
Progress in Nonlinear Differential Equations
and Their Applications, Vol. 80, 81–93
c© 2011 Springer Basel AG

On the Maxwell-Stefan Approach
to Multicomponent Diffusion

Dieter Bothe

Dedicated to Herbert Amann on the occasion of his 70th anniversary

Abstract. We consider the system of Maxwell-Stefan equations which describe
multicomponent diffusive fluxes in non-dilute solutions or gas mixtures. We
apply the Perron-Frobenius theorem to the irreducible and quasi-positive ma-
trix which governs the flux-force relations and are able to show normal el-
lipticity of the associated multicomponent diffusion operator. This provides
local-in-time wellposedness of the Maxwell-Stefan multicomponent diffusion
system in the isobaric, isothermal case.
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1. Introduction

On the macroscopic level of continuum mechanical modeling, fluxes of chemical
components (species) are due to convection and molecular fluxes, where the latter
essentially refers to diffusive transport. The almost exclusively employed constitu-
tive “law” to model diffusive fluxes within continuum mechanical models is Fick’s
law, stating that the flux of a chemical component is proportional to the gradient
of the concentration of this species, directed against the gradient. There is no in-
fluence of the other components, i.e., cross-effects are ignored although well known
to appear in reality. Actually, such cross-effects can completely divert the diffusive
fluxes, leading to so-called reverse diffusion (up-hill diffusion in direction of the
gradient) or osmotic diffusion (diffusion without a gradient). This has been proven
in several experiments, e.g., in a classical setting by Duncan and Toor; see [7].

To account for such important phenomena, a multicomponent diffusion ap-
proach is required for realistic models. The standard approach within the theory
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of Irreversible Thermodynamics replaces Fickian fluxes by linear combinations of
the gradients of all involved concentrations, respectively chemical potentials. This
requires the knowledge of a full matrix of binary diffusion coefficients and this
diffusivity matrix has to fulfill certain requirements like positive semi-definiteness
in order to be consistent with the fundamental laws from thermodynamics. The
Maxwell-Stefan approach to multicomponent diffusion leads to a concrete form
of the diffusivity matrix and is based on molecular force balances to relate all
individual species velocities. While the Maxwell-Stefan equations are successfully
used in engineering applications, they seem much less known in the mathemati-
cal literature. In fact we are not aware of a rigorous mathematical analysis of the
Maxwell-Stefan approach to multicomponent diffusion, except for [8] which mainly
addresses questions of modeling and numerical computations, but also contains
some analytical results which are closely related to the present considerations.

2. Continuum mechanical modeling of multicomponent fluids

We consider a multicomponent fluid composed of n chemical components Ai. Start-
ing point of the Maxwell-Stefan equations are the individual mass balances, i.e.,

∂tρi + div (ρiui) = Rtot
i , (1)

where ρi = ρi(t,y) denotes the mass density and ui = ui(t,y) the individual
velocity of species Ai. Note that the spatial variable is denoted as y, while the usual
symbol x will refer to the composition of the mixture. The right-hand side is the
total rate of change of species mass due to all chemical transformations. We assume
conservation of the total mass, i.e., the production terms satisfy

∑n
i=1R

tot
i = 0.

Let ρ denote the total mass density and u be the barycentric (i.e., mass averaged)
velocity, determined by

ρ :=
n∑

i=1

ρi, ρu :=
n∑

i=1

ρi ui.

Summation of the individual mass balances (1) then yields

∂tρ+ div (ρu) = 0, (2)

i.e., the usual continuity equation.
In principle, a full set of n individual momentum balances should now be

added to the model; cf. [11]. But in almost all engineering models, a single set
of Navier-Stokes equations is used to describe the evolution of the velocity field,
usually without accounting for individual contributions to the stress tensor. One
main reason is a lack of information about appropriate constitutive equations for
the stress in multicomponent mixtures; but cf. [16]. For the multicomponent, single
momentum model the barycentric velocity u is assumed to be determined by the
Navier-Stokes equations. Introducing the mass diffusion fluxes

ji := ρi(ui − u) (3)



On Maxwell-Stefan Multicomponent Diffusion 83

and the mass fractions Yi := ρi/ρ, the mass balances (1) can be rewritten as

ρ∂tYi + ρu · ∇Yi + div ji = Rtot
i . (4)

In the present paper, main emphasis is on the aspect of multicomponent diffu-
sion, including the cross-diffusion effects. Therefore, we focus on the special case
of isobaric, isothermal diffusion. The (thermodynamic) pressure p is the sum of
partial pressures pi and the latter correspond to ciRT in the general case with ci
denoting the molar concentration, R the universal gas constant and T the absolute
temperature; here ci = ρi/Mi with Mi the molar mass of species Ai. Hence iso-
baric conditions correspond to the case of constant total molar concentration ctot,
where ctot :=

∑n
i=1 ci. Still, species diffusion can lead to transport of momentum

because the Mi are different. Instead of u we therefore employ the molar averaged
velocity defined by

ctotv :=
n∑

i=1

ciui. (5)

Note that other velocities are used as well; only the diffusive fluxes have to be
adapted; see, e.g., [20]. With the molar averaged velocity, the species equations
(1) become

∂tci + div (civ + Ji) = rtoti (6)
with rtoti := Rtot

i /Mi and the diffusive molar fluxes

Ji := ci(ui − v). (7)

Below we exploit the important fact that
n∑

i=1

Ji = 0. (8)

As explained above we may now assume v = 0 in the isobaric case. In this case the
species equations (6) simplify to a system of reaction-diffusion equations given by

∂tci + div Ji = rtoti , (9)

where the individual fluxes Ji need to be modeled by appropriate constitutive
equations. The most common constitutive equation is Fick’s law which states that

Ji = −Di grad ci (10)

with diffusivities Di > 0. The diffusivities are usually assumed to be constant,
while they indeed depend in particular on the composition of the system, i.e.,
Di = Di(c) with c := (c1, . . . , cn). Even if the dependence of the Di is taken
into account, the above definition of the fluxes misses the cross-effects between
the diffusing species. In case of concentrated systems more realistic constitutive
equations are hence required which especially account for such mutual influences.
Here a common approach is the general constitutive law

Ji = −
n∑

j=1

Dij grad cj (11)
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with binary diffusivities Dij = Dij(c). Due to the structure of the driving forces,
as discussed below, the matrix D = [Dij ] is of the form D(c) = L(c)G′′(c) with a
positive definite matrix G′′(c), the Hessian of the Gibbs free energy. Then, from
general principles of the theory of Irreversible Thermodynamics, it is assumed that
the matrix of transport coefficients L = [Lij ] satisfies
• L is symmetric (the Onsager reciprocal relations)
• L is positive semidefinite (the second law of thermodynamics).

Under this assumption the quasilinear reaction-diffusion system

∂tc + div (−D(c)∇c) = r(c), (12)

satisfies – probably after a reduction to n−1 species – parabolicity conditions suf-
ficient for local-in-time wellposedness. Here r(c) is short for (rtot1 (c), . . . , rtotn (c)).

A main problem now is how realistic diffusivity matrices together with their
dependence on the composition vector c can be obtained.

Let us note in passing that Herbert Amann has often been advocating that
general flux vectors should be considered, accounting both for concentration depen-
dent diffusivities and for cross-diffusion effects. For a sample of his contributions
to the theory of reaction-diffusion systems with general flux vectors see [1], [2] and
the references given there.

3. The Maxwell-Stefan equations

The Maxwell-Stefan equations rely on inter-species force balances. More precisely,
it is assumed that the thermodynamical driving force di of species Ai is in local
equilibrium with the total friction force. Here and below it is often convenient to
work with the molar fractions xi := ci/ctot instead of the chemical concentrations.
From chemical thermodynamics it follows that for multicomponent systems which
are locally close to thermodynamical equilibrium (see, e.g., [20]) the driving forces
under isothermal conditions are given as

di =
xi

RT
gradμi (13)

with μi the chemical potential of species Ai. Equation (13) requires some more
explanation. Recall first that the chemical potential μi for species Ai is defined as

μi =
∂G

∂ci
, (14)

where G denotes the (volume-specific) density of the Gibbs free energy. The chem-
ical potential depends on ci, but also on the other cj as well as on pressure and
temperature. In the engineering literature, from the chemical potential a part μ0

i

depending on pressure and temperature is often separated and, depending on the
context, a gradient may be applied only to the remainder. To avoid confusion, the
common notation in use therefore is

∇μi = ∇T,pμi +
∂μi

∂p
∇p+

∂μi

∂T
∇T.
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Here ∇T,pμi means the gradient taken under constant pressure and temperature.
In the isobaric, isothermal case this evidently makes no difference. Let us also note
that G is assumed to be a convex function of the ci for single phase systems, since
this guarantees thermodynamic stability, i.e., no spontaneous phase separations.
For concrete mixtures, the chemical potential is often assumed to be given by

μi = μ0
i +RT ln ai (15)

with ai the so-called activity of the ith species; equation (15) actually implicitly
defines ai. In (15), the term μ0

i depends on pressure and temperature. For a mixture
of ideal gases, the activity ai equals the molar fraction xi. The same holds for
solutions in the limit of an ideally dilute component, i.e., for xi → 0+. This is no
longer true for non-ideal systems in which case the activity is written as

ai = γi xi (16)

with an activity coefficient γi which itself depends in particular on the full com-
position vector x.

The mutual friction force between species i and j is assumed to be propor-
tional to the relative velocity as well as to the amount of molar mass. Together
with the assumption of balance of forces this leads to the relation

di = −
∑
j �=i

fij xi xj(ui − uj) (17)

with certain drag coefficients fij > 0; here fij = fji is a natural mechanical
assumption. Insertion of (13) and introduction of the so-called Maxwell-Stefan
(MS) diffusivities -Dij = 1/fij yields the system

xi

RT
gradμi = −

∑
j �=i

xjJi − xiJj

ctot -Dij
for i = 1, . . . , n. (18)

The set of equations (18) together with (8) forms the Maxwell-Stefan equations
of multicomponent diffusion. The matrix [-Dij ] of MS-diffusivities is assumed to be
symmetric in accordance with the symmetry of [fij ]. Let us note that for ideal
gases the symmetry can be obtained from the kinetic theory of gases; cf. [9] and
[14]. The MS-diffusivities -Dij will in general depend on the composition of the
system.

Due to the symmetry of [-Dij ], the model is in fact consistent with the Onsager
reciprocal relations (cf. [18] as well as below), but notice that the -Dij are not to be
inserted into (11), i.e., they do not directly correspond to the Dij there. Instead,
the MS equations have to be inverted in order to provide the fluxes Ji.

Note also that the Ansatz (17) implies
∑

i di = 0 because of the symmetry of
[fij ], resp. of [-Dij ]. Hence

∑
i di = 0 is necessary in order for (17) to be consistent.

It in fact holds because of (and is nothing but) the Gibbs-Duhem relation, see,
e.g., [12]. The relation

∑
i di = 0 will be important below.



86 D. Bothe

Example (Binary systems). For a system with two components we have

d1(= −d2) = − 1
ctot -D12

(
x2J1 − x1J2

)
. (19)

Using x1 + x2 = 1 and J1 + J2 = 0 one obtains

J1(= −J2) = −
-D12

RT
c1 gradμ1. (20)

Writing c and J instead of c1 and J1, respectively, and assuming that the chemical
potential is of the form μ = μ0 +RT ln(γc) with the activity coefficient γ = γ(c)
this finally yields

J = − -D12

(
1 +

c γ′(c)
γ(c)

)
grad c. (21)

Inserting this into the species equation leads to a nonlinear diffusion equation,
namely

∂tc−Δφ(c) = r(c), (22)

where the function φ : R → R satisfies φ′(s) = -D12(1 + sγ′(s)/γ(s)) and, say,
φ(0) = 0. Equation (22) is also known as the filtration equation (or, the generalized
porous medium equation) in other applications. Note that well-known pde-theory
applies to (22) and especially provides well-posedness as soon as φ is continuous
and nondecreasing; cf., e.g., [21]. The latter holds if s→ sγ(s) is increasing which
is nothing but the fact that the chemical potential μ of a component should be an
increasing function of its concentration. This is physically reasonable in systems
without phase separation.

4. Inversion of the flux-force relations

In order to get constitutive equations for the fluxes Ji from the Maxwell-Stefan
equations, which need to be inserted into (9), we have to invert (18). Now (18)
alone is not invertible for the fluxes, since these are linearly dependent. Elimination
of Jn by means of (8) leads to the reduced system

ctot

⎡⎣ d1···
dn−1

⎤⎦ = −B

⎡⎣ J1···
Jn−1

⎤⎦ , (23)

where the (n− 1)× (n− 1)-matrix B is given by

Bij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xi

( 1
-D1n

− 1
-Dij

)
for i �= j,

xi

-Din
+

n∑
k �=i

xk

-Dik
for i = j (with xn = 1−

∑
m<n xm).

(24)
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Assuming for the moment the invertibility of B and letting μi be functions of the
composition expressed by the molar fractions x = (x1, . . . , xn), the fluxes are given
by ⎡⎢⎢⎢⎢⎣

J1

·
·
·

Jn−1

⎤⎥⎥⎥⎥⎦ = −ctotB−1 Γ

⎡⎢⎢⎢⎢⎣
∇x1

·
·
·

∇xn−1

⎤⎥⎥⎥⎥⎦ , (25)

where

Γ = [Γij ] with Γij = δij + xi
∂ ln γi

∂xj
(26)

captures the thermodynamical deviations from the ideally diluted situation; here
δij denotes the Kronecker symbol.

Example (Ternary systems). We have

B =

⎡⎢⎣ 1
-D13

+ x2

(
1

-D12
− 1

-D13

)
−x1

(
1

-D12
− 1

-D13

)
−x2

(
1

-D12
− 1

-D23

)
1

-D23
+ x1

(
1

-D12
− 1

-D23

)
⎤⎥⎦ (27)

and det(B− tI) = t2 − trB t+ detB with

detB =
x1

-D12 -D13
+

x2

-D12 -D23
+

x3

-D13 -D23
≥ min

{
1

-D12 -D13
,

1
-D12 -D23

,
1

-D13 -D23

}
(28)

and

trB =
x1 + x2

-D12
+
x1 + x3

-D13
+
x2 + x3

-D23
≥ 2 min

{
1

-D12
,

1
-D13

,
1

-D23

}
. (29)

It is easy to check that (trB)2 ≥ 3 detB for this particular matrix and therefore
the spectrum of B−1 is in the right complex half-plane within a sector of angle less
than π/6. This implies normal ellipticity of the differential operator B−1(x)(−Δx).
Recall that a second-order differential operator with matrix-valued coefficients is
said to be normally elliptic if the symbol of the principal part has it’s spectrum
inside the open right half-plane of the complex plane; see section 4 in [2] for
more details. This notion has been introduced by Herbert Amann in [1] as the
appropriate concept for generalizations to more general situations with operator-
valued coefficients.

Consequently, the Maxwell-Stefan equations for a ternary system are locally-
in-time wellposed if Γ = I, i.e., in the special case of ideal solutions. The latter
refers to the case when the chemical potentials are of the form (15) with γi ≡ 1
for all i. Of course this extends to any Γ which is a small perturbations of I, i.e.,
to slightly non-ideal solutions.

Let us note that Theorem 1 below yields the local-in-time wellposedness also
for general non-ideal solutions provided the Gibbs energy is strongly convex. Note
also that the reduction to n−1 species is the common approach in the engineering
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literature, but invertibility of B is not rigorously checked. For n = 4, the 3 × 3-
matrix B can still be shown to be invertible for any composition due to xi ≥ 0
and

∑
i xi = 1. Normal ellipticity can no longer be seen so easily. For general n

this approach is not feasible and the invariant approach below is preferable.
Valuable references for the Maxwell-Stefan equations and there applications

in the Engineering Sciences are in particular the books [4], [9], [20] and the review
article [12].

5. Wellposedness of the Maxwell-Stefan equations

We first invert the Maxwell-Stefan equations using an invariant formulation. For
this purpose, recall that

∑
i ui = 0 holds for both ui = Ji and ui = di. We

therefore have to solve

AJ = ctot d in E = {u ∈ Rn :
∑

i

ui = 0}, (30)
where A = A(x) is given by

A =

[
−s1 dij· · ·dij −sn

]
with si =

∑
k �=i

xk

-Dik
, dij =

xi

-Dij
.

The matrix A has the following properties, where x� 0 means xi > 0 for all i:
(i) N(A) = span{x} for x = (x1, . . . , xn).
(ii) R(A) = {e}⊥ for e = (1, . . . , 1).
(ii) A = [aij ] is quasi-positive, i.e., aij ≥ 0 for i �= j.
(iv) If x � 0 then A is irreducible, i.e., for every disjoint partition I ∪ J of

{1, . . . , n} there is some (i, j) ∈ I × J such that aij �= 0.
Due to (i) and (ii) above, the Perron-Frobenius theorem in the version for quasi-
positive matrices applies; cf. [10] or [17]. This yields the following properties of the
spectrum σ(A): The spectral bound s(A) := max{Reλ : λ ∈ σ(A)} is an eigenvalue
of A, it is in fact a simple eigenvalue with a strictly positive eigenvector. All other
eigenvalues do not have positive eigenvectors or positive generalized eigenvectors.
Moreover,

Reλ < s(A) for all λ ∈ σ(A), λ �= s(A).

From now on we assume that in the present case x is strictly positive. Then, since
x is an eigenvector to the eigenvalue 0, it follows that

σ(A) ⊂ {0} ∪ {z ∈ C : Re z < 0}.
Unique solvability of (30) already follows at this point. In addition, the same
arguments applied to Aμ := A− μ(x⊗ e) for μ ∈ R yield

σ(Aμ) ⊂ {−μ} ∪ {z ∈ C : Re z < −μ} for all small μ > 0.

In particular, Aμ is invertible for sufficiently small μ > 0 and

J = −ctot
(
A− μ(x⊗ e)

)−1
d (31)
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is the unique solution of (30). Note that Aμy = d with d ⊥ e implies y ⊥ e and
Ay = d. A similar representation of the inverted Maxwell-Stefan equations can be
found in [8].

The information on the spectrum of A can be significantly improved by sym-
metrization. For this purpose let X = diag(x1, . . . xn) which is regular due to
x� 0. Then AS := X− 1

2 AX
1
2 satisfies

AS =

⎡⎣ −s1 d̂ij

· · ·d̂ij −sn

⎤⎦ , si =
∑
k �=i

xk

-Dik
, d̂ij =

√
xixj

-Dij
,

i.e., AS is symmetric with N(AS) = span{
√

x}, where
√

xi :=
√
xi. Hence the

spectrum of AS and, hence, that of A is real. Moreover,

AS(α) = AS − α
√

x⊗
√

x

has the same properties as AS for sufficiently small α > 0. In particular, AS is
quasi-positive, irreducible and

√
x � 0 is an eigenvector for the eigenvalue −α.

This holds for all α < δ := min{1/ -Dij : i �= j}. Hence we obtain the improved
inclusion

σ(A) \ {0} = σ(AS(α)) \ {−α} for all α ∈ [0, δ).

Therefore
σ(A) ⊂ (−∞,−δ] ∪ {0}, (32)

which provides a uniform spectral gap for A sufficient to obtain normal ellipticity
of the associated differential operator.

In order to work in a subspace of the composition space Rn instead of a
hyperplane, let ui = ci − c0tot/n such that

∑
i ci ≡ const is the same as u ∈ E =

{u ∈ Rn :
∑

i ui = 0}. Above we have shown in particular that A|E : E → E is
invertible and

[Ji] = X
1
2 (AS|Ê)−1X− 1

2 [di] =
1
RT
X

1
2 (AS|Ê)−1X

1
2 [∇μi] (33)

with the symmetrized form AS of A and Ê := X
1
2E = {

√
x}⊥. Note that this also

shows the consistency with the Onsager relations. To proceed, we employ (14) to
obtain the representation

[Ji] = X
1
2 (AS|Ê)−1X

1
2G′′(x)∇x. (34)

Inserting (34) into (9) and using ctotxi = ui + c0tot/n, we obtain the system of
species equations with multicomponent diffusion modeled by the Maxwell-Stefan
equations. Without chemical reactions and in an isolated domain Ω ⊂ Rn (with ν
the outer normal) we obtain the initial boundary value problem

∂tu+ div (−D(u)∇u) = 0, ∂νu|∂Ω = 0, u|t=0 = u0, (35)

which we will consider in Lp(Ω;E). Note that X
1
2 (AS|Ê)−1X

1
2G′′(x) from (34)

corresponds to −D(u) here.
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Applying well-known results for quasilinear parabolic systems based on Lp-
maximal regularity, e.g., from [3] or [15], we obtain the following result on local-
in-time wellposedness of the Maxwell-Stefan equations in the isobaric, isothermal
case. Below we call G ∈ C2(V ) strongly convex if G′′(x) is positive definite for all
x ∈ V .

Theorem 1. Let Ω ⊂ RN with N ≥ 1 be open bounded with smooth ∂Ω. Let

p > N+2
2 and u0 ∈ W

2− 2
p

p (Ω;E) such that c0i > 0 in Ω̄ and c0tot is constant in Ω.
Let the diffusion matrix D(u) be given according to (34), i.e., by

D(u) = X
1
2 (AS|Ê)−1X

1
2G′′(x) with ctotxi = ui + c0tot/n,

where G : (0,∞)n → R is smooth and strongly convex. Then there exists – locally
in time – a unique strong solution (in the Lp-sense) of (35). This solution is in
fact classical.

Concerning the proof let us just mention that

div (−D(u)∇u) = D(u) (−Δu) + lower order terms,

hence the system of Maxwell-Stefan equations is locally-in-time wellposed if the
principal part D(u) (−Δu) is normally elliptic for all u ∈ E such that c(u) :=
u+ c0tote is close to c0. The latter holds if, for some angle θ ∈ (0, π

2 ), the spectrum
of D(u) ∈ L(E) satisfies

σ(D(u)) ⊂ Σθ := {λ ∈ C \ {0} : |argλ| < θ} (36)

for all u ∈ E such that |c(u)−c0|∞ < ε for ε := mini c
0
i /2, say. For such an u ∈ E,

let λ ∈ C and v ∈ E be such that D(u) v = λv. Let x := c(u)/ctot(u) ∈ (0,∞)n

and X = diag(x1, . . . , xn). Then

X
1
2 (AS|Ê)−1X

1
2G′′(x) v = λv.

Taking the inner product with G′′(x) v yields

〈(AS|Ê)−1X
1
2G′′(x) v,X

1
2G′′(x) v〉 = λ〈v,G′′(x) v〉.

Note that X
1
2G′′(x) v ∈ {

√
x}⊥, hence the left-hand side is strictly positive due

to the analysis given above. Moreover 〈v,G′′(x) v〉 > 0 since G is strongly convex,
hence λ > 0. This implies (36) for any θ ∈ (0, π

2 ) and, hence, local-in-time existence
follows.

6. Final remarks

A straightforward extension of Theorem 1 to the inhomogeneous case with locally
Lipschitz continuous right-hand side f : Rn → Rn, say, is possible if f(u) ∈ E
holds for all u. Translated back to the original variables (keeping the symbol f)
this yields a local-in-time solution of

∂tc + div (−D(c)∇c) = f(c), ∂νc|∂Ω = 0, c|t=0 = c0
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for appropriate initial values c0. Then a natural question is whether the solution
stays componentwise nonnegative. This can only hold if f satisfies

fi(c) ≥ 0 whenever c ≥ 0 with ci = 0,

which is called quasi-positivity as in the linear case. In fact, under the considered
assumption, quasi-positivity of f forces any classical solution to stay nonnegative
as long as it exists. The key point here is the structure of the Maxwell-Stefan
equations (18) which yields

Ji = −Di(c) grad ci + ci Fi(c, grad c)

with

Di(c) = 1/
∑
j �=i

xj

-Dij
and Fi(c, grad c) = Di(c)

∑
j �=i

1
-Dij

Jj .

Note that Di(c) > 0 and Ji becomes proportional to grad ci at points where ci
vanishes, i.e., the diffusive cross-effects disappear. Moreover, it is easy to check
that

div Ji = Di(c)Δci ≥ 0 if ci = 0 and grad ci = 0.
To indicate a rigorous proof for the nonnegativity of solutions, consider the mod-
ified system

∂tci + div Ji(c) = fi(t, c+) + ε, ∂νc|∂Ω = 0, c|t=0 = c0 + εe, (37)

where r+ := max{r, 0} denotes the positive part. Assume that the right-hand side
f is quasi-positive and that (37) has a classical solution cε for all small ε > 0
on a common time interval [0, T ). Now suppose that, for some i, the function
mi(t) = miny∈Ω̄ c

ε
i(t,y) has a first zero at t0 ∈ (0, T ). Let the minimum of cεi(t0, ·)

be attained at y0 and assume first that y0 is an interior point. Then cεi(t0,y0) = 0,
∂tc

ε
i(t0,y0) ≥ 0, grad cεi(t0,y0) = 0 and Δcεi(t0,y0) ≥ 0 yields a contradiction since

fi(t0, cεi(t0,y0)) ≥ 0. Here, because of the specific boundary condition and the fact
that Ω has a smooth boundary, the same argument works also if y0 is a boundary
point. In the limit ε → 0+ we obtain a nonnegative solution for ε = 0, hence a
nonnegative solution of the original problem. This finishes the proof since strong
solutions are unique.

Note that non-negativity of the concentrations directly implies L∞-bounds
in the considered isobaric case due to 0 ≤ ci ≤ ctot ≡ c0tot, which is an important
first step for global existence.

The considerations in Section 5 are helpful to verify that the Maxwell-Stefan mul-
ticomponent diffusion is consistent with the second law from thermodynamics.
Indeed, (33) directly yields

− [Ji] : [∇μi] =
1
RT

(
(−AS|Ê)−1X

1
2 [∇μi]

)
:
(
X

1
2 [∇μi]

)
≥ 0,

i.e., the entropy inequality is satisfied. The latter is already well known in the
engineering literature, but with a different representation of the dissipative term
using the individual velocities; cf. [18].
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For sufficiently regular solutions and under appropriate boundary conditions
the entropy inequality can be used as follows. Let V (x) =

∫
ΩG(x) dx with G the

Gibbs free energy density. Let

W (x,∇x) = −
∫

Ω

[Ji] : [∇μi] dx ≥ 0.

Then (V,W ) is a Lyapunov couple, i.e.,

V (x(t)) +
∫ t

0

W (x(s),∇x(s)) ds ≤ V (x(0)) for t > 0

and all sufficiently regular solutions. For ideal systems this yields a priori bounds
on the quantities |∇ci|2/ci, hence, equivalently, L2-bounds on ∇√ci. This type of
a priori estimates is well known in the theory of reaction-diffusion systems without
cross-diffusion; see [5], [6] and the references given there for more details.

In the present paper we considered the isobaric and isothermal case because it
allows to neglect convective transport and, hence, provides a good starting point.
The general case of a multicomponent flow is much more complicated, even in the
isothermal case. This case leads to a Navier-Stokes-Maxwell-Stefan system which
will be studied in future work.
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