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Preface

Herbert Amann studied at the universities of Freiburg, Basel, and Miinchen in
the early 1960s. In 1965 he received his doctoral degree under the supervision of
Joachim Nitsche from the University of Freiburg. At that time, Herbert Amann’s
research revolved around the use of Monte Carlo simulations in connection with
the resolution of elliptic problems [1]. His research interests then shifted toward the
area of nonlinear integral equations, with a particular focus on the Hammerstein
equation [2, 3]. In 1970 Herbert Amann moved from Freiburg to Bloomington,
Indiana, and, the following year, to Lexington, Kentucky, where he held visiting
professor positions. During the years spent in the US, his interests evolved toward
nonlinear elliptic problems and the use of topological methods for their analysis.
He was appointed full professor at the Ruhr-Universitit Bochum in 1972 where he
continued these investigations. Of this time are some of his most frequently cited
and influential research papers about the topological degree [4, 5], the sub- and
supersolution method [6, 7, 8], and multiplicity of solutions for nonlinear elliptic
problems [9, 10]. Of outstanding importance is his consistently highly cited review
article [11] on fixed point theory in ordered Banach spaces.

Herbert Amann moved to the Christian-Albrechts-Universitdt zu Kiel in
1978, and then to the Universitit Ziirich in 1979. During his tenure in Ziirich, he
continued his studies on qualitative features of nonlinear elliptic boundary value
problems [12, 13], and then immersed himself in the study of nonlinear para-
bolic problems. A deep and careful understanding of the fundamental properties
of general evolution systems together with the development of the interpolation-
extrapolation framework were an important breakthrough in the study of nonlin-
ear parabolic problems [14, 15, 16]. The full strength of this abstract approach is
apparent in the dynamic theory for general quasilinear systems of parabolic type
[17, 18, 19, 20]. A successful implementation in applications, like, e.g., coagulation-
fragmentation processes [21], requires a thorough insight into the theory of function
spaces and multiplier results, particularly also in the Banach space valued setting.
Among the most important contributions in this context are [20, 22, 23, 24, 25, 35].
In recent years, Herbert Amann also contributed to the development of the theory
of maximal regularity. His comprehensive view on complex structures allowed him
to derive far-reaching results on Navier-Stokes equations, non-Newtonian fluids,
image processing, and evolution equations with memory [26, 27, 28, 29]. Besides
more than 100 research papers, Herbert Amann also has written important mono-
graphs [30, 31] and successful text books [32, 33, 34].
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Herbert Amann has been a steady source of new ideas, and he has influenced
many researchers. His unwavering dedication to research and teaching has been
an example to all of his colleagues and students, in particular to his 24 doctoral
students. In 2001 he became foreign corresponding member of the Real Academia
de Ciencias Exactas, Fisicas y Naturales, Madrid, and, one year later, received a
Doctor Honoris Causa from the Universidad Complutense, Madrid. As of 2004,
Herbert Amann is Professor Emeritus of the Universitéat Ziirich.

During his long and ongoing career he has enjoyed the invaluable support of
his wife, Gisela Amann.

The present volume contains original research papers and reflects the wide-
ranging scientific interests of Herbert Amann. It is inspired by the conference
“Nonlinear Parabolic Problems: In honor of Herbert Amann” held May 10-16,
2009, at the Banach Center in Bedlewo, Poland.

We are grateful to all the participants of the conference and all the contrib-
utors of this volume.
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Double Obstacle Limit for a
Navier-Stokes/Cahn-Hilliard System

Helmut Abels

Dedicated to Herbert Amann on the occasion of his T0th birthday

Abstract. We consider the double obstacle limit for a Navier-Stokes/Cahn-
Hilliard type system. The system describes a so-called diffuse interface model
for the two-phase flow of two macroscopically immiscible incompressible vis-
cous fluids in the case of matched densities, also known as Model H. Starting
with a suitable class of singular free energies, which keep the concentration
strictly inside the physically reasonable interval [a,b], we analyze a certain
singular limit, where the equation for the chemical potential converges to
a differential inclusion related to the subgradient of the indicator function
of [a, b].

Mathematics Subject Classification (2000). Primary 76T99; Secondary 76D27,
76D03, 76D05, 76D45, 35B40, 35B65, 35Q30, 35Q35,

Keywords. Two-phase flow, diffuse interface model, mixtures of viscous fluids,
Cahn-Hilliard equation, Navier-Stokes equation, double obstacle problem.

1. Introduction and main result

In the present contribution we study a system describing the flow of viscous incom-
pressible Newtonian fluids of the same density, but different viscosity. Although
it is assumed that the fluids are macroscopically immiscible, the model takes a
partial mixing on a small length scale measured by a parameter € > 0 into ac-
count. Therefore the classical sharp interface between both fluids is replaced by an
interfacial region and an order parameter related to the concentration difference
of both fluids is introduced. This makes it possible to describe the flow beyond the
occurrence of topological singularities of the separating interface (e.g., coalescence
or formation of droplets), cf. Anderson and McFadden [5] for a review on that
topic.
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This model, also known as “model H”, cf. Hohenberg and Halperin [10] and
Gurtin et al. [9], leads to a coupled Navier-Stokes/Cahn-Hilliard system:

0w+ v - Vo —div(v(c)Dv) + Vp = —ediv(Ve ® Ve) in @ x(0,00), (1.1)
dive =0 in Q x ( o0), (1.2)

Oic+v-Ve=mAp in 2 x (0,00), (1.3)

pw=ceto(c) —eAc in 2 x (0,00). (1.4)

Here v is the mean velocity, Dv = %(Vv + VoT), p is the pressure, ¢ is an or-
der parameter related to the concentration of the fluids (e.g., the concentration
difference or the concentration of one component), and 2 is a suitable bounded
domain. Moreover, v(c) > 0 is the viscosity of the mixture, ¢ > 0 is a (small)
parameter, which will be related to the “thickness” of the interfacial region, and
¢ = @', where ® is the homogeneous free energy density specified below.

It is assumed that the densities of both components as well as the density of
the mixture are constant and for simplicity equal to one. We note that capillary
forces due to surface tension are modeled by an extra contribution eVe ® Ve in
the stress tensor leading to the term on the right-hand side of (1.1). Moreover, we
note that in the modeling diffusion of the fluid components is taken into account.
Therefore mAp is appearing in (1.3), where m > 0 is the mobility coefficient,
which is assumed to be constant.

We close the system by adding the boundary and initial conditions

vloga =0 on 99 x (0, 0), (1.5)
Onclog = Onptlog =0 on 99 x (0,00), (1.6)
(v, ¢)|t=0 = (vo, co) in Q. (1.7)

Here (1.5) is the usual no-slip boundary condition for viscous fluids, n is the
exterior normal on 992, 9, 1|go = 0 means that there is no flux of the components
through the boundary, and 9,clga = 0 describes a “contact angle” of 7/2 of the
diffused interface and the boundary of the domain.

We note that (1.1) can be replaced by

O+ v - Vo —div(v(c)Dv) + Vg = uVe (1.8)
with g = p + 5|Vc|* + 7 1®(c) since
pVe=v (;\vq? +s*1<1>(c)) — ediv(Ve® Vo). (1.9)

The total energy of the system above is given by E(c,v) = FEpee(c) + Fxin(v),
where

Frvee(c) = ;/g|vc(x)\2dx+/Qg—lé(c(x))dx, (1.10)

EklIl / "U |2 dx.
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Here the free energy FEpee(c) describes an interfacial energy associated with the
region where c¢ is not close to the minima of ®(c) and Eyy, (v) is the kinetic energy of
the fluid. The system is dissipative. More precisely, for sufficiently smooth solutions

d
E(e(t).0() = ~ [ vlc)|Du(O) do—m [ [Vu(t)] da.
Since we will consider (1.1)—(1.7) only for fixed € > 0, we will assume for simplicity
that ¢ = 1 in the following. But all statements remain true for arbitrary € > 0
(with constants depending on €).

The assumptions on the homogeneous free energy density ® are motivated by
the so-called regular solution model free energy suggested by Cahn and Hilliard [7]:
0 Oc
0 (1+e¢)ln(l+c¢)+ (1 —¢)In(l —¢)) — 202 (1.11)
with 6,60, > 0. We note that ®(c) is not convex if and only if 0 < 6 < 6.. But we
have the decomposition

®(c) =

)

B(s) = 0Dg(s) — 52, @(s) = 0o (s) — b.s
where &g € C([-1,1])NC>=((-1,1)
Po(s

[\

is convex and 6,6, > 0. Finally, we note that

~  —

—s—t1 too.

0.2

0.1 4

-0.21 b

FIGURE 1. Logarithmic free energy density for § = 0.8, 0.7, 0.6,
0.5, 0.4, 0.2, 0.0 (from top to bottom) and 6. = 1
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In Figure 1 the free energy density is plotted for some choices of 6, 6.. Note
that, if @ > 0, then the minima are never +1. (Although Figure 1 for § = 0.2
suggests that the minima are +1.) But the minima are close to 1 if 6 is small in
comparison with 6.. Since for two macroscopically immiscible fluids mixing costs
a lot of energy, we think that a small # in comparison with 6. is physically the
most meaningful choice. Since qualitatively the free energy density for § = 0.2 in
Figure 1 looks already the same as for § = 0, it is very reasonable to choose 8 = 0
directly, i.e., to choose the free energy density

0. .
@(0)2{262 if c € [—1,1]
+00 else.

The free energy density is called to be of double obstacle type because of the con-
straint ¢ € [—1,1] for all ¢ with ®(¢) < co. The Cahn-Hilliard equation with the
latter free energy was first studied by Blowey and Elliott [6]. Elliott and Luck-
haus [8] have shown that as § — 0 the solutions of the Cahn-Hilliard equation
with the logarithmic free energy density converge to solutions of the latter free
energy of double obstacle type. Physically this limit describes the dynamics of
phase separating binary mixture, where the absolute temperature 6 is far from the
critical temperature 6, below which phase separation occurs.

The main result of this contribution is that weak solutions of the Model H
(1.1)—(1.7) converge as # — 0 (for a suitable subsequence) to weak solutions of the
corresponding Navier-Stokes/Cahn-Hilliard system, where (1.4) is replaced by a
differential inclusion related to the subgradient of the double obstacle free energy,
cf. Section 4 for details. In the following we will assume a slightly more general
form of the free energy than (1.11). More precisely, we assume that

B(s) = 0o(s) — 05 6(s) = Oo(s) — s (112)

where 0,0, > 0, ®5 € C([a,b]) N C%((a, b)) is convex, ¢(s) = ®’(s), a < b, and

¢()(5) —s—a —O0 ¢0(5) —s—p OO, (113)

We note that this assumption implies the (6-independent) assumption made in [3]
for the free energy density.

The structure of the article is as follows: First we fix some notation and recall
some basic lemmas in Section 2. Then we study the double obstacle limit for the
convex part of the free energy Efe. and the convective Cahn-Hilliard equation
(1.3)—(1.4) in Section 3. In Section 4 we state and prove our main result on con-
vergence of weak solutions of (1.1)—(1.7) as § — 0. We conclude with two results
on uniqueness and regularity of weak solutions for the limit system, which are the
same in [3] for the case 6 > 0. These results are part of the author’s Habilitation
thesis [1].
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2. Notation and preliminaries

Throughout the article @ € R%, d = 2,3, will denote a bounded domain with
C3-boundary and Q7 := Q x (0,7),Q := Q.-

We use the same notation as in [3] and refer to the latter article for precise
definitions and references. Let us just recall some notation. The inner product of
a Hilbert space H is denoted by (.,.)m and we use the abbreviation (.,.)ps for
(-s-)z2(ary- The duality product of a Banach space X and its dual X' is denoted
by (.,.)x’ x or just (.,.).

Moreover,

L2(Q) ={fe L*(Q)*:divf=0,n"flon =0},
{Hs(g)d NHYQ)INLA(Q) ifs> 1,

VS(Q) =
2 (@) H(Q)4N L2(Q) if0<s<}

and V5(Q) := V5H(Q).
For m € R we set

q —— q . —— 1 —
L@ = {1 e L@ smf) = g [ fyas=m}. 145,

and Py f := f —m(f) is the orthogonal projection onto L%O)(Q). Furthermore, we
define

H oy = Hi) () = H(Q) N L (9), H@l = H,) () = Hi) (9)"

We equip H(lo)(Q) with the inner product (e, d)H(lO)(Q) = (Ve, Vd) p2(qy. Then the

Riesz isomorphism R : H(lo)(Q) — H(B)I(Q) is given by

<RC7 d>H(*0)1,H(10) = (Cv d)H(lo) = (VC7 Vd)L27 ¢, d € H(l()) (Q)a
i.e., R = —Ap is the negative (weak) Laplace operator with Neumann boundary
conditions. We note that, if u € H(lo)(Q) solves Ayu = f for some f € LE’O)(Q),
1 < ¢ < oo, and 0 is of class C?, then it follows from standard elliptic theory
that v € W2(Q) and Au = f a.e. in Q and dpulsq = 0 in the sense of traces. If

additionally f € W, (€2) and Q € C?, then u € W7 (). Moreover,
lullyseoy < Callfllwr@  forall f € WEQ) N LY (@), k=01, (21)
with a constant C;; depending only on 1 < ¢ < o0, d, k, and €2. Finally we denote
W2 () = {ueWZ(Q) : dyuloq = 0},

where 1 < p < .

Concerning vector-valued spaces, we recall that BC(0,7T; X) is the Banach
space of all bounded and continuous f: [0,7) — X equipped with the supremum
norm and BUC(0,T; X) is the subspace of all bounded and uniformly contin-
uous functions, where X is a Banach space. Moreover, we define BCy,(0,T; X)
as the topological vector space of all bounded and weakly continuous functions
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f:10,T) — X. Furthermore, f € L _([0,00); X) if and only if f € L9(0,T;X)
for every T' > 0. Moreover, LY, ([0, 00); X) denotes the uniformly local variant of
L%(0, 00; X) consisting of all strongly measurable f: [0,00) — X such that

(%

uloc

([0,00);X) = SUP £l zage,e41:x) < 00
t>0

In order to derive some regularity estimates we will use vector-valued Besov spaces
B (I; X), where s € (0,1),1 < ¢ < oo, I is an interval, and X is a Banach space.
They are defined as

Bl (I;X) = {f € LI X) : | f]
1£]

where Ay f(t) = f(t + h) — f(t) and I, = {t € I : t + h € I'}. Moreover, we set
C*(I; X) = B (I; X), s € (0,1). Finally, By _ 1,.([0,00); X) is defined in the
obvious way replacing L?(0, co; X )-norms by L?, ([0, c0); X )-norms.

Let us conclude with two useful lemmas for the following.

B (I;3X) < OO} )

Beo(1:X) = | fllzagx) + sup [[Anf()lla(r,;x)
0<h<1

Lemma 2.1. Let X,Y be two Banach spaces such that Y — X and X' — Y’
densely and let 0 < T < co. Then L*>(0,T;Y)NBUC([0,T]; X) — BC,([0,T];Y).

We refer to [2, Lemma 4.1] for a proof.

Lemma 2.2. Let E: [0,T) — [0,00), 0 < T < o0, be a lower semi-continuous
function and let D: (0,T) — [0,00) be an integrable function. Then

T T
E0)p(0) + [ E@®)¢'(t)dt > [ D(t)p(t)dt (22)
0 0
holds for all p € W{(0,T) with o(T) = 0 if and only if
/ D(1)dr < E(s) (2.3)

holds for all s <t < T and almost all 0 < s < T including s = 0.

See [2, Lemma 4.3] for a proof.

3. Double obstacle limit for the Cahn-Hilliard equation
3.1. Limit of the energy

In this section we study the “convex part” of Efee as in (1.10), namely
[Vel?
Ey(c) = 9 dx + 0P¢(c(x)) dz, >0, (3.1)
Q Q

as 0 — 0, where @ is the same as in (1.12), (1.13).
Firstly, Ey is defined on L(m)(Q), m € (a,b), with

dom Ey = {c c H' Q)N L%m)(Q) te(x) € [a,b] a.e.}.
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But we will assume in the following m = 0 without loss of generality. By a simple
shift of ¢ and ® by m we can always reduce to this case.

We denote by 0Ejy(c): L (Q) — P(L{, () the subgradient of Ey at c €

dom Ey, i.e., w € OFy(c) if and only if
(w,d —¢)p2 < Eg(c') — Ey(c) for all ¢’ € L%O)(Q).
From [3, Corollary 1], see also [4, Corollary 4.4], we recall:

Lemma 3.1. Let FEy be as above and extend Ey to a functional EQZ H(B)l(Q) —

R U {+00} by setting Eg(c) = Eg(c) if ¢ € dom Ey and Eg(c) = +oo else. Then
Ey is a proper, convez, and lower semi-continuous functional, OFy is a mazimal
monotone operator with dEy(c) = —AndEy(c), and

D(0Ey) = {c € D(0Ey) : DBg(c) = —Ac+ 0Pyo(c) € H(lo)(gz)} . (32
where
D(OEs) = {c € H*() N LE)(9) : 60(c) € L%, 6h(0)| Vel? € L', duclon = 0}
and OEg(c) = —Ac + 0Pydo(c). Moreover, for every ¢ € D(OEy)

lellwz + io()llr < Cro (10Ba(@)ll sz, + lellz +1), (3.3)
wherer =6 if d =3 and 2 <1 < o0 is arbitrary if d = 2.

Remark 3.2. We note that in [3, Corollary 1] the case § = 1 is considered. This
implies the lemma for every 6 > 0 where C,p in (3.3) depends on 6 > 0. But
one crucial observation for the following is that the estimate (3.3) is valid with a
constant C,. independent of 0 < 6 < 1.

Proposition 3.3. Let Ey, 0 < 0 <1, be as above, let Ey be the extension to H(o) (Q),

let R>0andletr =6 if d=3 and 2 < r < oo arbitrary if d = 2. Then there are
constants C(R),C’(r, R) > 0 independent of 0 < 0 <1 such that

lell 2 () + Olldo(c)ll L2 () < C(R) (10Es(c)L2() + 1) (3.4)
for all c € D(OEy) with ||c[|z2(q) < R and

lelhwzcey + loo(@ sy < ', R) (10Bo(@lrey +1)  (85)
for all ¢ € D(OEy) with lellz2o) < R.

Proof. Let ¢ € D(OEp). First we show a suitable estimate for Ac and 6¢o(c) in
L?(Q) which is independent of € (0, 1]. Taking the L2-inner product of dEp(c) =
—Ac+ Pyb¢o(c) and —Ac, we conclude that

/ \Ac\Qda:Jrf)/ o4(c)|Ve|* dv = —(0Ey(c), Ac)q.
Q Q
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Therefore
| Acl|F2 + |0 Pogo(c)||2 + 9/ $o(c)|Vel* du < C||0Eg(c)|7 (3.6)
Q

uniformly in 0 < 6 < 1 because of Py¢o(c) = 0Fy(c) + Ac. In order to estimate
Om(¢po(c)), we follow some arguments which also can be found in [8, §4] and [11,
Lemma 5.2]. To this end we multiply —Ac+ Pyf¢o(c) with ¢ € L(O)(Q) and obtain

/ |Ve|? da + 9/ po(c)cdr = (0Ey(c), c)q. (3.7)
Q Q

Now we choose ¢ > 0 so small that ¢g(c) < 0,—c¢ > ¢ for all ¢ € (a,a + €],
¢o(c) > 0,¢ > € for all ¢ € [b— g,b). This is possible because of ¢p(c) —c—q
—00, ¢p(¢) —c—p 00. (Note that & depends only on ¢g and m =0 € (a,b).) Then

[ entereds = [ an(cleds+ [ do(c)cdo
) {c(z)E(a,ate]} {c(@)E(ate,b—e)}

—|—/ ¢o(c)cdx
{e(z)elb—e.b)}

>e |po(e) dz — C(e, Q)[e]l L2

~/{c(w)e(a,a+a]u[b—s,b)}
because of |¢g(c)| < Ce on [a+€,b— ¢]. Using (3.7), we conclude

9/Q [po(c)| dz < C(R, e)([[0Eq(c)|| 2 + 1)

provided that ||¢||2 < R. Combining this with (3.6), we obtain (3.4).
In order to prove (3.5), we multiply —Ac+0¢o(c) with 0" (c)|"2do(c) €
L™ (€) and obtain

(r—1)0r / (Go(c)]" 2 (0)| Vel da + 0" / Go(c)[" da
< C(@r, R) (10Es(0)]| 1oy + i (0)) 1960 (c) 2.

Hence

Ollgo(c)llr(a) < C(R)(10Es ()] L) +1) (3.8)
uniformly in 0 < § < 1 provided that ||c|[[zz < R. This implies (3.5) because of
(2.1) and 9,clon = 0. O

Now we consider the limit § — 0 of Ey. Since

lim (e /‘ * 4 +/ wy(e(@)) dz =: Eo(c) (3.9)

for all ¢ € HY(), where I1qp) denotes the indicator function of [a,b], which is

defined as
0 if s € [a,b],
Lau(s) =
[’b]() {—l—oo else,
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we expect that OFy converges to the subgradient of OF in a suitable sense and

under suitable conditions. We note that

0 if ¢ € (a,b),

[0, 00) ifc=0,

Ol p(c) =
a1(¢) (—00,0] if c=a,

0 else.

Moreover, Ey is lower semi-continuous on H = L%O)(Q) and H = H(B)I(Q) since
liminfy o Eo(ck) < 0o and ¢ —g—oo ¢ in H implies

ek, € domEy, sup Ve, |72 <00, ¢k —jooe ¢ in H'() and a.e.

J
J€ENy

for some subsequence (¢, )jen. Therefore
1 1
Ey(c) = 5 Vel3 < likminf 5 |Verl3e = likminfEO(ck).

The following corollary will be the essential tool for passing to the limit in
the convective Cahn-Hilliard equation (1.3)—(1.4).

Corollary 3.4. Let ¢, € L°°(07T;L%O)(Q)), 0 <T < oo, k € Ny, be a bounded

sequence, let O > 0 be such that 0 —p—o0 0, and assume that ci(t) —p—oo c(t)
in L%O)(Q) and ci(t) € D(OEy,) for almost every t € (0,T). If
OEy, (ck) —k—oo o in L9(0,T; L*(Q))
for some poy € Lq(07T;L%0)(Q)) and some 1 < q < oo, then ¢ —k—oo C N
L9(0,T; H*(Q)), po(t) € 0Eo(c(t)) for almost every t € (0,T), where Ey is con-
sidered as a functional on L%O)(Q), and
—Ac+ Pof = po  with f(z,t) € Ol (c(,t)) for almost all (x,t) € Qr,

as well as Opc(t)|an = 0 for almost every t € (0,T). Moreover, if additionally
O0FEy, (ck) is bounded in L1(0,T; L"(2)), for some 2 <r < oo, then

lellao, w2 () < sup C(R) (1 + ||0Eg, (ck)|lLa(o,r:179))) - (3.10)
€Np

Proof. Because of (3.4), there is a subsequence k;j — 00 00
O, do(cr,) —j—oo f  in LU0,T; L*(Q)).
Moreover, since ci(t) —k—oo ¢(t) in L?(Q) for almost every t € (0,T) and (c)gen,
is bounded in L>(0,T; L3(Q)), ¢k —k—oo ¢ in L"(0,T;L3(Q)) for all 1 <r < oo
by Lebesgue’s theorem on dominated convergence. Together with the boundedness
of ¢ in L9(0,T; H*(Q)) due to (3.4) this implies ¢y —k—oo ¢ in LI(0,T;C%(Q))
because of
1_d d
[flloo < ClAN L2 * 1172
cf. [3, Equation (2.15)] for a reference.
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Therefore for a suitable subsequence ¢, (t) — ¢(t) in C°(Q) as j — oo for
almost every t € (0,7T). Therefore

Or; bo(ck; (2,1)) —jmoo 0= f(x,t) ae. in {(x,t) € Qr : c(x,t) € (a,b)}.

On the other hand, if ¢(z,t) = a for some z € Q and some ¢ € (0,T) such that
ck, (t) converges strongly in C(Q2), then ¢o(c, (z,t)) < 0 for sufficiently large j and
therefore f(x,t) <0, ie., f(x,t) € Olqp)(a), almost everywhere on {c(xz,t) = a}.
By the same argument f(x,t) > 0, i.e., f(z,t) € OIj,)(b) almost everywhere on
{c(z,t) = b}. On the other hand

P f = jlgglo PoOk; do(ck;) = klggo (0Ey, (ck) + Ack) = o + Ac

weakly in L7(0,7; L?(£2)). Hence it only remains to prove uo(t) € dEg(c(t)) for
almost every ¢t € (0,T). But this follows from the fact that

| i0a(e). = c)ss, e = i [ a0, (ex(0).! — cxle))ss, dt
0 < Jo
T
< Jim [ n(t) (Bo, () ~ o, (cx(1)) dt

— /0 n(t) (Eo(c') — Eo(c(t))) dt

for all ¢ € dom Ey = dom Fy, and n € C§°(0,T") with n > 0 since 05 Po(s) —x—
0 uniformly in s € [a,b] and ¢k (t) —r—oo ¢(t) in C(Q) for almost all ¢t € (0

1.
Finally, (3.10) follows from (3.8), Oncklan = 0, and (2.1). O

For completeness we give a characterization of OEy and D(9Ey), which is
based on the results of Kenmochi et al. [11].
Lemma 3.5. Let Ey be as above and let OFEy be its subgradient with respect to
L% (). Then

D(OEy) = {c c H*(Q) N L%O)(Q) ce(x) € [a,b] a.e., Onclon = 0} (3.11)

and pg € OFEy(c), c € D(OEy), if and only if c € H(2) QL%O) (Q), Oncloa =0, and

B(x) == po(x) + Ac(z) + p € g p)(c(x)) a.e. in § (3.12)
for some € R. Moreover, ||l g2 +[|[FoBllL> < C ([[mollz> + llellz2)-
Finally, if Ey is the extension of Ey to H(B)l(ﬂ), then w € OFEy(c) for some
¢ € D(OEy(c)) if and only if w = —Anpo, where pg € H () NOEy(c).
Proof. First let ¢ € D(OEy) and let pg € OE(c). Then by definition

(o, —¢)r2 < Eo(c') — Eo(c) for all ¢ € dom(Ey).
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Hence c¢ is a minimizer of the functional F(¢’) = Ey(c¢’) — (10, )2 defined on
L%O)(Q). Since F(c) is strictly convex, the minimizer is unique. Therefore [11,

Proposition 5.1, Lemma 5.3] imply that Ayc € L?(Q2) and
—Anc+ B = po+u,

where 3(z) € 0114y (c(z)) for almost all # € Q, u € R, and [|Ancl|zz + || Poflz2 <
C|lpol| 2. Hence ¢ € H?(Q2), dncloq = 0, and (3.12) holds. This proves one impli-
cation and one set inclusion in (3.11).

To prove the converse implication let ¢ € H?(Q) N L%O)(Q), Oncloa = 0, and

let po € L%O)(Q) satisfy (3.12). Then

(po + AcH+ p,d — ) < / (Ta,p () = a0 () dz =0
Q
for all ¢’ € dom Ej since g + Ac + p € 014 y)(c). Moreover, using

1 1 1
(Be.d = o) = 3 [VellZa = LIVEIza + 3T~ ),
we conclude
(o, =)o < Eo(c') — Eo(c) for all ¢ € dom Ej,

i.e., io € OEp(c). Furthermore, for every ¢ € H2(Q) N L%O)(Q) with d,,¢|an = 0 we
have that —Ac € dFy(c) since

Eo(c’)—Eo(c):/QVC-V(cl—c)da:—&—;/Q|V(c’—c)\2dx2—/QAc(c’—c)d:c

for all ¢ € dom(Ep). Therefore (3.11) holds.

In order to prove the last statement, let w € 8@0(0). Then pg = —AElw €
H'(2) N dFEy(c) since

(o, ¢ =€)z = (w,¢ =)y 1 < Eo(c') = Eo(c) = Eo(c') — Eo(c)

for all ¢ € dom Ey = dom Ej. Conversely, if po € H'(Q) N 0Ey(c), then w =

—Anpo € H(B)l Q) e 3E0(c) by the same calculation as before. O

3.2. Convective Cahn-Hilliard equation

In this section we consider

Oc+v-Ve=Ap in 2 x (0, 00), (3.13)
w=¢(c) — Ac in 2 x (0, 00), (3.14)

Oncloa = Onptloa =0 on 99 x (0, 0), (3.15)
cli=0 = ¢o in Q (3.16)
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for given co with Efee(co) < 0o and v € L%°(0, 00; L2(Q)) N L%(0,00; HY(9)). Here
¢ = ®' where ® is as in (1.12)—(1.13) and Efcc(c) is as in (1.10). In particular
(1.12) yields the decomposition
be
Eiree(¢) = Eo(c) =, llellZz(0)

where Ey(c) is as in Section 3.1. We can apply Corollary 3.1 to Ey(c), respectively
to its extension to H 1(Q), which is denoted by Fy(c).
We note that we can consider (3.13)—(3.16) as an evolution equation on

H(B)I(Q)
Oe(t) + Ag(c(t)) + B(v(t))e(t) = 0, for ¢ > 0, (3.17)
C|t:0 = Cp (318)

where Ag(c) = FEy(c) and

<B(’U> L)0>H( 0 H( ) (U : VC7 L)O)L2 - QC(VC, V@)L2

for all ¢, p € D(B(v)) = H(lo)(Q). This means that Ag(c) = An(Ac—0Pyg((c)) due
to Corollary 3.1 and B(v)e = v - Ve + 6. Anc, where Ay: H(IO)(Q) C H(O) Q) —
H (T))I(Q) is the Laplace operator with Neumann boundary conditions, which is

considered as an unbounded operator on H (5)1((2) Finally, we note that Ay is a
strictly monotone operator since

(Ao(c1) — Aolc2), 1 C2)H( :
= (=A(c1 — ¢2) +0¢o(c1) — Odo(ca),c1 —ca)p2 > |[|[V(er — )32 (3.19)

for all ¢1,ca € D(Ayp).
From [3] we recall:

Theorem 3.6. Let v € L%(0,00; HY(Q)) N L%°(0,00; LZ(Q)). Then for every co €
H(lo)(Q) with M := Efee(co) < 00 there is a unique solution

c € BC([0,00); H{y) ()

of (3.13)~(3.16) with dyc € L?(0,00; H(O)(Q)) p € L2, .([0,00); H'()). This
solution satisfies

Efree(c(t)) Jr/ |Vu|? d(z,7) = Ftreo(co) — / v-uVed(z,T) (3.20)
for allt € [0,00) and
el gttty + 1€l oty + 1) < O (M4 o)) (320

|Mm[wmw+wmmzmmy<C4M+wm@)<wm
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where 7 = 6 if d = 3 and 1 < r < oo is arbitrary if d = 2. Here C,C, are
independent of v, co. Moreover, for every R,T > 0 the solution

ce€Y = L*0,T;W2(Q) N H'(0,T; H)(Q))
depends continuously on
(co,v) € X := HY(Q) x L'(0,T; L2(Q))  such that Egee(co) + vl 220,001y < R
with respect to the weak topology on Y and the strong topology on X.

Remark 3.7. For fixed 6 (§ = 1) the theorem coincides with [3, Theorem 6], where
we note that (3.21) is only based on the energy estimate and (3.22) is based on
(3.3). Since the constant in (3.3) can be chosen independent of 0 < 6§ < 1, cf.
(3.5), it is easy to observe from the proof of [3, Theorem 6] that the inequalities
(3.21)—(3.22) hold uniformly with respect to 0 < # < 1 due to Proposition 3.3.

The following improved regularity statement will be important to get higher
regularity of solutions to the Navier-Stokes/Cahn-Hilliard system.

Lemma 3.8. Let the assumption of Theorem 3.6 be satisfied and let (c,u) be the
corresponding solution of (3.13)~(3.16). Moreover, let 0 < s < J, let w = 1 if

1

co € D(OE) and let w(t) = <1it) ® else.

4
1. If 0w € L2, ([0,00); H5(Q)) and r is as in Theorem 3.6, then (c, u) satisfies

uloc

wdhe € L*(0,00; Higy () N Lioc([0, 00); H (2)),
we € L(0,00; W), w(c) € L>(0,00; L"(2)), wp € L™(0,00; H ().

2. Ifv e BY ([0,00); H=5(Q)) for some a € (0,1), then

goo,uloc

we € C*([0,00); Hig (2)) N B ioe[0,00): H'(2)). (3.23)

Finally, the same statements hold true if [0,00) is replaced by [0,T], 0 < T < oo,

Remark 3.9. The lemma coincides with [3, Lemma 3], where 6§ > 0 was fixed.
As in Remark 3.7, the estimates in the proof of the latter lemma hold uniformly
with respect to 0 < 6 < 1 since they are based essentially on (3.21)—(3.22) and
(3.19). Hence Proposition 3.3 implies that all estimates obtained in the proof of
[3, Lemma 3] are independent of 6 € (0, 1].
3.3. Limit for the convective Cahn-Hilliard equation
In this section we show that solutions of the convective Cahn-Hilliard equation
(1.3)—(1.4) with ¢(c) = 0o (c) — O.c converge as § — 0 to solutions of the system
Oic+v-Ve=Apu in  x (0, 00), (3.24)
p~+ Ac+0Occ € 0ljq p(c) in  x (0, 00), (3.25)
Oncloa = Onptloa =0 on 09 x (0,00), (3.26)
(3.27)

cli=0 = o in Q 3.27
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for given ¢y with Ef_(co) < oo and v € L*(0, co; LZ(£2))NL2(0, 00; H*(2)), where

2 2
B, (c) = / Vel e 4 / (I[m,,](c)ef ) da. (3.28)
o 2 Q 2

Again we have a decomposition
be
Efiee(¢) = Eo(c) =, llell 20,
where Ey(c) is as in (3.9) and we assume w.lo.g. that [, co(z) dz = 0. As before,
(3.24)—(3.27) can be written as an abstract evolution equation in H(B)I(Q)

Oe(t) + Ao(e(t)) + B(v(t))e(t) 3 0, t>0, (3.29)
C|t:0 = Cp (330)

where Ag(c) = 8Ey(c), cf. Lemma 3.5, is now a multi-valued maximal monotone
operator and B is as before. Moreover, we have as before

(w1 — w2, €1 = €2) 120 00,1 —(A(cr —e2) + f1 — fa;c1 — e2)12(Q)

(0))

> Jler = el 20,00, ) (3.31)

where w;(t) € dEo(c;(t)), j = 1,2, for almost every ¢ € (0,00) and f;(x,t) €
) (cj(x,t)), j = 1,2, almost everywhere.
More precisely, we show

Theorem 3.10. Let 0 < 0, < 1, k € N, be such that 0 —k_.o 0. Moreover, assume
cok € H(lo)(Q) with co k(x) € [a,b] almost everywhere for all k € Ny and assume

that v € L*(0,00; H'(Q)) N L>(0, 00; L2(Q)) such that
Uk koo v in L2(0,T; HY(Q)), cok —kooo Co i H(IO)(Q)
for all 0 < T < oo, and let (ck, 1x) denote the unique solutions of (3.13)—(3.16)
with (v, co, ¢(c)) replaced by (vg,cok, P (c)), where ¢i(c) = D) (c) and Pi(c) =
0 Po(c) — 926 2. Then
Ck —k—oo C in L*(0,T; W2(Q)),
Vi —k—oo VI N L2( )
Ordolcr) —r—oe f  in L*(0,T;L"(2))

for all 0 < T < oo, where f = p+ Ac € Ola)(c) for almost all (x,t) € Q, 7 =6
ifd = 3,2 < r < oo is arbitrary if d = 2, and (c,p) € BC([0,00); HY(Q)) N
L2,,.([0,00); HY(Q)) is the unique solution of (3.24)~(3.27). Moreover, for every

uloc

t>0

Et(")ree(c<t))+/ Vil d(w, 7) :E?ree(co)_/ v pNed(z,T). (3.32)
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Proof. First of all, because of Remark 3.7, (3.21)—(3.22) with (¢, i, ¢(c), v, o) re-
placed by (ck, tik, ¢r(c), Vi, co k) hold true with constants independent of ;. Hence
for a suitable subsequence k; — ;o 00

Chy; —jmoo € 0 L2(0,T; W2(9)),
vﬂk —j—oo V[L in L2(Q)a

O, do(cr;) —j—oo f in L*(0,T;L7())
for all 0 < T' < oco. Moreover, since ;¢ is bounded in L?(0, oo; H(B)l(Q)) due to
(3.21),
Chy —jooe € in L*(0,T; W¢ ()
for all 0 < T < oo due to the lemma of Aubin-Lions. Hence
B(vk; )cr; —j—oo B(v)e in L*(0, oo;H(B)l(Q))

and (3.24) holds in the sense of distributions.
Moreover, since ¢, € H*(0,T; H(B)l(Q)) is bounded and ¢y, converges strongly

in L2(0,T; H*(2)) for all 0 < T' < 00, ¢, converges weakly in H'(0, T'; H(B)l(ﬂ)) —

C: ([0, T7; H(?])l(Q)) for every 0 < T < oo, which implies that c|i—g = ¢o =
lim; o co,k,; holds in H(?])l(Q) Hence ¢ € BCy,([0,00); H*(2)) due to Lemma 2.1
and since ¢ € L*°(0,00; H'(2)) is bounded. Furthermore, since ¢y, converges
strongly in L?(0,T; W§ () for every 0 < T' < 00, a suitable subsequence of ¢, ()
(again denoted by ¢, (t)) converges in W () < C°(Q) for almost all ¢ € (0,00).
Because of Corollary 3.4, we conclude that

Py(p+60.c) = —Ac+ Pof € 0Ey(c)

with f(x,t) € 014y (c(z,t)) almost everywhere. Defining m(u) by the equation
m(p) + 0:m(c) = m(f), we obtain (3.25). Moreover,

aEij (ij) = —AN(—Aij + Poekj ¢O(ij>>
= —An(pr; + Occr;) —joo —An(+0cc) = —An(=Ac+ Ry f)

in LQ(O,T;H(B)l(Q)) for every 0 < T < oo. Hence —Apn(—Ac(t) + Pof(t)) €
dEo(c(t)) for almost every 0 < t < oo because of Lemma 3.5 and (3.17) holds.
Finally, the uniqueness and (3.32) is proved in the same way in Theorem 3.6
using (3.31), cf. [3, Proof of Theorem 6]. Since every convergent subsequence con-
verges to some (c, p) solving (3.24)—(3.27) and the limit is unique, the complete

sequence converges to the unique solution of (3.24)—(3.27). O

Finally, we state the analogous result to Lemma 3.8 for the limit system
(3.24)-(3.27).
Lemma 3.11. Letv € L%(0,00; H*(Q2))NL>(0, 00, L2(Q)),co € H* () with co(x) €
[a,b] almost everywhere and let (c,p) be the corresponding solution of (3.24)-

1
(3.27). Moreover, let w =1 if co € D(OEy) N H3(Q) and let w(t) = (1Jtrt) ® else.
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1. If 6w € L} ([0,00); H=%(2)) for some 0 < s < } and r is as in Theo-

uloc

rem 3.10, then (c, u) satisfy

wdhe € L>(0,00; Hyy (2)) N Lo ([0, 00); H ()

we € L%(0,00;W2(9)), we(c) € L=(0,00;L7(Q)), wp € L(0, 00 H' ().

2. Ifve BY ([0, 00); H=5(K2)) for some 0 < s <} and a € (0,1), then
3

oo,uloc
we € C([0,00); H () N B ioe (0, 00); H' (). (3.33)
Finally, the same statements hold true if [0, 00) is replaced by [0,T), T < oo,

Proof. Let 0, = ]16, ke N v, =, cop = coif co & D(@Eo) N H3(Q). If
co € D(OEy) N H3(Q), then let ¢ x = co(erx), where g > 0 is chosen such that
|,1€¢0(5)\ + ,1(1)6(5) < C on [exa,exb] and e —k— oo 0, where we assume w.l.o.g.
m = 0 € (a,b). Then ¢o € D(0Fy,) and ||0Ep, (co )|l < C(|lcollgs + 1).

Moreover, let cg, i be as in Theorem 3.10. Then, because of Proposition 3.3, the
estimates in the proof of Lemma 3.8 hold uniformly in 0 < 6 < 1, cf. Remark 3.9.
Hence ¢ are bounded in the corresponding spaces and the lemma follows. O

4. Main result: Double obstacle limit for the model H

First of all, we recall the definition of weak solutions to (1.1)—(1.7) and a theorem
on existence of weak solutions from [3]:

Definition 4.1. (Weak Solution)
Let 0 < T < o0. A triple (v, ¢, 1) such that

v € BCyW(0,T;L%(Q)) N L*(0,T;V()),
¢ € BCw(0, Ty H'()), ¢(c) € Li((0,T); L*()), Vi € L*(Qr)
is called a weak solution of (1.1)—(1.7) on (0,T) if
— (v 0:)@r — (v, ¥li=0)a + (v- Vv, ¥)gr + (1(€) Dv, D), = (Ve ¢)gr (4.1)
for all ¥ € CF ([0,T) % Q) with divy =0,

7(63 at(P)QT - (007 So‘t:())ﬂ + (U . VC, SD)QT = 7(VIU'7 VQD)QT (42)
(Uv L)0)QT = ((b(c)a @)QT + (VC7 VL)O)QT (4'3)

for all ¢ € CE’S’)([Q T) x Q), and if the (strong) energy inequality

E(o(t), elt)) + /

v(c)| Dol d(z,T) +/ [Vul?d(z,7) < E(v(to), c(to))
Q(tg.t)

Qtg.1) (4 4)

holds for almost all 0 < ¢y < T including to = 0 and all t € [to, T).
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Theorem 4.2. (Global Existence of Weak Solutions, [3, Theorem 1])
For every vg € L2(), co € HY(Q) with co(z) € [a,b] almost everywhere there is
a weak solution (v,c,u) of (1.1)=<(1.7) on (0,00). Moreover, if d = 2, then (4.4)
holds with equality for all 0 <ty <t < co. Finally, every weak solution on (0, 00)
satisfies

1

26.0(0) € ([0, L'(), ft; ¢ € BUC(0,00;WH(R))  (4.5)

wherer =6 ifd =3 and 1 < r < oo s arbitrary if d = 2 and q > 3 is independent
of the solution and initial data. If additionally co € H%(Q) = {c € H*(Q) :
Oncloa = 0} and —Aco + 0¢o(co) € H'(Q), then ¢ € BUC(0, 00; W, (12)).

We show that weak solutions of (1.1)—(1.7) converge as § — 0 (for a suitable
subsequence) to a weak solution of

Ow + v - Vo —div(v(c)Dv) + Vp = poVe in © x (0, 00), (4.6)
dive =0 in © x (0, 00), (4.7
Oic+v-Ve=Ap in Q x (0, 00), (4.8)
pA+ Ac+ e € Oljqy(c) in Q x (0, 00) (4.9)
)

together with (1.5)—(1.7). The definition of weak solutions to (4.6)—(4.9), (1.5)-
(1.7) is the same as in Definition 4.1 just replacing Egee(c) by Ef,.(c) and (4.3) by
(4.9) together with 9,¢c|an = 0, assuming c E L2 ([0,00); H?(£)) in the definition
of weak solutions. Here Ef,  (c) = Eo(c) — % HCHLQ(Q) is as in (3.28).

Our main result of this section is the following:

Theorem 4.3. Let d = 2,3, 0 > 0, k € Ny such that 0y —r_. 0. Moreover, let
(UK, i, i) be weak solutions of (1.1)—(1.7) with initial values (Vo i, Cok) —k—oo
(vo,co) in L2(Q) x HY(Q) with co (z) € [a,b] for almost all x € Q and all k € N.
Then there is a subsequence kj, j € No, kj —j_o0 00 such that

(Vk;, Vitr,) = oo (0, Vi) in L*(0,00; H' ()7 x L*(Q)), (4.10)
(Vk; > Ck;) —F oo (V,€) in L°°(0,00; L2(Q)? x H(Q)), (4.11)
(ijalu‘kj) —j—oo (Ca /U‘) in L2(03T7 W’I"Q(Q) X LQ(Q)) (412)

for all 0 < T < oo withr =6 ifd =3 and 2 < r < oo arbitrary if d = 2
and (v, ¢, ) is a weak solution of (4.6)—(4.9), (1.5)~(1.7). Moreover, every weak
solution of (4.6)—(4.9), (1.5)~(1.7) satisfies

V26,1 € L210o((0,00): L7(Q), (1) € BUC((0, 00): W) ()
for some q > d and with k = 1 if co € D(0Ey) and k(t) =t2 /(1 +1t)2 else.

Proof. By the energy estimate vy € L*(0,00; L?(Q)) N L2(0,00; HY(Q)), cx €
L%(0,00; HY(Q)), Vur € L?(Q) are uniformly bounded. Hence there is a sub-
sequence such that (4.10)—(4.11) holds. Moreover, since (3.21)—(3.22) hold uni-
formly in k£ € N, cf. Remark 3.7, we can extract a subsequence such that (4.12)

uloc
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holds too. Therefore ¢ is a solution of (3.24)—(3.27) due to Theorem 3.10. Using
(4.6) and the bounds on (vg, ¢k, p;), one obtains that Oy, € Léloc([o, 00); V2(2))
is uniformly bounded. Hence vy, —j_o v in L*0,T;H*(Q)) for all s < 1.
Moreover, since O:ci, € L2(0,00;H(6)1(Q)) is uniformly bounded due to (3.21),
Ch; —h—oo € in L*(0,T;Wg(Q)) for all 0 < T < oo because of the Lemma of
Aubin-Lions. Hence we can pass to the limit in (4.1) for (vk,,cs;,ur,;) and the
initial values (vo;,cok;) and conclude that (v,c,u) solve (4.1) too. Moreover,
since vg; —joo U € ng (0,75V2(Q)") and cx; —j—o0o € € Hl(O,T;H(B)l(Q)) for
all 0 < T < oo, we obtain (vo,x;,co,k;) = (Vk;, Ck;)|t=0 —j—o00 (V0,c0) = (v,¢)|t=0
weakly in V2(Q)" x H(B)I(Q) Because of Lemma 2.1. (v,¢) € BC,,(0,00; L? x H').

Furthermore, because of Lemma 2.2, the energy inequality (4.4) for (vk,ck, )
is equivalent to

AMDH%@%wa»mﬁ»mwﬁ

SEWMWMW@+Amm@mmMm¢wm

for all p € W} (0,00), ¢ > 0, where Ej(c,v) denotes the total energy E(c,v) with

respect to @, (¢) = 0,Po(c) — 0, 022

Di(cr(t), vr(t), e (t)) :/QQV(Ck(t))Ika(t)Ide+IIVﬂk(t)Hg-

and

= [ 2()ID00)? do -+ [ T2 < Byn inf Daen(t). ). (1)

by the weak lower semi-continuity of the L2-norm and
Ep(cr; (t),vr,; (1) —j—o0 E(c(t),v(t)) for almost all 0 <t < oo,

we obtain
Emmmmm+émﬂdmwm¢wmzAmemwmuwwwm

for all p € W{(0,00), ¢ > 0, where E(c,v) = Ef_.(c) + Exin(v). Using Lemma 2.2
again, we have proved (4.4).

Finally, the regularity statements for ¢, u follow from Theorem 3.10 since for
given v (4.8)—(4.9) together with (1.6)—(1.7) has a unique solution (c, u). O

Since the Cahn-Hilliard equation (4.8)—(4.9) has the same structure as in
the case § > 0 and the same regularity results, cf. Lemma 3.11 are available, it
is easy to obtain the same uniqueness and regularity results as for 6§ > 0, cf. [3,
Proposition 1, Theorem 2]. These are as follows:
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Proposition 4.4. (Uniqueness)

Let 0 < T <00, q=3ifd =3 and let ¢ > 2 if d = 2. Moreover, assume
that vg € Wy o(Q) N LZ(Q) and let ¢ € COH(Q) with co(x) € [a,b] for all z €
O. If there is a weak solution (v,c,p) of (4.6)—(4.9), (1.5)~(1.7) on (0,T) with
v e L®(0,T;W; () and Ve € L™(Qr), then any weak solution (v, ¢, 1) of
(4.6)-(4.9), (1.5)—(1.7) on (0,T) with the same initial values and V' € L>=(Qr)
coincides with (v, c, ).

Proof. The proof is literally the same as the proof of [3, Lemma 7]. One just has
to replace the first equality in the proof by

O+ ay —as = —0.A¢ —w-Vey — vy - VE,

where a;(t) € Ao(c;(t)),j = 1,2, for almost all ¢ € (0,T) and w = vy — v and has
to use (3.31). O

Theorem 4.5. (Regularity of Weak Solutions)
Assume that co € D(OEy) N H3(RY), where Ey is as in Lemma 3.5.

1. Let d = 2 and let vo € V3 75(Q) with s € (0,1], s # . Then every weak
solution (v,c) of (4.6)—(4.9), (1.5)~(1.7) on (0,00) satisfies

v € L2(0, 00; V2T (2)) N HY(0, 00; V¥ (2)) N BUC([0, 00); H575(9))

for all s’ € [0, 3)N[0,s] and alle > 0 as well as V¢, ¢(c) € L>(0, 00; L"(12))
for every 1 < r < oo. In particular, the weak solution is unique.

2. Let d = 2,3. Then for every weak solution (v, c,u) of (4.6)-(4.9), (1.5)—(1.7)
on (0,00) there is some T > 0 such that

v € L*(T,00; V() N HY(T, 00; Vi () N BUC([T, 00); H*~5(2))

for all s € 10,3) and all e > 0 as well as V¢, ¢(c) € L>=(T, 00; L"(2)) with
r=6id=3and 1 <r < oo arbitrary if d = 2.

3. Ifd=3 and vy € V;H(Q), s € (; 1], then there is some Ty > 0 such that
every weak solution (v,c) of (4.6)—(4.9), (1.5)~(1.7) on (0,Tp) satisfies

v e L0, To; VT (Q)) N HY(0, Ty; V' () N BUC([0, To); H'+*~2(9))

for all s € [0, 3) and all € > 0 as well as V¢, ¢(c) € L>(0,Ty; L5(Q)). In
particular, the weak solution is unique on (0,Tp).

Proof. The proof is the same as the one of [3, Theorem 2]. Its proof only relies
on the available regularity results for ¢ solving (1.3)—(1.4), which are the same
for (4.8)—(4.9), as well as the uniqueness statement of [3, Proposition 1], which is
replaced by Proposition 4.4. Therefore the proof directly carries over. O
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1. Introduction

Complex rheological phenomena such as shear dependent viscosity, stress relaxa-
tion, nonlinear creeping and normal stress differences can be found in many fluids
like inks, polymer melts, suspensions, liquids crystals or biological fluids. These
properties, which cannot be captured by the classical Navier-Stokes equations,
lead to non-constant viscosity or to viscoelastic behavior described by nonlinear
relations between the Cauchy stress and the strain tensor. Fluids of this type are
called non-Newtonian [20].

There are many ways to generalize the Newtonian law of viscosity. The sim-
plest case is the generalized Newtonian model where the extra-stress incorporates
a shear-rate dependent viscosity. However, the generalized Newtonian fluids can-
not account for the effects described above, namely the viscoelasticity, but they
are often used to model simple flows and to study the flow rate in a pipe, as a
function of the pressure drop. Suitable viscoelastic constitutive equations are then

This work has been partially supported by CIMA /Univ. Evora, by CEMAT/IST through FCT’s
Funding Program and by the Project PTDC/MAT/68166/2006.
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required. In general terms, non-Newtonian viscoelastic fluids exhibit both viscous
and elastic properties and can be classified as fluids of differential type, rate type
and integral type. We refer to the monographs [5], [15], [26], [29] for relevant issues
related to non-Newtonian fluids behavior and modeling. Models of rate type such
as Oldroyd-B fluids can predict stress relaxation and are used to describe flows in
polymer processing. However they cannot capture the complex rheological behavi-
or of many real fluids, such as blood in which the non-Newtonian viscosity effects
are of major importance.

Over the past twenty years, a significant progress has been made in the math-
ematical analysis of the equations of motion of non-Newtonian viscoelastic fluids.
Usually, the constitutive equations lead to highly nonlinear systems of partial dif-
ferential equations of a combined parabolic-hyperbolic type (or elliptic-hyperbolic,
for steady flows) closed with appropriate initial and/or boundary conditions. The
study of the behavior of their solutions in different geometries requires the use of
specific techniques of nonlinear analysis, such as fixed-point arguments associated
to auxiliary linear sub-problems. We refer to [21] and [22] for an introduction to
existence results for viscoelastic flows.

The hyperbolic nature of the constitutive equations is responsible for many of
the difficulties associated with the numerical simulation of viscoelastic flows. Some
factors including singularities in the geometry, boundary layers in the flow and the
dominance of the nonlinear terms in the equations, result in numerical instabilities
for high values of Weissenberg number (non-dimensional viscoelastic parameter).
A variety of alternative numerical methods have been developed to overcome this
difficulty, but many challenges still remain, in particular for viscoelastic flows in
complex geometries (see, e.g., [16], [17] and the references cited therein).

It is known since the pioneering experimental works of Williams et al. [30],
Grindley and Gibson [14], and Eustice ([11], [12]) that flows in curved pipes are
very challenging and considerably more complex than flows in straight pipes. Due
to fluid inertia, a secondary motion appears in addition to the primary axial flow.
It is induced by an imbalance between the cross-stream pressure gradient and the
centrifugal force and consists of a pair of counter-rotating vortices, which appear
even for the most mildly curved pipe. This results in asymmetrical wall stresses
with higher shear and low pressure regions ([4], [18], [27]).

Steady fully developed viscous flows in curved pipes of circular, elliptical
and annular cross-section of both Newtonian and non-Newtonian fluids, have been
studied by several authors ([1]-[4],[13], [19], [23], [24], [27]) following the funda-
mental work of Dean ([9], [10]) for circular cross-section pipes. Using regular per-
turbation methods around the curvature ratio, Dean obtained analytical solutions
in the case of Newtonian fluids. These results have been extended for a larger range
of curvature ratio and Reynolds number, showing the existence of additional pairs
of vortices and multiple solutions ([8], [31]).

The great interest in the study of curved pipe flows is due to its wide range
of applications in engineering (e.g., hydraulic pipe systems related to corrosion fai-
lure) and in biofluid dynamics, such as blood flow in vascular regions of low shear
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(in healthy or disease states), where the shear-thinning viscosity and viscoelastic
behavior should not be neglected ([6], [7], [25], [28]).

This paper is concerned with the numerical study of the behavior of fully
developed flows of shear-thinning generalized Oldroyd-B fluids in curved pipes
with circular cross-section and arbitrary curvature ratio, for a prescribed pressure
gradient. Numerical results show interesting viscosity and viscoelastic effects: for
sufficiently small curvature ratio and certain range of viscosity parameters, the
flow field is quite complex, showing counter-clockwise rotation of the secondary
streamlines and loss of symmetry of the flow field. Stronger inertial effects result
in a deformation of the pair of vortices and rotation of the flow in an opposite
direction. These effects become weaker for higher values of the Weissenberg num-
ber. We remark that for generalized Oldroyd-B fluids the second normal stress
difference is zero, as in the particular case of Oldroyd-B, and consequently the
second normal stress difference has no impact on the secondary flows ([13]).

The paper is organized as follows. After introducing the governing equations
and formulating the problem in polar toroidal coordinates (Section 2 and 3), we
consider in Section 4 the numerical approximation of the steady Oldroyd-B model
with non constant shear-dependent viscosity, in the above-described geometry.
The original problem is decomposed into a Navier-Stokes system and a tensorial
transport equation. Using the finite element method and a fixed point algorithm to
couple the auxiliary problems, numerical results are obtained for a certain range of
non-dimensional flow parameters (viscosity exponent, Reynolds and Weissenberg
numbers) associated to the model. A continuation method is used to find the
initial guess of the iterations and to increase the absolute value of the viscosity
parameter.

Existence and uniqueness of approximated solutions, as well as a priori error
estimates to the coupled full problem have already been proved, under a natural
restriction on the curvature ratio (see [2]). In a future work, the systematic nume-
rical study presented in this paper will be complemented by a theoretical analysis
to justify the complex qualitative behavior of the combined effects of viscosity,
inertial and viscoelastic parameters.

2. Governing equations

This paper is concerned with flows of incompressible viscoelastic Oldroyd-B fluids
with shear dependent viscosity in a curved pipe  C R3 with boundary 9. For
these fluids, the extra-stress tensor is related to the kinematic variables through

v v
S+ A1 S=2(v+vy(1+|Du*)?) Du+ 2X; Du, (2.1)
where u is the velocity field, Du = }(Vu+ Vu') = } <g;f; + giz )Z s denotes

the symmetric part of the velocity gradient, |Du| is the shear rate, ¢ is a real
number, v and vy are nonnegative real numbers satisfying v + 19 > 0, Ay > 0 and
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A2 > 0 are viscoelastic constants. The symbol V denotes the objective derivative
of Oldroyd type defined by
v
S= (5 +u-V)S—-SVu-—(Vu)'s.
The Cauchy stress tensor is given by T = —pI+ S, where p represents the pressure.
The equations of conservation of momentum and mass hold in the domain €2,
p(%+u-Vu)+Vp=V-S+f, V-u=0, (2.2)

where p > 0 is the (constant) density of the fluid and f is an external force.
We first decompose the extra-stress tensor S into the sum of its Newtonian part
Ts = Qi‘f Du and its viscoelastic part 7. Introducing the quantities

L7 LUt po  PL
L’ L’ U’ (v+uvo)U’
7L %
= (v+uvo)U’ (vt w)U’

where the symbol ™ is attached to dimensional parameters (L represents a reference
length and U a characteristic velocity of the flow). We also set

1 A2 0
E = —_ 5 = 5
)\1(1/ —+ I/()) " v+ 10}
and defining the Reynolds number and the Weissenberg number as
L A
Re= PUE  pe=MY
v+ L

we can write (2.1)—(2.2) in dimensionless form
—(1-¢)Au+Re (9 +u-Vu)+Vp=£f+V 1,
V.-u=0, (2.3)
T+We (97 +u- V1 —g(Vu, 7)) =2 (¢ + 70 (|Dul?)) Du,
with
g(Vu,7) =7 Vu+ (Vu)' 7, o(r)=(1+z)?-1.
This system is supplemented with a Dirichlet homogeneous boundary condition

u =0 on 0N.

In a simple shear this model predicts shear dependent viscosity (shear-thinning
for ¢ < 0 and shear-thickening for ¢ > 0) and normal stress coefficients ¥; and Us
given by (see, e.g., [5], [17], [29])

Uy (|Dul) = 2 (¢ + no (|Dul?)) |Duf?
Uy(|Dul) = 0.
Note that the model reduces to Oldroyd-B when ¢ = 0.
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3. Equivalent formulation in polar toroidal coordinates

We consider fully developed flows in a curved pipe with circular cross-section (see
Figure 1).

"«

FIGURE 1. Polar toroidal coordinates.

For this pipe geometry, it is more convenient to use the polar toroidal coordinate
system, in the variables (7, 0, 3), defined with respect to the rectangular cartesian
coordinates (7, ¥, ) through the relations

r—\/ + ( \/332 )2,

0 = arctan , § = Rarctan g,
Va2 + g? - T
and the inverse relations
~ ~ s ~ ~ .S ~ ..
x:(RJrrcosﬁ)cosR, y:(R+r0089)st, Z=rsiné,

with 0 < rg < R, 0 <0 <27 and 0 < s < wR, where R > 7 > 0 is the constant
centerline radius. Introducing

- 5=
S ’T'O’ R’

we see that the corresponding non-dimensional coordinate systems are given by
r*\/ZQ \/x2+y — )2,
0 = arctan \/:c2+y 7§, S:Jarctani,
and the inverse relations
xr = ((15 —i—rcos@) cos(sd), y = ((15 —|—rc059> sin(sd), z=rsinb,

with5<170<9<27rand()<s<g.
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Let us now formulate system (2.3) in this new coordinate system. For conve-
nience, we keep the notation as for the cartesian system (e.g., u = u-e,, v =v- €y
and w = w - e5). To simplify the notation we set

B1 = Bi(r,0) = rdsind, B2 = Ba(r,0) = récosb,
B =p(r,0) =1+ rdcosb.

By using standard arguments, we rewrite the problem (2.3) in the toroidal coor-
dinates (7,0, s), and we see that the problem reads as

Find (u = (u,v,w),p, T) solution of
— (V- (21 —e)Du+7 —Reu®nu)), +Red¥ + gf =0,
—(V-2(1—¢)Du+7—Reu®u)), + Red? + 19 =,
—(V-(2(l—¢)Du+7—Reu®u)), + ReP + [1325 =0,
o (rBu) + 3 (Bv) + 5, (rw) =0, 3.1)
7-+We<u§,, +ia+ jgaas)ﬂrwe%;

= %6 F(u,7)+2 (6 —n+ (Tg)Qq ((rﬂ)2 + |rﬂDu\2)q) Du,

Uyo = 0

where for third-order tensor o, V - o is given by

1,0 0 0
(v ) U>r - 7”‘5 <ar (rﬁo-”') + 60 (ﬁ07-9> + 35 (TU7'S> - /620-88 - ﬁ099)7
1,0 0 0
(V . 0-)9 - 7”‘5 <ar (rﬁ097‘> + 90 (ﬁ099> + Os (7"0'98> + ﬁlo'ss + ﬁo-rQ)v
1,0 0 0
(V : o’)s - 7,,/6 <ar (rﬁ057'> + 89 (ﬁ0-89> + as (7"0'35> - ﬁlags + ﬁ20'7‘s)7
and the velocity gradient and the symmetric tensor F are given by
ou ov ow
or or or
Vo= | M-y Mner 1% ,
10u _ P2 1 dv B1 1 0w ,BQU_,B1

gos W goas T 3W goas T gV

Foo(u,7) =2 (rB 5t + 85 Tro +150Trs)

Fro(u,7) =B (r9 —v) mr + B (95 +u+1r2") 79
30T + 855 To0 + 54 Tos,

Fro(u,7) = (r G = Bow) Trp + (B 5 + Brw) Tro + B 7o,
+ (r% + Bou — v+ 1B 9) T + 190 T,

Foo(u,7) =2 (3 (r3 —v) mro + 8 (%) + 1) Too + 150 70s)
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Fos(u,7) = (r8 %Y — Bow) 710 + (B 95 + Prw) Too + B (152 — v) Trs
+ (r% +ﬁgu—61v+ﬂav+ﬂu) Tos + 79" Tss,
Fo(u,7)=2((rB8% a“’ — Bow) Trs + (B 5% + Brw) Tos)
+2 (r%’;’ + Bou — B1v) Tss.

Considering fully developed flows, the velocity, the pressure and the stress tensor
7 are independent of the variable s. Consequently, they satisfy respectively,

ou Ov _ ow _ _ Op or _
0s — s s gy Lo 5 =0 (82)
Using (3.2), problem (3.1) defined in the set
L={(r0)eR*|0<r<1,0<06<2r} (3.3)

reads as follows

Find (u = (u, v, w),p,T) solution of

—Ary

)

(s 20 —)Du~Rew@u) +7) +Re 3 + 1 57 =0,
_A(;W(z/w (2(1—e)Du—Reu®u)+ )+R€§§+ﬁ% ap_o
,As,y(i/fy( (1-—¢)Du—TReu®u) Jr—?-) + Re %1; = p 1),
or (1) + 55 (Bv) =0,
rﬁ?—i—We(gt—I—Tﬁu 2+ pv gg)?:(;(u’ﬂ
U,y =0 (3.4)

where for a tensor o,
A (0) =1B(V - 0)e —v((B + 2)oer — Broeg), forany & =r,0,s

and

G(u,7) = We(F(w,7) +7 (8 + B2 u— fiv) 7)
£2(e—n)uDu (35)
+ 20 y—2q+1 ((7'5)2 + |7”5Du\2)q Du
where v = 2max (q,0) + 1, ¢, = (r3)” and T = ¢, 7.
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4. Numerical approximation and results

We use finite element methods to obtain approximate solutions to problem (3.4).
Here and in the remaining sections, only steady solutions will be considered.

4.1. Setting of the approximated problem

Let {7)}r>0 be a family of regular triangulations of the rectangle ¥ defined by
(3.3), and denote by

X), = (X0)? = {vi € C(X) NHY(D) | vijx € Po(K), VK € T},

Qn = {an € CE)NLY(S) | anixe € P1(K), VK € Ty },
and

Ty = (Tn)>*® = {mn € L*(2) | Tk € P1, VK € T }*"°
the finite element spaces. System (3.4) is approximated by the following problem
Find (up, pp, Tr) = (u,p,T) € Xp, X Qp X T}, solution of
(= Ara (1 (21— &) Du = Reu@ w)) + 1 321 ) = (A (7)),
(= Ao (0, (201 = £)Du—Reu g w)) + By 55,5) = (Aus (7)),
( ./457 17€)DU7R611®11))7])*7”1/)7,¢3) = (As (T), P3),
(&0 (rfu) + 39(51}) ¢) =0,
(rﬁ Tij, ag) + We By, (u v ‘I'”,O'g) (Gij (u,7), 0'4>,
up,, =0 (4.1)
for every (@1, ¢y, @3,9) € Vsn X Qn, where

Vsn={vh e Xy |V -(Bvy) =0}, 6€][0,1]

and every oy € T, (( = 1,...,6), with By, defined by

or or 1/(0 0
By (n.0m0) = (i vt (o) )+ ) o)
- <T+ - T_7U+>huv

where

(-, )n = Z -, )k,

KeTy,

UT/Lu1): Z/ TUﬁrum—&-vng)d
KeT, K~ (ru,v)

K™ (¢,¢) = {s € 0K | (,() - (nr,m0) < 0},

and where (n,,ng) is the outward unit normal vector to element K € 7},.
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Using standard integration by parts we show that problem (4.1) can be rewrit-
ten in the form

(Pn) Find (up,pn, 71) = (u,p, 7) € X x Qp x Ty, solution of
26, (1 32,80 ) + L4 (Bur1 058 ) +2 (w1 (8% + 53) w, 6 )
Ly (B2 (150 = 0) 1) + 21 (B35 — BiBav) )
— K (0 )+ R (K (000, ¢1) + £ (vyuv 1))
Fe (0 (Baw® + 50%) 6
= L (K B @) + £y (Fra, 80) + (BoFas + 700 61) )

Ko (B -1 (15 = 0)s ) + 2L, (81,105 . )
- (ra (8 280) v = 18200)  6a) + K (B2 05 )
+ 2L, (10,6, (wl (8235 + 201520) , b, )
— L (p ) + (K (wvuv $2) + L, (0%, 0, )
- B (s (B? +ﬂw),¢2)
= = L (K (Fors @) + £y (Fon, 63) = (BiFes + B7r0.2) ).

o (31 (185 = o). 6g) + L5 (11 (855 + Bruw) . o)
+ (r1 (0) w8595 — 8552 ) 64)
= (o) + T (K (v 65) L (15 0w 65) )
= R (v (Bau— Bro)w, )
= L (KR b) + L (Rt b) + (51705 — B27rs, 63) ),
(& (:8u) + 2, (B). ) =0, for every (1, b, 3,9) € Vi x Qn, and
(Tij,rBoe), +We B (u,v,Tij,00) = (Gij (0, T) ,00),

for all o € (T3)° with

B do oo 1[0 0 - 4+ -
B == (ruy + 0 = (o B0+ g () 7]+ 0t =0

with K, (0,0) = (0,18%% +7(B+B2) ), Ly(ov9) = (0.8%7 —6ip) and G
given by (3.5).
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4.2. Algorithm

Next we define the algorithm to solve the approximated problem (Pj) (as usual,
the index h is dropped to simplify the presentation).

e Given an iterate 77, find u¥ = (u®, vk, w*), and p* solutions of the following

Navier-Stokes system (N.S)g

2, (4, ,,¢) S (Bra s 1) 2 (0 (8 4+ 33) b )
Ly (B (1% = o%) ) +2 (nma (2% — BiBo®) 1)
- liaml(w 1) + PR (0, (@) 1)
+ P (L (wnuteh ¢0) + (0, (Ba(wb)2 4+ B05)2) 1))
= = L (K 60) + £y (Fhg ) + (8275, + 576, 01)).
K (B2 (1% =), ) 422, (86,17 62)
(e (824 280) % = rB2 %0 ) 00y) + Ky (B 1% 1)
2L, (By-1 b, ) = (a1 (8% +2B182u") )
L Lo (000" 62) + LI (0", 6,
R (8 (02092, 82) = (8 (Brwh)? + Buob)  6,))
= = (K (b ) + £4(Fh, 02) — (BT + 5740, ) ).
I (901 (rB%" = Baw®), 65) + £4 (w1 (8% + Bt .oy )
(o (00) w* + 881 % — 188,55 ) )
= (e pt gs) + R K (0 it )
2 (st ) (3 0t~ ) )
= = L (K 8a) + L7 80) + (3176, — BaTh ),
(& (8u*) + 5(80%), ) = 0, for every (1, @2, 63,%) € Vi X Qn.

° Calculate the new iterate 7°7' as the solution of the transport problem

< Ty rﬁag)—l—WeBh <u vkn'fj'l 0'@) = <Gij (uk7?k)70'g) Vo e (Th)S.

e Find uft! = (ubt! vF+1 k1 pk+1) solution of the Navier-Stokes system
(NS)k+1-
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Taking into account this algorithm, our aim is to write the linear systems cor-
responding to problem (P}) at a given iteration k. To simplify the presentation,
we will consider the case of creeping non-Newtonian flows, which corresponds to
Re = 0.

Given ?k, expressing the corresponding approximate solutions u
p* in the basis of Vsn and @y,

np i
k __ k 4 k __ k i
u —E u; 91, —E vy @5,
=1 i=1

we obtain the following linear system

k .k

, v* wk and

M h mp
k k i k ki
wh =Y "wleh, pF = pfe,
i=1 i=1

A Ay 0 1 Ag uk bk
Ay A 0 1 Ag oF | [ bk
0 0 A7 0 wh | 7| bj
As Ay 0 0 p* 0
where
(A =260, (v 5201 ) + £y (81 % 01) +2 (1 (82 + 33) 0. 01)
(Az)is = £ (01 (1852 = B0 ) 1 01) +2 (01 (8% — Bi820d) 104 |
(Aa)iy = =Kot (407,61,
(Aa)is = Ky (8001 %02) + 22, (B 161, 04)
— (01 (8% +2810])  0%)
(As)iy =Ky (01 (18757 = B6L)  64) + 22, (B2 5 )
ot (0rn (5% +208) 0 — 182 57 ) 1)
(Ag)ij = — Ly (%@j,qﬁ%) 7
(Ar)iy =K (01 (18%57 = B20h)  08) + £ (w1 (857 + Broh) o)
(a1 ((r0) 0+ 88 %5 = 188257 ) h)
(Asg)ij = (Tﬁa¢1 + (B + B2)¢] ')7
(Ao = (8% — Bi6be),

and where the vectors bj (j = 1, 3) are given by

(b]f)z =
(bg)z -

= 1L (K (Fh 60) + £ (70, 00) + (8275, + 5700 1)),
(00 R )+ £, (Rl ) — (37 + 57 08) ),
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(bg)z = - 1i5 (IC (Asrv(rbd) +L ( 593¢3) (ﬂl?lgs - /62:7:7"57(25?3))
+ 1L (vt ah).

k

After obtaining (uk7 vk, wk, pk), we consider the transport equation to get

FRH = (?kﬂ) Using the local basis functions {}e=123 C Th, the local sys-
tem for the approximate transport problem can be written as

k__k+1 K\~ (k41 k

ATZ-;'_ +(A) (T--J'_) =G;

i 50

1,7=1,2,3
with
Al = (Cm,rﬂ Cz) - We (Cm,rﬂuk % 1 gk o )K
N <<rﬁ or T ﬁaé)ek + (B4 Bo)uf — ﬁlvk) Coms Q)K ,

(Ak)f_m = W@/ BCn_z (Cl - Cli) (ruknr + Ukng) ds,

OK— (rup,vp)
(ij)g = (Glj (uka ’/r\k) ) CZ)K )

where ¢, denotes the /th basis function over the correspondent adjacent element
to K by an inflow edge, G is the function given by (3.5). The local systems lead
to a linear system of the form

MEF = Cf,

where M* is a non-symmetric matrix whose dimension is twice the number of
nodes in the triangulation.

4.3. Numerical results

The domain ¥ defined by (3.3) is discretized using triangles. Referring to the
algorithm, we see that a Navier-Stokes system has to be solved for (u,v,p), a
Poisson equation for w and a transport equation for 7. The velocity is set to zero
on the lateral surface of the pipe. The non-dimensional stream function ¢ can be
written with respect to the components v and v, as

1oy 1oy
3007 T Bor
and the wall-shear stress is 7, = — (T -n) - A |,—1. In this particular case, T, is
given by
Tw= —2(1—¢) (g;{ - (gg + u))|r=1 sinf cos

—(1-¢) (g;’, + (gg — v))|T:1 (sin2 6 — cos? 9)
— (Tyr — T00)|r=1 sin0cosd — Tpg|,—1 (sin® 6 — cos®h).

In what follows, we consider the numerical simulation of fully developed
steady Oldroyd-B flows with constant and non constant viscosity, in a curved
pipe with constant cross section. The behavior of creeping (i.e., Reynolds number
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set to zero) and inertial flows (non-zero Reynolds number) is analyzed for different
values of the parameter involved in the governing equations (the Reynolds number
Re, the Weissenberg number We, the curvature ration ¢, the non-dimensional vis-
cosity parameter 1 and the exponent ¢ appearing in the power-law type viscosity).
A continuation method is carried out to implement these different tests.

4.3.1. Creeping generalized Oldroyd-B flows. In this section, we are interested
in the qualitative study of creeping flows (Re = 0) for generalized Oldroyd-B
fluids, and especially on the behavior of the secondary motions and of the wall
shear stress. In order to analyse the combined effect of the viscoelasticity, the
non-constant viscosity and the curvature ratio, several calculations were achieved.

T we=1 Ty we—s
5
o.oooztw :e j :
0.0001 ‘ /\ ‘ ’ \ T
7\ A A We = 3
-0.0001 A T We = 4
-0.0002 We = 5

FIGURE 2. Streamlines (top) and wall shear stress (bottom) for
creeping Oldroyd-B flows, for the curvature ratio § = 0.001.

It is well known that in the case of creeping Oldroyd-B fluids, the viscoelastic-
ity promotes secondary flows characterized by two counter-rotating vortices, that
the global behavior is stable, and is of Newtonian type. We did not observe any
notable changes in the nature of the flow when varying the characteristic para-
meters (Weissenberg number and curvature ratio). The only difference lies in the
values of the stream function and of the wall shear stress, which increase with
these parameters, and also in a slight shift to the left of the vortices with increas-
ing curvature ratio. Figure 2 displays the flow behavior for the curvature ratio

= 0.001.

In a second step, we consider the more general case of Oldroyd-B fluids with
non constant viscosity. Fixing the curvature ratio § and the viscosity parameter 7,
we implement a continuation method with respect to the exponent ¢, for different
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values of the Weissenberg number. The values of the maximum exponent for which
convergence is ensured are shown in Table 1. As one can see, and as expected, ¢maz
depends on the different parameters. In particular, the values decrease when these
parameters increase. We also observe that there is no convergence, for the curvature
ratio § = 0.2, with We = 5 and the same values of the viscosity parameter 7.

We 1 2 3 4 5
6 =0.001
n=04 216 680 6.75 7.32 6.93
0.5 470 457 445 4.15 3.95
0.6 3.05 285 260 230 2.00
6=0.1
n=04 892 1.02 0.58 0.45 0.36
0.5 1.53 060 042 0.32 0.26
0.6 080 045 032 0.26 0.21
6=0.2
n=04 331 062 042 032 —
0.5 091 045 032 024 -—
0.6 060 034 024 019 -—

TABLE 1. Maximum values of |q|.

Numerical results (using finite element methods) show some changes in flow
characteristics and that the viscosity influences its behavior. In summary, we have
two phases:

e A phase of variation in the behavior passing from the standard Oldroyd-B
type to a new type.

e A phase of stabilisation in the new type.

More precisely, for small values of |¢|, we observe a surprising phenomenon. Ini-
tially, the secondary flows involve non-zero values and are characterized by two
counter-rotating vortices. As ¢ increases in absolute value, the streamlines in the
core region become less dense, the size of the couple of vortices reduces, and the
flow is driven near the wall pipe. We observe the formation of boundary layers
flows with a pair of new vortices, initially weak and elongated, strengthening and
dominating as the viscosity exponent increases. In contrast, the original secondary
flows become more and more weak before vanishing when the level of the exponent
viscosity reaches a critical value. The orientation of the new contours is opposite,
as well as the sign of the stream function, suggesting a transition to a different
regime.

It is interesting to observe that this behavior is global, in the sense that it is
seems to be independent of the Weissenberg number and of the curvature ratio,
and occurs for the same values of the viscosity exponent g. Figure 3 illustrates the
behavior of the streamlines in the particular case of a curvature ratio 6 = 0.001 and



Flows of Generalized Oldroyd-B Fluids in Curved Pipes

35

viscosity parameter 7 = 0.4. The influence of the viscosity parameter is evident,
and as 7 increases the transition occurs earlier. Moreover, because of the effect
of the curvature, the new two vortices are not localized in the center of the cross

section but are slightly translated.

1

1

FI1GURE 3. Qualitative behavior of the streamlines for creeping
generalized Oldroyd-B flows, with n=0.4 and for different values
of |g| (6=0.001).

Tw

0.002

0.001

-0.001

-0.002

FIGURE 4. Wall shear stress for creeping generalized Oldroyd-B
flows, with n=0.4 (6=0.001).

Q o QaQ Q9 Q9 a9 «Q Q9 \Q

.16
.17
.18
.19
.20
.30

We also noticed variations in the wall shear stress (see Figure 4). It can be
observed that during the transition, the amplitude of the wall shear stress decreases
and the corresponding curves are inverted in comparison with the Oldroyd-B case.

After the transition phase, and before reaching some “critical” value of the
viscosity exponent, the flow is qualitatively more stable. The streamlines are sym-
metric and the global behavior of the wall shear stress remains unchanged. This
critical value of ¢ depends on the viscoelastic parameter, on the viscosity parame-
ter, and particularly on the curvature ratio. Globally, the changes which occur from
now on, are similar in some aspects to those already noticed for the generalized
Newtonian flows [1, 3].

In particular, for n = 0.4, for relatively small Weissenberg numbers (We =
2, 3, 4), and especially in the case of small curvature ratio, we observe a variation
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1 - 1 1

FIGURE 5. Streamlines for creeping generalized Oldroyd-B flows
with n=0.4 and |¢| = 6, 6.4, 6.5 (from left to right), for different
Weissenberg numbers We (6=0.001).

in the shape of the vortices, their displacement to the core region, the concentration
of the contours in this region and the beginning of a counter-clockwise rotation.

In Figure 5, we plot the streamlines corresponding to this case. The rotation
is more pronounced when the Weissenberg number is small suggesting that the
viscoelasticity, as well as the inertial forces in the case of generalized Newtonian
flows, has an opposite effect [1, 3].

However, contrarily to the generalized Newtonian flows, the viscosity expo-
nent corresponding to the initiation of the rotation is not constant. As can be
seen in Table 2, it depends on We and as this parameter increases, the rotation
initiates earlier. Moreover, the viscoelastic parameter affects the maximum angle
and the development of the rotation: for We = 2, the contours are left-rotating
(L), for We = 3 they are initially left-rotating and then right-rotating (R) before
stabilizing symmetrically (S). Finally, when the We increases, there is no more
rotation and the contours remain symmetric.
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TW
—— g= -6.
0.004
0.002 N\ ——q=-6.4
> /S — 9
N 2/ 34 5 N6 = -6.5
-0.002 \_/
N
-0.004 . q=-6.8
We =2
TW TW
0.006 / \ 0.006 /
0.004 /o 0.004 a
0.002 A\ // \ 0.002 A\ \
\1 2] 3\ /4 5 \-6 0 N 2/ 3\ _/4 5 \ 6/
-0.002 \ \/ -0.002 / Az
-0.004 \ g -0.004 . /
~0.006 ~0.006
J \/
We =3 We =4

FIGURE 6. Wall shear stress for creeping generalized Oldroyd-B
creeping flows with 7=0.4 and |¢| = 6, 6.4, 6.5, 6.8 (§=0.001).

We 2 3 4 5
6 = 0.001

n=04 630 6.25 -

L LS S S

05 450 430 — —

R R(slight)

w
|

TABLE 2. Values of |¢| initiating the rotation.

Parallel modifications can be observed concerning the wall shear stress. Fig-
ure 6 shows the corresponding curves for n = 0.4 and for different values of the
Weissenberg number. For We = 5, the curves corresponding to different viscosity
exponents ¢ are identical, suggesting that the wall shear stress is stable in this case.
For We = 4, the global behavior of the curves is similar but with variations in the
amplitudes. When the viscoelastic parameter is set to 3, small modifications could
be observed in comparison to the previous case. In particular, for ¢ greater than
the critical value gy, initiating the rotation, we lose the symmetry with respect
to the horizontal axis, and the wall shear stress takes negative values at 6 = 0 and
27. This fact is more pronounced for We = 2, with lost of symmetry with respect
to the axis § = 7. The same differences are obtained when 1 = 0.5. The sign of the
wall shear stress for values of ¢ greater than gy, is positive. This strongly suggests
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the existence of a relation between the sign of 7, at the points § = 0 and 27, and
the orientation of the rotation.

A final observation is related to the maximum values of the stream function.
Independently of the viscoelastic and viscosity parameters, the maximum values
dramatically increase in the neighborhood of the critical value ¢ya,. For the cases
where the maximum value of the exponent ¢ is big enough, we observe that after
this peak, the maximum values decrease before stabilizing.

4.3.2. Inertial generalized Oldroyd-B flows. In the previous subsection, we studied
the behavior of the generalized Oldroyd-B flows in the absence of inertia (creeping
flows). Our aim here is to consider the more general case of inertial flows, and to
analyse the effect of the Reynolds number in combination with the Weissenberg
number, the viscosity parameter 7, the exponent ¢, and the curvature ratio 9.

We first consider a pipe with a small curvature ratio (§ = 0.001) in the case
of a constant viscosity (inertial Oldroyd-B fluid). The secondary flows exist and
the corresponding stream function and wall shear stress have globally the same
behavior as the creeping Oldroyd-B flows. At this stage, the nature of the flow is
qualitatively identical to that of a Newtonian fluid.

In order to compare with the case of generalized creeping flows, the viscosity
parameter 7 is set to 0.4, 0.5, 0.6 and as previously, several tests were performed for
different values of the Weissenberg and the Reynolds numbers, with a continuation
in the exponent q.

One of the first remarks is that the transition phenomenon observed in the
case of generalized creeping flows does not hold, even for relatively small Reynolds
number (Re = 15). This fact is evident when 7 takes the values 0.4 and 0.5 and
the behavior in these two cases is close to that of inertial generalized Newtonian
flows.

Fixing n = 0.4, and varying the Reynolds and the Weissenberg numbers,
the flow is globally stable for ¢ less than some critical value. From the contours
of the stream function and of the wall shear stress for the exponent |q| < 5, we
observe that the qualitative behavior is similar and independent of both inertia and
viscoelasticity. The only difference lies in the values and the magnitude of these
quantities, which clearly depend on the involved parameters. In the neighborhood
of a critical value of ¢, the behavior presents some changes and is no more uniform.
The rotation already observed initiates, and its orientation depend on Re and We.
Indeed, fixing the Reynolds number to 15, we can see that for We = 2, a counter-
clockwise rotation occurs for ¢ya, = —6 and that the contours remain stable till
we reach the maximum value for which the convergence is ensured. For We = 3,
the stream function initiates a very slight counter-clockwise rotation at the same
value @yar, but recovers the symmetry very quickly. Finally, for We = 3, the same
behavior is captured, but with a very slight clockwise rotation. The wall shear
stresses behave in an analogous way. In order to emphasize the role of the inertia,
we fixed the Weissenberg number and increase the Reynolds number.
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In a second step, we consider the case n = 0.5. For Re = 15, we can observe
that the Weissenberg number favorite the clockwise rotation (cf. Figure 7). Indeed,
when the Weissenberg number is small (even with larger exponent viscosity), the
contours remain symmetric. As We increases, the rotation initiates and holds ear-
lier. On the other hand, the Reynolds number does not seem to have a significative
influence on the nature of the flow. We implement several tests corresponding to
larger values of this characteristic parameter (Re = 1, 15, 30, 50, 70) and did not
observe any significative difference.

Table 3 summarizes the results of the maximum values of viscosity parame-
ter |q| with respect to the viscoelasticity (WWe) and the inertia (Re) parameters,
as a function of the curvature ratio (¢). For fixed § and We, the value of |q| de-
creases when Re increases. The same occurs if § and Re are fixed: the value of
|g| decreases when We increases. The curvature ratio associated with (Re) and
(We) has a strong influence on the convergence, since it can be shown that when
these parameters increase, the values of |¢| decrease considerably and in some cases
convergence is not achieved.

1

g =-4.20

0.005
, / — g=-4.29
7

6
\— 2 \ 4 5/ 6
-0.005} -
~0.01 ——a=-4.80

FIGURE 7. Streamlines and wall shear stress for inertial generali-
zed Oldroyd-B flows with n = 0.5, Re = 15, We = 1 and different
values of the |g| (6 =0.001).

The case n = 0.6 is certainly the more surprising. For large values of the
Reynolds number and for the achieved viscosity exponents, the behavior seems to
be stable and no notable fact can be observed. The more interesting variations
were observed for relatively small Reynolds numbers. Fixing for example Re = 15
and varying the Weissenberg number, we observe that the behavior is qualitatively
stable for small values of this parameter. For We = 3, 4 and 5, some new phenom-
enon initiates. The characteristics are very similar to those observed in the case
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We 1 2 3 4 5

Re=1 5.12 4.65 445 422 4.0
15 481 4.36 4.25 4.21 3.95
30 478 3.76 3.54 3.37 3.25
50 3.60 3.03 2.81 2.62 2.46
70 344 257 223 194 1.72

6=0.1

Re=1 247 0.7 046 036 0.3
15 051 0.15 — — —

30 0.05 - - -
50 - - - - —
6=0.2
Re=1 126 0.53 036 — -
15 023 - — — —
30 - - - - -

TABLE 3. Maximum values of |¢| with n = 0.5.

of generalized creeping flows during the phase transition: formation of boundary
layers and a pair of new vortices or strengthening of the new contours and weak-
ening of the original ones. However, in contrast with the creeping flows, the new
state is not stable and at some level the inverse phenomenon initiates (Figure 8).

For this particular viscosity parameter, Table 4 shows the results of the max-
imum values of |g|, obtained for different We and Re numbers, in the case of
6 = 0.001. Comparing with Table 3 for the same curvature ratio, the same effects
of viscoelasticity and inertia on |g| can be observed.

We 1 2 3 4 5
6 =0.001
Re=1 3.10 289 2.68 2.6 2.56
15 288 2.67 2.60 2.55 2.1
70 1.69 139 1.20 1.05 0.95

TABLE 4. Maximum values of |q| with n = 0.6.

5. Conclusion

This paper is devoted to finite element simulations of flows of incompressible vis-
coelastic non-Newtonian fluids of Oldroyd-type through pipes of uniform circular
cross-section, and follows the work already published in [1] and [3] for generalized
Newtonian fluids. We compare the quantitative and qualitative behavior of the
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FIGURE 8. Streamlines and wall shear stress for inertial genera-
lized Oldroyd-B flows with n=0.6, Re=15 and We=5 (§=0.001).

secondary streamlines and the wall shear stress for creeping and inertial generali-
zed Oldroyd-B flows, performing computations for different values of the Reynolds
number, the Weissenberg number, the curvature ratio and the non-dimensional
viscosity parameters involved in the governing equations.

In particular, we observe interesting viscosity effects such that, for small
curvature ratio and within a certain range of viscosity parameters, the secondary
streamlines contours undergo a counter-clockwise rotation and lose symmetry. The
complexity of the flow characteristics shown in the numerical tests suggest that
further theoretical analysis is needed to study the existence of more than one
solution and investigate the corresponding stability, for a range of appropriate
non-dimensional parameters.

More detailed discussion and numerical results can be found in [19] where
the generalized Newtonian flows are obtained as a particular case of generalized
Oldroyd-B flows, in the limit of vanish Weissenberg number (neglected viscoelastic
effects). The numerical validation of the present results, using the perturbation
method [24] is a work in progress.
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In honour of H. Amann

Abstract. We prove weighted estimates for the maximal regularity operator.
Such estimates were motivated by boundary value problems. We take this
opportunity to study a class of weak solutions to the abstract Cauchy prob-
lem. We also give a new proof of maximal regularity for closed and maximal
accretive operators following from Kato’s inequality for fractional powers and
almost orthogonality arguments.
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Kato’s inequality, fractional powers, Cotlar’s lemma.

1. Weighted estimates for the maximal regularity operator

Assume —A is a densely defined, closed linear operator, generating a bounded
analytic semigroup {e=*4 |argz| < 6}, 0 < § < 7/2, on a Hilbert space H.
Equivalently, A is sectorial of type w(A) = 7/2 — §. Let D(A) denote its domain.
The maximal regularity operator is defined by the formula

M, f(t) = /t Ae= =94 £(5) ds.

0
This operator is associated to the forward abstract evolution equation

a(t) + Au(t) = f(t),t > 0; u(0) =0

as for appropriate f, Au(t) = M4 f(t). An estimate on M f in the same space
as [ gives therefore bounds on 7 and Au separately. See Section 2.

The integral defining M f converges strongly in H for each ¢ > 0 and
f € L?(0,00;dt,D(A)). The estimate ||Ae~(=*)4|| < C(t — s)~! following from
the analyticity of the semigroup shows that the integral is singular if one only
assumes f(s) € H. The maximal regularity operator is an example of a singular
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integral operator with operator-valued kernel. The celebrated theorem by de Simon
[4] asserts

Theorem 1.1. Assume —A generates a bounded holomorphic semigroup in H. The
operator My, initially defined on L*(0, 00; dt, D(A)), extends to a bounded operator
on L?(0,00;dt, H).

Motivated by boundary value problems for some second-order elliptic equa-
tions, we proved in [3] the following result.

Theorem 1.2. Assume —A generates a bounded holomorphic semigroup in
H and furthermore that A has bounded holomorphic functional calculus, then
M, initially defined on L2(0,00;dt,D(A)), estends to a bounded operator on
L?(0, 00; t7dt, H) for all B € (—o0, 1).

Here and in what follows the subscript . means with compact support.

The proof given there uses the operational calculus defined in the thesis of
Albrecht [1]. It used as an assumption that A has bounded holomorphic functional
calculus as defined by McIntosh [9]. Under this assumption estimates of integral op-
erators more general than the maximal regularity operator, with operator-kernels
defined through functional calculus of A, were proved and gave other useful infor-
mation to understand also the case 8 = 1 needed for the boundary value problems.
However, not all generators of bounded analytic semigroups have a bounded holo-
morphic functional calculus (see [10], and Kunstmann and Weis [6, Section 11]
for a list of equivalent conditions.) So if we only consider the maximal regularity
operator, it is natural to ask whether one can drop the assumption on bounded
holomorphic functional calculus in Theorem 1.2. It is indeed the case and as we
shall see the proof is extremely simple assuming we know Theorem 1.1.

Theorem 1.3. Let —A be the generator of a bounded analytic semigroup on H.
Then M., initially defined on L2(0,00;dt,D(A)), extends to a bounded operator
on L*(0, 00; t3dt, H) for all B € (—o0,1).

The subscript . means with compact support in (0,00). Set |||f(#)]|]> =
I @)1 dtt (we leave in the t-variable in the notation for convenience). As we
often use it, we recall the following simplified version of Schur’s lemma: if U(¢, ),
s,t > 0, are bounded linear operators on H with bounds |U(t, s)|| < h(t/s) and
C = [, h(u) dqf < 00, then

Proof of Theorem 1.3. Let 3 < 1. For 8 = 0, this is Theorem 1.1. Assume 3 # 0
and set o = 3/2. Observe that

My f Ol 2@sarry = IE* My fF(@)]L2(at,m)-

/OOUu,s)f(s)djm <Cllife)l.

0
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We have, with f,(s) = s*f(s),

ML) = M (L)) + [ Ae A = s () ds.

0
For the first term apply Theorem 1.1. For the second, write

t 00
’ / Ae=U=D4(% o) £(s) ds _ H / Ut 5)g(s) ‘
0 L2(dt,H) 0
with g(s) = /2T f(s) and U(t, s) = Ae= =94t — 52)s/2=241/2 for 5 < t and
0 otherwise. Since |[|g(¢)|[| = ||fl|z2@s4s,7), it remains to estimate the norm of
U(t,s) on H. We have

ds
s

|t — s 1/2—ayl)/2
U s)|<C " |5 t2 s <t
—s

It is easy to see that it is on the order of (s/t)1/27max(@.0) a5 5 < t. We conclude
by applying Schur’s lemma. O
Let -
M_f(t) = / Ae= DA f(5) ds.
t
This operator is associated to the backward abstract evolution equation
0(t) — Av(t) = f(t),t > 0; wv(oco) =0
as for appropriate f, Av(t) = —M_f(t).
Corollary 1.4. Assume that —A generates a bounded analytic semigroup on H.

Then M_, initially defined on L?(0,00;dt,D(A)), extends to a bounded operator
on L*(0, 00; t3dt, H) for all B € (—1,00).

Proof. Observe that the adjoint of M_ in L?(0,00;t%dt,H) for the duality defined
by L?(0,00;dt,H) is M in L?(0, co;t~Pdt, H) associated to A* and apply Theorem
1.3. O

We next show that the range of g is optimal in both results.

Theorem 1.5. For any non zero —A generating a bounded analytic semigroup on
H and B > 1, M is not bounded on L?(0,00;t%dt, H) and M_ is not bounded
on L%(0, 005t Bdt, H).

Proof. Tt suffices to consider M_. Since A # 0, R(A), the closure of the range of
A, contains non zero elements. As R(A)ND(A) is dense in it, pick u € R(A)ND(A),
u # 0, and set f(t) = u for 1 < ¢ < 2 and 0 elsewhere. Then f € L2?(0, co0; dt, D(A))
and f € L?(0,00;t™Pdt, H) with || f(£)|| £2(0,00:-#ar,) = callull < co. For t < 1,
one has

M_f(t> — (ef(lft)A _ 67(27t)A>u7

which converges to (e=4 — e 24)u in ‘H when t — 0.
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We claim that (e=4 — e™24)u # 0 so

1
HMff(t)||%2(0,oo;tfﬁdt,7-() Z/O ||(6_(1_t)A76 (2— t)A) ”
2A A

To prove the claim, we argue as follows. Assume it is 0, then e *“u = e~ “u
so that an iteration yields e "4y = e~ 4u for all integers n > 2. If n — oo,
e Ay tends to 0 in H because u € R(A). Thus e 4u = 0 and it follows that
ety = e~ (= DAe=A4y = 0 for all t > 1. The analytic function z — e *4u is
thus identically 0 for |argz| < §. On letting z — 0, we get v = 0 which is a

contradiction. O

2ﬁ

We have seen that M_ cannot map L?(0,00;t~1dt,’H) into itself and that
it seems due to the behavior of M_f(t) at ¢t = 0 for some f. We shall make this
precise and general: under a further assumption on A which we introduce next,
we define M_ : L%(0,00;t~'dt,H) — L% _(0,00;dt,H) and show that controlled

loc

behavior at 0 of M_ f guarantees M_ f € L?(0,00;t™'dt, H).
We begin by writing whenever f € L2(0,00; dt,D(A)) and denoting
f-1/2(8) = sT12f(s),

M_f(t) —e A /00 Ae 54 f(s)ds
0

ds
s

+ /Oo A(e—(s—t)A _ e—(s+t)A)(sl/2 _ t1/2)31/2f(8) ds
2t

s
_ /Oo Ae—(s+t)At1/281/2f(5) ds
2t

s

2t

d

—/ AeHD A5 £ (5) °
O 8

2t
M)+ [ A0 B2 )
t

The right-hand side is seen to belong to L?(0,00;t 1dt,H) with an estimate
C||f(s)|]] using Theorem 1.1 for the first term and Schur’s lemma for the other
four terms. Hence, by density, the right-hand side defines a bounded linear opera-
tor M_ on L?(0,00;t~dt, H). Also, the integral [~ Ae™*4 f(s) ds is defined as a
Bochner integral in ‘H whenever f € L2(0, 00;dt, H). Thus, by density of D(A) in
H, one can set for f € L2(0,00;dt, H),

M_f(t) = M_f(t)+e 4 /00 Ae A f(s)ds in L} (0, 00;dt, H). (1.1)
0

Let E be the space of f € L2(0,00;t dt,H) such that the integrals

fSR Ae™54f(s)ds converge weakly in H as 6 — 0 and R — oco. Then the above
equality extends to f € E. Assuming, in addition, that A* satisfies the quadratic
estimate

\Wmawmmgmwm for all h € M, (1.2)
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we have E = L?(0, 00;t~1dt, H). Indeed, for all f € L?(0,00;t" dt,H) and h € H,

T < ||saen|| < WF@I IRl (.3)

/O(><> |(sAe_SAf(s), h)’

and the weak convergence of the truncated integrals follows easily. Thus, the right-
hand side of (1.1) makes sense for all f € L?(0,00;t~dt,’H) under (1.2) and this
defines M_ f. Moreover, it follows from (1.3) that

1 2T
sup / IM_fF @15 dt < ClI £ (1.4)
>0T Jr
Then remark that
1 2T [e%¢]
lin}) M_f(t)dt = / Ae *Af(s)ds inH, (1.5)
=0T Jr 0

as the corresponding limit for M_f is 0 and e~*4 — I strongly when ¢ — 0.
All this yields the following result.

Proposition 1.6. Let — A be the generator of a bounded analytic semigroup in H and
assume that the quadratic estimate (1.2) holds for A*. Then (1.1) defines M_f €
L2 (0, 00;dt, H) with estimates (1.4) and limit (1.5) for all f € L*(0, 003t~ dt, H).
In particular,

M_f e L*0,00;t™ dt, H)
if and only if

2T

im L[ M_f(t)dt=o.

07T J,

The last condition defines a closed subspace of L*(0,00;t~1dt,H) and there is a
constant C' such that for all f in this subspace

M f) 20,0051t 1) < ClF () £2(0,005¢-1dt,7)-

Note that (1.2) holds if A has bounded holomorphic functional calculus by
McIntosh’s theorem [9].

Remark 1.7. For M, the analysis is not that satisfactory (for 8 = 1). One can
show similarly that

HM+f(t) — Aet4 /00 e A f(s)ds
0

< Cllf O 22(0,00:tdt,7)
L2(0,00;tdt, H)

provided f € L%(0,00;dt,D(A)). If the quadratic estimate (1.2) holds for A, this
allows to extend M to the space {f € L2 (0, co; dt, H); fooo e~*4 f(s) ds converges

loc
weakly in H}. However, there is no simple description of this space.
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2. Applications to the abstract Cauchy problem

In this section, we assume throughout that —A generates a bounded analytic
semigroup in H.
Let f € L2 (0,00;dt, H). We say that u is a weak solution to @(t) + Au(t) =

f(t),t>0,if ue LE (0,00;dt, H),

1 2T
sup / llu(s)|l, ds < o0 (2.1)

0<T<1 T

and for all ¢ € C1(0, 00;'H) N C2(0, 00; D(A*)),

/ " (uls), —(s) + A%g(s)) ds = / " (F(s), 0(s)) ds. (2.2)

The notion of weak solution here differs from the one in Amann’s book [2,
Chapter 5] called weak Ly, o solution (p € [1, 00]) specialized to p = 2. We assume
a uniform control through (2.1) near ¢ = 0 and assume ¢ compactly supported
in (0,00) in (2.2) instead of specifying the initial value at ¢ = 0 and taking ¢
compactly supported in [0, 00) as in [2].

Lemma 2.1. Let 3 € (—o00,1) and f € L?(0,00;t%dt, H). Then

o(t) = /0 e =945 (s)ds (2.3)

satisfies
(1) v € C°([0,00); H) and for all t >0, |lv(t)|3, < Ct'=F fg s f(s)3, ds,
(2) v is a weak solution to u(t) + Au(t) = f(t),t > 0,
(3) Av(t) = M4 f(t) in L2 (0,00;dt, H), and

19 20,0058t 1) + [AVE) | £2(0,00;t8a,1) < CIF ()] 220005848, 7)-
Here, by My we mean the bounded extension to L?(0,co;t?dt, H).

Proof. The inequality in (1) follows from the uniform boundedness of the semi-
group and Cauchy-Schwarz inequality, and this shows that the integral defining
v(t) norm converges in H, thus inferring continuity on [0, c0), and also (2.1). To
check (2.2), it suffices to change order of integration and calculate. The equality
M f = Av is proved by duality against a ¢ as in (2.2) since such ¢ form a dense
subspace in L2(0,00;dt, H). Finally, the inequalities in (3) are consequences of
Theorem 1.3. O

We now state that all weak solutions have an explicit representation and a
trace at t = 0.
Proposition 2.2. Let 3 € (—oo,1) and f € L*(0,00;t?dt, H). Let u be a weak
solution to u(t) + Au(t) = f(t),t > 0. Then, there exists h € H such that
u(t) = e “h+o(t) in LE(0,00;dt, H), (2.4)

with v defined by (2.3). In particular, t — u(t) can be redefined on a null set to be
C°([0,00); H) with trace h at t = 0.
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This immediately implies the following existence and uniqueness results.

Corollary 2.3. Let ug € H. The initial value problem u(t) + Au(t) = 0,t > 0,
lim, .o i fTQT u(t) dt = ug in 'H, has a unique weak solution given by u(t) = e~ *Aug
for almost every t > 0. In particular, up to redefining t — wu(t) on a null set,

u € C*(0,00; D(A)) and is a strong solution.

Corollary 2.4. Let 3 € (—o0,1) and f € L*(0, 00;t?dt, H). The initial value prob-
lem u(t) + Au(t) = f(t),t > 0, with lim, o ! IQT )dt =0 in H, has a unique
weak solution given by v defined by (2.3), up "t redeﬁnmg t — u(t) on a null set.

Proof of Proposition 2.2. Define n(s) to be the piecewise linear continuous func-
tion with support [1, 00), which equals 1 on (2, 00) and is linear on (1, 2). Let ¢ > 0.
For 0 < e <t/4 and s > 0, let

Ne(t, s) :=n(s/e)n((t —s)/e).
Let ¢o € H be any boundary element, and choose ¢(s) := n(t,s)e” =547 ¢, €
Lip.(0,00; D(A*)) as test function (by approximating (¢, s) by a smooth function,
this can be done). A calculation yields (in this proof, (, ) denotes inner product

in H)
_ 1 /2E <e_(t_s)Au(s),¢o) ds + i /26( At — s), ¢o) ds

€

— [ (mto)e s (5),0n) as
0
and since this is true for arbitrary ¢g € H and 7. has compact support, we deduce
that

1 %€ 1 2e o
- / e u(s) ds + / At —s)ds = / ne(t,s)e” A f(s) ds
€ € 0

€

Now, we let € — 0 as follows. First, 7.(t, s) tends to the indicator function of (0,t)
so that the right-hand side is easily seen to converge to v(t) in H for any fixed t > 0
by dominated convergence. Fix now 0 < a < b < co and integrate in t € (a,b) the

left-hand side. Remark that ! fab ffe e~*Au(t) dsdt converges to fab u(t)dt in H.
Subtracting this quantity from the second term in the right-hand side and using
u € L% (0, 00; H), Lebesgue’s theorem yields
1 2¢ b r2e

/ e~ A(u(t — ) — ult)) ds|| dt < / lult — s) — u()|2, dsdt — 0.
For the first term, using |[e~(*=*)4 —e~*4|| < C's/t from analyticity and (2.1), one
sees that )
/ (e=t=9)4 _ ety (s) ds

€

A s
a HE

1

. — 0 (2.5)

H

for each t > 0. Thus

1 2e
he(t) :=e " he, with h,:= / u(s) ds,
€ €
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has a limit, say h(t), in L?(a,b;H). The semigroup property yields
he(t) =e DA (1) forall t > 7.
Thus,

[he(t) = her (B)][7 < /II ~EA (e (T) = he (7)) [l

< C(/a [[e(T) — hef(T)II%dT)l/27

when t > b. Hence, since (a,b) is arbitrary, h.(t) converges in H to h(t) for each
t > 0. Thus, for any ¢9 € H and t > 0, we have

(hes ™" 60) = (he(t), é0) — (h(t), bo)-
Since (he)e<1 is a bounded sequence in H by (2.1) and the elements e *4" ¢,
t >0, ¢g € H, form a dense set of H, we infer that h. has a weak limit in H.
Calling h this weak limit we have (h,e "4 ¢g) = (h(t), $o), hence h(t) = e *h as
desired. Summarizing, we have obtained —e *4h + u(t) = v(t) in L?(a,b;H) for
all 0 < a <b < oo.

Thus, u agrees almost everywhere with the continuous function ¢t — v(t) +
e~*Ah which has limit h at t = 0. O

Remark 2.5. The only time analyticity is used in this proof is in (2.5). If we had
incorporated the existence of an initial value as in [2] in our definition of a weak
solution then analogous proposition and corollaries would hold for all generators
of bounded C%-semigroups.

3. A proof of maximal regularity via Kato’s inequality for
fractional powers

There are many proofs of the de Simon’s theorem, via Fourier transform or opera-
tional calculus, and various extensions to Banach spaces. We refer to [6, Section 1].

Here, we wish to provide a proof using “almost orthogonality arguments”
(Cotlar’s lemma), and Kato’s inequality for fractional powers [5, Theorem 1.1]
which we recall for the reader’s convenience.

Theorem 3.1. Let A be closed and mazimal accretive. For any 0 < «a < 1/2, the
operators A® and A** have same domains and satisfy

2 e, (3.1)

If, moreover, A is injective then A*A*~¢ extends to a bounded operator on 'H for
-1/2<a<1/2.

A f]] < tan

Maximal accretive means that Re(Au,u) > 0 for every u € D(A) and
(A — A)~1 is bounded whenever ReA < 0. Note that (3.1) holds true with different
constants for operators which are similar to a closed and maximal accretive oper-
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ator. Assume A is sectorial of type w(A4) < m/2 and injective. Le Merdy showed in
[7] that A is similar to a maximal accretive operator if and only if A has bounded
imaginary powers (i.e., A" is bounded for all t € R). (See also [8] for a more gen-
eral result and [11] for explicit examples.) But, following earlier works of Yagi [13],
McIntosh showed in his seminal paper [9] that A has bounded imaginary powers
if and only if A has a bounded holomorphic functional calculus. (See [6, Section
11] for extensive discussions with historical notes.) So proving maximal regularity
(i.e., Theorem 1.1) assuming maximal accretivity is the same as proving maximal
regularity assuming bounded holomorphic functional calculus. Nevertheless, this
direct argument below could be of interest.

Proof of Theorem 1.1 under further assumption of mazximal accretivity. Let g €
L?(0, 00;dt,D(A)). We prove that Mg € L?(0,00;dt,H) with norm controlled
by that of g in L?(0, co; dt, H) Since Ae~(*=)4 annihilates N(A), the null space of
A, we may assume ¢(s) € R(A) for all s > 0. Alternately, we may factor out the
null space of A and assume that A is injective, which we do (A is sectorial, so H
splits topologically as N(A) @ R(A)).

Then one can write g(s) = [, ude "““¢(s)* and so we have the represen-
tation of My as

Megt) = [ (Tg0, vith (Tug)0) = My ude29)(0)

0
By Cotlar’s lemma (see [12, Chapter VII]) it is enough to show in operator norm
on L*(0,00;H) that |T,T;| + |T5Ts| < h(u/v) with C = [ h(z)% < oo to
conclude that M. is bounded on L?(0, 00; H) with norm less than or equal to C.
We show that for all « € (0,1/2) one can take h(z) = Cy min (z, z~%).

We begin with T, T for fixed (u, v). Since ||T,, T, || = | TuT.||, we may assume
u < v. A computation yields

oo

(LI = | Kt 7)g(r) dr

where
min(t,7) )
K(u,v)(t77'> = / uAQe—(t—s+u)AUA*Qe—(T—s+1;)A ds.
0

We turn to estimate the operator norm on H of K, . (t, 7) for fixed (¢, 7). (Recall
we fixed (u,v) with u < v.) Since A is maximal accretive and injective, we have
[|A“A*~ || < C(a) for a € (0,1/2). So we write

uA2e—(t—s+u)A,UA*2€—(‘r—s+v)A*

= uAQ*O‘e*(tferu)A(AO‘A*fa)vA*(QJra)e*(T*H”)A*
and by analyticity the operator norm on H is bounded by constant times a(s)b(s)
with

u v

als) = (t—s+u)2—o’ bls) = (1 — s +wv)2ta’
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Plug this estimate into the integral. If ¢ < 7, bound b(s) by b(t) and get

,Ul-‘,-a
K < « — « .
|| (u,v) (ta T)H <Cu b(t) C(“’/”) (7_ 4 ’U)2+a
If 7 < t, bound a(s) by a(r) and get
ul—a
K < - — @ .
H (u,v) (t’ T)” = Ca(T)U C(u/v) (t — 7+ u)Q*‘"

It follows that
sup / UKty (6P| + 1K oy (72 D) d < Claf0)°

By Schur’s lemma we obtain || 7,7 < C(u/v)® when u < v.
We now turn to estimate 7;T;,. By symmetry under taking adjoints again, it
is enough to assume u < v. We obtain

@m0 - [ " R (t.7)g(r)

where -
f((u,’u) (t,7) = / uA*?em (W AT) g2 (5mTH0)A g
max(t,7)
This time we use the bound ||[A**A~%|| < C(«) for a € (0,1/2) to obtain, if 7 < ¢,
~ Ul—i—a
K t <C @
|| (u,v)( aT)” = (U/U) (7_ —t+ U)2+O‘
and if t < 7,
_ ulfoz
K t < @ .
|| (u,v)( 37_)” = C(’LL/’U) (t — T+ u)g_a
So,
e ~ ~
549 [ (1 oy () + 1y ()l < Clf)”
and by Schur’s lemma, |7, 7, < C(u/v)* when u < v. O

As Kato’s inequality holds for all a € (—1/2,1/2), the argument above can
be used to prove that M is bounded on L2(0,00;t?dt, H) but for f € (—1,1).
We leave details to the reader.

We thank Alan McIntosh for discussions on the topic of this short note.
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Abstract. We study the first and second boundary value problems for par-
abolic equations in a half-space R}, n > 2, with incompatible initial and
boundary data on the boundary x, = 0 of a domain. The existence, unique-
ness and estimates of the solutions in the Holder and weighted spaces are
proved. We show that nonfulfillment of the compatibility conditions leads to
appearance of the solutions, which are singular in the vicinity of a boundary
of a domain as t — 0.

Mathematics Subject Classification (2000). Primary 35K20; Secondary 35A20,
35A05.

Keywords. Parabolic equation, boundary value problem, incompatible initial
and boundary data, existence, uniqueness, estimate, classical solution.

1. Introduction. Statement of the problems. Main definitions

To study boundary value problems for parabolic equations in the Hdlder space
Czﬂ’ltH/ 2 (Q7) we require fulfillment of the compatibility conditions of the bound-
ary and initial data on the boundary of a domain at ¢ = 0. These conditions provide
continuity of the solution and its derivatives and boundedness of the Holder con-
stants of the higher derivatives in (7. The compatibility conditions represent the
functional identities connecting the given functions on the boundary of the domain
at the initial moment.

Assume that the problem we study is a mathematical model of a certain
physical process (in particular, heat, diffusive) beginning at ¢ = T™*. Let this process
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go continuously. If we choose an initial moment T > T in the problem, then the
compatibility conditions will be fulfilled.

If we study the problem since ¢ = T or since the moment of a jump of
all characteristics of the process (given functions, coefficients, parameters in the
problem), then, in general, the compatibility conditions are not fulfilled, but the
physical process continues, and the problem can also have a solution.

To study the first and second boundary value problems for the parabolic
equations in the classes C2 [ (Qr) N C(Qr) and C2 [(Qr) N CL Y (Qr) respectively,
we assume that the compatibility conditions of zero order are fulfilled in these
problems, because we look for, in the closure of a domain Q7, a continuous solution
of the first boundary value problem and a continuous solution together with all
its derivatives of first order with respect to the spatial variables of the second
boundary value problem.

Solutions of boundary value problems in a weighted Holder space C%(Qr),
s < [, introduced by V.S. Belonosov, permits us to get rid of one compatibility
condition [1, 2, 8]. Considering the first boundary value problem in this class we
must require fulfillment of the compatibility condition of zero order, but the first-
order compatibility condition can not take place. Y. Martel and Ph. Souplet in
[7] proved that the solution of the first boundary value problem for the parabolic
equation with incompatible data is not continuous in the closure of a domain.
One-dimensional boundary value problems with incompatible data were studied
in [3, 4].

We study the first and second boundary value problems for heat equations
in the half-space R}, n > 2, with incompatible initial and boundary data on
the boundary x, = 0 of a domain at ¢ = 0. The existence, uniqueness and esti-
mates of the solutions are proved in Holder and weighted spaces. Nonfulfillment of
the compatibility conditions of initial and boundary data in the first and second

boundary value problems leads to appearance of the functions z;(z',t) erfc2f/’; o

Wj(x,t), j = 0,1, (see Theorems 2.1, 2.2) and —2+v/at 2(z’, t)ierfs 2T/T;t (see The-
orems 2.3, 2.4) in the solutions of these problems respectively, which are singular
in the vicinity of a boundary of a domain as ¢ — 0. These functions permit us to
reduce the original problems to problems with a fulfilled compatibility conditions

of all necessary orders.

In Chapter 1 the Holder and weighted spaces are determined, the definition of
the special functions — repeated integrals of the probability and the compatibility
conditions for the considered problems are given. The main results of the paper
are formulated in Chapter 2. In Chapter 3 there are constructed and studied the
singular solutions of the auxiliary problems. In Chapters 4 and 5 with the help
of these singular solutions the original first and second boundary value problems
are reduced to problems that have unique solutions in the weighted and classical
Holder spaces. In the Appendix the auxiliary first boundary value problem is
studied.
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Let
D =R} ={z=(,2,) |2 eR" 1 2, >0)}, n>2,
R:={z|2 eR" z, =0}, 2= (x1,...,20-1),
Dr=Dx(0,T), Rr=Rx[0,T).

We consider two problems. We are required to find the solution u(z, t) of the
first boundary value problem — Problem 1

Ou—alAu= f(zx,t)in Dp, (1.1)
ul=o = uo(z) in D, (1.2)
ulz,=0 = p(2’,t) on Rr, (1.3)

and the solution u(z, t) of the second boundary value problem — Problem 2, which
satisfies an equation (1.1), initial condition (1.2) and the boundary condition

O, |z, =0 = (2, ) on Rry. (1.4)
Here a = const > 0, 9, = 8/0t, 0y, =0/0xn, A=07 , + 40z . .Byci,co,...
we shall denote positive constants.
Determine the weighted and classical Holder spaces.

Let [ be a positive non-integer. By CL(Dr), s < I, we shall denote a weighted
Holder space defined by V.S. Belonosov with the norm [1, 2, 8],

()
s 2kt |m|—s U s>0
\u|g{)DT:supt 2 [u]%); + Z supt 2 |afa;”u|D; + {0|DT’ ;0’
t<T ' s<2k+|m|<l t<T ’ 5 ’
(1.5)
where Di = D x [t/2,1], [v|pr = Sup(, e p, |v(2:1) |,

I—2k—|m]|
l m -l m
B = > prordlpY+ > (okor U]EDT 2 ), (1.6)
2k+|m|=[l] 0<l—2k—|m|<2
R, = sup u(@t) —v(zt)| |z — 277, (1.7)
(z,t),(2,t)EDT
)%, = sup  [o(a,t) — vz, )| [t — 0], ae€(0,1), (1.8)

(@,t),(w,t1)€Dr

S

|u\(5)T is the norm of the classical Holder space C’ st/Q (D7) [6],

(s) _ ok om 0, san integer, Lo
|ulpy Z |0F 07 u|py + { [u](g) . s not an integer, (1.9)
2k+|m|<[s] T

where [u]g)T is determined by (1.6)—(1.8).
For s = [, C}(Dr) is the space Cl’l/tZ(DT).

x
From the norm (1.5) we can see that for s < [ the function u(z,t) has

a singularity with respect to ¢t as ¢ — 0 in the whole domain D including its
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boundary. For instance, if an initial function ug(x) in the Cauchy problem for the
parabolic equation is from the Hélder space C*(D), s < [, then the solution of this
problem belongs to CL(Dr).
We introduce a weighted space Cs s5o(Dr), 00 >0, 2<s<2+a, of the
functions wu(z,t) with the norm
n—1
\u|g2§o Dy = sup t- 1’ueé" ¢ ’D, + Zsupt 2 ‘8 wed’ v
p=1"<

Dy

n n—1

+il¥t 120, wed +;;f§$t |07, ’D;

<3 e,
| ZL’nl’n 60 k |DT + |8t’u'660 t ’DT7 (1.10)

and, in particular, for s = 2 + a,

n—1

s 1= s ¢ e S s 15 o e |,
p=1"=
22 n n—1
+sup t /2|9, ue™ i +ZZsup t=2102 , o
t<T t<T t
= i=1 p=1
5o 5o "
’ e, e’ ‘DT + latue 0 ‘DT. (1.11)

We write |u\f)507DT := M. From (1.10), (1.11) we shall have

, for s =2,

@y,
u’SMe_‘S“ toi=1,...,n, p=1,....n—1

|zz

(1.12)

op
t)‘SMef‘sO t for 2<s<2+a.

|Opu(x, 1)),

e U

Let the point z be in the interior of the domain: z,, > ro = const > 0,
then from (1.12) we obtain that the derivatives 92, 2, for s =2, and OQu(x,t),
ﬁgnznu(%t) for 2 <s <2+ a tend to zero exponentially ast — 0 and on the
boundary z,, = 0 of D they are bounded and can not be equal to zero at ¢t = 0,
i.e., they can be discontinuous in Dr.

The negative powers of the ¢ weights in the norms (1.10), (1.11) mean that
the function and its derivatives with respect to x with such weights tend to zero
as t — 0 on the boundary z,, = (g of a domain and exponentially in the interior of

a domain due to the weight e% ¢" .

We point out also that x, in exponential power is the distance between a
point = (x1,...,2,) and a boundary of a domain x,, = 0.

An example of a function from C? 5 (Dr) is a solution of problem (A.1) in
the Appendix (see Theorems A.1 and A. 2).
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We do not include the Holder constants of the derivatives into the norms
(1.10), (1.11). But from these norms we see the behavior of the function and its
derivatives in the domain and on its boundary.

We define the compatibility conditions of the boundary and initial functions
for Problems 1 and 2.
Let

Aola') = (m 0) — o), _,
Al( ) ( ,t ‘t:() — (CLAU()(JZ) +f($,0))‘zn:0,
By(a') := lﬁ(fﬁ ,0) = Oz, u0(@)], -

The compatibility conditions of zero and first orders on the boundary x,, = 0
for Problem 1 (1.1), (1.2), (1.3) are Ag(z’) =0, A1(2’) = 0 on R and of zero order
for Problem 2 (1.1), (1.2), (1.4) — Bo(2’) = 0 on R. Evidently, nonfulfillment of
the compatibility conditions of zero and first orders means Ag(z’) # 0, A1 (z') # 0,
By(z') #0 on R.

Later on we shall apply special functions — iterated integrals of the probability
i"erfc ¢; they are determined by the formulas [5], Ch. 7.2,

i”erfc(::/ i"lerfcédé, n=0,1,2,...,
¢

2 2 2 [
i~terfc( := e ¢, iVerfe ¢ = erfc( = / e dé¢, iterfe ¢ = ierfe(.
s VT e

The following relations for them hold:

d

dc i"erfc ¢ = —i"terfc(, n=0,1,2,..., (1.13)
i"erfc0 = 1 n=-1,0,1

1 72”1“(71/2—1—1)’ - D Bl IR |

where I'(+) — Euler gamma — function,

1

i"erfc ( = i"Zerfc¢ — ¢ i"lerfc¢, n=1,2,.... (1.14)
2n n

i"erfc ¢ <i"erfc0, (>0, n=-10,1,....

2. Main results
We formulate the main results for Problems 1, 2.

Theorem 2.1. Let o € (0,1), s € (o, 2+ . For all functions ug(x) € C*(D),
flx,t)eC2 o(Dr), o(2',t) €C2T(Ry) that do not satisfy, on the boundary x,, = 0
of the domain D, compatibility conditions of zero order for s € (a,2) (Ag(a') :=
p(x',0) — uo(x)’ o # 0 on R) and of zero and first orders for s € [2,2 + a]

(Ao(a’) # 0, Afw ) = dpa’,t)],_y — (aDug(z) + f(2,0))|, _; # 0 on R),
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Problem 1 (1.1), (1.2), (1.3) has a unique solution u(x,t) = Vo(x,t) + vi(x,t)
for s € (a,2) and u(z,t) = Vo(z,t) + Wo(z,t) + Vi(z,t) + Wiz, t) + ve(z,t) for
s € [2,24q], whereV(:c t) = zi(a',t) erch\/ o %5 € Cz**(Rr), Wj € CZ5,(Dr),

i=0,1, § = 8@, € C?*(Dr), i = 1,2, and the following estimates for them
hold:
(24« s—2 s—27 .
zlhy < eldyly ™™ Wil 35, b, <ealdsly ™™ j=01,  (21)
(24« (24« .
|U74‘s DT) <03<\U0\D ers 2DT+|90‘5 RT))a 1=1,2. (2.2)

From this theorem for s = 2 4+ o we obtain the following one.

Theorem 2.2. For all functions ug(z) € C*T*(D), f(xz,t) € C?’O‘G(DT), o' t) €
Cffra 1+a/2(RT) € (0,1) that do not satisfy, on the boundary x, = 0 of the
domain D, compatibility conditions of zero and first orders (Ag(z') #0, Ai(z') #
0 on R), Pmblem 1 (1.1), (1.2), (1.3) has a unique solution u(x,t) = Vo(x,t) +

Wo(z,t) + Vi(z,t) + Wiz, t) + va(z, t) where Vi(z,t) = z;(a, t)erfc2\/ . % €
CZF M 2(Ry), Wi € C3pos,(Dr), 5=0,1, §o= L, vae i ™?(Dy),

x!

and the following estimates for them hold:

8a’

24« 2+a 2 2 2+a 2 .
57 < eal 15T W) s b S sl A BT =0

2+ 2+« 24«
[oal 5 < o (JuolS ) + 171550 + Lol ).

1

b )

Theorem 2.3. Let o € (0,1), s € (o, 2+ . For all functions ug(z) € C*(D),
f(x,t)eC® (D), Y(2',t) ECIT¥(Rr), s € (a,1), and if s € [1, 2+ al, then for
all functions ug, f, ¥ that do not satisfy, on the boundary x,, = 0 of the domain D,
the compatibility condition of zero order (Bo(x') := 1(a’,0) — awnuo(x)‘zn:o # 0
on R), Problem 2 (1.1), (1.2), (1.4) has a unique solution u(x,t) = vi(x,t) for
s € (a,1) and u(x,t) = —2v/at za(2', t)ierfs ey T va(x,t) for s € [1,2+ a,2],
where 2o € C2T(Ry), v; € C2Y%(Dy), i = 1,2, and the following estimates for
them hold:

22| P08, < erlBol Y,

(2.3)
24« s « 1+a .

il 2 < es (luol§) + 1£17 by + 161855, ), i =1,2.

From this theorem for s = 2 4+ a we obtain the following one.

Theorem 2.4. For all functions ug(x) € C*T¥(D), f(z,t) € C;)f’a/f(DT), P’ t) e

14+«
Ci,,—m > (Rr) that do not satisfy, on the boundary x, = 0 of the domain D, the
compatibility condition of zero order (Bo(z') # 0 on R), Problem 2 (1.1), (1.2),
(1.4) has a unique solution u(x,t) = —2v/at zo(a’, t)zerfs , tva(z,t), where
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2 € CHIS(Ry), v2 € crre 1+("/2(DT) and the following estimates for them hold:

(2+ (1+
22|20 < ol Bol R,

2+« 24« (14«
|v2 LDT) <010(|U0|53 )+|f\D) Hiﬁ\ )>-

For Theorems 2.1-2.4, the functions z;(2',t), z2(z’,t) and W;(x,t), j = 0,1,
are defined in Theorems 3.3, 3.4 and 3.5, 3.6, A.1, A.2 respectively.

Remark 2.5. If in Problem 1 the compatibility condition of zero (first) order is
fulfilled, i.e., Ag(z') =0 (Ai(2’) = 0) on R, then in Theorems 2.1, 2.2 Vy(z,t) = 0,
Wo(l‘,t) =0 (‘/1 (.’Eﬂf) = 0, W1(.’17,t) = 0) in DT. If Ao(l‘/) = 07 Al(x’) =0on R7
then Vj(z,t) =0, Wj(z,t) =0 in Dp, j =0, 1.

If in Problem 2 the compatibility condition of zero order is fulfilled, i.e.,
By(z') =0 on R, then in Theorems 2.3, 2.4 zo(2',¢) =0 on Ry.

3. Auxiliary problems

We recall that D := R}, n > 2, R := {z = (2/, z,) |2 € R*, @, = 0},
Dr=Dx(0,T), Rr=Rx[0,T), A":=8; +---+09;

Tp—1°
First, we construct a function z(z',t) satisfylng the conditions
z’t:() = pio(z"), 8t2’t:0 = p1(z') in R. (3.1)

Lemma 3.1. [6] Let po(z') € C5(R), pi(2') € C572(R), s € [2,2+a), a € (0,1).
Then there exists a unique function z(z',t) € C2t*(Rr), for which the following

estimate holds:

2 o« s 2
1288 < e (Juol ) + a2, (3.2)

Lemma 3.2. [6] Let po(z') € C*T*(R), p1(2') € C*(R), a € (0,1). Then there ex-
ists a unique function z(x',t) € C’iﬁ_a’;—ka/Q(RT), for which the following estimate
holds:
24« 24« a
2155 < ool G + ] §)-

This lemma follows from Lemma 3.1 for s = 2 + «.

Proof of Lemma 3.1. Consider the Cauchy problem
dz—alz=:Y('t) in Ry, (3.3)

2lico = po(a’) in R,

where z(1)(2/,t) is a solution of the Cauchy problem
Oz —aA 20 =0 in Ry, (3.5)
2M—o = pi (@) — aA’ po(a’) € C*"2(R) in R. (3.6)

Problem (3.5), (3.6) has a unique solution [1, 2, 6, 8] z(V)(2/,t) € C2*$(Rr), such

that
24« s—2
2|52 < es(luol ) + |l ™).
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Due to embedding C2*$'(Ry) C O ,(Rr) we obtain

o s—2
2D, e < ealliol ) + 1], (3.7)

Then problem (3.3), (3.4) has a unique solution z € C2T®(Ry), for which a valid

estimate is

24+« « S
z E,RT) < 05(‘2(1)‘2—)2,RT + |MO|§?,))-

From here by (3.7) we shall have an estimate (3.2). Moreover, z(z',t) satisfies the
conditions (3.1). Really, the first condition in (3.1) is fulfilled due to (3.4) and from
(3.3) and (3.6) we obtain

Dizli=0 = alpo(2") + Z(l)\tzo = (z),
i.e., the second condition in (3.1) also holds. ]

We recall that the compatibility conditions of zero and first orders for Prob-
lem 1 and of zero order for Problem 2 are not fulfilled, i.e., Ag(z’) := p(2’,0) —
uo(x )‘z _o 70, Ai(2') = Opp(a', 1) ‘t 0~ (aAuo(x)—l—f(x,O))‘zn:O # 0 on R and
Bo(a) i= (a',0) — 0, uo(a)],_, # 0 on R.

To extract from the solutlons of Problems 1 and 2 the singular parts, which
appear due to a nonfulfillment of the compatibility conditions on R, we extend
the functions A;(x’), 7 = 0,1, Bo(2') into Ry and then into Dp. For that, first,
we construct the functions z;(z’,t), j = 0,1, and 22(2’,t) under the conditions

20li=0 = Ao(z') in R, s € (a, 2), (3.8)
20lt=0 = Ao(z'), Oiz0lt=o =01in R, s € [2, 2+ a, (3.9)
21lt=0 = 0, Oiz1]i=0 = A1(z') in R, s € [2, 2+ q] (3.10)
for Problem 1 (1.1)—(1.3) and
2o|t=0 = Bo(z') in R, s€[l,2+q] (3.11)

for Problem 2 (1.1), (1.2), (1.4).

Theorem 3.3. Let Ag(2’) € C*(R), s € (a, 2+a], Ai(z') € C572(R), s € [2, 2+q],
Bo(2') € C*7Y(R), s € [1,2+a], «a € (0,1). Then there exist unique functions
zi(x',t) € C2H(Ry), j=0,1, z9(z',t) € C2T(Ry), which satisfy the conditions
(3.8)—(3.11) respectively, and the estimates for them hold:

|ZO\SZ§f < 06|A0|§§), s€(a, 2+ al,

|Zl\521¥ < el A,

€1(2,2+4q],
21| < es|A1|$ tin Ry, s €2, 24al,
|20l 5 < ol Bolis ™, €l,2+a]

Theorem 3.4. Let Ag(z') € C*T*(R), Ai(2’) € C*(R), Bo(a') € C**(R),
€ (0,1). Then there exist unique functions zj(x’,t) € Cifa’lja/Q(RT), j=0,1,
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z(2',t) € CEES(Ry), which satisfy the conditions (3.8)~(3.11) respectively, and
the estimates for them hold:

\%Iﬁj“) < c10]Ao g*“),

2%t < e, |zl < enlAi]$ ¢ in Ry,

2+ (1+
|22l 0% < canl Bolip T

This theorem follows from Theorem 3.3 for s = 2 + a.

Proof of Theorem 3.3. 1. For s € (a, 2) we can take the function zo(z',t) as a
solution of the Cauchy problem in Ry := R"~! x [0,T] for the equation

8t zZo — a A/ zZ0 — 0 in RT (316)
with an initial data (3.8). This solution belongs to C2T*(Ryr), and an estimate
(3.12) for it holds [1, 2, 8].

2. Let s € [2,2+ «]. With the help of Lemma 3.1 we construct the functions
zo(2',t), z1(2’,t) as solutions of the problems for the equations

Orzj—al z; = z(l)(:c’,t) in Ry, j=0,1, (3.17)
with the initial conditions (3.9) for j = 0 and (3.10) for j = 1. Here the functions

o)

(2, 1) are the solutions of the following Cauchy problems:
J

92V —an 2V =0 in Ry, j=0,1, (3.18)

2P)imo = —al’Ag(2') in Ry 2| = A;(2') in R. (3.19)
The solutions z](l) of problems (3.18), (3.19) exist, belong to C2T$(Rr) C C¢_5(Rr)

and the estimates (3.7) for them are fulfilled with o = Ao, p1 = 0 for zél) nd

with pg =0, u1 = Az for z§ ), ie.,

2018, o < esl4y |57, j=0,1. (3.20)

By Lemma 3.1 the functions z;(z’,t), j = 0,1, belong to C2T*(Ry) and the
estimates (3.12), (3.13) for them are valid.

Due to (3.13) and the first condition (3.10) we shall have an estimate (3.14)
for z1, really,
< CS‘AI (S 2)

|21 (2, t)| = t, s€[2,2+al.

/82’195 T)dr

3. Let s € [1, 2+ a]. We determine a function z9(z’,t) as a solution of the Cauchy
problem

(’9t Z9 — CLA/ Z9 = 0 in RT7 Z2|t:0 = B()(JZ/) in R. (321)
By [1, 2, 8] this problem has a unique solution zy(z’,t) € C2T¥(Ry) and it satisfies
an estimate (3.15). O
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Thus, we have extended the functions A;(z’), j = 0,1, and By(z') into Ry by
the functions z;(z',t), 7 = 0,1, and z2(z’, ) respectively. Now we extend z;(z’, t),
Jj=0,1, and z(2',t) into Dy :=R%} x (0,T).

Consider two of the first boundary value problems with unknown functions
Zj(xat)v ] = Oa 17

8t Zj 7CLAZj =0 in ZDT7 (322)

Zj|t:0 =0 in D, Zj‘zn:() = Zj($/,t) on RT, (323)

where the function zq is the solution of the problems (3.16), (3.8) for s € (o, 2)

and (3.17), 7 = 0, (3.9) for s € [2, 2+ ], and z; is the solution of the problem
(3.17), j =1, (3.10).

In the problem for Zy(x,t) the compatibility condition of zero order is not
fulfilled and the first-order compatibility condition holds by (3.8), (3.9) and for
Z1(x,t) inversely, the compatibility condition of zero order is fulfilled and of the
first order is not, by (3.10).

We remind that erfs¢ = \/Qﬂ fcooe*{iif and the norms |u\f§07DT, |u\52_2a7507DT
are determined by (1.10), (1.11).

Theorem 3.5. Let Aog(z') € C*°(R), s € (a, 240, Ai(z') € C*72(R), s € [2, 2+q].
Then each of the problems (3.22), (3.23) has the unique solution

0, s € (a, 2),
Zo(x,t) = Vo(a,t) + 3.24
o 1) = Vo(a ) {W})(x,t), s€2,2+al, (3:24)
Z1(z,t) = Vi(z,t) + Wi(z,t), s €[2, 2+ al, (3.25)
Vi(z,t) = zj (2’ t) erfc n , 7=0,1,

2v/at

where the functions z;(2',t) are defined in Theorem 3.3: zj(2',t) € C2T*(Rr) and

2+a s—27 .
‘zj‘g,;T) §014‘Aj‘53 Dj=0,1,
Wj(z,t) € CZi%(Ry), 6o = 4, and
2 s—2j .
Wil3, 0 < eslAl5, G =0,1, (3.26)

Theorem 3.6. Let Ag(x’) € C?*T*(R), Ai(2') € C*(R), a € (0,1). Then each of
problems (3.22), (3.23) has the unique solution Z;(x,t) = V;(x,t) + Wj(z,t), j =

0,1, where V; = z;(a',t) erfc;/;t, the functions z;(z',t) are defined in Theorem

3.4: z;(2' t) € C5FM2(Ry) and

(2+Oé) S 016‘Aj‘g+a72j)7 .] = 07 17

|2; Dr
Wi(z,t) € C22+a750(RT), 0o = 81[1, and
2 24a—2j .
(WIS 50 0 < crrl 4157072 j=0,1.

This theorem follows from Theorem 3.5 for s = 2 + a.
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Proof of Theorem 3.5. The solutions of problems (3.22), (3.23) may be represented
in the explicit form

¢
Zj(x,t) = f2a/0 dT/]R » 2y, 7)0s, L(2 — ', 2y, T)dY, (3.27)

where I'(x, t) is a fundamental solution of the heat equation (3.22),

1,2

e 4at

1
I'(z,t) =
(xa ) (2\/(171_)“
We construct the solutions of problems (3.22), (3.23) in more suitable forms
than (3.27) to see the character of their singularity. For this, first, we write the
potential (3.27) as follows:

¢
Zi(z,t) = Vj(z,t) — Qa/ dT/ (zj(y’,r) - zj(x’,t))awnlj(m’ — vy @, T)dy,
0 Rn—1
(3.28)

¢
Vi(z,t) := f2azj(x’,t)/0 dT/R » Op, T2 — o, xp, 7)dy

= z;(2/,t) erfc =0,

2\/(1757

1. Let s € (o, 2). Consider the function Vy(z,t) = zo(a’,t) erfe,’r . It satis-
fies the homogenous heat equation. Really, zg was constructed in Theorem 3.3 as
a solution of a Cauchy problem for equation (3.16) with an initial condition (3.8):
20lt=0 = Ap(z’). By direct computation with the help of formula (1.13) we can see

that

x x
Operfc """ —ad? erfc 7 =0, 3.29
¢ 2v/at Tn 2v/at ( )
but then
T T
Vo — aAVy = erfc "7 (0420 — al'20) + zo(2, 1) (0 — ad2 , Jerfc =" =0.
Vo 0 2\/at( 20 0) 2o( )( t — A0y, n) 2/ at

Moreover, due to the relations erfc oo = 0, erfc0 = 1 the function Vp(z,t) satisfies
the conditions (3.23),

Tn |
2v/at 't

Thus, the function Vy(z,t) is a solution of problem (3.22), (3.23), j = 0. We
point out that the last potential in (3.28) satisfies equation (3.22) and initial and
boundary conditions (3.23) with zero in the right-hand sides.

2. Let s € [2,2 + a]. The functions V(x,t) = z;(z/,t) erfc;/”;t, j = 0,1, are

Voli=o = z0(2', t) erfe =0 in D, Vols,—0 = 20(2’,t) on Rr.

solutions of the nonhomogeneous equations

Ty,
hV;—alAV; = zj(l)(:c’,t)erch\/at
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by (3.17), (3.29). So we determine the functions Wj(z,t) as solutions of the first
boundary value problems
oW, —aAW; = —z](.l)(w’,t) erfc *"  in Dr,
2Vat (3.30)
Wjl,_, =0 inD, W;| _ =0onRp, j=0,1,

then the sum Z;(z,t) = V;(z,t) + W;(z,t) will satisfy the homogeneous equation
OZ;—alZ; =0,j=0,1,ie., (3.22).

We can see that in problem (3.30) the compatibility conditions of zero order
is fulfilled

(3.30) is the problem (A.1). In Theorem 3.3 it was proved that the function
z](-l), j = 0,1, belongs to C% 5(Rr), but then Theorem A.1 is valid for prob-
lem (3.30). In accordance to this theorem, problem (3.30) has a unique solution

W;(z,t) € C? 50 (D), 60 = o, and is subjected to an estimate

Will.0p < 1312 (2 gy < cxsl 45157, 5= 0,1,
due to (A.3) and (3.20).
By direct substitution of the function Z;(z,t) = z;(2',t) erfc2\/ .+ Wiz, 1),

j = 0,1, into initial and boundary conditions (3.23), we are convinced that it
satisfies these conditions. Thus Z;(z,t) are the unique solutions of problem (3.22),
(3.23). O

Now we study the second boundary value problem with unknown function
Z2 (xa t)7

8tZg - CLAZQ =0 in DT, (331)
Z2|t:0 = 0 in l)7 8an2|$n:0 = 22($/7t> on RT7 (332)
where a function z;(z’,t) was constructed in Theorems 3.3, 3.4 as a solution of a
Cauchy problem (3.21) with an initial data z2|t=o = Bo(z') in R, where By(z') =
W(',0) — Oz, up(2)|s, =0 # 0. We can see that in this problem the compatibility

condition of zero order is not fulfilled for s € [1, 2 + «]. We recall also that

ierfcgz/ erfcfd¢, erfe( = 2/ e dc.
¢ VT ¢

Theorem 3.7. Let By(z') € C*"1(R), s € [1,2+a], a € (0,1). Then problem
(3.31), (3.32) has the unique solution

Vo(z, t) = —2Vat zo(a’, t) ierfs n , 3.33

2(z,1) 2(,1) 2y/at (3.33)

where zo(2',t) is defined in Theorem 3.3: zo € C2T¥(Ry), \zﬂftagT <(C|By |(6 2

Theorem 3.8. Let By(z') € C'T*(R), « € (0,1). Then problem (3.31), (3.32)
has the unique solution Va(xz,t) defined by formula (3.33), where zo(x',t) is
determined in Theorem 3.4: z € CT1S(Rr), |z2\§2_~_+aa)RT < 012|BO\531+0‘).

This theorem follows from Theorem 3.7 for s = 2 + a.
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Proof of Theorem 3.7. The solution of problem (3.31), (3.32) may be written in
the explicit form

t
Zo(z,t) = an/ dT/ 2y, )02 — v, 2, 7)dy (3.34)
0 Rn—1

t
= Va(z,t) — Qa/ dT/ (22(y/,7) — 22 (2, )T (2" — o, @y, 7)Y/,
0 Rn-1
where

t
‘/2($7t):*2(122($/,t)/ dT/ D(z' —y \zn,7)dy' =—2Vat 2o (2 t)ierfs o
0 Rn—1 2\/a,t

The function v/tierfs 2:7('” satisfies an equation

x
O —ad? , )Vtierfs T =0.
( i xn‘Ln) 20/at
This is confirmed by direct computations with the help of formulas (1.13), (1.14)
for the iterated integrals of the probability. The function z; is a solution of a
Cauchy problem (3.21) with an initial condition za|t=o = Bo(z'). But then the
function Va(x,t) is a solution of an equation (3.31),

8, Vs — alAVy = — 2V/at ierfczmn (8tz2 — aA'zg)

\/at

— 2Vazo(x' 1) (0 — ad?  )V/tierfc .
\/ 2( )( t ‘Ln‘Ln) 2\/at

Moreover, by the relations ierfcoo =0, erfc0 =1 we have
x

Vz =0, 0O,V "
2 ’t:O n 2’ 2/ at|
We remark that the last potential in (3.34) satisfies an equation (3.31) and

the homogeneous conditions (3.32).

Thus, we have shown that the function Va(x, t) is a unique solution of problem
(3.31), (3.32). O

= 29(2',1).

= 29(a',t) erfc .

x,=0

4. Problem 1
Consider the first boundary value problem (1.1)—(1.3) — Problem 1.

Proof of Theorem 2.1. It is known [1, 2, 8] that the solution of Problem 1 belongs
to C2T(Rr), if there are fulfilled the compatibility conditions of zero order for
s € (a,2) : Ao(2’) = 0 on R, and of zero and first orders for s € [2, 2 + af:
Ap(z') =0, A1(2') =0 on R, where

Ag(x') == ¢(2',0) — u()(gc)|m”:0 on R, (4.1)
Ay (2) == Op(a’ 1)],_, — (a Aug(z) + f(,0)) ’zn:() on R. (4.2)
We study the problem under the conditions Ag(z') # 0, Ai(2') #0on R.
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In Theorems 3.3, 3.4 we have extended the functions A;(z) into Ry by the
functions z;(2’,t), which satisfy conditions (3.8)—(3.10) and in Theorems 3.5, 3.6
we have continued z;(z’,t) into Dy by the functions Z;(z,t), j = 0,1, as the
solutions of problems (3.22), (3.23):

é)t Zj - CLAZJ' =0in ZDT7 Zj|t:0 =0 in D, Zj‘zn:() = Zj($/,t) on RT7 (43)
and have represented them in the form (3.24), (3.25),

0, s € (a, 2),
Zo(a,t) = Vi(z, t 4.4
olot) = Vola )+{Wo(x7t), s€2,2+al, 4
Z1(z,t) = Vi(z,t) + Wi(z,t), s €[2, 2+ q], (4.5)
Vi(z,t) = z;(2', t) erfe o , =01 (4.6)

2vat
With the help of the functions Z;(x,t), 7 = 0,1, we reduce the original
Problem 1 to a problem with the fulfilled compatibility conditions of the necessary
orders.
We make the substitution
uw(z,t) = Zo(z,t) + v1(z,t), s € (o, 2),

u(xz,t) = Zo(x,t) + Z1(x, t) + va(z,t), s€[2,2+q], (4.7)

in Problem 1 (1.1)—(1.3), where v1, v, are the new unknowns. For these functions
due to (4.3) we shall have the problems

Orvi —alAv; = f(z,t) in Dp, i=1,2,
v1li=0 = uo(x) in D, vily,—0 = p(x',t) — z0(z',t) on Rr, (4.9)
and
Vali—0 = uo(z) in D, valy,—0 = (2, t) — (20(2’,t) + 21(2’, t)) on Ry. (4.10)

In problems (4.8), i =1, (4.9) and (4.8), i = 2, (4.10) the compatibility condi-
tions of zero and of zero and first orders are fulfilled respectively. Really, taking into
account the initial conditions (3.8), (3.9), (3.10) for z;(a’,t), O,z;(z',t), 7 = 0,1,
and formulas (4.1), (4.2) we derive the identities (compatibility conditions) on the
boundary z, =0 at ¢ = 0 for problem (4.8), i =1, (4.9)

”1|wg:=00» = up(2',0) = p(a',0) — 20(2",0) = p(2",0) — Ao(z") = uo(2',0)
and for problem (4.8), i =2, (4.10),
rp=0, = UO(x/7 0) = 90(33/70) - (Zo(.%‘/t) + 21 (x7/t>) ‘t:()

t=0

= p(a’,0) — Ao(a') = uo(2',0),

V2

02

=0, = (a AUO(aj) + f(I‘,O)) ’J;n:O
= 8t90(95/7t)’t:0 — (Brz0(a’,t) + Oz (2',1)) ‘t:()
= Ol 8)],_y — Ar(a") = (@ duole) + f(2,0)|

z,=0"
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Then each of problems (4 8),i=1, (4.9) and (4.8), i = 2, (4.10) has a unique
solution v; € C2*%(Dr), i = 1,2, and for v; the following estimates are valid
1,2, 6, 8:
pRNeY s a pRNeY (24«
o1 527 < 1 (luol 3 + 1F187%, o + Il Cree? + 120l C52 ) )

2+ 2+ (2+ 2+
o2l 50 < ea(Juol ) + 1717 by + el + 120/ C00) + 1211 P57).

Here the functions z;(2’,t), j = 0,1, satisfy the estimates (3.12), (3.13):

|2 \fg;‘ < c3lA; \ 721 and the norms of Ay and A; (see (4.1), (4.2)) are evaluated
by the norms of the given functions ug, f, ¢ respectively. Thus, (4.11) leads to
the estimate (2.2). The functions Zy, Z; in the solution (4.7) of Problem 1 are
expressed via the functions z;(2’,t), Wj(x,t), j = 0,1, satisfying the estimates
(3.12), (3.13), (3.26), i.e., (2.1).

The solution (4.7), (4.4)-(4.6) of Problem 1 contains the function

X 2 o0 2
ho(xn,t) :==erfc ™" = e € de.
o(ont)i=ente) 7 = % /M ¢

Consider this function and its derivatives
2 2

1 @y x 3
Oz, h t)=— “aat . Qihy = ad? " T4
e 00 (%0, t) \/aﬂe , Otho = ady , ho= 2\/a7rt3/2€
The function hg and its derivatives 0y, ho, Otho, a@inwn hg have different limits
at the point ((2,0),0) depending on the approach of the point (x,t) to this point
((2',0),0). Really,

g g rolm 1) = 1, Ay fimgholen, 1) =0, (4.12)
thrr(l) hm0 Oz, ho(Zp,t) = —00, hmO glma ho(2n,t) =0. (4.13)
Let the point = (x1,...,x,) tend to the boundary z, = 0 of a domain as

(2, 1t?), t — 0, B >0, lg = const > 0, then

lo _
ho(lot?, t) = erf tA=1/2
0(0 ) ) ers(z\/a s

1 _ 18,281
Dunho(@n, )], _yy0 = Tart S
l 13 28—1
_ 2 _ 0 B— 3/2 -0t
8th0(xn, )’L Y a@znznho(xn,t) wn=loth 2\/a,7Tt
and
0, 0<p8<1/2,
lim ho(lot?, 1) = Serfe,l . f=1/2, (4.14)
1, 8>1/2,
0, 0<pB<1/2,
ts 0, o, B,y = b1/ (4.15)
zn=lot —0Q, ﬁ Z 1/27
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thl% 8th0 (Lll’n, t) ’In = thl% aafynzn hO (Lll’n, t) ‘

=l[gth Tp=loth
0, 0<pB<1/2
e 1/2<3<3/2, (4.16)
2\l/0a7r’ ﬁ = 3/27
0, 6>3/2.
In particular, for x,, = lO\/t, lp =const> 0, we have
l
ho(loV't, t) = erfcz\;a = const, (4.17)
0y, h —_ b -8 4.18
Tn O(xN7t)’m":lO\/t - _\/amf e e, ( . )
Beho (2, )| = a2, ho(zn,t)| _ b 1.3 (4.19)
t1e0\Lny Tn=loVvVt Ty Xy O\ zn=lovVt 2\/&7‘(’1‘5 . .

x x

From here it is seen that the derivatives 0y, h0| 1y and atho| i/

8gnznho‘zn:lo\/t tend to —oo and oo as —1/+/t and 1/t respectively, when ¢ — 0

((@]4, gy » ) — ((27,0),0).
Let @, > ro=const> 0, then applying the estimates |£|% < cg 6*52/2, 6 >0,
erfc ¢ < v/2erfs \52 e=¢*/2 < \/2¢=¢*/2 we shall have

o2
ho(xp,t) < cqe” sat,
Ty 1 _Z%t < 1 _8%
e 4at C e~ 8at
\/t Tn - 67”'0 ’ (420)

@
|Otho(n, t)], \3£nwnho(xn,t)| < 677"2 e sat, 1, > T10.

‘8xnh0($n,t>| S Cs

0
These inequalities show that the function hg = erfc 2:7& and its derivatives 0, ho,
O¢ho, agm ho tend to zero exponentially as ¢t — 0 in the interior of the domain
Tn Z To.

We see that nonfulfillment of the compatibility conditions of zero (Ag #
0) and first (A; # 0) orders in Problem 1 leads to appearance of the singular
functions Zy(x,t) and Z;(z,t) in the solution respectively (see (4.7), (4.4)-(4.6)),
the principle parts of which are

x
Vi(x,t) = zj(2' t)erfc ™" |, j=0,1,
(o) = (e e,

where z;(2',t) € CZ*(Rr), |20\f;?) < CS\AO|S)7 s € (o, 2+ qf, \2’1|5’RT
oA se 2,2+l
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Consider the functions Vj(x,t), j = 0,1, and its derivatives:

X
OpVi(x,t) = erfc ™" Oprzi(al ),
i) =ee, ! uzy(a 1)

) Tn o ) (4.21)
05, Vi(z,t) = erfc2\/at O 2i (2, 1),
1 a3,
8"571,Vl(x7t> = _\/CLt 6_4(“ Zj(x/7t)7
1 2 (4.22)
O, Vo) == i 050 0)
92, Vi(a,t) e ()
Tnan VilTs = 3/2 € dat Z;(T,7),
2a+/amt (4.23)

0:Vj(z,t) = erfe n . Opzj(a' t) + a@inwnvj(x,t), j=0,1,

2Va
where zo(2/,0) = A(z’) # 0, z1(2’,0) =0 on R.

Due to the function ho(z,,t) := erfc 21\:/7& satisfying the estimates (4.20) for

xn > 10 Vo, 0:Vo, 02, Vo, 9:Vp go to zero exponentially as t — 0 in the interior
of the domain. Vj is bounded, but discontinuous at the point ((2’,0), 0), as it was
shown (see (4.12), (4.14), (4.17)). The derivatives 0,V and 02 , Vi containing
Oz, ho and 82, hg respectively have finite or infinite limits as (z, t) — ((2’,0), 0)
in accordance with (4.13), (4.15), (4.18) and (4.16), (4.19). We can see also that
the derivatives éﬁnwn Vo, 0:Vo are integrable functions with respect to ¢ € (0,7,
T > 0. The derivatives 9,/ Vo, 8%, Vo, 8:Vy and erfCQ\f;ﬂtatzo(x’7t) in (4.23) are
subjected to the estimates

5 — (E2
|am/VE)| <cipt 21 6_4‘?‘, CES (Oz, 1),
2

x s— T
" ozo(al, D) < et 2 emsar, s € (a, 2),

Var
the derivatives 9,z for s € [1, 2+a] and 9?2, 20, O¢2¢ for s € [2, 2+a], in formulas
(4.21), (4.22), (4.23) are bounded functions.

Thanks to the function zj(a2’,t) satisfying an estimate (3.14): |z1] < ¢12
|A1\5§_2) tin Rp, s € [2, 2+ o, the functions Vi (x,t) and 0,Vi(x,t) are continu-
ous, the higher derivatives 9;V;(x,t), 02,Vi(x,t) are bounded, but discontinuous
in the vicinity of a boundary z,, = 0 of a domain as ¢t — 0.

If Ag(z') # 0, but A1(2’) = 0 on R, then Z;(z,t) = 0 in Dy and the solution
of Problem 1 takes the form

vi(z,t), s € (a,2),

u(z,t) = Zo(z,t) + {vg(x,t), s€2,2+ql

If Ap(2') =0, but A;(z') # 0 on R, then Zy(x,t) = 0 in Dy and

_ ’1)1(3;‘71?), s € (042),
uet = {Zl(x,t) +oa(w,t), s €[22+l

Owar V!, erfc
| ol 5
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For Aop(z') =0, Ai(z') =0 on R we have

(. t) = {ful(x,t), s € (,2),

va(z,t), s €[2,2+al.

The derivatives d,v1; Oyv1, 02,v1 and their Holder constants have singular-
ities of orders 'z, s € (o, 1); t'2, s€ (,2),and t’ 2 ", s € (a, 2+ a),
respectively in D for ¢ — 0. The function vs(x, t) possesses the bounded derivatives
Oy va(w,t), O2va(x,t), and their Holder constants are unbounded of £ order,
s €[2, 2+ a) and bounded for s =2+ a as t — 0.

We can see that the character of the singularities of the functions Zy(z,t),
Z1(z,t) and vq (z,t), va(x,t) is different. Nonfulfillment of the compatibility condi-
tions of the given functions on the boundary z,, = 0 at t = 0 leads to appearance
of the functions Zy(x,t), Zi(z,t), which are singular only in the vicinity of a
boundary z, = 0 of a domain as t — 0. The derivatives of the function vy (x,t)
and the Holder constants of the higher derivatives of vy (x,t) and va(x,t) may be
singular as ¢ — 0 in the closure of a domain D and their singularities depend on
an initial function ug(z) of Problem 1 belonging to C*(D). O

5. Problem 2
Consider the second boundary value problem (1.1), (1.2), (1.4) — Problem 2.

Proof of Theorem 2.3. 1. For s € («, 1) the derivatives d,u have singularities of
order t ™2 ast — 0, so the compatibility condition can not be fulfilled and it is
not required. In this case Problem 2 has a unique solution u(z,t) := vy (z,t) €
C2T%(Dy), and an estimate (2.3), ¢ = 1, for it is valid [1, 2, 8]. The higher deriva-
tives Oy vi(z,t), 02vi(z,t) and their Hélder constants have in D singularities of
orders t'2” and t” > respectively as t — 0.

2. Let s € [1, 2+ «]. This case requires the fulfillment of the zero-order compati-
bility condition: By(z') = 0 on R, where

Bo(a') := ¢(a',0) = Oy, u0(@)|, _, € C*°"'(Rr) on R (5.1)
for the solution of Problem 2 to belong to C2**(Dr) [1, 2, 6, 8].
We study the problem under the condition By(z') # 0 on R. In Theorem

3.3 we have extended the function By(z’) into Ry by the function z2(2’,t) as a
solution of the Cauchy problem (3.21) satisfying an initial condition

Z2|t:0 = B()(JZ/) on R, (52)
then we have extended the function z2(2’,t) into Dp by the function

Va(z,t) = —2Vat z(2, t) ierfs (5.3)

Tn
2V at
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which is a solution of problem (3.31), (3.32),
0Vo—alAVs =0 in Dr, Val=o =0 in D, 9., Va|z,—0 = 22(z',t) on Rp. (5.4)
We recall that

oo 2 o)
lerfs¢ = / erfs€ d¢, erfs¢ = / e~ dg.
¢ VT ¢

After the substitution
u(z,t) = Vo(z, t) + va(z, t)
in Problem 2 (1.1), (1.2), (1.4) and taking into account that Vaz(x,t) is a solution
of a problem (5.4) we obtain the following problem for the new unknown function
V2 (377 t)a
Orva —alAvg = f(x,t) in Dr, ’Ug‘t:O =up(z) in D,
aznv2‘zn20 = w(x/a t) - aZnVQ‘znzo (55)
= (2’ t) — zo(a, t) erfs on =Y(2,t) — z9(2, t).
V) = (e erts [, = 00l ) (o)

Due to (5.2), (5.1) in this problem the compatibility condition on the bound-
ary x, = 0 at ¢t = 0 is fulfilled:

ep=0. = 3mnu0(x)|l_n:o =(2',0) — By(z') = 8znu0(:c)’xn:0.

As it was shown in Theorem 3.3, z9(2',t) € C2T¥(Rp) € CT¥(Ry) and an
estimate (3.15) for it holds: \22|£2_+1a1)%T < CQ‘BO‘S71)7 here By(z') is evaluated by
the norms of the functions ug, . But then problem (5.5) has a unique solution
va(x,t) € C2H2(Ry) and it satisfies an estimate (2.3) [1, 2, 6, 8].

Consider the function Va(z, t) (see (5.3)) and its derivatives. V3 is a continuous
function in D7 due to the cofactor v/¢. In the vicinity of a boundary z,, = 0 the
derivative

3%1)2

T
Oz, Vo(x, t) = "terfs "
Va(x,t) = za(x )ers2\/at
is bounded, but discontinuous as (x,t) — ((«/,0), 0) (see (4.12), (4.14), (4.17)),
and the second derivative

02 . Vo(x,t) = —

TnTn

1 SN
Jant zo(x't) e 4at
is singular as (z,t) — ((¢/,0), 0) (see (4.13), (4.15), (4.18)).

In formula (5.3) the function z5(2’,t) belongs to C2*(Rr), but thanks to
a cofactor v/t the orders of the singularities with respect to t as ¢t — 0 of the
derivatives 9,/ Va, 02, Va, Vtierfs Qf/’;t Orza(2’,t) decrease.

In the interior of a domain x, > rg=const > 0 the function V5 and its
derivatives 9,Va, 92,Va, O;Va tend to zero as t — 0 exponentially due to the
estimates erfs¢ < /2 erfs \52 2 < \/26_42/2, ierfs¢ < 2 ierfs\f2 =2 <

Vme /2 and (4.20).
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Consider the function vs(z,t). The higher derivatives dyv2, 02 ,vs and their
Holder constants have in D the singularities of orderst 'z~ for s € [1,2) andt” 3
s € [1,2 + «) respectively as ¢ — 0. These singularities are caused by the initial
function wug(x) belonging to C*(D). Nonfulfillment of the boundary and initial
functions leads to appearance of the function Va(z,t) in the solution of Problem

2, which is singular only in the vicinity of a boundary x,, =0 as t — 0. O

Appendix

We have let D := R}, n > 2, R :={z = (¢, ) |2’ € R" ', 2, =0}, 2’ =
(xla . 'axnfl)a Dy =D x (OvT)v Ry = R x [O7T]

In Theorems 3.5, 3.6 for s € [2,2 + a] we have constructed the singular
functions Z;(x,t) = Vj(z,t) + Wj(z,t), Vj(z,t) = zj(:c’,t)erfc;;;t, j=0,1, (see
(3.24), (3.25)), which appear due to the incompatible boundary and initial data in
Problem 1. The functions Vj(z,t), j = 0,1, are the principle parts of the singular
solutions Z;(z,t), j =0, 1. The functions W;(z,t), j = 0,1, are those that remain
after extracting from the singular solutions their principle parts Vj(z,t), j =0,1,
and they are the solutions of problems (3.30).

Consider this problem with unknown function W (z, t):

W —aAW = g(2',t) erfs " in Dr,
2+v/at (A1)
W|,_,=0in D, W| _ =0 on Ry,
where
2 o g2 C 2 2
erfs( = / e S de < V2erfs e /2 <V2e7 /2 ¢ >0. (A.2)
VT ¢ V2

We can see that in problem (A.1l) the compatibility condition of zero order
is fulfilled.

Theorem A.1. Let s € [2, 2+a], a € (0,1). For every function g(z',t) € C&_o(Rr)
the problem (A.1) has a unique solution W (x,t) € C25 (Dr), 6o = s which
satisfies an estimate

2 «
W2 b < etlgl' (A.3)

5,00,

From this theorem for s = 2 4+ a we have the following one.

Theorem A.2. For every function g(a',t) € Cg,’a/f(RT), a € (0,1), the problem
(A.1) has a unique solution W (x,t) € 022+a,60 (D7), 60 = g, which satisfies an
estimate
2 a
W15 g0,0r < 2l

Here the norms \g\goi)Q’RW \g\ggT) and ‘W|§?(207DT7 |W\ga750’DT are defined

by formulas (1.5), (1.9) and (1.10), (1.11) respectively.



On the Classical Solvability 77

Proof of Theorem A.1. The solution of problem (A.1) may be written in the ex-
plicit form

t
y’n
W(x,t) = / dT/ g(y', 7) erfc hx—y,t—7)—Tp(x—y*,t—7)) dy

(A.4)
t
= / dT/ g/, ) Tp1(a —y' t —71)dy
0 Rn—1
oo yn
f r n— Yn,t — -T n n,t — dyn;
X/O ech\/aT( 1(zn — T) 1(zn + vy 7)) dy
here y* = (yh ceeyYn—1, _yn>7
r ! Lo A

n(x,t) = e dat )
@D =t jamty (A.5)

is a fundamental solution of a heat equation satisfying an estimate

1 o2

|OF O™ T, (,1)] < c3 e Sat, (A.6)

n+2k+|m|
t 2

We evaluate the norm (1.10) of the potential (A.4). First, with the help of a
tabular formula

/°° e~ A=) ~Blu—2)? gy _ v " A B>,
—o VA+ B

we compute an integral
_(@n—yn)? _ (@n+yn)? va

o0
Jl (:I:n’ t -7, T; k) — / (e ka(t—T) _|_ e ka(t—T) )67 kaT dyn
0

(A7)
o0 _(fﬂn*in)Q 1721 t — 'z%
= / e kalT) e Kar dyn = Vrak \/T( ™) e ket 1€ (0,t), k>0,
Co Vit
and estimate it as
J1 (@, t —7, 73 k) < Vmakyt —Te” ka (A.8)
Let R, =R x [t/2,t],
M = Sup|g(x/7t)‘Ra (Ag)
t<T
My:=supt 3 sup g(a',t) — g(, )| |#' — 2|7, (A.10)
t<T (a',t),(=' t)ER]
Ms:=supt 3 sup g(@',t) — g(a’, t1)] [t — ta| /2. (A.11)

t<T (2/,t),(' t1)ER;
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We can represent the derivatives 8%10WW($, t), i=1,...,n, p=1,...,n—
1, 7 =0,1, in the form

] y’n
02.0,, W (z,1) / dr/n g(y',T) ))erfc2\/aT
X 02 0y, (Tn(z—y,t —7) = Tn(z—y*,t — 7)) dy

by an identity
/ Oz, (Tn(z —y,t —7) = Tp(z —y*, t — 7)) dy’ = 0.
Rn—1

Applying the notations (A.9), (A.10) and the estimates (A.6) for I'y(x,t),
(A.2) for erfc “"" , (A.8) for Jy,
€)% < cpe €2 B0, (A.12)

and integrating with respect to y’ we obtain

t
1 2,
W (z,t)| < cq Ml/ Vi Ji(xp, t — 7, 7; 8)dT < c5 My te sat; (A.13)
0 — T

1

1 i/2—ay2 Ji(zp, t =71, T; 8)dT

t
. s—2—a
07 0y, W(x,t)| < cg M- 2
‘Ii " (x >| “ 2/0 ! (t—r7)

—1—j 2

SerMpt 2 s, j=0,1,
and from here we shall have the estimates
s — T% s— T%
100, W (@, 1) < e Mot 2 e sdt, [8y,00, W(m, 1) < e Mot 2 e sir,  (A.14)

i=1,...,n, p=1,...,n—1, s€[2,24+ql.
We evaluate 9, W (x,t), 02 , W (x,t). For that we write down the derivative
0y, W (z,1) as follows:

t
O, W(z,t) = / dT/ gy, T 01 (2’ — o't — T)Ja(Tn, t — 7,7)dy’, (A.15)
0 Rn 1

JQ(.):f/ erfc 3 8%( (nfyn,th)+F1(xn+yn,t77))dyn,

where T',,_1, T'y are defined by (A.5). Integrating J5 by parts and applying formula
(A.7) we obtain

1
2am+/(t — )T
= 2(F1($n,t — T) — F1($n,t))

Jo(xn,t —7,7) =211 (2p, t — 7) — Ji(xn,t —71,7;4)
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and the derivative (A.15) takes the form
t
O, W (z,t) = 2/ (Fl(a:n,t —7)— Fl(xn,t))dT
0

X /R 1 g, T Cpa (2 —y/ t —7)dy'.
From here with the help of the formula
/ Tpoi(d =y t—7)dy' =1 (A.16)
Rn—1
we derive
92 . W(z,t)= /Otam” (T1(@n,t — 1) — Ti(2y, t))dr
< [ (oW'n) = @ )’ — vt = )y
Rn—1

+ Qg(x’,t)/o O, (Fl(xn,t - 7)— Fl(xn,t))dr
= Js(2,8) + Ja(a, ). (A.17)

Taking into account the notations (A.9)—(A.11), formula (A.16), the inequal-
ities (A.12) and

¢ daltn) < e_:ffm 7€ (0,1),

then integrating with respect to 7 we find

10, W (,1)] < 5 My t!/2 e (A.18)
and
‘ s—2—a Tn — o T (t — 7')(1/2 _ z2
|J3(2,t)| < cg (Mo +M3)/OT 2 ((t—T)SE“ e dalt=m) 132 e 4at)d7-
<o (Ma + My)t™2" e ide, (A.19)
1 T l T
Jy(z,t) = 't " eTaar —erfc ), A.20
1@ ) a 9 ) (2\/a7rt 2\/at) ( )
@y
J4($, t) <ec1 M1 e 8at, (A?l)

We make use of estimates (A.19), (A.21) in (A.17) and take into account that
My + My + M3 = ‘9‘3_27RT7 € < 6*52/2, then we obtain

'zi a _T/%
102, W (e, )| < crn (My+172" (Mo + Mz)) e sat < cr3lgl\™y g, e 50t (A.22)

TnTn

(here s € [2, 2 + o).
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From the equation in (A.1) with the help of formulas (A.17), (A.20) we find
the time derivative 0, W (x, ),

2
Tﬂ.

W (z,1) = alN' W (z,1) + ads(z, t) + gla' 1) " e~
2/ art
and applying the estimates (A.14), (A.19), (A.12) to it we derive

W (2,1)] < cra (My +t72" (My + My)) e st < e15]9]"% . €75k, (A.23)
Gathering obtained estimates (A.13), (A.14), (A.18), (A.22), (A.23) we shall
have an estimate (A.3) of the norm ‘W|S<20,DT7 o = 4, defined by (1.10). O
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Abstract. We consider the system of Maxwell-Stefan equations which describe
multicomponent diffusive fluxes in non-dilute solutions or gas mixtures. We
apply the Perron-Frobenius theorem to the irreducible and quasi-positive ma-
trix which governs the flux-force relations and are able to show normal el-
lipticity of the associated multicomponent diffusion operator. This provides
local-in-time wellposedness of the Maxwell-Stefan multicomponent diffusion
system in the isobaric, isothermal case.
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1. Introduction

On the macroscopic level of continuum mechanical modeling, fluxes of chemical
components (species) are due to convection and molecular fluxes, where the latter
essentially refers to diffusive transport. The almost exclusively employed constitu-
tive “law” to model diffusive fluxes within continuum mechanical models is Fick’s
law, stating that the flux of a chemical component is proportional to the gradient
of the concentration of this species, directed against the gradient. There is no in-
fluence of the other components, i.e., cross-effects are ignored although well known
to appear in reality. Actually, such cross-effects can completely divert the diffusive
fluxes, leading to so-called reverse diffusion (up-hill diffusion in direction of the
gradient) or osmotic diffusion (diffusion without a gradient). This has been proven
in several experiments, e.g., in a classical setting by Duncan and Toor; see [7].
To account for such important phenomena, a multicomponent diffusion ap-
proach is required for realistic models. The standard approach within the theory
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of Irreversible Thermodynamics replaces Fickian fluxes by linear combinations of
the gradients of all involved concentrations, respectively chemical potentials. This
requires the knowledge of a full matrix of binary diffusion coefficients and this
diffusivity matrix has to fulfill certain requirements like positive semi-definiteness
in order to be consistent with the fundamental laws from thermodynamics. The
Maxwell-Stefan approach to multicomponent diffusion leads to a concrete form
of the diffusivity matrix and is based on molecular force balances to relate all
individual species velocities. While the Maxwell-Stefan equations are successfully
used in engineering applications, they seem much less known in the mathemati-
cal literature. In fact we are not aware of a rigorous mathematical analysis of the
Maxwell-Stefan approach to multicomponent diffusion, except for [8] which mainly
addresses questions of modeling and numerical computations, but also contains
some analytical results which are closely related to the present considerations.

2. Continuum mechanical modeling of multicomponent fluids

We consider a multicomponent fluid composed of n chemical components A;. Start-
ing point of the Maxwell-Stefan equations are the individual mass balances, i.e.,

dpi + div (piu;) = R, (1)

where p; = p;(t,y) denotes the mass density and w; = w;(t,y) the individual
velocity of species A;. Note that the spatial variable is denoted as y, while the usual
symbol x will refer to the composition of the mixture. The right-hand side is the
total rate of change of species mass due to all chemical transformations. We assume
conservation of the total mass, i.e., the production terms satisfy Z?:l Rt = 0.
Let p denote the total mass density and u be the barycentric (i.e., mass averaged)
velocity, determined by

n n
PZZZM, ﬂUZZZPiui-
i=1 i=1

Summation of the individual mass balances (1) then yields
8tp + div (pu) = Ov (2)

i.e., the usual continuity equation.

In principle, a full set of n individual momentum balances should now be
added to the model; cf. [11]. But in almost all engineering models, a single set
of Navier-Stokes equations is used to describe the evolution of the velocity field,
usually without accounting for individual contributions to the stress tensor. One
main reason is a lack of information about appropriate constitutive equations for
the stress in multicomponent mixtures; but cf. [16]. For the multicomponent, single
momentum model the barycentric velocity u is assumed to be determined by the
Navier-Stokes equations. Introducing the mass diffusion fluxes

ji == pi(u; —u) (3)
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and the mass fractions Y; := p;/p, the mass balances (1) can be rewritten as
p0,Y; + pu - VY; +divj; = Ri°". (4)

In the present paper, main emphasis is on the aspect of multicomponent diffu-
sion, including the cross-diffusion effects. Therefore, we focus on the special case
of isobaric, isothermal diffusion. The (thermodynamic) pressure p is the sum of
partial pressures p; and the latter correspond to ¢; RT in the general case with ¢;
denoting the molar concentration, R the universal gas constant and 7" the absolute
temperature; here ¢; = p;/M; with M, the molar mass of species A;. Hence iso-
baric conditions correspond to the case of constant total molar concentration ciot,
where ciop 1= Z;L:l c;. Still, species diffusion can lead to transport of momentum
because the M; are different. Instead of u we therefore employ the molar averaged

velocity defined by
CtotV 1= Zciui. (5)
i=1

Note that other velocities are used as well; only the diffusive fluxes have to be
adapted; see, e.g., [20]. With the molar averaged velocity, the species equations
(1) become

Opc; + div (c;v + J;) = it (6)
with rf°t := R{°*/M; and the diffusive molar fluxes
J; :==ci(u; —v). (7)

Below we exploit the important fact that
n
> I =0 (8)
i=1
As explained above we may now assume v = 0 in the isobaric case. In this case the
species equations (6) simplify to a system of reaction-diffusion equations given by

Owc; +divl; = r}Ot, 9)

where the individual fluxes J; need to be modeled by appropriate constitutive
equations. The most common constitutive equation is Fick’s law which states that

J; = —D;gradc; (10)

with diffusivities D; > 0. The diffusivities are usually assumed to be constant,
while they indeed depend in particular on the composition of the system, i.e.,
D; = D;(c) with ¢ := (¢1,...,¢,). Even if the dependence of the D; is taken
into account, the above definition of the fluxes misses the cross-effects between
the diffusing species. In case of concentrated systems more realistic constitutive
equations are hence required which especially account for such mutual influences.
Here a common approach is the general constitutive law

J;=— D;; gradc; 11
J j

j=1
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with binary diffusivities D;; = D;;(c). Due to the structure of the driving forces,
as discussed below, the matrix D = [D;;] is of the form D(c) = L(c) G”(c) with a
positive definite matrix G”(c), the Hessian of the Gibbs free energy. Then, from
general principles of the theory of Irreversible Thermodynamics, it is assumed that
the matrix of transport coefficients L = [L;;] satisfies

e L is symmetric (the Onsager reciprocal relations)
e L is positive semidefinite (the second law of thermodynamics).

Under this assumption the quasilinear reaction-diffusion system

Oic + div (—D(c) V) = r(c), (12)
satisfies — probably after a reduction to n — 1 species — parabolicity conditions suf-
ficient for local-in-time wellposedness. Here r(c) is short for (ri°t(c), ..., r%%(c)).

A main problem now is how realistic diffusivity matrices together with their
dependence on the composition vector ¢ can be obtained.

Let us note in passing that Herbert Amann has often been advocating that
general flux vectors should be considered, accounting both for concentration depen-
dent diffusivities and for cross-diffusion effects. For a sample of his contributions
to the theory of reaction-diffusion systems with general flux vectors see [1], [2] and
the references given there.

3. The Maxwell-Stefan equations

The Maxwell-Stefan equations rely on inter-species force balances. More precisely,

it is assumed that the thermodynamical driving force d; of species A; is in local

equilibrium with the total friction force. Here and below it is often convenient to

work with the molar fractions x; := ¢;/ctot instead of the chemical concentrations.

From chemical thermodynamics it follows that for multicomponent systems which

are locally close to thermodynamical equilibrium (see, e.g., [20]) the driving forces
under isothermal conditions are given as
T

=g

with p; the chemical potential of species A;. Equation (13) requires some more

explanation. Recall first that the chemical potential u; for species A; is defined as

oG
- 14
2 ¢ ( )

&

grad pi; (13)

where G denotes the (volume-specific) density of the Gibbs free energy. The chem-
ical potential depends on ¢;, but also on the other c¢; as well as on pressure and
temperature. In the engineering literature, from the chemical potential a part M?
depending on pressure and temperature is often separated and, depending on the
context, a gradient may be applied only to the remainder. To avoid confusion, the
common notation in use therefore is

Opi
oT

Opi

T.
Op v

Vi = Vrppi + Vp +
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Here V7 p1; means the gradient taken under constant pressure and temperature.
In the isobaric, isothermal case this evidently makes no difference. Let us also note
that G is assumed to be a convex function of the ¢; for single phase systems, since
this guarantees thermodynamic stability, i.e., no spontaneous phase separations.
For concrete mixtures, the chemical potential is often assumed to be given by

pi = pd + RTna; (15)

with a; the so-called activity of the ith species; equation (15) actually implicitly
defines a;. In (15), the term 9 depends on pressure and temperature. For a mixture
of ideal gases, the activity a; equals the molar fraction x;. The same holds for
solutions in the limit of an ideally dilute component, i.e., for ; — 04. This is no
longer true for non-ideal systems in which case the activity is written as

a; = 7; Ty (16)

with an activity coefficient «; which itself depends in particular on the full com-
position vector x.

The mutual friction force between species ¢ and j is assumed to be propor-
tional to the relative velocity as well as to the amount of molar mass. Together
with the assumption of balance of forces this leads to the relation

di = —Zfij :r:ixj(ui —Uj) (17)
J7#i
with certain drag coefficients f;; > 0; here f;; = f;; is a natural mechanical

assumption. Insertion of (13) and introduction of the so-called Maxwell-Stefan
(MS) diffusivities D;; = 1/ f;; yields the system

xZ; o LIL‘jJi — .’EiJ] .
RTgrad,ui—— ; cron i fori=1,...,n. (18)

The set of equations (18) together with (8) forms the Maxwell-Stefan equations
of multicomponent diffusion. The matrix [D;;] of MS-diffusivities is assumed to be
symmetric in accordance with the symmetry of [f;;]. Let us note that for ideal
gases the symmetry can be obtained from the kinetic theory of gases; cf. [9] and
[14]. The MS-diffusivities D;; will in general depend on the composition of the
system.

Due to the symmetry of [D;;], the model is in fact consistent with the Onsager
reciprocal relations (cf. [18] as well as below), but notice that the D;; are not to be
inserted into (11), i.e., they do not directly correspond to the D;; there. Instead,
the MS equations have to be inverted in order to provide the fluxes J;.

Note also that the Ansatz (17) implies ), d; = 0 because of the symmetry of
[fij], resp. of [Dy;]. Hence ). d; = 0 is necessary in order for (17) to be consistent.
It in fact holds because of (and is nothing but) the Gibbs-Duhem relation, see,
e.g., [12]. The relation ), d; = 0 will be important below.
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Example (Binary systems). For a system with two components we have

1

Crot P12

dl(: —dg) = — ((L‘QJl — (L‘ng). (19)

Using 1 + 22 = 1 and J; 4+ J2 = 0 one obtains

Ji(=-J9) = 12 c1 grad 1. (20)

b

RT
Writing ¢ and J instead of ¢; and J1, respectively, and assuming that the chemical
potential is of the form p = u° + RT In(yc) with the activity coefficient v = v(c)
this finally yields

cv'(e)

()
Inserting this into the species equation leads to a nonlinear diffusion equation,
namely

J=-Dyp (1 + )gradc. (21)

Ore — Ad(c) = r(c), (22)

where the function ¢ : R — R satisfies ¢'(s) = D12(1 + s7/(s)/7(s)) and, say,
¢(0) = 0. Equation (22) is also known as the filtration equation (or, the generalized
porous medium equation) in other applications. Note that well-known pde-theory
applies to (22) and especially provides well-posedness as soon as ¢ is continuous
and nondecreasing; cf., e.g., [21]. The latter holds if s — sy(s) is increasing which
is nothing but the fact that the chemical potential u of a component should be an
increasing function of its concentration. This is physically reasonable in systems
without phase separation.

4. Inversion of the flux-force relations

In order to get constitutive equations for the fluxes J; from the Maxwell-Stefan
equations, which need to be inserted into (9), we have to invert (18). Now (18)
alone is not invertible for the fluxes, since these are linearly dependent. Elimination
of J,, by means of (8) leads to the reduced system

d: Ji
Ctot =—-B ) (23)
dn71 Jnfl

where the (n — 1) x (n — 1)-matrix B is given by

1 1

i - for i # j,

x (Dm Dij> or i #£ j

Bi; = "o (24)
+E Dk fori=j (withz,=1-3 Tm)-

D. i m<n M
in - Uik
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Assuming for the moment the invertibility of B and letting u; be functions of the

composition expressed by the molar fractions x = (1, ...,y ), the fluxes are given
by
J1 VZL'l
= *CtOtB_l T . 5 (25)
Jnfl vxnfl
where

dln~y;

Oz
captures the thermodynamical deviations from the ideally diluted situation; here
d;; denotes the Kronecker symbol.

Example (Ternary systems). We have

1 1 1 1 1
Pis + 22 <E)12 o B13) - <E)12 o D13)
B = (27)
1 1 1 1 1
—T2 (512 o E)23> Po3 + (BIQ B B23>
and det(B — tI) =t — tr Bt + det B with
T T2 T3 . 1 1 1 }
detB = + + > mln{ , ,
D12 P13 Dia Dz Dz Dos D12 D13 D12 Doz D13 Dos
(28)
and
r1+T2  T1+T3 T+ a3 . 1 1 1 }
trB = + + > 2min { , , . 29
Dis D13 Das Di2 D13 D3 (29)

It is easy to check that (tr B)? > 3det B for this particular matrix and therefore
the spectrum of B~ is in the right complex half-plane within a sector of angle less
than /6. This implies normal ellipticity of the differential operator B~ (x)(—Ax).
Recall that a second-order differential operator with matrix-valued coefficients is
said to be normally elliptic if the symbol of the principal part has it’s spectrum
inside the open right half-plane of the complex plane; see section 4 in [2] for
more details. This notion has been introduced by Herbert Amann in [1] as the
appropriate concept for generalizations to more general situations with operator-
valued coeflicients.

Consequently, the Maxwell-Stefan equations for a ternary system are locally-
in-time wellposed if I' = 1, i.e., in the special case of ideal solutions. The latter
refers to the case when the chemical potentials are of the form (15) with v; =1
for all ¢. Of course this extends to any I" which is a small perturbations of I, i.e.,
to slightly non-ideal solutions.

Let us note that Theorem 1 below yields the local-in-time wellposedness also
for general non-ideal solutions provided the Gibbs energy is strongly convex. Note
also that the reduction to n — 1 species is the common approach in the engineering
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literature, but invertibility of B is not rigorously checked. For n = 4, the 3 x 3-
matrix B can still be shown to be invertible for any composition due to z; > 0
and ), z; = 1. Normal ellipticity can no longer be seen so easily. For general n
this approach is not feasible and the invariant approach below is preferable.

Valuable references for the Maxwell-Stefan equations and there applications
in the Engineering Sciences are in particular the books [4], [9], [20] and the review
article [12].

5. Wellposedness of the Maxwell-Stefan equations

We first invert the Maxwell-Stefan equations using an invariant formulation. For
this purpose, recall that Zl u; = 0 holds for both u; = J; and u; = d;. We
therefore have to solve

AT =cid i E={ucR":)» u;=0}, (30)
where A = A(x) is given by i
51 dij Tk T;
dij " —Sn kz;éz Dik ! D”

The matrix A has the following properties, where x > 0 means x; > 0 for all i:
(i) N(A) = span{x} for x = (1,...,zp).
(i) R(A) = {e}* fore=(1,...,1).
(ii) A = [ai;] is quasi-positive, i.e., a;; > 0 for i # j.
(iv) If x > 0 then A is irreducible, i.e., for every disjoint partition I U J of
{1,...,n} there is some (i,j) € I x J such that a;; # 0.

Due to (i) and (ii) above, the Perron-Frobenius theorem in the version for quasi-
positive matrices applies; cf. [10] or [17]. This yields the following properties of the
spectrum o (A): The spectral bound s(A) := max{Re X : A € 0(A)} is an eigenvalue
of A, it is in fact a simple eigenvalue with a strictly positive eigenvector. All other
eigenvalues do not have positive eigenvectors or positive generalized eigenvectors.
Moreover,

ReX < s(A) forall X € o(A4), A # s(A4).
From now on we assume that in the present case x is strictly positive. Then, since
x is an eigenvector to the eigenvalue 0, it follows that

o(A) c{0}U{z€C:Rez<0}.

Unique solvability of (30) already follows at this point. In addition, the same
arguments applied to 4, :== A — pu(x ® e) for p € R yield

o(Ay) C{—p}u{ze€C:Rez < —pu} for all small > 0.

In particular, A, is invertible for sufficiently small @ > 0 and

J=—cor (A—p(x® e))fld (31)
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is the unique solution of (30). Note that A,y = d with d L e implies y L e and
Ay = d. A similar representation of the inverted Maxwell-Stefan equations can be
found in [8].

The information on the spectrum of A can be significantly improved by sym-
metrization. For this purpose let X = diag(x1,...x,) which is regular due to
x> 0. Then Ag := X2 A X2 satisfies

A —81 dij o T s \/xixj
S = R T y  Si = D’ 0T .
dij —Sn k#i ik K
ie., Ag is symmetric with N(As) = span{y/x}, where /x; := \/x;. Hence the
spectrum of Ag and, hence, that of A is real. Moreover,

Ag(a) = Ag — a/x @ /x

has the same properties as Ag for sufficiently small « > 0. In particular, Ag is
quasi-positive, irreducible and \/x > 0 is an eigenvector for the eigenvalue —a.
This holds for all & < ¢ := min{1/D;; : ¢ # j}. Hence we obtain the improved
inclusion
o(A)\ {0} = o(4s(@)) \ {—a} for all @ € [0,6).
Therefore
o(A) C (=00, —6] U {0}, (32)

which provides a uniform spectral gap for A sufficient to obtain normal ellipticity
of the associated differential operator.

In order to work in a subspace of the composition space R" instead of a
hyperplane, let u; = ¢; — ¢ /n such that > ;i = const is the same as u € £ =
{u € R" : 3, u; = 0}. Above we have shown in particular that Ajp : £ — E is
invertible and

3] = X2 (Agp) 7' X 72 [di] = ;TX%AS\E)*X% \Y (33)
with the symmetrized form Ag of A and F := X2 E = {\/x}*. Note that this also
shows the consistency with the Onsager relations. To proceed, we employ (14) to
obtain the representation

[J;) = X2 (Ag5) ' X2 G"(x) Vx. (34)

Inserting (34) into (9) and using ciot; = u; + ¢, /n, we obtain the system of
species equations with multicomponent diffusion modeled by the Maxwell-Stefan
equations. Without chemical reactions and in an isolated domain Q C R" (with v
the outer normal) we obtain the initial boundary value problem

8tu + div (fD(u)Vu) = 0, aZ,U‘aQ = O7 U‘t:() = Uy, (35)

which we will consider in LP(Q; E). Note that X2 (ASlE)_lXéG”(X) from (34)
corresponds to —D(u) here.
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Applying well-known results for quasilinear parabolic systems based on L,-
maximal regularity, e.g., from [3] or [15], we obtain the following result on local-
in-time wellposedness of the Maxwell-Stefan equations in the isobaric, isothermal
case. Below we call G € C?(V) strongly convex if G”(x) is positive definite for all
xeV.

Theorem 1. Let @ C RN with N > 1 be open bounded with smooth 0. Let

22 _
p> V1% and ug € W, 7 (4 E) such that ¢ > 0 in Q and ¢y is constant in Q.
Let the diffusion matriz D(u) be given according to (34), i.e., by

D(u) = X2 (Agp) ' X2G"(X) with ciorw; = i + ¢y /0,

where G : (0,00)™ — R is smooth and strongly convex. Then there exists — locally
in time — a unique strong solution (in the LP-sense) of (35). This solution is in
fact classical.

Concerning the proof let us just mention that
div (—=D(u)Vu) = D(u) (—Au) + lower order terms,
hence the system of Maxwell-Stefan equations is locally-in-time wellposed if the
principal part D(u) (—Aw) is normally elliptic for all u € F such that c(u) :=
u+ e is close to ¢”. The latter holds if, for some angle 6 € (0, 7), the spectrum
of D(u) € L(E) satisfies
o(D(u)) C g :={r € C\{0}:|arg\| < 0} (36)
for all u € E such that |c(u) — % < € for € := min; ?/2, say. For such an u € E,
let A € C and v € E be such that D(u)v = M. Let x := c(u)/ctot(u) € (0,00)"
and X = diag(x1,...,2,). Then
X2 (AS|E‘>_1X; G"(x)v = Av.
Taking the inner product with G”(x) v yields
(Agp) "X 26" (x) v, X2 G (x)v) = Mv, G (x) v).

Note that X 2G"(x)v € {y/x}*, hence the left-hand side is strictly positive due
to the analysis given above. Moreover (v, G”(x)v) > 0 since G is strongly convex,
hence A > 0. This implies (36) for any 6 € (0, 7 ) and, hence, local-in-time existence
follows.

6. Final remarks

A straightforward extension of Theorem 1 to the inhomogeneous case with locally
Lipschitz continuous right-hand side f : R" — R", say, is possible if f(u) € F
holds for all w. Translated back to the original variables (keeping the symbol f)
this yields a local-in-time solution of

Oic + div (—D(c)Ve) = f(c), dvepn =0, cy—o=co
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for appropriate initial values cg. Then a natural question is whether the solution
stays componentwise nonnegative. This can only hold if f satisfies

fi(c) > 0 whenever ¢ > 0 with ¢; =0,

which is called quasi-positivity as in the linear case. In fact, under the considered
assumption, quasi-positivity of f forces any classical solution to stay nonnegative
as long as it exists. The key point here is the structure of the Maxwell-Stefan
equations (18) which yields

J; = —D;(c) grad ¢; + ¢; F;(c, grad c)

with
Tj 1
D;(c) =1/ Z Djj and F;(c,gradc) = D;(c) Z D, J;.
Jj#i VE)

Note that D;(c) > 0 and J; becomes proportional to gradc; at points where ¢;
vanishes, i.e., the diffusive cross-effects disappear. Moreover, it is easy to check
that

divJ; = D;(c)Ac; >0 if ¢; =0 and grad¢; = 0.
To indicate a rigorous proof for the nonnegativity of solutions, consider the mod-
ified system

Oici +divI;(c) = fi(t,ct) + ¢, ducipn =0,  ¢j—g = co + ee, (37)

where T := max{r, 0} denotes the positive part. Assume that the right-hand side
f is quasi-positive and that (37) has a classical solution c¢ for all small € > 0
on a common time interval [0,7). Now suppose that, for some 4, the function
m;(t) = mingcq c§(t,y) has a first zero at tg € (0,7'). Let the minimum of ¢ (to, -)
be attained at yo and assume first that yo is an interior point. Then ¢ (to,y0) = 0,
¢S (to,yo) > 0, grad ¢S (to, yo) = 0 and Acf(tg, yo) > 0 yields a contradiction since
fito, c5(to, yo)) > 0. Here, because of the specific boundary condition and the fact
that €2 has a smooth boundary, the same argument works also if yq is a boundary
point. In the limit ¢ — 0+ we obtain a nonnegative solution for ¢ = 0, hence a
nonnegative solution of the original problem. This finishes the proof since strong
solutions are unique.

Note that non-negativity of the concentrations directly implies L°°-bounds
in the considered isobaric case due to 0 < ¢; < ¢ior = c?ot7 which is an important
first step for global existence.

The considerations in Section 5 are helpful to verify that the Maxwell-Stefan mul-
ticomponent diffusion is consistent with the second law from thermodynamics.
Indeed, (33) directly yields

1 _ 1 1
) = o (A XE 9 ) (X (]) 20,
i.e., the entropy inequality is satisfied. The latter is already well known in the

engineering literature, but with a different representation of the dissipative term
using the individual velocities; cf. [18].
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For sufficiently regular solutions and under appropriate boundary conditions
the entropy inequality can be used as follows. Let V(x) = [, G(x)dx with G the
Gibbs free energy density. Let

W(x,Vx) = 7/9 [Ji] : [Vi] dx > 0.

Then (V, W) is a Lyapunov couple, i.e.,
t
Vi(x(t)) + / W(x(s), Vx(s))ds < V(x(0)) for ¢t > 0
0

and all sufficiently regular solutions. For ideal systems this yields a priori bounds
on the quantities |V¢;|?/c;, hence, equivalently, Lo-bounds on V/c;. This type of
a priori estimates is well known in the theory of reaction-diffusion systems without
cross-diffusion; see [5], [6] and the references given there for more details.

In the present paper we considered the isobaric and isothermal case because it
allows to neglect convective transport and, hence, provides a good starting point.
The general case of a multicomponent flow is much more complicated, even in the
isothermal case. This case leads to a Navier-Stokes-Maxwell-Stefan system which
will be studied in future work.
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Abstract. We prove that, unlike in several space dimensions, there is no criti-
cal (nonlinear) diffusion coefficient for which solutions to the one-dimensional
quasilinear Smoluchowski-Poisson equation with small mass exist globally
while finite time blowup could occur for solutions with large mass.
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1. Introduction

In a previous paper [4] we investigate the influence of the diffusion coefficient a on
the life span of solutions to the one-dimensional Smoluchowski-Poisson system

Oyu = 0y (a(u)dpu — udyzv) in (0,00) x (0,1), (1.1)
0=02v+u—M in (0,00) x (0,1), (1.2)
a(u)dpu = 0,v =0 on (0,00) x {0,1}, (1.3)

1
u(0) =up >0 in (0,1), / v(t,z)dx = 0 for any ¢ € (0,00), (1.4)
0

where )
M = (ug) :/ uo(z)dx
0

denotes the mean value of ug, and uncover a fundamental difference with the quasi-
linear Smoluchowski-Poisson system in higher space dimensions. More precisely,
when the space dimension n is greater or equal to two, there is a critical diffusion

Partially supported by the German SFB Tr. 71 and by the Polish Ministry of Science and Higher
Education under grant number NN201 366937.
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ax(r) = (1 + )=/ which separates different behaviours for the quasilinear
Smoluchowski-Poisson system. Roughly speaking,

(a) if the diffusion coefficient a is stronger than a, (in the sense that a(r) >
C(1+ r)* for some a > (n — 2)/n and C > 0), then all solutions exist
globally whatever the value of the mass of the initial condition ug [5],

(b) if the diffusion coefficient a is weaker than a. (in the sense that a(r) <
C(1+7)* for some o < (n—2)/n and C > 0), then there exists for all M > 0
an initial condition ug with (up) = M for which the corresponding solution
to the quasilinear Smoluchowski-Poisson system blows up in finite time (in
the sense that [|u(t)| g (0,a) — o0 as t — T for some T € (0, 00)) [3, 5, 7],

(c) if the diffusion coefficient a behaves as a, for large values of r, solutions
starting from initial data ug with small mass (ug) exist globally while there
are initial data with large mass for which the corresponding solution to the
quasilinear Smoluchowski-Poisson system blows up in finite time [3, 7].

Observe that, in space dimension n = 2, the critical diffusion is constant and
a more precise description of the situation (c) is actually available. Namely, when
a = 1, there is a threshold mass M, such that, if (ug) < M,, the corresponding
solution is global while, for any M > M,, there are initial data with (ug) = M for
which the corresponding solution blows up in finite time [6, 7, 8]. The threshold
mass M, is known explicitly (M, = 4m) but it is worth mentioning that for radially
symmetric solutions in a ball, the threshold mass is 8m. Similar results are also
available for the quasilinear Smoluchowski-Poisson system in R, n > 2 [1, 2, 9, 10].

Most surprisingly, the above description fails to be valid in one space dimen-
sion and we prove in particular in [4] that all solutions are global for the diffusion
a(r) = (14 7)~! though it is a natural candidate to be critical. We actually iden-
tify two classes of diffusion coeflicients a in [4], one for which all solutions exist
globally as in (a) and the other for which there are solutions blowing up in finite
time starting from initial data with an arbitrary positive mass as in (b), but the
situation (c) does not seem to occur in one space dimension. The purpose of this
note is to show that the dichotomy (a) or (b) can be extended to larger classes of
diffusion, thereby extending the analysis performed in [4].

Theorem 1.1. Let the diffusion coefficient a € C*((0,00)) be a positive function.

(i) Assume first that a € L*(1,00) and one of the following assumptions is sat-
isfied, either

v:= sup r/ a(s)ds < oo, (1.5)
re(0,1) r
or there exist ¥ > 0 and o € (9/(1 + 1), 2] such that
v9:= sup r*Ta(r) <oo and Cu :=supr®a(r) < oco. (1.6)
re(0,1) r>1

For any M > 0, there exists a positive initial condition ug € C([0,1]) such
that {(ug) = M and the corresponding classical solution to (1.1)~(1.4) blows
up in finite time.
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(ii) Assume next that a ¢ L'(1,00) and consider an initial condition ug €
C([0,1])) such that ug > mog > 0 and (ug) = M for some M > 0 and
mo € (0, M). Then the corresponding classical solution to (1.1)~(1.4) exists
globally.

As already mentioned, Theorem 1.1 extends the results obtained in [4]. More
precisely, in [4, Theorem 5], the assertion (ii) of Theorem 1.1 is proved under the
additional assumption that, for each ¢ € (0, 00), there is k. > 0 for which

Re

a(r) <era(r) + for r€(0,1),

r

which roughly means that a cannot have a singularity stronger than 1/r near r = 0.
This assumption turns out to be unnecessary for global existence but nevertheless
ensures the global boundedness of the solution in L°°. Under the sole assumption
of Theorem 1.1 (ii), our proof does not exclude that the solution to (1.1)—(1.4)
becomes unbounded as ¢ — oco. Concerning Theorem 1.1 (i), it is established in [4,
Theorem 10] for a € L*(1,00) such that there is a concave function B for which

0< —rA(r) < B(r) with A(r)=-— /Oo a(s) ds, r € (0,00), (1.7)

im 20 _o. (1.8)
r—00 r

We make this criterion more explicit here by showing that the integrability of a
on (1,00) and (1.5) guarantee the existence of a concave function B satisfying
(1.7) and (1.8), see Lemma 3.1 below. Let us point out here that the assumption
(1.5) somehow means that a cannot have a singularity stronger that 1/r? near
r = 0. However, the result remains true if a has an algebraic singularity of higher
order near r = 0 which is allowed by (1.6) provided a decays suitably at infinity.
Observe that the second condition in (1.6) is compatible with the integrability of
a at infinity as 9/(1 +9) < 1.

Summarizing the outcome of Theorem 1.1, we realize that, for a given diffu-
sion coefficient a with a singularity weaker than 1/7? near r = 0, the integrability
or non-integrability of a at infinity completely determines whether we are in the
situation (a) or (b) described above and excludes the situation (c). There is thus
no critical diffusion in this class. The same comment applies to the class of diffu-
sion coefficients satisfying (1.6) with an algebraic singularity stronger than 1/r?
near r = 0. In particular there is no critical nonlinearity in the class of functions
C([0,00)) N C((0, 00)).

The paper is organized as follows: in Section 2 we recall some statements
from [4]. Section 3 is devoted to proving the finite time blowup of solutions to
(1.1)~(1.4) when a € L'(1,00). Global existence of solutions for all initial data
when a is not integrable at infinity is proved in the last section.



98 T. Cieslak and Ph. Laurencot

2. Preliminaries

In this section we summarize some results and methods introduced in [4]. Let a €
C1((0,00)) be a positive function and consider an initial condition ug € C([0, 1])
such that uwg > mo > 0 and (up) = M for some M > 0 and mgy € (0, M). By
[4, Propositions 2 and 3| there is a unique maximal classical solution (u,v) to
(1.1)—(1.4) defined on [0, Tryax) which satisfies

1
m[%nl]u(t,:c) >0, (u(t) ::/ u(t,z) de =M, and (2.1)
xe |0, 0

(w(8) ::/O o(t, z) dz = 0

for t € (0, Thax)- In addition, Tiyax = 00 or Tinax < o0 with [[u(t)| e(0,a) — o0
as t — Thax-

We next recall the approach introduced in [4] which will be used herein as
well. Owing to the positivity (2.1) and the regularity of u, the indefinite integral

Ut,x) = /OJJ u(t,z)dz, z€l0,1],

is a smooth increasing function from [0, 1] onto [0, M] for each ¢ € [0, Timax) and
has a smooth inverse F' defined by

Ut F(ty) =y,  (ty) €0, Tmnax) x [0, M]. (2.2)
Introducing f(¢,y) := 0,F (¢, y), we have
fty) ut, Fty) =1,  (Ly) € [0, Tmax) x [0, M], (2.3)

and it follows from (1.1)—(1.4) that f solves
atf:az\p(f)71+Mf7 (tvy) € (OaTmax) X (OaM)v (24)
ayf(ta 0) = 8yf(t7 M) = Oa t S (OaTmax) 9

1
0,y) = = , e (0,M), 2.6
where . .
U (r) = 2 @ < > for any r >0, U(1):=0. (2.7)
r
Moreover the conservation of mass (2.1) yields
M
ft,y)dy = F(t, M) — F(t,0)=1, t €10, Timax) - (2.8)

0
At this point, the crucial observation is that, thanks to (2.3), finite time blowup
of u is equivalent to the vanishing (or touch-down) of f in finite time. In other
words, u exists globally if the minimum of f(t) is positive for each ¢ > 0. We refer
to [4, Proposition 1] for a more detailed description.

A salient property of (1.1)—(1.4) is the existence of a Liapunov function [4,
Lemma 8] which we recall now:
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Lemma 2.1. The function
M

D)=y [ 0¥ dy+ [ W) = M () dy

is a non-increasing function of time on [0, Tmax), the function Wy being defined by

Uy(1):=0 and Vi(r):=r¥'(r) = Ly (i) , r e (0,00). (2.9)

r

3. Finite time blowup

In this section we prove the blowup assertion of Theorem 1.1. To this end we
first prove that the condition (1.5) allows us to construct a concave function B
satisfying (1.7) and (1.8) so that [4, Theorem 10] can be applied.

Lemma 3.1. Let a € C'((0,00)) be a positive function such that a € L*(1,00) and
(1.5) holds. Then there exists a concave function B € C(]0,00)) such that for all
r>0

B(r) > r/oo a(s)ds (3.1)

and
B

lim 20 o, (3.2)

r—00 T
Proof of Lemma 3.1. We construct B : [0,00) — [0,00) in the following way: we
put

b; ::/ a(s)ds, i>0,

21
and notice that {b;};>0 is a decreasing sequence converging to zero as i — co. We
next define

bor + v it rel0,2],
B(r) = bir + Zi:l(bj —bj1)2 T 4y if e (29,277 and i > 1. o
i=0
Clearly, B € C([0, OJO)) and
B'(r) = { Z(: g :2 Eg;,zQ);“) and i > 1. (34)

Hence B is concave as a consequence of the fact that the sequence {b;};>0 is
decreasing. Furthermore, for r € [0, 1], we have

B(r)y >~ > r/oo a(s)ds,
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and for r € [2¢,2+1] i > 0,

B(r) > bir :7"/

21

o0

a(s)ds > / ~ a(s)ds.

Therefore, B satisfies (3.1).
Finally, let £ > 1. If i > k + 1 and r € (2¢,2"7!], then

B(r) e 2t
r =bi+ T +Z(bjibj+1) r
7=0
1—1 k—1 .
y 2J+1
Sbi+ o+ D (b =bira) + D> (b —bj1)
j=k j=0
1 k—1
<bi+ <7 +28) (b - ij)) + (b — by)
=0

1
Sbk-&-r (7+2kbo)~
Consequently,
B
lim sup (r) <b,forallk>1.
r

r—00

Letting kK — oo, we obtain (3.2) since by — 0 as k¥ — oo and Lemma 3.1 is
proved. O

Proof of Theorem 1.1 (i), Part 1. When a belongs to L(1,00) and satisfies (1.5),
it follows from Lemma 3.1 that the conditions (1.7) and (1.8) are satisfied so that
Theorem 1.1 (i) follows from [4, Theorem 10]. O

To handle the other case, we proceed in a different way by showing an upper
bound for the function f defined in Section 2. We first observe that the function
U defined in (2.7) satisfies

\I,(r)_/l’" ;“(i) ds/lira(s) ds, re(0,00),

so that, if a € L'(1,00), ¥(r) has a finite limit ¥(0) := —||a||11(1,00) as 7 — 0. We
then define
~ ™1 1 o5}
U(r) :=¥(r) — ¥(0) :/ N < > ds = / a(s) ds, re€(0,00). (3.5)
o § § 1/r

Lemma 3.2. Let a € C1((0,00)) be a positive function such that a € L'(1,00).
There exists a positive constant upr > 0 depending only on M and a such that, for
any non-negative function g € H'(0, M) satisfying ||g|| L1 (0,m) = 1, we have

I (9) 17 0,01) < 32ML1(g) + pear, (3.6)
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with
1 ) M
£10) 1= 0, V@ o + [ (¥ - MB@) W) dy. (BT
the functions U and ¥y being defined in (2.7) and (2.9), respectively.
Proof of Lemma 3.2. We set G := ||g||(0,ar) Which is finite owing to the con-

tinuous embedding of H1(0, M) in L>(0, M). Assume first that G > 1. Then, for
€ (0, M) and z € (0, M), we have

B(g(y)) = B(g / 0, W(g(w)) dx < T(g(2)) + MY20,%(9)]| z2(0.00)

Integrating the above inequality over (0, M) with respect to z gives

M~

M) < [ Wo() dx + M0, %(0) |0
OM )

< [ toamn(eG) i)

M
+ / 1(3/1.00) (9(2)) U (9(2))dz + M0, 9(9) | 120,11,
0

o (2) O

M
< [ Ao 0(ale) d+ M0, zx00
0

M 2

where we have used the property ||g||z1(0,a) = 1 to obtain the last inequality. Tak-
ing the supremum over y € (0, M) and using the monotonicity and non-negativity
of ¥, we deduce that

- (2 MU(G
SM\I]( )+ | )+M3/2||5y‘1’(9)IIL2<o,M>v

2
#(G) <20 ( 1) + 20210, 9(0) o (38)

We next obsegve that the integrability of a at infinity also ensures that ¥;(0) >
—00, so that ¥y := ¥; — ¥4(0) is well defined and satisfies

Uy (r) = /OT sU'(s) ds < r¥(r), re(0,00). (3.9)

Since ||g||z1(0,ar) = 1, it follows from (3.8) and (3.9) that

/OM‘i/l(g) dyS/OMg‘i’(g) dy < U(G) /OMgdy

(3.10)
2 1/2
<20 ( )+ 2M 20,9 (9)] 120,01y
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We next infer from (3.10) and the non-negativity of T that

1 M
£9) 2 10,8 @ e + [ Fla) dy+ MU©) =1 [ s(g) dy
0 0

1 = (2
> 1000 + 2190) ~ 2005 () = 2015210, (0 000

2
1 1
> 10T @ 0+ (51090 0.0 - 20)

- (2
—AM? + MY(0) — 2M ¥ (M)

1 . ~ 2
L10,%(0) 0.3 — AM? + MW(0) — 200 (M) ,

whence

~ 2
10,9(6) 0,0 < 461(9) + 1601° — 4219(0) 4 830 ).

It then follows from (3.8) and the above inequality that

-/ 2\?
w6 <80 ( )+ 8010, 2(0) a0

2
< 8¥ (1\24> +32M L1 (g) 4+ 128M* — 32M*W(0) 4 64M>T <z\24)

< 32MLy(g) + ps
with

) -/ 2\
par =1+ 128M* — 32M>T(0) + 64M>¥ (M) + 8V <M) +U(0)2 - 32M¥(0).

We have thus shown Lemma 3.2 when G' = ||g|[p(,a) > 1. To complete the
proof, we finally consider the case G € [0,1] and notice that, in that case,

0<F(G) < —B(0) and Li(g) > /M B(g) dy + MU(0) > MU(0),

since ¥; < 0 in (0,1) and U > 0. Consequently,
U(G)? < W(0)? = 32MT(0) + ¥(0)2 — 32M U (0) < 32M L1 (g) + par,
and the proof of Lemma 3.2 is complete. g

As an obvious consequence of Lemmas 2.1 and 3.2 we have the following
result:

Corollary 3.3. Let a € C'((0,00)) be a positive function such that a € L'(1,00).
Fort € [0, Twax) and y € [0, M], we have

0< U(f(t,y) < (32M max {L1(fo),0} + par) "/
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Proof of Corollary 3.3. Clearly

Li(f(t)) = L1(t) < L1(0) = L1(fo) < max{L1(fo),0}

for t € [0, Tinax) by Lemma 2.1 and Corollary 3.3 readily follows from Lemma 3.2.
O

Remark 3.4. Corollary 3.3 provides an L*°-bound on f only if ¥(r) — oo as
r — oo, that is, if a & L'(0,1). In that case, it gives a positive lower bound for u
by (2.3).

We next turn to the proof of the second part of Theorem 1.1 for which we
develop further the arguments from [4, Theorem 10].

Proof of Theorem 1.1 (i), Part 2. Assume now that a € L(1,00) and satisfies
(1.6). We fix M >0, ¢ > 2, and €7 € (0,1) such that

) 1 * 1
q> max{3 + 9, 5t 3 } and ala+1) / a(s) ds < o (3.11)
@ 1

(W+1)—=9 M2 Jent
the existence of €); being guaranteed by the integrability of a at infinity.
For
§e (O,min {1,2M, (2M)_1/q}) 7 (3.12)
we put
2(1 — Mo
pol) = 20N Gy vz a0,y (313)
Then
M 2(1—Ms7) 2
fow) dy =1, | foll o (o,0r) = 5 +907< 5 (3.14)
0

Denoting the corresponding solution to (2.4)—(2.6) by f we next introduce

M
mg(t) ::/O yif(t,y) dy, te[0,Thax),
and we have
(0) < 2(1—Més1) Mt
m =
! (g+1)(g+2) q+1

o (2 + (¢ + 2)Mq+1>
P\ @D+ 2)
It follows from (2.4), (2.5), and the non-negativity of ¥ that

> 59 < 0161 (3.15)

with

dmyq Mo i s Mot
_— U(f) dy + Mmg —

Ut /O Yoy S) dy+ Mmg =
dmy, Mo Mat!
<g(g—1 2U(f) dy + Mmg —

g Sl )/O Yt dy + Mmg =

(3.16)
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We shall now estimate the integral on the right-hand side of (3.16): to this end,
we split the domain of integration into three parts which we handle differently. As
a preliminary step, we notice that, by (1.6),

U(r) <y9r? and W(r) < 19’:1_9 1 Pt <y P e > 1 (3.17)

We next define
Ko := (32M max {L1(fo), 0} + puar) /277 > 1,
and consider (t,y) € [0, Tiax) % [0, M].
o If f(t,y) € (0,ep], it follows from (3.11) and the monotonicity of ¥ that

. B 00 M2
(7)) < Few) = | s, T (3.18)
o If f(t,y) € (ear, Ko), then (3.17) and the monotonicity of ¥ yield
F _U(f(ty) U (Ko) — ¥(0)
< WRYT -0 fty).
EM
(3.19)
o If f(t,y) > Ko, Corollary 3.3 ensures that
: i 942
W) = "D pey < 0T pe <KV sy, (320)

f(tvy) KO

Consequently, recalling that Ky > 1 and ¥(0) < 0, we deduce from (3.16) and
(3.18)—(3.20) that

d M -
o <ata=1) [y Lo (1) dy

M ~
talg—1) / YU 1y ) (f) dy

M . Mq+1
Falg—1) / YU (F) Ly o) () dy + Mg —
0 q+1

(q—1)M? /M 2 YK — 0 (0) /M s
< 2 gy +q(q— 1 =2¢ g
S o) Y y+qlg—1) s ; y? o f dy

Mt

M
+qlg—1 K’”l/ =2 f dy + Mm, —
q(q VK A yi o f dy 7 g+1

9+1 M —2 Mqul
<0y K / y? fdy—l—Mmq—2(q+1),
0
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with C2 := q(q¢ — 1)(y9 — ¥(0) + epr)/enr. We next use Holder’s inequality and
(2.8) to conclude that
dm, Matt
dt 2q+1)°

It remains to estimate Ky and in fact £1(fo). Since ¥ is negative on (0,1) and ¥y
is bounded from below by ¥y (0), it follows from (3.12) and (3.13) that

< Cy Ky m{@/9 + Mm, — (3.21)

5 4
Lilho) < gy (=259 [ WGP dy+ [ () dy— AP0 (0)
5 0 0
4 5
<o | WGOR v+ [ i) ay- 22,0

On the one hand, we infer from (3.14), (3.17), and the monotonicity of ¥ that

5
2
/ U(fo) dy <o ¥ (5) < g2t 577
0
On the other hand, we have
1—64

2
201 — mon)® =0

fo(y) > 1 for ye0,y5] with ys:=0—
f()(y) € [5(171} for ye [y&(ﬂv
so that, if y € [0, ys],

U (fo(y)? < v3fo(y)?” < ywa? 672
by (3.14) and (3.17), while, if y € (ys, 9],

/ 2 1 1 ? 2 2(a—2) 2 ¢—2q(2—a)
ViAW) < fo(y)4a (fo(y)> < Coc foly) <0 ?

by (1.6) since o < 2. Therefore,

2 s )
L1(fo) < st {/ ~gd? 52 dy+/ 2 §--a) g
0 s

+ 7192194’1 57’19 _ M2\I’1(0>

1—-64
< 419-‘,—1 5—3—219 2 —2-2¢(2—a)
=70 T C% 901 sy

+ 27t 57— A2 (0)
< qpd?T 62Ty 02 5727200 00t 570 M2 (0)
<Oy <5—2(2+19) +5—2—2q(2—a))
with C3 := v94"+2 + C% — M?V¥,(0). Therefore,
K <oy (5—(19+1) +5—(19+1)<1+q<2—a))/(19+2)) (3.22)

for some constant Cy > 0 depending only on M and a.
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For Cy := CyCy we define

—(¥+1) —(@0+1)(1+q(2—a))/(9+2) (a—2)/4q Mt
As(mg) :==C5 (5 +46 ) mg JrMmqu(q—i—l)'
Combining (3.21) and (3.22) yields
d
"< Ag(mg) (3.23)

dt

for t € [0, Timax). At this point, we note that the monotonicity of As and (3.23)
imply that As(1my(6)) < As(mg(0)) for ¢ € [0, Toax) if As(mg(0)) < 0, the latter
condition being satisfied for § small enough since

- Mt
A <a=2)/q §a—3=7 1 5(a(a(@+1)=9)=30-5)/(9+2)\ L_p 10, 59—
s(mg(0) <CUT2Vay (517570 4 )M
by (3.11) and (3.15).
Summarizing, we have shown that, if § satisfies (3.12) and
C(q72)/qc5 <6q—3—’l9+6(q((x(19+1)—19)—319—5)/(19+2)) + MO, 67 < o , (3.24)
! 2(¢+1)
we have
dmy
") < As(mg(£) < As(mg(0)) <O, ¢ € [0, Tonar),

an inequality which can only be true on a finite time interval owing to the non-
negativity of my. Therefore, Tihax < 00 in that case and, for any M > 0, we have
found an initial condition ug given by (2.2), (2.3), and (3.13) (for § small enough
according to the above analysis) such that (up) = M and the first component u of
the corresponding solution to (1.1)—(1.4) blows up in finite time. O

4. Global existence

The proof of Theorem 1.1 (ii) also relies on the study of the function L; defined in
Lemma 2.1. For that purpose, we first recall another property from [4]. We define
the function E; by

1 M
Bu(h) = 10,hll a0 + | Lo (b)) hw) dy, b€ HYO.MD), (4.)
0
for which we have the following lower bound.

Lemma 4.1. [4, Lemma 9] For M > 0, we have

7 (4.2)

1 1
B> | 10y lezon) — 22° = | ()

and

. 1
12l 1o,y < Md/QuathM(o,M) +M “I’ (M)‘ (4.3)
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for every h € H*(0, M) satisfying

M
| vimw a=1. (1.4)

We now show that the non-integrability of a at infinity allows us to show
that Thax = 00. To this end, we use the alternative formulation (2.4)—(2.6) as in
[4] and prove that f cannot vanish in finite time.

Proof of Theorem 1.1 (ii). Owing to (2.6) and the assumptions made on ug, we
have

0< foly) < n}bo . y€e[0,M].

Introducing £(¢) := M~! + eM! (mg' — M~1) for t > 0 we have

1
8t2—6§\P(2)—MZ+1:M<Z—M> - MY +1=0,

1

Z(0> = mo > fO(y)’ ye (0’M>>

and the comparison principle warrants that
flty) <), (ty) € [0, Tmax) x [0, M]. (4.5)

We now follow the strategy of the proof of [4, Theorem 5] and first use the
properties of ¥, ¥y, and (4.5) to estimate the function L; (defined in Lemma 2.1)
from below. Indeed, since ¥ > 0 on (1,00) and ¥; <0 on (0,1) we arrive at

L4(0) > La(t) = ) 19,97 ()30, a0
M
[ Lo () = M 00) dy

+ / 1100y (F (6, 1)) (@ — MU)(f(t1) dy

| V

1 9 M
Hay‘l’(f(t))\lm 0,M) +/0 L oo0)(W(fEy))U(f(ty) dy

—M/ (oo (P )T (f(t,9)) dy
> E1 MZ\I] (Z( ))a

where E} is defined in (4.1) and we have used (4.5) to obtain the last inequality.
Next, by Lemma 4.1 and (2.8), we have

140) > {10, B N0y~ 0 = M [ (1) = 3293200,
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whence

L1020 0py < La(0) + M° +M‘\I/ ( ! )‘ L MROL(S(). (46)

M

Using again Lemma 4.1, we have

1
N CF DN 0,0y < MP2 182 (F O 20,00 + M "I’ (M)

< 2M3/? (Ll(O) +M*+ M ’qf <z\14> ’ +M2\I!1(Z(t)))1/2 +M‘\IJ (]\14)‘ .

Combining the previous inequality with (4.6) and the Poincaré inequality leads us
to the bound

N 0,00y < Co(T), £ € [0, TTN0, Thnax) , (4.7)

for all T > 0. Together with the continuous embedding of H(0, M) in L>(0, M),
(4.7) gives

—C7(T) < ¥(f(t,y) < Co(T),  (ty) € ([0,TIN 0, Tinax)) x [0, M].
Since
hn}) U(r) = —o0
due to a € L*(1,00), the above lower bound on W(f) ensures that f(t) cannot

vanish in finite time, from which Theorem 1.1 (ii) follows as already discussed in
Section 2. O
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Abstract. We give some perturbation theorems for multivalued linear opera-
tors in a Banach space. Two different approaches are suggested: the resolvent
approach and the modified resolvent approach. The results allow us to handle
degenerate abstract Cauchy problems (inclusions). A very wide application of
obtained abstract results to initial boundary value problems for degenerate
parabolic (elliptic-parabolic) equations with lower-order terms is studied. In
particular, integro-differential equations have been considered too.
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1. Introduction

Degenerate evolution equations in Banach spaces and their applications to par-
tial differential equations constitute a very wide field of mathematical research.
Many different methods exist to handle this subject (see, e.g., [11]). Two different
approaches were introduced in [6]. The first one relates to multivalued linear opera-
tors, while the second uses a modified resolvent and operational method, extending
G. Da Prato and P. Grisvard’s approach (see also [7] for applications to nonlinear
equations). In whichever case, a basic role is played by the resolvent estimates of
the operators involved. A number of applications to singular linear parabolic dif-
ferential equations has been given in [4], [5], which improved the previous results in
[8] and [6]. In particular, [5] deals directly with second-order differential operators
with lower-order terms.

The second author is a member of G.N.A.M.P.A. and the I.N.D.A.M.; the third author is sup-
ported by LN.D.A.M. and the Israel Ministry of Absorption.
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In this paper we obtain the relevant perturbation theorems for such equations.
To the best of our knowledge, such perturbation results have not appeared in the
existing literature.

More precisely, Section 2 describes the resolvent approach of perturbing a
multivalued linear operator by another (possibly) multivalued linear operator and
satisfying some estimate. This goal is reached by some arguments from [1]. Section
3 deals with the modified resolvent approach which is, on the other hand, strictly
related to the first type. Section 4 furnishes a large number of concrete examples
from partial differential equations to which the developed abstract theory applies.
We note that in Examples 5-7, an alternative approach to certain equations of [5],
related to gradient estimates, is indicated.

2. Resolvent approach

Denote by X, Y Banach spaces, by £(X,Y") a space of all bounded linear operators
from X into Y, by ML(X,Y) a space of all multivalued linear operators from X
into Y, by A, B multivalued linear operators from ML(X,Y). If X = Y then
denote L(X) := L(X,Y) and ML(X) := ML(X,Y). The norm of Au is defined
as follows

|Au|| := inf{||y|ly : v € Au}, Vu € D(A),
and

HAHML(X,Y) = sup |[[Aully.
lullx <1

By Ap we denote a selection (or a single-valued linear part) of A4, i.e.,
A=Ay +A—- A, D(Ap) = D(A).

Obviously,
Au = Apu + A(0), Yu € D(A).
Here and everywhere, A(0) stands for AO.

Definition 2.1. Given an operator A € ML(X). By p(A) C C we denote the
resolvent set of A, i.e., A € p(A) if and only if the inverse operator (\] — A)~! is a
linear bounded single-valued operator defined on the whole space X. In this case
we denote R(\, A) := (A\I — A)~! and call it the resolvent of A.

Let E be a linear subspace of X. Denote by Pg the multivalued linear projec-
tion given by Pgx := E for any € X. Thus the graph of Pg, G(Pg) = X x E. Ob-
viously, the kernel of Pg, N(Pg) = X and Pg(0) = E. Next, define Iy € ML(X)
by Ig := I + Pg. Then, we have a series of simple facts: N(Ig) = E, the image
R(Ig)=X,Ig(0)=FE,G(Ilg)={(z,z+¢):x € X,e € E}, Ipx =z + E, for all
z e X, |Ig| = sup ”ﬂ’;ﬁ'” = sup H“"l;f” <1 (since |[Igz|| = ||+ E| = inf{[|z+y] :

x#0 z#0
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y € E}), and the minimum modulus (cf. [1, I1.2.2])

oo, if F is dense in X, 0o, if E =X,
YUE) = =

122 Hi‘igu, otherwise 1, ifE+#X.

Proposition 2.2. Let S € ML(X) satisfy D(S) = X and ||S|| < 1. Then, the
operator I — S has a dense range.

Proof. Write E := S(0) (it is known, [1, 1.2.4], that S(0) is a linear subspace of
X). Since y(Ig) > 0, I is open (see [1, I1.3.2(b)]). Also, R(Ig) = X, S(0) = E =
I5(0), and ||S|| < 1 <~(Ig). Hence, by [1, II1.7.5], Iy — S has a dense range. Since
I—S=1Ig—S, the result follows. O

Obviously, if X is finite dimensional, then D((I — S)~1) = X.

Proposition 2.3. Let S € ML(X) satisfy D(S) = X and ||S|| < 1, and let S(0) be
closed. Then, (I —S)~* € ML(X) is continuous if and only if R(I —S) is closed.

Proof. By Proposition 2.2, if R(I —5) is closed then I — S is surjective, therefore,
D((I — S)™') = X which implies, by the closed graph theorem (see [1, 111.4.2]),
that (I —S)~! is continuous. Conversely, if (I — S)~! is continuous then I — S is
open (see [1, I1.3.1]) and, by [1, II1.4.2(b)], R(I — S) is closed. O

Let us now prove the main proposition.

Proposition 2.4. Let S € ML(X) satisfy D(S) = X and ||S|| < 1, and let S(0) be
closed. Then, (I —S)~' € ML(X) is everywhere defined and continuous.

Proof. In order to prove that the operator (I —S)~! is continuous, it is enough,
by Proposition 2.3, to show that R(I — S) is closed. By [1, III.4.4], R(I — S) is
closed if and only if the range of the adjoint R((I —S)’) is closed. By [1, III.1.5(b)],
(I —S) =1-5" Thus, we are going to show that R(I —.S’) is closed.

By [1, I1.3.2(a)] and [1, ITI.1.13], the adjoint operator S’ is continuous. Then,
by [1, II1.4.2(a)], D(S’) is a closed subspace of X'. Since D(S) = X then, by [1,
II1.1.4(b)], S’ is single-valued. By [1, II1.1.13], ||S"]] < ||S|| < 1. Denote ||S'|| =
1 —d, where 0 < d < 1. Some trivial calculations show that the operator I — S’
is injective. Indeed, let (I —S")a’ = 0. Then, 0 = ||(I — S")z'|| > ||2'|| — ||S’2'|| >
ll='|| = [I1S"1|=']] = d||’|| > 0, i.e., ' = 0. Let us now show that I — S’ is open. By

[1,11.2.1], since I — S is injective, y(I —S') = inf 10=59l 5 45 0. This
2/#0,5'€D(S’) [l

proves, by [1, I1.3.2(b)], that I — S’ is open as a map from D(I — S’) = D(S’) onto
R(I — 5'), i.e., the inverse (I — S’)~! is continuous, by [1, I1.3.1] and, therefore,
D(S’) and R(I —S’) are isomorphic. This implies, in turn, that R(I —S’) is closed
since D(S”) is closed. Therefore, as mentioned above, R(I — 5) is closed and, by
Proposition 2.3, the operator (I — S)~! is continuous.

Combining Proposition 2.2 with the fact that R(I — S) is closed, we conclude
that R( — S) = X. O
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Note that for I — S to be only surjective one should not claim that S(0) is
closed or ||S]| < 1. Let us give some other sufficient conditions for that.

Proposition 2.5. If S € ML(X) (with D(S) = X) has a continuous selection Sy
such that || So|| <1 then I — S is surjective.

Proof. Tt ||Sp|| < 1 then I — Sy is surjective (from the single-valued theory). On
the other hand, I — S=1—-Sy+S5— S5, ie., (I -9z = (I— Sy)z+ S(0) for all
x € X. Hence, R(I —S) D R(I—Sp) =X. O

Proposition 2.6. If S € ML(X) (with D(S) = X), ||S|| < 1, and there exists a
linear projection, with the norm equal to 1, defined on R(S) with kernel S(0), then
I — S is surjective.

Proof. Let P be the norm-1 projection and let Sy = PS. Then, by [1, 11.3.13],
S0l = [|1PS|| < | P|IIS]| = ||S]| < 1. Now apply Proposition 2.5. O

Note that if X is a Hilbert space then there exists a norm-1 linear projection
defined on R(S) with kernel S(0).
We now pass to the main perturbation theorems.

Theorem 2.7. Let the following conditions be satisfied:
1. A€ ML(X) and, for some n € (0,1],

|R(X, A)|| < C|A™",  for sufficiently large X € T,

where I' is an unbounded set of the complex plane;
2. Be ML(X), D(B) D D(A), B(0) is closed, and, for any € > 0, there exists
C(g) > 0 such that

|Bull < el Aul"[[ull*~" + C(e)Jull, Vu € D(A).

Then, for every sufficiently large X\ € T, the multivalued linear operator (A — A —
B)~1! is defined on the whole space X and

(AL —A—DB) Y| <CIN™", for sufficiently large X € T

Proof. By, e.g., [6, Theorem 1.7, p. 24], —I + AR(A\, A) C AR()\, A), VA € p(A).
Then, for sufficiently large A € T, by condition (1),

IAR(A, Al < 1+ [N[IR(Y, A)]| < CAI™.
Hence, by conditions 1 and 2, for sufficiently large A € I' and for any v € X,
IBR(X, Aol < el AR\, A)u[|| R(X, A)ol|'™7 + C(e)|R(X, Ao
< (eC+ CENvl-

Therefore,
IBR(X A)|| <q<1, for sufficiently large A € T.
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Then, by Proposition 2.4, the multivalued linear operator (I — BR(\, A))~! is ev-
erywhere defined and continuous for the same A, i.e., by [1, I1.3.2(a)], the operator
has a bounded norm

(I = BR(\,A))™|| < C, for sufficiently large A € T. (2.1)

Further, since AI — A is injective (see, e.g., [1, Exercise VI.1.2, p. 220]) then,
by, e.g., [1, formula 1.1.3/(9), p. 3] and [9, Proposition A.1.1/(e), p. 281], on D(A),

(I-BRMA)YMN —A) CcAM—A—BRMNA)MN —A)=X—-A-B. (22)
Then, by the definition of the inverse operator of multivalued linear operators (see,
e.g, [, p. 1))

[(I — BRI\ A)N —A))Pc(M—-A-B)™h

From this, taking into account, e.g., [9, Proposition A.1.1/(a), p. 280], we get, for
sufficiently large A € T,

R\, A)I —BR\A) Pc(M—-A-B)™h (2.3)

In fact, the left-hand side operator is defined on the whole space X, which means
that the image of the left-hand side operator in (2.2) is X, i.e., also the image
R(M — A— B) = X. This says that the operator (A\I — A — B)~! is defined on the
whole space X for sufficiently large A € I'. On the other hand, by (2.1), (2.3), [1,
Corollary 11.3.13, p. 38], and condition 1, we get

I(AM = A= B)H < [[R(\ A (1 = BR(Y, A) ™|
< C|A|7",  for sufficiently large A € T. O
Conditions of Theorem 2.7 do not guarantee that the operator (A\I —A—B)~!

is single valued, that is why we could not say that (\l — A— B)~! = R(\, A+ B).
Let us now formulate the results which state that (Al — A — B)™! = R(\, A+ B).

Theorem 2.8. Let the following conditions be satisfied:
1. Ae ML(X) and, for some n € (0,1],
|R(N, A)|| < CIN™",  for sufficiently large X € T,

where I' is an unbounded set of the complex plane;
2. Be ML(X), D(B) D D(A), B(0) is closed, and, for any € > 0, there exists
C(e) > 0 such that

[Bull < el Au||"|[ul|'~" + C(e)|Jull, Yu € D(A);
3. For sufficiently large \ € T, the operator (I — R(\, A)B)~! is single valued.
Then, every sufficiently large A € T belongs to p(A + B) and
IR\, A+ B)|| < C|N™",  for sufficiently large A € T.
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Proof. From I C (M — A)R(\, A) and [9, Proposition A.1.1/(d) and (e), pp.280-
281], for sufficiently large A € T,

M —A—BCA—A— (A — AR\ A)B C (M — A)(I — R\, A)B).

Then, by the definition of the inverse operator of multivalued linear operators (see,
e.g., [1, p.1]) and, e.g., [9, Proposition A.1.1/(a), p.280],

(M —A—-B)™' c(I-R(\AB) R\ A), (2.4)

for the same A. Since the right-hand side operator is single valued, for sufficiently
large A € ', then (A\] — A — B)~! is also single valued for the same A. Combining
this with the result of Theorem 2.7, we get that these A belong to p(A + B) and
(M —A-B)"'=R(\ A+ B). O

Theorem 2.9. Let the following conditions be satisfied:
1. A€ ML(X) and, for some n € (0,1],

|R(X, A)|| < C|A|™",  for sufficiently large X € T,

where I' is an unbounded set of the complex plane;
2. B is a single valued linear operator in X, D(B) D D(A), and, for any e > 0,
there exists C(e) > 0 such that

|Bull < el Aul"[[ull*~" + C(e)Jull, Vu € D(A);

3. There exists a Banach space Z, D(A) C Z C D(B), such that, for some
0 € (0,1],

RN, A)llzix,z) < CIN7Y,  for sufficiently large X € T.
Then, every sufficiently large A € T belongs to p(A + B) and
|RAN, A+ B)|| < C|N7",  for sufficiently large A € T.

Proof. From conditions 1 and 2 we get conditions 1 and 2 of Theorem 2.7. There-
fore, the result of Theorem 2.7 is true. Thus, in order to get the assertion of
Theorem 2.9, it is now enough to show that the operator (A — A — B)~! is single
valued.

Since B is single valued then, for sufficiently large A € T', R(\, A)B is also
single valued. On the other hand, by condition 3,

IR(X, A)Bllz(z) < IR\ Al 2x,2) || Bllez,x) < CIANT8 < 1,

for sufficiently large A € T'. Therefore, I — R(\, A)B has a bounded single valued
inverse operator (I — R(\, A)B)~! in £(Z). Then, since the image R((A\] — A —
B)™') = D(A) and the image R(R(\, A)) = D(A), we obtain, by (2.4), that
the operator (A\I — A — B)~! is single valued (in fact, (\l — A — B)™! = (I —
R(\, A)B)1R(\, A), for sufficiently large A € T'). O
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Remark 2.10. The same conclusion, as in Theorem 2.9, holds if instead of the
inequality in condition 2 it is assumed that, for some o > 0,

|IBR(A, A)|| < CIA77, for sufficiently large A € T. (2.5)

The proof is the same as that of Theorem 2.9, where the inequality in condition
2 is needed in order to apply Theorem 2.7. In turn, the inequality in Theorem 2.7
has been only used for the proving that | BR(X, A)|| < ¢ < 1, for sufficiently large
A € T'. The latter inequality is now obvious due to (2.5).

3. Modified resolvent approach

Definition 3.1. Let M and L be two single-valued, closed linear operators in a
Banach space X, D(L) C D(M), 0 € p(L). The set {A € C : AM — L has a single-
valued and bounded inverse defined on X} is called the M modified resolvent set
of L (or simply the M resolvent set of L) and is denoted by pps(L). The bounded
operator (AM — L)~! is called the M modified resolvent of L (or simply the M
resolvent of L).

Theorem 3.2. Let the following conditions be satisfied:

1. Operators M(t) and L(t) are single valued, closed linear operators in a Ba-
nach space X which depend on a parameter t, D(L(t)) C D(M(t)), every
AeT, [N = oo, belongs to prry(L(t)), and, for some n € (0,1],

| ME)AM(t) — L))" | < CIA|™",  for sufficiently large X € T,

uniformly on t, where I" is an unbounded set of the complex plane;
2. An operator L1 (t) is a single-valued, closed linear operator in X, D(L(t)) C
D(L1(t)) and, for any e > 0,

ILa(8yull < el L@u"IM ()ull'=" + Ce) M (#)ull, Vu e D(L(Y)),

uniformly on t.

Then, every sufficiently large X € T' belongs to pary (L(t) + L1(t)) and
[ME)[AM(t) — (L(t) + L1 ()] < CIA|™",  for sufficiently large A € T,

uniformly on t.
Proof. Since, for A € par)(L(1)),

LE)AM () = L(t) ™" = (=(AM(t) = L(£)) + AM () (AM (t) — L(t)) ™"

= T+ AM(t)AM(t) — L(t)) "
then, by condition 1, for sufficiently large A € ', we have
ILE)AM(t) = L)~ < CIAI™,
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uniformly on ¢. Hence, by conditions 1 and 2, for sufficiently large A € T" and for
any v € X,
IL1(E)AM (t) = L(t)) " "ol| < el LE)(AM (t) — L(1) ™ o[ M () (AM (2)
— L(&))"Mol' 7T+ Cle) IM () (AM(t) — L(1) ™ o
< (eC+CE)IATvl,
uniformly on ¢. Therefore,
|Li(&)(AM(t) — L(t))"!| < g < 1, for sufficiently large A € T,

uniformly on ¢, which implies, for the same A,

I = La()(AM(2) — L(t)) 717 < C, (3.1)

uniformly on ¢.
On the other hand, for A € par¢) (L(t)),

AM(E) = (L) + La(9)) = [T — L () AM(®) — L) JOM () - L(1)),
i.e., for sufficiently large A € T,
MM (t) = (L(t) + Lo ($)] 7" = AM(t) = L(1) THI = La(t)AM (t) — L(t)) ']~}

M ($)[AM (8) — (L(#) + La ()]~
= M(#)(AM(t) — L))~ [ — Li())(AM (1) — L(t)) ']~
which, by condition 1 and inequality (3.1), completes the proof. O

Remark 3.3. The same conclusion, as in Theorem 3, holds if instead of condition (2)
it is assumed that L;(t) is a single-valued, closed linear operator in X, D(L(t)) C
D(L+(t)), and, for some o > 0,

Ly (t)(AM(t) — L(t)) | < C|A|77, for sufficiently large A € T,
uniformly on ¢. In this case, the proof of (3.1) is obvious since

|Li(&)(AM(t) — L(t))"!| < g < 1, for sufficiently large A € T,
uniformly on ¢.

Corollary 3.4. Let the following conditions be satisfied:

1. Operators M(t) and L(t) are single valued, closed linear operators in a Ba-
nach space X which depend on a parameter t, D(L(t)) C D(M(t)), every
sufficiently large X € T' belongs to parr)(L(t)), and, for some n € (0,1],

[MEAME) — L) | < CIA™",  for sufficiently large X € T,

uniformly on t, where I' is an unbounded set of the complex plane;
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2. An operator Ly (t) is a single-valued, closed linear operator in X, D(L(t)) C
D(L+(t)) and, for some p € [0,1n),

IZ1(yull < COUIL@Eull* | M @ull' =" + M (E)ull),  Yu € D(L()),
uniformly on t.
Then, every sufficiently large A € T' belongs to pary(L(t) + L1(t)) and
| ME)AM(t) — (L(t) + L))" < CIA™",  for sufficiently large A € T,
uniformly on t.
Proof. By the Young inequality, we have
Lyl M @l |7 = (| M (| LCEul | M (E)ul 7"
< [M@ul =" LEul|” + CE)I|M (Eyull?)
< el L@l M (E)ull' ™" + C(e)l| M (t)ul,
which implies that the assertion follows from Theorem 3.2. O

Theorem 3.5. Let M(t) and L(t) be single valued, closed linear operators in a
Banach space X which depend on a parameter t, D(L(t)) C D(M(t)), and

M) AM(t) — L) M| < KN, arg\ =, X sufficiently large,
uniformly on t.
Then, for some o > 0,
|ME)AM ) — L) M| < CIANTY,  Jargh — ¢| < a, A sufficiently large,
uniformly on t.
Proof. If i € parey(L(t)), then
AM(t) = L(t) = pM(t) — L(t) + (A — p) M(?)
= [ = (n = NM ) (uM () — L)) |(uM(t) = L(1)).
Then, for |A — p| < [M()(nM(t) — L()) "],
M(t)(AM(t) = L(t) ™"
= M(t)(uM(t) = L)) 7' = (= MM (&) (uM (t) — L(t)) 717,
M(H)(AM(t) — L(1)) ™ .
= M(t)(uM () = L(t)) 7" D [M(#)(uM () = L(1)) 71" (n = N)*.
k=0
Fix ¢ < 1. Therefore, in the circle |A — s| < K~!|s|g, with a center point s €

pa(t)(L(t)) on args = ¢ and s is large enough, by the condition of the theorem,

we have
oo

1M () (AM () = L(£)7H] < Kls| ™t Y0 (K sl ™)K sl)* = Ks| 7 (1 - )7

k=0
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uniformly on ¢. Since K ~![s|g > |\ — s| > |A| — |s], then |s|} < (K~1g+ 1)|A\|7L.
So, in the circle |\ — s| < K~1|s|q, for sufficiently large s on arg s = ¢, we have

MMM () — L) M < K(1— )" (K g+ DA™ < O,

uniformly on ¢. Since the circles |\ — s| < K ~![s|q cover the angle |arg A — ¢| < o,
where o = arctan(K ~!q), then, for a = arctan(K ~1q), the necessary estimate is
fulfilled. 0

4. Application to PDEs

We give various examples of possible applications of the obtained abstract pertur-
bation results.

Example 1. Consider an initial boundary value problem for an equation of parabolic
type in the domain [0,1] x [0,T]

2 OU»L F T v(pji(x),t
aat{(l_aa2) v(z, t)} ( t)+Zj OZZ 1 bji(2) (SOZI;;() )

+Z] ofo ,yagz(jjt)derf(x,t), 0<z<1l 0<t<T,

B v 8%v (41)
v(0,t) =v(l,t) = (() t)=9,2(1,t)=0, 0<t<T,

<1 - a?;) v(z,0) =ug(z), 0<z<I,

where bj;(z) € L?(0,1), p;i(x) are functions mapping the segment [0,1] into
itself and belong to C[0,1], B;(x,y) are kernels such that, for some o > 1,
Jo 1Bi(w,y)l7dy + Jy 1B (z,y)|dw < C.

Denoting X := L?(0,1), M := I — 2 with D(M) := H?(0,1) N H}(0,1),
L:= -, with D(L) := H*(0,1;u(0) = (1) = u”(0) = u”(1) = 0), and

L —Zzbﬂ u (i (a +Z/ w9 (y)dy

7=0 =1

with D(L1) = D(L), and, using [6, Example 3.1, p. 73], [12, Examples 3 and 4, p.
201], [12, Lemma 1.2.8/3], [6, Theorem 3.8], and Theorem 3.2 (with n = 1), one
can get that for any f € C*([0,T]; L(0,1)), 0 < s (< 1), and any ug € L?*(0,1),
there exists a unique strict solution v(z,t) of problem (4.1) such that

Mv e CY((0,T]; L*(0,1)), Lv, Lyv € C((0,T]; L*(0,1))
provided that Mv(z,0) = ug(z) is understood in the seminorm sense, i.e.,
[ M(yM — L) (Mov(-,t) = uo(-))ll 20,1y — 0 as t — 0,

where v > 0 is sufficiently large.
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Example 2. Modify now the boundary conditions in (4.1) and consider, e.g., the
following problem

2 to(z, o(x,
a1 - ) vt} = =25 2 b))
+322 0 fy Bilw,y) PV dy + f(x,t), 0<z<1,0<t<T,
v(0,t) = v(1,t) = 9°(0,¢) = 3°(1,t) =0, 0<t<T,
(1 - 88;2) v(z,0) =up(x), 0<z<l1,

where bj(x) € L>(0,1), Bj(z,y) € L?((0,1) x (0,1)).
d

(4.2)

Denotmg X = L*0,1), M := I — %, with D(M) := H?(0,1) N H}(0,1),
L= — & with D(L) := HY0, 1;u(0) = u(1 ) = w(0) = /(1) = 0), and
Lyu = ij(x) Z ul? (y)dy
=0 -0

with D(L;) = D(M), and, using 6, Example 3.2, p. 73], [6, Theorem 3.8], and
Corollary 3.4 (with n = J and any p € [0, })), one can get a similar result as in
the previous example also for problem (4.2). Note only that, for any v € D(L),
obviously

[ L1ullp20,1) < Cllullm2(0,1) < Cllullys 40 1)HUHH2 0,1)
< C(ILullao0y + Nl 2o 1M ull 2
< C(ILullfa gy + 1Ml oo M ull 2 4
< C(||Lull: 01)HMUHL201)+||Mu||L2(01 ).

Example 3. Consider now an initial boundary value problem for an equation of
parabolic type in the domain [0, {7] x [0, T

A (1 &) o0} = 7550 ate) 7 (vl 0 + 750 ds
+f(x,t), O<z<tm, O0<t<T,

v(0,t) =v(lm,t) =0, 0<t<T,

(1 + a‘?;) v(z,0) = (1 + 8‘9;) vo(x), 0<x<{m,

where £ is a positive integer, a(z) is a continuous function on [0, 7).

Denoting X := C([0, £x]; u(0) = u(fr) = 0) and M := I + &, with D(M) :=
C?([0, £x];u(0) = u(fr) = u”(0) = u”(¢r) = 0), and, using [6, Example 3.10, p.
86], the corresponding calculations in [6, p. 85], [6, Theorem 3.8], and Corollary
3.4 (with n =1 and p = 0), one can get that for any f € C*([0,T]; X),0< s <1,
and any vy € D(M), there exists a unique strict solution v(z,t) of problem (4.3)
such that

(4.3)

Mv € C*((0,T]; X)
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provided that Mwv(z,0) = Muvg(z) is understood in the seminorm sense, i.e.,
IM(yM + D) TIM (u(-,t) = vo()lx =0 as t— 0,

where v > 0 is sufficiently large.

Example 4. Consider an initial value problem

{ @ (b)) = Lo(t) + Li(t)v(t) — av(t) + f(t), 0<t<T,

lim, o+ (tév(t)) =0. (44)

Theorem 4.1. Let the following conditions be satisfied:

1. The operator L is a single-valued, closed linear operator in a Banach space
X, D(L) is dense in X, the resolvent set p(L) contains the region {\ € C :
ReX > —c(|SmA| + 1)}, and, for these A,

C
R\ L) < ,
LESATEN
for some positive constants ¢ and C;

2. The operator Li(t), for any t € [0,T], is a single-valued, closed linear op-
erator in X, D(L) C D(Ly(t)), L1(-) € C*#([0,T]; B(D(L), X)), where
w=min{l — 1,1}, and, for any e > 0,

L1 ()ul| < el Lul| + C(e)||ull, Vu e D(L),
uniformly on t € [0,T);
. €>1;a=01if Li1(t) =0, otherwise a > 0 is sufficiently large;
4. feC7([0,T]; X) with 0 < o < p(1 — }).
Then, there exists a unique strict solution of (4.4) such that t'v € C*+° ([0, T7;
X) and v € C?([0,T); D(L)). Moreover, for the solution, lim+ L (t(t) = 0 and
t—0

Lv(0) + L1(0)v(0) — av(0) + f(0) = 0.

Proof. If Ly1(t) = 0 (i.e., by condition 3, also a = 0) then the theorem has been

proved in [6, pp. 111-112]. So, a new case is a perturbed equation in (4.4), i.e.,

Li(t) # 0. In this case, by conditions 1 and 2, from Theorem 3.2 (with M (¢) = I,
n = 1), we have

w

C
ROL+ L) < 7
IROSL+ L)< |

uniformly on ¢t € [0, 7], in the region {A € C : Re(A —a) > —c(|SmA| + 1)}, for
a > 0 sufficiently large, or, equivalently,
C

I < :

Al +1
uniformly on ¢ € [0,T], in the region {\ € C : ReX > —c(|SmA|+1)}. Therefore,
M(t) := t‘I and L(t) := L+ L1(t) — al satisfy [6, formula (4.14), p. 106] with
a = =1 and v = 0. Moreover, from

Ctt1 C
=< L

AL+ 1 7 ALk

IR(A, L+ Lyi(t) — al)

tTH (M — (L4 Ly (t) —al)) 7Y < Red > —co(|SmA| + 1),
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uniformly on ¢ € [0, T], where ¢y > 0 is some suitable constant, [6, formula (4.19),
p. 108] is verified with v =1 — %. Formula (4.20) in [6, p. 108], by condition 2 and
that M(t) = t‘I, is obvious with y = min{¢ — 1, 1}. Then, the proof is completed
by using [6, Proposition 4.15]. O

Remark 4.2. Using Example 1, for application of (4.4), we can take, in X :=
L?(0,1), an operator L := —dd; with D(L) := H*(0,1;u(0) = u(1) = «”(0) =
u”(1) = 0) and, e.g., an operator

Ly (¢ ZZ% ul) (@ji(x)) + Z/ (y)dy

7=0 =1 7=0

with D(Ly) = D(L), where b(t) € C**#[0,T], and, by Theorem 4.1, get the corre-
sponding result.

The following examples are variations of initial boundary value problems of
the type

Py (m(z)u(z,t)) + Lu(x,t) = f(z,t), (x,t) € Qx(0,7],
u(z,t) =0, (z,t) € 9 x (0,7], (4.5)
m(z)u(z,0) = vo(z), x €,
where (2 is a bounded domain in R™, n > 1, with a smooth boundary 0f2,
n 8
EZ_Z@%( ) Zal +a°(>

ij=1

. Oa;j ;
a;j, ai, ap are real-valued functions on € such that a;; = a;; € C(Q); a(;; , U4, g;:,

ag € L*(Q), i,5=1,...,n;

Z z)&i&; ZCOija Vo € €2, Jeo > 0;
1 =
ap(z) > ¢1 > 0, Vo € Q, Je; > 0; m(z) > 0, m € L°°(Q); and the initial condition
in (4.5) is understood in the seminorm sense |[mL~(mu — vo)| rr() — 0, as
t—0t.

Generalizing to the degenerate case the well-known classical result in [2,
Theorem 4.43], it is shown in [4] that if D(L) := W22(Q) N W, *(Q), Lu := Lu,
ai(x) =0, fori =1,...,n, D(M) := LP(Q), Mu := m(-)u, and m is p-regular in
the sense that m € C*(2) and, for some p € (0,1),

[Vm(z)| < Cm(z)?, VYreQ, (4.6)
then, for p > 2, the estimate

2
IMOAM — L) zzr@y) < C(L+ A7 re=0 (4.7)
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holds in the sector 1 := {A € C : ReX > —c(1 + |ImA|)}, for some ¢ > 0. Note
that, in [5], it was considered the general problem (4.5) also with Robin boundary
condition Y, az(x)v;(x) Bu(z Y 4 b(z)u(z,t) = 0 on 82 x (0,7] (instead of
the Dirichlet boundary condltlon) where v(z) = (vi(x),...,vn(x)) is the unit
outer normal vector at x on 99, b € L>°(91). Under some additional restrictions
on the coefficients of the problem, like ag(z) — ;2?21 a‘gz(f) > >0, b(z) +
11] S ai(@)vi(z) > 0, Vo € 09, estimate (4.7) was again proved.

In what follows, we indicate different types of conditions on the lower-order
terms which allow us to apply the perturbation results in Sections 2 and 3.
Example 5. We introduce now a problem, to which the resolvent approach (see
Section 2) can be applied. Consider an initial boundary value problem for an
elliptic-parabolic equation of the type

aat(m(:c)u(x,t)) = Ve(a(z)Vu(z,t)) +Zal Z(x 1))
+ co(x)u(z, t) + f(x,t), (x,t) € Q x (0,7], (4.8)
u(z,t) =0, (x,t) € 0Q x (0,7], (4.9)
m(z)u(x,0) =vo(z), =z €. (4.10)

Here, € is a bounded domain in R™ of class C?, n = 2, 3; V denotes the gradient
vector with respect to z variable; m(x) > 0 on Q and m € C*(Q); a(z), a;(z),
co(z) are real-valued smooth functions on Q; a(x) > 6 > 0 and cp(x) < 0 for all
x € Q, there exists 6 > 0. Moreover, (4.6) is satisfied.

Take the space X := L?(Q), the operators Mu := m(-)u, D(M) = X,
Lu = Ve(a(-)Vu) + co(-), D(L) := H*(Q) N H}(Q). Introduce the new unknown
function v := Mwu and, in X, consider the operators

A:=LM™, D(A) = M(D(L)),
Bv fZaZ 8% D(B) := Hl(Q)

Note that A is a multivalued hnear operator. Then, problem (4.8)—(4.10) is reduced
to the multivalued Cauchy problem (inclusion)

0
oy € AvH B (), te (0.7,
v(0) = wo,

where f(t) := f(¢,-) and vy := vo(+).
We are going to use Theorem 2.9 together with Remark 2.10 for the multi-
valued linear operator A + B. We get, from (4.7), that

IR, A)llzcxy = IM(AM = L) Hzxy < C(L+ M) 2=

holds for any A in the sector X, i.e., condition 1 of Theorem 2.9 is fulfilled with

n= 21,;' Further, using arguments in [7, pp. 443-444], introduce the Hilbert space

(4.11)
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Z = H:%¢(Q), 0 < e < ;. Obviously, Z = [L*(©2), H*(Q)]» 4. Then, by the

interpolation theory (see [7, p. 444] for the details), it can be shown that
n e__ 1
IR Dlex.z) = IMOAM = L)Yl gx,z) < C(L+|A)) 3 F27 2

in the sector X;. If n = 2 then for any p € (0, 1) there exists € > 0 such that the last
exponent will be negative, while if n = 3 then for any p € (:2)’7 1) there exists € > 0
such that the last exponent will be negative. Therefore, condition 3 of Theorem

2.9 is fulfilled with 6 = 2ip — " — 5 > 0. Observe now that Z C H*(Q2) and B is
bounded from H'(Q) into L?(2). Therefore, the operator BR(\, A) satisfies the
estimate in Remark 2.10 (with o =6 = ,' — 7 — ) and thus, by Theorem 2.9,
P
1
IR\ A+ B)llzx) < CAT 2

for any sufficiently large A in the sector ¥;. Without loss of generality, we can
assume this estimate to be hold for all A in the sector ¥; and not only for ||
big enough. To this end, it is enough to make a change of the unknown function
u = ektw, for k > 0 big enough, in problem (4.8)-(4.10). In this way, A — kI
substitutes A.

We now apply [6, Theorem 3.7] (with a = 1,08 = 2;}) and conclude that,
for any f € C([0,7]; L3()), ;:Z <o <1, and vy € L?(f), there exists a unique
strict solution w(z,t) of problem (4.11) and, therefore, of problem (4.8)—(4.10),
ie, m(z)u € CH((0,7);L3(Q)), V o (a(z)Vu) + Y1 ai(@) "5 + co(a)u €
C((0,7]; L2(R)), u satisfies (4.8)-(4.9), and (4.10) holds in the seminorm sense
|[m(L + L1)~ (mu — vo)| 2(2) — 0, as t — 07, where Liu := Y}, ai(.)a(rgi;)u%
D(Ly) := {u € L%(Q) : mu € H(Q)}. Note that we assume (4.6) to be fulfilled
for 0 < p < 1, if n = 2, while for g <p<l,ifn=23.

Example 6. In this example, we show how using new gradient estimates we can
perturb the main operator of the equation. To this end, for the sake of simplicity, we
detail the case n = 1. Consider the following resolvent equation with the Dirichlet
boundary conditions

Am(z)u(z) — v’ (z) + c(z)u(x) = f(x), =€ (0,1), (
u(0) = u(1) = 0. (

4.12)
4.13)
In the space X = L?(0, 1), denote by Lu := u” —c(-)u, D(L) := H?(0,1)NH{(0,1)
and Mu := m(-)u, D(M) := X. Assume that m € C[0,1], m(z) > 0, |m/(x)| <
Cm(z)”,0 < p < 1, and ¢ is a measurable, bounded function on [0, 1], ¢(z) > ¢ > 0.
Multiplying (4.12) by u(z) and integrating the obtained equality on (0, 1), we easily
get (integrating by parts the second summand in the left-hand side of the equality
and using (4.13))

/\Il¢mUII§(+HU’II§(+/O 0($)IU($)I2d$:/O f(@)u(z)de,
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implying
1 1
ReX||Vmaul% + 1[5 +/ c(@)|u(z)*dz = 3‘36/ f(@)u(z)de
0 0
1
ImA||vmul||%k = %m/ f(@)u(z)d
0
Therefore,

1
(ReA + [SmA]) [[vVmal + [[v/][% +/0 c(@)u(x)|*dz

f%e/f da:Jr‘\sm/f

Then, by using Poincaré’s lemma and Cauchy-Schwartz inequality, there is a pos-
itive constant cg > 0 such that

1 1
(ReA + [SmA| + co)[[vVmulx + , lv'll% +/ c(@)lu(@)[*da
0

<§Re/f dm—l—‘\sm/f

)
<2[flixllullx-

Take A € C, ReA + |SmA| + co > ¢1 > 0. Hence, for all such A,

2
lu'[5% < 401 fllxllullx, Jull% < s I lxllullx
and thus, there exists C' > 0 such that, for A € C, ReX + |SmA| + ¢o > ¢1 > 0,
ull x < C[fllx, |u[|x < C|fllx. (4.14)

Multiply now (4.12) by m(z)u(x) and integrate the obtained equality on
(0,1). Then,

1
)\HMuH%(—/ m(x)u’ (z dm—l—/ m(x)c(x)|u(x |dm—/ m(x (x)dx
0

gives, after integrating by parts in the first integral and using (4.13),

A Mull% + /m e \dm—l—/ m(@)e(z)u(z) Pde
(4.15)

-/ () f(@)ue)de 0 el (@) e



Perturbation Results for Multivalued Linear Operators 127

Further, from (4.15), we have

/ m(z) v (z)2de = — \||Mu|% — / m(x (z)]*dx
1

) m(w)f( Ju(z)de — ; m/ (2)u’ (z)u(z)dz.

(4.16)

On the other hand, using (4.6) (for n = 1) and the Holder inequality, we get

g(élwuﬂmwww)ﬁwu
C

1
2

mwwwuVM)nwu

1

1
2

=C m(l’)2p|u(f'3)2p|u(l’)|22pdl’> [ %
0
1 r

< C’( m(z)?|u(z)] d:c) (/ [u(z)] d:c) llv|| x
0

= C|| Mull[lullx * 1w/ x- (4.17)

Note that there exist ¢ > 0 and ¢; > 0 such small that
Y1:={AeC : ReX> -1+ |SmA)} C 2y,
Y C{AeC : Rer+ [ImA|+co > & >0}
Therefore, (4.7) and (4.14) hold in $1. Then, from (4.16), using (4.7), (4.14), and

(4.17), for A € 1, we get

1 1

Omum<nm<—Mwth/m flaju(oyds - | wuwwwwm
< NI Mull + ‘/ m(z 2)da| + (2)da
<c Pl I vl

(1+A])=
+ CIIMUIIXIIUII llllx

SO 22 | fIIX + Ca+ M) 2 £l
+ O+ )2 ISPl x
< O™ 2% + X72=0) | £I%,
1.e.,

1
/ m(x)|u'(z)]*de < CIN "= || fIX, A€ Sy, A= 1.
0
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Therefore, the gradient estimate reads

1 2
</ m(x)u'(x)zdl’) SCT=E || fllx, A€y, A=, (4.18)
0
extending the well-known result for the regular case (see [10, Theorem 3.1.3]).

This argument extends to an arbitrary bounded domain Q € R™ with the
smooth boundary 05, in view of Green’s formula (and v = 0 on 0f2)

om 3u
Avudzr = — dx = 2dx — E
/Qm uudx /QV(mu o Vudr = /m\Vu\ x /89@ 81‘]

where m satisfies (4.6). So, if (Am(z) —A+c(z))u=f € LQ(Q),}L =0 on 09 (as
(4.12)—(4.13)) then, similarly to (4.18), for sufficiently large A € ¥,

( / m(xwu<x>|2dx) " < O | ey, (4.19)

As a consequence, consider the initial boundary value problem

gt (m(@)u(x, ) = Au(x,t) + V/m(2) Y ai(@) u(,t) _ c(z)u(z,t)

i—1 83’51
+ f(x,t), (z,t) € Q x (0,7], (4.20)
u(z,t) =0, (z,t) € 0Qx(0,7], (4.21)
m(z)u(z,0) =vo(z), =z €. (4.22)

Suppose that m, a; € C*(Q), (4.6) is satisfied, ¢ is a measurable bounded function
on Q, c(z) > >0, f € C([0,7]; L*(2)), ;:Z <o <1,and vy € L?(Q). In
X := L?(Q), consider the operator Mu := m(-)u, D(M) := X, Lu := Au — ¢(-)u,
D(L) := H*(Q) N HY(Q), Liu == /m(-) 0, ai(- )811 D(Ll) := HY(Q). Then,
from (4.7) (which is true in f]l), we get condition 1 of Theorem 3.2 (with n =
gi,,) and, from (4.19), we get the estimate in Remark 3.3 (with o = 2(2‘)—,)))'
So, the conclusion of Theorem 3.2 for the operator L + Ly is true. Hence, by [6,
Theorem 3.8] (with o = 1, 8 = ,° p, v > 0 big enough), problem (4.20)—(4.22)
admits a unique strict solution u(z, t), i.e., m(z)u € C1((0,7]; L2(Q)), (L+ L1)u €
C((0,7]; L3()), u satisfies (4.20)—(4.21), and condition (4.22) is understood in the

seminorm sense [[m(L + L1) ™! (mu — vo)||r20) — 0, as t — 0*.

Example 7. In the last example, we use the result in [3, Theorem 4.4]. Given an
unbounded domain  in R", n > 2, with a boundary 9 of class C? and an
admissible domain according to [3, Definition 4.1]. We consider the linear second-
order differential expression in divergence form

A(z,Dy) = i 81 <aij(x) ai) — ao(z)

ij=1
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with A5 = Qji € Cl(Q) ,j=1,...,n,a9 € Cb(Q), ag > v1 >0, 3, >0,

val¢l? < Z aij(2)6i&; < vsl¢?,  V(x,€) € A xR, Fup, 5 >0,
3,j=1
m € C%(Q) is non-negative and |Vm(z)| < Km(z), (A(x, D;), m) is an admissible
pair according to [3, Definition 4.2]. Note that m = e, where v € C%(2) and

sup v(x) < +oo satisfies the assumptions above.
zeQ
According to the quoted [3, Theorem 4.4], for all p € (1,+00) there exists

wp > 0 such that if A € wy, + X1, where again 31 :={A € C : ReX > —c(1 +
|SmA|)} for some ¢ > 0, the spectral equation Am(x)u—A(x, Dy )u = f, f € LP(Q),
admits a unique solution v € W2P(2) N Wolp(Q) satisfying the estimates

[l Loy < CIN P11 £l Loy, (4.23)
|Vl || Loy < CIANP 2| fll o) (4.24)

where

1, if pe (1,2,
p= 12)7 if pe2,+00).
Consider now the following initial boundary value problem

n n

1o} 0 ou(x,t ou(z,t
o m@te.) = 3 7 a3 ) ) Y o) MY

ij=1 i=1 Oz
- ao(:c)u(w, t) + f(xv t)a (:17’ t) €Qx (07 T]a (425)
u(z,t) = (z,t) € 992 x (0, 7], (4.26)
m(x)u(z,t) = vo( ), zELQ, (4.27)

2
LP(Q) and denote D(M) := X, Mu := m(-)u, D(L) := W22(Q)NW,?(Q), Lu :=
A(z, Dy)u, D(L1) := W'P(Q), Liu :=m(-) Y/, ai(-) 5 . Then, the inequalities
(4.23) and (4.24) provide the conclusion of Theorem 3.2 for the operator L + L.
More precisely, the inequality (4.23) implies condition 1 of Theorem 3.2 (with
n = () and the inequality (4.24) implies the estimate in Remark 3.3 (with ¢ =
8 — ). Therefore, using [6, Theorem 3.8] (with a =1, 3 = 3, 7 = w,), we get the
following result. For all f € C7([0,7]; L?(R?)), 1 — 8 < 0 < 1, vy € LP(2), problem
(4.25)—(4.27) has a unique strict solution u(x,t), i.e., m(x)u € C1((0,7]; LP(Q)),
(L+Li)u € C((0,7]; LP(£2)), u satisfies (4.25)—(4.26), and (4.27) is satisfied in the
seminorm sense [[m(L + Ly) ™" (mu — vo)| o) — 0, as t — 0.

where a; € Cy(Q2). Moreover, assume 1 < p < 4 (so that 1 > 3 > 1). Take X =
e
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Semilinear Stochastic Integral Equations in L,

Wolfgang Desch and Stig-Olof Londen

Dedicated to Herbert Amann on the occasion of his T0th birthday

Abstract. We consider a semilinear parabolic stochastic integral equation

(oo}
u(t,w,z) = Aaa * u(t,w,x) + Z ap* G* (t,w, u(t,w,-))(x)
k=1
+ ay * F(t,w,u(t,w,))(x) + uo(w,x) + tui (w, x).
Here t € [0, 7], w in a probability space 2, z in a o-finite measure space B with
(positive) measure A. The kernels a,(t) are multiples of t*~!. The operator
A : D(A) C Ly(B) — Ly(B) is such that (—A) is a nonnegative operator.
The convolution integrals ag * G¥ are stochastic convolutions with respect
to independent scalar Wiener processes w®. F : [0,T] x Q x D((=A)?) —
Ly(B) and G : [0,T] x Q x D((—A)?) — L,(B,ls) are nonlinear with suitable
Lipschitz conditions.
We establish an L,-theory for this equation, including existence and
uniqueness of solutions, and regularity results in terms of fractional powers of
(—A) and fractional derivatives in time.

Mathematics Subject Classification (2000). 60H15, 60H20, 45N05.
Keywords. Semilinear stochastic integral equations, stochastic fractional dif-

ferential equation, regularity, nonnegative operator, Volterra equation, singu-
lar kernel.

1. Introduction

Since our equation (i.e., (1.1) below) reads somewhat complicated and involved,
let us start with a casual motivation. The setting of spaces, domains and operators
will be given more precisely as soon as we state (1.1). The prototype of an equation
for modelling diffusion processes is the heat equation

atu(t,x) = Au(t,x) + f(t, ).
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The operator A, as usual, denotes the Laplacian in space. Instead of the source
term f(¢,x) one might consider white noise. Then the equation turns into the
stochastic heat equation

gtu(t,aw) = Au(t,w,z) + g(t,w, x) Wy.

Here, typically, W; is standard Brownian motion, although fractional Brownian
motion has also been considered ([2]). There is an abundance of literature on the
stochastic heat equation and its generalizations. Frequently A is replaced by a
general elliptic partial differential operator or even an abstract operator A (where
(—A) is a positive operator), in Hilbert space as well as (more recently) in L, or
general Banach spaces. The key issues in handling such equations are stochastic
integration in Banach spaces, and exploiting the regularity properties of parabolic
partial differential equations.

Diffusion according to the heat equation, i.e., according to Fick’s law, has the
property of exponentially decaying memory in time. However, many processes in
physics, chemistry and finance exhibit time memory decaying only at a power law
rather than exponentially. For a survey of such phenomena see [19, Chapter 8].
Such anomalous diffusion is frequently referred to as subdiffusion or superdiffu-
sion, depending on whether the net motion of particles happens more slowly or
quickly than random diffusion according to Fick’s law. Anomalous diffusion can
be modelled by a fractional differential equation

Diu(t, z) = Au(t,z) + f(t, ).

Here, D means the fractional derivative of order « € (0,2) with respect to time.
The case a < 1 describes subdiffusion, while a > 1 corresponds to superdiffu-
sion. The limiting case a = 2, of course, yields the wave equation. Deterministic
fractional differential — partial differential equations with parabolic differential op-
erators in space and fractional derivatives in time have been subject to thorough
investigations, both from theory and applications ([19], [24], [25]). Notice that the
equation may be integrated to give

u(t,x) = up(xz) + /0 F(la) (t—s)* ' Au(s,z)ds + /0 F(la) (t —s)* 1 f(s,x)ds.

(If @ > 1, we need an additional term tu;(z) to take care of the initial condition
U‘litu(O) = uy.) This equation can be considered as a parabolic abstract evolutionary
equation. An extensive theory is available to treat such equations ([29]).

Again, the source term can be replaced by a stochastic additive perturbation

of the system. The equation now turns into
D&u(t,w, x) = Au(t,w,z) + D *g(t,w, z)W,.

Here W; is Brownian motion, but the introduction of the fractional derivative or
fractional integral D’ ~® allows us to model smoother (3 < a) or rougher (3 > a)
stochastic perturbation. To our knowledge, the first attempt to tackle this equation
in LP with p # 2 was made in [11] and extended in [13].
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In this paper we go a step further and investigate state dependent forcing,
i.e., semilinear equations. The prototype of the equation to be treated here is

Du(t,w, z) = Au(t,w,z) + G(t, u(t,w, z)) Wy (w) + F(t,u(t,w, x)).

We treat semilinear feedback on the stochastic (volatility) term as well as on the
deterministic forcing (drift). Semilinear stochastic heat equations (with ¢ instead
of the fractional derivative Df*) in spaces more general than than Hilbert spaces
have been recently in the center of interest of several research groups, just to
mention a few, we refer to [21], as well as work based on abstract stochastic
integration in Banach spaces like [4], [27], [38] and others. To our knowledge, the
present paper is the first attempt to deal with the fractional derivative case in L,
with p # 2.

One of our central tasks is to balance space and time regularity. To have as
much freedom as possible, we put again fractional integrals in front of all forcing
terms:

Dfu(t,w,z) = Au(t,w, z) + D,@B_(XG(tw, u(t,w, )Wy + D] " “F(t,w,u(t,w,z)).

Regularity in space will be expressed by fractional powers of (—A). In integrated
form and full generality, our equation finally reads:

t
u(t,w, ) = A/ ao(t — s)u(s,w, x) ds
0

+ Z/ ag(t — 8)G*(s,w,u(s,w,-))(z) dw? (1.1)
k=170

t
+ / ay(t — $)F(s,w,u(s,w, ))(x) ds + up(w, ) + tus (w, z).
0

The real scalar-valued solution u(t,w,x) depends on ¢ € [0,T], w in a probability
space {1, and = in a measure space B. The convolution kernels a,, are defined by

a,(t) == I it (1.2)

1)
We assume « € (0,2), 8 > ;, and v > 0. While the parameter « is the order
of the fractional time derivative, the parameter 3 regulates the time regularity
of the stochastic semilinear feedback, and v regulates the time regularity of the
deterministic feedback. The operator A : D(A) C L,(B;R) — Ly(B;R) (with 2 <
p < 00) is such that (—A) is a nonnegative linear operator (see Section 2 below).
In particular we have in mind elliptic partial differential operators on a sufficiently
smooth (bounded or unbounded) domain B C R", but formally we require only
that (—A) is sectorial and the state space is an L,-space on some measure space B.
The processes wfj are scalar-valued, independent Wiener processes. F and G* are
nonlinear and satisfy suitable Lipschitz estimates with respect to u. The functions
up and u; are given initial data. For the precise conditions, see Section 3.
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Our goal is to establish existence and uniqueness of solutions for the semilin-
ear equation (1.1) in an L,-framework with p € [2, 00). Regularity results will be
stated in terms of fractional powers of —A (for spatial regularity) and fractional
time integrals and derivatives as well as Holder continuity (for time regularity).

Technically we rely primarily on results concerning a linear integral equation
where the forcing terms F' and G are replaced by functions independent of u, i.e.,
(5.1). In recent work [13] we have developed an L,-theory for (5.1), albeit without
the deterministic part and without the ui-term. These results need, however, — for
the purpose of analyzing (1.1) — to be extended and to be made more precise.

Our linear results build on an approach due to Krylov, developed for para-
bolic stochastic partial differential equations. This approach uses the Burkholder-
Davis-Gundy inequality and estimates on the solution and on its spatial gradient.
To analyze the integral equation (5.1) we combine Krylov’s approach with trans-
formation techniques and estimates involving both fractional powers of —A, and
fractional time-derivatives (integrals) of the solution. Krylov’s approach is very
efficient in obtaining maximal regularity, however, it relies on a highly nontrivial
Paley-Littlewood inequality [20]. A counterpart of this estimate can be given for
general sectorial A by straightforward estimates on the Dunford integral, when we
allow for an infinitesimal loss of regularity.

We also include results for the deterministic convolution and for the u-term.
Obviously, no originality is claimed for these results.

To obtain result on the semilinear equation (1.1) we combine our linear theory
with a standard contraction approach.

The paper is organized as follows: Before we can state our main results, we
need to collect some facts about sectorial operators and fractional differentiation
and integration in Section 2. Section 3 states the hypotheses and results for the
semilinear equation. In Section 4 we provide the tools to define a stochastic in-
tegral and a stochastic convolution in L,-spaces. The central part of this section
is an application of the Burkholder-Davis-Gundy inequality to lift scalar-valued
Ito-integrals to stochastic integrals in L,. This approach is adapted from [21]. Sec-
tion 5 deals with the linear fractional differential equation. In the beginning we give
the results on existence and regularity which are basic to obtain similar results on
the semilinear equation. We construct the solution via the resolvent operator and
a variation of parameters formula. The contribution of the initial data and of the
forcing F', which enters as a Lebesgue integral, are well known ([29], [39]). The con-
tribution of the stochastic integral containing G is handled by a recent result [13].
We collect these results in a unified way to allow a comparison of the various re-
quirements on regularity. In Section 6 we arrive at the proof of our main results on
the semilinear equation by a standard contraction procedure. In Section 7 we make
some comments on available maximal regularity results for the linear equation and
their implications for the semilinear equation. Finally, in Section 8 we compare
our results to some recent results on parabolic stochastic differential equations ob-
tained recently using an abstract theory of stochastic integration in Banach spaces.
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2. Fractional powers and fractional derivatives

In this paper A : D(A) C L,(B;R) — L,(B;R) will be a linear operator such
that (—A) is nonnegative. Here p € [2,00), but fixed. Regularity in space will be
expressed in terms of the fractional powers (—A)? of A. Regularity in time will be
expressed in terms of fractional time derivatives D} f. In corollaries we will also
give regularity results in terms of the function spaces h{_ ([0, T]; X), i.e., the little
Hoélder-continuous functions with f(0) = 0.

In this section we summarize briefly the definitions and some known results
about nonnegative operators, their fractional powers, and about fractional inte-
gration and differentiation.

Let X be a complex Banach space and let £(X) be the space of bounded
linear operators on X. Let B be a closed, linear map of D(B) C X into X. The
operator —B is said to be nonnegative if p(B), the resolvent set of B, contains
(0,00), and

sup |[MAI — B)_IHL(X) < 00.
A>0

An operator is positive if it is nonnegative and, in addition, 0 € p(B). For w €
[0,7), we define

Y. ={AeC\{0}] |arg \| <w}.
Recall that if (—B) is nonnegative, then there exists a number 7 € (0, 7) such that
p(B) D X, and

sup MM — B) Y| zx) < oo. (2.1)
A€,

The spectral angle of (—B) is defined by

Sy = inf{w € (0,7] | p(B) D Srwy  sup AN = B) Y o) < oo}.

A€EXr—w

We will rely on the concept of fractional powers of (—B): Let (—B) be a
densely defined nonnegative linear operator on X, and 6 > 0. If (—B) is posi-
tive, then (—B)~! is a bounded operator, and (—B)~? can be defined by integral
formulas [5, Ch. 3] or [22, Section 2.2.2]. As usual,

(—=B)® := (-B)™*)"1, 0>0. (2.2)

If (— B) is nonnegative with 0 € o(—B), we proceed as in [5, Ch. 5]: Since (—B+-e€l)
is a positive operator if € > 0, its fractional power (—B + eI)? is well defined
according to (2.2). We define

D((-B)?)) := {y € ﬂ D(((-B +eD)?) | €l_i>1[1)1_~_(fB + €eI)%y exists }, (2.3)

0<e<eg

(—B)ly := €l_i}&_(fB + €)% fory € D(((—B)?)). (2.4)



136 W. Desch and S.-O. Londen

Lemma 2.1. Let —B be a nonnegative linear operator on a Banach space X with
spectral angle ¢_p), and let 6 > 0.

1) (=B)? is closed and D(((—B)?)) = D((—B)).
2) Assume that 0¢_py < m. Then (— )¢ is nonnegative and has spectral angle
00— p)-

Proof. For (1) see [5, p. 109, 142], also [8, Theorem 10]. For (2) see [5, p. 123]. O
Lemma 2.2. Let —B be a nonnegative linear operator on a Banach space X with
spectral angle ¢(_py. Then for n € [0, — ¢_p))

sup  [[(=B) "0 (ul = B) | (x) < oo (2.5)

[arg pl|<n, u#0
Proof. In case n = 0, see [5, Th. 6.1.1, p. 141]. The general case can be reduced to
the case p > 0, [15, p.314]. See also [13, Lemma 3.3]. O
We turn now to fractional differentiation and integration in time:
Definition 2.3. Let X be a Banach space and « € (0,1), let w € L1((0,7T); X) for
some T' > 0.
1) Fractional integration in time of order « is defined by D; “u := F(la) oLy,
2) We say that u has a fractional derivative of order a > 0 provided u = D; * f,
for some f € L1((0,7); X). If this is the case, we write Dfu = f.

Remark 2.4. Suppose that u has a fractional derivative of order a € (0,1).
Then F(lla)t*a x u is differentiable a.e. and absolutely continuous with Dffu =

d 1 -«
dt <F(1—a)t * “)~

For the equivalence of fractional derivatives in L, and fractional powers of
the realization of the derivative in L,, we have the following lemma.

Lemma 2.5. [9, Prop.2] Let p € [1,00), X a Banach space and define
D(L) == {uec WHP((0,T); X) | w(0) =0}, Lu =" for u € D(L).

Then, with 3 € (0,1),
LPu = DPu, uweDLP), (2.6)
where D(LP) coincides with the set of functions u having a fractional derivative

in Ly, i.e.,

D(LP) = {u € Ly((0,T); X) | =8 % u e WEP((0,T); X)}.

INCC)
In particular, Df is closed.

We refer to [9] for further properties of the operator Dt’B .
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3. The main result

Hypothesis 3.1. Let (B, A, A) be a o-finite measure space and fix 2 < p < oo. Let
(—A) : D(A) C L,(B;R) — L,(B;R) be a nonnegative linear operator with spec-
tral angle ¢(_ 4), and such that D(A) N L1 (B;R) N Lo (B; R) is dense in L,(B;R).
Hypothesis 3.2. Let (2, F,P) be a probability space with an increasing, right
continuous filtration {F; | ¢ > 0} satisfying F, C F for all ¢ > 0. Let P denote
the predictable o-algebra on [0, 00) x Q generated by {F;}, and assume that {w?” |
k = 1,2,3,...} is an independent family of (scalar-valued) F;-adapted Wiener
processes on (Q7 F,P).

Remark 3.3. On [0,7] x €2, measurability will always be understood with respect
to the predictable o-algebra P, and the product measure of the Lebesgue measure
on [0,7] and P.
Hypothesis 3.4. For suitable § € [0,1) and € € [0, 1), the function

F:[0,T] x Q x D((—A)°) — D((—A))
satisfies the following assumptions:

(a) For fixed u € D((—A)?), the function F(-,-,u) is measurable from [0, 7] x
into D((—A)°).

(b) There exists a constant Mp > 0, such that for all ¢t € [0,7], and all uy,us €
D((—A)?) the following Lipschitz estimate holds

| F'(t, w,u1) — F(t,w,u2)|p((—ay) < Mp|ur —uz|p—aye) forae weQ. (3.1)

(¢) For u =0 we have

1/p
V / IF (o, 0l ayey dtdP| = Mg < . (3.2)

Hypothesis 3.5. For the same 6 € [0, 1) as in Hypothesis 3.4, the function
G:[0,T] x Q x D((—A)?) — L,(B;ly)
[G(t,w,u)|(x) := (Gk(mw,u)(x))iil

satisfies the following assumptions:

(a) For fixed u € D((—A)?), the function G(,-,u) is measurable from [0, 7] x
into L,(B;la).

(b) There exists a constant M > 0, such that for all ¢t € [0,7], and all uy,us €
D((—A)?) the following Lipschitz estimate holds:

Gt w,ur) — G(t,w,u2)l| L, (Bi.) < Mallur — uz|lp—ayey forae weQ. (3.3)
(¢) For u =0 we have

1/p

T
Vﬂ/o IG(t,w0,0)[I% 5,y dEdP| = Mo < oo (3.4)
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Theorem 3.6. Let the probability space (Q, F,P) and the Wiener processes (wfj)zil
be as in Hypothesis 3.2. Let p € [2,00), let the measure space (B, A, A) and the
operator A : D(A) C L,(B;R) — L,(B;R) satisfy Hypothesis 3.1. Let a € (0, 2),
B> 3 and~y > 0. Let T > 0 and assume that F : [0, T]xQxD((—A)?) — D((—A)°)
and G : [0,T] x Q x D((—A)?) — L,(B;la) satisfy Hypotheses 3.4 and 3.5 with
suitable 0,¢ € [0,1]. Let ug € Ly(;D((—A)%)), ur € Ly(Q;D((—A)%)), with
suitable 0; € [0, 1], both u; measurable with respect to Fo. Suppose that the following
inequalities hold:

af < v+ ae, (3.5)
1
9 +ab <, (3.6)
1
af <+ ady, (37)
p
1
af < 1+p + ad;. (3.8)

Then there exists a unique function u € Ly([0,T] x Q;D((—A)?)) such that for
almost all t € [0,T]

t
/ ao(t — s)u(s,w,-)ds € D(A) for a.e. w € Q,
0

and (1.1) is satisfied for almost all t € [0,T] and almost all w € Q2.

The following theorem provides additional regularity results in terms of frac-
tional power domains D((—A)¢) and of fractional time derivatives. However, de-
pending on the parameters, u(t) — ug may sometimes exhibit more regularity than
u(t) itself. Similar considerations hold for u(t) — tu; and u(t) — ay * F(-,w,u). To
handle all cases in one term, we will introduce the function v in (3.13).

Theorem 3.7. Let the assumptions of Theorem 3.6 hold. Moreover, assume that
ne€ (—=1,1), ¢ € [0,1] are such that

N+ al < v+ ae, (3.9)
1
o TtaC<p, (3.10)
1
n+al < » + ado, (3.11)
1
77+a(<1+p+0461. (3.12)

With the notation 1(,~py =1 if a > b and 1{4>py = 0 if a < b, we put
v(t) = u(t) = Ligg>cyuo — s, >cytw

t 3.13
— sy /0 ay(t — 8)F(s,w,u(s))ds. (3.13)
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(a) Then, if n > 0, the function v, considered as a Banach space valued function
v:[0,T] — Ly(;D((—A)S)), has a fractional derivative of order 1.
(b) If n <0, the function v : [0,T] — L,(; L,(B;R)) has a fractional integral
of order —n. Moreover, Dj'v takes values in L,(£; D((—A)%)).
(c) If n =0, of course, we denote Dv = v.
In any case, there exists a constant M,, depending on A, p, T, o, 3, v, 6, €, C,
n, 0, Mp, Mg such that
D0, (0,71 2:D((—4)¢)) (3.14)
<M, [HUOHLP(Q;D((—AW)) + lutllz, @p(-ayn)) + Mro + Mg,o] ~

Corollary 3.8. Let the Assumptions of Theorem 3.6 hold. Let ¢ € [0,1]. Let u be
the solution of (1.1) and v be defined by (3.13).

(1) Let p < q¢ < o0 be such that
1 1 1 1 1
- tal <vy+oae + = Fa(<p,
P g 2. p g
1 1
al — < adg, al— <14 «d;.
q q
Then v € Lq([0, T; Ly( D((—A)°)))-
(2) Let pe(0,1— 11)) be such that
1 1 1
+pu+al <vy+ ae, + +pt+af<p,
p 2 p
w4+ al < ady, w4 al <1+ ad;.
Then v € hy_o([0, T]; Lp(Q: D((—A)°))).-

Hypothesis 3.9. Let F|, I, : [0,T] x Q x D((—A)?) — D((—A)¢) satisfy Hypoth-
esis 3.4, G1,G2 : [0,T] x Q x D((—A)?) — L,(B;l2) satisfy Hypothesis 3.5, and
suppose that there are nonnegative functions uar, pac € Ly([0,T] x £;R) such
that for all ¢ € [0,7] and u € D((—A)?), and almost all w € Q

[F1(t,w,u) = Fa(t,w,u)l[p((—a)e) < par(t,w), (3.15)
1G1(t,w,u) — Ga(t, w,u)|| L, (Bit) < pac(t,w). (3.16)
Remark 3.10. The standard example of F;, G; satisfying Hypothesis 3.9 is (for
i=1,2):
Fi(t,w,u) = F(t,w,u) + fi(t,w),
Gi(t,w,u) = G(t,w,u) + g;(t,w),
where F and G satisfy Hypotheses 3.4 and 3.5, respectively, and f; € L,([0,T] x
Q;D((—A)9)), gi € Lp([0,T] x Q; Lp,(B;12)). Here we take
par(t,w) = [ fi(t,w) = f2(t,0)lp((—a)s
pac(t,w) = [|g1(t,w) — g2(t, W)l L, (Bi)-
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Theorem 3.11. Let the probability space (0, F,P) and the Wiener processes wf
be as in Hypothesis 3.2. Let p € [2,00), let the measure space (B, A, A) and the
operator A : D(A) C L,(B;R) — L,(B;R) satisfy Hypothesis 3.1.

Let T > 0, a € (0,2), 8 > é, v > 0, and &y, 61, € € [0,1] be such that
(3.5), (3.6), (3.7), and (3.8) hold. Let n € (—1,1) and ¢ € [0,1] be such that (3.9),
(3.10), (3.11), (3.12) hold. Then there exists a constant Ma, > 0, dependent on
p,T,a,3,7,680,01,€¢(, Mg, Mg, such that the following Lipschitz estimate holds:

Let Fy, F5,G1, G2 satisfy Hypotheses 3.4, 3.5 and 3.9 with €,0 as above. For
i = 1,2 let the initial data ug; € L,y(Q;D((—A)%)) and uy,; € Ly(Q;D((—A)°))
be Fo-measurable, and let ui(t,w,x), us(t,w,x) be the solutions of (1.1) with
F,G,ug,u; replaced by F;, Gy, uo4,u1,4. Let v; be defined according to (3.13) with
u replaced by u;. Then

|1 Dfvr — D?UQHLP([O,T]XQ;D((—A)C)) (3.17)

< Mau |lluox —vozllL,@p(-ayio)) + lury — vzl @p(-aym))

+ |par(t,w) + :uAG(tvw)HLp([O,T]xQ;]R)} .

4. Stochastic lemmas

Lemma 4.1 ([21], Theorem 3.10). Let (2, F,P) satisfy Hypothesis 3.2. Let Y be a
dense subspace of Lp,(B;R), 0 < T < oo, and g € Ly([0,T] x ; L,(B;l2)). Then
there exists a sequence of functions g; € Ly([0,T] x ; L,(B;12)) converging to g
in Ly([0,T] x Q, Ly(B;l2)) such that each g; = (g§)32, is of the form

{Zg—l I‘f'ijfl(w)<t§7'ij(w) (t)gf,z($) Zf k S ja

(4.1)
else,

g (tw,z) =

J J J
where Ty <1 < - T

and gfl €Y. (Here, for any set A, 14 denotes its indicator function.)

Remark 4.2. We will apply Lemma 4.1 with Y = D(A) N L1(B;R) N Lo (B; R).

are bounded stopping times with respect to the filtration Fy,

Lemma 4.3. Let (2, F,P) and the Wiener processes wf be as in Hypothesis 3.2.
Let p € [2,00). Let Y be a dense subspace of L,(B;R), let T > 0, and let g; €
L,([0,T] x Q; L,(B;l2)) be of the simple structure given in (4.1). For t € [0,T],
let V(t) : Y — L,(B;R) be a linear operator such that the function t — V(t)y is
in Lo([0,T); Ly(B;R)) for each y € Y. Then there exists a constant M, depending
only on p and T, such that for allt € (0,7

J.

< M/B/Q </Ot IV (t = 5)g;(s, )] ()7, d8>§ dP(w) dA(z).

3 / V(t — )¢k (s, 0)] () dut| dP(w)dA(x)
k=10

(4.2)
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Proof. First fix some t € (0,T]. For « € B, r > 0 we define

(r,w,z) Z/T tfsgj(s w)(x) dw”.

By the elementary structure of g;,

/OT IVt - 8)g% (5,)] (@) ds < o0

for almost all z € B, so that Y;(r,w,x) is well defined as an Ito integral for such
r, and it is a martingale. Since the Wiener processes w* are independent, the

quadratic variation of Yj(-,-, x) is

: ' — S ’?sw X 2 S
;/ V(¢ — 5)g (s, )| ()| ds.

Now the Burkholder-Davis-Gundy inequality (see [18, p. 163]) yields for r € [0, ]
and each z € B,

V(t—s)g;(s,w)](z) (w)

< f ([ 35
[ ([ Wit 90w ds)g aP(w).

In (4.3), take r = t and integrate over B:

/B /Q | ; /Ot[V(f — 5)gj (s,w)](x)
=M /B / ( / V(£ = 5)g;(s,w)] ()], ds)2 dP(w) dA(z). -

Lemma 4.4. Let (2, F,P) and the Wiener processes wf satisfy Hypothesis 3.2. Let
T>0,2<p<oo, and g € L,([0,T] x Q; L,(B;l2)), moreover, let {g;} be a
sequence approzimating g in the sense of Lemma 4.1. Let 5 > %, n € [0,1) such
that B —n > ; Then the functions

oot
D} Z/o ag(t — s)gf(s,w, ) dw® (w)
k=1

converge in Ly([0,T] x Q; L,(B;R)), as j — oo.

V(t — 5)g%(s,w)] ()] ds> dP(w) (4.3)

(w) dA(z)
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Proof. Put hf = gf — gf . The stochastic Fubini theorem implies that

t t
D;"/O ag—y(t — s)hf (s, w,x) dw} :/0 ag(t — s)hy (s, w,x) dwk,
ie.,
t t
/ ag—y(t — s)hf (s, w,x) dwl = D?/ ag(t — s)hy ;(s,w,x) dwk.
0 0
We use Lemma 4.3 and the fact that a}_, € Li([0, T];R):

/0 /] ]D;'Z [ aste = (5.0
LIS o
<M / VA / a5 s>hi,j<s7w7x>|ids)gdP(w)dA(m)dt
< [ [ [/ a;_,,@dsr [ /OT|m,j<s7w7x>|@ds] () dA)

< Mlhill7,

(w)dA(x)dt

(w) dA(z) dt

([0,T]1x L, (Bil2)) "

As i, j — oo, we have h; j — 0in L, ([0,T] x Q; L,(B;12)), thus D] Y7, fot ag(t—
s)gf(s,w,x) dwk(w) is a Cauchy sequence in L,([0,T] x €; L,(B;R)). O

Definition 4.5. Let (2, F,P) and the Wiener processes wf satisfy Hypothesis 3.2.
Let T > 0,2 <p < oo, and g € L,([0,T] x Q; L,(B;12)), moreover, let {g;} be a
sequence approximating ¢ in the sense of Lemma 4.1. Let § > ; Then we define

(@3 9)(t.0) = Y [ aslt = 9)g"(5.,0) dut ()
k=170

00t
= lim Z/ ag(t—s)gf(&w,x) dw" (w).
k=1"0

Jj—oo

5. Linear theory

In this section we replace the semilinear inhomogeneity in (1.1) by inhomogeneities
independent of u, so that we obtain a linear integral equation:

t 0ot
u(t,w, ) = A/ ao(t — s)u(s,w,x)ds + Z/ ag(t — $)g" (s, w, z) dw®
0 =1 Jo

+ /0 ay(t —8)f(s,w,x)ds + ug(w, )+ tus (w, x). (5.1)
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We will prove the following propositions by a chain of lemmas:

Proposition 5.1. Let the probability space (2, F,P) and the Wiener processes w”

be as in Hypothesis 3.2. Let p € [2,00), let the measure space (B, A,A) and the
operator A : D(A) C Ly(B;R) — L,(B;R) satisfy Hypothesis 3.1. Assume that
T >0 and let f € Ly([0,T] x ; L,(B;R)), and g € L,([0,T] x Q; Ly(B,12)). Let
uo € Lp( Lp(B;R)) and uy € Lp(Q; Ly(B;R)) be Fo-measurable.

Let o € (0,2), 8 > é, ~ > 0. Then there exists a unique function u €

L,([0,T] x ©; L,(B,R)) such that for almost all t € [0,T]
¢
/ ao(t — s)u(s,w,-)ds € D(A) for a.e. w € Q,
0

and (5.1) holds for almost all w € Q and almost all t € [0,T].

Proposition 5.2. Let the assumptions of Proposition 5.1 hold. Suppose that f €
Ly([0, T] x Q; D((—A)9)), uo € Lp(D((—A)%)) and uy € Ly(Q;D((—A)%)) with
suitable €, 80,01 € [0,1). Let u be as in Proposition 5.1. Let n € (—=1,1), ¢ € [0,1]
satisfy

N+ o < v+ ae, (5.2)
;+n+ac<ﬁ, (5.3)
N+ af < ; + ado, (5.4)
17+a§<1+11)—|—04(51. (5.5)

With the notation 1(4~py = 1 if a > b and 114>y = 0 else, we put

t
v(t) = u(t) — Lis>cyuo — Lis >cptur — 1{6>¢}/O a(t — 5)f(s)ds.

(a) Then, if n > 0, the function v, considered as a Banach space valued function
v:[0,T] — Ly(;D((—A)S)), has a fractional derivative of order 1.
(b) If n < 0, the function v : [0,T] — L,(Y; L,(B;R)) has a fractional integral
of order —n. Moreover, Djv takes values in L,(€; D((—A)%)).
(c) If n =0, clearly D%v = v.
In either case, there exist constants Minic, Mt 1.eb, and Mrp 1, depending on p, T,
Q, 67 o) 60} 517 €, C; n such that

Do)l L, (0,11x 2D ((—4)¢)) (5.6)
< Minis [[[uoll 2, (ip((— ays0y) + lull 2, ip((— ay51))]
+ Mryrevll fllz,qo.m1xp((=4)) + Mrollgll, (o,71x 0L, (B.1))-

Moreover, the constants M7 16, and Mt 116 can be made arbitrarily small by choos-
ing the time interval [0, T sufficiently short.
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The proof of the propositions above relies on the concept of a resolvent op-
erator (see [29]), introduced by the following definition:

Definition 5.3. Let A satisfy Hypothesis 3.1, let o € (0,2) and 8 > 0. For ¢ > 0
we define the resolvent operator Sq g(t) : Lp(B;R) — L,(B;R) b

1
Sus(Bzi= / AABO — A) L d (5.7)
271 Tpo
along the contour
(t— ¢+ p)e'® for t > ¢,
Lpo(t) =< pe”t for t € (¢, ),

(—t—¢+ple ® fort< —a¢,
with p>0,¢> 7, ap+da <.

For 8 = 1, this definition coincides with the known notion of a resolvent op-
erator, c.f. [29]. For 8 > 1, S, g could be obtained by fractional integration of Sy 1.

Equation (5.1) is formally solved by the variation of parameters formula

u(t)*S UO+SQQ()1

/smt—s (s)ds+/t§:5a,ﬁ(t—s)g(s)dwg. (5.8)
0 k=1

The task of the proof is to make sense of this formal expression in suitable function
spaces, and to show that it gives a solution of (5.1). Moreover, the estimates
claimed in Proposition 5.2 need to be verified. Since the equation is linear, all terms
ug, u1, f, g can be treated separately. This is done in the following Lemmas 5.6, 5.7,
and 5.9. Uniqueness can be proved by the standard reduction to a deterministic
homogeneous equation with zero initial data, which has only the zero solution by
the well-known theory of deterministic evolutionary integral equations (see [29]).

First we collect some basic facts about the resolvent operator:

Lemma 5.4. Let A satisfy Hypothesis 3.1, let « € (0,2) and B > 0. The resolvent
operator defined above has the following properties:

1) For all t > 0 and all ¢ € [0,1], the operator Sq g(t) is a bounded linear
operator L,(B,R) — D((—A)°).

2) For all x € L,(B;R), the function t — Sq g(t)x can be extended analytically
to some sector in the right half-plane.
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3) For all z € L,(B;R) and all t > 0, we have

/ ao(t — 8)||Sa.p(s )$HL,)(B;]R) ds < 00,
0
t

ao(t — 5)Sa,p(s)xds € D(A),

o

Sa.p(t)x A/ ao(t — 8)Sa.p(s)xds + ag(t)z. (5.9)
4) Let T >0, 6, €[0,1], and n € (—1,1) such that
n+al < B+ ad. (5.10)
Let x € D((—A)°) and put
_ ) Sas(t)z if 6 <G,
vlt) = {saﬁ(t)x —ast)r if 6> C.

(a) Then, if n > 0, the function v, considered as a Banach-space valued
function v : [0,T] — D((—A)), admits a fractional derivative of order
7.
(b) Ifn <0, the function v : [0,T) — Ly(B;R), has a fractional integral of
order —n. Moreover, D}'v takes values in D((—A)*).
(c) If n =0, we write Dv = v.
In either case, there exists some M > 0 (dependent on A, «,3,(,0,m) such
that for all t € (0,T] and all x € D((—A)°),

D70 ()]l p((—ayey < MEPTeO=0raO=1y 40 4y, (5.11)

Remark 5.5. In fact, if # € D((—A)°) with § > ¢ and 8 > 7, the function ¢ —
ag(t)z admits a fractional derivative D} agxr = ag_nz in D((—A)%). In this case,
(5.10) holds, and both functions, S. g(t)z and S, g(t)x — ag(t)r admit fractional
derivatives of order 1 in D((—A)%). On the other hand, evidently, if 3 < 1 or
z ¢ D((—A)°), at most one of the two functions above can have a fractional
derivative of order n in D((—A)°).

Proof. All these results come out of standard estimates of the contour integral,
along with the usual analyticity arguments. Since the estimate (5.11) is crucial in
the sequel, we give a more detailed proof.

First we consider the case § < { where we can utilize Lemma 2.2 with § =0
for p in a suitable sector:

1(p = Azl p(—aye) < Mlpl* " lllp—ay).
Formally, the Laplace transform of D}'S, gz is A77*=8(X* — A)~1z. We show that
the contour integral
1
w(t):= _ . / eMarte=Be _ A)"lzda
Fp ]

27
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exists in D((—A)¢), if (5.10) holds.

/ eMATTTB (N — A e d)
prb

D((—A)¢)
n+a—p3 a 1
foo Oy e e

/1‘1,¢ “ //Haiﬁ ((ltL)a B A)ilxd'u

_ tﬁfafnfl

D((—A)9)

S St (Ol
I t

5
< tﬁ—a—n—l / e?R(;L) |M‘a+n—ﬂ M ‘ ) ‘Q(C 1) ‘
T'1¢ t

|dpl
D((—A))

]| p((—a)%) dp]
= tﬁ*”*C‘C*a‘;*lMHxHD((_A)(;) / em(l‘)“L‘W*BJrOé(C*&) |dpl.
F1,¢

Because of (5.10), w is locally integrable and admits a Laplace transform. It re-
quires some standard complex analysis, to show that w(\) = AT =B(\> — A)~1x.
Now we have to show that in fact w = D}'S,, gx.

First consider the case n > 0: By the convolution theorem for Laplace trans-
forms we have

—

[D; "w](X) = XA — A) e,
whence w = D}'S, gz. In case n < 0, the convolution theorem yields
DPSasz(A) = NP — A)~ 1z = ().
To handle the case § > ¢, we will use Lemma 2.2 with § = 1:
IA(p — A) " 2| pe—aye) < Mp |||l pe—a)s)-

Notice first that ag(A) = A=%, and

1
as(t) /F M ATFdN.
pyd

- 21
Therefore,
1
Su stz —agtyr = / MBS — A) Tz — AP dA
27 T,
1

- / MATPANY — A) Lz d).
21 Tpo
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Now we estimate similarly as above

/ eMANTTPANY — A) Lz dA
prb

D((—A)%)

=~ |2 (C=9) 1
< [ A Gl ldul
Ty

= MHxHD((fA)é) B adtas—1 / e%(u)|u‘n_5+a<_a5 ‘du‘
I

1,0
Thus, for ¢ > 0, the following integral exists in D((—A)¢):
1
wi(t) == / MNTTBANY — A) "Lz d),
27TZ Fp,¢

w1 @)l p-aye) < MBFad)—(ntad)—1

In the end one verifies again that in fact w1 (t) = Djv(t). O

Lemma 5.6 (Contribution of the initial conditions wg, w1). Let A satisfy Hypo-
thesis 3.1, let (2, F,P) be a probability space, p € [2,00). Let a € (0,2), 0 < T <
00, and ug, u1 € Ly(; L,(B;R)). We define u(t) := Sa,1()uo + Sa,2(t)u1.

1) The function u exists in Loo([0,T]; L,(2 x B;R)). For all t > 0 we have

/ aq(t — s)u(s) ds € D(A),

0
¢
u(t) = A/ aq(t — s)u(s)ds + ug + tuq.
0

2) Moreover, suppose that u; € L,(;D((—A)%)) with some §; € [0,1]. Let
¢e0,1], n € (—1,1) be such that

1
n+al < » + ado, (5.12)

1
77+04(<1+p—|—0461, (5.13)

Put
v(t) = u(t) — le<souo — Le<o tur.
Then v has a fractional derivative of order n (if n < 0: a fractional integral
of order —n) which is in L,([0,T] x Q; D((—A)%)) and satisfies
Do (t, W)l L, (0,17 x D ((—A)0))
< M Jluollz, @sp((—ayioy + lluallz, (- ayony)]
with a constant M depending on p, A, T, o, 8¢, 91, C, 7.
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Proof. First let u1 = 0 so that u(t) = Sq1u0. We will apply Lemma 5.4 with
3 = 1. Notice that a;(t) = 1, so that v(t) = Sa,1u0 — l¢<s,uo. To prove Part (1),
put ¢ = dp = 0 and take any n < 1. By Lemma 5.4 (3) we have, pointwise for all
w €,

u(t,w) = A/O aq(t — s)u(s,w) ds + ug.

Moreover, with these parameters, v(t) = u(t), and (5.10) holds. By Lemma 5.4,
Part (4) and (5.11), u(-,w) admits a fractional time derivative of order n with
values in L,(B;R), such that the following estimate holds:

| D u(t, w)l L, sr) < Mt™"|luo(w)ll L, (BiR)-

Taking convolution with ¢7~1/I'(n), we obtain with a suitable constant M; inde-
pendent of ,
[u(t, W)L, B < Milluo(W)llL, (5w

Integrating with respect to w we obtain

[l xBr) < MilluollL,@xBr)-

Thus u € Loo([0,T]; L,(2 x B;R)).

To prove Part (2), take again 3 = 1 and let (5.12) hold. Then (5.10) (with
dp instead of §) holds a fortiori. Let v(t) = Sa1uo — le<s,uo. Fix w € Q. By
Lemma 5.4 (4), v(-,w) has a fractional time derivative of order n which satisfies
an estimate

D70 (t,w)[lp(—aye) < Mt~ lug (W)l p(— ayso)-
Since, by (5.12), adp —n — a > —;, the estimate above implies

1 DYv (-, W)l L, (o,110((—4)¢)) < Mluo(w)llp(—a)d0)-

Integrating again with respect to €2, we obtain Part (2).
The case ug = 0, u1 # 0, u(t) = Sqa,2u1 is treated similarly with 8 = 2. Notice
that as(t) = t. In the end we can combine both cases. O

Lemma 5.7 (Contribution of f). Let A satisfy Hypothesis 3.1, let (2, F,P) be
a probability space, p € [2,00). Let o € (0,2), v > 0,0 < T < o0, and f €
L,([0,T] x ; L,(B; R)).

1) For almost t € [0,T], the following integral exists in L,(B;R), pointwise for
almost all w € Q, as well as in Ly(Q; L,(B;R)):

u(t,w) = / San(t — 8)f(5,w) ds. (5.14)

0
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Moreover, u € L,([0,T] x ; L,(B;R)), and for almost all w € Q and almost
allt €10,T),

/0 aq(t — s)u(s,w)ds € D(A),

u(t,w) = A/O ao(t — s)u(s,w)ds + /0 ay(t — s)f(s,w)ds.

2) Suppose, in addition, that f € L,([0,T] x ;D((—A))) with some € € [0,1],
letne(—1,1), ¢ €[0,1] be such that
n+al < v+ ae. (5.15)
Put
u(t) if¢ >
v(t) = t )
u(t) — [y ay(t—s)f(s)ds if ( <e.
Then, if n > 0, the function t — v(t) € Ly(S;D((—A)%)) has a fractional
derivative of order n in L,([0,T] x Q;D((—A)%)). If n < 0, the function
t— v(t) € Lp( Lp(B;R)) has a fractional integral of order —n with values

in Ly,(;D((—A))). If n =0, we define Djv = v. In either case there exists
a constant Mt 1, dependent on A, T, p, a7, €,(,n such that

| Dol 0,77 x 2D ((—A)6)) < M Lebll fll L, (j0,77x2:D((—4)<))-
Moreover, the constant My ychp can be made arbitrarily small by taking the

time interval [0, T] sufficiently short.

Proof. The function t — fot(t — 5)7 Y ()|, (2x B,R) ds is the convolution of an
L;-function and an L,-function, therefore it is in L,([0,T],R). From (5.11) with
6 = ¢ =mn =0 we obtain ||Sa~ ()L, B:R)—L,B:R) < M7, Consequently, the
integral

u(t) = /O Sur(t — 5)f(s) ds

exists as an integral in L,(Q2 x B;R) for a.e. t, and v € L,([0,T] x , L,(B,R)).
By standard arguments the integral (5.14) exists also in L,(B;R) for a.e. w € Q
and a.e. t € [0,T]. Now (5.9) implies (almost everywhere in  and [0,7)

u(t) - / as (t — 8)f(s,w) ds = / (o (t— )£ (5,) — s (t — 3)f (5, )] ds

_ /Ot A[/Ots 10 (0) S (t — 5 — 0) f(5,w) dor] ds.

We use the closedness of A and interchange the order of integrals to obtain

u(t) — /Ot ay(t —s)f(s,w)ds = A/t aq(o)u(t — o,w) do.

0
This proves Part (1) of the lemma.
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To prove Part (2), let 1, (, € be such that (5.15) holds. For shorthand put

D]S, if e <,
Vit)e = 57S AT ife<(
D{[Sa~{t)x —ayx] else.

From (5.11) with 3 replaced by ~, and ¢ replaced by ¢, we have
IV ()| p((—aye) < MEOTI=HO gl 5 ).

We obtain by a straightforward convolution argument that

t
| / V(t = s)f(s)dsllL,o.mxD((—a)¢)) d5 < My ez, 0,0~ 4)9))-
0
with
T
Mr1eb = M/ e —(m+ad)—1 gp
0

Clearly, Mt 1.ch converges to 0 as T' — 0. All we have to show is that in fact

DIu(t) = /O V(t— 5)f(s) ds.

We treat the case n > 0, € > (, the other cases are done similarly. The definition
of V(t)zx yields

/0 an(8)V(t — s)xdr = Sa~(t)x — ay(t)z.

Fubini’s Theorem implies
/0 an(s) ; V(t—s—a)f(a)dads:/o /0 an(8)V(t—o —s)f(o)dsdo
— [ st =) = a(t = )] f(o) do = ()

0

Thus v(t), considered as a function with values in D((—A)¢), admits a fractional
derivative of order n which is V % f. O

The following lemma is the key to estimate the contribution of the stochastic
integral:

Lemma 5.8. Let A satisfy Hypothesis 3.1, p € [2,00). Let a € (0,2), § > é,
¢ €[0,1] and n € (—1,1), such that (5.3) holds, i.e., 5 +n+al < (3. Let T > 0.
Then there exists a constant MTJtO > 0 depending on A, p,T,«, 3,1n,( such that
for all h € L,([0,T); L,(B;12)),

/OT/B (/Ot(A)CD?Saﬁ(ts)h(s,g;)|l22 ds)g dA(z) dt

T
< Mo / / \h(s, 2)[£. dA(z) ds.
0 B
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Moreover, the constant MTJtO can be made arbitrarily small by taking the time
interval [0,T] sufficiently short.

Proof. Write V (t) := (—A)° D} S, s(t) and notice that by (5.11) (with § = 0),
IV, B)—L, (B < MP=(nteg)—1,

First assume that p > 2. Notice that § and pf are conjugate exponents. Take

2
f:[0,T] x B— R* such that fOT [y fr=2 (t,x) dA(z) dt = 1. We estimate

/OT/Bf(tvf'f) /Ot [V (t = s)h(s,z)|7, ds dA(x) dt
B /OT /ot /B S (@) V(= $)h(s, 2)[f, dA(w) ds dt

g/OT/Ot UBf(t,x)p”a dA(x)} 0 UBW(ts)h(s,x)g dA(z) gdsdt

T t
< [Ny a1V =9I,y alIHC5, I sl

p—2

T P P
< [/ IFEIIET Bw dt]
0 p—2

T t
x [ / | / IVt =) Ba)r 15 M2, (i sl dt]

2
P

Thus

VOT/B (/ot V(= s)h(s, 2l ds>g dA(z) dt] ;

T
< [/0 |/O IVt = 1, (Bi2)— L, (1) 1755 T, (1) d512 dt]

For p = 2, the estimate (5.16) is obvious. In either case, we obtain (by estimating
the convolution with respect to s)

T t 5 ,
V /(/ V(t—s)h(s,x)ids) dA(x)dt]
0 B 0
T T ;
< (/0 |V(5)||%p(B;lg)HLP(B;12)ds) (/0 ||h(57-)|1£p(3;12)d5>

T
<M /0 2O ds 11, o1, (3i12))-

(5.16)

2
P
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By (5.3) we infer that s2(8—(+a0)=1) ig integrable on [0, T] so that

p
2

T
M0 = MQ/ g2 A= (mtad)=1) g
0

is finite and converges to 0 as T'— 0+. O

Lemma 5.9 (Contribution of g). Let A satisfy Hypothesis 3.1, and let the probability
space (2, F,P) and the Wiener processes wf be as in Hypothesis 3.2. Let T > 0,
2<p<oo,a€(0,2), and f > . Let g € Ly([0,T] x Q; Ly(B; 1)) and {g;} be
a sequence approximating g in the sense of Lemma 4.1, where the values of g;? are
in D(A) N L1(B;R) N Lo (B;R). Let ag * g be given by Definition 4.5. For j € N
put

i) =3 / St — $)gt(s) duk.
k=170

1) The limit w(t) = lim;_ o u;(t) exists in Ly([0,T] x ©; L,(B;R)). Moreover,
for almost all t € [0,T] and almost all w € Q,

t
u(t,w) = A/ ao(t — s)u(s,w)ds + (ag * g)(t,w).
0
2) Suppose 0 < ¢ <1 andn € (—1,1) are such that
1
n+a+ 5 < B. (5.17)

Then, if n > 0, the function u : [0,T] — L,(Q,D((—A))) has a fractional
derivative of order n. If n < 0, then u : [0,T] — Lp(; L,(Y,R)) has a
fractional integral of order —n with values in L,(; D((—A)%)). If n =0, we
denote D?u = u. In either case there exists a constant Mt 1, dependent on
A, p,a, B,m,C such that

I D ull o, 0,11 x2D((—4)¢)) < M1 1eollgll L, ([0,77x L, (Bila)) -

Moreover, the constant My 1y, can be made arbitrarily small by choosing the
time interval [0, T] sufficiently short.

Proof. First, let h € L,([0,T] x Q; L,(B;l2)) be of the elementary structure like
the g; in Lemma 4.1. Evidently, the following integral exists

0 t [ NS Tik
Z/O Sa.a(t — s)h*(s) dw? :ZZ/k So.p(t — s)hE dw*
k=1 i—1

k=1i=1"T

where 7F are suitable stopping times, h¥ € D(A)N Ly (B;R)N Lo (B;R), and both

i

sums are in fact only finite sums. For n € (—1,1), ¢ € [0, 1], satisfying (5.17),



Stochastic Integral Equations 153

put V(t)x = (—A)SD} S, 5(t)z. We apply Lemma 4.3 and integrate for ¢ € [0, 7.
Subsequently we apply Lemma 5.8:

/T/ |
o Ja|z= Jo

dP(w) dt (5.18)

i/ V(t — s)hk(s) dut

L,(B;R)

<u | : (] t[V(ts)h(s,wn(a:)ﬁst)g aP(w) dA(x) dt

< MMrgollPI%, o 1011, (512))-

In particular, with ¢ =7 =0, and h = g; — gm, we have

Huj - umHLp([O,T]XQ;LP(B;R)) < M||gj - gm||Lp([0,T]xQ;Lp(B;12))

so that {u;} is a Cauchy sequence in L,([0,T] x Q;L,(B;R)) and has a limit
u. Without loss of generality, taking a subsequence, if necessary, we may assume
that u; converges also pointwise for almost all ¢ € [0, T]. Again we use the simple
structure of g;, in particular that g¥(t,w) € D(A). From (5.9) and the Stochastic
Fubini Theorem we obtain

[ 1uali = 01gk .) ~ aale — o)t
J A aw6)Suati = 0 = 1) s
,A/ /t " 0(8)Sa 5t — 0 — 5)g (0, ) ds du
_A/O a(s>/0 Sup(t — 0 — 8)g (0, w) duf ds.

Taking the sum over kK =1,...,j we obtain

¢
uj(t,w) —ag* g;(t,w) = A/ aa(s)u;(t — s,w) ds.
0

Taking limits for j — oo (pointwise a.e. in [0,7]), and using the closedness of A
we have for almost all ¢ € [0, T]

u(t,w) —ag*g(t,w) = A/o aq(s)u(t — s,w) ds.

Thus Part (1) of the lemma is proved.
To prove Part (2), let n € (—=1,1) and ¢ € [0, 1] satisfy (5.17). With V(t)z =
(—A)*D]S, gz and h = g;, we obtain from (5.18),

/OZ_:Vt—sgj dw

< M7 10ll95 1| 2, (10,7 x L, (Bila))

Lyp([0,T] % Lp(B;R))
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with a suitable constant M7 1¢, which converges to 0 as T' — 0. We have to show
that in fact

E:[;V@fswﬂﬁdwﬁz(fAfD%w@)
k=1

First let n > 0. By definition we know that

/0 an()V (¢ — )z ds = (— A)Su (1)

Taking integrals and using the Stochastic Fubini Theorem, we obtain

A)Suj(t) Z/ A)° S, 5( tfcr)gj(cr w) dwk
72/ /” V(t -0 — 5)g* (0, w) ds dut

t—s
= /0 an(s)z ; V(t—s—a)gf(o,w)dwﬁ ds
k=1

Thus (—A)%u; has a fractional derivative of order 1 which is V % g;. Taking the
limit for j — oo we infer that DJ(—A)u = V % g. Now let n < 0. Similarly as
above, the Stochastic Fubini Theorem yields

i —0)gh (o) dwl = (= A)° ta s)uj(t —s)ds
S [ V- storaut = A [Cayoute s

Again we take the limit for j — oo and use the closedness of A, to see that the
fractional integral D}u takes values in D((—A)¢) with (—A)SDJu =V xg. O

6. The semilinear equation

This section is devoted to the proof of Theorems 3.6, 3.7, 3.11, and Corollary 3.8.

Lemma 6.1. Let (2, F,P) be a probability space, let A satisfy Hypothesis 3.1, and
let F' and G satisfy Hypotheses 3.4 and 3.5. We define the operators

N+ Ly([0,T) x D((—A)7)) — Ly([0, T] x 2 D((—A))),
NG : Ly([0,T] x Q;D((—A)%)) — L,([0,T] x Q; Lp(B;12))
by
Npv](t,w) == F(t,w,v(t)), [Ngvl(t,w) := G(t,w,v(t)).

(1) Then Np and Ng are well defined and Lipschitz continuous with Lipschitz
constants Mg, Mg, respectively.
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(2) Let F1, Fy,G1,Gs satisfy Hypotheses 3.4, 3.5, and 3.9. Let v € L,([0,T] x
QD((—A)?)). Then

[N v = Niyvll o 11x0p(—a))) < lrarll,o.r1xr),
INev = Nayvllz, (om0, Bi2) < lbacllz,qo.r<oir)-

Here the constants Mg, Mg and the functions uar and puag are as in Hypothe-
ses 3.4, 3.5, and 3.9.

Proof. These are straightforward estimates. O

Lemma 6.2. Let the assumptions of Theorem 3.6 hold, in addition assume that
S0 <0, 61 < 0. Forve Ly([0,T] x Q;D((—A)?)) let Tir,Gugyu? ¢ [0, T] x Q —
L,(B;R) be the unique solution u of

¢
u(t,w) = A/ aq(t — s)u(s,w)ds + ug + tug
0

s / ag(t — 5)Gr(s,w, v(s)) dwk
k=10

+ / ay(t — s)F(s,w,v(s)) ds.

0
in the sense of Proposition 5.1.

(1) Then Tir,Gue,uy @ well defined as a nonlinear operator from Ly([0,T] x
Q; D((—A)?)) into Lp([0, T] x Q;D((—A)?)). Moreover, Tip,G ug,uy) is globally
Lipschitz continuous with a Lipschitz constant dependent on A, p, T, «, (3,
v, € 0, Mg, Mg.

(2) There exists an equivalent norm on L,([0,T] x Q;D((—A)?)), such that the
Lipschitz constant of Tjp G ug,uy) 8 smaller than 1. This norm depends on
T,p,Aa,0B,7,0,e, Mp, M.

(3) There exists a constant M, depending on A,T,p, Mp, Ma,«, (3,€,0,00,01,
such that the following Lipschitz estimate holds:

If Fi, F>,G1,Gy satisfy Hypotheses 3.4, 3.5, and 3.9, if uo1, uo2 are in
Ly(Q;D((—A)%)) and uy 1,u1,2 € Ly(;D((—A)°)), measurable with respect
to Fo, then for any v € L,([0,T] x ;D((—A)?)) we have

1717y, 61 w001, 11Y — (B2 Gy 2,01 2Vl Ly (0,7 02D ((— 4)9))
< M {[luo,1 — uo2llL, p((— )0y + U1, —ui2ll, p((—ayn))
+ llarlz,qo,rxom) + HNAGHLP([O,T]XQ;R)]

(4) Tip,G,uo,ui] has a unique fived point up,c ugu,] € Lp([0,T] X 2 D((—A)?)).
Moreover, there exists a constant M dependent on A, p, T, Mp, Ma, «, 3,
€, 0, 6o, 61 such that the following Lipschitz estimate holds:
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If u; j, Fi, G; are as in (3), then
[Py, G101 1 1] — ULF, G 2,021 |2, ([0,7]x 2D ((— 4)9))

< M {[luo,1 — uo2llL, p((— )0y + U1, —ui2ll, p((—aym))

+ llarllz,qo,r)xom) + HUAGHLP([O,T]XQ;R)]
Proof. We recall Proposition 5.2 with n = 0 and ( replaced by 6. Notice that the
conditions (5.2), and (5.3), (5.4), (5.5) are satisfied. Let u solve
U= Aaq *u+ay* f+agxg+ug+tu,
Notice that with the present choice of coefficients the function v in (5.6) is simply
u. Thus u € L,([0,T] x Q;D((—A)?)) with
w2, (j0,11x 2D ((— 4)%)) (6.1)
< Minis | [luoll 2, (:p((—ay50)) + H“luLp(Q;D((—A)‘;l))}
+ Mrvevll fllz, (0,11 x2D((—a))) + Mr1eollgll L, (o, m1x 9L, (B.12))-
Given v € L,([0,T] x Q;D((—A)?)), we put f = Npv and g = Ngv as in
Lemma 6.1. Then f € L,([0,T] x ; D((—A)°)) and g € L,([0,T] x Q; L,y(B;l2)).
Thus, by (6.1), u = Tip,G,ug,u ]V € Lp([0, T] x € D((—A)?)). In particular for v = 0
we have
17,6 u0,u1) (0) | 2, (0,71 x 2:D((— 4)0))
< Mini [[luollz, 0, p(— a0y + [uallz, @p(—ayory ] + MrLenMro + MrioMa o.
We could immediately get a Lipschitz estimate for 7z, g vy,u,] by (6.1), but we will
get a better (contraction) estimate in an equivalent norm below.
To prove (2), we recall from Proposition 5.2 that My e, and Myp 1y, can be
taken arbitrarily small, if the time intervals are sufficiently short. In particular,

there exists m € N such that
1

A
With some x > 0 to be specified below, we define for v € L,([0,T] x Q; D((—A)?)),

1/p

Mt LebME + Mr)m 110 Ma <

m

=35 [ [ [ el s
= |ra-n/m

For g =1,...,m we put
Fy(t,w,v) == Lq—1)1/m<t<qr/m(t) F(t,w,v(t)),
Gqy(t,w,v) = L 1)r/m<i<qr/m(t) G(t,w,v(t)).
If v,9 € Ly([0,T] x Q;D((—A)?)), then

m

/T[F,G,uo,uﬂv TFG ,u0,u1] E :wq7
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where w, solves
Wq = Aaq * g + ay * [Fy(v) — Fy(0)] + ap x [Gq(v) — Gg(0)].
Now w, = 0 on [0, T(‘fn_l)}. Lemma 6.1(1) and (6.1) imply

Tq/m 1/p
(L7 [ el 2t at)
T(g-1)/m J0

Tq/m 1/p
< Mmoo ([ 7 [ ot (0l gy P )
T(qg—1)/m JQ

Tq/m 1/p
# MapmaaMe ([ o) = 600l ey P )
T(g—1)/m JQ

Tq/m /e
< 4</ (o 1)/m/ [v(t,w) — w)||%((_A)g)dIP’(w)dt> .

On the intervals {(T:i) , ’;3:] with r > ¢ we have the estimate

Tr/m 1/p
(/ [ Bttt ey ) )
(r—1)/m
1/p
< / [ ot gy P )

Tq/m 1/p
SM(/ /Hvtw w)||%((A)9)dIP’(w)dt> .

(g—1)/m

with M = MpMrp e, + McMyp 1o We choose £ € (0,1) sufficiently small, such
that M > )7, k" < . We have therefore

m Tr/m 1/p
wyll| =) K" wWa(t, W) |5 avey dP(w dt]
el = 30w [ [ oty 2P
m Tq/m 1/11
< [ +M Z r— q} K4 [/ lo(t,w) — @(t,w)||%((_A)9)dP(w) dt}
o T(g-1)/m

1 Tq/m } 1/p
< 5 K4 {/ [lv(t,w) — v(t,w)”%((img) dP(w) dt} .
T(g—1)/m

Summing for ¢ = 1,...,m we obtain

m
17i£.6.u0,110 = TiFG )OI < D Il

q=1
m Tq/m ~ ’ 1/p 1 ~
Zfiq [/ |v(t,w)—v(t,w)D((_A)g)dﬂ”(w)dt] = _|||lv—12]-
(g—1)/m 2

Part (3) is a straightforward application of (6.1) and Lemma 6.1 (2).
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Finally, since for all F, G, ug, u1 the operator (g g u,,u,) i8 @ strict contraction
with Lipschitz constant 5 < 1 on Ly ([0, T] x ; D((—A)?)) (with the norm ||| - [|]),
and since 7[r g uo,u,)v depends Lipschitz on F, G, ug, u1 by Part (3), the standard
contraction arguments yield Part (4). ]

We are now ready to finish the proofs of the main results:

Proof of Theorem 3.6. We may assume without loss of generality that g, d; < 6.
(If any ¢; is greater that 6, it may be replaced by 6.) Obviously, the unique solution
of (1.1) in Ly ([0, T] x €; D((—A)?)) is exactly the unique fixed point of Tjr ¢,y u]
constructed in Lemma 6.2. O

Proof of Theorem 3.7. Let u be the solution of (1.1), thus, with f = Npu €
L,([0,T] x Q;D((—A))) and g = Ngu € Ly([0,T] x Q; L,(B;ls)) we have that
u solves (5.1). Let v be defined by (3.13). Now, (,n, do, 01, € satisfy the conditions
of Proposition 5.2, which yields immediately the required additional regularity
results. O

Proof of Corollary 3.8. To prove Part (1), choose n such that

! - ! <n<l1

p ¢ n )
and such that the conditions (3.9), (3.10), (3.11), and (3.12) from Theorem 3.7 are
satisfied. Then Dj'v € L, ([0, T]; L,(Q; D((—A)¢))). Notice that ¢ < , P | so that

1—pn?
we infer from [9, p. 421] that v € L, ([0, T]; L,(; D((—A)%))).

To prove Part (2), put ;H—; = 7. Consequently conditions (3.9), (3.10), (3.11),
and (3.12) from Theorem 3.7 hold. Then Djv € L, ([0, T}; L,(Q; D((—A)¢))). Then
by [9, p. 421] we infer that v € b2 ([0,T]; Ly( D((—A)))). O
Proof of Theorem 3.11. For i = 1,2, let u[r, ¢, uo..u;.,] be the solution of (1.1)
with wug replaced by wg, etc. Let v, ¢, u0..u;,) be defined by (3.13) with the
obvious modifications. From Lemma 6.2, Part (4) we have a Lipschitz estimate

[UFy,G 1 uo.1 u1.1] — UIF2,Ga o201 2] | Ly (10, 7)) 2D((— 4)0)) < Md with

d = [luos — uozll L, @p((—a)y0)) + lurn — wizll L@ aym)

+ llparlc,qorxom) + lkacl,qomxom]-
Now let f; = Nruir, ¢, uo.iu 2] a0d gi = NGU[Fp, G ug . ui,]- By Lemma 6.1(1) we
have
If1 = follz, (o, r)xD((— a))) < MpMd, g1 — g2llL,(0,1)x %L, (B,12)) < MaMd.
The difference v = v(r, G, up1,u11] = V[Fe,Gasuo 2.1 .2] SOIVEs (5.1) with ug replaced
by wo,1 — uo,2, etc. Proposition 5.2 yields now
‘|U[F17G17U0,17u1,1] = V[Fy,G2,u0,2,u1,2] HLP([O,T]XQ§D((*A)C)) < Md

with a suitable constant M. g
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7. Maximal regularity considerations

In this section, we consider the case that B = R™ and A = A : W2P(R") —
L,(R"), the Laplacian in L,(R™). In this case, a maximum regularity result can
be proved. To keep the paper at a reasonable size we concentrate on the stochastic
part and confine ourselves to the equation

u(t,w,z) = A/ ao(t — s)u(s,w,x)ds

+Z/a5t75 (s, w,u(s,w, x)) dw?

(7.1)

and the linear equation
¢ 0ot
u(t,w,z) = A/ ao(t — s)u(s,w,z)ds + Z/ ag(t — s)g" (s,w, ) dwt. (7.2)
0 =10

Notice that various results on maximal regularity with respect to determin-
istic forcing functions (see, e.g., [39]) and to initial data (e.g., [9]) are available.
These could be combined with the results given here and adapted to the semilinear
case.

For (7.2) we obtain
Proposition 7.1 ([13], Theorem 4.14). For a positive integer n, let A : W2P(R") —
L,(R™) be the Laplacian with 1 < p < co. Suppose that the probability space 2 and
the Wiener processes w® satisfy Hypothesis 3.2. Let T > 0, 3 > ;, a € (0,2), and
g € L,([0,T] x Q; L,(R™,12)).
(a) Then there exists a unique function w € L,([0,T] x 2, L,(R™)) such that for
almost all t € [0,T],

/0 ao(t — s)u(s) ds € W*P(R™)

and (7.2) holds.
(b) Moreover, if ¢ € [0,1] is such that

aC+ < f, (73)
then u € L,([0,T] x Q,D((—A)°)), and

lull 2, o, 71x 0, D((=a)6)) < MlgllL,jo,1)x0,02) (7.4)
with a constant M dependent on n,T,p, o, 3,C.

(c) If strict inequality holds in (7.3), then M in (7.4) can be obtained arbitrarily
small by taking sufficiently small T.

Proof. Of course, if strict inequality holds in (7.3), then the assertions above are
just a special case of Proposition 5.2 with A = A, ug = u; = 0, and n = 0. But for
such A and 7, the assertion of Lemma 5.8 holds also if equality holds in (7.3), with
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the only exception that MTJtO cannot be made small by taking small T'. See [12,
Theorem 1.2]. (To prove this, the general estimates from Lemma 5.4 are replaced
by a more sophisticated analysis of the resolvent kernel for the Laplacian, using
the heat kernel and its self-similarity properties. This has been done for the heat
equation by Krylov in [20], and generalized to the case of integral equations in
[12].) Once Lemma 5.8 is established, the proof continues exactly as in Section 5.
More details can be found in [13]. O

Since M in (7.4) cannot be controlled simply by taking short time intervals,
we need a more sophisticated Lipschitz condition. (For the heat equation, compare
[21, Assumption 5.6].)

Hypothesis 7.2. There exists some 6 € (0,1) such that
G :[0,T] x Q x D((=A)?) — L,y(R"™; 1)
[G(t,w, u)](z) == (GF(t,w,u)(z))

k=1
satisfies the following assumptions:
(a) For fixed u € D((—A)?), the function G(-,-,u) is measurable from [0, 7] x
into L,(R™;13).
(b) For each € > 0, there exists a constant M¢(€) > 0, such that for all ¢ € [0, T,
and all uy,us € D((—A)?) the following Lipschitz estimate holds:

|G (t,w,u1) — G(t,w, u2)| L, & 1) (7.5)

1/p

< [€lluy — uQ||%((_A)9) + Mg (e)P|lug — uQ||I£p(R”)] forwe Qae..

(¢) For u =0 we have
T l/p
léém@m®&mmﬁﬂ’ — M < . (7.6)

Theorem 7.3. Let the probability space (Q, F,P) and the Wiener processes (wf)zozl

be as in Hypothesis 3.2. Let p € [2,00), and A be the Laplacian on L,(R™). Let
a€(0,2), 8>3, and T > 0. Assume that G : [0, T] x Qx D((—=A)?) — L,(R™;1y)
satisfies Hypothesis 7.2 with suitable 6 € (0,1), such that

w+;=ﬁ. (7.7)

Then there exists a unique function u € L,([0,T] x Q;D((—=A)?)) such that for
almost all t € [0,T]

¢
/ ao(t — s)u(s,w,-)ds € D(A) for a.e. w €,
0

and (7.1) is satisfied for almost all w € Q.
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Proof. We refine the contraction argument from Section 6. As in Lemma 6.1 we
define for v € L,([0,T] x Q; D((—A)?))

Ne(v) : {[O’T} xQ  — Ly(R";1a),

tXw — G(t,w,v(t,w)).
For g € L,([0,T] x Q; L,(R™,15)) we define Sg := u € L,([0,T] x Q; D((—A)%)),
where u is the solution of (7.2) according to Proposition 7.1 with forcing function
g. As in Section 6 the desired solution u is a fixed point of the operator 7 := SoNg
which maps L, ([0, T] x ;D((—A)?)) into itself.
By (7.4) for ¢ = 0 and for ¢ = 6 we infer
1S9l 2,10, 71x 052, (7)) < Mo(T)gllz, (10,170, (R712))
1Sallz, 0, 71x (- a)0)) < MollgllL,((0.71x 0L, (®7:12)) 5

with fixed My, while My(T') can be made arbitrarily small by taking T" sufficiently
small. We fix € > 0 such that Mge < é and choose the corresponding Mg (€) ac-

cording to Hypothesis 7.2. On L, ([0, T] x Q; D((—A)?)) we introduce the following
equivalent norm

HUHI[),I,([O,T]XQ;D((—A)G)),equiv

T
= /o /Q [e”Hv(t,w)H%((_A)e) + Mg(e)Hv(t,w)Hip(R")] dP(w) dt.
With respect to this norm, the nonlinear operator
N Ly([0,T) x & D((=A))) — Ly([0,T] x & Ly(R"; 1)
has Lipschitz constant 1 by Hypothesis 7.2. On the other hand

1S9l L, (10,71x 2D ((—2))),equiv
< (P MJ + Ma(e)” Mo(T)P) Il 1, (10,77 x % Lo (B i12)-

We infer that 7 is Lipschitz on L,([0,7] x Q;D((—A)?)) with respect to the
equivalent norm || [|_(0,7]xQ:D((—A)#)),equiv, and if 7' is sufficiently small, so that
(P M} + Mg (e)?Mo(T)P)Y/P < %, then the Lipschitz constant of 7 is less than
411' We can now proceed as in Lemma 6.2 (2) to construct an equivalent norm on
L,([0,T] x ;D((—A)?)) which makes 7 a strict contraction also for large 7. O

8. Krylov’s approach versus B-space valued stochastic integration

At the center of the study of stochastic integral equations in Banach spaces is the
problem of defining and estimating stochastic integrals, in particular stochastic
convolutions, in Banach spaces. Krylov’s approach, which is used in this paper,
is elementary in the sense that stochastic integrals are taken pointwise, so they
are classical Ito-integrals of scalar-valued processes. The Burkholder-Davis-Gundy
inequality provides the step from Lj-estimates to L,. Of course, this can only
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be done for sufficiently “nice” integrands. The final step is to extend the results
obtained for smooth initial data and elementary forcing terms to more general
L,-data by a completion argument.

On the other hand, the recent progress on stochastic integration in Banach
spaces provides a convenient tool to handle stochastic convolutions directly in the
Banach space. In [4] stochastic convolution is developed to the point where semi-
linear stochastic differential equations can be treated in M-type 2 UMD spaces.
(This covers our case X = L,.) In fact, the key is a generalized version of the
Burkholder-Davis-Gundy inequality. Further developments of stochastic integra-
tion can be found in [26].

In [13] we compared our linear results with those obtained in [14], [37]. In the
context of the present paper it appears interesting to make a similar brief com-
parison concerning semilinear equations. Note that the aim of the present paper
is to treat fractional differential equations and not only the differential equation
case « = = v = 1. To our knowledge, no results are available for stochastic
fractional integral equations using abstract integration methods in spaces other
than Hilbert spaces. However, there are several papers dealing with differential
equations, in settings that are quite more general than ours. For instance, nonau-
tonomous problems ([38]) and local Lipschitz conditions ([4], [27]) can be treated.
And, as stated above, the abstract methods are not confined to the space L,.

With @ = 3 = v = 1 our equation (1.1) reduces to the stochastic nonlinear
differential equation

du(t) = Au(t) dt + G(t,w, u(t)) dW; + F(t,w,u(t)) dt. (8.1)

It is this case, where we can compare our results to the results obtained by
the abstract integration theory. Note that in abstract notation, W, is a cylin-
drical Wiener process in a separable Hilbert space H and that, for fixed u, G €
L,([0,T] x ;~v(H, L,(B))) where v(H, L,(B)) denotes the space of y-radonifying
operators H — L,(B). This is equivalent to writing the stochastic forcing in

Krylov’s notation
o0
G = Z GFwh.
k=1

with (for fixed u) {G*}32, € L,([0,T] x Q; L,(B,l2)) (use, e.g., [37, Proposi-
tion 3.2.3]).

Possibly the results which can be most easily compared with ours are those
of [4], which are formulated for any type 2 UMD space. Rewritten to our notation
(and reduced to the globally Lipschitzian case, and L, instead of general X)), the
essential conditions in [4] read:

e There are constants € € (—1,0), v € (0,1], ¥ > 0, and
1
0§92<91<92+p1<min(€—|—1,2—’19), (82)

such that the following conditions hold:
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e G:[0,T] x QxD((—A)?") — L,(B;ls) satisfies a Lipschitz condition
I(=A) " C(t,w,u1) = (~A) "Gt w,u2) | 1, (Bs)
< Kfux — U2||%((7A)61)||U1 - u2||1D7(EI—A)92)

for almost all w € Q, and all t € [0, T, u1,us € D((—A)").
o F:[0,T] x Q x D((—A)?) — D((—A)) satisfies a Lipschitz condition

1F(t,w,u1) = F(t,w, uz)llp-aye) < Kllur = wzllpayonsllur = uallp ae)

for almost all w € Q, and all ¢ € [0, T, u1,us € D((—A)%).

® Uy € Lp(Q7 Fo, D((—A)gl).

e In addition, suitable conditions for measurability and linear growth of F' and
G in u are given.

With these conditions, (8.1) admits a unique mild solution
u € Ly([0, T] x @ D((—A)™)) N Lyp(2,C([0, T]; D((~A)))).

This assertion is stronger than our Theorem 3.6 since it ensures that trajectories
are continuous a.s. in the some space D((—A)%2), while our theorem only provides
a solution in L, ([0, 7] x ©; D((—A)?1)). Accordingly, the conditions on 62 will not
have a counterpart in Theorem 3.6. The Lipschitz condition on G can be compared
to Hypothesis 3.5 if we identify 6; above with our 6 and put ¥ = 0, and (with
some abuse) forget about the role of 6. The Lipschitz condition on F' is more
general than Hypothesis 3.4, since it allows for negative e. We expect that it might
be a minor technical task to sharpen our arguments to match this situation. With
a = 3=+ =1, our conditions (3.5), (3.6) and (3.7) can be rewritten in the form

01 <1+e, 91<17 91<1+50.

2 p

The conditions on #; and e are exactly what is left from (8.2) if we forget about 5.
Our Theorem 3.6 allows for ug € D((—A)%) where §y > 61 — 11). In [4] slightly more
regular ug € D((—A)1) is required, with the payoff that solutions are continuous
at least as functions with values in D((—A)%). The continuity assertion may be
(with some caution) compared to our Corollary 3.8 (2), if we identify 02 from [4]
with our . Then the conditions of our Corollary 3.8 require € (0,1 — 11)) such
that

1 1
p+u+92<min<1+672>, w02 < dp.

Such p can be found if (8.2) holds. Our corollary states that in this case u €
ht—o([0, T]; Ly (2 D((—4)%))).
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Abstract. The global existence of weak solutions is proved for the problem of
the motion of several rigid bodies in non-newtonian fluid of power-law with
selfgraviting forces.

Mathematics Subject Classification (2000). 35Q35.

Keywords. Existence of weak solutions, motion of several rigid bodies, non-
Newtonian fluid, selfgravitating forces.

1. Introduction

In the last decade, a large activity has been devoted to the study of motions of
rigid or elastic bodies in a fluid. The motion of particles in a viscous liquid has
become an important goal of applied research. The presence of particles affects the
flow of the liquid, and the fluid, in turn, affects the motion of particles, so that
the problem of determining the flow characteristics is a strongly coupled one.

There exists now a lot of numerical studies and simulations concerning this
system and its theoretical aspects. We deal here with the problem of several rigid
bodies embedded into a viscous fluid.The fluid and rigid bodies are contained in
a fixed open bounded set of R®. We will suppose that this fluid is non-Newtonian
with a sufficiently high viscosity and also we consider selfgraviting forces. We are
interested in the existence of weak solutions and also in no existence of collisions
in finite time. We will apply two different techniques of penalization. The first one
was introduced by Conca, San Martin, Tucsnak and Starovoitov [34, 5] and the
second one by Bost, Cottet and Maitre [2]. We want to compare efficiency of both
methods.
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Historically, the weak formulation of the problem has been introduced and
studied by Judakov see [39] and after that by many authors: Desjardins and Este-
ban [6, 7], Hoffmann and Starovoitov [29, 30], San Martin, Starovoitov, Tucsnak
[34], Serre [35], Galdi [23], among others.

Concerning the problem of the existence of collisions, let us mention that in
the case of compressible fluids there is a result obtained by E. Feireisl.

In [16], E. Feireisl considered a rigid sphere surrounded by a compressible
viscous fluid inside a cavity. He constructed a solution to the subsequent system
in which the sphere sticks to the ceiling of the cavity without falling down. On the
other hand, in the incompressible case, Hesla [26] and Hillairet [27] proved a no-
collision result when there is only one body in a bounded two-dimensional cavity.
Later the result was extended to the three-dimensional situation by Hillairet and
Takahashi [28].

Starovoitov in [38] showed that collisions, if any, must occur with zero rela-
tive translational velocity if the boundaries of the rigid objects are smooth and the
gradient of the underlying velocity field is square integrable — a hypothesis satis-
fied by any Newtonian fluid flow of finite energy. The possibility or impossibility
of collisions in a viscous fluids is related to the properties of the velocity gradi-
ent. A simple argument reveals that the velocity gradient must become singular
(unbounded) at the contact point, since otherwise the streamlines would be well
defined, in particular, they could never meet each other.

Indeed Starovoitov [38] showed that collisions of two or more rigid objects
are impossible if:

e the physical domain  C R? as well as the rigid objects in its interior have
boundaries of class C1!;
e the pth power of the velocity gradient is integrable, with p > 4.
Inspired by work of Starovoitov, Feireisl et al. [17] have considered the motion
of several rigid bodies in a non-Newtonian fluid of power-law type (see Chapter 1
in Mélek et al. [33] for details), where the viscous stress tensor S depends on the
symmetric part D[u],
Du] = V,u+ Viu

of the gradient of the velocity field u in the following way:

S=S[D[u] ], S: R} — RIX is continuous, (1.1)
(S[M] - S[N]) : (M - N) > 0 for all M £ N, (1.2)

and
| MP < SM] : M < ¢co(1 + |M|P) for a certain p > 4 (1.3)

and they showed not only the existence of a weak solution but also that collisions
cannot occur in such viscous fluids.

The question how the smoothness of boundary has influence on the existence
of collisions was investigated in the work of Gerard-Varet and Hillairet [24].
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The present work is an extension of that of Feireisl et al. (see [17]) to the case
where selfgravitating forces are present and two different possibilities of penaliza-
tion technique are used.We have to use a slightly different approximation scheme
by means of artificial viscosity terms to handle the selfgravitating force. Moreover,
we have to assume the regularity of boundary C%¥, v € (0,1) to get the strong
solution of the regularized continuity equation.

2. Formulation of the problem

2.1. Bodies and motions

A rigid body can be identified with a connected compact subset B of the Euclidean
space R3. The motion is represented as a mapping 1 : (0,T) x R® — R3, which
defines an isometry

n(t,) : R* — R® (2.1)
for any time ¢ € (0, 7).

We adopt the Eulerian (spatial) description of motion, where the coordinate
system is attached to a fixed region of the physical space currently occupied by the
fluid. The position x and the time t € (0,T) play the role of independent variables.
The mappings 7(t, -) are isometries satisfying the following identity

n(t,x) = Xy (t) + Ot) (x = Xy (0)),
where X,; the position of the center of mass at a time ¢ and O(¢) is a matrix satis-

fying OT O = Z. Moreover, the translation and angular velocities can be expressed
respectively by

thg =0, (2.2)
and

<C§lt(9(t))(9T(t) — o). (2.3)

The solid velocity in the Eulerian coordinate system can be written as

O 6 (13)) = Uy(1) + Q1) (x Xy (1)

The total force FBi acting on the body Bj is a sum of the gravitation force and

the contact force
FPi(t) :/ pBighi dx+/ Sn do,
B;(t) 8B (1)

s,
where S is the Cauchy stress, gf = GV fR?’ Zj# |£7Jy| is the gravitation force

u’(t,x) =

and B;(t) = n(t, B;). Under the assumption of the continuity of stress, the balance
of linear momentum for body B;j is expressed by Newton’s second law

d d
m  Ug(t) = / pPiufi dx = / pPighi da —I—/ Sn do, (2.4)
dt dt Jp, ) Bi(t) 0B (1)

where m is the total mass of the body.
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The matrix Q is skew-symmetric, therefore it can be represented by a vector
w such that

Qt)(x — X,) = w(t) x (x - X,).
Moreover the balance of angular momentum reads

d

d B; B;
= (x—X i d 2.
dt(Jw) i@t /Bi(t) P (x g) xut dz (2.5)

:/ pPi(x — X,) x Sn da—l—/ pPi(x — X,) x ¢ dz,
0B; (1) B;(t)

where J is the inertia tensor
.7a~b:/ pPiax (x—X,)) - (bx(x—X,)) ds.
Bi(t)

2.2. The fluid motion

The fluid is completely determined by the density p/, and the velocity uf. The
standard mass and momentum balance equations are the following:

orp! +div(pfuf) =0,
divuf = 0, ; in Qf, (2.6)
d(pTul) +div(p’u! @ ul) + VP =div S+ p/ GV [, o) Y
where Qf = Q\ Uf\il B;, P is the pressure and S is the viscous stress tensor.
We also consider a no-slip boundary condition for velocity
u/ =0 on 9. (2.7)
We will introduce the notation
Q:=1x1Q,
Q' ={(t,a)lt € I,w € B(1)),

N
Ue.e'=ae\e,

Q=
i=1
and define the quantities
pf(t,x) on Q,
plt,x) = { pP(tx) on @',
0on R3\ Q,
and
u’/(t,x) on Q,
u(t,x) = { ufi(t,x) on Q7,

0 on B3\ Q.

We will restrict ourselves to the particular case where the density is noncon-
stant only on the solid part and constant on the fluid part to get local estimates
on the pressure.
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3. Weak formulation

We begin with a description of the initial position of a set of rigid bodies. We
assume that the initial position of the rigid bodies is determined through a family
of domains
B;CR i=1,...,n,

each of them being diffeomorphic to the unit ball in R3. In addition, in order to
facilitate the analysis, the boundaries of all the rigid bodies are assumed to be
regular, more specifically, there exists §p > 0 such that for any x € dB;, there are
two closed balls Bi**, B®** of radius dy such that

x € B™NB*™ B™ c B;, B c R*\B,. (3.1)
Similarly, the underlying physical space Q C R3, occupied by the fluid containing

the rigid bodies, is supposed to be a domain such that for any x € 052, there are
two closed balls B Bt of radius dy such that

x € B™NB™' B™ c Q, B™' c R*\ Q. (3.2)
The motion 7; associated to the body B; is a mapping
mi =ni(t,x), t € [0,T), x € R, ni(t,-) : R®* — R3,
together with the initial condition
7i(0,x) =xforallx € R® i=1,...,n,

that is an isomorphism R® — R3.
Accordingly, the position of the body B; at a time ¢ is given by the formula

B;(t) =n:(t,B;), i=1,...,n.

We proceed with the definition of a weak solution for fluid structure interac-
tion, which was introduced by Judakov [39] based on the Eulerian reference system
and a class of test functions depending on the position of the specified rigid bod-
ies (see Desjardins and Esteban [6, 7], Galdi [22], [23], Hoffmann and Starovoitov
[29], San Martin et al. [34], Serre [35], among others) however we will use a slightly
different definition in the last paragraph.

The mass density ¢ = o(t,x) and the velocity field u = u(¢,x) at a time
t € (0,T) and the spatial position x € Q satisfy the integral identity

/OT/Q (pat(b-l- pu - Vw(b)dx dt = — /Q pod dz, &€ CH(0,T) x ), (3.3)

/OT/Q<pu-8t<p+pu®usz[¢}_S:Dm) de dt

T
:—/ /pGVx/ P dywpdxdt—/pouo-apdxdt,
0 Ja re |z —yl Q

© e CH[0,T) x Q), pt,) € R(), (3.5)
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R(t) ={p € C*Q) | div ® =01in Q, ¢ = 0 on a neighborhood of 9,  (3.6)
D[®] = 0 on a neighborhood of U_; B;(#)},

T T
/ /vaw</ P dy)gp dz dt:/ /vaxF de dt,
o Ja r3 1T — 0o Jo
pi of
F= / ’ dy+/ dy ).
(; re |z =yl res |2 =yl )

Finally, we require the velocity field u to be compatible with the motion of the
bodies. As the mappings 7;(t,7) are isometries on R3, they can be written in the
form

where

with

i (t, x) = z;(t) + O;(D)x.
Accordingly, we require the velocity field u to be compatible with the family of
motions {n,...,n,} if

u(t,x) = uli(t,x) = U;(t)+ Qi(t)(x—z;(t)) for a.a. z € By(t), i =1,...,n (3.7)
for a.a. t € [0,T"), where

d d
dt dt

We introduce now some notation:

z; = U, < Oi) OF = Q; a.a. on (0,7). (3.8)

o Given a collection ]§i:1
Q, we denote by

d[UB,] :=inf{ inf dist(B;,B;), inf dist(B;,90)}

i,7=1,....m i=1,....m

m of open relatively compact connected subsets in

.....

the minimal interdistance “solids-boundary”.
e The signed distance to the boundary is

dbg(x) = dist [x; R \ S] — dist [x, S].
Given a subset S C R?, and a > 0, we denote
[S]a = dbg ' ((—00,—a)), ]S[a= dbg'((~0c0,a)). (3.9)

In the sense of J.A. San Martin, M. Tucsnak and V. Starovoitov, [S], is the a-
neighborhood of S and | S|, is the a-kernel of O.

V= {¢ € C(Q), such that div(¢) = 0}.

1. V, stands for the closure of V in WSP(Q) and V¢ for the closure of V in
W#2(Q). For simplicity V = V1 = V5.
2. Given B C Q, we write
Kp,(B) ={v €V, with D(v) =0 in B},
K*(B) ={v € V* with D(v) =0 in B}.
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3. Given a subset B of €, P¥{B} is the orthogonal projection of V* onto
K ([Blo)-

We will introduce the energy inequality (EI) of the problem as follows:
1 Jo, pluP(t2) do = [, Gplta, x)Fda} + [/ [,S: Dlu] do dt

< ;{fgh plul?(t1) dx — th Gp(t1,x)F d:c}.

Problem P. Let the initial distribution of the density and the velocity field be de-
termined through given functions pg, ug, respectively. The initial position of the
rigid bodies is Bt C Q, i = 1,...,m. We say that a family p, u, n*, i =1,...,m,
represent a variational solution of problem (P) on a time interval (0,T) if the
following conditions are satisfied:

e The density p is a non-negative bounded function, the velocity field u belongs
to the space L>(0,T; L3(Q; R?)) N LP(0,T; Wy P (Q; R?)), and they satisfy
energy inequality (EI) for ¢t; =0 and a.a. t3 € (0,7).

e The continuity equation holds on (0,7) x R? provided p and u are extended
to be zero outside €.

e The momentum equation (the integral identity) holds for any admissible test
function w € R(t).

e The mappings 7%, i = 1,...,m are affine isometries of R? compatible with
the velocity field u in the sense of compatibility conditions.

4. Main result I
Let us formulate one of our main existence results.

Theorem 4.1. Let the initial position of the rigid bodies be given through a family
of open sets

B; C Q C R3, B, diffeomorphic to the unit ball for i =1,...,n,

where both 0B;, i = 1,...,n, and 0 belong to the regqularity class specified in
(3.1), (3.2). In addition, suppose that

dist[B;, B;] > 0 for i # j, dist[B;, R*\ Q] >0 for anyi=1,...,n

and we assume that the boundaries of Q and B; belong to C*V, v € (0,1). Fur-
thermore, let the viscous stress tensor S satisfy hypotheses (1.1)—(1.3), with p > 4.
Finally, let the initial distribution of the density be given as

o5 = const > 0 in Q\ U, B;,
o= oB, on S;, where og, € L>*(Q), essinfg, o, >0, i =1,...,n,

while

uy € L*(Q; R?), divyug = 0 in D'(Q), Dug] = 0 in D' (By; R**®) fori=1,...,n.
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Then there exist a density function o,

o€ C([0,T; L' (Q)), 0< essirgllf o(t,-) < esssupo(t,-) < oo for all t € [0,T],
Q

a family of isometries {n;(t,-)}1—1, 1:(0,-) =1, and a velocity field u,
u € Cyear ([0, T); L*(Q; R®)) N LP(0, T; W, P (Q; R%)),

compatible with {n;}1'_, in the sense specified in (3.7), (3.8), such that o, u satisfy
the integral identity (3.3) for any test function ¢ € C1([0,T)x R?), and the integral
identity (3.4) for any ¢ satisfying (3.5), (3.6).

5. Approximate problem

We will construct weak solutions based on a three-level approximation scheme
which consists in solving the system of equations

Oro + diva(oluls) = dAp, (5.1)
Ot(ou) + divy(ou ® [u]s) + V. P 4+ dVpVu = dive ([ue]sS) + oV F — xeu, (5.2)
Oepre + divg (peufs) =0, (5.3)
divyu = 0, (5.4)

where

[u]s = o5 * u (spatial convolution) for 0 < d < do,
with

o5 () = 5130(‘§‘), (5.5)

1

oc€D(-1,1), o(z) >0for —1<2z<1, o(z) =0(—2), / o(z)dz=1.

As Q is bounded, we can assume that Q C [~L, L]? for a certain L > 0 and
consider system (5.1-5.4) on the spatial torus

T =[(—L, L)[{_1.07)%

meaning that all quantities are assumed to be spatially periodic with period 2L.
System (5.1)—(5.4) is supplemented with the initial conditions

0(0,-) = 00,5 = 05 + E 0B, (5.6)
=1
where

o, € D(B;), oB,,s(x) =0 whenever dist[z,0B;] < d,i =1,...,n. (5.7)

Similarly, we prescribe

1 n
p0,) = poe =1+ _ Z;MB“ (5.8)
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where
up;, € D(B;), pp,(x) =0 whenever dist[z, 9B;] < 4,
i=1,...,n. (5.9)
up, (z) > 0 for x € B;, dist[x,0B;] > ¢
We take
1
stgx,XED(T),x>00nT\Q,szinQ. (5.10)
Finally we add the homogeneous Neumann boundary condition
Vp-n=0 ondQU LJ@BZ-7 (5.11)
i=1
and we assume that
po.s € C*V(Q). (5.12)

The parameters €, d and 0 are small positive numbers. The e-dependent
initial distribution of the “viscosity” u can be easily identified as the penalization
introduced by Hoffmann and Starovoitov [29] and San Martin et al. [34], where
the rigid bodies are replaced by a fluid of high viscosity becoming singular for
e — 0. Here, the extra parameter 6 > 0 has been introduced to keep the density
constant in the approximate fluid region in order to construct the local pressure.
Moreover, we regularized the continuity equation by an artificial viscosity term to
get the estimation of the selfgravitating forces. We will also introduce in the last
section another possibility of penalization which was introduced by Bost et al. [2]
and gives the main idea of the proof. As fore > 0, § > 0 and d > 0 fixed, we report
the following existence result that can be proved in a standard way through the
solution of the continuity equation through LP-LY regularity (see for more details
[18], Lemma 3.1) and by means of a standard monotonicity argument (see Mdlek
et al. [33]) which was extended to nonhomogeneous fluids by Frehse et al. [20],
[21].

Proposition 5.1. Suppose that p > 4. Let the initial distribution of o, p be given
through (5.6)—(5.9), with fized ¢ >0, 6 > 0, d > 0. Moreover, assume that

u(0,-) =g €7, ug € L*(T; R?), div,up =0 in D'(T; R?), (5.13)

and x. € C*°(T), where x. is determined by (5.10) and let us assume 5.12.

Then problem (5.1)—(5.4), supplemented with the initial data (5.6)—(5.9),
(5.12) and additional boundary conditions (5.11), possesses a (weak) solution o,
W, u belonging to the class

peCH(0,T] x T),
0 € C([0,T}; C*¥(T)), 00 € C([0,T]; C¥*(T)),
u € Cyea ([0, T); L*(T; R?)) N LP(0, T; WHP(T; R?)).
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In addition, the solution satisfies the energy inequality

/ olu* (1 dgc—i—//,uE 16S:Vy ud:r:dt—&—//xa\u\ dz dt </ olul*(s) dz

(5.14)
for a.a. 0 < s <7 <T including s = 0.

Let us remark that, in the weak formulation, equation (5.2) is represented by
the integral identity

T
/ / ou-Oip + p(u® [uls) : Vyp do dt Jr/ 0VpVu @ dx dt
o Jr T

Z/OT/[MEBS:D[@} dz dt—/T/ pG-Vw{/RS ’;(t’yy)dy}apdx dt
/ /xgu (pdmdt—/goguo ©(0,-) da
(5.15)

to be satisfied for any test function ¢ € D([0,T) x T; R3), such that div,¢ = 0.

Remark. From [18] [Chapter 3, Lemma 3.1] it follows that in the level of approx-
imation J, € the density satisfies the following bounds:

p € L*0,T;W*2T)nC(0, T;WH(T)),0;p € L*((0,T) x T) (5.16)

and also through a bootstrap argument we have

”pHC([OvT];WQ*Q/pm(T)) + Hp||LP(0,T;W2»P(T)) (5.17)
18l Leo,myx ) < cllpollwa—2/pr(1)

Iolleo,mse2 vy < 6 (5.18)

0ol (10, 77;00 (1) < € (5.19)

The term with selfgraviting force is estimated by the following way:

T
Pty
/ /pcvx{ / ( )dy}¢dxdtsc||p||Ls<T|p||L27||u||L6<T>
o JT r3 1T —

for more details see [8, 9].

6. Artificial viscosity limit

Our first task is to identify the limit problem resulting from (5.1)—(5.9) for fixed
4 > 0 and £ — 0. To this end, let us denote by { ., pc, u: }c>0 the associated family
of approximate solutions, the existence of which is guaranteed by Proposition 5.1.
As already pointed out, there are two major issues to be addressed, namely the
strong (pointwise) convergence of the velocity fields, and strong convergence of the
velocity gradients in order to pass to the limit in the non-linearity of the stress
tensor. The first goal is accomplished basically in the same way as in [34] and
repeated in [17], so we will give only the main ideas of the proof. Note that in the
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present setting, the analysis is considerably simplified thanks to the no-collision
result by Starovoitov [38].

Let us start with the following stability result for solutions to the transport
equation established in [16, Proposition 5.1]:
Proposition 6.1. Let v,, = v, (¢, ) be a family of vector fields such that

{vn )52, is bounded in L*(0,T; W (R?; R?)).

Let n,(t, ) : R® — R3 be the solution operator associated to the family of charac-
teristic curves generated by v,, specifically,

0 )
at777L(t7x> = Vn(ta 77n(t,l‘))’ 77n(07 (IJ) = for all v € R®.
Then, at least for a suitable subsequence,
Vo — v weakly-(*) in L*(0,T; W5 (Q; R?)),
Nn(t,-) — n(t,-) in Cioc(R*) uniformly for t € [0, T],

where 1 is the unique solution of

gtn(t,x) =v(t,n(t, z)), n0,z) =z, x € R3.

If, in addition,
Sn 5 8,
then

Mt S) = Su(t) & S(8) = (e, S)
which means that
dbg, ;) — dbgg) in Cloc(R?) uniformly with respect to t € [0,T).

The energy inequality (5.14), together with the coercivity hypothesis (1.3),
that {u.}eso give us that {u.} is a bounded sequence in LP(0,T; W1P(T; R3)).
Consequently, passing to a suitable subsequence as the case may be, we can assume

u. — u weakly in LP(0,T; W"P(T; R?))

where the limit velocity field satisfies div,u = 0 a.a. on (0,7) x 7. Accordingly,
the regularized sequence {[u.]s}c>0 satisfies

[u.]s — [u]s weakly-(*) in LP(0,T; Wh*°(T; R?)), div,[u]s = 0. (6.1)
Moreover, using hypothesis (5.10) combined with (5.14), we get
u =0 a.a. in the set (0,7) x (7 \ ).
As Q is regular, this yields
u|pn = 0; whence u € LP(0,T; V*P).

Seeing that {oc}e>0 solves the modified transport equation (5.1), we can use
Proposition 6.1 and (6.1) to deduce that

0 — 0in C([0,T) x T), (6.2)
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where

inf < inf t,x) < su t,x) < su ,
Inf 006 < IGTQE( ) < ZGI;QE( ) < meIT)QO"S

in particular,

inf gos < inf o(t,z) < sup o(t, z) < sup go,s- (6.3)
zeT z€T zeT zeT

Consequently, employing once more the energy inequality (5.14), we conclude
that

u. — uin L=(0,T; L*(T; R?)).
Clearly, the limit density o satisfies the equation of continuity
010 + div,(o[u]s) = dAg in (0,7) x R? (6.4)

provided that ¢ has been extended to be oy outside {). Moreover, in accordance
with Proposition 6.1 and hypothesis (5.7),

0= oy on the set ((0.7) x Q) \ Uejory Uiy n(t, Bils),  (65)

where 7 solves
Om(t, x) = [uls(t, n(t,z)), n(0,z) == (6.6)

and [B;]s denotes the d-kernel introduced in Section 3.

6.1. Identifying the position of the rigid bodies

In order to identify the position of the rigid bodies, we proceed through several
steps. We will give only the main points since we apply a technique similar to that
used in the work of Feireisl et al., see [17].

e Step 1: We have to prove that
D[u] = 0 a.a. on the set Uiepo,r) Ui=1]n(t, [Bil.)[s for any w > 4, (6.7)

where 7 is determined by (6.6), and the symbols | - [, [-] are specified in (3.9).
Note that the kernels [B;],, as well as their images n(t, [B;].,) are non-empty
connected open sets when 0 < § < w < dy/2, where §p has been introduced
in hypothesis (3.1).

e Step 2: In accordance with (6.7), the limit velocity u coincides with a rigid
velocity field u?: on the d-neighborhood of each of the sets n(t, [B;].), w > 4,
i =1,...,n; in particular, we deduce that

u(t,z) = u?i(t,2) = [u)s(t, z) for t € [0, T],

zent,[Bis), i=1,...,n. (6-8)

Note that rigid velocity fields coincide with their regularization, here
[uBi]; = uP.
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e Step 3: Letting & — 0 in the momentum equation (5.15) we deduce that
T T
/ / ou-0p +o(u® [uls) : Voo de dt + d/ / VpVu ¢ dz dt (6.9)
0o Ja 0 Jo

T T
:/ /S:]D)[cp] dz dtf/ / oV F - ¢ dx dtf/ 00,6up - ©(0,-) do
0o Jo o JT T

for any test function ¢ € C1([0,T) x Q),
(t,) € [RM](t),
where

[RM](t) = {¢p € C*(Q) | dive¢ =0 in ©Q, ¢ =0 on a neighborhood of 952,

D[¢] = 0 on a neighborhood of U} ; B;(#)},
with
Bi(t) =n:(t,B;), i=1,...,n.

Indeed, because the n; are isometries, it implies that
Ini(t, [Bils)[s=mi(t, Bi), i=1,...,n.

Consequently, [uc]s converges uniformly locally to 1 in the complement of
U, B;(t) for any t € [0, T]. It yields (6.9), in which the bar denotes weak limits:

u. ® [u.ls — u @ [u]s weakly in L2(0, T; L*(; RY),
Vp. — Vp strongly in L*(Q), (6.10)
VpeVu, — pVu in D'((0,T) x Q)
and from a monotonicity argument together with results of Frehse et al. [20, 21]
it follows that
, ayay 11
Se — S weakly in L' ((0,7) x Q; R**?), ~ + ~ =1. (6.11)
p p
6.2. Convergence of the selfgravitating force

From the strong convergence of density in C'(0,T,C?") and the Vp in L?((0,7T) x
) there follows the weak * convergence in L?(0,T, L>°(Q)) of the term

NN ELVREHDE
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6.3. Pointwise convergence of the velocities

Our aim is to identify the weak limit in (6.10); more specifically, we show that
u. — uin L*(0,T; L*(; R?)). (6.12)

Note that the main difficulty here is the possible existence of oscillations of the
velocity fields in time.

We know from the result of Starovoitov [38, Theorem 3.1], that collisions
between two rigid objects are eliminated, because the fluid is incompressible, and
that the velocity gradients are bounded in the Lebesgue space LP, with p > 4.
Although originally stated for only one body in a bounded domain, it is easy to
see that this result extends directly to the case of several bodies. Here we will use
the terminology introduced in Section 3,

d(UiL1B;(t)) = d(t) > 0 uniformly for ¢ € [0,T], (6.13)
and, in agreement with Proposition 8.1,
d(UL,Bi(t)) =d. — din C[0,T], (6.14)

where we have set B (t) = n.(¢, B;).
The absence of contacts facilitates considerably the proof of compactness of
the velocity fields that can be carried over by means of the same method as in [34].
To begin with, as

B:(t) LA B, (t) uniformly with respect to t € [0,T], i =1,...,n,
we have, for any fixed ¢ > 0,

B;(t) C|B;(t)[,, B5(t) C|Bi(¢)[s, for allt € [0,T], i =1,...,n,
and all € < g¢(0) small enough.

Lemma 6.1. Given a family of smooth open sets {B;}1"_; C Q, 0 < k < 1/2, there
exists a function h : (0,00) — RY, with h(c) — 0 when o — 0, such that, for
arbitrary v € V1P

HV—Pk(Ugbzl]Bi[o)vHWl’k(Q;Rs) < e(IDM)l g 3o Hh@IVIwrs o))
(6.15)

with an absolute constant ¢ < co. Moreover, h and c are independent of the position
of B; inside Q as long as d[UI_1B;] > 20y¢.

Proof. See [17]. O

At this stage, we use a local-in-time Lions-Aubin argument in order to show
the following:

Lemma 6.2. For all o > 0 sufficiently small, and 0 < k < 1/2, we have

i | T/Q gt P (Ui B (o) et = | T/Q ou- P (UL B (1), ) fulde dt.
Proof. See [17]. O
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Combining Lemmas 6.1, 6.2 we deduce

T T
lim/ / oc|u.|? dz dt :/ / plul? dz dt (6.16)
¢=0Jo Jao 0 Ja

yielding the desired conclusion (6.12).

6.4. Compactness of the velocity gradients

Our ultimate goal is to establish strong convergence of the velocity gradients in
the “fluid” part of the cylinder (0,7") x 2. To this end, we consider equation (5.15)
on the set I x A, where I C (0,7T) is an interval and A C € is a ball. In accordance
with (6.5), we may assume that ¢ = gy in I x A. In particular, we have

T
/ / 07U - 0o+ (0fue @ [ucls — S[ue]) : Voo da dt
0o Ja

T
z—/ /,OfV/ Pt pdadt
o Ja re [T — Y

for any test function

(6.17)

e €D x A;R?), divyp = 0.
At this stage, the problem must be localized by separating the fluid part from
the rigid bodies. To this end, we introduce a “local” pressure

P = Preg + OtPharm, (618)

where preo enjoys the same regularity properties as the sum of the convective and
viscous terms, while pparm is a harmonic function. The basic idea of the concept of
local pressure was developed by Wolf [44, Theorem 2.6]. A similar global result was
proved by H. Koch and V. Solonnikov [32]. Note, however, that our construction
gives a result different from that of Wolf [44]. In particular, the regular part is
given in the form of Riesz transforms suitable for application to problems with
non-standard growth conditions.

Lemma 6.3. Let I = (T1,T) be a time interval and A C R® a domain with
reqular C*TF boundary. Assume that U € L*(I; L?(A; R?)), div,U = 0, and
T e LI x A, R®*3), 1 < q < 2, satisfy the integral identity

// (U-@tw—i—Tsz(p) dz dt =0 (6.19)
I1JA

for all ¢ € D(I x A; R3), divep = 0.
Then there exist two functions

Preg S Lq(I X A)a

Pharm € LOO(Ia Lq(Q))a A:L’pharm =01 D,(I X A), / pharm(t7 ) dr =0
B

satisfying

/I /A (U Ao+ T: Vmgo) da dt = /I /A (pregdivzgo +pharm5tdivmg0) de dt
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for any ¢ € D(I x A; R?). In addition,
[Pregll zaco,m)xa) < (@IT La(rxa;r2), (6.20)
IPbaemll e 12y < ela, 1, A) (Tl aam) + 10llp= o zia2@imny ) (6:21)
Proof. See [17]. O

Accordingly, for any € > 0, there exist two scalar functions Preg: Pharm Such
that
Dreg € LP(I; LP' (A)), pfaem € L®(I; L' (A)), are uniformly bounded  (6.22)

and

T
/ / |:(qu5 + vﬂvplalarm> : 8t90:| dz dz dt
0 Q

T
+/ / oru: @ [ucs — Slu.] +pfegﬂ) Vmgo} da dr dt (6.23)
0

/ / /RS |x,y|) thp} dr dt =0

for any test function p € D(I x A; R3).
Moreover,

Apflarm =0, / piarm(ta ) dr = 0, vtel.
A

Consequently, the standard elliptic theory implies that pf_, is uniformly bounded
in L>°(I; W,22(A)). The standard Lions-Aubin argument yields

loc
Ofug + vxp}alarm — ofu + vxpharm in L2 (I, L2 (Ala R3>>7 (624>
for arbitrary A’ CC A, where pparm IS @ harmonic function in z.
On the other hand, by virtue of (6.12), the velocity field {u.}.>¢ is precom-
pact in L?(0,T; L*(Q; R?)); whence we are allowed to conclude that
Voalfmrm — VaPharm in L2(I; WH2(A'; R3)). (6.25)

As the argument is valid for any A’, letting ¢ — 0 in (6.23) we get

Iy Joy [(era+ Vapnam) - dup + (00 @ [uls = Slul + pregl) : Vagp] dar dt = 0
(6.26)
for any test function p € D(I x A; R?), where

S[u.] — S[u] weakly in L” (0, T; L (Q; R3X3)),

sym
and
Dreg — Preg Weakly in LP (I x A).
Finally, taking

¢e = Y(O)r(z)(ef e + VaPham), ¢ € D), 1 € D(A),
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and

¢ = ¢(t)r(z)(efa + Vapharm)
as a test function in (6.23), and (6.26), respectively, and letting ¢ — 0 we deduce
the desired conclusion

Eli_f)l(l)/OT/QT/W S[u.] : Vi [ue] de dt = / /ﬂn’S [u] do dt.

This yields, by means of the standard monotonicity argument,
S[ue] — S[u] a.e. in I x A. (6.27)

Indeed, we have

T T 9
/ / (qug + Vl.pflarm) - O do dt = / / 9 ’que + VaDiamm
0o Ja 0 JQ

T 9 T
- / / ’qu + vzpharm Taﬂb dr dt = / / (qu + v:L’pharm) . at¢ dz dt7
0o Ja?2 o Ja

while

T T
/ / Pregdivede do dt = / / UPsegVar - (05Ue + VaDiarm) do dt
0o Ja 0o Jo

rog) dx dit

T T
- / / wpregvzr ’ (qu + v:Jz:pharm) dr dt = / / pregdivz¢ dz dt
0 0 Q

/ / /R<xy) : Ve dt_)/OT/pr/RS@pfy) V.0 dt

as € — 0.

6.5. Conclusion

In accordance with the results obtained in the preceding two sections, relation
) reduces to

T
/ /gu Orp + o(u® [u]s ).ngodxdt—i-/ /dV,oVudxdt (6.28)

/ / S[u o] de dt — / / oV.F - dx dt — / 006U - ©(0,-) dz

for any test function p € C1([0,T) x Q),
p(t,-) € [RM](1),
where
[RM](t) = {¢p € C*(Q) | divy¢ =0 in Q, ¢ = 0 on a neighborhood of 99,
D[¢] = 0 on a neighborhood of U, B, ()},

with
Bi(t) =n:(t,B;), i=1,...,n.
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Moreover, the limit solution satisfies the energy inequality

/ olu*(r der/ /S D(u) dz dt

(6.29)
< / olul?(s) d:c+/ / oV F -udzx dt
T2 s Ja
for any 7 and a.a. s € (0,7) including s = 0.
7. The passage to the limit for d — 0 and § — 0
Our final goal is to let d — 0, 6 — 0 in the system of equations
dro + div,(o[u)s) = dAp in (0,T) x R?, (7.1)

(6.4), (6.22) as well as in the associated family of isometries {n;}7
First we are passing with d — 0. Let us denote by {04, ua, {n¢}", }a>o the
corresponding solutions, the applying the results from [18] we get
dVpaVug — 0in L*((0,T) x Q),
dApg — 01in L*(0,T; W~ 5%(Q)).

Let us denote by {os,us, {79}, }s>0 the corresponding solutions constructed in
the previous section.

To begin with, the theory of transport equations developed by DiPerna and
P.-L. Lions [10] can be used in order to show that

os — ¢'in C((0,T]; L'(%)). (7:2)
In order to see this, observe first that the initial data gp, 5 in (5.6) can be taken
in such a way that
loB, sl < ¢ of +oB.s — 0B, asd—0in L'(Q), i=1,...,n,

where {op,}?, are the initial distributions of the mass of the rigid bodies in

Theorem 4.1.
In addition, by virtue of the energy inequality (6.29), we have

u; — u weakly in LP(0, T; WhP(Q; R?))

where both us as well as the limit velocity u are solenoidal. In particular, the
continuity equation (7.1) reduces to a transport equation

for which the abstract theory developed by DiPerna and P.-L. Lions [10]
yields (7.2).

The rest of the convergence proof can be done repeating step by step the
arguments of the preceding section.
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8. An alternative proof

8.1. Definition of weak solution II
We give hereafter another formulation of a weak solution.

Given initial conditions H" = X pgi(0), p° = pp, H" + ps(1 — H*) and u =
u® € RM(0), find (x,t) — (p(z,t),u(z,t), H (z,t)) such that

u € L>(0,T,L*(Q)) N LP(0, T, WhP(Q)), -
H' pe C(0,T,LYN)),for all 1 < ¢ < oo, ®.1)
T
/ / (pu~8t<p+pu®usvm[go]fS:D[go])d:cdt
o e (8.2)
_ p
__/0 /Q[,oGszi:/RS xiy‘dywp} dmdt—/ﬁpouowpdx
p € CH[0,T) x ), p(t,-) € R(t), (83)
T
| [ (oo pu-Vao)asdt = - [ pmodo. 6 e 0.1y x0), ()
0 Q Q
T zad) 7 0z _
/0 /Q(H o +HUV¢> dxdt+/QH $(0)dz = 0. (8.5)

Here we have again used that p = pgi H* + ps(1 — H).

Theorem 8.1. Let the initial position of the rigid bodies be given through a family
of open sets

B; C Q C R3, B; diffeomorphic to the unit ball for i =1,...,n,

where both [B;], i = 1,...,n, and 0Q belong to the reqularity class specified in
(3.1), (3.2). In addition, suppose that

dist[B;, B;] > 0 for i # j, dist[B;, R*\ Q] >0 for anyi=1,...,n

and we assume that 0Q and 0B;, i = 1,...,n belong to C*". Furthermore, let the
viscous stress tensor S satisfy hypotheses (1.1)—~(1.3), with p > 4.
Finally, let the initial distribution of the density be given as

_J o =const >0 in Q\UL,B;,
o= { 0B, on B;, where og, € L>®(Q), essinfg, op, >0, i=1,...,n,
while
up € L*( R?), diveug = 0 in D'(Q), D[ug] = 0 in D'(By; R¥*?) fori=1,...,n.
Then there exist a density function o,

0€ C([0,T]; L' (Q)), 0< essirgllf o(t,-) < esssupo(t,-) < oo for all t € [0,T],
Q

a family of isometries {n;(t,)}"_1, 1:(0,-) = I, and a velocity field u,
u € Cueak ([0, T]; L2(9 R)) N LP(0, T3 Wy P(9; RY)),
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compatible with {n;}1'_, in the sense specified in (3.7), (3.8), such that o, u satisfy
the integral identity (8.3) for any test function ¢ € C1([0,T)x R?), and the integral
identity (8.4) for any ¢ satisfying (8.5).
We introduce an € — § scheme; for the penalization part see [2] or [19].
Oroe + div,(o:c[u]s) = dApe, (8.6)
Ot (0-ue) + divy(g-ue @ [u]s) + Vi P + dVpeVu,

. IR ~ 8.7

= dlvw([M}SJ + 0V Fe — xeue + EPeHe(ua - u5)7 ( )
O H! + div,(a.H!) = 0, (8.8)

div,u. = 0, (8.9)

1 A .
i, = / peucHidz + (ng / pe(re x uE>H;da:> xR (8.10)
Ma Q Q

where
[u]s = o5 * u (spatial convolution), 0 < § < do,

with

o5(z) = 5130(‘?)’ (8.11)

oc€D(-1,1), o(z) >0for —1<2z<1, o(z) =0(—2), / o(z) dz =1,

M. = [ pettide. [Bi(0)] = B
Q

since 4 is divergence free and H; vanishes on 0f).
The inertia tensor is defined by

J. = / peH (r2I —re x ro)dx
Q
WithT:l‘—l‘G:fL‘—prgH;~ FOI'CLER?’_{O}7

alJ.a = / pe|re x al?dx > min(pBi,pf)/ Ire % al®dx.
Q Bl(t)

Moreover, we supplemented the system with the initial conditions
n
p(0,.) = pos = pr+ D PBiss
i=1
where
pB; € D(B;), pB;,s = 0 whenever dist[z,0B;] <d,i=1,...,n.
Finally, we add the homogeneous Neumann boundary condition
n
Vp-n=0on0QU Ui:l 0B,
and we assume the following regularity of data
po.s € CHV(Q).
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8.2. € limit

For fixed § we identify the limit problem for ¢ — 0. We will show, in this limit,
the strong convergence of u. in L? of u and the strong convergence of H! in
C(0,T;L1(R)) for all ¢ > 1. The other part (strong convergence of the gradient of
the velocity field) is the same as in the previous proof.

Proposition 8.1. Let & be a rigid velocity field, i.e., such that £(x) =V +w x r(x)
for some constant vectors V € R® and w € R3.Then if (i) is defined by (8.10)
the identity

oot i) gt =0
Q
1s satisfied.

Proof. See [2]. O

8.2.1. Estimates for transport equations and momentum equations. Using stan-
dard estimates for transport equations, we get

pe, H: € L(0,T, L>=(9)).

Moreover
Pmin ‘= mln(psa pf) < ps(i,t) < max(ps,pf),

H! € {0,1} a.e. z €.

Multiplying the momentum equation by u. we get

/[ {5t(95ua) + divg(oeu. ® [ue]w}ua e

= / {aiva (juls.) + (g)av/ ’ dy) pu.da (8.12)
T Rrs |z =y
+ /[ { — XeUe + 1paHf(uE - ﬁg)}ugdx.
Since
[[paHZ(us —@.)-u.de=0, +/Hi=H,

applying again the results from [18] Chapter 3, Lemma 3.1 we have that the density
satisfies the bounds

pe € L2(0,T;W(T)) N C(0,T; W(T)), dyp. € L*((0,T) x T),
and also through a bootstrap argument we have
Hpe\|C([0,T];w2—2/p,p(7)) + \|Pe\|LP((LT;W2*’(T))
+[0epellLoo0.myx1) < cllpeollwe-2/p.0(7)
pell o, ;020 (1)) < €
10epell (0,000 (1)) < e
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Then we will get from 8.12,

2dtH\/PeUEHL2 + pl[D(ue)l7, Q)+ ||\/,05Ue ( Ue 716>|2L2(Q) <0. (813)

This gives us the following bounds:
e u. is bounded in L?(0, T, WhP(T)),
e \/psuc and (u). are bounded in L>(0,T, L*(T)),
. \}E VpeHi(us — tic) and ! Hi(u. — @) are bounded in L?(0,T; L*(T)).

Then we can extract subsequences such that
e u. — u weakly in LP(0,T, WP(Q)),
e [u.]s — [u]s weakly * in LP(0,T, W1>(Q)),div[u]s = 0.
Since € is regular then u = 0 on 9.

Observing that { g }e>0 solves the transport equation (5.1), we can use Propo-
sition 8.1 and (6.1) to deduce that

0. — 0in C([0,T) x T), (8.14)
where
1nf 00,5 < mf 0e(t, ) < sup o (¢, z) < sup go,s-
xeT zeT
In particular,
mf 00,6 < mf o(t, ) < sup o(t, z) < sup go,s- (8.15)
xzeT zeT

Consequently, employing once more the energy inequality (5.14), we conclude that
u. — uin L=(0,T; L*(T; R?)).
Clearly, the limit density o satisfies the approximate equation of continuity
Oro + div,(o[u]s) = dAp in (0,T) x R, (8.16)

provided p has been extended to be gf outside .
Moreover,

o (/peHl. — /p.Hu) — 0in L*(0,T, L*(Q2)) strongly, and
e Hiu. — H!t— 0in L?(0,T, L*(Q)) strongly.

8.2.2. Passing to the limit in the rigid velocity. The rigid velocity is defined as
. (x,t) = u.,g(t) + we(t) x re(x,t),
with
1 ) )
u. ¢(t) = /,ogugH;dx, we(t) = J_l/pg(rg x ug)Hldx .
M Jo Q

Then it follows that
e u. ¢(t) is bounded in L>(0,T),
e w.(t) is bounded in L*>(0,T).
It implies that
U, — U in the weak * sense in L>°(0,7, L*=(Q)).
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Taking gradients of the rigid velocity u. implies that
4. — ain L*(0, T, WH>(Q)) weak *.
Applying the compactness results to the transport equation on H! gives us
H! — H" a.e. in C(0,T, LP()) strongly for p € [1,00],
satisfying the transport equation
Hi+u-VH =0,  H'(0,2) = H(0).

This implies the strong convergence of r. in C(0,T, LP(f2)), for all p > 1 and
we can also pass to the limit in the expression . and we.

8.2.3. Strong convergence of u.. To prove the strong convergence of a subsequence
of u. in L?(Q) we write

T 1 T T
/ / lu. — ul?dadt < (/ / lp(u? — u?)|dzdt +/ / [2pu(u — ug\dxdt).
0 Jo Pmin N Jo JQ 0 Jo

(8.17)
Since the second term in (8.17) converges to 0, then

T 1 T T
/ lue — u2dzdt < (/ / |peuZ — puZ|dedt + / / [(—pe + p)u?dxdt).
0 Pmin 0 JOQ 0 JQ

(8.18)
From (8.14) and boundedness of u. in L> (0,7, L?) we get that convergence of the
second term of (8.18) converges to 0, and

/ / lu. — ul*dxdt

= punin (/ / |p€“5Pk(U7 1 Bi(t)]o )[ue} —pu?k( zT‘L:ﬂBi(t)[U)[uadedt
+/OT/ |peu. uE—Pk( ?:1]Bi(t)[g)[ug]))\dxdt
/ /|P“ 7"“ LBi()[o )[u] —u)|dxdt+la>

< ! it (u" B0, ] — pu- PH (UL B0 ) [l ()22 o
+ Cll(ue = PH (U B (1) ) [l 22y
el = P (VB0 ) WDl o) + e (5.19)

where [, — 0 when ¢ — 0.
It implies the strong convergence of u. — u in L?(Q). Now from previous
estimates and Sobolev imbedding we get

e Hiu. — H'u weakly in LP(0,T, Lo (),
e H'u. — H'u weakly in LP(Q),
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o Hiti. — H'i. — Hiu— H't weakly in LP(0, T, Lo2» (Q)),
e Hlu. — H.u — 0 strongly in L?(Q).
Thus
Hu = Hu, div (uH) = div(aH),
and finally we obtain
Hu = H'a.

The proof of the inequality (8.19) goes exactly in the same way as in Section 6.3.
Finally it remains to show the strong convergence of the gradient of velocity and
to pass to the limit, see Section 6.4. Then we pass to the limit with d similarly as
in Feireisl and Novotny [18]. The last step is passing to the limit with § which must

proceed as with the e limit together with using the transport theory developed by
DiPerna-Lions [10].
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Abstract. We consider the periodic uDP equation (a modified version of
the Degasperis-Procesi equation) as the geodesic flow of a right-invariant
affine connection V on the Fréchet Lie group Diff**(S') of all smooth and
orientation-preserving diffeomorphisms of the circle S' = R/Z. On the Lie
algebra C>°(S*) of Diff>*(S'), this connection is canonically given by the sum
of the Lie bracket and a bilinear operator. For smooth initial data, we show
the short time existence of a smooth solution of uDP which depends smoothly
on time and on the initial data. Furthermore, we prove that the exponential
map defined by V is a smooth local diffeomorphism of a neighbourhood of
zero in C*°(S') onto a neighbourhood of the unit element in Diff*°(S'). Our
results follow from a general approach on non-metric Euler equations on Lie
groups, a Banach space approximation of the Fréchet space C*°(S'), and a
sharp spatial regularity result for the geodesic flow.

Mathematics Subject Classification (2000). Primary 53D25; Secondary 37K65.

Keywords. Degasperis—Procesi equation, Euler equation, geodesic flow.

1. Introduction

In recent years, several nonlinear equations arising as approximations to the gov-
erning model equations for water waves attracted a considerable amount of atten-
tion in the fluid dynamics research community (cf. [22]). The Korteweg-de Vries
(KdV) equation is a well-known model for wave-motion on shallow water with
small amplitudes over a flat bottom. This equation is completely integrable, al-
lows for a Lax pair formulation and the corresponding Cauchy problem was the
subject of many studies. However, it was observed in [3] that solutions of the KdV
equation do not break as physical water waves do: the flow is globally well posed
for square integrable initial data (see also [23, 24] for further results).
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The Camassa-Holm (CH) equation
U + 3uuw - 2uLuLL + UlUgpr + Utz

was introduced to model the shallow-water medium-amplitude regime (see [4]).
Closely related to the CH equation is the Degasperis-Procesi (DP) equation

which was discovered in a search for integrable equations similar to the CH equa-
tion (see [12]). Both equations are higher-order approximations in a small ampli-
tude expansion of the incompressible Euler equations for the unidirectional motion
of waves at a free surface under the influence of gravity (cf. [10]). They have a bi-
Hamiltonian structure, are completely integrable and allow for wave breaking and
peaked solitons [6, 13, 16, 21]. The Cauchy problem for the periodic CH equation
in spaces of classical solutions has been studied extensively (see, e.g., [5, 33]); in
[7] and [11] the authors explain that this equation is also well posed in spaces
which include peakons, showing in this way that peakons are indeed meaningful
solutions of CH. Well-posedness for the periodic DP equation and various features
of solutions of the DP on the circle are discussed in [20]. Both, the CH equation
and the DP equation, are embedded into the family of b-equations

my = —(mxu + bmul>7 m:i=u— Ugx, (11)

where u(t, z) is a function of a spatial variable z € S! and a temporal variable ¢t €
R. Note that the family (1.1) can be derived as the family of asymptotically equiv-
alent shallow water wave equations that emerges at quadratic-order accuracy for
any b # —1 by an appropriate Kodama transformation [14]. For b = 2, we recover
the CH equation and for b = 3, we get the DP equation. Note that the b-equation is
integrable only if b = 2 or b = 3. For further results and references we refer to [19].

Since the pioneering works [1, 15], geometric interpretations of evolution
equations led to several interesting results in the applied analysis literature. A
detailed discussion of the CH equation in this framework was given by [26]. The
geometrical aspects of some metric Euler equations are explained in [8, 9, 25,
32]. Studying the b-equations as a geodesic flow on the diffeomorphism group
Diff*°(S'), it was shown recently in [17] that for smooth initial data ug, there is
a unique short-time solution u(t,z) of (1.1), depending smoothly on (¢,ug). The
crucial idea is to define an affine (not necessarily Riemannian) connection V on
Diff*°(S'), given at the identity by the sum of the Lie bracket and a bilinear sym-
metric operator B, so that B(u,u) = —u;. Most importantly, this approach also
works for b-equations of non-metric type and it motivates the study of geometric
quantities like curvature or an exponential map for the family (1.1). In particu-
lar, the authors of [17] proved that the exponential map for V is a smooth local
diffeomorphism near zero in C*°(S!). Recently it has been shown in [18] that the b-
equation can be realized as a metric Euler equation only if b = 2. In all other cases
b # 2 there is no Riemannian metric on Diff**(S') such that the corresponding
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geodesic flow is re-expressed by the b-equation. Geometric aspects of some novel
nonlinear PDEs related to CH and DP are discussed in [31].
In this paper, we study the uDP equation

w(ug) — Upge + (Ut — 3Uzlyy — UUzge = 0, (1.2)

where p denotes the projection p(u) = fol uwdz and wu(t, x) is a spatially periodic
real-valued function of a temporal variable t € R and a space variable z € S'. The
uDP equation belongs to the family of p-b-equations which follows from (1.1) by
replacing m = u(u) — ug,. The study of p-variants of (1.1) is motivated by the
following key observation: Letting m = —9d2u, equation (1.1) for b = 2 becomes
the Hunter-Saxton (HS) equation

Uglpy + Ulgrpr + Utze = 07

which possesses various interesting geometric properties, see, e.g., [29, 30], whereas
the choice m = (1—02)u leads to the CH equation as explained above. In the search
for integrable equations that are given by a perturbation of —92, the u-b-equation
has been introduced and it could be shown that it behaves quite similarly to the
b-equation; see [31] where the authors discuss local and global well-posedness as
well as finite time blow-up and peakons. Our study of the uDP equation is inspired
by the results in [17]. In fact using the approach of [17] we shall conceptualise a
geometric picture of the uDP equation.

Our study is mostly performed in the C*-category. Elements of C*°(S!) are
sometimes also called smooth for brevity.

We will reformulate the uDP equation in terms of a geodesic flow on Diff>(S*!)
to obtain the following main result: Given a smooth initial data ug(x), for which
|uol s sty is small, there is a unique smooth solution u(t, z) of (1.2) which depends
smoothly on (¢, ug). More precisely, we have

Theorem 1.1. There exists an open interval J centered at zero and § > 0 such
that for each ug € C*(S) with Huo”Cs(Sl) < 0, there exists a unique solution
u € C®(J,C(SY)) of the uDP equation such that uw(0) = wug. Moreover, the
solution u depends smoothly on (t,ug) € J x C(St).

It is known that the Riemannian exponential mapping on general Fréchet
manifolds fails to be a smooth local diffeomorphism from the tangent space back
to the manifold, cf. [8]. Therefore the following result is quite remarkable.

Theorem 1.2. The exponential map exp at the unity element for the uDP equation
on Diff**(S) is a smooth local diffeomorphism from a neighbourhood of zero in
C*(S) onto a neighbourhood of id in Diff>°(Sh).

Our paper is organized as follows: In Section 2, we rewrite (1.2) in terms of
a local flow ¢ € Diff"(S!), n > 3, and explain the geometric setting. The resulting
equation is an ordinary differential equation and in Section 3, we apply the Theo-
rem of Picard-Lindeldf to obtain a solution of class C™(S!) with smooth dependence
on t and ug(z). In addition, we show that this solution in Diff" (S!) x C"™(S!) does
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neither lose nor gain spatial regularity as ¢ varies through the associated interval of
existence. We then approximate the Fréchet Lie group Diff>(S!) by the topologi-
cal groups Diff" (S') and the Fréchet space C*(S') by the Banach spaces C™(S')
to obtain an analogous existence result for the geodesic equation on Diff**(S!).
Finally, in Section 4, we make again use of a Banach space approximation to prove
that the exponential map for the yDP is a smooth local diffeomorphism nero zero
as a map C*(St) — Diff**(S?).

2. Geometric reformulation of the uDP equation

We write Diff*°(S!) for the smooth orientation-preserving diffeomorphisms of the
unit circle S' = R/Z and Vect™(S!) for the space of smooth vector fields on
St. Clearly, Diff**(S!) is a Lie group and it is easy to see that its Lie algebra
is Vect™(S!): If ¢t — ¢(t) is a smooth path in Diff**(S') with ¢(0) = id, then
01(0,2) € T,S* for all x € S' and thus the Lie algebra element ¢;(0,-) is a
smooth vector field on S'. Furthermore, since TS' ~ S' x R is trivial, we can
identify the Lie algebra Vect™(S') with C*°(S'). Note that [u,v] = u,v — v u is
the corresponding Lie bracket. In the following, we will also use that Diff>*(S!)
has a smooth manifold structure modelled over the Fréchet space C*°(S!). In
particular, Diff**(S!) is a Fréchet Lie group and thus it is parallelizable, i.e.,
TDiff>* (S') ~ Diff*°(S!) x C*°(S'). Let Diff"(S') denote the group of orientation-
preserving diffeomorphisms of S! which are of class C™(S!). Similarly, Diff"(S?)
has a smooth manifold structure modelled over the Banach space C"(S!). Note
that Diff”(S') is only a topological group but not a Banach Lie group, since the
composition and inversion maps are continuous but not smooth. Furthermore, the
trivialization TDiff" (S!) ~ Diff"(S') x C"(S?) is only topological and not smooth.
In this section, we write (1.2) as an ordinary differential equation on the
tangent bundle Diff”(S*) x C™(S!), where n > 3. In a first step, we rewrite (1.2)
using the operator A := p — 02. Here p denotes the linear map given by f +—
fol f(t,x) dx for any function f (¢, z) depending on time ¢ and space x € St. Observe
that u(0%f) = 0 for k > 1 if f and its derivatives are continuous functions on S!.
Furthermore, u(f) is still depending on the time variable ¢. The following lemma
establishes the invertibility of A as an operator acting on C™(S!) for n > 2.

Lemma 2.1. Given n > 2, the operator A = u — 02 maps C™(St) isomorphically
onto C"~2(SY). The inverse is given by

(A1 f)(z) = (;xQ - ;x—l— 12) /Olf(a) da + (x— ;) /01 /Oaf(b)dbda

/Om/oaf(b)dbda+/01/0a Obf(c)dcdbda.

Proof. Clearly, ju(A=1f) = p(f) and (A= f)e = () — f 50 that A(A=f) = .
To verify that A is surjective, we observe that 9¥(A~1f)(0) = 9k(A~1f)(1) for
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all k € {0,...,n}. To see that A is injective, assume that Au = 0 for u € C™(S!)
and n > 2. Then there are constants ¢, d € R such that u = ;,u(u)x2 +cx +d. By
periodicity we first conclude that ¢ = 0 and p(u) = 0. Hence d has to vanish as
well. O

Lemma 2.2. Assume that u € C((=T,T),C"(S")) N C*((=T,T),C" *(S")) is a
solution of (1.2) for some n > 3 with T > 0. Then the uDP equation can be
written as

up = — A" (u(Au), + 3(Au)uy). (2.1)
Proof. Writing (1.2) in the form
p(ue) = Utee = Ulgos — ua((t) — Uzz),
we see that it is equivalent to
Auy = —u(Au)y — 3(Au)uy.
Thus w is a solution of (1.2) if and only if (2.1) holds true. O

As explained in [27, 28], the vector field u(t, z) admits a unique local flow ¢
of class C™(S!), i.e.,

or(t,x) = ult,pt,z)), ¢0,2)=2a

for all x € S' and all ¢ in some open interval J C R. We will use the short-hand
notation @; = uo for v:(t, ) = u(t, p(t, z)); i.e., o denotes the composition with
respect to the spatial variable. Particularly, we have that u = ¢, o ¢~ '. Moreover,
given (g, &) € C'(J, Diff"(S*) x C"(S')), then p~1(t) is a C"(S")-diffeomorphism
for all t € J and £ 0 1 € C*(J,C™(SY)).

In this paper, we are mainly interested in smooth diffeomorphisms on S'.
For the reader’s convenience we briefly recall the basic geometric setting. Let us
consider the Fréchet manifold Diff**(S') and a continuous non-degenerate inner
product (-,-) on C*(S!), i.e., u — (u,u) is continuous (and hence smooth) and
(u,v) = 0 for all v € C®(S!) forces u = 0. To define a weak right-invariant
Riemannian metric on Diff*(S), we extend the inner product (-, -) to any tangent
space by right-translations, i.e., for all g € Diff**(S!) and all u,v € T, Diff**(S!),
we set

(u, v>g = <(Rg*1)*ua (Rgfl)*v>e )

where e denotes the identity. Observe that any open set in the topology induced by
this inner product is open in the Fréchet space topology of C*°(S!) but the converse

is not true. We therefore call (,-) a weak Riemannian metric on Diff**(S), cf. [8].
We next define a bilinear operator B : Vect™ (S') x Vect™(S!) — Vect™ (S') by

B(u,v) = ;((adu)*(v) + (ady)"(w)),

where (ad,,)* is the adjoint (with respect to (-,-)) of the natural action of the Lie
algebra on itself given by ad,, : v — [u, v]. Observe that B defines a right-invariant
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affine connection V on Diff*(S!) by

Vebo = 6w &l + Bléw &) (22)

where &, and &, are the right-invariant vector fields on Diff**(S!) with values u, v
at the identity. It can be shown that a smooth curve t — g(¢) in Diff**(S!) is a
geodesic if and only if u = (Ry-1).g solves the Euler equation

ur = —B(u, u); (2.3)

here, u is the FEulerian velocity (cf. [2]). Hence the Euler equation (2.3) corre-
sponds to the geodesic flow of the affine connection V on the diffeomorphism
group Diff*(S!). Paradigmatic examples are the following: In [8], the authors
show that the Euler equation for the right-invariant L?-metric on Diff**(S!) is
given by the inviscid Burgers equation. Equipping on the other hand C*(S!) with
the H'-metric, one obtains the Camassa-Holm equation. Similar correspondences
for the general H*-metrics are explained in [9].

Conversely, starting with an equation of type u; = —B(u,u) with a bilinear
operator B, one associates an affine connection V on Diff**(S) by formula (2.2).
It is however by no means clear that this connection corresponds to a Riemannian
structure on Diff*°(S). It is worthwhile to mention that the connection V cor-
responding to the family of b-equations is compatible with some metric only for
b = 2: In [18] the authors explain that for any b # 2, the b-equation (1.1) cannot be
realized as an Euler equation on Diff>**(S!) for any regular inertia operator. This
motivates the notion of non-metric Euler equations. An analogous result holds true
for the p-b-equations from which we conclude that the uDP equation belongs to
the class of non-metric Euler equations. Although we have no metric for the uDP
equation, we will obtain some geometric information by using the connection V,
defined in the following way.

Let X (t) = (p(t),£(t)) be a vector field along the curve ¢(t) € Diff**(S!).
Furthermore let

B(v,w) := ;Ail(fu(Aw)z + w(Av)y + 3(Av)w, + 3(Aw)vy).

Lemma 2.2 shows that
B(u,u) = A7 (u(Au), + 3(Au)u,) = —uy,

if u is a solution to the uDP equation. Next, the covariant derivative of X (¢) in
the present case is given by

DX 1
b © = (#0064 000,600 + Blulo). &) )
where u = ; 0 ¢~ 1. We see that u is a solution of the uDP if and only if its local
flow ¢ is a geodesic for the connection V defined by B via (2.2).

Although we are mainly interested in the smooth category, we will first discuss
flows p(t) on Diff*(S!) for technical purposes. Regarding Diff”(S!) as a smooth
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Banach manifold modelled over C™(S!), the following result has to be understood
locally, i.e., in any local chart of Diff"(S?!).

Proposition 2.3. Given n > 3, the function u € C(J,C™(SY)) N C*(J,C"~1(SY)) is
a solution of (1.2) if and only if (¢, &) € C*(J, Diff*(S') x C™(S')) is a solution of

Yt = 57
{ 3 7P4P(€)7 (24)
where P, := Ry, 0 Po R, and P(f) := 3A7 (fofaz + (Af) f2).

Proof. The function u and the corresponding flow ¢ € Diff”(S') satisfy the relation
¢ = u o . Setting ¢y = &, the chain rule implies that

& = (ur + uuy) o p.

Applying Lemma 2.2, we see that u is a solution of the uDP equation (1.2) if and
only if

ug + uuy = — A" (u(Au), — A(uu,) + 3(Au)u,)
= AN UWUppy + Upply + Ulgry + 2Uglpe + 3(Au)uy)
= —3A M upg, + (Au)uy)
= —P(u).
Recall that

wluuy) = /0 u, dr = ; /o 8z(u2) dz = ;(u2(1) — u2(0)) =0,

since u is continuous on S'. With u = £ o ¢! the desired result follows. O

3. Short time existence of geodesics
We now define the vector field
F(‘ny) = (67 7PL,0(£))
such that (¢, &) = F(p,€). We know that
F: Diff*(S') x C"(S') — C™(S*) x C™(Sh),
since P is of order zero. We aim to prove smoothness of the map F'. It is worth
to mention that this will not follow from the smoothness of P since neither the

composition nor the inversion are smooth maps on Diff”(S!). The following lemma
will be crucial for our purposes.

Lemma 3.1. Assume that p is a polynomial differential operator of order r with
coefficients depending only on p, i.e.,

p)= > ar(u(w)uto (@) (wD)er
I=(wo,...,ar),
a; ENU{0}, |I|<K
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Then the action of p, := Ry,0opo Rg,-1 is

pe(u) = ar (/01 u(y)ex(y) dy> a1 (s @a, ., 01"),

where qr are polynomial differential operators of order r with coefficients being
rational functions of the derivatives of ¢ up to the order r. Moreover, the denom-
inator terms only depend on @,.

Proof. Tt is sufficient to consider a monomial
m(u) = a(pu(u))u (W) - (u)"r,
We have

me(u) = a(puo o) u®(uo ™) 0 @™ - [(uwo e ) o],
where o denotes again the composition with respect to the spatial variable. First,

we observe that
1

pwow™) = [ ule @) = [ uwet) .

0
where we have omitted the time dependence of u and ¢. Recall that (S') = St,
0, > 0 and that u(u o p~1) is a constant with respect to the spatial variable
x € S*. Let us introduce the notation

ar=@wop H®op k=12 r

Then, by the chain rule,
1

_ Uy O Q- Ug
a1 = (Op(uop™H)op= o=
Lol ) Pz ot Pa
and
_ _ Oza
a1 = (0o (uo ™) M) oo = (Bu(arop™)) op = @ "
so that our theorem follows by induction. O

Recall that in the Banach algebras C™(S!), n > 1, addition and multiplication

as well as the mean value operation p and the derivative ddl_ are smooth maps. We

therefore conclude that if the coefficients a; are smooth functions for any multi-
index I and u and ¢ are at least r times continuously differentiable, then p,(u)
depends smoothly on (¢, u).

Proposition 3.2. The vector field
F: Diff*(S') x C™(S') — C™(S) x C¢™(Sh)
s smooth for any n > 3.

Proof. We write F' = (F1, F). Since Fi : (,&) — £ is smooth, it remains to check
that Fy : (p,&) — —P, () is smooth. For this purpose, we consider the map

P : Diff"(S') x C™(S') — Diff"(S!) x C"(S1)
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defined by
P(p,§) = (¢, (Rp 0 P o Ry-1)(E))-
Observe that we have the decomposition P = A~! o Q with

A(p,€) = (¢, (Rg 0 Ao Ry1)(€))
and

Q(@a 5) = (‘P’ (RW oQo R@*l)(f))a
where Q(f) := 3(fofoa + (Af) fz). We now apply Lemma 3.1 to deduce that
A, Q : Diff"(S!) x C™(S!) — Diff"(S!) x C"~2(Sh)
are smooth. To show that A~! : Diff"(S') x C"~2(S!) — Diff"(S') x C™(S!) is
smooth, we compute the derivative DA at an arbitr:imry point (p,€&). We have the
following directional derivatives of the components A; and As:

DyAy =id, D¢A; =0, De¢As=R,0A0R,-

It remains to compute (DyAs(p,€))(¥) = L Ax(p + e, €)|__,- In a first step, we
calculate

2 -1y _ 3 o -1
oo ren =0 (&, Joleren)
o f N Prax + 51/11:1: ) o —1
B ((‘PL +5'(/J1> o (¢ +5wx>3 lotev)
from which we get
d 2 — d 5 (pLL + Ew‘L‘L

bz +e2)® (P +e¢ha)?

and finally
d 2 -1 — gllw“‘ . glwll (p‘L‘Lgl’(/}l
e Oz(€o (e ev) o lp+ey)) e ¥ o3 " o2

Secondly, we observe that

iu(fo (p+ep)™)

:iéﬂm%+wmwm

e=0 e=0
- [ st ay,
since ¢ + et € Diff”(S!) for small ¢ > 0. Hence
(DLPA2(903 / 5 7/’1 ) d +2 me (Pi -3 ﬁpé
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and

~ id 0
DA = N .
(.6) ( DyAs(,€) RyoAo R, >
It is easy to check that DA(y, ) is an invertible bounded linear operator C™(S) x
C"(S') — C™(S') x C"2(Sh). By the open mapping theorem, DA is a topological
isomorphism and, by the inverse mapping theorem, A~! is smooth. O

Since F' is smooth, we can apply the Banach space version of the Picard-
Lindel6f Theorem (also known as Cauchy-Lipschitz Theorem) as explained in [27],
Chapter XIV-3. This yields the following theorem about the existence and unique-
ness of integral curves for the vector field F'.

Theorem 3.3. Given n > 3, there is an open interval J, centered at zero and
an open ball B(0,6,) C C™(S') such that for any ug € B(0,0,) there exists a
unique solution (¢, &) € C°(J,, Diff"(SY) x C"™(SY)) of (2.4) with initial conditions
©(0) =id and £(0) = ug. Moreover, the flow (¢,§) depends smoothly on (t,ug).

From the above theorem, we get a unique short-time solution u = & o ¢~}
in C™(S') of the uDP equation with continuous dependence on (¢,ug). We now
aim to obtain a similar result for smooth initial data ug. But since C*°(S!) is a
Fréchet space, classical results like the Picard-Lindelof Theorem or the local inverse
theorem for Banach spaces are no longer valid in C*(S'). In the proof of our main
theorem, we will make use of a Banach space approximation of the Fréchet space
C*(SY). First, we shall establish that any solution u of the uDP equation does
neither lose nor gain spatial regularity as t increases or decreases from zero. For
this purpose, the following conservation law is quite useful. In its formulation we
use the notation mo(z) := (Au)(0,2) = p(ug) — (4o)zz-

Lemma 3.4. Let u be a C*(S')-solution of the uDP equation on (—T,T) and let o
be the corresponding flow. Then

(Au)(t, (t,2))p5 (t, &) = mo,
forallt € (=T,T).
Proof We compute

[ 11(u) = Uag © @) 5]

) = tzzt © 9 = (Uzzz © P)pi] Yo + 3050t ((U) = Ugy © @)

= [1(ts) = Usat © P = (Usaz © @) (10 ©)] @3 + 302 (1 0 @)o (1(W) — Ugz © P)
(1) = gzt — Ugaatt) © ] @5 + 3¢5 (Us © @) P (1(1) = gy © @)
(1(ut) = Uzt — Ugaat) © 9] @5 + 3¢5 [ug (1u(u) — Uzs)] 0 @

(3umum = 3u(u)us) o @ ¢l — 3¢5 (Ustizy — p(u)uy) © ¢

Since go(()) = id and ¢,(0) = 1, the proof is completed. O
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Lemma 3.5. Let (p,&) € C™°(J3, Diff*(SY) x C*(SY)) be a solution of (2.4) with
ingtial data (id,ug), according to Theorem 3.3. Then, for all t € J3,

pes) = 2) [ 1@onts)as = mo [ ) a5 (3.1)

and
Pra(t)

©a(t) + pa (8) [(w)pa (t) — mogom(t)*ﬂ_ (3.2)

Proof. We have
d Prx _ PratPr — PrtPra
dt ( Pz > - 2 '
Since ¢ = u o @,

Pt = Pt = Ox (U0 ) = (Ug 0 Q)P

and
Prat = Ptax
=93 (uo )
= 0x[(uz © )]
= (taw 0 )5 + (Us © P)¢ua.
Hence

d (Qez)
dt < 0o ) = (Uzz © P)Pu-

According to the previous lemma, we know that

Ugy O P = /,L(U) - mo@:;g'

Integrating

d [z _
over [0,¢] leads to equation (3.1) and taking the time derivative of (3.1) yields
(3.2). O

Remark 3.6. Since the uDP equation is equivalent to the quasi-linear evolution
equation

g + Uty + 3p(u)8mA_1u =0,
we see that p(us) = 0 and hence p(u) = p(ug) so that p(u) can in fact be written
in front of the first integral sign in equation (3.1).

Corollary 3.7. Let (p,&) be as in Lemma 3.5. If ug € C™(S!) then we have
(p(t),£(t)) € Diff*(St) x C™(SY) for all t € Js.

Proof. We proceed by induction on n. For n = 3 the result is immediate from our
assumption on (p(t),£(t)). Let us assume that (o(t),£(t)) € Diff"(St) x C™(St)
for some n > 3. Then Lemma 3.5 shows that, if ug € C"T1(S"), then (¢(t),£(t)) €
Diff" ! (S') x C"T(SY), finishing the proof. O
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Corollary 3.8. Let (p,&) be as in Lemma 3.5. If there exists a nonzerot € Js such
that (t) € Diff"(S!) or £(t) € C™(S') then £(0) = uy € C™(S?).

Proof. Again, we use a recursive argument. For n = 3, there is nothing to do. For
some n > 3, suppose that ug € C™(S!). By the previous corollary, (¢(t),£(t)) €
Diff"(St) x C™(S!) for all t € J3. Assume that there is 0 # to € J3 such that
o(to) € Diff" T (S!) or £(tg) € C"TH(SY). Since ¢, > 0, Lemma 3.5 immediately
implies that also ug € C"*(S1). O

Now we discuss Banach space approximations of Fréchet spaces.

Definition 3.9. Let X be a Fréchet space. A Banach space approximation of X is
a sequence {(Xp, [-],,); n € No} of Banach spaces such that

X():)X1:)X2:>"‘:)X, X:ﬂXn

n=0

and {|-|,,; n» € Ng} is a sequence of norms inducing the topology on X with

n?

lzlo < lly <zl < -
for any = € X.
We have the following result. For a proof, we refer to [17].

Lemma 3.10. Let X and Y be Fréchet spaces with Banach space approximations
{(Xn, I-,,); m € No} and {(Ya, |-],,); n» € No}. Let &g : Uy — Vi be a smooth map
between the open subsets Uy C Xy and Vy C Yy. Let

U=UNnX and V.=WnyY,
as well as
Up:=UgNX, and V,:=VyNY,,

for any n > 0. Furthermore, we assume that, for each n > 0, the following prop-
erties are satisfied:

(1) (I)O(U’rL) C V;L:
(2) the restriction ®,, := <I>0|Un : U, — Vi, 1s a smooth map.

Then ®o(U) C V and the map ® := ®¢|,; : U — V is smooth.

Now we come to our main theorem which we first formulate in the geometric
picture.

Theorem 3.11. There exists an open interval J centered at zero and 6 > 0 such
that for all ug € C*(S') with Juo| a1y < 9, there exists a unique solution (p,€) €
C>(J, Diff**(St) x C>°(SY)) of (2.4) such that ¢(0) = id and £(0) = ug. Moreover,
the flow (¢, &) depends smoothly on (t,ug) € J x C(S1).
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Proof. Theorem 3.3 for n = 3 shows that there is an open interval J centered at
zero and an open ball Us = B(0,8) C C*(S') so that for any ug € U there exists a
unique solution (p, £) € C°°(J, Diff*(S') x C3(S')) of (2.4) with initial data (id, u)
and a smooth flow
®3:J x Uz — Diff*(St) x C*(Sh).
Let
U, :=UsNC"(S') and U, :=UsnNC=(S).
By Corollary 3.7, we have
®3(J x Uy,) C Diff*(S*) x C™(Sh)
for any n > 3 and the map
D, := P3|, :J x U, — Diff"(S") x C"(S")
is smooth. Lemma 3.10 implies that
®3(J x Us) C Diff(S') x C(S1),

completing the proof of the short-time existence for smooth initial data ug. More-
over, the mapping

Do i= B3|, J X Uso — Diff>*(S") x C=(S1)

is smooth, proving the smooth dependence on time and on the initial condition.
a

Under the assumptions of Theorem 3.11, the map
Diff™(S") x C*(S!) — C=(S!), (9,§) = oy =u

is smooth. Thus we obtain the result stated in Theorem 1.1.

4. The exponential map

For a Banach manifold M equipped with a symmetric linear connection, the ex-
ponential map is defined as the time one of the geodesic flow, i.e., if t — (t) is
the (unique) geodesic in M starting at p = ~(0) with velocity v,(0) = u € T,M
then exp,(u) = ~7(1). Roughly speaking, the map exp,(-) is a projection from
T, M to the manifold M. Since the derivative of exp, at zero is the identity, the
exponential map is a smooth diffeomorphism from a neighbourhood of zero of
T,M to a neighbourhood of p € M. However, this fails for Fréchet manifolds
like Diff>*(S') in general. We know that the Riemannian exponential map for the
L?-metric on Diff**(S!) is not a local C'-diffeomorphism near the origin, cf. [9].
For the Camassa-Holm equation and more general for the H*-metrics, k > 1, the
Riemannian exponential map in fact is a smooth local diffeomorphism. This result
was generalized to the family of b-equations, see [17], and in this section we obtain
a similar result for the uDP equation.

The basic idea of the proof of Theorem 1.2 is to consider a perturbed problem:
Let (¢%, &%) denote the local expression of an integral curve of (2.4) in TDiff" (S!)
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with initial data (id, u + ew), where u,w € C"(S!). Let

vy:= 22

By the homogeneity of the geodesics,
¢ (1) = exp(t(u + ew)),

e=0

so that
Y(t) = D (exp(tu)) tw =: L, (¢, u)w,
where L, (t,u) is a bounded linear operator on C"(S!).
Lemma 4.1. Suppose that u € C"*1(SY). Then, fort #0,
Ln(t,u)(C"(SH\C™TH(Sh) € CMSH\CT(SY).

Proof. First, we write down equation (3.1) for ¢=(t),

Goalt) = (1) [u(u e | e () ds — m / () ds} ,

and take the derivative with respect to ¢,
¢, s /t /t 9
TT () — T (4 € ds — me € d
o 0= ) [ntuw) [ g()as - [ i) as

t t 3@5
0 [mw) | st [ 5 ) ds}
0 o Oe
5 8’]7’1/6 ¢ £ —2 5 ¢ a £ —2
e |0 [Czerasm [t as).
Notice that
= p(w) — wye = Aw

Oe
and that m§ — mo = Au as ¢ — 0. Hence

Gralt) = 2 (2) [u(u) / () ds —mg /

ts%(S)‘2 dS}

#enlt) ) [ a(e)s + (o) [ va(5)35]
— ul0) ) ~ ) [ a2 s 2m [ ) (s) 0

0

= a(t)y(t) + (1) / c(8)1hy(s) ds + d(t) + e(t)wyy

0
with a(t),b(t), c(t), d(t),e(t) € C"1(S') and e(t) # 0 for t # 0. Finally, if
w € C"(SH\C" (S,
then
Y(t) = Ly (t,u)w € C"(SH\C"TH(Sh).
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Let us now turn to the proof of Theorem 1.2. Since C*(S') is a Banach space
and Diff*(S!) is a Banach manifold modelled over C*(S!), we know that the expo-
nential map is a smooth diffeomorphism near zero, i.e., there are neighbourhoods
Us of zero in C3(S') and V3 of id in Diff*(S!) such that

exps ;= exply, : Us — V3
is a smooth diffeomorphism. For n > 3, we now define
U, :=UsNnC"(S') and V, = V3NDiff*(S).

Let exp,, := expsg |v, . Since exp,, is a restriction of exps, it is clearly injective. We
now use Corollary 3.7 and Corollary 3.8 to deduce that exp,, is also surjective,
more precisely, exp,,(U,) = V,,. If the geodesic ¢ with (1) = exp(u) starts at
id € Diff"(S') with velocity vector u belonging to C™(S!), then o(t) € Diff"(S!)
for any ¢ and hence exp,,(U,) C V,. Conversely, if v € V,, is given, then there
is u € Us with exps(u) = v. Corollary 3.8 immediately implies that u € C"(S!);
hence u € U, and exp, (u) = v. Note that exp,, is a bijection from U, to V,,.
Furthermore, exp,, is a smooth map and diffeomorphic U,, — V,,. We now show
that exp,, is a smooth diffeomorphism; precisely, we show that exp_ ! :V,, — U, is
smooth by virtue of the inverse mapping theorem. For each u € C™(S!), D exp,, (u)
is a bounded linear operator C"(S') — C™(S!). Notice that

DeXpn(u) = DeXp?)(u)‘C”(Sl)y

from which we conclude that D exp,,(u) is injective. Let us prove the surjectiv-
ity of Dexp,(u), n > 3, by induction. For n = 3, this follows from the fact
that exps : Us — V3 is diffeomorphic and hence a submersion. Assume that
D exp,, (u) is surjective for some n > 3 and that u € C"*(S!). We have to show
that this implies the surjectivity of D exp,,,(u). But this is a direct consequence
of Dexp, (u) = L,(1,u) and the previous lemma: Let f € C""!(S'). We have to
find g € C""'(S!) with the property D exp,,,,(u)g = f. By our assumption, there
is g € C"(S") such that Dexp, (u)g = f. Suppose that g ¢ C"**(S'). But then
f=1Ln(1,u)g ¢ C"T(S") in contradiction to the choice of f. Thus g € C"(S!)
and Dexp,,;(u)g = f. Now we can apply the open mapping theorem to deduce
that for any n > 3 and any u € C"(S') the map

Dexp,, (u) : C"(S') — C™(S")

is a topological isomorphism. By the inverse function theorem, exp,, : U, — V,, is
a smooth diffeomorphism. If we define

Uso :=Uz3NC®(SY) and V := V3 N Diff>*(Sh),
Lemma 3.10 yields that
eXPo, = exps |U..  Uso — Voo

as well as
expgo1 Vo = Us
are smooth maps. Thus exp., is a smooth diffeomorphism between Uy, and V.
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Global Leray-Hopf Weak Solutions
of the Navier-Stokes Equations with
Nonzero Time-dependent Boundary Values

R. Farwig, H. Kozono and H. Sohr

Abstract. In a bounded smooth domain @ C R* and a time interval [0, T),
0 < T < oo, consider the instationary Navier-Stokes equations with initial
value uo € L2(Q) and external force f = divF, F € L?(0,T; L*(Q)). As is
well known there exists at least one weak solution in the sense of J. Leray
and E. Hopf with vanishing boundary values satisfying the strong energy
inequality. In this paper, we extend the class of global in time Leray-Hopf
weak solutions to the case when Uy = 9 with non-zero time-dependent

boundary values g. Although there is no uniqueness result for these solutions,
they satisfy a strong energy inequality and an energy estimate. In particular,
the long-time behavior of energies will be analyzed.

Mathematics Subject Classification (2000). 35Q30; 35J65; 76D05.

Keywords. Instationary Navier-Stokes equations; weak solutions; energy in-
equality; non-zero boundary values; time-dependent data; long-time behavior.

1. Introduction and main results

Let  C R3 be a bounded domain with boundary of class C*!, and let [0,7T),
0 < T < o0, be a time interval. In Q x [0,T) we consider the instationary Navier-
Stokes system in the form

ug—Au+u-Vu+Vp=f, divu=0

Uy = 9 u(0) = ug (1.1)

with viscosity v = 1 and data f, g, ug.



212 R. Farwig, H. Kozono and H. Sohr

For the data we assume the following:
f=divF F e L*(0,T;L*Q)), uo € L2(Q),
g€ L0, T; W 4(99)) N L*(0,T; W™ +9(9Q)), (12)
2 3
s+q:1, 2<s8<00, 3<q<o0;

the initial data ug has to satisfy further assumptions to be introduced later, see
Section 5.

First we recall the well-known definition of a weak solution u in the sense
of Leray-Hopf with u)_ = 0 and initial value uy € L2() = C55,(2)""*, and
describe their main properties.

Definition 1.1. Let f = divF, F € L*(0,T; L*(Q)), 0 < T < oo, and uy € L2(Q)
be given. Then the vector field w is called a Leray-Hopf weak solution of the system
(1.1) with data f,up and g = 0 if the following conditions are satisfied:

(i) w e L>=(0,T; L2(Q)) N L2(0,T; W, *(R)),

(i) for each test function w € C§°([0,7); C§%())

—(u,wp)a.r + (Vu, Vg r — (uu, Vw)or = (ug, w(0))o — (F, Vw)a,r,
(i) for0 <t < T

1 K 1 K
@I+ [ 19ular < ol - [ (7 Vwodr

As is well known [20] there exists at least one weak solution u of (1.1) in the
sense of Definition 1.1; moreover, u may be chosen to be weakly continuous from
[0,T) to L2(Q) and to satisfy beyond the energy inequality (iii) in Definition 1.1
the so-called strong energy inequality

1 ¢ 1 i
Ju@B+ [ IVal3ar < o)l - [ (FVoaer  13)
to

to

for almost all ¢, € [0,T) including ¢to = 0 and for all ¢ € [tg, T). We note that the
strong energy inequality (1.3) yields the energy estimate

t t
lu(t)]3 + / IVulZdr < Jutto) |2 + / |F|12 dr
to to

for a.a. tg € (0,7T), for tg = 0 and all t € [tg,T). An application of Holder’s
inequality implies that
R 2 3 3
ue L*(0,T; LYR)), T 2<s<00, 2<q<6.
s q
In order to extend Definition 1.1 to the more general case of time-dependent
boundary data Ul = 9 WE will reduce the system (1.1) to a perturbed Navier-

Stokes system with g = 0. For this purpose we have to find first of all a (so-called)
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very weak solution of the inhomogeneous Stokes system
Ey— AE+Vh=fy, divE=0

1.4
B, =9 EQ0)=E, (14

see [2]-[5], in  x [0, T) with suitable data fy = div Fy and Ey; here Vi means the
associated pressure. At first sight, it seems to suffice to choose fo =0, Fy = 0, but
for later application it will be helpful to consider general data fy, Fy, see Corollary
1.5 and (1.15) below. Setting

v=u—FE, p=p—nh, fi =f— fo, vo=uo— Ep (1.5)
we write (1.1) in the form
v—Av+(w+E)-V+E)+Vp=fi, divv=0,
v, =0 v(0) =w (1.6)
o ’ 0
which is a perturbed Navier-Stokes system with homogeneous data Vg = 0, but
with the new perturbation terms

(v+ E)-V(v+ E) =div (vv + (Ev + vE) + EE); (1.7)

here Ev = E @ v = (E;vj5);,j=1,2,3 denotes the dyadic product of the vector fields
F and v, and the divergence is taken columnwise.

To deal with Leray-Hopf type weak solutions v of (1.6), see Definition 1.2
below, we need that F in (1.4) has the following properties:

E € L*(0,T;L*(Q)) N L*(0,T; L9())
2 3 (1.8)
+ =1,2<5<00, 3<qg< 0.

s q
Actually, the condition E € L*(0,T;L*(Q)) in (1.8) is needed for estimates of
the term EFE in (1.7) in the space L?(0,T; L?(2)), whereas the second condition
E € L*(0,T; L)) will help to estimate the terms vE and Ev. Note that E €
L40,T; L*(Q2)) is the classical condition on weak solutions of the Navier-Stokes
system to satisfy the energy identity, and it automatically holds true when 4 < s <
8,4 < g < 6. To guarantee (1.8) for the solution F of (1.4) the data fo, g, Eo have to
satisfy certain assumptions known from the theory of the very weak Stokes system.
However, looking at (1.6), it suffices to assume (1.8) and vy € LZ(Q), f1 = div F},
Fy € L?(0,T; L?(2)), in order to define Leray-Hopf type weak solutions of (1.6);
later concrete conditions on g, ug, Fy will be described to satisfy these assumptions,
see Section 5.

In this respect, this paper mainly deals with the perturbed Navier-Stokes

system (1.6) rather than with (1.1).

Definition 1.2. Let E satisfy (1.8) and assume vy € L2(Q), fi = divFy, Fy €
L?(0,T; L*(Q2)). Then a vector field v on Q x [0,7) is a Leray-Hopf type weak
solution of the perturbed Navier-Stokes system (1.6) if the following conditions
are satisfied:
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(i) v e Lis, (10, 7); L2(9)) N L, (10,7): Wy (),

(i) for each test function w € C§°([0,T); C5% (1))
wy,wi)ar — (Vo,Vw)ar — (v+ E)(v+ E), Vw)q,r
= (vo, w(0))a — (F1, Vw)a,r ,
(iii) the energy inequality

(1.9)

1 t 1 t
OB+ [ IVelEar < lwlE— [ (A~ 0+ B)EVoadr  (L10)
holds for 0 <t < T.

Now our main theorem reads as follows:

Theorem 1.3. Let Q C R? be a bounded domain with 0Q € C%Y, and let f; =
div F1, Fy € L*(0,T;L3()), vo € L2(Q). Assume that E satisfies (1.8) where in
the case s = 00, ¢ = 3 this condition is replaced by

EeC([0,7); L), [Elcoqo,r)zs@) < ao (1.11)

for a sufficiently small constant ag = ag(2) > 0. Then the perturbed Navier-Stokes
system
vi—Av+(w+E)-Vw+E)+Vp=f1, dive=0,

0. 0(0) = v (1.12)

v, =
o0
has at least one Leray-Hopf type weak solution v in the sense of Definition 1.2. In
addition to the energy inequality (1.10) v satisfies the strong energy inequality

1 i 1 ¢
SO+ [ 190dr < ol - [ (5 - 04 BEVoar (113)
to

to

for a.a. to € [0,T) including to = 0 and for all to < t < T. Moreover, for these
to,t the energy estimate

t
o)1+ [ Vol r
fo (1.14)

t t
< (o)l +4 [ (IF 1B+ | dr) exp (e [ 1E];dr)
to

to

holds, where ¢ = ¢(§2,q) > 0 means a constant.

In view of (1.1), (1.4)—(1.6) and Definition 1.2 w = v + E is called a Leray-
Hopf type weak solution of (1.1) with boundary data Uy =9 = E|aQ and initial
value ©(0) = vo+ Ep. In the most general setting of very weak solutions, cf. [19, 18],
these terms are not well defined separately from each other and from f, but have
to be interpreted in the generalized sense that v = u — E satisfies Vg = 0 and
v(0) = vg. For a more concrete situation and precise assumptions on g, ug we refer
to Section 5.
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Remark 1.4. (i) The weak solution v in Theorem 1.3 may be modified on a null
set of (0,T) such that v : [0,7) — L2() is weakly continuous. Hence v(0) = vg is
well defined, Vo = 0 is well defined for a.a. t € [0,7) in the sense of traces, and

there exists a distribution p on 2 x (0,7") such that
vu—Av+(v+E)-Vv+ E)+ Vp = fi.
(i) Assume T = oo and
E € L*(0,00; L*(R)) N L, ([0,00); LY(R)), 2 < s < oo,

such that || E|[7 .., = fot | £][; d7 is increasing at least linearly as ¢ — co. We note
that in this case the proof in Section 4 will easily show the existence of a weak
solution v in (0,00). Then the energy estimate (1.14) (with to = 0) yields for the
kinetic energy 5 ||v(¢)||3 only an exponentially increasing bound as ¢ — oco. This
worst case estimate reflects the fact that nonzero boundary values could imply a
permanent flux of energy through the boundary into the domain.

(iii) If s = oo and || E[co([0,00);:23()) 18 sufficiently small, cf. (1.11), then due
to energy dissipation the scenario of (ii) will not occur, and (1.14) is replaced by
the better estimate

t t
@13+ [ IVoldr < oto)f+4 [ (1F:1+ |EI) dr
to to

for a.a. tg € [0,00) including to = 0 and for all ¢t € (¢, 00). The proof of this
estimate is based on the energy estimate (3.12) below and arguments in Sections
3-4.

The smallness assumptions in Remark 1.4 (iii), see also (1.11), is too re-
strictive for further applications. Next we consider an assumption on E known as
Leray’s inequality in the context of stationary Navier-Stokes equations in multiply
connected domains: Let E satisfy the conditions

EELOO(O,OO;LS(Q)) and
1
]/lea)-vwdt‘ < IVl [V, (1.15)
Q

for all wy,wy € Wy 2(Q) N L2(R) and a.a. t € (0,00).
We recall that in a (multiply connected) bounded domain Q C R3 with 9Q =
UJL:OFj € CY!' (L € N) to any boundary data g € W'/22(99Q) satisfying the
restricted flux condition

/ g - N do =0 for each boundary component I'; C 092, j=1,...,L,

Ly

and any € > 0 there exists an extension E. € W2(Q) with following properties:
E. e Wh(Q), divE. =0, B, =9

i (1.16)
’/ wE. - Vwdz| <e||Vw|3 for all w € Wy 2 () N L2(Q).
Q
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In particular this result holds for a simply connected domain (having only one
boundary component I' = 9€2). In our case, it suffices to consider ¢ = } in (1.15);
since the viscosity v = 1.

Corollary 1.5. Let Q C R?® be a bounded domain with 0Q € CY1, let vy € L2(Q)
and let

fi=divE, Fy € L™(0,00; L*(Q)). (1.17)
Furthermore, assume that E satisfies (1.15). Then the perturbed Navier-Stokes
system (1.12) has a global in time Leray-Hopf type weak solution v satisfying the
energy estimate

t t
()3 + / IVol2dr < [[vol2 + ¢ / (IFIE + 2] dr (1.18)

where ¢ = ¢(Q2) > 0 is a constant. To be more precise, there exists a bound K*
(depending on the norms ||F1]|2,00:00 and ||E||4,00:00, DUt not an ||voll2) and a time
To = To(|lvol|2) such that

()13 < K* for all t > Tp.

Corollary 1.5, see also Corollary 5.6, strictly exploits the assumption (1.15)
on E and the dissipativity of the Navier-Stokes system (1.1), (1.12). It is closely
related to the work [14] of E. Hopf where a similar result is proved in the context
of moving bodies for given smooth solutions. The impact of the final result of
Corollary 1.5 is the fact that all solutions are bounded after a finite time by a
bound independent of the initial value.

There are many applications of the two-dimensional Navier-Stokes system
with nonhomogeneous boundary values in optimal control theory since the 2D-
system admits global smooth solutions and uniqueness. For the three-dimensional
case there are only few results on the existence of global or weak solutions. We
mention the existence of local in time strong solutions by A.V. Fursikov, M.D. Gun-
zburger and L.S. Hou [7], and results in a scale of Besov spaces by G. Grubb [12].
The existence of global in time weak solutions is proved by J.-P. Raymond [17]
for boundary data in a fractional Sobolev space on 9 x (0,T") with derivatives in
space and time of fractional order 3/4 for domains with boundary 9 € C3.

2. Preliminaries

Let © C R® be a bounded domain with 992 € CL! let 0 < T < 0o and 1 < gq,
s < oo with conjugate exponents 1 < ¢/, s’ < oco. We will use standard no-
tation for Lebesgue spaces (L9(Q),]| - [[za(a) = || - |l4) and for Bochner spaces
L5(0,T: L), | - -0 r:p0(@) = |- lgir)- Heve v € L, (10,T); L7(2) means
that v € L*(0,7"; L(2)) for each finite 0 < T” < T. The pairing of functions (or
vector fields) in 2 and © x (0,T) is denoted by (-,-)q and (-, -)q,r, respectively.
Sobolev spaces are denoted by (W™(Q),] - ||lwm.), m € N, the corresponding

trace space by (W™=1/%9(9Q), || - ||yym-1/4.4) When 1 < g < co. The dual space to




Global Leray-Hopf Weak Solutions 217

Wi-1/4-4(9Q) is denoted by W~1/44(99), the corresponding pairing is (-, -)aq.
Concerning smooth functions we need the spaces C5°(£2), C5%, (Q2) = {v € C§°(Q) :
dive = 0}, and in the context of very weak solutions

Co(Q) ={we C*(Q) :w=0ondQ,divw = 0},

see Section 5. Note that Wo /(€)= C5o() ™" and L1(Q) = C52,(@)"". By
w € CF°([0,T); C5%,(£2)), the space of test functions in Definitions 1.1 and 1.2, we
mean that w € C§°([0,T) x Q) satisfies divy,w = 0 for all ¢ € [0,T) (taking the
divergence with respect to x € Q).

For 1 < ¢ < oo let P, : L1(2) — L1(§) be the Helmholtz projection and let

Ay = —P,A:D(Ay) = WH(Q) N Wy (Q) NLLQ) € LL(NQ) — LI(N)
denote the Stokes operator. For its fractional powers Ag : D(Ag) — L1(Q), —1 <
a < 1, we know that D(A,) C D(AY) C LL(Q) and R(AF) = LL(Q) for 0 < a < 1;
finally, (Afz")*1 = A;® for =1 < a < 1. In particular, for A = A, one has
|A2v|y = ||Vl for v € D(Az). Moreover, we note the following embedding
estimates (with constants ¢ = ¢(g, ) > 0):

1 3 3
lolly < cllA™vll2, 0<as<, 2<q<oo 2at =, veDA") (21)
[A%0]|s < [|Av]l§ o]z, 0 <a<1,veD(A) (2:2)
_ 1 1
Iolly < ellolnaliol; . 2<q<6.8=3(,~ )weW@.  (@3)

Finally we note that —A, generates a bounded, exponentially decaying ana-
lytic semigroup {e~*44 : ¢t > 0} on L2(Q) satisfying the estimate
HAge_tAquq <ct™¥v|g 0<a<l,t>0,ve Li(Q) (2.4)
with a constant ¢ =¢(¢,Q) > 0and ¢ =1if ¢ = 2.

To find approximate solutions of the Navier-Stokes system in Section 3 we
need Yosida’s approximation operators

1
Jn=I+ A2  meN,
m
where I denotes the identity on L2(Q). The following properties are well known:

1
[mollz < JJoll2, I A2 Jmoll2 < [v]l2,

lim J,v=wv for all v € L2(Q), (2.5)

m—00

IV o2 < [|Volls for all v € WEH2(Q) N LA(Q) = D(A?);

for the proof of the last inequality we use that ||[A2v[y = | V0|2 and the commu-
tativity of J,, with Az,

For these and further properties of the Stokes operator and Yosida’ s approx-
imation we refer, e.g., to [9], [10] and [20].
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3. The approximate system

There are several proofs of Theorem 1.3 in the special case when g = 0, see
[13], [15], [16], [20], [22]. The proofs rest on three steps: (1) an approximation
procedure yielding a sequence of solutions, (u,), (2) an energy estimate for u,,
with bounds independent of m € N to show that each u,, exists on the maximal
interval of existence, [0,7T), and (3) weak and strong convergence properties of a
suitable subsequence of {u,,} to construct a weak solution of the Navier-Stokes
equation. One possibility in (1) is the use of the Yosida approximation yielding
the approximate system

us — Au+ (Jpu) - Vu+Vp=f, divu =0
together with U = 0, u(0) = up on Q x [0,7T).

In our case (1.12) let v = vy, m € N, be a weak solution of the approzimate
perturbed Navier-Stokes system

ve— A+ (Jpv+ E)-V+E)+Vp=fi, divv=0

0, v(0) =1y (3.1)

Ulon

where vg € LZ(Q), f1 = divFy, Fy € L?*(0,T;L*(Q2)), and E results from (1.4)
as a (very) weak solution satisfying (1.8). However, as already explained, we will
only need that the vector field E satisfies (1.8) without referring to (1.4). Then

0= om € L35 (10,7 L2() 1 £, ((0,7); Wi2(©) (5.2)
is called a (Leray-Hopf type) weak solution of (3.1) in € x [0,T") if the relation
—(v,wya,r + (Vo,Vwyar — (Jmv+ E)(v+ E), Vw)o r
= (vo, w(0))a — (F1, Vw)a,r

is satisfied for every w € C§°([0,T; CF,(€2)) and the energy inequality

(3.3)

1 ¢ 1 ¢
I3+ [ 19013dr < Sl = [ (i~ (o + BB Voladr, (34
0 0
0 <t<T, holds.

Lemma 3.1. Let vy € L2(Q), f1 = divFy, Fy € L*(0,T; L)), and E satisfying
(1.8) be given. If s = oo, suppose the smallness assumption (1.11) on E as well.
Then there exists some T' = T'(vo, F1, E,m) € (0,min(1,7T)] such that (3.1) has
a unique weak solution v = vy, on Q x (0,77), i.e., v satisfies (3.2)—(3.4) with T
replaced by T'.

Proof. Assume that v = vy, is a solution of (3.1) on 2 x (0,7”), 0 < T’ < 1. Hence
v is contained in the space

Xpoi= L>(0,T; L2(Q)) N L*(0,T"; Wy ()
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with

0]l %, = [oll2,007 + [ A20]|2,27 < 00

Then we obtain for any 0 < 77 < min(1,T'), using Holder’s inequality, the proper-
ties (2.1)—(2.3) and (2.5), the following estimates for (J,,v + E)(v + E) with some
constant ¢ = ¢(2) > 0:

1
I(Jmv)v 3,47 < c||Az T

2,27 < || Tmvll6,a7 ||V |2,4;77 |Vl
< em vl vl x, < em (T ok,

[(Jmv)Ell2,2:0 < || T

la,00 | El|a,a7 < cl|Imvlle,ar [ Ela a1

< em (T)Y* vl x, | Ellaaiz,
IEvll2.2:7 < [ Ellg,sir 10l —1y-1 3 —1)-1,70

< c|Bllgs llollx, -
Since ||EE|2,2;7 < || E||3 4.7+, we proved the estimate

[(Jmv + E)(v + B)||2,200 < em(T)* |0l x,, (1 Ellaaszr + |v]lx, ) (3.5)
+ 1Bl 420 + cllEllg,sir V]l x,. -

Obviously, (3.5) also holds in the limit case s = 0o, ¢ = 3.
With the definition
Fi(v)=F — (Jov+ E)(v+ E)
we write the system (3.1) in the form
vy — Av + Vp = div Fy (v), dive =0
v=00n099Q, v(0)=uwv.
Since vo € L2(Q) and Fy(v) € L2(0,T; L*(Q)), we apply classical L*results

[20, Ch. IV] on weak solutions of the instationary Stokes system to get that v €
CY([0,T"); L2(£2)) and satisfies the fixed point relation

v = -7:T’ (U) in XT/, (36)
where
t
(Fri(v))(t) = e vy — / A2 e~ =A A=5 pdiv Fy (v)(7) dr ;
0

see [20, II1.2.6] concerning the operator A~ 2 Pydiv. Moreover, v satisfies even an
energy equality for ¢ € [0,7") instead of the energy inequality (3.4), and, by (3.5),
the energy estimate

1 () x,, < allvli,, +bllvlx,, +d 3.7)
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where

a=cm(T)V*, b=c|lElgsr +cm(T)* | El sz,

, (3.8)
d = c([lvollz + |1 B2 gy + 1 F1ll2,257)
with constants ¢ > 0 independent of v, m and T".
By analogy, we get for two elements vy, v9 € X7 the estimate
| Frr (v1) = Fro(v2) | x
<em(T) 2 oy = vallxy, (Ionlly, + vally, +1Bllesr) o o

+cllor = vallxg [[Ellg,s7
< llor = v2llx, (a (loallx,, + llv2llx,.,) +0).-

Up to now, to derive (3.7), (3.9), we considered a given solution v = v, € X7 of
(3.1).

In the next step, we treat (3.6) as a fixed point problem in X7,. Assuming
the smallness condition

dad+2b<1 (3.10)

we easily see that the quadratic equation y = ay? + by + d has a minimal positive
root y; which also satisfies 2ay; + b < 1. Hence, under the assumption (3.10),
Fr maps the closed ball By» = {v € Xpv : [[v||x,, < 31} into itself. Moreover,
(3.9), (3.10) imply that Fr is a strict contradiction on Brs. Now Banach’s Fixed
Point Theorem yields the existence of a unique solution v = v, € Bps of the
fixed point problem (3.6). This solution is a weak solution of the approximate
perturbed Navier-Stokes system (3.1). Moreover, v satisfies an energy identity and
v e C%[0,T"); L2(Q)).

To satisfy the smallness assumption (3.10) (for fixed m € N), it suffices in
view of (3.8) to choose T” € (0, min(1,T")) sufficiently small in the case that s < oco.
However, if s = 0o, looking at the term || E||q,s,7 in (3.8) we have to assume that
| Ellco(jo,1y;3(02)) s sufficiently small.

Finally, we show that the solution just found, v = v,,, which is unique in By,
is even unique in X7v. Indeed, consider any solution ¢ € Xp of (3.1). Then there
exists 0 < T* < min(1,7") such that ||?] x,.. < y1, and the estimate (3.9) with 7"
replaced by T* € (0, min(1,T")) implies that || v—0| x . = ||Fr=(v)=Fr«(0)| xp. <
lv — 9] x,.. (2ay1 + b). Since 2ay; + b < 4ad + b < 1, we conclude that v = ¢ on
[0, T*]. When T* < T’, we repeat this step finitely many times to see that v = o
on [0,77]. O

To prove that the approximate solution v = v, does not only exist on an
interval [0,7”) where T" = T'(m), but on [0,T), and to pass to the limit m — oo,
we need a global (in time) and uniform (in m € N) energy estimate of v,,.

Lemma 3.2. Let v = vy, m € N, be a weak solution of the approximate perturbed
Navier-Stokes system (3.1) on some interval [0,T') C [0,T) where vy € L2(Q),



Global Leray-Hopf Weak Solutions 221
fi=divF, Fy € L?(0,T; L*(Q)), and let E satisfy (1.8). If 2 < s < 00,3 < q<
00, then v satisfies the energy estimate

011300 + V0113 20
(3.11)

daze) exp (e[| B3, o)

for allt € [0,T") where ¢ = ¢(R,q) > 0 is a constant. If s = 0o, ¢ = 3, under the
smallness assumption (1.11), v satisfies the energy estimate

lv(®)]12

Proof In view of the energy inequality (3.4) we have to estimate the crucial term
fo Jmv + E)E,Vv)q dr. By Holder’s inequality, (2.1)—(2.3) and (2.5), we get

< (llvoll3 + 4 17113

220 < llvoll3 + 4 1 BNl e + 4[| Full2,2:e- (3.12)

t t
| B Voladr| < [ 1ol sy 1Bl Vol dr

t
<e / 1 m0llg |V I3 [ Ellg [ Vol2dr  (3.13)

t
SC/O lolig 1Bl [[Voll3™ dr

where o = 1 — 2 = 3, cf. (2.3). Hence, if 2 < s < 0o, by Young’s inequality

t 1 t ,
|| ()00 dr] < | e @

with a constant ¢ = ¢(g, ) > 0. In the case s = 00, ¢ = 3, we have o = 0 and get

t
| {0 Vo) dr| < Bl 701 (3.15)
0

Moreover,

(3.16)

t t
/(EE,VU)ng g/ 1|2 [Vollz dr <
0 0

the term fg (F,Vv)q dr is treated similarly. Inserting these estimates into (3.4) we
are led to the estimate (2 < s < o0)
¢
2
| g et ar

(3.17)

@13+ 1V0l13 5 < llvoll3 + 411 Bl 45 + 4 F1]13

Then Gronwall’s Lemma proves (3.11).
To get a similar result when s = oo we have to assume in view of (3.15) with
o = 0 that ¢||E|[3,00¢ < }; then we immediately get (3.12). O
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Lemma 3.3. Under the assumptions of Lemma 3.1 for every m € N there exists a
unique weak solution v = v, of (3.1) on [0,T). This solution v € C°([0,T); L2(f))
satisfies in addition to the energy inequality (3.4) the strong energy identity

1 K 1 K
WO+ [ IVulFar = 5 [0l = [ (R = (v + B)E.Vuadr (318)
0

to
for allty € [0,T) and to <t < T, and it holds

d

i (3I0OR) +IVeO =~ - U0 + EETa () (319

in the sense of distributions on [0,T).

Proof. Let [0,7*) C [0,T) be the largest interval of existence of v = v,,, and
assume that 7% < T'. Since v € C°([0,T*); L2(R)), we find 0 < Ty < T* arbitrarily
close to T* with v(Tp) € L2(£2) which will be taken as initial value at Ty in (3.1)
in order to extend v beyond Tj. Since the length § of the interval of existence
[To,To + &) of this unique extension depends only on ||v(Tp)|l2 and ||Fill2.2:T,
|E|l4,4:7, || Ellq,s;7 by Lemma 3.1, we see that v can be extended beyond 7™ in
contradiction with the assumption.

Since v = v, in Lemma 3.1 satisfies an energy identity instead of only an
energy inequality, v = vy, will satisfy the strong energy equality (3.18) on [0,7).
Since both integrands in (3.18) are L!-functions, the corresponding integrals are
absolutely continuous in ¢; hence we get the differential identity (3.19) in the sense
of distributions. O

4. Proof of Theorem 1.3

Let (vm,) denote the sequence of approximate solutions on [0,7") constructed in
Section 3 and let 0 < 77 < T be finite. By (3.11) we find a constant ¢ > 0 such
that

HU77L||2,OO;T’ + va'rrLH2,2;T’ S ¢ forallm € N. (41)

Hence there exists a subsequence of (v,,,) which for simplicity will again be denoted
by (v.,) with the following properties:
There exists a vector field v € L>°(0,7"; L2(Q)) N L?(0, T'; H)(Q)):

Uy — v in L(0,T7; L2(Q)) (weakly-*)

v — v in L%(0,77; HY(Q)) (weakly)

vm — v in L%(0,77; L*(Q) (strongly)
vm(t) — o) in  L%*Q) for a.a. t € [0,T) (strongly).

(4.2)

We note that the third property is based on compactness arguments just as
for the classical Navier-Stokes system and that the fourth property is a well-
known consequence of the strong convergence in L?(0,T"; L?(2)). Moreover, for
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all t € [0, 7)
Vollzze < liminf [[Vog [[2,2:¢, (43)
[o@®)ll2 < liminf [lo,(#)]lo. '

By Hélder’s inequality, (4.1) and (4.2) we also conclude (after extracting a further
subsequence again denoted by (v,,)) that

U —v o in L0, T L9(Q), 2+ 2 =3, 2<s1,q1 < oo
UmUm — oo in  L%2(0,T'; L92(Q)), 522 + q?; =3, 1<s1,q1 <0
VU * Vo, = v-Vo in  L%3(0,T'; L9(Q)), 523, + q?; =4, 1<s1,q1 <o0.

(4.4)
When passing to the limit in the weak formulation (3.3) only some terms in
(Jmvm+E)(vm+E), Vw)q,1 need a special consideration. Concerning (Jp,Vm )Um
we first note that

J’rnv'rn = J’rn(vm - ’U) + va — v in L2(07T/; L2(Q))7
hence, as m — oo, by (4.4); and Hélder’s inequality
(JmVm)Vm — 0 = (JmUm — Um)Vm + U+ (U — 0) + (U — v)v = 0

in L54(07T/;LQ4(Q))7 y + (1?:1 = 43 1< S4, qa < 2.

S4

(4.5)

Proceeding similarly with all other terms we prove that v is a weak solution of the
perturbed Navier-Stokes system satisfying Definition 1.2 (i),(ii).

It remains to show that v satisfies the energy inequality (1.13). To this aim
we consider the energy equality (3.18) for v, and those ¢ty € [0,7) where the
strong convergence vy, (o) — v(to) in L?(£2) holds, see (4.2),. By (4.3) and (4.2),
the first three terms in (3.18) pose no problems for m — oco. The same holds true
for the terms (F, Vuy,)q and (EE, Vo, ). To treat the remaining term we have to
prove that

/t((vam)E, Voo dr — /t<vE, Vov)q dr (4.6)

to
as 1m — oQ.

Since E € L*(to,t; L1(2)) and C§°((to,t) x ©2) is dense in L*(to, ; L9(Q2)) for
1 < s, ¢ < oo, it suffices to show (4.6) for any smooth F and that the sequence
((Jomm) V) is bounded in L¥ (to, t; LY (2)). Indeed, for E € C5°((to,t) x Q)

/ <(vam)E7 V'Um>ﬂ - <UE, V’U>Q)d’r

to

t
= _/ <(J'rnv'rn>vm_’UU7VE>QdT — 0 as m—

to

due to (4.5). Moreover,

[(Jmvm) Vumllg st < [|Vm||2,2: |JmUmH(ql,—;)*1,(51,—;)*%
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is uniformly bounded in m € N by (4.1) and since 2(} — }) + 3((11, -3 =

5 where 2 + 2 =1,2< 5 < 00,3 <q<co. Inthe case E € C(0,7T); L3(Q))
the same argument applies; note that only for this argument we needed E € C°

instead of F € L°°. Summarizing the previous ideas we prove (4.6). O

Proof of Corollary 1.5. Since the proof is based on a differential inequality and
not on Gronwall’s Lemma applied to an integral inequality we have to consider
the sequence of approximate solutions (vy,) first of all. By the differential equation
(3.19) for v = vy, we get the estimate
1d
2 dt
where the last term due to the assumption (1.15) can be estimated as follows:

vaz(t)ng + ||V11m(t)||§ < (1]l + ‘lE‘|Z>‘|VU7rL||2 + (Jmvm) E, Vo)

1 1
|(Jmvm) E, Vop,)| < 4||VJmUmH2||vvm”2 < 4||va||§.

Then Young’s inequality and an absorption argument lead to the estimate
d
dt\lvm(t)H% +IVom )13 < 4(IF3 + 1 BI13)(2) (4.7)

for a.a. t > 0. Let pg > 0 denote the smallest eigenvalue of the Dirichlet Laplacian
on Q. Then ||V, (t)||3 > pollvm(t)]3 for a.a. t > 0, and we get that

d
g 1o @15 + pollvm @13 < 4IRS + [ BI2)(@).

This estimate together with the assumption (1.17) immediately implies that

t
ol < et ool +evet [ om QIR + Bl ar (1)

< e woll3 + 4 (LI 0,00522(0) F BT (000525 (52)))-

Hence vy, is uniformly bounded on (0,00) with a bound independent of m € N.
By the pointwise convergence property (4.2), v(t) satisfies the same bound, first
of all for a.a. t > 0, but due to its weak continuity property in L?(£2) even for all
t>0.

Moreover, (4.8) applied to v yields a time Ty = Ty (||vol|2) such that ||v(t)||3
is bounded by x* for all ¢ > T where x* is chosen larger than the last two terms

in (4.8).
Finally, integrating (4.7) with respect to time and passing to the limit with
m — 00, we get the estimate (1.18). O

5. Construction of the vector field E

To apply Theorem 1.3 and Corollary 1.5 and to find solutions u of the Navier-
Stokes system (1.1) in the form u = v + FE we have to construct a suitable vector
field F solving (1.4); the solution should satisfy the assumptions (1.8) to apply
Theorem 1.3 and (1.15) to apply Corollary 1.5, respectively. First we consider very
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weak solutions F of (1.8), see [2]—[5], for given suitable data g, Fy and fy. For their
definition we introduce the space of initial values, J72°(Q), by
oo 1
J&4(Q) = {uo e D(Ay) : luol| 7o = </ HAqe_TAQ(AgquuO)HZdT) < oo}
0

(5.1)
Here, D(Ay) is equipped with the graph norm or equivalently with the norm
|Ag - llg, and the term A;'Pyug for ug € D(Ay ) denotes the unique element

u* € LL(Q) such that (A, Pyu, o) = (u*, @) = (u, Pq/A;,1<p> for all ¢ € L.

Proposition 5.1. Let Q C R? be a bounded domain with 9Q € CY!, let 0 < T < oo
and let 1 < s,q,r7 < 00 satisfy 21,) + (11 > : Assume that fo = div Fp,

Fy € L¥(0,T; L()), g € L*(0,T; W~ 2(9Q)) (5.2)

such that (g(t), N)aq = 0 for a.a. t € (0,T) and let Ey € J2°(2). Then the Stokes
system (1.4) has a unique very weak solution

E € L*(0,T; L)) (5.3)
in the sense that for all test functions w € C§([0,T); C3 ,(€2))
—(E,wa,r — (B, Aw)ar = (Eo, w(0))a — (Fo, Vw)o,r — (9, N - Vw)aa,r

divE=0 in Qx(0,T),E-N=g-N on 0Qx (0,T).
(5.4)

This solution satisfies the a priori estimate

1Ellqs:m < ¢ ([ Fo

s + g + [luoll 72-+) (5.5)

Ls(o,T;W’le"‘(aQ))
with a constant ¢ = ¢(q,r,s,Q) > 0 independent of T and of the data.

For more details on very weak solutions we refer to [1]-[5]. See, e.g., [5, Chap-
ters 2.1, 2.3], for the well-definedness of all terms in (5.1) and (5.4); Proposition
5.1 is a special case of [5, Theorem 2.14] and a remark in [5, §1.3] on the extension
of results in [3], [4] where 9Q € C?1! to the case 9Q € C'1. Note that Serrin’s
condition 3 + 3 =1 is not needed in the linear theory. Moreover, s = oo is not
included in Proposition 5.1; hence the case s = oo will not be dealt with in the
next result.

Corollary 5.2. Let Q C R be a bounded domain with 02 € CHY, let 0 < T < oo
and let 1 < s,q,r < 0o satisfy 3 + 3 =1, é + }1 > i Assume that fo = div Fp,
Fy € L*(0,T; L™(2)) N L*(0,T; L7 (2)),
g€ L0, T; W~ 2%(9Q)) N L*(0, T; W—14(09)), (5.6)
Eo € J°(Q) N THH(Q)
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such that (g(t), N)ao = 0 for a.a. t € (0,T). Then the inhomogeneous Stokes
system (1.4) has a unique very weak solution E satisfying (1.8), i.e.,

E € L*(0,T; L)) N L*(0, T; L*()), (5.7)
and the a priori estimate
1Bl g5 + | Ell4,4;7 < e ([|Fo

|q,s;T + HFOH 24T

ng”Ls(O,T;W* a°1(00)) + HgHLéI(O,T;W*i*“(aQ)) (5.8)

+lluoll 7g+ + [luoll 72.4)
holds with a constant ¢ = ¢(q,r,s,Q) > 0 independent of T'.

Proof. We apply Proposition 5.1 with the exponents s, ¢, and 4,4, 172. Since the
very weak solution E of (1.4) in [3, 4, 5] is constructed in a finite number of steps
where each of them yields the same result for s, ¢, and for 4, 4, 172, it is easily seen
that the unique solution E satisfies (5.7), (5.8). O

Remark 5.3. (i) In the case 4 < s < 8,4 < ¢ < 6 and T finite the L*(L?)-conditions
in (5.6) imply the L*(L*)-conditions; then (5.6)—(5.8) simplify considerably.

(ii) For the system (1.1) consider data f = divF, F € L*(0,T;L*Q)),
ug € L*(Q) and boundary data g as in (5.6), satisfying (g(t), N)ag = 0 for a.a.
t € (0,T). Then solve (1.4) with data fo =0, Ep = 0 and ¢ to get a (unique) very
weak solution E satisfying (5.7) and the a priori estimate

1Ellqsim + 1E

lsar < c(llg| Loz s ieay T 1911+ o v 4 4 0527)) -

Next, by Theorem 1.3, we find a weak solution v of the perturbed Navier-Stokes
system (1.12) with data f1 = f = divF, F; = F, and vy = ug satisfying (1.13),
(1.14). Then u = v + E is a weak solution of (1.1) split into a weak and a very
weak part, v and E. It is an easy exercise to write down a corresponding energy
estimate for u in terms of ug, f and g only.

(iii) Assuming more regularity on the boundary data g better properties of
u =+ E can be achieved; we refer to [3, 4] and to the forthcoming paper [6] for
such results.

In the second part of this Section we consider the assumption (1.15) and
Corollary 1.5. Assume that the bounded domain Q C R3 with 99 = ‘éol—‘j e ch!
has boundary components I'g,...,I'; with Iy being the “outer” boifndary of
and I';,1 < j < L, being the boundary of “holes” Q; Further, let the boundary
data g with g(t) € W22(9Q) for a.a. t € (0,T) satisfy the restricted flux condition

/ g(t) - Ndo=0,0<j < L. (5.9)
Ly
Then, due to a construction in [14], there exists a solenoidal extension F = E. €
Wh2(Q) of g for a.a. t € (0,T) satisfying (1.16) (for arbitrary but fixed € > 0 and
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for a.a. t). However, we do need also an estimate of E and E; in terms of g and
g¢, respectively.

Proposition 5.4. Let Q C R? be a bounded domain as above and let the boundary
function

g € L®(0,00;W22(9Q)), g, € L=(0,00; W~ 22(9Q)) (5.10)
satisfy the restricted flux condition (5.9). Then there exists an extension
E € L*(0,00; WH2(Q)), E; € L>(0, 00; W 12(Q)) (5.11)

of g satisfying inequality (1.15), and the a priori estimate

I £ Lo (0,00;w1:2(02)) <CH9”L«>¢ 0,00;W 2°%(892))

(5.12)
B¢l Lo (0,005 ~12(02)) < CHgtHLOO 0,00, W~ 2°2(892))

with a constant ¢ = ¢() > 0.

Proof. We follow the ideas of E. Hopf [14] as described in [8, 11] to find an extension
E of g written as the curl of a suitable vector potential and defined by a bounded
linear operator g — E.

Ignoring ¢ € (0,T) for a moment we consider g € W1/22(99) satisfying the
restricted flux condition as in (5.9). Then we use the theory of very weak solutions,
see [3]-[5], to find a solution u; € L?(2;), 1 < j < L, of the stationary Stokes
system

—Auj +Vp; =0, divu; =0in Q;, v = g on 09 (5.13)
for each hole 2;, 1 < j < L. By definition
—(uj, Aw)q, + (g, N - Vw)ag, =0 for all w € C§ ,(;)
divu; =0in Q;, u;-N =g-N on 08,

and [4, Theorem 3], yields the existence of a unique very weak solution u; satisfying
the a priori estimate
| 2(895)

here the necessary compatibility condition (g, N)aq; = 0 is fulfilled due to (5.9)
for each j. By analogy, we find a very weak solution ug € W12(Q) such that

—Aug+Vpy =0, divug=01in Q, u =g on 01,

again taking into account (5.9), and get that
luoll2 < cllgllw-1/22(00)-

Finally, we consider A = Br\(Q2 U Ule ;) for a ball of radius R and center 0
such that Q C Bg, and find a unique very weak solution uy € W12(A) of the
Stokes system

—Aug+Vpa=0,divug =0in A, U, = =0
0

9 u‘aBR
since (g, N)r, = 0 by (5.9). Moreover, |[ual|2,.4 < ¢ Hg||W71/2,2(39).
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Since g € W1/22(9Q) ¢ W~1/22(9Q), the very weak solutions u;, ug, ua
constructed so far are also weak solutions, and, in particular, u; € W1’2(Qj) and
ujllwrz) < cllgllwiszzaq,): for this regularity argument see [4, Remarks 2(1)].

Next we define w on R®* by u=u; in Q;, 1 <j < L, u=ugp in Q, u =uy in
A and u = 0 in R\ A. Obviously, u € W12(R3), divu = 0 in R3, and u satisfies
the estimates

[Vull2 < cllgllwizz20),
(5.14)

lull2 < cllgllw-1/22(00)-
Using L2-Fourier analysis we find a vector potential ) € W?22(R3) such that
u=rot v, |V, V2|l2 < c|lullwrzms). (5.15)

Indeed, since divu = 0, the equation rot = u has a unique solenoidal solution
defined in Fourier space via |£[20 = i & x @. Obviously, 1 satisfies (5.15). To prove
that v € L?(R3) we introduce the space I/T/'l"l(R")7 1 < g < oo, as the closure
of C§°(R™) with respect to the norm ||V(-)||4, and its dual space W~14(R") =
WL (R™)*. Evidently, v € L*(R") and |92 < ¢||ull;y 12 provided that u €
W‘1’2(R3). To see the latter assertion we exploit the fact that w has compact
support in Bgr and refer to the following Lemma 5.5 the proof of which will be
postponed to the end of the paper.

Lemma 5.5. Let D be a bounded domain in R™ and let 1 < g < oo. If u € LY(R™)
with supp u C D, then u € W~1L4(R™) and satisfies the estimate

HUHW*LQ(R") S CHUHL‘J(D)7 (516)
where ¢ = ¢(D,n,q) is a constant independent of .

Summarizing (5.15), the estimate [|9||2 < ¢ ||ul|y-1.2 and (5.16) with ¢ = 2
we get that u = rot 1,

1932 + 192012 < e lgllws/za(on)

(5.17)
Y12 < cllgllw-1/22(00)

with a constant ¢ = ¢(€2) > 0. Moreover, the map g — ¢ is linear.

In the next step we define the vector field E = E. by E = rot (6.¢)) where
6. € W is a cut-off function with support in an e-neighborhood of 9. Following
[11, pp. 288-290] or [22, Ch. II, §1, Lemma 1.9, Lemma 1.10] for pointwise estimates
of . and E we get for all wy,ws € Wolj(Q) the estimates

(w1 B, Vwz)a| < [[wiE2]| Vwz|l2
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and with x. = Xsuppe. and d(z) = dist (z, 9Q)
lwi B3 < ¢ / Jwi*( |¢( )|+ VY(@)|xe) *do
<ee([ ]d(,)\ dx) 12 + e lun 31 P2 e

< c|Vurl3 191 @s) (€* + Ix:l8):

here € > 0 may be chosen arbitrarily small and is related to the size of supp 6.
which shrinks when € — 0. Hence (1.15), can be fulfilled for a.a. fixed ¢ > 0 in the
sense that

1
(w1 B, Vwz)a| < 4||Vw1||2 [Vwslla, wi, wy € Wy (). (5.18)

Furthermore, since (E,@)q = (81, ot ¢))q for all ¢ € Wy*(Q) we get by (5.17),
the estimate

1Ellw-12() < cllgll (5.19)

W—5200)"

In the final step we define F(-) as in (5.11) satisfying (1.15),. Given g €
L>(0, 00; W2:2(0)) fulfilling (5.9) for a.a. ¢ > 0 we find by the previous argu-
ments for a.a. t > 0 a vector field E(t) = rot (61(t)) satisfying (5.18) and, due to
(5.17),

IE®) lwiz@) < c||g(t)HW%12(BQ) for a.a. t € (0,T).

Hence E € L>(0,00; W'2(€)), and (5.12),, (1.15), are easy consequences. Since
the map g +— F is linear and g; € L°°(0,00; W~1/22(9Q)), the previous ar-
guments, the method of difference quotients and (5.19) also imply that E, €
L>=(0, 00; W~1/22(9Q)) and that (5.12); holds.

Now Proposition 5.4 is completely proved. O

To apply Proposition 5.4 to the Navier-Stokes system (1.1) via Theorem 1.3
we have to consider the Stokes system (1.4) for E more closely. In this setting
where E has already been defined by the boundary data g we have to determine
foand Ep in (1.4). Let h = 0 so that by the construction in the proof of Proposition
5.4

f() = Et — AE, FE =rot (F)w),

which may be written also in the form fy = div Fy. By (5.12) we easily get that
Fy € L*(0,00; L*(Q)) and that

| Fo < e ([|1Btll o 0,00w-12(02)) + 1Bl Lo (0,00w1:2(02)))

<c (||gt||Loc(07oo;W’é’2(8Q)) L°°(0,00; W (69)))

Moreover, since E € L2 _([0,00); W%(Q)) and E; € L _([0,00); W~12(Q)), a
classical interpolation result states that £ € CY([0,00); L?(£2)), the initial value

(5.20)
+ llgll
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Eo = E(0) € L*(Q) is well defined and there exists a constant ¢ > 0 such that

1Boll2 < ¢ (1Bl o< (0,00 12 (52)) + I Etll Lo (0,00w-1.2(0))

s¢ (”g”Lw(O,oo;W%»?(aQ)) + HgtHLoo(o,oo;W*%»2(69)))'
Furthermore, div Ey = 0 and EO‘@Q = ¢(0) where g(0) is well defined in L?(99).
Now we are ready to state our final result.

Corollary 5.6. Let ) C R? be a bounded domain with boundary 0Q € C%' and
boundary componentsT'j, 0 < j < L. Assume that f=divF, F € L>(0, 00; L*(Q)),
up € L*(Q) and that g satisfies (5.10) and the restricted flux condition (5.9).

Then the Navier-Stokes system (1.1) has a global weak solution uw = v + E
where E satisfies (5.11), (5.12) and

(5.21)

t
@I < 6_“°t(\|vo||§+2/0 (| Fu 3 + 1 E5) dr) 5

here Fy = F + Fy satisfies (5.20), vg = ug — Fo where Ey is subject to (5.21), and
with po from (4.8).

In particular, v and also u are bounded globally in time in L?(QY). There
exists a bound k* independent of ug such that for all t > Ty = Ty(uo, g, g:) we
have ||v(t)||2 < K*.

Proof of Lemma 5.5. Let us first consider the case n’ = ", < ¢ < oo. For such g,
it holds 1 < ¢’ = qzl < n, and the Sobolev inequality states that ||¢| .o <
Ln—a (R")
ClIVell o gny for all ¢ € C5°(R™). Hence taking n € C§°(R") satisfying n(z) =1
for x € D, we have
[ @) = [ )| < llulloe) [l () < elleliapy el na -
< cllull o) Vel Lo mn)
for all ¢ € C5°(R™). Hence u € W~14(R"), and u satisfies the estimate (5.16).
We next consider the case 1 < ¢ < n’, i.e., n < ¢’ < oo. For such ¢, we see
that the subspace Sp = {p € C§°(R"); [}, ¢(x)dx = 0} is dense in W4 (R™). For
a moment, let us assume this density. Then it follows from the Poincaré-Friedrichs
inequality (||| o (p) < [Vl Lo (py for ¢ € Sp that
[(u, )] < Nlull ooy [nll Lo oy < ellullapy [l Lar by < ellulla)IVell Lo @
for all ¢ € Sp. Since Sp is dense in W14 (R™), the above estimate implies that
u € W=H4(R") with (5.16).
It remains to prove the density of the space Sp in Wi (R™). Take a function
¢ € C§°(R™) such that ((z) =1 for |z| < 1 and ((z) = 0 for |z| > 2, and define
Ck(z) = ((z/k) for k € N. For every ¢ € C§°(R™), we choose a sequence {¢y } 72 | by

or(o) =)= ) [ owids) o), e B ke
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For sufficiently large k we have (i (z) = 1 for all # € D, and hence we may assume
that {pr}32, C Sp. For 1 < ¢ <n/,ie., n < ¢ < oo, it holds that

IVer = Vel L @ny < el VGl pwrny < k™7 =0 as k — oo,

from which we conclude that Sp is dense in W4’ (R™) provided 1 < ¢ < n'.
For ¢ = n/, i.e., ¢ = n, we have supyey [|[V — Vil prn@mn) < 00, and we
easily conclude that

Vr — Vo weakly in L™(R") as k — oo.

Applying Mazur’s lemma to the sequence {¢x}3,, we may select a sequence
{@r}32, of convex combinations of {¢}72 ; so that

V@r — Vo  strongly in L™(R™) as k — oo,

from which we also deduce the density of Sp in Win (R™). This proves the lemma.
O
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Time and Norm Optimality
of Weakly Singular Controls

H.O. Fattorini

Abstract. Let @(t) be a control that satisfies the infinite-dimensional version
of Pontryagin’s maximum principle for a linear control system, and let z(t)
be the costate associated with @(¢). It is known that integrability of ||z(¢)]|
in the control interval [0, 7] guarantees that @(¢) is time and norm optimal.
However, there are examples where optimality holds (or does not hold) when
|lz(t)|| is not integrable. This paper presents examples of both cases for a
particular semigroup (the right translation semigroup in L?(0,c0)).

Mathematics Subject Classification (2000). 93E20, 93E25.

Keywords. Linear control systems in Banach spaces, norm optimal problem,
time optimal problem, weakly singular controls, costate.

1. Introduction

We consider two optimal control problems for the system

y'(t) = Ay(t) +u(t), y(0)=¢ (1.1)

with controls u(-) € L*°(0,T; E), where A generates a strongly continuous semi-
group S(t) in a Banach space E. The first is the norm optimal problem, where we
drive the initial point ¢ to a point target,

y(T)=1y (1.2)

in a fixed time interval 0 < ¢ < T minimizing |[u(-)|| 10, 7;z)- The second is the
time optimal problem, where we drive to the target with a bound on the norm of
the control (say ||u(:)||ze(0, ;) < 1) in optimal time 7. The solution or trajectory
of (1.1) is the continuous function

y(t) = y(t, ¢, u) = S(t)¢ +/ S(t — o)u(o)do . (1.3)

0
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For the time optimal problem, controls in L*°(0,T; E) with ||u(-)||ze 0,75y < 1
are named admissible.

Necessary and sufficient conditions for norm and time optimality can be given
in terms of the maximum principle (1.5) below which requires the construction of
spaces of multipliers (final values of costates). We summarize this construction
from [4] or [5], Section 2.3. When A has a bounded inverse, we define the space
E*, as the completion of E* in the norm

Iy =, = 1A y |- -

Each S(t)* can be extended to an operator S(¢)* : E*; — E*,, and Z,,(T) C E*,
consists of all 2 € E*; such that S(¢)*z € E* and?

T
2l 2oy = / 1S()"2l| -t < oo (1.4)

The space Z,,(T') equipped with || - ||z, () is a Banach space. All spaces Z,,(T)
coincide (that is, Z,(T) = Z,(T") for any T,T7" > 0 and the norms || - ||z, (1),
|-l z,, (1) are equivalent). Z,,(T') is an example of a multiplier space, an arbitrary
linear space Z 2 E* to which S(¢)* can be extended in such a way that S(¢)*Z C
E* for t > 0. When A does not have a bounded inverse, the construction of the
spaces is modified as follows. Since A is a semigroup generator, (Al — A)~! exists
for A > w and E*, is the completion of E* in any of the equivalent norms

ly llse,x = 1A = A7) Y g, (A>w).

The definition of Z,,(T") (and of multiplier spaces) is the same. See [5], Section 2.3
for proofs of these results and additional details.
A control u(-) € L*(0,T; E) satisfies Pontryagin’s mazimum principle if
(S(T —t)*z,u(t)) = ”mHa<x (S(T—t)*z,u) ae. in0<t<T, (1.5)
ul|<p

where (-, -) is the duality of the space E and the dual E*, with p = [|a(-)|| L (0,7, E)

and z in some multiplier space Z. We call z the multiplier and z(t) = S(T —t)*z

the costate corresponding to (or associated with) the control @(t). We assume that

(1.5) is nontrivial; this means S(T" — ¢)*z is not identically zero in the interval

0 <t < T, although it may be zero in part of the interval (in which part (1.5) says

nothing about @(t)). That (1.5) is nontrivial implies that z # 0. The maximum

principle is especially simple when E is a Hilbert space; it reduces to

_ S(T—t)*z
u(t) =p
1S(T = t)*z||
where 0 <t < ¢ is the maximal interval where S(¢)*z # 0; if 6 > T the interval is
O<o<T.

(T-6<o0<T), (1.6)

IWithout further assumptions, the semigroup S(t)* may not be strongly continuous, or even
strongly measurable (consider, for instance, the translation semigroup S(t)y(z) = y(z — t) in
E = L'(00,0)). However, S(t)* is always E-weakly continuous, which guarantees that ||S(t)*||
is lower semicontinuous, hence measurable. This justifies the integral (1.4).
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A large part of the theory of optimal controls for the system (1.1) deals with
the relation between optimality and the maximum principle (1.5). All one has
(at present) are separate necessary and sufficient conditions for optimality based
on the maximum principle (Theorem 1.1 below). We call an optimal control u(t)
regular if it satisfies (1.5) with z € Z,,(T).

Theorem 1.1. Assume u(t) drives ¢ € E to §y = y(T,(,u) time or norm optimally
i the interval 0 < t < T and that

7 — S(T)C € D(A). (1.7)

Then u(t) is regular. Conversely, let u(t) be a regular control. Then u(t) drives
¢ € E toy=y(T,(,a) norm optimally in the interval 0 < t < T; if p = 1 the
drive is time optimal.

For the proof see [4], Theorem 5.1, [5], Theorem 2.5.1; we note that in the
sufficiency half of Theorem 1.1 no conditions of the type of (1.7) are put on the
initial value ¢ or the target 7.2

Following the terminology in [5] we call a control weakly singular if it satisfies
the maximum principle (1.5) but the costate does not satisfy the integrability con-
dition (1.4) (that is, z ¢ Z,,(T')). The following question arises: is a weakly singular
control (norm, time) optimal? The answer to this question is “not necessarily” and
examples of weakly singular controls that are (or are not) optimal are known. It is
proved in [2] (see [5], Section 3.4) that for the (self-adjoint) multiplication operator

Au(A) = =du(N)
in L?(0, 00), which generates the analytic semigroup
S(t)u(N) = e Mu(t) (1.8)

there exist optimal controls for (1.1) satisfying the maximum principle (1.5) where
the growth of the costate z(t) as t approaches the final time T is ~ C/(T — t) in
the sense that

(T = )2t - = (T - O)|ST - t)*2||g- — C ast—T (1.9)

with 0 < C' < co. These controls cannot satisfy (1.4), thus they are weakly singular.
On the other hand there exist controls satisfying (1.5) and

(T — )°|2(t)|lp- = (T — )°||S(T —t)*2||g» — C ast—T (1.10)

with @ > 1 and 0 < C' < oo (thus weakly singular) that are not time or norm opti-
mal. We provide in this paper similar examples for the right translation semigroup

2The statement on time optimality, however, needs additional assumptions on the initial condi-
tion ¢ and the target §. These conditions are satisfied if either ¢ = 0 or § = 0 [5], Theorem 2.5.7.
We point out that the conditions are on the “size” of ¢ g, not on their smoothness like (1.7); for
instance, for ¢ = 0, § may be an arbitrary element of E. We also need to assume that S(t)*z # 0
in the entire interval 0 <t < T.
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S(t) in L?(0, 00) defined by

_Jyle—1t) (z=1)
St)y(z) = { 0 (w<t). (1.11)
Although the technical means are totally different, the examples are of the same
sort as those in [2]; there are controls that satisfy (1.9) and are optimal, whereas
there are controls with faster increase of ||z(t)|| which are not optimal. What is
remarkable about the examples in this paper is that they resemble similar exam-
ples for semigroups as different as (1.8), analytic with (1.1) an abstract parabolic
equation. The semigroup (1.11) under study here is isometric, with associated
equation (1.1) having a finite velocity of propagation, thus qualifying as “abstract
hyperbolic”.

On the basis of this similar behavior of controls for very different semigroups
it is tempting to guess that there must exist some sort of classification of weakly
singular controls (as optimal or nonoptimal) which is based on the growth of the
norm of the costate z(t) = S(T'—t)*z as t — T and holds for arbitrary semigroups.
There seems to be no such general result except [3] Lemma 8.3, [5] Lemma 3.5.9
where the generator is self-adjoint in Hilbert space and ||S(¢)*z|| has “hyperpower
growth” as t — 0; this means

LS (ro)
/0 0||S(a)*z||d0 < 00 (1.12)

for some r in the range 1 < r < 2 (the adjoint may be omitted since the semigroup
S(t) is self-adjoint). Under (1.12), the control corresponding to the multiplier z is
not optimal. Condition (1.12) cannot hold if (1.10) is satisfied for any « > 0; in

fact, in this case
IS (ro)*z|| . Cor 1
o|S(o)*z| ~ oC(ro)> ~ reo
making the integral infinite. However, there is a wide gap between hyperpower
growth and power growth like (1.9), and nothing is known for intermediate growths.
We mention in passing the results on multipliers in [6]. When the semigroup
satisfies
SHE=E (t>0) (1.13)
then every multiplier space satisfies £ = Z,,(T) = E*, that is, all multipliers in
(1.5) automatically belong to E*; this makes moot the question of the growth of
l|z(t)]] as t — T. It is also shown in [6] that (under the assumption that E is
reflexive and separable) (1.13) is a necessary condition for all multipliers to belong
to E*. Moreover, condition (1.7) can be dropped from Theorem 1.1 in case (1.12)
holds: all time or norm optimal controls satisfy (1.5) with a multiplier z € E*.

2. The right translation semigroup

The space is E = L?(0,00). Its elements y(z) (defined in 2 > 0) are extended
as y(z) = 0 for < 0. The right translation semigroup S(t) defined by (1.11) is
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strongly continuous and isometric in L?(0,00). The adjoint semigroup is the left
translation (and chop-off) semigroup

S(t) y(x) = { g(x 1) Ei i 8; (2.1)
We have
S@)St)=1, St)St)y(x) = xi(z)y(z) (2.2)

where x(z) is the characteristic function of [t, c0). The infinitesimal generator A
of S(t) is

Ay(z) = =y (x), (2.3)

with domain D(A) = {all y(-) € L?(0,00) with ¢/(-) in L?(0,00) and y(0) = 0},
the derivative understood in the sense of distributions. The semigroup S(t) is
associated with the control system

oy(t,z) _ Oyt x)
ot = o Tulta)

y(07.'L‘> = C(.%‘) ) y(t,O) =0,

(2.4)

in the sense that S(t) is the propagation semigroup of the homogeneous equation
(u(t,z) = 0). Formula (1.3) for the control u(t)(z) = u(t,z) is

y(t, 2, C,u) = y(t, €, u) (@) = (S<t>< + [ st a)u(a)da) ()
=((z—1) +/ u(o,z — (t —o0))do, (2.5)

0
thus the contribution of u(c,x) to y(t,z,{,u) is the integral of u(o,z) over the
intersection with the positive quadrant of the characteristic line (o, — (t — o))
joining (0,2 — t) with (¢, ), as shown in Figure 1.

integration lines

FIGURE 1
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We name Z the space of all measurable z(z) defined in 2 > 0 and such that

k(o,z) = [|S(o) =z(")| = \//Oooz(era)de = \//OO z(x)?dx < 0o

in o > 0. The space® Z(T') consists of all z(-) € Z with

/o ||S(cr)*z(~)||d0:/0 k(o,z)do < o0. (2.6)

Since we are in a Hilbert space (1.6) applies and any control that satisfies the
maximum principle (1.5) is given a.e. by

ST —o)z(x) - z(x + (T — 0))
PUSET — o)e=() = P00 g 2)

(o, x) =

(T—6<o<T), (2.7)

where 0 < ¢ < § is the maximal interval where S(t)*z # 0; if 6 > T, the interval
in(27)is0<o <T.

Using the second equality (2.2) and assuming for simplicity that p = 1 we
obtain
ST = 0)S(T = 0)*2(x) _ xr—ol2)2(x)

S(T—O’)a(a)(x) = HS(T*U)*Z()H - /{(T—g’z)

(0<o<T) (2.8)
whenever k(T — 0, z) # 0. Formula (2.5) for t = T' becomes
T
WT.2.G0)(e) = STIC(a) + [ S(T = o)i(o, o

—((z-T)+ /OT XT—o(2)2(x) do = (@ —T) + () /OT HXT*U(x) N

k(T — o, 2) (T —o0,2)
=((x-T)+ z(m)/o :(‘;(?) do=C(z—T)+ 2(z)w(T, z, 2), (2.9)
where
B T Xo(x) B min(z,T) do
w(T,x,2) —/0 H(U’Z)da —/O w0, 2) (2.10)

If we drive from 0 to g(x) in time T, the target §(x) and the costate z(z) are
related by

glx) =y(T,z,0,0) = z(z)w(T, z, 2), (2.11)

so that the target g(z) is a multiple of the multiplier z(x) in « > T.

3We drop the subindex w since S(¢)* is strongly continuous.
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3. Weakly singular controls, I

We use the family of multipliers

1 1
= 1
z(x) o (a> 2) (3.1)
associated with the controls
_ Xo(z)
oo, x) = 0<o<T). 3.2
B A I L 3.2)
We have
k(o Z>2_/°° dr ol—2a B 1
) w2 2a0—1 0 (2a —1)g2e 1)
thus )
k(o,2) = V2o — 1o/ (3.3)

and, in view of (2.6) the control @, (o, x) is regular (z(-) € Z(T)) if and only if
1
o=, <1l = a<y;
on the other hand z(+) € Z (thus @, (0, x) is weakly singular) for arbitrary o > 3/2.
Combining (3.2) and (3.3)
V2a — 1xo(2)(T — o)>1/?

li (0, ) = 0<o<T). 3.4

(0. ) PO LY (3.4
We have

oo

/:O Ga(0, 2)2dz = (2a — 1)(T — 0)2~} / (z + (T — o)) 2dx

o

sa1 (@ + (T — o)) 72> |z=c0 T — o\ 201
= (o= D{T ~o) 1-2a v— ( T ) ) (3.5)
/ U (0, 2)2de = (20 — 1)(T — )%~ ! / (z+ (T — 0))"2da
0 0
— (2a—1)(T — oot T <1T:26;)) ’:;: . (T; ) 1 g

Since 2a — 1 > 0 we have the proof of

Lemma 3.1. Let 0 <o <T. Let

I(a)z/aﬂa(a,x)2dx7 J(a):/:oua(a,x)Qda: (a>;>.

0
Then I(a) (resp. J(@)) is a decreasing (resp. increasing) function of a.

From (2.10) and (3.3) we have

V2a — 1xa+1/2

w(T,x,z):\/2ozfl/ o 2qg = ot 1/2
0
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for x <T;forx>T

T
20— 1
W(T,$7Z> = \/2& — 1/ o'a_l/gdo- — \/ @ T(x+1/2 )
0

a+1/2
Formula (2.11) implies that the control @, (o, x) in (3.4) drives 0 to the target
V2a—1 5,
U = <T
i =2, (r<T),
(3.7
V2a — 1 Tot1/2
y(z) = T).
i) =V, . @)
Figure 2 shows g3/5(z) for T' = 1.
0.8
1 ) 3

FIGURE 2

As a consequence of Theorem 1.1 we obtain

Theorem 3.2. If a < 3/2 the control i, (o, x) is reqular, thus it drives 0 to Jo(z)
time and norm optimally.

We prove below that this is no longer true if o > 3/2. The proof is based on the
fact that the function
_V2a-1

K =
(@) a+1/2
(the factor in (3.7)) has the unique maximum 3/2 in « > 1/2 (with K(3/2) =
1//2). The graph of K(a) is shown in Figure 3.

1r

FIGURE 3
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Let a > 3/2, so that K (3/2) > K (o). We improve the norm-performance provided
by the control @, (o, ) constructing a control @, (o, x) “by pieces” as follows (see
Figure 4).

T
T
K C
0 T
FIGURE 4
In the triangle K we define
_ K(a) _
(o, x) = K(é/;)ug/g(cr, x). (3.8)

The integration formula (2.5) (see also Figure 1) shows that this new definition
affects the target y(z) only in the interval 0 <t < T. There is actually no change
in the target, since in this interval the target hit by (o, ) is

) = ooy Tor2(0) = 1al0).

Using the first part of Lemma 3.1 we obtain

7 2, _ Kla) [7_ 2 K(a) [7_ 2
/0 Uo (0, ) dx—K(3/2)/O tg/2(0, ) dr < K(3/2)/0 U (o, x)dx. (3.9)

As a first approximation we don’t modify the control @, (o, z) in the complement
C of K, so that we drive to the target g, (z) with

| Galo,z) (0,2) €K
v(oyz) = { Ug(o,x) (o,2) €C. (3.10)

Using (3.5), (3.6) and (3.9),
[v(os )l £2(0,00) :/0 v(o, x)%dx

_ /Ogv(cr, x)de+/:o v(o,2)?de
K(a)

< K(3/2)/0 ﬂa(0,$)2dx—|—/g Ui (0, 2)dx
K(o T —oy\2a—1 T — o\ 2a—1
:K(:(S/;)(l_( ) )27 =ne
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The fact that n(a) < 1in 0 < o < T implies right away that v(-,-) (thus @4(-,-))
is not time optimal, since the bang-bang theorem [1] Theorem 2.2, [5] Theorem
2.1.3 says that time optimal controls @(o) for (1.1) must satisfy ||@(o)| = 1 almost
everywhere. However, n(c) < 1 does not imply that v,(-,-) is not norm optimal
since n(0) = 1 (time optimal — norm optimal but the converse is not true).
Thus, we must prove directly that @,(-,-) is not norm optimal, which requires
modification of v(+,-) in C. This will be done by further subdivision of C into two
regions C; and Cq indicated in Figure 5; the parameter N > 0 will be determined
later.

T T+N
T
K ¢ Cy
0 N x
FIGURE 5

A computation entirely similar to (3.6) shows
o+N T — o 2a—1 T — g\2a—1
/U tig (0, z)?de = ( T ) - (T+N) . (3.11)
We introduce the control
_ V2a — 1xo(z)o*"1/2
Voo, x) =
(z+ (T —0))*

After another computation like (3.6),
e} 2a—1
_ 2 g
&) de = .
Lymeerie= (57 x)

V2= 1xo(z)o0 12
xe '

(0<o<T). (3.12)

Moreover,
Uo(o,z — (T — 0))
Since
V2a — 1xo(2)(T — o)~ 1/2
xa
formula (2.5) and the change of variables ¢ — T — o show that both controls drive
0 to Yo(x) in > T. This can also be directly verified for v, (0, x) :

T T
200 — 1 200 — 1 To+1/2
/ Va(o,x — (T — 0))do = V2o / o V2o = V2a
0 0

e Ca+1/2 e

to(o,x — (T —0)) =
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The control v(o, z) is now defined by
Uo(o,z) (0,2) €K
v(o,z) =4 TUalo,z) (0,2) € Cq (3.13)
olo,z)  (o,2) € Cy

and we have

[v(os )l £2(0,00) :/O v(o, z)*dx

o0

o o+ N
:/ v(o,:r:)2dx+/ v(o,x)de—&—/ v(o,x)?dx
0 o o+ N

a o+ N
)/ aa(o,x)2dx—|—/ ﬂa(o,x)2dx—|—/ Uy (0, ) dx
0 o

@ (T oy (et (F ey

=n(o). (3.14)

n(0) =1~ (TIN)Q(H <1

K(a) T \2a-1

M) = g0+ <T+N> <L
the second inequality taking place for N large enough. Since a@ > 3/2 we have
2a.—1 > 2 and each of the three terms in (3.14) that make up 7(o) have positive
second derivative. It follows that n(o) is convex, thus (3.15) implies

n(o) < max(n(0),n(T)) < 1

and the control v(o, z) reaches the target g, (x) with smaller norm than (o, z)
thus proving that the latter is not norm optimal.

We have

(3.15)

4. Weakly singular controls, IT

We show in this section that the control ug/s(o, ), although weakly singular, is
time and norm optimal. To this end, we assume it not time optimal: then there
exists an admissible control u(c,z) driving 0 to %3/2(z) in time T — 4§ < T. We
show below that this implies that, for some o < 3/2 sufficiently close to 3/2 the
control 44 (o, z) is not norm optimal, which contradicts Theorem 3.2.

We construct a control v(o, z) that drives 0 to g, (z) in time 7. This control
is also constructed by pieces; the different domains are in Figure 6.
Since u(o, z) drives 0 to 3/2(x) in time 7" — d, the control

0 (0<o<9)
{ ulco—6,z) (0<o<T)



244 H.O. Fattorini

T
T
C
5
5
K Cy
0 r
FIGURE 6

drives 0 to 73/2(x) in time T'. In view of (3.7), the control

0 (0<o <))
V10, ) = o 4.1
() Igé/;)u(cré,x) (0<o<T) 1)
drives 0 to
K(a) _ _
Y3s2(z) = Yalz) (0<2<T)
vi(o,x) = ﬁgi’;@z (4.2)
e (T <z <)
in time 7. We define next
K(OZ) Ta+1/2 T2
va (o, ) = B ((x+(T—a))a B (:c+(T—a))3/2) (0,2) €Ca
0 (o,2) e KUCy.

This control drives to a target which is = 0 in 0 < x < T. Over the paths of
integration (0,2 — (T' — o)) in formula (2.5) for x > T we have

K(a) (T2 T2
o= @=a) =3 5 ( g ~gon) @09
0 <o<T)
thus . /
a+1/2 2
/0 vg(a,x—(T—o))da:K(a)(Txa _;;/2) (z>T)

and it follows that vy (o, x) drives to a “corrector” target 4 (x) such that 2(x) = 0
in0<xz<Tand

g (z) + 7% (z) = Ga(z) (0< < 00).
Accordingly, the control
o(,2) = 01 (0,2) + 20, ) (43)
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drives 0 to the “right” target ¥, (z). It remains to select a so that v(o, ) does the
drive with norm < 1. On the one hand, we have

K(a
oo Miztomy = sy 11 = 8.0z,
K(a)
< <l (0<eo<T). 44
< iy <1 G=osD (4.4
On the other hand, \|v(a,~)\|%2(0m) = |lv2(o, -)||2L2(0700) is constant in 0 < o < §
thus
(@, Mz (0,00) = 0200, )72 (0,00

K(Oz)2 e Ta+1/2 T2 2d K(Oz)2 o Ta+1/2 T2 \2
42 /0 ((x—i-T)“i(J:—i-T)?’/Q) T /T( e 7x3/2>

2 o] e’} o]
_ K(a) (T2a+1/ x72o¢d$72Ta+5/2/ x*“*3/2d$+T4/ x*de)
T

62 T T

B K(a)2T2< 2 N 1)

02 20—1 a+1/2 2
2712 2

_ K(O‘al(gag?fz)?’) L) —0 asa— Z (0< o< (4.5)
thus using (4.4) and (4.5) and taking « sufficiently close to 3/2 in (4.5) we insure
that

lv(o, Mz2(0,00) < L(a) <1 0<0 <46, (4.6)

In view of (4.4) and (4.6) we have constructed a control v(c, x) that drives 0 to
Jo () improving the norm of @, (o, x). But @,(0,x) is norm optimal by virtue of
Theorem 3.2, thus a contradiction ensues and we are all done.

5. Weakly singular controls, 111

The second counterexample involves the multiplier

el/2m
z(z) = - (x >0). (5.1)
We have
2 Ooel/fb'd _ > l/J; /d _ 1/0’ 1
k(o,2)* = o x=— i (e"*)dr =e'7 —1,
so that

k(o,2) = \/61/‘7 —1= 61/2"\/1 —e—1/o,
To estimate x(c, z) near zero, we note that the positive function f(o) = e~ /o
tends to zero for ¢ — 0, 0 — oo and (since f'(0) = e /7(1 — 0)/03) has a
maximum at ¢ = 1 where f(1) = 1/e. It follows that e~'/? < o /e everywhere so
that (giving up a lot)

Ko, z) = 27 (1 + 0(e 1)) = e/ (1 4+ O(0)). (5.2)
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This estimation shows that x(o, z) is far from integrable in [0, c0), thus the function
(5.1) is a multiplier in Z but it does not belong to Z(T"). We have

1 6—1/20
k(o,z)  1+0(0)

for o near zero, thus

w(T,x,z)= / 7 = / e ¥ o Jr/ O(0)e Y do
o 0 0

0,2)

= e 1271 4+ 0(0)) (5.3)

x

— (14+0(@) | e /*do (5.4)

S~

since

/ 0(o)|e~?7do < C’/ oe V2 do < Cx/ e V%o .
0 0 0

Integrating by parts twice the last integral in (5.4) we obtain

/ e V274 = 2/ o? (6_1/20)/d0' = 272 1/%7 _ 4/ oe %o
0 0 0

= 2261/ _ 8/ o3 (671/20)/d0'
0

= 2z2e /2 _gglem /2 4 24/ o2e V20 g (5.5)
0

The function g(o) = o2e~/27 has derivative ¢'(0) = e~1/27(20 + 1/2) thus g(o)
is increasing and we can estimate the last integral in (5.5) as follows:

/ ole 1?27y < xQe_l/Z”“'/ do = z3e~1/% (5.6)
0 0
Putting together (5.4), (5.5) and (5.6) we deduce that the behavior of w(T, z, z)
near zero is described by
w(T,z,2) = 222 Y2 (1 + O(x)). (5.7)

Lemma 5.1. The control

S(T — o) z(x) z(x + (T — 0))
= « = Xo(x)

IS(T = a)*z()ll (T = 0,2)
associated with the multiplier (5.1) drives 0 to a target §(-) € D(A) in time T.

(o, z) (0<t<T)

The proof of Lemma 5.1 requires checking that both () and §’(-) belong to
L?(0,00). Observe first that r(z,z) is infinitely differentiable in z > 0; since
k(z,z) # 0 the same is true of 1/k(z, z), and it follows from formula (2.10) that
w(T, x, z) is infinitely differentiable in 0 < < T and constant in « > T, the right-
and left-sided derivatives different at T,

1 1

\(T,T,z) = =
wl( 9 72) K,(T,Z) \/el/Tfl’

WA(T,T,2)=0.
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From (5.7) and (5.1) we have
o1/2

Ha) = 2214 0(w) = 20(1 4 O())

near x = 0, thus g(z) is continuous in z > 0 and the boundary condition (0) =0
is satisfied. On the other hand

¥ (z) = 2 (x)w(T, 2, 2) + 2(2) (T, 2, 2) = 2 (2)w(T, x, 2) +
61/21; 61/21;

- ( 23 g2
where we have used the equality

)2x2e—1/2w(1 +O(z)) + e

(T, 2) = 0<z<T)

1
k(z, 2)
(consequence of (2.10)) and (5.3) to estimate w’(T), z, z). The bad terms cancel out
and g(x) is continuously differentiable in 0 < 2 < T, thus the proof of Lemma 5.1
is over.

We note that the fact that the target g(x) has a “corner” at x = T is typical
of targets for equation (2.4) (see for instance the graph of g, (z) in Figure 2).

Theorem 5.2. Let T > 0 be arbitrary. Then the control u(o,x) does not drive 0 to
y(xz) time or norm optimally.

Proof. Assume (o, z) drives 0 to g(x) time or norm optimally. Then, by Theorem
1.1 @(o, z) is regular, thus there exists a multiplier {(-) € Z(T') such that

ST —oC@) (@ (T o)
D= 5@ el T AT - 02)

A, Q) = \/ | oo

T
/ Az, z)dz < 0. (5.9)
0
Since @(o, x) can be represented both by (5.5) and (5.8) we have
(e + (T =0)) _ z(e+(T -0))

0<t<T),  (58)

where

and

= <o<T).
MT —0,2) K(T —0,z) 0so=<T)
Over a characteristic (o, — (T' — 0)) we have

MT —o0,2z) k(T —o0,2) -

which implies
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However, this is absurd in view of (5.9) and of the fact that

T
/ k(o,z)do = oo
0
This ends the proof. O

The multiplier (5.1) used in this example roughly corresponds to the multi-
plier used in [2], Section 5 for the semigroup (1.8) which satisfies (a) ||S(T —t)*z||
increases very fast as ¢t — 0, (b) @(t) drives 0 to a target § € D(A). This exam-
ple was elevated into a theorem in [3], Lemma 8.3 but the result is restricted to
self-adjoint analytic semigroups, thus it cannot be applied to the right translation
semigroup. It is remarkable that the present example, similar to the one in [2]
works for the right translation semigroup.

The examples in this paper and [2] prompt the conjecture that growth (1.9)
of the costate is the most that can be allowed for optimality irrespective of the
semigroup S(t); in other words, that a control associated with a costate that
satisfies

lim (7~ 1)]=(0)]

g = lim (T~ 1) [S(T ~ )2

cannot be optimal. The evidence, of course, is insufficient to support this and it
is not clear that the manipulations in [2] (much less those in this paper) could
be twisted into proving a general result. It is also unknown whether there exist
nonoptimal controls with associated costate satisfying (1.9).

6. Adjoints
It is worth noting that optimal problems for the system
y'(t) = A"y(t) + u(t) (6.1)

with A* the adjoint of the operator A in (2.3) behave in a totally different way
than those for the system (1.1) The operator A* is given by

Aty(z) =y (2) (6.2)
with domain D(A) = {all y(-) € L?(0,00) with y'(-) € D(A)} (no boundary
conditions) The semigroup S(t)* generated by A* is the left translation semigroup
(2.1) and satisfies (1.12) so that all multipliers 2*(-) belong to L?(0,00) and all
norm or time optimal controls satisfy (1.5) with no conditions whatsoever on the
target §*(x). The semigroup S(¢)* is associated with the control system

dy(t,x) _ oy(t, )

o= ), y0.0) = (@), 0<ta<oo),  (63)

in the sense that S(t) is the propagation semigroup of the homogeneous equation
(u(t,z) = 0). Since (S(¢)*)* = S(¢) all time and norm optimal controls @(t) for
this system satisfy

S(T—1t)z S(T —t)z

W= s@ el T
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the second equality coming from the fact that S(t) is isometric. This is also a
sufficient condition for optimality. The first equality (2.2) implies that optimal
trajectories starting at ¢ are of the form

y (1) = S()"C + / S(t — o)) do

z

=S(t)"¢+ H ”/0 St —o)*S(T — 0)zdo

=St)"¢(+ HiH /t St —0)"'St—0)S(T —t)zdo
S(T—t) ([

tS(T —t)z
Izl

_ * ) 2do = *
=S(t)"¢+ 121l /0 d S(t) ¢+

and hit the target
Tz

HT) = ST+ |
The control system (6.1) is essentially the only truly infinite-dimensional example
where “everything can be easily calculated”. This is far from true for the control
system (2.4) treated in this paper, whose only difference with (6.3) consists of the

presence of a boundary condition.
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Asymptotic Behavior of a Leray Solution
around a Rotating Obstacle

Giovanni P. Galdi and Mads Kyed

To Professor Herbert Amann on the occasion of his 70th birthday

Abstract. We consider a body, B, that rotates, without translating, in a
Navier-Stokes liquid that fills the whole space exterior to B. We analyze
asymptotic properties of steady-state motions, that is, time-independent so-
lutions to the equation of motion written in a frame attached to the body.
We prove that “weak” steady-state solutions in the sense of J. Leray that sat-
isfy the energy inequality are Physically Reasonable in the sense of R. Finn,
provided the “size” of the data is suitably restricted
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1. Introduction

Consider a rigid body, 9B, whose particles move with prescribed (Eulerian) velocity
w x x in a Navier-Stokes liquid. Here, w € R3, w # 0, and x is the spatial variable. It
is well known that a prescribed velocity field of this form corresponds to a uniform
rotation of B with angular velocity w.

We assume the liquid fills the whole exterior of B. More precisely, we assume
that, at each time ¢, B occupies a compact set of R® with a connected boundary,
so that, at each time ¢, the liquid fills an exterior domain, ® = D(t), of R3. As
customary in this problem, it is convenient to refer the motion of the liquid to a
frame, G, attached to 9. In this way, the region occupied by the liquid becomes a

Most of this work was done while G.P. GALDI was a guest of the Institute of Mathematics
of the RWTH-Aachen with a DFG Mercator Professorship. He would like to thank Professor
JOSEF BEMELMANS for his kind invitation and warmest hospitality. His work was also partially
supported by NSF Grant DMS-0707281. Last but not least, both authors would like to thank
Professor BEMELMANS for very helpful conversations.
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time-independent domain, €2, of R3. We shall suppose that, with respect to &, the
motion of the liquid is steady and that it reduces to rest at large spatial distances.
Thus, the equations governing the motion of the liquid in & can be written in the
following non-dimensional form (see, e.g., [8])

Av—Vp—Rev~Vv+Ta(el xx - Vv —eq xv) =f in Q,
dive=0 in Q, (1.1)

v =10, on 0,
with
lim v =0. (1.2)

|| — o0
Here, v and p are velocity and pressure fields of the liquid in &, while f and v,
are prescribed functions of x. The Reynolds number Re and Taylor number Ta
are dimensionless constants with Re, Ta > 0.

Mostly over the past decade, the study of the properties of solutions to (1.1),
(1.2) has attracted the attention of many mathematicians, who have investigated
basic issues like existence, uniqueness and asymptotic (in space) behavior; see,
e.g., 12,4, 3,9, 10, 11, 12, 13, 14] and the literature cited therein.

We wish to recall and to emphasize that the characteristic difficulty related
to the investigation of (1.1), (1.2) is the presence of the term w x x - Vv, whose
coefficient becomes unbounded as |z| — oo. For this reason, the above problem
can not be treated as a “perturbation” to the analogous one with w = 0, even for
“small” |w|.

Concerning the existence of solutions, there are, basically, two types of results.

On one hand, one can show that, for any f and v, in a suitable (and quite
large) class with f@Q v, - n = 0, there corresponds a pair (v, p), such that

ve L5(Q), Ve L2(Q), (1.3)

and p € L () satisfying (1. 1) in the sense of distribution, and (1.2) in an appro-
priate generalized sense; see [1]. In addition, v and p obey the energy inequality:

/|D )P da < — /f vder/ (T(v,p) - n) -v.dS

Ta , (1.4)

- / a2 vy - ndS + / |ve]” €1 xx - ndS,

2 2 Joa

where T(v,p) and D(v) are the Cauchy stress and stretching tensor, respectively;
see (2.1). Finally, if Q and the data are sufficiently smooth, then v and p are
likewise smooth and satisfy both (1.1) and (1.2) in the ordinary sense; see [8].
This type of solution is usually called Leray solution, in that they were first found
by J. Leray in the case w = 0; see [15]. It must be emphasized that a Leray solution
carries very little information about the behavior of v as || — oo, namely, (1.3),
while no information at all is available for the pressure field p. It is just for this
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reason that in (1.4) there appears an inequality sign (instead of an equality sign)
that may cast shadows about the physical meaning of Leray solution.

On the other hand, if f is sufficiently smooth and decays sufficiently fast as
|z] — oo, and provided the size of the data is suitably restricted, one can show
the existence of a solution (v, p) with a suitable asymptotic behavior that, in fact,
verifies the energy equality

Q/Q\D(v)|2dx= —/Qf-vdx—l—/OQ(T(v,p).n).v*dS
Re Ta

/\v*|2v*~nd5—|— /|v*|2elxx-nd5,
2 Joq 2 Joq

see [10, 3]. In particular, in [10] it is shown the existence of a solution that (besides
satisfying (1.5)) decays like the Stokes fundamental solution as |z| — oo, namely,

(1.5)

v(@) = O0(|lz|™), Vu(z) =0(lz]7?),

L s (1.6)
p(@) = Ol %), Vp(a) = O(j2| ).
Keeping the nomenclature introduced by R. Finn [5] for the case w = 0, solutions
possessing this type of properties are called Physically Reasonable.

Now, while it is quite obvious that a Physically Reasonable solution is also
a Leray solution, the converse is by no means obvious, even in the case of small
data.

Objective of this paper is to prove that every Leray solution corresponding
to data of restricted size, with f decaying sufficiently fast at large distances, is
Physically Reasonable; see Theorem 4.1. The proof of this theorem exploits the
method introduced in [6] for the case w = 0, and it is based on a uniqueness
argument. Precisely, we shall show that a Physically Reasonable solution is unique
(for small data) in the class of Leray solutions (see Lemma 3.3), so that the desired
result follows from the existence result proved in [10]. However, for this argument
to work, it is crucial to show that the pressure, p, associated to a Leray solution
possesses the summability property p € L3(Q). Now, while in the case w = 0 the
proof of this property is quite straightforward [6], in the case at hand the proof is
far from being obvious, due to the presence of the term w x z - Vou. Actually, it
requires a detailed analysis that we develop through Lemmas 3.1 and 3.2.

The plan of the paper is the following. After recalling some standard nota-
tion in Section 2, in Section 3 we begin to establish appropriate global summability
property for the pressure of a Leray solution. Successively, using also this prop-
erty, we show the uniqueness of a Physically Reasonable solution corresponding
to “small” data in the class of Leray solutions. Finally, in Section 4, as a corol-
lary to this latter result and with the help of the existence theorem established in
[10], we prove that every Leray solution corresponding to “small” data is, in fact,
Physically Reasonable.
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2. Notation

We let LI(Q2) and W™4(2) denote Lebesgue and Sobolev spaces, respectively,
and ||, [|-[[m,q the associated norms. We write D™4(Q2) and |-, , to denote ho-
mogeneous Sobolev spaces and their (semi-)norms, respectively. We will initially
explicitly indicate when a function space consists of vector- or tensor-valued func-
tions, for example L%()3, but may omit the indication when no confusion can
arise.

We will make use of the weighted norms

[fla.a == 35 SUp (T4 |2|*) [ f ()]

for A a domain of R3, and f : A — R? measurable and o € N. If no confusion
arises, we will omit the subscript “A”.
We denote by

T(v,p) :=2D(v) — pI, D(v):= ;(Vv + Vo) (2.1)

the usual Cauchy stress and stretching tensors, respectively, of a Navier-Stokes
liquid corresponding to the non-dimensional form of the equations (1.1).

In what follows,  C R? will denote an exterior domain of class C?. Without
loss of generality, we assume 0 € R*\ Q. For p > 0, we put B, := {x € R? | |z| < p},
B? :={z € R? | |z| > p}, and set 2, := QN B, and Q¥ := QN B”. Moreover, we
put By, p, :=Bp, \ By,

As noted in the introduction, Re and Ta are positive real constants.

We use small letters for constants (ci,co,...) that appear only in a single
proof, and capital letters (C1, Ca,...) for global constants.

3. Preliminaries

In this section, we will establish, in a series of preliminary lemmas, some properties
of weak solutions to (1.1).
We start by recalling the well-known inequality

[olle < Chfoly 5 (3.1)

which holds for all v € D¥2(Q) N L5(Q) (see [7, Theorem I1.5.1]). We shall fre-
quently use (3.1) without reference.

In the first lemma, we establish (global) higher-order regularity of a weak
solution.

Lemma 3.1. Let f € L2(Q)3, v, € W2:2(8Q)?, and (v, p) € D2(Q)3 N LS(Q)? x
L2 (Q) be a solution to (1.1). Then v € D*%(Q).

loc

Proof. By standard regularity theory for elliptic systems, v € Wf)f (Q) and p €
W,22(Q). We therefore only need to show v € D22(?) for some p > 0.

loc



Leray Solution around Rotating Obstacle 255

Choose r > 0 so that R\ 2 C B,.. Moreover, choose for any R > 2r a function
Yr € C®(R%R) with 0 < ¢p < 1, g =0in B,, g = 1 in Bra,, ¥p = 0 in
B2f and |IDYyYg| < ‘;"?a\ with ¢; independent of R.

We shall test (1.1), with —Vx (4% V xv). Note that —Vx (% Vxv) € L?(R3),
has bounded support,

div [ =V x ($3V x v)] =0, (3.2)
and
—V x (YEV x v) = PRAv + (V x v) x V[1b%]. (3.3)

Thus, we compute

/9(61><v)-(—V><(1ﬁ,zV><v))dx

/qu;(el xv) - (V x (V xv)) + (e1 xv) - (V x v) x V[y3]) do

(3.4)

/Qf(V x hler xv)) - (V x v) + VYg] - ((e1 xv) x (V x v)) dz

1 1
§02</ |Vv\2dx+/ |v||wdx+/ |v||Vvdx)
Q Bar,R R B r

2r,r

< ( JR ||v|6||w||2) < ealol?,
Q

Furthermore, we have
/(elxx-Vv)~(—V>< (VRV x v)) d
Q
= / V% (ep xx - Vo) - Avda +/(61 xz-Vv) - ((V xv) x Viz]) dz
Q Q
= —/ VY3 @ (e1 xx - V) : Vodr — / Y% V(e xx - Vo) : Vodr
Q Q
—1—/(61 xz - Vo) - ((V x v) x V[3]) da.
Q

Since

/ Y% V(ey xx - Vo) : Vodr
Q
= / w% 8j8k’l)i (61 X(I})k 8]"1)1‘ dx + / ,(/}]2% Orv; 8j [61 X.’l?] 8j1}i dx
Q Q

1
= —2 / 8k [w}% (61 X.’E)k] (8]"1)1‘)2 dx + / ,(/}]2% 8kvi 8j [61 X.’l?] 8j1}i dCL‘,
Q Q
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and observing that |0;¢r (e1 xx);| < ¢5 for any 4, j = 1,2, 3, we may conclude

/(e1 xz Vo) (= V x W}V x v)) dz| < ¢ vl ,. (3.5)
Q

Next, we estimate

/(v V) - (YRAv) dx
Q

< / WVl [o] [brAv] de
Q

< [$rVels o]l lwntvlls (3.6)
= |V [ro] — v @ Vrlls vl [$rv],
< (IVRerellls + lv ® Vebrlls) llolls lwmao]lz

By the Nirenberg inequality, we have
IV relllszs < er [Vnvllld g 192Rer0]ll o
< cs | VIwrvll3 s 1A [R5 5o
<cs HV[vaHIE‘,Ra (lorAv]l2 + 2] Vo - Vgl + | Adrolls) .

Since
[VI¥rvlll2 < lv® Vg2 + [[YrVy[2

<c (/ of dx+/ ol dx)é + || V|
> Cg Ul|2
Bar,r R? B r?

27,7

< ciollvfle + [|Vvll2 < e11 o], 5,
and similarly
[AYRv[|2 < c12 |v] 5,

we see that

1 1
IVrVlls s < crs(jvlf o [¥RAVIS + vl ).

Also,

[l

3 3
v 3
[v® Vigrlls < cia (/ 5 dz +/ | L d$> < a5 [|vlls < eis vl 5.
Bar,r R Bay r

Thus, from (3.6) we conclude that

1 1
< arr(Jlf 2 [¥RAV[IZ + [vly ) [v]1 5 [¥RAV]|2

/ (v- Vo) - (p%Av) dz
Q

3 3 3.7
< ers (o3 lwmAoll} + o], [[WrAv].) (3.7)

6 4
< cro(e) (Joly o+ [v]12) + € lY A3
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for any € > 0. In a similar manner, we estimate

/Q(v V) - ((V x v) x V[¢7]) da

gC2O/Q\U\|W\|wR\|¢RW|dx
< ca1 |vll6 [IVll2 [[¥R VY3

< ea2 |02 5 [WRVoll3 [V IRVol2
< easlolfy (lwnAo]ls + [v], )
< eas ([0]5 [wrAV]; + [0l )

10 P
< caa(e)loly’y + e lWRAV|3 + casloly

(3.8)

for any € > 0. We also have

/QA’U~ ((V xv) x V[i}]) dz

< / R AY| Vo] [Ver]) da
Q

2
< e|[YrAv|3 + cas(e)[vl] 5

(3.9)

for any € > 0. Finally, we can estimate

— V x (Y}V xv)) dx

W3 Av| da . X V) X 2 x (3'10)
S/Q\f WaAv|d +/Q|f ((V x v) x V[g3])|d

< co6(e) | £115 + € lrAV|3 + corlv]y 5 (| £2

for any € > 0. Combining now (3.4), (3.5), (3.7), (3.8), (3.9), (3.10) and recalling
(3.2) and (3.3), we conclude that multiplication of (1.1); by —V x (¢%4V x v) and
subsequent integration over 2 yields

/Qw% |Av|*dz < eas(e) ([of 5 + [0l) o + IF113) + & lorAvll3 (3.11)

for any ¢ > 0. Hence, by choosing 0 < ¢ < 1 and letting R — oo in (3.11), we
infer that Av € L2(Q"). It follows that v € D?2(Q*) for p > r. In fact, by an easy
calculation that takes into account the properties of the “cut-off” ¢, we obtain

+ Z ID* (R V)30

Jal=2

Vo
Z ||1/’ - < ¢ ” ‘ ‘2 ”%,Q" + H ‘CIL“

le]=2

However, since 1gv is of compact support, we have

> ID*(WR V)5 Re < c30l AR V)II5 s,

|a]=2
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with c3g independent of R, and so, the previous inequality implies

v
> rD |3 o < ca <|

2
la|=2 ||

Vo
20r + 2] 13,0 + IwR(Av)Ig,m> :

where cg; is independent of R. If we use the assumption v € DV2(Q) N L5(Q)
in this relation, along with a Hardy-type inequality (see for example [7, Theorem
I1.5.1]) and the fact that Av € L?(Q"), we deduce

> lrD|3 o < cs2, (3.12)

la]=2

where ¢33 is independent of R. The desired property for D?v then follows by letting
R — oo in (3.12). O

In the next lemma, we establish L?(Q)-summability of the pressure. More
precisely, we have:

Lemma 3.2. Let f € L2(Q)>NL2 (Q)3, v, € W2-2(8Q)3, and let (v, p) € DV2(Q)3N
L5(Q)3 x L2 (Q) be a corresponding solution to (1.1). Then p+c € L3(Q) for some

loc
constant ¢ € R.

Proof. Standard regularity theory for elliptic systems again yields p € Wllof(Q)
Consequently, by Sobolev embedding, we have p € L (). We therefore only need
to show p + ¢ € L3(QF) for some p > 0 and ¢ € R.

Let p > diam(R?\ Q) and ¢ € C>°(R3; R) be a “cut-off” function with ¢ =0
on B, and ¢ = 1 on R?\ By,. Moreover, let

o(zx) = </8B2pv : ndx) Ve, ¢&(z):= 471'1\:5\' (3.13)

Since

V- (v+o)de :/ div [ (v + 0)] dz

B2,

I
:/ v~ndx+/ o-ndx =0,
ang 8BZp

there exists (see [7, Theorem II1.3.2]) a field
HeW*?(R%), suppH C By, divH =V (v+o0). (3.14)

2p

Put
w=vYv+yYo—H, w=1p.
Using the fact that e; xx - Vo —e; xo = 0, we find that
{Aw—Vﬂ—I—Ta(el xz-Vw —e; xw) = Yf+G+Retpv-Vv inR3,

. (3.15
divw =0 ian,( )
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where G € L?(R?) with supp(G) C Bs,. Taking divergence on both sides in (3.15)
yields

—Ar =div [¢f] +divG + Re div [¢v - Vo] in R? (3.16)

in the sense of distributions. We now observe that we can write f as follows (again
in the sense of distributions)

f=divF, Fe€L*Q). (3.17)

In fact, it is enough to choose Fj, = V& x f,, where {fi}72, C C5°(£2) converges
to f in L3(Q), and then pass to the limit k — oo, in the sense of distributions. We
can express, again in the sense of distributions,

Y f=v¢ divF =div[yF] — F - V.
Thus, introducing
G:=G-F -V, F:=¢F, and f:=divF,
from (3.16) we have
—Am =div f +divG + Re div [y v- Vo] in R?, (3.18)

where f = div F € L?(R®), F € L*(R?), and G € L*(R?®) with supp(G) C Ba,.
Consider now the three separate equations

—Am =divf inR3 (3.19)
— Amy =divG  in R3, (3.20)
— Amg =Re div [¢v-Vv] in R (3.21)

with respect to unknowns 71,7m2,m3. Using the Riesz transformations,

R, LYR3) — LYR?), Vg > 1, Rj(u) = S_l(fg 8’(u)>,

where § denotes the Fourier transformation, we find that
my o= 3_1<i§|]§ (fj)) =3 (_Zf’fﬁ(l}jk)) = —9R; o Ry (Ej) (3.22)
is a solution to (3.19) with 7, € L3(R3). Moreover, since clearly G € L (R?), we
can use the Riesz potential
3 L) PR, 3w =57 50)

to obtain a solution

T = S‘_l<i§|é (é])> = ii)‘{j o j(éj) (323)
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to (3.20) with o € L3(R3). Similarly, putting h := Re ) v-Vv, we have h € L (R3)
and obtain by

T3 = 8'_1 ( |Z§]2 (h]>> = ij o j(hj) (324)
a solution to (3.21) with w3 € L3(R?). We furthermore conclude that
tm =5 (THVEE)) = Wem(R e HE),  (325)
Opma =F~ < é’“fjg( )) = —R; 0 Ry (G;) € L2 (RY), (3.26)
Ohms = § < é’ffﬂ 3(h >> — o) € LRY),  (327)
for k = 1,2,3. We therefore deduce that
m(x) == m(z) + ma(z) + m3(x) (3.28)

is a solution to (3.18) with 7 € L3(R3) and V7 € L3 (R3). Since also 7 satisfies
the same equation, it follows that Z := V(7 — ) is harmonic in R3, so that, by
the mean-value theorem, we have for each fixed z € R3,

c
Z() = / V(r —mdy = . (L(R) + I(R)). (3.29)
R® JBpa) R
By the Hoélder inequality we find
[L(R)| < [[V7]l3 [Brl* < e R. (3.30)
Moreover, from Lemma 3.1, we have v € D?2(Q). Thus, Aw € L?(R3), and from
(3.15); we infer
s
(1+z))

Therefore, by Schwarz inequality,

€ L*(R?).

B(R)| < es R[Vr/(L+ [y]) 12 [Br|* < ca RE. (3.31)

Combining (3.29)-(3.31) and letting R — oo, we find Z(z) = 0 for all z € R3.
Hence, @ = m+c¢, for some constant ¢, which concludes the proof of the lemma. [

In the next lemma, we show that a weak solution satisfying the energy in-
equality and a solution decaying like ‘i‘ must coincide under a suitable smallness

condition. The proof follows essentially that of the main theorem in [6].

Lemma 3.3. Let f € L2(Q)3NL3(Q)3, and v, € W22(9Q)3. Moreover, let (v,p) €
DY2(Q)3NLE(Q)3x L2 () be a solution to (1.1) that satisfies the energy inequality

OC(
(1.4). If (w,7) € DY 21( D)3NLE(Q)3 x L?(Q) is another solution to (1.1) and [w]; <
p)-

Sée , then (w,m) = (v,p). In this case, (v,p) satisfies the energy equality (1.5).
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Proof. By standard regularity theory for elliptic systems, we have (v, p), (w,m) €
W22(9) x WE2(Q). We can thus multiply (1.1), with w and integrate over Qg

loc loc

(R > diam(R?\ Q)). By partial integration, we then obtain
— Vv:dex—i—/ (Vu-n)-wdS — p(w-n)dS
Qr 9Br 9Br

—Re/ (U-Vv)~wd:c+Ta/ (e1 xx - Vv — e xv) - wdz (3.32)
Qr Qr

:7/ ((Vz;—pI)~n)~wdS+ fwdx.
o0 Qr

Analogously, by switching the roles of v and w, we get

— Vv:dex+/
QR 8BR

fRe/ (w~Vw)~vdx+Ta/ (e1 xz - Vw —ep xw) -vdz  (3.33)
QR QR

(Vw~n)~vd57/aB m(v-n)dS

:_/ (Vw—=pI)-n)-vdS+ frvdz.
o0

We shall now examine the integrals over 9 Br in (3.32) and (3.33) in the
limit as R — oc. For this purpose, we utilize Lemma 3.2 and obtain p € L3(Q°)
for some p > 0. Consequently, we can find a sequence {R,}>2; C [p, 0] so that
lim,, oo R, = o0 and

n—oo

lim {Rn/ |p3+w|2+|u|6+|7r2+w|2+w6d4 =0.  (3.34)
BBR”

We conclude that

/ (Vv-n) -wdS| < [[wﬂl/ Vol ds
OBRn aBRn R’n
, (3.35)
SC2[[w]]1</ Vv|2d5) —0 asn— o0
OBnr,
and
|p|
p(w-n)dS| < csw]s ds
OBr, 9Br,, R,
(3.36)

1
. 3
<c [[w]]l(Rn / p|‘3dS> —0 asn— oo.
BBRn
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2 2 6 62
§05(/ IVl dS) </ ] dS> R:
BBRn 8BR"
2 ; 6 é
e (Rn/ IVl dS) <Rn/ o] dS>
BBRn 8BR"

—0 asn— o0

Furthermore,

/ (Vw-n)-vdS
9Br,

(3.37)

and

6
|v|6dS> R:

< cg </ |7r2dS) </
dBr, dBr

— 0 asn — oo.

/aBRn w(v-n)dS (3.38)

n

We now turn our attention to the limits as R, — oo of the integrals over Qg
in (3.32) and (3.33). We begin to observe that, by using a Hardy-type inequality
(see for example [7, Theorem I1.5.1]), we find

/Q|(U~Vv) “wldz < [uly (/Q|Vv2dx>; </Q (1f||;)2 dgc>é <oo. (3.30)

Consequently,

lim (v-Vv) wdz = / (v-Vv) - wdz. (3.40)

n—oo QRn O

Similarly, we have

/Q|(w~Vw)-v\dx§ [w]1 </Q|Vw2dx)é (/Q i :1)2 dx); < 00

and thus

lim (w-Vw) -vdr = / (w-Vw)-vda. (3.41)

n—oo QRn O

Concerning the integrals involving the data f, we observe that they are both well
defined, in the sense of Lebesgue, because f € LS () and w,v € L%(Q). We thus
find

lim frvde = / f-ude. (3.42)
Q

n—oo [o
Rn

and

lim frwdr = / frwdz. (3.43)
n—oo QR” Q
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Now put u := v — w. Then

/ (e1 xx-Vu—ep xu)~udx:/ (elxx~Vu)~udx
QR’VL

Qr,

1

_ / luf? (1 xz) - ndS = 0,
2 JoBn,

z
x|

(3.44)

where the last equality holds since n = 2] O 0Br, . By the same argument, we

also have
1
/ (61 xz - Vv —ep xv) -vdx = / \U*\Q(Eﬁ xx)-ndS (3.45)
Qr, 2 Joa
and
1
/ (e1 xz - Vw — &) xw) -wdz = / lv.|? (e1 xz) - ndS. (3.46)
Qp, 2 Joa

It follows from (3.44), (3.45), and (3.46) that

/ (elxm-Vv—elxv)-wdx—l—/ (elxm~Vw—el><w)-vdx
e e (3.47)

:/ v.]? (e1 xz) - ndS.
o0

Adding together (3.32) and (3.33), utilizing (3.47), and finally letting n — oo,
we find that

—Q/QVUIdeCL‘
Re</Q(U~Vv)~wd:c+/Q(w~Vw)~fudx>
—1—/Qf~vdx—/aQ (Vv —pI)-n)-v.dS (3.48)

—I—/ f~wdm—/ (Vw=7I)-n)-v.dS
Q 20
—Ta / lv.|? (e1 xz) - ndS.
o9
We can now write
/ Vul® dz = / |Vol? dz +/ Vw|® dz — 2/ Vv : Vwdz. (3.49)
Q

By assumption, (v, p) satisfies the energy inequality

/|V1}\ dr < — /f vdm+/ ((Vo—pI)-n)-v.dS

(3.50)
~ 2/ a2 vy - ndS +

/ v |* e1 xz - ndS.
o0
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From the decay properties of (w, ), it is easy to verify that (w,r) satisfies the
energy equality

/Q|Vw\2d:c:f/Qf~wd:c+/aQ((Vw77rI)~n)~v*dS

Ri T.
_ e/ a2 vy - ndS + a/ [us|? 1 Xz - ndS.
2 Joa 2 Jog

Combining now (3.48), (3.49), (3.50), and (3.51), we obtain

/QVudeSRe(/Q(v-Vv)-wder/Q(w~Vw)-vdx)

—Re/ v, | vy - 0 dS.
a0

(3.51)

Next, we observe that

/Q(U'VU)'U)dx—/(w-Vu)wdx

Q
:/(U-Vv)-wdx+/(w-Vw)~vdm—/ [va|* vy - ndS.
Q Q o0

By an argument similar to (3.39) and (3.40), all integrals above are well defined
and finite. We can now conclude that

/QVUQdISRe(/Q(u~Vu)~wdx/Q(w.vu).udx>

and thus estimate, using again the Hardy-type inequality, this time in form

2
/ ‘“'2 de < 4/ Vul? de,
Q |z| Q

valid for all fields vanishing at the boundary 02,

Vu[>dz < 2R / [u Vd)
fiwutas<ere s ([ V] 1wulae

< 2Re [w]; (/Q (1:‘:1')2 dx>é</§2Vu2dx>é (3.52)

< 8Re [w]: / |Vul|? dz.
Q

We finally conclude that v = 0 when 8 Re [w]; < 1. O

4. Main theorem

Our main theorem follows as a consequence of Lemma 3.3 and the fact that a
solution (w,7) with the in Lemma 3.3 required properties exists, provided the
data are suitably restricted [10].
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Theorem 4.1. Let Q C R3 be an exterior domain of class C? and Re, Ta € (0, B],
for some B > 0. Suppose v, € W372(8Q)3and f=divF, with

F := ([F]2 + [f]3 + [divdiv F]4) < oc. (4.1)
Then, there is a constant My = M1(Q, B) > 0 such that if

Re (F + Hv*HWg’Q(aQ)) < My, (4.2)

then a weak solution (v,p) € DV2(Q)3NLE(Q)3 x LE (Q) to (1.1) that satisfies the
energy inequality (1.4), that is, a Leray solution, also satisfies, for some constant

c e R,
[olp0 + o) + [Volo + [0+ cl2 + [VPls o < Co (F+ Jloally 3200),  (43)

where Cy = C2(Q), B, R). Moreover, (v,p) satisfies the energy equality (1.5). Fi-
nally, (v,p) is unique (up to addition of a constant to p) in the class of weak
solutions satisfying (1.4).

Proof. The existence of a solution (w, ) satisfying the properties stated for (v, p)
has been established in [10, Theorem 2.1 and Remark 2.1] in the case v, = 0.
Moreover, in [9] the methods from [10] have been further developed to also consider
this more general case. Now, from (4.3) — written with w and 7 in place of v and
p — and from (4.2), it follows that, if M; is taken “sufficiently small”, we find, in
particular, Jw]; < 81;1@ . Therefore, the stated properties for (v,p) at once follow

from the uniqueness Lemma 3.3. d

Remark 4.2. The properties satisfied by the Leray solution (v, p) in Theorem 4.1
imply that (v,p) is, in fact, physically reasonable in the sense of Finn [5].
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Abstract. Assuming that the Helmholtz decomposition exists in L(Q)™ it
is proved that the Stokes equation has maximal LP-regularity in L;(Q2) for
s € [min{q, ¢'}, max{q, ¢'}]. Here Q C R" is an (g,00) domain with uniform
C3-boundary.
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1. Introduction and main result

For the understanding of nonlinear parabolic equations the property of maximal
LP-regularity has been proved to be very useful. For equations considered in a
Hilbert space the question whether we have maximal LP-regularity estimates re-
duces to the question whether the associated operator generates an analytic Cp-
semigroup. But the question is more difficult to answer in a general Banach space
setting. See, e.g., [Ama95], [Ama97], [DHP03], [KWO01] and the references therein.

In this paper we study the property of maximal LP-regularity for the Stokes
equations that are given by

ou—Au+Vp=f in Qx (0,7)
divu =0 in Qx (0,7)
u=0 on 90 x (0,7
u(-,0) =0 in

(1.1)

in a possibly unbounded domain 2 C R™. Here u denotes the velocity of the fluid
and p the pressure. We are going to study this set of equations in the L?-setting,
where g # 2.
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As noted above the case ¢ = 2 is easier to handle. It is well known that
the Stokes operator is a semibounded self-adjoint operator in L2(f2). Hence, it is
the generator of an analytic semigroup (e'4);>o on L2(Q). Note that L2(Q)" =
L2,(92) & G2(Q) for all open sets Q. For a proper definition of these spaces
see (1.2).

Assuming that the Helmholtz decomposition exists in L?(€2)™ there is associ-
ated a projection P, onto LZ(2) called the Helmholtz projection. In this case and if
Q has a sufficiently smooth boundary we define the Stokes operator by A4, = P,A
with domain D(A,) = W24(Q) N Wy %(Q) N LL(Q) in LL(N).

We say that the problem (1.1) has maximal LP-regularity in LI(Q), 1 <
p,q < 0o, if the operator

(0 = Aq) + LP((0,T); D(Aq)) N WHP((0,T); LE(2)) — LP((0,T)); L9()")

is an isomorphism.

An affirmative answer to the above question for bounded or exterior domains
with smooth boundaries was first given by Solonnikov ([Sol77]). His proof makes
use of potential theoretic arguments. Lateron, further proofs were obtained, e.g.,
by combining Giga’s result on bounded imaginary powers of the Stokes operator
([Gig85]) with the Dore-Venni theorem, by Giga and Sohr [GS91a], by Grubb and
Solonnikov [GS91b] using pseudo-differential techniques and by Froéhlich [Fr607)
making use of the concept of weighted estimates with respect to Muckenhoupt
weights. For related results see also [Gig81] and [FS94]. The half-space case was
studied, e.g., in [Uka87] and [DHPO1]. For results concerning infinite layers we
refer to the work of Abe and Shibata [AS03b] and [AS03a], Abels [Abe05] and
Abels and Wiegner [AWO05]. In [Fra00], [His04] the case of an aperture domain
is discussed and in [FRO8] it was shown that the Stokes Operator has maximal
LP-regularity in L%(£2) on tube-like domains §2. Moreover, by applying pseudo-
differential techniques, a rather large class of domains could be treated in [Abel0).
For applications of these results to the equations of Navier-Stokes, see, e.g., [Kat84],
[Ama00] and [Soh01].

One problem in treating domains with unbounded boundary is that the
Helmholtz decomposition does not exist in L(2)™ in general. For example Bogov-
skil gave in [Bog86] examples of unbounded domains © with smooth boundaries
for which the Helmholtz decomposition of L%(2)" exists only for certain values of
q. For details, see also [Gal94]. In [FKS07] the authors sail around this problem
by changing the basic Banach space to L9(Q) + L*(Q) or to L4(Q) N L*(Q) for
p > 2 or p < 2, respectively. The majority of the works cited above treat classes
of domains that yield maximal regularity in LZ(€) for any 1 < ¢ < oo.

In [GHHSO09] the authors prove maximal LP-regularity in L3 (€2) for (1.1)
assuming that the Helmholtz decomposition exists in L*(2)". Indeed, their main
result is the following

Proposition 1.1 ([GHHS09]). Let 1 < p,q < oo, J = (0,T) for some T > 0
and Q C R™ be a domain with uniform C3-boundary. Assume that the Helmholtz
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projection P exists for L1(Q)™. Then problem (1.1) has mazimal LP-regularity in
Li(Q).

In this paper we are concerned with the question to which spaces L7 () we
can extend the maximal LP-regularity property in this case.
Let ¢ € (1,00) and  C R™. We say that the Helmholtz decomposition on
LY(Q)™ exists if
LYQ)" = LL(Q) & GI(Q), (1.2)
where

GUQ) = {f € LUQ)" : g € L% (Q) : f = Vg} and LL(Q) := G7 (Q)*.

loc

Here M+ C X’ denotes the annihilator of M C X for some Banach space X and
q = qgl denotes the dual exponent of ¢. In this case, there exists the Helmholtz
projection P, from L9(Q2)™ onto LZ(2). Since G4(£2) and LZ(f2) are both reflexive

we obtain
(et = (¢ @) = e (@)

Hence, P, is a projection from L9 (Q)" onto LZ (€2). However, it is not clear
whether P, and P, are consistent, i.e.,

Puf =Py, feLi(@)nLe ().

The main assumption on the underlying domain 2 will be the (e, co) property.
Let € > 0 and 6 € (0,00]. Then we say that a domain  C R™ is an (¢, d) domain
if for any z,y €  satisfying | — y| < ¢ there exists a rectifiable curve v C Q
connecting x with y such that for any point z on

o) < Lz —yl (13)

dist(z,Q°) > ¢ (1.4)
holds. Here #(v) denotes the length of the path v and dist(z, M) is the distance of
the point z to the set M.

Now we can formulate the main result of this paper.

Theorem 1.2. Let @ C R™ be an (g,00) domain for some € > 0 with uniform C3-
boundary. Moreover, assume that the Helmholtz decomposition exists in LI(2)™
for some 1 < g < co. Then the problem (1.1) has mazimal LP-regularity in LZ(£2)

for s € [min{q,¢'}, max{q, ¢'}].

Remark 1.3. Consider the cone K C R? which is the set of all points between
the rays My = {z € R? : 1 > 0,23 = +kx1} with (1,0) € K. Denote by 6
the angle between the rays M1 measured across the domain K. Using piecewise
circular paths connecting the points z,y € K it is easy to see that K is an (e, 00)
domain. By a result of Bogovskii for n = 2 the Helmholtz decomposition in L?(K),
where K is a cone with angle 6 > 7, exists if and only if 2/(1 + 7/0) < ¢ <
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2/(1 — /). The same statement is true for cones with smooth apex. This means
that the results in this paper yield maximal LP-regularity in L4 (K) for (1.1) and

g€ (2/(1+m/0),2/(1 —/0)).

2. Proof of the main result

In this section we give the proof of our main result. We start with some comments
about the Helmholtz projection. It is well known that existence of the Helmholtz
decomposition on L7(Q)™ is equivalent to the solvability of the following weak
Neumann problem, see [SS92] and the references therein:

There exists C' > 0 such that for any f € L%(2)" there exists a unique

we /Wl,q(Q) = {f e Ll (Q):Vfe L)} satistying HuH/u\,l,q(Q) < Ol fllpagayn

loc
and

[@uve= [0 pe (@) (2.1)
o) )
In this case, Py f = f — Vu.
oy ., /
If (2.1) is uniquely solvable the mapping J : W14(Q) — (Wl’q (Q)) defined
by

(T, W) = /<w7w>, v e W (), (2.2)
Q

is an isomorphism (even the converse is true, see [SS92, Chapter 6] for a similar
result). Indeed, let ¢ € W14(Q2). Then,

T 0 = | [ (T, 90)| < el Uy ¥ €T (@)
Q

— /
Note that by assumption J is one-to-one. On the other hand, let ¢ € <W1’q (Q)) .
Since V¥ € G (Q) C LY (Q) there exists f, € LI(2)" such that

(o W) = / (fo, V) = / (Vu, V), e W (@),
Q Q

where u € W9(Q) is the unique solution of (2.1). Therefore J is onto as well.
The next proposition allows us to apply [GHHS09, Theorem 1.2] to our sit-
uation.

Proposition 2.1. Let Q C R™ be an (g,00) domain with a uniform C' boundary.
Assume that the Helmholtz projection P, exists for some p € (1,00). Then the
Helmholtz projection Py exists for ¢ € [min{p, p'}, max{p,p’}| where 1/p'+1/p=1.
Moreover, P, = Py in LI(Q)™ N LP(Q)".
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In order to prove Proposition 2.1 we need some preparation. By adapting the
arguments given in [SS92, Lemma 3.8(b)] to our situation, we obtain the following
lemma.

Lemma 2.2. Let 1 <r < g < o0, Q@ CR" an (g,00) domain and Vp € G¢(Q) with
(Vp, Vv)

sup
HUH/V[\/IJ" )

0£VveC (Q)

< 00,

where v’ is the dual exponent of r. Moreover, assume that the Helmholtz projection
exists in L™ (Q)"™. Then Vp € G.(Q).

The next proposition states some basic properties of homogeneous Sobolev
spaces.
Proposition 2.3. Let p € (1,00) and & C R™ be an (g,00) domain. Then C°(Q)
is dense in WYP(Q). Moreover, for q € (1,00) and u € WP(Q) N Wh(Q) there
exists (Un)nen C C(Q) such that nILH;O Uy, = U IN Wl’p(ﬂ) N Wl’q(ﬂ).

Proof. Let f € Wl’p(Q). By [Jon81, Theorem 2], there exists an extension operator
E € E(Wl’p(ﬁ),wl’p(R”)), independent of p € (1,00). Since C°(R"™) is dense
in W“’(R”), see [Sob63] for instance, there exists (¢,) C C°(R™) such that
limy, oo |00 — Ef”vAVl,p(Rn) = 0. Hence,

A lenle = fliwog) < fim llon = Eflgn@ =0 -

Remark 2.4.

1. The proof of Proposition 2.3 is based on the existence of an extension opera-
tor E € L(WP(Q), WHP(R")) only. In particular, whenever there exists an
extension operator for some p € (1,00) then C2°(9) is dense in W1P().

2. O.V. Besov constructed in [Bes67] an extension operator

E e L(Wh(Q), W'P(R™), pe (1,00),

for domains 2 C R” satisfying an interior horn condition.
3. Note that Proposition 2.3 does not hold for arbitrary domains as, for instance,

P
W“’(Q) # CgO(Q)W @ for aperture domains, see [Fra00].

4. Let p € (1,00) and 6 € (0,1). Since the extension operator E given in Propo-
sition 2.3 is a coretraction it follows from real interpolation theory, see, e.g.,
[Tri78], that

(@), Wl’p’m))w - W),

where 1/r=0/p+ (1 —-0)/p'.
We are now in the position to prove Proposition 2.1.

Proof of Proposition 2.1. Let P, denote the Helmholtz projection on LP(2)". Then
(P,) is a projection from L? ()" onto L (€2). In order to show that P, and (P,)’



272 M. Geissert and H. Heck

are consistent note that it is enough to show that the solution u of (2.1) is consis-
tent for ¢ = p,p’. We may assume without loss of generality that p > 2.

Let f € LP(Q)" N LP (2)™ and denote the corresponding solutions of (2.1) in
leP(Q) and Wl’pl(Q) by wu, and wu,, respectively. Obviously, we have

/ (Vuy, Vig) = / (1.V8) < Il o lellin, @€ C(Q).
Q Q

Hence, it follows from Lemma 2.2 that u, € WP (Q). Since C°(Q) is dense in
WhP(Q) we obtain

[vw.ve = [(1.90), oW,

Q Q

Finally, by uniqueness of solutions to (2.1) in Wi (), we obtain u, = uy.
Therefore P, and (P,)" are consistent and we may write P,y = (P,)’. Now
the proposition follows from interpolation theory.
O

Remark 2.5. 1. In order to show that P, exists whenever P, exists, we might
use J : WhP(Q) — (W (Q)) and duality theory.
2. The result that P, exists whenever P, exists is due to [Bog86].

Finally, we are prepared to give the

Proof of Theorem 1.2. We assume w.l.o.g. that p > 2. Once we establish the con-
sistency of the resolvent problem in L2 () and in LY (Q) we can use interpolation
theory and Proposition 1.1 (see [GHHSO09]) in order to get the claim. The consis-
tency of the Helmholtz projection was proved in Proposition 2.1.

That means that the solution operator of the weak Neumann problem exists
in L*(2) for s € [p/,p] and is consistent. The consistency of the Stokes resolvent
problem now follows from the solution formula for the Stokes resolvent problem
which was developed in [GHHS09]. In this representation the authors use an ex-
plicit solution formula for the half-space. Noting that in the half-space we have
consistent resolvents it is clear that the consistency is preserved in the general
case. g
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Abstract. We consider estimates depending on a parameter for general linear
elliptic boundary value problems, with nonhomogeneous boundary conditions,
in Nikol’skij spaces. These estimates are then employed to study general li-
near nonautonomous parabolic systems, again with nonhomogeneous boun-
dary conditions. Maximal regularity results are proved.
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0. Introduction and notations

The aim of this paper is to illustrate some improvements concerning estimates
depending on a parameter for elliptic boundary value problems with nonhomoge-
neous boundary conditions, and to apply them to mixed parabolic systems. The
main spaces we shall work with are Nikol’skij spaces, which are a category of the
class of Besov spaces: if 8 € R, p € [1,00] and Q is a domain in R™, the Nikol’skij
space NJ(Q) coincides with the Besov space BY . (©2). The main reason why we
are interested in NPB(Q) is that results of maximal regularity in closed subspaces
of B([0,T]; N}(R)), the space of bounded functions with values in NJ(Q), are
available. Maximal regularity estimates in L?(0,7; L?(2)) (1 < p < o) (even for
a very general class of systems) were obtained by V.A. Solonnikov (see [11]). In
the case of homogeneous boundary conditions, the extension to LP(0,T; LI(£2))
(1 < p,qg < ) is essentially due to G. Dore and A. Venni as an application
of their celebrated theorem (see [4]). An extension of this result to the case of
operator-valued coefficients is proposed by R. Denk, M. Hieber, J. Priiss in [2].
The case of nonhomogeneous boundary conditions (again in the LP-LY setting)
is treated by the same authors in [3]. They prove a remarkable intrinsic cha-
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racterization of the boundary data in such a way that a solution in the class
Whe(0,7T; L9(2)) N LP(0, T; W2™4(Q)) exists. Such characterization is in terms of
vector-valued Triebel-Lizorkin spaces. However, for problems of convergence to a
stationary state and asymptotic expansion of the solutions, it seems preferable to
work in spaces of continuous, or, at least, bounded functions in the time variable.
If A is the infinitesimal generator of an analytic semigroup in X, maximal regu-
larity results of this type for the corresponding Cauchy problem are available in
closed subspaces of the real interpolation space (X, D(A))g.co (see, for example,
[9]). If X = LP(Q) and D(A) is a closed subspace of W2™P(Q), (X, D(A))g.c0
is typically a closed subspace of the Nikol'skiy space N2™%(Q) (see Section 1 for
precise definitions). This makes our choice quite natural.

We pass to describe the content of the paper.

In Section 1, we recall some definitions and results concerning Nikol’skij
spaces, which we shall use throughout the article. The Nikol’skij space N;(Q)
(s € R, p € [1,00]) coincides with the Besov space B, . (€2). We refer to [6] for
a summary of results concerning Besov spaces. Much more complete expositions
can be found (for example) in [14], [10], and (in the case s > 0) in [1], Chapter
7. For the sake of simplicity, we have chosen to consider only the case of domains
with “smooth” (that is, C°°) boundaries, following the lines of [14], [10], [6].

In Section 2 we deal with estimates depending on a parameter for general
nonhomogeneous elliptic boundary value problems in Nikol’skij spaces. Here also
we shall limit ourselves to the case of smooth coefficients. It is quite well known that
estimates of this type are basic to treat parabolic systems. The main result of this
Section is Theorem 2.3, in which we prove an estimate depending on a parameter
in the case that the solution annihilates the elliptic operator with the parameter
and the boundary conditions are nonhomogeneous, and extending Proposition 2.16
in [6]. Theorem 2.3 has Theorem 2.7, containing a general estimate depending on
a parameter, as a corollary.

In Section 3 we consider general parabolic systems. The estimates obtained
in Section 2 allow to prove maximal regularity results for problems with nonho-
mogeneous boundary conditions at first in the case of autonomous systems. In
this direction, the main result is Theorem 3.6. The method of the proof follows
an old idea by B. Terreni (see [13]). Such idea was already employed in [5], where
I treated similar problems in little-Nikol’skij spaces (the closure of smooth func-
tions in Nikol’skij spaces). Apart the slightly different setting, here I have been
able to extend considerably the range of indexes to which the results are appli-
cable. Roughly speaking, if Nf (Q) is the basic space, here § is allowed to vary
in the interval (u+p~! — 2m,v + p~1), with v and p, respectively, the minimum
and maximum order of the boundary conditions, while in [5] I treated only the
case 3 € (0,p~!) (compare Theorem 3.6 with Theorem 2.1 in [5]). So we are able
to treat even cases with 8 < 0 and the elements of the basic space are distribu-
tions. Finally we have put an extension, which does not seem completely trivial,
to nonautonomous parabolic systems.



On Linear Elliptic and Parabolic etc. 277

We conclude this introductory section with the indication of some notations
that we shall use in the paper.

If X and Y are Banach spaces, we shall indicate with £(X,Y) the Banach
space of linear bounded operators from X to Y. In case X =Y, we shall write
L(X). If Q is an open subset of R™ with smooth boundary and z belongs to the
boundary 052, we shall indicate With v(x) the unit vector, which is normal to 09
in z and points outside , with ¢ o () the normal derivative, and with T}, (9) the
tangent space to 0 in z. Given 6 € (0,1) and ¢ € [1, o0], we shall indicate with
(.,.)9,q the real interpolation functor, W™P(2) (m € Ny, p € [1,00]) will be the
standard Sobolev spaces. If A is a set and X is a normed space, we shall indicate
with B(A4; X) the space of bounded functions from A to X, with its natural norm.
If 8 € R, we set

Bl :=max{j €Z:j <8} {B}:=0-[0] (0.1)
If p€(0,1), TeR™, X is a Banach space with norm |.||, and f:[0,7]— X, we set
(&) = f(s)ll }
.x) ‘= max .X), Su .
Ifllertoio = max{ 1 lmgoa, s 1601

Of course, C*([0,T]; X) is the set of functions f such that ||| f||ce(jo,r),x) < 400
If m € N, C™**([0,T]; X) is the set of functions f in C™([0,T]; X) such that
f™ € ¢*([0,T); X). We shall equip it with the norm

£ lemtoo,r3:x) = max{|| fllcmo.r3:5) 1F ™l co(o,my;x) -

Finally, C will be used to indicate a positive constant which we are not interested to
precise, and may be different from time to time. We shall often use the notation Cy,
Cq,... if we have a sequence of estimates. Other notations, concerning Nikol’skij
spaces, will be introduced in Section 1.

1. Nikol’skij spaces
We start by introducing Nikol’skij spaces.
Definition 1.1. Let n € N, p € [1, +o0[, 8 € (0, 1]. We define
NJ(R") == {f € LP(R") : [f]g,p,rn
:= suppern\ 1oy Rl P+ R) = 2f + (. = h)llLo@n) < 400}

If B € (1,+00), we set

NJ(R") = {f e WIPR") : Va € Ni, |of < [6],0°f € NSPHR™)}  (1.2)
(we recall that {3} € (0,1]).
Remark 1.2. NP(R™), with the norm

I fllg.prn == | fllwisre@ny + Z [f1i6}.p,R"
|a|=[8]
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is a Banach space. If 8 € (0,1) an equivalent norm can be obtained replacing in
(L) [[f(-4+h)=2f+ f(.=Rh)| Lr@ny With || f(.4h) = f||Lr®n) (see [12], Theorem 4).

Now we define the space NZ’,B(R") in case § < 0.
Definition 1.3. Let 5 € R, 8 <0, p € [1,4+00]. We set

NP(R") := {f = Z Ofs: fs € Ngﬁ}(R”)},
Is|<I[8]l
equipped with the norm

1fllg.p-n = inf{ > Mfslgrpmn :f= D 0fulfs EN;’B}(R")}- (1.3)
IsI<113]) jsi<113])

Definition 1.4. Let n € N, p € [1,00], 8 € R and let Q be an open subset of R™.
We set

N2(Q) = {fin: | € NI(RM)). (1.4)
If g € NJ(Q), we set

19llg.p.0 == WE{[[ fllg.p.en - flo = g}- (1.5)
We shall write C%(Q) in alternative to N2 ().

Remark 1.5. If 3 € Rt \ Z, C#(Q) coincides with the space of elements in C[7(Q)
whose derivatives of order (] are Holder continuous of exponent {3}.

For the sake of simplicity, here we shall consider only the case that the bound-
ary 0f) of Q is “smooth”, that is, 0 is a C'*° submanifold of R", and € lies on
one side of 0f), although this restrictive condition could be considerably relaxed.

The spaces NZ/,B (Q) are locally invariant with respect to compositions with
smooth (that is, C*°) diffeomorphisms (see [14], 2.10). This implies that we can
define by local charts the spaces Nf(S) if S is a smooth submanifold of R™. The
following fact holds (see [6], Theorem 1.19):

Theorem 1.6. Assume 1 < p < 400, 8 > m + p~ !, with m € No. Then there

exists T € L(NP(Q), | Nf*j*”p(as))), such that, if u € NJ(Q) N C™(9Q),

m

Tu = (U|3Q7... o u)

» Qpm

Nikol’skij spaces arise in real interpolation theory. If 6 € (0,1) and mg, m; €
Ny, with mg < mq, we have

mo, mi, _ 1—0)mo+6m
(WmoP(Q), W™ P(Q))g 00 = Ni—Omotom (@), (1.6)
with equivalent norms (see [1], 7.32). In general, if 5y, 51 € R and 6 € (0, 1),
(N2 (), NP (9))g,00 = NP5 (), (1.7)

again with equivalent norms (see [14], 3.3.6). Finally, if 8y, 51 € R, m € Ny,
Bo <m < B, and m = (1 —0)8y + 051, with 6 € (0,1), Vf € Nfl(Q),

1 llwems) < CUANG .0l F15 po (1.8)
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with C' > 0, independent of f. This is a consequence of the fact that
(N (Q), N (2)o1 = By () = W™P(Q),
(see [14, 3.3.6]), where B} (€2) is a Besov space.

2. Elliptic problems depending on a parameter with
nonhomogeneous boundary conditions

Let now € be a bounded open subset of R", with smooth boundary 90). We
consider the partial linear operator of order 2m (m € N)

A, 0) = Y as(2)03, (2.1)

|s]<2m

with smooth coefficients in 2. We indicate with Ag(z, ;) its principal part Z\s|:2m

as(x)0:. For k =1,...,m, we introduce partial linear operators
Bi(@,0,) = > bro(w)d, (2.2)
[s|<pr

again with smooth coefficients in (2. We assume the following:

(H1) A(x, 05) is strongly elliptic, in the sense that there exists ¢ > 0, such that,
Vo € Q, V¢ € R", (—1)™ Re(Ap(z,€)) < —cl¢]?™.

(H2) 0 < p1 < po < -+ < b, < 2m — 1; moreover, if we indicate with Byo(x, 0y)
the principal part of B(x,03), Bro(z,v(z)) # 0 for each k =1,...,m.

(H3) VOy € [—7/2,7/2], Yz € OQ, V(E',r) € (T (00) X [0, 4+00))\{0,0)}, the o.d.e.
problem

(Ao(z,i +v(2)0;) — r?meo)(t) =0, t >0,
Byo(z,i8 +v(2)0)v(0) =0, k=1,...,m,
v bounded in RT

has only the trivial solution.
The following theorem summarizes in its statement Lemmas 2.12 and 2.14
(using also Theorem 2.17) in [6]:

Theorem 2.1. Let €2 be a bounded open subset in R™, with smooth boundary OS2, and
let A(z,0;) and, for k = 1,...,m, Bi(z,0:),..., Bn(x,0,) operators satisfying
the conditions (H1)—(H3). We assume that 8 € R, 1 <p < oo, p+p 1 —2m < 3,
with | 1= maxi<k<m pr. We consider the problem

u(z) — Az, 0z )u(x) =0, z€Q,
Bi(2,0;)u(z’) —gr(2) =0 2/ €0Q, k=1,...,m,
with A € C, Re(A) >0, fork=1,...,m, g € NE””B*’“C(Q). Then:

(2.3)
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(I) there exist rg and C positive, such that, if |\| > 1o, (2.3) has a unique solution
u belonging to N2™H5(Q).
(IT) The following estimate holds:

B
A2 (lull oy + Mlllull g.p.0 + lullzmss.p.0

m a5y (2.4)
<C Y (lgkllzmts-pemo + A2 llgkllLe)-
k=1

(IT1) If, moreover, 0 < {B} < p~1, the following estimate holds:

A1 2m

ullr) + Mllullpp.o + [[ull2misp0

i 2m+18] - (2.5)
< CY (lgrllom+p—rwme + 1A 2 " llgullgsy p.0)-
k=1

Remark 2.2. In the statements of Lemmas 2.12 and 2.14 in [6], concerning the
formula corresponding to (2.4), there appear summands of the form |A|?||gx|[w.r (o)
and |A|?||gklli,p,0, with ! intermediate between, respectively, 2m + 8 — uy and 0,
and 2m + 8 — py and {8}. They can be all skipped, using (1.8) and (1.7).

We want to generalize estimate (2.5). More precisely, we want to prove the following

Theorem 2.3. Assume that the assumptions of Theorem 2.1 are satisfied. Let A € C,
with Re(A\) > 0 and |\| > ro, with ro as in the statement of Theorem 2.1. Further,
let € (0,1/p). Then, there exists C > 0, independent of A and g, (1 < k < m),
such that

B
A2l Loy + [Mllullgp.a + lullzms g0

m 2mtB—pp,—0 (2.6)
<Y lgkllamis—pepo+ A 2" lgllopa )

k=1
To this aim, we need the following lemmas:

Lemma 2.4. Assume 1l <p < +00,0< <0< ;, g€ Ng(Ri) and vanishes if
z, >r. Then:
(I) there exists C > 0, independent of g, such that, ¥r € RT,

0
19l Loy < Cr%lglloprry;
(IT) there exists C > 0, independent of g, such that, ¥r € RT,

|97p7

lgllgprr < Cr'Plg

Proof. Concerning (I), see Lemma 2.13 in [6].
Concerning (II), from (I) and the fact that

NJ(RYL) = (LP(RY), Ny (R'L))3/6,00-

we obtain

1-p/6 B/o

lgllsp.ry < Cullglloiny 191l pry < Co(llglo.pmy )~/

B/6
||9He,p,R1~ O
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Lemma 2.5. Assume 1 < p < 400, € (0,1], 6 € (0, 11) A B), and let {xr}o<r<1 be
a family of C' functions in [0,+00), such that
(a) xr(t) =0 ift>r Vre(0,1];
(b) |xr ()] +7xL(t)] < A, Vr € (0,1], ¥Vt > 0, for some A € RT.
Then:
(I) there exists C € RT, depending only on 0, p, A, such that, Vg € Ng R%),
Vr € (0’ 1]a ifg7.(x’7xn) = g(x/vxn)XT'(xn):

9rllo.prn < Cllg

|0,p, 7

(1) assume, moreover, that the functions x, are of class C?, and r2|x!"(t)| <
A,Vr e (0,1], Vt > 0. Then, Vg € NJ(R"), Vr € (0,1],

“Pllg

lgrllg.pR2 < Cllgllgpry +7 l0.p,R7)-

Proof. (I) is essentially proved in [5], Lemma 1.6 (see also [6], Lemma 2.13).

Concerning (II), we shall use the following equivalent norm in NJ(R") (see

for this [8], Ch. VII, Theorem 2.1):

n
gl pper - = lgllzoeny + Y supt~Plg(. +2te’) = 29(. +te’) + gllray)-
j=1

Now, let g € Nf(Rﬁ). Obviously,

n—1

ngHLP(Ri) + Z iulg t P gr (. + 2te?) — 29, (. + tel) + ngLP(Ri) < CHQH/ﬁ,p,R17
j=1%

with C depending only on A. Moreover,
llgr(- +2te™) — 29, (. + te") + grllLe(rry)
< O (@n + 28) = X (@n + 8))(g(- + 2te™) — g(. + te™)) || Lo (rry)
+ [ (Xr(@n + 28) = 2x0(@n + ) + Xr(zn))g(- + t€"))|[ Lo ry) (2.7)
(e (@ +8) = xr(@a))(9(- + 2te™) — g(- + te"))| Lo (rry)
+ [Ixr(@n)(g(- + 2te™) = 29(. + te") + g)llLery) = T1 + T2 + I3 + Iy

First of all,
P14 < Cllgly e (2.8)

Next,

tP L < Cllxrlleo-o o, +00pll9llo.p.rz < Cr?Pllgllo,pre s (2.9)

owing to well-known interpolatory inequalities, which are consequences of (a)—(b).
t=AI3 can be estimated similarly. Concerning t~“1I,, we start by observing that

(Xr(@n +2t) = 2xr(zn +1) + Xr(20))g(z + te") = 0
if x,, > r. So, from Lemma 2.4, we have

t7 I < Crot P (e (w + 2) = 2x0 (0 + 1) + X0 (220))g (- + te")||97p,R1~
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Assume first that ¢ > r. Then, by (I)

P (e (@n + 26) = 2xe (@0 + 1) + Xr(2n))g( + te™) 0,2y
=1t |Ixe(@n)g( + te")lopmy < Ot llgllopry < Crf~Pllgllopze-

Finally, assume 0 < t < r. We define
cr,t(s) = Tt—l(Xr(s + Qt) - 2Xr(5 + t) + Xr(s))'
Then, Vr,t,
lere(8)] + 7y o (s)] < 4A.
From (I) we deduce
t7ﬁ12 = riltlfﬁHc,ﬂ’t(xn)g(. + ten)HLP(Ri)
< Crg_ltl_ﬁ‘lcr,t(xn)g(~ + ten)HQ»I)»Ri
< ' P lgllo pury, < O g

|97P7R1'

Collecting together the previous estimates, we obtain the conclusion. O

Remark 2.6. An example of family of functions satisfying conditions (a) and (b)
in the statement of Lemma 2.5 can be obtained setting x,(¢t) := X(f,), with y :
[0, +00) — C suitably smooth.

Now, we are able to prove Theorem 2.3:

Proof of Theorem 2.3. For every 2° € 0% there exist an open neighbourhood U
of 2%, and a smooth diffeomorphism ® : U — ®(U) C R", such that ®(z") = 0,
U NN =2U)N{(y,0): ¢y e R* '} and 2(UNQ) = &(U) NRY}. As Q is
bounded, there exist 2',..., 2, with corresponding diffeomorphisms ®', ..., &V,
such that 092 C Ué-vlej. We add an open subset Uy of Q, with Uy C €, such that
Q0 C Ué\’:OUj. Let {99, ...,%n} be a smooth partition of unity in a neighbourhood
of , such that the support of ¢; is contained in U; (j =0, ..., N). Let (xr)o<r<1
be a family of smooth functions of domain [0, +00), such that x,(t) =1if 0 <t <
)2, xo(t) = 0if ¢ >, X)) < Cir=!, Wr € (0,1], VI € No, V¢ > 0. We put, for
k=1,....,m, r > 0 sufficiently small

N
s (@) 1= 3 65 (@) (0 ) ) ).

Then, applying Theorem 2.1 (II), we have Vr € (0, ro],

B
A2l Loy + [Mllullgp.a + lullzmss.p.0
(2.10)

2m+B—p

m
k
<Y (grrllamss—pepo + A2 llgrrll o),
k=1
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with C' > 0, independent of A, g (1 <k < m) and r € (0,rp]. We have
N

N
lgrrll Lo () < Z 145 Xr (@5 (@)n) gkl e (@) < C1 Z (X (yn) (¥ g1 © q’;l)HLP(Riy
j=1 j=1

We set g* := ;g 0 <I>j_1. Then, by Lemmas 2.4 and 2.5,

X (9n)g* Lo @ny < Crr’ X (Yn)g" lo,p.r7 s < Cor®llg*[lo,pm1, < Car?llgicllo,p,0-

(2.11)
Moreover,
19k [l2m+8—-pr.p.02 < Z 195X (25(%) ) gkl 2m+B—pus 0,2
j=1
N
< Ca Y e (W) (@5 © @5 ) l2m 8 prer -
j=1
We have
1 ()" l2m+5— e pmy < Cs > I (4)0°2 9" | 13y o - (2:12)

s1+|s2|<2m+[B]—pk
Assume first that {8} < 6. Then, if |s3| > 1, we have, employing Lemma 2.5,
X ()0 9" 13y pn < 77 P X (9)02 0 |y
<Cr- él||6529 H{ﬁ},p Ry < Cr—* Hg*H|52\+{,6},p,R1

< Cr' ,p,Q2 (213)
If S9 = 0
X (Yn)g" 1 (5y.p2n < CrO"VHIXED (4n) g™ l0,pry < CF™ 1710 g%||g p n
< Crf=CmaBom)|g Nl 6. (2.14)

Instead, we assume that 6 < {8}. Again applying Lemma 2.5, we have

D ()0 " sy iy = 7 I X (W) 029" [l 3y oy
< 07‘751(H8529*||{,8},p,]1§i +7,.9*{/6}||682‘g H9 R") (215)
< Ol B g4 g gy p + T ETEIT g1y g .0)-

Observe now that the last expressions in (2.13), (2.14), (2.15) can be all majorized
with
Cllgkllzm+p-run.p2 + 77~ C™ 71 |l lg,p.02). (2.16)
In fact, if 0 < p < 2m + 8 — pg, by (1.7),
2m+B—pp—p m P8 s
rpm G gl pa < CO™ M= gyl g 5 o) 2t B0 || gyl 5 45 k0
< O(gkllzm+p-rup2 + 7~ E™ 71l gillg p.0,).
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So, from (2.10), we obtain, Vr € (0, 7],

5
A2 [l pog) + MIlullg.p. + lullzmispe (2.17)
m
_ _ 2m+B8—p
< O3 lgllzmr-ppe + 7" gellg e+ A5 gl p.0).
k=1
Choosing r = |[X\|71/(>™) e obtain the conclusion. O

As a consequence, we obtain the following refinement of Propositions 2.15—
2.16 in [6]:
Theorem 2.7. Let 2 be a bounded open subset in R™, with smooth boundary OS2, and
let A(x,0;) and, for k = 1,...,m, B1(x,0:),...,Bmn(x,0.) operators satisfying
the conditions (H1)—(H3). We assume that B € R, u+p 't —2m < B <v+pt,

with (1 == Maxi<g<m Pk, V = Mini<g<m k. Let 0 € (0,p~1) be such that v+60 > (.
We consider the problem

{ Nulz) — Az, o Jux) = f(2), z €9,

2.1
Bi(2', 0, )u(z’) —gp(2') =0 2’ €0Q, k=1,...,m, (2.18)

with A € C, Re(A) >0, f € Nf(Q), fork=1,...,m gy € N§m+ﬂ*“k(9).
Then, there exist ro and C positive, such that, if |\| > 1o, (2.18) has a unique
solution u belonging to Nngrﬁ(Q). Moreover, the following estimate holds:

(Mll[ellg.p.0 + lulloms,p.0

m 2m+B—pj,—0 (2.19)
m+B—pp — .
< C(Iflgpa+ D lNgkllzmts—pepo+ A 27" llgrllopa)-

k=1

Proof. Consider a strongly elliptic operator A(z,d) with coefficients which are
smooth and bounded with all their derivatives in R™, such that the restriction of
A(z, ) to £ coincides with A(x, ) (see the proof of Proposition 2.15 in [6] for the
construction of A(z,d)). We fix f' € Nf(]R”)7 such that f"Q = f and

1808 < Clifllgp.0 (2.20)

Then, if || is large enough and Re(A\) > 0, owing to Proposition 2.5 in [6], there
exists a unique v’ € N2™+F(R™), such that
M — Az, 0 = f in R" (2.21)
and
Al g, p e + 16 2,90 < CILF ] p, - (2.22)
This implies that, Vp € [5,2m + 3],

p—(2m+p)

[ lpprn < COIAL 2 (]l .pRn- (2.23)
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We indicate with v the restriction of v’ to . Now we consider the problem

Az(x) — Az, 0,)z(z) =0, x €,
{Bk(x',az)z(x’) — (gr(2") = Br(a',0;)v(2")) =0, 2’ €9Q, k=1,...,m,
(2.24)
By Theorem 2.3, if |A| is sufficiently large, (2.24) has a unique solution z in
NZm™H8(Q). Clearly, u := v + z is the unique solution of (2.18) in N2™+5(€).
Moreover, employing (2.23),

[AMlllellg,p.0 + llull2m+s.p.0
< Al llgp e + 10 l2mts.p8n + Al 2l5.p.0 + 2ll2mts.0.0

m

< Cll L gprr + Y _(lge = Bils O)0llzm s p.0
k=1
(@mA+B—pug)—0

+AL e gk = Bl 0)vllop,0)]

m
2m4B—pp —0

< Cllflspa+ D (grllomis—mpa + 1A 2" lgellope)
k=1

2m+B—py—0

+ 3 1Bk Dvllamss—ppo+ A 2" [Bi(,0)0llo.p0)]
k=1

2m+B—py—0
Clllflls.p.e+ Z(Hgk\lzmw—uk,p,ﬂ AL e lgkllop.e)
k=1

m
2m4B—pp —0

+vllzmrppe + D A 2 ollropal
k=1

m
2m4B—pp —0

Cllflsma+ Y (lgrllzmss—po + A 2" llgkllope)l: O
k=1

We conclude the section with the following simple result of perturbation:

Theorem 2.8. Assume that the assumptions of Theorem 2.7 are satisfied. Let 3’ €
R,3 <8, Pe E(Nngrﬁ/(Q), NZ(Q)) and let X € C. We consider the problem
Au(z) — Az, 0 )u(x) — Pu(z) = f(x), x€Q,
By (

2.25
2, 0 )u(z’) — gr(x') =0, e, k=1,...,m. (2.25)

Then there exist 0y € (7/2,m), ro,C € RY, such that, if |\| > ro, |Arg(\)| < 6o,
fe Npﬁ(Q), fork=1,...,m gx € NT?"“L/B_% (), (2.18) has a unique solution u
belonging to Nngrﬁ(Q). Moreover, an estimate like (2.19) holds.

Proof. Obviously, we may assume that 2m + 3 > . By the well-known continu-
ation method, it suffices to prove an a priori estimate. So, let u € Np2m+'6(Q) be a
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solution of (2.25). We fix p € C, such that |u| = |A|, and Re(u) > 0. Then (2.25)

can be written in the equivalent form
pu(x) — Az, 0z )u(z) = f(x) + (0 — Nu(z) + Pu(z), = €Q, (2.26
B2, 0, )u(x’) —gr(2') =0 2 €0Q, k=1,...,m, :26)

so that, if |A| is sufficiently large, we obtain from Theorem 2.7 the estimate

B—8’
Alllullgp.e + A2 (Jullzmts po + [ull2mssp0

m
2m4B—py—0
< Co(lfllsp+ Y lgkllomsp—rmmo + 1A 2" llgellopse (2.:27)
k=1

+ lullamiprp.0 + 1A = plllullp p.0)-
If 8o — 7 is sufficiently small, it is possible to choose p in such a way that Cy |>\|;‘m <

3. If |A] is so large that C’o\/\|ﬁ;7n6 < 1, from (2.27) we immediately deduce (3.10).

O

Remark 2.9. In case f = 0, the following more general estimate holds: if 3 < a <
2m + 3,
2m+B—pp —0

m
a—pB _
lullape < CIA= =1 (llgrllzms-ppa + A 2" gk
k=1

This follows from Theorem 2.8 if 8 < a < 2m + (3. The case 5’ < a < § follows
from

lop.a) (2.28)

lullap. = INTHITAC, 82) + Plullap.e < CIA™ [ull2m+a.po-

3. Parabolic problems

We start with the autonomous parabolic system
Diu(t,z) = A(z, 0z )u(t, z) + Pu(t,z) + f(t,z), (t,z) €[0,T] x Q,
Bi(a', 0z )u(t,2’) — gr(t,2’) =0, k=1,....,m, (t,2')€[0,T]x0Q (3.1)
u(0,z) = uo(z), =z €,
under the following assumptions:
(I1) Q is an open bounded subset of R™, with smooth boundary OS2,
A(z,0,) = Y au(x)0;
Is|<2m

is a linear partial differential operator of order 2m (m € N), and, for k =
1,....m
Bi(x,0:) = Y brs(2)05
[s|<pw
is a linear partial differential operator, all with smooth coefficients in 2.
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(I2) The conditions (H1)—(H3) are fulfilled.
(13) Be(p+p ' =2mv+p "), with p:=maxi<k<m ik, V= MiN1<g<m fik-
2m+6’
(I4) P € L(NZ™P(Q), NJ(Q)), for some ' < 3.
We introduce the following operator in NJ (Q):

(3.2)

D(A) == {u € N2"(Q) : Bi(.,02)upa =0,k =1,...,m},
Au = A(., 0z)u + Pu.

By Theorem 2.8, A is a sectorial operator (with not dense domain) in NJ(€2). We
use 0y with the same meaning as in the statement of Theorem 2.8. Then we can
construct an analytic semigroup {T'(¢) : ¢ > 0} (not strongly continuous in 0) in
a standard way (see [9]): we fix a piecewise C'' path =, describing {\ € C\ {0} :
|[Arg(A\)| = 01, |\ > ro} U{A € C\ {0} : |Arg(N)| < 01, |A| = 1o}, with ¢ as in the
statement of Theorem 2.8, 1 € (7/2,6), v oriented from coe™ ™ to coe?t, and
set, for t > 0,

1
T(t) := M= A)"tdA 3.3
(0= gy [ O (33)
If T e R, for t € (0,T] T(t) satisfies the estimate
1T fllgpe +tITE) fllzmtspe < CO)| 5.0 (3-4)
We consider also the operator
¢ 1
TED () = / T(s)ds = /e’\t)\_l()\ ~ A)lax (3.5)
0 211 ~

This operator satisfies, for '€ R, an estimate of the form

1TV O flppi0 + TV @) fllzmsspe < COEfllppa- (3.6)

It is convenient to fix 3” € (8,8) N (u+p~! —2m,v + p~ 1), and consider the

analogues of A, T'(t) and T(-1(¢) in NI’JBH(Q). We shall indicate these operators

with Agr, Tgn(t) and Té;l)(t) respectively. Clearly they satisfy estimates of the

form (3.4) and (3.6), with 3" replacing 3. Of course, A, T(t) and T(~1)(t) are the
parts of Agr, Tgr(t) and Té;l)(t) in Nf(Q).

We pass to consider nonhomogeneous boundary conditions. Let i € {1,...,m}

and take g € Ngmﬂa*“i (€2). We indicate with N;(X)g the solution of system (2.25),
incase f=0, g, =0if k#1i, g; =g. If t > 0, we set

K;(t)g := (27ri)*1/e)‘tNi()\)gd)\. (3.7)

We have:

Lemma 3.1. Let T € RT, k€ {1,...,m}, g € N2 F~1(Q), 8/ < o < 2m + B,
0 € (0,p71), withv+0 > 3. Then:
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(I) there exists C > 0, depending only on T and «, such that

2m4+B—pp—6

_a=f _
[KkD9llap.a < C 2 (l9llzmip-ppo +t7 2 igllopn);
(I) Ki € CHRY; L(NZ™HA~1=(Q); NS(RQ)) and

K (t) = (2mi)~* / MANL(N)gd; (3.8)

2m4B—pp —0

(D) KO gllape < O %0 (lgllamispepa + 1 20 lgllope);
(IV) Vt € RY [A(.,0,) + P]Ki(t)g = K}.(t)g;
(V) vt e R, Vi€ {1,...,m}, Bi(.ﬁw)Kk(t)ng =0
(VI) if € is positive and sufficiently large, £ € p(A) and
(€= A) T Ky(t)g = (2mi) / M (€ = X) T NE(N\)gdA.
v

Proof. Modifying +, if necessary, we may assume, owing to Cauchy’s theorem, that
[A| > Tro YA € 7. So, by Remark 2.9,

KOsl = I2x) ™ [ NiN)giN o
t= 0y

= || (2rmit) ! / ANt N)gdM o pe
2!
— _ a=B _ _ 2m+B—py —6
<t [ e S gl + 1N gl
v
which implies the conclusion.
(IT) is obvious.
(IIT) can be obtained from (II), with the same method of (I).
(IV) follows from
Ki(t)g = (2mi)~ / MA(,8y) + PINu(V)gdA

v
= (2mi)~? / eMANR(N)gdA.
s
(V) follows from

Bl 0:) K1 (t)gi00 = (2771')_1/e’\t[Bi(.,aw)Nk()\)g]‘agd)\

Y
= (271'1‘)71 / 6)\t5ikg‘agd)\ =0.
Y

(VI) The first statement is a consequence of the fact that A is a sectorial
operator. Concerning the formula, observe first that, if £ # A,

(€= A)'N(N)g = (€ = N Ne(N) — Ne(9)]g-
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It follows
(€= )7 Kutyg = 2ri) ™ [ (6~ 2T N (AgdA ~ (2mi)
¥
< [ e =2 Nu(@)gax
¥
and the second integral is 0. O

We deduce from Lemma 3.1, by choosing 8 > g — v, that, at least as an
element of L(NT?"H'/B_% (), NpB(Q)), we can define the following operator

t At
KUV = | Ki(s)ds = (2mi) ! / eA Ni(A)dA. (3.9)
0 v

We have:
Lemma 3.2. Let T e RY, k€ {1,...,m}, g € Nngrﬁ*“k(Q), B < a<2m+ 8,
0 € (0,p71), withv+0 > 3. Then:
(I) there exists C > 0, depending only on T and «, such that

2m+B—p —0

—1 _a—p _
1K (O gllapae < CE % (gllomssoppa +t 2 g

l0.p.0);

(1) ¥t € R [A(,0,) + PIK{ Y (t)g = Ki(t)g;

(I) V¢ € RY, Vi€ {1,...,m}, Bi(-,8) KL " ()gj00 = dirgjon-

Proof. (I) can be obtained with the same arguments in the proof of Lemma 3.1.

(II) follows from

e)xt
K09 = 2ri) [ € 140,8,) + PING(A)gdr

Y

= (2mi) ! / eMNE(N\)gdA.

Concerning (III),

B o ot
Bi(-,ﬁm)Ké 1)(75)9\69 = (2mi) 1/ \ [Bi(., 0z ) Nk (AN)glja0dX
¥
et
= (2mi)~ / A\ dikgjo0d\ = dirgjoq- O
¥
After these preliminaries, we pass to consider system (3.1). We begin with
the case up = 0 and g, = 0 for each k = 1,..., m. Here we have ([7], Theorem 2.7)
that

N = (N (), D(Agn)) o (3.10)

2m
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As Apr is a sectorial operator, the following characterization of NJJ(€2) holds (see
[9], Proposition 2.2.2): is [y, 00) C p(Agr),

// B—pa" _
Np@) = {1 € N (@) sup €70 Ap(€ = Ag) " fllgnpa <00} (1)
=<0
Moreover, an equivalent norm in Nf (Q) is
B—pa" B
£ = Wl -+ sup €75 Agr(€ = Ag) ™ s
ZS0

Employing Theorem 4.3.8 in [9], we deduce the following

Lemma 3.3. Assume that the assumptions (I11)—(14) are satisfied. Consider the
system (3.1) in case f € C([O,T];NI'?”(Q)) N B([0,T]; NJ(Q)), g = 0 for each
k=1,...,m, and ug = 0. Then there is a unique solution u belonging to C*([0,T};
Npﬁ”(Q))ﬁB([O,T]; NZ™H8(Q)), with Dyu € B([0,T]; NJ(Q)). u can be represented
by the variation of parameter formula

u(t) = /0 T(t—s)f(s)ds, te][0,T]. (3.12)

Next, we consider the case f =0, up =0, g; =01if i # k (k € {1,...,m}).
We shall often use the following

Lemma 3.4. Let T € R*, let By, B1 be real numbers, such that By < B1, p € RT,
p € [1,400], and let g € B([0, T]; NJ (€2))NC?([0,T); NP (2)). Then, if € € (0,1)
and (1 —&p € Z, g € C’(l_f)/’([O,T];Nzglfg)’@ﬁw1 (Q)). Moreover, there exists
C > 0, independent of g, such that

o(

I9llca-o0o.ryng-om0reor @y = CUIN 5o zyvgr ) T 190en o zyivgo )

Proof. Employing the characterization of C(*=€)? ([0, T}; Nzﬁl‘f)ﬁ“fﬁl (©)) by hi-
gher-order differences (see [14], 3.4.2), we have, taking [ € N, I > 1, h € (0,7/]]
and ¢t € [0,T — lh],

l
[ .
S () (=1)!g(t + jh)
i=o M (1-£)Bo+£51,p,92
l 1—¢q 1 £

< Cy| h" ! —1) gt + jh l —1D) gt + jh
<G S ) =D g(t +4h) L) (=D g(t + k)

=0 J Bo,p,Q2 =0 J B1,p,Q2
< Cyllg)|te lgl® . L
- Ce((0,T;N () "7 ' B([0,T];N, ()

Now we consider the first case with nonhomogeneous boundary conditions.

Lemma 3.5. Assume that the assumptions (I11)—(14) are satisfied. Consider the
system (3.1) in case f =0, up =0, g; =0 for each i = 1,...,m and i # k,
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2m+B—py—0

gk = g. We assume that g € B([0,T1; Nngrﬁ*“k(Q))ﬂC zm o ([0,T7]; Ng(Q)))
for some 0 € (0,p~1), and g(0) = 0. Consider the function

u(t) = /O Ku(t — 5)g(s)ds. (3.13)

Then:
(I) u is well defined in [0,T];
(IT) u belongs to
CH([0, T NJ” () 0 B(0, T]; N HP(2))), Dy € B((0,T); NJ(Q)));
(I1T) w satisfies (3.1).

Proof. By Lemma 3.4, it is not restrictive to assume that

0>p—v>0— (3.14)

2m+B—pp—0
2m

in such a way that < 1. Now we observe that

ult) = Ky Y (0)g(t) + Kt = 9)lgls) —g(O)ds == w(®) +ui(t).  (3.19)

From Lemma 3.2 and the assumptions on g, we deduce that vg € B([0,T]; N§m+ﬂ
(©)) and

[A(,02) + Pluo(t) = Kn(t)g(t), (3.16)
vie{l,...,m},

Bi(., 0z)vo(t) 00 = dikg(t) o (3.17)
Now we consider v;. By Lemma 3.1, we have that, at least, vy € B([0,T]; NI?"“L/B”
(©)). Moreover,

[AG20) + Ploa(t) = | K{ (¢ = 9)lg(s) — g(0]ds, (3.18)

and, for each i € {1,...,m},
Bi(.,0z)v1(t)ja0 = 0. (3.19)

In order to prove that v; is bounded with values in B([O,T];Np%”ﬂ(ﬁ)), we
recall again (3.11). Owing to (3.19), recalling that the domain of A is a sub-
space of Np2m+'6(Q), we can try to show that Agrvy is bounded with values in

(Nf” (), D(Ag)) s—p . This is equivalent to prove that, for some & > 0,
2m

B-p" —
€ 2m Agn (€ — Agn) P Agnvr ()|l po < C, (3.20)
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with C' independent of £ > & and t € [0, T]. We have from Lemma 3.1

A€ = A Agron (1) = (6 = A ) 0r(8) = Agrin (1) = E0r (1)
=m0 2 Nlate) - 0lin s
- ;(Qm)l/o (L ex(m)fA_ A MWl (s) - g(t)]dA) ds =Y L&, 1).

i §=0
with 7o describing {A € C\ {0} : |Arg(\)| = 61,|\| > ro}, 11 describing {\ €
C\A{0} = [Arg(M)] < 01, [A] = o}

If A € v, we have from Remark 2.9, recalling our assumptions on g,

[7‘”7[7‘7
[INkMg(s) = 9(O]llgrp.2 < CIA[ 2m 1(\IgllB([o,T];N,f’”*""‘k(Q))

2m+B—py —6 2m+B—py —0
I =) e gl s o ).
c zm ([0, TENE(9))

So we can easily deduce that
128, Ol p2 < CE Mgl g0 yenzm o=y

if £ > &, with & suitably large. Moreover,

' (t—s)conony ™2
T(t—8) cos(U1
e 0llrnn <o [ ([ e vt Ul myamesns

2m4B—puy, —0 2m4B—pup, —0
+7r m Zka (t — 5) mt Qka Hg” 2m4B—pp —6 )dr) ds
c 2m ([0, T]; N8 (2))

B -8
T 2m
<o [ T (ollagoazrsssmiay + ol e )

< o6 (Il neso-mniy + 1ol erspce o).
Next, we show that u € C’l([O,T];Nf”(Q)) and Dyu = [A(.,0y) + Plu. To
this aim, we follow a standard argument: let € € (0,7 and define, for ¢ € [, T,
ue(t) == Ot—e K (t — s)g(s)ds. (3.21)
Then we have

Dyclt) = Kn(€lglt — ) + | KLt — $)g(s)ds (3.22)

~ Kol + [ K — 9)lg(s) — a(®)ds + Ki(e)lg(t — ) — a(0)],
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which, by Lemma 3.1, converges in B([d, T; Npﬁ”)7 for every § € (0,T], to

t

Ki(t)g(t) + ; Ki(t = s)lg(s) = g(t)lds = [A(., 0x) + Plu(t), (3.23)

by (3.16) and (3.18). This can be extended to ¢ = 0, observing that the final
expression in (3.23) converges to 0 in Nf” (@) ast— 0.

In conclusion, we have proved that u € C*([0, T]; NJ" (Q)) N B([0, T]; N2m+58
(©2)). By interpolation, u € C([0,T]; N§(Q)) for every p < 2m + 8. Finally, from
Dyu = [A(.,0;) 4+ Plu we deduce that Dyu € B([0,T]; NP (Q)).

The proof is complete. O

Now we are able to prove the main result of existence and uniqueness of a
solution in the autonomous case.

Theorem 3.6. Assume that the assumptions (I1)—(I14) hold. We consider system
(2.1) and assume that:
(I) for some B" < B, f € B([0,T]; NS (Q)) N C([0,T]; NE" (Q));
(II) for each k € {1,...,m}, and for some 6 € (0,p™"), g € B([0,T]; NZm™ 51
2m+B—py, —0
@)NnC " et ([0,T]; NO(RQ));
(III) up € NZ™H5(Q);
(IV) for each k € {17 .. .,m}, (Bk(.,(’)w)uo)wg = gk(0>|3Q.
Then (3.1) has a unique solution u belonging to C*([0,T); Nf”(Q))ﬁB([O, TY;
NZmH6(€2))), with Dyu € B([0,T]; NJ(Q))). w can be represented by the variation
of parameter formula

m

u(t) = T(t)uo + /0 T(t—s)f(s)ds + Z/o K (t — s)gr(s)ds. (3.24)
k=1

Proof. The uniqueness follows from well-known properties of sectorial operators.
Concerning the existence, we already know, from Lemmas 3.3 and 3.5, that it holds
if ug =0 and gx(0) = 0 for each k = 1,...,m. Now we consider the general case.
Subtracting to the unknown wu the initial value ug, and setting v(t) := u(t) — uo,
we are reduced to the system

Div(t,x) = Az, 0, )v(t,x) + Pu(t,z) + f(t,z) + A(z, Oz )uo(x) + Pug(x),
(t,x) € [0,T] x Q,

By (2!, 0.)v(t,2") — (gr(t,2") — Bp(2', Ox)uo(z')) =0, k=1,...,m,

(t,x') € [0,T] x 9Q

v(0,2) =0, =€ (3.25)

From assumption (IV), we have that, if we set g := gr, — Bi(., Oz )uo, gr(0) vanishes
in 9. So, if we replace gr with gr — gx(0), (3.25) does not change and we are
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reduced to a case already treated. We deduce that (3.1) has a unique solution
with the desired properties.

It remains to show that the representation (3.24) holds. From (3.25) observing
that Ky(t)g = 0 if gjpo = 0, we have

u(t) :uo—l—/o T(t—s)f ds—l—z Kk (t —s)gr(s)ds (3.26)

m

+ TV B)A(, 0, )ug + Pug) — ZK( Y(#) B (., 0 )uo

We observe that for every A € p(A)

wy = (A— A) "'\ — A(,8,) — P)ug + Z Ni(A D). (3.27)
So,
UO—FT(_l)(t)[A( 8 ’U,o—l-P’U,O ZK 8L)’U,0
6)\t m
= up + (27ri)_1/ \ {(N = A)7HA(, 0, )uo + Pug) fZNk()\)Bk(., Oz )ug HdA
0l k=1
6)\t
= ug + T (t)ug — (2mi) ™" / | todA = T (t)uo. (3.28)
vy
So the proof is complete. O

We precise Theorem 3.6:

Proposition 3.7. Consider the system (3.1), with the assumptions (11)—(14). Let
Ty € Rt. Then:

(1) if0<T <Ty and 8 > B — v, the solution u satisfies the estimate

lull ggo, 7y, v2m+2 0y + 1Petel 0,7y, n5 )

= Ofo) (|f|B([(xT1;Nﬁ(ﬂ>> 29wl o vz s ) (3.29)
k=1 .

m

2 Mol s oy |u°|2m+ﬁ””ﬂ>'
(IT) Assume that up=0,0>0—v, <a<2m+p(,0<~y<1-— 0‘2;15 Then,

_a-p
[ull 5o, 11538 (0)) < Cla, To)T" 2 <||f||B([07T];N5(Q))
(3.30)

+ ’; ||9k||B([0,T];N§’”"‘k+5(g)) + ’; HQkHC?erg;fr@ ([O,T};Ng(Q)))’



On Linear Elliptic and Parabolic etc. 295

l[ullem o713 (@)

m

_a=p_
< Clo, To)T"™ 2™ (|f|8([0,TJ;N£(Q>> +> gl g g0 ryenzm=rn+5 )
k=1

(3.31)

m

+ ;; 198 o, 1,212 ) + ; gl v re=o ([O,T];N;S(Q)))

Proof. We extend f and gx to [0, ], setting

. ft) if 0<t<T, 3 ge(t) if 0<t<T,
D=0 i r<i<m, PO V0@ ¥ r<i<n.

As 0> (6 —v, 2m+g;‘“°79 <1 foreach k =1,...,m, so that

”gk”C?erﬂZ:nf‘k*s = Hgk\lczmnge

([0.To]; N8 () ([0,T;N8 (2))

We call @ the corresponding solution (again with initial datum wg) in [0, Tp]. Of
course, v is the restriction of 4 to [0,7]. We deduce that

1l 5o zysvzm+2 0y + IIDeull g0 71 vg ()

< lall o rynzm+o ey + NP poryvg @)

< O(h) (””JEHB([QTJ;NE(Q)) + Z ”gk||B([07T1;N§’”*“’f*‘3(9>>
k=1

m

+ kz_:l HngCr"erg:an*G ([0.71:N8 (<) + |UO||2m+ﬁ,p,Q) (332)
= C(h) (”f||B<[o,T1;N5<Q>> + D N9l o gz rata
k=1

" 1; el g 237 o gy F Iollams pQ)
Concerning (II), by (I) we have
el o, 78 ) = TPl 0,778 )

< C(Ty)T <|f|B([0,T];N5(Q))

m

+ Z Hg’fHB([O,T};N{;‘W%“"(Q))
=1

m
’ ; 94l ([o,ﬂ;Nﬁm)))'

(3.33)

The intermediate cases follow from the interpolation inequalities. O
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We conclude extending Theorem 3.6 to the nonautonomous case. We shall
use the following
Theorem 3.8. Let Q be a bounded open subset of R™, with smooth boundary. Then:

(D) if B,p €R and p > |8, CP(Q) is a space of pointwise multipliers for NE(Q)

(IT) In case 3 > 0, CP(Q) is a space of pointwise multipliers for NE(Q); moreover,

there exists C € Rt such that, Ya € CP(2), Vf € Npﬁ(Q), Vo € (0,0),

lafllsp.o < Colllallpeo)lfllp.0 + llallso.oll fllze @)
< Cl@)(llall=@ I fllg.p.0 + llalls.coll fllap.0)-

Proof. Concerning (I), see [14], 3.3.2.

(IT) is a particular case of Lemma 1(II) in [10, Chapter 5.3.7]. The constant
op in the reference is defined in Chapter 2.1.3. d

We pass to consider the following system in the unknown wu:
Dyu(t,x) = A(t,x, 0x)u(t, ) + P(t)ult,.)(x) + f(t,z), (t,x) €[0,T] x Q,
Bi(t, 2,0, )u(t,2’) — gr(t,2') =0, k=1,...,m, (t,2')€[0,T]x 09,
u(0,2) =up(z), =€q, (3.34)
with the following assumptions:

(J1) Q is an open bounded subset of R™ with smooth boundary OS), for every t €
[0,T] the operators A(t,z,0,) and By(t,x’,0,) (1 < k < m) satisfy the
conditions (H1)—(H3), with m, u1, ..., pm independent of t;

(J2) p € [1,40), B € (u+p~t —2m,v+p 1), with v := minj<p<m pg, =
maxi<k<m Mk;

(J3) the coefficients as(t, z) of A(t,x,0z) (|s| < 2m) belong to C([0,
for some e € R if 3 <0, to B([0,T]; CP(Q)) N C([0,T]; C()

(J4) for each k = 1,...,m, the coefficients bys of Bi(t,x,0;) (|s| < 2m — ug)

2m - -
belong to B([0,T]; C?m+B=re(Q)) N C o ([0, T);CY(82)) for some 6 €
0,p71);

(J5) f € B([0,T]; NA() N C([0,T); NP (Q)), for some B" < 3;

(J6) fmg“ each k € {1,...,m}, gr € B([0,T); NZ™+F=ms () N o ([0, T7;
Ny (Q));

(J7) uo € NZ™H5(Q) and, for each k =1,...,m,

(Bx(0, ., 0z)uo0) 00 = 9x(0)|00;

TJ; ¢+ ()
) if B> 0;
|

(J8) For some ' < (3,
P € B([0,T]; LINZ™5(Q), Nf () N C([0, T); L(NZ™H(Q), NJ” ().
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Remark 3.9. Owing to the interpolation inequalities, it is not restrictive to assume
that

0>B—-v, BVu+tp'—-2m)<pg’. (3.35)
We want to prove the following

Theorem 3.10. Assume that the assumptions (J1)—(J8) are satisfied. Then the
system (3.34) has a unique solution u belonging to Cl([O,T];NI'?”(Q)) N B([0, TY;
NZ™HB(Q)), with Dyu € B([0,T]; NJ(Q)).

Proof. 1t is convenient to define A(¢,x,0,) := A(T,z,0;), P(t) := P(T), Bi(t,z
0z) := Br(T,z,0,) if t > T.
As [0,T] is compact, the conclusion will be proved if we show the following:

(P) let so € [0,T] and consider the problem

Du(t,x) = A(s + t,x,0;)v(t, ) + P(s+ t)u(t,.)(z) + r(t, x),

(t,z) €[0,6] x Q,

Bi(s+t,2',0,)v(t,2') —rp(t,2) =0, k=1,....,m, (t,z')€][0,d] x 9Q,
v(0,2) = vo(x), =z €L, (3.36)

with § € RY, s € (s9—4, s0+6)N[0, +00), r € B([0,8]; NF(2))NC([0,6]; N ((€))
for some 3" < 3, for each k € {1,...,m}, and for a fired § € (0V (B —v),p~ 1),
ri € B([0,8]; N2m+8=m () n ¢ 2 ((0,6]; NO(Q)), vo € NZMH(Q) and,
for each k € {1,....,m}, (Bx(s,.,0:)v0)jo0 = Tk(0)|a90. Then there exists 6 >
0, depending only on sg, such that (3.36) has a unique solution v in C1([0,d];
NZ((€2) N B([0,6]; N2™+A(Q)), with Dy € B([0,6]; NS (52)).

By subtracting the constant function vy, we may limit ourselves to study (3.36) in
the case vy = 0. We consider the family of problems

Du(t,x) = A(so,z,0x)v(t, x) + T{[A(s + t,x,0:) — A(s0, 2, Ox)]v(t, )

+ P(s+t)v(t, ) (@)} +r(t,x), (tx)€]0,0] xQ,

By (so,2’,0:)v(t, ") — 7{Bg(s0,2’, 0, )v(t,2") — Bp(s + t,2', 0, )v(t,z")}
—r(t, ') =0, k=1,...,m, (t,2')€][0,d] x I,

v(0,2) =0, x€Q, (3.37)

depending on the parameter 7 € [0, 1]. As the problem is uniquely solvable in case
7 = 0, by the continuation method, it suffices to obtain an a priori estimate of a
solution, which is independent of 7 We are going to show that this is possible if ¢
is sufficiently small.

We recall that we are assuming > 3 —v and 'V (u+p~1 —2m) < .



298 D. Guidetti
Let
ve CY([0,0]; NE' () N B([0,8); NZ"F(Q)),
with
Dy € B([0,8; NJ (2)) and v(0) =0,

and let n € RT.
Then, by Theorem 3.8 and (J3), we have, V7 € [0, 1], if ¢ is sufficiently small,

IT{[A(s + .., 0x) — A(s0, -, Ox)|v + P(s + )0} p(0,51,87 ()

(3.38)
< 77”””3([0,5];1\737””(9)) + COH”HB ([0,6;Ng(Q))>
for some « € [3,2m + (). Analogously, employing (J4), we have
I{1Bi(s 41, 0) = Bils0, 0a) 0l o g vz o= () (3.39)
< 0llvll ggo,61:n2m+8 (@)) + CollvllBo,a:ng(2))-
Now we estimate
B B m
B+ 000) = Bl B0l oo e
< .. 8= .
= ||{[Bk(s+ ) 78 ) Bk(SOa B )]U}H 2 +5 k— ([(],5];N5(Q))
If ¢, ¢’ € [0,4],
HBk(S + ta ) az) - Bk(507 ) 6 )}’U(t, )
7Bk(5+t/7'76 ) Bk(SO, aa )]U( 5. )HHPQ
< ”[Bk(s +1,.,0z ) Bk(s +t7 ° )}”U(t, )”9’]9’
+ [[Br(s +t',.,0x) — Bi(s0,-,9:)][v(t,.) —o(t’, )llop,0 := 1 + L2

By Theorem 3.8, we have, if |r| < g, using (J4),

1[brr (s +¢,.) = brr (s +¢,.)]050(t, )
< Cllbr(s +t,.) — bir(s +1',.)

2m+B—py—0

<Clt—t) o

|97p79

[0t D000

HC([o,ﬂ;N;"f”(n))’

|| [bkr(s + t/a ) - ka(507 )]a;: [’U(t, ) - U(t/v ')]”9’19’9
< Cllbrr(s + ') = brr (50, Ml oy lv(E ) = v, )l wrop.0
+ ||bkr(3 + t/7 ) - bk:r(807 ) (tv ) - U(tlv ')Hak7p79]
2m+B—py, —0

< Conlt =] 2 {Jol]_zmsi—o

I

(10,6; N5 * ()

([0,6]: N5+ 40 ()

ol s
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for fixed ay, € (0, ux + 6). So, applying Proposition 3.7, we obtain the following a
priori estimate, in case ¢ is sufficiently small:

a—pB _
101 30,132+ 2) T 1Pe0l 50 gp;vg ey +9 27 Il sosing @)

X Mg~

m
B8 -8 0
+6 2 ([0l g .53, ) T ; L O @)

< C(V”B([Oﬁ];Nf(Q)) + Z ”r’fHB([O,&};N,’j‘m*B*“k(Q))
k=1

+ kz_:l HT/CHCQMJrf;;LkaG (55N @) + nHU||B([0,5];N§m+f>‘(Q))

19l g0, a3 2m 5 () F IVl B0.8738g ()

m m

+n kz_:l ol 2y (O8N0 ) T ; O ([0,5]; NC* (Q)(Q))) ’
(3.40)
and the conclusion follows from the inequalities
ol oo o oy = U0 vz (@) + 1Pl g0 a7 )
(3.41)
with C independent of §, choosing n and § suitably small. O
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Parabolic Equations in Anisotropic
Orlicz Spaces with General A/ -functions

Piotr Gwiazda and Agnieszka Swierczewska-Gwiazda

Abstract. In the present paper we study the existence of weak solutions to an
abstract parabolic initial-boundary value problem. On the operator appearing
in the equation we assume the coercivity conditions given by an N -function
(i.e., convex function satisfying conditions specified in the paper). The main
novelty of the paper consists in the lack of any growth restrictions on the N-
function combined with an anisotropic character of the N -function, namely
we allow the dependence on all the directions of the gradient, not only on its
absolute value.
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1. Introduction

We concentrate on an abstract parabolic equation

up = div A(t,x,Vu) in (0,T) x Q, (1.1)
u(0,2) =up in Q, (1.2)
u(t,z) =0 on (0,T) x 08, (1.3)

where 2 C R? is an open, bounded set with a Lipschitz boundary 99, (0,7T) is
the time interval with T' < oo, v : (0,7) x © — R and the operator A satisfies the
following conditions:

(A1) A is a Carathéodory function (i.e., measurable w.r.t. t and = and continuous
w.r.t. the last variable).

P.G. is the coordinator and A.S-G is the mentor in the International Ph.D. Projects Programme of
Foundation for Polish Science, operated within the Innovative Economy Operational Programme
2007-2013 (Ph.D. Programme: Mathematical Methods in Natural Sciences). The authors ac-
knowledge the Grant of Ministry of Science and Higher Education 2007-2010, Nr N201 033
32/2269.



302 P. Gwiazda and A. Swierczewska-Gwiazda

(A2) There exists a function M : R? — R and a constant ¢ > 0 such that

where M is an N-function, i.e., it is convex, has superlinear growth, M (£) = 0
iff £ =0 and M(&) = M(=¢), M*(n) = supgepa(n - § — M(£)).
(A3) For all £,n € RY,

(At =,8) — A(t,2,m)) - (€ —n) =2 0.

We consider the problem of existence of weak solutions to the initial boundary
value problem (1.1)—(1.3). In the present paper we assume a full anisotropy of
the N-function, namely it depends on a vector-valued argument and we do not
put any assumptions on the growth of an N-function. Indeed we do not assume
that neither M nor M* satisfies the so-called Ay condition'. The following pair of
functions can serve as an example in d = 2:

M(€) = M(&,6) = el — |&| =14 (1 + &) In(1 + |&]) — [&],

M*(n) = M* (1, 12) = (L4 [ ) In(L+ | ) = | + €/ — || — 1.

The result in the anisotropic case is not a straightforward extension of the isotropic
one. The new difficulty arising here concerns the density of compactly supported
smooth functions w.r.t. the modular topology of the gradients. The detailed ana-
lysis of this issue appears in Section 3.

We can cite some nontrivial examples of the operator A:

o A(t,x,€) = a(t,z) exp(|£]?) where 0 < ¢1 < a(t,z) < ca < 00,

o A(t,z,&) = a(t,z)¢In(1 + |£]) where 0 < 1 < a(t,z) < ¢z < 00,

o A(t,x,£1,&) = ar(t,x)& exp(|€1]?) + az(t, 2)& In(1 + |&]) where 0 < ¢; <
a;(t,z) < ca < oo fori=1,2.

In [2] the operator A was assumed to be an elliptic second-order operator in diver-
gence form and monotone. The growth and coercivity conditions were more general
than the standard growth conditions in LP, namely the A/-function formulation
was stated?. Under the assumptions on the A-function M: €2 << M(|¢]) (i.e., €2
grows essentially less rapidly than M (|¢])) and M* satisfies a Ag-condition, the
existence results to (1.1)—(1.3) was established. The restrictions on the growth of
M were abandoned in [3], but still M had an isotropic character.

The review paper [7] summarizes the monotone-like mappings techniques in

Orlicz and Orlicz—Sobolev spaces®.

1We say that an N-function M satisfies the As-condition if for some constant C' > 0 it holds
that M(2¢) < CM(¢) for all £ € Re.

2 Assumption (A2) is in fact a generalization of the growth and coercivity conditions assumed in
[2] for the case of M dependent on a vector-valued argument.

SW™ L) is the Orlicz—Sobolev space of functions in Lj; with all distributional derivatives up
to order m in Lp;.
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Before stating the main result let us recall the standard notation. For brevity
we write @ := 2 x (0,T). By the generalized Orlicz class £3/(Q) we mean the set
of all measurable functions £ : Q — R? for which the modular

pur(€) = /Q M(E(t, @) dudt

is finite. By Ls(Q) we denote the generalized Orlicz space which is the set of all
measurable functions ¢ : Q — R? for which py(aé) — 0 as a — 0. This is a
Banach space with respect to the norm

|5|M=sup{ /Q n-€dudt s n € Ly (Q), /Q M*(n)dwdtsl}.

By En(Q) we denote the closure of all bounded functions in Lj;(Q). The space
L+ (Q) is the dual space of Ej(Q). We will say that a sequence 2z’ converges
modularly to z in Ly (Q) if there exists A > 0 such that

29—z
PM( A\ )HO-

We will use the notation 275 2 for the modular convergence in L/ (Q). Contrary
to [6] we consider the N-function M not dependent only on |£|, but on the whole
vector £. Below, we formulate the main result of the present paper. The space Z3!
appearing in the theorem is defined in Section 3.

Theorem 1.1. Let M be an N -function and let A satisfy conditions (A1)—(A3).
Given ug € L*(Q) there exists u € Z}M such that

/ (—up + A(t,xz, Vu) - Vo) dedt = / uo(x)e(0, z)dx (1.4)
Q Q

holds for all ¢ € D((—00,T) x Q).

2. Useful facts about Orlicz spaces

In this short section we collect some facts about N -functions and Orlicz spaces,
which are used in the proof of the main theorem. All the proofs to the collected
lemmas and propositions can be found, e.g., in [5].

Lemma 2.1. Let 27 : Q — RY be a measurable sequence. Then AM 5 in Ly (Q)
modularly if and only if 27 — z in measure and there exist some X\ > 0 such that
the sequence {M(\z7)} is uniformly integrable, i.e.,

lim sup/ M(\z?)dxdt | = 0.
R—oo \ JEN J{(t,2):|M(X27)|>R}

Lemma 2.2. Let M be an N -function and for all j € N let fQ M(27) < c. Then
the sequence {27} is uniformly integrable.
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Proposition 2.3. Let M be an N -function and M* its complementary function.
Suppose that the sequences 7 : Q@ — R* and ¢’ : Q — R? are uniformly bounded

in Ly (Q) and Ly« (Q) respectively. Moreover ?/Jj%dj modularly in Ly (Q) and
(bjﬂ(b modularly in Ly-(Q). Then 9 - ¢7 — 4 - ¢ strongly in L(Q).
Proposition 2.4. Let ¢/ be a standard mollifier, i.e., o € C*°(R), o has a compact
support and [ o(T)dT = 1,0(t) = o(—t). We define ¢ (t) = jo(jt). Moreover let
* denote a convolution in the variable t. Then for any function v : Q — R such
that 1 € L' (Q) it holds that

(o7 % p)(t,x) — (t,z) in measure.

Proposition 2.5. Let ¢/ be defined as in Proposition 2.4. Given an N -function M
and a function 1 : Q — R? such that ¢ € L(Q) the sequence {M (o’ * )} is
uniformly integrable.

3. Closures of compactly supported smooth functions
In the present section we concentrate on the issue of closures. We consider the
closure of C°((—00,T) x Q) in the three different topologies:

1. strong (norm) topology of L/(Q) and we denote this space by X}, namely
X ={p € L0, T5 I(Q)), Vo € Lar(@) | 3 17)321 € O ((—00,T) X )
@ 5 pin L°°(0,T; L*(Q)) and V¢’ — Vo strongly in Ly(Q)},

2. modular topology of Ly (Q), which we denote by Y, namely

Yo ={p € L=(0,T5 L%(2)), Vo € Lu(Q) | 3{¢’}52, € O ((—00,T) x Q) :
¢ 5 pin L°°(0,T; L*(Q)) and Vapj&VLp modularly in Lp(Q)},

3. weak-star topology of Ly (Q), which we denote by Z3, namely

73" ={p € L*(0,T; LA(Q)), Vo € Lu(Q) | 3 {¢’}321 € C2((~00,T) x Q) :

Jj=1
@ 5 pin L°(0,T; L*(Q)) and V¢! > Vo weaklystar in Ly (Q)}.

The closures in the strong and weak topology of the Vu in Ly (Q) are equal
if and only if M satisfies the As-condition, cf. [4]. Hence as we do not require
As-condition, this will not hold and we only concentrate on the relation between
modular and weak-star closures.

Lemma 3.1. Let M be an N -function and Y3, ZM be the function spaces defined
in 2. and 3. above. Then Y{M = Z}.

Proof. Clearly YM < ZM (modular topology is stronger than weak-star). The
proof of an opposite inclusion we will split into two steps. In the first step we will
assume that (2 is a star-shaped domain, whereas in the second step we extend the
idea for arbitrary Lipschitz domains.
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Step 1. Star-shaped domains. We are aiming to show that
zZyr cyM. (3.1)
For readability of the proof we introduce the notation
Var = {u € L*0,T; W, ' (Q)) N L>=(0,T; L*(Q)) | Vu € Lu(Q)}.
The starting point is extending the function u by zero outside of £ to the whole R?
to mollify it. To assume the extension is properly defined we split (3.1) as follows:
ZM C Vi (32)
and
Var € Y. (3.3)
Inclusion (3.2) is obvious and to prove (3.3) we define

uMt, ) == u(t, \(z — x0) + z0)

where z¢ is a vantage point of Q. Let ey = Jdist (9Q, AQ2) where \Q := {y =
A (z— ) + 2o | © € Q}. Define then

uME(t, x) = 0 *x uM(t, x)

where g, is a standard mollifier, the convolution is done w.r.t. x and ¢ and € < €}.
This approximation has the property that if u € Vi, then u™ € Vy; for
Ae €—0 A

e < g). First we pass to the limit with ¢ — 0 and hence u — u” in

LY0,T; Wy ' (Q)) and Vur® =29 Vo modularly in L (Q). Then we pass with
A — 1 and obtain that v 2= 4 in LY(0,T; Wy (Q)) and Vu? 221 Vu modu-
larly in Lp(Q).
Step 2. Arbitrary Lipschitz domains. Since we consider the domain with Lipschitz
boundary, then there exists a countable family of star-shaped Lipschitz domains
{€Q;} such that (cf. [8])

Q=]

icJ
We introduce the partition of unity §; with 0 < 6, < 1, 6, € C§°(;), suppb; =
Qi, Y ey 0i(z) =1 for x € Q. The proof of (3.1) we split also into two parts. First
we show that

Var N L2(Q)" = Vs, (3.4)

where the closure above is meant w.r.t. the modular topology. Indeed, define T;, (u)
— the truncation of the function u, namely
u if |u| <n,
Tn(u) = n if w>n, (3.5)
—n if u< —n.
Note that if uw € Vi then T,,(u) € Vyy. Moreover, as n — oo we observe the

convergence
To(u) — u  stronglyin L0, T; Wy ' (Q)).
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Additionally it holds that M (VT (u(t,z))) < M(Vu(t,x)) a.e. in Q. Indeed, this
inequality can be easily concluded if we consider separately three subsets: the set
where T}, (u) and u coincide and the remaining two sets, where T;,(u) is equal to n
or —n. Since T, (u) € L'(0,T; W, (Q)), then VT, (u) is equal to zero a.e. in these
two sets. Consequently M (VT, (u(t,x))) is uniformly integrable, which combined
with pointwise convergence provides

VT,(u) — Vu modularly in  Lp(Q).
In the next step we will show that
(Var NL=(Q)) C Y57,
which together with (3.4) and (3.2) will prove (3.1). If u € Vjy N L*°(Q) then
w-0; € LY0,T; Wy () N L2°(0, T5 LA(Q4)) N L((0,T) x Q)

and

Vu-0; +u-Vl;, = V(u . 92) € L]\{((O,T) X 92)7
where ; = supp 0;. Now we follow the case of star-shaped domains to complete
the proof. 0

Remark 3.2. Note that in the classical case M = M(| - |) (i.e., the modular does
not depend on the direction) the proof is simpler. The problem which arises here
is the lack of proper Poincaré inequality, cf. [1], which in the isotropic case has the
form

/M(\Vu(t,x)\)dmdtzc/ M(Ju])dad.
Q Q

4. Existence result

In the current section we will prove Theorem 1.1. The finite-dimensional approxi-
mate problem is constructed by means of the Galerkin method. The basis consist-
ing of eigenvectors of the Laplace operator is chosen and by u” we mean the solu-
tion to the problem projected to n vectors of the chosen basis. Let Q® := (0, s) x Q
with 0 < s < T. In the standard manner we conclude that, for 0 < s < T,

1 1
| At vur) - Vardede = )l O)] -, la"(5)13 (41)

holds, the energy estimates are derived and convergence of appropriate sequences
is concluded, namely

Vu" 5 Vu weakly-star in Ly (Q),
u" —wu  weakly in L'(0,T; WHH(Q)),
Al Vu) By weakly-star in L (Q), (4.2)
ut oy in L>(0,T; L*(9)),
ul Bu,  weakly-star in W h(0,T; L(9).
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After passing to the limit we conclude the limit identity
7/ wprdadt +/ X - Vpdxdt = / uo(x)p(0, x)dx (4.3)
Q Q Q

for each compactly supported and smooth function . In the remaining part of
the proof we will concentrate on characterizing the limit y. We are aiming to
integrate by parts in (4.3) although the solution is not an admissible test function.
According to the results of Section 3 a function of the form

ol =07 x o xu (4.4)
is already a proper test function with o € C*°(R), p having a compact support,
o(t) = o(—7), [zo(r)dr =1 and defining 0’ (t) = jo(jt). Indeed, if we approx-
imate the function of the form (4.4) by a sequence of smooth functions, then in
the case x € Epy-(Q) we pass to the limit with weak-star convergence. But if
X ¢ Ep-(Q), which indeed is the case when Ep«(Q) # L+ (Q), we will pass to
the limit by means of modular convergence. This is the reason why in Section 3
we concentrated on showing that weak-star and modular limits coincide.

Then, we can observe that for 0 < sg < s < T it follows that

/s<ut,w> dt = /S<ut, (o) * o xu)) dt = /S<(gf ), () % u)) dt

S0 S0 S0
S1d. 1. . 1. .
- / y ol s ulld de = o u()l3 — e+ u(so)l.

Next, we pass to the limit with j — oo and obtain for almost all sg, s, namely for
all Lebesgue points of the function u(t), that

S

. ; 1 1
Jim (w, w!) dt = 2H'LL(S)II% - 2H'LL(So)II%- (4.5)
S0

Let us pass now with 5 — oo in other terms. First we concentrate for 0 <
S0 < 81 < T on the term

/ssl/gx-(gj*Qj*Vu)dxdt:/:l/Q(gj*X>,(gj*vwdxdt

Obviously, for any 1 € L1(Q) it holds that (¢’ x ¢) — 1) in measure. Hence
o’ % x — x in measure

and

¢’ * Vu — Vu in measure.

Since M and M* are convex and nonnegative, then weak lower semicontinuity and
a priori estimates provide that the integrals are finite,

/M(Vu)dxdt and /M*(X)dxdt
Q Q
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and consequently the sequences {M (¢’ x Vu)} and {M*(¢’ * x)} are uniformly
integrable. Thus by Lemma 2.1,

o * Vu-L v modularly in L (Q),
o x Xﬂ X modularly in Ly« (Q).
By Proposition 2.3 we conclude that

lim / /(,Qj xx) - (o * Vu)dmdt:/ / X - Vudzdt. (4.6)
S0 Q So Q

Jj—oo

We are aiming to show that
1 1
W= yllwlf+ | x- udeit =0, (47)

which according to (4.3)—(4.6) holds for some 0 < so < T, not necessarily equal to
zero. To pass to the limit with so — 0 we need to establish the weak continuity
of u in L?(Q) w.r.t. time. For this purpose we consider the sequence d;‘tn} and
provide uniform estimates. By P" we mean the orthogonal projection of L?(£2)
on the first n eigenvectors of the Laplace operator. Let ¢ € L*(0,T; VK:Q(Q)),
H(pHLOO(O,T;WOT’Q) <1, where 7 > ¢ 4+ 1 and observe that

du™ du™ .\ " "
(% o) = (" oy == [ Ata ) 9o,

Since ||P”g0\|w(;-,z < HQDHW[;-,Z and Wr=12(Q) C L () we estimate as follows:
T T

[ ] At vun) - 9P edsdt] < [ A Tun)l oo V") 1oyt
0o Ja 0

T
< C/ [A(E - Vu) [ L@ 1P ellwy2dt < el A, - Va) i@y 11l oo o,,w2)-
0
(4.8)
Hence we conclude that %" is bounded in L!(0, T; W~"2(1)). From the energy es-

timates and Lemma 2.2 we conclude existence of a monotone, continuous function
L:R; — Ry, with L(0) = 0 which is independent of n and

s2
/ AL, -, Vu™) || L) < L(]s1 — s2])

S1

for any s1, s2 € [0,T]. Consequently, estimate (4.8) provides that

82 du1’L
dt
[ %)

for all ¢ with supp ¢ C (s1,s2) C [0,T] and ||¢||LW(O7T;WJ,2) < 1. Since

VARSI

< L(|s1 = s2])

[u(s1) = u"(s2)llw-r2 = sup
6l 2 <1
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then

sugI lu"(s1) — u" (s2)||w-r2 < L(]s1 — s2]) (4.10)
ne

which provides that the family of functions u™ : [0,T] — W ~"2(Q) is equicontinu-
ous. Together with a uniform bound in L®°(0,T; L?(£2)) it yields that the sequence
{u"} is relatively compact in C([0,T]); W~"2(Q)) and v € C([0,T]; W~"2(Q)).
Consequently we can choose a sequence {sj};, s — 0% as i — oo such that
w(sh)ZFu(0) in W2(Q). (4.11)
The limit coincides with the weak limit of {u(s})} in L?(Q2) and hence we conclude
that
lim inf {|u(so)l| L2(0) = [[uollL2(0)- (4.12)

Consequently we obtain from (4.1) for any Lebesgue point s of u that

1 1
limsup/ At,z, Vu™) - Vu" = 0 l|uol3 — likH_ljgf 5 |u™(s)]||3 (4.13)
1 1
< sluoll — L a3
(4.12)

12) 1 i 1
<imant (Gl - (o3 )

= 4lim/ /X~Vudxdt:/ /X-Vudxdt.
PO Jsh I 0 JQ

Having the above estimate we can complete the proof using the monotonicity of
A, namely

/ (A(t,z,0) — A(t, z, Vu™)) - (0 — Vu™)dzdt > 0 (4.14)

for all v € L*°(Q). Observe that for v € L*°(Q) it also holds that A(t,z,0) €
L>(Q). Indeed, assume the opposite, i.e., A(t,z,v) is unbounded. Then, since M
is nonnegative, by (A2), the following estimate holds:

|A(t, x, )|
Taking into account the superlinear growth of M we observe that the right-hand

side tends to infinity, which contradicts that v € L>°(Q). Before passing to the
limit with n — oo, we rewrite (4.14):

/ A(t,a:,Vu”)oVu"dxdtz/

s

A(t,xz, Vu™) oz_)d:cdtJr/ A(t,z,v)-(Vu" —v)dxdt

(4.15)
hence

/ x - Vudxdt > / X - vdxdt + / A(t,z,v) - (Vu — 0)dadt (4.16)
s Qs s
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and consequently
/ (A(t,z,9) — x) - (0 — Vu)dzdt > 0. (4.17)

We fix k£ > 0 and define Qj, as
Qr ={t,z) € Q°: |Vu(t,z)| <k ae. in Q°}.
Let now 0 < j < 4 be arbitrary and h > 0. We make the following choice of o,
v = (Vu)]lQl + h,?]le7
with an arbitrary z € L°°(Q). Using (4.17) we obtain
7/ (A(t, z,0) fx)-Vud:cdtJrh/ (A(t,z, Vu+hz)—x)-zdxdt > 0. (4.18)
Q\Q: Qj
Since (A2) implies that A(t,z,0) = 0, then obviously

— / (A(t,z,0) — x) - Vudzdt = / X - Vu 1ga\ g, dzdt
Q\Q: Q

and since
/ |x - Vuldzdt < oo
Q

we obtain, while passing to the limit with ¢ — oo,
X Vulgag, —0 ae in@.
Hence by the Lebesgue dominated convergence theorem

lim X - Vudzdt = 0.
T JQNQ:

Letting i — oo in (4.18) and dividing by h yields
/ (A(t,z,Vu + hz) — x) - zdzdt > 0.
Qj

Observe that Vu+hz — Vu a.e. in Q; as h — 07 and A(t, z, Vu+hz) is uniformly

bounded in L>(Q);), |Q,| < oo, hence by Vitali’s theorem we conclude that
A(t,z,Vu+ hz) — A(t,z, Vu) in L'(Q;)

and

/ (A(t,z, Vu + hz) — x) - Zdzdt — (A(t,z, Vu) — x) - Zdzdt
Qj oF
as h — 0%. Consequently,
/ (A(t,z,Vu) — x) - Zdzdt >0
Qj

for all zZ € L*°(Q). The choice z = —sgn (A(t, z, Vu) — x) yields

/ |A(t, z, Vu) — x|dzdt < 0.
Qj



Parabolic Equations in Anisotropic Orlicz Spaces 311

Hence

A(t,z,Vu) = x a.e. in Q;. (4.19)
The above identity holds for arbitrary j, hence (4.19) holds a.e. in Q. Since it
holds for almost all s such that 0 < s < T then

x = A(t,z,Vu) a.e.in Q,
which completes the proof of Theorem 1.1 O
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Abstract. We show that elliptic second-order operators A of divergence type
fulfill maximal parabolic regularity on distribution spaces, even if the underly-
ing domain is highly non-smooth, the coefficients of A are discontinuous and A
is complemented with mixed boundary conditions. Applications to quasilinear
parabolic equations with non-smooth data are presented.
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1. Introduction

Tt is the aim of this paper to provide an abridged version of our work [40]. The goal
is to provide a text with only few proofs and with a considerable reduction of the
sophisticated technicalities. In particular, we present a direct way to carry over
maximal parabolic regularity from LP spaces to the distribution spaces, avoiding
the Dore-Venni argument. So our hope is to produce a more readable text for
colleagues who are only interested in the principal ideas and results of [40]. On
the other hand, due to discussions with K. Groger, we succeeded in eliminating
the crucial supposition in [40] that the local bi-Lipschitz charts for the boundary
of the domain have to be volume preserving — at least what concerns maximal
parabolic regularity. Thus the conditions get a lot easier to control in examples
from beyond the class of strong Lipschitz domains. Naturally, the proof of this is
pointed out below, see Section 4.

Our motivation was to find a concept which allows us to treat nonlinear
parabolic equations of the formal type

{ u = V- Gu)uVu = R(t,u),

u(To) = ug, (1)
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combined with mixed, nonlinear boundary conditions:
v-Gu)pVu+blu)=gonT and u=0o0n0N\T, (1.2)

where T is a suitable open subset of 0f2.

The main feature is here — in contrast to [43] — that inhomogeneous Neumann
conditions and the appearance of distributional right-hand sides (e.g., surface den-
sities) should be admissible. Thus, one has to consider the equations in suitably
chosen distribution spaces. The concept to solve (1.1) is to apply a theorem of
Priiss (see [51], see also [15]) which bases on maximal parabolic regularity. This
has the advantage that right-hand sides are admissible which depend discontinu-
ously on time, which is desirable in many applications. Pursuing this idea, one has,
of course, to prove that the occurring elliptic operators satisfy maximal parabolic
regularity on the chosen distribution spaces.

In fact, we show that, under very mild conditions on the domain €2, the
Dirichlet boundary part 9Q\ T" and the coefficient function, elliptic divergence op-
erators with real, symmetric L°°-coefficients satisfy maximal parabolic regularity
on a huge variety of spaces, among which are Sobolev, Besov and Lizorkin-Triebel
spaces, provided that the differentiability index is between 0 and —1 (cf. Theo-
rem 5.18). We consider this as the first main result of this work, also interesting
in itself. Up to now, the only existing results for mixed boundary conditions in
distribution spaces (apart from the Hilbert space situation) are, to our knowledge,
that of Groger [36] and the recent one of Griepentrog [31]. Concerning the Dirichlet
case, compare [10] and references therein.

Let us point out some ideas, which will give a certain guideline for the paper:

In principle, our strategy for proving maximal parabolic regularity for diver-
gence operators on Hp Y% was to show an analog of the central result of [9], this
time in case of mixed boundary conditions, namely that

(-V-pv+1)"2 L9 gL (1.3)

provides a topological isomorphism for suitable ¢q. This would give the possibil-
ity of carrying over the maximal parabolic regularity, known for L4, to the dual
of Hll’q/, because, roughly spoken, (=V - uV + 1)_1/2 commutes with the corre-
sponding parabolic solution operator. Unfortunately, we were only able to prove
the continuity of (1.3) within the range ¢ € |1,2], due to a result of Duong and
M¢Intosh [22], see also [49], but did not succeed in proving the continuity of the
inverse in general.

It turns out, however, that (1.3) provides a topological isomorphism, if QUT
is the image under a bi-Lipschitz mapping of one of Groger’s model sets [35],
describing the geometric configuration in neighborhoods of boundary points of 2.
Thus, in these cases one may carry over the maximal parabolic regularity from L9
to Hp La, Knowing this, we localize the linear parabolic problem, use the ‘local’
maximal parabolic information and interpret this again in the global context at
the end. Interpolation with the LP result then yields maximal parabolic regularity
on the corresponding interpolation spaces.
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Let us explicitly mention that the concept of Groger’s regular sets, where the
domain itself is a Lipschitz domain, seems adequate to us, because it covers many
realistic geometries that fail to be domains with Lipschitz boundary. One striking
example are the two crossing beams, cf. [40, Subsection 7.3].

The strategy for proving that (1.1), (1.2) admit a unique local solution is as
follows. We reformulate (1.1) by adding the distributional terms, corresponding to
the boundary condition (1.2) to the right-hand side of (1.1). Assuming additionally
that the elliptic operator —V - uV + 1 : H2? — Hp "7 provides a topological
isomorphism for a ¢ larger than the space dimension d, the above-mentioned result
of Priiss for abstract quasilinear equations applies to the resulting quasilinear
parabolic equation. The detailed discussion how to assure all requirements of [51],
including the adequate choice of the Banach space, is presented in Section 6. Let
us further emphasize that the presented setting allows for coefficient functions
that really jump at hetero interfaces of the material and permits mixed boundary
conditions, as well as domains which do not possess a Lipschitz boundary. It is
well known that this is highly desirable when modelling real world problems. One
further advantage is that nonlinear, nonlocal boundary conditions are admissible
in our concept, despite the fact that the data is highly non-smooth, compare [2]. It
is remarkable that, irrespective of the discontinuous right-hand sides, the solution
is Holder continuous simultaneously in space and time, see Corollary 6.17 below.

In Section 7 we give examples for geometries, Dirichlet boundary parts and
coeflicients in three dimensions for which our additional supposition, the isomorphy
—V - uV +1: H? — Hy Y really holds for a ¢ > d.

Finally, some concluding remarks are given in Section 8.

2. Notation and general assumptions

Throughout this article the following assumptions are valid.

e 0 C R4 is a bounded Lipschitz domain (cf. Assumption 3.1) and T' is an open
subset of ).

e The coefficient function p is a Lebesgue measurable, bounded function on 2
taking its values in the set of real, symmetric, positive definite d x d matrices,
satisfying the usual ellipticity condition.

Remark 2.1. Concerning the notions ‘Lipschitz domain’ and ‘domain with Lip-
schitz boundary’ (synonymous: strongly Lipschitz domain) we follow the termi-
nology of Grisvard [34].

Remark 2.2. Since the requirement ‘Lipschitz domain’ does not become apparent
explicitly in the subsequent considerations, let us briefly comment on this: it as-
sures the existence of a continuous extension operator ¢ : L*(Q2) — L!(R?) whose
restriction to H2(2) maps this space continuously into H'2(R?). This property
is fundamental for nearly all harmonic analysis techniques applied below, see [49,
Ch. 6.3] and [7].
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For ¢ €]0,1] and 1 < ¢ < oo we define Hpy?(2) as the closure of

OF(Q) = {¢la : ¥ € CF(R?), supp(¢) N (92\T) = 0}
in the Sobolev space H*?(€). Concerning the dual of Hv(2), we have to dis-
tinguish between the space of linear and the space of anti-linear forms on this
space. We define Hy.*?(€2) as the space of continuous, linear forms on Hli’q/(Q)
and Hy () as the space of anti-linear forms on Hf;’q/(Q) if 1/g+1/q' = 1. Note
that L? spaces may be viewed as part of H 9 for suitable ¢, ¢ via the identification

of an element f € L? with the anti-linear form Hf;’q/ Sv¢— [ fdx.

If misunderstandings are not to be expected, we drop the €2 in the nota-
tion of spaces, i.e., function spaces without an explicitly given domain are to be
understood as function spaces on 2.

By K we denote the open unit cube |—1, 1[d in R?, by K_ the lower half-cube
Kn{x:zq4 <0}, by X=KnN{x : x4 =0} the upper plate of K_ and by X, the
left half of ¥, i.e.,, ¥g =X N{x : z4_1 < 0}.

Throughout the paper we will use x,y, ... for vectors in R%.

If B is a closed operator on a Banach space X, then we denote by domx (B)
the domain of this operator. £(X,Y) denotes the space of linear, continuous op-
erators from X into Y; if X =Y, then we abbreviate £(X). Furthermore, we will
write (-,-)x+ for the dual pairing of elements of X and the space X’ of anti-linear
forms on X.

Finally, the letter ¢ denotes a generic constant, not always of the same value.

3. Preliminaries

In this section we will properly define the elliptic divergence operator and after-
wards collect properties of the LP realizations of this operator which will be needed
in the subsequent sections.

Let us first recall the concept of regular sets 2 U T, introduced by Groger
in his pioneering paper [35], which will provide us with an adequate geometric
framework for all that follows.

Assumption 3.1. For any point x € 0 there is an open neighborhood Yy of
x and a bi-Lipschitz mapping ¢, from Y into R? such that ¢y(x) = 0 and
(bx((QUF)ﬂTX) =K_orK_UYor K_UDXj.

Remark 3.2. Tt is not hard to see that every Lipschitz domain and also its closure
is regular in the sense of Groger, the corresponding model sets are then K_ or
K_ UX, respectively, see [34, Ch. 1.2]. In two and three space dimensions one can
give the following simplifying characterization for a set Q UT to be regular in the
sense of Groger, i.e., to satisfy Assumption 3.1, see [39]:

If Q C R? is a bounded Lipschitz domain and I' C 99 is relatively open,
then Q UT is regular in the sense of Groger, iff 9Q \ T' is the finite union of
(non-degenerate) closed arc pieces.
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In R3 the following characterization can be proved:
If O C R? is a bounded Lipschitz domain and T C 0 is relatively open, then
QUT is regular in the sense of Groger, iff the following two conditions are satisfied:
i) 90\ T is the closure of its interior (within 9<2).
ii) For any x € T'N (92 \ T') there is an open neighborhood U of x and a bi-
Lipschitz mapping x : U NT N (ON\T) — |-1,1].

Following [27, Ch. 3.3.4 C], for every Lipschitz hypersurface H C 2 one can
introduce a surface measure o on H. This is in particular true for H = 952, see
also [41]. Having this at hand, one can prove the following trace theorem.

Proposition 3.3. Assume q € ]1,00[ and 0 € ]21, 1]. Let II be a Lipschitz hyper-

surface in 2 and let w be any measure on II which is absolutely continuous with
respect to the surface measure o. If the corresponding Radon-Nikodym derivative
is essentially bounded (with respect to o), then the trace operator Tr is continuous
from H?1(Q) to LI(II, ).

Later we will repeatedly need the following interpolation result.

Proposition 3.4. Let Q and T satisfy Assumption 3.1 and let § € 10,1[. Then for

1 _ 1-¢6 /]
q0,q1 €]1,00[ and , =" 7+ ' one has
Hy? = [HY® HY ™ and  Hp V%= [Hp W%, HR Mg, (3.1)

We define the operator A : Hll’Q — f[;m by

(A, ) 12 ::/Q/Nw-w dx+/rmp<pda, o€ HY?, (3.2

where s € L*°(T',do). Note that in view of Proposition 3.3 the form in (3.2) is
well defined.

In the special case > = 0, we write more suggestively —V - uV instead of A.

The L? realization of A, i.e., the maximal restriction of A to the space L2, we
denote by the same symbol A; clearly this is identical with the operator which is
induced by the form on the right-hand side of (3.2). If B is a self-adjoint operator
on L?, then by the LP realization of B we mean its restriction to LP if p > 2 and
the LP closure of B if p € [1,2].

First, we collect some basic facts on the operator —V - uV.

Proposition 3.5.

i) The operator V - uV generates an analytic semigroup on 1{11:1’2.

ii) The operator —V - uV is self-adjoint on L? and bounded by 0 from below.
The restriction of —A to L? is densely defined and generates an analytic
semigroup there.

iii) If A\ > 0 then the operator (—V -uV +\)1/2 HIE’Z — L? provides a topological
isomorphism; in other words: the domain of (=V - uV + N2 on L? is the
form domain HIE’Q.
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iv) Let ¢ € L™ be a real function with a positive lower bound. Then —CV -uV+1
has its spectrum in [1,00] and admits a bounded functional calculus on L?.

v) The operator V - uV, considered on LP, p € |1,00], is densely defined and
generates a strongly continuous semigroup of contractions there.

vi) Let ¢ € L*™ be a real function with a positive lower bound. Then, under
Assumption 3.1, the operator (V - uV satisfies the estimate

_ . 1
¢V -1V =1 =X gzr) if Red>—, (3.3)

< My
T 1A

and, hence, generates a bounded, analytic semigroup on every space LP, p €
11, o0l

Proof. Assertions i)—iii) are standard, while iv) follows from ii) and the subsequent
Lemma 3.6. Part v) is proved in [49, Thm. 4.28 /Prop. 4.11]. Finally, a proof of
(3.3) is contained in [33, Thm. 5.2/Remark 5.1] and the second part of vi) then
follows from [50, Thm. 7.7] or [45, Ch. IX.1.6]. O

Lemma 3.6. Let w € L™ be a real function with a strictly positive lower bound and
let B be a selfadjoint, positive operator on L?. Then the operator wB + 1 has its
spectrum in [1,00[ and admits a bounded functional calculus on L?.

Proof. We equip L? with the equivalent scalar product (f,g) — [, fgw™'dx and

name the resulting Hilbert space L2. Observe that C' € L(L?),iff C € E(ZE) The
equation

-1 = X “ldx = b'¢ “ldx
/Q(wB—I—l)fgw dx—/QBfgd —&—/Qfgw d /QfBgd —&—/Qfgw d
:/f(wB—i—l)gw_1 dx for f, g€ domp2(B)
Q

shows that wB + 1 is symmetric on 2.
Let A < 1. Then, by the hypotheses on B and w, the operator

w H(wB+1-)\)=B+w ' (1-))
on L? is self-adjoint and has a strictly positive lower form bound. Thus, it is

continuously invertible on L2. This now implies invertibility of wB +1 — X on L?,
as well as on L2. So, every A € |—00, 1] is in the resolvent set of wB + 1 on 12 and
this, together with the symmetry shown above, implies that the operator wB + 1
is selfadjoint in L2 and has its spectrum in [1, ool.

Exploiting now a spectral integral representation wB +1 = |, 100 AdP()), one
obtains a bounded functional calculus of wB + 1 on 2. This implies a bounded
functional calculus also on L2, since both norms are equivalent. O

One essential instrument for our subsequent considerations are (upper)
Gaussian estimates.



Maximal Parabolic Regularity for Divergence Operators 319

Theorem 3.7. Let (,V be real, positive L>° functions and let { admit a positive
lower bound. Then the semigroup, generated by (V-uNV—V satisfies upper Gaussian
estimates, precisely:

(LT HT=V) f)() /Q Ki(y)f(y)dy, xe®, fel?

for some measurable function Ky : Q x Q — Ry and for every € > 0 there exist
constants ¢,b > 0, such that

C —b ‘X*Y|2
= $d/2 ¢ '
If V admits a lower bound V, > 0, then € may be taken as 0.

0 < Ki(x,y) et t>0, a.a.x,y € Q. (3.4)

Proof. Let us first consider the case ( = 1. If V is only nonnegative, then the
estimate in (3.4) follows from [49, Theorem 6.10] (see also [7]). If V' admits a
strictly positive lower bound Vi, then one may write V =V — V, + V, and thus
obtains (3.4) with e = 0.

The case of general ( is implied by the multiplicative perturbation result
in [23]. O

Lemma 3.8. Let { € L™ be a real function with a strictly positive lower bound and
p € |1,00[. Then, under Assumption 3.1, domp» (fCV -uV + 1)1/2 = dompy» (fV :

wV + 1)1/2, and the norms ||(—CV - uV + 1) V2 e and ||(=V - uV + 1)1/2
are equivalent.

Iz

Proof. Since ¢ has positive lower and upper bounds, D¢ := domz»(—(V - uV +1)
equals D := domp» (—V-uV+1) and the corresponding graph norms are equivalent.
Thus, necessarily also [LP, D¢]y/2 = [LP, D]y, including the equivalence of the
corresponding norms. In order to conclude, we will show that both, -V - uV + 1
and —¢V-uV+1 admit bounded imaginary powers on LP. Then by [56, Ch. 1.15.3],
one obtains the identity

dompy (—V - ¥V +1)"* = [L?, D)y )5 = [I, D¢l j2 = domps (—CV - puV 4 1)/,

including the equivalence of the graph norms.

The operator —V - uV 41 has bounded imaginary powers thanks to Proposi-
tion 3.5 v) and [17, Corollary 1]. Concerning —(V-uV+1, one can argue as follows:
this operator has a bounded H* calculus on L? by Proposition 3.5 iv) and the
associated semigroup admits Gaussian estimates with € = 0 by Theorem 3.7. Thus
the bounded H* functional calculus extrapolates to all spaces LP, p € |1, 00[, by
[24, Theorem 3.4] and this in particular implies bounded imaginary powers. O
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4. Mapping properties for (—V - uV + 1)1/2

In this chapter we prove that, under certain topological conditions on 2 and T,
the mapping

(=V-uV+ 1Y% HY? — L9
is a topological isomorphism for ¢ € |1, 2[. We abbreviate —V-uV by Ag throughout
this chapter. Let us introduce the following

Assumption 4.1. There is a bi-Lipschitz mapping ¢ from a neighborhood of 2 into
R? such that ¢(QUT) = K_ or K_UX or K_ U Y.

The main results of this section are the following three theorems.

Theorem 4.2. Under the general assumptions made in Section 2 the following holds
true: For every q € |1,2), the operator (Ag +1)~'/2 is a continuous operator from
L9 into HY?. Hence, it continuously maps Hp ™% into L9 for any q € [2,00].

Theorem 4.3. Let in addition Assumption 4.1 be fulfilled. Then, for every q € |1,2],
the operator (Ag + 1)1/2 maps Hll’q continuously into LY. Hence, it continuously
maps L4 into ﬁ;l’q for any q € [2,00].

Putting these two results together, one immediately gets the following iso-
morphism property of the square root of Ag + 1.

Theorem 4.4. Under Assumption 4.1, (Ag + 1)1/2 provides a topological isomor-
phism between Hll’q and L7 for q € ]11,2] and a topological isomorphism between
L9 and Hy Y7 for any q € [2, ool

Remark 4.5. In all three theorems the second assertion follows from the first by
the self-adjointness of Ag on L? and duality; thus one may focus on the proof of
the first assertions.

Let us first prove the continuity of the operator (Ao + 1)*1/2 L7 — Hll’q.
In order to do so, we observe that this follows, whenever
1. The Riesz transform V(Ag +1)~'/2 is a bounded operator on L?, and, addi-
tionally,
2. (Ag +1)"/2 maps L? into H{-7.
The first item is proved in [49, Thm. 7.26]. It remains to show 2. The first point
makes clear that (Ao + 1)~'/2 maps L9 continuously into H¢, thus one has only
to verify the correct boundary behavior of the images. If f € L? < L9, then one
has (Ag +1)"Y2f € HY? < HE? Thus, the assertion follows from 1. and the
density of L? in LY.
Remark 4.6. Theorem 4.2 is not true for other values of ¢ in general, see [8, Ch. 4]

for a further discussion.

We now prove Theorem 4.3. It will be deduced from the subsequent deep
result on divergence operators with Dirichlet boundary conditions and some per-
manence principles.
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Proposition 4.7 (Auscher/Tchamitchian, [9]). Let ¢ € |1,00] and Q be a strongly
Lipschitz domain. Then the root of the operator Ay, combined with a homogeneous
Dirichlet boundary condition, maps Hy(Q) continuously into L(S2).

For further reference we mention the following consequence of Theorem 4.2
and Proposition 4.7.

Corollary 4.8. Under the hypotheses of Proposition 4.7 the operator (Ag + 1)_1/2
provides a topological isomorphism between L and H&’q, if g €1,2].

Proof. The only thing to show is that the continuity of Aé/ ? from Proposition 4.7
carries over to (Ag + 1)'/2. For this it suffices to show that the mapping (A +
D242 = (1+ AFY)Y/2 : L2 — L2 extends to a continuous mapping from
L7 into itself. Since the operator includes a homogeneous Dirichlet condition, the
L? spectrum of Ap is contained in an interval [, 00[ for some € > 0. But the
spectrum of Ay, considered on L9, is independent from ¢, see [49, Thm. 7.10].
Hence, Aj 1is well defined and continuous on every L?. Moreover, the spectrum
of 1+ Ay 1 considered as an operator on L, is thus contained in a bounded
interval [1, §] by the spectral mapping theorem, see [45, Ch. I11.6.3]. Consequently,
(1+ AghHY? : L7 — L9 is also a continuous operator by classical functional
calculus, see [21, Ch. VIL3]. O

In view of Assumption 4.1 it is a natural idea to reduce our considerations to
the three model constellations mentioned there. In order to do so, we have to show
that the assertion of Theorem 4.3 is invariant under bi-Lipschitz transformations
of the domain. The proof will stem from the following lemma.

Lemma 4.9. Assume that ¢ is a bi-Lipschitzian mapping from a neighborhood of
Q into RY. Let ¢(Q) = Q, and ¢(I') = T'». Define for any function f € L*(Qy),
(@f)(x) = f(ox)) = (fod)(x), xe€
Then
i) The restriction of ® to any LP(,), 1 < p < oo, provides a linear, topological

isomorphism between this space and LP(S2).
il) For any p € |1, 0], the mapping ® induces a linear, topological isomorphism

®, - Hp? () — Hp? ().

iii) @5, is a linear, topological isomorphism between H:"P(Q) and FIF_AI’I'(QA)
for any p € ]1, c0].
iv) One has
O, Agd, = —V - 1y V (4.1)
with
1 -1 -1 T, -1
|det(Do) (-1 (¥))] (De) (¢~ (v)) (¢~ () (D9)" (671 (y))

for almost ally € Q,. Here, D¢ denotes the derivative of ¢ and det(D¢) the
corresponding determinant.

pa(y)
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V) pa also is bounded, Lebesque measurable, elliptic and takes real, symmetric
matrices as values.
vi) The restriction of ®5® to L*(2,) equals the multiplication operator which is

given by the function | det(D¢)(qb_1(~))‘_1.

Remark 4.10. It is well known that |det(D¢)(¢~*(-))| is a function from L*
which, additionally, has a positive lower bound, due to the bi-Lipschitz property
of ¢, see [27, Ch. 3]. In the sequel we denote this function by (.

Lemma 4.11. Let p € ]1,00[. Then, in the notation of the preceding lemma, the
operator (*V'[LAV+1)1/2 maps Hll’Ap(QA) continuously into LP(Qy), if (Ag+1)1/?
maps H-P(Q) continuously into LP(S).

Proof. We will employ the formula

1 oo
B~1/? = / t7Y2(B+ )7t dt, (4.2)
™ Jo

B being a positive operator on a Banach space X, see [56, Ch. 1.14/1.15] or [50,
Ch. 2.6].

The operators Ag+1, =V -u,V+1and —(V -,V +1 are positive operators
in the sense of [56, Ch. 1.14] on any LP, see Proposition 3.5. From (4.1) and vi) of
the preceding lemma one deduces

(Ao +141)Po ==V -, V+( (1 +1)
for every ¢ > 0. This leads to
Oy (Ag+1+8) 7 (@3) 7 = (~VouaVHCTHAH)) T = (CV pa V1) TG
(4.3)
The H1?(Q,) < Hy "*(Q,) duality is the extended L(€,) duality. Thus, when
restricting (4.3) to L?, ®* may then be viewed as the adjoint with respect to the

L? duality. Integrating this equation with weight F:F/Q, one obtains, according
to (4.2),
_ _ oy — —1/2
O (Ag+ 1) V2(@3) 7 = (—CV - uaV + 1) ¢ (4.4)
Observe that the corresponding integrals converge in £(LP), according to Propo-
sition 3.5. Inverting (4.4), we get the operator equation

O (Ag +1)/20y = ¢H(—CV - paV + 1),

From this, the continuity of
1/2
(—CV - 1V +1)2 HEP(Q4) — LP(Q0)

follows by our supposition on Ay and straightforward continuity arguments on
®, see [40] for a detailed discussion. An application of Lemma 3.8 concludes the
proof. O
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Lemma 4.11 allows us to reduce the proof of Theorem 4.3 to 2 = K_ and
the three cases I' = @, I' = ¥ or I' = X,. The first case, I' = (), is already
contained in Proposition 4.7. In order to treat the second one, we use a reflection
argument. Let us point out the main ideas for this: First, one defines the operator
¢: LY (K_) — L'(K) which assigns to every function from L!(K_) its symmetric
extension. Let us further denote by R : L*(K) — L'(K_) the restriction operator.
Finally, one defines —V -V : Hy*(K) — H~"2(K) as the symmetric extension of
—V -1V to K. Note that this latter operator is then combined with homogeneous
Dirichlet conditions. The definition of —V - 4V in particular implies for ¢ > 0

(Ag+1+8) ' f=R(-V-aV+1+1t)"'¢f forall feL*(K_).

Multiplying this equation by ti;/Q and integrating over t, one obtains, in accor-
dance with (4.2),

(Ap+ 1) V2f =R(~V -4V + 1) %ef, feLX(K).

This equation extends to all f € LP(K_) with p € |1,2[. Now one exploits the

fact that (—V - AV + 1)71/2 is a surjection onto the whole Hy”(K) by Corol-
lary 4.8. Then some straightforward arguments show that (Ag+1)"%/2 : LP(K_) —
HyP(K_) also is a surjection. Since, by Theorem 4.2 (Ag +1)~%/2 : LP(K_) —
H é’p (K_) is continuous, the continuity of the inverse finally is implied by the open
mapping theorem.

In order to prove the same for the third model constellation, i.e., I' = X,
one shows

Lemma 4.12. There is a bi-Lipschitz mapping ¢ : R? — R? that maps K_ U X,
onto K_UX.

Thus, the proof of Theorem 4.3 in the case I' = X results from the case
I' =¥ and Lemmas 4.11 and 4.12.

Remark 4.13. Let us mention that Lemma 4.11, only applied to 2 = K and I" = ()
(the pure Dirichlet case) already provides a zoo of geometries which is not covered
by [9]. Notice in this context that the image of a strongly Lipschitz domain under
a bi-Lipschitz transformation need not be a strongly Lipschitz domain at all, cf.
[34, Ch. 1.2].

5. Maximal parabolic regularity for A

In this section we intend to prove the first main result of this work announced
in the introduction, i.e., maximal parabolic regularity of A in spaces with nega-
tive differentiability index. Let us first recall the notion of maximal parabolic L*®
regularity.
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Definition 5.1. Let 1 < s < 0o, let X be a Banach space and let J := Ty, T[ C R
be a bounded interval. Assume that B is a closed operator in X with dense domain
D (in the sequel always equipped with the graph norm). We say that B satisfies
maximal parabolic L*(J; X) reqularity, if for any f € L*(J; X) there exists a unique
function u € Wh(J; X) N L*(J; D) satisfying

W +Bu=f,  u(Tp)=0,

where the time derivative is taken in the sense of X-valued distributions on J, see
[4, Ch. TIT.1].

Remark 5.2.

i) It is well known that the property of maximal parabolic regularity of an
operator B is independent of s € |1, co[ and the specific choice of the interval
J (cf. [20]). Thus, in the following we will say for short that B admits maximal
parabolic regularity on X.

ii) If an operator satisfies maximal parabolic regularity on a Banach space X,
then its negative generates an analytic semigroup on X (cf. [20]). In partic-
ular, a suitable left half-plane belongs to its resolvent set.

iii) If X is a Hilbert space, the converse is also true: The negative of every gen-
erator of an analytic semigroup on X satisfies maximal parabolic regularity,
cf. [19] or [20].

iv) If —B is a generator of an analytic semigroup on a Banach space X, and Sx
indicates the space of X-valued step functions on J, then we define

B(gt +B) " Sx — C(J; X) — L*(J; X)
by
t
(B(gt +B)’1f) (t) ::B/ e (=98 f(5)ds,
To

compare (5.4) below. It is known that Sx is a dense subspace of L*(.J; X),
if s € [1, 00], see [29, Lemma IV.1.3]. Using this, it is easy to see that B has
maximal parabolic regularity on X, if and only if the operator B(aat + B) !
continuously extends to an operator from L®(J; X) into itself.

v) Observe that

WYS(J; X) N L*(J; D) = C(J; (X, D)1 ). (5.1)

The next lemma, needed below, shows that maximal parabolic regularity is
maintained by interpolation:

Lemma 5.3. Suppose that X,Y are Banach spaces, which are contained in a third
Banach space Z with continuous injections. Let B be a linear operator on Z whose
restrictions to each of the spaces X,Y induce closed, densely defined operators
there. Assume that the induced operators fulfill maximal parabolic regularity on X
and Y, respectively. Then B satisfies mazximal parabolic reqularity on each of the
interpolation spaces [X,Y g and (X,Y)g,s with 6 €]0,1[ and s € |1, 00].
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The next theorem will be the cornerstone on maximal parabolic regularity
of this work and details of the proof will be pointed out below in Subsections 5.1
and 5.2.

Theorem 5.4. Let ), T' fulfill Assumption 3.1 and set giso := sup Miso, where
Miso == {q € [2,00[ : =V -uV +1: H-? — Hy " is a topological isomorphism}.

Then —V - uV satisfies maximal parabolic reqularity on ﬁ;l,q for all g € [2,4},],
where by r* we denote the Sobolev conjugated index of r, i.e.,

. 00, if 1 > d,
r* = _
(L= ired.
Remark 5.5.
i) If , T fulfill Assumption 3.1, then giso > 2, see [37] and also [35].
ii) It is clear by Lax-Milgram and interpolation (see Proposition 3.4) that Mis,
is the interval [2, giso[ OT [2, giso]. Moreover, it can be concluded from a deep

theorem of Sneiberg [54] (see also [8, Lemma 4.16]) that the second case
cannot occur.

Proposition 5.6. If Q) is a bounded Lipschitz domain and I is any closed subset of
O, then —V - uV satisfies mazximal parabolic regularity on LP for all p € |1, 00].
In particular, V - uV generates an analytic semigroup on each LP, cf. Remark 5.2.

Proof. The operator —V - uV possesses upper Gaussian estimates by Theorem 3.7
and this implies maximal parabolic regularity on LP, if p € |1, 00|, see [42] or [16].

Alternatively, the assertion of Proposition 5.6 may be deduced as follows:
First, the induced semigroup on any L? is contractive, see Proposition, 3.5 v).
Then one applies [47, Cor. 1.1]. O

Lemma 5.7. Let Q, T fulfill Assumption 4.1. Then V - uV generates an analytic

semigroup on Hr_l’q for all q € [2,00].

Proof. One has the operator identity

(=V-uV4+A) " = (=V-uV+ 1) (=T VA T (=Vouv+1) T2 Rea >0,
(5.2)

on LY. Under Assumption 4.1 (7V~,uV+l)1/2 is a topological isomorphism between

LY and PUIITl’q for every ¢ € [2,00[, thanks to Theorem 4.4. Thus, via (5.2), the

corresponding resolvent estimate carries over from L4 to I;TF_ b by the density of
L9in Hp ™9 O

In the next step we show

Theorem 5.8. Let QT fulfill Assumption 4.1. Then —V - uV satisfies mazximal
parabolic reqularity on Hlfl’q for all g € [2,00].

This will be a consequence of Theorem 4.4 and the following two lemmata.
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Lemma 5.9. Assume that the operator B fulfills mazimal parabolic reqularity on a
Banach space X and has no spectrum in |—o0,0]. If Sx again denotes the space
of X -valued step functions on J, then one has, for every o €10,1],

-1 1
B(SﬁB) ¢2(3+1>“3<;+B> (B+1)"%¢ for all ¢ € Sx. (5.3)

Proof. First, B satisfies a resolvent estimate |[(B+ X)~'||z(x) < iy for all A from

a suitable right half-space. Since, additionally, B has no spectrum in |—o0, 0], the
operators (B +1)~% and (B + 1)* are well defined on X.

If x € X and xr denotes the indicator function of an interval I = Ja,b[ C J,
then one calculates, by the definition of B(gt + B) 4,

t

[B(aat + B)_lex] (t) = B/ e~ =By (s) ds

To
0, if t < a,
= (1—ele DBy, if t € [a,b], (5.4)
(e®=DB —ela=OB) g if t > b,

compare [50, Ch. 1.2]. This gives, for every step function Zfil Xz € Sx,

-1

) —1 N N 9
B(at+B) (BHWZXW:ZB(&JFB) xu(B+1)
=1 =1

a -1 N
(B+1)QB(8t+B) szlxl,
=1

since (B + 1)~ commutes with the semigroup operators e~*5. O

Remark 5.10. By the density of Sx in L°(J;X) for s € [1,00[, equation (5.3)
extends to the whole of L*(J; X)), since the left-hand side is a continuous operator
on L*(J; X) by maximal regularity of B.

Lemma 5.11. Assume that X,Y are Banach spaces, where X continuously and
densely injects into Y. Suppose B to be an operator on'Y , whose mazimal restric-
tion Blx to X satisfies mazimal parabolic regularity there. If B|x has no spectrum
in ]—00,0] and (B + 1)* provides a topological isomorphism from X onto Y, then
B also satisfies maximal parabolic reqularity on Y .

Proof. Let Sx be the set of step functions on J, taking their values in X. By
the density of X in Y, Sx is also dense in L*(J;Y"). Due to Lemma 5.9, we may
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estimate for any ¢ € Sx:

P -1
#(pe) v

a 9 o -«
(B+1)B<m+4ﬁ (B+1)"%
a —1

B(at +B>
9 -1

B(at *B)

By density, B(aat —I—B) ~! extends to a continuous operator on the whole of L*(.J;Y)
and the assertion follows by Remark 5.2 iv). g

L(L*(J;Y)) L(L*(J;Y))

(B + 1)~
L£(L*(J3X))

< (B + 1) gLs(1:x)L5(1v)) Le(J:X)

< cl(B+1)%leexivy 1B+ 1)~ eevix) 9]

L(L*(J;X))

Ls(J;Y)-

The proof of Theorem 5.8 is now obtained by the isomorphism property
(fv -uV + 1) Y2pe FIITl’q, assured by Theorem 4.4, and afterwards applying

Proposition 5.6 and Lemma 5.11, putting there X := L9, Y = ﬁ;l’q, B =
-V .- uV and a :=1/2.

Now we intend to ‘globalize’ Theorem 5.8, in other words: We prove that
—V - uV satisfies maximal parabolic regularity on I;T; L4 for suitable qif Q, T
satisfy only Assumption 3.1, i.e., if K_, KUY and K_ U need only to be model
sets for the constellation around boundary points. Obviously, then the variety of
admissible ’s and I'’s increases considerably; in particular, I' may have more than
one connected component.

5.1. Auxiliaries

We continue with a result that allows us to ‘localize’ the elliptic operator.
Lemma 5.12. Let Q,T satisfy Assumption 3.1 and let Y C R? be open, such that
Qe :=QNTY is also a Lipschitz domain. Furthermore, we put I'e :=TNTYT and fix
an arbitrary, real-valued function n € C§°(R?) with supp(n) C Y. Denote by jie

the restriction of the coefficient function u to Qe and assume v € HIEQ(Q) to be
the solution of

V- uVu = f e H "*(Q).
Then the following holds true:

i) For all ¢ € |1, 00] the anti-linear form
Joiw— <fa7/770>1§{1:1’2

(where nw again means the extension of nw by zero to the whole Q) is well
defined and continuous on H%’.q (Q4), whenever f is an anti-linear form from
H:5(Q). The mapping Hy "9(Q) 5 f — fo € Hp*%(Q) is continuous.
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ii) If we denote the anti-linear form
HIE.Q(Q.) Sw vite VN - Vw dx

Qe

by I,, then u = nu|q, satisfies
=V peVu = —peVula, - Vilo, + I + fe.

iii) For every ¢ > 2 and all v € [2,q*[ (¢* denoting again the Sobolev conjugated
index of q) the mapping

Hll’q(Q) Svi —peVola, - Vnla, + I, € I;T;.l’T(Q.)
is well defined and continuous.

Remark 5.13. 1t is the lack of integrability for the gradient of v (see the counterex-
ample in [26, Ch. 4]) together with the quality of the needed Sobolev embeddings
which limits the quality of the correction terms. In the end it is this effect which
prevents the applicability of the localization procedure in Subsection 5.2 in higher
dimensions — at least when one aims at a ¢ > d.

Remark 5.14. If v € L*(Q) is a regular distribution, then v, is the regular distri-
bution (nv)|a,

5.2. Core of the proof of Theorem 5.4

We are now in a position to start the proof of Theorem 5.4. We first note that in
any case the operator —V - 4V admits maximal parabolic regularity on the Hilbert
space ﬁ; 1’2, since its negative generates an analytic semigroup on this space by
Proposition 3.5, cf. Remark 5.2 iii). Thus, defining

Myr :={q¢>2 : =V - uV admits maximal regularity on ﬁ;l’q}

and exploiting (3.1) and Lemma 5.3 we see by interpolation that Mymg is {2} or
an interval with left endpoint 2.

The main step of the proof for Theorem 5.4 is contained in the following
lemma.

Lemma 5.15. Let Q, ', T, n, Q,, T, e be as before. Assume that —V - neV
satisfies maximal parabolic regularity on FI;_l’q(Q.) for all g € [2,00] and that
—V-uV satisfies mazimal parabolic regularity on ﬁ;l’qo (Q) for some qo € [2, giso-
If r € [qo,qi[ and G € L*(J; HL V" (Q)) — L5(J; Hp "°(Q)), then the unique
solution V€ Whs(J; HLV%(Q)) N L*(J; domﬁgl,qo (Q)(*V -uV)) of

V' =V -uVV =G, V(Ty) =0,
even satisfies

nV e WhE(J; Hy 27 (Q)) N LA (J; domy 1) (=V - uV)).
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Proof of Theorem 5.4. For every x € € let =, C Q) be an open cube, containing x.
Furthermore, let for any point x € 92 an open neighborhood be given according
to the supposition of the theorem (see Assumption 3.1). Possibly shrinking this
neighborhood to a smaller one, one obtains a new neighborhood Yy, and a bi-
Lipschitz mapping ¢, from a neighborhood of T, into R¢ such that ¢, (T, N (QU
MN)=K_,(K_-UX)or (K_UZX).

Obviously, the Z; and Ty together form an open covering of (2. Let the sets
Exire s Zx> Lxjpqs- -+ Ixg be a finite subcovering and 71, ..., m a C°° partition
of unity, subordinate to this subcovering. Set Q; := =y, = =, NQforj € {1,...,k}
and Q; := T, NQ for j € {k+1,...,l}. Moreover, set I'; := ) for j € {1,...,k}
and I'; := T, NI for j e {k+1,...,0}.

Denoting the restriction of p to €; by p;, each operator —V - 1i;V satisfies
maximal parabolic regularity in f[;jl’q(Qj) for all ¢ € [2,00[ and all j, according
to Theorem 5.8. Thus, we may apply Lemma 5.15, the first time taking gy = 2.
Then —V-uV satisfies maximal parabolic regularity on Hy """ () for all r € [2, 2*.
Next taking go as any number from the interval [2, min(2*, ¢iso)[ and continuing
this way, one improves the information on r step by step. Since the augmentation
in 7 increases in every step, any number below ¢, is indeed achieved. O

Remark 5.16. Note that Theorem 5.4 already yields maximal regularity of —V-uV
on Hy " for all ¢ € [2,2*[ without any additional information on domy-1.4(=V -
r
V) nor on domH;;,q(Qj)(—V ;i V).
In the 2-d case this already implies maximal regularity for every ¢ € [2, 00].
Taking into account Remark 5.5 i), without further knowledge on the domains we

get in the 3-d case every ¢ € [2,6 + ¢[ and in the 4-d case every ¢ € [2,4+¢],
where € depends on Q, T, u.

5.3. The operator A

Next we carry over the maximal parabolic regularity result, up to now proved for
—V - uV on the spaces ﬁ;l’q, to the operator A and to a much broader class
of distribution spaces. For this we first need the following perturbation result on
relative boundedness of the boundary part of the operator A.

Lemma 5.17. Suppose ¢ > 2, ¢ €]l — (11, 1] and s € L*°(T',do) and let Q,T satisfy
Assumption 3.1. If we define the mapping Q : dompg—c.qa(=V - uV) — Hy % by
r

<Q77Z}a§0>HI:<=‘7 = / %wgodo—a ® € Hliyq )

r
then @ is well defined and continuous. Moreover, it is relatively bounded with
respect to —V - uV, when considered on the space Hr_g’q, and the relative bound
may be taken arbitrarily small.

Referring to Lemma 5.3, we can now carry over maximal parabolic regularity
from L? and H L4 ¢6 various distribution spaces and thus prove our main result
for the operator A.
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Theorem 5.18. Suppose ¢ > 2, e € L= (T',do) and let Q,T satisfy Assumption 3.1.
i) If¢ el — é, 1], then domg;gq(fv -uV) = domg;gq (4).
i) Ifce ]l — 2, 1] and —V - uV satisfies mazximal parabolic regularity on ﬁ;g’q,
then A also does.
iii) The operator A satisfies mazimal parabolic reqularity on L2. If ¢ > 0, then
A satisfies mazimal parabolic regularity on LP for all p € |1, 00].

iv) Suppose that —V - uV satisfies mazimal parabolic regularity on ﬁ;l’q. Then
A satisfies mazimal parabolic reqularity on any of the interpolation spaces

(L2, Hy Vg, 6 €0,1],
and
(L% H "5, 6 €10,1], 5€]1,00].

Let ¢ > 0 and p € ]1,00[ in case of d =2 orp € [(5 + Cll)_17oo[ if d > 3.
Then A also satisfies mazximal parabolic regularity on any of the interpolation

spaces
(L7, H: My, 0 € 0,1], (5.5)
and
(LP,H: "6, 0 €[0,1], s €]1,00[. (5.6)

Proof. 1) follows from Lemma 5.17 and classical perturbation theory.
ii) The assertion is implied by Lemma 5.17 and a perturbation theorem for
maximal parabolic regularity, see [6, Prop. 1.3].
iii) The first assertion follows from Proposition 3.5 ii) and Remark 5.2 iii). The
second is shown in [33, Thm. 7.4].
iv) Under the given conditions on p, we have the embedding LP — I;T; 12 Thus,
the assertion follows from the preceding points and Lemma 5.3. d

Remark 5.19. The interpolation spaces [L?, Hy "]g, 6 € [0,1], and (LP, Hy ") 4,
6 € [0,1],s € |1, 0], are characterized in [32], see in particular Remark 3.6 therein.
Identifying each f € L7 with the anti-linear form LY 3 ¢ — Jo f¥ dx and
using the retraction/coretraction theorem with the coretraction which assigns to

f e I;TITLT the linear form Hll’rl > ¢ — (f,9)p-1r, one easily identifies the
r

interpolation spaces in (5.5) and (5.6). In particular, this yields [qu,Hlfl’ql]

H%if 6 #1— 1.

0=

Corollary 5.20. Let Q and T' satisfy Assumption 3.1. The operator —A generates
analytic semigroups on all spaces ﬁr_l’q if ¢ € 12,45, and on all the interpolation
spaces occurring in Theorem 5.18, there q also taken from [2,qf [ Moreover, if
» >0, the following resolvent estimates are valid:

1A+ 14X gty Re\ > 0.

< Ca
T 1A
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6. Nonlinear parabolic equations

In this section we will apply maximal parabolic regularity for the treatment of
quasilinear parabolic equations which are of the (formal) type (1.1). Concerning
all the occurring operators we will formulate precise requirements in Assump-
tion 6.12 below. In contrast to the previous chapters we now need the (possibly)
stronger assumption on the geometry of QUT that the local bi-Lipschitz charts in
Assumption 3.1 can be chosen to be volume-preserving. This comes to bear in the
proof of Lemma 6.7 (see [40]), what is crucial for the treatment of the nonlinear
equations.

Assumption 6.1. Let Q U I satisfy Assumption 3.1. Using the notation of this
assumption, we assume that for every x € 92 there exists a constant « > 0, such
that a¢y is a volume-preserving map.

The outline of the section is as follows: First we give a motivation for the
choice of the Banach space we will regard (1.1)/(1.2) in. Afterwards we show
that maximal parabolic regularity, combined with regularity results for the elliptic
operator, allows us to solve this problem. Below we will consider (1.1)/(1.2) as a
quasilinear problem

{ u'(t) + B(u(t)u(t) = S(t,ult), teJ,

U(T()) = Ug- (61)

To give the reader already here an idea what properties of the operators —V -
G(u)uV and of the corresponding Banach space are required, we first quote the
result on existence and uniqueness for abstract quasilinear parabolic equations
(due to Clément/Li [15] and Priiss [51]) on which our subsequent considerations
will be based.

Proposition 6.2. Suppose that B is a closed operator on some Banach space X
with dense domain D, which satisfies mazximal parabolic regularity on X . For some
s > 1 suppose further ug € (X, D);_1 ; and B:J x (X,D);_1 ¢ — L(D, X) to be
continuous with B = B(Ty, uo). Let,sz'n addition, S : J x (X,SD)lilws — X bea
Carathéodory map and assume the following Lipschitz conditions on B and S:

(B) For every M > 0 there exists a constant Cpr > 0, such that for allt € J
1B(t, u) = B(t, @)l cp,x) < Cm lu—tll(x,p), . >

if lullx.py, + o lullxpy, o <M.
(S) S(-,0) € L°(J; X) and for each M > 0 there is a function hpar € L°(J), such
that

18(t,u) = St @) x < hu(t) llu—allx.p), |

holds for a.a. t € J, if ‘lu‘l(XvD)l,x,s’ Hﬂ”(XvD)lJ,,S <M.
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Then there exists T* € J, such that (6.1) admits a unique solution u on |Ty, T*|
satisfying
u € WH(|To, T*[; X) N L*(JTo, T*[; D).

Remark 6.3. Up to now we were free to consider complex Banach spaces. But the
context of equations like (1.1) requires real spaces, in particular in view of the
quality of the operator G which often is a superposition operator. Therefore, from
this moment on we use the real versions of the spaces. In particular, H. *'? is now

understood as the dual of the real space Hf:q/ and clearly can be identified with

the set of anti-linear forms on the complex space Hﬁ’q/ that take real values when
applied to real functions.

Fortunately, the property of maximal parabolic regularity is maintained for
the restriction of the operator A to the real spaces in case of a real function s, as
A then commutes with complex conjugation.

We will now give a motivation for the choice of the Banach space X we
will use later. In view of the applicability of Proposition 6.2 and the non-smooth
characteristic of (1.1)/(1.2) it is natural to require the following properties.

a) The operators A, or at least the operators —V - uV, defined in (3.2), must
satisfy maximal parabolic regularity on X.

b) As in the classical theory (see [46], [30], [55] and references therein) quadratic
gradient terms of the solution should be admissible for the right-hand side.

c¢) The operators —V - G(u)uV should behave well concerning their dependence
on u, see condition (B) above.

d) X has to contain certain measures, supported on Lipschitz hypersurfaces in
or on 0N in order to allow for surface densities on the right-hand side or/and
for inhomogeneous Neumann conditions.

The condition in a) is assured by Theorems 5.4 and 5.18 for a great variety of
Banach spaces, among them candidates for X. Requirement b) suggests that one
should have domy (~V - uV) < Hp? and L2 < X. Since —V - uV maps Hp?
into H. l’q, this altogether leads to the necessary condition

L% X «— Hy W (6.2)
The Sobolev embedding shows that ¢ cannot be smaller than the space dimension
d. Taking into account d), it is clear that X must be a space of distributions
which (at least) contains surface densities. In order to recover the desired property

domyx (—V - uV) — Hll’q from the necessary condition in (6.2), we make for all
that follows this general

Assumption 6.4. There is a ¢ > d, such that —V - uV +1: HY? — H. " is a
topological isomorphism.

Remark 6.5. By Remark 5.5 i) Assumption 6.4 is always fulfilled for d = 2. On the
other hand for d > 4 it is generically false in case of mixed boundary conditions, see
[63] for the famous counterexample. Moreover, even in the Dirichlet case, when the
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domain 2 has only a Lipschitz boundary or the coefficient function u is constant
within layers, one cannot expect ¢ > 4, see [44] and [25].

In Section 7 we will present examples for domains €2, coefficient functions g
and Dirichlet boundary parts 2\ T, for which Assumption 6.4 is fulfilled.

From now on we fix some ¢ > d, for which Assumption 6.4 holds.
As a first step, one shows that Assumption 6.4 carries over to a broad class
of modified operators:

Lemma 6.6. Assume that & is a real-valued, uniformly continuous function on
Q that admits a lower bound £ > 0. Then the operator —V - &uV + 1 also is a
topological isomorphism between Hy? and Hy "9,

In this spirit, one could now suggest X := H;l’q to be a good choice for
the Banach space, but in view of condition (S) the right-hand side of (6.1) has to
be a continuous mapping from an interpolation space (domx (A), X); 1 , into X.
Chosen X := H; ", for elements 1) € (domx (A), X); 1, = (HY HR b))
the expression |V|? cannot be properly defined and, if so, will not lie in Hy La
in general. This shows that X := H L4 i not an appropriate choice, but we will
see that X := H*%, with ¢ properly chosen, is.

Lemma 6.7. Put X := Hp % with ¢ € [0,1]\ {;7 1-— ;} Then
i) For every T € ]'}°,1[ there is a continuous embedding

(X, domy (—=V - uV)), 1 — HMY.

sS

ii) Ifc € [Z, 1], then X has a predual X, = Hli’q/ which admits the continuous,
dense injections Hll’q/ — X, — L&) that by duality clearly imply (6.2).
Furthermore, HIIJq is a multiplier space for X,.

Next we will consider requirement c), see condition (B) in Proposition 6.2.

Lemma 6.8. Let ¢ be a number from Assumption 6.4 and let X be a Banach space
with predual X, that admits the continuous and dense injections
Hll’q/ — X, — L(3)

i) If € € HY9 is a multiplier on X, then domx (—V -uV) — domx (—V-£uV).
ii) If HY9 is a multiplier space for X, then the (linear) mapping H*? > £ —
=V - &uV € L(domx (—V - uV), X) is well defined and continuous.

’

Corollary 6.9. If ¢ additionally to the hypotheses of Lemma 6.8 1) has a positive
lower bound, then

domx (—=V - &uV) = domx (—V - uV).
Next we will show that functions on 9 or on a Lipschitz hypersurface,

which belong to a suitable summability class, can be understood as elements of
the distribution space Hp %
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Theorem 6.10. Assume ¢ € |1,00[, s € |1 — (11,1[ \ {;} and let I, be as in
Proposition 3.3. Then the adjoint trace operator (Tr)* maps LI(II) continuously
into (H>9'(Q)) — Hp 7.

Proof. The result is obtained from Proposition 3.3 by duality. O

Remark 6.11. Here we restricted the considerations to the case of Lipschitz hy-
persurfaces, since this is the most essential insofar as it gives the possibility of
prescribing jumps in the normal component of the current j := G(u)uVu along
hypersurfaces where the coefficient function jumps. This case is of high relevance in
view of applied problems and has attracted much attention also from the numerical
point of view, see, e.g., [1], [11] and references therein.

From now on we fix once and for all a number ¢ € | max{1 — é, Z}, 1] and set
for all that follows X := Hp >

Next we introduce the requirements on the data of problem (1.1)/(1.2).

Assumption 6.12. Op) For all that follows we fix a number s > 13(.

Ga) The mapping G : HYY — H% is locally Lipschitz continuous.

Gb) For any ball in H? there exists § > 0, such that G(u) > § for all u from this
ball.

Ra) The function R : J x HY — X is of Carathéodory type, i.e., R(-,u) is
measurable for all u € H? and R(t,) is continuous for a.a. t € J.

Rb) R(-,0) € L*(J; X) and for M > 0 there exists hps € L*(J), such that

IRt u) = R(t,a)l[x < har(B)lJu = allgra,  t€J,

provided max(||u|| grr.a, || @] gr1.a) < M.
BC) b is an operator of the form b(u) = Q(bo(u)), where b, is a (possibly nonlin-
ear), locally Lipschitzian operator from C(Q) into itself (see Lemma 5.17).
Gg) g€ L9(T).
IC) wg € (X,domx (—=V - uV));_1

5057

Remark 6.13. i) At first glance the choice of s seems indiscriminate. The point
is, however, that generically in applications the explicit time dependence of
the reaction term R is essentially bounded. Thus, in view of condition Rb) it
is justified to take s as any arbitrarily large number, whose magnitude need
not be controlled explicitly.

ii) Note that the requirement on G allows for nonlocal operators. This is es-
sential if the current depends on an additional potential governed by an
auxiliary equation, which is usually the case in drift-diffusion models, see [3],
[28] or [52].

iii) The conditions Ra) and Rb) are always satisfied if R is a mapping into L%/?
with the analog boundedness and continuity properties, see Lemma 6.7 ii).

iv) It is not hard to see that @ in fact is well defined on C'(2), therefore condition
BC) makes sense. In particular, b, may be a superposition operator, induced
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by a C*(R) function. Let us emphasize that in this case the inducing function
need not be positive. Thus, non-dissipative boundary conditions are included.
v) Finally, the condition IC) is an ‘abstract’ one and hardly to verify, because
one has no explicit characterization of (X,domx(=V - uV));_1 ; at hand.
Nevertheless, the condition is reproduced along the trajectory of the solution

by means of the embedding (5.1).
In order to solve (1.1)/(1.2), we will consider (6.1) with
B(u) := =V - G(u)uV (6.3)
and the right-hand side S
S(t,u) :=R(t,u) — Q(bo(u)) + (Tr)"g, (6.4)
seeking the solution in the space W*(J; X) N L*(J;domyx (—V - uV)).

Remark 6.14. Let us explain this reformulation: as it is well known in the theory
of boundary value problems, the boundary condition (1.2) is incorporated by in-
troducing the boundary terms —sb,(u) and g on the right-hand side. In order to
understand both as elements from X, we write Q(bo(u)) and (Tr)*g, see Lemma
5.17 and Theorem 6.10.

Theorem 6.15. Let Assumption 6.4 be satisfied and assume that the data of the
problem satisfy Assumption 6.12. Then (6.1) has a local-in-time, unique solution
in WHs(J; X)n L*(J;domx (—=V - uV)), provided that B and S are given by (6.3)
and (6.4), respectively.

Proof. First of all we note that, due to Op), 1— ! > 'F<. Thus, if r € | 1,1 - !
by a well-known interpolation result (see [56, Ch. 1.3.3]) and Lemma 6.7 i) we
have

(X, domx (=V - uV));_1 5 = (X,domx (=V - uV))r1 = H"2. (6.5)

Hence, by IC), ug € H%9. Consequently, due to the suppositions on G, both the
functions G(up) and g(io) belong to H'9 and are bounded from below by a positive
constant. Denoting —V - G(ug)uV by B, Corollary 6.9 gives domx (—V - uV) =
domx (B). This implies ug € (X, domx (B)),_1 ,. Furthermore, the so-defined B
has maximal parabolic regularity on X, thanks to (5.5) in Theorem 5.18 with
p=q

Condition (B) from Proposition 6.2 is implied by Lemma 6.8 ii) in cooperation
with Lemma 6.7, the fact that the mapping H>Y > ¢ — G(¢) € HY9 is boundedly
Lipschitz and (6.5).

It remains to show that the ‘new’ right-hand side S satisfies condition (S)
from Proposition 6.2. We do this for every term in (6.4) separately, beginning
from the left: concerning the first, one again uses (6.5) together with the asserted
conditions Ra) and Rb) on R. The assertion for the last two terms results from
(6.5), the assumptions BC)/Gg), Lemma 5.17 and Theorem 6.10. O
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Remark 6.16. Note that, if R takes its values only in the space L%/? < X then
— in the light of Lemma 5.17 — the elliptic operators incorporate the boundary
conditions (1.2) in a generalized sense, see [29, Ch. II.2] or [14, Ch. 1.2].

Finally, it can be shown that the solution u is Holder continuous simultane-
ously in space and time, even more:

Corollary 6.17. There exist o, 3 > 0 such that the solution u of (1.1)/(1.2) belongs
to the space CP(J; HL(Q)) — CP(J; C*(Q)).

7. Examples

In this section we describe geometric configurations for which our Assumption 6.4
holds true and we present concrete examples of mappings G and reaction terms R
fitting into our framework.

7.1. Geometric constellations

While our results in Sections 4 and 5 on the square root of —V - 4V and maxi-
mal parabolic regularity are valid in the general geometric framework of Assump-
tion 3.1, we additionally had to impose Assumption 6.4 for the treatment of quasi-
linear equations in Section 6. Here we shortly describe geometric constellations, in
which this additional condition is satisfied.

Let us start with the observation that the 2-d case is covered by Remark 5.5 1).
Admissible three-dimensional settings may be described as follows.

Proposition 7.1. Let Q C R3 be a bounded Lipschitz domain. Then there exists a
q > 3 such that =V - uV + 1 is a topological isomorphism from Hll’q onto H;l’q,
if one of the following conditions is satisfied:

i) Q has a Lipschitz boundary. T = () or T = 9Q. Qo C Q is another domain
which is C* and which does not touch the boundary of Q. pla, € BUC(Q0)
and jilg\ o, € BUC(Q2\ Qo).

i) Q has a Lipschitz boundary. T' = 0. Qo C Q is a Lipschitz domain, such that
0o NQ is a C' surface and Q) and O meet suitably (see [26] for details).
pla, € BUC(Q) and plg, o, € BUC(Q\ Qo).

iti) Q is a three-dimensional Lipschitzian polyhedron. T' = 0. There are hyper-
planes Hi,...,Hy in R which meet at most in a vertex of the polyhedron
such that the coefficient function u is constantly a real, symmetric, positive
definite 3 x 3 matriz on each of the connected components of Q\ Ul H,.
Moreover, for every edge on the boundary, induced by a hetero interface H;,
the angles between the outer boundary plane and the hetero interface do not
exceed ™ and at most one of them may equal .

iv) Q is a conver polyhedron. T' N (OQ\T) is a finite union of line segments.

u=1.
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v) Q C R3 is a prismatic domain with a triangle as basis. T equals either one
half of one of the rectangular sides or one rectangular side or two of the three
rectangular sides. There is a plane which intersects § such that the coefficient
function p is constant above and below the plane.

vi) Q is a bounded domain with Lipschitz boundary. Additionally, for each x €
I'N(OQ\T) the mapping ¢« defined in Assumption 3.1 is a Ct-diffeomorphism
from Yy onto its image. p € BUC(Q).

The assertions i) and ii) are shown in [26], while iii) is proved in [25] and iv) is a

result of Dauge [18]. Recently, v) was obtained in [38] and vi) will be published in
a forthcoming paper. d

Remark 7.2. The assertion remains true, if there is a finite open covering Y1,..., T}
of €1, such that each of the pairs ); := ¥; N Q, I'; := I'N T, fulfills one of the
points i)—vi) after a bi-Lipschitz transformation. This provides a huge zoo of ge-
ometries and boundary constellations, for which —V - uV provides the required
isomorphism. We intend to complete this in the future.

7.2. Nonlinearities and reaction terms

The most common case is that where G is the exponential or the Fermi-Dirac
distribution function F/, given by

2 /s
Fualt) o= / »
VT oJo 1+ef
As a second example we present a nonlocal operator arising in the diffusion

of bacteria; see [12], [13] and references therein.

Ezxample 7.3. Let ¢ be a continuously differentiable function on R which is bounded
from above and below by positive constants. Assume ¢ € L?(Q) and define

G(u) ::C(/ngp dx>7 ue HbY,

Now we give an example for a mapping R.

Ezample 7.4. Assume ¢ : R — |0, 00[ to be a continuously differentiable function.
Furthermore, let 7 : H'9 — H%9 be the mapping which assigns to v € H'9 the
solution ¢ of the elliptic problem (including boundary conditions)

-V - 1(v)Ve =0. (7.1)
If one defines
R(v) = o(v)|V(T (v))]%,
then, under reasonable suppositions on the data of (7.1), the mapping R satisfies

Assumption Ra).

The example comes from a model which describes electrical heat conduction;
see [5] and the references therein.
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8. Concluding remarks

Remark 8.1. Under the additional Assumption 6.4, Theorem 5.4 implies maximal
parabolic regularity for —V - 4V on H;l’q for every g € [2,00[, as in the 2-d case.

Besides, the question arises whether the limitation for the exponents, caused
by the localization procedure, is principal in nature or may be overcome when
applying alternative ideas and techniques (cf. Theorem 4.3). We suggest that the
latter is the case.

Remark 8.2. Equations of type (1.1)/(1.2) may be treated in an analogous way, if
under the time derivative a suitable superposition operator is present, see [40] for
details.

Remark 8.3. In the semilinear case, it turns out that one can achieve satisfactory
results without Assumption 6.4, at least when the nonlinear term on the right-hand
side depends only on the function itself and not on its gradient.

Remark 8.4. Let us explicitly mention that Assumption 6.4 is not always fulfilled
in the 3-d case. First, there is the classical counterexample of Meyers, see [48], a
simpler (and somewhat more striking) one is constructed in [25], see also [26]. The
point, however, is that not the mixed boundary conditions are the obstruction but
a somewhat ‘irregular’ behavior of the coefficient function g in the inner of the
domain. If one is confronted with this, spaces with weight may be the way out.
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Abstract. Let e *4 be the Stokes semigroup over an unbounded domain .
For construction of the Navier-Stokes flow globally in time, it is crucial to
derive L-L" decay estimate (1.4) for Ve™**; thus, given 2, we need to ask
which (g,r) admits (1.4). The present paper provides a principle which inter-
prets how this question is related to spatial decay properties of steady Stokes
flow in the domain €2 under consideration.
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1. Introduction

Let 2 be an unbounded domain in R™ (n > 2) with smooth boundary 9€2. Consider
the Stokes system for a viscous incompressible fluid that occupies the domain §2
subject to the non-slip boundary condition on 0f2. This paper makes it clear that
the temporal decay property for ¢ — oo of the solution to the initial value problem

ou—Au+Vp=0 (xeQ, t>0),

divu=0 (xeQ, t>0), (1.1)
u=0 (x €99, t>0), '
u(,()) = Up (IE € Q),
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is closely related to the spatial decay property for |z| — oo of the solution to the
steady problem

—Av+Vr=divF, dive=0 (z€Q); v|aa = 0. (1.2)

Here, u(x,t) = (u1,...,u,)? and v(x) = (vi,...,v,)7
p(z,t) and 7(zx) are the pressures.

Since the celebrated paper by Kato [28] for the whole space problem, it is

well known that LI-L" estimates (¢ < r)
lu(®)]» < Ct= /a2 g (t>0), (1.3)
IVu(®)ll, < Ct= /MR gl (> 0), (1.4)

of the solution (the Stokes semigroup) to (1.1) are important tools for construction
of global strong solutions to the Navier-Stokes system with small initial data in
L(Q) (the smallness is redundant for the case n = 2). Estimates (1.3) and (1.4)
play the same role as fractional powers of the Stokes operator, which were em-
ployed by Fujita and Kato [19] and Giga and Miyakawa [23] when € is a bounded
domain. So far, besides those cases — bounded domain, the whole space —, the
above-mentioned Navier-Stokes theory (n > 3) has been established (or essen-
tially available) for the following physically relevant unbounded domains:

(1) half-space ([44], [30]);
2) exterior domain ([27]);

)
3) aperture domain with flux condition ([25], [33]);
4) perturbed half-space ([34], [35]);
)
)

are the velocity fields;

(
(
(
(5) infinite layer ([1]);

(6) asymptotically flat layer ([2], [3]);

(7) infinite cylinder ([40]).

The last three cases (5)—(7) are not kept in mind in this paper because the solution
o (1.1) decays exponentially and algebraic decay properties (1.3)—(1.4) do not
make sense as optimal decay.

In view of the Navier-Stokes nonlinearity « - Vu, whether or not one can
prove the global existence theorem as above depends crucially on the answer to
the following question: Which (g, r) admits the gradient estimate (1.4)7 The case
g = r = n is particularly important because the initial data are taken from L7 ().
On the other hand, it is also interesting to ask optimal decay at space infinity
(expected in general) of the solution to (1.2) with F' € C5°(£2)"*™. The purpose
of this paper is to show a principle which interprets the relation between both
questions when we do not restrict ourselves to the specified domains (1)—(4) above
but consider general unbounded domains which satisfy the reasonable hypothesis
(H1) (see Section 2). Roughly speaking (see Theorem 2.3 to be precise), it is proved
that if (1.4) holds for ¢ < r < o, then the problem (1.2) possesses a solution of
class v € L*(Q)™, s > py, for each F € C§°(Q)"*™, where 1/pg =1—1/n—1/qo;
thus, (1.4) for larger r implies better summability of the steady flow at infinity.
Indeed the opposite implication is hopeless, but the best possible range of (g, )
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which admits (1.4) is suggested as long as we know the optimal rate of decay
of generic steady flows in the domain Q under consideration (as for an example
related to this idea, see (iii) in the final section).

The idea of the proof is very simple. We consider the unsteady problem

0w — Av + Vi = div F(t) (z €Q, t eR),
divo=0 (z €Q, t eR), (1.5)
v=20 (x € 09, t € R),

and look for a solution which remains bounded for ¢ — —oo in a suitable sense
so that the uniqueness of solutions is ensured. We have time-periodic solutions in
mind as typical examples, and steady solution can be regarded as a special case
of them. So the problem is to derive L®-summability of the solution v(t) at space
infinity by use of (1.4) and we wish to find the summabilty exponent s as small
as possible.

For the unbounded domains (1), (3) and (4) mentioned above, we know (1.4)
for 1 < g <r < oo ([44], [33], [34], [35]), so that our result implies the summability
ve L))", s > n/(n—1), for (1.2). As for the exterior problem, estimate (1.4)
for 1 < ¢ < r < n was proved by Iwashita [27], Dan and Shibata [12] (n = 2)
and Maremonti and Solonnikov [36]. Indeed this is fortunately enough to solve
the Navier-Stokes system globally in time, but it is interesting to ask whether the
restriction r < n is optimal or not. As a corollary of our result (see Corollary 2.4),
it turns out that (1.4) for 1 < ¢ < r < go with some go > n is impossible since we
know the optimal rate of decay of generic steady flows in exterior domains (Lemma
4.1). This fact was first pointed out by Maremonti and Solonnikov [36]. Although
the spatial decay property of exterior flows is the point in [36] as well, their proof
is different from ours explained above. In fact, they multiply the equation (1.1),
by the decaying solution of

—Av+Vr=0, dive=0 (z€Q); v|ag = b€ C*(0Q)"

and estimate (v, u(t)) by using (1.4) with r > n to accomplish [(v, uo)| < Cl|uol[/2
for all ug € C§5, (), yielding v € L™ (=2)(Q)", a contradiction. Our strategy in
the present paper is merely to estimate the solution v(t) of (1.5) and thus the
proof is considerably easier.

This paper consists of five sections. In Section 2 we provide our results. Sec-
tion 3 is devoted to the proof of the main theorem. Section 4 studies the exterior
problem to show the corollary. We conclude the paper with some remarks in the
final section.

2. Results

To begin with, we fix notation. Let Q be a domain in R™. The class C§° () consists
of all C*°-functions whose supports are compact in 2. Set C3°(Q) = {f =g|o; g €
C§°(R™)}. For 1 < g < 0o we denote by L?(€2) the usual Lebesgue space with norm
| - llq,; we simply write || - || = || - ||¢,o When Q is a given unbounded domain in
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(1.1), (1.2). Let C§%(£2) be the class of all vector fields u = (u,...,u,)" which
satisfy u; € C§°(2) (1 < j < n) and divu = 0. For 1 < ¢ < oo we define LZ(Q)
by the completion of C§%, () in the space L(2)". Note that the space LZ(2)
may involve an additional side condition for some (2; for instance, vanishing flux
condition through an aperture is hidden in the case of aperture domains, see [18],
[39].

Given an unbounded domain € in (1.1) with smooth boundary 02, as usual,
the first step is to establish the Helmholtz decomposition

LIQ)" =L3(Q) @ G1(Q), G1(Q)={Vpe L) pe L (0} (21

loc

For example, we refer to [38], [42] for exterior domains, and to [18], [39] for aperture
domains; also, see [20, Section II1.1] and the references therein. When ¢ = 2, we
have (2.1) for any domain even if assuming no regularity on 92, where L2 ()
should be replaced by L2 () in G?(£2). However, that is not always the case for
q # 2. In fact, which ¢ admits the decomposition (2.1) depends on the geometry
of the domain, see [6], [37]. Assuming (2.1) for some g, we denote by P = P,
the projection operator from L(€)™ onto LZ(Q2) along G(€2). Then the Stokes

operator is defined by

(2.2)

Dg(A) = {u € W24(Q)" N LL(Q); uloa = 0},
Au = —PAu,

where W2:4(Q) is the usual L9-Sobolev space of second order.
We make the following assumption on the Stokes operator.

(H1) There is go € (2, 00] such that the following properties hold: Set

ng _
ro = { mte (2<q <n), , { 1 (ro = 00),

rh = ,
00 (n < qo < ), 0 7,0721 (ro < 00).

Then, for every q € (r{,70), the decomposition (2.1) holds and the oper-
ator —A generates a bounded analytic semigroup {e~*4};>0 on LZ(1).
Furthermore, u(t) = e~ *ug with ug € C§%, () satisfies

(1.3) for r{ < ¢ <71 < 710; (1.4) for r{ < ¢ <1 < qo.

Remark 2.1. Note that r, < go always holds. It is also natural to assume (1.3) for
r < ro when assuming (1.4) for r < g from the viewpoint of embedding relation.

Remark 2.2. When we think of the duality relation between existence and unique-
ness for the Neumann problem, it seems to be reasonable to assume (2.1) for
q € (rg,70) with some 7o; and then, we have the relation Py = P 4-1). When
the boundary 0f2 is unbounded, this exponent rg depends on the geometry of 02
near infinity, no matter how smooth it is ([6], [37]).

Our main theorem reads as follows.
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Theorem 2.3. Suppose (H1) and define the exponent pg by

1 1 1
-1 - . (2.3)
Po n 4o
Then, for each F € C§°(Q)"*™, the problem (1.2) necessarily admits a solution v,

which is of class
vELy(Q),  Vs€E(po,ro) (2.4)

Here, we note the relation r, < py < r¢ on account of gy > 2.

Let us next consider the exterior problem. We know that (1.4) holds for
1 < g <r<n (27, [12], [36]). In order to make the linear theory complete, we
wish to ask whether or not the restriction r < n is optimal. The following corollary
tells us that the answer is positive.

Corollary 2.4. Let Q be an exterior domain in R™, n > 2, with smooth boundary
0. Then it is impossible to have (1.4) for 1 < q¢ <r < qo with some gy > n.

Remark 2.5. When r > n for the exterior problem, we have slower decay estimate
Ve Auoll, < Ct 4 uollq (t=1),
for 1 < ¢ <r, see [27], [12], [36].

3. Proof of Theorem 2.3

This section studies the unsteady problem (1.5) in order to prove Theorem 2.3.

Concerning the external force, we may consider very smooth one; say, we make

the following assumption.

(H2) F(t) € C()™*™ for each t € R and sup,cp [|F(t)|lcc < 00. There is a
compact set K C R"™ such that Supp F(t) C K for all ¢t € R. Furthermore,
there is « € (0, 1) such that div F' € C%_(R; L>=(2)™).

loc
Under the condition (H1) we rewrite (1.5) as
d
dzt’ 4 Av=P(div F(t)) (t€R) (3.1)

in L7(Q), r € (r(,r0). We say that v(t) is a solution to (3.1) if it is of class
ve CH(R;LL(Q) NC(R; Dy (A))

and satisfies (3.1) in L7 (Q) for some r € (r{,r9). If this solution enjoys the addi-
tional condition

v(t) € LL(Q), ViteR,; sup ||v(t)||s < o0 (3.2)
teR

for some s € (r(, ), then it must be of the form

o(t) = / " AD (diy B(r)) dr. (3.3)

— 00
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In fact, from

0

o e T u(n)} = e UTDAP (div (7))

in L7 () we find
t
v(t) = ef(tfa)Av(U) + / e~ (t=Ap (div F(7))dr (3.4)

for —oo < 0 < t < oo. Since we have (1.3) for rj < s < r < ro by (H1), the
condition (3.2) implies

le= =40 (o) < Ot — o)~ "/*=/D 2 fu(o)||s — 0
as 0 — —oo. Thus, (3.3) is convergent in L7, (€2) and it is the unique solution within
the class (3.2).

Theorem 3.1. Suppose (H1), (H2) and define the exponent py by (2.3). Then the
problem (3.1) admits a solution (3.3), which is of class (3.2) for every s € (po,70).

Proof. We first show the summability (3.2) of v() given by (3.3). Let ¢ € C§5, ().
An integration by parts yields

(0(t). ) = / T AP (div F(t— 7). ) dr

. fouw =), Ve g} dr = / */100'

Put M = sup,cg || F(t)||oo, then we have sup,cp ||F(t)||q < M|K|*/ for g € [1,00)
by (H2), where |-| denotes the Lebesgue measure. Let s € (po,70), then s’ € (r(, qo),
where 1/s' +1/s = 1. By (H1) we employ (1.4) to get

/1
0

Since (2.3) together with s > pg leads us to

(3.5)

1
= /O IE(t = )lsIVe ™ gl dr < OMIE]Y* |05

1 1 1 1 1 1 1
- =1- - >1- - = (3.6)
S qo S Qo Po 4o n
we can take r € (s, qo) such that 1/s" — 1/r > 1/n, namely,
n (1 1 1
- > 1. 3.7
2 (s’ r> + 2 ( )

One can use (1.4) to see from (3.7) that

5

Hence we find

§/1 1E(E =)y Ve ™ol dr < CMIK|" DMl

[{v(®), )] < Cliells Vi € G5 ()

which implies (3.2) for every s € (pg, 7). Next, it is easy to see that v(t) given
by (3.3) is actually a solution to (3.1). In fact, for any fixed 0 € R, we have



Large Time Behavior of the Stokes Semigroup 349

the representation (3.4) in L3(Q2), s € (po,70), for —0o < 0 <t < co. It follows
from (H2) that P (div F) is locally Holder continuous with values in L2 (f2); as a
consequence ([4, Chapter II]), v(t) is of class

v € C'((0,00); L (2)) N C((0,00); D (A4)) N C([o, 00); L5 (2))

and satisfies (3.1) for ¢ € (0,00) in L5(£2). Since R > o is arbitrary, v(t) is a
solution to (3.1) for ¢ € R. The proof is complete. O

It is also possible to give another shorter proof by employing some Lorentz
spaces without dividing integral in (3.5). We will mention this although the ele-
mentary proof above by use of less function spaces might be preferred by most of
readers. We define the solenoidal Lorentz spaces by

L2 (Q) = (L2(Q), LL()) 5

where
1-6 6 ,
= + ., T <p<g<r<rg, 1< <>
q p r

and (-,-)g,s denotes the real interpolation functor. For the interpolation theory,
see for instance Amann [4, Chapter I]. We have the duality relation LZ1(Q)* =
LY@ 2°(0) “and C§% () is dense in LL' (). By interpolation we immediately
see from (1.4) that

Ve gl < Ct=(/an/M2=12 1y (t>0), (3:8)

for vy < ¢ < 1 < qo, where || - ||,5 stands for the norm of LZ%(Q). Following
the idea of Yamazaki [45], we apply interpolation to the sublinear operator ug +—
[t = [|[Ve *ug|1] for fixed r; then, we can deduce from (3.8) that
> —tA / 1 1 1
HVe U()”r,l dt SCHUOHq,la To < q <71 <qo, — = (39)
0 qg r n
in spite of pointwise estimate like 1/¢ of the integrand. Note that the set of pairs
(g,r) satisfying the relation (3.9) is not vacuous because ¢o > 2 implies 1/r{ —
1/(]0 > 1/77,

Another proof of Theorem 3.1. We will show (3.2) for every s € (po,ro). Given
s € (po,70), we take r € (s',qo) such that 1/s' — 1/r = 1/n, which is possible
because of (3.6) and slightly different from (3.7), where 1/s' +1/s = 1. In view of
(3.5) it follows from (3.9) that

[{v(t), )| < /0 1EE =)l /r-1),00 Ve 0l dr < CMIK] D70l

for all p € CF%,(2). By duality we obtain
v(t) € Ly*°(Q), VteR; sup ||v(¢)
teR

ls,00 < 00

for every s € (po,r0), from which we conclude (3.2) for the same s by interpolation.
The proof is complete. O
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We are now in a position to show Theorem 2.3.

Proof of Theorem 2.3. When F(t) is periodic in Theorem 3.1, so is the solution
v(t) given by (3.3) with the same period. If, in particular, F' is independent of
t, then v can be regarded as periodic solution with arbitrary period; hence, we
conclude that the solution v € D4(A) obtained in Theorem 3.1 is a steady flow:
Av =P (div F) in L (). This completes the proof. O

4. Proof of Corollary 2.4

Let Q be an exterior domain in R™ (n > 2) with smooth boundary 9Q. We will
show that we cannot avoid the condition r < n for (1.4).

Proof of Corollary 2.4. If (1.4) were correct for 1 < g < r < gy with some go > n >
2, we would have (H1) for such go; because we already know the other conditions
with ro = oo ([38], [42], [22], [43], [8], [10], [17], [27], [12], [36]). The exponent po
given by (2.3) fulfills pg < n/(n—2) if n > 3, and pg < oo if n = 2. Hence Theorem
2.3 implies that the steady problem (1.2) has always a smooth solution v of class

v { L2 () (n>3),

(4.1)
Ls()™ for Is < o0 (n=2),

for every F' € C§°(2)™*™; here, the smoothness of v follows from the regularity
theory for the Stokes system, see for instance [20, Section IV.4]. The summability
(4.1) is, however, possible only in a special situation due to Lemma 4.1 below and
one cannot always have it; see also Remark 4.3. The proof is complete. ]

It is well known that the net force exerted on the obstacle by the fluid must
vanish whenever the steady flow decays faster than the Stokes fundamental solu-
tion. This is usually proved by use of the asymptotic representation for |z| — oo of
the steady flow, see Chang and Finn [11] and also Galdi [20, Section V.3]. We here
give another independent proof of the following lemma by using the summability
(4.1) directly.

Lemma 4.1. Let F € C§°(Q)"*". Suppose that v is a smooth solution to (1.2) of
class (4.1). Then

/ v AT (v,7) + F}do = 0, (4.2)
o0
where v is the outward unit normal to 01,

T(v,m) = Vv + (Vo)l -l (4.3)

1s the Cauchy stress tensor and I is the n X n-identity matriz.

Proof. We fix n € C*°([0,00); [0, 1]) such that n(t) = 1(0 <t < 2/3) and n(t) =
0(t>5/6). For R >0 and z € R", we set (r(x) = n(|z|/R); then

IV2¢rllqen < CR™>F/% (1< q < c0). (4.4)
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For each k € {1,...,n}, we set (bg) (x) = Cr(x)er, where ey stands for the unit
vector along x-axis. Let B be the Bogovskii operator ([5], [9], [20]) in the annulus
Ar ={z € R"; R/2 < |z| < R} and set

(@) = ¢ (2) — BrlOkCr](2).
Note that Br[0k(r] € C3°(Ar)™ and that
IV2Br[OkCR]lgan < CIIVOCRllgan  (1<q<o0) (4.5)

with some constant C' = C(g) > 0 independent of R > 0, see Borchers and Sohr
[9, Theorem 2.10]. Since the compatibility condition

. —Tk
OkCrdr = / div (b(k) dr = / do =0
AR AR R z|=r/2 /2

is satisfied, we have div w}f) = 0. Combining (4.4) with (4.5), we find
IV205 lg.an < CR72M0 (1< g < o0). (4.6)
Set
N = (Ny,...,N,)T :/ v-{T(v,7) + F}do
a0
and rewrite the equation (1.2), as
div {T(v,mr)+ F} =0 (x € Q).

Since w%c) (x) =0 for |x| > R and ’(/Jg%k) (x) = ey, for |z| < R/2, we test this equation
with wgf) to obtain

Ny, :/ T(v,7) : ng%k) dx
AR

, where R > 0 is taken so large that F(x) = 0 for |z| > R/2, and
T:S5= Z . T3;5;; for matrices T, S. By integration by parts once more and by

g
=

—_
IN
o
IN
S

Nk:—/ v-Az/Jgf)d%
Ag )
from which together with (4.6) it follows that
[Nul < Cllollouap R-2H70=1/9
for arbitrary R > 0. When n > 3, we can take s = n/(n — 2) by (4.1) to obtain
‘Nk| < C”UHH/(n—Q),AR —0 (R - OO)

When n = 2, the solution v belongs to L*(Q)™ for some s < oo; therefore, for such
s, we find

INi| < Cllv]ls,a,R7** =0 (R — o0).

In any case we conclude N = 0, which completes the proof. O
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Remark 4.2. Even for the Navier-Stokes flow (n > 3) subject to v = 0 on 92, the
summablity (4.1) or Vo € L™ ("= (Q)"*" necessarily implies the net force condi-
tion (4.2); for further details, see Kozono and Sohr [31], Borchers and Miyakawa
[7], Kozono, Sohr and Yamazaki [32].

Remark 4.3. Tt is easy to find many solutions of (1.2) which do not satisfy (4.2).
Consider, for instance, three-dimensional problem; set u(z) = 817T(|e,;| + fl_l‘ﬁ), the
first column vector of the Stokes fundamental solution, and p(x) = 4;‘;‘3, where
er = (1,0,0)7. Assuming 0 € int Q°, we have —Au + Vp = 0,divu = 0 in .
By [,V -udo = 0 there is a vector field w € Cg°(2)* such that divew = 0 in
Q and w = u on IN. Setting v = u — w, we see that (v,p) obeys (1.2) with

F =YVuw e C§(2)3*3 and that

/ v-{T(v,p)+ F}do = e;.
o9

The principle is that the solution of (1.2) whose asymptotic rate at infinity is the
same as that of the Stokes fundamental solution must possess non-zero net force
on 9. For the Navier-Stokes flow as well, it has been proved by Galdi [21] that
flows for which (4.2) happens are rare.

5. Concluding remarks

We conclude this paper with remarks on applications of our idea to some other
interesting problems.

(i) The boundary condition (e~ "4¢)|sq = 0 is needed in (3.5) since F|aq # 0
in general. When F € C§°(2)"*" is replaced by F € C§°(2)™*™, Theorem 2.3
remains valid even for some other boundary conditions provided that the associ-
ated Stokes operator can be defined in an appropriate way. Shibata and Shimizu
[41] proved (1.4) with 1 < ¢ <7 < oo (even r = oo unless ¢ = oo) for the Stokes
initial value problem subject to Neumann boundary condition v - T'(u,p)|ag = 0
in exterior domains (n > 3), where T'(u,p) is given by (4.3). It is worth while
noting that there is no restriction on (¢,r) due to the null force on 9 and that
this is consistent with better summability of the steady Stokes flow with Neumann
boundary condition when F € C§°(£2)"*"™.

(ii) We have assumed the generation of analytic semigroup in (H1). But
the analyticity itself of the semigroup is not essential in our argument. We think
of the Stokes operator with rotating effect of an obstacle in 3D exterior domains;
actually, the semigroup generated by this operator is no longer analytic ([16], [24]),
nevertheless Shibata and the present author [26] proved the LI-L" estimates, in
particular, (1.4) for 1 < ¢ <r < 3(=n). Recently in [15] Farwig and the present
author have derived the asymptotic representation for || — oo of the steady
Stokes flow around a rotating obstacle, from which it follows that the summability
(4.1) (with n = 3, namely v € L3(2)?) does not always hold. This suggests that
the restriction » < 3 above is unavoidable.
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(iii) Consider the Oseen operator, where translating effect of an obstacle is
taken into account in 3D exterior domains. This operator generates an analytic
semigroup ([38]) and it satisfies (1.4) for 1 < ¢ < r < 3 (= n), which was proved
by Kobayashi and Shibata [29] (see also [13], [14] for n > 3). It is obvious that our
argument in Section 3 works for the Oseen semigroup as well, so that Theorem 2.3
still remains true. On the other hand, the 3D steady Oseen flow possesses better
summability v € L#(Q)3, s > 2, because it has good decay structure outside wake
region, see [20, Chapter VII]. This suggests, in view of (2.3) with py = 2 and n = 3,
that the 3D Oseen semigroup may possibly satisfy the gradient estimate (1.4) for
1<qg<r<6 (orevenr <6).
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1. Introduction

Nonlinear acoustics plays a role in several physical contexts. Our work is especially
motivated by high-intensity focused ultrasound (HIFU) being used in technical
and medical applications ranging from lithotripsy or thermotherapy to ultrasound
cleaning or welding and sonochemistry, see [1], [12], [18], [19], and the references
therein.

The Westervelt equation is given by

B
<)

with 8, = 1+ B/(2A), where p. denotes the acoustic pressure fluctuations, c¢ is
the speed of sound, b the diffusivity of the sound, gy the mass density, and B/A
the parameter of nonlinearity. For a detailed derivation of the PDE we refer to
[14], [18], [21], [33].

1 b a
*62P~tt + Ap~ + C2A(p~t) == C4P2~tt (1.1)

Throughout this paper we will assume that the domain Q C R?, d € {1,2,3},
on which we consider the PDEs is open and bounded with C? smooth boundary I

The Westervelt equation can be equivalently rewritten as:
(1 — 2ku)ug — > Au — bA(ur) = 2k(uy)?, (1.2)

where k = (3,/(oc®) This is a quasilinear strongly damped wave equation with
potential degeneracy.

Quasilinear PDE’s have attracted considerable attention in the literature with
a large arsenal of mathematical tools developed for their treatment. Particularly
well studied, with optimal results available, are parabolic equations — see [3, 4, 29]
and references therein. In the case of hyperbolic like models, the intrinsic low
regularity and oscillatory dynamics puts additional demands on regularity of the
data as well as necessitates introduction of some sort of dissipation that may
include interior, boundary or partial interior damping — see [32, 34, 23, 5] and
references therein.

The distinctive feature of our work is that the model considered corresponds
to quasilinear internally damped wave equation with potential degeneracy and
nonhomogeneous boundary forcing. This calls for a careful setup of the state space
where the latter should provide certain topological invariance for the dynamics.
The above is achieved through a long chain of estimates that rely critically on
recent developments in regularity theory of structurally damped wave equations.
The lack of compactness of the resolvent operator is one of the sources of difficulties
to be contended with.

In fact, global well-posedness and decay rates for equation (1.2) which is
homogeneous on the boundary were obtained in [16].

Our main interest in this present work is global (in time) well-posedness the-
ory of Westervelt equation equipped with nonhomogeneous boundary data. It is
known, that the presence of nonhomogeneous boundary conditions leads to rather
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subtle analysis, due to the fact that such inputs are modeled by “unbounded op-
erators” which are not defined on the basic state space. (see [28]). This is clearly
seen when inspecting “boundary variation of parameters formula” which has been
used recently in the context of studying boundary control problems for parabolic
(analytic) semigroups (see [6, 22, 28], [2], [8]). Our methods include derivation of
such formula for damped wave equation and their use in the context of study-
ing regularity and long time stability of solutions driven by nonhomogeneity on
the boundary. It is our belief that the obtained linear results should also be of
independent interest in the context of boundary value problems associated with
“overdamping”. Analyticity and exponential decay rates valid for the semigroup
corresponding to strongly damped wave equation play a crucial role in the analysis.

1.1. Main results

The main goal of this paper is to provide results on (1) local existence, (2) global
existence and (3) exponential decay rates for the energy of solutions for the West-
ervelt equation with Dirichlet

u=g on dN (1.3)

boundary conditions and given initial data (u(0), u:(0)) = (uo, u1).
In order to formulate our results we introduce the following energy functions:

Euolt) = o {ue)P +Vu()P} +> 0

1
Eua(t) =, {luw® + [Vu @) + |Au@)*} >0
where |u| = |u|g, ). Fort =0,

1
Eu"l(O) = 9 {‘(1 — 2]€UO)71[62AU0 -+ bAul + 2ku§]|2 + |Vu1(t)\2 + |AU()‘2} .

In [16] Westervelt equation with homogeneous Dirichlet boundary conditions
was considered. The main goal of this paper is the treatment of nonhomogeneous
boundary conditions, with particular emphasis paid to regularity required to be
satisfied by the boundary data which obey the following compatibility conditions:

g(t=0) = wloa, g{t=0) = uiloq. (1.4)
We define:
X = C(0,T; H3?(8Q)) N (0, T; H/2(8Q)) N C2(0, T; H~/%(0%))
NH?(0,T; HY2(0Q)) N H3(0,T; H~*/2(8Q)).  (1.5)
Our first result pertains to local existence and uniqueness of solution:
Theorem 1.1. Let T > 0 be arbitrary. There exist pr, pr > 0 such that if
Eu0(0) + Eu1(0) < pr, and g € X, ||gll% < pr
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with the compatibility conditions (1.4), then there exists a unique solution (u,uy)
solving the Westervelt equation (1.2) (in a weak H~1(Q) sense) and such that

u € C(0,T; H*(Q)) N CH0,T; H(2)) N C%(0,T; L2(Q)) N Ho(0,T; HY(Q)).
Our next theorem deals with global well-posedness.

Theorem 1.2. Let (ug, u1,g) be such that E, 0(0) + E,1(0) + |g|x < co. For any
M > 0 there exist p > 0, p > 0, such that solutions corresponding to initial and
boundary data with

Bua(0) < p (1.6)

2 2 1 2
d a3
sup [ E

t
g(t) - / g dt| <p
20 [ 1A gsai o) ; e o)

exist for all t > 0 and satisfy By 1(t) + Eyo(t) < M for all t > 0.

Finally, energy decays for the total energy are presented below:

Theorem 1.3. With Cauchy data (ug,u1,g) given in Theorem 1.2 and such that
for all't > 0 there exists wy > 0

3

>

=0

2 2

d2

dl
429

a9 < Cyewot (1.7)

H/2(0Q)

"

H3/2-1(5Q)
there exists a constant w > 0 such that

Eui1(t) + Euo(t) < Cpe .

Remark 1.4. In one space dimension, one can also consider the case without damp-
ing, b = 0, which is relevant in certain applications, see, e.g., [15].

In this situation we cannot expect global existence but we still get the a local
result for small initial and boundary data, see Theorem 2 in [17].

Like in [16], a first step of the proof is to prove energy estimates for a lin-
ear, nonautonomous and nonhomogeneous abstract wave equation related to the
nonlinear equation (1.2). The obtained results depend on the analyticity and maxi-
mal regularity of abstract damped wave equation with nonhomogeneous boundary
data. We shall take advantage of abstract version of variation of parameter formula
modeling nonhomogeneous boundary data associated with the strong damping. In
the case of purely parabolic problems, such variation of parameters formula was
critically used in [22, 2]. One of our technical goals is to extend this semigroup ap-
proach to models involving strong damping, which result should be of independent
interest.
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2. Strongly damped abstract wave equation

In what follows we consider a positive selfadjoint operator A : D(A) C H — H,
where H is a suitable Hilbert space. We shall introduce the following notation

lul = |uln,  (u,v) = (u,v)n; Lp(Z) = L,(0,T;2), C(Z)=C(0,T:2).
We shall impose

Assumption 2.1. The following continuous embeddings hold
D(AY?) C Ly(Q),  with [w]| < Co| A 2w,
D(Al/Q) C Le(Q), with |w|py@) < Cl\A1/2w\,
D(A) Cc C(Q), with |w|Lm(Q) < Cq|Aw| .

In our considerations we take H = Lo(€2) where Q is a bounded smooth
domain in R™, n = 1,2, 3. In view of the above, the Assumption 2.1 is automatically
satisfied with A = —A defined on the domain D(A) = H?(Q) N H}(Q). We will
be considering first the following non-homogeneous and nonautonomous abstract
strongly damped wave equation:

a(t)ug + A Au + bAuy = f(t) (2.1)
with initial conditions u(0) = ug € D(AY?), w(0) = u; € H. Here a(t) is a
positive multiplier on H = Ly(Q), i.e.,
Assumption 2.2. There exist positive constants 0 < «, v < oo such that V¢ € [0, T
(a(t)u,u) > a(t)lul* > aglul?
(@(t)u, v)Ly() < alt)|ullv] < aolullv].

The above conditions amount to say that a(t) € M(H) and |a(t)|arr) <
a(t), where the multipliers space M (H) [30] is equipped with the norm

|y = sup oy
Ju[rn=1

We are interested in studying regularity properties of solutions u,u; due to
the forcing f and initial conditions wug, u.

The analysis will be conducted for ¢ € [0, T] where T is either finite or infinite
time horizon.

Remark 2.1. In reference to the original equation (1.2), the operator A = —A
where A is equipped with zero Dirichlet data. Moreover, a(t) = 1 — 2ku(t) and
f(t) = 2ku?.

To take into account inhomogeneous boundary conditions, we will decompose
u = u® + g with «° having to satisfy homogeneous Cauchy (boundary and initial)
conditions and g will denote an appropriate extension of the Cauchy data, i.e.,

g=g ondQ, (2.4)
gt=0)=uo, G(t=0) = u. (2.5)
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2.1. Regularity properties of damped wave equation

As in [16] we shall begin with a study of the semigroup generated by nondegenerate

operator
0 I
A= 2
(2a -ta)

with the domain D(A) = {(w,v) € D(AY2) x D(AY?), 2w + bv € D(A)} where
a(t) =a>0.

In what follows we shall recall regularity properties of the generator e
L(H) where

Ate

H=D(AY?) x H.
It was shown in [9] that e is an analytic, strongly continuous semigroup de-
fined on H. Moreover, the following characterization of the domain A is known [9]

D(A%) = D(AY?) x D(A?), 6<1/2

and D(A%)] = D(AY?) x [D(A”)), 6<1/2 (2.6)
and the following analytic estimate is available:
(A% iy < Ce 't 06> 0 (2.7)

where the constant w is positive and depends on ¢, b, « [9].
In addition, the following regularity holds:

o0
/ |AY2eAt g2 dt < Ozl
0

LF(:) = /0 Ae = F(s)ds € L(Lo(H))

/ \LF(t)%dt < C / F() 2y dt
0 0

t 2 t
a( 0 ,
/ eA(t_b)( )ds < C/ e 2= A2 £ ()2 ds, t > 0. (2.8)
0 f(s) H 0
Remark 2.2. The regularity listed in (2.8) is well known and has been often used [9]
on finite time horizon. It is important for the results of this paper the fact that these
estimates are uniform in time. Not surprisingly, this results from the fact that the

semigroup e is exponentially decaying. Indeed, the first estimate, on the strength
of (2.6) amounts to showing that for x € H with Z(t) = e?x = (2(t), 2:(t)) one has

|AY22] € Ly(0,00), | AY%2] € Ly(0,00).

But the first relation follows just from exponential stability of the semigroup,
while the second relation follows from standard energy estimates available for the
damped wave equation.

Similarly, the second regularity statement (on (0, 00)) follows from a standard
Fourier’s transform argument after accounting for the fact that the semigroup is
analytic and the spectrum of the generator A is in the left complex plane.
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The last estimate in (2.8) follows from standard by now Lyapunov function
argument [16].

Throughout the rest of this section we will consider time and space dependent
coefficient o, and impose Assumptions 2.1, 2.2.
Theorem 2.3 (Theorem 2.1 of [16]). Consider (2.1) with

1. a € Loo(M(H)) N CL(H).
2. f € Ly(H)n HY ([D(AY?)])

3. ug € D(.A), U € D(A1/2), and a(10) (f(()) — 2 Aug — bAul) eH

Then the following energy estimates hold
E,(t) + / |AY 20, (s)|ds

t
B0+, / ATV s+ Claltgn [ lu@Pds. (29)
0 0

t
Eu(t)+(b—é—0) / LAY 20y, () 2ds
0

1 t t
< B, (0) + 1 |A_1/2ft\2d8+0e|at|é(n)/ |ue(s)[*ds , (2.10)

) 0

b 2 b 2 1 ! 2 043 /t 2
< 2.11
A0 < gl + oy [P+ % [, (211)

with C, = g; fs and
B () = Hug(t t 2| AY 24 (1) 2
u()—2 (a(t)ue(t), ue(t)) + AV Zu(t)][" ¢

These, by Gronwall’s inequality and |w(s)|> < ! Ey(s), for w = u and w =
0
mmply

ue C(D(A)), u € C(D(AY?)), uy € C(H) N La(D(AY?)). (2.12)

Note that on the strength of Assumption 2.2 we have

1
Bu(t) ~ Buo(t) = ) {lus() + A u(v)]*} .
Moreover, we will repeatedly make use of the simple estimate

< |w|1/2

‘w‘L() Q)
< OYPAVPwPRlwV? < OFPC P AR, (2.13)

\w\ZL4(Q)

following from Assumption 2.1, using Holder’s inequality and Young’s inequality.
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2.2. Decay rates for the homogeneous equation

We shall address next the issue of decay of the energy for the abstract wave
equation (2.1). We will consider decay rates in both lower level energy FE, and
higher level energy

E(t) = By, () + [Au(®)]? .
By Assumption 2.2 we have Ey,(t) ~ Ey o(t) E)~Eyq(t).
For comparison, we quote the following result Theorem 2.3 from [16] for the
autonomous case.
Theorem 2.4. Let f =0, and oy = 0. Then there exist w,wy > 0 such that
o FE,(t) <el™'E,(0) with w=w(a,b,c? Cp)
o £(t) < Ce “1'E(0) with w; = min{ c;,w} if %2 #w and wi <w if °; =w.
2.2.1. Energy estimates for the variable coefficient model. Back in the model with
time and space dependent «, we are dealing with

alt, Juw + AAu+bAu, = f

where oy < a(t,z) < ap, (t,z) € R x Q and oy € C(R;H). Our goal is to
estimate the lower and the higher level energy in terms of f and «.

Lower level energy
Here we can make use of the following result Proposition 2 in [16].

Proposition 2.5.

T b (T
E.(T)+ ’yo/ E,(s)ds + ) / |AY2u,)2ds < (C + C?)E,(0)
0 0

T

[ (AR el + Clanlb) ) ds (214)
for some constants vy, C*,...,C° > 0 depending only on the coefficients c,b and
the constants ayg, Co, Ct.

Higher level energy
Here we quote Proposition 3 in [16].

Proposition 2.6.

T
E(T) + 6/ [|Au<t)\2 A 22 4 \A1/2uttﬂ dt (2.15)
0

T
< CE(0) +/ [(C21AT2 2 4 OO+ Ol e (1))
0
for some constants vy, C',...,C* > 0 depending only on the coefficients c,b and

the constants oy, Co, C].

Remark 2.7. The estimate in Proposition 2.6 will allow us to use the so-called
“barrier method” ([5, 32, 23, 34] for establishing global existence.
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2.3. Extension of nonhomogeneous boundary data to the interior

The purpose of this section is to provide appropriate extensions into the interior
of boundary-initial (Cauchy) data. This procedure allows to homogenize nonlinear
equation with a given boundary data. More specifically we will be considering
classical harmonic (Dirichlet) extensions that would lead to appropriately defined
“parabolic” extensions. We begin by defining the harmonic extension operator —
the so-called Dirichlet map defined by

DA, it Av =0, in{ 01
v { v=g ondN (2.16)
which for all s € R is a bounded mapping

DA : H*(09)) — H*T/2(Q) Vs € R. (2.17)

Remark 2.8. 1t is possible to use different extensions of boundary data, for instance
via solutions of wave equation with nonhomogeneous boundary data. In fact, this
method, along with “hidden” regularity of wave equations [27], was successfully
used in [17] for the study of local existence of solutions. However, since we are
interested in global behavior, static harmonic extensions are more appropriate.

2.3.1. Weak solutions with nonhomogeneous boundary data. In this section we in-
troduce a “variation of parameter formula” representing weak solution to the non-
homogeneous boundary value problem driven by non-degenerate (o« = 1) damped
wave equation.

This is done with the help of harmonic extension D?. The above construct
leads naturally to a definition of “parabolic extension” — which is solution to
damped wave equation with non-homogeneous boundary data homogenized via
harmonic extension. The corresponding results, while used for the study of non-
linear problem, should be also of independent interest in linear theory pertinent
to boundary control, or more generally, theory of damped wave equation with
nonhomogeneous boundary data. They provide a counterpart of boundary varia-
tion of parameter formula used in the past in the context of heat equation with
nonhomogeneous boundary data [22, 2, 8, 28].

We consider

wyy — Aw — bAw, = f(t) in (0,T) x Q (2.18)
w=g on Of)
’LU(O) = wo , wt(O) = w1 in €.
Recalling the definition of D? we rewrite (2.18) as follows:
wyy — A — DAy)w — bDA(I — DAy)w; = f(t)  in (0,T) x (2.19)
w=g on 0N (2.20)

where v denotes the trace operator, i.e., yu = ulr.
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Noting that for smooth and compatible Cauchy data g, wo,w;, w — D?~yw €
D(A), so that —A(w — D?g) = A(w — D?g), we rewrite (2.19) as the abstract
second-order ODE equation:

wy 4+ A Aw + bAw; = AAD? g+ bAD? g, + f @) (2.21)

where in splitting the brackets, we admit representation of the equation in the
dual space to D(A). This procedure is standard by now [28, 8] and references
therein. What is less standard, however, is rewriting of this second-order equation
as a first-order system. While such procedure can be typically accomplished on
[D(A®)]', (see the references cited above) this is not the case for the damped wave
equation considered on H with Dirichlet boundary data. The reason for difficulty
is the structure of the domain D(A) along with the lack of global smoothing (hence
lack of compactness). We also recall that this difficulty can be circumvented when
considering the dynamics on L2(Q) X L2(Q2), where A still generates an analytic
semigroup, though not a contraction. In fact, [7] provides a variation of constant
formula for boundary control acting on damped wave equation with the state space
Ls(£2) x Lo(2). However, the construction in [7], based on the analysis in [6], does
not apply to our choice of the state space given by H. In fact this remains true even
if we were to penalize the state space by negatives powers of A. The problem is
purely algebraic (and the same phenomenon was noticed later in [24, 25, 26] where
structurally damped problems with Dirichlet boundary actions were studied in the
context of optimization and Riccati theory.

To cope with this issue we need to modify the argument given in [7] and we
w— D?g

W

With the above notation and after noting that

7DAgt o 0 *\7/
(oapss ) =4( _pa,, ) €Dt
we can rewrite (2.21), in the variable Y = (w — D®g,w;), as a first-order abstract
ODE well-defined on [D(A*)]

_DA
Y, (t) = AY + ( bADAgtgjrf ) .

proceed as follows: Denote Y =

or equivalently

Yi(t) :AY(t)—I—A( 7D£gt(t) >+ ( f(()t) ) .

the equation holding on [D(A*)]’. Consequently, variation of parameters (applied
in dual spaces to the domain of A*) yields

Y =Y+ / A < 0- D06 ) ot / e ( o >(;l ;>
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The above can be rewritten, with the explicit use of the structure of A and denoting
W(t) = (w(t), w:(t)) as

W(t) = ( DAgt(t) ) + MY (0) — /t AeAlt=9) ( DAO (&) )ds

0 gt
t
A(t—s) 0
—i—/o e < £(s) )ds.

The above leads to the following variation of parameter formula, which describes
weak (“finite energy”) solutions to the boundary model:

Lemma 2.9. Let g € C(HY*(T")), g: € C(HY/?*<(T")), ywo = g(0), wo € H*(R),
wy € Ly(Q), f e Lo(HH(Q)).
The following representation holds pointwisely (in t) with values in H1(£2) x
LQ(Q).‘
A _pA
W(t) = < DTgtt) )—I—eAt( wo = D2g(0) > (2.23)

0 w1

t t
B A(t—s) 0 A(t—s) 0
/o Ae ( D2g,(s) )der/O e < £(s) )ds.

The solution W € C(H(Q) x La(9)).

We denote by C(Z) the space of continuous functions on (0, 00) with values
in Z. Similarly, Ly(Z) mean norms over R in time.

Remark 2.10. Variation of parameter formula given in (2.23) is a counterpart of
a well-known by know “parabolic boundary control formula” which has been used
extensively in both linear and non-linear boundary control theory [6, 28, 2, 8, 22]
and more specifically in the context of damped wave equation [7, 24]. This formula
provides a direct representation of the solution as depending on the boundary
input g. Specific feature of this formula is the presence of unbounded operator A
in the integrand involving boundary input g. Analyticity of the semigroup with
controlled singularity at zero allows to show that the H norm of this integrand is
locally integrable, as long as the range of the operator D? belongs to some positive
Sobolev space. But this is the case with harmonic extension where R(D?) C
HY 2(Q). The proof, written below, provides the details for this argument.

Proof. The formula (2.23) follows directly from (2.22). The original meaning of
all quantities is on the dual space [D(A*)]’, see [28]. We only need to justify the
validity of the formula taking values in the state space H'(Q) x La(f2). For this,
we refer to regularity of the damped wave equation that is inherited from the
analyticity of the semigroup.

The most critical term is the third term. Here we notice that by the (2.17)

Dg; € C(H¢(R2)) = C(D(A2), and by (2.6) < Dggt ) € C(D(A2)). Hence,

A(t—s 0 1=5 gmw(t=s
‘Ae ( )( D3gy(s) )‘H < Cylt = s|' 2 e gy(s) 12490
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which implies H'(2) x Ly(€2) membership of the third term. Regarding the re-
maining terms, the analysis is similar. It suffices to notice that wg — Dg(0) €

H3(Q) = D(AY2), Dg € C(H'(2)) and ( f?s> ) € Ly([D(A*1/2)]).

Thus, the conclusion follows from (2.6), (2.8), after noting that long time
behavior is controlled by the exponential decay of the semigroup. O

By using the formula above, along with the aforementioned properties of
analytic semigroups given in (2.6), (2.8) the following regularity for less regular
Cauchy data is easily deduced

Lemma 2.11. For
9 € Lo(H'?(09)), g € Lo(H™2(09)), f € La([D(A)]')
wo € H(Q), ywo = g(0),w; € H1(Q) (2.24)
we have W € Lo(H(Q) x Lo(2))

After these preliminary considerations, we shall proceed with the study of
regularity of solutions, assuming that the boundary data and initial data are more
regular. Some of the results stated below can be also obtained by energy methods
applied to appropriate homogenizations of the problem (see the next section).
However, in order to track precisely the regularity, particularly long time regularity,
and the effects of compatibility condition, semigroup representations seem more
appropriate. Within this framework, one can take advantage of explicit singular
estimates and of exponential decays associated with the semigroup.

In order to proceed with our program, we shall exploit several different rep-
resentations of the semigroup formula (these methods are known since [22]).

Lemma 2.12. The following representation holds for all Cauchy data as specified
in Theorem 1.1.

W(t) = ( 52;((?) >+e“‘t< ;”fgﬁ;((%)) ) (2.25)

t t
B A(t—s) 0 At—s) 0
/0 ‘ ( D”gu(s) ) ds / ‘ ( f(s) ) s

Proof. The starting point is (2.23). By integration by parts and using semigroup
property valid for analytic semigroups Ae4t = jteAt7 for ¢ > 0 we obtain the rep-

resentation stated above. Note that the present representation has no singularity

in the kernel, but it requires higher differentiability of the boundary data. O
D2 (t) 0 0 ;
Remark 2.13. Note that W = DAgi(8) 4+ U" where U" satisfies damped wave
t

equation driven by the source f — D?g,; with zero boundary conditions and initial

_pA
data given by ( ;;)10 B gA gi ((%)) >
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In order to obtain information on higher-order time derivatives of solutions,
differentiation, in the sense of distribution, of formula in (2.12) leads to the fol-
lowing representation of weak solutions.

Lemma 2.14. With reference to Cauchy data specified in Theorem 1.1, the following
representation holds.

Wi(t) = ( DA%(; ) ) + Aet ( ;010: JZJDAA;((%)) >

t
— | AeAl—9) 0 d 2.26
/0 € < DAgtt(S) S ( )

3f¢wﬁ<£$>@+w%f%>.

The formula in Lemma 2.14 is initially derived in the topology of extended
spaces [28, 8]. However, taking advantage of analyticity of the semigroup Ae4? €
L(H),t > 0, each term in the formula represents a well-defined element in H for
t > 0. Semigroup formulas in 2.12 and Lemma 2.14, along with the properties (2.8)
of analytic semigroup e??, lead to the following — long time behavior — regularity.

Lemma 2.15. Let f =0, and
g€ Loo(HY2(T)), g € Lao(H?(')), g1t € Loo(H™Y2(T))
wo € H'(Q), ~wo=g(0), wi € H(Q), ~w = g(0)
we have
W € Loo(D(A™™) & Loo(H'(Q) x H(Q)).
In particular w € Loo(HY(Q)),w: € Loo(H*(Q))
Proof. Use directly formula in Lemma 2.12 along with the properties enjoyed by
the semigroup e? and listed in (2.6), (2.8). Particular emphasis should be paid to
exponential decay at infinity and control of singularity at the origin.

Writing W (t) = I(t) + II(t) + I11(t), we obtain the following estimates for
each term:

|AYCITI ()| g < /t(

—w(t—s)
e
[ — gyl |get(8) | r-1/2(00)d8 < Clgut|r__-1/2(00)) (2.27)

wy — D2 g4(0)
< CJAY2 (wo — D*g(0))| + | A2 (w1 — D2 g,(0)))|
< Cllwolmr (o] + w1z () + 19(0)[g1/2(00) + 19:(0)| 517250y
< Cy.wo,wn (2.28)

where we have used compatibility conditions on the boundary.
The identification in (2.6) applied with # = 1/2 concludes the estimate for the
second term I(t) € HY(Q) x H'(Q) as long as g;:(t) € HY/?(99Q), g(t) € H'/?(0Q).
O

_ NDA
|A1/ZII(t)|H < ‘A1/2 ( wy — D 9(0) > ‘H
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Lemma 2.16. Let f =0 and
9 € Loo(HY?)(09)), g1 € Loo(H'?(0))),
git € Lo (H™Y2(00)) N Lo(HY2(89Q)), g € Lo(H3/2(80))
wo € HX(Q), ~ywo=g(0), wy € H*(Q), ~wi = g:(0). (2.29)
Then
W € Loo(H?*(Q) x H'(Q))
Wi € Loo(L2(Q)) N Lo(HY(Q)).

Proof. The proof follows by reading off from formula in Lemma (2.12) with a
supplement of the following result:

Proposition 2.17. Let the operator K be defined as follows:

wn= [ (00 ) as

Let Z = (z,2) = e Zg + K f
Then, there exists constants Cp, > 0 (independent on t > 0) and wp > 0 such
that

Az + AV 220(0) + |20 (0)* + /Ot [AY 22| ds
< Cpe ! [|A(0)* + |AY220(0)* + | £(0) — bA=(0)[7]
o / e IATE Sy (5)* + |f[)ds)
The constant w, = min|w, b=1].
Proof. The proof of this proposition follows from energy methods reported in

theorem 2.3. The important factor is that the constant C' does not depend on
t. Here are the details. Noting that

Z,(t) = eMZ,(0) + (K f)(t)
the fourth formula in (2.8) implies

t
|Z:(1)|3; < Ce 2! Z,(0)|3; + C/ e 2= A=12 £, (5) 2 ds. (2.30)
0

Hence

[AY 22 (8)]% + 200 (D)]* < Ce™ 2! [|AY22(0)|? + |20 (0) ]

t
+C/ e~ =3)| 4712 £, (s) | ds. (2.31)
0
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On the other hand, applying the multiplier Az to the original equation satisfied
by z, gives

t
(D)2 < Cre™ L AZO) + Gy / T I F()P + zu(s)Plds. (2.32)
0

Combining the estimates in (2.31) and (2.32) leads, after some calculations, to the
final conclusion stated in Proposition 2.17. (I

To continue with the proof of Lemma 2.16 we write, as before, W (t) = I(t) +

I1(t) + III(t), where W (t) is given by Lemma 2.12. Applying the proposition
A

with f = D?gy and Z(0) = ( ;,Uf, 5A;((%))
1T+ I1I. We note the use of compatibility conditions which allows to deduce that
Z(0) € D(A) x D(A), as needed for application of the proposition.

The estimate for term [ is straightforward, as it follows from a priori regu-
larity of the boundary data g(t) and regularity of harmonic extension D?. O

gives the desired result for term

Finally, we shall need regularity of the third time derivative of parabolic
extension. This is given in the lemma below.

Lemma 2.18. Let f =0 and (2.29) hold. Then:
wie € La(H™1(Q))-
Proof. We use the formula in Lemma 2.14 and write
Wi(t) =I(t)+11(t)+I11(t).

In order to read off regularity of w;;; we proceed with evaluation of Wy;. This leads
to calculation of §, ITI(t) = I1I, which can be written as:

0 t 0
III, = Ae?t / AeAlt=s) ds.
¢ ¢ ( Dgtt(O) > + 0 ¢ Dgttt(3> 5

The assumptions imposed imply D g+ € La([D(A'?]") hence

( DAg(ltt(t) ) € La([D(A?]).

Moreover
This gives
I11; € Ly([D(AY?)]) = Lo(HE () x H~1(Q)).

As for I1;, we have

wo — A
< e A i((%)) ) € D(A) x D(A)
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since each term is in .4 (as in the argument given in previous lemma,) so Z(0) €
D(A). This gives
w(0) — Dyg(0)
AZ(0)=A eH
( ) ( w1 — Dgt(())
hence
IT, = AeM AZ(0) € Ly[(D(A™Y?)]) € Lo(HE(Q)) x Ly(HH(Q)))

where we have used all the properties of fractional powers and characterization of
domains associated with strongly damped model.

A
The analysis for I; = D Ogtt is straightforward. Calculations above tes-
tify that the second coordinate of Wy belongs to Lo(H ~1(2)), as desired. O

2.3.2. “Parabolic extension” of Cauchy data. The aim of this section is to intro-
duce “parabolic extension” into the interior of the cylinder Q x (0,7 of Cauchy
data g, ug, u1 specified in Theorem 1.1. To this end we shall use harmonic extension
DA for the boundary data. This leads to the following problem. Consider

wyy — A Aw — bAw; = f(t) in (0,T) x Q (2.33)
w=gondNw0)=wy, w(0)=uwy, in Q.
This will lead to an extension
g = w according to (2.33) with (2.34)
f=0, wo=up, wi =uy.
We first state a result using the harmonic extension (2.16).

Theorem 2.19. Let
1. f e Ly(La(Q) N HYH(Q))
2. g € C(H??(0Q)), g € C(HY?(00Q)), gie € C(H/2(0Q)) N Ly( H'/2(09)),
Guee € Lo(H3/2(090)).
3. 9(0) = wolan, wo € H2(9)7 9:(0) = wilaq, w1 € H2(9)7 J(0) € La(£2).

Then w € C(H?(Q)), wy € C(HY(Q)), wy € C(La(Q)) N La(HY()).
Proof. By introducing new variable u = w— D" g equation (2.33) can be restated as
ug + A Au + bAu = f(t) + F(t) (2.35)

where F(t) = —D?gy and initial data becomes u(0) = wo — D?g(0), u:(0) =
w1 — DAgt (0)
We shall apply the result of Theorem 2.3, see also [9].
For this we verify compatibility conditions:
wo — D®g(0) € H*(Q)NHY(Q), w1 — D2g,(0) € H(Q)
f(()) + F(O) — 02w0 — bAU)l S LQ(Q)
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which are satisfied due to the imposed assumptions. Similarly, the conditions 2.
of Theorem 2.3 imposed on f and F' are also satisfied by the assumptions. The
condition on the forcing term becomes

f, Dgu € Lo(L2(Q)) N H' (H™ ().

We shall use regularity of the Dirichlet map (2.17). The above translates into the
following regularity of g:

g € La(H™V2(092))), giee € La(H*?(09)).
With the above regularity, on the strength of Theorem 2.3 we obtain:
u € C(H*(Q) N Hy (), ur € C(Hg(Q)), uu € C(L2(Q)) N La(Hy (). (2.36)
This implies the same regularity for the function w, provided that
DAg € C(HX(Q), D2g, € C(H (%)
D?gy € C(La()) N La(HY(S)).

Since DA € L(H*(9Q) — H*T1/2(Q)) for all real s we obtain the same
conclusion with g satisfying

g€ C(H%*(09)), g € C(HV?(8Q)) (2.37)
gu € C(HY2(8Q)) N Ly(HY?(09))). O

3. Back to the nonlinear problem

3.1. The Westervelt equation with source term

Consider the Westervelt equation
(1 — 2ku)ug — 2 Au — bAuy = 2k(ug)® + ¢, (3.1)
with zero Dirichlet boundary conditions and given initial conditions:
u=00n0Q, u(t=0)=uy, u(t=0)=wuy. (3.2)

Here k = f3,/(pc?), and q plays the role of a given interior source.
We will show results on local and global well-posedness for this problem
before we carry out the proofs of Theorems 1.1, 1.2, 1.3.

3.1.1. Local well-posedness. The fixed point operator 7 : W C X — W that
we will make use of for using Banach’s fixed point theorem, will be defined by
7 (v) = u with u solving the following linearization of the original equation

(1 — 2kv)utt — C2AU - bAUt = katut + q, (33)



374 B. Kaltenbacher, I. Lasiecka and S. Veljovi¢

with boundary conditions v = 0 on 9, and initial conditions v(t = 0) = uy,
v¢(t = 0) = uy . Here,
W = {veC((0,T) xQ),|vllL_(o0r)x2) <m,
ALy (Lo(9)) < @ IVl Lo(ra(2)) < 8 | Vuellow. @) < a,
v(0) = uo, v¢(0) = u1 } (3.4)
where m < 21k, a are to be chosen appropriately during the course of the proof.

The map 7 is well defined, a fact that follows from linear analysis.
The main result of this section is the following:

Theorem 3.1. Let b >0, m < 41k, T arbitrary. We assume that

Eun(0) < ps laell7, -1y + 147,00y <7
with a, p, p sufficiently small (but possibly depending on T).
Then there exists a solution w € W of (3.1), (3.2), which is unique in W and
satisfies Au, ug, Vug € C(0,T; L2(2)), Vuy € La2(0,T; La()) .

Proof. In order to show that the map 7 is a self-mapping and contraction on W
with suitable parameters m, a, we make use of Theorem 2.3 with

alt,z) =1 — 2kv(t, x), (3.5)
ft,x) = 2kve(t, x)ur(t, ) + q(t, x). (3.6)
Note that Assumption 2.1 is obviously satisfied for A = —A with homo-

geneous Dirichlet boundary conditions, due to Poincaré’s inequality, H? regu-
larity of solutions to the Laplace equation with Lo right-hand side, and conti-
nuity of the embeddings H'(Q) — Lg(Q), H*(Q) — C(R2). Moreover, we have
D(AY?) C HY(Q), D(A) C H?*(Q), with |AY?w| = |Vw|, |Aw| = |Aw|. Addition-
ally we have, D(A) C W§ (), with [Vw]|p(q) < Ci|Awl.

Step 1. We will first show that for v € W the functions «, f according to (3.5)
enjoy the regularity required in Theorem 2.3, i.e., « € C'(H) and, according to
Assumption 2.2, 0 < oy < at,z) < ap, so we deal with the non-degenerate
case. Moreover, according to the assumptions of Theorem 2.3 we have to show
f € Ly(H) n HY([D(A'?)]'). Note that 3. of the assumptions of Theorem 2.3
follows from E,, 1(0) < p. We recall that H = Ly(f2). For this purpose we can
make use of Proposition 4 in [16] and augment it in a straightforward way by the
source term:

Proposition 3.2. Letv € W and «, f be defined above by equation (3.5) and assume
that km < 1/4. Then
e ap=3/2>a(t,x) >1/2=q,
° ‘Ozt|c(7_() < 2Coka
o fo |ATV2f[2dt < 16CCok2a% (Jun 2 gy + A 2uelF ) + 200l -1 o
o Jo 1fPds < 8C3COR2a2[uil2, 11 + 2Ml4lI2, 10
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Note that on the strength of Assumption 2.1 and by definition of A we have
ul?_ 0.1)x) < CF1Au[Z 3); |Aul], 3y < T AUfG )
2
\Vutt\QLQ(H) < |~A1/2utt‘2L2(H); ‘Vut|20(n) < 2 |Ew,lco.r) - (3.7)

Step 2. To obtain the bounds m, a required for © € W, we will now make use of
estimates (2.10), (2.11) from Theorem 2.3 together with Proposition 3.2.
Applying the estimate (2.10) with ¢ = ¢ = i’ gives:

b t
+2/ |AY 20 (s)|?ds
0

16C3Cok%a> 2
< (B0 T a2y + LAl 000 + -1

Cb/at(2Coka)* (3.8)

which yields
b
max{|Ey,|c0,1) 5 JAY 20 () 1,20 }

2 —y4
< (Eut (0) + b Hth%Z(H—l(Q)) + (b(a)‘Eut C(O,T)) ecb/4T(2Coka) , (39)

where

b

16C; Cok?a> {2 QT}
max .
oy 2

o) =1

With a sufficiently small so that ¢(a) <

1
27
s { 2.2 (o4 25) evircuar < gt

we get by (3.7) |ugt|r,mr) < @, [ut|omry < a as desired, and additionally

2
|utt%(H) < T cfal. (3.10)
Qo

and p, p sufficiently small so that

Applying the estimate (2.11) gives:

80300k26_L2 1
bl Au(t)[* < bl Au(0)[? + ! 2 |ut|%2(H1(QO) + 2 ||‘1||2L2 (L2(9))
2012 gt 2-2 212
C 1 8C3Cok?a C
020/\A1/2utt\2§b,0—|— P+ 1o T2_~_0‘020d27
0 c c? 2¢
so that by possibly decreasing p, p, and @ using (3.7) we can guarantee
|u|z ((0.1)x0) < m, hence the final conclusion 7W C W follows.

Step 3. The proof of contractivity of 7 is exactly the same as without source term,
see [16]. O
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3.1.2. Global well-posedness. We shall exploit the barrier’s method, typically used
in quasilinear hyperbolic problems [5, 32, 34, 23].

Theorem 3.3. For sufficiently small initial data and source term the solutions are
global in time. Moreover, the size of initial data does not depend on time. This is
to say: For any given M > 0 there exist p > 0 and p > 0 such that if

£(0) < p (3.11)
and
16017,0,00:-102)) + 191175 (0,0052.0(2)) < P> (3.12)

then
E(t) < M forallt € RT.

Proof. Let u be a local solution that exists for sufficiently small data by Theorem
3.1. For this solution, we apply Proposition 2.6 with

a=1-2ku, f=2kul+q (3.13)

(see Proposition 6 in [16]) for which the following estimates can be obtained

T T
/ |y () [*|uge ()2t < 1603k4/ |AY 200, ()[4 AY 2 ugy ()2 dt
0

0

T T T
/ \f(t>|2dtgsc§cgk2/ \Al/Qut(t)|4dt+2/ () [2dt
0 0 0
T T
/ \A’1/2ft(t)|2dt§3QCfC§k2/ |AY 20y, (82| AY 2, ()2 dt
0 0

T
+2/ A=Y, (1) 2dt.
0

Therewith, Proposition 2.6 yields

Eo(T) + (a(T)use(T), use(T)) + 5/0 (Eo(t) + |A 2ug (1)) (1 — @ (u, ue)(t))dt

T
< ClE(0) + 2/ (€214 24, (0)P + C¥la0)? ) (3.14)
0
where b = min{1,2/c2}b,
Eolt) = P A uy () + | Au(t)?,
and

£(1) = Eo(t) +  (althune(t), un (),
and
D (u, u)(t) < C(Eo(t) + Eo(t)?) (3.15)
(see the proof of Theorem 3.2 in [16]).
Based on estimate (3.14), we now apply barrier’s method, i.e., we assume
that there exists some time when degeneration occurs in « or in (1 — ®(u,uy)).
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Let Ty be the first such time instance, i.e., the first time when either a(7p) = 0 or
®(u,ut)(Ty) = 1, which implies that either

205k Au(Tp)| > 1 (3.16)
(see (3.13) and Assumption 2.1) or
C’(&)(T{)) + So(To)Z) >1 (3.17)

(see (3.15)).

On the other hand, we can take p, p in (3.11), (3.12) sufficiently small so that

with M = C1p + 2max{C?,C3}p

205k VN <1 and O(N + N2) < 1, (3.18)
and apply (3.14), which holds up to t = Ty and yields [Au(Tp)[> < E(Ty) < M.
Therewith

20 k| Au(Ty)| < 205KV N < 1

and

C(E(To) + Eo(Tp)?) < C(M + M?) < 1
a contradiction to (3.16), (3.17).

Note that since C1, Cs, C’%, C3,C are intrinsic constants independent of T, for
any given M, we can choose M such that M < M and the inequalities (3.18) are
satisfied. Then we choose p, p such that C1p + 2max{C?, C3}p < M. With these
p, p (independent of T') in (3.11), (3.12) we obtain the global energy estimate

Et) <M <M forallteRT
g

3.1.3. Decay rates.

Theorem 3.4. We assume that the initial data and source term are sufficiently
small such that (3.11), (3.12) holds. Additionally, we assume that the source term
decays exponentially to zero

T
VO S s < T : / <|qt(t)|i[71(9) + |q(t)‘%2(g))) dT S qu—qu . (319)
Then the energy decays exponentially fast to zero.

E(t) < Ce™™E(0) (3.20)

where 0 < w < min{ cl‘;l ,wq} with b = min{1,4/C3} min{1,2/c*}b, and b, C* as in
(2.15).

Note that (3.19) follows from

VE2 0 fa(t)]i-1 () + 1a(t)]7, ) < weCoe "
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Proof. Using (3.14) with p, p in (3.11), (3.12) sufficiently small so that
2Cok~/Cip+2p < 1/2
we get 1/2 < a(t,x) < 3/2, hence
E(t) ~ Eo(t) + |uge)®, E(t) < 2max{C? C3}p.
Moreover, with
LAY 22 > Clo w2, (3.21)

and using the fact that in the proof of (3.14), ¢ = 0 can obviously be replaced by
t = s, we get (see the proof of Theorem 3.3 in [16])

T
E(T) +5 / E(r)dr < C1E(s) + 20, max{C?, C¥}e~n (3.22)

for any s < 7T. .

We consider £(7) = E(7) + Ae %7 with A = 2C, max{C?, C?}/(Clw, — b)
and assume w.l.o.g. that C' > 1 and wg > C;’l so that A > 0. (If w, < g’l or
C' < 1, we can replace C! in (3.22) by C' > max{fq 1} >0t

Therewith, we get l_)fsTg(T) dr < C'€(s) so that we can apply a standard
semigroup argument (see, [31] or, e.g., Theorem 8.1 in [20]) to obtain Et) <
E(0)e™ 1' and therewith (3.20). O

3.2. The Westervelt equation with nonhomogeneous Dirichlet boundary data

We return to the Westervelt equation with zero source term

(1 — 2ku)us — A Au — bAu; = 2k(ug)?, (3.23)
but nonhomogeneous Dirichlet boundary conditions
u=gon (0,T) x 00 (3.24)
and initial conditions
u(t=0) = ug, u(t=0) = uy. (3.25)

For this purpose we transform to a problem with homogeneous boundary and
initial conditions for «° in the decomposition v = u® + § with g being selected as
the extension of boundary data given by (2.4).

Substituting v into (3.23) gives

(1 — 2ku)ud, — A Au® — bAU) = 2kuul + q (3.26)
u=0, on (0,T) x 00
u’(0) =0, uY(0)=0,in Q.
where the “forcing” ¢ is given by

q = 2kugy + 2kugy.
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Thus, we are looking for solution u = u® + g such that u° satisfies (3.26)
with zero Cauchy (boundary and initial) data. The above leads to a fixed point
formulation

T : W C X — W, with W given by (3.4)

and 77 (v) = u, where u = u® 4+ g with «° given by

(1 — 2kv)ul, — AU’ — bAU) = 2kvul + ¢, (3.27)
u’ =0 on (0,T) x 9Q
u?(0) =0, u(0)=0.
and
qv = 2kvgy + 2kvigy. (3.28)

Since now v € W does not satisfy homogeneous boundary conditions, we will have
to use the following estimates following from Assumption 2.1 and the decomposi-
tion w = (w — D®yw) + D®~yw, where w — D®~w satisfies homogeneous Dirichlet
boundary conditions.

H'(Q) C Lo(®),  with [w| < Col|Va| + il /200 - (3.29)
and |Va| < Co(|Aw| + /2 00)) (3.30)
HY(Q) € Le(Q),  with ]y < C1(IVu| + [yl o0)) - (3.31)
and |Vl z,0) < Cr(|Aw| + hdlgszee),  (3.32)
H*(Q) c C(Q), with [w|,_ () < CallAw| + 7] a2 (a0)) - (3.33)

3.2.1. Local well-posedness: Proof of Theorem 1.1. In the fixed point proof of local
existence we will fall back to the case of the nonlinear problem with the source
and homogeneous boundary data.

To see this, we notice that u® = 7v where 7v is defined by (3.3) with ¢
replaced by ¢, and zero Cauchy data. This leads to the following description of
the action of the map 7;:

Tiw=Tv+g
where g is given by (2.34) and ¢, is given by

kagtt + katgt- (334)

Qv

To formulate a smallness assumption on the boundary data, we will estimate
qu||2L2(H71(Q)) + ||qUH%2(L2(Q)) according to (3.34) by some quantity C(g, m,a) =
CP(g,m,a)}. Then we will use the extension theorems from Section 2.3 to estimate
CP(g,m,a) from above in terms of appropriate norms of g.

For this, we use the following estimate:
Proposition 3.5.
A2 [0guad] () < (VG ()] + VG (6)]) ([0(1)| . ) + C1IVO() Ly (02))-
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Proof. Since we do not have an estimate of g+, we use the respective PDEs to
express two time derivatives via space derivatives, i.e., for any ¢ € Lo(2) with
|¢| =1, we evaluate

(A2 (0gue) (), @) = (Guue (), 0 (DA 26) = (P Age + bAGu, vA~29).
Since A~'/2¢ € H}(Q), we obtain

(Agu, vATY?¢) = (Vgu, vVA" 2+ VoA~ 2g)
< VG| (vt) po @) |0] + VO Ly ) A28 Lo c)) -

A similar argument applies to the term Ag;. O
The following lemma provides the estimate of ||Vv||¢(L,0) usmg the infor-
mation ||Av[|1,(L,@)) < @ [Vl |y (a@) < 8 [[Vuellowa@) < @, see (3.4).

Lemma 3.6. For any ¢ € La(Le(Q)) N HY(L2(Q)) with $(0) € L3(2) we have
¢ € C(L3(Q)) with

1/2 3/2 3 1/3
H(bHC (L3(2)) < (3C4H¢||H1 Lo Q))H(bHLQ Lg Q))||¢t||L2(L2(Q)) + |¢(0>|L3(Q)) )
where Cy is the norm of the continuous embedding H/*(0,T) — L4(0,T)

Proof.
t
d
6()| 2,0 :/0 dt/Q\¢(s,x)|3dxds+|¢(O)|§3(Q)
t
:3/0 /Q\¢(s,x)|2sign(¢(s,x))¢t(s,x)dxds+|¢(0)|?igm)

t
<3 [ 1005305 ey ds + 600
<3174 a0t La(racy) + 1602, 0
< 3CENN %1/ 106l La(La()) + 1607 ()
< BCRISN 7 ) 101 Tt g 192 a2 ) + 160 )
where we have used standard interpolation in the last inequality:

1/2 3/2
161204 gy < ClONEE Lo 18125 Lo O

Therewith we can give the following estimates of the g terms arising from
homogenization:

Proposition 3.7. For g, given by (3.34) with v € W (see (3.4)) the estimate

||‘Jth2L2(H71(Q)) + ||qv||2LZ(L2(Q)) < C*(g,m,a)
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holds with
C*(g,m,a) = C”(g,m,a) (3.35)
=2k(m + 0(T,m,a,g,u0)) bl Vell LoL22)) + NV La(La02))
+4kCh(a+ lgellc ez 00 )Gl (L4 (92))
+ 2kC1 (@ + || guall 1y a2 00) )Gt Lo (Lg 2 (2))
+ 2km||Guell L. 0)) + 2kCi(@ + Ngellc ez 00 )Gl Lozs @)
where

~ 3 3 2 [ A2/ 2 o\ M4
0T, m, a9, u0)? = Vol ) +3C3 { CB(@ + llgll o2 omy)? + Ta? }

xCY2 (@ + |9l Lagrror2(00)** VT
(3.36)

Proof. We use Proposition 3.5 and Lemma 3.6, which together with [[4||z,0,7) <
T'2 |9l 0,1y vields
IVvllo(rs@) < 0(T,m,a, g, uo)
and the estimate |ab|g-1(q) < [ablry ) < |alLe(@)lblL, () that follows from
duality and continuity of the embedding H'(2) — Lg(f2) to obtain
qoell Locr-1(02)) = 2K[|vGeee + 20ttt + VeeGe || Lo (-1 ()
< 2k(m + 0(T,m,a, ,u0)) (0| VGeel| Lo(Lo0)) + Ve La(za2))
+ 4kCy(a+ llgell oz ooy 1Fetll LaLs 2 (2)
+ 2kC1 (@ + N|gull 1y 12 003t Lo (L o(2))
where we have used Proposition 3.5 and Lemma 3.6, as well as
@l Loza()) = 2kl0Gee + veGell Lo(La(02))
< 2kml|Gell La(Lo(9) + 2KC1(@ + |gell o ez ooy |Gl La(La@)). -

It only remains to combine Proposition 3.7 with the estimates according to
Section 2.3, which under condition (1.4) gives

gl crr-10) + 1901174 Loy (3.37)
< (C@,m,8,10) + Clllgl Lagarss= o) + Igellciarraony + Igell Lo 200))

with X according to (1.5), and a constant C(T,m,a,uo) independent of g and

small for small m, a, [Vuo|r,q), as well as a constant C.

Since when evaluating 7;v, we add g to u”, we additionally need smallness
of ||g]lx (cf., (2.37)).

Therewith, along the lines of the proof of Theorem 3.1 (note that the proof
of contractivity of 7 is exactly the same as in case of homogeneous Dirichlet
boundary conditions, see [16]) we arrive at the following result:
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Theorem 3.8. Let b >0, m < 41k, T arbitrary. We assume that E, ¢(0) < oo,

E,1(0)<p, |glkx <5

with a, p, p sufficiently small (but possibly depending on T),
Then there exists a solution w € W of (3.23), (3.24), (3.25), which is unique
in W and satisfies Au, uy, Vur € C(0,T;La()), Vuu € L2(0,T; La(Q)) .

3.2.2. Global well-posedness: Proof of Theorem 1.2. By reducing the situation of
nonhomogeneous Dirichlet data to the situation of nonzero source term we obtain
a global well-posedness result.

Theorem 3.9. For sufficiently small initial data and boundary data the solutions
are global in time. Moreover, the size of initial data does not depend on time. This
is to say: For any given M > 0 there exist p > 0 and p > 0 such that if (1.4),

£0) <p, (3.38)
2 dl ) 1 d37l )
Z ||dtlg||Loc(R+,H3/2*l)(8Q)) + Z ”dt3_lg||L2(R+7H73/2+2L(aQ)) S P (339)
=0 =0

then E(t) < M, t € RT.
Proof. We use the extension (2.34) and the fact that u = u° + g, where u° satisfies
(1= 2k(u® + g)ud, — AAU® — bAWY = 2k(u0)? + ¢* (3.40)
u® =0 on 09
u’(0) =0, uP(0)=0.
and
0
qv = 2ku’Gy + 4kulG, + 2kgge + 2k(G.)? . (3.41)
Similarly to Proposition 3.7 we obtain, using
qfo = 2ku’Gosy + 6kufGee + 4kug,ge + 6kGegee + 2kggine
the estimate
UO UO
gt ()31 + 14" (D750
< 64{2k(b\vgtt(t |+ c2|Vg, (t)))2(Ca + CLC1 Q)2 | Aul () 2
+6kCT|Vuy (1) g0 (D], ()
+4kCT Vg () P19:(D1, (@)
+6kCF(|Va(t)] + |gt(t)\H1/2(aQ))2\§tt(t)|2Lg/2(Q)
+ 2KV G ()] + Vg (8))* (Co + C101 Q)%
(18O + 19(t) 3/ 02)° }

(
)
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+16{2KC AW (1) gur ()]
+4kCYPCy P EYP PV (O PV G 0] + 19 ()] 112 o0y)
+ 2kC3(AGE)] + lg(8) /201900 (1)
+ 26C Co(1VG(8) + 192(8) 1272 o)}
< 256KCEVuly ()P 15u(D1,, (o
+ Ch(|au () + [Vud (1) *
+1Ag(O[* + Vg ()]* + |gu ()
Hg(t)ﬁ{?»/Z(aQ) + ‘Qt(t)‘é}p/zmg)
HVgu O (JAu 02 + (1AG0)] + lg(®) 12 00)°)) (3.42)
< C (A 2un(t) + E(t) + [AgH)I* + Vg (0)]* + lgu ()l o

Hg(0) 4s200) + 196D 1200 ) (3.43)

for some generic constant C', where we have used Lemmas 2.16, 2.18.
Therewith7 similarly to (3.14) and again using Lemmas 2.16, 2.18 as well as

||¢||L4 0,00) = H(bH%m(O,oo)H(bH%Z((LOO) we get
Eo(T) + (UT)ugy(T), ugy(T)) (3.44)

+(5*Cﬁ)/o (Eo(t) + A2 (1)) (1 — 2(u°, uf)(t)dt < CTE(0) + Cp°

with & as in the proof of Theorem (3.3) with u replaced by u® and ® defined by
®(u®,ud)(t) = C*16CTCK?AY 2002 + C3 4C5 C2E2| AV 2ud)?
+ C*16CSKY AV 2ud|* + C& (1)

see (3.43) and the equation before (50) in [16], hence satisfying (3.15).
Therewith, the rest of the proof can be carried out analogously to the one of
Theorem (3.3) to yield global existence of 4 and therewith of u = u® + g. O

3.2.3. Decay rates: Proof of Theorem 1.3.

Theorem 3.10. We assume that the initial and boundary data are sufficiently small
such that (3.38), and (3.39) holds. Additionally, we assume that the boundary data
decays exponentially to zero in the sense specified in Theorem 1.3, i.e.:

—wgt

(3.45)

|g(t)ﬁ{3/2(ag) + |gt(t>|ip/2(ag) + |gtt(t)ﬁ{1/2(3g) + |gttt(t>|i173/2(ag) < Cye

Then the energy decays exponentially fast to zero.

E(t) —+ Eu’() (t) S C@imt
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where 0 < @ < min{ g’l ,w, p,wg} with b=min{1,4/CZ}(min{1, 2/c2}b — Ckp), b,
C' as in (2.15), and w as in (2.7).

Proof. Again we use the extension (2.34).
In order to proceed along the lines of the proof of Theorem 3.4, we consider
(3.40) with (3.41) and estimate (3.42), which similarly to (3.14), (3.44) yields

Eo(T) + ((T)ugy(T), ugy(T))

B T
+6-Co) [ (Ea(t) + AR P - 2, ) 1)

<cte(s)+C [ (1ag01 + [Fa)l* +1gul)]
+ ‘Q(t)‘%ﬂﬂ(ag) + |gt(t)|§11/2(ag)
+ Vg (186 OF + (185()] + 90l o200))?) ) dt (3.46)

with & as in the proof of Theorem (3.3) with u replaced by u° and ® satisfying
(3.15).

Since by Theorem 3.9 and Lemma 2.16, the term (|Au°(t)\2 + (|Ag(t)| +

l9(t)| /2 (90))? 18 in Lo, it therefore remains to show that (3.45) implies expo-
nential decay

T
/ (IAGO[* + [Va®)* + [gu(l* +Vau()?) di < Ce® . (3.47)

From Lemma 2.12 with w = g, wg = uo, w1 = u1 we get

g(t) — DAg(t) Y uy — DAg(O) -
( ge(t) = D2gu(t) > =< ( ur — D?g(0) ) + K[=D%gu](t)

which by Proposition 2.17 with ¢ = 0 replaced by t = s yields
Az + A2, ()] + [z (8)]* + /t AV 22 (7) | dr
< Cpe™ [ Az(5)? + A2 20() P + D% gua(s) + bAz(s)|%]
+ Gy /t em AT 2 DA g (r)? + [ D gu(7) ] dr] (3.48)

for z(t) = g(t) — D?g(t), where w, = min[w, b~!]. To this end, note that in Propo-
sition 2.17 we have Z(t) = eA(=9) Z(s) + fst eAlt=7) ( 0 ) ) dr.

fr
With s = 0 in (3.48), using (3.45) and (2.17) this implies
2F.1(t) = |Az(t)]? + | V2 ()2 + | 206 (t)]* < Cre™ (3.49)

which yields

/T (JAZE)|* + [V (t)|* + [2e(t)]*) dt < Cpe 29 (3.50)
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Now we use (3.48) with ¢ = T" and (3.45) to obtain

T
/ |AY2 2 (1) Pdr

< Cbe_‘”b(T_s)HAz(s)|2 + |.Al/22t(s)|2 + |DAgtt(s) + bAz(s)]?] + Cpe %5,

In here, we can use the identity (2.19) that implies b.Az(s) = —gu(s) — 2 Az(s)
to get

T
/ |A1/22tt(7)\2d7
< Coe™ T I[|Ax(s)[ + |AY221(5)P + |zn(s) + ¢ Az(s) ] + Cre™ .

Inserting (3.49) with t = s gives féT |AY22(1)|2dT < Cpe™* which together with
(3.50) and

/T \\ADAg(tlrl +|VD2g,(t)[* + [D2gu(t)|* + VD2 gu(t)|* | dt < Ce®*
s ~
=0
yields (3.47). So we obtain
By () < Ce .
This together with (3.49) yields
Eu1(t) < 2E,01(t) +2E51(t) < Ce™ !

and therewith the assertion regarding the higher energy E, 1(t). Regarding the
lower energy E, o(t), we evoke (3.29), (3.30), to obtain:

Euo(t) < C3(IVur®)] + 19 (t) mr2(00))” + Ca(1Au ()] + 19(t) 312 002))?
< 2max{Co, CAVO}(Eu,l(t) + |gt(t)§11/2(39) + |g(t)?L[3/2(aQ))- O
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in W Spaces without Weights

N.V. Krylov

Abstract. We consider second-order divergence form uniformly parabolic and
elliptic PDEs with bounded and VMO, leading coefficients and possibly lin-
early growing lower-order coefficients. We look for solutions which are sum-
mable to the pth power with respect to the usual Lebesgue measure along
with their first derivatives with respect to the spatial variables.
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Keywords. Stochastic partial differential equations, Sobolev spaces without
weights, growing coefficients, divergence type equations.

1. Introduction

We consider divergence form uniformly parabolic and elliptic second-order PDEs
with bounded and VMO, leading coefficients and possibly linearly growing lower-
order coefficients. We look for solutions which are summable to the pth power
with respect to the usual Lebesgue measure along with their first derivatives with
respect to the spatial variables. In some sense we extend the results of [17], where
p =2, to general p € (1,00). However in [17] there is no regularity assumption on
the leading coefficients and there are also stochastic terms in the equations.

As in [3] one of the main motivations for studying PDEs with growing first-
order coefficients is filtering theory for partially observable diffusion processes.

It is generally believed that introducing weights is the most natural setting for
equations with growing coefficients. When the coefficients grow it is quite natural
to consider the equations in function spaces with weights that would restrict the
set of solutions in such a way that all terms in the equation will be from the
same space as the free terms. The present paper seems to be the first one treating

The work was partially supported by NSF grant DMS-0653121.
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the unique solvability of these equations with growing lower-order coefficients in
the usual Sobolev spaces VVp1 without weights and without imposing any special
conditions on the relations between the coefficients or on their derivatives.

The theory of PDEs and stochastic PDEs in Sobolev spaces with weights
attracted some attention in the past. We do not use weights and only mention a
few papers about stochastic PDEs in £,-spaces with weights in which one can find
further references: [1] (mild solutions, general p), [3], [8], [9], [10] (p = 2 in the four
last articles).

Many more papers are devoted to the theory of deterministic PDEs with
growing coefficients in Sobolev spaces with weights. We cite only a few of them
sending the reader to the references therein again because neither do we deal with
weights nor use the results of these papers. It is also worth saying that our results
do not generalize the results of these papers.

In most of them the coefficients are time independent, see [2], [4], [7], [21], part
of the result of which are extended in [6] to time-dependent Ornstein-Uhlenbeck
operators.

It is worth noting that many issues for deterministic divergence-type equa-
tions with time independent growing coefficients in £, spaces with arbitrary p €
(1,00) without weights were also treated previously in the literature. This was
done mostly by using the semigroup approach which excludes time dependent co-
efficients and makes it almost impossible to use the results in the more or less
general filtering theory. We briefly mention only a few recent papers sending the
reader to them for additional information.

In [19] a strongly continuous in £, semigroup is constructed corresponding
to elliptic operators with measurable leading coefficients and Lipschitz continuous
drift coefficients. In [22] it is assumed that if, for || — oo, the drift coefficients
grow, then the zeroth-order coefficient should grow, basically, as the square of the
drift. There is also a condition on the divergence of the drift coefficient. In [23] there
is no zeroth-order term and the semigroup is constructed under some assumptions
one of which translates into the monotonicity of +b(xz) — Kz, for a constant K,
if the leading term is the Laplacian. In [5] the drift coefficient is assumed to be
globally Lipschitz continuous if the zeroth-order coefficient is constant.

Some conclusions in the above-cited papers are quite similar to ours but
the corresponding assumptions are not as general in what concerns the regularity
of the coefficients. However, these papers contain a lot of additional important
information not touched upon in the present paper (in particular, it is shown in
[19] that the corresponding semigroup is not analytic and in [20] that the spectrum
of an elliptic operator in £, depends on p).

The technique, we apply, originated from [18] and [13] and uses special cut-off
functions whose support evolves in time in a manner adapted to the drift. As there,
we do not make any regularity assumptions on the coefficients in the time variable
but unlike [17], where p = 2, we use the results of [11] where some regularity on the
coefficients in = variable is needed, like, say, the condition that the second-order
coefficients be in VMO uniformly with respect to the time variable.
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It is worth noting that considering divergence form equations in £,-spaces is
quite useful in the treatment of filtering problems (see, for instance, [15]) especially
when the power of summability is taken large and we intend to treat this issue in
a subsequent paper.

The article is organized as follows. In Section 2 we describe the problem,
Section 3 contains the statements of two main results, Theorem 3.1 on an a priori
estimate providing, in particular, uniqueness of solutions and Theorem 3.3 about
the existence of solutions. The results about Cauchy’s problem and elliptic equa-
tions are also given there. Theorem 3.1 is proved in Section 5 after we prepare the
necessary tools in Section 4. Theorem 3.3 is proved in the last Section 6.

As usual when we speak of “a constant” we always mean “a finite constant”.

The author discussed the article with Hongjie Dong whose comments are
greatly appreciated.

2. Setting of the problem
We consider the second-order operator L,
Lyug(x) = D; (0! (x) Dyus(x) + bj(2)uy () + b} (x) Diwg () — co(w)us (),

acting on functions u;(z) defined on ([S, T]NR) x R¢ (the summation convention is
enforced throughout the article), where S and T are such that —oco < .5 < T < oo.
Naturally,

0
D;= _ .
ozt
Our main concern is proving the unique solvability of the equation
Opuy = Lyug — Mg + Diff + f2 t €[S, T]NR, (2.1)

with an appropriate initial condition at ¢ = S if S > —oo, where A > 0 is a
constant and 9; = 9/0t. The precise assumptions on the coefficients, free terms,
and initial data will be given later. First we introduce appropriate function spaces.

Denote C§° = C§°(RY), £, = L,(R?), and let W, = W (R?) be the Sobolev
space of functions u of class £, such that Du € £, where Du is the gradient of
uwand 1 < p < oo. For —oo < 5§ < T < oo define

]Lp(Sv T) = L‘p((57 T)7 £p>7 Wzl)(s’ T) = L‘p((sv T>7 W;})v
Lyp(T) = Lp(—00,T), W,(T) = Wy, (=00, T),
L, = Ly (c0), W, = W} (c0).
Remember that the elements of L,,(S, T') need only belong to £, on a Borel subset
of (S,T) of full measure. We will always assume that these elements are defined
everywhere on (S,T) at least as generalized functions on R?. Similar situation
occurs in the case of W,(S,T).

The following definition is most appropriate for investigating our equations
if the coefficients of L are bounded.
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Definition 2.1. We introduce the space W; (S,T), which is the space of functions
ug on [S, T]NR with values in the space of generalized functions on R% and having
the following properties:
(i) We have u € W)(S,T);
(ii) There exist f* € L,(S,T), i =0,...,d, such that for any ¢ € C§° and finite
s,t € [S,T] we have

(%@:@m@+/«?¢%%ﬁ&@ﬂﬂ (2.2)

In particular, for any ¢ € C§°, the function (uq, ¢) is continuous on [S, T|NR.
In case that property (ii) holds, we write

Owuy = Difi + f2, t€[S,TINR.
Definition 2.1 allows us to introduce the spaces of initial data

Definition 2.2. Let g be a generalized function. We write g € W,} ~2/P if there exists
a function v; € W, (0,1) such that dyv; = Awy, t € [0,1], and vg = g. In such a
case we set

19llyy1-2/0 = [lvllwi0.0)-

Notice that if the function v in Definition 2.2 exists, then it is unique, since
the difference of two such functions is a WZ} (0, 1)-solution of the Cauchy problem
for the heat equation with zero initial data.

Following Definition 2.1 we understand equation (2.1) as the requirement
that for any ¢ € C§° and finite s, ¢ € [S,T] we have

t
mﬁﬁﬁ%@+/[@Qm*@+Mm+ﬁ@

f(aiijuT + bﬁ.ur + fﬁ, Di¢)] dr. (2.3)

Observe that at this moment it is not clear that the right-hand side makes

sense. Also notice that, if the coefficients of L are bounded, then any u € W;(S, T)

is a solution of (2.1) with appropriate free terms since if (2.2) holds, then (2.1)
holds as well with

fi— aiijut —blug, i=1,...,d, fP+ (c;+ Nus —biDjuy,

in place of f{,i=1,...,d, and f, respectively.

We give the definition of solution of (2.1) adopted throughout the article and
which in case the coefficients of L are bounded coincides with the one obtained by
applying Definition 2.1.

Definition 2.3. Let f/ € L,(S,7T), j = 0,...,d and assume that S > —occ. By
a solution of (2.1) with initial condition ug € Wplfz/p we mean a function u €
1 1
W, (S, T) (not W, (S,T)) such that
(i) For any ¢ € C§° the integral with respect to dr in (2.3) is well defined and
is finite for all finite s,t € [S,T];
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(ii) For any ¢ € C§° equation (2.3) holds for all finite s,t € [S,T).
In case S = —oo we drop mentioning initial condition in the above lines.
It is worth mentioning that under our conditions on the coefficients require-
ment (i) of Definition 2.3 is automatically satisfied (see Corollary 5.5).

3. Main results
For p > 0 denote B,(z) = {y € R? : |z — y| < p}, B, = B,(0).
Assumption 3.1.

(i) The functions a? (z), bi(x), bi(x), and ¢;(z) are real valued and Borel mea-
surable and ¢ > 0.
(ii) There exists a constant § > 0 such that for all values of arguments and ¢ € R?

gl > 0l?, Ja¥| <07
Also, the constant A > 0.
(iii) For any 2 € R? the function

/B<|bt<w+y>|+\bt<x+y>|+ct<x+y>>dy

is locally integrable to the p’th power on R, where p’ = p/(p —1).

Notice that the matrix a = (a*) need not be symmetric. Also notice that
in Assumption 3.1 (iii) the ball By can be replaced with any other ball without
changing the set of admissible coefficients b, b, c.

We take and fix constants K > 0, pg, p1 € (0, 1], and choose a number g =
q(d,p) so that

q > min(d,p), q>min(d,p’), q > max(d,p,p). (3.1)

The following assumptions contain a parameter v € (0, 1], whose value will
be specified later.

Assumption 3.2. For b := (b!,...,b%) and b := (b',...,b%) and (t,x) € R¥*! we
have

/ / |6:(y) — bi(z \qdyder/ / |b:(y) — be(2)]9 dydz
p1 (m T) p1 (m

f . / leo(y) — () dydz < KTpma + pl,
By, (=
Wherqu>d—11fq>dand q>d—01fq:d.

Obviously, Assumption 3.2 is satisfied if b, b, and ¢ are independent of x.
They also are satisfied with any ¢ > d, v € (0,1], and p; = 1 on the account of
choosing K appropriately if, say,

[04(x) = be(y)] + [be(2) = be(y)] + lee(x) — er(y)| < N
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whenever |z —y| < 1, where N is a constant. We see that Assumption 3.2 allows
b, b, and ¢ growing linearly in z.

Assumption 3.3. For any p € (0,p0], s € R, and 4,5 =1,...,d we have

s+p? .. ;s
p—2d—2/ ( sup / / ¥ (y) — a7 ()| dydz> dt <. (3.2)
s z€R? J B, () J Bp(x)

Obviously, the left-hand side of (3.2) is less than

N(d)sup sup |af(z) —ai (y)],
tER |z—y|<2p

which implies that Assumption 3.3 is satisfied with any + € (0, 1] if, for instance,
a is uniformly continuous in z uniformly with respect to ¢. Recall that if a is
independent of ¢ and for any v > 0 there is a pg > 0 such that Assumption 3.3 is
satisfied, then one says that a is in VMO.

Theorem 3.1. There exist
v =1(d,d,p) € (0,1],

N:N<d,6ap>7 )\OZAO(da(S,pap07pl7K>21

such that, if the above assumptions are satisfied and X > g and u is a solution of
(2.1) with zero initial data (if S > —o0) and some fI € L,(S,T), then

d

)‘HUHJI%,)(S,T) + ||DUH12LP(S,T) < N(Z ||fZHHQ_,p(S,T) + Ail‘lfoHHQ_,p(S,T))' (3.3)
i=1

Notice that the main case of Theorem 3.1 is when S = —oo because if S >

—oo and ug = 0, then the function u;l;>g will be a solution of our equation on
(=00, T]NR with f/ =0 for t < S.

This theorem provides an a priori estimate implying uniqueness of solutions.
Observe that the assumption that such a solution exists is quite nontrivial because
if by(x) = =, it is not true that bu € L, (S, T) for arbitrary u € W,(S,T).

It is also worth noting that, as can be easily seen from the proof of Theorem
3.1, one can choose a function 7(d, d, p) so that it is continuous in (4, p). The same
holds for N and A\g from Theorem 3.1.

We have a similar result for nonzero initial data.

Theorem 3.2. Let S > —oo. In Theorem 3.1 replace the assumption that ug = 0

with the assumption that ug € Wpl_g/p. Then its statement remains true if in the
right-hand side of (3.3) we add the term

Nllusls -
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Proof. Take v; from Definition 2.2 corresponding to g = ug and set

U t> 5,
= (t—S+1luvs; S>t>8-1,
0 S—1>t
and for i =1,...,d set
fi t>5,
fi=—20t—S+1)Dvs_y S>t>85-1,
0 S—1>t,
f? t>S5,
=S M+At—S+Dvsy S>t>5-1,
0 S—1>t.

We also modify the coefficients of L by multiplying each one of them but aij by
I;>s and setting

i _ Ja? t=s,
a =< .
0 S >t
Here we profit from the fact that no regularity assumption on the dependence of
the coefficients on ¢ is imposed. By denoting by L the operator with the modified

coefficients we easily see that @; is a solution (always in the sense of Definition
2.3) of

Ovity = Lytiy — Ny + Dif] + fY, t<T.
By Theorem 3.1
d ~. ~,
Ml sy + 1Dl 50y <N (Z 12, o) + )\_1||f0||]%p(T)> ;
i=1
where

VFUE = W12 sy + U2, sovsy < IFIE. sy + 22Dl 0

< Hfi”]lpip(syT) + 2PHUS||€V;72/,),

1P oy < IO sy + N L+ M) IE. )
<UL sy + N+ N s 24y

Since A > Mg > 1, we have 1 + AP < 2)MP and we get our assertion thus proving the
theorem. O

Here is an existence theorem.

Theorem 3.3. Let the above assumptions be satisfied with v taken from Theorem
3.1. Take X > \o, where \o is defined in Theorem 3.1. Then for any f7 € L,(T),
J=0,...,d, there exists a unique solution of (2.1) with S = —oc.
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It turns out that the solution, if it exists, is independent of the space in which
we are looking for solutions.

Theorem 3.4. Let 1 < p1 < p2 < 00 and let

v= inf ~(d,d,p),
pE[p1,p2]

where v(d, 8, p) is taken from Theorem 3.1. Suppose that Assumptions 3.1 through
3.3 are satisfied with so-defined v and with p = p1 and p = ps.

(i) Let —00o < S < T < o0, fI € Ly, (S,T)NLy,(S,T), j =0,...,d, ug €
Wplfz/pl N Wp1272/p2, and let w € W, (S,T)U W, (S,T) be a solution of
(2.1). Then u e W} (S,T)NW, (S, T).

(ii) Let S = —o00, T = o0, f7 €Ly, NL,,, 5=0,...,d, and let u € Wll,l UW;Q be
a solution of (2.1) with

A Z sup )\O(da 6,]), pOapvi)v (34)

PE[p1,p2]

where \o(d, d, p, po, p1, K) is taken from Theorem 3.1. Then u € Wzl,l N Wzl,,z.

This theorem is proved in Section 6. The following theorem is about Cauchy’s
problem with nonzero initial data.

Theorem 3.5. Let S > —oo and take a function ug € W,}_Q/p. Let the above
assumptions be satisfied with v taken from Theorem 3.1. Take A > Ao, where \g is
defined in Theorem 3.1. Then for any f7 € L,(S,T), j = 0,...,d, there exists a
unique solution of (2.1) with initial value ug.

Proof. As in the proof of Theorem 3.2 we extend our coefficients and ft] fort < S
and then find a unique solution ; of

Oply = it’l]t — Mg + le‘tz + fto te (—OO,T} NR,

By construction (¢ — S + 1)vg_; satisfies this equation for ¢ < S, so that by
uniqueness (Theorem 3.1 with S in place of T') it coincides with @; for ¢ < S. In
particular, g = v9 = ug. Furthermore @ satisfies (2.1) since the coefficients of L,
coincide with the corresponding coefficients of L, for finite ¢ € [S, T]. The theorem
is proved.

Remark 3.1. If both S and T are finite, then in the above theorem one can take
A = 0. To show this take a large A > 0 and replace the unknown function u; with

e . This leads to an equation for v; with the additional term —\v; and the free
terms multiplied by e~ *. The existence of solution v will be then equivalent to
the existence of u if S and T are finite.

Remark 3.2. From the above proof and from Theorem 3.4 it follows that the
solution, if it exists, is independent of p in the same sense as in Theorem 3.4.

Here is a result for elliptic equations.
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Theorem 3.6. Let the coefficients of Ly be independent of t, so that we can set
L = L; and drop the subscript t elsewhere, let Assumptions 3.1 (i), (ii) be satisfied,
and let b, b, and c be locally integrable. Then there exist

v =(d,d,p) € (0,1],
N:N(d75ap>7 )\OZAO(da(S?pap07pl7K>21

such that, if Assumptions 3.2 and 3.3 are satisfied and A > Xy and u is a Wpl—
solution of

Lu—Mu+D;if +f°=0 (3.5)
in R? with some f7 € Ly, j=0,...,d, then
d
Mullz, +11Dullz, < N(Y Iz, + A IOZ,)- (3.6)

i=1

Furthermore, for any f9 € L,, j =0,...,d, and X > X there ezists a unique
solution u € W of (3.5).

This result is obtained from the previous ones in a standard way (see, for
instance, the proof of Theorem 2.1 of [13]). One of remarkable features of (3.6) is
that IV is independent of b, b, and c. It is remarkable even if they are constant,
when there is no assumptions on them apart from ¢ > 0. Another point worth
noting is that if b = b = 0, then for the solution u we have cu € W, 1. However,
generally it is not true that cu € VVp_1 for any u € WZ}. For instance u(z) :=
(14 Jz))~* € W, if p > d, but if ¢(z) = |[, then (1 — A)~/2(cu)(z) — 1 as
|z| — oo and (1 — A)~2(cu) is not integrable to any power r > 1. Therefore
generally, (L — )\)Wp1 D I/Vp_1 with proper inclusion, that does not happen if the
coefficients of L are bounded.

Remark 3.3. It follows, from the arguments leading to the proof of Theorem 3.6
(see [13]) and from Theorem 3.4, that the solution in Theorem 3.6 is independent
of p like in Theorem 3.4 if 7 is chosen as in Theorem 3.4 and A > RHS of (3.4) +1.

4. Differentiating compositions of generalized functions
with differentiable functions

Let D be the space of generalized functions on R?. We need a formula for the time
derivative of us(x + x;), where u; behaves like a function from W; and x; is an
Révalued differentiable function. The formula is absolutely natural and probably
well known. We refer the reader to [16] where such a formula is derived in a much
more general setting of stochastic processes. Recall that for any v € D and ¢ € C§°
the function (v, ¢(- — x)) is infinitely differentiable with respect to z, so that the
sup in (4.1) below is measurable.
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Definition 4.1. Denote by D(5,T) the set of all D-valued functions u (written as
u¢(x) in a common abuse of notation) on [S, T NR such that, for any ¢ € C§°, the
function (u¢, ¢) is measurable. Denote by D' (S, T') the subset of D(S,T') consisting
of u such that, for any ¢ € C§°, R € (0,0), and finite ¢1,t2 € [S,T] such that
t1 < ty we have

/t ) sup |(ug, ¢(- — x))| dt < oo. (4.1)

1 |z|<R
Definition 4.2. Let f,u € ©(S,T). We say that the equation
atut(a:) = ft(a:)? te [Sa T} NR, (42)

holds in the sense of distributions if f € D1(S,T) and for any ¢ € CS° for all finite
s,t € [S,T] we have
t

(ut, @) = (us, 9) +/ (frs @) dr.

Let x; be an R%valued function given by

tA
xt:/ bs ds,
0

where b, is an R%valued locally integrable function on R. Here is the formula.
Theorem 4.3. Let f,u € ©(S,T). Introduce
ve(x) = ug(x + x4)

and assume that (4.2) holds (in the sense of distributions). Then

Ave(z) = filw + x) + b Dsve(x), te€[S,T]NR
(in the sense of distributions).
Corollary 4.4. Under the assumptions of Theorem 4.3 for any n € Cg° we have

Oi[us(w)n(z — )] = fi(@)n(e — x0) — w(@)b; Din(x — z,), €[S, T]NR.
Indeed, what we claim is that for any ¢ € C§° and finite s,t € [S,T]

(d)( +20),1) = (uso) + / ([fo6 + B Di(urd)] (- + ), ) dr.

However, to obtain this result it suffices to write down an obvious equation for
u ¢, then use Theorem 4.3 and, finally, use Definition 4.2 to interpret the result.

5. Proof of Theorem 3.1

Throughout this section we suppose that Assumptions 3.1, 3.2, and 3.3 are satisfied
(with a v € (0, 1]) and start with analyzing the integral in (2.3). Recall that ¢ was
introduced before Assumption 3.2.
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Lemma 5.1. Let 1 <r < p and
n=1+ — >0 (5.1)
p T
with strict inequality if r = 1. Then for any U € L, and e > 0 there exist VI € L,,
j=0,1,...,d, such that U = D;V* +V° and
d .
> IVle, < N(d,p,r)e” U]

Jj=1

oo IIVOlle, < N(dp,r)e™|U]

.. (5.2)

In particular, for any w € WZ},

[(U,w)| < N(d,p,7)|U]

L, w”W;,'

Proof. If the result is true for € = 1, then for arbitrary € > 0 it is easily obtained
by scaling. Thus let ¢ = 1 and denote by Ry(z) the kernel of (1 — A)~1. For
i=1,...,d set R; = —D;Ry. One knows (see, for instance, Theorem 12.7.1 of
[12]) that R;(x) decrease faster than |x|~™ for any n > 0 as |z| — oo (actually,
exponentially fast) and (see, for instance, Theorem 12.7.4 of [12]) that for all  # 0

|Rj(z)| < ‘x‘ﬁlp j=0,1,....d.
Define
Vi=R;xU, j=0,1,...,d
If » = 1, one obtains (5.2) from Young’s inequality since, owing to the strict

inequality in (5.1), we have p < d/(d — 1), so that R; € £,. If r > 1, then for v
defined by

1 1 v

P T d
we have v € (0, 1], so that

N

|R;(z)| < 2fd—’ j=0,1,...,d,

and we obtain (5.2) from the Sobolev-Hardy-Littlewood inequality (see, for in-
stance, Lemma 13.8.5 of [12]). After this it only remains to notice that in the
sense of generalized functions

DiVi4Vo=Ry*U — ARy +xU =U.
The lemma is proved. g
Observe that by Holder’s inequality for r = pq/(p+q) (€ [1,p) due to g > p/,
see (3.1)) we have
[holle, < [|Rlle,l[vlle, -

Furthermore, if » = 1, then ¢ = p’ > d (see (3.1)), p < d/(d—1), and n > 0. In
this way we come to the following.
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Corollary 5.2. Let h € Ly, v € L, and w € Wpl,. Then for any € > 0 there exist
VieL, j=0,1,....d, such that hv = D;V* + V° and
d
> IV Ne, < N(d,p)e = nl g, 0]z,

j=1
IVOlle, < N(d,p)e lhlle, vz,
In particular,
|(hv, w)| < N(d, p)|[h]l2,lvlle, [wllws, - (5.3)
Lemma 5.3. Let h € L, and u € Wpl. Then for any € > 0 we have
Ihulle, < N(d,p)|lc, (€9 Dullc, +eHullg, ). (5-4)

Proof. As above it suffices to concentrate on € = 1. In case ¢ > p observe that by
Holder’s inequality

[hullz, < llblle,llullc.,
where s = pg/(g—p). After that it only remains to use embedding theorems (notice
that 1 — d/p > —d/s since ¢ > d). In the remaining case ¢ = p, which happens
only if p > d (see (3.1)). In that case the above estimate remains true if we set
s = 0o. The lemma is proved. O

Before we extract some consequences from the lemma we take a nonnegative
& € C5°(B,,) with unit integral and define

ba(x) = /B EW)bs(x — y)dy, By(z) = /B E(y)ba(z — y) dy,

o) = [ wete -y (55)
By,
We may assume that || < N(d)p;?.

One obtains the first assertion of the following corollary from (5.3) by ob-
serving that

1T, ooy (b1 — Ba()II%, = / by — By da
B/J1 (It)

/B/n (It)
<n [
B/J1 (Tt)

< Np / / bu(z) — bu(y)|? dy da
BP1(Tt) Bpl(zt)

< NpyKlgsa+ N7. (5.6)

q

dzx

[ @) - bl -y
B/J1 (It)

q
dzx

Pfd/ b () — be(y)| dy
Bp1 (Tt)
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The second assertion follows from estimates like (5.6) and (5.4) where one
chooses € appropriately if ¢ > d.

Corollary 5.4. Let u € W;,(S, T), let x4 be an R¥-valued measurable function, and
let n € Cg°(B,,). Set ns(z) = n(x — x5),

Ky = sup|n| + sup [Dn|.

Then on (S,T)
(i) For anyw € Wy, and v € L,

(1bs = bs(@s) nsv, [w]) < N(d, p, p1, K) [nsvll e, [wllw,
(ii) We have

[1s]bs — bs(ws) Us||£p + [Insles — s(@s)] U'SHLp
< N(d, p)y"?|nsDusl|z, + N(d,p, v, pr. K, K1) | Ip,, (s,yuslc, -

(iii) Almost everywhere on (S,T) we have

(bi - Bi(xS))nsDi“s = DiVsi + Vsoa (5.7)
d
> IVlle, < N(d,p)y'?|nsDus|c,
j=1
||V:g0||£p SN(dap>’77th)HnsDusH[,,ﬂ (58)
where VI, j=0,...,d, are some measurable L,-valued functions on (S,T).

To prove (iii) observe that one can find a Borel set A C (S, T) of full measure
such that T4 D;u,i=1,...,d, are well defined as £,-valued Borel measurable func-
tions. Then (5.7) with T4 D;u in place of D;u and (5.8) follow from (5.6), Corollary
5.2, and the fact that the way V7 are constructed uses bounded hence continuous
operators and translates the measurability of the data into the measurability of the
result. Since we are interested in (5.7) and (5.8) holding only almost everywhere
on (S,T), there is no actual need for the replacement.

Corollary 5.5. Let u € W;)(S, T), R€ (0,00), ¢ € C3°(BRr), and let finite S",T" €

(S,T) be such that S < T'. Then there is a constant N independent of u and ¢
such that

T/
// (10 Dius, §)| + [ (byus, Dig)| + |(csus; @)]) ds < Nlullwys,o)ldllw,» (5.9)
so that requirement (1) in Definition 2.3 can be dropped.

Proof. By having in mind partitions of unity we convince ourselves that it suffices
to prove (5.9) under the assumption that ¢ has support in a ball B of radius p;. Let
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xo be the center of B and set xs = xy. Observe that the estimates from Corollary
5.4 imply that

|(bLus, Dig)| < |(b, — by (z0))us, Dig)| + [by (w0) (us, Dig)]
< Nluslwpllélws, + bs(@o)] [luslwy 19llws, -
By recalling Assumption 3.1 (iii) and Holder’s inequality we get

T/
[ Ibun Dol ds < Nluluycsir ol

Similarly the integrals of |(b%D;us, ¢)| and |(csus, @)| are estimated and the
corollary is proved. O

Since bounded linear operators are continuous we obtain the following.

Corollary 5.6. Let ¢ € C3°, T € (0,00). Then the operators

w o [ oyt [ (oDt w [ (o
0 0 0
are continuous as operators from W)(co) to L,([=T,T]).

This result will be used in Section 6.

Before we continue with the proof of Theorem 3.1, we notice that, if u €
W; (S,T), then as we know (see, for instance, Theorem 2.1 of [14]), the function
u; is a continuous £,-valued function on [S,T] NR.

Now we are ready to prove Theorem 3.1 in a particular case.

Lemma 5.7. Let b?, b, and ¢ be independent of x and let S = —oo. Then the
assertion of Theorem 3.1 holds, naturally, with A\g = Ao(d, 8, p, po) (independent of
p1 and K).

Proof. First let ¢ = 0. We want to use Theorem 4.3 to get rid of the first-order
terms. Observe that (2.1) reads as
dvuy = Di(ay Djug + [bF + bilug + £1) + £ — duy, t<T. (5.10)

Recall that from the start (see Definition 2.3) it is assumed that u € W (T).
Then one can find a Borel set A C (—o0,T) of full measure such that I4f7, j =
0,1,...,d, and I4D;u, ¢ =1,...,d, are well defined as L,-valued Borel functions
satisfying

T d
| (s, + 1D, | de < .
0o =0

Replacing f7 and D;u in (5.10) with I4f7 and I4D;u, respectively, will not affect
(5.10). Similarly one can treat the term h; = (bi 4 b%)u; for which

T/
/ hell e, dt < oo
S/
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for each finite S",T" € (—o00,T], owing to Assumption 3.1 and the fact that u €
L,(T).

After these replacements all terms on the right in (5.10) will be of class
D1 (—00,T) since a is bounded. This allows us to apply Theorem 4.3 and for

t
B;':/ (b + b)) ds, iu(z) = u(e — By)
0

obtain that
dyity = Dy(6 Djity) — ity + Dy fi + £, (5.11)
where
@, f)(@) = (a7, f]) (= — By).
Obviously, @ is in W;,(T ) and its norm coincides with that of u. Equation
(5.11) shows that @& € W)(T).

By Theorem 4.4 and Remark 2.4 of [11] there exist v = v(d,d,p) and g =
Xo(d, 8, p, po) such that if A > Ag, then

d
Dl ¢y + A2l ) < N (Z £l ¢y + )‘_1/2|f0|]Lp(T)> - (5.12)
i=1
Actually, Theorem 4.4 of [11] is proved there only for T' = oo, but it is a standard
fact that such an estimate implies what we need for any T (cf. the proof of Theorem
6.4.1 of [12]). Since the norms in £,, and Wp1 are translation invariant, (5.12) implies
(3.3) and finishes the proof of the lemma in case ¢ = 0.

Our next step is to abandon the condition ¢ = 0 but assume that for an
S > —oo we have u; = ftj =0 for t < S. Observe that without loss of generality
we may assume that 7' < oco. In that case introduce

t
& = exp (/S csds).

Then we have v := £u € W, (T) and

8tvt = Di(aiijvt + [bi + bi]’l)t —|— ftftl) —|— ftfto — )\Ut7 t S T
By the above result for all 77 < T

lad

T/
IDul, dt+ 372 [l de

d T T
<MY [ I a N [ i, a6
i=0 "7~ o0

We multiply both part of (5.13) by per&,F and integrate with respect to T over
(S,T). We use integration by parts observing that both parts vanish at 77 = S.
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Then we obtain

T T
| 1Dz, a3 [z, a

— 00 — 00

T T
&t [ etIDulz, at—n [, e

— 00

d T T
<> [ e N [,
i=0 Y T

d T T
—ery [ i, d - N [ g,
i=0 " > -

By adding up this inequality with (5.13) with 7" = T multiplied by &;” we ob-
tain (3.3).

The last step is to avoid assuming that u; = 0 for large negative ¢. In that
case we find a sequence S,, — —oo such that ug, — 0 in VV]D1 and denote by v}
the unique solution of class W}((0,1) x R?) of the heat equation dvf = Avy with
initial condition ug, . After that we modify u; and the coefficients of L; for t < S,
as in the proof of Theorem 3.2 by taking there v} and S, in place of v; and S,
respectively. Then by the above result we obtain

d
)\||U||J2Lp(sn,T) + HDUHJI%,)(SR,T) <N (Z ||fl||]124,,(T) + )‘_1|f0|]12_,p(T)> )

i=1

d
SN (Z £, ) + /\1||f0||ip(T)> + N+ A us, [y -

i=1

By letting n — oo we come to (3.3) and the lemma is proved. O

Remark 5.1. In [11] the assumption corresponding to Assumption 3.3 is much
weaker since in the corresponding counterpart of (3.2) there is no supremum over
2 € RY. We need our stronger assumption because we need aij (x — By) to satisfy
the assumption in [11] for any function By.

To proceed further we need a construction. Recall that b and b are introduced
in (5.5). From Lemma 4.2 of [13] and Assumption 3.2 it follows that, for h; = by, by,
it holds that |D"hi| < Ky, where Kk, = kn(n,d,p,p1,K) > 1 and D"h; is any
derivative of h; of order n > 1 with respect to . By Corollary 4.3 of [13] we have
|he(z)| < K(t)(1 + |z|), where the function K (¢) is locally integrable with respect
to t on R. Owing to these properties, for any (to,zo) € R4*! the equation

t
Ty = To — / (Es + Bs)(ws)dsa t> th
to

has a unique solution x; = x4 4,,¢-
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Next, for i = 1,2 set x(”)(z) to be the indicator function of B,, ,; and intro-

duce

p1/i
XE?@UJ(JJ) = X(Z) (.’L‘ - xtowoﬂf)'
Here is a crucial estimate.

Lemma 5.8. Suppose that Assumptions 3.1, 3.2, and 3.3 are satisfied with a v €
(0,7(d, p, 8)], where y(d,p,8) is taken from Lemma 5.7. Take (to,xo) € R**! and
assume that to < T and that we are given a function u which is a solution of (2.1)
with S = tg, with zero initial condition, some f7 € Ly(to,T), and X > X\o, where
Ao = Ao(d, 0, p, po) is taken from Lemma 5.7. Then

2 2
M2l oy + X e DUl o)
d
1 i — 1
SN X w0 FI2, oy + NATHIXE w0 £, o)
=1

1 %\ — 1
+ Ny xi D Dul? ooy + N AT X Dull 0 7

d
* 1 *y — 1 q
+ Nl ol oy + NN I £ o) (5.14)
=1

where and below in the proof by N we denote generic constants depending only on
d,d, and p and by N* constants depending only on the same objects, v, p1, and K.

Proof. Shifting the origin allows us to assume that ¢ty = 0 and xy = 0. With this
stipulations we will drop the subscripts tg, xg.

Fix a ¢ € C§° with support in B,, and such that ¢ = 1 on B, ,, and

0< (<1 Set xz =m0,

by = by (a4), by = be(xe), & = Cilay)

() =z — ), vi(@) = uwe(@)m ().
The most important property of n; is that
Also observe for the later that we may assume that

2 1 -1 (1
X2 <<, 1Dml < Nppixg, (5.15)

where Xi") = X(()?lt and N = N(d).
By Corollary 4.4 (also see the argument before (5.11)) we obtain that for
finite ¢ € [0, 7]

Orvy = Di(meay Djuy + bjvy) — (a Djuy + bjug) Dy
+ by Diuy — (e + Nve + Di(fime) — fiDime + fme + (6} + b} )ue Dim.
We transform this further by noticing that

ij i ij
neay Djuy = ap Djve — a ug Djny.
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To deal with the term bing Diug we use Corollary 5.4 and find the correspond-
ing functions V. Then simple arithmetics show that

Oy = Dy (aiijvt + Bivt) — (& + Mo + BiDivt + letl + fto,
where
fO = fon, — fiDine — a (Djug) Dimy + (68 — 6wy Dimy + VO + (& — c)uene,
fi = fim = afwiDyne + (0] = 6puemy + V', i=1,....d

It we extend u; and ftj as zero for t < 0, then it will be seen from Lemma 5.7
that for A > \g

d
)‘”UHHZ_,I,(O,T) + ‘|DU‘|H%p(0,T) < NZ HfZ”]I%p(O,T) + N)‘ilufOH]I%p(O,T)' (5.16)
i=1
Recall that here and below by N we denote generic constants depending only on
d,d, and p.
Now we start estimating the right-hand side of (5.16). First we deal with f;.
Recall (5.15) and use Corollary 5.4 to get

i ri 1 L. (1
(0} = 6Duemellz, < Nyl Duel 7, + N*IxiPwillz,  (5.07)
(we remind the reader that by N* we denote generic constants depending only on
d, 8, p, 7y, p1, and K). By adding that
@] * 1
la9uDinlE, 0.1y < N*IXull, 0.m):
we derive from (5.8) and (5.17) that

d d
£ 1) pi
STFIR o < NI INVFIR 0. (5.18)

i=1 i=1

1 w1 (1
+ NV Dl oy + NIl 0.1
While estimating fo we use (5.8) again and observe that we can deal with
(6% — bi)uyDimy and (¢, — ¢ )ugn; as in (5.17) this time without paying too much
attention to the dependence of our constants on «y, p1, and K and obtain that
16" = 6 )uDinlIf (0,7 + Il(c = &)unll? o)
. 1 1
< N (I Dul? 0, + I ullf 0.1)-

By estimating also roughly the remaining terms in fo and combining this with
(5.18) and (5.16), we see that the left-hand side of (5.16) is less than the right-
hand side of (5.14). However,

X Dutl < Dl < (Dol + Jue Dl < [Dwr] + Npp o™

which easily leads to (5.14). The lemma is proved.
Next, from the result giving “local” in space estimates we derive global in
space estimates but for functions having, roughly speaking, small “past” support
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in the time variable. In the following lemma 7 is the number introduced before
Lemma 5.8.

Lemma 5.9. Suppose that Assumptions 3.1, 3.2, and 3.3 are satisfied with a v €
(0,7v(d, p, 9)], where y(d, p, d) is taken from Lemma 5.7. Assume that u is a solution
of (2.1) with S = —oo, some fI € L,(T), and A > X\g, where Ao = \o(d, 5, p, po)
1s taken from Lemma 5.7. Take a finite to < T and assume that uy = 0 if t < tg.
Then for Iy, := I (4, vy, where T' = (to + k1Y) AT, we have
d
NP\ Lgullf, + M Dullf, < N YL flIE, + NATP/2(| 1, £OIIF, (5.19)
i=1
+ Ny?/4|| 1, Dull?, + N*A~/2|1,, Dul?.
d
+ N Lgullf, + N A2 L fE,
i=1
where and below in the proof by N we denote generic constants depending only on
d,d, and p and by N* constants depending only on the same objects, v, p1, and K.

Proof. Take zop € R? and use the notation introduced before in Lemma 5.8. By
this lemma with 7" in place of T' we have

2
NP2 L2 ull? 4 g xSy Dl

to,To
d
1 i — 1
SN Lo xi o £+ NXTP2 Ly, £OI12,
=1
1 N\ —
+ Ny Ly X,y Dull?, + N* A antoxto o Dull?

* * 1 i
+ N [Ty Xty o ull?, + N*A W?Znaoxio?wf IP . (5.20)

=1

One knows that for each t > ¢, the mapping g — ¢, 4,,+ is a diffeomorphism
with Jacobian determinant given by

— (- / > ) 5.

By the way the constant x; is introduced, we have

‘axto,lo»

5:50

e~ Nra(t—to) < ’axtowmt < eNrli=to),

8.’170

where N depends only on d. Therefore, for any nonnegative Lebesgue measurable
function w(x) it holds that

eme(tftO)/ w(y) dyS/ W(Tty,m0,t) dTo SeN”l(t*“’)/ w(y) dy.
R4 R Rd
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In particular, since

[ Waa@l oo = [ @ = gty )1 da,
we have

e~ Nrit=to) = N*e=Nri(t—to) / X9 (@ — )P dy
Rd

<N [ g el@)l dzo < N [ Oy dy = Vo),

where N = |By|~'p; %% and |By| is the volume of By. It follows that
1 =1 Ny (t—
| W@l day < (V) e

(Ng*)flefN/ﬂ(tfto) S Ad ‘Xgi?xo,t(x)‘p d.’l?o.

Furthermore, since u; = 0 if t < tp and T” < tg + n;l, in evaluating the norms
in (5.20) we need not integrate with respect to ¢ such that x1(t —t9) > 1 or
k1(t —tg) < 0, so that for all ¢ really involved we have

1 *\ — *\—1 — 2
L W a @ oo < V)76, () < [ (o) oo

After this observation it only remains to integrate (5.20) through with respect to
2 and use the fact that N; = 27¢N;. The lemma is proved. 0

Proof of Theorem 3.1. Obviously we may assume that S = —oo. Then first we
show how to choose an appropriate v = 7(d,d,p) € (0,1]. For one, we take
it smaller than the one from Lemma 5.7. Then call Ny the constant factor of
fyp/q||ItoDu||£p in (5.19). We know that Ny = Ny(d, d, p) and we choose v € (0, 1]

so that Nofy”/q < 1/2. Then under the conditions of Lemma 5.9 we have

d
NP Lyull?, 4+ L Dull?, < NS Ly 2, + NAP2( Lo 112
=1
d .
N NP1, Dulll, + N[ Lull?, + NAPPS L (5.21)
=1

After « has been fixed we recall that k1 = k1(d,p, p1, K) and take a ¢ € C§°(R)
with support in (0, Hl_l) such that

/Oo ¢P(t)dt = 1. (5.22)

For s € R define ¢ = ((t — s), uf(z) = ue(x)¢}. Obviously uf =0ift < sAT.
Therefore, we can apply (5.21) to uj with tg = s AT observing that

Oyu = Dy(ay Dju; + bjup) + bjuf — (o + Mg + Di(Gf1) + G F + () e
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Then from (5.21) for A > Ao, where A\g = A\o(d, d,p, po) is taken from Lemma 5.7,
we obtain

NP\ LoarCPullf, + [ LsarC* Dullf, (5.23)

d
< NS enrC FIE + NAP2 Lopg ¢ FOI2. + Nl Lonr(C*) ull,
i=1
d .
F NP g DulE. + N TonaCulle, + N A2 S [ Lonn R
i=1
We integrate through (5.23) with respect to s € R, observe that

Is/\T<t<[(s/\T)+/<;;1]/\T = It<TIs/\T<t<(s/\T)+l<171 = It<TIs<t<s+mfl’

and that (5.22) yields

| rna®@rds = [ Lgadonnyia it - 9)ds

— 00 — o0
t
= It<T/ (p(t — S) ds = [t<T~
t—n;l
We also notice that, since k; depends only on d, p, p1, K, we have

/ TP ds = N

Then we conclude
2
AP/ H“Hﬁp(T) + ‘|Du||£p(T)

d
<M Z HfZHﬁp(T) + Nl)‘ipm”fO”f‘p(T)
i=1
d .
+ Nik)‘ip/ZHDuHﬁp(T) + Nl*HUHﬁp(T) + Nl*)rp/2 Z ||fZH£p(T)~
i=1
Without losing generality we assume that N; > 1 and we show how to choose
Xo = Mo(d,0,p, po, p1, K) > 1. Above we assumed that A > A\g(d, 0, p, po), where
Ao(d, 8, p, po) is taken from Lemma 5.7. Therefore, we take

)\O = )\O(da 6,pap07p17K) Z )\O(daéap>p0>

such that )\g/Q > 2N;. Then we obviously come to (3.3) (with S = —o0). The
theorem is proved. O
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6. Proof of Theorems 3.3 and 3.4
We need two auxiliary results.

Lemma 6.1. For any 7, R € (0,00), we have
/ / (|os(@)|P + [bs ()P + &' (z)) dads < oc. (6.1)
—7 JBgr

Proof. Obviously it suffices to prove (6.1) with B,, (x¢) in place of Bp for any .
In that case, for instance, (notice that ¢ > p’, see (3.1))

»'/q
/ 1b,(2)|" dng(/ bs(x)—[_as(xo)qu) + N|bs(20)|".
By, (z0) By, (z0)
According to (5.6)
[ el e < N+ Nputeo)”
Bp1 (TO)

and in what concerns b it only remains to use Assumption 3.1 (iii). Similarly, b
and cg are treated. The lemma is proved. O

The solution of our equation will be obtained as the weak limit of the solutions
of equations with cut-off coefficients. Therefore, the following result is appropriate.
By the way, observe that usual way of proving the existence of solutions based on
a priori estimates and the method of continuity cannot work in our setting mainly
because of what is said after Theorem 3.6.

Lemma 6.2. Let ¢ € C3°, 7 € (0,00). Let u™, u € W;,, m = 1,2,..., be such
that u™ — w weakly in W),. For m = 1,2,... define xn(t) = (—m) V t Am,
6% = Xm(BY), b = Xm (bL), and ¢y = Xm(ct). Then the functions

t t t
/ (b, . Diu™, §) ds, / (b u™, D;¢)ds, / (Cmsu™, @) ds (6.2)
0 0 0

converge weakly in the space L,([—7,7]) as m — oo to

t t t
/@mwm@,/Ww@mwa /@M¢Ma (6.3)
0 0 0
respectively.

Proof. By Corollary 5.6 and by the fact that (strongly) continuous operators are
weakly continuous we obtain that

t t
/(biDiu;”, )ds—>/ (b Dyus, ¢) ds
0 0

as m — oo weakly in the space £,([—7,7]). Therefore, in what concerns the first
function in (6.2), it suffices to show that

t
/wﬁm@w%mwao
0
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weakly in £, ([—7, 7]). In other words, it suffices to show that for any £ € L, ([—7,7])

[l [ D, 61~ i)y as) a0

—T 0

This relation is rewritten as

| Dt =)0 ds o, (6.4

TsSgn s
775 5:/ St dt

is bounded on [—7, 7]. However, by the dominated convergence theorem and Lemma
6.1, we have 7, (b’ — bl )¢ — 0 as m — oo strongly in L,/ (—7,7) and by assump-
tion Du™ — Du weakly in L, (—7, 7). This implies (6.4). Similarly, one proves our
assertion about the remaining functions in (6.2). The lemma is proved. g

where

Proof of Theorem 3.3. Owing to Theorem 3.1 implying that the solution on
(=00, T] N R is unique, without loss of generality we may assume that T = oo.
Define byt bynt, and ¢y as in Lemma 6.2 and consider equation (2.1) with by,
bimt, and ¢yt in place of by, by, and ¢, respectively. Obviously, by,¢, by, and ¢y
satisfy Assumption 3.2 with the same v and K as by, b;, and ¢; do. By Theorem
3.1 and the method of continuity for A > A\o(d, d, p, po, p1, IC) there exists a unique
solution u™ of the modified equation on R.
By Theorem 3.1 we also have

[, + [Du™ ||, <N,

where N is independent of m. Hence the sequence of functions u™ is bounded in
the space Wzl, and consequently has a weak limit point u € Wzl,. For simplicity of
presentation we assume that the whole sequence u™ converges weakly to u. Take
a ¢ € C5°. Then by Lemma 6.2 the functions (6.2) converge to (6.3) weakly in
Ly([—7,7]) as m — oo for any 7. Obviously, the same is true for (u}”, ) — (u¢, @)
and the remaining terms entering the equation for uj*. Hence, by passing to the
weak limit in the equation for u}” we see that for any ¢ € C§° equation (2.3) holds
for almost any s,t € R.
Now notice that, for each t € R, owing to Corollary 5.5 the equation

1 1 t
(#0,0) = [ (wdyds+ [ ([ 10D = (oo s+ 12,0
0 0 s
— (a9 Djuy + bl + f1, Di)] dr) ds (6.5)
defines a distribution. Furthermore, by the above for any ¢ € C§° we have (us, ¢) =

(Git, @) (a.e.). A standard argument shows that for almost all ¢ € R, (ut, ¢) = (te, @)
for any ¢ € C§°, that is uy = 4, (a.e.) and @ € Wzl, In particular, we see that we
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can replace wu, in (6.5) with 4,. Finally, for any ¢1,t2 € R

(at27 ¢) - (atl 1) ¢>
1 to
- / (/ [(¥1Dyiy = (e + Nty + 12, 8) — (al Dy + bl + f1, Dig)] dr ) ds

0 t1

= / [(b;ﬁDifLr —(er + Nty + £, ¢) — (a¥ Dji, + blat, + f, DiqS)] dr

t1

and the theorem is proved. O

Proof of Theorem 3.4. (i) One reduces the general case to the one that ug = 0 as
in the proof of Theorem 3.2. Also, obviously, one can assume that A is as large
as we like, say satisfying (3.4), since S and T are finite. By continuing u.(z) as
zero for t < S we see that we may assume that S = oo. If we set ft] = 0 for
t > T and use Theorem 3.3 about the existence of solutions on (—oo, c0) along
with Theorem 3.1, which guarantees uniqueness of solutions on (—oo, T, then we
see that we only need to prove assertion (ii) of the theorem.

(ii) In the above proof of Theorem 3.3 we have constructed the unique so-
lutions of our equations as the weak limits of the solutions of equations with
cut-off coefficients. Therefore, if we knew that the result is true for equations with
bounded coeflicients, then we would obtain it in our general case as well.

Thus it only remains to concentrate on equations with bounded coefficients.
Existence an uniqueness theorems also show that it suffices to prove that, if u is
the solution corresponding to p = ps, then u € Wzl,l.

Take a ¢ € C§°(R¥*!) such that ¢(0) = 1, set (['(z) = ((t/n,z/n), and notice
that u} := us(; satisfies

n __ n n e 0
Oruy’ = Lyuy” — Auy' + Difry + fous
where
i pirn ij n .
T = FiG —weay D¢t 1211,

0 = ¢ — fiDiC — (al Djuy + alug) Dyl — biug DiCl + u,9,Cl.

Since v} has compact support and p; < po, it holds that u™ € W}D for any p € [1, p2]
and by Theorem 3.1 for p € [p1, p2] we have

d
"l < N 2l (6.6)

i=0
One knows that
1 ey < NSl + 1 M,,),
so that by Holder’s inequality

I£2ll, < N+ Nl[uDC I, < N+ |lullw,, [|1D¢" L,
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with constants N independent of n, where
_ DPp2
b2 —p
Similar estimates are available for other terms in the right-hand side of (6.6). Since
196" Iy +1DC I, = N1 P2/ 020 —

as n — oo if
1 1 1

D P2 <4 +1’

estimate (6.6) implies that u € W}..
Thus knowing that u € W;,Z allowed us to conclude that v € W}D as long as
p € [p1,p2] and (6.7) holds. We can now replace p2 with a smaller p and keep going
in the same way each time increasing 1/p by the same amount until p reaches pj.
Then we get that u € W;,l. The theorem is proved O

(6.7)
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1. Introduction

Given a second-order elliptic partial differential operator with real coefficients

N N
A= ZD,»(a,iij)—i—ZFiDi—V:AO+F-D—X/, (1.1)
4,7=1 i=1
where Ay = Zf\fj:l D; (a;;D;), we consider the parabolic problem
we(z,t) = Au(x, t), zeRN, t>0, (1.2)
u(z,t) = f(x), r € RV, '

where f € Cp(RY).
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We assume the following conditions on the coefficients of A which will be
kept in the whole paper without further mentioning.
(H) aij = aji, F; : RN — R, V : RY — [0,+00), with a;; € CTRY),
V, F; € C2 (RY) for some 0 < o < 1 and

N
MNP < D aij(@)&gy < Alef?

i,j=1
for every z,£& € RY and suitable 0 < X\ < A.

Notice that neither the drift ' = (Fi,..., Fx) or the potential V' are assumed to
be bounded in RY.

Problem (1.2) has always a bounded solution but, in general, there is no
uniqueness. However, if f is nonnegative, it is not difficult to show that (1.2) has
a minimal solution » among all non negative solutions. Taking such a solution u
one constructs a semigroup of positive contractions 7'(-) on C,(R”) such that

u(z,t) =T(t)f(z), t>0 zecRN
solves (1.2). Furthermore, the semigroup can be represented in the form
T(0)1@) = [ peyOfwds t>0.0€RY,
R
for f € Cy(RY). Here p is a positive function and for almost every y € RY, it
belongs to CIQ(I(X’HQ/Q (RN x (0,0)) as a function of (x,t) and solves the equation
Oip = Ap, t > 0. We refer to Section 2, [8, Chapter 1] and [11] (in the case V = 0)

for a review of these results as well as for conditions ensuring uniqueness for (1.2).
Now, we fix x € R" and consider p as a function of (y,t). Then p satisfies

Op=A*p, t>0, (1.3)

in the following sense (see [10, Lemma 2.1]): Let 0 < t; < t2 and ¢ € C*1(Q(t1,t2))
(see below for the notation) be such that ¢(-,¢) has compact support for every
t e [tl,tg]. Then

/Q(t ) (Op(y,t) + Ap(y,t)) p(x,y,t) dy dt (1.4)

= [ 0l t)elnte) bl 1)) d

The aim of this paper is to study global regularity properties of the kernel p
as a function of (y,t) € RN x (a,T) for 0 <a < T.

We prove that p(z,-,-) belongs to Wkl’O(RN x (a,T)) (see below for the no-
tation) provided that

/ /RN (V)" + 1FW)*) pla,y,t) dydt < oo, Yk > 1
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for fixed z € RY and 0 < ag < a. This generalizes [10, Corollary 3.1 and
Lemma 3.1] and in some sense Theorem 4.1 in [2]. Assuming that certain Lyapunov
functions (exponentials or powers) are integrable with respect to p(x,y,t)dy for
(x,t) € RN x (a,T), pointwise upper bounds for p are obtained. If in addition
Ve VVS)’COO(RN)7 Fe VVlifo(RN7RN) are such that DV, DF are dominated by
some exponential functions, then p € W,?’l(RN x (a,T)) for all k > 1. As a con-
sequence, we obtain also upper bounds for |D,p|. In the case where F' and V' and
their corresponding derivatives up to the second order satisfy growth conditions
of exponential type, upper bounds are also obtained for |Dy,p| and |0:p|. As a
consequence, we deduce that the semigroup 7'(-) is differentiable on C,(RY) for
t>0.

In the case where V' = 0, regularity and pointwise estimates for p can be
found in [10], [14] and for the solution of (1.3) with a L!-function as the initial
datum we refer to [3], [4].

Other bounds for the transition densities p are obtained in [1], using time
dependent Lyapunov functions techniques.

Notation. Bgr(z) denotes the open ball of RY of radius R and center z. If z = 0 we
simply write Br. For 0 < a < b, we use Q(a, b) for RY x (a,b) and Q7 for Q(0,T)
(here the intervals can be either open or closed). We write C' = C(aq,...,a,) to
point out that the constant C' depends on the quantities a1, ..., a,. To simplify
the notation, we understand the dependence on the dimension N and on quanti-
ties determined by the matrix (a;;) as the ellipticity constant or the modulus of
continuity of the coefficients.

If u: RY x J — R, where J C [0,00] is an interval, we use the following
notation:

ou ou
8tu = at7 DZ’U, = axi, Diju = DZDJ’U,
Du = (Dyu,...,Dyu), D*u= (D;ju)
and
N N
|Dul> =Y " |Dwl?,  [D*ul* =) |Dijul’.
i=1 i,j=1

Let us come to notation for function spaces. Cg (RY) is the space of j times differ-
entiable functions in R, with bounded derivatives up to the order j. C°(RY) is
the space of test functions. C®(R”) denotes the space of all bounded and a-Hélder
continuous functions on RV. .

For 1 < k < 00, j € N, W/(RY) denotes the classical Sobolev space of all
LE-functions having weak derivatives in L*(R™) up to the order j. Its usual norm
is denoted by || - ||,x and by || - ||z when j = 0.

Let us now define some spaces of functions of two variables (following basically
the notation of [7]). Co(Q(a,b)) is the Banach space of continuous functions u
defined in Q(a,b) such that lim|,;| o u(z,t) = 0 uniformly with respect to t €



418 K. Laidoune, G. Metafune, D. Pallara and A. Rhandi

[a,b]. C*1(Q(a,b)) is the space of all bounded functions u such that d;u, Du
and D;ju are bounded and continuous in Q(a,b). For 0 < a < 1 we denote by
C?resl+e/2(Q(a, b)) the space of all bounded functions u such that d;u, Du and
D;ju are bounded and a-Holder continuous in Q(a, b) with respect to the parabolic
distance d((z,1t), (y,s)) := |z —y| + |t — s|2. Local Holder spaces are defined, as
usual, requiring that the Holder condition holds in every compact subset.

We shall also use parabolic Sobolev spaces. We denote by W,*(Q(a,b))
the space of functions u € LF(Q(a,b)) having weak space derivatives D%u €
L¥(Q(a, b)) for |a| < r and weak time derivatives 0Pu € L*(Q(a,b)) for 8 < s,
equipped with the norm

lullwre(@eapy) = lullLr@aby) + Z Dz ull Lr(Qa,)) + Z H@BUHM(Q(a,b)y
lal<r 1B1<s
H*1(Qr) denotes the space of all functions u € W,°(Qr) with d,u € (W.°(Qr)),
the dual space of VVl,’O(QT)7 endowed with the norm

[ullyra(Qry = ||at“‘|(w;;°(QT))/ + llullwro g

where ,1€ + kl, = 1. Finally, for k > 2, V¥(Qr) is the space of all functions u €
Wkl’O(QT) such that there exists C' > 0 for which

Orpdrdt] < C D
’ / o dr ]_ <||¢|ka2(QT)+| ¢|kal(QT))

for every ¢ € C1(Q(a,b)). Notice that ,* =k, * = (’2“)/ VF(Qr) is a Banach
space when endowed with the norm

[ullvi ey = llullwiogr + 10l s ko
where [[Opul & 1., is the best constant C' such that the above estimate holds.

The space H*!(Q7) was introduced and studied by Krylov [6]. All properties
of the spaces H*!(Q7) and V¥(Q7) needed here, can be found in [10, Appendix].

In the whole paper the transition density p will be considered as a function
of (y,t) for arbitrary but fixed + € RY. The writing ||p|| therefore stands for any
norm of p as function of (y,t), for a fixed x.

2. Local regularity and integrability of transition densities

As a first step we recall some local regularity results for the kernel p associated
with the minimal semigroup

1)) = [ ple.07w)dy

i.e., the semigroup which defines the minimal bounded positive solutions of equa-
tion (1.2) when f > 0.
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Regularity properties of the kernels p with respect to the variables (y,t) are
known even under weaker conditions than our hypothesis (H), see [2]. We combine
the results of [2] with the Schauder estimates to obtain regularity of p with respect
to all the variables (z, y, t). The proof is similar to the one of Proposition 2.1 in [10].

Proposition 2.1. Under assumption (H) the kernel p = p(z,y,t) is a positive con-

tinuous function in RN x RN x (0,00) which enjoys the following properties.
(i) For every x € RN, 1 < s < oo, the function p(x,-,-) belongs to Hfo’i(RN X
(0,00)). In particular p, Dyp € Li (RN x (0,00)) and p(z,-,-) is continuous.
(ii) For every y € RN the function p(-,y,-) belongs to C’lzota’Ha/z(RN x (0, 00))
and solves the equation Oyp = Ap, t > 0. Moreover

sup [lp(,ys M c2+antarzBrxie,r)) < 00
ly|[<R

for every0 <e <T and R > 0.
(iii) If, in addition, F € C*(RY), then p(x,-,-) € Wf’lic(QT) for every x € RV,
1 < s < o0, and satisfies the equation Oyp = Ayp, where

A* :A()fFDf(V+d1VF)
is the formal adjoint of A.

The uniqueness of the bounded solution of (1.2) does not hold in general, but
it is ensured by the existence of a Lyapunov function (cf. [10, Proposition 2.2]),
that is a Cp,f*function W : RV — [0,00) such that limy,|_ W(z) = 400 and
AW < AW for some X\ > 0. Lyapunov functions are easily found imposing suitable
conditions on the coefficients of A. For instance, W(x) = |z|? is a Lyapunov
function for A provided that Y, a;(z) + F(z) -z — |z|*V(z) < C|z|* for some
C > 0. The following result can be proved as in [10, Proposition 2.2].

Proposition 2.2. Let W be a Lyapunov function for A and let u,v € Cp(RYN x
[0, 7)) N CEYRY x (0,T]) solve (1.2). Then u = v.

Now we turn our attention to integrability properties of p and show how they
can be deduced from the existence of suitable Lyapunov functions. In the proof
of Proposition 2.4 below we need to approximate the semigroup (7'(t));>o with
semigroups generated by uniformly elliptic operators. This is done in the next
lemma.

Lemma 2.3. Assume that A has a Lyapunov function W. Take n € C°(R) with
n(s) =1 for |s| <1, n(s) =0 for |s| > 2, and define n,(x) =n (‘;’), F, =n,F,
Vo=,V and A, = Ao+ F,, - D—V,,. Consider the analytic semigroup (T, (t))i>0
generated by A,, in Cy(RYN). Then, for every f € C***(RN) there exists a sequence
(nk) such that Tp, () f(-) — T()f(-) in C** RN x [0,T)).

Proof. Let uy(z,t) = T,(t)f(x), u(z,t) = T(t)f(z) and fix a radius ¢ > 0. If
n > o+ 1 the Schauder estimates for the operator A (see, e.g., [5, Theorem 8.1.1])
yield

Hun||02+“=1+<’/2(Bg><[0,T]) < Cg||f||CZ+a(RN)-
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By a standard diagonal argument we find a subsequence (ny) such that w,, con-
verges to a function u in C**(RY x (0,00)). Since dyun, — Ay, = 0in B, x [0,T]
for ny > o we have u — Au = 0 in RN x [0,7]. Moreover, u(z,0) = f(z)
and |u(z,t)] < || f]|oo, since this is true for u,. By Proposition 2.2 we infer that
u(x,t) =T(t)f(x). O

The integrability of Lyapunov functions with respect to the measures p(z,y, t) dy
is given by the following result, which is an extension of [12, Lemma 3.9], where
the case V' = 0 is considered.

Proposition 2.4. A Lyapunov function W is integrable with respect to the measures
p(z,y,t)dy. Setting

C(l‘,t) :/RNp(xv:%t)W(y) dy, (2'1)

the inequality ((t,x) < eMW(x) holds. Moreover, |AW| is integrable with re-
spect to p(z,-,t), ¢ € CPLRYN x (0,00)) N C(RN x [0,00)) and Di((z,t) <
Jrw p(a,y, ) AW (y) dy.

Proof. For a > 0, set W, := W A« and (4 (x,t) := fRN p(z,y, )W (y) dy.

Let us consider, for every 0 < ¢ < 1, ¢ € C*°(R) such that .(t) = ¢ for
t < a, 1. constant in [a+ &,00), ¥, > 0, and ¥” < 0. Since 1” < 0 one deduces
that

tYL(t) < -(t), Vi>0. (2.2)

Now we approximate A with A4,, := Ao+ F,,- V=V, and (T'(t))i>0 with (T},(¢))i>0
as in Lemma 2.3. Denoting by p,(x,y,t) the kernel of (T),(t))¢>0, since . o W €
CZT*(RM) we have

T (1) (e 0 W)(x) = / P9, 8) An (e 0 W) (y) dy.

RN
On the other hand, by (2.2), we obtain
An(Ye o W)(2) = LW (2)) AnW (@) + Vi () [YL(W (2))W (2) — ¢ (W (2))]

N
FULW () Y ay () DW (@)D W ()

< YLW (2)) An W ().

g

Thus,

BT ()1 o W) (x) < / P, 1, VLW (1)) An W (3) dy

RN
and also

OTA(OW: o W)@) < [ pula LW () AW o) dy
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if n is sufficiently large since, for fixed ¢, the function ¢, o W has compact support.
Letting n — oo and using Lemma 2.3 (possibly passing to a subsequence) we
deduce

OTOW W)@ < [ plan VW E)AW @) . (23)

Next we observe that 1. o W < o+ 1, ¥.(t) — X(—c0,al(t), and Yo o W — W,
pointwise as € — 0. From [8, Proposition 2.2.9] we deduce that T'(t)(p. o W) —
T(t)W, in C*HRN x (0,00)). So, letting e — 0 in (2.3) and using dominated
convergence in the right-hand side (all the integrals can be taken on the compact
set {W < a+ 1}, where AW is bounded) we get

DiCa(o,t) < /{ o P DAV ) dy (2.4)

To conclude we proceed as in the proof of [12, Lemma 3.9]. From (2.4) we obtain
DtCa(xvt) < )‘Ca(xvt) (25)

and hence, by Gronwall’s lemma, (,(7,t) < eMW,(z). Letting o — 0o we obtain
((x,t) < MW (x) and then W is summable with respect to the measure p(z, -, t).
The inequality 0 < {, < ¢ and the interior Schauder estimates show that the
family ({,) is relatively compact in C*!(RY x (0,0)). Since ¢, — ¢ pointwise
as a — +oo, it follows that ¢ € C*H(RYN x (0,00)). Moreover, the inequality
Ca(z,t) < ((2,t) < MW (x) implies that ((-,t) — W(-) as t — 0T, uniformly on
compact sets. Set E = {z € RY : AW (x) > 0}. Clearly

/ p(x,y,t) AW (y) dy < /\/ Pz, y, )W (y) dy < X(z,t) <oo.  (2.6)
E E

Moreover, letting o — +00 in (2.3), we obtain that

Dy¢(z,t) < lim inf/ p(z,y,t) AW (y) dy.
ateo Jiw<al

This fact and (2.6) imply that |AW| is summable with respect to p(z, -, t) and that

the above liminf is a limit, so that the proof is complete. O

Assuming that AW tends to —oo faster than —W one obtains, by Proposition
2.4, that the function ¢ in (2.1) is bounded with respect to the space variables, see
[12, Theorem 3.10] for the case V = 0.

Proposition 2.5. Assume that the Lyapunov function W satisfies the inequality
AW < —g(W) where g : [0,00) — R is a differentiable convex function such that
9(0) <0, lims—, 400 g(8) = +00 and 1/g is integrable in a neighbourhood of +oc.
Then for every a > 0 the function ¢ defined in (2.1) is bounded in RN x [a, c0).
Moreover, the semigroup (T(t))i>o0 is compact in Cp(RY).
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Proof. Observe that g(s) < sg¢’(s), since g is convex with ¢g(0) < 0. Let us prove
that

[ ples00V ) dy > 9(¢(a.0). (27)
For, fix  and ¢ and set so = ((z,t). Then, for all y € RY we have

9W(y)) = g(s0) + 9'(s0) (W (y) — s0)

and therefore, multiplying by p(z,y,t) and integrating
| g W) dy
RN
> gls0) [ plat)dy+g/Gso)sa(1-
RN

p(@,y,6)dy) = g(s0).
RN

From Proposition 2.4 and (2.7) we deduce

D)< [ plan AW dy <~ [ ooy 090V (0) dy < ~g((o.)

and therefore ((z,t) < z(z,t), where z is the solution of the ordinary Cauchy
problem

z'=—g(z)

z(x,0) = W(x).
Let ¢ denote the greatest zero of g. Then z(x,t) < ¢ if W(z) < £. On the other
hand, if W(x) > ¢, then z is decreasing and satisfies

t:/ ds g/ ds (2.8)
z(x,t) g(S) z(x,t) g(S)

This inequality easily yields, for every a > 0, a constant C(a) such that z(x,t) <
C(a) for every t > a and x € RV,

The compactness of (T'())¢>0 in Cp(RY) can be proved as in [12, Theorem
3.10). O

Remark 2.6. If [ p(x,y,t)dy =1 (as is the case if V = 0) then (2.7) follows
from Jensen’s inequality and the condition g(0) < 0 is not needed.

Let us state a condition under which certain exponentials or polynomials are
Lyapunov functions. Using the same procedure as for the case V.= 0 (see [10,
Proposition 2.5 and 2.6]) we obtain the following results.

Proposition 2.7. Let A be the mazimum eigenvalue of (a;;) as in (H). Assume that

lim sup || 7 (F(CL‘) ‘i‘ - (wvx(?l) < —c, (2.9)

|| — o0



Estimates on Transition Kernels 423

0 < ¢ < oo, for some ¢,§ > 0,8 > 1 such that § < (BA)"lc. Then W(x) =
exp{d|z|®} is a Lyapunov function. Moreover, if 3 > 2, there erist positive con-
stants c1,cy such that

C(z,t) < ciexp <02t_5/(’8_2)) (2.10)
forz € RN, t>0.

Proposition 2.8. Assume that

lim sup ||~ (F(CL‘) |

|| — o0

i‘ - 22‘/(:{:)) <0, (2.11)

for some a > 0, 3 > 2. Then W(z) = (1+ |x|2)a 1s a Lyapunov function and
there exists a positive constant ¢ such that

Cz,t) < et~ (2)/(3=2) (2.12)
forz e RN, 0<t<1.

Remark 2.9. Proposition 2.7 will be used to check the integrability of |F|* and V*
with respect to p, assuming that |F'|,V grow at infinity not faster than exp{|z|”}
for some v < 3.

3. Uniform and pointwise bounds on transition densities

In this section we fix 7' > 0 and consider p as a function of (y,t) € RY x (0,7T) for
arbitrary, but fixed, z € RY. Further, fix 0 < ag < a < b < by < T and assume
for definiteness by — b > a — ag. Setting

1
k
U'(k, z,ao, bo) := (/ L+ [FW)I" + V()" )p(e,y.t) dy dt) ;o (31)
Q(ao,bo)
the proofs of Proposition 3.1, Lemma 3.1 and Proposition 3.2 in [10] remain valid
for the case V # 0. So, we obtain that
p € H(Q(a,b)) for all s € (1,k),

provided that T'(k, z,ag,by) < oo for some k > N + 2. Hence, by the embedding
theorem for H*!, s > N + 2, (see [10, Theorem 7.1]), we have

Theorem 3.1. If TI'(k,x,a9,bp) < oo for some k > N + 2, then p belongs to
L>(Q(a,b)).

To obtain uniform and pointwise bounds on p we introduce the functions

1
k

Fl(k7x7a07b0) = (L( b )(1 + |F(y)|k)p(xay7t) dydt> ) (32)
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2
k

FZ(kaxaaOabO) = (/ V (y)p($7yat) dydt) . (33)
Q(ao,bo)

Clearly T'y (k, z, ag, bg) + Ta(k, x, a0, bo) < CT(k,x,ap,bp). The following re-
sult shows that only the assumption I'1 (k, x, ag, bo), '2(k, x, ag, bp) < oo for some
k > N + 2 is needed to obtain the boundedness of p.

k
2

Theorem 3.2. If I'1(k,x,a0,bo), D2 (k, x, a0, by) < oo for some k > N + 2 then

k k by — ag
2l Lo (Q(ap)) < C | TT(k, 2, a0,b0) +1T'5 (k,x,a0,bo) + (@—ao)t | (3.4)
—ag

Proof. Step 1. Assume first that I'(k, z,ag,bp) < oo so that p € L*(Q(a,b)) for
every ag < a < b < by by Theorem 3.1 and consider ¢ = ngp € L>°(Qr) where n is
a smooth function with compact support in (ag, bg) such that 0 <n <1, n(t) =1
for a <t <b. Clearly ¢ € L (Qr).

Let ¢ € C%1(Qr) be such that ¢(-,t) has compact support for every ¢. From
(1.4) we obtain

k k—2
‘/ q(9p + Aop) dydt’ = ‘/ (@ - Do = Vap +  pen 2 Oin)dydt|.
T T
Next we note that
k—2 ’ﬂ;? 2
lpn 2 ||L§ Q1) < ||q||Loc(QT)(b0 —ap)*
and that
k—1
IFalls@ry < lall b g F1(k; 2, a0, bo)

k—2
||Vq|| ) < HQHLI;o(QT)F2(k7337aOybo)-

L% (Qr
Since also

e

k—1
HQHLk(QT) < HQHL';(QT)(ZJO —agp)k,
k—2 2
Theorem 7.3 in [10] now implies that

k—1
lallz<@r) < € (llall & gy T (ks 2, a0, bo)
k=2 bo — ag) *
gl % gy, (Tath a0, b0) + 0 72007
and hence, after a simple calculation,

k b —a
HqHL‘X’(QT) <C (Fllc(kv%CLOvbO) +I'3 (k,x,a0,b0) + 0 Ok >
(a—ao)Z

and (3.4) follows.
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Step 2. Let us now consider the general case. Fix a smooth function § € C>°(R)
such that 0(s) = 1 for |s|] < 1, 8(s) = 0 for |s| > 2 and define 0, (x) = 0 (“r‘>

V,, = V6,,. We consider the minimal semigroup (U, (t)):>0 generated in Cj,(RY) by
the operator A, = Ag+F-D—V,,. Since V,, < V the procedure for constructing the
minimal semigroup recalled in Section 2 and the maximum principle yield U, (t) f <
T(t)f for every f € Cy(RY). If p,, denotes the kernel of U,, the above inequality
is equivalent to p,(z,y,t) < p(x,y,t). To show that p, converges pointwise to p
we consider the analytic semigroup (75, (¢)):>0 generated by A on Cy(B,,), under
Dirichlet boundary conditions (B,, is the ball of centre 0 and radius n). Since
V.. =V in B,,, the maximum principle gives T,,(¢t)f < U,(t)f < T(t)f in B,, for
every f € C,(RY), f > 0. Then ry(z,y,t) < pn(z,y,t) < p(z,y,t) for z,y € B,
with p < n, where r,, is the kernel of T}, in B,,. Letting n — oo we see that p, — p
pointwise, since this is true for r,,, see [11, Theorem 4.4].

The proof now easily follows by approximation from Step 1. Let I'? (k, x, ag, bo) be
the functions defined in (3.1), (3.2), (3.3) relative to p,. Since p, < pand V,, <V,
it follows that I'?(k, z, ag, bo) < T'i(k, x, ag, by). Moreover, I'"(k, z, ag, by) < oo for
every n, since V,, is bounded. Then we obtain from Step 1

k bg —a
10l L= (@(a)) < C (F’f(k,m,ao,bo) + T3 (k,z,a0,bo) + (ao ;k )
—ap)?

and the statement follows letting n — oc. ]

Now we apply similar techniques to obtain pointwise bounds.

We consider the following assumption depending on the weight function w
which, in our examples, will be a polynomial or an exponential.

(H1) Wy, Wy are Lyapunov functions for A, Wi < W, and there exists 1 < w €
C?(RY) such that

_ 1 _ 2
(i) w< Wy, |Dwl < cwkleI’“, |D?w| < cwkaWI’“
(ii) wVs < cWy and w|F|F < cWy
for some k > N + 2 and a constant ¢ > 0.

We denote by (1, (2 the functions defined by (2.1) and associated with Wy, W,
respectively.

By Proposition 2.4 we know that (H1) implies T'; (k, x, ag, bg) < oo fori = 1, 2.
In particular, since k > N + 2, Theorem 3.2 shows that p(z,-,-) € L>(Q(a,b)) for
every z € RV,

The use of different Lyapunov functions allows us to obtain more precise
estimates in the theorem below and its corollaries.

The proof of the following result is similar to the one of [10, Theorem 4.1].
For reader’s convenience we give the details.
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Theorem 3.3. Assume (H1). Then, there exists a constant C > 0 such that

bO 1 bg
0 <w(y)pz,y,t) <C Colw,t) dt + N G, t)dt (3.5)
ag a—ap)2 Jag
for all z, y € RN, a <t <b.

Proof. Step 1. Assume first that w is bounded. As in the proof of Theorem 3.2 we
choose a smooth function n(¢) such that n(t) = 1 for a < t < b and n(t) = 0 for
t<apgandt>bg, 0<7n < afao. We consider ¢ € C?1(Q7) such that (-, T) = 0

and such that 4 (-,%) has compact support for all ¢. Setting ¢ = ngp and taking
o(y,t) =02 (Hw(y)w(y, t), from (1.4) we obtain

N
/ wq (—Ob — Ag) dydt = /Q [q(¢A0w +23" ayDwD it (3.6)
T T ij=1

k _
wF - DY 4+ yYF - Dw — sz/J) + 2pwwnk228tn} dy dt.

Since w is bounded, then wq € L*(Qr) N L>=(Qr), by Theorem 3.2 and then [10,
Theorem 7.3] yields

lwallz=@r) < C(loallx@n + gl 5 o, + 12Dl 5 o+ laDwll k@)

L2 (Qr) L2(Q

+ lwaFlluqr +laF Dl o+ laVell 5

bl e )
a— agp P =g (o)

Next observe that

1
k—1 1 k-1 bo k
||WQHL}9(QT) < ||WQHL§<>(QT)HW‘]H]]§1(QT) < HWQHL’;(QT) (/ G dt) s
ap

bo i
[|w qHL2 (Qr) = ||WQHL00(QT)||WQHL1(QT) < HwQHLoc (Qr) (/ao G dt) )

and that, by (H1)(ii),
bo }19
/ Gt
ao

2
bo k
lwaVl 5 o, < ”‘"qHLw(QT)”“’qV I (@r) S ||WHL°°(QT) (/ @ dt) '
aop

Moreover, as in the proof of Theorem 3.2 one has

k—1 1 k—1
lwaF || L (@ry < ||WQHL’§<>(QT)||Wqu||£1(QT) = HW‘J”L’;(QT) (

2

bo k
o215 1,5 @y < 19015 @ 19PN s anony < 1l 5 g1 (/ w) .
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Next we combine (H1)(i) and (H1)(ii) to estimate the remaining terms

2
ko k-2 k k—2 bo *
HquF||L2(Q y S </QTq2w 2 W2> < quHL;(QT) /ao Codt

and, similarly,
2
bg k
D%l g o < Il o) ( / a dt)

1
k—1 bo k
1Dt < lwall (g ( [ dt) .
ao

Collecting similar terms and recalling that W7 < W5 we obtain

k—1 bo ]lc
loallieien < Clal A, | | Gt
ag
2

- bo K 1 bo
+ qu||L°°(QT) /ao « + a—agp /ao “

hence, after simple computations,

2
k

bo 1 bo
lwallm@m < C | [ Codt+ . / G dt
ao (a — ao) 2 Jag

and (3.5) follows for a bounded w.

Step 2. If w is not bounded, we consider w. = 1_;"5w . A straightforward computation
shows that w. satisfies (H1) with a constant C' independent of €. Therefore, from
Step 1 we obtain

bg bO
0< wa(y)p(xayvt) S c C2($7t) dt+ k Cl(azvt) dt ) (37)
ag (CL - aO) 2 Jao
with C independent of € and, letting € — 0, the statement is proved. O

Corollary 3.4. Assume that

. _ T V(x
lim sup |z|*~# (F(x) el (wagﬁ)_l) < —c, 0<c<oo (3.8)

for some § > 0,¢ > 0,8 > 2 such that § < (BA)"!ec, where A is the maximum

eigenvalue of (ai;), and that V(z) + |F(x)| < c1e°2l71”™% for some e, ¢1,¢0 > 0.
Then

s
0 <p(z,y,t) < cgexp (c@‘f*?) exp (—dlyl”)
for z,y € RN, 0 <t <T, for suitable cs,cq > 0.
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Proof. We take w(y) = eSl”, Wi(y) = Wa(y) = e for § < 4 < (BA)"tc and
use Theorem 3.3 with a =tanda—ayg =bg—b=b—a = ; The thesis then
follows using Proposition 2.7. d

Example.

(i)

(iii)

The above corollary applies with any v < (8A)~!c and without any restriction
on V >0 when

lim sup |2|* (F(m) . ) < —c, 0<c<oo,
for some 5 > 2 and |F(z)| < 1212’ for some €, ¢, ¢o > 0. This is obvious
if V.= 0 and, in the general case, it follows by observing that the kernel
p is pointwise dominated, by the maximum principle, by the corresponding
kernel of the operator with V' = 0.

Let us consider the Schrédinger operator A — a?|z|* with a > 0,s > 2. Then

Corollary 3.4 applies with 3 =1+ 5 and any § < SQJfQ. This yields

0< p(a,y,1) < esexp (eat™ 3 ) exp (<3| H) = e(t)ly).

Using the symmetry of p and the semigroup law (see [9, Example 3.13]), we
obtain
5452 )

p(x,y,t) < czexp <04t* 53) exp (*5I$| 532) exp (*5Iy
This estimate was obtained in [9, Example 3.13].

Let us generalize the previous situation to the case of the operators
A=A—la "

D — |zf*
||

with r > 1. We distinguish three cases.
(a) If s < 2r, then 8 = r+ 1 and ¢ can be any positive number less than
1
rr1 Therefore
0 < p(z,y,t) < crexp (@t*:ﬂ) exp (—dly["*) .

(b) If s = 2r, then 3 = r + 1 as before but now ¢ must be less than /Y3

2(r+1)
(c) If s > 2r, then B =1+ 3 and 0 < s-2s-2' Then we get, as in (ii)
0 < p(z,y,t) < c1exp (@fﬁta exp (*(ﬂyl 532) = c(t)p(y)- (3.9)

In this case one can also obtain estimates with respect to x proceeding
as in (ii). We consider the formal adjoint A* = A + |z|"|7, - D + (N +
r — 1)|z|"~! — |z|*. The associated minimal semigroup has the kernel
p*(z,y,t) = p(y,x,t) which satisfies (3.9), by the same argument as
above. This yields p(t, z,y) < ¢(t)¢(x) and, proceeding as in (ii),

g 5452) '

p(z,y,t) < cpexp (cﬂ‘i ) exp (*5I$| S§2> exp (*5Iy
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Under conditions similar to those of Corollary 3.4, the estimate of p can be
improved with respect to the time variable, loosing the exponential decay in y.

Corollary 3.5. Assume that

x|z

lim sup || —# (F(:c) 2] " 2
x o

|| — o0

V(x)) <0, (3.10)

for some > 0 and B > 2. If |F (x)|++/V (x) < c(1+]z]?)" and w(z) := (1+]z|?)7
with 0 < ky1 +7 < a, 1 > 'Bf and k > N + 2, then there exists a constant

C > 0 such that
C _
0 <plr,y,t) <, (L+ )7

for all z, y € RN,0 < t <1 where

2
= k—2 )
7= 50y (=2 )
Proof. Observe that W,.(z) = (1+|z|?)" is a Lyapunov function for every 0 < r <
a. If {.(z,t) is the corresponding function defined in (2.1), then Proposition 2.8
yields

Gr(,t) < et

forr e RN and0 <t <1.Weseta=tand a—ag=by—b=b—a= t; where s > 1

will be chosen later and we apply Theorem 3.3 with w(z) = Wi(z) = (1 + |z|*)™
and Wa(z) = (1+ \xP)’wﬁw. Thus we obtain

2(kv1+72) 4
— P +s

2
p(xayat) S C (t + t_5122—8129+s) (1 + ‘y|2),72'

4y

5% and the thesis follows. O

Minimizing over s we get s =

Ezample. Let us consider again the operators

T

A=A—|z]" " -D—l|af

|z
with r > 1. Again we distinguish three cases.

(a) If s+1 <r, then f=7r+1and vy, = }. It is easily seen that (3.10) holds for
every a > 0 and hence

2y B
p(:c,y,t) < Cti(k72) I (1 + |y‘2) Y2

forevery722070<t§1,y€RN.
(b) If r < s+ 1, then (3.10) holds for § = s+ 2 and every « > 0. So, we have to
distinguish two cases.
(i) If s < 2r, then v = § and

271

p(x,y,t) < ot~ k=2)5=" (1 + |y‘2)*’Y27
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(ii) If s > 27, then 71 = § and

_k—2_ 271 _
p(z,y,t) < Ct™ = s (1 + ‘y|2) Y2 ’
forevery722070<t§1’y€RN.

Remark 3.6. The results of this section generalize Theorem 4.1 and its corollaries
in [10] and also the results obtained in [9] in the case of exponential decay but not
for polynomial decay, where the results in [9] are more precise.

4. Regularity properties

In this section we obtain the differentiability of the transition semigroup T'(-)
associated with the transition kernels p in C,(RY) in the case where the coefficients
F and V are of exponential type.

We assume here that a;; € CZ(RY), V € C*RY) and F € C*RY). All
results of this section can be proved exactly by the same arguments as in [10,
Section 5 and Section 6].

Theorem 4.1. Suppose that there exist constants 3 > 2, ¢ > 0 such that

. _ T Vi(x
lim sup |z|*~# (F(:c) o]~ 55156)_1> < —c.

|z]|— o0
Assume moreover that
V(z) +|DV ()| + |F(2)| + |DF(2)| + |D*F(x)| < e1 exp(cala|’~)
for some €, c1,co > 0. Then the following estimates hold
. _ B
() 0 < play.t) < caexpleat™ 2 exp{—y/’}
(ii) [Dyp(z,y,t)| < csexp{est™ B;"‘}exp{*vly\ﬁ}
(iii) |Djp(e,y,t)| < czexp{eat™ =2} exp{—7ly|’}
. _ B
(iv) |8ip(x, y,t)| < czexp{eat™ #=2} exp{—7]y|"}

for suitable c3, cy, ¥ >0 and for all 0 <t < T and z,y € R".

Remark 4.2. (a) Assuming only that there exist constants 8 > 2, ¢ > 0 such
that

. - V(z)
lim su xlﬁ(Fx~x ><C,
s T g 7 g

and V(z) + |F(z)] < Cexp(|x|?) for some C > 0 and v < 3, the functions
plog®p and plogp are integrable in Q(a,b) and in RN for fixed t € [a,b]
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respectively and

D t)[?
Q(a,b) p(ﬂ]7 Y, t)

1
<o | UPWE+ VA )pta.t dy
Q(a,b)

+ / p(,y, ) log? pla, . £) dy dt
Q(a,b)

2 t=b

+ /\/ [p(x,yi) —p(z,y,t)logp(z,y, t)|  dy < oo.
RN t=a

In particular, p2 belongs to W,"*(Q(a, b)) (see [10, Theorem 5.1]). This im-
plies in particular that p € W,f’l(Q(a, b)) provided that also DF is of expo-
nential type for some k > N + 2 (see [10, Theorem 5.2]).

(b) From Theorem 3.3 and (a) (cf. [10, Theorem 5.3]) one can observe that the
assumption a;; € CZ(RY) is not needed for (i) and (ii).

As a consequence we obtain the differentiability of 7'(-) in C,(RY).

Theorem 4.3. Under the assumptions of Theorem 4.1, the transition semigroup
T() is differentiable on C,(RY) fort > 0.

Erample. Let a € R. From Theorem 4.3 we deduce that the operator
A=A—|z|"z-D - a®|z|*

with 7 > 0 and s > 0 generates a differentiable semigroup in Cy(R"). This result
is known for @ = 0 (see [13, Proposition 4.4]).
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Metric-induced Morphogenesis
and Non-Euclidean Elasticity:
Scaling Laws and Thin Film Models

Marta Lewicka

Abstract. The purpose of this paper is to report on recent developments con-
cerning the analysis and the rigorous derivation of thin film models for struc-
tures exhibiting residual stress at free equilibria. This phenomenon has been
observed in different contexts: growing leaves, torn plastic sheets and specifi-
cally engineered polymer gels. The study of wavy patterns in these contexts
suggest that the sheet endeavors to reach a non-attainable equilibrium and
hence assumes a non-zero stress rest configuration.

Mathematics Subject Classification (2000). 74K20, 74B20.

Keywords. Non-Euclidean plates, nonlinear elasticity, Gamma convergence,
calculus of variations.

1. Elastic energy of a growing tissue and
non-Euclidean elasticity

This paper concerns elastic structures which exhibit non-zero strain at free equi-
libria. Many growing tissues (leaves, flowers or marine invertebrates) attain com-
plicated configurations during their free growth. Recent work has focused on some
of the related questions by using variants of thin plate theory [1, 5, 4, 23]. How-
ever, the theories used are not all identical and some of them arbitrarily ignore
certain terms and boundary conditions without prior justification. This suggests
that it might be useful to rigorously derive an asymptotic theory for the shape of
a residually strained thin lamina to clarify the role of the assumptions used while
shedding light on the errors associated with the use of the approximate theory
that results. Recently, such rigorous derivations were carried out [8, 17, 19, 21] in
the context of standard nonlinear elasticity for thin plates and shells.

The purpose of this paper is to present these results in a concise manner,
departing from the 3d incompatible elasticity theory conjectured to explain the



434 M. Lewicka

mechanism for the spontaneous formation of non-Euclidean metrics. Namely, recall
that a smooth Riemannian metric on a simply connected domain can be realized
as the pull-back metric of an orientation preserving deformation if and only if
the associated Riemann curvature tensor vanishes identically. When this condi-
tion fails, one seeks a deformation yielding the closest metric realization. It is
conjectured that the same principle plays a role in the developmental processes
of naturally growing tissues, where the process of growth provides a mechanism
for the spontaneous formation of non-Euclidean metrics and consequently leads to
complicated morphogenesis of the thin film exhibiting waves, ruffles and non-zero
residual stress.

Below, we set up a variational model describing this phenomenon by introduc-
ing the non-Euclidean version of the nonlinear elasticity functional, and establish
its I'-convergence under a proper scaling. Heuristically, a sequence of function-
als F}, is said to I'-converge to a limit functional F' if the minimizers of F,, if
converging, have a minimizer of F' as a limit.

Consider a sequence of thin 3d films Q" = Q x (—h/2,h/2), viewed as the
reference configurations of thin elastic tissues. Here, 2 C R? is an open, bounded
and simply connected set which we refer to as the mid-plate of thin films under
consideration. Each Q" is now assumed to undergo a growth process, described
instantaneously by a (given) smooth tensor:

a" = [afj] :QF — R33 such that deta(x) > 0.
According to the formalism in [25], the multiplicative decomposition
Vu = Fa" (1.1)

is postulated for the gradient of any deformation v : Q* — R3. The tensor
F = Vu(a™)~! corresponds to the elastic part of u, and accounts for the reorga-
nization of Q" in response to the growth tensor a”. The validity of decomposition
(1.1) into an elastic and inelastic part requires that it is possible to separate out a
reference configuration, and thus this formalism is most relevant for the descrip-
tion of processes such as plasticity, swelling and shrinkage in thin films, or plant
morphogenesis.
The elastic energy of u depends now only on F"

I (u) = ! W(F) dz = ! W(Vu(a™)™) de,  Vue WH2(Q" R3).

h Jan h Jon

(1.2)

We remark that although our results are valid for thin laminae that might be

residually strained by a variety of means, we only consider the one-way coupling

of growth to shape and ignore the feedback from shape back to growth (plasticity,

swelling, shrinkage etc.). However, it seems fairly easy to include this coupling
once the basic coupling mechanisms are known.

In (1.2), the energy density W : R®*3 — R, is a nonlinear function, as-

sumed to be C? in a neighborhood of SO(3) and assumed to satisfy the following
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conditions of normalization, frame indifference and nondegeneracy:
Je>0 VFeR¥3 VReSOB) W(R)=0, W(RF)=W(F),

L (1.3)
W (F) > ¢ dist3(F, SO(3)).

The reason for using a nonlinear elasticity model (rather than the more familiar
linear elasticity) is that, as our analysis shows, the resulting deformations u” when
h — 0, are expected to be of order O(1), even though their gradients are locally
O(h) close to rigid rotations.

We now compare the above approach with the ‘target metric’ formalism [5,
20]. On each Q" one assumes to be given a smooth Riemannian metric g" = [glhj]
A deformation u of Q" is then an orientation preserving realization of ¢g”, when

(Vu)'Vu = g" and detVu > 0,

or equivalently, by the polar decomposition theorem,
Vu(z) € F'(z {R\/g . Re 50(3)} a.e. in QP (1.4)
It is hence instructive to study the following energy, bounding from below I%% (u):

I (u) = ;L/m dist?(Vu(z), F(z)) dz Yu € WH2(Q" R?). (1.5)

The functional I (ffist measures the average pointwise deviation of the deformation u
from being an orientation preserving realization of g". Note that I dist, 1s comparable
in magnitude with I, for W = dist®(-, SO( )). Also, observe that the intrinsic
metric of the material is transformed by a” to the target metrlc g" = (a")Ta"
and, for isotropic W, only the symmetric positive definite part of a” given by \/ gh
plays a role in determining the deformed shape.

2. The residual stress and a result on its scaling

Note that one could define the energy as the difference between the pull-back
metric of a deformation u and the given metric: I% (u) = [|(Vu)TVu — ¢"|* dz.
However, such ‘stretching’ functional is not approprlate from the Varlatlonal point
of view, because there always exists u € W such that I (u) = 0. Further,
if the Riemann curvature tensor R" associated to ¢" does not vanish identically,
say R”kl( x) # 0, then w has a ‘folding structure’ [9]; it cannot be orientation
preserving (or reversing) in any open neighborhood of x.

As proved in [20], the functionals 11}, I, . below and I h . have strictly positive
infima for non-flat ¢, which points to the existence of non-zero stress at free

equilibria (in the absence of external forces or boundary conditions):

Theorem 2.1. For each fixed h, the following two conditions are equivalent:
(i) The Riemann curvature tensor Rl # 0,
11 lnf{ dist u ; u € W172(Qh7R3)} > 0.
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Several interesting questions further arise in the study of the proposed energy
functionals. A first one is to determine the scaling of the infimum energy in terms
of the vanishing thickness h — 0. Another is to find the limiting zero-thickness
theories under the obtained scaling laws.

In [20], we considered the case where g” is given by a tangential Riemannian
metric [gas] on €, and is independent of the thickness variable:

A0
9" =g(a',23) = {g;ﬁ(z)] (3 Vo' €Q, ws e (—h/2,h/2). (2.1)

The above particular choice of the metric is motivated by the results of [14]. The
experiment presented therein consisted in fabricating programmed flat disks of
gels having a non-constant monomer concentration which induces a ‘differential
shrinking factor’. A disk was then activated in a temperature raised above a critical
threshold, wherein the gel shrunk with a factor proportional to its concentration.
This process defined a new target metric on the disk, of the form (2.1) and radially
symmetric. Consequently, the metric induced a 3d configuration in the initially
planar plate; one of the most remarkable features of this deformation is the onset
of some transversal oscillations (wavy patterns), which broke the radial symmetry.

Following our point of view, note that if [gas] in (2.1) has non-zero Gaussian
curvature fg, .1, then each RM £ 0. In [20], we observed the following:

Theorem 2.2. [gng] has an isometric immersion y € W22(Q,R?) if and only if
h~2inf fc'{ist <C

(for a uniform constant C). Also, Klgas) Z 0 if and only if, with a uniform positive
constant c:

h=2inf I, > ¢ > 0.

The existence (or lack thereof) of local or global isometric immersions of a
given 2d Riemannian manifold into R3 is a longstanding problem in differential ge-
ometry, its main feature being finding the optimal regularity. By a classical result
of Kuiper [15], a C! isometric embedding into R? can be obtained by means of con-
vex integration (see also [9]). This regularity is far from W?2:2, where information
about the second derivatives is also available. On the other hand, a smooth isom-
etry exists for some special cases, e.g., for smooth metrics with uniformly positive
or negative Gaussian curvatures on bounded domains in R? (see [11], Theorems
9.0.1 and 10.0.2). Counterexamples to such theories are largely unexplored. By
[13], there exists an analytic metric [gog] with nonnegative Gaussian curvature on
a 2d sphere, with no C? isometric embedding. However such metric always admits
a Cl! embedding (see [10] and [12]). For a related example see also [24].
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3. The prestrained Kirchhoff model

Consider now a class of more general 3d non-Euclidean elasticity functionals:

f{}v(u) = o W(z', Vu(z)) dz, (3.1)
where the inhomogeneous stored energy density W : Q x R"*"™ — R satisfies the
conditions given below of frame invariance, normalization, growth and regularity,
as in (1.3): with respect to the energy well 7" given in (1.4), relative to g" = g as

n (2.1). Note that F"(x) = F(2') is independent of h and of z3.
(1) (x RF) = W( ,F) for all R € SO(3),
(ii) W(a', y/g(a")) =
(iii) ( F)>c¢ dlst (F F(«')), with some uniform constant ¢ > 0,
(iv) W has regularity C? in some neighborhood of the set {(z/,F); 2’ € Q,
F e F(z')}.

Properties (i)—(iii) are assumed to hold for all z € Q and all F' € R3*3.

The following two results provide a description of the limiting behavior of
the energies 1:{}[, as h — 0. Namely, we prove that any sequence of deformations
u” with f{}v(uh) < Ch?, converges to a W22 regular isometric immersion y of the
metric [gqg]. Conversely, every y with these properties can be recovered as a limit
of u" whose energy scales like h2. The I-limit [3] of the energies is a curvature
functional on the space of all W22 realizations y of [gag] in R3:

1 .

2 I, LN S (y) where Zs(y =04 / Qs (x gag] (Vy)TVﬁ) dz’. (3.2)
Here 7 is the unit normal to the image surface y(Q2), while Qg(x’ ) are the follow-
ing quadratic forms, nondegenerate and positive definite on the symmetric 2 x 2
tensors:

Qs(2')(F) = VW (2, )| yg(an) (F. F),
Q2( )(F2x2)—mln{Q3( NF ) F2><2—F2><2}

We use the following notational convention: for a matrix F', its n x m principle
minor is denoted by F}, ., and the superscript T refers to the transpose of a matrix
or an operator.

Theorem 3.1. Assume that a given sequence of deformations u" € W12(Q" R3)
satisfies
Ik (uh) < On?, (3.3)

where C' > 0 is a uniform constant. Then, for some sequence of constants ¢ € R3,
the following holds for the renormalized deformations y"(x',x3) = u™(2', haz) —
ch e WH2(Q R3):
(i) y" converge, up to a subsequence, in WH2(Q1, R3) to y(z',z3) = y(2') and
y € W22(Q,R3).



438 M. Lewicka

(ii) The matriz field Q(z') with columns Q(z")
F(z'), for a.e. &’ € Q. Here,

[0y, day(a’). (@) €

01y X Ozy

n =
|01y x Doy

(3.4)
is the (well-defined) normal to the image surface y(). Consequently, y real-
izes the mid-plate metric: (Vy)TVy = [gag]-

(iii) We have the lower bound: li}ni(l)lf th{}V(uh) > T(y), where Iy is given
in (3.2).

We further prove that the lower bound in (iii) above is optimal, in the
following sense. Let y € W22(Q,R?) be a Sobolev regular isometric immersion
of the given mid-plate metric, that is (Vy)TVy = [gag]. The normal vector
7 € WH2(Q,R3) is then given by (3.4) and it is well defined because |01y X d2y| =
(det g)*/2 > 0. We have:

Theorem 3.2. For every isometric immersiony € W2(Q,R3) of [gas], there exists
a sequence of recovery deformations u € W12(Q" R3) such that the assertion (i)
of Theorem 3.1 holds, together with
N
lim o Tw (u®) = Za(y)-
Assume now a slightly more general case of plates with slowly varying thick-
ness, that is when

Q" = {(2',23); 2 €Q, —hq:(2') < 23 < hga(z')}

with some positive C* functions qi,q2 : © — (0,00). In this setting, the same
results as in Theorem 3.1 and 3.2 have been re-proved in [22], with the limiting
functional
1 3 ~ -1 .
= 1 | @)+ 06 (ylgosl (V)7 ) a'
Q

For classical elasticity (¢" = Id) of shells with mid-surface of arbitrary geometry
and slowly oscillating boundaries as above, the analysis has been previously carried
out in [18].

)

An important reference in the context of Theorems 3.1 and 3.2 (for flat
films) is [26], containing the derivation of Kirchhoff plate theory for heterogeneous
multilayers from 3d nonlinear energies given through an inhomogeneous density in

4. A rigidity estimate

As a crucial ingredient of the proof of compactness in Theorem 3.1, we present
a generalization of the nonlinear rigidity estimate obtained [7] in the Euclidean
setting, extended to the non-Euclidean metrics in [20]. Note that in case g" =
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Id, the infimum of I ('fist in (1.5) is naturally 0 and is attained only by the rigid
motions. In [7], the authors proved an optimal estimate of the deviation in W2
of a deformation u (on Q"), from rigid motions, in terms of the energy I . (u). In
our setting, since there is no realization of I , (u) = 0 if the Riemann curvature of
the metric g” is non-zero, we choose to estimate the deviation of the deformation
from a linear map at the expense of an extra term, proportional to the gradient
of the metric.

Theorem 4.1. Let U be an open, bounded subset of R™ and let g be a smooth (up
to the boundary) metric on U. For every u € W12(U,R™) there exists Q € R™ "
such that:

/M|Vu(x)—Q|2 d:L‘SC'(/udist2 (Vu,SO(n)\/g(x)) dz+ || Vg2 (diam Z/I)2|1/I>7

where the constant C' depends on ||gl|re<, ||g™" L=, and on the domain U. The
dependence onU is uniform for a family of domains which are bilipschitz equivalent
with controlled Lipschitz constants.

For an embeddable metric g (i.e., whose R;ji; = 0) a related result has been
obtained in [2]; namely an estimate of the deviation of (orientation preserving)
deformation w from the realizations of g in terms of the L! stretching energy

J1(Vu)"Vu — g].

5. A hierarchy of scalings

Given a sequence of growth tensors a” (say, each close to Id) defined on ", the gen-
eral objective is now to analyze the behavior of the minimizers of the correspond-

ing energies I{t, as h — 0. By Theorem 2.1, the infimum: mj, = inf {I{}V(u), u €

Wh2(Qh, Rd)} must be strictly positive whenever the Riemann tensor of the met-
ric " = (a™)Ta" does not vanish identically on Q". This condition for g", under
suitable scaling properties, can be translated into a first-order curvature condition
(5.1) below. In a first step (Theorem 5.1) we established [16] a lower bound on my,
in terms of a power law: my, > ch?, for all values of § greater than a critical Gy
in (5.2). This critical exponent depends on the asymptotic behavior of the pertur-
bation a” — Id in terms of the thickness h. Under existence conditions for certain
classes of isometries, it can be shown that actually my, ~ h%.

Theorem 5.1. For a given sequence of growth tensors a™ define their variations:
Var(a") = [[Vian(a"io) | .= (0) + 930" | L~ n)
together with the scaling in h:

.1
w1 = sup {w; }Eli% e Var(a") = O} .

Assume that: ||a" || e qn) + [|(@") 7 Lo (any < C and wi > 0.
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Further, assume that for some wy > 0, there exists the limit

1 _ .
eg(z)) = lim, hwofm a(z',t) —1d dt  in L*(Q,R3*3),

which moreover satisfies
curl”curl (e,)2x2 # 0, (5.1)

and that wy < min{2wi,w; + 1}.
Then, for every 8 with

8> By = max{wo + 2, 2w}, (5.2)

there holds: lim sup hlﬁ inf Il = +o0.
h—0

We expect it should be possible to rigorously derive a hierarchy of prestrained
limiting theories, differentiated by the embeddability properties of the target met-
rics, encoded in the scalings of (the components of) their Riemann curvature ten-
sors. This is in the same spirit as the different scalings of external forces leading
to a hierarchy of nonlinear elastic plate theories, displayed by Friesecke, James
and Miiller in[8]. For shells, which are thin films with mid-surface or arbitrary
(non-flat) geometry, an infinite hierarchy of models was proposed, by means of
asymptotic expansion in [21], and it remains in agreement with all the rigorously
obtained results [6, 17, 18, 19].

6. The prestrained von Karman model

Towards studying the dynamical growth problem (that is, incorporating the feed-
back from the minimizing shape u” at the prior time-step, to growth tensor a” at
the current time-step) in [16] we considered the growth tensor

a(2,x3) = 1d + hZe,(2) + hxzy, ('), (6.1)

with given matrix fields €4, v, : 2 — R3*3. Note that the assumptions of Theorem
5.1 do not hold, since in the present case wg = 2w; =wy + 1 = 2.

We proved that, in this setting inf I {}V < Ch*, while the lower bound
h~%inf I{}V > ¢ > 0 is equivalent to

curl((yg)ax2) Z0 or  2curl” curl(ey)axz + det(y,)ax2 Z 0, (6.2)

which are the (negated) linearized Gauss-Codazzi equations corresponding to the
metric I = Id+h?(eg)2x2 and the second fundamental form I = ;h(’)/g)gxg on €.
Equivalently, the above conditions guarantee that the highest-order terms in the
expansion of the Riemann curvature tensor components Ri213, Ro3o1 and Rio12
of g" = (a")Ta" do not vanish. Also, either of them implies that inf Z, > 0 (see
definition below), which yields the lower bound on inf I{}V.
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The I'-limit of the rescaled energies is, in turn, expressed in terms of the out-
of-plane displacement v € W22(Q, R) and in-plane displacement w € W12(Q, R?):

1
h4I{}V LIAL where
1 1
Ty(w,v) = o4 /Q Q2 (VPv + 2(79)2x2) (6.3)

1 1 1
+ / Qs (syme + Voo Vv - (eg)2><2)7
2 /o 2 2

with the quadratic nondegenerate form Q, acting on matrices F € R2*2:
Qy(F) = min{Q3(F); F € R¥*® Fyyp = F} and Q3(F) = D*W(Id)(F ® F).

The two terms in (6.3) measure: the first order in h change of I, and the second
order change in I, under the deformation id + hves + hw of Q. Moreover, any
sequence of deformations u" with It (u) < Ch* is, asymptotically, of this form.

More precisely, we proved in [16]:

Theorem 6.1. Let the growth tensor a be as in (6.1). Assume that the energies of
a sequence of deformations u € WH2(Q" R3) satisfy

Ik (u) < Ch4, (6.4)

where W fulfills (1.3). Then there exist proper rotations R" € SO(3) and transla-
tions c € R? such that, for the normalized deformations

y"(2', x3) = (RM)Tu (', has) — " - QF — R?,
the following holds:

(i) y"(2',x3) converge in WH2(QL, R3) to a'.
(ii) The scaled displacements

1 12
Vi) = f y" (2’ t) — 2’ dt (6.5)
hj_1/2

converge (up to a subsequence) in WH2(Q,R3) to the vector field of the

form (0,0,v)T, with the only non-zero out-of-plane scalar component: v €

W22(Q,R).

(iii) The scaled in-plane displacements h='V;"_ converge (up to a subsequence)

weakly in WH2(Q,R?) to an in-plane displacement field w € W12(Q, R?).
(iv) Recalling the definition (6.3), there holds

1
hin_}gf h41{,§,(uh) > Ty(w,v).

The limsup part of the I'-convergence statement in Theorem 6.2 establishes
that for any pair of displacements (w, v) in suitable limit spaces, one can construct
a sequence of 3d deformations of thin plates Q" which approximately yield the
energy Zy(w, v). The form of such recovery sequence delivers an insight on how to
reconstruct the 3d deformations out of the data on the mid-plate 2. In particular,
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comparing the present von Kdrmén growth model with the classical model ([8],
Section 6.1) we observe a novel warping effect in the non-tangential growth.

Theorem 6.2. Assume the setting of Theorem 6.1. For every w € WH2(Q, R?) and
every v € W22(Q, R), there exists a sequence of deformations u" € W12(Sh R3)
such that the following holds:

(i) The sequence y"(z',x3) = ul (2, has) converges in W12(Q R3) to 2.
/2
(i) V(') = h_1/ (uP(2',t) — 2) dt converges in WH2(Q, R?) to (0,0,v)7.

)
h/2
iii) h=1V2 converges in WH2(Q,R?) to w.
tan
(iv) Recalling the definition (6.3) one has:
.1
lim 1l (1) = T, v).

The main consequences of the I'-convergence results above are as follows:

Corollary 6.3. Assume the setting of Theorem 6.1. Then:

(i) There exist uniform constants C,c > 0 such that, for every h,
1. s
c< , inf It < C. (6.6)

If moreover (6.2) holds then one may have ¢ > 0.
(ii) There exists at least one minimizing sequence u € W12(Q" R3 for I}, :

: 1 h h 1 : h
’llli% <h4lw(u ) — B4 1anW) =0. (6.7)

For any such sequence the convergences (i), (ii) and (iii) of Theorem 6.1 hold
and the limit (w,v) is a minimizer of 7.

(iii) For any minimizer (w,v) of Zs, there exists a minimizing sequence u", sat-
isfying (6.7) together with (i), (ii), (iii) and (iv) of Theorem 6.2.

7. The prestrained von Karman equations
For elastic energy W satisfying (1.3) which is additionally isotropic,

VF € R¥*3 VYR € SO(3) W(FR) =W(F), (7.1)
one can see [8] that the quadratic forms in Z, are given explicitly as

Q3(F) = 2u|sym F|* + \|tr F|?,
20
204+ A

(7.2)

Q2(Fax2) = 2plsym Foyol® + ltr Foxal?,

for all F € R3*3. Here, tr stands for the trace of a quadratic matrix, and x and A
are the Lamé constants, satisfying: u > 0, 3A\ + pu > 0.
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Under these conditions, the Euler-Lagrange equations of the limiting func-
tional Z, are equivalent, under a change of variables which replaces the in-plane
displacement w by the Airy stress potential ®, to the new system proposed in [23]:

A2D = —S(Kq+ \y), BA?v = [v,®] — BQ,,

where S = p(3A+2pu)/(A+p) is the Young’s modulus, K¢ the Gaussian curvature,
B = S/(12(1 — v?)) the bending stiffness, and v = A\/(2(\ + 1)) the Poisson ratio
given in terms of the Lamé constants A and p. The corrections due to the prestrain
are

Ag = curl” curl (€g)2x2, Q= divT div ((vg)2x2 + v cof (vg)2x2) -
More precisely:

Theorem 7.1. Assume (1.3) and (7.1). Then the leading order displacements in a
thin tissue which tries to adapt itself to an internally imposed metric g" = (a)"a”
with a” as in (6.1) satisfy:

A2P = fS(det Vv + Curchurl(eg)2X2>,
BA?y = cof V2® : V20 — B diVTdiV((’yg)ng +v COf(’Yg>2><2)7
together with the (free) boundary conditions on OS):
¢ =0;02=0,
U:(A@A) +vP:(re71)=0,
(1—-v)o: (\I} : (ﬁ@T)) + div (\I~f +v cof\I}) 7 =0.
Here 1i denotes the normal, T the tangent to OS2, while
U=V + sym(7g)2x2-

The in-plane displacement w can be recovered from the Airy stress potential ® and
the out-of-plane displacement v, uniquely up to rigid motions, by means of

1
cof V2® =24 (syme + 2Vv ® Vv — sym(eg)gxg>

20

. 1
i (div w + Vol - tr(eg)x2 )1d.

Notice that in the particular case when (Symfig>2><2 = 0 on 012, the two last
boundary conditions become:

nn

020+ V(@f;u — K@,;v) =0,

(2= 1)0r 05070 + Bgv + K (Ao +2030) =0,

nnn nn

where K stands for the (scalar) curvature of 9Q, so that 0.7 = K7. If additionally
0% is polygonal, then the above equations simplify to equations (5) in [23].
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Alessandra Lunardi

Dedicated to Herbert Amann

Abstract. We consider a class of second-order linear nonautonomous parabolic
equations in R? with time periodic unbounded coefficients. We give sufficient
conditions for the evolution operator G(t, s) be compact in Cy(R?) for ¢ > s,
and describe the asymptotic behavior of G(¢,s)f as ¢ —s — oo in terms
of a family of measures us, s € R, solution of the associated Fokker-Planck
equation.
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1. Introduction

Linear nonautonomous parabolic equations in R? are a classical subject in the
mathematical literature. Most papers and books about regular solutions are de-
voted to the case of bounded coefficients (e.g., [9, 5], but the list is very long),
and recently the interest towards unbounded coefficients grew up. The standard
motivations to the study of unbounded coefficients are on one side the well known
connections with stochastic ODEs with unbounded nonlinearities, and on the other
side the changes of variables that transform bounded into unbounded coefficients,
occurring in different mathematical models. However, only for a few equations
with unbounded coefficients it is possible to recover the familiar results about the
bounded coeflicients case. Many of them exhibit very different, and at first glance

This work was partially supported by the GNAMPA research project 2009 “Equazioni differenziali
ellittiche e paraboliche di ordine 2”.
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surprising, aspects. Therefore, a third motivation is the interest in new phenomena
in PDEs.

This paper deals with one of these new phenomena, giving sufficient condi-
tions in order that the evolution operator G(t, s) associated to a class of second-
order parabolic equations is a compact contraction in Cy(R?) for ¢t > s. Precisely,
Cauchy problems such as

ui(t,x) = A(t)u(t, )(z), t>s, € RY (1.1)
u(s,r) = o(x), =R (1.2)
will be considered, where the elliptic operators A(t) are defined by

d d
(AB)@) (@) = Y ai(t,2) D) + Zbi(tvx>Di¥7(x>

= Tr (Q(t,2)D%p(x)) + (b(t, ), Vip(x)), (13)

and the (smooth enough) coefficients ¢;;, b; are allowed to be unbounded. If ¢ is
smooth and it has compact support, a classical bounded solution to (1.1)—(1.2) is
readily constructed, as the limit as R — oo of the solutions ug of Cauchy-Dirichlet
problems in the balls B(0, R). However, classical bounded solutions need not be
unique. Under assumptions that guarantee positivity preserving in (1.1)—(1.2) (and
hence, uniqueness of its bounded classical solution), a basic study of the evolution
operator G(t,s) for (1.1) in Cy(R?) is in the paper [8]. The evolution operator
turns out to be Markovian, since it has the representation

Gt )p(x) = / o()pesaldy), t>s RY, o e CyRY,
R

where the probability measures p; s are given by p; s »(dy) = g(t, s, z, y)dy for a
positive function g.

It is easy to see that if a Markovian G(t, s) is compact in C,(R%), then it does
not preserve Cp(R9), the space of the continuous functions vanishing as |z| — oo,
and it cannot be extended to a bounded operator in LP(R%, dx) for 1 < p < oco.
Therefore, much of the theory developed for bounded coefficients fails.

When a parabolic problem is not well posed in LP spaces with respect to the
Lebesgue measure, it is natural to look for other measures p, and in particular
to weighted Lebesgue measures, such that G(t,s) acts in LP(R?, u). This is well
understood in the autonomous case A(t) = A, where the dynamics is held by
a semigroup T'(t) and G(t,s) = T(t — s). Then, an important role is played by
invariant measures, that are Borel probability measures p such that

[ rOedn= [ odu pecuz
R4 R4

If a Markov semigroup has an invariant measure p, it can be extended in a standard
way to a contraction semigroup in all the spaces LP(R% 1), 1 < p < oo. Under
broad assumptions the invariant measure is unique, and it is strongly related with
the asymptotic behavior of T'(¢), since lim; o T'(t)p = fRd @ du, locally uniformly
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if o € Cy(RY) and in LP(R?, 1) if ¢ € LP(RY, 1), 1 < p < oc. In the nonautonomous
case the role of the invariant measure is played by families of measures {ps : s €
R}, called evolution systems of measures, that satisfy

/ G(t, s)pdu :/ pdus, t>s, o€ Cy(RY). (1.4)
R R4

If (1.4) is satisfied, the function s — pu, satisfies (at least, formally) the Fokker-
Planck equation
DSMS + A(S)*/LS = 07 s € Ra

which is a parabolic equation for measures without any initial, or final, condition.
Therefore it is natural to have infinitely many solutions, and to look for uniqueness
of special solutions. For instance, in the autonomous case the unique stationary
solution is the invariant measure, in the periodic case A(t) = A(t + T') under
reasonable assumptions there is a unique T-periodic solution, etc. Arguing as in
the autonomous case, it is easy to see that if (1.4) holds then G(t,s) may be
extended to a contraction from LP(R?, uis) to LP(R?, ) for t > s. Therefore, it is
natural to investigate asymptotic behavior of G(t, s) not only in Cy(R?) but also
in these LP spaces.

A basic study of the evolution operator for parabolic equations with (smooth
enough) unbounded coefficients is in [8]. In its sequel [10] we studied asymptotic
behavior of G(t, s) in the case of time-periodic coefficients.

In this paper sufficient conditions will be given for the evolution operator
G(t,s) be compact in Cy(R%). Then, compactness will be used to obtain asymp-
totic behavior results in the case of time-periodic coefficients. Indeed, compact-
ness implies that there exists a unique T-periodic evolution system of measures
{us : s € R}, and that denoting by ms¢ the mean value

M := / o(x)ps(dx), sER, p e Cp(RY), (1.5)
Rd
there is w < 0 such that for each € > 0 we have
G (t, 8)p — mapllse < Mce T g0, > s, @ € CH(RY), (1.6)

for some M, > 0. As a consequence, for every p € (1,00) and £ > 0 we get

IG(t, 5) — msllLr@ap < Me“ TN o] gy, t>s, o€ LP(RY, py),
(1.7)
for some M = M(p,e) > 0. Note that while the constant M may depend on
p, the exponential rate of decay is independent of p. These results complement
the asymptotic behavior results of [10], where (1.7) was obtained under different
assumptions.

2. Preliminaries: the evolution operator G(t, s)

We use standard notations. Cy,(R?) is the space of the bounded continuous func-
tions from R? to R, endowed with the sup norm. Cy(R?) is the space of the
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continuous functions that vanish at infinity. For k € NU {0}, C*(R%) is the space
of k times differentiable functions with compact support. For 0 < a < 1, a < b and
R >0, C*/*%([a,b] x B(0, R)) and C'*2/2:2+([q, b] x B(0, R)) are the usual para-
bolic Holder spaces in the set [a, b] x B(0, R); CgéQ’a(RHd) and C’llota/2’2+a(R1+d)
are the subspaces of C,(R'*4) consisting of functions whose restrictions to [a, b] x
B(0, R) belong to C*/%%([a,b] x B(0, R)) and to C**+*/2:2+([a,b] x B(0, R)), re-
spectively, for every a < b and R > 0.

In this section we recall some results from [8] about the evolution operator for
parabolic equations with unbounded coefficients. They were proved under standard
regularity and ellipticity assumptions, and nonstandard qualitative assumptions.

Hypothesis 2.1.
(i) The coefficients qi;, b; (i, = 1,...,d) belong to CgéQ’a(RHd) for some
a € (0,1).
(ii) For every (s,z) € R4 the matriz Q(s,z) is symmetric and there exists a
function 1 : R1T? — R such that 0 < ng := infgi+an and

(Qs,2)€.6) 2 (s, 2)El,  €€RY, (s,2) R
(iii) There exist a positive function W € C%(R?) and a number X\ € R such that
lim W(z) =00 and sup  (A(s)W)(z) — AW (x) < 0.

|z|—00 sER, z€RY

Assumptions (i) and (i) imply that for every s € R and ¢ € Cy(R?), the
Cauchy problem

u(t,z) = ult, x 5T ’
{Dt (tw) = A@)ult,z), t>s, zeR 2.1)

u(s,z) = (), z €R?,

has a bounded classical solution. Assumption (iii) implies that the bounded classi-
cal solution to (2.1) is unique (in fact, a maximum principle that yields uniqueness
is proved in [8] under a slightly weaker assumption). The evolution operator G(t, s)
is defined by

G(t,s)p =u(t,:), t>seR, (2.2)

where u is the unique bounded solution to (2.1). Some of the properties of G(t, s)
are in next theorem.

Theorem 2.2. Let Hypothesis 2.1 hold. Define A := {(t,s,x) € R**4 .t > 5 2z €
R4}, Then:
(i) for every p € Cy(R?), the function (t,s,x) — G(t,s)p(x) is continuous in A.
For each s € R, (t,x) — G(t, s)p(x) belongs to Clloto‘/Q’HO‘((s7 ) x R);
(ii) for every ¢ € C2(RY), the function (t,s,z) — G(t,s)p(x) is continuously
differentiable with respect to s in A and Ds;G(t, s)p(x) = —G(t, s)A(s)p(x)
for any (t,s,z) € A;
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(iii) for each (t,s,xz) € A there exists a Borel probability measure py s . in R? such
that

Glt.9)pla) = [ oupiealds), € R (23)

Moreover, p; s (dy) = g(t, s, x,y)dy for a positive function g.
(iv) G(t,s) is strong Feller; estending it to L>(R%, dx) through formula (2.3), it
maps L= (R?, dx) (and, in particular, By(R?)) into Cy(R?) for t > s, and
1G(t,9)¢elloo < ll@llos @ € LR, dx), t>s.

(v) If (¢n) is a bounded sequence in Cy(R?) that converges uniformly to o in each
compact set K C R?, then for each s € R and T > 0, G(-, 8)pn converges to
G(-, 8)p uniformly in [s,s + T] x K, for each compact set K C RY.

(vi) For every s € R and R >0, 0 < e < T there is C = C(s,e,T,R) > 0 such
that

sup [|G(t, 5)elle2(mo,r)) < Cllglloe, @ € Co(RY).
s+e<t<s+T

Statements (i) to (v) are explicitly mentioned in [8] (Thm. 2.1, Prop. 2.4, Cor.
2.5, Prop. 3.1, Lemma 3.2). Statement (vi) is hidden in the proof of Theorem 2.1,
where G(t, s)¢ is obtained by an approximation procedure, in three steps: first,
for p € C*+2(R?), then for ¢ € Cy(R?), and then for ¢ € Cy(RY). At each step,
we have interior Schauder estimates for a sequence u,, that approaches G(t, s)¢p,
namely for s € Rand R >0, 0 < ¢ < T there is C = C(s,&,T, R) > 0 such that

unllcrvarz2to(sre,strixB0,R) < Cll¢llos, 1 €N,
and u,, converges to G(t, s)¢ locally uniformly. This yields (vi).

To get evolution system of measures we have to strengthen assumption 2.1(iii).
The following theorem is proved in [§].

Theorem 2.3. Under Hypotheses 2.1, assume in addition that there exist a positive
function W € C?(R%) and numbers a, ¢ > 0 such that

lim W(z) = +oo and (A(s)W)(z) <a—cW(x), (s,z)€c Rt

(2.4)
Then there exists a tight!) evolution system of measures {us : s € R} for G(t,s).
Moreover,

G(t, s)W(x) == W@WMA@A§WQQ+3 t>s zeRY,  (25)
Rd

and
/twwmumgmmw+i,teR (2.6)
Rd

Yi.e., Ve > 0 IR = R(e) > 0 such that ps(B(0,R)) > 1 —e¢, for all s € R.
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3. Compactness in Cp(R?)

A necessary and sufficient condition for G(t, s) be compact in Cj,(R?) for ¢ > s is
very similar to the corresponding condition in the autonomous case ([13]).

Proposition 3.1. Under Hypothesis 2.1 the following statements are equivalent:

(a) for anyt > s, G(t,s) : Cp(R?) — Cp(RY) is compact.
(b) for any t > s the family of measures {p; s .(dy) : = € R} is tight, i.e., for
every € > 0 there exists R = R(t,s,e) > 0 such that

Prsa(BO,R) >1—¢, zeR™

Proof. We follow the proof given in [13, Prop. 3.6] for the autonomous case.

Let statement (a) hold. For every R > 0 let pr : R? — R be a continuous
function such that 1(o,r) < ¢r < Ip(0,r+1)- Since [|pr|lo < 1and G(t, s) is com-
pact, there is a sequence G(t, s)pg, that converges uniformly in the whole R% to a
limit function g. Since ¢r goes to 1 as R — +o00, uniformly on each compact set
and || ¢r|leo < 1 for every R, by Theorem 2.2(v) imp_.o G(t,s)pr = G(t,s)1 =1
uniformly on each compact set. Then, g = 1 and limp_. ; » ||G(%, 8)pr — 1|00 = 0.
Therefore, fixed any € > 0, we have

Pt,s,2(B(0, R)) = (G(t,s)1po,r))(x) > (G(t,8)pr)(x) > 1—¢, x€ R,

for R large enough.
Let now statement (b) hold. For ¢ > s fix r € (s,t) and recall that (see
formula (2.3))

(Gt 8)p)(x) = (Gt 1)G(r, s)p)(x) =/ (G(r,8)@)W)pira(dy),

Rd

for any ¢ € Cy(R?) and any = € RZ. For every R > 0 set

(@wWﬁme@mﬁwwmmww,xGW-

Each Gg : Cy(R?) — Cy(R?) is a compact operator, since it may be written as
Gr = SoRoG(r,s) where G(r, s) : Cy(RY) — Cy(R?) is continuous, R : Cp(RY) —
C(B(0, R)) is the restriction operator, and S : C(B(0, R)) — Cy(R?) is defined by

swm:/ b)peraldy) = (G, r)) (@), z € BO,R),
B(0,R)

where () is the null extension of 1 to the whole R%. Now, RoG(s,r) : Cy(RY) —
C(B(0, R)) is compact by Theorem 2.2(v), and S is continuous from C(B(0, R))
to Cp(R?) because G(t,r) is strong Feller by Theorem 2.2(iv).

Moreover, Gr — G(t,s) in L(Cy(R?)), as R — +oc. Indeed, for € > 0 there
is Ro > 0 such that p;,.(B(0,R)) > 1 — ¢ for each z € RY and R > Ry, and
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consequently

[(G(t,s)p)(x) — (Gre)(2)] < HG(T,S)@Hoo/ Prra(dy) < ellglloo,
RA\B(0,R)
for R > Ry and for each = € R?.
Being limit of compact operators, G(¢, s) is compact. g

Remark 3.2. Some remarks are in order.

(i) An insight in the proof shows that if G(¢, s) is compact for some ¢ > s, then
the family {p;s.(dy) : = € R?} is tight; conversely if for some r > s the
family {p,s.(dy) : © € R4} is tight then G(t, s) is compact for each t > r.

(ii) If for some r > s the family {p,s.(dy) : = € R%} is tight, then the family
{pts.(dy) : t>r, o € R} is tight. Indeed, for every R > 0 we have

Prs,2(RY\ B0, R)) = (G(t, s)Lga\ p(o,r)) (%)
= (G(t,7)G(r, 8)Lga\ (o,r) ) (T)
< HG(T’, S)]le\B(O,R) H<x>7

so that, if prs.(R?\ B(0,R)) = G(r,s)Lga\p(0,r)(x) < € for every , also
prs.(RT\ B(0, R)) < ¢ for every z.

(iii) As in the autonomous case ([13]), if G(t, s) is compact in Cj,(R?), it does not
preserve LP(RY dz) for any p € [1,+0c0) and it does not preserve Cp(R%).
Indeed, let R > 0 be so large that p; s .(B(0,R)) > 1/2 for every € RY,
and let ¢ € C.(R%) be such that ¢ > 1p(0,r)- Then,

(G(t,9)9) @) > (Glt,5)p0.7))(2) = Prse(BOR)) > .

for every x, so that G(t, s)¢ does not belong to any space LP(R?, dx) and to
Co (Rd)

(iv) A similar argument shows that inf G(¢,s)¢ > 0 for each ¢ > s and ¢ €
Cy(RH)\ {0}, ¢ > 0. Indeed, if ¢(x) > 0 for each =, and R > 0 is as before,
then (G(t,s)p)(x) > 6(G(t, s)1p(0,r))(x) > 0/2, with § = minj,<r@(z) > 0.
If p(z) > 0 for each z, it is sufficient to recall that G(t,s)¢ = G(t, (s +
t)/2)G((s+1)/2, )¢ and that G((s+1t)/2, s)p(x) > 0 for each = by Theorem
2.2 (ii).

However, to check the tightness condition of Proposition 3.1 is not obvious,
since the measures p; 5 , are not explicit, in general. In the case of time-depending

Ornstein-Uhlenbeck operators (e.g., [1]),

(A(t)p)(x) = ;Tr (Q)D2¢(2)) + (A(t)z + f(1), Vep(x)), = eR?,

the measures p; 5 . are explicit Gaussian measures and it is possible to see that the
tightness condition does not hold. Alternatively, one can check that G(t,s) maps
LP(RY dx) into itself for every p € (1,00) and therefore it cannot be compact in
Cp(RY).
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If the assumptions of Theorem 2.3 hold, estimate (2.5) implies that the family
{pts,s 1t >s, © € B(0,r)} is tight for every r > 0. However, this is not enough
for compactness. To obtain compactness we have to strengthen condition (2.4) on
the auxiliary function W.

Theorem 3.3. Let Hypotheses 2.1 hold. Assume in addition that there exist a C?
function W : R — R, such that lim || o W(z) = 400, a number R > 0 and
a conver increasing function g : [0,+00) — R such that 1/g is in L' (a,+o00) for
large a, and

(A(s)W)(x) < —g(W(z)), seR, |z| > R. (3.1)
Then, for every 6 > 0 there is C = C(§) > 0 such that (G(t,s)W)(z) < C for
every x € R and s <t — 8. Consequently, the family of probabilities {p; s .(dy)
s <t—0d, € R} is tight, and G(t, s) is compact in Cy(R?) for t > s.

Proof. As a first step we show that

(G(t, s)W)(z)—(G(t,r)W)(z) > — /S(G(t,o)A(a)W)(x)da, r<s<t, reR%.

(3.2)
Let ¢ € C*°(R) be a nonincreasing function such that ¢ =1 in (—00,0], ¢ =0 in
[1,+00), and define ¥, (t) fo (s — n)ds for each n € N. The functions v, are

smooth and enjoy the following properties:

e Y, (t) =t for t € [0,n],

e Y, (t) = const. for t >n+1,

e 0 <4l <1andy) <0,

e for every t > 0, the sequence (¢),(t)) is increasing.
Then, the function W,, := 1), o W belongs to C} (R?) and it is constant outside a
compact set. By Theorem 2.2(ii), applied to W,, — ¢, we have

(G(t, )W) ()= (Gt r)Wn) () = — /S(G(t’U)A(U)Wn)(w) do

G(t, o) {10, (W) (A(@)W) + ¢ (WHQVW, VIV) } (z)do

S

2 G(t o) (W, (W) A(0)W)(z)do

&

o / OV () (A@)W) ()10 2 ()

Es

|

da /]R . 1)) (A@) W) (©)Pt,0,2 (dy),

where E, = {z € R¢: A(O‘)W)(.’E) > 0}. Letting n — 400, the left-hand side goes
o (G(t,s)W)(x) — (G(t,7)W)(z). Concerning the right-hand side, both integrals
converge by monotone convergence. We have to prove that their limits are finite.
The first term converges to — [ do fEG (A(e)W)(y)pt,o,z(dy), which is finite since

—~



Compactness and Asymptotic Behavior 455

the sets F, are equibounded in R? (recall that the function A(c)W tends to —oo
as |z| — 400, uniformly with respect to o € [r,s]). The second term may be
estimated by

_ / do / GOV () (AW ()pr.o. (d)
r RANE,

< / o [E WL (W () (AW ()P0 (dy) + (G(t, )W) () — (G(t,7)Wy,) ().

Letting n — 400, we obtain that [ do f]Rd\Ea (A(e)W)(y)pt.o.(dy) is finite.
Summing up, the function o — (G(t,0)(A(c)W))(x) is in L'(r,s) and (3.2)
follows.
Possibly replacing g by g = g — C for a suitable constant C, we may assume
that (A(s)W)(z) < —g(W (z)) for every s € R and x € R%,
Fix z € R% ¢t € R, and set
B(s) := (G(t,t — s)W)(x), s=>0.

Then ( is measurable, since it is the limit of the sequence of continuous functions
s+ G(t,t — s)Wy(z). Inequality (3.2) implies

B(b) - Bla) < — / (Gt W)@, a<b
t7
and, since g is convex,

(Gt 0)g(W)) () = / (W (5))Pr.o.e(dy)

> o [ Wpinalan)) = (G0 W)
so that

Bb) - Bla) < — / g((G(t,0)W)(x))do
_ _/t Bt — 0))do (3.3)

- / " (o)

for any a < b. Then, for every s > 0, 5(s) < ((s), where ¢ is the solution of the
Cauchy problem

¢(0) = W (a).
Indeed, assume by contradiction that there exists sy > 0 such that 5(sg) > ((so),

and denote by I the largest interval containing s¢ such that 8(s) > ((s) for each
sel.
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Inequality (3.3) implies that 3(b) — B(a) < —m(b— a) for b > a, with m := min g.
In other words, the function s — (3(s) + ms is decreasing. This implies that I
contains some left neighborhood of sg. Indeed, since s — §(s) + ms is decreasing,
then

lim B(s) +ms > B(so) + mso > ((s0) +mso = lim ((s) +ms

s—s8, 57Sg
so that lim_, - (B(s) —¢(s)) > 0, which yields 8 > ¢ in a left neighborhood of s.

Let a = infI. Then a < sg, and there is a sequence (s,) 1 a such that

B(sn) < ((sn), so that B(a) + ma < limy, o B(sn) + ms, < ((a) + ma, that is
B(a) < ¢(a). On the other hand, for each s € I we have

5@—mws/immwwn<@—qw=/immmw
so that

mwx®§fhmmwmmmm sel.

Since (o) > (o) for every o € I and g is increasing, the integral in the right-hand
side is nonpositive, a contradiction. Therefore, 5(s) < {(s) for every s > 0.

By standard arguments about ODE’s, for every § > 0 there is C = C(J)
independent on the initial datum W (x) such that ((s) < C for every s > 0.
Therefore,

B(s) = (Gt,t —s)W)(x) <C, s>,
with C' independent of ¢. This implies that for every § > 0 the family of proba-
bilities py s . (dy) with s <t —6 and = € R? is tight, because for every R > 0 we
have

pt,s,m(Rd \ B(07 R)) = / pt,s,:r(dy)
RI\B(0,R)
1
<. w Y)Pt,s,x dy
inf{W(y) : |y| > R} Jra\B(o,R) W)Pt.e.a(dy)
1 C
<. G(t,s)W)(x) < .
=it iz 1y OO S et 2 Ry
and inf{W (y) : |y| > R} goes to +00 as r — +00. So, condition (b) of Proposition
3.1 is satisfied. 0

Ezample (As in the autonomous case). If there is R > 0 such that

Tr Q(s,x) + (b(s, z), ) (Q(s,x)z, z) < —c\m\Q(log |z])Y, seR, |z| >R,

|z[?
with ¢ > 0 and v > 1, then the condition (3.1) is satisfied by any W such that
W(z) = loglz| for |x| > R, with g(s) = ¢s7. If the regularity and ellipticity
assumptions 2.1(i)(ii) hold, Theorem 3.3 implies that the evolution operator G(t, s)
is compact in Cy,(R?) for ¢ > s.
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4. Compactness and asymptotic behavior

In this section we derive asymptotic behavior results from compactness of G(t, s)

in Cb(Rd).
Throughout the section we assume that Hypothesis 2.1 holds, and that the
coefficients ¢;; and b;, i,j = 1,...,d are periodic in time, with period T' > 0.

Then the asymptotic behavior of G(¢, s) is driven by the spectral properties of the
operators
V(s):=G(s+1T,s), seR.

This is well known in the case of evolution operators associated to families A(t) of
generators of analytic semigroups, see, e.g., [7, §7.2], [11, Ch. 6], [6]. Most of the
arguments are independent of analyticity and will be adapted to our situation.

To begin with, since each V(s) is a contraction in Cy(R?), its spectrum is
contained in the unit circle. Its spectral radius is 1, since 1 is an eigenvalue. The
nonzero eigenvalues of V' (s) are independent of s, since the equality G(¢,s)V (s) =
V(t)G(t, s) implies that for each eigenfunction ¢ of V (s), G(¢, s)¢ # 0 is an eigen-
function of V (¢) with the same eigenvalue, for t > s.

If G(t, s) is compact in Cp(R?) for t > s, then o(V (s))\ {0} consists of isolated
eigenvalues, hence it is independent of s. Therefore,

sup{|A|: A€ a(V(s)), |A| <1, seR}:=r<1. (4.1)
Denoting by Q(s) the spectral projection

Qs) = / (M —V(s))"'d), s€ER,
0B(0,a)

= om
with any a € (r,1), it is not difficult to see that for every e > 0 there is M. > 0
such that

1G(t,5)Q(s)¢lloo < Meelt =BT T o 1>, p € Cy(RY).  (4.2)
(The proof may be obtained from the proof of (4.4) in Proposition 4.4, replacing
the LP spaces considered there by Cy,(R?).)

In the proof of the next proposition we use an important corollary of the
Krein-Rutman Theorem, whose proof may be found in, e.g., [3, Ch. 1].

Theorem 4.1. Let K be a cone with nonempty interior part K in a Banach space
X, and let L : X — X be a linear compact operator such that Ly € K for each
v € K\ {0}. Then the spectral radius r of L is a simple eigenvalue of L, and all
the other eigenvalues have modulus < .

Proposition 4.2. If G(t,s) is compact in Cy(R?) for t > s, then 1 is a simple
eigenvalue of V(s) for each s, and it is the unique eigenvalue on the unit circle.
The spectral projection P(s) =1 — Q(s) is given by

PO)s@) = [ edn) ¢ R, seRaeR?,

where {us : s € R} is a T-periodic evolution system of measures.
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Proof. Let K = {¢ € Cp(RY) : Vo € R?, o(z) > 0} be the cone of the nonnegative
functions in Cy(RY). By Remark 3.2(iv), if ¢ € Cp(R9) \ {0} is such that ¢(x) >0
for each z, then inf V(s)p = inf G(s + T, s)p(x) > 0. In other words, V(s) maps
K \ {0} into the interior part of K. Theorem 4.1 implies that the spectral radius
1 of V(s) is a simple eigenvalue, and it is the unique eigenvalue of V'(s) on the
unit circle. The associated spectral projection P(s) = I — Q(s), with Q(s) defined
above, may be expressed as

P(S)SO = ms(p]l7 pe Cb(Rd)7

for some m, in the dual space of Cy(R?). To prove that msp = [p. ©(y)us(dy) for
some measure i, we use the Stone—Daniell Theorem (e.g., [4, Thm. 4.5.2]): it is
enough to check that msp > 0 if ¢ > 0, and that for each sequence (¢,) C Cy(R9)
such that (¢, (z)) is decreasing and converges to 0 for each x € R?, we have
lim,, o mspy, = 0. In this case, us is a probability measure for every s, because
P(s)1 =1.

By the general spectral theory, P(s) = limy_,;- Vi, where V) := (A—1)(Al —
V(s))~t In its turn, (AT — V(s))~1 = 332, V(s)¥/AF+1 maps nonnegative func-
tions into nonnegative functions because V(s) does. Therefore, msp 1 = P(s)p > 0
for each ¢ > 0.

Let now ¢, | 0. We claim that V(s)¢, converges to 0 uniformly. Indeed,
since the measures {psy7rs4 @ T € Rd} are tight, for each € > 0 there is R > 0
such that fRd\B(o,R) psiT.s.2(dy) < g, for each z € R On the other hand, ¢,
converges to 0 uniformly on B(0, R) by the Dini Monotone Convergence Theorem,
so that for n large, say n > ng, we have ¢,(y) < ¢, for |y| < R. Therefore, for
n > ng we have

0 < V(s)pn(z) = /
B(O,R)
<e+ ||907LH005

Wn(y)szrT,S,r(dy) +/ Qon(y)szrT,S,r(dy)
R4\ B(0,R)

for each € R% Since V(s)p, converges to 0 uniformly, then P(s)V(s)p, =
V(s)P(s)pn converges to 0 uniformly. But V'(s) is the identity on the range of P(s).
Then, P(s)p, converges uniformly to 0, which implies that lim,,_,o, msp, = 0.

Let us prove that {us : s € R} is a T-periodic evolution system of measures.
Since s — P(s) is T-periodic, then ps; = psqr for each s € R. Moreover, since
V(t)G(t,s) = G(t,s)V(s), then P(t)G(t,s)¢ = G(t,s)P(s)p, for each p € Cy(R?).
This means

G(t,s)pdusl = G(t,S)(/ pdps 11>7 ¢ € Co(RY),
Rd Rd

and since G(t,s)1 = 1, then

G(t,s)pdus = /

» pdus, ¢ € Cp(RY),

Rd
so that {us : s € R} is an evolution system of measures. O
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Corollary 4.3. Assume that G(t,s) is compact in Cy(R?) for t > s. Then:

(i) There exists a unique T -periodic evolution system of measures {us : s € R};
(ii) Setting wg = logr/T, where r is defined in (4.1), for each w > wq there exists
M = M(w) > 0 such that

Gt )= [ pdills < Mgl t> 5 0 GRD,  (@3)

while for w < wy there is no M such that (4.3) holds.

Proof. Let {ps : s € R} be the T-periodic evolution system of measures given
by Proposition 4.2. Since P(s)p = [pa ¢ dps1, estimate (4.2) implies (4.3). Since
there exist eigenvalues of V(s) with modulus r, (4.3) cannot hold for w < wy.
Indeed, if V(s)p = r¢ then P(s)¢ = 0 and G(s + nT,s)p = r"p = eI for
each n € N, so that |G (s + nT, s)p — ms@||c = [|G(5 + 1T, 5)¢| 0 = " T||]| co-

If {vs: s € R} is another T-periodic evolution system of measures, fix t € R
and ¢ € Cy(R?). Since G(t,s)p — [pa @ dus goes to zero uniformly as s — —oo,
then

0= lim <G(t,s)gp/ god,us>d1/t lim (/ godusf/ cpd,us>.
s——00 [pd Rd s§——00 R R4

Since s — fRd pdvs— fRd @ dus is T-periodic and goes to 0 as s — —o0, it vanishes
in R. By the arbitrariness of ¢, vy = us for every s € R. O

Once we have an evolution system of measures {us : s € R}, G(t, s) is ex-
tendable to a contraction (still denoted by G(t,s)) from LP(RY, u,) to LP(RY, p;)
for t > 5. Compactness and asymptotic behavior results in Cy(R?) imply compact-
ness and asymptotic behavior results in such LP spaces, as the next proposition
shows.

Proposition 4.4. Let G(t,s) be compact in Cy(R?) for t > s. Then for every p €
(1,00), G(t,s) : LP(RY, ps) +— LP(RY, uy) is compact fort > s. Moreover, for every
w € (wo,0) and p € (1,00) there exist M = M (w,p) > 0 such that

Gt sko — [ pdinlliaus sy < Mgl ipimany t> 5 0 € LR ),
R

(4.4)
and for every w < wq there is no M such that (4.4) holds. Here wy is given by
Corollary 4.3(ii).

Proof. Let us prove that G(t,s) : LP(RY, u) — LP(R?, ;) is compact for t > s.
We have G(t,s) = G(t, (t + 5)/2)G((t + $)/2, s) where G((t + s)/2, s) is bounded
from L>°(R?) to Cp(R?) by Theorem 2.2(iv), and G(t, (t + s)/2) is compact in
Cy(R?). Therefore, G(t, s) is compact in L>(R%).

Now, if p1 and po are probability measures and a linear operator is bounded
from L'(R?, 1) to L*(R%, p2) and compact from L= (R?, 111) to L=(R?, 1), then
it is compact from LP(R?, 1) to LP(RY, uy), for every p € (1,00) (the proof is the
same as in [13, Prop. 4.6], where only one probability measure was considered).
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Let us prove (4.4). Since L®(R% u;) = L>®(R%, us) = L¥(R% dx) by [8,
Prop. 5.2], interpolating (4.3) and [|G(t,s)¢ — ms@|l L1 (v p) < 200l L1 Re L, We
obtain that ||G (¢, s) =Ml £(Lr(rd ., Lr (R?, 1, )) deCAys exponentially as (t—s) — oo.
However, the decay rate that we obtain by interpolation depends on p. To prove
(4.4) it is enough to show that the spectrum of the operators V (s) in LP(R?, 1)
does not depend on s, and coincides with the spectrum in Cj(R%). Since V(s) =
G(s+T,s), then V(s) is compact in LP(R?, ). Therefore, its LP spectrum (except
zero) consists of eigenvalues, that are independent of s. They are independent of
p too, as well as the associated spectral projections, by [2, Cor. 1.6.2].

The statement follows now as in the case of evolution operators in a fixed
Banach space as in the mentioned references [7, 11, 6]. Note however that our
Banach spaces LP(R?, j1,) vary with s, so that the classical theory cannot be used
verbatim. For the reader’s convenience we give the proof below.

Let t —s =0 + kT, with k € N and o € [0,T). We have

IG(t, 5)¢ = msll oz = Gt =)V () (I = P()) 2]l o,
<NV (U = P(s))¢ll Lo (wa,p)
= V()T = P ¢l o(wa,p)-
For w > wp let € > 0 be such that log(r + ¢) < w, and let k(s) € N be such that
1V (s)(I—P(s))]* ol Lora .y < (r+€)F for each k > k(s). Therefore, if the integer
part [(t — s)/T] is larger than k(s) we have
G (L, 8)p — mspll Lowa,pu,) < (r+ 5>k||¥7||Lp(Rd,us)
< N0l Lo ma ),

for each ¢ € LP(R?, ). Using the obvious inequality

IG(t, ) — ms@llpowa,u) < 200l Lewa,,) for [(E—s)/T]<k(s),
we arrive at

||G(t7 S)‘)D - ms(pHLP(Rd,ﬂt) < Mse(t_S)w”LpHLp(Rd,usﬁ pe Lp(Rd7 ,U«s)
for some M > 0. It remains to show that M, can be taken independent of s. Since
V is T-periodic, we may take k(s) = k(s + T) and hence M; = M, 1 for every
s € R. Therefore it is enough to show that My can be taken independent of s for
s€[0,T). For 0 < s < T and t > T we have mpG(T,s)p = [pa G(T,s)pdur =
ms, hence

G, 8)p — mspllr@e ) = (G(ET) —mr)G(T, )@l Lr ey
< Mpe? "D G(T, 5)¢ Lo (ga

< MrelTe* ||| Lo ra

ST
7/»‘5)

So, we can take My, = Mpel“!T for 0 < s < T. (4.4) follows. O
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for Analytic Ornstein-Uhlenbeck Operators
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Dedicated to Herbert Amann on the occasion of his 70th birthday

Abstract. Let P be the Ornstein-Uhlenbeck semigroup associated with the
stochastic Cauchy problem

dU(t) = AU(t) dt + dW(t),

where A is the generator of a Cp-semigroup S on a Banach space E, H is
a Hilbert subspace of E, and Wy is an H-cylindrical Brownian motion. As-
suming that S restricts to a Co-semigroup on H, we obtain LP-bounds for
Dy P(t). We show that if P is analytic, then the invariance assumption is
fulfilled. As an application we determine the LP-domain of the generator of
P explicitly in the case where S restricts to a Co-semigroup on H which is
similar to an analytic contraction semigroup. The results are applied to the
1D stochastic heat equation driven by additive space-time white noise.
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Keywords. Ornstein-Uhlenbeck operators, gradient estimates, domain identi-
fication.

1. Introduction

Consider the stochastic Cauchy problem
dU(t) = AU(t) dt + dWg(t), t >0,
U(0) = z.

Here A generates a Cp-semigroup S = (S(¢)):>0 on a real Banach space E, H

is a real Hilbert subspace continuously embedded in E, Wy is an H-cylindrical
Brownian motion on a probability space (Q2,.% P), and « € E. A weak solution is

(SCP)
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(JvN) of the Netherlands Organisation for Scientific Research (NWO).
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a measurable adapted E-valued process U = (U?(t));>0 such that t — U®(¢) is
integrable almost surely and for all ¢ > 0 and z* € D(A*) one has

¢
{U*(t),z*) = (x,z") +/ (U*(s), A*x™) ds + Wy (t)i*2™ almost surely.
0

Here i : H — F is the inclusion mapping. A necessary and sufficient condition for
the existence of a weak solution is that the operators I; : L2(0,t; H) — E,

Lig ::/O S(s)ig(s) ds,

are y-radonifying for all ¢ > 0. If this is the case, then s — S(t—s)i is stochastically
integrable on (0,t) with respect to Wy and the process U? is given by

U () = S(t)x + /tS(t— )i dWi(s), t>0.

For more information and an explanation of the terminology we refer to [30].

Assuming the existence of the solution U®, on the Banach space C,(E) of
all bounded continuous functions f : F — R one defines the Ornstein- Uhlenbeck
semigroup P = (P(t))i>0 by

P(t)f(z) :=Ef(U*(t), t>0, z€E. (1.1)

The operators P(t) are linear contractions on Cy(F) and satisfy P(0) = I and
P(s)P(t) = P(s+t) for all s,t > 0. For all f € C,(E) the mapping (¢,z) —
P(t)f(x) is continuous, uniformly on compact subsets of [0,00) X E.

If the operator I, : L%(0,00; H) — E defined by

Iog = /000 S(t)ig(t)dt

is y-radonifying, then the problem (SCP) admits a unique invariant measure fio.
This measure is a centred Gaussian Radon measure on FE, and its covariance
operator equals I 1% . Throughout this paper we shall assume that this measure
exists; if (SCP) has a solution, then this assumption is for instance fulfilled if S
is uniformly exponentially stable. The reproducing kernel Hilbert space associated
with o is denoted by H,. The inclusion mapping H,, < FE is denoted by %o.
Recall that Qo = icotl, = Isol’. It is well known that S restricts to a Cp-
contraction semigroup on H, [5] (the proof for Hilbert spaces E extends without
change to Banach spaces E), which we shall denote by Sx.

By a standard application of Jensen’s inequality, the semigroup P has a
unique extension to a Cp-contraction semigroup to the spaces LP(F, tioo), 1 <
p < co. By slight abuse of notation we shall denote this semigroup by P again. Its
infinitesimal generator will be denoted by L. In order to give an explicit expression
for L it is useful to introduce, for integers k,l > 0, the space 9CS’I(E) consisting
of all functions f € Cy,(E) of the form

f(x) = g0(<$,$1<>, ) <$,x7\;>)
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with f € CF(RY) and z7,...,2% € D(A*). With this notation one has that
905’1(E) is a core for L, and on this core one has

Lf(r) = , e DY f(@) + (. A" DS (2))

Here,
N
a(p * * + 3k *
DHf(f): Oz (<I7x1>7"'v<xaxN>)®Z T
n=1 n
N
dp . . .
Df(f) = Z oz (<$,I’1>,...,<$,$N>) & T,
n=1 n

denote the Fréchet derivatives into the directions of H and FE, respectively.

2. Gradient estimates: the H-invariant case

Our first result gives a pointwise gradient bound for P under the assumption that
S restricts to a Cy-semigroup on H which will be denoted by Sg. As has been
shown in [17, Corollary 5.6], under this assumption the operator Dy is closable as
a densely defined operator from LP(E, i) to LP(E, p; H) for all 1 < p < co. The
domain of its closure is denoted by D,(Dg).

Proposition 2.1 (Pointwise gradient bounds). If S restricts to a Cy-semigroup on
H, then for all 1 < p < oo there exists a constant C' = 0 such that for all t > 0
and f € FOL(E) we have
VD P(t)f(x)| < Cr()(P(1)|f[7 ()7,

where k(t) := sup,epo, |91 (5)l| 2 (-
Proof. The proof follows the lines of [25, Theorem 8.10] and is inspired by the
proof of [10, Theorem 6.2.2], where the null controllable case was considered.

The distribution p; of the random variable U°(t) is a centred Gaussian Radon

measure on E. Let H; denote its RKHS and let i; : H; <— FE be the inclusion
mapping. As is well known and easy to prove, cf. [9, Appendix B] one has

t
H, = {/ S(t — s)ig(s)ds: g€ L2(O,t;H)}
0
with
t
17|z, = inf {||g\|L2(O,t;H) : h= / S(t— s)ig(s) ds}.
0

The mapping

Pt ifat e ("), at € BT,
defines an isometry from H; onto a closed subspace of LQ(E, ut). For h € Hy we
shall write ¢}, (x) := (¢ h)(z).
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Fix h € H. Since S restricts to a Cyp-semigroup Sy on H we may consider
the function g € L*(0,¢; H) given by g(s) = ;S(s)h. From the identity S(t)h =
fo (t — s)g(s) ds we deduce that S(t)h € H; and

1 1
1S(t)h|7, < HQH%Z(O,t;H) = tg/o 1S (s)h|7 ds < tﬂ(t)QHthg- (2.1)

Fix a function f € FZCp°(E), that is, f(z) = o({z,2}),..., (z,2%)) with
© € CLRN) and =7,...,2% € E*. It is easily checked that for all ¢ > 0 we
have P(t)f € ZCL°(E); in particular this implies that P(t)f € D,(Dy). By the
Cameron-Martin formula [3],

LPOFa+eh) ~POF@) = | [ (FS@ -+ +9) = (S0 +1) dusly)

3

1
[ L Beston = DI S0+ 9) o),
where for h € H; we write
Ep(x) := exp(¢h' (x) — 3| hll3,)-

It is easy to see that for each h € H; the family (i(EEh — 1))O<5<1 is uniformly

bounded in L?(E, i), and therefore uniformly integrable in L'(E, u;). Passage to
the limit € | 0 in the previous identity now gives

[Du P(t) / FS W) +y)dsiyy () dpe(y).
1
q
which can be applied since qﬁgt( h is a Gaussian random variable,

[Du P () f(x), ]l

/|f D+ )l dnly /\ Ko W )
/|f Dol ) ([ 16500 dint)”

OIF" (@) 7 |1SOhl|, -
Using (2.1) we ﬁnd that
IVEDu P(t)f(x), h]| < Kgr(t)(P()|f]7 (x)) "

and by taking the supremum over all h € H of norm 1 we obtain the desired
estimate. g

By Holder’s inequality with }ﬂ + © = 1 and the Kahane-Khintchine inequality,

Corollary 2.2. If S restricts to a Cy-semigroup on H, then for all 1 < p < oo the
operators Dy P(t), t > 0, extend uniquely to bounded operators from LP(F), i)
to LP(E, uoo; H), and there exists a constant C = 0 such that for any t > 0,

VHDuPO) | 2(ro(Bpmn), 10 (B oo iry) < CK(L).
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Proof. Integrating the inequality of the proposition and using the fact that . is
an invariant measure for P we obtain

IVEDRPOf s 5, < OOt [ PO ) dioc (o)
= Oy [ P @ duel@) = COREP Iy O

3. Gradient estimates: the analytic case

Analyticity of the semigroup P on LP(F, i) has been investigated by several
authors [15, 16, 18, 24]. The following result of [18] is our starting point. Recall
that in the definition of an analytic Cy-contraction semigroup, contractivity is
required on an open sector containing the positive real axis.

Proposition 3.1. For any 1 < p < oo the following assertions are equivalent:
(1) P is an analytic Cy-semigroup on LP(E, ieo);
(2) P is an analytic Cy-contraction semigroup on LP(E, tieo);
(3) S restricts to an analytic Cy-contraction semigroup on Heo;
(4) QuoA* acts as a bounded operator in H.

A more precise formulation of (4) is that there should exist a bounded op-
erator B : H — H such that iBi*x* = Q. A*z* for all z* € E*. The identity
QooA* + AQ o = —ii* implies that B + B* = —1.

In what follows we shall simply say that ‘P is analytic’ to express that the
equivalent conditions of the proposition are satisfied for some (and hence for all)
1<p<oo.

The next result has been shown in [24] for p = 2 and was extended to 1 <
p < oo in [25].

Proposition 3.2. If P is analytic, then ﬁC’g’l(E) is a core for the generator L of
P in LP(F, i), and on this core L is given by
L =DyBDy.
Our first aim is to show that analyticity of P implies that H is S-invariant.
For self-adjoint P this was proved in [7, 18].

Theorem 3.3. If P is analytic, then S restricts to a bounded analytic Co-semigroup
Sy on H.

Proof. Consider the linear mapping

Vil a® —i*a*, af € E*. (3.1)
It is shown in [17] that ¢ a* = 0 implies i*2* = 0, so that this mapping is well
defined, and that the closability of Dy implies the closability of V' as a densely

defined operator from H, to H. With slight abuse of notation we denote its closure
by V again and let D(V') the domain of the closure.
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By [1, Proposition 7.1], the operator —V'V*B is sectorial of angle < 7, and
therefore G := VV*B generates a bounded analytic Cy-semigroup (7'(t))i>0 on
H. To prove the theorem, by uniqueness of analytic continuation and duality it
suffices to show that T'(t) oi* = i* o S*(¢) for all ¢ > 0.

For all z* € D(A*) we have Bi*z* € D(V*) and V*Bi*z* = il A*x*. Indeed,
for y* € E* one has

[Bits", Vitey'] = (A0 ity
which implies the claim. By applying the operator V to this identity we ob-
tain i*z* € D(G) and Gi*z* = i*A*x*, from which it follows that T'(t)i*z* =
1*S*(t)z*. This proves the theorem, with Sy = T*. O

This result should be compared with [18, Theorem 9.2], where it is shown
that if S restricts to an analytic Cyp-semigroup on H which is contractive in some
equivalent Hilbert space norm, then P is analytic on LP(E, fiso).

Under the assumption that P is analytic on LP(FE, ), the gradient estimates
of the previous section can be improved as follows. Recall that a collection of
bounded operators .7 between Banach spaces X and Y is said to be R-bounded if
there exists a constant C' such that for any finite subset 71,...,7,, C Z and any
Z1,...,Z, € X we have

n 2 n
EH Z’r‘jTjCL‘j < CQ]EH ZTj.’l?j
j=1 j=1

where (rj);>1 is an independent collection of Rademacher random variables. The
notion of R-boundedness plays an important role in recent advances in the theory
of evolution equations (see [12, 21]).

2

9

Theorem 3.4. If P is analytic, then for all 1 < p < oo the set
{VtDgP(t): t >0}
is R-bounded in L (LP(F, lico), LP(E, iso; H)) and we have the square function

estimate
H(/tnD Pl dt)
o 1 " L2(B pioo)

with implied constant independent of f € LP(E, pioo).

S ller e

Proof. By Proposition 3.2 and Theorem 3.3, the theorem is a special case of [25,
Theorem 2.2]. O

The above result plays a crucial role in our recent paper [25] in which LP-
domain characterisations for the operator L and its square root have been obtained.
Before stating the result, let us informally sketch how Theorem 3.4 enters the argu-
ment. In order to prove a domain characterisation for the operator L, we first aim
to obtain two-sided estimates for ||v/—Lf||1»(p,,..) in terms of suitable Sobolev
norms. For this purpose we consider a variant of an operator theoretic framework
introduced in [2] in the analysis of the famous Kato square root problem. The
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idea behind this framework is that the second-order operator L can be naturally
studied through the first-order Hodge-Dirac-type operator

H[() ~D;B

p P .
by 0P o B © LB i ).

This operator is bisectorial and its square is the sectorial operator given by

2 [PvBDy 0 1_[z o
0 DyDyB| ~ [0 L]’

where L := Dy D}, B. The approach in [25] consists of proving estimates for V—Lf
along the lines of the following formal calculation:

1Dk fllp = IITI(F, )l < IT/VIE2, [[VIT2(F, 0l = T/ VII2], ||V Lf]p-

Oversimplifying things considerably, the proof consists of turning this calculation
into rigorous mathematics. This can be done once we know that the operator
I1/+/112 is bounded. Since the function z +— z/v/22 is a bounded analytic function
on each bisector around the real axis, it suffices to show that IT has a bounded
H*°-functional calculus. This in turn will follow if we show that

1. the resolvent set {(it — II)™ " },cr o} is R-bounded;
2. the operator II? admits a bounded functional calculus.

To prove (1), we observe that

_427y—1 s 227 \—1 %
(7t = | (L) it(I — L)' D% B

~ |itDg (I —t*L)~* (I —#20)7! , teR\{0}.

It suffices to prove R-boundedness for each of the entries separately. The diagonal
entries can be dealt with using abstract results on R-boundedness for positive con-
traction semigroups on LP-spaces. The R-boundedness for the off-diagonal entries
can be derived using Theorem 3.4.

To prove (2) we use the fact that the semigroup generated by L equals P ®
S on the range of the gradient Dpy. Here Sy denotes the restriction of the
semigroup S to H (see Theorem 3.3). Therefore (2) follows, provided that the
negative generator —Agy of Sy has a bounded H®°-calculus. This reduces the
original question about v/— L to a question about the operator Az, which is defined
directly in terms of the data H and A of the problem. The latter question should
be thought of as expressing the compatibility of the drift (represented by the
operator A) and the noise (represented by the Hilbert space H). This compatibility
condition is not automatically satisfied. In fact, by a result of Le Merdy [22], — Ay
admits a bounded H*°-functional calculus on H if and only if Sy is an analytic Cp-
contraction semigroup on H with respect to some equivalent Hilbert space norm.
Such needs not always be the case, as is shown by well-known examples [26].

The following result summarises the informal discussion above and provides
an additional equivalent condition in terms of the operator A... In this result we let
D,(D%) denote the second-order Sobolev space associated with the operator Dp.



470 J. Maas and J. van Neerven

Theorem 3.5. Let 1 < p < co. If P is analytic on LP(F, o), then the following
assertions are equivalent:

(1) Dp(vV/—L) = D,(Dp) with norm equivalence

V=Ll Lo (8 p0) = 1 D fl| (B a0
(2) D(vV—Ax) = D(V) with norm equivalence

I/~ Aschll .. = VR 55
(3) —Ap admits a bounded H*-functional calculus on H.

If these equivalent conditions are satisfied we have
DP(L> = Dp(DJ%I> N Dp(A:oD>7
where D is the Malliavin derivative in the direction of Ho.

Proof. By Proposition 3.2 and Theorem 3.3, the theorem is a special case of [25,
Theorems 2.1, 2.2] provided we replace Ao, by A% in (2). The equivalence of (2)
for Ao, and A%, however, is well known (see also [25, Lemma 10.2]). O

The problem of identifying the domains of v/—L and L has a long and in-
teresting history. We finish this paper by presenting three known special cases of
Theorem 3.5. In each case, it is easy to verify that (3) is satisfied.

Ezxample 1. For the classical Ornstein-Uhlenbeck operator, which corresponds to
H =FE = R?and A = —I, conditions (2) and (3) of Theorem 3.5 are trivially
fulfilled and (1) reduces to the classical Meyer inequalities of Malliavin calculus.
For a discussion of Meyer’s inequalities we refer to the book of Nualart [31].

Ezxample 2. Meyer’s inequalities were extended to infinite dimensions by Shigekawa
[32], and Chojnowska-Michalik and Goldys [6, 7], who considered the case where
FE is a Hilbert space and Ap is self-adjoint. Both authors deduce the generalised
Meyer inequalities from square functions estimates. The identification of Dp(L)
in the self-adjoint case is due to Chojnowska-Michalik and Goldys [6, 7], who
extended the case p = 2 obtained earlier by Da Prato [8].

So far, these examples were concerned with the selfadjoint case.

Example 3. A non-selfadjoint extension of Meyer’s inequalities has been given
for the case £ = R? by Metafune, Priiss, Rhandi, and Schnaubelt [27] under
the non-degeneracy assumption H = R?. In this situation the semigroup P is
analytic on LP(uso) [15], see also [16, 18]; no symmetry assumptions need to be
imposed on A. The S-invariance of H and the fact that the generator of S =
Sy admits a bounded H°-calculus are trivial. Therefore, (3) is satisfied again.
Note that the domain characterisation reduces to D,(L) = D,(D?), where D is
the derivative on R%. The techniques used in [27] to prove (1) are very different,
involving diagonalisation arguments and the non-commuting Dore-Venni theorem.
The identification of D, (L) = D,(D?) for p = 2 had been obtained previously by
Lunardi [23].
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Our final corollary extends the characterisations of D, (L) contained in Ex-
amples 2 and 3 and lifts the non-degeneracy assumption on H in Example 3.

Corollary 3.6. If S restricts to an analytic Cy-semigroup on H which is contractive
with respect to some equivalent Hilbert space norm, then for all 1 < p < oo we
have

DP(L> = Dp(DJ%I> N Dp(A:oD>7

where D is the Malliavin derivative in the direction of Ho.

Proof. As has already been mentioned in the discussion preceding Theorem 3.4,
the assumptions imply that P is analytic. Moreover, since the restricted semigroup
Sy is similar to an analytic contraction semigroup, its negative generator —Apg
admits a bounded H *°-calculus, and the result follows from Theorem 3.5. g

Let us finally mention that the results in [25] have been proved for a more
general class of elliptic operators on Wiener spaces (cf. Section 3 of that paper).
In this setting the data consist of

e an arbitrary Gaussian measure p on a separable Banach space E with repro-
ducing kernel Hilbert space J¢;
e an analytic Cp-contraction semigroup . on J# with generator <.

Given these data, the semigroup & is defined on L?(E, i) by second quantisation
of the semigroup .. Roughly speaking, this means that one uses the Wiener-It6
isometry to identify L?(E,u) with the symmetric Fock space over /7, i.e., the
direct sum of symmetric tensor powers of 7. The semigroup & is then defined
by applying . to each factor

PH) Y (hoy® - @ hom) = Y FDhoy ® - @S (Dhons

ocESy, ocESn

where S,, is the permutation group on {1,...,n}. For the details of this con-
struction we refer to [19]. Equivalently, the semigroup & can be defined via the
following generalisation of the classical Mehler formula,

P(t)f () = /E FF W+ /T — 0. (1)) du(y),

which makes sense by virtue of the fact that any bounded linear operator on 7
admits a unique measurable linear extension to E [3]. The generator .Z of the
semigroup & is the elliptic operator formally given by

&% = D*#/D,

where D denotes the Malliavin derivative associated with p and its adjoint D* is
the associated divergence operator. The application to Ornstein-Uhlenbeck oper-
ators described in this paper is obtained by taking g ~ pe and & ~ A% (cf.
[5, 28]).
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4. An example

In this section we present an example of a Hilbert space F, a continuously em-
bedded Hilbert subspace H — FE, and a Cy-semigroup generator A on E such
that:

e the semigroup S generated by A fails to be analytic;
e the stochastic Cauchy problem

dU(t) = AU(t) dt + dWi (t)

admits a unique invariant measure, which we denote by .-
e the associated Ornstein-Uhlenbeck semigroup P is analytic on L?(FE, fis).

Thus, although analyticity of P implies analyticity of Sy (Theorem 3.3), it does
not imply analyticity of S.

Let E = L*(R;,e %dx) be the space of all measurable functions f on R
such that

= ([ I1s@r o)’ <o

0

The rescaled left translation semigroup S,
St)f(x) :=e ' f(x+t), feE, t>0, 2>0,

is strongly continuous and contractive on F, and satisfies || S(t)|| = e~*/2. Let
H = H?*(C,) be the Hardy space of analytic functions g on the open right half-
plane C; = {z € C: Re z > 0} such that

oo 1

lallw=sup ([ loo + i) dy) " < oc.

— 00

Since lim, 4o g(x) = 0 for all g € H, the restriction mapping i : g — g|r,
is well defined as a bounded operator from H to E. By uniqueness of analytic
continuation, this mapping is injective. Since ¢ factors through L> (R, e * dx),
i is Hilbert-Schmidt [29, Corollary 5.21]. As a consequence (see, e.g., [9, Chapter
11]), the Cauchy problem dU(t) = AU(t) dt + dWg(t) admits a unique invariant
Measure floo-

The rescaled left translation semigroup Sy,

Sut)g(z) :==e gz +1t), feH, t>0, Rez>0,

is strongly continuous on H, it extends to an analytic contraction semigroup of
angle }m, and satisfies | Sy (t)||m = e~/2. Clearly, for all t > 0 we have S(t)oi =
i o Sy (t). By these observations combined with [18, Theorem 9.2], the associated
Ornstein-Uhlenbeck semigroup P is analytic.
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5. Application to the stochastic heat equation

In this final section we shall apply our results to the following stochastic PDE with
additive space-time white noise:

ou 0%u *W
= >
9 &Y) oy? (t,y) + atay(t’y)’ t>0, y€[0,1],
ult,0) = u(t, 1) = 0, t>0, (5.1)
u(0,y) =0, y € [0,1].

This equation can be cast into the abstract form (SCP) by taking H = F =
L?(0,1) and A the Dirichlet Laplacian A on E. The resulting equation
dU(t) = AU(t) dt + dW (t),
U(0) =0,
where now W denotes an H-cylindrical Brownian motion, has a unique solution
U given by
t
Ut) = / S(t—s)dW(s), t=0,
0
where S denotes the heat semigroup on E generated by A. Let o, denote the
unique invariant measure on E associated with U, and let H., denote its repro-
ducing kernel Hilbert space. Let i : Hoo — FE denote the canonical embedding
and let ¢ : H — E be the identity mapping. By [17, Theorem 3.5, Corollary 5.6]
the densely defined operator V' : ¢ z* — i*z* defined in (3.1) is closable from Ho,
to H.

Let L be the generator of the Ornstein-Uhlenbeck semigroup P on LP(E, i)
associated with U. Since P is analytic, the results of Sections 2 and 3 can be
applied. Noting that A is selfadjoint on H, condition (3) of Theorem 3.5 is satisfied
and therefore

Dyp(V—L) =Dy(D) (1<p<c0)
where D = Dy = Dg denotes the Fréchet derivative on LP(FE, o).

One can go a step further by noting that the problem (5.1) is well posed even

on the space

E :=(Cyl0,1] = {f € C[0,1]: f(0) = f(1) =0},
in the sense that the random variables U(t) are E-valued almost surely and that
U admits has a modification U with continuous (in fact, even Hélder continuous)
trajectories in E. Moreover, the invariant measure pi is supported on F. In anal-

ogy to (1.1) this allows us to define an “Ornstein-Uhlenbeck semigroup” P on
LP(E, poo) associated with U by

P()f(x) = Ef@" (1), t>0, € B,

where U (t) = S(t)x + U(t) and S is the heat semigroup on E. It is important to
observe that we are not in the framework considered in the previous sections, due
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to the fact that H = L?(0,1) is not continuously embedded in E. Let L denote
the generator of P. Under the natural identification

LP(E, :U'OO) - Lp(Ea IU'OO)
(using that the underlying measure spaces are identical up to a set of measure
zero), we have P(t) = P(t) and L = L, so that

D,(\/~E) = D,(V—L) = Dy(D) (1 <p< o). (5.2)
This representation may seem somewhat unsatisfactory, as the right-hand
side refers explicitly to the ambient space F in which F is embedded. An intrinsic

representation of Dp(\/ ,E) can be obtained as follows. For functions F : E — R
of the form

1 1 _

0 0
with ¢ € CZ(RY) andgh...,gN € H, we define DF : E — H by

DF(f) = ) 8% / fordt, ... /Olngdt)gn, fEeE.

n=

This operator is closable in LP(E, jis0) for all 1 < p < 0o0. On L2(E, j1o,) we have
the representation

L =D*D.
As a result we can apply [25, Theorem 2.1] directly to the operator V' and obtain
that

D,(V~) = Dy(B) (1< p< o). (53)
This answers a question raised by Zdzistaw BrzeZniak (personal communication).
To make the link between the formulas (5.2) and (5.3) note that, under the iden-
tification LP(E, fios) = LP(E, 1o ), one also has Dp(ﬁ) =D,(D).

Remark 5.1. It is possible to give explicit representations for the space H,, and
the operator V. To begin with, the covariance operator @, of i is given by

Qoo f = / (t)f dt = /OOOS(Qt)fdt;A—lf, fEE.
It follows that the reproducmg kernel Hilbert space H, associated with p equals
= R(V/Qw) = D(vV=A) = H} (0, 1).
Noting that Qoo = ixo 045, We see that the operator V' : ¢ z* — i*2* is given by
D(V) = H?(0,1) N Hy(0,1),
Vf=2Af, feD(V).

Remark 5.2. Formulas for D, (L) analogous to (5.2) and (5.3) can be deduced from
Theorem 3.5 and [25, Theorem 2.2] in a similar way.



Ornstein-Uhlenbeck Operators 475

The Ornstein-Uhlenbeck operators L and L considered above are symmetric
on L%(E, i), and therefore the domain identifications for their square roots could
essentially be obtained from the results of [6, 32]. The above argument, however,
can be applied to a large class of second order elliptic differential operators A on
L?(0,1) (but explicit representations as in Remark 5.1 are only possible when A
is selfadjoint).

In fact, under mild assumptions on the coefficients and under various types
of boundary conditions, such operators A have a bounded H*°-calculus on H =
E = L?(0,1) (see [11, 14, 20] and there references therein). By the result of Le
Merdy [22] mentioned earlier, this implies that the analytic semigroup S generated
by A is contractive in some equivalent Hilbertian norm. Hence, by [18, Theorem
9.2], the associated Ornstein-Uhlenbeck semigroup is analytic. Typically, under
Dirichlet boundary conditions, S is uniformly exponentially stable. This implies
(see [9]) that the solution U of (SCP) admits a unique invariant measure. Finally,
the analyticity of S typically implies space-time Holder regularity of U (see [4, 13]),
so that the corresponding stochastic PDE is well posed in E = Cy[0,1]. We plan
to provide more details in a forthcoming publication.
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Abstract. We prove R-sectoriality or, equivalently, LP-maximal regularity for
a class of operators on cylindrical domains of the form R™™* x V, where
V C R* is a domain with compact boundary, R¥, or a half-space. Instead of ex-
tensive localization procedures, we present an elegant approach via operator-
valued multiplier theory which takes advantage of the cylindrical shape of
both, the domain and the operator.
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1. Introduction

This note considers the vector-valued LP-approach to boundary value problems of
the type
Ou+Alz,D)u = f inRy xQ,
Bj(z,D)u = 0 onRy x9Q (j=1,...,m), (1.1)
u|t:0 = Up in Q7

on cylindrical domains 2 C R™ of the form

Q=R"*xV, (1.2)
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where V is a standard domain (see Definition 2.1) in R*. Here

A(z,D) = Z aq(x)D®

lal<2m

is a differential operator in 2 of order 2m for m € N and

Bj(z,D) = Z b,@(x)Dﬁ7 m; <2m, j=1,...,m,
|B]<m;

are operators acting on the boundary.

Under the assumption that (1.1) is parameter-elliptic and cylindrical, we will
prove R-sectoriality for the operator A of the corresponding Cauchy problem.
Recall that R-sectoriality is equivalent to maximal regularity, cf. [21, Theorem
4.2]. Maximal regularity, in turn, is a powerful tool for the treatment of related
nonlinear problems.

Roughly speaking, the assumption ‘cylindrical’ implies that A resolves into
two parts

A=A+ As

such that A; acts merely on R and A, acts merely on V' (see Definition 2.2).
Note that many standard systems, such as the heat equation with Dirichlet or
Neumann boundary conditions, are of this form. Also note that many physical
problems naturally lead to equations in cylindrical domains. We refer to the text-
book [10] for an introduction to such type problems. Therefore, boundary value
problems of this type are certainly of independent interest. On the other hand,
they also naturally appear during localization procedures of boundary value prob-
lems on general domains. For instance, if a system of equations via localization is
reduced to a half-space or a layer problem, then one is usually faced to a problem
in the domain
Q=R"1xV,

where V = (0,d) and d € (0, 00]. Such reduced problems are often of the above
type.

Of course, also problem (1.1) could be treated by a localization procedure em-
ploying an infinite partition of the unity (note that the boundary is non-compact).
However, such procedures are generally extensive and take quite some pages of ex-
hausting calculations and estimations. For this reason, here we pursue a different
strategy. In fact, we essentially take advantage of the cylindrical structure of the
domain and the operator and employ operator-valued multiplier theory. Roughly
speaking, by this method R-sectoriality of (1.1) in 2 is reduced to the correspond-
ing result on the cross-section V', for which it is well known (see, e.g., [11]). This
approach reveals a much shorter and more elegant way to prove the important
maximal regularity for boundary value problems of type (1.1) on cylindrical do-
mains of the form (1.2). The chosen approach also demonstrates the strength of
operator-valued multiplier theory and its significance in the treatment of partial
differential equations in general.
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We remark that the idea of such a splitting of the variables and operators is al-
ready performed by Guidotti in [15] and [16]. In these papers the author constructs
semiclassical fundamental solutions for a class of elliptic operators on cylindrical
domains. This proves to be a strong tool for the treatment of related elliptic and
parabolic ([15] and [16]), as well as of hyperbolic ([16]) problems. In particular,
this approach leads to semiclassical representation formulas for solutions of related
elliptic and parabolic boundary value problems. Based on these formulas and on
a multiplier result of Amann [6] the author derives a couple of interesting results
for these problems in a Besov space setting. In particular, the given applications
include asymptotic behavior in the large, singular perturbations, exact boundary
conditions on artificial boundaries, and the validity of maximum principles. Very
recently in [13] the wellposedness of a class of parabolic boundary value problems
in a vector-valued Holder space setting is proved, when © = [0, L] x V, the first
part is given by A1 = a(x,)02™, z,, € [0, L], and when Aj is uniformly elliptic.

In contrast to [15], [16], and [13], here we present the LP-approach to cylin-
drical boundary value problems. Therefore the notion of R-boundedness comes
into play, which is not required in the framework of Besov or Holder spaces. Also
note that in [15] and [16] A; = —A is assumed, with a remark on possible gen-
eralizations. Here we explicitly consider a wider class of first parts A; including
higher-order operators with variable coefficients. Moreover, with a Banach space
E, we consider E-valued solutions and allow the coefficients of the second part
A to be operator-valued. Applications for equations with operator-valued coeffi-
cients are, for instance, given by coagulation-fragmentation systems (cf. [8]), spec-
tral problems of parametrized differential operators in hydrodynamics (cf. [12]),
or (homogeneous) systems in general. Albeit in this note we concentrate on the
proof of maximal regularity for problems of type (1.1), we remark that further
applications similar to the ones given in [15] and [16] also in the LP-framework
considered here are possible.

Note that E-valued boundary value problems in standard domains, such as
R™, a half-space, and domains with a compact boundary were extensively stud-
ied in [11]. There a bounded H*°-calculus and hence maximal regularity for the
operator of the associated Cauchy problem is proved in the situation when E is
of class H7 . The results obtained in the paper at hand also extend the maximal
regularity results proved in [11] to a class of domains with non-compact boundary.
For classical papers on scalar-valued boundary value problems we refer to [14], [1],
[2], and [20] in the elliptic case and to [4] and [3] in the parameter-elliptic case.
(For a more comprehensive list see also [11].) For an approach to a class of elliptic
differential operators with Dirichlet boundary conditions in uniform C?-domains
we refer to [17] and [9]. We want to remark that all cited results above are based
on standard localization procedures for the domain, contrary to the approach pre-
sented in this paper. Here we only localize a certain part of the coefficients but
not the domain.

This paper is structured as follows. In Section 2 we define the notion of a
cylindrical boundary value problem and give the precise statement of our main
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result. In Section 3 we recall the notion of parameter-ellipticity and of R-bounded
operator families. The proof of our main result Theorem 2.3 then is given in
Section 4. The main steps are split in three subsections. In Subsection 4.1 we
treat the corresponding operator-valued model problem, that is, here we assume
(partly) constant coefficients. By a perturbation argument, in Subsection 4.2 we
extend the R-sectoriality of the model problem to slightly varying coefficients. The
general case then is handled in Subsection 4.3. The statement of the main result is
restricted to the case that the two parts A; and As are of the same order. However,
the same proof works for mixed-order systems. This will be briefly outlined in
Section 5.

2. Main result
We proceed with the precise statement of our main result.

Definition 2.1. Let k¥ € N. We call V C RF a standard domain, if it is R¥, the
half-space R* = {z = (21,...,2;) € R*: z;, > 0}, or if it has compact boundary.
Let F be a Banach space and let Q := R * xV C R", where V is a standard
domain in R¥. For x € Q we write z = (x!,2?) € R % x V, whenever we want
to refer to the cylindrical geometry of Q. Accordingly, we write a = (at,a?) €
Ngik x NE for a multiindex o € Nj. In the sequel we consider the vector-valued
boundary value problem
M+ Az, D)u = finQ,
Bj(x,D)u = 0ondQ (j=1,...,m),

with A(z, D) = >, 1<om @a(z)D®, m € N, a differential operator in the interior

(2.1)

and operators Bj(z, D) = > 5com bs(x)DP on the boundary. Vector-valued in
this context means that u is F-valued, hence derivatives have to be understood in
appropriate F-valued spaces. Accordingly the coefficients of A(-, D) and B;(-, D)
are operator-valued, that is L£(F')-valued. In particular, we will consider the fol-
lowing class of operators.

Definition 2.2. The boundary value problem (2.1) is called cylindrical if the oper-
ator A(-, D) is represented as
A(x, D) = Ay (2, D) + Ay(2?, D)
— Z ail (.’L‘1>D(a170) + Z aiQ (.%‘Q)D(O’O‘Z)
lal|<2m |a?|<2m
and the boundary operator is given as
Bj(,D) = By j(a*,D) = > B2 p(@)DOF) (my <2m, j=1,...,m).
|82|1<m;

Thus the differential operators A(z, D) and Bj(x, D) resolve completely into parts
of which each one acts just on R"~* or just on V.
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As the LP(Q, F')-realization of the boundary value problem
(A,B) :=(A(-,D),B:1(-,D),...,Bn(-,D))
given by (2.1) we define for 1 < p < oo,
D(A) := {u e W?™P(Q, F); Bj(,D)u=0 (j=1,...,m)}
Au:= A(-,D)u, wu € D(A).
From now on the cross-section V' is assumed to be a standard domain with

C?m_boundary. Furthermore, the following smoothness assumptions on the coeffi-
cients may hold:

al, € C(R"*,C) for [a'| = 2m, ali(c0):= | Hm ali(z') exists,
aZ, € O(V,L(F)) for [o?| =2m, a2:(c0) := | ;1111 aZ.(z?) exists,

2m — v 1

aly € [L° 4 L™](R"*,C) for |a*| = v < 2m, r, > p, e T e (2.2)
. 2m — 1
a2, € [L° + L™](V, L(F)) for [a2| = v < 2m, 7, > p, mk Y o

b? 5o € C*M(OV,L(F)) (G =1,...,m; B2 <my).

Our main result reads as follows. For a rigorous definition of maximal regularity,
R-sectoriality, and parameter-ellipticity we refer to the subsequent section (i.p.
Definitions 3.2, 3.4, and 3.10).
Theorem 2.3. Let 1 < p < oo, let F' be a Banach space of class HT enjoying
property (), and let Q2 := R"~% x V C R"™, where V is a standard domain of class
C?™ in RE. For the boundary value problem (2.1) we assume that

(i) it is cylindrical,

) the coefficients of A(-,D) and B;(-,D), j =1,...,m, satisfy (2.2),
ii) 4t is parameter-elliptic in Q of angle p 4 py € [0,7/2),

) the boundary value problem (A% (co, D), B1(-, D), ..., By(-, D)) with the limit
operator A% (0o, D) := 2 la=2m @a(00)D* is parameter-elliptic in € with
angle less or equal to @4 py-

Then for each ¢ > ¢(a,py there evists § = 6(¢) > 0 such that A+ ¢ is R-sectorial

in LP(Q, F) with qﬁﬁfé < ¢ and we have

R({A?inDa()\ + A+ NES,_y, LENy, a€NE, 0< L+ ]a] <2m}) < oo.
(2.3)

By [21, Theorem 4.2] we obtain

Corollary 2.4. Let the assumptions of Theorem 2.3 be given. Then the operator
A+ 6 has maximal regularity on LP(2, F).

Ezample. Tt is not difficult to verify that problem (2.1) with A = —A the negative
Laplacian in Q2 subject to Dirichlet or Neumann boundary conditions satisfies the
assumptions of Theorem 2.3.
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3. R-sectoriality and parameter-ellipticity

Throughout this article X,Y, F, and F denote Banach spaces. Given any closed
operator A acting on a Banach space we denote by D(A), ker(A), and R(A) domain
of definition, kernel, and range of the operator and by p(A) and o(A) its resolvent
set and spectrum respectively. The symbol £(X,Y) stands for the Banach space of
all bounded linear operators from X to Y equipped with operator norm ||- || z(x v
As an abbreviation we set £(X) := £(X, X).

For p € [1,00) and a domain G C R", LP(G,F) denotes the F-valued
Lebesgue space of all p-Bochner-integrable functions, i.e., of functions f : G — F
satisfying

1 Fllzoer = /Hf(x)nf;dx < .
G

We also write L>(G, F) for the space consisting of all functions f satisfying
| flloo := esssup,cq || f(2)][Fr < oo. The F-valued Sobolev space of order m €
Ny := N U {0} is denoted by W™P(G, F'), that is the space of all f € LP(G, F)
whose F-valued distributional derivatives up to order m are functions in L?(G, F')
again. Its norm is given by

e = | 32 10 er |
la|]<m
where o € N is a multiindex. We write || - ||, := || - [[zr(q,p) and || - |lpm =

| - llwm.»(c,Fy, if no confusion seems likely. Finally, for m € No U {oc}, C™(G, F)
denotes the space of all m-times continuously differentiable functions. For general
facts on vector-valued function spaces we refer to the nice booklet of Amann, [7].

Definition 3.1. A closed linear operator A in a Banach space X is called sectorial, if
1. D(A) = X, ker(A) = {0}, R(4) = X,
2. (—00,0) C p(A) and there is some C' > 0 such that |[t(t+ A) ||z (x) < C for
all t > 0.

In this case it is well known, see, e.g., [11], that there exists a ¢ € [0, 7) such that
the uniform estimate in 2. extends to all

A€ Xy :={2e€ C\{0}; |arg(z)| <7 — ¢}.
The number

¢a=inf{¢: p(~A) D Bry, sup AN+ A) 7 gx) < o0}

AEX g

is called spectral angle of A. The class of sectorial operators is denoted by S(X).

Observe that o(A) C ¥4,. In case ¢4 < 7, the operator —A generates

a bounded holomorphic Cy-semigroup on X. For a suitable treatment of related
nonlinear problems, however, the generation of a holomorphic semigroup might not
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be enough. Then the stronger property of maximal regularity is required which is
defined as follows.

Definition 3.2. Let 1 < p < 0o, let X be a Banach space, and let A: D(4) — X
be closed and densely defined. Then A is said to have (LP-) mazimal regularity, if
for each f € LP(R4, X) there is a unique solution v : Ry — D(A) of the Cauchy
problem

u+Au = f inRy,
u(0) = 0,

satisfying the estimate

(| Le @ x) + AUl Loy, x) < Cllf ey, x)
with a C' > 0 independent of f € LP(Ry, X).

If the Banach space X is of class H7 (see Definition 3.6), by [21, Theorem
4.2] it is well known that the property of having maximal regularity is equivalent
to the R-sectoriality of an operator A. This concept is based on the notion of R-
bounded operator families, which we introduce next. We refer to [11] and [18] for
a comprehensive introduction to the notion of R-bounded operator families and
restrict ourselves here to the definition.

Definition 3.3. A family 7 C £(X,Y) is called R-bounded, if there exist a C > 0
and a p € [1,00) such that for all N € N,T; € 7,z; € X and all independent
symmetric {—1,1}-valued random variables €; on a probability space (G, M, P)
for j =1,..., N, we have that

N N
E e lx; E €5;
j=1 j=1

The smallest C' > 0 such that (3.1) is satisfied is called R-bound of 7 and denoted
by R(T).

<C
LP(G,Y)

(3.1)

LP(G,X).

Definition 3.4. A closed operator A in X satisfying condition 1. of Definition 3.1
is called R-sectorial, if there exist an angle ¢ € [0,7) and a constant Cy > 0 such
that

RMA+A) i he S 4}) <Cy. (3.2)
The class of R-sectorial operators is denoted by R.S(X) and we call ¢§S given as
the infimum over all angles ¢ such that (3.2) holds the R-angle of A.

We remark that in general R-boundedness is stronger than the uniform
boundedness with respect to the operator norm. Therefore R-sectoriality always
implies the sectoriality of an operator A and we have

da < PR5.

We will use the following two results on R-boundedness frequently in subsequent
proofs. The first one shows that R-bounds behave as uniform bounds concerning
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sums and products. This follows as a direct consequence of the definition of R-
boundedness. The second one is known as the contraction principle of Kahane. A
proof can be found in [18] or [11].

Lemma 3.5.

a) Let XY, and Z be Banach spaces and let T,S C L(X,Y) as well asU C
L(Y,Z) be R-bounded. Then T +S C L(X,Y) and UT C L(X,Z) are R-
bounded as well and we have

R(T +8) <R(S) +R(T), RWUT) < RUR(T).

Furthermore, if T denotes the closure of T with respect to the strong operator
topology, then we have R(T) = R(T).
b) [contraction principle of Kahane]
Letp € [1,00). Then for all N € N,x; € X,€; as above, and for all a;,b; € C
with |aj| < |bj| for j=1,...,N,
N
Z AjE;T S 2
j=1 Lr(G,X)

(3.3)

N
E bjejx;
=1

LP(G,X)
holds.

Let E be a Banach space and let S(R”, ) denote the Schwartz space of all
rapidly decreasing F-valued functions and let S’'(R™, E) := L(S(R™,C), E)). Then
the E-valued Fourier transform

Fo(€) = (2;”/2 /efigmso(x)dx

R
defines an isomorphism of the space S(R™, E) which extends by duality to the
larger space S'(R™, E). Given two Banach spaces E7, E» and any operator-valued
function m € L*®(R™, L(E1, E»)), we may define the operator

T : S(R", Ey) — S'(R", Ey); T :=F *mFe.

We say m defines an operator-valued Fourier multiplier, if 7,,, extends to a bounded
operator
T : LP(R™ E;) — LP(R", Es).
In order to state the operator-valued multiplier result our approach is based
on, two further notions from Banach space geometry are required.

Definition 3.6.
a) The Hilbert transform H : S(R, E) — S'(R, E) is given by H f := FimFf
where m(§) := |Z§£|' The Banach space FE is of class H7 or, equivalently, a

UMD space, if there exists a ¢ € (1,00) such that H extends to a bounded
operator on LY(R, F). In other words, mg := m - idg is an operator-valued
(one variable) Fourier multiplier.
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b) A Banach space F is said to have property (), if there exists a C' > 0 such
that for all n € N,a;; € C with |a;;] < 1, all z;; € E, and all indepen-
dent symmetric {—1,1}-valued random variables £} on a probability space
(G1, M1, P1) and 5? on a probability space (G, Mo, Ps) fori,j =1,...,N,

N
> ei(we () agy

we have that
/Gl /02 i.3=1
<ef
Gl G2

By Plancherel’s theorem Hilbert spaces are of class H7 . Besides that, it is well
known that the spaces LP(G, F') are of class H7T provided that 1 < p < oo and
that F' is of class H7. Moreover, C"™ and the spaces LP(G, F') enjoy property (o)
for 1 <p < o0, if F does so (cf. [18]).

We are now in position to state the mentioned operator-valued Fourier mul-
tiplier theorem. For a proof we refer to [18, Proposition 5.2].

dudv
E

N
Y ei(wed (v)ay

ij=1

dudv.
E

Proposition 3.7. Let Ei, Ey be Banach spaces of class HT with property (o),
1 < p < oo, and set X; := LP(R™ E;), i = 1,2. Given any set A, let my €
C™"(R™\{0}, L(E1, E2)) for A € A and assume that

RUED mA(€); € € RM\{0}, A€ A,a €{0,1}"}) < Oy < .
Then for all X € A we have
T)\ = fﬁlm)\f S £(X1,X2)

and that
R({T)\, A€ A}) < C(Tl,p, E13E2)Cm < 0.

Next we recall the notion of parameter-ellipticity from [11]. Let F' be a Banach
space, G C R™ be a domain, and set

A(z,D) = Z aq(z)D®,
lal<2m
where m € N, o € N, and aq : G — L(F). For A € C and boundary operators
Bj(x,D):= Y bjs(x)D",
|Bl<m;
where m; < 2m, 8 € Nij, and b; g : 0G — L(F) for j =1,...,m, we consider the

boundary value problem

(3.4)
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Definition 3.8. Let F' be a Banach space, G C R", m € N, and a, € L(F). The
L(F)-valued homogeneous polynomial

al@) == Y a.f" ((ERY)

|a|=2m

is called parameter-elliptic, if there exists an angle ¢ € [0, ) such that the spectrum
o(a(§)) of a(§) in L(F) satisfies

o(a(§)) C Xy (£ €R", [(]=1). (3.5)

Then

p:=inf{¢: (3.5) holds}
is called angle of ellipticity of a.
A differential operator A(z, D) := Y. aq(z)D® with coefficients ao : G — L(F)

|| <2m

is called parameter-elliptic in G with angle of ellipticity ¢, if the principal part of
its symbol

at(z,€) = Z aq ()€™

|a]=2m

is parameter-elliptic with this angle of ellipticity for all z € G.

Definition 3.9. Let F' be a Banach space and let G C R™ be a C'-domain. Let
aa 1 G — L(F) and bjg : G — L(F). Set B (2,D) :== Y bs (x)D’? and
|B|=m;
let A#(x2,D) := . an(x)D* be parameter-elliptic in G of angle of ellipticity
|| =2m
¢ € [0,7). For each zp € OG we write the boundary value problem in local
coordinates about xo. The boundary value problem (3.4) is said to satisfy the
Lopatinskii-Shapiro condition, if for each ¢ > ¢ the ODE on R

()\ + A#(:L‘nglv Dwn))v(xn) = 07 Ty > 07
B;&(:I;O7§/7Dwn>v(0):hj7 j:17"'7m7
v(zn) — 0, @ — o0,

has a unique solution v € C((0,00), F) for each (hy,...,hy,)T € F™ and each
AE X 4 and & € R*! with || + || # 0.

We refer to [22] for an introduction to the Lopatinskii-Shapiro condition for
scalar-valued boundary value problems and to [11] for an extensive treatment of
the F-valued case. Parameter-ellipticity of a boundary value problem now reads
as follows.

Definition 3.10. The boundary value problem (A, B) given through (3.4) is called
parameter-elliptic in G of angle ¢ € [0,7), if A(:, D) is parameter-elliptic in G of
angle ¢ € [0, 7) and if the Lopatinskii-Shapiro condition holds. To indicate that ¢
is the angle of ellipticity of the boundary value problem (A, B) we use the subscript
notation ¢4, py-
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4. Proof of the main result
We denote by

D(AQ) = {u S WQ’”L’p(Vva F)7 B271(7D>u =0 (] = 17 <. 7m)}
Asu := A2(~7 D)U, u e D(AQ)7

the LP(V, F)-realization of the induced boundary value problem
A+ Ag(2®,D)u=f inV,

e B o (4.1)
By j(z*,D)u=0 ondV (j=1,...,m),

on the cross-section V' of €. As the original boundary value problem (2.1) is as-
sumed to be parameter-elliptic with ellipticity angle ¢4 p) € [0,7/2), it is easy
to see that the same is valid for the boundary value problem (4.1) and that the
corresponding angle ¢4, B, is no larger than (4 p). By employing finite open
coverings of V', in [11] the following result is proved.

Proposition 4.1. Let V C R* be a standard domain of class C*™. Given the as-
sumptions (2.2) on the coefficients a®> and b2, for each ¢ > P(Az,By) there erists a
02 = 02(¢p) > 0 such that Ay + §3 € RS(LP(V, F)) with ¢§§+62 < ¢. Moreover, we
have

RUN I DTN+ As +82)"1 A€ Dpg, 0< 7] < 2m}) < . (4.2)
Remark 4.2. In [11] just the case k > 2 is treated, whereas the case k = 1 is well
known.

From the definition it is clear that the coefficients of the cylindrical parts
A; and Ay of A only depend on 2! or x2, respectively. For the sake of simplicity
we therefore drop the special indications for z, if no confusion seems likely. To be
precise we write

Ai(2',D) = Ai(x,D) = Y al(x)D"

|| <2m
for ¢ = 1,2, where
1 _ 0 , Q2 # 07
aa($) o { ail(fl/’l), g = 0,
2 _ 0 , Q1 7é Oa
Go(7) = { aZ,(z?), o =0.

Further we set £ := LP(Q,F) and X := LP(R"* E) = [P(Q,F). Given an
operator T : D(T') C E — E, its canonical extension is defined by

D(T) := LP(R"~*, D(T))
(Tu)(z) :== T(u(z)), we D), zeR"*
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4.1. Constant coefficients a®,
In the first step we consider the model problem for the cylindrical boundary value
problem (2.1), i.e., we assume A;(z, D) on R"* to be given as homogeneous
differential operator
A(D) = Z al D*
|a]=2m
with constant coefficients al, € C. Let A; denote its realization in X with domain
D(Ay) := W?mP(R*F E). We set
Ao(-, D) = Al(D) + A2(~7 D)
and ~ .
AO = A1 + A27 D(Ao) = D(A1> N D(Ag)
Note that no further restrictions on As(x, D) have to be assumed.

Since it will always be clear from the context what we mean, from now on
we do not distinguish between A, and As,. In other words, from this point on we
drop again the tilde notation and just write A, for simplicity.

Let ¢ > ©(a,,B), A € Xp_y and u € S(R"* D(As)) C D(Ap). Applying
E-valued Fourier transform F to f := (A4 Ag + d2)u gives us

Hence we formally have
u=F 'mlFf,
where mY is given by the operator-valued symbol
m(€) == A+ a1(€) + A2 +82)7", £eR"E
Note that mQ € C°(R"~*, L(E)) is well defined if

~(A+ai(§)) € p(A2 +82) (E€R™F).

In view of ¥4, B,) < ¥P(4a,,B) and Proposition 4.1 this is obviously satisfied in
case that A + a1(§) € X _y. This, however, follows directly from the parame-
ter-ellipticity of A;(D), which is obtained as an immediate consequence of the
parameter-ellipticity of (Ao, B), and since the ellipticity angle p4, of A; fulfills
va, < ©a,,8) < O
In order to obtain
A+ Ag+02) = F'mSFf € £L(X),

the idea is to apply the operator-valued multiplier result of Proposition 3.7 to m‘/)\.
For this purpose, we next establish suitable representation formulas for derivatives
of m§.

Lemma 4.3. Let ¢ > p(a, 5). Given a € {0,1}"7%, let

Zo =AW= (.., w") € ({0,1}F) r<n—k, w # O,ij =a

Jj=1
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denote the set of all additive decompositions of « into v = ry many positive
multiindices. Then, with Cyy = (=1)"r!, the formula

€Dmi (&) = (A + a1 () + Az + 62) !

- > Cw ng’Dw’al A+ a1(6) + Ay +69)
WeZzZ,

holds for all \ € Xr_y and £ € Rk,

Proof. Let |a| = 1. Then there exists ¢ € {1,...,n — k} such that o = e;. In this
case Z, = {(a)} and we get immediately
&Dim}(§) = —&(Diar)(§)(A + ay(§) + Az + )72
= (A +a1(§) + A2 +6) T H(=1EXDar) () (A + a1 (€) + Az +6) 7

Now assume the statement to be true for a € {0,1}"~* with |a| <n — k.
Then for [ € {1,...,n — k} such that a; = 0 we obtain

&€*D;D*m8 ()

=&Di ), Cw waDw] A+ a1(8) + Az 4 65) =)
WeZ,

=& Z Cw

WEZ,

S e (i an) ) [ [T D a1(©) | (A +a1(€) + Ap + 5y) =)
i= J#i

+ [ T167 07 0 | -0+ D) O+ an(©) + s + 62) 2+

=(A+a1(§) + Az +6)7"

> Cw Hf“”D“’ (A +a1(&) + Ay +52) ™. O

Weza+el

In the sequel we denote by (3,7) € Ng_k x NE a multiindex such that 3 is
the part corresponding to the variables ' € R™* and 7 corresponding to the
variables 22 € V. In order to obtain the general estimate (2.3) for the full operator
A, we also have to consider the more involved symbols
EPDY(A + a1(€) + Az + 62)

1B]+1~]

ma(€) == A7 ez EADTm (€) = AL
for A € g, £ € R"F and |8] + |y| < 2m.

|f>‘|+|'ﬂ
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Lemma 4.4. Let ¢ > (4, 5). For a € {0,1}"* we have

|ﬂ|+|'¥\

EXD¥m(€) = A~ DTN+ a1(€) + Az + 62) 7

S Cus Y OWH(&“ DY a)(©)(A+a1(€) + Az +8) 1),

o' <a WEZ, _

forall N € Sq_y, € € R and (8,7) € NO7F x NE such that |3+ |v| < 2m, and
with certain constants Cy g € Z.

Proof. We first show

181+ 1] o a—a! .
e Dmp(€) = Ao e ST (T B)E Y DU DY+ ar(€) + A+ 62) !
o’ <a i;ag;é()
(4.3)
Let oo = e; for some ¢ € {1,...,n — k}. Then
& Dima(€)
=X (DY + an(§) + Az +82) T+ EDIDT (A4 ar(€) + Az +62) )
already proves (4.3) for the case |a| = 1. Assume the statement to be true for
a € {0,1}" % with |a| <n —k. For [ € {1,...,n — k} such that a; = 0 we have
&E* DD m(§)
=N gD ST 8P DU DY+ an(€) + A+ 62)
o'<a i;al#0
=\ Z ( H B:)3iEP€2= DO DY\ + ay (€) + Az + 62) 7

o' <o i;al#0

+ Y (] soglertam Dot DI 4 a1 (&) + Ap + 62)
o' <a i;05#0
1— |f>‘|247rn|’7\ 3

S (I st Dt DIt an(€) + Ay + 6y) 7

o’ <a+tep;a;=1 i;a]#0

+ S (I sogte Dot DI+ ay () + Az + 62)

o' <a+ep;a)=0 i;a}#0

_ 1 |f>‘|+|’7\€l3 Z ( H ﬁi)faia/Daia/D’y()\‘i‘al(f)‘FA2+52>71

a’'<a+te; i;a57#0
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This proves (4.3). Setting Cyr g := ][ B and applying Lemma 4.3 now yields
i;a, #0

D ma(€) = A" 0DT N Car g
o' <a

r

S ow [ T1€7 D a(©) | DY+ ax(€) + Ao + 62)~CHD

WwWez ’ j=1

a—a

181+1~I
2

=\ o f’BD’Y()\+a1(£)+A2+(52>_1 Z Ca’,,B

o' <«

> w1 (&0 a) OO +ar() + Az +0)71).

Wez j=1

a—a’

This proves the assertion. O

With the above formulas at hand we can prove R-sectoriality for the model
problem.

Proposition 4.5. For each ¢ > ¢(a,,p) we have Ag + 02 € RS(X) with §2 = 52(¢)
as in Proposition 4.1. Moreover, ¢§f+52 < ¢ and it holds that

RUN="2" DEDIN+ Ag+02) 1 A€ B, 0< 18]+ || < 2m)) < 0. (4.4)
Furthermore, the domain of Ay is given as

2m
D(Ao) — LI)(R’rb—k7 D(AQ)) N m V[/j,p(]Rn—k:7 W2m—j,p(‘/’ F))

j=1

Proof. Let ¢ > ¢4, B)- We show that m fulfills the assumptions of the multiplier
result Proposition 3.7, i.e., that

RU{EDmA(€); E€R"* NeX, 4, ac{0,1}1"*}) < o0

As R-boundedness by virtue of Lemma 3.5 is preserved under summation and
composition of R-bounded operator families, it suffices by Lemma 4.4 to prove
that

1B]+1~]

RUAT™ 2m €PDT(A + a1 (€) + Ag +62) 7Y
EER™F XXy, 0< |8+ |y <2m}) < o0
and that

RUEX(D¥ar)(€)(A + a1(€) + Az + d2)
EERF NeX, 4, a€{0,1}"*}) < co.
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Thanks to (4.2) this follows by the contraction principle of Kahane if we can show

that both
\- 18111

€t g =5
A+ ar ()= Atai)
are uniformly bounded in (A, €) € X,_ 4 x R"~*. To see this, we first observe that
k1(s2™N\, 86) = k1N, €) (s > 0),

hence that k4 is quasi-homogeneous of degree zero. We set

={(\ ) €Brp x R"F 1 N[+ [¢)™ =1} (4.5)
By the ellipticity condition, we obtain a;(£) € EWAI for all ¢ € R"~*\ {0}. Since
wa, < ¢, it therefore easily follows that

A+ai(§) #0 on K.
Consequently, 1 is a continuous function on the compact set K and we obtain
A OI <M (A, 6) € K).

By the quasi-homogeneity of 1 this implies

|k1(s2™N, 86)| < M ((\€) € K, s> 0).

’{1()‘3 5) =

We have
827+ [s€[2™ = 2]+ [€*™).
Thus, if we set s = (|]A| + |€>™) /2™ we deduce
(5N, s€) € K (A €) € Tpmyp x R*F)
and therefore that
k1A )] = [R1 (™A s6)| < M ((X€) € Trg x R"F).

The uniform boundedness of k2 can be proved in exactly the same way. By applying
Proposition 3.7, relation (4.4) follows.
In particular, we have

A+ Ag+62) " =F 'mQFf € L(X)

and
2m

D(4g) C (| WHP(R"™F W2m=ir(V, F)).
7j=1
Furthermore, we can represent the resolvent applied to f € S(R"* ,E) as a
Bochner integral via

Mt A+ 80) )=

(2m)(n—k)/2 /Rnfk ¢ (N + ar(8) + Aa + 62) I FF(§)dE.

Since taking the trace acts as a bounded operator on FE, it commutes with the
integral sign. This yields

Byj(A+Ag+8:)7 f=0 (feSR"* E)).
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Employing a density argument we conclude that

2m
D(Ag) = LP(R"™F D(Ag)) N () WP (R"F, Wm=9#(V, F)).
j=1
Assuming that (Ag + d2)u =0 for u € D(Ap) next implies that
(a1(8) + Az +62)Fu(€) =0 (£ €R™ ).

Since As + §o is sectorial and a; parameter-elliptic this yields Fu = 0, hence
u = 0. By permanence properties for sectorial operators, i.e., in this case for
As + 05, we obtain that the same is true for the dual operator of Ag + do. This
implies that Ay + J- is injective and has dense range. Hence we have proved that
Ap + 02 € RS(X). O
4.2. Slightly varying coefficients a(ll

By a perturbation argument in this paragraph we generalize the R-sectoriality
for constant coefficients to the case of slightly varying coefficients of A;. To this
end, we will employ the following perturbation result which is based on a standard
Neumann series argument.

Lemma 4.6. Let R be a linear operator in X such that D(Ag) C D(R) and let 62
be given as in Proposition 4.5. Assume that there are n > 0 and § > do such that

[Rz]lx <nll(Ao+0)zllx (x € D(A)).

Then Ao+ R+ 6 € RS(X), ¢%5 pis < 0%5,5,, and for every ¢ > oa,,p) we
have

R({A2m DPDY(A+ Ag+ R+6)"1 A€ Srg, 0 < L+[8]+]7] < 2m}) < 00, (4.6)
whenever n < R({(Ao + 6)(A+ Ao +6)~1}) L
Proof. As
IR+ Ao +6) " Hlzx) < nll(Ao +0) (A + Ao +60) 2 (x)
<R{(Ag + ) (A + Ag+6)71})
<1

by assumption, we see that
A+ Ag+R+06= (1+R(A+Ao+6)1>(A+AO—|—5)

is invertible. This implies

A2 DPDY( A+ Ag + R+ 6)"
= X2n DIDY(A + Ao+ 0) 1S (—R(A+ Ag + )71,
=0
By assumption we have dg := § — d2 > 0. The fact that

|>\ —+ (50‘ > C¢50 ()\ S Eﬂ,(z,)
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for some cg > 0 yields the existence of a My > 0 such that

|)\£/2m‘
O+ 5) 1= (8l /2m) S Mo (A€ Bag)-

Thanks to the contraction principle of Kahane and Proposition 4.5 we deduce

R({\2m DPDV(\ + Ag + 6)"1})

_Bl+Iv]

< CRU{A+60)' 2m DPDY((A+60) + Ag +62) 1)) < C.
Lemma 3.5(a) then yields
R({A2m DPDY(\ + Ag + 8) " (—=R(A + Ag + 6)1)7})
< R{A2m DPDY(A+ Ag + ) " DRU{(RO+ Ao +6)71)})
< CPR{(Ag+ )M+ 40 +06) M} < OV (j €No)

with v := nR({(Ao + §)(A + Ap + 6)~'}) < 1. Employing again Lemma 3.5(a), in
particular the fact that the R-bound is preserved when taking the closure in the
strong operator topology, the assertion follows. O

Corollary 4.7. Let R(z',D) = 3 1 |_op, rar (@) D@0 be given such that the
condition > ||rarllee <1 is satisfied. Set

lal|=2m
Av(z, D) := Ag(z?, D) + R(z*, D), z€Q, (4.7)

and denote its X -realization by A" defined on D(A*) = D(Ag). Then there
exists a 6 > 0 such that AY* + 6 € RS(X) with ¢7§§1+5 < ¢7§f+52 provided that n
is sufficiently small. In this case for ¢ > ¢4, B) we have

R({A2m DPDY (A + A" +6)7 1 A€ Xr_y, 0< 148+ |7 <2m}) < 0. (4.8)

Proof. By Proposition 4.5, in particular by relation (4.4), there exists a C' > 0
such that

1 —
||D("‘ ’O)(Ao + 5)71||[;(X) <C (ot e NG k. lat| = 2m)
for each 6 > 5. For a fixed § > do this implies

1 —
IRully, < > lrarllooll DV (Ao +8) 7" (Ao + 8)ull

|at|=2m

< COnll(Ao +d)ull, (u e D(Ag)).

Thus, if we assume that n < 1/CR({(Ao+0)(A\+Ag+0)"'}), the assertion follows
from Lemma 4.6. O
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4.3. Variable coefficients a}l

In the next lemma we establish estimates that will turn out to be crucial for the
localization procedure.

Lemma 4.8. Let 1 < p < oo, (6',0) € No7F x N, |(8%,0)| = v < 2m, and r, > p
such that 2m —v > ”T:k. Letb € [L™® + L™ ](R"%), Av% be the operator as defined
in (4.7), and assume that ¢ > @ p)-

(a) For every e > 0 there exists C(e) > 0 such that
(6D Ol < elfulpzm + CEllully (€ WP (R, E).
(b) For every € > 0 there exists a § = §(¢) > 0 such that
RUBDP O (N 4+ A% 4+5)"1 A€ Typ y}) <e.

Proof. (a) Let € > 0 be arbitrary. For simplicity we set 3 = (3%,0). For b €
Lo (RF ) we obtain by Holder’s inequality and vector-valued complex interpola-
tion (see, e.g., [5]) that

Y 1-7 m n—
IbD%ully < (Il ocllullp < Cllbllsollull s llulls™ > (uw € W2™P(R"F, E)).

— p,2m
With the help of Young’s inequality we then can achieve that
1bD%ull, < ellullpzm + C(e)|ull, (u€ W™PR"F, E)).
Now let b € L™ (R"™%), r := ’;f, and i + Tl, = 1. Then Hélder’s inequality and the
vector-valued version of the Gagliardo-Nirenberg inequality (see [19]) imply

.
p,2m

IbD%ully < Cbllpr | D ullprr < Cllby, [

lull, ™7,
7,V(’2L;Lk_y) € (0,1) by our assumption on r,. Again an application of
Young’s inequality yields

1bD%ully < ellullp,2m + CE)|ull, (uwe W™ PR, E)).

where 7 =

(b) Let (¢j)jen be a family of independent symmetric {—1, 1}-valued random
variables on a probability space ([0, 1], M, P), \; € ¥4, and f; € X. For b €
L>(R"%), 6o > 0, and arbitrary ¢ € [0, 1] we have

N
> e (D (N + 5o + AV +6) 71
7j=1

p

< [[blloo

N
D i (D (N + 6o+ A +8) 7
Jj=1

p
Note that there is a ¢4 > 0 such that
‘)\ + 50| > C¢50 ()\ S Eﬂ—,d), do > 0)
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Taking LP-norm with respect to ¢ and applying the contraction principle of Kahane
therefore yields

(-)bDﬁ()\j +dp + A + 5)_1fj

Lr([0,1],X)

\B\
A+ 6
Zsj ( M 0> DO\ + 0o+ AY 4 8)71 S

Thanks to (4.8) this implies

< Clblloo

L”([OJ]»X).

(DN, + 8+ A +8) 7,

Lr([0,1],X)

—(1-40)
< Clbllocdy

LP([OJ]»X).

Thus for 8y > (C||bllec/€)'/ 1=181/2m) the assertion follows.
In case that b € L™ (R"~*), Holder’s inequality and the Gagliardo-Nirenberg
inequality imply for 7(2m —v) = ”T:k and arbitrary ¢ € [0, 1] that

N
> i (D (N + Go + AV +6) 71
j=1

p

< [lbllpr

’

N
D i (ODP (N + 60+ A 4+ 8) 7 S
=1

pr

Zaj Aj + 0o+ AV 8)

p\ /P
<cpl( ¥ )
Jj=1 P

|a|=2m

1—7

Zsj YAj + 8o + AV 4+ 8) 7L

p

Taking LP-norm with respect to ¢ and applying once more Hélder’s inequality we
deduce

N
ZEj(')bDﬁ()\j + 0o + A 4+ 5)_1fj

Jj=1

<cppl( 3

|a|=2m

Lr([0,1],X)

Zej Aj+ 0o+ A 4+ 8) 7L

j=1

P >T/p
Lr([0,1],X)

1—7

N
D e+ oo+ A+ 87

LP([(],l],X).
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The contraction principle of Kahane then gives us

N
ZEj(')bD’B()\j + 6o + A + 5)71‘]‘1]'

j=1 L7 ([0,1],X)
N p T/p
scnbnf,( S S5 0Dy 46+ A 6, )
la)=2m'"j=1 L7 ([0,1],X)
N 1—7
i + 6 va _
(22O Ty o+ A 0T .
j=1 0 Lr([0,1],X)

Taking into account (4.8) we arrive at

N
> e (IDP(N; + b0 + A +6) 7 f;
j=1

Lr([0,1],X)
N
< Ollbll, 857D i) :
Jj=1 Lr([0,1],X)
Choosing &g > (C||b||, /e)*/~) proves the lemma. O

Proof of Theorem 2.3. We denote by

Af(z,D) = > al(x)D*

|a|=2m

the principal part of A;(x, D) and by Aqfﬁ its realization in X with domain D(A}#) =
W2mp(R"% E). Recall that A¥ (z, D) = A% (2!, D) does not depend on 22 € V.
Freezing the coefficients at some arbitrary z§ € R"* U {oo}, Proposition 4.5
applies to Ay (D) := A% (2}, D).

So, we first choose a large ball B,,,(0) C R*~* with a fixed radius ro > 0 such
that

\ail(xl) — a(lxl(oo)\ <n/Mg, forall |9c1| > 7o, \al\ = 2m,

and set Up := R"""\B,,(0). Here M, = [{a! € No7F: ot = 2m, ag # 0}|
and n = n(oco) is the constant given in Corollary 4.7 for the principal part of
the "limiting operator’ A¥ (co, D) = > laj=2m al (00)D®. For every z} € By, (0)
let » = n(z{) be t