
A Computer-Assisted Uniqueness Proof
for a Semilinear Elliptic Boundary Value
Problem

Patrick J. McKenna, Filomena Pacella, Michael Plum, and Dagmar Roth

Dedicated to the memory of Wolfgang Walter

Abstract A wide variety of articles, starting with the famous paper (Gidas, Ni and
Nirenberg in Commun. Math. Phys. 68, 209–243 (1979)), is devoted to the unique-
ness question for the semilinear elliptic boundary value problem −�u = λu + up

in �, u > 0 in �, u = 0 on ∂�, where λ ranges between 0 and the first Dirichlet
Laplacian eigenvalue. So far, this question was settled in the case of � being a ball
and, for more general domains, in the case λ = 0. In (McKenna et al. in J. Dif-
fer. Equ. 247, 2140–2162 (2009)), we proposed a computer-assisted approach to
this uniqueness question, which indeed provided a proof in the case � = (0,1)2,
and p = 2. Due to the high numerical complexity, we were not able in (McKenna
et al. in J. Differ. Equ. 247, 2140–2162 (2009)) to treat higher values of p. Here,
by a significant reduction of the complexity, we will prove uniqueness for the
case p = 3.
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1 Introduction

The semilinear elliptic boundary value problem

−�u = f (u) in �, u = 0 on ∂� (1)

has attracted a lot of attention since the 19th century. Questions of existence and
multiplicity have been (and are still being) extensively studied by means of vari-
ational methods, fixed-point methods, sub- and supersolutions, index and degree
theory, and more.

In this chapter, we will address the question of uniqueness of solutions for the
more special problem
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⎧
⎨

⎩

−�u = λu + up in �,

u > 0 in �,

u = 0 on ∂�,

(2)

where λ ranges between 0 and λ1(�), the first eigenvalue of the Dirichlet Laplacian.
It has been shown in a series of papers [1, 2, 19, 28, 29] that the solution of (2) is
indeed unique when � is a ball, or when � is more general but λ = 0 [9, 10, 12, 30].

We will concentrate on the case where � = (0,1)2 and p = 3, and prove that
uniqueness holds for the full range [0, λ1(�)) of λ. Thus, our paper constitutes the
first uniqueness result for this situation. More precisely we prove

Theorem 1 Let � be the unit square in R
2, � = (0,1)2. Then the problem

⎧
⎨

⎩

−�u = λu + u3 in �,

u > 0 in �,

u = 0 on ∂�

(3)

admits only one solution for any λ ∈ [0, λ1(�)).

Remark 1

a) A simple scaling argument shows that our uniqueness result carries over to all
squares �l := (0, l)2 (and thus, to all squares in R

2): If u is a positive solution of
−�u = λ̃u + u3 in �l , u = 0 on ∂�l , for some λ̃ ∈ [0, λ1(�l)), then v(x, y) :=
lu(lx, ly) is a solution of (3) for λ = λ̃l2 ∈ [0, λ1(�)).

b) Since we also show that the unique solution in the square is nondegenerate, by a
result of [10] we deduce that the solution is unique also in domains “close to” a
square.

c) Finally we observe that having shown in [16] (case p = 2) and in this paper
(case p = 3) that the unique solution is nondegenerate then uniqueness follows
also for other nonlinearities of the type λu + up for p close to 2 and 3. Indeed,
by standard arguments (see for example [9]) nonuniqueness of positive solutions
in correspondence to sequences of exponents converging to 3 (resp. to 2) would
imply degeneracy of the solution for p = 3 (resp. p = 2).

Our proof heavily relies on computer-assistance. Such computer-assisted proofs
are receiving an increasing attention in the recent years since such methods provided
results which apparently could not be obtained by purely analytical means (see [5,
6, 17, 18, 24]).

We compute a branch of approximate solutions and prove existence of a true
solution branch close to it, using fixed point techniques. By eigenvalue enclosure
methods, and an additional analytical argument for λ close to λ1(�) we deduce the
non-degeneracy of all solutions along this branch, whence uniqueness follows from
the known bifurcation structure of the problem.

In [16] we give a general description of these computer-assisted means and use
them to obtain the desired uniqueness result for the case � = (0,1)2, p = 2. To
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make the present paper dealing with the case p = 3 more self-contained, we recall
parts of the content of [16] here. We remark that the numerical tools used in [16]
turned out not to be sufficient to treat the case p = 3. Now, by some new trick to
reduce the numerical complexity, we are able to handle this case.

2 Preliminaries

In the following, let � = (0,1)2. We remark that the results of this section can be
carried over to the more general case of a “doubly symmetric” domain; see [16] for
details.

First, note that problem (2) can equivalently be reformulated as finding a non-
trivial solution of

{−�u = λu + |u|p in �,

u = 0 on ∂�,
(4)

since, for λ < λ1(�), by the strong maximum principle (for −� − λ) every non-
trivial solution of (4) is positive in �. In fact, this formulation is better suited for
our computer-assisted approach than (2).

As a consequence of the classical bifurcation theorem of [25] and of the results
of [9] the following result was obtained in [20]:

Theorem 2 All solutions uλ of (2) lie on a simple continuous curve � in
[0, λ1(�)) × C1,α(�̄) joining (λ1(�),0) with (0, u0), where u0 is the unique so-
lution of (2) for λ = 0.

We recall that the uniqueness of the solution of (2) for λ = 0 was proved in [10]
and [9]. As a consequence of the previous theorem we have

Corollary 1 If all solutions on the curve � are nondegenerate then problem (2)
admits only one solution for every λ ∈ [0, λ1(�)).

Proof The nondegeneracy of the solutions implies, by the Implicit Function Theo-
rem, that neither turning points nor secondary bifurcations can exist along �. Then,
for every λ ∈ [0, λ1(�)) there exists only one solution of (2) on �. By Theorem 2
all solutions are on �, hence uniqueness follows. �

Theorem 2 and Corollary 1 indicate that to prove the uniqueness of the solution
of problem (2) for every λ ∈ [0, λ1(�)) it is enough to construct a branch of non-
degenerate solutions which connects (0, u0) to (λ1(�),0). This is what we will do
numerically in the next sections with a rigorous computer-assisted proof.

However, establishing the nondegeneracy of solutions uλ for λ close to λ1(�)

numerically can be difficult, due to the fact that the only solution at λ = λ1(�),
which is the identically zero solution, is obviously degenerate because its linearized
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operator is L0 = −� − λ1 which has the first eigenvalue equal to zero. The next
proposition shows that there exists a computable number λ̄(�) ∈ (0, λ1(�)) such
that for any λ ∈ [λ̄(�),λ1(�)) problem (2) has only one solution which is also non-
degenerate. Of course, from the well-known results of Crandall and Rabinowitz,
[7, 8], one can establish that for λ “close to” λ1, all solutions uλ are nondegen-
erate. However, in order to complete our program, we need to calculate a precise
and explicit estimate of how close they need to be. This allows us to carry out the
numerical computation only in the interval [0, λ̄(�)] as we will do later.

Let us denote by λ1 = λ1(�) and λ2 = λ2(�) the first and second eigenvalue
of the operator −� in � with homogeneous Dirichlet boundary conditions. We
have

Proposition 1 If there exists λ̄ ∈ (0, λ1) and a solution uλ̄ of (2) with λ = λ̄ such
that

‖uλ̄‖∞ <

(
λ2 − λ1

p

) 1
p−1 ·

(
λ̄

λ1

) 1
p−1

(5)

then

‖uλ‖∞ <

(
λ2 − λ1

p

) 1
p−1

, (6)

and uλ is non-degenerate, for all solutions uλ of (2) belonging to the branch �2 ⊂ �

which connects (λ̄, uλ̄) to (λ1,0).

(Recall that � is the unique continuous branch of solutions given by Theorem 2.)

Proof See [16]. �

Corollary 2 If on the branch � there exists a solution uλ̄, λ̄ ∈ (0, λ1) such that:

i) on the sub-branch �1 connecting (0, u0) with (λ̄, uλ̄) all solutions are nondegen-
erate

and

ii) ‖uλ̄‖∞ <

(
λ2 − λ1

p

) 1
p−1 ·

(
λ̄

λ1

) 1
p−1

, (7)

then all solutions of (2) are nondegenerate, for all λ ∈ (0, λ1), and therefore prob-
lem (2) admits only one solution for every λ ∈ [0, λ1(�)).

Proof We set � = �1 ∪ �2 with �1 connecting (0, u0) to (λ̄, uλ̄). On �1 we have
that all solutions are nondegenerate by i). On the other hand the hypothesis ii) allows
us to apply Proposition 1 which shows nondegeneracy of all solutions on �2. Hence
there is nondegeneracy all along � so the assertion follows from Corollary 1. �
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The last corollary suggests the method of proving the uniqueness through com-
puter assistance: first we construct a branch of nondegenerate “true” solutions near
approximate ones in a certain interval [0, λ̄] and then verify ii) for the solution uλ̄.
Note that the estimate (7) depends only on p and on the eigenvalues λ1 and λ2 of the
operator −� in the domain �. So the constant on the right-hand side is easily com-
putable. When � is the unit square which is the case analyzed in the next sections,
the estimate (7) becomes:

‖uλ̄‖∞ <

(
3π2

p

) 1
p−1 ·

(
λ̄

2π2

) 1
p−1 =

(
3λ̄

2p

) 1
p−1

because λ1 = 2π2 and λ2 = 5π2.
Fixing p = 3 we finally get the condition

‖uλ̄‖∞ <

√

λ̄

2
. (8)

3 The Basic Existence and Enclosure Theorem

We start the computer-assisted part of our proof with a basic theorem on existence,
local uniqueness, and non-degeneracy of solutions to problem (4), assuming p = 3
now for simplicity of presentation. In this section, the parameter λ ∈ [0, λ1(�)) is
fixed.

Let H 1
0 (�) be endowed with the inner product 〈u,v〉H 1

0
:= 〈∇u,∇v〉L2 +

σ 〈u,v〉L2 ; actually we choose σ = 1 in this paper, but different (usually positive)
choices of σ are advantageous or even mandatory in other applications, whence we
keep σ as a parameter in the following. Let H−1(�) denote the (topological) dual
of H 1

0 (�), endowed with the usual operator sup-norm.
Suppose that an approximate solution ωλ ∈ H 1

0 (�) of problem (4) has been com-
puted by numerical means, and that a bound δλ > 0 for its defect is known, i.e.

∥
∥−�ωλ − λωλ − |ωλ|3

∥
∥

H−1 ≤ δλ, (9)

as well as a constant Kλ such that

‖v‖H 1
0

≤ Kλ

∥
∥L(λ,ωλ)[v]∥∥

H−1 for all v ∈ H 1
0 (�). (10)

Here, L(λ,ωλ) denotes the operator linearizing problem (4) at ωλ; more generally, for
(λ,u) ∈ R × H 1

0 (�), let the linear operator L(λ,u) : H 1
0 (�) → H−1(�) be defined

by

L(λ,u)[v] := −�v − λv − 3|u|uv
(
v ∈ H 1

0 (�)
)
. (11)

The practical computation of bounds δλ and Kλ will be addressed in Sects. 6, 7
and 8.
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Let C4 denote a norm bound (embedding constant) for the embedding H 1
0 (�) ↪→

L4(�), which is bounded since � ⊂ R
2. C4 can be calculated e.g. according to the

explicit formula given in [23, Lemma 2]. Finally, let

γ := 3C3
4 .

In our example case where � = (0,1)2, the above-mentioned explicit formula gives
(with the choice σ := 1)

γ = 3
√

2

4(π2 + 1)3/4

(

<
1

5

)

.

Theorem 3 Suppose that some αλ > 0 exists such that

δλ ≤ αλ

Kλ

− γ α2
λ

(‖ωλ‖L4 + C4αλ

)
(12)

and

2Kλγαλ

(‖ωλ‖L4 + C4αλ

)
< 1. (13)

Then, the following statements hold true:

a) (existence) There exists a solution uλ ∈ H 1
0 (�) of problem (4) such that

‖uλ − ωλ‖H 1
0

≤ αλ. (14)

b) (local uniqueness) Let η > 0 be chosen such that (13) holds with αλ + η instead
of αλ. Then,

u ∈ H 1
0 (�) solution of (4)

‖u − ωλ‖H 1
0

≤ αλ + η

}

=⇒ u = uλ. (15)

c) (nondegeneracy)

u ∈ H 1
0 (�)

‖u − ωλ‖H 1
0

≤ αλ

}

=⇒ L(λ,u) : H 1
0 (�) → H−1(�) is bijective, (16)

whence in particular L(λ,uλ) is bijective (by (14)).

For a proof, see [16].

Corollary 3 Suppose that (12) and (13) hold, and in addition that ‖ωλ‖H 1
0

>

αλ. Then, the solution uλ given by Theorem 3 is non-trivial (and hence posi-
tive).
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Remark 2

a) The function ψ(α) := α
Kλ

− γ α2(‖ωλ‖L4 + C4α) has obviously a positive max-

imum at ᾱ = 1
3C4

(

√
‖ωλ‖2

L4 + 3C4
Kλγ

− ‖ωλ‖L4), and the crucial condition (12)

requires that

δλ ≤ ψ(ᾱ) = 4C4 + γKλ‖ωλ‖2
L4

Kλ(

√
γKλ(γKλ‖ωλ‖2

L4 + 3C4) + γKλ‖ωλ‖L4)

· 1

(

√
γKλ(γKλ‖ωλ‖2

L4 + 3C4) + γKλ‖ωλ‖L4 + 6C4)

, (17)

i.e. δλ has to be sufficiently small. According to (9), this means that ωλ must
be computed with sufficient accuracy, which leaves the “hard work” to the com-
puter!

Furthermore, a “small” defect bound δλ allows (via (12)) a “small” error
bound αλ, if Kλ is not too large.

b) If moreover we choose the minimal αλ satisfying (12), then the additional condi-
tion (13) follows automatically, which can be seen as follows: the minimal choice
of αλ shows that αλ ≤ ᾱ. We have

2Kλγ ᾱ
(‖ωλ‖L4 + C4ᾱ

)

= 1 − C4

3C4 + 2γKλ‖ωλ‖2
L4 + 2

√
γKλ(γKλ‖ωλ‖2

L4 + 3C4)‖ωλ‖L4

< 1 (18)

and thus condition (13) is satisfied.
Since we will anyway try to find αλ (satisfying (12)) close to the minimal

one, condition (13) is “practically” always satisfied if (12) holds. (Nevertheless,
it must of course be checked.)

4 The Branch (uλ)

Fixing some λ̄ ∈ (0, λ1(�)) (the actual choice of which is made on the basis of
Proposition 1; see also Sect. 5), we assume now that for every λ ∈ [0, λ̄] an approxi-
mate solution ωλ ∈ H 1

0 (�) is at hand, as well as a defect bound δλ satisfying (9), and
a bound Kλ satisfying (10). Furthermore, we assume now that, for every λ ∈ [0, λ̄],
some αλ > 0 satisfies (12) and (13), and the additional non-triviality condition
‖ωλ‖H 1

0
> αλ (see Corollary 3). We suppose that some uniform (λ-independent)

η > 0 can be chosen such that (13) holds with αλ + η instead of αλ (compare The-
orem 3b)). Hence Theorem 3 gives a positive solution uλ ∈ H 1

0 (�) of problem (4)
with the properties (14), (15), (16), for every λ ∈ [0, λ̄].
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Finally, we assume that the approximate solution branch ([0, λ̄] → H 1
0 (�), λ �→

ωλ) is continuous, and that ([0, λ̄] → R, λ �→ αλ) is lower semi-continuous.
In Sects. 6, 7 and 8, we will address the actual computation of such branches

(ωλ), (δλ), (Kλ), (αλ).
So far we know nothing about continuity or smoothness of ([0, λ̄] → H 1

0 (�),

λ �→ uλ), which however we will need to conclude that (uλ)λ∈[0,λ̄] coincides with
the sub-branch �1 introduced in Corollary 2.

Theorem 4 The solution branch
{ [0, λ̄] → H 1

0 (�)

λ �→ uλ

}

is continuously differentiable.

Proof The mapping

F :
{
R× H 1

0 (�) → H−1(�)

(λ,u) �→ −�u − λu − |u|3
}

is continuously differentiable, with (∂F/∂u)(λ,u) = L(λ,u) (see (11)), and
F(λ,uλ) = 0 for all λ ∈ [0, λ̄]. Using the Mean Value Theorem one can show that
L(λ,u) depends indeed continuously on (λ,u); see [16, Lemma 3.1] for details.

It suffices to prove the asserted smoothness locally. Thus, fix λ0 ∈ [0, λ̄]. Since
L(λ0,uλ0 ) is bijective by Theorem 3c), the Implicit Function Theorem gives a C1-
smooth solution branch

{
(λ0 − ε,λ0 + ε) → H 1

0 (�)

λ �→ ûλ

}

to problem (4), with ûλ0 = uλ0 . By (14),

‖ûλ0 − ωλ0‖H 1
0

≤ αλ0 . (19)

Since ûλ and ωλ depend continuously on λ, and αλ lower semi-continuously,
(19) implies

‖ûλ − ωλ‖H 1
0

≤ αλ + η
(
λ ∈ [0, λ̄] ∩ (λ0 − ε̃, λ0 + ε̃)

)

for some ε̃ ∈ (0, ε). Hence Theorem 3b) provides

ûλ = uλ

(
λ ∈ [0, λ̄] ∩ (λ0 − ε̃, λ0 + ε̃)

)
,

implying the desired smoothness in some neighborhood of λ0 (which of course is
one-sided if λ0 = 0 or λ0 = λ̄). �

As a consequence of Theorem 4, (uλ)λ∈[0,λ̄] is a continuous solution curve con-
necting the point (0, u0) with (λ̄, uλ̄), and thus must coincide with the sub-branch
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�1, connecting these two points, of the unique simple continuous curve � given by
Theorem 2. Using Theorem 3c), we obtain

Corollary 4 On the sub-branch �1 of � which connects (0, u0) with (λ̄, uλ̄), all
solutions are nondegenerate.

Thus, if we can choose λ̄ such that condition (7) holds true, Corollary 2 will give
the desired uniqueness result.

5 Choice of λ̄

We have to choose λ̄ such that condition (7) is satisfied. For this purpose, we use
computer-assistance again. With xM denoting the intersection of the symmetry axes
of the (doubly symmetric) domain �, i.e. xM = ( 1

2 , 1
2 ) for � = (0,1)2, we choose

λ̄ ∈ (0, λ1(�)), not too close to λ1(�), such that our approximate solution ωλ̄ satis-
fies

ωλ̄(xM) <

(
λ2(�) − λ1(�)

3

) 1
2 ·

(
λ̄

λ1(�)

) 1
2

, (20)

with “not too small” difference between right- and left-hand side. Such a λ̄ can be
found within a few numerical trials.

Here, we impose the additional requirement

ωλ̄ ∈ H 2(�) ∩ H 1
0 (�), (21)

which is in fact a condition on the numerical method used to compute ωλ̄. (Actually,
condition (21) could be avoided if we were willing to accept additional technical
effort.) Moreover, exceeding (9), we will now need an L2-bound δ̂λ̄ for the defect:

∥
∥−�ωλ̄ − λ̄ωλ̄ − |ωλ̄|3

∥
∥

L2 ≤ δ̂λ̄. (22)

Finally, we note that � is convex, and hence in particular H 2-regular, whence every
solution u ∈ H 1

0 (�) of problem (4) is in H 2(�).
Using the method described in Sect. 3, we obtain, by Theorem 3a), a positive

solution uλ̄ ∈ H 2(�) ∩ H 1
0 (�) of problem (4) satisfying

‖uλ̄ − ωλ̄‖H 1
0

≤ αλ̄, (23)

provided that (12) and (13) hold, and that ‖ωλ̄‖H 1
0

> αλ̄.

Now we make use of the explicit version of the Sobolev embedding H 2(�) ↪→
C(�̄) given in [21]. There, explicit constants Ĉ0, Ĉ1, Ĉ2 are computed such that

‖u‖∞ ≤ Ĉ0‖u‖L2 + Ĉ1‖∇u‖L2 + Ĉ2‖uxx‖L2 for all u ∈ H 2(�),
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with ‖uxx‖L2 denoting the L2-Frobenius norm of the Hessian matrix uxx . E.g. for
� = (0,1)2, [21] gives

Ĉ0 = 1, Ĉ1 = 1.1548 ·
√

2

3
≤ 0.9429, Ĉ2 = 0.22361 ·

√
28

45
≤ 0.1764.

Moreover, ‖uxx‖L2 ≤ ‖�u‖L2 for u ∈ H 2(�) ∩ H 1
0 (�) since � is convex (see e.g.

[14]). Consequently,

‖uλ̄ − ωλ̄‖∞ ≤ Ĉ0‖uλ̄ − ωλ̄‖L2 + Ĉ1‖uλ̄ − ωλ̄‖H 1
0

+ Ĉ2‖�uλ̄ − �ωλ̄‖L2 . (24)

To bound the last term on the right-hand side, we first note that

∥
∥|uλ̄|3 − |ωλ̄|3

∥
∥

L2 =
∥
∥
∥
∥3

∫ 1

0

∣
∣ωλ̄ + t (uλ̄ − ωλ̄)

∣
∣
(
ωλ̄ + t (uλ̄ − ωλ̄)

)
dt · (uλ̄ − ωλ̄)

∥
∥
∥
∥

L2

≤ 3
∫ 1

0

∥
∥
∣
∣ωλ̄ + t (uλ̄ − ωλ̄)

∣
∣2 · |uλ̄ − ωλ̄|

∥
∥

L2 dt

≤ 3
∫ 1

0

∥
∥ωλ̄ + t (uλ̄ − ωλ̄)

∥
∥2

L6‖uλ̄ − ωλ̄‖L6 dt

≤ 3
∫ 1

0

(‖ωλ̄‖L6 + tC6αλ̄

)2
dt · C6αλ̄ (25)

= 3C6

(

‖ωλ‖2
L6 + C6‖ωλ‖L6αλ̄ + 1

3
C2

6α2
λ̄

)

αλ̄, (26)

using (23) and an embedding constant C6 for the embedding H 1
0 (�) ↪→ L6(�) in

the last but one line; see e.g. [23, Lemma 2] for its computation. Moreover, by (4)
and (22),

‖�uλ̄ − �ωλ̄‖L2 ≤ δ̂λ̄ + λ̄‖uλ̄ − ωλ̄

∥
∥

L2+‖|uλ̄|3 − |ωλ̄|3
∥
∥

L2 . (27)

Using (23)–(27), and the Poincaré inequality

‖u‖L2 ≤ 1√
λ1(�) + σ

‖u‖H 1
0

(
u ∈ H 1

0 (�)
)
, (28)

we finally obtain

‖uλ̄ − ωλ̄‖∞ ≤
[

Ĉ0 + λ̄Ĉ2√
λ1(�) + σ

+ Ĉ1

+ 3C6Ĉ2

(

‖ωλ‖2
L6 + C6‖ωλ‖L6αλ̄ + 1

3
C2

6α2
λ̄

)]

· αλ̄ + Ĉ2δ̂λ̄, (29)
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and the right-hand side is “small” if αλ̄ and δ̂λ̄ are “small”, which can (again) be
achieved by sufficiently accurate numerical computations.

Finally, since

uλ̄(xM) ≤ ωλ̄(xM) + ‖uλ̄ − ωλ̄‖∞,

(29) yields an upper bound for uλ̄(xM) which is “not too much” larger than ωλ̄(xM).
Hence, since uλ̄(xM) = ‖uλ̄‖∞ by [11], condition (7) can easily be checked, and
(20) (with “not too small” difference between right- and left-hand side) implies a
good chance that this check will be successful; otherwise, λ̄ has to be chosen a bit
larger.

6 Computation of ωλ and δλ for Fixed λ

In this section we report on the computation of an approximate solution ωλ ∈
H 2(�) ∩ H 1

0 (�) to problem (4), and of bounds δλ and Kλ satisfying (9) and (10),
where λ ∈ [0, λ1(�)) is fixed (or one of finitely many values). We will again restrict
ourselves to the unit square � = (0,1)2.

An approximation ωλ is computed by a Newton iteration applied to problem (4),
where the linear boundary value problems

L
(λ,ω

(n)
λ )

[vn] = �ω
(n)
λ + λω

(n)
λ + ∣

∣ω
(n)
λ

∣
∣3 (30)

occurring in the single iteration steps are solved approximately by an ansatz

vn(x1, x2) =
N∑

i,j=1

α
(n)
ij sin(iπx1) sin(jπx2) (31)

and a Ritz-Galerkin method (with the basis functions in (31)) applied to problem
(30). The update ω

(n+1)
λ := ω

(n)
λ + vn concludes the iteration step.

The Newton iteration is terminated when the coefficients α
(n)
ij in (31) are “small

enough”, i.e. their modulus is below some pre-assigned tolerance.
To start the Newton iteration, i.e. to find an appropriate ω

(0)
λ of the form (31), we

first consider some λ close to λ1(�), and choose ω
(0)
λ (x1, x2) = α sin(πx1) sin(πx2);

with an appropriate choice of α > 0 (to be determined in a few numerical trials), the
Newton iteration will “converge” to a non-trivial approximation ω(λ). Then, starting
at this value, we diminish λ in small steps until we arrive at λ = 0, while in each of
these steps the approximation ω(λ) computed in the previous step is taken as a start
of the Newton iteration. In this way, we find approximations ωλ to problem (4) for
“many” values of λ. Note that all approximations ωλ obtained in this way are of the
form (31).
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The computation of an L2-defect bound δ̂λ satisfying
∥
∥−�ωλ − λωλ − |ωλ|3

∥
∥

L2 ≤ δ̂λ (32)

amounts to the computation of an integral over �.
Due to [11] every solution of (4) is symmetric with respect to reflection at the

axes x1 = 1
2 and x2 = 1

2 . Therefore it is useful to look for approximate solutions of
the form

ωλ(x1, x2) =
N∑

i,j=1
i,j odd

αij sin(iπx1) sin(jπx2). (33)

Using sum formulas for sin and cos one obtains for all n ∈ N0, x ∈R

sin
(
(2n + 1)πx

) =
(

2
n∑

k=1

cos(2kπx) + 1

)

sin(πx)

and thus ωλ can be written as follows:

ωλ(x1, x2) = α11 sin(πx1) sin(πx2)

+
� N−1

2 �
∑

k,l=1

α2k+1,2l+1

(

2
k∑

i=1

cos(2iπx1) + 1

)(

2
l∑

j=1

cos(2jπx2) + 1

)

· sin(πx1) sin(πx2). (34)

Since cos(x) ranges in [−1,1] and sin(πx1) sin(πx2) is positive for (x1, x2) ∈ � =
(0,1)2, ωλ will be positive if

α11 +
� N−1

2 �
∑

k,l=1

α2k+1,2l+1
([−2k + 1,2k + 1])([−2l + 1,2l + 1]) ⊂ (0,∞). (35)

Condition (35) can easily be checked using interval arithmetic and is indeed always
satisfied for our approximate solutions, since α11 turns out to be “dominant” and the
higher coefficients decay quickly. Hence ωλ is positive and one can omit the mod-
ulus in the computations. Therefore the integral in (32) can be computed in closed
form, since only products of trigonometric functions occur in the integrand. After
calculating them, various sums

∑N
i=1 remain to be evaluated. In order to obtain a

rigorous bound δ̂λ, these computations (in contrast to those for obtaining ωλ as de-
scribed above) need to be carried out in interval arithmetic [13, 27], to take rounding
errors into account.

Note that the complexity in the evaluation of the defect integral in (32), without
any further modifications, is O(N12) due to the term ω3

λ. Using some trick, it is
however possible to reduce the complexity to O(N6):
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Applying the sum formulas sin(a) sin(b) = 1
2 [cos(a − b) − cos(a + b)] and

cos(a) cos(b) = 1
2 [cos(a − b) + cos(a + b)] one obtains:

sin(i1πx) sin(i2πx) sin(i3πx) sin(i4πx) sin(i5πx) sin(i6πx)

= − 1

32

∑

σ2,σ3,σ4,
σ5,σ6∈{−1,1}

σ2σ3σ4σ5σ6 cos
(
(i1 + σ2i2 + σ3i3 + σ4i4 + σ5i5 + σ6i6)πx

)
.

Since
∫ 1

0 cos(nπx)dx =
{1 for n = 0

0 for n ∈ Z\{0}
}

=: δn, we get

∫

�

ωλ(x1, x2)
6 d(x1, x2)

= 1

1024

∑

σ2,...,σ6∈{−1,1}

∑

ρ2,...,ρ6∈{−1,1}
σ2 · . . . · σ6 · ρ2 · . . . · ρ6

·
N∑

i1,...,i6=1

N∑

j1,...,j6=1

δi1+σ2i2+···+σ6i6δj1+ρ2j2+···+ρ6j6αi1j1 · . . . · αi6j6 .

Setting αij := 0 for (i, j) ∈ Z
2\{1, . . . ,N}2 the previous sum can be rewritten as

1

1024

∑

σ2,...,σ6,
ρ2...,ρ6∈{−1,1}

σ2 · . . . · σ6 · ρ2 · . . . · ρ6

·
3N∑

k=−2N+1

3N∑

l=−2N+1

( ∑

i1+σ2i2+σ3i3=k

∑

j1+ρ2j2+ρ3j3=l

αi1j1αi2j2αi3j3

)

·
( ∑

σ4i4+σ5i5+σ6i6=−k

∑

ρ4j4+ρ5j5+ρ6j6=−l

αi4j4αi5j5αi6j6

)

.

For fixed σi , ρi , k and l each of the two double-sums in parentheses is O(N4).
Since they are independent, the product is still O(N4). The sums over k and l then
give O(N6), whereas the sums over σi and ρi do not change the complexity.

Moreover the sum
∑3N

k=−2N+1 is only

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑3N
k=3 if σ2 = 1, σ3 = 1,

∑2N−1
k=2−N if σ2 · σ3 = −1,

∑N−2
k=−2N+1 if σ2 = −1, σ3 = −1.
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Similarly, also certain constellations of σ4, σ5, σ6 reduce the k-sum, and of course
analogous reductions are possible for the l-sum. Since αij = 0 if i or j is even, the
result does not change if the sum is only taken over odd values of in, jn, k and l.

Remark 3

a) Computing trigonometric sums in an efficient way is an object of investigation
since a very long time, but up to our knowledge the above complexity reduction
has not been published before.

b) As an alternative to the closed form integration described above, we also tried
quadrature for computing the defect integral, but due to the necessity of com-
puting a safe remainder term bound in this case, we ended up in a very high
numerical effort, since a large number of quadrature points had to be chosen. So
practically closed-form integration turned out to be more efficient, although its
complexity (as N → ∞) is higher than the quadrature complexity.

Once an L2-defect bound δ̂λ (satisfying (32)) has been computed, an H−1-defect
bound δλ (satisfying (9)) is easily obtained via the embedding

‖u‖H−1 ≤ 1√
λ1(�) + σ

‖u‖L2

(
u ∈ L2(�)

)
(36)

which is a result of the corresponding dual embedding (28). Indeed, (32) and (36)
imply that

δλ := 1√
λ1(�) + σ

δ̂λ

satisfies (9).
The estimate (36) is suboptimal but, under practical aspects, seems to be the

most suitable way for obtaining an H−1-bound for the defect. At this point we also
wish to remark that, as an alternative to the weak solutions approach used in this
paper, we could also have aimed at a computer-assisted proof for strong solutions
(see [23]), leading to H 2-and C0-error bounds; in this case an L2-bound is needed
directly (rather than an H−1-bound).

7 Computation of Kλ for Fixed λ

For computing a constant Kλ satisfying (10), we use the isometric isomorphism

� :
{

H 1
0 (�) → H−1(�)

u �→ −�u + σu

}

, (37)

and note that �−1L(λ,ωλ) : H 1
0 (�) → H 1

0 (�) is 〈·, ·〉H 1
0

-symmetric since

〈
�−1L(λ,ωλ)[u], v〉

H 1
0

=
∫

�

[∇u · ∇v − λuv − 3|ωλ|ωλuv
]
dx, (38)
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and hence selfadjoint. Since ‖L(λ,ωλ)[u]‖H−1 = ‖�−1L(λ,ωλ)[u]‖H 1
0

, (10) thus
holds for any

Kλ ≥ [
min

{|μ| : μ is in the spectrum of �−1L(λ,ωλ)

}]−1
, (39)

provided the min is positive.
A particular consequence of (38) is that

〈(
I − �−1L(λ,ωλ)

)[u], u〉
H 1

0
=

∫

�

Wλu
2 dx

(
u ∈ H 1

0 (�)
)

(40)

where

Wλ(x) := σ + λ + 3
∣
∣ωλ(x)

∣
∣ωλ(x) (x ∈ �). (41)

Note that, due to the positivity of our approximate solutions ωλ established in
Sect. 6, the modulus can be omitted here, which again facilitates numerical compu-
tations. Choosing a positive parameter σ in the H 1

0 -product (recall that we actually
chose σ := 1), we obtain Wλ > 0 on �̄. Thus, (40) shows that all eigenvalues μ

of �−1L(λ,ωλ) are less than 1, and that its essential spectrum consists of the sin-
gle point 1. Therefore, (39) requires the computation of eigenvalue bounds for the
eigenvalue(s) μ neighboring 0.

Using the transformation κ = 1/(1−μ), the eigenvalue problem �−1L(λ,ωλ)[u] =
μu is easily seen to be equivalent to

−�u + σu = κWλu,

or, in weak formulation,

〈u,v〉H 1
0

= κ

∫

�

Wλuv dx
(
v ∈ H 1

0 (�)
)
, (42)

and we are interested in bounds to the eigenvalue(s) κ neighboring 1. It is therefore
sufficient to compute two-sided bounds to the first m eigenvalues κ1 ≤ · · · ≤ κm of
problem (42), where m is (at least) such that κm > 1. In all our practical examples,
the computed enclosures κi ∈ [κi, κ̄i] are such that κ̄1 < 1 < κ2, whence by (39) and
κ = 1/(1 − μ) we can choose

Kλ := max

{
κ̄1

1 − κ̄1
,

κ2

κ2 − 1

}

. (43)

Remark 4 By [11] and the fact that ωλ is symmetric with respect to reflection at
the axes x1 = 1

2 and x2 = 1
2 , all occurring function spaces can be replaced by their

intersection with the class of reflection symmetric functions. This has the advantage
that some eigenvalues κi drop out, which possibly reduces the constant Kλ.

The desired eigenvalue bounds for problem (42) can be obtained by computer-
assisted means of their own. For example, upper bounds to κ1, . . . , κm (with m ∈ N

given) are easily and efficiently computed by the Rayleigh-Ritz method [26]:
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Let ϕ̃1, . . . , ϕ̃m ∈ H 1
0 (�) denote linearly independent trial functions, for example

approximate eigenfunctions obtained by numerical means, and form the matrices

A1 := (〈ϕ̃i , ϕ̃j 〉H 1
0

)

i,j=1,...,m
, A0 :=

(∫

�

Wλϕ̃i ϕ̃j dx

)

i,j=1,...,m

.

Then, with �1 ≤ · · · ≤ �m denoting the eigenvalues of the matrix eigenvalue prob-
lem

A1x = �A0x

(which can be enclosed by means of verifying numerical linear algebra; see [3]), the
Rayleigh-Ritz method gives

κi ≤ �i for i = 1, . . . ,m.

However, also lower eigenvalue bounds are needed, which constitute a more com-
plicated task than upper bounds. The most accurate method for this purpose has
been proposed by Lehmann [15], and improved by Goerisch concerning its range
of applicability [4]. Its numerical core is again (as in the Rayleigh-Ritz method) a
matrix eigenvalue problem, but the accompanying analysis is more involved. In par-
ticular, in order to compute lower bounds to the first m eigenvalues, a rough lower
bound to the (m+ 1)st eigenvalue must be known already. This a priori information
can usually be obtained via a homotopy method connecting a simple “base problem”
with known eigenvalues to the given eigenvalue problem, such that all eigenvalues
increase (index-wise) along the homotopy; see [22] or [5] for details on this method,
a detailed description of which would be beyond the scope of this chapter. In fact,
[5] contains the newest version of the homotopy method, where only very small
(2 × 2 or even 1 × 1) matrix eigenvalue problems need to be treated rigorously in
the course of the homotopy.

Finding a base problem for problem (42), and a suitable homotopy connecting
them, is rather simple here since � is a bounded rectangle, whence the eigenvalues
of −� on H 1

0 (�) are known: We choose a constant upper bound c0 for |ωλ|ωλ = ω2
λ

on �, and the coefficient homotopy

W
(s)
λ (x) := σ + λ + 3

[
(1 − s)c0 + sωλ(x)2] (x ∈ �,0 ≤ s ≤ 1).

Then, the family of eigenvalue problems

−�u + σu = κ(s)W
(s)
λ u

connects the explicitly solvable constant-coefficient base problem (s = 0) to prob-
lem (42) (s = 1), and the eigenvalues increase in s, since the Rayleigh quotient does,
by Poincaré’s min-max principle.
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8 Computation of Branches (ωλ), (δλ), (Kλ), (αλ)

In the previous section we described how to compute approximations ωλ for a grid
of finitely many values of λ within [0, λ1(�)). After selecting λ̄ (among these) ac-
cording to Sect. 5, we are left with a grid

0 = λ0 < λ1 < · · · < λM = λ̄

and approximate solutions ωi = ωλi ∈ H 1
0 (�) ∩ L∞(�) (i = 0, . . . ,M). Further-

more, according to the methods described in the previous sections, we can compute
bounds δi = δλi and Ki = Kλi such that (9) and (10) hold at λ = λi .

Now we define a piecewise linear (and hence continuous) approximate solution
branch ([0, λ̄] → H 1

0 (�),λ �→ ωλ) by

ωλ := λi − λ

λi − λi−1
ωi−1 + λ − λi−1

λi − λi−1
ωi

(
λi−1 < λ < λi, i = 1, . . . ,M

)
. (44)

To compute corresponding defect bounds δλ, we fix i ∈ {1, . . . ,M} and λ ∈
[λi−1, λi], and let t := (λ − λi−1)/(λi − λi−1) ∈ [0,1], whence

λ = (1 − t)λi−1 + tλi, ωλ = (1 − t)ωi−1 + tωi. (45)

Using the classical linear interpolation error bound we obtain, for fixed x ∈ �,

∣
∣ωλ(x)3 − [

(1 − t)ωi−1(x)3 + tωi(x)3]∣∣

≤ 1

2
max

s∈[0,1]

∣
∣
∣
∣

d2

ds2

[
(1 − s)ωi−1(x) + sωi(x)

]3
∣
∣
∣
∣ · t (1 − t)

≤ 3

4
max

s∈[0,1]
[
(1 − s)ωi−1(x) + sωi(x)

] · (ωi(x) − ωi−1(x)
)2

≤ 3

4
max

{∥
∥ωi−1

∥
∥∞,

∥
∥ωi

∥
∥∞

}∥
∥ωi − ωi−1

∥
∥2

∞, (46)

∣
∣λωλ(x) − [

(1 − t)λi−1ωi−1(x) + tλiωi(x)
]∣
∣

≤ 1

2
max

s∈[0,1]

∣
∣
∣
∣

d2

ds2

[(
(1 − s)λi−1 + sλi

)(
(1 − s)ωi−1(x) + sωi(x)

)]
∣
∣
∣
∣ · t (1 − t)

≤ 1

4

(
λi − λi−1)∥∥ωi − ωi−1

∥
∥∞. (47)

Since ‖u‖H−1 ≤ C1‖u‖∞ for all u ∈ L∞(�), with C1 denoting an embedding con-
stant for the embedding H 1

0 (�) ↪→ L1(�) (e.g. C1 = √|�|C2), (46) and (47) imply
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∥
∥ω3

λ − [
(1 − t)

(
ωi−1)3 + t

(
ωi

)3]∥∥
H−1

≤ 3

4
C1 max

{∥
∥ωi−1

∥
∥∞,

∥
∥ωi

∥
∥∞

}∥
∥ωi − ωi−1

∥
∥2

∞ =: ρi, (48)

∥
∥λωλ − [

(1 − t)λi−1ωi−1 + tλiωi
]∥
∥

H−1

≤ 1

4
C1

(
λi − λi−1)∥∥ωi − ωi−1

∥
∥∞ =: τi . (49)

Now (45), (48), (49) give
∥
∥−�ωλ − λωλ − ω3

λ

∥
∥

H−1

≤ (1 − t)
∥
∥−�ωi−1 − λi−1ωi−1 − (

ωi−1)3∥∥
H−1

+ t
∥
∥−�ωi − λiωi − (

ωi
)3∥∥

H−1 + τi + ρi

≤ max
{
δi−1, δi

}+ τi + ρi =: δλ. (50)

Thus, we obtain a branch (δλ)λ∈[0,λ̄] of defect bounds which is constant on each
subinterval [λi−1, λi]. In the points λ1, . . . , λM−1, δλ is possibly doubly defined
by (50), in which case we choose the smaller of the two values. Hence, ([0, λ̄] →
R, λ �→ δλ) is lower semi-continuous.

Note that δλ given by (50) is “small” if δi−1 and δi are small (i.e. if the approxi-
mations ωi−1 and ωi have been computed with sufficient accuracy; see Remark 2a))
and if ρi, τi are small (i.e. if the grid is chosen sufficiently fine; see (48), (49)).

In order to compute bounds Kλ satisfying (10) for λ ∈ [0, λ̄], with ωλ given by
(44), we fix i ∈ {1, . . . ,M − 1} and λ ∈ [ 1

2 (λi−1 + λi), 1
2 (λi + λi+1)]. Then,

∣
∣λ − λi

∣
∣ ≤ 1

2
max

{
λi − λi−1, λi+1 − λi

} =: μi,

∥
∥ωλ − ωi

∥
∥

H 1
0

≤ 1

2
max

{∥
∥ωi − ωi−1

∥
∥

H 1
0
,
∥
∥ωi+1 − ωi

∥
∥

H 1
0

} =: νi,

(51)

whence a coefficient perturbation result given in [16, Lemma 3.2] implies: If

ζi := Ki

[
1

λ1(�) + σ
μi + 2γ

(∥
∥ωi

∥
∥

L4 + C4νi

)
νi

]

< 1, (52)

then (10) holds for

Kλ := Ki

1 − ζi

. (53)

Note that (52) is indeed satisfied if the grid is chosen sufficiently fine, since then
μi and νi are “small” by (51).

Analogous estimates give Kλ also on the two remaining half-intervals [0, 1
2λ1]

and [ 1
2 (λM−1 + λM),λM ].
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Choosing again the smaller of the two values at the points 1
2 (λi−1 + λi) (i =

1, . . . ,M) where Kλ is possibly doubly defined by (53), we obtain a lower semi-
continuous, piecewise constant branch ([0, λ̄] →R, λ �→ Kλ).

According to the above construction, both λ �→ δλ and λ �→ Kλ are constant on
the 2M half-intervals. Moreover, (44) implies that, for i = 1, . . . ,M ,

‖ωλ‖L4 ≤
{

max{‖ωi−1‖L4 , 1
2 (‖ωi−1‖L4 + ‖ωi‖L4)} for λ ∈ [λi−1, 1

2 (λi−1 + λi)]
max{ 1

2 (‖ωi−1‖L4 + ‖ωi‖L4),‖ωi‖L4)} for λ ∈ [ 1
2 (λi−1 + λi), λi]

}

and again we choose the smaller of the two values at the points of double definition.
Using these bounds, the crucial inequalities (12) and (13) (which have to be sat-

isfied for all λ ∈ [0, λ̄]) result in finitely many inequalities which can be fulfilled
with “small” and piecewise constant αλ if δλ is sufficiently small, i.e. if ω0, . . . ,ωM

have been computed with sufficient accuracy (see Remark 2a)) and if the grid has
been chosen sufficiently fine (see (48)–(50)). Moreover, since λ �→ δλ, λ �→ Kλ and
the above piecewise constant upper bound for ‖ωλ‖L4 are lower semi-continuous,
the structure of the inequalities (12) and (13) clearly shows that also λ �→ αλ can be
chosen to be lower semi-continuous, as required in Sect. 4. Finally, since (13) now
consists in fact of finitely many strict inequalities, a uniform (λ-independent) η > 0
can be chosen in Theorem 3b), as needed for Theorem 4.

9 Numerical Results

All computations have been performed on an AMD Athlon Dual Core 4800+
(2.4 GHz) processor, using MATLAB (version R2010a) and the interval toolbox
INTLAB [27]. For some of the time consuming nested sums occurring in the com-
putations, we used moreover mexfunctions to outsource these calculations to C++.
For these parts of the program we used C-XSC [13] to verify the results. Our source
code can be found on our webpage.1

In the following, we report on some more detailed numerical results.
Using λ̄ = 18.5 (which is not the minimally possible choice; e.g. λ̄ = 15.7 could

have been chosen) and M + 1 = 94 values 0 = λ0 < λ1 < · · · < λ93 = 18.5 (with
λ1 = 0.1, λ2 = 0.3 and the remaining gridpoints equally spaced with distance 0.2)
we computed approximations ω0, . . . ,ω93 with N = 16 in (31), as well as defect
bounds δ0, . . . , δ93 and constants K0, . . . ,K93, by the methods described in Sects. 6
and 7.

Figure 1 shows an approximate branch [0,2π2) → R, λ �→ ‖ωλ‖∞. The contin-
uous plot has been created by interpolation of the above grid points λj , plus some
more grid points between 18.5 and 2π2, where we computed additional approxima-
tions.

1http://www.math.kit.edu/iana2/~roth/page/publ/en

http://www.math.kit.edu/iana2/~roth/page/publ/en
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Fig. 1 Curve (λ,‖ωλ‖∞) with samples of ωλ in the case p = 3

Table 1 Eigenvalue enclosures for the first two eigenvalues

κ1 κ2

ω0 0.34350814513840
229 2.492570712

450

ω2.7 0.37521912233850
290 2.6221837653

393

ω6.7 0.4373273950411
355 2.87378161409

204

ω10.7 0.52752354636621
169 3.223417042515

185

ω14.7 0.6676848259417
379 3.725209290988

830

ω18.5 0.89237445994742
555 4.46288110102

093

For some selected values of λ, Table 1 shows, with an obvious sub- and super-
script notation for enclosing intervals, the computed eigenvalue bounds for problem
(42) (giving Kλ by (43)). These were obtained using the Rayleigh-Ritz and the
Lehmann-Goerisch method, and the homotopy method briefly mentioned at the end
of Sect. 7 (exploiting also the symmetry considerations addressed in Remark 4).
The integer m, needed for these procedures, has been chosen different (between 3
and 10) for different values of λ, according to the outcome of the homotopy. This
resulted in a slightly different quality of the eigenvalue enclosures.

Table 2 contains, for some selected of the 186 λ-half-intervals,

a) the defect bounds δλ obtained by (50) from the grid-point defect bounds δi−1,
δi , and from the grid-width characteristics ρi , τi defined in (48), (49),

b) the constants Kλ obtained by (53) from the grid-point constants Ki and the grid-
width parameters νi defined in (51) (note that μi = 0.1 for all i),

c) the error bounds αλ computed according to (12), (13).
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Table 2

λ-interval δλ Kλ αλ

[0,0.05) 0.0005943 1.7443526 0.0010378

(2,2.1) 0.0023344 1.7707941 0.0041521

(6,6.1) 0.0022937 1.6669879 0.0038369

(10,10.1) 0.0023644 1.5677657 0.0037168

(14,14.1) 0.0026980 1.9582604 0.0053028

(16,16.1) 0.0031531 3.2267762 0.0102701

(18.4,18.5] 0.0050056 13.8930543 0.0882899

Thus, Corollary 1, together with all the considerations in the previous sections,
proves Theorem 1.

Acknowledgements The authors are grateful to two anonymous referees for their helpful re-
marks and suggestions.
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