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Preface!

Inequalities are an essential component occurring in various mathematical areas.
On the one hand, they form a highly important collection of tools e.g. for proving
analytic or stochastic theorems or for deriving error estimates in numerical math-
ematics, and on the other hand they also constitute a fascinating and challenging
research field of their own. Inequalities also appear directly in mathematical mod-
els for many kinds of applications e.g. from science, engineering, and economics.
This volume reflects all these aspects of the area. Classical inequalities related to
means or to convexity are addressed as well as inequalities arising in the field of
ordinary and partial differential equations, like Sobolev or Hardy-type inequalities,
and inequalities occurring in geometrical contexts.

Within the last five decades, great contributions to the field of inequalities have
been made by late Wolfgang Walter. His book on differential and integral inequal-
ities was a real breakthrough in the 1970’s and has generated a vast variety of fur-
ther research in this field. He also organized six of the seven “General Inequalities”
Conferences held at Oberwolfach between 1976 and 1995, and co-edited their pro-
ceedings volumes. He participated as an honorary member of the Scientific Com-
mittee in the “General Inequalities 8” conference in Hungary. As a recognition
of his great achievements, this volume is dedicated to Wolfgang Walter’s mem-
ory.

The “General Inequalities” meetings found their continuation in the “Confer-
ences on Inequalities and Applications” which, so far, have been held twice in Hun-
gary. This volume contains some contributions of the participants of the second
of these conferences which took place in Hajdiszoboszl6 in September 2010, as
well as additional articles written upon invitation. These contributions reflect many
theoretical and practical aspects in the field of inequalities, and will be useful for

IThe editors are thankful to the members of the staff of the publisher Birkhiuser, in particular
to Dr. Barbara Hellriegel, for their kind help during the whole publication process of the book.
The publication was partially supported by the Hungarian Scientific Research Fund (OTKA) Grant
NK-81402 and by TAMOP 4.2.1./B-09/1/KONV-2010-0007/IK/IT project.
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researchers and lecturers, as well as for students who want to familiarize themselves
with the area.

The Editors



In Memoriam Wolfgang Walter (1927-2010)>

Wolfgang Reichel

Zusammenfassung Am 26. Juni 2010 verstarb Wolfgang Walter im Alter von
83 Jahren in Karlsruhe. Durch seine Beitrige zur Theorie der Differentialunglei-
chungen wurde er international bekannt. Seine Lehrbiicher sind weit verbreitet
und werden von Studierenden und Lehrenden gerne benutzt. Als Hochschullehrer,
Wissenschaftler, Buchautor, Mitherausgeber von Zeitschriften und Organisator von
Konferenzen hat er die Mathematik nachhaltig bereichert und iiber viele Jahre mit-
gestaltet.

Schliisselworter  Differentialungleichungen - Quasimonotonie - parabolische
Systeme - Hingebriicken - wandernde Wellen - nichtlineare Oszillationen

Mathematics Subject Classification  Primary 01A70 - 35K40 - Secondary
74J30 - 35L75

Professor emeritus Dr. Wolfgang Walter ver-
starb am 26. Juni 2010 im Alter von 83 Jahren in
Karlsruhe. Mit ihm verlor die Gemeinschaft der
Mathematikerinnen und Mathematiker einen
engagierten Hochschullehrer, einen begeisterten
Forscher, einen angesehenen Kollegen. Die
Familie Walter verlor mit ihm den Ehemann,
Bruder, Vater, Schwiegervater und Grof3vater.

Um den Lesern die Gelegenheit zu geben, die
Stationen in Wolfgang Walters Leben mitzuver-
folgen, ist dieser Nachruf fast durchgehend in
der Gegenwartsform geschrieben.

.‘_

Bildarchiv des Mathematischen

Forschungsinstituts Oberwolfach

2© Vieweg+Teubner, 2011. Nachgedruckt mit freundlicher Genehmigung von: Reichel, W. ,In
Memoriam Wolfgang Walter (1927-2010)%. Jahresbericht der Deutschen Mathematiker Vereini-
gung (DMV), Bd. 113, Heft 2, S. 57-79.

vii



viii In Memoriam Wolfgang Walter (1927-2010)
1 Studium und Promotion in Tiibingen (1947-1956)

Wolfgang Walter wird am 2. Mai 1927 in Schwibisch Gmiind geboren. Seine
Schulzeit wird 1943 abrupt unterbrochen durch seine Einberufung zunéchst als
Flakhelfer und spiter als Soldat an der Ostfront, gefolgt von Verwundung und
amerikanischer Kriegsgefangenschaft. Nach seiner Entlassung Ende 1946 schliefit
er seine Schulausbildung ab und studiert von 1947 bis 1952 Mathematik und
Physik an der Universitdt Tiibingen. Er legt 1952 die erste Dienstpriifung und
1955 nach eineinhalbjéhriger Referendarzeit die zweite Dienstpriifung fiir das
Lehramt an Hoheren Schulen ab. Es folgt seine Promotionszeit bei Erich Kamke
mit dem Abschluss der Promotion im Jahr 1956 iiber das Thema ,,Mittelwert-
sitze und ihre Verwendung zur Losung von Randwertaufgaben. Kamkes FEin-
fluss auf Wolfgang Walters wissenschaftliche Entwicklung ist Zeit seines Lebens
deutlich spiirbar. Stets spricht Walter mit groffitem Respekt von seinem wis-
senschaftlichen Lehrer und Forderer. Er legt grolen Wert auf die Wiirdigung von
Kamkes Verdiensten bei der Neubegriindung der Theorie gewohnlicher und par-
tieller Differentialgleichungen, vgl. [21]. Aber vor allem thematisch und metho-
disch hat Kamke enormen Einfluss auf Wolfgang Walters wissenschaftliches Werk.
Kamkes Biicher iiber Differentialgleichungen sind Standardwerke der Dreifliger
bis Fiinfziger Jahre. Sein Bemiihen um #uBerste Klarheit, Strenge und Prizi-
sion im Umgang mit Differentialgleichungen findet deutlichen Widerhall in Wolf-
gang Walters Publikationen. Kamkes Formulierung der Eindeutigkeitsbedingungen
fiir Losungen von Anfangswertproblemen bei gewohnlichen Differentialgleichun-
gen, seine Formulierung der Monotoniesitze, die Verwendung der Methode der
sukzessiven Approximationen sowie Priifers Polarkoordinatenmethode zur Losung
Sturm-Liouvillescher Randwertaufgaben finden Eingang und Wiirdigung in Wal-
ters Lehrbuch iiber gewohnliche Differentialgleichungen [27] und werden dort in
eleganter Form, priagnanter Darstellung und konsequenter begrifflicher Erweiterung
zum Standardrepertoire fiir Vorlesungen iiber gewohnliche Differentialgleichun-
gen.

2 Familiengriindung und erster USA-Aufenthalt (1957-1962)

Im Jahr 1957 heiraten Wolfgang Walter und Irmgard Scheu, verlassen im selben
Jahr Tiibingen und beginnen gemeinsam einen neuen Lebensabschnitt in Karlsruhe.
Zunichst arbeitet Wolfgang Walter an der Universitit Karlsruhe als Assistent bei
Johannes Weissinger. Es folgt 1958-1959 an der University of Maryland, College
Park, der erste von zahlreichen USA-Aufenthalten. Das Ehepaar Walter fahrt per
Schiffspassage von Le Havre {iber den Atlantik und erlebt bei der Ankunft im Hafen
von New York einen duflerst emotionalen Moment. Auch noch Jahrzehnte spiter
lasst Wolfgang Walter diesen Augenblick, in dem er und seine Frau zum ersten
Mal die Freiheitsstatue sehen und hoffnungsvoll einer gemeinsamen Zukunft entge-
genblicken, in seinen Erinnerungen wiederaufleben und teilt ihn mit Kollegen und
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Freunden. Kurz nach der Ankunft in den Vereinigten Staaten wird er zum ersten Mal
Vater. Es ist die Zeit des kalten Krieges unmittelbar nach dem Sputnik-Schock, in
der er die Dynamik des wissenschaftlichen Aufbruchs in den USA fasziniert miter-
lebt.

Nach seiner Riickkehr nach Karlsruhe habilitiert er sich 1960 mit einer Arbeit
iber Existenz- und Eindeutigkeitssitze fiir eine spezielle Klasse von partiellen Dif-
ferentialgleichungen. Seine Habilitationsschrift wird mit dem Dozentenpreis der
Karl-Freudenberg-Stiftung ausgezeichnet. Noch im selben Jahr wird er Dozent und
ein Jahr spiter wissenschaftlicher Rat.

Im gleichen Zeitraum wichst durch die Geburt der Kinder seine Familie; nach
Wolfgang (1959 in den USA) werden Susanne (1962) und Katrin (1963) geboren.

3 Professor in Karlsruhe (1963-1995)

Nach einem abgelehnten Ruf an die Universitit Wien im Jahr 1962 erfolgt 1963
seine Berufung auf ein neu eingerichtetes Ordinariat fiir Mathematik an der Univer-
sitdt Karlsruhe, das er bis zu seiner Emeritierung im Jahre 1995 innehat. Die lange
Zeitspanne von 32 Jahren, in denen er als Professor im aktiven Dienst der Universitit
Karlsruhe steht, stellt eine duBerst produktive Phase seiner akademischen Karriere
dar.

1965 erhilt Wolfgang Walter gleich drei Rufe auf Ordinariate an den Univer-
sitdten Hamburg, Erlangen-Niirnberg und an die University of Notre Dame, Indi-
ana. Es folgen im Jahr 1971 drei weitere Rufe auf Positionen als full professor an
die University of Delaware, an die State University of New York (SUNY) und an die
Michigan State University. Eine besondere Auszeichnung ist der Ruf an die Univer-
sity of Delaware auf einen fiir ihn neu geschaffenen Unidel-Stiftungslehrstuhl. Trotz
insgesamt sieben Rufen bleibt Wolfgang Walter an der Universitdt Karlsruhe. Der
Aufbau der Fakultit fiir Mathematik in den Jahrzehnten nach dem zweiten Weltkrieg
und die Wiederaufnahme der internationalen wissenschaftlichen Beziehungen, ins-
besondere zu Instituten in den USA, sind dabei sicherlich eine starke Motivation
fiir ihn. In Karlsruhe findet er passende Strukturen vor, die ihm seine erfolgreiche
Arbeit in Forschung und Lehre erméglichen und seine administrativen Pflichten in
der akademischen Selbstverwaltung erleichtern. Die hochst effiziente Zusammenar-
beit mit seiner langjdhrigen Sekretdrin Irene Jendrasik bietet eine sehr gute Rah-
menbedingung fiir seine wissenschaftliche Produktivitit. Gemeinsam setzen Irene
Jendrasik und Wolfgang Walter bei der Editierung wissenschaftlicher Texte konse-
quent auf Textverarbeitungssysteme und gehoren zu den ersten Benutzern von IATEX
an der Karlsruher Fakultit.

Von 1975 bis 1977 leitet er die Geschicke der Fakultit fiir Mathematik als Dekan.
Seine gut vorbereiteten und stets kurz und knapp gehaltenen Sitzungen finden den
Beifall des Kollegiums. Seine personliche Integritit, seine herzliche, freundliche
und humorvolle Art des Umgangs bringt ihm die Wertschitzung seiner Karlsruher
Kollegen ein.
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Wolfgang Walter besitzt eine starke Affinitdt zu den akademischen Institutionen
in den USA und zu den Vereinigten Staaten selbst. Sie ist begriindet einerseits im
Vertrauen gegeniiber den US-amerikanischen Befreiern, das wihrend seiner Zeit
in Gefangenschaft herangewachsen war, und andererseits in der weltéffnenden Er-
fahrung seines ersten USA-Aufenthaltes in den Jahren 1958 bis 1959. Zudem lebt
seine Schwester seit den Fiinfziger Jahren in den USA. Mitte der Sechziger bzw.
Anfang der Siebziger Jahre, als die Rufe aus den USA kommen, zieht die Fami-
lie Walter ernsthaft eine Ubersiedlung in die USA in Erwigung. Durch mehrere
lingere Aufenthalte in Begleitung seiner Familie ist Wolfgang Walter mit dem
US-amerikanischen Hochschulsystem vertraut und macht gute Erfahrungen mit
dem Leben in den USA. Er kennt die Vorziige und Nachteile des Lebens und
Forschens auf beiden Seiten des Atlantiks genau, als er sich schlieBlich fiir den
Verbleib in Karlsruhe entscheidet. Auch danach findet er weiterhin die meisten
seiner wissenschaftlichen Kontakte in den USA. Wihrend seiner gesamten wis-
senschaftlichen Titigkeit ist er mindestens elf Mal zu Aufenthalten, die mehrere
Monate bis hin zu einem ganzen akademischen Jahr dauern, als Gastprofessor an
nordamerikanischen Universitdten. Gerne berichten Irmgard und Wolfgang Walter
auch noch Jahre spiter davon, wie wohl sich ihre Familie bei diesen Aufenthalten
gefiihlt hat.

4 Buchautor und akademischer Lehrer

Sein erstes, 1964 erschienenes Buch iiber Differential- und Integralungleichun-
gen [20] sowie dessen 1970 erschienene englischsprachige Erweiterung [22] haben
Wolfgang Walter unter Fachkollegen bekannt gemacht. In Karlsruhe verfolgt er das
Ziel, die Ausbildung der Studierenden in der Analysis auf eine neue Basis zu stellen.
Anfinglich gibt er zu seinen Vorlesungen eigene Skripten heraus, aus denen im
Laufe der Jahre schlieBlich Lehrbiicher werden.

Sein erstes Lehrbuch iiber Distributionentheorie [25] erscheint 1970, sein zweites
iiber Potentialtheorie [23] 1971. Beiden Biichern gemeinsam ist der knappe, klare
Stil, in dem sich sowohl Leser als auch Autor auf die wesentlichen Elemente
der Theorie und ihren Anwendungen konzentrieren. In erfrischend kurzer Darstel-
lung wird der Leser der Distributionentheorie vom einfachen Kalkiil der Dis-
tributionen bis hin zum Satz von Paley-Wiener gefiihrt. Mit einem auf Heinz
Konig zuriickgehenden einfachen Beweis des Satzes von Malgrange-Ehrenpreis
zur Existenz von Grundlosungen fiir partielle Differentialgleichungen mit konstan-
ten Koeffizienten und einem Kapitel iiber Sobolevriaume beendet Wolfgang Wal-
ter seine Distributionentheorie und verdeutlicht, dass ihm vor allem die Anwen-
dungen auf partielle Differentialgleichungen am Herzen liegen. In seiner Poten-
tialtheorie weht ebenfalls ein frischer Wind. Nach den Kapiteln iiber harmoni-
sche Funktionen und Einfach- und Doppelschichtpotentiale finden sich gleich drei
methodisch unterschiedliche Beweise fiir die Existenz von Losungen des Dirich-
letschen Randwertproblems: ein Beweis mittels Fredholmscher Integralgleichun-



In Memoriam Wolfgang Walter (1927-2010) Xxi

gen, ein zweiter basierend auf der Perronschen Methode von Ober- bzw. Unter-
funktionen und ein dritter Beweis mit Hilfe von Differenzenverfahren auf Git-
tern inklusive Konvergenzbetrachtung beim Grenziibergang der Gitterweite gegen
Null.

1972 erscheint Wolfgang Walters beliebtestes Lehrbuch iiber Gewohnliche Dif-
ferentialgleichungen [27] mit insgesamt sieben Auflagen, einer spiter erschienenen
Ubersetzung ins Englische [26] sowie lizenzierten und sehr erfolgreichen Nach-
drucken in China. Mit steigender Auflage und steter Erprobung des Lehrstoffes
im Horsaal entsteht ein Gesamtwerk, in dem Wolfgang Walter abwechselt zwi-
schen konsequenter Verwendung des Banachschen Fixpunktsatzes, funktional-
analytischen Argumenten, Methoden der Differentialungleichungen, Phasenebe-
nenargumenten, Floquet-Theorie, Attraktoren, Lyapunov-Funktionen und Stabilitéts-
begriffen. Stets visiert er den mit den vorhandenen Hilfsmitteln bestmoglichen Satz
an. Dieses Buch ist am stirksten von Wolfgang Walters Streben nach einem ebenso
knappen wie lesbaren Stil geprigt.

Zwischen 1985 und 2002 erscheinen mehrere Auflagen von Wolfgang Walters
Analysis 1 [28] und Analysis 2 [29] im Springer Verlag in der Reihe ,,Grundwis-
sen Mathematik®. In dieser Reihe wird der neuartige Ansatz verfolgt, die Grundbe-
griffe der Analysis in ihrem historischen Entwicklungsprozess darzustellen. Dabei
nehmen Autor und Leser eine Perspektive ein, in der sie das Ringen um die Begriffe
der modernen Analysis wie Stetigkeit, Grenzwert, Funktion, Konvergenz miterleben
und gleichzeitig ihre Bedeutung bei der Losung wichtiger Probleme erkennen, z.B.
beim Nachweis der Keplerschen Gesetze aus dem Newtonschen Gravitationsgesetz.
Durch viele historisch interessante Details und Anmerkungen, die Wolfgang Wal-
ter mit viel Liebe recherchiert, wird das Lesen zum Vergniigen. Gleichzeitig bleibt
er seinem Stil, die wichtigen Sétze und Beweise knapp und prignant darzustellen,
treu. Im zweiten Band des Analysis-Lehrbuches treten die historischen Erlduterun-
gen zugunsten der modernen Darstellung in den Hintergrund. Dafiir finden sich in
der Darstellung der Theorie des Lebesgueschen Integrals, im Beweis des Trans-
formationssatzes fiir Lebesgueintegrale mit Hilfe des Sardschen Lemmas und in der
Konvergenztheorie der Fourierreihen die von Lehrenden und Studierenden gleicher-
maflen geschitzten Hohepunkte seiner Lehrbiicher.

Auch in seinen Vorlesungen ist das Streben nach Effizienz greitbar. Er hilt
mit Freude seine Vorlesungen und versteht es, Studierende fiir Themen der ange-
wandten Analysis zu begeistern. Aus seinen Vorlesungen und Seminaren gehen
zahlreiche Diplomanden hervor. Elf Doktoranden erlangen mit Hilfe seiner Betreu-
ung den Doktorgrad und fiinf Wissenschaftler seiner engeren Arbeitsgruppe habili-
tieren sich. Mit seinen Kollegen und Mitarbeitern diskutiert er gerne und ausgiebig
an der Tafel in seinem Biiro oder auf einer Papierserviette beim gemeinsamen Mit-
tagessen. Seine Denk- und Schlussweisen trigt er in bewundernswerter Klarheit
vor. Oft sind sie neuartig und iiberraschend und bereichern diejenigen, die von ihm
Mathematik lernen und mit ihm iiber Mathematik diskutieren.
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Liste der Doktoranden

Herbert Weigel, 1968
Klaus Deimling, 1969
Gerhard Schleinkofer, 1969
Alexander Voigt, 1971
Roland Lemmert, 1974
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Liste der Habilitationen

Klaus Ritter, 1968

Klaus Deimling, 1971
Peter Volkmann, 1975
Roland Lemmert, 1979
Reinhard Redlinger, 1988

Gerhard Lamott, 1976
Jorg HeuB3, 1979

Dietrich Wendland, 1981
Reinhard Redlinger, 1982
Volkmar Weckesser, 1993
Wolfgang Reichel, 1996

5 Wissenschaftliches Werk

Neben seinen 8 Biichern verfasst Wolfgang Walter iiber 130 wissenschaftliche Pub-
likationen, die inzwischen mehr als 600-mal zitiert worden sind. Seine Themenge-
biete sind vielfiltig, insbesondere interessieren ihn gewohnliche und partielle Dif-
ferentialgleichungen sowie angewandte und numerische Mathematik. Auf inter-
nationalen Kongressen erfahren seine wissenschaftlichen Vortrige Anerkennung.
Seine Beitridge auf dem Gebiet der Differentialungleichungen sind bahnbrechend
und grundlegend fiir eine Vielzahl weiterer Untersuchungen. Bis heute entfalten
seine priagnant geschriebenen Publikationen ihre inspirierende Wirkung und zeigen,
wie stark die Theorie der Differentialgleichungen von der Idee der Ungleichungen
profitiert. Wolfgang Walter sieht die Trennung von gewohnlichen und partiellen Dif-
ferentialgleichungen undogmatisch und widmet sich beiden Feldern mit gro3em In-
teresse.

Eine besondere Stellung unter seinen Koautoren nehmen Ray Redheffer, UCLA
(21 gemeinsame Arbeiten) und Joe McKenna, Univ. of Connecticut (8 gemeinsame
Arbeiten) ein. Mit beiden verbindet ihn nicht nur eine fruchtbare mathematische Ko-
operation sondern auch eine private Freundschaft, die sich auf die Familien Walter,
Redheffer und McKenna erstreckt.

Anlisslich seines 66. Geburtstages wird Wolfgang Walter Band 3 der World
Scientific Series in Applicable Analysis [1] gewidmet. Auf knapp 600 Seiten sind
Beitriige von Wissenschaftlerinnen und Wissenschaftlern enthalten iiber das Thema
Ungleichungen und ihre Anwendungen in den Gebieten Analysis, Wirtschaftswis-
senschaften, Differential- und Funktionalgleichungen. Im ersten Beitrag dieses
Bandes findet sich ,R.M. Redheffer’s 66th birthday tribute to Wolfgang Wal-
ter” [15]. Diesem lesenswerten Beitrag iiber Wolfgang Walters wissenschaftliches
Werk kommt eine besondere Rolle zu, da die Wiirdigung zu seinen Lebzeiten
stattfindet und von ihm als ehrenvolle Auszeichnung betrachtet wird. Aus diesem
Grund soll hier keine Wiederholung oder Kopie vorgenommen werden. Statt dessen
findet sich am Ende dieses Nachrufes in Abschnitt 9 eine exemplarische Wiirdigung



In Memoriam Wolfgang Walter (1927-2010) Xiii

von Wolfgang Walters wissenschaftlichen Beitrdgen in Form einiger detaillierter
Ausziige, die sinngemél, aber nicht wortlich aus seinen Arbeiten stammen.

6 Zeitschriften, Tagungen, Amter

Nicht nur durch seine eigenen wissenschaftlichen Beitridge bereichert Wolfgang
Walter die Mathematik. Auch als Mitherausgeber der Zeitschriften Applicable Ana-
lysis ab 1971, Journal of Nonlinear Analysis — TMA ab 1976, Journal of Dynamic
Systems and Applications ab 1992 und Journal of Inequalities and Applications ab
1997 ist er einer groen Zahl von Mathematikern bekannt. Ebenfalls gibt er die
Springer Reihe Grundwissen Mathematik und die Scientific Series in Applicable
Analysis (WSSAA, World Sci. Publ., River Edge, NJ) mit heraus.

Als 1976 die erste ,,General Inequalities” - Tagung in Oberwolfach stattfindet,
ist Wolfgang Walter von Anfang an dabei. In seiner wissenschaftlichen Karriere
lasst er sich seit langem vom Thema Ungleichungen leiten. Integralungleichun-
gen, Normabschétzungen, Ober- und Unterfunktionen interessieren ihn ebenso wie
spiter die verifizierte EinschlieBung von Losungen gewdhnlicher Differentialglei-
chungen mittels computerunterstiitzter Methoden der Intervallarithmetik. Ab 1978
gehort er dem Leitungsgremium der Tagungsreihe an und iibernimmt ab 1983
die Herausgabe und Editierung der Tagungsbénde ,,General Inequalities 3—7%. Die
Tagungen haben einen internationalen Charakter und sind von der Idee durchdrun-
gen, die Mathematik einmal nicht nach Disziplinen einzuteilen und zu separieren,
sondern vielmehr einen vereinigenden Gedanken in den Vordergrund zu stellen.
Dazu eignet sich das Thema Ungleichungen bestens — nicht zuletzt aufgrund der he-
rausragenden Leistungen von Hardy, Littlewood und Pélya sowie Beckenbach und
Bellman. Bei vielen ,,General Inequalities* - Tagungen werden in den Nichten Un-
gleichungen bewiesen oder widerlegt, die tags zuvor zur Diskussion gestellt worden
sind. Mit den ,,General Inequalities* - Tagungen gelingen Wolfgang Walter wichtige
Beitridge zur Internationalisierung der Mathematik und zur Verbreitung und Weiter-
gabe wissenschaftlicher Forschungsresultate.

Wolfgang Walter hat ein engagiertes Interesse am wissenschaftlichen Fortschritt,
an der Unterstiitzung seiner Kollegen und an der Forderung junger Nachwuchswis-
senschaftler. Er ist Mitglied der DMV und der GAMM sowie der AMS, MAA und
SIAM. Die unnatiirliche Einteilung in ,,Reine* und ,,Angewandte* Mathematik ist
ihm fremd. Als einen wichtigen Teil seines mathematischen Lebenswerks betrachtet
er den Fortschritt in der angewandten Analysis und der numerischen Mathematik.
Daher fiihlt er sich der GAMM besonders verbunden und fordert sie in vielerlei Hin-
sicht. Er ist von 1986 bis 1989 Prisident und von 1989 bis 1992 Vizeprisident der
GAMM. Als 1987 die erste ICIAM Konferenz (International Conference on Indus-
trial and Applied Mathematics) in Paris stattfindet, ist Wolfgang Walter von Beginn
an involviert und fordert nach Kriften diese Konferenz, die 2011 zum siebten Mal
stattfinden wird. Er ist Mitbegriinder des Richard-von-Mises-Preises der GAMM,
ist Mitglied des Preiskomitees und unterstiitzt den GAMM-Vorstand als beratendes
Mitglied bis weit nach seiner Emeritierung.
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7 Personliche Begegnungen

In Wolfgang Walters Leben spielen zahlreiche Begegnungen mit Kollegen, Koau-
toren und Freunden eine wichtige Rolle. Ohne Anspruch auf Vollstindigkeit seien
mit George Knightly, Jean Mawhin, Djairo de Figueiredo, Alexander Weinstein,
Hans Weinberger, Bill Ames, Ivo Babuska, Norrie Everitt, Catherine Bandle, Bernd
Kawohl, Vangipuram Lakshmikantham, L4szl6 Losonczi, Russell Thompson einige
Personlichkeiten aus dem Umfeld seiner mathematischen Tétigkeit genannt, zu de-
nen er iiber viele Jahre kollegiale Verbindungen bis hin zu guten Freundschaften
pflegt.

Die besonders intensiven Beziehungen zu seinen langjéhrigen Freunden und
Koautoren Ray Redheffer und Joe McKenna wurden bereits erwédhnt und werden in
Abschnitt 9 nochmals zur Sprache kommen. Am besten wird dies durch die nach-
folgenden Erinnerungen von Joe McKenna selbst beschrieben.

Memories of Wolfgang Walter. By Joe McKenna, Univ. of Connecticut

I first met Wolfgang Walter in Texas, at a conference in 1980, almost exactly thirty years to
the day before his death. At the time, I was a young associate professor and he struck me as
very old and distinguished. (He was younger than I am now!)

He also impressed me with a beautiful lecture on differential inequalities. We talked and our
conversations evolved to the point where he was to spend a semester of an upcoming sab-
batical in Gainesville in the autumn of 1982. My hope was to use the visit to learn about the
field of differential inequalities. During that time, we worked on a competing species prob-
lem with Dirichlet boundary conditions and got some partial results. The problem remains
open.

Later, I visited him in Karlsruhe several times, in the summers of 1984 and 1986. We still
worked on differential inequalities for finite difference equations, but also on results using
degree theory and nonlinear functional analysis. Later, he visited me in Storrs, in 1988.
There we worked on a travelling wave problem for a suspension bridge equation. This in-
volved nothing more advanced than calculus and we found explicit solutions of the nonlin-
ear equation. The area started by this paper is still quite active today. Later, in the nineties,
I visited Karlsruhe again, and (with his then student Wolfgang Reichel), we worked on ra-
dially symmetric solutions of semilinear equations with boundary blowup. This involved
ordinary differential equation techniques.

Over the years, my family and his became very close and my children have happy memories
of visits to the house on Breslauerstrasse. Looking back, I am struck mainly by the variety
of different problems Wolfgang Walter would tackle with gusto. He loved all mathematics
and would tackle any problem, regardless of what was involved in the solution. A truly
natural mathematician.

Die Musik spielt in Wolfgang Walters Leben eine wichtige Rolle. Er singt gerne,
spielt gut Klavier und hat bereits als Student in Tiibingen Vorlesungen iiber Musik-
theorie besucht. Im Hause Walter wird gerne und oft gesungen und musiziert. Mit
seinem Freund und Koautor Ray Redheffer verbindet ihn neben der Liebe zur
Mathematik auch die Freude am Klavierspielen. Bei zahlreichen Oberwolfach-
Tagungen nutzt Wolfgang Walter die Gelegenheit, um mit gleichgesinnten Kolle-
ginnen und Kollegen Musik zu spielen. In diesem Zusammenhang ergibt sich zu
seinen Kollegen Ulrich Kulisch (Univ. Karlsruhe) und Klaus Kirchgissner (Univ.
Stuttgart) eine enge freundschaftliche Beziehung. Die folgenden Erinnerungen
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von Ulrich Kulisch zeichnen den Beginn dieser Freundschaft nach und zeigen, wie
die Musik zu einem Leitthema dieser Freundschaft wurde.

Erinnerungen an Wolfgang Walter. Von Ulrich Kulisch, Univ. Karlsruhe

Anfang 1969 erhielten sowohl Wolfgang Walter als auch ich ein Angebot fiir einen
Forschungsaufenthalt am Mathematics Research Center (MRC) der University of Wis-
consin. Die Karlsruher Fakultit genehmigte beide Forschungsaufenthalte fiir das Win-
tersemester 1969/70. Am 1. August 1969 reiste ich mit Familie dorthin ab. Wir hatten
damals zwei Tochter im Alter von zwei Jahren und drei Monaten.

Am MRC wurde mir ein Zimmer zugewiesen. Im Nachbarzimmer saf} Klaus Kirchgéssner,
ein Zimmer weiter George Knightly. Beide waren uns bei der Uberwindung der Anfangs-
schwierigkeiten (Beschaffung von Auto, Wohnung, Mébeln, Kinderbetten usw.) behilflich.
Sie machten mir auch klar, dass es hier tiblich sei, mittags zum Joggen zu gehen.

Am 1. September traf dann Familie Walter ein. Sie hatten drei Schulkinder im Alter bis zu
zehn Jahren und mussten sich daher in den University Houses einmieten. Aber sie hatten
ja schon Amerika-Erfahrung. Sie wussten, dass man zunichst einmal die ganze Wohnung
durchputzen und in Ordnung bringen musste. Wolfgang griff zu Pinsel und Farbe und zim-
merte angekaufte Mobel zurecht. Auch Familie Knightly hatte Schulkinder und wohnte in
den University Houses. Als die Anfangsschwierigkeiten iiberwunden waren, wurde auch
Wolfgang Walter davon iiberzeugt, dass man mittags zum Joggen geht.

In Wisconsin gab es einen bereits damals beriihmten amerikanischen Architekten namens
Frank Lloyd Wright. Man erzihlte uns, dass es in der Nédhe des Ortes Spring Green am
Wisconsin River etwa 50 Meilen norddstlich von Madison ein von ihm erbautes, architek-
tonisch interessantes Restaurant gibt. Nachdem alle einigermafBen eingerichtet waren, hatte
Familie Walter die Idee, am nichsten Sonntag dorthin zum Mittagessen zu fahren. Wir hit-
ten eine so weite Reise in eine unbekannte Gegend mit unserer kleinen Tochter damals wohl
nicht gewagt, aber in Begleitung von Frau Walter als Arztin willigten wir ein. Es lief alles
sehr harmonisch ab und auch unsere kleine Tochter benahm sich zufriedenstellend. Gegen
Ende unseres Ausfluges boten Irmgard und Wolfgang Walter uns das ,,Du‘ an. Dies war der
Anfang unserer inzwischen tiber 40-jdhrigen Freundschaft.

Von da ab traf man sich in Madison ziemlich regelméfig bei uns, bei Familie Walter, bei
Familie Knightly oder bei anderen Kollegen oder Freunden. Klaus Kirchgéssner reiste be-
reits im November wieder ab. Bei Treffen im Hause Walter wurde immer musiziert. Sie
hatten selbstverstdndlich ein Klavier gemietet und verfiigten als Familie bereits damals
iiber ein beachtliches Repertoire im Gesang, das mit den Jahren bestéindig erweitert wurde.
Irmgard und Wolfgang Walter hatten sich in einem Singkreis an der Universitit Tiibingen,
den er gegen Ende seines Studiums selbst leitete, kennen gelernt.

Im April 1970 reiste auch Familie Walter wieder ab. Ich habe sie mit schwankendem Auto
nach Chicago zum Flughafen gefahren. Dies war die Zeit, als unsere kleine Tochter anfing
zu sprechen. ,,Mein Wolfgang* gehorte zu ihren ersten Worten, die sie sagen konnte, wenn
er sie auf den Arm nahm.

Als alle wieder in Karlsruhe waren, ging es mit gemeinsamen Wochenendausfliigen weiter.
Irgendwann stellte Irmgard fest, dass ich einmal Cello gespielt hatte. Ich hatte ja bis zum
Abitur die Lehrerbildungsanstalt in Freising besucht. Entweder Geige oder Klavier war fiir
jeden Schiiler Pflicht. Ein zweites Instrument war erwiinscht. Dies war bei mir das Cello.
So wurde sofort ein Klaviertrio ins Leben gerufen mit Irmgard und Wolfgang Walter am
Klavier, Klaus Kirchgidssner als Geiger und ich mit dem Cello. Von da ab trafen wir uns
30 Jahre lang reihum etwa vier Mal im Jahr und spielten Klaviertrios. Wir hatten alle viel
Freude daran.
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8 Professor Emeritus (1995-2010)

Am Ende des Sommersemesters 1995 143t sich Wolfgang Walter von seinen
Lehrverpflichtungen entbinden und im Herbst desselben Jahres nimmt Michael
Plum als sein Nachfolger den Ruf nach Karlsruhe an. Mit seiner Emeritierung
dndert sich der typische Arbeitstag von Wolfgang Walter nur wenig. Spitestens
nach Abschluss der letzten von ihm betreuten Doktorarbeit im Januar 1996 sind
die regelméBigen Verpflichtungen zwar entfallen, aber seine Publikationstitigkeit
bleibt in den Jahren nach seiner Emeritierung auf hohem Niveau. Allein im Zeitraum
1995-2003 erscheinen 17 Beitriige in wissenschaftlichen Zeitschriften. Er wird als
Vortragender auf internationale Konferenzen eingeladen und reist 1999 fiir eine
Reihe von Vorlesungen zu einer internationalen Sommerschule nach Chile. Er
nimmt bis Ende der Neunziger Jahre regelmédBig an wissenschaftlichen Tagungen
teil, spricht in Seminaren und Kolloquien und steht in engem Kontakt zu seinen
Koautoren und Freunden Joe McKenna und Ray Redheffer. Ray Redheffer, dessen
Ehefrau Heddy 1994 starb, heiratet 1997 Wolfgang Walters langjidhrige Sekretirin
Irene Jendrasik. Vom Tod seines Freundes Ray Redheffer im Jahr 2005 ist Wolfgang
Walter tief betroffen.

Seine Lehrbiicher werden weiterhin von ihm intensiv gepflegt und regelmafig
erscheinen Neuauflagen. Die aufwiindige Ubersetzung und Umstrukturierung der
Gewohnlichen Differentialgleichungen ins Englische [26] erscheint im Jahr 1998.
Die Analysis 1 [28] geht 2002 in die siebte, die Analysis 2 [29] 2002 in die fiinfte
Auflage und die Gewdhnlichen Differentialgleichungen [27] gehen 2000 ebenfalls
in die siebte Auflage.

Auch in den ersten Jahren des neuen Jahrtausends bleibt Wolfgang Walter
wissenschaftlich aktiv und ist als Mitherausgeber mehrerer wissenschaftlicher
Zeitschriften weiterhin an der Front der Forschung und am Puls der Zeit. Er nimmt
aktiv am universitéren Leben teil, seine mathematische Expertise und sein person-
licher Rat werden an der Fakultt fiir Mathematik geschitzt und es vergeht kaum ein
Tag, an dem er nicht sowohl vormittags als auch nachmittags sein Biiro am Institut
fiir Analysis aufsucht und arbeitet.

Auch privat erlebt Wolfgang Walter wie in den Jahrzehnten zuvor gliickliche
Jahre. Seine Kinder haben im Leben Fuf3 gefasst und er ist mehrfach GroBvater
geworden. Alle mir bekannten Zeitzeugen stimmen in der Einschétzung iiberein,
dass Wolfgang Walters wissenschaftliche Karriere und sein groBes familidres Gliick
sich gegenseitig bedingen.

Leider ist es Wolfgang Walter aufgrund einer Erkrankung nicht vergénnt, die
letzten Jahre seines Lebens so vital und aktiv wie zuvor erleben zu konnen.
Obwohl die Zeichen einer schweren und unheilbaren Krankheit sichtbarer werden,
erlebt Wolfgang Walter seinen 80. Geburtstag im Kreis seiner Kollegen und seiner
Familie bei einem zu seinen Ehren veranstalteten Festkolloquium an der Universitit
Karlsruhe. Auch an seinen 81. Geburtstag erinnere ich mich gerne. Bei meinem
Besuch im Haus der Familie Walter anldsslich dieses Geburtstages lebt die alte
Vertrautheit zwischen ihm als Lehrer und mir als seinem Schiiler noch einmal auf.
Bei unserer letzten, herzlichen Verabschiedung planen wir ein Wiedersehen, das
leider nicht mehr stattfindet.
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Seine Familie gibt ihm Kraft und Unterstiitzung in den beiden letzten Jahren
seines Lebens und nur wenige, sehr enge Freunde konnen ihn regelméfig besuchen.
Wolfgang Walter stirbt am 26. Juni 2010 im Alter von 83 Jahren in Karlsruhe.
Seine Kolleginnen und Kollegen, insbesondere in Karlsruhe, seine Mitarbeiterin-
nen und Mitarbeiter, seine Schiiler, Freunde und Koautoren vermissen ihn. Seine
exakte Arbeitsweise, seine Liebe zum Detail, sein immerwéhrender Drang nach
Verbesserung, seine Fiahigkeit, Fragen zu stellen und neue Einsichten zu gewinnen,
haben ihn ausgezeichnet. Durch sein Werk bleibt die Erinnerung an ihn erhalten,
die von ihm gewonnenen Erkenntnisse werden zukiinftige Forschung inspirieren
und sein mathematisches Erbe wird weiteren Generationen den Weg weisen.

9 Ausschnitte aus Wolfgang Walters wissenschaftlichem Werk

9.1 Systeme parabolischer Differentialungleichungen

Sein am hiufigsten zitiertes wissenschaftliches Werk ist das 1970 erschienene Buch
,.Differential and Integral Inequalities* [22], welches die englische Ubersetzung und
Erweiterung seines 1964 erschienenen Buches iiber ,,Differential- und Integralun-
gleichungen® [20] darstellt. Die englische Ausgabe von 1970 hat seine Karriere
stark gefordert, ihn international bekannt gemacht und wird auch weiterhin hiufig
zitiert (liber 700 Zitate in google scholar). Aus dem Umfeld dieses Werkes mochte
ich einige Ergebnisse iiber Systeme parabolischer Differentialgleichungen erldutern.
Es sei D C RY eine beschrinkte, offene Menge, T >0 und G=D x (0, T]
der zugeordnete parabolische Zylinder. Auf G betrachtet man das folgende
System parabolischer Differentialgleichungen fiir die vektorwertige Funktion
u:(ul,...,u”):§—>R"
uf:fk(x,t,u,u];,uk) inG, k=1,...,n, (D)

XX

bzw. in Kurzschreibweise
uy= f(x,t,u,uy,uyy) inG. (2)

Dabei steht uf fiir die partielle Ableitung nach ¢, ufc fiir den Gradienten, und
uk . fiir die Hesse-Matrix der Funktion u*. Das System (1) wird zum paraboli-
schen System indem vorausgesetzt wird, dass die Funktionen f k (x,t,z,q,r) wach-
send in der Variablen r € SV sind, d.h. falls fiir zwei symmetrische N x N-
Matrizen r, s € SV gilt: aus > s (im Sinne von r — s positiv semi-definit) folgt
fk(x,t,z,q,r) > fk(x,t,z,q,s) fiir alle Werte (x,7,z,q9) € G x R" x RN . Oft-
mals wird das System (1) erginzt durch Anfangsbedingungen bei # = 0 und Randbe-
dingungen auf 9D, d.h. es werden die Werte von u auf dem parabolischen Rand
I'=G\G= (D x{0})U(@D x (0, T]) vorgeschrieben.
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Als einfacher Fall sei das semilineare Beispiel f*(x,1,z,q,r) = spurr+g*(z)+
h*(Z*), k =1,...,n, genannt. Da spuruf = Zf\vz1 Bkahuk gerade der Laplace-
Operator A angewandt auf u¥ ist, reduziert sich das parabolische System (1) in
diesem Fall auf

uk = Ak 4+ g* ) + ¥ @*) inG, k=1,....n.

Eine grundsitzliche Frage, die man fiir das parabolische System (1) stellen kann,
ist die Folgende: fiihren geordnete Anfangs- und Randdaten zu geordneten Losun-
gen, d.h. folgt fiir zwei Losungen u,  mit u < u auf I' die Beziechung u < u in G?
In vielen physikalischen, chemischen oder biologischen Anwendungen, in denen
durch (1) die Konzentration von Stoffen, Chemikalien oder Populationen model-
liert wird, ist ein solches qualitatives Verhalten eine sehr wichtige Information.
Die Ordnung u < & wird dabei komponentenweise verstanden, d.h. zwei Vektoren
y=0u ...,y z=(z',...,7") € R" erfiillen die Relation

y<z fallsgilt y' <z firi=1,...,n

und
y<z fallsgilt y <z firi=1,...,n.

Ein Satz, der es erlaubt, aus der Ordnung zweier Losungen von (1) auf dem
parabolischen Rand I" auf die Ordnung der Losungen im parabolischen Zylinder
G zu schlielen, wird als ,,Monotoniesatz* oder ,,Vergleichssatz‘* bezeichnet.

Im skalaren Fall n = 1 gelten Monotoniesitze unter geeigneten Annahmen an die
Lipschitz-Stetigkeit der rechten Seite bzgl. der Variablen z fiir parabolische Glei-
chungen ebenso wie auch fiir gewohnliche Differentialgleichungen; zu erwihnen
sind dabei die Arbeiten von Nagumo [13, 14] und Westphal [30]. Mit den Arbeiten
von Miiller [11, 12] und Kamke [5] wurde eine strukturelle Bedingung bei Systemen
von gewohnlichen Differentialgleichungen bekannt, die fiir Monotoniesitze sorgte.
Dieser Bedingung gibt Walter den Namen ,,Quasimonotonie*, vgl. [20, 22], und sie
lautet im Kontext des parabolischen Systems (1) wie folgt:

Definition 1 (Quasimonotonie®) Die in (2) auftretende Funktion f = (f!,..., f™)
mit Komponentenfunktionen fk(x,t,z,q,r), k =1,...,n heilit quasimonoton
wachsend in z, falls fiir alle (x,7,¢,7) € G x RN x SV, alle y,z € R” und alle
kell,...,n}gilt

y <z, == fry, g, r) < Aoz, ).

Hier wurde zur Vereinfachung angenommen, dass die Funktionen f* fiir alle
z € R” definiert sind. In diesem Fall bedeutet ,,Quasimonotonie* von f(x,t,z,q,r)

3 Anstelle der Begriffe ,,quasimonoton wachsend*, ,,quasimonoton fallend* findet man in der Lite-
ratur gelegentlich die Ausdriicke ,.kooperativ*, , kompetitiv** (engl. ,,cooperative®, ,,competitive*).
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bzgl. der Variablen z kurz gesprochen, dass f*(x,r,z,¢,r) als Funktion von z
monoton wachsend ist beziiglich jeder Komponente z’, i # k. Betrachtet man
das semilineare Beispiel fk(x, t,z,q,r) =spurr + gk(z) + Wk (5, so ist Quasi-
monotonie von f = (f!,..., f") in z gleichbedeutend mit Quasimonotonie von
g=(g',...,¢g" in z, d.h. es werden an die Funktionen #* keinerlei Bedingun-
gen gestellt. Sind die Funktionen g*(z) = ZZN=1 g{‘zi linear mit g{‘ eR,soist g
quasimonoton wachsend in z genau dann, wenn die Eintridge der Matrix (gl’.‘ )IZX il
auBlerhalb der Diagonale nichtnegativ sind.

Im Folgenden sei fiir die Funktion f = (f Lo, f™) stets vorausgesetzt, dass
f k (x,t,z,q,r) wachsendinr € § N ist. AuBerdem sollen die auftretenden Funktio-
nenu,v,w: G — R" stetig auf G sein und in G stetige Ableitungen u;, uy, Uyy,
Vs, Uy, Uxx, Wy, Wy, Wyy DESitzen.

Ausgehend von dem von Walter geprigten Begriff der ,,Quasimonotonie* lassen
sich die folgenden beiden, auf Mlak [9] zuriickgehenden Vergleichssitze (Satz 1,
Satz 2) formulieren. Die Beweise sind nicht wortlich, aber doch sinngemif3 und im
Stil von Wolfgang Walter iibernommen und folgen seinem Credo [24]:

The main results on differential inequalities are simple and elementary and should be proved

accordingly. Heavier machinery, in particular existence theory, should only be used when
necessary.

Satz 1 (Vergleichsprinzip (1)) Die Funktion f = f(x,t,z,q,r) sei quasimonoton
wachsend in z. Fiir zwei Funktionen v, w : G — R" gelte

v — (X, 1,0, U, Upy) K wp — fX, 1, w, wy, wyyx)  inG. 3)
Dann folgt aus v < w auf I die Beziehung v < w in G.

Beweis Falls die Aussage falsch ist, so existiert ein Punkt (X, f) € G, so dass fiir die
Funktion 4 = w — v gilt

u(x, i) >0, uk(x,7)=0 fireinke{l,...,n},
u(x,t)>0 VxeG,0<t<t.

Aufgrund der Annahmen iiber v, w auf " ist X € G und 7 > 0. Es folgt daher
uk(x,1) =0, uk (%,0)>=0 und uk(x,1) <0.

Aus (3) folgt im Punkt (X, ) der Widerspruch

ub > R L w wh wh) = R v 0k k)
= AR T w o v) = R T v vl
> 0.

Im Ubergang von der ersten zur zweiten Zeile wurde die Monotonie von f¥(x, 7, z,
q.r) bzgl. r € SV benutzt und im Ubergang von der zweiten zur dritten Zeile die
Quasimonotonie von f. 0
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Der Beweis dieses ersten Vergleichsprinzips ist sehr elementar und benotigt
neben der Quasimonotonie fast keine Voraussetzungen an f. Lisst man in (3) und
bei v « w auf T" die schwachen Ungleichheitszeichen < zu, so gilt ebenfalls ein
Vergleichsprinzip — allerdings benétigt man dann zusétzlich eine Form von einseiti-
ger Lipschitzbedingung (5) bzw. (5') fiir f(x,1,z,q,r) bzgl. z.

Satz 2 (Vergleichsprinzip (I)) Die Funktion f = f(x,t,z,q,r) sei quasimonoton
wachsend in z. Fiir zwei Funktionen v, w : G — R" gelte

vt_f(x7t5v’vxvvxx)§wt_.f(xataw’wwixx) lnG' (4)

Ferner sei e = (1,...,1) € R" und es gebe Konstanten K, A > 0, so dass fiir
k=1,...,nundalle (x,t) € G, » € (0, A) gilt

PR 1w+ e, wy, wiw) — A1, w, wy, wey) < KA (5)

Dann folgt aus v < w auf I die Beziehung v < w in G.

Beweis Sei we :=w + ceK'e fir K > K und € > 0 hinreichend klein. Dann gilt
aufgrund der einseitigen Lipschitzbedingung (5)

k

k k7o K k
we,z_f (%, 1, We, We x, We xx) = Wy + Kee l_f (%, 1, We, Wy, Wyy)

> wf_fk(x1t9w7wwixx)9

und Satz 1 angewandt auf das Funktionenpaar v, w, liefert v < we in G, woraus
fiir ¢ — 0 die Behauptung folgt. 0

In Satz 2 kann man anstelle von (5) auch die Bedingung
A R ACH AV CRINUMEY ¢ (5"

verwenden. Im semilinearen Beispiel f*(x,t,z,q,r) = spurr + gk(z) + h*(Z5)
sind (5), (5') erfiillt, wenn g € C'(R") und #* monoton fallend auf R ist.

Satz 2 ldsst sich insbesondere dann auf Funktionen u, v, w anwenden, wenn (5),
(5) gilt sowie

vtff(x’t’U,UX7vxx)a utzf(xatauauX7uXX)’

wy > f(x,t,w,wx,wyx) InG

und v <u < w auf I'. Die Folgerung v < u < w in G liefert damit EinschlieBungen
von Losungen u des parabolischen Systems (2).

Der von Walter eingefiihrte Begriff der ,,Quasimonotonie” erweist sich als
sehr erfolgreich, denn mit Hilfe dieses Begriffes konnen zahlreiche Ergebnisse
fiir parabolische Systeme bewiesen werden. Von Volkmann [19] wird der Begriff
»Quasimonotonie* verallgemeinert fiir Funktionen, die ihre Werte in topologischen
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Vektorrdaumen annehmen; dies zieht auf dem Gebiet der gewohnlichen und par-
tiellen Differentialgleichungen in Banachrdumen sowie in der nichtlinearen Funk-
tionalanalysis eine Vielzahl von Ergebnissen und Publikationen nach sich.

In Walters Buch [22] finden sich wesentlich allgemeinere Versionen der obigen
beiden Sitze. Unter anderem interessiert er sich auch sehr fiir den Fall, dass das
zugrundeliegende parabolische System keine Quasimonotonie-Eigenschaft hat. In
diesem Zusammenhang findet Walter folgenden Satz, der im Falle gewohnlicher
Differentialgleichungssysteme erster Ordnung auf Miiller [12] zuriickgeht. Dabei
ist die verwendete einseitige Lipschitzbedingung (5'), (5') an f(x,¢,z,q,r) bzgl.
z stirker als diejenige von Satz 2. Fiir das semilineare Beispiel f k (x,t,z,q,r) =
spurr + gF(z) + hK(ZY) ist (5'), (5) erfiillt, wenn gF € C'(R") und A* monoton
fallend auf R ist.

Satz 3 (Vergleichsprinzip (I)) Fiir zwei Funktionen v, w : G—> R'mitv<win
G und fiirk=1,...,n gelte

vf < fR ez vf 0k inG
fiir alle z € R" mit v(x, 1) <z <w(x, 1), v, 1) =75,
wh > fEen z, wk wk) inG

fiir alle z € R" mit v(x, 1) <z < w(x,1), w*(x, 1) =z,

Ferner gebe es Konstanten K, A > 0, so dass fiirk =1,...,n und alle (x,t) € G,
z,ZeR" mitv(x,1) <z <w(x,1), |z —Zlloo < A gilt

FRC 1,z ue, o) = RO 1,2 00 ) < K2 =2l fiir =25 (5)

und
k = ok = koo k /
f (x’tavax»wxx) f (x’tsZ»wx»wxx)SK”Z Z”oo furz >Z7. (5)

Ist u Losung von (2), dann folgt aus v <u < w auf I die Einschliefung v <u <w
inG.

Beweis Zuerst wird die entsprechende Aussage bewiesen, falls in den Differen-
tialungleichungen fiir v, w die Relationen <, > durch strikte Ungleichungen <, >
ersetzt werden und ebenso die Voraussetzung v <u < w auf I' durch v K u K w
auf I ersetzt wird. Falls etwa die Behauptung v < u in G nicht gilt, so existiert wie
im Beweis von Satz 1 ein Punkt (%, ) € G mit

v(x, 1) < u(x,0), K(x,0 =uf(x,7) fireinke{l,...,n},

v(x,t) Ku(x,t) VxeG, 0<t<ft
sowie

R 0 =uk D), ok @D <uk (%0 und R, 1) = uf D).
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Mit Hilfe der Differentialungleichung fiir v, in der z = u(x, ) zuldssig ist, folgt im
Punkt (X, ) der Widerspruch
vf < fRE L uE D, 0k k) < R u G D, uk uk ) =k

Analog beweist man die Ungleichung u < w in G. Die Behauptung mit den
sch~wachen Ungleichlleitszeichen wird bewiesen, indem man v, w durch ve = v —
eeXle, we =w + eeX’e mite > 0, K > K ersetzt, die Lipschitzbedingung (5), (5)
ausnutzt, um den Satz mit strikten Ungleichheitszeichen anwenden zu konnen, und
schlieBlich € N\ O streben ldsst. U

Satz 3 nimmt eine sehr prignante Form an im Fall n = 2, v(x, t) = const. =
(a,y) € R2, w(x, ) = const. = (B,9) € RZ. In diesem Fall reduzieren sich die Vo-
raussetzungen von Satz 3 an f = (f!, f%) neben der einseitigen Lipschitzbedin-
gung (5), (5') auf die beiden Bedingungen

fHxt, (2,22).0,0) > 0> f(x,7,(B.2%),0,0) inG fiiralle z* € [y, 51,
., (2, 9),0,0) > 0> f2(x,1,(z,5),0,0) inG fiiralle z' € [«, B].

Betrachtet man das von v und w aufgespannte Rechteck R = [a, 8] x [y, 8] C R?,
so besagt Satz 3, dass fiir Losungen u von (2) aus u(I") C R die Aussage u(G) C R
folgt. In diesem Zusammenhang spricht man davon, dass R ein invariantes Rechteck
ist. Die Bedingungen an f lassen sich in diesem Fall so verstehen, dass gilt

f(x,7,2,0,0) - v(z) <0 fiiralle z € R,

wobei v(z) den duBeren Normalenvektor von R in z bezeichnet. Diese Bedingung an
f kann man so interpretieren, dass der parabolische Fluss, der durch das Vektorfeld
f reprisentiert wird, in die Menge R hineinzeigt.

Es stellt sich die allgemeinere Frage, unter welchen Bedingungen eine Teilmenge
S C R" die Eigenschaft der Invarianz besitzt, d.h. unter welchen Bedingungen an §
folgt fiir Losungen u von (2) aus u(I") C S die Aussage u(G) C S? Gemeinsam mit
Ray Redheffer geht Wolfgang Walter dieser Frage in mehreren Arbeiten, vgl. [16,
17], nach und es gelingt ihnen, die Frage zu beantworten fiir semilineare paraboli-
sche Systeme der Form

ubk = L 4+ g (x,t,u,uy) inG, k=1,...,n (5"

mit .einem Operator L = Ziv#:l aw(x, t)8kau + Zivzl by(x,1)dy, , der ﬁi}r alle n
Gleichungen des Systems derselbe ist und fiir dessen Koeffizienten nur die posi-
tive Semidefinitheit der Matrix (a,w)f\\' =1 vorausgesetzt werden muss. Unter Lip-

schitzbedingungen an die Funktionen gk (x,1,z,q) bzgl. der Variablen z € R" lautet
die Antwort, dass die Bedingung

g(x,t,2,9)-v(z) <0 fiirallez€dS

undalleg = (¢',...,¢") e RV, ¢* e R" mitg” -v(z) =0, A=1,..., N,
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wobei v(z) eine duBere Normale an S in z bezeichnet, und die Konvexitit der
abgeschlossenen Menge S C R” eine hinreichende Bedingung fiir ihre Invarianz
unter (5') ist. Invarianzaussagen dieser Form spielen eine wesentliche Rolle z.B.
bei der Untersuchung des Langzeitverhaltens der Losungen von Systemen von
Reaktions-Diffusionsgleichungen.

9.2 Hiingebriickenmodelle

1987 veroffentlichen Lazer und McKenna eine Arbeit [6] iiber ein Modell zur
Beschreibung von Héngebriicken. In diesem Modell wird das Briickenbett als
elastischer Balken und die Kabel der Hingebriicke als Federn modelliert, deren
Riickstellkraft bei Streckung gemill dem Hookeschen Gesetz angenommen wird,
wihrend sie (in Abweichung vom Hookeschen Gesetz) keine Riickstellkraft bei
Kompression aufweisen. Fiir die Auslenkung u(x, t) eines solchen Briickenbetts
schlagen Lazer und McKenna die Wellengleichung

Urr + Kiliyxyx + 1{2’4Jr =W(kx)+ef(x,1)

vor. Dabei sind K, K7 > 0 positive Konstanten, u > 0 entspricht einer Auslenkung
nach unten, u™ = max{u, 0}, W (x) ist die Massendichte der eindimensional model-
lierten Briicke und € f (x, r) modelliert eine kleine duBere Kraft (z.B. Wind). Unter
geeigneter Reskalierung der Variablen und unter der Annahme homogener Massen-

verteilung ldsst sich dieses Modell reduzieren zu
Urr + Uxxxx +but =1 +eh(x,1) (5"

mit b > 0, € € R klein. Als Walter iiber McKenna von diesem Modell erfihrt, ist
er davon sofort angetan und beginnt mit McKenna an zwei Aspekten zu arbeiten:
periodische, stehende Wellen [7] und wandernde Wellen [8].

Bei der Untersuchung periodischer, stehender Wellen betrachten McKenna und
Walter (5') auf Q = (=75, %) x (=%, %), erginzen (5') mit Randbedingungen
(,,hinged boundary conditions*)

T T T T
ul—=,t)=ul=,t)|=u |l —=,t ) =u| =,t) =0 (5
(-5:0)=u(F0) = (-51) = (51)

und beweisen folgendes Ergebnis, vgl. [7].

Satz 4 Sei h € L?>(Q) gerade in x, t mit Al 20y =1 und 3 < b < 15. Dann
existiert €9 > 0 so, dass fiir |€| < €q die Gleichung (5") auf Q mit Randbedingun-
gen (5') mindestens zwei zeitlich T -periodische Losungen besitzt, die gerade in x, t
sind.

Der Operator L = % + % mit Randbedingungen (5') und 7 -Periodizitit in ¢ ist
selbstadjungiert auf dem Hilbertraum H der in x und ¢ geraden L’-integrierbaren
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Funktionen auf Q. Sein Spektrum ist daher reell, aber nach oben und unten
unbeschrinkt. Die Eigenwerte von L in der Nihe von O sind gegeben durch A_p =
—15, A_1 = =3, A1 = 1, A, = 17. Die Bedingung an b in Satz 4 bedeutet also,
dass —b zwischen zwei aufeinanderfolgenden Eigenwerten von L liegt. Wiirde man
anstelle von (5') die zugehorige lineare Gleichung uy; + tyyyyx +bu =1+ €h(x, 1)
betrachten, so gibe es nur eine eindeutige Losung mit Randbedingung (5'), die ge-
rade in x, f und 7 -periodisch in ¢ ist. Satz 4 belegt also, dass die Nichtlinearitit u™ in
(5") neue Losungen hervorbringt, die es im linearen Modell nicht gibt. Als McKenna
und Walter Satz 4 beweisen, konnen sie auf ihre reichhaltige Erfahrung im Beweis
von Existenzsitzen fiir nichtlineare Randwertprobleme zuriickgreifen, bei denen die
auftretende Nichtlinearitit in Resonanz mit dem Spektrum des linearisierten Pro-
blems steht.

Die im Folgenden geschilderte Beweisidee von McKenna und Walter ist
ein schones Beispiel fiir die Ausnutzung von a-priori Schranken im Wechsel-
spiel mit dem auf Leray und Schauder zuriickgehenden topologischen Abbil-
dungsgrad. Der Abbildungsgrad ist eine ganzzahlige Abbildung d;g, die einer
beschrinkten, offenen, nichtleeren Menge 2 C X eines Banachraumes X, einer
Abbildung Id—F : Q — X sowie einem Element z € X, z ¢ (Id—F)(0<2) eine
ganze Zahl zuordnet. Dabei ist z.B. vorauszusetzen, dass F : Q@ — X stetig ist
und beschrinkte, abgeschlossene Mengen auf kompakte Mengen abbildet. Falls
drs(Id—F, 2, z) # 0 ist, so besitzt die Gleichung x — F(x) = z eine Losung x € Q.
Anstatt dzg(Id — F, €2, z) schreibt man auch dys(u — F(u), 2, 2).

Beweisskizze (a) Schwache Losungen von (5'), (5') erhilt man als Losungen der
Gleichung

u—L_l(l—bu++6h)=()

im Hilbertraum (H, | - ||) der in x und ¢ geraden L’-integrierbaren Funktionen auf
Q. Dabei steht L~! fiir den Losungsoperator zum linearen Problem Lw = f mit
Randbedingungen (5”) und 7 -Periodizitit in ¢ fiir die Lésung w.

(b) Fixiert man eine kleine positive Zahl o > 0, betrachtet b € [-1 + &, 15 — «]
sowie € € [—1, 1] und beriicksichtigt die Normierung ||| = 1, so existiert ein Ry >
0 derart, dass fiir jede Losung u von (5'), (5) die a-priori Schranke |u| < Rg gilt.
Denn falls es keine solche Schranke giibe, dann wiirde eine Folge u; von Losungen
existieren mit |ug|| — oo und wy := uy/||lux|| — wo fir k — oo, wobei wq eine
nicht-triviale Losung von Lwg + bwo+ = 0 mit ,,hinged boundary conditions* wire.
Ein Widerspruch — denn die Existenz einer solchen nicht-trivialen Losung hatten
McKenna und Walter bereits zuvor ausschliefSen konnen.

(c) Mit Hilfe der a-priori Schranke und der Invarianz des Leray-Schauder-
Abbildungsgrades bzgl. des Homotopieparameters b € [—1 + «, 15 — «] folgt fiir
alle Radien R > Ry

drs(u — L7 (1 — bu™ + €h), B(0),0) = drs(u — L' (1 + €h), Bg(0),0) = 1.
(5"
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(d) Als néchstes zeigen McKenna und Walter, dass das elliptische Randwertpro-

blem
: , i 7
y(w)+by+:11n< 5 2>m1ty(:|:2>=yxx(:|:5>zo

genau eine Losung besitzt. Diese Losung y € H ist auch eine stationdre Losung
von (5'), (5') im Fall € = 0. Betrachtet man eine Kugel B, (y) mit hinreichend
kleinem Radius y > 0 so zeigen McKenna, Walter, dass das folgende Problem mit
u~ = —minf{u, 0}

Lu+bu=1+ A(eh - bu_) in Q mit Randbedingungen (5)

fiir A € [0, 1] und |€¢| < € keine Losung auf 9 By, (y) hat. Daher ist folgende Berech-
nung des Abbildungsgrades unter Ausnutzung der Homotopieinvarianz in A € [0, 1]
gerechtfertigt:

ds(u — L7 (1 — bu't +€h), B, (»),0)

=drs(u — L7 (1 — bu+r(eh —bu™)), By (y),0)

= drs(u = L™' (0 = bu), B, (y),0)

= dLs(u + L (bu), B ,(0),0)

= - 1 9 (5/)
wobei fiir die letzte Auswertung des Abbildungsgrades entscheidend ist, dass unter
der Bedingung 3 < b < 15 der Operator Id +bL ! auf H nur einen negativen Eigen-
wert besitzt. SchlieBlich folgt aus (5'), (5’) und der Ausschopfungseigenschaft des
Abbildungsgrades, dass (5), (5') mindestens zwei in x, ¢ gerade und in der Zeit

m-periodische Losungen besitzt: eine in By, (y) und eine in Bg(0) \ B, (y) fiir
R > Ryp. O

Sucht man fiir die Gleichung (5") Losungen in Form wandernder anstatt stehen-
der Wellen, so betrachtet man (5) fiir (x,7) € R%. AuBerdem steht in diesem Fall
die duBere Kraft /1 (x, ) nicht im Vordergrund, so dass man € = 0 wihlt. Mit Hilfe
des Ansatzes

u(x,t) = %y(b_l/‘lx — b_l/zct)
reduziert sich (5) auf
Y Yyt =1 (5)
bzw. indem man z =y — 1 setzt auf
W42 4+ 7=0 fallsz(x)>—1, (5
2 42— 1=0 falls z(x) < —1. (5
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Gesucht werden ,,homokline* Losungen mit z(x) — O (exponentiell) fiir |x| — oo.
In ihrer zweiten Arbeit [8] konstruieren McKenna und Walter explizite Losungen,
indem sie auf einem Intervall [—r, r] eine gerade Losung von (5) an der Stelle
t = £ mit einer exponentiell gegen 0 fallenden Losung von (5') zusammenpassen.
Die vier Ubergangsbedingungen, die entstehen um eine glatte Losung zu erhalten,
fiihren auf transzendente Gleichungen fiir die freien Parameter der Losungsscharen
und fiir die Wellengeschwindigkeit c. Die Suche nach Losungen der transzenden-
ten Gleichungen ist in geschlossener Form nicht moglich. Daher benutzen McKenna
und Walter Standardsoftware zur numerischen Berechnung der Nullstellen der trans-
zendenten Gleichungen. Sobald die Parameter und die Wellengeschwindigkeit ¢
numerisch bestimmt sind, ist anschlieBend noch zu iiberpriifen, dass die Losun-
gen tatsdchlich > —1 auf (—oo, —r), (r, 00) bzw. < —1 auf [—r, r] sind. Es stellt
sich heraus, dass die Wellengeschwindigkeit ¢ in einem Intervall [c], c2] liegt mit
0 < ¢| < ¢ < +/2. Obwohl hierbei nur relativ einfache Rechnungen notwendig
sind, finden McKenna und Walter in [8] auf diese Weise einige sehr interessante
Htravelling wave® — Losungen von (5), (5'), die den in Abb. 1 dargestellten sehr
dhnlich sind.*

Die beiden Arbeiten [7, 8] von McKenna und Walter, die bisher 28 bzw. 24 Mal
zitiert wurden, haben weitere interessante Forschungsarbeiten nach sich gezogen,
iiber die hier in einer kurzen Ubersicht berichtet wird:

(1) Chen und McKenna [3] gaben 1995 einen Beweis der Existenz von Losungen
von (5) fiir alle Wellengeschwindigkeiten ¢ € (0, +/2) mit Hilfe variationeller
Methoden. Gleichzeitig benutzten sie einen von Choi und McKenna [4] ent-
wickelten numerischen Mountain Pass Algorithmus, um Approximationen der
wandernden Wellen konkret zu bestimmen. Ebenso wurden hier erstmalig die
Stabilitéts- und Interaktionseigenschaften dieser wandernden Wellen numerisch
untersucht.

(2) Chen und McKenna erkannten, dass die Nichtlinearitit (z + 1)* — 1 fiir nu-
merische Rechnungen wenig geeignet war, und schlugen vor, sie durch e* — 1
zu ersetzen. Diese Nichtlinearitit hat fiir z << —1 und fiir z > 0 (aber nicht zu
grof}) praktisch denselben Effekt wie die zuvor betrachtete.

(3) Smets und van den Berg [18] bewiesen 2002 die Existenz von mindestens
einer abklingenden Losung der Gleichung z#) + ¢?z” + % — 1 = 0 fiir fast
alle Wellengeschwindigkeiten ¢ € (0, +/2) ebenfalls unter Verwendung varia-
tioneller Methoden.

(4) 2006 untersuchten Breuer, Hordk, McKenna und Plum [2] die Gleichung
20 4 ¢27” 4 €% — 1 = 0 hinsichtlich Existenz abklingender Losungen. Mit
Hilfe computerunterstiitzter Methoden gelang ihnen der analytische Nach-
weis und die rigorose EinschlieBung von 36 unterschiedlichen Losungen bei
der Wellengeschwindigkeit ¢ = 1.3, vgl. Abb. 1. Dieses Resultat steht in be-
merkenswertem Kontrast zum Ergebnis von Smets und van den Berg: die Aus-

“Die Graphiken aus [8] sind nicht erhalten. Die Graphiken aus Abb. 1 stammen aus dem Besitz
von J. Horak.
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Abbildung 1 Oben 1
- Travelling wave* wie in
McKenna, Walter [8]. Unten 05r l
- Travelling wave* wie in |
Breuer, Horak, McKenna und
Plum [2] ~051} 1
1 ]
-15} 1
ol ]
25 ]
sl ]
-35 ! ! L ! !
~60 ~40 ~20 0 20 40 60
15
L ]
05 1
ok ]
-05} 4
b ]
-15F 1
ot ]
o5l ]
3 L L L L L
=60 -40 -20 0 20 40 60

®

sage mindestens eine Losung fiir fast alle c steht der Aussage mindestens 36
Losungen bei festem ¢ = 1.3 gegeniiber.

2002 publizierte Moore eine Arbeit [10], in der neben longitudinalen Oszil-
lationen auch Torsionsoszillationen quer zum Briickenbett modelliert wurden.
Mit Hilfe von Abbildungsgradtheorie konnte Moore die Existenz periodischer
Schwingungen nachweisen. Auffillig war bei den numerischen Experimenten,
dass groBe longitudinale Oszillationen, die durch kleine Torsionsoszillationen
gestort werden, beinahe ansatzlos in starke Torsionsoszillationen iibergehen
konnen. Vergleichbare Beobachtungen wurden 1940 von Augenzeugen beim
Einsturz der Tacoma Narrows Bridge gemacht, siehe z.B. http://de.wikipedia.
org/wiki/Tacoma-Narrows-Brucke.

Wolfgang Walter hat die Weiterentwicklung der Arbeiten zu Hingebriicken

aufmerksam und mit groem Interesse verfolgt. Die Benutzung unterschiedlicher
Methoden aus der Analysis partieller Differentialgleichungen, der Numerik und


http://de.wikipedia.org/wiki/Tacoma-Narrows-Brucke
http://de.wikipedia.org/wiki/Tacoma-Narrows-Brucke

XXViii In Memoriam Wolfgang Walter (1927-2010)

der Modellierung, die bei diesem Problem nétig und von gleichrangiger Bedeutung
sind, entspricht sehr gut seiner Vorstellung von Mathematik.

Danksagung Fiir die Unterstiitzung bei der Verfassung dieses Nachrufes danke ich sehr
der Familie Walter, Ulrich Kulisch und Joe McKenna sowie Marion Ewald, Hans-Christoph
Grunau, Gerd Herzog, Jifi Hordk, Roland Lemmert, Michael Plum, Irene Redheffer, Reinhard
Redlinger, Klaus Ritter, Alexander Voigt, Herbert Weigel und dem Bildarchiv des Mathemati-
schen Forschungsinstituts Oberwolfach. Der Deutschen Mathematiker Vereinigung danke ich fiir
die Genehmigung, den im Jahresbericht Band 113, Heft 2, Juni 2011, S. 57-79 erschienenen
Nachruf in seiner Originalversion an dieser Stelle erneut verdffentlichen zu konnen.
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Conference on Inequalities and Applications ’10

The Conference on Inequalities and Applications ’10 meeting was a resumption of
the General Inequalities symposia with the following brief history:

General Inequalities 1 1976  Oberwolfach, Germany
General Inequalities 2 1978  Oberwolfach, Germany
General Inequalities 3 1981 Oberwolfach, Germany
General Inequalities 4 1983  Oberwolfach, Germany
General Inequalities 5 1986  Oberwolfach, Germany
General Inequalities 6 1990 Oberwolfach, Germany
General Inequalities 7 1995 Oberwolfach, Germany
General Inequalities 8 2002 Noszvaj, Hungary

Conference on Inequalities and Applications 07 2007 Noszvaj, Hungary

The meeting was dedicated to the memory of Wolfgang Walter.

The meeting took place from September 19 to 25, 2010, at In Hotel in Hajdtszo-
boszl6, Hungary, and was organized by the Institute of Mathematics of the Univer-
sity of Debrecen with the financial supports of the Hungarian Scientific Research
Fund Grant OTKA NK-81402.

The members of the Scientific Committee were Professors Catherine Bandle
(Basel), W. Norrie Everitt (Birmingham, honorary member), Laszlé Losonczi (De-
brecen), Zsolt Pales (Debrecen) and Michael Plum (Karlsruhe).

The Local Organizing Committee consisted of Professors Zoltdn Daréczy (hon-
orary chairman), Zoltdn Boros (co-chairman), Attila Gildnyi (co-chairman), Gyula
Maksa and Mihély Bessenyei (scientific secretary). The Committee Members were
ably assisted by Szabolcs Bajdk, Eszter Gselmann, Judit Maké and Fruzsina
Mészéros. There were 47 participants from 8 countries.

Professor Plum opened the Symposium in the name of the Scientific Committee
and welcomed the participants in the name of the Local Organizing Committee.

The talks at the symposium focused on the following topics: convexity and its
generalizations; mean values and functional inequalities; matrix and operator in-
equalities; inequalities for ordinary and partial differential operators; integral and
differential inequalities; variational inequalities; numerical methods.

XXXi
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A number of sessions were, as usual, devoted to problems and remarks.

Of course, there were some social and cultural events during the conference,
such as visiting the Thermal Bath of Hajduiszoboszlé on Wednesday afternoon and
the Banquet on Thursday evening.

The scientific sessions were followed in the evening of Thursday by a festive ban-
quet in the De La Motte Castle. The conference was closed on Friday by Professor
Zsolt Piles.

Abstracts of the talks are in alphabetical order of the authors. These are followed
by the problems and remarks (in approximate chronological order), and finally, the
list of participants.

1 Abstracts of Talks

Abramovich, Shoshana  On convex, superquadratic and superterzatic functions.
(Joint work with Slavica Iveli¢ and Josip Pecaric.)

This talk is mainly about inequalities satisfied by functions called superterzatic
and their relations to convex and to superquadratic functions.

In analogy to inequalities satisfied by convex functions and by superquadratic
functions that are reduced to equalities when f(x) =x, f(x) = x2, x>0 respec-
tively, the inequalities satisfied by superterzatic functions reduce to equalities when
f(x) =x3,x>0.

References

1. Pecari¢, J., Proschan, F., Tong, Y.L.: Convex Functions, Partial Ordering and Statistical Appli-
cations. Academic Press (1992)

2. Abramovich, S., Jameson, G., Sinnamon, G.: Refining Jensen’s inequality. Bull. Math. Sc.
Math. Roum. 47, 3—14 (2004)

3. Abramovich, S., Ivelic, S., Pecaric, J.: Improvement of Jensen-Steffensen’s inequality for su-
perquadratic functions. Banach J. Math. Anal. 4(1), 159-169 (2010)

Bajak, Szabolcs A non-linear form of the Hahn—Banach separation theorem.
(Joint work with Zs. Péles.)

A generalization of the Hahn—Banach separation theorem—due to Dubovitskii
and Milyutin—is a classical result of the linear functional analysis. In this presen-
tation an even more general setting is considered: the local disjointness at a given
point of non-linear inverse images of convex sets are investigated. Thus, by using
the notion of approximation of a point and the notion of the so-called tangent maps,
it is possible to develop first- and higher-order necessary conditions for various non-
smooth optimization problems.

Bandle, Catherine Variation of domains and Pohozaev’s identity. (Joint work
with Alfred Wagner.)

The main goal of this talk is to present a connection between domain derivatives
of energy functionals and Pohozaev’s identity. These derivatives can then be applied
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to discuss nonexistence and integral estimates of quasilinear boundary value prob-
lems, and to find candidates for optimal domains for energy functionals. Similar and
very general results are found in the Lecture Note of W. Reichel [1] via the method
of transformation groups.

References

1. Reichel, W.: Uniqueness Theorems for Variational Problems by the Method of Transformation
Groups, Lecture Notes in Mathematics, vol. 1841. Springer (2004)

Batra, Prashant  Half-plane mappings and coefficient inequalities and moment
problems in the class L-P.

Coefficient inequalities for functions with exclusively real zeros were already in-
vestigated by Newton and Euler. The well-known Laguerre-Turdn inequalities for
functions in L-P lead to function inequalities for orthogonal polynomials on the
interval of orthogonality as well as to necessary coefficient conditions for Hurwitz-
stable functions and functions in L-P. We show how to derive Grommer’s charac-
terization of logarithmic derivatives of functions in L-P from mapping properties.
Showing that certain mapping properties for logarithmic derivatives f'/f corre-
spond to specific integral representations for f in L-P, we obtain the connection
between structured determinants and reality of zeros. We give two examples of our
new approach: For f in L-P, we embed the Laguerre—Turdn inequalities together with
a recent inequality by Dimitrov into a new infinite family of inequalities. For a real
Hurwitz-stable polynomial we show how to obtain quantifiably stronger inequalities
if more than three coefficients are considered.

References

1. Grommer, J.: Ganze transzendente Funktionen mit lauter reellen Nullstellen. J. Reine Angew.
Math. 144, 114-166 (1914)

2. Dimitrov, D.K.: Higher order turdn inequalities. Proc. Am. Math. Soc. 126(7), 2033-2037
(1998)

3. Borobia, A., Dormido, S.: Three coefficients of a polynomial can determine its instability.
Linear Algebra Appl. 338, 67-76 (2001)

Behnke, Henning  Curve Veering for the Parameter-Dependent Clamped Plate.
The computation of vibrations of a thin rectangular clamped plate results in an
eigenvalue problem with a partial differential equation of fourth order.

4 4 4

B 0 i
ﬁw—i-Paxz—ayzw—i-Qa—y“(p:Mp in Q,

d
=0 and 2 =0 ondQ,
on

for P,QeR, P>0,0>0,and 2= (—% %) x (-5, 5) <R~

If we change the geometry of the plate for fixed area, this results in a parameter-
dependent eigenvalue problem. For certain parameters, the eigenvalue curves seem
to cross. We give a numerically rigorous proof of curve veering, which is based on

the Lehmann-Goerisch inclusion theorems and the Rayleigh—Ritz procedure.
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References

1. Behnke, H.: A numerically rigorous proof of curve veering in an eigenvalue problem for dif-
ferential equations. Z. Anal. Anwend. 15, 181-200 (1996)

Bessenyei, Mihaly  Separation by certain nonlinear interpolation families.

By standard separation theorems, if a convex function is above a concave one,
then there exists an affine function between them. In more general, characterizations
of the existence of an affine separation between two functions, in different settings,
are also known. The references below contains some contributions for the topic.
Motivated by these results, the talk presents a characterization for the existence of
separation by members of such nonlinear interpolation families that are closed under
convex combinations. The proof is based on the classical Helly theorem and some
geometric properties of Beckenbach families.

References

1. Balaj, M., Wasowicz, Sz.: Haar spaces and polynomial selections. Math. Pannon. 14(1), 63-70
(2003)

2. Baron, K., Matkowski, J., Nikodem, K.: A sandwich with convexity. Math. Pannon. 5(1), 139—
144 (1994)

3. Beckenbach, E.F.: Generalized convex functions. Bull., New Ser., Am. Math. Soc. 43, 363-371
(1937)

4. Beckenbach, E.F.,, Bing, R.H.: On generalized convex functions. Trans. Am. Math. Soc. 58,
220-230 (1945)

5. Bessenyei, M., Péles, Zs.: Separation by linear interpolation families J. Nonlinear Convex Anal.
13(1), 49-56 (2012)

6. Nikodem, K., Pales, Zs.: Generalized convexity and separation theorems. J. Convex Anal.
14(2), 239-248 (2007)

7. Nikodem, K., Wasowicz, Sz.: A sandwich theorem and Hyers-Ulam stability of affine func-
tions. Aequ. Math. 49(1-2), 160-164 (1995)

8. Tornheim, L.: On n-parameter families of functions and associated convex functions. Trans.
Am. Math. Soc. 69, 457-467 (1950)

9. Wasowicz, Sz.: Polynomial selections and separation by polynomials. Stud. Math. 120(1), 75—
82 (1996)

Boros, Zoltan  Strong dyadic derivatives.

Let I denote an open interval in the real line, and let us consider a function
f:I — R Forxel and h € R, we define the lower and upper strong dyadic
derivatives of f by

D§ f(x) =liminf2" (f(y +27"h) — £ ()

n—oo

and

Dy f (0 =limsup2" (£ (y +27"h) = f ),

n—o0

respectively. We call f strongly dyadically differentiable if

D f(x)=Dyf(x)eR
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holds for every x € I and & € R. We say that f has increasing strong dyadic deriva-
tives if

—00 < Dy, f(x) < DS f(y) < 400

holds for every & > 0 and x, y € I such that x < y. These properties are character-
ized by the following decomposition theorems:

Theorem 1 The function f is strongly dyadically differentiable if, and only if, there
exist a continuously differentiable function g : I — R and an additive mapping ¢ :
R — R such that f(x) = g(x) + ¢(x) for every x € I.

Theorem 2 The function f has increasing strong dyadic derivatives if, and only if,
there exist a convex function g : I — R and an additive mapping ¢ : R — R such
that f(x) =g(x) + ¢(x) foreveryx € 1.

Applying these results, we characterize affine (respectively, Wright-convex)
functions as locally approximately affine (respectively, locally approximately
Wright-convex) functions in a specific sense. In particular, we obtain a localiza-
tion principle for these classes of functions.

Burai, Pal  Regularity and convexity results on Orlicz- and Breckner-convex func-
tions. (Joint work with Attila Hazy.)

It is an accustomed thing in the research of convex functions to derive a better
property from a weaker one with the aid of a convexity type inequality. Probably the
best known result of this kind is the theorem of Bernstein and Doetsch. They proved
that the locally boundedness from above of a Jensen-convex function implies its
continuity and convexity as well. The main goal of this talk to present some similar
results on Orlicz- and Breckner-convex functions.

References

1. Bernstein, F., Doetsch, G.: Zur Theorie der konvexen Funktionen. Math. Ann. 76, 514-526
(1915)

2. Burai, P, Héazy, A., Juhdsz, T.: Bernstein-Doetsch type results for s-convex functions. Publ.
Math. (Debr.) 75(1-2), 23-31 (2009)

3. Burai, P, Hazy, A.: Bernstein-Doetsch type results for generalized convex functions. In: Pro-
ceedings of the Twelfth Symposium of Mathematics and its Applications, Editura Politech-
nica, Temesvar, pp. 118-124 (2010)

4. Burai, P,, Hazy, A.: On approximately A-convex functions. J. Convex Anal. 18(2), 447-454
(2011)

5. Breckner, W.W.: Stetigkeitsaussagen fiir eine Klasse verallgemeinerter konvexer Funktionen
in topologischen linearen Raumen Publ. Inst. Math. (Belgr.) 23, 13-20 (1978)

6. Breckner, W.W.: Holder-continuity of certain generalized convex functions. Optimization
28(3-4), 201-209 (1994)

7. Breckner, W.W., Orbdn, G.: Continuity properties of rationally s-convex mappings with val-
ues in ordered topological liner space. “Babes-Bolyai” University, Kolozsvar (1978)

8. Jensen, J.L.W.V.: Om konvekse funktioner og uligheder imellem middelvaerdier. Nyt.
Tideskrift for Mathematik 16B, 49-69 (1905)
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9. Jensen, J.LL.W.V.: Sur les fonctions convexes et les inégualités entre les valeurs moyennes.
Acta Math. 30, 175-193 (1906)

10. Gilanyi, A., Nikodem, K., Pales, Zs.: Bernstein—Doetsch type results for quasiconvex func-
tions. Math. Inequal. Appl. 7(2), 169-175 (2004)

11. Hazy, A.: On approximately ¢-convexity. Math. Inequal. Appl. 8(3), 389—402 (2005)

12. Hazy, A., Pidles, Zs.: Approximately midconvex functions. Bull. Lond. Math. Soc. 36, 339—
350 (2004)

13. Hudzik, H., Maligranda, L.: Some remarks on s;-convex functions. Aequ. Math. 48, 100-111
(1994)

14. Murenko, A.: A generalization of Bernstein—Doetsch theorem, Demonstr. Math. XLV(1), 35—
38 (2012)

15. Orlicz, W.: A note on modular spaces 1. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 9,
157-162 (1961)

16. Pales, Zs.: Bernstein—Doetsch-type results for general functional inequalities. Rocznik Nauk.-
Dydakt. Prace Mat. 17, 197-206 (2000). Dedicated to Professor Zenon Moszner on his 70th
birthday

17. Pycia, M.: A direct proof of the s-Holder continuity of Breckner s-convex functions. Aequ.
Math. 61, 128-130 (2001)

Chudziak, Jacek  Quotient stability of some composite functional equations.

Recently, J. Brzdek [1, 2], dealing with the quotient stability of the Gotab-
Schinzel type functional equations, has stated several open questions. In our talk
we present the answers to some of them.

References

1. Brzdgk, J.: On the quotient stability of a family of functional equations. Nonlinear Anal. 71,
4396-4404 (2009)

2. Brzdgk, J.: On stability of a family of functional equations. Acta Math. Hung. 128, 139-149
(2010)

Cristescu, Gabriela Jordan type representation of functions with generalized
high order bounded variation.

The aim of this work is to identify few classes of functions with generalized
type of bounded variation for which a decomposition theorem of Jordan type holds.
We refer especially to functions with nth order bounded variation with respect to
a Tchebycheff system. The particular case of trigonometric Tchebycheff systems
bring interesting results.

References

1. Lupas, L.: Research on allures generated by interpolary processes (in Romanian). Thesis,
Babes-Bolyai University of Cluj-Napoca, Cluj-Napoca (1977)

2. Popoviciu, T.: Sur quelques propriétés des fonctions d’ une ou de deux variables réelles. Math-
ematica (Cluj, 1929) 8, 1-87 (1934)

éuljak, Vera Schur-convexity of the means. (Joint work with J. Pecaric.)

The property of Schur-covexity (Schur-concavity) of means is considered and
compared with recent results in the literature [1-4]. A new proof for convexity
(concavity) and Schur-covexity (Schur-concavity) of the integral arithmetic mean is
presented. We established the sufficient conditions such that the generalized quasi-
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arithmetic mean

Mf(k;x,y)=f_1<y%x/vf(k(t))df>’ (x,y)erI?

and the generalized weighted integral quasi-arithmetic mean

1 y
Trodt /x p(t)f(k(t))dt>

are Schur-convex (or concave) with respect to (x, y). The applications for the ex-
tended mean values E (7, s; x, y) and weighted power integral mean M (r] (p,k;x,y)
are pointed out.

My (p,k;x,y) =f‘1(

References

1. Elezovi¢, N., Pecari¢, J.: A Note on Schur-convex functions. Rocky Mt. J. Math. 30(3), 853—
856 (2000)

2. Shi, H.-N., Wu, S.-H., Qi, F.: An alternative note on Shcur-convexity of the extended mean
values. Math. Inequal. Appl. 9(2), 319-224 (2006)

3. Toader, G. and Sandor, J.: Inequalities for general means, J. Inequal. Pure Appl. Math. 7(1),
article 13 (2006)

4. Wulbert, D.E.: Favard’s inequality on average values of convex functions. Math. Comput. Mod-
ell. 37, 1383-1391 (2003)

Dascal, Judita The equality problem of conjugate means. (Joint work with Zoltan
Dardéczy.)

Let I C R be a nonvoid open interval and let n > 3 be a fixed natural number.
The question is which conjugate means of n variables generated by the weighted
arithmetic mean M : [" — I are weighted quasi-arithmetic means of n variables at
the same time? This question is a functional equation problem:

Characterize the real valued continuous and strictly monotone functions ¢,

defined on I and the parameters pi, ..., pn, 41, - - ., g for which the equation
n n n
0! (Z pip(xi) + (1 - Zm)w(M(m, ...,xn))) =y (Zqiwm))
i=1 i=1 i=1
holds for all x1, ..., x, € I, where

n

gi>0 (=1..n. > g=1,

i=
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problem. Publ. Math. (Debr.) 61(1-2), 157-218 (2002)

2. Daréczy, Z., Pales, Zs.: On an elementary inequality and conjugate means, manuscript

3. Maksa, G., Péles, Zs.: Remarks on the comparison of weighted quasi-arithmetic means. Colloq.
Math. 120(1), 77-84 (2010)

4. Dardczy, Z., Dascal, J.: On the equality problem of conjugate means. Results Math. 58(1-2),
69-79 (2010)

5. Daréczy, Z., Dascil, J.: On conjugate means of n variables. Ann. Univ. Sci. Bp. Rolando E6tvos
Nomin., Sect. Comput. 34, 87-94 (2011)

6. Jarczyk, J.: On an equation involving weighted quasi-arithmetic means. Acta Math. Hung.
129(1-2), 96-111 (2010)

Fechner, Wlodzimierz = Functional inequalities and equivalences of some esti-
mates.
Let A, G and L denote the arithmetic, geometric ans logarithmic mean, respec-

tively. It is well known that G < L < A (see F. Burk [3]) and also G% . A% <L<
%G + %A (see B.C. Carleson [4], F. Burk [3], E.B. Leach and M.C. Sholander [7]).
This estimates motivate the study of several functional inequalities (e.g. C. Alsina
and J.L. Garcia-Roig [1], C. Alsina and R. Ger [2] and our papers [5, 6]). An in-
spection of this results shows the possibility of introducing the following notion of
equivalence of inequalities for real numbers. Namely, one may say that a given in-
equality (A) is sharper than another given inequality (B) or equivalent to it if one
can prove the inclusion or the equality between the sets of all solutions of respec-
tive functional inequalities (FA) and (FB) formed from (A) and (B). In the talk we
discuss this concept in details and we study some related estimates and the corre-
sponding functional inequalities.
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(1983)

Gilanyi, Attila  Regularity of weakly subquadratic functions. (Joint work with
Katarzyna Troczka-Pawelec.)

In the recent years, subquadratic and weakly subquadratic functions have been
considered by several authors (cf., e.g., [1, 2] and [3]).
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In the present talk, related to and motivated by some regularity results on con-
vex and subadditive functions, we investigate regularity properties of weakly sub-
quadratic functions, that is, solutions of the inequality

e+ +fax-—y=2fx)+2f() &, yeq),

in the case when f is a real valued function defined on a group G = (G, +).

References

1. Abramovich, S.: 1. Remark, Problems and Remarks. In: Bandle, C., Gilanyi, A., Losonczi, L.,
Pales, Zs., Plum, M. (eds.) Inequalities and Applications, p. xli. Birkhduser Verlag, Basel,
Boston, Berlin (2009)
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Glavosits, Tamas  Examples and counter-examples concerning the uniqueness of
Hahn-Banach extension. (Joint work with Csaba Gabor Kézi.)

According to the classical Hahn-Banach dominated extension theorem if X is a
real linear space, V is a subspace of X, p: X — R is a positively homogeneous
sub-additive function and ¢ : V — R is a linear function which is dominated by p,
then there exists at least one function ¥ : X — R such that it is also linear, it is also
dominated by p and extends ¢. Such a function i is called Hahn-Banach extension
(of ¢ from V to X). In all cases investigated by us the linear space will be always
the n-dimensional real linear space R”, the linear subspace will be always

V= {(x,x,...,x)lx ER}
and the linear function ¢ : V — R will be always defined in the following way
¢(x,x...,x)=x (x €R).

We will give all the Hahn-Banach extensions of ¢ (from V to X) with respect sev-
eral remarkable dominating norms. For this we will frequently use the technique of
infimal convolution which will be also presented.
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Goldberg, Moshe = Homotonic Algebras.

An algebra A of real or complex valued functions defined on a set S shall be
called homotonic if A is closed under forming of absolute values, and for all f and
g in A, the product f x g satisfies | f x g| < |f]| X |g|. Our purpose in this talk is
to provide a simple inequality which characterizes sub-multiplicativity for weighted
sup norms on homotonic algebras.

Gselmann, Eszter  Approximate n-Jordan homomorphisms.

The study of additive mappings from a ring into another ring which preserve
squares was initiated by G. Ancochea in [1] in connection with problems arising
in projective geometry. Later, these results were strengthened by (among others)
Kaplansky [4] and Jacobson—Rickart [3].

Let n > 2 be a fixed integer, a function ¢ from a ring R into another ring R’ is
called an n-Jordan homomorphism, if

pla+b)=p@) +¢b) and ¢(a")=¢@" (a,beR)

hold. 2-Jordan homomorphisms will be simply called Jordan homomorphisms. Fur-
thermore, an additive function ¢ : R — R’ is an n-homomorphism, if

plai---an) =¢(a1)---¢lay) (a1,...ap €R).

In Herstein [2] the following statement was proved: Let ¢ be an n-Jordan homomor-
phism from a ring R onto a prime ring R’ of characteristic larger than n. Suppose
further that R has a unit element. Then ¢ = et where T is either a homomorphism
or an anti—homomorphism and ¢ is an (n — 1)st root of unity lying in the center
of R.

The aim of this talk it to characterize n-Jordan homomorphisms and to investigate
their connection with n-homomorphisms as well as homomorphisms. Furthermore,
the following implication is also verified: if a function ¢ is additive and (for a fixed
integer n > 2) the mapping

x> (x") —p(x)"

satisfies some mild regularity assumption (e.g., boundedness, continuity at a point,
measurability), then the function ¢ is an n-homomorphism or it is a continuous
additive function.
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Hazy, Attila  On h-convex and approximately h-convex functions. (Joint work
with Pal Burai.)

In our talk we introduce a class of ~-convex functions (which is a common gener-
alization of the convexity, the Breckner s-convexity, the Godunova-Levin functions
and the P-functions) and a class of approximately z-convex functions.

Bernstein and Doetsch in 1915 proved that the local upper boundedness of a
Jensen-convex function yields its local boundedness and continuity as well on
the whole domain, which implies the convexity of the function. We show some
Bernstein-Doetsch type results for 4-convex and approximately /#-convex functions.

Horvath, Laszlo A refinement of the classical Jensen’s inequality.

In this talk we consider some integral inequalities in probability spaces, which go
back to some discrete variants of the Jensen’s inequality. Especially, we refine the
classical Jensen’s inequality. Convergence results corresponding to the inequalities
are also studied.

Jabtonski, Wojciech  Stability of p-Homogeneity and Completeness of a target
space.

Many authors examined stability of different functional equations since the time
when S.M. Ulam [3] had posed his famous problem concerning the stability of
an equation of homomorphism. Among others the stability of a p-homogeneity
equation

Jlax) =g(a) f(x)

under different assumptions and in various spaces was considered. In all cases,
where the homogeneity equation is stable, but not superstable, it has been assumed,
that the target space of the considered function f is complete.

In 1989 G.L. Forti and J. Schwaiger shown (see [1]) that a normed space Y
has to be a Banach one provided for some abelian group A containing an element
of infinite order and for all functions f : A — Y such that the Cauchy difference
f(x+y)— f(x) — f(y) is bounded, there is some additive function % such that
f — h is bounded. The similar result is also true for stability of a homogeneity
(see [2]).

Following the idea of the proof of Theorem from [2] we show that the statement
remains true with weakened and simplified assumptions.

Assume that (A, -) is a group admitting a homomorphism ¢ : A — K* =: K\ {0},
K e {R, C}, which is not a character. Let moreover - : A x X — X be an action of A
on some set X such that the stabilizer A, := {o € A : axg = x¢} is trivial for some
Xxo € X. Finally, let Y be a normed space.

Theorem Let ¢ : A — K* be a homomorphisms which is not a character on A.
Assume that for all functions f : X — Y such that for some positive €, §

| fax) — (@) fx)| <e|e@]|+8 foraeA xeX,

holds, there exists a ¢-homogeneous function h : X — Y such that f — h is bounded.
Then Y is a Banach space, i.e., a complete normed space.



xlii Conference on Inequalities and Applications *10

References

1. Forti, G.L., Schwaiger, J.: Stability of homomorphisms and completeness. C. R. Math. Acad.
Sci. Soc. R. Can. 11(6), 215-220 (1989)

2. Jabtonski, W., Schwaiger, J.: Stability of homogeneity and completeness. Sitzungber. Abt. II
214, 111-132 (2005). Osterreiche Akademie der Wissenschaften

3. Ulam, S.M., A Collection of Mathematical Problems. Interscience, New York—London (1960)

Kézi, Csaba Gabor Functional equations and group substitutions. (Joint work
with Mihdly Bessenyei.)

Motivated by some investigation of Babbage and a method of solving certain
functional equations arising in competition problems, the functional equation

F(fog19~--»fogl‘lsid)=07 (1)
is studied. Here id denotes the identity of R, the functions F, g1, ..., g, are given
(with appropriate range and domain) such that gi, ..., g, form a group and f is

to determined. Under some further analytical assumptions on the involved known
functions, a local existence and uniqueness theorem is proved for (1). In the proof,
the Implicit Function Theorem and the Global Existence and Uniqueness Theorem
are applied.
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Klarici¢ Bakula, Milica  Converse Jensen-Steffensen inequality. (Joint work with
S. Iveli¢ and J. Pecarié.)

Let I be any open interval in R and [a,b] C I,a <b. Letx = (x1,...,x,) be a
monotonic n-tuple in [a, b]* and w = (w1, ..., w,) a real n-tuple satisfying

w; #Z0, i=1,...,n,
0O<wW; <W,=1, j=1,...,n,
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where W; = Zf: | wi. We prove that for any convex function f : I — R the in-
equalities

D wif i) - f(Z wm)
i=1 i=1
< f(@)+ f(b) - f(Z wm) - f(a +b— Zwix,»)
i=1 i=1

a+b
Sf(a)+f(b)—2f( > ) (D

hold. Furthermore, we use exp-convex method to obtain inequalities of the form

Q) <(@m) " (m) ™,

where r < s <t and Q2 is some specially chosen exp-convex function related to (1).
The obtained inequalities are used to prove monotonicity of some Cauchy type
means.

Kobayashi, Kenta On the interpolation constant over triangular elements.
Let T be the triangle in R2 and VI 1(T), VI2(T), V2(T) be the function spaces
defined by

VLT = {q) e H\(T) ‘ f (pdxdy=0},
T

VhAT) = {(PEHI(T)‘ / pds =0, k= 1,2,3},
Yk

VAT ={pe HT) | (pr) =0, k=1,2,3},

where p1, p2, p3 and y1, 2, y3 are the vertices and sides of T respectively. Then,
it is known that the following constants Cy(T'), C2(T), C3(T), C4(T) exist:

lell2 o2
Ci(T) = Ol oy = el
geviiao Vel vevi2arno Vel
lellz2 Vel
C%(T) = &, C4(T) — sup ﬁ’
pev2rno |9lu2(r) pevimno l9lmar)

where |¢| 2 is a H? semi-norm of ¢ defined by

102y = 10 1727y + 2105 17207y + 10331727

For these constants, we have obtained the formulas which give sharp upper bound
of C;(T) as

Ci(T)<K;(T), j=1,2,3,4.

Concrete form of the formulas K ; (') will be shown in the talk.
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_ Since we don’t have enough space here, we will only show the graph of
C4(T), K4 and K4(T) — C4(T) in Figs. 1 and 2, where C4(T) is an approximate
solution of C4(T) and T is a triangle whose vertices are (0, 0), (1, 0) and (a, b).

Kolumban, Jozsef  Parametric equilibrium problems. (Joint work with Marcel
Bogdan.)

Let (X, o) be a Hausdorff topological space. For n € N we consider the following
equilibrium problem:

Find an element a, € X such that

fulan, b) = @,(an, b) — &, (an, a,), VbeX, (D

where f,, : X x X - Rand &, : X x X — RU {400} are given functions.
Along with the problem (1) we consider the so-called “limit” problem:
Find an element a € X such that

f@a,b)>®(a,b) — P(a,a), VYbelX. 2)

Supposing that a, is a solution of problem (1) and a, 5 a, we give sufficient
conditions for a to be a solution of problem (2).
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Losonczi, Laszlo  Minkowski-type inequalities for means generated by two func-
tions and a measure. (Joint work with Zsolt Pales.)

Given two continuous functions f, g : I — R such that g is positive and f/g is
strictly monotone, and a probability measure p on the Borel subsets of [0, 1], the
two variable mean My, : 1 2 — [ is defined by

-1 1 .
My g p(x,y) = (i) (fo fax+d t)y)du(z)) Ccoyel.

g Ji gltx + 1 =)y)du)

We study Minkowski-type inequalities for these means, i.e., try to find conditions
for the generating functions fy, go:lo = R, fi,g1: 1 = R, ..., fu,gn: I > R,
and for the measure u such that

Mfo,gogu(xl +e X, Y1+ Yn)

<
- My g,y -+ My, o0 (Xns )

(=]

holds for all x1, y1 € I1, ..., xn, yp € I, with x1 4+ -+ -+ x,,, y1 +--- + yn € Ip. The
particular case when the generating functions are power functions, i.e., when the
means are generalized Gini means is also investigated.
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Maké, Judit Approximate convexity of Takagi type functions. (Joint work with
Zsolt Pales.)

Given a nonnegative function ¢ : [0, %] — R, we define the Takagi type func-
tion Sy : R — R by

= 1
Sp(x) =) 2¢<W> dz(2"x),
n=0

where dz(x) := inf{|x — k| : k € Z}. Our main result states that if ¢(0) = 0 and the
mapping x — ¢ (x)/x is concave, then the Takagi type function Sy is approximately
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Jensen convex in the following sense

x+y Sp(x) + Sp ()
S¢( > )S 5

X —
+¢odZ(Ty) (x,y €R).
Applications to the theory of approximately convex functions are also given.

Maksa, Gyula The equality case in some recent convexity inequalities. (Joint
work with Zsolt Pales.)

In a recent paper [7] by VaroSanec, a common generalization of convex and s-
convex functions, Godunova—Levin functions, and P-functions is introduced in the
following way: Let I be a nonvoid subinterval of R (the set of all real numbers),
h:[0,1] - R and f: I — R be real-valued functions satisfying the inequality

flx+A=0y) <h@fx)+h(0 =) f(y) (D

forall x, y € I and r €]0, 1[. An even more general notion, the so-called .-convexity
((H, h)-convexity), can be found in Hazy [5]: Let X be a real or complex normed
space, D C X be a nonempty convex set, ¥ = H C [0,1], and h: H — R be a
function. A function f : D — R is (H, h)-convex if (1) holds for all x, y € D and
t € H. Itis clear that this generalizes the concepts of convexity (h(t) =¢, t € [0, 1],
[7, 2]), the Breckner—convexity (h(t) = t°, t €]0, 1[, for some s € R, [3, 4]), the
Godunova-Levin functions (h(z) =1, 7 €]0, 1[, [1]), and P-functions (h(t) = 1,
t €0, 1], [6]).
In this talk, we present some results on the functional equation

fla@®x+B@y) =g f()+h®f() (x,yeD,1eH)

related to (1), where D is a nonempty open subset of a real or complex topological
vector space, H C R is a nonempty set, «, 8, g, h : H — R are given functions, and
f : D — R is the unknown function. Furthermore, we suppose on D that «(¢)x +
B(t)y € D whenever x,ye Dandt € H.
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Matkovié, Anita  Some Variants of the Jensen-Mercer Inequality and their Appli-
cations. (Joint work with J. Pecarié.)
In 2003. A.McD. Mercer proved the following variant of Jensen’s inequality

Platb— g Swin ) < @+ 76 = 5 Do wi

i=1 i=l1

for a convex function f : [a, b] — R, real numbers x1, ..., x, € [a, b] and positive
real numbers wy, ..., w,, where W,, = > "1 w;.

We call it Jensen-Mercer inequality and we present some of its generalizations
in various spaces with adequate orders, and for several types real valued functions.
As their applications we establish the monotonicity property of the weighted means
of Mercer’s type and an upper bound for the normalized Jensen-Mercer functional.

References

1. Mercer, A.McD.: A variant of Jensen’s inequality. J. Inequal. Pure Appl. Math. 4(4), Article 73
(2003)

2. Cheung, W.S., Matkovi¢, A., Pecari¢, J.: A variant of Jessen’s inequality and generalized
means. J. Inequal. Pure Appl. Math. 7(1), Article 10 (2006)

3. Matkovié, A., Pecaric, J., Peri¢, L.: A variant of Jensen’s inequality of Mercer’s type for opera-
tors with applications. Linear Algebra Appl. 418, 551-564 (2006)

4. Matkovié, A., Pecari¢, J., Perié, 1., Refinements of Jensen’s inequality of Mercer’s type for
operator convex functions. Math. Inequal. Appl. 11(1), 113-126 (2008)

5. Bari¢, J., Matkovié, A.: Bounds for the normalized Jensen—Mercer functional, J. Inequal. Pure
Appl. Math. 3(4), 529-541 (2009)

Mészaros, Fruzsina  Density function solutions of functional equations by the
help of interval expansions. (Joint work with Karoly Lajké.)

To prove that the so-called density function solutions of some functional equa-
tions are positive almost everywhere on their domain, we use interval expansions
and the following generalization of Steinhaus’ theorem (see [1]):

Let U be an open subset of R? and F : U — R be a continuously differentiable
function with nonvanishing partial derivatives, moreoverlet A, BCR (A x B CU)
be measurable sets with positive Lebesgue measure, then the set F' (A, B) has an
interior point, i.e. F'(A, B) contains a nonvoid open interval.
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Minuta, Flavia-Corina  An Extension of Young’s Inequality.

Young’s inequality asserts that every strictly increasing continuous function f :
[0, 00) — [0, 00) with f(0) =0 and lim,_,» f(x) = oo verifies an inequality of
the following form,

a b
abs/ f(x)dx+/ £ dy,
0 0
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whenever a and b are nonnegative real numbers. The equality occurs if and only if
f(a)=h.

In our extension f will denote a nondecreasing function such that f(0) =0 and
lim,_, » f(x) =00 and K (x, y) is a Lebesgue locally integrable function. We will
attach to f a pseudo-inverse fsﬂ;}- Then for every pair of nonnegative numbers a <
b, and every number ¢ > f(a) we have

b prc
// K(x,y)dydx
a Jfa)
b( f) c Fop O
5/ / K(x,y)dy dx—i—/ / K(x,y)dx |dy.
a fla) fla) \Ya

If in addition K is strictly positive almost everywhere, then the equality occurs if
and only if c € [f(b—), f(b+)].

The following corollary incorporates the Legendre duality:

Let f :[0,00) — [0,00) be a continuous nondecreasing function and @ :
[0,00) — R a convex function whose conjugate is also defined on [0, co). Then
forallb>a>0,c> f(a),and ¢ > 0 we have

b ( f® ) ¢ 1 ™
/ d 8/ K(x,y)dy dx—i—/ o* —/ K(x,y)dx |dx
a fl@ f(a) € Ja
b prc
Z/ /f( )K(X, ydydx — (c— f(a))P(e) — (b — a)®*(1/¢).
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AW

Mitrea, Alexandru loan Two-sided inequalities for the norm of some linear op-
erators in Approximation Theory. (Joint work with Delia Mitrea.)

The estimate of the norm of some operators which appear in various approxi-
mation procedures is essential in order to establish their convergence. Our goal is
to give estimates for classes of operators involved in the following approximation
procedures:

(i) Chebyshev best approximation on finite point sets,
(ii) product-quadrature formulas.
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Based on these estimates, some theorems concerning the convergence, the error
estimate or the topological structure of the unbounded divergence set for the corre-
sponding approximation formulas will be derived.
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Mitrea, Paulina  On the approximation error of EGO-Algorithms for obtaining
energy-minimizing surfaces. (Joint work with Octavian M. Gurzdu and Alexandru L.
Mitrea.)

A 3D deformable model (i.e. a deformable surface) of variational type is defined,
usually, as a triple (A, I, E), where A C CZ(D, R3), D =10, 1] x [0, 1], is the set of
admissible deformations, I € C?(R?) is the image-intensity function and E : A —
R is the energy-functional, given by a double integral on D involving the partial
derivatives of first and second order of v € A and the gradient of /.

The basic problem of a deformable model is to minimize its energy-functional,
i.e. to obtain an energy-minimizing surface, by solving the associated Euler-Gauss-
Ostrogradski (EGO) Equation of Calculus of Variations.

The main goals of this paper are to derive the corresponding EGO-Algorithms,
based on discretization methods, to obtain estimates for the approximation-error
of these algorithms and, consequently, to establish their convergence, under given
restrictions.
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Molnar, Lajos  Order automorphisms on positive definite operators and a few
applications.

We determine the order automorphisms of the set of all positive definite opera-
tors with respect to the usual order and to the so-called chaotic order. We then apply
those results to the following problems: 1) description of all bijective transforma-
tions on the space of nonsingular density operators (quantum states) which preserve
the Umegaki or the Belavkin-Staszewski relative entropy; 2) characterization of the
logarithmic product as the essentially unique binary operation on the set of positive
definite operators that makes it an ordered commutative group with respect to the
chaotic order.

Nagatou, Kaori  Eigenvalue excluding for perturbed-periodic 1D Schrodinger
operators. (Joint work with Michael Plum and Mitsuhiro T. Nakao.)
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Subject of investigation in this talk is a 1D-Schrodinger equation, where the po-
tential is a sum of a periodic function and a perturbation decaying at -oco. It is well
known that the essential spectrum consists of spectral bands, and that there may or
may not be additional eigenvalues below the lowest band or in the gaps between
the bands. While enclosures for gap eigenvalues can comparably easily be obtained
from numerical approximation, e.g. by D. Weinstein’s bounds, there seems to be no
method available so far which is able to exclude eigenvalues in spectral gaps, i.e.
which identifies sub-regions (of a gap) which contain no eigenvalues. Here, we pro-
pose such a method. It makes heavy use of computer assistance; nevertheless, the
results are completely rigorous in the strict mathematical sense, since all computa-
tional errors are taken into account.

Nagy, Karoly  On the Walsh-Marcinkiewicz means and kernels.
For the two-dimensional Walsh-Fourier series Weisz [1] proved that the maximal
operator

M* f —SUP ZSJJ(f)

is bounded from the two-dimensional dyadic martingale Hardy space H) to the
space L, for p > 2/3 and is of weak type (1,1). Goginava [2] proved that the as-
sumption p > 2/3 is essential for the boundedness of the maximal operator M*
from the Hardy space H p(Gz) to the space L p(Gz). Namely, in the endpoint case
p =2/3 he gave a counterexample for which the boundedness does not hold. In the
endpoint case p = 2/3, Goginava [3] proved that the maximal operator M* of the
Walsh-Marcinkiewicz means of double Fourier series is bounded from the Hardy
space Hy 3 to the space weak-Ly3.

References

1. Weisz, F.: Convergence of double Walsh-Fourier series and Hardy spaces. J. Approx. Theory
Appl. 17, 32-44 (2001)

2. Goginava, U.: The maximal operator of the Marcinkiewicz-Fejér means of the d-dimensional
Walsh-Fourier series. East J. Approx. 12(3), 295-302 (2006)

3. Goginava, U.: The weak type inequality for the maximal operator of the Marcinkiewicz-Fejér
means of the two-dimensional Walsh-Fourier series. J. Approx. Theory 154, 161-180 (2008)

Ohwada, Tomoyoshi  On a continuous mapping and sharp triangle inequalities.

The triangle inequality is one of the most fundamental inequalities in analysis
and have been treated by several authors. Kato, Saito and Tamura [1] showed sharp
triangle inequality and its reverse inequality with n elements in a Banach space.
After this, Mitani, Saito, Kato and Tamura [2] extended it.

In this talk, we shall present a non-negative valued continuous mapping on a
Normed space and, as an intermediate values of it, we will show the two kinds of
sharp triangle inequalities in [1] and [2].
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Pales, Zsolt  Connection between the Ingham-Jessen and the Kedlaya inequali-
ties.

The classical Kedlaya inequality (which was conjectured by F. Holland) estab-
lishes the relation

A(G(x)), G(x1.x2), ..., G(x1, ..., X)) SG(A(x)), A(x1,x2), ..., A(x1, ..., Xn)),

where x1, ..., x, are positive numbers and A and G denote the arithmetic and geo-
metric means, respectively.

Using a combinatorial argument, this inequality can be deduced from the clas-
sical Ingham-Jessen inequality. This argument will be proved to obtain a similar
implication in terms of quasi-arithmetic and more general means.

Plum, Michael A uniqueness result for a semilinear elliptic problem: A computer-
assisted proof. (Joint work with P.J. McKenna, F. Pacella, and D. Roth.)

Starting with the famous article [A. Gidas, W.M. Ni, L. Nirenberg, Symmetry
and related properties via the maximum principle, Comm. Math. Phys. 68 (1979)
209-243], many papers have been devoted to the uniqueness question for positive
solutions of —Au = Au + u? in Q, u =0 on 92, where p > 1 and A ranges be-
tween O and the first Dirichlet eigenvalue 11 (€2) of —A. For the case when  is
a ball, uniqueness could be proved, mainly by ODE techniques. But very little is
known when €2 is not a ball, and then only for A = 0. In this talk, we prove unique-
ness, for all A € [0, 11(2)), in the case = (0, 1)? and p = 2. This constitutes the
first positive answer to the uniqueness question in a domain different from a ball.
Our proof makes heavy use of computer assistance: we compute a branch of ap-
proximate solutions and prove existence of a true solution branch close to it, using
fixed point techniques. By eigenvalue enclosure methods, and an additional analyt-
ical argument for A close to A1(£2), we deduce the non-degeneracy of all solutions
along this branch, whence uniqueness follows from the known bifurcation structure
of the problem.
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Popa, Dorian  Hyers-Ulam stability of the first order linear partial differential
equation. (Joint work with Nicolaie Lungu.) ‘
We prove that the linear partial differential equation of order one al(xl);T“I +

coet an(xn)a%“ =a(x)u+ f(x1,x2,...,x,) is stable in Hyers-Ulam sense under
suitable conditions.
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Reichel, Wolfgang  Symmetry of solutions for quasimonotone second-order ellip-
tic systems in ordered Banach spaces. (Joint work with Gerd Herzog.)

We consider symmetry properties of solutions to nonlinear elliptic boundary
value problems defined on bounded symmetric domains of R". The solutions take
values in ordered Banach spaces E, e.g. E = R" ordered by a suitable cone. The
nonlinearity is supposed to be quasimonotone increasing. By considering cones
which are different from the standard cone of componentwise nonnegative elements
we can prove symmetry of solutions to nonlinear elliptic systems which are not cov-
ered by previous results. We use methods based on maximum principles (the method
of moving planes) suitably adapted to cover the case of solutions of nonlinear ellip-
tic problems with values in ordered Banach spaces.

Saito, Kichi-Suke The sharp triangle inequalities and its applications to the ge-
ometry of Banach spaces.
Let X be a Banach space (or a normed space). The triangle inequality

lx+yl < lxlf+lyll (x,yeX)

plays a fundamental role in studying various analytic and geometric properties of
such space. Several authors have been treating its generalizations and reverse in-
equalities.

In 2005, Kato-Saito-Tamura in [1] announced the sharp triangle inequality and
its reverse inequality with n elements for a Banach space, as follows:

n n

x]' .
ij +|n— Z— min ||x; ||
; lxjll || ) 1=i=n
j=1 J

j=1

n
<> llxll
Jj=l

n n
Xj
< E xji|+{n— E —— ] max [x;|
. — ||x;l || ] 1<j<n
=1 j=1

for nonzero elements x1, ..., x, in X. These inequalities are useful to study the ge-
ometrical structure of Banach spaces, such as uniformly non-@’ll -ness [2]. After that,
we have the series paper about the sharp triangle inequality. Moreover, Mitani-Saito-
Kato-Tamura [3] and Mitani-Saito [4] presented the refinement of sharp triangle
inequality and its reverse inequality.
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In this talk, we present the recent results about sharp triangle inequalities of a
Banach space given in [2—4]. In particular, we give the equality condition of these
inequalities. As an application, we give a characterization of geometrical properties
of Banach spaces, such as strict convexity, uniform convexity and uniform non-
squareness.
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Saitoh, Saburou Fundamental Error Estimate Inequalities for the Tikhonov reg-
ularization using reproducing kernels.

First of all, as two news, I would like to introduce simply the two general inequal-
ities: For a real-valued absolutely continuous function on [0, 1] satisfying f(0) =0

and fol f'(x)?dx < 1, we have, by using the theory of reproducing kernels

1 ” | Y]
/( f(x) ) (1 0)2dx < fOJ; (x)dx ’
o \I—fx) 1— [y fR(x)dx

[6]. Yamada [9] gave a direct proof for this inequality with a generalization and as
its application, he unified the famous Opial’s inequality [5] and its generalizations.

Meanwhile, we gave some explicit representations of the solutions of nonlinear
simultaneous equations [8] and of the explicit functions [1] in the implicit func-
tion theory by using singular integrals, and we [7] derived the estimate inequali-
ties for the regularizations: for example, for the singularity W, for an small &,

1
(x—yl+8)* ", s . . .
Our main purpose in this talk is to introduce our method [2, 4] constructing ap-

proximate and numerical solutions of bounded linear operator equations on Hilbert
spaces using the Tikhonov regularizations and reproducing kernels; there, for the
error estimates for the solutions, we will need the inequalities for the approximate
solutions; as a typical example, we shall present our new numerical and real inver-
sion formulas [3] of the Laplace transform whose problems are famous as typical
ill-posed and difficult ones; for this software realizing the formulas in computers,
we are requesting international patents. Here, we will be able to see a great com-
puter power of H. Fujiwara with infinite precision algorithms in connection with the
error estimates.
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Tabor, Jacek  Strongly quasiconvex functions behave like convex ones. (Joint
work with J6. Tabor and M. Zotdak.)

Let f: 1 — R, when I is a subinterval of R. We say that f is e-strongly quasi-
convex if

ftx+(1=1)y) <max(f(x), f(y))—emin(t, 1 —1)[x—y| forx,yel,1€[0,1].
Dually, f is e-strongly quasiconcave if
f(tx+(l —t)y) > max(f(x), f(y)) —emax(t, 1 —t)lx—y| forx,yel,t€]0,1].

We show that strongly quasiconvex and strongly quasiconcave functions build an
interesting family which behaves in many ways like classical convex and concave
functions.

Tabor, Jozef How to estimate the module of uniform convexity. (Joint work with
Ja. Tabor.)

Our main results give a convenient tool to compute the module of uniform con-
vexity of a given function. By Ry we denote the interval [0, 00). Let X be a
normed space and V a convex subset of X. For a convex function f:V — R by
wyf Ry — [0, oo] we understand the module of uniform convexity of f, that is

f+d=0f0) - fx+dA-0y)

=1 te(0,1),

wyg(r) :=inf{

Lerwx—yH=r}

We say that f is uniformly convex if wy(r) > 0 for r > 0. Our results read as fol-
lows.
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(1) Let f:[a,o0) — R be a convex function of class C!, such that f’ is convex.
Then

wy(r)= fla+r)— f(a) = f'(@r.
(2) Let f:[a,b] — R be a convex function. Let xo € (a, b) and let fi = fl[a,x,]
and f> := f[x,,6]- Then

- (1
wr(r)>  inf O|:a)f1 (s)+wf2(t)+2st-min(wflz(s), wftzz( )>:| forr > 0.
S

s+t=r,s,t>

Wagner, Alfred  On some rescaled shape optimization problems. (Joint work with
G. Buttazzo.)
We consider Cheeger-like shape optimization problems of the form

min{|Q[*J(Q) : Q2 C D}

where D is a given bounded domain and « is above the natural scaling. We show
the existence of a solution and analyze as J(2) the particular cases of the compli-
ance functional C(€2) and of the first eigenvalue 11(€2) of the Dirichlet Laplacian.
We prove that optimal sets are open and we obtain some necessary conditions of
optimality.
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Wasowicz, Szymon  Probabilistic characterization of strong convexity. (Joint
work with Teresa Rajba.)

The function ¢ : Z — R (where Z C R is an interval) is called strongly convex
with modulus ¢ > 0, if

o(tx + (1= 0)y) <tex) + 1 —Dp(y) —ct(1 —1)(x — y)?

forany x, y € Z, t € [0, 1]. We state the following

Theorem The function ¢ : I — R is strongly convex with modulus c if and only if
¢(E[X]) <E[p(X)] - cD?[X]

for any integrable random variable taking values in I.

Some inequalities of Jensen-type (known from [1]) will be derived. The geomet-
rical interpretations of the above theorem will be also given.
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Witkowski, Alfred  Gini and Stolarsky means in geometric problems.

The note [1] shows how different means appear as lengths of horizontal sections
of a trapezoid. Replacing a trapezoid with an n-frustum (i.e. a truncated cone with
n-dimensional balls as its bases) we see that the volumes of some horizontal sections
can be expressed by the Stolarsky or Gini means of the volumes of its bases.

For example, if the n-volumes of bases of a frustum equal x and y, then the n-
volume of the base of a cylinder with the same height and the same (n + 1)-volume
equals

E(1+1/n,1/n;x,y),
where E is the Stolarsky mean.
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Volkmann, Peter  The continuous solutions f : R — R of the functional equation

min{ f(x +y), f(x =y} =[fx) = fFDI".
They are given by f(x) = c|x| (x € R), where ¢ > 0, and by

fe)y=clxl (IxI < p/2), fx+p)=fx) xeR), (D

where ¢ >0, p > 0.
Background information:

(1) Jointly with Alice Simon (Aeq. Math. 47, 60-68 (1994)) the functions f(x) =
la(x)] (x € G) had been studied, a : G — R being additive on an abelian
group G. They solve

max{f(x+y), f&x =} =f)+ f() . yeG) 2)
as well as
min{f(x +y), fx =N} =[f @) - f»)| x.yeb). 3)

Equation (1) characterizes these functions f : G — R, but for (2) in case G =
R also (1) (with ¢ = p = 1) had been found as solution.

(ii) Jointly with Raymond M. Redheffer the equation

f) +g(y) =max{h(x +y),h(x —y)} (x,y€G)

for functions f, g,h : G — R had been solved (General Inequalities 7, 311—
318 (1997)).

I'This talk was presented during the Conference on Inequalities and Applications *07, Noszvaj,
Hungary, September 9-15, 2007. However, due to technical reasons, it did not appear in the book
Inequalities and Applications (Eds. C. Bandle, A. Gildnyi, L. Losonczi, Zs. Péles, M. Plum),
Birkhéuser Verlag, Basel, Boston, Berlin, 2009, therefore, we publish it here.
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(iii) Jointly with Karol Baron the complex case had been considered (Sem. LV,
No. 28, 10pp. (2006); http://www.mathematik.uni-karlsruhe.de/~semlv):
The functions f(x) =]|¢(x)| (x € V) with ¢ : V — C being linear on a com-
plex vector space V are characterized by each of the equations sup,.p f(x +
ely) = f(x) + f(») (x,y € V) and infier f(x + €'"y) = [f(x) = fF(V)I
(x,y€ V) (where f:V — R).

2 Problems and Remarks

2.1 Problem (The Problem of Convex Separation)

Let H C R be a set of at least n elements, and wy, ..., w, : H — R be given func-
tions. We say that @ := (wy, ..., w,) is a (positive) Chebyshev system over H, if,
for all elements x; < - - - < x, of H, the following inequality holds:

wi(x1) - o1(x,)
lo(x) - @) =] : > 0.
op(x1) o p(xn)
Given a positive Chebyshev system @ on H, a function f : H — R is said to be

generalized convex with respect to  (or briefly: w-convex) if, for all elements xp <
--- < x, of H, we have the inequality

w1(xg) -+ wi1(xy)
o(xo) -+ w(xy) - >0
fGo) - fOD T w) o wplxn)|

S&xo) - f(xn)

Clearly, the notion of convexity induced by Chebyshev systems involves the case
of classical convexity. The well-known Sandwich Theorem states that if a convex
function lies “above” a concave one, then there exists an affine function separating
them. It turns out that the existence of an affine separator can be characterized even
in the general case:

Theorem Let H C R be a set of at least n elements, let @ be a positive Chebyshev
system over H, and f, g : H — R. Denote the linear hull of the components of ® by
Q, (H). Then, the following statements are equivalent:

(i) There exists an element w of 2,,(H) such that f <w < g;
(ii) there exists an w-concave function ¢ : H — R and an w-convex function r :
H — R satisfying the inequalities f <¢ <gand f <y <g;
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(iii) for all elements xoy < --- < x, of H the next inequalities are satisfied:

‘ o 0(xp-3) @(0g2) og-1) o) <0:
8xn—3) flxn—2) gu—1) flw)|~™ "7
’ e 0(x—3) @(xp—2) @0(_1) @x,) >0
FOn=3) gGn—2) [flxn—1) gln)|~

In the particular setting when the underlying Chebyshev system is @ := (1, id),
the previous theorem reduces to the main result of Nikodem—Wasowicz [5]. In fact,
Wasowicz obtained similar results both for the polynomial [6] and for the Cheby-
shev setting [1] using some selection principles an algebraic manipulations.

On the other hand, there is a characterization for the existence of convex (re-
spectively, concave) separation due to Baron—-Matkowski—Nikodem [2], which cor-
responds to the first (respectively, second) inequality of the presented result. (For the
nonlinear correspondence, consult the paper of Nikodem—Péles [4].) Therefore the
question arises, quite evidently, whether the separated inequalities mentioned char-
acterize the existence of convex (respectively, concave) separation in the general
case.
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M. Bessenyei and Zs. Péles

2.2 Problem

Suppose M (x, y) is a continuous, strict mean and A € (0, 1) with binary representa-
tion A = 0.A1A;....Forx < y we built a decreasing (in terms of inclusion) sequence
of intervals [xo, yol, [x1, y1], - ., [Xn, Ynl, ... as follows:

[x0, yol =[x, y1,

[M(xn,y0), ynl Apgp1 =0,

[Xn41, Ynt1]l=
B [0, M (Xn, yu)] Apgr = L.
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In other words: the point M (x,, y,) divides interval [x,, y,] into two parts, and
the (n + 1) digit of 7 decides which one to choose. The assumptions on M guar-
antee that their intersection consists of one point—M (x, y; A)

1
M) =/ M(x, y: ) do.
0

Question: what are the properties of M and which means can be obtained this
way? Some of means that can be obtained are:

Alx,y) = Ax, y),
G(x,y)=L(x,y),
M (x,y)=E(r+1,r:x,).

And generally if M¢(x,y) = f -1 (W) is a pseudoarithmetic mean then

_ 10 war
M == =

If we use a more general approach by defining

1
ME=g"! (/0 g(M(x,y, 1)) dk)

them we can obtain all Stolarsky means by taking a power means as M and a power
or logarithmic function as g.

A. Witkowski

2.3 Remark

Let Z C R be an interval. The function f :Z — R is called

o Mercer—convex, if

f<a+b—2rixi> < f@+fb) = tif@x) (1)
i=1 i=1
foranya,beZ,neN, x1,...,x, €eco({a,b})and t1,...,t, >0 witht; +--- +
t, =1,
o Wright—convex, if
fltx+A=0y)+ f(ty+ (1 —0x) < f(x)+ f(y) (2

forany x,y € Z,t €[0, 1];
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o Jensen—convex, if

f(ery) = S+ f(y)
2 2
forany x,y e 7.

Of course, every Mercer—convex function is Wright—convex (use (1) for n =1,
which, in fact, is equivalent to (2)) and any Wright—convex function is Jensen—
convex (use (2) for t = 1/2). Next, not every Jensen—convex function is Wright—
convex. The easy example is the absolute value of a discontinuous additive function,
the graph of which is not dense in the whole plane, while Wright—convex functions
possess this property because of a decomposition into the sum of an additive com-
ponent and a convex one.

Then the natural question arises, whether every Wright—convex function is
Mercer—convex. However, the answer is negative. Indeed, using (1) for n = 2,
X1 =a, xo = b, we easily obtain that Mercer convexity is equivalent to the ordinary
convexity. Then, for instance, any discontinuous additive function is Wright—convex
and it is not convex (i.e. Mercer—convex) at all.

A. Witkowski and Sz. Wasowicz

2.4 Remark (On Two Different Concepts of Subquadraticity)

A function f : [0, co[— R is called strongly subquadratic if, for all x > 0, there
exists a constant ¢, € R such that

fFO=fO) sexy=x)+ f(ly—xl) »=0. 3)

Functions of this type have been investigated, among others, by S. Abramovich,
S. Bani¢, J. Bari¢, G. Jameson, M. Matié, J.A. Oguntuase L.E. Persson, J. Pecaric,
G. Sinnamon, S. VaroSanec.

A function f :R — R is said to be weakly subquadratic, if

S+ +fx=—y=2fx)+2f(y) (x,yeR). “4)

Functions satisfying this inequality have been considered by Z. Kominek, K. Troczka-
Pawelec, W. Smajdor. (Cf. also R.A. Rosenbaum (1950) and M. Kuczma (1985,
2009).)

Theorem Let f: [0, 00[— R be a function. If f is strongly subquadratic then its
even extension [ : R — R defined by

fx), ifx>0,

TO=1 0, ifx <o,

is weakly subquadratic.
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Theorem A weakly subquadratic function f: [0,00[— R is not necessarily
strongly subquadratic.

Example Let f: [0, co[— R defined by

3, ifx=0,
FOO=01 i x2o0. ®)

Then f is weakly subquadratic but not strongly subquadratic.
Theorem Let f : [0, co[— R. The function f fulfils the inequality
e+ +fax=—y=2fx)+2f(y) (x=y=0) (6)
if and only if
Fa+n+flx=y) <2f@)+2f() (x,y=0). (7)
Theorem If f: [0, co] — R is a strongly subquadratic function then
Fa+)+flx—yl) <2f@)+2f(y) (x,y=0). ®)

The converse of the previous theorem is not true. Namely, the function given
in (5) fulfils inequality (8) but it is not strongly subquadratic.

Theorem Suppose that f : [0, co[— R satisfies (8), that is,
Fa+n+flx=y) <2f@)+2f(») (x,y=0).
Then the even extension f : R — R of f defined by fulfils
fEH++f(x—yl) <2f)+2f() (x,yeR). 9
Theorem Let f:R — R.If f is weakly subquadratic then it solves
Fa+)+f(lx—y) <2f@)+2f(y) (x,yeR). (10)
The converse of the theorem above is not true: the function f : R — R

- 1 ifx =0,
Fe0 :{4 if x <0,

satisfies (10) but it is not weakly subquadratic.
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S. Abramovich, Cs.G. Kézi, and A. Gil4nyi

2.5 Problem

Let us start from the well-known inequality between geometric and logarithmic
mean. One may apply it for ¢* and e” to reach the following estimate:
x4y eV —et
e <—o (11)
y—x
for all x, y € R. This estimate motivates the study of the following functional in-
equality:
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¥ Y _ =)
2 - y—Xx
for all x, y belonging to a nonempty open interval /. This inequality appeared first in

1998 in a paper of C. Alsina and R. Ger [1]. In particular they proved the following
Statements:

(12)

Theorem A nonnegative function f: I — R satisfies (12) if and only if there exists
a nondecreasing nonnegative function i : I — R such that f(x) =i(x)e* forx € I.
[1, Lemma 3]

Theorem If a nonpositive and nonincreasing function f: I — R satisfies (12) then
there exists a nondecreasing function i : I — R such that f(x) =i(x)e* forx € I.
[1, Lemma 4]

Theorem A nonpositive, nonincreasing and Jensen-convex function f: I — R
satisfies (12) if and only if there exists a nonpositive and nondecreasing func-
tion i: I — R such that x — i(x)e* is convex and f(x) = i(x)e* for x € I.
[1, Lemma 5]

The authors asked if there is possible to drop or weaken the additional assump-
tions imposed upon f. In 2008 we partially answered this question. More precisely,
we proved the following result.

Theorem If f: I — R satisfies (12) and

limsup f(x +h) > f(x), x€l, (13)
h—0+

then there exists a nondecreasing function i: I — R such that f(x) = i(x)e* for
x €1.[2, Theorem 1]

However, it is easy to notice that the converse implication in the last theorem
is not true (take i = —1). Therefore, the following two open problems are well-
motivated:

Problem What should be added to the assertion of the theorem above to get an “if
and only if” result?

Problem Is it possible to drop or weaken the assumption (13)?
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2.6 Remark (The Continuous Case for Generalized Jensen
Functional)

Professor Ldszl6 Horvéth has given the talk entitled A refinement of the classical
Jensen’s inequality. Professor Michael Plum asked about the integral case related to
the talk of Professor Laszl6 Horvath. Here are few results related tho this question;
the proofs have been omitted, the interested reader can find them in the paper [1].

Assume that we have x = (x1, x2, ..., x,) € [a, b]*, p= (p1, P2, ..., Pn) such
that p; >0, Y7_ pi=1and q = (g1, 42, ..., qx) such that ¢; > 0, Y_, ¢, =1
(1 <k <n). We define the normalized Jensen functional

k n
ﬁ(fspvq’x) Z Pi - Pikf<2‘1jxi_,-> _f<2plxl>
j=1 i=1

Theorem Assume f is a convex function and let v = (ry,12,...,r,) be such that
ri>0,%"_ri=1.Then

min {M }ﬁ(f, r,(,X)

1<iy,...,ix<n Fip oo T

<T(fp.a.x) < _max {u}mf r,q,x).

<il,...,ix<n Ty «..Fiy

For u a Steffensen-Popoviciu measure on [a, b] and f : [a, b] — R a convex
function then we have

1 b 1 b
- d L ., |
f(,u([a,b])/a x ,u(x)> = M([a,b])/a f)du(x)

(See C.P. Niculescu and L.-E. Persson [2, Chap. 4] for more results concerning
the Steffensen-Popoviciu measures.) We consider p : [a, b] — R such that p(x)dx
is an absolutely continuous measure and

b t b
0</ p(x)dx, 05[ p(x)dxf/ p(x)dx (SP)

for all ¢ € [a, b]. Then p(x)dx is a Steffensen-Popoviciu measure and f verifies

(fab xp(x)dx

< x)px)d (SP)
fabp(x)dx) fp(x)dx/ FIPeodx.

Lemma Let p(x)dx be an absolutely continuous measure, p [a,b] — (0, 00) in-
creasing such that fabp(x) dx = 1. We consider q = (q1,q2, --.,qx) such that
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gi >0, Zle qgi=1( <k).If f is convex then

k

b k
f( / xp(x)dx) < /[ b]kf(Zqix,)]"[ plxi)dx;)
@ @ i=1

i=1
b
< [ rwpeds
a
for all positive integers k.

Let p(x)dx be an absolutely continuous measure, where p : [a, b] — (0, 00) is
increasing such that | ab p(x)dx = 1. We define the normalized Jensen functional

k k
Te(f. p ) :=/[ o f<Zq,'xi) [ [(pxi)dxi)
a, i=1 =1

- f((/abXP(X)dx»(z 0).

The precision of the first inequality of the above lemma is estimated in the fol-
lowing theorem:

Theorem Let r(x)dx be an absolutely continuous measure, where r : [a, b] —
(0, 00) is increasing such that fab r(x)dx =1.1If f is convex then

inf

t,s€la,b],s#t

{ f[z STk l_[f 1(p(xi) dx;)
/[t s]k 1_[1 l(r(xl) dx;)
fz STk Hf 1(p(xi)dxi)
f[l 1 1_[1 ](r(xl)dxz)

}ﬁ(f, rq)

<T(f,p,q) < max
=T(f.p.q) = He[ab]#t{

}ﬁ(f, rq).
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Domain Derivatives for Energy Functionals
with Boundary Integrals

Catherine Bandle and Alfred Wagner

Abstract This paper deals with domain derivatives of energy functionals related
to elliptic boundary value problems. Emphasis is put on boundary conditions of
mixed type which give rise to a boundary integral in the energy. A formal com-
putation for rather general functionals is given. It turns out that in the radial case
the first derivative vanishes provided the perturbations are volume preserving. In
the simplest case of a torsion problem with Robin boundary conditions, the sign
of the first variation shows that the energy is monotone with respect to domain
inclusion for nearly circular domains. In this case also the second variation is de-
rived.

Keywords Domain derivative - Optimality

Mathematics Subject Classification 49Q10

1 Introduction

In this paper we are concerned with energy functionals £ : , — R where Q, C RV,
t € [0, ], are small perturbations of a domain 2. Important tools in shape optimiza-
tion are variational formulas exhibiting the domain dependence. Under sufficient
smoothness assumptions £(¢) can be expanded into powers of ¢,

W) =EO) +EO)2 +o(1?) ast— 0.

The terms £(0) and £(0) are called the first variation, resp. second variation of
E(t). They depend on 2 and on the particular perturbations. The simplest example
we have in mind are problems of the type

1
E) = inf {f <—|Vu|2—u>dx+gy§ u*ds, aeR+}. (1)
wiz) [ Jo, \2 2 Jag,

It is well-known that a minimizer exists and that it satisfies Euler-Lagrange equation

) ou
Au+1=0 in 2, — =0 onodQ. 2)
ny
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4 C. Bandle and A. Wagner
Here n,, (n) stands for the outer normal of €2;, (2). Then
A = {x +18(x)n(x) : x € 9Q},

where g (x) is the normal displacement of each boundary point x € d€2. In the case
of Dirichlet boundary conditions # = 0 on 92,

1
EPt)= inf /<—|Vu|2—u>dx.
wl @) Ja,\2

Its minimizer solves Au + 1 =0 in €2; and vanishes on the boundary. Its first varia-
tion assumes the simple form

. 1
EP(0) = —§7§ [Vul’g ds.
Q2

From this expression and the positivity of u it follows immediately that £ is a
decreasing functional of the domain. Moreover if €2 is a ball and |Q2;| = ||, i.e.
$2q &ds =0 then £P(0) = 0. The first statement follows directly from the varia-
tional characterization of £ (¢). In fact if u is extended by zero outside €2 it remains
an admissible function for the energy in €2;. In addition it does not change the en-
ergy and its minimum therefore decreases. The second assertion is a consequence of
Pélya’s theorem on the maximal torsional rigidity [5]. By means of Schwarz sym-
metrization it is easily proved that among all domains of given volume the sphere
has the minimal energy £ (7).

For Robin boundary conditions it is not known whether such results are true. No
global tools seem to be available to discuss question such as:

1. For what kind of deformations does £(¢) decrease?
2. Does the ball yield the minimum of £(¢), among all domains €2; of prescribed
volume?

In this paper we give an answer to the first question for nearly circular domains.
Concerning the second question we have only been able to show that for balls
& (0) = 0. We have computed é (0) for the ball, its sign however does not seem
clear.

The paper is organized as follows. We first derive the first variational formula for
general energies. Such formulas are already known in the literature [3, 4, 6]. Since
we are dealing with slightly more general energy functionals containing boundary
integrals we include the formal computation for the reader’s convenience. We then
apply the first variation to radial problems and show that it vanishes for the ball. We
then study the first and second variations of the torsion problem with Robin bound-
ary conditions in the case of a ball. A study of the second variation for a different
optimization problem is found in [2]. At the end some open problems related to
these investigations are listed.
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2 Variation Formulas

2.1 Domain Variation

Let Q; C R" is a bounded domain with smooth boundary and let 6(¢) : Q@ — €,
t € [0, 7] be a family of diffeomorphisms such that

Q=0(,2) and Q=06(0,2Q).
Since we will be interested in small perturbations of &2 we shall assume that
O(t,x)=x+tv(x), 3)

where v : @ — R¥ is a smooth vector field and ¢ is a small parameter. We shall use

the notation
ov; dv; 0
DU::< U’), Dgz( vzﬂ), i,j=1,...,N,
0x; 0xg 0x;

Dg(s,x): Jacobian matrix,

J(t) =detDy( x): Jacobian determinant.

Here and in the sequel repeated indices are understood to be summed from 1 to N.
If 6 is of the form (3) then

2
1t
J(t) =1+ t(trace D,) + E((trace Dy)? — trace D2) + o(1?), 4)
81),'
where trace D, = —.
3)6,‘

Observe that

dxg -1 -1
— |=D, ={+1tD .
(o) =05 =u+my

For small ¢+ we have
—1
D' =1—1Dy+1*D2+o(?).

Hence

d dxp 0 av, duy v d
Ty P R A N G} 5)
d26; 00; 0xy 0x; 0xg 0x; /) Ox

Our aim is to study the dependence of integrals involving u : 2; — R on domain
deformations under the assumption that u is sufficiently regular in 7.
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2.2 Variation of Volume Integrals

Consider a functionlL(y, i, p): Q2 xRx RN — R which is continuously differ-
entiable in all its argument and denote by Vyu the gradient (ug,). Define

L, ) :=/ L(y,u,Vyu)dy.
@
After the change of variable y = 6 (¢, x) we obtain

9
LG, Q) ::fL 0. u(x. 1)ty XV J(tydx, i=1,...,N.
Q 00;

Here we have written u(x, t) for (0, t). Differentiation with respect to ¢ yields

dL 36; du <8uxk dxx 3%xk )
=L pi .

iy AN Sl - Kk
or =~ Loy Thuy; ot 06, " " 300,

For the particular diffeomorphism (3)

00;

— =v;,

ot

0Xy oV

=S —t— 1),

30, ik ox; +o(1)
32X vk Avg dvy

=— 2%t —— t).

I T T

Formal differentiation of £ with respect to ¢ yields,

dL / Lovi+ L2y p, (2 N s ya
— = V; — A =" —uy,— x
dt S P P\ ot *ox;

+/ L% v o, ©)
o 0

Xs

where (4) was used in the last integral.

2.3 Variation of Boundary Integrals

Suppose that 32 = ' UT'! such that T N T'' = ¢ and let Fg‘ ={x+rv:xelh
(k =0, 1). Consider integrals of the form

B(a.T)) :=/Fl b(y.ii(y. 1)) dsy.

t

I'This function will be called the Lagrangian following the usage in the calculus of variations.
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where b(y, i) : Ftl x R — R is continuously differentiable in y and . Let x (), & €
U c R¥~1 be local coordinates of I''. Then F} is represented locally by {y(§) :=
x(&) + tv(x(§)) : & € U}. Throughout this paper (x, y) stands for the Euclidean
scalar product of two vectors x and y in RY and |x| = (x, x)!/2. We have, setting
gij = (xg, x¢,), D(E) = v(x(§)), ¢ij := (xg,, Dyxz,) = (xg,, V), aij = 5 (cij +¢ji)
and b;; = (Vg,, f)gj),

|dy|* = (gij +2taij + 1°bij) d&; d&; =: g!; d&; d&;.

Write for short G = (g;;), G 1l= (gij), A = (a;j), B = (b;j) and correspondingly
G' = (glfj). Then

ds, = (detG")'* d.

Clearly
VdetG" = VdetG{det(1 +2:G' A+ 112G~ B)} "%,
k(&.1)
Set
o4 =traceG 1A, op=traceG~'B and o, = trace(G*]A)z.
The Taylor expansion yields
k(E,1) =14 2tas +1*(0p +20% —20,42) +o(?).
For small ¢ we have
Vk(E 1) =1+4104 +t2<%3 —opt 0—5) +o(t?) :==1+104 +r2§ +o(?). (1)

As before we set u(x,t) =u(0(x, 1), t). Then, since ds = +/det G d§, it follows that
o r? 2
B(t):=B(a,T})= | b®,u) 1+taA+Ev+o(t ) ds.
rt

Consequently

95 f boa + by vi + by -

—_— = o -V —_— S

dt p | AT T Py

9
+r/ {0A<b9iv,~ +bua—bt‘> +bv+0(1)}ds, ®)
1‘*1

and

dB(O)—/ boa + by v+ by 2t 9)
dr T 7oA T On T B [ 4
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2.3.1 Discussion of 64, 042 and op

In order to have a better understanding of the term o4 let us decompose the vector
field v on I'! in the following way

N-1

5(E) = v(x(®) = (v(x(®). nE)nE) + Y (v(x(&). x5 )xg . (10)

k=1

hid

‘We set
= (v(x(é)),xgk), k=1,...,N—1,
" = (v(x (&), n(®)).

Clearly v" L v*. In the language of differential geometry we have
ank ;
~ k k
U;j = )’]’j)%k = [E + Fi./nli|x$k
J

where F{‘j denotes the Christoffel symbol and nkj is the covariant derivative with

respect to g;;. Using this decomposition we can compute G~ 'A and G7'B ex-
plicitely.

(G™'B) = &by = g (n!n®) + " n(@)e, .l n(®) + " n(®)s,)
+28" (ngn () + 0" n(©)e; nlixg) 8" ("5, n'yxg)

where [ =1,..., N — 1. We observe that (n(§),n(¢)) =1, n),n)g) =0,
(n(§), xg) =0 and we assume that (x,,, xg;) = 8 form,[=1,..., N — 1. Thus

(G™'B), =8"bjx=g"nf\n} + (n Ny Tl nd)) + &’ iy
For the trace o3 we compute
2 . ..
o= (1+(0"))e" (. nd) +&"n' ;.
Moreover
cij = (xg,. ;) =™ (E) (g ng)) + 0", (E) (g xg), k=1,....N—1

Thus

) . 1,
(G IA),-j =g"*ay; = Eg’k(ij +cjk)

= 58" (0" (€) (xge, ng)) + 14 (©) (g xg) + 0" (6) (g mgy)
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[
+ 1’ (6) (xg» xg))

1 .
= 58" ("M @ g ng)) + 0 @) g+ 0" €) Cxey mg) + 1) gu)-

Analogously for the trace o4 we compute

1 .
oa = 58" (0" €) (xge, ng) + 1 ) gin + 0" €) (xgy mg) + 1 ©)gue)

=" §)8" (g ng) + 11y (6).
Observe that ‘L',ii =:div* §* is the surface divergence of I''. Furthermore (ng,, xg,) =

—(n, xg¢) = Ljg is the second fundamental form.2 Let «;, i = 1,2,...,N — 1,
denote the principle curvatures of I''. Then

N-1
g Lis = Z ki =: (N —1)H, H mean curvature of ',

i=1
In conclusion we have
oa=g(N—1)H +div* v*. (11D

Finally we give an explicit expression for o 42. We use the following notation:
1 ‘
hij = E(Lij +Lj;;) and H;j:= gtkhkj.

Then a lengthly computation gives

s — A I
o2 = (" (€)) trace H? +nN(S)(hijnfkgk‘ + Hijn'y + 5 (0 + 8771 nf,-gkz)).

2.4 Domain Variation of Critical Points

Consider the following energy functional
E(t) = L@ i) + B(@, T}).

Suppose that for all 7, #(y, 7) is a critical point of the energy functional £—in the
sense that the Fréchet of £(€2;, -) derivative vanishes at this point. Thus & solves in
2; the Euler-Lagrange equation

L, (y. i, Vii)

=L;(y,u, Vi) in€y, (12)
ayi

2Notice that the minus sign is due to the fact that n is the outer normal.
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and boundary conditions

u=0 on F? :  Dirichlet boundary conditions,

13
Ly (y,u,Viyn; +b;(y,u) =0 on Ft1 : Robin boundary conditions. )

Observe that if b = 0 the Robin condition becomes a Neumann boundary condition
Ly, (y,u,Vu)n; =0.

In the x-coordinates the Euler-Lagrange equation for # assumes the form

d oxy
LyJ=—(0,72%) ia. 14
u 8xk< Pi aei) n (14)

The boundary conditions are
u(x,t)=0 on ro,

9 15
L,,J%nk+bm/k(x,t)=0 onT!. (15)
i

Introducing (14) into (6) and letting t — 0 we find

e
dt

AV dvg ?g ou
= [ {Lqvi — Ly — + L=t d Ly, —nyds.
=0 /sz{ wli T ity dx; + 8xs} *r o ot s

Taking into account the boundary conditions we conclude that g—’; =0 on I'° and
Lyn;=—b, on r'l. Thus

This together with (9) implies

AV dvg
= Lyvi—Ly,u,—+L—}d

+/l{b(x,u)aA+bxivi}ds. (16)
r

o0&
dt

The volume integral can be transformed into a boundary integral. In fact if u is a
solution of (12) in 2 then

9 avi 31)]‘
a_.xi(LUi_LPiuxjvj)zLa—xj‘i‘U,‘in—Lpiuxja_xi’
and hence
&
1§ (- sl
ot |- Joo




Domain Derivatives for Energy Functionals with Boundary Integrals 11

+fl{b(x,u)UA + by, ;) ds. (17)
r

3 Applications

3.1 Optimality of Radial Problems

Suppose that © is a ball of radius R and that L = L(r,u(r),u’(r)) and b =
b(r,u(r)), r = |x| are radially symmetric. Then on 9<2 we have

L=const. and Lpn;(Vu,v)=Lyu'(v,n).
Thus
f {L.,n) = Lyni(Vu,v)}ds=(L - Lu/u’)f (n,v)ds.
Fle! Fle

By (11), o4 = (v, n)(N — 1)/R + div* 7* and

/ (b, w)oa + by vy} ds = (M +b,>f (v, 1) ds.
rt R 1o

Finally we get

d€
dt

, b(N—-1)
=\L—-—Lyu +——+b, (v,n)ds.
1=0 R 1)

From the divergence theorem and (4) we get

‘(f (v,n)ds:/traceDvdle(/ dx—/dx—l—o(t)).
Q Q r\Jo, Q

Hence 9%9(”’ n)ds =01if || =1|Q|.
This together with the previous observations implies

Theorem 1 Let Q2 be a ball of radius R in RY and let Q; be a small, volume
preserving perturbation in the sense of Sect. 2. Let u(r) be a solution of

dLy (r,u(r),u'(r))

o Ly(r,u(r),u’'(r)) in (0, R).

Then the energy E(t) given by er L(r,u,u’)ydx + 5589, b(r,u)ds is stationary in
t=0,ie,E0)=0.
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3.2 Torsion Problem with Robin Boundary Conditions

3.2.1 First Variation

In this section we discuss the problem

|Vul? o 5
5(1‘):/ —u dx+—¢. u-ds, (18)
o\ 2 2 Jae,

where u is a solution of the corresponding Euler-Lagrange equation

a
Au+1=0 ing, a—u—l—om:O on 9%
n
The first variation is according to (17)
5(0) = % {(|Vu|2/2 — u)(v, n)+oau(Vu,v) + omzoA/Z} ds.
0

For the ball Q2 = By the solution can be computed explicitly. In this case we have
2
ur)y=RE+5L) - L Luu)y=u?/2—u,

RN+2 N RN+]
2N2(N +2) 2aN2)’

5(0)=—|3Bll(

and

90€O0) [ R*  (N+DR
a1 __[WJr 2aN? ]fﬁ]BR(v’")ds'

It follows immediately that for volume preserving perturbations &£(0) = 0, in ac-
cordance with Theorem 1. The monotonicity of £(¢) with respect to nearly circular
domain changes if « > —(N + 1)/Rorif o < —(N + 1)/R.

Next we want to find out if for volume preserving perturbations the ball is a local
maximum or minimum. For this we need the second variation.

3.2.2 Second Variation for Balls and Divergence Free Vector Fields

In order to make the computation more transparent we introduce some abbrevia-
tions.

. dw ) oy
= —, d = .
w » ivy(x) Bxk(x)
du 9 du d
Vi -Dy=2%% thus Vu-D, X=-L2%x  vxeRrV,

0x; 0x; 0x; dx;
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du dug dvj du dug d
SEEHTN thus Vue DX =k 2y wx eRV,

Vu-D?=
Vo 9x; 0x; Oxy dx; 0x; Oxx

2 _.
trace D =: 0.

Observe that the definition of op2 differs slightly from those of o4 and op. From
the Euler-Lagrange equation we deduce that, taking into account that J (0) =

EO)y=— / (i +uJ (0)) dx
B

In order to evaluate this integral we need an equation for u and i. For that we
differentiate (14) and (15) with respect to 7. After each differentiation we set ¢ = 0.
This gives

L,J(0) + L, J(0) = a(L,,,J(o) —i—Lp,J(O) +L,,,J(0) )

and

Ly J(0) 4+ 2L, J (0) + Ly, J (0)

3
(L,,l 1(0) + 2L,,,J(0) + 2L,,,J(0)
Xk

+Lp,J(0) +2Lle(0) +LPIJ(O) )

in Bj. For t = 0 and divergence free vector fields we have (see also (4) and (5))

JO)=1,  JO)=divo=0,  J(©0)=—0p,

d 0X 0 0X
g Db Bw Bk,
891‘ 891' 3)61' 89i
Moreover
1 2
L=§|Vu| —u, L,=-—1, Ly, = pi.

Thus we obtain an equation for # and i in Bj.
0=div(Vit — Vu - Dy), (19)
op2 = div(Vii = 2Vii - Dy — 02 Vi +2Vu - D}). (20)

For the boundary conditions we work similarly. For the case of Robin condition on
0B, we coqsider the second equation in (15) on d B;. After differentiation in t =0
and taking J (0) = 0 into account, we get

L, 1(0)

pi in 0By,
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and

L), J(O)—nk + 2L,,,J(0) nk + Ly, J(O)—nk + L,,,J(O)—nk

+ bk + 2b;,\/%+bu\/%= 0 indB.
From (7) we have int =0
«/%:1, «/E:UA, ﬁ:v:aB—ZGAz—i—oi.
Moreover
b(u) = guz, b, =au.
2
From that we obtain the following Robin boundary conditions for iz and i on 9 B .

3
8_14 +oau=Vu-Dy,-n—aopu, 21
n

ol 0
8—u+ozii=2Vﬂ-Dv~n+aDza—u—2Vu-D3~n—2ozc7Ab't—oevu. (22)
n von

We first consider the equation for i in By. We multiply it with u and integrate over
B;. After integration by parts this gives

i 0
/uaDzdxzf {u—u—ii—u}ds—f idx
9B an on B

—2% uVL't-DU~nds+2/ Vi-Dy,-Vudx
dB By

ou 2
_ ua—ngds+ |Vu| angx
aB, on B
+27§ uw-Dg-nds—zf Vu-D? Vudx.  (23)
dB; By

Next we make use of the boundary condition (21) for i# and obtain

ou
/MUDdezfﬁ {u( au—ZaUAu—avu)—u—}ds—/ idx
v 9B, on B

By
—{-2] Vi-D,-Vudx —I—/ |Vu|20Dzdx —2/ Vu - Dg -Vudx.
By B ! B
We can simplify, since g” = —ou on 0B;.

/uoDzdxz —Ol% u(ZGAL't—i—vu)ds—/ iidx—i—Q/ Vi-Dy,-Vudx
F v 9B B By
1
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+/ |Vu|2aDzdx—2/ Vu - D? - Vudx.
B, v B)

After rearranging terms we obtain a formula for £(0) which does not depend on i

anymore (recall J(0) = —GD%).

E0)y= — /(|Vu|2 —2u)oprdx + a% uQRoau +vu)ds
v 9B
By

—2/ w.Dv.wdxH/ Vu - D? - Vudx. (24)
By B

At this point it is convenient to use the explicitly known solution of the torsion
problem with Robin boundary conditions on By. We have

1/1 N 1 r? 25)
u=—|-+—-—\)——.
N\2 « 2N
Consequently
2
8.
Vu=—2_, ou_ _ %k (26)
N 0x; 0Xk N

In particular we can use this information in (19) and obtain Aui = 0 in B;. Then the
third integral in (24) can be simplified. Partial integration gives

2/ Vu-D,-Vudx
By

dii Pu .
=2 (Vu,v)—ds —2 vetty, + (Vu, v)Au  dx
3B, on B

0X; 00X
2 ou 2
=—— (v,n)—uds+— v-Viudx
N 9B an N B
2 ou
=—— (v,n){—u—u}ds.
N 9B on

Introducing this expression into (24) we obtain

E0)y= — /(|Vu|2 —2u)op dx +a?§ uQRoau +vu)ds
v 9B
By

2 on 5
+ — (v,n){ — —upds+2 Vu- Dy -Vudx. 27
N 9B on By
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If we replace u and Vu by (25) and (26) and use the abbreviation g = (v, n)|3s,
(cf. (10)) we find

é':'(O):N—l(l + 3)/ o2 dx — N—_lf 1x20 2 dx + if xD2x dx
o B v N2 B v N2 B v

+ L% vds+£ [aAu—gﬁ+g%} ds. (28)

Ol]V2 9B N 9B, on

The explicit formulas for o4 and v are given in Sect. 2.3.1 and o2 = trace D2 In
view if (21) the term g—l’: on d B can be substituted by

ou X os .
—=——Dyx — — —au.
on N N

From this computation it is not clear if £(0) has constant sign. The normal displace-
ment g : d B; — R necessarily needs to satisfy the compatibility condition

jg 8(&)ds=0.
3B
Moreover, for simply connected domains, it is not restrictive to set
v(x)=Ve¢(x), xeBj.
Necessarily

3
A¢ =0 in B, —¢=g in 9B;.
on

In this case we have op: = qﬁxjxi qujx,. > (. Thus the contribution of the volume
integrals in (28) is positive.

4 Open Problems

Problem 1 Let B C 2. Prove or disprove that for the torsion problem with Robin
boundary conditions £(2) < E(B)?

Problem 2 Let 2 be convex and €2; D 2. Prove or disprove that & 0) <oO.
Problem 3 Prove the existence of an optimal domain with given volume for an
energy with a boundary integral. Once the existence is established a symmetry ar-

gument leads to the conjecture.

Problem 4 (Conjecture) Among all Lipschitz domains of given volume the ball
yields the minimum of £ given in (1) and (2). This conjecture is supported by the
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Faber-Krahn inequality for the first membrane eigenvalue with Robin boundary con-
ditions [1].

Problem 5 Give conditions on the data which justify the formal computations.
More precisely under what conditions are the solutions of the Euler-Lagrange (14)
with the boundary conditions (15) differentiable in ¢?

Acknowledgements The authors would like to thank the referee for having pointed out many
misprints and a computational error in the second variation for the torsion problem in balls.
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The Asymptotic Shape of a Boundary Layer
of Symmetric Willmore Surfaces of Revolution

Hans-Christoph Grunau

Dedicated to the memory of Prof. Wolfgang Walter,
who uncovered so many deep insights into Analysis

Abstract We consider the Willmore boundary value problem for surfaces of rev-
olution over the interval [—1, 1] where, as Dirichlet boundary conditions, any sym-
metric set of position « and angle arctan 8 may be prescribed. Energy minimis-
ing solutions uy g have been previously constructed and for fixed 8 € R, the limit
limg~ 0 g, g(X) = +/1 — x2 has been proved locally uniformly in (—1, 1), irrespec-
tive of the boundary angle. Subject of the present note is to study the asymptotic
behaviour for fixed 8 € R and @ \( 0 in a boundary layer of width k«, k > 0 fixed,
close to +1. After rescaling x +— %ua, g(a(x — 1) + 1) one has convergence to a
suitably chosen cosh on [1 — k, 1].

Keywords Dirichlet boundary conditions - Willmore surfaces of revolution -
Asymptotic shape - Boundary layer

Mathematics Subject Classification 49Q10 - 53C42 - 35J65 - 34L.30

1 Introduction

Recently, the Willmore functional has attracted a lot of attention. For a smooth sur-
face I' € R? we define it by

W) ::/(HZ—K)dS:l/(/q —Kk2)?dS,
r 4 Jr

where k1, k2 denote the principal curvatures, H = (k1 + k2)/2 the mean curvature
and K the Gaussian curvature of I'. Apart from being of geometric interest [18, 19],
the functional JV and its variants are models for the elastic energy of thin shells [13]
or biological membranes [8, 14]. Furthermore, they are used in image processing for
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problems of surface restoration and image inpainting [4]. In these applications one
is usually concerned with minima, or more generally with critical points of the Will-
more functional. It is well-known since Thomsen’s work [18] that the corresponding
surface I has to satisfy the Willmore equation

ArH+2H(H*-K)=0 onT, (1)

where Ar denotes the Laplace—Beltrami operator on I with respect to the induced
metric. A solution of (1) is called a Willmore surface. Moreover, from the geomet-
ric point of view an essential property of the Willmore functional is its conformal
invariance. This means that W(I") = W(® o I') for any Mobius transform & of R3
being regular on I". For an easily accessible derivation of these facts one may also
see [7].

A particular difficulty in the analytical investigation of (1) arises from the fact
that Ar depends on the unknown surface so that the equation is highly nonlinear.
Moreover, it is of fourth order where many of the established techniques do not
apply. Existence of closed Willmore surfaces of prescribed genus has been proved
by Simon [17] and by Bauer and Kuwert [1]. Recently, Riviere [15] has developed
a different approach which seems to open opportunities to address many further
questions. For more detailed information and further references we refer to [6].

If one is interested in surfaces with boundaries, then appropriate boundary con-
ditions have to be added to (1). Since this equation is of fourth order one requires
two sets of conditions; a discussion of possible choices can be found in [13]. Of
particular interest is the Dirichlet problem where at its boundary, the position and
the direction of the unknown Willmore surface are prescribed. Existence results for
the Dirichlet problem, which are not subject to unnatural smallness conditions, can
be found e.g. in [5, 6, 16]. The result by Schitzle [16] is put into a very general
context and so does not provide very detailed information about the topological and
geometrical shape of the solutions. In [5, 6] the authors proceed just the other way
round: They confine themselves to symmetric surfaces of revolution but at the same
time they obtain rather precise information on the geometric shape of their energy
minimising solutions.

More precisely, they look at surfaces of revolution, which are obtained by rotating
a graph over the x = x-axis in R3 around the x;-axis. These are described by a
sufficiently smooth function

u:[—1,1]— (0, 00),

which is moreover restricted to be even about x = 0, and are parametrised as fol-
lows:

(x,p) — (x, u(x)cos @, u(x) sin(p), x e[—1,1], ¢ €[0,2m7].

In the present chapter we consider the Willmore problem under Dirichlet bound-
ary conditions, where the height (1) = o > 0 and the slope u'(—1) = —u'(1) =
B € R are symmetrically prescribed at the boundary. The focus will be on the asymp-
totic behaviour of energy minimising solutions as « \ 0. However, in order to ex-
plain this one needs to recall first a bit of the underlying existence theory.
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1.1 Some Basics

We consider the Willmore energy of the surface of revolution I" (1) generated by the
graph of the smooth positive function u : [—1, 1] — (0, c0)

W(u) :/ (H*> - K)dS
IN)

1 " 2
=Z/ < ' (x) ! ) w1+ /(02 dx

2 o\ +u @2 o/ +u(x)2

1 u//(x)
+ 27 /;1 RESTSOEE dx.

Definition 1 For o > 0 and 8 € R we introduce the function space

Ny g == {u € Cl’l([—l, 11, (O, oo)) : u positive, symmetric,
u(l)=a and u'(—1) =B}

as well as

Mgy g ::inf{W(u) Tu€ Na,,g}.

This notation here should not be mixed with that in [6]. We also need the follow-
ing number

o =min

h(b
L {cos (b) :b>0}=1.5088795....

For o below a* there is no catenary satisfying this boundary condition, irrespective
of the prescribed slope at the boundary. In this regime—for f < O—the existence
proof and also the qualitative properties of solutions are different.

We recall as a special case from [6] the following existence result: For each
a € (0,a™) and each 8 € R we find uy, g € N g satisfying

Wug,p) = Myp.

The corresponding surface of revolution I'(ug ) C R3 is smooth and solves the
Dirichlet problem for the Willmore equation

ArH +2H(H? - K)=0 in(-1,1),
uap(=D) =uap(+D)=a.  uyg(=1)=—ug g(+1)=p.

In [5, 6] the authors took advantage of looking at the Willmore energy of surfaces
of revolution from a different point of view. It was observed by Bryant, Griffiths,
and Pinkall (see [2, 3, 9]) and intensively exploited among others by Langer and
Singer [11, 12] that the Willmore energy and the elastic energy of the profile curve
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considered in the hyperbolic half plane coincide up to a factor. The half-plane R%r =
{(x,y) e R? : y > 0} is equipped with the hyperbolic metric dsg = # (dx?+dy?).
As explained in detail in [6, Sect. 2.2] one finds for the hyperbolic curvature of the
curve x — (x, u(x))

u(x)? i( 1 ) uu” (x) N 1
W' (x) dx \u(o)/1T+u' 02/ A+ @2 " T+ u/(x)?
= () (k1 (x) — K2 (x)).

The hyperbolic Willmore energy is defined in the following natural way and one
observes that /cf =4u’*(H? — K) and obtains so the following simple relation with
the original energy:

LoV u? 2
Wi (u) :=/K§dsh :=/ K,dex=;W(u). 2)
y _

1

Kkp(x) =—

1.2 The Asymptotic Result

The previous work [6] also contains some asymptotic considerations. It should be
mentioned that the numerically calculated pictures displayed there give the clear
idea that for o \( 0, the central part of any Willmore minimiser uy g looks pretty
much like a sphere while close to the boundary the graph resembles a catenary. Com-
binations of these prototype functions were not only employed as initial data for the
numerical flow method but were also used as comparison functions for precise esti-
mates of the optimal Willmore energy, see [6, Sect. 5.1, Theorem 5.4]. Moreover, in
[6, Theorem 5.8] it was proved for fixed 8 € R and « ~\ O that uy g(x) — v 1 — x?2
in C"([—1+8§,1—4]) for any m € Ny and § > 0. A related result under so called
natural boundary conditions was proved by Jachalski [10].

It remains to study the asymptotic behaviour in boundary layers close to x =
+1. To this end it will be crucial to have the following comparison function which
generates a minimal surface of revolution:

(,/1 + B2
o

cosh

Vg, g(X) 1= \/l(ill—;ﬂz 1—x)+ arsinh(ﬁ)).

We prove the following result:
Theorem 1 Fix some B € R and k > 0. For o > 0 small enough let uy g € Ny g

minimise the Willmore energy in this class, i.e. W(uq,g) = My, g. Then we have
uniform smooth convergence

o1
01{1{‘1}) aua,ﬂ(a(x -1+ 1) =v1,8(x).

on[l—k,1].
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This means that in this sense
Uy p(x) X vy g(x) forx e[l —ka,l]

for o \( 0 while a careful analysis of the proof in [6] indicates that for any ¢ > 0
one may expect that

Uap(x) ~y/1—x2 for|x| €[0,1—a' ]

2 Rescaled Convergence to a Suitable cosh for « \ 0

In this section, we choose any B8 € R, keep it fixed and study the singular limit
o N\ 0, where the “holes” {1} x By(0) in the cylindrical surfaces of revolution
disappear.

2.1 Known Properties of Minimisers

We first recall for o small from [6, Sect. 5] the following properties of any minimiser
Ug,p € Ny g of W, ie. W(ugpg) = My p.

Lemma 1 We assume that o < min{a™®, 1/|B|}. Let u € Ny g be such that W(u) =
Mgy . Then, u € C*°([—1, 1], (0, 00)) and u has the following additional proper-
ties:

1. If B>0,thenu’ <0in (0,1) and
a<u(x)<v1+a?2-x2 in[-1,1], x+ux)u'(x) >0 in(0,1).

2. If B <0, then u has at most one critical point in (0, 1), i.e. there exists xg € [0, 1)
such that u' > 0 in (xo, 11, u’(x9) =0 and u’ <0 in (0, x9). Moreover,

x+u@u'(x)>0 in(0,1], W'(x) <y :=max{—B,a*} in[xo, 1]

and u(x)zmin{ in[—1,1],

.« _r
2 /1+l32 ’ 2(6C—1)}
with C = 6y+/1 + y2 > 0. Moreover,

lim xo = lim xp(a) = 1.
a\0 a\0

Lemma 2 Keep some B € R fixed. For a > 0 small enough let 5, > 0 be such that
_”,/1,,3 (1 = 64) is maximal. Then we know that

lim §, =0, 3)
a0
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lim (51 = 8a)) = 00, )
lim My g = lim W(ug,g) =4m — 471L, 5)
a\0 ’ a\0 ’ /1 + 52
1—8q
lim Knlua,pl* dsplg, pl = 0. (6)
aN\0 Jo

Proof Statements (3) and (4) follow from [6, Lemma 5.3, Theorem 5.8]. For (6),
see the proof of [6, Corollary 5.5]. According to [6, Theorem 5.4] and (2) we finally
have for o \( 0

88 2
8 — ——=+0(1) =Wh(uap) = =Wl(uep);
V1+ B2 T
statement (5) follows. O

2.2 Further Comparison Results

In order to guarantee compactness in our limit process we need some further uni-
form bounds.
We study first the simpler case g > 0.

Lemma 3 Fix some B > 0. For 0 < a < min{a™, 1/|8]} we have for any Willmore
minimiser uy g € Ny g that

Ug g(X) <vgp(x) forxel0,1).

Proof Since both u, g and vy g are strictly decreasing on [0, 1] they may be con-
sidered as graphs over the angular variable. This means that for each x € [0, 1] we
find uniquely determined ¢, ¥ € [0, /2] and r{(¢), r2(¢) such that

(¥, g, p(x)) = r1(p)(cos g, sing), (¥, va,p(x)) = ra(¥)(cos ¥, sin ).

Considering the curves ¢ — r;(@)(cos ¢, sing) let T;(p) = (t} (9), t]g(tp)) denote
the corresponding unit tangent vectors with t]z (p) <0.

Let us assume by contradiction that uy g > vy g on some subinterval of [0, 1].
The case where the graphs touch tangentially in some point is simpler and can be
treated similarly. Then we find O < ¢ < ¢> such that

3(g1) . 2 (g1) nd 0= t2(¢2) . 13 (¢2)

e tl(e1) tig)  1)(g2)
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Fig. 1 Left: Assume that the minimiser is somewhere above the cosh. Right: Rescale minimiser
inside the wedge and fit it into the cosh. This results in a decrease of Willmore energy

By the intermediate value theorem there exists a g € (¢1, ¢2) satisfying

1(g0) _ 17 (0)
ty(po)  t{ (o)

Hence T1(¢g) = T>(¢o), the tangents on the ray with angle ¢ from the x-axis coin-
cide.

We may now construct a new even function i, g € Ny g Which coincides with
the catenary vy, g on [r2(@o) cos ¢g, 1] and with

r2(¢0) (rl (®0) )
g ua"fj X
r1(¢o) r2(go)

on [0, r2(po) cosgp]. We emphasise that the Willmore energy is scaling invariant.
Since uq, g is nowhere locally equal to a cosh, we would end up with W(iiy g) <
W(uq,p), a contradiction.

See Fig. 1. g

Lemma 4 Fix some B >0, k € N. For 0 < a < min{a*, 1/|8]|, 1/k} we have for
any Willmore minimiser uy g € Ny, g that

|, g (x)| < sinh(ky/1 4 B2 + arsinh(B)) for x € [1 — ka, 1].

Proof We proceed similarly as in the proof of Lemma 3 and consider rays which
intersect [0, 1] 3 x = (x, uq,g(x)) and [0, 1] 3 x — (x, vy g(x)). Using the same
argument as before—cf. Fig. 2—we see that on each ray, the slope of uy g is less
negative than the slope of vy, g. Since vy, g(x) > uy, g(x), we find that the rays, which
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T 1
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Fig. 2 Left: Assume that the minimiser is on some ray steeper than the cosh. Right: Rescale
minimiser inside the wedge and fit it into the cosh. This results in a decrease of Willmore energy

cover (x, uq,g(x)) for x € [1 — ka, 1], cover (x, vy, g(x)) with x in a subinterval of
[1—ke,1]:

max ]|u;,ﬂ(x)| < XE[Iln_ak);,l]|v&,ﬂ(x)| < sinh(ky/1 + B2 + arsinh(B)). -

xe[l—ka,l

Combining the previous results with the statements from Lemma 1 we can also
treat the case 8 < 0.

Lemma S Fix some B < 0, then there exists a constant C = C(8) > 0 such that for
all 0 < o < min{a®, 1/|B|} we have for any Willmore minimiser uqy, g € Ny, g that

C
had <uggx) < acosh(—(l —x)> forx €0, 1).
C o

Proof Let xo € [0, 1) be as mentioned in Lemma 1, i.e. uy g(x0) = min{ugy g(x) :
x € [—1, 1]} =: umin,o- We take further from this lemma that there exists a constant
C = C(B) > 0 such that for all 0 < & < min{a™, 1/|8]}

o
Umin,o = E .

Then, according to Lemma 3 we have for x € [0, xq):

1
Ug,g(X) < Umin,« cosh< (x0 — x))
Umin, o

1 C
fozcosh< (1 —x)) §acosh<—(1 —x)).
Umin,« o

Since uq g(x) <o <« cosh(g(l — x)) on [xp, 1), the proof is complete. O
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Lemma 6 Fix some B <0, k € N. There exists a bound C = C(k, 8) such that for
all o > 0 small enough we have for any Willmore minimiser uy g € Ny g that

|u(’1yﬂ(x)’ <C forxell —ka,l].

Proof We proceed similarly as in the previous Lemma 5. Let xq, Umin,o be as there
and let C; = C1(B) > 0 be the constant used there. In particular we use that umyin o >
Cil From Lemma 4 we see that there exists a constant C, = C»(k, 8) > 0 such that
for & > 0 small enough

|u;’ﬂ(x)‘ <Cy on[xo—kCiumina, X0l D [xo — ke, x0].
One should observe that limg g xo(e) = 1. According to Lemma 1 we have that
0 <up g(x) < max{—pB,*} in[xo,1].
Putting all together proves the claim. O
Corollary 1 For any k € N we have that for o > 0 small enough

So > ka.

2.3 Concentration of the Willmore Energy

According to Lemma 2, for o N\ 0, the hyperbolic Willmore energy concentrates
close to +1. The following lemma shows the reverse result for [ H 2ds.

Lemma 7 Fix some B € R, k € N. Let uq g € Ny g be any Willmore minimiser and
let Hy g denote its mean curvature. Then

1
li H? J1+ (. ) dx =0.
011{‘% 1—ka a,ﬂua,ﬁ + (uasﬁ) X

Proof According to Lemma 2, we have for o N\ 0:

4 +o(1) = W(ug,p) +47‘[L

V1+ B2
1
W) 425 [ Kl g1 (1t
-1

1
:471/ H‘f’ﬁua,ﬁ 1+ (u‘; ﬁ)2dx
1—8y ’

1-684
+ 471/ H2 g gy 1+ (i, ﬁ)zdx
A ,
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1
=47rf Hiﬁua,g 1+ (u&yﬁ)zdx
1—-84

5 (1 — 80|
\/1 +uly 5(1 — 8q)?

1
:47‘[/ H2 gt poJ 1+ (it )7 dx + 0(1) + 47 + o (D).
18y ’

1—s,,
+7T/ Kh[uayﬂ]zdsh[ua,/g] + 47
0

This yields
! 2
/1 5 Hy gitapy/ 1 + (1), 5) " dx = o(1)
which in view of Corollary 1 proves the claim. g

2.4 Limit of the Rescaled Solutions, Proof of Theorem 1

‘We introduce the rescaled solutions
. 1
o, p = &ua,ﬂ ((x(x -1+ 1)

and keep some k € N fixed in what follows. Lemmas 3-6 show that (iq,g)o\0 18
uniformly bounded in C L1 =k, 1]) and uniformly bounded from below on [1 —
k, 1] while Lemma 7 proves that its mean curvature converges to 0 in L2([1 —k, 1]).
By standard arguments (cf. [6, Proof of Theorem 5.8]) we find a strong C'- and
weak H2-limit u : [1 —k, 11— (0, 00) satisfying

u)=1, ' (\)=—-B,  Hlul(x)=0.

By direct integration this gives

cosh(y/ 1+ B2(1 — x) + arsinh(8))

1
u(x) = Ul,ﬂ(x) = \/ﬁ

and so, the proof of Theorem 1. As for convergence in higher order norms one may
see the proof of [6, Theorem 5.8].

Acknowledgements I am grateful to my colleague Klaus Deckelnick for raising the question
and to the referee for helpful suggestions.
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A Computer-Assisted Uniqueness Proof
for a Semilinear Elliptic Boundary Value
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Abstract A wide variety of articles, starting with the famous paper (Gidas, Ni and
Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)), is devoted to the unique-
ness question for the semilinear elliptic boundary value problem —Au = Au + u”
in Q, u > 0in 2, u =0 on 92, where A ranges between O and the first Dirichlet
Laplacian eigenvalue. So far, this question was settled in the case of €2 being a ball
and, for more general domains, in the case A = 0. In (McKenna et al. in J. Dif-
fer. Equ. 247, 2140-2162 (2009)), we proposed a computer-assisted approach to
this uniqueness question, which indeed provided a proof in the case € = (0, 1),
and p = 2. Due to the high numerical complexity, we were not able in (McKenna
et al. in J. Differ. Equ. 247, 2140-2162 (2009)) to treat higher values of p. Here,
by a significant reduction of the complexity, we will prove uniqueness for the
case p =3.

Keywords Semilinear elliptic boundary value problem - Uniqueness -
Computer-assisted proof

Mathematics Subject Classification 35J25 - 35J60 - 65N15

1 Introduction

The semilinear elliptic boundary value problem
—Au= f(u) inQ, u=0 onadQ (1)

has attracted a lot of attention since the 19th century. Questions of existence and
multiplicity have been (and are still being) extensively studied by means of vari-
ational methods, fixed-point methods, sub- and supersolutions, index and degree
theory, and more.

In this chapter, we will address the question of uniqueness of solutions for the
more special problem

C. Bandle et al. (eds.), Inequalities and Applications 2010, 31
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—Au=Aiu+uf ing,
u>0 in €, 2)
u=>0 on 0€2,

where A ranges between 0 and A1 (€2), the first eigenvalue of the Dirichlet Laplacian.
It has been shown in a series of papers [1, 2, 19, 28, 29] that the solution of (2) is
indeed unique when 2 is a ball, or when €2 is more general but A =0 [9, 10, 12, 30].

We will concentrate on the case where = (0, 1)? and p = 3, and prove that
uniqueness holds for the full range [0, A1(€2)) of A. Thus, our paper constitutes the
first uniqueness result for this situation. More precisely we prove

Theorem 1 Let Q be the unit square in R?, Q = (0, 1)%. Then the problem

—Au=ru+u’ inQ,
u=>0 in Q, €))
u=20 on 092

admits only one solution for any A € [0, A1(£2)).

Remark 1

a) A simple scaling argument shows that our uniqueness result carries over to all
squares €2; := (0, 1)? (and thus, to all squares in R2): Ifuisa positive solution of
—Au=iu+u’in Q;, u =0 on 02;, for some re [0, A1(£27)), then v(x, y) :=
lu(lx,ly) is a solution of (3) for A = A1% € [0, A1 (R2)).

Since we also show that the unique solution in the square is nondegenerate, by a

result of [10] we deduce that the solution is unique also in domains “close to” a

square.

c) Finally we observe that having shown in [16] (case p = 2) and in this paper
(case p = 3) that the unique solution is nondegenerate then uniqueness follows
also for other nonlinearities of the type Au + u? for p close to 2 and 3. Indeed,
by standard arguments (see for example [9]) nonuniqueness of positive solutions
in correspondence to sequences of exponents converging to 3 (resp. to 2) would
imply degeneracy of the solution for p =3 (resp. p = 2).

b

~

Our proof heavily relies on computer-assistance. Such computer-assisted proofs
are receiving an increasing attention in the recent years since such methods provided
results which apparently could not be obtained by purely analytical means (see [5,
6, 17, 18, 24]).

We compute a branch of approximate solutions and prove existence of a true
solution branch close to it, using fixed point techniques. By eigenvalue enclosure
methods, and an additional analytical argument for A close to 11 (£2) we deduce the
non-degeneracy of all solutions along this branch, whence uniqueness follows from
the known bifurcation structure of the problem.

In [16] we give a general description of these computer-assisted means and use
them to obtain the desired uniqueness result for the case 2 = (0, 1)2, p=2.To



A Computer-Assisted Uniqueness Proof 33

make the present paper dealing with the case p = 3 more self-contained, we recall
parts of the content of [16] here. We remark that the numerical tools used in [16]
turned out not to be sufficient to treat the case p = 3. Now, by some new trick to
reduce the numerical complexity, we are able to handle this case.

2 Preliminaries

In the following, let & = (0, 1)2. We remark that the results of this section can be
carried over to the more general case of a “doubly symmetric” domain; see [16] for
details.

First, note that problem (2) can equivalently be reformulated as finding a non-
trivial solution of

—Au=Au+ |ul? in 2,

u=0 on 0%2,

since, for A < A1(€2), by the strong maximum principle (for —A — )) every non-
trivial solution of (4) is positive in €2. In fact, this formulation is better suited for
our computer-assisted approach than (2).

As a consequence of the classical bifurcation theorem of [25] and of the results
of [9] the following result was obtained in [20]:

Theorem 2 All so_lutions uy of (2) lie on a simple continuous curve T in
[0, 21(2)) x CL*(Q) joining (A1(€2), 0) with (0, ug), where uq is the unique so-
lution of (2) for A =0.

We recall that the uniqueness of the solution of (2) for A = 0 was proved in [10]
and [9]. As a consequence of the previous theorem we have

Corollary 1 If all solutions on the curve I' are nondegenerate then problem (2)
admits only one solution for every A € [0, A1(R2)).

Proof The nondegeneracy of the solutions implies, by the Implicit Function Theo-
rem, that neither turning points nor secondary bifurcations can exist along I". Then,
for every A € [0, A1(£2)) there exists only one solution of (2) on I'. By Theorem 2
all solutions are on I', hence uniqueness follows. O

Theorem 2 and Corollary 1 indicate that to prove the uniqueness of the solution
of problem (2) for every A € [0, A1(2)) it is enough to construct a branch of non-
degenerate solutions which connects (0, ug) to (A1(€2), 0). This is what we will do
numerically in the next sections with a rigorous computer-assisted proof.

However, establishing the nondegeneracy of solutions u; for A close to A{(€2)
numerically can be difficult, due to the fact that the only solution at A = A1(2),
which is the identically zero solution, is obviously degenerate because its linearized
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operator is Ly = —A — A; which has the first eigenvalue equal to zero. The next
proposition shows that there exists a computable number 2§ € (0, 11(R)) such
that for any X € [X(Q), A1(€2)) problem (2) has only one solution which is also non-
degenerate. Of course, from the well-known results of Crandall and Rabinowitz,
[7, 8], one can establish that for A “close to” Aj, all solutions u; are nondegen-
erate. However, in order to complete our program, we need to calculate a precise
and explicit estimate of how close they need to be. This allows us to carry out the
numerical computation only in the interval [0, 1(R2)] as we will do later.

Let us denote by A1 = A1(2) and X, = 12(L2) the first and second eigenvalue
of the operator —A in 2 with homogeneous Dirichlet boundary conditions. We
have

Proposition 1 If there exists A € (0, A1) and a solution u 5 of (2) with A = X such

that
1

_1 - 1
g | <<A2_“)”l (i) 5)
B p Al

1
A — A\ P T
lurlloo < ( ) , (6)
p

and u, is non-degenerate, for all solutions u, of (2) belonging to the branchT» C T
which connects (A, u3) to (A1, 0).

then

(Recall that I" is the unique continuous branch of solutions given by Theorem 2.)
Proof See [16]. O

Corollary 2 If on the branch T there exists a solution u3, X € (0, A1) such that:

i) on the sub-branch 'y connecting (0, uq) with (X, u3) all solutions are nondegen-
erate

and

1 - 1

- Ay —Ap\ PT A\ P
i) . N i 7
||MA||OO<< » ) <A1> s @)

then all solutions of (2) are nondegenerate, for all A € (0, \1), and therefore prob-
lem (2) admits only one solution for every A € [0, A1(R2)).

Proof We set I' =T"1 U T, with I'y connecting (0, ug) to (x, u3). On I'y we have
that all solutions are nondegenerate by i). On the other hand the hypothesis ii) allows
us to apply Proposition 1 which shows nondegeneracy of all solutions on I';. Hence
there is nondegeneracy all along I' so the assertion follows from Corollary 1. g
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The last corollary suggests the method of proving the uniqueness through com-
puter assistance: first we construct a branch of nondegenerate “true” solutions near
approximate ones in a certain interval [0, 1] and then verify ii) for the solution u 5
Note that the estimate (7) depends only on p and on the eigenvalues A1 and A; of the
operator —A in the domain €2. So the constant on the right-hand side is easily com-
putable. When €2 is the unit square which is the case analyzed in the next sections,
the estimate (7) becomes:

- < | — ol — = | —
#illeo p 2m2 2p

because A = 272 and A = 572,
Fixing p = 3 we finally get the condition

N[5 [l oo <\/§- (®)

3 The Basic Existence and Enclosure Theorem

We start the computer-assisted part of our proof with a basic theorem on existence,
local uniqueness, and non-degeneracy of solutions to problem (4), assuming p = 3
now for simplicity of presentation. In this section, the parameter A € [0, A1(£2)) is
fixed.

Let Hé (2) be endowed with the inner product (u, U)HOI = (Vu,Vu);2 +
o (u, v)r2; actually we choose o =1 in this paper, but different (usually positive)
choices of o are advantageous or even mandatory in other applications, whence we
keep o as a parameter in the following. Let H () denote the (topological) dual
of HO1 (£2), endowed with the usual operator sup-norm.

Suppose that an approximate solution w), € HO1 (£2) of problem (4) has been com-
puted by numerical means, and that a bound 6, > O for its defect is known, i.e.

| —Awy. — Ay, — |nl?]| -1 < 85, ©)
as well as a constant K, such that
Ioll gy < Ka| Lol g1 forall v e Hy (). (10)

Here, L, «,) denotes the operator linearizing problem (4) at w; ; more generally, for
(M u)eR x HO1 (€2), let the linear operator L ) : Hé () — H () be defined
by

Loowlvl:=—Av—2v =3Jujuv  (ve Hy(Q)). (11)

The practical computation of bounds §, and K, will be addressed in Sects. 6, 7
and 8.
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Let C4 denote a norm bound (embedding constant) for the embedding Hé () —
L*(2), which is bounded since 2 C R?. C4 can be calculated e.g. according to the
explicit formula given in [23, Lemma 2]. Finally, let

y :=3C;.
In our example case where 2 = (0, 1)2, the above-mentioned explicit formula gives
(with the choice o :=1)
32 1
=< = ).
P TEE N PEL

Theorem 3 Suppose that some « > 0 exists such that

a,
8. < — —yai(llwnll s + Cactz) (12)
K;
and
2Ky a5 (lloll s + Caer) < 1. (13)

Then, the following statements hold true:
a) (existence) There exists a solution u) € HO1 (2) of problem (4) such that
llur — ol = . (14)

b) (local uniqueness) Let 1 > 0O be chosen such that (13) holds with o) + n instead
of ay. Then,

u e HO1 (2)  solution of (4)

U=u,. (15)
[lue —wxllHOl <ay+n

¢) (nondegeneracy)

ue HY(RQ)

lu — w?»”HOl <a } = Luuw: H(}(S'Z) — H_l(Q) is bijective, (16)
whence in particular L, ) is bijective (by (14)).
For a proof, see [16].

Corollary 3 Suppose that (12) and (13) hold, and in addition that ||w)L||H0| >

a;. Then, the solution u, given by Theorem 3 is non-trivial (and hence posi-
tive).
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Remark 2

a)

b)

4

The function ¥ («) := K% — ya?(||lws. |;4 + C4a) has obviously a positive max-

: - 1,/ 2 3C . .
imum at o = E( IIwAIIL4 + W?f — |lwall4), and the crucial condition (12)

requires that
4Cs+yKllwill3,
K (Jy Koy Kol 12, +3Co) + v Ky llon | )
. 1
(J7 K Kolloa ]2, +3Ca) + v Kalls | s + 6Ca)

Sr=v(a) =

. A7)

i.e. &, has to be sufficiently small. According to (9), this means that w) must
be computed with sufficient accuracy, which leaves the “hard work™ to the com-
puter!

Furthermore, a “small” defect bound §; allows (via (12)) a “small” error
bound «,, if K, is not too large.
If moreover we choose the minimal o, satisfying (12), then the additional condi-
tion (13) follows automatically, which can be seen as follows: the minimal choice
of «) shows that «) < &. We have

2K ya(llwll s + Ca)
Cy
3Cs+ 2y Kallonl2s +2\/y Ku v Ko llon |2 +3Ca) eyl
<1 (18)

=1

and thus condition (13) is satisfied.

Since we will anyway try to find «; (satisfying (12)) close to the minimal
one, condition (13) is “practically” always satisfied if (12) holds. (Nevertheless,
it must of course be checked.)

The Branch (u,)

Fixing some A € (0, 11(2)) (the actual choice of which is made on the basis of
Proposition 1; see also Sect. 5), we assume now that for every A € [0, A] an approxi-
mate solution w;, € H(} (2) is at hand, as well as a defect bound §;, satisfying (9), and
a bound K satisfying (10). Furthermore, we assume now that, for every A € [0, X,
some o > 0 satisfies (12) and (13), and the additional non-triviality condition
|y |l Hl > %, (see Corollary 3). We suppose that some uniform (A-independent)

n > 0 can be chosen such that (13) holds with «; + 71 instead of «; (compare The-
orem 3b)). Hence Theorem 3 gives a positive solution u) € H(} (2) of problem (4)
with the properties (14), (15), (16), for every A € [0, Al
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Finally, we assume that the approximate solution branch ([0, Al — Hé (2), A~
w,) is continuous, and that ([0, A\] = R, A — «;) is lower semi-continuous.
In Sects. 6, 7 and 8, we will address the actual computation of such branches

(@1), (82), (Kn), (@2)- B

So far we know nothing about continuity or smoothness of ([0, A] — HO1 (),
A+ u,), which however we will need to conclude that (u;) 2e[0.3] coincides with
the sub-branch I'y introduced in Corollary 2.

Theorem 4 The solution branch

{[o,i]—> HO‘(Q)}

A Uy

is continuously differentiable.

Proof The mapping

. R x H}(Q) —» HY(Q)
' Ay u) > —Au — du — |ul?

is continuously differentiable, with (0F/du)(A,u) = L . (see (11)), and
F(h,uy) =0 for all A [0, A]. Using the Mean Value Theorem one can show that
L ;.,4) depends indeed continuously on (A, u); see [16, Lemma 3.1] for details.

It suffices to prove the asserted smoothness locally. Thus, fix Ag € [0, A]. Since
Lrg.uzy) is bijective by Theorem 3c), the Implicit Function Theorem gives a C'-
smooth solution branch

(o — &, 20 + ) = H} (Q)
)»I—)I/At)L

to problem (4), with i1, = u;,. By (14),
”’2)»() _w)n()”HO' Sak(y (19)

Since #; and w; depend continuously on A, and «; lower semi-continuously,
(19) implies

iy, = pllgy <+ (A €0, A1N (ko — &, 2o +8))
for some ¢ € (0, ¢). Hence Theorem 3b) provides
iy =u, (Ae[0,A1N (ko — & Ao +7)),

implying the desired smoothness in some neighborhood of Ao (which of course is
one-sided if A\g =0 or Ag = A). O

As a consequence of Theorem 4, (u;) 2e[0.3] is a continuous solution curve con-
necting the point (0, ug) with O, u 5)» and thus must coincide with the sub-branch
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"1, connecting these two points, of the unique simple continuous curve I given by
Theorem 2. Using Theorem 3c), we obtain

Corollary 4 On the sub-branch T'1 of T' which connects (0, ug) with (A, u3), all
solutions are nondegenerate.

Thus, if we can choose A such that condition (7) holds true, Corollary 2 will give
the desired uniqueness result.

5 Choice of A

We have to choose A such that condition (7) is satisfied. For this purpose, we use
computer-assistance again. With x,; denoting the intersection of the symmetry axes
of the (doubly symmetric) domain €2, i.e. xpy = (%, %) for = (0, 1)2, we choose
X € (0, 11(£2)), not too close to A1 (), such that our approximate solution wj, satis-

fies
1 - 1
M (R2) —A1(R2))?2 A 2
“’X(x’”)<< : )3 - )> '(M(sz)) ’ 20

with “not too small” difference between right- and left-hand side. Such a A can be
found within a few numerical trials.
Here, we impose the additional requirement

w; € H*(Q) N HL (), 1)

which is in fact a condition on the numerical method used to compute w; . (Actually,
condition (21) could be avoided if we were willing to accept additional technical
effort.) Moreover, exceeding (9), we will now need an L%-bound 85, for the defect:

|- Aw; — oy — w3 *||,2 < 5. (22)
Finally, we note that Q is convex, and hence in particular H?-regular, whence every
solution u € HO1 (2) of problem (4) is in H2(2).
Using the method described in Sect. 3, we obtain, by Theorem 3a), a positive
solution u; € H*(Q)nN HO1 (2) of problem (4) satisfying

s — @3l <5, (23)

provided that (12) and (13) hold, and that ||a)5L||H0| > oj.

Now we make use of the explicit version of the Sobolev embedding H 2(Q) —
C(€2) given in [21]. There, explicit constants Cp, C1, Cy are computed such that

lulloo < Collull 2 + CillVull 2 + Calluxyll 2 forallu € HX(RQ),
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with [|uxy |2 denoting the L2-Frobenius norm of the Hessian matrix uy. E.g. for
Q=1(0,1)%, [21] gives

A A 2 A /28
Co=1, C1=1.1548 - \/; <0.9429, Cr =0.22361 - 15 <0.1764.

Moreover, |luxxll;2 < |[Aull 2 foru e H%(Q)N H(; (2) since 2 is convex (see e.g.
[14]). Consequently,

lus, = willoo < Colluz — w3l 2 + Cilluz = will gy + Call Aus — Awzll 2. (24)

To bound the last term on the right-hand side, we first note that

1
s = 1oz = 3 [ o 1605 = o0+ 10~ o)t 05 = 0

L2
! 2
<3 [ os + 105 = 0 by =] o
! 2
§3f0 |3 + t(uz — w3) || o lluz — w3l 6 dt
! 2
= 3/ (”(DXHL() + tC()Ot;L) dt - Cears, (25)
0
2 1 2.2
= 3Cs( lloalFo + Collo ll ooty + 3 Coer ot (26)

using (23) and an embedding constant Cg for the embedding HO1 () = L%) in
the last but one line; see e.g. [23, Lemma 2] for its computation. Moreover, by (4)

and (22),

IAuz — Aw; ll 2 < 85 + Allug — 3 || 2+ uz P — log |- @27)

Using (23)—(27), and the Poincaré inequality

1
lullz2 < WIIHIIH(} (u € Hy (), (28)

we finally obtain
éo +XCA’2 n A
VA(RQ2)+o

+ 3c662<||wx||if, + Celloon || oers, +

||ux—wx||oo§[ 1

1

3 Cé(xi)] coy + CA‘QSAX, 29)
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and the right-hand side is “small” if «; and Si are “small”, which can (again) be
achieved by sufficiently accurate numerical computations.
Finally, since

ui(xp) < wi(em) + lug — w3 lloo,

(29) yields an upper bound for u;3 (xp7) which is “not too much” larger than w; (x ).
Hence, since uj (xp) = [luzlloo by [11], condition (7) can easily be checked, and
(20) (with “not too small” difference between right- and left-hand side) implies a
good chance that this check will be successful; otherwise, X has to be chosen a bit
larger.

6 Computation of @, and §, for Fixed A

In this section we report on the computation of an approximate solution w, €
H2(Q)N H(; (£2) to problem (4), and of bounds §, and K satisfying (9) and (10),
where A € [0, A1(£2)) is fixed (or one of finitely many values). We will again restrict
ourselves to the unit square = (0, 1)2.

An approximation w; is computed by a Newton iteration applied to problem (4),
where the linear boundary value problems

(n) (n) (n)|3
L(A,wf\"))[vn] = Aw)"” + 30" + |0 (30)

occurring in the single iteration steps are solved approximately by an ansatz

N
vy (X1, x0) = Z Oll-(;) sin(izxy) sin(jmwxy) 3D
i,j=1

and a Ritz-Galerkin method (with the basis functions in (31)) applied to problem
(30). The update w§'1+1) = win) + v, concludes the iteration step.

The Newton iteration is terminated when the coefficients al.(;z) in (31) are “small
enough”, i.e. their modulus is below some pre-assigned tolerance.

To start the Newton iteration, i.e. to find an appropriate wio) of the form (31), we
first consider some A close to A1(£2), and choose wio) (x1,x2) = asin(rx;)sin(mwxy);
with an appropriate choice of « > 0 (to be determined in a few numerical trials), the
Newton iteration will “converge” to a non-trivial approximation w® . Then, starting
at this value, we diminish A in small steps until we arrive at A = 0, while in each of
these steps the approximation @™ computed in the previous step is taken as a start
of the Newton iteration. In this way, we find approximations w; to problem (4) for
“many” values of A. Note that all approximations w, obtained in this way are of the

form (31).
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The computation of an L2-defect bound 8x satisfying
|-Aw, — rap — lwal|| 2 < 82 (32)

amounts to the computation of an integral over 2.

Due to [11] every solution of (4) is symmetric with respect to reflection at the
axes x1 = % and xp = % Therefore it is useful to look for approximate solutions of
the form

N
wr(x1,x2) = Y ajsin(imx)) sin(jmx). (33)

i,j=1
i,j odd

Using sum formulas for sin and cos one obtains for all n € Ng, x € R

sin((2n + Drrx) = (2 Zcos(anx) + 1> sin(7r x)

k=1
and thus w; can be written as follows:

;. (X1, x2) = aq1 sin(rxy) sin(wx2)

LN—I

k l
+ Y a2k+1,21+1(2zcos(2inxl)+1) <2Zcos(2jnx2)+1)

i=1 j=I

N|

-sin(rxy) sin(w x7). (34)

Since cos(x) ranges in [—1, 1] and sin(wx1) sin(w x3) is positive for (x1, x2) € 2 =
(0, 1), w; will be positive if

(ML

2
ary + Z g1, 2041 ([—2k + 1,2k + 11)([—21 + 1,21 + 1]) C (0, 00). (35)

Condition (35) can easily be checked using interval arithmetic and is indeed always
satisfied for our approximate solutions, since «¢11 turns out to be “dominant” and the
higher coefficients decay quickly. Hence w,, is positive and one can omit the mod-
ulus in the computations. Therefore the integral in (32) can be computed in closed
form, since only products of trlgonometric functions occur in the integrand. After
calculating them, various sums Z —, Temain to be evaluated. In order to obtain a
rigorous bound 5 1, these computations (in contrast to those for obtaining w; as de-
scribed above) need to be carried out in interval arithmetic [13, 27], to take rounding
errors into account.

Note that the complexity in the evaluation of the defect integral in (32), without
any further modifications, is O (N 12) due to the term a)i Using some trick, it is
however possible to reduce the complexity to O (N):



A Computer-Assisted Uniqueness Proof 43
Applying the sum formulas sin(a)sin(b) = %[cos(a — b) — cos(a + b)] and
cos(a)cos(b) = %[cos(a — b) + cos(a + b)] one obtains:

sin(i17x) sin(ipm x) sin(izmw x) sin(igmwx) sin(ismwx) sin(igmx)
1 : : : . . :
= —3—2 Z 0’20’30’4(750’6COS((11 + 0217 + 0313 + 0414 + 0515 +(I616)7Tx).
02,03,04,
0s5,06€{—1,1}

1 forn=0 }—'8 (
0 forn e Z\{0}] = O W &°

Since fol cos(nmx)dx = {
/wa(X1,X2)6d(X1,X2)

:@ Z Z 02 ...°06" 02" ..."P6

02,...,06€{=1,1} p2,...,p6€{—1,1}

N N

: Z Z 8iy+oniz++osic S ji+pajat-tpejeitji * - - - * ig jo-

i1,e0i6=1 ji,ees jo=1
Setting «;; := 0 for (i, j) € Z2\{1, ..., N}? the previous sum can be rewritten as

1
02 " 0602 .. P6
1024 Z
02,...,0¢

»06,
P2 pe€{—1,1}

3N 3N
: Z E < E § ailjlaiZjZai3j3)
k=—2N+1 I=—2N+1 \ij+02iz  ji+p2)2

+oziz=k +p3j3=I

( 2 : 2 : ai4j4°‘i5j5ai6j6>'

04i4+05i5  pajatpsjs
+osie=—k +psje=—I

For fixed oj, p;, k and I each of the two double-sums in parentheses is O (N 4.
Since they are independent, the product is still O (N#). The sums over k and / then

give O(N®), whereas the sums over o; and p; do not change the complexity.
Moreover the sum 225_2 N4l is only

z% ifop=1,03=1,
Wy iforoy=—1,

N-2 . _ _
k=—2N+1 1f02 = —1,(73 =-—1.
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Similarly, also certain constellations of o4, 05, 06 reduce the k-sum, and of course
analogous reductions are possible for the /-sum. Since «;; =0 if i or j is even, the
result does not change if the sum is only taken over odd values of i,, j,, k and [.

Remark 3

a) Computing trigonometric sums in an efficient way is an object of investigation
since a very long time, but up to our knowledge the above complexity reduction
has not been published before.

b) As an alternative to the closed form integration described above, we also tried
quadrature for computing the defect integral, but due to the necessity of com-
puting a safe remainder term bound in this case, we ended up in a very high
numerical effort, since a large number of quadrature points had to be chosen. So
practically closed-form integration turned out to be more efficient, although its
complexity (as N — o0) is higher than the quadrature complexity.

Once an L2-defect bound 8, (satisfying (32)) has been computed, an H —1_defect
bound §, (satisfying (9)) is easily obtained via the embedding

1
lull g1 < W”M”ﬁ (U € Lz(Q)) (36)

which is a result of the corresponding dual embedding (28). Indeed, (32) and (36)
imply that
5y = e §
A= )
VA(2) +o
satisfies (9).

The estimate (36) is suboptimal but, under practical aspects, seems to be the
most suitable way for obtaining an H~!-bound for the defect. At this point we also
wish to remark that, as an alternative to the weak solutions approach used in this
paper, we could also have aimed at a computer-assisted proof for strong solutions

(see [23]), leading to H 2_and CP-error bounds; in this case an L?-bound is needed
directly (rather than an H ~L_bound).

7 Computation of K, for Fixed A
For computing a constant K satisfying (10), we use the isometric isomorphism

JHNQ) - HY(Q)
(D'{ ‘ ur— —Au-+oul’ 37

and note that ® 1L, o) : Hy () — HJ(RQ) is (-, -)Hd -symmetric since

(dD_lL(A,wk)[u], v)H1 = / [Vu -Vv — Auv — 3|w;\|a)xuv] dx, (38)
0 Q
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and hence selfadjoint. Since |[|L, o) lulllyg-1 = ||d>_1L(,\,a,A)[u]||H(}, (10) thus
holds for any
Kj, > [min{|u] : u is in the spectrum of dD_lL(;L,wA)}]_l, (39)

provided the min is positive.
A particular consequence of (38) is that

(1 = @7 Lo ). )y = /Q Wit dx  (u € Hy(Q)) (40)

where
Wy (x) :==0 + A+ 3|wp(0) |0 (x)  (x € Q). (41)

Note that, due to the positivity of our approximate solutions w; established in
Sect. 6, the modulus can be omitted here, which again facilitates numerical compu-
tations. Choosing a positive parameter o in the H(} -product (recall that we actually
chose o := 1), we obtain W > 0 on . Thus, (40) shows that all eigenvalues u
of ®~!'L; 4, are less than 1, and that its essential spectrum consists of the sin-
gle point 1. Therefore, (39) requires the computation of eigenvalue bounds for the
eigenvalue(s) u neighboring 0.

Using the transformation x = 1/(1 — p), the eigenvalue problem QD_IL()»,M) [u] =
uu is easily seen to be equivalent to

—Au+ou=«kW,u,

or, in weak formulation,
(. v) 1 =k fQ Wiuvdx  (ve Hy (), (42)

and we are interested in bounds to the eigenvalue(s) x neighboring 1. It is therefore
sufficient to compute two-sided bounds to the first m eigenvalues k; < --- <k, of
problem (42), where m is (at least) such that «;, > 1. In all our practical examples,
the computed enclosures k; € [k;, k;] are such that k&1 < 1 < k,, whence by (39) and
k =1/(1 — ) we can choose

Ki L9}

K, := max , . 43)
—K1 Kky—1

Remark 4 By [11] and the fact that w, is symmetric with respect to reflection at

the axes x| = % and xp = %, all occurring function spaces can be replaced by their

intersection with the class of reflection symmetric functions. This has the advantage

that some eigenvalues «; drop out, which possibly reduces the constant K, .

The desired eigenvalue bounds for problem (42) can be obtained by computer-
assisted means of their own. For example, upper bounds to k1, ..., k;, (withm € N
given) are easily and efficiently computed by the Rayleigh-Ritz method [26]:
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Let@y,...,¢om € HO1 (£2) denote linearly independent trial functions, for example
approximate eigenfunctions obtained by numerical means, and form the matrices

=1,...,

Then, with A <--- < A, denoting the eigenvalues of the matrix eigenvalue prob-
lem

Arx = AAgx

(which can be enclosed by means of verifying numerical linear algebra; see [3]), the
Rayleigh-Ritz method gives

ki <A; fori=1,...,m.

However, also lower eigenvalue bounds are needed, which constitute a more com-
plicated task than upper bounds. The most accurate method for this purpose has
been proposed by Lehmann [15], and improved by Goerisch concerning its range
of applicability [4]. Its numerical core is again (as in the Rayleigh-Ritz method) a
matrix eigenvalue problem, but the accompanying analysis is more involved. In par-
ticular, in order to compute lower bounds to the first m eigenvalues, a rough lower
bound to the (m + 1)st eigenvalue must be known already. This a priori information
can usually be obtained via a homotopy method connecting a simple “base problem”
with known eigenvalues to the given eigenvalue problem, such that all eigenvalues
increase (index-wise) along the homotopy; see [22] or [5] for details on this method,
a detailed description of which would be beyond the scope of this chapter. In fact,
[5] contains the newest version of the homotopy method, where only very small
(2 x 2 or even 1 x 1) matrix eigenvalue problems need to be treated rigorously in
the course of the homotopy.

Finding a base problem for problem (42), and a suitable homotopy connecting
them, is rather simple here since €2 is a bounded rectangle, whence the eigenvalues
of —A on HO1 (€2) are known: We choose a constant upper bound ¢y for |w;, |w; = a)i
on €2, and the coefficient homotopy

W @) =0 + 2 +3[(1 —5)co +s0,(x)?] (xeQ,0<s<1).
Then, the family of eigenvalue problems
—Au+ou= K(S)W;S)u
connects the explicitly solvable constant-coefficient base problem (s = 0) to prob-

lem (42) (s = 1), and the eigenvalues increase in s, since the Rayleigh quotient does,
by Poincaré’s min-max principle.
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8 Computation of Branches (@), (8,), (K3), (ay)

In the previous section we described how to compute approximations w, for a grid
of finitely many values of A within [0, A1(£2)). After selecting A (among these) ac-
cording to Sect. 5, we are left with a grid

0= <Al <... <M}

and approximate solutions ' = w,; € H}(Q) N L>(RQ) (i =0, ..., M). Further-
more, according to the methods described in the previous sections, we can compute
bounds 8/ = §8,; and K = K,; such that (9) and (10) hold at A = A’

Now we define a piecewise linear (and hence continuous) approximate solution
branch ([0, 1] = Hi (Q), A — w;) by

M—x o A=At

i i—1 i _

w) =

To compute corresponding defect bounds 6, we fix i € {I,..., M} and A €
(AL A, and let £ := (A — AI "1 /(A — Ai~1) € [0, 1], whence

A= (1—nA "4, o, =1-0o' "+t (45)
Using the classical linear interpolation error bound we obtain, for fixed x € €2,

|3.(x)* = [(1 = Do (0)* + 10’ ()]
2

<5 max. W[(l — 9o )+ 50 O] 11— 1)

= 3 max [(1= 9! 0 + 50/ )] (o () - o'~ ()

s€l0,

IA

AW MW

o' | Yo' — o2 (46)

max ([l .

|rw(x) = [ = DA o () + 1l (0)]|

1 ’ i- i i i
<3 max Tl =92 P sa) (1 =90 ' () 4+ 50’ ()] - 11 —1)
< %(x" — Ao = . (47)

Since ||u|| -1 < Cillu||loo for all u € L°°(2), with C; denoting an embedding con-
stant for the embedding HJ (Q) < L'(Q) (e.g. C1 = /]Q[C2), (46) and (47) imply
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o3 = [0 =" +1(e)’]] -

ol LMo - = @)

3
<2 cimax{ o .

[rwn = [(1 = DA o™ + 1270 ]|,

gicl(ki—ki_l)||wi —o' Y = (49)
Now (45), (48), (49) give
-0 — 2o~ 3 -
S N e N P
+i]—A0 =2 — ()], T+
<max{8'"1, 8"} + 7 + p; = 6. (50)

Thus, we obtain a branch (‘Sk)xe[o,i] of defect bounds which is constant on each
subinterval [Ai_l, )J]. In the points Al M- s s possibly doubly defined
by (50), in which case we choose the smaller of the two values. Hence, ([0, Al —
R, A — §,) is lower semi-continuous.

Note that 8, given by (50) is “small” if 8’ ~! and ' are small (i.e. if the approxi-
mations ' ! and &' have been computed with sufficient accuracy; see Remark 2a))
and if p;, 7; are small (i.e. if the grid is chosen sufficiently fine; see (48), (49)).

In order to compute bounds K satisfying (10) for A € [0, X]‘, with w, given by
(44), we fixi e {l,...,M —1}and A € [J(A~! + A7), L7 + AT+1)]. Then,

=2 < %max{w‘ — AT AT A =,

) (S
e = oy = 3 max{ o = |y [ = ] ) =
whence a coefficient perturbation result given in [16, Lemma 3.2] implies: If
=K' ;,w+2y(“w"n + Cavi)vi | <1 (52)
1 )\Il(Q) + o ] L4 1 1 ’
then (10) holds for
Ki
K; .=1_§i. (53)

Note that (52) is indeed satisfied if the grid is chosen sufficiently fine, since then
wi and v; are “small” by (51).

Analogous estimates give K also on the two remaining half-intervals [0, %)»1]
and [§ (M1 M) AM),
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Choosing again the smaller of the two values at the points %(ki T (=
1,..., M) where K is possibly doubly defined by (53), we obtain a lower semi-
continuous, piecewise constant branch ([0, A] > R, L — Kj).

According to the above construction, both A — §, and A — K are constant on
the 2M half-intervals. Moreover, (44) implies that, fori =1,..., M,

o0 < | PO e 30 e A 0} for a€ I 3 (I 440)]
P max (Al A+ ol o). o[l for & € [2GI! 4 46), 1]
and again we choose the smaller of the two values at the points of double definition.
Using these bounds, the crucial inequalities (12) and (13) (which have to be sat-
isfied for all A € [0, A]) result in finitely many inequalities which can be fulfilled
with “small” and piecewise constant ¢, if §; is sufficiently small, i.e. if o, . oM
have been computed with sufficient accuracy (see Remark 2a)) and if the grid has
been chosen sufficiently fine (see (48)—(50)). Moreover, since A — §;, A — K, and
the above piecewise constant upper bound for ||w, ||+ are lower semi-continuous,
the structure of the inequalities (12) and (13) clearly shows that also A — «; can be
chosen to be lower semi-continuous, as required in Sect. 4. Finally, since (13) now
consists in fact of finitely many strict inequalities, a uniform (A-independent) > 0
can be chosen in Theorem 3b), as needed for Theorem 4.

9 Numerical Results

All computations have been performed on an AMD Athlon Dual Core 4800+
(2.4 GHz) processor, using MATLAB (version R2010a) and the interval toolbox
INTLAB [27]. For some of the time consuming nested sums occurring in the com-
putations, we used moreover mexfunctions to outsource these calculations to C++.
For these parts of the program we used C-XSC [13] to verify the results. Our source
code can be found on our webpage. !

In the following, we report on some more detailed numerical results.

Using A = 18.5 (which is not the minimally possible choice; e.g. A = 15.7 could
have been chosen) and M + 1 = 94 values 0 = A0 < 2! < ... < A%3 =18.5 (with
A1 =0.1, A2 = 0.3 and the remaining gridpoints equally spaced with distance 0.2)

we computed approximations «?, ..., ®"> with N = 16 in (31), as well as defect
bounds 8, ..., 8°3 and constants K°, ..., K3, by the methods described in Sects. 6
and 7.

Figure 1 shows an approximate branch [0, 272) — R, A — oz lloo- The contin-
uous plot has been created by interpolation of the above grid points A/, plus some
more grid points between 18.5 and 2772, where we computed additional approxima-
tions.

Thttp://www.math kit.edu/iana2/~roth/page/publ/en
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Fig. 1 Curve (1, ||w; |loo) With samples of w, in the case p =3
Table 1 Eigenvalue enclosures for the first two eigenvalues
K1 K2

wo 0.34350814513539 2.492570;12
w7 0.37521912233530 2.6221837533
w6.7 0.4373273950411 2.8737816150
107 0.5275235463652) 3.223417042313
w147 0.667684825931 3.72520929095%
w185 0.892374459941%2 4.462881101%2

For some selected values of A, Table 1 shows, with an obvious sub- and super-
script notation for enclosing intervals, the computed eigenvalue bounds for problem
(42) (giving K, by (43)). These were obtained using the Rayleigh-Ritz and the
Lehmann-Goerisch method, and the homotopy method briefly mentioned at the end
of Sect. 7 (exploiting also the symmetry considerations addressed in Remark 4).
The integer m, needed for these procedures, has been chosen different (between 3
and 10) for different values of A, according to the outcome of the homotopy. This
resulted in a slightly different quality of the eigenvalue enclosures.

Table 2 contains, for some selected of the 186 A-half-intervals,

a) the defect bounds §&; obtained by (50) from the grid-point defect bounds §~!,
8%, and from the grid-width characteristics p;, 7; defined in (48), (49),

b) the constants K; obtained by (53) from the grid-point constants K’ and the grid-
width parameters v; defined in (51) (note that u; = 0.1 for all i),

¢) the error bounds «; computed according to (12), (13).
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Table 2

A-interval S K. o)
[0,0.05) 0.0005943 1.7443526 0.0010378
(2,2.1) 0.0023344 1.7707941 0.0041521
6,6.1) 0.0022937 1.6669879 0.0038369
(10,10.1) 0.0023644 1.5677657 0.0037168
(14,14.1) 0.0026980 1.9582604 0.0053028
(16, 16.1) 0.0031531 3.2267762 0.0102701
(18.4,18.5] 0.0050056 13.8930543 0.0882899

Thus, Corollary 1, together with all the considerations in the previous sections,

proves Theorem 1.
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marks and suggestions.
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Green Function Estimates Lead to Neumann
Function Estimates

Guido Sweers

To the memory of Wolfgang Walter

Abstract It is shown that the Neumann function for —Au 4+ u = f on a bounded
domain 2 C R” can be estimated pointwise from below in a uniform way. The proof
is based on known uniform estimates from below for the Green function.

Keywords Neumann function - Fundamental solution - Comparison principle
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Since the contributions by Krasovskii [5, 6], estimates from above for the Green
function of elliptic boundary value problems of arbitrary order, say 2m, on bounded
domains 2 are known:

G(x,y) < Clx — y[>"" ifn>2m,

G(X»)’)SClog(l—i-' |) if n=2m.

xX—=Yy

Estimates from below are much harder to obtain and crucially depend on the bound-
ary conditions. For the second order Laplace equation under homogeneous Dirichlet
boundary conditions, Zhongxin Zhao in [9, 10] (see also [7]) was the first to obtain
the sharp two-sided result. For biharmonic Green functions optimal estimates were
recently proven in [4]. Surprisingly enough, optimal results for homogeneous Neu-
mann boundary conditions do not seem to be known, at least I have not been able
to trace them. In this manuscript we will show that the estimates for the Dirichlet
Green function lead to optimal estimates for the Green function under Neumann
boundary conditions.

Of course we cannot use the Laplace equation since O lies in the spectrum if
one considers Neumann boundary conditions, but we shall show that on a bounded
domain (connected open subset) 2 C R"” with n > 3 and a smooth boundary 9€2,
the kernel function Nq(x, y) for the boundary value problem

—Aut+u=f inQ, 0
ou=20 on 092,
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4 G. Sweers
satisfies for some positive constant cq :
NQ,l(x,y)ZCszlx—ylz_" forall x,y € Q.

In (1) v stands for the (exterior) normal.
For  a bounded domain in R? one may show that

st,l(x,y)zcszlog(l+ |) forall x, y € Q.

lx—y

For the proof we will use the maximum principle directly, elementary estimates
for Green functions and the fundamental solution, and the fact that for f ; 0 the
solution of (1) satisfies u > 0.

1 Elementary Estimates

Let Ng,1(x, y) denote the kernel function for (1), that is, the solution of (1) can be
written as

u(x) = /Q Nai(x. ) f()dy.

By the strong maximum principle it holds that Ng 1 (x, y) > 0 on © x Q. Indeed, for
f = 0 the maximum principle implies that the solution of (1) cannot have a negative
interior minimum. Hopf’s boundary point lemma implies 9, u(xp) < O if u attains a
negative minimum at a boundary point xo. So Ng 1(x, y) > 0 and the strong maxi-
mum principle together with Hopf’s boundary point lemma implies Ng 1(x, y) > 0.
We will also exploit estimates for the Green function on balls. Indeed, let B (0)
be the unit ball in R” and consider for ¢ > 0 the boundary value problem
—Au+cu=f in B1(0), )

{u:O on dB1(0). @)

Then there exists a unique Green function G g, (0),¢(x, ¥) such that the solution of
(2) satisfies

u(x) =/ G 0).cx, V) f(y)dy.
B1(0)

The typical behavior of y = Ngq 1(x,y) and y = Gq 1(x,y) is illustrated in
Fig. 1.

Let us start by recalling some properties of these Green functions and the funda-
mental solution. First we recall the radially symmetric solutions of

(=A+c)F =0 onR"\{0}. 3)
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Fig. 1 Typical behavior of Neumann and Green (dashed) function

Lemma 1 Let ¢ € RT and n > 2. Every radially symmetric solution of (3) can be
written by using modified Bessel functions of the first and second kind:

Fx) = c11x]7" K ooa (Velx]) + ealx| 2 Lz (Velx]). )

Remark 1.1 The modified Bessel functions of the first kind are defined by:
PV S (lr)Zm
Lin==Y —2*"————
2v 0m!F(v+m+1)

For v € Z one finds 1,,(r) = I_, (r). For v ¢ Z the functions [,, and /_,, are indepen-
dent, but even then it will be convenient to introduce the modified Bessel functions
of the second kind, which are defined by:

I_,(r)—1,()
g7 Vv

2 sin(om) forv €7,

sin(vr

BO=y e -1
limm7——— forvelZ.
m—v 2sin(uir)

Next we consider fundamental solutions for —A 4-¢, by which we mean a radially
symmetric solution F of

lim F(x)=0. o)

|x|—00

{ —AF 4+ cF =46y in distributional sense,

Lemma 2 Let c € Rt and n > 2. Then there exists a unique fundamental solution
Fy.c € C R\ {0}) of (5), namely

1
F2.0(x) = 5—Ko(Velx]) ifn=2,

Fc(x)= m x| £, (ﬁ|x|) ifn > 2,

(6)
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with wy, the surface area of the unit sphere in R", and with

2 1\
fn(r>=r(%)(5r> Koy (). ™

Moreover, F, .(x) is strictly positive on R" \ {0} and

d
Strictly decreasing: an,c(x) <0 for|x|>0. (8)
x

Remark 2.1 For n € {1,2} and ¢ = 0 there is no radially symmetric solution of (3)
that goes to zero at infinity. When ¢ > 0, there exists for any n € N* a fundamental
solution.

Proof The radially solutions of (—A 4+ ¢) F =0 on R"\{0} are given by (4). From
[8, Formula (1) and (2) in 7-23.] one finds that limjy|_, o F(x) = 0 if and only if
¢y = 0. Calculating the appropriate constant to find —AF + cF = §p, leads to the
constant in (7).

In radial coordinates one finds —A+c¢ = — 33—; - "r;l % + ¢ and an ode-argument
shows that any solution to

PR
( 0" _n li—i-c)F(r):O

_ﬁ_ r or

cannot have a positive local maximum, nor can it have a negative local minimum.
Since limy| o Fy,c(x) = +00 and lim|x| 00 F,¢(x) = 0 one finds as a consequence
that (8) holds and that F}, . is positive. Il

Let us recall some properties of the functions f, defined in (7) from [8, For-
mula (1) in 7-23.]. For n > 3 the function f;,
e is bounded in 0, namely f,,(0) =1,

. . . 3—n 2\
e goes exponentially to zero at oo, more precisely, with ¢, = /7 272 F(%) L.

—n

1
P () = Pt e <cn + O(—)) for r — oo.
r

Lemma 3 Letc € RT and n > 2. The Green function for (2) on B1(0) C R" has the
following properties:

o fory=0:

{ x> Gp0),c(x,0) is radially symmetric and
©)

a
strictly decreasing: WGBI(O)'C(X’ 0)<0 forO<|x|<1;
X
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e forall y € B1(0) and x € B1(0)\{y}:

11— 11—
cn’cmm<1, M)u L ifnss,

Ix —yI?
(I —|xPd - |y|))

lx —y|?

G, 0),c(x,y) = (10)

Cz,clog<1+ ifn=2,
where Cy, . is a positive constant.

Proof Since the Green function is unique, x = G g, (0),¢ (x, 0) is radially symmetric.
Hence G, (0),c(x,0) can be written as in (4). Then similar arguments as for the
fundamental solution imply (9).

The second statement is the standard estimate from below for the Green function.
The estimate for the Green function for — A is due to Zhao. The fact that lower order
perturbations of the Green function (as long as one does not pass the first eigenvalue)
allow the same estimate, goes back to Ancona [1]. This result may also be found in
the book by Chung and Zhao [2]. See also [7]. O

2 On Starshaped and Convex Domains

Theorem 4 Let Q@ C R" be a bounded smooth domain which is starshaped with
respect to y. Then there is a positive constant cq such that

calx — y[*" iffn=3

N, X,y)> orall x € Q. 11
Q.1(x,y) CQlOg<1+ ) ifn=2 S (11)

|x =yl
In fact, if F,, 1 is the fundamental solution for —A + 1 on R", then

No1(x,y) > Fy1(x —y) forallx € Q. (12)

Proof Consider

u(x) =Ng1(x,y) = Fp1(x —y).

So —Au 4+ u =0 in Q. Since €2 is starshaped, one finds that the outside normal vy
in x € 0X2 satisfies

(x—y)-vx>0. (13)
Due to (9) and (13) the function u satisfies

0 a

—ux)=——F,1(x —y)>0 forallx € 9Q2. (14)
av v

By the maximum principle, a solution of —Au + u = 0 in 2 cannot have a neg-

ative interior minimum. So if u# is somewhere negative, then the minimum of « is
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assumed at a boundary point, say at X € 92 and by Hopf’s boundary point lemma
3%14()?) < 0, which contradicts (14). So u > 0 in 2 and (12) has been proven. The
estimate in (11) follows from the behavior of the fundamental solution. O

Corollary 5 Let Q2 C R”" be a bounded smooth domain which is convex. Then there
is a positive constant cg such that

calx — y[>" ifnz=3

Ng 1(x,y) > orall x,y € Q. 15
Q.1(x,y) nglog<1+ ) ifn=2 S y (15)

lx —yl
In fact, if F,, 1 is the fundamental solution for —A 4+ 1 on R", then

No1(x,y) = Fpi(x —y) forallx,ye. (16)

Proof Since 2 is convex, it is starshaped with respect to any y € 2 and one may
use Theorem 4. O

One may localize the results above, in the sense that when the boundary is locally
convex, similar results can be obtained by considering Green functions instead of
the fundamental solution.

Theorem 6 Let 2 C R”" be a bounded smooth domain and let d be such that Q N
B4 (y) is starshaped with respect to y. Then there is a positive constant cq 4 such
that

cqalx — y[*" ifn>3
Ng i(x,y) = ) forall x € QN By(y).
cq.qlog| 1+ ifn=2
lx =yl
a7
In fact, if G gy, (y),1 is the Green function for —A + 1 on Byq(y), then
Na1(x,y) = Gpyyy).1(x,y)  forall x € 2N By (y). (13)

Remark 6.1 The estimate in (18) allows us to find a uniform estimate from below
near convex boundary parts. A straightforward application near nonconvex bound-
ary parts would force us to reduce the radius of By;(y) and hence would fail to
give a uniform estimate. This complication can be overcome if one could locally
transform the non-convex part of the domain €2 to a convex set without changing
the differential operator. The Mobius transforms, which are discussed in the next
section, offer such a possibility. The corresponding estimates we shall see in the last
section.

Proof The arguments are similar as in the proof of Theorem 4 except that one uses
a Green function instead of the fundamental solution. Consider

u(x) =Ng1(x,y) — Gp,y(y),1(x,y)
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Fig. 2 A sketch of Q and
disks B4(y) and By (y) such
that Q N By, (y) is starshaped
with respect to y. Then we
find Gg,,(y).1(x,y) <
Ng.1(x,y) forx e 2N

B4 (y), which supplies us
with the appropriate estimate
forx € QN By(y)

and one finds
u(x) =Ng 1(x,y)>0 forx € QN 3dBr(y),

0 0
—%u(x) = EGBM(.V)J(X’ y) <0 forxedQN By(y).

By the strong maximum principle it follows that u > 0 for x € Q2 N B4(y), that is
(18), and hence also (17). See Fig. 2. Il

Corollary 7 Let Q C R" be a bounded smooth domain such that Q2 N B3;(2) is
convex. Then there is a positive constant cq q4 such that

coalx —y[™" ifn>3

No.i(x,y) > ) ifn=2 forall x,y € QN By(z).

cQ.d 10g(1 +

lx — I

19)

Proof For any y € B;(z) one finds that Br;(y) C B3g(z) and that Q N By (y) is
starshaped with respect to y. By using Theorem 6 one finds (18) and hence (19). [

3 Recalling Mobius Transformations

In 2 dimensions every simply connected domain can be mapped on the unit disk by
a conformal mapping. Conformal mappings almost preserve the Laplace operator.
This allows one to compare Green and Neumann functions on arbitrary domains to
explicitly known ones on the disk. In higher dimensions only very few nontrivial
conformal mappings exist. These are the so-called Mobius transformations.

Definition 8 A mapping / : R” — R" U {oo} is called a Mobius transformation, if

h=¢10 jood
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with ¢; (i =1, 2) a similarity:
¢i(x) =a; +c;M;x for M; an orthogonal n x n matrix, ¢; € R* and ¢; € R";

and jo the standard inversion:

jo¥) = ——forx e R"\ {0}.
flx|]

Remark 8.1 A similarity transformation by itself trivially preserves the Laplace op-
erator except for a scaling constant.

Remark 8.2 To exploit the relation with holomorphic functions in 2 dimensions,
one usually considers similarities ¢ (z) = « + Bz for a, f € C with B # 0, and as

similarity jo(z) =z~ = le where z =x1 +ixp.

_|Z

It is known, see e.g. Corollary 2 of [3], that for a Mobius transformation £ it
holds that

11 1.1
A(J] "uoh)=J]""(Au)oh,

where Jj, = | det(224)|. So

ax;
11 141 _2 I
(=A+D(J2 "uoh)=J2""((-A+J, " oh™"Yu)oh.
Setting
~ 1_1
f=EA+1D)(J] "uoh): Q—>R,
2
f=(=A+7"oh Yu:h(Q) —R,
one finds

- 1,1
f — Jh2+n f ° h
and that the Green, i.e. Bu = u, and Neumann, Bu = B%u, functions for
~ _2
{—~Au+u=f inQ, o l-Aut(J, " oh T u=f inh(Q),
Bu=0 on 9€2, Bu=0 on dh(),

are related through

1

1_1 F
(3 ruen)w =i = [ Gaitw.»fo)dy

1,1
=/QGg,l(x,y)J,f”(y)f(h<y>)dy
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Fig. 3 The original domain
is dark; the Mobius
transformed domain is
lighter. The dashed black
circle is used for the
reflection. Since 2 and /4 (2)
lie between the two dotted red
circles the factor Jj, is
bounded where it matters

and

1 1

1_1 1.1
th ”(x)u(h(x))=]h2 " (x) . Gh(Q)Jh—z/n(h(x),Z)f(Z)dZ

=J; "(x) . G, g (h (), k() f (R () In(y) dy.

That is

1_1 1_1
I TG 0 =G oo (R, h()).

Similar formulae hold when the Green function is replaced by the Neumann func-
tion. The fact that % is conform implies that

0

X

woh)(x)=0 <& (iu) (h(x)) =0.

vy
The function J(y) is bounded from above and bounded away from 0 on compact
sets that do not contain the center of the reflection circle. Note that a Mobius map-
ping which is an inversion (circular reflection) with respect to a circle outside of Q2
that intersects the boundary at one point, maps the boundary locally into a convex
boundary and the image domain stays away from the center. See Fig. 3.

4 Smooth Domains

Theorem 9 Let Q2 satisfy a uniform exterior sphere condition, then there is a posi-
tive constant cq such that

calx —y>" ifn>3

orall x,y € Q.
)ifn:Z e y

Ng i(x,y) >
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Fig. 4 Taking x and y near
and on opposite sides of the
bottom gap, one expects
Ngq.c(x,y) to be much
smaller than in the case where
[x, y] C &

Remark 9.1 For non-convex domains there is no hope to find a result as in (16) as
one may guess from Fig. 4.

Proof We only have to prove this estimate for |[x — y| < § for some fixed § > 0 and
for x and y near a part of the boundary which is not convex. All other cases are
covered by the results in Sect. 2. For this remaining case we use a Mbius mapping
that is a circular reflection in a sphere that touches the boundary. We use that for
f > 0 the solutions of

—Auyg +ouy=f in €, and —Aug+Bug=f inQ,
Buy, =0 on 0€2, Bug =0 on 0€2,

can be compared:
Ifa>B>0 thenuy <ug.

Indeed, since u, > 0 one finds

(A +B)(upg —uy) = (- Blug =0

and the maximum principle implies ug > u. After this circular reflection the new
domain has become locally convex and we may use the estimates from Sect. 2 to
find the result we want. O
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Deriving Inequalities in the Laguerre-Pdlya
Class from Properties of Half-Plane Mappings

Prashant Batra

Abstract Newton, Euler and many after them gave inequalities for real polyno-
mials with only real zeros. We show how to extend classical inequalities ensuring
a guaranteed minimal improvement. Our key is the construction of mappings with
bounded image domains such that existing coefficient criteria from complex analysis
are applicable. Our method carries over to the Laguerre-Pélya class £—P which con-
tains real polynomials with exclusively real zeros and their uniform limits. The class
L—P covers quasi-polynomials describing delay-differential inequalities as well as
infinite convergent products representing entire functions, while it is at present not
known whether the Riemann &-function belongs to this class. For the class £—P
we obtain a new infinite family of inequalities which contains and generalizes the
Laguerre-Turdn inequalities.

Keywords Coefficient inequalities - Reality of zeros - Moment problem - Hankel
determinants - Logarithmic derivative

Mathematics Subject Classification 26D05 - 30D20 - 33C45

1 Introduction

The study of astronomical constellations, control mechanisms or chemical reactions
leads to equations with limited locus of the corresponding zeros. A typical property
of such equations is that all corresponding zeros belong to the open interior of a half-
plane or lie on the real axis, maybe even only on a line-segment. Newton already
searched for characterizations of algebraic polynomials with such restricted root-
location.

Theorem 1 (Newton) Ler P(x) =) aix' be a real polynomial of degree n with
exclusively negative roots. Then it holds true for all k with 1 <k <n — 1 that

k+1n+1—k

‘We want to derive a method which allows to consider more than three consecutive
coefficients. Such additional criteria should yield a quantifiable improvement over
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Newton’s criterion Theorem 1 to justify the increased effort. We show that for the
even and odd parts of stable polynomials quantifiably stronger results hold true. This
is profitable for applications such as stability tests for interval polynomials arising
from control problems.

Moreover, we show that our computational approach extends easily to entire
functions which are uniform limits of real polynomials with real zeros i.e., the com-
putational approach extends to the Laguerre-Pélya class £—P. For control theoretic
problems this implies that we may apply our necessary stability tests to the even and
odd part respectively, of quasi-polynomials describing delay-differential equations.

We are not restricted to essentially even expansions. Varying our arguments, we
show how the best-known inequality for f € L—P, the Laguerre-Turdn inequality:

fx) f'(x)
flx) f7(x)

can be embedded into an infinite family. Such embeddings have been sought after
for a long time as in [9, 10, 13] and [14]. One reason for this is the fact that the
Riemann hypothesis (RH) holds true if and only if the Riemann &-function, given
by

FOS @< 0 xeR o ‘ <0, xeR Q)

£3)
8

o0 00 00
= f cos(xt)2(2n4n2e9’ —3n2ne5’)e—”2”“ dt = / cos(xt)D (1) dt,
0 0
n=1

is in L-P, for references viz. [30] or [33].

NB Pélya remarked in [25] on the futility of a numerical proof of the Riemann
hypothesis loc. cit. p. 9:

Uberhaupt scheint mir (wie den meisten andern in der Frage Interessierten) das Vorhaben,
ein derartiges Problem durch numerische Rechnung entscheiden zu wollen, aussichtslos zu
sein.

and became more explicit on this point loc. cit. p. 33:

Man kann durch eine numerische Rechnung, die mit beschréinkter Genauigkeit gefiihrt wer-
den muss, nie entscheiden, ob eine Zahl irrational ist oder nicht, und ebensowenig ob sie
genau = 1 ist oder nicht.

Wenn man aber bei dem erreichbaren Genauigkeitsgrad der numerischen Rechnung etwa
0,9999 nicht von 1,0001 zu unterscheiden vermag, kann man auch die Fille, in denen

2
2 fooo W(t) cos(zt) dt = 2+/2mee™ 7 (a + cos(z))] nur reelle Nullstellen hat, nicht von de-
nen unterscheiden, in denen es keine hat.

Pélya’s remark addresses the possibility to numerically decide the RH. Not men-
tioning a possible falsification, Csordas, Norfolk and Varga inquired into the numer-
ical correctness of the Laguerre-Turdn inequalities (2) for the RH. This investigation
led to an analytic proof of inequality (1) for a whole class of integral-transforms in
L-P viz. [11, 12, 33]. With the hope that our new approach together with the ob-
tained inequalities stated will be equally useful for the community of researchers in
complex and numerical analysis, we commence.
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2 Essentially Even Polynomials and Positive Mappings

Given a real polynomial P, Hurwitz [18] considered the quotient of the odd part
divided by the even part of P i.e., the rational function

P(x)— P(—x)

H(P)(x) = m,

where P € R[x]. 3

To motivate the introduction of H(P), we may consider the argument growth of
P on the boundary of the left open half-plane, namely, the argument growth on
the imaginary axis. If the argument growth of P is maximal, the Cauchy index
of H(P) is maximal. Hurwitz computes in [18] this Cauchy index via quadratic
forms, and cleverly splitting and re-arranging derives his well-known determinan-
tal characterization of ‘open left half-plane’-stability i.e., Hurwitz-stability. If P is
Hurwitz-stable, then H (P) is a mapping from the right half-plane to itself, and the
converse holds true under some mild restrictions cf. [19]. Hurwitz’ arguments can
be re-arranged and adapted if we consider the mapping property of H (P) instead of
the argument growth of H (P), for one such discussion see [19]. We wish to exploit
solely the mapping property in the remainder of the paper.

Definition 2 A function f analytic in the open right half-plane of the complex
numbers is called positive: < 9N f(s) > 0 for all s € C with Rs > 0.

Remark The class of (strictly) positive functions is of great importance for questions
involving the existence and design of stabilizing controllers, adaptive control and
simultaneous stabilization (see, e.g., [34]), but seemingly was not used to derive
stability criteria other than Hurwitz’.

Relying on the Hermite-Biehler theorem (cf., e.g., [17]) which shows that
Hurwitz-stability of a real polynomial is equivalent to interlacing of the zeros of
the even and odd part on the imaginary axis we construct odd, positive functions as
follows.

Lemma 3 Suppose P € R[x] is a Hurwitz-stable polynomial of degree n > 0. Let p
denote either of the following four functions: the even or the odd part of P defined by
P.(x):= %(P(x) + P(—x)) or P,(x) := %(P(x) — P(—x)), respectively, or the re-
duced even or odd parts, P.(\/x) or P,(s/x)//x, respectively. Then

PP@/pV V), j=1,...n,
is a positive function.

Proof The Hermite-Biehler theorem guarantees that the even and odd part have all
zeros on the imaginary axis, and the same holds true for the derivatives by Rolle’s
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theorem. Hence, it suffices to prove that p’/p is positive. This follows from the
representation

1
P'©)/p)=) oyt )
U

Positive functions may be expressed via certain Stieltjes integrals. In the case of
an odd, real function bounded near zero we use the following auxiliary result (which
is mentioned as an exercise in Henrici’s classic textbook [17]).

Theorem 4 A positive real, analytic function f has an asymptotic expansion near
the origin given by

f(s)~cos+cls3+czs5+0(s7), s — 0, s >0, (®)]

if and only if either of the following conditions hold true:

1) the determinants

0

HY = leisjl, ©
1 .

Hk( )= (=D e jpl, 0<i,j<k,

are positive for all k;
ii) the determinants

0

HY = lcivjl, -

1 ..
HY = (=D e ], 0<i, j <k,

are positive for k < kg, and identically zero for k > k.

In the latter case, the function f is a rational function of degree k.

Proof In the context of interpolation with positive real functions (see, e.g., [38]) the
following special Stieltjes integral representation (due to Cauer) for real, positive
functions f bounded near the origin is known:

o
1
s)=s ——dy(r), Ns>0, 8
£s) fo v 8)
where 1 is non-decreasing and bounded.

The positive analytic function f given by (8) is represented by the asymptotic ex-
pansion (5) near the origin if and only if all moments puy := fooo 2 dy (1), k >0,
exist, in which case cx = (—1)¥ 1y This follows from the known arguments connect-

ing the existence of moments to the asymptotic expansion, and may be established
by [17, Th. 12.9h, p. 582] or [1, Lemma 3.3.6, p. 111].
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The existence of moments py = fooo 72K dy (1) in the Stieltjes moment problem
is equivalent [19] to the mutual exclusive conditions i), ii) above on the Hankel
determinants constructed with ¢; = (—1)¥ WUi. This yields the theorem. Il

We may apply the preceding theorem to a function r of the form r(x) = Z[,((;‘)),
where ¢ is a three-term polynomial, to derive a weak version of Newton’s inequality
for the even or odd part of a polynomial P. In splitting the polynomial P, we will
have to be careful to get the degrees of the resulting polynomials right. An even-
degree polynomial P with deg(P) = n, has n/2 =: N odd coefficients and N + 1
even coefficients. To index the coefficients a1, (r € {0, 1} indicates the parity
of n) viak weuse p:=N — 1 - (2N + 1 —n), where N is the integer |n/2]. For
evenn and T = 1 we have 4 = N — 1, whereas in all other cases © = N.

Corollary 5 Let P(x) = Zg a;x* be Hurwitz-stable with positive coefficients. Let
us designate by N the integer (n/2].Lett € {0, 1}. Let u:=N —7- (2N +1—n).
Then for k € N such that 1 <k < u — 1 the following holds true:

Wkt = \/ % w«/a%—}‘rraﬂc—}—}i—r ©)
nw—k
We show how to derive this straight-forward corollary of Newton’s inequalities
from the non-negative Hankel determinants associated with a positive rational map-
ping. (This corollary to Newton’s Theorem 1 was recently re-discovered by several
authors who were interested into applications cf. [7, 36, 37].)

Proof Consider the real Hurwitz-stable polynomial P(x) =Y 7, a;x' of degree n.
Put N := [n/2], and let us fix the index shift T € {0, 1}. If ¢ = 0, we consider
the reduced even part P.(y/x), and if T = 1 we consider the reduced odd part
P,(+/x)/+/x, and denote the chosen intermediary polynomial by R. The chosen
polynomial R has degree pi.

To obtain limits involving azp4c, azpt2+c and azpi44; we compute the pth
derivative of R as

(p+2)!

r(x) = plazpir + (p + Dlazpiogox + ArpyapeX’ 4o

We take the reciprocal r{(x) = x#~Pr;(1/x) of ri(x), and, with the short-hand
vp = (u—p)pl,
we obtain the (1 — p — 2)nd derivative (of 7| (x)), called r>(x), as

7 Ypi2
p ) P+2 4
A2p+t B +axpto4c YVp+1¥ T @2prate Tx .
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The first three coefficients c; of the Taylor expansion ré x)/rx)=> cix 2t read,
using auxiliary terms s;, as
s0i= (p+ Dazpiote ’
(L — plazpr
5 = (p+2)(p+ Dazpratr 7
(u—p)(u—p—Dazpy:

co=4"-s0, Cl =—8s§+4s1, c = —125081 + 16s8.

The non-negativity of the Hankel determinant H 1(0) of order 2 i.e., the fact that
co-cy— c% > 0, yields the inequalities (9) of Corollary 5 after an index shift from
p=>0tok=p+1. O

The double series (6) and (7) of nonnegative Hankel determinants allow to im-
prove on the lower bound (9) i.e., using more information we improve on the New-
ton inequalities for essentially even structures.

Theorem 6 Let P(x) = ayx" 4+ an_1x" "' + - + a1 x + ag be Hurwitz-stable with
positive coefficients. Let us designate by N the integer |n/2|. Let T € {0, 1}, and
w:=N—17-2N+1—n). Let oy, = ‘/kkil“;f';{'l. Then for all k € N such that
1 <k < u — 2 the following holds true.

2
3 A2k+2+1 05y
+t
L. Wk-241 = —5— 3 (10)
Ok 40344 1) 4r — Ok 1920k +2)+7 02+
2
a
< 22# (11)
O A2(k+1)+1

2. If asksraoksa4t = f - (Ok - Okg1)?@ok—247 Qokt4+7, Where f > 1, we obtain

k4t = L(f) - 0k - /a2k—2cG2k 1247,

where

9f2—14+10f — /814 +82f2—108f3+1-20
L(f):\/f +10f -/ GET TR T

3. Let

32
Doft2+1

Si:= ,
01 (Ok41)% /A2k—247 A2k +4+1
then it holds true that

Wkr > L(f1)0k/02%—24102% 4247 (12)
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We established this result earlier (viz. [5]) using the quadratic form associated
with the asymptotic expansion of g’/q where ¢ is a suitable four-term polynomial.
The following proof employs the Maclaurin expansions at Zero, and avoids the ar-
tificial perturbation term employed in our work [5].

Proof To obtain the inclusion result of Theorem 6, take the even or odd part of the
polynomial P, reduce it via differentiation (as above), to the four term expression
R(x) given by
I Iz Iz
yllp Yoiil Y 42 14 +3
L P aoprarnxt + -2

+ 2
N a(2p+r)+—2! aep+2+0)X” + o 3

6
*AQ2p+6+1)X
with derivative R’(x)

2 1% 3 2 5
YVp+r1@2pt2+cX + 2Vp+2‘12p+4+rx + Yp3@2p+6+cX7,

where 0 < p < —3and y) = (u— p)lp.
. ()@ (pt+Dazp+e+r
With 53 := (u=p)(p—p—D(n—p—2)azp4r ;
the odd, positive function R’(x)/R(x) with expansion Y ¢;x%*! has the first four
coefficients ¢;

and sp, so as in the proof of Corollary 5

co=6"-50, c1:12-sl—18s§,
2 =65y — 54sps1 +54s5,  c3 = —162s] — 3657 4 2165351 — 24s250.
Again we have the inequality
H1(0>=co~c1 —6‘520.
This yields an expression involving azk+r, - . . , @2k +6+7 - Multiplying it by aé piT (n—
P —p—1)2w—p—2)/((p+ 1)*(p +2)) obtain the inequality
—144(u — P — p—D(p+2)a3, @3, 141+
+108( — p = (i = p=2)(P + Dazp a3, 494 a2p1ate
+36(1 — p) (i — p— D(p + 33,41 02p+24002p 4642 = 0.

Equating the left-hand side to zero, we obtain the estimate (10) after an index shift
from p to k = p + 1. The estimate (10) is not weaker than (11) by Corollary 5.

If the polynomial P is Hurwitz-stable, all Hankel determinants (7) are non-
negative according to Theorem 4. Consider especially the inequality

HY =ci-c3=c}>0. (13)

This yields an inequality involving azp+, ..., G2p+6+z-
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With ¢ := Dpioyie the three-term inequalities for p and p + 1
(Op+1°0p+2)" A2 p+1a2(p+3)+1

from Corollary 5 yield

3/2
D(p+2)+1

2
= < pap++7 = fi-
O'p—H(C7p+2)2«/6121)+ra2(p—t-3)+r

i

Multiplying the two three-term inequalities yields

2
A2p+2+1@2ptatr = (Optl - Op+2) A2p+7a2p+6+7- (14)

We may express (14) as an equality using a suitable multiplier f > 1 for the
right-hand side of (14), and may re-order to obtain

l pHlu—(p+2)aypyiricaprare
fr+3 pn—p a2p+t

= A2p+6+1- (15)

We note here that ax(p41)+: - ¢ = f.

We may obtain an expression involving just azp4 ¢, a2p42+¢ and azpi44; from
substitution of (15) into the inequality (13).

This yields the following non-negative expression (where 0 < p < u — 3)

216 (p+2)(p+ D’azpiase A
- T G242
f (w=p=Du—pya3,,, T

+ (324 + 360 _ 36 (P+2(p + 1)4a§[’+4+ra%p+2+r
foor w-p=D - pia,

A2+ (p+ D,
i
(w=p3p—p—1%;5,,,

The term ay 424 appears as a square and a fourth power inside this expression. To
ease comparison of results shift the indices from p to k = p 4 1 (which yields the
index range 1 < k < u — 2). Equate the expression to zero, solve the corresponding
equation for the middle index, asx -, and obtain the positive solutions

U(f) - ok/ar—241a2k 4247, L(f) - ok/ar—24t2%+247»

where the factors U (f) and L(f) (with U(f) > L(f)) are given by the following
pair of positive roots

<9f2 — 1410/ £ (O = 14102 288f)0~5>0'5
12f :

It is easily verified that f = 1 yields U(f) = V2, L(f) =1, and that the quartic
becomes negative if asi4; — +00. We use the estimate f1 < f = a4 1)+:¢ < f12
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in place of the unknown f > 1, and may compute L(f1) with L(f) > L(f1) > 1.
Hence, the real coefficient a4 is bounded from below as

@pyr = L(f) - okn/@rk—24c@2k 4247 = L(f1) - Ok/Q2k—24 2 Q2% 4247 - O

Theorem 6 gives improved lower bounds compared to (9), and an additional up-
per bound.

Example Consider a real, Hurwitz-stable interval polynomial

6
P(x)= Zaixi with positive coefficients a; in real intervals [ai_ , oci+ ] CcR.
=0
The inequalities (9) with N := |n/2] =3 (and 7 =0, u = N) for the four coeffi-
cients of even index yield

[ 2N 3N-—-1
a > m«/aoa , and a4 > Em«/agag. (16)
Suppose that a; and ag are allowed to vary in some finite interval. Let a4 = 1600
and ag = 1. If a» < 6500, the constraints (16) yield the estimate ag < 8802.08. The
new estimate (10) of Theorem 6 yields

ap <6614.15,

while the maximal value retaining stability is slightly smaller than 6609.968.
If the admissible lower bound for a; is unknown, and ag > 5000, then the in-
equalities (16) yield ay > 4898.97.
3/2

. _ Di2ir ~ 1 i -
With f1 = ot s e 174.186 our new inequality (12) of Theo

rem 6 yields
az >5653.24.

This is close to the lowest possible value of approximately 5653.726. Hence, before
any test for Hurwitz-stability of an interval family

P(x) = x° + asx® + 1600x* + a3x> + [5000, 6500]x% + a;x' + [5000, 8000]
we may exclude certain coefficient values, and limit the test to

P(x) = x® 4+ asx® + 1600x* + azx> + [5653, 65001x> + a; x' + [5000, 6615].

2.1 Functions Derived from Quasi-polynomials

Definition 7 A finite sum )_ ) ak,vzl‘efvZ € R(z), where a; , € R, 7, € R, is called
a real quasi-polynomial.
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It is an ill-posed problem to decide stability of quasi-polynomials with commen-
surate delays i.e., to decide stability for quasi-polynomials with a set of delays 1,
such that 7,,/7, € Q for all possible indices. Stability of a real quasi-polynomial
with commensurate delays is equivalent to positivity of the infinity of principal mi-
nors of the associated Hurwitz form H, while the case of incommensurate delays
bounded in intervals is NP-hard by results of Ozbay and Toker, (for reference, see
[16D).

To obtain necessary, low-order conditions for quasi-polynomials we invoke the
following result of Schwengeler (for reference, see [16]) which shows that the genus
of quasi-polynomials is at most one while the genus of the zeros is zero (for termi-
nology and basic results in the theory of entire functions viz. [6] or [30]).

Lemma 8 (Schwengeler) A real quasi-polynomial G may be written as

G(z) = 7" e *th l_[(l — i), a,B,eR, z, e C\ {0}

Z

Suppose the real quasi-polynomial G has a non-trivial product part. If G is Hurwitz-
stable, then F(z) := G(v/—1-z) = Fr(z) + ~/—1 - F;(z) has all zeros on the upper
half-plane. The real and imaginary part, Fr and F; respectively, have all zeros on
the real axis according to a well-known generalization of the Hermite-Biehler theo-
rem (attributed by Levin [23] to Tschebotareff and Meiman). As these functions are
real and of order less than two, a result of Laguerre’s [6] shows that all derivatives
F I(ek) and F I(k) for k € Ny have all zeros on the real axis.

Fix now f = f(z) as one of Fl(ek) (z) or [Fy (z)/z]("). Use Hadamard’s represen-
tation of the logarithmic derivative of entire functions

f/(Z) m ’ 1 =
f— _ * 1
0 2 +g(Z)+n2_1[Z Zni|’ meNUO, gx)=a-z+ 8, (17)

to establish that — f’/f maps the upper half-plane to itself, and hence that

f'(V/=1-2)
VA RS S
f(W/-1-2)

is an odd, positive function real on the real axis. This odd, positive mapping gives
rise to the following new necessary stability condition.

Proposition 9 Given a real quasi-polynomial F and a parity index t € {0, 1}, we
choose the even or odd part of F respectively, and denote it by f. If the expansion
of f near the origin is

oo

f@) = Za‘)zb—&-r’

v=0



Deriving Inequalities in the Class L-P from Half-Plane Mappings 77

and if ay # 0, then ay4 is contained in the real interval with center

(k + DaZ,

4k +2)a {19

and radius

1

4(k+—2)|ak|\/“/f+1 - (k+1)% + 8arr1ar43ap - (k* + 5k +6). (19)

Proof Consider ay # 0 with k = 2v + t for some v € Ny The function R(z) :=
FEFTD(2) 2+ (7) is analytic near the origin as a; # 0. Compute the first
three coefficients ¢; of the expansion

R@) = fOHT () f@ (@) =coz+ 12 + 22 +esz +--+

where
k+2)! k+3)!
FOWE) = Ka + e+ Dz + S 2 g 224 6 LR
as
a
co = (k + l)ﬂ, (20
a
ak+2 at
cri= (k+ Dk +2)—= — (k+ 1)* 5, 1)
ag ak
ag+3 ‘12 1
c2i=1/20k + Dk + Dk +3)—= + (k+ 1)’ <5
ag aj,
—3/2 - g 1ax42k> — 6ag1ak+2k* —15/2 - agy1agok — 3ag1ax+2 22)
5 .
ai

The function R maps the upper half-plane to the lower half-plane. After a suit-
able transformation, we may use Cauer’s integral representation (8) used in the
proof of Theorem 4 together with its determinantal characterization to obtain non-

negativity of the two sequences of Hankel determinants H,E,O) = |ci+j| and H,fil) =
(=D eipjpal, 0<i, j<m.

We multiply the value cocp — c% of the Hankel determinant HZ(O) by a,f >0 to
obtain from |c; 4 j| > O the equivalent inequality

a,‘: (cocz — c%) > 0.

Writing out the ¢; in terms of a,, we obtain the following inequality constraint for
the coefficients:

(—afk* — 6aik® — 12atk — 4ai — 13a}k?)ai,,
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+ (1/2akad  k* +5/2akat k> +9/2aal (kK> +7/2akai. ;- k+aral, | ak+o
+ 3ags1ax43ai + 1/2a¢agag3k* + 7/2ak 4 1ax3aik’
+17/2a 10 1307 k> + 17/ 2ax 4 1ax 4303k > 0.
This inequality may not hold true if for fixed a; # 0 and real a1, ax+3 the coef-
ficient ax42 € R grows without bounds. Solving the corresponding quadratic equa-
tion
a,f (cocz - c%) =0

for ay 4> shows that the real coefficient must be contained in the closed real interval
with center

(k + Dag,,
4(k + 2)ay

and radius

1

— 2 2. (12
4(k_|_2)|ak|\/“k+1 (k +1)? + 8ayt1ax+3a; - (k2 + 5k +6). O

Remark Our first written proof of Proposition 9 was given in the unpublished thesis
[4], although the result was presented somewhat earlier [2, 3].

The above result for essentially even expansions compares to Laguerre’s inequal-
ities as follows. Suppose f is chosen as the even or odd part of a real quasi-
polynomial F, and t is chosen to be 0 or 1, respectively, such that f satisfies
the assumptions of the preceding proposition. Consider then the even function
¢(2) = f(2)/z". As all roots are real, we may apply Laguerre’s inequality for k
and k + 1 so that we have

(k + Darprak—1 <kag, (k+2)arpoax < (k+1ap,,, wherek> 1.

Shifting indices we obtain

k+2 5 k+3 5
A lak+2ak <441, mak+3ak+] <dj49, for k > 0. (23)

If ax < 0, we obtain no coefficient inclusion from Laguerre’s inequalities. If a; > 0,
combine the inequalities to obtain the four-term expression

k+3
k+2

2 \2

Gsdng <t < (KF %) o
PR T k12 T

The upper bound L > a;», combining two consecutive Laguerre inequalities, is

strictly weaker than our new upper bound from Proposition 9 with coefficient inter-

kD

val center ¢ := TEDar

and new radius p given by (18) as
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1

= G0 Dy e Ko D2 S a2+ 5k +)

P

2
because the inequalities (23) show that p < %% aZ—:l, andthusc+ p < L.

Example 1 Consider the even function
2 4 2 4
(ao +axz” +asz )cosklz + (ao + a27” + a4z ) COSApZ.
We may test for reality of zeros using Corollary 9.

Example 2 Consider the function
Ui+ U+~ =1(Vi + V2),

where

2 ! _
U = —/ (1-1%) Y2 cosayzt dt
T Jo
B i (=D (hz/2)*"

=:Jo(A12),
mIT(m + 1) 0(ti2)

m=0

2 [l _
(1 =2~ sinrgzr di

0
i (=)™ (raz/2)>m+!
—  ['(m+3/2)?

Vii=—
T

=: Hy(A22),

0

m

/1 cos(A3z) + (A3z) sin(A32) 1

U, : tcosAzztdt =

0 (A32)? T ()2

1 .

A7) — (A A
V2 ;:/ rsinazt dt = sin(242) — ( 422)005( 42)
(242)

(=)

_ cos(r42)

a0)? (tan(A4z) — A4z).

79

(24)

The function Uj is identifiable as the scaled Bessel-function Jy, while V; is essen-

tially the so-called Struve function Hy (see [35, §10.4, p. 328]).

We may test stability for parameters A; in a neighborhood of 1 applying our new
Proposition 9. The non-trivial fact that the function defined in (24) is stable for the
choice of parameters A; = Ao = A3 = A4 = 1| is a consequence of results obtained

by Pélya in [26].
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3 Coefficient Inequalities for Real Entire Functions

Real entire functions with zeros restricted to a line or half-plane satisfy certain char-
acteristic inequalities if the roots lie sufficiently separated. For a real entire function
f with exclusively real zeros x; satisfying ZXk 20X 2 <, Laguerre proved (for
reference, see, e.g. [9]) that for all x € R

fx) f'(x)
flx) f(x)

When evaluated at the special point x = 0, the resulting coefficient inequalities are
known as Turdn inequalities [32]." The Laguerre-Turdn inequalities (25) received
special interest in connection with the Riemann hypothesis as well as in the theory
of orthogonal polynomials. For orthogonal polynomials, the inequalities (25) may
be transformed to prove inequalities on the interval of orthogonality. Szeg6 [28]
derived from (25) Turdn’s inequality

F) f"(x) < f'(x)*>  which may be formulated as <0. (25

Py () Pup1(x) < Py(x)?, xel[—1,1], n>1,

for the ultraspherical as well as other orthogonal polynomials, see [29].
The Riemann hypothesis holds true if and only if (c¢f. [10, 30]) the function (of
order 1/2)

%@=Zb

m

o0 oo
(2 )' where b 1= / t2k Z(2n4ﬂ2€9t _ 3n2n651)67nzne4’ dr,

has only negative zeros. Correctness of the Laguerre-Turdn inequalities (25) for Fy
for every real x, especially for x = 0, is a necessary condition for the reality of
the zeros of Fy. Pélya remarked in 1927 that it was not known whether these latter
inequalities i.e., the estimates

2k —
bk >
2k +1

bk 1heyr, keN, (26)

held true. Correctness of these inequalities was established by Csordas, Norfolk, and
Varga in 1986 [11]. Subsequently, Csordas and Varga proved (26) as a consequence

of a general inequality for a family of integral moments f 12k it D(t)ds.
Given f(x) =) %xk f in the Laguerre-Pdlya class (defined in the following

section), Turdn’s inequalities read yk2 — Yk—1Yk+1 = 0. These are generalized by
the Maftik-Dimitrov inequality [24] (Dimitrov [14] lifted Mafik’s original inequality
from polynomials to the Laguerre-Pdlya class applying Lemma 12 below viz. [20])
which connects four coefficients of f via

4 = ve—1vi1) (Ve — Vivie2) — Vit — i—1vis2)? =2 0, forkeN. (27)

ICsordas and Dimitrov pointed out in [10] that the name Euler-Laguerre-P6lya-Schur-Turdn in-
equalities would reflect the major contributors.
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A conjectured infinite family of equations, called ‘Higher order Turdn inequal-
ities’ (in [10]), was considered in [10] as well as in [9] and [8]. The question of
the general validity of these inequalities for functions with only non-negative co-
efficients in the Laguerre-P6lya class was considered in the cited works because
an ‘affirmative answer [...] would provide a set of strong necessary conditions for
an entire function to have only real negative zeros’ (cf. [10, Problem 3.1]). Thereby
motivated, we proceed to deduce our new infinite family of inequalities generalizing
the Laguerre-Turdn inequalities.

We show how to derive the Mafik-Dimitrov inequality (27) together with La-
guerre’s inequality (25) as the first members of a newly established infinite family.
Thus, we embed these inequalities in a common framework for the first time here,
and give an independent new derivation of Mafik’s inequality.

4 New Infinite Family of Inequalities for the Class L-P

Real polynomials with exclusively real zeros together with their uniform limits es-
sentially constitute the Laguerre-Pdlya class (viz. [10], also for references pertaining
to the subsequent basic lemmas).

Definition 10 A real entire function f belongs to the Laguerre-Polya class (we
write: [ € L-P) if

o0 .

fx) = exMe— ¥ +bx 1_[ <l + i)e_xv_k
Xk
m=1

witha >0, beR, ¢,xx € R\ {0}, and Zxk_2<°°~
k

The condition ), x,~ 2 < 00 on the non-vanishing zeros implies that f is the

product of a function of genus at most one with the factor e“”‘z, a>0.
Differentiation of f € £L—P is an operation inside the class £—P (which follows
from a classical result of Laguerre’s) as noted by Pélya.

Lemma 11 The class L—P is closed under differentiation.

We may derive inequalities for a transcendental entire function in the Laguerre-
Pélya class via the following connection to polynomials.

Lemma 12 (Pélya/Schur) A power series f analytic about 0 with expansion

o Vi
Ve Lk

f=2_ 4

k=0
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has exclusively real (negative) roots if and only if all non-constant Jensen polyno-
mials

2 i

j=0

have only real (negative) roots.

Differentiating F (x) =Y jo o Xxk € L-P yields f(x) := FO (x) =) 22 Bt ik,
Using Lemmas 11 and 12, we find that f lies in £—P together with the Jensen poly-
nomials

n Vi )
X S
i /=)

This allows to apply a well-known characterization of functions in £—P to obtain
an infinite family of inequalities.

Proposition 13 Let f(x) =Y ;% %xk € L-P, and r,(x) := Y J,(y—’_j)x_/
Let sy, v € No, be determined by the function g :=r, /r, = (logr,)’ via the expan-
sion at Infinity

[e¢)
Sy—1
g(z)=2 UU , sy eR
v=1 <
Then we have the inequalities
S0 ST - 8]
S1 8§22 ... 8141 )
>0 foralll with0<l<n-—1. (28)

SUSI+1 -0 821

This result follows from a famous, deep result of Grommer’s (viz. [15]), partly re-
derived by Kritikos [22] and later Tchebotareff [31], see also the exercise collection
by Pélya and Szegd [27, Problem 43.1, p. 103, and p. 289], or alternatively Krein’s
crisp review of Grommer’s achievements (pointing to a minor, but famous, error) in
[21].

Proof By assumption we have f € £—P, hence its Jensen polynomial R, (x) :=
Z?:o ﬁx/ and the reciprocal r;, (x) := x" R, (1/x) have only real zeros. Thus,
we can invoke Grommer’s result Th. III, [15], p.156f., which implies positivity of
the Hankel determinants (28) connected with g. O

We deduce in the following the Laguerre-Turdn inequalities and the Marik-
Dimitrov inequalities as special consequences of the above result. Given f(x) =
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> ieo %xk € L~P, we obtain for n =2, n =3 and n = 4 the following reciprocals
of Jensen polynomials:

Yk 2y Ykl Y42

r(x) = > +—1 x+—2 )

Yk 3 Yitl o Vit2 Vk+3
r3(x).—6x+ 2x—l— 2x+ 6
ra(x) = ﬁx4 + )’k+1x3 + Vk+2x2 + )/k+3x + Vk+4

24 6 4 6 24

We obtain the following expansions at Infinity for the rational functions r}/r, and
ry/r3 (f yi #0):

B 2 2p 1 “2nn +avd 1 N

r(x) x v x?2 V2 x3 '

B0 3 3 L, —Oran+9%, 1

r3(x)  x Vi x2 sz x3

N =343V + 2TV i1 vk — 2Ty, 1
Vi x4

L (27173 187218 = 108y + 81y 1 N

4 5
Yk X

If i # 0, the function r}(x)/r2(x) = Y 25! gives rise to the positive 2 x 2 minor

xV

My = 50857 — s12 which yields

2
Yit1 = ViVi+2-

This implies the Laguerre-Turdn inequalities as ykz 1= VeVt =0, if e = 0.
Similarly, if y # 0, we consider r}/r3 to obtain the 3 x 3 minor [s;4 ;| i=o...2
j 2

which is non-negative. After multiplication by 33 - yk4 , we obtain the inequality

—V1<2+3sz + (6Ykt2Vk+1Vk+3 — 4J/k3+2)1/k - 4J/k+33/k3+1 + 3V1<2+2Vk2+1 >0, k=>0.

This is a rearrangement (with indices shifted) of the claimed Matik-Dimitrov in-
equality (27) (cf. [14, 24]). If y = 0, Dimitrov’s inequality reduces simply to
3y2 vt = 43y, which would be trivial if yi1 = 0. But if y41 # 0 we
consider

Y+l 2 | Vk+2 Yk+3
p(x) = 2X+ 2x+ c
with logarithmic derivative near Infinity given by
2yl —2/3%3%k + Vi 1
P/ pr(0) == — = — e
X Vk+1 X Vi1 X
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(which we may have obtained from ré (x)/r2(x) using the formal substitution yj <
Vi+1s Yk+1 < Yi+2/25 Yi+2 < Yk+3/3). Computing the 2 x 2 minor, we obtain, as
above, the claimed inequality: 3y,3+2y,3+1 > Ayks3 y,? +1 (which also follows from
Laguerre’s inequality using the indicated substitution).

We state the two new five-term inequalities resulting from Proposition 13 for

n =4 as a corollary.

Corollary 14 Let f(x) =Y ;o ¥xk € L-P, then we have the inequalities

(Viss - Vir2 — 3 Viis) - VR
+ (= Vkta - V;?H -9. )/;(3+2 + 14 Yig3 - Vil Vit2) - Vi
-8 Vk3+1 Vi3 +6- Vk2+2 : Vk2+1 >0;
Vera Ve + (54 Viwz  Vira  Viis
— 18- 7/k2+2 : Vk2+4 — 12 yi43- Vk2+4 Vi1 — 27 - V1?+3) ) sz
+ (8L v s Vkra + 54 Viwr  Vira Vi — 54 Vi Vi
— 6 Y VkraVirs + 108Vk 2 Vi1 Ve — 180V 0 Vit a Vi3Vt 1) Vi
— 6472 1 Ve s+ 108V 2k a VR Vs — 2TV Vs

+ 36V1<2+2Vk2+1 Vk2+3 - 54VI<3+2V1<+4V1<2+1 = 0.
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for the Tikhonov Regularization Using
Reproducing Kernels
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Dedicated to the Memory of Wolfgang Walter

Abstract First of all, we will be concentrated in some particular but very important
inequalities. Namely, for a real-valued absolutely continuous function on [0, 1], sat-
isfying f(0) =0 and fo] f'(x)?dx < 1, we have, by using the theory of reproducing
kernels

1 2 L 22
/( fx) ) (1 - x)dx < foflf (dx
o \I— /) 1— [y f2(x)dx

A. Yamada gave a direct proof for this inequality with a generalization and, as an
application, he unified the famous Opial inequality and its generalizations.

Meanwhile, we gave some explicit representations of the solutions of nonlinear
simultaneous equations and of the explicit functions in the implicit function theory
by using singular integrals. In addition, we derived estimate inequalities for the
consequent regularizations of singular integrals.

Our main purpose in this paper is to introduce our method of constructing approx-
imate and numerical solutions of bounded linear operator equations on reproducing
kernel Hilbert spaces by using the Tikhonov regularization. In view of this, for the
error estimates of the solutions, we will need the inequalities for the approximate so-
lutions. As a typical example, we shall present our new numerical and real inversion
formulas of the Laplace transform whose problems are famous as typical ill-posed
and difficult ones. In fact, for this matter, a software realizing the corresponding
formulas in computers is now included in a present request for international patent.
Here, we will be able to see a great computer power of H. Fujiwara with infinite
precision algorithms in connection with the error estimates.
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1 Yamada’s Results

Let Hg denote a Hilbert space admitting a reproducing kernel K on a set E. For all
f € Hg and for a very general transform ¢ of f, there exists a naturally determined
function & satisfying

16 [0y = UL )- M

Here, H(®(K)) is the reproducing kernel Hilbert space which is determined by the
positive definite quadratic function ® (K) (cf. [16—-19]).
We are considering a very general nonlinear transform ¢ (f). As an application
of (1), we derived the identification method for the nonlinear system ¢ (f) in [23].
As a typical example of (1), in the framework of [17-19] we have that for
a real-valued absolutely continuous function on [0, 1], satisfying f(0) = 0 and
Jy f'(0)*dx < 1, it holds

1 2 1 22
f(—f(x) ) (1 —xdx < S0 Odx
o \1I—f(x) 1— [y f2(x)dx

for the nonlinear transform f + f2 4 f3 4 ---. We would like to call the reader’s
attention to [15, Appendix] and [18], where some essays on this inequality and
mathematics in general can be found.

Meanwhile, we know the Opial inequality [14]: For f € ACI[O, a] (i.e., an abso-
lutely continuous function on [0, a]), with f(0) =0, we have

f |f<x)f’<x)|dxs§f £/ d.
0 0

Since this starting result proved in 1960 by Opial, a wide variety of generaliza-
tions and extensions was introduced in the last half-century. One of the most natural
extensions concerns the weighted Opial inequality

b b (g+r)/p
/ @] ) wx)dx < C( / |f/(x)|”v(x)dx) , 2
a a
with f(a) = 0. Different characterizations of weights w and v and exponents p, ¢,
r for which (2) holds true are known. We are particularly interested in the following
generalization provided by A. Yamada (see [22]), which he managed to derived by
a direct proof.

Theorem 1 Let G be a function of class C! on an interval (=R, R) (0 < R < +00)
satisfying the conditions G(0) =0, |G'(x)| < G'(|x|), for all x € (=R, R), and if
x2<yz(0<x,y,z<R), then0< G'%(x) <G'(y)G'(2).

Assume that functions F, f € AC[a, b] with F(a) = f(a) = 0 satisfy F'(x) >0
a.e.on[a,b], F(b) <R, and fab | /()| /F' ()P~ ' dt < R for some p > 1.
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Then,
b / by
MG D vz [N ar). ®
« (GoF)(x)r—1 a F'or-!
If f(x)=C - F(min{x, y}) (a <y <b, C =0, 1), then the equality holds in (3).

For the proof, from the identity f(x) = fax f/(t)dt and
X ’ 1/p
1/g [ f(®)]P
|f0)| < Fx) (/ ForTd)

he used the assumptions (directly) and the Holder inequality, and so the equality case
was also solved, completely. Furthermore, by some specialization of Theorem 1, he
was able to give a full generalization (cf. [1-3, 9, 11, 13]) of the Opial inequality
with the equality statement:

Theorem 2 Let s(x), t (x) be nonnegative, measurable functions on [a, b] such that
fabt(x)’l/(p’])dx < 400 for some p > 1. Set F(x) = [ t &)~V gg and as-
sume that the functions G (x), F(x) and f(x) satisfy the same conditions as stated
in Theorem 1 with R = 400. Then, if C < 400, we have

b 1/q b I/p
{/hﬂofﬂﬂﬁﬂ@dx} SC.G</Lf@n%uyu) ., @

where 1/p+1/r=1/q,r > 0 and

b 1/r
C={f(GoFﬂm““anm”hu} )

2 The Implicit Function Theorem

Let us now turn to the Implicit Function Theorem. For a simplification of the
statement, we shall assume some global properties: On a smooth bounded domain
U C R"** surrounded by a finite number of C! class and simple closed surfaces,
for k functions

ﬁ(xlv"'vxnsxn+1!"'sxn"rk)? i:1727"'7k1

we assume that for some point on U it holds

ﬁ('x17~"7-xl’lsxn+17"'1xn+k):O

and on U we have

det o(f1, f2s - fi) ) > 0.

0(Xn41, Xn42s -+ Xntk)
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Then, we assume globally that there exist k£ functions of C I class, gj(x1,x2, ..., xp)
for j=1,2,...,k,on UNR", satisfying the properties:

fi(xl,x2,~~,xnvglyg2y--~ygk):07 i=1127"'7k’
and

x"‘f‘j:gj(xlvx%---axn), ]21,2,,]{

We were able to represent the functions g; explicitly, in terms of the implicit
functions { f;}, by using singular integrals in the sense of Cauchy’s principal value
in [4], and by using some explicit representations of the solutions of nonlinear si-
multaneous equations (cf. [24]). We shall state here the results for the simplest cases.

Let D C R? be a bounded domain with a finite number of piecewise C' class
boundary components. Let f be a one-to-one C! class mapping from D into R?
and we assume that its Jacobian J(x) is positive on D. We shall represent f in the
form

1= fi(x) = fi(x1, x2),

5
V2= H) = frlx1, 1) ©)
and the inverse mapping f~! of f as follows:
xi= (), m=(1,01 ), ©
x2=(10=("),01 ).
Then, we would like to represent
S~ (y*))
7
((flmy*) @

in terms of the direct mapping (5).
Additionally, we are also interested in some numerical and practical solutions of
the non-linear simultaneous equations.

Theorem 3 For the mappings (5) and (6) with (7), we obtain the representation, for
any y* = (y{,y3) € f(D),

(f—l)l(y*>>_Ly§ <x1>dA ) = y3
<<f1>z<y*) “ o o e ) e =
b 1 : f1(x)—y]“)
o | e = (fz(x)—y; dde. ©

Meanwhile, for an outside point y* of the image f (D), the left-hand side of (8)
is zero.
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Theorem 4 For a C! class function f(x1,x3) on a domain U in Rz, we assume

0
that for a point x° = (i})) it holds
2

£(s0.49) =0,
af

3—)62()6?’)6(2)) #0.

Then, there exist a neighborhood Uy x U, (C U) around the point x% and an explicit
function g : Uy — Uy determined by the implicit function f =0as f(x1, g(x1)) =0
and, furthermore, it is represented as follows:

" 1
g(xl)z— xpd6 — dx> ANdB |,
27 \Jow, xy) Ui xUs
fx1,x2)

@ = Arctan —>
x| — x]

for any x{ € Uy.

Corollary S (Representations of the inverse functions) On an interval [a, b], for
a C' class function f satisfying f'(x) > 0, its inverse function f~'(y*) on
[f(a), f(b)] is represented as follows:

1
fl(y*)=—</ xd@l—/ d)C/\d91>,
27 d([a,bIx[f(a), (D)D) [a,b]x[f(a), f ()]
) = — Arctan Lf(f),
y—y

forany y* € [f(a), f(D)].

3 Singular Integral Estimates

We gave various error estimates for the regularizations for the singular integrals ap-
pearing in the representations in Theorems 3 and 4. For example, for the singularity

1
(I = yhe’
we consider the regularization
1
(lx =yl +8)*

for a small 6 and then analyze their error estimates. For the regularized integrals,
their numerical calculations are done easily by using computers.
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For example, for

1 1

Kx,y) = (Jx — y| + 8)n—« - (|x—y|+8’)"*""

9
we obtained in [21] the following error estimates.

Theorem 6
1. Assume that
1 a-—1

l<a<n+1, l<p<gqg<oo, =
q D n

Then, the integral operator K with the kernel K defined by (9) on R", satisfies
IK|lLr—sra <c|8— 8|, where c is independent of § and §'.
2. Assume that
n

l<a<n+1, p= .
a—1

Then, the integral operator K with the kernel K defined by (9), satisfies

K |lLr—Bmo < c|8 — 8|, where c is independent of § and §'.
3. Assume that

l<a<n+1, O<ﬂ=a—1—£<l.

Then, the integral operator K with the kernel KC defined by (9), satisfies
IK N o pipp <16 — 8’|, where c is independent of § and §'.

We also considered the integral operator for p = 1 and, furthermore, for the in-
tegral kernel case,

1f(x) 2=/Qf(y)1og|x —yldy,

where 2 is a bounded domain in R".
Anyhow, for our regularizations, we see that the convergence or error estimates
are good.

4 Best Approximations

Let L be any bounded linear operator from a reproducing kernel Hilbert space Hx
into a Hilbert space #. Then, the following problem is a classical and fundamen-
tal problem known as the best approximate mean square norm problem: For any
member d of H, we would like to find

inf ||Lf —d|.
fler}{Kllf [l
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It is clear that we are considering operator equations, generalized solutions and cor-
responding generalized inverses within the framework of f € Hx and d € H, having
in mind

Lf=d. (10)

However, this problem has a complicated structure, specially in the infinite dimen-
sion Hilbert spaces case, leading in fact to the consideration of generalized inverses
(in the Moore-Penrose sense). Following our theory (cf. [19]), we can realize its
complicated structure. Anyway, the problem turns to be well-posed within the re-
producing kernels theory framework. That is, the existence, uniqueness and repre-
sentation of the solutions are mathematically well-formulated as follows.

Theorem 7 For any member d of H, there exists a function f in Hk satisfying
inf |Lf —dlly=ILf—dlly (1
feHg

if and only if, for the reproducing kernel Hilbert space Hy, admitting the kernel

deﬁned by k(pa CI) = (L*LK(s CI), L*LK(s p))HK 5

L*d € Hy. (12)

Furthermore, when there exists a function f satisfying the condition (11), then there
is a uniquely determined function that minimizes the norms in Hg among the func-
tions satisfying the equality, and its function fq is represented as follows:

fa(p) = (L*a, L*LK(~,p))Hk onE. (13)

We would like to point out that the adjoint operator L* of L is represented upon
the known data d, L, K(p, ¢) and ‘H, as we may realize from

(L*d)(p) = (L*d, K (-, p)) y, = (d. LK, p))y,.-

However, the result is involved and so the Moore-Penrose generalized inverse fq
is not good, when the data contain error or noises in some practical cases. So, we
shall introduce the idea of the Tikhonov regularization in the present framework.

5 The Tikhonov Regularization

We shall give some practical and more concrete representation in the extremal func-
tions involved in the Tikhonov regularization by using the theory of reproducing
kernels.

Let {E,} be the spectral family for the self-adjoint operator L*L. If L*L has a
continuous inverse, then we have

(L)™' = / %dEA.
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Then, the Moore-Penrose generalized inverse for (10) is represented by
1 *
falp)= [ +dE;, L"d.

When R(L) is not closed and d ¢ D(LT), that is, Lf = d does not have the Moore-
Penrose generalized inverse, by taking a > 0, we define

1
= | ——dE; L*d.
Jau(p) f PR

If the Moore-Penrose generalized inverse does exist, when « tends to zero, then
the function fg «(p) converges to the Moore-Penrose generalized inverse in a good
way and the convergence property is examined in a detailed way. It is also inter-
esting to realize that even when the Moore-Penrose generalized inverse does not
exist, and furthermore, even when the function spaces do not belong to our function
spaces above, we are able to see—as numerical experiments—some good approxi-
mate solutions for some suitable parameter «.

Theorem 8 Letd e D(L*). Then, we have
li =
Jim Jao(p) = fa
in the topology of Hy .
Theorem 9 Under the same notation, we have

ILfa.e:HI < ld:H]|

and
d:H]|
2Ja

The function fg o is characterized as the following extremal function that makes
a minimum in the Tikhonov functional:

I fae: Hxll <

Theorem 10 Let o > 0. Then the following minimizing problem admits a unique
solution

i H 2 d—Lf: 2 .
min {allf: Hy I’ +1d = Lf - 11}

Furthermore, the minimum is attained by

1
= ——dE, ) L*d.
fd,oz (/R)L-I-Ol A)

The following theorem gives an approximate solution for the operator equation
(10) with error or noises:
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Theorem 11 Suppose that o : (0, 1) — (0, 00) is a function of § such that

. 5
%1&)1(0{(8) + m) =0.
Let D : (0, 1) — H be a function such that
D6~ dl, <5
forall 8 € (0,1). Ifd € D(L"), then we have
laif(} fp@®)ae) =fa=L"d.

Theorem 12 Let L : Hx — H be a bounded linear operator, and define the inner
product

(f1, ) ug, = alf1, fa)mg +(Lf1, Lf2)n

Jor fi, fa € Hg. Then (Hkg, (-, ") Hy, ) is a reproducing kernel Hilbert space whose
reproducing kernel is given by

Ka(poq)=[(a+L*L) 'K, ](p).

Here, Ky (p, q) is the solution Ko (p, q) of the functional equation

- 1 - 1

that is corresponding to the Fredholm integral equation of the second kind for many
concrete cases. Moreover, we are using

K, =Ky(,q) € Hx forq€E, K,=K(,p) forpeE.

Now we wish to represent the Tikhonov extremal function fg «(s) in terms of a
reproducing kernel in order to turn the computation possible in practice. We shall,
furthermore, need error estimates, when d contains error or noises. For this funda-
mental problem, we obtain the following conclusion.

Theorem 13 Under the same assumption as Theorem 11,
feHg > {allf  HyIP +IILf —d:H|*} e R
attains the minimum and the minimum is attained only at fq, € Hg such that
(fa.e)(p) =(d, LKy (-, p))y;-

Furthermore, ( fa.o)(p) satisfies

X,
(o) ()] < \/ylldll% (15)
o
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Note that in (15), the factor 2 is missing in the result presented in [12] (and
in other works); that is, the estimate (15) is improved in here. As the example of
‘H = Hk and L = I shows, the equality in (15) is attained.

This theorem means that in order to obtain good approximate solutions, we must
take a sufficiently small «, however, here we have restrictions for them, as we see,
when d moves to d’, by considering fa.«(p) — fa.o(p) in connection with the rela-
tion of the difference ||d — d’||. This fact is a very natural one, because we cannot
obtain good solutions from the data containing errors. Here we wish to know how
to take a small « a prior and what is the bound for it. These problems are very
important practically and delicate ones, and we have many methods.

The basic idea may be given as follows. We examine for various « tending to
zero, the corresponding extremal functions. By examining the sequence of the ex-
tremal functions, when it converges to some function numerically and after then
when the sequence diverges numerically, it will give the bound for o numerically
(see [5,7, 8, 10, 12]).

Meanwhile, the inequality (15) will be also interesting in the following view-
points: (i) firstly, from

fawP)=(fau), KC )y,

we obtain the best possible inequality

| faa(P)| < Il faull g VK (P, P);

(i) secondly, the inequality is independent of the linear mappings L for Hg into .

As concrete examples, many particular cases we have been discussed. Typical
famous problems are the inversion for the heat conduction (see [12]) and the real
inversion of the Laplace transform that are famous ill-posed and difficult problems,
historically. We were able to obtain good results for these problems. We shall intro-
duce the results simply for the Laplace transform in the next section.

6 Real and Numerical Inversion Formula of the Laplace
Transform

We shall consider the inversion formula of the Laplace transform

(EF)(p):f(p):/O e P"F(ndt, p>0

for some natural function spaces. For more general functions, we shall apply their
transforms suitably in order to apply the results (cf. [20]). We shall consider, in gen-
eral, the complex inversion formulas, because the images of the Laplace transform
are analytic functions. However, we are requested to use only real and discrete data
to obtain the inversion formula. This is the real inversion formula of the Laplace
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transform, and we must represent the analytic function of the image in terms of the
data on the positive real line. This problem is a very famous difficult one.

In order to consider a bounded linear operator by the Laplace transform, we shall
recall a natural function space in [20].

On the positive real line RT, we shall consider the norm

00 J1 1,2
||f||HK={/ |F'()| —etdl}
0 t

for absolutely continuous functions F satisfying F(0) = 0. This space Hgx admits
the reproducing kernel

min(z,t)
K(z,/):/ ge ¢t dE. (16)
0
Then, we have
fe'e] 5 1 5
[(LF)(P)p|"dp < SIIF I, (17)
0
that is, (LF)(p)p is a bounded linear operator from Hg into Lr(RY,dp) =
L>(R™). Recently, considering a H. Fujiwara conjecture, Y. Sawano proved that

this operator is compact. By using this reproducing kernel Hilbert space, we obtain,
following our general method the following consequences.

Theorem 14 For any g € Lo(R™) and for any o > 0, in the sense

inf <>Q|F/(z)|21 tdi+ |(LFY(p)p — g
reric | % Jo t € PIP = 8l Ly

e 1
—a /0 O e dr 4 |CE )=y (8)

there exists a uniquely determined best approximate function Fy g and. it is repre-
sented by

F;,g(t)=/0 8E)(LKu(-,1))(©)E dt. 19)

Here, Ko (-, 1) is determined by the functional equation, for K, ¢ = Ko (-, 1), K; =
K('a t),

1 1
Ka(t,1) = ~K(t.1) = —((LKas) ()P (LK)PIP) gy (20)

We calculate the approximate inverse F, ,(f) by using (19). By taking the
Laplace transform of (20) with respect to ¢, and by changing the variables ¢ and
¢, it holds
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Fig. 1 Numerical results for
the delta function &;
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(21)
Here,
—te ' —e"+1  fort <t
K / — 7 ’ - ,
1) {—t’e_t —e " +1 fort>r.
Additionally,
’ / —t' -1 !
EK@N)QD=€4PE4[ + ]+ ’
( ) p(p+1) " plp+ D] p(p+1)?

1

m‘ﬂfﬁkw’ at/ = ————
A LK G O)(pydi pq(p+q+1)>2
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Fig. 2 Numerical results for
a square wave function
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Therefore, by setting as (LK (-, 1))(§)E = H,(&,t), we obtain the following
Fredholm integral equation of the second kind:

T S al A P R
pte+ 2P T T Er1) Er)2

By solving this integral equation, H. Fujiwara (cf. [6-8]) derived a very reason-
able numerical inversion formula for the integral transform and he expanded very
good algorithms for numerical and real inversion formulas of the Laplace trans-
form. Figure 1 is an example for LF (p) = exp(—p) for which F(t) = §(¢) in the
distribution sense, and Fig. 2 is for

aH, (&, 1) +/
0

P

D= T

for which F(¢) is a square wave function.
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In both figures, (a) is computed with large regularization parameters « > 1072,
and (b) is computed with small regularization parameters o = 107100 107400 At
this moment, theoretically we shall use the whole data of the output - in fact,
6000 data. Surprisingly enough, Fujiwara gave the solutions with o = 10749 and
600 digits precision. The core of the above mentioned and corresponding patent is
10 GB data for the solutions.
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On the Approximation-Error of Some
Numerical Methods for Obtaining the Optimal
Deformable Model

Paulina Mitrea, Octavian Mircia Gurzau, and Alexandru Ioan Mitrea

Abstract This paper deals with two approximation methods for obtaining the op-
timal deformable model: a discretization scheme by finite differences that generates
an algorithm providing the approximating solution for energy-minimizing surfaces
and a reconstruction method based on the Chebyshev discrete best approximation
which approximates a plane deformable model represented by a finite set of points.
Estimates for the approximation-error of these methods and results concerning their
convergence or the topological structure of the set of unbounded divergence are
presented, too.

Keywords Deformable model - Error approximation - Superdense set

Mathematics Subject Classification 41A10 - 41A50 - 65N06

1 Introduction

The theory of deformable models originates from the general theory of contin-
uous multidimensional deformable models in a Lagrangian dynamics setting of
D. Terzopoulos (1986) [13] based on deformation energies in the form of gener-
alized splines [7]. The deformable curves (2D models) and the deformable surfaces
(3D models) gained popularity after their use in computer vision by D. Terzopou-
los, M. Kaas and A. Witkin [8] and in computer graphics, by D. Terzopoulos and
K. Fleischer (1988) [14]. The theory of deformable models joins methods, results
and techniques of various mathematical fields, physics and mechanics. The mathe-
matical foundation of this theory represents the confluence of Functional Analysis,
Approximation Theory, Differential Equations, Differential Geometry, Calculus of
Variations, Numerical Analysis.

Two general types of deformable models have been developed: firstly, the vari-
ational models, which originate from the papers of D. Terzopoulos, M. Kaas and
A. Witkin [8] and are based on the minimization of the energy-functional associated
to the model, and secondly, the geometric models, which were introduced indepen-
dently by V. Caselles, F. Catle, T. Coll, F. Dibos (1993) [1] and R. Maladi, J. Sethian,
B. Vermuri (1995) [9], and are based on the front propagation theory (1988) [10];
on this subject, see also [6].

C. Bandle et al. (eds.), Inequalities and Applications 2010, 103
International Series of Numerical Mathematics 161, DOI 10.1007/978-3-0348-0249-9_7,
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Two approaches were emphasized in order to obtain the optimal deformable vari-
ational model. The first one starts from an initial estimate of the model, based on
image data, restricted to the domain of evolving estimate; then, by using the Euler-
Gauss-Ostrogradski (EGO) Equation of Calculus of Variations, this initial model
undergoes a deformation until reaching a local minimum of the energy-functional.
The second one (the classical approach) consists of using reconstruction methods,
such as the interpolation of the sparse data extracted from the image, in order to
obtain a representation of the original data.

The paper is organized as follows. The next section is devoted to present the
3D deformable models, both in static and dynamic forms. In Sect. 3, after present-
ing a method for reducing the 3D problem to a 2D modeling problem (see [4]),
we derive the EGO-Algorithm for obtaining the energy-minimizing surfaces and
we estimate its error-approximation. The last section deals with a reconstruction
method, based on the Chebyshev discrete best approximation; more exactly, we
provide convergence-type results and we emphasize the phenomenon of conden-
sation of singularities for pointwise approximation formulas on equidistant nodes,
related to this approximation method. To this goal, we need the following principle
of condensation of singularities:

Theorem 1 [3] If X is a Banach space, Y a normed space and (Ap)n>1 is a se-
quence of continuous linear operators from X into Y so that the set of the norms
{llAll : n > 1} is unbounded then the set of singularities of the family {Ap}n>1,
namely S = {x € X :limsup,_, o, [|Apx|| = 00} is superdense in X.

We recall that a subset S of a topological space T is said to be superdense in T if
it is residual (i.e. its complement is of first Baire category), uncountable and dense
inT.

In this paper the notations m, M, My, k > 1 stand for some generic positive
constants which do not depend on n. If (a,,) and (b;) are sequences of real numbers
(see [12]), with b,, # 0, we write a, ~ b, if 0 <m <|a,/b,| < M, foralln > 1.

2 Deformable Variational Models

In this section, we describe, according to [4], a 3D deformable variational model,
both in their static (initial) and dynamic forms, together its EGO-Equation, which
leads to the optimal surface; then we present a method for reducing the problem of
its optimization to a 2D modeling problem.

Denoting by D = [0, 1] x [0, 1] the unit square of R?; let us consider a surface
of vectorial equation

S: v=v(s,r), (s,r)ebD (1)

where v e C2(D,R3), v = (x y z)T in What follows we set [v|2 = x2 + y2 + 22,

2
Vg = g;’, Vgs = 3#’ Vg = asar’ Vpr . Given the functions g € C%(3D,R3)
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and h € C1(3D, R?), where D is the boundary of D, let A be the set of admis-
sible deformations, which consists of all functions v € C*(D,R?) satisfying the
boundary conditions v(s,r) = g(s,r) and 2 o (s,r) = h(s,r) on 3D, where n is
the normal vector with respect to the surface (S) defined by (1). Further, let us
consider the following functions: the image intensity function I € C*(R?); the po-
tential function associated to the external forces P(v) = —A|VI(v)|%, A > 0; the
control functions corresponding to the internal forces acting on the shape of the
surface, namely the elasticity functions wo(s; r) and wo(s; r); the rigidity func-
tions woo(s; r) and woy(s; r), and the twist resistance function wi1(s;r). The en-
ergy functional E : A — R, associated to these data, is defined as follows:

E(v) = // Fv, vy, vy, Vs, Vs, Upp) ds dr ()
D
where:

F (v, vy, vy, Ugs, Usr, Upr) = w10|vs|2 + w01|Ur|2 + w20|vss|2 + 2wll|”sr|2
+woalvpr P + f (v, w5, vp), 3)
f @, vs, vr) = P(v) + det(cov, vy, vr). “)

We notice that E(v) represents the sum of the internal energy (the terms of (2)
excepting f (v, vs, v;-)), the external energy (defined by the terms containing P (v))
and the balloon energy, which is added, optionally, by the users (the term including
det(cou, vy, vy)).

The triple (A, I, E) is said to be a 3D deformable model, sometimes a deformable
surface. The basic problem of the deformable model is to minimize its energy-
functional, namely to obtain the optimal deformable surface. To this purpose, the
Euler-Gauss-Ostrogradski (EGO) Equation of Calculus of Variations, i.e.

OF 98 (dF d (OF +32 oF
dv s \ dvy ar \ dv, 352 \ Qv
3> ([ OF 3% (dF
=0 5
+8v8r<8v”>+3 <8v,r> )
is used.

By simple calculation we obtain from (3), (4) and (5):

82 32 2
95 2(w20vss)+ a7 2(w02vrr)+28 ar

0 0 0 0
— < wiou) — w0 + 5 ( = —(%) 2 (%)) _0. ©)

Generally, the energy-functional may has many local minima, i.e. there may ex-
ists many local minimum energy-surfaces. Because the goal of the user (in medical

(w11vsr)
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imaging, for example) is to find a good 3D contour in a given area, we can suppose
that a rough prior estimate of surface is accessible, namely:

(5°): v=vwo(s,r), (s,r)eD. (7)

Further, this surface is refined step by step, according to (EGO)-Equation; so, a
sequence of surfaces, which leads to the energy-minimizing surface, is provided.
More exactly, let

(S’): v=u(t,s,r); t>0, (s,r)eD (8)

be a family of surfaces, where the parameter ¢ describes the evolution in time of the
model. We associate to the previous static model (A, I, E) the evolution equation

av
5+G(U,U‘vyvravss»vsravrr):0 )

where G (v, vg, vy, Uss, Usr, Upr) 1S the left-hand member of (6), together with the
initial estimate (condition)

v(0,s,r)=v9(s,r), (s,r)eD (10)

and the boundary dynamic conditions

v(t,s,r) =vo(s, r); (s,r)€dD, t >0,
au(t, s, a s 11
v(t, s, 1) = vols r); (s,7r)edD, t >0. (n
on on

A solution of the “static” problem described by (6) is achieved, when the solution
v(t, s, r) becomes stable with respect to the time-parameter, i.e. lim;_, o g—’j (t,s,r)=
0, uniformly, with respect to (s, r) € D; in this case, the evolution equation (9) pro-
vides a solution of the static problem (6).

3 Approximation Error of a Discretization Scheme

The problem of obtaining directly energy-minimizing surfaces (i.e. solution of (6))
is not practically possible, due to the complicated form of (6). On the other hand, by
using discretization schemes for solving (6), we get a system of algebraic equations,
with a high computational level. In order to eliminate these drawbacks, the problem
of finding the energy-minimizing surface will be reduced to a 2D modeling problem,
[4]. In this approach, the surface that we seek is obtained as a sequence of plane
curves (slices) indexed by a parameter r so that each given value of r provides a
closed curve, lying in a slice of the 3D image. Consequently, let

(vr): v(s) = (x(s), (), sel0,1] 12)



Optimal Deformable Model 107

Fig. 1 The slices _
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Fig. 2 The surface

be the plane curve obtain by this procedure, for a given r. Throughout this section
we suppose that the control functions wig and wyg are positive constants. With the
notations & = wyg and B = wyg, (6) which corresponds to (y;) of (12) is

d2 dv
Y 20 4 vP =0, (13)

d*v
28~ ~
’Bds4 d ds? ds

01
where J, = [_1 0].
Example 1 If we consider in (13) ¢ =0, « =5, B = 0.05, P = r(x? + y?) and
r=0.1,0.2, ..., 1 with boundary conditions x (0) = x(1) = 14+r(1—r)/25, y(0) =
y(1) =r(1 —r)/25, y'(0) = y'(1) = —r(1 — r)/5, we obtain the graphs of slices
(Fig. 1) and a 3D reconstruction of the surface (Fig. 2).

Further, let us consider the dynamic 2D model corresponding to the dynamic 3D
model described by the relations (7)—(11), whose evolution equation has the form:

ov d*v 8% v 1

— — —a— —coJo—+ VP =0. 14

o TP T T Ty (19
Passing to the discretization of (14) by the method of finite differences, denote
by 8 and & the time and the space discretization steps, respectively, and let R =
{(t, si), k> 0,0 <i < N} be the plane net of discretization, with N € N*, Nh =1,

tr = k6 and s; = ih. The following notations Will be used, too: vk = v(tk, Si),
k _ ok \T c ok — ok ok : k_ _1 k k
vt =",y k=05 g (gl, 5), with gk = =1 (3L (why), g2k = -1 (8L ( ),

a) = 2 + 6}’134, a) = —75 41194, = }%. Further, the Nth order square ma-

trices K (known as sttﬁ‘ness -matrix) and L are defined as circular matrices with
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first row (ay, a»,as3,0,...,0,a3,a2) and (1, —1,0,0,...,0), respectively. We no-
tice that v = (vf, v, ..., v )T with vF = v(#, s;) and similarly for x*, y*, gk,
glz‘ , as example

P P P T
== (Gr ). G0 G051 )

k
since (y;,) is a closed curve it results v =V N

(14) leads to the following algebraic system

i € Z. Thus the differential equation

+ KT L (F ) = 6K k=1, w=co/h,  (15)

whose solutions approximate the values of v(¢, s) at the nodes of the plane net R.
Denote by vk = (X k Yk)T, k > 1 the solutions of the system (15). After some
calculations we obtain the following EGO-Algorithm:

X = (Iy —8K) XK1 — o8 LY 4 5gk—1
{Y" =(Iy —8K)Y* 1 + 8 LX =1 4+ 8¢5, (10
where Iy is the identity matrix of order N. The vectorial form of (16) is:
=y —SK)V* ' — 8 L(HVE) + 8571, k>1. (17)

With the notation r; = oz8/h2, ro = B8/ h, = cod8/ h = ypé we derive from (17)
the following equation:

VE= —n Vi (n +4r) L+ rs ) VEL + (L= 6rp = 2r) I — r3 o) VET!

+ AV =V g k21, 0<i<N -1, (18)
with Vi = (X5, YD, Vi = Vf, . j € Zand gf = (g}, 85)", &), = —3 52 ),
10P /. k
g2i ___(U ).

The maln aim of this section is to give an estimate regarding the approximation-
error of the (EGO)-Algorithm (18) and to establish its convergence.
Denote by

f=vk—vk k>0 0<i<N-1 (19)

1 1 1

the difference between the value of the solution v = v(¢, s) of (EGO)-Equation (14)
and its approximation Vik at the points of R, for a given k > 1. Using the method of
Taylor expansion, we obtain from (18) and (19):

{;‘ZIF = ((] —6ry —2r) L, — r3J2)8. ((7’1 +4r) 1 +r312) l+1

+(ri+4r)er| — (el +ef ) +8Rv T, (20)
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where va‘ is the residue of the algorithm, see [15], given by:

. 19%2v 1 8%
Rvf =3 8 o ) (ks 8i)

1 9% L 127 hzagv e 5)
—_—— — — e ’s~
6095 ' 5040 9s® oo

2 1a*tv 1 ,3%
oM et Teo e ) es)
1% h 3%

—cohh| z—+—=—5+ ), si). 21

Denoting by EX = max({|ef_, |, [e¥ ], 1ef], |e5, |1, 16k, 5] :i = 0}, k > 0, the approx-
imation error at the kth iteration of the EGO-Algorithm, the relation (20) leads to
(for k > 1):

E* < 8|Rv;|

+ (\/(4r2 +r? 43 +\/(1 —6r2 = 2r1)? 413 + 4 +r1)E"*‘. (22)

Under the assumption that the partial derivatives in (21) are uniformly bounded, we
derive from (21) and (22)

E* < (10r; +2ry +2r3 + |1 — 615 — 21y |) EF!
+ M18% 4+ M2 |28 — a|8h® + M3codh. (23)

We admit 1 — 6r5 — 2r; > 0 (this condition is satisfied in medical imaging applica-
tions, [4]), therefore (23) yields:

EF < gE*' + M8 + Ma|o — 2B|8h* + Mzcodh; k> 1 (24)
with
q=1+4+4rn+2r3 and Ep=0.
Writing the estimate (24) for k, k — 1, ..., 1 we get:
k
qg—1

E*<(l+q+q"++¢"")AMh, 8 < ——A®,9) (25)

with
A(h, 8) = M8% + Mala — 28|8h* + M3codh. (26)
The inequality 1 —6r, —2r; > 0 implies :—4 < é, which gives g = 1 —|—4% +2r3 <
2(1 + r3), so we obtain from (25) and (26):
k—174 k
- 2R (1 4+ r3)

Ek
~  2B4coh?

(M8 + Myl — BIh* + M3coh), k>1.
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This estimate proves the convergence of the EGO-Algorithm, if § — 0 and & — 0,
under the hypothesis 1 — 6r, —2r; > 0.

4 A Reconstruction Method in the Theory of Deformable Models

Let us consider a 2D-deformable model, which is given, usually, by a paramet-
ric curve: x = x(s), y = y(s), s € [—1, 1]. In many practical situations, a plane
deformable model is represented by a discrete set of points v, = (x,, y,), n > 1,
named snaxels.

A classic problem in the theory of deformable models is the so-called best fitting,
given the position of a curve at a set of points v, = (x(s,), ¥(s,)), n > 1. We can
interpret physically this problem as a spring which connects a point g(s,) of the
reconstruction g(s) and the a given point A, (x(s,), y(s»)), [4]. Denoting by ® (v, g)
a function which measures the distance between the reconstruction g(s,) and the
given data v(s), our goal is to find the function g* that minimizes ® (v, g), according
to a given criterion.

In this section, we refer to a method of discrete best approximation type in order
to obtain the reconstruction. Denote by C the Banach space of all real continuous
functions defined on the real interval [—1, 1], endowed with the supremum norm
and suppose that the plane curve (y) has an explicit representation y = f(x), f €
C, —1 < x <1, so the snaxels will be denoted by v* = (x¥, f(x*)), 1 <k <n,
n > 1. More exactly, given an integer m = m(n) > n + 1, n € N*, a node matrix
M={x,’§1 1<k <m,m> 1} with —1 erln <x,2n <.+ <x" <1 and a function
f in C, we search a polynomial g* = U, (f) € P, satisfying the condition:

max{!U,,(f)(x,’;) — f(x,’,‘1)| (1 <k=<m}
:min{max{|P(xfn)—f(xk)|:l§k§m}:Pe73n}. 27

m
The polynomial U, (f) = U, (f; M) € P,, which provides the best approximation
of f in the Chebyshev sense, in respect to the finite point set J,, = {xfn 1 <k <m},
will be refereed as the M-projection of f on the space P,; similarly, the operator
U, = U, (-, M) will be named the M-projection operator associated to P,,. If m =
n 4+ 1, the solution is given by the Lagrange projections, i.e.

n+1

Unf=Lof =) fxii1) Kt (28)

k=1

where ,l’,f L= 1,1 <k <n+1 are the fundamental polynomials of Lagrange
interpolation with respect to the node matrix M. If m =n 4 2, n > 0, let us denote
by an+1(f) = an+1(M; f) the leading coefficient of Lagrange polynomial L, f,

which interpolates f at the points xfj 1o 1 <k <n+ 2 and consider a function
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on+2 € C satisfying the relations o,,+2(x,]1‘+2) = (=D* 1 <k <n+2. From the
theorem of Charles de la Vallée-Poussin, [2] we have, according to [5]:

ant1(f)
Unf = Ll’LJrlf - &Ln+l (Un+2)7
ant1(0n42)

i.e.

n+2
(Un () = Z(f(x,’,‘+2) + M(—Dk*l)lﬁﬂm, xe[-1,1]. (29)

=1 any1(0442)

Let Aj2(x) = Zz;rlz |lﬁ+2(x)|, x € [—1, 1] be the Lebesgue functions, associ-
ated to M. In what follows we examine the pointwise convergence at origin, related
the problem of Chebyshev best approximation, with respect to the equidistant node
matrix of [—1, 1], i.e.

Mg = {x§n=—1+22(fl:i) = Zkz_nz_”l_ l,l§k§2n}.
We remark the relations:
X =t 1<k <on (30)
We define the functionals 7,, : C — R,
on(f) = U2, f)(0), n=1 €2y
and consider the pointwise approximation formulas:
FO)Y=Ton(f)+ Rou(f), nz=1l (32)

where Ry, f are known as approximation errors of (32). Taking into account the
relation Uy, P = P, VP € P,,, it follows from (32):

|Ron f1 = |Ron(f — P)| = | £(0) = POO)| + |Ton(f — P)|, Pe€Pr. (33)

On the other hand, we derive from the definition of ¢,,4> the inequality |a,+1(f)| <
lan+1(on+2)|1l f1I, which combined with (30) gives:

| Ton 1 < 2820421 f11. (34)

Further, let f € C", r > 0 a function which possesses a rth continuous derivative
on [—1, 1]. It follows from the inequality of Gopenganz (see [11]) the existence of
a polynomial p € P,, so that

1
||f—ﬁ||sM7n"w(f(’);;>, n>1, (35)
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where w(g; -) is the modulus of continuity of g € C. The relations (33), (34) and
(35) yield:

1
|Ron ()| < M7n™" (1 +2A2n+2(0))w(f(r); ;>; n>1, feC".  (36)

Now let us estimate Aj,(0). Taking into account that l;‘: k) = I 1) =
(=D (@n—1n1m?

T 0k~ (1)1 kD] for 1 <k <n we obtain:

2n)hH? & 1
24n=2(n1)2 ]; Qk—1Dn—k)n+k—D"

n
A2, (0) =2 |15+ (0)] =
k=1

(37)

The Stirling formula n! = \/27‘[71(%)"6“”, ﬁ <ay < ﬁ, n € N* together with
(37) leads to the estimate:

n—1

k
Ay (0) ~ 2n n -+ - 38

Now we are in a position to prove the following statement:

Theorem 2 Let consider the pointwise approximation formulas with respect to the
origin, described by the formulas (31) and (32).

1° These formulas are convergent on C", for all integersr > 1, i.e.
lim T, (f)= f(0), feC".
n— oo

2° The set of all functions f € C for which these formulas unboundedly diverge,
namely limsup,,_, o | T2, (f)| = 00, is superdense in the Banach space (C, || - ||).

Proof 1° Let us establish an upper estimate for Ay, (0). We derive from (38):

n—1 n+k n—k
1 k n+k n n
Az"(O)SMSI;ﬁzk—l\/ k(n—k)<n+k) <n—k> -9

The function g, : [1,n — 1] > R, g,(x) = xz‘nt”x) satisfy the relations:
2n —1
gn(x) <gn(n—1)= o ~2, xell,n-1]. (40)

On the other hand it is simple exercise to prove the inequality

n n+k n n—k
( ) < ) <1. 41
n—+k n—k
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Now (39), (40) and (41) yield:

n—1
A2,(0) < Mo Z RS <MioV/n; n=2. (42)

A combination of (36) and (42) leads to the conclusion of 1°.
2° In order to apply Theorem 1 we estimate the norm of 7,. Let us define f>, €
C by:
signl4 (0), ifx=xk 1<k<2n,
linear, otherwise.

Soan(x) = {

It follows from (29) and (31)
4n

T4nz<f4n)=z<1+<—1)’<““” 1) slgn(l4n(0>)>\l§n<0>!- (43)

=1 a4n—1(04n)

It is clear that fy, is an even function, since sign(li‘n 0) = (=D*, 1 <k <2nand
sign(l (0)) = (=D, 2n + 1 <k < 4n, so we obtain, via (30):

dn—k l 4 k+1
A4p— l(f4n)—2‘f4nf4n x4n ZH: + " +)

k=1
fan(—xK Fan(xk
= Z 2 4n = Z . A]tn = —a4n—1(fan),
k=1 u4n( x4n k=1 M4n( 4n)
4 k k 1 .
where ug, (x) = ]_[kil(x —xy,) and 7, = m, 1 <k < 4n. Therefore:
aan—1(fan) =0. (44)
Now, the relations (43) and (44) lead to:
Tan—2(fan) = Nan(0). (45)

Further, we deduce from (38):

n—1 2 n—k 2k
1 n+k n n
Az"(O)ZMuZ%—lVn—k(nz—kz) (n+k)
k=1

n—1 1 n 2k
>MpY ——(—) . 46
= ugzk—l(nﬂc) (#0)

Taking into account (45) and the definition of || 73, || we have:

I Tan—2ll = | Tan—2(fan)| = A4n(0),



114 P. Mitrea et al.

which combined with (46) gives:

2n—2 1 2n —1 2k
T . 47
[ T4n—21l = 12;2k_1(2n_1+k> @

The inequality (1 — x)™ > 1 —mx for x € [0, 1] and m > 1 gives:

m—1 \* k 2k 2k2 1
) =(1-—) >1-—" > (48
2n—14+k 2n—14+k 2n—14+k~ 2

if k2 — k — (2n — 1) < 0; the last inequality is satisfied for

v

k< 72"2_1 (49)

By choosing n = 2m? + 1, we infer from (47), (48), and (49):

1
2k —1

m
| Tama | = Mi13 ) = Miglnm, m=1. (50)

k=1

Finally, let us prove that the set of norms {|| 7>, || : n > 1} is unbounded. Indeed, by
means of (50) we get:

sup{ /| Tanll; n > 1} > sup{|| Tg,,2 | m > 1} = Migsup{lnm;m > 1} = oc0.  (51)

Now, apply Theorem 1 with X = C, Y =R and A, = T, and take into account
(51), which completes the proof. O
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Part 3
Geometric and Norm Inequalities



The Longest Shortest Piercing

Bernd Kawohl and Vasilii V. Kurta

Abstract We generalize an old problem and its partial solution of Pélya (Pdlya in
Elem. Math. 13, 40—41 (1958)) to the n-dimensional setting. Given a plane domain
Q cR?, Pélya asked in 1958 for the shortest bisector of €2, that is for the shortest
line segment [ (€2) which divides €2 into two subsets of equal area. He claimed that
among all centrosymmetric domains of given area /(£2) becomes longest for a disk.
His proof, however, does not seem to be valid for domains that are not starshaped
with respect to the center of 2. In the present note we provide two proofs that it suf-
fices to restrict attention to starshaped sets. Moreover we state and prove a related
inequality in R”. Given the volume of a measurable set 2 with finite Lebesgue mea-
sure, only a ball centered at zero maximizes the length of the shortest line segments
running through the origin. In this sense the ball has the longest shortest piercing.

Keywords Starshaped rearrangement - Geometric inequality - Bisector - Piercing

Mathematics Subject Classification 52A40

1 Motivation and Result

Let © be a measurable (possibly unbounded) set with finite volume in R”, n > 2.
For every z on the unit sphere S” and ray L, emanating from the origin and passing
through z we can measure ¢,(€2), the length of L, N €2, which can be given by

L) = /0 yale.rydr, )

where xq(z, r) is the characteristic function of the set L, N 2. Note that £,(£2) can
be infinite for some z € S", but since the volume of €2 is finite, this can happen only
on a nullset of S”. We define the piercing length of €2 as

UQ) = ZiEnan (€:(2) +£—2(Q)) (2)

and prove the following result:
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Theorem 1 Let Q2 be a measurable (possibly unbounded) set with finite volume in
R", n > 2. Then the inequality

0RQ) < £(QF), 3)

holds, where Q* denotes the ball centered at the origin and of the same volume as
Q. Moreover, equality holds in (3) if and only if Q = Q* modulo a set of measure
zero.

For the case n = 2 this theorem was implicitly stated in [7], but the proof given
there had starshaped centrosymmetric domains in mind. We call a set 2 centrosym-
metric (with respect to the origin) iff x € Q implies —x € 2 and starshaped (with
respect to the origin) iff x € Q2 and 7 € [0, 1] imply 7x € Q. Later Cianchi gave an
independent proof of (3) for convex centrosymmetric plane domains, see Theorem 4
in [2].

2 Proof

First we prove the theorem for starshaped centrosymmetric sets. In a second step
we show that the maximum of £(€2) over all starshaped sets is assumed among
centrosymmetric sets. In a third step we show that the maximum of £(£2) over all
measurable sets with finite n-dimensional Lebesgue measure is necessarily attained
among starshaped sets.

Step 1 Suppose 2 is an arbitrary centrosymmetric starshaped (possibly unbounded)
set with finite volume in R” but not a ball (modulo a nullset). Then there must exist
a boundary point x of Q which lies in the interior of *, and so does —x. Therefore,
the line segment connecting x with —x is strictly shorter than the diameter of Q*,
that is £(2) < £(2*). For n = 2 this is Pdlya’s proof, but it extends without changes
to general n > 2.

Step 2 We will prove that if €2 is starshaped but not centrosymmetric, then it can
be replaced by a centrosymmetric starshaped set 2 of same volume as 2 such that
£(2) < £(L2). In fact, if we replace the representation of 2 in polar coordinates

£.(2) by £.(2) with
1 1/n 7. 1/n
(—(z'; vy Z)) _ (-zg) , @
n n

then the set Q whose boundary is described by £.($2) := ZZ(Q) is of same volume
as Q. Its piercing length, however, has not decreased, because the convexity of the
mapping ¢ > ¢" implies

R | () + ()" n
(€:(2)) =§(e;’+£’iz)z(%> > (L),



The Longest Shortest Piercing 121
and after infimizing over z € S" we arrive at

6Q) = L)
as claimed.

Step 3 We will prove the following claim: If Q2 is not starshaped, then it can be
replaced by a starshaped set Q¥ of same volume as Q such that £(Q) < £(2*). This
claim and Steps 1 and 2 result in a proof of Theorem 1.

For an arbitrary (possibly unbounded) set €2 with finite volume in R” its volume

is given by
o
|9|=f/ Xe(z,r)r'~drdz
st Jo

in polar coordinates. Let us consider the function

n

RE(2) = [n /O Kz ! dr} )

which can be infinite for some z € S”, but since the volume of €2 is finite, only on
a nullset of S”. If Q¥ is defined (modulo a nullset) as the starshaped set bounded in
polar coordinates by R?z (z), then || = |Q¥|, that is  has been rearranged by star-
shaped rearrangement into an equimeasurable starshaped set, see [6]. What happens
to £(S2) after this operation? First, it is clear that the inequality

€($2) = £(S2) +£-2(S2) (6)

holds for all z € §". Second, due to monotonicity of the function p(r) = P n>2,
we have the inequality

£,(R2) o
/ " dr 5/ Xg(z,r)r”_ldr
0 0

and thus the inequality
1 1
—(£(@)" < - (RE@)", (7)
n n
which holds for all z € S”. In turn, (6) and (7) yield the inequalities
6 < 6(Q) + () < RG@) + RG(—2) = (") + €. (") ®)
for all z € S". Finally, after infimizing (8) over all z € S” we obtain

©Q) < (2%
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which shows that the piercing length of €2 does not decrease in passing from 2
to . Since we try to maximize the domain functional £(€2), it suffices to study
starshaped sets.

For a second proof of Step 3 we can also follow the idea in [3], there for the
case n = 2, and recall a Hardy-Littlewood inequality that seems to be mathematical
folklore. If u and v are two nonnegative functions defined on R, and if u* denotes
the decreasing and v, the increasing rearrangement of # and v, then

/oou(r)v(r)dr > /Oou*(r)v*(r)dr.
0 0

For the benefit of the reader let us remark in passing that its proof goes along the
lines of Lemma 2.1 in [6] by reduction to the product of two nonnegative finite se-
quences. This product becomes minimal when the sequences are oppositely ordered,
see Theorem 368 in [5].

Identifying u with xq(z, ) and v with 7"~ gives now

o0 o0
|Q|=/ [ XQ(z,r)r”*Idrdzz/ / X;‘Z(z,r)rnfldrdz=|s~2|,
St JOo St JO

i.e. the volume of a starshaped set  whose characteristic function is given by
X6 (z,r). While the piercing length £(€2) remains invariant under this rearrange-
ment, in fact £(2) = £() by construction, the volume decreases, unless £ was
already starshaped. Now we define Q* to be a rescaled (enlarged) version of €2, so
that |Q*| = |2|. Then again £(2) < £(22¥) as claimed.

3 Related Questions

In this section we address related questions.

A) We have learned from F. Brock that he and M. Willem have considered planes
which cut centrosymmetric n-dimensional bodies into two halves of equal vol-
ume. If A,,_1(€2) denotes a cut through 2 which minimizes (n — 1)-dimensional
area, they were able to show that A,,_1(Q2) < A,_1(Q%).

B) If one wants to trade the assumption of centrosymmetry against convexity, al-
ready in 2 dimensions the question of the longest shortest cut that bisects area
poses a major challenge. If one allows only straight lines to cut a convex plane
set €2 into two parts of equal area (and any straight line can be shifted to do so),
then among all (convex plane) sets of given area, the length A of the bisecting
line segment becomes maximal not for the disk 2*, but for the so-called Auer-
bach triangle T, see [3]. The Auerbach triangle belongs to a class of so-called
Zindler sets. By definition a Zindler set Z has the remarkable property that ev-
ery line-segment which bisects the area of Z has the same length. To be precise
[3] contains a proof that

A1(Q) = A((T) ©)
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for every plane convex set 2 of given area, while [4] proves (9) for the smaller
class of plane convex Zindler sets.

On the other hand, the shortest curve that bisects the area of the Auerbach
triangle, is a circular arc and its length is shorter than the diameter of the disc of
equal area. In fact, it has long been conjectured that the among all plane convex
sets of given area, the disk maximizes length of the shortest curve that bisects
the area. In [3] this conjecture is confirmed by a long and rather technical proof.

C) The result of Brock and Willem described above under A) as well as our Theo-
rem 1 can be generalized to the k-dimensional setting forall k =1,...,n — 1.
Then it reads as follows: If Ay(€2) denotes a k-dimensional cut (or general-
ized piercing) through € which minimizes k-dimensional area, then A (2) <
A (2%). To prove these results by induction with respect to k one can follow
Steps 1-3: First, using an analytic version of Pélya’s proof and an iteration from
n—k+1lton—kforany k=1,...,n — 1, one can obtain the corresponding
(n — k)-dimensional results for starshaped centrosymmetric sets. Next, using
Step 2, one can show that the maximum of (£())¥ is assumed among cen-
trosymmetric sets. Finally, one can show that the maximum of A (€2) over all
measurable sets with finite n-dimensional Lebesgue measure is necessarily at-
tained among starshaped sets by using the following observation which can be
of independent interest. To formulate the corresponding result, for any z € S”
and any 1 < p <n let us consider the function

Rao(z, p) = [P/ st(z,r)r”_ldr}p- (10
0

Lemma 1 Let Q2 be a measurable (possibly unbounded) domain with finite volume
in R", n > 2. Then the inequality

Ra(z, p) = Ra(z, q) (11)

holds for any z € S" and any 1 < p < g <n. Moreover, equality in (11) holds if and
only if Q is a starshaped set.

Proof Let r = p'/4. Then by (10),

p = 1 I 1 L1
[Ra(z, p)] pro Xa(z, rrP” dr:Efo xa(z.p")pe " dp.  (12)

It is clear that in the integral on the right-hand side of (12) one integrates over the
set L, C L; of length

o0
L] =/O xa(z. ") dp.

Changing in (12) the variable of integration to p = r¢, we have the relations

o]

1L, = /0 xa(z, p"1) dp=q /O xe(z ri tdr=[Raz, ). (13)
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Further, due to the fact that the function f(p) = pg_l decreases monotonically on
R, we conclude from (12) by (13) that

(Ra(z,9)?
p [~ 2_q p 21
—/ xa(z, p'/?)p1 dps—/ pi~ dp. (14)
qJo qJo

Integrating on the right-hand side of (14) we obtain the inequality

p [~ 1/q\ - £-1 p
;[0 xe(z, 0/ pe ™" dp < (Ra(z,9))

which, together with (12), yields (11). Equality in (11) holds iff one has equality in
(14), which in turn implies

() :
Ra(z,q) = [q/ r"‘ldr} ,
0

i.e., iff the set Q under consideration is already starshaped. Finally let us remark
that a discrete version of this lemma can be found in [6, p. 64]. O
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On a Continuous Mapping and Sharp Triangle
Inequalities

Tomoyoshi Ohwada

Abstract This is a survey on some recent results concerning the sharp triangle
inequalities. Our results refine and generalize the corresponding ones in (Kato et al.
in Math. Inequal. Appl. 10(2), 451-460 (2007)) and (Mitani et al. in J. Math. Anal.
Appl. 10(2), 451-460 (2007)).

Keywords Triangle inequality - Banach space

Mathematics Subject Classification Primary 46B20 - Secondary 46B99

1 Introduction

In this note we want to survey some of the most recent results concerning the sharp
triangle inequalities on a Banach (or normed linear) space.

There are many results concerning norm inequalities under various settings. The
typical one is as follows.

Problem 1 Let (X, || - ||) be a normed linear space. Suppose that, for A, B € X, a
norm inequality ||A| < ||B|| holds. Construct a positive value C with respect to A
and B satisfying ||Al| +C < || B].

Note that Problem 1 is the same to find the intermediate value between 0 and

|B]| — ||A]l. We are interested in this problem to the triangle inequality. The (gener-
alized) triangle inequality, namely

n n
D oxi =D Ikl
Jj=1 Jj=1

where x1, x2, ..., X, are elements in a normed linear space (X, || - ||), is one of the
most fundamental norm inequalities in analysis. This inequality has attracted the

Partly supported by the Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion
of Science (22540184).

C. Bandle et al. (eds.), Inequalities and Applications 2010, 125
International Series of Numerical Mathematics 161, DOI 10.1007/978-3-0348-0249-9_9,
© Springer Basel 2012


http://dx.doi.org/10.1007/978-3-0348-0249-9_9

126 T. Ohwada
attention of a number of authors, and many interesting refinements and reverse in-
equalities of it have been obtained (cf. [1, 2, 10, 14, 15]). For the triangle inequality,

we consider the following problem.

Problem 2 Characterize all the intermediate values C which satisfy

n
hEY
i=1

n
0SC=) lxjl—

by using x1,x2,...,x, in X.

In 1992, Hudzik and Landes [6] proved the following inequality which gives the
solution of Problem 2 in the case of n = 2.

Theorem 3 [6, Lemma 1] For all nonzero elements x, y in X,

og(z ‘

In 2005, Kato, Saito and Tamura [7] extended this result for an arbitrary number
of finitely many nonzero elements xi, x2, ..., X, in X to treat the uniform non—l’l’-
ness of Banach spaces as follows (see [8, 9]):

H)mm Il Iyl < el 4+ 1yl = lle + y -
IIXII Iyl

Theorem 4 [7, Lemma 2] For all nonzero elements x1,x2, ..., x, in X,

0 |n— min ||x;| < xill — X
_< D]<<||,|| Zn,n Z,

After that, several authors improved and generalized these inequalities (cf. [3—
5]). Mitani, Saito, Kato and Tamura [13] succeeded in the further extension of The-
orem 4 as follows:

n

DD
J

— I/l

Theorem 5 [13, Theorem 1] For all nonzero elements x1,x2,...,x, in X,
n k x*
J
0§Z<k_ ZHX*H )(” ” |xk+1” Z”x = le ’
k=2 j=1""J
where xi,x5,...,x; are the rearrangement of x1,Xx2, ..., x, satisfying || x{| 2

x50 = --- 2 [lx; ] and x| =0.
Since the intermediate value in Theorem 5 can be calculated as follows:

(o3

k=2

k *

Z IIi il

D(H - Jetal)



On a Continuous Mapping and Sharp Triangle Inequalities 127

=<n— THIEES (8

n

Z Bl

k *

Y o
IIx*II

)<||x;: = st l)

n x*
>n- J min |lx;|| 20,
( Z (B Dl< i<t
j=1"J
if we put
n x>$f
(KST)=|n— J min ||x; ||
; x5 ) 1<<n
and

),

(MSKT) =) (k -

k=2

k x*
P ‘-

then we see that

n
E)Cj.

j=1

n
0 = (KST) = (MSKT)= Z llxjll —
j=1

Hence we know that (KST) and (MSKT) give one solution of Problem 2. However,
other intermediate values are still unknown. So, in Sect. 2, we shall characterize the
all the intermediate values in the triangle inequality, and two kinds of inequalities in
Theorems 4 and 5 are concretely expressed as the intermediate values of it.

2 Intermediate Values

First, we shall give a norm inequality related to the triangle inequality. For a positive
integer n = 2, let M, ([0, 1]) be the set of all n x n matrices whose all elements
belong to the interval [0, 1] and L, denote the set of all lower triangular matrices of
M, ([0, 1]);i.e.,

Ly ={a=(aij) € My([0,1]) | a;; =0 (G <)) }.
Let I <m < n. For each a = (a;;) in L,, we set

gﬁfj(m)zalj and £, (m) =an; (1 <j<m)
and if 3 < n, then, for each m with 3 < m < n, we put

m
thmy=a; [[ 0—ay) QZigm—1,1Zj<m).
k=i+1
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Note that the n x n matrix (E?j (n)) also belong to L,. Take any a = (a;;) €
L, and fix it. Considering (E;‘j (n)) as the matrix acting on the Banach space
XPXB-- & X, we have

— ———

n times
e (n) x| 215‘1‘1 (n)x
O X2 2=t €3, (n)x;

CHORNEN)

= ...

621(”) s gzn,1 (n) £, (1) n Z;;] ZZj (n)x;

where x1, x2, ..., X, € X. For each entries, we have the triangle inequalities

i
>t
j=1

We revealed the fact that the sum of all differences of the triangle inequalities

i
Zz;‘j (n)x;
j=1

i
<l a<i<n.
j=1

i
<Y emxg] agisn
j=1
less than the difference of the triangle inequality

n n
D x| =D Il
j=1 j=1

as follows:

Theorem 6 [12, Theorem 3.2] Let n = 2. With the above notation, take any a =
(aij) in Ly. For all elements x1, X2, ..., X, in a Banach space X, we have

n
) <3 Iyl -
j=1

0= Z(Z”% (m)x; ] = [ Y & mx;
i=1 \j=I j=1

n
2%
j=1
To understand the above inequality, we shall discuss in the cases of n =2 and 3.

As the case n = 2 we have:

Theorem 7 (Cf. [4, Theorem 2.2]) For each x, y in a Banach space (or normed
linear space) X, and s, t in R with 0 < s, ¢t < 1, we have

0= llsxll + Nyl = llsx + eyl < llxll + [yl = llx + yll.
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For x and y in X, putting a function f on a product space [0, 1] x [0, 1] as
[0y =lsxl + eyl = llsx + eyl ((s,0) 10,11 x [0, 1]),
then it is clear that f is a continuous function on [0, 1] x [0, 1] satisfying
f0,00=0 and f(,D=IlxlI+lyll—llx+yl.
Since [0, 1] x [0, 1] is connected, by using the intermediate value theorem, we have

Corollary 8 [12, Corollary 2.2] Let x, y € X. For each w with0 < w < ||x||+ || y|l —
lx 4+ yll, there is (s, to) in [0, 1] x [0, 1] such that

o = [|sox|| + [[foy[l — llsox + toyll.
Corollary 8 not only gives the solution of Problem 2 but also contains Theorem 3.

Indeed, foranyxandyinXands 50,5, 10 € Rwith0Ss<s5051,05¢ <1 <1,
we see that sox, 1oy € X, 0 = < land0 < L <1 Hence, by Theorem 7, we have

fs.0) = H = (sox)
50

t s t

o TR I ET
fo S0 o

= llsox|l + ll2oy 1| = llsox + toy |l

= f(s0, t0).

Thus f is a nondecreasing continuous function on [0, 1] x [0, 1], and so if ||y|| <
lx|l, then we have

0=£(0,0)< f(s 1,1)<f<::y:: )<f<sz,1>

< vl
S fFAD=lxl+ 1yl = llx+ vl <0§VS SVs;=1).

)|

by Theorem 7, we have Theorem 3 as

0z (- |

Next, we consider a geometric meaning of these inequalities as X = R?. Let
x,y € X with ||y]| £ |lx||. Theorem 7 shows the relation of the differences of the
inequalities concerning two triangles in Fig. 1.

Since

MY H) min{[lx]l. 11},

X

Tl H) minf|x[l, Iy} < lxll + Iyl = lx + ¥l
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Fig. 1 Theorem 7 x
Y ST
ty % ﬁy
Fig. 2 Case withr =1 s=0 sz s=1
- J
Y sx +y

Fig. 3 Theorem 3

Especially, Theorem 7 is as follows for r = 1

0= [lsxll + NIyl = llsx + vl
=f(s, D
Slhxll+ Iyl =llx+yll O=Vs=1).
Figure 2 is useful to understand this relation.
In this case, if the value of s is continuously moved from O to 1, all the values
between f(0,1) =0 and f(1,1) = |x|| + |ly]l — llx 4+ y|| can be obtained. And,

when the value of s is just || y||/||x]l, it is Theorem 3 (see Fig. 3).
In the case of n = 3, by Theorem 6, we have as follows:

Theorem 9 [12, Theorem 2.3] For each x, y, z in X, and «, B, y, A, i in R with
0<a,pB,y, A u<1,wehave

0= (laxll + 1Byl + llyzll = lleex + By + yzll)
+ (|at —ox || + |1 = Byy| — |21 —a)x + (1 = B)y|)
Slxl+ Iyl + izl = llx + y + 2.
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As well as in the case of n = 2, for x, y, z in X, if we put a function g on the
product space ]_[?:1[0, 11=10,1] x --- x [0, 1] as

5 times

8o, By, ) = (llex | + 1By + llyzll — lleex + By + yzll)
+ (A =o)x | + [ = Byy| = |21 —e)x + p(1 -

).

then 1t can be easily checked that, for each (a1, B1, y1, A1, £1), (@2, B2, V2, A2, I41)
in ]_[l 1[0, 11,

g (@, Br, y1s Ars 1) — glaz, B2, 2, A2, )|
<2(2lar — ool 4 141 — Aal) - xl +2(2181 — B2l + w1 — pal) - 11yl
+2ly1 — vl - llzll,
and so, g is a continuous function on ]_[?:1 [0, 1]. Moreover, we see that
£(0,0,0,0,0)=0 and
g L LA w=lxl+lyl+lzl—llx+y+zl O=VA,u=D.

Thus we have

Corollary 10 [12, Corollary 2.4] Let x, y,z € X. For each w with 0 < o < ||x|| +
Iyl + lIzll = llx + y + zl|, there exists (s1, 52, 53, S4, 55) € ]_[le[O, 1] such that

o= (Is1xll + lls2y Il + lls3z]l = lls1x + 2y + 53211

+ (Jsa(t = spx | + [[ss(1 —s2)y || = [s4(1 = s1)x +55(1 — 52)¥]).

There are infinitely many paths to take the value from O to || x| + ||y]l + |zl —
llx + y 4 z|| by how to choose variables. We can obtain Theorems 4 and 5 in the case
n =3 by choosing it well. Note that Theorems 4 and 5 are as follows respectively
for n = 3:

Theorem 11 (Cf. Theorem 4) For all nonzero elements x, y, z in X with ||x| =
Iyl 2 llzll,

0§<3—

Theorem 12 (Cf. Theorem 5) For all nonzero elements x, y, z in X with ||x| 2

N
o<(3 ‘x LY. Dnn+< H + H)un 1)
<(3-]=+-2+= )iz — 4 z
= TIRATTRET i)

S x4+ Iyl + Nzl = llx + y + 2.

S
lxefl iyl Izl

DIIZII S i+ Iyl + izl = llx 4+ y + 2l
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To obtain these theorems, the following example gives one of the paths.

Example 13 We may assume that ||x|| # ||z||. For each t with0 < ¢ < Lzl | put

|l
llxl [lx]l
st=r osh=il g o ML
Iyl Izl
P [ el _ llxll
54 = — " — 1, SS = —1,
Nzl el = flzll Izl

and for each ¢ with 12l <7 <1, put

[x]l
Z X — ||z Z
O 3 ] HWQ_ﬂJ) gt
iyl Ayl lxll =izl flxl
— |z x| — x|t — ||z
o = Iyl — izl +(|| = lyDxl - I II)’ =1,
llxll = llzll lxfl =1zl

then we see that (s}, s, 55, s}, s%) € ]_[f:1 satisfying
( ?,sg,sg,s4,s5) 0,0,0,0,0), (sll,szl,s;,si,ssl):(l, 1,1,1,1) and

(sll‘%\ S H G H SSH—H) <||z|I Il Nzl iyl =Dzl 1)
’ ’ ’ ’ ’ ’ 9 .
el Iy Tzl el =zl

Hence if we define a function f on [0, 1] by
f(O) =g(s1, 53,53, 54, 55),
then f is a continuous function on [0, 1] such that
fO)=0 and f(D)=xl[+lyll+Ilzll—llx+y+zl.
Moreover

()

R B
X X
234’55>

g(o!"
gl e e

L
flx

Il iyl Nzl el = llzl
<‘ Izl H ‘ llzll H ‘ Izl H ‘ 21l ||z|| |Iz|| H)
[lxl iyl Izl EN ||y|| IZII

= (- g 10 - w0
- ‘ H(“H)”( ||||§||||> H}
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KHZH\ x t:\.1

1yl — [I=]
y

ol — 112l e (el = 1lz[])
TH+y+z y( N

) 1yl = ll=]l

Iz

o Ul = 11z1D

t=0

Fig. 4 Example 13
X y
- 4+ 4=

=<3_‘||x|| ERAE )"Z”

— < — <
(‘ Iyl = llzll 'XH"" Iyl = llzll yH

I Iyl
_‘ Iyl =tz =l H)
I Iyl
=<3—‘L+L+— >|z||+< H—+—H> (hyll = 1iz1)-
EIRREIRRED el v

Since f(0) < f( |||)Zc‘||\) < £(1), we have Theorem 12.
Figure 4 shows that Theorem 12 is a combination of Theorems 3 and 11. That

is, we obtain Theorem 12, applying Theorem 3 for two vectors Hi_\l (Iyll = lIzll) and
e (lxll = lizll) in addition to Theorem 11.

Furthermore, if we put, for each 7, u with0 < ¢, u < %

X X
N R -
vl H
o _ Il Iyl =zl o Il
Sy =, s5 =
IR Hh

and for each ¢, u with % <t,u<ll,put

< X — |I< <
=1, sé:” II_I_II Iyl = ll.(r—” II>’ d=1,
Iyl Ayl lixlh = lizll [lxl

w _ Iyl llzll n Al =ty Dl [ — 1z ‘

S, = se=1
4 ) 5 ’
lxll =Nzl Uxll = lizIh?

then we can define a function /4 on [0, 1] x [0, 1] by

h(t,u) = g(s{,sé, sé, 54, sg‘)
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It contains both Theorems 11 and 12 at the same time, that is, if we take (¢, u) =

(l‘li‘ll‘ ,0), then we have Theorem 11 and if we take (¢, u) = (H;l‘ll , H), then we also

have Theorem 12.

Finally, we consider Problem 2 for a general case.
Let x1, x2,...,x, in X. For each a in L,, if we put

fla)= Z(ZHE (x| — Y€ mx;
j=1

i=1

)

n
Do
j=1

then we see that

k]

fla) =0 and fla)=)_llxjl—

where ag, a; € L, with

aill 0 0

0 0 as| axn
a=\. - and a; = : . 0 :
Y ap-11 Ap-12 -+ Au_1p—1 O
1 1 1 1

/2
Moreover, considering f for a function on ]_["('H' )/

n(n+l)/2[

[0, 1], we see that f is con-

tinuous on ]_[ 0, 1]. Therefore, as a solution of Problem 2, we obtain the

following

Corollary 14 [12, Corollary 3.3] Keep the notations as above. Let x1, X2, ..., X, €
X. For each w with 0 < o < Z?:l il — 1l Z'}-zl xjll, there exists a in L, such

that

Of course Theorem 6 contains Theorems 4 and 5 as well as the cases n =2, 3.

o= 3 (Slegens ] - |3
i=1 \j=1

Corollary 15 [7, Lemma 2] For all nonzero elements x1, X2, ..., X, in a Banach
space X, we have

0§<n—

n

>
J

— xjl

n n
min ||x SZ xill — Zx-.
>1<<||]||_‘ llx 1| 2%
Jj=1 Jj=1
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Corollary 16 [13, Theorem 1] For all nonzero elements x1, x3, ..., X, in a Banach
space X, we have

n i x* n n
. J * *
ng = Z”x*” (“xl || - ||xl+1||)§Z”x/”_ le ’
i=2 j=1 "7 j=1 j=1
where x, ..., x; are the rearrangement of X1, X2, ..., X, which satisfies ||x{| 2

x5l = - 2 llx;ll and x| = 0.

Note The other direction of Problem 1.2, namely; characterize all values D which
satisfy

n n
0= llxjll =Y x| =D
j=1 j=1

by using x1, x2,...,x, in X, has been studied in [9] and [13]. We extend these
results by using a continuous mapping. The results will be appeared in [11].

Acknowledgements The author would like to thank the Organizers of the Symposium for their
invitation and hospitality.
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A Dunkl-Williams Inequality
and the Generalized Operator Version

Kichi-Suke Saito and Masaru Tominaga

Abstract C.F. Dunkl and K.S. Williams (Am. Math. Mon. 71, 53-54 (1964))
showed that for any nonzero elements x, y in a normed linear space X’

Recently, J. Pecari¢ and R. Raji¢ (J. Math. Inequal. 4, 1-10 (2010)) gave a refine-
ment and, moreover, a generalization to operators A, B € B(#) such that |A|, |B|
are invertible as follows:

___H A=yl
B S ETERET

- 192 - 2\ 41—
|AlAI™" = BIBIT'[" < 1A (plA — B +q(1A] - |BI))|AI™!
where p, g > 1 with % + 37 =1.
In this note, we review some results concerning the Dunkl-Williams inequality
and the generalization of the operator version of J. Pecari¢ and R. Rajié.

Keywords Dunkl-Williams inequality - Bohr inequality - Operator inequality

Mathematics Subject Classification 26D15 - 46B20 - 47A63

1 Introduction

In 1964, C.F. Dunkl and K.S. Williams [4] showed that for any nonzero elements x,
y in a normed linear space X’

Recently, J. Pecari¢ and R. Raji¢ in [15] gave the following refinement of a
Dunkl-Williams inequality (1): For any nonzero elements x, y in a normed linear
space X’

(D

x H 4llx — yll
el Tyl = i+ iyl

x y V2lx = yI2 +2(Ix [ = [ly)?
B . @)
lxll Ayl max{|lx|, [[yll}
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In this note, let B(#) be the algebra of all bounded linear operators acting on
a complex Hilbert space H. For A € B(#), we denote the absolute value operator

of A by |A], thatis, |A| = (A*A)%, where A* stands for the adjoint operator of A.
We denote the closure of AH by [AH] and the orthogonal projection onto [A7H]
by Pa7- Let A = U|A| be the polar decomposition of A € B(H) with U*U =
Plam-

Recently, Pecari¢ and R. Raji¢ in [15] generalized the inequality (2) to the
(invertible) operator case and studied its equality conditions (cf. [15, Theo-
rem 2.1]):

Theorem 1 Let A, B € B(H) be operators where |A| and |B| are invertible, and
let p,q > 1 with % +%= 1. Then

_ 112 _ 2 _
|AlAITY = BIBI " < 1A (plA = B +q(1AI = IB))IAIT". ()
The equality in (3) holds if and only if
p(A—B)|A" =qB(1AI"" —|BI™"). 4)

Our aim in this note is to review some results concerning the Dunkl-Williams
inequality and the generalization of the operator version of J. Pecari¢ and R. Rajié.
In Sect. 2, we shall introduce a Dunkl-Williams inequality and some related results,
that is, its refinement and reverse inequalities. In Sect. 3, we shall cite a classical
Bohr inequality, its operator version and moreover generalizations. In Sect. 4, we
shall show that the inequality (3) can be generalized by using polar decomposi-
tions A = U|A| and B = V|B| of operators A, B € B(H) with U*U = P43 and
V*V = P{pj- As aresult, Theorem 1 is extended without demanding the invert-
ibility of |A| and | B|. Moreover, we investigate the equality condition (4) and give
a refinement of the equality conditions without additional assumptions related to
inverse conditions in Sect. 5. The obtained results are generalizations of [15]. The
content of Sect. 4 and Sect. 5 is a survey of our paper [16].

2 Dunkl-Williams Inequalities and Its Related Results

In this section, we introduce the following interested inequality which is given by
C.F. Dunkl and K.S. Williams in 1964, and its proof:

Theorem 2 Let X be a normed linear space. Then for every x, y(#0) in X

&)

L_LH< 4lx —yll
ledl Wyl x4yl
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Proof We calculate the following related to the norm:

[lx IIHW—MH < lix]

=[x =yl +

o n||—————H
H nuH RIEY

Ay = llx Dyl
Iyl

= llx =yl + [yl = lIxll] < 2llx = yll.

‘We obtain the following by a similar method:

IIyII‘

= o <2l =y
1 nﬂw

So we have the desired inequality (1). g

In particular, if X is an inner product space, then a more precise inequality is
obtained:

Theorem 3 Let X be an inner product space. Then for every x, y(#£0) in X

x 2[lx —yll
a2t
el Iyl = el + Dyl
Proof We calculate the following related to the norm and the inner product:
2
Y A Y R A S
‘ lxll iyl <|IXI| Iyl llxll |Iy|I>
: {2lx1llyll = 2Re(x, y)}
= x [yl —2Re(x, y
Iyl
1
= 201yl = (el + 1y 1% = flx = y11?
IIXIIIIyII{ ( i
_ = I = dixll = Ny
Iyl
So we have
2 (k1] v |
Ix=yl"=—\—%——) |75 — 7
2 lell Iyl
(lxll = llyID* 2 >
= ———tUkxlIl+1ylh)” = llx = ylI*} =0
Allx [yl { ) }
The proof of Theorem 3 is completed. g

In a bit later 1964, W. Kirk and M. Smiley [9] characterized the inner product
spaces:
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Theorem 4 Let X' be a normed linear space. Then for every x, y(£0) in X

if and only if X is an inner product space.

_ 2=yl
o ||y|| = T+ Iyl

E.R. Lorch [10] showed that X’ is an inner product space if and only if the follow-
ing relation holds: If every vectors x, y € X holds ||x| = ||y||, then the inequality
lax +a~y| > |lx + y| satisfies for any positive real number «.

A certain kind of evaluation values “4” and “2” that appears to inequalities (1)
and (6), respectively are interested numbers. In 2008, the following constant was
introduced in [7]:

DW(X) := sup{dw(x,y) x,yeX, x#0,y#0,x ;éy},
+iyll

where dw(x,y) = ”x il | 2 i *H |Il. We denote this constant by the Dunkl-
Williams constant. This constant has the following interesting properties:

(1) 2<DW(X) <4.

(2) DW(X) =2 < X is a inner product space.

(3) DWR?, [-l1) = DW(R?, ||-[loc) = 4.

(4) DW(X) < 4 & X is a uniformly nonsquare, that is, if there exists 6 > 0
such that for any pair x,y € By(= {x € X : ||x|| < 1}), then min{||x + y||,
lx =y} <4.

Next we consider the inequality (1) more precisely. Recently, the first author
studied the following related to the triangle inequality [8] (cf. [11, 12]):

Theorem 5 Let X be a normed linear space. Then for every x, y(#0) in X

IIX+y||+<2— ’ —+—”> nfllxll, N}
el Myl
= lxli+ 1yl
X
Slx+yl+(2- x{lxll 1yl
IIXII ||y||

In the second inequality of Theorem 5 we replace y with —y. Then the following
theorem estimates the inequality (1) more precisely:

Theorem 6 Let X' be a normed linear space. Then for every x, y(#0) in X

Moreover, a reverse inequality of (1) is given as follows:

___H e =yl Ll = Iyl )
R max([x. 1)
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Theorem 7 Let X' be a normed linear space. Then for every x, y(£0) in X

‘;i____H>Hx—yH—HMH—HﬂH
Il Iyl = mingixl 1yl

9

Next we introduce Massera-Schaffer’s inequality which is obtained by the in-
equalities (8) and |lx — y[l + [llx]l — [yl = 2[lx — yI (cf. [13]):

Theorem 8 Let X be a normed linear space. Then for every x, y(#0) in X

C 2lx =yl
—_— = (10)
IIXII ||y|| mavi{ll)CII Iyll}
On the other hand, for every x, y(£ 0) in X we have
— — V2 — 2 — 2 —
llxx =yl 4 [lIxll = Iyl < 2\/le Y12+ (Il = lyll)™ < 2lx =yl
As a result, the following inequality holds (cf. [15]):
Theorem 9 Let X be a normed linear space. Then for every x, y(#0) in X
_ Y2Vl =y P+ xl = Dy
—_—— . (11)
IIXII ||y|| max{|lx|l, [ yll}

3 Bohr Inequality and Its Related Results

In this section, we introduce the operator version of the classical Bohr inequality.
First, the classical Bohr inequality in [2, 14] says that

la +b|* < plal* +q|b|*

for all scalars a, b and p, g > 0 with % + % = 1. The equality holds if and only if
(p — )a = b. In [6], Hirzallah proposed an operator version of Bohr inequality:

Theorem 10 If A, B e B(H) andq > p > 1 with% + % =1, then
2
|A—BI*>+|(p— DA+ B|” < plAI* +q|B*.

Moreover Hirzallah gave the following inequality and pointed out an equality
condition:

Corollary 11 [6, Corollary 1] Let A, B € B(H), and let p,q > 1 with L + = =1.
Then

A~ B < plAP® +q|BI® (12)
with equality if and only if pA = —q B
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Afterwards, several authors have presented generalizations of Bohr inequality
(cf. [1, 3, 5, 6]). We show that generalized Bohr inequalities are covered by this the-
orem. On the other hand, a generalized parallelogram law also implies generalized
Bohr inequalities. It is essentially same as the discussion in [1]. Here, we cite Bohr
type inequalities from [3] and [6].

Theorem 12 If A, B € B(H), %—i—é: l,and 1 < p <2, then

(i) |A— B> +|(p— DA+ B> < plAI* +q|BI*,
(i) |A—BI>+]A+(qg — 1)B>> p|A* +q|B|*.

On the other hand, if either p <1 or p > 2, then
(iii) |A — B> +[(p — DA+ BI> = p|A]® +q|BJ>.

Moreover, M. Fujii and H. Zuo in [5] mentioned an approach to Bohr inequal-
ity related to the parallelogram law, whose idea is essentially same as that of

Abramovich, Bari¢ and Pecari¢ [1].

Theorem 13 If A and B are operators on a Hilbert space and t # 0, then
1 1
|A+ B>+ _lrA - BP>=(1+0|AP+ <1 + ;> |B|>.

Theorem 13 gives a unified proof to Theorem 12.

4 A Generalization of Dunkl-Williams Operator Inequality
First, we consider a generalization of the inequality (3):

Theorem 14 Let A, B € B(H) be operators with polar decompositions A = U|A|
and B =V |B|, and let p,q > 1 with % + % =1.Then

(@ = v)1Al’ < pla - B2 +q (1A - 1BI)". (13)
The equality in (13) holds if and only if
p(A—B)=qV(IB|—|Al) and U*U=V*V. (14)
For the proof of the above theorem, we use the following lemma:

Lemma 15 Let A, B € B(H) be operators with polar decompositions A = U|A|
and B = V|B|, and let p,q € R with % + % = 1. Suppose that p(A — B) =
qV(|B| — |A|). Then

plA— B> <q(1A” - |B]?).
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In particular, if p > 1, then |A| > |B| and U*U > V*V. Further if U*U = V*V,
then p|A — B> = q(|A]> —|BJ?).

Proof It follows from the equality p(A — B) =qV(|B| — |A|) that
2 2
|P(A—gB)|” =|—qVIAll" =g’ |AIV*V|A| < ¢*|A]%.
On the other hand, we have

Ip(A—gB)|> = p*{(1—IAP + (4% — 9)1B> + (1A — BI?)}.

So we have by ¢ — 1 =%
—|AP+qIBP +plA— B2 < LA, thatis, plA— B <q(lAP - |BP).
P

If p> 1, then |A|?> > |B|%. Hence we have |A| > |B|. If U*U = V*V, then
V*V|A| = |A|. So we have p|A — B|> =q(|A|> — |B|?). O

By Corollary 11 and the above lemma, we shall prove Theorem 14:
Proof of Theorem 14 We have
2 2
|(U—-W)IA||"=|A—-B—V(Al—|B])|".
Applying Corollary 11 to operators A — B and V (|A| — |B]), we have
2 2
(U —V)|Al|” < plA— BI> +q|V(IAl — |B])] (15)
2
<plA=BP+q(AI=|B)" (byV*V<I). (16
By Corollary 11 the equality in (15) holds if and only if p(A — B) =qV (|B| — |Al).
The equality in (16) holds if and only if V*V|A| = |A|. This implies U*U < V*V.
On the other hand, the condition p(A — B) = qV (|B| — |A|) gives U*U > V*V by
Lemma 15. Hence we have U*U = V*V.

Conversely, the condition U*U = V*V gives V*V(|A| — |B|) = |A| — |B|. So
equalities in (15) and (16) hold, which implies equality in (13). O
Corollary 16 Theorem 14 gives Theorem 1.

Proof We have U = A|A|™!, V = B|B|~!, U*U = V*V = I. This implies

|AJAIT = BIBI P = U — V]?

_ 2, -
=AW = W)lAl[ AT

<IAI"' (plA = B +q (1A = 1B)*)IAI™" (by (13)).
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The equality in (3) holds if and only if
p(A=B)AI™ =qV (1Bl - |A])lAI™!
=qB(lAI"" —|BI™").
Hence we have Theorem 1. 0

Putting p = ¢ =2 in (13) and taking the square root of each side of it, we have
the following corollary.

Corollary 17 Let A, B € B(H) be operators with polar decompositions A = U|A|
and B =V |B|. Then

(U = V)IAl] < v2(1A - B>+ (1Al - |BI)*)?. a7)

5 Equality Conditions in Theorem 14

In this section, we give a refinement of the equality conditions (14) in Theorem 14.
First we have the following proposition which is related to the equality in Theo-
rem 14.

Proposition 18 Let A, B € B(H) be operators with polar decompositions A =
U|A| and B =V|B|, and let p,q > 1 with % + % = 1. Suppose that U*U = V*V.
Then the following statements are equivalent:

(1) p(A—B)=qV(|B|—|A].

(i) |A|=|B|+ §|A —Bland A— B=—-V|A— B|.

Proof We shall show (i) = (ii). We have
2 2
p*lA—B*=|qV (1Bl - |Al)|" =4¢*(I1B| — |A])

from U*U = V*V . Moreover, since the condition (i) gives |A| > |B| by Lemma 15,
we have g(|A| — |B]) = p|A — B|, and so the first condition of (ii) holds. On the
other hand, since A — B = %V(|B| —|A]) = —=V|A — B]|, we have the second con-
dition of (ii).

The proof of (ii) = (i) is trivial. O

By the equality condition of Theorem 14 and Proposition 18, we have the fol-
lowing corollary.

Corollary 19 Let A, B € B(H) be operators with polar decompositions A = U|A|
and B =V |B|, and let p, q > 1 with % + % = 1. Suppose that

(U = V)|AI]" = plA — B> + (1Al - |B])’.



A Dunkl-Williams Inequality and the Generalized Operator Version 145

Then
A= |B|+2|A-B| and A—B=—V|A—B|
q

Next we will give characterizations of the equality in (13). For this purpose, we
need the following lemmas.

Lemma 20 [15, Lemma2.9] Let S, T € B(H) be positive operators such that ST +
TS =15 for some t € R. Then the following statements hold:

() Ift <0, then S =0.
(ii) Ift >0, then ST =TS = 15>,

Proof We give a simple proof. The operator S°T (= S(tS*> — T'S) is self-adjoint.
So, since $? and T are commuting, from S, T > 0 we have S and T are commuting.

If t <0, then 2ST =52 < 0. So we have S = 0. On the other hand, if 7 > 0, then
28T =152, O

Lemma 21 Let A, B € B(H) be operators with polar decompositions A = U|A|
and B =V |B|, and let p,q > 1 with % + é = 1. Suppose that

(U = V)|AI]" = plA— B> +q(1Al - |B])’. (18)

Then
|BI|A — B|+|A — B||B| = (2— p)|A— B|*. (19)

Proof Since the equality (18) implies C(:= A — B) = —V|C| by Corollary 19, we
have B*C = —|B|V*V|C| = —|B||C|. Hence we have

IC+ B =|C> ~|C||B| - |BIIC| +|B[*.
On the other hand, by Corollary 19 we have
p 2
IC+ B> = <|B| + ;lCl) .

The combination of above two equalities gives

2
<p_2 - 1>|C|2+ (5 + 1)|B||C| + (5 + 1)|C||B| =0.
q q q
It follows from g —1=p—2 that

|BIICI +ICIIB| = 2 - p)ICP,

and this lemma is proved. g
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Now we give a characterization of the equality in (13) by dividing the real num-
bers p > 1 into two cases (p > 2 in Theorem 22 and 1 < p < 2 in Theorem 23)
according to Lemma 20.

Theorem 22 Let A, B € B(H) be operators with polar decompositions A = U|A|
and B = V|B|, and let p,q > 1 with % + é = 1. Suppose that p > 2. Then the
following statements are equivalent:

(i) |(U = V)IAl*> = plA— B> +q(|A| — |B])%.
(i) A=B.

Proof (i) = (ii) Let C = A — B. The condition (i) gives an inequality |B||C| +
|C||B| = (2— p)|C|?> by Lemma 21.If p > 2, then A — B = 0 by Lemma 20(i). Next
we suppose p = 2. Thenitholds |C||B| =0andso [C|V*V =0by V*V = P -
Since C = —V|C| from Corollary 19, we have |C|> = |C|V*V|C| = 0, and hence
Cc=0.

(i) = (i) It is obvious that A = B gives U = V by the uniqueness of the polar
decomposition. O

Theorem 23 Let A, B € B(H) be operators with polar decompositions A = U|A|
and B =V|B|, and let p,q > 1 with % + % = 1. Suppose that 1 < p <2 Then the
following statements are equivalent:
@) (U = VIAI? = plA = B> +q(1A] — |B])*.
2
A=B( - ﬂW*W),

— 2p *
|A| - |B|(I+ (2—p)qW W)’

where A — B = W|A — B| is the polar decomposition of A — B.

(i)

Proof (i) = (ii) We put C = A — B. The condition (i) gives equalities
C=-V|C| and |B||C|+|C||Bl=2- p)IC|*
by Corollary 19 and Lemma 21, respectively. Then we have from 1 < p <2

1
|BIIC|=|Cl|B| = E(Z—P)|C|2

in Lemma 20. So it holds B|C| = 3(2 — p)V|C|> = 1(p —2)C|C|, that is, A|C| =
ﬁB|C|. It follows from W*W#H = [|C|H] that

AW*W:LZBW*W.

On the other hand, we have (I — W*W)H = Ker C. This implies

A(I —=W*W) =B(I - W*W).
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So we have
2
A=AW'W + A(I —W*W) =B(I - 2—W*W>,
p

and so the first equality of (ii) holds.
Next we have by Corollary 19

2
~VICI=A~B=—5"—VI|BW'W. (20)
-p

Here, since the condition (i) implies U*U = V*V by Theorem 14, we note that
V*V > W*W. It follows from U*U = V*V that [A*H] = [B*H]. So we have
[ICIH]=[(A— B)*H] C [B*H] =[|B|H], and so V*V > W*W. Hence the equal-
ity (20) gives |C| = %p |B|W*W. By Corollary 19, we have

2
1A= B+ Zic| = |B|<I n 7PW*W).
q 2-pq
(i1) = (i) We obtain that

2
V(IB|—|A]) = —ﬁV|B|W*W = p(A — B).

Moreover, since the operator / + (22’;)(1 W*WE=U —-WW)+ (1 + = p)q)W* W)

is invertible, we have [|A|H] = [|B|(I + (22[;)(1 W*W)H] = [| B|H]. Hence we have

U*U = V*V. And so we get the condition (i) from Theorem 14. O
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Jordan Type Representation of Functions
with Generalized High Order Bounded
Variation

Gabriela Cristescu

Abstract The aim of this work is to identify few classes of functions with gen-
eralized type of bounded variation for which a decomposition theorem of Jordan
type holds. We refer especially to functions with nth order bounded variation with
respect to a Tchebycheff system. The particular case of trigonometric Tchebycheff
systems bring interesting results.

Keywords Function with nth order bounded variation - Jordan decomposition -
nth order convex function - Tchebycheff system

Mathematics Subject Classification Primary 26A45 - Secondary 26A51 - 26D05

1 Introduction. Functions with Bounded Variation of Superior
Order

1.1 Divided Differences and Classical Convexity of Superior Order

Throughout the chapter N, Z, Q and R will be used to denote the sets of all positive
integers, integers, rational numbers and real numbers respectively. Let [a, b] € R
and a function f : [a, b] — R. The nth order divided difference of f on the points
xi € la,b], k €{0,1,...,n} is defined, according to the results from [13], by the
following recurrence:

[-xo""’-xn—l;f]_[xlv-"v-xn;f]

[xo0; f1= f(x0); [x0, ..., Xn; f1= (1)
X0 — Xn
As usual (see [16]), f is said to be nth order convex on [a, b] if
['x()v”-vanrl;f]zO (2)
whenever x; € [a, b] for k € {0, 1, ..., n + 1}. The set of all nth order convex func-
tions on [a, b] is a convex cone denoted, as in [9] by K, [a, b]. Taking n = —1

one obtains the class of non-negative functions and taking » = 0 one gets the non-
decreasing functions. The case n = 1 was defined in [5] and the general case was
introduced in [6] for functions defined on an interval.
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1.2 Representation Theorems for Functions with Bounded
Variation of Superior Order

Let (d) be a partition of [a, b],
d: a=xg<x1<---<xpu=b, m=>n+1. 3)

By the standard definition (see [16]), the nth order variation of f on (d) is the
number

n

Valds )= |[xis o Xigns £1= it Xinss £]. 4)

i=1

If Dpyy ={d)|d)=(@=xo<x; <-+<xpu =b),meN,m>n+ 1} then the
total variation of function f on [a, b] is the number

Va(la, bl; f) =sup{V,(d: /)|(d) € Dpy1}. (5)

According to the definition of Camille Jordan [7], generalized to superior order (cf.
[16]), f is said to be of nth order bounded variation if V,,([a, b]; f) < 4+00. The real
linear space of functions having nth order bounded variation on [a, b] is denoted by
BVy,la, b]. The symbol BVy|a, b] is used to denote the set of functions having the
classical type of bounded variation [7]. The decomposition theorem of Jordan [7]
states, in fact, that

Theorem 1 BVy[a, b] = Kyla, b] — Kyla, b].

It means that the real linear space of bounded variation (in classical sense) func-
tions is the minimal linear space containing the cone of all increasing functions
on [a, b]. In [16] is proven the following decomposition theorem within the space
BV,la,b]:

Theorem 2 Every continuous function f € BV,|a, b] is the difference between two
functions, which are convex of —1,0, 1,2, ..., nth order on [a, b].

This result was obtained by A. Winternitz [20] for n = 1 and by E. Hopf [6]
in case of real functions defined on an interval. Tiberiu Popoviciu [16] proved it
considering arbitrary sets of real numbers as the domain of functions.

In this chapter we intend to extend these results of Tiberiu Popoviciu to the func-
tions with bounded variation of superior order with respect to a Tchebycheff system.
The next section is devoted to the presentation of the main concepts that are neces-
sary in the sequel and the state of art of the domain. The third section contains the
main results. A particular case, referring to a trigonometric complete Tchebycheff
system and the related convexity and bounded variation concepts is presented in the
last section.
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2 Tchebycheff Systems and Related Convexity and Bounded
Variation Concepts

2.1 Divided Differences and Convexity with Respect
to a Tchebycheff System

As usual (see [8]), a set of functions F,, = {¢1,92,...,¢n+1} 1s said to be a
Tchebycheff system on [a, b] if for every set of n + 1 distinct points x; € [a, b],
ke{l,2,...,n+1},

p1(x1) o @uy1(x1)
V(Fi X1y Xnp1) = det : : £0.  (6)

01(Xn+1) oo Qa1 (Xpt1)

E. Phragmen and E. Lindelof [14] considered in 1907, for the first time, the
trigonometric Tchebycheff system consisting in the two functions fy = cosx,
f1 =sinx on (0, ). T. Popoviciu [17] used in 1936 the concept of T-systems re-
ferring to the Tchebycheft systems. E. Moldovan (Popoviciu) [10] used in 1955 the
concept of interpolation set of functions, in order to elaborate a nonlinear theory
of convexity with respect to a family of given functions and mean theorems for
this type of functions. She followed the line of research opened by T. Popoviciu
in 1936 [17] and E.F. Beckenbach in 1937 [1]. Basically, all the concepts used by
these authors come to sets M of functions having the following property: for every
system of n distinct points xp, x2, ..., x, from [a, b] and for every real numbers
Y1, ¥2,..., Yy there is a unique function f € M such that f(x;) = y;, for every
ie{l,2,...,n}.

If 7, ={¢1,92,...,90n+1} is a Tchebycheff system on [a, b] then the nth order
divided difference of a function f : [a, b] — R on the distinct points x; € [a, b],
ke{l,2,...,n+ 1}, can be defined, due to the results from [11], by the following
recurrence:

For il = L0 (7)
@1(x1)
[]:n—l;-XZa"'1xn+1;f]_[]:rl—l;-xlv""xn;f]
[]:n;x 7--'7-xn 7 ]= .
' it [Faet1; 22, oy Xt 15 @t ] = [Fu—15 X15 -+, X5 @ng1]
®)

G. Cristescu [4] obtained in 1977 another recurrence formula for divided differ-
ences in a trigonometric case Tchebycheff system. It will be presented in the
last section of this chapter. More recently, M. Bessenyei [2] obtained characteri-
zation results of the Tchebycheff systems and the related divided differences by
means of an interesting geometry associated to these kinds of sets of functions. Let
wo, Wi, ..., Wy : [a, b] = R be positive and continuous functions. Define
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@1(x) = wo(x),

@2 (x) = wo(x)/ wi(t)dt,

X 5] th—1
<Pn+1(x)=w0(X)/ wl(ll)/ wz(&)m/ wy () dty -+ -dir dty.

The set F,, = {¢1,¢2,...,¢n+1} 1s said to be a complete Tchebycheff system on
[a, b], i.e. Fi is a Tchebycheff system for k € {1,2,...,n + 1} (see [8]).

2.2 Convexity with Respect to Tchebycheff Systems

T. Popoviciu [17] considered in 1936 high order convex functions with respect to
a T-system. E.F. Beckenbach [1] independently formulated in 1937 the same def-
inition as T. Popoviciu using a family of functions with interpolation properties.
E. Moldovan (Popoviciu) also defined the high order convex functions with respect
to an interpolating set of functions in 1955. While the most of the results obtained
in generalized convexity by E. Moldovan (Popoviciu) are in the linear framework,
she also approached few non-linear topics in her research [15]. For example, she de-
velops mean theorems for nth order convex functions with respect to a Tchebycheff
system, where the convexity is defined by means of the manner of sign changing
of the difference between the value of the function and the interpolation opera-
tor of corresponding order with respect to the Tchebycheff system. Unfortunately
[15] is published in Romanian language only. So, [2] and [18] contain some of
the results of E. Popoviciu, independently derived, since the authors could not read
[15].

As usual (see [9]), one can define convexity concepts with respect to a Tcheby-
cheff system:

Definition 3 A function f : [a, b] — R is said to be nth order convex (resp. non-
concave, polynomial, non-convex, concave) with respect to the Tchebycheff system
Fo if

[Fos X1s oo Xnp1s f1> (=,=, <, <)0, 9

whenever x; € [a, b], k € {1,2,...,n+ 1}, are distinct points.

The cone of non-concave functions of order n with respect to F, is denoted by
Ky (Fn; la, D).

The definition of T. Popoviciu and E.F. Beckenbach is the same, but T. Popoviciu
followed, basically, the linear direction opened by definition 3, while E.F. Becken-
bach developed the nonlinear line. Recently, M. Bessenyei [3] and S. Wasowicz
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[18] obtained both identic and new results on the convexity with respect to Tcheby-
cheff systems and also with respect to interpolation set of functions, in the nonlinear
case.

2.3 Functions with Bounded Variation with Respect
to a Tchebycheff System

The succession of generalizations of the concept of function with bounded variation
started in 1924 by N. Wiener’s results [19]. He introduced the concept of p-bounded
variation in order to generalize the classical concept of function with bounded vari-
ation. He replaced the absolute value of the differences of values of function on the
division points by the p-power, discussing the properties related to various types
of p. L.C. Young (1937) defined functions with ®-bounded variation, replacing the
p-power of N. Wiener by a general function ®, having some smoothness prop-
erties (see [21]). This direction of research resulted in Musielak and Orlicz type
of bounded variation [12]. T. Popoviciu [16] defined in 1934 the concept of nth
bounded variation with respect to T-systems. E. Moldovan (Popoviciu) [10] defined
in 1957 the nth bounded variation with respect to an interpolation set of functions.
The concept of function with nth bounded variation with respect to a particular
trigonometric Tchebycheff system was studied in 1977 by G. Cristescu [4]. In the
same year, L. Lupas [9] approached the notion of nth bounded variation with re-
spect to a Tchebycheff system. As one can see, this topic was largely studied during
1930-1980, within the convexity and approximation school opened by T. Popoviciu
in Cluj-Napoca. This domain of convexity research moved a little west, to Debre-
cen, during the last two decades of the XXth Century and the beginning of the third
millennium.

Definition 4 The nth order variation of f with respect to F,, on (d) € D41 is the
number

n
Va(Fs d ) =Y _|1Fs iy ooy Xins f1= [Fs Xit s Xing1s f1]- (10)
i=1
The total variation of function f with respect to J,, on [a, b] is the number
Vi (Fu: [a., b): f) = sup{Va(Fui d: )| (d) € Dy }. (1D

Function f is said to be of nth order bounded variation with respect to JF, if
Vo (Fn; la, b]; f) is finite.

In the sequel, BV, (F,; [a, b]) denotes the real linear space of functions with nth
order bounded variation with respect to the Tchebycheff system J,,. We remind few
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properties of this kind of functions. First, if a function has its nth bounded variation
with respect to F, then its nth order divided difference with respect to F;, is bounded
on every subset of (a, b). If n > 0, if the functions of the system F,, are continuous
on [a, b] and if f is a function with nth order bounded variation with respect to the
Tchebycheff system F,, then f is continuous.

2.4 Representation Theorems for Functions with Bounded
Variation with Respect to a Tchebycheff System in Particular
Cases

L. Lupas (1977) obtained the following Jordan type representation theorems for
functions with bounded variation with respect to a complete Tchebycheff system in
casesn=0and n = 1.

Theorem 5
BVy(Fo; [a, b]) = Ko(Fo; [a. b]) — Ko(Fo; [a, b]). (12)

Definition 6 If w is an increasing function on [a, b] then the derivative of f with
respect to w on xq € [a, b] is Dy, f (x0) = lim,_, y, %

It is obvious that if both w and f are differentiable in classical sense and
w’(xg) # 0 then f has a finite derivative with respect to w. Also, if w is differen-
tiable in classical sense, with w’(xg) # 0, and f has a finite derivative with respect
to w then f is differentiable in classical sense.

This kind of derivative makes useful the Stieltjes integration in the framework of
behaviors with respect to complete Tchebycheff systems, in order to deduce prop-
erties as the following one.

Theorem 7 If F1 = {¢1, 92} is a complete Tchebycheff system defined as above by
means of the increasing continuous functions wq, w1, then

BVi(Fi;[a,b]) = K (Fi; [a. b]) — K1 (Fi; [a, ). (13)

The proof of this theorem is in [9], using successive Stieltjes integration of f with
respect to wo, wi. This theorem is generalized in the sequel. In particular smooth
cases the Riemann integration may replace the Stieltjes integration. This happens,
for example, in the trigonometric case that will be discussed in the last section of
this chapter.



Jordan Type Representation 157

3 Representation Theorems for Functions with Bounded
Variation of Superior Order with Respect to a Tchebycheff
System

3.1 Representation Theorem in Case of Complete Tchebycheff
Systems

Theorem 8 If F, is a complete Tchebycheff system defined as above by means of
increasing continuous functions, then

BVn(-Fn; [avb]) = Kn(-Fn; [a,b]) - Kn(fn; [avb]) (14)

Proof Starting from the result from [9], we proceed by induction. The proofs of the
particular cases n = 0 and n = 1, mentioned in the previous section. Now, let us
define

1

8n = E[Vn (]:n; [a, x]; f) + Dwnwn,lmwlff(x) - Dwnwn,1~~w1f+(a)]’ (15)

1
hp = _[Vn (-Fn’ [a, x]; f) - Dwnw,,,y--wlff(x) + Dw”w”,1-~w1f+(a)]- (16)

2
We Stieltjes integrate g, and &, n times, successively with respectto wy, wo, ..., wy.
The results are two nth order non-concave functions with respect to F,,, denoted G,
and H,. Now it is easy to prove that f = G, — Hj,. O

3.2 Representation Theorem in Case of General Tchebycheff
Systems

Like in the classical nth order convexity [16], one can prove the following auxiliary
results.

Lemma 9 Every function f :{x1,x2,...,Xn} — R is the difference, f = o — B,
between two non-concave functions of orders —1,0, 1,2, ..., n with respect to F,.

Proof Let us consider x; < x3 < --- < x;, and let us remark that it is easy to chose

a(xy)
>
@1(x1)

and large enough such that we obtain also

B(x1)
>
@1(x1)
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Also, one can take
a(x2)
@1(x2)

large enough to satisfy the following inequalities:

>0

[F;x1,x20; 0] >0,
B(x2) >0,
[F; x1,x2; B]1 >0,

etc. Let us consider the system of m linear equations

[Fus xiy ooy Xpr150l=x, ifke{0,1,...,n},

[Fui X, Xig1, ooy Xigng s 0l =i, ifie{l,2,....m—n—1}

with the unknowns o (x1), «(x2), ..., @(x;;). Taking into account that the points are
increasingly ordered and using the recurrence formula for the divided differences
with respect to F,, one can determine the unknowns o (xx) as a linear function of A;
and p; numbers with nonnegative coefficients. Let us take the following system of
inequalities

[[Fns Xis oo Xigrs S+ [Fns Xi oo Xigs S
2 9

[Fns Xis ooy Xipks 0] = a7
fori=1andk €{0,1,...,n}, respectively fork =n+1andi e {1,2,...,m—n+
1} and o* a solution of this system. Let « be the function which satisfies this system
in the extreme case of equalities. From the above reasoning it follows that

o (x;) = a(x;) (18)

for i € {1,2,...,m}. All the equalities hold in the extreme case of equality of the
previous inequalities system. The decomposition of f may be achieved in non-
unique manner, depending on the parameters used in the above described construc-
tion. Among all these solutions there is one which is minimal, with respect to the
punctual order between the functions. It is easy to prove that it is the one obtained
in the previously discussed equality case. U

Lemma 10 [f f : {x1,...,xu} — R then there are two non-concave functions o :
{x1,...,xm} = Rand B : {x1,...,xn} = R, of orders —1,0, 1,2, ..., n, such that
f=a—pBand

1. max{|[Fn; Xks -« o> Xkt 13 @l |k € {1,...,m — k — 1}} < max{|[F,; xx,---,
Xetnt1s fINk € {1,...om — k — 1}} and max{|[Fn; Xk, ..., Xk4nt1; Bl 1k €
{1,....,m —k —1}} <max{|[Fn; Xk, -, Xkgn+1; fU N kE{l, ..., m—k —1}}.

2. Va(Fusla, bl a) < Vi (Fn; la, bl; f) and Vy (Fy; la, bl; B) < Va(Fns la, b f),

where [a, b] is the minimum interval containing {x1, ..., Xn}.



Jordan Type Representation 159

3. max |«| and max |B| depend on the properties, up to level n, of f and on the
variation of the divided differences of the functions of the Tchebycheff system
between the first n and last n of the points {x1, ..., Xp}.

Proof The proof of the inequalities from (1) and (2) are immediate since one can
obtain functions o and B by taking into account the previous construction of the
decomposition on a finite domain. The extremal conditions are a consequence of
the fact that functions « and § are chosen as the functions making sharp the system
of inequalities (17). So, they are determined to satisfy the system of equations:

Sx) =a(x) — B(x)
on {xy,..., Xy} and

Fus Xis ooy Xighs Fons Xis s Xk
[Fos Xis oo Xigps 0] = [[Fns xi Xi+k f]|2+[ ns Xi Xi+k f], (19)

fori=1,ke{l,2,....,n+1}andifk=n+2then1=1,2,...,.m —n—2.
Now, in order to prove (3), one has:

\[fn;xi,...,x,-+k;a]| 5max{|[f,,;x,-,...,x,-+k; f]| lke{l,...,m —k}},
forke{l,2,...,n},and
[ Xis s Xiks ]

=

[Vi(Fn: [a, bl; f) + 2max{|[Fos xiv .., Xigns f1| Tk €{1,....m —n}}],

N —

fork € {1,2, ..., m —n}. This inequality is obtained by adding (19) in a convenient
manner. Let us denote by

Ar(f)= max{|[.7:n;x,-,...,xi+k;f]| |k€{1,...,m—k}},
Diffy = [Fi; Xm—k+1s -+ s Xms Prer1] — [Fhs X155 Xkes Q1]

Then, using (8), one gets
[t %t Xin-1: @] < Aui (F) + 5 Dt [Va (o [, b1: £) + A0 ()],

fork € {2,...,m —n + 1}. Tteratively repeating the procedure, one obtains

n i ' n
el < Y itAi(f) [ | Diffi +%[vn(fn; la,b]; f) + An ()] [ | Diffx.
k=1

i=1 k=1

on {xq,...,Xy}. A similar formula can be deduced for function 8. It is obvious that
it completely proves the lemma. g
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If the Tchebycheff system F;, reduces to the classical polynomial case, then the
inequalities obtained in order to prove Lemma 10 reduce to the inequalities from
[16, p. 29].

Theorem 11 Let us suppose that F,, contains continuous functions. If function f :
M — R, M C [a, b] an interval, has the nth bounded variation with respect to JF

then there are two functions o : {x1,...,xm} —> Rand B : {x1,...,xn} — R, non-
concave with respect to F,, of orders —1,0, 1,2, ..., n, such that
f=a—-p (20)
and also
Vn(fn;MQOl)Svn(fn;M;f)a (21)
Vn(fn;M;ﬁ)SVn(]:n;M;f)- (22)

Proof The proof follows the density reasoning, as that one from the classical poly-
nomial case (see [16]). Since f is continuous on M then it is completely determined
by its values on a countable subset M* having the property that M \ M* is included
into the derived set of M*. It is possible to generate set M* by a sequence of fi-
nite sets M C My C --- C M C ---. Using Lemma 10 on each member of this
sequence of subsets of M, one generates two sequences of functions:

01,00, ..., 0, ...
B, B2, Bss e
such that
f=ar— B
for k =1,2,.... All the members of the two sequences of functions are equally
bounded, non-concave with respect to F,, of orders —1,0, 1,2, ..., n and their nth

order total variation with respect to F,, do not exceed V,,(F,; M; f). Then the two
sequences are convergent respectively to functions & : M* — R and 8 : M* — R,
that have the properties:

Vi (Fus M3 &) < Vi (Fu: M5 f),
Vi (Fus M*; B) < Vi (Fu: M5 f),
with @ and B8 non-concave with respect to F,, of orders —1,0,1,2,...,n and
f=a—8

on M*. The continuity of all the functions help in extending the result to all M. O

The problem of finding a minimal, according to some meaning of minimality that
should be described, can also be approached. We suspect that there is an extremal
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property in the general case, which is quite similar to that one from the classical
polynomial Tchebycheff system.

4 Example

4.1 Divided Differences with Respect to a Trigonometric
Tchebycheff System

Let us consider the trigonometric Tchebycheff system
ﬁ,:{sinx,sian,...,sin(n+l)x}, (23)

which is a complete Tchebycheff system on every interval [a, b] C (0, ). It is gen-
erated by mens of the above described method, using functions wy (x) = cg sinx,
with specific ¢x € R, k € {0, 1,2,...,n}. In particular, wp(x) = sinx, w(x) =
—2sinx, wy(x) = —4sinx, w3(x) = —6sinx, etc. In this case, the following re-
currence formula was deduced in [4]:

Proposition 12 The divided difference of a function f :[a, b] — R, with respect to
the Tchebycheff system T, on knots x1, . .., xn+1 satisfies the following recurrence
relation:

To—t:x2, oo Xna1s f1=[Tn=1; X1, ..., Xn;
[E;Xl’---axn—&-l;f]:[n 1, X2 n+1 f] [ n—1sA1 n f] (24)
2(coSXp4+1 — COSX1)

forn>1.

Proof The proof of this formula consists either in direct calculus, as in [4], or in
the remark that the divided difference of order n is the coefficient of the term
of the highest order of the interpolation operator L(7y; x1, ..., Xy+1; f) of func-
tion f defined by means of the Tchebycheff system 7, on xy, ..., x,41. Denoting
by

n+l n+1
u(x)= H(cosx — COSXf); ui(x) = H (cosx — cosxy), 25)
k=1 k=1,ki
one can write
ot u;(x)sinx
L(Tw: X10 oo Xngts )= i) — (26)
P u; (x;) sinx;

and deduce the following recurrence formulas:
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L(Tps Xty ooy Xnets f)=L(Tn—1:%1, ..., Xn3 f)
T K1 s s fl—SINY )

COSX — COS Xp41
L(Tpix1, oo Xng1s f) = L(Ta—13 %2, .o, Xnge15 f)
+ [T X1, oo Xt f12%u1(x) sinx. (28)
Computing the difference of the two formulas one gets

L(Tns X1, %13 f)

_ (cosx —cosx))L(Tp—1;%2, ..., Xp41; f) —(cosx — cosxy 1) L(Tp—1: X1, ..., Xns f)
B COSXp 1| — COSX] '

(29)

From this last recurrence one can easily deduce the above mentioned recurrence
formula for the divided difference with respect to 7. O

Remark 13 The nth order derivative successively computed with respect to the func-
tions of the particular trigonometric Tchebycheff system 7, considered above, re-
duces to the classical nth order derivative, according to the following transforma-
tion:

(=Dt fO=Diy)

2-I(sinx)" (n—1)! (30)

Dw,,wn,lmwl (fHx) =

4.2 Representation Theorems for Functions of Bounded Variation
with Respect to a Trigonometric Tchebycheff System

Theorem 8 becomes, in the framework of the trigonometric Tchebycheff system 7,

Proposition 14 [f function f is with nth order bounded variation with respect to
Fn =T, then,

BV, (Tn: [a, 1) = Ko (To: [a, b) — Ko (Tn; [a, B1). 31)
In this case, on a convenient domain [a, b], the two functions g,, and h,, become

oV A CO NI G b fi”_”(a)}
2n=l(sinx)" (n—1)! 2" I(sina)* (n—1)! |’
(32)

[ D o € W G ) S e
2n=lsinx)" (n—1)! 2"~ I(sina)" (n—1)! i|
(33)

1
gn = §|:Vn(7;l; la,x]; f) +

hn=%[vn(’rn;[a,x]; f) -

and the n times successive Riemann integration gives the required decomposition.
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On Vector Hermite-Hadamard Differences
Controlled by Their Scalar Counterparts

Roman Ger and Josip Pecaric

Abstract We present a new, in a sense direct, proof that the system of two func-
tional inequalities

(-22) - o
2 y—x Jy

HF(X)+F(Y)_ 1 /yF(t)dtgf(x)+f(y)— 1 /yf(l‘)dl‘
2 y—xJ, 2 y—xJx

is satisfied for functions F' and f mapping an open interval / of the real line R
into a Banach space and into R, respectively, if and only if F yields a delta-convex
mapping with a control function f.

A similar result is obtained for delta-convexity of higher orders with detailed
proofs given in the case of delta-convexity of the second order, i.e. when the func-
tional inequality

[r (57 e —ar(35%) o

§3f(2x3+y> o) —3f<“;2y> .

< [ rwa- f(#)

y =X Jx

and

holds true provided that x, y € I, x < y.

Keywords Hermite-Hadamard type inequalities - Delta-convex map - Control
function - Delta-convex map of higher order

Mathematics Subject Classification 26B25 - 39B72 - 39B62

1 Background

The notion of delta-convexity in Banach spaces has been introduced by L. Vesely
and L. Zajicek in [8] as a generalization of functions which are representable as a
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difference of two convex functions. The latter ones yield a natural analogue of func-
tions of bounded variation which are representable as a difference of two monotonic
functions. The definition of delta-convexity proposed by these two authors reads as
follows:

Given two real normed linear spaces (X, || - ||), (¥, ] - ||) and a nonempty open
and convex subset D C X, we say that amap F : D — Y is delta-convex provided
that there exists a continuous convex functional f : D — R such that f + y* o F'is
continuous and convex for any member y* of the space Y* dual to Y with ||y*|| = 1.
If that is the case then F is called to be controlled by f or that F is a delta-convex
mapping with a control function f.

It turns out that a continuous function F : D — Y is a delta-convex mapping con-
trolled by a continuous function f : D — R if and only if the functional inequality

HF<x+y> _F)+F() H SO+ _f(x+y)

2 2 2 2

is satisfied for all x, y € D (see Corollary 1.18 in [8]).

L. Vesely and L. Zajicek have shown also that any delta-convex mapping is lo-
cally Lipschitzian (cf. Proposition 1.10 in [8]). Both continuity assumptions may
considerably be weakened (see R. Ger’s paper [3]).

In the present paper we offer an alternative (direct) proof of a result from re-
cent paper [5] of R. Ger concerning vector counterparts of the celebrated Hermite-
Hadamard inequalities

¢<X+y>§ 1 y(p(t)dt5<p(X)+<p(y)
2 y—xJ 2

satisfied for convex real functions on an interval. The focus of our attention lies in
exhibiting strict connections between the inequalities discussed with the notion of
delta-convexity, also of higher orders.

2 An Alternative Proof

We begin with a somewhat technical lemma.

Lemma Let I stand for an open interval in R and let (Y, | - ||) be a real Ba-
nach space. If that a locally Bochner integrable function F : I — Y and a locally
Lebesgue integrable function f : I — R satisfy the functional inequality

HF(x+y) _FW+F) ” SO+ _f<x+y
2 2 2 2

), x,yel, (1)

then for every A from the unit interval [0, 1] and for all x, y from I one has
|F(rx + (1= 2)y) —AF(x) — (1 =D F ()|
<A@+ A=2F) = f(x+ A =2)y). 2)
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Proof With the aid of Theorem 1 from R. Ger’s paper [3] we obtain easily the delta-
convexity of F'. Inequality (2) results now from Proposition 1.13 (assertion (iii)) in
L. Vesely & L. Zajicek [8]. g

Among others, the following theorem has been proved in [5].

Theorem 1 Under the assumptions of Lemma the following two inequalities hold

true:
HF<X+)7>_L yF(t)dt fL/yf(t)dt—f<m> 3)
2 y—xJ, y—xJy 2
and
HF(x)ﬂLF(y)_ 1 /yF(t)dt §f(x)+f(y)— ! /yf(t)dt 4)
2 y—xJ; 2 y—XJx

forall x,y from I, x # y. In particular, F yields is a delta-convex mapping with a
control function f.

Conversely, assuming that a locally Bochner integrable function F : I — Y and
a locally Lebesgue integrable function f : 1 — R satisfy the system of functional
inequalities (3) and (4) we have (1) and hence also (2).

The basic idea of the proof presented in [5] was to reduce the problem to the
scalar case and to apply the classical Hermite-Hadamard inequalities. In what fol-
lows we present a completely different (in a sense “direct”) proof of the result in
question.

An alternative proof of Theorem I To show that inequality (3) holds true, fix ar-
bitrarily x, y from I, x # y, and put, for brevity, u := (x + y)/2, v :=(y — x)/2.
Then, by a standard change of variables, one has

1 2 y 1
/ F(u—l—tv)dt:—/ F(t)dt:/ F(u—rv)dt
— y_-x X —1

1

and a fortiori,

1
HF(X“Ly>—— F(t)dr
2 y =X Jx

1
= HF(H) - i/l{F(u +1v) + F(u — tv)} dt

1 _
Z%H[ <F(u)_F(u+tv)—|—F(u tv))dtH
-1

2
1 1
<_/
=2/,

Fu+tv)+ F(u —tv)

FQu) — >

‘dt
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1 _
<1/‘ (f(u—l—tv)—l—f(u tv)—f(u))dt
-1

-2 2
1 Y x4+
=— f(t)dt—f<—y>,
Yy =X Jx 2
by means of (1).
Similarly,
F F 1 Y
H @W+FQ) / P
2 y—x
F F LY (1=t 141t
_ M__/ P g,
2 2 ) 2 2

1 1—1¢ 1+1 1—1t¢ 141

1 1
< —
_2/_1

1 f1(1- 1+¢ 1— 1+
<—/1{ @+ ) — f( —’y)}dt

2

t 1+1¢ 1—1¢ 1+1¢
F(x)+ > F(y)—F( 5 x+—y)Hdt

-2
1 y
_fO+fG) / Foydr,
2 y—xJi
by means of the Lemma and the inequality (4) is proved. U

Remark 1 To prove inequality (3) we were not using the Lemma. Thus our present
proof of (3) is even “more direct”.

Remark 2 Inequality (2) is equivalent to delta-convexity for mappings defined on
an open interval or, more generally, on a nonempty open convex subset of R”. That
equivalence fails to hold for infinite dimensional domains. Indeed, it suffices to take
an arbitrary discontinuous linear functional F and an arbitrary convex (not neces-
sarily continuous) functional f to get (2) and to miss delta-convexity.

3 Hermite-Hadamard Type Inequalities for 2-Convex Functions

The method used in [5] may, however, be applied in numerous different contexts
concerned with inequalities. To visualize it, in what follows, we will examine delta-
convexity of higher orders.

It is well-known that the functional equation

AMlo(x) =0,
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where Ag stands for the pth iterate of the difference operator Ap@(x) := @(x +
h) — ¢(x), of polynomial functions characterizes the usual polynomials of at most
nth degree in the class of continuous functions ¢ : R — R. Continuous solutions
¢ : R — R of the functional inequality

Ao =0,
where x € R, h € (0, 00), are just C"~!-functions whose derivatives ¢~ are con-

vex (see e.g. M. Kuczma [7, Chapter XV]). Therefore, such functions are used to be
called n-convex functions. For n = 1 the latter inequality states that

(p(x+y) _ M+

, x,yeR,
2 )= 2 Y

which is nothing else but the functional inequality defining Jensen convexity. Moti-
vated by this fact, in what follows, we shall be using the operator

as n+1 j j
n o _1\n+l=j _
8p(x) =Y (=) ,( j )so((l n+1)x+n+1y),

j=0

instead of AZH. We have
lp(x) = A p(x);
1
thus ¢ is n-convex if and only if
x<y = &px)=0. 6))

In a natural way, this leads also to the notion of delta-convexity of higher orders (see
[4]):

A map F : 1 — Y is termed delta-convex of nth order if and only if there exists
a (control) functional f : I — R such that for all x, y € I one has

x<y = |&Fm| =<8 f). (6)

For n =2 relation (5) may equivalently be written in the form

oy = e tle(ier D) <30(2 s L) 4 Lo
*=Y gP TG 3T Y ) =g\ T3 ) T oY)

It turns out (see M. Bessenyei [1, Corollary 1.13]) that for continuous 2-convex
function ¢ : I — R the following Hermite-Hadamard type inequality holds true:
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1 3 /1 2 1 y
x,yel, x<y = —p@)+-p|lzx+tzy] <——[ @@dt
4 47\3 3 y—xJ

3 2 n 1 n 1 o)

=293 T3Y) T
This gives rise to look for analogues of Theorem 1 for higher order delta-convexity.
For the sake of simplicity, we shall confine ourselves to order 2.

Theorem 2 Let I stand for an open interval in R and let (Y, | - ||) be a real Banach
space. Assume that a locally Bochner integrable function F : I — Y and a locally
Lebesgue integrable function f : I — R satisfy the functional inequality

H3F(x+32y> +F(x) —3F(2x3+y> _ F(y)H

§3f(2x3+y> + o) —3f<”2y

whenever x,y € I, x < y. Then the following two inequalities hold true:

3 (x+2y 1 1 Y
H4_1F< 3 )—I—ZF(x)—Tx/ F(t)dt

1 2 1
< f(t)dt——f(x+ y)—zf(X) ®)

) —f) (7

y—x

and

3 [2x+y) 1 1 /y
°F “F(&)— —— | F(@)dt
(55 raro -5 [ Fo

2 1 1 y
<> f( x+y>+1f(y)—— F@di ©)
y—X Jx

forall x,y fromI,x <y.

Conversely, assuming that a locally Bochner integrable function F : I — Y and
a locally Lebesgue integrable function f : I — R satisfy the system of functional
inequalities (8) and (9) we have (7), i.e. F yields a delta-convex mapping of the 2nd
order with a control function f.

Proof Assume (7) and fix arbitrarily a continuous linear functional y* from the unit
ball of the space Y™ dual to Y. Since, for all points x, y € I such that x < y one has

H3F(x +32y> +FG) —3F(2x3+y> _ F(y)H
z* (3F<x +32y> +F(x) — 3F(2x3+y) _ F(y))'

= sup
Z*eY*, flz*|<1
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2 2
32*0F<x—|;5 y) +z*oF(x)—3z*oF<xT+y> —z*oF(y)',

by means of (7), we infer that

= sup
ZreY*,Jlz¥|I =1

ty

2 2
3y*oF<x+3 y>+y*oF(x)—3y*oF< a

S3f<2)¢3—i—y

or, equivalently,

)—y*oF(y)

2y

)+f(y)—3f(xz )—f(x), x,yel, x<y,

(" oF+f)(x)+3(y*oF+f)<x+32y)

E3(y*oF+f)(2x3+y> + ("o F+ f)(y), x,yel, x=<y,
which states nothing else but the 2-convexity of the functional ¢ := y* o F 4 f.
Since, on account of the local Bochner integrability of F' and the local Lebesgue
integrability of f, the functional ¢ is locally Lebesgue integrable as well (in partic-
ular, Lebesgue measurable), we infer that ¢ is continuous (see e.g. M. Kuczma [7,
Theorem 15.5.4] or R. Ger [2]). With the aid of M. Bessenyei’s result presented in
[1, Corollary 1.13] we deduce the inequalities

3 (x+4+2y 1 1 Y 3 (2x+y 1
- - <— ndr < - -
4<p( 3 >+4¢)(x)_ y_x/x p()dt < 4¢)( 3 )T e»

valid for all x, y from 7, x < y. This due to the well known theorem of E. Hille (see
e.g. Hille-Philips [6, Theorem 3.7.12]) and the definition of ¢ implies that

wf 3 (*+2y 1 1 Y
y<4F< 3 )+4F(x) y_x/ F(t)dt)

x+2y 1
>— Zf(x)’

<; f(t)dt——f(
y—x

valid for all x, y € I, x < y. Replacing here y* by —y™* gives

wf3 [ x+2y 1 1 Y
y <ZF< 3 )+ZF(X)_)7—X,/ F(t)dt>‘
2 |
<—/ f(t)dt——f<x+ y)—zf(x),

for all x,y € I, x <y, as well. Now, since the choice of the functional y* was
unrestricted, we conclude that the inequality (8) remains valid for all x,y € I, as
claimed. Inequality (9) may be shown quite analogously. Since the latter part of the
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assertions results immediately from summing up inequalities (8) an (9) side by side
and applying the triangle inequality, the proof has been completed. g

4 Concluding Remark

Right before the formulation of Theorem 2 we have mentioned that (for the sake of
simplicity) we shall confine ourselves to delta-convexity of order 2. Actually, it is
easily seen that our proof method carries over to the delta-convexity of higher order
because the corresponding higher order estimates of the integral mean (higher order
Hermite-Hadamard inequalities) established in M. Bessenyei’s dissertation [1] are at
our disposal. In particular, for delta-convexity of order 3 an analogue of Theorem 2
reads as follows.

Theorem 3 Let I stand for an open interval in R and let (Y, | - ||) be a real Banach
space. Assume that a locally Bochner integrable function F : I — Y and a locally
Lebesgue integrable function f : I — R satisfy the functional inequality

HF(x)—4F<3x:y>+6F<x;y)—4F<xz3y)+F(y)H
<f(x)+6f< >+f()—4f(3x+y> 4f<”3y)

whenever x,y € I, x < y. Then the following two inequalities hold true:
1 /3 3 3 3—4/3 3 3 1 Y
~F +\/_ \/_ —F \/_x+ +fy — / F(t)dt
2 6 6 2 6 6 y—x Ji

3+6f 3—6J§>__f<3f 3+6ﬁ>

<L f(t)dt——f<
y—x

and

1 2 [(x+y\ 1 1 />’
-F -F -F(y) — —— F(t)dt
H6 () + 3 ( . )+6 W= | FO

< éf(x)+§f<x+

y 1 1 Y
+ofO)——— | fdr
6 y—xJi
forall x,y fromI,x <y.

Conversely, if a locally Bochner integrable function F : I — Y and a locally
Lebesgue integrable function f : 1 — R satisfy the system of the latter two func-
tional inequalities, then F yields a delta-convex mapping of the 3rd order with a
control functional f.
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Functions Generating Strongly Schur-Convex
Sums

Kazimierz Nikodem, Teresa Rajba, and Szymon Wasowicz

Dedicated to the Memory of Professor Wolfgang Walter

Abstract The notion of strongly Schur-convex functions is introduced and func-
tions generating strongly Schur-convex sums are investigated. The results presented
are counterparts of the classical Hardy—Littlewood—Pélya majorization theorem and
the theorem of Ng characterizing functions generating Schur-convex sums. It is
proved, among others, that for some (for every) n > 2, the function F(x1, ..., x,) =
f(x1) + -+ f(xy,) is strongly Schur-convex with modulus c if and only if f is of
the form f(x) = g(x) + a(x) + ¢||x||?, where g is convex and a is additive.

Keywords Schur-convex functions - Strongly Schur-convex functions - Strongly
convex functions - Strongly Jensen-convex functions - Strongly Wright-convex
functions - Doubly stochastic matrices - Majorization

Mathematics Subject Classification Primary 26B25 - Secondary 39B62

1 Introduction

Let Z C R be an interval and x = (x1,...,x,), y=(1,..., yn) € Z", where n > 2
(throughout the paper n will be always assumed to be a natural number). Following
Schur [14] (cf. also [6]) we say that x is majorized by y, and write x < y, if there
exists a doubly stochastic n X n matrix P (i.e. matrix containing nonnegative ele-
ments with all rows and columns summing up to 1) such that x =y - P. A function
F : 7" — R is said to be Schur-convex if F(x) < F(y) whenever x <y, x,y € Z".

It is known, by the classical works of Schur [14], Hardy-Littlewood—Pélya [2]
and Karamata [4] that if a function f : Z — R is convex then it generates Schur-
convex sums, that is the function F : 7" — R defined by

Fx)=F(1,...,x) = f(x1) +--+ f(xn)

is Schur-convex. It is also known that the convexity of f is a sufficient but not
necessary condition under which F is Schur-convex. In 1987 C.T. Ng [9] gave a full
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characterization of functions (defined on a convex and open subset of R") generating
Schur-convex sums.

In this note we introduce the notion of strong Schur-convexity (in X", where X
is an inner product space) and we present a counterpart of the Ng representation
theorem for functions generating strongly Schur-convex sums.

Let (X, || - ||) be a (real) inner product space. We consider the space X" (n > 2)
with the product norm

lxl =\/||x1||2+"'+ ll2 112, x=(x1,..., %) € X"

Similarly as in the classical case we define the majorization in X”. Namely, given
two n-tuples x = (x1,...,x,), ¥y = (¥1,..., yn) € X" we say that x is majorized
by y, written x < y, if

(-xl?"-v-xn)z(yla""yn)'P

for some doubly stochastic n x n matrix P.

Note that if x < y then ||x||? < || v]|%. It follows, for instance, from the fact that
the function | - |? : X — R is convex and so it generates Schur-convex sums (the
proof is exactly the same as in the classical case of X = R; cf. also the proof of
Theorem 1 below, where we repeat the argument for the sake of completeness).

Let D be a convex subset of X and let ¢ > 0. Recall that a function f : D - R
is called strongly convex with modulus c (cf. e.g. [3, 11, 13]) if

flex+A=0y) <tf)+A=0f) —ct(—1)]x -yl (1)

forall x,y e D and ¢ € [0, 1]; f is called strongly Jensen-convex with modulus c if
condition (1) is assumed only for ¢ = %, that is

f<x+y) IOHFO) e

2
- ) ) D'
> 2 ZIx=yl% xye

Recall also that f is said to be strongly Wright-convex with modulus c (see [8]) if

flex+A=0y)+ F(A=Dx+1y) < fO)+ f) =2t =D)lx — y|?

forall x,ye D and t € [0, 1].

The concept of strong convexity was inspired by the optimization theory and
many properties and applications of it can be found in the literature. For some re-
cent results concerning strongly (Jensen-, Wright-) convex functions the reader is
referred to [1, 7, 8, 10, 12].

Motivated by the above definitions we propose a strengthening of the notion of
Schur-convexity. Let D be a convex subset of X, ¢ > 0 and n > 2. We say that
a function F : D" — R is strongly Schur-convex with modulus c if

xxy = F@<FO —c(lyl*—lxl?)

for all x, y € D. Note that the usual Schur-convexity corresponds to the case ¢ = 0.
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2 Schur-Convex Sums

In this section we prove that strongly convex functions generate strongly Schur-
convex sums and functions generating strongly Schur-convex sums are strongly
Jensen-convex (and hence, under some regularity assumptions they are strongly con-
vex).

Theorem 1 Let D be a convex subset of an inner product space (X, || - ||) and ¢ > 0.
If a function f : D — R is strongly convex with modulus c, then for every n > 2 the
function F : D" — R given by

F(-xls"'1xn):f(x1)+"'+f(xn)! ()C],...,xn)eDn,

is strongly Schur-convex with modulus c.

Proof Assume that f : D — R is strongly convex with modulus c. Since X is an
inner product space, the function 4 : D — R given by h(x) = f(x) — clx|?> x € D,
is convex (see [10, Lemma 2.1]). Let x = (x1,...,X,), y = (y1,..., yn) € D" and
x =x'y. There exists a doubly stochastic n x n matrix P = [#;;] such that x =y - P.
Then

n
x1=2tij)’i7 j=17‘-~7n7
i=1

and, by the convexity of /#, we obtain

hen) + -+ hix) = Zh(Ztl,y,> < ZZt,,h(yl

j=li=1
—ZZr,,hm)—Zh(yl Zrl,—h(y1)+ s h ().
i=1 j=1

Consequently,
F(x)=fx) 4+ f(xn)

=h(x1) + -+ h(x) +e(lx I + -+ llx 1)

<h(y1) + - +hw) +c(llx? + -+ [xa %)

=FOD 4+ L) = (vl + -+ Iyal®) + (el + - + [1xa1l%)

=F(y) —c(llyl* = llx?).

This shows that F is strongly Schur-convex with modulus ¢, which was to be
proved. g
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Remark 2 The converse theorem is not true. For instance, if a : R — R is an addi-
tive discontinuous function, then f : R — R given by f(x) =a(x) + x2, x € R, is
not strongly convex with any ¢ > 0 (because it is not continuous) but it generates
strongly Schur-convex sums. To see this take x = (x1,...,x,), y=1,...,Yn) €
R" (n > 2) such that x < y. Then x = y - P for some doubly stochastic n x n matrix
P = [t;;]. By the additivity of a we have

n

a(xp))+---+alx,)=alxi+---+x,) =a<ZZfijyi)

j=li=l1

ZG(ZZI,'/))[):a( yiztl‘j>=a(y1)+--~+a(yn).
i=1  j=1

i=1 j=I

Hence,

F@D)+ 4 f )
=a(x) 4+ +alem) +xf+ - +x,
=a(y)+-FaQn) +yi+ i — (T + i —xf - —x))
=fOD 4+ fOn) = (Iy1> = Ix1?).

This proves that F : R" — R defined by F(xy,...,x,) = f(x1) + -+ f(x,) is
strongly Schur-convex with modulus 1.

The next result shows that the strong Jensen-convexity is a necessary condition
under which f generates strongly Schur-convex sums.

Theorem 3 Let D be a convex subset of an inner product space (X, | - |), ¢ >0
and f : D — R. If for some n > 2 the function F : D" — R given by

Fxt,....xp)= fGx)+--+ f(xp), (1,...,x,) € D"

is strongly Schur-convex with modulus c, then f is strongly Jensen-convex with mod-
ulus c.

Proof Take y1, y2 € D and put x; =xp = %(yl + y2). Consider the points

y=01,Y2,Y2, -+, ¥2), X =(X1,X2, Y2, ..., 2)
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(if n =2, then we take y = (y1, y2), x = (x1, x2)). Now, if

1 1
Ilo ..o
1 1

7 2 0
P=10 0 1
(00 0 -+ 1

then x =y - P and x < y. Therefore, by the strong Schur-convexity of F,
F(x) < F(y) = c(lIyllI* = llx]1?).
whence

yi+y
2

2

2
). )

zf(y1 : ”) < fOD+ ) - c(nyln2 + lyal? -2

By the parallelogram law we have

1 1
Iyl + lIy2l? = Sl + I+ Sl = .

Consequently, by (2),

yity\_fOU+fO2) 2
< — vy —
f< 7 >_ 5 21yt =2l
which means that f is strongly Jensen-convex with modulus c. g

Remark 4 The converse theorem is not true. For instance, let a : R — R be an addi-
tive discontinuous function such that a(1) =0 and let # € (0, 1) with a(¢) # 0. Then
the function f : R — R given by f(x) = |a(x)| + x?, x € R, is strongly Jensen-
convex with modulus 1 (because x — f(x) — x2= |a(x)| is a Jensen-convex func-
tion, cf. [10, Lemma 2.1]), but it does not generate strongly Schur-convex sums with
modulus 1. Indeed, if n =2, x = (¢,1 —t) and y = (1, 0), then x < y, but

Fx)=la@®)|+]ad =n|+2+ (1 =02 > 2+ A -0 =F) — (IyI> = Ix1%).

Since continuous strongly Jensen-convex functions are strongly convex (see [1,
Corollary 2.2]), as an immediate consequence of Theorem 3 we obtain the following
result.

Corollary 5 Let D be a convex subset of an inner product space (X, || -||) and ¢ > 0.
If f: D — R is continuous and for some n > 2 the function F : D" — R given by
Fxt,....,xp) = fx)+ -+ f(xp), (x1,...,x) € D", is strongly Schur-convex
with modulus c, then f is strongly convex with modulus c.
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Remark 6 In the above corollary the assumption that f is continuous can be re-
placed by other, formally weaker, regularity conditions. For instance, we may as-
sume that f is bounded from above on a set with nonempty interior or f is Lebesgue
measurable (if X = R"). It is a consequence of Bernstein—Doetsch or Sierpinski
type results stating that under such assumptions strongly Jensen-convex functions
are strongly convex (cf. [1]; for comprehensive review of theorems guaranteeing
continuity of Jensen-convex functions see also [5]).

3 A Characterization

In this section we characterize the functions generating Schur-convex sums with-
out any regularity assumptions. Our result is a counterpart of the celebrated Ng’s
Theorem [9] giving a representation of functions generating Schur-convex sums.

Theorem 7 Let D be a convex subset of an inner product space (X, || - ||), f : D —
R and ¢ > 0. The following conditions are equivalent.
(i) For every n > 2 the function F : D" — R defined by

F(-xls"'1xn)=f(-x1)+"‘+f(-xn)s (-xly"'vxn)EDn’ (3)

is strongly Schur-convex with modulus c.

(ii) For some n > 2 the function F given by (3) is strongly Schur-convex with
modulus c.

(iii) The function f is strongly Wright-convex with modulus c.

(iv) There exist a convex function g : D — R and an additive function a : X — R
such that

fx)=gx) +a) +clxl?, xeD. 4)

Proof The implication (i) = (ii) is obvious.
To prove (ii) = (iii) fix y;, y2 € D and t € (0, 1). Put

x1=ty1+ U =1y, o= =0y +1ty

and, if n > 2, take additionally x; = y; =z € D fori =3, ..., n. Then, by the similar
argumentation as in the proof of Theorem 3, we have

x:(-xlv-"a-xn) ﬁy:(yl»---v)’n)
Therefore, using the strong convexity of F, we obtain
2 2
F(x) < F(y) = c(llyll* = lIx11%).

and hence
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F(tyr + A =0)y2) + f(A =)y +1y2)
< FOD+ £O2) — (> + 1y2l? = [ty + (A = Dya
— | =y + 2 ). 5)

Using elementary properties of the inner product we get

il + l1y20% = ey + (1 =0y |* = [ (1 = Dy + 132
= ly1l + Iy211?
— (Plyi 1> + A =2 y2ll® + A = O Iy1 11 + 2lly2ll® + 4 (1= ) (yily2))
=2t(1 = O)(Iyrl* = 2(v1ly2) + ly2l1*) =26 (1 = D)lly1 — vl

Consequently, from (5) we get

Fltyi+ A =0)y) + f((L=0Dy1 +1y2) < FO1) + F2) =2t (1 =Dy — y2 1%,

which means that f is strongly Wright-convex with modulus c.

The implication (iii) = (iv) follows from the characterization of strongly Wright-
convex functions given in [§8, Corollary 5].

To see that (iv) = (i) assume that f has the representation (4). Then the func-
tion h = g + ¢| - ||* is strongly convex with modulus ¢ (cf. [10]) and hence,
by Theorem 1, it generates strongly Schur-convex sums. Therefore, for any x =
1,0, x)<y=0On1,...,yn) we have

hx1) + -+ h() < h(y1) + -+ k() — c(llylI% = llx)1?).
Consequently, using the additivity of a (similarly as in Remark 2), we arrive at
Fx)=fx)+ -+ fn) =hGxD) 4+ +h() +aG) + -+ alx,)
<h(GD)+ -+ hGn) — c(IyI* = 1xl?) + alyn) + -+ alya)
= O+ -+ fOn) = (P = Ix1?) = F) = e(llyll* = lxl1?).

which shows that F is strongly Schur-convex with modulus c. This finishes the
proof. O
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Strongly Convex Sequences

Jacek Tabor, Jozef Tabor, and Marek Zotdak

Abstract Let w > 0 be a given number and / a subinterval of Z. We say that a
sequence (fx)ker 1S w-midconvex if

fk—l +fk+l
<t - IR
i < >

—w fork—1,k,k+1el.
We give various characterizations of w-midconvex sequences.

We also show that in a natural way one can derive from the above definition clas-
sical notions of convexity and strong convexity for functions defined on subintervals
of R.

Keywords Convex function - Strongly convex function

Mathematics Subject Classification 26B25 - 39B62

1 Introduction

The notion of convexity, its generalizations and modifications are usually defined for
functions with convex domains [2]. But there are natural needs (motivated in par-
ticular by applications) to consider also convexity in a more general settings [1, 4].
Using a computer we generally deal with a discrete case. In natural way there ap-
pears the idea of convexity and strong convexity for sequences. Our main aim is
to show that classical convexity, strong convexity of functions can be derived from
very simple and natural conditions of real sequences. In this chapter we define their
sequential analogue. Our definition is inspired by [4] (where the notion of convex
functions were defined for abelian groups), [3] (where so called §-convex were de-
fined) and some considerations in [7]. However contrary to [3] we do not weaken the
notion of convexity but strengthen it. One more important remark should be men-
tioned here. The definition of concave (affine) function we obtain by replacing in the
definition of convex function “<” by “>" (respectively by “="). In this chapter we
will use analogous procedure. It occurred that it leads to interesting consequences.

In the whole chapter I denotes an interval in Z, i.e. intersection of an interval in
R and Z. To avoid trivial cases we assume that / contains at least three elements.
We assume also that w > 0 is a given number.

C. Bandle et al. (eds.), Inequalities and Applications 2010, 183
International Series of Numerical Mathematics 161, DOI 10.1007/978-3-0348-0249-9_14,
© Springer Basel 2012
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Definition 1 We say that a sequence (fx)rer C R is

(i) w-midconvex if

fkfw—w fork—1,k,k+1el;
(i) w-midconcave if

ka%—w fork—1,k,k+1€l;
(i) w-midaffine if

fk=%—a) fork—1,k,k+1€l.

We present various characterizations of sequences satisfying Definition 1. At the
end of the chapter we show that our results naturally yield some convexity notions
for functions defined on subintervals of R.

2 w-Midconvex Sequences

It occurs that w-midconvexity (w-midconcavity, w-midaffinity) is closely related to
convexity (concavity, affinity).

Theorem 1 Let (fi)rer C R be a given sequence. Then the following statements
are equivalent:

(1) (fi)ker is w-midconvex (w-midconcave, w-midaffine);
(ii) there exist b, c € R such that the sequence ( fi — (wk? + bk + ¢))xes is convex
(concave, daffine);
(iii) for every b, ¢ € R the sequence ( fy — (wk? + bk + ¢))rer is convex (concave,

affine).

Proof We consider only the case when (f)xes is w-midconvex (the proof in the
midconcave and midaffinity case is analogous as it consists on replacing in the fol-
lowing considerations “<” by “>" or by “=", respectively).

Implication (iii) = (ii) is trivial.

(i) = (i). Assume that the sequence ( fy — (wk? + bk + ¢))rey is convex. Then
we have fork — 1, k,k+1€1

fi = fi — (wk® + bk + ¢) + (wk* + bk + )

i~ ot - D+ btk —1) +cl+ fir1 — ok + 1D? + bk +1) +c]
- 2

+ wk® + bk + ¢
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_ St F S
B 2

(i) = (iii). Suppose that ( fx)xes is w-midconvex. Fix arbitrarily b, ¢ € R and define
gk = fi — (0k* + bk +c) forkel.

Then we have fork — 1,k k+1¢el

:fk_(wk2+bk+c)5%— — (wk® + bk +¢)

_ fier— (k= D2+ bk — 1) 4 0) + fir1 — (@k+ D+ bk + 1) +c)
- 2

_ 8k—1 T 8k+1

_f. D

Now we are going to estimate f; by the convex combination of elements fi_;,
Jfk+m and some antidilatation depending on w, k, [, m.

Theorem 2 Let (fi)rer be a given sequence. Then
1) (fi)ker is w-convex if and only if

m—k
Jie <
m—1

k—1
fit ——fm—om—k)k -1 (1)
m—1

forl,kkmel,l<m,l <k<m,
(1) (fr)ker is w-concave if and only

k k—1
foz S fi e f = o =R k=) @
forl,kkmel,l<m,l <k <m;
(i) (fx)ker is w-affine if and only
k k —
fo="— f1+—fm—w(m Kk —1D) 3)

forl,kkmel,l<m,l<k<m.

Proof Again we present the proof only for the convexity case.

Clearly, if (1) holds for all [, k,m € I: | <k <m, then taking in (1) / =k — 1,
m = k + 1 we obtain condition (i) of Definition 1.

Assume that (fx)xes 1S w-midconvex. We are going to show that (1) holds. We
fix arbitrarily I, m € I, | < m and define a sequence

=fk+(w(m k)(k—l)— fz k= fm> forkel, | <k<m.
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By Theorem 1 the sequence (gx)ke[r,m)nz is convex. Furthermore g; =0 = g;,,. One
can notice easily that for our assertion it is sufficient to prove that

B :=max{gk ke [l,m]ﬂZ} <0.

Suppose for the proof by contradiction that B > 0. Let ko € [[, m] N Z be the small-
est element such that g, = B. Then | < kg < m and gi,—1 < B. Consequently by
convexity of (gx) we have

< 8ko—1+ 8k+1 B+ B _B

B: )
Eko 2 =7

a contradiction. O

The formulas (1), (2), (3) can be rewritten in the following form (we write f(n)
instead of f},):

flex+ 1 =0y) <tf@) + A =0 f() —wt(l - —y)?,
Flex+ A =0y) = tf )+ A =0 f(y) —wt(l —)(x — )%,
fltx+(1=0)y) =tf)+ (=D f () —wt(1 —)(x — )%,

forx,yel,te0,1):tx+1—-1t)yel.
In a natural way this leads to the notions of w-midconvexity (w-midconcavity,
w-midaffinity) for functions defined on subintervals of R.

Definition 2 Let P be an interval in R. We say that a function F : P — R is
(1) w-midconvex if
F(tx+ (1 =10)y) <tF(x)+ (1 = )F(y) —wt (1 — 1) (x — y)?

forx,ye P,t€(0,1);
(ii) w-midconcave if

F(tx+ (1 —=0y) 2 tF(x) + (1 =) F(y) —wt(1 —1)(x — y)*

forx,ye P,t€(0,1);
(iii)) w-midaffine if

Ftx+(1—0y)=tFx)+ (1 —DF () —wt(l —1)(x — y)*
forx,ye P,t (0, 1).

Remark 1 1t is easy to verify that a function F : P — R is w-midconvex (w-
midconcave, w-midaffine) if and only if F(x) — wx? is convex (concave, affine,
respectively).



Strongly Convex Sequences 187

Now we make some comments on Definition 2. It leads to known notions, which
is an argument that it is very natural.

If w = 0 we obtain the standard definitions of convex, concave and affine func-
tions.

When o > 0 in the midconvexity case we obtain the definition of w-strongly
convex function. It was introduced by B. Polyak [6]. For some recent results and
references concerning the subject we refer the reader to [5].

A function F' is w-midconcave if and only if —F is w-semiconvex [1]. Clearly
w-midaffine functions are simply quadratic functions with leading parameter w.

Using Definitions 2 we obtain another characterization of w-midconvex
(w-midconcave, w-midaffine) sequences. We show that they are restrictions of w-
midconvex (w-midconcave) functions.

Theorem 3 Let (fi)rer be a given sequence. Then the following statements are
equivalent:

1) (fi)ker is w-midconvex (w-midconcave, w-midaffine);
(i) there exists an w-midconvex (w-midconcave, w-midaffine) function F : conv [ —
R such that f = F|r;
(iii) for every b, c € R there exists a convex (concave, affine) function G : conv I —
R such that

fi=Gk) +wk*+bk+c forkel.

Proof We give the proof for the convex case.
(1) = (iii). Assume that ( fx)res iS w-midconvex and consider arbitrary b, c € R.
By Theorem 1 the sequence

gk = fi — (0k* + bk +c) forkel
is convex. We define G : conv/ — R as the piecewise linear function such that
G(k)=g(k) forkel.

Since (gx)kes is convex function G is locally convex. But locally convex function
is convex. So G is convex and

fi =gk + k> +bk+c=Gk) +wk® +bk+c forkel.

(iii) = (ii). We put F(x) = G(x) + wx? 4+ bx + c. Now the implication follows
directly from Remark 1.
(i1) = (i). Obvious. O
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Part 5
Convexity and Related Inequalities



Refinement of Inequalities Related to Convexity
via Superquadracity, Weaksuperquadracity
and Superterzacity

Shoshana Abramovich, Slavica Iveli¢, and Josip Pecari¢

Abstract This paper is about inequalities satisfied by functions called superterza-
tic and their relations to convex and to superquadratic functions. In analogy to in-
equalities satisfied by convex and by superquadratic functions that are reduced to
equalities when f(x) =x, f(x) = x2, x>0 respectively, the inequalities satisfied
by superterzatic functions reduce to equalities when f(x) = x>, x > 0.

In particular, we deal here with the generalization of the inequality

x?+y7 (x+y\? x4y
() (=) ()
2 q—2
X—-y X+y
2(6]—1)< 5 )( 7 ) :

x,y >0, g > 3, that reduces to equality for ¢ = 3.

Xr=y
2

Keywords Superquadracity - Weaksuperquadracity - Superterzacity -
Weaksuperterzacity - Convexity - Jensen inequality - Jensen-Steffensen inequality

Mathematics Subject Classification 26D15

1 Introduction
In this chapter we present a new set of functions that includes all the power functions
xP, x>0, p=>3,

which reduce to equality for p = 3.
This is in analogy to the convex functions that include all the power functions

xP, x>0, p=1,

which reduce to equality for p = 1, and the superquadratic functions (defined in (4))
that include all the power functions

xP, x>0, p=>2,
and which reduce to equality for p = 2.

C. Bandle et al. (eds.), Inequalities and Applications 2010, 191
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Inspired by [11], which refines Holder and Minkowski inequalities, extension
and refinement of inequalities satisfied by convex functions are proved in [6]. There,
similarly to the three well known inequalities:

FO) = fx)+Cr(x)(y —x), (D
f(/h(S)du(S)> < /f(h(S))dM(S), 2)

(u is a probability measure and % is and p-integrable function), and

n n
Zaif(xi)—f<2aix,~>20, xi€(@b), >0, i=1....n Y aj=1,

i=1 i=1
3)
that are satisfied by convex functions f : (a,b) — R and reduce to equalities for
f(x) = x, the three inequalities (4), (5) and (6) are stated and shown to be satisfied
by what is called superquadratic functions f : [0, b) — R:
A function f : [0, b) — R is superquadratic provided that for all x € [0, b) there
exists a constant C s (x) € R such that the inequality

FO) = f)+Cr)(y—x) + f(ly —xl), 4)

holds for all y € [0, b) (see [6, Definition 2.1]).
According to [6, Theorem 2.2] the inequality

f(/h(S)du(S)) S/f(h(s)) —f(‘h(S)—fh(S)du(S)

holds for all probability measures x and all nonnegative p-integrable £, if and only

if f is superquadratic.

The discrete version of (5) is
x€l0.b), =0, i=1...n Y a=L

)dM(S) (&)

f(me) <> a (f(xi) - f<
i=1 i=1

n
Xi— ) ax;
j=1

These inequalities reduce to equalities for the superquadratic function f(x) = x>
(see [6]).

Since the appearance of [6], numerous results related to superquadracity were
published, part of which are in our reference list.

Now we present the new set of functions which we call superterzatic functions.



Superterzatic Functions 193

A function g : [0, b) — R is called superterzatic provided that for all x € [0, b)
there exists a constant C(x) € R such that the inequality

Y aig(xi) — g(x)

i=1

> aini [ = DCE) + (I — &) g (1 — 7]

i=1

= 0y —DPC@E + Y oixi (b —5l) gl —F). (D)

i=1 i=1

holds for all x; € [0,b) and «; >0, i =1, ..., n, such that Z;’:lai =1 where
=31, ox;. (The equality Y 1 a;x; (x; — %) = Y 1, &; (x; — X)? follows from
direct calculation and also from the equality the superquadratic function f (x) = x2
satisfies.)

This name is given to g(x) because (7) holds for g(x) = x?, p > 3, with equality
for p =3.

In Sect. 2, Theorem 1, we present sufficient conditions for a function to be su-
perterzatic. Using Theorem 1 we get in Corollary 1 refinements of some of the
inequalities that convex and/or superquadratic functions satisfy. In the same sec-
tion we show a set of functions that are both superquadratic and superterzatic, or
superquadratic and subterzatic.

At the end of Sect. 2 we deal with obvious relations between superterzatic func-
tions and strongly convex functions that are dealt with in [14]. There the authors
present a function g : / — R (where I C R is an interval) which is called strongly-
convex with modulus C > 0 if

ag(x) + (1 —a)g(y) — g(ax + (1 —@)y) = Ca(l — ) (y — x)° ®)

holds for any x, y € I, @ € [0, 1] (see [14]).

In Sect. 3 we compare the inequalities satisfied by weaksuperquadratic functions
and weaksuperterzatic functions as defined here (in [10, 12], and [13] and in other
publications the set of weaksuperquadratic functions are called superquadratic func-
tions):

Definition 1 A function f that satisfies

J@)+ O x+y y—x
()=

), 0<x,y=<A, (€))

is called weaksuperquadratic on [0, A] (see [1, 9, 10] and [13], where it is dealt with
in other domains).
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It is obvious that a function which is superquadratic on [0, A], as proved in [6],
satisfies

af () + (1 —a) f(y) — f(ax+ (1 —a)y)
>af (1 —a)|y—x|)+ A —a)f(aly —xl),
0<x<A, O<ac<l, (10)

is also weaksuperquadratic on [0, A].

Definition 2 A function g(x) = xf(x) is weaksuperterzatic on [0, A] if for 0 <
x,y < A, there exists a C(x) € R such that

g +g(y) <x+y>
2 S\ 2

2
() e()m(w) o

It is obvious that if g(x) is superterzatic, that is, g(x) = xf (x) satisfies

is satisfied.

ag(x) + (1 —a)g(y) — g(ax + (1 —a)y)
=axf(x)+ (1 —a)yf(y) — (@x + (1 —)y) f(ax+ (1 —a)y)
>a(l—a)(y —x)*Clax + (1 —a)y) +axf((1 — )|y — x|)
+ (1 —ayf(aly—x]), 0<ac<l, (12)

it is also weaksuperterzatic.

In Sect. 3 we show also an example of a function g that is superterzatic but not
part of the set dealt with in Theorem 1. In this example f is not superquadratic but
g(x) =xf(x) is superterzatic.

In [9], A. Gilanyi suggested to deal with a different set of functions called here
W3. As in the case of superterzatic functions, the inequalities that the functions in
this set satisfy reduce to equality for p = 3, where x?, x > 0.

The hierarchal chain dealt in [9] starts with superadditive functions, then weak-
superquadratic function followed by W3 function and can continue to Wn, where
n is an integer n > 3. Whereas, our chain deals with convex function, then su-
perquadratic functions followed by superterzatic functions.

2 Main Results

In this section we use part of [5, Lemma 1] and [5, Theorem 1] to prove our Theo-
rem 1:
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Lemma A [5, Lemma 2.1] Let f be continuously differentiable on [0, b) and f’ be
superadditive on [0, b). Then the function D : [0, b) — R defined by

DY) =f—f@—f@0-2-f(y—z)+ f0) (13)

is nonnegative on [0, b), nonincreasing on [0, z), and nondecreasing on [z, b) for
0<z<b.

Using this lemma we get the same inequality (6) that defines superquadracity but
this time related to Jensen-Steffensen conditions (14):

Theorem A [5, Theorem 2.2] Let a function f : [0, b) — R be continuously differ-
entiable on [0, D). Let o« = (1,02, ..., 0y) and X = (X1, X2, ..., X,) be real n-tuples
satisfying

0<A; <A, j=1,...,n, A;>0,

x; €[0,b), i=1,....n, x1<x2=<---<x,. (14)

Then
i) If f(0) <0 and f’ is superadditive on [0, b), f is superquadratic and

S i f i) = Anf ) = Y i f (1xi — &) 2 0 (15)
i=1

i=1

holds, where x = ALH Y aix.
i) If f(0) >0 and f’ is subadditive on [0, D), f is subquadratic and the reverse
inequality in (15) holds.

In Theorem 1 we show sufficient conditions for a function g : [0, b) — R to be
superterzatic.

Theorem 1 Let f :[0,b) — R and let g : [0,b) — R be the function defined by
gx)=xf(x). Letx=(x1,...,x,) €[0,0)", ¢ = (1, ..., ) be real n-tuples and
Cyr(x) be asin (4).

Case A Suppose that o; > 0,i=1,...,n, with Y 7 ja; =1and X =), o;x;.
Then

1) If f is superquadratic on [0, b), we have

D aigle) — g(@) =Y aixi f(xi) — X f (X)

i=1 i=1
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>y i — %) - Cr(9) + Y aix; f(Jxi — %)

i=1 i=1

= e — D@ + > oixi(lxi — 7)) gl — Fl). (16)

i=1 i=l1

Hence g is superterzatic.
ii) If f is subquadratic on [0, b), the reverse inequality in (16) holds, that is g is
subterzatic.

Inequality in (16) becomes equality for g(x) = xf(x) = x>.

Case B Suppose that f is continuously differentiable on [0, b), o and X satisfy (14)
with )} o =1and X =Y ;_, aix;. Then
i) If £(0) <0 and f' is superadditive on [0, b), inequality in (16) holds and g
is superterzatic.

ii) If £(0) > O and f' is subadditive on [0, b), the reverse inequality in (16) holds
and g is subterzatic.

Inequality in (16) becomes equality for g(x) = xf (x) = x°.
Proof Case A. Let f be superquadratic. Then as o; > 0 and 0 < x; < b, i =
1,...,n, replacing in (4) y by x; and x by x, multiplying by o;x;, i =1,...,n

and summing we get that (16) holds.
Case B. As « and x satisfy (14) we get

B] :Zbl :ZO{I')C,‘ :A])Cl +2Ai(xi _xi—l) >0

i=1 i=1 i=2

n n J
Bjqi=B,—Bj= Y aixi=) aiyi=Ayi+y Aii—yi1)

i=j+1 i=1 i=2
where yi =y, =---=y; =0,y =x;, j+1<i <n. Asy=(y1,y2,...,yn) is
nondecreasing, we getthat B, —B; >0, j =1, ..., n, and therefore, b;,i =1,...,n

satisfies (14) too.

Now we replace in (13) y by x; and z by x, and instead of multiplying (13) by
a;, we multiply it by b; = a;x;, i = 1,...,n. As it was proved in [2] and [3] that
0<x; <x<x,<b,wecanchoose z=x = Z? a;x;. Then from Lemma A we get

D obi(fei) = fE) — £/ @) —5) — f(1x — %)) = 0.

i=1

Hence, (16) holds for g(x) = xf(x). O
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Remark 1 In a similar way to the proof of Theorem 1, under the same conditions as
in Case A and Case B on « and x, we get for a convex function f that

D eixif(x) —Ff(F) =Y aixiC(E)(x; — %) (17)

i=1 i=1

holds, where C(x) = f'(x) is any value from the interval [ f’ (x), f} (x)]. The in-
equality (17) can also be derived from [8, Lemma 1a].
For n =2 we have

ag(x) + (1 —a)g(y) — g(®) = a(l —a)C(E)(y — x)*, (18)

where x =ax + (1 —a)y,0 <o <1.

In Corollary 1 we summarize some results which follow immediately from In-
equality (6), Theorem 1 and Remark 1.

Corollary 1 Let f :[0,b) — R and let g : [0,b) — R be the function defined by
gx)=xf(x). Letx=(x1,...,x,) €[0,b)" and « = (ay, ..., o) be real n-tuples.
Let Cy(x)be as in (4) and f'(x) be any value from the interval [ f’ (x), f1 (x)].

Case A Suppose that o; > 0,i=1,...,n, with Y !_jo; =1and X =Y }_, a;jx;.
Then

i) If f and g are superquadratic, we have

D wiglxi) — g(x)

i=1

= Zaixif(xi) =X f(x)

i=1

> Maxizam (i =xX)Cr(x) + Zaixl'f(lx,' — X),

i=1 i=1
n
Zauxi—ﬂf(ui—ﬂ)}. (19)
i=1
ii) If f is subquadratic and g is superquadratic, we have

Zomx, — %[ f (Ix; — %) Za,g (Ix; — %)

i=1

<) aigl) —g(®)

i=1



198 S. Abramovich et al.

=Y i f() — Ff ()

i=1

<Y aixi[( —DCp@E) + f (6 — )] (20)

i=1

iii) If f is convex and subquadratic and g is superquadratic, we have

MaX{Zaix,'(Xi — D) f®), Y ailxi — 2| f(1xi — il)}

i=1 i=l1

<Y @ixif(x) —Ef (%)

i=1

=< Zaixl'[(m —X)Cr @) + f(lxi — x1)]. 2y

i=1

iv) If f is concave and g is convex, we have

0< > wigly) —g®) =Y aixi f(x;) — % f(¥)

i=1 i=1

<D aixi(x — 3 (%) (22)

i=1

Case B Suppose that f is continuously differentiable on [0, b), f(0) =0, and o
and x satisfy (14) with 3"} ; =1 and X =) 7_, a;x;. Then

1) If f' and g’ are superadditive on [0, b), inequality (19) holds.
i) If f' is subadditive and g’ is superadditive on [0, b), inequalities (20) hold.
iii) If f is convex, f' is subadditive and g’ is superadditive on [0, b), inequalities
(21) hold.

iv) If f is concave and g is convex, inequalities (22) hold.

The inequalities obtained in Corollary 1 are derived for functions which are at
least in two of the three sets: the set of convex functions, the set of superquadratic
functions and the set of superterzatic functions. To show that such possibilities are
not trivial we present the following examples.

In the first example we present a set of functions that are both superquadratic and
superterzatic.

Example 1 Suppose that a function f : [0, co) — [0, 00) is continuously differen-
tiable and superquadratic. Then according to [6, Lemma 2.1], f is also increasing
and convex and f(0) = f’(0) = 0. Therefore, according to [6, Lemma 3.2] the func-

tion L& is increasing. Let the function g : [0, o0) — R be defined by g(x) = x f (x).

X
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Then @ = %x))/ = @ + f'(x) is increasing and since g(0) = 0, according to
[6, Lemma 3.1], we conclude that g is superquadratic beside being superterzatic,
and Theorem 1 Case A i) and Corollary 1 Case A i) hold.

Example 2 Let f :[0,00) — R be the function defined by f(x) =x?, p > 0.
Then for p > 2 the function f is superquadratic on [0, 0c0) and for 0 < p <2
f is subquadratic on [0, c0). Let the function g : [0,00) — R be defined by
g(x) =xf(x) =xP*!. Then

a) Ifp>2,gx)= xP*1 is both superquadratic and superterzatic, and Theorem 1,
Corollary 1 Case A i) and Case B i) hold.

b) If 1 < p <2, g(x) = xP*! is superquadratic and subterzatic, and Corollary 1
Case A ii) and Case B ii) hold.

¢) If0< p <1, g(x) =xP*! is convex and subquadratic, and Corollary 1 Case A
iv) and Case B iv) hold.

In these cases Cr(x) = pxP~L,

Example 3 Let f :[0,00) — R be the function defined by f(x) = x?Inx~!,
f(0)=0.Let g:[0,00) - R be the function defined by g(x) = xf (x). Then

a) f is subquadratic on [0, co) and g is subterzatic on [0, c0).

b) g is superquadratic on [0, e 3), hence Corollary 1 Case A ii) and Case B ii)
hold on [0, e=*/3).

¢) Since f is convex on [0, e ~3/2) and g is superquadratic on [0, e=#/), Corollary 1
Case A iii) and Case B iii) hold on [0, e=3/).

d) Since f is concave on (e73/%, 00) and g is convex on [0, e75/), Corollary 1
Case A iv) and Case B iv) hold on (e=3/2, ¢=5/9).

To prove Theorem 2, that deals like Theorem 1 with sufficient conditions for g :
[0, b) — R to be superterzatic, we need Lemma 1 which uses similar techniques as
in [8, Lemma 1b].

Lemma 1 Let f :[0,b) — R be a function satisfying f(0) = f'(0) =0 and "
be increasing on [0,b). Let z € [0, b) be fixed. Then the function D : [0, b) - R
defined by

D)= f@—f)— M-y —f(y—zl) (23)

is nonnegative on [0, b) nonincreasing on [%, z] and nondecreasing on [z, b).
Proof Since f” is increasing on [0, b) and f(0) = f/(0) = 0, then according to [7,
Lemma 2.2], f is superquadratic, which means that for every y € [0, b) we have

D(y) = 0.
Further, we have

D'(y)= "My —2) — f'(ly —zl) sen(y — 2).
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Therefore, since f” is increasing on [0, b), then for 0 < z < y < b we have

Dy=f"Mo-2-f(y—-2
> f"y—20—2— f(ly—zl) =0,

which means that l_)(y) increases when 0 <z < y< b. B
Similarly, for 0 < 5 <y <z < b we get that D'(y) <0, which means that D(y)
decreases when 0 < 5§ <y <z <b. O

Theorem 2 Let f :[0,b) — R and let g : [0,b) — R be the function defined by

gx)=xf(x). Letx=(x1,...,x,) €[0,0)", ¢ = (1, ..., ) be real n-tuples and

Cyr(x) be asin (4).

Case A If f is superquadratic on [0,b), a; > 0,i =1,...,n, with 27:1 o =1
and x =Y_"_, a;x;, then g is superterzatic and

D wig(x) — g(x)

i=1

<> oixi (i — DCpa) = Y el — F) gl —Fl). (24)

i=1 i=1

Case B If f satisfies f(0) = f'(0) =0 and f” is nondecreasing, o and X satisfy
(A4 with Y7 i =1, x, <2x1and X =) _;_, a;x;, then g is superterzatic and
(24) holds.

In both cases equality holds in (24) when g(x) = x3,x>0.

Proof Case A. From Theorem 1 we know that g(x) = xf (x) is superterzatic. Since
f is superquadratic, ; > 0and 0 <x; <b,i =1, ..., n, then by replacing in (4) y
by x and x by x;, multiplying by o;x;, i =1, ..., n, and summing, we get that (24)
holds.

Case B. Since f” increases on [0, b) and f(0) = f'(0) = 0, then according to
[7, Lemma 2.2] f is superquadratic and therefore g(x) = xf (x) is superterzatic.

In the proof of Theorem 1 Case B we showed that since « and x satisfy (14) then

J J
Bj=Zbi=Zaixi30 forj=1,...,n
i=1 i=1

and

B./_;,_l:Bn—BJ'ZO forj=1,...,n,

and therefore, b;, i =1, ..., n satisfies (14) too.
As mentioned before, see [2] and [3], we have

XS SXSX S X S0 S g,
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and since x;, < 2x1, we get
0<x—x1 <xp—x1=<xi,

i.e.
<x;1 <. <x<X.

N | =i

Let D(x;) = f(X) — f(x;) — Frax) & —x) = f(x —xD),i=1,....n
From Lemma 1 we know that D(x;) >0 foralli =1,...,n. Also we have

D(x1) = D(x2) > ---=> D(x;) > 0

and
0 < D(xt41) < D(xp42) < -+ < D(xyp).
Denoting By =0 and B, 41 =0, it follows
bj=B;—B;_1, i=1,...,n,
n
Bkzzbian_kah k=1,...,n,
i =k
biZEi—BH_], i:l,...,n,

and therefore, we have

Y eixiD(xi) =Y biD(x;)
i=1 i=1

k—1
= " Bi(D(x;) — D(xi41)) + BeD(x¢) + Bir1D(xx41)

i=1
+ Z Bi(D(x;) — D(xi—1))
i=k+2

> 0.

Hence, we get

D oaixiD(x) =Y eixi(f(&) = f(xi) — & —x) f'(x) — f(1xi — %[)) >0,

i=1

i=1

i.e. the inequality (24) holds, where C(x;) = (£42) = f(x;).
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In Corollary 1 we got inequalities resulting from superterzatic functions, proved
in Theorem 1, together with inequalities satisfied by superquadratic functions. Sim-
ilarly, inequalities obtained in Theorem 2 for superterzatic functions with inequali-
ties satisfied by superquadratic functions can bring about new inequalities, but not
presented here.

We deal now with the following inequalities of the type dealt in [4]. There in [4,
Theorem 2.1] it was proved that if f is nonnegative superquadratic function then:

Sas() - (S ) (E23)

> Max {a,-f(

I<i<j<n

a; ai+aj

From there we know that if g is convex then
aix;

zalgu,) - (z) (B
—14i

aixj+ajx;
> Max yaig(xi) +ajg(x;)—(ai+aj)g| ————— . (25
1<i<j<n a; + aj
Hence, let f(x) be superquadratic and nonnegative on [0, ). According to [6,
Lemma 2.1] f(x) is also convex increasing. Therefore the function g(x) = xf (x),
x >0, is convex on [0, b) and (16) holds too. By the substitution
di yizﬁ, i=1,...,n fora; >0, x;>0,i=1,...,n,

Yia;’ aj

o =

we get

(2 (z ) L)

1 l 1 1

= o (s (30) +0s () - (5520}
Xk Xk + Xm
=xkf<—) < ) (Xk+xm)f< )
ay ag + am

- (axm — amxp)? c (xk +xm>

= agapm(ak + am) ai +apy
+xkf< >+X;nf<

g Xm — AmXk

a(ag + ap)

agXm — AmXk

ai(ag + ap)
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If gx) =xf(x) =x?, p >3, then

P af_l iz ar!

Xn: xf Qi x)?

P p
x! X5 (X‘ +x.)ﬂ
> Max L T+ J T ) ;
I<i<jsn| gP~ al~ (ai+aj)p7
i J
p
X xﬁ _ (xx + xm)?
a,f_l ab™t (ag +ap)P!

(arxm — axxm)>(p — D +xm)P 72 xp(Jamxx — agxm|)P~"
axam (ax + am)P~! (ak(ax + am))P~!

X (lamxi — akmepi]
(am(a + am))P~!

We conclude this section by looking at the inequalities (12) satisfied by supert-
erzatic functions and inequality (18) satisfied by g(x) = xf(x) where f is convex,
and observing similarities between these inequalities and (8) that defines strongly
convex functions as in [14]. These similarities lead to the results below and are ob-
tained easily from the discussion in the previous sections, therefore the proofs are
omitted.

In particular, we will deal here with sufficient conditions for functions to be
strongly convex.

I. Let f:[A, B] - R be convex increasing. Then the function g(x) = xf(x) is
strongly convex on [a, B], A < a < B, withmodulus C = f’ (a) (the left deriva-
tive at a) and g(x)— f’ (a)x? is convex on [a, B] (see in [14] the characteriza-
tion of strongly convex function).

II. Let f:[0,b) — R be superquadratic. Then a function f(x) — Cx*—dx —e,
where C € R, d, e € R, is also superquadratic. If f is also positive on [0, b),
then the function g(x) = xf(x) is convex, increasing, superquadratic and su-
perterzatic on [0, b). Therefore, g is strongly convex on [a, b), 0 < a < b, with
modulus C = f/ (a).

3 Superterzacity and Weak Superterzacity, Superquadracity
and Weak Superquadracity

We state here two main problems that are still open.

Problem I Finding a nontrivial example such that f(x) is NOT superquadratic but
g(x) = xf(x) is superterzatic.
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Problem II

Case a Under what conditions, if g(x) is superterzatic then g(x) is also su-
perquadratic, and under what conditions the lower bound of

ag(x)+ (1 —a)g(y) — g(ax + (1 —a)y),

reached by the superterzacity of g(x), is better than the lower bound reached by
the superquadracity of g(x).

Case b under what conditions, if g(x) is superquadratic then g(x) is also supert-
erzatic, and under what conditions the lower bound of

ag(x)+ (1 —a)g(y) — g(ax + (1 —a)y)

reached by the superquadracity of g(x) is better than the lower bound reached by
the superterzacity of g(x).

If f(x) is a superquadratic function that is not always positive, it is not necessary
that C s (x) = f’(x), (Cr(x) as appears in (4)), even if f(x) has a continuous deriva-

tive (see [6, Example 4.2], where it is shown that the function f(x) = —(1 + x%)l’ R
p > 0, is superquadratic with C ¢ (x) = 0).

Here we use Definition 1 of weaksuperquadracity, and Definition 2 of weaksu-
perterzacity, to deal with Problem I and Problem II:

We want to remind here that in [1] there are two examples that show that weak-
superquadracity does not necessarily lead to superquadracity. In [1, Example 1], it
is shown that

2x—3, 0<x<1,
f(x)_{—l, x>1,
is weaksuperquadratic but not superquadratic. The same holds for the function
-3, x=0,
f@)—{_L o0, (26)

(see [1, Example 2] and [10]).

In order to solve Problem I, we want to find conditions that ensure that although
f is not superquadratic, that means (10) does not hold, g(x) = x f (x) is superterzatic
which means that (12) is satisfied.

The following is a trivial example:

Example 4 Let a function f be defined as in (26). As proved in [1] and [10], this
function is not superquadratic but g(x) = xf (x) = —x, x > 0, is superquadratic and
also superterzatic (choose C(x) =0 in (12)).

Here we deal with Problem II for weaksuperquadracity and weaksuperterzacity
cases:
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From (10) it follows that if g(x) = xf (x) is superquadratic on [0, b), then

ag(x) + (1 —a)g(y) — g(ax + (1 —a)y)
>a(l—a)|y —x|(f(A =)y —x[) + f(aly — x])) (27)

y—x
. 28
f(15) e8)
Therefore, g(x) = xf (x) is weaksuperquadratic.
Problem II. Case a: From (27) and (12) it follows that in order to solve this case
it has to be shown under what conditions

holds for 0 <« <1, and for o = % we get

) P
- 2

g +8(») <X+y>
2 82

a(l —a)(y —x)zC(otx +( —ot)y) +axf((1 —a)ly —x|)
+ 1 —a)yf(aly—x|)
>a(l =)y —x|(f((A =)y —x]) + f(aly —x1)) (29)

holds.

In Example 1, it is shown that if f is nonnegative superquadratic function, so is
g(x) =xf(x).

Using this result, in the following we show an example that (29) is satisfied for

=1
a=3.

Example 5 Let a = % and f be nonnegative superquadratic function. Hence,
C(x) > 0 and C(x) = f'(x) almost everywhere (see [6, Lemma 2.1]). Then as

x,y > 0 inequality
2
y—x xX+y xX+Yy y—Xx y—x
C > — 30
(5) () 5 ()= ) o
holds and by (28) and (11) we see that (11) for the weaksuperterzatic g(x) = xf (x)
is tighter than (28) for the weaksuperquadratic g(x) = xf(x). But from here it does

not necessarily follow that for every 0 < o < 1, (12) gives a better lower bound than
(27) under the same conditions on f.

y—x
2

Problem II. Case b: For negative superquadratic function g(x) = xf(x) and
C(x) <0, it is clear that for x, y > 0 inequality
5

y—x

()
2

y—x X+y X+y y—x

Z<2>C<2>+2f(‘2

)
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holds and therefore, from the superquadracity of g(x) = xf (x) it follows that g(x)
is also weaksuperterzatic. Again, it does not necessarily follow that for every 0 <
a <1 inequality

a(l =)y —x|(f((1 =)y —x]) + f(aly —xI))
> a(l —a)(y —x)°C(ax + (1 —@)y) + axf((1 — )|y — x|)
+ (1= a)yf(aly —xI) 3D

holds.

1
Example 6 Let g(x) = —(1 +x7)P, p > 0. This function is superquadratic with
C(x) =0 (see [6, Example 4.2]). Therefore, g is also weaksuperterzatic, but it is
not proved here that g is superterzatic.
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On Two Different Concepts of Subquadraticity
Attila Gilanyi, Csaba Gabor Kézi, and Katarzyna Troczka-Pawelec

Dedicated to the memory of Wolfgang Walter

Abstract In the recent years, subquadratic functions have been investigated by sev-
eral authors. However, two different concepts of subquadraticity have been consid-
ered. Based on a simple modification of the geometric notion of concave functions
a function f: [0, co[ — R is called subquadratic if, for each x > 0, there exists a
constant ¢, € R such that the inequality

fO) = f@) <ex(y—x)+ f(ly —xl)

is valid for all nonnegative y.
Related to the concept of quadratic functions, a function f: R — R is said to be
subquadratic if it fulfils the inequality

fx++fx=—y)=<2fx)+2f(Q)

for all x, y € R. In the present paper, the connections between these two concepts
are described and a third inequality related to these concepts is studied.

Keywords Subquadratic function - Quadratic function - Subadditive function -
Concave function

Mathematics Subject Classification 26A51 - 26D07 - 39B62

1 Introduction

In the recent years, subquadratic functions have been investigated by several authors.
However, two different concepts of subquadraticity have been considered.

Using a simple modification of the geometric notion of concave functions, in
their papers [8] and [9] S. Abramovich, G. Jameson and G. Sinnamon introduced
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the concept calling a function f: [0, co[— R subquadratic if, for each x > 0, there
exists a constant ¢, € R such that the inequality

FO) = f) ey =)+ f(ly —x]) (D

is valid for all nonnegative y. Functions satisfying this inequality have been studied
by several authors. Among others, S. Abramovich, S. Banié, J. Barié, S.S. Dragomir,
S. Iveli¢, M. Klari¢i¢ Bakula, M. Mati¢, J.A. Oguntuase, L.-E. Persson, J. Pecaric,
S. VaroSanec published results in the papers [1, 4-7, 10-13, 19]. (More precisely,
Abramovich, Jameson and Sinnamon studied superquadratic functions in [8] and [9]
taking the inequality in the opposite direction in (1). However, it is easy to see that
a function f is superadditive if and only if — f is subadditive, therefore, we may
investigate either of these concepts.)

The other concept of subquadraticity is related to quadratic functions: a function
f: R — Ris called quadratic if it satisfies the square-norm (in other terminologies
also called parallelogram or Jordan—von Neumann) equation

S+ +fx=—y=2f0)+2f()

for all x, y € R. Based on this notion and analogously to the concepts of additive
and subadditive functions (cf., e.g., [17, 18, 20]), f: R — R is called subquadratic
if it fulfils the inequality

Ja+y+ =y =2fx)+2f()

for all x, y € R. Subquadratic functions, in this sense, have been studied, among
others, by Z. Kominek, K. Troczka—Pawelec, W. Smajdor and A. Gilanyi [15, 16,
21, 22].

The problem of investigating the connections between the concepts above arose
during the Conference on Inequalities and Applications *07 held in Noszvaj, Hun-
gary in 2007. Results on the problem were presented in several talks and papers (cf.,
e.g., [2, 3, 6, 14] and [22]). In this chapter, summarizing and extending these results,
we completely describe the relation between the two concepts of subquadraticity. In
the first section of the chapter, we give this description using a terminology which
distinguishes between the two concepts based on their connection. In the second
part, we introduce and investigate a third inequality related to both concepts of sub-
quadraticity. We note that the main results of the chapter (2.1, 2.6 and 2.7), in a
slightly different form, but essentially with the same content and independently from
our research, were obtained and published by S. Abramovich in [3].

2 Subquadraticity Concepts and Their Relation

Definition 1 A function f: [0,00[— R is called strongly subquadratic (sub-
quadratic for short) if, for each x > 0, there exists a constant ¢, € R such that

fM—f@=a@-0+f(y—x) »=0. 2
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Definition 2 A function f : R — R is said to be weakly subquadratic, if
Ja+N+fx—-y)=2fx)+2f() &, yeR). 3)

Analogously to the concepts of subadditive and superadditive (or convex and
concave) functions, a function f is called strongly superquadratic if — f is strongly
subquadratic, while f is said to be weakly superquadratic if — f is weakly sub-
quadratic. Therefore, properties of superquadratic functions can easily be obtained
from those of subquadratic functions. By this reason, we only consider subquadratic
functions in the following part of the chapter.

Lemma 3 Ler f: [0, c0o[— R be a function. If f is strongly subquadratic then it
satisfies the inequality

JE++ = =2fx)+2f(y) @x=y=0). “)

Proof Assume that f: [0, co[— R is a strongly subquadratic function and let x
and y be fixed real numbers with the property x > y > 0. Writing x — y and x + y
instead of y in inequality (2), we get

FG=y)—f&) <cz(=y)+ f)
and
fx+y)— f(x) <cey+ f(),
respectively. Adding these inequalities side by side, we obtain
JEEW+ G =Y =2fX)+2f(),

which proves our statement. g

Lemma 4 [f a function f: [0, co[— R satisfies inequality (4) then its even exten-
sion f :R — R defined by

S, ifx=0,

TO=0 0 Ch), ifx <o,

®)

is weakly subquadratic.

Proof Suppose that a function f: [0, co[— R fulfils (4) andlet x e Rand y € R be
given.

If x > y > 0 then (4) immediately gives our statement.

In the case when y > x > 0, the substitutions x =y and y = x in (4) also give
the validity of (3). This means, that inequality (4) implies

fa+)+fax—y) <2f@0)+2f() (x,y=0). (6)
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If x < 0and y <0 then writing x = —x and y = —Y in inequality (6), we obtain
fE =)+ F(=2+5) =2/ (=8) +2f (=)
which, by the evenness of f, yields
fEEH+FE=F) =2f@) +2f (). (7

that is, (3) forx <O and y < 0.
In the case when x < 0 and y > 0, the substitutions x = —x and y = y in (7) give

F=X+3) + f(=% =) <2f(=%) + 21 ),

which, using the evenness of f again, gives (3).
Finally, in the remaining case when x > 0 and y < 0, writing x =x and y = —y
in (6), similarly to the case above, we obtain the validity of (3). Il

Theorem S Let f: [0, oo[— R be a function. If f is strongly subquadratic then its
even extension [ :R — R defined in (5) is weakly subquadratic.

Proof The statement can be obtained as a combination of Lemmas 3 and 4. O

Remark 6 The converse of the theorem above is not true. More precisely, there ex-
ists a weakly subquadratic function f: R — R such that its restriction f: [0, co[—
R is not strongly subquadratic. Let us consider the function f: R — R defined by

3, ifx=0,
f(x)z{l, if x 0. ®

Obviously, f is weakly subquadratic. However, the substitutions x = 1, y = 3 and
x =1, y=0in (2) yield that that f is not strongly subquadratic.

3 Another Inequality Related to Subquadraticity
Lemma 7 Let f : [0, co[— R. The function f fulfils inequality (4) if and only if it
satisfies

fa++fx=yl) <2f@+2f() &, y=0). ©)
Proof Obviously, if a function f: [0, oo[— R satisfies inequality (9) then it fulfils

(4). On the other hand, if x > y then inequality (4) gives (9). Finally, in the remain-
ing case when x < y, interchanging the role of x and y in (4), we obtain (9). 0

Theorem 8 If f: [0, co[— R is a strongly subquadratic function then it satisfies
inequality (9).
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Proof The statement is a consequence of Lemmas 3 and 7. g

Remark 9 The converse of Theorem 8 is not valid. Namely, it is easy to see that the
function given in (8) fulfils inequality (9) but it is not strongly subquadratic.

Theorem 10 If f: [0, co[— R is a strongly subquadratic function then its even
extension f : R — R defined in (5) satisfies the inequality

Fa++F(x—yl) <2f0)+2f() @, yeR). (10)

Proof Let f: [0, 00[— R be strongly subquadratic. According to Theorem 8, it
satisfies (9). Let us consider its extension f as above and let x e R and y € R be
fixed. We prove the validity of (10) for f in four steps.

Evidently, if x > 0 and y > 0 then (10) is valid.

If x <0 and y < 0 then the substitutions x = —x and y = —y in (9) give

FEE =9+ (1= +71) <2f(=X) +2f (=),

thus, by the evenness of f , we have (10).
If x <0 and y > 0 then writing x = —x and y =y in (9) we get

FEE )+ f(I=5 =51) <2 (%) +2 (). (11)

Here, if |x| < |y| then we have —x+y =[x — y| and | — X — y| = x +y, furthermore,
by the evenness of f, f(—x) = f(x), therefore, inequality (11) can be written as

FOUX =)+ fE+9) <2f@) +2f(). 12)

that is, (10) holds. In the case when |x| > |y|, we have —x + y =[x — y| and |—X —

y| = —(x 4+ y), thus, using the evenness of f, we obtain again (12), that is (10).
Finally, if x > 0 and y < O then substituting x = x and y = —y in (9) and using

a similar argumentation as above, we obtain our statement. g

Theorem 11 If f: R — R is a weakly subquadratic function then it satisfies the
inequality

faH++f(x—yl) <2f)+2f() (x,yeR). 13)

Proof Assume that f: R — R is a weakly subquadratic function and let x and y be
fixed. If x > y then inequality (3) immediately gives (13). In the case when x < y,
substituting x = y and y = x in (3), we also obtain (13). U

Remark 12 The converse of Theorem 11 is not true. It is easy to verify that the
function f: R — R

1, ifx>0,

FO=14 itx <o,
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satisfies (13) but, writing x = 1 and y =2 in (3), we get 5 < 4, thus, f does not
fulfil (3).
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Connections Between the Jensen
and the Chebychev Functionals

Flavia Corina Mitroi

Abstract This work is devoted to the study of connections between the Jensen
functional and the Chebychev functional for convex, superquadratic and strongly
convex functions. We give a more general definition of these functionals and estab-
lish some inequalities involving them. The entire discussion incorporates both the
discrete and the continuous approach.

Keywords Jensen functional - Chebychev functional - Superquadratic - Convex -
Strong convex function

Mathematics Subject Classification Primary 26B25 - Secondary 26E60 - 26D15

1 Introduction

The aim of this chapter is to establish a connection between the Jensen and the
Chebychev functionals, to study and compare several notions of convex analysis.
We will consider respectively the cases of convex, superquadratic and strong convex
functions.

For the convenience of the reader we briefly recall some basic facts.

We consider a real valued function f defined on an interval 7, x1,x2,...,x, € [
and p1, p2, ..., pn € (0,1) with Z?:l pi = 1. We denote x =(x1, x2, ..., x,) and
p=(p1, P2, .., Pn)- The Jensen functional is defined by

n n
Jp0 =) pif)—f (Z p,»xl-> ,

i=1 i=1
and the Chebychev functional is defined by

n n
TP X)=) pi (xi - ijxj)f(xi)-

i=1 j=1
(See [3] and [7] for details.)
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To avoid trivialities we consider that the domain is not a singleton. The interior
of I is denoted int(1). We denote by df the multivalued mapping called the subdif-
ferential

8f={(p:]—>R:f(y)—f(x)z(y—x)(p(x) forally,xel}.

The set domdf consists of all points x in / where f has a support line. For each
convex function we have int(1) C domaf.

Relating the Jensen functional to the Chebychev functional the following in-
equality has been established using the notion of subdifferential (C.P. Niculescu

[7D.

Proposition 1 Suppose x1,x2,...,x, € domdf and p1, p2,..., pn € (0,1) with
Yoi_y pi = L.If f is a convex function then

0=<J(f.p.x) =T(p.p,x) ey

holds for all ¢ € of .

(See also S.S. Dragomir and N.M. Ionescu [2].)
Definition 1 A function f defined on an interval [ is strongly convex with modulus
cif

FA=2x+ay) <A =20 f@) +Af () — (1 = MA(y — x)?

forall x,y € I and all A € [0, 1].

Strongly convex functions were introduced by B.T. Polyak [8].

In the paper by N. Merentes and K. Nikodem [5, Theorem 4] we find the proof
of the following result:

Proposition 2 Let p; >0,i=1,...,n,with) | pi=1,X=Y 1, pix; and the
function f strongly convex with modulus c. Then

T(c-dd.p.x)=c)_ pi(xi = %) <J(f.p.%)

i=1
where Id denotes the identity function.
This is re-proved using the probabilistic approach in the paper by T. Rajba and

Sz. Wasowicz [9, Corollary 2.3].
A result due to Rockafellar [10] states the following.

Proposition 3 The function f defined on interval I is strongly convex with modulus
c if and only if
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FO) = fF)+ @)y —x) +cly —x)?
forall x € domdf,pedf,yel.

Since every strongly convex function is convex, we are now able to refine the
inequality (1) via Proposition 3, for strongly convex functions with modulus c.

Proposition 4 Suppose xi,x3,...,x, € domdf and pi1, p2,..., pn € (0, 1) with
i, pi = L.If f is a strongly convex functions with modulus c then

j(fa p’x) S T(Qﬂ, p’x) - T(C Ida pvx)’

forall ¢ € 3f .

Proof Let us substitute in Proposition 3 fori =1,...,n
X =X,
y=x.

Multiplying the obtained inequalities by p; and summing them we get the required
result. L

A result related to strong convexity due to Hiriart-Urruty and Lemaréchal [4]
says that:

Proposition 5 The function f is strongly convex with modulus c if and only if the
function g(x) = f(x) — cx? is convex.

Definition 2 A function f defined on an interval I = [0, a] or [0, c0) is su-
perquadratic if for each x in [ there exists a real number C(x) such that

F») = f@) = f(ly—xl) + C)(y —x)
forallyel.

According to S. Abramovich and S.S. Dragomir [1, Theorem 9] we have the
following result.

Proposition 6 Suppose f : [0, 00) — R is a superquadratic function. Then:
n n
Y opif(lxj—x) < TP <TC.p.x) =Y pif(x;—%). (@
j=1 j=1

The next section contains a more general definition of Jensen and Chebychev
functionals and analogues results.
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2 Main Results

2.1 Discrete Case

Assume that we have a real valued function f defined on an interval 7, real numbers
pij,» i=1,...,kand j =1,...,n; such that p;; >0, Z};i:lpij =1foralli=
1,...,k (we denote p; = (pi1, pi2, - - -, Din;))> Xi = (Xi1, Xi2, ...y Xip;) € I for all
i=1,....,kandq=(q1,92, ..., qk), qi >Osuchthat2f=1q,' =1.

We generalize now the Jensen and the Chebychev functionals defined above.

Definition 3 We define the generalized Jensen functional by

jk(f5p17”'7pk5qaxla""Xk)
ny,...s ng k k n;
= Z Pijy "'ijkf<zqz'xij,-) - f(ZfIi Zl’ijxij)
Jlee k=1 i=1 i=1  j=I

and the generalized Chebychev functional by:

ﬁ(frplv""pkyq’xla"‘5xk)
ni,...,ng k n; k

= DPlji = Pkji Z%’(xji —Zpijxij)f(ztlixiji)
Jtsees Jie=1 i=1 j=I1 i=1

For more results related to the generalized Jensen functional the reader is referred
to [6]. We denote throughout this section

nj

k
X = Z%‘ Zpijxij~
=1 j=1

We may now state and prove our main results that give us connections between this
two important functionals. We extend the results listed in Introduction.

Theorem 1 If f is a convex function and X; = (X;1,Xi2, ..., Xin;) € (domdf)™,
i=1,...,k, then the following inequalities hold

O0<T(fipP1s--- P A X1, .., X1) < Ti(@, P1, -+, Pk Q5 X1, - - -, Xk)

forall ¢ € 3f .

Proof We know that

ni,..., n

k k
l—[(pi1+"‘+pini)= Z Piji - Pj, = L.
i=1 j =1

1s-oes Jk
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Since f is convex, we have

ni,..

Ny, Nk k LNk k
f Pljy - Pkjy Zqz'xz'j,) = Dij, "'pkjkf<z%'xij,')-
Jlseens Jk=1 i=l Ji=1 i=1

ey j Jlseees

Combining this inequality with the following result

n,..., ng k k n;
Z P1ji " Pkji Z%’xt‘ji = Z‘Ii (Z pijw(Xij)>, 3)
Tt k=1 i=1 i=1 j=1

we obtain the claimed result.
In order to prove the second inequality, due to convexity and utilizing the defini-
tion of the subdifferential we have

k k k
f(z‘ﬁxij,-) - fx) =< (P<Z%'xij,~> (Zqixiji —)E).
i=1 i=1

i=1

We get, by multiplying with pyj, --- pgj, and summing over 1 < j; < n;, i =
1,...,k:

jk(f’pl?“'?pk!q’xl’""Xk)

ny,...,ngk k
= Y. pij "'pkjkf<251ixiji> - f(X)

Jteen k=1 i=l1
Ny, ik k k

= Z Dij "'ijk‘P(ZQixiji> (Z‘Zixiji - f)
Tl Ji=1 i=1 i=1

=ﬁ(¢5p17‘-~7pk5qaxl’~~"Xk)~

This completes the proof. g

In the case of strongly convex functions we improve these bounds by the follow-
ing theorem.

Theorem 2 [fa function f is strongly convex with modulus c and X; = (xi1, Xi2, ...,
Xin;) € (domdf)'i, i =1, ...,k then the following inequalities

OSﬁ(c'ld!plv"'vpk9q7xls"'1Xk)Sjk(fsplv"'7pk1qvxla""xk)
<Te(@.P1,-- s P-4, X1, ..., Xk) — Te(c - 1d, p1, ..., Pr. Q, X1, - - ., Xk)»

where Id denotes the identity function, hold for all ¢ € 9f .

Proof The first inequality is easily deduced via the Chebychev’s inequality, taking
into account the convexity of the function ¢ - Id.
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The second inequality is proved by a short computation:

Te(f,P1s - Pk, QX1 -, Xk

Ny, g k 2
=c Z Plji - Pkji (Zqixij,‘ —i>
Jes k=1 i=1
Ny, ik k k
=c Z Pijy - Pkijx Z%‘Xij,- Z%’xij,« - X
Tt k=1 i=1 i=1

ZCﬁ(idvp]5-”5pkaq’xly“-vxk)‘

In order to prove the third inequality we use Proposition 3 substituting

k
=Y
i=1

y=X.

‘We obtain

k k k k 2
f(ZCIile) —f@) = ‘P(Z‘ﬁxﬁ) <qu'xji _)E> - c()? - Zqisz) :
i=1 i=1 i=1

i=1

We multiply these inequalities by pyj, - - - pxj, and sum them over 1 < j; <n;, i =
1,..., k. O

Notice that this theorem is a refinement of Theorem 1 for strongly convex func-
tions.

Theorem 3 If a function f : [0, 00) — R is superquadratic then:

Nyl k
Y. P "'ijkf< > dixij — % )

Jlseens jk=1 i=1
Alyeees g
<T(C,p1,-- - P> A X1, -, X)) — Z Pljl"'l’kjkf(

k
Zqz'xz'j,- —-X

i=1

<J(f,p1,--- Pk Qs X1, - - -, Xk)
Jlseens Ji=1

).

Proof In order to prove the first inequality, by the definition of superquadratic func-
tions, we have

k k
f(Z qix,;/,.) — f(H) = CE (Z qixij; — x) + f<
i=1

i=1

k
Z%‘xij,- —X
i=1
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Since

.....

,,,,,

this yields us to

T (fiP1s s Pl 4 X1, oo, Xg)

..... k
>C(x) Z P1jy * " Pkjx (Z qiXij; — )

).

iXij; — X

Hpyeei g
+ Z Pij, - Pkﬂf(

Obviously we have

------

and the first inequality is proved.
In order to prove the second inequality, we use one more time the definition of
the superquadratic functions that leads to the fact that

k k
(thxu,> (x)<c(z%x1],)<z‘ﬁxiji _i> _f<
i=1 i=1

We get, by multiplying by p1j, - - - pxj, and summingover 1 < j; <n;,i=1,...,k:

i Xijy — X

Te(foP1s - Pk Q, X1, -, X))

.....

.....

.....

).

This completes the proof. g

k
Zqixij,' —X
i=1

.....
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2.2 Continuous Case

In what follows we shall concentrate on the integral analogue of the results from the
previous section. We consider p;(x)dx and r;(x)dx,i =1, ...,k to be absolutely
continuous measures, where p;,r; : [a, b] C (0, 00) — (0, c0) are increasing such
that [* p;(x)dx =1, [”r;(x) dx = 1. We also consider q = (q1, g2, .- qx), ¢i > 0
with 3°_, g; = 1. We set

u%c(f’pla"-apksq)

k k b
f (Z qm) [ 1(pi Gy dxi) - f<2 qi / xpi (x)dx>
la.b)* i=1 i=1 Ja

i=1

and

Te(f, p1s -5 P> Q)

k b k k
:/[ - Zqz‘ <Xi —/ xpi(x)dx>f<2q,~x,~) 1_[ i (xl)dx,
a0l =1 a P P

for all positive integers k.
We denote throughout this section

k b
_ZZ%’/ xpi(x)dx.
i=l1 a

Applying the same reasoning as before we obtain:

Theorem 4 If f is a convex function then the following inequalities hold

0<T(fip1s-- s Pk O = Ti(@, P1s -5 Pk Q)
forall ¢ € 3f .

Proof The first inequality can be proved taking into account that
/ pilx)dx=1, foralli=1,... k.
la,b]

Since f is convex we have

k k
f(f[ - Z%'Xi l_[(l’i(xi)dx,-)>
a,blk i o

k
/[ - (Z%xz)l_[ pt(xt)dxl
a, = i=1
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Combining this inequality with the following result

k b
/kaqzx, pz(xi)dxi)=2qz-/ xpi(x)dx
la.b] i=1 Ja

we obtain the conclusion.
We prove the second inequality utilizing the definition of the subdifferential. We
have

i=1

k k k
f<Zqz'Xi> —f@) =< w(qu) <Zq,~xl~ —i).
i=1 i=1

i=1
By integrating with respect to ]_[f: 1 pi(xi)dx; we get:
Jk(fvplv"'7pk’q7X17"'7Xk)
k
/ (qu) [ [(pitxiydxi) — £ &)
[a,b]¥ —

i=1 i=1

/[a b (Zq’x’> (Z‘b‘ )]ﬁ pi(xi) dx;)

i=1 i=1

=Te(@, P, Pr, D-
This completes the proof. O

For strongly convex functions we refine the bounds form the previous theorem.

Theorem S If f is a strongly convex function with modulus c then

0<Tilc-Id,pr,..., pk, Q) < Tk (f, P1, ..., Pk @)
S77(((p7p17"'7pk7q)_ﬁ(c'ldapla‘-'apkaq)a

where Id is denoting the identity function, for all ¢ € 3f .

Proof In order to prove the first inequality, we use the fact that the function f(x) —

cx? is convex. We apply the Jensen inequality to it.

2
(/lu bIk quxl, 1 pit)d ) —C</[‘ bk qu%ﬂ Di (xi)dxi))
k -
/a bk <2:q1x1>1j! Pz(xl)dx, —C/[\a " (qu;) l_[ Pz(Xl)dX,

i=l
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Observe that

2k 5
[ B (quxz) l_[ Pi (XI)dxl — (/[. qux, 1_[ pl(xl-)dxi))
a i1

ablkll i=1
x qix
/W(z“ /[h]z,,

This yields us to the claimed result:

2k
pz (x;) dx; ) l_[ Pz (-xl)dxl

i=1

k k
t7k(f7 plv"'vpkvq) Z‘/[ b]kf<2qixi) 1_[ pl(xl)d-xl f(-i)
a, i=1 i=1
k 2
C/ <qu'xi - ) l—[ pl(-xl)dxl
la.b1 \; =y i=1

=Ti(c-1d, p1,..., pr. Q-

The second inequality has an immediate proof via Proposition 3. We have

1(Goe) s 2B (Bo=e) (B3

By integrating with respect to ]_[f:1 (pi(xi) dx;) we get the required inequality.

The first and second inequalities for the particular case kK = 1 of this theorem
are exactly the integral analogue of Proposition 2 and were already proved in [5]
and [9].

On the other hand, for superquadratic functions we have the following bounds.

Theorem 6 If a function f : [0, 00) — R is superquadratic then:

k k
l(xl)d-xl
/[“’b]k f( i=1 )E g

<J(fi P15y Pk Q)

k
Sﬁ(fal’l,-u,l’k,(ﬂ_/ f(
.l \[i5]

Proof We prove only the first inequality, the second one has a similar approach.

i Xi —X

i Xi —X

k
) 1_[ Pi (xl)d-xl
i=1
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By the definition of superquadratic functions, we have

k
Zq,x, f(®)=C®) Zq,x,—x + (D qixi—x

i=1 i=1 i=1
This yields us to:

k

k
ﬂ(f,Pl,--~,Pk,Q)2C(i)/[ o > aixi =% | [ [(pixi) dxi)

i=1 i=1
k

f[b]k Z%xl_x H(Pi(xi)dxi),

i=1 i=1
Since
k k

Kb]k Zqi'xi_)z H(Pi(xi)dx,-):o,

i=1 i=1

we get the conclusion. g
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Part 6
Other Equations and Inequalities



Functional Inequalities and Equivalences
of Some Estimates

Wilodzimierz Fechner

Abstract The purpose of the chapter is to deal with some old and a few new func-
tional inequalities which are motivated by well-known estimates on the real line or
on an interval which involve the exponential function. We are concerned with the
following six functional inequalities:

fO) = @) _ f@+ )

y—x - 2
f(ery) I
2 y—Xx

gx+h) < gx)p(h),
fx+h) < fOvh),
xfM=f@O+G-Df»

and
A+nf) = flx+y).
Keywords Exponential function - Functional inequality

Mathematics Subject Classification 39B12 - 39B62 - 39B72

1 Some Estimates Involving the Exponential Function

Throughout the chapter the symbol R denotes the set of real numbers, R™ = {x €
R:x <0}, Rt ={x e R:x >0} and N ={1,2,...}. Further, let the letters A, G
and L denote the arithmetic, geometric and logarithmic mean, i.e.:

s+t
A(s, t) = —,
(s,1) >
G(s,t) =+/s-t,
C. Bandle et al. (eds.), Inequalities and Applications 2010, 231
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t —_
L(s,t) = 77 fors #¢t and L(s,s)=s
logt —logs
for s,t e Rors,t > 0, respectively.
It is well known that

G(s,t) < L(s,t) <A(s, 1), (1)

(see F. Burk [3]) and also that:
2 1 2 1
G3(s,t)~A3(S,t)§L(s,t)§gG(s,t)JrgA(s,t) 2

for all s, ¢ > 0. The first inequality of (2) was proved in 1983 by E.B. Leach and
M.C. Sholander [13], whereas the second inequality of (2) was obtained in 1972 by
B.C. Carlson [4] (see also F. Burk [3]) and earlier also by G. Pélya and G. Szegd
[15]. Let us also note that J. Sdndor [17] provided some further refinements of both
estimates.

Let us fix arbitrary x, y € R such that x # y and substitute s := ¢* and t :=¢” in
(1) and (2). Therefore, we see that the exponential function satisfies the following
inequalities:

oy e’ —e* e+

e 2 < < 3
=5 3)
and
1
x+y X Y13 y— e x+y
66%‘%[e +ei| 568 ¢ 548% +et+e 4)
2 y—x

for each x, y € R such that x # y.
Finally, the following estimate:

xe¥ <e* + (y — 1), 5)

for all x,y € R was observed by PL. Duren and H.D. Lipsich [5], see also
D.S. Mitrinovié [14].

2 Functional Inequalities—Known Facts

It is possible to characterize the exponential function using a system of functional
equations and inequalities of a single variable (the term single variable is used inter-
changeably with iterative and means that only one independent variable appears in
functional equation or inequality discussed). M. Kuczma [10] (see also M. Kuczma,
B. Choczewski and R. Ger [12, Chapter 10.2B]) proved that without any additional
regularity assumptions the map ¢ = exp is the only real-to-real solution of the fol-
lowing system:

(x) >0,
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px) = 1+x,
0(2x) = [p)]’,
o(—x) = [p0)] ",

postulated for all x € R. An earlier result of M. Kuczma [8] (see also M. Kuczma [9,
Chapter VI, §12]) states that all solutions of a related equation of a single variable
which satisfy some additional smoothness are of the form ¢ = ¢ - exp with some
real c.
In 1988 B. Poonen [16], answering a problem proposed by D.J. Shelupsky [18],
proved that the general solution f: R — R of the system:
SO —f®)
y—Xx

min{ f(x), f(»)} < <max{f(x), fM} &G#y) (6)

is of the form f = c - exp, where ¢ > 0 is an arbitrary constant.
The results of B. Poonen were developed by C. Alsina and J.L. Garcia Roig [1].
To be precise, they studied the following two functional inequalities:

O = f@) _ fO)+fO)
y—x - 2

(x # ), 7

and

0<f(y)—f(X)<f(X)+f(y)
- y—x - 2

(x #y). ®)

They have proved that a function f: R — R satisfies (7) if and only if there ex-
ists a nonincreasing function d: R — R such that f(x) =d(x)e* forall x e R [1,
Theorem 1]. Further, f: R — R is a solution of (8) if and only if there exists a
continuous nonincreasing function d: R — R such that f(x) = d(x)e* for x e R
andd(x +1) > e 'd(x) forall x e R and ¢ > 0 [1, Theorem 2].

Inequality
(52) <2228 gy ©)
2 y—x

was considered by C. Alsina and R. Ger [2] and later by the author [6]. In particular,
it was shown that all solutions of (9) on an open interval I which enjoy some reg-
ularity properties are of the form f(x) =i(x)e* for all x € I with a nondecreasing
map i. The following result is proved in [6].

Theorem 1 [6, Theorem 1] Assume that I is an open nonvoid interval, f: I — R
satisfies (9) and

limsup f(x +h) > f(x) (forallxel). (10)
h—0+
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Then
fO =™ fx) (x=<y), (1T)

i.e. the mapping I > x — i(x) := f(x)e™™ € R is nondecreasing.

During the conference we have posted the following two open problems con-
nected with this result.

Problem 1 The converse of Theorem 1 is not true (see [6, Remark 1]). Find and
prove an additional condition upon the map i from Theorem 1 to obtain the “if and
only if” result, i.e. to get that each map of the form f(x) =i(x)e* solves (9).

Problem 2 1s it possible to drop or weaken the assumption (10) in Theorem 17?

Finally, let us mention that the following two functional inequalities:
x4\ fOHIO _[fO) =)
f - <
2 2 - y—Xx

PPAS Il AC)) §4f<x+y
y—x 2

3
} . (xF#FY) (12)

>+f(x)+f(y), (x#y) (13)

which are motivated by (4), are discussed in [7] in the spirit of the above-mentioned
studies.

3 Results

First, we will observe a certain property of solutions of (7) and (9).

Proposition 1 If D C R is a set which consists of at least two points, fo: D — R
solves (7) and d: D — R is nonincreasing and both mappings are nonnegative, then
d - fo solves (7), too.

Proof Assume that fo and d are as required and denote f =d - fp. Fix arbitrary
x,y € D such that x < y; we have

fO) = f) _d)fo(y) —dx) folx) _ d )fo(y) — fo(x)
y—Xx N y—Xx = y—Xx

So) + fo») _ dx) fo) +d(3) foly) _ fO)+ fO)
2 - 2 2 '

<d(y)
0

Proposition 2 If D C R is a set which consists of at least two points, fo: D — R
solves (9) andi: D — R is nondecreasing and both mappings are nonnegative, then
i fosolves (9), too.
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Proof If fo and i are as required, x, y € D and x < y, then
xX+y [xtYy X+y . xX+y
=1 <1 -
1(530) =13 )a(57) <iom(5?)

iy OO = o) i foy) — i) folx) _ () — f(x)
<i(y) < = )
y—x y—x y—Xx

O

From Propositions 1 and 2 and from the respective theorems describing solutions
of (7) and (9) we conclude that the exponential mapping is in a sense “the best” or
“extreme” solution of each inequality. In fact, each nonnegative solution of (7) or
(9) can be derived from the particular one fp = exp with the aid of Proposition 1 or
2, respectively.

In [1] and [2], while dealing with (7), (8), (9) and with some other related in-
equalities, the authors applied a technique which relies on reducing the inequality
in question to a special case of the following general functional inequality:

g(x +h) < g(x)p(h) (14)

with some ¢: U — R, where U is a set which satisfies certain additional conditions.
Then, an iterative procedure was performed on this inequality to obtain a desired
representation of the unknown mapping.

In view of this observation it is of interest to state and prove a more general result
which covers the respective parts of reasonings from the above-mentioned papers.
We begin with the following lemma.

Lemma 1 Assume that I is an open, nonvoid interval, U C R is an interval contain-
ing a right neighborhood of zero, g: I — R is arbitrary and ¢ : U — R satisfies

h n
lim go(—) =1, (15)
n——+oo n

for all h € U. If g and ¢ fulfill (14) for each x € I and each h € U such that
X 4+ h €1, then g is nonincreasing.

Moreover, if additionally U contains a left neighborhood of zero, then g is con-
stant.

Proof Fix x € I and n € N, and then take & € U such that x +nh € I and ¢(h) >0
(assuming that such & exists). We may verify inductively the following inequality

g(x +nh) < g(x)p(h)"
provided that %, 2k, ..., nh € U. Indeed, we have

g(x +nh)=g(x +h+ (n—Dh) < gx + )" " <gx)ph)".
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Next, replace h by h/n to obtain

h n
glx+h) < g(x)<p(;>

for all x € I and all & € U such that x + h € I provided that n is large enough (by
(15) we have ¢(h/n) > 0 for sufficiently large n € N). Now, let n tend to infinity
and use assumption (15) to obtain g(x + k) < g(x). Therefore, thanks to our as-
sumption upon U we deduce that g is nondecreasing. If additionally U contains a
left neighborhood of zero, then g is also nonincreasing and thus constant. g

Corollary 1 Assume that I is an open, nonvoid interval, U C R is an interval
containing a right neighborhood of zero, f: I — R is arbitrary, x: R - R is a
nonzero solution of the exponential Cauchy equation:

xw+v)=xw)x ),

foreachu,v e R and y: U — R satisfies

n—+00

im (%) = (16)
forallh e U.If f and  fulfill

fx+h) < fOx)y(h) 7)

foreach x € I and each h € U such that x + h € I, then there exists a nonincreasing
functiond: I — R such that f(x) =d(x)x(x) forx € 1.

Moreover, if additionally U contains a left neighborhood of zero, then there exists
a constant ¢ € R such that f(x) =cy(x) forx € 1.

Proof First, let us note that since x # 0, then y is strictly positive (see M. Kuczma
[11, Chapter 13.1]). Therefore, to prove the assertion it suffices to apply Lemma 1
forg=fx 'andp=vyx 'andtotaked =g. O

Remark 1 An inspection of the proof of Lemma 1 allows us to note that if addition-

ally g > 0 in Lemma 1 or f > 0 in Corollary 1, then assumptions (15) and (16) can
be replaced by the respective inequalities:

h n
0< lim go(—) <1,
n——+00 n

and
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Remark 2 Inequality (7) is a special case of (17). To see this assume that x < y in
(7), put h = y — x and rewrite this inequality as

Fath) = f0 Tt

X Sf@5—

It is easy to check that ¥ (h) = % defined for h € U = (0, 2) fulfills condition (16)
with y = exp and therefore, all assumptions of Corollary 1 are fulfilled.

Remark 3 Let us denote the limit functions appearing on the left-hand sides of con-
ditions (15) and (16) by ® and W, respectively, i.e.

h\" r\"
o=t o). v o[2)

for A > 0 if the set U contains a right neighborhood of zero, or for all & € R if zero
is an internal point of U. One can observe that & and W satisfy a particular case of
the iterative functional equation of Bottcher. In fact, for each k e N and h € I we
have

kh n kh k" h n k
®(kh) = lim <p<—> = lim go(—) :( lim w(—)) = d(h)F
n—-+00 n kn——+00 kn n—+00 n

and analogously W (kh) = W (h)¥. Some additional regularity assumptions imposed
upon these mappings will force that both @ and W are of the form x > exp(ix)
with some real A (see M. Kuczma [8] or M. Kuczma [9, Chapter VI, §12]).

Remark 4 One may ask about conditions imposed upon ¢ and ¥ which are suffi-
cient for (15) and (16) to hold. Results in this spirit for sequences of iterates can be
found in the monograph M. Kuczma, B. Choczewski and R. Ger [12, Chapter 1.3].
However, let us point out that in fact the sequences appearing in (15) and (16) are
not really iterates of a function and therefore a direct application of this results may
be limited.

In what follows we will study the following functional inequality stemming from
the estimate (5):

xfM=fx)+G-Dfy). (18)

Proposition 3 Assume that the set D C R consists of at least two points and
f: D — Rsatisfies (18) for all x, y € D. Then f is nondecreasing on D and non-
negative on D \ {inf D}.

Proof Arbitrarily fix x, y € D such that x # y and change the roles of variables x, y
in (18) to get

V@) = fO)+ & =Dfx).
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Add this side-by-side to (18) to arrive at
(x=»f) =x—=y)fx).

Therefore, if we assume for a moment that x < y, then we see that f is nondecreas-
ing. Next, rewrite (18) as follows:

(x—y+Df(y) = f).

If we denote h = y — x, then we have

A=h)fx+h) =< fx). 19)

Let us assume that x <y =x + h. Thus 4 > 0 and since f is nondecreasing then
A-=mnfx+h) = fx)=fx+h),

and consequently f(x 4+ k) > 0. 0

Example 1 Solutions of (18) need not to be nonnegative on its whole domain.
Indeed, if we take D = {—1,1} and f: D — R is given by f(—1) = —1 and
f(1) =1, then f solves (18).

Theorem 2 Assume that I C R is a nonvoid open interval. Then f: I — R solves
(18) if and only if there exists a constant ¢ > 0 such that f(x) = c - exp(x) for each
xel.

Proof The “if” part follows from estimate (5). To prove the “only if” part pick
arbitrary ¢ > 0 and let Ip = (infI + ¢, supI — €). We may assume that ¢ is small
enough to ensure us that Iy # @. Then fix arbitrary x € Iy and h < 1 such that
x + h € I. By inequality (19) we have

1
fx+h) < mf(x)-

One can check that all assumptions of Corollary 1 are satisfied with I = Iy, U =
(—¢&,8),¥(h)=1/(1 —h) for h € U and x = exp. Therefore f = c-exp on Iy with
some real c. By Proposition 3 we deduce that ¢ > 0. Finally, by letting ¢ — 0 we
obtain f =c-exp on I, as claimed. O

We will terminate the chapter with a one more functional inequality, which is
related to the results of M. Kuczma mentioned at the beginning of Sect. 2. It is
straightforward to note that

1+ y)expx <expx-expy=exp(x +y) (20)

for all x, y € R™. Therefore, we are asking about the general solution of the corre-
sponding functional inequality:

A+nf)=flx+y). 21
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Theorem 3 Assume that I C Rt is a nonvoid open interval. Then f: I — RT
satisfies (21) for all x,y € I if and only if there exists a constant ¢ > 0 such that
f(x) =cexp(x) foreachx € I.

Proof The “if” part follows from (20); we will prove the “only if”” part. Note that
(21) is a special case of (17) (for the map f replaced by — f). Moreover, it is clear
that (16) is satisfied by maps ¥ (h) =1 4+ h and x(h) = exp(h) for h belonging
to some interval U such that 0 is an internal point of U. Therefore we obtain the
desired representation f(x) = ce* for all x € I with some ¢ > 0. 0

Example 2 The assumption I C RT in Theorem 3 is essential. Indeed, if one take
I = (=2, —1), then it is clear that each function f: I — R™ solves (21). Moreover,
if I C RT, then each function f: I — R which is constant and equal to a negative
number solves (20) as well.
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On Measurable Functions Satisfying
Multiplicative Type Functional Equations
Almost Everywhere

Antal Jarai, Karoly Lajké, and Fruzsina Mészaros

Abstract Using the so-called “almost” variant of a well-known generalization of
Steinhaus’ theorem, first we prove a general result on the multiplicative type func-
tional equation (3), then we solve functional equations (1) and (2) originated from
statistics under such conditions.

Keywords Multiplicative type functional equations satisfied a. e. - Density
function solutions

Mathematics Subject Classification 39B22 - 62E10

1 Introduction

Functional equations

hi((o+ y)x) (e +y) fr ) = ha((B+x)y) (B + x) fx (x), (D
and
h1( x ) fr» =h2( y ) fx(x) ’ )
Ala+y) ) A(a+y) AM(B+x)) k(B +x)

satisfying almost everywhere on Ri (where R is the set of positive reals), have role
in characterizing joint distributions from conditional distributions (see [1, 2, 6, 7]).
Suppose only that the unknown functions in (1) and (2) are density functions of
some random variables (i.e. nonnegative and Lebegue integrable with integral 1).
Does it follow that they are positive almost everywhere on R ?
Using a generalization of Steinhaus’ theorem (see Corollary 1), we can give an
affirmative answer to this question.
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2 Some General Results

Let A C R" and x € R". If r > 0, consider the closed ball centered at x and having
radius r. Let us consider the ratio of the Lebesgue outer measure of the intersection
of this ball with A divided by the Lebesgue measure of the ball. The density of A
at x is the limit (if it exists) of this ratio as » — 0; the upper and the lower densities
are the limit superior and the limit inferior, respectively.

Definition A point x € R is called an almost inner point of a set A C R, if there is
an open interval (a, b) containing x such that (a, b) \ A has measure zero.

We need the following corollary of the Main Theorem from the paper [5]

Corollary 1 Let D be an open subset of R x R, let N be a zero set of R x R and
F:(x,y) = F(x,y) be a continuously differentiable mapping of D into R. Let
A, B C R and suppose that B is Lebesgue measurable. If (a,b) € D,

IF JIF
_(a,b)¢0, _(asb)¢01
ox ay

A has density 1 in the point a and B has density 1 in the point b, then F (a, b) is an
almost inner point of F((A x B) \ N).

Note that this is an “almost” variant of a well-known generalization of Stein-
haus’ theorem which states that F'(a, b) is an inner point of F((A x B)): see [4,
Corollary 3.12].

Remark 1 The previous corollary may be stated in the following global form: If

oF doF
X dy

for all (x,y) € D and A x B C D, where A and B has positive Lebesgue outer
measure and B is Lebesgue measurable, then for any 2-dimensional zero set N we
have that F((A x B) \ N) has an almost inner point.

Note again that this is an “almost” variant of a well-known generalization of
Steinhaus’ theorem which states that F'((A x B)) contains an inner point: see [4,
Remark 3.13].

Theorem 1 For any set A C R the set V of almost inner points of A is an open set.
This is the maximal open set for which V \ A has measure zero.

Proof For an arbitrary almost inner point of x let us choose rational points a, < x
and b, > x such that (ay, by) \ A is a zero set. The union of the intervals (ay, by)
for all almost inner points of A is an open set containing V. But each point of any
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interval (ay, by) is an almost inner point of A, hence this union is V. To prove
that V \ A is a null set let us observe that the union is countable, hence V \ A is
a countable union of zero sets (ay, by) \ A. Finally, if U D V, and there exists an
x € U for which x ¢ V, then x is not an almost inner point of A, hence U \ A cannot
be a zero set. O

Definition A set A C R is called almost open, if any point of A is an almost inner
point of A.

Clearly the union of almost open sets is almost open. By the previous theorem
taking V as the set of all almost inner points of the almost open set A we have that
Visanopenset, AC V and N :=V \ A is a zero set, hence A can be represented
as A =V \ N. Trivially, if a set A can be represented as V \ N, where V is open
and N is a zero set, then A is almost open. Such a representation is not unique: for
example, if A is the complement of the Cantor set C, then it can be represented as
A=A\Vandas A=R\C.

Let us consider the functional equation

[1(0) f2(0) = 81(G1(x, ¥))82(Ga(x, y))h(x, y) 3)

with unknown functions f; : X - C, f,:Y > C, g1 : U - C, g:V > C
and given functions G, G» and h satisfied for almost all pairs (x,y) € X x Y
(with respect to the plane Lebesgue measure), where X, Y, U, V C R are nonvoid
open intervals, i is nowhere zero on X x Y, the mapping (x,y) — G(x,y) :=
(G1(x,y),Ga(x,y)) is a Cl—diffeomorphism of X x Y onto U x V with inverse
(u,v) > F(u,v) :=(F1(u,v), F>(u, v)), and all the partial derivatives

G G 3G G
o (x,y), oy (x,y), o (x,y), R (x,y)
and
8F1( ) 3F1( ) 8F2( ) 8F2( )
o 0V Sy et v T et

vanish nowhere on their domain. Let us observe that substituting u = G1(x, y) and
v = Gj(x, y), we obtain the functional equation

Fi(Fi@u, v)) f2(Fa(u, ) = g1)g2()h (Fi (u, v), Fa(u, v)) “4)

satisfied for almost all (u,v) € U x V; indeed, if (3) is satisfied for all (x, y) €
X x Y\ N, where N C X x Y has plane measure zero, then (4) is satisfied for all
(u,v) e U x V\ M, where M = G(N) and M has plane measure zero because G
is a diffeomorphism.

We shall prove the following theorem:

Theorem 2 Suppose that the measurable functions f1, f2, g1, g2 satisfy the func-
tional equation (3) almost everywhere. Then either one of the functions f1 and f>
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and one of the functions g1 and gy are zero almost everywhere or all of them are
almost everywhere nonzero.

Proof We have to prove that if on one side none of the functions are almost every-
where zero then all the functions are almost everywhere nonzero. This will be done
in five steps. We will use the notation

{(fi=0)={xeX: filx)=0}

and the analogous notation { f1 # 0}, { f> = 0}, etc.

I. First we will prove that the sets { f; # 0}, { f> # 0} and {g; # 0}, {g2 # 0}
contain almost inner points. If, for example, f; and f> are not almost everywhere
zero, then they are nonzero on a Lebesgue measurable set with positive measure.
From Remark 1 follows that {g; # 0} and {g>» # 0} contain an almost inner point.
Now applying the same theorem again for (4) we get that the sets {f1 # 0} and
{ f2 # 0} contain almost inner points, too.

II. Let us observe that if x is fixed, then the mappings

vy Gi(x,y) and y+ Ga(x,y)

map almost open set onto almost open set. Indeed, their derivatives are continuous
and nowhere zero, hence both mappings are strictly monotonic and map zero sets
onto zero sets. The same is true for the mappings

x> Gi(x,y), x> Ga(x,y),
v Fi(u,v), v Fo(u,v),

u+— Fi(u,v), u+— F(u,v).

III. We prove that if the set {f] # 0} has positive Lebesgue upper density at
X0, then xq is an almost inner point of { f; # 0}. Let us choose a sequence x,, —
xo such that for all x, we have x,, € {f1 # 0} and the functional equation (3) is
satisfied for almost all y € Y, and let yy be an almost inner point of { f> # 0}, say,
suppose that (yp — €, yo + €) is almost contained in { f> # 0}. Let ug = G1(xo, yo)
and vg = G2(xo, yo). The interval (yo — €, yo + €) is mapped by y — G1(x,, y)
onto an open interval. If n is large enough, then there exists a positive § such that
(uo — 8,up + 8) is contained in this interval, and hence g; is almost everywhere
nonzero on (ug — &,up + §). Similarly, if n is large enough, then there exists a
positive 1 such that (vg — 1, vg + 1) is contained in the image of (yo — &, yo + €)
by the mapping y — G2(x,, y), and hence g, is almost everywhere nonzero on
(vo — n,v9 + ). Now choosing smaller 6 > 0 and n > 0 if necessary, we may
suppose that |u — ug| < 8 and |[v — vg| < n imply that F>(u, v) € (yo — &, yo + €).
Let us choose u;, — ug such that u,, € {g; # 0} and for all u, (4) is satisfied for
almost all v € V. The mapping v — Fj(u,, v) maps the interval (vg — 1, vo + 1)
onto a subinterval of X. If n is large enough, then there exists a ¢+ > 0 such that this
interval covers the interval (xo — ¢, xo + ©). This means, that (xog — ¢, xg + ) is
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an almost subset of { f] # 0}. We obtain similarly, that if the set { /> 7~ 0}, {g1 # 0}
or {g> # 0} has positive upper Lebesgue density at some point, then this point is an
almost inner point of the set { f, # 0}, {g1 # 0} or {g» # 0}, respectively.

IV. Suppose that the upper Lebesgue density of the set { f1 7~ 0} is zero at some
point xo, i.e., that xo is a density point of { fj = 0}. We prove that then xg is an
almost inner point of the set { fj = 0}. Let us choose an almost inner point yy of
the set { f2 # 0}, say, suppose that (yo — €, yo + €) is almost contained in { f> # 0}.
Then (xg, yp) is a density point of the plane set {f; = 0} x {f2 # 0}. Let ug =
G1(x0, y0) and vg = G2 (xg, y0). The point (ug, vo) is a density point of the set
G({ f1 =0} x {f> #0}), hence of the set G({ f1 =0} x {f>» #0} \ N), too, N is the
plane zero set where (3) is not satisfied.

We shall prove that the upper density of {g; = 0} is positive at ug or the upper
density of the set {g = 0} is positive at vg. If this was not true, then the density of the
set {g; =0} x V and the density of the set U x {g» = 0} would be zero at (uq, vo)
and hence the density of the set ({g; =0} x V) U (U x {g2 = 0}) UM would be
zero at (ug, vo), where M = G(N). But this is impossible: choosing a point (u, v) €
G({fi =0} x {f# 0}\ N) for which (u, v) ¢ ({g1 = 0} x V)U(U x {g2 = 0))UM
the left hand side of (4) is zero and the right hand side is nonzero.

Suppose that the upper density of {g| = 0} is positive at uo; the other case can be
similarly treated. Let us choose a sequence u, € {g; = 0} for which u, — u¢ and
for each u,, (4) is satisfied for almost all v € V. Let us choose § > 0 and n > 0 such
that |u — ug| < é and |v — vg| < n imply Fa(u, v) € (yo — &, Yo + €). The mapping
v+ F1(u,, v) maps the interval (vo — 1, vo + 1) onto a subinterval of X. If n is
large enough, then there exists a ¢ > 0 such that this interval covers the interval
(xo — ¥, x0 + ¥). But for almost all v € (v9 — 1, vo + 1), (4) is satisfied, the right
hand side is zero, and hence the left hand side has to be zero, too. But for almost
all v € (vg — n, vg + n) we have F,(u,, v) € { f2 # 0}, hence F(u,,v) € {f1 =0}.
This means that (xo — ¢, xo + ¢) is almost contained in { f; = 0}, i.e., x¢ is an almost
inner point of { f1 = 0}.

V. Now the statement of the theorem follows: Each point of X is an almost inner
point of { f1 # 0} or an almost inner point of { f; = 0}. The sets of almost inner points
of these sets are disjoint and both are open, hence one of them has to be empty,
because X is connected; this can be only the set of almost inner points of { f1 = 0}.
Similarly we obtain that f>, g1 and g» are also almost everywhere nonzero. O

Remark 2 1f the measurable functions fi, f2, g1, g2 satisfy functional equation (3)
everywhere and on one side none of the functions are almost everywhere zero, then
all the functions are everywhere nonzero.

The proof of this remark is similar but much simpler than the proof of Theo-
rem 2 (compare with the proof of Theorem 23.6 in [4]): As step I we get from the
Steinhaus-type theorem that the sets { f1 # 0}, { f> # 0}, {g1 # 0} and {g> # 0} have
inner points. As step III we obtain that { f; 7 0} is an open set, because if f(xg) # 0,
then choosing an inner point yg of { f» # 0} and varying y around yg by step II we
obtain that ug = Fi(xo, yo) and vg = F>(xg, yp) are inner points of {g; ## 0} and
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{g2 # 0}, respectively. Now fixing, say, 1o and varying v around vy we obtain that
x0 = G1(uo, vo) is an inner point of { f; # 0}. Similarly we obtain that { f # 0},
{g1 # 0} and {g» # O} are also open. As step IV we prove that the sets { f; = 0},
{fo =0}, {g1 =0} and {go = 0} are also open. Let, for example, f](xg) = 0. Let
us choose an yg € {f> # 0}. By the functional equation for ug = Fj(xg, yo) and
vo = Fa(xg, yo) we have g1 (ug)g2(vo) = 0. Suppose that g;(u#p) = 0. Varying v
around vg the values y = G (uq, v) remains close to yg and hence fj(x) = 0 where
x = G1(up, v) runs in a neighborhood of x¢. Hence xq is an inner point of { {1 = 0}.

3 Results for (1)
Now let us consider functional equation
hi((@ 4 y)x) (@ + ) fr (v) =ha ((B +x)y) (B +x) fx (x) ey

satisfying for almost all (x, y) € R2 , where the unknown functions hi, ha, fx, fr:
R4+ — R are density functions of some random variables and «, 8 are nonnegative
constants with a? + 2 # 0. Then h1, hy, fx, fy are nonnegative, such that they are
positive on some Lebesgue measurable sets of positive Lebesgue measure. Using
Theorem 2 we prove the following result.

Theorem 3 Let hy, hy, fx, fr : R+ — R be nonnegative measurable functions
satisfying (1) for almost all (x,y) € R2, such that they are positive on some
Lebesgue measurable subsets of Ry of positive Lebesgue measure. Then hy, ha,
fx, fr are positive almost everywhere on R ..

Proof Let us write ﬁ instead of x in (1), hence we get equation

~ X x \Bla+y +x
h1(x)fy(y)—h2<<ﬂ+_a+y>y>fx(a+y> (o +y)? ®

for almost all (x,y) € R?, i.e. functional equation (3) for the unknown functions

fi=hi, o= fr, & = h2, g2 = fx and for the given functions G{(x,y) =

B+ axTy)y, Gy(x,y) = ﬁy, h(x,y) = % ((x,y) € R%). Observe that h

is nowhere zero on Rﬁ_ and the mapping

X X
*x,y) = G(x,y) = (G1(x,y), G2(x,y)) = <<ﬁ+ a+y>y, a+y)

is C!-diffeomorphism of R2 onto R% with inverse

(u,v)—>F(u,v):(Fl(u,v),Fz(u,v))=<<a+ “ )v, " )
B+v) B+v
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All the partial derivatives

0G| Yy G — B+ ox 0G» _ 1 0G» _ X
ax  a+y’ ay (a+y)?’ ax a4ty ay  (a+y?
dF v 0F Bu 0F> 1 0F> _ u

Bt v YT B 02 w Brv v (Btro?

vanish nowhere on Ri.

Substituting u = (8 + 5 Jﬂ =)y, v 5 in (5), we obtain the functional equation

=Ot+

_ u a(B+v)+u
hz(u)fx(v)—h1(<05+—ﬁ+ ) )fY(ﬁ—}—v) (ﬂ+v)2 (6)

for almost all (u, v) € R2; indeed if (5) is satisfied for all (x, y) € Rﬁ_ \ N, when
N C Ri has plane measure zero, then (6) is satisfied for all (u,v) € Ri \ G(N)
and G(N) has plane measure zero, because G is a diffeomorphism. So functional
equation (4) is satisfied with functions h; = f1, fy = f2, ho = g1, fx = &2,
Fi(u,v) = (a + #)v, F(u,v) = #, h(u,v) = % All assumptions of
Theorem 2 are satisfied and further none of the functions are almost everywhere
zero, then all the functions are almost everywhere nonzero. Thus the nonnegativity
of functions implies that i1, k2, fx, fr : R+ — R are almost everywhere posi-
tive. g

Remark 3 Theorem 3 was proved in [8] and [9] by the help of a generalized
Steinhaus-type theorem and by interval expansions.

Remark 4 1f the measurable functions fx, fy, i1, k> satisfy functional equation (1)
everywhere and on one side none of the functions are almost everywhere zero, then
all the functions are everywhere nonzero.

Using Theorem 3 and a general result of A. Jérai [3], similarly to the proof of
Theorem 2 in [7], one can prove the following result.

Theoremd Let hy, ha, fx, fr : Ry — R be nonnegative measurable functions, sat-
isfying (1) for almost all (x, y) € Rz such that they are positive on some Lebesgue
measurable subsets of Ry of posmve measure. Then there exist unique continu-
ousﬁmctwns h1 h2 fX fy Ry — Ry such that h1 hy, h2 = hy, fx = fX and
fy = fy almost everywhere on Ry, and if hy, ha, fx, fy are replaced by hy, h,
fx. fr. respectively, then (1) is satisfied everywhere on R

Proof Theorem 3 shows that functions Ay, k2, fx, fy are positive almost every-
where on R .

First we prove that there exists a unique continuous function 4; which is equal
to i1 almost everywhere on R and replacing /| by hi, (1) is satisfied almost ev-
erywhere.
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With the substitution r = (¢ + y)x we get from (1) the equation

ha((B + Q’Ty)y)(ﬂ + O/Ty)fx(#y)
(@+y) fr(y)

hi(t) = (7

which is satisfied for almost all (¢, y) € Ri. By Fubini’s Theorem it follows that
there exists 7/ C R, of full measure such that for all € T’ (7) is satisfied for
almost every y € {y e Ry |(¢, y) € R2 =Ry

Let us define the functions g1, g2, g3, / in the following way:

t t
tL,yy=(8+—1»y, t,y)=——om,
g1, y) (ﬂ a+y>y g(t,y) poa

<122
g3(t7y):yv h(tvyvzlszaZ:‘;):?s
and let us now apply a theorem of Jarai (see [3, Theorem 3]) to (7) with the following
casting:

hi@®)=f@), h@®=75n@, @B+0fx@=n0, @+)fr@)=[30),
Z=Z=R,, T=Y=X;=R, (i=1223).

One can easily verify that all assumptions of Jarai’s Theorem are satisfied, thus we
get that there exists a unique continuous function & : Ry — R which is almost
everywhere equal to 21 on R4 and ﬁ1 , ho, fx, fy satisfy (1) almost everywhere,
which is equivalent to the equation

hi (@ + y)x) (@ + ) fr () = ha ((B +2)y) (B +x) fx (x) (8)

for almost all (x, y) € ]Rz Furthermore, /; is positive for almost all x € Ry

By a similar argument we can prove the same for the function %, fx and fy,
i.e. there exist continuous functions /7 : Ry — R, fx : R. — Rand fy : Ry — R
which are almost everywhere equal to />, fx and fy on R, respectively, and the
functional equation

(G + y)x) (@ + ) fr () = ha (B +2)y) (B +x) fx (x) 9)

is satisfied almost everywhere on Ri.
Both side of (9) define continuous functions on R2 , which are equal to each other
on a dense subset of Ri, therefore we obtain that (9) is satisfied everywhere on R%r.
Applying Remark 4 for (9), one can show that if the nonnegative continuous
functions k1, hy, fx, fr : Ry — R satisfy functional equation (9) for all (x, y) €
Ri, such that they are positive almost everywhere on R, then they are positive
everywhere on R . g

Therefore it suffices to determine the general positive and continuous solutions
of (9) for all (x,y) € R2, apply Theorem 3 in [7], and thus, as an immediate con-
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sequence of Theorems 3 and 4 we get the following result for the density function
solutions of (1).

Corollary 2 Let hy, ha, fx, fr : Ry — R be nonnegative measurable functions,
satisfying (1) for almost all (x,y) € Ri such that they are positive on some
Lebesgue measurable sets of positive Lebesgue measure. Then there exist constants
c1, 2, ¥, 01, 62, 83, 84 € R, with §1 + 83 = 82 + 64 such that

hi(x) =x“"exp(yx +681) a.a xRy,

hy(x) =x?exp(yx +68) aa x eRy,
e

(v +a)art!

C1

(x + ,B)CTH

fry) = exp(yBy +383) aa yeR,,

fx(x) = exp(yax +84) a.a x eRy.

Remark 5 Corollary 2 implies the so-called density function solutions if —y,

—(c1 + 1), —(c2 + 1) € R4 holds. Further Corollary 2 shows that 4 and A, are
gamma densities with parameters —y, c¢; + 1 and —y, ¢; + 1, respectively.

4 Results for (2)
Now we consider the functional equation

X 1 y 1
h =h
1<A1(a+y>>x1<a+y>f”” 2<A2(ﬁ+X)>/\z(ﬁ+X)

for almost all (x, y) € R2, where the unknown functions hi, hy fx, fr i Ry - R
are also density functions of some random variables, 11, A, are positive constants
and o, B are nonnegative constants with a?+ B2 £0. Then hy, ha, fx, fy are non-
negative, such that they are positive on some Lebesgue measurable sets of positive
Lebesgue measure.

Using again Theorem 2 we prove

fx(x) ()

Theorem 5 Let hy, hy, fx, fr : Ry — R be nonnegative measurable functions
satisfying (2) for almost all (x,y) € R2, such that they are positive on some
Lebesgue measurable subsets of Ry of positive Lebesgue measure. Then hy, ha,
fx, fr are positive almost everywhere on R ..

Proof Replace x by A1 (@ + y)x in (2). Then an easy calculation shows that i1, K>,
fx, fy satisfy functional equation

y
A2(B + Ar(a + y)x)

& oa+y
A2 B+ A(a+y)x
(10

hl(x)fy(y)=h2< )fx()»l(a-i-y)x)



250 A. Jarai et al.

for almost all (x, y) € R2, i.e. functional equation (3) for the unknown functions
f1 = hl, fo = fv, g1 = h2, g2 = fx and for the glven functions Gi(x,y) =

+y :
Az 7/3“1(&_”))‘, Ga(x,y) = M(a + y)x, h(x,y) = 5% 7ﬁ+}ﬁ(a‘+y)x Clearly h is

nowhere zero on R2 and the mapping

1 y
()C, y) g G(x»)’): (G]()C, y)st(x’ )7)) = <_

kzﬂ+)»1(a+y)x’)hl(a+y)x)

is C!-diffeomorphism of ]Ri onto Ri with inverse

1 v
u,v)—> Fu,v)=(Fu,v), Hhuv)={ ———m A +vu ).
(u,v) (u,v) = (Fi(u,v), Fa(u, v)) <k1a+kz(ﬂ~|—v)u 2(B ))
All the partial derivatives

0G| _ _E (x+y)y G _ i B+ Aax

dx A2 (B4 A+ y)x)? dy A (B+rila+y)x)?

G G2

— =AM(a+y), — =A\x,

ax ay

af B+vv o 1 o+ i fu

du A (a+ 2B+ v)u)?’ A+ 2B+ vu)?’

3F2 8F2

— =M(B+v), — =Aou

ou ov

vanish nowhere on Ri.
By the transformation

1 y

= —:G , N Z)\, =G 5 5
DBt 1(x,y) v=2>XAi(a+y)x 2(x, y)

we get from (10) the functional equation

_ i v A2 B+v
h2(”)fX(U)—hl<M a—+A2(ﬁ+v)u>fY( 2(ﬁ+v)u) (@t (11

for almost all (u, v) € R%; indeed if (10) is satisfied for all (x, y) € RZ \ N, when
N C ]R%r has plane measure zero, then (11) is satisfied for all (u, v) € Ri \ G(N)
and G(N) has plane measure zero, because G is a diffeomorphism. So functional
equation (4) is satisﬁed with functions h; = f1, fy = fz, 9 = gl, fx = g,
Fi(u,v) = /\1 m, Fu,v)=rB+v)u, h(u,v) = )»1 m All con-
ditions of Theorem 2 are satisfied and further none of the functions are almost ev-
erywhere zero, then all the functions are almost everywhere nonzero. Thus the non-
negativity of functions implies that i1, h2, fx, fr : R+ — R are almost everywhere
positive. g
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Remark 6 Theorem 5 was proved in [8] and [9] by the help of a generalized
Steinhaus-type theorem and by interval expansions.

Remark 7 1f the measurable functions fy, fy, k1, k> satisfy functional equation (2)
everywhere and on one side none of the functions are almost everywhere zero, then
all the functions are everywhere nonzero.

Using previous theorems and Theorem 3 from [3] one can prove, similarly to the
proof of Theorem 4, the following result.

Theorem 6 Let hy, ha, fx, fr : Ry — R be nonnegative measurable func-
tions, satisfying (2) for almost all (x,y) € R2 such that they are positive on
some Lebesgue measurable subsets of Ry of positive measure. Then there ex-
ist unique continuous functions hi, hy, fX fy Ry — Ry such that hy = hy,
hz = hy, fx = fx and fy = fy almost everywhere on Ry, and if hy, ha, fx, fr
are replaced by h], hz, fx, fy, respectively, then (2) is satisfied everywhere on
R2 .

Therefore it suffices to determine the general positive and continuous solutions
of (2) for all (x, y) € R2, and thus, as an immediate consequence of Theorems 5, 4
and of Theorems 7, 8, 9 in [7], we get the following result for the density function
solutions of (2).

Corollary 3 If the nonnegative measurable functions hy, ha, fx, fr :Ry - R

satisfy (2) for almost all (x,y) € R%_ and they are positive on some Lebesgue mea-
surable sets of positive Lebesgue measure, then in case o > 0, 8 > 0

hi(x) = e 0ux) 2B+ Aax) @ aa xRy,
ha(x) = e (hpx) (o + Azﬁx)7£ aa x €Ry,
Fx(x) = e apx?(x + ,B)C‘_%Jrl aa x eRy,
Frx) = eBax(x + a)cz_é—H aa xRy,

where c1,c2, v, di,da, d3,dy € R are arbitrary constants with dy + d3 = dr +
dy.

Corollary 4 If the nonnegative measurable functions hy, ha, fx, fr : Ry - R
satisfy (2) for almost all (x,y) € Rﬁ and they are positive on some Lebesgue mea-
surable sets of positive Lebesgue measure, then in case o« =0, 8 > 0

MY
M) =e 204x)2e 7 aa xeR,,

ho(x) = e ()\.2)6)016_'62)“2)( aa x eRy,
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fx() =e®rx + B2 aa x eRy,

Y

fr(x) = eBaxtetle™ i ga x eRy,

where c1,c2, v, di,da, d3,dy € R are arbitrary constants with dy + d3 = d» +
dy.

Corollary 5 If the nonnegative measurable functions hyi, hy, fx, fr : Ry - R
satisfy (2) for almost all (x,y) € Rﬁ and they are positive on some Lebesgue mea-
surable sets of positive Lebesgue measure, then in case o > 0, 8§ =0

Y
—d 2, o2
hi(x) =e 2 (Ax)?%e **1*  aa xeRy,

—d _ra,
ha(x) =e M (hpx)le o2 aa x €Ry,

_x
fx(x) = eaxtotlemar ga x eRy,

frx) = B (x + )2 X9 aa xe Ry,

where c1,c2, v, di,da, d3,dy € R are arbitrary constants with dy + d3 = d» +
ds.
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On the L! Norm of the Weighted Maximal
Function of Walsh-Marcinkiewicz Kernels

Karoly Nagy

Abstract The L' norm of the maximal function of Walsh-Marcinkiewicz kernel is
infinite. Thus, we have to use some weight function to “pull it back” to the finite.

The main aim of this chapter is to investigate the integral of the weighted max-
imal function of the Walsh-Marcinkiewicz kernels. We give a necessary and suffi-
cient conditions for that the weighted maximal function of the Walsh-Marcinkiewicz
kernels is in L'. For our motivation we refer the readers to the papers (Gt in Acta
Acad. Paedagog. Agriensis Sect. Mat. 30, 55-66 (2003); Mez6 and Simon in Publ.
Math. (Debr.) 71(1-2), 57-65 (2007); Nagy in JIPAM. J. Inequal. Pure Appl. Math.
9(1), 1-9 (2008)).

Keywords Walsh system - Marcinkiewicz kernels - Marcinkiewicz means -
Maximal operator

Mathematics Subject Classification 42C10

It is easy to see that the L' norm of sup,, | D,,| with respect to Walsh-Paley or Walsh-
Kaczmarz system is infinite. G4t in [2] raised the following problem: “What hap-
pens if we apply some weight function «? That is, on what conditions find we the
inequality

Dy

a(n)

sup
n

<X

1

valid?” He gave necessary and sufficient conditions for both rearrangement of the
Walsh system. More details on Walsh-Kaczmarz system can be found in [2, 3, 11,
13]. The main aim of this chapter is to give necessary and sufficient conditions for
the maximal function of Walsh-Marcinkiewicz kernels with weight function «.

First we give a brief introduction to the theory of dyadic analysis [1, 12].

Denote by Z, the discrete cyclic group of order 2, that is Z, = {0, 1}, the group
operation is the modulo 2 addition and every subset is open. The normalized Haar
measure on Z is given in the way that 1 ({0}) = n({1}) = 1/2. Let

e}
G:= x Zz,
k=0

C. Bandle et al. (eds.), Inequalities and Applications 2010, 255
International Series of Numerical Mathematics 161, DOI 10.1007/978-3-0348-0249-9_20,
© Springer Basel 2012
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G is called the Walsh group. The elements of G can be represented by a sequence
x = (x0,X1,..., Xk, ...), where x; € {0, 1} (k e N) (N:={0, 1, ...}, P:=N\{0}).

The group operation on G is the coordinate-wise addition (denoted by +), the
measure is the product measure (denoted by w) and the topology is the product
topology. Consequently, G is a compact Abelian group. Dyadic intervals are defined
by

Io(x):=G,  Lix):={yeG:y=(xX0....Xn—1, V> Ynt1.---)}

for x € G,n € P. They form a base for the neighborhoods of G. Let 0 = (0:i €
N) e G and I, := I1,,(0) forn € N.

Furthermore, let L?(G) denote the usual Lebesgue spaces on G (with the corre-
sponding norm |.|| »). The Rademacher functions are defined as

re(x):= (=% (xeG,keN).

Each natural number n can be uniquely expressed as n =) . n;2t, n; €{0,1)
(i € N), where only a finite number of n;’s different from zero. Let the order of
n > 0 be denoted by |n| :=max{j € N:n; # 0}. That is, |n] is the integral part of
the binary logarithm of n and 2"l <n < 2I"1+1,

Define the Walsh-Paley functions by

o0

o) =[] ()™ = (= 1Tk,

k=0

The Walsh-Paley system is w := (w, : n € N) and the Walsh-Kaczmarz system is
denoted by « (for more details see [2, 3, 9, 13]).
Define the Dirichlet and Fejér kernels by

n—1

n
=Zwk, K? :=%ZD,‘(",
k=0 k=1

where D(‘)", K(‘)‘) :=0.
It is known [12] that

2", xel,

D3 (x) = .
0, otherwise (n € N).

Next, we introduce some notation with respect to the theory of two-dimensional
system. Let the two-dimensional Walsh group be G x G and the Dirichlet kernels,
the Marcinkiewicz kernels be defined as

D,‘fl nz( ! xz) = Dﬁl"l (xl)Dj,"z(x2), IC“’ x ,x? ZDkk x L x2
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For more details see the work of Weisz [14] and Goginava [7] on Walsh-
Marcinkiewicz means and the work of Gat [4] on Vilenkin-Marcinkiewicz means.
Moreover, see the paper of Gt and Goginava [5].

Let « : [0,00) — [1,00) be a monotone increasing function and define the
weighted maximal function of Dirichlet kernels D$>* and of Fejér kernels K&-*
by

C() C()
D (x) = sup AL ey qup SO )
nep @([logn])’ neP a([l nl)

where [n] is the integral part of n. For the weighted maximal function of the
Dirichlet kernels with respect to Walsh-Paley system D&* Gat [2] proved that
D@* e L' if and only if Y%, ﬁ < 00. Moreover, he proved 3 3%, ﬁ <
I DY*|I1 < ZZ%OZO ﬁ. For the Walsh-Kaczmarz system he showed that the sit-
uation is changed. The two conditions given by Gét are quiet different for the two
rearrangements of the Walsh system.

For ||K$*|l1 the author [9] showed that K$* € Ll if and only if ) G —0 L)
oo. The author proved the inequality . 7 > oo a(A) < IKZ*l <2> %0 a(lA)
Moreover, it was showed that, we could get so good estimation for || K% *[/1, as we
have got for || K2-*||;. That is, the behavior of weighted maximal function of Walsh-
Kaczmarz-Fejér kernels is so good as the behavior of weighted maximal function of
the Walsh-Fejér kernels.

In 2007 for (bounded and unbounded) Vilenkin systems the weighted maximal
Dirichlet and Fejér kernels were investigated by Mez6 and Simon [8].

Now, we define the weighted maximal function of the Marcinkiewicz kernels
K& by
o 1’ 2
K(‘;”*(xl,xz) := sup o 7, 21 ((xl,xz) € Gz).
nep  ([logn])

In the present chapter we discuss the behavior of the weighted maximal function of
Walsh-Marcinkiewicz means. That is, we prove the following theorem:

Theorem 1 There is positive absolute constant C such that
1 =1
o« =2 Gy
i aA)
Corollary 1 K2* € L' if and only if Y3 7t55 < o©.

Let
a+b—1

Z DJ/’
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and n® := h n;2" (n,s € N). By simple calculations we get

|n|

w w
nkC; = E nsKsn s
s=0

To prove our main theorem we need the following results [10], which estimate
the values of the Marcinkiewicz kernels.
Suppose that s, f,n € N, (xl,xz) € iy X U\Ii41). If s <t <|n|, then

Ky s (x1 2%) [ < 22 (n0FD 4 29). (1)
If t <s < |n| then we have

|’C;,U<s+1>,2s (xl ’ xz) |

0 if3, 1 <t41<s,x*—xte,—eq &I, x2, #0,
< 2%t ifdlr<t41<s,x?—xte — e € I, x7, #0, (2)
2n(s,t)  ifxZ— xtze, e,

where n(s, 1) = [pS+D2sH — 2125 — 2171 4 1) — 252 —2)].

Let s,¢!,¢%2,n € N. Suppose that th<? < |n| and (xl,xz) € (In\Ij1y) X
(It2\1t2+1)'

Ifs<t!'<t2<|n|,ort! <s <2 <|n|then

w 1 .2 4245
Ko 5 (61, x%)[ <2 ) 3)
If t' <% <5 < n| then
w 1 .2
’Kn(s-%—l),zx (X » X )’
0 if 3 € By, x} #x?
bl 1 l’
_Jo ifVieB),x! =x?,3eBr,x' —ep —es ¢ 1o, 1, x] =1, @
= . 1 . .
25t ifYi e Bl,xi' =xl.2,EIl €By,x' —e1—¢ € Itz+],xll =1,
T2 e ; 1 2
25T if xl — e € Ipyy, (Vi € By, x] =x7),

where By ={t2+1,...,s — 1}, Bo={t" +1,...,12}.
Moreover, we need the following Lemma of Gat, Goginava and the author [6].

Lemma 1 (Gdt, Goginava and Nagy [6]) Let (x',x?) € (Ii\I,i,) x (I2\I,24)),
where t! < s <t2. Then

N
|IC::’(H1)’23(xl,x2)’§c2’1+t2+s Z lls(e,1+em)(xl)-
m=t!+1
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Proof of Theorem 1 The lower estimation comes from the following. On the set
(Ia\Ia+1)? we have

241

_1 2A+1_1
IC¢ x x Zkz )(6 ),

where ¢ = w or «. Thus, we have

kel =35 / KE (e ) dun(x' 1)

A=0 B=0 Y Ua\la+1)xUp\Ip+1)

o0

K2, (x!, x?)
> Z/ 2A—du(xl,)cz)
isodanar a(d)

o0 A A+1
1 24 —-1)(2 —1
ZZ f ( )( )du(xl,xz)
a(A) Jaa\1410? 6

Now, we prove the upper estimation.

,Cw*
” / ZHAOI(A)

o0
1
< E Keld
=2 o) Jor o i

We show that there exists a ¢ > 0 constant such that

/ sup|IC |du<c
G? |n|=A

holds for all A € N. This will completes the proof of Theorem 1.
First, we decompose the set G as the following disjoint union:

A-1

G=12UJUNL4)
=0

and introduce the notation J; := I;\ I;11.

/ sup |K%|du = / sup |IC“’|d/L+/ sup K% |du
G 1% |n|= I

2 |In|=A axIy n|=A
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+/ sup |IC“’|du+/ sup |K2|dp
I I4" In|

AXIg Inl=

= S'+ 852+ + 5%

A+1 A+2
On the set Ii the kernel |K%| = % and sup, 4 IK}| < %
which immediately gives that S' < c.
Now, we discuss S2 (3 goes analogously).

A-—1
S L
12=0

IaxJy |n|=AT
We decompose the set J,> as a disjoint union
A 2
— =.q
JIZ = U JA )
g=1>+1

where J, . ={xeG:x=(0,...,0,x2=1,0,...,0,x; = 1, Xg41, ..., %a—1,
2
L)Y =1 41(e2 4 ey) for t?<g<Aand Jlf‘ A = I4(e;2) for g = A. Thus,

gy 3 |

q n
2=0 g=12+1 Ll '”' A

Z|’Cn@+» .

2
On the set 14 x Jj‘ "9 the kernel |K,,<S+1>’2s| < an”’2 for 0 < s < ¢ (see inequality
(1)). That is,

q
<Z Z [Axf "\n\ An(zcn2S+z + Z [Ksy 50 )du

12=0 g=12+1 s=0 s=q+1

2
To discuss the last sum, we have to decompose the set J/g "1 as the following disjoint
union

A 2
t,q,r
U 7"
r=q+1
where J) ST v eGix=0,... ,0,x2 = 1,0,... qu—l,O,...,xrzl,
Xrdlseeos XA—1,..)) = lrp1(e2 +eg + ) forr<A Jt qA—IA(e,2 + e,) for

r=A>gq,and Jl A4 = 14(e,2). On the set Iy nqr by inequality (2), | K¢,

o0 s | =
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217+a+s for g <s <rand K% | =0 for r < s. Thus, we have

n(s+1) 25
A-1 A A q r
s < Z Z sup — ! chZH"z—l— Z 2t tats du

- I x/’ AT p=A T

2=0 g=2+41 r=q+1 “ "4 s=0 s=q+1

A-1 A A
e DX : Z2S*’2+ > 2t dy

[ 2q.r
2=0 g=r2+1 r=q+1*14% s=q+1

IA

SIS ol N
A

12=0 g=12+1 r=q+1

IA

A-1 A A
CZ Z Z 2q+r22—A—r

12=0 g=12+1 r=q+1

c Z 2t2 <c.

12=0

IA

Now, we turn our attention to the discussion of 54,

A-1 A-1

"X X, ., ke

—0 12=0 ]1><12|n\—

A-1 t'—1 A-1 A-1

SIDIUFES 3B IFEL 3 3

t1=0 12=0 t1=0 2=!
— w
where S;1 2 1= fle xJy SUPlnj=A K2\ d .

We investigate ) , (the investigation of ), goes analogously).
Sett! <12 < A.

S g2 S/; sup —Z|/C (s1) 2S}d,u

1xJo |n|=AT
1 1 12
w
:/ siP _Z|IC (s+1) 25}d'u+/ sup Z |K:n“‘*'” 25|dM
JixJo ln|=A T JaxJp Inl=a" T '

A
1
+/ sup — Z |ICZ)(H1) zs‘d,u =: Slll 2 ~|—St21 z2+St31 2
; , , , ,

AN
1% J2 |n|=A s=1211
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By inequality (3) we write
tl
sl <, i 2211+t2+sd
2 = DA M
JixJp2 =0
5622t1+t27A27t1712 5c2tl*A.
Moreover, this yields
A-1 A-1 Al Aol A—1 1
Y Y shezey Yoy se )
=0 2=l =0 2=l t1=0

By the help of Lemma 1 we discuss Stzlﬂ.

A 2 K
1
Sipse ) fj,lyq 2 > 2 N 1y v () di(x! )
A X 2

g=t1+1

s=t141 m=t1+1
2—1 12 s
—A s 1 1
56‘2 Z /;tl_q Z 2 Z 11J(gtl+em)(x )d,u(x )
g=t'+1""A  s=rl41 m=t'+1
A 12 s
—A s 1 1
DY) WD DA DR TSIPREL PRI
g=t2 " 7A  s=t141 m=t!+1

121 q

— 1
<c2 A Z [11qu Z 2! +S11S(et|)(xl)

g=t'+1""A  s=l4]

12
+ Z 2tl+slls(et1+eq)(xl)d,u(xl)
s=q+1

2

A
+c2—A Z '/;,1.,] Z 2t1+311_¢(er1)(x1)dﬂ/(xl)

g=t2 "4  s=tl41

- il 1 2 1
<2t )y <Z 2t g 2’)

g=t'+1 \s=t14+1 s=q+1

A 1
+c2 Y Ny o' +s—q

g=t?s=t1+1

<2 A (A-1)2
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This gives that

A-1 A-1 A1 ]
> Y s ]tz<cZ(A—tl)32’ A <) (6)
t1=0 12=¢! t1=0

At last, we discuss Sf’l 2 by the help of inequalities (3) and (4). We use the following
disjoint decomposition of J1:

A A .
t,q,r
U U a

g=t'4+1r=q+1

Thus, we immediately write

A A
s X0 [, a0 3 (K
=q+

g=t'+1 ‘4 s=1241
A

Z /,IM 2A Z n(Y“),Z‘

Ji2 s=t2+1

du

/thA 1 2A Z 11(”']),25|d'u
=124+1

by /,lq, 3 > K
=q+1

s=t24+1

Z
5>

A
g=t'+1 r=

sldu

= Stl L+ S+ S

the2 tl, 12

We investigate S (and S 2 goes analogously).

A
St?’l’,lﬂ Z Z /thA [,r 2 Z |’CZ)(””,2S dn

q=t'4+1 r=12+1 s=t24+1
A
—A w
D> [P SR L
q=t24+1 r=t2+1 Ta s=t2+1
. g3l 312

t1,r2 1,2
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By inequality (4) and IC;”(S 1) s # 0 we write that

l311{21_ Z Z / t.rz_A i 2S+t1+qdﬂ
A

qg=t'+1 r=t2+1 s=t2+1

12 A
Z Z ot'+q—24 < C(A _ t2)211+t2—2A

g=t'4+1 r=t2+1

and
A
3,1,2 —A ®
S,l’tz = /J, qA ;.,-2 Z |]Cn(s+1)’2x dp
q= t2+l r=t24+1 s=t2+1
y—A
£y [ 3 K
g=t2+1 s=t241
A
fA w
N> Jane ™ X Wil
g=t>+1 r=q+1 s=12+1

Inequality (4) and IC% 1y s 7 0 give that

.

3,1,2 —A Z s+t1412

12 2/,1“ R D
A

g=t2+1 r=t2+1 s=t2+1
74 Z s+t +12
Y Y [
g=t2+1 p=q+1 s=t241
n Z Z / A Z s+ H2 | oA Z 25+ gy
qA t2
g=12+1 r=q+1 s=t2+1 s=q+1
A gq—1 s A A s
1 _ 1 _
SZ Zzz+z 2A+Z Zzz+z 24
q=12+1 r=12+1 g=t2+1 p=q+1
A A

+ Z Z (2q+t1+t2—2A—r+2t1+q—2A)

g=t2+1 r=q+1

§C2tl+t2_2A(A—t2)2+C2tl_A(A—t2).
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That is, these immediately yield that

A-1 A-1 A-1 A-1 , A-1 A-1
l-‘rl‘ 2A t—
DD Sipscd] 2 Vel YoM a-) e
t1=0 12=¢! t1=0 12=t! =0 2=
At last, we discuss St3 . Set x; j —Zz ;xie; andx —Zl ixlel—k(l—xj)ej

(with x] , := Y17 xep). Thus,

/-I e 1+e,+e+x !
A(’,l q r r+1,A I)X][2
lE{"‘l‘l A 1}

A
w
x Z Vcn(S*l),Z‘ d

s=t2+1
3 3,1 3,3,2
Z( )+ Z( )= t1t2+St1,t2'
q_tl-‘rl t]—12+1

Using inequality (4) and /C%, s+ 25 #0, we get that 1> < r and

12
331
tl 2 =
g=t'4+1 r=12+1 xi= p=r+1 Ia(e,1+eqtertxrpr,a-1)xpri(eptertx )
iefr+1,....,A—1}

i
% A Z 25+t1+qdu

s=t2+1
D> z /
g=t'4+1 r=12+1 xi=0 —rr1 Y 1t tegtertxrpra-DxIppiep+x, )

ie{r+1,.. Afl}

.
x27h 3 st gy

s=t2+1
12 A=2 12 A=2
_ _ 1 _ ]
< 2 2A Z Z 2A r(A _r)2t +q +2 2A Z Z 2A r2t +q
g=t'"+1 r=t241 g=t'+1 r=1241

< 2ZI—A(A _tl)z
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(with the notation Ja+1(e,2 +ey +x, | 1) :=la(e2 +er +x, ., 4)). Moreover, we
3, 3 2

write for S that
3 = Z Z Z Z Z
t [2 B [ .m.n
g=12+1 r=q+1 x;=0 m=t2+1 n=m+1 Ia(e,1+egter+xri1,a-1)XxJy

elrt il A—1)

A
x 274 Z |’C;:)(s+1)’2.y|dﬂ

s=t2+1
’C,l(m),zx # 0 and g > ¢“ yield that
A A A
Z f 2, Z_A Z |ICZ)(S+1) 2s | d,l,L
2 = [A(e 1 tegter+xri1,4-1) %Iy mn > )
m=t24+1 n=m+1 s=12+41
q—1 A
—A s+l 412
= 2 2 du
- f .m,n
m=t2+1n=m+1 Ia(e,1tegter+xrp1,a-1)XJ s=r?41
A
+ Z f n—A Z gs !+ du
T2 m,n
m=q+1 n=m-+1 Ia(e+egter+xri1,4-1)XJ s 1
A
7A
+ / Z Gt |dM
I \q,n n ,25
n=q+1 Ia(e,1+eqt+er+xr41,4-1)%J s 41
< Z Z 9—2A—nym+t L2 + Z Z 0 —2A-noq+t 12 + Z
m=t241n=m+1 m=q+1n=m+1
_ 1,2
<2 244t +t (q_t2)+z_
m=q
o . .
ICn(m),zs # () gives again

r—1

RS S

A
2=
m=q

/;A(e 1+egter+xrp1,a-1)%x I,

n=q+1 s=t2+1
A
2
+ / 2= A Z 2&+t +t du
2 .q,n
n=r+1 Ta(e,1+eqter+xri1,4-1)%XJ sl

A
2 4r 274 Z |,Cz)(s+l)’2x du

+/
Ia(e,1 +eg+er+xrsna1)xJ) e
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r—1 A
< Z 2—2A—n2n+t'+tz+ Z 2—2A—n2r+t1+12+z

n=g+1 n=r+1 m=q
n=r
—2A+t1 412
ST Y
m=q
n=r

For fixed ¢, r and x,41,4—1 € G, by K%, # 0 we write, again

nG+1) 28

A
—A w
~/I 2q.r 2 Z |ICn(””,2‘ | dp
q ale1tegter+xri,a-1)%xJ

s=t24+1

33
Il

14
2—A Z 25+ll+12 d,l,L
s=t2+1

NE

1 /IA(etl teqtertxrpi,a—1)xIprileptegtertx, )

p

oA 1,2 _ 1,2
2 2A p2p+t +t S(A—V)Q 2A+t +l‘

E

p=r+1

Thus, we have

Sy = Z Z Z 22T (g =)+ r— )+ (A—1)]

g=241r=q+1  x=
ief{r+l,..., A—l}

<c(A- t2)2’] -

and

A-1 A-1 A-1 A-1

MY s (A2 A (a-22 ) <.

t1=012=¢! =0 2=l

This completes the proof of our theorem. g
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Quasimonotonicity as a Tool for Differential
and Functional Inequalities

Peter Volkmann

Dedicated to the Memory of Wolfgang Walter,
May 2, 1927 - June 26, 2010

1 Introduction

In the context of differential inequalities, the name “quasimonotonicity” had been
introduced by Wolfgang Walter [8]. In this monograph also the basic comparison
theorems involving ordinary and parabolic differential inequalities, respectively, are
treated, the latter being a generalization by Mlak [3] of a theorem of Nagumo [4] to
functions having values in R”.

For both comparison theorems versions are known, where the functions have
values in ordered topological vector spaces; cf. [6] for ordinary differential in-
equalities and the joint paper with Simon [5] for parabolic inequalities. When re-
stricting [5] to the semilinear case, then functions f(x, ¢, £) are involved, whereas
in [6] functions f(z,£) occur. Here x is a variable in RY, ¢ is a real variable,
and & is a variable in an ordered topological vector space E; the values of f are
in E.

Now it turns out that the comparison theorem from [6] can be considered as a
special case from [5], when allowing N = 0. This will be presented in the next
paragraph; for simplicity we only consider the semilinear case. Similarly as in [7], a
functional dependence with retarded argument will be admitted, which for N =0 in
the case of absence of all derivatives leads to a theorem on functional inequalities;
cf. also the joint paper with Baron [1].

Finally the survey article by Herzog [2] on quasimonotonicity has to be men-
tioned.
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2 Comparison Theorem

We consider N € {0,1,2,...} and a non-empty, open, and bounded set 2 C RN
(hence 2 = {0} and 02 = @ for N = 0). Furthermore, T > 0 being fixed, we con-
sider R = Q2x]0, T']; the set dp R = (2 x {0}) U (?Q x [0, T']) is called the parabolic
boundary of R. We obviously have RU3,R=R, RN9pR = 0.

Let E be a real Hausdorff topological vector space, and let K be a wedge in E,
i.e. a non-empty subset satisfying

A>0, &€K, nekK = r&+n eKk.
We suppose K to be closed and such that
IntK #@.
For &, n € E we write
§<n & n—-§€Kk,
E«Kn & n—&entk.

K* denotes the dual wedge of K, i.e. the set of all linear, continuous ¢ : E — R
satisfying ¢(§) >0 for £ e K.
According to [6], a function

f(x,t,8):D—>E
(where D CRN xR x E ) is quasimonotone increasing with respect to &, if

(x,t,6)eD,(x,t,n)eD, &<n, @eK* @& =90
= o(f&x.1.9) <e(fx.1,0).

For functions u : R — E and (x, t) € R the derivatives

9 2
2 x. 0 €E, x.0)€E (jk=1,...,N) (1)
0x; 0x;j0xg
and the left-hand derivatives
S ek @)
~ Zx,
at

are taken in a weak sense: It is sufficient that for any linear, continuous ¢ :
E — R the function w = ¢ o u|g : R — R has derivatives wy, wy, and ag—t“’ =
limp o LEH=0@D [which are linked to (1), (2) by

0 ety =g ety Po_ o Pu_ )
x? - x? 9 x’ == x? 9
0x; ¢ 0x; 0xj0xg ¢ 0x;0xg
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0" w N = 0 u ;
T(X, )—90<7(X, )>-

Theorem 1 For (x,t) € R suppose a(x,t) >0, b(x,t) >0, 0 < F(x,t) <t,
dix,t) eR(j=1,...,N), and let (cjk()_c, t))?{k:] be positive semidefinite ma-
trices. For two continuous functions v, w : R — E suppose

D v, ) <wx, 1) ((x,1)€dR),

9 al 2y
1I) a(x,t)a—tv(x,t)—b(x,t)v(x,F(x,t))— Z cjk(x, t) (x 1)
Jok=1
—Zd (x, t) (x 0 — f(x,t,0(x, 1))
N 2

<al(x, t) (x 1) = b, Hw(x, F(x,0) = Y cjlx, Dy—— O pacat

Jjk=1

—Zd (x, t) (x N —flx,t,wx, ) ((x,1)€R),

where f(x,t,&) has values in E and is quasimonotone increasing with respect to
& (at least in the set D = {(x,t,&) | (x,t) € R, & € {v(x,1), w(x,t)}}). Then the
inequality

v(x, ) Kw(x, 1) ((x,) €R)
follows.
Remark 1 For N = 0 the sums in II) are considered to be empty (having value zero,
and existence of derivatives with respect to x is not required). Furthermore, we have

R =]0, T'] x {0} and 9, R = {0} x {0}. When considering the special case a(0,¢) =1,
b(0,t) =0, and when simply writing

v(t) instead of v(0, t), w(t) instead of w(0,¢) (0 <t<T),
then we get the comparison theorem from [6]:

Corollary For continuous v, w : [0, T] — E suppose v(0) < w(0) and

0~ 0
=20 = f(1.00) < =0 = ftw) ©O<1=T),

where f(t,&) is quasimonotone increasing with respect to &. Then v(t) < w(t)
0 <t <T)follows.
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Remark 2 For N = 0 again, let us look at the special case a(0,7) =0, b(0,¢) = 1.
Then Theorem 1 leads to a theorem on functional inequalities which had been ex-
amined in the joint paper with Baron [1]; the derivatives 9~ v/d¢, 9~ w/dt need not
exist in this case.

Remark 3 For N > 1 itis also possible to consider Theorem 1 in the case cjx (x, ) =
Ofor j,k=1,..., N; then the double sums in II) are zero, and Theorem 1 remains
true, without requiring the existence of second derivatives. Further simplification by
also taking d;(x,t) =0for j =1,..., N makes no sense, because then all the sums
in II) disappear, and we can treat the theorem for any x € 2 separately with respect
to the only variable # € [0, T'].

3 Proof of Theorem 1

We suppose the theorem to be false. Then
w(xo, to) — v(xp, tp) € E\ IntK
would be possible for some (xg, tp) € R. We can suppose 79 > 0 to be minimal, then
wix, 1) —v(x, 1) ek (xeQ,0=<t<t), 3)
w(xp, tg) — v(xg, fy) € 0K.
According to the Hahn/Banach separation theorem there exists
@ € K*\ {0} “)
such that

¢ (w(xo0, 10) — v(x0, 7)) =0. %)
Then (3), (4) imply

w(x,t) = (p(w(x, 1) —v(x, t)) >0 (xeR,0<t<t),

hence, according to (5), the function w has at (xg, #p) the minimum value w (xg, fp) =
0. This implies

aa—tw(xo, 1) <0, (6)
w(x0, F(x0, 1)) =0 (7
(since 0 < F(xq, tg) < ty), and
dw .
T(Xo,to)=0 (j=1,...,N), ®)

Xj
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2 N
—(xp, to) is a symmetric, positive semidefinite matrix. (9)
axj a.xk jk=1

Now we consider II) for (x, ) = (x¢, tp), and we apply the functional ¢ to both
sides. Because of (4), the sign < then becomes a <-sign, and we get, in abbreviated
form,

ad
a(xo, to)fﬂ(a—tv(XO, to)) — oo <o —(f (x0, 10, w(x0, 10))). (10)

Because of (6) we have (p(agt”’ (x0, t0) — ‘g—t”(xo, tp)) < 0, therefore we get from
(10) a new inequality, when removing from both sides the terms containing left-
hand derivatives. Using (7), (8), (9), we can continue this simplification of (10), and
we end up with

—o(f (x0. t0. v(x0. 70))) < —¢(f (x0. 0, w(x0, 10))). (11

On the other hand, according to (3), (4), (5) we have

v(xo, f0) < w(xo,f0), ¢ €K*, ¢ (v(x0, 10)) = (w(xo, 10)).

and therefore the quasimonotonicity of f(xo,fy, &) with respect to & yields
o(f (x0, 10, v(x0, 10))) < (f (x0, to, w(x0, 70))), Which is a contradiction to (11).
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