISOM means that for holding the relation expressed by the quantifiers
only the cardinality of sets involved is relevant.

The difference between filters and intersective quantifiers is a matter of different logical
effect of inner negation, as a set-theoretical operation. For instance, all is a filter because
allM(A,B)= |A−B| = 0 and allM¬(A,B)= |A− (M−B)| = |A∩B| = 0 cannot both
be true, if A is not empty, while some is an intersective quantifier because someM(A,B)=

2The distinction here introduced is slightly different from the original characterization of definite NPs
as filters due to Barwise and Cooper [2] and revisited by Loebner [4]. For example, the classification
here proposed has the concept of filter in common with the characterization of NPs in Loebner [4], but
the method of “squaring” logical properties of quantifiers involves some not negligible differences. The
effect of the inner negation in determining contradiction or contrariness is here the only parameter used
in distinguishing quantifiers. As a consequence, three classes of quantifiers are proposed, while Loebner
essentially distinguishes only between filters and ultrafilters, as his main concern, in the cited article, is
the semantics of definite NPs, and not NPs overall considered as generalized quantifiers.
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|A ∩B| �= 0 and someM¬(A,B)= |A ∩ (M −B)| = |A−B| �= 0 can obviously be both
true but not both false (if A is not empty). Moreover, we can notice that if Q is a filter,
Qd is an intersective quantifier. This is the case of a GQ like mostM(A,B)= |A ∩ B|>
|A−B|, as showed by its square:

i. mostM¬(A,B)= |A∩B|< |A−B|
ii. mostdM(A,B)= |A∩B| ≥ |A−B|

iii. ¬mostM(A,B)= |A∩B| ≤ |A−B|
By reading this square it is immediately verified that mostd and its inner negation
mostd¬=¬most can be both true.

3.1 Nested Quantifiers

In natural language sentences is usual to have NPs both in subject and object position.
And, given the formal under-determination of natural language grammar, each NP, as
type 〈1〉 quantifier, can take scope over the other. If this scope commutativity between the
two NPs produces a semantic ambiguity or not, is a matter of “relative logical properties”
of the quantifiers involved.

Let briefly examine the “scope interaction” between quantifiers. If Q1 and Q2 are
type 〈1〉 generalized quantifiers and R is a binary relation, we can abbreviate the formula
Q1(x)Q2(y)R(x, y) as Q1Q2R and its inversion Q2(y)Q1(x)R(y, x) as Q2Q1R

−1. We
can now distinguish three fundamental cases (for each case an example is reported imme-
diately below):

i. self-commuting quantifiers:

Q
(
Q(R)

) ⇔Q
(
Q

(
R−1))

all
(
all(R)

) ⇔ all
(
all

(
R−1))

ii. independent quantifiers:

Q1
(
Q2(R)

) ⇔Q2
(
Q1

(
R−1))

all
(
the(R)

) ⇔ the
(
all

(
R−1))

iii. a quantifier is (scopally) dominant over the other:

Q1
(
Q2(R)

) ⇒Q2
(
Q1

(
R−1))

some
(
all(R)

) ⇒ all
(
some

(
R−1))

Semantic ambiguity rises only in the third case, i.e. when Q1 is dominant over Q2. In
order to illustrate this fact I will proceed with an example. Let consider the following two
sentences:

All boys read the books (14)

All boys read some book (15)

For sentence (14), the object narrow scope (ons) reading and the object wide scope (ows)
reading are equivalent, as a matter of logic of set-theoretical formulas:
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(ons) all(boy)
[
thepl(book)[read]]

= boy ⊆ {
x : book ⊆ {y : x read y} ∧ |book|> 1

}

(ows) thepl(book)
[
all(boy)

[
read−1]]

= book ⊆ {
y : boy ⊆ {x : x read y}}∧ |book|> 1

(16)

For sentence (15), (ons) and (ows) readings are not equivalent, given that (ows) ⇒ (ons),
as a matter of logic:

(ons) all(boy)
[
some(book)[read]]

= boy ⊆ {
x : book ∩ {y : x read y} �= ∅}

(ows) some(book)
[
all(boy)

[
read−1]]

= book ∩ {
y : boy ⊆ {x : x read y}} �= ∅

(17)

In literature [1], scope dominance is defined as follows: in finite domain Q1 is dom-
inant over Q2 iff Q1 is an “exist” quantifier or Q2 is a “universal” quantifier. On the
square, this condition could be expressed as follows: Q1 is dominant over Q2 iff Q1 is
an intersective quantifier or Q2 is a filter. For what concerns independent quantifiers, re-
tracing the definition in Westersthål [8], we can say that Q1 and Q2 are independent iff at
least one of the following holds: (i) both Q1 and Q2 are intersective; (ii) both Q1 and Q2
are filters; (iii) one of the two is an ultrafilter. Actually, this definition should be refined,
in order to account for cardinal quantifiers. In fact, cardinal quantifiers are intersective but
it is easy to see that the bidirectional entailment is not valid:

n
(
m(R)

)
�m

(
n
(
R−1))

However, the undirectional entailment continues to hold:

n
(
m(R)

) ⇒m
(
n
(
R−1))

In other words, in the scope interaction of two cardinal quantifiers Q1 and Q2 it is the
quantifier that takes scope over the other that is scopally dominant. Thus, each of two car-
dinal quantifier can be dominant over the other, according to the scope it takes relatively to
the other. To accommodate this situation, the definition of independent quantifiers could
be refined as follows: Q1 and Q2 are independent iff

Q1
(
Q2(R)

) ⇔Q2
(
Q1

(
R−1))

or

Q1
(
Q2(R)

) ⇒Q2
(
Q1

(
R−1))∧Q2

(
Q1(R)

) ⇒Q1
(
Q2

(
R−1))

The latter disjunct is required to account for the “reciprocity” of scope dominance char-
acterizing cardinal quantifiers.

For filters (type 〈1,1〉), we need a more subtle distinction between co-intersective (let
Q(A,B): only |B − A| is relevant) and proportional (both |A ∩ B| and |B − A| are
relevant). Thus, although all(A,B) and most(A,B) are both filter, most is dominant over
all, because of the relevance, in its meaning, of |A ∩ B|. The (ons) interpretation of a
sentence like “all boys read most books” implies the (ows) reading, but the vice-versa
does not hold:

most(boy)
[
all(book)[read]] ⇒ all(book)

[
most(boy)

[
read−1]]
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but

most(boy)
[
all(book)[read]]	 all(book)

[
most(boy)

[
read−1]]

To sum up, in the paper I tried to apply the square of opposition, conceived as the expli-
cation of the logical dualities among quantifiers, to characterize some semantic features
of natural language NPs. A strong hypothesis, to be validated, could be that all quantifica-
tional NPs fall into one of the three categories (ultrafilters, filters, intersective quantifiers)
depending on the logical pattern they give rise when subjected to negative operations, i.e.
depending on the “collocation” they find in the square.

Generally, the methodology of “squaring” logical relations of quantificational oper-
ators can reveal some utility, for various purposes, and this utility is undoubted in the
analysis of the semantic and logical properties of natural language expressions such as
NPs, in the Generalized Quantifier framework.
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Privations, Negations and the Square:
Basic Elements of a Logic of Privations

Stamatios Gerogiorgakis

Abstract I try to explain the difference between three kinds of negation: external nega-
tion, negation of the predicate and privation. Further I use polygons of opposition as
heuristic devices to show that a logic which contains all three mentioned kinds of nega-
tion must be a fragment of a Łukasiewicz-four-valued predicate logic. I show, further, that,
this analysis can be elaborated so as to comprise additional kinds of privation. This would
increase the truth-values in question and bring fragments of (more generally speaking)
Łukasiewicz-n-valued predicate logics into the scene.

Keywords Privation · Negation · Łukasiewicz-n-valued predicate logic

Mathematics Subject Classification Primary 03B65 · Secondary 03B50

1 Motivating Arguments and Some History

Negation is what makes the square a square “of opposition” and a very intensively inves-
tigated logical constant.

Privation, a kind of truth-value inversion expressed by nouns like ‘immorality’, ‘ir-
responsibility’, ‘unreadiness’, ‘anarchy’, ‘senselessness’, ‘blindness’, ‘deafness’, ‘igno-
rance’, etc., is usually associated with negation in a very general sense of the word. Un-
like “standard” negation however, in the recent decades privation has been neglected or
suppressed in the discussion on the square and in logic altogether. This is one of these
very usual sins, which are understandable but inexcusable.

It is inexcusable, since the very first hints to a logic of privations date already in the
Middle Ages to be repeated now and then until the 19th century.

Greek and Arab Aristotelians dealt with three sorts of negation (cf. [16, pp. 173–184]):

1. the simple negation, which they understood in a way which roughly resembles our
external negation—“external” because in our semi-formal English the particle “not”
occurs, in this kind of negation, “externally” as part of the introductory expression: “It
is not the case that . . . ”;

For discussions concerning privation and amendments in the first drafts of this paper, I would like to
thank Prof. Dr. Hans Burkhardt, Georgios Karageorgoudis (both Munich) and, last but not least, two
anonymous referees.

J.-Y. Béziau, D. Jacquette (eds.), Around and Beyond the Square of Opposition, 229–239
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2. the negation of the predicate; and
3. the privation

Rough examples in English would be respectively: ‘It is not the case that Ebenezer
Scrooge is a generous person’; ‘Ebenezer Scrooge is a non-generous person’; ‘Ebenezer
Scrooge is a stingy person’. NB being stingy is a privation of a virtue: generosity.

The negation of the predicate was known to the ancients and the medievals by two al-
ternative names: infinite term (cf. Aristotle [3, 16a32]; Boethius [6, editio prima, I, chap-
ter 2]) and negation by transposition (cf. Ammonius [2, pp. 161–162]; Alexander [1,
p. 397]; John Italos [11, pp. 61–62, i.e. question 49]). The reason for giving it the name
“negation by transposition” is the structure of the classical languages: in Greek and in
Latin the negation of the predicate is formulated by taking a negative sentence with the
usual syntax of these languages (i.e. with the negation particle just in front of the verb) and
moving (“transposing”) the negation particle (‘ouk’ or ‘ou’ in Greek, ‘non’ in Latin) to
come immediately before the predicate. A standard Latin negation would be: ‘Bucephalus
non est asinus’ (= It is not the case that (there is something like) Bucephalus (and that
it) is a donkey) and the negation by transposition would be: ‘Bucephalus est non asinus’
(Bucephalus is no donkey). ‘Non’ was transposed from the first to the second place, to
formulate the negation by transposition. The English syntax does not allow negation by
transposition to be formulated by means of a transposition literally.

Some medieval Arab Aristotelians tended to confuse privations and negations of the
predicate because of the linguistic production rules of Arabic: There is nothing like a
monolectic privation with affixes in Arabic and the privation of the Indogermanic lan-
guages can only be expressed in this language by means of a periphrastic formulation
analogous to the Indogermanic negation of the predicate—cf. [16, p. 178]. Regardless of
the reasons which gave rise to it, there is something true in the idea of the Arab logic to
regard the negation of the predicate as some kind of privation. In what follows we are
going to see that the negation of the predicate is, like privation, a strong kind of nega-
tion.

John Italos [11, p. 62, i.e. question 49], an 11th-century Norman from Sicily who wrote
in Greek, observed that the sentence ‘Being just is predicated of humans’ is true in just one
case: obviously when the humans in question are just. Italos continues with the statement
that the sentence: ‘Being non-just is predicated of no humans’ is true in three cases. He
does not explicitly say so, however good candidates would be the following three cases:
case (1) the humans in question are just (note that this case made also the sentence ‘Being
just is predicated of humans’ true) or, case (2), there are no humans or, case (3), there
is nothing which is non-just. Further, Italos observed that the sentence: ‘Being unjust is
predicated of no humans’ is true in five cases. By this he rather meant the following five
cases: the inclusive disjunction of the cases 1 till 3, or, case (4), injustice is a predicate
which does not apply to the humans of the domain (like, for example, it does not apply to
insects) or case (5), there is nothing unjust. Italos remarked that the humans’ in question
being unjust implies their being non-just, which implies their not being just. However,
according to Italos these implications do not hold vice versa. And this is exactly what my
interpretation of Italos does justice to.

Another example, not found in Italos but representative of what he had in mind, might
be more illuminating: If Homer is blind, then Homer sees nothing. But it is not correct
to say that if Homer sees nothing, then Homer is blind, since Homer may be unable to
see only because the room is dark. Further, if Homer sees nothing, then seeing is not
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predicated of the reference of this name. But if seeing is not predicated of the reference of
the name ‘Homer’, then from this does not follow that Homer is an existing individual and
that other predicates of real people can be attached to him: like, say, being in a dark room,
being blind and so on. In other words, if the only thing which we know about Homer is
that it is not the case that he is there and watches around, then from this does not follow
that he is there and watches nothing. He might not be there at all. Cf. also Wolfson [16,
pp. 179–181].

After the 15th century, the distinction between simple (= external) negation and pri-
vation was criticized as unintelligible by authors who were anti-Aristotelians or nom-
inalists or both; among many others by Valla [14, pp. 114–115], and Gassendi [7,
lib. I, ex. 6, cap. 1]. Their arguments against privation reflect basic nominalistic beliefs
which primarily concern ontology and affect the logic of privation only insofar one de-
cides to indulge in nominalist ontology. It is interesting, however, to review these argu-
ments, in order to understand how privation was dismissed from natural science, initially,
and from logic subsequently. Since Aristotle, privation was defined with reference to nat-
ural properties. Privation-talk presupposes that an individual has properties, which are
natural for a universal, to which it belongs, and others which are not natural for it. We say,
for example, that Stevie Wonder is deprived of sight, because it is natural for humans to
see, but we do not say that he is deprived of hearing ultrasounds. The nominalistic cluster
of arguments against privation-talk denies the ontology which underlies properties natural
for members of the one universal to have and unnatural for members of another universal
to have. Based on this, nominalists stress that the distinction between simple negation
and privation has to be dismissed. This view has had some very influential supporters not
only in the early modern period but also in very recent times, above all Quine. Horn [10,
p. 112], reviews briefly the contemporary discussions on this point.

These historical remarks concerning the topic: nominalist ontology and privation may
suffice. The logical issue concerning privation is not directly linked to nominalist onto-
logical concerns. The logic of privation formalizes the privation-talk of natural language.
The ontological issue, which the traditional nominalists and their recent epigones raise,
does not affect the way in which we express privation in natural language. While nomi-
nalist ontology rejects the idea of real universals with natural properties, the logical issue
consists in taking privation-talk for granted and in attempting to model it in logic. In what
follows, I will leave ontology aside and concentrate on the logical issue. In other words,
I will take privation-talk seriously and by doing this I will engage in an ontology, which
is not nominalistic.

This is not to say that I will put all issues raised by nominalism aside. My analysis does
deal with some logical issues, which nominalism raises, though not with the ontological
ones. A logical issue of nominalistic spirit, which my analysis will account for, was antic-
ipated by Aristotle [4, 1022b32-33], who observed that no privation is meant like the next
privation: an individual mole is not said to be deprived of sight in reference to creatures
which have eyes (moles do have eyes). Therefore, it is one kind of blindness which is
expressed in a mole’s being blind and another kind of blindness which is expressed in
a human’s being blind as a result of an accident—in the sense that these individuals are
deprived of one-and-the-same thing in different grades. The one is deprived of something
she never had, the other is deprived of something she once had. Another, perhaps more
appropriate or revealing example, would be the difference between blindness and half-
blindness. Let me coin a new “-ism” for this feature of natural language: the pluralism of
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privations. At the end of this paper, I will attempt to show that the pluralism of privations
does not dismiss privation.

Despite the criticism, to which the notion of privation was exposed in the 16th and
17th centuries, Wolff [15, §§109–110] and Kant [12, A70 = B95; A72-73 = B97-98]
in the 18th century expressed the view that the sentences are according to their quality
affirmative, negative or infinite. Kant’s example was the difference between ‘The soul is
not mortal’ (a negative sentence) and ‘The soul is non-mortal’ (an infinite sentence). We
know what the case must be for the negative sentence ‘The soul is not mortal’ to be true: it
has to fail to fulfill the sentence: ‘The soul is mortal’. This is the case when the soul does
not exist or is inorganic or is divine. But we do not know as exactly as this, what the case
must be for the infinite sentence ‘The soul is non-mortal’ to be true. The things which
are non-mortal form the complementary set of all mortal entities—and this set has infinite
members. Since this set is infinite, we can never be certain whether there exist entities in
it, perhaps the soul itself, which would surprise us in the sense that neither mortality nor
non-mortality, or even both would be attributed to them. However, when we state that the
soul is not mortal (instead of non-mortal), we claim that the soul fails to be an element
of a finite set: the set of all mortal entities. And since we have defined this finite set, in
principle we can be certain that mortality either is or is not attributed to the soul—for this
line of argument cf. Kant [12, A72-73 = B97-98].

Subsequently there were Kantian scholars who expressed the view that it is one thing
to negate the verb (‘The soul is-not mortal’) and another thing to negate the predicate
(‘The soul is non-mortal’); for a discussion cf. Hamilton [9, pp. 177–179]. But the issues,
which Kantianism raised in this respect, got forgotten at the latest when this philosophical
tradition declined in the second half of the 20th century.

Albeit inexcusable, the negligence of privation in logic is, as I said, understandable.
It is understandable, since the syntactical means to express privation, unlike those which
express external negation, do not seem to be propositional operators. I will argue that this
is a false impression, that privations are propositional functions after all. I will show this
by using an hexagon and a square of opposition.

2 Polygons of Opposition Edged by Privations, Negations of the
Predicate, and External Negations

Take the following examples of a privation, a negation of the predicate, and an external
negation. These are exactly the kinds of negation, which are known to Aristotelian logic.

Privation The philosopher’s stone is immortal
Negation of the predicate The philosopher’s stone is non-mortal
External negation1 It is not the case that the philosopher’s stone is mortal

1Some contemporary authors like Blau [5, p. 49] and Horn [10, pp. 122–132], call the negation of the
predicate: ‘presupposing’ negation, because, unlike the external negation it presupposes the existence of
the entity expressed in the subject. Especially Blau (loc. cit.) calls it ‘strong negation’ because it entails
the external negation but is not entailed by it. Since in Blau’s three-valued logic there are exactly two
negations: (a) a formal construction, which formalizes the negation of the predicate/by transposition, and
(b) a weak negation which formalizes the external negation of the natural language, the former is the
only strong negation in Blau’s three-valued logic. But, if I am allowed to anticipate one of my results, the
negation of the predicate is not the strongest kind of negation in the logic of privation.
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My example of an external negation is a true sentence. A stone cannot be said to be mortal.
This seems to make my example of a negation of the predicate true (this conclusion is
premature and inaccurate, but for now, let me continue). The philosopher’s stone belongs
to the entities which are neither mortal nor immortal. To say that a stone would belong
to the entities which are immortal, is to commit a category mistake. The main difference
between my example of a negation of the predicate and my example of a privation is
that the privation invites a category mistake, the negation of the predicate does not. In
fact, a negation of a predicate never involves category mistakes, privations sometimes do
(cf. [10, pp. 110–122, i.e. chapter 2.3]). This is one of the reasons why the privation above
is also not true: it is a category mistake to assign a stone immortality. To avoid the category
mistake one must avoid to speak of immortality in this context, and say instead that the
philosopher’s stone belongs to the entities which are non-mortal. However effective for
avoiding category mistakes, this trick, however, does not save from unjustified existential
import.

Unjustified existential import is the other reason for which my example of a privation is
not true (my example of a privation fails to be true because of two reasons). My example
of a privation presupposes that the philosopher’s stone exists. If the philosopher’s stone
existed, then it would be true to say that it is non-mortal, since it would be neither mortal
nor immortal. But, alas, the philosopher’s stone does not exist. To refer to the philoso-
pher’s stone is analogous to referring to entities like the present king of France, James
Bond and Pegasus. Note that referring to the predicates which are not predicated of the
present king of France is totally different than referring to the predicates which are not
predicated of the present queen of the Netherlands. It is not true to say of Beatrix that she
is bald, because she has plenty of hair on her head. And it is not true to say of the present
king of France that he is bald (or that he is not bald alike), because he does not exist. To
make a long argument short, my example of an external negation is true, my example of a
negation of the predicate, however, is not true because it presents an unjustified existential
import.

The hexagon in Fig. 1 may serve as a starting point to portray the subalternations
between my examples.

The bottom sentences of Fig. 1 are true. Each of them contradicts to one of the top
sentences, which, eo ipso, fail to be true. The sentences on the top right and at the bottom
left, contradict each other in every respect. In the top right sentence an unjustified exis-
tential import and a category mistake are committed. The bottom left sentence discards
the unjustified existential import and the category mistake. Analogous is the case with the
bottom right sentence: it denies the unjustified existential import and the category mistake
committed in the top left sentence.

I left the remaining contradiction between the middle right and the middle left sen-
tence last, because it presents a disharmony compared to the other two contradictions of
the hexagon. To begin with the problems involved, the middle right and the middle left
sentences are a contradictory pair. Therefore they cannot be both false. But they both fail
to be true for the following reasons: The middle right sentence fails to be true because
of unjustified existential import. The middle left sentence appears syntactically to be an
external negation of the middle right sentence. If classical logic is adequate to model the
semantic nuances of this hexagon (this is a hypothesis, which we will have to drop in
due course), then the middle left sentence is true, since it is an external negation of the
middle right sentence, which is not true. But it cannot be true! The middle right sentence
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Fig. 1 An hexagon with three different kinds of negation

commits an unjustified existential import and no category mistake. It is not clear whether
the middle left sentence says that the philosopher’s stone is a non-existing non-mortal (in
which case it is true) or a non-existing (maybe even an existing) mortal (in which cases
it is not true). The relation between the middle right and the middle left sentence is not
of the same kind as the contradictions between the two other contradictory pairs of the
hexagon, where it was clear that the one sentence committed a category mistake, the other
did not. The fact that the middle left sentence is susceptible to interpretations which fail
to be true, although syntactically it contradicts a sentence which also fails to be true, is
my main motivation to consider classical logic as inadequate for this context. This is also
my reason to abandon the hexagon. An hexagon insinuates that all sentences connected
by a diagonal, including the middle right and the middle left corners, contradict in the
same way. But as we have just seen, the sentences of the middle right and the middle
left corner are opposed to each other in a way different, than the way in which the other
two contradictory pairs of the hexagon are opposed to each other. I would like to call the
opposition between the middle right and the middle left corner: “relativization” (instead
of contradiction). The reasons for this name are going to be clear once these sentences are
assigned adequate values in a multivalued setting. Since the hexagon in Fig. 1 insinuates a
misleading account of these “nuances”, I suggest the good-old-square in Fig. 2 as a more
fitting representation of the oppositions between my examples.

The top left and top right sentences of Fig. 2 are false for two reasons: they presuppose
the existence of the philosopher’s stone and they commit a category mistake. The middle
right sentence is false for just one reason: unjustified existential import (but no category
mistake). The middle left sentence is opposed to the middle right sentence in a way dif-
ferent than the way, in which the bottom right and the bottom left sentences are opposed
to the top left and the top right sentences respectively.

I take it that a four-valued system is adequate to cope with the semantic “nuances” of
my examples which edge the polygons of Fig. 1 and Fig. 2. In what follows, I will try to
substantiate this claim.
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Fig. 2 A square with three different kinds of negation

3 What Is a Negation?

Privation is a kind of negation which is used in natural languages, but has never been
used in a formal context. Drawing a semantics of privation is, for this reason, a task akin
to redefining or reinterpreting negation in formal contexts. The following definition of
negation is useful for my purposes.

Definition of Negation A negation (comprising external negation, negation of the pred-
icate and privation among others) is any monadic propositional function, such that it ren-
ders at least the maximum and the minimum truth values of a sentence which serves as
the argument of the function, into other values.

Remark on the Definition of Negation This definition implies that identity and the con-
stant functions, which assign every sentence one single truth value, are not negations.

This captures, I think, the common element, which all sorts of negation, which are in
use in logic, share. For, first, you need some truth-value change in a negation. This has
to be at least the maximum and the minimum value. When a meteorologist predicts: ‘It
will rain tomorrow’, then she might mean that this is true, or at least, that it is more true
than false. To deny the accuracy of the meteorologist’s prediction, is to say that, what she
says is false or, at least, more false than true. If I take her prediction to be true granted
that she means it to be true, but to be more false than true, granted that she means it to
be more true than false, then, if anything, I cannot be said to deny the accuracy of her
prediction. What I would do in such a case is maybe doubt the meteorologist’s ability
to maintain probabilities rather than necessities. But I would not deny the accuracy of the
meteorologist’s prediction in every respect. As one sees, a monadic propositional function,
whose values deviates only from any intermediate value of the sentence which serves as
its argument, but does not deviate from the maximum and the minimum values of this
sentence, is not a negation.
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In other words, for a monadic propositional function f (p), if

• vi[p] is the intermediate value of the sentence p which serves as the argument of f (p);
and

• vx[f (p)] is the value of f (p) if vi[p] is the value of p; and
• vy[f (p)] and vz[f (p)] are the values of f (p) if p is assigned the values vmax[p] and
vmin[p] respectively; and if finally

• vy[f (p)] = max and vz[f (p)] = min

then f (p) is not a negation, whatever the value vx[f (p)].
In order to have a negation, however, it is not necessary to have vy[f (p)] = min and

vz[f (p)] = max. Post’s cyclical negation does not function in this way. Moreover, it is not
necessary to change the intermediate values of the initial sentence. The strong negation in
Blau’s three valued logic does not. But, of course, one can change also some intermediate
values along with the maximal and minimal values of the initial sentence to obtain a nega-
tion thereof. The symmetrical negation in Łukasiewicz’s four-valued logic does exactly
this.

Theorem For any n-valued logic there are nn−2 × (n− 1)2 − (n− 2) negations in the
sense of the aforementioned Definition of Negation.

Proof This number follows from the following considerations. The number of the rows
of any truth-table which delivers the truth-functional definition of a monadic function
in an n-valued logic is n. The number of all monadic functions of an n-valued logic
is nn. But since negations are only those monadic operations, in which the maximum and
the minimum values of the initial sentence must be rendered into other values, in every
possible truth table which delivers the truth-functional definition of a negation in the sense
of the aforementioned Definition of Negation, there are two rows which cannot contain
all possible values of the initial sentence. That is, there are nn−2 possible combinations
of values in n − 2 rows which are combined with, i.e. multiplied by (n − 1)2 possible
combinations of values in 2 rows (the highest and the lowest). We have to subtract from
this product the number of those monadic functions which are constant and give a value
other than the maximum or the minimum. These are n− 2. �

Remark on the Proof The two constant functions which give the maximum and the mini-
mum values, are, of course, also not welcome as negations, but we have already excluded
them by demanding the maximum and the minimum values vmax[p] and vmin[p] to result
anything but vy[f (p)] = max and vz[f (p)] = min respectively. For the same reason we
have already excluded identity from negations.

Corollary 1 Since I am attempting to square the semantic “nuances” of my examples
which edge the square in Fig. 2 by operating in a four-valued system, let me remark that
in every four-valued logic there are 142 negations in the above sense.

Among these kinds of negation, there are some awkward ones. One might doubt, for ex-
ample, whether the function which turns true and false sentences to more-true-than-false
and intermediate values to true, is a negation. I would say that it is. It is a considerably
weak denial of maximal and minimal truth values.
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4 The Semantics of the Logic of Privations

I attempt to model privation-talk in the logic of privations (LP), which I take to be a
fragment of the Łukasiewicz-four-valued predicate logic; a fragment of an extension of
the Łukasiewicz-four-valued propositional logic, that is, which is large enough to contain
quantifiers, predicate symbols, individual variables and constants and indexical opera-
tors.2

LP is only a fragment of the Łukasiewicz-four-valued predicate logic because quanti-
fiers and individual variables occur in LP only as parts of singular terms: definite descrip-
tions or indexical/demonstrative expressions.

The reason for this proviso is the following: one basic idea of LP is that external nega-
tions are subalternate to privations. For example ‘It is not the case that Stevie Wonder can
see’ is subalternate to ‘Stevie Wonder is blind’ (cf. the top left and the bottom left sen-
tences of Fig. 2). Subalternations of this kind, however, do not apply in expressions like
‘Some singers. . . ’, etc. Note, for example, that ‘Some singers are blind’ does not imply:
‘It is not the case that some singers can see’, since it is true that there are blind singers, it
is not true however that all singers cannot see. In order to ensure, now, that external nega-
tions are subalternate to privations, by turning English contexts into LP-contexts, one has
to restrict context to English sentences, whose grammatical subject is a proper name or,
if it is any other (common) noun, it is governed by an indexical/demonstrative (‘here’,
‘there’, ‘now’, ‘this’, ‘that’, etc.) or by the definite article (‘the’).

LP contains the usual symbols for individual constants, individual variables and logical
constants plus some symbols for alternative kinds of negation. Where we have to go into
some detail, are the logical constants: →, ¬, −, ∼, ¬.

The truth values are: 1 (true), 2 (more-true-than-false), 3 (more-false-than-true),
4 (false).

The arrow (→) symbolizes implication with the meaning which this operation has
in Łukasiewicz’s four-valued propositional logic. The following table defines truth-
functionally the propositional function p→ q:

p\q 1 2 3 4

1 1 2 3 4
2 1 1 3 3
3 1 2 1 2
4 1 1 1 1

The other logical constants in question have to be understood as follows

• ‘¬’: weak negation;
• ‘−’: presupposing negation (the formal counterpart of the negation of the predicate in

English—note that it has been often held to be a privation in the history of philosophy);
• ‘∼: symmetric negation (Łukasiewicz’s four-valued negation);
• ‘ ¬’: privation.

2Gottwald [8, pp. 55–57] gives a brief exposition of the construction of the Łukasiewicz-four-valued
predicate logic; he [8, pp. 45–47] also gives the axioms and the deduction rules of the Łukasiewicz-four-
valued propositional logic. For a brief but full account of the semantics of the Łukasiewicz-four-valued
propositional logic cf. [13, pp. 29–32].
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The truth-functional definition of these kinds of negation is given by the following
table:

p ¬p −p ∼p ¬p
1 4 4 4 4
2 1 3 3 4
3 1 4 2 4
4 1 1 1 1

Now, let me assign the sentences of the square in Fig. 2 values between 1 and 4.

• Top right: v[‘The philosopher’s stone is immortal’] = 4 (NB, a privation which is false
for two reasons: unjustified existential import and category mistake);

• Top left: v[‘The philosopher’s stone is mortal’] = 4 (an affirmative sentence which is
false for the same reasons as its contrary—contrary sentences can be simultaneously
false);

• Middle right: v[‘The philosopher’s stone is non-mortal’] = 3 (NB, a presupposing
negation, which is false for one reason: unjustified existential import);

• Middle left: v[‘It is not the case that the philosopher’s stone is non-mortal’] = 2 (a sym-
metric negation (!) of the presupposing middle right negation—readers can very easily
persuade themselves that, when a sentence has the value 3, as is here the case, then the
symmetrical negation of this sentence gives the value 2);

• Bottom right: v[‘It is not the case that the philosopher’s stone is mortal’] = 1 (a sym-
metric negation, forming a contradictory pair with the false top left affirmative sen-
tence);

• Bottom left: v[‘It is not the case that the philosopher’s stone is immortal’] = 1 (a sym-
metric negation of a privation, forming a contradictory pair with the false top right
privation).

As one sees the external negation of English in the sentences which edge the square of
Fig. 2 has to be formalized with a symmetric, not with a weak negation.

The peculiar name which I have chosen to express the opposition between the middle
right and the middle left sentences (‘relativizing’ in Fig. 2 instead of ‘contradictory’ in
Fig. 1) has to do with the truth-values 3 and 2 which I just assigned these sentences: the
one says that the philosopher’s stone is non-mortal—because it does not belong to the
things which are either mortal or immortal. The other adds for consideration or, rather,
relativizes, that it is not existing either, so that it is natural for it to fail being non-mortal.

As one sees, four values, some negations more and an understanding of subalternation
as Łukasiewicz’s four-valued implication are sufficient to solve the puzzle which arises
out of a natural understanding of the middle-right and the middle-left sentences.

One last remark: In my outline of LP, I used only five negations (privation, presup-
posing negation, symmetric negation, symmetric negation of a presupposing negation,
symmetric negation of a privation), although in the Corollary 1 spoke of 142 negations in
a four-valued logic. Are the rest kinds irrelevant? The answer is no! The square could be
edged by alternative kinds of negation, instead of those which I presented. And, what is
much more, many additional kinds of negations and privations among them might be in-
troduced. For example lacking magnificence, undoubtedly a privation, allows many inter-
mediate grades of privation: lacking magnificence but not excellence; then lacking mag-
nificence and excellence, but not goodness; moreover lacking magnificence, excellence,
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goodness, but still being mediocre; finally being bad. To be able to make a full account of
the different sorts of truth, falsity and contradiction in a corresponding square, we might
need to speak not of a four-valued logic, but in a more general manner of an n-valued
logic. The number of the values would be dependent on the number of the negations and
privations involved.
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Fuzzy Syllogisms, Numerical Square,
Triangle of Contraries, Inter-bivalence

Ferdinando Cavaliere

Abstract A new Predicate Calculus, called “Distinctive” D, is presented in the form of
the Hexagon of Opposition, in which the Particular Yba (= only some b are a) is the
contradictory of the Universal Uba (= all or no b are a). Y is preferred, as a primitive,
to I or O, because it is more “natural” than the others. Typical inferences of the systems
are the obversions: Yba = Yba′ (= only some b are not a), Uba = Uba′ (= all or no b are
not a).

D-Systems include traditional Syllogisms. Polygonal and Numerical developments are
being developed, including intermediate quantifiers (“the majority of”, . . .). Polygons are
finally absorbed into the Numerical D-Square NDS. Isomorphisms are discovered be-
tween bivalent D-systems and some Non-Standard Logics by depriving the subject-class
of the quantifier and transferring its (pre)numerical attribute to the truth value of the
judgement. These ‘(poly-)inter-bivalent’ logics admit intermediate values between true
and false. In that way we get Fuzzy Logic, and present the Fuzzy Square.

Keywords Predicate logic · Quantifiers · Logical diagram · Square of opposition ·
Hexagon of opposition · Numerical syllogisms · Non-standard logic · Fuzzy syllogisms ·
Synonyms

Mathematics Subject Classification Primary 03A05 · 03B20 · 03B52 ·
Secondary 03B65 · 03B60 · 03B53 · 05C99

1 Introduction

A new, as yet unpublished Predicate Calculus, called “Distinctive” or “D”, is presented
here in the forms of the Hexagon of Opposition and other geometrical shapes. Its original-
ity lies mainly with: (a) the use of quantifiers that are intermediate between the classical
“all” and “none”, (b) the semantic relationships with set-diagrams, (c) its non-standard
interpretations. The aim is to develop a logic close to natural language and geometric
intuition, and applicable to the technologies of knowledge organisation. The logical pre-
sentation is not the usual formalised description, but is suggested by meta-logical consid-
erations.

Section 2 improves the Square of Opposition with new pre-numerical quantifiers and
shows the new calculus. Section 3 enlarges the systems to numerical predications, thus
bringing us into Sect. 4, where the above systems are interpreted in the light of non-
standard logics, such as fuzzy and paraconsistent ones. Section 5 sketches possible future
developments.
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Fig. 1 Diagrammatic interpretation of the distinctive triangle

2 Distinctive Pre-numerical Calculus

The deductive systems are presented from the simplest to the most complex—the com-
plexity depending on what kind of quantifier or predicate is used each time. From this
point of view we start our analysis with the “pre-numerical” quantifier, considered as
“generic” in traditional categorical logic.

2.1 Distinctive Simple Calculi

The D Simple Calculi consider reasoning with premises and conclusions consisting of
single predicates, while the D Compound Calculi work with double predicates as premises
or conclusions.

2.1.1 Categorical Triangular Calculus D3

Among the Distinctive Predicate Calculi presented here, the most primitive are the ‘Tri-
angular’ ones based on the ‘triangle’ of contraries, which presents the following three
categorical propositions: universal affirmative, universal negative, and, rather than the
two Particulars of the classic oppositive square, their logical conjunction, which is called
Particular Distinctive (see Fig. 1). The quantifier in the latter can be interpreted in nat-
ural language with expressions like “only some” in the sense of excluding universality,
“at least one but not all”, “all the . . . except some”, “neither all, nor none”, “only a part
(among all the . . .)”, etc.

Given an ordered pair of classes—a “b” subject class and an “a” predicate class—
we may symbolise the three categoricals mentioned above in the following way: Aba
(= every b is a); Eba (= no b is a); Yba (= only some b is a). The terminological choice
of Distinctive (in contrast to Affirmative and Negative) is motivated by the need to place,
next to judgements compatible with the totality of a whole, those judgements that produce
a “distinction” (partition) between parts of a whole, affirming some of these parts in the
negation of the rest.1

1For the purposes of this study we will utilise the terms “class” and “set” as synonyms.
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In Fig. 1, next to the formulas marking the vertices of the triangle, one finds the seven
corresponding Venn-diagrams for all possible relations between (contextually defined)
pairs of sets that make the associated formula true. All sets in question are distinct from
the Universe of discourse UD and from the null set, these restrictions, it seems, being pre-
supposed in the Aristotelian-Boethian tradition as described in Seuren [20, 21]. In these
diagrams, the boundary rectangle represents the UD, except in case 5, where the union
of b and a covers the entire UD.2 The seven diagrams are exhaustive of the relations
between two pairs of complementary sets that are all different from the Universal class
and the Empty class (see [2, chapter 3, section 27]). The triangle of opposition results
in a partition of these seven cases, a circumstance that does not occur in the opposi-
tive square. We can therefore propose the Axiom (Aba) V (Eba) V (Yba), where V =
the exclusive or. Laws of Immediate inference: a = a′′ (double negative); Aba = Aa′b′
(contraposition); Eba = Eab (conversion); Aba = Eba′ (obversion); Eba = Aba′ (obver-
sion); Yba = Yba′ (obversion). The latter may also be proven within traditional Syllogis-
tic (S) as follows: Yba = def: Iba ∗ Oba: Iba ∗ Oba = (Eba)′ ∗ (Aba)′ = (Aba′)′ ∗ (Eba′)′ =
Oba′ ∗ Iba′ = def: Yba′. For example: Only some scientists are logical if and only if only
some scientists are not logical.

The obversion of the Particular Distinctive, with affirmative copula or predicates, re-
sults in, without any change in the quality of the quantifier (as instead occurs for the four
traditional ones) an equivalent Particular Distinctive, with negative copula or predicate.

According to these three categorical propositions, it is possible to construct a calculus
that we will call triangular or D3, based on the classical syllogistic model. Among the
108 possible moods,3 the 6 valid ones will be:

(first) AAA (Barbara), EAE (Celarent);
(second) EAE (Cesare), AEE (Camestres);

(third) YAY (HydraLynx, new mood);
(fourth) AEE (Camenes).

The YAY in the third figure may be taken as an axiom, but here we intend to demonstrate
how it can be derived from traditional syllogistic.

Thesis (Yba ∗ Abc)→ Yca

1. (Iba ∗ Abc)→ (Ica) (Disamis)
2. (Oba ∗ Abc)→ (Oca) (Bocardo)
(1. ∗ 2.)→ Ica ∗ Oca (Propositional Logic)
(1. ∗ 2.)→ Yca (Definition Yca = Ica ∗ Oca)
[(Iba ∗ Abc) ∗

1.
(Oba ∗ Abc)]→ Yca

2.
[(Iba ∗ Oba) ∗ Abc]→ Yca (Distributive property of the logical product)
[Yba ∗ Abc]→ Yca (Definition Yba) �

2Examples: case 4: UD = quadrilaterals, b = rhombuses, a = rectangles; case 5: UD = polygons, b =
polygons with fewer than five sides, a = polygons with more than three sides.
3This number result from the combination of the three quantifiers with the three predicates in the four
figures.
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Fig. 2 Exclusive square

Fig. 3 Exclusive triangle

For example:

(Only some syllogisms are Aristotelian) ∗ (Every syllogism is reasoning)

→ (Only some reasoning is not Aristotelian)

(Ysa ∗ Asr → Yra′ substituting Yra with Yra′).

2.1.2 Exclusive Triangular Calculus D3x

In Scholastic Logic, “only b is/are a” (Tantum b est/sunt a) type predications were called
Exclusivae. In the light of modern syllogistic interpretations they are = Ab′a′, or in our
symbolism = Xba, standing for: “only b’s are a’s” or “no a is not b” (while “there are b’s
that are not a” is left undefined). Xba′ stands for: “only b is not a”.

Therefore, Xba = Ab′a′ = Aab = Xa′b′, while Xba′ = Aa′b = Ab′a = Xab′. Opposi-
tive squares were derived even from Exclusive propositions (Fig. 2). As for the particulars,
we can once again generate an oppositive triangle (Fig. 3): Xba = only b is a; Wba = every
complement of b is a = every not b (“b ad infinitum”) is a; Jba = only some complement
of b is a (only some not b is a).

For these predications, only rules of inference and axioms that are entirely analogous
to those of the categoricals will be applied. It therefore gives rise to a distinctive cal-
culus with the due replacements of the negative terms as required. We will see later its
usefulness.

2.1.3 Hexagonal Calculus D6

At this point, triangular Categorical Propositions will be integrated with traditional Cate-
gorical Propositions enriched with negative terms into a Hexagonal Calculus D6.

From the axiom (Aba v Eba v Yba), we may derive the contradictions, or the negations,
of the basic categorical propositions. Therefore, (Aba)′ ↔ (Yba v Eba); (Eba)′ ↔ (Aba v
Yba); (Yba)′ ↔ (Aba v Eba). We recognise the traditional Iba = def. (Aba v Yba) and
Oba = def. (Eba v Yba), while a new categorical proposition appears that we shall call
Universal “Distinctive”, which expresses the negation of the Particular Distinctive and is
symbolised as Uba = def. Aba v Eba (or: “every or no b is a”) from the modified formula:
“AdfIrmo, nEgO, in hYbridis distingUo”.

The obversion is also valid for the U-proposition: Uba = Uba′. Since Eba = Eab,
(Eba)′ = (Eab)′; furthermore (Eba)′ = (Aba v Yba), as (Eab)′ = (Aab v Yab), there-
fore (Aab v Yab) = (Aba v Yba), i.e. Iab = Iba. In the resulting oppositive hexagons
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Fig. 4 Distinctive hexagon

Table 1 Distinctive basic propositions

Aba = Aa′b′ = Ea′b = Eba′ contradictory of Oba = Oa′b′ = Iba′ = Ia′b
Eba = Eab = Aab′ = Aba′ ” Iba = Iab = Oba′ = Oab′
Yba = Yba′ ” Uba = Uba′
Ab′a′ = Aab = Eab′ = Eb′a ” Ob′a′ = Oab = Iab′ = Ib′a
Eb′a′ = Ea′b′ = Aa′b = Ab′a ” Ib′a′ = Ia′b′ = Oa′b = Ob′a
Yb′a′ = Yb′a ” Ub′a′ = Ub′a
Yab = Yab′ ” Uab = Uab′
Ya′b′ = Ya′b ” Ua′b′ = Ua′b

(see Fig. 4), the contradictory categorical propositions are arranged symmetrically around
the centre, while the contraries (or sub-contraries) are arranged symmetrically around the
vertical axis.

An ideal horizontal axis separates the primitives, located in the upper part of the
hexagon, from the derived categorical proposition below. The possible sets that represent
the derived categorical propositions Iba, Oba, Uba, can be obtained by disjunction.

Thus, a general law of the Calculus is identified. This law states that for each cate-
gorical proposition, the same law of immediate inference is valid for its contradictory
categorical proposition: contraposition for A-O propositions, conversion for E-I proposi-
tions, obversion for Y-U propositions.4

By adding the two cases of obversion to the rules of immediate inference at hand and
then systematically extending all of the transformations of equivalence to an unordered
pair of terms taken as both negative and positive, 16 basic propositions with different
meanings are obtained, as indicated in Table 1.5

The table in Appendix summarises all the deductive schemas admissible in the hexag-
onal system. By carrying out the necessary transformations (inverting the order of the

4Blanché [3] and Sesmat [19] already presented oppositive hexagons, but we have found no evidence of
a calculus ever having been developed. As from 1910, Vasiliev [25] developed a ‘triangular’ syllogistic
based on the “only some” quantifier, but different from ours in that it is similar to paraconsistent systems.
See Béziau [1], Suchon [24] and Moretti [13].
5In the last three lines there are expressions not included in the initial hexagon, but rather generated from
another 3 hexagons constructed on the pairs b′a′, ab, a′b′ (the remaining 4 possible hexagons [or triangles]
are equivalent to the others by obversion).



246 F. Cavaliere

Fig. 5 Quasi-numerical
polygon

premises, conversions, etc.), the table encompasses all valid moods of the traditional
syllogism (24 moods) and of the syllogism with negative terms, as well as adding
new syllogistic forms. The new moods include: in the first figure, Uma ∗ Acm → Uca
(UnaLux), demonstrable by means of indirect reduction from the HydraLynx axiom; in
the second figure, Uam ∗ Ycm → Oca (VultGyro). Moreover, other deductive forms ap-
pear that are not strictly syllogistic, but are nonetheless valid (and derivable), such as:
Uma ∗ Ymc → Yca ∗ Yc′a′.

The valid syllogisms that include a premise in Y are:

(first) AYI, EYO;
(second) AYO, EYO;

(third) AYI, YAY, YAI, YAO, EYO;
(fourth) YAI, EYO.

The logic of propositions allows us to derive the subordinate moods (in the third Figure)
YAI and YAO (Y → I, Y → O) from HydraLynx.

The first of these, when the conclusion is converted and the premises switched, leads
to AYI; the latter, by obversion of the conclusion and of the first premise, results in the
EYO mood.6

2.1.4 Polygonal Distinctive Calculus—Quasi-numerical Calculus QD

The A-E side is broken by the Y-proposition or, if preferred, its hiatus is unambiguously
closed. At this point, we can conceive further interruptions of the segment that are inter-
mediary but not necessarily equidistant.

6If the first premise is converted, it is possible to reach EYO in the fourth Figure from EYO in the third
Figure; this mood may result in YAI, still in the fourth Figure, by means of indirect reduction. From here,
conversion of the conclusion and the exchanging of premises results in AYI in the first Figure, which by
obversion of conclusion and the first premise generates EYO, which, by conversion of the first premise,
generates EYO in the second Figure. AYO in the second Figure is generated from AYI in the first Figure
as follows: contraposition of the first premise and obversion of second premise and conclusion.



Fuzzy Syllogisms, Numerical Square, Triangle of Contraries, Inter-bivalence 247

Fig. 6 Quasi-numerical
square

These new quantifiers, and corresponding predications, if chosen in such a way as
to be incompatible and exhaustive among themselves, may give rise to new Oppositive
Polygons, or bases for the construction of a Polygonal Distinctive Calculus. Figure 5
illustrates the oppositive relations among five quantifiers: the traditional A and E, and
another three that are called Quasi-numerical, Qn, which we symbolise as >, !! , <,
standing for “only a majority of”, “the exact half of”, “only a minority of”, respectively.

Iba, is equivalent to A > !! < ba (every, or only a majority, or exact half, or only
a minority of b is a) and Oba, to E < !! > ba (none or only a minority, or exact half,
or only a majority of b is a). The expressions at the opposite vertices are reciprocally
contradictory. The expressions that may be obtained through obversion with exchange of
the quantifiers are arranged symmetrically around the central vertical axis. For example:
>ba ↔<ba′ as <ba ↔>ba′, or A > !! ba ↔ E < !! ba′. !! is reciprocal to itself, like Y,
which is equivalent to > !! <.

By simplifying we can compress the polygon into the classical Square, as in Fig. 6.
In order to develop a Quasi-numerical Distinctive Calculus QD, one must begin with

Carnes and Peterson [4], who use the so-called ‘intermediate’ quantifiers, which we have
positioned on the vertical sides of the Quadrilateral, while the Distinctive arrangement
favours, as do primitives, the Qn positioned on the upper horizontal side.7

The borderline case reduces the figurations deal with up until now to simple segment
(collapsed polygon): if b consists of only 1 element, it is either a or a′. This structure is
analogous to that of the much discussed Singular Predications.8

The 5 Probabilistic modality operators may be considered analogous to Quasi-
numerical ones: certain (or true), probable, equi-probable, improbable, impossible (or
false). Some possible disjunctions are: verified = (c + i), uncertain = (p + e + r),
possible = (u + c).

2.2 Distinctive Compound Calculus

As seen with the three categorical propositions of the oppositive triangle, the seven topo-
logical situations in Fig. 1 have been partitioned. Each of these divisions requires a further
predication in order to be distinguished from all the others.

7An example of QD may be: (Only a majority part of the animals is ill) * (no ill animal is prized) → (no,
or only a minority part of animals is prized) (>ai ∗ Eip)→ (E < ap).
8In general, the validity of the 8 deductive formulas of modern Singular Syllogisms are confirmed, while
the U-proposition schemes will be added. See [2, chapter 5, paragraph 45].
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Table 2 Double triangle and
7 cases

2.2.1 Distinctive Compound Calculus with Complementary D7c: Basic Expression,
Immediate Inference, Mediated Deductive Rules

The additional information required to distinguish the seven cases may be provided by
the Exclusive propositions.

In Table 2, we can see how the conjunction of pairs of predicates may do so by means
of the two categorical and exclusive triangles (the blue one and the red one, with the latter
being upside-down).

Table 3 presents equivalent forms in each line. In column II (‘Scholastic’), the con-
junctions of Categorical and Exclusive ‘triangular’ propositions of the same pair ba are
listed.

These conjunctions identify the seven topological cases indicated in column I on a
one-to-one basis. In column III (Explicit), each ‘double’ categorical proposition—or bi-
categorical proposition—may become a premise of a Distinctive Compound Calculus
with Complementaries, D7c, involving three terms—one of which has middle function—
as well as three corresponding complementary terms.

Column IV (Practice), in the light of calculation rules, simplifies the formula of each
case by omitting the conjunction sign and the second pair of terms, indicated here by the
double comma. We maintain the quantifier of the second pair, which is intended as the
negated terms of the first.

An example of D7c reasoning: (YscA„ ∗ YctA„)→ YstA„

Only some sound films are in colour and every mute film is in black and white;
Only some colour films are by Tornatore, and every film in black and white is not by him;
therefore: only some sound films are by Tornatore, and every mute film is not by him.

First of all, the rules of immediate inference must be established (with reference to
column IV, ‘Practice’):

• A..A inverts the sign of complementation of both terms. It is also immediately convert-
ible.

Table 3 Equivalent formulations of the 7 cases

I
Cases

II
“Scholastic”

III
Explicit

IV
Practice

V
Alternative

VI
Synthetic

1 Aba ∗ Xba Aba ∗ Ab′a′ AbaA„ Aba ∗ Eb′a Abab′E
2 Aba ∗ Jba Aba ∗ Yb′a′ AbaY„ Aba ∗ Yb′a Abab′Y
3 Yba ∗ Xba Yba ∗ Ab′a′ YbaA„ Yba ∗ Eb′a Ybab′E
4 Yba ∗ Jba Yba ∗ Yb′a′ YbaY„ Yba ∗ Yb′a Ybab′Y
5 Yba ∗ Wba Yba′ ∗ Ab′a Yba′A„ Yba ∗ Ab′a Ybab′A
6 Eba ∗ Jba Aba′ ∗ Yb′a Aba′Y„ Eba ∗ Yb′a Ebab′Y
7 Eba ∗ Wba Aba′ ∗ Ab′a Aba′A„ Eba ∗ Ab′a Ebab′A
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Table 4 Distinctive Compound deductions

1
AbaA„

2
AbaY„

3
YbaA„

4
YbaY„

5
Yba′A„

6
Aba′Y„

7
Aba′A„

1 AacA„ AbcA„ AbcY„ YbcA„ YbcY„ Ybc′A„ Abe′Y„ Abc′A„

2 AacY„ AbcY„ AbcY„ Ibc Ycb Ybc′A„ Ib′c Ybc′A„

3 YacA„ YbcA„ Ib′c′ YbcA„ Yc′b Ibc′ Abe′Y„ Abc′Y„

4 YacY„ YbcY„ Yb′c Ybc Ybc Yb′c YbcY„

5 Yac′A„ Ybc′A„ Ib′c Ybc′A„ Ycb Ibc AbcY„ AbcY„

6 Aac′Y„ Abc′Y„ Abc′Y„ Ibc′ Yc′b YbcA„ Ib′c′ YbcA„

7 Aac′A„ Abc′A„ Abc′Y„ Ybc′A„ YbcY„ YbcA„ AbcY„ AbcA„

• A..Y or Y..A invert both the sign of complementation of each term and the succession
of the quantifiers. The conversion of the terms must be accompanied by an analogous
change in the position of the quantifiers (e.g.: YabA = AbaY = Aa′b′Y = Yb′a′A).

• Y..Y: the sign of complementation may be inverted, even of only one term. It is also
immediately convertible (e.g.: YabY = YbaY = Yb′aY = Ya′b′Y . . .).

Table 4 illustrates the conclusions that may be extracted from 49 pairs of bi-premises
with the exclusion of equivalent and subordinate moods.9 The rules of practical deduc-
tion will be applied as follows. Commas will be ignored and eventually replaced upon
conclusion of the calculation if necessary.

The standard form must be reached preliminarily: (1) the premises are arranged in
sequence, as in the first figure of the traditional syllogism with inverted premises, (2) the
middle term is directed to the same sign in both premises (always possible through the
application of the laws of immediate inference). Therefore:

(A) When at least one of the premises has the form A..A, the non-middle term contained
therein may substitute the middle term in the other premise, thereby producing the
conclusion.

(B) If the premises have the form A..Y or Y..A, and are equally ‘oriented’ when in se-
quence (AY ∗ AY, YA ∗ YA), the middle terms may be eliminated together with the
nearby quantifiers, leaving the conclusive sequence; if instead the ‘orientation’ is
symmetrical (AY ∗ YA, YA ∗ AY), the result will be an I-conclusion with terms of the
same sign as in the premise if the central quantifiers (near the middle terms) are A A,
and of the opposite sign if the central quantifiers are Y Y.

(C) When an Y..Y type premise is combined with an A..Y or Y..A premise, the conclusion
will be a Y-type whose subject will be the non-middle term that appears in the A..Y
or Y..A premise and will have the same sign as in the premise if accompanied by a Y
therein, and the opposite sign if accompanied by a A therein.

(D) Two Y..Y premises result in no conclusions as all seven relations between non-middle
terms are possible in this case.

The rules may also be given an interpretation in terms of set theory, for example:
(B) means: If the middle class is strictly included in the other two, then the intersection

9Conclusions are indicated by means of bi-categorical propositions, simple distinctive particulars, and
traditional particulars, conjunctions of bi-categoricals being excluded for the purpose of conciseness.
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between them is not empty; if the middle class includes the other two, the complemen-
tary of the latter will have a non-empty intersection. Distinctive Compound Calculi are
more economical than their translation in equivalent traditional syllogisms with categori-
cal propositions united by connectives.

2.2.2 Distinctive Compound Calculus with Subject “Ad Infinitum” D7s

Equivalent variations of D7c are possible. For example (see column V “Alternative” of
Table 3), we can use two categorical propositions, of which the second presents only the
subject of the first as negative, maintaining the predicate unchanged, also using the uni-
versal negative quantifier; in a ‘synthetic’ version (column VI), not to repeat the predicate
“a”, the second categorical proposition is read from right to left.

According to this system of notation, we will obtain a schema equivalent to the previ-
ous one in the following form: (Y scs′ E ∗ Y ctc′ E)→ Y sts′ E

Only some sound films are in colour and no mute film is;
only some colour films are by Tornatore, and no black and white is;
therefore, only some sound films are by Tornatore, and no mute is.

2.3 Tri-hexagonal Extensions: Iconic Relational Calculus R7

Now Table 3 will be presented following its development with further interpretations (Ta-
ble 5).

If the predicative structure of the Distinctive Compound Calculus places it within the
framework of a natural and traditional language, the translation of column IV, through
the equivalences of column VII, to column VIII makes this system belong to Modern
Symbolic Logic, even if of a limited kind, in that it is bi-argumentive and special due to
its type of symbology and the reference to seven cases.

In column VII there are seven cases described in a way ‘equivalent’ to those ‘practice’
column expressions already seen.

Now a relational notation system may be adopted (column VIII), according to the
following translation code (the dots stand for the variables): A..A becomes .; A..Y be-
comes )); Y..Y becomes )( )(.

Column IX calls attention to its diagrammatic iconicity and is determined by means of
the immediate inference rules of the previous column: the simple rule of specular rotation
of the parenthesis or other grapheme in conjunction with the inversion of the quality of the
nearby term [e.g. b))a = b) (a′ = b′((a′ = b′( )a]. The “.” relation consists of two parts
(upper and lower) each of which can refer to a term: if only one part rotates around its
extremity, it results in a ∪∩ or ∩∪ relation, if they both rotate the “.” is restored. Instead,
the rotation of )( )( is not affected by free changes in the quality of terms.

In column IX, a miniature scheme of the topological cases used as reference for each
ordered pair of sets “b a” is graphically created. In column X, the seven relations are
denoted by means of transitive verbs.
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Table 5 Iconic and linguistic interpretations

Cases VII VIII
Trirelational

IX
Iconic

X
Relations

XI
Synonymity
Antonymity

1 AbaA„ b.a b.a Occupies synonym

2 AbaY„ b))a b))a Diminishes hyponym

3 Ab′a′Y„ b′))a′ b((a Clothes hyperonym

4 YbaY„ b)( )(a b)( )(a EXtra-miXes meronym

5 Ab′aY„ b′))a b( )a Hyperintegrates hypercomplement

6 Aba′Y„ b))a′ b) (a Keeps-out hypocomplement

7 Aba′A„ b.a′ b∪∩a Stops complement

3 Distinctive Numerical Calculus

As seen, the A-E side of the traditional square is broken by the Y and Qn-proposition.
Numerical quantifiers and corresponding predications can make us conceive further inter-
ruptions of the segment, and the quantifier considered as ‘generic’ in traditional theories
of the categoricals is given a precise numerical value.

We define a Numerical Distinctive Proposition as a relation of equivalence between
two non-empty classes, a subject-class s and a predicate-class p, in a UD that is distinct
from each of the two classes. This relation is defined by means of numbers (normally
natural numbers) that make up the Numerical Distinctive Quantifiers (NDq) associated
with the functors: ≥ (at least), ≤ (at most), > (more than), < (less than), �= (either more
or less, or not equal), “=” (exactly or only); the latter is implied.

3.1 Distinctive Simple Numerical Calculus ND and Distinctive
Numerical Square NDs

By definition, ≥n is equal to >n− 1, as ≤n is to <n+ 1. The NDq calls for a reference to
three numbers for each term: the first (Numerator N) indicates the quantity or cardinality
(of the subset of the subject) involved in the predication, the second indicates the quantity
within which (total or Maximum M) the first is distinguished, and the third, from which
(Remainder R), still the first, is distinguished; given that the remainder can be defined
by the difference between total and numerator, it is usually implied. In practice, often
when we speak of ‘quantifiers’ or ‘quantified’, we intend to refer only to the numerator,
e.g. “4 s are p” = s4p. All the types of traditional quantifiers may, in the final analysis,
be reducible to the generalised numerical form of sM N p. As is easily seen, we obtain
Asp when M = N, Esp when N = Ø, Ysp when (M �= N) ∗ (N �= Ø), Isp when N �= Ø,
Osp when M �= N, Usp when (M = N aut N = Ø). Even the QD may be reduced to the
numerical schemes, with numerical variables subject to conditions: when N > 1

2 M we
may affirm that >sp, when N = 1

2 M, then !!sp, when N < 1
2 M, <sp. On this basis we can

construct a Simple Numerical Distinctive Calculus ND: [(b6
4r) ∗ (r9

øc)] → (b6
≤2c) (of

all our 6 bicycles, only 4 are rusty) and (none of our 9 rusty objects is costly), therefore:
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Fig. 7 Numerical Distinctive
square

(at most 2 of our 6 bicycles are costly). As for the Qn propositions, we can use Oppositive
Polygons even for the Numerical Distinctive Propositions; however, in order to integrate
the consequential ND with other more Classic Numerical Syllogisms NS, we modify the
Oppositive Polygon to adapt it to a Numerical Distinctive square NDs. We thereby obtain
a representation of the intermediate quantifiers in an orderly scale between the two ends
of segment Aba-Eba Each quantifier is diametrically opposed to its contradictory (Fig. 7:
the dots leave the expansion to other intermediate quantifiers open).

The quantifiers may be interpreted in an Exceptive sense: “all except (or all but) Ø
(zero), except 1, 2 and so on” to “all except all”, i.e. none.10 Each quantifier on the upper
side (A-E) is arranged symmetrically to the median vertical line in correspondence to its
own reciprocal; this may be defined by the equivalence sM N p = sM M−N p′. If N is equal
to M (or to Ø), the equivalence above would become sM M p = sM ø p′ (or with numeral
M and Ø switched).11 The interval between M−1 and 1 illustrates the numerators which,
when disjointed, compose Yba, while the complementary—or external—interval indi-
cates Uba. Other types of internal or external intervals may be obtained from the schemes.
Therefore, s6

≥3≤5p, will be read: Among the s’s, which number 6 in all, between 3 and 5
are among the p’s, which number at least 7 in all, while s6

≤3≥5p will mean: Among the
s’s, which number 6 in all, either at most 3 or at least 5 are among the p’s.

The non-Distinctive ‘Numerical Syllogisms’ by Hacker and Parry [8], Murphree [14]
and others, ignore the upper side of the NDs. However, their deductive apparatus appears
to be sound and founded on algebraic developments and diagrammatical tests (see Pfeifer
[17], Pratt-Hartmann [18]). The deductive rules of these systems must be referred to in
order to construct more economical NDs that maintain immediate intuition and the prin-
ciples of discrete mathematics (inclusion-exclusion, Da Silva/Sylvester’s formulas . . .).
Below two examples are given of NS in the terms of the above-mentioned authors, using
our symbolism to give an idea of a potential fusion.

(
m>60p

) ∗ (
m≤10s′

)→ (s>50p) (numerical Disamis)
(
m>16p′

) ∗ (
m≤10s′

) → (
s>6p′

)
(numerical Bocardo)

10A long tradition, from the scholastic “excepta” to J.H. Lambert to A. De Morgan to the numerical
propositions of Murphree [14], had made use of the numerical exceptive, which can be compared to the
set operation of asymmetric difference: s\p (or s − p) = the s’s that are not p (= the complement of p
in s).
11If s has an even number of elements, a numerator will be placed exactly on the median axis and will be
its own reciprocal.
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As we know, the HydraLynx mode, typical of the Triangular Calculus, may be derived
from the classic moods Disamis and Bocardo. Therefore, the examples given allow an
analogous mood to arise in Numerical Distinctive Calculus:

(>16m>60p
) ∗ (

m≤10s′
) → (>6s>50p

)
(numerical HydraLynx)

3.2 Distinctive Numerical Compound Calculus DNC

The ‘distinctive spirit’ naturally leads to a ‘numerical quantification of the predicate’ and,
in order to have full information, to a numerical quantification of the complement of the
subject, or of the intersection of the complements of the subject and the predicate (bi-
proposition). For example, (2)s869p means: “While exactly (2) remainders are not (are
non-p) of 8s totals, exactly 6 are among the 9p totals”.

The general formula of a complete numerical calculus proposition (also with a subject
“ad infinitum”) will be: s...M...Q...R

...Gp...T...L...Vs′ (the dots count as occurrences of the
functors ≤ or ≥) or, by ignoring functors, intervals and derivable data: s M R G p Z s′.
According to these bases we obtain a Distinctive Numerical Compound Calculus DNC.

Regarding immediate inferences, from the summed total of the subject and that of
its complement (but the same can be said for the predicate), we obtain the total of the
UD. The difference between total and numerator indicate the power of the intersection
between the subject and the complement of the predicate. From the total of the subject
and predicate, minus the intersection, in order to avoid counting twice, we obtain the total
of the union set. The UD minus this union equals the total of the complement of the union.
If zeros appear, some sectors will be absent.

One possible numerical development of the iconic relational system may lead to a
simplification. In fact, we may attribute a number to each of the sectors separated by the
parentheses or other icons.12

4 Non-standard Logical Interpretations

At the basis of standard logic, the Principle of Non-Contradiction or Pnc may be ex-
pressed faithfully in singular propositions and syllogisms where a specific attribute may
be entirely attributed or entirely negated to a subject that is ‘non-quantified’ because it is
unitary. Aristotle emphasised that “the same attribute cannot simultaneously belong and
not belong to the same subject from the same point of view” (or aspect or interpretation).
Let us then ask: What happens when we change point of view?

12For example:

b8.a 5 ⇒ b’s and a’s are equivalent and 8 at all, the remaining are 5
b8)3)a 6 ⇒ b’s are 8, a’s are 11, the not-b’s not-a’s are 6
6 b(3(8a ⇒ the not-b’s not-a’s are 6, the b’s are 11, the a’s are 8

b5)(3)(7a 9 ⇒ the b’s are 8, the a’s are 10, not-a’s not-b’s are 9 [or b(5(3)7)a 9]
b 5(3)7 a ⇒ the b’s are 8, the a’s are 10, the not-a’s are 5, the not-b’s are 7

b8) 2 (11a ⇒ the b’s are 8, the a’s are 11, 2 are neither a nor b
b4∪∩3a ⇒ the b’s are 4, the a’s are 3.
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4.1 The Transposition of Quantifiers to Truth Values: Inter-bivalence,
Super-bivalence

Multiple points of view are introduced with the quantification of the subject, to meet the
need to distinguish partitions or subsets within the subject-class, which is no longer seen
as a monolithic entity. In the Particular Distinctive proposition, the subject-class (logic
level 2), which is formally unitary, essentially consists of two subclasses (logic level 1)
that are disjoint and exhaustive in relation to the mother-class, for which opposite propo-
sitions are defined that are, however, in conformity with their elements (logic level 0). In
classical logic Pnc is associated with bivalence. “Are Europeans Greek?” As a rule, or
generally speaking, they are not. But if what is true for one part is not true for the other
part of the subject (level 1), how we can maintain that for the whole subject (level 2),
only one of the two truth-values is true? A strict bivalence seems inadequate because it
is asymmetrical. We know the properties of a class may be different to those of its own
elements: why can this not be true for the kind of truth-values as well?

We can nullify this inadequacy by weakening the Principle of Contradiction to level 2,
or in other words, partially violating it by means of a flexible bivalence. There will then
be three possible and alternative answers to the question “Are x’s y’s?”: T (True) = yes,
it is True; F = no, it is False; � = so-so, partially = it is Limited (or Partial, Tolerant,
Reductive, Moderate, Relative). If a proposition is partially true, it is also partially false,
therefore partially not false and partially not true. The tripartition each/none/only some
then shifts from the quantifier to the truth value, or even to the copula is/is not/is partially,
if preferred.

It should be noted that the ‘third’ value option is nothing but a hybrid consisting ex-
clusively of ‘portions’ of the other two, and therefore does not result as being ‘alien’ or
‘heterogeneous’, as required by an authentic third value, extra-bivalent (lacking in mean-
ing, not well-formed, conventional, non-contextual, extra-categorical, inaccurate). This
valence instead refers to all those cases ideally positioned in the interval between the two
extremes (excluded) of “Every” and of “None”. For this reason we have denoted it as
Inter-bivalence, and not Trivalence.

Therefore, it is necessary to make a conceptual distinction between the two formula-
tions that have always been believed to be equals: on the one hand the Aristotelian prin-
ciple of the Excluded Middle (μεταξυ), and, on the other, its scholastic Latin version of
“tertium non datur” (Excluded Third).

Abandoning the classic bivalence to make room for the Inter-bivalence, is due not
to modal, temporal, metaphysical, or physical/probabilistic needs (free will, indetermin-
ism of the future), as occurred historically for Aristotle, Lukasiewicz, and others, but to
multiple perspectives and a stratified way of observing the semantic-topological relations
between sets, subsets, and elements.

There is also a stronger way of remaining within the bivalence by violating the Pnc:
that of Paraconsistent Logics or Dialectics, according to which something can be both
true and false (T–). We maintain that such Logics, which proponents themselves would
save explicitly from trivial inconsistency, are in some way related to Inter-bivalence. In
this case, the logic levels themselves (0,1,2, . . .) will be translated in terms of valence,
not the quantifier, with a ‘metalogical’ lateral leap. E.g.: all machines are useful (level 1A:
if well used); all machines are harmful (level 1B: if badly used); thus all machines are both
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useful and harmful (level 2: without considering their use). Only some levels confirm them
as being useful. It is true and false that machines are useful.

We can define this value (T–) as a Super-bivalence.13 The ‘Super-bivalence’ may inter-
pret contradictory sets (and resolve the liar paradox) in that they are unfolded in overlap-
ping dimensions or perspectives (spatial-temporal, topological, polysemy, metalinguistic,
structural, etc.) with synthetic judgements oscillating between the various planes.

We can conclude that isomorphisms between the bivalent D-systems and many Non-
Standard Logics may be identified in the following way: by depriving the subject class
of its quantifier (or of its logic level) and transposing its (pre)numerical attribute to the
truth value of the judgement. Their typical law is obversion: Yba = Yba′; �ba = �ba′;
T– ba = T– ba′.

4.2 Scalar or Graduated (Discrete) Numerical Inter-bivalent Calculus

The “natural” Numerical Calculus discussed previously is translated here into a kind of
Poly-Inter-bivalence. Or, to use a metaphor, if the bivalence uses black and white and the
Inter-bivalence adds a grey tone, the Scalar logic increases the intermediate tones accord-
ing to discrete unities organised in a scale, thereby ensuring a more precise judgement.

It is a first approximation of the fuzzy propositions, between term classes from confines
that are still crisp (rough), where the belonging or not-belonging of any element to the
given set is still clearly defined. Thus we assign a precise measure of truth of a subject-
class predication towards a predicate-class. In reference to the numerical square, we can
make a truth value correspond to a point or to an interval defined by points on the segment
between the universal quantifiers.14

One of the results of this logic is that it can solve the sorites paradox (or heap).
The Inter-bivalence must be distinguished from the probability calculus, even if it uses

an analogous mathematical method.15

Attention must be paid, however, to reductive interpretations: e.g. the NDq in s10 5,
if interpreted as ‘half of s’s’ (because arithmetically 1

2 = 5/10), leads to the loss of the
absolute data of s, leaving us with only some relations that may be important in some
contexts, but misleading in others.

4.3 Fuzzy (Continuous) Inter-bivalent Syllogisms

With the use of quantifiers with rational or real numbers, the infinite range of shades of
grey is reached without an interruption.

13Many thinking systems adopt it, e.g: Imaginary logic of N. Vasiliev [25], Non-Monotonic Logics, Psy-
choanalysis (contrariety conscious-unconscious, bi-logic of I. Matte-Blanco) and, in general, the non-
reductionist descriptions of reality, from biology to historical and sociological processes.
14Naturally, the measure of truth is relative to the totality of the subject-class (usable in various ways: ab-
solute commensurable, correlative-statistical, relative-probabilistic, fractionary-percentages, etc.). Here,
as in the following systems, all the deductive rules and laws for numerical calculus can be found.
15The 50 % uncertainty that the refrigerator contains an apple is everything but the certainty that there is
half an apple (Kosko [9]).
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Fig. 8 Fuzzy square

In order to complete this approach to fuzzy logic, there is still one last step: the attri-
bution of the measure (or truth) of its membership to a class (thereby transforming it into
a fuzzy class) as well as to each element (level 0) of the class itself and not only to the
relation.

The fuzziness values can now be represented by means of a histogram in the form of a
Fuzzy Square (FS), as in Fig. 8.

The gradability or scalarity thus turns from discrete into continuous or variegated
(“fuzzy”, or French “flou”).

When we say “The herd is partially wet” (�hw) we may intend to say that some sheep
are and other sheep are not wet, or that each sheep is partially wet, or even a mixture of
these readings. The model of FS shows at each level (elements, sets, predicative relations)
how propositions such as the one just given are ‘disambiguated’ or made numerically
specific.

It will then be possible to develop a Fuzzy Simple and Compound Calculus or Fuzzy
Syllogisms.16

5 Potential for Development

In this section we draw some sketches and suggestions for developments that are prema-
ture at present.

5.1 The Oppositive Triangle in Propositional Logic

For the isomorphism that exists between Class Logic and Propositional Logic, we can
export the tri-hexagonal scheme of distinctive calculus to the latter.

16Zadeh [26] proposed the term “Fuzzy syllogism” as a reasoning pattern based on vague quantifiers, like
“most”. Since then the term assumed different meanings in scientific literature. See for example the work
of Dubois and Prade [6], Naddeo et al. [16] or, more recently, Kumova and Çakir [10]. The latter use the
term for representing the truth degree of the traditional 256 moods. Their “fuzzy syllogistic system” is
an original approach, whose objective is to model automated reasoning based on inductive knowledge.
On the contrary, we use the same term to highlight that new quantifications (and new deductive moods)
derivable from classical syllogistics are interpretable as fuzzy reasoning, without probability or statistical
bases.
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By beginning with the structural similarities between the Universal Aba and the impli-
cation b → a, or between Aba′ and b → a′, we may obtain a new distinctive implication
or semi-implication by analogy with the Particular Distinctive Proposition, which can be
expressed as b % → a and interpreted as b only partially (or only sometimes) implies a,
equivalent by obversion to b % → a′.

5.2 The Oppositive Hexagon (and Other Polygons) in Modal Logics

The tri-hexagonal structure is perhaps capable of simplifying modal systems. If, within a
UD of ‘considerable worlds or cases’, the possible worlds or cases p constitute a set like
any other (complementary to that of the impossible, p′), we can express the relation with
a second set, for example that of the worlds marked by the c-characteristic, as follows:

1 Apc = every possible case is c = c is (Necessary) Ascertained or Evident or Agreed
2 Epc = no possible case is c = c is (Impossible) Excluded or Rejected
M Ypc = only some possible cases are c = c is (Contingent) Variable Ambivalent Un-

even Frayed Fuzzy Discussible Controversial
F Opc = at least 1 possible case is c′ = c is (Unnecessary) Excludable Rejectable
E Ipc = at least 1 possible case is c = c is (Possible) Ascertainable Agreeable Likely
; Upc = either every or no possible case is c = c is (either Necessary or Impossible)

Prejudged Predetermined Dogmatic Absolute Clean Crisp

5.3 Other Interpretations

The seven cases may offer a complete panorama of possible reciprocal relations between
truth evaluations of predicates.

Posing that the class b is that of all true predicates, and class a that of all false ones,
we recognise in case 7 the classical logic where every predicate is true or false but not
both; the class of true predicates is identical to that of not-false ones, and that of false
predicates is identical to that of not-true ones (bivalent systems). In case 6 we can also
see predicates that are neither true nor false (trivalence or gap systems). On the contrary,
in case 5 predicates appear that are both true and false (paraconsistent or glut systems).
Case 4 presents all four types of predicates described above. The cases 1, 2, and 3 are
interesting because the ‘gap’ among the possible predicates regards at least one between
the classical true or false predications (or both)—situations that can give rise to new kinds
of logic.17

17For example, in case 3, all possible predicates are: those that are both true and false, those that are true
but not false, those that are neither true nor false, the gap being between those that are false but not true.
A model of this logic may fit into the idea that all falsehood hides a truth, as in the Freudian ‘lapsus’.
A model for case 2 is given by a philosophy that considers all truth relative (that is, false at the same
time) but also admits the existence of pure (not-true) false predicates. As regard case 1, a model may be
a sophistic position where all propositions are either contradictory or meaningless.
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5.4 Limitations and Perspectives

The limitations of the D systems derive from the latter being founded on the subject-
predicate structure (term logic), which is not suitable for expressing complex, multi-
argument functions and relational logic.18

Sommers [22, 23] created a system (called “Old New Logic”) which began with the
subject-predicate structure as a base of the natural and syllogistic language and under-
went progressive expansion (studies by Englebretsen [7] and Numerical Term Logic by
Murphree [15]). Summers’ type systems seem to have a deductive and expressive power
that rivals first-order predicate calculus.

According to Lindell [12], these alternatives may actually be connected (and applicable
in information technology and AI).

In Lambert’s studies [11], expressions like “all b’s that are c’s are not a’s” (which may
be expanded iteratively to other terms: “that are . . . that are . . .”), are similar to Boolean
functors.

All this suggests that an extension of the argumental and relational variables of term
logic is possible without having to give up natural language and intuition.

Apart from the above limitative considerations, it must be recognised that the bi-
argumental structure of language (subject-predicate) has a relevant role in thought and
culture. One can found potential models of D-logic in many areas that apply the (bi-
argumental) mechanisms of translation of terms: library indices, dictionaries, glossaries,
technical jargons, and ‘ontologies’ for semantic search engines.

Column XI, Table 5, offers an interpretation of the seven relations in terms of syn-
onymies; the first three and the last one are already used in linguistics and in dictionaries
of synonyms and antonyms; the remaining three were coined by us to underline the im-
portance of the Conceptual Background, or Lexicographics, in the definition of voices that
plays a role analogous to that of the Universe of Discourse in the defining of the classes.

In various disciplines (e.g. Semiotics), the Definitions may make use of the Essential,
Alien, Accidental triad (their contradictories are Unessential, Compatible, Discriminant
or Crucial).

New semiotic polygons or square can be constructed.
We think that D-systems can give a contribution to the organisation of knowledge in

these areas (see Cavaliere [5]).

Appendix: Deductive Conclusion in D6

See Table 6. The headings of the columns and lines function respectively as I and II
premises. Each proposition inside the cells represents the ‘stricter’ or ‘stronger’ conclu-
sion of the syllogism (subordinate moods are implied).

18However, the analyses of the distinctive propositions reveal a relation with four-five arguments (and
even more in compound calculi) in which the first two (subsets) share the third (subject) and relate to a
fourth and a fifth argument (the predicate and its negation). In the historical development of classical logic,
the Exceptive Proposition [“Every b, except c, is a” or A(b− c)a] manifests a tri-argument structure.
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Constructions Generalizing the Square

of Opposition



General Patterns of Opposition Squares
and 2n-gons

Ka-fat Chow

Abstract In the first part of this paper we formulate the General Pattern of Squares of
Opposition (GPSO), which comes in two forms. The first form is based on trichotomies
whereas the second form is based on unilateral entailments. We then apply the two forms
of GPSO to construct some new squares of opposition (SOs) not known to traditional
logicians. In the second part of this paper we discuss the hexagons of opposition (6Os)
as an alternative representation of trichotomies. We then generalize GPSO to the Gen-
eral Pattern of 2n-gons of Opposition (GP2nO), which also comes in two forms. The first
form is based on n-chotomies whereas the second form is based on co-antecedent unilat-
eral entailments. We finally introduce the notion of perfection associated with 2n-gons of
opposition (2nOs) and point out that the fundamental difference between a SO and a 6O
is that the former is imperfect while the latter is perfect. We also discuss how imperfect
2nOs can be perfected at different fine-grainedness.

Keywords Trichotomy · Unilateral entailment · General Pattern of Squares
of Opposition · General Pattern of 2n-gons of Opposition

Mathematics Subject Classification Primary 03B65

1 Introduction

The square of opposition (SO) has been an important entity studied in traditional logic
since the ancient times. Yet, for centuries logicians seemed to know only one type of SO,
i.e. the Boethian SO composed of the universal/particular affirmative/negative proposi-
tions arranged in the four corners named A, E, I and O. These four propositions are linked
up by four types of binary opposition relations whose definitions are given in Table 1.1

In modern times, many scholars tried to unravel the underlying principles of opposition
inferences with a view to achieving a new interpretation of SO. Such kind of studies in-
cludes Brown’s (1984) classification of 4 main types and 34 subtypes of SOs [4], Jaspers’
representation of SO in terms of two-dimensional Cartesian coordinate [6], Seuren’s for-
mulation of the improved square notation based on his Valuation Space Model [9]. In this
paper, we will generalize the traditional Boethian SO to a general pattern of SOs. After

1This paper treats contrary, subcontrary and contradictory as three parallel relations, rather than treating
contradictory as a special case of the other two relations, as some scholars do.

J.-Y. Béziau, D. Jacquette (eds.), Around and Beyond the Square of Opposition, 263–275
Studies in Universal Logic, DOI 10.1007/978-3-0348-0379-3_18, © Springer Basel 2012
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Table 1 Opposition relations

Name Definition

Subalternate Unilateral entailment (i.e. In case the former proposition is true, the latter must be
true, but not vice versa)

Contrary Mutually exclusive but not collectively exhaustive (i.e. The propositions cannot
be both true but can be both false)

Subcontrary Collectively exhaustive but not mutually exclusive (i.e. The propositions cannot
be both false but can be both true)

Contradictory Both mutually exclusive and collectively exhaustive (i.e. The propositions cannot
be both true nor both false)

doing so, we can then go further by generalizing the notion of “squares of opposition” to
“2n-gons of opposition”.

But before embarking, we have to clarify two points. First, in modern times some
scholars (such as [5, 8, 11]) adopt a new definition of SOs based on the notions of nega-
tion and duality, rather than the traditional opposition relations as defined in Table 1. This
paper will stick to the traditional definition of SOs and will not consider the new def-
inition. Moreover, one should note that the general patterns discussed in this paper are
derived from traditional SOs and are not generally applicable to the modern SOs (which
should be more accurately called “squares of duality”).2

Second, this paper adopts a graph-theoretic rather than geometrical view on the figures
representing the logical relations. Instead of constructing all sorts of higher-dimensional
geometrical figures as was done by the n-Opposition theorists such as [7] and [10], we will
represent the logical relations by 2-dimensional labeled multidigraphs, with the vertices
representing the propositions and the arcs representing the opposition relations. The uni-
lateral subalternate relations will be represented by single arcs with arrow heads, whereas
the bilateral contrary, subcontrary and contradictory relations will be represented by arcs
without arrow heads which are understood to be double arcs going in opposite directions.
Under this graph-theoretic view, the angles and lengths of the arcs have no significance.

2 General Pattern of Squares of Opposition

2.1 Some Preliminary Observations

We start from some preliminary observations of the Boethian SO. Consider the subalter-
nate relation between the A (i.e. “All S are P”) and I (i.e. “Some S are P”) statements first.
One crucial point is that if we rewrite the I statement as the disjunction “All S are P ∨ Part
of the S are P”,3 then the subalternate relation automatically obtains as it is only a special

2Reference [8] defined a “square” function which may generate squares of duality composed of sentences
with various types of determiners. This may be seen as a “general pattern of squares of duality”.
3In this paper, “Part of the S are P” is to be interpreted as “Some but not all S are P”.
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Fig. 1 GPSO1

case of the unilateral entailment4 p1 ⇒u (p1 ∨ p2) in propositional logic. The same can
be said of the subalternate relation between the E (i.e. “All S are not P”, or equivalently
“No S are P”) and O (i.e. “Some S are not P”, or equivalently “Not all S are P”) statements
if we rewrite the O statement as the disjunction “No S are P ∨ Part of the S are P”. More-
over, we notice that the three statements “All S are P”, “Part of the S are P” and “No S
are P” constitute a trichotomy, i.e. these three statements are pairwise mutually exclusive
and collectively exhaustive. Thus, we may say that the SO is derived from a trichotomy.

Second, we observe that by virtue of the two contradictory relations (i.e. O ≡ ¬A,
E ≡¬I), the two subalternate relations (i.e. A ⇒u I and E ⇒u O) are in fact contraposition
of each other. Thus, we may also say that the SO is derived from a unilateral entailment
(i.e. subalternate relation) and its contraposition.

2.2 Two Forms of the General Pattern of Squares of Opposition

We can generalize the above two observations to the General Pattern of Squares of Oppo-
sition (GPSO), which comes in two forms. The first form, henceforth GPSO1, is general-
ized from the first observation.

GPSO1 Given 3 non-trivial5 propositions (or propositional functions) p, q and r that
constitute a trichotomy, we can construct a SO as shown in Fig. 1.

In what follows we will show that the SO in Fig. 1 satisfies the definitions of the
opposition relations. As mentioned above, the two subalternate relations are just special
cases of p1 ⇒u (p1 ∨ p2). The two contradictory relations follow from the fact that p, q
and r constitute a trichotomy. The contrariety between p and r follows from the fact that
any two members of a trichotomy are mutually exclusive but not collectively exhaustive.
The subcontrariety between (p ∨ q) and (r ∨ q) follows from the fact that (p ∨ q) ∨
(r ∨q)≡ (p∨q ∨ r) and (p∨q)∧ (r ∨q)≡ q . Thus, (p∨q) and (r ∨q) are collectively
exhaustive but not mutually exclusive.

4This paper uses “⇒u” to represent “unilaterally entails”, i.e. (p⇒u q)⇐⇒ (p⇒ q ∧ q �⇒ p).
5In this paper, non-trivial propositions refer to propositions that are neither tautologies nor contradictions.
Similarly, non-trivial sets refer to sets that are neither empty nor equal to the universal set.
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Fig. 2 GPSO2

The second form, henceforth GPSO2, is generalized from the second observation.

GPSO2 Given 2 non-trivial propositions (or propositional functions) s and t such that
(a) s �≡ t ; (b) they constitute a unilateral entailment: s ⇒u t , we can construct a SO as
shown in Fig. 2.

In what follows we will show that the SO in Fig. 2 also satisfies the definitions of the
opposition relations. First, by definition of this SO, the two subalternate and contradic-
tory relations are obviously satisfied. Next we consider the contrary relation. This can be
proved by showing that two propositions p1 and p2 are contrary to each other if and only
if p1 ⇒u ¬p2. This unilateral entailment is equivalent to (p1 ⇒ ¬p2) ∧ (¬p2 �⇒ p1).
This can be rewritten as (p1 ∧ p2 ≡ F)∧ (p1 ∨ p2 �≡ T ),6 which is equivalent to saying
that p1 and p2 are mutually exclusive but not collectively exhaustive, and thus satisfy the
contrary relation. Now since we have s ⇒u t , it thus follows that s and ¬t are contrary to
each other.

Finally we consider the subcontrary relation. This can be proved by showing that
two propositions p1 and p2 are subcontrary to each other if and only if ¬p1 and ¬p2
are contrary to each other. Now the fact that ¬p1 and ¬p2 are contrary to each other
can be expressed as (¬p1 ∧ ¬p2 ≡ F) ∧ (¬p1 ∨ ¬p2 �≡ T ), which is equivalent to
(p1 ∨ p2 ≡ T ) ∧ (p1 ∧ p2 �≡ F). This shows that p1 and p2 are collectively exhaustive
but not mutually exclusive, and thus satisfy the subcontrary relation. As we have previ-
ously shown that s and ¬t are contrary to each other, it thus follows that ¬s and t are
subcontrary to each other.

2.3 Relations Between GPSO1 and GPSO2

Although GPSO1 and GPSO2 are based on a trichotomy and a unilateral entailment,
respectively, the two forms are in fact two sides of the same coin. Given one form, we can
always transform it into the other form, which we will show below.

First, suppose we are given a SO constructed from GPSO1, we immediately get a uni-
lateral entailment, i.e. p⇒u (p∨q) such that p �≡ (p∨q). With this unilateral entailment,

6“T” and “F” represent “true” and “false”, respectively.
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Fig. 3 Correspondence
between a unilateral
entailment and a trichotomy

Fig. 4 SO of proportional
quantifiers

we can then construct another SO by invoking GPSO2. Please note that if either of p, q ,
r is trivial, then either p or (p ∨ q) is trivial, or p ≡ (p ∨ q).

On the other hand, suppose we are given an SO constructed from GPSO2, then s, ¬t
and (¬s ∧ t) constitute a trichotomy. To show that these three propositions are pairwise
mutually exclusive, we first observe that s ∧ ¬t ≡ F by the contrary relation between s

and ¬t . Moreover, it is also obvious that s∧(¬s∧ t)≡¬t∧(¬s∧ t)≡ F . To show that the
three propositions are collectively exhaustive, it suffices to show that s ∨¬t ∨ (¬s ∧ t)≡
T , which is obvious after we expand the left-hand side into (s ∨¬t ∨¬s)∧ (s ∨¬t ∨ t).
The above fact can be illustrated by Fig. 3 in which s and t are depicted as sets and the
unilateral entailment is depicted as proper set inclusion. From Fig. 3 we can see that if s
is a proper subset of t , then s, ¬t and (¬s ∧ t) constitute a partition of the universe.

The above discussion shows that a unilateral entailment is closely related to a tri-
chotomy. With this trichotomy, we can then construct another SO by invoking GPSO1.
Please note that if either s or t is trivial, or s ≡ t , then either of s, ¬t , (¬s ∧ t) is trivial.

2.4 Applications of GPSO1

By applying the two forms of GPSO, a great number of SOs not known to traditional
logicians can be easily constructed. We first see some examples of the application of
GPSO1. Let 50 < n< 100, where n is a real number. Then the three intervals [0,100−n),
[100 − n,n] and (n,100] constitute a tripartition of the interval [0,100]. In other words,
“Less than (100−n) % of S are P”, “Between (100−n) % and n % of S are P” and “More
than n % of S are P” constitute a trichotomy. With this trichotomy, we can construct the
SO shown in Fig. 4.
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Fig. 5 SO of pre-1789
French Estates General

Please note that in constructing the SO in Fig. 4, we have also made use of the follow-
ing equivalences: “Less than (100 − n) % of S are P” ≡ “More than n % of S are not P”;
“At most n % of S are P” ≡ “At least (100 − n) % of S are not P”.

The application of GPSO is not confined to quantified sentences, but may be extended
to other types of sentences or even plain predicates. Suppose our domain of discourse
consists of members of the pre-1789 French Estates General, which were divided into
three estates: clergymen, noblemen and commoners, which constituted a trichotomy. If we
now call “clergymen ∨ noblemen” the “privileged class” and “commoners ∨ noblemen”
the “secular class”, then we may construct the SO shown in Fig. 5.

Although the SO in Fig. 5 is composed of plain predicates rather than propositions,
these plain predicates may be seen as short forms of propositional function with a vari-
able x. For example, “clergymen” in the SO may be seen as short form of the propositional
function “x was a clergyman”.

2.5 Applications of GPSO2

According to GPSO2, a SO may be constructed from a unilateral entailment together with
its contraposition. This is in fact the underlying principle of the “semiotic squares”. Given
a pair of contrary concepts, such as “happy” and “unhappy”, we immediately obtain the
unilateral entailment “happy ⇒u not unhappy”.7 With this unilateral entailment, we can
then construct the semiotic square shown in Fig. 6.

Unilateral entailments may also occur between sentences with more than one quanti-
fier, such as “Every boy loves every girl ⇒u Some boy loves some girl”. One interesting
subtype of this kind of entailments consists of unilateral entailments between the active
and passive forms of a sentence with more than one quantifier. This is the subject area
of “scope dominance” studied by [2] and [1].8 These scholars have discovered a number

7It is essential that “happy” and “unhappy” constitute a pair of contrary rather than contradictory concepts.
Otherwise, the entailment will be bilateral rather than unilateral.
8Scope dominance originally refers to unilateral entailments between the “direct scope” and “inverse
scope” readings of a sentence with more than one quantifier. However, this phenomenon can also be
reinterpreted as unilateral entailments between the active and passive forms of the sentence, assuming
that both forms are interpreted under the direct scope reading.
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Fig. 6 Semiotic square

Fig. 7 SO of scope
dominance

of valid unilateral entailments involving sentences with more than one quantifier. Here is
one such example:

Most boys love no girl ⇒u No girl is loved by most boys (2.1)

With this unilateral entailment, we can then construct the SO shown in Fig. 7.
We can thus see that by combining GPSO2 with the research findings on scope dom-

inance, we can construct a great number of SOs composed of sentences with more than
one quantifier.

3 General Pattern of 2n-gons of Opposition

3.1 Hexagons of Opposition

According to GPSO1, a SO can be derived from any trichotomy composed of 3 non-
trivial propositions p, q and r . However, GPSO1 shows an asymmetry between these
3 propositions: while each of p and r appears as an independent proposition in the two
upper corners (i.e. A and E), q only appears as parts of two disjunctions in the two lower
corners (i.e. I and O).

To achieve symmetry, we need to add to the SO two new vertices denoted as Y and U
corresponding to the propositions q and p ∨ r , respectively, thus expanding the SO to a
hexagon of opposition (6O) proposed by [3] as shown in Fig. 8.
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Fig. 8 Hexagon of
opposition

Fig. 9 6O constructed from a
trichotomy

Please note that this figure contains the Boethian SO AEIO as a subpart. For this rea-
son, only those arcs not being part of AEIO are labeled. This figure also contains the AYE
triangle of contrariety, IOU triangle of subcontrariety as well as two more SOs: AYUO
and YEIU, as its subparts.

For ease of comparison with other 2n-gons below, the components of the above 6O
can be rearranged into the form shown in Fig. 9 which is, graph-theoretically speaking,
isomorphic with the original form (in Fig. 9, SA = subalternate, CD = contradictory,
C = contrary, SC = subcontrary).

To avoid messing up the figure, some arcs in Fig. 9 have been left out, e.g. the SA arc
leading from p to p∨q . One should view Fig. 9 on the understanding that there is a C arc
between any two upper-row vertices, a SC arc between any two lower-row vertices and a
SA arc leading from any upper-row vertex to any lower-row vertex not directly below it.

The above discussion shows that a trichotomy is best represented by a 6O. But as
shown in Subsect. 2.3, trichotomies and unilateral entailments are closely related to each
other. How can we construct a 6O from a unilateral entailment? If we review Fig. 3,
then we can see that apart from the unilateral entailment s ⇒u t , there is in fact another
less obvious one with s as antecedent, i.e. s ⇒u (s ∨ ¬t). By properly arranging the
3 propositions s, t , (s ∨ ¬t) and their contradictories ¬s, ¬t , (¬s ∧ t), we can then
construct a 6O as shown in Fig. 10.

3.2 Two Forms of the General Pattern of 2n-gons of Opposition

The natural association between a trichotomy (or a unilateral entailment) and a 6O may be
generalized to an association between a n-chotomy (or n− 2 unilateral entailments) and
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Fig. 10 6O constructed from
a unilateral entailment

Fig. 11 GP2nO1

Fig. 12 GP2nO2

a 2n-gon of opposition (2nO), resulting in the General Pattern of 2n-gons of Opposition
(GP2nO), which also comes in two forms, denoted GP2nO1 and GP2nO2 below.

GP2nO1 Given n (n ≥ 3) non-trivial propositions (or propositional functions) p1,p2,

. . . , pn that constitute a n-chotomy (i.e. p1,p2, . . . , pn are collectively exhaustive and
pairwise mutually exclusive), we can construct a 2nO as shown in Fig. 11 (many arcs
have been left out from this figure).9

It is easy to see that the 2nO in Fig. 11 satisfies the definitions of the opposition rela-
tions. For example, any two lower-row propositions are subcontrary to each other because
they contain some common disjuncts (hence not mutually exclusive), and they collectively
contain all the n propositions as disjuncts (hence collectively exhaustive).

GP2nO2 Given n − 1 (n ≥ 3) non-trivial propositions (or propositional functions)
s, t1, . . . , tn−2 such that (a) any two of t1, . . . , tn−2 satisfy the subcontrary relation;
(b) s �≡ (t1 ∧ · · · ∧ tn−2); (c) they constitute (n− 2) co-antecedent unilateral entailments
(i.e. unilateral entailments with the same antecedent): s ⇒u t1, . . . , s ⇒u tn−2, then we
have an additional unilateral entailment: s ⇒u (s ∨ ¬t1 ∨ · · · ∨ ¬tn−2) and we can con-
struct a 2nO as shown in Fig. 12.

Next we show that the 2nO in Fig. 12 also satisfies the definitions of the opposi-
tion relations. The contradictory relations are obviously satisfied. So we consider the

9If n= 2, then the upper-row propositions are t1 and t2, while the lower-row propositions are t2 and t1. In
this case, the subalternate relations will become equivalence relations, which are not among the opposition
relations defined in Table 1. That is the reason why n must be at least 3.
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subalternate relations. The subalternate relations between s and t1, . . . , s and tn−2, as
well as the subalternate relations between ¬t1 and ¬s, . . . , ¬tn−2 and ¬s are guaran-
teed by condition (c) above and its contraposition. We will now show that ¬ti ⇒u tj
(1 ≤ i, j ≤ n − 2, i �= j). By condition (a) above, any ti and tj satisfy the subcontrary
relation, which can be expressed as (ti ∨ tj ≡ T ) ∧ (ti ∧ tj �≡ F). This is equivalent to
(¬ti ⇒ tj )∧ (tj 	¬ti ), which can be rewritten as ¬ti ⇒u tj . The remaining subalternate
relations in Fig. 12 are just special cases of unilateral entailments in propositional logic.
For example, (¬s ∧ t1 ∧ · · · ∧ ¬tn−2)⇒u t1 is just a special case of (p1 ∧ p2)⇒u p1.

Next we consider the contrary relations. Since it has been shown that for any two
distinct upper-row propositions p1 and p2, we have p1 ⇒u ¬p2, thus p1 and p2 are
contrary to each other. Finally, since each lower-row proposition is the contradictory of
the upper-row proposition directly above it, the subcontrariety between any two lower-row
propositions follows from the contrariety between any two upper-row propositions.

3.3 Relations Between GP2nO1 and GP2nO2

Just like GPSO, the two forms of GP2nO are also interdefinable. If we are given a 2nO
constructed from GP2nO1, then this 2nO contains n − 1 propositions: p1, (p1 ∨ p3 ∨
· · · ∨pn), . . . , (p1 ∨ · · · ∨pn−2 ∨pn) that satisfy the three conditions of GP2nO2: (a) the
subcontrariety between any two of (p1 ∨ p3 ∨ · · · ∨ pn), . . . , (p1 ∨ · · · ∨ pn−2 ∨ pn) is
guaranteed by the subcontrariety between any two lower-row propositions in this 2nO;
(b) p1 �≡ (p1 ∨ p3 ∨ · · · ∨ pn) ∧ · · · ∧ (p1 ∨ · · · ∨ pn−2 ∨ pn) because the right-hand
side is equivalent to (p1 ∨ pn); (c) these propositions constitute (n − 2) co-antecedent
unilateral entailments: p1 ⇒u (p1 ∨ p3 ∨ · · · ∨ pn), . . . , p1 ⇒u (p1 ∨ · · · ∨ pn−2 ∨ pn).

This 2nO also contains an additional unilateral entailment: p1 ⇒u (p1 ∨ p2 ∨ · · · ∨
pn−1) whose antecedent is p1 and whose consequent has the correct form as stipulated in
GP2nO2, because (p1∨p2∨· · ·∨pn−1)≡ p1∨¬(p1∨p3∨· · ·∨pn)∨· · ·∨¬(p1∨· · ·∨
pn−2 ∨ pn). Moreover, the arrangement of the 2n propositions of this 2nO also satisfies
GP2nO2. Please also note that if either of p1, . . . , pn is trivial, then either of the n− 1
propositions given above is trivial, or p1 ≡ (p1 ∨p3 ∨· · ·∨pn)∧· · ·∧ (p1 ∨· · ·∨pn−2 ∨
pn). For example, if p2 ≡ F , then (p1 ∨ p3 ∨ · · · ∨ pn)≡ T .

Conversely, if we are given a 2nO constructed from GP2nO2, then this 2nO contains
n propositions s, ¬t1, . . . ,¬tn−2, (¬s ∧ t1 ∧ · · · ∧ tn−2) that constitute a n-chotomy. That
these n propositions are pairwise mutually exclusive is guaranteed by the contrary rela-
tions among these propositions. To show that these propositions are collectively exhaus-
tive, it suffices to show that s ∨¬t1 ∨ · · · ∨ ¬tn−2 ∨ (¬s ∧ t1 ∧ · · · ∧ tn−2)≡ T , which is
obvious after we expand the left-hand side into (s ∨¬t1 ∨ · · · ∨¬tn−2 ∨¬s)∧ (s ∨¬t1 ∨
· · ·∨¬tn−2∨ t1)∧· · ·∧ (s∨¬t1∨· · ·∨¬tn−2∨ tn−2). The above fact can be illustrated by
Fig. 13 for the case n= 2, which shows that the two co-antecedent unilateral entailments
s ⇒u t1 and s ⇒u t2 give rise to the additional unilateral entailment: s ⇒u (s∨¬t1 ∨¬t2)
and a 4-chotomy consisting of s, ¬t1, ¬t2 and (¬s ∧ t1 ∧ t2).

Moreover, the arrangement of the 2n propositions of this 2nO also satisfies GP2nO1.
Please also note that if either of s, t1, . . . , tn−2 is trivial, or s ≡ (t1∧· · ·∧ tn−2), then either
of s, ¬t1, . . . ,¬tn−2, (¬s ∧ t1 ∧ · · · ∧ tn−2) is trivial.
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Fig. 13 Correspondence
between 2 co-antecedent
unilateral entailments and a
4-chotomy

Fig. 14 An imperfect 4O

4 Perfection

Figures 11 and 12 show that every 2nO contains C(n,m) 2mOs as its proper subparts,10

for any m such that m < n and m ≥ 2.11 To distinguish these 2mOs from the 2nO, we
need to introduce the notion of perfection.

We say that a 2nO is perfect if the disjunction of all its upper-row propositions ≡ the
disjunction of all its lower-row propositions, otherwise it is imperfect. Given the pairwise
subcontrariety of the lower-row propositions of any 2nO, this condition is equivalent to
the fact that the disjunction of all its upper-row propositions ≡ T .

According to this definition, any 2nO that satisfies GP2nO1 or GP2nO2 is perfect,
whereas a 2mO (m < n) which is a proper subpart of a perfect 2nO is imperfect. Thus,
the 6O proposed by modern scholars as depicted in Fig. 9 above is perfect whereas the
traditional SO (i.e. 4O) is imperfect. Moreover, the fundamental difference between the
6O and SO in terms of symmetry with respect to the three propositions in a trichotomy
can now be more formally captured by the notion of perfection, i.e. the symmetric 6O is
perfect and the asymmetric SO is imperfect.

Given an imperfect 2mO, we can always make it perfect. But the outcome of the per-
fection process is not unique because an imperfect 2mO can be perfected at different
fine-grainedness by combining or splitting propositions.

Let’s use an example to illustrate this point. Figure 14 shows an imperfect 4O because
(p1 ∨ p2) �≡ (p1 ∨ p2 ∨ p3 ∨ p4).

10C(n,m)= n!/[(m!)(n−m)!] represents the number of possible ways of choosing m objects from a set
of n objects.
11In fact, just as a 6O contains a triangle of contrariety and a triangle of subcontrariety as its proper
subparts, every 2nO also contains a n-gon of contrariety (consisting of the upper-row propositions) and a
n-gon of subcontrariety (consisting of the lower-row propositions) as its proper subparts. This paper will
not discuss these n-gons any further.
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The most straightforward way to perfect this 4O is to expand it into an 8O by adding
two upper-row propositions: p3 and p4 (and corresponding lower-row propositions). But
this is not the unique way. Another way is to expand this 4O into a 6O by adding just one
upper-row proposition: (p3 ∨ p4) (and the corresponding lower-row proposition). This is
tantamount to combining the two propositions p3 and p4 into one, hence transforming
the original 4-chotomy to a trichotomy (comprising the three propositions p1, p2 and
(p3 ∨p4)). Still another way is to expand this 4O into a 10O by rewriting p4 as p4a ∨p4b
and adding three upper-row propositions: p3, p4a and p4b (and corresponding lower-
row propositions). This is tantamount to splitting the proposition p4 into two non-trivial
propositions p4a and p4b such that p4 ≡ p4a ∨ p4b , hence transforming the original 4-
chotomy to a 5-chotomy (comprising the five propositions p1, p2, p3, p4a and p4b).

5 Conclusion

In this paper we have shown how the Boethian SO is related to trichotomies or unilateral
entailments and then formulated the two forms of GPSO, which enables us to construct
a great number of new SOs not known to traditional logicians. We have also discussed
6O as an alternative representation of a trichotomies. Intuitively, a 6O differs from a SO
in that the former is symmetric while the latter is asymmetric with respect to the three
propositions in a trichotomy. This difference can be more formally captured by the no-
tion of perfection in that a 6O is a perfect representation of trichotomies, whereas a SO,
being a proper subpart of a 6O, is imperfect. By further generalizing trichotomies and uni-
lateral entailments to n-chotomies and co-antecedent unilateral entailments, respectively,
we come up with the notion of 2n-gons and the two forms of GP2nO. We finally discuss
the distinction between perfect and imperfect 2nOs. Thus, GPSO and GP2nO have very
different nature, in that any SOs constructed from the two forms of GPSO are imperfect
whereas any 2nOs (n≥ 3) constructed from the two forms of GP2nO are perfect.
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The Cube Generalizing Aristotle’s Square in Logic
of Determination of Objects (LDO)

Jean-Pierre Desclés and Anca Pascu

Abstract In this paper we present a generalization of Aristotle’s square to a cube, in
the framework of an extended quantification theory defined within the Logic of Deter-
mination of Objects (LDO). The Aristotle’s square is an image which makes the link
between quantifier operators and negation in the First Order Predicate Language (FOPL).
However, the FOPL quantification is not sufficient to capture the “meaning” of all quan-
tified expressions in natural languages. There are some expressions in natural languages
which encode a quantification on typical objects. This is the reason why we want to con-
struct a logic of objects with typical and atypical objects. The Logic of Determination of
Objects (LDO) (Desclés and Pascu, Logica Univers. 5(1):75–89, 2011) is a new logic de-
fined within the framework of Combinatory Logic (Curry and Feys, Combinatory Logic
I, North-Holland, Amsterdam, 1958) with functional types. LDO basically deals with two
fundamental classes: a class of concepts (F) and a class of objects (O). LDO captures
two kinds of objects: typical objects and atypical objects. They are defined by the means
of other primitive notions: the intension of the concept f (Intf ), the essence of a con-
cept f (Essf ), the expanse of the concept f (Expf ), the extension of the concept f
(Extf ). Typical objects in Expf inherit all concepts of Intf ; atypical objects in Expf
inherit only some concepts of Intf . LDO makes use of all the above notions and orga-
nizes them into a system which is a logic of objects (applicative typed system in Curry’s
sense—Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958—with
some specific operators). In LDO new quantifiers are introduced and studied. They are
called star quantifiers: �� and 
� (Desclés and Guentcheva, in: M. Bőttner, W. Thűm-
mel (eds.), Variable-Free Semantics, pp. 210–233, Secolo, Osnabrűck, 2000). They have
a connection with classical quantifiers. They are considered as the determiners of objects
of Expf . They are different from the usual quantifiers � and 
 expressed in the illa-
tive Curry version (Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam,
1958) of Frege’s quantifiers. They are defined inside the Combinatory Logical formal-
ism (Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958) starting
from � and 
, by means of abstract operators of composition called combinators (Curry
and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958). The system of four
quantifiers �, 
, �� and 
� captures the extended quantification that means quantifica-
tion on typical/atypical objects. The cube generalizing the Aristotle’s square visualizes
the relations between quantifiers �, 
, �� and 
� and the negation.

Keywords Typical/atypical instance · Determination · Indeterminate object · More or
less determinate object · Intension · Expanse · Extension · Star quantifiers
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1 Introduction

Frege’s famous quantification [15] theory with bound variables has obtained numerous
and sound results by analyzing the language of mathematics. Linguists like Montague
[16] used Frege’s formalism to give representations of quantifiers in natural languages.
However, questions concerning the adequation of this formalism should be raised. Some
questions about Fregean quantification are:

1. Are there variables in natural languages?
2. Are there variables needed for analyzing quantified phrases? Can we conceive another

logical analysis of natural language, different from Frege’s and Montague’s analyses?
Are other non-classical logical systems useful for this purpose?

3. What do natural languages provide for quantificational expressions? What are the
semiotic devices that are called upon to express quantification?

4. Is there a formalism which can adequately formalize the quantifications expressed by
natural languages?

5. Is it possible to give logical representations without (bound) variables so that the struc-
tures of these representations are more adequate to the structures of sentences?

Our answer is based on Combinatory Logic [2] framework. The main concern will be
to answer these questions and to show that:

1. Curry’s Combinatory Logic is a “without (bound) variables logic” and it can be used
for giving an analysis of noun phrases with quantifiers;

2. Curry’s Combinatory Logic is related to a formalism “with bound variables”, Church’s
λ-calculus, but its expressive power is more synthetic;

3. Both formalisms are applicative formalisms based on the primitive application of op-
erators to operands;

4. Both formalisms (Church’s λ-calculus and Combinatory Logic) can be typed;
5. Logical representations must explain how the analyzed sentences are built and how the

logical representations are related to a syntactic analysis;
6. A new formalism answering questions above and based on Combinatory Logic can be

built up. It is the Logic of Determination of Objects (LDO).

Considering the theory of quantification as part of logic reveals that there are two
classes of theories:

• Fregean theories with bound variables:
– Classical theory in First Order Predicate Language (FOPL);
– Montague’s quantification expressed in Church’s λ-calculus.

• Fregean theory without bound variables:
– Illative Theory expressed in Curry’s Combinatory Logic.

We propose a new approach which is a non-Fregean theory without bound variables:
the Star theory expressed in the Logic of Determination of Objects (LDO).

In this paper we present the Star theory which is the theory of quantification (star
quantification) of LDO. The system of quantifiers of the Star theory and their relations
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with the negation can be represented by a cube, the cube generalizing the Aristotle’s
square of quantifiers.

Let us remember now some basic notions of LDO [10].

2 Basic Notions of LDO

The LDO is a non-classical logic of construction of objects. It contains a theory of typi-
cality. It is described in [10]. LDO is defined within the framework of Combinatory Logic
[2] with functional types.

LDO basically deals with two fundamental classes: a class of concepts, which is de-
noted by F and a class of objects, denoted by O.

According to Frege [11, 14], concepts are functions from a set of objects into the set of
truth values; objects are “saturated” and concepts are “unsaturated”. In LDO, functions are
considered as operators described by λ-expressions [1], that is, as processes constructing
a result from an operand. Objects are always operands. An operator may be an operand of
another operator.

Concepts are applied to objects. An object “falls under” a concept if the result of the
application is the truth value �. An object “does not fall under” a concept if the result of
the application is the truth value ⊥.

With every concept f the following are canonically associated [10]:

• an object called “typical object” τf , which represents the concept f as an object. This
object is completely (fully) indeterminate;

• a determination operator δf applied to an object constructs an object which is more
determinate than the first one;

• the intension of the concept f , Int(f ), conceived as the class of all concepts that the
concept f “includes”, that is a semantic network of concepts structured by the relation
“IS-A”;

• the essence of a concept f , Essf is the class of concepts such that they are inherited
by all objects falling under the concept f ;

• the expanse of the concept f , Expf , which contains all “more or less determinate
objects” which the concept f applies to;

• a part of the expanse is the extension Extf of the concept f ; it contains all fully
(completely, totally) determinate objects such that the concept f applies to.

From the viewpoint of determination, in LDO, objects are of two kinds: “fully (com-
pletely, totally) determinate” objects and “more or less determinate” objects.

From the viewpoint of some of their properties, LDO captures two kinds of objects:

• Typical objects. Typical objects in Expf inherit all concepts of Intf ;
• Atypical objects. Atypical objects in Expf inherit only some concepts of Intf .

2.1 Basic Operators of LDO

We recall some basic operators of LDO presented in [10]:
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The constructor of “typical object”: the operator τ This operator, denoted by τ and
called the constructor of typical object, starting from a concept, builds a totally indeter-
minate object. Its type is FFJHJ; it canonically associates to each concept f , an indeter-
minate object τf , called “typical object”. Its applicative scheme is:

τ : FFJHJ f : FJH

τf : J
(2.1)

The object τf , is the “best representative” object of the concept f ; it is totally indeter-
minate and abstractly represents the concept f in the form of an object which can then
lead either to a typical object or to an atypical object more determinate.

The operator of determination: the operator δ The operator δ, called the constructor
of determination operators, starting from a given concept, builds a determination oper-
ator. The operator δ canonically associates a determination operator of the type FJJ to
each concept f . The type of operator δ is FFJHFJJ. Its applicative scheme is:

δ : FFJHFJJ f : FJH

δf : FJJ
(2.2)

A determination operator δf is an operator which, being applied to an object x con-
structs another object y: y = (δf )(x). The object y is more determinate than the object x,
by means of the determination added by δf .

Definition 2.1 (The composition of determinations [10]) Let x be an object and δf , δg
two determinations. In this case, we write:

(δg ◦ δf )(x)= (
δg

(
(δf )x

))

The composition of determinations is associative and supposed to be commutative.

Definition 2.2 (Chain of determinations [10]) A chain of determination� is a finite string
of determinations which can be composed of each other:

�= δg1 ◦ δg2 ◦ · · · ◦ δgn
Definition 2.3 (More or less determinate object [10]) A more or less determinate object
is an object recursively obtained starting from the object τf by:

1. τf is a more or less determinate object;
2. If � is a chain of determinations, then y = (� x) = ((δg1 ◦ δg2 ◦ · · · ◦ δgn)x) =

(δg1(δg2 . . . (δgnx))) is a more or less determinate object;
3. Each more or less determinate object is obtained by the above rules.

Definition 2.4 (Fully determinate object [10]) An object x is fully determinate if and only
if for each determination δg which can be applied to x, with g ∈ F :

(δg x)= x

In LDO, objects are of two kinds:

• more or less determinate object: x ∈O;
• fully determinate object: x ∈Odet.

If x is a more or less determinate object obtained by a chain of determinations, its
associated concept will be denoted by x̂.



The Cube Generalizing Aristotle’s Square in LDO 281

2.2 Theory of Typicality in LDO

We recall the typicality defined in [10]:

Definition 2.5 (Typical object of a concept f ) An object x ∈O is called typical object of
the concept f if and only if:

• For each chain of determination � = (δg1 ◦ δg2 ◦ · · · ◦ gi ◦ · · · ◦ δgn) such that x =
(� τf );

• For each i = 1, . . . , n, gi is such that:
– Either: if gi ∈ Intf , then N1gi /∈ Intf 1 and N1gi /∈ Int x̂ (a canary versus a bird);
– Or: if gi ∈ Intf , N1gi ∈ Intf , then gi ∈ Int-caract x̂ (Julie versus an ostrich).

Definition 2.6 (Atypical object of a concept f ) An object x ∈O is called atypical object
of the concept f if and only if:

• There is a chain of determination � = (δg1 ◦ δg2 ◦ · · · ◦ gi ◦ · · · ◦ δgn) such that x =
(� τf ) and;
– Either: there is gi , i = 1, . . . , n such that N1gi ∈ Intf (an ostrich versus a bird);
– Or: there is gi , i = 1, . . . , n such that:

∗ If gi ∈ Intf and N1gi ∈ Intf , then N1gi ∈ Int-caractf and gi ∈ Int-caract x̂ (Rita
versus an ostrich).

– Or: there is gi , i = 1, . . . , n such that:
∗ If gi ∈ Intf , then there is a y such that x = (�1 y) and y = (�2 τf ) and y is an

atypical f (Rita versus a bird considered to be an ostrich).

3 Star Quantification

In order to introduce the star quantification, first, we recall the quantification of FOPL
presented by natural deduction i.e. by introduction and elimination rules.

3.1 First Order Predicate Logic (FOPL) Quantifiers

Quantifiers of FOPL are �1 for universal quantification and 
1 for existential quantifica-
tion:

The universal quantifier All x (from the universe of discourse) is f .
Its introduction and elimination rules, following Gentzen [12], are:

x

(f x)
... [ i - �1 ]

�1f

(3.1)

1N1 is the functional negation, the negation of a concept [10].
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This rule intuitively expresses: if we have (f x) for any object x, then �1f .

�1f
(f x)

[ e - �1 ] (3.2)

This rule intuitively expresses: if we have �1f , then (f x) for all x.
�1 f is read: All is f (all object of the universe of discourse is f ).

The existential quantifier There is an x (of the universe of discourse) which is f .
Introduction and elimination rules for 
1 are:

a (f a)
... [ i - 
1 ]


1f

(3.3)

This rule expresses: if one has (f a), then one has 
1f .


1f, (f a)�B
B

[ e - 
1 ] (3.4)

This rule expresses the fact: if from 
1f and (f a) one deduces a sentence B not
depending on a, then one has B .

1f is read: There is a x such that (f x).

Restricted Quantification in FOPL Restricted quantification contains two operators:
�,
.

Universal restricted quantification expresses the idea: All f is g. Its operator is �:

x

(f x)
... [ i - � ]
(g x)

�fg

(3.5)

This rule expresses: if x is an object such that from (f x) one infers (g x), then �fg.

�fg,(f x)
(g x)

[ e - � ] (3.6)

This rule expresses: if �fg and (f x), then (g x).
�fg is read: all object of f is an object of g or, briefly, all f is g.
Restricted existential quantification expresses the idea: there is an f which is g. Its

operator is 
. The rules of this operator are:

(f a)∧(g a)

fg

[ i - 
 ] (3.7)

That is: if for an indeterminate object a one has (f a) and (g a), then one has 
fg.


fg,(f a)�B,(g a)�B
B

[ e - 
 ] (3.8)

If one has 
fg, from (f a) one can deduce B (not depending on a) and from (g a)

one can deduce also B , then one has B .

fg is read: there is an f which is g.
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Fig. 1 The construction of the “typical arbitrary object”

3.2 Star Quantifiers

The star quantification (the system of quantification of LDO) is represented by two opera-
tors, ��� and 
�� and a system of four quantifiers, �, 
, ��, 
�. This system modelizes
restricted quantification taking into account typical objects.

The Operator Constructor of the “Typical Arbitrary Object”: ��� (see Fig. 1) This
operator is applied to the object τf constructing the object “the object whatever”���(τf ).
Its scheme with types is:

��� : FJJ τf : J
���(τf ) : J

The object ���(τf ) is different from τf :

• τf is a potential generator of all object (typical or not) from Exp(τf );
• while ���(τf ) is a generator of all typical object, that is, all objects in Expτ (τf )

2;
• operator ��� can be regarded as equivalent to the determination δ typ which is the

determination by the concept to-be-typical:
(
���(τf )

) ≡ (
(δ typ)(τf )

)
(3.9)

The Operator Constructor of the “Indeterminate Object”: ��� This operator is
applied to the object τf for building the “indeterminate object” 
��(τf ) (see Fig. 2). Its
type is FJJ:

2Expτ (τf ) is the extension containing all typical objects generated from τf .
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Fig. 2 The construction of the “indeterminate object”


��: FJJ τf : J

��(τf ): J

or


��: FJJ τf : a-man


��(τf ): an-indeterminate-man (typical or atypical)

Why do we need these two operators ���, 
��?
The answer is the following: the construction of the “typical arbitrary object” is always

formally possible, that is:

f
(
���(τf )

) =� (3.10)

As for the “indeterminate object”, its existence is related to the axiom Aτδ63 (see
[10]). This object represents a proof that Extf is not empty:

f
(

��(τf )

)=� if and only if Extf �= ∅ (3.11)

Star Quantifiers The reason to introduce star quantifiers comes from logical formal-
ization of linguistic expressions. For example:

An Alsatian drinks beer. (a typical Alsatian)

Formalizations in LDO, FOPL and Curry’s Logic are:

3Aτδ6, that is: ((∀f ),f ∈F)[(f (τf ))=� iff Extτ (τf ) �= ∅].
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• In LDO:

(to-drink-beer)
(
���

(
τ(to-be-an-Alsatian)

))

is true.
• In FOPL:

(∀x)((Alsatian x)⊃ (
(to-drink-beer) x

))

or equivalently,
• In Curry’s Logic:

�(to-be-Alsatian)(to-drink-beer)

are false.

The first one is consistent to the semantic context because of the fact that “A typical
Alsatian drinks beer”. The second and the third ones are not consistent because it is not
true that “All Alsatians drink beer”.

The system of star quantification is composed by four quantifiers: �, ��, 
� and 
.
Quantifiers � and 
� are Curry’s quantifiers [2] but �� and 
 are new quantifiers taking
into account the typicality.

The Operator of General Universal Quantification � Expressing “All f Is g” Its
rules are these of (3.5) and (3.6).

The operator of typical universal quantification �� expresses: All typical f is g.
Its introduction and elimination rules are:

x = (���(τf ))

(f x)
... [ i - �� ]
(g x)

g(��f )

(3.12)

The introduction rule (3.12) captures the idea:
If x is a typical object generated from τf and from (f x) one deduces (g x), then

g(��f ).

g(��f ),(f x)
x=(���(τf )),(g x)

[ e - �� ] (3.13)

For the elimination rule (3.13):
If g(��f ) and (f x), then x is a typical object generated from τf and one has (g x).
The operator of general existential quantification 
� expresses the idea: There is

an f which is g.
Its introduction rule is:

(f (
��(τf )))∧(g (
��(τf )))
g(
�f )

[ i - 
� ] (3.14)

This rule expresses the fact: if there is an indeterminate object (generated starting from
τf , (
��(τf ))) which falls under f and g, then one has g(
�f ).

The elimination rule of 
� is:
g(
�f ),(f (
��(τf )))�B,(g (
��(τf )))�B

B
[ e - 
� ] (3.15)
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This rule says: if one has g(
�f ) and if from indeterminate object which falls under
f and g one can deduce a sentence B depending on no object falling under f , then we
have B .

The operator of typical existential quantifier 
 expresses: There exists a typical f
which is g.

Its introduction and elimination rules are:
a=(� ���(τf )),(f a)∧(g a)


fg
[ i - 
 ] (3.16)

a=(� ���(τf )),
fg,(f a)�B,(g a)�B
B

[ e - 
 ] (3.17)

In (3.16) and (3.17) the object a is a typical object, i.e. obtained starting from the object
���(τf ).

3.3 Quantifiers in the Axioms and Rules of LDO

The system of star quantifiers is related to the axioms of the LDO [10] by means of
axiom 6 [10] and a new axiom formulated here, axiom 7. The axiom 6 [10]:

[Aτδ6:] Existence and non-existence of occurrences of a concept
(
(∀f ),f ∈F

) [
If Extτ (τf ) �= ∅ then

(
f (τf )

)=�]

can be formulated equivalently as axiom 6�:

[Aτδ6�:] ((∀f ),f ∈F) [If Extτ (τf ) �= ∅ then f (���(τf ))=�]

On the other hand, one introduces the axiom 7. It is necessary in the case of a universe
of discourse containing non-existent objects: “round square” or “monster” [18]:

[Aτδ7:] The object 
��(τf ) exists iff f (τf )=�
Then, the set of 6 axioms formulated in [10] is completed with the axiom 7 above.
The system of star quantifiers is related to the rules of the LDO [10] by the mean of

following rules:

1. Rules relating quantifiers to other operators:
(a) Typical universal quantifier related to operator ���:

g(��f )

g(���(τf ))
(3.18)

g(���(τf ))

g(��f )
(3.19)

These two rules are read: If all typical f is g, then the object “the typical arbitrary
object” is g and conversely.

(b) General existential quantifier related to operator 
��:

g(
�f )

g(
��(τf ))
(3.20)

g(
��(τf ))

g(
�f )
(3.21)
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Fig. 3 The cube of star quantifiers

These two rules are read: If there is an f which is g, then the “indeterminate
object” is g and conversely.

2. Atypicality and typical universal quantification (operator ��):

(f x)=�, ((N1g) x)=�, g(��f )

ATYP(f )(x)
(3.22)

This rule is read: If x is an f , but it is not a g and all typical f falls under g, then x
is not a typical f .

These rules are added to the rules formulated in [10].

3.4 The Cube of Quantifiers in LDO

The cube generalizing the Aristotle’s square (see Fig. 3) visualizes the relations between
quantifiers �, 
, �� and 
� and the negation.

1. The square �fg,�f (N1g), (N1g)(�
�f ), g(��f ) captures:

• Oppositions: �fg opposite to �f (N1g) and g(��f ) opposite to (N1g)(�
�f ) (they

are denoted by double arrows (↔)).
• Implications between general universal quantifier and typical universal one (they are

denoted by dotted simple arrows): �fg � g(��f ) and �f (N1g) � (N1g)(�
�f ).

2. The square 
fg, 
f (N1g), (N1g)(

�f ), g(
�f ) captures:

• Oppositions: 
fg opposite to 
f (N1g) and g(
�f ) opposite to (N1g)(

�f ) (they

are denoted by double arrows (↔)).
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• Implications between typical existential quantification and general existential quan-
tification: 
fg � g(
�f ) and 
f (N1g) � (N1g)(


�f ).

3. The square g(��f ), (N1g)(�
�f ), (N1g)(


�f ), g(
�f ) captures:

• Oppositions: g(��f ) opposite to (N1g)(�
�f ); g(
�f ) opposite to (N1g)(


�f );
• Implications between typical universal quantification and general existential quan-

tification: g(��f ) � g(
�f ) and (N1g)(�
�f ) � (N1g)(


�f ).

4. The square �fg, �f (N1g), 
f (N1g), 
fg captures:

• Oppositions: �fg opposite to �f (N1g) and 
fg opposite to 
f (N1g);
• Implications between general universal quantification and typical existential one:
�fg �
fg and �f (N1g) �
f (N1g).

5. The square on the side g(��f ), �fg, 
fg, g(
�f ) captures also implications be-
tween universal and existential for typical: g(��f ) � 
fg and for general quan-
tification: �fg � g(
�f ), while the square (N1g)(�

�f ), �f (N1g), 
f (N1g),
(N1g)(


�f ) the implications (N1g)(�
�f ) �
f (N1g) and�f (N1g) � (N1g)(


�f ).
6. The rectangle �fg, �f (N1g), (N1g)(


�f ), g(
�f ) represents implications between
general universal and general existential quantifier: �fg � g(
�f ) and �f (N1g) �
(N1g)(


�f ). It is the rectangle of classical quantifiers and it corresponds to the Aris-
totle’s square.

7. The rectangle g(��f ), (N1g)(�
�f ), 
fg, 
f (N1g) represents implications be-

tween typical universal quantifier and typical existential quantifier: g(��f ) � 
fg

and (N1g)(�
�f ) �
f (N1g). It is the rectangle of typical quantifiers.

3.5 Star Theory

In [7] two relations between �, �� and 
, 
� respectively, are obtained. Let us denote by
Q, � or 
 and by Q�, �� or 
� respectively. The relations mentioned above are obtained
by the following string on inferences using combinators and the relation of β-reduction
(see [2]):

1. g (Q� f )

2. C� (Q� f )g 1., i - C�

3. B C� Q� f g 2., i - B
4. (B C�)Q� f g

(3.23)

The two syntactic relations are:

�≡ BC��� (3.24)


 ≡ BC�
� (3.25)

They can be seen as “definitions” of � starting from �� and of 
 starting from 
�,
respectively.

Why:

• For universal quantifiers: � is the general one and �� is the typical one?
• For existential quantifiers: 
 is the typical one and 
� is the general one?
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It is because one can prove the existence of an object by a constructive procedure.
Generally, the result is a typical object. Moreover we have:

�fg � g(��f ) (3.26)

If all f are g, then all typical f are g.


fg � g(
�f ) (3.27)

If there is a typical f which is g, then there is an f which is g.
There are several differences between “classical” quantifiers and star quantifiers:

1. From the syntactic point of view, quantifiers � and 
 are operators applied to two
concepts f and g. Star quantifiers are applied to only one concept f . This idea is
related to the fact that in linguistics the quantifier is applied to the nominal phrase;

2. There is an asymmetry in the definitions of � and �� and, 
 and 
�, respectively with
regard to the typicality: for the universal quantification, �� is the quantifier acting on
typical objects, while for the existential quantification, 
 is acting on typical objects.
The reason is given by relations (3.26) and (3.27);

3. Q� et Q are of different types. The type F(FJH)(F(FJH)H) is the type of Curry’s
quantifiers Q.

Q : F(FJH)(F(FJH)H) f : FJH

Qf : F(FJH)H g : FJH

Qfg :H
(3.28)

The type of star quantifiers, Q�, is F(FJH)J

Q� : F(FJH)J f : FJH

g : FJH Q�f : J

g(Q�f ) : H

(3.29)

4. From the viewpoint of cognition, it results from relations (3.24) and (3.25) that �� and

� are more primitive than � and 
.

Generally speaking, we can state that the construction of typical objects raises a set of
cognitive operations which determine the quantification. Natural languages express this
aspect emphasized by the Star Theory.

From technical viewpoint, the star quantification of LDO is represented by the rules
(3.5), (3.6), (3.12), (3.13), (3.14), (3.15), (3.16), (3.17). Star Theory is composed of the
same rules adding the rules (3.23), (3.24) and (3.25).

The Star Theory is an extension of the quantification of illative theory expressed in
Curry’s Combinatory Logic.

4 Some Examples

In this section we give examples of formalization in LDO of some sentences of natural
languages:

1. general universal quantification:
(a) Man is mortal. All men are mortal.

�(to-be-a-man)(to-be-mortal)
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2. typical universal quantification:
(a) All (typical) men are biped. A (typical) man is biped.

(to-be-biped)(��(to-be-a-man))
(b) All (typical) Alsatian drinks beer. Every (typical) Alsatian drink beer.

(to-drink-beer)(��(to-be-an-Alsatian)
(c) All (typical) Generals (of the Army) die in their bed. Every (typical) General dies

in his bed.
(to-die-in-his-bed)(��(to-be-a-general))

(d) All (typical) Frenches are moaners. Every (typical) French is a moaner.
(to-be-a-moaner)(��(to-be-a-French))

(e) A (typical) beaver builds dams.
(to-build-dams)(��(to-be-a-beaver))

3. general existential quantification:
(a) There is a prime number between 2 and 4.

(to-be-between-2-and-4)(
�(to-be-a-prime-number))
(b) There is a man in the garden.

(to-be-in-the-garden)(
�(to-be-a-man))
4. typical existential quantification:

(a) There is a (typical) prime number between 1 and 10. (Here “typical” means “odd
number”.)

(to-be-between-1-and-10)(to-be-a-prime-number)

(b) There is an (atypical) continuous function. (Here “atypical” means “everywhere
continuous but nowhere differentiable”.)

(N1(to-be-differentiable))(to-be-a-continuous-function)

5 Conclusions

The system of quantifiers of LDO is a new approach of quantification opening new ways
for solving general problems of quantification in relation with: predication operations,
determination operations, topicalization operations (theme–rheme; topic–comment) ana-
lyzed by linguistics, on one hand, and typical and atypical representations of a concept,
categorization approach inherited from investigations in anthropology and cognitive psy-
chology [17], on the other hand.

This system of quantifiers captures two aspects of natural languages, one semantic and
the other syntactic:

• From the semantic viewpoint, it captures the typicality/atypicality whose models are in
LDO;

• From the syntactic viewpoint, it captures the fact that the quantifier is an operator ap-
plied to operand (noun phrase) as taken into account by linguistics.

The cube generalizing Aristotle’s square is a diagram visualizing the relations between
the four star quantifiers and the negation.
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Hypercubes of Duality

Thierry Libert

Abstract We define hypercubes of duality—of which the modern square of opposition
is an emblematic example—in proper mathematical terms, as orbits under some action of
the additive group Z

m
2 , with m ∈ N. We then introduce a notion of dimension for duality

in classical logic and show, for example, how propositional expressions in at most three
variables can be classified according to that notion. The paper ends with logical formula-
tions of some representation theorem for Galois connections on powersets, where we see
an underlying square of duality.

Keywords Square of opposition · Duality · Galois connections

Mathematics Subject Classification 03B05 · 03B10 · 03B80

The square of opposition and other related diagrams are meant to picture logical relation-
ships that can exist between propositions with the same terms. Their geometrical shape,
however, simply reflects the way these propositions can be obtained from each other by
means of simple operations on the terms. So such diagrams classify propositions accord-
ing to their symmetric properties with respect to those operations. In mathematical terms,
one will say that such diagrams represent the orbits for the action generated by the oper-
ations. It is that geometric view on logical diagrams we want to emphasize here.

On the other hand, propositions may themselves have natural geometric representa-
tions from which logical properties can be inferred. This is the case for propositional
expressions, as we shall see. So geometry can help to understand certain forms of sym-
metry in logic, and then forms of reasoning. Whether reasoning has any geometrical root
is another interesting question.

An important form of symmetry in (classical) logic is duality. Since this is a very broad
concept, we have opted for a presentation in which this is the central notion, though we
shall mainly restrict ourselves to logical duality. Let us start with a brief description of the
kind of duality we have in mind.

Many forms of duality (but not all) involve the action of an involution.1 Roughly, we
are given a class C of mathematical objects2 together with a map

ι : C −→ C : c 1−→ cι

1There are references in various areas of logic where the notion of duality is introduced in a more general
way; see [1] for instance.
2These can be semantical objects (structures) as well as syntactical ones (formulas).
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such that (cι)ι = c for each c ∈ C . The proof of the corresponding principle of duality,
however formulated, will essentially rely on that property of ι.

Nevertheless, there are situations where the underlying involution can be regarded as
a product of finitely many independent involutions, so a better analysis can be given in
terms of the action of the additive group Z

n
2, n ∈ N.3 That is, we are given a class C of

mathematical objects together with a map

ι : Zn
2 ×C −→ C : 〈ζ, c〉 1−→ cι(ζ )

such that for every c ∈ C and all ζ, η ∈ Z
n
2,

(
cι(ζ )

)ι(η) = cι(ζ+η) and cι(0) = c.

We note that for all ζ ∈ Z
n
2, the map

ι(ζ ) : C −→ C : c 1−→ cι(ζ )

is an involution, since ζ + ζ = 0, and that all these maps are generated by the ι(1k)’s,
where 1k is the n-uple with 1 in the k-th position, 0 elsewhere. We will let 1 stand for∑n

k=1 1k and consider ι(1) as the principal involution; so objects c, c′ in C such that
c′ = cι(1) will be said to be dual of each other.

As was said above, our guiding examples will be related to logical duality.

Example 1 Let C be the set of all propositional expressions up to logical equivalence—
this means that we essentially looking at C as the set of all truth functions. We then define
ι : Z2

2 ×C −→ C as follows:

• ι(11) is negation acting internally, on each propositional variable;
• ι(12) is negation acting externally, on the whole propositional expression.

So ι(1) is just the involution associated with duality in propositional logic.

On the other hand, when the number of propositional variables is bounded, it is also
natural to look at the following refinement of Example 1:

Example 2 Let m ∈ N and then let C be the set of all propositional expressions
in (at most) m variables, say p1, . . . , pm, up to logical equivalence. We now define
ι : Zm+1

2 ×C −→ C as follows:

• For each k ∈ {1, . . . ,m}, ι(1k) is negation acting on pk only;
• ι(1m+1) is negation acting on the whole propositional expression.

So again ι(1) is the involution associated with duality in propositional logic, but restricted
here to propositional expressions in (at most) m variables.

These examples can easily be adapted to the case of classical predicate logic, or even
modal logic, and they have obvious semantic counterparts as well.

3Throughout this paper, Zn
2 will be regarded as the set of all n-uples of 0 and 1’s with addition performed

component-wise and modulo 2.
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p1 ⇒ p2 p1 ⇐ p2

p1 	 p2 p1 
 p2

p1 ∧ p2 p1 ⇓ p2

p1 ⇑ p2 p1 ∨ p2

p1 ⇔ p2 p1 ∨ p2 p1 ¬p1 p2 ¬p2 � ⊥
Fig. 1 Orbits for the action of Example 1

Now, given an action ι of Zn
2 on C , one defines the orbit of c ∈ C by:

cι := {
cι(ζ ) | ζ ∈ Z

n
2

}
.

The cardinality of cι must be a power of 2, so it can be written as 2d(c), where d(c) is
what we call the dimension of c w.r.t. ι. Then cι can be represented as a hypercube of
d(c) dimensions, which we refer to as a hypercube of duality. However, geometrically
speaking, this is not a hypercube, for the symmetry group of cι is Zd(c)

2 , by definition, and
that is not the group of a hypercube unless d(c)= 0 or d(c)= 1. Typically, Z2

2 is known
as the Klein four-group, and this is (isomorphic to) the symmetry group of a rectangle,
not of a square!

In Fig. 1, we show all the orbits for the action of Example 1 when this is restricted to
propositional variables in (at most) two variables. The actions of the generating maps ι(11)

and ι(12), when not reduced to identity, have been depicted by ‘ ’ and ‘ ’ re-
spectively. We have used (fairly) standard notations for the binary connectives, including
the Sheffer stroke ⇑ (‘NAND’) and its dual, the Pierce arrow ⇓ (‘NOR’).4 Given that there
are exactly, up to logical equivalence, 222 = 16 propositional expressions in (at most) two
variables, all possible orbits have been drawn. Obviously, the dimension of an object can
never exceed 2 under the action of Example 1. That is why its orbits are referred to as
“squares of quaternality” in [4].

On the other hand, given m� 2, one can find objects of dimension m+ 1 by consider-
ing the action of Example 2. We show all possible orbits for m= 2 in Fig. 2, where the ac-
tions of the generating maps ι(11), ι(12) and ι(13)—again when not reduced to identity—
have been depicted by ‘ ’, ‘ ’ and ‘ ’ respectively. The reader will no-
tice that there is no object of dimension 2 here. This fact, and all other features of Fig. 2,
can easily be explained from a pure geometric viewpoint, by looking at propositional
expressions as square-shaped objects.

Indeed, up to logical equivalence, each propositional expression in two variables can
be identified with its truth function/table {0,1}2 −→ {0,1}, which can then be regarded
as a 2× 2 matrix of 0’s and 1’s, or alternatively, as a square-shaped domino with white or
black dots (white for 0, black for 1). In this view, the actions of ι(11) and ι(12) correspond
to bilateral symmetries with vertical and horizontal axes respectively, whereas the action

4Curiously, it seems there is no natural positive notation in the literature for the dual connective of ⇒,
that is, the binary connective that is denoted here by 
. Same for ⇐.
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p1 ⇑ p2 p1 ⇐ p2

p1 ⇒ p2 p1 ∨ p2

p1 ∧ p2 p1 
 p2

p1 	 p2 p1 ⇓ p2

p1 ⇔ p2 p1 ∨ p2 p1 ¬p1 p2 ¬p2 � ⊥
Fig. 2 Orbits for the action of Example 2, with m= 2

of ι(13) consists in taking the negative image, that is, reversing black and white. Thus, for
instance, the orbit of p1 ⇔ p2 and p1 ∨ p2 in Fig. 2 will appear as

where we see that bilateral symmetries just interchange white and black dots, so negating
one variable does correspond to negating the whole expression.

That geometric view of the action of Example 2 generalizes to any m ∈N, by thinking
of (the truth function/table of) a propositional expression in m variables as a hypercube-
shaped domino of dimension m—which remains intuitive as far as m � 3. For exam-
ple, here are the cube-shaped representations of p1 ⇒ (p2 ⇒ p3), (p1 ⇒ p2)⇒ p3 and
(p1 ⇒ p2)⇔ p3, respectively:

It is easy to see from these that p1 ⇒ (p2 ⇒ p3) and (p1 ⇒ p2)⇒ p3 are both of di-
mension 4 w.r.t. the action of Example 2, though they lie in different orbits, whereas
(p1 ⇒ p2)⇔ p3 is of dimension 3.5 In fact, with that view, one could easily list all the
orbits for the action of Example 2 when m= 3 and prove, among other things, that there
is again no square. See the Appendix.

There are objects of dimension 2 for the predicate and the modal versions of Example 2
(with m � 1). Natural examples are provided by the formulas ∀xP1(x), where P1 is a
predicate variable, and �p1 in the modal case. Their orbits are traditionally represented

5Clearly, ι(13) & ι(14) have the same action on (p1 ⇒ p2)⇔ p3, not on (p1 ⇒ p2)⇒ p3.
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X1 )(X2 X1 ⊇X2

X1 ⊆X2 X1

() X2

X1 	X2 X1 �X2

X1 �X2 X1 /

() X2

Fig. 3 The cube of Aristotelian relations

in the literature with contradictory statements in opposition to each other, rather than dual
ones, as follows:

∀xP1(x) ∀x¬P1(x)

∃xP1(x) ∃x¬P1(x)

�p1 �¬p1

♦p1 ♦¬p1

And these are referred to as “modern squares of opposition” in the literature.
The most famous example of modern square of duality/opposition is the Aristotelian

one. This just appears as the orbit of the formula ∀P xP1(x), where ‘∀P x’ is some re-
stricted quantifier, that is, ∀P xP1(x) is the abbreviation for ∀x(P (x)⇒ P1(x)), where
P is some predicate constant—which is tacitly assumed not to be identically false, oth-
erwise the orbit will reduce to {�,⊥}. It should be remarked too that the orbit will not
be of dimension 2 either when {x | P(x)} is a singleton, in which case ∀P xP1(x) and
∃P xP1(x) are obviously logically equivalent. Typically, in predicate logic with equality,
this happens by taking P(x) to be x = a, where a is any object constant.

That said, the orbit of ∀x(P1(x)⇒ P2(x)) for the predicative version of the action of
Example 2 (with m� 2) will naturally provide us with a 3-dimensional generalization of
the Aristotelian square. This is referred to as “the cube of opposition” in [6]. We show
a semantic version of it in Fig. 3, where X1,X2 are variables for subsets of some (non-
empty) set U , and where the actions of ι(11) (‘ ’) and ι(12) (‘ ’) correspond
to complementation (w.r.t. U ) acting on X1 and X2 respectively.

The binary relations symbolized at the eight corners of that cube will be referred to
as the Aristotelian relations. These arise in a natural way from the Venn diagram for two
subsets of U by writing either 0 or 1 in each of the four regions, to mean that this is
either empty or non-empty. Some notations are quite standard in the literature, or natural,
such as X1 	 X2 for X1 ∩X2 �= ∅ and X1 )(X2 for its negation.6 However, notations for
their duals seem hard to find; by default, we have used here X1

() X2 for X1 ∪X2 = U

and X1 /

() X2 for its negation.7 The cube of Aristotelian relations is just the predicate
counterpart of the cube of duality appearing in Fig. 2.

6The use of 	 can be found in [2] for instance, but there is no notation for its negation.
7Again, it seems there is no natural positive notation for the dual of the inclusion relation ⊆, that is, the
binary relation that is denoted here by �⊇. Likewise for ⊇.
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These so-called Aristotelian relations, especially ⊆, �, 	 and )(, are particularly
helpful—we think—to express and to teach Aristotelian syllogisms. We shall now de-
scribe another situation where reference to Aristotelian relations can be illuminating,
which was precisely the subject of the talk given by the author at the 2nd World Congress
on the Square of Opposition.

1 The Square of Galois Connections

Recall that, given posets A and B, a Galois connection—also called an adjunction—
from A to B is defined as a pair 〈α,β〉 of maps α :A−→ B and β : B −→A such that
x �A β(y) iff α(x) �B y, for all x in A and y in B. Then α is called the lower or left
adjoint, and β the upper or right adjoint. That special kind of correspondence between
posets pervades mathematics. There is a more general definition of a Galois connection in
categorical terms, of which the one above is just a particular instance. However, we shall
restrict ourselves in what follows to the case where the posets A, B are powersets.

Then, given sets A and B , one can distinguish four types of Galois connections from
P(A) to P(B), according to whether each of the powersets is equipped with ⊆ or ⊇.
So the defining property of a Galois connection from P(A) to P(B) may take one of
following four forms: for all X ⊆A, Y ⊆ B ,

1. X ⊆ β(Y ) iff α(X)⊆ Y .
2. X ⊆ β(Y ) iff Y ⊆ α(X).
3. β(Y )⊆X iff α(X)⊆ Y .
4. β(Y )⊆X iff Y ⊆ α(X).

In the pioneered work on the subject, as in [5], the definition of a Galois connec-
tion between powersets is based on 2, because the motivating example—in Galois theory
precisely—is of type 2. As a matter of fact, there is a natural generic example for such
Galois connections, as follows.

For any binary relation R and set X, let XR := {y | ∀x ∈X, x R y}.
Now, given R ⊆A×B , define α : P(A)−→ P(B), β : P(B)−→ P(A) by

α(X) :=XR, β(Y ) := YR∗ ,

for all X ⊆ A,Y ⊆ B , where R∗ is the opposite relation of R. Then it is easy to see that
〈α,β〉 is a Galois connection of type 2 from P(A) to P(B).

Furthermore, it is proved in [5] that any Galois connection of type 2 from P(A) to
P(B) is of this form, for some binary relation R ⊆ A× B , which gives a representation
theorem for Galois connection of type 2. Representation theorems for the other types
can be derived by noting that one form can be changed into another by complementation
acting on P(A) or P(B)—there is indeed a square of duality here! Surprisingly, little is
said about that in the literature, except perhaps in [3], but not in simple terms. Here are
formulations that—we think—best reflect the underlying logical structure.

Theorem v.1 Suppose 〈α,β〉 is a Galois connection from P(A) to P(B). There exists
R ⊆ A × B such that, if 〈α,β〉 is respectively of type 1, 2, 3, 4, then: for all X ⊆ A,
Y ⊆ B ,
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1. α(X)= {y | {y}R∗ �X}, β(Y )= {x | {x}R () Y }.
2. α(X)= {y | {y}R∗ ⊇X}, β(Y )= {x | {x}R ⊇ Y }.
3. α(X)= {y | {y}R∗ /

() X}, β(Y )= {x | {x}R /

() Y }.
4. α(X)= {y | {y}R∗ () X}, β(Y )= {x | {x}R � Y }.

Proof First we observe that XR = {y | {y}R∗ ⊇ X}, by definition of XR , since {y}R∗ =
{x | x R y}, again by definition of XR , for all R and X.

Now suppose 〈α,β〉 is a Galois connection of type 1 from P(A) to P(B). Then
〈( )c ◦ α,β ◦ ( )c〉, where ( )c is complementation, is a Galois connection of type 2 from
P(A) to P(B), since X ⊆ β(Y c) iff α(X) ⊆ Y c iff Y ⊆ α(X)c , for all X ⊆ A, Y ⊆ B .
Therefore, assuming the representation theorem for type 2, there exists R ⊆ A× B such
that for all X ⊆A, Y ⊆ B ,

α(X)c = {
y | {y}R∗ ⊇X

}
, β

(
Y c

) = {
x | {x}R ⊇ Y

}
,

and then, for all X ⊆A, Y ⊆ B ,

α(X)= {
y | {y}R∗ ⊇X

}c
, β(Y )= {

x | {x}R ⊇ Y c
}
,

that is,

α(X)= {
y | {y}R∗ �X

}
, β(Y )= {

x | {x}R () Y
}
.

Likewise for type 3 [resp. 4], seeing that if 〈α,β〉 is of type 3 [resp. 4], then
〈( )c ◦ α ◦ ( )c, ( )c ◦ β ◦ ( )c〉 [resp. 〈α ◦ ( )c, ( )c ◦ β〉] is of type 2. �

Equally, there is another formulation involving ⊆, �, 	 and )(, namely:

Theorem v.2 Suppose 〈α,β〉 is a Galois connection from P(A) to P(B). There exists
S ⊆ A × B such that, if 〈α,β〉 is respectively of type 1, 2 , 3, 4, then: for all X ⊆ A,
Y ⊆ B ,

1. α(X)= {y | {y}S∗ 	X}, β(Y )= {x | {x}S ⊆ Y }.
2. α(X)= {y | {y}S∗ )(X}, β(Y )= {x | {x}S )(Y }.
3. α(X)= {y | {y}S∗ �X}, β(Y )= {x | {x}S � Y }.
4. α(X)= {y | {y}S∗ ⊆X}, β(Y )= {x | {x}S 	 Y }.

Proof Apply v.1 and take S :=Rc, so {y}R∗ = {y}cS∗ and {x}R = {x}cS . �

Appendix

Here we list all the orbits for the action of Example 2 when m= 3. These are classified ac-
cording to the number b of black dots in the cube-shape representation of a propositional
expression, and their possible arrangements up to permutations of the variables p1, p2,
p3. For each configuration Cbk , we give one generic propositional expression as example,
with dimension |Cbk |. The index k just serves here as a numbering for different configura-
tions with the same b. We use multiplicative notation (namely a dot) for conjunction and
write Eij for (pi ⇔ pj ), with i �= j . Note that the actions of ι(11), ι(12), ι(13) preserve
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the numbers of white dots and black dots, whereas the action of ι(14) must exchange these
numbers; so the values of b are restricted to 0, 1, 2, 3, 4.

C0
1 C1

1

⊥ p1 · p2 · p3

|C0
1 | = 1 |C1

1 | = 4

C2
1 C2

2 C2
3

p1 · p2 E13 · p2 E13 ·E23

|C2
1 | = 3 |C2

2 | = 3 |C2
3 | = 3

C3
1 C3

2 C3
3

(p1 · p2)∨ (p1 · p3) (E13 · p2)∨ (p1 · p3) (E13 · p2)∨ (E12 · p3)

|C3
1 | = 4 |C3

2 | = 4 |C3
3 | = 4

C4
1 C4

2 C4
3

p1 (p1 · p2)∨ (p1 · p3)∨ (p2 · p3) (E13 · p2)∨ (p1 · p3)∨ (p2 · p3)

|C4
1 | = 1 |C4

2 | = 3 |C4
3 | = 3

C4
4 C4

5 C4
6

(E13 · p2)∨ (p1 · p3)∨ (E12 · p3) E12 (E13 · p2)∨ (E12 · p3)∨ (E23 · p1)

|C4
4 | = 3 |C4

5 | = 1 |C4
6 | = 1
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The generic propositional expression for C4
6 is in fact logically equivalent to

p1 ⇔ p2 ⇔ p3, which is not to be confused with E12 · E13 · E23, that is, C2
3 . Note also

that the ternary connective ‘If..., then...; else...’, i.e. the propositional
expression (p1 ⇒ p2)∧ (¬p1 ⇒ p3), coincides with (C4

3)
ι(11).

Now, in the next table, we count the number nbk of orbits one obtains by permuting the

variables p1, p2, p3 from each configuration Cbk , and then the number mb = ∑
k 2|Cbk | · nbk

of propositional expressions whose orbits are generated by a cube-shaped domino with b
black dots.

nbk 0 1 2 3 4

1 1 1 3 3 3
2 – – 3 3 1
3 – – 1 1 3
4 – – – – 3
5 – – – – 3
6 – – – – 1

mb 2 16 56 112 70

So the number of orbits is
∑

b,k n
b
k = 30, and we have

∑
b m

b = 256, which is all right
equal to the number of propositional expressions in (at most) three variables—up to logi-
cal equivalence. For those familiar with finite group theory, we note that the total number
of orbits under the action Example 2 can easily be obtained, for any m, by Burnside’s
counting theorem.

References

1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The Joy of Cats. Dover,
Mineola (2004)

2. Dubreil, P.: Algèbre, Tome 1, 2ième édn. Cahiers scientifiques, Fascicule XX. Gauthier-Villars, Paris
(1954)

3. Erné, M., Koslowski, J., Melton, A., Strecker, G.E.: A primer on Galois connections. In: Papers on
General Topology and Applications. Annals of the New York Academy of Sciences, vol. 704, pp. 103–
125 (1993)

4. Gottschalk, W.H.: The theory of quaternality. J. Symb. Log. 18, 193–196 (1953)
5. Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55, 493–513 (1944)
6. Reichenbach, H.: The syllogism revised. Philos. Sci. 19, 1–16 (1952)

T. Libert (�)
Département de mathématiques, Université Libre de Bruxelles (U.L.B.), Bd. du triomphe, CP 211,
1050 Brussels, Belgium
e-mail: tlibert@ulb.ac.be

mailto:tlibert@ulb.ac.be


Part V
Applications of the Square of Opposition



How to Square Knowledge and Belief

Wolfgang Lenzen

Abstract Taken for granted that knowledge satisfies the “truth-requirement”,
K(a,p) → p, it immediately follows that the elementary epistemic attitudes K(a,p),
K(a,¬p), together with their respective negations, ¬K(a,p), ¬K(a,¬p), fit into a stan-
dard modal “square of knowledge”. In contrast to K(a,p), the operator of belief, B(a,p),
does not satisfy the truth-requirement. Even if ‘belief’ is interpreted in the strong sense of
certainty (i.e. maximal subjective probability), it still doesn’t follow that whenever subject
a is firmly convinced that p, p must therefore be true—as we all know, humans are falli-
ble. Nevertheless, if it is only assumed that the concept of belief satisfies the “consistency
principle” B(a,p)→¬B(a,¬p), one obtains a standard “square of belief”. In view of
the so-called entailment-thesis, K(a,p)→ B(a,p), both squares can be combined into
a corresponding “double square” where, interestingly, given certain assumptions of epis-
temic/doxastic logic, the doxastic “inner square” may be shown to be identical to the
following square of complex epistemic modalities:

¬K
(
a,¬K(a,p)

) ¬K
(
a,¬K(a,¬p))

K
(
a,¬K(a,¬p)) K

(
a,¬K(a,p)

)
.

Keywords Epistemic logic · Modal square of opposition · Knowledge · Weak and
strong belief

Mathematics Subject Classification Primary 03B42 · Secondary 03B45

1 Modal Square of Opposition

Before investigating the issue of epistemic and doxastic squares of opposition, let me
briefly summarize the basic idea of a modal square in general. Abstractly speaking (see
Fig. 1), four propositions form a square of opposition if and only if

1. A and B are “contrary” to each other, i.e. A and B cannot both be true while A and B
can both be false together;

2. C and D are “subaltern” to A and B , respectively, i.e. A logically entails C and B

logically entails D;
3. A and D on the one hand, and B and C on the other hand, are “contradictory” to each

other, i.e. D =¬A and C =¬B;

J.-Y. Béziau, D. Jacquette (eds.), Around and Beyond the Square of Opposition, 305–311
Studies in Universal Logic, DOI 10.1007/978-3-0348-0379-3_21, © Springer Basel 2012
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Fig. 1 Abstract square of
opposition

A B

C D

Fig. 2 Modal square of
opposition

�p �¬p
¬�¬p ¬�p

4. C and D are “subcontrary”, i.e. C and D cannot both be false while C and D can both
be true together.

Note that it would suffice to postulate, e.g., conditions 1 and 3 because the other re-
quirements 2, 4 logically follow from these.1

If, as usual, ‘�’ denotes the operator of necessity, then the expressions A=�p, B =
�¬p, C = ¬�¬p, and D = ¬�p form a (modal) square of opposition provided only
that two conditions hold:

(i) Necessity entails possibility, (�p→ ♦p),2 but conversely
(ii) possibility does not entail necessity.

If the latter would not hold, all modal distinctions would collapse, i.e. necessity would
become provably equivalent to simple truth, (�p↔ p), and therefore also to possibility,
(�p ↔ ♦p). But then the corresponding Fig. 2 would no longer constitute a square of
opposition because the subaltern formulas ♦p and ♦¬p fail to satisfy the second part of
condition 4. These formulas, which are equivalent to p and ¬p, respectively, cannot both
be true together.

2 Epistemic Square of Opposition

In his contribution to the 1st International Congress on The Square of Opposition, Pas-
cal Engel argued that the question “Can there be an Epistemic Square of Opposition?”
probably should be answered in the negative.

It seems (more or less) easy to transpose the alethic square of opposition [i.e., Fig. 2] to deontic
modalities, but what about epistemic modalities? It is tempting to put knowledge at the top left,
ignorance at the top right, belief at the bottom left and disbelief at the bottom right.3

However, his attempt to construct a square of opposition out of a mixture of epistemic
and doxastic modalities along the quoted lines is bound to fail for several reasons. For the
sake of a closer discussion, let us use the standard abbreviations ‘K(a,p)’ and ‘B(a,p)’

1Assume that condition 1 is satisfied and that A is true; then B must be false and hence, in view of
condition 3, C must be true, i.e. A logically entails C. Similarly, B logically entails D since, if B is true,
A must be false (by 1) and hence ¬A, i.e. (by 3) D, must be true. Furthermore, if A and B are contrary to
each other, then C and D cannot both be false, because otherwise ¬C and ¬D would both be true, i.e.,
in view of condition 3, A and B would both be true together.
2Of course, the possibility operator, ♦p, may be defined as ¬�¬p.
3Engel [1], 5.
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Fig. 3 Engel’s (partial)
square of opposition

K(a,p) B

B(a,p) D

for the epistemic operators ‘(person) a knows that p’ and ‘a believes that p’, respectively.
According to Engel, these propositions are meant to occupy the A- and C-position in the
left half of the square of opposition shown in Fig. 3.

Since the C-proposition is subaltern to the A-proposition, B(a,p) has to follow logi-
cally from K(a,p). This is exactly the content of the so-called “entailment-thesis” saying
that knowing that p entails believing that p:

K(a,p)→ B(a,p). (ENTAILMENT 1)

The other two propositions B and D are thought by Engel to represent the negative
attitudes of “ignorance” and “disbelief”, respectively. What does this, however, exactly
mean? ‘Disbelief’ would normally be understood as the mere negation of belief, hence,

D1(a,p) := ¬B(a,p). (DISBELIEF 1)

However, also the stronger requirement

D2(a,p) := B(a,¬p) (DISBELIEF 2)

appears reasonable. Similarly, ‘ignorance’ might be understood in either of the following
two senses:

I1(a,p) := ¬K(a,p) (IGNORANCE 1)

I2(a,p) := K(a,¬p). (IGNORANCE 2)

Now, no matter which particular interpretation of ‘disbelief’ and ‘ignorance’ is chosen,
the resulting completion of Fig. 2—with either ¬K(a,p) or K(a,¬p) substituted in place
of the B-proposition and with either ¬B(a,p) or B(a,¬p) substituted in place of the
D-proposition—will not yield any square of opposition. In the first variant (see Fig. 4),
none of the four conditions of a square of opposition would be satisfied. First, the A

and B formulae K(a,p) and ¬K(a,p) are contradictory, but not contrary to each other,
i.e. they cannot both be false together. Second, according to (ENTAILMENT 1), the A-
formula K(a,p) logically entails the C-formula B(a,p), hence, by contraposition, the
D-formula ¬B(a,p) entails the B-formula ¬K(a,p) while in a square of opposition
the converse entailment ¬K(a,p)→ ¬B(a,p) would have to hold. Third, since belief
is not the same as knowledge, the D-proposition ¬B(a,p) is not the negation of the
A-proposition K(a,p), and similarly the C-proposition B(a,p) is not the negation of
the B-proposition ¬K(a,p). Fourth, the subaltern formulae B(a,p) and ¬B(a,p) are
contradictory, but not subcontrary to each other, i.e. they cannot both be true together.

In the second variant (see Fig. 5), the A and B formulae, K(a,p) and K(a,¬p), are
contradictory to each other, as is required by condition 1 of the square of opposition.
Furthermore, the law of subalternation is fully satisfied since K(a,p) logically entails

Fig. 4 Complete square of
opposition à la Engel (1st
variant)

K(a,p) ¬K(a,p)

B(a,p) ¬B(a,p)
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Fig. 5 Complete square of
opposition à la Engel (2nd
variant)

K(a,p) K(a,¬p)
B(a,p) B(a,¬p)

B(a,p), and analogously K(a,¬p) entails B(a,¬p). However, the negation of the A-
proposition, ¬K(a,p), certainly is not equivalent to the D-proposition B(a,¬p). To be
sure, if a believes that p is not true, it hence follows that a doesn’t know that p; but
conversely, the mere fact that a doesn’t know that p fails to guarantee that a believes that
not-p! In view of the so-called truth-condition (saying that a cannot know that p unless
p in fact is true),

K(a,p)→ p (TRUTH)

it might well be the case that p is false, and that therefore ¬K(a,p), while a neverthe-
less believes that p is true, B(a,p), and hence a doesn’t disbelieve that p!4 Finally, the
formulae C and D are contrary rather than “subcontrary” because it is well nigh possible
that both C and D are false together! If a is any normal human subject, there exist many
propositions p such that a neither believes that p nor believes that not-p!5

3 Squares of Opposition for Knowledge, Strong Belief and Weak
Belief

In order to answer the question “how to square knowledge and belief” properly, it
should be observed that since the knowledge-operator K(a,p) satisfies the (TRUTH)-
requirement, it also satisfied the epistemic analogue of the modal condition (i) mentioned
above, i.e.:

K(a,p)→¬K(a,¬p). (K-CONSISTENCY)

Since, furthermore, the converse implication ¬K(a,¬p)→ K(a,p) does not generally
hold,6 it immediately follows that the elementary epistemic attitudes K(a,p), K(a,¬p),
together with their respective negations, fit into the “square of knowledge” shown in
Fig. 6.

Fig. 6 Square of knowledge K(a,p) K(a,¬p)
¬K(a,¬p) ¬K(a,p)

4In the same way, the C-proposition B(a,p) entails, but is not itself entailed by, the negation of the
B-proposition, ¬K(a,¬p).
5As the reader may verify, also the remaining two “inhomogeneous” variants

K(a,p) ¬K(a,p)
B(a,p) B(a,¬p) and

K(a,p) K(a,¬p)
B(a,p) ¬B(a,p)

fail to satisfy several conditions for a square of opposition.
6Such a condition at best holds for a supernatural omniscient being like God.
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Fig. 7 Square of “strong
belief”

C(a,p) C(a,¬p)
¬C(a,¬p) ¬C(a,p)

Fig. 8 Square of “weak
belief”

B(a,p) B(a,¬p)
¬B(a,¬p) ¬B(a,p)

In contrast to K(a,p), the belief operator B(a,p) does not satisfy the (TRUTH)-
requirement, but it is quite reasonable to suppose that it satisfies at least the weaker re-
quirement of

B(a,p)→¬B(a,¬p). (B-CONSISTENCY)

For a closer discussion of this topic, it will be helpful to distinguish (at least) two different
notions of belief. In the everyday use of the notion, to believe that something, p, is the case
means as much as to think that p is probable, i.e. more precisely, that p is more probable
than not-p. Let this concept of “weak belief” be symbolized by B(a,p). Furthermore a
new operator C(a,p) shall be introduced to abbreviate the special case of “strong belief”,
or conviction, which holds if and only if the respective subject a is absolutely certain
that p. With the help of a subjective probability function Prob(a,p) which numerically
defines the degree of likelihood that a assigns to (the event described by proposition) p,
the two notions of belief might be defined as follows:

B(a,p) := Prob(a,p) > Prob(a,¬p), i.e. Prob(a,p) > 0.5 (PROB 1)

C(a,p) := Prob(a,p)= 1. (PROB 2)

These definitions immediately entail that “strong belief”, C(a,p), is just a special form
of “weak belief”, for if Prob(a,p)= 1, then a fortiori Prob(a,p) > 0.5; hence we obtain
principle

C(a,p)→ B(a,p). (ENTAILMENT 2)

Now, even if ‘belief’ is taken in the strong sense of subjective certainty, C(a,p), it still
doesn’t follow that whenever subject a is firmly convinced that p,p must therefore be
true. As we all know, humans are fallible. However, the concept of “strong belief” satisfies
the principle of

C(a,p)→¬C(a,¬p), (C-CONSISTENCY)

which maintains that if subject a is firmly convinced that p (is true), a cannot simul-
taneously be convinced that ¬p, i.e. that p is false. This follows immediately from the
probabilistic interpretation (PROB 2), for if Prob(a,p)= 1, then Prob(a,¬p)= 0, i.e. a
is not at all convinced that ¬p, but a is rather convinced that ¬p is false!

Similarly, the weaker condition (PROB 1) guarantees that if a weakly believes that p,
a will not also weakly believe that ¬p, for according to the standard laws of subjec-
tive probability, if Prob(a,p) > 0.5, then Prob(a,¬p) = (1 − Prob(a,p)) and hence
Prob(a,¬p) < 0.5. Thus principle (B-CONSISTENCY) is satisfied. In view of the general
results concerning modal squares, it follows that both notions of “strong” and “weak”
belief give rise to the squares of opposition shown in Figs. 7 and 8.
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Fig. 9 Doxastic square of
opposition

C(a,p)

B(a,p)

¬B(a,¬p)

¬C(a,¬p)

C(a,¬p)

B(a,¬p)

¬B(a,p)

¬C(a,p)

In view of principle (ENTAILMENT 2), these two squares can be combined into
the double square shown in Fig. 9 (where each arrow symbolizes a logical implica-
tion).

In the same way, the former principle (ENTAILMENT 1) allows us to join all three
squares of knowledge, of strong and of weak belief into the triple square shown in
Fig. 10.

Interestingly, given certain assumptions that have been defended elsewhere,7 the dox-
astic square of strong belief turns out to be identical to the square of complex epistemic
modalities shown in Fig. 11.

All that has to be assumed is (α) that someone’s probabilistic judgments are always
transparent (or epistemically accessible) to the subject a himself, and (β) that the extreme
case of complete certainty, C(a,p), implies the complex, iterated attitude of a believ-

K(a,p)

C(a,p)

B(a,p)

¬B(a,¬p)

¬C(a,¬p)

¬K(a,¬p)

K(a,¬p)

C(a,¬p)

B(a,¬p)

¬B(a,p)

¬C(a,p)

¬K(a,p)

Fig. 10 Nested epistemic square of opposition

7Cf. especially Lenzen [4, 5] and the brief summaries in [6, 7].
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Fig. 11 Square of complex
epistemic modalities

¬K(a,¬K(a,p))

K(a,¬K(a,¬p))
¬K(a,¬K(a,¬p))

K(a,¬K(a,p)).

ing that she knows that p. From the latter assumption which has been dubbed “Moore’s
principle”8

C(a,p)→ B
(
a,K(a,p)

)
, (MOORE)

it follows (via the chain of implications in the lower left part of Fig. 10) that a fortiori

C(a,p)→¬K
(
a,¬K(a,p)

)
. (LENZEN 1)

Furthermore, in view of the transparency condition (α), whenever subject a is not entirely
certain that p, a herself knows that she is not entirely certain that p:

¬C(a,p)→ K
(
a,¬C(a,p)

)
. (TRANSPARENCY 1)

Hence by conjunction of (LENZEN 1) and (TRANSPARENCY 1), one obtains the important
equivalence

C(a,p)↔¬K
(
a,¬K(a,p)

)
(LENZEN 2)

which shows that the A-proposition of the square of strong belief (Fig. 7) is provably
equivalent to the A-proposition of the square of complex epistemic modalities (Fig. 11).
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Abstract In this paper we study dynamic epistemic logic, and in particular public an-
nouncement logic, using the tools of n-opposition theory. Dynamic epistemic logic is
a contemporary development of epistemic logic, which takes into account changes of
knowledge through time. It studies, for example, public announcements and the influence
they have on the agents’ knowledge. n-Opposition theory is a systematic generalization
of the traditional squares of oppositions. In the paper we provide introductions to the intu-
itions behind and the formal details of both of these disciplines. We construct a square and
a hexagon of oppositions for the structural properties of public announcement. We then
generalize this to opposition structures for any partially functional process, and show
how this generalization can be used to support the structuralist philosophy surrounding
n-opposition theory. Next, we focus on the epistemic properties of public announcement,
and construct an octagon and a (three-dimensional) rhombic dodecahedron of oppositions.
Many of the techniques applied in this paper were originally developed by Smessaert
(Logica Univers. 3:303–332, 2009); they are thus shown to be very powerful and widely
applicable. Summing up: we establish a strong connection between public announcement
logic and n-opposition theory, and show that this connection has definite advantages for
both of the disciplines involved.
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1 Introduction

The square of oppositions is a historically rich and interesting subject in philosophical
logic. It is a compact way of representing various logical relations between formulas,
and thus serves as an illustration of the underlying logic’s expressive and deductive pow-
ers. Therefore, throughout the history of logic many authors have found it worthwhile to
show that the logics they were studying gave rise to square-like structures. Typical ex-
amples include the construction of squares for deontic logic [21] and modal logic [12,
ch. 1].

In this paper, however, we will be concerned with yet another branch of logic, viz. (dy-
namic) epistemic logic. Lenzen, one of the main epistemic logicians of the 20th century
[18, 19], has shown how squares can be constructed for notions such as knowledge and be-
lief [22, p. 98].1 Lenzen thus connected ‘classical’ epistemic logic and ‘classical’ squares
of oppositions. In recent years, however, both topics have been developing rapidly. On
the one hand, squares of oppositions were generalized (mainly by Moretti [22]) to higher-
order structures of oppositions, leading to n-opposition theory. On the other hand, epis-
temic logic has been dynamified (mainly by the ‘Amsterdam school’, led by van Ben-
them [31]), leading to various versions of dynamic epistemic logic.

The main purpose of this paper is to study these dynamic epistemic logics using the
tools of n-opposition theory. In other words, we will establish a connection between ‘con-
temporary’ epistemic logic and ‘contemporary’ generalizations of the square of opposi-
tions.2

Establishing such a connection has many advantages for both of the topics involved.
On the one hand, dynamic epistemic logic in general, and public announcement logic
in particular, will benefit from the representational powers of n-opposition theory. Epis-
temic dynamic phenomena (such as public announcements) have various structural and
epistemic properties. Because of the expressivity of public announcement logic, espe-
cially the latter tend to become quite subtle. The tools of n-opposition theory allow us
to (re)present this vast amount of information in a compact way. They can thus help us
to understand the subject more thoroughly, and even gain new insights.3 On the other
hand, there are also several advantages for n-opposition theory itself. In the first place,
public announcement logic serves as a new example of the use of n-opposition theory,
thus widening its scope of applicability. In the second place, this paper shows that not
only classical static modalities, but also dynamic modalities give rise to oppositional phe-
nomena, thus broadening the scope of n-opposition theory in a more fundamental way.
Finally, based on the technical properties of such dynamic modalities, we will corroborate
the structuralist philosophy surrounding n-opposition theory.

1The most comprehensive account of this work was presented by Lenzen during the Second World Con-
ference on the Square of Oppositions (Corte, June 17–20, 2010).
2I would like to emphasize that Moretti has already shown how Lenzen’s original squares for epistemic
logic can be generalized to higher-order structures of oppositions (in particular, tetraicosahedra) [22,
pp. 306–308]. In other words, he has used the ‘contemporary’ machinery of n-opposition theory to look
at ‘classical’ epistemic logic.
3This heuristic role is not often acknowledged. A notable exception are Davey and Priestley, who write
that “Diagram-drawing is as much an art as a science [. . . ] good diagrams can be a real asset to under-
standing and to theorem-proving” [8, p. 11].
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The remainder of this paper is organized as follows. In Sect. 2 we provide a brief in-
troduction to the theme of epistemic dynamics in general, and public announcements in
particular. We also present some of the technical details of public announcement logic,4

and discuss some structural and epistemic properties of public announcements. In Sect. 3
we begin our investigation of opposition structures in public announcement logic, fo-
cusing on the structural properties of public announcements. We construct a square and
a hexagon of oppositions, and use them to show that dynamic modalities fit well in the
structuralist philosophy of n-opposition theory. Section 4 continues our investigation, now
shifting attention to the epistemic properties of public announcements. We construct an
octagon and also a three-dimensional structure: a rhombic dodecahedron. We then com-
pare our results with those of Smessaert [26]. Section 5, finally, summarizes the results
obtained in this paper, and mentions some open questions.

2 An Overview of Public Announcement Logic

In this section we provide a brief overview of public announcement logic (PAL), focus-
ing on those aspects that are most important for the further development of the paper.
Subsection 2.1 first sketches the topic of epistemic dynamics in general, and then focuses
on one particular type, viz. public announcements. Subsection 2.2 introduces the syntax
and semantics of PAL. Finally, in Subsect. 2.3 we discuss some important structural and
epistemic properties of public announcements.

2.1 Epistemic Dynamics in Nature

Classical epistemic logic is static: it aims to describe the knowledge of one (or several)
agent(s) at one point in time.5 In real life, however, an agent’s knowledge can change over
time. Consider the following three examples:

Example 1 Ann does not know that Paris is the capital of France. She is chatting with
her best friend, Bob. During their conversation, Bob tells Ann that Paris is the capital of
France. After this dialog, Ann does know that Paris is the capital of France.

Example 2 Cath does not know that Paris is the capital of France. She is chatting with
Bob (who knows that Paris is the capital of France). During their conversation, Bob tells
Cath that Brussels is the capital of France. After this dialog, Cath thinks that she knows
that Brussels is the capital of France, but actually she does not know this.

Example 3 Fred and Tom are competing treasure hunters, looking for a particular trea-
sure. Fred finds a map, thereby learning the treasure’s exact location. A few miles away,

4The aim is to keep this paper more or less self-contained. We do presuppose, however, a (very) basic
knowledge of classical, ‘static’ epistemic logic, i.e. modal S5 and its Kripke semantics.
5Hintikka, for example, rules out occasions “on which people are engaged in gathering new factual infor-
mation. Uttered on such an occasion, the sentences ‘I don’t know whether p’ and [later] ‘I know that p’
need not be inconsistent” [16, pp. 7–8]. Contrast this with our Example 1.
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Tom has a conversation with an old magician, who tells him the treasure’s exact location.
The day before they want to go dig up the treasure, Fred and Tom accidentally meet each
other. There is a strange tension between them. . .

Example 1 is a straightforward case of a learning process (i.e. a transition from not-
knowing to knowing) through communication. In Example 2 Bob is deceiving Cath: he
knows a certain proposition to be false, yet still he communicates it to Cath. This de-
ception leads Cath to think that she has acquired new knowledge (i.e. that she has gone
through a learning process), but actually she hasn’t. Finally, Example 3 illustrates the dif-
ference between private and public communication: Fred and Tom have both, through
independent, private events, learned about the treasure’s location. Hence they both know
the treasure’s location, but they do not know of each other that they know it. When they
meet each other, they do their best not to share their newly acquired knowledge (although
both of them actually already possess it).

These examples show the variety and subtlety of dynamic epistemic phenomena. All
of these phenomena (including deception, private communication, etc.) can be studied
in the general framework of dynamic epistemic logic [1, 2, 10, 30, 31]. In this paper,
however, we will restrict ourselves to one particular type of epistemic dynamics (and the
logic which studies it), viz. public announcements.6 Here is a typical example:

Example 4 Ann, Bob and Cath are all sitting together in the living room, watching tele-
vision. The news starts, and the newsreader announces that there will be a train strike
tomorrow. Ann, Bob and Cath now know that there will be a train strike tomorrow, and
they start discussing the consequences this strike will have for them.

In this scenario the newsreader’s message is a public announcement. This particular
type of dynamic phenomenon has at least three distinct features. First of all, the announce-
ment is made by an outside source (which will not be explicitly represented in the logic).
In the scenario, this outside source is the newsreader on television, not Ann, Bob or Cath.
(Contrast this with Examples 1 and 2.) Second, the announcement is truthful: it is indeed
true that there will be a train strike tomorrow. Only truths can be publicly announced.
(Contrast this with Example 2.) Third, the announcement is public: afterwards, Ann, Bob
and Cath not only know that there will be a train strike tomorrow, but they also know of
each other that they know it. (Contrast this with Example 3.) This is clear from the fact
that without any further ado, they start discussing the consequences of the strike. Ann,
for example, does not need to tell Bob and Cath that there will be a strike; she knows
that Bob and Cath were also watching television, and have thus heard the newsreader’s
announcement.

6The restriction from epistemic dynamics in general to public announcements (and thus also from ‘full’
dynamic epistemic logic to public announcement logic) is mainly for expository reasons, and because
public announcement logic was, historically speaking, the first system of dynamic epistemic logic to be
developed [13, 23]. Most of the results in subsequent sections can easily be generalized from public
announcement logic to full dynamic epistemic logic. For the beginnings of such a generalization, see
Subsect. 3.3.
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2.2 Technical Background

Our discussion of public announcements so far has been informal. We will now formally
introduce public announcement logic.7 The main idea behind PAL (and other systems of
dynamic epistemic logic) is that the models on which the object language is interpreted
may be changed (‘updated’), and that the object language can talk about these changes.

The models we will be using are simply multi-agent Kripke models as in static epis-
temic logic. We fix a finite set I of agents and a countably infinite set Prop of proposition
letters.

Definition 2.1 A Kripke model is a structure M = 〈W, {Ri}i∈I ,V 〉, where W is a non-
empty set of states, Ri is an equivalence relation on W (for each i ∈ I ),8 and V : Prop →
℘(W) is a valuation which specifies for each proposition letter p ∈ Prop the states in
which it is true.

The formal language L of PAL is recursively defined as follows:

ϕ ::= p|¬ϕ|ϕ ∧ ϕ|Kiϕ|[!ϕ]ϕ
The other connectives are defined as usual; in particular we put ϕ ∨ψ := ¬(¬ϕ ∧¬ψ),
and ϕ → ψ := ¬ϕ ∨ ψ . Also the dual of the Ki -operator is defined as usual: K̂iϕ :=
¬Ki¬ϕ. The intuitive interpretation of the language will be discussed later. First, how-
ever, we define its formal semantics. Consider an arbitrary Kripke model M and state w;
then we will put:

M,w |� p iff w ∈ V (p)

M,w |� ¬ϕ iff M,w �|� ϕ

M,w |� ϕ ∧ψ iff M,w |� ϕ and M,w |�ψ

M,w |�Kiϕ iff for all v such that (w,v) ∈Ri :M, v |� ϕ

M,w |� [!ϕ]ψ iff if M,w |� ϕ then M|ϕ,w |�ψ

As usual, we will write M |� ϕ iff M,w |� ϕ for all states w of M. We will also write
|� ϕ iff M |� ϕ for all Kripke models M. If |� ϕ, ϕ is said to be (PAL-)valid.9

Note that the final clause of the formal semantics, for [!ϕ]ψ , mentions not only the
model M, but also the updated model M|ϕ, which is defined as follows:

7This subsection is not meant to be an exhaustive overview of PAL. For example, we do not discuss axiom
systems for PAL, their soundness and completeness, or the interesting phenomenon of ‘non-successful
formulas’. For an in-depth introduction to PAL, the reader is referred to [33, ch. 4].
8For any state w ∈W , we define Ri [w] := {v ∈W | (w,v) ∈Ri}.
9PAL also has a stronger notion of validity. A formula ϕ is said to be schematically valid iff all of
its substitution instances ϕ[ψ/p] are valid (where ϕ[ψ/p] is the formula that results from uniformly
replacing every occurrence of p in ϕ with an occurrence of ψ ). Obviously, schematic validity implies
validity. In logics which have the uniform substitution property (if ϕ is valid, then every substitution
instance ϕ[ψ/p] is valid), validity also implies schematic validity, and thus the two notions coincide.
PAL, however, does not have the uniform substitution property, and hence in PAL schematic validity is
strictly stronger than validity [28, 29]. Also see Footnote 15.
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Definition 2.2 Consider an arbitrary Kripke model M= 〈W, {Ri}i∈I ,V 〉 and a formula
ϕ ∈ L. We define the updated model M|ϕ := 〈Wϕ, {Rϕ

i }i∈I ,V ϕ〉 by putting:

1. Wϕ := �ϕ�M = {w ∈W |M,w |� ϕ}
2. Rϕ

i :=Ri ∩ (Wϕ ×Wϕ), for all i ∈ I

3. V ϕ(p) := V (p)∩Wϕ , for all p ∈ Prop

The updated model M|ϕ is the formal representation of the public announcement of the
formula ϕ in the model M.10 The main idea is that a public announcement of ϕ deletes all
¬ϕ-states from the model. The relations and valuation are changed accordingly. For exam-
ple, if two states w and v were related by Ri before the announcement (i.e. (w,v) ∈ Ri ),
and they both ‘survive’ the announcement (because they make ϕ true), then they will still
be related after the announcement (i.e. (w,v) ∈R

ϕ
i ). Also note that public announcements

do not change the ‘ground facts’: the valuation V ϕ is the same as the old valuation V (ex-
cept, of course, that the ¬ϕ-states have been deleted). Public announcements can cause
changes (e.g. going from not-knowing that ϕ to knowing that ϕ; cf. Example 4), but these
changes are always on the epistemic level, never on the ontic level. Informally: public
announcements (can) change our knowledge about the world, but they do not change the
world itself.

As promised, we now return to the intuitive interpretation of the language L. Formulas
such as Kiϕ should be read as: “agent i knows that ϕ is the case”. (Since Ri is an equiv-
alence relation, Ki is an S5-type modal operator.)11 More importantly, [!ϕ]ψ should be
read as: “after any public announcement of ϕ, it will be the case that ψ”. Note that this
does not imply that ϕ is true (i.e. that there actually are any public announcements of ϕ).
If ϕ is false, then it cannot be announced at all (because of the truthfulness condition of
public announcements, cf. supra), and [!ϕ]ψ itself will thus be vacuously true.

The operator [!ϕ] (for any formula ϕ ∈ L) has a dual, 〈!ϕ〉, which is defined by putting
〈!ϕ〉ψ := ¬[!ϕ]¬ψ . The formal semantics of this dual operator is:

M,w |� 〈!ϕ〉ψ iff M,w |� ϕ and M|ϕ,w |�ψ

Informally, the formula 〈!ϕ〉ψ should be read as: “ϕ can be announced (i.e. there exists an
announcement of ϕ), and after this announcement it will be the case that ψ”. Hence, this
formula does imply that ϕ is true (and thus that there actually are public announcements
of ϕ).

A notion which will often be used later in the paper is that of a contingency, i.e. a
formula which can be true and which can be false:

Definition 2.3 An L-formula ϕ is PAL-contingent iff �|� ϕ and �|� ¬ϕ.

10Note that if ϕ is false in all states in M, then the updated model M|ϕ is empty, and thus not well-
defined. However, the formal semantics defined above guarantees that this will never have any practical
consequences, because the updated model M|ϕ is used only when M,w |� ϕ (in which case M|ϕ is
well-defined).
11Of course, this gives rise to many philosophical difficulties, e.g. concerning positive introspection:
Kiϕ → KiKiϕ. These questions are not specific to epistemic dynamics (they already arise for static
epistemic logic), and will therefore not be discussed here.



Structures of Oppositions in PAL 319

We end this subsection by emphasizing once more the dynamic nature of the public
announcement operators.12 Considering the formal semantic clauses for [!ϕ]ψ and 〈!ϕ〉ψ ,
it might be tempting to think that these (dynamic) formulas are equivalent to the (static)
formulas ϕ → ψ and ϕ ∧ ψ , respectively. However, in the static formulas, ϕ and ψ are
being interpreted on the same model (viz. M), whereas in the dynamic formulas, they are
being interpreted on different models: ϕ is interpreted on M, but ψ is interpreted on the
updated model M|ϕ. Another way to see that [!ϕ]ψ is not in general equivalent to ϕ→ψ

is by noting that |� ϕ → ϕ, whereas �|� [!ϕ]ϕ. For example, taking ϕ := p ∧ ¬Kip, one
can easily construct a Kripke model M and state w such that M,w �|� [!ϕ]ϕ.13

2.3 Structural and Epistemic Properties of Public Announcements

We now discuss some important formal properties of public announcements, which will
be used in Sects. 3 and 4. We distinguish between two types of properties: structural
properties, which describe the general structure of public announcement as a dynamic
phenomenon, and epistemic properties, which describe the interaction between public
announcement and knowledge.

The structural properties of public announcements are summarized by the following
lemma:14

Lemma 2.4 Consider arbitrary formulas ϕ,ψ ∈ L. The following hold:

1. |� [!ϕ](ψ → χ)→ ([!ϕ]ψ →[!ϕ]χ)
2. if |�ψ then |� [!ϕ]ψ
3. |� ϕ↔〈!ϕ〉�
4. if ϕ is PAL-contingent, then �|� 〈!ϕ〉�
5. if ϕ is PAL-contingent, then �|� [!ϕ]ψ →〈!ϕ〉ψ
6. |� 〈!ϕ〉ψ →[!ϕ]ψ

Items 1 and 2 say that the public announcement operator [!ϕ] (for any ϕ ∈ L) satisfies
distributivity and the ‘necessitation’ rule, which is often summarized by saying that it is a
normal modal operator.15 Item 3 says that announceability equals truth: a formula can be
announced iff it is true. Since not all formulas are true, it follows that not all formulas can
be announced, which is what item 4 says. This property is called the partiality of public
announcements. Item 5 says that [!ϕ]ψ does not require that ϕ can be announced, whereas
〈!ϕ〉ψ does (cf. supra). Finally, item 6 says that public announcement is functional: if a
formula ϕ is announced in identical states (in which it can be announced, i.e. in which it

12Thanks to Fabien Schang for advising me to be more explicit about this.
13This means that M,w |� ϕ and M|ϕ,w �|� ϕ, i.e. ϕ is initially true, but after announcing it, it becomes
false. Such announcements are called ‘non-successful’; cf. Footnote 7.
14For proofs of Lemmas 2.4 and 2.5, the reader is referred to [33, ch. 4].
15However, it should be emphasized that PAL, as a logical system, is not a normal modal logic, because
it does not have the uniform substitution property. For example, it holds that |� [!p]p, but �|� [!(p ∧
¬Kip)](p ∧¬Kip) [33, p. 106].
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is true), this will always lead to identical ‘outcome states’ (formally: the updated model
M|ϕ, if defined at all, is uniquely determined by M and ϕ; cf. Definition 2.2 and Foot-
note 10).

We now turn to the epistemic properties of public announcements:

Lemma 2.5 Consider arbitrary formulas ϕ,ψ ∈ L. The following hold:

1. |� 〈!ϕ〉Kiψ →Ki[!ϕ]ψ
2. |�Ki[!ϕ]ψ →[!ϕ]Kiψ

3. |� 〈!ϕ〉¬Kiψ →¬Ki[!ϕ]ψ
4. |� ¬Ki[!ϕ]ψ →[!ϕ]¬Kiψ

Items 3 and 4 are merely the contrapositives of items 2 and 1, respectively, so they
will not be discussed separately. Item 1 says that if ϕ can be announced and after that
announcement agent i knows that ψ is the case, then she already knows ‘now’ (i.e. before
any announcements) that ψ will be the case after any announcement of ϕ. Similarly,
item 2 says that if i knows ‘now’ that ψ will be the case after any announcement of ϕ,
then after any announcement of ϕ she will know that ψ is the case.

The general idea behind these principles is quite clear: they all state sufficient or nec-
essary conditions for an agent to know something after a public announcement in terms
of what she knows before the announcement. The more fine-grained distinctions between
them (in particular, whether [!ϕ] or 〈!ϕ〉 is used) show the subtlety of the interactions be-
tween public announcement and knowledge, and thus illustrate the expressivity of PAL.

3 Structural Oppositions for Public Announcements

In this section we begin our investigation of opposition structures in PAL. For now, we
will focus on the structural properties of public announcements, and thus consider only
‘structural oppositions’. Subsection 3.1 introduces some key notions from n-opposition
theory, loosely based on [26]. Subsection 3.2 then uses these notions to construct a square
and a hexagon of oppositions. Finally, in Subsect. 3.3 we make some remarks about the
role of partial functionality, and connect this with the structuralist philosophy that seems
to surround n-opposition theory.

3.1 Some Notions from n-Opposition Theory

The fundamental building blocks of the traditional square of oppositions, and any higher-
order opposition structure, are the Aristotelian relations:16

Definition 3.1 The Aristotelian relations are binary relations on L, defined as follows:

1. ϕ and ψ are contradictory iff |� ¬(ϕ ∧ψ) and |� ϕ ∨ψ

(i.e. they cannot be true together and they cannot be false together)

16For expository purposes, all definitions in this subsection are specific to the logic PAL and its lan-
guage L. Generalizations to any other (sufficiently expressive) logic and language are straightforward.
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2. ϕ and ψ are contrary iff |� ¬(ϕ ∧ψ) and �|� ϕ ∨ψ

(i.e. they cannot be true together, but they can be false together)
3. ϕ and ψ are subcontrary iff �|� ¬(ϕ ∧ψ) and |� ϕ ∨ψ

(i.e. they can be true together, but they cannot be false together)
4. ϕ and ψ are in subalternation iff |� ϕ→ψ and �|�ψ → ϕ

(ϕ is called the superaltern and ψ the subaltern)

It is easy to check that the first three of these relations are symmetrical, and that the
fourth one is (by definition) asymmetrical. Another interesting property is that these four
relations are mutually exclusive (at least when one restricts to contingent formulas):17,18

Lemma 3.2 The Aristotelian relations are mutually exclusive for PAL-contingent formu-
las; i.e. if two PAL-contingent formulas ϕ and ψ stand in one of these four relations, then
they cannot stand in any of the other three.

Proof First of all, note that it follows trivially from the definitions that the three symmet-
rical Aristotelian relations are mutually exclusive (one does not even need to restrict to
contingent formulas). It thus suffices to show that two contingent formulas cannot simul-
taneously be in subalternation and in one of the three other Aristotelian relations. For this
purpose, let ϕ,ψ ∈ L be contingent formulas, and suppose that ϕ and ψ are in subalter-
nation (and hence |� ϕ→ψ ). Then:

1. Suppose, towards a contradiction, that ϕ andψ are contradictories. Hence |� ¬(ϕ∧ψ).
From |� ϕ → ψ it follows that |� ϕ ↔ (ϕ ∧ ψ), and hence |� ¬ϕ, which contradicts
the contingency of ϕ.

2. Suppose, towards a contradiction, that ϕ and ψ are contraries. By an analogous argu-
ment it follows that |� ¬ϕ, which contradicts the contingency of ϕ.

3. Suppose, towards a contradiction, that ϕ and ψ are subcontraries. Hence |� ϕ ∨ ψ .
Combining this with |� ϕ→ψ it follows that |�ψ , which contradicts the contingency
of ψ . �

We are now ready to define the general notion of an opposition structure:

Definition 3.3 A structure of oppositions (for PAL) is a graph, which has as vertices PAL-
contingent L-formulas, and as edges the Aristotelian relations between these formulas

17To the best of our knowledge, this observation (which is of course more general than the version for
PAL given here) has never appeared in print before.
18The Aristotelian relations generate an Aristotelian geometry, in which the opposition structures of Def-
inition 3.3 exist. The Aristotelian relations are mutually exclusive only under the restriction to contingent
formulas; furthermore, they are not exhaustive: there are pairs of formulas that stand in no Aristotelian
relation at all. (For example, a formula never stands in any Aristotelian relation with itself.) In ongoing
work with Hans Smessaert [11, 27], we define an oppositional geometry and an implicational geometry,
each of which is generated by four relations which are (i) exhaustive and (ii) mutually exclusive (without
restricting to contingent formulas). The Aristotelian geometry turns out to be a hybrid system: it shares
the relations of contradiction, contrariety and subcontrariety with the oppositional geometry, and that of
subalternation with the implicational geometry.
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Fig. 1 Code for visually
representing the Aristotelian
relations

(according to the code in Fig. 1).19 Finally, it is required that for any ϕ,ψ in the graph, it
holds that �|� ϕ↔ψ .

Note that this definition allows only contingent formulas to appear in opposition struc-
tures. The first reason for this restriction is of a historical nature: the classical (ancient
and medieval) squares of oppositions only contained contingencies, and no tautologies or
contradictions. The second reason is based on the informational use of opposition struc-
tures. Non-contingent formulas are not very informative and can thus be left out of the
structures. Furthermore, non-contingent formulas enter ‘vacuously’ into Aristotelian rela-
tions with contingencies;20 representing those vacuous Aristotelian relations would only
mess up the diagrams.

Note, furthermore, that Definition 3.3 does not mention visual simplicity, two- or
three-dimensionality, compactness, elegance, etc. Although the great practical use of n-
opposition theory is largely based on these notions, they cannot easily be captured in a
formally precise definition. Perhaps Definition 3.3 should be thought of as the best math-
ematical approximation of the ‘real’ notion of opposition structure. (Recall Footnote 3
about diagram-drawing as a science versus an art.)

Finally, the condition that �|� ϕ ↔ ψ for any ϕ,ψ in an opposition structure says that
opposition structures are essentially semantic entities: they never contain formulas that
are merely syntactically different forms expressing the same proposition. (For example,
we do not allow an opposition structure to contain p and ¬¬p as separate formulas.)

A powerful technique for generating new opposition structures from already existing
ones is that of taking Boolean closures. We first define this notion for sets of formulas,
and then for opposition structures.

Definition 3.4 A set S of PAL-contingent formulas is called Boolean closed iff for any
ϕ,ψ ∈ S, we have:

1. if �|� ¬(ϕ ∧ψ) then there is a θ ∈ S such that |� θ ↔ (ϕ ∧ψ)

2. there is a θ ∈ S such that |� θ ↔¬ϕ
Definition 3.5 Let S be a set of contingent formulas. Then the Boolean closure of S is
the set B such that (i) S ⊆ B , (ii) B is Boolean closed, and (iii) for any set B ′ such that
S ⊆ B ′ and B ′ is Boolean closed, it holds that B ⊆ B ′.

Definition 3.4 is semantic in nature: if ϕ ∈ S, then this definition does not require that S
contains ¬ϕ itself, but at least a formula that is equivalent to ¬ϕ (similarly for ∧).21 Note,

19Note that the three symmetrical relations are represented by non-directed edges, whereas the asymmet-
rical subalternation relation is represented by directed edges going from the superaltern to the subaltern.
20Contradictions are superaltern and contrary to any contingent formula. Tautologies are subaltern and
subcontrary to any contingent formula. (Note that these statements do not contradict Lemma 3.2, since in
both cases a non-contingent formula is involved.)
21It suffices to consider the connectives ∧ and ¬, since these two are functionally complete, i.e. any other
truth-functional connective (of any arity) can be written in terms of them [32, pp. 24–25].
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furthermore, that the ∧-closure condition is also subject to a consistency requirement;22

for example, if a set S contains the contingencies p and ¬p, then it is not required to
contain also p ∧ ¬p (or any other equivalent formula), since the latter is not consistent.
Finally, note that it is clear from Definition 3.5 that if S is already Boolean closed, then it
is its own Boolean closure.

We now lift these notions from sets of formulas to opposition structures:

Definition 3.6 An opposition structure S is called Boolean closed iff the set of formulas
appearing as vertices in S is Boolean closed (according to Definition 3.4).

Definition 3.7 Let S be an opposition structure. Let F be the set of formulas appearing
as vertices in S, and let F ′ be the Boolean closure (according to Definition 3.5) of this
set. Then the Boolean closure of S is the opposition structure which has as its vertices the
formulas of F ′.

Definition 3.6 is the natural generalization of Definition 3.4. Note that in Definition 3.7,
the set F is a set containing only contingent formulas (cf. Definition 3.3), so that it indeed
makes sense to take its Boolean closure F ′ (cf. Definition 3.5). Finally, note that these
definitions yield some easy consequences. First of all, the Boolean closure of an opposi-
tion structure is itself always Boolean closed (as an opposition structure). Secondly, if an
opposition structure is already Boolean closed, then it is its own Boolean closure.

3.2 From Square to Hexagon

We will now start putting the tools of n-opposition theory to use, by constructing oppo-
sition structures for the structural properties of public announcement (which describe the
general structure of public announcement as a dynamic phenomenon).

Despite its dynamic nature, the public announcement operator [!ϕ] (for any ϕ ∈ L)
is essentially a modal operator; cf. items 1 and 2 of Lemma 2.4. Modal operators come
in dual pairs; for example in alethic modal logic (necessary/possible), epistemic logic
(knowing/holding possible), deontic logic (obligatory/permissible), and temporal logic
(always/sometimes). The first item of each of these dual pairs is given a universal reading,
and the second one an existential reading (for example: ‘in all possible worlds’/‘in some
possible worlds’). Furthermore, in the squares of oppositions the universal notions occupy
the two upper corners (so that they are superaltern to the existential notions), and the
existential notions occupy the two lower corners (so that they are subaltern to the universal
notions).

The public announcement operator comes in a dual pair as well ([!ϕ]/〈!ϕ〉). Further-
more, the first item of this pair can (informally) be read as a universal notion, and the
second one as an existential notion (‘after all public announcements of ϕ’/‘after some
public announcement of ϕ’); cf. Subsect. 2.2. Hence it might be tempting to construct a
square of oppositions for PAL with [!ϕ]ψ and [!ϕ]¬ψ in the upper corners, and 〈!ϕ〉ψ

22This consistency requirement does not need to be stated explicitly for ¬-closure, because the negation
of a contingency is always consistent.
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Fig. 2 Square of oppositions
for the structural properties of
public announcement

and 〈!ϕ〉¬ψ in the lower corners. However, [!ϕ]ψ and 〈!ϕ〉ψ (and similarly [!ϕ]¬ψ and
〈!ϕ〉¬ψ ) do not form a superaltern/subaltern pair (cf. item 5 of Lemma 2.4), and thus the
proposed square cannot be constructed.

Because of the special structure of public announcement (as a dynamic phenomenon),
however, it is still possible to obtain a square of oppositions. The key idea is to reverse
the direction of the subalternation relation. The following theorem says this reversing
operation ‘respects’ the other Aristotelian relations, and thus that the reversed square in
Fig. 2 is a valid opposition structure.

Theorem 3.8 Consider arbitrary formulas ϕ,ψ ∈ L. Suppose that the formulas in Fig. 2
are contingent and pairwise non-equivalent. Then Fig. 2 shows an opposition structure.

Proof It suffices to check that the Aristotelian relations represented in Fig. 2 (according
to the code of Fig. 1) do indeed hold (Lemma 3.2 then guarantees that there are no other
Aristotelian relations that have been ‘left out’):

contradictions Trivial, given the definition of 〈!ϕ〉ψ as ¬[!ϕ]¬ψ .
subalternations By item 6 of Lemma 2.4 we have |� 〈!ϕ〉ψ →[!ϕ]ψ . If also |� [!ϕ]ψ →
〈!ϕ〉ψ , we would get |� [!ϕ]ψ ↔〈!ϕ〉ψ , which contradicts the non-equivalence of these
formulas. Hence �|� [!ϕ]ψ → 〈!ϕ〉ψ , and thus there is a subalternation from 〈!ϕ〉ψ to
[!ϕ]ψ . Completely analogously we show that there is a subalternation from 〈!ϕ〉¬ψ to
[!ϕ]¬ψ .

contrariety We need to check that |� ¬(〈!ϕ〉ψ ∧ 〈!ϕ〉¬ψ) and �|� 〈!ϕ〉ψ ∨ 〈!ϕ〉¬ψ
(cf. Definition 3.1). Consider an arbitrary model and state M,w. If M,w |� 〈!ϕ〉ψ ∧
〈!ϕ〉¬ψ , then M,w |� ϕ, and M|ϕ,w |� ψ and M|ϕ,w |� ¬ψ , contradiction. Hence
|� ¬(〈!ϕ〉ψ ∧ 〈!ϕ〉¬ψ). Suppose, for a contradiction, that |� 〈!ϕ〉ψ ∨ 〈!ϕ〉¬ψ . This is
equivalent to |� [!ϕ]ψ → 〈!ϕ〉ψ , which together with item 6 of Lemma 2.4 yields that
|� [!ϕ]ψ ↔ 〈!ϕ〉ψ . This contradicts the non-equivalence of these formulas, and hence
�|� 〈!ϕ〉ψ ∨ 〈!ϕ〉¬ψ .

subcontrariety We need to check that �|� ¬([!ϕ]ψ ∧ [!ϕ]¬ψ) and |� [!ϕ]ψ ∨ [!ϕ]¬ψ
(cf. Definition 3.1). Suppose, for a contradiction, that |� ¬([!ϕ]ψ ∧ [!ϕ]¬ψ). This is
equivalent to |� [!ϕ]ψ → 〈!ϕ〉ψ , which together with item 6 of Lemma 2.4 yields that
|� [!ϕ]ψ ↔ 〈!ϕ〉ψ . This contradicts the non-equivalence of these formulas, and hence
�|� ¬([!ϕ]ψ ∧ [!ϕ]¬ψ). To show that |� [!ϕ]ψ ∨ [!ϕ]¬ψ , consider an arbitrary model
and state M,w. On the one hand, if M,w �|� ϕ, then trivially M,w |� [!ϕ]ψ ∨ [!ϕ]¬ψ .
On the other hand, if M,w |� ϕ, then either M|ϕ,w |� ψ (and thus M,w |� [!ϕ]ψ ) or

M|ϕ,w �|�ψ (and thus M,w |� [!ϕ]¬ψ ), so in all cases M,w |� [!ϕ]ψ ∨ [!ϕ]¬ψ . �

The reversed square in Fig. 2 is thus an opposition structure. It is, however, not Boolean
closed:

Lemma 3.9 Consider arbitrary formulas ϕ,ψ ∈ L. Suppose that the formulas in Fig. 2
are contingent and pairwise non-equivalent. Then the opposition structure in Fig. 2 is not
Boolean closed.
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Fig. 3 Hexagon of
oppositions for the structural
properties of public
announcement

Proof Consider, for example, the conjunction of the formulas in the two lower corners,
[!ϕ]ψ ∧ [!ϕ]¬ψ (we will abbreviate this conjunction with χ ).

First of all, we show that χ is not equivalent to any of the four formulas already
present in the square. Since there is a subalternation from 〈!ϕ〉ψ to [!ϕ]ψ , it holds that
�|� [!ϕ]ψ → 〈!ϕ〉ψ , and hence there exist a model and state M1,w1 such that M1,w1 |�
[!ϕ]ψ and M1,w1 �|� 〈!ϕ〉ψ . It follows that M1,w1 |� ¬ϕ, and thus M1,w1 |� χ . Hence
�|� χ ↔ 〈!ϕ〉ψ . The same model and state can also be used to show that �|� χ ↔ 〈!ϕ〉¬ψ .
Since 〈!ϕ〉ψ is contingent, there exists a model and state M2,w2 such that M2,w2 |�
〈!ϕ〉ψ . Then M2,w2 |� [!ϕ]ψ while M2,w2 �|� χ , and thus �|� χ ↔ [!ϕ]ψ . Since 〈!ϕ〉¬ψ
is contingent, there exists a model and state M3,w3 such that M3,w3 |� 〈!ϕ〉¬ψ . Then
M3,w3 |� [!ϕ]¬ψ while M3,w3 �|� χ , and thus �|� χ ↔ [!ϕ]ψ .

Also note that because M1,w1 |� χ and M2,w2 �|� χ , it follows that χ is contingent.
Hence χ is contingent and yet not equivalent to any of the formulas already present in the
square, and thus by Definitions 3.4 and 3.6 the square is not Boolean closed. �

Because the square in Fig. 2 is not Boolean closed, we can extend it to a new opposition
structure by constructing its Boolean closure. This turns out to be the hexagon in Fig. 3.

Theorem 3.10 Consider arbitrary formulas ϕ,ψ ∈ L. Suppose that the formulas in Fig. 3
are contingent and pairwise non-equivalent. Then the hexagon in Fig. 3 is the Boolean
closure of the square in Fig. 2.

Proof We will construct the Boolean closure of the square in Fig. 2 ‘step by step’,
i.e. adding formulas as we go along, and show that in this way we arrive at the hexagon
in Fig. 3.

The square is closed under ¬ (consider the contradiction relations). It is, however, not
closed under ∧: in the proof of Lemma 3.9 we showed that the conjunction of [!ϕ]ψ and
[!ϕ]¬ψ is contingent, and yet not equivalent to any of the four formulas appearing in the
square. Hence we will simply add this conjunction.

Note, however, that [!ϕ]ψ ∧ [!ϕ]¬ψ is equivalent to ¬ϕ. To see this, consider an arbi-
trary model and state M,w. Obviously, if M,w |� ¬ϕ, then M,w |� [!ϕ]ψ ∧ [!ϕ]¬ψ .
For the other direction: suppose M,w |� [!ϕ]ψ ∧ [!ϕ]¬ψ and yet M,w �|� ¬ϕ; then
M|ϕ,w |�ψ and M|ϕ,w |� ¬ψ , contradiction; hence we conclude that M,w |� ¬ϕ.

Recall that we wanted to add the conjunction [!ϕ]ψ ∧ [!ϕ]¬ψ , which we have shown
to be equivalent to ¬ϕ. Since opposition structures are semantic entities, it thus suffices to
add ¬ϕ (rather than the conjunction). We now have a set containing five formulas. This set
is not closed under ¬ anymore: using an argument as in the proof of Lemma 3.9, we can
show that the negation of the newly added ¬ϕ is not equivalent to any of the five formulas
in the set. Hence we simply add this negation ¬¬ϕ, i.e. we add ϕ. We thus arrive at a set
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containing six formulas. This set is obviously closed under ¬ (consider the contradiction
relations). To see that it is also closed under ∧, consider the following table:23

∧ 〈!ϕ〉ψ 〈!ϕ〉¬ψ [!ϕ]ψ [!ϕ]¬ψ ϕ ¬ϕ
〈!ϕ〉ψ 〈!ϕ〉ψ ⊥ 〈!ϕ〉ψ ⊥ 〈!ϕ〉ψ ⊥
〈!ϕ〉¬ψ 〈!ϕ〉¬ψ ⊥ 〈!ϕ〉¬ψ 〈!ϕ〉¬ψ ⊥
[!ϕ]ψ [!ϕ]ψ ¬ϕ 〈!ϕ〉ψ ¬ϕ
[!ϕ]¬ψ [!ϕ]¬ψ 〈!ϕ〉¬ψ ¬ϕ
ϕ ϕ ⊥
¬ϕ ¬ϕ

Hence, the set of six formulas appearing in the hexagon is Boolean closed. (Because of
the construction process, it is also the smallest such set.) It thus suffices to show that
the hexagon in Fig. 3 is indeed an opposition structure, i.e. that the Aristotelian relations
represented in Fig. 3 do indeed hold (Lemma 3.2 then guarantees that there are no other
Aristotelian relations that have been ‘left out’).

This is done exactly as in the proof of Theorem 3.8; we will therefore treat only one
case explicitly. We show that 〈!ϕ〉ψ and ¬ϕ are contraries, i.e. that |� ¬(〈!ϕ〉ψ ∧¬ϕ) and
�|� 〈!ϕ〉ψ ∨ ¬ϕ. For any model and state M,w, if M,w |� 〈!ϕ〉ψ then M,w �|� ¬ϕ, and
thus |� ¬(〈!ϕ〉ψ∧¬ϕ). Furthermore, since 〈!ϕ〉¬ψ is contingent, there exists a model and
state M,w such that M,w |� 〈!ϕ〉¬ψ . Then M,w �|� 〈!ϕ〉ψ ∨ ¬ϕ, and thus �|� 〈!ϕ〉ψ ∨
¬ϕ. �

We have obtained the hexagon of oppositions in Fig. 3 as the Boolean closure of the
square of oppositions in Fig. 2. Readers who are familiar with (the historical precursors
of) n-opposition theory, however, might recognize this structure as the ‘Sesmat-Blanché
hexagon’ [4–7, 25]—especially if we recall that the lowest formula, ¬ϕ, can be thought
of as (is equivalent to) the conjunction of the two formulas in the lower square corners
([!ϕ]ψ ∧ [!ϕ]¬ψ ), and similarly, that the highest formula, ϕ, can be thought of as (is
equivalent to) the disjunction of the two formulas in the upper square corners (〈!ϕ〉ψ ∨
〈!ϕ〉¬ψ ). This observation is more general than the framework of PAL for which it was
proved here: any of the traditional squares of oppositions gives rise to a Sesmat-Blanché
hexagon via its Boolean closure.24

We finish this subsection by some remarks on how the hexagon of oppositions in
Fig. 3 represents the structural properties of public announcements. First of all, it shows
that public announcement operators are modal operators and thus, like any other modal
operator, give rise to opposition structures. More importantly, however, the subalterna-
tions from 〈!ϕ〉(¬)ψ to [!ϕ](¬)ψ capture the functionality of public announcements,
while the subalternations involving (¬)ϕ capture the partiality of public announcements

23 ∧ β

α γ
means that |� γ ↔ (α ∧ β). Because of the commutativity of ∧, it suffices to give only the

upper right half of the table.
24In the specific framework of PAL, the hexagon is a bit more elegant than in other frameworks, because
the conjunction and disjunction ‘reduce to’ the simpler formulas (¬)ϕ. (The formula ϕ is ‘simpler’ than
the disjunction 〈!ϕ〉ψ ∨〈!ϕ〉¬ψ in an obvious sense; however it should be emphasized that ϕ itself can be
a formula of any complexity—as long as it is contingent; for example ϕ =Ki(p∧ q)∧¬Kir .) However,
when we turn to opposition structures for the epistemic properties of public announcements in Sect. 4, we
will not be able to maintain this simplicity, and we will have to work with ‘irreducibly complex’ formulas.
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(the precondition for a public announcement to be executable is the truth of the an-
nounced formula). We will elaborate on the role of partial functionality in the next sub-
section.

3.3 The Role of Partial Functionality

We have just seen that partial functionality (cf. Lemma 2.4) plays a key role in the oppo-
sition structures for the structural properties of public announcements. This property is,
however, not specific to public announcements. We will now examine its role from a more
abstract perspective.

For any ‘process’ or ‘operation’ (epistemic or otherwise), it makes sense to ask whether
it is partially functional. Consider an arbitrary process π (π can be an epistemic process,
such as the public announcement of some formula, but it can also be a non-epistemic
process, such as the execution of a computer program). Then the following questions
arise:

1. Is π functional?25 I.e. if π is executed in identical states (in which it can be executed),
will it always lead to identical ‘outcome states’?

2. Is π partial? I.e. are there states where π cannot be executed at all? (And can the states
where π is executable be characterized by means of a ‘precondition’ pre(π)?)

The logical properties of such arbitrary processes are studied by propositional dynamic
logic (PDL) [15, 17]. PDL represents a process π by means of dynamic modal operators
[π] and 〈π〉. As is to be expected, [π]ψ means that after any execution of π it will be
the case that ψ , whereas 〈π〉ψ means that after some execution of π it will be the case
that ψ .

It is easy to see that a process π is functional iff |� 〈π〉ψ → [π]ψ , and partial iff
�|� [π]ψ →〈π〉ψ .26 Furthermore, the partiality of π can be further specified by means of
its precondition: π can be executed iff (i.e. in exactly those states where) pre(π) is true;
formally: |� pre(π)↔〈π〉�.

With the same reasoning as in Subsect. 3.2, we are now able to show that any partially
functional process π (whose executability can be captured by means of a precondition
pre(π)) gives rise to a hexagon of oppositions as in Fig. 4. In fact, if we take π to be the
concrete process !ϕ (public announcement of ϕ), and recall that the precondition of the
public announcement of ϕ is the truth of the announced formula ϕ (pre(!ϕ)= ϕ), then the
opposition structure in Fig. 3 turns out to be merely a particular instance of that in Fig. 4.

A question that arises naturally at this point is what happens when we move from
partial functionality to total functionality, i.e. when we focus on processes that are still
functional, but that can be executed in all states. (Note that in this context the notion of
a precondition is meaningless, since a totally functional process has as its precondition
always �.) For totally functional processes π , we do not only have |� 〈π〉ψ →[π]ψ , but
also the stronger |� 〈π〉ψ ↔ [π]ψ .

25Computer scientists prefer the term ‘deterministic’.
26In this subsection (and in this subsection only), we use |� to denote PDL-validity, rather than PAL-
validity.
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Fig. 4 Hexagon of
oppositions for a partially
functional process π

Given the semantic nature of opposition structures, this equivalence implies, however,
that the two left formulas of (the square part of) Fig. 4 (〈π〉ψ and [π]ψ ) collapse, and
similarly that the two right formulas (〈π〉¬ψ and [π]¬ψ ) collapse. Hence for totally
functional processes the square of oppositions collapses into a single binary opposition
(viz. a contradiction relation), cf. Fig. 5. Furthermore, it is easy to show that this opposi-
tion structure is already Boolean closed, and is thus its own Boolean closure.

We conclude that from the perspective of n-opposition theory, partially functional pro-
cesses are more interesting than totally functional ones, because the latter only give rise
to degenerate opposition structures (Fig. 5), whereas the former give rise to rich, non-
degenerate opposition structures (Fig. 4).

We finish this subsection by showing how the partial functionality of dynamic modal
operators nicely corroborates the structuralist philosophy surrounding n-opposition the-
ory [22, in particular ch. 6]. According to structuralism, opposition structures are in the
first place determined by their constituent relations, rather than by their constituent for-
mulas. The identity and properties of the concrete formulas only matter insofar as they
stand in one of the Aristotelian relations.27

An important argument for structuralism stems from the fact that opposition structures
can be constructed for a wide variety of logics. For ease of exposition, let us focus on
squares of oppositions. The structuralist says that there are squares for Aristotelian syl-
logistics, alethic modal logic, epistemic logic, deontic logic, temporal logic, etc. All of
these logics have formulas of very different kinds (‘all As are Bs’, ‘it is necessary that ϕ’,
‘agent i knows that ϕ’, ‘it is obligatory that ϕ’, ‘it is always the case that ϕ’, etc.), yet
all of these formulas enter into the same kinds of Aristotelian relations (in casu: a con-
tradiction relation, a contrariety relation, and (being the superaltern in) a subalternation
relation). Hence the ‘relational’ properties of these formulas are more important than the
‘subject matter’ that they speak about (knowledge/time/etc.).

Opponents of structuralism grant all of this, but they maintain that at a sufficiently
high level of abstraction, the formulas still have ‘independent (non-relational)’ properties
that determine their relational properties. For example, de Pater and Vergauwen [9] define
the contrariety relation as holding between universal formulas of different quality, and
the subcontrariety relation as holding between existential formulas of different quality.28

27Note that we implicitly subscribed to this structuralist philosophy when we claimed in Subsect. 3.1 that
the ‘fundamental building blocks’ of opposition structures are the Aristotelian relations, rather than the
concrete formulas appearing in the structures.
28The original Dutch text: “Contrair zijn universele uitspraken die in kwaliteit verschillen. [. . . ] Subcon-
trair zijn particuliere proposities die in kwaliteit verschillen.” [9, p. 100]. De Pater and Vergauwen do state
the characterizations of contrariety and subcontrariety in terms of ‘being able to be true/false together’
(cf. our Definition 3.1), but only as further lemmas about these relations, not as their definitions.
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Fig. 5 Degenerate opposition structure for a totally functional process π

Hence the formulas’ independent properties (universality/existentiality) are still essential
to determine their relational properties.

De Pater and Vergauwen are right that in all traditional squares of oppositions, the
contrariety relation holds between ‘universal’ formulas of different quality (for example,
between �ϕ and �¬ϕ) and the subcontrariety relation holds between ‘existential’ formu-
las of different quality (for example, between ♦ϕ and ♦¬ϕ); see also our remarks at the
beginning of Subsect. 3.2. The squares of oppositions obtained from partially functional
dynamic modal operators, however, are counterexamples to de Pater and Vergauwen’s
claims: in these structures the formulas in the contrariety relation are existential (〈π〉ψ
and 〈π〉¬ψ ), and the formulas in the subcontrariety relation are universal ([π]ψ and
[π]¬ψ ).

This clearly shows that the independent properties of the formulas (universal-
ity/existentiality) do not suffice to determine their relational properties. In other words,
the Aristotelian relations cannot be reduced to the properties of independent formulas,
and thus still need to be taken as primitive—i.e., we have arrived back at the original
structuralist position.

4 Epistemic Oppositions for Public Announcements

This section continues our investigation of opposition structures in PAL. We shift our
attention from the structural to the epistemic properties of public announcements, thus
arriving at ‘epistemic oppositions’. In Subsect. 4.1 we show that this naturally leads to
the construction of an octagon. In Subsect. 4.2 this octagon is further generalized to a
three-dimensional opposition structure, viz. a rhombic dodecahedron. Subsection 4.3 is a
comparison between our results and those of Smessaert [26].

4.1 Adding Knowledge: From Hexagon to Octagon

In Subsect. 3.3 we showed that the essence of the hexagon of oppositions (Fig. 3) was
the partial functionality of public announcement, and that this can be generalized to any
partially functional process π (Fig. 4). In Sects. 1 and 2, however, we stated that this paper
would be concerned with (a branch of) epistemic logic.

The main difference between public announcements and other (partially functional)
processes (for example, the process of watering the flowers) is that public announcements
are epistemic processes: they interact with the agents’ knowledge. For example, after the
public announcement of a formula ϕ, it (usually)29 becomes common knowledge be-
tween the agents that ϕ is the case. The most important of these interactions were stated

29Modulo unsuccessful formulas; cf. Footnotes 7 and 13.
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Fig. 6 Octagon of
oppositions for the epistemic
properties of public
announcement

in Lemma 2.5. We will now use this lemma to build opposition structures for the epis-
temic properties of public announcements (i.e. for public announcements qua epistemic
processes, not simply qua partially functional processes).

We will first informally describe how to build these new, ‘epistemic’ opposition struc-
tures as conservative extensions of the original hexagon (Fig. 3). The first step is to re-
place the formula ψ (which describes what is the case after the public announcement)
with the epistemic formula Kψ .30 For example, the formula in the upper left corner is
now no longer 〈!ϕ〉ψ , but rather 〈!ϕ〉Kψ (for some concrete ϕ,ψ ∈ L). On the left side,
we thus obtain the subalternation 〈!ϕ〉Kψ →[!ϕ]Kψ . By inserting the formula K[!ϕ]ψ ,
this subalternation can be broken up into two subalternations. (Note that this new formula
no longer speaks about what will be the case after any/some public announcement of ϕ;
rather it says something about (what is known in) the present.) Similar remarks apply to
the subalternation on the right side (inserting the formula ¬K[!ϕ]ψ ).

These two new formulas also enter into Aristotelian relations with each other, and with
all but two of the other formulas already present in the original hexagon. This leads to the
octagon in Fig. 6.

Theorem 4.1 Consider arbitrary formulas ϕ,ψ ∈ L. Suppose that the formulas in Fig. 6
are contingent and pairwise non-equivalent. Then Fig. 6 shows an opposition structure.

Proof Note that Fig. 6 represents no Aristotelian relations between (¬)K[!ϕ]ψ and (¬)ϕ.
Hence we need to check that there are indeed no Aristotelian relations between these
formulas. We only treat K[!ϕ]ψ and ϕ explicitly. Since 〈!ϕ〉Kψ is contingent, there
exist a model and state M,w such that M,w |� 〈!ϕ〉Kψ . Then M,w |� K[!ϕ]ψ ∧ ϕ,
so K[!ϕ]ψ and ϕ cannot be contradictories, nor contraries. For a reductio, suppose that
there is a subalternation from ϕ to K[!ϕ]ψ . Then |� ϕ → K[!ϕ]ψ , which together with
item 2 of Lemma 2.5 yields that |� ϕ → [!ϕ]Kψ . This is equivalent to |� [!ϕ]Kψ . But
this contradicts the contingency of [!ϕ]Kψ ; hence there is a no subalternation from ϕ

to K[!ϕ]ψ . Finally, for a reductio, suppose that there is a subalternation from K[!ϕ]ψ
to ϕ. Then |� K[!ϕ]ψ → ϕ, which together with item 2 of Lemma 2.5 yields that
|�K[!ϕ]ψ → (ϕ ∧ [!ϕ]Kψ). This is equivalent to |�K[!ϕ]ψ →〈!ϕ〉Kψ . Together with
item 1 of Lemma 2.5, this yields that |� 〈!ϕ〉Kψ ↔ K[!ϕ]ψ . But this contradicts the
non-equivalence of these two formulas; hence there is a no subalternation from K[!ϕ]ψ
to ϕ.

30In the remainder of this section we will drop agent indices, since they are not crucial. We will thus
use K instead of Ki to denote the knowledge operator in the formal language L, and R instead of Ri to
denote the equivalence relation in a Kripke model M.
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Fig. 7 Octagon of
oppositions for the S5 modal
operators

It now suffices to check that the Aristotelian relations that are represented in Fig. 6
indeed hold (Lemma 3.2 then guarantees that there are no other Aristotelian relations that
have been ‘left out’).

We first check the subalternations. Item 1 of Lemma 2.5 states that |� 〈!ϕ〉Kψ →
K[!ϕ]ψ . If also |� K[!ϕ]ψ → 〈!ϕ〉Kψ , then |� 〈!ϕ〉Kψ ↔ K[!ϕ]ψ , which contradicts
the non-equivalence of these formulas. Hence �|�K[!ϕ]ψ →〈!ϕ〉Kψ , and thus there is a
subalternation from 〈!ϕ〉Kψ to K[!ϕ]ψ . With analogous arguments, we can use items 2, 3
and 4 of Lemma 2.5 to show that there are subalternations from K[!ϕ]ψ to [!ϕ]Kψ , from
〈!ϕ〉¬Kψ to ¬K[ϕ]ψ , and from ¬K[!ϕ]ψ to [!ϕ]¬Kψ , respectively. The remaining four
subalternations (involving (¬)ϕ) are established as in Sect. 3.

We now check the other Aristotelian relations; we treat only one case explicitly. We
show that 〈!ϕ〉Kψ and ¬K[!ϕ]ψ are contraries, i.e. that |� ¬(〈!ϕ〉Kψ ∧¬K[!ϕ]ψ) and
�|� 〈!ϕ〉Kψ ∨ ¬K[!ϕ]ψ . Suppose, towards a contradiction, that |� 〈!ϕ〉Kψ ∨ ¬K[!ϕ]ψ .
This is equivalent to |� K[!ϕ]ψ → 〈!ϕ〉Kψ , which together with item 1 of Lemma 2.5
yields that |� 〈!ϕ〉Kψ ↔ K[!ϕ]ψ . This contradicts the non-equivalence of these for-
mulas. Hence �|� 〈!ϕ〉Kψ ∨ ¬K[!ϕ]ψ . To show that |� ¬(〈!ϕ〉Kψ ∧ ¬K[!ϕ]ψ), con-
sider an arbitrary model and state M,w and suppose, towards a contradiction, that
M,w |� 〈!ϕ〉Kψ ∧ ¬K[!ϕ]ψ . It then follows that M,w |� ϕ, M|ϕ,w |�Kψ , and there
exists a state v such that (w,v) ∈R and M, v �|� [!ϕ]ψ . Hence M, v |� ϕ and M|ϕ,v �|�ψ .
By Definition 2.2 we get (w,v) ∈Rϕ , so from M|ϕ,w |�Kψ it follows that M|ϕ,v |�ψ ,
contradiction. �

The key idea to obtain this octagon of oppositions was to ‘split’ the subalterna-
tion 〈!ϕ〉(¬)Kψ → [!ϕ](¬)Kψ into two subalternations, by inserting the new formula
(¬)K[!ϕ]ψ . Béziau [3] applied the same idea to the hexagon of oppositions for the S5
modal operators: the subalternation �(¬)ψ → ♦(¬)ψ is then split into two subalterna-
tions, by inserting the new formula (¬)ψ . The additional Aristotelian relations that arise
in this way are exactly the same as those we obtained in Theorem 4.1. In other words,
our octagon of oppositions for the epistemic properties of public announcement (Fig. 6)
is essentially the same as Béziau’s octagon of oppositions for the S5 modal operators
(Fig. 7).31

31Note that we are here again applying the structuralist philosophy mentioned in Subsect. 3.3: we are
calling two opposition structures ‘essentially the same’, because they have the same configuration of
Aristotelian relations. The formulas in both structures are concerned with different topics (public an-
nouncements/necessity), and even on a higher level of abstraction they differ significantly: in Fig. 6 the
formulas in the upper corners of the square are existential (〈!ϕ〉(¬)Kψ ), whereas in Fig. 7 they are uni-
versal (�(¬)ψ ).
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4.2 A Three-Dimensional Opposition Structure

We have just established an analogy between our octagon for the epistemic properties
of public announcement and Béziau’s octagon for modal S5. In this subsection we will
further exploit this analogy. Béziau’s initial results on S5 [3] have been generalized by
Moretti [22], Smessaert [26], and others. We will now show that these generalizations can
perfectly be transferred from their original context (S5) to this context (PAL).

The first thing to note is that the octagon of oppositions we obtained in the previous
subsection is not Boolean closed.

Lemma 4.2 Consider arbitrary formulas ϕ,ψ ∈ L. Suppose that the formulas in Fig. 6
are contingent and pairwise non-equivalent. Then the opposition structure in Fig. 6 is not
Boolean closed.

Proof Consider, for example, the conjunction of ¬ϕ and K[!ϕ]ψ . Just like in the proof
of Lemma 3.9, one can show that this conjunction is not equivalent to any of the formulas
appearing in the octagon in Fig. 6. �

In Sect. 3 we showed that the square of oppositions for PAL (Fig. 2) is not Boolean
closed (Lemma 3.9), and then immediately went on to construct its Boolean closure (The-
orem 3.10). Now, however, we will proceed in a more indirect way. First, we construct
the Boolean closure of the set of formulas appearing in the octagon (so not of the octagon
itself, qua opposition structure).

Theorem 4.3 Consider arbitrary formulas ϕ,ψ ∈ L. Suppose that the formulas in Fig. 6
are contingent and pairwise non-equivalent. Let F be the set containing the eight formulas
appearing in the octagon in Fig. 6. The Boolean closure of F is the fourteen-element
set F ′, which has the following elements:32

1. ϕ
2. 〈!ϕ〉Kψ

3. K[!ϕ]ψ
4. [!ϕ]Kψ

5. ¬ϕ
6. 〈!ϕ〉¬Kψ

7. ¬K[!ϕ]ψ
8. [!ϕ]¬Kψ

9. ¬ϕ ∧K[!ϕ]ψ
10. ¬ϕ ∧¬K[!ϕ]ψ
11. ϕ ∨¬K[!ϕ]ψ
12. ϕ ∨K[!ϕ]ψ
13. [!ϕ]Kψ ∧ (ϕ ∨¬K[!ϕ]ψ)
14. [!ϕ]¬Kψ ∧ (ϕ ∨K[!ϕ]ψ)

32In the remainder of this subsection, we will often refer to the formulas in F ′ using the numbers they are
given here. For example, we will refer to the formula ¬ϕ ∧¬K[!ϕ]ψ using the number 10.
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Proof First of all, note that F contains only contingent formulas, so that it indeed makes
sense to construct its Boolean closure (cf. Definition 3.5). We will construct the Boolean
closure of F ‘step by step’, i.e. adding formulas as we go along, and show that in this
way we arrive at the fourteen-element set F ′ whose members are listed above. We will
simply ‘describe’ this procedure; the details of each of the single steps are left to the
reader.

Note that formulas 1–8 above are the elements of F itself. The set of these eight for-
mulas is closed under ¬, but not under ∧: it ‘misses’ the conjunctions 3 ∧ 5,3 ∧ 8,4 ∧ 7
and 5 ∧ 7. Note that 3 ∧ 5 and 3 ∧ 8 are equivalent, and also that 4 ∧ 7 and 5 ∧ 7 are
equivalent. Hence we need to add only one of each of these pairs: we add 3 ∧ 5 (this is
formula 9) and 5 ∧ 7 (this is formula 10).

We thus arrive at the set of formulas 1–10. By construction, this set is closed under ∧.
However, it is not closed under ¬: it ‘misses’ the negations of the newly added formulas,
9 and 10. Hence we add ¬9 (this is formula 11) and ¬10 (this is formula 12).

We thus arrive at the set of formulas 1–12. By construction, this set is closed under ¬.
However, it is not closed under ∧: it ‘misses’ the conjunctions 4 ∧ 11 and 8 ∧ 12. These
conjunctions are not equivalent, so we need to add them both: we add 4 ∧ 11 (this is
formula 13) and 8 ∧ 12 (this is formula 14).

We thus arrive at the set F ′ of formulas 1–14. By construction, this set is closed under
∧. Furthermore, it is also closed under ¬, because the two formulas that were added at the
last step, are each other’s negations (up to equivalence): |� ¬13 ↔ 14. By construction,
this set F ′ is the Boolean closure of the original set F .

The following table shows the full details of the ¬-closedness of F ′:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

¬ 5 8 7 6 1 4 3 2 11 12 9 10 14 13

The following table shows the full details of the ∧-closedness of F ′:

∧ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 2 2 2 ⊥ 6 6 6 ⊥ ⊥ 1 1 2 3
2 2 2 2 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 2 2 2 ⊥
3 3 3 9 ⊥ ⊥ 9 9 ⊥ 2 3 2 9
4 4 5 ⊥ 10 5 9 10 13 3 13 9
5 5 ⊥ 10 5 9 10 10 9 10 9
6 6 6 6 ⊥ ⊥ 6 6 ⊥ 6
7 7 7 ⊥ 10 7 6 10 6
8 8 9 10 7 14 10 14
9 9 ⊥ ⊥ 9 ⊥ 9

10 10 10 ⊥ 10 ⊥
11 11 1 13 6
12 12 13 14
13 13 ⊥
14 14 �

We have constructed the Boolean closure F ′ of the set F of formulas appearing in the
octagon in Fig. 6. By Definition 3.7 the fourteen formulas in F ′ are the formulas that
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Fig. 8 Hasse diagram for the
fourteen formulas in F ′

appear in the Boolean closure of this octagon (qua opposition structure). The question
now arises how to ‘organize’ these formulas into an opposition structure.

Recall that we are only interested in the properties of the formulas in F ′ up to logical
equivalence. In other words, we can identify any formula ϕ ∈ F ′ with its equivalence class
[ϕ] := {ψ ∈ L ||� ϕ↔ψ}. From this perspective, it is a natural idea to construct a Hasse
diagram for F ′; cf. Fig. 8.

This Hasse diagram, however, is itself not an opposition structure, because it does
not display all of the Aristotelian relations between the fourteen formulas in F ′ (it only
represents the subalternation relations). A tedious but easy exercise leads to the following
table, which represents the 79 Aristotelian relations that hold between any of the fourteen
formulas in F ′.33

2 3 4 5 6 7 8 9 10 11 12 13 14

1 ↙ NO SC CD ↙ NO SC C C ↗ ↗ NO NO
2 ↗ ↗ C C C CD C C ↗ ↗ ↗ C
3 ↗ NO C CD SC ↙ C SC ↗ NO NO
4 ↙ CD SC SC ↙ ↙ SC SC ↙ SC
5 C NO ↗ ↙ ↙ SC SC NO NO
6 ↗ ↗ C C ↗ ↗ C ↗
7 ↗ C ↙ ↗ SC NO NO
8 ↙ ↙ SC SC SC ↙
9 C CD ↗ C ↗

10 ↗ CD ↗ C
11 SC ↙ SC
12 SC ↙
13 CD

Let us take stock. The aim is to construct the Boolean closure of the octagon of op-
positions in Fig. 6. We already know the formulas of this Boolean closure: the fourteen
elements of F ′. We also already know the 79 Aristotelian relations which hold between
these fourteen formulas: cf. the table above.

33‘NO’ stands for no Aristotelian relation at all, ‘CD’ stands for contradictories, ‘C’ stands for contraries,
‘SC’ stands for subcontraries, and ‘↙ /↗’ stand for subalternation. In particular, ‘↙’ says that there
is a subalternation from the column-formula to the row-formula, and vice versa for ‘↗’. The table has
13 × 13 cells in total. Because only the upper right half is filled in, the number of entries is

13∑

n=1

(14 − n)=
13∑

n=1

14 −
13∑

n=1

n= (14 × 13)− 14 × 13

2
= 14 × 13

2
= 91.

Of these 91 entries, 12 are ‘NO’, so in total we arrive at 91 − 12 = 79 Aristotelian relations.



Structures of Oppositions in PAL 335

Fig. 9 Rhombic
dodecahedron of oppositions
for the epistemic properties of
public announcement

We are now ready to apply Smessaert’s [26] results (which Moretti calls “simply bril-
liant” [22, p. 217]). Reconsider the Hasse diagram for F ′ (Fig. 8). Smessaert’s results say
that this Hasse diagram can be transformed into a rhombic dodecahedron. This is a three-
dimensional structure, which has twelve rhombus-shaped faces, and (of course) fourteen
vertices. Figure 9 shows this dodecahedron; however, it does not show the dodecahedron
qua opposition structure, because it does not show the 79 Aristotelian relations holding
between the fourteen vertices (for reasons of visual clarity). Nevertheless, we will say
that this dodecahedron is the (long-awaited) Boolean closure of the octagon in Fig. 6 (qua
opposition structure).

Theorem 4.4 The rhombic dodecahedron in Fig. 9 is the Boolean closure of the octagon
in Fig. 6.

Proof The formulas appearing in the dodecahedron are the elements of F ′, and so they are
certainly the right ones by Theorem 4.3. That this dodecahedron completely represents the
Aristotelian relations between these fourteen formulas follows from the fact that hexagons
i–vi in Fig. 10 can be embedded in the dodecahedron: each of the 79 Aristotelian relations
appears in at least one of these hexagons, and thus in the dodecahedron. �

The six hexagons in Fig. 10 that were used in the proof are the PAL-analogues of six
‘original’ hexagons for S5. These six original hexagons jointly illustrate the progress n-
opposition theory has been making over the past few years. Béziau [3] already constructed
hexagons i, ii and iii (for S5). Subsequently, hexagon iv (for S5) was constructed inde-
pendently (and through different ways of reasoning) by Moretti and Smessaert. Finally,
hexagons v and vi (for S5) were constructed by Smessaert [26].34 In this paper, we con-
structed (the PAL-analogues of) these six hexagons in one swoop. This illustrates how we
have been able to exploit the ‘initial’ analogy between our octagon of oppositions for the
epistemic properties of public announcement (Fig. 6) and Béziau’s octagon of oppositions
for the S5 modal operators (Fig. 7).

34Furthermore, Pellissier [24] distinguishes between strong and weak hexagons. A hexagon is strong iff
the disjunction of its three contrary formulas is tautologous; a hexagon is weak iff the disjunction of its
three contrary formulas is not tautologous. The six hexagons discussed here (displayed in Fig. 10) are all
strong. For example, for hexagon i, note that the disjunction of its three contrary formulas (2, 5 and 6) is
equivalent to ϕ ∨¬ϕ.
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Fig. 10 Six hexagons that
are embeddable in the
rhombic dodecahedron

Fig. 11 Modal graph for S5

4.3 A Comparison with Smessaert’s Results

As we emphasized throughout the previous subsection, our construction of the rhombic
dodecahedron of oppositions for the epistemic properties of public announcement (Fig. 9)
is essentially an application of the techniques developed by Smessaert [26] in the context
of S5. It should thus not be surprising that we obtain the same ‘end results’, viz. the rhom-
bic dodecahedra for S5 and PAL. This also means that Smessaert, Pellissier and Moretti’s
additional comments on the rhombic dodecahedron for S5 (it contains six strong and
four weak hexagons, it contains a cube and an octahedron, it is very close to Pellissier’s
tetraicosahedron [24], etc.) also apply to our dodecahedron for PAL.

Despite these similarities, there are also some differences between Smessaert’s origi-
nal results on S5 and our results on PAL. The first difference is that the dodecahedron for
PAL does not arise from a modal graph. Smessaert’s dodecahedron for S5 arises from the
modal graph for S5 (Fig. 11), which represents the six non-equivalent modalities express-
ible in S5 (including the ‘naked’ modalities). Furthermore, also the hexagon for the struc-
tural properties of public announcement (Fig. 3) can be seen as arising from the modal
graph for the public announcement operators.35 The dodecahedron for PAL, however, is
based on Lemma 2.5, which talks about the interaction between public announcement and
knowledge, not about the non-equivalent public announcement modalities expressible in
PAL. This shows that there are opposition structures that do not arise from a modal graph,
and thus loosens the connection between n-opposition theory and modal graphs.36

35More generally: the hexagon of oppositions for any partially functional process π (Fig. 4) can be seen
as arising from the modal graph for the dynamic operators representing π .
36I conjecture that this observation will have (negative) consequences for Pellissier’s view on opposition
structures as ‘interpolations of consistency degrees’ ([22, p. 211], [24, Section 2]).
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The most important difference between Smessaert’s results and ours, however, is the
difference in complexity.37 Smessaert constructed a dodecahedron for S5 and is thus con-
cerned with one modality (� · /♦ ·), which is one-placed (unary). Our dodecahedron
for the epistemic properties of public announcements, however, is concerned with two
modalities: the knowledge operator (K · /K̂ ·) and the public announcement operator
([! ·] · /〈! ·〉 ·). The former is also one-placed, but the latter is two-placed (binary): if one
has a public announcement operator, then one needs to supply two formulas to obtain
a well-formed formula of L. Hence according to both parameters (number of modali-
ties/arity of the modalities), PAL is more complex than S5.

These differences exhibit the power and wide applicability of Smessaert’s techniques.
Although Smessaert initially applied them to obtain a dodecahedron for the ‘simple’
modal logic S5 (based on the modal graph for that logic), they can also be used to ob-
tain opposition structures (which are not necessarily based on modal graphs) for more
complex logics, such as PAL.

5 Conclusion

In this paper we have studied dynamic epistemic logic, and in particular public announce-
ment logic, using the tools of n-opposition theory [22]. After giving a brief introduction
to PAL, we constructed a square and a hexagon of oppositions for the structural properties
of public announcements, and showed how to generalize them to opposition structures for
any partially functional process. This can be used in support of the structuralist philoso-
phy surrounding n-opposition theory. Finally, we focused on the epistemic properties of
public announcements, and constructed an octagon and (using techniques developed by
Smessaert) a (three-dimensional) rhombic dodecahedron of oppositions.

Some questions are left for further research. First of all, in this paper we have said
nothing about bitstrings, one of the central topics in Smessaert [26]. It would certainly be
nice to obtain a bitstring semantics for PAL as well. Secondly, although the dodecahedron
in Fig. 9 is Boolean closed, other formulas can still be added. For example, because K is
factive and [!ϕ] is a normal modal operator, we have |� [!ϕ]Kψ →[!ϕ]ψ . The antecedent
of this implication is (equivalent to) one of the fourteen formulas in the dodecahedron, but
the consequent is not. One may ask which formulas can still be added to the fourteen in the
dodecahedron, which additional Aristotelian relations thus arise, and, most importantly,
which opposition structures can be constructed for them. These questions, however, will
be addressed in another paper.
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Logical Opposition and Collective Decisions

Srećko Kovač

Abstract The square of opposition (as part of a lattice) is used as a natural way to rep-
resent different and opposite ways of who makes decisions, and in what way, in/for a
group or a society. Majority logic is characterized by multiple logical squares (one for
each possible majority), with the “discursive dilemma” as a consequence. Three-valued
logics of majority decisions with discursive dilemma undecided, of veto, consensus, and
sequential voting are analyzed from the semantic point of view. For instance, the para-
consistent and paracomplete logics M3, M3veto and C3 are described. The distinction
of designated and non-designated values is not used, and instead, the consequence re-
lation is defined as a preservation of the minimum truth-value of the implying set of
sentences. The consequence and opposition relations of the logics described are com-
pared, and an ordering of the logics with respect to their opposition relations is estab-
lished.

Keywords Collective decision · Discursive dilemma · Hexagon of opposition ·
Majority · Three-valued logic

Mathematics Subject Classification Primary 03B80 · Secondary 03B50

1 Introduction

In the first part of this paper, we represent opposition in collective decisions by a logical
square as part of a lattice. It is shown that the “discursive dilemma” (see, for instance,
[12]) arises in collective decisions because each possible majority has its own logical
square within the common lattice. In the second part, we analyze some logics of collective
decisions in a three-valued setting without a fixed distinction between designated and
non-designated values and with a consequence relation defined by means of the relative
preservation of truth values (cf. a similar idea in [9]). We semantically analyze majority
decisions, right of veto, consensus, and sequential voting, and compare the consequence
relation and opposition of the respective logics.

I am very grateful to the referees for valuable comments, corrections and suggestions.
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Fig. 1 Participation of the members of a group in decision-making (boxed and double underlined nu-
merals indicate the vertices of two squares, respectively)

2 Collective Decisions in Squares

We analyze some aspects of the logics of collective decisions with particular respect to
logical opposition as contained in the traditional square of opposition. We will conceive
the square of opposition as part of a combination of two lattices presented by inverted
Hasse diagrams (with meet up and join down in the diagram, where, consequently, what is
down a line in the lattice follows from what is up). In the left-side lattice we can recognize
the positive part of the square of opposition, and in the right-side lattice we can recognize
the negative part of the square (see, for example, Fig. 1).

2.1 Who and in What Way Takes Collective Decisions?

The first question we address by means of a “latticed square” is who participates in collec-
tive decision-making in or for a group (e.g., society) of agents. As an example, we present
the possibilities for a three-agent group (see Fig. 1). In the positive lattice, we can see that
participation in decision-making ranges from the inclusion of each agent (in the form of
consensual, majority or some other decision-making), to the inclusion of only one agent
(one determinate agent decides in the name of the group), and to the inclusion of any one
of the agents (i.e., whatever agent can decide in the name of the group). In the negative
lattice, we can see that possibilities range from the exclusion of all agents from decision-
making (a group governed entirely from the outside), the exclusion of this or that part of
the group, to the exclusion of any one of the agents.

Once it is decided who participates in collective decision-making for a group, a natural
question arises about how collective decisions are made? We focus on the class of cases
where a group of agents participates in decision-making. The possibilities of how partici-
pants make decisions range from the consensual decision-making to individual decision-
making for the whole group, simply by deciding for or against a proposal (some proposed
proposition) (see Fig. 2). We can combine a positive and a negative lattice in one lattice,
with a common meet and join at the top and at the bottom of the lattice, respectively. As an
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Fig. 2 Attitudes of the members of a group towards a proposal (−n indicates that the agent n is against
the proposal)

Fig. 3 Two-agent group

example, we show a combined lattice for a two-agent group (Fig. 3). In the example, we
easily recognize the corners of the traditional square of opposition (1∧2, −1∧−2, 1∨2,
−1 ∨−2). We can also recognize another square in the middle of the lattice always with
one positive and one negative member (1∧−2, −1∧ 2, 1∨−2, −1∨ 2). Contradictories
in the “latticed square” are points (nodes) that have the top of the lattice as their meet and
the bottom of the lattice as their join. In addition, contraries are nodes that have the top
of the lattice as their meet, and their join is always above the bottom. Subcontraries are
nodes that have their meet always below the top of the lattice, and the bottom of the lattice
is their join.

In the lattice, we can also insert the conditions for consensus, as well as for dissensus
(disagreement) among agents. As we can see (Fig. 4), both nodes are near the center of
the lattice.
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Fig. 4 Consensus and
dissensus in a two-agent
group

2.2 Majority Decision-Making and the Discursive Dilemma

Let us focus on the case where collective decisions are being made by a majority of the
agents. Characteristically, each possible majority has its own square of opposition. Hence,
majority decisions are characterized by a multiply squared opposition. As an example, we
give a figure with multiple squares for a three-agent group (see Fig. 5). We notice that
we can also construct a square consisting only of majorities in each of the corners, as
in Fig. 6, where each corner is indicated by a dashed ellipse. Three elements within an
ellipse should be conceived disjunctively, for instance (1 ∧ 2) ∨ (1 ∧ 3) ∨ (2 ∧ 3) as the
i-corner of the square.

The presence of multiply squared opposition in majority decisions is in fact a condi-
tion that makes the so-called “discursive dilemma” [6, 12] possible. In majority decision-
making we could simultaneously have P →Q,P as well as ¬Q as decisions, despite the
obvious contradiction (violation of modus ponens). But it is essential to see that each of
these decisions is being made by another majority, each of which has its own square of
opposition (see Fig. 7).

Fig. 5 Three majorities and three squares
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Fig. 6 Square of majorities

Fig. 7 Discursive dilemma

3 A Many-Valued Approach to Majority and Consensual Logic

In this and the following sections, we will describe several logics that in a somewhat sim-
plified and idealized manner formalize some characteristic ways of reasoning in making
collective decisions. The logics will be described from the semantic point of view in a
three-valued setting, and will be compared especially with respect to the opposition in a
logical hexagon.1

3.1 Language and Models

For each of the logics we will describe, we use the same propositional language Lm built
in the familiar way with ¬,∧,∨,→ as connectives. Let Form be the set of all formulas
of Lm, and At the set of all atomic formulas of Lm.

1On the aggregation of judgments in a many-valued setting, see [11].
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Definition 1 (Model) A model M is a 3-tuple 〈V, {f∗}, I0〉, where

1. V is an ordered set of truth values: f < u < t (u, ‘undefined’, is short for ‘t or f or
neither’),

2. f∗ is the truth function of the connective ∗,
3. I0 is a mapping At −→ V .

Definition 2 (Interpretation, I) I is a mapping Form −→ V inductively defined from I0

by means of {f∗}.

We imagine that an atomic sentence is true (t) or false (f) in accordance with its ac-
ceptance or rejection, respectively, by voting. Further, an atomic sentence φ has the value
“undefined” (u) if, according to the voting results, it is not clear whether it should be ac-
cepted or not, or if it was simply not mentioned in any voting proposal. We notice that
we do not have a set of designated values. The reason for this will become clear when we
come to the definition of the consequence relation. For better understanding of the truth
functions we will define, we give a tabular overview of the values with informal explana-
tions. In the overview, we informally distinguish values tF and tA (‘F’ for ‘for’, ‘A’ for
‘against’), as well as values fF and fA. The distinctions are clear from the table.

φ ¬φ
more than half for φ (simple majority) = less than half against φ tF = t fA = f
at most one half for φ (simple minority) = at least one half against φ fF = f tA = t

We also note that we treat withheld votes as not being counted (except for quorum). Fi-
nally, an ideal proviso in the logics to be proposed is that each agent reasons in a classical
way.

3.2 Majority Logic M3

We pause, first, for the case where decisions are being made by a majority answering
the questions as, for example, at an referendum. A referendum can include a plurality of
questions (for example, referendums with ten or fifteen question are known, but ideally we
can imagine any finite number of questions posed at such an ideal referendum). We obtain
a special 3-valued logic, differing in truth functions from Kleene’s (strong) 3-valued logic
(see [7]) in three places. We call this logic M3. It is essential to note that in this kind
of decision-making agents do not know the results of voting on any proposal (question)
until after the whole voting has ended. We also assume that the discursive dilemma is not
resolved.

Special cases as distinguished from Kleene’s strong 3-valued logic are the following:

f∧(t, t)= u f∨(f, f)= u f→(t, f)= u

These differences are due to leaving the discursive dilemma undecided—which is proba-
bly the best option if we do not want to undertake an additional analysis of ballot papers
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or an additional voting.2 If we resolve the dilemma classically (for example, conjunction
entailing its conjuncts), we obtain Kleene’s 3-valued logic (K3). Here are the truth tables
for majority logic M3:

f¬
t f
u u
f t

f∧ t u f
t u u f
u u u f
f f f f

f∨ t u f
t t t t
u t u u
f t u u

f→ t u f
t t u u
u t u u
f t t t

and the (well-known) truth tables for Kleene’s K3:

f¬
t f
u u
f t

f∧ t u f
t t u f
u u u f
f f f f

f∨ t u f
t t t t
u t u u
f t u f

f→ t u f

t t u f
u t u u
f t t t

As we see from the truth tables for M3, no truth values of φ and ψ can yield a true φ∧ψ ,
nor false φ ∨ψ , nor false φ→ψ .

Example 1 In the following three cases of agents’ opinions we illustrate situations with
a false conjunction of true conjuncts, a true disjunction of false disjuncts, and a true con-
ditional of a true antecedent and false consequent. The possibility of situations with the
classical valuation of conjunction, disjunction and conditional is obvious. Therefore, u is
assigned in each case as an M3 value.

f∧(t, t)= u f possibility: 3 agents, 1,2 for φ, 2,3 for ψ , 2 for φ ∧ψ ,
f∨(f, f)= u t possibility: 2 or 3 agents, 1 for φ, 2 for ψ , 1,2 for φ ∨ψ ,
f→(t, f)= u t possibility: 3 agents, 1,3 for φ, 1 for ψ , 1,2 for φ→ψ .

For instance, a majority may be for sending person A in a shuttle to a space station, and
a majority may be for sending person B in the same shuttle, but there may be no majority
for sending both A and B in the same shuttle to the space station (say, because of some
known personal incompatibilities between A and B). In real life, f∧(t, t)= u means that
after two positive voting results, we will still (if relevant) have to vote on the conjunction
of the results. Formally, with that additional voting on the conjunction we generate in M3
a new majority model, where informal conjunction is treated as an atom with a directly
assigned truth value.

It is also interesting to compare M3 with the other three-valued logics that already have
an interpretation in a collective reasoning context (see [4] and [5]). In the following truth
tables, the differences of P1 and I1 to M3 are indicated by rectangles, and the differences
between P1 and I1 are indicated by ‘!’.

2In ongoing research, we are investigating a majority logic with formal compound sentences (not only
atomic sentences) directly subject to voting (making, for example, conjuncts true if the conjunction is
true). This leads to a non-truth-functional approach where the logic is not generated by truth functions on
the basis of atomic valuations (see [2, 10]).
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P1 (see [4, 5, 14]):

f¬
t f
t∗ t !
f t

f∧ t t∗ f
t t t ! f

t∗ t ! t ! f
f f f f

f∨ t t∗ f
t t t t
t∗ t t ! t !
f t t ! f

f→ t t∗ f
t t t ! f

t∗ t t ! f
f t t t

I1 (see [3–5]):

f¬
t f
f∗ f !
f t

f∧ t f∗ f
t t f ! f

f∗ f ! f f
f f f f

f∨ t f∗ f
t t t t
f∗ t f ! f !
f t f ! f

f→ t f∗ f
t t f ! f

f∗ t t ! t !
f t t t

M3:

f¬
t f
u u
f t

f∧ t u f
t u u f
u u u f
f f f f

f∨ t u f
t t t t
u t u u
f t u u

f→ t u f
t t u u
u t u u
f t t t

Note that whenever a conjunction in P1 is true, it is undefined in M3, and whenever a
disjunction in I1 is false, it is also undefined in M3. In the next subsection, the opposition
relation in P1 as well as in I1 will be represented by the corresponding logical hexagons.

3.3 Consequence, Equivalence, and Opposition

As already mentioned, in a majority logic model we do not have a designated set of values.
Accordingly, we will define the consequence relation in a somewhat restricted way that
does not allow any decrease of truth values in the transition from the set of assumptions to
the consequence. This will make a distinction, for example, from Kleene’s K3, which al-
lows a decrease of values from “undefined” to “false” (both being non-designated values).
It will also make a distinction from Asenjo’s/Priest’s LP (see [1] and [13]), which allows
a decrease of values from “true” to “undefined”, both being designated values. In simple
words, we say that in a majority logic φ is a consequence of a set � of sentences iff φ
has at least the minimum value of the values of the members of �, or the highest possible
value if � =∅. But we define first what it is for sentence χ to have the minimum value
in a model M with respect to a set � of sentences. The following two definitions will be
given, first, for logic M3 and later will be used for other logics of collective reasoning.

Definition 3 (Minimum value of a sentence with respect to � and M)

Min�,M(χ) iff

{
χ ∈ � ∧ (∀ψ ∈ �)I(χ)≤ I(ψ) if � �=∅

∀ψI(ψ)≤ I(χ) otherwise

where Min�,M(χ) abbreviates ‘χ has the minimum value in a model M with respect to a
set �’, and M is an M3 model.



Logical Opposition and Collective Decisions 349

Definition 4 (Consequence relation)

� |�M3 φ iff for each model M,∀χ(
Min�,M(χ)→ I(χ)≤ I(φ)

)

where M is an M3 model.

This definition of the consequence relation is very general. To say that the consequence
φ should be true in each model where each member of � is true is simply a special case
of Definition 4 above. The definition could be generalized even further (to include the
consequence relation defined as the preservation of designated values in general) if we
replace the minimum value (of sentences in �) concept with a minimal value concept. If
we have a designated set of values in a model and if we define that each non-designated
value strictly precedes each designated value, then each designated value is a minimal
value of � if there are no members of � with a non-designated value, or, otherwise, each
non-designated value is a minimal value of �.

By means of Definition 4 we exclude any possible inference from a t-valued sentence
to a u-valued sentence, as well as any inference from a u-valued sentence to an f-valued
sentence. The idea is to block such inferences since u includes the possibility of t as well
as of f, and thus the inference from a t-valued sentence to a u-valued sentence and the
inference from a u-valued sentence to an f-valued sentence would include the possibility
of inference from a t-valued sentence to an f-valued sentence. Besides, in many cases
there is a possibility to decide a question (a u-valued sentence) by voting. For example,
instead of allowing an f-valued sentence to be a conclusion from a u-valued sentence, we
should simply vote on the u-valued sentence to see whether it would be ‘true’ or ‘false’.

According to Definition 4, a counterexample to � |�M3 φ is any model where φ has a
value less than the minimum value of �.

In the following table of consequences, we compare M3 with K3 and LP.3

Proposition 1 (Consequences)

M3 K3 LP

{φ ∧¬φ} �|�M3 ψ |� �|�
{φ,ψ} �|�M3 φ ∧ψ |� |�
{φ ∧ψ} |�M3 φ, {φ ∧ψ} |�M3 ψ |� |�
{φ} |�M3 φ ∨ψ |� |�
{φ ∨ψ,φ→ χ,ψ → χ} �|�M3 χ |� �|�
{φ→ψ,ψ → χ} |�M3 φ→ χ |� �|�
{φ ∨ψ,¬ψ} �|�M3 φ |� �|�
{φ→ψ,φ} �|�M3 ψ |� �|�
{φ ∨ψ} �|�M3 (φ→ψ)→ψ �|� |�
�|�M3 φ ∨¬φ �|� |�

The first line of Proposition 1 shows that M3 is paraconsistent (in contrast to K3, and
like LP). Let us also note that in M3 (as in K3) there are no valid sentences (for instance,
take for each atomic sentence #, I(#) = u). Thus, φ ∨ ¬φ is not valid and hence M3
(like K3, and in contrast to LP) is paracomplete.

3LP has the same truth tables as K3 (with b instead of u, b meaning ‘true and false’) but has {t,b} as the
designated set, as distinguished from K3, where t is the only designated value.
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Fig. 8 Classical square of
opposition

Fig. 9 Hassean classical
hexagon of opposition

The following definitions of the equivalence and opposition relations hold for each
logic analyzed in this paper.

Definition 5 (Equivalence) φ and ψ are equivalent (φ 5ψ ) iff {φ} |�ψ and {ψ} |� φ.

Proposition 2 (Equivalences)

φ 5M3 ¬¬φ
¬(φ ∧ψ)5M3 ¬φ ∨¬ψ
¬(φ ∨ψ)5M3 ¬φ ∧¬ψ
φ→ψ 5M3 ¬φ ∨ψ

φ→ψ 5M3 ¬(φ ∧¬ψ)
φ→ψ 5M3 ¬ψ →¬φ

Each of the equivalences above holds in K3 as well as in LP.

Definition 6 (Opposition) Two sentences are contradictories iff one of them is true iff
the other is false. Two sentences are contraries iff, if one of them is true, the other is false,
and in some models both are false. Two sentences are subcontraries iff, if one of them
is false, the other is true, and in some models both are true. Subalternation between two
sentences holds iff there is one of them that is true whenever the other is true. (Cf. similar
definition for classical propositional logic in [8].)

In classical propositional logic the square of opposition as in Fig. 8 holds (if we exclude
tautological and unsatisfiable φ and ψ ). According to Definition 6, all forms of the oppo-
sition of the square hold in M3 (as well as in K3 and in LP). However, in P1 contradiction
and contrariety do not hold (counterexample: I(φ)= I(ψ)= t∗). In I1, contradiction and
subcontrariety do not hold (counterexample: I(φ)= I(ψ)= f∗).

The square can be extended to the hexagon shown in Fig. 9, taking φ as an exemplary
conjunct/disjunct. We have termed this hexagon a “Hassean classical hexagon” as distin-
guished from a Sesmat-Blanché (classical) hexagon, which extends the square to the top
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Fig. 10 Sesmat-Blanché
diagram transformed

Fig. 11 The hexagon of
opposition in P1

Fig. 12 The hexagon of
opposition in I1

and the bottom instead of to the left and right. Whereas in a Sesmat-Blanché hexagon
(φ ∧ψ)∨ (¬φ ∧¬ψ) (equivalent to φ↔ψ ) comes to the top and (φ ∨ψ)∧ (¬φ ∨¬ψ)
(equivalent to ¬(φ ↔ ψ)) goes to the bottom of the diagram, in a Hassean diagram
(φ ∧ ψ) ∨ (¬φ ∧ ¬ψ) and (φ ∨ ψ) ∧ (¬φ ∨ ¬ψ) would come to the middle of the
diagram (Fig. 10, see also Fig. 4).

Another way of extending the classical square of opposition in a Hassean way would
be to extend it to the top by ⊥ and to the bottom by �. For simplicity, we treat φ ∧ ¬φ
and φ ∨¬φ separately from the diagram.

Let us return to Fig. 9. All forms of the opposition of the hexagon hold in M3 (as
well as in K3). However, new non-opposition occurs in P1 and in I1: φ and ¬φ are not
contradictories in either of the two logics, φ and ¬φ are in P1 generally not contraries
to ¬φ ∧¬ψ and φ ∧ψ respectively (counterexample: I(φ)= I(ψ)= t∗), and in I1 they
are generally not subcontraries to ¬φ ∨ ¬ψ and φ ∨ ψ respectively (counterexample:
I(φ) = I(ψ) = f∗). The hexagon for P1 is shown in Fig. 11 and the hexagon for I1 in
Fig. 12.

Note that contradictions of the square of opposition become subcontrarieties in P1 and
contrarieties in I1.
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Fig. 13 The hexagon of
opposition in M3veto

4 Veto and Consensus

4.1 Majority and Veto

In voting with the right of veto, every positive decision as being made in M3 can be
canceled. Thus, the resulting logic M3veto is very rudimentary, collapsing each t of M3
to u:

f¬
t f
u u
f u

f∧ t u f
t u u f
u u u f
f f f f

f∨ t u f
t u u u
u u u u
f u u u

f→ t u f
t u u u
u u u u
f u u u

Truth tables with merely us and fs clearly reflect a possible conservativism in decision-
making with a right of veto. The consequence relation is defined as for M3 (see Defini-
tion 4).

The differences between M3veto and M3 with respect to Proposition 1 are the follow-
ing:

{φ} �|�M3veto φ ∨ψ

{φ ∨ψ} |�M3veto (φ→ψ)→ψ

In addition, the Law of Double Negation and De Morgan’s Law for ¬(φ∨ψ) do not hold
in M3veto.

With respect to the hexagon of opposition (see Fig. 13), it can easily be seen that
contradiction and subcontrariety do not hold in this basic majority logic (since ‘false’ does
occur and ‘true’ never occurs as a value of a connective function). Moreover, contrariety
and subalternation hold only vacuously (since conjunction is never true in the truth tables).

4.2 Consensus

In consensual decision-making, no agent disagrees with a positively accepted proposal
(i.e., accepted in voting for the proposal). We give the truth tables for consensual logic C3
(‘!’ marks differences from M3).

f¬
t f
u u
f t

f∧ t u f
t t! u f
u u u f
f f f f

f∨ t u f
t t t t
u t u u
f t u u

f→ t u f
t t u f!
u t u u
f t t t

The consequence relation for C3 corresponds Definition 4.
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Fig. 14 Hexagon of
opposition in C3

The differences between C3 and M3 regarding Proposition 1 are the following:

{φ,ψ} |�C3 φ ∧ψ

{φ→ψ,ψ → χ} �|�C3 φ→ χ

The Law of Double Negation holds, De Morgan’s Laws and the equivalence of φ → ψ

and ¬φ ∨ψ do not hold.
The hexagon of opposition for C3 is shown in Fig. 14. In comparison with M3veto, the

opposition in C3 has grown, but still does not include the contradictions of the square.

5 Sequential Voting

M3 has an essential characteristic—voting is simultaneous. The other possibility is se-
quential voting. In sequential voting (e.g., a consecutive show of hands), agents know
(have common knowledge of) the results of the previous voting, and in voting on new
questions they take this knowledge into account. That is, agents are aware of the conse-
quences of their votes with respect to the previous voting results, and thus can change
their opinions in the course of voting in order to support their best preferences.

In this kind of decision-making, the discursive dilemma disappears.

Example 2

1. For instance, agent 2 is for φ and against ψ .
2. φ→ψ is accepted on the ground of the previous voting.
3. New voting: Who is for φ? φ automatically entails ψ according to common (classical)

logic.
4. Agent 2 reasons: if (s)he chooses φ, (s)he automatically chooses ψ ; if 2 wants ¬ψ ,

(s)he must vote against φ.
5. Agent 2 makes a decision whether to prefer φ or ¬ψ .
6. In either case, the result of voting will be in accord with the majority preference.

Example 3 Voting on ψ after φ has been accepted is at the same time voting on φ ∧ψ .

The resulting truth tables are the same as in K3 with u for sentences not yet voted
on (all classical valuation cases are preserved). The difference is in the concept of the
consequence relation, which is defined corresponding to Definition 4. We will call this
logic M3seq. In fact, due to the difference from K3 in the definition of the consequence
relation, M3seq is equivalent to Belnap’s four-valued logic (B4). As pointed out earlier,
and according to Definition 4 of the consequence relation, the logic M3seq of sequential



354 S. Kovač

voting differs from Kleene’s K3 in not allowing inferences from u-valued sentences to an
f-valued sentence (counting those cases as counterexamples to the consequence relation).
These additionally blocked inferences are precisely those blocked by LP. On the other
hand, M3seq differs from LP in counting the transition from t-valued sentences to a u-
valued sentence as a counterexample to the consequence relation, that is, in blocking
precisely those inferences that are blocked by K3. Hence, M3seq is equivalent to Belnap’s
B4, where t and b, or t and u, can alternatively be taken as designated values without
change in the consequence relation.

Since M3seq is equivalent to B4, we recall some examples where the consequence
relation does not hold: {φ ∧ ¬φ} �|�M3seq ψ , {φ ∨ ψ,φ → χ,ψ → χ} �|�M3seq χ ,
{φ → ψ,ψ → χ} �|�M3seq φ → χ , {φ ∨ ψ,¬ψ} �|�M3seq φ, {φ → ψ,φ} �|�M3seq ψ ,
{φ ∨ ψ} �|�M3seq (φ → ψ) → ψ , �|�M3seq φ ∨ ¬φ. On the other hand, in the following
examples the consequence relation does hold: {φ,ψ} |�M3seq φ ∧ ψ , {φ ∧ ψ} |�M3seq φ

and {φ ∧ ψ} |�M3seq ψ , {φ} |�M3seq φ ∨ ψ . Further, De Morgan’s Laws and the Law of
Double Negation hold. In addition, φ→ψ is equivalent to ¬φ ∨ψ . M3seq is paraconsis-
tent (like LP), paracomplete (like K3), and (like K3) has no valid sentences.

We note that consensual reasoning in sequential voting should have the same logic as
the majority sequential reasoning. That is, in consensual reasoning, f∨(f, f) becomes f,
since after there was no consensus on φ, there will be consensus on ψ iff φ ∨ ψ , too, is
consensually intended. Therefore, majority and consensual decisions in sequential voting
can differ only when the valuations (models) are actualized in practice, the underlying
logic being the same.

Since the opposition is defined only with respect to the values t and f, disregarding the
differences in the definition of the consequence relation (and disregarding the definition
of the designated set of values), the opposition in Mseq is the same as in K3 and M3.

6 To Sum up

Here is a review of the consequence relations and equivalences in the logics considered
above:

M3 K3 LP M3veto C3 M3seq(B4)

{φ ∧¬φ} �|�M3 ψ |� �|� �|� �|� �|�
{φ,ψ} �|�M3 φ ∧ψ |� |� �|� |� |�
{φ ∧ψ} |�M3 φ, {φ ∧ψ} |�M3 ψ |� |� |� |� |�
{φ} |�M3 φ ∨ψ |� |� �|� |� |�
{φ ∨ψ,φ→ χ,ψ → χ} �|�M3 χ |� �|� �|� �|� �|�
{φ→ψ,ψ → χ} |�M3 φ→ χ |� �|� |� �|� �|�
{φ ∨ψ,¬ψ} �|�M3 φ |� �|� �|� �|� �|�
{φ→ψ,φ} �|�M3 ψ |� �|� �|� �|� �|�
{φ ∨ψ} �|� (φ→ψ)→ψ �|� |� |� �|� �|�
�|� φ ∨¬φ �|� |� �|� �|� �|�
φ 5M3 ¬¬φ 5 5 �5 5 5
¬(φ ∧ψ)5M3 ¬φ ∨¬ψ 5 5 5 �5 5
¬(φ ∨ψ)5M3 ¬φ ∧¬ψ 5 5 �5 �5 5
φ→ψ 5M3 ¬φ ∨ψ 5 5 5 �5 5
φ→ψ 5M3 ¬(φ ∧¬ψ) 5 5 5 5 5
φ→ψ 5M3 ¬ψ →¬φ 5 5 5 5 5
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Fig. 15 Opposition in a parliament

Let Opp(L) be the opposition of the hexagon in some logic L, and Contradictφ,¬φ the
contradictory opposition between φ and ¬φ. The following is a result of the previous
analysis:

Corollary 1

1. Opp(M3veto)⊂ Opp(C3)⊂ Opp(M3)= Opp(M3seq)

2. Opp(I1)∩ Opp(C3)= Opp(M3veto)

3. Opp(P1)∪ Opp(M3veto)∪ Contradictφ,¬φ = Opp(C3)

Proof Can easily be read from the hexagon diagrams of the respective logics. �

Informally, the opposition in a society or a group of agents increases with the transition
from veto to consensus to majority decisions.

Besides, one negative result is that the increase of opposition is not proportional to
the increase or decrease in the consequence relation. For example, M3veto and C3 do
not stand in a subset relation regarding their respective consequence relations, although
Opp(M3veto)⊂ Opp(C3).

Appendix

Let us illustrate the results of our analysis with the example of the opposition in a par-
liament. The maximal opposition is present when majority voting takes place, and this
opposition can be schematized by the logical hexagon in Fig. 15.

We have put right-wing parties on the positive, left side of the diagram to indicate
that left-wing parties in general oppose some already established, traditional values rep-
resented by right-wing parties (and somewhat corresponding to the seating arrangement
in a parliament as seen from the viewpoint of the representatives). With each ideology
label in the hexagon, we refer in fact to the representatives of the respective ideology.
Further, by conservativism and left liberalism, we mean (relatively) complete and closed
ideologies with a defined view on each politically relevant question. By ‘far right’, we
mean particularistic options, such as nationalistic, religious, etc. fundamentalism. By ‘far
left’, we mean particularistic options such as green parties, radical liberalism, orthodox
communism, etc. We could extend the opposition to the octagon with ‘anarchism’ as ⊥
on the top, and ‘opportunism’ as � on the bottom (but such parties usually do not occur
in parliaments in a formal way).
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A Metamathematical Model for A/O Opposition
in Scientific Inquiry

Mark Weinstein

Abstract The paper looks at the logic of scientific inquiry through the lens of physical
chemistry in order to offer an account of the function of counter-examples to generaliza-
tions in scientific inquiry. A metamathematical model of emerging truth (MET) offers an
image of truthlikeness in terms of model progressiveness, which supports an analysis of
warrant strength that is connected with adaptive logic. The MET is exemplified by the his-
tory of the Periodic Table and examples from the history of chemistry are included by way
of illustration. The discussion supports a rethinking of the relation of counter-examples
to generalizations in terms of relative warrant strength challenging the standard view that
calls for the rejection of a generalization in light of available counter-evidence.

Keywords Square of Opposition · Truth · Science · Inquiry · Chemistry · Periodic
Table · Adaptive logic · Metamathematics · Argument

Mathematics Subject Classification Primary 03A10 · Secondary 80A50

1 Opposition in Scientific Inquiry

Of all of the relations on the square of opposition, contradiction is the most durable and
apparently vital in any dialectical account of the power of logical relations. The force of
refutation by contradiction is recognized as fundamental in theories of argument of all
sorts. Nevertheless, an examination of the dialogical use of contradictions in the history
of science presents a more nuanced picture. Successful processes of inquiry include long
periods when contradictions are disregarded in the interest of continuing inquiry. This
is readily seen in the history of, perhaps, the most successful inquiry project in human
experience, that is, the development of a coherent and far-reaching image of the material
world as exemplified by the Periodic Table of Elements. Throughout the history of the
introduction, elaboration and extension of the basic insight of periodicity, generalizations
drawn from empirical fact and theory were confronted by large bodies of inconsistent
evidence. This, contrary to the doctrine of falsification, did not result in the abandonment
of such generalizations; rather the generalizations were used as the basis for additional
experiments and theoretic elaborations, as often as not, leading to continuing empirical
and theoretic success. If such inquiry procedures are to be seen as reasonable, a rather
different account of contradiction than the standard must be attempted.

The key to such an account of contradiction is to see truth as an emergent property
across inquiry, rather than through a simple correspondence relation. In addition, the locus
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of argument in inquiry needs to be moved from micro-arguments, seen as a recursive basis
for more elaborate arguments, to a notion of arguments as embedded in fields, networks
of generalizations. Truth, rather than being directly assigned to elements, is seen as a
property of elements in relation to their place in the field. Truth is a field property defined
on emergent relations across a network, as in Quine’s metaphor of the ‘web of belief’
(Weinstein [17]).

After a discussion of opposition in science, I will present the salient characteristics of
a metamathematical model for emerging truth (Weinstein [19] has an elaborated version)
and connect it with the notion of warrant borrowed from Stephen Toulmin’s [15] classic
model of argument. I will then turn to some recent work in adaptive logic by Straßer and
Seselja [14] and make a connection with my approach.

The model of emerging truth (MET) furnishes an intuitive account of warrant strength,
where warrants are seen as covering generalizations that support acceptable inference
within a field of inquiry. Inferences are non-classical in that they are adaptive (possibly
non-monotonic) and open to approximations defined in terms of neighborhood relations
on models that serve as the interpretations of warrants. Most important, the levels of ac-
ceptable approximation are subject to the constraints applied within the field of inquiry.
I take this to be central to Toulmin’s [15] notion of backing and it is indicative of my con-
cerns, which owe as much to argumentation theory as they do to logic (Weinstein [18]).
Like much of current argument theory my work is essentially rooted in a pragmatic per-
spective. My concern is with how actual arguments are rationally grounded in a coherent
logical structure. And I take as a paradigm for such a structure inquiry in chemistry.
Chemistry is relatively non-controversial, its reach is profound and the practical applica-
tions point to the epistemic adequacy of its procedures (Weinstein [20]). My starting place
is not with argument in the abstract sense of entailment familiar from standard first-order
quantification theory but with a limited notion of warranted entailments that begins with
concepts and procedures in use (Weinstein [19] offers the details of the construction). This
move permits me to disregard the classic arguments against earlier formalist accounts in
philosophy of science based on construing scientific inferences (explanations and reduc-
tions) as open to the entire range of logical equivalents and moves the discussion from
simple logical models towards more complex constructions.

The core of this paper is an account of how counter-examples function dialectically
within the context of the warrants that they contradict, hence the title ‘A/O Opposition.’
The section that follows gives an overview of the issue as seen within chemistry. We
then look at the essential aspects of the MET that yield a hierarchical theory of warrant
strength, which supports principled criteria for evaluating the dialectical acceptance or
rejection of counter-examples to generalizations, I then move to a sketch of a possible
logic that includes the hierarchy of warrants and indicate the connection with the square
of opposition.

2 Universal Propositions and Science

The use of ‘all’ in describing physical reality is odd on its face and its oddity both re-
quires and enables a significant rethinking of the dialectic of hypothesis and evidence.
In terms of the square of opposition, the crucial example is A/O opposition, that is, the
confrontation of a universal generalization and counter-evidence. My work in this area
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has focused on the clearest and least controversial of all of the areas of physical science,
chemistry (Weinstein [20]). Within chemistry I look at the most deeply entrenched and
accepted structural item in chemical theory, the Periodical Table of Elements. The history
of the developing Periodic Table over the last one hundred years offers both insights and
challenges for a logical account (Scerri [12] offers a detailed account of the history of
the table). Take as an example Prout’s hypothesis, a corner stone of the Periodic Table
and, in 1817, and a bold and ultimately fruitful conjecture. In syllogistics terms: All ele-
ments are composed of hydrogen atoms. The evidence that prompted the conjecture was
an outgrowth of a deep exploratory principle in early atomic theory, that is, that molecules
could be described in terms of whole number ratios among their constituent parts. This
was itself based on both the underlying intuition of atomic theory in its original form
(that atoms, being indivisible, would only enter into combination as discrete individuals)
and a growing body of evidence showing whole number ratios among the experimentally
ascertained weights of naturally occurring substances after chemical decomposition. This
led to the correlative theoretic notion of atomic weight as an overlay of the empirical re-
sults of measuring weights on increasingly sensitive balances. Unfortunately, in 1825, the
noted chemist Jacob Berzelius compiled a set of improved atomic weights the disproved
Prout’s hypothesis (Scerri [12, p. 40]). Prout’s hypothesis remained inconsistent with the
evidence for at least a century. Nevertheless, Prout was correct in seeing hydrogen as the
basis of the elements, since hydrogen with one proton serves as the basis as we move
across the Periodic Table, each element adding protons in whole number ratios based
on hydrogen with one proton. The core insight remained at the center of later work that
strove to develop coherent chemical models based on multiples of fundamental elements.
Problems with anomalies persisted despite the fact that the number of protons yielded
the final organizing principle of the table. These were finally resolved, once atomic num-
ber, distinguished from atomic weight, which includes the contribution from neutrons
unknown until the mid-20th century, finally vindicated Prout’s bold conjecture. All of this
was based on warrants that supported inferences, and appear to function inferentially as
universal generalizations. Generalizations sustained in the face of counter-evidence, form-
ing the basis for a sustained and successful research program. Scerri [12] offers a detailed
and philosophically sensitive account against which my perspective may be evaluated.

What is the meaning of the universal quantifier in such a context of inquiry? In
the traditional logic of categorical propositions the meaning of ‘all’ is seemingly non-
controversial, tied to the underlying ontology. Given Aristotle’s views that essential defi-
nitions of natural kinds were there to be found, there was some sense of defining ‘all’ in
relation to the philosophical ideal (Weinstein [17]). ‘All men are mortal’ takes ‘men’ to
be definable in principle, so it is not much of a stretch to think that ‘all’ can be sensibly
seen to range over the class. In recent times the centrality of arithmetic in the foundational
work in logic, and eventually the Skolem-Lowenheim theory (every consistent model had
a model in the natural numbers) offered an even firmer basis for universal quantification.
The definition of the natural numbers was clear in terms of Peano’s axioms and the defi-
nition precisely characterized the domain. Quantifying over all of the numbers was both
intuitive and furnished powerful logical tools e.g. mathematical induction. But whether
we focus on predicates, as is natural in the syllogism, or focus on the domain, as in first-
order logic, what it means to universally quantify over expressions in even as stable an
inquiry as physical chemistry is none to clear. At no stage in the inquiry can the range of
concern be precisely stated, since the task of inquiry is to find out, among other things,
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what is there and how and to what extent, the available theory comports with what is to
be found. Since in physical chemistry there is no way to delimit the domain there is no
extensional definition of the domain, so the arithmetic paradigm, as the guiding intuition
on the semantics of first order languages, has no purchase what so ever.

Less obvious perhaps, is the fact that there are no clear intentional definitions. In the
early stages of the history of chemistry, when the fundamental principles that were to
permeate the developing science were laid down, the extent of the elements was unknown.
The prevailing notion of decomposition into elements through chemical means was in its
childhood, if not its infancy, and there was no reason to believe in the adequacy of any
available conception of what the elements were. Progress was expected and changes in
basic concepts welcomed in the face of empirical advance. Philosophical hand waving
about all possible elements, or about where we would end up in the long run gives small
comfort. And so, to put the point boldly, if the domain is not determinable, the universal
quantifier is not logically defined. In such a situation it seems reasonable to say that ‘all’
is a vague statement of hope and intention and leave it at that. But that leaves us nowhere,
for without some idea as to how generalizations comport with their evidence, no logic of
science is possible. And yet throughout the history of physical chemistry, generalizations
were made and functioned logically in terms of confirmation and contrary evidence. To
understand the logic of all of this is essential to understanding argumentation in inquiry,
and perhaps this may offer some connection with the new possibilities that modern logic
provides.

Science when sufficiently mature and theoretical, as in physical chemistry, requires
clear and often mathematical theories. In such formal theoretic contexts, as in mature sci-
entific theories, predicates often refer to an unbounded, yet definable domain as specified
by the theory. That is to say that within a theory predicates are given clear and explicit
definitions in respect of an equally explicit domain of theoretic entities, and so ‘all’ makes
clear sense as applying to the entire unbounded range of possible instances. That is, sci-
ence, like mathematics, takes ‘all’ seriously. But when the theory reaches out to reality, to
the models of data, which stand as its confirmatory basis, such clarity is often obscured by
the empirical facts. For although experimental data is interpretable in terms of the theory
and its predicates, the world has something to say about the specifics. This is required for
the theory to be empirical, that is, falsifiable.

The history of theoretic generalizations in relation to their empirical database, however,
is not the simple one of refutation by experimental counter-example as in the classic view
of Karl Popper [10]. Theories often resist anomalous data in light of the robustness of
the theoretic contexts within which the interpretation of empirical data occurs. Theories
are subject to modification or even disconfirmation in light of recalcitrant facts, inter-
preted within the domain and predicates of the theory, which fail to support its theoretic
generalizations. But empirical data may also be resisted in the name of the power of the
theory, measured by its over-all empirical basis, and as important, its place in a network
of other theories, each of which is supported by its own empirical basis and its place in
the network of related theories. It is this give and take between theoretic embeddedness
on the one hand, and risk of modification or falsification in light of recalcitrant empiri-
cal data that the discussion that follows attempts to illuminate. Such an account should
explain how counter examples are to be considered on their merit, rather than serving as
automatic refutations as in the traditional square or in the theories of those who followed
Popper in philosophy of science.
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The claim derived from my work is that an empirical generalization in a theoretical
science such as chemistry is a promissory note about continuing advance. A generalization
put forward based on empirical evidence has the following four essential properties:

1. The domain of its application is to be successively redefined in relationship to the
ontological commitment of supporting theories.

2. It supports contrary to fact conditionals as a function of the generalization being re-
ducible to a theory that explains the generalization in terms of these underlying theo-
ries.

3. Inferences (including resistance to counter examples via modes tollens) are adaptive,
that is they respond to new information (monotonic if the new information is a conse-
quence of the original set of proposition; ampliative adaptive logics are non-monotonic
if they respond to additions to the set of propositions).

4. Estimates of truth likeness of the generalization can be rationally supported in light of
evidence over time (I say ‘truth likeness’ rather than ‘likelihood’ since I don’t want to
commit to a probabilistic metric, although my tendency is towards a Bayesian approach
with prior probabilities derived from the available underlying theoretic structure).

What is both relevant and clear is that generalizations, as in the nomic generalizations
or other universal tending operations are, contrary to the traditional square, reasonably
insensitive to refutation by a particular counter examples. And so my goal is to articulate
what it is about the structure that underlies such generalizations that accounts for their
resistance to counter example in perfectly appropriate ways. That is, I propose to devise a
logical structure that weights the embeddedness of a generalization as against the force of
the counter example. I focus on the connection between universal affirmative and partic-
ular negative, A/O opposition, since that is the most essential relationship in inquiry. The
paradigmatic case for our purposes is where a theory T is confronted with a counterex-
ample, a specific model of a data set inconsistent with T . The interesting case is where T
has prima facie credibility, that is, is increasingly confirmed over time.

3 The Underlying Model of Truth

The basis of my proposal is a model of emerging truth (MET). My purpose is one of
rational reconstruction and so even though the logical clarity of the presentation trumps
its descriptive adequacy, descriptive adequacy is still at the heart of the intuition. Further,
my intended audience includes argumentation theorists and informal logicians interested
in inquiry, so I use the intuitive language of elementary set theory and offer constructions
that lay out the details so that the component parts are easily distinguished.

The basic construction is a set of functions defined on a theory, T , which includes
at least some generalizations. The theory is closed under a restricted entailment relation
and is seen in relation to sequences of models, including models generated from other
theories. Entailment is engineered to eliminate manifest irrelevancies based on the pro-
fessional judgments of those working in the filed of inquiry (Weinstein [19]). This points
to a central pragmatic component in the construction. Inferences are determined by actual
argumentation put forward by members of the field and so do not include all logically
possible consequences, only consequences actually drawn in accordance with acceptable
inference procedures in the field. These include, of course, inferences drawn by opponents
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of the theory in light of counter evidence. Manifestly irrelevant premises are discarded as
their irrelevance is ascertained by the discussants. In addition, discussants work within a
discourse frame that establishes standards of rigor as the argumentation proceeds. This is
part of what the Amsterdam theorists call the opening stage and forms part of the backing
in Toulmin’s [15] sense. Inference is non-monotonic and dynamic. Arguments are recon-
sidered in the light of new evidence and the status of a claim is based on the history of
argumentation. An inference is evaluated within a network of associated inferences and
the history of the network.

This is a basis for a reconsideration of the nature of warrants. The clear limitations on
the scope and rigor of warrants in actual cases of use, what Toulmin [15] calls rebuttals,
indicate warrants of varying strength. A number of clear structural distinctions can be
made in based on the architecture of the MET to indicate dimensions of strength: strong
warrants are housed within a body of generalizations, super strong warrants connect such
bodies of generalization into progressive networks and the strongest warrants are super
strong warrants of exceptional breadth and depth. It these last that offer candidate domains
of ontological significance, in terms of which a Tarski-like definition of truth may be
defined (Weinstein [17]).

Before I offer the MET a word of clarification as to what it is not. The formal tradition
in philosophy of science included attempts to axiomatize significant portions of physics.
These attempts were met with significant criticisms and I will not attempt to enter into
the debate about the fruitfulness of such endeavors. For the MET is not such an attempt.
The desire to axiomatize was based on the success of similar attempts in respect of por-
tions of mathematics, and part of my purpose is to move away from the model of formal
mathematics to present a rather different role for metamathematical accounts of science
and especially scientific argument. The MET attempts to offer reasonable, transparent and
rigorous metaphors for essential aspects of scientific inquiry. In particular, in this context,
I want to substitute a more nuanced approach to counter-examples in their dialectical
role as challenges to generalizations. The use of physical chemistry as a paradigm for the
reevaluation of the role of counter-examples to generalizations is based on its effectiveness
as a research program. My hope is to offer an alternative image of the underlying logic
of generalization and counter-examples, what I call A/O opposition. Chemistry offers a
salient indicator of how this functions in a rigorous domain. The MET is no substitute
for the formal structures found in chemical theories, rather it attempts to offer a noeti-
cally transparent image of how inquiry in chemistry advances in the face of evidence that
supports and challenges generalizations put forward.

4 The MET

The formalism in the MET is characterized by two essential logical concepts, that of
modeling, the models that support various restricted entailment relationships (1–1.3 be-
low) and a deeper sense of entailment that relies on the connection between discrete sets
of principles and even vocabulary, what in the philosophy of science is called reduction
(2–2.4, below). Reductions are not unlike the analytic entailments of logical empiricism,
more rigid then weaker warrants seen as empirical or even nomic generalizations; war-
rants that support reductions are resistant to anomalies and form the foundation of inter-
theoretic connections that fuel conceptual advance and deeper understanding.
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Although the second of the two functions has the most novelty the first one permits a
radical shift in perspective to be immediately seen: that is, it is the dynamics, not the statics
of argument that furnishes the essential logical concepts. It is not truth in a model that is
at issue, but truth seen across models. Truth is a relation among models and ultimately a
criterion for selecting models. The basic logical structure of the MET is as follows:

1. A scientific structure, TT = 〈T ,FF,RR〉 where T is a set of sentences that constitute
the linguistic statement of TT closed under some appropriate consequence relation and
where FF is a set of functions F , such that for each F in FF, there is a map f in F ,
such that f (T ) = m, for some model or near model of T . And where RR is a set of
sets of representing functions, R, such that for all R in RR and every r in R, there is
some theory T ∗ and r represents T in T ∗, in respect of some subset of T .

A scientific structure is first of all, a set of nomic generalizations, the theoretic com-
mitments of the members of the field in respect of a given body of inquiry. These support
inferences and a restricted consequence relation that rules out manifest irrelevancies of
the sort that bedeviled the classic discussion of the D-N model of explanation. Details of
my version of such a restricted entailment relation are found in Weinstein [19].

We then include distinguishable sets of possible models (or appropriately approximate
models) and a set of reducing theories (or near reducers). The richness of such possible
approximation relations was first indicated to me by the work of Apostel [2]. I rely heavily
on the fact that such approximation relations are both mathematically definable and can be
reasonably supported in light of the normative constraints found in successful disciplinary
practices, for example, standards for measurement.

What we will be interested in here is a realization of TT , that is to say a triple 〈T ,F,R〉
where F and R represent choices from FF and RR, respectively. What we look at is the
history of realizations, that is an ordered n-tuple: 〈〈T ,F1,R1〉, . . . , 〈T ,Fn,Rn〉〉 ordered
in time. The claim is that the adequacy of TT as a scientific structure is a complex function
of the set of realizations.

The notion of a realization is the deepest pragmatic element in the construction of
MET, we are not interested in all possible models, or even all actual models. We are
only interested in the models that are put forward in inquiry, that is to say, the bodies
of evidence, both empirical and theoretical that are put forward in support and attack by
those engaged in the inquiry. This point of view is less familiar in formal philosophy of
science based as it was in the past on a logical model drawn from the study of foundations
of mathematics. In mathematics one deals with necessities and so all possible models are
of concern. In science one attempts to construct selected models that reflect the empirical
realities as known as well as conjectures about yet to be found empirical models, and
more essentially in physical chemistry, theoretic models that through their fecundity prove
adequate to the emerging realties the theoretic models both anticipate and explain. It is
such intended models that are the logical core of the constructions that follow.

1.1. Let T ′ be a subtheory of T in the sense that T ′ is the restriction of the relational
symbols of T to some subset of these. Let f ′ be subset of some f in F , in some
realization of TT . Let 〈T ′

1, . . . , T
′
n〉 be an ordered n-tuple such that for each i, j

(i < j ), T ′
i reflects a subset of T modeled under some f ′ at some time earlier than T ′

j .
We say the T is model progressive under f ′ iff:
(a) T ′

k is identical to T for all indices k, or
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(b) the ordered n-tuple 〈T ′
1, . . . , T

′
n〉 is well ordered in time by the subset relation.

That is to say, for each T ′
i , T ′

j in 〈T ′
1, . . . , T

′
n〉 (i < j ≥ 2), if T ′

i is earlier in time
than T ′

j , T ′
i is a proper subset of T ′

j .

I use elementary set theoretic constructions and rely on the subset relation as an ideal
type although the realities undoubtedly require much more complex constructions. We
cannot assume that all theoretic advances are progressive. Frequently, theories move back-
wards without being, thereby, rejected. We are looking for a preponderance of evidence or
where possible, a statistic. Nor can we define this a priori. What counts as an advance is a
judgment in respect of a particular enterprise over time in light of the implicit normative
criteria as evidenced by the standards of practice of those engaged with the theory, an
essential pragmatic turn if we are to understand argumentation in inquiry.

1.2. We define a model chain C, for theory, T , as an ordered n-tuple 〈m1, . . . ,mn〉, such
that for each mi in the chain mi = 〈di, fi〉 for some domain di , and assignment
function fi , and where for each i and j (i < j ), mi is an earlier realization (in time)
of T then mj .

Let m∗ be an intended model of T , making sure that f (T ) = m∗ for some f in
F (for some realization 〈T ,F,R〉) and T is model progressive under f . We then say
that C is a progressive model chain iff either:
(a) for every mi in C, mi is isomorphic to m∗, or
(b) there is an ordering of models in C such that for pairs mi , mj (j > i) in C, mj

is a nearer isomorphs to m∗ than mi .

Condition (a) reflects the standard idea that, for example, all models of data are en-
tailed by a theory. Condition (b) is the essential case that drives the model, where models
proffered and accepted as confirming models in an inquiry are appropriately close ap-
proximations given the standards of the inquiry. Such a constraint permits inquiry to be
logical and yet not driven by ideals of consistency drawn from mathematics. Again, this
is an idealization, in practice a preponderance of closer approximations would suffice.

1.2.1. By ‘nearer isomorph’ we intend the following. Let P = {p1, . . . , pn} of predicates
and relational symbols of T . Let vi be an assignment of elements of mi to P for
a model mi of model chain C = 〈m1, . . . ,mn〉 of T , where the nth member is the
intended model, m∗. Let vj (j = i + 1) be as assignment of elements of mj of
P for a model mj in model chain C of T , that is to say, mi,j , are adjacent in the
ordering and so constitute a minimal subchain.

Let v∗ be the overlap vi ∧ vj of assignment functions where for a graph of
vi ∧ vj (an ordered n-dimensional assignment of data points to predicates and
relations of T ) each element of vi is identical to some element of vj or is in a
near neighborhood relation to it. And where the width of the near neighborhood
is defined by current methodological practice in the field in which T is proposed,
another aspect of the pragmatic turn.

The intuition is that v∗ identifies the elements in a pair of models that are iden-
tical or close enough to be deemed functionally equivalent in terms of inferences.
Since by assumption model chain C orders the models it contains, we can order the
various function v∗ accordingly, that is, construct a sequence 〈v∗1 , . . . , v∗n〉 where
each v∗i is the overlap of a pair-wise assignment, to the members of C. Since the v∗i
are sets we can order them by the subset relation. Since v∗n is the overlap of mn−1
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and mn and mn is the intended model, m∗, for each minimal sub-chain, mi,j , mj

is a nearer isomorph to m∗ than mi .

1.3. Let 〈C1, . . . ,Cn〉 be a well ordering of the progressive model chains of TT , such that
for all i, j (i > j ), Ci is a later model chain than Cj . TT is model chain progressive
iff 〈C1, . . . ,Cn〉 is well ordered in time. That is to say each later model includes and
extends the models antecedent to it in time.

As before, this is an idealization indicating a theory that is uniformly progressive.
Much more complex judgments are required in the face of the vagaries of evidence and
instrumentation, and the most that we can expect of a theory is that progress is predomi-
nant, that is, most model chains are mainly progressive. The history of the Periodic Table
is full of such contentious episodes, where evidence for a theoretic model is partial and
difficulties remain unresolved. An example is the attempt to organize known elements
into triples with simple ratios, so called triads, where the values of key properties of a
‘middle’ element were seen as intermediate between two flanking elements (Scerri [12,
pp. 42ff]). Decades of different theoretic attempts to organize the known elements in such
triples, with ratios that approached whole number values were, driven by the basic intu-
ition of the atomic theory, substances seen as composed of a basic element. This idea,
ultimately proving to be the basic principle of the Periodic Table, was confronted with
empirical approximations of various sorts as theorists looked at such empirical properties
as weight, volume and eventually atomic weight and as measurements became more pre-
cise with improvements of instrumentation. It was only after the discovery of isotopes and
the movement from atomic weight to atomic number that the available empirical models
uniformly supported the theoretic model. Before that unification different strands of ev-
idence with their own history of consistency with evidence offered individuals lines of
support for the basic concepts of chemical analysis (Scerri [12]).

2. We now turn our attention to the members of some R in RR. The construction is
based on the seminal work of Eberle [6] on representing functions, functions that
map elements of one theory onto another. The crucial result is, for functions f ∗ in
F ∗ for reducing theory, T ∗, and reduced theory, T , f ∗ reduces T to T ∗ is equivalent
to, for every model m∗ of T ∗ there exists a model of m of T such that, for every
sentence s of T , s is true in m if and only if f ∗(s) is true in m∗. And similarly for
formulas and assignments in m and corresponding formulas in m∗ for T ∗.

2.1. Representing function can be limited to subsets of T , k(T ). This yields the following
core construction.

The members of RR represent T in T ∗ in respect of some subset of T , k(T ). Let
〈k1(T ), . . . , kn(T )〉 be an n-tuple of representations of T over time, that is if i > j ,
then ki(T ) is a partial representation of T in T ∗ at a time later that kj (T ). We say
that TT is reduction progressive iff either,
(a) k(T ) is identical to T for all indices, or
(b) the n-tuple is well ordered by the subset relation.

As before, condition (a) represents the best-case scenario, (b) represents a weaker but
still acceptable condition. The intuition behind the construction reflects the historic fact
that reductions (reinterpretation of a theory in terms of the concepts of a higher order,
more abstract theory) rarely capture the entire scope of the reduced theory. A theory is
reduction progressive if more of the reduced theory is represented in the reducing theory
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of time. As before, the construction is an idealization, as new aspects of a theory are re-
duced, frequently earlier reduction need to be reconsidered, so in reality we are faced with
determinations based on trends rather than with a univocal picture of success. Examples
from the history of the physical science abound. The classic example of the reduction of
the Boyles-Charles Law via statistical mechanics could not be easily transferred outside
of the realm of its initial application to gases without significant modification (Nagel [9,
pp. 359ff]). Yet the reduction of all sorts of phenomena to physical principles ultimately
resulted in a wealth of physical explanations that shared a common conceptual core in
statistical mechanics, including fluid dynamics, rigid body dynamics, electromagnetism
and ultimately atomic theory.

2.1.1. We call an n-tuple of theories RC = 〈T1, . . . , Tn〉 a reduction chain.
2.1.2. RC = 〈T1, . . . , Tj , . . . , Tn〉 is a deeper reduction chain than j -tuple RC′ =

〈T ′
1, . . . , T

′
j 〉, iff n > j and for all i < j there is a ri in Ri such that ri represents Ti

in Ti+1 and similarly for T ′
i and for all Tk (k ≤ j ).

2.2. We call a theory, T , reduction chain progressive iff for an n-tuple of reduction chains
〈RC1, . . . ,RCn〉 and for each RCi (i < 1), RCi+1 is a deeper reduction chain than
RCi .

The point of 2.2 is to call attention to the fact that there may be more than one chain
of reductions, that is, different aspects of physical reality are independently reduced to
some powerful reducing theory. The best example is atomic theory that although general
in its scope is first applied to gases and then only later is successfully applied to fluids
and solids. The historical phenomena of a deep theory, such as atomic theory, that had
as its impetus a desire to incorporate vast areas of actual and potential empirical knowl-
edge, is one of large ambitions faced with small advances. Atomic theory was originally
formulated to deal with gases, it was than expanded laterally to apply to other chemi-
cal reactions, to liquids, crystals, solids, electrical phenomena and ultimately yielded to
particle physics which transformed atomic theory in unimaginable ways. This idea of a
theory branching out to include new areas of concern is the focus of the next series of
constructions.

Before we move on, a word of clarification is required. The MET might appear to
support a tree-structure, in which many of the distinctions appear to collapse. But since
there is no unifying relation across the MET, the tree structure is merely apparent. The
MET may include trees governed by a uniform relation, but to see the MET as a tree
waits upon the ultimate unification of physical science through a theory of everything.
An aspect of the MET that is irrelevant to our discussion here, attempts to capture that
deep ontological potential of physical theory through the notion of an ontic set, the set of
models that ultimate captures the entire field of theories by offering a univocal ontology
(Weinstein [17]). In such a total unification some of the distinctions here may prove to be
formally redundant, although they remain epistemologically essential for understanding
the process of inquiry.

2.3. T is a branching reducer iff there is a pair (at least) T ′ and T ∗ in set of realization
of TT such that there is some r ′ and r∗ in R′ and R∗, respectively, such that r ′
represents T ′ in T and r∗ represents T ∗ in T and neither T ′ is represented in T ∗ nor
conversely.

We now turn to sequences of realizations, TT1, TT2, etc.
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2.3.1. B = 〈TT1,TT2, . . . ,TTn〉 = 〈〈T1,F1,R1〉, 〈T2,F2,R2〉, . . . , 〈Tn,Fn,Rn〉〉 is a re-
duction branch of TT1 iff T1 is a branching reducer in respect of all Ti , and Tj
(i ≥ 2; j ≥ 3 for i, j ≤ n).

Yet again, this is an idealization; in the history of reductions there are often gaps, but
to limit the construction to some Ti would be much too weak and would represent a
period of theoretic conjecture. MET seeks to represent theoretic consolidation, since as
we shall we below, the degree of consolidation is the basic logical element against which
counterexamples must be weighed.

2.4. Since each branch, B , is an n-tuple the construction for a progressively branching
reducer is more complex. Construct the set BB of all branches; BB is non-empty and
has n-elements. We then proceed to ‘count’ the n-order subsets of BB, in the standard
way.

For each Bi in BB we construct an indicator function, f , such that for all integers,
n, Bi , f (n) = 1, if Bi is in BB and f (n) = 0 is Bi is not in BB. This gives us the
n-tuple, BB∗ = 〈(f (0), f (1), . . . , f (n−1)〉, an index of BB. We say that a branching
reducer, T , is a progressively branching reducer iff the n-tuple BB∗ is well ordered
in time that is, for each pair if indices, f (i), f (j), i, j (j > i) Bj is a later branch
than Bi , that is, the number of branching reducers has been increasing in breadth as
inquiry persists.

5 A/O Opposition and the Theory of Warrants

Given this much we move to the central focus of the paper, A/O opposition and an account
of the dialectics of generalization and counter-example that the MET affords. The core
construction is where a theory T is confronted with a counterexample, a specific model of
a data set inconsistent with T . The interesting case is where T has prima facie credibility,
that is, where T is at least model progressive under some assignment function, that is, is
increasingly confirmed over time (MET, 1.1).

A. The basic notion is that a model, cm, is a confirming model of theory T in TT , a model
of data, of some experimental set-up or a set of systematic observations interpreted in
light of the prevailing theory that warrants the data being used. And where:
(1) cm is either a model of T or
(2) cm is an approximation to a model of T and is the nth member of a sequence of

models ordered in time and T is model progressive (MET, 1.2).
B. A model interpretable in T , but not a confirming model of T is an anomalous model.

The notion of confirming model is a modification of the standard idea that models
consistent with a theory (models of the theory) confirm the theory. The modification of
course is the core second condition (b) of the various constructions of the MET, approxi-
mate models defined in terms of near isomorphisms that are progressive. That is, a chain
of models that approach the intended model over time. In terms of measurement theory,
this can be thought of as ‘goodness of fit,’ a locution we will use below for its familiarity
and succinctness. The notion of a ‘model interpretable in T ’ is also fairly standard. Such a
model shares the domain and the partition of the domain via assignment functions f in F ,
that is, it shares the conceptual structure to T , via assignment of predicates and relations
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in the domain. Anomalies can be thought of as recalcitrant empirical data that contradict
implications of T although our construction accommodates theoretic anomalies via their
empirical consequences.

With warrants construed as the nomic generalizations that characterize T we build a hi-
erarchy of warrant strength that reflects a natural hierarchy of theoretic embeddedness de-
rived from the MET: model progressive (MET, 1.2), model chain progressive (MET, 1.3)
reduction progressive (MET, 2.1), reduction chain progressive (MET, 2.2), branching re-
ducers (MET, 2.3) and progressively branching reducers (MET, 2.4).

We first look at the relation of anomalies to the theories they challenge. A/O oppo-
sition, at this level of analysis, varies with the strength of the theory. So, roughly, if T
is merely model progressive, an anomalous model is type-1 anomalous, if in addition,
model chain progressive, type-2 anomalous etc. up to type-6 anomalous for theories that
are progressively branching reducers. A more precise characterization moves from theo-
ries to their determining warrants, those nomic generalizations that serve as the core of
the warranting apparatus of explanations and other inferences in TT .

A warrant, W1 of type-1 is model progressive (MET, 1.2) if it satisfies its intended
model or the set of models shows an increasing goodness of fit with the intended model.

A warrant, W2 of type-2 is model chain progressive (MET, 1.3) if it is of type-1 and the
number of number of model chains that satisfies its intended model or show an increasing
goodness of fit with the intended model are themselves increasing.

A warrant, W3 of type-3 is reduction progressive (MET, 2.1), if it is of type-2 and it
satisfies an intended model drawn from a reducing theory or the set of models shows an
increasing goodness of fit with the intended model drawn from the reducing theory.

A warrant, W4 of type-4 is reduction chain progressive (MET, 2.2), if it is of type-3
and the reducing theory includes reduction chains that are increasing over time.

A warrant, W5 of type-5 is of type-4 and is reduced by a theory that is a branching
reducer (MET, 2.3).

A warrant, W6 of type-6 is of type-5 and is reduced by a theory that is a progressively
branching reducer (MET, 2.4).

Warrants of type-1 and type-2 may be thought of as strong warrants. Warrants of type-3
through type-6 may be thought of as super strong warrants (Weinstein [17]). We first
characterize an anomalous model in relation to the power of the warrant, such that an
anomaly was seen in relation to the power of the theory for which it was an anomaly. The
ordering of warrants is essential for evaluating dialectical resistance to the force of the
anomaly.

Given the hierarchy of warrants we can define a plausible dialectic of counter-examples
to generalization, opposition based on anomalous models. Opposition varies with the
strength of the theory comprised by a warrant and its consequences under initial con-
ditions. So, for a warrant in T , if T is merely model progressive, an anomalous model is
type-1 anomalous, if in addition, model chain progressive, type-2 anomalous etc. up to
type-6 anomalous for theories that are progressively branching reducers. This characteri-
zation sets the burden that the anomaly must bear. Type 1 anomalies have more dialectical
power, which decreases across the types. That is to say, an anomaly of a higher type must
bear a larger burden of epistemic force to be an effective challenge to a deeply embedded
warrant. This constitutes its prima-facie strength.

The ordering of anomalies is essential for evaluating dialectical resistance to the force
of the anomaly. This yields the first of two dialectical principles.
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P1: The prima-facie strength of the anomaly is inversely proportional to dialectical re-
sistance, that is, counter-evidence afforded by an anomaly will be considered as a
refutation of T as a function of the strength of T in relation to TT .

In terms of dialectical obligation, a claimant is dialectically responsible to account for
type 1 anomalies or reject T and less so as the type of the anomalies increases.

To make the logic simpler I assume that reductions involve theories with strong war-
rants. That is, the super-strong warrants that are supported by theoretical structures of ex-
ceptional breadth and depth are themselves strong that is, increasingly confirmed in their
initial applications, finding increasing success in being applied to additional experimen-
tal or naturally occurring configurations. That enables us to develop a linear hierarchy of
warrant strength along with the correlative type of anomaly. This, of course, is an idealiza-
tion, a logical metaphor for a historical messy process, yet as a metaphor it seems to me to
capture the underlying logic of the history of theoretic development in physical sciences.
The movement from warrants of type-1 to type-2 is a natural interpretation that reflects
the history of chemistry. Success in applying a theory to a particular set of elements is
more often then not followed by increasing the sort of elements to which the theory can
be applied. So, for example, in the early experiments with isolating chemical components
of naturally occurring substances and comparing their constituent parts by volume, not
alone did the empirical results show an increasingly goodness fit with theoretic expec-
tations as techniques for isolating and comparing physical substances improved, but the
techniques of isolating substances and comparing them isolates by volume were applied
to additional elements, in our terms, resulting in new model chains. The issue is less clear
with the shift from models of the theory and models imposed on the theory by reductions
(warrants of type-3 through type-6), since reductions are often partial and deep theories
frequently exist that are not applicable to current empirical generalizations in a unique
way (Cartwright [4]).

It is certainly plausible given the power of higher order physical theories that a weak
warrant, in terms of its own confirmatory range of application, will fall under a reducing
theory before its power to explain is experimentally obvious. This seems true of devel-
opments in materials science where a theoretic construct results in a substance heretofore
unknown and so without clear evidence as to its empirical properties. But, although at
a given point the weight of the reduction may count more than the empirical evidence
that supports generalizations about its empirical properties, this seems only temporary,
since if the reductive basis is sound, the empirical properties will quickly manifest them-
selves in a host of applications yielding supported empirical generalizations about the new
substance’s properties and relations. Whatever the temporary difficulties in applying the
basic structure of periodicity to new elements, as chemistry develops not only are new
substances found to conform to the requirements of the Periodic Table, but the ability to
articulate the chemical properties of these substances based on underlying theoretic analy-
sis has resulted in the understanding of the physical world around us at a level of precision
that was barely imaginable by the early chemists. The result is an increase of goodness
of fit with theory as the empirical properties of new elements are ascertained through
new instrumentation and more adequate measurements. A recent example is the theoretic
understanding of semi-conductors, first envisioned in the 1920s, but only experimentally
applied in the 1950s, leading to both theoretical and practical advances including the enor-
mous range of applications of transistor technology and the unification of chemistry and
electronics at a micro-level (Riordan and Hoddeson [11]).
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Our principle P1 above sets the dialectical burden an anomaly must bear in terms of
the warrant that they challenge. To be taken seriously as a challenge, anomalies require
support based on their relation to the theories in which they are embedded. The second
principle, P2, below, is based on the epistemic force of the anomalous model itself. If the
model is a purely empirical model, that is, a set of data that is free of theoretic support
it offers a minimal challenge, we call it a model of type-0. We then apply our hierar-
chy, to yield models of increasing epistemic power due to increasing theoretic warrant.
This yields analogous characterizations of models type-1 through type-6. Challenges by
anomalous models of type-0 are rare in modern science, where even models of data are
theoretically supported, if only through the theory of instruments and measurement that
they reflect. An interesting example a model of type-0 is the statistical analysis of John
Snow who in the 1850s offered a paradigm of the use of statistical arguments, founding
the scientific discipline of epidemiology in his investigation of the causes of a cholera epi-
demic. It was not, however, until the germ theory of disease was accepted that his work
could be integrated into an acceptable explanation (Goldstein and Goldstein [7, pp. 36ff]).
An anomaly, a non-confirming model is merely suggestive when seen in relation to a
strong warrant, when it is free of theoretic support.

We now build correlative notions of models of type 1 through type-6 in an obvious
fashion in terms of the theoretic support for the anomalous model in an explanatory frame-
work other than T . So, an anomaly of type-n is a model that is supported by a warrant of
type-n. So, in particular, if an anomalous model (a model of type-1) is explained by ex-
plained by an acceptable generalization (a type-1 warrant) it has more dialectical power
and the supporting generalization must be addressed if the anomalous model is to be
disregarded. This increases with the next level, where the supporting generalization has
reasonable wide application (a model of type-2), becomes severe when the supporting
generalizations is itself theoretically warranted by a reducing theory and increasingly so
when the reducing theory is deeply explanatory and broadly applicable (models of type-3
through type-6). This yields our second principle.

P2: The strength of an anomaly is directly proportional to dialectical advantage, that is,
the anomalous evidence will be considered as refuting as a function of the power of
the explanatory structure within which it sits.

This yields the core intuition:

P∗: The dialectical use of refutation is rational to the extent that it is an additive function
of P1 and P2

Applying our distinction to A/O opposition, at the one extreme, type-1 anomalies ap-
proach classical opposition, the anomalous model falsifies the theory or must itself be
rejected at the other extreme type-6 anomalies promote scientific revolutions, that is, re-
quire a thoroughgoing replacement of an entire scientific structure otherwise the anoma-
lous model is rejected. The replacement of Aristotelian by Newtonian physics is a classic
example of a response to type-6 anomalies; foundational concepts are replaced (Toulmin
and Goodfield [16, pp. 210ff]). Type-2 anomalies require that there be a modification of
the theory that preserves most model chains and the sequence of type-2 anomalies over
time is model progressive within the modified theory, otherwise the anomalous model
is rejected. The discovery of isotopes is based on type-2 anomalies, the basic structure
of chemical knowledge is retained, but significant problems in the details of, e.g. atomic
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weight are reconciled when it is realized that substances that have isotopes vary in atomic
structure and so generate alternative measurements (Scerri [12, pp. 73ff]). Type-3 anoma-
lies require that there be an alternative reducing theory or the anomaly is rejected. That is,
the anomalous model can be seen within a reinterpretation of the theory without substan-
tial modifications of the theory itself. The kinetic theory of heat is an example of a rein-
terpretation based on type-3 anomalies, rather then seeing heat as a substance, the kinetic
theory sees heat as a property of substances. Rumford’s experiments that appeared to show
that heat as ‘inexhaustible’ could not be subsumed under theories of heat as a substance
and were disregarded until the kinetic theory was able to support a well-established body
of empirical evidence (Goldstein and Goldstein [7, pp. 119ff]). Type-4 anomalies require
the reorganization of interconnected theories or the anomalies are rejected. The develop-
ment of the Periodic Table of Elements can be seen as a response to type-4 anomalies. The
Periodic Table was a response to the need to reorganize available chemical knowledge in
a new structure after decades of attempt to organize fragments of chemical knowledge
based on their chemical properties. The result was not merely additional theoretic support
in the form of the oft-cited predications of Mendeleyev, but more importantly resulted in
a deep reorganization of chemical knowledge with the concomitant enormous advance of
chemical understanding characteristic of the 20th century (Scerri [12, pp. 123ff]). Type-5
anomalies require major theoretic advances that reorganize and modify existing theories
deeper reduction chains (2.1) and potentially branching reducers. Black box radiation is
an example of a type-5 anomaly that, if not rejected, prompts theoretic advance of deep
ontological significance, in this case, quantum mechanics [12, p. 189].

In addition to the degree of anomaly, P1, degree of adequacy for anomalous models
is required as well, P2. At the basic level of empirical evidence put forward, empirical
claims need to sit within a model chain of available corroborative data that demonstrates
epistemic adequacy (MET, 1). The empirical claim must be replicable, or increasingly
supported by newly available evidence. That is to say, anomalous models of type-0 have
little purchase in the dialectic of theoretic advance. Anomalous evidence that point to such
theoretical unmotivated observations, such as claims to perpetual motion, cold-fusion and
more recently breaches of the speed of light by neutrinos, are only taken seriously as the-
oretic support for the observed phenomena becomes available. Even if scientists persist
in exploring the observations, it is the ability to account for them with plausible and sup-
ported explanations that make them possible challenges to prevailing views. The notion
of progressive model chain (MET, 1.2) points to the fact that empirical evidence must be
reliable, that is, further investigation corroborates the claim (by duplicating it or by in-
creasingly approximating the theoretic model in relation to the specific claim over time).
If the claim strikes deeply at a warrant as in anomalies of type 2, the claim loses credence
unless it too is warranted, that is, is embedded in some theoretic account (MET, 1.3).
If both views are warranted by networks of generalizations (warrants) and supported by
shared methodological and other aprioristic constraints (backing), the situation becomes
much more complex. At the limit we have theoretic replacement that include fundamental
conceptual change. The most powerful modern example is the replacement of Newtonian
mechanics by relativistic and probabilistic theories after the work of Einstein and Heisen-
berg. An early example in astronomy is the discovery of the moons of Jupiter by Galileo.
The initial evidence based on telescopic observations could be seen as mere aberrations
of the telescope. It was only as the telescope was seen as reliable that even initial cre-
dence was given to the observations. And it was only with the development of the theory
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of optics that it was seen as productive enough to warrant serious study. The acceptance
of Galileo’s work had to wait upon its application to new phenomena (free-fall) and ulti-
mately to developments in both the technology (both optical and mathematical) and the
theories of Kepler and Newton (Toulmin and Goodfield [16, pp. 189ff]).

The intuition drawn from physical science is clear, We expect our descriptions and
measurements to increase in reliable detail and to afford predictive success at an increas-
ingly nuanced level, that is to say, the models of our assertions must be increasingly ad-
equate to the reality that they attempt to describe. But increasingly adequate descriptions
and measurements reflect the contrast between what we see and what our theories ask
us to see. The building of adequate theories and their associated models is a confronta-
tion with evidence pro and con. It is the dynamics of this advance that moves truth from
truth in a model to truth in a chain of models, the members of which are increasing in
adequacy to the phenomena as we test and probe in standard ways. Those standard ways
are themselves difficult to ascertain, but determine them we do in practice, in all of those
domains in which we are increasingly successful with our inquiries. We are rarely right or
wrong simpliciter (at least not in areas that requires argument). Rather the picture emerges
through argumentation and other methods of inquiry.

Whatever the intuitive power of the MET it is both simple and technically unsophis-
ticated when contrasted with recent work by logicians and especially computer scientists
who have attempted to capture the recent interest in the dialectics of argument by creating
formal systems. In the next section I turn to a recent synoptic presentation of such efforts
and give some indications of the relation of these approaches to the MET.

6 The Underlying Logic

Earlier I maintained that a generalization in mature science put forward based on empirical
evidence has the following four essential properties:

1. The domain of its application is to be successively redefined in relationship to the
ontological commitment of supporting theories.

2. It supports contrary to fact conditionals as a function of the generalization being re-
ducible to a theory that explains the generalization in terms of these underlying theo-
ries.

3. Inferences (including resistance to counter examples via modes tollens) are adaptive,
that is they respond to new information (monotonic if the new information is a conse-
quence of the original set of proposition; ampliative adaptive logics are non-monotonic
if they respond to additions to the set of propositions).

4. Estimates of truth likeness of the generalization can be rationally supported in light of
evidence over time.

It should be clear that the MET meets the first condition. Whether I met the second
condition, that is have a general solution to the problem of counterfactuals is debatable.
But in the terms of the condition as specified, the solution is obvious as long as there
is a reducing theory, for if a description contrary to fact is in fact reduced the falsity
of the antecedent is irrelevant to the derivation of the conditional. This is the power of
representing functions, recall MET, 2, above: for functions f ∗ in F ∗ for reducing theory,
T ∗, and reduced theory, T , f ∗ reduces T to T ∗ is equivalent to, for every model m∗ of
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T ∗ there exists a model of m of T such that, for every sentence s of T , s is true in m if
and only if f ∗(s) is true in m∗. Whence the truth of a conditional of T is guaranteed in
the relevant case via its truth in models of T ∗ and indifferent to the assignment in a model
of T in which the antecedent may be false.

There is a price to pay, however, the highest-level reducers do not support counterfactu-
als. This is less of a problem than it might seem. If there is an alternative to a highest order
theory, T ∗, it is completely unconstrained by conditions other than those on the range of
its reductive power. This means, among other things that highest order alternatives are
not easy to find. On the other hand, if we think of the deepest physical theories, they are
unconstrained by anything other than the imagination of scholars so deeply knowledge-
able about the range of its concerns, even the wildest imaginings have to reflect the most
profound knowledge of the field and the immediate problems that highest order theories
most confront as they struggle to be adequate as reducers at the next lower levels. Nev-
ertheless, since there is no guarantee from above, counterfactual analysis is always open.
That is a replacement theory, T #, if it addresses the range of reduction of T ∗ has com-
parative warrant strength of zero since arguments pro and con will be assigned the same
value. The only support possible is for one of the pair to result in massive increases as
the reinterpretation of the lower-order theories lead to profound differences in the breadth
of reducing theories. Think of how quantum mechanics opened up vast realms of new
applications even while it managed the vast yield of chemical and physical results under
the older theories by offering reinterpretations of older explanations in its terms.

The intent behind the MET is to capture the underlying epistemic structure of mature
physical science. But inquiry does not unfold in an instant and so the underlying logic
must be adaptive, that is, sensitive to both newly realized and newly acquired knowledge.
In what follows I offer a brief sketch of an attempt at amalgamating the distinctions that
the MET affords with the adaptive logic, LA, of Straßer and Seselja [14]. Adaptive logics
are concerned with defeasible reasoning, and are sometimes non-monotonic (ampliative
abductive logics). Here we are concerned with the ability to formalize an account of the
logic of attack and defense relevant to our concern with A/O opposition and so will as-
sume that all of the relevant arguments are available and so we follow Straßer and Seselja
in grafting adaptive rules onto classical logic.

In what follows I will not attempt more than a brief sketch of relevant aspects of Straßer
and Seselja’s work, which includes a wealth of logical detail that warrants careful study.
Nor will I include a more recent paper that includes their attempt at a more nuanced ap-
proach to adaptive logic relevant to scientific explanation (Seselja and Straßer [13]). The
more recent paper is based on a rather different image of science than the one that forms
the paradigm for the MET. Their concern is with the polytheoretic arguments surrounding
continental drift, rather than the unified theoretic context that physical chemistry exem-
plifies. I focus on the earlier paper since it includes a policy on defeating challenges that
grows out of the classical concern with counter-examples. This gives me a firm back-
ground against which I can integrate my own proposals.

The MET offers a metamathematical image of explanation that supports a theory of
warrant strength. Like adaptive logic it should be sensitive to the arguments that surround
attempts at explanation. Such attempts are epitomized by A/O oppositions; challenges to
generalizations by counter-examples. In what follows, I will attempt to amalgamate the
distinctions that the MET supports into a system of adaptive logic developed by Straßer
and Seselja [14] In what follows the set of arguments are stable (monotonic). We are
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concerned with the ability to formalize an account of the logic of attack and defense
relevant to our concern with A/O opposition and can assume that all of the propositions
involved are in principle available.

The basis for the construction, AF, is as follows, with lower case italic letters
a1, a2, a3, . . . for arguments and lower case letters a, b, c, . . . as meta-variables for ar-
guments. (Dung [5] described in Straßer and Seselja [14, p. 136].)

Let An =df {a1, a2, . . . , an}.
Definition 1 An AF is a pair 〈A,→〉 where A ⊆ An is a finite set of arguments, and
→ ⊆ A × A is a relation between arguments. The expression a → b is pronounced as
‘a attacks b’.

Given an AF〈A,→〉, we are particularly interested in giving an account of reasonable
choices of arguments in A: a minimal criterion is, for instance, that no argument in a
selection S should attack another argument in S. Of course, more interesting selection
types can be defined:

Definition 2 Given an AFA= 〈A,→〉 we define the following notions.

(i) An argument a is attacked by a set of arguments B ⊆ A iff there is a b ∈ B such
that b → a.

(ii) An argument a is acceptable with respect to a set of arguments C ⊆ A, iff every
attacker of a is attacked by a member of C. It is said that C defends a.

(iii) A set of arguments S ⊆A is conflict-free iff no argument in S attacks an argument
in S.

(iv) A conflict-free set of arguments S ⊆ A is admissible iff each argument in S is
acceptable with respect to S.

(v) A set of arguments S ⊆ A is a preferred extension iff it is a maximal (w.r.t. ⊆)
admissible set.

(vi) A conflict-free set of arguments S ⊆ A is a stable extension iff it attacks every
argument in A\S.

(vii) An admissible set of arguments S ⊆A is a complete extension iff F(S)= S, where
F(S)=df {c | S defends {c}}.

(viii) A set of arguments S ⊆ A is a grounded extension iff it is the minimal (w.r.t. ⊆)
complete extension.

(ix) A complete extension S ⊆ A is a semi-stable extension iff S ∪ S+ is maximal
(w.r.t. ⊆), where S+ is the set of all arguments in A\S which are attacked by S

[14, p. 136].

The intuition should be clear; a set of arguments partitioned into arguments and at-
tackers yields levels of acceptability to the extent that attacks on arguments are responded
to by other arguments (defenses). The core ideal is (ii). An argument is acceptable is it
meets the challenge from attacking argument. In terms of Johnson [8] the argumentation
has met its dialectical obligation. The levels of acceptability reflect what might be seen as
pragmatic consistency. This is clear in (iii) and (iv) arguments are admissible if ‘conflict
free’ both in terms of pragmatic self-consistency and in appropriate responses to attacks.

The following criteria (v) through (ix) build up to admissibility in terms of extensions.
Preferred extensions are maximal admissible sets, the largest admissible subset of A. Sta-
ble extension attacks all arguments in A other than those in S. If in addition, S defends
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against attacks it is a complete extension (vii). The smallest subset of S that is complete
is a grounded extension (presumably, it grounds the argument by defending the attack-
ing arguments). Finally, a semi-stable extension takes the largest complete extension that
includes the arguments attacked and defended.

This leads to two key epistemological definitions:

(x) A set of arguments S ⊆ A is credulously accepted according to preferred [(semi)-
stable, complete or grounded] semantics (w.r.t. A) iff it is contained in at least one
preferred [(semi)-stable, complete or grounded] extension of A.

(xi) A set of arguments S ⊆ A is sceptically accepted according to preferred [(semi)-
stable, complete or grounded] semantics (w.r.t. A) iff it is contained in every pre-
ferred [(semi)-stable, complete or grounded] extension of A′ [14, p. 136].

The last remark leads to a footnote: “Our notion of defeat differs from the way defeat is
defined in various preference or value-based enhancements of Dung’s abstract AF. Defeat
is there usually defined as a binary relation between arguments, which is a subset of
the attack relation: a1 defeats a2 iff a1 attacks a2 and a2 is not ‘preferable’ to a1. The
preferability of one argument over another is modeled in different ways” [14, p. 137].
The authors offer as examples, Amgoud and Cayrol [1] and Bench-Capon [3].

My contribution via the theory of warrants can be seen as an alternative version of pref-
erence, or better, epistemological warrant. What my view shares with many policies on
preference, is that it is dependent on pragmatic considerations. This will become clearer
as we turn to my amalgamation of the theory or warrant strength and the adaptive logic of
Straßer and Seselja [14].

In what follows, Vn is the set of propositions that constitute an argument and Wn the
set of arguments in attack and counter (defense). The amalgamation is straightforward,
requiring no more than a redefinition of the valuation space.

Substituting directly in the definition of LA (Straßer and Seselja [14, p. 138]) we gen-
erate LA∗ with the following essential change, for valuations v and L: v∗ and L∗

v∗ : Vn ∪ Wn →{0 ≤ i ≤ 1}
L∗-valuation v∗LM : Wn → {0 ≤ i ≤ 1}, where i is a selection from the set of one-

place decimals {0, .1, .2, .3, .4, .5, .6,1). Vn is a set of proposition letters, representing the
substance of an argument (in my construction conditionals composed of a conjunction of
irrelevance free premises, including a nomic generalization and a consequent). Wn is the
set of formula representing arguments composed of arguments and arrows, ‘
’ (attacks
and defenses). The assignment to a proposition letters (arguments), ai , is fairly straight-
forward:

V ∗ : ai ∈ Vn →{0, .1, .2, .3, .4, .5, .6,1}
For propositions, 0 is assigned to unsupported empirical claims, whether singular state-

ments or nomic generalization, 1 is assigned to the theory at the end of the Peirceian
rainbow, including both its generalizations and specific implications. When 0 or 1 are as-
signed to arguments it is an argumentational dead-heat, the first for lack of warrant and
the latter for power beyond resolution.

The assignment to the elements of Wn is more complex. Recall the formulas in Wn
are of the form a 
 b, for arguments a and b, where in the first instance a is a counter
example to b.

V ∗ : a 
 b ∈ Wn = {
v∗b − v∗a

}



376 M. Weinstein

That is, as a first approximation, the power of an attack is the strength of the argument
attacked minus the strength of the attacker.

And so we have, based on L (Straßer and Seselja [14, pp. 138ff]). LA∗ is well-managed
classical propositional logic (minimally) enriched by rules (R
), (Rad). The rule (R
)
characterizes the core of the logic for abstract argumentation: ‘if α is valid and it attacks
β,α 
 β , then β should not be a consequence of our logic.’ (Rad) is the generalization
across arguments α and α
 β in Vn.

α α
 β

not-β
(R
)

a β 
 α

def β
(Rad)

Where ‘def β’ is the disjunction of arguments a ∈ Vn such that
(
a&(a
 β)

)

My inclusion of the phrase ‘well-managed,’ for LA∗ satisfies the constraints on the expla-
nation relation in the MET. Since this is a constraint on propositional elements it doesn’t
alter the logic of the situation, only its management in the name of relevance. The inclu-
sion of ‘minimally’ is required since the full system of LA has additional constraints to
guard against inconsistency among other things that a fuller elaboration of LA∗ would
require.

We define the semantics for logics L∗ ∈ {LA∗} via assignment functions:

v∗ : ai ∈ V n→{0, .1, .2, .3, .4, .5, .6,1}
v∗ : a 
 b ∈ Wn = {

v∗b − v∗a
}

v : Vn ∪ Wn →{0 ≤ i ≤ 1}
where i is a one place decimal and an L∗-valuation vL∗M : Wn →{0 ≤ i ≤ 1} determined
by the assignment.

We follow Straßer and Seselja’s structure, but expand the range of the assignment
function as before; the assignment to rules remains the same.

V ∗ : Vn ∪ Wn →{0 ≤ i ≤ 1}
that assigns truth values to both, propositional letters and ‘attacks’, i.e. formulas in Wn.
A model M is defined by an assignment function v. The following definitions are used in
order to define the LA-valuation under, v, for the rules as follows:

vR
=df 1 − max
(
min

(
v(α), v(α
 β), v(β)

))
for α,β ∈ Vn

vRad =df 1 − max
(
min

(
v(α), v(β 
 α)

))
for α,β ∈ Vn

1 − max
(
min

(
v(γ ), v(γ 
 β)

))
for γ ∈ Vn

(following, Straßer and Seselja [14, p. 140]).
The next step is too modify the extensions by increasing the levels of acceptance and in

light of the power of an attack based on the strength of the warrants involved. The problem
for me is that the requirement to address all challenges is excessive. Some consideration
must be given to the appropriateness of attack given the argumentational surround. The
issue is usefully framed in terms of Ralph Johnson’s [8] distinction between the illative
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core, the argumentation brought forward in support of a claim, the dialectical tier, the
arguments attacking the illative core and the dialectical obligation to respond. The issue
within the discussion of Johnson’s distinction is the extent of the dialectical obligation,
that is, which arguments against must be countered if the dialectical obligation is to be
met. I recall a paper at an argumentation conference focused on Johnson’s account, the
presenter was straightforward: ‘If I have to respond to every counter-argument I wouldn’t
bother to argue.’ A sound policy, given the effort it takes to support a position and the
indefinite availability of countervailing considerations. Still even if impractical in prac-
tice concern with the dialectical tier is essential to the theory of argument. But since the
tension is between complementary dialogical virtues a solution needs to be fine-tuned to
the circumstances. There are two approaches, a policy approach and a computational one.
First as to policy:

We modify the notion of attack (and defense) to arguments worth of consideration (we
will use the word ‘appropriate’ and its variants). This leads to a modification of the notion
of valid argument in relation to rules (R 
) and (Rad) where valid arguments are those
certified by the rules but restricted to appropriate arguments. Appropriate arguments, in
turn, meet the level of stringency determined by the practice in the discourse community.
This has been at the core of policy decision in the MET and continues to govern our
constructions. It essentially connects logic to argument and argument to well-functioning
discourse communities, of which, the community of physical chemists remains an exem-
plary example.

(i∗) An argument a is appropriately attacked by a set of arguments B ⊆ A iff there is a
b ∈ B such that b → a and either v∗b ≥ v∗a or v∗b ≥ i ≤ v∗a, where i is the differ-
ence of the values of v∗b and v∗a, for some value, i, set by the discourse community.

The first condition is relatively trivial. The second is the more serious contender for
A/O oppositions of the sort we envision, a counter-example to a generalization.

We may think of i by analogy to a significance level; it sets the threshold for ap-
propriate attacks. Although, unlike a significance level, its value is not constant, but the
difference between the values assigned to the arguments as a function of the strength of
the anomaly needed and the warrant for the anomaly itself (P1 and P2 above). That is, i,
is an additive function of the values assigned to the arguments (P∗). It is a ratio rather than
a fixed quantity. This, like so much of the MET, cannot be defined a priori, the argumen-
tational practice of experts in a field determine the level of warrant a attack must sustain
to be taken seriously. Although the apparent relativization of (i∗) to actual practice may
seem too arbitrary for a logical system, the MET permits a number of internal metrics
based on the available information in a field (for example, MET, 1.2.1). Since we enu-
merate models and have chains of particular lengths it is obvious that we not only order
model chains by the subset relation, but we can count their length. The problem is that if
we construe models (at least at the lowest levels) as models of data, replication beyond
a certain point quickly reaches a point of diminishing returns for explanatory power. Of
more interest is the internal structure of approximations. Instead of counting models we
can give numerical estimates in terms of approximations and so index model chains in
relation to their distance from the intended model. Reduction relations offer similar met-
rical possibilities (for example, MET, 1.3). This if elaborated gives us the possibility of a
computational approach.

The rest of the modifications of follow the same pattern (based on the formulation in
[14, p. 136], see above).



378 M. Weinstein

(ii∗) An argument a is acceptable with respect to a set of arguments C ⊆ A, iff every
appropriate attacker of a is attacked by a member of C. It is said that C defends a.

(vi∗) A conflict-free set of arguments S ⊆ A is a stable extension iff it appropriately
attacks every argument in A\S.

(vii∗) An admissible set of arguments S ⊆A is a complete extension iff F(S)= S, where
F(S)=df {c | S appropriately defends {c}}. (Note: an appropriate defense is para-
sitic upon an appropriate attack in that if b appropriately attacks a and c appropri-
ately defends a, then c appropriately attacks b.)

(ix∗) A complete extension S ⊆ A is a semi-stable extension iff S ∪ S+ is maximal
(w.r.t. ⊆), where S+ is the set of all arguments in A\S which are appropriately
attacked by S.

Without attempting the specifics of the logical process a clarification of the underlying
intuition gives some sense of what the give and take of attack and defense looks like (for
plausible definitions of connectives and propositional rules that seem modifiable to meet
our needs in terms of a many-valued logic, see Straßer and Seselja [14, pp. 140ff]). If we
assume, as in AF, that the set of arguments is given (AL is not ampliative) the strength of
the warrants indicate the available resources for meeting challenges.

We will turn to the language of the square of opposition to make the intuition clear,
using integers to reflect the levels of strength in supporting warrants. So, for example, an
empirical counter-example, O , is offered to an empirical generalization A. The first ques-
tion is whether the counter example is appropriate, that is, it is supported by a warrant
available in the set of arguments. That is, it is at least at the first level of strength, O is a
type-1 anomaly. If so, we now have a problem of A/E opposition, competing generaliza-
tions. But since an A proposition implies a corresponding I there is also E/I opposition,
I is (at least) a type-1 anomaly for the corresponding E. This requires us to see if either A
or E have additional strength, that is if they are type-2 warrants or stronger. This in turn
generates the possibility of further evidence (I or O propositions) implied by warrants of
greater strength, resulting in crucial experiments to challenge strong or even super strong
warrants (anomalies of type-3 through type-6).

How to resolve these arguments where the levels for competing generalizations are at
the same or adjacent levels is, again, a pragmatic decision based on the confidence of
the proponents in the total set of arguments as they become available through theoretical
dialog. In the history of science this, more often than not, includes new evidence and
new supporting theoretical hypotheses (new generalizations). Capturing such a complex
historical phenomena requires a non-monotonic ampliative adaptive logic that permits the
set of arguments to increase over time. The MET sets a framework for further work in
logic by indicating what the epistemic stakes are in terms of the depth and breadth of
warrants. My hope is that by making this intuitive construction available to logicians and
computer scientists further technical elaboration will result and ultimately students of the
relevant sciences will collaborate with computer scientists to develop a computational
account based on the actual facts of relevant inquiry.
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