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P. Gwiazda and A. Świerczewska-Gwiazda
Parabolic Equations in Anisotropic Orlicz Spaces with
General N -functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

R. Haller-Dintelmann and J. Rehberg
Maximal Parabolic Regularity for Divergence Operators
on Distribution Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

T. Hishida
On the Relation Between the Large Time Behavior of the Stokes
Semigroup and the Decay of Steady Stokes Flow at Infinity . . . . . . . . . 343

B. Kaltenbacher, I. Lasiecka and S. Veljović
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Preface

Herbert Amann studied at the universities of Freiburg, Basel, and München in
the early 1960s. In 1965 he received his doctoral degree under the supervision of
Joachim Nitsche from the University of Freiburg. At that time, Herbert Amann’s
research revolved around the use of Monte Carlo simulations in connection with
the resolution of elliptic problems [1]. His research interests then shifted toward the
area of nonlinear integral equations, with a particular focus on the Hammerstein
equation [2, 3]. In 1970 Herbert Amann moved from Freiburg to Bloomington,
Indiana, and, the following year, to Lexington, Kentucky, where he held visiting
professor positions. During the years spent in the US, his interests evolved toward
nonlinear elliptic problems and the use of topological methods for their analysis.
He was appointed full professor at the Ruhr-Universität Bochum in 1972 where he
continued these investigations. Of this time are some of his most frequently cited
and influential research papers about the topological degree [4, 5], the sub- and
supersolution method [6, 7, 8], and multiplicity of solutions for nonlinear elliptic
problems [9, 10]. Of outstanding importance is his consistently highly cited review
article [11] on fixed point theory in ordered Banach spaces.

Herbert Amann moved to the Christian-Albrechts-Universität zu Kiel in
1978, and then to the Universität Zürich in 1979. During his tenure in Zürich, he
continued his studies on qualitative features of nonlinear elliptic boundary value
problems [12, 13], and then immersed himself in the study of nonlinear para-
bolic problems. A deep and careful understanding of the fundamental properties
of general evolution systems together with the development of the interpolation-
extrapolation framework were an important breakthrough in the study of nonlin-
ear parabolic problems [14, 15, 16]. The full strength of this abstract approach is
apparent in the dynamic theory for general quasilinear systems of parabolic type
[17, 18, 19, 20]. A successful implementation in applications, like, e.g., coagulation-
fragmentation processes [21], requires a thorough insight into the theory of function
spaces and multiplier results, particularly also in the Banach space valued setting.
Among the most important contributions in this context are [20, 22, 23, 24, 25, 35].
In recent years, Herbert Amann also contributed to the development of the theory
of maximal regularity. His comprehensive view on complex structures allowed him
to derive far-reaching results on Navier-Stokes equations, non-Newtonian fluids,
image processing, and evolution equations with memory [26, 27, 28, 29]. Besides
more than 100 research papers, Herbert Amann also has written important mono-
graphs [30, 31] and successful text books [32, 33, 34].



x Preface

Herbert Amann has been a steady source of new ideas, and he has influenced
many researchers. His unwavering dedication to research and teaching has been
an example to all of his colleagues and students, in particular to his 24 doctoral
students. In 2001 he became foreign corresponding member of the Real Academia
de Ciencias Exactas, F́ısicas y Naturales, Madrid, and, one year later, received a
Doctor Honoris Causa from the Universidad Complutense, Madrid. As of 2004,
Herbert Amann is Professor Emeritus of the Universität Zürich.

During his long and ongoing career he has enjoyed the invaluable support of
his wife, Gisela Amann.

The present volume contains original research papers and reflects the wide-
ranging scientific interests of Herbert Amann. It is inspired by the conference
“Nonlinear Parabolic Problems: In honor of Herbert Amann” held May 10–16,
2009, at the Banach Center in Bedlewo, Poland.

We are grateful to all the participants of the conference and all the contrib-
utors of this volume.

References

[1] H. Amann. Monte-Carlo-Methoden und lineare Randwertprobleme. Z. Angew. Math.
Mech. 48 (1968), 109–116.
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Double Obstacle Limit for a
Navier-Stokes/Cahn-Hilliard System

Helmut Abels

Dedicated to Herbert Amann on the occasion of his 70th birthday

Abstract. We consider the double obstacle limit for a Navier-Stokes/Cahn-
Hilliard type system. The system describes a so-called diffuse interface model
for the two-phase flow of two macroscopically immiscible incompressible vis-
cous fluids in the case of matched densities, also known as Model H. Starting
with a suitable class of singular free energies, which keep the concentration
strictly inside the physically reasonable interval [a, b], we analyze a certain
singular limit, where the equation for the chemical potential converges to
a differential inclusion related to the subgradient of the indicator function
of [a, b].

Mathematics Subject Classification (2000). Primary 76T99; Secondary 76D27,
76D03, 76D05, 76D45, 35B40, 35B65, 35Q30, 35Q35,

Keywords. Two-phase flow, diffuse interface model, mixtures of viscous fluids,
Cahn-Hilliard equation, Navier-Stokes equation, double obstacle problem.

1. Introduction and main result

In the present contribution we study a system describing the flow of viscous incom-
pressible Newtonian fluids of the same density, but different viscosity. Although
it is assumed that the fluids are macroscopically immiscible, the model takes a
partial mixing on a small length scale measured by a parameter ε > 0 into ac-
count. Therefore the classical sharp interface between both fluids is replaced by an
interfacial region and an order parameter related to the concentration difference
of both fluids is introduced. This makes it possible to describe the flow beyond the
occurrence of topological singularities of the separating interface (e.g., coalescence
or formation of droplets), cf. Anderson and McFadden [5] for a review on that
topic.



2 H. Abels

This model, also known as “model H”, cf. Hohenberg and Halperin [10] and
Gurtin et al. [9], leads to a coupled Navier-Stokes/Cahn-Hilliard system:

∂tv + v · ∇v − div(ν(c)Dv) +∇p = −ε div(∇c⊗∇c) in Ω× (0,∞), (1.1)

div v = 0 in Ω× (0,∞), (1.2)

∂tc+ v · ∇c = mΔμ in Ω× (0,∞), (1.3)

μ = ε−1φ(c) − εΔc in Ω× (0,∞). (1.4)

Here v is the mean velocity, Dv = 1
2 (∇v + ∇vT ), p is the pressure, c is an or-

der parameter related to the concentration of the fluids (e.g., the concentration
difference or the concentration of one component), and Ω is a suitable bounded
domain. Moreover, ν(c) > 0 is the viscosity of the mixture, ε > 0 is a (small)
parameter, which will be related to the “thickness” of the interfacial region, and
φ = Φ′, where Φ is the homogeneous free energy density specified below.

It is assumed that the densities of both components as well as the density of
the mixture are constant and for simplicity equal to one. We note that capillary
forces due to surface tension are modeled by an extra contribution ε∇c ⊗ ∇c in
the stress tensor leading to the term on the right-hand side of (1.1). Moreover, we
note that in the modeling diffusion of the fluid components is taken into account.
Therefore mΔμ is appearing in (1.3), where m > 0 is the mobility coefficient,
which is assumed to be constant.

We close the system by adding the boundary and initial conditions

v|∂Ω = 0 on ∂Ω× (0,∞), (1.5)

∂nc|∂Ω = ∂nμ|∂Ω = 0 on ∂Ω× (0,∞), (1.6)

(v, c)|t=0 = (v0, c0) in Ω. (1.7)

Here (1.5) is the usual no-slip boundary condition for viscous fluids, n is the
exterior normal on ∂Ω, ∂nμ|∂Ω = 0 means that there is no flux of the components
through the boundary, and ∂nc|∂Ω = 0 describes a “contact angle” of π/2 of the
diffused interface and the boundary of the domain.

We note that (1.1) can be replaced by

∂tv + v · ∇v − div(ν(c)Dv) +∇g = μ∇c (1.8)

with g = p+ ε
2 |∇c|2 + ε−1Φ(c) since

μ∇c = ∇
(ε

2
|∇c|2 + ε−1Φ(c)

)
− ε div(∇c⊗∇c). (1.9)

The total energy of the system above is given by E(c, v) = Efree(c) + Ekin(v),
where

Efree(c) =
1
2

∫
Ω

ε|∇c(x)|2 dx+
∫

Ω

ε−1Φ(c(x)) dx, (1.10)

Ekin(v) =
1
2

∫
Ω

|v(x)|2 dx.
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Here the free energy Efree(c) describes an interfacial energy associated with the
region where c is not close to the minima of Φ(c) and Ekin(v) is the kinetic energy of
the fluid. The system is dissipative. More precisely, for sufficiently smooth solutions

d

dt
E(c(t), v(t)) = −

∫
Ω

ν(c(t))|Dv(t)|2 dx−m
∫

Ω

|∇μ(t)|2 dx.

Since we will consider (1.1)–(1.7) only for fixed ε > 0, we will assume for simplicity
that ε = 1 in the following. But all statements remain true for arbitrary ε > 0
(with constants depending on ε).

The assumptions on the homogeneous free energy density Φ are motivated by
the so-called regular solution model free energy suggested by Cahn and Hilliard [7]:

Φ(c) =
θ

2
((1 + c) ln(1 + c) + (1− c) ln(1− c))− θc

2
c2 (1.11)

with θ, θc > 0. We note that Φ(c) is not convex if and only if 0 < θ < θc. But we
have the decomposition

Φ(s) = θΦ0(s)−
θc
2
s2, φ(s) = θφ0(s)− θcs

where Φ0 ∈ C([−1, 1])∩C∞((−1, 1)) is convex and θ, θc > 0. Finally, we note that

φ0(s)→s→±1 ±∞.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Figure 1. Logarithmic free energy density for θ = 0.8, 0.7, 0.6,
0.5, 0.4, 0.2, 0.0 (from top to bottom) and θc = 1
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In Figure 1 the free energy density is plotted for some choices of θ, θc. Note
that, if θ > 0, then the minima are never ±1. (Although Figure 1 for θ = 0.2
suggests that the minima are ±1.) But the minima are close to ±1 if θ is small in
comparison with θc. Since for two macroscopically immiscible fluids mixing costs
a lot of energy, we think that a small θ in comparison with θc is physically the
most meaningful choice. Since qualitatively the free energy density for θ = 0.2 in
Figure 1 looks already the same as for θ = 0, it is very reasonable to choose θ = 0
directly, i.e., to choose the free energy density

Φ(c) =

{
− θc

2 c
2 if c ∈ [−1, 1]

+∞ else.

The free energy density is called to be of double obstacle type because of the con-
straint c ∈ [−1, 1] for all c with Φ(c) < ∞. The Cahn-Hilliard equation with the
latter free energy was first studied by Blowey and Elliott [6]. Elliott and Luck-
haus [8] have shown that as θ → 0 the solutions of the Cahn-Hilliard equation
with the logarithmic free energy density converge to solutions of the latter free
energy of double obstacle type. Physically this limit describes the dynamics of
phase separating binary mixture, where the absolute temperature θ is far from the
critical temperature θc below which phase separation occurs.

The main result of this contribution is that weak solutions of the Model H
(1.1)–(1.7) converge as θ → 0 (for a suitable subsequence) to weak solutions of the
corresponding Navier-Stokes/Cahn-Hilliard system, where (1.4) is replaced by a
differential inclusion related to the subgradient of the double obstacle free energy,
cf. Section 4 for details. In the following we will assume a slightly more general
form of the free energy than (1.11). More precisely, we assume that

Φ(s) = θΦ0(s)−
θc
2
s2, φ(s) = θφ0(s)− θcs (1.12)

where θ, θc > 0, Φ0 ∈ C([a, b]) ∩ C2((a, b)) is convex, φ(s) = Φ′(s), a < b, and

φ0(s)→s→a −∞ φ0(s) →s→b ∞. (1.13)

We note that this assumption implies the (θ-independent) assumption made in [3]
for the free energy density.

The structure of the article is as follows: First we fix some notation and recall
some basic lemmas in Section 2. Then we study the double obstacle limit for the
convex part of the free energy Efree and the convective Cahn-Hilliard equation
(1.3)–(1.4) in Section 3. In Section 4 we state and prove our main result on con-
vergence of weak solutions of (1.1)–(1.7) as θ → 0. We conclude with two results
on uniqueness and regularity of weak solutions for the limit system, which are the
same in [3] for the case θ > 0. These results are part of the author’s Habilitation
thesis [1].
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2. Notation and preliminaries

Throughout the article Ω ⊂ Rd, d = 2, 3, will denote a bounded domain with
C3-boundary and QT := Ω× (0, T ), Q := Q∞.

We use the same notation as in [3] and refer to the latter article for precise
definitions and references. Let us just recall some notation. The inner product of
a Hilbert space H is denoted by (., .)H and we use the abbreviation (., .)M for
(., .)L2(M). The duality product of a Banach space X and its dual X ′ is denoted
by 〈., .〉X′,X or just 〈., .〉.

Moreover,

L2
σ(Ω) =

{
f ∈ L2(Ω)d : div f = 0, n · f |∂Ω = 0

}
,

V s
2 (Ω) =

{
Hs(Ω)d ∩H1

0 (Ω)d ∩ L2
σ(Ω) if s ≥ 1,

Hs(Ω)d ∩ L2
σ(Ω) if 0 ≤ s < 1

2

and V2(Ω) := V 1
2 (Ω).

For m ∈ R we set

Lq
(m)(Ω) :=

{
f ∈ Lq(Ω) : m(f) :=

1
|Ω|

∫
Ω

f(x) dx = m
}
, 1 ≤ q ≤ ∞,

and P0f := f −m(f) is the orthogonal projection onto L2
(0)(Ω). Furthermore, we

define

H1
(0) ≡ H1

(0)(Ω) = H1(Ω) ∩ L2
(0)(Ω), H−1

(0) ≡ H
−1
(0) (Ω) = H1

(0)(Ω)′.

We equip H1
(0)(Ω) with the inner product (c, d)H1

(0)(Ω) := (∇c,∇d)L2(Ω). Then the

Riesz isomorphism R : H1
(0)(Ω) → H−1

(0) (Ω) is given by

〈Rc, d〉H−1
(0) ,H1

(0)
= (c, d)H1

(0)
= (∇c,∇d)L2 , c, d ∈ H1

(0)(Ω),

i.e., R = −ΔN is the negative (weak) Laplace operator with Neumann boundary
conditions. We note that, if u ∈ H1

(0)(Ω) solves ΔNu = f for some f ∈ Lq
(0)(Ω),

1 < q < ∞, and ∂Ω is of class C2, then it follows from standard elliptic theory
that u ∈ W 2

q (Ω) and Δu = f a.e. in Ω and ∂nu|∂Ω = 0 in the sense of traces. If
additionally f ∈W 1

q (Ω) and ∂Ω ∈ C3, then u ∈W 3
q (Ω). Moreover,

‖u‖W k+2
q (Ω) ≤ Cq‖f‖W k

q (Ω) for all f ∈W k
q (Ω) ∩ Lq

(0)(Ω), k = 0, 1, (2.1)

with a constant Cq depending only on 1 < q <∞, d, k, and Ω. Finally we denote

W 2
p,N (Ω) =

{
u ∈W 2

p (Ω) : ∂nu|∂Ω = 0
}
,

where 1 < p <∞.
Concerning vector-valued spaces, we recall that BC(0, T ;X) is the Banach

space of all bounded and continuous f : [0, T )→ X equipped with the supremum
norm and BUC(0, T ;X) is the subspace of all bounded and uniformly contin-
uous functions, where X is a Banach space. Moreover, we define BCw(0, T ;X)
as the topological vector space of all bounded and weakly continuous functions
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f : [0, T ) → X . Furthermore, f ∈ Lq
loc([0,∞);X) if and only if f ∈ Lq(0, T ;X)

for every T > 0. Moreover, Lq
uloc([0,∞);X) denotes the uniformly local variant of

Lq(0,∞;X) consisting of all strongly measurable f : [0,∞)→ X such that

‖f‖Lq
uloc([0,∞);X) = sup

t≥0
‖f‖Lq(t,t+1;X) <∞.

In order to derive some regularity estimates we will use vector-valued Besov spaces
Bs

q∞(I;X), where s ∈ (0, 1), 1 ≤ q ≤ ∞, I is an interval, and X is a Banach space.
They are defined as

Bs
q∞(I;X) =

{
f ∈ Lq(I;X) : ‖f‖Bs

q∞(I;X) <∞
}
,

‖f‖Bs
q∞(I;X) = ‖f‖Lq(I;X) + sup

0<h≤1
‖Δhf(t)‖Lq(Ih;X),

where Δhf(t) = f(t + h) − f(t) and Ih = {t ∈ I : t + h ∈ I}. Moreover, we set
Cs(I;X) = Bs

∞∞(I;X), s ∈ (0, 1). Finally, Bs
q∞,uloc([0,∞);X) is defined in the

obvious way replacing Lq(0,∞;X)-norms by Lq
uloc([0,∞);X)-norms.

Let us conclude with two useful lemmas for the following.

Lemma 2.1. Let X,Y be two Banach spaces such that Y ↪→ X and X ′ ↪→ Y ′

densely and let 0 < T ≤ ∞. Then L∞(0, T ;Y )∩BUC([0, T ];X) ↪→ BCw([0, T ];Y ).

We refer to [2, Lemma 4.1] for a proof.

Lemma 2.2. Let E : [0, T ) → [0,∞), 0 < T ≤ ∞, be a lower semi-continuous
function and let D : (0, T )→ [0,∞) be an integrable function. Then

E(0)ϕ(0) +
∫ T

0

E(t)ϕ′(t) dt ≥
∫ T

0

D(t)ϕ(t) dt (2.2)

holds for all ϕ ∈W 1
1 (0, T ) with ϕ(T ) = 0 if and only if

E(t) +
∫ t

s

D(τ) dτ ≤ E(s) (2.3)

holds for all s ≤ t < T and almost all 0 ≤ s < T including s = 0.

See [2, Lemma 4.3] for a proof.

3. Double obstacle limit for the Cahn-Hilliard equation

3.1. Limit of the energy

In this section we study the “convex part” of Efree as in (1.10), namely

Eθ(c) =
∫

Ω

|∇c|2
2

dx+
∫

Ω

θΦ0(c(x)) dx, θ > 0, (3.1)

as θ → 0, where Φ0 is the same as in (1.12), (1.13).
Firstly, Eθ is defined on L2

(m)(Ω), m ∈ (a, b), with

domEθ =
{
c ∈ H1(Ω) ∩ L2

(m)(Ω) : c(x) ∈ [a, b] a.e.
}
.
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But we will assume in the following m = 0 without loss of generality. By a simple
shift of c and Φ by m we can always reduce to this case.

We denote by ∂Eθ(c) : L2
(0)(Ω) → P(L2

(0)(Ω)) the subgradient of Eθ at c ∈
domEθ, i.e., w ∈ ∂Eθ(c) if and only if

(w, c′ − c)L2 ≤ Eθ(c′)− Eθ(c) for all c′ ∈ L2
(0)(Ω).

From [3, Corollary 1], see also [4, Corollary 4.4], we recall:

Lemma 3.1. Let Eθ be as above and extend Eθ to a functional Ẽθ : H−1
(0) (Ω) →

R ∪ {+∞} by setting Ẽθ(c) = Eθ(c) if c ∈ domEθ and Ẽθ(c) = +∞ else. Then
Ẽθ is a proper, convex, and lower semi-continuous functional, ∂Ẽθ is a maximal
monotone operator with ∂Ẽθ(c) = −ΔN∂Eθ(c), and

D(∂Ẽθ) =
{
c ∈ D(∂Eθ) : ∂Eθ(c) = −Δc+ θP0φ0(c) ∈ H1

(0)(Ω)
}
, (3.2)

where

D(∂Eθ) =
{
c ∈ H2(Ω) ∩ L2

(0)(Ω) : φ0(c) ∈ L2, φ′0(c)|∇c|2 ∈ L1, ∂nc|∂Ω = 0
}

and ∂Eθ(c) = −Δc+ θP0φ0(c). Moreover, for every c ∈ D(∂Ẽθ)

‖c‖W 2
r

+ ‖φ0(c)‖r ≤ Cr,θ

(
‖∂Eθ(c)‖H1

(0)
+ ‖c‖2 + 1

)
, (3.3)

where r = 6 if d = 3 and 2 ≤ r <∞ is arbitrary if d = 2.

Remark 3.2. We note that in [3, Corollary 1] the case θ = 1 is considered. This
implies the lemma for every θ > 0 where Cr,θ in (3.3) depends on θ > 0. But
one crucial observation for the following is that the estimate (3.3) is valid with a
constant Cr independent of 0 < θ ≤ 1.

Proposition 3.3. Let Eθ, 0 < θ ≤ 1, be as above, let Ẽθ be the extension to H−1
(0) (Ω),

let R > 0 and let r = 6 if d = 3 and 2 ≤ r <∞ arbitrary if d = 2. Then there are
constants C(R), C′(r,R) > 0 independent of 0 < θ ≤ 1 such that

‖c‖H2(Ω) + θ‖φ0(c)‖L2(Ω) ≤ C(R)
(
‖∂Eθ(c)‖L2(Ω) + 1

)
(3.4)

for all c ∈ D(∂Eθ) with ‖c‖L2(Ω) ≤ R and

‖c‖W 2
r (Ω) + θ‖φ0(c)‖Lr(Ω) ≤ C′(r,R)

(
‖∂Ẽθ(c)‖H−1

(0) (Ω) + 1
)

(3.5)

for all c ∈ D(∂Ẽθ) with ‖c‖L2(Ω) ≤ R.

Proof. Let c ∈ D(∂Eθ). First we show a suitable estimate for Δc and θφ0(c) in
L2(Ω) which is independent of θ ∈ (0, 1]. Taking the L2-inner product of ∂Eθ(c) =
−Δc+ P0θφ0(c) and −Δc, we conclude that∫

Ω

|Δc|2 dx+ θ
∫

Ω

φ′0(c)|∇c|2 dx = −(∂Eθ(c),Δc)Ω.
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Therefore

‖Δc‖2L2 + ‖θP0φ0(c)‖2L2 + θ
∫

Ω

φ′0(c)|∇c|2 dx ≤ C‖∂Eθ(c)‖2L2 (3.6)

uniformly in 0 < θ ≤ 1 because of θP0φ0(c) = ∂Eθ(c) + Δc. In order to estimate
θm(φ0(c)), we follow some arguments which also can be found in [8, §4] and [11,
Lemma 5.2]. To this end we multiply −Δc+P0θφ0(c) with c ∈ L2

(0)(Ω) and obtain∫
Ω

|∇c|2 dx+ θ
∫

Ω

φ0(c)c dx = (∂Eθ(c), c)Ω. (3.7)

Now we choose ε > 0 so small that φ0(c) ≤ 0,−c ≥ ε for all c ∈ (a, a + ε],
φ0(c) ≥ 0, c ≥ ε for all c ∈ [b − ε, b). This is possible because of φ0(c) →c→a

−∞, φ0(c) →c→b ∞. (Note that ε depends only on φ0 and m = 0 ∈ (a, b).) Then∫
Ω

φ0(c)c dx =
∫
{c(x)∈(a,a+ε]}

φ0(c)c dx+
∫
{c(x)∈(a+ε,b−ε)}

φ0(c)c dx

+
∫
{c(x)∈[b−ε,b)}

φ0(c)c dx

≥ ε
∫
{c(x)∈(a,a+ε]∪[b−ε,b)}

|φ0(c)| dx − C(ε,Ω)‖c‖L2(Ω)

because of |φ0(c)| ≤ Cε on [a+ ε, b− ε]. Using (3.7), we conclude

θ

∫
Ω

|φ0(c)| dx ≤ C(R, ε)(‖∂Eθ(c)‖L2 + 1)

provided that ‖c‖L2 ≤ R. Combining this with (3.6), we obtain (3.4).
In order to prove (3.5), we multiply −Δc+θφ0(c) with θr−1|φ0(c)|r−2φ0(c) ∈

Lr′
(Ω) and obtain

(r − 1)θr−1

∫
Ω

|φ0(c)|r−2φ′0(c)|∇c|2 dx+ θr
∫

Ω

|φ0(c)|r dx

≤ C(Ω, r, R)
(
‖∂Eθ(c)‖Lr(Ω) + θm(φ0(c)

)
‖θφ0(c)‖r−1

r .

Hence
θ‖φ0(c)‖Lr(Ω) ≤ C(R)(‖∂Eθ(c)‖Lr(Ω) + 1) (3.8)

uniformly in 0 < θ ≤ 1 provided that ‖c‖L2 ≤ R. This implies (3.5) because of
(2.1) and ∂nc|∂Ω = 0. �

Now we consider the limit θ → 0 of Eθ. Since

lim
θ→0

Eθ(c) =
∫

Ω

|∇c|2
2

dx+
∫

Ω

I[a,b](c(x)) dx =: E0(c) (3.9)

for all c ∈ H1(Ω), where I[a,b] denotes the indicator function of [a, b], which is
defined as

I[a,b](s) =

{
0 if s ∈ [a, b],
+∞ else,
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we expect that ∂Eθ converges to the subgradient of ∂E0 in a suitable sense and
under suitable conditions. We note that

∂I[a,b](c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if c ∈ (a, b),
[0,∞) if c = b,
(−∞, 0] if c = a,
∅ else.

Moreover, E0 is lower semi-continuous on H = L2
(0)(Ω) and H = H−1

(0) (Ω) since
lim infk→∞ E0(ck) <∞ and ck →k→∞ c in H implies

ckj ∈ domE0, sup
j∈N0

‖∇ckj‖2L2 <∞, ckj ⇀j→∞ c in H1(Ω) and a.e.

for some subsequence (ckj )j∈N. Therefore

E0(c) =
1
2
‖∇c‖22 ≤ lim inf

k→∞

1
2
‖∇ck‖2L2 = lim inf

k→∞
E0(ck).

The following corollary will be the essential tool for passing to the limit in
the convective Cahn-Hilliard equation (1.3)–(1.4).

Corollary 3.4. Let ck ∈ L∞(0, T ;L2
(0)(Ω)), 0 < T < ∞, k ∈ N0, be a bounded

sequence, let θk > 0 be such that θk →k→∞ 0, and assume that ck(t) →k→∞ c(t)
in L2

(0)(Ω) and ck(t) ∈ D(∂Eθk
) for almost every t ∈ (0, T ). If

∂Eθk
(ck)⇀k→∞ μ0 in Lq(0, T ;L2(Ω))

for some μ0 ∈ Lq(0, T ;L2
(0)(Ω)) and some 1 < q < ∞, then ck ⇀k→∞ c in

Lq(0, T ;H2(Ω)), μ0(t) ∈ ∂E0(c(t)) for almost every t ∈ (0, T ), where E0 is con-
sidered as a functional on L2

(0)(Ω), and

−Δc+ P0f = μ0 with f(x, t) ∈ ∂I[a,b](c(x, t)) for almost all (x, t) ∈ QT ,

as well as ∂nc(t)|∂Ω = 0 for almost every t ∈ (0, T ). Moreover, if additionally
∂Eθk

(ck) is bounded in Lq(0, T ;Lr(Ω)), for some 2 ≤ r <∞, then

‖c‖Lq(0,T ;W 2
r (Ω)) ≤ sup

k∈N0

C(R)
(
1 + ‖∂Eθk

(ck)‖Lq(0,T ;Lr(Ω))

)
. (3.10)

Proof. Because of (3.4), there is a subsequence kj →j→∞ ∞
θkjφ0(ckj )⇀j→∞ f in Lq(0, T ;L2(Ω)).

Moreover, since ck(t) →k→∞ c(t) in L2(Ω) for almost every t ∈ (0, T ) and (ck)k∈N,
is bounded in L∞(0, T ;L2(Ω)), ck →k→∞ c in Lr(0, T ;L2(Ω)) for all 1 ≤ r < ∞
by Lebesgue’s theorem on dominated convergence. Together with the boundedness
of ck in Lq(0, T ;H2(Ω)) due to (3.4) this implies ck →k→∞ c in Lq(0, T ;C0(Ω))
because of

‖f‖∞ ≤ C‖f‖1−
d
4

L2 ‖f‖
d
4
H2,

cf. [3, Equation (2.15)] for a reference.
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Therefore for a suitable subsequence ckj (t) → c(t) in C0(Ω) as j → ∞ for
almost every t ∈ (0, T ). Therefore

θkjφ0(ckj (x, t)) →j→∞ 0 = f(x, t) a.e. in {(x, t) ∈ QT : c(x, t) ∈ (a, b)} .

On the other hand, if c(x, t) = a for some x ∈ Ω and some t ∈ (0, T ) such that
ckj (t) converges strongly in C(Ω), then φ0(ckj (x, t)) ≤ 0 for sufficiently large j and
therefore f(x, t) ≤ 0, i.e., f(x, t) ∈ ∂I[a,b](a), almost everywhere on {c(x, t) = a}.
By the same argument f(x, t) ≥ 0, i.e., f(x, t) ∈ ∂I[a,b](b) almost everywhere on
{c(x, t) = b}. On the other hand

P0f = lim
j→∞

P0θkjφ0(ckj ) = lim
k→∞

(∂Eθk
(ck) + Δck) = μ0 + Δc

weakly in Lq(0, T ;L2(Ω)). Hence it only remains to prove μ0(t) ∈ ∂E0(c(t)) for
almost every t ∈ (0, T ). But this follows from the fact that∫ T

0

η(t)(μ0(t), c′ − c(t))L2
(0)
dt = lim

k→∞

∫ T

0

η(t)(∂Eθk
(ck(t)), c′ − ck(t))L2

(0)
dt

≤ lim
k→∞

∫ T

0

η(t) (Eθk
(c′)− Eθk

(ck(t))) dt

=
∫ T

0

η(t) (E0(c′)− E0(c(t))) dt

for all c′ ∈ domE0 = domEθk
and η ∈ C∞

0 (0, T ) with η ≥ 0 since θkΦ0(s) →k→∞
0 uniformly in s ∈ [a, b] and ck(t) →k→∞ c(t) in C(Ω) for almost all t ∈ (0, T ).
Finally, (3.10) follows from (3.8), ∂nck|∂Ω = 0, and (2.1). �

For completeness we give a characterization of ∂E0 and D(∂E0), which is
based on the results of Kenmochi et al. [11].

Lemma 3.5. Let E0 be as above and let ∂E0 be its subgradient with respect to
L2

(0)(Ω). Then

D(∂E0) =
{
c ∈ H2(Ω) ∩ L2

(0)(Ω) : c(x) ∈ [a, b] a.e., ∂nc|∂Ω = 0
}

(3.11)

and μ0 ∈ ∂E0(c), c ∈ D(∂E0), if and only if c ∈ H2(Ω)∩L2
(0)(Ω), ∂nc|∂Ω = 0, and

β(x) := μ0(x) + Δc(x) + μ ∈ ∂I[a,b](c(x)) a.e. in Ω (3.12)

for some μ ∈ R. Moreover, ‖c‖H2 + ‖P0β‖L2 ≤ C (‖μ0‖L2 + ‖c‖L2).
Finally, if Ẽ0 is the extension of E0 to H−1

(0) (Ω), then w ∈ ∂Ẽ0(c) for some

c ∈ D(∂Ẽ0(c)) if and only if w = −ΔNμ0, where μ0 ∈ H1(Ω) ∩ ∂E0(c).

Proof. First let c ∈ D(∂E0) and let μ0 ∈ ∂E0(c). Then by definition

(μ0, c
′ − c)L2 ≤ E0(c′)− E0(c) for all c′ ∈ dom(E0).
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Hence c is a minimizer of the functional F (c′) = E0(c′) − (μ0, c
′)L2 defined on

L2
(0)(Ω). Since F (c′) is strictly convex, the minimizer is unique. Therefore [11,

Proposition 5.1, Lemma 5.3] imply that ΔNc ∈ L2(Ω) and

−ΔNc+ β = μ0 + μ,

where β(x) ∈ ∂I[a,b](c(x)) for almost all x ∈ Ω, μ ∈ R, and ‖ΔNc‖L2 + ‖P0β‖L2 ≤
C‖μ0‖L2 . Hence c ∈ H2(Ω), ∂nc|∂Ω = 0, and (3.12) holds. This proves one impli-
cation and one set inclusion in (3.11).

To prove the converse implication let c ∈ H2(Ω) ∩ L2
(0)(Ω), ∂nc|∂Ω = 0, and

let μ0 ∈ L2
(0)(Ω) satisfy (3.12). Then

(μ0 + Δc+ μ, c′ − c)Ω ≤
∫

Ω

(
I[a,b](c′)− I[a,b](c)

)
dx = 0

for all c′ ∈ domE0 since μ0 + Δc+ μ ∈ ∂I[a,b](c). Moreover, using

(Δc, c′ − c)Ω =
1
2
‖∇c‖2L2 −

1
2
‖∇c′‖2L2 +

1
2
‖∇(c− c′)‖2L2 ,

we conclude

(μ0, c
′ − c)Ω ≤ E0(c′)− E0(c) for all c′ ∈ domE0,

i.e., μ0 ∈ ∂E0(c). Furthermore, for every c ∈ H2(Ω) ∩L2
(0)(Ω) with ∂nc|∂Ω = 0 we

have that −Δc ∈ ∂E0(c) since

E0(c′)− E0(c) =
∫

Ω

∇c · ∇(c′ − c) dx+
1
2

∫
Ω

|∇(c′ − c)|2 dx ≥ −
∫

Ω

Δc(c′ − c) dx

for all c′ ∈ dom(E0). Therefore (3.11) holds.
In order to prove the last statement, let w ∈ ∂Ẽ0(c). Then μ0 = −Δ−1

N w ∈
H1(Ω) ∩ ∂E0(c) since

(μ0, c
′ − c)L2 = (w, c′ − c)H−1

(0)
≤ Ẽ0(c′)− Ẽ0(c) = E0(c′)− E0(c)

for all c′ ∈ domE0 = dom Ẽ0. Conversely, if μ0 ∈ H1(Ω) ∩ ∂E0(c), then w :=
−ΔNμ0 ∈ H−1

(0) (Ω) ∈ ∂Ẽ0(c) by the same calculation as before. �

3.2. Convective Cahn-Hilliard equation

In this section we consider

∂tc+ v · ∇c = Δμ in Ω× (0,∞), (3.13)

μ = φ(c) −Δc in Ω× (0,∞), (3.14)

∂nc|∂Ω = ∂nμ|∂Ω = 0 on ∂Ω× (0,∞), (3.15)

c|t=0 = c0 in Ω (3.16)
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for given c0 with Efree(c0) <∞ and v ∈ L∞(0,∞;L2
σ(Ω))∩L2(0,∞;H1(Ω)). Here

φ = Φ′ where Φ is as in (1.12)–(1.13) and Efree(c) is as in (1.10). In particular
(1.12) yields the decomposition

Efree(c) = Eθ(c)−
θc
2
‖c‖2L2(Ω),

where Eθ(c) is as in Section 3.1. We can apply Corollary 3.1 to Eθ(c), respectively
to its extension to H−1

(0) (Ω), which is denoted by Ẽθ(c).
We note that we can consider (3.13)–(3.16) as an evolution equation on

H−1
(0) (Ω):

∂tc(t) +Aθ(c(t)) + B(v(t))c(t) = 0, for t > 0, (3.17)

c|t=0 = c0 (3.18)

where Aθ(c) = ∂Ẽθ(c) and

〈B(v)c, ϕ〉H−1
(0) ,H1

(0)
= (v · ∇c, ϕ)L2 − θc(∇c,∇ϕ)L2

for all c, ϕ ∈ D(B(v)) = H1
(0)(Ω). This means that Aθ(c) = ΔN (Δc−θP0φ

′
0(c)) due

to Corollary 3.1 and B(v)c = v · ∇c + θcΔNc, where ΔN : H1
(0)(Ω) ⊂ H−1

(0) (Ω) →
H−1

(0) (Ω) is the Laplace operator with Neumann boundary conditions, which is
considered as an unbounded operator on H−1

(0) (Ω). Finally, we note that Aθ is a
strictly monotone operator since

(Aθ(c1)−Aθ(c2), c1 − c2)H−1
(0)

= (−Δ(c1 − c2) + θφ0(c1)− θφ0(c2), c1 − c2)L2 ≥ ‖∇(c1 − c2)‖2L2 (3.19)

for all c1, c2 ∈ D(Aθ).
From [3] we recall:

Theorem 3.6. Let v ∈ L2(0,∞;H1(Ω)) ∩ L∞(0,∞;L2
σ(Ω)). Then for every c0 ∈

H1
(0)(Ω) with M := Efree(c0) <∞ there is a unique solution

c ∈ BC([0,∞);H1
(0)(Ω))

of (3.13)–(3.16) with ∂tc ∈ L2(0,∞;H−1
(0) (Ω)), μ ∈ L2

uloc([0,∞);H1(Ω)). This
solution satisfies

Efree(c(t)) +
∫

Qt

|∇μ|2 d(x, τ) = Efree(c0)−
∫

Qt

v · μ∇c d(x, τ) (3.20)

for all t ∈ [0,∞) and

‖c‖2L∞(0,∞;H1) + ‖∂tc‖2L2(0,∞;H−1
(0) )

+ ‖∇μ‖2L2(Q) ≤ C
(
M + ‖v‖2L2(Q)

)
(3.21)

‖c‖2L2
uloc([0,∞);W 2

r ) + ‖φ(c)‖2L2
uloc([0,∞);Lr) ≤ Cr

(
M + ‖v‖2L2(Q)

)
(3.22)
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where r = 6 if d = 3 and 1 < r < ∞ is arbitrary if d = 2. Here C,Cr are
independent of v, c0. Moreover, for every R, T > 0 the solution

c ∈ Y := L2(0, T ;W 2
r (Ω)) ∩H1(0, T ;H−1

(0)(Ω))

depends continuously on

(c0, v) ∈ X := H1(Ω)× L1(0, T ;L2
σ(Ω)) such that Efree(c0) + ‖v‖L2(0,∞;H1) ≤ R

with respect to the weak topology on Y and the strong topology on X.

Remark 3.7. For fixed θ (θ = 1) the theorem coincides with [3, Theorem 6], where
we note that (3.21) is only based on the energy estimate and (3.22) is based on
(3.3). Since the constant in (3.3) can be chosen independent of 0 < θ ≤ 1, cf.
(3.5), it is easy to observe from the proof of [3, Theorem 6] that the inequalities
(3.21)–(3.22) hold uniformly with respect to 0 < θ ≤ 1 due to Proposition 3.3.

The following improved regularity statement will be important to get higher
regularity of solutions to the Navier-Stokes/Cahn-Hilliard system.

Lemma 3.8. Let the assumption of Theorem 3.6 be satisfied and let (c, μ) be the
corresponding solution of (3.13)–(3.16). Moreover, let 0 ≤ s < 1

2 , let ω ≡ 1 if

c0 ∈ D(∂Ẽ) and let ω(t) =
(

t
1+t

) 1
2

else.

1. If ∂tv ∈ L
4
3
uloc([0,∞);H−s(Ω)) and r is as in Theorem 3.6, then (c, μ) satisfies

ω∂tc ∈ L∞(0,∞;H−1
(0) (Ω)) ∩ L2

uloc([0,∞);H1(Ω)),

ωc ∈ L∞(0,∞;W 2
r (Ω)), ωφ(c) ∈ L∞(0,∞;Lr(Ω)), ωμ ∈ L∞(0,∞;H1(Ω)).

2. If v ∈ Bα
4
3∞,uloc

([0,∞);H−s(Ω)) for some α ∈ (0, 1), then

ωc ∈ Cα([0,∞);H−1
(0) (Ω)) ∩Bα

2∞,uloc([0,∞);H1(Ω)). (3.23)

Finally, the same statements hold true if [0,∞) is replaced by [0, T ], 0 < T <∞,

Remark 3.9. The lemma coincides with [3, Lemma 3], where θ > 0 was fixed.
As in Remark 3.7, the estimates in the proof of the latter lemma hold uniformly
with respect to 0 < θ ≤ 1 since they are based essentially on (3.21)–(3.22) and
(3.19). Hence Proposition 3.3 implies that all estimates obtained in the proof of
[3, Lemma 3] are independent of θ ∈ (0, 1].

3.3. Limit for the convective Cahn-Hilliard equation

In this section we show that solutions of the convective Cahn-Hilliard equation
(1.3)–(1.4) with φ(c) = θφ0(c)− θcc converge as θ → 0 to solutions of the system

∂tc+ v · ∇c = Δμ in Ω× (0,∞), (3.24)

μ+ Δc+ θcc ∈ ∂I[a,b](c) in Ω× (0,∞), (3.25)

∂nc|∂Ω = ∂nμ|∂Ω = 0 on ∂Ω× (0,∞), (3.26)

c|t=0 = c0 in Ω (3.27)
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for given c0 with E0
free(c0) <∞ and v ∈ L∞(0,∞;L2

σ(Ω))∩L2(0,∞;H1(Ω)), where

E0
free(c) =

∫
Ω

|∇c|2
2

dx+
∫

Ω

(
I[a,b](c)− θc

c2

2

)
dx. (3.28)

Again we have a decomposition

E0
free(c) = E0(c)−

θc
2
‖c‖2L2(Ω),

where E0(c) is as in (3.9) and we assume w.l.o.g. that
∫
Ω
c0(x) dx = 0. As before,

(3.24)–(3.27) can be written as an abstract evolution equation in H−1
(0) (Ω):

∂tc(t) +A0(c(t)) + B(v(t))c(t) � 0, t > 0, (3.29)

c|t=0 = c0 (3.30)

where A0(c) = ∂Ẽ0(c), cf. Lemma 3.5, is now a multi-valued maximal monotone
operator and B is as before. Moreover, we have as before

(w1 − w2, c1 − c2)L2(0,∞;H−1
(0) )

= −(Δ(c1 − c2) + f1 − f2, c1 − c2)L2(Q)

≥ ‖c1 − c2‖2L2(0,∞;H1
(0))

(3.31)

where wj(t) ∈ ∂Ẽ0(cj(t)), j = 1, 2, for almost every t ∈ (0,∞) and fj(x, t) ∈
∂I[a,b](cj(x, t)), j = 1, 2, almost everywhere.

More precisely, we show

Theorem 3.10. Let 0 < θk ≤ 1, k ∈ N, be such that θk →k→∞ 0. Moreover, assume
c0,k ∈ H1

(0)(Ω) with c0,k(x) ∈ [a, b] almost everywhere for all k ∈ N0 and assume
that vk ∈ L2(0,∞;H1(Ω)) ∩ L∞(0,∞;L2

σ(Ω)) such that

vk ⇀k→∞ v in L2(0, T ;H1(Ω)), c0,k →k→∞ c0 in H1
(0)(Ω)

for all 0 < T < ∞, and let (ck, μk) denote the unique solutions of (3.13)–(3.16)
with (v, c0, φ(c)) replaced by (vk, c0,k, φk(c)), where φk(c) = Φ′

k(c) and Φk(c) =
θkΦ0(c)− θc

2 c
2. Then

ck ⇀k→∞ c in L2(0, T ;W 2
r (Ω)),

∇μk ⇀k→∞ ∇μ in L2(Q),

θkφ0(ck)⇀k→∞ f in L2(0, T ;Lr(Ω))

for all 0 < T < ∞, where f = μ+ Δc ∈ ∂I[a,b](c) for almost all (x, t) ∈ Q, r = 6
if d = 3, 2 ≤ r < ∞ is arbitrary if d = 2, and (c, μ) ∈ BC([0,∞);H1(Ω)) ∩
L2

uloc([0,∞);H1(Ω)) is the unique solution of (3.24)–(3.27). Moreover, for every
t > 0

E0
free(c(t)) +

∫
Qt

|∇μ|2 d(x, τ) = E0
free(c0)−

∫
Qt

v · μ∇c d(x, τ). (3.32)
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Proof. First of all, because of Remark 3.7, (3.21)–(3.22) with (c, μ, φ(c), v, c0) re-
placed by (ck, μk, φk(c), vk, c0,k) hold true with constants independent of θk. Hence
for a suitable subsequence kj →j→∞ ∞

ckj ⇀j→∞ c in L2(0, T ;W 2
r (Ω)),

∇μkj ⇀j→∞ ∇μ in L2(Q),

θkjφ0(ckj )⇀j→∞ f in L2(0, T ;Lr(Ω))

for all 0 < T < ∞. Moreover, since ∂tck is bounded in L2(0,∞;H−1
(0) (Ω)) due to

(3.21),
ckj →j→∞ c in L2(0, T ;W 1

6 (Ω))
for all 0 < T <∞ due to the lemma of Aubin-Lions. Hence

B(vkj )ckj ⇀j→∞ B(v)c in L2(0,∞;H−1
(0) (Ω))

and (3.24) holds in the sense of distributions.
Moreover, since ck ∈ H1(0, T ;H−1

(0)(Ω)) is bounded and ckj converges strongly
in L2(0, T ;H1(Ω)) for all 0 < T <∞, ckj converges weakly inH1(0, T ;H−1

(0) (Ω)) ↪→
C

1
2 ([0, T ];H−1

(0)(Ω)) for every 0 < T < ∞, which implies that c|t=0 = c0 =
limj→∞ c0,kj holds in H−1

(0) (Ω). Hence c ∈ BCw([0,∞);H1(Ω)) due to Lemma 2.1
and since ck ∈ L∞(0,∞;H1(Ω)) is bounded. Furthermore, since ckj converges
strongly in L2(0, T ;W 1

6 (Ω)) for every 0 < T <∞, a suitable subsequence of ckj (t)
(again denoted by ckj (t)) converges in W 1

6 (Ω) ↪→ C0(Ω) for almost all t ∈ (0,∞).
Because of Corollary 3.4, we conclude that

P0(μ+ θcc) = −Δc+ P0f ∈ ∂E0(c)

with f(x, t) ∈ ∂I[a,b](c(x, t)) almost everywhere. Defining m(μ) by the equation
m(μ) + θcm(c) = m(f), we obtain (3.25). Moreover,

∂Ẽθkj
(ckj ) = −ΔN(−Δckj + P0θkjφ0(ckj ))

= −ΔN(μkj + θcckj )⇀j→∞ −ΔN (μ+ θcc) = −ΔN(−Δc+ P0f)

in L2(0, T ;H−1
(0) (Ω)) for every 0 < T < ∞. Hence −ΔN (−Δc(t) + P0f(t)) ∈

∂Ẽ0(c(t)) for almost every 0 < t <∞ because of Lemma 3.5 and (3.17) holds.
Finally, the uniqueness and (3.32) is proved in the same way in Theorem 3.6

using (3.31), cf. [3, Proof of Theorem 6]. Since every convergent subsequence con-
verges to some (c, μ) solving (3.24)–(3.27) and the limit is unique, the complete
sequence converges to the unique solution of (3.24)–(3.27). �

Finally, we state the analogous result to Lemma 3.8 for the limit system
(3.24)–(3.27).

Lemma 3.11. Let v ∈ L2(0,∞;H1(Ω))∩L∞(0,∞, L2
σ(Ω)), c0 ∈ H1(Ω) with c0(x) ∈

[a, b] almost everywhere and let (c, μ) be the corresponding solution of (3.24)–

(3.27). Moreover, let ω ≡ 1 if c0 ∈ D(∂Ẽ0) ∩H3(Ω) and let ω(t) =
(

t
1+t

) 1
2

else.
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1. If ∂tv ∈ L
4
3
uloc([0,∞);H−s(Ω)) for some 0 ≤ s < 1

2 and r is as in Theo-
rem 3.10, then (c, μ) satisfy

ω∂tc ∈ L∞(0,∞;H−1
(0) (Ω)) ∩ L2

uloc([0,∞);H1(Ω))

ωc ∈ L∞(0,∞;W 2
r (Ω)), ωφ(c) ∈ L∞(0,∞;Lr(Ω)), ωμ ∈ L∞(0,∞;H1(Ω)).

2. If v ∈ Bα
4
3∞,uloc

([0,∞);H−s(Ω)) for some 0 ≤ s < 1
2 and α ∈ (0, 1), then

ωc ∈ Cα([0,∞);H−1
(0) (Ω)) ∩Bα

2∞,uloc([0,∞);H1(Ω)). (3.33)

Finally, the same statements hold true if [0,∞) is replaced by [0, T ), T <∞,

Proof. Let θk = 1
k , k ∈ N, vk = v, c0,k = c0 if c0 �∈ D(∂Ẽ0) ∩ H3(Ω). If

c0 ∈ D(∂E0) ∩H3(Ω), then let c0,k = c0(εkx), where εk > 0 is chosen such that
| 1kφ0(s)| + 1

kφ
′
0(s) ≤ C on [εka, εkb] and εk →k→∞ 0, where we assume w.l.o.g.

m = 0 ∈ (a, b). Then c0,k ∈ D(∂Ẽθk
) and ‖∂Ẽθk

(c0,k)‖H1 ≤ C(‖c0‖H3 + 1).
Moreover, let ck, μk be as in Theorem 3.10. Then, because of Proposition 3.3, the
estimates in the proof of Lemma 3.8 hold uniformly in 0 < θk ≤ 1, cf. Remark 3.9.
Hence ck are bounded in the corresponding spaces and the lemma follows. �

4. Main result: Double obstacle limit for the model H

First of all, we recall the definition of weak solutions to (1.1)–(1.7) and a theorem
on existence of weak solutions from [3]:

Definition 4.1. (Weak Solution)
Let 0 < T ≤ ∞. A triple (v, c, μ) such that

v ∈ BCw(0, T ;L2
σ(Ω)) ∩ L2(0, T ;V (Ω)),

c ∈ BCw(0, T ;H1(Ω)), φ(c) ∈ L2
loc([0, T );L2(Ω)),∇μ ∈ L2(QT )

is called a weak solution of (1.1)–(1.7) on (0, T ) if

−(v, ∂tψ)QT − (v0, ψ|t=0)Ω +(v ·∇v, ψ)QT +(ν(c)Dv,Dψ)QT = (μ∇c, ψ)QT (4.1)

for all ψ ∈ C∞
(0)([0, T )× Ω)d with divψ = 0,

−(c, ∂tϕ)QT − (c0, ϕ|t=0)Ω + (v · ∇c, ϕ)QT = −(∇μ,∇ϕ)QT (4.2)

(μ, ϕ)QT = (φ(c), ϕ)QT + (∇c,∇ϕ)QT (4.3)

for all ϕ ∈ C∞
(0)([0, T )× Ω), and if the (strong) energy inequality

E(v(t), c(t)) +
∫

Q(t0 ,t)

ν(c)|Dv|2 d(x, τ) +
∫

Q(t0 ,t)

|∇μ|2 d(x, τ) ≤ E(v(t0), c(t0))

(4.4)
holds for almost all 0 ≤ t0 < T including t0 = 0 and all t ∈ [t0, T ).
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Theorem 4.2. (Global Existence of Weak Solutions, [3, Theorem 1])
For every v0 ∈ L2

σ(Ω), c0 ∈ H1(Ω) with c0(x) ∈ [a, b] almost everywhere there is
a weak solution (v, c, μ) of (1.1)–(1.7) on (0,∞). Moreover, if d = 2, then (4.4)
holds with equality for all 0 ≤ t0 ≤ t <∞. Finally, every weak solution on (0,∞)
satisfies

∇2c, φ(c) ∈ L2
loc([0,∞);Lr(Ω)),

t
1
2

1 + t
1
2
c ∈ BUC(0,∞;W 1

q (Ω)) (4.5)

where r = 6 if d = 3 and 1 < r <∞ is arbitrary if d = 2 and q > 3 is independent
of the solution and initial data. If additionally c0 ∈ H2

N (Ω) := {c ∈ H2(Ω) :
∂nc|∂Ω = 0} and −Δc0 + θφ0(c0) ∈ H1(Ω), then c ∈ BUC(0,∞;W 1

q (Ω)).

We show that weak solutions of (1.1)–(1.7) converge as θ → 0 (for a suitable
subsequence) to a weak solution of

∂tv + v · ∇v − div(ν(c)Dv) +∇p = μ0∇c in Ω× (0,∞), (4.6)

div v = 0 in Ω× (0,∞), (4.7)

∂tc+ v · ∇c = Δμ in Ω× (0,∞), (4.8)

μ+ Δc+ θcc ∈ ∂I[a,b](c) in Ω× (0,∞) (4.9)

together with (1.5)–(1.7). The definition of weak solutions to (4.6)–(4.9), (1.5)–
(1.7) is the same as in Definition 4.1 just replacing Efree(c) by E0

free(c) and (4.3) by
(4.9) together with ∂nc|∂Ω = 0, assuming c ∈ L2

loc([0,∞);H2(Ω)) in the definition
of weak solutions. Here E0

free(c) = E0(c)− θc

2 ‖c‖2L2(Ω) is as in (3.28).
Our main result of this section is the following:

Theorem 4.3. Let d = 2, 3, θk > 0, k ∈ N0 such that θk →k→∞ 0. Moreover, let
(vk, ck, μk) be weak solutions of (1.1)–(1.7) with initial values (v0,k, c0,k) →k→∞
(v0, c0) in L2

σ(Ω)×H1(Ω) with c0,k(x) ∈ [a, b] for almost all x ∈ Ω and all k ∈ N.
Then there is a subsequence kj, j ∈ N0, kj →j→∞ ∞ such that

(vkj ,∇μkj )⇀j→∞ (v,∇μ) in L2(0,∞;H1(Ω)d × L2(Ω)), (4.10)

(vkj , ckj )⇀
∗
j→∞ (v, c) in L∞(0,∞;L2(Ω)d ×H1(Ω)), (4.11)

(ckj , μkj )⇀j→∞ (c, μ) in L2(0, T ;W 2
r (Ω)× L2(Ω)) (4.12)

for all 0 < T < ∞ with r = 6 if d = 3 and 2 ≤ r < ∞ arbitrary if d = 2
and (v, c, μ) is a weak solution of (4.6)–(4.9), (1.5)–(1.7). Moreover, every weak
solution of (4.6)–(4.9), (1.5)–(1.7) satisfies

∇2c, μ ∈ L2
uloc([0,∞);Lr(Ω)), κ(t)c ∈ BUC([0,∞);W 1

q (Ω))

for some q > d and with κ ≡ 1 if c0 ∈ D(∂Ẽ0) and κ(t) = t
1
2 /(1 + t)

1
2 else.

Proof. By the energy estimate vk ∈ L∞(0,∞;L2(Ω)) ∩ L2(0,∞;H1(Ω)), ck ∈
L∞(0,∞;H1(Ω)), ∇μk ∈ L2(Q) are uniformly bounded. Hence there is a sub-
sequence such that (4.10)–(4.11) holds. Moreover, since (3.21)–(3.22) hold uni-
formly in k ∈ N, cf. Remark 3.7, we can extract a subsequence such that (4.12)
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holds too. Therefore c is a solution of (3.24)–(3.27) due to Theorem 3.10. Using

(4.6) and the bounds on (vk, ck, μk), one obtains that ∂tvk ∈ L
4
3
uloc([0,∞);V2(Ω)′)

is uniformly bounded. Hence vkj →j→∞ v in L2(0, T ;Hs(Ω)) for all s < 1.
Moreover, since ∂tck ∈ L2(0,∞;H−1

(0) (Ω)) is uniformly bounded due to (3.21),
ckj →k→∞ c in L2(0, T ;W 1

6 (Ω)) for all 0 < T < ∞ because of the Lemma of
Aubin-Lions. Hence we can pass to the limit in (4.1) for (vkj , ckj , μkj ) and the
initial values (v0,kj , c0,kj ) and conclude that (v, c, μ) solve (4.1) too. Moreover,
since vkj ⇀j→∞ v ∈ W 1

4
3
(0, T ;V2(Ω)′) and ckj ⇀j→∞ c ∈ H1(0, T ;H−1

(0)(Ω)) for
all 0 < T < ∞, we obtain (v0,kj , c0,kj ) = (vkj , ckj )|t=0 →j→∞ (v0, c0) = (v, c)|t=0

weakly in V2(Ω)′ ×H−1
(0) (Ω). Because of Lemma 2.1. (v, c) ∈ BCw(0,∞;L2×H1).

Furthermore, because of Lemma 2.2, the energy inequality (4.4) for (vk,ck,μk)
is equivalent to∫ ∞

0

Dk(ck(t), vk(t), μk(t))ϕ(t) dt

≤ Ek(c0,k, v0,k)ϕ(0) +
∫ ∞

0

Ek(ck(t), vk(t))ϕ′(t) dt

for all ϕ ∈W 1
1 (0,∞), ϕ ≥ 0, where Ek(c, v) denotes the total energy E(c, v) with

respect to Φθk
(c) = θkΦ0(c)− θc c2

2 and

Dk(ck(t), vk(t), μk(t)) =
∫

Ω

2ν(ck(t))|Dvk(t)|2 dx + ‖∇μk(t)‖22.

Since

D(c(t), v(t), μ(t))

:=
∫

Ω

2ν(c(t))|Dv(t)|2 dx+ ‖∇μ(t)‖22 ≤ lim inf
k→∞

Dk(ck(t), vk(t), μk(t))

by the weak lower semi-continuity of the L2-norm and

Ek(ckj (t), vkj (t)) →j→∞ E(c(t), v(t)) for almost all 0 < t <∞,
we obtain

E(c0, v0)ϕ(0) +
∫ ∞

0

E(c(t), v(t))ϕ′(t) dt ≥
∫ ∞

0

D(c(t), v(t), μ(t))ϕ(t) dt

for all ϕ ∈ W 1
1 (0,∞), ϕ ≥ 0, where E(c, v) = E0

free(c) +Ekin(v). Using Lemma 2.2
again, we have proved (4.4).

Finally, the regularity statements for c, μ follow from Theorem 3.10 since for
given v (4.8)–(4.9) together with (1.6)–(1.7) has a unique solution (c, μ). �

Since the Cahn-Hilliard equation (4.8)–(4.9) has the same structure as in
the case θ > 0 and the same regularity results, cf. Lemma 3.11 are available, it
is easy to obtain the same uniqueness and regularity results as for θ > 0, cf. [3,
Proposition 1, Theorem 2]. These are as follows:
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Proposition 4.4. (Uniqueness)
Let 0 < T ≤ ∞, q = 3 if d = 3 and let q > 2 if d = 2. Moreover, assume
that v0 ∈ W 1

q,0(Ω) ∩ L2
σ(Ω) and let c0 ∈ C0,1(Ω) with c0(x) ∈ [a, b] for all x ∈

Ω. If there is a weak solution (v, c, μ) of (4.6)–(4.9), (1.5)–(1.7) on (0, T ) with
v ∈ L∞(0, T ;W 1

q (Ω)) and ∇c ∈ L∞(QT ), then any weak solution (v′, c′, μ′) of
(4.6)–(4.9), (1.5)–(1.7) on (0, T ) with the same initial values and ∇c′ ∈ L∞(QT )
coincides with (v, c, μ).

Proof. The proof is literally the same as the proof of [3, Lemma 7]. One just has
to replace the first equality in the proof by

∂tc̃+ a1 − a2 = −θcΔc̃− w · ∇c1 − v2 · ∇c̃,

where aj(t) ∈ A0(cj(t)), j = 1, 2, for almost all t ∈ (0, T ) and w = v1 − v2 and has
to use (3.31). �

Theorem 4.5. (Regularity of Weak Solutions)

Assume that c0 ∈ D(∂Ẽ0) ∩H3(Ω), where Ẽ0 is as in Lemma 3.5.

1. Let d = 2 and let v0 ∈ V 1+s
2 (Ω) with s ∈ (0, 1], s �= 1

2 . Then every weak
solution (v, c) of (4.6)–(4.9), (1.5)–(1.7) on (0,∞) satisfies

v ∈ L2(0,∞;V 2+s′
2 (Ω)) ∩H1(0,∞;V s′

2 (Ω)) ∩BUC([0,∞);H1+s−ε(Ω))

for all s′ ∈ [0, 1
2 )∩ [0, s] and all ε > 0 as well as ∇2c, φ(c) ∈ L∞(0,∞;Lr(Ω))

for every 1 < r <∞. In particular, the weak solution is unique.
2. Let d = 2, 3. Then for every weak solution (v, c, μ) of (4.6)–(4.9), (1.5)–(1.7)

on (0,∞) there is some T > 0 such that

v ∈ L2(T,∞;V 2+s
2 (Ω)) ∩H1(T,∞;V s

2 (Ω)) ∩BUC([T,∞);H2−ε(Ω))

for all s ∈ [0, 1
2 ) and all ε > 0 as well as ∇2c, φ(c) ∈ L∞(T,∞;Lr(Ω)) with

r = 6 if d = 3 and 1 < r <∞ arbitrary if d = 2.
3. If d = 3 and v0 ∈ V s+1

2 (Ω), s ∈ (1
2 , 1], then there is some T0 > 0 such that

every weak solution (v, c) of (4.6)–(4.9), (1.5)–(1.7) on (0, T0) satisfies

v ∈ L2(0, T0;V 2+s′
2 (Ω)) ∩H1(0, T0;V s′

2 (Ω)) ∩BUC([0, T0];H1+s−ε(Ω))

for all s′ ∈ [0, 1
2 ) and all ε > 0 as well as ∇2c, φ(c) ∈ L∞(0, T0;L6(Ω)). In

particular, the weak solution is unique on (0, T0).

Proof. The proof is the same as the one of [3, Theorem 2]. Its proof only relies
on the available regularity results for c solving (1.3)–(1.4), which are the same
for (4.8)–(4.9), as well as the uniqueness statement of [3, Proposition 1], which is
replaced by Proposition 4.4. Therefore the proof directly carries over. �
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Dedicated to Prof. Herbert Amann on the occasion of his 70th birthday

Abstract. The aim of this work is to present a numerical study of generalized
Oldroyd-B flows with shear-thinning viscosity in a curved pipe of circular cross
section and arbitrary curvature ratio. Flows are driven by a given pressure
gradient and behavior of the solutions is discussed with respect to different
rheologic and geometric flow parameters.
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1. Introduction

Complex rheological phenomena such as shear dependent viscosity, stress relaxa-
tion, nonlinear creeping and normal stress differences can be found in many fluids
like inks, polymer melts, suspensions, liquids crystals or biological fluids. These
properties, which cannot be captured by the classical Navier-Stokes equations,
lead to non-constant viscosity or to viscoelastic behavior described by nonlinear
relations between the Cauchy stress and the strain tensor. Fluids of this type are
called non-Newtonian [20].

There are many ways to generalize the Newtonian law of viscosity. The sim-
plest case is the generalized Newtonian model where the extra-stress incorporates
a shear-rate dependent viscosity. However, the generalized Newtonian fluids can-
not account for the effects described above, namely the viscoelasticity, but they
are often used to model simple flows and to study the flow rate in a pipe, as a
function of the pressure drop. Suitable viscoelastic constitutive equations are then

This work has been partially supported by CIMA/Univ. Évora, by CEMAT/IST through FCT’s
Funding Program and by the Project PTDC/MAT/68166/2006.
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required. In general terms, non-Newtonian viscoelastic fluids exhibit both viscous
and elastic properties and can be classified as fluids of differential type, rate type
and integral type. We refer to the monographs [5], [15], [26], [29] for relevant issues
related to non-Newtonian fluids behavior and modeling. Models of rate type such
as Oldroyd-B fluids can predict stress relaxation and are used to describe flows in
polymer processing. However they cannot capture the complex rheological behavi-
or of many real fluids, such as blood in which the non-Newtonian viscosity effects
are of major importance.

Over the past twenty years, a significant progress has been made in the math-
ematical analysis of the equations of motion of non-Newtonian viscoelastic fluids.
Usually, the constitutive equations lead to highly nonlinear systems of partial dif-
ferential equations of a combined parabolic-hyperbolic type (or elliptic-hyperbolic,
for steady flows) closed with appropriate initial and/or boundary conditions. The
study of the behavior of their solutions in different geometries requires the use of
specific techniques of nonlinear analysis, such as fixed-point arguments associated
to auxiliary linear sub-problems. We refer to [21] and [22] for an introduction to
existence results for viscoelastic flows.

The hyperbolic nature of the constitutive equations is responsible for many of
the difficulties associated with the numerical simulation of viscoelastic flows. Some
factors including singularities in the geometry, boundary layers in the flow and the
dominance of the nonlinear terms in the equations, result in numerical instabilities
for high values of Weissenberg number (non-dimensional viscoelastic parameter).
A variety of alternative numerical methods have been developed to overcome this
difficulty, but many challenges still remain, in particular for viscoelastic flows in
complex geometries (see, e.g., [16], [17] and the references cited therein).

It is known since the pioneering experimental works of Williams et al. [30],
Grindley and Gibson [14], and Eustice ([11], [12]) that flows in curved pipes are
very challenging and considerably more complex than flows in straight pipes. Due
to fluid inertia, a secondary motion appears in addition to the primary axial flow.
It is induced by an imbalance between the cross-stream pressure gradient and the
centrifugal force and consists of a pair of counter-rotating vortices, which appear
even for the most mildly curved pipe. This results in asymmetrical wall stresses
with higher shear and low pressure regions ([4], [18], [27]).

Steady fully developed viscous flows in curved pipes of circular, elliptical
and annular cross-section of both Newtonian and non-Newtonian fluids, have been
studied by several authors ([1]–[4],[13], [19], [23], [24], [27]) following the funda-
mental work of Dean ([9], [10]) for circular cross-section pipes. Using regular per-
turbation methods around the curvature ratio, Dean obtained analytical solutions
in the case of Newtonian fluids. These results have been extended for a larger range
of curvature ratio and Reynolds number, showing the existence of additional pairs
of vortices and multiple solutions ([8], [31]).

The great interest in the study of curved pipe flows is due to its wide range
of applications in engineering (e.g., hydraulic pipe systems related to corrosion fai-
lure) and in biofluid dynamics, such as blood flow in vascular regions of low shear
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(in healthy or disease states), where the shear-thinning viscosity and viscoelastic
behavior should not be neglected ([6], [7], [25], [28]).

This paper is concerned with the numerical study of the behavior of fully
developed flows of shear-thinning generalized Oldroyd-B fluids in curved pipes
with circular cross-section and arbitrary curvature ratio, for a prescribed pressure
gradient. Numerical results show interesting viscosity and viscoelastic effects: for
sufficiently small curvature ratio and certain range of viscosity parameters, the
flow field is quite complex, showing counter-clockwise rotation of the secondary
streamlines and loss of symmetry of the flow field. Stronger inertial effects result
in a deformation of the pair of vortices and rotation of the flow in an opposite
direction. These effects become weaker for higher values of the Weissenberg num-
ber. We remark that for generalized Oldroyd-B fluids the second normal stress
difference is zero, as in the particular case of Oldroyd-B, and consequently the
second normal stress difference has no impact on the secondary flows ([13]).

The paper is organized as follows. After introducing the governing equations
and formulating the problem in polar toroidal coordinates (Section 2 and 3), we
consider in Section 4 the numerical approximation of the steady Oldroyd-B model
with non constant shear-dependent viscosity, in the above-described geometry.
The original problem is decomposed into a Navier-Stokes system and a tensorial
transport equation. Using the finite element method and a fixed point algorithm to
couple the auxiliary problems, numerical results are obtained for a certain range of
non-dimensional flow parameters (viscosity exponent, Reynolds and Weissenberg
numbers) associated to the model. A continuation method is used to find the
initial guess of the iterations and to increase the absolute value of the viscosity
parameter.

Existence and uniqueness of approximated solutions, as well as a priori error
estimates to the coupled full problem have already been proved, under a natural
restriction on the curvature ratio (see [2]). In a future work, the systematic nume-
rical study presented in this paper will be complemented by a theoretical analysis
to justify the complex qualitative behavior of the combined effects of viscosity,
inertial and viscoelastic parameters.

2. Governing equations

This paper is concerned with flows of incompressible viscoelastic Oldroyd-B fluids
with shear dependent viscosity in a curved pipe Ω ⊂ R3 with boundary ∂Ω. For
these fluids, the extra-stress tensor is related to the kinematic variables through

S + λ1

∇
S = 2

(
ν + ν0(1 + |Du|2)q

)
Du + 2λ2

∇
Du, (2.1)

where u is the velocity field, Du = 1
2 (∇u +∇ut) = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
i,j=1,2

denotes

the symmetric part of the velocity gradient, |Du| is the shear rate, q is a real
number, ν and ν0 are nonnegative real numbers satisfying ν + ν0 > 0, λ1 > 0 and



24 M. Pires and A. Sequeira

λ2 > 0 are viscoelastic constants. The symbol ∇ denotes the objective derivative
of Oldroyd type defined by

∇
S=

(
∂
∂t + u · ∇

)
S− S∇u− (∇u)t S.

The Cauchy stress tensor is given by T = −pI+S, where p represents the pressure.
The equations of conservation of momentum and mass hold in the domain Ω,

ρ
(

∂u
∂t + u · ∇u

)
+∇p = ∇ · S + f , ∇ · u = 0, (2.2)

where ρ > 0 is the (constant) density of the fluid and f is an external force.
We first decompose the extra-stress tensor S into the sum of its Newtonian part
τ s = 2λ2

λ1
Du and its viscoelastic part τ . Introducing the quantities

x =
x̃

L
, t =

Ut̃

L
, u =

ũ

U
, p =

p̃L

(ν + ν0)U
,

τ =
τ̃L

(ν + ν0)U
, f =

f̃L2

(ν + ν0)U
,

where the symbol ˜ is attached to dimensional parameters (L represents a reference
length and U a characteristic velocity of the flow). We also set

ε = 1− λ2

λ1(ν + ν0)
, η =

ν0
ν + ν0

,

and defining the Reynolds number and the Weissenberg number as

Re =
ρUL

ν + ν0
, We =

λ1U

L
.

we can write (2.1)–(2.2) in dimensionless form⎧⎪⎪⎨⎪⎪⎩
−(1− ε)Δu +Re

(
∂u
∂t + u · ∇u

)
+∇p = f +∇ · τ ,

∇ · u = 0,

τ +We
(

∂τ
∂t + u · ∇τ − g(∇u, τ )

)
= 2

(
ε+ ησ

(
|Du|2

))
Du,

(2.3)

with
g(∇u, τ ) = τ ∇u + (∇u)t τ , σ(x) = (1 + x)q − 1.

This system is supplemented with a Dirichlet homogeneous boundary condition

u = 0 on ∂Ω.

In a simple shear this model predicts shear dependent viscosity (shear-thinning
for q < 0 and shear-thickening for q > 0) and normal stress coefficients Ψ1 and Ψ2

given by (see, e.g., [5], [17], [29])

Ψ1(|Du|) = 2
(
ε+ ησ

(
|Du|2

))
|Du|2

Ψ2(|Du|) = 0.

Note that the model reduces to Oldroyd-B when q = 0.
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3. Equivalent formulation in polar toroidal coordinates

We consider fully developed flows in a curved pipe with circular cross-section (see
Figure 1).

Figure 1. Polar toroidal coordinates.

For this pipe geometry, it is more convenient to use the polar toroidal coordinate
system, in the variables (r̃, θ, s̃), defined with respect to the rectangular cartesian
coordinates (x̃, ỹ, z̃) through the relations

r̃ =
√
z̃2 +

(√
x̃2 + ỹ2 −R

)2
,

θ = arctan
z̃√

x̃2 + ỹ2 −R
, s̃ = R arctan

ỹ

x̃
,

and the inverse relations

x̃ = (R+ r̃ cos θ) cos
s̃

R
, ỹ = (R+ r̃ cos θ) sin

s̃

R
, z̃ = r̃ sin θ,

with 0 < r0 < R, 0 � θ < 2π and 0 � s̃ < πR, where R > r̃ � 0 is the constant
centerline radius. Introducing

s =
s̃

r0
, δ =

r0
R
,

we see that the corresponding non-dimensional coordinate systems are given by

r =
√
z2 +

(√
x2 + y2 − 1

δ

)2
,

θ = arctan
z√

x2 + y2 − 1
δ

, s =
1
δ

arctan
y

x
,

and the inverse relations

x =
(1
δ

+ r cos θ
)

cos(sδ), y =
(1
δ

+ r cos θ
)

sin(sδ), z = r sin θ,

with δ < 1, 0 � θ < 2π and 0 � s < π
δ .
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Let us now formulate system (2.3) in this new coordinate system. For conve-
nience, we keep the notation as for the cartesian system (e.g., u ≡ u ·er, v ≡ v ·eθ

and w ≡ w · es). To simplify the notation we set

β1 ≡ β1(r, θ) = rδ sin θ, β2 ≡ β2(r, θ) = rδ cos θ,

β ≡ β(r, θ) = 1 + rδ cos θ.

By using standard arguments, we rewrite the problem (2.3) in the toroidal coor-
dinates (r, θ, s), and we see that the problem reads as

Find (u ≡ (u, v, w), p, τ ) solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (∇ · (2(1− ε)Du + τ −Reu⊗ u))r +Re∂u
∂t + ∂p

∂r = 0,

− (∇ · (2(1− ε)Du + τ −Reu⊗ u))θ +Re∂v
∂t + 1

r
∂p
∂θ = 0,

− (∇ · (2(1− ε)Du + τ −Reu⊗ u))s +Re∂w
∂t + 1

β
∂p
∂s = 0,

∂
∂r (rβu) + ∂

∂θ (βv) + ∂
∂s (rw) = 0,

τ +We
(
u ∂

∂r + v
r

∂
∂θ + w

β
∂
∂s

)
τ +We∂τ

∂t

= We
rβ F(u, τ ) + 2

(
ε− η + η

(rβ)2q

(
(rβ)2 + |rβDu|2

)q)
Du,

u|∂Ω = 0

(3.1)

where for third-order tensor σ, ∇ · σ is given by

(∇ · σ)r =
1
rβ

( ∂
∂r

(rβσrr) +
∂

∂θ
(βσrθ) +

∂

∂s
(rσrs)− β2σss − βσθθ

)
,

(∇ · σ)θ =
1
rβ

( ∂
∂r

(rβσθr) +
∂

∂θ
(βσθθ) +

∂

∂s
(rσθs) + β1σss + βσrθ

)
,

(∇ · σ)s =
1
rβ

( ∂
∂r

(rβσsr) +
∂

∂θ
(βσsθ) +

∂

∂s
(rσss)− β1σθs + β2σrs

)
,

and the velocity gradient and the symmetric tensor F are given by

∇u =

⎛⎜⎜⎝
∂u
∂r

∂v
∂r

∂w
∂r

1
r

∂u
∂θ −

v
r

1
r

∂v
∂θ + u

r
1
r

∂w
∂θ

1
β

∂u
∂s −

β2
rβw

1
β

∂v
∂s + β1

rβw
1
β

∂w
∂s + β2

rβu−
β1
rβ v

⎞⎟⎟⎠ ,
Frr(u, τ ) = 2

(
rβ ∂u

∂r τ rr + β ∂u
∂θ τ rθ + r ∂u

∂s τ rs

)
,

Frθ(u, τ ) = β
(
r ∂v

∂r − v
)
τ rr + β

(
∂v
∂θ + u+ r ∂u

∂r

)
τ rθ

+ r ∂v
∂sτ rs + β ∂u

∂θ τ θθ + r ∂u
∂s τ θs,

Frs(u, τ ) =
(
rβ ∂w

∂r − β2w
)
τ rr +

(
β ∂w

∂θ + β1w
)
τ rθ + β ∂u

∂θ τ θs

+
(
r ∂w

∂s + β2u− β1v + rβ ∂u
∂r

)
τ rs + r ∂u

∂s τ ss,

Fθθ(u, τ ) = 2
(
β
(
r ∂v

∂r − v
)
τ rθ + β

(
∂v
∂θ + u

)
τ θθ + r ∂v

∂s τ θs

)
,
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Fθs(u, τ ) =
(
rβ ∂w

∂r − β2w
)
τ rθ +

(
β ∂w

∂θ + β1w
)
τ θθ + β

(
r ∂v

∂r − v
)
τ rs

+
(
r ∂w

∂s + β2u− β1v + β ∂v
∂θ + βu

)
τ θs + r ∂v

∂s τ ss,

Fss(u, τ ) = 2
((
rβ ∂w

∂r − β2w
)
τ rs +

(
β ∂w

∂θ + β1w
)
τ θs

)
+ 2

(
r ∂w

∂s + β2u− β1v
)
τ ss.

Considering fully developed flows, the velocity, the pressure and the stress tensor
τ are independent of the variable s. Consequently, they satisfy respectively,

∂u

∂s
=
∂v

∂s
=
∂w

∂s
≡ 0,

∂p

∂s
= −p∗ and

∂τ̂

∂s
≡ 0. (3.2)

Using (3.2), problem (3.1) defined in the set

Σ =
{
(r, θ) ∈ R2 | 0 < r < 1, 0 < θ ≤ 2π

}
(3.3)

reads as follows

Find (u ≡ (u, v, w), p, τ̂ ) solution of

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Ar,γ

(
ψγ (2(1− ε)Du−Reu⊗ u) + τ̂

)
+Re ∂u

∂t + ψγ+1
∂p
∂r = 0,

−Aθ,γ

(
ψγ (2 (1− ε)Du−Reu⊗ u) + τ̂

)
+Re ∂v

∂t + βψγ
∂p
∂θ = 0,

−As,γ

(
ψγ (2 (1− ε)Du−Reu⊗ u) + τ̂

)
+Re ∂w

∂t = p∗rψγ ,

∂
∂r (rβu) + ∂

∂θ (βv) = 0,

rβ τ̂ +We
(

∂
∂t + rβu ∂

∂r + βv ∂
∂θ

)
τ̂ = G(u, τ̂ )

u|∂Σ = 0 (3.4)

where for a tensor σ,

Aξ,γ (σ) = rβ(∇ · σ)ξ − γ
(
(β + β2)σξr − β1σξθ

)
, for any ξ = r, θ, s

and
G(u, τ̂ ) =We

(
F(u, τ̂ ) + γ ((β + β2)u− β1v) τ̂

)
+ 2 (ε− η)ψγDu

+ 2η ψγ−2q+1

(
(rβ)2 + |rβDu|2

)q

Du,

(3.5)

where γ = 2 max (q, 0) + 1, ψγ = (rβ)γ and τ̂ ≡ ψγτ .
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4. Numerical approximation and results

We use finite element methods to obtain approximate solutions to problem (3.4).
Here and in the remaining sections, only steady solutions will be considered.

4.1. Setting of the approximated problem

Let {Th}h>0 be a family of regular triangulations of the rectangle Σ defined by
(3.3), and denote by

Xh = (Xh)3 =
{
vh ∈ C(Σ) ∩H1

0(Σ) | vh|K ∈ P2(K), ∀K ∈ Th

}3
,

Qh =
{
qh ∈ C(Σ) ∩ L2

0(Σ) | qh|K ∈ P1(K), ∀K ∈ Th

}
,

and
Th = (Th)3×3 = {τh ∈ L2(Σ) | τh|K ∈ P1, ∀K ∈ Th}3×3

the finite element spaces. System (3.4) is approximated by the following problem

Find (uh, ph, τ̂ h) ≡ (u, p, τ̂ ) ∈ Xh ×Qh ×Th solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−Ar,γ

(
ψγ (2(1− ε)Du−Reu⊗ u)

)
+ ψγ+1

∂p
∂r ,φ1

)
= (Ar,γ (τ̂ ) ,φ1) ,(

−Aθ,γ

(
ψγ (2(1− ε)Du−Reu⊗ u)

)
+ βψγ

∂p
∂θ ,φ2

)
= (Aθ,γ (τ̂ ) ,φ2) ,(

−As,γ

(
ψγ (2(1− ε)Du−Reu⊗ u)

)
− p∗r ψγ ,φ3

)
= (As,γ (τ̂ ) ,φ3) ,(

∂
∂r (rβu) + ∂

∂θ (βv), ϕ
)

= 0,(
rβ τ̂ ij ,σ�

)
+WeBh

(
u, v, τ̂ ij ,σ�

)
=

(
Gij (u, τ̂ ) ,σ�

)
,

u|∂Σ = 0 (4.1)

for every (φ1,φ2,φ3, ϕ) ∈ Vδ,h ×Qh, where

Vδ,h = {vh ∈ Xh | ∇′ · (β vh) = 0} , δ ∈ [0, 1[

and every σ� ∈ Th (� = 1, . . . , 6), with Bh defined by

Bh

(
u, v, τ, σ

)
=

(
rβu

∂τ

∂r
+ βv

∂τ

∂θ
+

1
2

(
∂

∂r
(rβu) +

∂

∂θ
(βv)

)
τ, σ

)
h

−
〈
τ+ − τ−, σ+

〉
h,u,v

where

(·, ·)h =
∑

K∈Th

(·, ·)K ,

〈σ, τ〉h,u,v =
∑

K∈Th

∫
∂K−(ru,v)

τσ β(runr + vnθ) ds,

∂K−(ψ, ζ) = {s ∈ ∂K | (ψ, ζ) · (nr, nθ) < 0},
and where (nr, nθ) is the outward unit normal vector to element K ∈ Th.
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Using standard integration by parts we show that problem (4.1) can be rewrit-
ten in the form

(Ph) Find (uh, ph, τ̂h) ≡ (u, p, τ̂ ) ∈ Xh ×Qh ×Th solution of

2Kγ

(
ψγ

∂u
∂r ,φ1

)
+ Lγ

(
βψγ−1

∂u
∂θ ,φ1

)
+ 2

(
ψγ−1

(
β2 + β2

2

)
u,φ1

)
+ Lγ

(
βψγ−1

(
r ∂v

∂r − v
)
,φ1

)
+ 2

(
ψγ−1

(
β2 ∂v

∂θ − β1β2v
)
,φ1

)
− 1

1−εKγ+1

(
ψγ p,φ1

)
+ Re

1−ε

(
Kγ

(
ψγu

2,φ1

)
+ Lγ

(
ψγuv,φ1

))
+ Re

1−ε

(
ψγ

(
β2w

2 + βv2
)
,φ1

)
= − 1

1−ε

(
Kγ(τ̂ rr,φ1) + Lγ(τ̂ rθ,φ1) +

(
β2τ̂ ss + βτ̂ θθ,φ1

))
,

Kγ

(
βψγ−1

(
r ∂v

∂r − v
)
,φ2

)
+ 2Lγ

(
βψγ−1

∂v
∂θ ,φ2

)
+

(
ψγ−1

((
β2 + 2β2

1

)
v − rβ2 ∂v

∂r

)
,φ2

)
+Kγ

(
β ψγ−1

∂u
∂θ ,φ2

)
+ 2Lγ

(
βψγ−1u,φ2

)
−

(
ψγ−1

(
β2 ∂u

∂θ + 2β1β2u
)
,φ2

)
− 1

1−εLγ+1

(
ψγp,φ2

)
+ Re

1−ε

(
Kγ

(
ψγuv,φ2

)
+ Lγ

(
ψγv

2,φ2

))
− Re

1−ε

(
ψγ

(
β1w

2 + βuv
)
,φ2

)
= − 1

1−ε

(
Kγ(τ̂ θr,φ2) + Lγ(τ̂ θθ,φ2)−

(
β1τ̂ ss + βτ̂ rθ,φ2

))
,

Kγ

(
ψγ−1

(
rβ ∂w

∂r − β2w
)
,φ3

)
+ Lγ

(
ψγ−1

(
β ∂w

∂θ + β1w
)
,φ3

)
+

(
ψγ−1

(
(rδ)2 w + ββ1

∂w
∂θ − rββ2

∂w
∂r

)
,φ3

)
− 1

1−ε

(
rψγ p

∗,φ3

)
+ Re

1−ε

(
Kγ

(
ψγ uw,φ3

)
+ Lγ

(
ψγ vw,φ3

))
− Re

1−ε

(
ψγ (β2u− β1v)w,φ3

)
= − 1

1−ε

(
Kγ(τ̂ sr,φ3) + Lγ(τ̂ sθ,φ3) +

(
β1τ̂ θs − β2τ̂ rs,φ3

))
,(

∂
∂r (rβu) + ∂

∂θ (βv), ϕ
)

= 0, for every (φ1,φ2,φ3, ϕ) ∈ Vδ,h ×Qh, and

(τ̂ ij , rβσ�)h +WeBh (u, v, τ̂ ij ,σ�) = (Gij (u, τ̂ ) ,σ�)h

for all σ ∈ (Th)6 with

Bh = −
(
rβu

∂σ

∂r
+ βv

∂σ

∂θ
− 1

2

(
∂

∂r
(rβu) +

∂

∂θ
(βv)

)
σ, τ

)
h

+ 〈τ−, σ+−σ−〉h,u,v,

with Kγ(σ, ϕ) =
(
σ, rβ ∂ϕ

∂r + γ (β + β2)ϕ
)
, Lγ(σ, ϕ) =

(
σ, β ∂ϕ

∂θ − γβ1ϕ
)

and G
given by (3.5).
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4.2. Algorithm

Next we define the algorithm to solve the approximated problem (Ph) (as usual,
the index h is dropped to simplify the presentation).

• Given an iterate τ̂ k, find uk ≡ (uk, vk, wk), and pk solutions of the following
Navier-Stokes system (NS)k

2Kγ

(
ψγ

∂uk

∂r ,φ1

)
+ Lγ

(
βψγ−1

∂uk

∂θ ,φ1

)
+ 2

(
ψγ−1

(
β2 + β2

2

)
uk,φ1

)
+ Lγ

(
βψγ−1

(
r ∂vk

∂r − v
k
)
,φ1

)
+ 2

(
ψγ−1

(
β2 ∂vk

∂θ − β1β2v
k
)
,φ1

)
− 1

1−εKγ+1

(
ψγ p

k,φ1

)
+ Re

1−εKγ

(
ψγ (uk)2,φ1

)
+ Re

1−ε

(
Lγ

(
ψγu

kvk,φ1

)
+

(
ψγ

(
β2(wk)2 + β(vk)2

)
,φ1

))
= − 1

1−ε

(
Kγ(τ̂ k

rr,φ1) + Lγ(τ̂ k
rθ,φ1) +

(
β2τ̂

k
ss + βτ̂ k

θθ,φ1

))
,

Kγ

(
βψγ−1

(
r ∂vk

∂r − v
k
)
,φ2

)
+ 2Lγ

(
βψγ−1

∂vk

∂θ ,φ2

)
+

(
ψγ−1

((
β2 + 2β2

1

)
vk − rβ2 ∂vk

∂r

)
,φ2

)
+Kγ

(
βψγ−1

∂uk

∂θ ,φ2

)
+ 2Lγ

(
βψγ−1 u

k,φ2

)
−

(
ψγ−1

(
β2 ∂uk

∂θ + 2β1β2u
k
)
,φ2

)
− 1

1−ε Lγ+1

(
ψγp

k,φ2

)
+ Re

1−ε Kγ

(
ψγu

kvk,φ2

)
+ Re

1−ε

(
Lγ

(
ψγ(vk)2,φ2

)
−

(
ψγ

(
β1(wk)2 + βukvk

)
,φ2

))
= − 1

1−ε

(
Kγ(τ̂ k

θr,φ2) + Lγ(τ̂ k
θθ,φ2)−

(
β1τ̂

k
ss + βτ̂ k

rθ,φ2

))
,

Kγ

(
ψγ−1

(
rβ ∂wk

∂r − β2w
k
)
,φ3

)
+ Lγ

(
ψγ−1

(
β ∂wk

∂θ + β1w
k
)
,φ3

)
+

(
ψγ−1

(
(rδ)2 wk + ββ1

∂wk

∂θ − rββ2
∂wk

∂r

)
,φ3

)
− 1

1−ε

(
rψγ p

∗,φ3

)
+ Re

1−ε Kγ

(
ψγ u

kwk,φ3

)
+ Re

1−ε

(
Lγ

(
ψγ v

kwk,φ3

)
−

(
ψγ

(
β2u

k − β1v
k
)
wk,φ3

))
= − 1

1−ε

(
Kγ(τ̂ k

sr,φ3) + Lγ(τ̂ k
sθ,φ3) +

(
β1τ̂

k
θs − β2τ̂

k
rs,φ3

))
,(

∂
∂r

(
rβuk

)
+ ∂

∂θ (βvk), ϕ
)

= 0, for every (φ1,φ2,φ3, ϕ) ∈ Vδ,h ×Qh.

• Calculate the new iterate τ̂ k+1 as the solution of the transport problem(
τ̂ k+1

ij , rβσ�

)
+WeBh

(
uk, vk, τ̂ k+1

ij ,σ�

)
=

(
Gij

(
uk, τ̂ k),σ�

)
∀σ ∈ (Th)6.

• Find uk+1 ≡ (uk+1, vk+1, wk+1, pk+1) solution of the Navier-Stokes system
(NS)k+1.
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Taking into account this algorithm, our aim is to write the linear systems cor-
responding to problem (Ph) at a given iteration k. To simplify the presentation,
we will consider the case of creeping non-Newtonian flows, which corresponds to
Re = 0.

Given τ̂ k, expressing the corresponding approximate solutions uk, vk, wk and
pk in the basis of Vδ,h and Qh

uk =
nh∑
i=1

uk
i φ

i
1, vk =

nh∑
i=1

vk
i φ

i
2, wk =

nh∑
i=1

wk
i φ

i
3, pk =

mh∑
i=1

pk
i ϕ

i,

we obtain the following linear system⎛⎜⎜⎝
A1 A2 0 1

1−ε A3

A4 A5 0 1
1−ε A6

0 0 A7 0
A8 A9 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
uk

vk

wk

pk

⎞⎟⎟⎠ =

⎛⎜⎜⎝
bk

1

bk
2

bk
3

0

⎞⎟⎟⎠
where

(A1)ij = 2Kγ

(
ψγ

∂φj
1

∂r , φ
i
1

)
+ Lγ

(
βψγ−1

∂φj
1

∂θ , φ
i
1

)
+ 2

(
ψγ−1

(
β2 + β2

2

)
φj

1, φ
i
1

)
,

(A2)ij = Lγ

(
ψγ−1

(
rβ

∂φj
2

∂r − βφ
j
2

)
, φi

1

)
+ 2

(
ψγ−1

(
β2 ∂φj

2
∂θ − β1β2φ

j
2

)
, φi

1

)
,

(A3)ij = −Kγ+1

(
ψγϕ

j , φi
1

)
,

(A4)ij = Kγ

(
βψγ−1

∂φj
1

∂θ , φ
j
2

)
+ 2Lγ

(
βψγ−1φ

j
1, φ

j
2

)
−

(
ψγ−1

(
β2 ∂φj

1
∂θ + 2β1β2φ

j
1

)
, φi

2

)
,

(A5)ij = Kγ

(
ψγ−1

(
rβ

∂φj
2

∂r − βφ
j
2

)
, φi

2

)
+ 2Lγ

(
βψγ−1

∂φj
2

∂θ , φ
i
2

)
+

(
ψγ−1

((
β2 + 2β2

1

)
φj

2 − rβ2 ∂φj
2

∂r

)
, φi

2

)
,

(A6)ij = − Lγ+1

(
ψγϕ

j , φj
2

)
,

(A7)ij = Kγ

(
ψγ−1

(
rβ

∂φj
3

∂r − β2φ
j
3

)
, φi

3

)
+ Lγ

(
ψγ−1

(
β

∂φj
3

∂θ + β1φ
j
3

)
, φi

3

)
+

(
ψγ−1

(
(rδ)2 φj

3 + ββ1
∂φj

3
∂θ − rββ2

∂φj
3

∂r

)
, φi

3

)
,

(A8)ij =
(
rβ

∂φj
1

∂r + (β + β2)φ
j
1, ϕ

j
)
,

(A9)ij =
(
β

∂φj
2

∂θ − β1 φ
j
2, ϕ

j
)
,

and where the vectors bj (j = 1, 3) are given by(
bk

1

)
i
= − 1

1−ε

(
Kγ(τ̂ k

rr, φ
i
1) + Lγ(τ̂ k

rθ, φ
i
1) +

(
β2τ̂

k
ss + βτ̂ k

θθ, φ
i
1

))
,(

bk
2

)
i
= − 1

1−ε

(
Kγ(τ̂ k

θr, φ
i
2) + Lγ(τ̂ k

θθ, φ
i
2)−

(
β1τ̂

k
ss + βτ̂ k

rθ, φ
i
2

))
,
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bk

3

)
i
= − 1

1−ε

(
Kγ(τ̂ k

sr, φ
i
3) + Lγ(τ̂ k

sθ, φ
i
3) +

(
β1τ̂

k
θs − β2τ̂

k
rs, φ

i
3

))
+ 1

1−ε

(
rψγ p

∗, φi
3

)
.

After obtaining (uk, vk, wk, pk), we consider the transport equation to get
τ̂ k+1 ≡

(
τ̂ k+1

ij

)
. Using the local basis functions {ζ�}�=1,2,3 ⊂ Th, the local sys-

tem for the approximate transport problem can be written as

Akτ k+1
ij +

(
Ak

)− (
τ k+1

ij

)−
= Gk

ij , i, j = 1, 2, 3

with

Ak
�m =

(
ζm, rβ ζl

)
K
−We

(
ζm, rβu

k ∂ζl

∂r + βvk ∂ζl

∂θ

)
K

− We
2

((
rβ ∂uk

∂r + β ∂vk

∂θ + (β + β2)uk − β1v
k
)
ζm, ζl

)
K
,(

Ak
)−
�m

= We
∫

∂K−(ruh,vh)

βζ−m
(
ζl − ζ−l

) (
ruknr + vknθ

)
ds,(

Gk
ij

)
�
=

(
Gij

(
uk, τ̂ k), ζ�)

K
,

where ζ−� denotes the �th basis function over the correspondent adjacent element
to K by an inflow edge, G is the function given by (3.5). The local systems lead
to a linear system of the form

Mkτk+1
i = Ck

i ,

where Mk is a non-symmetric matrix whose dimension is twice the number of
nodes in the triangulation.

4.3. Numerical results

The domain Σ defined by (3.3) is discretized using triangles. Referring to the
algorithm, we see that a Navier-Stokes system has to be solved for (u, v, p), a
Poisson equation for w and a transport equation for τ̂ . The velocity is set to zero
on the lateral surface of the pipe. The non-dimensional stream function ψ can be
written with respect to the components u and v, as

u = − 1
rβ

∂ψ

∂θ
, v =

1
β

∂ψ

∂r
.

and the wall-shear stress is τ w = − (T · n) · λ |r=1. In this particular case, τ w is
given by

τ w = − 2(1− ε)
(

∂u
∂r −

(
∂v
∂θ + u

))
|r=1 sin θ cos θ

− (1 − ε)
(

∂v
∂r +

(
∂u
∂θ − v

))
|r=1

(
sin2 θ − cos2 θ

)
− (τ rr − τ θθ)|r=1 sin θ cos θ − τ rθ|r=1 (sin2 θ − cos2 θ).

In what follows, we consider the numerical simulation of fully developed
steady Oldroyd-B flows with constant and non constant viscosity, in a curved
pipe with constant cross section. The behavior of creeping (i.e., Reynolds number



Flows of Generalized Oldroyd-B Fluids in Curved Pipes 33

set to zero) and inertial flows (non-zero Reynolds number) is analyzed for different
values of the parameter involved in the governing equations (the Reynolds number
Re, the Weissenberg number We, the curvature ration δ, the non-dimensional vis-
cosity parameter η and the exponent q appearing in the power-law type viscosity).
A continuation method is carried out to implement these different tests.

4.3.1. Creeping generalized Oldroyd-B flows. In this section, we are interested
in the qualitative study of creeping flows (Re = 0) for generalized Oldroyd-B
fluids, and especially on the behavior of the secondary motions and of the wall
shear stress. In order to analyse the combined effect of the viscoelasticity, the
non-constant viscosity and the curvature ratio, several calculations were achieved.

Figure 2. Streamlines (top) and wall shear stress (bottom) for
creeping Oldroyd-B flows, for the curvature ratio δ = 0.001.

It is well known that in the case of creeping Oldroyd-B fluids, the viscoelastic-
ity promotes secondary flows characterized by two counter-rotating vortices, that
the global behavior is stable, and is of Newtonian type. We did not observe any
notable changes in the nature of the flow when varying the characteristic para-
meters (Weissenberg number and curvature ratio). The only difference lies in the
values of the stream function and of the wall shear stress, which increase with
these parameters, and also in a slight shift to the left of the vortices with increas-
ing curvature ratio. Figure 2 displays the flow behavior for the curvature ratio
δ = 0.001.

In a second step, we consider the more general case of Oldroyd-B fluids with
non constant viscosity. Fixing the curvature ratio δ and the viscosity parameter η,
we implement a continuation method with respect to the exponent q, for different
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values of the Weissenberg number. The values of the maximum exponent for which
convergence is ensured are shown in Table 1. As one can see, and as expected, qmax

depends on the different parameters. In particular, the values decrease when these
parameters increase. We also observe that there is no convergence, for the curvature
ratio δ = 0.2, with We = 5 and the same values of the viscosity parameter η.

We 1 2 3 4 5
δ = 0.001

η = 0.4 21.6 6.80 6.75 7.32 6.93
0.5 4.70 4.57 4.45 4.15 3.95
0.6 3.05 2.85 2.60 2.30 2.00

δ = 0.1

η = 0.4 8.92 1.02 0.58 0.45 0.36
0.5 1.53 0.60 0.42 0.32 0.26
0.6 0.80 0.45 0.32 0.26 0.21

δ = 0.2

η = 0.4 3.31 0.62 0.42 0.32 −
0.5 0.91 0.45 0.32 0.24 −
0.6 0.60 0.34 0.24 0.19 −

Table 1. Maximum values of |q|.

Numerical results (using finite element methods) show some changes in flow
characteristics and that the viscosity influences its behavior. In summary, we have
two phases:
• A phase of variation in the behavior passing from the standard Oldroyd-B

type to a new type.
• A phase of stabilisation in the new type.

More precisely, for small values of |q|, we observe a surprising phenomenon. Ini-
tially, the secondary flows involve non-zero values and are characterized by two
counter-rotating vortices. As q increases in absolute value, the streamlines in the
core region become less dense, the size of the couple of vortices reduces, and the
flow is driven near the wall pipe. We observe the formation of boundary layers
flows with a pair of new vortices, initially weak and elongated, strengthening and
dominating as the viscosity exponent increases. In contrast, the original secondary
flows become more and more weak before vanishing when the level of the exponent
viscosity reaches a critical value. The orientation of the new contours is opposite,
as well as the sign of the stream function, suggesting a transition to a different
regime.

It is interesting to observe that this behavior is global, in the sense that it is
seems to be independent of the Weissenberg number and of the curvature ratio,
and occurs for the same values of the viscosity exponent q. Figure 3 illustrates the
behavior of the streamlines in the particular case of a curvature ratio δ = 0.001 and
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viscosity parameter η = 0.4. The influence of the viscosity parameter is evident,
and as η increases the transition occurs earlier. Moreover, because of the effect
of the curvature, the new two vortices are not localized in the center of the cross
section but are slightly translated.

Figure 3. Qualitative behavior of the streamlines for creeping
generalized Oldroyd-B flows, with η=0.4 and for different values
of |q| (δ=0.001).

Figure 4. Wall shear stress for creeping generalized Oldroyd-B
flows, with η=0.4 (δ=0.001).

We also noticed variations in the wall shear stress (see Figure 4). It can be
observed that during the transition, the amplitude of the wall shear stress decreases
and the corresponding curves are inverted in comparison with the Oldroyd-B case.

After the transition phase, and before reaching some “critical” value of the
viscosity exponent, the flow is qualitatively more stable. The streamlines are sym-
metric and the global behavior of the wall shear stress remains unchanged. This
critical value of q depends on the viscoelastic parameter, on the viscosity parame-
ter, and particularly on the curvature ratio. Globally, the changes which occur from
now on, are similar in some aspects to those already noticed for the generalized
Newtonian flows [1, 3].

In particular, for η = 0.4, for relatively small Weissenberg numbers (We =
2, 3, 4), and especially in the case of small curvature ratio, we observe a variation
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Figure 5. Streamlines for creeping generalized Oldroyd-B flows
with η=0.4 and |q| = 6, 6.4, 6.5 (from left to right), for different
Weissenberg numbers We (δ=0.001).

in the shape of the vortices, their displacement to the core region, the concentration
of the contours in this region and the beginning of a counter-clockwise rotation.

In Figure 5, we plot the streamlines corresponding to this case. The rotation
is more pronounced when the Weissenberg number is small suggesting that the
viscoelasticity, as well as the inertial forces in the case of generalized Newtonian
flows, has an opposite effect [1, 3].

However, contrarily to the generalized Newtonian flows, the viscosity expo-
nent corresponding to the initiation of the rotation is not constant. As can be
seen in Table 2, it depends on We and as this parameter increases, the rotation
initiates earlier. Moreover, the viscoelastic parameter affects the maximum angle
and the development of the rotation: for We = 2, the contours are left-rotating
(L), for We = 3 they are initially left-rotating and then right-rotating (R) before
stabilizing symmetrically (S). Finally, when the We increases, there is no more
rotation and the contours remain symmetric.
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Figure 6. Wall shear stress for creeping generalized Oldroyd-B
creeping flows with η=0.4 and |q| = 6, 6.4, 6.5, 6.8 (δ=0.001).

We 2 3 4 5
δ = 0.001

η = 0.4 6.30 6.25 − −
L L-S S S

0.5 4.50 4.30 − −
R R(slight) S −

Table 2. Values of |q| initiating the rotation.

Parallel modifications can be observed concerning the wall shear stress. Fig-
ure 6 shows the corresponding curves for η = 0.4 and for different values of the
Weissenberg number. For We = 5, the curves corresponding to different viscosity
exponents q are identical, suggesting that the wall shear stress is stable in this case.
For We = 4, the global behavior of the curves is similar but with variations in the
amplitudes. When the viscoelastic parameter is set to 3, small modifications could
be observed in comparison to the previous case. In particular, for q greater than
the critical value qvar initiating the rotation, we lose the symmetry with respect
to the horizontal axis, and the wall shear stress takes negative values at θ = 0 and
2π. This fact is more pronounced for We = 2, with lost of symmetry with respect
to the axis θ = π. The same differences are obtained when η = 0.5. The sign of the
wall shear stress for values of q greater than qvar is positive. This strongly suggests
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the existence of a relation between the sign of τw at the points θ = 0 and 2π, and
the orientation of the rotation.

A final observation is related to the maximum values of the stream function.
Independently of the viscoelastic and viscosity parameters, the maximum values
dramatically increase in the neighborhood of the critical value qvar. For the cases
where the maximum value of the exponent q is big enough, we observe that after
this peak, the maximum values decrease before stabilizing.

4.3.2. Inertial generalized Oldroyd-B flows. In the previous subsection, we studied
the behavior of the generalized Oldroyd-B flows in the absence of inertia (creeping
flows). Our aim here is to consider the more general case of inertial flows, and to
analyse the effect of the Reynolds number in combination with the Weissenberg
number, the viscosity parameter η, the exponent q, and the curvature ratio δ.

We first consider a pipe with a small curvature ratio (δ = 0.001) in the case
of a constant viscosity (inertial Oldroyd-B fluid). The secondary flows exist and
the corresponding stream function and wall shear stress have globally the same
behavior as the creeping Oldroyd-B flows. At this stage, the nature of the flow is
qualitatively identical to that of a Newtonian fluid.

In order to compare with the case of generalized creeping flows, the viscosity
parameter η is set to 0.4, 0.5, 0.6 and as previously, several tests were performed for
different values of the Weissenberg and the Reynolds numbers, with a continuation
in the exponent q.

One of the first remarks is that the transition phenomenon observed in the
case of generalized creeping flows does not hold, even for relatively small Reynolds
number (Re = 15). This fact is evident when η takes the values 0.4 and 0.5 and
the behavior in these two cases is close to that of inertial generalized Newtonian
flows.

Fixing η = 0.4, and varying the Reynolds and the Weissenberg numbers,
the flow is globally stable for q less than some critical value. From the contours
of the stream function and of the wall shear stress for the exponent |q| ≤ 5, we
observe that the qualitative behavior is similar and independent of both inertia and
viscoelasticity. The only difference lies in the values and the magnitude of these
quantities, which clearly depend on the involved parameters. In the neighborhood
of a critical value of q, the behavior presents some changes and is no more uniform.
The rotation already observed initiates, and its orientation depend on Re andWe.
Indeed, fixing the Reynolds number to 15, we can see that for We = 2, a counter-
clockwise rotation occurs for qvar = −6 and that the contours remain stable till
we reach the maximum value for which the convergence is ensured. For We = 3,
the stream function initiates a very slight counter-clockwise rotation at the same
value qvar, but recovers the symmetry very quickly. Finally, for We = 3, the same
behavior is captured, but with a very slight clockwise rotation. The wall shear
stresses behave in an analogous way. In order to emphasize the role of the inertia,
we fixed the Weissenberg number and increase the Reynolds number.
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In a second step, we consider the case η = 0.5. For Re = 15, we can observe
that the Weissenberg number favorite the clockwise rotation (cf. Figure 7). Indeed,
when the Weissenberg number is small (even with larger exponent viscosity), the
contours remain symmetric. As We increases, the rotation initiates and holds ear-
lier. On the other hand, the Reynolds number does not seem to have a significative
influence on the nature of the flow. We implement several tests corresponding to
larger values of this characteristic parameter (Re = 1, 15, 30, 50, 70) and did not
observe any significative difference.

Table 3 summarizes the results of the maximum values of viscosity parame-
ter |q| with respect to the viscoelasticity (We) and the inertia (Re) parameters,
as a function of the curvature ratio (δ). For fixed δ and We, the value of |q| de-
creases when Re increases. The same occurs if δ and Re are fixed: the value of
|q| decreases when We increases. The curvature ratio associated with (Re) and
(We) has a strong influence on the convergence, since it can be shown that when
these parameters increase, the values of |q| decrease considerably and in some cases
convergence is not achieved.

Figure 7. Streamlines and wall shear stress for inertial generali-
zed Oldroyd-B flows with η = 0.5, Re = 15,We = 1 and different
values of the |q| (δ = 0.001).

The case η = 0.6 is certainly the more surprising. For large values of the
Reynolds number and for the achieved viscosity exponents, the behavior seems to
be stable and no notable fact can be observed. The more interesting variations
were observed for relatively small Reynolds numbers. Fixing for example Re = 15
and varying the Weissenberg number, we observe that the behavior is qualitatively
stable for small values of this parameter. For We = 3, 4 and 5, some new phenom-
enon initiates. The characteristics are very similar to those observed in the case
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We 1 2 3 4 5
δ = 0.001

Re = 1 5.12 4.65 4.45 4.22 4.0
15 4.81 4.36 4.25 4.21 3.95
30 4.78 3.76 3.54 3.37 3.25
50 3.60 3.03 2.81 2.62 2.46
70 3.44 2.57 2.23 1.94 1.72

δ = 0.1

Re = 1 2.47 0.7 0.46 0.36 0.3
15 0.51 0.15 − − −
30 0.05 − − − −
50 − − − − −

δ = 0.2

Re = 1 1.26 0.53 0.36 − −
15 0.23 − − − −
30 − − − − −

Table 3. Maximum values of |q| with η = 0.5.

of generalized creeping flows during the phase transition: formation of boundary
layers and a pair of new vortices or strengthening of the new contours and weak-
ening of the original ones. However, in contrast with the creeping flows, the new
state is not stable and at some level the inverse phenomenon initiates (Figure 8).

For this particular viscosity parameter, Table 4 shows the results of the max-
imum values of |q|, obtained for different We and Re numbers, in the case of
δ = 0.001. Comparing with Table 3 for the same curvature ratio, the same effects
of viscoelasticity and inertia on |q| can be observed.

We 1 2 3 4 5
δ = 0.001

Re = 1 3.10 2.89 2.68 2.6 2.56
15 2.88 2.67 2.60 2.55 2.51
70 1.69 1.39 1.20 1.05 0.95

Table 4. Maximum values of |q| with η = 0.6.

5. Conclusion

This paper is devoted to finite element simulations of flows of incompressible vis-
coelastic non-Newtonian fluids of Oldroyd-type through pipes of uniform circular
cross-section, and follows the work already published in [1] and [3] for generalized
Newtonian fluids. We compare the quantitative and qualitative behavior of the
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Figure 8. Streamlines and wall shear stress for inertial genera-
lized Oldroyd-B flows with η=0.6, Re=15 and We=5 (δ=0.001).

secondary streamlines and the wall shear stress for creeping and inertial generali-
zed Oldroyd-B flows, performing computations for different values of the Reynolds
number, the Weissenberg number, the curvature ratio and the non-dimensional
viscosity parameters involved in the governing equations.

In particular, we observe interesting viscosity effects such that, for small
curvature ratio and within a certain range of viscosity parameters, the secondary
streamlines contours undergo a counter-clockwise rotation and lose symmetry. The
complexity of the flow characteristics shown in the numerical tests suggest that
further theoretical analysis is needed to study the existence of more than one
solution and investigate the corresponding stability, for a range of appropriate
non-dimensional parameters.

More detailed discussion and numerical results can be found in [19] where
the generalized Newtonian flows are obtained as a particular case of generalized
Oldroyd-B flows, in the limit of vanish Weissenberg number (neglected viscoelastic
effects). The numerical validation of the present results, using the perturbation
method [24] is a work in progress.
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Adélia Sequeira
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Pascal Auscher and Andreas Axelsson

In honour of H. Amann

Abstract. We prove weighted estimates for the maximal regularity operator.
Such estimates were motivated by boundary value problems. We take this
opportunity to study a class of weak solutions to the abstract Cauchy prob-
lem. We also give a new proof of maximal regularity for closed and maximal
accretive operators following from Kato’s inequality for fractional powers and
almost orthogonality arguments.
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1. Weighted estimates for the maximal regularity operator

Assume −A is a densely defined, closed linear operator, generating a bounded
analytic semigroup {e−zA, | arg z | < δ}, 0 < δ < π/2, on a Hilbert space H.
Equivalently, A is sectorial of type ω(A) = π/2− δ. Let D(A) denote its domain.
The maximal regularity operator is defined by the formula

M+f(t) =
∫ t

0

Ae−(t−s)Af(s) ds.

This operator is associated to the forward abstract evolution equation

u̇(t) +Au(t) = f(t), t > 0; u(0) = 0

as for appropriate f , Au(t) = M+f(t). An estimate on M+f in the same space
as f gives therefore bounds on u̇ and Au separately. See Section 2.

The integral defining M+f converges strongly in H for each t > 0 and
f ∈ L2(0,∞; dt,D(A)). The estimate ‖Ae−(t−s)A‖ ≤ C(t − s)−1 following from
the analyticity of the semigroup shows that the integral is singular if one only
assumes f(s) ∈ H. The maximal regularity operator is an example of a singular
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integral operator with operator-valued kernel. The celebrated theorem by de Simon
[4] asserts

Theorem 1.1. Assume −A generates a bounded holomorphic semigroup in H. The
operatorM+, initially defined on L2(0,∞; dt,D(A)), extends to a bounded operator
on L2(0,∞; dt,H).

Motivated by boundary value problems for some second-order elliptic equa-
tions, we proved in [3] the following result.

Theorem 1.2. Assume −A generates a bounded holomorphic semigroup in
H and furthermore that A has bounded holomorphic functional calculus, then
M+, initially defined on L2

c(0,∞; dt,D(A)), extends to a bounded operator on
L2(0,∞; tβdt,H) for all β ∈ (−∞, 1).

Here and in what follows the subscript c means with compact support.
The proof given there uses the operational calculus defined in the thesis of

Albrecht [1]. It used as an assumption that A has bounded holomorphic functional
calculus as defined by McIntosh [9]. Under this assumption estimates of integral op-
erators more general than the maximal regularity operator, with operator-kernels
defined through functional calculus of A, were proved and gave other useful infor-
mation to understand also the case β = 1 needed for the boundary value problems.
However, not all generators of bounded analytic semigroups have a bounded holo-
morphic functional calculus (see [10], and Kunstmann and Weis [6, Section 11]
for a list of equivalent conditions.) So if we only consider the maximal regularity
operator, it is natural to ask whether one can drop the assumption on bounded
holomorphic functional calculus in Theorem 1.2. It is indeed the case and as we
shall see the proof is extremely simple assuming we know Theorem 1.1.

Theorem 1.3. Let −A be the generator of a bounded analytic semigroup on H.
Then M+, initially defined on L2

c(0,∞; dt,D(A)), extends to a bounded operator
on L2(0,∞; tβdt,H) for all β ∈ (−∞, 1).

The subscript c means with compact support in (0,∞). Set |||f(t)|||2 =∫∞
0
‖f(t)‖2 dt

t (we leave in the t-variable in the notation for convenience). As we
often use it, we recall the following simplified version of Schur’s lemma: if U(t, s),
s, t > 0, are bounded linear operators on H with bounds ‖U(t, s)‖ ≤ h(t/s) and
C =

∫∞
0
h(u)du

u <∞, then∣∣∣∣∣∣∣∣∣∣∣∣∫ ∞

0

U(t, s)f(s)
ds

s

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ C |||f(s)||| .
Proof of Theorem 1.3. Let β < 1. For β = 0, this is Theorem 1.1. Assume β �= 0
and set α = β/2. Observe that

‖M+f(t)‖L2(tβdt,H) = ‖tαM+f(t)‖L2(dt,H).
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We have, with fα(s) = sαf(s),

tαM+f(t) = M+(fα)(t) +
∫ t

0

Ae−(t−s)A(tα − sα)f(s) ds.

For the first term apply Theorem 1.1. For the second, write∥∥∥∥∫ t

0

Ae−(t−s)A(tα − sα)f(s) ds
∥∥∥∥

L2(dt,H)

=
∣∣∣∣∣∣∣∣∣∣∣∣∫ ∞

0

U(t, s)g(s)
ds

s

∣∣∣∣∣∣∣∣∣∣∣∣
with g(s) = s1/2+αf(s) and U(t, s) = Ae−(t−s)A(tα − sα)s1/2−αt1/2 for s < t and
0 otherwise. Since |||g(t)||| = ‖f‖L2(tβdt,H), it remains to estimate the norm of
U(t, s) on H. We have

‖U(t, s)‖ ≤ C |t
α − sα|
|t− s| s

1/2−αt1/2, s < t.

It is easy to see that it is on the order of (s/t)1/2−max(α,0) as s < t. We conclude
by applying Schur’s lemma. �

Let

M−f(t) =
∫ ∞

t

Ae−(s−t)Af(s) ds.

This operator is associated to the backward abstract evolution equation

v̇(t)−Av(t) = f(t), t > 0; v(∞) = 0

as for appropriate f , Av(t) = −M−f(t).

Corollary 1.4. Assume that −A generates a bounded analytic semigroup on H.
Then M−, initially defined on L2

c(0,∞; dt,D(A)), extends to a bounded operator
on L2(0,∞; tβdt,H) for all β ∈ (−1,∞).

Proof. Observe that the adjoint of M− in L2(0,∞;tβdt,H) for the duality defined
by L2(0,∞;dt,H) isM+ in L2(0,∞; t−βdt,H) associated to A∗ and apply Theorem
1.3. �

We next show that the range of β is optimal in both results.

Theorem 1.5. For any non zero −A generating a bounded analytic semigroup on
H and β ≥ 1, M+ is not bounded on L2(0,∞; tβdt,H) and M− is not bounded
on L2(0,∞; t−βdt,H).

Proof. It suffices to consider M−. Since A �= 0, R(A), the closure of the range of
A, contains non zero elements. As R(A)∩D(A) is dense in it, pick u ∈ R(A)∩D(A),
u �= 0, and set f(t) = u for 1 ≤ t ≤ 2 and 0 elsewhere. Then f ∈ L2

c(0,∞; dt,D(A))
and f ∈ L2(0,∞; t−βdt,H) with ‖f(t)‖L2(0,∞;t−βdt,H) = cβ‖u‖ < ∞. For t < 1,
one has

M−f(t) = (e−(1−t)A − e−(2−t)A)u,
which converges to (e−A − e−2A)u in H when t→ 0.
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We claim that (e−A − e−2A)u �= 0 so

‖M−f(t)‖2L2(0,∞;t−βdt,H) ≥
∫ 1

0

‖(e−(1−t)A − e−(2−t)A)u‖2 dt
tβ

= ∞.

To prove the claim, we argue as follows. Assume it is 0, then e−2Au = e−Au
so that an iteration yields e−nAu = e−Au for all integers n ≥ 2. If n → ∞,
e−nAu tends to 0 in H because u ∈ R(A). Thus e−Au = 0 and it follows that
e−tAu = e−(t−1)Ae−Au = 0 for all t > 1. The analytic function z → e−zAu is
thus identically 0 for | arg z | < δ. On letting z → 0, we get u = 0 which is a
contradiction. �

We have seen that M− cannot map L2(0,∞; t−1dt,H) into itself and that
it seems due to the behavior of M−f(t) at t = 0 for some f . We shall make this
precise and general: under a further assumption on A which we introduce next,
we define M− : L2(0,∞; t−1dt,H) → L2

loc(0,∞; dt,H) and show that controlled
behavior at 0 of M−f guarantees M−f ∈ L2(0,∞; t−1dt,H).

We begin by writing whenever f ∈ L2
c(0,∞; dt,D(A)) and denoting

f−1/2(s) = s−1/2f(s),

M−f(t)− e−tA

∫ ∞

0

Ae−sAf(s) ds

= t1/2M−(f−1/2)(t) +
∫ 2t

t

Ae−(s−t)A(s1/2 − t1/2)s1/2f(s)
ds

s

+
∫ ∞

2t

A(e−(s−t)A − e−(s+t)A)(s1/2 − t1/2)s1/2f(s)
ds

s

−
∫ ∞

2t

Ae−(s+t)At1/2s1/2f(s)
ds

s

−
∫ 2t

0

Ae−(s+t)Asf(s)
ds

s
.

The right-hand side is seen to belong to L2(0,∞; t−1dt,H) with an estimate
C |||f(s)||| using Theorem 1.1 for the first term and Schur’s lemma for the other
four terms. Hence, by density, the right-hand side defines a bounded linear opera-
tor M̃− on L2(0,∞; t−1dt,H). Also, the integral

∫∞
0
Ae−sAf(s) ds is defined as a

Bochner integral in H whenever f ∈ L2
c(0,∞; dt,H). Thus, by density of D(A) in

H, one can set for f ∈ L2
c(0,∞; dt,H),

M−f(t) := M̃−f(t) + e−tA

∫ ∞

0

Ae−sAf(s) ds in L2
loc(0,∞; dt,H). (1.1)

Let E be the space of f ∈ L2(0,∞; t−1dt,H) such that the integrals∫ R

δ
Ae−sAf(s) ds converge weakly in H as δ → 0 and R → ∞. Then the above

equality extends to f ∈ E. Assuming, in addition, that A∗ satisfies the quadratic
estimate ∣∣∣∣∣∣∣∣∣sA∗e−sA∗

h
∣∣∣∣∣∣∣∣∣ ≤ C‖h‖H for all h ∈ H, (1.2)
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we have E = L2(0,∞; t−1dt,H). Indeed, for all f ∈ L2(0,∞; t−1dt,H) and h ∈ H,∫ ∞

0

∣∣(sAe−sAf(s), h)
∣∣ ds
s
≤ |||f(s)|||

∣∣∣∣∣∣∣∣∣sA∗e−sA∗
h
∣∣∣∣∣∣∣∣∣ � |||f(s)||| ‖h‖H (1.3)

and the weak convergence of the truncated integrals follows easily. Thus, the right-
hand side of (1.1) makes sense for all f ∈ L2(0,∞; t−1dt,H) under (1.2) and this
defines M−f . Moreover, it follows from (1.3) that

sup
τ>0

1
τ

∫ 2τ

τ

‖M−f(t)‖2H dt ≤ C |||f(s)|||
2 . (1.4)

Then remark that

lim
τ→0

1
τ

∫ 2τ

τ

M−f(t) dt =
∫ ∞

0

Ae−sAf(s) ds in H, (1.5)

as the corresponding limit for M̃−f is 0 and e−tA → I strongly when t→ 0.
All this yields the following result.

Proposition 1.6. Let −A be the generator of a bounded analytic semigroup in H and
assume that the quadratic estimate (1.2) holds for A∗. Then (1.1) defines M−f ∈
L2

loc(0,∞; dt,H) with estimates (1.4) and limit (1.5) for all f ∈ L2(0,∞; t−1dt,H).
In particular,

M−f ∈ L2(0,∞; t−1dt,H)

if and only if

lim
τ→0

1
τ

∫ 2τ

τ

M−f(t) dt = 0.

The last condition defines a closed subspace of L2(0,∞; t−1dt,H) and there is a
constant C such that for all f in this subspace

‖M−f(t)‖L2(0,∞;t−1dt,H) ≤ C‖f(t)‖L2(0,∞;t−1dt,H).

Note that (1.2) holds if A has bounded holomorphic functional calculus by
McIntosh’s theorem [9].

Remark 1.7. For M+, the analysis is not that satisfactory (for β = 1). One can
show similarly that∥∥∥∥M+f(t)−Ae−tA

∫ ∞

0

e−sAf(s) ds
∥∥∥∥

L2(0,∞;tdt,H)

≤ C‖f(t)‖L2(0,∞;tdt,H)

provided f ∈ L2
c(0,∞; dt,D(A)). If the quadratic estimate (1.2) holds for A, this

allows to extendM+ to the space {f ∈ L2
loc(0,∞; dt,H);

∫∞
0
e−sAf(s) ds converges

weakly in H}. However, there is no simple description of this space.
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2. Applications to the abstract Cauchy problem

In this section, we assume throughout that −A generates a bounded analytic
semigroup in H.

Let f ∈ L2
loc(0,∞; dt,H). We say that u is a weak solution to u̇(t) +Au(t) =

f(t), t > 0, if u ∈ L2
loc(0,∞; dt,H),

sup
0<τ<1

1
τ

∫ 2τ

τ

‖u(s)‖H ds <∞ (2.1)

and for all φ ∈ C1
c (0,∞;H) ∩C0

c (0,∞; D(A∗)),∫ ∞

0

(u(s),−φ̇(s) +A∗φ(s)) ds =
∫ ∞

0

(f(s), φ(s)) ds. (2.2)

The notion of weak solution here differs from the one in Amann’s book [2,
Chapter 5] called weak Lp,loc solution (p ∈ [1,∞]) specialized to p = 2. We assume
a uniform control through (2.1) near t = 0 and assume φ compactly supported
in (0,∞) in (2.2) instead of specifying the initial value at t = 0 and taking φ
compactly supported in [0,∞) as in [2].

Lemma 2.1. Let β ∈ (−∞, 1) and f ∈ L2(0,∞; tβdt,H). Then

v(t) =
∫ t

0

e−(t−s)Af(s) ds (2.3)

satisfies
(1) v ∈ C0([0,∞);H) and for all t > 0, ‖v(t)‖2H ≤ Ct1−β

∫ t

0
sβ‖f(s)‖2H ds,

(2) v is a weak solution to u̇(t) +Au(t) = f(t), t > 0,
(3) Av(t) = M+f(t) in L2

loc(0,∞; dt,H), and

‖v̇(t)‖L2(0,∞;tβdt,H) + ‖Av(t)‖L2(0,∞;tβdt,H) ≤ C‖f(t)‖L2(0,∞;tβdt,H).

Here, by M+ we mean the bounded extension to L2(0,∞; tβdt,H).

Proof. The inequality in (1) follows from the uniform boundedness of the semi-
group and Cauchy-Schwarz inequality, and this shows that the integral defining
v(t) norm converges in H, thus inferring continuity on [0,∞), and also (2.1). To
check (2.2), it suffices to change order of integration and calculate. The equality
M+f = Av is proved by duality against a φ as in (2.2) since such φ form a dense
subspace in L2

c(0,∞; dt,H). Finally, the inequalities in (3) are consequences of
Theorem 1.3. �

We now state that all weak solutions have an explicit representation and a
trace at t = 0.

Proposition 2.2. Let β ∈ (−∞, 1) and f ∈ L2(0,∞; tβdt,H). Let u be a weak
solution to u̇(t) +Au(t) = f(t), t > 0. Then, there exists h ∈ H such that

u(t) = e−tAh+ v(t) in L2
loc(0,∞; dt,H), (2.4)

with v defined by (2.3). In particular, t �→ u(t) can be redefined on a null set to be
C0([0,∞);H) with trace h at t = 0.
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This immediately implies the following existence and uniqueness results.

Corollary 2.3. Let u0 ∈ H. The initial value problem u̇(t) + Au(t) = 0, t > 0,
limτ→0

1
τ

∫ 2τ

τ u(t) dt = u0 in H, has a unique weak solution given by u(t) = e−tAu0

for almost every t > 0. In particular, up to redefining t �→ u(t) on a null set,
u ∈ C∞(0,∞;D(A)) and is a strong solution.

Corollary 2.4. Let β ∈ (−∞, 1) and f ∈ L2(0,∞; tβdt,H). The initial value prob-
lem u̇(t) + Au(t) = f(t), t > 0, with limτ→0

1
τ

∫ 2τ

τ
u(t) dt = 0 in H, has a unique

weak solution given by v defined by (2.3), up to redefining t �→ u(t) on a null set.

Proof of Proposition 2.2. Define η(s) to be the piecewise linear continuous func-
tion with support [1,∞), which equals 1 on (2,∞) and is linear on (1, 2). Let t > 0.
For 0 < ε < t/4 and s > 0, let

ηε(t, s) := η(s/ε)η((t− s)/ε).
Let φ0 ∈ H be any boundary element, and choose φ(s) := ηε(t, s)e−(t−s)A∗

φ0 ∈
Lipc(0,∞; D(A∗)) as test function (by approximating ηε(t, s) by a smooth function,
this can be done). A calculation yields (in this proof, ( , ) denotes inner product
in H)

− 1
ε

∫ 2ε

ε

(
e−(t−s)Au(s), φ0

)
ds+

1
ε

∫ 2ε

ε

(
e−sAu(t− s), φ0

)
ds

=
∫ ∞

0

(
ηε(t, s)e−(t−s)Af(s), φ0

)
ds

and since this is true for arbitrary φ0 ∈ H and ηε has compact support, we deduce
that

−1
ε

∫ 2ε

ε

e−(t−s)Au(s) ds+
1
ε

∫ 2ε

ε

e−sAu(t− s) ds =
∫ ∞

0

ηε(t, s)e−(t−s)Af(s) ds.

Now, we let ε→ 0 as follows. First, ηε(t, s) tends to the indicator function of (0, t)
so that the right-hand side is easily seen to converge to v(t) inH for any fixed t > 0
by dominated convergence. Fix now 0 < a < b <∞ and integrate in t ∈ (a, b) the
left-hand side. Remark that 1

ε

∫ b

a

∫ 2ε

ε e−sAu(t) dsdt converges to
∫ b

a u(t) dt in H.
Subtracting this quantity from the second term in the right-hand side and using
u ∈ L2

loc(0,∞;H), Lebesgue’s theorem yields∫ b

a

∥∥∥∥1
ε

∫ 2ε

ε

e−sA(u(t− s)− u(t)) ds
∥∥∥∥2

H
dt ≤ C

ε

∫ b

a

∫ 2ε

ε

‖u(t− s)− u(t)‖2H dsdt→ 0.

For the first term, using ‖e−(t−s)A− e−tA‖ ≤ Cs/t from analyticity and (2.1), one
sees that ∥∥∥∥1

ε

∫ 2ε

ε

(e−(t−s)A − e−tA)u(s) ds
∥∥∥∥
H
→ 0 (2.5)

for each t > 0. Thus

hε(t) := e−tAhε, with hε :=
1
ε

∫ 2ε

ε

u(s) ds,
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has a limit, say h(t), in L2(a, b;H). The semigroup property yields

hε(t) = e−(t−τ)Ahε(τ) for all t ≥ τ.
Thus,

‖hε(t)− hε′(t)‖H ≤
1

b− a

∫ b

a

‖e−(t−τ)A(hε(τ)− hε′(τ))‖Hdτ

≤ C
(∫ b

a

‖hε(τ) − hε′(τ)‖2Hdτ
)1/2

,

when t > b. Hence, since (a, b) is arbitrary, hε(t) converges in H to h(t) for each
t > 0. Thus, for any φ0 ∈ H and t > 0, we have

(hε, e
−tA∗

φ0) = (hε(t), φ0) → (h(t), φ0).

Since (hε)ε<1 is a bounded sequence in H by (2.1) and the elements e−tA∗
φ0,

t > 0, φ0 ∈ H, form a dense set of H, we infer that hε has a weak limit in H.
Calling h this weak limit we have (h, e−tA∗

φ0) = (h(t), φ0), hence h(t) = e−tAh as
desired. Summarizing, we have obtained −e−tAh + u(t) = v(t) in L2(a, b;H) for
all 0 < a < b <∞.

Thus, u agrees almost everywhere with the continuous function t �→ v(t) +
e−tAh which has limit h at t = 0. �

Remark 2.5. The only time analyticity is used in this proof is in (2.5). If we had
incorporated the existence of an initial value as in [2] in our definition of a weak
solution then analogous proposition and corollaries would hold for all generators
of bounded C0-semigroups.

3. A proof of maximal regularity via Kato’s inequality for
fractional powers

There are many proofs of the de Simon’s theorem, via Fourier transform or opera-
tional calculus, and various extensions to Banach spaces. We refer to [6, Section 1].

Here, we wish to provide a proof using “almost orthogonality arguments”
(Cotlar’s lemma), and Kato’s inequality for fractional powers [5, Theorem 1.1]
which we recall for the reader’s convenience.

Theorem 3.1. Let A be closed and maximal accretive. For any 0 ≤ α < 1/2, the
operators Aα and A∗α have same domains and satisfy

‖A∗αf‖ ≤ tan
π(1 + 2α)

4
‖Aαf‖. (3.1)

If, moreover, A is injective then AαA∗−α extends to a bounded operator on H for
−1/2 < α < 1/2.

Maximal accretive means that Re(Au, u) ≥ 0 for every u ∈ D(A) and
(λ−A)−1 is bounded whenever Reλ < 0. Note that (3.1) holds true with different
constants for operators which are similar to a closed and maximal accretive oper-
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ator. Assume A is sectorial of type ω(A) < π/2 and injective. Le Merdy showed in
[7] that A is similar to a maximal accretive operator if and only if A has bounded
imaginary powers (i.e., Ait is bounded for all t ∈ R). (See also [8] for a more gen-
eral result and [11] for explicit examples.) But, following earlier works of Yagi [13],
McIntosh showed in his seminal paper [9] that A has bounded imaginary powers
if and only if A has a bounded holomorphic functional calculus. (See [6, Section
11] for extensive discussions with historical notes.) So proving maximal regularity
(i.e., Theorem 1.1) assuming maximal accretivity is the same as proving maximal
regularity assuming bounded holomorphic functional calculus. Nevertheless, this
direct argument below could be of interest.

Proof of Theorem 1.1 under further assumption of maximal accretivity. Let g ∈
L2(0,∞; dt,D(A)). We prove that M+g ∈ L2(0,∞; dt,H) with norm controlled
by that of g in L2(0,∞; dt,H) Since Ae−(t−s)A annihilates N(A), the null space of
A, we may assume g(s) ∈ R(A) for all s > 0. Alternately, we may factor out the
null space of A and assume that A is injective, which we do (A is sectorial, so H
splits topologically as N(A)⊕ R(A)).

Then one can write g(s) =
∫∞
0 uAe−uAg(s)du

u and so we have the represen-
tation of M+ as

M+g(t) =
∫ ∞

0

(Tug)(t)
du

u
, with (Tug)(t) = M+(uAe−uAg)(t).

By Cotlar’s lemma (see [12, Chapter VII]) it is enough to show in operator norm
on L2(0,∞;H) that ‖TuT

∗
v ‖ + ‖T ∗

uTv‖ ≤ h(u/v) with C =
∫∞
0
h(x)dx

x < ∞ to
conclude that M+ is bounded on L2(0,∞;H) with norm less than or equal to C.
We show that for all α ∈ (0, 1/2) one can take h(x) = Cα min (xα, x−α) .

We begin with TuT
∗
v for fixed (u, v). Since ‖TuT

∗
v ‖ = ‖TvT

∗
u‖, we may assume

u ≤ v. A computation yields

(TuT
∗
v )(g)(t) =

∫ ∞

0

K(u,v)(t, τ)g(τ) dτ

where

K(u,v)(t, τ) =
∫ min(t,τ)

0

uA2e−(t−s+u)AvA∗2e−(τ−s+v)A∗
ds.

We turn to estimate the operator norm on H of K(u,v)(t, τ) for fixed (t, τ). (Recall
we fixed (u, v) with u ≤ v.) Since A is maximal accretive and injective, we have
‖AαA∗−α‖ ≤ C(α) for α ∈ (0, 1/2). So we write

uA2e−(t−s+u)AvA∗2e−(τ−s+v)A∗

= uA2−αe−(t−s+u)A(AαA∗−α)vA∗(2+α)e−(τ−s+v)A∗
,

and by analyticity the operator norm on H is bounded by constant times a(s)b(s)
with

a(s) =
u

(t− s+ u)2−α
, b(s) =

v

(τ − s+ v)2+α
.
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Plug this estimate into the integral. If t ≤ τ , bound b(s) by b(t) and get

‖K(u,v)(t, τ)‖ ≤ Cuαb(t) = C(u/v)α v1+α

(τ − t+ v)2+α
.

If τ ≤ t, bound a(s) by a(τ) and get

‖K(u,v)(t, τ)‖ ≤ Ca(τ)v−α = C(u/v)α u1−α

(t− τ + u)2−α
.

It follows that

sup
τ>0

∫ ∞

0

(‖K(u,v)(t, τ)‖ + ‖K(u,v)(τ, t)‖) dt ≤ C(u/v)α.

By Schur’s lemma we obtain ‖TuT
∗
v ‖ ≤ C(u/v)α when u ≤ v.

We now turn to estimate T ∗
uTv. By symmetry under taking adjoints again, it

is enough to assume u ≤ v. We obtain

(T ∗
uTv)(g)(t) =

∫ ∞

0

K̃(u,v)(t, τ)g(τ) dτ

where

K̃(u,v)(t, τ) =
∫ ∞

max(t,τ)

uA∗2e−(s−t+u)A∗
vA2e−(s−τ+v)A ds.

This time we use the bound ‖A∗αA−α‖ ≤ C(α) for α ∈ (0, 1/2) to obtain, if τ ≤ t,

‖K̃(u,v)(t, τ)‖ ≤ C(u/v)α v1+α

(τ − t+ v)2+α

and if t ≤ τ ,

‖K̃(u,v)(t, τ)‖ ≤ C(u/v)α u1−α

(t− τ + u)2−α
.

So,

sup
τ>0

∫ ∞

0

(‖K̃(u,v)(t, τ)‖ + ‖K̃(u,v)(τ, t)‖) dt ≤ C(u/v)α

and by Schur’s lemma, ‖TuT
∗
v ‖ ≤ C(u/v)α when u ≤ v. �

As Kato’s inequality holds for all α ∈ (−1/2, 1/2), the argument above can
be used to prove that M+ is bounded on L2(0,∞; tβdt,H) but for β ∈ (−1, 1).
We leave details to the reader.

We thank Alan McIntosh for discussions on the topic of this short note.
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Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995.



Remarks on Maximal Regularity 55

[3] P. Auscher and A. Axelsson, Weighted maximal regularity and solvability of non-
smooth elliptic systems. To appear in Inventiones Mathematicae, DOI 10.1007/
s00222-010-0285-4, arXiv:0911.4344v1 [math.AP].

[4] L. de Simon, Un’applicazione della teoria degli integrali singolari allo studio delle
equazioni differenziali lineari astratte del primo ordine. Rend. Sem. Mat. Univ.
Padova 34 (1964), 205–223.

[5] T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan 13, No. 3,
1961, 246–274.

[6] P. Kunstmann and L. Weis, Maximal Lp-regularity for parabolic equations, Fourier
multiplier theorems and H∞-functional calculus. In Functional analytic methods
for evolution equations, vol. 1855 of Lecture Notes in Math. Springer, Berlin, 2004,
pp. 65–311.

[7] C. Le Merdy, The similarity problem for bounded analytic semigroups on Hilbert
space. Semigroup Forum 56 (1998), no. 2, 205–224.

[8] C. Le Merdy, Similarities of ω-accretive operators. International Conference on Har-
monic Analysis and Related Topics (Sydney, 2002), 84–95, Proc. Centre Math. Appl.
Austral. Nat. Univ., 41 2003.

[9] A. McIntosh, Operators which have an H∞ functional calculus, Proc. Centre Math.
Appl. Austral. Nat. Univ., Canberra 14 (1986), 210–231.

[10] A. McIntosh and A. Yagi, Operators of type ω without a bounded H∞ functional
calculus. Miniconference on Operators in Analysis, 1989, Proceedings of the Centre
for Mathematical Analysis, ANU, Canberra 24 (1989), 159–172.

[11] A. Simard, Counterexamples concerning powers of sectorial operators on a Hilbert
space, Bull. Austr. Math. Soc. 60 (1999), 459–468.

[12] E.M. Stein, Harmonic analysis: Real-variable methods, Orthogonality, and Oscilla-
tory Integrals, Princeton University Press, 1993.
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Abstract. We study the first and second boundary value problems for par-
abolic equations in a half-space Rn

+, n ≥ 2, with incompatible initial and
boundary data on the boundary xn = 0 of a domain. The existence, unique-
ness and estimates of the solutions in the Hölder and weighted spaces are
proved. We show that nonfulfillment of the compatibility conditions leads to
appearance of the solutions, which are singular in the vicinity of a boundary
of a domain as t → 0.
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1. Introduction. Statement of the problems. Main definitions

To study boundary value problems for parabolic equations in the Hölder space
C

2+l,1+l/2
x t (ΩT ) we require fulfillment of the compatibility conditions of the bound-

ary and initial data on the boundary of a domain at t = 0. These conditions provide
continuity of the solution and its derivatives and boundedness of the Hölder con-
stants of the higher derivatives in ΩT . The compatibility conditions represent the
functional identities connecting the given functions on the boundary of the domain
at the initial moment.

Assume that the problem we study is a mathematical model of a certain
physical process (in particular, heat, diffusive) beginning at t = T ∗. Let this process



58 G. Bizhanova

go continuously. If we choose an initial moment T0 > T
∗ in the problem, then the

compatibility conditions will be fulfilled.

If we study the problem since t = T ∗ or since the moment of a jump of
all characteristics of the process (given functions, coefficients, parameters in the
problem), then, in general, the compatibility conditions are not fulfilled, but the
physical process continues, and the problem can also have a solution.

To study the first and second boundary value problems for the parabolic
equations in the classes C2, 1

x t (ΩT ) ∩C(ΩT ) and C2, 1
x t (ΩT )∩C1, 0

x t (ΩT ) respectively,
we assume that the compatibility conditions of zero order are fulfilled in these
problems, because we look for, in the closure of a domain ΩT , a continuous solution
of the first boundary value problem and a continuous solution together with all
its derivatives of first order with respect to the spatial variables of the second
boundary value problem.

Solutions of boundary value problems in a weighted Hölder space Cl
s(ΩT ),

s ≤ l, introduced by V.S. Belonosov, permits us to get rid of one compatibility
condition [1, 2, 8]. Considering the first boundary value problem in this class we
must require fulfillment of the compatibility condition of zero order, but the first-
order compatibility condition can not take place. Y. Martel and Ph. Souplet in
[7] proved that the solution of the first boundary value problem for the parabolic
equation with incompatible data is not continuous in the closure of a domain.
One-dimensional boundary value problems with incompatible data were studied
in [3, 4].

We study the first and second boundary value problems for heat equations
in the half-space Rn

+, n ≥ 2, with incompatible initial and boundary data on
the boundary xn = 0 of a domain at t = 0. The existence, uniqueness and esti-
mates of the solutions are proved in Hölder and weighted spaces. Nonfulfillment of
the compatibility conditions of initial and boundary data in the first and second
boundary value problems leads to appearance of the functions zj(x′, t) erfc xn

2
√

at
,

Wj(x, t), j = 0, 1, (see Theorems 2.1, 2.2) and −2
√
at z2(x′, t)ierfs xn

2
√

at
(see The-

orems 2.3, 2.4) in the solutions of these problems respectively, which are singular
in the vicinity of a boundary of a domain as t → 0. These functions permit us to
reduce the original problems to problems with a fulfilled compatibility conditions
of all necessary orders.

In Chapter 1 the Hölder and weighted spaces are determined, the definition of
the special functions – repeated integrals of the probability and the compatibility
conditions for the considered problems are given. The main results of the paper
are formulated in Chapter 2. In Chapter 3 there are constructed and studied the
singular solutions of the auxiliary problems. In Chapters 4 and 5 with the help
of these singular solutions the original first and second boundary value problems
are reduced to problems that have unique solutions in the weighted and classical
Hölder spaces. In the Appendix the auxiliary first boundary value problem is
studied.
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Let

D := Rn
+ = {x = (x′, xn) |x′ ∈ Rn−1, xn > 0)}, n ≥ 2,

R := {x |x′ ∈ Rn−1, xn = 0}, x′ = (x1, . . . , xn−1),

DT = D × (0, T ), RT = R× [0, T ].

We consider two problems. We are required to find the solution u(x, t) of the
first boundary value problem – Problem 1

∂t u− aΔu = f(x, t) in DT , (1.1)

u|t=0 = u0(x) in D, (1.2)

u|xn=0 = ϕ(x′, t) on RT , (1.3)

and the solution u(x, t) of the second boundary value problem – Problem 2, which
satisfies an equation (1.1), initial condition (1.2) and the boundary condition

∂xnu|xn=0 = ψ(x′, t) on RT . (1.4)

Here a =const> 0, ∂t = ∂/∂t, ∂xn = ∂/∂xn, Δ = ∂2
x1x1

+· · ·+∂2
xnxn

. By c1, c2, . . .
we shall denote positive constants.

Determine the weighted and classical Hölder spaces.
Let l be a positive non-integer. By Cl

s(DT ), s ≤ l, we shall denote a weighted
Hölder space defined by V.S. Belonosov with the norm [1, 2, 8],

|u|(l)s,DT
= sup

t≤T
t

l−s
2 [u](l)D′

t
+

∑
s<2k+|m|<l

sup
t≤T

t
2k+|m|−s

2 |∂k
t ∂

m
x u|D′

t
+

{
|u|(s)DT

, s ≥ 0,
0, s < 0,

(1.5)
where D′

t = D × [t/2, t], | v |DT = sup(x,t)∈DT
| v(x, t) |,

[u](l)DT
=

∑
2k+|m|=[l]

[∂k
t ∂

m
x u]

(l−[l])
x,DT

+
∑

0<l−2k−|m|<2

[∂k
t ∂

m
x u]

(
l−2k−|m|

2

)
t,DT

, (1.6)

[v](α)
x,DT

= sup
(x,t),(z,t)∈DT

∣∣v(x, t)− v(z, t)∣∣ |x− z|−α, (1.7)

[v](α)
t,DT

= sup
(x,t),(x,t1)∈DT

∣∣v(x, t)− v(x, t1)∣∣ |t− t1|−α, α ∈ (0, 1), (1.8)

|u|(s)DT
is the norm of the classical Hölder space Cs, s/2

x t (DT ) [6],

|u|(s)DT
=

∑
2k+|m|≤[s]

|∂k
t ∂

m
x u|DT +

{
0, s an integer,

[u](s)DT
, s not an integer,

(1.9)

where [u](s)DT
is determined by (1.6)–(1.8).

For s = l, Cl
l (DT ) is the space Cl, l/2

x t (DT ).
From the norm (1.5) we can see that for s < l the function u(x, t) has

a singularity with respect to t as t → 0 in the whole domain D including its
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boundary. For instance, if an initial function u0(x) in the Cauchy problem for the
parabolic equation is from the Hölder space Cs(D), s < l, then the solution of this
problem belongs to Cl

s(DT ).
We introduce a weighted space C2

s, δ0
(DT ), δ0 > 0, 2 ≤ s ≤ 2 + α, of the

functions u(x, t) with the norm

|u|(2)s,δ0,DT
:= sup

t≤T
t−1

∣∣u eδ0
x2

n
t

∣∣
D′

t
+

n−1∑
μ=1

sup
t≤T

t
1−s
2

∣∣∂xμu e
δ0

x2
n
t

∣∣
D′

t

+ sup
t≤T

t−1/2
∣∣∂xnu e

δ0
x2

n
t

∣∣
D′

t
+

n∑
i=1

n−1∑
μ=1

sup
t≤T

t
2−s
2
∣∣∂2

xixμ
u eδ0

x2
n
t

∣∣
D′

t

+
∣∣∂2

xnxn
u eδ0

x2
n
t

∣∣
DT

+
∣∣∂tu e

δ0
x2

n
t

∣∣
DT
, (1.10)

and, in particular, for s = 2 + α,

|u|(2)2+α,δ0,DT
:= sup

t≤T
t−1

∣∣u eδ0
x2

n
t

∣∣
D′

t
+

n−1∑
μ=1

sup
t≤T

t−
1+α

2
∣∣∂xμu e

δ0
x2

n
t

∣∣
D′

t

+ sup
t≤T

t−1/2
∣∣∂xnu e

δ0
x2

n
t

∣∣
D′

t
+

n∑
i=1

n−1∑
μ=1

sup
t≤T

t−
α
2
∣∣∂2

xixμ
u eδ0

x2
n
t

∣∣
D′

t

+
∣∣∂2

xnxn
u eδ0

x2
n
t

∣∣
DT

+
∣∣∂tu e

δ0
x2

n
t

∣∣
DT
. (1.11)

We write |u|(2)s, δ0,DT
:=M . From (1.10), (1.11) we shall have

∣∣∂2
xixμ

u
∣∣ ≤M e−δ0

x2
n
t , i = 1, . . . , n, μ = 1, . . . , n− 1, for s = 2,∣∣∂tu(x, t)

∣∣, ∣∣∂2
xnxn

u(x, t)
∣∣ ≤M e−δ0

x2
n
t for 2 ≤ s ≤ 2 + α.

(1.12)

Let the point x be in the interior of the domain: xn ≥ r0 = const > 0,
then from (1.12) we obtain that the derivatives ∂2

xixμ
u for s = 2, and ∂tu(x, t),

∂2
xnxn

u(x, t) for 2 ≤ s ≤ 2 + α tend to zero exponentially as t → 0 and on the
boundary xn = 0 of D they are bounded and can not be equal to zero at t = 0,
i.e., they can be discontinuous in DT .

The negative powers of the t weights in the norms (1.10), (1.11) mean that
the function and its derivatives with respect to x with such weights tend to zero
as t→ 0 on the boundary xn = 0 of a domain and exponentially in the interior of

a domain due to the weight eδ0
x2

n
t .

We point out also that xn in exponential power is the distance between a
point x = (x1, . . . , xn) and a boundary of a domain xn = 0.

An example of a function from C2
s, δ0

(DT ) is a solution of problem (A.1) in
the Appendix (see Theorems A.1 and A.2).
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We do not include the Hölder constants of the derivatives into the norms
(1.10), (1.11). But from these norms we see the behavior of the function and its
derivatives in the domain and on its boundary.

We define the compatibility conditions of the boundary and initial functions
for Problems 1 and 2.

Let

A0(x′) := ϕ(x′, 0)− u0(x)
∣∣
xn=0

,

A1(x′) := ∂tϕ(x′, t)
∣∣
t=0

− (aΔu0(x) + f(x, 0)
)∣∣

xn=0
,

B0(x′) := ψ(x′, 0)− ∂xnu0(x)
∣∣
xn=0

.

The compatibility conditions of zero and first orders on the boundary xn = 0
for Problem 1 (1.1), (1.2), (1.3) are A0(x′) = 0, A1(x′) = 0 on R and of zero order
for Problem 2 (1.1), (1.2), (1.4) – B0(x′) = 0 on R. Evidently, nonfulfillment of
the compatibility conditions of zero and first orders means A0(x′) �= 0, A1(x′) �= 0,
B0(x′) �= 0 on R.

Later on we shall apply special functions – iterated integrals of the probability
inerfc ζ; they are determined by the formulas [5], Ch. 7.2,

inerfc ζ :=
∫ ∞

ζ

in−1erfc ξ d ξ, n = 0, 1, 2, . . . ,

i−1erfc ζ :=
2√
π
e−ζ2

, i0erfc ζ := erfc ζ =
2√
π

∫ ∞

ζ

e−ξ2
d ξ, i1erfc ζ := ierfc ζ.

The following relations for them hold:
d

dζ
inerfc ζ = −in−1erfc ζ, n = 0, 1, 2, . . . , (1.13)

inerfc 0 =
1

2n Γ(n/2 + 1)
, n = −1, 0, 1, . . . ,

where Γ(·) – Euler gamma – function,

inerfc ζ =
1
2n

in−2 erfc ζ − ζ
n

in−1erfc ζ, n = 1, 2, . . . . (1.14)

inerfc ζ ≤ inerfc 0, ζ ≥ 0, n = −1, 0, 1, . . . .

2. Main results

We formulate the main results for Problems 1, 2.

Theorem 2.1. Let α ∈ (0, 1), s ∈ (α, 2 + α]. For all functions u0(x) ∈Cs(D),
f(x,t)∈Cα

s−2(DT ), ϕ(x′,t)∈C2+α
s (RT ) that do not satisfy, on the boundary xn = 0

of the domain D, compatibility conditions of zero order for s ∈ (α, 2) (A0(x′) :=
ϕ(x′, 0) − u0(x)

∣∣
xn=0

�= 0 on R) and of zero and first orders for s ∈ [2, 2 + α]
(A0(x′) �= 0, A1(x′) := ∂tϕ(x′, t)

∣∣
t=0

− (aΔu0(x) + f(x, 0)
)∣∣

xn=0
�= 0 on R),
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Problem 1 (1.1), (1.2), (1.3) has a unique solution u(x, t) = V0(x, t) + v1(x, t)
for s ∈ (α, 2) and u(x, t) = V0(x, t) +W0(x, t) + V1(x, t) +W1(x, t) + v2(x, t) for
s ∈ [2, 2+α], where Vj(x, t) = zj(x′, t) erfc xn

2
√

at
, zj ∈ C2+α

s (RT ), Wj ∈ C2
s,δ0

(DT ),
j = 0, 1, δ0 = 1

8a , vi ∈ C2+α
s (DT ), i = 1, 2, and the following estimates for them

hold:

|zj |(2+α)
s,RT

≤ c1|Aj |(s−2j)
R , |Wj |(2)s,δ0,DT

≤ c2|Aj |(s−2j)
R , j = 0, 1, (2.1)

|vi|(2+α)
s,DT

≤ c3
(
|u0|(s)D + |f |(α)

s−2,DT
+ |ϕ|(2+α)

s,RT

)
, i = 1, 2. (2.2)

From this theorem for s = 2 + α we obtain the following one.

Theorem 2.2. For all functions u0(x) ∈ C2+α(D), f(x, t) ∈ Cα,α/2
x t (DT ), ϕ(x′, t) ∈

C
2+α,1+α/2
x′ t (RT ), α ∈ (0, 1) that do not satisfy, on the boundary xn = 0 of the

domain D, compatibility conditions of zero and first orders (A0(x′) �= 0, A1(x′) �=
0 on R), Problem 1 (1.1), (1.2), (1.3) has a unique solution u(x, t) = V0(x, t) +
W0(x, t) + V1(x, t) +W1(x, t) + v2(x, t) where Vj(x, t) = zj(x′, t) erfc xn

2
√

at
, zj ∈

C
2+α,1+α/2
x′ t (RT ), Wj ∈ C2

2+α,δ0
(DT ), j = 0, 1, δ0 = 1

8a , v2 ∈ C2+α,1+α/2
x t (DT ),

and the following estimates for them hold:

|zj |(2+α)
RT

≤ c4|Aj |(2+α−2j)
R , |Wj |(2)2+α,δ0,DT

≤ c5|Aj |(2+α−2j)
R , j = 0, 1,

|v2|(2+α)
DT

≤ c6
(
|u0|(2+α)

D + |f |(α)
DT

+ |ϕ|(2+α)
RT

)
.

Theorem 2.3. Let α ∈ (0, 1), s ∈ (α, 2 + α]. For all functions u0(x) ∈Cs(D),
f(x,t)∈Cα

s−2(DT ), ψ(x′,t)∈C1+α
s−1 (RT ), s ∈ (α, 1), and if s ∈ [1, 2 + α], then for

all functions u0, f, ψ that do not satisfy, on the boundary xn = 0 of the domain D,
the compatibility condition of zero order (B0(x′) := ψ(x′, 0) − ∂xnu0(x)

∣∣
xn=0

�= 0
on R), Problem 2 (1.1), (1.2), (1.4) has a unique solution u(x, t) = v1(x, t) for
s ∈ (α, 1) and u(x, t) = −2

√
at z2(x′, t)ierfs xn

2
√

at
+ v2(x, t) for s ∈ [1, 2 + α, 2],

where z2 ∈ C2+α
s−1 (RT ), vi ∈ C2+α

s (DT ), i = 1, 2, and the following estimates for
them hold:

|z2|(2+α)
s−1,RT

≤ c7|B0|(s−1)
R ,

|vi|(2+α)
s,DT

≤ c8
(
|u0|(s)D + |f |(α)

s−2,DT
+ |ψ|(1+α)

s−1,RT

)
, i = 1, 2.

(2.3)

From this theorem for s = 2 + α we obtain the following one.

Theorem 2.4. For all functions u0(x) ∈ C2+α(D), f(x, t) ∈ Cα,α/2
x t (DT ), ψ(x′, t) ∈

C
1+α, 1+α

2
x′ t (RT ) that do not satisfy, on the boundary xn = 0 of the domain D, the

compatibility condition of zero order (B0(x′) �= 0 on R), Problem 2 (1.1), (1.2),
(1.4) has a unique solution u(x, t) = −2

√
at z2(x′, t)ierfs xn

2
√

at
+ v2(x, t), where
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z2 ∈ C2+α
1+α (RT ), v2 ∈ C2+α, 1+α/2

x t (DT ) and the following estimates for them hold:

|z2|(2+α)
1+α,RT

≤ c9|B0|(1+α)
R ,

|v2|(2+α)
s,DT

≤ c10
(
|u0|(2+α)

D + |f |(α)
DT

+ |ψ|(1+α)
RT

)
.

For Theorems 2.1–2.4, the functions zj(x′, t), z2(x′, t) andWj(x, t), j = 0, 1,
are defined in Theorems 3.3, 3.4 and 3.5, 3.6, A.1, A.2 respectively.

Remark 2.5. If in Problem 1 the compatibility condition of zero (first) order is
fulfilled, i.e., A0(x′) = 0 (A1(x′) = 0) on R, then in Theorems 2.1, 2.2 V0(x, t) = 0,
W0(x, t) = 0 (V1(x, t) = 0, W1(x, t) = 0) in DT . If A0(x′) = 0, A1(x′) = 0 on R,
then Vj(x, t) = 0, Wj(x, t) = 0 in DT , j = 0, 1.

If in Problem 2 the compatibility condition of zero order is fulfilled, i.e.,
B0(x′) = 0 on R, then in Theorems 2.3, 2.4 z2(x′, t) = 0 on RT .

3. Auxiliary problems

We recall that D := Rn
+, n ≥ 2, R := {x = (x′, xn) |x′ ∈ Rn−1, xn = 0},

DT = D × (0, T ), RT = R× [0, T ], Δ′ := ∂2
x1

+ · · ·+ ∂2
xn−1

.
First, we construct a function z(x′, t) satisfying the conditions

z
∣∣
t=0

= μ0(x′), ∂tz
∣∣
t=0

= μ1(x′) in R. (3.1)

Lemma 3.1. [6] Let μ0(x′) ∈ Cs(R), μ1(x′) ∈ Cs−2(R), s ∈ [2, 2 + α], α ∈ (0, 1).
Then there exists a unique function z(x′, t) ∈ C2+α

s (RT ), for which the following
estimate holds:

|z|(2+α)
s,RT

≤ c1
(
|μ0|(s)R + |μ1|(s−2)

R

)
. (3.2)

Lemma 3.2. [6] Let μ0(x′) ∈ C2+α(R), μ1(x′) ∈ Cα(R), α ∈ (0, 1). Then there ex-
ists a unique function z(x′, t) ∈ C2+α,1+α/2

x′ t (RT ), for which the following estimate
holds:

|z|(2+α)
RT

≤ c2
(
|μ0|(2+α)

R + |μ1|(α)
R

)
.

This lemma follows from Lemma 3.1 for s = 2 + α.

Proof of Lemma 3.1. Consider the Cauchy problem

∂t z − aΔ′ z = z(1)(x′, t) in RT , (3.3)

z|t=0 = μ0(x′) in R, (3.4)
where z(1)(x′, t) is a solution of the Cauchy problem

∂t z
(1) − aΔ′ z(1) = 0 in RT , (3.5)

z(1)|t=0 = μ1(x′)− aΔ′ μ0(x′) ∈ Cs−2(R) in R. (3.6)
Problem (3.5), (3.6) has a unique solution [1, 2, 6, 8] z(1)(x′, t) ∈ C2+α

s−2 (RT ), such
that

|z(1)|(2+α)
s−2,RT

≤ c3
(
|μ0|(s)R + |μ1|(s−2)

R

)
.
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Due to embedding C2+α
s−2 (RT ) ⊂ Cα

s−2(RT ) we obtain

|z(1)|(α)
s−2,RT

≤ c4
(
|μ0|(s)R + |μ1|(s−2)

R

)
. (3.7)

Then problem (3.3), (3.4) has a unique solution z ∈ C2+α
s (RT ), for which a valid

estimate is
|z|(2+α)

s,RT
≤ c5

(
|z(1)|(α)

s−2,RT
+ |μ0|(s)R

)
.

From here by (3.7) we shall have an estimate (3.2). Moreover, z(x′, t) satisfies the
conditions (3.1). Really, the first condition in (3.1) is fulfilled due to (3.4) and from
(3.3) and (3.6) we obtain

∂tz|t=0 = aΔ′μ0(x′) + z(1)|t=0 = μ1(x′),

i.e., the second condition in (3.1) also holds. �

We recall that the compatibility conditions of zero and first orders for Prob-
lem 1 and of zero order for Problem 2 are not fulfilled, i.e., A0(x′) := ϕ(x′, 0) −
u0(x)

∣∣
xn=0

�= 0, A1(x′) := ∂tϕ(x′, t)
∣∣
t=0
− (aΔu0(x)+ f(x, 0)

)∣∣
xn=0

�= 0 on R and
B0(x′) := ψ(x′, 0)− ∂xnu0(x)

∣∣
xn=0

�= 0 on R.
To extract from the solutions of Problems 1 and 2 the singular parts, which

appear due to a nonfulfillment of the compatibility conditions on R, we extend
the functions Aj(x′), j = 0, 1, B0(x′) into RT and then into DT . For that, first,
we construct the functions zj(x′, t), j = 0, 1, and z2(x′, t) under the conditions

z0|t=0 = A0(x′) in R, s ∈ (α, 2), (3.8)

z0|t=0 = A0(x′), ∂tz0|t=0 = 0 in R, s ∈ [2, 2 + α], (3.9)

z1|t=0 = 0, ∂tz1|t=0 = A1(x′) in R, s ∈ [2, 2 + α] (3.10)

for Problem 1 (1.1)–(1.3) and

z2|t=0 = B0(x′) in R, s ∈ [1, 2 + α] (3.11)

for Problem 2 (1.1), (1.2), (1.4).

Theorem 3.3. Let A0(x′) ∈ Cs(R), s ∈ (α, 2+α], A1(x′) ∈ Cs−2(R), s ∈ [2, 2+α],
B0(x′) ∈ Cs−1(R), s ∈ [1, 2 + α], α ∈ (0, 1). Then there exist unique functions
zj(x′,t) ∈C2+α

s (RT ), j = 0,1, z2(x′,t) ∈C2+α
s−1 (RT ), which satisfy the conditions

(3.8)–(3.11) respectively, and the estimates for them hold:

|z0|(2+α)
s,RT

≤ c6|A0|(s)R , s ∈ (α, 2 + α], (3.12)

|z1|(2+α)
s,RT

≤ c7|A1|(s−2)
R , s ∈ [2, 2 + α], (3.13)

|z1| ≤ c8|A1|(s−2)
R t in RT , s ∈ [2, 2 + α], (3.14)

|z2|(2+α)
s−1,RT

≤ c9|B0|(s−1)
R , s ∈ [1, 2 + α]. (3.15)

Theorem 3.4. Let A0(x′) ∈ C2+α(R), A1(x′) ∈ Cα(R), B0(x′) ∈ C1+α(R),
α ∈ (0, 1). Then there exist unique functions zj(x′, t) ∈ C2+α,1+α/2

x′ t (RT ), j = 0, 1,
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z2(x′, t) ∈ C2+α
1+α (RT ), which satisfy the conditions (3.8)–(3.11) respectively, and

the estimates for them hold:

|z0|(2+α)
RT

≤ c10|A0|(2+α)
R ,

|z1|(2+α)
RT

≤ c11|A1|(α)
R , |z1| ≤ c11|A1|(α)

R t in RT ,

|z2|(2+α)
1+α,RT

≤ c12|B0|(1+α)
R .

This theorem follows from Theorem 3.3 for s = 2 + α.

Proof of Theorem 3.3. 1. For s ∈ (α, 2) we can take the function z0(x′, t) as a
solution of the Cauchy problem in RT := Rn−1 × [0, T ] for the equation

∂t z0 − aΔ′ z0 = 0 in RT (3.16)

with an initial data (3.8). This solution belongs to C2+α
s (RT ), and an estimate

(3.12) for it holds [1, 2, 8].
2. Let s ∈ [2, 2 + α]. With the help of Lemma 3.1 we construct the functions
z0(x′, t), z1(x′, t) as solutions of the problems for the equations

∂t zj − aΔ′ zj = z(1)j (x′, t) in RT , j = 0, 1, (3.17)

with the initial conditions (3.9) for j = 0 and (3.10) for j = 1. Here the functions
z
(1)
j (x′, t) are the solutions of the following Cauchy problems:

∂t z
(1)
j − aΔ′ z

(1)
j = 0 in RT , j = 0, 1, (3.18)

z
(1)
0 |t=0 = −aΔ′A0(x′) in R; z(1)1 |t=0 = A1(x′) in R. (3.19)

The solutions z(1)j of problems (3.18), (3.19) exist, belong to C2+α
s−2 (RT )⊂Cα

s−2(RT )

and the estimates (3.7) for them are fulfilled with μ0 = A0, μ1 = 0 for z(1)0 and
with μ0 = 0, μ1 = A1 for z(1)1 , i.e.,

|z(1)j |(α)
s−2,RT

≤ c13|Aj |(s−2j)
R , j = 0, 1. (3.20)

By Lemma 3.1 the functions zj(x′, t), j = 0, 1, belong to C2+α
s (RT ) and the

estimates (3.12), (3.13) for them are valid.
Due to (3.13) and the first condition (3.10) we shall have an estimate (3.14)

for z1, really,

|z1(x′, t)| =
∣∣∣∣∫ t

0

∂τz1(x′, τ) dτ
∣∣∣∣ ≤ c8|A1|(s−2)

R t, s ∈ [2, 2 + α].

3. Let s ∈ [1, 2 +α]. We determine a function z2(x′, t) as a solution of the Cauchy
problem

∂t z2 − aΔ′ z2 = 0 in RT , z2|t=0 = B0(x′) in R. (3.21)

By [1, 2, 8] this problem has a unique solution z2(x′, t) ∈ C2+α
s−1 (RT ) and it satisfies

an estimate (3.15). �
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Thus, we have extended the functions Aj(x′), j = 0, 1, and B0(x′) into RT by
the functions zj(x′, t), j = 0, 1, and z2(x′, t) respectively. Now we extend zj(x′, t),
j = 0, 1, and z2(x′, t) into DT := Rn

+ × (0, T ).
Consider two of the first boundary value problems with unknown functions

Zj(x, t), j = 0, 1,
∂t Zj − aΔZj = 0 in DT , (3.22)

Zj |t=0 = 0 in D, Zj|xn=0 = zj(x′, t) on RT , (3.23)
where the function z0 is the solution of the problems (3.16), (3.8) for s ∈ (α, 2)
and (3.17), j = 0, (3.9) for s ∈ [2, 2 + α], and z1 is the solution of the problem
(3.17), j = 1, (3.10).

In the problem for Z0(x, t) the compatibility condition of zero order is not
fulfilled and the first-order compatibility condition holds by (3.8), (3.9) and for
Z1(x, t) inversely, the compatibility condition of zero order is fulfilled and of the
first order is not, by (3.10).

We remind that erfs ζ = 2√
π

∫∞
ζ e

−ξ2
dξ and the norms |u|(2)s,δ0,DT

, |u|(2)2+α,δ0,DT

are determined by (1.10), (1.11).

Theorem 3.5. Let A0(x′) ∈ Cs(R), s ∈ (α, 2+α], A1(x′) ∈ Cs−2(R), s ∈ [2, 2+α].
Then each of the problems (3.22), (3.23) has the unique solution

Z0(x, t) = V0(x, t) +

{
0, s ∈ (α, 2),
W0(x, t), s ∈ [2, 2 + α],

(3.24)

Z1(x, t) = V1(x, t) +W1(x, t), s ∈ [2, 2 + α], (3.25)

Vj(x, t) = zj(x′, t) erfc
xn

2
√
at
, j = 0, 1,

where the functions zj(x′, t) are defined in Theorem 3.3: zj(x′, t) ∈ C2+α
s (RT ) and

|zj|(2+α)
s,DT

≤ c14|Aj |(s−2j)
R , j = 0, 1,

Wj(x, t) ∈ C2+α
s,δ0

(RT ), δ0 = 1
8a , and

|Wj |(2)s,δ0,DT
≤ c15|Aj |(s−2j)

R , j = 0, 1. (3.26)

Theorem 3.6. Let A0(x′) ∈ C2+α(R), A1(x′) ∈ Cα(R), α ∈ (0, 1). Then each of
problems (3.22), (3.23) has the unique solution Zj(x, t) = Vj(x, t) +Wj(x, t), j =
0, 1, where Vj = zj(x′, t) erfc xn

2
√

at
, the functions zj(x′, t) are defined in Theorem

3.4: zj(x′, t) ∈ C2+α,1+α/2
x′ t (RT ) and

|zj|(2+α)
DT

≤ c16|Aj |(2+α−2j)
R , j = 0, 1,

Wj(x, t) ∈ C2
2+α,δ0

(RT ), δ0 = 1
8a , and

|Wj |(2)2+α,δ0,DT
≤ c17|Aj |(2+α−2j)

R , j = 0, 1.

This theorem follows from Theorem 3.5 for s = 2 + α.



On the Classical Solvability 67

Proof of Theorem 3.5. The solutions of problems (3.22), (3.23) may be represented
in the explicit form

Zj(x, t) = −2a
∫ t

0

dτ

∫
Rn−1

zj(y′, τ)∂xnΓ(x′ − y′, xn, τ)dy′, (3.27)

where Γ(x, t) is a fundamental solution of the heat equation (3.22),

Γ(x, t) =
1

(2
√
aπ)n

e−
x2
4at .

We construct the solutions of problems (3.22), (3.23) in more suitable forms
than (3.27) to see the character of their singularity. For this, first, we write the
potential (3.27) as follows:

Zj(x, t) = Vj(x, t)− 2a
∫ t

0

dτ

∫
Rn−1

(
zj(y′, τ)− zj(x′, t)

)
∂xnΓ(x′ − y′, xn, τ)dy′,

(3.28)

Vj(x, t) := − 2azj(x′, t)
∫ t

0

dτ

∫
Rn−1

∂xnΓ(x′ − y′, xn, τ)dy′

= zj(x′, t) erfc
xn

2
√
at
, j = 0, 1.

1. Let s ∈ (α, 2). Consider the function V0(x, t) = z0(x′, t) erfc xn

2
√

at
. It satis-

fies the homogenous heat equation. Really, z0 was constructed in Theorem 3.3 as
a solution of a Cauchy problem for equation (3.16) with an initial condition (3.8):
z0|t=0 = A0(x′). By direct computation with the help of formula (1.13) we can see
that

∂t erfc
xn

2
√
at
− a∂2

xn
erfc

xn

2
√
at

= 0, (3.29)

but then

∂tV0 − aΔV0 = erfc
xn

2
√
at

(
∂tz0 − aΔ′z0

)
+ z0(x′, t)

(
∂t − a∂2

xnxn

)
erfc

xn

2
√
at

= 0.

Moreover, due to the relations erfc∞ = 0, erfc 0 = 1 the function V0(x, t) satisfies
the conditions (3.23),

V0|t=0 = z0(x′, t) erfc
xn

2
√
at

∣∣
t=0

= 0 in D, V0|xn=0 = z0(x′, t) on RT .

Thus, the function V0(x, t) is a solution of problem (3.22), (3.23), j = 0. We
point out that the last potential in (3.28) satisfies equation (3.22) and initial and
boundary conditions (3.23) with zero in the right-hand sides.
2. Let s ∈ [2, 2 + α]. The functions Vj(x, t) = zj(x′, t) erfc xn

2
√

at
, j = 0, 1, are

solutions of the nonhomogeneous equations

∂t Vj − aΔVj = z(1)j (x′, t)erfc
xn

2
√
at



68 G. Bizhanova

by (3.17), (3.29). So we determine the functions Wj(x, t) as solutions of the first
boundary value problems

∂tWj − aΔWj = −z(1)j (x′,t) erfc
xn

2
√
at

in DT ,

Wj

∣∣
t=0

= 0 in D, Wj

∣∣
xn=0

= 0 on RT , j = 0, 1,
(3.30)

then the sum Zj(x, t) = Vj(x, t) +Wj(x, t) will satisfy the homogeneous equation
∂tZj − aΔZj = 0, j = 0, 1, i.e., (3.22).

We can see that in problem (3.30) the compatibility conditions of zero order
is fulfilled

(3.30) is the problem (A.1). In Theorem 3.3 it was proved that the function
z
(1)
j , j = 0, 1, belongs to Cα

s−2(RT ), but then Theorem A.1 is valid for prob-
lem (3.30). In accordance to this theorem, problem (3.30) has a unique solution
Wj(x, t) ∈ C2

s,δ0
(DT ), δ0 = 1

8a , and is subjected to an estimate

|Wj |(2)s,δ0,DT
≤ c18|z(1)j |(α)

s−2,RT
≤ c19|Aj |(s−2j)

R , j = 0, 1,

due to (A.3) and (3.20).
By direct substitution of the function Zj(x, t) = zj(x′, t) erfc xn

2
√

at
+Wj(x, t),

j = 0, 1, into initial and boundary conditions (3.23), we are convinced that it
satisfies these conditions. Thus Zj(x, t) are the unique solutions of problem (3.22),
(3.23). �

Now we study the second boundary value problem with unknown function
Z2(x, t),

∂tZ2 − aΔZ2 = 0 in DT , (3.31)
Z2|t=0 = 0 in D, ∂xnZ2|xn=0 = z2(x′, t) on RT , (3.32)

where a function z2(x′, t) was constructed in Theorems 3.3, 3.4 as a solution of a
Cauchy problem (3.21) with an initial data z2|t=0 = B0(x′) in R, where B0(x′) =
ψ(x′, 0) − ∂xnu0(x)|xn=0 �= 0. We can see that in this problem the compatibility
condition of zero order is not fulfilled for s ∈ [1, 2 + α]. We recall also that

ierfc ζ =
∫ ∞

ζ

erfc ξ d ξ, erfc ζ =
2√
π

∫ ∞

ζ

e−ζ2
d ζ.

Theorem 3.7. Let B0(x′) ∈ Cs−1(R), s ∈ [1, 2 + α], α ∈ (0, 1). Then problem
(3.31), (3.32) has the unique solution

V2(x, t) = −2
√
at z2(x′, t) ierfs

xn

2
√
at
, (3.33)

where z2(x′, t) is defined in Theorem 3.3: z2∈C2+α
s−1 (RT ), |z2|(2+α)

s−1,RT
≤C9|B0|(s−1)

R .

Theorem 3.8. Let B0(x′) ∈ C1+α(R), α ∈ (0, 1). Then problem (3.31), (3.32)
has the unique solution V2(x, t) defined by formula (3.33), where z2(x′, t) is
determined in Theorem 3.4: z2 ∈ C2+α

1+α (RT ), |z2|(2+α)
1+α, RT

≤ C12|B0|(1+α)
R .

This theorem follows from Theorem 3.7 for s = 2 + α.
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Proof of Theorem 3.7. The solution of problem (3.31), (3.32) may be written in
the explicit form

Z2(x, t) = −2a
∫ t

0

dτ

∫
Rn−1

z2(y′, τ)Γ(x′ − y′, xn, τ)dy′ (3.34)

= V2(x, t) − 2a
∫ t

0

dτ

∫
Rn−1

(
z2(y′, τ)− z2(x′, t)

)
Γ(x′ − y′, xn, τ)dy′,

where

V2(x,t)=−2az2(x′,t)
∫ t

0

dτ

∫
Rn−1

Γ(x′−y′,xn,τ)dy′=−2
√
atz2(x′,t)ierfs

xn

2
√
at
.

The function
√
t ierfs xn

2
√

at
satisfies an equation(

∂t − a∂2
xnxn

)√
t ierfs

xn

2
√
at

= 0.

This is confirmed by direct computations with the help of formulas (1.13), (1.14)
for the iterated integrals of the probability. The function z2 is a solution of a
Cauchy problem (3.21) with an initial condition z2|t=0 = B0(x′). But then the
function V2(x, t) is a solution of an equation (3.31),

∂tV2 − aΔV2 = − 2
√
at ierfc

xn

2
√
at

(
∂tz2 − aΔ′z2

)
− 2
√
az2(x′, t)

(
∂t − a∂2

xnxn

)√
t ierfc

xn

2
√
at

= 0.

Moreover, by the relations ierfc∞ = 0, erfc 0 = 1 we have

V2

∣∣
t=0

= 0, ∂xnV2

∣∣
xn=0

= z2(x′, t) erfc
xn

2
√
at

∣∣
xn=0

= z2(x′, t).

We remark that the last potential in (3.34) satisfies an equation (3.31) and
the homogeneous conditions (3.32).

Thus, we have shown that the function V2(x, t) is a unique solution of problem
(3.31), (3.32). �

4. Problem 1

Consider the first boundary value problem (1.1)–(1.3) – Problem 1.

Proof of Theorem 2.1. It is known [1, 2, 8] that the solution of Problem 1 belongs
to C2+α

s (RT ), if there are fulfilled the compatibility conditions of zero order for
s ∈ (α, 2) : A0(x′) = 0 on R, and of zero and first orders for s ∈ [2, 2 + α]:
A0(x′) = 0, A1(x′) = 0 on R, where

A0(x′) := ϕ(x′, 0)− u0(x)
∣∣
xn=0

on R, (4.1)

A1(x′) := ∂tϕ(x′, t)
∣∣
t=0

− (aΔu0(x) + f(x, 0)
)∣∣

xn=0
on R. (4.2)

We study the problem under the conditions A0(x′) �= 0, A1(x′) �= 0 on R.
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In Theorems 3.3, 3.4 we have extended the functions Aj(x) into RT by the
functions zj(x′, t), which satisfy conditions (3.8)–(3.10) and in Theorems 3.5, 3.6
we have continued zj(x′, t) into DT by the functions Zj(x, t), j = 0, 1, as the
solutions of problems (3.22), (3.23):

∂t Zj − aΔZj = 0 in DT , Zj |t=0 = 0 in D, Zj|xn=0 = zj(x′, t) on RT , (4.3)

and have represented them in the form (3.24), (3.25),

Z0(x, t) = V0(x, t) +

{
0, s ∈ (α, 2),
W0(x, t), s ∈ [2, 2 + α],

(4.4)

Z1(x, t) = V1(x, t) +W1(x, t), s ∈ [2, 2 + α], (4.5)

Vj(x, t) = zj(x′, t) erfc
xn

2
√
at
, j = 0, 1. (4.6)

With the help of the functions Zj(x, t), j = 0, 1, we reduce the original
Problem 1 to a problem with the fulfilled compatibility conditions of the necessary
orders.

We make the substitution
u(x, t) = Z0(x, t) + v1(x, t), s ∈ (α, 2),

u(x, t) = Z0(x, t) + Z1(x, t) + v2(x, t), s ∈ [2, 2 + α],
(4.7)

in Problem 1 (1.1)–(1.3), where v1, v2 are the new unknowns. For these functions
due to (4.3) we shall have the problems

∂t vi − aΔ vi = f(x, t) in DT , i = 1, 2, (4.8)

v1|t=0 = u0(x) in D, v1|xn=0 = ϕ(x′, t)− z0(x′, t) on RT , (4.9)
and

v2|t=0 = u0(x) in D, v2|xn=0 = ϕ(x′, t)−
(
z0(x′, t) + z1(x′, t)

)
on RT . (4.10)

In problems (4.8), i = 1, (4.9) and (4.8), i = 2, (4.10) the compatibility condi-
tions of zero and of zero and first orders are fulfilled respectively. Really, taking into
account the initial conditions (3.8), (3.9), (3.10) for zj(x′, t), ∂tzj(x′, t), j = 0, 1,
and formulas (4.1), (4.2) we derive the identities (compatibility conditions) on the
boundary xn = 0 at t = 0 for problem (4.8), i = 1, (4.9)

v1
∣∣

xn=0,
t=0

≡ u0(x′, 0) = ϕ(x′, 0)− z0(x′, 0) = ϕ(x′, 0)−A0(x′) ≡ u0(x′, 0)

and for problem (4.8), i = 2, (4.10),

v2
∣∣

xn=0,
t=0

≡ u0(x′, 0) = ϕ(x′, 0)−
(
z0(x,′ t) + z1(x,′ t)

)∣∣
t=0

= ϕ(x′, 0)−A0(x′) ≡ u0(x′, 0),

∂tv2
∣∣

xn=0,
t=0

≡
(
aΔu0(x) + f(x, 0)

)∣∣
xn=0

= ∂tϕ(x′, t)
∣∣
t=0

−
(
∂tz0(x′, t) + ∂tz1(x′, t)

)∣∣
t=0

= ∂tϕ(x′, t)
∣∣
t=0

−A1(x′) ≡
(
aΔu0(x) + f(x, 0)

)∣∣
xn=0

.
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Then each of problems (4.8), i = 1, (4.9) and (4.8), i = 2, (4.10) has a unique
solution vi ∈ C2+α

s (DT ), i = 1, 2, and for vi the following estimates are valid
[1, 2, 6, 8]:

|v1|(2+α)
s,DT

≤ c1
(
|u0|(s)D + |f |(α)

s−2,DT
+ |ϕ|(2+α)

s,RT
+ |z0|(2+α)

s,DT

)
,

|v2|(2+α)
s,DT

≤ c2
(
|u0|(s)D + |f |(α)

s−2,DT
+ |ϕ|(2+α)

s,RT
+ |z0|(2+α)

s,DT
+ |z1|(2+α)

s,DT

)
.

(4.11)

Here the functions zj(x′, t), j = 0, 1, satisfy the estimates (3.12), (3.13):
|zj |(2+α)

s,DT
≤ c3|Aj |(s−2j)

R , and the norms of A0 and A1 (see (4.1), (4.2)) are evaluated
by the norms of the given functions u0, f, ϕ respectively. Thus, (4.11) leads to
the estimate (2.2). The functions Z0, Z1 in the solution (4.7) of Problem 1 are
expressed via the functions zj(x′, t), Wj(x, t), j = 0, 1, satisfying the estimates
(3.12), (3.13), (3.26), i.e., (2.1).

The solution (4.7), (4.4)–(4.6) of Problem 1 contains the function

h0(xn, t) := erfc
xn

2
√
at

=
2√
π

∫ ∞

xn
2
√

at

e−ξ2
dξ.

Consider this function and its derivatives

∂xnh0(xn, t) = − 1√
aπt

e−
x2

n
4at , ∂th0 = a∂2

xnxn
h0 =

xn

2
√
aπt3/2

e−
x2

n
4at .

The function h0 and its derivatives ∂xnh0, ∂th0, a∂2
xnxn

h0 have different limits
at the point ((x′, 0), 0) depending on the approach of the point (x, t) to this point
((x′, 0), 0). Really,

lim
t→0

lim
xn→0

h0(xn, t) = 1, lim
xn→0

lim
t→0

h0(xn, t) = 0, (4.12)

lim
t→0

lim
xn→0

∂xnh0(xn, t) = −∞, lim
xn→0

lim
t→0

∂xnh0(xn, t) = 0. (4.13)

Let the point x = (x1, . . . , xn) tend to the boundary xn = 0 of a domain as
(x′, l0tβ), t→ 0, β > 0, l0 = const > 0, then

h0(l0tβ, t) = erfs
(
l0

2
√
a
tβ−1/2

)
,

∂xnh0(xn, t)
∣∣
xn=l0tβ = − 1√

aπt
e−

l20
4a t2β−1

,

∂th0(xn, t)
∣∣
xn=l0tβ = a∂2

xnxn
h0(xn, t)

∣∣
xn=l0tβ =

l0
2
√
aπ
tβ−3/2 e−

l20
4a t2β−1

and

lim
t→0

h0(l0tβ, t) =

⎧⎪⎨⎪⎩
0, 0 < β < 1/2,
erfc l0

2
√

a
, β = 1/2,

1, β > 1/2,

(4.14)

lim
t→0

∂xnh0(xn, t)
∣∣
xn=l0tβ =

{
0, 0 < β < 1/2,
−∞, β ≥ 1/2,

(4.15)



72 G. Bizhanova

lim
t→0

∂th0(xn, t)
∣∣
xn=l0tβ = lim

t→0
a∂2

xnxn
h0(xn, t)

∣∣
xn=l0tβ

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 0 < β < 1/2,
∞, 1/2 ≤ β < 3/2,

l0
2
√

aπ
, β = 3/2,

0, β > 3/2.

(4.16)

In particular, for xn = l0
√
t, l0 =const> 0, we have

h0(l0
√
t, t) = erfc

l0
2
√
a

= const, (4.17)

∂xnh0(xn, t)
∣∣
xn=l0

√
t
= − 1√

aπt
e−

l20
4a , (4.18)

∂th0(xn, t)
∣∣
xn=l0

√
t
= a∂2

xnxn
h0(xn, t)

∣∣
xn=l0

√
t
=

l0
2
√
aπ

1
t
e−

l20
4a . (4.19)

From here it is seen that the derivatives ∂xnh0

∣∣
xn=l0

√
t

and ∂th0

∣∣
xn=l0

√
t
,

∂2
xnxn

h0

∣∣
xn=l0

√
t

tend to −∞ and ∞ as −1/
√
t and 1/t respectively, when t→ 0(

(x|xn=l0
√

t , t)→ ((x′, 0), 0
)
.

Let xn ≥ r0=const> 0, then applying the estimates |ξ|β ≤ cβ e−ξ2/2, β ≥ 0,
erfc ζ ≤

√
2 erfs ζ√

2
e−ζ2/2 ≤

√
2 e−ζ2/2 we shall have

h0(xn, t) ≤ c4 e−
x2

n
8at ,

|∂xnh0(xn, t)| ≤ c5
xn√
t

1
xn
e−

x2
n

4at ≤ c6
1
r0
e−

x2
n

8at ,

|∂th0(xn, t)|, |∂2
xnxn

h0(xn, t)| ≤ c7
1
r20
e−

x2
n

8at , xn ≥ r0.

(4.20)

These inequalities show that the function h0 = erfc xn

2
√

at
and its derivatives ∂xnh0,

∂th0, ∂2
xnxn

h0 tend to zero exponentially as t → 0 in the interior of the domain
xn ≥ r0.

We see that nonfulfillment of the compatibility conditions of zero (A0 �=
0) and first (A1 �= 0) orders in Problem 1 leads to appearance of the singular
functions Z0(x, t) and Z1(x, t) in the solution respectively (see (4.7), (4.4)–(4.6)),
the principle parts of which are

Vj(x, t) = zj(x′, t) erfc
xn

2
√
at
, j = 0, 1,

where zj(x′, t) ∈ C2+α
s (RT ), |z0|(2+α)

s,RT
≤ c8|A0|(s)R , s ∈ (α, 2 + α], |z1|(2+α)

s,RT
≤

c9|A1|(s−2)
R , s ∈ [2, 2 + α].
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Consider the functions Vj(x, t), j = 0, 1, and its derivatives:

∂x′Vj(x, t) = erfc
xn

2
√
at
∂x′zj(x′, t),

∂2
x′x′Vj(x, t) = erfc

xn

2
√
at
∂2

x′x′zj(x′, t),
(4.21)

∂xnVj(x, t) = − 1√
at
e−

x2
n

4at zj(x′, t),

∂2
x′xn

Vj(x, t) = − 1√
aπt

e−
x2

n
4at ∂x′zj(x′, t),

(4.22)

∂2
xnxn

Vj(x, t) =
xn

2a
√
aπt3/2

e−
x2

n
4at zj(x′, t),

∂tVj(x, t) = erfc
xn

2
√
at
∂tzj(x′, t) + a ∂2

xnxn
Vj(x, t), j = 0, 1,

(4.23)

where z0(x′, 0) = A(x′) �= 0, z1(x′, 0) = 0 on R.
Due to the function h0(xn, t) := erfc xn

2
√

at
satisfying the estimates (4.20) for

xn ≥ r0 V0, ∂xV0, ∂2
xxV0, ∂tV0 go to zero exponentially as t → 0 in the interior

of the domain. V0 is bounded, but discontinuous at the point ((x′, 0), 0), as it was
shown (see (4.12), (4.14), (4.17)). The derivatives ∂xnV0 and ∂2

xnxn
V0 containing

∂xnh0 and ∂2
xnxn

h0 respectively have finite or infinite limits as (x, t)→ ((x′, 0), 0)
in accordance with (4.13), (4.15), (4.18) and (4.16), (4.19). We can see also that
the derivatives ∂2

xnxn
V0, ∂tV0 are integrable functions with respect to t ∈ (0, T ),

T > 0. The derivatives ∂x′V0, ∂2
x′xV0, ∂tV0 and erfc xn

2
√

aπt
∂tz0(x′, t) in (4.23) are

subjected to the estimates

|∂x′V0| ≤ c10 t
s−1
2 e−

x2
n

4at , s ∈ (α, 1),

|∂xx′V0|, erfc
xn

2
√
aπt

|∂tz0(x′, t)| ≤ c11 t
s−2
2 e−

x2
n

8at , s ∈ (α, 2),

the derivatives ∂x′z0 for s ∈ [1, 2+α] and ∂2
x′xz0, ∂tz0 for s ∈ [2, 2+α], in formulas

(4.21), (4.22), (4.23) are bounded functions.
Thanks to the function z1(x′, t) satisfying an estimate (3.14): |z1| ≤ c12

|A1|(s−2)
R t in RT , s ∈ [2, 2 + α], the functions V1(x, t) and ∂xV1(x, t) are continu-

ous, the higher derivatives ∂tV1(x, t), ∂2
xxV1(x, t) are bounded, but discontinuous

in the vicinity of a boundary xn = 0 of a domain as t→ 0.
If A0(x′) �= 0, but A1(x′) = 0 on R, then Z1(x, t) = 0 in DT and the solution

of Problem 1 takes the form

u(x, t) = Z0(x, t) +

{
v1(x, t), s ∈ (α, 2),
v2(x, t), s ∈ [2, 2 + α].

If A0(x′) = 0, but A1(x′) �= 0 on R, then Z0(x, t) = 0 in DT and

u(x, t) =

{
v1(x, t), s ∈ (α, 2),
Z1(x, t) + v2(x, t), s ∈ [2, 2 + α].
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For A0(x′) = 0, A1(x′) = 0 on R we have

u(x, t) =

{
v1(x, t), s ∈ (α, 2),
v2(x, t), s ∈ [2, 2 + α].

The derivatives ∂xv1; ∂tv1, ∂2
xxv1 and their Hölder constants have singular-

ities of orders t
s−1
2 , s ∈ (α, 1); t

s−2
2 , s ∈ (α, 2), and t

s−2−α
2 , s ∈ (α, 2 + α),

respectively in D for t→ 0. The function v2(x, t) possesses the bounded derivatives
∂t v2(x, t), ∂2

x v2(x, t), and their Hölder constants are unbounded of t
s−2−α

2 order,
s ∈ [2, 2 + α) and bounded for s = 2 + α as t→ 0.

We can see that the character of the singularities of the functions Z0(x, t),
Z1(x, t) and v1(x, t), v2(x, t) is different. Nonfulfillment of the compatibility condi-
tions of the given functions on the boundary xn = 0 at t = 0 leads to appearance
of the functions Z0(x, t), Z1(x, t), which are singular only in the vicinity of a
boundary xn = 0 of a domain as t → 0. The derivatives of the function v1(x, t)
and the Hölder constants of the higher derivatives of v1(x, t) and v2(x, t) may be
singular as t → 0 in the closure of a domain D and their singularities depend on
an initial function u0(x) of Problem 1 belonging to Cs(D). �

5. Problem 2

Consider the second boundary value problem (1.1), (1.2), (1.4) – Problem 2.

Proof of Theorem 2.3. 1. For s ∈ (α, 1) the derivatives ∂xu have singularities of
order t

s−1
2 as t → 0, so the compatibility condition can not be fulfilled and it is

not required. In this case Problem 2 has a unique solution u(x, t) := v1(x, t) ∈
C2+α

s (DT ), and an estimate (2.3), i = 1, for it is valid [1, 2, 8]. The higher deriva-
tives ∂t v1(x, t), ∂2

x v1(x, t) and their Hölder constants have in D singularities of
orders t

s−2
2 and t

s−2−α
2 respectively as t→ 0.

2. Let s ∈ [1, 2 + α]. This case requires the fulfillment of the zero-order compati-
bility condition: B0(x′) = 0 on R, where

B0(x′) := ψ(x′, 0)− ∂xnu0(x)
∣∣
xn=0

∈ Cs−1(RT ) on R (5.1)

for the solution of Problem 2 to belong to C2+α
s (DT ) [1, 2, 6, 8].

We study the problem under the condition B0(x′) �= 0 on R. In Theorem
3.3 we have extended the function B0(x′) into RT by the function z2(x′, t) as a
solution of the Cauchy problem (3.21) satisfying an initial condition

z2|t=0 = B0(x′) on R, (5.2)

then we have extended the function z2(x′, t) into DT by the function

V2(x, t) = −2
√
a t z2(x′, t) ierfs

xn

2
√
at

(5.3)
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which is a solution of problem (3.31), (3.32),

∂tV2−aΔV2 = 0 in DT , V2|t=0 = 0 in D, ∂xnV2|xn=0 = z2(x′, t) on RT . (5.4)

We recall that

ierfs ζ =
∫ ∞

ζ

erfs ξ dξ, erfs ζ =
2√
π

∫ ∞

ζ

e−ξ2
dξ.

After the substitution

u(x, t) = V2(x, t) + v2(x, t)

in Problem 2 (1.1), (1.2), (1.4) and taking into account that V2(x, t) is a solution
of a problem (5.4) we obtain the following problem for the new unknown function
v2(x, t),

∂t v2 − aΔ v2 = f(x, t) in DT , v2
∣∣
t=0

= u0(x) in D,

∂xnv2
∣∣
xn=0

= ψ(x′, t)− ∂xnV2

∣∣
xn=0

≡ ψ(x′, t)− z2(x′, t) erfs
xn

2
√
at

∣∣
xn=0

≡ ψ(x′, t)− z2(x′, t).
(5.5)

Due to (5.2), (5.1) in this problem the compatibility condition on the bound-
ary xn = 0 at t = 0 is fulfilled:

∂xnv2
∣∣

xn=0,
t=0

≡ ∂xnu0(x)
∣∣
xn=0

= ψ(x′, 0)−B0(x′) ≡ ∂xnu0(x)
∣∣
xn=0

.

As it was shown in Theorem 3.3, z2(x′, t) ∈ C2+α
s−1 (RT ) ⊂ C1+α

s−1 (RT ) and an
estimate (3.15) for it holds: |z2|(2+α)

s−1,RT
≤ c9|B0|(s−1)

R , here B0(x′) is evaluated by
the norms of the functions u0, ψ. But then problem (5.5) has a unique solution
v2(x, t) ∈ C2+α

s (RT ) and it satisfies an estimate (2.3) [1, 2, 6, 8].
Consider the function V2(x, t) (see (5.3)) and its derivatives. V2 is a continuous

function in DT due to the cofactor
√
t. In the vicinity of a boundary xn = 0 the

derivative
∂xnV2(x, t) = z2(x′t) erfs

xn

2
√
at

is bounded, but discontinuous as (x, t) → ((x′, 0), 0) (see (4.12), (4.14), (4.17)),
and the second derivative

∂2
xnxn

V2(x, t) = − 1√
aπt

z2(x′t) e−
x2

n
4at

is singular as (x, t) → ((x′, 0), 0) (see (4.13), (4.15), (4.18)).
In formula (5.3) the function z2(x′, t) belongs to C2+α

s−1 (RT ), but thanks to
a cofactor

√
t the orders of the singularities with respect to t as t → 0 of the

derivatives ∂x′V2, ∂2
x′x′V2,

√
t ierfs xn

2
√

at
∂tz2(x′, t) decrease.

In the interior of a domain xn ≥ r0=const > 0 the function V2 and its
derivatives ∂xV2, ∂2

xxV2, ∂tV2 tend to zero as t → 0 exponentially due to the
estimates erfs ζ ≤

√
2 erfs ζ√

2
e−ζ2/2 ≤

√
2 e−ζ2/2, ierfs ζ ≤ 2 ierfs ζ√

2
e−ζ2/2 ≤

√
π e−ζ2/2 and (4.20).
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Consider the function v2(x, t). The higher derivatives ∂tv2, ∂2
xxv2 and their

Hölder constants have inD the singularities of orders t
s−2
2 for s ∈ [1, 2) and t

s−2−α
2 ,

s ∈ [1, 2 + α) respectively as t → 0. These singularities are caused by the initial
function u0(x) belonging to Cs(D). Nonfulfillment of the boundary and initial
functions leads to appearance of the function V2(x, t) in the solution of Problem
2, which is singular only in the vicinity of a boundary xn = 0 as t→ 0. �

Appendix

We have let D := Rn
+, n ≥ 2, R := {x = (x′, xn) |x′ ∈ Rn−1, xn = 0}, x′ =

(x1, . . . , xn−1), DT = D × (0, T ), RT = R× [0, T ].
In Theorems 3.5, 3.6 for s ∈ [2, 2 + α] we have constructed the singular

functions Zj(x, t) = Vj(x, t) +Wj(x, t), Vj(x, t) = zj(x′, t)erfc xn

2
√

at
, j = 0, 1, (see

(3.24), (3.25)), which appear due to the incompatible boundary and initial data in
Problem 1. The functions Vj(x, t), j = 0, 1, are the principle parts of the singular
solutions Zj(x, t), j = 0, 1. The functionsWj(x, t), j = 0, 1, are those that remain
after extracting from the singular solutions their principle parts Vj(x, t), j = 0, 1,
and they are the solutions of problems (3.30).

Consider this problem with unknown function W (x, t):

∂tW − aΔW = g(x′, t) erfs
xn

2
√
at

in DT ,

W
∣∣
t=0

= 0 in D, W
∣∣
xn=0

= 0 on RT ,
(A.1)

where

erfs ζ =
2√
π

∫ ∞

ζ

e−ξ2
dξ ≤

√
2 erfs

ζ√
2
e−ζ2/2 ≤

√
2 e−ζ2/2, ζ ≥ 0. (A.2)

We can see that in problem (A.1) the compatibility condition of zero order
is fulfilled.

Theorem A.1. Let s ∈ [2, 2+α], α ∈ (0, 1). For every function g(x′, t) ∈ Cα
s−2(RT )

the problem (A.1) has a unique solution W (x, t) ∈ C2
s,δ0

(DT ), δ0 = 1
8a , which

satisfies an estimate
|W |(2)s,δ0,DT

≤ c1|g|(α)
s−2,RT

. (A.3)

From this theorem for s = 2 + α we have the following one.

Theorem A.2. For every function g(x′, t) ∈ Cα, α/2
x′ t (RT ), α ∈ (0, 1), the problem

(A.1) has a unique solution W (x, t) ∈ C2
2+α,δ0

(DT ), δ0 = 1
8a , which satisfies an

estimate
|W |(2)2+α,δ0,DT

≤ c2|g|(α)
RT
.

Here the norms |g|(α)
s−2,RT

, |g|(α)
RT

and |W |(2)s,δ0,DT
, |W |(2)2+α,δ0,DT

are defined
by formulas (1.5), (1.9) and (1.10), (1.11) respectively.
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Proof of Theorem A.1. The solution of problem (A.1) may be written in the ex-
plicit form

W (x, t) =
∫ t

0

dτ

∫
Rn

+

g(y′, τ) erfc
yn

2
√
aτ

(
Γn(x− y, t− τ)− Γn(x− y∗, t− τ)

)
dy

(A.4)

≡
∫ t

0

dτ

∫
Rn−1

g(y′, τ) Γn−1(x′ − y′, t− τ) dy′

×
∫ ∞

0

erfc
yn

2
√
aτ

(
Γ1(xn − yn, t− τ)− Γ1(xn + yn, t− τ)

)
dyn;

here y∗ = (y1, . . . , yn−1,−yn),

Γn(x, t) =
1

(2
√
aπt)n

e−
x2
4at (A.5)

is a fundamental solution of a heat equation satisfying an estimate

|∂k
t ∂

m
x Γn(x, t)| ≤ c3

1

t
n+2k+|m|

2

e−
x2
8at . (A.6)

We evaluate the norm (1.10) of the potential (A.4). First, with the help of a
tabular formula∫ ∞

−∞
e−A(x−y)2−B(y−z)2dy =

√
π√

A+B
e−

AB(x−z)2

A+B , A,B > 0,

we compute an integral

J1(xn, t− τ, τ ; k) =
∫ ∞

0

(
e−

(xn−yn)2

ka(t−τ) + e−
(xn+yn)2

ka(t−τ)
)
e−

y2
n

kaτ dyn

=
∫ ∞

−∞
e−

(xn−yn)2

ka(t−τ) e−
y2

n
kaτ dyn =

√
πak

√
τ(t− τ)√
t

e−
x2

n
kat , τ ∈ (0, t), k > 0,

(A.7)

and estimate it as

J1(xn, t− τ, τ ; k) ≤
√
πak

√
t− τ e−

x2
n

kat . (A.8)

Let R′
t = R× [t/2, t],

M1 := sup
t≤T

| g(x′, t)|R, (A.9)

M2 := sup
t≤T

t
2+α−s

2 sup
(x′,t),(z′,t)∈R′

t

∣∣g(x′, t)− g(z′, t)∣∣ |x′ − z′|−α, (A.10)

M3 := sup
t≤T

t
2+α−s

2 sup
(x′,t),(x′,t1)∈R′

t

∣∣g(x′, t)− g(x′, t1)∣∣ |t− t1|−α/2. (A.11)
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We can represent the derivatives ∂j
xi
∂xμW (x, t), i = 1, . . . , n, μ = 1, . . . , n−

1, j = 0, 1, in the form

∂j
xi
∂xμW (x, t) =

∫ t

0

dτ

∫
Rn

+

(
g(y′, τ)− g(x′, τ)

)
erfc

yn
2
√
aτ

× ∂j
xi
∂xμ

(
Γn(x− y, t− τ) − Γn(x− y∗, t− τ)

)
dy

by an identity∫
Rn−1

∂xμ

(
Γn(x − y, t− τ)− Γn(x− y∗, t− τ)

)
dy′ = 0.

Applying the notations (A.9), (A.10) and the estimates (A.6) for Γn(x, t),
(A.2) for erfc xn

2
√

at
, (A.8) for J1,

|ξ|βe−ξ2
≤ cβ e−ξ2/2, β ≥ 0, (A.12)

and integrating with respect to y′ we obtain

|W (x, t)| ≤ c4M1

∫ t

0

1√
t− τ

J1(xn, t− τ, τ ; 8) dτ ≤ c5M1 t e
− x2

n
8at ; (A.13)

|∂j
xi
∂xμW (x, t)| ≤ c6M2

∫ t

0

τ
s−2−α

2
1

(t− τ)1+j/2−α/2
J1(xn, t− τ, τ ; 8) dτ

≤ c7M2 t
s−1−j

2 e−
x2

n
8at , j = 0, 1,

and from here we shall have the estimates

|∂xμW (x, t)| ≤ c7M2 t
s−1
2 e−

x2
n

8at , |∂xi∂xμW (x, t)| ≤ c7M2 t
s−2
2 e−

x2
n

8at , (A.14)

i = 1, . . . , n, μ = 1, . . . , n− 1, s ∈ [2, 2 + α].
We evaluate ∂xnW (x, t), ∂2

xnxn
W (x, t). For that we write down the derivative

∂xnW (x, t) as follows:

∂xnW (x, t) =
∫ t

0

dτ

∫
Rn−1

g(y′, τ)Γn−1(x′ − y′, t− τ)J2(xn, t− τ, τ) dy′, (A.15)

J2(·) = −
∫ ∞

0

erfc
yn

2
√
aτ
∂yn

(
Γ1(xn − yn, t− τ) + Γ1(xn + yn, t− τ)

)
dyn,

where Γn−1, Γ1 are defined by (A.5). Integrating J2 by parts and applying formula
(A.7) we obtain

J2(xn, t− τ, τ) = 2 Γ1(xn, t− τ)−
1

2aπ
√

(t− τ)τ
J1(xn, t− τ, τ ; 4)

= 2
(
Γ1(xn, t− τ)− Γ1(xn, t)

)
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and the derivative (A.15) takes the form

∂xnW (x, t) = 2
∫ t

0

(
Γ1(xn, t− τ)− Γ1(xn, t)

)
dτ

×
∫

Rn−1
g(y′, τ)Γn−1(x′ − y′, t− τ) dy′.

From here with the help of the formula∫
Rn−1

Γn−1(x′ − y′, t− τ) dy′ = 1 (A.16)

we derive

∂2
xnxn

W (x, t) = 2
∫ t

0

∂xn

(
Γ1(xn, t− τ)− Γ1(xn, t)

)
dτ

×
∫

Rn−1

(
g(y′, τ)− g(x′, t)

)
Γn−1(x′ − y′, t− τ) dy′

+ 2g(x′, t)
∫ t

0

∂xn

(
Γ1(xn, t− τ) − Γ1(xn, t)

)
dτ

:= J3(x, t) + J4(x, t). (A.17)

Taking into account the notations (A.9)–(A.11), formula (A.16), the inequal-
ities (A.12) and

e−
x2

n
4a(t−τ) ≤ e−

x2
n

4at , τ ∈ (0, t),

then integrating with respect to τ we find

|∂xnW (x, t)| ≤ c8M1 t
1/2 e−

x2
n

4at (A.18)

and

|J3(x, t)| ≤ c9 (M2 +M3)
∫ t

0

τ
s−2−α

2

( xn

(t− τ) 3−α
2

e−
x2

n
4a(t−τ) +

xn(t− τ)α/2

t3/2
e−

x2
n

4at

)
dτ

≤ c10 (M2 +M3) t
s−2
2 e−

x2
n

4at , (A.19)

J4(x, t) =
1
a
g(x′, t)

(
xn

2
√
aπt

e−
x2

n
4at − erfc

xn

2
√
at

)
, (A.20)

J4(x, t) ≤ c11M1 e
− x2

n
8at . (A.21)

We make use of estimates (A.19), (A.21) in (A.17) and take into account that
M1 +M2 +M3 = |g|αs−2,RT

, e−ξ2 ≤ e−ξ2/2, then we obtain

|∂2
xnxn

W (x, t)| ≤ c12
(
M1 + t

s−2
2 (M2 +M3)

)
e−

x2
n

8at ≤ c13|g|(α)
s−2,RT

e−
x2

n
8at (A.22)

(here s ∈ [2, 2 + α]).
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From the equation in (A.1) with the help of formulas (A.17), (A.20) we find
the time derivative ∂tW (x, t),

∂tW (x, t) = aΔ′W (x, t) + aJ3(x, t) + g(x′, t)
xn

2
√
aπt

e−
x2

n
4at

and applying the estimates (A.14), (A.19), (A.12) to it we derive

|∂tW (x, t)| ≤ c14
(
M1 + t

s−2
2 (M2 +M3)

)
e−

x2
n

8at ≤ c15|g|(α)
s−2,RT

e−
x2

n
8at . (A.23)

Gathering obtained estimates (A.13), (A.14), (A.18), (A.22), (A.23) we shall
have an estimate (A.3) of the norm |W |(2)s,δ0,DT

, δ0 = 1
8a , defined by (1.10). �
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equations of parabolic type. “Nauka”, Moscow, 1967; translation by S. Smith, Trans-
lations of Mathematical Monographs, American Mathematical Society, Providence,
R.I. 23, 1967.

[7] Y. Martel and Ph. Souplet, Small time boundary behavior of solutions of parabolic
equations with noncompatible data. J. Math. Pures Appl. 79 (2000), 603–632.

[8] V.A. Solonnikov, On an estimate of the maximum of a derivative modulus for a
solution of a uniform parabolic initial-boundary value problem. LOMI Preprint N
P-2-77, 1977 (in Russian).

Galina Bizhanova
Institute of Mathematics
Pushkin str., 125
Almaty 050010, Kazakhstan
e-mail: galya@math.kz, galina math@mail.ru



Progress in Nonlinear Differential Equations
and Their Applications, Vol. 80, 81–93
c© 2011 Springer Basel AG

On the Maxwell-Stefan Approach
to Multicomponent Diffusion

Dieter Bothe

Dedicated to Herbert Amann on the occasion of his 70th anniversary

Abstract. We consider the system of Maxwell-Stefan equations which describe
multicomponent diffusive fluxes in non-dilute solutions or gas mixtures. We
apply the Perron-Frobenius theorem to the irreducible and quasi-positive ma-
trix which governs the flux-force relations and are able to show normal el-
lipticity of the associated multicomponent diffusion operator. This provides
local-in-time wellposedness of the Maxwell-Stefan multicomponent diffusion
system in the isobaric, isothermal case.
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1. Introduction

On the macroscopic level of continuum mechanical modeling, fluxes of chemical
components (species) are due to convection and molecular fluxes, where the latter
essentially refers to diffusive transport. The almost exclusively employed constitu-
tive “law” to model diffusive fluxes within continuum mechanical models is Fick’s
law, stating that the flux of a chemical component is proportional to the gradient
of the concentration of this species, directed against the gradient. There is no in-
fluence of the other components, i.e., cross-effects are ignored although well known
to appear in reality. Actually, such cross-effects can completely divert the diffusive
fluxes, leading to so-called reverse diffusion (up-hill diffusion in direction of the
gradient) or osmotic diffusion (diffusion without a gradient). This has been proven
in several experiments, e.g., in a classical setting by Duncan and Toor; see [7].

To account for such important phenomena, a multicomponent diffusion ap-
proach is required for realistic models. The standard approach within the theory
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of Irreversible Thermodynamics replaces Fickian fluxes by linear combinations of
the gradients of all involved concentrations, respectively chemical potentials. This
requires the knowledge of a full matrix of binary diffusion coefficients and this
diffusivity matrix has to fulfill certain requirements like positive semi-definiteness
in order to be consistent with the fundamental laws from thermodynamics. The
Maxwell-Stefan approach to multicomponent diffusion leads to a concrete form
of the diffusivity matrix and is based on molecular force balances to relate all
individual species velocities. While the Maxwell-Stefan equations are successfully
used in engineering applications, they seem much less known in the mathemati-
cal literature. In fact we are not aware of a rigorous mathematical analysis of the
Maxwell-Stefan approach to multicomponent diffusion, except for [8] which mainly
addresses questions of modeling and numerical computations, but also contains
some analytical results which are closely related to the present considerations.

2. Continuum mechanical modeling of multicomponent fluids

We consider a multicomponent fluid composed of n chemical components Ai. Start-
ing point of the Maxwell-Stefan equations are the individual mass balances, i.e.,

∂tρi + div (ρiui) = Rtot
i , (1)

where ρi = ρi(t,y) denotes the mass density and ui = ui(t,y) the individual
velocity of species Ai. Note that the spatial variable is denoted as y, while the usual
symbol x will refer to the composition of the mixture. The right-hand side is the
total rate of change of species mass due to all chemical transformations. We assume
conservation of the total mass, i.e., the production terms satisfy

∑n
i=1R

tot
i = 0.

Let ρ denote the total mass density and u be the barycentric (i.e., mass averaged)
velocity, determined by

ρ :=
n∑

i=1

ρi, ρu :=
n∑

i=1

ρi ui.

Summation of the individual mass balances (1) then yields

∂tρ+ div (ρu) = 0, (2)

i.e., the usual continuity equation.
In principle, a full set of n individual momentum balances should now be

added to the model; cf. [11]. But in almost all engineering models, a single set
of Navier-Stokes equations is used to describe the evolution of the velocity field,
usually without accounting for individual contributions to the stress tensor. One
main reason is a lack of information about appropriate constitutive equations for
the stress in multicomponent mixtures; but cf. [16]. For the multicomponent, single
momentum model the barycentric velocity u is assumed to be determined by the
Navier-Stokes equations. Introducing the mass diffusion fluxes

ji := ρi(ui − u) (3)
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and the mass fractions Yi := ρi/ρ, the mass balances (1) can be rewritten as

ρ∂tYi + ρu · ∇Yi + div ji = Rtot
i . (4)

In the present paper, main emphasis is on the aspect of multicomponent diffu-
sion, including the cross-diffusion effects. Therefore, we focus on the special case
of isobaric, isothermal diffusion. The (thermodynamic) pressure p is the sum of
partial pressures pi and the latter correspond to ciRT in the general case with ci
denoting the molar concentration, R the universal gas constant and T the absolute
temperature; here ci = ρi/Mi with Mi the molar mass of species Ai. Hence iso-
baric conditions correspond to the case of constant total molar concentration ctot,
where ctot :=

∑n
i=1 ci. Still, species diffusion can lead to transport of momentum

because the Mi are different. Instead of u we therefore employ the molar averaged
velocity defined by

ctotv :=
n∑

i=1

ciui. (5)

Note that other velocities are used as well; only the diffusive fluxes have to be
adapted; see, e.g., [20]. With the molar averaged velocity, the species equations
(1) become

∂tci + div (civ + Ji) = rtoti (6)
with rtoti := Rtot

i /Mi and the diffusive molar fluxes

Ji := ci(ui − v). (7)

Below we exploit the important fact that
n∑

i=1

Ji = 0. (8)

As explained above we may now assume v = 0 in the isobaric case. In this case the
species equations (6) simplify to a system of reaction-diffusion equations given by

∂tci + div Ji = rtoti , (9)

where the individual fluxes Ji need to be modeled by appropriate constitutive
equations. The most common constitutive equation is Fick’s law which states that

Ji = −Di grad ci (10)

with diffusivities Di > 0. The diffusivities are usually assumed to be constant,
while they indeed depend in particular on the composition of the system, i.e.,
Di = Di(c) with c := (c1, . . . , cn). Even if the dependence of the Di is taken
into account, the above definition of the fluxes misses the cross-effects between
the diffusing species. In case of concentrated systems more realistic constitutive
equations are hence required which especially account for such mutual influences.
Here a common approach is the general constitutive law

Ji = −
n∑

j=1

Dij grad cj (11)
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with binary diffusivities Dij = Dij(c). Due to the structure of the driving forces,
as discussed below, the matrix D = [Dij ] is of the form D(c) = L(c)G′′(c) with a
positive definite matrix G′′(c), the Hessian of the Gibbs free energy. Then, from
general principles of the theory of Irreversible Thermodynamics, it is assumed that
the matrix of transport coefficients L = [Lij ] satisfies
• L is symmetric (the Onsager reciprocal relations)
• L is positive semidefinite (the second law of thermodynamics).

Under this assumption the quasilinear reaction-diffusion system

∂tc + div (−D(c)∇c) = r(c), (12)

satisfies – probably after a reduction to n−1 species – parabolicity conditions suf-
ficient for local-in-time wellposedness. Here r(c) is short for (rtot1 (c), . . . , rtotn (c)).

A main problem now is how realistic diffusivity matrices together with their
dependence on the composition vector c can be obtained.

Let us note in passing that Herbert Amann has often been advocating that
general flux vectors should be considered, accounting both for concentration depen-
dent diffusivities and for cross-diffusion effects. For a sample of his contributions
to the theory of reaction-diffusion systems with general flux vectors see [1], [2] and
the references given there.

3. The Maxwell-Stefan equations

The Maxwell-Stefan equations rely on inter-species force balances. More precisely,
it is assumed that the thermodynamical driving force di of species Ai is in local
equilibrium with the total friction force. Here and below it is often convenient to
work with the molar fractions xi := ci/ctot instead of the chemical concentrations.
From chemical thermodynamics it follows that for multicomponent systems which
are locally close to thermodynamical equilibrium (see, e.g., [20]) the driving forces
under isothermal conditions are given as

di =
xi

RT
gradμi (13)

with μi the chemical potential of species Ai. Equation (13) requires some more
explanation. Recall first that the chemical potential μi for species Ai is defined as

μi =
∂G

∂ci
, (14)

where G denotes the (volume-specific) density of the Gibbs free energy. The chem-
ical potential depends on ci, but also on the other cj as well as on pressure and
temperature. In the engineering literature, from the chemical potential a part μ0

i

depending on pressure and temperature is often separated and, depending on the
context, a gradient may be applied only to the remainder. To avoid confusion, the
common notation in use therefore is

∇μi = ∇T,pμi +
∂μi

∂p
∇p+

∂μi

∂T
∇T.
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Here ∇T,pμi means the gradient taken under constant pressure and temperature.
In the isobaric, isothermal case this evidently makes no difference. Let us also note
that G is assumed to be a convex function of the ci for single phase systems, since
this guarantees thermodynamic stability, i.e., no spontaneous phase separations.
For concrete mixtures, the chemical potential is often assumed to be given by

μi = μ0
i +RT ln ai (15)

with ai the so-called activity of the ith species; equation (15) actually implicitly
defines ai. In (15), the term μ0

i depends on pressure and temperature. For a mixture
of ideal gases, the activity ai equals the molar fraction xi. The same holds for
solutions in the limit of an ideally dilute component, i.e., for xi → 0+. This is no
longer true for non-ideal systems in which case the activity is written as

ai = γi xi (16)

with an activity coefficient γi which itself depends in particular on the full com-
position vector x.

The mutual friction force between species i and j is assumed to be propor-
tional to the relative velocity as well as to the amount of molar mass. Together
with the assumption of balance of forces this leads to the relation

di = −
∑
j �=i

fij xi xj(ui − uj) (17)

with certain drag coefficients fij > 0; here fij = fji is a natural mechanical
assumption. Insertion of (13) and introduction of the so-called Maxwell-Stefan
(MS) diffusivities -Dij = 1/fij yields the system

xi

RT
gradμi = −

∑
j �=i

xjJi − xiJj

ctot -Dij
for i = 1, . . . , n. (18)

The set of equations (18) together with (8) forms the Maxwell-Stefan equations
of multicomponent diffusion. The matrix [-Dij ] of MS-diffusivities is assumed to be
symmetric in accordance with the symmetry of [fij ]. Let us note that for ideal
gases the symmetry can be obtained from the kinetic theory of gases; cf. [9] and
[14]. The MS-diffusivities -Dij will in general depend on the composition of the
system.

Due to the symmetry of [-Dij ], the model is in fact consistent with the Onsager
reciprocal relations (cf. [18] as well as below), but notice that the -Dij are not to be
inserted into (11), i.e., they do not directly correspond to the Dij there. Instead,
the MS equations have to be inverted in order to provide the fluxes Ji.

Note also that the Ansatz (17) implies
∑

i di = 0 because of the symmetry of
[fij ], resp. of [-Dij ]. Hence

∑
i di = 0 is necessary in order for (17) to be consistent.

It in fact holds because of (and is nothing but) the Gibbs-Duhem relation, see,
e.g., [12]. The relation

∑
i di = 0 will be important below.
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Example (Binary systems). For a system with two components we have

d1(= −d2) = − 1
ctot -D12

(
x2J1 − x1J2

)
. (19)

Using x1 + x2 = 1 and J1 + J2 = 0 one obtains

J1(= −J2) = −
-D12

RT
c1 gradμ1. (20)

Writing c and J instead of c1 and J1, respectively, and assuming that the chemical
potential is of the form μ = μ0 +RT ln(γc) with the activity coefficient γ = γ(c)
this finally yields

J = − -D12

(
1 +

c γ′(c)
γ(c)

)
grad c. (21)

Inserting this into the species equation leads to a nonlinear diffusion equation,
namely

∂tc−Δφ(c) = r(c), (22)

where the function φ : R → R satisfies φ′(s) = -D12(1 + sγ′(s)/γ(s)) and, say,
φ(0) = 0. Equation (22) is also known as the filtration equation (or, the generalized
porous medium equation) in other applications. Note that well-known pde-theory
applies to (22) and especially provides well-posedness as soon as φ is continuous
and nondecreasing; cf., e.g., [21]. The latter holds if s→ sγ(s) is increasing which
is nothing but the fact that the chemical potential μ of a component should be an
increasing function of its concentration. This is physically reasonable in systems
without phase separation.

4. Inversion of the flux-force relations

In order to get constitutive equations for the fluxes Ji from the Maxwell-Stefan
equations, which need to be inserted into (9), we have to invert (18). Now (18)
alone is not invertible for the fluxes, since these are linearly dependent. Elimination
of Jn by means of (8) leads to the reduced system

ctot

⎡⎣ d1···
dn−1

⎤⎦ = −B

⎡⎣ J1···
Jn−1

⎤⎦ , (23)

where the (n− 1)× (n− 1)-matrix B is given by

Bij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xi

( 1
-D1n

− 1
-Dij

)
for i �= j,

xi

-Din
+

n∑
k �=i

xk

-Dik
for i = j (with xn = 1−

∑
m<n xm).

(24)
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Assuming for the moment the invertibility of B and letting μi be functions of the
composition expressed by the molar fractions x = (x1, . . . , xn), the fluxes are given
by ⎡⎢⎢⎢⎢⎣

J1

·
·
·

Jn−1

⎤⎥⎥⎥⎥⎦ = −ctotB−1 Γ

⎡⎢⎢⎢⎢⎣
∇x1

·
·
·

∇xn−1

⎤⎥⎥⎥⎥⎦ , (25)

where

Γ = [Γij ] with Γij = δij + xi
∂ ln γi

∂xj
(26)

captures the thermodynamical deviations from the ideally diluted situation; here
δij denotes the Kronecker symbol.

Example (Ternary systems). We have

B =

⎡⎢⎣ 1
-D13

+ x2

(
1

-D12
− 1

-D13

)
−x1

(
1

-D12
− 1

-D13

)
−x2

(
1

-D12
− 1

-D23

)
1

-D23
+ x1

(
1

-D12
− 1

-D23

)
⎤⎥⎦ (27)

and det(B− tI) = t2 − trB t+ detB with

detB =
x1

-D12 -D13
+

x2

-D12 -D23
+

x3

-D13 -D23
≥ min

{
1

-D12 -D13
,

1
-D12 -D23

,
1

-D13 -D23

}
(28)

and

trB =
x1 + x2

-D12
+
x1 + x3

-D13
+
x2 + x3

-D23
≥ 2 min

{
1

-D12
,

1
-D13

,
1

-D23

}
. (29)

It is easy to check that (trB)2 ≥ 3 detB for this particular matrix and therefore
the spectrum of B−1 is in the right complex half-plane within a sector of angle less
than π/6. This implies normal ellipticity of the differential operator B−1(x)(−Δx).
Recall that a second-order differential operator with matrix-valued coefficients is
said to be normally elliptic if the symbol of the principal part has it’s spectrum
inside the open right half-plane of the complex plane; see section 4 in [2] for
more details. This notion has been introduced by Herbert Amann in [1] as the
appropriate concept for generalizations to more general situations with operator-
valued coefficients.

Consequently, the Maxwell-Stefan equations for a ternary system are locally-
in-time wellposed if Γ = I, i.e., in the special case of ideal solutions. The latter
refers to the case when the chemical potentials are of the form (15) with γi ≡ 1
for all i. Of course this extends to any Γ which is a small perturbations of I, i.e.,
to slightly non-ideal solutions.

Let us note that Theorem 1 below yields the local-in-time wellposedness also
for general non-ideal solutions provided the Gibbs energy is strongly convex. Note
also that the reduction to n−1 species is the common approach in the engineering
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literature, but invertibility of B is not rigorously checked. For n = 4, the 3 × 3-
matrix B can still be shown to be invertible for any composition due to xi ≥ 0
and

∑
i xi = 1. Normal ellipticity can no longer be seen so easily. For general n

this approach is not feasible and the invariant approach below is preferable.
Valuable references for the Maxwell-Stefan equations and there applications

in the Engineering Sciences are in particular the books [4], [9], [20] and the review
article [12].

5. Wellposedness of the Maxwell-Stefan equations

We first invert the Maxwell-Stefan equations using an invariant formulation. For
this purpose, recall that

∑
i ui = 0 holds for both ui = Ji and ui = di. We

therefore have to solve

AJ = ctot d in E = {u ∈ Rn :
∑

i

ui = 0}, (30)
where A = A(x) is given by

A =

[
−s1 dij· · ·dij −sn

]
with si =

∑
k �=i

xk

-Dik
, dij =

xi

-Dij
.

The matrix A has the following properties, where x� 0 means xi > 0 for all i:
(i) N(A) = span{x} for x = (x1, . . . , xn).
(ii) R(A) = {e}⊥ for e = (1, . . . , 1).
(ii) A = [aij ] is quasi-positive, i.e., aij ≥ 0 for i �= j.
(iv) If x � 0 then A is irreducible, i.e., for every disjoint partition I ∪ J of

{1, . . . , n} there is some (i, j) ∈ I × J such that aij �= 0.
Due to (i) and (ii) above, the Perron-Frobenius theorem in the version for quasi-
positive matrices applies; cf. [10] or [17]. This yields the following properties of the
spectrum σ(A): The spectral bound s(A) := max{Reλ : λ ∈ σ(A)} is an eigenvalue
of A, it is in fact a simple eigenvalue with a strictly positive eigenvector. All other
eigenvalues do not have positive eigenvectors or positive generalized eigenvectors.
Moreover,

Reλ < s(A) for all λ ∈ σ(A), λ �= s(A).

From now on we assume that in the present case x is strictly positive. Then, since
x is an eigenvector to the eigenvalue 0, it follows that

σ(A) ⊂ {0} ∪ {z ∈ C : Re z < 0}.
Unique solvability of (30) already follows at this point. In addition, the same
arguments applied to Aμ := A− μ(x⊗ e) for μ ∈ R yield

σ(Aμ) ⊂ {−μ} ∪ {z ∈ C : Re z < −μ} for all small μ > 0.

In particular, Aμ is invertible for sufficiently small μ > 0 and

J = −ctot
(
A− μ(x⊗ e)

)−1
d (31)
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is the unique solution of (30). Note that Aμy = d with d ⊥ e implies y ⊥ e and
Ay = d. A similar representation of the inverted Maxwell-Stefan equations can be
found in [8].

The information on the spectrum of A can be significantly improved by sym-
metrization. For this purpose let X = diag(x1, . . . xn) which is regular due to
x� 0. Then AS := X− 1

2 AX
1
2 satisfies

AS =

⎡⎣ −s1 d̂ij

· · ·d̂ij −sn

⎤⎦ , si =
∑
k �=i

xk

-Dik
, d̂ij =

√
xixj

-Dij
,

i.e., AS is symmetric with N(AS) = span{
√

x}, where
√

xi :=
√
xi. Hence the

spectrum of AS and, hence, that of A is real. Moreover,

AS(α) = AS − α
√

x⊗
√

x

has the same properties as AS for sufficiently small α > 0. In particular, AS is
quasi-positive, irreducible and

√
x � 0 is an eigenvector for the eigenvalue −α.

This holds for all α < δ := min{1/ -Dij : i �= j}. Hence we obtain the improved
inclusion

σ(A) \ {0} = σ(AS(α)) \ {−α} for all α ∈ [0, δ).

Therefore
σ(A) ⊂ (−∞,−δ] ∪ {0}, (32)

which provides a uniform spectral gap for A sufficient to obtain normal ellipticity
of the associated differential operator.

In order to work in a subspace of the composition space Rn instead of a
hyperplane, let ui = ci − c0tot/n such that

∑
i ci ≡ const is the same as u ∈ E =

{u ∈ Rn :
∑

i ui = 0}. Above we have shown in particular that A|E : E → E is
invertible and

[Ji] = X
1
2 (AS|Ê)−1X− 1

2 [di] =
1
RT
X

1
2 (AS|Ê)−1X

1
2 [∇μi] (33)

with the symmetrized form AS of A and Ê := X
1
2E = {

√
x}⊥. Note that this also

shows the consistency with the Onsager relations. To proceed, we employ (14) to
obtain the representation

[Ji] = X
1
2 (AS|Ê)−1X

1
2G′′(x)∇x. (34)

Inserting (34) into (9) and using ctotxi = ui + c0tot/n, we obtain the system of
species equations with multicomponent diffusion modeled by the Maxwell-Stefan
equations. Without chemical reactions and in an isolated domain Ω ⊂ Rn (with ν
the outer normal) we obtain the initial boundary value problem

∂tu+ div (−D(u)∇u) = 0, ∂νu|∂Ω = 0, u|t=0 = u0, (35)

which we will consider in Lp(Ω;E). Note that X
1
2 (AS|Ê)−1X

1
2G′′(x) from (34)

corresponds to −D(u) here.
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Applying well-known results for quasilinear parabolic systems based on Lp-
maximal regularity, e.g., from [3] or [15], we obtain the following result on local-
in-time wellposedness of the Maxwell-Stefan equations in the isobaric, isothermal
case. Below we call G ∈ C2(V ) strongly convex if G′′(x) is positive definite for all
x ∈ V .

Theorem 1. Let Ω ⊂ RN with N ≥ 1 be open bounded with smooth ∂Ω. Let

p > N+2
2 and u0 ∈ W

2− 2
p

p (Ω;E) such that c0i > 0 in Ω̄ and c0tot is constant in Ω.
Let the diffusion matrix D(u) be given according to (34), i.e., by

D(u) = X
1
2 (AS|Ê)−1X

1
2G′′(x) with ctotxi = ui + c0tot/n,

where G : (0,∞)n → R is smooth and strongly convex. Then there exists – locally
in time – a unique strong solution (in the Lp-sense) of (35). This solution is in
fact classical.

Concerning the proof let us just mention that

div (−D(u)∇u) = D(u) (−Δu) + lower order terms,

hence the system of Maxwell-Stefan equations is locally-in-time wellposed if the
principal part D(u) (−Δu) is normally elliptic for all u ∈ E such that c(u) :=
u+ c0tote is close to c0. The latter holds if, for some angle θ ∈ (0, π

2 ), the spectrum
of D(u) ∈ L(E) satisfies

σ(D(u)) ⊂ Σθ := {λ ∈ C \ {0} : |argλ| < θ} (36)

for all u ∈ E such that |c(u)−c0|∞ < ε for ε := mini c
0
i /2, say. For such an u ∈ E,

let λ ∈ C and v ∈ E be such that D(u) v = λv. Let x := c(u)/ctot(u) ∈ (0,∞)n

and X = diag(x1, . . . , xn). Then

X
1
2 (AS|Ê)−1X

1
2G′′(x) v = λv.

Taking the inner product with G′′(x) v yields

〈(AS|Ê)−1X
1
2G′′(x) v,X

1
2G′′(x) v〉 = λ〈v,G′′(x) v〉.

Note that X
1
2G′′(x) v ∈ {

√
x}⊥, hence the left-hand side is strictly positive due

to the analysis given above. Moreover 〈v,G′′(x) v〉 > 0 since G is strongly convex,
hence λ > 0. This implies (36) for any θ ∈ (0, π

2 ) and, hence, local-in-time existence
follows.

6. Final remarks

A straightforward extension of Theorem 1 to the inhomogeneous case with locally
Lipschitz continuous right-hand side f : Rn → Rn, say, is possible if f(u) ∈ E
holds for all u. Translated back to the original variables (keeping the symbol f)
this yields a local-in-time solution of

∂tc + div (−D(c)∇c) = f(c), ∂νc|∂Ω = 0, c|t=0 = c0
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for appropriate initial values c0. Then a natural question is whether the solution
stays componentwise nonnegative. This can only hold if f satisfies

fi(c) ≥ 0 whenever c ≥ 0 with ci = 0,

which is called quasi-positivity as in the linear case. In fact, under the considered
assumption, quasi-positivity of f forces any classical solution to stay nonnegative
as long as it exists. The key point here is the structure of the Maxwell-Stefan
equations (18) which yields

Ji = −Di(c) grad ci + ci Fi(c, grad c)

with

Di(c) = 1/
∑
j �=i

xj

-Dij
and Fi(c, grad c) = Di(c)

∑
j �=i

1
-Dij

Jj .

Note that Di(c) > 0 and Ji becomes proportional to grad ci at points where ci
vanishes, i.e., the diffusive cross-effects disappear. Moreover, it is easy to check
that

div Ji = Di(c)Δci ≥ 0 if ci = 0 and grad ci = 0.
To indicate a rigorous proof for the nonnegativity of solutions, consider the mod-
ified system

∂tci + div Ji(c) = fi(t, c+) + ε, ∂νc|∂Ω = 0, c|t=0 = c0 + εe, (37)

where r+ := max{r, 0} denotes the positive part. Assume that the right-hand side
f is quasi-positive and that (37) has a classical solution cε for all small ε > 0
on a common time interval [0, T ). Now suppose that, for some i, the function
mi(t) = miny∈Ω̄ c

ε
i(t,y) has a first zero at t0 ∈ (0, T ). Let the minimum of cεi(t0, ·)

be attained at y0 and assume first that y0 is an interior point. Then cεi(t0,y0) = 0,
∂tc

ε
i(t0,y0) ≥ 0, grad cεi(t0,y0) = 0 and Δcεi(t0,y0) ≥ 0 yields a contradiction since

fi(t0, cεi(t0,y0)) ≥ 0. Here, because of the specific boundary condition and the fact
that Ω has a smooth boundary, the same argument works also if y0 is a boundary
point. In the limit ε → 0+ we obtain a nonnegative solution for ε = 0, hence a
nonnegative solution of the original problem. This finishes the proof since strong
solutions are unique.

Note that non-negativity of the concentrations directly implies L∞-bounds
in the considered isobaric case due to 0 ≤ ci ≤ ctot ≡ c0tot, which is an important
first step for global existence.

The considerations in Section 5 are helpful to verify that the Maxwell-Stefan mul-
ticomponent diffusion is consistent with the second law from thermodynamics.
Indeed, (33) directly yields

− [Ji] : [∇μi] =
1
RT

(
(−AS|Ê)−1X

1
2 [∇μi]

)
:
(
X

1
2 [∇μi]

)
≥ 0,

i.e., the entropy inequality is satisfied. The latter is already well known in the
engineering literature, but with a different representation of the dissipative term
using the individual velocities; cf. [18].
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For sufficiently regular solutions and under appropriate boundary conditions
the entropy inequality can be used as follows. Let V (x) =

∫
ΩG(x) dx with G the

Gibbs free energy density. Let

W (x,∇x) = −
∫

Ω

[Ji] : [∇μi] dx ≥ 0.

Then (V,W ) is a Lyapunov couple, i.e.,

V (x(t)) +
∫ t

0

W (x(s),∇x(s)) ds ≤ V (x(0)) for t > 0

and all sufficiently regular solutions. For ideal systems this yields a priori bounds
on the quantities |∇ci|2/ci, hence, equivalently, L2-bounds on ∇√ci. This type of
a priori estimates is well known in the theory of reaction-diffusion systems without
cross-diffusion; see [5], [6] and the references given there for more details.

In the present paper we considered the isobaric and isothermal case because it
allows to neglect convective transport and, hence, provides a good starting point.
The general case of a multicomponent flow is much more complicated, even in the
isothermal case. This case leads to a Navier-Stokes-Maxwell-Stefan system which
will be studied in future work.
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Abstract. We prove that, unlike in several space dimensions, there is no criti-
cal (nonlinear) diffusion coefficient for which solutions to the one-dimensional
quasilinear Smoluchowski-Poisson equation with small mass exist globally
while finite time blowup could occur for solutions with large mass.
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1. Introduction

In a previous paper [4] we investigate the influence of the diffusion coefficient a on
the life span of solutions to the one-dimensional Smoluchowski-Poisson system

∂tu = ∂x (a(u)∂xu− u∂xv) in (0,∞)× (0, 1), (1.1)

0 = ∂2
xv + u−M in (0,∞)× (0, 1), (1.2)

a(u)∂xu = ∂xv = 0 on (0,∞)× {0, 1}, (1.3)

u(0) = u0 ≥ 0 in (0, 1),
∫ 1

0

v(t, x)dx = 0 for any t ∈ (0,∞), (1.4)

where

M := 〈u0〉 =
∫ 1

0

u0(x)dx

denotes the mean value of u0, and uncover a fundamental difference with the quasi-
linear Smoluchowski-Poisson system in higher space dimensions. More precisely,
when the space dimension n is greater or equal to two, there is a critical diffusion

Partially supported by the German SFB Tr. 71 and by the Polish Ministry of Science and Higher
Education under grant number NN201 366937.
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a∗(r) := (1 + r)(n−2)/n which separates different behaviours for the quasilinear
Smoluchowski-Poisson system. Roughly speaking,
(a) if the diffusion coefficient a is stronger than a∗ (in the sense that a(r) ≥

C(1 + r)α for some α > (n − 2)/n and C > 0), then all solutions exist
globally whatever the value of the mass of the initial condition u0 [5],

(b) if the diffusion coefficient a is weaker than a∗ (in the sense that a(r) ≤
C(1+r)α for some α < (n−2)/n and C > 0), then there exists for allM > 0
an initial condition u0 with 〈u0〉 = M for which the corresponding solution
to the quasilinear Smoluchowski-Poisson system blows up in finite time (in
the sense that ‖u(t)‖L∞(0,M) →∞ as t→ T for some T ∈ (0,∞)) [3, 5, 7],

(c) if the diffusion coefficient a behaves as a∗ for large values of r, solutions
starting from initial data u0 with small mass 〈u0〉 exist globally while there
are initial data with large mass for which the corresponding solution to the
quasilinear Smoluchowski-Poisson system blows up in finite time [3, 7].
Observe that, in space dimension n = 2, the critical diffusion is constant and

a more precise description of the situation (c) is actually available. Namely, when
a ≡ 1, there is a threshold mass M∗ such that, if 〈u0〉 < M∗, the corresponding
solution is global while, for any M > M∗, there are initial data with 〈u0〉 =M for
which the corresponding solution blows up in finite time [6, 7, 8]. The threshold
massM∗ is known explicitly (M∗ = 4π) but it is worth mentioning that for radially
symmetric solutions in a ball, the threshold mass is 8π. Similar results are also
available for the quasilinear Smoluchowski-Poisson system inRn, n ≥ 2 [1, 2, 9, 10].

Most surprisingly, the above description fails to be valid in one space dimen-
sion and we prove in particular in [4] that all solutions are global for the diffusion
a(r) = (1 + r)−1 though it is a natural candidate to be critical. We actually iden-
tify two classes of diffusion coefficients a in [4], one for which all solutions exist
globally as in (a) and the other for which there are solutions blowing up in finite
time starting from initial data with an arbitrary positive mass as in (b), but the
situation (c) does not seem to occur in one space dimension. The purpose of this
note is to show that the dichotomy (a) or (b) can be extended to larger classes of
diffusion, thereby extending the analysis performed in [4].

Theorem 1.1. Let the diffusion coefficient a ∈ C1((0,∞)) be a positive function.
(i) Assume first that a ∈ L1(1,∞) and one of the following assumptions is sat-

isfied, either

γ := sup
r∈(0,1)

r

∫ ∞

r

a(s)ds <∞, (1.5)

or there exist ϑ > 0 and α ∈ (ϑ/(1 + ϑ), 2] such that

γϑ := sup
r∈(0,1)

r2+ϑa(r) <∞ and C∞ := sup
r≥1
rαa(r) <∞. (1.6)

For any M > 0, there exists a positive initial condition u0 ∈ C([0, 1]) such
that 〈u0〉 = M and the corresponding classical solution to (1.1)–(1.4) blows
up in finite time.
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(ii) Assume next that a �∈ L1(1,∞) and consider an initial condition u0 ∈
C([0, 1]) such that u0 ≥ m0 > 0 and 〈u0〉 = M for some M > 0 and
m0 ∈ (0,M). Then the corresponding classical solution to (1.1)–(1.4) exists
globally.

As already mentioned, Theorem 1.1 extends the results obtained in [4]. More
precisely, in [4, Theorem 5], the assertion (ii) of Theorem 1.1 is proved under the
additional assumption that, for each ε ∈ (0,∞), there is κε > 0 for which

a(r) ≤ ε ra(r) +
κε

r
for r ∈ (0, 1) ,

which roughly means that a cannot have a singularity stronger than 1/r near r = 0.
This assumption turns out to be unnecessary for global existence but nevertheless
ensures the global boundedness of the solution in L∞. Under the sole assumption
of Theorem 1.1 (ii), our proof does not exclude that the solution to (1.1)–(1.4)
becomes unbounded as t→∞. Concerning Theorem 1.1 (i), it is established in [4,
Theorem 10] for a ∈ L1(1,∞) such that there is a concave function B for which

0 ≤ −rA(r) ≤ B(r) with A(r) = −
∫ ∞

r

a(s) ds , r ∈ (0,∞) , (1.7)

lim
r→∞

B(r)
r

= 0 . (1.8)

We make this criterion more explicit here by showing that the integrability of a
on (1,∞) and (1.5) guarantee the existence of a concave function B satisfying
(1.7) and (1.8), see Lemma 3.1 below. Let us point out here that the assumption
(1.5) somehow means that a cannot have a singularity stronger that 1/r2 near
r = 0. However, the result remains true if a has an algebraic singularity of higher
order near r = 0 which is allowed by (1.6) provided a decays suitably at infinity.
Observe that the second condition in (1.6) is compatible with the integrability of
a at infinity as ϑ/(1 + ϑ) < 1.

Summarizing the outcome of Theorem 1.1, we realize that, for a given diffu-
sion coefficient a with a singularity weaker than 1/r2 near r = 0, the integrability
or non-integrability of a at infinity completely determines whether we are in the
situation (a) or (b) described above and excludes the situation (c). There is thus
no critical diffusion in this class. The same comment applies to the class of diffu-
sion coefficients satisfying (1.6) with an algebraic singularity stronger than 1/r2

near r = 0. In particular there is no critical nonlinearity in the class of functions
C([0,∞)) ∩ C1((0,∞)).

The paper is organized as follows: in Section 2 we recall some statements
from [4]. Section 3 is devoted to proving the finite time blowup of solutions to
(1.1)–(1.4) when a ∈ L1(1,∞). Global existence of solutions for all initial data
when a is not integrable at infinity is proved in the last section.
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2. Preliminaries

In this section we summarize some results and methods introduced in [4]. Let a ∈
C1((0,∞)) be a positive function and consider an initial condition u0 ∈ C([0, 1])
such that u0 ≥ m0 > 0 and 〈u0〉 = M for some M > 0 and m0 ∈ (0,M). By
[4, Propositions 2 and 3] there is a unique maximal classical solution (u, v) to
(1.1)–(1.4) defined on [0, Tmax) which satisfies

min
x∈[0,1]

u(t, x) > 0 , 〈u(t)〉 :=
∫ 1

0

u(t, x) dx =M , and (2.1)

〈v(t)〉 :=
∫ 1

0

v(t, x) dx = 0

for t ∈ (0, Tmax). In addition, Tmax = ∞ or Tmax < ∞ with ‖u(t)‖L∞(0,M) → ∞
as t→ Tmax.

We next recall the approach introduced in [4] which will be used herein as
well. Owing to the positivity (2.1) and the regularity of u, the indefinite integral

U(t, x) :=
∫ x

0

u(t, z)dz , x ∈ [0, 1] ,

is a smooth increasing function from [0, 1] onto [0,M ] for each t ∈ [0, Tmax) and
has a smooth inverse F defined by

U(t, F (t, y)) = y , (t, y) ∈ [0, Tmax)× [0,M ] . (2.2)

Introducing f(t, y) := ∂yF (t, y), we have

f(t, y) u(t, F (t, y)) = 1 , (t, y) ∈ [0, Tmax)× [0,M ] , (2.3)

and it follows from (1.1)–(1.4) that f solves

∂tf = ∂2
yΨ(f)− 1 +Mf , (t, y) ∈ (0, Tmax)× (0,M) , (2.4)

∂yf(t, 0) = ∂yf(t,M) = 0 , t ∈ (0, Tmax) , (2.5)

f(0, y) = f0(y) :=
1

u0(F (0, y))
, y ∈ (0,M) , (2.6)

where

Ψ′(r) :=
1
r2
a

(
1
r

)
for any r > 0 , Ψ(1) := 0 . (2.7)

Moreover the conservation of mass (2.1) yields∫ M

0

f(t, y)dy = F (t,M)− F (t, 0) = 1 , t ∈ [0, Tmax) . (2.8)

At this point, the crucial observation is that, thanks to (2.3), finite time blowup
of u is equivalent to the vanishing (or touch-down) of f in finite time. In other
words, u exists globally if the minimum of f(t) is positive for each t > 0. We refer
to [4, Proposition 1] for a more detailed description.

A salient property of (1.1)–(1.4) is the existence of a Liapunov function [4,
Lemma 8] which we recall now:
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Lemma 2.1. The function

L1(t) :=
1
2

∫ M

0

|∂yΨ(f(t, y))|2 dy +
∫ M

0

(Ψ(f(t, y))−M Ψ1(f(t, y))) dy

is a non-increasing function of time on [0, Tmax), the function Ψ1 being defined by

Ψ1(1) := 0 and Ψ′
1(r) := rΨ′(r) =

1
r
a

(
1
r

)
, r ∈ (0,∞) . (2.9)

3. Finite time blowup

In this section we prove the blowup assertion of Theorem 1.1. To this end we
first prove that the condition (1.5) allows us to construct a concave function B
satisfying (1.7) and (1.8) so that [4, Theorem 10] can be applied.

Lemma 3.1. Let a ∈ C1((0,∞)) be a positive function such that a ∈ L1(1,∞) and
(1.5) holds. Then there exists a concave function B ∈ C([0,∞)) such that for all
r ≥ 0

B(r) ≥ r
∫ ∞

r

a(s)ds (3.1)

and

lim
r→∞

B(r)
r

= 0. (3.2)

Proof of Lemma 3.1. We construct B : [0,∞) → [0,∞) in the following way: we
put

bi :=
∫ ∞

2i

a(s)ds , i ≥ 0 ,

and notice that {bi}i≥0 is a decreasing sequence converging to zero as i→∞. We
next define

B(r) =

⎧⎪⎪⎨⎪⎪⎩
b0r + γ if r ∈ [0, 2],

bir +
i−1∑
j=0

(bj − bj+1)2j+1 + γ if r ∈ (2i, 2i+1] and i ≥ 1.
(3.3)

Clearly, B ∈ C([0,∞)) and

B′(r) =
{
b0 if r ∈ (0, 2),
bi if r ∈ (2i, 2i+1) and i ≥ 1. (3.4)

Hence B is concave as a consequence of the fact that the sequence {bi}i≥0 is
decreasing. Furthermore, for r ∈ [0, 1], we have

B(r) ≥ γ ≥ r
∫ ∞

r

a(s)ds,
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and for r ∈ [2i, 2i+1], i ≥ 0,

B(r) ≥ bir = r
∫ ∞

2i

a(s)ds ≥ r
∫ ∞

r

a(s)ds.

Therefore, B satisfies (3.1).
Finally, let k ≥ 1. If i ≥ k + 1 and r ∈ (2i, 2i+1], then

B(r)
r

= bi +
γ

r
+

i−1∑
j=0

(bj − bj+1)
2j+1

r

≤ bi +
γ

r
+

i−1∑
j=k

(bj − bj+1) +
k−1∑
j=0

(bj − bj+1)
2j+1

r

≤ bi +
1
r

(
γ + 2k

k−1∑
j=0

(bj − bj+1)
)

+ (bk − bi)

≤ bk +
1
r

(
γ + 2kb0

)
.

Consequently,

lim sup
r→∞

B(r)
r

≤ bk for all k ≥ 1 .

Letting k → ∞, we obtain (3.2) since bk → 0 as k → ∞ and Lemma 3.1 is
proved. �

Proof of Theorem 1.1 (i), Part 1. When a belongs to L1(1,∞) and satisfies (1.5),
it follows from Lemma 3.1 that the conditions (1.7) and (1.8) are satisfied so that
Theorem 1.1 (i) follows from [4, Theorem 10]. �

To handle the other case, we proceed in a different way by showing an upper
bound for the function f defined in Section 2. We first observe that the function
Ψ defined in (2.7) satisfies

Ψ(r) =
∫ r

1

1
s2
a

(
1
s

)
ds =

∫ 1

1/r

a(s) ds , r ∈ (0,∞) ,

so that, if a ∈ L1(1,∞), Ψ(r) has a finite limit Ψ(0) := −‖a‖L1(1,∞) as r → 0. We
then define

Ψ̃(r) := Ψ(r)−Ψ(0) =
∫ r

0

1
s2
a

(
1
s

)
ds =

∫ ∞

1/r

a(s) ds , r ∈ (0,∞) . (3.5)

Lemma 3.2. Let a ∈ C1((0,∞)) be a positive function such that a ∈ L1(1,∞).
There exists a positive constant μM > 0 depending only on M and a such that, for
any non-negative function g ∈ H1(0,M) satisfying ‖g‖L1(0,M) = 1, we have

‖Ψ̃(g)‖2L∞(0,M) ≤ 32ML1(g) + μM , (3.6)
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with

L1(g) :=
1
2
‖∂yΨ(g)‖2L2(0,M) +

∫ M

0

(Ψ(g)−MΨ1(g)) (y) dy , (3.7)

the functions Ψ and Ψ1 being defined in (2.7) and (2.9), respectively.

Proof of Lemma 3.2. We set G := ‖g‖L∞(0,M) which is finite owing to the con-
tinuous embedding of H1(0,M) in L∞(0,M). Assume first that G > 1. Then, for
y ∈ (0,M) and z ∈ (0,M), we have

Ψ̃(g(y)) = Ψ̃(g(z)) +
∫ y

z

∂xΨ̃(g(x)) dx ≤ Ψ̃(g(z)) +M1/2‖∂yΨ(g)‖L2(0,M).

Integrating the above inequality over (0,M) with respect to z gives

MΨ̃(g(y)) ≤
∫ M

0

Ψ̃(g(z)) dz +M3/2‖∂yΨ(g)‖L2(0,M)

≤
∫ M

0

1[0,2/M ](g(z))Ψ̃(g(z))dz

+
∫ M

0

1(2/M,∞)(g(z))Ψ̃(g(z))dz +M3/2‖∂yΨ(g)‖L2(0,M)

≤MΨ̃
(

2
M

)
+
MΨ̃(G)

2

×
∫ M

0

1(2/M,∞)(g(z))g(z) dz +M3/2‖∂yΨ(g)‖L2(0,M)

≤MΨ̃
(

2
M

)
+
MΨ̃(G)

2
+M3/2‖∂yΨ(g)‖L2(0,M) ,

where we have used the property ‖g‖L1(0,M) = 1 to obtain the last inequality. Tak-
ing the supremum over y ∈ (0,M) and using the monotonicity and non-negativity
of Ψ̃, we deduce that

Ψ̃(G) ≤ 2Ψ̃
(

2
M

)
+ 2M1/2‖∂yΨ(g)‖L2(0,M). (3.8)

We next observe that the integrability of a at infinity also ensures that Ψ1(0) >
−∞, so that Ψ̃1 := Ψ1 −Ψ1(0) is well defined and satisfies

Ψ̃1(r) =
∫ r

0

sΨ′(s) ds ≤ rΨ̃(r) , r ∈ (0,∞) . (3.9)

Since ‖g‖L1(0,M) = 1, it follows from (3.8) and (3.9) that∫ M

0

Ψ̃1(g) dy ≤
∫ M

0

gΨ̃(g) dy ≤ Ψ̃(G)
∫ M

0

gdy

≤ 2Ψ̃
(

2
M

)
+ 2M1/2‖∂yΨ(g)‖L2(0,M).

(3.10)
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We next infer from (3.10) and the non-negativity of Ψ̃ that

L1(g) ≥
1
2
‖∂yΨ(g)‖2L2(0,M) +

∫ M

0

Ψ̃(g) dy +MΨ(0)−M
∫ M

0

Ψ̃1(g) dy

≥ 1
2
‖∂yΨ(g)‖2L2(0,M) +MΨ(0)− 2MΨ̃

(
2
M

)
− 2M3/2‖∂yΨ(g)‖L2(0,M)

≥ 1
4
‖∂yΨ(g)‖2L2(0,M) +

(
1
2
‖∂yΨ(g)‖L2(0,M) − 2M3/2

)2

− 4M3 +MΨ(0)− 2MΨ̃
(

2
M

)
≥ 1

4
‖∂yΨ(g)‖2L2(0,M) − 4M3 +MΨ(0)− 2MΨ̃

(
2
M

)
,

whence

‖∂yΨ(g)‖2L2(0,M) ≤ 4L1(g) + 16M3 − 4MΨ(0) + 8MΨ̃
(

2
M

)
.

It then follows from (3.8) and the above inequality that

Ψ̃(G)2 ≤ 8Ψ̃
(

2
M

)2

+ 8M‖∂yΨ(g)‖2L2(0,M)

≤ 8Ψ̃
(

2
M

)2

+ 32ML1(g) + 128M4 − 32M2Ψ(0) + 64M2Ψ̃
(

2
M

)
≤ 32ML1(g) + μM ,

with

μM := 1+128M4− 32M2Ψ(0)+64M2Ψ̃
(

2
M

)
+8Ψ̃

(
2
M

)2

+Ψ(0)2− 32MΨ(0).

We have thus shown Lemma 3.2 when G = ‖g‖L∞(0,M) > 1. To complete the
proof, we finally consider the case G ∈ [0, 1] and notice that, in that case,

0 ≤ Ψ̃(G) ≤ −Ψ(0) and L1(g) ≥
∫ M

0

Ψ̃(g) dy +MΨ(0) ≥MΨ(0),

since Ψ1 ≤ 0 in (0, 1) and Ψ̃ ≥ 0. Consequently,

Ψ̃(G)2 ≤ Ψ(0)2 = 32MΨ(0) + Ψ(0)2 − 32MΨ(0) ≤ 32ML1(g) + μM ,

and the proof of Lemma 3.2 is complete. �
As an obvious consequence of Lemmas 2.1 and 3.2 we have the following

result:

Corollary 3.3. Let a ∈ C1((0,∞)) be a positive function such that a ∈ L1(1,∞).
For t ∈ [0, Tmax) and y ∈ [0,M ], we have

0 ≤ Ψ̃(f(t, y)) ≤ (32M max {L1(f0), 0}+ μM )1/2
.
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Proof of Corollary 3.3. Clearly

L1(f(t)) = L1(t) ≤ L1(0) = L1(f0) ≤ max {L1(f0), 0}
for t ∈ [0, Tmax) by Lemma 2.1 and Corollary 3.3 readily follows from Lemma 3.2.

�
Remark 3.4. Corollary 3.3 provides an L∞-bound on f only if Ψ(r) → ∞ as
r → ∞, that is, if a �∈ L1(0, 1). In that case, it gives a positive lower bound for u
by (2.3).

We next turn to the proof of the second part of Theorem 1.1 for which we
develop further the arguments from [4, Theorem 10].

Proof of Theorem 1.1 (i), Part 2. Assume now that a ∈ L1(1,∞) and satisfies
(1.6). We fix M > 0, q > 2, and εM ∈ (0, 1) such that

q > max
{

3 + ϑ,
5 + 3ϑ

α(ϑ+ 1)− ϑ

}
and

q(q + 1)
M2

∫ ∞

1/εM

a(s) ds ≤ 1
2
, (3.11)

the existence of εM being guaranteed by the integrability of a at infinity.
For

δ ∈
(
0,min

{
1, 2M, (2M)−1/q

})
, (3.12)

we put

f0(y) :=
2(1−Mδq)

δ2
(δ − y)+ + δq ≥ δq > 0 , y ∈ [0,M ] . (3.13)

Then ∫ M

0

f0(y) dy = 1, ‖f0‖L∞(0,M) =
2(1−Mδq)

δ
+ δq ≤ 2

δ
. (3.14)

Denoting the corresponding solution to (2.4)–(2.6) by f we next introduce

mq(t) :=
∫ M

0

yqf(t, y) dy , t ∈ [0, Tmax) ,

and we have

mq(0) =
(

2(1−Mδq)
(q + 1)(q + 2)

+
M q+1

q + 1

)
δq ≤ C1δ

q (3.15)

with

C1 :=
(

2 + (q + 2)M q+1

(q + 1)(q + 2)

)
.

It follows from (2.4), (2.5), and the non-negativity of Ψ̃ that

dmq

dt
= −q

∫ M

0

yq−1∂yΨ̃(f) dy +Mmq −
M q+1

q + 1
,

dmq

dt
≤ q(q − 1)

∫ M

0

yq−2Ψ̃(f) dy +Mmq −
M q+1

q + 1
. (3.16)
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We shall now estimate the integral on the right-hand side of (3.16): to this end,
we split the domain of integration into three parts which we handle differently. As
a preliminary step, we notice that, by (1.6),

Ψ′(r) ≤ γϑr
ϑ and Ψ(r) ≤ γϑ

ϑ+ 1
rϑ+1 ≤ γϑ r

ϑ+1 , r ≥ 1 . (3.17)

We next define

K0 := (32M max {L1(f0), 0}+ μM )1/2(2+ϑ)
> 1 ,

and consider (t, y) ∈ [0, Tmax)× [0,M ].

• If f(t, y) ∈ (0, εM ], it follows from (3.11) and the monotonicity of Ψ̃ that

Ψ̃(f(t, y)) ≤ Ψ̃(εM ) =
∫ ∞

1/εM

a(s) ds ≤ M2

2q(q + 1)
. (3.18)

• If f(t, y) ∈ (εM ,K0), then (3.17) and the monotonicity of Ψ̃ yield

Ψ̃(f(t, y)) =
Ψ̃(f(t, y))
f(t, y)

f(t, y) ≤ Ψ(K0)−Ψ(0)
εM

f(t, y)

≤ γϑK
ϑ+1
0 −Ψ(0)
εM

f(t, y) .

(3.19)

• If f(t, y) ≥ K0, Corollary 3.3 ensures that

Ψ̃(f(t, y)) =
Ψ̃(f(t, y))
f(t, y)

f(t, y) ≤ K
ϑ+2
0

K0
f(t, y) ≤ Kϑ+1

0 f(t, y) . (3.20)

Consequently, recalling that K0 > 1 and Ψ(0) < 0, we deduce from (3.16) and
(3.18)–(3.20) that

dmq

dt
≤ q(q − 1)

∫ M

0

yq−2Ψ̃(f) 1(0,εM ](f) dy

+ q(q − 1)
∫ M

0

yq−2Ψ̃(f) 1(εM ,K0)(f) dy

+ q(q − 1)
∫ M

0

yq−2Ψ̃(f) 1[K0,∞)(f) dy +Mmq −
M q+1

q + 1

≤ (q − 1)M2

2(q + 1)

∫ M

0

yq−2 dy + q(q − 1)
γϑK

ϑ+1
0 −Ψ(0)
εM

∫ M

0

yq−2f dy

+ q(q − 1)Kϑ+1
0

∫ M

0

yq−2f dy +Mmq −
M q+1

q + 1

≤ C2 K
ϑ+1
0

∫ M

0

yq−2f dy +Mmq −
M q+1

2(q + 1)
,
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with C2 := q(q − 1)(γϑ − Ψ(0) + εM )/εM . We next use Hölder’s inequality and
(2.8) to conclude that

dmq

dt
≤ C2 K

ϑ+1
0 m(q−2)/q

q +Mmq −
M q+1

2(q + 1)
. (3.21)

It remains to estimate K0 and in fact L1(f0). Since Ψ is negative on (0, 1) and Ψ1

is bounded from below by Ψ1(0), it follows from (3.12) and (3.13) that

L1(f0) ≤
2
δ4

(1 −Mδq)2
∫ δ

0

|Ψ′(f0)|2 dy +
∫ δ

0

Ψ(f0) dy −M2Ψ1(0)

≤ 2
δ4

∫ δ

0

|Ψ′(f0)|2 dy +
∫ δ

0

Ψ(f0) dy −M2Ψ1(0).

On the one hand, we infer from (3.14), (3.17), and the monotonicity of Ψ that∫ δ

0

Ψ(f0) dy ≤ δ Ψ
(

2
δ

)
≤ γϑ2ϑ+1 δ−ϑ .

On the other hand, we have

f0(y) ≥ 1 for y ∈ [0, yδ] with yδ := δ − 1− δq
2(1−Mδq)δ

2 > 0 ,

f0(y) ∈ [δq, 1] for y ∈ [yδ, δ] ,

so that, if y ∈ [0, yδ],

Ψ′(f0(y))2 ≤ γ2
ϑf0(y)

2ϑ ≤ γϑ4ϑ δ−2ϑ

by (3.14) and (3.17), while, if y ∈ (yδ, δ],

Ψ′(f0(y))2 ≤
1

f0(y)4
a

(
1

f0(y)

)2

≤ C2
∞ f0(y)2(α−2) ≤ C2

∞ δ−2q(2−α)

by (1.6) since α ≤ 2. Therefore,

L1(f0) ≤
2
δ4

[∫ yδ

0

γϑ4ϑ δ−2ϑ dy +
∫ δ

yδ

C2
∞ δ−2q(2−α) dy

]
+ γϑ2ϑ+1 δ−ϑ −M2Ψ1(0)

≤ γϑ4ϑ+1 δ−3−2ϑ + C2
∞

1− δq
2(1−Mδq) δ

−2−2q(2−α)

+ γϑ2ϑ+1 δ−ϑ −M2Ψ1(0)

≤ γϑ4ϑ+1 δ−2(2+ϑ) + C2
∞ δ−2−2q(2−α) + γϑ2ϑ+1 δ−ϑ −M2Ψ1(0)

≤ C3

(
δ−2(2+ϑ) + δ−2−2q(2−α)

)
with C3 := γϑ4ϑ+2 + C2

∞ −M2Ψ1(0). Therefore,

Kϑ+1
0 ≤ C4

(
δ−(ϑ+1) + δ−(ϑ+1)(1+q(2−α))/(ϑ+2)

)
(3.22)

for some constant C4 > 0 depending only on M and a.
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For C5 := C2C4 we define

Λδ(mq) := C5

(
δ−(ϑ+1) + δ−(ϑ+1)(1+q(2−α))/(ϑ+2)

)
m(q−2)/q

q +Mmq −
M q+1

2(q + 1)
.

Combining (3.21) and (3.22) yields

dmq

dt
≤ Λδ(mq) (3.23)

for t ∈ [0, Tmax). At this point, we note that the monotonicity of Λδ and (3.23)
imply that Λδ(mq(t)) ≤ Λδ(mq(0)) for t ∈ [0, Tmax) if Λδ(mq(0)) < 0, the latter
condition being satisfied for δ small enough since

Λδ(mq(0))≤C(q−2)/q
1 C5

(
δq−3−ϑ +δ(q(α(ϑ+1)−ϑ)−3ϑ−5)/(ϑ+2)

)
+MC1 δ

q− M q+1

2(q+1)

by (3.11) and (3.15).
Summarizing, we have shown that, if δ satisfies (3.12) and

C
(q−2)/q
1 C5

(
δq−3−ϑ + δ(q(α(ϑ+1)−ϑ)−3ϑ−5)/(ϑ+2)

)
+MC1 δ

q <
M q+1

2(q + 1)
, (3.24)

we have
dmq

dt
(t) ≤ Λδ(mq(t)) ≤ Λδ(mq(0)) < 0 , t ∈ [0, Tmax) ,

an inequality which can only be true on a finite time interval owing to the non-
negativity of mq. Therefore, Tmax <∞ in that case and, for any M > 0, we have
found an initial condition u0 given by (2.2), (2.3), and (3.13) (for δ small enough
according to the above analysis) such that 〈u0〉 =M and the first component u of
the corresponding solution to (1.1)–(1.4) blows up in finite time. �

4. Global existence

The proof of Theorem 1.1 (ii) also relies on the study of the function L1 defined in
Lemma 2.1. For that purpose, we first recall another property from [4]. We define
the function E1 by

E1(h) :=
1
2
‖∂yh‖L2(0,M) +

∫ M

0

1(−∞,0)(h(y)) h(y) dy , h ∈ H1(0,M) , (4.1)

for which we have the following lower bound.

Lemma 4.1. [4, Lemma 9] For M > 0, we have

E1(h) ≥
1
4
‖∂yh‖L2(0,M) −M3 −M

∣∣∣∣Ψ(
1
M

)∣∣∣∣ , (4.2)

and

‖h‖L1(0,M) ≤M3/2‖∂yh‖L2(0,M) +M
∣∣∣∣Ψ(

1
M

)∣∣∣∣ (4.3)
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for every h ∈ H1(0,M) satisfying∫ M

0

Ψ−1(h)(y) dy = 1 . (4.4)

We now show that the non-integrability of a at infinity allows us to show
that Tmax = ∞. To this end, we use the alternative formulation (2.4)–(2.6) as in
[4] and prove that f cannot vanish in finite time.

Proof of Theorem 1.1 (ii). Owing to (2.6) and the assumptions made on u0, we
have

0 < f0(y) ≤
1
m0
, y ∈ [0,M ].

Introducing Σ(t) :=M−1 + eMt
(
m−1

0 −M−1
)

for t ≥ 0 we have

∂tΣ− ∂2
yΨ(Σ)−MΣ + 1 =M

(
Σ− 1

M

)
−MΣ + 1 = 0,

Σ(0) =
1
m0

≥ f0(y), y ∈ (0,M),

and the comparison principle warrants that

f(t, y) ≤ Σ(t), (t, y) ∈ [0, Tmax)× [0,M ]. (4.5)

We now follow the strategy of the proof of [4, Theorem 5] and first use the
properties of Ψ, Ψ1, and (4.5) to estimate the function L1 (defined in Lemma 2.1)
from below. Indeed, since Ψ ≥ 0 on (1,∞) and Ψ1 ≤ 0 on (0, 1) we arrive at

L1(0) ≥ L1(t) =
1
2
‖∂yΨ(f(t))‖2L2(0,M)

+
∫ M

0

1(0,1)(f(t, y))(Ψ−MΨ1)(f(t, y)) dy

+
∫ M

0

1(1,∞)(f(t, y))(Ψ−MΨ1)(f(t, y)) dy

≥ 1
2
‖∂yΨ(f(t))‖2L2(0,M) +

∫ M

0

1(−∞,0)(Ψ(f(t, y)))Ψ(f(t, y)) dy

−M
∫ M

0

1(1,∞)(f(t, y))Ψ1(f(t, y)) dy

≥ E1(Ψ(f(t)))−M2Ψ1(Σ(t)),

where E1 is defined in (4.1) and we have used (4.5) to obtain the last inequality.
Next, by Lemma 4.1 and (2.8), we have

L1(0) ≥ 1
4
‖∂yΨ(f(t))‖2L2(0,M) −M

3 −M
∣∣∣∣Ψ(

1
M

)∣∣∣∣−M2Ψ1(Σ(t)),
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whence
1
4
‖∂yΨ(f(t))‖2L2(0,M) ≤ L1(0) +M3 +M

∣∣∣∣Ψ(
1
M

)∣∣∣∣ +M2Ψ1(Σ(t)). (4.6)

Using again Lemma 4.1, we have

‖Ψ(f(t))‖L1(0,M) ≤M3/2 ‖∂yΨ(f(t))‖L2(0,M) +M
∣∣∣∣Ψ(

1
M

)∣∣∣∣
≤ 2M3/2

(
L1(0) +M3 +M

∣∣∣∣Ψ(
1
M

)∣∣∣∣ +M2Ψ1(Σ(t))
)1/2

+M
∣∣∣∣Ψ(

1
M

)∣∣∣∣ .
Combining the previous inequality with (4.6) and the Poincaré inequality leads us
to the bound

‖Ψ(f(t))‖H1(0,M) ≤ C6(T ) , t ∈ [0, T ] ∩ [0, Tmax) , (4.7)

for all T > 0. Together with the continuous embedding of H1(0,M) in L∞(0,M),
(4.7) gives

−C7(T ) ≤ Ψ(f(t, y)) ≤ C7(T ) , (t, y) ∈ ([0, T ] ∩ [0, Tmax))× [0,M ] .

Since
lim
r→0

Ψ(r) = −∞

due to a �∈ L1(1,∞), the above lower bound on Ψ(f) ensures that f(t) cannot
vanish in finite time, from which Theorem 1.1 (ii) follows as already discussed in
Section 2. �
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Perturbation Results for
Multivalued Linear Operators

Ronald Cross, Angelo Favini and Yakov Yakubov

Abstract. We give some perturbation theorems for multivalued linear opera-
tors in a Banach space. Two different approaches are suggested: the resolvent
approach and the modified resolvent approach. The results allow us to handle
degenerate abstract Cauchy problems (inclusions). A very wide application of
obtained abstract results to initial boundary value problems for degenerate
parabolic (elliptic-parabolic) equations with lower-order terms is studied. In
particular, integro-differential equations have been considered too.
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1. Introduction

Degenerate evolution equations in Banach spaces and their applications to par-
tial differential equations constitute a very wide field of mathematical research.
Many different methods exist to handle this subject (see, e.g., [11]). Two different
approaches were introduced in [6]. The first one relates to multivalued linear opera-
tors, while the second uses a modified resolvent and operational method, extending
G. Da Prato and P. Grisvard’s approach (see also [7] for applications to nonlinear
equations). In whichever case, a basic role is played by the resolvent estimates of
the operators involved. A number of applications to singular linear parabolic dif-
ferential equations has been given in [4], [5], which improved the previous results in
[8] and [6]. In particular, [5] deals directly with second-order differential operators
with lower-order terms.

The second author is a member of G.N.A.M.P.A. and the I.N.D.A.M.; the third author is sup-
ported by I.N.D.A.M. and the Israel Ministry of Absorption.



112 R. Cross, A. Favini and Y. Yakubov

In this paper we obtain the relevant perturbation theorems for such equations.
To the best of our knowledge, such perturbation results have not appeared in the
existing literature.

More precisely, Section 2 describes the resolvent approach of perturbing a
multivalued linear operator by another (possibly) multivalued linear operator and
satisfying some estimate. This goal is reached by some arguments from [1]. Section
3 deals with the modified resolvent approach which is, on the other hand, strictly
related to the first type. Section 4 furnishes a large number of concrete examples
from partial differential equations to which the developed abstract theory applies.
We note that in Examples 5–7, an alternative approach to certain equations of [5],
related to gradient estimates, is indicated.

2. Resolvent approach

Denote by X , Y Banach spaces, by L(X,Y ) a space of all bounded linear operators
from X into Y , by ML(X,Y ) a space of all multivalued linear operators from X
into Y , by A, B multivalued linear operators from ML(X,Y ). If X = Y then
denote L(X) := L(X,Y ) and ML(X) := ML(X,Y ). The norm of Au is defined
as follows

‖Au‖ := inf{‖y‖Y : y ∈ Au}, ∀u ∈ D(A),

and
‖A‖ML(X,Y ) := sup

‖u‖X≤1

‖Au‖Y .

By A0 we denote a selection (or a single-valued linear part) of A, i.e.,

A = A0 +A−A, D(A0) = D(A).

Obviously,
Au = A0u+A(0), ∀u ∈ D(A).

Here and everywhere, A(0) stands for A0.

Definition 2.1. Given an operator A ∈ ML(X). By ρ(A) ⊂ C we denote the
resolvent set of A, i.e., λ ∈ ρ(A) if and only if the inverse operator (λI −A)−1 is a
linear bounded single-valued operator defined on the whole space X . In this case
we denote R(λ,A) := (λI −A)−1 and call it the resolvent of A.

Let E be a linear subspace of X . Denote by PE the multivalued linear projec-
tion given by PEx := E for any x ∈ X . Thus the graph of PE , G(PE) = X×E. Ob-
viously, the kernel of PE , N(PE) = X and PE(0) = E. Next, define IE ∈ML(X)
by IE := I + PE . Then, we have a series of simple facts: N(IE) = E, the image
R(IE) = X , IE(0) = E, G(IE) = {(x, x+ e) : x ∈ X, e ∈ E}, IEx = x+ E, for all
x ∈ X , ‖IE‖ = sup

x �=0

‖IEx‖
‖x‖ = sup

x �=0

‖x+E‖
‖x‖ ≤ 1 (since ‖IEx‖ = ‖x+E‖ = inf{‖x+y‖ :



Perturbation Results for Multivalued Linear Operators 113

y ∈ E}), and the minimum modulus (cf. [1, II.2.2])

γ(IE) =

{ ∞, if E is dense in X,
inf
x/∈E

‖x+E‖
‖x+E‖ , otherwise =

{
∞, if E = X,
1, if E �= X.

Proposition 2.2. Let S ∈ ML(X) satisfy D(S) = X and ‖S‖ < 1. Then, the
operator I − S has a dense range.

Proof. Write E := S(0) (it is known, [1, I.2.4], that S(0) is a linear subspace of
X). Since γ(IE) > 0, IE is open (see [1, II.3.2(b)]). Also, R(IE) = X , S(0) = E =
IE(0), and ‖S‖ < 1 ≤ γ(IE). Hence, by [1, III.7.5], IE−S has a dense range. Since
I − S = IE − S, the result follows. �

Obviously, if X is finite dimensional, then D((I − S)−1) = X .

Proposition 2.3. Let S ∈ML(X) satisfy D(S) = X and ‖S‖ < 1, and let S(0) be
closed. Then, (I − S)−1 ∈ML(X) is continuous if and only if R(I − S) is closed.

Proof. By Proposition 2.2, if R(I −S) is closed then I −S is surjective, therefore,
D((I − S)−1) = X which implies, by the closed graph theorem (see [1, III.4.2]),
that (I − S)−1 is continuous. Conversely, if (I − S)−1 is continuous then I − S is
open (see [1, II.3.1]) and, by [1, III.4.2(b)], R(I − S) is closed. �

Let us now prove the main proposition.

Proposition 2.4. Let S ∈ML(X) satisfy D(S) = X and ‖S‖ < 1, and let S(0) be
closed. Then, (I − S)−1 ∈ML(X) is everywhere defined and continuous.

Proof. In order to prove that the operator (I − S)−1 is continuous, it is enough,
by Proposition 2.3, to show that R(I − S) is closed. By [1, III.4.4], R(I − S) is
closed if and only if the range of the adjoint R((I−S)′) is closed. By [1, III.1.5(b)],
(I − S)′ = I − S′. Thus, we are going to show that R(I − S′) is closed.

By [1, II.3.2(a)] and [1, III.1.13], the adjoint operator S′ is continuous. Then,
by [1, III.4.2(a)], D(S′) is a closed subspace of X ′. Since D(S) = X then, by [1,
III.1.4(b)], S′ is single-valued. By [1, III.1.13], ‖S′‖ ≤ ‖S‖ < 1. Denote ‖S′‖ =
1 − d, where 0 < d < 1. Some trivial calculations show that the operator I − S′

is injective. Indeed, let (I − S′)x′ = 0. Then, 0 = ‖(I − S′)x′‖ ≥ ‖x′‖ − ‖S′x′‖ ≥
‖x′‖− ‖S′‖‖x′‖ = d‖x′‖ ≥ 0, i.e., x′ = 0. Let us now show that I − S′ is open. By
[1, II.2.1], since I−S′ is injective, γ(I−S′) = inf

x′ �=0,x′∈D(S′)

‖(I−S′)x′‖
‖x′‖ ≥ d > 0. This

proves, by [1, II.3.2(b)], that I−S′ is open as a map from D(I−S′) = D(S′) onto
R(I − S′), i.e., the inverse (I − S′)−1 is continuous, by [1, II.3.1] and, therefore,
D(S′) and R(I−S′) are isomorphic. This implies, in turn, that R(I−S′) is closed
since D(S′) is closed. Therefore, as mentioned above, R(I − S) is closed and, by
Proposition 2.3, the operator (I − S)−1 is continuous.

Combining Proposition 2.2 with the fact that R(I−S) is closed, we conclude
that R(I − S) = X . �
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Note that for I − S to be only surjective one should not claim that S(0) is
closed or ‖S‖ < 1. Let us give some other sufficient conditions for that.

Proposition 2.5. If S ∈ ML(X) (with D(S) = X) has a continuous selection S0

such that ‖S0‖ < 1 then I − S is surjective.

Proof. If ‖S0‖ < 1 then I − S0 is surjective (from the single-valued theory). On
the other hand, I − S = I − S0 + S − S, i.e., (I − S)x = (I − S0)x + S(0) for all
x ∈ X . Hence, R(I − S) ⊃ R(I − S0) = X . �

Proposition 2.6. If S ∈ ML(X) (with D(S) = X), ‖S‖ < 1, and there exists a
linear projection, with the norm equal to 1, defined on R(S) with kernel S(0), then
I − S is surjective.

Proof. Let P be the norm-1 projection and let S0 = PS. Then, by [1, II.3.13],
‖S0‖ = ‖PS‖ ≤ ‖P‖‖S‖ = ‖S‖ < 1. Now apply Proposition 2.5. �

Note that if X is a Hilbert space then there exists a norm-1 linear projection
defined on R(S) with kernel S(0).

We now pass to the main perturbation theorems.

Theorem 2.7. Let the following conditions be satisfied:

1. A ∈ML(X) and, for some η ∈ (0, 1],

‖R(λ,A)‖ ≤ C|λ|−η, for sufficiently large λ ∈ Γ,

where Γ is an unbounded set of the complex plane;
2. B ∈ML(X), D(B) ⊃ D(A), B(0) is closed, and, for any ε > 0, there exists
C(ε) > 0 such that

‖Bu‖ ≤ ε‖Au‖η‖u‖1−η + C(ε)‖u‖, ∀u ∈ D(A).

Then, for every sufficiently large λ ∈ Γ, the multivalued linear operator (λI −A−
B)−1 is defined on the whole space X and

‖(λI −A−B)−1‖ ≤ C|λ|−η, for sufficiently large λ ∈ Γ.

Proof. By, e.g., [6, Theorem 1.7, p. 24], −I + λR(λ,A) ⊂ AR(λ,A), ∀λ ∈ ρ(A).
Then, for sufficiently large λ ∈ Γ, by condition (1),

‖AR(λ,A)‖ ≤ 1 + |λ|‖R(λ,A)‖ ≤ C|λ|1−η.

Hence, by conditions 1 and 2, for sufficiently large λ ∈ Γ and for any v ∈ X ,

‖BR(λ,A)v‖ ≤ ε‖AR(λ,A)v‖η‖R(λ,A)v‖1−η + C(ε)‖R(λ,A)v‖
≤ (εC + C(ε)|λ|−η)‖v‖.

Therefore,
‖BR(λ,A)‖ ≤ q < 1, for sufficiently large λ ∈ Γ.
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Then, by Proposition 2.4, the multivalued linear operator (I −BR(λ,A))−1 is ev-
erywhere defined and continuous for the same λ, i.e., by [1, II.3.2(a)], the operator
has a bounded norm

‖(I −BR(λ,A))−1‖ ≤ C, for sufficiently large λ ∈ Γ. (2.1)

Further, since λI −A is injective (see, e.g., [1, Exercise VI.1.2, p. 220]) then,
by, e.g., [1, formula I.1.3/(9), p. 3] and [9, Proposition A.1.1/(e), p. 281], on D(A),

(I −BR(λ,A))(λI −A) ⊂ λI −A−BR(λ,A)(λI −A) = λI −A−B. (2.2)

Then, by the definition of the inverse operator of multivalued linear operators (see,
e.g., [1, p. 1])

[(I −BR(λ,A))(λI −A)]−1 ⊂ (λI −A−B)−1.

From this, taking into account, e.g., [9, Proposition A.1.1/(a), p. 280], we get, for
sufficiently large λ ∈ Γ,

R(λ,A)(I −BR(λ,A))−1 ⊂ (λI −A−B)−1. (2.3)

In fact, the left-hand side operator is defined on the whole space X , which means
that the image of the left-hand side operator in (2.2) is X , i.e., also the image
R(λI −A−B) = X . This says that the operator (λI −A−B)−1 is defined on the
whole space X for sufficiently large λ ∈ Γ. On the other hand, by (2.1), (2.3), [1,
Corollary II.3.13, p. 38], and condition 1, we get

‖(λI −A−B)−1‖ ≤ ‖R(λ,A)‖ ‖(I −BR(λ,A))−1‖
≤ C|λ|−η, for sufficiently large λ ∈ Γ. �

Conditions of Theorem 2.7 do not guarantee that the operator (λI−A−B)−1

is single valued, that is why we could not say that (λI −A−B)−1 = R(λ,A+B).
Let us now formulate the results which state that (λI −A−B)−1 = R(λ,A+B).

Theorem 2.8. Let the following conditions be satisfied:

1. A ∈ML(X) and, for some η ∈ (0, 1],

‖R(λ,A)‖ ≤ C|λ|−η, for sufficiently large λ ∈ Γ,

where Γ is an unbounded set of the complex plane;
2. B ∈ML(X), D(B) ⊃ D(A), B(0) is closed, and, for any ε > 0, there exists
C(ε) > 0 such that

‖Bu‖ ≤ ε‖Au‖η‖u‖1−η + C(ε)‖u‖, ∀u ∈ D(A);

3. For sufficiently large λ ∈ Γ, the operator (I −R(λ,A)B)−1 is single valued.

Then, every sufficiently large λ ∈ Γ belongs to ρ(A+B) and

‖R(λ,A+B)‖ ≤ C|λ|−η, for sufficiently large λ ∈ Γ.
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Proof. From I ⊂ (λI − A)R(λ,A) and [9, Proposition A.1.1/(d) and (e), pp.280-
281], for sufficiently large λ ∈ Γ,

λI −A−B ⊂ λI −A− (λI −A)R(λ,A)B ⊂ (λI −A)(I −R(λ,A)B).

Then, by the definition of the inverse operator of multivalued linear operators (see,
e.g., [1, p.1]) and, e.g., [9, Proposition A.1.1/(a), p.280],

(λI −A−B)−1 ⊂ (I −R(λ,A)B)−1R(λ,A), (2.4)

for the same λ. Since the right-hand side operator is single valued, for sufficiently
large λ ∈ Γ, then (λI −A−B)−1 is also single valued for the same λ. Combining
this with the result of Theorem 2.7, we get that these λ belong to ρ(A + B) and
(λI −A−B)−1 = R(λ,A+B). �

Theorem 2.9. Let the following conditions be satisfied:

1. A ∈ML(X) and, for some η ∈ (0, 1],

‖R(λ,A)‖ ≤ C|λ|−η, for sufficiently large λ ∈ Γ,

where Γ is an unbounded set of the complex plane;
2. B is a single valued linear operator in X, D(B) ⊃ D(A), and, for any ε > 0,

there exists C(ε) > 0 such that

‖Bu‖ ≤ ε‖Au‖η‖u‖1−η + C(ε)‖u‖, ∀u ∈ D(A);

3. There exists a Banach space Z, D(A) ⊂ Z ⊂ D(B), such that, for some
θ ∈ (0, 1],

‖R(λ,A)‖L(X,Z) ≤ C|λ|−θ , for sufficiently large λ ∈ Γ.

Then, every sufficiently large λ ∈ Γ belongs to ρ(A+B) and

‖R(λ,A+B)‖ ≤ C|λ|−η, for sufficiently large λ ∈ Γ.

Proof. From conditions 1 and 2 we get conditions 1 and 2 of Theorem 2.7. There-
fore, the result of Theorem 2.7 is true. Thus, in order to get the assertion of
Theorem 2.9, it is now enough to show that the operator (λI −A−B)−1 is single
valued.

Since B is single valued then, for sufficiently large λ ∈ Γ, R(λ,A)B is also
single valued. On the other hand, by condition 3,

‖R(λ,A)B‖L(Z) ≤ ‖R(λ,A)‖L(X,Z)‖B‖L(Z,X) ≤ C|λ|−θ < 1,

for sufficiently large λ ∈ Γ. Therefore, I − R(λ,A)B has a bounded single valued
inverse operator (I − R(λ,A)B)−1 in L(Z). Then, since the image R((λI − A −
B)−1) = D(A) and the image R(R(λ,A)) = D(A), we obtain, by (2.4), that
the operator (λI − A − B)−1 is single valued (in fact, (λI − A − B)−1 = (I −
R(λ,A)B)−1R(λ,A), for sufficiently large λ ∈ Γ). �
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Remark 2.10. The same conclusion, as in Theorem 2.9, holds if instead of the
inequality in condition 2 it is assumed that, for some σ > 0,

‖BR(λ,A)‖ ≤ C|λ|−σ , for sufficiently large λ ∈ Γ. (2.5)

The proof is the same as that of Theorem 2.9, where the inequality in condition
2 is needed in order to apply Theorem 2.7. In turn, the inequality in Theorem 2.7
has been only used for the proving that ‖BR(λ,A)‖ ≤ q < 1, for sufficiently large
λ ∈ Γ. The latter inequality is now obvious due to (2.5).

3. Modified resolvent approach

Definition 3.1. Let M and L be two single-valued, closed linear operators in a
Banach space X , D(L) ⊂ D(M), 0 ∈ ρ(L). The set {λ ∈ C : λM−L has a single-
valued and bounded inverse defined on X} is called the M modified resolvent set
of L (or simply the M resolvent set of L) and is denoted by ρM (L). The bounded
operator (λM − L)−1 is called the M modified resolvent of L (or simply the M
resolvent of L).

Theorem 3.2. Let the following conditions be satisfied:

1. Operators M(t) and L(t) are single valued, closed linear operators in a Ba-
nach space X which depend on a parameter t, D(L(t)) ⊂ D(M(t)), every
λ ∈ Γ, |λ| → ∞, belongs to ρM(t)(L(t)), and, for some η ∈ (0, 1],

‖M(t)(λM(t)− L(t))−1‖ ≤ C|λ|−η, for sufficiently large λ ∈ Γ,

uniformly on t, where Γ is an unbounded set of the complex plane;
2. An operator L1(t) is a single-valued, closed linear operator in X, D(L(t)) ⊂
D(L1(t)) and, for any ε > 0,

‖L1(t)u‖ ≤ ε‖L(t)u‖η‖M(t)u‖1−η + C(ε)‖M(t)u‖, ∀u ∈ D(L(t)),

uniformly on t.

Then, every sufficiently large λ ∈ Γ belongs to ρM(t)(L(t) + L1(t)) and

‖M(t)[λM(t)− (L(t) + L1(t))]−1‖ ≤ C|λ|−η, for sufficiently large λ ∈ Γ,

uniformly on t.

Proof. Since, for λ ∈ ρM(t)(L(t)),

L(t)(λM(t) − L(t))−1 = (−(λM(t)− L(t)) + λM(t))(λM(t) − L(t))−1

= −I + λM(t)(λM(t) − L(t))−1

then, by condition 1, for sufficiently large λ ∈ Γ, we have

‖L(t)(λM(t)− L(t))−1‖ ≤ C|λ|1−η,
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uniformly on t. Hence, by conditions 1 and 2, for sufficiently large λ ∈ Γ and for
any v ∈ X ,

‖L1(t)(λM(t) − L(t))−1v‖ ≤ ε‖L(t)(λM(t)− L(t))−1v‖η‖M(t)(λM(t)

− L(t))−1v‖1−η + C(ε)‖M(t)(λM(t) − L(t))−1v‖
≤ (εC + C(ε)|λ|−η)‖v‖,

uniformly on t. Therefore,

‖L1(t)(λM(t) − L(t))−1‖ ≤ q < 1, for sufficiently large λ ∈ Γ,

uniformly on t, which implies, for the same λ,

‖[I − L1(t)(λM(t) − L(t))−1]−1‖ ≤ C, (3.1)

uniformly on t.
On the other hand, for λ ∈ ρM(t)(L(t)),

λM(t)− (L(t) + L1(t)) = [I − L1(t)(λM(t)− L(t))−1](λM(t)− L(t)),

i.e., for sufficiently large λ ∈ Γ,

[λM(t)− (L(t) + L1(t))]−1 = (λM(t) − L(t))−1[I − L1(t)(λM(t) − L(t))−1]−1

or

M(t)[λM(t)− (L(t) + L1(t))]−1

=M(t)(λM(t) − L(t))−1[I − L1(t)(λM(t)− L(t))−1]−1

which, by condition 1 and inequality (3.1), completes the proof. �

Remark 3.3. The same conclusion, as in Theorem 3, holds if instead of condition (2)
it is assumed that L1(t) is a single-valued, closed linear operator in X , D(L(t)) ⊂
D(L1(t)), and, for some σ > 0,

‖L1(t)(λM(t) − L(t))−1‖ ≤ C|λ|−σ , for sufficiently large λ ∈ Γ,

uniformly on t. In this case, the proof of (3.1) is obvious since

‖L1(t)(λM(t) − L(t))−1‖ ≤ q < 1, for sufficiently large λ ∈ Γ,

uniformly on t.

Corollary 3.4. Let the following conditions be satisfied:

1. Operators M(t) and L(t) are single valued, closed linear operators in a Ba-
nach space X which depend on a parameter t, D(L(t)) ⊂ D(M(t)), every
sufficiently large λ ∈ Γ belongs to ρM(t)(L(t)), and, for some η ∈ (0, 1],

‖M(t)(λM(t)− L(t))−1‖ ≤ C|λ|−η, for sufficiently large λ ∈ Γ,

uniformly on t, where Γ is an unbounded set of the complex plane;
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2. An operator L1(t) is a single-valued, closed linear operator in X, D(L(t)) ⊂
D(L1(t)) and, for some μ ∈ [0, η),

‖L1(t)u‖ ≤ C(‖L(t)u‖μ‖M(t)u‖1−μ + ‖M(t)u‖), ∀u ∈ D(L(t)),

uniformly on t.
Then, every sufficiently large λ ∈ Γ belongs to ρM(t)(L(t) + L1(t)) and

‖M(t)(λM(t)− (L(t) + L1(t)))−1‖ ≤ C|λ|−η , for sufficiently large λ ∈ Γ,

uniformly on t.

Proof. By the Young inequality, we have

‖L(t)u‖μ‖M(t)u‖1−μ = ‖M(t)u‖1−η‖L(t)u‖μ‖M(t)u‖η−μ

≤ ‖M(t)u‖1−η(ε‖L(t)u‖η + C(ε)‖M(t)u‖η)

≤ ε‖L(t)u‖η‖M(t)u‖1−η + C(ε)‖M(t)u‖,
which implies that the assertion follows from Theorem 3.2. �
Theorem 3.5. Let M(t) and L(t) be single valued, closed linear operators in a
Banach space X which depend on a parameter t, D(L(t)) ⊂ D(M(t)), and

‖M(t)(λM(t)− L(t))−1‖ ≤ K|λ|−1, argλ = ϕ, λ sufficiently large,

uniformly on t.
Then, for some α > 0,

‖M(t)(λM(t)− L(t))−1‖ ≤ C|λ|−1, | argλ− ϕ| < α, λ sufficiently large,

uniformly on t.

Proof. If μ ∈ ρM(t)(L(t)), then

λM(t) − L(t) = μM(t)− L(t) + (λ − μ)M(t)

= [I − (μ− λ)M(t)(μM(t)− L(t))−1](μM(t)− L(t)).

Then, for |λ− μ| < ‖M(t)(μM(t)− L(t))−1‖−1,

M(t)(λM(t) − L(t))−1

=M(t)(μM(t)− L(t))−1[I − (μ− λ)M(t)(μM(t) − L(t))−1]−1,

or
M(t)(λM(t) − L(t))−1

=M(t)(μM(t)− L(t))−1
∞∑

k=0

[M(t)(μM(t)− L(t))−1]k(μ− λ)k.

Fix q < 1. Therefore, in the circle |λ − s| < K−1|s|q, with a center point s ∈
ρM(t)(L(t)) on arg s = ϕ and s is large enough, by the condition of the theorem,
we have

‖M(t)(λM(t)− L(t))−1‖ ≤ K|s|−1
∞∑

k=0

(K|s|−1)k(K−1|s|q)k = K|s|−1(1− q)−1,
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uniformly on t. Since K−1|s|q > |λ− s| ≥ |λ| − |s|, then |s|−1 < (K−1q + 1)|λ|−1.
So, in the circle |λ− s| < K−1|s|q, for sufficiently large s on arg s = ϕ, we have

‖M(t)(λM(t)− L(t))−1‖ ≤ K(1− q)−1(K−1q + 1)|λ|−1 ≤ C|λ|−1,

uniformly on t. Since the circles |λ− s| < K−1|s|q cover the angle | argλ−ϕ| < α,
where α = arctan(K−1q), then, for α = arctan(K−1q), the necessary estimate is
fulfilled. �

4. Application to PDEs

We give various examples of possible applications of the obtained abstract pertur-
bation results.
Example 1. Consider an initial boundary value problem for an equation of parabolic
type in the domain [0, 1]× [0, T ]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂
∂t

{(
1− ∂2

∂x2

)
v(x, t)

}
= −∂4v(x,t)

∂x4 +
∑3

j=0

∑Nj

i=1 bji(x)
∂jv(ϕji(x),t)

∂xj

+
∑4

j=0

∫ 1

0
Bj(x, y)

∂jv(y,t)
∂yj dy + f(x, t), 0 < x < 1, 0 < t < T,

v(0, t) = v(1, t) = ∂2v
∂x2 (0, t) = ∂2v

∂x2 (1, t) = 0, 0 < t < T,(
1− ∂2

∂x2

)
v(x, 0) = u0(x), 0 < x < 1,

(4.1)

where bji(x) ∈ L2(0, 1), ϕji(x) are functions mapping the segment [0,1] into
itself and belong to C[0, 1], Bj(x, y) are kernels such that, for some σ > 1,∫ 1

0 |Bj(x, y)|σdy +
∫ 1

0 |Bj(x, y)|σdx ≤ C.

Denoting X := L2(0, 1), M := I − d2

dx2 with D(M) := H2(0, 1) ∩ H1
0 (0, 1),

L := − d4

dx4 with D(L) := H4(0, 1;u(0) = u(1) = u′′(0) = u′′(1) = 0), and

L1u :=
3∑

j=0

Nj∑
i=1

bji(x)u(j)(ϕji(x)) +
4∑

j=0

∫ 1

0

Bj(x, y)u(j)(y)dy

with D(L1) = D(L), and, using [6, Example 3.1, p. 73], [12, Examples 3 and 4, p.
201], [12, Lemma 1.2.8/3], [6, Theorem 3.8], and Theorem 3.2 (with η = 1), one
can get that for any f ∈ Cs([0, T ];L2(0, 1)), 0 < s (≤ 1), and any u0 ∈ L2(0, 1),
there exists a unique strict solution v(x, t) of problem (4.1) such that

Mv ∈ C1((0, T ];L2(0, 1)), Lv, L1v ∈ C((0, T ];L2(0, 1))

provided that Mv(x, 0) = u0(x) is understood in the seminorm sense, i.e.,

‖M(γM − L)−1(Mv(·, t)− u0(·))‖L2(0,1) → 0 as t→ 0,

where γ > 0 is sufficiently large.
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Example 2. Modify now the boundary conditions in (4.1) and consider, e.g., the
following problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂
∂t

{(
1− ∂2

∂x2

)
v(x, t)

}
= −∂4v(x,t)

∂x4 +
∑2

j=0 bj(x)
∂jv(x,t)

∂xj

+
∑2

j=0

∫ 1

0
Bj(x, y)

∂jv(y,t)
∂yj dy + f(x, t), 0 < x < 1, 0 < t < T,

v(0, t) = v(1, t) = ∂v
∂x(0, t) = ∂v

∂x (1, t) = 0, 0 < t < T,(
1− ∂2

∂x2

)
v(x, 0) = u0(x), 0 < x < 1,

(4.2)

where bj(x) ∈ L∞(0, 1), Bj(x, y) ∈ L2((0, 1)× (0, 1)).
Denoting X := L2(0, 1), M := I − d2

dx2 with D(M) := H2(0, 1) ∩ H1
0 (0, 1),

L := − d4

dx4 with D(L) := H4(0, 1;u(0) = u(1) = u′(0) = u′(1) = 0), and

L1u :=
2∑

j=0

bj(x)u(j)(x) +
2∑

j=0

∫ 1

0

Bj(x, y)u(j)(y)dy

with D(L1) = D(M), and, using [6, Example 3.2, p. 73], [6, Theorem 3.8], and
Corollary 3.4 (with η = 1

2 and any μ ∈ [0, 1
2 )), one can get a similar result as in

the previous example also for problem (4.2). Note only that, for any u ∈ D(L),
obviously

‖L1u‖L2(0,1) ≤ C‖u‖H2(0,1) ≤ C‖u‖μ
H4(0,1)‖u‖

1−μ
H2(0,1)

≤ C(‖Lu‖μ
L2(0,1) + ‖u‖μ

L2(0,1))‖Mu‖
1−μ
L2(0,1)

≤ C(‖Lu‖μ
L2(0,1) + ‖Mu‖μ

L2(0,1))‖Mu‖
1−μ
L2(0,1)

≤ C(‖Lu‖μ
L2(0,1)‖Mu‖

1−μ
L2(0,1) + ‖Mu‖L2(0,1)).

Example 3. Consider now an initial boundary value problem for an equation of
parabolic type in the domain [0, �π]× [0, T ]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂
∂t

{(
1 + ∂2

∂x2

)
v(x, t)

}
= ∂2v(x,t)

∂x2 + a(x)
∫ x

0

(
v(s, t) + ∂2v(s,t)

∂s2

)
ds

+f(x, t), 0 < x < �π, 0 < t < T,

v(0, t) = v(�π, t) = 0, 0 < t < T,(
1 + ∂2

∂x2

)
v(x, 0) =

(
1 + ∂2

∂x2

)
v0(x), 0 < x < �π,

(4.3)

where � is a positive integer, a(x) is a continuous function on [0, �π].
Denoting X := C([0, �π];u(0) = u(�π) = 0) andM := I+ d2

dx2 with D(M) :=
C2([0, �π];u(0) = u(�π) = u′′(0) = u′′(�π) = 0), and, using [6, Example 3.10, p.
86], the corresponding calculations in [6, p. 85], [6, Theorem 3.8], and Corollary
3.4 (with η = 1 and μ = 0), one can get that for any f ∈ Cs([0, T ];X), 0 < s ≤ 1,
and any v0 ∈ D(M), there exists a unique strict solution v(x, t) of problem (4.3)
such that

Mv ∈ C1((0, T ];X)
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provided that Mv(x, 0) =Mv0(x) is understood in the seminorm sense, i.e.,

‖M(γM + I)−1M(v(·, t)− v0(·))‖X → 0 as t→ 0,

where γ > 0 is sufficiently large.
Example 4. Consider an initial value problem{

d
dt (t

�v(t)) = Lv(t) + L1(t)v(t) − av(t) + f(t), 0 < t < T,
limt→0+(t�v(t)) = 0.

(4.4)

Theorem 4.1. Let the following conditions be satisfied:
1. The operator L is a single-valued, closed linear operator in a Banach space
X, D(L) is dense in X, the resolvent set ρ(L) contains the region {λ ∈ C :
�eλ ≥ −c(|�mλ|+ 1)}, and, for these λ,

‖R(λ, L)‖ ≤ C

|λ|+ 1
,

for some positive constants c and C;
2. The operator L1(t), for any t ∈ [0, T ], is a single-valued, closed linear op-

erator in X, D(L) ⊂ D(L1(t)), L1(·) ∈ C1+μ([0, T ];B(D(L), X)), where
μ = min{�− 1, 1}, and, for any ε > 0,

‖L1(t)u‖ ≤ ε‖Lu‖+ C(ε)‖u‖, ∀u ∈ D(L),

uniformly on t ∈ [0, T ];
3. � > 1; a = 0 if L1(t) ≡ 0, otherwise a > 0 is sufficiently large;
4. f ∈ Cσ([0, T ];X) with 0 < σ < μ(1− 1

� ).

Then, there exists a unique strict solution of (4.4) such that t�v ∈ C1+σ([0, T ];
X) and v ∈ Cσ([0, T ];D(L)). Moreover, for the solution, lim

t→0+

d
dt (t

�v(t)) = 0 and

Lv(0) + L1(0)v(0)− av(0) + f(0) = 0.

Proof. If L1(t) ≡ 0 (i.e., by condition 3, also a = 0) then the theorem has been
proved in [6, pp. 111–112]. So, a new case is a perturbed equation in (4.4), i.e.,
L1(t) �≡ 0. In this case, by conditions 1 and 2, from Theorem 3.2 (with M(t) ≡ I,
η = 1), we have

‖R(λ, L+ L1(t))‖ ≤
C

|λ|+ 1
,

uniformly on t ∈ [0, T ], in the region {λ ∈ C : �e(λ − a) ≥ −c(|�mλ| + 1)}, for
a > 0 sufficiently large, or, equivalently,

‖R(λ, L+ L1(t)− aI)‖ ≤
C

|λ|+ 1
,

uniformly on t ∈ [0, T ], in the region {λ ∈ C : �eλ ≥ −c(|�mλ|+ 1)}. Therefore,
M(t) := t�I and L(t) := L + L1(t) − aI satisfy [6, formula (4.14), p. 106] with
α = β = 1 and γ = 0. Moreover, from

t�−1‖(λt� − (L+ L1(t)− aI))−1‖ ≤ Ct�−1

|λt�|+ 1
≤ C

|λ|1− 1
�

, �eλ ≥ −c0(|�mλ|+ 1),
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uniformly on t ∈ [0, T ], where c0 > 0 is some suitable constant, [6, formula (4.19),
p. 108] is verified with ν̃ = 1− 1

� . Formula (4.20) in [6, p. 108], by condition 2 and
that M(t) = t�I, is obvious with μ = min{�− 1, 1}. Then, the proof is completed
by using [6, Proposition 4.15]. �

Remark 4.2. Using Example 1, for application of (4.4), we can take, in X :=
L2(0, 1), an operator L := − d4

dx4 with D(L) := H4(0, 1;u(0) = u(1) = u′′(0) =
u′′(1) = 0) and, e.g., an operator

L1(t)u := b(t)

⎛⎝ 3∑
j=0

Nj∑
i=1

bji(x)u(j)(ϕji(x)) +
4∑

j=0

∫ 1

0

Bj(x, y)u(j)(y)dy

⎞⎠
with D(L1) = D(L), where b(t) ∈ C1+μ[0, T ], and, by Theorem 4.1, get the corre-
sponding result.

The following examples are variations of initial boundary value problems of
the type ⎧⎪⎪⎨⎪⎪⎩

∂

∂t
(m(x)u(x, t)) + Lu(x, t) = f(x, t), (x, t) ∈ Ω× (0, τ ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, τ ],

m(x)u(x, 0) = v0(x), x ∈ Ω,

(4.5)

where Ω is a bounded domain in Rn, n ≥ 1, with a smooth boundary ∂Ω,

L = −
n∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi

)
+

n∑
i=1

ai(x)
∂

∂xi
+ a0(x),

aij , ai, a0 are real-valued functions on Ω such that aji = aij ∈ C(Ω); ∂aij

∂xj
, ai, ∂ai

∂xi
,

a0 ∈ L∞(Ω), i, j = 1, . . . , n;
n∑

i,j=1

aij(x)ξiξj ≥ c0
n∑

j=1

ξ2j , ∀x ∈ Ω, ∃c0 > 0;

a0(x) ≥ c1 > 0, ∀x ∈ Ω, ∃c1 > 0; m(x) ≥ 0, m ∈ L∞(Ω); and the initial condition
in (4.5) is understood in the seminorm sense ‖mL−1(mu − v0)‖Lp(Ω) → 0, as
t→ 0+.

Generalizing to the degenerate case the well-known classical result in [2,
Theorem 4.43], it is shown in [4] that if D(L) := W 2,p(Ω) ∩W 1,p

0 (Ω), Lu := Lu,
ai(x) ≡ 0, for i = 1, . . . , n, D(M) := Lp(Ω), Mu := m(·)u, and m is ρ-regular in
the sense that m ∈ C1(Ω) and, for some ρ ∈ (0, 1),

|∇m(x)| ≤ Cm(x)ρ, ∀x ∈ Ω, (4.6)

then, for p ≥ 2, the estimate

‖M(λM − L)−1‖L(Lp(Ω)) ≤ C(1 + |λ|)−
2

p(2−ρ) (4.7)
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holds in the sector Σ1 := {λ ∈ C : �eλ ≥ −c(1 + |�mλ|)}, for some c > 0. Note
that, in [5], it was considered the general problem (4.5) also with Robin boundary
condition

∑n
i,j=1 aij(x)νj(x)

∂u(x,t)
∂xi

+ b(x)u(x, t) = 0 on ∂Ω × (0, τ ] (instead of
the Dirichlet boundary condition), where ν(x) = (ν1(x), . . . , νn(x)) is the unit
outer normal vector at x on ∂Ω, b ∈ L∞(∂Ω). Under some additional restrictions
on the coefficients of the problem, like a0(x) − 1

p

∑n
i=1

∂ai(x)
∂xi

≥ c1 > 0, b(x) +
1
p

∑n
i=1 ai(x)νi(x) ≥ 0, ∀x ∈ ∂Ω, estimate (4.7) was again proved.
In what follows, we indicate different types of conditions on the lower-order

terms which allow us to apply the perturbation results in Sections 2 and 3.
Example 5. We introduce now a problem, to which the resolvent approach (see
Section 2) can be applied. Consider an initial boundary value problem for an
elliptic-parabolic equation of the type

∂

∂t
(m(x)u(x, t)) = ∇•(a(x)∇u(x, t)) +

n∑
i=1

ai(x)
∂(m(x)u(x, t))

∂xi

+ c0(x)u(x, t) + f(x, t), (x, t) ∈ Ω× (0, τ ], (4.8)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, τ ], (4.9)

m(x)u(x, 0) = v0(x), x ∈ Ω. (4.10)

Here, Ω is a bounded domain in Rn of class C2, n = 2, 3; ∇ denotes the gradient
vector with respect to x variable; m(x) ≥ 0 on Ω and m ∈ C2(Ω); a(x), ai(x),
c0(x) are real-valued smooth functions on Ω; a(x) ≥ δ > 0 and c0(x) ≤ 0 for all
x ∈ Ω, there exists δ > 0. Moreover, (4.6) is satisfied.

Take the space X := L2(Ω), the operators Mu := m(·)u, D(M) := X ,
Lu := ∇•(a(·)∇u) + c0(·), D(L) := H2(Ω) ∩H1

0 (Ω). Introduce the new unknown
function v :=Mu and, in X , consider the operators

A := LM−1, D(A) :=M(D(L)),

Bv :=
n∑

i=1

ai(x)
∂v

∂xi
, D(B) := H1(Ω).

Note that A is a multivalued linear operator. Then, problem (4.8)–(4.10) is reduced
to the multivalued Cauchy problem (inclusion)⎧⎨⎩

∂v

∂t
∈ Av +Bv + f(t), t ∈ (0, τ ],

v(0) = v0,
(4.11)

where f(t) := f(t, ·) and v0 := v0(·).
We are going to use Theorem 2.9 together with Remark 2.10 for the multi-

valued linear operator A+B. We get, from (4.7), that

‖R(λ,A)‖L(X) = ‖M(λM − L)−1‖L(X) ≤ C(1 + |λ|)−
1

2−ρ

holds for any λ in the sector Σ1, i.e., condition 1 of Theorem 2.9 is fulfilled with
η = 1

2−ρ . Further, using arguments in [7, pp. 443–444], introduce the Hilbert space
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Z := H
n
2 +ε(Ω), 0 < ε < 1

2 . Obviously, Z = [L2(Ω), H2(Ω)]n
4 + ε

2
. Then, by the

interpolation theory (see [7, p. 444] for the details), it can be shown that

‖R(λ,A)‖L(X,Z) = ‖M(λM − L)−1‖L(X,Z) ≤ C(1 + |λ|)n
4 + ε

2−
1

2−ρ

in the sector Σ1. If n = 2 then for any ρ ∈ (0, 1) there exists ε > 0 such that the last
exponent will be negative, while if n = 3 then for any ρ ∈ (2

3 , 1) there exists ε > 0
such that the last exponent will be negative. Therefore, condition 3 of Theorem
2.9 is fulfilled with θ = 1

2−ρ −
n
4 −

ε
2 > 0. Observe now that Z ⊂ H1(Ω) and B is

bounded from H1(Ω) into L2(Ω). Therefore, the operator BR(λ,A) satisfies the
estimate in Remark 2.10 (with σ = θ = 1

2−ρ −
n
4 −

ε
2 ) and thus, by Theorem 2.9,

‖R(λ,A+B)‖L(X) ≤ C|λ|−
1

2−ρ

for any sufficiently large λ in the sector Σ1. Without loss of generality, we can
assume this estimate to be hold for all λ in the sector Σ1 and not only for |λ|
big enough. To this end, it is enough to make a change of the unknown function
u = ektw, for k > 0 big enough, in problem (4.8)–(4.10). In this way, A − kI
substitutes A.

We now apply [6, Theorem 3.7] (with α = 1, β = 1
2−ρ) and conclude that,

for any f ∈ Cσ([0, τ ];L2(Ω)), 1−ρ
2−ρ < σ ≤ 1, and v0 ∈ L2(Ω), there exists a unique

strict solution u(x, t) of problem (4.11) and, therefore, of problem (4.8)–(4.10),
i.e., m(x)u ∈ C1((0, τ ];L2(Ω)), ∇ • (a(x)∇u) +

∑n
i=1 ai(x)

∂(m(x)u)
∂xi

+ c0(x)u ∈
C((0, τ ];L2(Ω)), u satisfies (4.8)–(4.9), and (4.10) holds in the seminorm sense
‖m(L + L1)−1(mu − v0)‖L2(Ω) → 0, as t → 0+, where L1u :=

∑n
i=1 ai(·)∂(m(·)u)

∂xi
,

D(L1) := {u ∈ L2(Ω) : mu ∈ H1(Ω)}. Note that we assume (4.6) to be fulfilled
for 0 < ρ < 1, if n = 2, while for 2

3 < ρ < 1, if n = 3.

Example 6. In this example, we show how using new gradient estimates we can
perturb the main operator of the equation. To this end, for the sake of simplicity, we
detail the case n = 1. Consider the following resolvent equation with the Dirichlet
boundary conditions

λm(x)u(x) − u′′(x) + c(x)u(x) = f(x), x ∈ (0, 1), (4.12)

u(0) = u(1) = 0. (4.13)

In the space X = L2(0, 1), denote by Lu := u′′−c(·)u, D(L) := H2(0, 1)∩H1
0 (0, 1)

and Mu := m(·)u, D(M) := X . Assume that m ∈ C1[0, 1], m(x) ≥ 0, |m′(x)| ≤
Cm(x)ρ, 0 < ρ < 1, and c is a measurable, bounded function on [0, 1], c(x) ≥ δ > 0.
Multiplying (4.12) by u(x) and integrating the obtained equality on (0, 1), we easily
get (integrating by parts the second summand in the left-hand side of the equality
and using (4.13))

λ‖
√
mu‖2X + ‖u′‖2X +

∫ 1

0

c(x)|u(x)|2dx =
∫ 1

0

f(x)u(x)dx,
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implying

�eλ‖
√
mu‖2X + ‖u′‖2X +

∫ 1

0

c(x)|u(x)|2dx = �e
∫ 1

0

f(x)u(x)dx,

�mλ‖
√
mu‖2X = �m

∫ 1

0

f(x)u(x)dx.

Therefore,

(�eλ+ |�mλ|)‖
√
mu‖2X + ‖u′‖2X +

∫ 1

0

c(x)|u(x)|2dx

= �e
∫ 1

0

f(x)u(x)dx+
∣∣∣∣�m ∫ 1

0

f(x)u(x)dx
∣∣∣∣ .

Then, by using Poincaré’s lemma and Cauchy-Schwartz inequality, there is a pos-
itive constant c0 > 0 such that

(�eλ+ |�mλ|+ c0)‖
√
mu‖2X +

1
2
‖u′‖2X +

∫ 1

0

c(x)|u(x)|2dx

≤ �e
∫ 1

0

f(x)u(x)dx+
∣∣∣∣�m ∫ 1

0

f(x)u(x)dx
∣∣∣∣

≤ 2
∣∣∣∣∫ 1

0

f(x)u(x)dx
∣∣∣∣

≤ 2‖f‖X‖u‖X.

Take λ ∈ C, �eλ+ |�mλ|+ c0 ≥ c1 > 0. Hence, for all such λ,

‖u′‖2X ≤ 4‖f‖X‖u‖X , ‖u‖2X ≤
2
δ
‖f‖X‖u‖X

and thus, there exists C > 0 such that, for λ ∈ C, �eλ+ |�mλ|+ c0 ≥ c1 > 0,

‖u‖X ≤ C‖f‖X , ‖u′‖X ≤ C‖f‖X . (4.14)

Multiply now (4.12) by m(x)u(x) and integrate the obtained equality on
(0, 1). Then,

λ‖Mu‖2X −
∫ 1

0

m(x)u′′(x)u(x)dx+
∫ 1

0

m(x)c(x)|u(x)|2dx =
∫ 1

0

m(x)f(x)u(x)dx

gives, after integrating by parts in the first integral and using (4.13),

λ‖Mu‖2X +
∫ 1

0

m(x)|u′(x)|2dx+
∫ 1

0

m(x)c(x)|u(x)|2dx

=
∫ 1

0

m(x)f(x)u(x)dx−
∫ 1

0

m′(x)u′(x)u(x)dx.
(4.15)
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Further, from (4.15), we have∫ 1

0

m(x)|u′(x)|2dx = − λ‖Mu‖2X −
∫ 1

0

m(x)c(x)|u(x)|2dx

+
∫ 1

0

m(x)f(x)u(x)dx−
∫ 1

0

m′(x)u′(x)u(x)dx.
(4.16)

On the other hand, using (4.6) (for n = 1) and the Hölder inequality, we get∣∣∣∣∫ 1

0

m′(x)u′(x)u(x)dx
∣∣∣∣ ≤ (∫ 1

0

|m′(x)|2|u(x)|2dx
) 1

2

‖u′‖X

≤ C
(∫ 1

0

m(x)2ρ|u(x)|2dx
) 1

2

‖u′‖X

= C
(∫ 1

0

m(x)2ρ|u(x)|2ρ|u(x)|2−2ρdx

) 1
2

‖u′‖X

≤ C
(∫ 1

0

m(x)2|u(x)|2dx
) ρ

2
(∫ 1

0

|u(x)|2dx
) 1−ρ

2

‖u′‖X

= C‖Mu‖ρ
X‖u‖

1−ρ
X ‖u′‖X . (4.17)

Note that there exist c̃ > 0 and c̃1 > 0 such small that

Σ̃1 := {λ ∈ C : �eλ ≥ −c̃(1 + |�mλ|)} ⊂ Σ1,

Σ̃1 ⊂ {λ ∈ C : �eλ+ |�mλ|+ c0 ≥ c̃1 > 0}.

Therefore, (4.7) and (4.14) hold in Σ̃1. Then, from (4.16), using (4.7), (4.14), and
(4.17), for λ ∈ Σ̃1, we get∫ 1

0

m(x)|u′(x)|2dx ≤ − λ‖Mu‖2X +
∫ 1

0

m(x)f(x)u(x)dx−
∫ 1

0

m′(x)u′(x)u(x)dx

≤ |λ|‖Mu‖2X +
∣∣∣∣∫ 1

0

m(x)f(x)u(x)dx
∣∣∣∣ +

∣∣∣∣∫ 1

0

m′(x)u′(x)u(x)dx
∣∣∣∣

≤ C |λ|
(1 + |λ|)

2
2−ρ

‖f‖2X + ‖Mu‖X‖f‖X

+ C‖Mu‖ρ
X‖u‖

1−ρ
X ‖u′‖X

≤ C|λ|1− 2
2−ρ ‖f‖2X + C(1 + |λ|)− 1

2−ρ ‖f‖2X
+ C(1 + |λ|)−

ρ
2−ρ ‖f‖ρ

X‖f‖
1−ρ
X ‖f‖X

≤ C(|λ|−
ρ

2−ρ + |λ|−
1

2−ρ )‖f‖2X ,
i.e., ∫ 1

0

m(x)|u′(x)|2dx ≤ C|λ|−
ρ

2−ρ ‖f‖2X, λ ∈ Σ̃1, |λ| ≥ 1.
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Therefore, the gradient estimate reads(∫ 1

0

m(x)|u′(x)|2dx
) 1

2

≤ C|λ|−
ρ

2(2−ρ) ‖f‖X, λ ∈ Σ̃1, |λ| ≥ 1, (4.18)

extending the well-known result for the regular case (see [10, Theorem 3.1.3]).
This argument extends to an arbitrary bounded domain Ω ∈ Rn with the

smooth boundary ∂Ω, in view of Green’s formula (and u = 0 on ∂Ω)∫
Ω

mΔuudx = −
∫

Ω

∇(mu) • ∇udx = −
∫

Ω

m|∇u|2dx−
n∑

j=1

∫
Ω

∂m

∂xj
u
∂u

∂xj
dx,

where m satisfies (4.6). So, if (λm(x)−Δ + c(x))u = f ∈ L2(Ω), u = 0 on ∂Ω (as
(4.12)–(4.13)) then, similarly to (4.18), for sufficiently large λ ∈ Σ̃1,(∫

Ω

m(x)|∇u(x)|2dx
) 1

2

≤ C|λ|−
ρ

2(2−ρ) ‖f‖L2(Ω). (4.19)

As a consequence, consider the initial boundary value problem

∂

∂t
(m(x)u(x, t)) = Δu(x, t) +

√
m(x)

n∑
i=1

ai(x)
∂u(x, t)
∂xi

− c(x)u(x, t)

+ f(x, t), (x, t) ∈ Ω× (0, τ ], (4.20)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, τ ], (4.21)

m(x)u(x, 0) = v0(x), x ∈ Ω. (4.22)

Suppose that m, ai ∈ C1(Ω), (4.6) is satisfied, c is a measurable bounded function
on Ω, c(x) ≥ δ > 0, f ∈ Cσ([0, τ ];L2(Ω)), 1−ρ

2−ρ < σ ≤ 1, and v0 ∈ L2(Ω). In
X := L2(Ω), consider the operator Mu := m(·)u, D(M) := X , Lu := Δu− c(·)u,
D(L) := H2(Ω) ∩H1

0 (Ω), L1u :=
√
m(·)

∑n
i=1 ai(·) ∂u

∂xi
, D(L1) := H1(Ω). Then,

from (4.7) (which is true in Σ̃1), we get condition 1 of Theorem 3.2 (with η =
1

2−ρ) and, from (4.19), we get the estimate in Remark 3.3 (with σ = ρ
2(2−ρ) ).

So, the conclusion of Theorem 3.2 for the operator L + L1 is true. Hence, by [6,
Theorem 3.8] (with α = 1, β = 1

2−ρ , γ > 0 big enough), problem (4.20)–(4.22)
admits a unique strict solution u(x, t), i.e., m(x)u ∈ C1((0, τ ];L2(Ω)), (L+L1)u ∈
C((0, τ ];L2(Ω)), u satisfies (4.20)–(4.21), and condition (4.22) is understood in the
seminorm sense ‖m(L+ L1)−1(mu− v0)‖L2(Ω) → 0, as t→ 0+.

Example 7. In the last example, we use the result in [3, Theorem 4.4]. Given an
unbounded domain Ω in Rn, n ≥ 2, with a boundary ∂Ω of class C2 and an
admissible domain according to [3, Definition 4.1]. We consider the linear second-
order differential expression in divergence form

A(x,Dx) =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
− a0(x)
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with aij = aji ∈ C1
b (Ω), i, j = 1, . . . , n, a0 ∈ Cb(Ω), a0 ≥ ν1 > 0, ∃ν1 > 0,

ν2|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ ν3|ξ|2, ∀(x, ξ) ∈ Ω× Rn, ∃ν2, ν3 > 0,

m ∈ C2
b (Ω) is non-negative and |∇m(x)| ≤ Km(x), (A(x,Dx),m) is an admissible

pair according to [3, Definition 4.2]. Note that m = ev, where v ∈ C0,1(Ω) and
sup
x∈Ω

v(x) < +∞ satisfies the assumptions above.

According to the quoted [3, Theorem 4.4], for all p ∈ (1,+∞) there exists
ωp ≥ 0 such that if λ ∈ ωp + Σ1, where again Σ1 := {λ ∈ C : �eλ ≥ −c(1 +
|�mλ|)} for some c > 0, the spectral equation λm(x)u−A(x,Dx)u = f , f ∈ Lp(Ω),
admits a unique solution u ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) satisfying the estimates

‖mu‖Lp(Ω) ≤ C|λ|−β‖f‖Lp(Ω), (4.23)

‖m|∇u|‖Lp(Ω) ≤ C|λ|−β+ 1
2 ‖f‖Lp(Ω), (4.24)

where

β =
{

1, if p ∈ (1, 2],
2
p , if p ∈ [2,+∞).

Consider now the following initial boundary value problem

∂

∂t
(m(x)u(x, t)) =

n∑
i,j=1

∂

∂xi
(aij(x)

∂u(x, t)
∂xj

) +m(x)
n∑

i=1

ai(x)
∂u(x, t)
∂xi

− a0(x)u(x, t) + f(x, t), (x, t) ∈ Ω× (0, τ ], (4.25)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, τ ], (4.26)

m(x)u(x, t) = v0(x), x ∈ Ω, (4.27)

where ai ∈ Cb(Ω). Moreover, assume 1 < p < 4 (so that 1 ≥ β > 1
2 ). Take X =

Lp(Ω) and denote D(M) := X ,Mu := m(·)u, D(L) :=W 2,p(Ω)∩W 1,p
0 (Ω), Lu :=

A(x,Dx)u, D(L1) := W 1,p(Ω), L1u := m(·)
∑n

i=1 ai(·) ∂u
∂xi

. Then, the inequalities
(4.23) and (4.24) provide the conclusion of Theorem 3.2 for the operator L+ L1.
More precisely, the inequality (4.23) implies condition 1 of Theorem 3.2 (with
η = β) and the inequality (4.24) implies the estimate in Remark 3.3 (with σ =
β − 1

2 ). Therefore, using [6, Theorem 3.8] (with α = 1, β = β, γ = ωp), we get the
following result. For all f ∈ Cσ([0, τ ];Lp(Ω)), 1− β < σ ≤ 1, v0 ∈ Lp(Ω), problem
(4.25)–(4.27) has a unique strict solution u(x, t), i.e., m(x)u ∈ C1((0, τ ];Lp(Ω)),
(L+L1)u ∈ C((0, τ ];Lp(Ω)), u satisfies (4.25)–(4.26), and (4.27) is satisfied in the
seminorm sense ‖m(L+ L1)−1(mu− v0)‖Lp(Ω) → 0, as t→ 0+.
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Semilinear Stochastic Integral Equations in Lp

Wolfgang Desch and Stig-Olof Londen

Dedicated to Herbert Amann on the occasion of his 70th birthday

Abstract. We consider a semilinear parabolic stochastic integral equation

u(t, ω, x) = Aaα ∗ u(t, ω, x) +
∞∑

k=1

aβ � Gk(t, ω, u(t, ω, ·))(x)

+ aγ ∗ F (t, ω, u(t, ω, ·))(x) + u0(ω,x) + tu1(ω, x).

Here t ∈ [0, T ], ω in a probability space Ω, x in a σ-finite measure space B with
(positive) measure Λ. The kernels aμ(t) are multiples of tμ−1. The operator
A : D(A) ⊂ Lp(B) → Lp(B) is such that (−A) is a nonnegative operator.

The convolution integrals aβ � Gk are stochastic convolutions with respect
to independent scalar Wiener processes wk. F : [0, T ] × Ω × D((−A)θ) →
Lp(B) and G : [0, T ]×Ω×D((−A)θ) → Lp(B, l2) are nonlinear with suitable
Lipschitz conditions.

We establish an Lp-theory for this equation, including existence and
uniqueness of solutions, and regularity results in terms of fractional powers of
(−A) and fractional derivatives in time.

Mathematics Subject Classification (2000). 60H15, 60H20, 45N05.

Keywords. Semilinear stochastic integral equations, stochastic fractional dif-
ferential equation, regularity, nonnegative operator, Volterra equation, singu-
lar kernel.

1. Introduction

Since our equation (i.e., (1.1) below) reads somewhat complicated and involved,
let us start with a casual motivation. The setting of spaces, domains and operators
will be given more precisely as soon as we state (1.1). The prototype of an equation
for modelling diffusion processes is the heat equation

∂

∂t
u(t, x) = Δu(t, x) + f(t, x).
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The operator Δ, as usual, denotes the Laplacian in space. Instead of the source
term f(t, x) one might consider white noise. Then the equation turns into the
stochastic heat equation

∂

∂t
u(t, x, ω) = Δu(t, ω, x) + g(t, ω, x) Ẇt.

Here, typically, Wt is standard Brownian motion, although fractional Brownian
motion has also been considered ([2]). There is an abundance of literature on the
stochastic heat equation and its generalizations. Frequently Δ is replaced by a
general elliptic partial differential operator or even an abstract operator A (where
(−A) is a positive operator), in Hilbert space as well as (more recently) in Lp or
general Banach spaces. The key issues in handling such equations are stochastic
integration in Banach spaces, and exploiting the regularity properties of parabolic
partial differential equations.

Diffusion according to the heat equation, i.e., according to Fick’s law, has the
property of exponentially decaying memory in time. However, many processes in
physics, chemistry and finance exhibit time memory decaying only at a power law
rather than exponentially. For a survey of such phenomena see [19, Chapter 8].
Such anomalous diffusion is frequently referred to as subdiffusion or superdiffu-
sion, depending on whether the net motion of particles happens more slowly or
quickly than random diffusion according to Fick’s law. Anomalous diffusion can
be modelled by a fractional differential equation

Dα
t u(t, x) = Δu(t, x) + f(t, x).

Here, Dα
t means the fractional derivative of order α ∈ (0, 2) with respect to time.

The case α < 1 describes subdiffusion, while α > 1 corresponds to superdiffu-
sion. The limiting case α = 2, of course, yields the wave equation. Deterministic
fractional differential – partial differential equations with parabolic differential op-
erators in space and fractional derivatives in time have been subject to thorough
investigations, both from theory and applications ([19], [24], [25]). Notice that the
equation may be integrated to give

u(t, x) = u0(x) +
∫ t

0

1
Γ(α)

(t− s)α−1Δu(s, x) ds+
∫ t

0

1
Γ(α)

(t− s)α−1f(s, x) ds.

(If α > 1, we need an additional term tu1(x) to take care of the initial condition
d
dtu(0) = u1.) This equation can be considered as a parabolic abstract evolutionary
equation. An extensive theory is available to treat such equations ([29]).

Again, the source term can be replaced by a stochastic additive perturbation
of the system. The equation now turns into

Dα
t u(t, ω, x) = Δu(t, ω, x) +Dβ−α

t g(t, ω, x)Ẇt.

Here Wt is Brownian motion, but the introduction of the fractional derivative or
fractional integral Dβ−α

t allows us to model smoother (β < α) or rougher (β > α)
stochastic perturbation. To our knowledge, the first attempt to tackle this equation
in Lp with p �= 2 was made in [11] and extended in [13].
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In this paper we go a step further and investigate state dependent forcing,
i.e., semilinear equations. The prototype of the equation to be treated here is

Dα
t u(t, ω, x) = Δu(t, ω, x) +G(t, u(t, ω, x))Ẇt(ω) + F (t, u(t, ω, x)).

We treat semilinear feedback on the stochastic (volatility) term as well as on the
deterministic forcing (drift). Semilinear stochastic heat equations (with d

dt instead
of the fractional derivative Dα

t ) in spaces more general than than Hilbert spaces
have been recently in the center of interest of several research groups, just to
mention a few, we refer to [21], as well as work based on abstract stochastic
integration in Banach spaces like [4], [27], [38] and others. To our knowledge, the
present paper is the first attempt to deal with the fractional derivative case in Lp

with p �= 2.
One of our central tasks is to balance space and time regularity. To have as

much freedom as possible, we put again fractional integrals in front of all forcing
terms:

Dα
t u(t, ω, x) = Δu(t, ω, x) +Dβ−α

t G(t, ω, u(t, ω, x))Ẇt +Dγ−α
t F (t, ω, u(t, ω, x)).

Regularity in space will be expressed by fractional powers of (−Δ). In integrated
form and full generality, our equation finally reads:

u(t, ω, x) = A
∫ t

0

aα(t− s)u(s, ω, x) ds

+
∞∑

k=1

∫ t

0

aβ(t− s)Gk(s, ω, u(s, ω, ·))(x) dwk
s

+
∫ t

0

aγ(t− s)F (s, ω, u(s, ω, ·))(x) ds+ u0(ω, x) + tu1(ω, x).

(1.1)

The real scalar-valued solution u(t, ω, x) depends on t ∈ [0, T ], ω in a probability
space Ω, and x in a measure space B. The convolution kernels aμ are defined by

aμ(t) :=
1

Γ(μ)
tμ−1. (1.2)

We assume α ∈ (0, 2), β > 1
2 , and γ > 0. While the parameter α is the order

of the fractional time derivative, the parameter β regulates the time regularity
of the stochastic semilinear feedback, and γ regulates the time regularity of the
deterministic feedback. The operator A : D(A) ⊂ Lp(B; R) → Lp(B; R) (with 2 ≤
p <∞) is such that (−A) is a nonnegative linear operator (see Section 2 below).
In particular we have in mind elliptic partial differential operators on a sufficiently
smooth (bounded or unbounded) domain B ⊂ Rn, but formally we require only
that (−A) is sectorial and the state space is an Lp-space on some measure space B.
The processes wk

s are scalar-valued, independent Wiener processes. F and Gk are
nonlinear and satisfy suitable Lipschitz estimates with respect to u. The functions
u0 and u1 are given initial data. For the precise conditions, see Section 3.
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Our goal is to establish existence and uniqueness of solutions for the semilin-
ear equation (1.1) in an Lp-framework with p ∈ [2,∞). Regularity results will be
stated in terms of fractional powers of −A (for spatial regularity) and fractional
time integrals and derivatives as well as Hölder continuity (for time regularity).

Technically we rely primarily on results concerning a linear integral equation
where the forcing terms F and G are replaced by functions independent of u, i.e.,
(5.1). In recent work [13] we have developed an Lp-theory for (5.1), albeit without
the deterministic part and without the u1-term. These results need, however, – for
the purpose of analyzing (1.1) – to be extended and to be made more precise.

Our linear results build on an approach due to Krylov, developed for para-
bolic stochastic partial differential equations. This approach uses the Burkholder-
Davis-Gundy inequality and estimates on the solution and on its spatial gradient.
To analyze the integral equation (5.1) we combine Krylov’s approach with trans-
formation techniques and estimates involving both fractional powers of −A, and
fractional time-derivatives (integrals) of the solution. Krylov’s approach is very
efficient in obtaining maximal regularity, however, it relies on a highly nontrivial
Paley-Littlewood inequality [20]. A counterpart of this estimate can be given for
general sectorial A by straightforward estimates on the Dunford integral, when we
allow for an infinitesimal loss of regularity.

We also include results for the deterministic convolution and for the u1-term.
Obviously, no originality is claimed for these results.

To obtain result on the semilinear equation (1.1) we combine our linear theory
with a standard contraction approach.

The paper is organized as follows: Before we can state our main results, we
need to collect some facts about sectorial operators and fractional differentiation
and integration in Section 2. Section 3 states the hypotheses and results for the
semilinear equation. In Section 4 we provide the tools to define a stochastic in-
tegral and a stochastic convolution in Lp-spaces. The central part of this section
is an application of the Burkholder-Davis-Gundy inequality to lift scalar-valued
Ito-integrals to stochastic integrals in Lp. This approach is adapted from [21]. Sec-
tion 5 deals with the linear fractional differential equation. In the beginning we give
the results on existence and regularity which are basic to obtain similar results on
the semilinear equation. We construct the solution via the resolvent operator and
a variation of parameters formula. The contribution of the initial data and of the
forcing F , which enters as a Lebesgue integral, are well known ([29], [39]). The con-
tribution of the stochastic integral containing G is handled by a recent result [13].
We collect these results in a unified way to allow a comparison of the various re-
quirements on regularity. In Section 6 we arrive at the proof of our main results on
the semilinear equation by a standard contraction procedure. In Section 7 we make
some comments on available maximal regularity results for the linear equation and
their implications for the semilinear equation. Finally, in Section 8 we compare
our results to some recent results on parabolic stochastic differential equations ob-
tained recently using an abstract theory of stochastic integration in Banach spaces.
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2. Fractional powers and fractional derivatives

In this paper A : D(A) ⊂ Lp(B; R) → Lp(B; R) will be a linear operator such
that (−A) is nonnegative. Here p ∈ [2,∞), but fixed. Regularity in space will be
expressed in terms of the fractional powers (−A)θ of A. Regularity in time will be
expressed in terms of fractional time derivatives Dη

t f . In corollaries we will also
give regularity results in terms of the function spaces hγ

0→0([0, T ];X), i.e., the little
Hölder-continuous functions with f(0) = 0.

In this section we summarize briefly the definitions and some known results
about nonnegative operators, their fractional powers, and about fractional inte-
gration and differentiation.

Let X be a complex Banach space and let L(X) be the space of bounded
linear operators on X . Let B be a closed, linear map of D(B) ⊂ X into X . The
operator −B is said to be nonnegative if ρ(B), the resolvent set of B, contains
(0,∞), and

sup
λ>0

‖λ(λI −B)−1‖L(X) <∞.

An operator is positive if it is nonnegative and, in addition, 0 ∈ ρ(B). For ω ∈
[0, π), we define

Σω := {λ ∈ C \ {0} | | arg λ| < ω}.
Recall that if (−B) is nonnegative, then there exists a number η ∈ (0, π) such that
ρ(B) ⊃ Ση, and

sup
λ∈Ση

‖λ(λI −B)−1‖L(X) <∞. (2.1)

The spectral angle of (−B) is defined by

φ(−B) := inf
{
ω ∈ (0, π] | ρ(B) ⊃ Σπ−ω, sup

λ∈Σπ−ω

‖λ(λI −B)−1‖L(X) <∞
}
.

We will rely on the concept of fractional powers of (−B): Let (−B) be a
densely defined nonnegative linear operator on X , and θ > 0. If (−B) is posi-
tive, then (−B)−1 is a bounded operator, and (−B)−θ can be defined by integral
formulas [5, Ch. 3] or [22, Section 2.2.2]. As usual,

(−B)θ := ((−B)−θ)−1, θ > 0. (2.2)

If (−B) is nonnegative with 0 ∈ σ(−B), we proceed as in [5, Ch. 5]: Since (−B+εI)
is a positive operator if ε > 0, its fractional power (−B + εI)θ is well defined
according to (2.2). We define

D(((−B)θ)) :=
{
y ∈

⋂
0<ε≤ε0

D(((−B + εI)θ)) | lim
ε→0+

(−B + εI)θy exists
}
, (2.3)

(−B)θy := lim
ε→0+

(−B + εI)θy for y ∈ D(((−B)θ)). (2.4)
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Lemma 2.1. Let −B be a nonnegative linear operator on a Banach space X with
spectral angle φ(−B), and let θ > 0.

1) (−B)θ is closed and D(((−B)θ)) = D((−B)).
2) Assume that θφ(−B) < π. Then (−B)θ is nonnegative and has spectral angle
θφ(−B).

Proof. For (1) see [5, p. 109, 142], also [8, Theorem 10]. For (2) see [5, p. 123]. �

Lemma 2.2. Let −B be a nonnegative linear operator on a Banach space X with
spectral angle φ(−B). Then for η ∈ [0, π − φ(−B))

sup
| arg μ|≤η, μ�=0

‖(−B)θμ1−θ(μI −B)−1‖L(X) <∞. (2.5)

Proof. In case η = 0, see [5, Th. 6.1.1, p. 141]. The general case can be reduced to
the case μ > 0, [15, p.314]. See also [13, Lemma 3.3]. �

We turn now to fractional differentiation and integration in time:

Definition 2.3. Let X be a Banach space and α ∈ (0, 1), let u ∈ L1((0, T );X) for
some T > 0.

1) Fractional integration in time of order α is defined by D−α
t u := 1

Γ(α) t
α−1 ∗ u.

2) We say that u has a fractional derivative of order α > 0 provided u = D−α
t f ,

for some f ∈ L1((0, T );X). If this is the case, we write Dα
t u = f .

Remark 2.4. Suppose that u has a fractional derivative of order α ∈ (0, 1).
Then 1

Γ(1−α) t
−α ∗ u is differentiable a.e. and absolutely continuous with Dα

t u =
d
dt

(
1

Γ(1−α) t
−α ∗ u

)
.

For the equivalence of fractional derivatives in Lp and fractional powers of
the realization of the derivative in Lp, we have the following lemma.

Lemma 2.5. [9, Prop.2] Let p ∈ [1,∞), X a Banach space and define

D(L) := {u ∈ W 1,p((0, T );X) | u(0) = 0}, Lu = u′ for u ∈ D(L).

Then, with β ∈ (0, 1),
Lβu = Dβ

t u, u ∈ D(Lβ), (2.6)

where D(Lβ) coincides with the set of functions u having a fractional derivative
in Lp, i.e.,

D(Lβ) = {u ∈ Lp((0, T );X) | 1
Γ(1− β) t

−β ∗ u ∈ W 1,p
0 ((0, T );X)}.

In particular, Dβ
t is closed.

We refer to [9] for further properties of the operator Dβ
t .
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3. The main result

Hypothesis 3.1. Let (B,A,Λ) be a σ-finite measure space and fix 2 ≤ p <∞. Let
(−A) : D(A) ⊂ Lp(B; R) → Lp(B; R) be a nonnegative linear operator with spec-
tral angle φ(−A), and such that D(A)∩L1(B; R)∩L∞(B; R) is dense in Lp(B; R).

Hypothesis 3.2. Let (Ω,F ,P) be a probability space with an increasing, right
continuous filtration {Ft | t ≥ 0} satisfying Ft ⊂ F for all t ≥ 0. Let P denote
the predictable σ-algebra on [0,∞)×Ω generated by {Ft}, and assume that {wk

s |
k = 1, 2, 3, . . .} is an independent family of (scalar-valued) Ft-adapted Wiener
processes on (Ω,F ,P).

Remark 3.3. On [0, T ]×Ω, measurability will always be understood with respect
to the predictable σ-algebra P , and the product measure of the Lebesgue measure
on [0, T ] and P.

Hypothesis 3.4. For suitable θ ∈ [0, 1) and ε ∈ [0, 1), the function

F : [0, T ]× Ω×D((−A)θ) → D((−A)ε)

satisfies the following assumptions:
(a) For fixed u ∈ D((−A)θ), the function F (·, ·, u) is measurable from [0, T ]× Ω

into D((−A)ε).
(b) There exists a constant MF > 0, such that for all t ∈ [0, T ], and all u1, u2 ∈

D((−A)θ) the following Lipschitz estimate holds

‖F (t, ω, u1)−F (t, ω, u2)‖D((−A)ε) ≤MF ‖u1−u2‖D((−A)θ) for a.e. ω ∈ Ω. (3.1)

(c) For u = 0 we have[∫
Ω

∫ T

0

‖F (t, ω, 0)‖p
D((−A)ε) dt dP

]1/p

=MF,0 <∞. (3.2)

Hypothesis 3.5. For the same θ ∈ [0, 1) as in Hypothesis 3.4, the function

G : [0, T ]× Ω×D((−A)θ)→ Lp(B; l2)

[G(t, ω, u)](x) :=
(
Gk(t, ω, u)(x)

)∞
k=1

satisfies the following assumptions:
(a) For fixed u ∈ D((−A)θ), the function G(·, ·, u) is measurable from [0, T ]× Ω

into Lp(B; l2).
(b) There exists a constant MG > 0, such that for all t ∈ [0, T ], and all u1, u2 ∈

D((−A)θ) the following Lipschitz estimate holds:

‖G(t, ω, u1)−G(t, ω, u2)‖Lp(B;l2) ≤MG‖u1 − u2‖D((−A)θ) for a.e. ω ∈ Ω. (3.3)

(c) For u = 0 we have[∫
Ω

∫ T

0

‖G(t, ω, 0)‖p
Lp(B;l2)

dt dP

]1/p

=MG,0 <∞. (3.4)
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Theorem 3.6. Let the probability space (Ω,F ,P) and the Wiener processes
(
wk

s

)∞
k=1

be as in Hypothesis 3.2. Let p ∈ [2,∞), let the measure space (B,A,Λ) and the
operator A : D(A) ⊂ Lp(B; R) → Lp(B; R) satisfy Hypothesis 3.1. Let α ∈ (0, 2),
β > 1

2 and γ > 0. Let T > 0 and assume that F : [0, T ]×Ω×D((−A)θ) → D((−A)ε)
and G : [0, T ] × Ω × D((−A)θ) → Lp(B; l2) satisfy Hypotheses 3.4 and 3.5 with
suitable θ, ε ∈ [0, 1]. Let u0 ∈ Lp(Ω;D((−A)δ0 )), u1 ∈ Lp(Ω;D((−A)δ1 )), with
suitable δi ∈ [0, 1], both ui measurable with respect to F0. Suppose that the following
inequalities hold:

αθ < γ + αε, (3.5)
1
2

+ αθ < β, (3.6)

αθ <
1
p

+ αδ0, (3.7)

αθ < 1 +
1
p

+ αδ1. (3.8)

Then there exists a unique function u ∈ Lp([0, T ] × Ω;D((−A)θ)) such that for
almost all t ∈ [0, T ]∫ t

0

aα(t− s)u(s, ω, ·) ds ∈ D(A) for a.e. ω ∈ Ω,

and (1.1) is satisfied for almost all t ∈ [0, T ] and almost all ω ∈ Ω.

The following theorem provides additional regularity results in terms of frac-
tional power domains D((−A)ζ) and of fractional time derivatives. However, de-
pending on the parameters, u(t)−u0 may sometimes exhibit more regularity than
u(t) itself. Similar considerations hold for u(t)− tu1 and u(t)− aγ ∗ F (·, ω, u). To
handle all cases in one term, we will introduce the function v in (3.13).

Theorem 3.7. Let the assumptions of Theorem 3.6 hold. Moreover, assume that
η ∈ (−1, 1), ζ ∈ [0, 1] are such that

η + αζ < γ + αε, (3.9)
1
2

+ η + αζ < β, (3.10)

η + αζ <
1
p

+ αδ0, (3.11)

η + αζ < 1 +
1
p

+ αδ1. (3.12)

With the notation 1{a>b} = 1 if a > b and 1{a>b} = 0 if a ≤ b, we put

v(t) = u(t)− 1{δ0>ζ}u0 − 1{δ1>ζ}tu1

− 1{ε>ζ}

∫ t

0

aγ(t− s)F (s, ω, u(s)) ds.
(3.13)
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(a) Then, if η > 0, the function v, considered as a Banach space valued function
v : [0, T ]→ Lp(Ω;D((−A)ζ)), has a fractional derivative of order η.

(b) If η < 0, the function v : [0, T ] → Lp(Ω;Lp(B; R)) has a fractional integral
of order −η. Moreover, Dη

t v takes values in Lp(Ω;D((−A)ζ)).
(c) If η = 0, of course, we denote D0

t v = v.
In any case, there exists a constant Mu, depending on A, p, T , α, β, γ, δi, ε, ζ,
η, θ, MF , MG such that

‖Dη
t v‖Lp([0,T ]×Ω;D((−A)ζ)) (3.14)

≤Mu

[
‖u0‖Lp(Ω;D((−A)δ0)) + ‖u1‖Lp(Ω;D((−A)δ1)) +MF,0 +MG,0

]
.

Corollary 3.8. Let the Assumptions of Theorem 3.6 hold. Let ζ ∈ [0, 1]. Let u be
the solution of (1.1) and v be defined by (3.13).
(1) Let p < q <∞ be such that

1
p
− 1
q

+ αζ < γ + αε,
1
2

+
1
p
− 1
q

+ αζ < β,

αζ − 1
q
< αδ0, αζ − 1

q
< 1 + αδ1.

Then v ∈ Lq([0, T ];Lp(Ω;D((−A)ζ))).
(2) Let μ ∈ (0, 1− 1

p ) be such that

1
p

+ μ+ αζ < γ + αε,
1
2

+
1
p

+ μ+ αζ < β,

μ+ αζ < αδ0, μ+ αζ < 1 + αδ1.

Then v ∈ hμ
0→0([0, T ];Lp(Ω;D((−A)ζ))).

Hypothesis 3.9. Let F1, F2 : [0, T ]× Ω × D((−A)θ) → D((−A)ε) satisfy Hypoth-
esis 3.4, G1, G2 : [0, T ]× Ω × D((−A)θ) → Lp(B; l2) satisfy Hypothesis 3.5, and
suppose that there are nonnegative functions μΔF , μΔG ∈ Lp([0, T ]× Ω; R) such
that for all t ∈ [0, T ] and u ∈ D((−A)θ), and almost all ω ∈ Ω

‖F1(t, ω, u)− F2(t, ω, u)‖D((−A)ε) ≤ μΔF (t, ω), (3.15)

‖G1(t, ω, u)−G2(t, ω, u)‖Lp(B;l2) ≤ μΔG(t, ω). (3.16)

Remark 3.10. The standard example of Fi, Gi satisfying Hypothesis 3.9 is (for
i = 1, 2):

Fi(t, ω, u) = F (t, ω, u) + fi(t, ω),

Gi(t, ω, u) = G(t, ω, u) + gi(t, ω),

where F and G satisfy Hypotheses 3.4 and 3.5, respectively, and fi ∈ Lp([0, T ]×
Ω;D((−A)ε)), gi ∈ Lp([0, T ]× Ω;Lp(B; l2)). Here we take

μΔF (t, ω) = ‖f1(t, ω)− f2(t, ω)‖D((−A)ε),

μΔG(t, ω) = ‖g1(t, ω)− g2(t, ω)‖Lp(B;l2).
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Theorem 3.11. Let the probability space (Ω,F ,P) and the Wiener processes wk
s

be as in Hypothesis 3.2. Let p ∈ [2,∞), let the measure space (B,A,Λ) and the
operator A : D(A) ⊂ Lp(B; R) → Lp(B; R) satisfy Hypothesis 3.1.

Let T > 0, α ∈ (0, 2), β > 1
2 , γ > 0, and δ0, δ1, ε ∈ [0, 1] be such that

(3.5), (3.6), (3.7), and (3.8) hold. Let η ∈ (−1, 1) and ζ ∈ [0, 1] be such that (3.9),
(3.10), (3.11), (3.12) hold. Then there exists a constant MΔu > 0, dependent on
p, T, α, β, γ, δ0, δ1, ε, ζ,MF ,MG, such that the following Lipschitz estimate holds:

Let F1, F2, G1, G2 satisfy Hypotheses 3.4, 3.5 and 3.9 with ε, θ as above. For
i = 1, 2 let the initial data u0,i ∈ Lp(Ω;D((−A)δ0 )) and u1,i ∈ Lp(Ω;D((−A)δ1 ))
be F0-measurable, and let u1(t, ω, x), u2(t, ω, x) be the solutions of (1.1) with
F,G, u0, u1 replaced by Fi, Gi, u0,i, u1,i. Let vi be defined according to (3.13) with
u replaced by ui. Then

‖Dη
t v1 −D

η
t v2‖Lp([0,T ]×Ω;D((−A)ζ)) (3.17)

≤ MΔu

[
‖u0,1 − u0,2‖Lp(Ω;D((−A)δ0)) + ‖u1,1 − u1,2‖Lp(Ω;D((−A)δ1))

+ ‖μΔF (t, ω) + μΔG(t, ω)‖Lp([0,T ]×Ω;R)

]
.

4. Stochastic lemmas

Lemma 4.1 ([21], Theorem 3.10). Let (Ω,F ,P) satisfy Hypothesis 3.2. Let Y be a
dense subspace of Lp(B; R), 0 < T ≤ ∞, and g ∈ Lp([0, T ]× Ω;Lp(B; l2)). Then
there exists a sequence of functions gj ∈ Lp([0, T ]× Ω;Lp(B; l2)) converging to g
in Lp([0, T ]× Ω, Lp(B; l2)) such that each gj = (gk

j )∞k=1 is of the form

gk
j (t, ω, x) =

{∑j
i=1 Iτ j

i−1(ω)<t≤τ j
i (ω)(t)g

k
j,i(x) if k ≤ j,

0 else,
(4.1)

where τ j
0 ≤ τ

j
1 ≤ · · · τ

j
j are bounded stopping times with respect to the filtration Ft,

and gk
j,i ∈ Y . (Here, for any set A, IA denotes its indicator function.)

Remark 4.2. We will apply Lemma 4.1 with Y = D(A) ∩ L1(B; R) ∩ L∞(B; R).

Lemma 4.3. Let (Ω,F ,P) and the Wiener processes wk
t be as in Hypothesis 3.2.

Let p ∈ [2,∞). Let Y be a dense subspace of Lp(B; R), let T > 0, and let gj ∈
Lp([0, T ] × Ω;Lp(B; l2)) be of the simple structure given in (4.1). For t ∈ [0, T ],
let V (t) : Y → Lp(B; R) be a linear operator such that the function t �→ V (t)y is
in L2([0, T ];Lp(B; R)) for each y ∈ Y . Then there exists a constant M , depending
only on p and T , such that for all t ∈ (0, T ]∫

B

∫
Ω

∣∣∣∣∣
j∑

k=1

∫ t

0

[V (t− s)gk
j (s, ω)](x) dwk

s

∣∣∣∣∣
p

dP(ω) dΛ(x)

≤M
∫

B

∫
Ω

(∫ t

0

|[V (t− s)gj(s, ω)](x)|2l2 ds
) p

2

dP(ω) dΛ(x).

(4.2)
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Proof. First fix some t ∈ (0, T ]. For x ∈ B, r > 0 we define

Yj(r, ω, x) =
j∑

k=1

∫ r

0

[V (t− s)gk
j (s, ω)](x) dwk

s .

By the elementary structure of gj ,∫ r

0

∣∣[V (t− s)gk
j (s, ω)](x)

∣∣2 ds <∞
for almost all x ∈ B, so that Yj(r, ω, x) is well defined as an Ito integral for such
x, and it is a martingale. Since the Wiener processes wk

s are independent, the
quadratic variation of Yj(·, ·, x) is

j∑
k=1

∫ r

0

∣∣[V (t− s)gk
j (s, ω)](x)

∣∣2 ds.
Now the Burkholder-Davis-Gundy inequality (see [18, p. 163]) yields for r ∈ [0, t]
and each x ∈ B,∫

Ω

∣∣∣ j∑
k=1

∫ r

0

[V (t− s)gk
j (s, ω)](x) dwk

s

∣∣∣p dP(ω)

≤M
∫

Ω

(∫ r

0

j∑
k=1

|[V (t− s)gk
j (s, ω)](x)|2 ds

) p
2

dP(ω)

=M
∫

Ω

(∫ r

0

|V (t− s)gj(s, ω)](x)|2l2 ds
) p

2

dP(ω).

(4.3)

In (4.3), take r = t and integrate over B:∫
B

∫
Ω

∣∣∣ j∑
k=1

∫ t

0

[V (t− s)gk
j (s, ω)](x) dwk

s

∣∣∣p dP(ω) dΛ(x)

≤M
∫

B

∫
Ω

(∫ t

0

|[V (t− s)gj(s, ω)](x)|2l2 ds
) p

2

dP(ω) dΛ(x). �

Lemma 4.4. Let (Ω,F ,P) and the Wiener processes wk
t satisfy Hypothesis 3.2. Let

T > 0, 2 ≤ p < ∞, and g ∈ Lp([0, T ] × Ω;Lp(B; l2)), moreover, let {gj} be a
sequence approximating g in the sense of Lemma 4.1. Let β > 1

2 , η ∈ [0, 1) such
that β − η > 1

2 . Then the functions

Dη
t

∞∑
k=1

∫ t

0

aβ(t− s)gk
j (s, ω, x) dwk

s (ω)

converge in Lp([0, T ]× Ω;Lp(B; R)), as j →∞.



142 W. Desch and S.-O. Londen

Proof. Put hk
i,j := gk

j − gk
i . The stochastic Fubini theorem implies that

D−η
t

∫ t

0

aβ−η(t− s)hk
i,j(s, ω, x) dw

k
s =

∫ t

0

aβ(t− s)hk
i,j(s, ω, x) dw

k
s ,

i.e., ∫ t

0

aβ−η(t− s)hk
i,j(s, ω, x) dw

k
s = Dη

t

∫ t

0

aβ(t− s)hk
i,j(s, ω, x) dw

k
s .

We use Lemma 4.3 and the fact that a2β−η ∈ L1([0, T ]; R):∫ T

0

∫
B

∫
Ω

∣∣∣Dη
t

∞∑
k=1

∫ t

0

aβ(t− s)hk
i,j(s, ω, x) dw

k
s

∣∣∣p dP(ω) dΛ(x) dt

=
∫ T

0

∫
B

∫
Ω

∣∣∣ ∞∑
k=1

∫ t

0

aβ−η(t− s)hk
i,j(s, ω, x) dw

k
s

∣∣∣p dP(ω) dΛ(x) dt

≤M
∫ T

0

∫
B

∫
Ω

(∫ t

0

|aβ−η(t− s)hi,j(s, ω, x)|2l2 ds
) p

2

dP(ω) dΛ(x) dt

≤M
∫

B

∫
Ω

[∫ T

0

a2β−η(s) ds

] p
2
[∫ T

0

|hi,j(s, ω, x)|pl2 ds
]
dP(ω) dΛ(x)

≤M‖hi,j‖p
Lp([0,T ]×Ω;Lp(B;l2)).

As i, j →∞, we have hi,j → 0 in Lp([0, T ]×Ω;Lp(B; l2)), thus Dη
t

∑∞
k=1

∫ t

0
aβ(t−

s)gk
j (s, ω, x) dwk

s (ω) is a Cauchy sequence in Lp([0, T ]× Ω;Lp(B; R)). �

Definition 4.5. Let (Ω,F ,P) and the Wiener processes wk
t satisfy Hypothesis 3.2.

Let T > 0, 2 ≤ p < ∞, and g ∈ Lp([0, T ]× Ω;Lp(B; l2)), moreover, let {gj} be a
sequence approximating g in the sense of Lemma 4.1. Let β > 1

2 . Then we define

(aβ � g)(t, ω) :=
∞∑

k=1

∫ t

0

aβ(t− s)gk(s, ω, x) dwk
s (ω)

:= lim
j→∞

∞∑
k=1

∫ t

0

aβ(t− s)gk
j (s, ω, x) dwk

s (ω).

5. Linear theory

In this section we replace the semilinear inhomogeneity in (1.1) by inhomogeneities
independent of u, so that we obtain a linear integral equation:

u(t, ω, x) = A
∫ t

0

aα(t− s)u(s, ω, x) ds+
∞∑

k=1

∫ t

0

aβ(t− s)gk(s, ω, x) dwk
s

+
∫ t

0

aγ(t− s)f(s, ω, x) ds + u0(ω, x) + tu1(ω, x). (5.1)
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We will prove the following propositions by a chain of lemmas:

Proposition 5.1. Let the probability space (Ω,F ,P) and the Wiener processes wk
s

be as in Hypothesis 3.2. Let p ∈ [2,∞), let the measure space (B,A,Λ) and the
operator A : D(A) ⊂ Lp(B; R) → Lp(B; R) satisfy Hypothesis 3.1. Assume that
T > 0 and let f ∈ Lp([0, T ]× Ω;Lp(B; R)), and g ∈ Lp([0, T ]× Ω;Lp(B, l2)). Let
u0 ∈ Lp(Ω;Lp(B; R)) and u1 ∈ Lp(Ω;Lp(B; R)) be F0-measurable.

Let α ∈ (0, 2), β > 1
2 , γ > 0. Then there exists a unique function u ∈

Lp([0, T ]× Ω;Lp(B,R)) such that for almost all t ∈ [0, T ]∫ t

0

aα(t− s)u(s, ω, ·) ds ∈ D(A) for a.e. ω ∈ Ω,

and (5.1) holds for almost all ω ∈ Ω and almost all t ∈ [0, T ].

Proposition 5.2. Let the assumptions of Proposition 5.1 hold. Suppose that f ∈
Lp([0, T ]×Ω;D((−A)ε)), u0 ∈ Lp(Ω;D((−A)δ0 )) and u1 ∈ Lp(Ω;D((−A)δ1 )) with
suitable ε, δ0, δ1 ∈ [0, 1). Let u be as in Proposition 5.1. Let η ∈ (−1, 1), ζ ∈ [0, 1]
satisfy

η + αζ < γ + αε, (5.2)
1
2

+ η + αζ < β, (5.3)

η + αζ <
1
p

+ αδ0, (5.4)

η + αζ < 1 +
1
p

+ αδ1. (5.5)

With the notation 1{a>b} = 1 if a > b and 1{a>b} = 0 else, we put

v(t) = u(t)− 1{δ0>ζ}u0 − 1{δ1>ζ}tu1 − 1{ε>ζ}

∫ t

0

aγ(t− s)f(s) ds.

(a) Then, if η > 0, the function v, considered as a Banach space valued function
v : [0, T ]→ Lp(Ω;D((−A)ζ)), has a fractional derivative of order η.

(b) If η < 0, the function v : [0, T ] → Lp(Ω;Lp(B; R)) has a fractional integral
of order −η. Moreover, Dη

t v takes values in Lp(Ω;D((−A)ζ)).
(c) If η = 0, clearly D0

t v = v.

In either case, there exist constants Minit, MT,Leb, and MT,Ito depending on p, T ,
α, β, γ, δ0, δ1, ε, ζ, η such that

‖Dη
t v(t)‖Lp([0,T ]×Ω;D((−A)ζ)) (5.6)

≤Minit

[
‖u0‖Lp(Ω;D((−A)δ0)) + ‖u1‖Lp(Ω;D((−A)δ1))

]
+ MT,Leb‖f‖Lp([0,T ]×Ω;D((−A)ε)) + MT,Ito‖g‖Lp([0,T ]×Ω;Lp(B,l2)).

Moreover, the constantsMT,Leb and MT,Ito can be made arbitrarily small by choos-
ing the time interval [0, T ] sufficiently short.
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The proof of the propositions above relies on the concept of a resolvent op-
erator (see [29]), introduced by the following definition:

Definition 5.3. Let A satisfy Hypothesis 3.1, let α ∈ (0, 2) and β > 0. For t > 0
we define the resolvent operator Sα,β(t) : Lp(B; R) → Lp(B; R) by

Sα,β(t)x :=
1

2πi

∫
Γρ,φ

eλtλα−β(λα −A)−1xdλ (5.7)

along the contour

Γρ,φ(t) =

⎧⎪⎨⎪⎩
(t− φ+ ρ)eiφ for t > φ,
ρeit for t ∈ (−φ, φ),
(−t− φ+ ρ)e−iφ for t < −φ,

with ρ > 0, φ > π
2 , αφ+ φA < π.

For β = 1, this definition coincides with the known notion of a resolvent op-
erator, c.f. [29]. For β > 1, Sα,β could be obtained by fractional integration of Sα,1.

Equation (5.1) is formally solved by the variation of parameters formula

u(t) = Sα,1(t)u0 + Sα,2(t)u1

+
∫ t

0

Sα,γ(t− s)f(s) ds+
∫ t

0

∞∑
k=1

Sα,β(t− s)g(s) dwk
s .

(5.8)

The task of the proof is to make sense of this formal expression in suitable function
spaces, and to show that it gives a solution of (5.1). Moreover, the estimates
claimed in Proposition 5.2 need to be verified. Since the equation is linear, all terms
u0, u1, f, g can be treated separately. This is done in the following Lemmas 5.6, 5.7,
and 5.9. Uniqueness can be proved by the standard reduction to a deterministic
homogeneous equation with zero initial data, which has only the zero solution by
the well-known theory of deterministic evolutionary integral equations (see [29]).

First we collect some basic facts about the resolvent operator:

Lemma 5.4. Let A satisfy Hypothesis 3.1, let α ∈ (0, 2) and β > 0. The resolvent
operator defined above has the following properties:

1) For all t > 0 and all ζ ∈ [0, 1], the operator Sα,β(t) is a bounded linear
operator Lp(B,R)→ D((−A)ζ).

2) For all x ∈ Lp(B; R), the function t �→ Sα,β(t)x can be extended analytically
to some sector in the right half-plane.
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3) For all x ∈ Lp(B; R) and all t > 0, we have∫ t

0

aα(t− s)‖Sα,β(s)x‖Lp(B;R) ds <∞,∫ t

0

aα(t− s)Sα,β(s)xds ∈ D(A),

Sα,β(t)x = A
∫ t

0

aα(t− s)Sα,β(s)xds + aβ(t)x. (5.9)

4) Let T > 0, δ, ζ ∈ [0, 1], and η ∈ (−1, 1) such that

η + αζ < β + αδ. (5.10)

Let x ∈ D((−A)δ) and put

v(t) =

{
Sα,β(t)x if δ ≤ ζ,
Sα,β(t)x− aβ(t)x if δ > ζ.

(a) Then, if η > 0, the function v, considered as a Banach-space valued
function v : [0, T ] → D((−A)ζ ), admits a fractional derivative of order
η.

(b) If η < 0, the function v : [0, T ] �→ Lp(B; R), has a fractional integral of
order −η. Moreover, Dη

t v takes values in D((−A)ζ).
(c) If η = 0, we write D0

t v = v.
In either case, there exists some M > 0 (dependent on A,α, β, ζ, δ, η) such
that for all t ∈ (0, T ] and all x ∈ D((−A)δ),

‖Dη
t v(t)‖D((−A)ζ) ≤Mt(β+αδ)−(η+αζ)−1‖x‖D((−A)δ). (5.11)

Remark 5.5. In fact, if x ∈ D((−A)δ) with δ ≥ ζ and β > η, the function t �→
aβ(t)x admits a fractional derivative Dη

t aβx = aβ−ηx in D((−A)ζ). In this case,
(5.10) holds, and both functions, Sα,β(t)x and Sα,β(t)x − aβ(t)x admit fractional
derivatives of order η in D((−A)ζ). On the other hand, evidently, if β ≤ η or
x �∈ D((−A)ζ), at most one of the two functions above can have a fractional
derivative of order η in D((−A)ζ).

Proof. All these results come out of standard estimates of the contour integral,
along with the usual analyticity arguments. Since the estimate (5.11) is crucial in
the sequel, we give a more detailed proof.

First we consider the case δ ≤ ζ where we can utilize Lemma 2.2 with θ = 0
for ρ in a suitable sector:

‖(ρ− A)−1x‖D((−A)ζ) ≤M |ρ|ζ−δ−1‖x‖D((−A)δ).

Formally, the Laplace transform of Dη
t Sα,βx is λη+α−β(λα−A)−1x. We show that

the contour integral

w(t) :=
1

2πi

∫
Γρ,φ

eλt λη+α−β(λα −A)−1xdλ
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exists in D((−A)ζ), if (5.10) holds.∥∥∥∥∥
∫

Γρ,φ

eλtλη+α−β(λα −A)−1xdλ

∥∥∥∥∥
D((−A)ζ)

=

∥∥∥∥∥
∫

Γtρ,φ

eμ
(μ
t

)η+α−β

(
(μ
t

)α

−A)−1x
1
t
dμ

∥∥∥∥∥
D((−A)ζ)

= tβ−α−η−1

∥∥∥∥∥
∫

Γ1,φ

eμ μη+α−β (
(μ
t

)α

−A)−1xdμ

∥∥∥∥∥
D((−A)ζ)

≤ tβ−α−η−1

∫
Γ1,φ

e�(μ) |μ|α+η−β

∥∥∥∥((μt )α

−A
)−1

x

∥∥∥∥
D((−A)ζ)

|dμ|

≤ tβ−α−η−1

∫
Γ1,φ

e�(μ)|μ|α+η−βM
∣∣∣μ
t

∣∣∣α(ζ−δ−1)

‖x‖D((−A)δ) |dμ|

= tβ−η−αζ+αδ−1M‖x‖D((−A)δ)

∫
Γ1,φ

e�(μ)|μ|η−β+α(ζ−δ) |dμ|.

Because of (5.10), w is locally integrable and admits a Laplace transform. It re-
quires some standard complex analysis, to show that ŵ(λ) = λη+α−β(λα−A)−1x.
Now we have to show that in fact w = Dη

t Sα,βx.
First consider the case η > 0: By the convolution theorem for Laplace trans-

forms we have
̂[D−η

t w](λ) = λα−β(λα −A)−1x,

whence w = Dη
t Sα,βx. In case η < 0, the convolution theorem yields

̂Dη
t Sα,βx(λ) = ληλα−β(λα − A)−1x = ŵ(λ).

To handle the case δ > ζ, we will use Lemma 2.2 with θ = 1:

‖A(ρ−A)−1x‖D((−A)ζ) ≤Mρζ−δ‖x‖D((−A)δ).

Notice first that âβ(λ) = λ−β , and

aβ(t) =
1

2πi

∫
Γρ,φ

eλt λ−β dλ.

Therefore,

Sα,β(t)x− aβ(t)x =
1

2πi

∫
Γρ,φ

eλt [λα−β(λα −A)−1x− λ−βx] dλ

=
1

2πi

∫
Γρ,φ

eλt λ−βA(λα −A)−1xdλ.
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Now we estimate similarly as above∥∥∥∥∥
∫

Γρ,φ

eλt λη−βA(λα −A)−1xdλ

∥∥∥∥∥
D((−A)ζ)

≤
∫

Γ1,φ

e�(μ)
∣∣∣μ
t

∣∣∣η−β

M
∣∣∣μ
t

∣∣∣α(ζ−δ)

‖x‖D((−A)δ)

1
t
|dμ|

=M‖x‖D((−A)δ) t
−η+β−αζ+αδ−1

∫
Γ1,φ

e�(μ)|μ|η−β+αζ−αδ |dμ|.

Thus, for t > 0, the following integral exists in D((−A)ζ ):

w1(t) :=
1

2πi

∫
Γρ,φ

eλt λη−βA(λα −A)−1xdλ,

‖w1(t)‖D((−A)ζ) ≤Mt(β+αδ)−(η+αζ)−1.

In the end one verifies again that in fact w1(t) = Dη
t v(t). �

Lemma 5.6 (Contribution of the initial conditions u0, u1). Let A satisfy Hypo-
thesis 3.1, let (Ω,F ,P) be a probability space, p ∈ [2,∞). Let α ∈ (0, 2), 0 < T <
∞, and u0, u1 ∈ Lp(Ω;Lp(B; R)). We define u(t) := Sα,1(t)u0 + Sα,2(t)u1.

1) The function u exists in L∞([0, T ];Lp(Ω×B; R)). For all t > 0 we have∫ t

0

aα(t− s)u(s) ds ∈ D(A),

u(t) = A
∫ t

0

aα(t− s)u(s) ds+ u0 + tu1.

2) Moreover, suppose that ui ∈ Lp(Ω;D((−A)δi )) with some δi ∈ [0, 1]. Let
ζ ∈ [0, 1], η ∈ (−1, 1) be such that

η + αζ <
1
p

+ αδ0, (5.12)

η + αζ < 1 +
1
p

+ αδ1, (5.13)

Put
v(t) = u(t)− 1ζ<δ0u0 − 1ζ<δ1tu1.

Then v has a fractional derivative of order η (if η < 0: a fractional integral
of order −η) which is in Lp([0, T ]× Ω;D((−A)ζ)) and satisfies

‖Dη
t v(t, ω)‖Lp([0,T ]×Ω;D((−A)ζ))

≤M
[
‖u0‖Lp(Ω;D((−A)δ0)) + ‖u1‖Lp(Ω;D((−A)δ1))

]
with a constant M depending on p,A, T, α, δ0, δ1, ζ, η.



148 W. Desch and S.-O. Londen

Proof. First let u1 = 0 so that u(t) = Sα,1u0. We will apply Lemma 5.4 with
β = 1. Notice that a1(t) = 1, so that v(t) = Sα,1u0 − 1ζ<δ0u0. To prove Part (1),
put ζ = δ0 = 0 and take any η < 1. By Lemma 5.4 (3) we have, pointwise for all
ω ∈ Ω,

u(t, ω) = A
∫ t

0

aα(t− s)u(s, ω) ds+ u0.

Moreover, with these parameters, v(t) = u(t), and (5.10) holds. By Lemma 5.4,
Part (4) and (5.11), u(·, ω) admits a fractional time derivative of order η with
values in Lp(B; R), such that the following estimate holds:

‖Dη
t u(t, ω)‖Lp(B;R) ≤Mt−η‖u0(ω)‖Lp(B;R).

Taking convolution with tη−1/Γ(η), we obtain with a suitable constant M1 inde-
pendent of t,

‖u(t, ω)‖Lp(B;R) ≤M1‖u0(ω)‖Lp(B;R).

Integrating with respect to ω we obtain

‖u(t)‖Lp(Ω×B;R) ≤M1‖u0‖Lp(Ω×B;R).

Thus u ∈ L∞([0, T ];Lp(Ω× B; R)).
To prove Part (2), take again β = 1 and let (5.12) hold. Then (5.10) (with

δ0 instead of δ) holds a fortiori. Let v(t) = Sα,1u0 − 1ζ<δ0u0. Fix ω ∈ Ω. By
Lemma 5.4 (4), v(·, ω) has a fractional time derivative of order η which satisfies
an estimate

‖Dη
t v(t, ω)‖D((−A)ζ) ≤Mtαδ0−η−αζ‖u0(ω)‖D((−A)δ0).

Since, by (5.12), αδ0 − η − αζ > − 1
p , the estimate above implies

‖Dη
t v(·, ω)‖Lp([0,T ];D((−A)ζ)) ≤M1‖u0(ω)‖D((−A)δ0).

Integrating again with respect to Ω, we obtain Part (2).
The case u0 = 0, u1 �= 0, u(t) = Sα,2u1 is treated similarly with β = 2. Notice

that a2(t) = t. In the end we can combine both cases. �

Lemma 5.7 (Contribution of f). Let A satisfy Hypothesis 3.1, let (Ω,F ,P) be
a probability space, p ∈ [2,∞). Let α ∈ (0, 2), γ > 0, 0 < T < ∞, and f ∈
Lp([0, T ]× Ω;Lp(B; R)).

1) For almost t ∈ [0, T ], the following integral exists in Lp(B; R), pointwise for
almost all ω ∈ Ω, as well as in Lp(Ω;Lp(B; R)):

u(t, ω) =
∫ t

0

Sα,γ(t− s)f(s, ω) ds. (5.14)
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Moreover, u ∈ Lp([0, T ]×Ω;Lp(B; R)), and for almost all ω ∈ Ω and almost
all t ∈ [0, T ],∫ t

0

aα(t− s)u(s, ω) ds ∈ D(A),

u(t, ω) = A
∫ t

0

aα(t− s)u(s, ω) ds+
∫ t

0

aγ(t− s)f(s, ω) ds.

2) Suppose, in addition, that f ∈ Lp([0, T ]× Ω;D((−A)ε)) with some ε ∈ [0, 1],
let η ∈ (−1, 1), ζ ∈ [0, 1] be such that

η + αζ < γ + αε. (5.15)

Put

v(t) =

{
u(t) if ζ ≥ ε,
u(t)−

∫ t

0
aγ(t− s)f(s) ds if ζ < ε.

Then, if η > 0, the function t �→ v(t) ∈ Lp(Ω;D((−A)ζ )) has a fractional
derivative of order η in Lp([0, T ] × Ω;D((−A)ζ)). If η < 0, the function
t �→ v(t) ∈ Lp(Ω;Lp(B; R)) has a fractional integral of order −η with values
in Lp(Ω;D((−A)ζ )). If η = 0, we define Dη

t v = v. In either case there exists
a constant MT,Leb dependent on A, T, p, α, γ, ε, ζ, η such that

‖Dη
t v‖Lp([0,T ]×Ω;D((−A)ζ)) ≤MT,Leb‖f‖Lp([0,T ]×Ω;D((−A)ε)).

Moreover, the constant MT,Leb can be made arbitrarily small by taking the
time interval [0, T ] sufficiently short.

Proof. The function t �→
∫ t

0
(t − s)γ−1‖f(s)‖Lp(Ω×B,R) ds is the convolution of an

L1-function and an Lp-function, therefore it is in Lp([0, T ],R). From (5.11) with
δ = ζ = η = 0 we obtain ‖Sα,γ(t)‖Lp(B;R)→Lp(B;R) ≤ Mtγ−1. Consequently, the
integral

u(t) =
∫ t

0

Sα,γ(t− s)f(s) ds

exists as an integral in Lp(Ω × B; R) for a.e. t, and u ∈ Lp([0, T ]× Ω, Lp(B,R)).
By standard arguments the integral (5.14) exists also in Lp(B; R) for a.e. ω ∈ Ω
and a.e. t ∈ [0, T ]. Now (5.9) implies (almost everywhere in Ω and [0, T ])

u(t)−
∫ t

0

aγ(t− s)f(s, ω) ds =
∫ t

0

[Sα,γ(t− s)f(s, ω)− aγ(t− s)f(s, ω)] ds

=
∫ t

0

A[
∫ t−s

0

aα(σ)Sα,γ(t− s− σ)f(s, ω) dσ] ds.

We use the closedness of A and interchange the order of integrals to obtain

u(t)−
∫ t

0

aγ(t− s)f(s, ω) ds = A
∫ t

0

aα(σ)u(t − σ, ω) dσ.

This proves Part (1) of the lemma.
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To prove Part (2), let η, ζ, ε be such that (5.15) holds. For shorthand put

V (t)x =

{
Dη

t Sα,γx if ε ≤ ζ,
Dη

t [Sα,γ(t)x− aγx] else.

From (5.11) with β replaced by γ, and δ replaced by ε, we have

‖V (t)x‖D((−A)ζ) ≤Mt(γ+αε)−(η+αζ)−1‖x‖D((−A)ε).

We obtain by a straightforward convolution argument that

‖
∫ t

0

V (t− s)f(s) ds‖Lp([0,T ]×Ω;D((−A)ζ)) ds ≤Mt,Leb‖f‖Lp(Ω,D((−A)ε)).

with

MT,Leb =M
∫ T

0

t(γ+αε)−(η+αζ)−1 dt.

Clearly, MT,Leb converges to 0 as T → 0. All we have to show is that in fact

Dη
t v(t) =

∫ t

0

V (t− s)f(s) ds.

We treat the case η > 0, ε > ζ, the other cases are done similarly. The definition
of V (t)x yields ∫ t

0

aη(s)V (t− s)xdx = Sα,γ(t)x − aγ(t)x.

Fubini’s Theorem implies∫ t

0

aη(s)
∫ t−s

0

V (t− s− σ)f(σ) dσ ds =
∫ t

0

∫ t−σ

0

aη(s)V (t− σ − s)f(σ) ds dσ

=
∫ t

0

[Sα,γ(t− σ)− aγ(t− σ)] f(σ) dσ = v(t).

Thus v(t), considered as a function with values in D((−A)ζ), admits a fractional
derivative of order η which is V ∗ f . �

The following lemma is the key to estimate the contribution of the stochastic
integral:

Lemma 5.8. Let A satisfy Hypothesis 3.1, p ∈ [2,∞). Let α ∈ (0, 2), β > 1
2 ,

ζ ∈ [0, 1] and η ∈ (−1, 1), such that (5.3) holds, i.e., 1
2 + η + αζ < β. Let T > 0.

Then there exists a constant M̃T,Ito > 0 depending on A, p, T, α, β, η, ζ such that
for all h ∈ Lp([0, T ];Lp(B; l2)),∫ T

0

∫
B

(∫ t

0

|(−A)ζDη
t Sα,β(t− s)h(s, x)|2l2 ds

) p
2

dΛ(x) dt

≤ M̃T,Ito

∫ T

0

∫
B

|h(s, x)|pl2 dΛ(x) ds.
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Moreover, the constant M̃T,Ito can be made arbitrarily small by taking the time
interval [0, T ] sufficiently short.

Proof. Write V (t) := (−A)ζDη
t Sα,β(t) and notice that by (5.11) (with δ = 0),

‖V (t)‖Lp(B,l2)→Lp(B,l2) ≤Mtβ−(η+αζ)−1.

First assume that p > 2. Notice that p
2 and p

p−2 are conjugate exponents. Take

f : [0, T ]×B → R+ such that
∫ T

0

∫
B f

p
p−2 (t, x) dΛ(x) dt = 1. We estimate∫ T

0

∫
B

f(t, x)
∫ t

0

|V (t− s)h(s, x)|2l2 ds dΛ(x) dt

=
∫ T

0

∫ t

0

∫
B

f(t, x) |V (t− s)h(s, x)|2l2 dΛ(x) ds dt

≤
∫ T

0

∫ t

0

[∫
B

f(t, x)
p

p−2 dΛ(x)
] p−2

p
[∫

B

|V (t− s)h(s, x)|pl2 dΛ(x)
] 2

p

ds dt

≤
∫ T

0

‖f(t, ·)‖L p
p−2

(B;R)

∫ t

0

‖V (t− s)‖2Lp(B;l2)→Lp(B;l2)
‖h(s, ·)‖2Lp(B;l2)

ds dt

≤
[∫ T

0

‖f(t, ·)‖
p

p−2

L p
p−2

(B;R) dt

] p−2
p

×
[∫ T

0

|
∫ t

0

‖V (t− s)‖2Lp(B;l2)→Lp(B;l2)
‖h(s, ·)‖2Lp(B;l2)

ds|
p
2 dt

] 2
p

.

Thus[∫ T

0

∫
B

(∫ t

0

|V (t− s)h(s, x)|2l2 ds
) p

2

dΛ(x) dt

] 2
p

≤
[∫ T

0

|
∫ t

0

‖V (t− s)‖2Lp(B;l2)→Lp(B;l2)
‖h(s, ·)‖2Lp(B;l2)

ds|
p
2 dt

] 2
p

.

(5.16)

For p = 2, the estimate (5.16) is obvious. In either case, we obtain (by estimating
the convolution with respect to s)[∫ T

0

∫
B

(∫ t

0

|V (t− s)h(s, x)|2l2 ds
) p

2

dΛ(x) dt

] 2
p

≤
(∫ T

0

‖V (s)‖2Lp(B;l2)→Lp(B;l2)
ds

) (∫ T

0

‖h(s, .)‖p
Lp(B;l2)

ds

) 2
p

≤M2

∫ T

0

s2(β−(η+αζ)−1) ds ‖h‖2Lp([0,T ];Lp(B;l2))
.
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By (5.3) we infer that s2(β−(η+αζ)−1) is integrable on [0, T ] so that

M̃T,Ito :=

[
M2

∫ T

0

s2(β−(η+αζ)−1) ds

] p
2

is finite and converges to 0 as T → 0+. �

Lemma 5.9 (Contribution of g). Let A satisfy Hypothesis 3.1, and let the probability
space (Ω,F ,P) and the Wiener processes wk

t be as in Hypothesis 3.2. Let T > 0,
2 ≤ p < ∞, α ∈ (0, 2), and β > 1

2 . Let g ∈ Lp([0, T ]× Ω;Lp(B; l2)) and {gj} be
a sequence approximating g in the sense of Lemma 4.1, where the values of gk

j are
in D(A) ∩ L1(B; R) ∩ L∞(B; R). Let aβ � g be given by Definition 4.5. For j ∈ N
put

uj(t) =
j∑

k=1

∫ t

0

Sα,β(t− s)gk
j (s) dwk

s .

1) The limit u(t) = limj→∞ uj(t) exists in Lp([0, T ]× Ω;Lp(B; R)). Moreover,
for almost all t ∈ [0, T ] and almost all ω ∈ Ω,

u(t, ω) = A
∫ t

0

aα(t− s)u(s, ω) ds+ (aβ � g)(t, ω).

2) Suppose 0 ≤ ζ ≤ 1 and η ∈ (−1, 1) are such that

η + αζ +
1
2
< β. (5.17)

Then, if η > 0, the function u : [0, T ] → Lp(Ω,D((−A)ζ )) has a fractional
derivative of order η. If η < 0, then u : [0, T ] → Lp(Ω;Lp(Ω,R)) has a
fractional integral of order −η with values in Lp(Ω;D((−A)ζ)). If η = 0, we
denote D0

t u = u. In either case there exists a constant MT,Ito dependent on
A, p, α, β, η, ζ such that

‖Dη
t u‖Lp([0,T ]×Ω;D((−A)ζ)) ≤MT,Ito‖g‖Lp([0,T ]×Ω;Lp(B;l2)).

Moreover, the constant MT,Ito can be made arbitrarily small by choosing the
time interval [0, T ] sufficiently short.

Proof. First, let h ∈ Lp([0, T ] × Ω;Lp(B; l2)) be of the elementary structure like
the gj in Lemma 4.1. Evidently, the following integral exists

∞∑
k=1

∫ t

0

Sα,β(t− s)hk(s) dwk
s =

∞∑
k=1

∞∑
i=1

∫ τk
i

τk
i−1

Sα,β(t− s)hk
i dw

k
s

where τk
i are suitable stopping times, hk

i ∈ D(A)∩L1(B; R)∩L∞(B; R), and both
sums are in fact only finite sums. For η ∈ (−1, 1), ζ ∈ [0, 1], satisfying (5.17),



Stochastic Integral Equations 153

put V (t)x = (−A)ζDη
t Sα,β(t)x. We apply Lemma 4.3 and integrate for t ∈ [0, T ].

Subsequently we apply Lemma 5.8:∫ T

0

∫
Ω

∥∥∥∥∥
∞∑

k=1

∫ t

0

V (t− s)hk(s) dwk
s

∥∥∥∥∥
p

Lp(B;R)

dP(ω) dt (5.18)

≤M
∫ T

0

∫
B

∫
Ω

(∫ t

0

|[V (t− s)h(s, ω)](x)|2l2 ds
) p

2

dP(ω) dΛ(x) dt

≤MM̃T,Ito‖h‖p
Lp([0,T ]×Ω;Lp(B;l2)).

In particular, with ζ = η = 0, and h = gj − gm, we have

‖uj − um‖Lp([0,T ]×Ω;Lp(B;R)) ≤M‖gj − gm‖Lp([0,T ]×Ω;Lp(B;l2))

so that {uj} is a Cauchy sequence in Lp([0, T ] × Ω;Lp(B; R)) and has a limit
u. Without loss of generality, taking a subsequence, if necessary, we may assume
that uj converges also pointwise for almost all t ∈ [0, T ]. Again we use the simple
structure of gj , in particular that gk

j (t, ω) ∈ D(A). From (5.9) and the Stochastic
Fubini Theorem we obtain∫ t

0

[Sα,β(t− σ)gk
j (σ, ω) − aβ(t− σ)ga

j (σ, ω)] dwk
σ

=
∫ t

0

A[
∫ t−σ

0

aα(s)Sα,β(t− σ − s)gk
j (σ, ω) ds] dwk

σ

= A
∫ t

0

∫ t−σ

0

aα(s)Sα,β(t− σ − s)gk
j (σ, ω) ds dwk

σ

= A
∫ t

0

aα(s)
∫ t−s

0

Sα,β(t− σ − s)gk
j (σ, ω) dwk

σ ds.

Taking the sum over k = 1, . . . , j we obtain

uj(t, ω)− aβ � gj(t, ω) = A
∫ t

0

aα(s)uj(t− s, ω) ds.

Taking limits for j → ∞ (pointwise a.e. in [0, T ]), and using the closedness of A
we have for almost all t ∈ [0, T ]

u(t, ω)− aβ � g(t, ω) = A
∫ t

0

aα(s)u(t− s, ω) ds.

Thus Part (1) of the lemma is proved.
To prove Part (2), let η ∈ (−1, 1) and ζ ∈ [0, 1] satisfy (5.17). With V (t)x =

(−A)ζDη
t Sα,βx and h = gj, we obtain from (5.18),∥∥∥∥∥

∫ t

0

j∑
k=1

V (t− s)gk
j (s) dwk

s

∥∥∥∥∥
Lp([0,T ]×Ω;Lp(B;R))

≤MT,Ito‖gj‖Lp([0,T ]×Ω;Lp(B;l2)),
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with a suitable constant MT,Ito which converges to 0 as T → 0. We have to show
that in fact

j∑
k=1

∫ t

0

V (t− s)gk
j (s) dwk

s = (−A)ζDη
t uj(t)

First let η > 0. By definition we know that∫ t

0

aη(s)V (t− s)xds = (−A)ζSα,β(t)x.

Taking integrals and using the Stochastic Fubini Theorem, we obtain

(−A)ζuj(t) =
j∑

k=1

∫ t

0

(−A)ζSα,β(t− σ)gk
j (σ, ω) dwk

σ

=
j∑

k=1

∫ t

0

∫ t−σ

0

aη(s)V (t− σ − s)gk
j (σ, ω) ds dwk

σ

=
∫ t

0

aη(s)
j∑

k=1

∫ t−s

0

V (t− s− σ)gk
j (σ, ω) dwk

σ ds

Thus (−A)ζuj has a fractional derivative of order η which is V � gj . Taking the
limit for j → ∞ we infer that Dη

t (−A)ζu = V � g. Now let η < 0. Similarly as
above, the Stochastic Fubini Theorem yields

j∑
k=1

∫ t

0

V (t− σ)gk
j (σ) dwk

σ = (−A)ζ

∫ t

0

a−η(s)uj(t− s) ds.

Again we take the limit for j → ∞ and use the closedness of A, to see that the
fractional integral Dη

t u takes values in D((−A)ζ) with (−A)ζDη
t u = V � g. �

6. The semilinear equation

This section is devoted to the proof of Theorems 3.6, 3.7, 3.11, and Corollary 3.8.

Lemma 6.1. Let (Ω,F ,P) be a probability space, let A satisfy Hypothesis 3.1, and
let F and G satisfy Hypotheses 3.4 and 3.5. We define the operators

NF : Lp([0, T ]× Ω;D((−A)θ))→ Lp([0, T ]× Ω;D((−A)ε)),

NG : Lp([0, T ]× Ω;D((−A)θ)) → Lp([0, T ]× Ω;Lp(B; l2))

by
[NF v](t, ω) := F (t, ω, v(t)), [NGv](t, ω) := G(t, ω, v(t)).

(1) Then NF and NG are well defined and Lipschitz continuous with Lipschitz
constants MF , MG, respectively.
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(2) Let F1, F2, G1, G2 satisfy Hypotheses 3.4, 3.5, and 3.9. Let v ∈ Lp([0, T ] ×
Ω;D((−A)θ)). Then

‖NF1v −NF2v‖Lp([0,T ]×Ω;D((−A)ε)) ≤ ‖μΔF ‖Lp([0,T ]×Ω;R),

‖NG1v −NG2v‖Lp([0,T ]×Ω;Lp(B;l2)) ≤ ‖μΔG‖Lp([0,T ]×Ω;R).

Here the constants MF , MG and the functions μΔF and μΔG are as in Hypothe-
ses 3.4, 3.5, and 3.9.

Proof. These are straightforward estimates. �

Lemma 6.2. Let the assumptions of Theorem 3.6 hold, in addition assume that
δ0 ≤ θ, δ1 ≤ θ. For v ∈ Lp([0, T ] × Ω;D((−A)θ)) let T[F,G,u0,u1]v : [0, T ] × Ω →
Lp(B; R) be the unique solution u of

u(t, ω) = A
∫ t

0

aα(t− s)u(s, ω) ds+ u0 + tu1

+
∞∑

k=1

∫ t

0

aβ(t− s)Gk(s, ω, v(s)) dwk
s

+
∫ t

0

aγ(t− s)F (s, ω, v(s)) ds.

in the sense of Proposition 5.1.

(1) Then T[F,G,u0,u1] is well defined as a nonlinear operator from Lp([0, T ] ×
Ω;D((−A)θ)) into Lp([0, T ]×Ω;D((−A)θ)). Moreover, T[F,G,u0,u1] is globally
Lipschitz continuous with a Lipschitz constant dependent on A, p, T , α, β,
γ, ε, θ, MF , MG.

(2) There exists an equivalent norm on Lp([0, T ] × Ω;D((−A)θ)), such that the
Lipschitz constant of T[F,G,u0,u1] is smaller than 1. This norm depends on
T, p,A, α, β, γ, θ, ε,MF ,MG.

(3) There exists a constant M , depending on A, T, p,MF ,MG, α, β, ε, θ, δ0, δ1,
such that the following Lipschitz estimate holds:
If F1, F2, G1, G2 satisfy Hypotheses 3.4, 3.5, and 3.9, if u0,1, u0,2 are in
Lp(Ω;D((−A)δ0 )) and u1,1, u1,2 ∈ Lp(Ω;D((−A)δ1 )), measurable with respect
to F0, then for any v ∈ Lp([0, T ]× Ω;D((−A)θ)) we have

‖T[F1,G1,u0,1,u1,1]v − T[F2,G2,u0,2,u1,2]v‖Lp([0,T ]×Ω;D((−A)θ))

≤M
[
‖u0,1 − u0,2‖Lp(Ω;D((−A)δ0)) + ‖u1,1 − u1,2‖Lp(Ω;D((−A)δ1))

+ ‖μΔF‖Lp([0,T ]×Ω;R) + ‖μΔG‖Lp([0,T ]×Ω;R)

]
.

(4) T[F,G,u0,u1] has a unique fixed point u[F,G,u0,u1] ∈ Lp([0, T ] × Ω;D((−A)θ)).
Moreover, there exists a constant M dependent on A, p, T , MF , MG, α, β,
ε, θ, δ0, δ1 such that the following Lipschitz estimate holds:
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If ui,j, Fi, Gi are as in (3), then

‖u[F1,G1,u0,1,u1,1] − u[F2,G2,u0,2,u1,2]‖Lp([0,T ]×Ω;D((−A)θ))

≤M
[
‖u0,1 − u0,2‖Lp(Ω;D((−A)δ0)) + ‖u1,1 − u1,2‖Lp(Ω;D((−A)δ1))

+ ‖μΔF‖Lp([0,T ]×Ω;R) + ‖μΔG‖Lp([0,T ]×Ω;R)

]
.

Proof. We recall Proposition 5.2 with η = 0 and ζ replaced by θ. Notice that the
conditions (5.2), and (5.3), (5.4), (5.5) are satisfied. Let u solve

u = Aaα ∗ u+ aγ ∗ f + aβ � g + u0 + tu1,

Notice that with the present choice of coefficients the function v in (5.6) is simply
u. Thus u ∈ Lp([0, T ]× Ω;D((−A)θ)) with

‖u(t)‖Lp([0,T ]×Ω;D((−A)θ)) (6.1)

≤Minit

[
‖u0‖Lp(Ω;D((−A)δ0)) + ‖u1‖Lp(Ω;D((−A)δ1))

]
+ MT,Leb‖f‖Lp([0,T ]×Ω;D((−A)ε)) + MT,Ito‖g‖Lp([0,T ]×Ω;Lp(B,l2)).

Given v ∈ Lp([0, T ] × Ω;D((−A)θ)), we put f = NF v and g = NGv as in
Lemma 6.1. Then f ∈ Lp([0, T ]× Ω;D((−A)ε)) and g ∈ Lp([0, T ]× Ω;Lp(B; l2)).
Thus, by (6.1), u = T[F,G,u0,u1]v ∈ Lp([0, T ]×Ω;D((−A)θ)). In particular for v = 0
we have

‖T[F,G,u0,u1](0)‖Lp([0,T ]×Ω;D((−A)θ))

≤Minit

[
‖u0‖Lp(Ω,D((−A)δ0)) + ‖u1‖Lp(Ω;D((−A)δ1))

]
+MT,LebMF,0 +MT,ItoMG,0.

We could immediately get a Lipschitz estimate for T[F,G,u0,u1] by (6.1), but we will
get a better (contraction) estimate in an equivalent norm below.

To prove (2), we recall from Proposition 5.2 that MT,Leb and MT,Ito can be
taken arbitrarily small, if the time intervals are sufficiently short. In particular,
there exists m ∈ N such that

MT/m,LebMF +MT/m,ItoMG <
1
4
.

With some κ > 0 to be specified below, we define for v ∈ Lp([0, T ]×Ω;D((−A)θ)),

|||v||| :=
m∑

q=1

κq

[∫ Tq/m

T (q−1)/m

∫
Ω

‖v(t, ω)‖p
D((−A)θ)

dP(ω) dt

]1/p

.

For q = 1, . . . ,m we put

Fq(t, ω, v) := I(q−1)T/m≤t<qT/m(t)F (t, ω, v(t)),

Gq(t, ω, v) := I(q−1)T/m≤t<qT/m(t)G(t, ω, v(t)).

If v, ṽ ∈ Lp([0, T ]× Ω;D((−A)θ)), then

T[F,G,u0,u1]v − T[F,G,u0,u1]ṽ =
m∑

q=1

wq,
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where wq solves

wq = Aaα ∗wq + aγ ∗ [Fq(v)− Fq(ṽ)] + aβ � [Gq(v)−Gq(ṽ)].

Now wq = 0 on [0, T (q−1)
m ]. Lemma 6.1(1) and (6.1) imply(∫ Tq/m

T (q−1)/m

∫
Ω

‖wq(t, ω)‖p
D((−A)θ)

dP(ω) dt
)1/p

≤MT/m,LebMF

(∫ Tq/m

T (q−1)/m

∫
Ω

‖v(t, ω)− ṽ(t, ω)‖p
D((−A)θ)

dP(ω) dt
)1/p

+ MT/m,ItoMG

(∫ Tq/m

T (q−1)/m

∫
Ω

‖v(t, ω)− ṽ(t, ω)‖p
D((−A)θ)

dP(ω) dt
)1/p

≤ 1
4

(∫ Tq/m

T (q−1)/m

∫
Ω

‖v(t, ω)− ṽ(t, ω)‖p
D((−A)θ)

dP(ω) dt
)1/p

.

On the intervals
[

(r−1)T
m , rT

m

]
with r > q we have the estimate(∫ Tr/m

T (r−1)/m

∫
Ω

‖wq(t, ω)‖p
D((−A)θ)

dP(ω) dt
)1/p

≤
(∫ T

0

∫
Ω

‖wq(t, ω)‖p
D((−A)θ)

dP(ω) dt
)1/p

≤M
(∫ Tq/m

T (q−1)/m

∫
Ω

‖v(t, ω)− ṽ(t, ω)‖p
D((−A)θ)

dP(ω) dt
)1/p

.

with M = MFMT,Leb +MGMT,Ito. We choose κ ∈ (0, 1) sufficiently small, such
that M

∑∞
r=1 κ

r < 1
4 . We have therefore

|||wq||| =
m∑

r=q

κr

[∫ Tr/m

T (r−1)/m

∫
Ω

‖wq(t, ω)‖p
D((−A)θ)

dP(ω) dt
]1/p

≤
[
1
4

+M
m∑

r=q+1

κr−q

]
κq

[∫ Tq/m

T (q−1)/m

‖v(t, ω)− ṽ(t, ω)‖p
D((−A)θ)

dP(ω) dt
]1/p

≤ 1
2
κq

[∫ Tq/m

T (q−1)/m

‖v(t, ω)− ṽ(t, ω)‖p
D((−A)θ)

dP(ω) dt
]1/p

.

Summing for q = 1, . . . ,m we obtain

|||T[F,G,u0,u1]v − T[F,G,u0,u1]ṽ||| ≤
m∑

q=1

|||wq |||

≤ 1
2

m∑
q=1

κq

[∫ Tq/m

T (q−1)/m

‖v(t, ω)− ṽ(t, ω)‖p
D((−A)θ)

dP(ω) dt
]1/p

=
1
2
|||v − ṽ|||.

Part (3) is a straightforward application of (6.1) and Lemma 6.1 (2).
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Finally, since for all F,G, u0, u1 the operator T[F,G,u0,u1] is a strict contraction
with Lipschitz constant 1

2 < 1 on Lp([0, T ]×Ω;D((−A)θ)) (with the norm ||| · |||),
and since T[F,G,u0,u1]v depends Lipschitz on F,G, u0, u1 by Part (3), the standard
contraction arguments yield Part (4). �

We are now ready to finish the proofs of the main results:

Proof of Theorem 3.6. We may assume without loss of generality that δ0, δ1 ≤ θ.
(If any δi is greater that θ, it may be replaced by θ.) Obviously, the unique solution
of (1.1) in Lp([0, T ]×Ω;D((−A)θ)) is exactly the unique fixed point of T[F,G,u0,u1]

constructed in Lemma 6.2. �

Proof of Theorem 3.7. Let u be the solution of (1.1), thus, with f = NFu ∈
Lp([0, T ] × Ω;D((−A)ε)) and g = NGu ∈ Lp([0, T ] × Ω;Lp(B; l2)) we have that
u solves (5.1). Let v be defined by (3.13). Now, ζ, η, δ0, δ1, ε satisfy the conditions
of Proposition 5.2, which yields immediately the required additional regularity
results. �

Proof of Corollary 3.8. To prove Part (1), choose η such that
1
p
− 1
q
< η < 1,

and such that the conditions (3.9), (3.10), (3.11), and (3.12) from Theorem 3.7 are
satisfied. Then Dη

t v ∈ Lp([0, T ];Lp(Ω;D((−A)ζ))). Notice that q < p
1−pη , so that

we infer from [9, p. 421] that v ∈ Lq([0, T ];Lp(Ω;D((−A)ζ))).
To prove Part (2), put μ+ 1

p = η. Consequently conditions (3.9), (3.10), (3.11),
and (3.12) from Theorem 3.7 hold. Then Dη

t v ∈ Lp([0, T ];Lp(Ω;D((−A)ζ))). Then
by [9, p. 421] we infer that v ∈ hη−p−1

0→0 ([0, T ];Lp(Ω;D((−A)ζ))). �

Proof of Theorem 3.11. For i = 1, 2, let u[Fi,Gi,u0,i,u1,i] be the solution of (1.1)
with u0 replaced by u0,i, etc. Let v[Fi,Gi,u0,i,u1,i] be defined by (3.13) with the
obvious modifications. From Lemma 6.2, Part (4) we have a Lipschitz estimate

‖u[F1,G1,u0,1,u1,1] − u[F2,G2,u0,2,u1,2]‖Lp([0,T ]×Ω;D((−A)θ)) ≤Md with

d =
[
‖u0,1 − u0,2‖Lp(Ω;D((−A)δ0)) + ‖u1,1 − u1,2‖Lp(Ω;D((−A)δ1))

+ ‖μΔF‖Lp([0,T ]×Ω;R) + ‖μΔG‖Lp([0,T ]×Ω;R)

]
.

Now let fi = NFu[Fi,Gi,u0,i,u1,i] and gi = NGu[Fi,Gi,u0,i,u1,i]. By Lemma 6.1(1) we
have

‖f1 − f2‖Lp([0,T ]×Ω;D((−A)ε)) ≤MFMd, ‖g1 − g2‖Lp([0,T ]×Ω;Lp(B,l2)) ≤MGMd.

The difference v = v[F1,G1,u0,1,u1,1] − v[F2,G2,u0,2,u1,2] solves (5.1) with u0 replaced
by u0,1 − u0,2, etc. Proposition 5.2 yields now

‖v[F1,G1,u0,1,u1,1] − v[F2,G2,u0,2,u1,2]‖Lp([0,T ]×Ω;D((−A)ζ)) ≤Md
with a suitable constant M . �
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7. Maximal regularity considerations

In this section, we consider the case that B = Rn and A = Δ : W 2,p(Rn) →
Lp(Rn), the Laplacian in Lp(Rn). In this case, a maximum regularity result can
be proved. To keep the paper at a reasonable size we concentrate on the stochastic
part and confine ourselves to the equation

u(t, ω, x) = Δ
∫ t

0

aα(t− s)u(s, ω, x) ds

+
∞∑

k=1

∫ t

0

aβ(t− s)Gk(s, ω, u(s, ω, x)) dwk
s

(7.1)

and the linear equation

u(t, ω, x) = Δ
∫ t

0

aα(t− s)u(s, ω, x) ds+
∞∑

k=1

∫ t

0

aβ(t− s)gk(s, ω, x) dwk
s . (7.2)

Notice that various results on maximal regularity with respect to determin-
istic forcing functions (see, e.g., [39]) and to initial data (e.g., [9]) are available.
These could be combined with the results given here and adapted to the semilinear
case.

For (7.2) we obtain

Proposition 7.1 ([13], Theorem 4.14). For a positive integer n, let Δ :W 2,p(Rn) →
Lp(Rn) be the Laplacian with 1 < p <∞. Suppose that the probability space Ω and
the Wiener processes wk satisfy Hypothesis 3.2. Let T > 0, β > 1

2 , α ∈ (0, 2), and
g ∈ Lp([0, T ]× Ω;Lp(Rn, l2)).
(a) Then there exists a unique function u ∈ Lp([0, T ]× Ω, Lp(Rn)) such that for

almost all t ∈ [0, T ],∫ t

0

aα(t− s)u(s) ds ∈W 2,p(Rn)

and (7.2) holds.
(b) Moreover, if ζ ∈ [0, 1] is such that

αζ +
1
2
≤ β, (7.3)

then u ∈ Lp([0, T ]× Ω,D((−Δ)ζ)), and

‖u‖Lp([0,T ]×Ω,D((−Δ)ζ)) ≤M‖g‖Lp([0,T ]×Ω,l2) (7.4)

with a constant M dependent on n, T, p, α, β, ζ.
(c) If strict inequality holds in (7.3), then M in (7.4) can be obtained arbitrarily

small by taking sufficiently small T .

Proof. Of course, if strict inequality holds in (7.3), then the assertions above are
just a special case of Proposition 5.2 with A = Δ, u0 = u1 = 0, and η = 0. But for
such A and η, the assertion of Lemma 5.8 holds also if equality holds in (7.3), with
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the only exception that M̃T,Ito cannot be made small by taking small T . See [12,
Theorem 1.2]. (To prove this, the general estimates from Lemma 5.4 are replaced
by a more sophisticated analysis of the resolvent kernel for the Laplacian, using
the heat kernel and its self-similarity properties. This has been done for the heat
equation by Krylov in [20], and generalized to the case of integral equations in
[12].) Once Lemma 5.8 is established, the proof continues exactly as in Section 5.
More details can be found in [13]. �

Since M in (7.4) cannot be controlled simply by taking short time intervals,
we need a more sophisticated Lipschitz condition. (For the heat equation, compare
[21, Assumption 5.6].)

Hypothesis 7.2. There exists some θ ∈ (0, 1) such that

G : [0, T ]× Ω×D((−Δ)θ)→ Lp(Rn; l2)

[G(t, ω, u)](x) :=
(
Gk(t, ω, u)(x)

)∞
k=1

satisfies the following assumptions:

(a) For fixed u ∈ D((−Δ)θ), the function G(·, ·, u) is measurable from [0, T ]×Ω
into Lp(Rn; l2).

(b) For each ε > 0, there exists a constantMG(ε) > 0, such that for all t ∈ [0, T ],
and all u1, u2 ∈ D((−Δ)θ) the following Lipschitz estimate holds:

‖G(t, ω, u1)−G(t, ω, u2)‖Lp(Rn;l2) (7.5)

≤
[
εp‖u1 − u2‖p

D((−Δ)θ)
+MG(ε)p‖u1 − u2‖p

Lp(Rn)

]1/p for ω ∈ Ω a.e..

(c) For u = 0 we have[∫
Ω

∫ T

0

‖G(t, ω, 0)‖p
Lp(Rn;l2)

dt dP

]1/p

=MG,0 <∞. (7.6)

Theorem 7.3. Let the probability space (Ω,F ,P) and the Wiener processes
(
wk

s

)∞
k=1

be as in Hypothesis 3.2. Let p ∈ [2,∞), and Δ be the Laplacian on Lp(Rn). Let
α ∈ (0, 2), β > 1

2 , and T > 0. Assume that G : [0, T ]×Ω×D((−Δ)θ)→ Lp(Rn; l2)
satisfies Hypothesis 7.2 with suitable θ ∈ (0, 1), such that

αθ +
1
2

= β. (7.7)

Then there exists a unique function u ∈ Lp([0, T ] × Ω;D((−Δ)θ)) such that for
almost all t ∈ [0, T ]∫ t

0

aα(t− s)u(s, ω, ·) ds ∈ D(Δ) for a.e. ω ∈ Ω,

and (7.1) is satisfied for almost all ω ∈ Ω.



Stochastic Integral Equations 161

Proof. We refine the contraction argument from Section 6. As in Lemma 6.1 we
define for v ∈ Lp([0, T ]× Ω;D((−Δ)θ))

NG(v) :

{
[0, T ]× Ω → Lp(Rn; l2),
t× ω �→ G(t, ω, v(t, ω)).

For g ∈ Lp([0, T ]× Ω;Lp(Rn, l2)) we define Sg := u ∈ Lp([0, T ] × Ω;D((−Δ)θ)),
where u is the solution of (7.2) according to Proposition 7.1 with forcing function
g. As in Section 6 the desired solution u is a fixed point of the operator T := S◦NG

which maps Lp([0, T ]× Ω;D((−Δ)θ)) into itself.
By (7.4) for ζ = 0 and for ζ = θ we infer

‖Sg‖Lp([0,T ]×Ω;Lp(Rn)) ≤M0(T )‖g‖Lp([0,T ]×Ω;Lp(Rn;l2)),

‖Sg‖Lp([0,T ]×Ω;D((−Δ)θ)) ≤Mθ‖g‖Lp([0,T ]×Ω;Lp(Rn;l2)),

with fixedMθ, whileM0(T ) can be made arbitrarily small by taking T sufficiently
small. We fix ε > 0 such that Mθε <

1
8 and choose the corresponding MG(ε) ac-

cording to Hypothesis 7.2. On Lp([0, T ]×Ω;D((−Δ)θ)) we introduce the following
equivalent norm

‖v‖p
Lp([0,T ]×Ω;D((−Δ)θ)),equiv

:=
∫ T

0

∫
Ω

[
εp‖v(t, ω)‖p

D((−Δ)θ)
+Mp

G(ε)‖v(t, ω)‖p
Lp(Rn)

]
dP(ω) dt.

With respect to this norm, the nonlinear operator

NG : Lp([0, T ]× Ω;D((−Δ)θ)) → Lp([0, T ]× Ω;Lp(Rn; l2))

has Lipschitz constant 1 by Hypothesis 7.2. On the other hand

‖Sg‖Lp([0,T ]×Ω;D((−Δ)θ)),equiv

≤ (εpMp
θ +MG(ε)pM0(T )p)1/p‖g‖Lp([0,T ]×Ω;Lp(Rn;l2)).

We infer that T is Lipschitz on Lp([0, T ] × Ω;D((−Δ)θ)) with respect to the
equivalent norm ‖ · ‖Lp([0,T ]×Ω;D((−Δ)θ)),equiv, and if T is sufficiently small, so that
(εpMp

θ +MG(ε)pM0(T )p)1/p < 1
4 , then the Lipschitz constant of T is less than

1
4 . We can now proceed as in Lemma 6.2 (2) to construct an equivalent norm on
Lp([0, T ]×Ω;D((−A)θ)) which makes T a strict contraction also for large T . �

8. Krylov’s approach versus B-space valued stochastic integration

At the center of the study of stochastic integral equations in Banach spaces is the
problem of defining and estimating stochastic integrals, in particular stochastic
convolutions, in Banach spaces. Krylov’s approach, which is used in this paper,
is elementary in the sense that stochastic integrals are taken pointwise, so they
are classical Ito-integrals of scalar-valued processes. The Burkholder-Davis-Gundy
inequality provides the step from L2-estimates to Lp. Of course, this can only
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be done for sufficiently “nice” integrands. The final step is to extend the results
obtained for smooth initial data and elementary forcing terms to more general
Lp-data by a completion argument.

On the other hand, the recent progress on stochastic integration in Banach
spaces provides a convenient tool to handle stochastic convolutions directly in the
Banach space. In [4] stochastic convolution is developed to the point where semi-
linear stochastic differential equations can be treated in M-type 2 UMD spaces.
(This covers our case X = Lp .) In fact, the key is a generalized version of the
Burkholder-Davis-Gundy inequality. Further developments of stochastic integra-
tion can be found in [26].

In [13] we compared our linear results with those obtained in [14], [37]. In the
context of the present paper it appears interesting to make a similar brief com-
parison concerning semilinear equations. Note that the aim of the present paper
is to treat fractional differential equations and not only the differential equation
case α = β = γ = 1. To our knowledge, no results are available for stochastic
fractional integral equations using abstract integration methods in spaces other
than Hilbert spaces. However, there are several papers dealing with differential
equations, in settings that are quite more general than ours. For instance, nonau-
tonomous problems ([38]) and local Lipschitz conditions ([4], [27]) can be treated.
And, as stated above, the abstract methods are not confined to the space Lp.

With α = β = γ = 1 our equation (1.1) reduces to the stochastic nonlinear
differential equation

du(t) = Au(t) dt+G(t, ω, u(t)) dWt + F (t, ω, u(t)) dt. (8.1)

It is this case, where we can compare our results to the results obtained by
the abstract integration theory. Note that in abstract notation, Wt is a cylin-
drical Wiener process in a separable Hilbert space H and that, for fixed u, G ∈
Lp([0, T ]×Ω; γ(H,Lp(B))) where γ(H,Lp(B)) denotes the space of γ-radonifying
operators H → Lp(B). This is equivalent to writing the stochastic forcing in
Krylov’s notation

G =
∞∑

k=1

Gkwk
s .

with (for fixed u) {Gk}∞k=1 ∈ Lp([0, T ] × Ω;Lp(B, l2)) (use, e.g., [37, Proposi-
tion 3.2.3]).

Possibly the results which can be most easily compared with ours are those
of [4], which are formulated for any type 2 UMD space. Rewritten to our notation
(and reduced to the globally Lipschitzian case, and Lp instead of general X), the
essential conditions in [4] read:
• There are constants ε ∈ (−1, 0), ν ∈ (0, 1], ϑ ≥ 0, and

0 ≤ θ2 < θ1 < θ2 + p−1 < min
(
ε+ 1,

1
2
− ϑ

)
, (8.2)

such that the following conditions hold:
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• G : [0, T ]× Ω×D((−A)θ1)→ Lp(B; l2) satisfies a Lipschitz condition

‖(−A)−ϑG(t, ω, u1)− (−A)−ϑG(t, ω, u2)‖Lp(B;l2)

≤ K‖u1 − u2‖ν
D((−A)θ1)‖u1 − u2‖1−ν

D((−A)θ2)

for almost all ω ∈ Ω, and all t ∈ [0, T ], u1, u2 ∈ D((−A)θ1).
• F : [0, T ]× Ω×D((−A)θ1)→ D((−A)ε) satisfies a Lipschitz condition

‖F (t, ω, u1)− F (t, ω, u2)‖D((−A)ε) ≤ K‖u1 − u2‖ν
D((−A)θ1)‖u1 − u2‖1−ν

D((−A)θ2)

for almost all ω ∈ Ω, and all t ∈ [0, T ], u1, u2 ∈ D((−A)θ1).
• u0 ∈ Lp(Ω,F0,D((−A)θ1).
• In addition, suitable conditions for measurability and linear growth of F and
G in u are given.

With these conditions, (8.1) admits a unique mild solution

u ∈ Lp([0, T ]× Ω;D((−A)θ1)) ∩ Lp(Ω; C([0, T ];D((−A)θ2))).

This assertion is stronger than our Theorem 3.6 since it ensures that trajectories
are continuous a.s. in the some space D((−A)θ2), while our theorem only provides
a solution in Lp([0, T ]×Ω;D((−A)θ1)). Accordingly, the conditions on θ2 will not
have a counterpart in Theorem 3.6. The Lipschitz condition on G can be compared
to Hypothesis 3.5 if we identify θ1 above with our θ and put ϑ = 0, and (with
some abuse) forget about the role of θ2. The Lipschitz condition on F is more
general than Hypothesis 3.4, since it allows for negative ε. We expect that it might
be a minor technical task to sharpen our arguments to match this situation. With
α = β = γ = 1, our conditions (3.5), (3.6) and (3.7) can be rewritten in the form

θ1 < 1 + ε, θ1 <
1
2
, θ1 <

1
p

+ δ0.

The conditions on θ1 and ε are exactly what is left from (8.2) if we forget about θ2.
Our Theorem 3.6 allows for u0 ∈ D((−A)δ0 ) where δ0 > θ1− 1

p . In [4] slightly more
regular u0 ∈ D((−A)θ1) is required, with the payoff that solutions are continuous
at least as functions with values in D((−A)θ2). The continuity assertion may be
(with some caution) compared to our Corollary 3.8 (2), if we identify θ2 from [4]
with our ζ. Then the conditions of our Corollary 3.8 require μ ∈ (0, 1 − 1

p ) such
that

1
p

+ μ+ θ2 < min
(

1 + ε,
1
2

)
, μ+ θ2 < δ0.

Such μ can be found if (8.2) holds. Our corollary states that in this case u ∈
hμ

0→0([0, T ];Lp(Ω;D((−A)θ2))).
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Fund. Math., 32 (1939), 115–121.

[24] M.M. Meerschaert, D.A. Benson, H.-P. Scheffler and B. Baeumer, Stochastic solution
of space-time fractional diffusion equations, Phys. Rev. E (3) 65 (2002) no. 4, 041103,
4pp.

[25] R. Metzler and J. Klafter, The fractional Fokker-Planck equation: dispersive trans-
port in an external force field, J. of Molecular Liquids 86 (2000), 219–228.

[26] J. van Neerven, M.C. Veraar, and L. Weis, Stochastic integration in UMD Banach
spaces, Ann. Prob. 35 (2007), 1438–1478.

[27] J. van Neerven, M.C. Veraar, and L. Weis, Stochastic evolution equations in UMD
Banach spaces, J. Funct. Anal. 255 (2008), 940–993.

[28] J. Prüss, Quasilinear parabolic Volterra equations in spaces of integrable functions. In
Semigroup Theory and Evolution Equations, B. de Pagter, Ph. Clément, E. Mitidieri,
eds., Lect. Notes Pure Appl. Math., 135 (1991), 401–420, Marcel Dekker.

[29] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993.
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Abstract. The global existence of weak solutions is proved for the problem of
the motion of several rigid bodies in non-newtonian fluid of power-law with
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1. Introduction

In the last decade, a large activity has been devoted to the study of motions of
rigid or elastic bodies in a fluid. The motion of particles in a viscous liquid has
become an important goal of applied research. The presence of particles affects the
flow of the liquid, and the fluid, in turn, affects the motion of particles, so that
the problem of determining the flow characteristics is a strongly coupled one.

There exists now a lot of numerical studies and simulations concerning this
system and its theoretical aspects. We deal here with the problem of several rigid
bodies embedded into a viscous fluid.The fluid and rigid bodies are contained in
a fixed open bounded set of R3. We will suppose that this fluid is non-Newtonian
with a sufficiently high viscosity and also we consider selfgraviting forces. We are
interested in the existence of weak solutions and also in no existence of collisions
in finite time. We will apply two different techniques of penalization. The first one
was introduced by Conca, San Martin, Tucsnak and Starovoitov [34, 5] and the
second one by Bost, Cottet and Maitre [2]. We want to compare efficiency of both
methods.
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Historically, the weak formulation of the problem has been introduced and
studied by Judakov see [39] and after that by many authors: Desjardins and Este-
ban [6, 7], Hoffmann and Starovoitov [29, 30], San Martin, Starovoitov, Tucsnak
[34], Serre [35], Galdi [23], among others.

Concerning the problem of the existence of collisions, let us mention that in
the case of compressible fluids there is a result obtained by E. Feireisl.

In [16], E. Feireisl considered a rigid sphere surrounded by a compressible
viscous fluid inside a cavity. He constructed a solution to the subsequent system
in which the sphere sticks to the ceiling of the cavity without falling down. On the
other hand, in the incompressible case, Hesla [26] and Hillairet [27] proved a no-
collision result when there is only one body in a bounded two-dimensional cavity.
Later the result was extended to the three-dimensional situation by Hillairet and
Takahashi [28].

Starovoitov in [38] showed that collisions, if any, must occur with zero rela-
tive translational velocity if the boundaries of the rigid objects are smooth and the
gradient of the underlying velocity field is square integrable – a hypothesis satis-
fied by any Newtonian fluid flow of finite energy. The possibility or impossibility
of collisions in a viscous fluids is related to the properties of the velocity gradi-
ent. A simple argument reveals that the velocity gradient must become singular
(unbounded) at the contact point, since otherwise the streamlines would be well
defined, in particular, they could never meet each other.

Indeed Starovoitov [38] showed that collisions of two or more rigid objects
are impossible if:

• the physical domain Ω ⊂ R3 as well as the rigid objects in its interior have
boundaries of class C1,1;

• the pth power of the velocity gradient is integrable, with p ≥ 4.

Inspired by work of Starovoitov, Feireisl et al. [17] have considered the motion
of several rigid bodies in a non-Newtonian fluid of power-law type (see Chapter 1
in Málek et al. [33] for details), where the viscous stress tensor S depends on the
symmetric part D[u],

D[u] = ∇xu +∇t
xu

of the gradient of the velocity field u in the following way:

S = S[ D[u] ], S : R3×3
sym → R3×3

sym is continuous, (1.1)(
S[M]− S[N]

)
:
(

M− N
)
> 0 for all M �= N, (1.2)

and
c1|M|p ≤ S[M] : M ≤ c2(1 + |M|p) for a certain p ≥ 4 (1.3)

and they showed not only the existence of a weak solution but also that collisions
cannot occur in such viscous fluids.

The question how the smoothness of boundary has influence on the existence
of collisions was investigated in the work of Gerard-Varet and Hillairet [24].
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The present work is an extension of that of Feireisl et al. (see [17]) to the case
where selfgravitating forces are present and two different possibilities of penaliza-
tion technique are used.We have to use a slightly different approximation scheme
by means of artificial viscosity terms to handle the selfgravitating force. Moreover,
we have to assume the regularity of boundary C2,ν , ν ∈ (0, 1) to get the strong
solution of the regularized continuity equation.

2. Formulation of the problem

2.1. Bodies and motions

A rigid body can be identified with a connected compact subset B̄ of the Euclidean
space R3. The motion is represented as a mapping η : (0, T ) × R3 → R3, which
defines an isometry

η(t, ·) : R3 → R3 (2.1)
for any time t ∈ (0, T ).

We adopt the Eulerian (spatial) description of motion, where the coordinate
system is attached to a fixed region of the physical space currently occupied by the
fluid. The position x and the time t ∈ (0, T ) play the role of independent variables.
The mappings η(t, ·) are isometries satisfying the following identity

η(t,x) = Xg(t) +O(t)(x −Xg(0)),

where Xg; the position of the center of mass at a time t and O(t) is a matrix satis-
fying OTO = I. Moreover, the translation and angular velocities can be expressed
respectively by

d

dt
Xg = Ug (2.2)

and ( d
dt
O(t)

)
OT (t) = Q(t). (2.3)

The solid velocity in the Eulerian coordinate system can be written as

uS(t,x) =
∂η

∂t
(t, η−1(t,x)) = Ug(t) +Q(t)(x−Xg(t)).

The total force FBi acting on the body Bi is a sum of the gravitation force and
the contact force

FBi(t) =
∫
Bi(t)

ρBigBi dx+
∫

∂Bi(t)

Sn dσ,

where S is the Cauchy stress, gBi = G∇
∫

R3

∑
j �=i

ρSj

|x−y| is the gravitation force
and B̄i(t) = η(t, B̄i). Under the assumption of the continuity of stress, the balance
of linear momentum for body Bi is expressed by Newton’s second law

m
d

dt
Ug(t) =

d

dt

∫
Bi(t)

ρBiuBi dx =
∫
Bi(t)

ρBigBi dx+
∫

∂Bi(t)

Sn dσ, (2.4)

where m is the total mass of the body.
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The matrix Q is skew-symmetric, therefore it can be represented by a vector
ω such that

Q(t)(x−Xg) = ω(t)× (x−Xg).
Moreover the balance of angular momentum reads

d

dt
(J ω) =

d

dt

∫
Bi(t)

ρBi(x−Xg)× uBi dx (2.5)

=
∫

∂Bi(t)

ρBi(x−Xg)× Sn dσ +
∫
Bi(t)

ρBi(x −Xg)× gBi dx,

where J is the inertia tensor

J a · b =
∫
Bi(t)

ρBi(a× (x−Xg)) · (b× (x−Xg)) dx.

2.2. The fluid motion

The fluid is completely determined by the density ρf , and the velocity uf . The
standard mass and momentum balance equations are the following:

∂tρ
f + div(ρfuf ) = 0,

divuf = 0,
∂t(ρfuf ) + div(ρfuf ⊗ uf ) +∇P = div S + ρfG∇

∫
R3

ρf

|x−y|dy,

⎫⎪⎬⎪⎭ in Ωf , (2.6)

where Ωf = Ω \
⋃N

i=1 Bi, P is the pressure and S is the viscous stress tensor.
We also consider a no-slip boundary condition for velocity

uf = 0 on ∂Ω. (2.7)

We will introduce the notation

Q := I × Ω,

Qi = {(t, x)|t ∈ I, x ∈ B̄i(t)},

Qs :=
N⋃

i=1

Qi, Qf := Q \Qs,

and define the quantities

ρ(t,x) =

⎧⎨⎩ ρf (t,x) on Qf ,
ρBi(t,x) on Qi,
0 on R3 \ Ω,

and

u(t,x) =

⎧⎨⎩ uf (t,x) on Qf ,
uBi(t,x) on Qi,
0 on R3 \ Ω.

We will restrict ourselves to the particular case where the density is noncon-
stant only on the solid part and constant on the fluid part to get local estimates
on the pressure.
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3. Weak formulation

We begin with a description of the initial position of a set of rigid bodies. We
assume that the initial position of the rigid bodies is determined through a family
of domains

Bi ⊂ R3, i = 1, . . . , n,

each of them being diffeomorphic to the unit ball in R3. In addition, in order to
facilitate the analysis, the boundaries of all the rigid bodies are assumed to be
regular, more specifically, there exists δ0 > 0 such that for any x ∈ ∂Bi, there are
two closed balls Bint, Bext of radius δ0 such that

x ∈ Bint ∩Bext, Bint ⊂ Bi, Bext ⊂ R3 \Bi. (3.1)

Similarly, the underlying physical space Ω ⊂ R3, occupied by the fluid containing
the rigid bodies, is supposed to be a domain such that for any x ∈ ∂Ω, there are
two closed balls Bint, Bext of radius δ0 such that

x ∈ Bint ∩Bext, Bint ⊂ Ω, Bext ⊂ R3 \ Ω. (3.2)

The motion ηi associated to the body Bi is a mapping

ηi = ηi(t,x), t ∈ [0, T ), x ∈ R3, ηi(t, ·) : R3 → R3,

together with the initial condition

ηi(0,x) = x for all x ∈ R3, i = 1, . . . , n,

that is an isomorphism R3 → R3.
Accordingly, the position of the body Bi at a time t is given by the formula

Bi(t) = ηi(t,Bi), i = 1, . . . , n.

We proceed with the definition of a weak solution for fluid structure interac-
tion, which was introduced by Judakov [39] based on the Eulerian reference system
and a class of test functions depending on the position of the specified rigid bod-
ies (see Desjardins and Esteban [6, 7], Galdi [22], [23], Hoffmann and Starovoitov
[29], San Martin et al. [34], Serre [35], among others) however we will use a slightly
different definition in the last paragraph.

The mass density � = �(t,x) and the velocity field u = u(t,x) at a time
t ∈ (0, T ) and the spatial position x ∈ Ω satisfy the integral identity∫ T

0

∫
Ω

(
ρ∂tφ+ ρu · ∇xφ

)
dx dt = −

∫
Ω

ρ0φ dx, φ ∈ C1([0, T )× Ω̄), (3.3)

∫ T

0

∫
Ω

(
ρu · ∂tϕ+ ρu⊗ u : ∇x[ϕ]− S : D[ϕ]

)
dx dt

= −
∫ T

0

∫
Ω

ρG∇x

∫
R3

ρ

|x− y|dy · ϕ dx dt−
∫

Ω

ρ0u0 · ϕ dx dt,
(3.4)

ϕ ∈ C1([0, T )× Ω̄), ϕ(t, ·) ∈ R(t), (3.5)
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R(t) = {φ ∈ C1(Ω̄) | div Φ = 0 in Ω, φ = 0 on a neighborhood of ∂Ω, (3.6)

D[Φ] = 0 on a neighborhood of ∪n
i=1 B̄i(t)},

where ∫ T

0

∫
Ω

ρG∇x

(∫
R3

ρ

|x− y|dy
)
ϕ dx dt =

∫ T

0

∫
Ω

ρG∇xF dx dt,

with

F =
(∑

i�=j

∫
R3

ρ
Bj

j

|x− y| dy +
∫

R3

ρf

|x− y| dy
)
.

Finally, we require the velocity field u to be compatible with the motion of the
bodies. As the mappings ηi(t, i) are isometries on R3, they can be written in the
form

ηi(t,x) = xi(t) +Oi(t)x.
Accordingly, we require the velocity field u to be compatible with the family of
motions {η1, . . . , ηn} if

u(t,x) = uBi(t,x) = Ui(t)+Qi(t)(x−xi(t)) for a.a. x ∈ B̄i(t), i = 1, . . . , n (3.7)

for a.a. t ∈ [0, T ), where

d
dt
xi = Ui,

( d
dt
Oi

)
OT

i = Qi a.a. on (0, T ). (3.8)

We introduce now some notation:
• Given a collection B̃i=1,...,m of open relatively compact connected subsets in

Ω, we denote by

d[∪B̃i] := inf{ inf
i,j=1,...,m

dist(Bi,Bj), inf
i=1,...,m

dist(Bi, ∂Ω)}

the minimal interdistance “solids-boundary”.
• The signed distance to the boundary is

dbS(x) = dist [x;R3 \ S]− dist [x, S].

Given a subset S ⊂ R3, and α > 0, we denote

[S]α = db−1
S ((−∞,−α)), ]S[α= db−1

S ((−∞, α)). (3.9)

In the sense of J.A. San Martin, M. Tucsnak and V. Starovoitov, [S]α is the α-
neighborhood of S and ]S[α is the α-kernel of O.

V := {φ ∈ C∞c (Ω), such that div(φ) = 0}.
1. Vp stands for the closure of V in W1,p

0 (Ω) and V s for the closure of V in
Ws,2(Ω). For simplicity V = V 1 = V2.

2. Given B ⊂ Ω, we write

Kp(B) = {v ∈ Vp with D(v) = 0 in B},
Ks(B) = {v ∈ V s with D(v) = 0 in B}.
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3. Given a subset B of Ω, Pk{B} is the orthogonal projection of V s onto
Ks([B]σ).

We will introduce the energy inequality (EI) of the problem as follows:

1
2

{∫
Ωt2
ρ|u|2(t2) dx−

∫
Ωt2
Gρ(t2,x)Fdx

}
+

∫ t2
t1

∫
Ω

S : D[u] dx dt

≤ 1
2

{∫
Ωt1
ρ|u|2(t1) dx−

∫
Ωt1
Gρ(t1,x)F dx

}
.

Problem P. Let the initial distribution of the density and the velocity field be de-
termined through given functions ρ0, u0, respectively. The initial position of the
rigid bodies is Bi ⊂ Ω, i = 1, . . . ,m. We say that a family ρ, u, ηi, i = 1, . . . ,m,
represent a variational solution of problem (P) on a time interval (0, T ) if the
following conditions are satisfied:
• The density ρ is a non-negative bounded function, the velocity field u belongs

to the space L∞(0, T ;L2(Ω;R3)) ∩ Lp(0, T ;W 1,p
0 (Ω;R3)), and they satisfy

energy inequality (EI) for t1 = 0 and a.a. t2 ∈ (0, T ).
• The continuity equation holds on (0, T )×R3 provided ρ and u are extended

to be zero outside Ω.
• The momentum equation (the integral identity) holds for any admissible test

function w ∈ R(t).
• The mappings ηi, i = 1, . . . ,m are affine isometries of R3 compatible with

the velocity field u in the sense of compatibility conditions.

4. Main result I

Let us formulate one of our main existence results.

Theorem 4.1. Let the initial position of the rigid bodies be given through a family
of open sets

Bi ⊂ Ω ⊂ R3, Bi diffeomorphic to the unit ball for i = 1, . . . , n,

where both ∂Bi, i = 1, . . . , n, and ∂Ω belong to the regularity class specified in
(3.1), (3.2). In addition, suppose that

dist[Bi,Bj ] > 0 for i �= j, dist[Bi, R
3 \ Ω] > 0 for any i = 1, . . . , n

and we assume that the boundaries of Ω and Bi belong to C2,ν , ν ∈ (0, 1). Fur-
thermore, let the viscous stress tensor S satisfy hypotheses (1.1)–(1.3), with p ≥ 4.

Finally, let the initial distribution of the density be given as

�0 =

{
�f = const > 0 in Ω \ ∪n

i=1Bi,

�Bi on Si, where �Bi ∈ L∞(Ω), ess infBi �Bi > 0, i = 1, . . . , n,

while

u0 ∈ L2(Ω;R3), divxu0 = 0 in D′(Ω), D[u0] = 0 in D′(Bi;R3×3) for i = 1, . . . , n.
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Then there exist a density function �,

� ∈ C([0, T ];L1(Ω)), 0 < ess inf
Ω
�(t, ·) ≤ ess sup

Ω
�(t, ·) <∞ for all t ∈ [0, T ],

a family of isometries {ηi(t, ·)}n
i=1, ηi(0, ·) = I, and a velocity field u,

u ∈ Cweak([0, T ];L2(Ω;R3)) ∩ Lp(0, T ;W 1,p
0 (Ω;R3)),

compatible with {ηi}n
i=1 in the sense specified in (3.7), (3.8), such that �, u satisfy

the integral identity (3.3) for any test function φ ∈ C1([0, T )×R3), and the integral
identity (3.4) for any ϕ satisfying (3.5), (3.6).

5. Approximate problem

We will construct weak solutions based on a three-level approximation scheme
which consists in solving the system of equations

∂t�+ divx(�[u]δ) = dΔρ, (5.1)

∂t(�u) + divx(�u⊗ [u]δ) +∇xP + d∇ρ∇u = divx([με]δS) + �∇xF − χεu, (5.2)

∂tμε + divx(με[u]δ) = 0, (5.3)

divxu = 0, (5.4)
where

[u]δ = σδ ∗ u (spatial convolution) for 0 < δ < δ0,
with

σδ(x) =
1
δ3
σ
( |x|
δ

)
, (5.5)

σ ∈ D(−1, 1), σ(z) > 0 for − 1 < z < 1, σ(z) = σ(−z),
∫ 1

−1

σ(z) dz = 1.

As Ω is bounded, we can assume that Ω ⊂ [−L,L]3 for a certain L > 0 and
consider system (5.1–5.4) on the spatial torus

T = [(−L,L)|{−L,L}]3,

meaning that all quantities are assumed to be spatially periodic with period 2L.
System (5.1)–(5.4) is supplemented with the initial conditions

�(0, ·) = �0,δ = �f +
n∑

i=1

�Bi,δ, (5.6)

where

�Bi ∈ D(Bi), �Bi,δ(x) = 0 whenever dist[x, ∂Bi] < δ, i = 1, . . . , n. (5.7)

Similarly, we prescribe

μ(0, ·) = μ0,ε = 1 +
1
ε

n∑
i=1

μBi , (5.8)
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where{
μBi ∈ D(Bi), μBi(x) = 0 whenever dist[x, ∂Bi] < δ,

μBi(x) > 0 for x ∈ Bi, dist[x, ∂Bi] > δ

}
i = 1, . . . , n. (5.9)

We take

χε =
1
ε
χ, χ ∈ D(T ), χ > 0 on T \ Ω, χ = 0 in Ω. (5.10)

Finally we add the homogeneous Neumann boundary condition

∇ρ · n = 0 on ∂Ω ∪
n⋃

i=1

∂Bi, (5.11)

and we assume that
ρ0,δ ∈ C2,ν(Ω). (5.12)

The parameters ε, d and δ are small positive numbers. The ε-dependent
initial distribution of the “viscosity” μ can be easily identified as the penalization
introduced by Hoffmann and Starovoitov [29] and San Martin et al. [34], where
the rigid bodies are replaced by a fluid of high viscosity becoming singular for
ε → 0. Here, the extra parameter δ > 0 has been introduced to keep the density
constant in the approximate fluid region in order to construct the local pressure.
Moreover, we regularized the continuity equation by an artificial viscosity term to
get the estimation of the selfgravitating forces. We will also introduce in the last
section another possibility of penalization which was introduced by Bost et al. [2]
and gives the main idea of the proof. As for ε > 0, δ > 0 and d > 0 fixed, we report
the following existence result that can be proved in a standard way through the
solution of the continuity equation through Lp-Lq regularity (see for more details
[18], Lemma 3.1) and by means of a standard monotonicity argument (see Málek
et al. [33]) which was extended to nonhomogeneous fluids by Frehse et al. [20],
[21].

Proposition 5.1. Suppose that p ≥ 4. Let the initial distribution of �, μ be given
through (5.6)–(5.9), with fixed ε > 0, δ > 0, d > 0. Moreover, assume that

u(0, ·) = u0 ∈ T , u0 ∈ L2(T ;R3), divxu0 = 0 in D′(T ;R3), (5.13)

and χε ∈ C∞(T ), where χε is determined by (5.10) and let us assume 5.12.
Then problem (5.1)–(5.4), supplemented with the initial data (5.6)–(5.9),

(5.12) and additional boundary conditions (5.11), possesses a (weak) solution �,
μ, u belonging to the class

μ ∈ C1,2([0, T ]× T ),

� ∈ C([0, T ];C2,ν(T )), ∂t� ∈ C([0, T ];C0,ν(T )),

u ∈ Cweak([0, T ];L2(T ;R3)) ∩ Lp(0, T ;W 1,p(T ;R3)).
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In addition, the solution satisfies the energy inequality∫
T

1
2
�|u|2(τ) dx+

∫ τ

s

∫
T
[με]δS : ∇xu dxdt+

∫ τ

s

∫
T
χε|u|2 dxdt ≤

∫
T

1
2
�|u|2(s) dx

(5.14)
for a.a. 0 ≤ s < τ ≤ T including s = 0.

Let us remark that, in the weak formulation, equation (5.2) is represented by
the integral identity∫ T

0

∫
T
�u · ∂tϕ+ �(u⊗ [u]δ) : ∇xϕ dx dt+

∫
T
δ∇ρ∇u ϕ dx dt

=
∫ T

0

∫
T

[με]δS : D[ϕ] dx dt−
∫ T

0

∫
T
ρG · ∇x

{∫
R3

ρ(t, y)
|x− y|dy

}
ϕ dx dt

−
∫ T

0

∫
T
χεu · ϕ dx dt−

∫
T
�0,δu0 · ϕ(0, ·) dx

(5.15)
to be satisfied for any test function ϕ ∈ D([0, T )× T ;R3), such that divxϕ = 0.

Remark. From [18] [Chapter 3, Lemma 3.1] it follows that in the level of approx-
imation δ, ε the density satisfies the following bounds:

ρ ∈ L2(0, T ;W 2,2T ) ∩ C(0, T ;W 1,2(T )), ∂tρ ∈ L2((0, T )× T ) (5.16)

and also through a bootstrap argument we have

‖ρ‖C([0,T ];W 2−2/p,p(T )) + ‖ρ‖Lp(0,T ;W 2,p(T )) (5.17)

+‖∂tρ‖Lp((0,T )×T ) ≤ c‖ρ0‖W 2−2/p,p(T ),

‖ρ‖C([0,T ];C2,ν(T̄ )) ≤ c, (5.18)

‖∂tρ‖C([0,T ];C0,ν(T̄ )) ≤ c. (5.19)

The term with selfgraviting force is estimated by the following way:∫ T

0

∫
T
ρG∇x

{∫
R3

ρ(t, y)
|x− y|dy

}
φdxdt ≤ c‖ρ‖L3(T ‖ρ‖L2T ‖u‖L6(T )

for more details see [8, 9].

6. Artificial viscosity limit

Our first task is to identify the limit problem resulting from (5.1)–(5.9) for fixed
δ > 0 and ε→ 0. To this end, let us denote by {�ε, με,uε}ε>0 the associated family
of approximate solutions, the existence of which is guaranteed by Proposition 5.1.
As already pointed out, there are two major issues to be addressed, namely the
strong (pointwise) convergence of the velocity fields, and strong convergence of the
velocity gradients in order to pass to the limit in the non-linearity of the stress
tensor. The first goal is accomplished basically in the same way as in [34] and
repeated in [17], so we will give only the main ideas of the proof. Note that in the
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present setting, the analysis is considerably simplified thanks to the no-collision
result by Starovoitov [38].

Let us start with the following stability result for solutions to the transport
equation established in [16, Proposition 5.1]:

Proposition 6.1. Let vn = vn(t, x) be a family of vector fields such that

{vn}∞n=1 is bounded in L2(0, T ;W 1,∞(R3;R3)).

Let ηn(t, ·) : R3 → R3 be the solution operator associated to the family of charac-
teristic curves generated by vn, specifically,

∂

∂t
ηn(t, x) = vn(t, ηn(t, x)), ηn(0, x) = x for all x ∈ R3.

Then, at least for a suitable subsequence,

vn → v weakly-(*) in L2(0, T ;W 1,∞(Ω;R3)),

ηn(t, ·) → η(t, ·) in Cloc(R3) uniformly for t ∈ [0, T ],

where η is the unique solution of
∂

∂t
η(t, x) = v(t, η(t, x)), η(0, x) = x, x ∈ R3.

If, in addition,
Sn

b→ S,

then
ηn(t, Sn) ≡ Sn(t) b→ S(t) ≡ η(t, S)

which means that

dbSn(t) → dbS(t) in Cloc(R3) uniformly with respect to t ∈ [0, T ].

The energy inequality (5.14), together with the coercivity hypothesis (1.3),
that {uε}ε>0 give us that {uε} is a bounded sequence in Lp(0, T ;W 1,p(T ;R3)).
Consequently, passing to a suitable subsequence as the case may be, we can assume

uε → u weakly in Lp(0, T ;W 1,p(T ;R3))

where the limit velocity field satisfies divxu = 0 a.a. on (0, T )× T . Accordingly,
the regularized sequence {[uε]δ}ε>0 satisfies

[uε]δ → [u]δ weakly-(*) in Lp(0, T ;W 1,∞(T ;R3)), divx[u]δ = 0. (6.1)

Moreover, using hypothesis (5.10) combined with (5.14), we get

u = 0 a.a. in the set (0, T )× (T \ Ω).

As Ω is regular, this yields

u|∂Ω = 0; whence u ∈ Lp(0, T ;V 1,p).

Seeing that {�ε}ε>0 solves the modified transport equation (5.1), we can use
Proposition 6.1 and (6.1) to deduce that

�ε → � in C([0, T ]× T ), (6.2)



178 B. Ducomet and Š. Nečasová

where

inf
x∈T

�0,δ ≤ inf
x∈T

�ε(t, x) ≤ sup
x∈T

�ε(t, x) ≤ sup
x∈T

�0,δ,

in particular,

inf
x∈T

�0,δ ≤ inf
x∈T

�(t, x) ≤ sup
x∈T

�(t, x) ≤ sup
x∈T

�0,δ. (6.3)

Consequently, employing once more the energy inequality (5.14), we conclude
that

uε → u in L∞(0, T ;L2(T ;R3)).

Clearly, the limit density � satisfies the equation of continuity

∂t�+ divx(�[u]δ) = dΔ� in (0, T )×R3 (6.4)

provided that � has been extended to be �f outside Ω. Moreover, in accordance
with Proposition 6.1 and hypothesis (5.7),

� = �f on the set
(
(0, T )× Ω

)
\ ∪t∈[0,T ] ∪n

i=1 η(t, [Bi]δ), (6.5)

where η solves

∂tη(t, x) = [u]δ(t, η(t, x)), η(0, x) = x (6.6)

and [Bi]δ denotes the δ-kernel introduced in Section 3.

6.1. Identifying the position of the rigid bodies

In order to identify the position of the rigid bodies, we proceed through several
steps. We will give only the main points since we apply a technique similar to that
used in the work of Feireisl et al., see [17].

• Step 1: We have to prove that

D[u] = 0 a.a. on the set ∪t∈[0,T ] ∪n
i=1]η(t, [Bi]ω)[δ for any ω > δ, (6.7)

where η is determined by (6.6), and the symbols ] · [, [·] are specified in (3.9).
Note that the kernels [Bi]ω as well as their images η(t, [Bi]ω) are non-empty
connected open sets when 0 < δ < ω < δ0/2, where δ0 has been introduced
in hypothesis (3.1).

• Step 2: In accordance with (6.7), the limit velocity u coincides with a rigid
velocity field uBi on the δ-neighborhood of each of the sets η(t, [Bi]ω), ω > δ,
i = 1, . . . , n; in particular, we deduce that

u(t, x) = uBi(t, x) = [u]δ(t, x) for t ∈ [0, T ],

x ∈ η(t, [Bi]δ), i = 1, . . . , n.
(6.8)

Note that rigid velocity fields coincide with their regularization, here
[uBi ]δ = uBi .
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• Step 3: Letting ε→ 0 in the momentum equation (5.15) we deduce that∫ T

0

∫
Ω

�u · ∂tϕ+ �(u⊗ [u]δ) : ∇xϕ dx dt+ d
∫ T

0

∫
Ω

∇ρ∇u ϕ dx dt (6.9)

=
∫ T

0

∫
Ω

S : D[ϕ] dx dt−
∫ T

0

∫
T
�∇xF · ϕ dx dt−

∫
T
�0,δu0 · ϕ(0, ·) dx

for any test function ϕ ∈ C1([0, T )× Ω),

ϕ(t, ·) ∈ [RM ](t),

where

[RM ](t) = {φ ∈ C1(Ω) | divxφ = 0 in Ω, φ = 0 on a neighborhood of ∂Ω,

D[φ] = 0 on a neighborhood of ∪n
i=1 Bi(t)},

with

[Bi(t) = ηi(t,Bi), i = 1, . . . , n.

Indeed, because the ηi are isometries, it implies that

]ηi(t, [Bi]δ)[δ= ηi(t,Bi), i = 1, . . . , n.

Consequently, [με]δ converges uniformly locally to 1 in the complement of
∪n

i=1Bi(t) for any t ∈ [0, T ]. It yields (6.9), in which the bar denotes weak limits:

uε ⊗ [uε]δ → u⊗ [u]δ weakly in L2(0, T ;L2(Ω;R3)),

∇ρε → ∇ρ strongly in L2(Q),

∇ρε∇uε → ρ∇u in D′((0, T )× Ω)

(6.10)

and from a monotonicity argument together with results of Frehse et al. [20, 21]
it follows that

Sε → S weakly in Lp′
((0, T )× Ω;R3×3),

1
p

+
1
p′

= 1. (6.11)

6.2. Convergence of the selfgravitating force

From the strong convergence of density in C(0, T, C2,ν) and the ∇ρ in L2((0, T )×
Ω) there follows the weak * convergence in L2(0, T, L∞(Ω)) of the term

−
∫ T

0

∫
Ω

Gρ∇
( ∫

R3

ρ(t, y)
|x− y|dy

)
ϕ.
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6.3. Pointwise convergence of the velocities

Our aim is to identify the weak limit in (6.10); more specifically, we show that

uε → u in L2(0, T ;L2(Ω;R3)). (6.12)

Note that the main difficulty here is the possible existence of oscillations of the
velocity fields in time.

We know from the result of Starovoitov [38, Theorem 3.1], that collisions
between two rigid objects are eliminated, because the fluid is incompressible, and
that the velocity gradients are bounded in the Lebesgue space Lp, with p ≥ 4.
Although originally stated for only one body in a bounded domain, it is easy to
see that this result extends directly to the case of several bodies. Here we will use
the terminology introduced in Section 3,

d(∪n
i=1Bi(t)) = d(t) > 0 uniformly for t ∈ [0, T ], (6.13)

and, in agreement with Proposition 8.1,

d(∪n
i=1B

ε
i (t)) = dε → d in C[0, T ], (6.14)

where we have set Bε
i (t) = ηε(t,Bi).

The absence of contacts facilitates considerably the proof of compactness of
the velocity fields that can be carried over by means of the same method as in [34].

To begin with, as

Bε
i (t)

b→ Bi(t) uniformly with respect to t ∈ [0, T ], i = 1, . . . , n,

we have, for any fixed σ > 0,

Bi(t) ⊂]Bε
i (t)[σ, Bε

i (t) ⊂]Bi(t)[σ, for all t ∈ [0, T ], i = 1, . . . , n,

and all ε < ε0(σ) small enough.

Lemma 6.1. Given a family of smooth open sets {Bi}n
i=1 ⊂ Ω, 0 < k < 1/2, there

exists a function h : (0, σ0) → R+, with h(σ) → 0 when σ → 0, such that, for
arbitrary v ∈ V 1,p :∥∥∥v−Pk

(
∪n

i=1]Bi[σ
)
v
∥∥∥

W 1,k(Ω;R3)
≤ c

(
‖D(v)‖L2(∪n

i=1Bi;R3×3)+h(σ)‖v‖W 1,p(Ω;R3)

)
(6.15)

with an absolute constant c <∞. Moreover, h and c are independent of the position
of Bi inside Ω as long as d[∪n

i=1Bi] > 2σ0.

Proof. See [17]. �
At this stage, we use a local-in-time Lions-Aubin argument in order to show

the following:

Lemma 6.2. For all σ > 0 sufficiently small, and 0 < k < 1/2, we have

lim
ε→0

∫ T

0

∫
Ω

�εuε ·Pk
(
∪n

i=1]Bi(t)[σ
)
[uε]dx dt =

∫ T

0

∫
Ω

�u ·Pk
(
∪n

i=1]Bi(t)[σ
)
[u]dx dt.

Proof. See [17]. �
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Combining Lemmas 6.1, 6.2 we deduce

lim
ε→0

∫ T

0

∫
Ω

�ε|uε|2 dx dt =
∫ T

0

∫
Ω

ρ|u|2 dx dt (6.16)

yielding the desired conclusion (6.12).

6.4. Compactness of the velocity gradients

Our ultimate goal is to establish strong convergence of the velocity gradients in
the “fluid” part of the cylinder (0, T )×Ω. To this end, we consider equation (5.15)
on the set I×A, where I ⊂ (0, T ) is an interval and A ⊂ Ω is a ball. In accordance
with (6.5), we may assume that � = �f in I ×A. In particular, we have∫ T

0

∫
Ω

�fuε · ∂tϕ+ (�fuε ⊗ [uε]δ − S[uε]) : ∇xϕ dx dt

= −
∫ T

0

∫
Ω

ρf∇
∫

R3

ρf

|x− y|ϕdxdt

(6.17)

for any test function
ϕ ∈ D(I ×A;R3), divxϕ = 0.

At this stage, the problem must be localized by separating the fluid part from
the rigid bodies. To this end, we introduce a “local” pressure

p = preg + ∂tpharm, (6.18)

where preg enjoys the same regularity properties as the sum of the convective and
viscous terms, while pharm is a harmonic function. The basic idea of the concept of
local pressure was developed by Wolf [44, Theorem 2.6]. A similar global result was
proved by H. Koch and V. Solonnikov [32]. Note, however, that our construction
gives a result different from that of Wolf [44]. In particular, the regular part is
given in the form of Riesz transforms suitable for application to problems with
non-standard growth conditions.

Lemma 6.3. Let I = (T1, T2) be a time interval and A ⊂ R3 a domain with
regular C2+μ boundary. Assume that U ∈ L∞(I;L2(A;R3)), divxU = 0, and
T ∈ Lq(I ×A,R3×3), 1 < q < 2, satisfy the integral identity∫

I

∫
A

(
U · ∂tϕ+ T : ∇xϕ

)
dx dt = 0 (6.19)

for all ϕ ∈ D(I ×A;R3), divxϕ = 0.
Then there exist two functions

preg ∈ Lq(I ×A),

pharm ∈ L∞(I;Lq(Ω)), Δxpharm = 0 in D′(I ×A),
∫

B

pharm(t, ·) dx = 0

satisfying∫
I

∫
A

(
U · ∂tϕ+ T : ∇xϕ

)
dx dt =

∫
I

∫
A

(
pregdivxϕ+ pharm∂tdivxϕ

)
dx dt
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for any ϕ ∈ D(I ×A;R3). In addition,

‖preg‖Lq((0,T )×A) ≤ c(q)‖T‖Lq(I×A;R3), (6.20)

‖pharm‖L∞(I;Lq(Ω)) ≤ c(q, I, A)
(
‖T‖Lq(I×A;R3) + ‖U‖L∞(0,T ;L2(Ω;R3))

)
. (6.21)

Proof. See [17]. �

Accordingly, for any ε > 0, there exist two scalar functions pε
reg, p

ε
harm such

that

pε
reg ∈ Lp′

(I;Lp′
(A)), pε

harm ∈ L∞(I;Lp′
(A)), are uniformly bounded (6.22)

and ∫ T

0

∫
Ω

[
(�fuε +∇xp

ε
harm) · ∂tϕ

]
dx dx dt

+
∫ T

0

∫
Ω

[(
�fuε ⊗ [uε]δ − S[uε] + pε

regI
)
∇xϕ

]
dx dx dt

+
∫ T

0

∫
Ω

[
ρf

( ∫
R3

ρf

|x− y|
)

: ∇xϕ
]
dx dt = 0

(6.23)

for any test function ϕ ∈ D(I ×A;R3).
Moreover,

Δpε
harm = 0,

∫
A

pε
harm(t, ·) dx = 0, ∀ t ∈ I.

Consequently, the standard elliptic theory implies that pε
harm is uniformly bounded

in L∞(I;W 1,2
loc (A)). The standard Lions-Aubin argument yields

�fuε +∇xp
ε
harm → �fu +∇xpharm in L2(I;L2(A′;R3)), (6.24)

for arbitrary A′ ⊂⊂ A, where pharm is a harmonic function in x.
On the other hand, by virtue of (6.12), the velocity field {uε}ε>0 is precom-

pact in L2(0, T ;L2(Ω;R3)); whence we are allowed to conclude that

∇xp
ε
harm → ∇xpharm in L2(I;W 1,2(A′;R3)). (6.25)

As the argument is valid for any A′, letting ε→ 0 in (6.23) we get∫ T

0

∫
Ω

[
(�fu +∇xpharm) · ∂tϕ+ (�fu⊗ [u]δ − S[u] + pregI) : ∇xϕ

]
dx dt = 0

(6.26)
for any test function ϕ ∈ D(I ×A;R3), where

S[uε]→ S[u] weakly in Lp′
(0, T ;Lp′

(Ω;R3×3
sym)),

and
pε
reg → preg weakly in Lp′

(I ×A).
Finally, taking

φε = ψ(t)r(x)(�f uε +∇xp
ε
harm), ψ ∈ D(I), r ∈ D(A),
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and
φ = ψ(t)r(x)(�fu +∇xpharm)

as a test function in (6.23), and (6.26), respectively, and letting ε→ 0 we deduce
the desired conclusion

lim
ε→0

∫ T

0

∫
Ω

ψr S[uε] : ∇x[uε] dx dt =
∫ T

0

∫
Ω

ψr S[u] : ∇x[u] dx dt .

This yields, by means of the standard monotonicity argument,

S[uε]→ S[u] a.e. in I ×A. (6.27)

Indeed, we have∫ T

0

∫
Ω

(
�fuε +∇xp

ε
harm

)
· ∂tφε dx dt =

∫ T

0

∫
Ω

1
2

∣∣∣�fuε +∇xp
ε
harm

∣∣∣2r∂tψ dx dt

→
∫ T

0

∫
Ω

1
2

∣∣∣�fu +∇xpharm

∣∣∣2r∂tψ dx dt =
∫ T

0

∫
Ω

(
�fu +∇xpharm

)
· ∂tφ dx dt,

while ∫ T

0

∫
Ω

pε
regdivxφε dx dt =

∫ T

0

∫
Ω

ψpε
reg∇xr · (�fuε +∇xp

ε
harm) dx dt

→
∫ T

0

∫
Ω

ψpreg∇xr · (�fu +∇xpharm) dx dt =
∫ T

0

∫
Ω

pregdivxφ dx dt

and ∫ T

0

∫
Ω

ρf

∫
R3

(
ρf

|x− y|

)
: ∇xφε dt→

∫ T

0

∫
Ω

ρf

∫
R3

(
ρf

|x− y|

)
: ∇xφ dt

as ε→ 0.

6.5. Conclusion

In accordance with the results obtained in the preceding two sections, relation
(6.9) reduces to∫ T

0

∫
Ω

�u · ∂tϕ+ �(u⊗ [u]δ) : ∇xϕ dx dt+
∫ T

0

∫
Ω

d∇ρ∇u dx dt (6.28)

=
∫ T

0

∫
Ω

S[u] : D[ϕ] dx dt−
∫ T

0

∫
T
�∇xF · ϕ dx dt−

∫
T
�0,δu0 · ϕ(0, ·) dx

for any test function ϕ ∈ C1([0, T )× Ω),

ϕ(t, ·) ∈ [RM ](t),

where

[RM ](t) = {φ ∈ C1(Ω) | divxφ = 0 in Ω, φ = 0 on a neighborhood of ∂Ω,

D[φ] = 0 on a neighborhood of ∪n
i=1 Bi(t)},

with
Bi(t) = ηi(t,Bi), i = 1, . . . , n.
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Moreover, the limit solution satisfies the energy inequality∫
Ω

1
2
�|u|2(τ) dx+

∫ τ

s

∫
Ω

S : D(u) dx dt

≤
∫
T

1
2
�|u|2(s) dx+

∫ τ

s

∫
Ω

�∇xF · u dx dt
(6.29)

for any τ and a.a. s ∈ (0, T ) including s = 0.

7. The passage to the limit for d → 0 and δ → 0

Our final goal is to let d→ 0, δ → 0 in the system of equations

∂t�+ divx(�[u]δ) = dΔρ in (0, T )×R3, (7.1)

(6.4), (6.22) as well as in the associated family of isometries {ηi}n
i=1.

First we are passing with d → 0. Let us denote by {�d,ud, {ηd
i }n

i=1}d>0 the
corresponding solutions, the applying the results from [18] we get

d∇ρd∇ud → 0 in L1((0, T )× Ω),

dΔρd → 0 in L2(0, T ;W−1,2(Ω)).

Let us denote by {�δ,uδ, {ηδ
i }n

i=1}δ>0 the corresponding solutions constructed in
the previous section.

To begin with, the theory of transport equations developed by DiPerna and
P.-L. Lions [10] can be used in order to show that

�δ → � in C([0, T ];L1(Ω)). (7.2)

In order to see this, observe first that the initial data �Bi,δ in (5.6) can be taken
in such a way that

‖�Bi,δ‖L∞(Ω) ≤ c, �f + �Bi,δ → �Bi as δ → 0 in L1(Ω), i = 1, . . . , n,

where {�Bi}n
i=1 are the initial distributions of the mass of the rigid bodies in

Theorem 4.1.
In addition, by virtue of the energy inequality (6.29), we have

uδ → u weakly in Lp(0, T ;W 1,p(Ω;R3))

where both uδ as well as the limit velocity u are solenoidal. In particular, the
continuity equation (7.1) reduces to a transport equation

∂t�+ u · ∇x� = 0,

for which the abstract theory developed by DiPerna and P.-L. Lions [10]
yields (7.2).

The rest of the convergence proof can be done repeating step by step the
arguments of the preceding section.
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8. An alternative proof

8.1. Definition of weak solution II

We give hereafter another formulation of a weak solution.
Given initial conditions H0i = χBi(0), ρ0 = ρBiH

0i + ρf (1 −H0i) and u =
u0 ∈ RM(0), find (x, t) → (ρ(x, t), u(x, t), H i(x, t)) such that

u ∈ L∞(0, T, L2(Ω)) ∩ Lp(0, T,W 1,p(Ω)),

Hi, ρ ∈ C(0, T, Lq(Ω)), for all 1 < q <∞,

}
(8.1)

∫ T

0

∫
Ω

(
ρu · ∂tϕ+ ρu⊗ u : ∇x[ϕ]− S : D[ϕ]

)
dxdt

= −
∫ T

0

∫
Ω

[
ρG∇x

∑
i

∫
R3

ρ

|x− y|dy · ϕ
]

dxdt−
∫

Ω

ρ0u0 · ϕ dx
(8.2)

ϕ ∈ C1([0, T )× Ω̄), ϕ(t, ·) ∈ R(t), (8.3)∫ T

0

∫
Ω

(
ρ∂tφ+ ρu · ∇xφ

)
dxdt = −

∫
Ω

ρ0φdx, φ ∈ C1([0, T )× Ω̄), (8.4)∫ T

0

∫
Ω

(
Hi ∂φ

∂t
+Hiu∇φ

)
dxdt+

∫
Ω

H0iφ(0)dx = 0. (8.5)

Here we have again used that ρ = ρBiHi + ρf (1−Hi).

Theorem 8.1. Let the initial position of the rigid bodies be given through a family
of open sets

Bi ⊂ Ω ⊂ R3, Bi diffeomorphic to the unit ball for i = 1, . . . , n,

where both ∂[Bi], i = 1, . . . , n, and ∂Ω belong to the regularity class specified in
(3.1), (3.2). In addition, suppose that

dist[Bi,Bj ] > 0 for i �= j, dist[Bi, R
3 \ Ω] > 0 for any i = 1, . . . , n

and we assume that ∂Ω and ∂Bi, i = 1, . . . , n belong to C2,ν . Furthermore, let the
viscous stress tensor S satisfy hypotheses (1.1)–(1.3), with p ≥ 4.

Finally, let the initial distribution of the density be given as

�0 =

{
�f = const > 0 in Ω \ ∪n

i=1Bi,

�Bi on Bi, where �Bi ∈ L∞(Ω), ess infBi �Bi > 0, i = 1, . . . , n,

while

u0 ∈ L2(Ω;R3), divxu0 = 0 in D′(Ω), D[u0] = 0 in D′(Bi;R3×3) for i = 1, . . . , n.

Then there exist a density function �,

� ∈ C([0, T ];L1(Ω)), 0 < ess inf
Ω
�(t, ·) ≤ ess sup

Ω
�(t, ·) <∞ for all t ∈ [0, T ],

a family of isometries {ηi(t, ·)}n
i=1, ηi(0, ·) = I, and a velocity field u,

u ∈ Cweak([0, T ];L2(Ω;R3)) ∩ Lp(0, T ;W 1,p
0 (Ω;R3)),
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compatible with {ηi}n
i=1 in the sense specified in (3.7), (3.8), such that �, u satisfy

the integral identity (8.3) for any test function ϕ ∈ C1([0, T )×R3), and the integral
identity (8.4) for any ϕ satisfying (8.5).

We introduce an ε− δ scheme; for the penalization part see [2] or [19].

∂t�ε + divx(�ε[u]δ) = dΔρε, (8.6)

∂t(�εuε) + divx(�εuε ⊗ [u]δ) +∇xPε + d∇ρε∇uε

= divx([μ]Sε) + �ε∇xFε − χεuε +
1
ε
ρεH

i
ε(uε − ũε),

(8.7)

∂tH
i
ε + divx(ũεH

i
ε) = 0, (8.8)

divxuε = 0, (8.9)

ũε =
1
Mε

∫
Ω

ρεuεH
i
εdx+

(
J−1

ε

∫
Ω

ρε(rε × uε)H i
εdx

)
×R (8.10)

where
[u]δ = σδ ∗ u (spatial convolution), 0 < δ < δ0,

with

σδ(x) =
1
δ3
σ
( |x|
δ

)
, (8.11)

σ ∈ D(−1, 1), σ(z) > 0 for − 1 < z < 1, σ(z) = σ(−z),
∫ 1

−1

σ(z) dz = 1,

Mε =
∫

Ω

ρεH
i
εdx, |Bi(t)| = |Bi(0)|,

since ũ is divergence free and Hi vanishes on ∂Ω.
The inertia tensor is defined by

Jε =
∫

Ω

ρεH
i
ε(r

2
εI − rε × rε)dx

with r = x− xG = x−
∫
Ω
ρεH

i
ε. For a ∈ R3 − {0},

aTJεa =
∫

Ω

ρε|rε × a|2dx ≥ min(ρBi , ρf )
∫
Bi(t)

|rε × a|2dx.

Moreover, we supplemented the system with the initial conditions

ρ(0, .) = ρ0,δ = ρf +
n∑

i=1

ρBi,δ,

where

ρBi ∈ D(Bi), ρBi,δ = 0 whenever dist[x, ∂Bi] < δ, i = 1, . . . , n.

Finally, we add the homogeneous Neumann boundary condition

∇ρ · n = 0 on ∂Ω ∪
⋃n

i=1
∂Bi,

and we assume the following regularity of data

ρ0,δ ∈ C2,ν(Ω).
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8.2. ε limit

For fixed δ we identify the limit problem for ε → 0. We will show, in this limit,
the strong convergence of uε in L2 of u and the strong convergence of Hi

ε in
C(0, T ;Lq(Ω)) for all q ≥ 1. The other part (strong convergence of the gradient of
the velocity field) is the same as in the previous proof.

Proposition 8.1. Let ξ be a rigid velocity field, i.e., such that ξ(x) = V + ω× r(x)
for some constant vectors V ∈ R3 and ω ∈ R3.Then if (ũε) is defined by (8.10)
the identity ∫

Ω

ρεH
ε
i (uε − ũε) · ξdx = 0

is satisfied.

Proof. See [2]. �

8.2.1. Estimates for transport equations and momentum equations. Using stan-
dard estimates for transport equations, we get

ρε, H
i
ε ∈ L∞(0, T, L∞(Ω)).

Moreover
ρmin := min(ρs, ρf) ≤ ρε(x, t) ≤ max(ρs, ρf ),

Hi
ε ∈ {0, 1} a.e. x ∈ Ω.

Multiplying the momentum equation by uε we get∫
T

{
∂t(�εuε) + divx(�εuε ⊗ [uε]δ)

}
uε dx

=
∫
T

{
divx([μ]Sε) +

(
�ε∇

∫
R3

ρε

|x− y|dy
)}

uεdx

+
∫
T

{
− χεuε +

1
ε
ρεH

ε
i (uε − ũε)

}
uεdx.

(8.12)

Since ∫
T
ρεH

i
ε(uε − ũε) · uε dx = 0,

√
Hi

ε = Hi
ε,

applying again the results from [18] Chapter 3, Lemma 3.1 we have that the density
satisfies the bounds

ρε ∈ L2(0, T ;W 2,2(T )) ∩ C(0, T ;W 1,2(T )), ∂tρε ∈ L2((0, T )× T ),

and also through a bootstrap argument we have

‖ρε‖C([0,T ];W 2−2/p,p(T )) + ‖ρε‖Lp(0,T ;W 2,p(T ))

+‖|∂tρε‖Lp((0,T )×T ) ≤ c‖ρε,0‖W 2−2/p,p(T ),

‖ρε‖C([0,T ];C2,ν(T̄ )) ≤ c
‖∂tρε‖C([0,T ];C0,ν(T̄ )) ≤ c.
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Then we will get from 8.12,
1
2
d

dt
‖√ρεuε‖2L2(T ) + μ‖D(uε)|pLp(Q) +

2
ε
‖√ρεuεH

i
ε(uε − ũε)|2L2(Q) ≤ 0. (8.13)

This gives us the following bounds:
• uε is bounded in Lp(0, T,W 1,p(T )),
• √ρεuε and (u)ε are bounded in L∞(0, T, L2(T )),
• 1√

ε

√
ρεH

i
ε(uε − ũε) and 1

εH
i
ε(uε − ũ) are bounded in L2(0, T ;L2(T )).

Then we can extract subsequences such that
• uε → u weakly in Lp(0, T,W 1,p(Ω)),
• [uε]δ → [u]δ weakly ∗ in Lp(0, T,W 1,∞(Ω)), div[u]δ = 0.

Since Ω is regular then u = 0 on ∂Ω.
Observing that {�ε}ε>0 solves the transport equation (5.1), we can use Propo-

sition 8.1 and (6.1) to deduce that

�ε → � in C([0, T ]× T ), (8.14)

where
inf
x∈T

�0,δ ≤ inf
x∈T

�ε(t, x) ≤ sup
x∈T

�ε(t, x) ≤ sup
x∈T

�0,δ.

In particular,

inf
x∈T

�0,δ ≤ inf
x∈T

�(t, x) ≤ sup
x∈T

�(t, x) ≤ sup
x∈T

�0,δ. (8.15)

Consequently, employing once more the energy inequality (5.14), we conclude that

uε → u in L∞(0, T ;L2(T ;R3)).

Clearly, the limit density � satisfies the approximate equation of continuity

∂t�+ divx(�[u]δ) = dΔρ in (0, T )×R3, (8.16)

provided � has been extended to be �f outside Ω.
Moreover,
• (
√
ρεH

i
εuε −

√
ρεH

i
εũ)→ 0 in L2(0, T, L2(Ω)) strongly, and

• Hi
εuε −Hi

εũ→ 0 in L2(0, T, L2(Ω)) strongly.

8.2.2. Passing to the limit in the rigid velocity. The rigid velocity is defined as

ũε(x, t) = uε,G(t) + ωε(t)× rε(x, t),
with

uε,G(t) =
1
Mε

∫
Ω

ρεuεH
i
εdx, ωε(t) = J−1

∫
Ω

ρε(rε × uε)H i
εdx .

Then it follows that
• uε,G(t) is bounded in L∞(0, T ),
• ωε(t) is bounded in L∞(0, T ).

It implies that

ũε → ũ in the weak ∗ sense in L∞(0, T, L∞(Ω)).
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Taking gradients of the rigid velocity ũε implies that

ũε → ũ in L2(0, T,W 1,∞(Ω)) weak ∗.

Applying the compactness results to the transport equation on H i
ε gives us

Hi
ε → Hi a.e. in C(0, T, Lp(Ω)) strongly for p ∈ [1,∞[,

satisfying the transport equation

Hi
t + ũ · ∇Hi = 0, Hi(0, x) = H i(0).

This implies the strong convergence of rε in C(0, T, Lp(Ω)), for all p ≥ 1 and
we can also pass to the limit in the expression ũε and ωε.

8.2.3. Strong convergence of uε. To prove the strong convergence of a subsequence
of uε in L2(Q) we write∫ T

0

∫
Ω

|uε − u|2dxdt ≤ 1
ρmin

( ∫ T

0

∫
Ω

|ρ(u2
ε − u2)|dxdt+

∫ T

0

∫
Ω

|2ρu(u− uε|dxdt
)
.

(8.17)
Since the second term in (8.17) converges to 0, then∫ T

0

|uε − u|2dxdt ≤ 1
ρmin

(∫ T

0

∫
Ω

|ρεu2
ε − ρu2

ε|dxdt+
∫ T

0

∫
Ω

|(−ρε + ρ)u2
εdxdt

)
.

(8.18)
From (8.14) and boundedness of uε in L∞(0, T, L2) we get that convergence of the
second term of (8.18) converges to 0, and∫ T

0

∫
Ω

|uε − u|2dxdt

≤ 1
ρmin

(∫ T

0

∫
Ω

|ρεuεPk
(
∪n

i=1 Bi(t)[σ
)
[uε]− ρu · Pk

(
∪n

i=1]Bi(t)[σ
)
[uε])|dxdt

+
∫ T

0

∫
Ω

|ρεuε

(
uε − Pk

(
∪n

i=1]Bi(t)[σ
)
[uε])

)
|dxdt

+
∫ T

0

∫
Ω

|ρu · (Pk
(
∪n

i=1]Bi(t)[σ
)
[u]− u)|dxdt+ lε

)
≤ 1
ρmin

{
|ρεuεPk

(
∪n

i=1]Bi(t)[σ
)
[uε]− ρu · Pk

(
∪n

i=1]Bi(t)[σ
)
[u](u)|L1(Q)

+ C‖(uε − Pk
(
∪n

i=1]Bi(t)[σ
)
[uε]‖L2(Q)

+ c‖(u− Pk
(
∪n

i=1]Bi(t)[σ
)
[u])‖L2(Q) + lε

}
, (8.19)

where lε → 0 when ε→ 0.
It implies the strong convergence of uε → u in L2(Q). Now from previous

estimates and Sobolev imbedding we get

• Hi
εuε → Hiu weakly in Lp(0, T, L

3p
3−p (Ω)),

• Hi
εũε → Hiũ weakly in Lp(Q),
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• Hi
εũε −Hiũε → Hiu−Hiũ weakly in Lp(0, T, L

3p
3−p (Ω)),

• Hi
εuε −Hεũ→ 0 strongly in L2(Q).

Thus
Hu = Hũ, div (uH) = div(ũH),

and finally we obtain
H iu = Hiũ.

The proof of the inequality (8.19) goes exactly in the same way as in Section 6.3.
Finally it remains to show the strong convergence of the gradient of velocity and
to pass to the limit, see Section 6.4. Then we pass to the limit with d similarly as
in Feireisl and Novotný [18]. The last step is passing to the limit with δ which must
proceed as with the ε limit together with using the transport theory developed by
DiPerna-Lions [10].
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[17] E. Feireisl, M. Hillairet and Š. Nečasová. On the motion of several rigid bodies in an
incompressible non-Newtonian fluid. Nonlinearity, 21, 1349–1366, 2008.
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Institute of Mathematics of the Academy of Sciences of the Czech Republic
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Abstract. We consider the periodic μDP equation (a modified version of
the Degasperis-Procesi equation) as the geodesic flow of a right-invariant
affine connection ∇ on the Fréchet Lie group Diff∞(S1) of all smooth and
orientation-preserving diffeomorphisms of the circle S1 = R/Z. On the Lie
algebra C∞(S1) of Diff∞(S1), this connection is canonically given by the sum
of the Lie bracket and a bilinear operator. For smooth initial data, we show
the short time existence of a smooth solution of μDP which depends smoothly
on time and on the initial data. Furthermore, we prove that the exponential
map defined by ∇ is a smooth local diffeomorphism of a neighbourhood of
zero in C∞(S1) onto a neighbourhood of the unit element in Diff∞(S1). Our
results follow from a general approach on non-metric Euler equations on Lie
groups, a Banach space approximation of the Fréchet space C∞(S1), and a
sharp spatial regularity result for the geodesic flow.
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1. Introduction

In recent years, several nonlinear equations arising as approximations to the gov-
erning model equations for water waves attracted a considerable amount of atten-
tion in the fluid dynamics research community (cf. [22]). The Korteweg-de Vries
(KdV) equation is a well-known model for wave-motion on shallow water with
small amplitudes over a flat bottom. This equation is completely integrable, al-
lows for a Lax pair formulation and the corresponding Cauchy problem was the
subject of many studies. However, it was observed in [3] that solutions of the KdV
equation do not break as physical water waves do: the flow is globally well posed
for square integrable initial data (see also [23, 24] for further results).
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The Camassa-Holm (CH) equation

ut + 3uux = 2uxuxx + uuxxx + utxx

was introduced to model the shallow-water medium-amplitude regime (see [4]).
Closely related to the CH equation is the Degasperis-Procesi (DP) equation

ut + 4uux = 3uxuxx + uuxxx + utxx,

which was discovered in a search for integrable equations similar to the CH equa-
tion (see [12]). Both equations are higher-order approximations in a small ampli-
tude expansion of the incompressible Euler equations for the unidirectional motion
of waves at a free surface under the influence of gravity (cf. [10]). They have a bi-
Hamiltonian structure, are completely integrable and allow for wave breaking and
peaked solitons [6, 13, 16, 21]. The Cauchy problem for the periodic CH equation
in spaces of classical solutions has been studied extensively (see, e.g., [5, 33]); in
[7] and [11] the authors explain that this equation is also well posed in spaces
which include peakons, showing in this way that peakons are indeed meaningful
solutions of CH. Well-posedness for the periodic DP equation and various features
of solutions of the DP on the circle are discussed in [20]. Both, the CH equation
and the DP equation, are embedded into the family of b-equations

mt = −(mxu+ bmux), m := u− uxx, (1.1)

where u(t, x) is a function of a spatial variable x ∈ S1 and a temporal variable t ∈
R. Note that the family (1.1) can be derived as the family of asymptotically equiv-
alent shallow water wave equations that emerges at quadratic-order accuracy for
any b �= −1 by an appropriate Kodama transformation [14]. For b = 2, we recover
the CH equation and for b = 3, we get the DP equation. Note that the b-equation is
integrable only if b = 2 or b = 3. For further results and references we refer to [19].

Since the pioneering works [1, 15], geometric interpretations of evolution
equations led to several interesting results in the applied analysis literature. A
detailed discussion of the CH equation in this framework was given by [26]. The
geometrical aspects of some metric Euler equations are explained in [8, 9, 25,
32]. Studying the b-equations as a geodesic flow on the diffeomorphism group
Diff∞(S1), it was shown recently in [17] that for smooth initial data u0, there is
a unique short-time solution u(t, x) of (1.1), depending smoothly on (t, u0). The
crucial idea is to define an affine (not necessarily Riemannian) connection ∇ on
Diff∞(S1), given at the identity by the sum of the Lie bracket and a bilinear sym-
metric operator B, so that B(u, u) = −ut. Most importantly, this approach also
works for b-equations of non-metric type and it motivates the study of geometric
quantities like curvature or an exponential map for the family (1.1). In particu-
lar, the authors of [17] proved that the exponential map for ∇ is a smooth local
diffeomorphism near zero in C∞(S1). Recently it has been shown in [18] that the b-
equation can be realized as a metric Euler equation only if b = 2. In all other cases
b �= 2 there is no Riemannian metric on Diff∞(S1) such that the corresponding
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geodesic flow is re-expressed by the b-equation. Geometric aspects of some novel
nonlinear PDEs related to CH and DP are discussed in [31].

In this paper, we study the μDP equation

μ(ut)− utxx + 3μ(u)ux − 3uxuxx − uuxxx = 0, (1.2)

where μ denotes the projection μ(u) =
∫ 1

0 u dx and u(t, x) is a spatially periodic
real-valued function of a temporal variable t ∈ R and a space variable x ∈ S1. The
μDP equation belongs to the family of μ-b-equations which follows from (1.1) by
replacing m = μ(u) − uxx. The study of μ-variants of (1.1) is motivated by the
following key observation: Letting m = −∂2

xu, equation (1.1) for b = 2 becomes
the Hunter-Saxton (HS) equation

2uxuxx + uuxxx + utxx = 0,

which possesses various interesting geometric properties, see, e.g., [29, 30], whereas
the choicem = (1−∂2

x)u leads to the CH equation as explained above. In the search
for integrable equations that are given by a perturbation of −∂2

x, the μ-b-equation
has been introduced and it could be shown that it behaves quite similarly to the
b-equation; see [31] where the authors discuss local and global well-posedness as
well as finite time blow-up and peakons. Our study of the μDP equation is inspired
by the results in [17]. In fact using the approach of [17] we shall conceptualise a
geometric picture of the μDP equation.

Our study is mostly performed in the C∞-category. Elements of C∞(S1) are
sometimes also called smooth for brevity.

We will reformulate the μDP equation in terms of a geodesic flow on Diff∞(S1)
to obtain the following main result: Given a smooth initial data u0(x), for which
||u0||C3(S1) is small, there is a unique smooth solution u(t, x) of (1.2) which depends
smoothly on (t, u0). More precisely, we have

Theorem 1.1. There exists an open interval J centered at zero and δ > 0 such
that for each u0 ∈ C∞(S1) with ||u0||C3(S1) < δ, there exists a unique solution
u ∈ C∞(J,C∞(S1)) of the μDP equation such that u(0) = u0. Moreover, the
solution u depends smoothly on (t, u0) ∈ J × C∞(S1).

It is known that the Riemannian exponential mapping on general Fréchet
manifolds fails to be a smooth local diffeomorphism from the tangent space back
to the manifold, cf. [8]. Therefore the following result is quite remarkable.

Theorem 1.2. The exponential map exp at the unity element for the μDP equation
on Diff∞(S1) is a smooth local diffeomorphism from a neighbourhood of zero in
C∞(S1) onto a neighbourhood of id in Diff∞(S1).

Our paper is organized as follows: In Section 2, we rewrite (1.2) in terms of
a local flow ϕ ∈ Diffn(S1), n ≥ 3, and explain the geometric setting. The resulting
equation is an ordinary differential equation and in Section 3, we apply the Theo-
rem of Picard-Lindelöf to obtain a solution of class Cn(S1) with smooth dependence
on t and u0(x). In addition, we show that this solution in Diffn(S1)×Cn(S1) does
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neither lose nor gain spatial regularity as t varies through the associated interval of
existence. We then approximate the Fréchet Lie group Diff∞(S1) by the topologi-
cal groups Diffn(S1) and the Fréchet space C∞(S1) by the Banach spaces Cn(S1)
to obtain an analogous existence result for the geodesic equation on Diff∞(S1).
Finally, in Section 4, we make again use of a Banach space approximation to prove
that the exponential map for the μDP is a smooth local diffeomorphism nero zero
as a map C∞(S1)→ Diff∞(S1).

2. Geometric reformulation of the μDP equation

We write Diff∞(S1) for the smooth orientation-preserving diffeomorphisms of the
unit circle S1 = R/Z and Vect∞(S1) for the space of smooth vector fields on
S1. Clearly, Diff∞(S1) is a Lie group and it is easy to see that its Lie algebra
is Vect∞(S1): If t �→ ϕ(t) is a smooth path in Diff∞(S1) with ϕ(0) = id, then
ϕt(0, x) ∈ TxS1 for all x ∈ S1 and thus the Lie algebra element ϕt(0, ·) is a
smooth vector field on S1. Furthermore, since TS1 � S1 × R is trivial, we can
identify the Lie algebra Vect∞(S1) with C∞(S1). Note that [u, v] = uxv − vxu is
the corresponding Lie bracket. In the following, we will also use that Diff∞(S1)
has a smooth manifold structure modelled over the Fréchet space C∞(S1). In
particular, Diff∞(S1) is a Fréchet Lie group and thus it is parallelizable, i.e.,
TDiff∞(S1) � Diff∞(S1)×C∞(S1). Let Diffn(S1) denote the group of orientation-
preserving diffeomorphisms of S1 which are of class Cn(S1). Similarly, Diffn(S1)
has a smooth manifold structure modelled over the Banach space Cn(S1). Note
that Diffn(S1) is only a topological group but not a Banach Lie group, since the
composition and inversion maps are continuous but not smooth. Furthermore, the
trivialization TDiffn(S1) � Diffn(S1)×Cn(S1) is only topological and not smooth.

In this section, we write (1.2) as an ordinary differential equation on the
tangent bundle Diffn(S1) × Cn(S1), where n ≥ 3. In a first step, we rewrite (1.2)
using the operator A := μ − ∂2

x. Here μ denotes the linear map given by f �→∫ 1

0 f(t, x) dx for any function f(t, x) depending on time t and space x ∈ S1. Observe
that μ(∂k

xf) = 0 for k ≥ 1 if f and its derivatives are continuous functions on S1.
Furthermore, μ(f) is still depending on the time variable t. The following lemma
establishes the invertibility of A as an operator acting on Cn(S1) for n ≥ 2.

Lemma 2.1. Given n ≥ 2, the operator A = μ − ∂2
x maps Cn(S1) isomorphically

onto Cn−2(S1). The inverse is given by

(A−1f)(x) =
(

1
2
x2 − 1

2
x+

13
12

)∫ 1

0

f(a) da+
(
x− 1

2

)∫ 1

0

∫ a

0

f(b) db da

−
∫ x

0

∫ a

0

f(b) db da+
∫ 1

0

∫ a

0

∫ b

0

f(c) dc db da.

Proof. Clearly, μ(A−1f) = μ(f) and (A−1f)xx = μ(f) − f so that A(A−1f) = f .
To verify that A is surjective, we observe that ∂k

x(A−1f)(0) = ∂k
x(A−1f)(1) for
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all k ∈ {0, . . . , n}. To see that A is injective, assume that Au = 0 for u ∈ Cn(S1)
and n ≥ 2. Then there are constants c, d ∈ R such that u = 1

2μ(u)x
2 + cx+ d. By

periodicity we first conclude that c = 0 and μ(u) = 0. Hence d has to vanish as
well. �

Lemma 2.2. Assume that u ∈ C((−T, T ),Cn(S1)) ∩ C1((−T, T ),Cn−1(S1)) is a
solution of (1.2) for some n ≥ 3 with T > 0. Then the μDP equation can be
written as

ut = −A−1(u(Au)x + 3(Au)ux). (2.1)

Proof. Writing (1.2) in the form

μ(ut)− utxx = uuxxx − 3ux(μ(u)− uxx),

we see that it is equivalent to

Aut = −u(Au)x − 3(Au)ux.

Thus u is a solution of (1.2) if and only if (2.1) holds true. �

As explained in [27, 28], the vector field u(t, x) admits a unique local flow ϕ
of class Cn(S1), i.e.,

ϕt(t, x) = u(t, ϕ(t, x)), ϕ(0, x) = x

for all x ∈ S1 and all t in some open interval J ⊂ R. We will use the short-hand
notation ϕt = u ◦ϕ for ϕt(t, x) = u(t, ϕ(t, x)); i.e., ◦ denotes the composition with
respect to the spatial variable. Particularly, we have that u = ϕt ◦ϕ−1. Moreover,
given (ϕ, ξ) ∈ C1(J,Diffn(S1) × Cn(S1)), then ϕ−1(t) is a Cn(S1)-diffeomorphism
for all t ∈ J and ξ ◦ ϕ−1 ∈ C1(J,Cn(S1)).

In this paper, we are mainly interested in smooth diffeomorphisms on S1.
For the reader’s convenience we briefly recall the basic geometric setting. Let us
consider the Fréchet manifold Diff∞(S1) and a continuous non-degenerate inner
product 〈·, ·〉 on C∞(S1), i.e., u �→ 〈u, u〉 is continuous (and hence smooth) and
〈u, v〉 = 0 for all v ∈ C∞(S1) forces u = 0. To define a weak right-invariant
Riemannian metric on Diff∞(S), we extend the inner product 〈·, ·〉 to any tangent
space by right-translations, i.e., for all g ∈ Diff∞(S1) and all u, v ∈ TgDiff∞(S1),
we set

〈u, v〉g =
〈
(Rg−1 )∗u, (Rg−1)∗v

〉
e
,

where e denotes the identity. Observe that any open set in the topology induced by
this inner product is open in the Fréchet space topology of C∞(S1) but the converse
is not true. We therefore call 〈·, ·〉 a weak Riemannian metric on Diff∞(S), cf. [8].
We next define a bilinear operator B : Vect∞(S1)×Vect∞(S1)→ Vect∞(S1) by

B(u, v) =
1
2
((adu)∗(v) + (adv)∗(u)),

where (adu)∗ is the adjoint (with respect to 〈·, ·〉) of the natural action of the Lie
algebra on itself given by adu : v �→ [u, v]. Observe that B defines a right-invariant
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affine connection ∇ on Diff∞(S1) by

∇ξuξv =
1
2
[ξu, ξv] +B(ξu, ξv), (2.2)

where ξu and ξv are the right-invariant vector fields on Diff∞(S1) with values u, v
at the identity. It can be shown that a smooth curve t �→ g(t) in Diff∞(S1) is a
geodesic if and only if u = (Rg−1)∗ġ solves the Euler equation

ut = −B(u, u); (2.3)

here, u is the Eulerian velocity (cf. [2]). Hence the Euler equation (2.3) corre-
sponds to the geodesic flow of the affine connection ∇ on the diffeomorphism
group Diff∞(S1). Paradigmatic examples are the following: In [8], the authors
show that the Euler equation for the right-invariant L2-metric on Diff∞(S1) is
given by the inviscid Burgers equation. Equipping on the other hand C∞(S1) with
the H1-metric, one obtains the Camassa-Holm equation. Similar correspondences
for the general Hk-metrics are explained in [9].

Conversely, starting with an equation of type ut = −B(u, u) with a bilinear
operator B, one associates an affine connection ∇ on Diff∞(S) by formula (2.2).
It is however by no means clear that this connection corresponds to a Riemannian
structure on Diff∞(S). It is worthwhile to mention that the connection ∇ cor-
responding to the family of b-equations is compatible with some metric only for
b = 2: In [18] the authors explain that for any b �= 2, the b-equation (1.1) cannot be
realized as an Euler equation on Diff∞(S1) for any regular inertia operator. This
motivates the notion of non-metric Euler equations. An analogous result holds true
for the μ-b-equations from which we conclude that the μDP equation belongs to
the class of non-metric Euler equations. Although we have no metric for the μDP
equation, we will obtain some geometric information by using the connection ∇,
defined in the following way.

Let X(t) = (ϕ(t), ξ(t)) be a vector field along the curve ϕ(t) ∈ Diff∞(S1).
Furthermore let

B(v, w) :=
1
2
A−1(v(Aw)x + w(Av)x + 3(Av)wx + 3(Aw)vx).

Lemma 2.2 shows that

B(u, u) = A−1(u(Au)x + 3(Au)ux) = −ut,

if u is a solution to the μDP equation. Next, the covariant derivative of X(t) in
the present case is given by

DX
Dt

(t) =
(
ϕ(t), ξt +

1
2
[u(t), ξ(t)] +B(u(t), ξ(t))

)
,

where u = ϕt ◦ ϕ−1. We see that u is a solution of the μDP if and only if its local
flow ϕ is a geodesic for the connection ∇ defined by B via (2.2).

Although we are mainly interested in the smooth category, we will first discuss
flows ϕ(t) on Diffn(S1) for technical purposes. Regarding Diffn(S1) as a smooth
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Banach manifold modelled over Cn(S1), the following result has to be understood
locally, i.e., in any local chart of Diffn(S1).

Proposition 2.3. Given n ≥ 3, the function u ∈ C(J,Cn(S1)) ∩C1(J,Cn−1(S1)) is
a solution of (1.2) if and only if (ϕ, ξ) ∈ C1(J,Diffn(S1)×Cn(S1)) is a solution of{

ϕt = ξ,
ξt = −Pϕ(ξ), (2.4)

where Pϕ := Rϕ ◦ P ◦Rϕ−1 and P (f) := 3A−1(fxfxx + (Af)fx).

Proof. The function u and the corresponding flow ϕ ∈ Diffn(S1) satisfy the relation
ϕt = u ◦ ϕ. Setting ϕt = ξ, the chain rule implies that

ξt = (ut + uux) ◦ ϕ.
Applying Lemma 2.2, we see that u is a solution of the μDP equation (1.2) if and
only if

ut + uux = −A−1(u(Au)x −A(uux) + 3(Au)ux)

= −A−1(−uuxxx + uxxux + uuxxx + 2uxuxx + 3(Au)ux)

= −3A−1(uxuxx + (Au)ux)

= −P (u).

Recall that

μ(uux) =
∫ 1

0

uux dx =
1
2

∫ 1

0

∂x(u2) dx =
1
2
(u2(1)− u2(0)) = 0,

since u is continuous on S1. With u = ξ ◦ ϕ−1 the desired result follows. �

3. Short time existence of geodesics

We now define the vector field

F (ϕ, ξ) := (ξ,−Pϕ(ξ))

such that (ϕt, ξt) = F (ϕ, ξ). We know that

F : Diffn(S1)× Cn(S1)→ Cn(S1)× Cn(S1),

since P is of order zero. We aim to prove smoothness of the map F . It is worth
to mention that this will not follow from the smoothness of P since neither the
composition nor the inversion are smooth maps on Diffn(S1). The following lemma
will be crucial for our purposes.

Lemma 3.1. Assume that p is a polynomial differential operator of order r with
coefficients depending only on μ, i.e.,

p(u) =
∑

I=(α0,...,αr),
αi∈N∪{0}, |I|<K

aI(μ(u))uα0(u′)α1 · · · (u(r))αr .
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Then the action of pϕ := Rϕ ◦ p ◦Rϕ−1 is

pϕ(u) =
∑

I

aI

(∫ 1

0

u(y)ϕx(y) dy
)
qI(u;ϕx, . . . , ϕ

(r)),

where qI are polynomial differential operators of order r with coefficients being
rational functions of the derivatives of ϕ up to the order r. Moreover, the denom-
inator terms only depend on ϕx.

Proof. It is sufficient to consider a monomial

m(u) = a(μ(u))uα0(u′)α1 · · · (u(r))αr .

We have

mϕ(u) = a(μ(u ◦ ϕ−1))uα0 [(u ◦ ϕ−1)′ ◦ ϕ]α1 · · · [(u ◦ ϕ−1)(r) ◦ ϕ]αr ,

where ◦ denotes again the composition with respect to the spatial variable. First,
we observe that

μ(u ◦ ϕ−1) =
∫

S1
u(ϕ−1(x)) dx =

∫ 1

0

u(y)ϕx(y) dy,

where we have omitted the time dependence of u and ϕ. Recall that ϕ(S1) = S1,
ϕx > 0 and that μ(u ◦ ϕ−1) is a constant with respect to the spatial variable
x ∈ S1. Let us introduce the notation

ak = (u ◦ ϕ−1)(k) ◦ ϕ, k = 1, 2, . . . , r.

Then, by the chain rule,

a1 = (∂x(u ◦ ϕ−1)) ◦ ϕ =
ux ◦ ϕ−1

ϕx ◦ ϕ−1
◦ ϕ =

ux

ϕx

and

ak+1 = (∂x(u ◦ ϕ−1)(k)) ◦ ϕ = (∂x(ak ◦ ϕ−1)) ◦ ϕ =
∂xak

ϕx
,

so that our theorem follows by induction. �

Recall that in the Banach algebras Cn(S1), n ≥ 1, addition and multiplication
as well as the mean value operation μ and the derivative d

dx are smooth maps. We
therefore conclude that if the coefficients aI are smooth functions for any multi-
index I and u and ϕ are at least r times continuously differentiable, then pϕ(u)
depends smoothly on (ϕ, u).

Proposition 3.2. The vector field

F : Diffn(S1)× Cn(S1)→ Cn(S1)× Cn(S1)

is smooth for any n ≥ 3.

Proof. We write F = (F1, F2). Since F1 : (ϕ, ξ) �→ ξ is smooth, it remains to check
that F2 : (ϕ, ξ) �→ −Pϕ(ξ) is smooth. For this purpose, we consider the map

P̃ : Diffn(S1)× Cn(S1)→ Diffn(S1)× Cn(S1)
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defined by
P̃ (ϕ, ξ) = (ϕ, (Rϕ ◦ P ◦Rϕ−1)(ξ)).

Observe that we have the decomposition P̃ = Ã−1 ◦ Q̃ with

Ã(ϕ, ξ) = (ϕ, (Rϕ ◦A ◦Rϕ−1)(ξ))

and
Q̃(ϕ, ξ) = (ϕ, (Rϕ ◦Q ◦Rϕ−1)(ξ)),

where Q(f) := 3(fxfxx + (Af)fx). We now apply Lemma 3.1 to deduce that

Ã, Q̃ : Diffn(S1)× Cn(S1)→ Diffn(S1)× Cn−2(S1)

are smooth. To show that Ã−1 : Diffn(S1) × Cn−2(S1) → Diffn(S1) × Cn(S1) is
smooth, we compute the derivative DÃ at an arbitrary point (ϕ, ξ). We have the
following directional derivatives of the components Ã1 and Ã2:

DϕÃ1 = id, DξÃ1 = 0, DξÃ2 = Rϕ ◦A ◦Rϕ−1 .

It remains to compute (DϕÃ2(ϕ, ξ))(ψ) = d
dε Ã2(ϕ+ εψ, ξ)

∣∣
ε=0

. In a first step, we
calculate

∂2
x(ξ ◦ (ϕ+ εψ)−1) = ∂x

[(
ξx

ϕx + εψx

)
◦ (ϕ+ εψ)−1

]
=

(
ξxx

(ϕx + εψx)2
− ξx

ϕxx + εψxx

(ϕx + εψx)3

)
◦ (ϕ+ εψ)−1,

from which we get

d
dε

(
∂2

x(ξ ◦ (ϕ+ εψ)−1) ◦ (ϕ+ εψ)
)

=
d
dε

(
ξxx

(ϕx + εψx)2
− ξx

ϕxx + εψxx

(ϕx + εψx)3

)
= −2

ξxxψx

(ϕx + εψx)3
− ξxψxx

(ϕx + εψx)3

+ 3
ξxψx

(ϕx + εψx)4
(ϕxx + εψxx)

and finally

d
dε

(
∂2

x(ξ ◦ (ϕ+ εψ)−1) ◦ (ϕ+ εψ)
)∣∣∣∣

ε=0

= −2
ξxxψx

ϕ3
x

− ξxψxx

ϕ3
x

+ 3
ϕxxξxψx

ϕ4
x

.

Secondly, we observe that

d
dε
μ(ξ ◦ (ϕ+ εψ)−1)

∣∣∣∣
ε=0

=
d
dε

∫
S1
ξ(y)(ϕx + εψx)(y) dy

∣∣∣∣
ε=0

=
∫

S1
ξ(y)ψx(y) dy,

since ϕ+ εψ ∈ Diffn(S1) for small ε > 0. Hence

(DϕÃ2(ϕ, ξ))(ψ) =
∫

S1
ξ(y)ψx(y) dy + 2

ξxxψx

ϕ3
x

+
ξxψxx

ϕ3
x

− 3
ϕxxξxψx

ϕ4
x
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and

DÃ(ϕ, ξ) =
(

id 0
DϕÃ2(ϕ, ξ) Rϕ ◦A ◦Rϕ−1

)
.

It is easy to check that DÃ(ϕ, ξ) is an invertible bounded linear operator Cn(S1)×
Cn(S1)→ Cn(S1)×Cn−2(S1). By the open mapping theorem, DÃ is a topological
isomorphism and, by the inverse mapping theorem, Ã−1 is smooth. �

Since F is smooth, we can apply the Banach space version of the Picard-
Lindelöf Theorem (also known as Cauchy-Lipschitz Theorem) as explained in [27],
Chapter XIV-3. This yields the following theorem about the existence and unique-
ness of integral curves for the vector field F .

Theorem 3.3. Given n ≥ 3, there is an open interval Jn centered at zero and
an open ball B(0, δn) ⊂ Cn(S1) such that for any u0 ∈ B(0, δn) there exists a
unique solution (ϕ, ξ) ∈ C∞(Jn,Diffn(S1)×Cn(S1)) of (2.4) with initial conditions
ϕ(0) = id and ξ(0) = u0. Moreover, the flow (ϕ, ξ) depends smoothly on (t, u0).

From the above theorem, we get a unique short-time solution u = ξ ◦ ϕ−1

in Cn(S1) of the μDP equation with continuous dependence on (t, u0). We now
aim to obtain a similar result for smooth initial data u0. But since C∞(S1) is a
Fréchet space, classical results like the Picard-Lindelöf Theorem or the local inverse
theorem for Banach spaces are no longer valid in C∞(S1). In the proof of our main
theorem, we will make use of a Banach space approximation of the Fréchet space
C∞(S1). First, we shall establish that any solution u of the μDP equation does
neither lose nor gain spatial regularity as t increases or decreases from zero. For
this purpose, the following conservation law is quite useful. In its formulation we
use the notation m0(x) := (Au)(0, x) = μ(u0)− (u0)xx.

Lemma 3.4. Let u be a C3(S1)-solution of the μDP equation on (−T, T ) and let ϕ
be the corresponding flow. Then

(Au)(t, ϕ(t, x))ϕ3
x(t, x) = m0,

for all t ∈ (−T, T ).

Proof. We compute
d
dt

[(μ(u)− uxx ◦ ϕ)ϕ3
x]

= [μ(ut)− uxxt ◦ ϕ− (uxxx ◦ ϕ)ϕt]ϕ3
x + 3ϕ2

xϕtx(μ(u)− uxx ◦ ϕ)

= [μ(ut)− uxxt ◦ ϕ− (uxxx ◦ ϕ)(u ◦ ϕ)]ϕ3
x + 3ϕ2

x(u ◦ ϕ)x(μ(u)− uxx ◦ ϕ)

= [(μ(ut)− uxxt − uxxxu) ◦ ϕ]ϕ3
x + 3ϕ2

x(ux ◦ ϕ)ϕx(μ(u)− uxx ◦ ϕ)

= [(μ(ut)− uxxt − uxxxu) ◦ ϕ]ϕ3
x + 3ϕ3

x[ux(μ(u)− uxx)] ◦ ϕ
= [(3uxuxx − 3μ(u)ux) ◦ ϕ]ϕ3

x − 3ϕ3
x(uxuxx − μ(u)ux) ◦ ϕ

= 0.

Since ϕ(0) = id and ϕx(0) = 1, the proof is completed. �
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Lemma 3.5. Let (ϕ, ξ) ∈ C∞(J3,Diff3(S1) × C3(S1)) be a solution of (2.4) with
initial data (id, u0), according to Theorem 3.3. Then, for all t ∈ J3,

ϕxx(t) = ϕx(t)
(∫ t

0

μ(u)ϕx(s) ds−m0

∫ t

0

ϕx(s)−2 ds
)

(3.1)

and

ξxx(t) = ξx(t)
ϕxx(t)
ϕx(t)

+ ϕx(t)[μ(u)ϕx(t)−m0ϕx(t)−2]. (3.2)

Proof. We have
d
dt

(
ϕxx

ϕx

)
=
ϕxxtϕx − ϕxtϕxx

ϕ2
x

.

Since ϕt = u ◦ ϕ,

ϕxt = ϕtx = ∂x(u ◦ ϕ) = (ux ◦ ϕ)ϕx

and
ϕxxt = ϕtxx

= ∂2
x(u ◦ ϕ)

= ∂x[(ux ◦ ϕ)ϕx]

= (uxx ◦ ϕ)ϕ2
x + (ux ◦ ϕ)ϕxx.

Hence
d
dt

(
ϕxx

ϕx

)
= (uxx ◦ ϕ)ϕx.

According to the previous lemma, we know that

uxx ◦ ϕ = μ(u)−m0ϕ
−3
x .

Integrating
d
dt

(
ϕxx

ϕx

)
= μ(u)ϕx −m0ϕ

−2
x

over [0, t] leads to equation (3.1) and taking the time derivative of (3.1) yields
(3.2). �
Remark 3.6. Since the μDP equation is equivalent to the quasi-linear evolution
equation

ut + uux + 3μ(u)∂xA
−1u = 0,

we see that μ(ut) = 0 and hence μ(u) = μ(u0) so that μ(u) can in fact be written
in front of the first integral sign in equation (3.1).

Corollary 3.7. Let (ϕ, ξ) be as in Lemma 3.5. If u0 ∈ Cn(S1) then we have
(ϕ(t), ξ(t)) ∈ Diffn(S1)× Cn(S1) for all t ∈ J3.

Proof. We proceed by induction on n. For n = 3 the result is immediate from our
assumption on (ϕ(t), ξ(t)). Let us assume that (ϕ(t), ξ(t)) ∈ Diffn(S1) × Cn(S1)
for some n ≥ 3. Then Lemma 3.5 shows that, if u0 ∈ Cn+1(S1), then (ϕ(t), ξ(t)) ∈
Diffn+1(S1)× Cn+1(S1), finishing the proof. �
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Corollary 3.8. Let (ϕ, ξ) be as in Lemma 3.5. If there exists a nonzero t ∈ J3 such
that ϕ(t) ∈ Diffn(S1) or ξ(t) ∈ Cn(S1) then ξ(0) = u0 ∈ Cn(S1).

Proof. Again, we use a recursive argument. For n = 3, there is nothing to do. For
some n ≥ 3, suppose that u0 ∈ Cn(S1). By the previous corollary, (ϕ(t), ξ(t)) ∈
Diffn(S1) × Cn(S1) for all t ∈ J3. Assume that there is 0 �= t0 ∈ J3 such that
ϕ(t0) ∈ Diffn+1(S1) or ξ(t0) ∈ Cn+1(S1). Since ϕx > 0, Lemma 3.5 immediately
implies that also u0 ∈ Cn+1(S1). �

Now we discuss Banach space approximations of Fréchet spaces.

Definition 3.9. Let X be a Fréchet space. A Banach space approximation of X is
a sequence {(Xn, ||·||n); n ∈ N0} of Banach spaces such that

X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ X, X =
∞⋂

n=0

Xn

and {||·||n ; n ∈ N0} is a sequence of norms inducing the topology on X with

||x||0 ≤ ||x||1 ≤ ||x||2 ≤ · · ·

for any x ∈ X .

We have the following result. For a proof, we refer to [17].

Lemma 3.10. Let X and Y be Fréchet spaces with Banach space approximations
{(Xn, ||·||n); n ∈ N0} and {(Yn, ||·||n); n ∈ N0}. Let Φ0 : U0 → V0 be a smooth map
between the open subsets U0 ⊂ X0 and V0 ⊂ Y0. Let

U := U0 ∩X and V := V0 ∩ Y,
as well as

Un := U0 ∩Xn and Vn := V0 ∩ Yn,

for any n ≥ 0. Furthermore, we assume that, for each n ≥ 0, the following prop-
erties are satisfied:

(1) Φ0(Un) ⊂ Vn,
(2) the restriction Φn := Φ0|Un

: Un → Vn is a smooth map.

Then Φ0(U) ⊂ V and the map Φ := Φ0|U : U → V is smooth.

Now we come to our main theorem which we first formulate in the geometric
picture.

Theorem 3.11. There exists an open interval J centered at zero and δ > 0 such
that for all u0 ∈ C∞(S1) with ||u0||C3(S1) < δ, there exists a unique solution (ϕ, ξ) ∈
C∞(J,Diff∞(S1)×C∞(S1)) of (2.4) such that ϕ(0) = id and ξ(0) = u0. Moreover,
the flow (ϕ, ξ) depends smoothly on (t, u0) ∈ J × C∞(S1).
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Proof. Theorem 3.3 for n = 3 shows that there is an open interval J centered at
zero and an open ball U3 = B(0, δ) ⊂ C3(S1) so that for any u0 ∈ U3 there exists a
unique solution (ϕ, ξ) ∈ C∞(J,Diff3(S1)×C3(S1)) of (2.4) with initial data (id, u0)
and a smooth flow

Φ3 : J × U3 → Diff3(S1)× C3(S1).
Let

Un := U3 ∩ Cn(S1) and U∞ := U3 ∩ C∞(S1).
By Corollary 3.7, we have

Φ3(J × Un) ⊂ Diffn(S1)× Cn(S1)

for any n ≥ 3 and the map

Φn := Φ3|J×Un
: J × Un → Diffn(S1)× Cn(S1)

is smooth. Lemma 3.10 implies that

Φ3(J × U∞) ⊂ Diff∞(S1)× C∞(S1),

completing the proof of the short-time existence for smooth initial data u0. More-
over, the mapping

Φ∞ := Φ3|J×U∞ : J × U∞ → Diff∞(S1)× C∞(S1)

is smooth, proving the smooth dependence on time and on the initial condition.
�

Under the assumptions of Theorem 3.11, the map

Diff∞(S1)× C∞(S1) → C∞(S1), (ϕ, ξ) �→ ξ ◦ ϕ−1 = u

is smooth. Thus we obtain the result stated in Theorem 1.1.

4. The exponential map

For a Banach manifold M equipped with a symmetric linear connection, the ex-
ponential map is defined as the time one of the geodesic flow, i.e., if t �→ γ(t) is
the (unique) geodesic in M starting at p = γ(0) with velocity γt(0) = u ∈ TpM
then expp(u) = γ(1). Roughly speaking, the map expp(·) is a projection from
TpM to the manifold M . Since the derivative of expp at zero is the identity, the
exponential map is a smooth diffeomorphism from a neighbourhood of zero of
TpM to a neighbourhood of p ∈ M . However, this fails for Fréchet manifolds
like Diff∞(S1) in general. We know that the Riemannian exponential map for the
L2-metric on Diff∞(S1) is not a local C1-diffeomorphism near the origin, cf. [9].
For the Camassa-Holm equation and more general for the Hk-metrics, k ≥ 1, the
Riemannian exponential map in fact is a smooth local diffeomorphism. This result
was generalized to the family of b-equations, see [17], and in this section we obtain
a similar result for the μDP equation.

The basic idea of the proof of Theorem 1.2 is to consider a perturbed problem:
Let (ϕε, ξε) denote the local expression of an integral curve of (2.4) in TDiffn(S1)
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with initial data (id, u+ εw), where u,w ∈ Cn(S1). Let

ψ(t) :=
∂ϕε(t)
∂ε

∣∣∣∣
ε=0

.

By the homogeneity of the geodesics,

ϕε(t) = exp(t(u+ εw)),

so that
ψ(t) = D (exp(tu)) tw =: Ln(t, u)w,

where Ln(t, u) is a bounded linear operator on Cn(S1).

Lemma 4.1. Suppose that u ∈ Cn+1(S1). Then, for t �= 0,

Ln(t, u)(Cn(S1)\Cn+1(S1)) ⊂ Cn(S1)\Cn+1(S1).

Proof. First, we write down equation (3.1) for ϕε(t),

ϕε
xx(t) = ϕε

x(t)
[
μ(u+ εw)

∫ t

0

ϕε
x(s) ds−mε

0

∫ t

0

ϕε
x(s)−2 ds

]
,

and take the derivative with respect to ε,

∂ϕε
xx

∂ε
(t) =

∂ϕε
x

∂ε
(t)

[
μ(u+ εw)

∫ t

0

ϕε
x(s) ds−mε

0

∫ t

0

ϕε
x(s)−2 ds

]
+ ϕε

x(t)
[
μ(w)

∫ t

0

ϕε
x(s) ds+ μ(u+ εw)

∫ t

0

∂ϕε
x

∂ε
(s) ds

]
− ϕε

x(t)
[
∂mε

0

∂ε

∫ t

0

ϕε
x(s)−2 ds+mε

0

∫ t

0

∂

∂ε
ϕε

x(s)−2 ds
]
.

Notice that
∂mε

0

∂ε
= μ(w) − wxx = Aw

and that mε
0 → m0 = Au as ε→ 0. Hence

ψxx(t) = ψx(t)
[
μ(u)

∫ t

0

ϕx(s) ds−m0

∫ t

0

ϕx(s)−2 ds
]

+ ϕx(t)
[
μ(w)

∫ t

0

ϕx(s) ds+ μ(u)
∫ t

0

ψx(s) ds
]

− ϕx(t)
[
(μ(w) − wxx)

∫ t

0

ϕx(x)−2 ds− 2m0

∫ t

0

ϕx(s)−3ψx(s) ds
]

= a(t)ψx(t) + b(t)
∫ t

0

c(s)ψx(s) ds+ d(t) + e(t)wxx

with a(t), b(t), c(t), d(t), e(t) ∈ Cn−1(S1) and e(t) �= 0 for t �= 0. Finally, if

w ∈ Cn(S1)\Cn+1(S1),

then
ψ(t) = Ln(t, u)w ∈ Cn(S1)\Cn+1(S1). �
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Let us now turn to the proof of Theorem 1.2. Since C3(S1) is a Banach space
and Diff3(S1) is a Banach manifold modelled over C3(S1), we know that the expo-
nential map is a smooth diffeomorphism near zero, i.e., there are neighbourhoods
U3 of zero in C3(S1) and V3 of id in Diff3(S1) such that

exp3 := exp |U3 : U3 → V3

is a smooth diffeomorphism. For n ≥ 3, we now define

Un := U3 ∩ Cn(S1) and Vn = V3 ∩Diffn(S1).

Let expn := exp3 |Un . Since expn is a restriction of exp3, it is clearly injective. We
now use Corollary 3.7 and Corollary 3.8 to deduce that expn is also surjective,
more precisely, expn(Un) = Vn. If the geodesic ϕ with ϕ(1) = exp(u) starts at
id ∈ Diffn(S1) with velocity vector u belonging to Cn(S1), then ϕ(t) ∈ Diffn(S1)
for any t and hence expn(Un) ⊂ Vn. Conversely, if v ∈ Vn is given, then there
is u ∈ U3 with exp3(u) = v. Corollary 3.8 immediately implies that u ∈ Cn(S1);
hence u ∈ Un and expn(u) = v. Note that expn is a bijection from Un to Vn.
Furthermore, expn is a smooth map and diffeomorphic Un → Vn. We now show
that expn is a smooth diffeomorphism; precisely, we show that exp−1

n : Vn → Un is
smooth by virtue of the inverse mapping theorem. For each u ∈ Cn(S1), D expn(u)
is a bounded linear operator Cn(S1) → Cn(S1). Notice that

D expn(u) = D exp3(u)|Cn(S1),

from which we conclude that D expn(u) is injective. Let us prove the surjectiv-
ity of D expn(u), n ≥ 3, by induction. For n = 3, this follows from the fact
that exp3 : U3 → V3 is diffeomorphic and hence a submersion. Assume that
D expn(u) is surjective for some n ≥ 3 and that u ∈ Cn+1(S1). We have to show
that this implies the surjectivity of D expn+1(u). But this is a direct consequence
of D expn(u) = Ln(1, u) and the previous lemma: Let f ∈ Cn+1(S1). We have to
find g ∈ Cn+1(S1) with the property D expn+1(u)g = f . By our assumption, there
is g ∈ Cn(S1) such that D expn(u)g = f . Suppose that g /∈ Cn+1(S1). But then
f = Ln(1, u)g /∈ Cn+1(S1) in contradiction to the choice of f . Thus g ∈ Cn+1(S1)
and D expn+1(u)g = f . Now we can apply the open mapping theorem to deduce
that for any n ≥ 3 and any u ∈ Cn(S1) the map

D expn(u) : Cn(S1)→ Cn(S1)

is a topological isomorphism. By the inverse function theorem, expn : Un → Vn is
a smooth diffeomorphism. If we define

U∞ := U3 ∩C∞(S1) and V∞ := V3 ∩Diff∞(S1),

Lemma 3.10 yields that

exp∞ := exp3 |U∞ : U∞ → V∞

as well as
exp−1

∞ : V∞ → U∞

are smooth maps. Thus exp∞ is a smooth diffeomorphism between U∞ and V∞.
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Global Leray-Hopf Weak Solutions
of the Navier-Stokes Equations with
Nonzero Time-dependent Boundary Values

R. Farwig, H. Kozono and H. Sohr

Abstract. In a bounded smooth domain Ω ⊂ R3 and a time interval [0, T ),
0 < T ≤ ∞, consider the instationary Navier-Stokes equations with initial
value u0 ∈ L2

σ(Ω) and external force f = div F , F ∈ L2(0, T ; L2(Ω)). As is
well known there exists at least one weak solution in the sense of J. Leray
and E. Hopf with vanishing boundary values satisfying the strong energy
inequality. In this paper, we extend the class of global in time Leray-Hopf
weak solutions to the case when u|∂Ω

= g with non-zero time-dependent

boundary values g. Although there is no uniqueness result for these solutions,
they satisfy a strong energy inequality and an energy estimate. In particular,
the long-time behavior of energies will be analyzed.

Mathematics Subject Classification (2000). 35Q30; 35J65; 76D05.

Keywords. Instationary Navier-Stokes equations; weak solutions; energy in-
equality; non-zero boundary values; time-dependent data; long-time behavior.

1. Introduction and main results

Let Ω ⊂ R3 be a bounded domain with boundary of class C1,1, and let [0, T ),
0 < T ≤ ∞, be a time interval. In Ω× [0, T ) we consider the instationary Navier-
Stokes system in the form

ut −Δu+ u · ∇u+∇p = f, div u = 0

u|∂Ω
= g, u(0) = u0

(1.1)

with viscosity ν = 1 and data f, g, u0.
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For the data we assume the following:

f = divF, F ∈ L2
(
0, T ;L2(Ω)

)
, u0 ∈ L2

σ(Ω),

g ∈ L4
(
0, T ;W−1

4 ,4(∂Ω)
)
∩ Ls

(
0, T ;W−1

q ,q(∂Ω)
)
,

2
s

+
3
q

= 1, 2 < s <∞, 3 < q <∞;

(1.2)

the initial data u0 has to satisfy further assumptions to be introduced later, see
Section 5.

First we recall the well-known definition of a weak solution u in the sense
of Leray-Hopf with u|∂Ω

= 0 and initial value u0 ∈ L2
σ(Ω) = C∞

0,σ(Ω)
‖·‖2 , and

describe their main properties.

Definition 1.1. Let f = divF , F ∈ L2(0, T ;L2(Ω)), 0 < T ≤ ∞, and u0 ∈ L2
σ(Ω)

be given. Then the vector field u is called a Leray-Hopf weak solution of the system
(1.1) with data f, u0 and g = 0 if the following conditions are satisfied:

(i) u ∈ L∞(
0, T ;L2

σ(Ω)
)
∩ L2

(
0, T ;W 1,2

0 (Ω)
)
,

(ii) for each test function w ∈ C∞
0

(
[0, T );C∞

0,σ(Ω)
)

−〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T − 〈uu,∇w〉Ω,T = 〈u0, w(0)〉Ω − 〈F,∇w〉Ω,T ,

(iii) for 0 ≤ t < T
1
2
‖u(t)‖22 +

∫ t

0

‖∇u‖22 dτ ≤
1
2
‖u0‖22 −

∫ t

0

〈F,∇u〉Ω dτ.

As is well known [20] there exists at least one weak solution u of (1.1) in the
sense of Definition 1.1; moreover, u may be chosen to be weakly continuous from
[0, T ) to L2

σ(Ω) and to satisfy beyond the energy inequality (iii) in Definition 1.1
the so-called strong energy inequality

1
2
‖u(t)‖22 +

∫ t

t0

‖∇u‖22 dτ ≤
1
2
‖u(t0)‖22 −

∫ t

t0

(F,∇u)Ω dτ (1.3)

for almost all t0 ∈ [0, T ) including t0 = 0 and for all t ∈ [t0, T ). We note that the
strong energy inequality (1.3) yields the energy estimate

‖u(t)‖22 +
∫ t

t0

‖∇u‖22 dτ ≤ ‖u(t0)‖22 +
∫ t

t0

‖F‖22 dτ

for a.a. t0 ∈ (0, T ), for t0 = 0 and all t ∈ [t0, T ). An application of Hölder’s
inequality implies that

u ∈ Ls
(
0, T ;Lq(Ω)

)
,

2
s

+
3
q

=
3
2
, 2 ≤ s ≤ ∞, 2 ≤ q ≤ 6.

In order to extend Definition 1.1 to the more general case of time-dependent
boundary data u|∂Ω

= g we will reduce the system (1.1) to a perturbed Navier-
Stokes system with g = 0. For this purpose we have to find first of all a (so-called)
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very weak solution of the inhomogeneous Stokes system
Et −ΔE +∇h = f0, divE = 0

E|∂Ω
= g, E(0) = E0,

(1.4)

see [2]–[5], in Ω× [0, T ) with suitable data f0 = divF0 and E0; here ∇h means the
associated pressure. At first sight, it seems to suffice to choose f0 = 0, F0 = 0, but
for later application it will be helpful to consider general data f0, F0, see Corollary
1.5 and (1.15) below. Setting

v = u− E, p̃ = p− h, f1 = f − f0, v0 = u0 − E0 (1.5)

we write (1.1) in the form

vt −Δv + (v + E) · ∇(v + E) +∇p̃ = f1, div v = 0,

v|∂Ω
= 0, v(0) = v0

(1.6)

which is a perturbed Navier-Stokes system with homogeneous data v|∂Ω
= 0, but

with the new perturbation terms

(v + E) · ∇(v + E) = div
(
vv + (Ev + vE) + EE

)
; (1.7)

here Ev = E ⊗ v = (Eivj)i,j=1,2,3 denotes the dyadic product of the vector fields
E and v, and the divergence is taken columnwise.

To deal with Leray-Hopf type weak solutions v of (1.6), see Definition 1.2
below, we need that E in (1.4) has the following properties:

E ∈ L4
(
0, T ;L4(Ω)

)
∩ Ls

(
0, T ;Lq(Ω)

)
2
s

+
3
q

= 1, 2 < s ≤ ∞, 3 ≤ q <∞.
(1.8)

Actually, the condition E ∈ L4(0, T ;L4(Ω)) in (1.8) is needed for estimates of
the term EE in (1.7) in the space L2(0, T ;L2(Ω)), whereas the second condition
E ∈ Ls(0, T ;Lq(Ω)) will help to estimate the terms vE and Ev. Note that E ∈
L4(0, T ;L4(Ω)) is the classical condition on weak solutions of the Navier-Stokes
system to satisfy the energy identity, and it automatically holds true when 4 ≤ s ≤
8, 4 ≤ q ≤ 6. To guarantee (1.8) for the solution E of (1.4) the data f0, g, E0 have to
satisfy certain assumptions known from the theory of the very weak Stokes system.
However, looking at (1.6), it suffices to assume (1.8) and v0 ∈ L2

σ(Ω), f1 = divF1,
F1 ∈ L2(0, T ;L2(Ω)), in order to define Leray-Hopf type weak solutions of (1.6);
later concrete conditions on g, u0, E0 will be described to satisfy these assumptions,
see Section 5.

In this respect, this paper mainly deals with the perturbed Navier-Stokes
system (1.6) rather than with (1.1).

Definition 1.2. Let E satisfy (1.8) and assume v0 ∈ L2
σ(Ω), f1 = divF1, F1 ∈

L2(0, T ;L2(Ω)). Then a vector field v on Ω × [0, T ) is a Leray-Hopf type weak
solution of the perturbed Navier-Stokes system (1.6) if the following conditions
are satisfied:
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(i) v ∈ L∞
loc

(
[0, T );L2

σ(Ω)
)
∩ L2

loc

(
[0, T );W 1,2

0 (Ω)
)
,

(ii) for each test function w ∈ C∞
0

(
[0, T );C∞

0,σ(Ω)
)

〈v, wt〉Ω,T − 〈∇v,∇w〉Ω,T − 〈(v + E)(v + E),∇w〉Ω,T

= 〈v0, w(0)〉Ω − 〈F1,∇w〉Ω,T ,
(1.9)

(iii) the energy inequality

1
2
‖v(t)‖22 +

∫ t

0

‖∇v‖22 dτ ≤
1
2
‖v0‖22 −

∫ t

0

〈F1 − (v + E)E,∇v〉Ω dτ (1.10)

holds for 0 < t < T .

Now our main theorem reads as follows:

Theorem 1.3. Let Ω ⊂ R3 be a bounded domain with ∂Ω ∈ C1,1, and let f1 =
divF1, F1 ∈ L2(0, T ;L2(Ω)), v0 ∈ L2

σ(Ω). Assume that E satisfies (1.8) where in
the case s = ∞, q = 3 this condition is replaced by

E ∈ C0
(
[0, T );L3(Ω)

)
, ‖E‖C0([0,T );L3(Ω)) < α0 (1.11)

for a sufficiently small constant α0 = α0(Ω) > 0. Then the perturbed Navier-Stokes
system

vt −Δv + (v + E) · ∇(v + E) +∇p̃ = f1, div v = 0,

v|∂Ω
= 0, v(0) = v0

(1.12)

has at least one Leray-Hopf type weak solution v in the sense of Definition 1.2. In
addition to the energy inequality (1.10) v satisfies the strong energy inequality

1
2
‖v(t)‖22 +

∫ t

t0

‖∇v‖22 dτ ≤
1
2
‖v(t0)‖22 −

∫ t

t0

〈F1 − (v + E)E,∇v〉 dτ (1.13)

for a.a. t0 ∈ [0, T ) including t0 = 0 and for all t0 < t < T . Moreover, for these
t0, t the energy estimate

‖v(t)‖22 +
∫ t

t0

‖∇v‖22 dτ

≤ c
(
‖v(t0)‖22 + 4

∫ t

t0

(‖F1‖22 + ‖E‖44) dτ
)

exp
(
c

∫ t

t0

‖E‖s
q dτ

) (1.14)

holds, where c = c(Ω, q) > 0 means a constant.

In view of (1.1), (1.4)–(1.6) and Definition 1.2 u = v + E is called a Leray-
Hopf type weak solution of (1.1) with boundary data u|∂Ω

= g = E|∂Ω
and initial

value u(0) = v0+E0. In the most general setting of very weak solutions, cf. [19, 18],
these terms are not well defined separately from each other and from f , but have
to be interpreted in the generalized sense that v = u − E satisfies v|∂Ω

= 0 and
v(0) = v0. For a more concrete situation and precise assumptions on g, u0 we refer
to Section 5.
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Remark 1.4. (i) The weak solution v in Theorem 1.3 may be modified on a null
set of (0, T ) such that v : [0, T )→ L2

σ(Ω) is weakly continuous. Hence v(0) = v0 is
well defined, v|∂Ω

= 0 is well defined for a.a. t ∈ [0, T ) in the sense of traces, and
there exists a distribution p̃ on Ω× (0, T ) such that

vt −Δv + (v + E) · ∇(v + E) +∇p̃ = f1.

(ii) Assume T = ∞ and

E ∈ L4
(
0,∞;L4(Ω)

)
∩ Ls

loc

(
[0,∞);Lq(Ω)

)
, 2 < s <∞,

such that ‖E‖s
q,s;t =

∫ t

0 ‖E‖s
q dτ is increasing at least linearly as t → ∞. We note

that in this case the proof in Section 4 will easily show the existence of a weak
solution v in (0,∞). Then the energy estimate (1.14) (with t0 = 0) yields for the
kinetic energy 1

2‖v(t)‖22 only an exponentially increasing bound as t → ∞. This
worst case estimate reflects the fact that nonzero boundary values could imply a
permanent flux of energy through the boundary into the domain.

(iii) If s = ∞ and ‖E‖C0([0,∞);L3(Ω)) is sufficiently small, cf. (1.11), then due
to energy dissipation the scenario of (ii) will not occur, and (1.14) is replaced by
the better estimate

‖v(t)‖22 +
∫ t

t0

‖∇v‖22 dτ ≤ ‖v(t0)‖22 + 4
∫ t

t0

(
‖F1‖22 + ‖E‖44

)
dτ

for a.a. t0 ∈ [0,∞) including t0 = 0 and for all t ∈ (t0,∞). The proof of this
estimate is based on the energy estimate (3.12) below and arguments in Sections
3–4.

The smallness assumptions in Remark 1.4 (iii), see also (1.11), is too re-
strictive for further applications. Next we consider an assumption on E known as
Leray’s inequality in the context of stationary Navier-Stokes equations in multiply
connected domains: Let E satisfy the conditions

E ∈ L∞(
0,∞;L3(Ω)

)
and∣∣∣ ∫

Ω

w1E(t) · ∇w2 dt
∣∣∣ ≤ 1

4
‖∇w1‖2 ‖∇w2‖2

for all w1, w2 ∈W 1,2
0 (Ω) ∩ L2

σ(Ω) and a.a. t ∈ (0,∞).

(1.15)

We recall that in a (multiply connected) bounded domain Ω ⊂ R3 with ∂Ω =
∪L

j=0Γj ∈ C1,1 (L ∈ N) to any boundary data g ∈ W 1/2,2(∂Ω) satisfying the
restricted flux condition∫

Γj

g ·N do = 0 for each boundary component Γj ⊂ ∂Ω, j = 1, . . . , L,

and any ε > 0 there exists an extension Eε ∈W 1,2(Ω) with following properties:

Eε ∈W 1,2(Ω), divEε = 0, Eε|∂Ω
= g∣∣∣ ∫

Ω

wEε · ∇w dx
∣∣∣ ≤ ε ‖∇w‖22 for all w ∈W 1,2

0 (Ω) ∩ L2
σ(Ω).

(1.16)
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In particular this result holds for a simply connected domain (having only one
boundary component Γ = ∂Ω). In our case, it suffices to consider ε = 1

4 in (1.15)2
since the viscosity ν = 1.

Corollary 1.5. Let Ω ⊂ R3 be a bounded domain with ∂Ω ∈ C1,1, let v0 ∈ L2
σ(Ω)

and let
f1 = divF1, F1 ∈ L∞(

0,∞;L2(Ω)
)
. (1.17)

Furthermore, assume that E satisfies (1.15). Then the perturbed Navier-Stokes
system (1.12) has a global in time Leray-Hopf type weak solution v satisfying the
energy estimate

‖v(t)‖22 +
∫ t

0

‖∇v‖22 dτ ≤ ‖v0‖22 + c
∫ t

0

(
‖F1‖22 + ‖E‖44

)
dτ , (1.18)

where c = c(Ω) > 0 is a constant. To be more precise, there exists a bound κ∗

(depending on the norms ‖F1‖2,∞;∞ and ‖E‖4,∞;∞, but not an ‖v0‖2) and a time
T0 = T0(‖v0‖2) such that

‖v(t)‖22 ≤ κ∗ for all t ≥ T0.

Corollary 1.5, see also Corollary 5.6, strictly exploits the assumption (1.15)
on E and the dissipativity of the Navier-Stokes system (1.1), (1.12). It is closely
related to the work [14] of E. Hopf where a similar result is proved in the context
of moving bodies for given smooth solutions. The impact of the final result of
Corollary 1.5 is the fact that all solutions are bounded after a finite time by a
bound independent of the initial value.

There are many applications of the two-dimensional Navier-Stokes system
with nonhomogeneous boundary values in optimal control theory since the 2D-
system admits global smooth solutions and uniqueness. For the three-dimensional
case there are only few results on the existence of global or weak solutions. We
mention the existence of local in time strong solutions by A.V. Fursikov, M.D. Gun-
zburger and L.S. Hou [7], and results in a scale of Besov spaces by G. Grubb [12].
The existence of global in time weak solutions is proved by J.-P. Raymond [17]
for boundary data in a fractional Sobolev space on ∂Ω× (0, T ) with derivatives in
space and time of fractional order 3/4 for domains with boundary ∂Ω ∈ C3.

2. Preliminaries

Let Ω ⊂ R3 be a bounded domain with ∂Ω ∈ C1,1, let 0 < T ≤ ∞ and 1 ≤ q,
s ≤ ∞ with conjugate exponents 1 ≤ q′, s′ ≤ ∞. We will use standard no-
tation for Lebesgue spaces (Lq(Ω), ‖ · ‖Lq(Ω) = ‖ · ‖q) and for Bochner spaces
Ls(0, T ;Lq(Ω)), ‖ · ‖Ls(0,T ;Lq(Ω)) = ‖ · ‖q,s;T ). Here v ∈ Ls

loc ([0, T );Lq(Ω)) means
that v ∈ Ls(0, T ′;Lq(Ω)) for each finite 0 < T ′ ≤ T . The pairing of functions (or
vector fields) in Ω and Ω × (0, T ) is denoted by 〈·, ·〉Ω and 〈·, ·〉Ω,T , respectively.
Sobolev spaces are denoted by (Wm,q(Ω), ‖ · ‖W m,q),m ∈ N, the corresponding
trace space by (Wm−1/q,q(∂Ω), ‖ · ‖W m−1/q,q ) when 1 < q <∞. The dual space to
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W 1−1/q′,q′
(∂Ω) is denoted by W−1/q,q(∂Ω), the corresponding pairing is 〈·, ·〉∂Ω.

Concerning smooth functions we need the spaces C∞
0 (Ω), C∞

0,σ(Ω) = {v ∈ C∞
0 (Ω) :

div v = 0}, and in the context of very weak solutions

C2
0,σ(Ω) = {w ∈ C2(Ω) : w = 0 on ∂Ω, divw = 0},

see Section 5. Note that W 1,q
0 (Ω) := C∞

0 (Ω)
‖·‖W1,q

and Lq
σ(Ω) := C∞

0,σ(Ω)
‖·‖q

. By
w ∈ C∞

0 ([0, T );C∞
0,σ(Ω)), the space of test functions in Definitions 1.1 and 1.2, we

mean that w ∈ C∞
0 ([0, T ) × Ω) satisfies divxw = 0 for all t ∈ [0, T ) (taking the

divergence with respect to x ∈ Ω).
For 1 < q <∞ let Pq : Lq(Ω)→ Lq

σ(Ω) be the Helmholtz projection and let

Aq = −PqΔ : D(Aq) =W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lq

σ(Ω) ⊂ Lq
σ(Ω) → Lq

σ(Ω)

denote the Stokes operator. For its fractional powers Aα
q : D(Aα

q ) → Lq
σ(Ω),−1 ≤

α ≤ 1, we know that D(Aq) ⊆ D(Aα
q ) ⊆ Lq

σ(Ω) and R(Aα
q ) = Lq

σ(Ω) for 0 ≤ α ≤ 1;
finally, (Aα

q )−1 = A−α
q for −1 ≤ α ≤ 1. In particular, for A = A2, one has

‖A 1
2 v‖2 = ‖∇v‖2 for v ∈ D(A

1
2 ). Moreover, we note the following embedding

estimates (with constants c = c(q,Ω) > 0):

‖v‖q ≤ c‖Aαv‖2, 0 ≤ α ≤ 1
2
, 2 ≤ q <∞, 2α+

3
q

=
3
2
, v ∈ D(Aα) (2.1)

‖Aαv‖2 ≤ ‖Av‖α
2 ‖v‖1−α

2 , 0 ≤ α ≤ 1, v ∈ D(A) (2.2)

‖v‖q ≤ c‖v‖β
W 1,2‖v‖1−β

2 , 2 ≤ q ≤ 6, β = 3(
1
2
− 1
q
), v ∈ W 1,2(Ω). (2.3)

Finally we note that −Aq generates a bounded, exponentially decaying ana-
lytic semigroup {e−tAq : t ≥ 0} on Lq

σ(Ω) satisfying the estimate

‖Aα
q e

−tAqv‖q ≤ c t−α‖v‖q, 0 ≤ α ≤ 1, t > 0, v ∈ Lq
σ(Ω) (2.4)

with a constant c = c (q,Ω) > 0 and c = 1 if q = 2.
To find approximate solutions of the Navier-Stokes system in Section 3 we

need Yosida’s approximation operators

Jm = (I +
1
m
A

1
2 )−1, m ∈ N,

where I denotes the identity on L2
σ(Ω). The following properties are well known:

‖Jmv‖2 ≤ ‖v‖2, ‖
1
m
A

1
2Jmv‖2 ≤ ‖v‖2,

lim
m→∞

Jmv = v for all v ∈ L2
σ(Ω),

‖∇Jmv‖2 ≤ ‖∇v‖2 for all v ∈W 1,2
0 (Ω) ∩ L2

σ(Ω) = D(A
1
2 );

(2.5)

for the proof of the last inequality we use that ‖A 1
2 v‖2 = ‖∇v‖2 and the commu-

tativity of Jm with A
1
2 .

For these and further properties of the Stokes operator and Yosida’ s approx-
imation we refer, e.g., to [9], [10] and [20].
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3. The approximate system

There are several proofs of Theorem 1.3 in the special case when g = 0, see
[13], [15], [16], [20], [22]. The proofs rest on three steps: (1) an approximation
procedure yielding a sequence of solutions, (um), (2) an energy estimate for um

with bounds independent of m ∈ N to show that each um exists on the maximal
interval of existence, [0, T ), and (3) weak and strong convergence properties of a
suitable subsequence of {um} to construct a weak solution of the Navier-Stokes
equation. One possibility in (1) is the use of the Yosida approximation yielding
the approximate system

ut −Δu+ (Jmu) · ∇u+∇p = f, div u = 0

together with u|∂Ω
= 0, u(0) = u0 on Ω× [0, T ).

In our case (1.12) let v = vm, m ∈ N, be a weak solution of the approximate
perturbed Navier-Stokes system

vt −Δv + (Jmv + E) · ∇(v + E) +∇p̃ = f1, div v = 0

v|∂Ω
= 0, v(0) = v0

(3.1)

where v0 ∈ L2
σ(Ω), f1 = divF1, F1 ∈ L2

(
0, T ;L2(Ω)

)
, and E results from (1.4)

as a (very) weak solution satisfying (1.8). However, as already explained, we will
only need that the vector field E satisfies (1.8) without referring to (1.4). Then

v = vm ∈ L∞
loc

(
[0, T );L2

σ(Ω)
)
∩ L2

loc

(
[0, T );W 1,2

0 (Ω)
)

(3.2)

is called a (Leray-Hopf type) weak solution of (3.1) in Ω× [0, T ) if the relation

−〈v, wt〉Ω,T + 〈∇v,∇w〉Ω,T − 〈(Jmv + E)(v + E),∇w〉Ω,T

= 〈v0, w(0)〉Ω − 〈F1,∇w〉Ω,T

(3.3)

is satisfied for every w ∈ C∞
0 ([0, T ;C∞

0,σ(Ω)) and the energy inequality

1
2
‖v(t)‖22 +

∫ t

0

‖∇v‖22 dτ ≤
1
2
‖v0‖22 −

∫ t

0

〈F1 − (Jmv + E)E,∇v〉Ω dτ, (3.4)

0 ≤ t < T , holds.

Lemma 3.1. Let v0 ∈ L2
σ(Ω), f1 = divF1, F1 ∈ L2(0, T ;L2(Ω)), and E satisfying

(1.8) be given. If s = ∞, suppose the smallness assumption (1.11) on E as well.
Then there exists some T ′ = T ′(v0, F1, E,m) ∈ (0,min(1, T )] such that (3.1) has
a unique weak solution v = vm on Ω × (0, T ′), i.e., v satisfies (3.2)–(3.4) with T
replaced by T ′.

Proof. Assume that v = vm is a solution of (3.1) on Ω× (0, T ′), 0 < T ′ ≤ 1. Hence
v is contained in the space

XT ′ := L∞(
0, T ′;L2

σ(Ω)
)
∩ L2

(
0, T ′;W 1,2

0 (Ω)
)
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with

‖v‖XT ′ := ‖v‖2,∞;T ′ + ‖A 1
2 v‖2,2;T ′ <∞.

Then we obtain for any 0 < T ′ ≤ min(1, T ), using Hölder’s inequality, the proper-
ties (2.1)–(2.3) and (2.5), the following estimates for (Jmv+E)(v+E) with some
constant c = c(Ω) > 0:

‖(Jmv)v‖2,2;T ′ ≤ ‖Jmv‖6,4;T ′ ‖v‖3,4;T ′ ≤ c ‖A 1
2 Jmv‖2,4;T ′ ‖v‖XT ′

≤ cm ‖v‖2,4;T ′ ‖v‖XT ′ ≤ cm (T ′)1/4 ‖v‖2XT ′ ,

‖(Jmv)E‖2,2;T ′ ≤ ‖Jmv‖4,4;T ′ ‖E‖4,4;T ′ ≤ c ‖Jmv‖6,4;T ′ ‖E‖4,4;T ′

≤ cm (T ′)1/4 ‖v‖XT ′ ‖E‖4,4;T ′ ,

‖E v‖2,2;T ′ ≤ ‖E‖q,s;T ′ ‖v‖( 1
2−

1
q )−1,( 1

2−
1
s )−1,T ′

≤ c ‖E‖q,s;T ′ ‖v‖XT ′ .

Since ‖EE‖2,2;T ′ ≤ ‖E‖24,4;T ′ , we proved the estimate

‖(Jmv + E)(v + E)‖2,2;T ′ ≤ cm(T ′)1/4 ‖v‖XT ′
(
‖E‖4,4;T ′ + ‖v‖XT ′

)
+ ‖E‖24,4;T ′ + c ‖E‖q,s;T ′ ‖v‖XT ′ .

(3.5)

Obviously, (3.5) also holds in the limit case s = ∞, q = 3.
With the definition

F̂1(v) = F1 − (Jmv + E)(v + E)

we write the system (3.1) in the form

vt −Δv +∇p = div F̂1(v), div v = 0

v = 0 on ∂Ω, v(0) = v0.

Since v0 ∈ L2
σ(Ω) and F̂1(v) ∈ L2(0, T ′;L2(Ω)), we apply classical L2-results

[20, Ch. IV] on weak solutions of the instationary Stokes system to get that v ∈
C0([0, T ′);L2

σ(Ω)) and satisfies the fixed point relation

v = FT ′(v) in XT ′ , (3.6)

where (
FT ′(v)

)
(t) = e−tAv0 −

∫ t

0

A
1
2 e−(t−τ)AA− 1

2P2div F̂1(v)(τ) dτ ;

see [20, III.2.6] concerning the operator A− 1
2P2div. Moreover, v satisfies even an

energy equality for t ∈ [0, T ′) instead of the energy inequality (3.4), and, by (3.5),
the energy estimate

‖FT ′(v)‖XT ′ ≤ a ‖v‖2XT ′ + b ‖v‖XT ′ + d (3.7)
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where

a = cm(T ′)1/4, b = c ‖E‖q,s;T ′ + cm(T ′)1/4 ‖E‖4,4;T ′ ,

d = c
(
‖v0‖2 + ‖E‖24,4;T ′ + ‖F1‖2,2;T ′)

(3.8)

with constants c > 0 independent of v,m and T ′.
By analogy, we get for two elements v1, v2 ∈ XT ′ the estimate

‖FT ′(v1)−FT ′(v2)‖XT ′

≤ cm(T ′)1/4 ‖v1 − v2‖XT ′
(
‖v1‖XT ′ + ‖v2‖XT ′ + ‖E‖4,4;T ′

)
+ c ‖v1 − v2‖XT ′ ‖E‖q,s;T ′

≤ ‖v1 − v2‖XT ′
(
a (‖v1‖XT ′ + ‖v2‖XT ′ ) + b

)
.

(3.9)

Up to now, to derive (3.7), (3.9), we considered a given solution v = vm ∈ XT ′ of
(3.1).

In the next step, we treat (3.6) as a fixed point problem in XT ′ . Assuming
the smallness condition

4 a d+ 2 b < 1 (3.10)

we easily see that the quadratic equation y = ay2 + by+ d has a minimal positive
root y1 which also satisfies 2ay1 + b < 1. Hence, under the assumption (3.10),
FT ′ maps the closed ball BT ′ = {v ∈ XT ′ : ‖v‖XT ′ ≤ y1} into itself. Moreover,
(3.9), (3.10) imply that FT ′ is a strict contradiction on BT ′ . Now Banach’s Fixed
Point Theorem yields the existence of a unique solution v = vm ∈ BT ′ of the
fixed point problem (3.6). This solution is a weak solution of the approximate
perturbed Navier-Stokes system (3.1). Moreover, v satisfies an energy identity and
v ∈ C0([0, T ′);L2

σ(Ω)).
To satisfy the smallness assumption (3.10) (for fixed m ∈ N), it suffices in

view of (3.8) to choose T ′ ∈ (0,min(1, T )) sufficiently small in the case that s <∞.
However, if s =∞, looking at the term ‖E‖q,s;T ′ in (3.8) we have to assume that
‖E‖C0([0,T );L3(Ω)) is sufficiently small.

Finally, we show that the solution just found, v = vm, which is unique in BT ′ ,
is even unique in XT ′ . Indeed, consider any solution ṽ ∈ XT ′ of (3.1). Then there
exists 0 < T ∗ ≤ min(1, T ′) such that ‖ṽ‖XT∗ ≤ y1, and the estimate (3.9) with T ′

replaced by T ∗ ∈ (0,min(1, T )) implies that ‖v−ṽ‖XT∗ = ‖FT∗(v)−FT∗(ṽ)‖XT∗ ≤
‖v − ṽ‖XT∗ (2ay1 + b). Since 2ay1 + b < 4ad + b < 1, we conclude that v = ṽ on
[0, T ∗]. When T ∗ < T ′, we repeat this step finitely many times to see that v = ṽ
on [0, T ′]. �

To prove that the approximate solution v = vm does not only exist on an
interval [0, T ′) where T ′ = T ′(m), but on [0, T ), and to pass to the limit m→∞,
we need a global (in time) and uniform (in m ∈ N) energy estimate of vm.

Lemma 3.2. Let v = vm, m ∈ N, be a weak solution of the approximate perturbed
Navier-Stokes system (3.1) on some interval [0, T ′) ⊆ [0, T ) where v0 ∈ L2

σ(Ω),
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f1 = divF1, F1 ∈ L2(0, T ;L2(Ω)), and let E satisfy (1.8). If 2 < s <∞, 3 < q <
∞, then v satisfies the energy estimate

‖v‖22,∞;t + ‖∇v‖22,2;t

≤
(
‖v0‖22 + 4 ‖F1‖22,2;t + 4 ‖E‖44,4;t

)
exp

(
c ‖E‖s

q,s;t

) (3.11)

for all t ∈ [0, T ′) where c = c(Ω, q) > 0 is a constant. If s = ∞, q = 3, under the
smallness assumption (1.11), v satisfies the energy estimate

‖v(t)‖22 + ‖∇v‖22,2;t ≤ ‖v0‖22 + 4 ‖E‖44,4;t + 4 ‖F1‖2,2;t. (3.12)

Proof. In view of the energy inequality (3.4) we have to estimate the crucial term∫ t

0 〈(Jmv + E)E,∇v〉Ω dτ . By Hölder’s inequality, (2.1)–(2.3) and (2.5), we get∣∣∣∣∫ t

0

〈(Jmv)E,∇v〉Ω dτ
∣∣∣∣ ≤ ∫ t

0

‖Jmv‖( 1
2−

1
q )−1‖E‖q ‖∇v‖2 dτ

≤ c
∫ t

0

‖Jmv‖α
2 ‖∇Jmv‖1−α

2 ‖E‖q ‖∇v‖2 dτ (3.13)

≤ c
∫ t

0

‖v‖α
2 ‖E‖q ‖∇v‖2−α

2 dτ

where α = 1− 3
q = 2

s , cf. (2.3). Hence, if 2 < s <∞, by Young’s inequality

∣∣ ∫ t

0

〈(Jmv)E,∇v〉Ω dτ
∣∣ ≤ 1

8
‖∇v‖22,2;t + c

∫ t

0

‖v‖22 ‖E‖s
q dτ (3.14)

with a constant c = c(q,Ω) > 0. In the case s =∞, q = 3, we have α = 0 and get∣∣∣∣∫ t

0

〈(Jmv)E,∇v〉Ω dτ
∣∣∣∣ ≤ c ‖E‖3,∞;t ‖∇v‖22,2;t. (3.15)

Moreover,∣∣∣∣∫ t

0

〈EE,∇v〉Ω dτ
∣∣∣∣ ≤ ∫ t

0

‖E‖24 ‖∇v‖2 dτ ≤
1
8
‖∇v‖22,2;t + 2‖E‖44,4;t ; (3.16)

the term
∫ t

0
〈F,∇v〉Ω dτ is treated similarly. Inserting these estimates into (3.4) we

are led to the estimate (2 < s <∞)

‖v(t)‖22 + ‖∇v‖22,2;t ≤ ‖v0‖22 + 4 ‖E‖44,4;t + 4 ‖F1‖22,2;t + c
∫ t

0

‖v‖22 ‖E‖s
q dτ.

(3.17)

Then Gronwall’s Lemma proves (3.11).
To get a similar result when s = ∞ we have to assume in view of (3.15) with

α = 0 that c ‖E‖3,∞;t ≤ 1
4 ; then we immediately get (3.12). �
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Lemma 3.3. Under the assumptions of Lemma 3.1 for every m ∈ N there exists a
unique weak solution v = vm of (3.1) on [0, T ). This solution v ∈ C0([0, T );L2

σ(Ω))
satisfies in addition to the energy inequality (3.4) the strong energy identity

1
2
‖v(t)‖22+

∫ t

t0

‖∇v‖22 dτ =
1
2
‖v(t0)‖22 −

∫ t

t0

〈F1 − (Jmv + E)E,∇v〉Ω dτ (3.18)

for all t0 ∈ [0, T ) and t0 < t < T , and it holds

d

dt

(
1
2
‖v(t)‖22

)
+ ‖∇v(t)‖22 = −〈F1 − (Jmv + E)E,∇v〉Ω (t) (3.19)

in the sense of distributions on [0, T ).

Proof. Let [0, T ∗) ⊆ [0, T ) be the largest interval of existence of v = vm, and
assume that T ∗ < T . Since v ∈ C0([0, T ∗);L2

σ(Ω)), we find 0 < T0 < T
∗ arbitrarily

close to T ∗ with v(T0) ∈ L2
σ(Ω) which will be taken as initial value at T0 in (3.1)

in order to extend v beyond T0. Since the length δ of the interval of existence
[T0, T0 + δ) of this unique extension depends only on ‖v(T0)‖2 and ‖F1‖2,2;T ,
‖E‖4,4;T , ‖E‖q,s;T by Lemma 3.1, we see that v can be extended beyond T ∗ in
contradiction with the assumption.

Since v = vm in Lemma 3.1 satisfies an energy identity instead of only an
energy inequality, v = vm will satisfy the strong energy equality (3.18) on [0, T ).
Since both integrands in (3.18) are L1-functions, the corresponding integrals are
absolutely continuous in t; hence we get the differential identity (3.19) in the sense
of distributions. �

4. Proof of Theorem 1.3

Let (vm) denote the sequence of approximate solutions on [0, T ) constructed in
Section 3 and let 0 < T ′ ≤ T be finite. By (3.11) we find a constant c > 0 such
that

‖vm‖2,∞;T ′ + ‖∇vm‖2,2;T ′ ≤ c for all m ∈ N. (4.1)

Hence there exists a subsequence of (vm) which for simplicity will again be denoted
by (vm) with the following properties:

There exists a vector field v ∈ L∞(0, T ′;L2
σ(Ω)) ∩ L2(0, T ′;H ′

0(Ω)):

vm
∗
⇀ v in L∞(0, T ′;L2

σ(Ω)) (weakly-∗)
vm ⇀ v in L2(0, T ′;H1

0 (Ω)) (weakly)
vm → v in L2(0, T ′;L2(Ω) (strongly)

vm(t) → v(t) in L2(Ω) for a.a. t ∈ [0, T ) (strongly).

(4.2)

We note that the third property is based on compactness arguments just as
for the classical Navier-Stokes system and that the fourth property is a well-
known consequence of the strong convergence in L2(0, T ′;L2(Ω)). Moreover, for
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all t ∈ [0, T )
‖∇v‖2,2;t ≤ lim inf

m→∞
‖∇vm‖2,2;t,

‖v(t)‖2 ≤ lim inf
m→∞

‖vm(t)‖2.
(4.3)

By Hölder’s inequality, (4.1) and (4.2) we also conclude (after extracting a further
subsequence again denoted by (vm)) that

vm ⇀ v in Ls1(0, T ′;Lq1(Ω)), 2
s1

+ 3
q1

= 3
2 , 2 ≤ s1, q1 <∞

vmvm ⇀ vv in Ls2(0, T ′;Lq2(Ω)), 2
s2

+ 3
q2

= 3, 1 ≤ s1, q1 <∞
vm · ∇vm ⇀ v · ∇v in Ls3(0, T ′;Lq3(Ω)), 2

s3
+ 3

q3
= 4, 1 ≤ s1, q1 <∞.

(4.4)
When passing to the limit in the weak formulation (3.3) only some terms in
〈(Jmvm+E)(vm+E),∇w〉Ω,T ′ need a special consideration. Concerning (Jmvm)vm
we first note that

Jmvm = Jm(vm − v) + Jmv → v in L2(0, T ′;L2(Ω));

hence, as m→∞, by (4.4)1 and Hölder’s inequality

(Jmvm)vm − vv = (Jmvm − vm)vm + vm · (vm − v) + (vm − v)v ⇀ 0

in Ls4(0, T ′;Lq4(Ω)), 2
s4

+ 3
q4

= 4, 1 ≤ s4, q4 ≤ 2.
(4.5)

Proceeding similarly with all other terms we prove that v is a weak solution of the
perturbed Navier-Stokes system satisfying Definition 1.2 (i),(ii).

It remains to show that v satisfies the energy inequality (1.13). To this aim
we consider the energy equality (3.18) for vm and those t0 ∈ [0, T ) where the
strong convergence vm(t0)→ v(t0) in L2(Ω) holds, see (4.2)4. By (4.3) and (4.2)4
the first three terms in (3.18) pose no problems for m→∞. The same holds true
for the terms 〈F,∇vm〉Ω and 〈EE,∇vm〉. To treat the remaining term we have to
prove that ∫ t

t0

〈(Jmvm)E,∇vm〉Ω dτ →
∫ t

t0

〈vE,∇v〉Ω dτ (4.6)

as m→∞.
Since E ∈ Ls(t0, t;Lq(Ω)) and C∞

0 ((t0, t)×Ω) is dense in Ls(t0, t;Lq(Ω)) for
1 ≤ s, q < ∞, it suffices to show (4.6) for any smooth Ẽ and that the sequence
((Jmvm)∇vm) is bounded in Ls′

(t0, t;Lq′
(Ω)). Indeed, for Ẽ ∈ C∞

0 ((t0, t)× Ω)∫ t

t0

〈(Jmvm)Ẽ,∇vm〉Ω − 〈vẼ,∇v〉Ω)dτ

= −
∫ t

t0

〈(Jmvm)vm − vv,∇Ẽ〉Ω dτ → 0 as m→∞

due to (4.5). Moreover,

‖(Jmvm)∇vm‖q′,s′;t ≤ ‖∇vm‖2,2;t ‖Jmvm‖( 1
q′ −

1
2 )−1,( 1

s′ −
1
2 )−1;t
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is uniformly bounded in m ∈ N by (4.1) and since 2( 1
s′ − 1

2 ) + 3( 1
q′ − 1

2 ) =
3
2 where 2

s + 3
q = 1, 2 ≤ s ≤ ∞, 3 ≤ q ≤ ∞. In the case E ∈ C0((0, T );L3(Ω))

the same argument applies; note that only for this argument we needed E ∈ C0

instead of E ∈ L∞. Summarizing the previous ideas we prove (4.6). �

Proof of Corollary 1.5. Since the proof is based on a differential inequality and
not on Gronwall’s Lemma applied to an integral inequality we have to consider
the sequence of approximate solutions (vm) first of all. By the differential equation
(3.19) for v = vm we get the estimate

1
2
d

dt
‖vm(t)‖22 + ‖∇vm(t)‖22 ≤ (‖F1‖2 + ‖E‖24)‖∇vm‖2 + 〈(Jmvm)E,∇vm〉Ω

where the last term due to the assumption (1.15) can be estimated as follows:

|((Jmvm)E,∇vm)| ≤ 1
4
‖∇Jmvm‖2‖∇vm‖2 ≤

1
4
‖∇vm‖22.

Then Young’s inequality and an absorption argument lead to the estimate
d

dt
‖vm(t)‖22 + ‖∇vm(t)‖22 ≤ 4(‖F1‖22 + ‖E‖44)(t) (4.7)

for a.a. t ≥ 0. Let μ0 > 0 denote the smallest eigenvalue of the Dirichlet Laplacian
on Ω. Then ‖∇vm(t)‖22 ≥ μ0‖vm(t)‖22 for a.a. t > 0, and we get that

d

dt
‖vm(t)‖22 + μ0‖vm(t)‖22 ≤ 4(‖F1‖22 + ‖E‖44)(t).

This estimate together with the assumption (1.17) immediately implies that

‖vm(t)‖22 ≤ e−μ0t‖v0‖22 + e−μ0t

∫ t

0

eμ0τ4(‖F1‖22 + ‖E‖44)dτ

≤ e−μ0t‖v0‖22 + 4
μ0

(‖F1‖2L∞(0,∞;L2(Ω)) + ‖E‖4L∞(0,∞;L4(Ω))).
(4.8)

Hence vm is uniformly bounded on (0,∞) with a bound independent of m ∈ N.
By the pointwise convergence property (4.2)4 v(t) satisfies the same bound, first
of all for a.a. t ≥ 0, but due to its weak continuity property in L2(Ω) even for all
t ≥ 0.

Moreover, (4.8) applied to v yields a time T0 = T0(‖v0‖2) such that ‖v(t)‖22
is bounded by κ∗ for all t ≥ T0 where κ∗ is chosen larger than the last two terms
in (4.8).

Finally, integrating (4.7) with respect to time and passing to the limit with
m→∞, we get the estimate (1.18). �

5. Construction of the vector field E

To apply Theorem 1.3 and Corollary 1.5 and to find solutions u of the Navier-
Stokes system (1.1) in the form u = v + E we have to construct a suitable vector
field E solving (1.4); the solution should satisfy the assumptions (1.8) to apply
Theorem 1.3 and (1.15) to apply Corollary 1.5, respectively. First we consider very
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weak solutions E of (1.8), see [2]–[5], for given suitable data g, E0 and f0. For their
definition we introduce the space of initial values, J q,s

σ (Ω), by

J q,s
σ (Ω) =

{
u0 ∈ D(Aq′ )′ : ‖u0‖J q,s

σ
=

(∫ ∞

0

‖Aqe
−τAq(A−1

q Pqu0)‖s
q dτ

) 1
s

<∞
}
.

(5.1)
Here, D(Aq′ ) is equipped with the graph norm or equivalently with the norm
‖Aq′ · ‖q′ , and the term A−1

q Pqu0 for u0 ∈ D(Aq′ )′ denotes the unique element
u∗ ∈ Lq

σ(Ω) such that 〈A−1
q Pqu, ϕ〉 = 〈u∗, ϕ〉 = 〈u, Pq′A−1

q′ ϕ〉 for all ϕ ∈ Lq′
σ .

Proposition 5.1. Let Ω ⊂ R3 be a bounded domain with ∂Ω ∈ C1,1, let 0 < T ≤ ∞
and let 1 < s, q, r <∞ satisfy 1

3 + 1
q ≥

1
r . Assume that f0 = divF0,

F0 ∈ Ls(0, T ;Lr(Ω)), g ∈ Ls(0, T ;W−1
q ,q(∂Ω)) (5.2)

such that 〈g(t), N〉∂Ω = 0 for a.a. t ∈ (0, T ) and let E0 ∈ J q,s
σ (Ω). Then the Stokes

system (1.4) has a unique very weak solution

E ∈ Ls(0, T ;Lq(Ω)) (5.3)

in the sense that for all test functions w ∈ C1
0 ([0, T );C2

0,σ(Ω))

−〈E,wt〉Ω,T − 〈E,Δw〉Ω,T = 〈E0, w(0)〉Ω − 〈F0,∇w〉Ω,T − 〈g,N · ∇w〉∂Ω,T

divE = 0 in Ω× (0, T ), E ·N = g ·N on ∂Ω× (0, T ).
(5.4)

This solution satisfies the a priori estimate

‖E‖q,s;T ≤ c (‖F0‖r,s;T + ‖g‖
Ls(0,T ;W

− 1
q

,q
(∂Ω))

+ ‖u0‖J q,s
σ

) (5.5)

with a constant c = c(q, r, s,Ω) > 0 independent of T and of the data.

For more details on very weak solutions we refer to [1]–[5]. See, e.g., [5, Chap-
ters 2.1, 2.3], for the well-definedness of all terms in (5.1) and (5.4); Proposition
5.1 is a special case of [5, Theorem 2.14] and a remark in [5, §1.3] on the extension
of results in [3], [4] where ∂Ω ∈ C2,1 to the case ∂Ω ∈ C1,1. Note that Serrin’s
condition 2

s + 3
q = 1 is not needed in the linear theory. Moreover, s = ∞ is not

included in Proposition 5.1; hence the case s = ∞ will not be dealt with in the
next result.

Corollary 5.2. Let Ω ⊂ R3 be a bounded domain with ∂Ω ∈ C1,1, let 0 < T ≤ ∞
and let 1 < s, q, r <∞ satisfy 2

s + 3
q = 1, 1

3 + 1
q ≥

1
r . Assume that f0 = divF0,

F0 ∈ Ls(0, T ;Lr(Ω)) ∩ L4(0, T ;L
12
7 (Ω)),

g ∈ Ls(0, T ;W−1
q ,q(∂Ω)) ∩ L4(0, T ;W−1

4 ,4(∂Ω)),

E0 ∈ J q,s
σ (Ω) ∩ J 4,4

σ (Ω)

(5.6)
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such that 〈g(t), N〉∂Ω = 0 for a.a. t ∈ (0, T ). Then the inhomogeneous Stokes
system (1.4) has a unique very weak solution E satisfying (1.8), i.e.,

E ∈ Ls(0, T ;Lq(Ω)) ∩ L4(0, T ;L4(Ω)), (5.7)

and the a priori estimate

‖E‖q,s;T + ‖E‖4,4;T ≤ c (‖F0‖q,s;T + ‖F0‖ 12
7 ,4;T

+‖g‖
Ls(0,T ;W

− 1
q

,q
(∂Ω))

+ ‖g‖
L4(0,T ;W− 1

4 ,4(∂Ω))

+‖u0‖J q,s
σ

+ ‖u0‖J 4,4
σ

)

(5.8)

holds with a constant c = c(q, r, s,Ω) > 0 independent of T .

Proof. We apply Proposition 5.1 with the exponents s, q, r and 4, 4, 12
7 . Since the

very weak solution E of (1.4) in [3, 4, 5] is constructed in a finite number of steps
where each of them yields the same result for s, q, r and for 4, 4, 127 , it is easily seen
that the unique solution E satisfies (5.7), (5.8). �

Remark 5.3. (i) In the case 4 ≤ s ≤ 8, 4 ≤ q ≤ 6 and T finite the Ls(Lq)-conditions
in (5.6) imply the L4(L4)-conditions; then (5.6)–(5.8) simplify considerably.

(ii) For the system (1.1) consider data f = divF , F ∈ L2(0, T ;L2(Ω)),
u0 ∈ L2(Ω) and boundary data g as in (5.6)3 satisfying 〈g(t), N〉∂Ω = 0 for a.a.
t ∈ (0, T ). Then solve (1.4) with data f0 = 0, E0 = 0 and g to get a (unique) very
weak solution E satisfying (5.7) and the a priori estimate

‖E‖q,s;T + ‖E‖4,4;T ≤ c
(
‖g‖

Ls(0,T ;W
− 1

q
,q

(∂Ω))
+ ‖g‖

L4(0,T ;W− 1
4 ,4(∂Ω))

)
.

Next, by Theorem 1.3, we find a weak solution v of the perturbed Navier-Stokes
system (1.12) with data f1 = f = divF , F1 = F , and v0 = u0 satisfying (1.13),
(1.14). Then u = v + E is a weak solution of (1.1) split into a weak and a very
weak part, v and E. It is an easy exercise to write down a corresponding energy
estimate for u in terms of u0, f and g only.

(iii) Assuming more regularity on the boundary data g better properties of
u = v +E can be achieved; we refer to [3, 4] and to the forthcoming paper [6] for
such results.

In the second part of this Section we consider the assumption (1.15) and

Corollary 1.5. Assume that the bounded domain Ω ⊂ R3 with ∂Ω =
L
∪

j=0
Γj ∈ C1,1

has boundary components Γ0, . . . ,ΓL with Γ0 being the “outer” boundary of Ω
and Γj , 1 ≤ j ≤ L, being the boundary of “holes” Ω′

j . Further, let the boundary
data g with g(t) ∈ W 1

2 ,2(∂Ω) for a.a. t ∈ (0, T ) satisfy the restricted flux condition∫
Γj

g(t) ·Ndo = 0, 0 ≤ j ≤ L. (5.9)

Then, due to a construction in [14], there exists a solenoidal extension E = Eε ∈
W 1,2(Ω) of g for a.a. t ∈ (0, T ) satisfying (1.16) (for arbitrary but fixed ε > 0 and
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for a.a. t). However, we do need also an estimate of E and Et in terms of g and
gt, respectively.

Proposition 5.4. Let Ω ⊂ R3 be a bounded domain as above and let the boundary
function

g ∈ L∞(0,∞;W
1
2 ,2(∂Ω)), gt ∈ L∞(0,∞;W− 1

2 ,2(∂Ω)) (5.10)
satisfy the restricted flux condition (5.9). Then there exists an extension

E ∈ L∞(0,∞;W 1,2(Ω)), Et ∈ L∞(0,∞;W−1,2(Ω)) (5.11)

of g satisfying inequality (1.15)2 and the a priori estimate

‖E‖L∞(0,∞;W 1,2(Ω)) ≤ c ‖g‖L∞(0,∞;W
1
2 ,2(∂Ω))

‖Et‖L∞(0,∞;W−1,2(Ω)) ≤ c ‖gt‖L∞(0,∞;W− 1
2 ,2(∂Ω))

(5.12)

with a constant c = c(Ω) > 0.

Proof. We follow the ideas of E. Hopf [14] as described in [8, 11] to find an extension
E of g written as the curl of a suitable vector potential and defined by a bounded
linear operator g �→ E.

Ignoring t ∈ (0, T ) for a moment we consider g ∈ W 1/2,2(∂Ω) satisfying the
restricted flux condition as in (5.9). Then we use the theory of very weak solutions,
see [3]–[5], to find a solution uj ∈ L2(Ωj), 1 ≤ j ≤ L, of the stationary Stokes
system

−Δuj +∇pj = 0, div uj = 0 in Ωj , u = g on ∂Ωj (5.13)
for each hole Ωj , 1 ≤ j ≤ L. By definition

−(uj ,Δw)Ωj + 〈g,N · ∇w〉∂Ωj = 0 for all w ∈ C2
0,σ(Ωj)

div uj = 0 in Ωj , uj ·N = g ·N on ∂Ωj,

and [4, Theorem 3], yields the existence of a unique very weak solution uj satisfying
the a priori estimate

‖uj‖2,Ωj ≤ c ‖g‖W−1/2,2(∂Ωj) ;

here the necessary compatibility condition 〈g,N〉∂Ωj = 0 is fulfilled due to (5.9)
for each j. By analogy, we find a very weak solution u0 ∈W 1,2(Ω) such that

−Δu0 +∇p0 = 0, div u0 = 0 in Ω, u = g on ∂Ω,

again taking into account (5.9), and get that

‖u0‖2,Ω ≤ c ‖g‖W−1/2,2(∂Ω).

Finally, we consider A = BR\(Ω ∪
⋃L

j=1 Ωj) for a ball of radius R and center 0
such that Ω ⊂ BR, and find a unique very weak solution uA ∈ W 1,2(A) of the
Stokes system

−ΔuA +∇pA = 0, div uA = 0 in A, u|Γ0
= g, u|∂BR

= 0

since 〈g,N〉Γ0 = 0 by (5.9). Moreover, ‖uA‖2,A ≤ c ‖g‖W−1/2,2(∂Ω).
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Since g ∈ W 1/2,2(∂Ω) ⊂ W−1/2,2(∂Ω), the very weak solutions uj, u0, uA

constructed so far are also weak solutions, and, in particular, uj ∈ W 1,2(Ωj) and
‖uj‖W 1,2(Ωj) ≤ c ‖g‖W 1/2,2(∂Ωj); for this regularity argument see [4, Remarks 2(1)].

Next we define u on R3 by u = uj in Ωj , 1 ≤ j ≤ L, u = u0 in Ω, u = uA in
A and u = 0 in R3\A. Obviously, u ∈ W 1,2(R3), div u = 0 in R3, and u satisfies
the estimates

‖∇u‖2 ≤ c ‖g‖W 1/2,2(∂Ω),

‖u‖2 ≤ c ‖g‖W−1/2,2(∂Ω).
(5.14)

Using L2-Fourier analysis we find a vector potential ψ ∈W 2,2(R3) such that

u = rotψ, ‖∇ψ,∇2ψ‖2 ≤ c ‖u‖W 1,2(R3). (5.15)

Indeed, since div u = 0, the equation rotψ = u has a unique solenoidal solution ψ
defined in Fourier space via |ξ|2ψ̂ = i ξ× û. Obviously, ψ satisfies (5.15). To prove
that ψ ∈ L2(R3) we introduce the space Ŵ 1,q(Rn), 1 < q < ∞, as the closure
of C∞

0 (Rn) with respect to the norm ‖∇(·)‖q, and its dual space Ŵ−1,q(Rn) ≡
Ŵ 1,q′

(Rn)∗. Evidently, ψ ∈ L2(Rn) and ‖ψ‖2 ≤ c ‖u‖Ŵ−1,2 provided that u ∈
Ŵ−1,2(R3). To see the latter assertion we exploit the fact that u has compact
support in BR and refer to the following Lemma 5.5 the proof of which will be
postponed to the end of the paper.

Lemma 5.5. Let D be a bounded domain in Rn and let 1 < q <∞. If u ∈ Lq(Rn)
with supp u ⊂ D, then u ∈ Ŵ−1,q(Rn) and satisfies the estimate

‖u‖Ŵ−1,q(Rn) ≤ c‖u‖Lq(D), (5.16)

where c = c(D,n, q) is a constant independent of u.

Summarizing (5.15), the estimate ‖ψ‖2 ≤ c ‖u‖Ŵ−1,2 and (5.16) with q = 2
we get that u = rotψ,

‖∇ψ‖2 + ‖∇2ψ‖2 ≤ c ‖g‖W 1/2,2(∂Ω)

‖ψ‖2 ≤ c ‖g‖W−1/2,2(∂Ω)

(5.17)

with a constant c = c(Ω) > 0. Moreover, the map g �→ ψ is linear.
In the next step we define the vector field E = Eε by E = rot (θεψ) where

θε ∈W 1,∞ is a cut-off function with support in an ε-neighborhood of ∂Ω. Following
[11, pp. 288–290] or [22, Ch. II, §1, Lemma 1.9, Lemma 1.10] for pointwise estimates
of θε and E we get for all w1, w2 ∈ W 1,2

0,σ (Ω) the estimates

|〈w1E,∇w2〉Ω| ≤ ‖w1E‖2‖∇w2‖2
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and with χε = χsupp θε and d(x) = dist (x, ∂Ω)

‖w1E‖22 ≤ c
∫

Ω

|w1|2
( ε

d(x)
|ψ(x)|+ |∇ψ(x)|χε

)2
dx

≤ c ε2
(∫

Ω

∣∣∣ w1

d(·)

∣∣∣2dx) ‖ψ‖2∞ + c ‖w1‖26‖∇ψ‖26‖χε‖26

≤ c ‖∇w1‖22 ‖ψ‖2H2(R3) (ε2 + ‖χε‖26);

here ε > 0 may be chosen arbitrarily small and is related to the size of supp θε
which shrinks when ε→ 0. Hence (1.15)2 can be fulfilled for a.a. fixed t > 0 in the
sense that

|〈w1E,∇w2〉Ω| ≤
1
4
‖∇w1‖2 ‖∇w2‖2, w1, w2 ∈ W 1,2

0,σ (Ω) . (5.18)

Furthermore, since 〈E,ϕ〉Ω = 〈θψ, rotϕ)〉Ω for all ϕ ∈ W 1,2
0 (Ω) we get by (5.17)2

the estimate
‖E‖W−1,2(Ω) ≤ c ‖g‖W−1

2 ,2(∂Ω)
. (5.19)

In the final step we define E(·) as in (5.11) satisfying (1.15)2. Given g ∈
L∞(0,∞;W

1
2 ,2(∂Ω)) fulfilling (5.9) for a.a. t > 0 we find by the previous argu-

ments for a.a. t > 0 a vector field E(t) = rot (θψ(t)) satisfying (5.18) and, due to
(5.17),

‖E(t)‖W 1,2(Ω) ≤ c ‖g(t)‖W
1
2 ,2(∂Ω)

for a.a. t ∈ (0, T ).

Hence E ∈ L∞(0,∞;W 1,2(Ω)), and (5.12)1, (1.15)2 are easy consequences. Since
the map g �→ E is linear and gt ∈ L∞(0,∞;W−1/2,2(∂Ω)), the previous ar-
guments, the method of difference quotients and (5.19) also imply that Et ∈
L∞(0,∞;W−1/2,2(∂Ω)) and that (5.12)2 holds.

Now Proposition 5.4 is completely proved. �

To apply Proposition 5.4 to the Navier-Stokes system (1.1) via Theorem 1.3
we have to consider the Stokes system (1.4) for E more closely. In this setting
where E has already been defined by the boundary data g we have to determine
f0 and E0 in (1.4). Let h ≡ 0 so that by the construction in the proof of Proposition
5.4

f0 = Et −ΔE, E = rot (θψ),

which may be written also in the form f0 = divF0. By (5.12) we easily get that
F0 ∈ L∞(0,∞;L2(Ω)) and that

‖F0‖2,∞;∞ ≤ c
(
‖Et‖L∞(0,∞;W−1,2(Ω)) + ‖E‖L∞(0,∞;W 1,2(Ω))

)
≤ c

(
‖gt‖

L∞(0,∞;W− 1
2 ,2(∂Ω))

+ ‖g‖
L∞(0,∞;W

1
2 ,2(∂Ω))

)
.

(5.20)

Moreover, since E ∈ L2
loc ([0,∞);W 1,2(Ω)) and Et ∈ L2

loc ([0,∞);W−1,2(Ω)), a
classical interpolation result states that E ∈ C0([0,∞);L2(Ω)), the initial value
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E0 = E(0) ∈ L2(Ω) is well defined and there exists a constant c > 0 such that

‖E0‖2 ≤ c
(
‖E‖L∞(0,∞;W 1,2(Ω)) + ‖Et‖L∞(0,∞;W−1,2(Ω))

)
≤ c

(
‖g‖

L∞(0,∞;W
1
2 ,2(∂Ω))

+ ‖gt‖
L∞(0,∞;W− 1

2 ,2(∂Ω))

)
.

(5.21)

Furthermore, divE0 = 0 and E0|∂Ω
= g(0) where g(0) is well defined in L2(∂Ω).

Now we are ready to state our final result.

Corollary 5.6. Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω ∈ C1,1 and
boundary components Γj, 0 ≤ j ≤ L. Assume that f=divF , F ∈ L∞(0,∞;L2(Ω)),
u0 ∈ L2(Ω) and that g satisfies (5.10) and the restricted flux condition (5.9).

Then the Navier-Stokes system (1.1) has a global weak solution u = v + E
where E satisfies (5.11), (5.12) and

‖v(t)‖22 ≤ e−μ0t
(
‖v0‖22 + 2

∫ t

0

eμ0τ (‖F1‖22 + ‖E‖44) dτ
)
;

here F1 = F + F0 satisfies (5.20), v0 = u0 −E0 where E0 is subject to (5.21), and
with μ0 from (4.8).

In particular, v and also u are bounded globally in time in L2(Ω). There
exists a bound κ∗ independent of u0 such that for all t > T0 = T0(u0, g, gt) we
have ‖v(t)‖2 ≤ κ∗.

Proof of Lemma 5.5. Let us first consider the case n′ = n
n−1 < q <∞. For such q,

it holds 1 < q′ = q
q−1 < n, and the Sobolev inequality states that ‖ϕ‖

L
nq′

n−q′ (Rn)
≤

C‖∇ϕ‖Lq′ (Rn) for all ϕ ∈ C∞
0 (Rn). Hence taking η ∈ C∞

0 (Rn) satisfying η(x) ≡ 1
for x ∈ D, we have

|〈u, ϕ〉| = |〈u, ηϕ〉| ≤ ‖u‖Lq(D)‖ηϕ‖Lq′(D) ≤ c‖u‖Lq(D)‖ϕ‖
L

nq′
n−q′ (Rn)

≤ c‖u‖Lq(D)‖∇ϕ‖Lq′(Rn)

for all ϕ ∈ C∞
0 (Rn). Hence u ∈ Ŵ−1,q(Rn), and u satisfies the estimate (5.16).

We next consider the case 1 < q ≤ n′, i.e., n ≤ q′ < ∞. For such q, we see
that the subspace SD ≡ {ϕ ∈ C∞

0 (Rn);
∫

D ϕ(x)dx = 0} is dense in Ŵ 1,q′
(Rn). For

a moment, let us assume this density. Then it follows from the Poincaré-Friedrichs
inequality ‖ϕ‖Lq′(D) ≤ c‖∇ϕ‖Lq′ (D) for ϕ ∈ SD that

|〈u, ϕ〉| ≤ ‖u‖Lq(D)‖ηϕ‖Lq′(D) ≤ c‖u‖Lq(D)‖ϕ‖Lq′(D) ≤ c‖u‖Lq(D)‖∇ϕ‖Lq′ (Rn)

for all ϕ ∈ SD. Since SD is dense in Ŵ 1,q′
(Rn), the above estimate implies that

u ∈ Ŵ−1,q(Rn) with (5.16).
It remains to prove the density of the space SD in Ŵ 1,q′

(Rn). Take a function
ζ ∈ C∞

0 (Rn) such that ζ(x) = 1 for |x| ≤ 1 and ζ(x) = 0 for |x| > 2, and define
ζk(x) ≡ ζ(x/k) for k ∈ N. For every ϕ ∈ C∞

0 (Rn), we choose a sequence {ϕk}∞k=1 by

ϕk(x) = ϕ(x) −
(

1
|D|

∫
D

ϕ(y)dy
)
ζk(x), x ∈ Rn, k ∈ N.
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For sufficiently large k we have ζk(x) ≡ 1 for all x ∈ D, and hence we may assume
that {ϕk}∞k=1 ⊂ SD. For 1 < q < n′, i.e., n < q′ <∞, it holds that

‖∇ϕk −∇ϕ‖Lq′ (Rn) ≤ c‖∇ζk‖Lq′(Rn) ≤ ck
−1+ n

q′ → 0 as k →∞,

from which we conclude that SD is dense in Ŵ 1,q′
(Rn) provided 1 < q < n′.

For q = n′, i.e., q′ = n, we have supk∈N ‖∇ϕ − ∇ϕk‖Ln(Rn) < ∞, and we
easily conclude that

∇ϕk ⇀ ∇ϕ weakly in Ln(Rn) as k →∞.
Applying Mazur’s lemma to the sequence {ϕk}∞k=1, we may select a sequence
{ϕ̄k}∞k=1 of convex combinations of {ϕk}∞k=1 so that

∇ϕ̄k → ∇ϕ strongly in Ln(Rn) as k →∞,
from which we also deduce the density of SD in Ŵ 1,n(Rn). This proves the lemma.

�
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Time and Norm Optimality
of Weakly Singular Controls

H.O. Fattorini

Abstract. Let ū(t) be a control that satisfies the infinite-dimensional version
of Pontryagin’s maximum principle for a linear control system, and let z(t)
be the costate associated with ū(t). It is known that integrability of ‖z(t)‖
in the control interval [0, T ] guarantees that ū(t) is time and norm optimal.
However, there are examples where optimality holds (or does not hold) when
‖z(t)‖ is not integrable. This paper presents examples of both cases for a
particular semigroup (the right translation semigroup in L2(0,∞)).
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1. Introduction

We consider two optimal control problems for the system

y′(t) = Ay(t) + u(t) , y(0) = ζ (1.1)

with controls u(·) ∈ L∞(0, T ;E), where A generates a strongly continuous semi-
group S(t) in a Banach space E. The first is the norm optimal problem, where we
drive the initial point ζ to a point target,

y(T ) = ȳ (1.2)

in a fixed time interval 0 ≤ t ≤ T minimizing ‖u(·)‖L∞(0,T ;E). The second is the
time optimal problem, where we drive to the target with a bound on the norm of
the control (say ‖u(·)‖L∞(0,T ;E) ≤ 1) in optimal time T. The solution or trajectory
of (1.1) is the continuous function

y(t) = y(t, ζ, u) = S(t)ζ +
∫ t

0

S(t− σ)u(σ)dσ . (1.3)
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For the time optimal problem, controls in L∞(0, T ;E) with ‖u(·)‖L∞(0,T ;E) ≤ 1
are named admissible.

Necessary and sufficient conditions for norm and time optimality can be given
in terms of the maximum principle (1.5) below which requires the construction of
spaces of multipliers (final values of costates). We summarize this construction
from [4] or [5], Section 2.3. When A has a bounded inverse, we define the space
E∗

−1 as the completion of E∗ in the norm

‖y∗‖E∗
−1

= ‖(A−1)∗y∗‖E∗ .

Each S(t)∗ can be extended to an operator S(t)∗ : E∗
−1 → E∗

−1, and Zw(T ) ⊆ E∗
−1

consists of all z ∈ E∗
−1 such that S(t)∗z ∈ E∗ and1

‖z‖Zw(T ) =
∫ T

0

‖S(t)∗z‖E∗dt <∞ . (1.4)

The space Zw(T ) equipped with ‖ · ‖Zw(T ) is a Banach space. All spaces Zw(T )
coincide (that is, Zω(T ) = Zω(T ′) for any T, T ′ > 0 and the norms ‖ · ‖Zw(T ),
‖ · ‖Zw(T ′) are equivalent). Zw(T ) is an example of a multiplier space, an arbitrary
linear space Z ⊇ E∗ to which S(t)∗ can be extended in such a way that S(t)∗Z ⊆
E∗ for t > 0. When A does not have a bounded inverse, the construction of the
spaces is modified as follows. Since A is a semigroup generator, (λI −A)−1 exists
for λ > ω and E∗

−1 is the completion of E∗ in any of the equivalent norms

‖y∗‖E∗
−1,λ = ‖((λI −A)−1)∗y∗‖E∗ , (λ > ω) .

The definition of Zw(T ) (and of multiplier spaces) is the same. See [5], Section 2.3
for proofs of these results and additional details.

A control ū(·) ∈ L∞(0, T ;E) satisfies Pontryagin’s maximum principle if

〈S(T − t)∗z, ū(t)〉 = max
‖u‖≤ρ

〈S(T − t)∗z, u〉 a.e. in 0 ≤ t < T , (1.5)

where 〈· , ·〉 is the duality of the space E and the dual E∗, with ρ = ‖ū(·)‖L∞(0,T ;E)

and z in some multiplier space Z. We call z the multiplier and z(t) = S(T − t)∗z
the costate corresponding to (or associated with) the control ū(t). We assume that
(1.5) is nontrivial; this means S(T − t)∗z is not identically zero in the interval
0 ≤ t < T, although it may be zero in part of the interval (in which part (1.5) says
nothing about ū(t)). That (1.5) is nontrivial implies that z �= 0. The maximum
principle is especially simple when E is a Hilbert space; it reduces to

ū(t) = ρ
S(T − t)∗z
‖S(T − t)∗z‖ (T − δ < σ ≤ T ) , (1.6)

where 0 ≤ t < δ is the maximal interval where S(t)∗z �= 0; if δ ≥ T the interval is
0 < σ ≤ T.
1Without further assumptions, the semigroup S(t)∗ may not be strongly continuous, or even
strongly measurable (consider, for instance, the translation semigroup S(t)y(x) = y(x − t) in
E = L1(∞,∞)). However, S(t)∗ is always E-weakly continuous, which guarantees that ‖S(t)∗‖
is lower semicontinuous, hence measurable. This justifies the integral (1.4).
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A large part of the theory of optimal controls for the system (1.1) deals with
the relation between optimality and the maximum principle (1.5). All one has
(at present) are separate necessary and sufficient conditions for optimality based
on the maximum principle (Theorem 1.1 below). We call an optimal control ū(t)
regular if it satisfies (1.5) with z ∈ Zw(T ).

Theorem 1.1. Assume ū(t) drives ζ ∈ E to ȳ = y(T, ζ, ū) time or norm optimally
in the interval 0 ≤ t ≤ T and that

ȳ − S(T )ζ ∈ D(A) . (1.7)

Then ū(t) is regular. Conversely, let ū(t) be a regular control. Then ū(t) drives
ζ ∈ E to ȳ = y(T, ζ, ū) norm optimally in the interval 0 ≤ t ≤ T ; if ρ = 1 the
drive is time optimal.

For the proof see [4], Theorem 5.1, [5], Theorem 2.5.1; we note that in the
sufficiency half of Theorem 1.1 no conditions of the type of (1.7) are put on the
initial value ζ or the target ȳ.2

Following the terminology in [5] we call a control weakly singular if it satisfies
the maximum principle (1.5) but the costate does not satisfy the integrability con-
dition (1.4) (that is, z /∈ Zw(T )). The following question arises: is a weakly singular
control (norm, time) optimal? The answer to this question is “not necessarily” and
examples of weakly singular controls that are (or are not) optimal are known. It is
proved in [2] (see [5], Section 3.4) that for the (self-adjoint) multiplication operator

Au(λ) = −λu(λ)

in L2(0,∞), which generates the analytic semigroup

S(t)u(λ) = e−λtu(t) (1.8)

there exist optimal controls for (1.1) satisfying the maximum principle (1.5) where
the growth of the costate z(t) as t approaches the final time T is ≈ C/(T − t) in
the sense that

(T − t)‖z(t)‖E∗ = (T − t)‖S(T − t)∗z‖E∗ → C as t→ T (1.9)

with 0 < C <∞. These controls cannot satisfy (1.4), thus they are weakly singular.
On the other hand there exist controls satisfying (1.5) and

(T − t)α‖z(t)‖E∗ = (T − t)α‖S(T − t)∗z‖E∗ → C as t→ T (1.10)

with α > 1 and 0 < C <∞ (thus weakly singular) that are not time or norm opti-
mal. We provide in this paper similar examples for the right translation semigroup

2The statement on time optimality, however, needs additional assumptions on the initial condi-
tion ζ and the target ȳ. These conditions are satisfied if either ζ = 0 or ȳ = 0 [5], Theorem 2.5.7.
We point out that the conditions are on the “size” of ζ ȳ, not on their smoothness like (1.7); for
instance, for ζ = 0, ȳ may be an arbitrary element of E. We also need to assume that S(t)∗z �= 0
in the entire interval 0 ≤ t ≤ T.
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S(t) in L2(0,∞) defined by

S(t)y(x) =
{
y(x− t) (x ≥ t)
0 (x < t) . (1.11)

Although the technical means are totally different, the examples are of the same
sort as those in [2]; there are controls that satisfy (1.9) and are optimal, whereas
there are controls with faster increase of ‖z(t)‖ which are not optimal. What is
remarkable about the examples in this paper is that they resemble similar exam-
ples for semigroups as different as (1.8), analytic with (1.1) an abstract parabolic
equation. The semigroup (1.11) under study here is isometric, with associated
equation (1.1) having a finite velocity of propagation, thus qualifying as “abstract
hyperbolic”.

On the basis of this similar behavior of controls for very different semigroups
it is tempting to guess that there must exist some sort of classification of weakly
singular controls (as optimal or nonoptimal) which is based on the growth of the
norm of the costate z(t) = S(T −t)∗z as t→ T and holds for arbitrary semigroups.
There seems to be no such general result except [3] Lemma 8.3, [5] Lemma 3.5.9
where the generator is self-adjoint in Hilbert space and ‖S(t)∗z‖ has “hyperpower
growth” as t→ 0; this means∫ 1

0

‖S(rσ)∗z‖
σ‖S(σ)∗z‖dσ <∞ (1.12)

for some r in the range 1 < r < 2 (the adjoint may be omitted since the semigroup
S(t) is self-adjoint). Under (1.12), the control corresponding to the multiplier z is
not optimal. Condition (1.12) cannot hold if (1.10) is satisfied for any α > 0; in
fact, in this case

‖S(rσ)∗z‖
σ‖S(σ)∗z‖ ≈

Cσα

σC(rσ)α
=

1
rασ

making the integral infinite. However, there is a wide gap between hyperpower
growth and power growth like (1.9), and nothing is known for intermediate growths.

We mention in passing the results on multipliers in [6]. When the semigroup
satisfies

S(t)E = E (t > 0) (1.13)
then every multiplier space satisfies Z = Zw(T ) = E∗, that is, all multipliers in
(1.5) automatically belong to E∗; this makes moot the question of the growth of
‖z(t)‖ as t → T. It is also shown in [6] that (under the assumption that E is
reflexive and separable) (1.13) is a necessary condition for all multipliers to belong
to E∗. Moreover, condition (1.7) can be dropped from Theorem 1.1 in case (1.12)
holds: all time or norm optimal controls satisfy (1.5) with a multiplier z ∈ E∗.

2. The right translation semigroup

The space is E = L2(0,∞). Its elements y(x) (defined in x ≥ 0) are extended
as y(x) = 0 for x < 0. The right translation semigroup S(t) defined by (1.11) is
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strongly continuous and isometric in L2(0,∞). The adjoint semigroup is the left
translation (and chop-off) semigroup

S(t)∗y(x) =
{
y(x+ t) (x ≥ 0)
0 (x < 0) . (2.1)

We have

S(t)∗S(t) = I , S(t)S(t)∗y(x) = χt(x)y(x) (2.2)

where χt(x) is the characteristic function of [t,∞). The infinitesimal generator A
of S(t) is

Ay(x) = −y′(x) , (2.3)

with domain D(A) = {all y(·) ∈ L2(0,∞) with y′(·) in L2(0,∞) and y(0) = 0},
the derivative understood in the sense of distributions. The semigroup S(t) is
associated with the control system

∂y(t, x)
∂t

= −∂y(t, x)
∂x

+ u(t, x)

y(0, x) = ζ(x) , y(t, 0) = 0 ,
(2.4)

in the sense that S(t) is the propagation semigroup of the homogeneous equation
(u(t, x) = 0). Formula (1.3) for the control u(t)(x) = u(t, x) is

y(t, x, ζ, u) = y(t, ζ, u)(x) =
(
S(t)ζ +

∫ t

0

S(t− σ)u(σ)dσ
)

(x)

= ζ(x− t) +
∫ t

0

u(σ, x− (t− σ))dσ , (2.5)

thus the contribution of u(σ, x) to y(t, x, ζ, u) is the integral of u(σ, x) over the
intersection with the positive quadrant of the characteristic line (σ, x − (t − σ))
joining (0, x− t) with (t, x), as shown in Figure 1.

Figure 1
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We name Z the space of all measurable z(x) defined in x > 0 and such that

κ(σ, z) = ‖S(σ)∗z(·)‖ =

√∫ ∞

0

z(x+ σ)2dx =

√∫ ∞

σ

z(x)2dx <∞

in σ > 0. The space3 Z(T ) consists of all z(·) ∈ Z with∫ T

0

‖S(σ)∗z(·)‖dσ =
∫ T

0

κ(σ, z)dσ <∞ . (2.6)

Since we are in a Hilbert space (1.6) applies and any control that satisfies the
maximum principle (1.5) is given a.e. by

ū(σ, x) = ρ
S(T − σ)∗z(x)
‖S(T − σ)∗z(·)‖ = ρχ0(x)

z(x+ (T − σ))
κ(T − σ, z) (T − δ < σ ≤ T ) , (2.7)

where 0 ≤ t < δ is the maximal interval where S(t)∗z �= 0; if δ ≥ T, the interval
in (2.7) is 0 < σ ≤ T.

Using the second equality (2.2) and assuming for simplicity that ρ = 1 we
obtain

S(T − σ)ū(σ)(x) =
S(T − σ)S(T − σ)∗z(x)

‖S(T − σ)∗z(·)‖ =
χT−σ(x)z(x)
κ(T − σ, z) (0 ≤ σ < T ) (2.8)

whenever κ(T − σ, z) �= 0. Formula (2.5) for t = T becomes

y(T, x, ζ, ū)(x) = S(T )ζ(x) +
∫ T

0

S(T − σ)ū(σ, x)dσ

= ζ(x− T ) +
∫ T

0

χT−σ(x)z(x)
κ(T − σ, z) dσ = ζ(x− T ) + z(x)

∫ T

0

χT−σ(x)
κ(T − σ, z)dσ

= ζ(x− T ) + z(x)
∫ T

0

χσ(x)
κ(σ, z)

dσ = ζ(x − T ) + z(x)ω(T, x, z) , (2.9)

where

ω(T, x, z) =
∫ T

0

χσ(x)
κ(σ, z)

dσ =
∫ min(x,T )

0

dσ

κ(σ, z)
. (2.10)

If we drive from 0 to ȳ(x) in time T, the target ȳ(x) and the costate z(x) are
related by

ȳ(x) = y(T, x, 0, ū) = z(x)ω(T, x, z) , (2.11)

so that the target ȳ(x) is a multiple of the multiplier z(x) in x ≥ T.

3We drop the subindex w since S(t)∗ is strongly continuous.
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3. Weakly singular controls, I

We use the family of multipliers

z(x) =
1
xα

(
α >

1
2

)
(3.1)

associated with the controls

ūα(σ, x) =
χ0(x)

κ(T − σ, z)(x + (T − σ))α
(0 ≤ σ ≤ T ) . (3.2)

We have

κ(σ, z)2 =
∫ ∞

σ

dx

x2α
=
σ1−2α

2α− 1
=

1
(2α− 1)σ2α−1

,

thus

κ(σ, z) =
1√

2α− 1σα−1/2
(3.3)

and, in view of (2.6) the control ūα(σ, x) is regular (z(·) ∈ Z(T )) if and only if

α− 1
2
< 1 ⇐⇒ α <

3
2

;

on the other hand z(·) ∈ Z (thus ūα(σ, x) is weakly singular) for arbitrary α ≥ 3/2.
Combining (3.2) and (3.3)

ūα(σ, x) =
√

2α− 1χ0(x)(T − σ)α−1/2

(x+ (T − σ))α
(0 ≤ σ ≤ T ) . (3.4)

We have∫ ∞

σ

ūα(σ, x)2dx = (2α− 1)(T − σ)2α−1

∫ ∞

σ

(x+ (T − σ))−2αdx

= (2α− 1)(T − σ)2α−1 (x + (T − σ))1−2α

1− 2α

∣∣∣x=∞

x=σ
=

(T − σ
T

)2α−1

, (3.5)∫ σ

0

ūα(σ, x)2dx = (2α− 1)(T − σ)2α−1

∫ σ

0

(x+ (T − σ))−2αdx

= (2α− 1)(T − σ)2α−1 (x + (T − σ))1−2α

1− 2α

∣∣∣x=σ

x=0
= 1−

(T − σ
T

)2α−1

. (3.6)

Since 2α− 1 > 0 we have the proof of

Lemma 3.1. Let 0 ≤ σ ≤ T. Let

I(α) =
∫ σ

0

ūα(σ, x)2dx , J(α) =
∫ ∞

σ

ūα(σ, x)2dx
(
α >

1
2

)
.

Then I(α) (resp. J(α)) is a decreasing (resp. increasing) function of α.

From (2.10) and (3.3) we have

ω(T, x, z) =
√

2α− 1
∫ x

0

σα−1/2dσ =
√

2α− 1
α+ 1/2

xα+1/2
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for x ≤ T ; for x ≥ T

ω(T, x, z) =
√

2α− 1
∫ T

0

σα−1/2dσ =
√

2α− 1
α+ 1/2

Tα+1/2 .

Formula (2.11) implies that the control ūα(σ, x) in (3.4) drives 0 to the target

ȳ(x) =
√

2α− 1
α+ 1/2

x1/2 (x ≤ T ) ,

ȳ(x) =
√

2α− 1
α+ 1/2

Tα+1/2

xα
(x > T ) .

(3.7)

Figure 2 shows ȳ3/2(x) for T = 1.

Figure 2

As a consequence of Theorem 1.1 we obtain

Theorem 3.2. If α < 3/2 the control ūα(σ, x) is regular, thus it drives 0 to ȳα(x)
time and norm optimally.

We prove below that this is no longer true if α > 3/2. The proof is based on the
fact that the function

K(α) =
√

2α− 1
α+ 1/2

(the factor in (3.7)) has the unique maximum 3/2 in α ≥ 1/2 (with K(3/2) =
1/
√

2). The graph of K(α) is shown in Figure 3.

Figure 3
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Let α > 3/2, so that K(3/2) > K(α).We improve the norm-performance provided
by the control ūα(σ, x) constructing a control ũα(σ, x) “by pieces” as follows (see
Figure 4).

Figure 4

In the triangle K we define

ũα(σ, x) =
K(α)
K(3/2)

ū3/2(σ, x) . (3.8)

The integration formula (2.5) (see also Figure 1) shows that this new definition
affects the target ȳ(x) only in the interval 0 ≤ t ≤ T. There is actually no change
in the target, since in this interval the target hit by ũα(σ, x) is

ȳ(x) =
K(α)
K(3/2)

ȳ3/2(x) = ȳα(x) .

Using the first part of Lemma 3.1 we obtain∫ σ

0

ũα(σ, x)2dx =
K(α)
K(3/2)

∫ σ

0

ū3/2(σ, x)2dx ≤
K(α)
K(3/2)

∫ σ

0

ūα(σ, x)2dx . (3.9)

As a first approximation we don’t modify the control ūα(σ, x) in the complement
C of K, so that we drive to the target ȳα(x) with

v(σ, x) =
{
ũα(σ, x) (σ, x) ∈ K
ūα(σ, x) (σ, x) ∈ C . (3.10)

Using (3.5), (3.6) and (3.9),

‖v(σ, ·)‖L2(0,∞) =
∫ ∞

0

v(σ, x)2dx

=
∫ σ

0

v(σ, x)2dx+
∫ ∞

σ

v(σ, x)2dx

≤ K(α)
K(3/2)

∫ σ

0

ūα(σ, x)2dx+
∫ ∞

σ

ūα(σ, x)2dx

=
K(α)
K(3/2)

(
1−

(T − σ
T

)2α−1)
+

(T − σ
T

)2α−1

= η(σ)
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The fact that η(α) < 1 in 0 < σ ≤ T implies right away that v(·, ·) (thus ūα(·, ·))
is not time optimal, since the bang-bang theorem [1] Theorem 2.2, [5] Theorem
2.1.3 says that time optimal controls ū(σ) for (1.1) must satisfy ‖ū(σ)‖ = 1 almost
everywhere. However, η(σ) < 1 does not imply that vα(·, ·) is not norm optimal
since η(0) = 1 (time optimal → norm optimal but the converse is not true).
Thus, we must prove directly that ūα(·, ·) is not norm optimal, which requires
modification of v(·, ·) in C. This will be done by further subdivision of C into two
regions C1 and C2 indicated in Figure 5; the parameter N > 0 will be determined
later.

Figure 5

A computation entirely similar to (3.6) shows∫ σ+N

σ

ūα(σ, x)2dx =
(T − σ
T

)2α−1

−
( T − σ
T +N

)2α−1

. (3.11)

We introduce the control

v̄α(σ, x) =
√

2α− 1χ0(x)σα−1/2

(x+ (T − σ))α
(0 ≤ σ ≤ T ) . (3.12)

After another computation like (3.6),∫ ∞

σ+N

v̄α(σ, x)2dx =
( σ

T +N

)2α−1

.

Moreover,

v̄α(σ, x − (T − σ)) =
√

2α− 1χ0(x)σα−1/2

xα
.

Since

ūα(σ, x − (T − σ)) =
√

2α− 1χ0(x)(T − σ)α−1/2

xα

formula (2.5) and the change of variables σ → T −σ show that both controls drive
0 to ȳα(x) in x ≥ T. This can also be directly verified for v̄α(σ, x) :∫ T

0

v̄α(σ, x − (T − σ))dσ =
√

2α− 1
xα

∫ T

0

σα−1/2dσ =
√

2α− 1
α+ 1/2

Tα+1/2

xα
.
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The control v(σ, x) is now defined by

v(σ, x) =

⎧⎨⎩
ũα(σ, x) (σ, x) ∈ K
ūα(σ, x) (σ, x) ∈ C1
v̄α(σ, x) (σ, x) ∈ C2

(3.13)

and we have

‖v(σ, ·)‖L2(0,∞) =
∫ ∞

0

v(σ, x)2dx

=
∫ σ

0

v(σ, x)2dx+
∫ σ+N

σ

v(σ, x)2dx+
∫ ∞

σ+N

v(σ, x)2dx

≤ K(α)
K(3/2)

∫ σ

0

ūα(σ, x)2dx+
∫ σ+N

σ

ūα(σ, x)2dx+
∫ ∞

σ+N

v̄α(σ, x)2dx

=
K(α)
K(3/2)

(
1−

(T − σ
T

)2α−1)
+

((T − σ
T

)2α−1

−
( T − σ
T +N

)2α−1)
+

( σ

T +N

)2α−1

= η(σ) . (3.14)

We have

η(0) = 1−
( T

T +N

)2α−1

< 1

η(T ) =
K(α)
K(3/2)

+
( T

T +N

)2α−1

< 1 ,
(3.15)

the second inequality taking place for N large enough. Since α ≥ 3/2 we have
2α− 1 ≥ 2 and each of the three terms in (3.14) that make up η(σ) have positive
second derivative. It follows that η(σ) is convex, thus (3.15) implies

η(σ) ≤ max(η(0), η(T )) < 1

and the control v(σ, x) reaches the target ȳα(x) with smaller norm than ūα(σ, x)
thus proving that the latter is not norm optimal.

4. Weakly singular controls, II

We show in this section that the control u3/2(σ, x), although weakly singular, is
time and norm optimal. To this end, we assume it not time optimal: then there
exists an admissible control u(σ, x) driving 0 to ȳ3/2(x) in time T − δ < T. We
show below that this implies that, for some α < 3/2 sufficiently close to 3/2 the
control ūα(σ, x) is not norm optimal, which contradicts Theorem 3.2.

We construct a control v(σ, x) that drives 0 to ȳα(x) in time T. This control
is also constructed by pieces; the different domains are in Figure 6.
Since u(σ, x) drives 0 to ȳ3/2(x) in time T − δ, the control{

0 (0 ≤ σ < δ)
u(σ − δ, x) (δ ≤ σ ≤ T )
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Figure 6

drives 0 to ȳ3/2(x) in time T. In view of (3.7), the control

v1(σ, x) =

⎧⎪⎨⎪⎩
0 (0 ≤ σ < δ)
K(α)
K(3/2)

u(σ − δ, x) (δ ≤ σ ≤ T )
(4.1)

drives 0 to

v1(σ, x) =

⎧⎪⎪⎨⎪⎪⎩
K(α)
K(3/2)

ȳ3/2(x) = ȳα(x) (0 ≤ x ≤ T )

K(α)T 2

y3/2
(T < x <∞)

(4.2)

in time T. We define next

v2(σ, x) =

⎧⎨⎩
K(α)
δ

( Tα+1/2

(x+ (T − σ))α
− T 2

(x+ (T − σ))3/2

)
(σ, x) ∈ C2

0 (σ, x) ∈ K ∪ C1 .
This control drives to a target which is = 0 in 0 ≤ x ≤ T. Over the paths of
integration (σ, x − (T − σ)) in formula (2.5) for x ≥ T we have

v2(σ, x − (T − σ)) =

⎧⎨⎩ K(α)
δ

(Tα+1/2

xα
− T 2

x3/2

)
(0 ≤ σ ≤ δ)

0 (δ < σ < T )

thus ∫ T

0

v2(σ, x − (T − σ))dσ = K(α)
(Tα+1/2

xα
− T 2

x3/2

)
(x ≥ T )

and it follows that v2(σ, x) drives to a “corrector” target ȳ2(x) such that ȳ2(x) = 0
in 0 ≤ x ≤ T and

ȳ1(x) + ȳ2(x) = ȳα(x) (0 ≤ x <∞) .

Accordingly, the control

v(σ, x) = v1(σ, x) + v2(σ, x) (4.3)
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drives 0 to the “right” target ȳα(x). It remains to select α so that v(σ, x) does the
drive with norm < 1. On the one hand, we have

‖v(σ, ·)‖L2(0,∞) =
K(α)
K(3/2)

‖u(σ − δ, x)‖L2(0,∞)

≤ K(α)
K(3/2)

< 1 (δ ≤ σ ≤ T ) . (4.4)

On the other hand, ‖v(σ, ·)‖2L2(0,∞) = ‖v2(σ, ·)‖2L2(0,∞) is constant in 0 ≤ σ ≤ δ
thus

‖v(σ, ·)‖2L2(0,∞) = ‖v2(0, ·)‖2L2(0,∞)

=
K(α)2

δ2

∫ ∞

0

( Tα+1/2

(x+ T )α
− T 2

(x+ T )3/2

)2

dx =
K(α)2

δ2

∫ ∞

T

(Tα+1/2

xα
− T 2

x3/2

)2

=
K(α)2

δ2

(
T 2α+1

∫ ∞

T

x−2αdx− 2Tα+5/2

∫ ∞

T

x−α−3/2dx+ T 4

∫ ∞

T

x−3dx
)

=
K(α)2T 2

δ2

( 1
2α− 1

− 2
α+ 1/2

+
1
2

)
=
K(α)2T 2(2α− 3)2

δ2(8α2 − 2)
= L(α) → 0 as α→ 3

2
(0 ≤ σ ≤ δ) (4.5)

thus using (4.4) and (4.5) and taking α sufficiently close to 3/2 in (4.5) we insure
that

‖v(σ, ·)‖L2(0,∞) ≤ L(α) < 1 0 ≤ σ ≤ δ . (4.6)
In view of (4.4) and (4.6) we have constructed a control v(σ, x) that drives 0 to
ȳα(x) improving the norm of ūα(σ, x). But ūα(σ, x) is norm optimal by virtue of
Theorem 3.2, thus a contradiction ensues and we are all done.

5. Weakly singular controls, III

The second counterexample involves the multiplier

z(x) =
e1/2x

x
(x > 0) . (5.1)

We have

κ(σ, z)2 =
∫ ∞

σ

e1/x

x2
dx = −

∫ ∞

σ

(
e1/x

)′
dx = e1/σ − 1 ,

so that
κ(σ, z) =

√
e1/σ − 1 = e1/2σ

√
1− e−1/σ .

To estimate κ(σ, z) near zero, we note that the positive function f(σ) = e−1/σ/σ
tends to zero for σ → 0, σ → ∞ and (since f ′(σ) = e−1/σ(1 − σ)/σ3) has a
maximum at σ = 1 where f(1) = 1/e. It follows that e−1/σ ≤ σ/e everywhere so
that (giving up a lot)

κ(σ, z) = e1/2σ(1 +O(e−1/σ)) = e1/2σ(1 +O(σ)) . (5.2)
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This estimation shows that κ(σ, z) is far from integrable in [0,∞), thus the function
(5.1) is a multiplier in Z but it does not belong to Z(T ). We have

1
κ(σ, z)

=
e−1/2σ

1 +O(σ)
= e−1/2σ(1 +O(σ)) (5.3)

for σ near zero, thus

ω(T, x, z) =
∫ x

0

dσ

κ(σ, z)
=

∫ x

0

e−1/2σdσ +
∫ x

0

O(σ)e−1/2σdσ

= (1 +O(x))
∫ x

0

e−1/2σdσ (5.4)

since ∫ x

0

|O(σ)|e−1/2σdσ ≤ C
∫ x

0

σe−1/2σdσ < Cx

∫ x

0

e−1/2σdσ .

Integrating by parts twice the last integral in (5.4) we obtain∫ x

0

e−1/2σdσ = 2
∫ x

0

σ2
(
e−1/2σ

)′
dσ = 2x2e−1/2x − 4

∫ x

0

σe−1/2σdσ

= 2x2e−1/2x − 8
∫ x

0

σ3
(
e−1/2σ

)′
dσ

= 2x2e−1/2x − 8x3e−1/2x + 24
∫ x

0

σ2e−1/2σdx . (5.5)

The function g(σ) = σ2e−1/2σ has derivative g′(σ) = e−1/2σ(2σ + 1/2) thus g(σ)
is increasing and we can estimate the last integral in (5.5) as follows:∫ x

0

σ2e−1/2σdσ ≤ x2e−1/2x

∫ x

0

dσ = x3e−1/2x . (5.6)

Putting together (5.4), (5.5) and (5.6) we deduce that the behavior of ω(T, x, z)
near zero is described by

ω(T, x, z) = 2x2e−1/2x(1 +O(x)) . (5.7)

Lemma 5.1. The control

ū(σ, x) =
S(T − σ)∗z(x)
‖S(T − σ)∗z(·)‖ = χ0(x)

z(x + (T − σ))
κ(T − σ, z) (0 ≤ t ≤ T )

associated with the multiplier (5.1) drives 0 to a target ȳ(·) ∈ D(A) in time T.

The proof of Lemma 5.1 requires checking that both ȳ(·) and ȳ′(·) belong to
L2(0,∞). Observe first that κ(x, z) is infinitely differentiable in x > 0; since
κ(x, z) �= 0 the same is true of 1/κ(x, z), and it follows from formula (2.10) that
ω(T, x, z) is infinitely differentiable in 0 < x ≤ T and constant in x ≥ T, the right-
and left-sided derivatives different at T,

ω′
l(T, T, z) =

1
κ(T, z)

=
1√

e1/T − 1
, ω′

r(T, T, z) = 0 .
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From (5.7) and (5.1) we have

ȳ(x) =
e1/2x

x
2x2e−1/2x(1 +O(x)) = 2x(1 +O(x))

near x = 0, thus ȳ(x) is continuous in x ≥ 0 and the boundary condition ȳ(0) = 0
is satisfied. On the other hand

ȳ′(x) = z′(x)ω(T, x, z) + z(x)ω′(T, x, z) = z′(x)ω(T, x, z) +
z(x)
κ(x, z)

=
(
− e

1/2x

2x3
− e

1/2x

x2

)
2x2e−1/2x(1 +O(x)) +

e1/2x

x
e−1/2x(1 +O(x))

where we have used the equality

ω′(T, x, z) =
1

κ(x, z)
(0 < x < T )

(consequence of (2.10)) and (5.3) to estimate ω′(T, x, z). The bad terms cancel out
and ȳ(x) is continuously differentiable in 0 ≤ x ≤ T, thus the proof of Lemma 5.1
is over.

We note that the fact that the target ȳ(x) has a “corner” at x = T is typical
of targets for equation (2.4) (see for instance the graph of ȳα(x) in Figure 2).

Theorem 5.2. Let T > 0 be arbitrary. Then the control ū(σ, x) does not drive 0 to
ȳ(x) time or norm optimally.

Proof. Assume ū(σ, x) drives 0 to ȳ(x) time or norm optimally. Then, by Theorem
1.1 ū(σ, x) is regular, thus there exists a multiplier ζ(·) ∈ Z(T ) such that

ū(σ, x) =
S(T − σ)∗ζ(x)
‖S(T − σ)∗ζ(·)‖ = χ0(x)

ζ(x + (T − σ))
λ(T − σ, z) (0 ≤ t ≤ T ) , (5.8)

where

λ(x, ζ) =

√∫ ∞

x

ζ(σ)2dσ

and ∫ T

0

λ(x, z)dx <∞ . (5.9)

Since ū(σ, x) can be represented both by (5.5) and (5.8) we have

ζ(x+ (T − σ))
λ(T − σ, z) =

z(x+ (T − σ))
κ(T − σ, z) (0 ≤ σ ≤ T ) .

Over a characteristic (σ, x − (T − σ)) we have

ζ(x)
λ(T − σ, z) =

z(x)
κ(T − σ, z) (0 ≤ σ ≤ T ) ,

which implies

λ(σ, z) =
z(x)
ζ(x)

κ(σ, z) .
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However, this is absurd in view of (5.9) and of the fact that∫ T

0

κ(σ, z)dσ = ∞ .

This ends the proof. �

The multiplier (5.1) used in this example roughly corresponds to the multi-
plier used in [2], Section 5 for the semigroup (1.8) which satisfies (a) ‖S(T − t)∗z‖
increases very fast as t → 0, (b) ū(t) drives 0 to a target ȳ ∈ D(A). This exam-
ple was elevated into a theorem in [3], Lemma 8.3 but the result is restricted to
self-adjoint analytic semigroups, thus it cannot be applied to the right translation
semigroup. It is remarkable that the present example, similar to the one in [2]
works for the right translation semigroup.

The examples in this paper and [2] prompt the conjecture that growth (1.9)
of the costate is the most that can be allowed for optimality irrespective of the
semigroup S(t); in other words, that a control associated with a costate that
satisfies

lim
t→T

(T − t)‖z(t)‖E∗ = lim
t→T

(T − t) ‖S(T − t)∗z‖E∗ =∞ (5.10)

cannot be optimal. The evidence, of course, is insufficient to support this and it
is not clear that the manipulations in [2] (much less those in this paper) could
be twisted into proving a general result. It is also unknown whether there exist
nonoptimal controls with associated costate satisfying (1.9).

6. Adjoints

It is worth noting that optimal problems for the system

y′(t) = A∗y(t) + u(t) (6.1)

with A∗ the adjoint of the operator A in (2.3) behave in a totally different way
than those for the system (1.1) The operator A∗ is given by

A∗y(x) = y′(x) (6.2)

with domain D(A) = {all y(·) ∈ L2(0,∞) with y′(·) ∈ D(A)} (no boundary
conditions) The semigroup S(t)∗ generated by A∗ is the left translation semigroup
(2.1) and satisfies (1.12) so that all multipliers z∗(·) belong to L2(0,∞) and all
norm or time optimal controls satisfy (1.5) with no conditions whatsoever on the
target ȳ∗(x). The semigroup S(t)∗ is associated with the control system

∂y(t, x)
∂t

=
∂y(t, x)
∂x

+ u(t, x) , y(0, x) = ζ(x) , (0 ≤ t, x <∞) , (6.3)

in the sense that S(t) is the propagation semigroup of the homogeneous equation
(u(t, x) = 0). Since (S(t)∗)∗ = S(t) all time and norm optimal controls ū(t) for
this system satisfy

ū(t) =
S(T − t)z
‖S(T − t)z‖ =

S(T − t)z
‖z‖ ,
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the second equality coming from the fact that S(t) is isometric. This is also a
sufficient condition for optimality. The first equality (2.2) implies that optimal
trajectories starting at ζ are of the form

y∗(t) = S(t)∗ζ +
∫ t

0

S(t− σ)∗ū(σ)dσ

= S(t)∗ζ +
1
‖z‖

∫ t

0

S(t− σ)∗S(T − σ)zdσ

= S(t)∗ζ +
1
‖z‖

∫ t

0

S(t− σ)∗S(t− σ)S(T − t)zdσ

= S(t)∗ζ +
S(T − t)
‖z‖

∫ t

0

zdσ = S(t)∗ζ +
tS(T − t)z
‖z‖

and hit the target

ȳ(T ) = S(T )ζ +
Tz

‖z‖ .

The control system (6.1) is essentially the only truly infinite-dimensional example
where “everything can be easily calculated”. This is far from true for the control
system (2.4) treated in this paper, whose only difference with (6.3) consists of the
presence of a boundary condition.
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Abstract. We consider a body, B, that rotates, without translating, in a
Navier-Stokes liquid that fills the whole space exterior to B. We analyze
asymptotic properties of steady-state motions, that is, time-independent so-
lutions to the equation of motion written in a frame attached to the body.
We prove that “weak” steady-state solutions in the sense of J. Leray that sat-
isfy the energy inequality are Physically Reasonable in the sense of R. Finn,
provided the “size” of the data is suitably restricted
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1. Introduction

Consider a rigid body, B, whose particles move with prescribed (Eulerian) velocity
ω×x in a Navier-Stokes liquid. Here, ω ∈ R3, ω �= 0, and x is the spatial variable. It
is well known that a prescribed velocity field of this form corresponds to a uniform
rotation of B with angular velocity ω.

We assume the liquid fills the whole exterior of B. More precisely, we assume
that, at each time t, B occupies a compact set of R3 with a connected boundary,
so that, at each time t, the liquid fills an exterior domain, D = D(t), of R3. As
customary in this problem, it is convenient to refer the motion of the liquid to a
frame, S, attached to B. In this way, the region occupied by the liquid becomes a
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of the RWTH-Aachen with a DFG Mercator Professorship. He would like to thank Professor
Josef Bemelmans for his kind invitation and warmest hospitality. His work was also partially
supported by NSF Grant DMS-0707281. Last but not least, both authors would like to thank
Professor Bemelmans for very helpful conversations.
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time-independent domain, Ω, of R3. We shall suppose that, with respect to S, the
motion of the liquid is steady and that it reduces to rest at large spatial distances.
Thus, the equations governing the motion of the liquid in S can be written in the
following non-dimensional form (see, e.g., [8])⎧⎪⎨⎪⎩

Δv −∇p− Re v · ∇v + Ta
(
e1×x · ∇v − e1×v

)
= f in Ω,

div v = 0 in Ω,
v = v∗ on ∂Ω,

(1.1)

with

lim
|x|→∞

v = 0. (1.2)

Here, v and p are velocity and pressure fields of the liquid in S, while f and v∗
are prescribed functions of x. The Reynolds number Re and Taylor number Ta
are dimensionless constants with Re ,Ta > 0.

Mostly over the past decade, the study of the properties of solutions to (1.1),
(1.2) has attracted the attention of many mathematicians, who have investigated
basic issues like existence, uniqueness and asymptotic (in space) behavior; see,
e.g., [2, 4, 3, 9, 10, 11, 12, 13, 14] and the literature cited therein.

We wish to recall and to emphasize that the characteristic difficulty related
to the investigation of (1.1), (1.2) is the presence of the term ω × x · ∇v, whose
coefficient becomes unbounded as |x| → ∞. For this reason, the above problem
can not be treated as a “perturbation” to the analogous one with ω = 0, even for
“small” |ω|.

Concerning the existence of solutions, there are, basically, two types of results.
On one hand, one can show that, for any f and v∗ in a suitable (and quite

large) class with
∫

∂Ω v∗ · n = 0, there corresponds a pair (v, p), such that

v ∈ L6(Ω), ∇v ∈ L2(Ω) , (1.3)

and p ∈ L2
loc(Ω) satisfying (1.1) in the sense of distribution, and (1.2) in an appro-

priate generalized sense; see [1]. In addition, v and p obey the energy inequality:

2
∫

Ω

|D(v)|2 dx ≤ −
∫

Ω

f · v dx+
∫

∂Ω

(
T(v, p) · n

)
· v∗ dS

− Re
2

∫
∂Ω

|v∗|2 v∗ · n dS +
Ta
2

∫
∂Ω

|v∗|2 e1×x · n dS ,
(1.4)

where T(v, p) and D(v) are the Cauchy stress and stretching tensor, respectively;
see (2.1). Finally, if Ω and the data are sufficiently smooth, then v and p are
likewise smooth and satisfy both (1.1) and (1.2) in the ordinary sense; see [8].
This type of solution is usually called Leray solution, in that they were first found
by J. Leray in the case ω = 0; see [15]. It must be emphasized that a Leray solution
carries very little information about the behavior of v as |x| → ∞, namely, (1.3),
while no information at all is available for the pressure field p. It is just for this
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reason that in (1.4) there appears an inequality sign (instead of an equality sign)
that may cast shadows about the physical meaning of Leray solution.

On the other hand, if f is sufficiently smooth and decays sufficiently fast as
|x| → ∞, and provided the size of the data is suitably restricted, one can show
the existence of a solution (v, p) with a suitable asymptotic behavior that, in fact,
verifies the energy equality

2
∫

Ω

|D(v)|2 dx = −
∫

Ω

f · v dx+
∫

∂Ω

(
T(v, p) · n

)
· v∗ dS

− Re
2

∫
∂Ω

|v∗|2 v∗ · n dS +
Ta
2

∫
∂Ω

|v∗|2 e1×x · n dS ,
(1.5)

see [10, 3]. In particular, in [10] it is shown the existence of a solution that (besides
satisfying (1.5)) decays like the Stokes fundamental solution as |x| → ∞, namely,

v(x) = O
(
|x|−1)

, ∇v(x) = O
(
|x|−2)

,

p(x) = O
(
|x|−2)

, ∇p(x) = O
(
|x|−3)

.
(1.6)

Keeping the nomenclature introduced by R. Finn [5] for the case ω = 0, solutions
possessing this type of properties are called Physically Reasonable.

Now, while it is quite obvious that a Physically Reasonable solution is also
a Leray solution, the converse is by no means obvious, even in the case of small
data.

Objective of this paper is to prove that every Leray solution corresponding
to data of restricted size, with f decaying sufficiently fast at large distances, is
Physically Reasonable; see Theorem 4.1. The proof of this theorem exploits the
method introduced in [6] for the case ω = 0, and it is based on a uniqueness
argument. Precisely, we shall show that a Physically Reasonable solution is unique
(for small data) in the class of Leray solutions (see Lemma 3.3), so that the desired
result follows from the existence result proved in [10]. However, for this argument
to work, it is crucial to show that the pressure, p, associated to a Leray solution
possesses the summability property p ∈ L3(Ω). Now, while in the case ω = 0 the
proof of this property is quite straightforward [6], in the case at hand the proof is
far from being obvious, due to the presence of the term ω × x · ∇v. Actually, it
requires a detailed analysis that we develop through Lemmas 3.1 and 3.2.

The plan of the paper is the following. After recalling some standard nota-
tion in Section 2, in Section 3 we begin to establish appropriate global summability
property for the pressure of a Leray solution. Successively, using also this prop-
erty, we show the uniqueness of a Physically Reasonable solution corresponding
to “small” data in the class of Leray solutions. Finally, in Section 4, as a corol-
lary to this latter result and with the help of the existence theorem established in
[10], we prove that every Leray solution corresponding to “small” data is, in fact,
Physically Reasonable.
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2. Notation

We let Lq(Ω) and Wm,q(Ω) denote Lebesgue and Sobolev spaces, respectively,
and ‖·‖q, ‖·‖m,q the associated norms. We write Dm,q(Ω) and |·|m,q to denote ho-
mogeneous Sobolev spaces and their (semi-)norms, respectively. We will initially
explicitly indicate when a function space consists of vector- or tensor-valued func-
tions, for example Lq(Ω)3, but may omit the indication when no confusion can
arise.

We will make use of the weighted norms

[[f ]]α,A := ess sup
x∈A

[(1 + |x|α)|f(x)|]

for A a domain of R3, and f : A → R3 measurable and α ∈ N. If no confusion
arises, we will omit the subscript “A”.

We denote by

T(v, p) := 2D(v)− pI, D(v) :=
1
2
(
∇v +∇vT

)
(2.1)

the usual Cauchy stress and stretching tensors, respectively, of a Navier-Stokes
liquid corresponding to the non-dimensional form of the equations (1.1).

In what follows, Ω ⊂ R3 will denote an exterior domain of class C2. Without
loss of generality, we assume 0 ∈ R3\Ω. For ρ > 0, we put Bρ := {x ∈ R3 | |x| < ρ},
Bρ := {x ∈ R3 | |x| ≥ ρ}, and set Ωρ := Ω ∩ Bρ and Ωρ := Ω ∩ Bρ. Moreover, we
put Bρ2,ρ1 := Bρ2 \Bρ1 .

As noted in the introduction, Re and Ta are positive real constants.
We use small letters for constants (c1, c2, . . .) that appear only in a single

proof, and capital letters (C1, C2, . . .) for global constants.

3. Preliminaries

In this section, we will establish, in a series of preliminary lemmas, some properties
of weak solutions to (1.1).

We start by recalling the well-known inequality

‖v‖6 ≤ C1|v|1,2 (3.1)

which holds for all v ∈ D1,2(Ω) ∩ L6(Ω) (see [7, Theorem II.5.1]). We shall fre-
quently use (3.1) without reference.

In the first lemma, we establish (global) higher-order regularity of a weak
solution.

Lemma 3.1. Let f ∈ L2(Ω)3, v∗ ∈ W
3
2 ,2(∂Ω)3, and (v, p) ∈ D1,2(Ω)3 ∩ L6(Ω)3 ×

L2
loc(Ω) be a solution to (1.1). Then v ∈ D2,2(Ω).

Proof. By standard regularity theory for elliptic systems, v ∈ W 2,2
loc (Ω) and p ∈

W 1,2
loc (Ω). We therefore only need to show v ∈ D2,2(Ωρ) for some ρ > 0.
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Choose r > 0 so that R3\Ω ⊂ Br. Moreover, choose for any R > 2r a function
ψR ∈ C∞(R3; R) with 0 ≤ ψR ≤ 1, ψR = 0 in Br, ψR = 1 in BR,2r, ψR = 0 in
B2R, and |DαψR| ≤ c1

|x||α| with c1 independent of R.

We shall test (1.1)1 with−∇×(ψ2
R∇×v). Note that−∇×(ψ2

R∇×v) ∈ L2(R3),
has bounded support,

div
[
−∇× (ψ2

R∇× v)
]

= 0, (3.2)

and

−∇× (ψ2
R∇× v) = ψ2

RΔv + (∇× v)×∇[ψ2
R]. (3.3)

Thus, we compute∣∣∣∣∫
Ω

(e1×v) ·
(
−∇× (ψ2

R∇× v)
)
dx

∣∣∣∣
=

∣∣∣∣∫
Ω

ψ2
R(e1×v) · (∇× (∇× v)) + (e1×v) ·

(
(∇× v)×∇[ψ2

R]
)
dx

∣∣∣∣
=

∣∣∣∣∫
Ω

−(∇× ψ2
R(e1×v)) · (∇× v) +∇[ψ2

R] ·
(
(e1×v)× (∇× v)

)
dx

∣∣∣∣
≤ c2

(∫
Ω

|∇v|2 dx+
∫

B2R,R

1
R
|v||∇v| dx+

∫
B2r,r

1
r
|v||∇v| dx

)
≤ c3

(∫
Ω

|∇v|2 dx+ ‖v‖6‖∇v‖2
)
≤ c4 |v|21,2.

(3.4)

Furthermore, we have∫
Ω

(e1×x · ∇v) ·
(
−∇× (ψ2

R∇× v)
)
dx

=
∫

Ω

ψ2
R (e1×x · ∇v) ·Δv dx+

∫
Ω

(e1×x · ∇v) ·
(
(∇× v)×∇[ψ2

R]
)
dx

= −
∫

Ω

∇[ψ2
R]⊗ (e1×x · ∇v) : ∇v dx−

∫
Ω

ψ2
R∇(e1×x · ∇v) : ∇v dx

+
∫

Ω

(e1×x · ∇v) ·
(
(∇× v)×∇[ψ2

R]
)
dx.

Since∫
Ω

ψ2
R∇(e1×x · ∇v) : ∇v dx

=
∫

Ω

ψ2
R ∂j∂kvi (e1×x)k ∂jvi dx+

∫
Ω

ψ2
R ∂kvi ∂j [e1×x] ∂jvi dx

= −1
2

∫
Ω

∂k

[
ψ2

R (e1×x)k

]
(∂jvi)2 dx+

∫
Ω

ψ2
R ∂kvi ∂j [e1×x] ∂jvi dx,
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and observing that |∂iψR (e1×x)j | ≤ c5 for any i, j = 1, 2, 3, we may conclude∣∣∣∣∫
Ω

(e1×x · ∇v) ·
(
−∇× (ψ2

R∇× v)
)
dx

∣∣∣∣ ≤ c6 |v|21,2. (3.5)

Next, we estimate∣∣∣∣∫
Ω

(v · ∇v) · (ψ2
RΔv) dx

∣∣∣∣ ≤ ∫
Ω

|ψR∇v| |v| |ψRΔv| dx

≤ ‖ψR∇v‖3 ‖v‖6 ‖ψRΔv‖2
= ‖∇[ψRv]− v ⊗∇ψR‖3 ‖v‖6 ‖ψRΔv‖2
≤

(
‖∇[ψRv]‖3 + ‖v ⊗∇ψR‖3

)
‖v‖6 ‖ψRΔv‖2.

(3.6)

By the Nirenberg inequality, we have

‖∇[ψRv]‖3,R3 ≤ c7 ‖∇[ψRv]‖
1
2
2,R3 ‖∇2[ψRv]‖

1
2
2,R3

≤ c8 ‖∇[ψRv]‖
1
2
2,R3 ‖Δ[ψRv]‖

1
2
2,R3

≤ c8 ‖∇[ψRv]‖
1
2
2,R3

(
‖ψRΔv‖2 + 2‖∇v · ∇ψR‖2 + ‖ΔψRv‖2

) 1
2 .

Since

‖∇[ψRv]‖2 ≤ ‖v ⊗∇ψR‖2 + ‖ψR∇v‖2

≤ c9
(∫

B2R,R

|v|2

R2
dx+

∫
B2r,r

|v|2

r2
dx

) 1
2

+ ‖∇v‖2

≤ c10‖v‖6 + ‖∇v‖2 ≤ c11 |v|1,2,

and similarly

‖ΔψRv‖2 ≤ c12 |v|1,2,

we see that

‖∇[ψRv]‖3,R3 ≤ c13
(
|v|

1
2
1,2 ‖ψRΔv‖

1
2
2 + |v|1,2

)
.

Also,

‖v ⊗∇ψR‖3 ≤ c14
(∫

B2R,R

|v|3

R3
dx+

∫
B2r,r

|v|3

r3
dx

) 1
3

≤ c15 ‖v‖6 ≤ c16 |v|1,2.

Thus, from (3.6) we conclude that∣∣∣∣∫
Ω

(v · ∇v) · (ψ2
RΔv) dx

∣∣∣∣ ≤ c17(|v| 121,2 ‖ψRΔv‖
1
2
2 + |v|1,2

)
|v|1,2 ‖ψRΔv‖2

≤ c18
(
|v|

3
2
1,2 ‖ψRΔv‖

3
2
2 + |v|21,2 ‖ψRΔv‖2

)
≤ c19(ε)

(
|v|61,2 + |v|41,2

)
+ ε ‖ψRΔv‖22

(3.7)
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for any ε > 0. In a similar manner, we estimate∣∣∣∣∫
Ω

(v · ∇v) ·
(
(∇× v)×∇[ψ2

R]
)
dx

∣∣∣∣
≤ c20

∫
Ω

|v| |∇v| |∇ψR||ψR∇v| dx

≤ c21 ‖v‖6 ‖∇v‖2 ‖ψR∇v‖3

≤ c22 |v|21,2 ‖ψR∇v‖
1
2
2 ‖∇[ψR∇v]‖

1
2
2

≤ c23 |v|
5
2
1,2

(
‖ψRΔv]‖2 + |v|1,2

) 1
2

≤ c23
(
|v|

5
2
1,2 ‖ψRΔv‖

1
2
2 + |v|31,2

)
≤ c24(ε)|v|

10
3

1,2 + ε ‖ψRΔv‖22 + c23|v|31,2

(3.8)

for any ε > 0. We also have∣∣∣∣∫
Ω

Δv ·
(
(∇× v)×∇[ψ2

R]
)
dx

∣∣∣∣ ≤ ∫
Ω

|ψRΔv| |∇v| |∇ψR|) dx

≤ ε ‖ψRΔv‖22 + c25(ε)|v|21,2

(3.9)

for any ε > 0. Finally, we can estimate∣∣∣∣∫
Ω

f ·
(
−∇× (ψ2

R∇× v)
)
dx

∣∣∣∣
≤

∫
Ω

|f · ψ2
RΔv| dx+

∫
Ω

|f ·
(
(∇× v)×∇[ψ2

R]
)
| dx

≤ c26(ε) ‖f‖22 + ε ‖ψRΔv‖22 + c27|v|1,2 ‖f‖2

(3.10)

for any ε > 0. Combining now (3.4), (3.5), (3.7), (3.8), (3.9), (3.10) and recalling
(3.2) and (3.3), we conclude that multiplication of (1.1)1 by −∇× (ψ2

R∇× v) and
subsequent integration over Ω yields∫

Ω

ψ2
R |Δv|

2 dx ≤ c28(ε)
(
|v|21,2 + |v|61,2 + ‖f‖22

)
+ ε ‖ψRΔv‖22 (3.11)

for any ε > 0. Hence, by choosing 0 < ε < 1 and letting R → ∞ in (3.11), we
infer that Δv ∈ L2(Ωr). It follows that v ∈ D2,2(Ωρ) for ρ > r. In fact, by an easy
calculation that takes into account the properties of the “cut-off” ψR, we obtain

∑
|α|=2

‖ψR Dαv‖22,Ωr ≤ c29

⎛⎝‖ v
|x|2

‖22,Ωr + ‖∇v|x| ‖
2
2,Ωr +

∑
|α|=2

‖Dα(ψR v)‖22,Ωr

⎞⎠ .
However, since ψRv is of compact support, we have∑

|α|=2

‖Dα(ψR v)‖22,R3 ≤ c30‖Δ(ψR v)‖22,R3 ,
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with c30 independent of R, and so, the previous inequality implies∑
|α|=2

‖ψR Dαv‖22,Ωr ≤ c31

(
‖ v
|x|2

‖22,Ωr + ‖∇v|x| ‖
2
2,Ωr + ‖ψR(Δv)‖22,Ωr

)
.

where c31 is independent of R. If we use the assumption v ∈ D1,2(Ω) ∩ L6(Ω)
in this relation, along with a Hardy-type inequality (see for example [7, Theorem
II.5.1]) and the fact that Δv ∈ L2(Ωr), we deduce∑

|α|=2

‖ψR Dαv‖22,Ωr ≤ c32, (3.12)

where c32 is independent of R. The desired property for D2v then follows by letting
R→∞ in (3.12). �

In the next lemma, we establish L3(Ω)-summability of the pressure. More
precisely, we have:

Lemma 3.2. Let f ∈ L2(Ω)3∩L 3
2 (Ω)3, v∗ ∈W

3
2 ,2(∂Ω)3, and let (v, p) ∈ D1,2(Ω)3∩

L6(Ω)3×L2
loc(Ω) be a corresponding solution to (1.1). Then p+c ∈ L3(Ω) for some

constant c ∈ R.

Proof. Standard regularity theory for elliptic systems again yields p ∈ W 1,2
loc (Ω).

Consequently, by Sobolev embedding, we have p ∈ L3
loc(Ω). We therefore only need

to show p+ c ∈ L3(Ωρ) for some ρ > 0 and c ∈ R.
Let ρ > diam(R3 \Ω) and ψ ∈ C∞(R3; R) be a “cut-off” function with ψ = 0

on Bρ and ψ = 1 on R3 \ B2ρ. Moreover, let

σ(x) :=
(∫

∂ B2ρ

v · n dx
)
∇E, E(x) :=

1
4π|x| . (3.13)

Since ∫
B2ρ

∇ψ · (v + σ) dx =
∫

B2ρ

div
[
ψ(v + σ)

]
dx

=
∫

∂ B2ρ

v · n dx+
∫

∂ B2ρ

σ · n dx = 0,

there exists (see [7, Theorem III.3.2]) a field

H ∈ W 3,2(R3), suppH ⊂ B2ρ, divH = ∇ψ · (v + σ). (3.14)

Put

w = ψv + ψσ −H, π = ψp.

Using the fact that e1×x · ∇σ − e1×σ = 0, we find that{
Δw −∇π + Ta

(
e1×x · ∇w − e1×w

)
= ψf +G+ Reψ v · ∇v in R3,

divw = 0 in R3,
(3.15)



Leray Solution around Rotating Obstacle 259

where G ∈ L2(R3) with supp(G) ⊂ B2ρ. Taking divergence on both sides in (3.15)
yields

−Δπ = div
[
ψf

]
+ divG+ Re div

[
ψ v · ∇v

]
in R3 (3.16)

in the sense of distributions. We now observe that we can write f as follows (again
in the sense of distributions)

f = divF, F ∈ L3(Ω). (3.17)

In fact, it is enough to choose Fk = ∇E ∗ fk, where {fk}∞k=1 ⊂ C∞
0 (Ω) converges

to f in L3(Ω), and then pass to the limit k →∞, in the sense of distributions. We
can express, again in the sense of distributions,

ψ f = ψ divF = div[ψF ]− F · ∇ψ.

Thus, introducing

G̃ := G− F · ∇ψ, F̃ := ψF, and f̃ := div F̃ ,

from (3.16) we have

−Δπ = div f̃ + div G̃+ Re div
[
ψ v · ∇v

]
in R3, (3.18)

where f̃ = div F̃ ∈ L2(R3), F̃ ∈ L3(R3), and G̃ ∈ L2(R3) with supp(G̃) ⊂ B2ρ.
Consider now the three separate equations

−Δπ1 = div f̃ in R3, (3.19)

−Δπ2 = div G̃ in R3, (3.20)

−Δπ3 = Re div
[
ψ v · ∇v

]
in R3, (3.21)

with respect to unknowns π1,π2,π3. Using the Riesz transformations,

Rj : Lq(R3)→ Lq(R3), ∀q > 1, Rj(u) := F−1

(
ξj
|ξ|F(u)

)
,

where F denotes the Fourier transformation, we find that

π1 := F−1

(
iξj

|ξ|2
F(f̃j)

)
= F−1

(
−ξjξk
|ξ|2

F(F̃jk)
)

= −Rj ◦Rk(F̃jk) (3.22)

is a solution to (3.19) with π1 ∈ L3(R3). Moreover, since clearly G̃ ∈ L 3
2 (R3), we

can use the Riesz potential

I : L
3
2 (R3) → L3(R3), I(u) := F−1

(
1
|ξ|F(u)

)
to obtain a solution

π2 := F−1

(
iξj

|ξ|2
F
(
G̃j

))
= iRj ◦ I

(
G̃j

)
(3.23)
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to (3.20) with π2 ∈ L3(R3). Similarly, putting h := Reψ v·∇v, we have h ∈ L 3
2 (R3)

and obtain by

π3 := F−1

(
iξj

|ξ|2
F(hj)

)
= iRj ◦ I(hj) (3.24)

a solution to (3.21) with π3 ∈ L3(R3). We furthermore conclude that

∂kπ1 = F−1

(
−ξkξj
|ξ|2

F(f̃j)
)

= −Rj ◦Rk(f̃j) ∈ L
3
2 (R3), (3.25)

∂kπ2 = F−1

(
−ξkξj
|ξ|2

F
(
G̃j

))
= −Rj ◦Rk

(
G̃j

)
∈ L 3

2 (R3), (3.26)

∂kπ3 = F−1

(
−ξkξj
|ξ|2

F(hj)
)

= −Rj ◦Rk(hj) ∈ L
3
2 (R3), (3.27)

for k = 1, 2, 3. We therefore deduce that

π̄(x) := π1(x) + π2(x) + π3(x) (3.28)

is a solution to (3.18) with π̄ ∈ L3(R3) and ∇π̄ ∈ L 3
2 (R3). Since also π satisfies

the same equation, it follows that Z := ∇(π̄ − π) is harmonic in R3, so that, by
the mean-value theorem, we have for each fixed x ∈ R3,

Z(x) =
c1
R3

∫
BR(x)

∇(π̄ − π) dy =:
c1
R3

(
I1(R) + I2(R)

)
. (3.29)

By the Hölder inequality we find

|I1(R)| ≤ ‖∇π̄‖ 3
2
|BR|

1
3 ≤ c2R. (3.30)

Moreover, from Lemma 3.1, we have v ∈ D2,2(Ω). Thus, Δw ∈ L2(R3), and from
(3.15)1 we infer

∇π
(1 + |x|) ∈ L

2(R3).

Therefore, by Schwarz inequality,

|I2(R)| ≤ c3R ‖∇π/(1 + |y|)‖2 |BR|
1
2 ≤ c4R

5
2 . (3.31)

Combining (3.29)–(3.31) and letting R → ∞, we find Z(x) = 0 for all x ∈ R3.
Hence, π̄ = π+c, for some constant c, which concludes the proof of the lemma. �

In the next lemma, we show that a weak solution satisfying the energy in-
equality and a solution decaying like 1

|x| must coincide under a suitable smallness
condition. The proof follows essentially that of the main theorem in [6].

Lemma 3.3. Let f ∈ L2(Ω)3∩L 6
5 (Ω)3, and v∗ ∈W

3
2 ,2(∂Ω)3. Moreover, let (v, p) ∈

D1,2(Ω)3∩L6(Ω)3×L2
loc(Ω) be a solution to (1.1) that satisfies the energy inequality

(1.4). If (w, π) ∈ D1,2(Ω)3∩L6(Ω)3×L2(Ω) is another solution to (1.1) and [[w]]1 <
1

8Re , then (w, π) = (v, p). In this case, (v, p) satisfies the energy equality (1.5).
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Proof. By standard regularity theory for elliptic systems, we have (v, p), (w, π) ∈
W 2,2

loc (Ω) ×W 1,2
loc (Ω). We can thus multiply (1.1)1 with w and integrate over ΩR

(R > diam(R3 \ Ω)). By partial integration, we then obtain

−
∫

ΩR

∇v : ∇w dx+
∫

∂ BR

(∇v · n) · w dS −
∫

∂ BR

p (w · n) dS

− Re
∫

ΩR

(v · ∇v) · w dx+ Ta
∫

ΩR

(
e1×x · ∇v − e1×v

)
· w dx

= −
∫

∂Ω

(
(∇v − pI) · n

)
· w dS +

∫
ΩR

f · w dx.

(3.32)

Analogously, by switching the roles of v and w, we get

−
∫

ΩR

∇v : ∇w dx+
∫

∂ BR

(∇w · n) · v dS −
∫

∂ BR

π (v · n) dS

− Re
∫

ΩR

(w · ∇w) · v dx+ Ta
∫

ΩR

(
e1×x · ∇w − e1×w

)
· v dx

= −
∫

∂Ω

(
(∇w − pI) · n

)
· v dS +

∫
ΩR

f · v dx.

(3.33)

We shall now examine the integrals over ∂ BR in (3.32) and (3.33) in the
limit as R → ∞. For this purpose, we utilize Lemma 3.2 and obtain p ∈ L3(Ωρ)
for some ρ > 0. Consequently, we can find a sequence {Rn}∞n=1 ⊂ [ρ,∞] so that
limn→∞Rn = ∞ and

lim
n→∞

[
Rn

∫
∂ BRn

|p|3 + |∇v|2 + |v|6 + |π|2 + |∇w|2 + |w|6 dx
]

= 0. (3.34)

We conclude that∣∣∣∣∣
∫

∂ BRn

(∇v · n) · w dS

∣∣∣∣∣ ≤ c1 [[w]]1
∫

∂ BRn

|∇v|
Rn

dS

≤ c2 [[w]]1

(∫
∂ BRn

|∇v|2 dS
) 1

2

→ 0 as n→∞
(3.35)

and∣∣∣∣∣
∫

∂ BRn

p (w · n) dS

∣∣∣∣∣ ≤ c3 [[w]]1
∫

∂ BRn

|p|
Rn

dS

≤ c4 [[w]]1

(
Rn

∫
∂ BRn

|p|3 dS
) 1

3

→ 0 as n→∞.
(3.36)
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Furthermore,∣∣∣∣∣
∫

∂ BRn

(∇w · n) · v dS

∣∣∣∣∣ ≤ c5
(∫

∂ BRn

|∇w|2 dS
) 1

2
(∫

∂ BRn

|v|6 dS
) 1

6

R
2
3
n

= c5

(
Rn

∫
∂ BRn

|∇w|2 dS
) 1

2
(
Rn

∫
∂ BRn

|v|6 dS
) 1

6

→ 0 as n→∞
(3.37)

and ∣∣∣∣∣
∫

∂ BRn

π (v · n) dS

∣∣∣∣∣ ≤ c6
(∫

∂ BRn

|π|2 dS
) 1

2
(∫

∂ BRn

|v|6 dS
) 1

6

R
2
3
n

→ 0 as n→∞.
(3.38)

We now turn our attention to the limits as Rn →∞ of the integrals over ΩRn

in (3.32) and (3.33). We begin to observe that, by using a Hardy-type inequality
(see for example [7, Theorem II.5.1]), we find∫

Ω

|(v · ∇v) · w| dx ≤ [[w]]1

(∫
Ω

|∇v|2 dx
) 1

2
(∫

Ω

|v|2

(1 + |x|)2 dx
) 1

2

<∞ . (3.39)

Consequently,

lim
n→∞

∫
ΩRn

(v · ∇v) · w dx =
∫

Ω

(v · ∇v) · w dx. (3.40)

Similarly, we have∫
Ω

|(w · ∇w) · v| dx ≤ [[w]]1

(∫
Ω

|∇w|2 dx
) 1

2
(∫

Ω

|v|2

(1 + |x|)2 dx
) 1

2

<∞

and thus

lim
n→∞

∫
ΩRn

(w · ∇w) · v dx =
∫

Ω

(w · ∇w) · v dx. (3.41)

Concerning the integrals involving the data f , we observe that they are both well
defined, in the sense of Lebesgue, because f ∈ L 6

5 (Ω) and w, v ∈ L6(Ω). We thus
find

lim
n→∞

∫
ΩRn

f · v dx =
∫

Ω

f · v dx. (3.42)

and

lim
n→∞

∫
ΩRn

f · w dx =
∫

Ω

f · w dx. (3.43)



Leray Solution around Rotating Obstacle 263

Now put u := v − w. Then∫
ΩRn

(
e1×x · ∇u− e1×u

)
· u dx =

∫
ΩRn

(
e1×x · ∇u

)
· u dx

=
1
2

∫
∂ BRn

|u|2 (e1×x) · n dS = 0,
(3.44)

where the last equality holds since n = x
|x| on ∂ BRn . By the same argument, we

also have∫
ΩRn

(
e1×x · ∇v − e1×v

)
· v dx =

1
2

∫
∂Ω

|v∗|2 (e1×x) · n dS (3.45)

and ∫
ΩRn

(
e1×x · ∇w − e1×w

)
· w dx =

1
2

∫
∂Ω

|v∗|2 (e1×x) · n dS. (3.46)

It follows from (3.44), (3.45), and (3.46) that∫
ΩRn

(
e1×x · ∇v − e1×v

)
· w dx+

∫
ΩRn

(
e1×x · ∇w − e1×w

)
· v dx

=
∫

∂Ω

|v∗|2 (e1×x) · n dS.
(3.47)

Adding together (3.32) and (3.33), utilizing (3.47), and finally letting n→∞,
we find that

− 2
∫

Ω

∇v : ∇w dx

= Re
(∫

Ω

(v · ∇v) · w dx+
∫

Ω

(w · ∇w) · v dx
)

+
∫

Ω

f · v dx−
∫

∂Ω

(
(∇v − pI) · n

)
· v∗ dS

+
∫

Ω

f · w dx−
∫

∂Ω

(
(∇w − πI) · n

)
· v∗ dS

− Ta
∫

∂Ω

|v∗|2 (e1×x) · n dS.

(3.48)

We can now write∫
Ω

|∇u|2 dx =
∫

Ω

|∇v|2 dx+
∫

Ω

|∇w|2 dx− 2
∫

Ω

∇v : ∇w dx. (3.49)

By assumption, (v, p) satisfies the energy inequality∫
Ω

|∇v|2 dx ≤ −
∫

Ω

f · v dx+
∫

∂Ω

(
(∇v − pI) · n

)
· v∗ dS

− Re
2

∫
∂Ω

|v∗|2 v∗ · n dS +
Ta
2

∫
∂Ω

|v∗|2 e1×x · n dS.
(3.50)
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From the decay properties of (w, π), it is easy to verify that (w, π) satisfies the
energy equality∫

Ω

|∇w|2 dx = −
∫

Ω

f · w dx+
∫

∂Ω

(
(∇w − πI) · n

)
· v∗ dS

− Re
2

∫
∂Ω

|v∗|2 v∗ · n dS +
Ta
2

∫
∂Ω

|v∗|2 e1×x · n dS.
(3.51)

Combining now (3.48), (3.49), (3.50), and (3.51), we obtain∫
Ω

|∇u|2 dx ≤ Re
(∫

Ω

(v · ∇v) · w dx+
∫

Ω

(w · ∇w) · v dx
)

− Re
∫

∂Ω

|v∗|2 v∗ · n dS.

Next, we observe that∫
Ω

(u · ∇u) · w dx−
∫

Ω

(w · ∇u) · u dx

=
∫

Ω

(v · ∇v) · w dx+
∫

Ω

(w · ∇w) · v dx−
∫

∂Ω

|v∗|2 v∗ · n dS.

By an argument similar to (3.39) and (3.40), all integrals above are well defined
and finite. We can now conclude that∫

Ω

|∇u|2 dx ≤ Re
(∫

Ω

(u · ∇u) · w dx−
∫

Ω

(w · ∇u) · u dx
)

and thus estimate, using again the Hardy-type inequality, this time in form∫
Ω

|u|2

|x|2
dx ≤ 4

∫
Ω

|∇u|2 dx,

valid for all fields vanishing at the boundary ∂Ω,∫
Ω

|∇u|2 dx ≤ 2 Re [[w]]1

(∫
Ω

|u|
1 + |x| |∇u|dx

)
≤ 2 Re [[w]]1

(∫
Ω

|u|2

(1 + |x|)2 dx
) 1

2
(∫

Ω

|∇u|2 dx
) 1

2

≤ 8 Re [[w]]1
∫

Ω

|∇u|2 dx.

(3.52)

We finally conclude that u = 0 when 8 Re [[w]]1 < 1. �

4. Main theorem

Our main theorem follows as a consequence of Lemma 3.3 and the fact that a
solution (w, π) with the in Lemma 3.3 required properties exists, provided the
data are suitably restricted [10].
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Theorem 4.1. Let Ω ⊂ R3 be an exterior domain of class C2 and Re ,Ta ∈ (0, B],
for some B > 0. Suppose v∗ ∈W

3
2 ,2(∂Ω)3and f = divF , with

F :=
(
[[F ]]2 + [[f ]]3 + [[div divF ]]4

)
<∞. (4.1)

Then, there is a constant M1 =M1(Ω, B) > 0 such that if

Re
(
F + ‖v∗‖

W
3
2 ,2(∂Ω)

)
< M1, (4.2)

then a weak solution (v, p) ∈ D1,2(Ω)3∩L6(Ω)3×L2
loc(Ω) to (1.1) that satisfies the

energy inequality (1.4), that is, a Leray solution, also satisfies, for some constant
c ∈ R,

|v|2,2 + [[v]]1 + [[∇v]]2 + [[p+ c]]2 + [[∇p]]3,ΩR ≤ C2

(
F + ‖v∗‖

W
3
2 ,2(∂Ω)

)
, (4.3)

where C2 = C2(Ω, B,R). Moreover, (v, p) satisfies the energy equality (1.5). Fi-
nally, (v, p) is unique (up to addition of a constant to p) in the class of weak
solutions satisfying (1.4).

Proof. The existence of a solution (w, π) satisfying the properties stated for (v, p)
has been established in [10, Theorem 2.1 and Remark 2.1] in the case v∗ ≡ 0.
Moreover, in [9] the methods from [10] have been further developed to also consider
this more general case. Now, from (4.3) – written with w and π in place of v and
p – and from (4.2), it follows that, if M1 is taken “sufficiently small”, we find, in
particular, [[w]]1 < 1

8Re . Therefore, the stated properties for (v, p) at once follow
from the uniqueness Lemma 3.3. �

Remark 4.2. The properties satisfied by the Leray solution (v, p) in Theorem 4.1
imply that (v, p) is, in fact, physically reasonable in the sense of Finn [5].
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problèmes que pose l’hydrodynamique. J. Math. Pures Appl., 12:1–82, 1933.

Giovanni P. Galdi
Department of Mechanical Engineering
and Materials Science
University of Pittsburgh
USA
e-mail: galdi@pitt.edu

Mads Kyed
Institut für Mathematik
RWTH-Aachen
Germany
e-mail: kyed@instmath.rwth-aachen.de



Progress in Nonlinear Differential Equations
and Their Applications, Vol. 80, 267–274
c© 2011 Springer Basel AG

A Remark on Maximal Regularity
of the Stokes Equations

Matthias Geissert and Horst Heck

Dedicated to Prof. Herbert Amann on the occasion of his 70th birthday

Abstract. Assuming that the Helmholtz decomposition exists in Lq(Ω)n it
is proved that the Stokes equation has maximal Lp-regularity in Ls

σ(Ω) for
s ∈ [min{q, q′}, max{q, q′}]. Here Ω ⊂ Rn is an (ε,∞) domain with uniform
C3-boundary.
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1. Introduction and main result

For the understanding of nonlinear parabolic equations the property of maximal
Lp-regularity has been proved to be very useful. For equations considered in a
Hilbert space the question whether we have maximal Lp-regularity estimates re-
duces to the question whether the associated operator generates an analytic C0-
semigroup. But the question is more difficult to answer in a general Banach space
setting. See, e.g., [Ama95], [Ama97], [DHP03], [KW01] and the references therein.

In this paper we study the property of maximal Lp-regularity for the Stokes
equations that are given by

∂tu−Δu+∇p = f in Ω× (0, T )

div u = 0 in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u(·, 0) = 0 in Ω

(1.1)

in a possibly unbounded domain Ω ⊂ Rn. Here u denotes the velocity of the fluid
and p the pressure. We are going to study this set of equations in the Lq-setting,
where q �= 2.
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As noted above the case q = 2 is easier to handle. It is well known that
the Stokes operator is a semibounded self-adjoint operator in L2

σ(Ω). Hence, it is
the generator of an analytic semigroup (etA)t≥0 on L2

σ(Ω). Note that L2(Ω)n =
L2σ(Ω) ⊕ G2(Ω) for all open sets Ω. For a proper definition of these spaces
see (1.2).

Assuming that the Helmholtz decomposition exists in Lq(Ω)n there is associ-
ated a projection Pq onto Lq

σ(Ω) called the Helmholtz projection. In this case and if
Ω has a sufficiently smooth boundary we define the Stokes operator by Aq = PqΔ
with domain D(Aq) =W 2,q(Ω) ∩W 1,q

0 (Ω) ∩ Lq
σ(Ω) in Lq

σ(Ω).
We say that the problem (1.1) has maximal Lp-regularity in Lq

σ(Ω), 1 <
p, q <∞, if the operator

(∂t −Aq) : Lp((0, T );D(Aq)) ∩W 1,p((0, T );Lq
σ(Ω)) → Lp((0, T );Lq(Ω)n)

is an isomorphism.
An affirmative answer to the above question for bounded or exterior domains

with smooth boundaries was first given by Solonnikov ([Sol77]). His proof makes
use of potential theoretic arguments. Lateron, further proofs were obtained, e.g.,
by combining Giga’s result on bounded imaginary powers of the Stokes operator
([Gig85]) with the Dore-Venni theorem, by Giga and Sohr [GS91a], by Grubb and
Solonnikov [GS91b] using pseudo-differential techniques and by Fröhlich [Frö07]
making use of the concept of weighted estimates with respect to Muckenhoupt
weights. For related results see also [Gig81] and [FS94]. The half-space case was
studied, e.g., in [Uka87] and [DHP01]. For results concerning infinite layers we
refer to the work of Abe and Shibata [AS03b] and [AS03a], Abels [Abe05] and
Abels and Wiegner [AW05]. In [Fra00], [His04] the case of an aperture domain
is discussed and in [FR08] it was shown that the Stokes Operator has maximal
Lp-regularity in Lq

σ(Ω) on tube-like domains Ω. Moreover, by applying pseudo-
differential techniques, a rather large class of domains could be treated in [Abe10].
For applications of these results to the equations of Navier-Stokes, see, e.g., [Kat84],
[Ama00] and [Soh01].

One problem in treating domains with unbounded boundary is that the
Helmholtz decomposition does not exist in Lq(Ω)n in general. For example Bogov-
skĭı gave in [Bog86] examples of unbounded domains Ω with smooth boundaries
for which the Helmholtz decomposition of Lq(Ω)n exists only for certain values of
q. For details, see also [Gal94]. In [FKS07] the authors sail around this problem
by changing the basic Banach space to Lq(Ω) + L2(Ω) or to Lq(Ω) ∩ L2(Ω) for
p ≥ 2 or p ≤ 2, respectively. The majority of the works cited above treat classes
of domains that yield maximal regularity in Lq

σ(Ω) for any 1 < q <∞.
In [GHHS09] the authors prove maximal Lp-regularity in Ls

σ(Ω) for (1.1)
assuming that the Helmholtz decomposition exists in Ls(Ω)n. Indeed, their main
result is the following

Proposition 1.1 ([GHHS09]). Let 1 < p, q < ∞, J = (0, T ) for some T > 0
and Ω ⊂ Rn be a domain with uniform C3-boundary. Assume that the Helmholtz
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projection P exists for Lq(Ω)n. Then problem (1.1) has maximal Lp-regularity in
Lq

σ(Ω).

In this paper we are concerned with the question to which spaces Lr
σ(Ω) we

can extend the maximal Lp-regularity property in this case.
Let q ∈ (1,∞) and Ω ⊂ Rn. We say that the Helmholtz decomposition on

Lq(Ω)n exists if
Lq(Ω)n = Lq

σ(Ω)⊕Gq(Ω), (1.2)
where

Gq(Ω) := {f ∈ Lq(Ω)n : ∃g ∈ Lq
loc(Ω) : f = ∇g} and Lq

σ(Ω) := Gq′
(Ω)⊥.

Here M⊥ ⊂ X ′ denotes the annihilator of M ⊂ X for some Banach space X and
q′ = q

q−1 denotes the dual exponent of q. In this case, there exists the Helmholtz
projection Pq from Lq(Ω)n onto Lq

σ(Ω). Since Gq(Ω) and Lq
σ(Ω) are both reflexive

we obtain

(Lq
σ(Ω))⊥ =

(
Gq′

(Ω)⊥
)⊥

= Gq′
(Ω).

Hence, Pq′ is a projection from Lq′
(Ω)n onto Lq′

σ (Ω). However, it is not clear
whether Pq and Pq′ are consistent, i.e.,

Pqf = Pq′f, f ∈ Lq(Ω) ∩ Lq′
(Ω).

The main assumption on the underlying domain Ω will be the (ε,∞) property.
Let ε > 0 and δ ∈ (0,∞]. Then we say that a domain Ω ⊂ Rn is an (ε, δ) domain
if for any x, y ∈ Ω satisfying |x − y| < δ there exists a rectifiable curve γ ⊂ Ω
connecting x with y such that for any point z on γ

�(γ) ≤ 1
ε
|x− y| (1.3)

dist(z,Ωc) ≥ ε |x− z||y − z||x− y| (1.4)

holds. Here �(γ) denotes the length of the path γ and dist(z,M) is the distance of
the point z to the set M .

Now we can formulate the main result of this paper.

Theorem 1.2. Let Ω ⊂ Rn be an (ε,∞) domain for some ε > 0 with uniform C3-
boundary. Moreover, assume that the Helmholtz decomposition exists in Lq(Ω)n

for some 1 < q <∞. Then the problem (1.1) has maximal Lp-regularity in Ls
σ(Ω)

for s ∈ [min{q, q′},max{q, q′}].

Remark 1.3. Consider the cone K ⊂ R2 which is the set of all points between
the rays M± := {x ∈ R2 : x1 > 0, x2 = ±κx1} with (1, 0) ∈ K. Denote by θ
the angle between the rays M± measured across the domain K. Using piecewise
circular paths connecting the points x, y ∈ K it is easy to see that K is an (ε,∞)
domain. By a result of Bogovskĭı for n = 2 the Helmholtz decomposition in Lq(K),
where K is a cone with angle θ > π, exists if and only if 2/(1 + π/θ) < q <
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2/(1− π/θ). The same statement is true for cones with smooth apex. This means
that the results in this paper yield maximal Lp-regularity in Lq

σ(K) for (1.1) and
q ∈ (2/(1 + π/θ), 2/(1− π/θ)).

2. Proof of the main result

In this section we give the proof of our main result. We start with some comments
about the Helmholtz projection. It is well known that existence of the Helmholtz
decomposition on Lq(Ω)n is equivalent to the solvability of the following weak
Neumann problem, see [SS92] and the references therein:

There exists C > 0 such that for any f ∈ Lq(Ω)n there exists a unique
u ∈ Ŵ 1,q(Ω) := {f ∈ Lq

loc(Ω) : ∇f ∈ Lq(Ω)n} satisfying ‖u‖
Ŵ 1,q(Ω)

≤ C‖f‖Lq(Ω)n

and ∫
Ω

〈∇u,∇ϕ〉 =
∫
Ω

〈f,∇ϕ〉, ϕ ∈ Ŵ 1,q′
(Ω). (2.1)

In this case, Pqf = f −∇u.
If (2.1) is uniquely solvable the mapping J : Ŵ 1,q(Ω) →

(
Ŵ 1,q′

(Ω)
)′

defined
by

〈Jϕ,Ψ〉 :=
∫
Ω

〈∇ϕ,∇Ψ〉, Ψ ∈ Ŵ 1,q′
(Ω), (2.2)

is an isomorphism (even the converse is true, see [SS92, Chapter 6] for a similar
result). Indeed, let ϕ ∈ Ŵ 1,q(Ω). Then,

|〈Jϕ,Ψ〉| = |
∫
Ω

〈∇ϕ,∇Ψ〉| ≤ ‖ϕ‖
Ŵ 1,q(Ω)

‖Ψ‖
Ŵ 1,q′ (Ω)

, Ψ ∈ Ŵ 1,q′
(Ω).

Note that by assumption J is one-to-one. On the other hand, let ϕ ∈
(
Ŵ 1,q′

(Ω)
)′

.

Since ∇Ψ ∈ Gq′
(Ω) ⊂ Lq′

(Ω) there exists fϕ ∈ Lq(Ω)n such that

〈ϕ,Ψ〉 =
∫
Ω

〈fϕ,∇Ψ〉 =
∫
Ω

〈∇u,∇Ψ〉, Ψ ∈ Ŵ 1,q′
(Ω),

where u ∈ Ŵ 1,q(Ω) is the unique solution of (2.1). Therefore J is onto as well.
The next proposition allows us to apply [GHHS09, Theorem 1.2] to our sit-

uation.

Proposition 2.1. Let Ω ⊂ Rn be an (ε,∞) domain with a uniform C1 boundary.
Assume that the Helmholtz projection Pp exists for some p ∈ (1,∞). Then the
Helmholtz projection Pq exists for q ∈ [min{p, p′},max{p, p′}] where 1/p′+1/p = 1.
Moreover, Pp = Pq in Lq(Ω)n ∩ Lp(Ω)n.
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In order to prove Proposition 2.1 we need some preparation. By adapting the
arguments given in [SS92, Lemma 3.8(b)] to our situation, we obtain the following
lemma.

Lemma 2.2. Let 1 < r < q <∞, Ω ⊂ Rn an (ε,∞) domain and ∇p ∈ Gq(Ω) with

sup
0�=∇v∈C∞

c (Ω)

∣∣∣∣∣ 〈∇p,∇v〉‖v‖
Ŵ 1,r′ (Ω)

∣∣∣∣∣ <∞,
where r′ is the dual exponent of r. Moreover, assume that the Helmholtz projection
exists in Lr(Ω)n. Then ∇p ∈ Gr(Ω).

The next proposition states some basic properties of homogeneous Sobolev
spaces.

Proposition 2.3. Let p ∈ (1,∞) and Ω ⊂ Rn be an (ε,∞) domain. Then C∞
c (Ω)

is dense in Ŵ 1,p(Ω). Moreover, for q ∈ (1,∞) and u ∈ Ŵ 1,p(Ω) ∩ Ŵ 1,q(Ω) there
exists (un)n∈N ⊂ C∞

c (Ω) such that lim
n→∞

un = u in Ŵ 1,p(Ω) ∩ Ŵ 1,q(Ω).

Proof. Let f ∈ Ŵ 1,p(Ω). By [Jon81, Theorem 2], there exists an extension operator
E ∈ L(Ŵ 1,p(Ω), Ŵ 1,p(Rn)), independent of p ∈ (1,∞). Since C∞

c (Rn) is dense
in Ŵ 1,p(Rn), see [Sob63] for instance, there exists (ϕn) ⊂ C∞

c (Rn) such that
limn→∞ ‖ϕn − Ef‖Ŵ 1,p(Rn)

= 0. Hence,

lim
n→∞

‖ϕn|Ω − f‖Ŵ 1,p(Ω) ≤ lim
n→∞

‖ϕn − Ef‖Ŵ 1,p(Ω) = 0. �

Remark 2.4.
1. The proof of Proposition 2.3 is based on the existence of an extension opera-

tor E ∈ L(Ŵ 1,p(Ω), Ŵ 1,p(Rn)) only. In particular, whenever there exists an
extension operator for some p ∈ (1,∞) then C∞

c (Ω) is dense in Ŵ 1,p(Ω).
2. O.V. Besov constructed in [Bes67] an extension operator

E ∈ L(Ŵ 1,p(Ω), Ŵ 1,p(Rn)), p ∈ (1,∞),

for domains Ω ⊂ Rn satisfying an interior horn condition.
3. Note that Proposition 2.3 does not hold for arbitrary domains as, for instance,

Ŵ 1,p(Ω) �= C∞
c (Ω)

Ŵ 1,p(Ω)
for aperture domains, see [Fra00].

4. Let p ∈ (1,∞) and θ ∈ (0, 1). Since the extension operator E given in Propo-
sition 2.3 is a coretraction it follows from real interpolation theory, see, e.g.,
[Tri78], that (

Ŵ 1,p(Ω), Ŵ 1,p′
(Ω)

)
θ,r

= Ŵ 1,r(Ω),

where 1/r = θ/p+ (1− θ)/p′.
We are now in the position to prove Proposition 2.1.

Proof of Proposition 2.1. Let Pp denote the Helmholtz projection on Lp(Ω)n. Then
(Pp)′ is a projection from Lp′

(Ω)n onto Lp′
σ (Ω). In order to show that Pp and (Pp)′
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are consistent note that it is enough to show that the solution u of (2.1) is consis-
tent for q = p, p′. We may assume without loss of generality that p > 2.

Let f ∈ Lp(Ω)n ∩Lp′
(Ω)n and denote the corresponding solutions of (2.1) in

Ŵ 1,p(Ω) and Ŵ 1,p′
(Ω) by up and up′ , respectively. Obviously, we have∫

Ω

〈∇up,∇ϕ〉 =
∫
Ω

〈f,∇ϕ〉 ≤ ‖f‖Lp′(Ω)‖ϕ‖Ŵ 1,p(Ω)
, ϕ ∈ C∞

c (Ω).

Hence, it follows from Lemma 2.2 that up ∈ Ŵ 1,p′
(Ω). Since C∞

c (Ω) is dense in
Ŵ 1,p(Ω) we obtain ∫

Ω

〈∇up,∇ϕ〉 =
∫
Ω

〈f,∇ϕ〉, ϕ ∈ Ŵ 1,p(Ω).

Finally, by uniqueness of solutions to (2.1) in Ŵ 1,p′
(Ω), we obtain up = up′ .

Therefore Pp and (Pp)′ are consistent and we may write Pp′ = (Pp)′. Now
the proposition follows from interpolation theory.

�

Remark 2.5. 1. In order to show that Pp′ exists whenever Pp exists, we might
use J : Ŵ 1,p(Ω)→ (Ŵ 1,p′

(Ω))′ and duality theory.
2. The result that Pp′ exists whenever Pp exists is due to [Bog86].

Finally, we are prepared to give the

Proof of Theorem 1.2. We assume w.l.o.g. that p > 2. Once we establish the con-
sistency of the resolvent problem in Lq

σ(Ω) and in Lq′
σ (Ω) we can use interpolation

theory and Proposition 1.1 (see [GHHS09]) in order to get the claim. The consis-
tency of the Helmholtz projection was proved in Proposition 2.1.

That means that the solution operator of the weak Neumann problem exists
in Ls(Ω) for s ∈ [p′, p] and is consistent. The consistency of the Stokes resolvent
problem now follows from the solution formula for the Stokes resolvent problem
which was developed in [GHHS09]. In this representation the authors use an ex-
plicit solution formula for the half-space. Noting that in the half-space we have
consistent resolvents it is clear that the consistency is preserved in the general
case. �
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Abstract. We consider estimates depending on a parameter for general linear
elliptic boundary value problems, with nonhomogeneous boundary conditions,
in Nikol’skij spaces. These estimates are then employed to study general li-
near nonautonomous parabolic systems, again with nonhomogeneous boun-
dary conditions. Maximal regularity results are proved.
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0. Introduction and notations

The aim of this paper is to illustrate some improvements concerning estimates
depending on a parameter for elliptic boundary value problems with nonhomoge-
neous boundary conditions, and to apply them to mixed parabolic systems. The
main spaces we shall work with are Nikol’skij spaces, which are a category of the
class of Besov spaces: if β ∈ R, p ∈ [1,∞] and Ω is a domain in Rn, the Nikol’skij
space Nβ

p (Ω) coincides with the Besov space Bβ
p,∞(Ω). The main reason why we

are interested in Nβ
p (Ω) is that results of maximal regularity in closed subspaces

of B([0, T ];Nβ
p (Ω)), the space of bounded functions with values in Nβ

p (Ω), are
available. Maximal regularity estimates in Lp(0, T ;Lp(Ω)) (1 < p <∞) (even for
a very general class of systems) were obtained by V.A. Solonnikov (see [11]). In
the case of homogeneous boundary conditions, the extension to Lp(0, T ;Lq(Ω))
(1 < p, q < ∞) is essentially due to G. Dore and A. Venni as an application
of their celebrated theorem (see [4]). An extension of this result to the case of
operator-valued coefficients is proposed by R. Denk, M. Hieber, J. Prüss in [2].
The case of nonhomogeneous boundary conditions (again in the Lp-Lq setting)
is treated by the same authors in [3]. They prove a remarkable intrinsic cha-
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racterization of the boundary data in such a way that a solution in the class
W 1,p(0, T ;Lq(Ω))∩Lp(0, T ;W 2m,q(Ω)) exists. Such characterization is in terms of
vector-valued Triebel-Lizorkin spaces. However, for problems of convergence to a
stationary state and asymptotic expansion of the solutions, it seems preferable to
work in spaces of continuous, or, at least, bounded functions in the time variable.
If A is the infinitesimal generator of an analytic semigroup in X , maximal regu-
larity results of this type for the corresponding Cauchy problem are available in
closed subspaces of the real interpolation space (X,D(A))θ,∞ (see, for example,
[9]). If X = Lp(Ω) and D(A) is a closed subspace of W 2m,p(Ω), (X,D(A))θ,∞
is typically a closed subspace of the Nikol’skiy space N2mθ

p (Ω) (see Section 1 for
precise definitions). This makes our choice quite natural.

We pass to describe the content of the paper.

In Section 1, we recall some definitions and results concerning Nikol’skij
spaces, which we shall use throughout the article. The Nikol’skij space Ns

p (Ω)
(s ∈ R, p ∈ [1,∞]) coincides with the Besov space Bs

p,∞(Ω). We refer to [6] for
a summary of results concerning Besov spaces. Much more complete expositions
can be found (for example) in [14], [10], and (in the case s > 0) in [1], Chapter
7. For the sake of simplicity, we have chosen to consider only the case of domains
with “smooth” (that is, C∞) boundaries, following the lines of [14], [10], [6].

In Section 2 we deal with estimates depending on a parameter for general
nonhomogeneous elliptic boundary value problems in Nikol’skij spaces. Here also
we shall limit ourselves to the case of smooth coefficients. It is quite well known that
estimates of this type are basic to treat parabolic systems. The main result of this
Section is Theorem 2.3, in which we prove an estimate depending on a parameter
in the case that the solution annihilates the elliptic operator with the parameter
and the boundary conditions are nonhomogeneous, and extending Proposition 2.16
in [6]. Theorem 2.3 has Theorem 2.7, containing a general estimate depending on
a parameter, as a corollary.

In Section 3 we consider general parabolic systems. The estimates obtained
in Section 2 allow to prove maximal regularity results for problems with nonho-
mogeneous boundary conditions at first in the case of autonomous systems. In
this direction, the main result is Theorem 3.6. The method of the proof follows
an old idea by B. Terreni (see [13]). Such idea was already employed in [5], where
I treated similar problems in little-Nikol’skij spaces (the closure of smooth func-
tions in Nikol’skij spaces). Apart the slightly different setting, here I have been
able to extend considerably the range of indexes to which the results are appli-
cable. Roughly speaking, if Nβ

p (Ω) is the basic space, here β is allowed to vary
in the interval (μ+ p−1 − 2m, ν + p−1), with ν and μ, respectively, the minimum
and maximum order of the boundary conditions, while in [5] I treated only the
case β ∈ (0, p−1) (compare Theorem 3.6 with Theorem 2.1 in [5]). So we are able
to treat even cases with β < 0 and the elements of the basic space are distribu-
tions. Finally we have put an extension, which does not seem completely trivial,
to nonautonomous parabolic systems.
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We conclude this introductory section with the indication of some notations
that we shall use in the paper.

If X and Y are Banach spaces, we shall indicate with L(X,Y ) the Banach
space of linear bounded operators from X to Y . In case X = Y , we shall write
L(X). If Ω is an open subset of Rn with smooth boundary and x belongs to the
boundary ∂Ω, we shall indicate with ν(x) the unit vector, which is normal to ∂Ω
in x and points outside Ω, with ∂f

∂ν (x) the normal derivative, and with Tx(∂Ω) the
tangent space to ∂Ω in x. Given θ ∈ (0, 1) and q ∈ [1,∞], we shall indicate with
(., .)θ,q the real interpolation functor, Wm,p(Ω) (m ∈ N0, p ∈ [1,∞]) will be the
standard Sobolev spaces. If A is a set and X is a normed space, we shall indicate
with B(A;X) the space of bounded functions from A to X , with its natural norm.
If β ∈ R, we set

[β] := max{j ∈ Z : j < β}, {β} := β − [β]. (0.1)

If ρ∈(0,1), T ∈R+, X is a Banach space with norm ‖.‖, and f : [0,T ]→X , we set

‖f‖Cρ([0,T ];X) := max
{
‖f‖B([0,T ];X), sup

0≤s<t≤T

‖f(t)− f(s)‖
(t− s)ρ

}
.

Of course, Cρ([0, T ];X) is the set of functions f such that ‖|f‖Cρ([0,T ];X) < +∞.
If m ∈ N, Cm+ρ([0, T ]; X) is the set of functions f in Cm([0, T ];X) such that
f (m) ∈ Cρ([0, T ];X). We shall equip it with the norm

‖f‖Cm+ρ([0,T ];X) := max{‖f‖Cm([0,T ];X), ‖f (m)‖Cρ([0,T ];X)}.
Finally, C will be used to indicate a positive constant which we are not interested to
precise, and may be different from time to time. We shall often use the notation C0,
C1, . . . if we have a sequence of estimates. Other notations, concerning Nikol’skij
spaces, will be introduced in Section 1.

1. Nikol’skij spaces

We start by introducing Nikol’skij spaces.

Definition 1.1. Let n ∈ N, p ∈ [1,+∞[, β ∈ (0, 1]. We define

Nβ
p (Rn) := {f ∈ Lp(Rn) : [f ]β,p,Rn

:= suph∈Rn\{0} |h|−β‖f(.+ h)− 2f + f(.− h)‖Lp(Rn) < +∞}.
(1.1)

If β ∈ (1,+∞), we set

Nβ
p (Rn) := {f ∈W [β],p(Rn) : ∀α ∈ Nn

0 , |α| ≤ [β], ∂αf ∈ N{β}
p (Rn)} (1.2)

(we recall that {β} ∈ (0, 1]).

Remark 1.2. Nβ
p (Rn), with the norm

‖f‖β,p,Rn := ‖f‖W [β],p(Rn) +
∑

|α|=[β]

[f ]{β},p,Rn



278 D. Guidetti

is a Banach space. If β ∈ (0, 1) an equivalent norm can be obtained replacing in
(1.1) ‖f(.+h)−2f+f(.−h)‖Lp(Rn) with ‖f(.+h)−f‖Lp(Rn) (see [12], Theorem 4).

Now we define the space Nβ
p (Rn) in case β ≤ 0.

Definition 1.3. Let β ∈ R, β ≤ 0, p ∈ [1,+∞]. We set

Nβ
p (Rn) :=

{
f =

∑
|s|≤|[β]|

∂sfs : fs ∈ N{β}
p (Rn)

}
,

equipped with the norm

‖f‖β,p,Rn := inf
{ ∑

|s|≤|[β]|
‖fs‖{β},p,Rn : f =

∑
|s|≤|[β]|

∂sfs, fs ∈ N{β}
p (Rn)

}
. (1.3)

Definition 1.4. Let n ∈ N, p ∈ [1,∞], β ∈ R and let Ω be an open subset of Rn.
We set

Nβ
p (Ω) := {f|Ω : f ∈ Nβ

p (Rn)}. (1.4)

If g ∈ Nβ
p (Ω), we set

‖g‖β,p,Ω := inf{‖f‖β,p,Rn : f|Ω = g}. (1.5)

We shall write Cβ(Ω) in alternative to Nβ
∞(Ω).

Remark 1.5. If β ∈ R+ \Z, Cβ(Ω) coincides with the space of elements in C [β](Ω)
whose derivatives of order [β] are Hölder continuous of exponent {β}.

For the sake of simplicity, here we shall consider only the case that the bound-
ary ∂Ω of Ω is “smooth”, that is, ∂Ω is a C∞ submanifold of Rn, and Ω lies on
one side of ∂Ω, although this restrictive condition could be considerably relaxed.

The spaces Nβ
p (Ω) are locally invariant with respect to compositions with

smooth (that is, C∞) diffeomorphisms (see [14], 2.10). This implies that we can
define by local charts the spaces Nβ

p (S) if S is a smooth submanifold of Rn. The
following fact holds (see [6], Theorem 1.19):

Theorem 1.6. Assume 1 ≤ p ≤ +∞, β > m + p−1, with m ∈ N0. Then there
exists T ∈ L(Nβ

p (Ω),
∏m

j=0N
β−j−1/p
p (∂Ω)), such that, if u ∈ Nβ

p (Ω) ∩ Cm(Ω),
Tu = (u|∂Ω, . . . ,

∂mu
∂νm ).

Nikol’skij spaces arise in real interpolation theory. If θ ∈ (0, 1) and m0,m1 ∈
N0, with m0 < m1, we have

(Wm0,p(Ω),Wm1,p(Ω))θ,∞ = N (1−θ)m0+θm1
p (Ω), (1.6)

with equivalent norms (see [1], 7.32). In general, if β0, β1 ∈ R and θ ∈ (0, 1),

(Nβ0
p (Ω), Nβ1

p (Ω))θ,∞ = N (1−θ)β0+θβ1
p (Ω), (1.7)

again with equivalent norms (see [14], 3.3.6). Finally, if β0, β1 ∈ R, m ∈ N0,
β0 < m < β1, and m = (1 − θ)β0 + θβ1, with θ ∈ (0, 1), ∀f ∈ Nβ1

p (Ω),

‖f‖W m,p(Ω) ≤ C‖f‖1−θ
β0,p,Ω‖f‖θ

β1,p,Ω, (1.8)
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with C > 0, independent of f . This is a consequence of the fact that

(Nβ0
p (Ω), Nβ1

p (Ω))θ,1 = Bm
p,1(Ω) ↪→Wm,p(Ω),

(see [14, 3.3.6]), where Bm
p,1(Ω) is a Besov space.

2. Elliptic problems depending on a parameter with
nonhomogeneous boundary conditions

Let now Ω be a bounded open subset of Rn, with smooth boundary ∂Ω. We
consider the partial linear operator of order 2m (m ∈ N)

A(x, ∂x) =
∑

|s|≤2m

as(x)∂s
x, (2.1)

with smooth coefficients in Ω. We indicate with A0(x, ∂x) its principal part
∑

|s|=2m

as(x)∂s
x. For k = 1, . . . ,m, we introduce partial linear operators

Bk(x, ∂x) =
∑

|s|≤μk

bks(x)∂s
x, (2.2)

again with smooth coefficients in Ω. We assume the following:
(H1) A(x, ∂x) is strongly elliptic, in the sense that there exists c > 0, such that,

∀x ∈ Ω, ∀ξ ∈ Rn, (−1)m Re(A0(x, ξ)) ≤ −c|ξ|2m.
(H2) 0 ≤ μ1 < μ2 < · · · < μm ≤ 2m− 1; moreover, if we indicate with Bk0(x, ∂x)

the principal part of Bk(x, ∂x), Bk0(x, ν(x)) �= 0 for each k = 1, . . . ,m.
(H3) ∀θ0 ∈ [−π/2, π/2], ∀x ∈ ∂Ω, ∀(ξ′, r) ∈ (Tx(∂Ω)× [0,+∞))\{0, 0)}, the o.d.e.

problem ⎧⎪⎪⎨⎪⎪⎩
(A0(x, iξ′ + ν(x)∂t)− r2meiθ0)v(t) = 0, t ≥ 0,

Bk0(x, iξ′ + ν(x)∂t)v(0) = 0, k = 1, . . . ,m,

v bounded in R+

has only the trivial solution.
The following theorem summarizes in its statement Lemmas 2.12 and 2.14

(using also Theorem 2.17) in [6]:

Theorem 2.1. Let Ω be a bounded open subset in Rn, with smooth boundary ∂Ω, and
let A(x, ∂x) and, for k = 1, . . . ,m, B1(x, ∂x), . . . , Bm(x, ∂x) operators satisfying
the conditions (H1)–(H3). We assume that β ∈ R, 1 ≤ p ≤ ∞, μ+ p−1 − 2m < β,
with μ := max1≤k≤m μk. We consider the problem{

λu(x)−A(x, ∂x)u(x) = 0, x ∈ Ω,

Bk(x′, ∂x)u(x′)− gk(x′) = 0 x′ ∈ ∂Ω, k = 1, . . . ,m,
(2.3)

with λ ∈ C, Re(λ) ≥ 0, for k = 1, . . . ,m, gk ∈ N2m+β−μk
p (Ω). Then:
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(I) there exist r0 and C positive, such that, if |λ| ≥ r0, (2.3) has a unique solution
u belonging to N2m+β

p (Ω).
(II) The following estimate holds:

|λ|1+
β

2m ‖u‖Lp(Ω) + |λ|‖u‖β,p,Ω + ‖u‖2m+β,p,Ω

≤ C
m∑

k=1

(‖gk‖2m+β−μk,p,Ω + |λ|
2m+β−μk

2m ‖gk‖Lp(Ω)).
(2.4)

(III) If, moreover, 0 < {β} < p−1, the following estimate holds:

|λ|1+
β

2m ‖u‖Lp(Ω) + |λ|‖u‖β,p,Ω + ‖u‖2m+β,p,Ω

≤ C
m∑

k=1

(‖gk‖2m+β−μk,p,Ω + |λ|
2m+[β]−μk

2m ‖gk‖{β},p,Ω).
(2.5)

Remark 2.2. In the statements of Lemmas 2.12 and 2.14 in [6], concerning the
formula corresponding to (2.4), there appear summands of the form |λ|ρ‖gk‖W l,p(Ω)

and |λ|ρ‖gk‖l,p,Ω, with l intermediate between, respectively, 2m + β − μk and 0,
and 2m+ β − μk and {β}. They can be all skipped, using (1.8) and (1.7).

We want to generalize estimate (2.5). More precisely, we want to prove the following

Theorem 2.3. Assume that the assumptions of Theorem 2.1 are satisfied. Let λ ∈ C,
with Re(λ) ≥ 0 and |λ| ≥ r0, with r0 as in the statement of Theorem 2.1. Further,
let θ ∈ (0, 1/p). Then, there exists C > 0, independent of λ and gk (1 ≤ k ≤ m),
such that

|λ|1+
β

2m ‖u‖Lp(Ω) + |λ|‖u‖β,p,Ω + ‖u‖2m+β,p,Ω

≤ C
( m∑

k=1

‖gk‖2m+β−μk,p,Ω + |λ|
2m+β−μk−θ

2m ‖gk‖θ,p,Ω

)
.

(2.6)

To this aim, we need the following lemmas:

Lemma 2.4. Assume 1 ≤ p < +∞, 0 < β ≤ θ < 1
p , g ∈ Nθ

p (Rn
+) and vanishes if

xn > r. Then:
(I) there exists C > 0, independent of g, such that, ∀r ∈ R+,

‖g‖Lp(Rn
+) ≤ Crθ‖g‖θ,p,Rn

+
;

(II) there exists C > 0, independent of g, such that, ∀r ∈ R+,

‖g‖β,p,Rn
+
≤ Crθ−β‖g‖θ,p,Rn

+
;

Proof. Concerning (I), see Lemma 2.13 in [6].
Concerning (II), from (I) and the fact that

Nβ
p (Rn

+) = (Lp(Rn
+), Nθ

p (Rn
+))β/θ,∞,

we obtain

‖g‖β,p,Rn
+
≤ C1‖g‖1−β/θ

Lp(Rn)‖g‖
β/θ
θ,p,Rn

+
≤ C2(rθ‖g‖θ,p,Rn

+
)1−β/θ‖g‖β/θ

θ,p,Rn
+
. �
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Lemma 2.5. Assume 1 ≤ p < +∞, β ∈ (0, 1], θ ∈ (0, 1
p ∧ β), and let {χr}0<r≤1 be

a family of C1 functions in [0,+∞), such that
(a) χr(t) = 0 if t ≥ r ∀r ∈ (0, 1];
(b) |χr(t)|+ r|χ′r(t)| ≤ A, ∀r ∈ (0, 1], ∀t ≥ 0, for some A ∈ R+.

Then:
(I) there exists C ∈ R+, depending only on θ, p, A, such that, ∀g ∈ Nθ

p (Rn
+),

∀r ∈ (0, 1], if gr(x′, xn) = g(x′, xn)χr(xn),

‖gr‖θ,p,Rn
+
≤ C‖g‖θ,p,Rn

+
;

(II) assume, moreover, that the functions χr are of class C2, and r2|χ′′r (t)| ≤
A, ∀r ∈ (0, 1], ∀t ≥ 0. Then, ∀g ∈ Nβ

p (Rn
+), ∀r ∈ (0, 1],

‖gr‖β,p,Rn
+
≤ C(‖g‖β,p,Rn

+
+ rθ−β‖g‖θ,p,Rn

+
).

Proof. (I) is essentially proved in [5], Lemma 1.6 (see also [6], Lemma 2.13).
Concerning (II), we shall use the following equivalent norm in Nβ

p (Rn
+) (see

for this [8], Ch. VII, Theorem 2.1):

‖g‖′β,p,Rn
+
. := ‖g‖Lp(Rn

+) +
n∑

j=1

sup
t>0
t−β‖g(.+ 2tej)− 2g(.+ tej) + g‖Lp(Rn

+).

Now, let g ∈ Nβ
p (Rn

+). Obviously,

‖gr‖Lp(Rn
+) +

n−1∑
j=1

sup
t>0
t−β‖gr(.+ 2tej)− 2gr(.+ tej) + gr‖Lp(Rn

+) ≤ C‖g‖′β,p,Rn
+
,

with C depending only on A. Moreover,

‖gr(.+ 2ten)− 2gr(.+ ten) + gr‖Lp(Rn
+)

≤ ‖(χr(xn + 2t)− χr(xn + t))(g(.+ 2ten)− g(.+ ten))‖Lp(Rn
+)

+ ‖(χr(xn + 2t)− 2χr(xn + t) + χr(xn))g(.+ ten))‖Lp(Rn
+)

+ ‖(χr(xn + t)− χr(xn))(g(.+ 2ten)− g(.+ ten))‖Lp(Rn
+)

+ ‖χr(xn)(g(.+ 2ten)− 2g(.+ ten) + g)‖Lp(Rn
+) := I1 + I2 + I3 + I4.

(2.7)

First of all,
t−βI4 ≤ C‖g‖′β,p,Rn

+
. (2.8)

Next,
t−βI1 ≤ C‖χr‖Cβ−θ([0,+∞[)‖g‖θ,p,Rn

+
≤ Crθ−β‖g‖θ,p,Rn

+
, (2.9)

owing to well-known interpolatory inequalities, which are consequences of (a)–(b).
t−βI3 can be estimated similarly. Concerning t−βI2, we start by observing that

(χr(xn + 2t)− 2χr(xn + t) + χr(xn))g(x + ten) = 0

if xn > r. So, from Lemma 2.4, we have

t−βI2 ≤ Crθt−β‖(χr(xn + 2t)− 2χr(xn + t) + χr(xn))g(.+ ten)‖θ,p,Rn
+
.
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Assume first that t ≥ r. Then, by (I)

rθt−β‖(χr(xn + 2t)− 2χr(xn + t) + χr(xn))g(.+ ten)‖θ,p,Rn
+

= rθt−β‖χr(xn)g(.+ ten)‖θ,p,Rn
+
≤ Crθt−β‖g‖θ,p,Rn

+
≤ Crθ−β‖g‖θ,p,Rn

+
.

Finally, assume 0 < t < r. We define

cr,t(s) := rt−1(χr(s+ 2t)− 2χr(s+ t) + χr(s)).

Then, ∀r, t,
|cr,t(s)|+ r|c′r,t(s)| ≤ 4A.

From (I) we deduce

t−βI2 = r−1t1−β‖cr,t(xn)g(.+ ten)‖Lp(Rn
+)

≤ Crθ−1t1−β‖cr,t(xn)g(.+ ten)‖θ,p,Rn
+

≤ Crθ−1t1−β‖g‖θ,p,Rn
+
,≤ Crθ−β‖g‖θ,p,Rn

+
.

Collecting together the previous estimates, we obtain the conclusion. �

Remark 2.6. An example of family of functions satisfying conditions (a) and (b)
in the statement of Lemma 2.5 can be obtained setting χr(t) := χ( t

r ), with χ :
[0,+∞)→ C suitably smooth.

Now, we are able to prove Theorem 2.3:

Proof of Theorem 2.3. For every x0 ∈ ∂Ω there exist an open neighbourhood U
of x0, and a smooth diffeomorphism Φ : U → Φ(U) ⊆ Rn, such that Φ(x0) = 0,
Φ(U ∩ ∂Ω) = Φ(U) ∩ {(y′, 0) : y′ ∈ Rn−1} and Φ(U ∩ Ω) = Φ(U) ∩ Rn

+. As Ω is
bounded, there exist x1,. . . , xN , with corresponding diffeomorphisms Φ1, . . . ,ΦN ,
such that ∂Ω ⊆ ∪N

j=1Uj . We add an open subset U0 of Ω, with U0 ⊆ Ω, such that
Ω ⊆ ∪N

j=0Uj . Let {ψ0, . . . , ψN} be a smooth partition of unity in a neighbourhood
of Ω, such that the support of ψj is contained in Uj (j = 0, . . . , N). Let (χr)0<r≤1

be a family of smooth functions of domain [0,+∞), such that χr(t) = 1 if 0 ≤ t ≤
r/2, χr(t) = 0 if t ≥ r, |χ(l)

r (t)| ≤ Clr
−l, ∀r ∈ (0, 1], ∀l ∈ N0, ∀t ≥ 0. We put, for

k = 1, . . . ,m, r > 0 sufficiently small

gkr(x) :=
N∑

j=1

ψj(x)χr(Φj(x)n)gk(x).

Then, applying Theorem 2.1 (II), we have ∀r ∈ (0, r0],

|λ|1+
β

2m ‖u‖Lp(Ω) + |λ|‖u‖β,p,Ω + ‖u‖2m+β,p,Ω

≤ C
m∑

k=1

(‖gkr‖2m+β−μk,p,Ω + |λ|
2m+β−μk

2m ‖gkr‖Lp(Ω)),
(2.10)
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with C > 0, independent of λ, gk (1 ≤ k ≤ m) and r ∈ (0, r0]. We have

‖gkr‖Lp(Ω) ≤
N∑

j=1

‖ψjχr(Φj(x)n)gk‖Lp(Ω) ≤ C1

N∑
j=1

‖χr(yn)(ψjgk ◦ Φ−1
j )‖Lp(Rn

+).

We set g∗ := ψjgk ◦ Φ−1
j . Then, by Lemmas 2.4 and 2.5,

‖χr(yn)g∗‖Lp(Rn
+) ≤ C1r

θ‖χr(yn)g∗‖θ,p,Rn
+
,≤ C2r

θ‖g∗‖θ,p,Rn
+
,≤ C3r

θ‖gk‖θ,p,Ω.

(2.11)
Moreover,

‖gkr‖2m+β−μk,p,Ω ≤
N∑

j=1

‖ψjχr(Φj(x)n)gk‖2m+β−μk,p,Ω

≤ C4

N∑
j=1

‖χr(yn)(ψjgk ◦ Φ−1
j )‖2m+β−μk,p,Rn

+
.

We have

‖χr(yn)g∗‖2m+β−μk,p,Rn
+
≤ C5

∑
s1+|s2|≤2m+[β]−μk

‖χ(s1)
r (yn)∂s2g∗‖{β},p,Rn

+
. (2.12)

Assume first that {β} ≤ θ. Then, if |s2| ≥ 1, we have, employing Lemma 2.5,

‖χ(s1)
r (yn)∂s2g∗‖{β},p,Rn

+
≤ r−s1‖rs1χ(s1)

r (yn)∂s2g∗‖{β},p,Rn
+

≤ Cr−s1‖∂s2g∗‖{β},p,Rn
+
≤ Cr−s1‖g∗‖|s2|+{β},p,Rn

+

≤ Cr|s2|−(2m+[β]−μk)‖gk‖|s2|+{β},p,Ω. (2.13)

If s2 = 0,

‖χ(s1)
r (yn)g∗‖{β},p,Rn

+
≤ Crθ−{β}‖χ(s1)

r (yn)g∗‖θ,p,Rn
+
≤ Crθ−s1−{β}‖g∗‖θ,p,Rn

+

≤ Crθ−(2m+β−μk)‖gk‖θ,p,Ω. (2.14)

Instead, we assume that θ < {β}. Again applying Lemma 2.5, we have

‖χ(s1)
r (yn)∂s2g∗‖{β},p,Rn

+
= r−s1‖rs1χ(s1)

r (yn)∂s2g∗‖{β},p,Rn
+

≤ Cr−s1 (‖∂s2g∗‖{β},p,Rn
+

+ rθ−{β}‖∂s2g∗‖θ,p,Rn
+
) (2.15)

≤ C(r|s2|+{β}−(2m+β−μk)‖gk‖|s2|+{β},p,Ω + r|s2|+θ−(2m+β−μk)‖gk‖|s2|+θ,p,Ω).

Observe now that the last expressions in (2.13), (2.14), (2.15) can be all majorized
with

C(‖gk‖2m+β−μk,p,Ω + rθ−(2m+β−μk)‖gk‖θ,p,Ω). (2.16)
In fact, if θ < ρ < 2m+ β − μk, by (1.7),

rρ−(2m+β−μk)‖gk‖ρ,p,Ω ≤ C(rθ−(2m+β−μk)‖gk‖θ,p,Ω)
2m+β−μk−ρ

2m+β−μk−θ ‖gk‖
ρ−θ

2m+β−μk−θ ,∞
2m+β−μk,p,Ω

≤ C(‖gk‖2m+β−μk,p,Ω + rθ−(2m+β−μk)‖gk‖θ,p,Ω, ).
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So, from (2.10), we obtain, ∀r ∈ (0, r0],

|λ|1+
β

2m ‖u‖Lp(Ω) + |λ|‖u‖β,p,Ω + ‖u‖2m+β,p,Ω (2.17)

≤ C
m∑

k=1

(‖gk‖2m+β−μk,p,Ω + rθ−(2m+β−μk)‖gk‖θ,p,Ω + |λ|
2m+β−μk

2m rθ‖gk‖θ,p,Ω).

Choosing r = |λ|−1/(2m), we obtain the conclusion. �

As a consequence, we obtain the following refinement of Propositions 2.15–
2.16 in [6]:

Theorem 2.7. Let Ω be a bounded open subset in Rn, with smooth boundary ∂Ω, and
let A(x, ∂x) and, for k = 1, . . . ,m, B1(x, ∂x), . . . , Bm(x, ∂x) operators satisfying
the conditions (H1)–(H3). We assume that β ∈ R, μ+ p−1 − 2m < β < ν + p−1,
with μ := max1≤k≤m μk, ν := min1≤k≤m μk. Let θ ∈ (0, p−1) be such that ν+θ ≥ β.
We consider the problem{

λu(x)−A(x, ∂x)u(x) = f(x), x ∈ Ω,

Bk(x′, ∂x)u(x′)− gk(x′) = 0 x′ ∈ ∂Ω, k = 1, . . . ,m,
(2.18)

with λ ∈ C, Re(λ) ≥ 0, f ∈ Nβ
p (Ω), for k = 1, . . . ,m gk ∈ N2m+β−μk

p (Ω).
Then, there exist r0 and C positive, such that, if |λ| ≥ r0, (2.18) has a unique

solution u belonging to N2m+β
p (Ω). Moreover, the following estimate holds:

|λ|‖u‖β,p,Ω + ‖u‖2m+β,p,Ω

≤ C(‖f‖β,p,Ω +
m∑

k=1

‖gk‖2m+β−μk,p,Ω + |λ|
2m+β−μk−θ

2m ‖gk‖θ,p,Ω).
(2.19)

Proof. Consider a strongly elliptic operator A(x, ∂) with coefficients which are
smooth and bounded with all their derivatives in Rn, such that the restriction of
A(x, ∂) to Ω coincides with A(x, ∂) (see the proof of Proposition 2.15 in [6] for the
construction of A(x, ∂)). We fix f ′ ∈ Nβ

p (Rn), such that f ′|Ω = f and

‖f ′‖β,p,Rn ≤ C‖f‖β,p,Ω. (2.20)

Then, if |λ| is large enough and Re(λ) ≥ 0, owing to Proposition 2.5 in [6], there
exists a unique u′ ∈ N2m+β

p (Rn), such that

λu′ −A(x, ∂)u′ = f ′ in Rn (2.21)

and
|λ|‖u′‖β,p,Rn + ‖u′‖2m+β,p,Rn ≤ C‖f ′‖β,p,Rn . (2.22)

This implies that, ∀ρ ∈ [β, 2m+ β],

‖u′‖ρ,p,Rn ≤ C(ρ)|λ|
ρ−(2m+β)

2m ‖f ′‖β,p,Rn. (2.23)
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We indicate with v the restriction of u′ to Ω. Now we consider the problem{
λz(x) −A(x, ∂x)z(x) = 0, x ∈ Ω,

Bk(x′, ∂x)z(x′)− (gk(x′)−Bk(x′, ∂x)v(x′)) = 0, x′ ∈ ∂Ω, k = 1, . . . ,m,
(2.24)

By Theorem 2.3, if |λ| is sufficiently large, (2.24) has a unique solution z in
N2m+β

p (Ω). Clearly, u := v + z is the unique solution of (2.18) in N2m+β
p (Ω).

Moreover, employing (2.23),

|λ|‖u‖β,p,Ω + ‖u‖2m+β,p,Ω

≤ |λ|‖u′‖β,p,Rn + ‖u′‖2m+β,p,Rn + |λ|‖z‖β,p,Ω + ‖z‖2m+β,p,Ω

≤ C[‖f ′‖β,p,Rn +
m∑

k=1

(‖gk −Bk(., ∂)v‖2m+β−μk,p,Ω

+ |λ|
(2m+β−μk)−θ

2m ‖gk −Bk(., ∂)v‖θ,p,Ω)]

≤ C[‖f‖β,p,Ω +
m∑

k=1

(‖gk‖2m+β−μk,p,Ω + |λ|
2m+β−μk−θ

2m ‖gk‖θ,p,Ω)

+
m∑

k=1

(‖Bk(., ∂)v‖2m+β−μk,p,Ω + |λ|
2m+β−μk−θ

2m ‖Bk(., ∂)v‖θ,p,Ω)]

≤ C[‖f‖β,p,Ω +
m∑

k=1

(‖gk‖2m+β−μk,p,Ω + |λ|
2m+β−μk−θ

2m ‖gk‖θ,p,Ω)

+ ‖v‖2m+β,p,Ω +
m∑

k=1

|λ|
2m+β−μk−θ

2m ‖v‖μk+θ,p,Ω]

≤ C[‖f‖β,p,Ω +
m∑

k=1

(‖gk‖2m+β−μk,p,Ω + |λ|
2m+β−μk−θ

2m ‖gk‖θ,p,Ω)]. �

We conclude the section with the following simple result of perturbation:

Theorem 2.8. Assume that the assumptions of Theorem 2.7 are satisfied. Let β′ ∈
R, β′ < β, P ∈ L(N2m+β′

p (Ω), Nβ
p (Ω)) and let λ ∈ C. We consider the problem{

λu(x)−A(x, ∂x)u(x) − Pu(x) = f(x), x ∈ Ω,

Bk(x′, ∂x)u(x′)− gk(x′) = 0, x′ ∈ ∂Ω, k = 1, . . . ,m.
(2.25)

Then there exist θ0 ∈ (π/2, π), r0, C ∈ R+, such that, if |λ| ≥ r0, |Arg(λ)| ≤ θ0,
f ∈ Nβ

p (Ω), for k = 1, . . . ,m gk ∈ N2m+β−μk
p (Ω), (2.18) has a unique solution u

belonging to N2m+β
p (Ω). Moreover, an estimate like (2.19) holds.

Proof. Obviously, we may assume that 2m+ β′ ≥ β. By the well-known continu-
ation method, it suffices to prove an a priori estimate. So, let u ∈ N2m+β

p (Ω) be a
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solution of (2.25). We fix μ ∈ C, such that |μ| = |λ|, and Re(μ) ≥ 0. Then (2.25)
can be written in the equivalent form{

μu(x)−A(x, ∂x)u(x) = f(x) + (μ− λ)u(x) + Pu(x), x ∈ Ω,

Bk(x′, ∂x)u(x′)− gk(x′) = 0 x′ ∈ ∂Ω, k = 1, . . . ,m,
(2.26)

so that, if |λ| is sufficiently large, we obtain from Theorem 2.7 the estimate

|λ|‖u‖β,p,Ω + |λ|
β−β′
2m ‖u‖2m+β′,p,Ω + ‖u‖2m+β,p,Ω

≤ C0(‖f‖β,p,Ω +
m∑

k=1

‖gk‖2m+β−μk,p,Ω + |λ|
2m+β−μk−θ

2m ‖gk‖θ,p,Ω

+ ‖u‖2m+β′,p,Ω + |λ− μ|‖u‖β,p,Ω).

(2.27)

If θ0− π
2 is sufficiently small, it is possible to choose μ in such a way that C0

|λ−μ|
|λ| ≤

1
2 . If |λ| is so large that C0|λ|

β′−β
2m ≤ 1

2 , from (2.27) we immediately deduce (3.10).
�

Remark 2.9. In case f = 0, the following more general estimate holds: if β′ ≤ α ≤
2m+ β,

‖u‖α,p,Ω ≤ C|λ|
α−β
2m −1

m∑
k=1

(‖gk‖2m+β−μk,p,Ω + |λ|
2m+β−μk−θ

2m ‖gk‖θ,p,Ω). (2.28)

This follows from Theorem 2.8 if β ≤ α ≤ 2m + β. The case β′ ≤ α < β follows
from

‖u‖α,p,Ω = |λ|−1‖[A(., ∂x) + P ]u‖α,p,Ω ≤ C|λ|−1‖u‖2m+α,p,Ω.

3. Parabolic problems

We start with the autonomous parabolic system⎧⎪⎨⎪⎩
Dtu(t, x) = A(x, ∂x)u(t, x) + Pu(t, x) + f(t, x), (t, x) ∈ [0, T ]× Ω,

Bk(x′, ∂x)u(t, x′)− gk(t, x′) = 0, k = 1, . . . ,m, (t, x′) ∈ [0, T ]× ∂Ω
u(0, x) = u0(x), x ∈ Ω,

(3.1)

under the following assumptions:
(I1) Ω is an open bounded subset of Rn, with smooth boundary ∂Ω,

A(x, ∂x) =
∑

|s|≤2m

as(x)∂s
x

is a linear partial differential operator of order 2m (m ∈ N), and, for k =
1, . . . ,m

Bk(x, ∂x) =
∑

|s|≤μk

bks(x)∂s
x

is a linear partial differential operator, all with smooth coefficients in Ω.
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(I2) The conditions (H1)–(H3) are fulfilled.

(I3) β ∈ (μ+ p−1 − 2m, ν + p−1), with μ := max1≤k≤m μk, ν := min1≤k≤m μk.

(I4) P ∈ L(N2m+β′
p (Ω), Nβ

p (Ω)), for some β′ < β.

We introduce the following operator in Nβ
p (Ω):{

D(A) := {u ∈ N2m+β
p (Ω) : Bk(., ∂x)u|∂Ω = 0, k = 1, . . . ,m},

Au := A(., ∂x)u+ Pu.
(3.2)

By Theorem 2.8, A is a sectorial operator (with not dense domain) in Nβ
p (Ω). We

use θ0 with the same meaning as in the statement of Theorem 2.8. Then we can
construct an analytic semigroup {T (t) : t > 0} (not strongly continuous in 0) in
a standard way (see [9]): we fix a piecewise C1 path γ, describing {λ ∈ C \ {0} :
|Arg(λ)| = θ1, |λ| ≥ r0} ∪ {λ ∈ C \ {0} : |Arg(λ)| ≤ θ1, |λ| = r0}, with r0 as in the
statement of Theorem 2.8, θ1 ∈ (π/2, θ0), γ oriented from ∞e−iθ1 to ∞eiθ1 , and
set, for t > 0,

T (t) :=
1

2πi

∫
γ

eλt(λ−A)−1dλ. (3.3)

If T ∈ R+, for t ∈ (0, T ] T (t) satisfies the estimate

‖T (t)f‖β,p,Ω + t‖T (t)f‖2m+β,p,Ω ≤ C(T )‖f‖β,p,Ω. (3.4)

We consider also the operator

T (−1)(t) :=
∫ t

0

T (s)ds =
1

2πi

∫
γ

eλtλ−1(λ−A)−1dλ. (3.5)

This operator satisfies, for T ∈ R+, an estimate of the form

‖T (−1)(t)f‖β,p,Ω + t‖T (−1)(t)f‖2m+β,p,Ω ≤ C(T )t‖f‖β,p,Ω. (3.6)

It is convenient to fix β′′ ∈ (β′, β) ∩ (μ + p−1 − 2m, ν + p−1), and consider the
analogues of A, T (t) and T (−1)(t) in Nβ′′

p (Ω). We shall indicate these operators
with Aβ′′ , Tβ′′(t) and T (−1)

β′′ (t) respectively. Clearly they satisfy estimates of the
form (3.4) and (3.6), with β′′ replacing β. Of course, A, T (t) and T (−1)(t) are the
parts of Aβ′′ , Tβ′′(t) and T (−1)

β′′ (t) in Nβ
p (Ω).

We pass to consider nonhomogeneous boundary conditions. Let i ∈ {1, . . . ,m}
and take g ∈ N2m+β−μi

p (Ω). We indicate with Ni(λ)g the solution of system (2.25),
in case f = 0, gk = 0 if k �= i, gi = g. If t > 0, we set

Ki(t)g := (2πi)−1

∫
γ

eλtNi(λ)gdλ. (3.7)

We have:

Lemma 3.1. Let T ∈ R+, k ∈ {1, . . . ,m}, g ∈ N2m+β−μk
p (Ω), β′ ≤ α ≤ 2m + β,

θ ∈ (0, p−1), with ν + θ ≥ β. Then:
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(I) there exists C > 0, depending only on T and α, such that

‖Kk(t)g‖α,p,Ω ≤ Ct−
α−β
2m (‖g‖2m+β−μk,p,Ω + t−

2m+β−μk−θ

2m ‖g‖θ,p,Ω);

(II) Kk ∈ C1(R+;L(N2m+β−μk
p (Ω);Nα

p (Ω)) and

K ′
k(t) = (2πi)−1

∫
γ

eλtλNk(λ)gdλ; (3.8)

(III) ‖K ′
k(t)g‖α,p,Ω ≤ Ct−1−α−β

2m (‖g‖2m+β−μk,p,Ω + t−
2m+β−μk−θ

2m ‖g‖θ,p,Ω);
(IV) ∀t ∈ R+ [A(., ∂x) + P ]Kk(t)g = K ′

k(t)g;
(V) ∀t ∈ R+, ∀i ∈ {1, . . . ,m}, Bi(., ∂x)Kk(t)g|∂Ω = 0;
(VI) if ξ is positive and sufficiently large, ξ ∈ ρ(A) and

(ξ −A)−1Kk(t)g = (2πi)−1

∫
γ

eλt(ξ − λ)−1Nk(λ)gdλ.

Proof. Modifying γ, if necessary, we may assume, owing to Cauchy’s theorem, that
|λ| ≥ Tr0 ∀λ ∈ γ. So, by Remark 2.9,

‖Kk(t)g‖α,p,Ω = ‖(2πi)−1

∫
t−1γ

eλtNi(λ)gdλ‖α,p,Ω

= ‖(2πit)−1

∫
γ

eλNi(t−1λ)gdλ‖α,p,Ω

≤ Ct−1

∫
γ

eRe(λ)|t−1λ|
α−β
2m −1(‖g‖2m+β−μk,p,Ω + |t−1λ|

2m+β−μk−θ

2m ‖g‖θ,p,Ω)|dλ|,

which implies the conclusion.
(II) is obvious.
(III) can be obtained from (II), with the same method of (I).
(IV) follows from

Kk(t)g = (2πi)−1

∫
γ

eλt[A(., ∂x) + P ]Nk(λ)gdλ

= (2πi)−1

∫
γ

eλtλNk(λ)gdλ.

(V) follows from

Bi(., ∂x)Kk(t)g|∂Ω = (2πi)−1

∫
γ

eλt[Bi(., ∂x)Nk(λ)g]|∂Ωdλ

= (2πi)−1

∫
γ

eλtδikg|∂Ωdλ = 0.

(VI) The first statement is a consequence of the fact that A is a sectorial
operator. Concerning the formula, observe first that, if ξ �= λ,

(ξ −A)−1Nk(λ)g = (ξ − λ)−1[Nk(λ)−Nk(ξ)]g.
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It follows

(ξ −A)−1Kk(t)g = (2πi)−1

∫
γ

eλt(ξ − λ)−1Nk(λ)gdλ− (2πi)−1

×
∫

γ

eλt(ξ − λ)−1Nk(ξ)gdλ,

and the second integral is 0. �

We deduce from Lemma 3.1, by choosing θ > β − ν, that, at least as an
element of L(N2m+β−μk

p (Ω), Nβ
p (Ω)), we can define the following operator

K
(−1)
k (t) :=

∫ t

0

Kk(s)ds = (2πi)−1

∫
γ

eλt

λ
Nk(λ)dλ. (3.9)

We have:

Lemma 3.2. Let T ∈ R+, k ∈ {1, . . . ,m}, g ∈ N2m+β−μk
p (Ω), β′ ≤ α ≤ 2m + β,

θ ∈ (0, p−1), with ν + θ ≥ β. Then:

(I) there exists C > 0, depending only on T and α, such that

‖K(−1)
k (t)g‖α,p,Ω ≤ Ct1−

α−β
2m (‖g‖2m+β−μk,p,Ω + t−

2m+β−μk−θ

2m ‖g‖θ,p,Ω);

(II) ∀t ∈ R+ [A(., ∂x) + P ]K(−1)
k (t)g = Kk(t)g;

(III) ∀t ∈ R+, ∀i ∈ {1, . . . ,m}, Bi(., ∂x)K(−1)
k (t)g|∂Ω = δikg|∂Ω.

Proof. (I) can be obtained with the same arguments in the proof of Lemma 3.1.

(II) follows from

K
(−1)
k (t)g = (2πi)−1

∫
γ

eλt

λ
[A(., ∂x) + P ]Nk(λ)gdλ

= (2πi)−1

∫
γ

eλtNk(λ)gdλ.

Concerning (III),

Bi(., ∂x)K(−1)
k (t)g|∂Ω = (2πi)−1

∫
γ

eλt

λ
[Bi(., ∂x)Nk(λ)g]|∂Ωdλ

= (2πi)−1

∫
γ

eλt

λ
δikg|∂Ωdλ = δikg|∂Ω. �

After these preliminaries, we pass to consider system (3.1). We begin with
the case u0 = 0 and gk ≡ 0 for each k = 1, . . . ,m. Here we have ([7], Theorem 2.7)
that

Nβ
p (Ω) = (Nβ′′

p (Ω), D(Aβ′′ ))β−β′′
2m

. (3.10)
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As Aβ′′ is a sectorial operator, the following characterization of Nβ
p (Ω) holds (see

[9], Proposition 2.2.2): is [ξ0,∞) ⊆ ρ(Aβ′′),

Nβ
p (Ω) =

{
f ∈ Nβ′′

p (Ω) : sup
ξ≥ξ0

‖ξ
β−β′′
2m Aβ′′(ξ −Aβ′′)−1f‖β′′,p,Ω <∞

}
. (3.11)

Moreover, an equivalent norm in Nβ
p (Ω) is

f → ‖f‖β′′,p,Ω + sup
ξ≥ξ0

‖ξ
β−β′′
2m Aβ′′(ξ −Aβ′′)−1f‖β′′,p,Ω.

Employing Theorem 4.3.8 in [9], we deduce the following

Lemma 3.3. Assume that the assumptions (I1)–(I4) are satisfied. Consider the
system (3.1) in case f ∈ C([0, T ];Nβ′′

p (Ω)) ∩ B([0, T ];Nβ
p (Ω)), gk ≡ 0 for each

k = 1, . . . ,m, and u0 = 0. Then there is a unique solution u belonging to C1([0, T ];
Nβ′′

p (Ω))∩B([0, T ];N2m+β
p (Ω)), with Dtu ∈ B([0, T ];Nβ

p (Ω)). u can be represented
by the variation of parameter formula

u(t) =
∫ t

0

T (t− s)f(s)ds, t ∈ [0, T ]. (3.12)

Next, we consider the case f ≡ 0, u0 = 0, gi ≡ 0 if i �= k (k ∈ {1, . . . ,m}).
We shall often use the following

Lemma 3.4. Let T ∈ R+, let β0, β1 be real numbers, such that β0 < β1, ρ ∈ R+,
p ∈ [1,+∞], and let g ∈ B([0, T ];Nβ1

p (Ω))∩Cρ([0, T ];Nβ0
p (Ω)). Then, if ξ ∈ (0, 1)

and (1 − ξ)ρ �∈ Z, g ∈ C(1−ξ)ρ([0, T ];N (1−ξ)β0+ξβ1
p (Ω)). Moreover, there exists

C > 0, independent of g, such that

‖g‖
C(1−ξ)ρ([0,T ];N

(1−ξ)β0+ξβ1
p (Ω))

≤ C(‖g‖
B([0,T ];N

β1
p (Ω))

+ ‖g‖
Cρ([0,T ];N

β0
p (Ω))

).

Proof. Employing the characterization of C(1−ξ)ρ ([0, T ];N (1−ξ)β0+ξβ1
p (Ω)) by hi-

gher-order differences (see [14], 3.4.2), we have, taking l ∈ N, l ≥ β1, h ∈ (0, T/l]
and t ∈ [0, T − lh],

h−(1−ξ)ρ

∥∥∥∥ l∑
j=0

(
l

j

)
(−1)l−jg(t+ jh)

∥∥∥∥
(1−ξ)β0+ξβ1,p,Ω

≤ C0

(
h−ρ

∥∥∥∥ l∑
j=0

(
l

j

)
(−1)l−jg(t+ jh)

∥∥∥∥
β0,p,Ω

)1−ξ∥∥∥∥ l∑
j=0

(
l

j

)
(−1)l−jg(t+ jh)

∥∥∥∥ξ

β1,p,Ω

≤ C1‖g‖1−ξ

Cρ([0,T ];N
β0
p (Ω))

‖g‖ξ

B([0,T ];N
β1
p (Ω))

. �

Now we consider the first case with nonhomogeneous boundary conditions.

Lemma 3.5. Assume that the assumptions (I1)–(I4) are satisfied. Consider the
system (3.1) in case f ≡ 0, u0 = 0, gi ≡ 0 for each i = 1, . . . ,m and i �= k,
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gk = g. We assume that g ∈ B([0, T ];N2m+β−μk
p (Ω))∩C

2m+β−μk−θ

2m ([0, T ];Nθ
p (Ω)))

for some θ ∈ (0, p−1), and g(0) = 0. Consider the function

u(t) :=
∫ t

0

Kk(t− s)g(s)ds. (3.13)

Then:

(I) u is well defined in [0, T ];

(II) u belongs to

C1([0, T ];Nβ′′
p (Ω)) ∩B([0, T ];N2m+β

p (Ω))), Dtu ∈ B([0, T ]; Nβ
p (Ω)));

(III) u satisfies (3.1).

Proof. By Lemma 3.4, it is not restrictive to assume that

θ > β − ν ≥ β − μk, (3.14)

in such a way that 2m+β−μk−θ
2m < 1. Now we observe that

u(t) = K(−1)
k (t)g(t) +

∫ t

0

Kk(t− s)[g(s)− g(t)]ds := v0(t) + v1(t). (3.15)

From Lemma 3.2 and the assumptions on g, we deduce that v0 ∈ B([0, T ]; N2m+β
p

(Ω)) and

[A(., ∂x) + P ]v0(t) = Kk(t)g(t), (3.16)

∀i ∈ {1, . . . ,m},
Bi(., ∂x)v0(t)|∂Ω = δikg(t)|∂Ω. (3.17)

Now we consider v1. By Lemma 3.1, we have that, at least, v1 ∈ B([0, T ];N2m+β′′
p

(Ω)). Moreover,

[A(., ∂x) + P ]v1(t) =
∫ t

0

K ′
k(t− s)[g(s)− g(t)]ds, (3.18)

and, for each i ∈ {1, . . . ,m},

Bi(., ∂x)v1(t)|∂Ω = 0. (3.19)

In order to prove that v1 is bounded with values in B([0, T ];N2m+β
p (Ω)), we

recall again (3.11). Owing to (3.19), recalling that the domain of A is a sub-
space of N2m+β

p (Ω), we can try to show that Aβ′′v1 is bounded with values in
(Nβ′′

p (Ω), D(Aβ′′))β−β′′
2m

. This is equivalent to prove that, for some ξ0 > 0,

‖ξ
β−β′′
2m Aβ′′(ξ −Aβ′′)−1Aβ′′v1(t)‖β′′,p,Ω ≤ C, (3.20)
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with C independent of ξ ≥ ξ0 and t ∈ [0, T ]. We have from Lemma 3.1

Aβ′′(ξ −Aβ′′)−1Aβ′′v1(t) = ξ2(ξ −Aβ′′)−1v1(t)−Aβ′′v1(t)− ξv1(t)

= (2πi)−1

∫ t

0

(∫
γ

eλ(t−s) λ2

ξ − λNk(λ)[g(s) − g(t)]dλ
)
ds

=
1∑

j=0

(2πi)−1

∫ t

0

(∫
γj

eλ(t−s) λ2

ξ − λNk(λ)[g(s)− g(t)]dλ
)
ds :=

1∑
j=0

Ij(ξ, t).

with γ0 describing {λ ∈ C \ {0} : |Arg(λ)| = θ1, |λ| ≥ r0}, γ1 describing {λ ∈
C \ {0} : |Arg(λ)| ≤ θ1, |λ| = r0}.

If λ ∈ γ, we have from Remark 2.9, recalling our assumptions on g,

‖Nk(λ)[g(s)− g(t)]‖β′′,p,Ω ≤ C|λ|
β′′−β
2m −1

(
‖g‖

B([0,T ];N
2m+β−μk
p (Ω))

+ |λ|
2m+β−μk−θ

2m (t− s)
2m+β−μk−θ

2m ‖g‖
C

2m+β−μk−θ
2m ([0,T ];Nθ

p (Ω))

)
.

So we can easily deduce that

‖I1(ξ, t)‖β′′,p,Ω ≤ Cξ−1‖g‖
B([0,T ];N

2m+β−μk
p (Ω))

,

if ξ ≥ ξ0, with ξ0 suitably large. Moreover,

‖I0(ξ, t)‖β′′,p,Ω ≤ C0

∫ t

0

(∫
R+
er(t−s) cos(θ1) r

1+ β′′−β
2m

r + ξ
(‖g‖

B([0,T ];N
2m+β−μk
p (Ω))

+ r
2m+β−μk−θ

2m (t− s)
2m+β−μk−θ

2m ‖g‖
C

2m+β−μk−θ
2m ([0,T ];Nθ

p (Ω))
)dr

)
ds

≤ C1

∫
R+

r
β′′−β
2m

r + ξ
dr

(
‖g‖

B([0,T ];N
2m+β−μk
p (Ω))

+ ‖g‖
C

2m+β−μk−θ
2m ([0,T ];Nθ

p(Ω))

)
≤ C2ξ

β′′−β
2m

(
‖g‖

B([0,T ];N
2m+β−μk
p (Ω))

+ ‖g‖
C

2m+β−μk−θ
2m ([0,T ];Nθ

p (Ω))

)
.

Next, we show that u ∈ C1([0, T ];Nβ′′
p (Ω)) and Dtu = [A(., ∂x) + P ]u. To

this aim, we follow a standard argument: let ε ∈ (0, T ] and define, for t ∈ [ε, T ],

uε(t) :=
∫ t−ε

0

Kk(t− s)g(s)ds. (3.21)

Then we have

Dtuε(t) = Kk(ε)g(t− ε) +
∫ t−ε

0

K ′
k(t− s)g(s)ds (3.22)

= Kk(t)g(t) +
∫ t−ε

0

K ′
k(t− s)[g(s)− g(t)]ds+Kk(ε)[g(t− ε)− g(t)],
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which, by Lemma 3.1, converges in B([δ, T ];Nβ′′
p ), for every δ ∈ (0, T ], to

Kk(t)g(t) +
∫ t

0

K ′
k(t− s)[g(s)− g(t)]ds = [A(., ∂x) + P ]u(t), (3.23)

by (3.16) and (3.18). This can be extended to t = 0, observing that the final
expression in (3.23) converges to 0 in Nβ′′

p (Ω) as t→ 0.
In conclusion, we have proved that u ∈ C1([0, T ];Nβ′′

p (Ω))∩B([0, T ];N2m+β
p

(Ω)). By interpolation, u ∈ C([0, T ];Nρ
p (Ω)) for every ρ < 2m + β. Finally, from

Dtu = [A(., ∂x) + P ]u we deduce that Dtu ∈ B([0, T ];Nβ
p (Ω)).

The proof is complete. �

Now we are able to prove the main result of existence and uniqueness of a
solution in the autonomous case.

Theorem 3.6. Assume that the assumptions (I1)–(I4) hold. We consider system
(2.1) and assume that:

(I) for some β′′ < β, f ∈ B([0, T ];Nβ
p (Ω)) ∩ C([0, T ];Nβ′′

p (Ω));

(II) for each k ∈ {1, . . . ,m}, and for some θ ∈ (0, p−1), gk ∈ B([0, T ]; N2m+β−μk
p

(Ω)) ∩ C
2m+β−μk−θ

2m ([0, T ]; Nθ
p (Ω));

(III) u0 ∈ N2m+β
p (Ω);

(IV) for each k ∈ {1, . . . ,m}, (Bk(., ∂x)u0)|∂Ω = gk(0)|∂Ω.

Then (3.1) has a unique solution u belonging to C1([0, T ];Nβ′′
p (Ω))∩B([0, T ];

N2m+β
p (Ω))), with Dtu ∈ B([0, T ];Nβ

p (Ω))). u can be represented by the variation
of parameter formula

u(t) = T (t)u0 +
∫ t

0

T (t− s)f(s)ds+
m∑

k=1

∫ t

0

Kk(t− s)gk(s)ds. (3.24)

Proof. The uniqueness follows from well-known properties of sectorial operators.
Concerning the existence, we already know, from Lemmas 3.3 and 3.5, that it holds
if u0 = 0 and gk(0) = 0 for each k = 1, . . . ,m. Now we consider the general case.
Subtracting to the unknown u the initial value u0, and setting v(t) := u(t) − u0,
we are reduced to the system

Dtv(t, x) = A(x, ∂x)v(t, x) + Pv(t, x) + f(t, x) +A(x, ∂x)u0(x) + Pu0(x),

(t, x) ∈ [0, T ]× Ω,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Bk(x′, ∂x)v(t, x′)− (gk(t, x′)−Bk(x′, ∂x)u0(x′)) = 0, k = 1, . . . ,m,

(t, x′) ∈ [0, T ]× ∂Ω
v(0, x) = 0, x ∈ Ω. (3.25)

From assumption (IV), we have that, if we set g̃k := gk−Bk(., ∂x)u0, g̃k(0) vanishes
in ∂Ω. So, if we replace g̃k with g̃k − g̃k(0), (3.25) does not change and we are
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reduced to a case already treated. We deduce that (3.1) has a unique solution
with the desired properties.

It remains to show that the representation (3.24) holds. From (3.25) observing
that Kk(t)g = 0 if g|∂Ω ≡ 0, we have

u(t) = u0 +
∫ t

0

T (t− s)f(s)ds+
m∑

k=1

∫ t

0

Kk(t− s)gk(s)ds (3.26)

+ T (−1)(t)[A(., ∂x)u0 + Pu0]−
m∑

k=1

K
(−1)
k (t)Bk(., ∂x)u0.

We observe that for every λ ∈ ρ(A)

u0 = (λ−A)−1(λ−A(., ∂x)− P )u0 +
m∑

k=1

Nk(λ)Bk(., ∂x)u0. (3.27)

So,

u0 + T (−1)(t)[A(., ∂x)u0 + Pu0]−
m∑

k=1

K
(−1)
k (t)Bk(., ∂x)u0

= u0 + (2πi)−1

∫
γ

eλt

λ
{(λ− A)−1[A(., ∂x)u0 + Pu0]−

m∑
k=1

Nk(λ)Bk(., ∂x)u0}dλ

= u0 + T (t)u0 − (2πi)−1

∫
γ

eλt

λ
u0dλ = T (t)u0. (3.28)

So the proof is complete. �

We precise Theorem 3.6:

Proposition 3.7. Consider the system (3.1), with the assumptions (I1)–(I4). Let
T0 ∈ R+. Then:
(I) if 0 < T ≤ T0 and θ > β − ν, the solution u satisfies the estimate

‖u‖B([0,T ];N2m+β
p (Ω) + ‖Dtu‖B([0,T ];Nβ

p (Ω)

≤ C(T0)
(
‖f‖B([0,T ];Nβ

p (Ω)) +
m∑

k=1

‖gk‖B([0,T ];N
2m−μk+β
p (Ω))

+
m∑

k=1

‖gk‖
C

2m+β−μk−θ
2m ([0,T ];Nθ

p (Ω))
+ ‖u0‖2m+β,p,Ω

)
.

(3.29)

(II) Assume that u0 = 0, θ > β − ν, β ≤ α ≤ 2m+ β, 0 ≤ γ ≤ 1− α−β
2m . Then,

‖u‖B([0,T ];Nα
p (Ω)) ≤ C(α, T0)T 1−α−β

2m

(
‖f‖B([0,T ];Nβ

p (Ω))

+
m∑

k=1

‖gk‖B([0,T ];N
2m−μk+β
p (Ω))

+
m∑

k=1

‖gk‖
C

2m+β−μk−θ
2m ([0,T ];Nθ

p (Ω))

)
,

(3.30)



On Linear Elliptic and Parabolic etc. 295

‖u‖Cγ([0,T ];Nα
p (Ω))

≤ C(α, T0)T 1−α−β
2m −γ

(
‖f‖B([0,T ];Nβ

p (Ω)) +
m∑

k=1

‖gk‖B([0,T ];N
2m−μk+β
p (Ω))

+
m∑

k=1

‖gk‖B([0,T ];N
2m−μk+β
p (Ω))

+
m∑

k=1

‖gk‖
C

2m+β−μk−θ
2m ([0,T ];Nθ

p (Ω))

)
.

(3.31)

Proof. We extend f and gk to [0, T0], setting

f̃(t) =

{
f(t) if 0 ≤ t ≤ T,
f(T ) if T ≤ t ≤ T0,

g̃k(t) =

{
gk(t) if 0 ≤ t ≤ T,
gk(T ) if T ≤ t ≤ T0.

As θ > β − ν, 2m+β−μk−θ
2m < 1 for each k = 1, . . . ,m, so that

‖g̃k‖
C

2m+β−μk−θ
2m ([0,T0];Nθ

p (Ω))
= ‖gk‖

C
2m+β−μk−θ

2m ([0,T ];Nθ
p (Ω))

.

We call ũ the corresponding solution (again with initial datum u0) in [0, T0]. Of
course, u is the restriction of ũ to [0, T ]. We deduce that

‖u‖B([0,T ];N2m+β
p (Ω)) + ‖‖Dtu‖B([0,T ];Nβ

p (Ω))

≤ ‖ũ‖B([0,T ];N2m+β
p (Ω)) + ‖‖Dtũ‖B([0,T ];Nβ

p (Ω))

≤ C(T0)
(
‖‖f̃‖B([0,T ];Nβ

p (Ω)) +
m∑

k=1

‖g̃k‖B([0,T ];N
2m−μk+β
p (Ω))

+
m∑

k=1

‖g̃k‖
C

2m+β−μk−θ
2m ([0,T ];Nθ

p(Ω))
+ ‖u0‖2m+β,p,Ω

)

= C(T0)
(
‖f‖B([0,T ];Nβ

p (Ω)) +
m∑

k=1

‖gk‖B([0,T ];N
2m−μk+β
p (Ω))

+
m∑

k=1

‖gk‖
C

2m+β−μk−θ
2m ([0,T ];Nθ

p(Ω))
+ ‖u0‖2m+β,p,Ω

)
.

(3.32)

Concerning (II), by (I) we have

‖u‖B([0,T ];Nβ
p (Ω)) ≤ T ‖Dtu‖B([0,T ];Nβ

p (Ω))

≤ C(T0)T
(
‖f‖B([0,T ];Nβ

p (Ω))

+
m∑

k=1

‖gk‖B([0,T ];N
2m−μk+β
p (Ω))

+
m∑

k=1

‖gk‖
C

2m+β−μk−θ
2m ([0,T ];Nθ

p (Ω))

)
.

(3.33)

The intermediate cases follow from the interpolation inequalities. �
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We conclude extending Theorem 3.6 to the nonautonomous case. We shall
use the following

Theorem 3.8. Let Ω be a bounded open subset of Rn, with smooth boundary. Then:

(I) if β, ρ ∈ R and ρ > |β|, Cρ(Ω) is a space of pointwise multipliers for Nβ
p (Ω).

(II) In case β > 0, Cβ(Ω) is a space of pointwise multipliers for Nβ
p (Ω); moreover,

there exists C ∈ R+ such that, ∀a ∈ Cβ(Ω), ∀f ∈ Nβ
p (Ω), ∀α ∈ (0, β),

‖af‖β,p,Ω ≤ C0(‖a‖L∞(Ω)‖f‖β,p,Ω + ‖a‖β,∞,Ω‖f‖Lp(Ω))

≤ C(α)(‖a‖L∞(Ω)‖f‖β,p,Ω + ‖a‖β,∞,Ω‖f‖α,p,Ω).

Proof. Concerning (I), see [14], 3.3.2.
(II) is a particular case of Lemma 1(II) in [10, Chapter 5.3.7]. The constant

σp in the reference is defined in Chapter 2.1.3. �

We pass to consider the following system in the unknown u:

Dtu(t, x) = A(t, x, ∂x)u(t, x) + P (t)u(t, .)(x) + f(t, x), (t, x) ∈ [0, T ]× Ω,
⎧⎪⎨⎪⎩ Bk(t, x′, ∂x)u(t, x′)− gk(t, x′) = 0, k = 1, . . . ,m, (t, x′) ∈ [0, T ]× ∂Ω,
u(0, x) = u0(x), x ∈ Ω, (3.34)

with the following assumptions:

(J1) Ω is an open bounded subset of Rn with smooth boundary ∂Ω, for every t ∈
[0, T ] the operators A(t, x, ∂x) and Bk(t, x′, ∂x) (1 ≤ k ≤ m) satisfy the
conditions (H1)–(H3), with m, μ1, . . . , μm independent of t;

(J2) p ∈ [1,+∞), β ∈ (μ + p−1 − 2m, ν + p−1), with ν := min1≤k≤m μk, μ :=
max1≤k≤m μk;

(J3) the coefficients as(t, x) of A(t, x, ∂x) (|s| ≤ 2m) belong to C([0, T ]; C|β|+ε (Ω))
for some ε ∈ R+ if β ≤ 0, to B([0, T ];Cβ(Ω)) ∩ C([0, T ];C(Ω)) if β > 0;

(J4) for each k = 1, . . . ,m, the coefficients bks of Bk(t, x, ∂x) (|s| ≤ 2m − μk)
belong to B([0, T ]; C2m+β−μk(Ω)) ∩ C

2m+β−μk−θ

2m ([0, T ]; Cθ(Ω)) for some θ ∈
(0, p−1);

(J5) f ∈ B([0, T ];Nβ
p (Ω)) ∩ C([0, T ];Nβ′′

p (Ω)), for some β′′ < β;

(J6) for each k ∈ {1, . . . ,m}, gk ∈ B([0, T ];N2m+β−μk
p (Ω)) ∩ C

2m+β−μk−θ

2m ([0, T ];
Nθ

p (Ω));

(J7) u0 ∈ N2m+β
p (Ω) and, for each k = 1, . . . ,m,

(Bk(0, ., ∂x)u0)|∂Ω = gk(0)|∂Ω;

(J8) For some β′ < β,

P ∈ B([0, T ];L(N2m+β′
p (Ω), Nβ

p (Ω))) ∩ C([0, T ];L(N2m+β′
p (Ω), Nβ′′

p (Ω))).
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Remark 3.9. Owing to the interpolation inequalities, it is not restrictive to assume
that

θ > β − ν, β′ ∨ (μ+ p−1 − 2m) < β′′. (3.35)

We want to prove the following

Theorem 3.10. Assume that the assumptions (J1)–(J8) are satisfied. Then the
system (3.34) has a unique solution u belonging to C1([0, T ];Nβ′′

p (Ω)) ∩ B([0, T ];
N2m+β

p (Ω)), with Dtu ∈ B([0, T ];Nβ
p (Ω)).

Proof. It is convenient to define A(t, x, ∂x) := A(T, x, ∂x), P (t) := P (T ), Bk(t, x,
∂x) := Bk(T, x, ∂x) if t > T .

As [0, T ] is compact, the conclusion will be proved if we show the following:

(P) let s0 ∈ [0, T ] and consider the problem

Dtv(t, x) = A(s+ t, x, ∂x)v(t, x) + P (s+ t)v(t, .)(x) + r(t, x),

(t, x) ∈ [0, δ]× Ω,

⎧⎪⎪⎪⎨⎪⎪⎪⎩Bk(s+ t, x′, ∂x)v(t, x′)− rk(t, x′) = 0, k = 1, . . . ,m, (t, x′) ∈ [0, δ]× ∂Ω,
v(0, x) = v0(x), x ∈ Ω, (3.36)

with δ ∈ R+, s ∈ (s0−δ, s0+δ)∩[0,+∞), r ∈ B([0, δ];Nβ
p (Ω))∩C([0, δ];Nβ′′

p ((Ω))
for some β′′ < β, for each k ∈ {1, . . . ,m}, and for a fixed θ ∈ (0 ∨ (β − ν), p−1),
rk ∈ B([0, δ];N2m+β−μk

p (Ω)) ∩ C
2m+β−μk−θ

2m ([0, δ]; Nθ
p (Ω)), v0 ∈ N2m+β

p (Ω) and,
for each k ∈ {1, . . . ,m}, (Bk(s, ., ∂x)v0)|∂Ω = rk(0)|∂Ω. Then there exists δ >
0, depending only on s0, such that (3.36) has a unique solution v in C1([0, δ];
Nβ′′

p ((Ω)) ∩B([0, δ];N2m+β
p (Ω)), with Dtv ∈ B([0, δ];Nβ

p (Ω)).
By subtracting the constant function v0, we may limit ourselves to study (3.36) in
the case v0 = 0. We consider the family of problems

Dtv(t, x) = A(s0, x, ∂x)v(t, x) + τ{[A(s + t, x, ∂x)−A(s0, x, ∂x)]v(t, x)

+ P (s+ t)v(t, .)(x)} + r(t, x), (t, x) ∈ [0, δ]× Ω,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Bk(s0, x′, ∂x)v(t, x′)− τ{Bk(s0, x′, ∂x)v(t, x′)−Bk(s+ t, x′, ∂x)v(t, x′)}
− rk(t, x′) = 0, k = 1, . . . ,m, (t, x′) ∈ [0, δ]× ∂Ω,
v(0, x) = 0, x ∈ Ω, (3.37)

depending on the parameter τ ∈ [0, 1]. As the problem is uniquely solvable in case
τ = 0, by the continuation method, it suffices to obtain an a priori estimate of a
solution, which is independent of τ We are going to show that this is possible if δ
is sufficiently small.

We recall that we are assuming θ > β − ν and β′ ∨ (μ+ p−1 − 2m) < β′′.
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Let

v ∈ C1([0, δ]; Nβ′′
p ((Ω)) ∩B([0, δ];N2m+β

p (Ω)),

with

Dtv ∈ B([0, δ];Nβ
p (Ω)) and v(0) = 0,

and let η ∈ R+.
Then, by Theorem 3.8 and (J3), we have, ∀τ ∈ [0, 1], if δ is sufficiently small,

‖τ{[A(s+ ., ., ∂x)−A(s0, ., ∂x)]v + P (s+ .)v}‖B([0,δ];Nβ
p (Ω))

≤ η‖v‖B([0,δ];N2m+β
p (Ω)) + C0‖v‖B([0,δ];Nα

p (Ω)),
(3.38)

for some α ∈ [β, 2m+ β). Analogously, employing (J4), we have

‖τ{[Bk(s+ ., ., ∂x)−Bk(s0, ., ∂x)]v}‖
B([0,δ];N

2m+β−μk
p (Ω))

≤ η‖v‖B([0,δ];N2m+β
p (Ω)) + C0‖v‖B([0,δ];Nα

p (Ω)).
(3.39)

Now we estimate

‖τ{[Bk(s+ ., ., ∂x)−Bk(s0, ., ∂x)]v}‖
C

2m+β−μk−θ
2m ([0,δ];Nθ

p (Ω))

≤ ‖{[Bk(s+ ., ., ∂x)−Bk(s0, ., ∂x)]v}‖
C

2m+β−μk−θ
2m ([0,δ];Nθ

p (Ω))
.

If t, t′ ∈ [0, δ],

|[Bk(s+ t, ., ∂x)−Bk(s0, ., ∂x)]v(t, .)

−Bk(s+ t′, ., ∂x)−Bk(s0, ., ∂x)]v(t′, .)‖θ,p,Ω

≤ ‖[Bk(s+ t, ., ∂x)−Bk(s+ t′, ., ∂x)]v(t, .)‖θ,p,Ω

+ ‖[Bk(s+ t′, ., ∂x)−Bk(s0, ., ∂x)][v(t, .) − v(t′, .)]‖θ,p,Ω := I1 + I2.

By Theorem 3.8, we have, if |r| ≤ μk, using (J4),

‖[bkr(s+ t, .)− bkr(s+ t′, .)]∂r
xv(t, .))‖θ,p,Ω

≤ C‖bkr(s+ t, .)− bkr(s+ t′, .)‖θ,∞,Ω‖v(t, .))‖μk+θ,p,Ω

≤ C|t− t′|
2m+β−μk−θ

2m ‖v‖
C([0,δ];N

μk+θ
p (Ω))

,

‖[bkr(s+ t′, .)− bkr(s0, .)]∂r
x[v(t, .)− v(t′, .)]‖θ,p,Ω

≤ C[‖bkr(s+ t′, .)− bkr(s0, .)‖C(Ω)‖v(t, .)− v(t
′, .)‖μk+θ,p,Ω

+ ‖bkr(s+ t′, .)− bkr(s0, .)‖θ,∞,Ω‖v(t, .)− v(t′, .)‖αk,p,Ω]

≤ C0η|t− t′|
2m+β−μk−θ

2m [‖v‖
C

2m+β−μk−θ
2m ([0,δ];N

μk+θ
p (Ω))

+ ‖v‖
C

2m+β−μk−θ
2m ([0,δ];N

αk
p (Ω))

],
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for fixed αk ∈ (0, μk + θ). So, applying Proposition 3.7, we obtain the following a
priori estimate, in case δ is sufficiently small:

‖v‖B([0,δ];N2m+β
p (Ω)) + ‖Dtv‖B([0,δ];Nβ

p (Ω)) + δ
α−β
2m −1‖v‖B([0,δ];Nα

p (Ω))

+ δ
β′−β
2m ‖v‖

B([0,δ];N2m+β′
p (Ω))

+
m∑

k=1

δ
αk−μk−θ

2m ‖v‖
C

2m+β−μk−θ
2m ([0,δ];N

αk
p (Ω)(Ω))

≤ C
(
‖r‖B([0,δ];Nβ

p (Ω)) +
m∑

k=1

‖rk‖B([0,δ];N
2m+β−μk
p (Ω))

+
m∑

k=1

‖rk‖
C

2m+β−μk−θ
2m ([0,δ];Nθ

p (Ω))
+ η‖v‖B([0,δ];N2m+β

p (Ω))

+ ‖v‖
B([0,δ];N2m+β′

p (Ω))
+ ‖v‖B([0,δ];Nα

p (Ω))

+ η
m∑

k=1

‖v‖
C

2m+β−μk−θ
2m ([0,δ];N

μk+θ
p (Ω))

+
m∑

k=1

‖v‖
C

2m+β−μk−θ
2m ([0,δ];N

αk
p (Ω)(Ω))

)
,

(3.40)

and the conclusion follows from the inequalities

‖v‖
C

2m+β−μk−θ
2m ([0,δ];N

μk+θ
p (Ω))

≤ C(‖v‖B([0,δ];N2m+β
p (Ω) + ‖Dtv‖B([0,δ];Nβ

p (Ω)),

(3.41)
with C independent of δ, choosing η and δ suitably small. �
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Abstract. In the present paper we study the existence of weak solutions to an
abstract parabolic initial-boundary value problem. On the operator appearing
in the equation we assume the coercivity conditions given by an N -function
(i.e., convex function satisfying conditions specified in the paper). The main
novelty of the paper consists in the lack of any growth restrictions on the N -
function combined with an anisotropic character of the N -function, namely
we allow the dependence on all the directions of the gradient, not only on its
absolute value.
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1. Introduction

We concentrate on an abstract parabolic equation

ut = divA(t, x,∇u) in (0, T )× Ω, (1.1)

u(0, x) = u0 in Ω, (1.2)

u(t, x) = 0 on (0, T )× ∂Ω, (1.3)

where Ω ⊂ Rd is an open, bounded set with a Lipschitz boundary ∂Ω, (0, T ) is
the time interval with T <∞, u : (0, T )×Ω → R and the operator A satisfies the
following conditions:
(A1) A is a Carathéodory function (i.e., measurable w.r.t. t and x and continuous

w.r.t. the last variable).

P.G. is the coordinator and A.Ś-G is the mentor in the International Ph.D. Projects Programme of
Foundation for Polish Science, operated within the Innovative Economy Operational Programme
2007–2013 (Ph.D. Programme: Mathematical Methods in Natural Sciences). The authors ac-
knowledge the Grant of Ministry of Science and Higher Education 2007–2010, Nr N201 033
32/2269.
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(A2) There exists a function M : Rd → R+ and a constant c > 0 such that

A(t, x, ξ) · ξ ≥ c(M(ξ) +M∗(A(t, x, ξ)))

whereM is anN -function, i.e., it is convex, has superlinear growth,M(ξ) = 0
iff ξ = 0 and M(ξ) =M(−ξ), M∗(η) = supξ∈Rd(η · ξ −M(ξ)).

(A3) For all ξ, η ∈ Rd,

(A(t, x, ξ) −A(t, x, η)) · (ξ − η) ≥ 0.

We consider the problem of existence of weak solutions to the initial boundary
value problem (1.1)–(1.3). In the present paper we assume a full anisotropy of
the N -function, namely it depends on a vector-valued argument and we do not
put any assumptions on the growth of an N -function. Indeed we do not assume
that neither M nor M∗ satisfies the so-called Δ2 condition1. The following pair of
functions can serve as an example in d = 2:

M(ξ) =M(ξ1, ξ2) = e|ξ1| − |ξ1| − 1 + (1 + |ξ2|) ln(1 + |ξ2|)− |ξ2|,

M∗(η) =M∗(η1, η2) = (1 + |η1|) ln(1 + |η1|)− |η1|+ e|ξ2| − |η2| − 1.

The result in the anisotropic case is not a straightforward extension of the isotropic
one. The new difficulty arising here concerns the density of compactly supported
smooth functions w.r.t. the modular topology of the gradients. The detailed ana-
lysis of this issue appears in Section 3.

We can cite some nontrivial examples of the operator A:

• A(t, x, ξ) = a(t, x)ξ exp(|ξ|2) where 0 < c1 ≤ a(t, x) ≤ c2 <∞,
• A(t, x, ξ) = a(t, x)ξ ln(1 + |ξ|) where 0 < c1 ≤ a(t, x) ≤ c2 <∞,
• A(t, x, ξ1, ξ2) = a1(t, x)ξ1 exp(|ξ1|2) + a2(t, x)ξ2 ln(1 + |ξ2|) where 0 < c1 ≤
ai(t, x) ≤ c2 <∞ for i = 1, 2.

In [2] the operator A was assumed to be an elliptic second-order operator in diver-
gence form and monotone. The growth and coercivity conditions were more general
than the standard growth conditions in Lp, namely the N -function formulation
was stated2. Under the assumptions on the N -function M : ξ2 << M(|ξ|) (i.e., ξ2

grows essentially less rapidly than M(|ξ|)) and M∗ satisfies a Δ2-condition, the
existence results to (1.1)–(1.3) was established. The restrictions on the growth of
M were abandoned in [3], but still M had an isotropic character.

The review paper [7] summarizes the monotone-like mappings techniques in
Orlicz and Orlicz–Sobolev spaces3.

1We say that an N -function M satisfies the Δ2-condition if for some constant C > 0 it holds
that M(2ξ) ≤ CM(ξ) for all ξ ∈ Rd.
2Assumption (A2) is in fact a generalization of the growth and coercivity conditions assumed in
[2] for the case of M dependent on a vector-valued argument.
3W mLM is the Orlicz–Sobolev space of functions in LM with all distributional derivatives up
to order m in LM .
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Before stating the main result let us recall the standard notation. For brevity
we write Q := Ω× (0, T ). By the generalized Orlicz class LM (Q) we mean the set
of all measurable functions ξ : Q→ Rd for which the modular

ρM (ξ) =
∫

Q

M(ξ(t, x))dxdt

is finite. By LM (Q) we denote the generalized Orlicz space which is the set of all
measurable functions ξ : Q → Rd for which ρM (αξ) → 0 as α → 0. This is a
Banach space with respect to the norm

‖ξ‖M = sup
{∫

Q

η · ξdxdt : η ∈ LM∗(Q),
∫

Q

M∗(η)dxdt ≤ 1
}
.

By EM (Q) we denote the closure of all bounded functions in LM (Q). The space
LM∗(Q) is the dual space of EM (Q). We will say that a sequence zj converges
modularly to z in LM (Q) if there exists λ > 0 such that

ρM

(
zj − z
λ

)
→ 0.

We will use the notation zj M−→ z for the modular convergence in LM (Q). Contrary
to [6] we consider the N -function M not dependent only on |ξ|, but on the whole
vector ξ. Below, we formulate the main result of the present paper. The space ZM

0

appearing in the theorem is defined in Section 3.

Theorem 1.1. Let M be an N -function and let A satisfy conditions (A1)–(A3).
Given u0 ∈ L2(Ω) there exists u ∈ ZM

0 such that∫
Q

(−uϕt +A(t, x,∇u) · ∇ϕ) dxdt =
∫

Ω

u0(x)ϕ(0, x)dx (1.4)

holds for all ϕ ∈ D((−∞, T )× Ω).

2. Useful facts about Orlicz spaces

In this short section we collect some facts about N -functions and Orlicz spaces,
which are used in the proof of the main theorem. All the proofs to the collected
lemmas and propositions can be found, e.g., in [5].

Lemma 2.1. Let zj : Q → Rd be a measurable sequence. Then zj M−→ z in LM (Q)
modularly if and only if zj → z in measure and there exist some λ > 0 such that
the sequence {M(λzj)} is uniformly integrable, i.e.,

lim
R→∞

(
sup
j∈N

∫
{(t,x):|M(λzj)|≥R}

M(λzj)dxdt

)
= 0.

Lemma 2.2. Let M be an N -function and for all j ∈ N let
∫

QM(zj) ≤ c. Then
the sequence {zj} is uniformly integrable.
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Proposition 2.3. Let M be an N -function and M∗ its complementary function.
Suppose that the sequences ψj : Q → Rd and φj : Q → Rd are uniformly bounded
in LM (Q) and LM∗(Q) respectively. Moreover ψj M−→ψ modularly in LM (Q) and

φj M∗
−→φ modularly in LM∗(Q). Then ψj · φj → ψ · φ strongly in L1(Q).

Proposition 2.4. Let �j be a standard mollifier, i.e., � ∈ C∞(R), � has a compact
support and

∫
R
�(τ)dτ = 1, �(t) = �(−t). We define �j(t) = j�(jt). Moreover let

∗ denote a convolution in the variable t. Then for any function ψ : Q → Rd such
that ψ ∈ L1(Q) it holds that

(�j ∗ ψ)(t, x) → ψ(t, x) in measure.

Proposition 2.5. Let �j be defined as in Proposition 2.4. Given an N -function M
and a function ψ : Q → Rd such that ψ ∈ L(Q) the sequence {M(�j ∗ ψ)} is
uniformly integrable.

3. Closures of compactly supported smooth functions

In the present section we concentrate on the issue of closures. We consider the
closure of C∞

c ((−∞, T )× Ω) in the three different topologies:
1. strong (norm) topology of LM (Q) and we denote this space by XM

0 , namely

XM
0 ={ϕ ∈ L∞(0, T ;L2(Ω)),∇ϕ ∈ LM (Q) | ∃ {ϕj}∞j=1 ⊂ C∞

c ((−∞, T )× Ω) :

ϕj ∗
⇀ ϕ in L∞(0, T ;L2(Ω)) and ∇ϕj → ∇ϕ strongly in LM (Q)},

2. modular topology of LM (Q), which we denote by YM
0 , namely

YM
0 ={ϕ ∈ L∞(0, T ;L2(Ω)),∇ϕ ∈ LM (Q) | ∃ {ϕj}∞j=1 ⊂ C∞

c ((−∞, T )× Ω) :

ϕj ∗
⇀ ϕ in L∞(0, T ;L2(Ω)) and ∇ϕj M−→∇ϕ modularly in LM (Q)},

3. weak-star topology of LM (Q), which we denote by ZM
0 , namely

ZM
0 ={ϕ ∈ L∞(0, T ;L2(Ω)),∇ϕ ∈ LM (Q) | ∃ {ϕj}∞j=1 ⊂ C∞

c ((−∞, T )× Ω) :

ϕj ∗
⇀ ϕ in L∞(0, T ;L2(Ω)) and ∇ϕj ∗

⇀ ∇ϕ weakly star in LM (Q)}.
The closures in the strong and weak topology of the ∇u in LM (Q) are equal

if and only if M satisfies the Δ2-condition, cf. [4]. Hence as we do not require
Δ2-condition, this will not hold and we only concentrate on the relation between
modular and weak-star closures.

Lemma 3.1. Let M be an N -function and YM
0 , ZM

0 be the function spaces defined
in 2. and 3. above. Then YM

0 = ZM
0 .

Proof. Clearly YM
0 ⊂ ZM

0 (modular topology is stronger than weak-star). The
proof of an opposite inclusion we will split into two steps. In the first step we will
assume that Ω is a star-shaped domain, whereas in the second step we extend the
idea for arbitrary Lipschitz domains.
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Step 1. Star-shaped domains. We are aiming to show that

ZM
0 ⊂ YM

0 . (3.1)

For readability of the proof we introduce the notation

VM := {u ∈ L1(0, T ;W 1,1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) | ∇u ∈ LM (Q)}.

The starting point is extending the function u by zero outside of Ω to the whole Rd

to mollify it. To assume the extension is properly defined we split (3.1) as follows:

ZM
0 ⊂ VM (3.2)

and
VM ⊂ YM

0 . (3.3)
Inclusion (3.2) is obvious and to prove (3.3) we define

uλ(t, x) := u(t, λ(x − x0) + x0)

where x0 is a vantage point of Ω. Let ελ = 1
2dist (∂Ω, λΩ) where λΩ := {y =

λ · (x − x0) + x0 | x ∈ Ω}. Define then

uλ,ε(t, x) := �ε ∗ uλ(t, x)

where �ε is a standard mollifier, the convolution is done w.r.t. x and t and ε < ελ.
This approximation has the property that if u ∈ VM , then uλ,ε ∈ VM for

ε < ελ. First we pass to the limit with ε → 0 and hence uλ,ε ε→0−−−→ uλ in
L1(0, T ;W 1,1

0 (Ω)) and ∇uλ,ε ε→0−−−→ ∇uλ modularly in LM (Q). Then we pass with
λ→ 1 and obtain that uλ λ→1−−−→ u in L1(0, T ;W 1,1

0 (Ω)) and ∇uλ λ→1−−−→ ∇u modu-
larly in LM (Q).
Step 2. Arbitrary Lipschitz domains. Since we consider the domain with Lipschitz
boundary, then there exists a countable family of star-shaped Lipschitz domains
{Ωi} such that (cf. [8])

Ω =
⋃
i∈J

Ωi.

We introduce the partition of unity θi with 0 ≤ θi ≤ 1, θi ∈ C∞
0 (Ωi), supp θi =

Ωi,
∑

i∈J θi(x) = 1 for x ∈ Ω. The proof of (3.1) we split also into two parts. First
we show that

VM ∩ L∞(Q)
M

= VM , (3.4)

where the closure above is meant w.r.t. the modular topology. Indeed, define Tn(u)
– the truncation of the function u, namely

Tn(u) =

⎧⎨⎩ u if |u| ≤ n,
n if u > n,

−n if u < −n.
(3.5)

Note that if u ∈ VM then Tn(u) ∈ VM . Moreover, as n → ∞ we observe the
convergence

Tn(u)→ u strongly in L1(0, T ;W 1,1
0 (Ω)).
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Additionally it holds that M(∇Tn(u(t, x))) ≤M(∇u(t, x)) a.e. in Q. Indeed, this
inequality can be easily concluded if we consider separately three subsets: the set
where Tn(u) and u coincide and the remaining two sets, where Tn(u) is equal to n
or −n. Since Tn(u) ∈ L1(0, T ;W 1,1

0 (Ω)), then ∇Tn(u) is equal to zero a.e. in these
two sets. Consequently M(∇Tn(u(t, x))) is uniformly integrable, which combined
with pointwise convergence provides

∇Tn(u) → ∇u modularly in LM (Q).

In the next step we will show that

(VM ∩ L∞(Q)) ⊂ YM
0 ,

which together with (3.4) and (3.2) will prove (3.1). If u ∈ VM ∩ L∞(Q) then

u · θi ∈ L1(0, T ;W 1,1
0 (Ωi)) ∩ L∞(0, T ;L2(Ωi)) ∩ L∞((0, T )× Ωi))

and
∇u · θi + u · ∇θi = ∇(u · θi) ∈ LM ((0, T )× Ωi),

where Ωi = supp θi. Now we follow the case of star-shaped domains to complete
the proof. �
Remark 3.2. Note that in the classical case M = M(| · |) (i.e., the modular does
not depend on the direction) the proof is simpler. The problem which arises here
is the lack of proper Poincaré inequality, cf. [1], which in the isotropic case has the
form ∫

Q

M(|∇u(t, x)|)dxdt ≥ c
∫

Q

M(|u|)dxdt.

4. Existence result

In the current section we will prove Theorem 1.1. The finite-dimensional approxi-
mate problem is constructed by means of the Galerkin method. The basis consist-
ing of eigenvectors of the Laplace operator is chosen and by un we mean the solu-
tion to the problem projected to n vectors of the chosen basis. Let Qs := (0, s)×Ω
with 0 < s < T . In the standard manner we conclude that, for 0 < s < T ,∫

Qs

A(t, x,∇un) · ∇undxdt =
1
2
‖un(0)‖22 −

1
2
‖un(s)‖22 (4.1)

holds, the energy estimates are derived and convergence of appropriate sequences
is concluded, namely

∇un ∗
⇀ ∇u weakly-star in LM (Q),

un ⇀ u weakly in L1(0, T ;W 1,1(Ω)),

A(·,∇un) ∗
⇀ χ weakly-star in LM∗(Q),

un ∗
⇀ u in L∞(0, T ;L2(Ω)),

un
t

∗
⇀ ut weakly-star in W−1,∞(0, T ;L2(Ω).

(4.2)
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After passing to the limit we conclude the limit identity

−
∫

Q

uϕtdxdt+
∫

Q

χ · ∇ϕdxdt =
∫

Ω

u0(x)ϕ(0, x)dx (4.3)

for each compactly supported and smooth function ϕ. In the remaining part of
the proof we will concentrate on characterizing the limit χ. We are aiming to
integrate by parts in (4.3) although the solution is not an admissible test function.
According to the results of Section 3 a function of the form

ϕj = �j ∗ �j ∗ u (4.4)

is already a proper test function with � ∈ C∞(R), � having a compact support,
�(τ) = �(−τ),

∫
R
�(τ)dτ = 1 and defining �j(t) = j�(jt). Indeed, if we approx-

imate the function of the form (4.4) by a sequence of smooth functions, then in
the case χ ∈ EM∗(Q) we pass to the limit with weak-star convergence. But if
χ /∈ EM∗(Q), which indeed is the case when EM∗(Q) �= LM∗(Q), we will pass to
the limit by means of modular convergence. This is the reason why in Section 3
we concentrated on showing that weak-star and modular limits coincide.

Then, we can observe that for 0 < s0 < s < T it follows that∫ s

s0

〈ut, ϕ
j〉 dt =

∫ s

s0

〈ut, (�j ∗ �j ∗ u)〉 dt =
∫ s

s0

〈(�j ∗ ut), (�j ∗ u)〉 dt

=
∫ s

s0

1
2
d

dt
‖�j ∗ u‖22 dt =

1
2
‖�j ∗ u(s)‖22 −

1
2
‖�j ∗ u(s0)‖22.

Next, we pass to the limit with j →∞ and obtain for almost all s0, s, namely for
all Lebesgue points of the function u(t), that

lim
j→∞

∫ s

s0

〈ut, u
j〉 dt =

1
2
‖u(s)‖22 −

1
2
‖u(s0)‖22. (4.5)

Let us pass now with j → ∞ in other terms. First we concentrate for 0 <
s0 < s1 < T on the term∫ s1

s0

∫
Ω

χ · (�j ∗ �j ∗ ∇u)dxdt =
∫ s1

s0

∫
Ω

(�j ∗ χ) · (�j ∗ ∇u)dxdt.

Obviously, for any ψ ∈ L1(Q) it holds that (�j ∗ ψ) → ψ in measure. Hence

�j ∗ χ→ χ in measure

and
�j ∗ ∇u→ ∇u in measure.

SinceM andM∗ are convex and nonnegative, then weak lower semicontinuity and
a priori estimates provide that the integrals are finite,∫

Q

M(∇u)dxdt and
∫

Q

M∗(χ)dxdt
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and consequently the sequences {M(�j ∗ ∇u)} and {M∗(�j ∗ χ)} are uniformly
integrable. Thus by Lemma 2.1,

�j ∗ ∇u M−→∇u modularly in LM (Q),

�j ∗ χ M∗
−→χ modularly in LM∗(Q).

By Proposition 2.3 we conclude that

lim
j→∞

∫ s1

s0

∫
Ω

(�j ∗ χ) · (�j ∗ ∇u)dxdt=
∫ s1

s0

∫
Ω

χ · ∇udxdt. (4.6)

We are aiming to show that
1
2
‖u(s)‖22 −

1
2
‖u0‖22 +

∫
Qs

χ · ∇udxdt = 0, (4.7)

which according to (4.3)–(4.6) holds for some 0 < s0 < T , not necessarily equal to
zero. To pass to the limit with s0 → 0 we need to establish the weak continuity
of u in L2(Ω) w.r.t. time. For this purpose we consider the sequence { dun

dt } and
provide uniform estimates. By Pn we mean the orthogonal projection of L2(Ω)
on the first n eigenvectors of the Laplace operator. Let ϕ ∈ L∞(0, T ;W r,2

0 (Ω)),
‖ϕ‖L∞(0,T ;W r,2

0 ) ≤ 1, where r > d
2 + 1 and observe that〈

dun

dt
, ϕ

〉
=

〈
dun

dt
, Pnϕ

〉
= −

∫
Ω

A(t, x,∇un) · ∇(Pnϕ)dx.

Since ‖Pnϕ‖W r,2
0
≤ ‖ϕ‖W r,2

0
and W r−1,2(Ω) ⊂ L∞(Ω) we estimate as follows:∣∣∣ ∫ T

0

∫
Ω

A(t, x,∇un) · ∇(Pnϕ)dxdt
∣∣∣ ≤ ∫ T

0

‖A(t, ·,∇un)‖L1(Ω)‖∇(Pnϕ)‖L∞(Ω)dt

≤ c
∫ T

0

‖A(t, ·,∇un)‖L1(Ω)‖Pnϕ‖W r,2
0
dt ≤ c‖A(·, ·,∇un)‖L1(Q)‖ϕ‖L∞(0,T ;W r,2

0 ).

(4.8)

Hence we conclude that dun

dt is bounded in L1(0, T ;W−r,2(Ω)). From the energy es-
timates and Lemma 2.2 we conclude existence of a monotone, continuous function
L : R+ → R+, with L(0) = 0 which is independent of n and∫ s2

s1

‖A(t, ·,∇un)‖L1(Ω) ≤ L(|s1 − s2|)

for any s1, s2 ∈ [0, T ]. Consequently, estimate (4.8) provides that∣∣∣∣∫ s2

s1

〈
dun

dt
, ϕ

〉
dt

∣∣∣∣ ≤ L(|s1 − s2|)

for all ϕ with supp ϕ ⊂ (s1, s2) ⊂ [0, T ] and ‖ϕ‖L∞(0,T ;W r,2
0 ) ≤ 1. Since

‖un(s1)− un(s2)‖W−r,2 = sup
‖ψ‖

W
r,2
0

≤1

∣∣∣∣〈∫ s2

s1

dun(t)
dt

, ψ

〉∣∣∣∣ (4.9)
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then
sup
n∈N

‖un(s1)− un(s2)‖W−r,2 ≤ L(|s1 − s2|) (4.10)

which provides that the family of functions un : [0, T ]→W−r,2(Ω) is equicontinu-
ous. Together with a uniform bound in L∞(0, T ;L2(Ω)) it yields that the sequence
{un} is relatively compact in C([0, T ];W−r,2(Ω)) and u ∈ C([0, T ];W−r,2(Ω)).
Consequently we can choose a sequence {si0}i, si0 → 0+ as i→∞ such that

u(si0)
i→∞−→ u(0) in W−r,2(Ω). (4.11)

The limit coincides with the weak limit of {u(si0)} in L2(Ω) and hence we conclude
that

lim inf
i→∞

‖u(s0)‖L2(Ω) ≥ ‖u0‖L2(Ω). (4.12)

Consequently we obtain from (4.1) for any Lebesgue point s of u that

lim sup
n→∞

∫
Qs

A(t, x,∇un) · ∇un =
1
2
‖u0‖22 − lim inf

k→∞

1
2
‖un(s)‖22 (4.13)

≤ 1
2
‖u0‖22 −

1
2
‖u(s)‖22

(4.12)

≤ lim inf
i→∞

(
1
2
‖u(si0)‖22 −

1
2
‖u(s)‖22

)
= lim

i→∞

∫ s

si
0

∫
Ω

χ · ∇udxdt =
∫ s

0

∫
Ω

χ · ∇udxdt.

Having the above estimate we can complete the proof using the monotonicity of
A, namely ∫

Qs

(A(t, x, v̄)−A(t, x,∇un)) · (v̄ −∇un)dxdt ≥ 0 (4.14)

for all v̄ ∈ L∞(Q). Observe that for v̄ ∈ L∞(Q) it also holds that A(t, x, v̄) ∈
L∞(Q). Indeed, assume the opposite, i.e., A(t, x, v̄) is unbounded. Then, since M
is nonnegative, by (A2), the following estimate holds:

|v̄| ≥ M
∗(x,A(t, x, v̄))
|A(t, x, v̄)| .

Taking into account the superlinear growth of M we observe that the right-hand
side tends to infinity, which contradicts that v̄ ∈ L∞(Q). Before passing to the
limit with n→∞, we rewrite (4.14):∫

Qs

A(t, x,∇un)·∇undxdt ≥
∫

Qs

A(t, x,∇un)·v̄dxdt+
∫

Qs

A(t, x, v̄)·(∇un−v̄)dxdt

(4.15)
hence ∫

Qs

χ · ∇udxdt ≥
∫

Qs

χ · v̄dxdt +
∫

Qs

A(t, x, v̄) · (∇u − v̄)dxdt (4.16)
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and consequently ∫
Qs

(A(t, x, v̄)− χ) · (v̄ −∇u)dxdt ≥ 0. (4.17)

We fix k > 0 and define Qk as

Qk = {(t, x) ∈ Qs : |∇u(t, x)| ≤ k a.e. in Qs}.
Let now 0 < j < i be arbitrary and h > 0. We make the following choice of v̄,

v̄ = (∇u)1Qi + hz̄1Qj ,

with an arbitrary z̄ ∈ L∞(Q). Using (4.17) we obtain

−
∫

Qs\Qi

(A(t, x, 0)−χ) ·∇udxdt+h
∫

Qj

(A(t, x,∇u+hz̄)−χ) · z̄dxdt ≥ 0. (4.18)

Since (A2) implies that A(t, x, 0) = 0, then obviously

−
∫

Qs\Qi

(A(t, x, 0)− χ) · ∇udxdt =
∫

Q

χ · ∇u 1Qs\Qi
dxdt

and since ∫
Q

|χ · ∇u|dxdt <∞

we obtain, while passing to the limit with i→∞,

χ · ∇u 1Qs\Qi
→ 0 a.e. in Q.

Hence by the Lebesgue dominated convergence theorem

lim
i→∞

∫
Qs\Qi

χ · ∇udxdt = 0.

Letting i→∞ in (4.18) and dividing by h yields∫
Qj

(A(t, x,∇u + hz̄)− χ) · z̄dxdt ≥ 0.

Observe that∇u+hz̄ → ∇u a.e. in Qj as h→ 0+ and A(t, x,∇u+hz̄) is uniformly
bounded in L∞(Qj), |Qj| <∞, hence by Vitali’s theorem we conclude that

A(t, x,∇u+ hz̄)→ A(t, x,∇u) in L1(Qj)

and ∫
Qj

(A(t, x,∇u + hz̄)− χ) · z̄dxdt→
∫

Qj

(A(t, x,∇u) − χ) · z̄dxdt

as h→ 0+. Consequently,∫
Qj

(A(t, x,∇u)− χ) · z̄dxdt ≥ 0

for all z̄ ∈ L∞(Q). The choice z̄ = −sgn (A(t, x,∇u) − χ) yields∫
Qj

|A(t, x,∇u) − χ|dxdt ≤ 0.
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Hence
A(t, x,∇u) = χ a.e. in Qj . (4.19)

The above identity holds for arbitrary j, hence (4.19) holds a.e. in Qs. Since it
holds for almost all s such that 0 < s < T then

χ = A(t, x,∇u) a.e. in Q,

which completes the proof of Theorem 1.1 �
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Abstract. We show that elliptic second-order operators A of divergence type
fulfill maximal parabolic regularity on distribution spaces, even if the underly-
ing domain is highly non-smooth, the coefficients of A are discontinuous and A
is complemented with mixed boundary conditions. Applications to quasilinear
parabolic equations with non-smooth data are presented.
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1. Introduction

It is the aim of this paper to provide an abridged version of our work [40]. The goal
is to provide a text with only few proofs and with a considerable reduction of the
sophisticated technicalities. In particular, we present a direct way to carry over
maximal parabolic regularity from Lp spaces to the distribution spaces, avoiding
the Dore-Venni argument. So our hope is to produce a more readable text for
colleagues who are only interested in the principal ideas and results of [40]. On
the other hand, due to discussions with K. Gröger, we succeeded in eliminating
the crucial supposition in [40] that the local bi-Lipschitz charts for the boundary
of the domain have to be volume preserving – at least what concerns maximal
parabolic regularity. Thus the conditions get a lot easier to control in examples
from beyond the class of strong Lipschitz domains. Naturally, the proof of this is
pointed out below, see Section 4.

Our motivation was to find a concept which allows us to treat nonlinear
parabolic equations of the formal type{

u′ −∇ · G(u)μ∇u = R(t, u),

u(T0) = u0,
(1.1)
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combined with mixed, nonlinear boundary conditions:

ν · G(u)μ∇u + b(u) = g on Γ and u = 0 on ∂Ω \ Γ, (1.2)

where Γ is a suitable open subset of ∂Ω.
The main feature is here – in contrast to [43] – that inhomogeneous Neumann

conditions and the appearance of distributional right-hand sides (e.g., surface den-
sities) should be admissible. Thus, one has to consider the equations in suitably
chosen distribution spaces. The concept to solve (1.1) is to apply a theorem of
Prüss (see [51], see also [15]) which bases on maximal parabolic regularity. This
has the advantage that right-hand sides are admissible which depend discontinu-
ously on time, which is desirable in many applications. Pursuing this idea, one has,
of course, to prove that the occurring elliptic operators satisfy maximal parabolic
regularity on the chosen distribution spaces.

In fact, we show that, under very mild conditions on the domain Ω, the
Dirichlet boundary part ∂Ω\Γ and the coefficient function, elliptic divergence op-
erators with real, symmetric L∞-coefficients satisfy maximal parabolic regularity
on a huge variety of spaces, among which are Sobolev, Besov and Lizorkin-Triebel
spaces, provided that the differentiability index is between 0 and −1 (cf. Theo-
rem 5.18). We consider this as the first main result of this work, also interesting
in itself. Up to now, the only existing results for mixed boundary conditions in
distribution spaces (apart from the Hilbert space situation) are, to our knowledge,
that of Gröger [36] and the recent one of Griepentrog [31]. Concerning the Dirichlet
case, compare [10] and references therein.

Let us point out some ideas, which will give a certain guideline for the paper:
In principle, our strategy for proving maximal parabolic regularity for diver-

gence operators on H−1,q
Γ was to show an analog of the central result of [9], this

time in case of mixed boundary conditions, namely that(
−∇ · μ∇+ 1

)−1/2 : Lq → H1,q
Γ (1.3)

provides a topological isomorphism for suitable q. This would give the possibil-
ity of carrying over the maximal parabolic regularity, known for Lq, to the dual
of H1,q′

Γ , because, roughly spoken, (−∇ · μ∇ + 1)−1/2 commutes with the corre-
sponding parabolic solution operator. Unfortunately, we were only able to prove
the continuity of (1.3) within the range q ∈ ]1, 2], due to a result of Duong and
McIntosh [22], see also [49], but did not succeed in proving the continuity of the
inverse in general.

It turns out, however, that (1.3) provides a topological isomorphism, if Ω∪Γ
is the image under a bi-Lipschitz mapping of one of Gröger’s model sets [35],
describing the geometric configuration in neighborhoods of boundary points of Ω.
Thus, in these cases one may carry over the maximal parabolic regularity from Lq

to H−1,q
Γ . Knowing this, we localize the linear parabolic problem, use the ‘local’

maximal parabolic information and interpret this again in the global context at
the end. Interpolation with the Lp result then yields maximal parabolic regularity
on the corresponding interpolation spaces.
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Let us explicitly mention that the concept of Gröger’s regular sets, where the
domain itself is a Lipschitz domain, seems adequate to us, because it covers many
realistic geometries that fail to be domains with Lipschitz boundary. One striking
example are the two crossing beams, cf. [40, Subsection 7.3].

The strategy for proving that (1.1), (1.2) admit a unique local solution is as
follows. We reformulate (1.1) by adding the distributional terms, corresponding to
the boundary condition (1.2) to the right-hand side of (1.1). Assuming additionally
that the elliptic operator −∇ · μ∇ + 1 : H1,q

Γ → H−1,q
Γ provides a topological

isomorphism for a q larger than the space dimension d, the above-mentioned result
of Prüss for abstract quasilinear equations applies to the resulting quasilinear
parabolic equation. The detailed discussion how to assure all requirements of [51],
including the adequate choice of the Banach space, is presented in Section 6. Let
us further emphasize that the presented setting allows for coefficient functions
that really jump at hetero interfaces of the material and permits mixed boundary
conditions, as well as domains which do not possess a Lipschitz boundary. It is
well known that this is highly desirable when modelling real world problems. One
further advantage is that nonlinear, nonlocal boundary conditions are admissible
in our concept, despite the fact that the data is highly non-smooth, compare [2]. It
is remarkable that, irrespective of the discontinuous right-hand sides, the solution
is Hölder continuous simultaneously in space and time, see Corollary 6.17 below.

In Section 7 we give examples for geometries, Dirichlet boundary parts and
coefficients in three dimensions for which our additional supposition, the isomorphy
−∇ · μ∇+ 1 : H1,q

Γ → H−1,q
Γ really holds for a q > d.

Finally, some concluding remarks are given in Section 8.

2. Notation and general assumptions

Throughout this article the following assumptions are valid.
• Ω ⊆ Rd is a bounded Lipschitz domain (cf. Assumption 3.1) and Γ is an open

subset of ∂Ω.
• The coefficient function μ is a Lebesgue measurable, bounded function on Ω

taking its values in the set of real, symmetric, positive definite d×d matrices,
satisfying the usual ellipticity condition.

Remark 2.1. Concerning the notions ‘Lipschitz domain’ and ‘domain with Lip-
schitz boundary’ (synonymous: strongly Lipschitz domain) we follow the termi-
nology of Grisvard [34].

Remark 2.2. Since the requirement ‘Lipschitz domain’ does not become apparent
explicitly in the subsequent considerations, let us briefly comment on this: it as-
sures the existence of a continuous extension operator E : L1(Ω) → L1(Rd) whose
restriction to H1,2(Ω) maps this space continuously into H1,2(Rd). This property
is fundamental for nearly all harmonic analysis techniques applied below, see [49,
Ch. 6.3] and [7].
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For ς ∈ ]0, 1] and 1 < q <∞ we define Hς,q
Γ (Ω) as the closure of

C∞
Γ (Ω) := {ψ|Ω : ψ ∈ C∞(Rd), supp(ψ) ∩ (∂Ω \ Γ) = ∅}

in the Sobolev space Hς,q(Ω). Concerning the dual of Hς,q
Γ (Ω), we have to dis-

tinguish between the space of linear and the space of anti-linear forms on this
space. We define H−ς,q

Γ (Ω) as the space of continuous, linear forms on Hς,q′
Γ (Ω)

and H̆−ς,q
Γ (Ω) as the space of anti-linear forms on Hς,q′

Γ (Ω) if 1/q+ 1/q′ = 1. Note
that Lp spaces may be viewed as part of H̆−ς,q

Γ for suitable ς, q via the identification
of an element f ∈ Lp with the anti-linear form Hς,q′

Γ � ψ �→
∫
Ω fψ dx.

If misunderstandings are not to be expected, we drop the Ω in the nota-
tion of spaces, i.e., function spaces without an explicitly given domain are to be
understood as function spaces on Ω.

By K we denote the open unit cube ]−1, 1[d in Rd, byK− the lower half-cube
K ∩ {x : xd < 0}, by Σ = K ∩ {x : xd = 0} the upper plate of K− and by Σ0 the
left half of Σ, i.e., Σ0 = Σ ∩ {x : xd−1 < 0}.

Throughout the paper we will use x, y, . . . for vectors in Rd.
If B is a closed operator on a Banach space X , then we denote by domX(B)

the domain of this operator. L(X,Y ) denotes the space of linear, continuous op-
erators from X into Y ; if X = Y , then we abbreviate L(X). Furthermore, we will
write 〈·, ·〉X′ for the dual pairing of elements of X and the space X ′ of anti-linear
forms on X .

Finally, the letter c denotes a generic constant, not always of the same value.

3. Preliminaries

In this section we will properly define the elliptic divergence operator and after-
wards collect properties of the Lp realizations of this operator which will be needed
in the subsequent sections.

Let us first recall the concept of regular sets Ω ∪ Γ, introduced by Gröger
in his pioneering paper [35], which will provide us with an adequate geometric
framework for all that follows.

Assumption 3.1. For any point x ∈ ∂Ω there is an open neighborhood Υx of
x and a bi-Lipschitz mapping φx from Υx into Rd, such that φx(x) = 0 and
φx

(
(Ω ∪ Γ) ∩Υx

)
= K− or K− ∪ Σ or K− ∪ Σ0.

Remark 3.2. It is not hard to see that every Lipschitz domain and also its closure
is regular in the sense of Gröger, the corresponding model sets are then K− or
K− ∪Σ, respectively, see [34, Ch. 1.2]. In two and three space dimensions one can
give the following simplifying characterization for a set Ω ∪ Γ to be regular in the
sense of Gröger, i.e., to satisfy Assumption 3.1, see [39]:

If Ω ⊆ R2 is a bounded Lipschitz domain and Γ ⊆ ∂Ω is relatively open,
then Ω ∪ Γ is regular in the sense of Gröger, iff ∂Ω \ Γ is the finite union of
(non-degenerate) closed arc pieces.
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In R3 the following characterization can be proved:
If Ω ⊆ R3 is a bounded Lipschitz domain and Γ ⊆ ∂Ω is relatively open, then

Ω∪Γ is regular in the sense of Gröger, iff the following two conditions are satisfied:
i) ∂Ω \ Γ is the closure of its interior (within ∂Ω).
ii) For any x ∈ Γ ∩ (∂Ω \ Γ) there is an open neighborhood U of x and a bi-

Lipschitz mapping κ : U ∩ Γ ∩ (∂Ω \ Γ)→ ]−1, 1[.

Following [27, Ch. 3.3.4 C], for every Lipschitz hypersurface H ⊆ Ω one can
introduce a surface measure σ on H. This is in particular true for H = ∂Ω, see
also [41]. Having this at hand, one can prove the following trace theorem.

Proposition 3.3. Assume q ∈ ]1,∞[ and θ ∈ ] 1q , 1]. Let Π be a Lipschitz hyper-
surface in Ω and let  be any measure on Π which is absolutely continuous with
respect to the surface measure σ. If the corresponding Radon-Nikodým derivative
is essentially bounded (with respect to σ), then the trace operator Tr is continuous
from Hθ,q(Ω) to Lq(Π,  ).

Later we will repeatedly need the following interpolation result.

Proposition 3.4. Let Ω and Γ satisfy Assumption 3.1 and let θ ∈ ]0, 1[. Then for
q0, q1 ∈ ]1,∞[ and 1

q = 1−θ
q0

+ θ
q1

one has

H1,q
Γ =

[
H1,q0

Γ , H1,q1
Γ ]θ and H̆−1,q

Γ =
[
H̆−1,q0

Γ , H̆−1,q1
Γ ]θ. (3.1)

We define the operator A : H1,2
Γ → H̆−1,2

Γ by

〈Aψ,ϕ〉H̆−1,2
Γ

:=
∫

Ω

μ∇ψ · ∇ϕ dx +
∫

Γ

κ ψ ϕ dσ, ψ, ϕ ∈ H1,2
Γ , (3.2)

where κ ∈ L∞(Γ, dσ). Note that in view of Proposition 3.3 the form in (3.2) is
well defined.

In the special case κ = 0, we write more suggestively −∇ · μ∇ instead of A.
The L2 realization of A, i.e., the maximal restriction of A to the space L2, we

denote by the same symbol A; clearly this is identical with the operator which is
induced by the form on the right-hand side of (3.2). If B is a self-adjoint operator
on L2, then by the Lp realization of B we mean its restriction to Lp if p > 2 and
the Lp closure of B if p ∈ [1, 2[.

First, we collect some basic facts on the operator −∇ · μ∇.

Proposition 3.5.

i) The operator ∇ · μ∇ generates an analytic semigroup on H̆−1,2
Γ .

ii) The operator −∇ · μ∇ is self-adjoint on L2 and bounded by 0 from below.
The restriction of −A to L2 is densely defined and generates an analytic
semigroup there.

iii) If λ > 0 then the operator (−∇·μ∇+λ)1/2 : H1,2
Γ → L2 provides a topological

isomorphism; in other words: the domain of (−∇ · μ∇ + λ)1/2 on L2 is the
form domain H1,2

Γ .
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iv) Let ζ ∈ L∞ be a real function with a positive lower bound. Then −ζ∇·μ∇+1
has its spectrum in [1,∞[ and admits a bounded functional calculus on L2.

v) The operator ∇ · μ∇, considered on Lp, p ∈ ]1,∞[, is densely defined and
generates a strongly continuous semigroup of contractions there.

vi) Let ζ ∈ L∞ be a real function with a positive lower bound. Then, under
Assumption 3.1, the operator ζ∇ · μ∇ satisfies the estimate

‖(ζ∇ · μ∇− 1− λ)−1‖L(Lp) ≤
Mp

1 + |λ| , if Reλ ≥ −1
2

(3.3)

and, hence, generates a bounded, analytic semigroup on every space Lp, p ∈
]1,∞[.

Proof. Assertions i)–iii) are standard, while iv) follows from ii) and the subsequent
Lemma 3.6. Part v) is proved in [49, Thm. 4.28/Prop. 4.11]. Finally, a proof of
(3.3) is contained in [33, Thm. 5.2/Remark 5.1] and the second part of vi) then
follows from [50, Thm. 7.7] or [45, Ch. IX.1.6]. �

Lemma 3.6. Let w ∈ L∞ be a real function with a strictly positive lower bound and
let B be a selfadjoint, positive operator on L2. Then the operator wB + 1 has its
spectrum in [1,∞[ and admits a bounded functional calculus on L2.

Proof. We equip L2 with the equivalent scalar product (f, g) �→
∫
Ω fgw

−1dx and
name the resulting Hilbert space L̂2. Observe that C ∈ L(L2), iff C ∈ L(L̂2). The
equation∫

Ω

(wB + 1)f gw−1 dx =
∫

Ω

Bf g dx +
∫

Ω

f gw−1 dx =
∫

Ω

f Bg dx +
∫

Ω

fgw−1 dx

=
∫

Ω

f(wB + 1)gw−1 dx for f, g ∈ domL2(B)

shows that wB + 1 is symmetric on L̂2.
Let λ < 1. Then, by the hypotheses on B and w, the operator

w−1(wB + 1− λ) = B + w−1(1− λ)

on L2 is self-adjoint and has a strictly positive lower form bound. Thus, it is
continuously invertible on L2. This now implies invertibility of wB + 1− λ on L2,
as well as on L̂2. So, every λ ∈ ]−∞, 1[ is in the resolvent set of wB+1 on L̂2 and
this, together with the symmetry shown above, implies that the operator wB + 1
is selfadjoint in L̂2 and has its spectrum in [1,∞[.

Exploiting now a spectral integral representation wB + 1 =
∫∞
1 λdP (λ), one

obtains a bounded functional calculus of wB + 1 on L̂2. This implies a bounded
functional calculus also on L2, since both norms are equivalent. �

One essential instrument for our subsequent considerations are (upper)
Gaussian estimates.
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Theorem 3.7. Let ζ, V be real, positive L∞ functions and let ζ admit a positive
lower bound. Then the semigroup, generated by ζ∇·μ∇−V satisfies upper Gaussian
estimates, precisely:

(et(ζ∇·μ∇−V ) f)(x) =
∫

Ω

Kt(x, y)f(y) dy, x ∈ Ω, f ∈ L2,

for some measurable function Kt : Ω × Ω → R+ and for every ε > 0 there exist
constants c, b > 0, such that

0 ≤ Kt(x, y) ≤ c

td/2
e−b |x−y|2

t eεt, t > 0, a.a. x, y ∈ Ω. (3.4)

If V admits a lower bound V∗ > 0, then ε may be taken as 0.

Proof. Let us first consider the case ζ ≡ 1. If V is only nonnegative, then the
estimate in (3.4) follows from [49, Theorem 6.10] (see also [7]). If V admits a
strictly positive lower bound V∗, then one may write V = V − V∗ + V∗ and thus
obtains (3.4) with ε = 0.

The case of general ζ is implied by the multiplicative perturbation result
in [23]. �
Lemma 3.8. Let ζ ∈ L∞ be a real function with a strictly positive lower bound and
p ∈ ]1,∞[. Then, under Assumption 3.1, domLp

(
−ζ∇·μ∇+ 1

)1/2
= domLp

(
−∇ ·

μ∇+ 1
)1/2

, and the norms ‖
(
−ζ∇ · μ∇+ 1

)1/2 · ‖Lp and ‖
(
−∇ · μ∇+ 1

)1/2 · ‖Lp

are equivalent.

Proof. Since ζ has positive lower and upper bounds, Dζ := domLp(−ζ∇ · μ∇+ 1)
equalsD := domLp(−∇·μ∇+1) and the corresponding graph norms are equivalent.
Thus, necessarily also [Lp, Dζ ]1/2 = [Lp, D]1/2 including the equivalence of the
corresponding norms. In order to conclude, we will show that both, −∇ · μ∇+ 1
and −ζ∇·μ∇+1 admit bounded imaginary powers on Lp. Then by [56, Ch. 1.15.3],
one obtains the identity

domLp

(
−∇ · μ∇+ 1

)1/2 = [Lp, D]1/2 = [Lp, Dζ ]1/2 = domLp

(
−ζ∇ · μ∇+ 1

)1/2
,

including the equivalence of the graph norms.
The operator −∇·μ∇+1 has bounded imaginary powers thanks to Proposi-

tion 3.5 v) and [17, Corollary 1]. Concerning−ζ∇·μ∇+1, one can argue as follows:
this operator has a bounded H∞ calculus on L2 by Proposition 3.5 iv) and the
associated semigroup admits Gaussian estimates with ε = 0 by Theorem 3.7. Thus
the bounded H∞ functional calculus extrapolates to all spaces Lp, p ∈ ]1,∞[, by
[24, Theorem 3.4] and this in particular implies bounded imaginary powers. �
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4. Mapping properties for (−∇ · μ∇ + 1)1/2

In this chapter we prove that, under certain topological conditions on Ω and Γ,
the mapping

(−∇ · μ∇+ 1)1/2 : H1,q
Γ → Lq

is a topological isomorphism for q ∈ ]1, 2[. We abbreviate−∇·μ∇ byA0 throughout
this chapter. Let us introduce the following

Assumption 4.1. There is a bi-Lipschitz mapping φ from a neighborhood of Ω into
Rd such that φ(Ω ∪ Γ) = K− or K− ∪ Σ or K− ∪ Σ0.

The main results of this section are the following three theorems.

Theorem 4.2. Under the general assumptions made in Section 2 the following holds
true: For every q ∈ ]1, 2], the operator (A0 + 1)−1/2 is a continuous operator from
Lq into H1,q

Γ . Hence, it continuously maps H̆−1,q
Γ into Lq for any q ∈ [2,∞[.

Theorem 4.3. Let in addition Assumption 4.1 be fulfilled. Then, for every q ∈ ]1, 2],
the operator (A0 + 1)1/2 maps H1,q

Γ continuously into Lq. Hence, it continuously
maps Lq into H̆−1,q

Γ for any q ∈ [2,∞[.

Putting these two results together, one immediately gets the following iso-
morphism property of the square root of A0 + 1.

Theorem 4.4. Under Assumption 4.1, (A0 + 1)1/2 provides a topological isomor-
phism between H1,q

Γ and Lq for q ∈ ]1, 2] and a topological isomorphism between
Lq and H̆−1,q

Γ for any q ∈ [2,∞[.

Remark 4.5. In all three theorems the second assertion follows from the first by
the self-adjointness of A0 on L2 and duality; thus one may focus on the proof of
the first assertions.

Let us first prove the continuity of the operator (A0 + 1)−1/2 : Lq → H1,q
Γ .

In order to do so, we observe that this follows, whenever
1. The Riesz transform ∇(A0 + 1)−1/2 is a bounded operator on Lq, and, addi-

tionally,
2. (A0 + 1)−1/2 maps Lq into H1,q

Γ .
The first item is proved in [49, Thm. 7.26]. It remains to show 2. The first point
makes clear that (A0 + 1)−1/2 maps Lq continuously into H1,q, thus one has only
to verify the correct boundary behavior of the images. If f ∈ L2 ↪→ Lq, then one
has (A0 + 1)−1/2f ∈ H1,2

Γ ↪→ H1,q
Γ . Thus, the assertion follows from 1. and the

density of L2 in Lq.

Remark 4.6. Theorem 4.2 is not true for other values of q in general, see [8, Ch. 4]
for a further discussion.

We now prove Theorem 4.3. It will be deduced from the subsequent deep
result on divergence operators with Dirichlet boundary conditions and some per-
manence principles.
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Proposition 4.7 (Auscher/Tchamitchian, [9]). Let q ∈ ]1,∞[ and Ω be a strongly
Lipschitz domain. Then the root of the operator A0, combined with a homogeneous
Dirichlet boundary condition, maps H1,q

0 (Ω) continuously into Lq(Ω).

For further reference we mention the following consequence of Theorem 4.2
and Proposition 4.7.

Corollary 4.8. Under the hypotheses of Proposition 4.7 the operator (A0 + 1)−1/2

provides a topological isomorphism between Lq and H1,q
0 , if q ∈ ]1, 2].

Proof. The only thing to show is that the continuity of A1/2
0 from Proposition 4.7

carries over to (A0 + 1)1/2. For this it suffices to show that the mapping (A0 +
1)1/2A

−1/2
0 = (1 + A−1

0 )1/2 : L2 → L2 extends to a continuous mapping from
Lq into itself. Since the operator includes a homogeneous Dirichlet condition, the
L2 spectrum of A0 is contained in an interval [ε,∞[ for some ε > 0. But the
spectrum of A0, considered on Lq, is independent from q, see [49, Thm. 7.10].
Hence, A−1

0 is well defined and continuous on every Lq. Moreover, the spectrum
of 1 + A−1

0 , considered as an operator on Lq, is thus contained in a bounded
interval [1, δ] by the spectral mapping theorem, see [45, Ch. III.6.3]. Consequently,
(1 + A−1

0 )1/2 : Lq → Lq is also a continuous operator by classical functional
calculus, see [21, Ch. VII.3]. �

In view of Assumption 4.1 it is a natural idea to reduce our considerations to
the three model constellations mentioned there. In order to do so, we have to show
that the assertion of Theorem 4.3 is invariant under bi-Lipschitz transformations
of the domain. The proof will stem from the following lemma.

Lemma 4.9. Assume that φ is a bi-Lipschitzian mapping from a neighborhood of
Ω into Rd. Let φ(Ω) = Ω� and φ(Γ) = Γ�. Define for any function f ∈ L1(Ω�),

(Φf)(x) = f(φ(x)) = (f ◦ φ)(x), x ∈ Ω.

Then
i) The restriction of Φ to any Lp(Ω�), 1 ≤ p <∞, provides a linear, topological

isomorphism between this space and Lp(Ω).
ii) For any p ∈ ]1,∞[, the mapping Φ induces a linear, topological isomorphism

Φp : H1,p
Γ� (Ω�) → H1,p

Γ (Ω).

iii) Φ∗
p′ is a linear, topological isomorphism between H̆−1,p

Γ (Ω) and H̆−1,p
Γ� (Ω�)

for any p ∈ ]1,∞[.
iv) One has

Φ∗
p′A0Φp = −∇ · μ�∇ (4.1)

with

μ�(y) =
1∣∣ det(Dφ)(φ−1(y))

∣∣ (Dφ)(φ−1(y)) μ(φ−1(y))
(
Dφ

)T (φ−1(y))

for almost all y ∈ Ω�. Here, Dφ denotes the derivative of φ and det(Dφ) the
corresponding determinant.
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v) μ� also is bounded, Lebesgue measurable, elliptic and takes real, symmetric
matrices as values.

vi) The restriction of Φ∗
2Φ to L2(Ω�) equals the multiplication operator which is

given by the function
∣∣ det(Dφ)(φ−1(·))

∣∣−1.

Remark 4.10. It is well known that
∣∣det(Dφ)(φ−1(·))

∣∣ is a function from L∞

which, additionally, has a positive lower bound, due to the bi-Lipschitz property
of φ, see [27, Ch. 3]. In the sequel we denote this function by ζ.

Lemma 4.11. Let p ∈ ]1,∞[. Then, in the notation of the preceding lemma, the
operator

(
−∇·μ�∇+1

)1/2 maps H1,p
Γ� (Ω�) continuously into Lp(Ω�), if (A0+1)1/2

maps H1,p
Γ (Ω) continuously into Lp(Ω).

Proof. We will employ the formula

B−1/2 =
1
π

∫ ∞

0

t−1/2(B + t)−1 dt, (4.2)

B being a positive operator on a Banach space X , see [56, Ch. 1.14/1.15] or [50,
Ch. 2.6].

The operators A0 +1, −∇·μ�∇+1 and −ζ∇·μ�∇+1 are positive operators
in the sense of [56, Ch. 1.14] on any Lp, see Proposition 3.5. From (4.1) and vi) of
the preceding lemma one deduces

Φ∗
2

(
A0 + 1 + t

)
Φ2 = −∇ · μ�∇+ ζ−1(1 + t)

for every t > 0. This leads to

Φ−1
2

(
A0 +1+ t

)−1(Φ∗
2

)−1 =
(
−∇·μ�∇+ζ−1(1+ t)

)−1 =
(
−ζ∇·μ�∇+1+ t

)−1
ζ.

(4.3)
The H1,2

Γ� (Ω�) ↔ H̆−1,2
Γ� (Ω�) duality is the extended L2(Ω�) duality. Thus, when

restricting (4.3) to L2, Φ∗ may then be viewed as the adjoint with respect to the
L2 duality. Integrating this equation with weight t−1/2

π , one obtains, according
to (4.2),

Φ−1(A0 + 1)−1/2(Φ∗
2)

−1 =
(
−ζ∇ · μ�∇+ 1

)−1/2
ζ. (4.4)

Observe that the corresponding integrals converge in L(Lp), according to Propo-
sition 3.5. Inverting (4.4), we get the operator equation

Φ∗(A0 + 1)1/2Φ2 = ζ−1
(
−ζ∇ · μ�∇+ 1

)1/2
.

From this, the continuity of(
−ζ∇ · μ�∇+ 1

)1/2 : H1,p
Γ� (Ω�)→ Lp(Ω�)

follows by our supposition on A0 and straightforward continuity arguments on
Φ, see [40] for a detailed discussion. An application of Lemma 3.8 concludes the
proof. �
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Lemma 4.11 allows us to reduce the proof of Theorem 4.3 to Ω = K− and
the three cases Γ = ∅, Γ = Σ or Γ = Σ0. The first case, Γ = ∅, is already
contained in Proposition 4.7. In order to treat the second one, we use a reflection
argument. Let us point out the main ideas for this: First, one defines the operator
E : L1(K−)→ L1(K) which assigns to every function from L1(K−) its symmetric
extension. Let us further denote by R : L1(K)→ L1(K−) the restriction operator.
Finally, one defines −∇· μ̂∇ : H1,2

0 (K)→ H̆−1,2(K) as the symmetric extension of
−∇ ·μ∇ to K. Note that this latter operator is then combined with homogeneous
Dirichlet conditions. The definition of −∇ · μ̂∇ in particular implies for t ≥ 0(

A0 + 1 + t
)−1
f = R

(
−∇ · μ̂∇+ 1 + t

)−1
Ef for all f ∈ L2(K−).

Multiplying this equation by t−1/2

π and integrating over t, one obtains, in accor-
dance with (4.2),

(A0 + 1)−1/2f = R
(
−∇ · μ̂∇+ 1

)−1/2
Ef, f ∈ L2(K−).

This equation extends to all f ∈ Lp(K−) with p ∈ ]1, 2[. Now one exploits the
fact that

(
−∇ · μ̂∇ + 1

)−1/2 is a surjection onto the whole H1,p
0 (K) by Corol-

lary 4.8. Then some straightforward arguments show that (A0+1)−1/2 : Lp(K−) →
H1,p

Σ (K−) also is a surjection. Since, by Theorem 4.2 (A0 + 1)−1/2 : Lp(K−) →
H1,p

Σ (K−) is continuous, the continuity of the inverse finally is implied by the open
mapping theorem.

In order to prove the same for the third model constellation, i.e., Γ = Σ0,
one shows

Lemma 4.12. There is a bi-Lipschitz mapping φ : Rd → Rd that maps K− ∪ Σ0

onto K− ∪ Σ.

Thus, the proof of Theorem 4.3 in the case Γ = Σ0 results from the case
Γ = Σ and Lemmas 4.11 and 4.12.

Remark 4.13. Let us mention that Lemma 4.11, only applied to Ω = K and Γ = ∅
(the pure Dirichlet case) already provides a zoo of geometries which is not covered
by [9]. Notice in this context that the image of a strongly Lipschitz domain under
a bi-Lipschitz transformation need not be a strongly Lipschitz domain at all, cf.
[34, Ch. 1.2].

5. Maximal parabolic regularity for A

In this section we intend to prove the first main result of this work announced
in the introduction, i.e., maximal parabolic regularity of A in spaces with nega-
tive differentiability index. Let us first recall the notion of maximal parabolic Ls

regularity.
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Definition 5.1. Let 1 < s <∞, let X be a Banach space and let J := ]T0, T [ ⊆ R
be a bounded interval. Assume that B is a closed operator in X with dense domain
D (in the sequel always equipped with the graph norm). We say that B satisfies
maximal parabolic Ls(J ;X) regularity, if for any f ∈ Ls(J ;X) there exists a unique
function u ∈W 1,s(J ;X) ∩ Ls(J ;D) satisfying

u′ +Bu = f, u(T0) = 0,

where the time derivative is taken in the sense of X-valued distributions on J , see
[4, Ch. III.1].

Remark 5.2.
i) It is well known that the property of maximal parabolic regularity of an

operator B is independent of s ∈ ]1,∞[ and the specific choice of the interval
J (cf. [20]). Thus, in the following we will say for short that B admits maximal
parabolic regularity on X .

ii) If an operator satisfies maximal parabolic regularity on a Banach space X ,
then its negative generates an analytic semigroup on X (cf. [20]). In partic-
ular, a suitable left half-plane belongs to its resolvent set.

iii) If X is a Hilbert space, the converse is also true: The negative of every gen-
erator of an analytic semigroup on X satisfies maximal parabolic regularity,
cf. [19] or [20].

iv) If −B is a generator of an analytic semigroup on a Banach space X , and SX

indicates the space of X-valued step functions on J , then we define

B
( ∂
∂t

+B
)−1 : SX → C(J ;X) ↪→ Ls(J ;X)

by (
B
( ∂
∂t

+B
)−1
f
)
(t) := B

∫ t

T0

e−(t−s)B f(s) ds,

compare (5.4) below. It is known that SX is a dense subspace of Ls(J ;X),
if s ∈ [1,∞[, see [29, Lemma IV.1.3]. Using this, it is easy to see that B has
maximal parabolic regularity on X , if and only if the operator B

(
∂
∂t +B

)−1

continuously extends to an operator from Ls(J ;X) into itself.
v) Observe that

W 1,s(J ;X) ∩ Ls(J ;D) ↪→ C(J ; (X,D)1− 1
s ,s). (5.1)

The next lemma, needed below, shows that maximal parabolic regularity is
maintained by interpolation:

Lemma 5.3. Suppose that X,Y are Banach spaces, which are contained in a third
Banach space Z with continuous injections. Let B be a linear operator on Z whose
restrictions to each of the spaces X,Y induce closed, densely defined operators
there. Assume that the induced operators fulfill maximal parabolic regularity on X
and Y , respectively. Then B satisfies maximal parabolic regularity on each of the
interpolation spaces [X,Y ]θ and (X,Y )θ,s with θ ∈ ]0, 1[ and s ∈ ]1,∞[.
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The next theorem will be the cornerstone on maximal parabolic regularity
of this work and details of the proof will be pointed out below in Subsections 5.1
and 5.2.

Theorem 5.4. Let Ω, Γ fulfill Assumption 3.1 and set qiso := supMiso, where

Miso := {q ∈ [2,∞[ : −∇ · μ∇+ 1 : H1,q
Γ → H̆−1,q

Γ is a topological isomorphism}.

Then −∇ · μ∇ satisfies maximal parabolic regularity on H̆−1,q
Γ for all q ∈ [2, q∗iso[,

where by r∗ we denote the Sobolev conjugated index of r, i.e.,

r∗ =

{
∞, if r ≥ d,(

1
r −

1
d

)−1
, if r ∈ [1, d[ .

Remark 5.5.
i) If Ω, Γ fulfill Assumption 3.1, then qiso > 2, see [37] and also [35].
ii) It is clear by Lax-Milgram and interpolation (see Proposition 3.4) that Miso

is the interval [2, qiso[ or [2, qiso]. Moreover, it can be concluded from a deep
theorem of Sneiberg [54] (see also [8, Lemma 4.16]) that the second case
cannot occur.

Proposition 5.6. If Ω is a bounded Lipschitz domain and Γ is any closed subset of
∂Ω, then −∇ · μ∇ satisfies maximal parabolic regularity on Lp for all p ∈ ]1,∞[.
In particular, ∇·μ∇ generates an analytic semigroup on each Lp, cf. Remark 5.2.

Proof. The operator −∇·μ∇ possesses upper Gaussian estimates by Theorem 3.7
and this implies maximal parabolic regularity on Lp, if p ∈ ]1,∞[, see [42] or [16].

Alternatively, the assertion of Proposition 5.6 may be deduced as follows:
First, the induced semigroup on any Lp is contractive, see Proposition, 3.5 v).
Then one applies [47, Cor. 1.1]. �

Lemma 5.7. Let Ω,Γ fulfill Assumption 4.1. Then ∇ · μ∇ generates an analytic
semigroup on H̆−1,q

Γ for all q ∈ [2,∞[.

Proof. One has the operator identity(
−∇·μ∇+λ

)−1 =
(
−∇·μ∇+1

)1/2(−∇·μ∇+λ
)−1(−∇·μ∇+1

)−1/2
, Reλ ≥ 0,

(5.2)
on Lq. Under Assumption 4.1 (−∇·μ∇+1)1/2 is a topological isomorphism between
Lq and H̆−1,q

Γ for every q ∈ [2,∞[, thanks to Theorem 4.4. Thus, via (5.2), the
corresponding resolvent estimate carries over from Lq to H̆−1,q

Γ by the density of
Lq in H̆−1,q

Γ . �

In the next step we show

Theorem 5.8. Let Ω,Γ fulfill Assumption 4.1. Then −∇ · μ∇ satisfies maximal
parabolic regularity on H̆−1,q

Γ for all q ∈ [2,∞[.

This will be a consequence of Theorem 4.4 and the following two lemmata.
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Lemma 5.9. Assume that the operator B fulfills maximal parabolic regularity on a
Banach space X and has no spectrum in ]−∞, 0]. If SX again denotes the space
of X-valued step functions on J , then one has, for every α ∈ ]0, 1[,

B

(
∂

∂t
+B

)−1

ψ = (B + 1)αB

(
∂

∂t
+B

)−1

(B + 1)−αψ for all ψ ∈ SX . (5.3)

Proof. First, B satisfies a resolvent estimate ‖(B+ λ)−1‖L(X) ≤ c
|λ| for all λ from

a suitable right half-space. Since, additionally, B has no spectrum in ]−∞, 0], the
operators (B + 1)−α and (B + 1)α are well defined on X .

If x ∈ X and χI denotes the indicator function of an interval I = ]a, b[ ⊆ J ,
then one calculates, by the definition of B( ∂

∂t +B)−1,

[
B
( ∂
∂t

+ B
)−1
χIx

]
(t) = B

∫ t

T0

e−(t−s)BxχI(s) ds

=

⎧⎪⎨⎪⎩
0, if t < a,(
1− e(a−t)B

)
x, if t ∈ [a, b],(

e(b−t)B − e(a−t)B
)
x, if t > b,

(5.4)

compare [50, Ch. 1.2]. This gives, for every step function
∑N

l=1 χIl
xl ∈ SX ,

B

(
∂

∂t
+B

)−1

(B + 1)−α
N∑

l=1

χIl
xl =

N∑
l=1

B

(
∂

∂t
+B

)−1

χIl
(B + 1)−αxl

= (B + 1)−αB

(
∂

∂t
+B

)−1 N∑
l=1

χIl
xl,

since (B + 1)−α commutes with the semigroup operators e−tB. �

Remark 5.10. By the density of SX in Ls(J ;X) for s ∈ [1,∞[, equation (5.3)
extends to the whole of Ls(J ;X), since the left-hand side is a continuous operator
on Ls(J ;X) by maximal regularity of B.

Lemma 5.11. Assume that X,Y are Banach spaces, where X continuously and
densely injects into Y . Suppose B to be an operator on Y , whose maximal restric-
tion B|X to X satisfies maximal parabolic regularity there. If B|X has no spectrum
in ]−∞, 0] and (B + 1)α provides a topological isomorphism from X onto Y , then
B also satisfies maximal parabolic regularity on Y .

Proof. Let SX be the set of step functions on J , taking their values in X . By
the density of X in Y , SX is also dense in Ls(J ;Y ). Due to Lemma 5.9, we may
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estimate for any ψ ∈ SX :∥∥∥∥∥B
(
∂

∂t
+B

)−1

ψ

∥∥∥∥∥
L(Ls(J;Y ))

=

∥∥∥∥∥(B + 1)αB

(
∂

∂t
+B

)−1

(B + 1)−αψ

∥∥∥∥∥
L(Ls(J;Y ))

≤ c‖(B + 1)α‖L(Ls(J;X);Ls(J;Y ))

∥∥∥∥∥B
(
∂

∂t
+B

)−1
∥∥∥∥∥
L(Ls(J;X))

‖(B + 1)−αψ‖Ls(J;X)

≤ c‖(B + 1)α‖L(X;Y )

∥∥∥∥∥B
(
∂

∂t
+B

)−1
∥∥∥∥∥
L(Ls(J;X))

‖(B + 1)−α‖L(Y ;X)‖ψ‖Ls(J;Y ).

By density, B
(

∂
∂t +B

)−1 extends to a continuous operator on the whole of Ls(J ;Y )
and the assertion follows by Remark 5.2 iv). �

The proof of Theorem 5.8 is now obtained by the isomorphism property(
−∇·μ∇+1

)1/2 : Lq → H̆−1,q
Γ , assured by Theorem 4.4, and afterwards applying

Proposition 5.6 and Lemma 5.11, putting there X := Lq, Y := H̆−1,q
Γ , B :=

−∇ · μ∇ and α := 1/2.

Now we intend to ‘globalize’ Theorem 5.8, in other words: We prove that
−∇ · μ∇ satisfies maximal parabolic regularity on H̆−1,q

Γ for suitable q if Ω, Γ
satisfy only Assumption 3.1, i.e., ifK−, K−∪Σ andK−∪Σ0 need only to be model
sets for the constellation around boundary points. Obviously, then the variety of
admissible Ω’s and Γ’s increases considerably; in particular, Γ may have more than
one connected component.

5.1. Auxiliaries

We continue with a result that allows us to ‘localize’ the elliptic operator.

Lemma 5.12. Let Ω,Γ satisfy Assumption 3.1 and let Υ ⊆ Rd be open, such that
Ω• := Ω ∩Υ is also a Lipschitz domain. Furthermore, we put Γ• := Γ ∩Υ and fix
an arbitrary, real-valued function η ∈ C∞

0 (Rd) with supp(η) ⊆ Υ. Denote by μ•
the restriction of the coefficient function μ to Ω• and assume v ∈ H1,2

Γ (Ω) to be
the solution of

−∇ · μ∇v = f ∈ H̆−1,2
Γ (Ω).

Then the following holds true:

i) For all q ∈ ]1,∞[ the anti-linear form

f• : w �→ 〈f, η̃w〉H̆−1,2
Γ

(where η̃w again means the extension of ηw by zero to the whole Ω) is well
defined and continuous on H1,q′

Γ• (Ω•), whenever f is an anti-linear form from
H̆−1,q

Γ (Ω). The mapping H̆−1,q
Γ (Ω) � f �→ f• ∈ H̆−1,q

Γ• (Ω•) is continuous.
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ii) If we denote the anti-linear form

H1,2
Γ• (Ω•) � w �→

∫
Ω•
vμ•∇η · ∇w dx

by Iv, then u := ηv|Ω• satisfies

−∇ · μ•∇u = −μ•∇v|Ω• · ∇η|Ω• + Iv + f•.

iii) For every q ≥ 2 and all r ∈ [2, q∗[ (q∗ denoting again the Sobolev conjugated
index of q) the mapping

H1,q
Γ (Ω) � v �→ −μ•∇v|Ω• · ∇η|Ω• + Iv ∈ H̆−1,r

Γ• (Ω•)

is well defined and continuous.

Remark 5.13. It is the lack of integrability for the gradient of v (see the counterex-
ample in [26, Ch. 4]) together with the quality of the needed Sobolev embeddings
which limits the quality of the correction terms. In the end it is this effect which
prevents the applicability of the localization procedure in Subsection 5.2 in higher
dimensions – at least when one aims at a q > d.

Remark 5.14. If v ∈ L2(Ω) is a regular distribution, then v• is the regular distri-
bution (ηv)|Ω• .

5.2. Core of the proof of Theorem 5.4

We are now in a position to start the proof of Theorem 5.4. We first note that in
any case the operator −∇·μ∇ admits maximal parabolic regularity on the Hilbert
space H̆−1,2

Γ , since its negative generates an analytic semigroup on this space by
Proposition 3.5, cf. Remark 5.2 iii). Thus, defining

MMR := {q ≥ 2 : −∇ · μ∇ admits maximal regularity on H̆−1,q
Γ }

and exploiting (3.1) and Lemma 5.3 we see by interpolation that MMR is {2} or
an interval with left endpoint 2.

The main step of the proof for Theorem 5.4 is contained in the following
lemma.

Lemma 5.15. Let Ω, Γ, Υ, η, Ω•, Γ•, μ• be as before. Assume that −∇ · μ•∇
satisfies maximal parabolic regularity on H̆−1,q

Γ• (Ω•) for all q ∈ [2,∞[ and that
−∇·μ∇ satisfies maximal parabolic regularity on H̆−1,q0

Γ (Ω) for some q0 ∈ [2, qiso[.
If r ∈ [q0, q∗0 [ and G ∈ Ls(J ; H̆−1,r

Γ (Ω)) ↪→ Ls(J ; H̆−1,q0
Γ (Ω)), then the unique

solution V ∈W 1,s(J ; H̆−1,q0
Γ (Ω)) ∩ Ls(J ; dom

H̆
−1,q0
Γ (Ω)

(−∇ · μ∇)) of

V ′ −∇ · μ∇V = G, V (T0) = 0,

even satisfies

ηV ∈W 1,s(J ; H̆−1,r
Γ (Ω)) ∩ Ls(J ; domH̆−1,r

Γ (Ω)(−∇ · μ∇)).
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Proof of Theorem 5.4. For every x ∈ Ω let Ξx ⊆ Ω be an open cube, containing x.
Furthermore, let for any point x ∈ ∂Ω an open neighborhood be given according
to the supposition of the theorem (see Assumption 3.1). Possibly shrinking this
neighborhood to a smaller one, one obtains a new neighborhood Υx, and a bi-
Lipschitz mapping φx from a neighborhood of Υx into Rd such that φx(Υx ∩ (Ω∪
Γ)) = K−, (K− ∪ Σ) or (K− ∪ Σ0).

Obviously, the Ξx and Υx together form an open covering of Ω. Let the sets
Ξx1 , . . . ,Ξxk

, Υxk+1 , . . . ,Υxl
be a finite subcovering and η1, . . . , ηl a C∞ partition

of unity, subordinate to this subcovering. Set Ωj := Ξxj = Ξxj∩Ω for j ∈ {1, . . . , k}
and Ωj := Υxj ∩ Ω for j ∈ {k + 1, . . . , l}. Moreover, set Γj := ∅ for j ∈ {1, . . . , k}
and Γj := Υxj ∩ Γ for j ∈ {k + 1, . . . , l}.

Denoting the restriction of μ to Ωj by μj , each operator −∇ · μj∇ satisfies
maximal parabolic regularity in H̆−1,q

Γj
(Ωj) for all q ∈ [2,∞[ and all j, according

to Theorem 5.8. Thus, we may apply Lemma 5.15, the first time taking q0 = 2.
Then −∇·μ∇ satisfies maximal parabolic regularity on H̆−1,r

Γ (Ω) for all r ∈ [2, 2∗[.
Next taking q0 as any number from the interval [2,min(2∗, qiso)[ and continuing
this way, one improves the information on r step by step. Since the augmentation
in r increases in every step, any number below q∗iso is indeed achieved. �
Remark 5.16. Note that Theorem 5.4 already yields maximal regularity of −∇·μ∇
on H̆−1,q

Γ for all q ∈ [2, 2∗[ without any additional information on domH̆−1,q
Γ

(−∇ ·
μ∇) nor on domH̆−1,q

Γj
(Ωj)(−∇ · μj∇).

In the 2-d case this already implies maximal regularity for every q ∈ [2,∞[.
Taking into account Remark 5.5 i), without further knowledge on the domains we
get in the 3-d case every q ∈ [2, 6 + ε[ and in the 4-d case every q ∈ [2, 4 + ε[,
where ε depends on Ω,Γ, μ.

5.3. The operator A

Next we carry over the maximal parabolic regularity result, up to now proved for
−∇ · μ∇ on the spaces H̆−1,q

Γ , to the operator A and to a much broader class
of distribution spaces. For this we first need the following perturbation result on
relative boundedness of the boundary part of the operator A.

Lemma 5.17. Suppose q ≥ 2, ς ∈ ]1− 1
q , 1] and κ ∈ L∞(Γ, dσ) and let Ω,Γ satisfy

Assumption 3.1. If we define the mapping Q : domH̆−ς,q
Γ

(−∇ · μ∇) → H̆−ς,q
Γ by

〈Qψ,ϕ〉H−ς,q
Γ

:=
∫

Γ

κ ψ ϕdσ, ϕ ∈ Hς,q′
Γ ,

then Q is well defined and continuous. Moreover, it is relatively bounded with
respect to −∇ · μ∇, when considered on the space H̆−ς,q

Γ , and the relative bound
may be taken arbitrarily small.

Referring to Lemma 5.3, we can now carry over maximal parabolic regularity
from Lq and H̆−1,q

Γ to various distribution spaces and thus prove our main result
for the operator A.
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Theorem 5.18. Suppose q ≥ 2, κ ∈ L∞(Γ, dσ) and let Ω,Γ satisfy Assumption 3.1.

i) If ς ∈ ]1− 1
q , 1], then domH̆−ς,q

Γ
(−∇ · μ∇) = domH̆−ς,q

Γ
(A).

ii) If ς ∈ ]1− 1
q , 1] and −∇·μ∇ satisfies maximal parabolic regularity on H̆−ς,q

Γ ,
then A also does.

iii) The operator A satisfies maximal parabolic regularity on L2. If κ ≥ 0, then
A satisfies maximal parabolic regularity on Lp for all p ∈ ]1,∞[.

iv) Suppose that −∇ · μ∇ satisfies maximal parabolic regularity on H̆−1,q
Γ . Then

A satisfies maximal parabolic regularity on any of the interpolation spaces

[L2, H̆−1,q
Γ ]θ, θ ∈ [0, 1],

and
(L2, H̆−1,q

Γ )θ,s, θ ∈ [0, 1], s ∈ ]1,∞[ .

Let κ ≥ 0 and p ∈ ]1,∞[ in case of d = 2 or p ∈ [
(

1
2 + 1

d

)−1
,∞[ if d ≥ 3.

Then A also satisfies maximal parabolic regularity on any of the interpolation
spaces

[Lp, H̆−1,q
Γ ]θ, θ ∈ [0, 1], (5.5)

and
(Lp, H̆−1,q

Γ )θ,s, θ ∈ [0, 1], s ∈ ]1,∞[ . (5.6)

Proof. i) follows from Lemma 5.17 and classical perturbation theory.
ii) The assertion is implied by Lemma 5.17 and a perturbation theorem for

maximal parabolic regularity, see [6, Prop. 1.3].
iii) The first assertion follows from Proposition 3.5 ii) and Remark 5.2 iii). The

second is shown in [33, Thm. 7.4].
iv) Under the given conditions on p, we have the embedding Lp ↪→ H̆−1,2

Γ . Thus,
the assertion follows from the preceding points and Lemma 5.3. �

Remark 5.19. The interpolation spaces [Lp, H−1,q
Γ ]θ, θ ∈ [0, 1], and (Lp, H−1,q

Γ )θ,s,
θ ∈ [0, 1], s ∈ ]1,∞[, are characterized in [32], see in particular Remark 3.6 therein.
Identifying each f ∈ Lq with the anti-linear form Lq′ � ψ →

∫
Ω fψ dx and

using the retraction/coretraction theorem with the coretraction which assigns to
f ∈ H̆−1,r

Γ the linear form H1,r′
Γ � ψ → 〈f, ψ〉H̆−1,r

Γ
, one easily identifies the

interpolation spaces in (5.5) and (5.6). In particular, this yields
[
Lq0 , H̆−1,q1

Γ

]
θ

=
H̆−θ,q

Γ if θ �= 1− 1
q .

Corollary 5.20. Let Ω and Γ satisfy Assumption 3.1. The operator −A generates
analytic semigroups on all spaces H̆−1,q

Γ if q ∈ [2, q∗iso[ and on all the interpolation
spaces occurring in Theorem 5.18, there q also taken from [2, q∗iso[. Moreover, if
κ ≥ 0, the following resolvent estimates are valid:

‖(A+ 1 + λ)−1‖L(H̆−1,q
Γ ) ≤

cq
1 + |λ| , Reλ ≥ 0.
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6. Nonlinear parabolic equations

In this section we will apply maximal parabolic regularity for the treatment of
quasilinear parabolic equations which are of the (formal) type (1.1). Concerning
all the occurring operators we will formulate precise requirements in Assump-
tion 6.12 below. In contrast to the previous chapters we now need the (possibly)
stronger assumption on the geometry of Ω∪Γ that the local bi-Lipschitz charts in
Assumption 3.1 can be chosen to be volume-preserving. This comes to bear in the
proof of Lemma 6.7 (see [40]), what is crucial for the treatment of the nonlinear
equations.

Assumption 6.1. Let Ω ∪ Γ satisfy Assumption 3.1. Using the notation of this
assumption, we assume that for every x ∈ ∂Ω there exists a constant α > 0, such
that αφx is a volume-preserving map.

The outline of the section is as follows: First we give a motivation for the
choice of the Banach space we will regard (1.1)/(1.2) in. Afterwards we show
that maximal parabolic regularity, combined with regularity results for the elliptic
operator, allows us to solve this problem. Below we will consider (1.1)/(1.2) as a
quasilinear problem{

u′(t) + B
(
u(t)

)
u(t) = S(t, u(t)), t ∈ J,
u(T0) = u0.

(6.1)

To give the reader already here an idea what properties of the operators −∇ ·
G(u)μ∇ and of the corresponding Banach space are required, we first quote the
result on existence and uniqueness for abstract quasilinear parabolic equations
(due to Clément/Li [15] and Prüss [51]) on which our subsequent considerations
will be based.

Proposition 6.2. Suppose that B is a closed operator on some Banach space X
with dense domain D, which satisfies maximal parabolic regularity on X. For some
s > 1 suppose further u0 ∈ (X,D)1− 1

s ,s and B : J × (X,D)1− 1
s ,s → L(D,X) to be

continuous with B = B(T0, u0). Let, in addition, S : J × (X,D)1− 1
s ,s → X be a

Carathéodory map and assume the following Lipschitz conditions on B and S:

(B) For every M > 0 there exists a constant CM > 0, such that for all t ∈ J

‖B(t, u)− B(t, ũ)‖L(D,X) ≤ CM ‖u− ũ‖(X,D)1− 1
s

,s
,

if ‖u‖(X,D)1−1
s

,s
, ‖ũ‖(X,D)1− 1

s
,s
≤M .

(S) S(·, 0) ∈ Ls(J ;X) and for each M > 0 there is a function hM ∈ Ls(J), such
that

‖S(t, u)− S(t, ũ)‖X ≤ hM (t) ‖u− ũ‖(X,D)1− 1
s

,s

holds for a.a. t ∈ J , if ‖u‖(X,D)1− 1
s

,s
, ‖ũ‖(X,D)1− 1

s
,s
≤M .
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Then there exists T ∗ ∈ J , such that (6.1) admits a unique solution u on ]T0, T
∗[

satisfying
u ∈W 1,s(]T0, T

∗[;X) ∩ Ls(]T0, T
∗[;D).

Remark 6.3. Up to now we were free to consider complex Banach spaces. But the
context of equations like (1.1) requires real spaces, in particular in view of the
quality of the operator G which often is a superposition operator. Therefore, from
this moment on we use the real versions of the spaces. In particular, H−ς,q

Γ is now
understood as the dual of the real space Hς,q′

Γ and clearly can be identified with
the set of anti-linear forms on the complex space Hς,q′

Γ that take real values when
applied to real functions.

Fortunately, the property of maximal parabolic regularity is maintained for
the restriction of the operator A to the real spaces in case of a real function κ, as
A then commutes with complex conjugation.

We will now give a motivation for the choice of the Banach space X we
will use later. In view of the applicability of Proposition 6.2 and the non-smooth
characteristic of (1.1)/(1.2) it is natural to require the following properties.

a) The operators A, or at least the operators −∇ · μ∇, defined in (3.2), must
satisfy maximal parabolic regularity on X .

b) As in the classical theory (see [46], [30], [55] and references therein) quadratic
gradient terms of the solution should be admissible for the right-hand side.

c) The operators −∇ · G(u)μ∇ should behave well concerning their dependence
on u, see condition (B) above.

d) X has to contain certain measures, supported on Lipschitz hypersurfaces in Ω
or on ∂Ω in order to allow for surface densities on the right-hand side or/and
for inhomogeneous Neumann conditions.

The condition in a) is assured by Theorems 5.4 and 5.18 for a great variety of
Banach spaces, among them candidates for X . Requirement b) suggests that one
should have domX(−∇ · μ∇) ↪→ H1,q

Γ and L
q
2 ↪→ X . Since −∇ · μ∇ maps H1,q

Γ

into H−1,q
Γ , this altogether leads to the necessary condition

L
q
2 ↪→ X ↪→ H−1,q

Γ . (6.2)

The Sobolev embedding shows that q cannot be smaller than the space dimension
d. Taking into account d), it is clear that X must be a space of distributions
which (at least) contains surface densities. In order to recover the desired property
domX(−∇ · μ∇) ↪→ H1,q

Γ from the necessary condition in (6.2), we make for all
that follows this general

Assumption 6.4. There is a q > d, such that −∇ · μ∇ + 1 : H1,q
Γ → H−1,q

Γ is a
topological isomorphism.

Remark 6.5. By Remark 5.5 i) Assumption 6.4 is always fulfilled for d = 2. On the
other hand for d ≥ 4 it is generically false in case of mixed boundary conditions, see
[53] for the famous counterexample. Moreover, even in the Dirichlet case, when the
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domain Ω has only a Lipschitz boundary or the coefficient function μ is constant
within layers, one cannot expect q ≥ 4, see [44] and [25].

In Section 7 we will present examples for domains Ω, coefficient functions μ
and Dirichlet boundary parts Ω \ Γ, for which Assumption 6.4 is fulfilled.

From now on we fix some q > d, for which Assumption 6.4 holds.
As a first step, one shows that Assumption 6.4 carries over to a broad class

of modified operators:

Lemma 6.6. Assume that ξ is a real-valued, uniformly continuous function on
Ω that admits a lower bound ξ > 0. Then the operator −∇ · ξμ∇ + 1 also is a
topological isomorphism between H1,q

Γ and H−1,q
Γ .

In this spirit, one could now suggest X := H−1,q
Γ to be a good choice for

the Banach space, but in view of condition (S) the right-hand side of (6.1) has to
be a continuous mapping from an interpolation space (domX(A), X)1− 1

s ,s into X .
Chosen X := H−1,q

Γ , for elements ψ ∈ (domX(A), X)1− 1
s ,s = (H1,q

Γ , H−1,q
Γ )1− 1

s ,s

the expression |∇ψ|2 cannot be properly defined and, if so, will not lie in H−1,q
Γ

in general. This shows that X := H−1,q
Γ is not an appropriate choice, but we will

see that X := H−ς,q
Γ , with ς properly chosen, is.

Lemma 6.7. Put X := H−ς,q
Γ with ς ∈ [0, 1[ \ { 1

q , 1−
1
q }. Then

i) For every τ ∈ ]1+ς
2 , 1[ there is a continuous embedding

(X, domX(−∇ · μ∇))τ,1 ↪→ H1,q
Γ .

ii) If ς ∈ [d
q , 1], then X has a predual X∗ = Hς,q′

Γ which admits the continuous,

dense injections H1,q′
Γ ↪→ X∗ ↪→ L( q

2 )′ that by duality clearly imply (6.2).
Furthermore, H1,q

Γ is a multiplier space for X∗.

Next we will consider requirement c), see condition (B) in Proposition 6.2.

Lemma 6.8. Let q be a number from Assumption 6.4 and let X be a Banach space
with predual X∗ that admits the continuous and dense injections

H1,q′
Γ ↪→ X∗ ↪→ L( q

2 )′ .

i) If ξ ∈ H1,q is a multiplier on X∗, then domX(−∇·μ∇) ↪→ domX(−∇·ξμ∇).
ii) If H1,q is a multiplier space for X∗, then the (linear) mapping H1,q � ξ �→
−∇ · ξμ∇ ∈ L(domX(−∇ · μ∇), X) is well defined and continuous.

Corollary 6.9. If ξ additionally to the hypotheses of Lemma 6.8 i) has a positive
lower bound, then

domX(−∇ · ξμ∇) = domX(−∇ · μ∇).

Next we will show that functions on ∂Ω or on a Lipschitz hypersurface,
which belong to a suitable summability class, can be understood as elements of
the distribution space H−ς,q

Γ .
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Theorem 6.10. Assume q ∈ ]1,∞[, ς ∈ ]1− 1
q , 1[ \ { 1

q } and let Π,  be as in
Proposition 3.3. Then the adjoint trace operator (Tr)∗ maps Lq(Π) continuously
into

(
Hς,q′

(Ω)
)′
↪→ H−ς,q

Γ .

Proof. The result is obtained from Proposition 3.3 by duality. �

Remark 6.11. Here we restricted the considerations to the case of Lipschitz hy-
persurfaces, since this is the most essential insofar as it gives the possibility of
prescribing jumps in the normal component of the current j := G(u)μ∇u along
hypersurfaces where the coefficient function jumps. This case is of high relevance in
view of applied problems and has attracted much attention also from the numerical
point of view, see, e.g., [1], [11] and references therein.

From now on we fix once and for all a number ς ∈ ] max{1− 1
q ,

d
q }, 1[ and set

for all that follows X := H−ς,q
Γ .

Next we introduce the requirements on the data of problem (1.1)/(1.2).

Assumption 6.12. Op) For all that follows we fix a number s > 2
1−ς .

Ga) The mapping G : H1,q → H1,q is locally Lipschitz continuous.
Gb) For any ball in H1,q there exists δ > 0, such that G(u) ≥ δ for all u from this

ball.
Ra) The function R : J × H1,q → X is of Carathéodory type, i.e., R(·, u) is

measurable for all u ∈ H1,q and R(t, ·) is continuous for a.a. t ∈ J .
Rb) R(·, 0) ∈ Ls(J ;X) and for M > 0 there exists hM ∈ Ls(J), such that

‖R(t, u)−R(t, ũ)‖X ≤ hM (t)‖u− ũ‖H1,q , t ∈ J,
provided max(‖u‖H1,q , ‖ũ‖H1,q ) ≤M .

BC) b is an operator of the form b(u) = Q(b◦(u)), where b◦ is a (possibly nonlin-
ear), locally Lipschitzian operator from C(Ω) into itself (see Lemma 5.17).

Gg) g ∈ Lq(Γ).
IC) u0 ∈ (X, domX(−∇ · μ∇))1− 1

s ,s.

Remark 6.13. i) At first glance the choice of s seems indiscriminate. The point
is, however, that generically in applications the explicit time dependence of
the reaction term R is essentially bounded. Thus, in view of condition Rb) it
is justified to take s as any arbitrarily large number, whose magnitude need
not be controlled explicitly.

ii) Note that the requirement on G allows for nonlocal operators. This is es-
sential if the current depends on an additional potential governed by an
auxiliary equation, which is usually the case in drift-diffusion models, see [3],
[28] or [52].

iii) The conditions Ra) and Rb) are always satisfied if R is a mapping into Lq/2

with the analog boundedness and continuity properties, see Lemma 6.7 ii).
iv) It is not hard to see that Q in fact is well defined on C(Ω), therefore condition

BC) makes sense. In particular, b◦ may be a superposition operator, induced
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by a C1(R) function. Let us emphasize that in this case the inducing function
need not be positive. Thus, non-dissipative boundary conditions are included.

v) Finally, the condition IC) is an ‘abstract’ one and hardly to verify, because
one has no explicit characterization of (X, domX(−∇ · μ∇))1− 1

s ,s at hand.
Nevertheless, the condition is reproduced along the trajectory of the solution
by means of the embedding (5.1).

In order to solve (1.1)/(1.2), we will consider (6.1) with

B(u) := −∇ · G(u)μ∇ (6.3)

and the right-hand side S
S(t, u) := R(t, u)−Q(b◦(u)) + (Tr)∗g, (6.4)

seeking the solution in the space W 1,s(J ;X) ∩ Ls(J ; domX(−∇ · μ∇)).

Remark 6.14. Let us explain this reformulation: as it is well known in the theory
of boundary value problems, the boundary condition (1.2) is incorporated by in-
troducing the boundary terms −κb◦(u) and g on the right-hand side. In order to
understand both as elements from X , we write Q(b◦(u)) and (Tr)∗g, see Lemma
5.17 and Theorem 6.10.

Theorem 6.15. Let Assumption 6.4 be satisfied and assume that the data of the
problem satisfy Assumption 6.12. Then (6.1) has a local-in-time, unique solution
in W 1,s(J ;X)∩Ls(J ; domX(−∇ · μ∇)), provided that B and S are given by (6.3)
and (6.4), respectively.

Proof. First of all we note that, due to Op), 1− 1
s >

1+ς
2 . Thus, if τ ∈ ]1+ς

2 , 1−
1
s [

by a well-known interpolation result (see [56, Ch. 1.3.3]) and Lemma 6.7 i) we
have

(X, domX(−∇ · μ∇))1− 1
s ,s ↪→ (X, domX(−∇ · μ∇))τ,1 ↪→ H1,q. (6.5)

Hence, by IC), u0 ∈ H1,q. Consequently, due to the suppositions on G, both the
functions G(u0) and 1

G(u0) belong toH1,q and are bounded from below by a positive
constant. Denoting −∇ · G(u0)μ∇ by B, Corollary 6.9 gives domX(−∇ · μ∇) =
domX(B). This implies u0 ∈ (X, domX(B))1− 1

s ,s. Furthermore, the so-defined B
has maximal parabolic regularity on X , thanks to (5.5) in Theorem 5.18 with
p = q.

Condition (B) from Proposition 6.2 is implied by Lemma 6.8 ii) in cooperation
with Lemma 6.7, the fact that the mapping H1,q � φ �→ G(φ) ∈ H1,q is boundedly
Lipschitz and (6.5).

It remains to show that the ‘new’ right-hand side S satisfies condition (S)
from Proposition 6.2. We do this for every term in (6.4) separately, beginning
from the left: concerning the first, one again uses (6.5) together with the asserted
conditions Ra) and Rb) on R. The assertion for the last two terms results from
(6.5), the assumptions BC)/Gg), Lemma 5.17 and Theorem 6.10. �
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Remark 6.16. Note that, if R takes its values only in the space Lq/2 ↪→ X , then
– in the light of Lemma 5.17 – the elliptic operators incorporate the boundary
conditions (1.2) in a generalized sense, see [29, Ch. II.2] or [14, Ch. 1.2].

Finally, it can be shown that the solution u is Hölder continuous simultane-
ously in space and time, even more:

Corollary 6.17. There exist α, β > 0 such that the solution u of (1.1)/ (1.2) belongs
to the space Cβ(J ;H1,q

Γ (Ω)) ↪→ Cβ(J ;Cα(Ω)).

7. Examples

In this section we describe geometric configurations for which our Assumption 6.4
holds true and we present concrete examples of mappings G and reaction terms R
fitting into our framework.

7.1. Geometric constellations

While our results in Sections 4 and 5 on the square root of −∇ · μ∇ and maxi-
mal parabolic regularity are valid in the general geometric framework of Assump-
tion 3.1, we additionally had to impose Assumption 6.4 for the treatment of quasi-
linear equations in Section 6. Here we shortly describe geometric constellations, in
which this additional condition is satisfied.

Let us start with the observation that the 2-d case is covered by Remark 5.5 i).
Admissible three-dimensional settings may be described as follows.

Proposition 7.1. Let Ω ⊆ R3 be a bounded Lipschitz domain. Then there exists a
q > 3 such that −∇ · μ∇+ 1 is a topological isomorphism from H1,q

Γ onto H−1,q
Γ ,

if one of the following conditions is satisfied:

i) Ω has a Lipschitz boundary. Γ = ∅ or Γ = ∂Ω. Ω◦ ⊆ Ω is another domain
which is C1 and which does not touch the boundary of Ω. μ|Ω◦ ∈ BUC(Ω◦)
and μ|Ω\Ω◦ ∈ BUC(Ω \ Ω◦).

ii) Ω has a Lipschitz boundary. Γ = ∅. Ω◦ ⊆ Ω is a Lipschitz domain, such that
∂Ω◦ ∩Ω is a C1 surface and ∂Ω and ∂Ω◦ meet suitably (see [26] for details).
μ|Ω◦ ∈ BUC(Ω◦) and μ|Ω\Ω◦ ∈ BUC(Ω \ Ω◦).

iii) Ω is a three-dimensional Lipschitzian polyhedron. Γ = ∅. There are hyper-
planes H1, . . . ,Hn in R3 which meet at most in a vertex of the polyhedron
such that the coefficient function μ is constantly a real, symmetric, positive
definite 3 × 3 matrix on each of the connected components of Ω \ ∪n

l=1Hl.
Moreover, for every edge on the boundary, induced by a hetero interface Hl,
the angles between the outer boundary plane and the hetero interface do not
exceed π and at most one of them may equal π.

iv) Ω is a convex polyhedron. Γ ∩ (∂Ω \ Γ) is a finite union of line segments.
μ ≡ 1.
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v) Ω ⊆ R3 is a prismatic domain with a triangle as basis. Γ equals either one
half of one of the rectangular sides or one rectangular side or two of the three
rectangular sides. There is a plane which intersects Ω such that the coefficient
function μ is constant above and below the plane.

vi) Ω is a bounded domain with Lipschitz boundary. Additionally, for each x ∈
Γ∩(∂Ω\Γ) the mapping φx defined in Assumption 3.1 is a C1-diffeomorphism
from Υx onto its image. μ ∈ BUC(Ω).

The assertions i) and ii) are shown in [26], while iii) is proved in [25] and iv) is a
result of Dauge [18]. Recently, v) was obtained in [38] and vi) will be published in
a forthcoming paper. �

Remark 7.2. The assertion remains true, if there is a finite open covering Υ1, . . . ,Υl

of Ω, such that each of the pairs Ωj := Υj ∩ Ω, Γj := Γ ∩ Υj fulfills one of the
points i)–vi) after a bi-Lipschitz transformation. This provides a huge zoo of ge-
ometries and boundary constellations, for which −∇ · μ∇ provides the required
isomorphism. We intend to complete this in the future.

7.2. Nonlinearities and reaction terms

The most common case is that where G is the exponential or the Fermi-Dirac
distribution function F1/2 given by

F1/2(t) :=
2√
π

∫ ∞

0

√
s

1 + es−t
ds.

As a second example we present a nonlocal operator arising in the diffusion
of bacteria; see [12], [13] and references therein.

Example 7.3. Let ζ be a continuously differentiable function on R which is bounded
from above and below by positive constants. Assume ϕ ∈ L2(Ω) and define

G(u) := ζ
(∫

Ω

uϕ dx
)
, u ∈ H1,q.

Now we give an example for a mapping R.

Example 7.4. Assume ι : R → ]0,∞[ to be a continuously differentiable function.
Furthermore, let T : H1,q → H1,q be the mapping which assigns to v ∈ H1,q the
solution ϕ of the elliptic problem (including boundary conditions)

−∇ · ι(v)∇ϕ = 0. (7.1)

If one defines
R(v) = ι(v)|∇(T (v))|2,

then, under reasonable suppositions on the data of (7.1), the mapping R satisfies
Assumption Ra).

The example comes from a model which describes electrical heat conduction;
see [5] and the references therein.
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8. Concluding remarks

Remark 8.1. Under the additional Assumption 6.4, Theorem 5.4 implies maximal
parabolic regularity for −∇ · μ∇ on H−1,q

Γ for every q ∈ [2,∞[, as in the 2-d case.
Besides, the question arises whether the limitation for the exponents, caused

by the localization procedure, is principal in nature or may be overcome when
applying alternative ideas and techniques (cf. Theorem 4.3). We suggest that the
latter is the case.

Remark 8.2. Equations of type (1.1)/(1.2) may be treated in an analogous way, if
under the time derivative a suitable superposition operator is present, see [40] for
details.

Remark 8.3. In the semilinear case, it turns out that one can achieve satisfactory
results without Assumption 6.4, at least when the nonlinear term on the right-hand
side depends only on the function itself and not on its gradient.

Remark 8.4. Let us explicitly mention that Assumption 6.4 is not always fulfilled
in the 3-d case. First, there is the classical counterexample of Meyers, see [48], a
simpler (and somewhat more striking) one is constructed in [25], see also [26]. The
point, however, is that not the mixed boundary conditions are the obstruction but
a somewhat ‘irregular’ behavior of the coefficient function μ in the inner of the
domain. If one is confronted with this, spaces with weight may be the way out.
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[28] H. Gajewski, K. Gröger, Reaction-diffusion processes of electrical charged species,
Math. Nachr. 177 (1996) 109–130.
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Abstract. Let e−tA be the Stokes semigroup over an unbounded domain Ω.
For construction of the Navier-Stokes flow globally in time, it is crucial to
derive Lq-Lr decay estimate (1.4) for ∇e−tA; thus, given Ω, we need to ask
which (q, r) admits (1.4). The present paper provides a principle which inter-
prets how this question is related to spatial decay properties of steady Stokes
flow in the domain Ω under consideration.
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1. Introduction

Let Ω be an unbounded domain in Rn (n ≥ 2) with smooth boundary ∂Ω. Consider
the Stokes system for a viscous incompressible fluid that occupies the domain Ω
subject to the non-slip boundary condition on ∂Ω. This paper makes it clear that
the temporal decay property for t→∞ of the solution to the initial value problem⎧⎪⎪⎨⎪⎪⎩

∂tu−Δu+∇p = 0 (x ∈ Ω, t > 0),
div u = 0 (x ∈ Ω, t ≥ 0),
u = 0 (x ∈ ∂Ω, t > 0),
u(·, 0) = u0 (x ∈ Ω),

(1.1)
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is closely related to the spatial decay property for |x| → ∞ of the solution to the
steady problem

−Δv +∇π = div F , div v = 0 (x ∈ Ω); v|∂Ω = 0. (1.2)

Here, u(x, t) = (u1, . . . , un)T and v(x) = (v1, . . . , vn)T are the velocity fields;
p(x, t) and π(x) are the pressures.

Since the celebrated paper by Kato [28] for the whole space problem, it is
well known that Lq-Lr estimates (q ≤ r)

‖u(t)‖r ≤ Ct−(n/q−n/r)/2‖u0‖q (t > 0), (1.3)

‖∇u(t)‖r ≤ Ct−(n/q−n/r)/2−1/2‖u0‖q (t > 0), (1.4)

of the solution (the Stokes semigroup) to (1.1) are important tools for construction
of global strong solutions to the Navier-Stokes system with small initial data in
Ln

σ(Ω) (the smallness is redundant for the case n = 2). Estimates (1.3) and (1.4)
play the same role as fractional powers of the Stokes operator, which were em-
ployed by Fujita and Kato [19] and Giga and Miyakawa [23] when Ω is a bounded
domain. So far, besides those cases – bounded domain, the whole space –, the
above-mentioned Navier-Stokes theory (n ≥ 3) has been established (or essen-
tially available) for the following physically relevant unbounded domains:

(1) half-space ([44], [30]);
(2) exterior domain ([27]);
(3) aperture domain with flux condition ([25], [33]);
(4) perturbed half-space ([34], [35]);
(5) infinite layer ([1]);
(6) asymptotically flat layer ([2], [3]);
(7) infinite cylinder ([40]).

The last three cases (5)–(7) are not kept in mind in this paper because the solution
to (1.1) decays exponentially and algebraic decay properties (1.3)–(1.4) do not
make sense as optimal decay.

In view of the Navier-Stokes nonlinearity u · ∇u, whether or not one can
prove the global existence theorem as above depends crucially on the answer to
the following question: Which (q, r) admits the gradient estimate (1.4)? The case
q = r = n is particularly important because the initial data are taken from Ln

σ(Ω).
On the other hand, it is also interesting to ask optimal decay at space infinity
(expected in general) of the solution to (1.2) with F ∈ C∞

0 (Ω)n×n. The purpose
of this paper is to show a principle which interprets the relation between both
questions when we do not restrict ourselves to the specified domains (1)–(4) above
but consider general unbounded domains which satisfy the reasonable hypothesis
(H1) (see Section 2). Roughly speaking (see Theorem 2.3 to be precise), it is proved
that if (1.4) holds for q ≤ r < q0, then the problem (1.2) possesses a solution of
class v ∈ Ls(Ω)n, s > p0, for each F ∈ C∞

0 (Ω)n×n, where 1/p0 = 1 − 1/n− 1/q0;
thus, (1.4) for larger r implies better summability of the steady flow at infinity.
Indeed the opposite implication is hopeless, but the best possible range of (q, r)
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which admits (1.4) is suggested as long as we know the optimal rate of decay
of generic steady flows in the domain Ω under consideration (as for an example
related to this idea, see (iii) in the final section).

The idea of the proof is very simple. We consider the unsteady problem⎧⎨⎩ ∂tv −Δv +∇π = div F (t) (x ∈ Ω, t ∈ R),
div v = 0 (x ∈ Ω, t ∈ R),
v = 0 (x ∈ ∂Ω, t ∈ R),

(1.5)

and look for a solution which remains bounded for t → −∞ in a suitable sense
so that the uniqueness of solutions is ensured. We have time-periodic solutions in
mind as typical examples, and steady solution can be regarded as a special case
of them. So the problem is to derive Ls-summability of the solution v(t) at space
infinity by use of (1.4) and we wish to find the summabilty exponent s as small
as possible.

For the unbounded domains (1), (3) and (4) mentioned above, we know (1.4)
for 1 < q ≤ r <∞ ([44], [33], [34], [35]), so that our result implies the summability
v ∈ Ls(Ω)n, s > n/(n − 1), for (1.2). As for the exterior problem, estimate (1.4)
for 1 < q ≤ r ≤ n was proved by Iwashita [27], Dan and Shibata [12] (n = 2)
and Maremonti and Solonnikov [36]. Indeed this is fortunately enough to solve
the Navier-Stokes system globally in time, but it is interesting to ask whether the
restriction r ≤ n is optimal or not. As a corollary of our result (see Corollary 2.4),
it turns out that (1.4) for 1 < q ≤ r < q0 with some q0 > n is impossible since we
know the optimal rate of decay of generic steady flows in exterior domains (Lemma
4.1). This fact was first pointed out by Maremonti and Solonnikov [36]. Although
the spatial decay property of exterior flows is the point in [36] as well, their proof
is different from ours explained above. In fact, they multiply the equation (1.1)1
by the decaying solution of

−Δv +∇π = 0, div v = 0 (x ∈ Ω); v|∂Ω = b ∈ C2(∂Ω)n

and estimate 〈v, u(t)〉 by using (1.4) with r > n to accomplish |〈v, u0〉| ≤ C‖u0‖n/2

for all u0 ∈ C∞
0,σ(Ω), yielding v ∈ Ln/(n−2)(Ω)n, a contradiction. Our strategy in

the present paper is merely to estimate the solution v(t) of (1.5) and thus the
proof is considerably easier.

This paper consists of five sections. In Section 2 we provide our results. Sec-
tion 3 is devoted to the proof of the main theorem. Section 4 studies the exterior
problem to show the corollary. We conclude the paper with some remarks in the
final section.

2. Results

To begin with, we fix notation. Let Ω be a domain in Rn. The class C∞
0 (Ω) consists

of all C∞-functions whose supports are compact in Ω. Set C∞
0 (Ω) = {f = g|Ω ; g ∈

C∞
0 (Rn)}. For 1 ≤ q ≤ ∞ we denote by Lq(Ω) the usual Lebesgue space with norm
‖ · ‖q,Ω; we simply write ‖ · ‖q = ‖ · ‖q,Ω when Ω is a given unbounded domain in
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(1.1), (1.2). Let C∞
0,σ(Ω) be the class of all vector fields u = (u1, . . . , un)T which

satisfy uj ∈ C∞
0 (Ω) (1 ≤ j ≤ n) and div u = 0. For 1 < q < ∞ we define Lq

σ(Ω)
by the completion of C∞

0,σ(Ω) in the space Lq(Ω)n. Note that the space Lq
σ(Ω)

may involve an additional side condition for some Ω; for instance, vanishing flux
condition through an aperture is hidden in the case of aperture domains, see [18],
[39].

Given an unbounded domain Ω in (1.1) with smooth boundary ∂Ω, as usual,
the first step is to establish the Helmholtz decomposition

Lq(Ω)n = Lq
σ(Ω)⊕Gq(Ω), Gq(Ω) = {∇p ∈ Lq(Ω)n; p ∈ Lq

loc(Ω)}. (2.1)

For example, we refer to [38], [42] for exterior domains, and to [18], [39] for aperture
domains; also, see [20, Section III.1] and the references therein. When q = 2, we
have (2.1) for any domain even if assuming no regularity on ∂Ω, where L2

loc(Ω)
should be replaced by L2

loc(Ω) in G2(Ω). However, that is not always the case for
q �= 2. In fact, which q admits the decomposition (2.1) depends on the geometry
of the domain, see [6], [37]. Assuming (2.1) for some q, we denote by P = Pq

the projection operator from Lq(Ω)n onto Lq
σ(Ω) along Gq(Ω). Then the Stokes

operator is defined by{
Dq(A) = {u ∈ W 2,q(Ω)n ∩ Lq

σ(Ω); u|∂Ω = 0},
Au = −PΔu,

(2.2)

where W 2,q(Ω) is the usual Lq-Sobolev space of second order.
We make the following assumption on the Stokes operator.

(H1) There is q0 ∈ (2,∞] such that the following properties hold: Set

r0 =

{
nq0

n−q0
(2 < q0 < n),

∞ (n ≤ q0 ≤ ∞),
r′0 =

{
1 (r0 =∞),

r0
r0−1 (r0 <∞).

Then, for every q ∈ (r′0, r0), the decomposition (2.1) holds and the oper-
ator −A generates a bounded analytic semigroup {e−tA}t≥0 on Lq

σ(Ω).
Furthermore, u(t) = e−tAu0 with u0 ∈ C∞

0,σ(Ω) satisfies

(1.3) for r′0 < q ≤ r < r0; (1.4) for r′0 < q ≤ r < q0.

Remark 2.1. Note that r′0 < q0 always holds. It is also natural to assume (1.3) for
r < r0 when assuming (1.4) for r < q0 from the viewpoint of embedding relation.

Remark 2.2. When we think of the duality relation between existence and unique-
ness for the Neumann problem, it seems to be reasonable to assume (2.1) for
q ∈ (r′0, r0) with some r0; and then, we have the relation P ∗

q = Pq/(q−1). When
the boundary ∂Ω is unbounded, this exponent r0 depends on the geometry of ∂Ω
near infinity, no matter how smooth it is ([6], [37]).

Our main theorem reads as follows.
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Theorem 2.3. Suppose (H1) and define the exponent p0 by
1
p0

= 1− 1
n
− 1
q0
. (2.3)

Then, for each F ∈ C∞
0 (Ω)n×n, the problem (1.2) necessarily admits a solution v,

which is of class
v ∈ Ls

σ(Ω), ∀s ∈ (p0, r0). (2.4)

Here, we note the relation r′0 < p0 < r0 on account of q0 > 2.
Let us next consider the exterior problem. We know that (1.4) holds for

1 < q ≤ r ≤ n ([27], [12], [36]). In order to make the linear theory complete, we
wish to ask whether or not the restriction r ≤ n is optimal. The following corollary
tells us that the answer is positive.

Corollary 2.4. Let Ω be an exterior domain in Rn, n ≥ 2, with smooth boundary
∂Ω. Then it is impossible to have (1.4) for 1 < q ≤ r < q0 with some q0 > n.

Remark 2.5. When r > n for the exterior problem, we have slower decay estimate

‖∇e−tAu0‖r ≤ Ct−
n
2q ‖u0‖q (t ≥ 1),

for 1 < q ≤ r, see [27], [12], [36].

3. Proof of Theorem 2.3

This section studies the unsteady problem (1.5) in order to prove Theorem 2.3.
Concerning the external force, we may consider very smooth one; say, we make
the following assumption.
(H2) F (t) ∈ C∞

0 (Ω)n×n for each t ∈ R and supt∈R ‖F (t)‖∞ < ∞. There is a
compact set K ⊂ Rn such that Supp F (t) ⊂ K for all t ∈ R. Furthermore,
there is α ∈ (0, 1) such that div F ∈ Cα

loc(R;L∞(Ω)n).
Under the condition (H1) we rewrite (1.5) as

dv

dt
+Av = P (div F (t)) (t ∈ R) (3.1)

in Lr
σ(Ω), r ∈ (r′0, r0). We say that v(t) is a solution to (3.1) if it is of class

v ∈ C1(R;Lr
σ(Ω)) ∩ C(R;Dr(A))

and satisfies (3.1) in Lr
σ(Ω) for some r ∈ (r′0, r0). If this solution enjoys the addi-

tional condition

v(t) ∈ Ls
σ(Ω), ∀t ∈ R; sup

t∈R

‖v(t)‖s <∞ (3.2)

for some s ∈ (r′0, r), then it must be of the form

v(t) =
∫ t

−∞
e−(t−τ)AP (div F (τ)) dτ. (3.3)
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In fact, from
∂

∂τ
{e−(t−τ)Av(τ)} = e−(t−τ)AP (div F (τ))

in Lr
σ(Ω) we find

v(t) = e−(t−σ)Av(σ) +
∫ t

σ

e−(t−τ)AP (div F (τ)) dτ (3.4)

for −∞ < σ < t < ∞. Since we have (1.3) for r′0 < s < r < r0 by (H1), the
condition (3.2) implies

‖e−(t−σ)Av(σ)‖r ≤ C(t− σ)−(n/s−n/r)/2‖v(σ)‖s → 0

as σ → −∞. Thus, (3.3) is convergent in Lr
σ(Ω) and it is the unique solution within

the class (3.2).

Theorem 3.1. Suppose (H1), (H2) and define the exponent p0 by (2.3). Then the
problem (3.1) admits a solution (3.3), which is of class (3.2) for every s ∈ (p0, r0).

Proof. We first show the summability (3.2) of v(t) given by (3.3). Let ϕ ∈ C∞
0,σ(Ω).

An integration by parts yields

〈v(t), ϕ〉 =
∫ ∞

0

〈e−τAP (div F (t− τ)), ϕ〉 dτ

= −
∫ ∞

0

〈F (t− τ),∇e−τAϕ〉 dτ =
∫ 1

0

+
∫ ∞

1

.

(3.5)

Put M = supt∈R ‖F (t)‖∞, then we have supt∈R ‖F (t)‖q ≤M |K|1/q for q ∈ [1,∞)
by (H2), where |·| denotes the Lebesgue measure. Let s ∈ (p0, r0), then s′ ∈ (r′0, q0),
where 1/s′ + 1/s = 1. By (H1) we employ (1.4) to get∣∣∣∣∫ 1

0

∣∣∣∣ ≤ ∫ 1

0

‖F (t− τ)‖s‖∇e−τAϕ‖s′ dτ ≤ CM |K|1/s‖ϕ‖s′ .

Since (2.3) together with s > p0 leads us to
1
s′
− 1
q0

= 1− 1
s
− 1
q0
> 1− 1

p0
− 1
q0

=
1
n

(3.6)

we can take r ∈ (s′, q0) such that 1/s′ − 1/r > 1/n, namely,

n

2

(
1
s′
− 1
r

)
+

1
2
> 1. (3.7)

One can use (1.4) to see from (3.7) that∣∣∣∣∫ ∞

1

∣∣∣∣ ≤ ∫ ∞

1

‖F (t− τ)‖r/(r−1)‖∇e−τAϕ‖r dτ ≤ CM |K|(r−1)/r‖ϕ‖s′ .

Hence we find
|〈v(t), ϕ〉| ≤ C‖ϕ‖s′ ∀ϕ ∈ C∞

0,σ(Ω)
which implies (3.2) for every s ∈ (p0, r0). Next, it is easy to see that v(t) given
by (3.3) is actually a solution to (3.1). In fact, for any fixed σ ∈ R, we have
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the representation (3.4) in Ls
σ(Ω), s ∈ (p0, r0), for −∞ < σ < t < ∞. It follows

from (H2) that P (div F ) is locally Hölder continuous with values in Ls
σ(Ω); as a

consequence ([4, Chapter II]), v(t) is of class

v ∈ C1((σ,∞);Ls
σ(Ω)) ∩ C((σ,∞);Ds(A)) ∩ C([σ,∞);Ls

σ(Ω))

and satisfies (3.1) for t ∈ (σ,∞) in Ls
σ(Ω). Since R � σ is arbitrary, v(t) is a

solution to (3.1) for t ∈ R. The proof is complete. �

It is also possible to give another shorter proof by employing some Lorentz
spaces without dividing integral in (3.5). We will mention this although the ele-
mentary proof above by use of less function spaces might be preferred by most of
readers. We define the solenoidal Lorentz spaces by

Lq,β
σ (Ω) = (Lp

σ(Ω), Lr
σ(Ω))θ,β

where
1
q

=
1− θ
p

+
θ

r
, r′0 < p < q < r < r0, 1 ≤ β ≤ ∞

and (·, ·)θ,β denotes the real interpolation functor. For the interpolation theory,
see for instance Amann [4, Chapter I]. We have the duality relation Lq,1

σ (Ω)∗ =
L

q/(q−1),∞
σ (Ω), and C∞

0,σ(Ω) is dense in Lq,1
σ (Ω). By interpolation we immediately

see from (1.4) that

‖∇e−tAu0‖r,1 ≤ Ct−(n/q−n/r)/2−1/2‖u0‖q,1 (t > 0), (3.8)

for r′0 < q ≤ r < q0, where ‖ · ‖q,β stands for the norm of Lq,β
σ (Ω). Following

the idea of Yamazaki [45], we apply interpolation to the sublinear operator u0 �→[
t �→ ‖∇e−tAu0‖r,1

]
for fixed r; then, we can deduce from (3.8) that∫ ∞

0

‖∇e−tAu0‖r,1 dt ≤ C‖u0‖q,1, r′0 < q < r < q0,
1
q
− 1
r

=
1
n

(3.9)

in spite of pointwise estimate like 1/t of the integrand. Note that the set of pairs
(q, r) satisfying the relation (3.9) is not vacuous because q0 > 2 implies 1/r′0 −
1/q0 > 1/n.

Another proof of Theorem 3.1. We will show (3.2) for every s ∈ (p0, r0). Given
s ∈ (p0, r0), we take r ∈ (s′, q0) such that 1/s′ − 1/r = 1/n, which is possible
because of (3.6) and slightly different from (3.7), where 1/s′ + 1/s = 1. In view of
(3.5) it follows from (3.9) that

|〈v(t), ϕ〉| ≤
∫ ∞

0

‖F (t− τ)‖r/(r−1),∞‖∇e−τAϕ‖r,1 dτ ≤ CM |K|(r−1)/r‖ϕ‖s′,1

for all ϕ ∈ C∞
0,σ(Ω). By duality we obtain

v(t) ∈ Ls,∞
σ (Ω), ∀t ∈ R; sup

t∈R

‖v(t)‖s,∞ <∞

for every s ∈ (p0, r0), from which we conclude (3.2) for the same s by interpolation.
The proof is complete. �
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We are now in a position to show Theorem 2.3.

Proof of Theorem 2.3. When F (t) is periodic in Theorem 3.1, so is the solution
v(t) given by (3.3) with the same period. If, in particular, F is independent of
t, then v can be regarded as periodic solution with arbitrary period; hence, we
conclude that the solution v ∈ Ds(A) obtained in Theorem 3.1 is a steady flow:
Av = P (div F ) in Ls

σ(Ω). This completes the proof. �

4. Proof of Corollary 2.4

Let Ω be an exterior domain in Rn (n ≥ 2) with smooth boundary ∂Ω. We will
show that we cannot avoid the condition r ≤ n for (1.4).

Proof of Corollary 2.4. If (1.4) were correct for 1 < q ≤ r < q0 with some q0 > n ≥
2, we would have (H1) for such q0; because we already know the other conditions
with r0 = ∞ ([38], [42], [22], [43], [8], [10], [17], [27], [12], [36]). The exponent p0
given by (2.3) fulfills p0 < n/(n−2) if n ≥ 3, and p0 <∞ if n = 2. Hence Theorem
2.3 implies that the steady problem (1.2) has always a smooth solution v of class

v ∈
{
Ln/(n−2)(Ω)n (n ≥ 3),
Ls(Ω)n for ∃ s <∞ (n = 2),

(4.1)

for every F ∈ C∞
0 (Ω)n×n; here, the smoothness of v follows from the regularity

theory for the Stokes system, see for instance [20, Section IV.4]. The summability
(4.1) is, however, possible only in a special situation due to Lemma 4.1 below and
one cannot always have it; see also Remark 4.3. The proof is complete. �

It is well known that the net force exerted on the obstacle by the fluid must
vanish whenever the steady flow decays faster than the Stokes fundamental solu-
tion. This is usually proved by use of the asymptotic representation for |x| → ∞ of
the steady flow, see Chang and Finn [11] and also Galdi [20, Section V.3]. We here
give another independent proof of the following lemma by using the summability
(4.1) directly.

Lemma 4.1. Let F ∈ C∞
0 (Ω)n×n. Suppose that v is a smooth solution to (1.2) of

class (4.1). Then ∫
∂Ω

ν · {T (v, π) + F} dσ = 0, (4.2)

where ν is the outward unit normal to ∂Ω,

T (v, π) = ∇v + (∇v)T − πI (4.3)

is the Cauchy stress tensor and I is the n× n-identity matrix.

Proof. We fix η ∈ C∞([0,∞); [0, 1]) such that η(t) = 1 (0 ≤ t ≤ 2/3) and η(t) =
0 (t ≥ 5/6). For R > 0 and x ∈ Rn, we set ζR(x) = η(|x|/R); then

‖∇2ζR‖q,Rn ≤ CR−2+n/q (1 ≤ q ≤ ∞). (4.4)
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For each k ∈ {1, . . . , n}, we set φ(k)
R (x) = ζR(x)ek, where ek stands for the unit

vector along xk-axis. Let BR be the Bogovskii operator ([5], [9], [20]) in the annulus
AR = {x ∈ Rn; R/2 < |x| < R} and set

ψ
(k)
R (x) = φ(k)

R (x)− BR[∂kζR](x).

Note that BR[∂kζR] ∈ C∞
0 (AR)n and that

‖∇2BR[∂kζR]‖q,AR ≤ C‖∇∂kζR‖q,AR (1 < q <∞) (4.5)

with some constant C = C(q) > 0 independent of R > 0, see Borchers and Sohr
[9, Theorem 2.10]. Since the compatibility condition∫

AR

∂kζR dx =
∫

AR

div φ(k)
R dx =

∫
|x|=R/2

−xk

R/2
dσ = 0

is satisfied, we have div ψ(k)
R = 0. Combining (4.4) with (4.5), we find

‖∇2ψ
(k)
R ‖q,AR ≤ CR−2+n/q (1 < q <∞). (4.6)

Set

N = (N1, . . . , Nn)T =
∫

∂Ω

ν · {T (v, π) + F} dσ

and rewrite the equation (1.2)1 as

div {T (v, π) + F} = 0 (x ∈ Ω).

Since ψ(k)
R (x) = 0 for |x| ≥ R and ψ(k)

R (x) = ek for |x| ≤ R/2, we test this equation
with ψ(k)

R to obtain

Nk =
∫

AR

T (v, π) : ∇ψ(k)
R dx

for 1 ≤ k ≤ n, where R > 0 is taken so large that F (x) = 0 for |x| ≥ R/2, and
T : S =

∑
i,j TijSij for matrices T, S. By integration by parts once more and by

div ψ(k)
R = 0 we find

Nk = −
∫

AR

v ·Δψ(k)
R dx,

from which together with (4.6) it follows that

|Nk| ≤ C‖v‖s,ARR
−2+n(1−1/s)

for arbitrary R > 0. When n ≥ 3, we can take s = n/(n− 2) by (4.1) to obtain

|Nk| ≤ C‖v‖n/(n−2),AR
→ 0 (R→∞).

When n = 2, the solution v belongs to Ls(Ω)n for some s <∞; therefore, for such
s, we find

|Nk| ≤ C‖v‖s,ARR
−2/s → 0 (R→∞).

In any case we conclude N = 0, which completes the proof. �
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Remark 4.2. Even for the Navier-Stokes flow (n ≥ 3) subject to v = 0 on ∂Ω, the
summablity (4.1) or ∇v ∈ Ln/(n−1)(Ω)n×n necessarily implies the net force condi-
tion (4.2); for further details, see Kozono and Sohr [31], Borchers and Miyakawa
[7], Kozono, Sohr and Yamazaki [32].

Remark 4.3. It is easy to find many solutions of (1.2) which do not satisfy (4.2).
Consider, for instance, three-dimensional problem; set u(x) = 1

8π ( e1
|x| + x1x

|x|3 ), the
first column vector of the Stokes fundamental solution, and p(x) = x1

4π|x|3 , where
e1 = (1, 0, 0)T . Assuming 0 ∈ intΩc, we have −Δu + ∇p = 0, div u = 0 in Ω.
By

∫
∂Ω
ν · u dσ = 0 there is a vector field w ∈ C∞

0 (Ω)3 such that divw = 0 in
Ω and w = u on ∂Ω. Setting v = u − w, we see that (v, p) obeys (1.2) with
F = ∇w ∈ C∞

0 (Ω)3×3 and that∫
∂Ω

ν · {T (v, p) + F} dσ = e1.

The principle is that the solution of (1.2) whose asymptotic rate at infinity is the
same as that of the Stokes fundamental solution must possess non-zero net force
on ∂Ω. For the Navier-Stokes flow as well, it has been proved by Galdi [21] that
flows for which (4.2) happens are rare.

5. Concluding remarks

We conclude this paper with remarks on applications of our idea to some other
interesting problems.

(i) The boundary condition (e−τAϕ)|∂Ω = 0 is needed in (3.5) since F |∂Ω �= 0
in general. When F ∈ C∞

0 (Ω)n×n is replaced by F ∈ C∞
0 (Ω)n×n, Theorem 2.3

remains valid even for some other boundary conditions provided that the associ-
ated Stokes operator can be defined in an appropriate way. Shibata and Shimizu
[41] proved (1.4) with 1 < q ≤ r < ∞ (even r = ∞ unless q = ∞) for the Stokes
initial value problem subject to Neumann boundary condition ν · T (u, p)|∂Ω = 0
in exterior domains (n ≥ 3), where T (u, p) is given by (4.3). It is worth while
noting that there is no restriction on (q, r) due to the null force on ∂Ω and that
this is consistent with better summability of the steady Stokes flow with Neumann
boundary condition when F ∈ C∞

0 (Ω)n×n.
(ii) We have assumed the generation of analytic semigroup in (H1). But

the analyticity itself of the semigroup is not essential in our argument. We think
of the Stokes operator with rotating effect of an obstacle in 3D exterior domains;
actually, the semigroup generated by this operator is no longer analytic ([16], [24]),
nevertheless Shibata and the present author [26] proved the Lq-Lr estimates, in
particular, (1.4) for 1 < q ≤ r ≤ 3 (= n). Recently in [15] Farwig and the present
author have derived the asymptotic representation for |x| → ∞ of the steady
Stokes flow around a rotating obstacle, from which it follows that the summability
(4.1) (with n = 3, namely v ∈ L3(Ω)3) does not always hold. This suggests that
the restriction r ≤ 3 above is unavoidable.
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(iii) Consider the Oseen operator, where translating effect of an obstacle is
taken into account in 3D exterior domains. This operator generates an analytic
semigroup ([38]) and it satisfies (1.4) for 1 ≤ q ≤ r ≤ 3 (= n), which was proved
by Kobayashi and Shibata [29] (see also [13], [14] for n ≥ 3). It is obvious that our
argument in Section 3 works for the Oseen semigroup as well, so that Theorem 2.3
still remains true. On the other hand, the 3D steady Oseen flow possesses better
summability v ∈ Ls(Ω)3, s > 2, because it has good decay structure outside wake
region, see [20, Chapter VII]. This suggests, in view of (2.3) with p0 = 2 and n = 3,
that the 3D Oseen semigroup may possibly satisfy the gradient estimate (1.4) for
1 < q ≤ r < 6 (or even r ≤ 6).
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[5] M.E. Bogovskĭı, Solution of the first boundary value problem for the equation of
continuity of an incompressible medium. Soviet Math. Dokl. 20 (1979), 1094–1098.
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1. Introduction

Nonlinear acoustics plays a role in several physical contexts. Our work is especially
motivated by high-intensity focused ultrasound (HIFU) being used in technical
and medical applications ranging from lithotripsy or thermotherapy to ultrasound
cleaning or welding and sonochemistry, see [1], [12], [18], [19], and the references
therein.

The Westervelt equation is given by

− 1
c2
p∼tt + Δp∼ +

b

c2
Δ(p∼t) = − βa

�0c4
p2∼tt (1.1)

with βa = 1 + B/(2A), where p∼ denotes the acoustic pressure fluctuations, c is
the speed of sound, b the diffusivity of the sound, �0 the mass density, and B/A
the parameter of nonlinearity. For a detailed derivation of the PDE we refer to
[14], [18], [21], [33].

Throughout this paper we will assume that the domain Ω ⊂ Rd, d ∈ {1, 2, 3},
on which we consider the PDEs is open and bounded with C2 smooth boundary Γ.

The Westervelt equation can be equivalently rewritten as:

(1− 2ku)utt − c2Δu− bΔ(ut) = 2k(ut)2, (1.2)

where k = βa/(�c2) This is a quasilinear strongly damped wave equation with
potential degeneracy.

Quasilinear PDE’s have attracted considerable attention in the literature with
a large arsenal of mathematical tools developed for their treatment. Particularly
well studied, with optimal results available, are parabolic equations – see [3, 4, 29]
and references therein. In the case of hyperbolic like models, the intrinsic low
regularity and oscillatory dynamics puts additional demands on regularity of the
data as well as necessitates introduction of some sort of dissipation that may
include interior, boundary or partial interior damping – see [32, 34, 23, 5] and
references therein.

The distinctive feature of our work is that the model considered corresponds
to quasilinear internally damped wave equation with potential degeneracy and
nonhomogeneous boundary forcing. This calls for a careful setup of the state space
where the latter should provide certain topological invariance for the dynamics.
The above is achieved through a long chain of estimates that rely critically on
recent developments in regularity theory of structurally damped wave equations.
The lack of compactness of the resolvent operator is one of the sources of difficulties
to be contended with.

In fact, global well-posedness and decay rates for equation (1.2) which is
homogeneous on the boundary were obtained in [16].

Our main interest in this present work is global (in time) well-posedness the-
ory of Westervelt equation equipped with nonhomogeneous boundary data. It is
known, that the presence of nonhomogeneous boundary conditions leads to rather
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subtle analysis, due to the fact that such inputs are modeled by “unbounded op-
erators” which are not defined on the basic state space. (see [28]). This is clearly
seen when inspecting “boundary variation of parameters formula” which has been
used recently in the context of studying boundary control problems for parabolic
(analytic) semigroups (see [6, 22, 28], [2], [8]). Our methods include derivation of
such formula for damped wave equation and their use in the context of study-
ing regularity and long time stability of solutions driven by nonhomogeneity on
the boundary. It is our belief that the obtained linear results should also be of
independent interest in the context of boundary value problems associated with
“overdamping”. Analyticity and exponential decay rates valid for the semigroup
corresponding to strongly damped wave equation play a crucial role in the analysis.

1.1. Main results

The main goal of this paper is to provide results on (1) local existence, (2) global
existence and (3) exponential decay rates for the energy of solutions for the West-
ervelt equation with Dirichlet

u = g on ∂Ω (1.3)

boundary conditions and given initial data (u(0), ut(0)) = (u0, u1).
In order to formulate our results we introduce the following energy functions:

Eu,0(t) =
1
2
{
|ut(t)|2 + |∇u(t)|2

}
, t ≥ 0

Eu,1(t) =
1
2
{
|utt(t)|2 + |∇ut(t)|2 + |Δu(t)|2

}
, t > 0

where |u| ≡ |u|L2(Ω). For t = 0,

Eu,1(0) ≡ 1
2
{
|(1− 2ku0)−1[c2Δu0 + bΔu1 + 2ku2

1]|2 + |∇u1(t)|2 + |Δu0|2
}
.

In [16] Westervelt equation with homogeneous Dirichlet boundary conditions
was considered. The main goal of this paper is the treatment of nonhomogeneous
boundary conditions, with particular emphasis paid to regularity required to be
satisfied by the boundary data which obey the following compatibility conditions:

g(t = 0) = u0|∂Ω , gt(t = 0) = u1|∂Ω . (1.4)

We define:

X ≡ C(0, T ;H3/2(∂Ω)) ∩ C1(0, T ;H1/2(∂Ω)) ∩ C2(0, T ;H−1/2(∂Ω))

∩H2(0, T ;H1/2(∂Ω)) ∩H3(0, T ;H−3/2(∂Ω)). (1.5)

Our first result pertains to local existence and uniqueness of solution:

Theorem 1.1. Let T > 0 be arbitrary. There exist ρT , ρ̃T > 0 such that if

Eu,0(0) +Eu,1(0) ≤ ρT , and g ∈ X, ‖g‖2X ≤ ρ̃T
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with the compatibility conditions (1.4), then there exists a unique solution (u, ut)
solving the Westervelt equation (1.2) (in a weak H−1(Ω) sense) and such that

u ∈ C(0, T ;H2(Ω)) ∩C1(0, T ;H1(Ω)) ∩ C2(0, T ;L2(Ω)) ∩H2(0, T ;H1(Ω)).

Our next theorem deals with global well-posedness.

Theorem 1.2. Let (u0, u1, g) be such that Eu,0(0) + Eu,1(0) + |g|X < ∞. For any
M > 0 there exist ρ > 0, ρ̃ > 0, such that solutions corresponding to initial and
boundary data with

Eu,1(0) ≤ ρ (1.6)

sup
t≥0

[
2∑

l=0

∥∥∥∥ dl

dtl
g(t)

∥∥∥∥2

H3/2−l(∂Ω))

+
1∑

l=0

∫ t

0

∥∥∥∥ d3−l

dt3−l
g

∥∥∥∥2

H−3/2+2l(∂Ω))

dt

]
≤ ρ̃

exist for all t > 0 and satisfy Eu,1(t) + Eu,0(t) ≤M for all t > 0.

Finally, energy decays for the total energy are presented below:

Theorem 1.3. With Cauchy data (u0, u1, g) given in Theorem 1.2 and such that
for all t > 0 there exists ωg > 0

3∑
l=0

∥∥∥∥ dl

dtl
g(t)

∥∥∥∥2

H3/2−l(∂Ω)

+
∥∥∥∥ d2dt2 g(t)

∥∥∥∥2

H1/2(∂Ω)

≤ Cge
−ωgt , (1.7)

there exists a constant ω > 0 such that

Eu,1(t) + Eu,0(t) ≤ Cρe
−ωt .

Remark 1.4. In one space dimension, one can also consider the case without damp-
ing, b = 0, which is relevant in certain applications, see, e.g., [15].

In this situation we cannot expect global existence but we still get the a local
result for small initial and boundary data, see Theorem 2 in [17].

Like in [16], a first step of the proof is to prove energy estimates for a lin-
ear, nonautonomous and nonhomogeneous abstract wave equation related to the
nonlinear equation (1.2). The obtained results depend on the analyticity and maxi-
mal regularity of abstract damped wave equation with nonhomogeneous boundary
data. We shall take advantage of abstract version of variation of parameter formula
modeling nonhomogeneous boundary data associated with the strong damping. In
the case of purely parabolic problems, such variation of parameters formula was
critically used in [22, 2]. One of our technical goals is to extend this semigroup ap-
proach to models involving strong damping, which result should be of independent
interest.
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2. Strongly damped abstract wave equation

In what follows we consider a positive selfadjoint operator A : D(A) ⊂ H → H,
where H is a suitable Hilbert space. We shall introduce the following notation

|u| ≡ |u|H , (u, v) ≡ (u, v)H; Lp(Z) ≡ Lp(0, T ;Z) , C(Z) ≡ C(0, T ;Z) .

We shall impose

Assumption 2.1. The following continuous embeddings hold

D(A1/2) ⊂ L2(Ω) , with |w| ≤ C0|A1/2w| ,
D(A1/2) ⊂ L6(Ω) , with |w|L6(Ω) ≤ C1|A1/2w| ,
D(A) ⊂ C(Ω) , with |w|L∞(Ω) ≤ C2|Aw| .

In our considerations we take H = L2(Ω) where Ω is a bounded smooth
domain in Rn, n = 1, 2, 3. In view of the above, the Assumption 2.1 is automatically
satisfied with A = −Δ defined on the domain D(A) = H2(Ω) ∩H1

0 (Ω). We will
be considering first the following non-homogeneous and nonautonomous abstract
strongly damped wave equation:

α(t)utt + c2Au+ bAut = f(t) (2.1)

with initial conditions u(0) = u0 ∈ D(A1/2), ut(0) = u1 ∈ H . Here α(t) is a
positive multiplier on H = L2(Ω), i.e.,

Assumption 2.2. There exist positive constants 0 < α,α <∞ such that ∀t ∈ [0, T ]

(α(t)u, u) ≥ α(t)|u|2 ≥ α0|u|2 (2.2)

(α(t)u, v)L2(Ω) ≤ α(t)|u||v| ≤ α0|u||v|. (2.3)

The above conditions amount to say that α(t) ∈ M(H) and |α(t)|M(H) ≤
α(t), where the multipliers space M(H) [30] is equipped with the norm

|α|M(H) = sup
|u|H=1

|αu|H.

We are interested in studying regularity properties of solutions u, ut due to
the forcing f and initial conditions u0, u1.

The analysis will be conducted for t ∈ [0, T ] where T is either finite or infinite
time horizon.

Remark 2.1. In reference to the original equation (1.2), the operator A = −Δ
where Δ is equipped with zero Dirichlet data. Moreover, α(t) = 1 − 2ku(t) and
f(t) = 2ku2

t .

To take into account inhomogeneous boundary conditions, we will decompose
u = u0 + ḡ with u0 having to satisfy homogeneous Cauchy (boundary and initial)
conditions and ḡ will denote an appropriate extension of the Cauchy data, i.e.,

ḡ = g on ∂Ω , (2.4)

ḡ(t = 0) = u0 , ḡt(t = 0) = u1. (2.5)
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2.1. Regularity properties of damped wave equation

As in [16] we shall begin with a study of the semigroup generated by nondegenerate
operator

A =
(

0 I

− c2

αA − b
αA

)
with the domain D(A) = {(w, v) ∈ D(A1/2) × D(A1/2), c2w + bv ∈ D(A)} where
α(t) = α > 0.

In what follows we shall recall regularity properties of the generator eAt ∈
L(H) where

H ≡ D(A1/2)×H.
It was shown in [9] that eAt is an analytic, strongly continuous semigroup de-

fined on H . Moreover, the following characterization of the domain A is known [9]

D(Aθ) = D(A1/2)×D(Aθ), θ ≤ 1/2

and D(Aθ)]′ = D(A1/2)× [D(Aθ)]′, θ ≤ 1/2 (2.6)

and the following analytic estimate is available:

|AθeAt|L(H) ≤ Ce−ωtt−θ, t > 0 (2.7)

where the constant ω is positive and depends on c, b, α [9].
In addition, the following regularity holds:∫ ∞

0

|A1/2eAtx|2Hdt ≤ C|x|2H

LF (·) ≡
∫ ·

0

AeA(·−s)F (s)ds ∈ L(L2(H))∫ ∞

0

|LF (t)|2Hdt ≤ C
∫ ∞

0

|F (t)|2Hdt∣∣∣∣∫ t

0

eA(t−s)

(
0
f(s)

)
ds

∣∣∣∣2
H

≤ C
∫ t

0

e−2ω(t−s)|A−1/2f(s)|2ds, t > 0. (2.8)

Remark 2.2. The regularity listed in (2.8) is well known and has been often used [9]
on finite time horizon. It is important for the results of this paper the fact that these
estimates are uniform in time. Not surprisingly, this results from the fact that the
semigroup eAt is exponentially decaying. Indeed, the first estimate, on the strength
of (2.6) amounts to showing that for x ∈ H with Z(t) ≡ eAtx = (z(t), zt(t)) one has

|A1/2z| ∈ L2(0,∞), |A1/2zt| ∈ L2(0,∞).

But the first relation follows just from exponential stability of the semigroup,
while the second relation follows from standard energy estimates available for the
damped wave equation.

Similarly, the second regularity statement (on (0,∞)) follows from a standard
Fourier’s transform argument after accounting for the fact that the semigroup is
analytic and the spectrum of the generator A is in the left complex plane.
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The last estimate in (2.8) follows from standard by now Lyapunov function
argument [16].

Throughout the rest of this section we will consider time and space dependent
coefficient α, and impose Assumptions 2.1, 2.2.

Theorem 2.3 (Theorem 2.1 of [16]). Consider (2.1) with

1. α ∈ L∞(M(H)) ∩ C1(H).
2. f ∈ L2(H) ∩H1([D(A1/2)]′)
3. u0 ∈ D(A), u1 ∈ D(A1/2), and 1

α(0) (f(0)− c2Au0 − bAu1) ∈ H.

Then the following energy estimates hold

Eu(t) + (b − ε̂− ε)
∫ t

0

|A1/2ut(s)|2ds

≤ Eu(0) +
1
4ε̂

∫ t

0

|A−1/2f |2ds+ Cε|αt|4C(H)

∫ t

0

|ut(s)|2 ds . (2.9)

Eut(t) + (b− ε̂− ε)
∫ t

0

|A1/2utt(s)|2ds

≤ Eut(0) +
1
4ε̂

∫ t

0

|A−1/2ft|2ds+ Cε|αt|4C(H)

∫ t

0

|utt(s)|2ds , (2.10)

b

2
|Au(t)|2 ≤ b

2
|Au0|2 +

1
2c2

∫ t

0

|f |2 +
α2

0

2c2

∫ t

0

|utt|2 , (2.11)

with Cε = 27
32

C6
1

ε3 and

Eu(t) ≡ 1
2

{
(α(t)ut(t), ut(t)) + c2|A1/2u(t)|2

}
.

These, by Gronwall’s inequality and |wt(s)|2 ≤ 1
α0
Ew(s), for w = u and w = ut

imply

u ∈ C(D(A)), ut ∈ C(D(A1/2)), utt ∈ C(H) ∩ L2(D(A1/2)). (2.12)

Note that on the strength of Assumption 2.2 we have

Eu(t) ∼ Eu,0(t) ≡
1
2

{
|ut(t)|2 + |A1/2u(t)|2

}
.

Moreover, we will repeatedly make use of the simple estimate

|w|2L4(Ω) ≤ |w|3/2
L6(Ω)|w|

1/2

≤ C
3/2
1 |A1/2w|3/2|w|1/2 ≤ C3/2

1 C
1/2
0 |A1/2w|2 , (2.13)

following from Assumption 2.1, using Hölder’s inequality and Young’s inequality.
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2.2. Decay rates for the homogeneous equation

We shall address next the issue of decay of the energy for the abstract wave
equation (2.1). We will consider decay rates in both lower level energy Eu and
higher level energy

E(t) ≡ Eut(t) + |Au(t)|2 .
By Assumption 2.2 we have Eu(t) ∼ Eu,0(t) E(t) ∼ Eu,1(t) .
For comparison, we quote the following result Theorem 2.3 from [16] for the

autonomous case.

Theorem 2.4. Let f = 0, and αt ≡ 0. Then there exist ω, ω1 > 0 such that
• Eu(t) ≤ e1−ωtEu(0) with ω = ω(α, b, c2, C0)
• E(t) ≤ Ce−ω1tE(0) with ω1 = min{ c2

b , ω} if c2

b �= ω and ω1 < ω if c2

b = ω.

2.2.1. Energy estimates for the variable coefficient model. Back in the model with
time and space dependent α, we are dealing with

α(t, ·)utt + c2Au + bAut = f

where α0 ≤ α(t, x) ≤ α0, (t, x) ∈ R × Ω and αt ∈ C(R;H). Our goal is to
estimate the lower and the higher level energy in terms of f and α.
Lower level energy
Here we can make use of the following result Proposition 2 in [16].

Proposition 2.5.

Eu(T ) + γ0
∫ T

0

Eu(s) ds+
b

2

∫ T

0

|A1/2ut|2ds ≤ (C1 + C2)Eu(0)

+
∫ T

0

(
C3|A−1/2f |2 + (C4|αt|8C(H) + C5|αt|4C(H)) |ut|2

)
ds (2.14)

for some constants γ0, C1, . . . , C5 > 0 depending only on the coefficients c, b and
the constants α0, C0, C1.

Higher level energy
Here we quote Proposition 3 in [16].

Proposition 2.6.

E(T ) + b̂
∫ T

0

[
|Au(t)|2 + |A1/2ut|2 + |A1/2utt|2

]
dt (2.15)

≤ C1E(0) +
∫ T

0

[
C2|A−1/2ft|2 + C3|f |2 + C4|αt|4C(H)|utt(t)|2

]
dt

for some constants γ0, C1, . . . , C4 > 0 depending only on the coefficients c, b and
the constants α0, C0, C1.

Remark 2.7. The estimate in Proposition 2.6 will allow us to use the so-called
“barrier method” ([5, 32, 23, 34] for establishing global existence.
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2.3. Extension of nonhomogeneous boundary data to the interior

The purpose of this section is to provide appropriate extensions into the interior
of boundary-initial (Cauchy) data. This procedure allows to homogenize nonlinear
equation with a given boundary data. More specifically we will be considering
classical harmonic (Dirichlet) extensions that would lead to appropriately defined
“parabolic” extensions. We begin by defining the harmonic extension operator –
the so-called Dirichlet map defined by

v = DΔg, iff
{Δv = 0, in Ω

v = g on ∂Ω
(2.16)

which for all s ∈ R is a bounded mapping

DΔ : Hs(∂Ω) → Hs+1/2(Ω)∀s ∈ R. (2.17)

Remark 2.8. It is possible to use different extensions of boundary data, for instance
via solutions of wave equation with nonhomogeneous boundary data. In fact, this
method, along with “hidden” regularity of wave equations [27], was successfully
used in [17] for the study of local existence of solutions. However, since we are
interested in global behavior, static harmonic extensions are more appropriate.

2.3.1. Weak solutions with nonhomogeneous boundary data. In this section we in-
troduce a “variation of parameter formula” representing weak solution to the non-
homogeneous boundary value problem driven by non-degenerate (α = 1) damped
wave equation.

This is done with the help of harmonic extension DΔ. The above construct
leads naturally to a definition of “parabolic extension” – which is solution to
damped wave equation with non-homogeneous boundary data homogenized via
harmonic extension. The corresponding results, while used for the study of non-
linear problem, should be also of independent interest in linear theory pertinent
to boundary control, or more generally, theory of damped wave equation with
nonhomogeneous boundary data. They provide a counterpart of boundary varia-
tion of parameter formula used in the past in the context of heat equation with
nonhomogeneous boundary data [22, 2, 8, 28].

We consider

wtt − c2Δw − bΔwt = f(t) in (0, T )× Ω (2.18)
w = g on ∂Ω

w(0) = w0 , wt(0) = w1 in Ω.

Recalling the definition of DΔ we rewrite (2.18) as follows:

wtt − c2Δ(I −DΔγ)w − bΔ(I −DΔγ)wt = f(t) in (0, T )× Ω (2.19)

w = g on ∂Ω (2.20)

where γ denotes the trace operator, i.e., γu = u|Γ.
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Noting that for smooth and compatible Cauchy data g, w0, w1, w−DΔγw ∈
D(A), so that −Δ(w − DΔg) = A(w − DΔg), we rewrite (2.19) as the abstract
second-order ODE equation:

wtt + c2Aw + bAwt = c2ADΔg + bADΔgt + f(t) (2.21)

where in splitting the brackets, we admit representation of the equation in the
dual space to D(A). This procedure is standard by now [28, 8] and references
therein. What is less standard, however, is rewriting of this second-order equation
as a first-order system. While such procedure can be typically accomplished on
[D(A∗)]′, (see the references cited above) this is not the case for the damped wave
equation considered on H with Dirichlet boundary data. The reason for difficulty
is the structure of the domainD(A) along with the lack of global smoothing (hence
lack of compactness). We also recall that this difficulty can be circumvented when
considering the dynamics on L2(Ω) × L2(Ω), where A still generates an analytic
semigroup, though not a contraction. In fact, [7] provides a variation of constant
formula for boundary control acting on damped wave equation with the state space
L2(Ω)×L2(Ω). However, the construction in [7], based on the analysis in [6], does
not apply to our choice of the state space given by H. In fact this remains true even
if we were to penalize the state space by negatives powers of A. The problem is
purely algebraic (and the same phenomenon was noticed later in [24, 25, 26] where
structurally damped problems with Dirichlet boundary actions were studied in the
context of optimization and Riccati theory.

To cope with this issue we need to modify the argument given in [7] and we

proceed as follows: Denote Y ≡
(
w −DΔg
wt

)
.

With the above notation and after noting that(
−DΔgt
bADΔgt

)
= A

(
0

−DΔgt

)
∈ [D(A∗)]′

we can rewrite (2.21), in the variable Y = (w−DΔg, wt), as a first-order abstract
ODE well-defined on [D(A∗)]′

Yt(t) = AY +
(

−DΔgt
bADΔgt + f

)
.

or equivalently

Yt(t) = AY (t) +A
(

0
−DΔgt(t)

)
+

(
0
f(t)

)
.

the equation holding on [D(A∗)]′. Consequently, variation of parameters (applied
in dual spaces to the domain of A∗) yields

Y (t) = eAtY (0) +
∫ t

0

eA(t−s)A

(
0

0−DΔgt(s)

)
ds+

∫ t

0

eA(t−s)

(
0
f(s)

)
ds .

(2.22)
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The above can be rewritten, with the explicit use of the structure ofA and denoting
W (t) ≡ (w(t), wt(t)) as

W (t) =
(
DΔgt(t)

0

)
+ eAtY (0)−

∫ t

0

AeA(t−s)

(
0

DΔgt(s)

)
ds

+
∫ t

0

eA(t−s)

(
0
f(s)

)
ds.

The above leads to the following variation of parameter formula, which describes
weak (“finite energy”) solutions to the boundary model:

Lemma 2.9. Let g ∈ C(H1/2(Γ)), gt ∈ C(H−1/2+ε(Γ)), γw0 = g(0), w0 ∈ H1(Ω),
w1 ∈ L2(Ω), f ∈ L2(H−1(Ω)).

The following representation holds pointwisely (in t) with values in H1(Ω)×
L2(Ω):

W (t) =
(
DΔg(t)

0

)
+ eAt

(
w0 −DΔg(0)

w1

)
(2.23)

−
∫ t

0

AeA(t−s)

(
0

DΔgt(s)

)
ds+

∫ t

0

eA(t−s)

(
0
f(s)

)
ds.

The solution W ∈ C(H1(Ω)× L2(Ω)).

We denote by C(Z) the space of continuous functions on (0,∞) with values
in Z. Similarly, L2(Z) mean norms over R+ in time.

Remark 2.10. Variation of parameter formula given in (2.23) is a counterpart of
a well-known by know “parabolic boundary control formula” which has been used
extensively in both linear and non-linear boundary control theory [6, 28, 2, 8, 22]
and more specifically in the context of damped wave equation [7, 24]. This formula
provides a direct representation of the solution as depending on the boundary
input g. Specific feature of this formula is the presence of unbounded operator A
in the integrand involving boundary input g. Analyticity of the semigroup with
controlled singularity at zero allows to show that the H norm of this integrand is
locally integrable, as long as the range of the operatorDΔ belongs to some positive
Sobolev space. But this is the case with harmonic extension where R(DΔ) ⊂
H1/2(Ω). The proof, written below, provides the details for this argument.

Proof. The formula (2.23) follows directly from (2.22). The original meaning of
all quantities is on the dual space [D(A∗)]′, see [28]. We only need to justify the
validity of the formula taking values in the state space H1(Ω) × L2(Ω). For this,
we refer to regularity of the damped wave equation that is inherited from the
analyticity of the semigroup.

The most critical term is the third term. Here we notice that by the (2.17)

Dgt ∈ C(Hε(Ω)) = C(D(A ε
2 ), and by (2.6)

(
0

DΔgt

)
∈ C(D(A

ε
2 )). Hence,∣∣∣∣AeA(t−s)

(
0

DΔgt(s)

)∣∣∣∣
H

≤ Cg|t− s|1−
ε
2 e−ω(t−s)|gt(s)|H−1/2+ε(∂Ω)
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which implies H1(Ω) × L2(Ω) membership of the third term. Regarding the re-
maining terms, the analysis is similar. It suffices to notice that w0 − Dg(0) ∈
H1

0 (Ω) = D(A1/2), Dg ∈ C(H1(Ω)) and
(

0
f(s)

)
∈ L2([D(A∗1/2)]′).

Thus, the conclusion follows from (2.6), (2.8), after noting that long time
behavior is controlled by the exponential decay of the semigroup. �

By using the formula above, along with the aforementioned properties of
analytic semigroups given in (2.6), (2.8) the following regularity for less regular
Cauchy data is easily deduced

Lemma 2.11. For

g ∈ L2(H1/2(∂Ω)), gt ∈ L2(H−1/2(∂Ω)), f ∈ L2([D(A)]′)

w0 ∈ H1(Ω), γw0 = g(0), w1 ∈ H−1(Ω) (2.24)

we have W ∈ L2(H1(Ω)× L2(Ω))

After these preliminary considerations, we shall proceed with the study of
regularity of solutions, assuming that the boundary data and initial data are more
regular. Some of the results stated below can be also obtained by energy methods
applied to appropriate homogenizations of the problem (see the next section).
However, in order to track precisely the regularity, particularly long time regularity,
and the effects of compatibility condition, semigroup representations seem more
appropriate. Within this framework, one can take advantage of explicit singular
estimates and of exponential decays associated with the semigroup.

In order to proceed with our program, we shall exploit several different rep-
resentations of the semigroup formula (these methods are known since [22]).

Lemma 2.12. The following representation holds for all Cauchy data as specified
in Theorem 1.1.

W (t) =
(
DΔg(t)
DΔgt(t)

)
+ eAt

(
w0 −DΔg(0)
w1 −DΔgt(0)

)
(2.25)

−
∫ t

0

eA(t−s)

(
0

DΔgtt(s)

)
ds+

∫ t

0

eA(t−s)

(
0
f(s)

)
ds.

Proof. The starting point is (2.23). By integration by parts and using semigroup
property valid for analytic semigroups AeAt = d

dte
At, for t > 0 we obtain the rep-

resentation stated above. Note that the present representation has no singularity
in the kernel, but it requires higher differentiability of the boundary data. �

Remark 2.13. Note that W =
(
DΔg(t)
DΔgt(t)

)
+U0 where U0 satisfies damped wave

equation driven by the source f−DΔgtt with zero boundary conditions and initial

data given by
(
w0 −DΔg(0)
w1 −DΔgt(0)

)
.
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In order to obtain information on higher-order time derivatives of solutions,
differentiation, in the sense of distribution, of formula in (2.12) leads to the fol-
lowing representation of weak solutions.

Lemma 2.14. With reference to Cauchy data specified in Theorem 1.1, the following
representation holds.

Wt(t) =
(
DΔgt(t)
−f(t)

)
+AeAt

(
w0 −DΔg(0)
w1 −DΔgt(0)

)
−

∫ t

0

AeA(t−s)

(
0

DΔgtt(s)

)
ds (2.26)

+
∫ t

0

eA(t−s)

(
0
ft(s)

)
ds+ eAt

(
0
f(t)

)
.

The formula in Lemma 2.14 is initially derived in the topology of extended
spaces [28, 8]. However, taking advantage of analyticity of the semigroup AeAt ∈
L(H), t > 0, each term in the formula represents a well-defined element in H for
t > 0. Semigroup formulas in 2.12 and Lemma 2.14, along with the properties (2.8)
of analytic semigroup eAt, lead to the following – long time behavior – regularity.

Lemma 2.15. Let f = 0, and

g ∈ L∞(H1/2(Γ)) , gt ∈ L∞(H1/2(Γ)), gtt ∈ L∞(H−1/2(Γ))

w0 ∈ H1(Ω) , γw0 = g(0) , w1 ∈ H1(Ω), γw1 = gt(0)

we have
W ∈ L∞(D(A1−ε)⊕ L∞(H1(Ω)×H1(Ω)).

In particular w ∈ L∞(H1(Ω)), wt ∈ L∞(H1(Ω))

Proof. Use directly formula in Lemma 2.12 along with the properties enjoyed by
the semigroup eAt and listed in (2.6), (2.8). Particular emphasis should be paid to
exponential decay at infinity and control of singularity at the origin.

Writing W (t) = I(t) + II(t) + III(t), we obtain the following estimates for
each term:

|A1−εIII(t)|H ≤
∫ t

0

e−ω(t−s)

(t− s)1−ε
|gtt(s)|H−1/2(∂Ω)ds ≤ C|gtt|L∞(H−1/2(∂Ω)) (2.27)

|A1/2II(t)|H ≤ |A1/2

(
w0 −DΔg(0)
w1 −DΔgt(0)

)
|H

≤ C|A1/2(w0 −DΔg(0))|+ |A1/2(w1 −DΔgt(0))|
≤ C[|w0|H1(Ω)|+ |w1|H1(Ω) + |g(0)|H1/2(∂Ω) + |gt(0)|H1/2(∂Ω)

≤ Cg,w0,w1 (2.28)

where we have used compatibility conditions on the boundary.
The identification in (2.6) applied with θ = 1/2 concludes the estimate for the

second term I(t) ∈ H1(Ω)×H1(Ω) as long as gt(t) ∈ H1/2(∂Ω), g(t) ∈ H1/2(∂Ω).
�
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Lemma 2.16. Let f = 0 and

g ∈ L∞(H3/2)(∂Ω)) , gt ∈ L∞(H1/2(∂Ω))),

gtt ∈ L∞(H−1/2(∂Ω)) ∩ L2(H1/2(∂Ω)), gttt ∈ L2(H−3/2(∂Ω))

w0 ∈ H2(Ω) , γw0 = g(0) , w1 ∈ H2(Ω), γw1 = gt(0). (2.29)

Then

W ∈ L∞(H2(Ω)×H1(Ω))

wtt ∈ L∞(L2(Ω)) ∩ L2(H1(Ω)).

Proof. The proof follows by reading off from formula in Lemma (2.12) with a
supplement of the following result:

Proposition 2.17. Let the operator K be defined as follows:

(Kf)(t) ≡
∫ t

0

eA(t−s)

(
0
f(s)

)
ds.

Let Z = (z, zt) ≡ eAtZ0 +Kf
Then, there exists constants Cb > 0 (independent on t > 0) and ωb > 0 such

that

|Az(t)|2 + |A1/2zt(t)|2 + |ztt(t)|2 +
∫ t

0

|A1/2ztt|2ds

≤ Cbe
−ωbt[|Az(0)|2 + |A1/2zt(0)|2 + |f(0)− bAzt(0)|2]

+ Cb

∫ t

0

e−ωb(t−s)[|A−1/2ft(s)|2 + |f |2]ds].

The constant ωb = min[ω, b−1].

Proof. The proof of this proposition follows from energy methods reported in
theorem 2.3. The important factor is that the constant C does not depend on
t. Here are the details. Noting that

Zt(t) = eAtZt(0) + (Kft)(t)

the fourth formula in (2.8) implies

|Zt(t)|2H ≤ Ce−2ωt|Zt(0)|2H + C
∫ t

0

e−2ω(t−s)|A−1/2ft(s)|2ds. (2.30)

Hence

|A1/2zt(t)|2 + |ztt(t)|2 ≤ Ce−2ωt[|A1/2zt(0)|2 + |ztt(0)|2]

+ C
∫ t

0

e−2ω(t−s)|A−1/2ft(s)|2ds. (2.31)
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On the other hand, applying the multiplier Az to the original equation satisfied
by z, gives

|Az(t)|2 ≤ Cbe
−b−1t|Az(0)|2 + Cb

∫ t

0

e−2b−1(t−s)[|f(s)|2 + |ztt(s)|2]ds. (2.32)

Combining the estimates in (2.31) and (2.32) leads, after some calculations, to the
final conclusion stated in Proposition 2.17. �

To continue with the proof of Lemma 2.16 we write, as before,W (t) = I(t)+
II(t) + III(t), where W (t) is given by Lemma 2.12. Applying the proposition

with f = DΔgtt and Z(0) ≡
(
w0 −DΔg(0)
w1 −DΔgt(0)

)
gives the desired result for term

II+ III. We note the use of compatibility conditions which allows to deduce that
Z(0) ∈ D(A) ×D(A), as needed for application of the proposition.

The estimate for term I is straightforward, as it follows from a priori regu-
larity of the boundary data g(t) and regularity of harmonic extension DΔ. �

Finally, we shall need regularity of the third time derivative of parabolic
extension. This is given in the lemma below.

Lemma 2.18. Let f = 0 and (2.29) hold. Then:

wttt ∈ L2(H−1(Ω)).

Proof. We use the formula in Lemma 2.14 and write

Wt(t) = I(t) + II(t) + III(t) .

In order to read off regularity of wttt we proceed with evaluation ofWtt. This leads
to calculation of d

dtIII(t) = IIIt which can be written as:

IIIt = AeAt

(
0

Dgtt(0)

)
+

∫ t

0

AeA(t−s)

(
0

Dgttt(s)

)
ds.

The assumptions imposed imply DΔgttt ∈ L2([D(A1/2]′) hence(
0

DΔgttt(t)

)
∈ L2([D(A1/2]′).

Moreover

A1/2

(
0

DΔgtt(0)

)
∈ L2([D(A1/2]′).

This gives
IIIt ∈ L2([D(A1/2)]′) = L2(H1

0 (Ω)×H−1(Ω)).

As for IIt, we have (
w0 −DΔg(0)
w1 −DΔgt(0)

)
∈ D(A) ×D(A)
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since each term is in A (as in the argument given in previous lemma,) so Z(0) ∈
D(A). This gives

AZ(0) = A
(
w(0)−Dg(0)
w1 −Dgt(0)

)
∈ H

hence

IIt = AeAtAZ(0) ∈ L2[(D(A∗1/2)]′) ∈ L2(H1
0 (Ω)) × L2(H−1(Ω)))

where we have used all the properties of fractional powers and characterization of
domains associated with strongly damped model.

The analysis for It =
(
DΔgtt

0

)
is straightforward. Calculations above tes-

tify that the second coordinate of Wtt belongs to L2(H−1(Ω)), as desired. �

2.3.2. “Parabolic extension” of Cauchy data. The aim of this section is to intro-
duce “parabolic extension” into the interior of the cylinder Ω × (0, T ) of Cauchy
data g, u0, u1 specified in Theorem 1.1. To this end we shall use harmonic extension
DΔ for the boundary data. This leads to the following problem. Consider

wtt − c2Δw − bΔwt = f(t) in (0, T )× Ω (2.33)

w = g on ∂Ω, w(0) = w0 , wt(0) = w1, in Ω.

This will lead to an extension

ḡ = w according to (2.33) with (2.34)
f = 0 , w0 = u0 , w1 = u1 .

We first state a result using the harmonic extension (2.16).

Theorem 2.19. Let

1. f ∈ L2(L2(Ω)) ∩H1(H−1(Ω))
2. g ∈ C(H3/2(∂Ω)), gt ∈ C(H1/2(∂Ω)), gtt ∈ C(H−1/2(∂Ω)) ∩ L2(H1/2(∂Ω)),
gttt ∈ L2(H−3/2(∂Ω)).

3. g(0) = w0|∂Ω, w0 ∈ H2(Ω), gt(0) = w1|∂Ω, w1 ∈ H2(Ω), f(0) ∈ L2(Ω).

Then w ∈ C(H2(Ω)), wt ∈ C(H1(Ω)), wtt ∈ C(L2(Ω)) ∩ L2(H1(Ω)).

Proof. By introducing new variable u ≡ w−DΔg equation (2.33) can be restated as

utt + c2Au + bAu = f(t) + F (t) (2.35)

where F (t) ≡ −DΔgtt and initial data becomes u(0) = w0 − DΔg(0), ut(0) =
w1 −DΔgt(0).

We shall apply the result of Theorem 2.3, see also [9].
For this we verify compatibility conditions:

w0 −DΔg(0) ∈ H2(Ω) ∩H1
0 (Ω) , w1 −DΔgt(0) ∈ H1

0 (Ω)

f(0) + F (0)− c2w0 − bΔw1 ∈ L2(Ω)
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which are satisfied due to the imposed assumptions. Similarly, the conditions 2.
of Theorem 2.3 imposed on f and F are also satisfied by the assumptions. The
condition on the forcing term becomes

f, DΔgtt ∈ L2(L2(Ω)) ∩H1(H−1(Ω)) .

We shall use regularity of the Dirichlet map (2.17). The above translates into the
following regularity of g:

gtt ∈ L2(H−1/2(∂Ω))), gttt ∈ L2(H−3/2(∂Ω)).

With the above regularity, on the strength of Theorem 2.3 we obtain:

u ∈ C(H2(Ω) ∩H1
0 (Ω)), ut ∈ C(H1

0 (Ω)), utt ∈ C(L2(Ω)) ∩ L2(H1
0 (Ω)). (2.36)

This implies the same regularity for the function w, provided that

DΔg ∈ C(H2(Ω)), DΔgt ∈ C(H1(Ω))

DΔgtt ∈ C(L2(Ω)) ∩ L2(H1(Ω)).

Since DΔ ∈ L(Hs(∂Ω) → Hs+1/2(Ω)) for all real s we obtain the same
conclusion with g satisfying

g ∈ C(H3/2(∂Ω)), gt ∈ C(H1/2(∂Ω)) (2.37)

gtt ∈ C(H−1/2(∂Ω)) ∩ L2(H1/2(∂Ω))). �

3. Back to the nonlinear problem

3.1. The Westervelt equation with source term

Consider the Westervelt equation

(1− 2ku)utt − c2Δu − bΔut = 2k(ut)2 + q , (3.1)

with zero Dirichlet boundary conditions and given initial conditions:

u = 0 on ∂Ω, u(t = 0) = u0 , ut(t = 0) = u1 . (3.2)

Here k = βa/(ρc2), and q plays the role of a given interior source.
We will show results on local and global well-posedness for this problem

before we carry out the proofs of Theorems 1.1, 1.2, 1.3.

3.1.1. Local well-posedness. The fixed point operator T : W ⊆ X → W that
we will make use of for using Banach’s fixed point theorem, will be defined by
T (v) ≡ u with u solving the following linearization of the original equation

(1− 2kv)utt − c2Δu − bΔut = 2kvtut + q , (3.3)
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with boundary conditions v = 0 on ∂Ω , and initial conditions v(t = 0) = u0,
vt(t = 0) = u1 . Here,

W =
{
v ∈ C((0, T )× Ω), ||v||L∞((0,T )×Ω) ≤ m,
||Δv||L2(L2(Ω)) ≤ ā, ||∇vtt||L2(L2(Ω)) ≤ ā, ||∇vt||C(L2(Ω)) ≤ ā,
v(0) = u0, vt(0) = u1

}
(3.4)

where m < 1
2k , ā are to be chosen appropriately during the course of the proof.

The map T is well defined, a fact that follows from linear analysis.
The main result of this section is the following:

Theorem 3.1. Let b > 0, m < 1
4k , T arbitrary. We assume that

Eu,1(0) ≤ ρ , ‖qt‖2L2(H−1(Ω)) + ‖q‖2L2(L2(Ω)) ≤ ρ̃

with ā, ρ, ρ̃ sufficiently small (but possibly depending on T ).
Then there exists a solution u ∈W of (3.1), (3.2), which is unique in W and

satisfies Δu, utt, ∇ut ∈ C(0, T ;L2(Ω)) , ∇utt ∈ L2(0, T ;L2(Ω)) .

Proof. In order to show that the map T is a self-mapping and contraction on W
with suitable parameters m, ā, we make use of Theorem 2.3 with

α(t, x) ≡ 1− 2kv(t, x), (3.5)

f(t, x) ≡ 2kvt(t, x)ut(t, x) + q(t, x). (3.6)

Note that Assumption 2.1 is obviously satisfied for A = −Δ with homo-
geneous Dirichlet boundary conditions, due to Poincaré’s inequality, H2 regu-
larity of solutions to the Laplace equation with L2 right-hand side, and conti-
nuity of the embeddings H1(Ω) → L6(Ω), H2(Ω) → C(Ω). Moreover, we have
D(A1/2) ⊆ H1(Ω), D(A) ⊆ H2(Ω), with |A1/2w| = |∇w|, |Aw| = |Δw|. Addition-
ally we have, D(A) ⊂W 1

6 (Ω) , with |∇w|L6(Ω) ≤ Ĉ1|Δw|.
Step 1. We will first show that for v ∈ W the functions α, f according to (3.5)
enjoy the regularity required in Theorem 2.3, i.e., α ∈ C1(H) and, according to
Assumption 2.2, 0 < α0 ≤ α(t, x) ≤ α0, so we deal with the non-degenerate
case. Moreover, according to the assumptions of Theorem 2.3 we have to show
f ∈ L2(H) ∩ H1([D(A1/2)]′). Note that 3. of the assumptions of Theorem 2.3
follows from Eu,1(0) ≤ ρ. We recall that H = L2(Ω). For this purpose we can
make use of Proposition 4 in [16] and augment it in a straightforward way by the
source term:

Proposition 3.2. Let v ∈W and α, f be defined above by equation (3.5) and assume
that km ≤ 1/4. Then
• α0 = 3/2 ≥ α(t, x) ≥ 1/2 = α0

• |αt|C(H) ≤ 2C0kā

•
∫ T

0 |A−1/2ft|2dt ≤ 16C3
1C0k

2ā2(|utt|2C(H) + |A1/2ut|2L2(H)) + 2‖qt‖2L2(H−1(Ω))

•
∫ t

0
|f |2ds ≤ 8C3

1C0k
2ā2|ut|2L2(H1) + 2‖q‖2L2(L2(Ω)).
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Note that on the strength of Assumption 2.1 and by definition of A we have

|u|2L∞((0,T )×Ω) ≤ C2
2 |Au|2C(H); |Δu|2L2(H) ≤ T |Au|2C(H)

|∇utt|2L2(H) ≤ |A1/2utt|2L2(H); |∇ut|2C(H) ≤
2
c2
|Eut |C(0,T ) . (3.7)

Step 2. To obtain the bounds m, ā required for u ∈ W , we will now make use of
estimates (2.10), (2.11) from Theorem 2.3 together with Proposition 3.2.

Applying the estimate (2.10) with ε̂ = ε = b
4 gives:

Eut(t) +
b

2

∫ t

0

|A1/2utt(s)|2ds

≤
(
Eut(0) +

16C3
1C0k

2ā2

b
(|utt|2C(H) + |Aut|2L2(H)) +

2
b
‖qt‖2L2(H−1(Ω))

)
× eCb/4t(2C0kā)4 (3.8)

which yields

max{|Eut |C(0,T ),
b

2
|A1/2utt(t)|L2(H)}

≤
(
Eut(0) +

2
b
‖qt‖2L2(H−1(Ω)) + φ(ā)|Eut |C(0,T )

)
eCb/4T (2C0kā)4 , (3.9)

where

φ(ā) =
16C3

1C0k
2ā2

b
max

{
2
α0

,
2T
c2

}
.

With ā sufficiently small so that φ(ā) ≤ 1
2 , and ρ, ρ̃ sufficiently small so that

max
{

2
c2
,
2
b

}(
ρ+

2
b
ρ̃

)
eCb/4T (2C0kā)4 ≤ ā2 ,

we get by (3.7) |utt|L2(H1) ≤ ā, |ut|C(H1) ≤ ā as desired, and additionally

|utt|2C(H) ≤
2
α0

c2ā2 . (3.10)

Applying the estimate (2.11) gives:

b|Au(t)|2 ≤ b|Au(0)|2 +
8C3

1C0k
2ā2

c2
|ut|2L2(H1(Ω0) +

1
c2
‖q‖2L2(L2(Ω))

+
α2

0C
2
0

2c2

∫ t

0

|A1/2utt|2 ≤ bρ+
1
c2
ρ̃+

8C3
1C0k

2ā2

c2
T ā2 +

α2
0C

2
0

2c2
ā2 ,

so that by possibly decreasing ρ, ρ̃, and ā using (3.7) we can guarantee
|u|L∞((0,T )×Ω) ≤ m, hence the final conclusion TW ⊂W follows.

Step 3. The proof of contractivity of T is exactly the same as without source term,
see [16]. �
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3.1.2. Global well-posedness. We shall exploit the barrier’s method, typically used
in quasilinear hyperbolic problems [5, 32, 34, 23].

Theorem 3.3. For sufficiently small initial data and source term the solutions are
global in time. Moreover, the size of initial data does not depend on time. This is
to say: For any given M > 0 there exist ρ > 0 and ρ̃ > 0 such that if

E(0) ≤ ρ (3.11)

and
‖qt‖2L2(0,∞;H−1(Ω)) + ‖q‖2L2(0,∞;L2(Ω)) ≤ ρ̃, (3.12)

then
E(t) ≤M for all t ∈ R+.

Proof. Let u be a local solution that exists for sufficiently small data by Theorem
3.1. For this solution, we apply Proposition 2.6 with

α ≡ 1− 2ku , f ≡ 2ku2
t + q (3.13)

(see Proposition 6 in [16]) for which the following estimates can be obtained∫ T

0

|αt(t)|4|utt(t)|2dt ≤ 16C6
0k

4

∫ T

0

|A1/2ut(t)|4|A1/2utt(t)|2dt∫ T

0

|f(t)|2dt ≤ 8C3
1C

2
0k

2

∫ T

0

|A1/2ut(t)|4dt+ 2
∫ T

0

|q(t)|2dt∫ T

0

|A−1/2ft(t)|2dt ≤ 32C3
1C

3
0k

2

∫ T

0

|A1/2utt(t)|2|A1/2ut(t)|2dt

+ 2
∫ T

0

|A−1/2qt(t)|2dt.

Therewith, Proposition 2.6 yields

E0(T ) + (α(T )utt(T ), utt(T )) + b̃
∫ T

0

(E0(t) + |A1/2utt(t)|2)(1− Φ(u, ut)(t))dt

≤ C1E(0) + 2
∫ T

0

(
C2|A−1/2qt(t)|2 + C3|q(t)|2

)
dt (3.14)

where b̃ = min{1, 2/c2}b̂,

E0(t) =
1
2
c2|A1/2ut(t)|2 + |Au(t)|2 ,

and
E(t) = E0(t) +

1
2
(α(t)utt(t), utt(t)) ,

and
Φ(u, ut)(t) ≤ C̃(E0(t) + E0(t)2) (3.15)

(see the proof of Theorem 3.2 in [16]).
Based on estimate (3.14), we now apply barrier’s method, i.e., we assume

that there exists some time when degeneration occurs in α or in (1 − Φ(u, ut)).
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Let T0 be the first such time instance, i.e., the first time when either α(T0) = 0 or
Φ(u, ut)(T0) = 1 , which implies that either

2C2k|Au(T0)| ≥ 1 (3.16)

(see (3.13) and Assumption 2.1) or

C̃(E0(T0) + E0(T0)2) ≥ 1 (3.17)

(see (3.15)).
On the other hand, we can take ρ, ρ̃ in (3.11), (3.12) sufficiently small so that

with M̂ = C1ρ+ 2 max{C2, C3}ρ̃

2C2k
√
M̂ < 1 and C̃(M̂ + M̂2) < 1 , (3.18)

and apply (3.14), which holds up to t = T0 and yields |Au(T0)|2 ≤ E0(T0) ≤ M̂ .
Therewith

2C2k|Au(T0)| ≤ 2C2k
√
M̂ < 1

and
C̃(E0(T0) + E0(T0)2) ≤ C̃(M̂ + M̂2) < 1

a contradiction to (3.16), (3.17).
Note that since C1, C2, C

2, C3, C̃ are intrinsic constants independent of T , for
any given M , we can choose M̂ such that M̂ ≤ M and the inequalities (3.18) are
satisfied. Then we choose ρ, ρ̃ such that C1ρ+ 2 max{C2, C3}ρ̃ ≤ M̂ . With these
ρ, ρ̃ (independent of T ) in (3.11), (3.12) we obtain the global energy estimate
E(t) ≤ M̂ ≤M for all t ∈ R+

�

3.1.3. Decay rates.

Theorem 3.4. We assume that the initial data and source term are sufficiently
small such that (3.11), (3.12) holds. Additionally, we assume that the source term
decays exponentially to zero

∀0 ≤ s < T :
∫ T

s

(
|qt(t)|2H−1(Ω) + |q(t)|2L2(Ω))

)
dτ ≤ Cqe

−ωqs . (3.19)

Then the energy decays exponentially fast to zero.

E(t) ≤ Ce−ωtE(0) (3.20)

where 0 < ω < min{ b̄
C1 , ωq} with b̄ = min{1, 4/C2

0}min{1, 2/c2}b̂, and b̂, C1 as in
(2.15).

Note that (3.19) follows from

∀t ≥ 0 : |qt(t)|2H−1(Ω) + |q(t)|2L2(Ω)) ≤ ωqCqe
−ωqt .
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Proof. Using (3.14) with ρ, ρ̃ in (3.11), (3.12) sufficiently small so that

2C2k
√
C1ρ+ 2ρ̃ ≤ 1/2

we get 1/2 ≤ α(t, x) ≤ 3/2 , hence

E(t) ∼ E0(t) + |utt|2 , E(t) ≤ 2 max{C2, C3}ρ̃ .
Moreover, with

|A1/2utt|2 ≥
1
C0
|utt|2 , (3.21)

and using the fact that in the proof of (3.14), t = 0 can obviously be replaced by
t = s, we get (see the proof of Theorem 3.3 in [16])

E(T ) + b̄
∫ T

s

E(τ) dτ ≤ C1E(s) + 2Cq max{C2, C3}e−ωqs (3.22)

for any s < T .
We consider Ẽ(τ) = E(τ) + λe−ωqτ with λ = 2Cq max{C2, C3}/(C1ωq − b̄)

and assume w.l.o.g. that C1 ≥ 1 and ωq >
b̄

C1 so that λ > 0. (If ωq ≤ b̄
C1 or

C1 < 1, we can replace C1 in (3.22) by C̃1 > max{ b̄
ωq
, 1} ≥ C1.)

Therewith, we get b̄
∫ T

s Ẽ(τ) dτ ≤ C1Ẽ(s) so that we can apply a standard
semigroup argument (see, [31] or, e.g., Theorem 8.1 in [20]) to obtain Ẽ(t) ≤
Ẽ(0)e−

b̄
C1 t and therewith (3.20). �

3.2. The Westervelt equation with nonhomogeneous Dirichlet boundary data

We return to the Westervelt equation with zero source term

(1 − 2ku)utt − c2Δu− bΔut = 2k(ut)2 , (3.23)

but nonhomogeneous Dirichlet boundary conditions

u = g on (0, T )× ∂Ω (3.24)

and initial conditions

u(t = 0) = u0 , ut(t = 0) = u1 . (3.25)

For this purpose we transform to a problem with homogeneous boundary and
initial conditions for u0 in the decomposition u = u0 + ḡ with ḡ being selected as
the extension of boundary data given by (2.4).

Substituting u into (3.23) gives

(1− 2ku)u0
tt − c2Δu0 − bΔu0

t = 2kutu
0
t + q (3.26)

u = 0, on (0, T )× ∂Ω
u0(0) = 0 , u0

t (0) = 0, in Ω.

where the “forcing” q is given by

q ≡ 2kuḡtt + 2kutḡt.
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Thus, we are looking for solution u = u0 + ḡ such that u0 satisfies (3.26)
with zero Cauchy (boundary and initial) data. The above leads to a fixed point
formulation

T1 :W ⊂ X →W, with W given by (3.4)

and T1(v) ≡ u, where u = u0 + ḡ with u0 given by

(1 − 2kv)u0
tt − c2Δu0 − bΔu0

t = 2kvtu0
t + qv (3.27)

u0 = 0 on (0, T )× ∂Ω
u0(0) = 0 , u0

t (0) = 0 .

and
qv ≡ 2kvḡtt + 2kvtḡt. (3.28)

Since now v ∈ W does not satisfy homogeneous boundary conditions, we will have
to use the following estimates following from Assumption 2.1 and the decomposi-
tion w = (w−DΔγw)+DΔγw, where w−DΔγw satisfies homogeneous Dirichlet
boundary conditions.

H1(Ω) ⊂ L2(Ω) , with |w| ≤ C̃0(|∇w|+ |γw̃|H1/2(∂Ω)) , (3.29)

and |∇w| ≤ ˜̂
C0(|Δw| + |γw̃|H3/2(∂Ω)) , (3.30)

H1(Ω) ⊂ L6(Ω) , with |w|L6(Ω) ≤ C̃1(|∇w| + |γw̃|H1/2(∂Ω)) , (3.31)

and |∇w|L6(Ω) ≤ ˜̂
C1(|Δw|+ |γw̃|H3/2(∂Ω)) , (3.32)

H2(Ω) ⊂ C(Ω) , with |w|L∞(Ω) ≤ C̃2(|Δw| + |γw̃|H3/2(∂Ω)) . (3.33)

3.2.1. Local well-posedness: Proof of Theorem 1.1. In the fixed point proof of local
existence we will fall back to the case of the nonlinear problem with the source
and homogeneous boundary data.

To see this, we notice that u0 = T v where T v is defined by (3.3) with q
replaced by qv and zero Cauchy data. This leads to the following description of
the action of the map T1:

T1v = T v + ḡ

where ḡ is given by (2.34) and qv is given by

qv ≡ 2kvḡtt + 2kvtḡt. (3.34)

To formulate a smallness assumption on the boundary data, we will estimate
‖qvt‖2L2(H−1(Ω)) + ‖qv‖2L2(L2(Ω)) according to (3.34) by some quantity C(ḡ,m, ā) =
CD(ḡ,m, ā)}. Then we will use the extension theorems from Section 2.3 to estimate
CD(ḡ,m, ā) from above in terms of appropriate norms of g.

For this, we use the following estimate:

Proposition 3.5.

|A−1/2[vḡttt]|(t) ≤ (b|∇ḡtt(t)|+ c2|∇ḡt(t)|)(|v(t)|L∞(Ω) + C1|∇v(t)|L3(Ω)).
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Proof. Since we do not have an estimate of ḡttt, we use the respective PDEs to
express two time derivatives via space derivatives, i.e., for any φ ∈ L2(Ω) with
|φ| = 1, we evaluate

(A−1/2(vḡttt)(t), φ) = (ḡttt(t), v(t)A−1/2φ) = (c2Δḡt + bΔḡtt, vA−1/2φ).

Since A−1/2φ ∈ H1
0 (Ω), we obtain

(Δḡtt, vA−1/2φ) = (∇ḡtt, v∇A−1/2φ+∇vA−1/2φ)

≤ |∇ḡtt(t)|(|v(t)|L∞(Ω)|φ|+ |∇v(t)|L3(Ω)|A−1/2φ|L6(Ω)) .

A similar argument applies to the term Δḡt. �

The following lemma provides the estimate of ||∇v||C(L3(Ω) using the infor-
mation ||Δv||L2(L2(Ω)) ≤ ā, ||∇vtt||L2(L2(Ω)) ≤ ā, ||∇vt||C(L2(Ω)) ≤ ā, see (3.4).

Lemma 3.6. For any φ ∈ L2(L6(Ω)) ∩ H1(L2(Ω)) with φ(0) ∈ L3(Ω) we have
φ ∈ C(L3(Ω)) with

||φ||C(L3(Ω)) ≤
(
3C2

4‖φ‖
1/2
H1(L2(Ω))‖φ‖

3/2
L2(L6(Ω))‖φt‖L2(L2(Ω)) + |φ(0)|3L3(Ω)

)1/3

,

where C4 is the norm of the continuous embedding H1/4(0, T )→ L4(0, T )

Proof.

|φ(t)|3L3(Ω) =
∫ t

0

d

dt

∫
Ω

|φ(s, x)|3dx ds + |φ(0)|3L3(Ω)

= 3
∫ t

0

∫
Ω

|φ(s, x)|2sign(φ(s, x))φt(s, x) dx ds + |φ(0)|3L3(Ω)

≤ 3
∫ t

0

|φ(s)|2L4(Ω)|φt(s)|L2(Ω) ds+ |φ(0)|3L3(Ω)

≤ 3‖φ‖2L4(L4(Ω))‖φt‖L2(L2(Ω)) + |φ(0)|3L3(Ω)

≤ 3C2
4‖φ‖2H1/4(L4(Ω))‖φt‖L2(L2(Ω)) + |φ(0)|3L3(Ω)

≤ 3C2
4‖φ‖

1/2
H1(L2(Ω))‖φ‖

3/2
L2(L6(Ω))‖φt‖L2(L2(Ω)) + |φ(0)|3L3(Ω)

where we have used standard interpolation in the last inequality:

||φ||2H1/4(L4(Ω)) ≤ C||φ||
1/2
H1(L2(Ω))||φ||

3/2
L2(L6(Ω)) �

Therewith we can give the following estimates of the ḡ terms arising from
homogenization:

Proposition 3.7. For qv given by (3.34) with v ∈W (see (3.4)) the estimate

‖qvt‖2L2(H−1(Ω)) + ‖qv‖2L2(L2(Ω)) ≤ C∗(ḡ,m, ā)
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holds with

C∗(ḡ,m, ā) = CD(ḡ,m, ā) (3.35)

= 2k(m+ θ(T,m, ā, g, u0))(b‖∇ḡtt‖L2(L2(Ω)) + c2‖∇ḡt‖L2(L2(Ω)))

+ 4kC̃1(ā+ ‖gt‖C(H1/2(∂Ω)))‖ḡtt‖L2(L3/2(Ω))

+ 2kC̃1(ā+ ‖gtt‖L2(H1/2(∂Ω)))‖ḡt‖L∞(L3/2(Ω))

+ 2km‖ḡtt‖L2(L2(Ω)) + 2kC̃1(ā+ ‖gt‖C(H1/2(∂Ω)))‖ḡt‖L2(L3(Ω))

where

θ(T,m, ā, g, u0)3 ≡ |∇u0|3L3(Ω) + 3C2
4

{ ˜̂
C2

0 (ā+ ‖g‖L2(H3/2(∂Ω)))
2 + T ā2

}1/4

× ˜̂
C

3/2
1 (ā+ ‖g‖L2(H3/2(∂Ω)))

3/2
√
T ā.

(3.36)

Proof. We use Proposition 3.5 and Lemma 3.6, which together with ‖ψ‖L2(0,T ) ≤
T 1/2‖ψ‖C(0,T ) yields

||∇v||C(L3(Ω)) ≤ θ(T,m, ā, g, u0)

and the estimate |ab|H−1(Ω) ≤ |ab|L6/5(Ω)) ≤ |a|L6(Ω)|b|L3/2(Ω) that follows from
duality and continuity of the embedding H1(Ω) → L6(Ω) to obtain

‖qvt‖L2(H−1(Ω)) = 2k‖vḡttt + 2vtḡtt + vttḡt‖L2(H−1(Ω))

≤ 2k(m+ θ(T,m, ā, g, u0))(b‖∇ḡtt‖L2(L2(Ω)) + c2‖∇ḡt‖L2(L2(Ω)))

+ 4kC̃1(ā+ ‖gt‖C(H1/2(∂Ω)))‖ḡtt‖L2(L3/2(Ω))

+ 2kC̃1(ā+ ‖gtt‖L2(H1/2(∂Ω)))‖ḡt‖L∞(L3/2(Ω)) ,

where we have used Proposition 3.5 and Lemma 3.6, as well as

‖qv‖L2(L2(Ω)) = 2k‖vḡtt + vtḡt‖L2(L2(Ω))

≤ 2km‖ḡtt‖L2(L2(Ω)) + 2kC̃1(ā+ ‖gt‖C(H1/2(∂Ω)))‖ḡt‖L2(L3(Ω)). �
It only remains to combine Proposition 3.7 with the estimates according to

Section 2.3, which under condition (1.4) gives

‖qvt‖2L2(H−1(Ω)) + ‖qv‖2L2(L2(Ω)) (3.37)

≤
(
Č(T,m, ā, u0) + ˇ̌C(‖g‖L2(H3/2(∂Ω)) + ‖gt‖C(H1/2(∂Ω)) + ‖gtt‖L2(H1/2(∂Ω)))

)
with X according to (1.5), and a constant Č(T,m, ā, u0) independent of g and
small for small m, ā, |∇u0|L3(Ω), as well as a constant ˇ̌C.

Since when evaluating T1v, we add ḡ to u0, we additionally need smallness
of ‖g‖X (cf., (2.37)).

Therewith, along the lines of the proof of Theorem 3.1 (note that the proof
of contractivity of T is exactly the same as in case of homogeneous Dirichlet
boundary conditions, see [16]) we arrive at the following result:
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Theorem 3.8. Let b > 0, m < 1
4k , T arbitrary. We assume that Eu,0(0) <∞,

Eu,1(0) ≤ ρ , ‖g‖2X ≤ ρ̃
with ā, ρ, ρ̃ sufficiently small (but possibly depending on T ),

Then there exists a solution u ∈ W of (3.23), (3.24), (3.25), which is unique
in W and satisfies Δu, utt, ∇ut ∈ C(0, T ;L2(Ω)) , ∇utt ∈ L2(0, T ;L2(Ω)) .

3.2.2. Global well-posedness: Proof of Theorem 1.2. By reducing the situation of
nonhomogeneous Dirichlet data to the situation of nonzero source term we obtain
a global well-posedness result.

Theorem 3.9. For sufficiently small initial data and boundary data the solutions
are global in time. Moreover, the size of initial data does not depend on time. This
is to say: For any given M > 0 there exist ρ > 0 and ρ̃ > 0 such that if (1.4),

E(0) ≤ ρ , (3.38)

2∑
l=0

‖ d
l

dtl
g‖2L∞(R+,H3/2−l)(∂Ω)) +

1∑
l=0

‖ d
3−l

dt3−l
g‖2L2(R+,H−3/2+2l(∂Ω)) ≤ ρ̃ (3.39)

then E(t) ≤M, t ∈ R+.

Proof. We use the extension (2.34) and the fact that u = u0 + ḡ, where u0 satisfies

(1− 2k(u0 + ḡ))u0
tt − c2Δu0 − bΔu0

t = 2k(u0
t )

2 + qu
0

(3.40)

u0 = 0 on ∂Ω

u0(0) = 0 , u0
t (0) = 0 .

and
qu

0 ≡ 2ku0ḡtt + 4ku0
t ḡt + 2kḡḡtt + 2k(ḡt)2 . (3.41)

Similarly to Proposition 3.7 we obtain, using

qu
0

t = 2ku0ḡttt + 6ku0
t ḡtt + 4ku0

ttḡt + 6kḡtḡtt + 2kḡḡttt

the estimate

|qu0

t (t)|2H−1(Ω) + |qu0
(t)|2L2(Ω)

≤ 64
{
2k(b|∇ḡtt(t)|+ c2|∇ḡt(t)|)2(C2 + C1Ĉ1|Ω|1/6)2|Δu0(t)|2

+ 6kC2
1 |∇u0

t (t)|2|ḡtt(t)|2L3/2(Ω)

+ 4kC2
1 |∇u0

tt(t)|2|ḡt(t)|2L3/2(Ω)

+ 6kC̃2
1 (|∇ḡt(t)| + |gt(t)|H1/2(∂Ω))

2|ḡtt(t)|2L3/2(Ω)

+ 2k(b|∇ḡtt(t)|+ c2|∇ḡt(t)|)2(C̃2 + C̃1
˜̂
C1|Ω|1/6)2

(|Δḡ(t)|+ |g(t)|H3/2(∂Ω))
2
}
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+ 16
{
2kC2

2 |Δu0(t)|2|ḡtt(t)|2

+ 4kC3/2
1 C

1/2
0 C̃

3/2
1 C̃

1/2
0 |∇u0

t (t)|2(|∇ḡt(t)|+ |gt(t)|H1/2(∂Ω))
2

+ 2kC̃2
2 (|Δḡ(t)|+ |g(t)|H3/2(∂Ω))

2|ḡtt(t)|2

+ 2kC̃3
1 C̃0(|∇ḡt(t)|+ |gt(t)|H1/2(∂Ω))

4
}

≤ 256kC2
1 |∇u0

tt(t)|2|ḡt(t)|2L3/2(Ω)

+ Ck
(
|Δu0(t)|4 + |∇u0

t (t)|4

+ |Δḡ(t)|4 + |∇ḡt(t)|4 + |ḡtt(t)|4

+|g(t)|4H3/2(∂Ω) + |gt(t)|4H1/2(∂Ω)

+|∇ḡtt(t)|2
(
|Δu0(t)|2 + (|Δḡ(t)|+ |g(t)|H3/2(∂Ω))

2
))

(3.42)

≤ C
(
ρ̃|A1/2utt(t)|2 + E0(t)2 + |Δḡ(t)|4 + |∇ḡt(t)|4 + |ḡtt(t)|4H1(Ω)

+|g(t)|4H3/2(∂Ω) + |gt(t)|4H1/2(∂Ω)

)
(3.43)

for some generic constant C, where we have used Lemmas 2.16, 2.18.
Therewith, similarly to (3.14) and again using Lemmas 2.16, 2.18 as well as

‖φ‖4L4(0,∞) ≤ ‖φ‖2L∞(0,∞)‖φ‖2L2(0,∞) we get

E0(T ) + (α(T )u0
tt(T ), u0

tt(T )) (3.44)

+ (b̃− Cρ̃)
∫ T

0

(E0(t) + |A1/2u0
tt(t)|2)(1 − Φ(u0, u0

t )(t))dt ≤ C1E(0) + Cρ̃2

with E0 as in the proof of Theorem (3.3) with u replaced by u0 and Φ defined by

Φ(u0, u0
t )(t) = C2 16C3

1C
3
0k

2|A1/2u0
t |2 + C3 4C3

1C
2
0k

2|A1/2u0
t |2

+ C4 16C6
0k

4|A1/2u0
t |4 + CE0(t)

see (3.43) and the equation before (50) in [16], hence satisfying (3.15).
Therewith, the rest of the proof can be carried out analogously to the one of

Theorem (3.3) to yield global existence of u0 and therewith of u = u0 + ḡ. �

3.2.3. Decay rates: Proof of Theorem 1.3.

Theorem 3.10. We assume that the initial and boundary data are sufficiently small
such that (3.38), and (3.39) holds. Additionally, we assume that the boundary data
decays exponentially to zero in the sense specified in Theorem 1.3, i.e.:

|g(t)|2H3/2(∂Ω) + |gt(t)|2H1/2(∂Ω) + |gtt(t)|2H1/2(∂Ω) + |gttt(t)|2H−3/2(∂Ω) ≤ Cge
−ωgt.

(3.45)
Then the energy decays exponentially fast to zero.

E(t) + Eu,0(t) ≤ Ce−ω̃t
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where 0 < ω̃ < min{ b̄
C1 , ω,

1
b , ωg} with b̄ = min{1, 4/C2

0}(min{1, 2/c2}b̂− Ckρ̃), b̂,
C1 as in (2.15), and ω as in (2.7).

Proof. Again we use the extension (2.34).
In order to proceed along the lines of the proof of Theorem 3.4, we consider

(3.40) with (3.41) and estimate (3.42), which similarly to (3.14), (3.44) yields

E0(T ) + (α(T )u0
tt(T ), u0

tt(T ))

+ (b̃− Cρ̃)
∫ T

s

(E0(t) + |A1/2u0
tt(t)|2)(1 − Φ(u0, u0

t )(t))dt

≤ C1E(s) + C
∫ T

s

(
|Δḡ(t)|4 + |∇ḡt(t)|4 + |ḡtt(t)|4

+ |g(t)|4H3/2(∂Ω) + |gt(t)|4H1/2(∂Ω)

+ |∇ḡtt(t)|2
(
|Δu0(t)|2 + (|Δḡ(t)|+ |g(t)|H3/2(∂Ω))

2
))
dt (3.46)

with E0 as in the proof of Theorem (3.3) with u replaced by u0 and Φ satisfying
(3.15).

Since by Theorem 3.9 and Lemma 2.16, the term
(
|Δu0(t)|2 + (|Δḡ(t)| +

|g(t)|H3/2(∂Ω))2 is in L∞, it therefore remains to show that (3.45) implies expo-
nential decay∫ T

s

(
|Δḡ(t)|4 + |∇ḡt(t)|4 + |ḡtt(t)|4 + |∇ḡtt(t)|2

)
dt ≤ Ce−ω̃t . (3.47)

From Lemma 2.12 with w = ḡ, w0 = u0, w1 = u1 we get(
ḡ(t)−DΔg(t)
ḡt(t)−DΔgt(t)

)
= eAt

(
u0 −DΔg(0)
u1 −DΔgt(0)

)
+K[−DΔgtt](t)

which by Proposition 2.17 with t = 0 replaced by t = s yields

|Az(t)|2 + |A1/2zt(t)|2 + |ztt(t)|2 +
∫ t

s

|A1/2ztt(τ)|2dτ

≤ Cbe
−ωb(t−s)[|Az(s)|2 + |A1/2zt(s)|2 + |DΔgtt(s) + bAzt(s)|2]

+ Cb

∫ t

s

e−ωb(t−τ)[|A−1/2DΔgttt(τ)|2 + |DΔgtt(τ)|2]dτ ] (3.48)

for z(t) = ḡ(t)−DΔg(t), where ωb = min[ω, b−1]. To this end, note that in Propo-

sition 2.17 we have Z(t) = eA(t−s)Z(s) +
∫ t

s
eA(t−τ)

(
0
f(τ)

)
dτ .

With s = 0 in (3.48), using (3.45) and (2.17) this implies

2Ez,1(t) = |Δz(t)|2 + |∇zt(t)|2 + |ztt(t)|2 ≤ C̃be
−ω̃t (3.49)

which yields ∫ T

s

(
|Δz(t)|4 + |∇zt(t)|4 + |ztt(t)|4

)
dt ≤ C̄be

−2ω̃s . (3.50)
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Now we use (3.48) with t = T and (3.45) to obtain∫ T

s

|A1/2ztt(τ)|2dτ

≤ Cbe
−ωb(T−s)[|Az(s)|2 + |A1/2zt(s)|2 + |DΔgtt(s) + bAzt(s)|2] + Ĉbe

−ω̃s.

In here, we can use the identity (2.19) that implies bAzt(s) = −ḡtt(s)− c2Az(s)
to get∫ T

s

|A1/2ztt(τ)|2dτ

≤ Cbe
−ω̃(T−s)[|Az(s)|2 + |A1/2zt(s)|2 + |ztt(s) + c2Az(s)|2] + Ĉbe

−ω̃s.

Inserting (3.49) with t = s gives
∫ T

s
|A1/2ztt(τ)|2dτ ≤ C̄be

−ω̃s which together with
(3.50) and

∫ T

s

⎛⎝|ΔDΔg(t)︸ ︷︷ ︸
=0

|4 + |∇DΔgt(t)|4 + |DΔgtt(t)|4 + |∇DΔgtt(t)|2
⎞⎠ dt ≤ Ce−ω̃s

yields (3.47). So we obtain

Eu0,1(t) ≤ Ce−ω̃t.

This together with (3.49) yields

Eu,1(t) ≤ 2Eu0,1(t) + 2Eḡ,1(t) ≤ Ce−ω̃t

and therewith the assertion regarding the higher energy Eu,1(t). Regarding the
lower energy Eu,0(t), we evoke (3.29), (3.30), to obtain:

Eu,0(t) ≤ C̃2
0 (|∇ut(t)|+ |gt(t)H1/2(∂Ω))

2 + ˜̂
C2

0 (|Δut(t)|+ |g(t)H3/2(∂Ω))
2

≤ 2 max{C̃0,
˜̂
C0}(Eu,1(t) + |gt(t)2H1/2(∂Ω) + |g(t)2H3/2(∂Ω)). �
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Abstract. We consider second-order divergence form uniformly parabolic and
elliptic PDEs with bounded and V MOx leading coefficients and possibly lin-
early growing lower-order coefficients. We look for solutions which are sum-
mable to the pth power with respect to the usual Lebesgue measure along
with their first derivatives with respect to the spatial variables.
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1. Introduction

We consider divergence form uniformly parabolic and elliptic second-order PDEs
with bounded and VMOx leading coefficients and possibly linearly growing lower-
order coefficients. We look for solutions which are summable to the pth power
with respect to the usual Lebesgue measure along with their first derivatives with
respect to the spatial variables. In some sense we extend the results of [17], where
p = 2, to general p ∈ (1,∞). However in [17] there is no regularity assumption on
the leading coefficients and there are also stochastic terms in the equations.

As in [3] one of the main motivations for studying PDEs with growing first-
order coefficients is filtering theory for partially observable diffusion processes.

It is generally believed that introducing weights is the most natural setting for
equations with growing coefficients. When the coefficients grow it is quite natural
to consider the equations in function spaces with weights that would restrict the
set of solutions in such a way that all terms in the equation will be from the
same space as the free terms. The present paper seems to be the first one treating

The work was partially supported by NSF grant DMS-0653121.
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the unique solvability of these equations with growing lower-order coefficients in
the usual Sobolev spaces W 1

p without weights and without imposing any special
conditions on the relations between the coefficients or on their derivatives .

The theory of PDEs and stochastic PDEs in Sobolev spaces with weights
attracted some attention in the past. We do not use weights and only mention a
few papers about stochastic PDEs in Lp-spaces with weights in which one can find
further references: [1] (mild solutions, general p), [3], [8], [9], [10] (p = 2 in the four
last articles).

Many more papers are devoted to the theory of deterministic PDEs with
growing coefficients in Sobolev spaces with weights. We cite only a few of them
sending the reader to the references therein again because neither do we deal with
weights nor use the results of these papers. It is also worth saying that our results
do not generalize the results of these papers.

In most of them the coefficients are time independent, see [2], [4], [7], [21], part
of the result of which are extended in [6] to time-dependent Ornstein-Uhlenbeck
operators.

It is worth noting that many issues for deterministic divergence-type equa-
tions with time independent growing coefficients in Lp spaces with arbitrary p ∈
(1,∞) without weights were also treated previously in the literature. This was
done mostly by using the semigroup approach which excludes time dependent co-
efficients and makes it almost impossible to use the results in the more or less
general filtering theory. We briefly mention only a few recent papers sending the
reader to them for additional information.

In [19] a strongly continuous in Lp semigroup is constructed corresponding
to elliptic operators with measurable leading coefficients and Lipschitz continuous
drift coefficients. In [22] it is assumed that if, for |x| → ∞, the drift coefficients
grow, then the zeroth-order coefficient should grow, basically, as the square of the
drift. There is also a condition on the divergence of the drift coefficient. In [23] there
is no zeroth-order term and the semigroup is constructed under some assumptions
one of which translates into the monotonicity of ±b(x) − Kx, for a constant K,
if the leading term is the Laplacian. In [5] the drift coefficient is assumed to be
globally Lipschitz continuous if the zeroth-order coefficient is constant.

Some conclusions in the above-cited papers are quite similar to ours but
the corresponding assumptions are not as general in what concerns the regularity
of the coefficients. However, these papers contain a lot of additional important
information not touched upon in the present paper (in particular, it is shown in
[19] that the corresponding semigroup is not analytic and in [20] that the spectrum
of an elliptic operator in Lp depends on p).

The technique, we apply, originated from [18] and [13] and uses special cut-off
functions whose support evolves in time in a manner adapted to the drift. As there,
we do not make any regularity assumptions on the coefficients in the time variable
but unlike [17], where p = 2, we use the results of [11] where some regularity on the
coefficients in x variable is needed, like, say, the condition that the second-order
coefficients be in VMO uniformly with respect to the time variable.
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It is worth noting that considering divergence form equations in Lp-spaces is
quite useful in the treatment of filtering problems (see, for instance, [15]) especially
when the power of summability is taken large and we intend to treat this issue in
a subsequent paper.

The article is organized as follows. In Section 2 we describe the problem,
Section 3 contains the statements of two main results, Theorem 3.1 on an a priori
estimate providing, in particular, uniqueness of solutions and Theorem 3.3 about
the existence of solutions. The results about Cauchy’s problem and elliptic equa-
tions are also given there. Theorem 3.1 is proved in Section 5 after we prepare the
necessary tools in Section 4. Theorem 3.3 is proved in the last Section 6.

As usual when we speak of “a constant” we always mean “a finite constant”.
The author discussed the article with Hongjie Dong whose comments are

greatly appreciated.

2. Setting of the problem

We consider the second-order operator Lt

Ltut(x) = Di

(
aij

t (x)Djut(x) + bi
t(x)ut(x)

)
+ bit(x)Diut(x) − ct(x)ut(x),

acting on functions ut(x) defined on ([S, T ]∩R)×Rd (the summation convention is
enforced throughout the article), where S and T are such that −∞ ≤ S < T ≤ ∞.
Naturally,

Di =
∂

∂xi

Our main concern is proving the unique solvability of the equation

∂tut = Ltut − λut +Dif
i
t + f0

t t ∈ [S, T ] ∩ R, (2.1)

with an appropriate initial condition at t = S if S > −∞, where λ > 0 is a
constant and ∂t = ∂/∂t. The precise assumptions on the coefficients, free terms,
and initial data will be given later. First we introduce appropriate function spaces.

Denote C∞
0 = C∞

0 (Rd), Lp = Lp(Rd), and let W 1
p =W 1

p (Rd) be the Sobolev
space of functions u of class Lp, such that Du ∈ Lp, where Du is the gradient of
u and 1 < p <∞. For −∞ ≤ S < T ≤ ∞ define

Lp(S, T ) = Lp((S, T ),Lp), W1
p(S, T ) = Lp((S, T ),W 1

p ),

Lp(T ) = Lp(−∞, T ), W1
p(T ) = W1

p(−∞, T ),

Lp = Lp(∞), W1
p = W1

p(∞).

Remember that the elements of Lp(S, T ) need only belong to Lp on a Borel subset
of (S, T ) of full measure. We will always assume that these elements are defined
everywhere on (S, T ) at least as generalized functions on Rd. Similar situation
occurs in the case of W1

p(S, T ).
The following definition is most appropriate for investigating our equations

if the coefficients of L are bounded.
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Definition 2.1. We introduce the space W1
p (S, T ), which is the space of functions

ut on [S, T ]∩R with values in the space of generalized functions on Rd and having
the following properties:

(i) We have u ∈ W1
p(S, T );

(ii) There exist f i ∈ Lp(S, T ), i = 0, . . . , d, such that for any φ ∈ C∞
0 and finite

s, t ∈ [S, T ] we have

(ut, φ) = (us, φ) +
∫ t

s

(
(f0

r , φ)− (f i
r, Diφ)

)
dr. (2.2)

In particular, for any φ ∈ C∞
0 , the function (ut, φ) is continuous on [S, T ]∩R.

In case that property (ii) holds, we write

∂tut = Dif
i
t + f0

t , t ∈ [S, T ] ∩ R.

Definition 2.1 allows us to introduce the spaces of initial data

Definition 2.2. Let g be a generalized function. We write g ∈ W 1−2/p
p if there exists

a function vt ∈ W1
p (0, 1) such that ∂tvt = Δvt, t ∈ [0, 1], and v0 = g. In such a

case we set
‖g‖

W
1−2/p
p

= ‖v‖W1
p(0,1).

Notice that if the function v in Definition 2.2 exists, then it is unique, since
the difference of two such functions is a W1

p (0, 1)-solution of the Cauchy problem
for the heat equation with zero initial data.

Following Definition 2.1 we understand equation (2.1) as the requirement
that for any φ ∈ C∞

0 and finite s, t ∈ [S, T ] we have

(ut, φ) = (us, φ) +
∫ t

s

[
(birDiur − (cr + λ)ur + f0

r , φ)

−(aij
r Djur + bi

rur + f i
r, Diφ)

]
dr. (2.3)

Observe that at this moment it is not clear that the right-hand side makes
sense. Also notice that, if the coefficients of L are bounded, then any u ∈ W1

p (S, T )
is a solution of (2.1) with appropriate free terms since if (2.2) holds, then (2.1)
holds as well with

f i
t − a

ij
t Djut − bi

tut, i = 1, . . . , d, f0
t + (ct + λ)ut − bitDiut,

in place of f i
t , i = 1, . . . , d, and f0

t , respectively.
We give the definition of solution of (2.1) adopted throughout the article and

which in case the coefficients of L are bounded coincides with the one obtained by
applying Definition 2.1.

Definition 2.3. Let f j ∈ Lp(S, T ), j = 0, . . . , d and assume that S > −∞. By
a solution of (2.1) with initial condition uS ∈ W 1−2/p

p we mean a function u ∈
W1

p(S, T ) (not W1
p (S, T )) such that

(i) For any φ ∈ C∞
0 the integral with respect to dr in (2.3) is well defined and

is finite for all finite s, t ∈ [S, T ];
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(ii) For any φ ∈ C∞
0 equation (2.3) holds for all finite s, t ∈ [S, T ].

In case S = −∞ we drop mentioning initial condition in the above lines.
It is worth mentioning that under our conditions on the coefficients require-

ment (i) of Definition 2.3 is automatically satisfied (see Corollary 5.5).

3. Main results

For ρ > 0 denote Bρ(x) = {y ∈ Rd : |x− y| < ρ}, Bρ = Bρ(0).

Assumption 3.1.

(i) The functions aij
t (x), bi

t(x), bit(x), and ct(x) are real valued and Borel mea-
surable and c ≥ 0.

(ii) There exists a constant δ > 0 such that for all values of arguments and ξ ∈ Rd

aijξiξj ≥ δ|ξ|2, |aij | ≤ δ−1.

Also, the constant λ > 0.
(iii) For any x ∈ Rd the function∫

B1

(|bt(x+ y)|+ |bt(x+ y)|+ ct(x+ y)) dy

is locally integrable to the p′th power on R, where p′ = p/(p− 1).

Notice that the matrix a = (aij) need not be symmetric. Also notice that
in Assumption 3.1 (iii) the ball B1 can be replaced with any other ball without
changing the set of admissible coefficients b, b, c.

We take and fix constants K ≥ 0, ρ0, ρ1 ∈ (0, 1], and choose a number q =
q(d, p) so that

q > min(d, p), q > min(d, p′), q ≥ max(d, p, p′). (3.1)

The following assumptions contain a parameter γ ∈ (0, 1], whose value will
be specified later.

Assumption 3.2. For b := (b1, . . . , bd) and b := (b1, . . . , bd) and (t, x) ∈ Rd+1 we
have∫

Bρ1(x)

∫
Bρ1 (x)

|bt(y)− bt(z)|q dydz +
∫

Bρ1 (x)

∫
Bρ1 (x)

|bt(y)− bt(z)|q dydz

+
∫

Bρ1 (x)

∫
Bρ1(x)

|ct(y)− ct(z)|q dydz ≤ KIq>d + ρd
1γ,

where Iq>d = 1 if q > d and Iq>d = 0 if q = d.

Obviously, Assumption 3.2 is satisfied if b, b, and c are independent of x.
They also are satisfied with any q > d, γ ∈ (0, 1], and ρ1 = 1 on the account of
choosing K appropriately if, say,

|bt(x)− bt(y)|+ |bt(x)− bt(y)|+ |ct(x) − ct(y)| ≤ N
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whenever |x − y| ≤ 1, where N is a constant. We see that Assumption 3.2 allows
b, b, and c growing linearly in x.

Assumption 3.3. For any ρ ∈ (0, ρ0], s ∈ R, and i, j = 1, . . . , d we have

ρ−2d−2

∫ s+ρ2

s

(
sup
x∈Rd

∫
Bρ(x)

∫
Bρ(x)

|aij
t (y)− aij

t (z)| dydz
)
dt ≤ γ. (3.2)

Obviously, the left-hand side of (3.2) is less than

N(d) sup
t∈R

sup
|x−y|≤2ρ

|aij
t (x) − aij

t (y)|,

which implies that Assumption 3.3 is satisfied with any γ ∈ (0, 1] if, for instance,
a is uniformly continuous in x uniformly with respect to t. Recall that if a is
independent of t and for any γ > 0 there is a ρ0 > 0 such that Assumption 3.3 is
satisfied, then one says that a is in VMO.

Theorem 3.1. There exist

γ = γ(d, δ, p) ∈ (0, 1],

N = N(d, δ, p), λ0 = λ0(d, δ, p, ρ0, ρ1,K) ≥ 1

such that, if the above assumptions are satisfied and λ ≥ λ0 and u is a solution of
(2.1) with zero initial data (if S > −∞) and some f j ∈ Lp(S, T ), then

λ‖u‖2
Lp(S,T ) + ‖Du‖2

Lp(S,T ) ≤ N
( d∑

i=1

‖f i‖2
Lp(S,T ) + λ−1‖f0‖2

Lp(S,T )

)
. (3.3)

Notice that the main case of Theorem 3.1 is when S = −∞ because if S >
−∞ and uS = 0, then the function utIt≥S will be a solution of our equation on
(−∞, T ] ∩ R with f j

t = 0 for t < S.
This theorem provides an a priori estimate implying uniqueness of solutions.

Observe that the assumption that such a solution exists is quite nontrivial because
if bt(x) ≡ x, it is not true that bu ∈ Lp(S, T ) for arbitrary u ∈ W1

p(S, T ).
It is also worth noting that, as can be easily seen from the proof of Theorem

3.1, one can choose a function γ(d, δ, p) so that it is continuous in (δ, p). The same
holds for N and λ0 from Theorem 3.1.

We have a similar result for nonzero initial data.

Theorem 3.2. Let S > −∞. In Theorem 3.1 replace the assumption that uS = 0
with the assumption that uS ∈ W 1−2/p

p . Then its statement remains true if in the
right-hand side of (3.3) we add the term

N‖uS‖2W 1−2/p
p

.
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Proof. Take vt from Definition 2.2 corresponding to g = uS and set

ũt =

⎧⎪⎨⎪⎩
ut t ≥ S,
(t− S + 1)vS−t S ≥ t ≥ S − 1,
0 S − 1 ≥ t

and for i = 1, . . . , d set

f̃ i
t =

⎧⎪⎨⎪⎩
f i

t t ≥ S,
−2(t− S + 1)DivS−t S > t ≥ S − 1,
0 S − 1 ≥ t,

f̃0
t =

⎧⎪⎨⎪⎩
f0

t t ≥ S,
[1 + λ(t− S + 1)]vS−t S > t ≥ S − 1,
0 S − 1 ≥ t.

We also modify the coefficients of L by multiplying each one of them but aij
t by

It≥S and setting

ãij
t =

{
aij

t t ≥ S,
δij S > t.

Here we profit from the fact that no regularity assumption on the dependence of
the coefficients on t is imposed. By denoting by L̃ the operator with the modified
coefficients we easily see that ũt is a solution (always in the sense of Definition
2.3) of

∂tũt = L̃tũt − λũt +Dif̃
i
t + f̃0

t , t ≤ T.
By Theorem 3.1

λ‖u‖2
Lp(S,T ) + ‖Du‖2

Lp(S,T ) ≤ N
(

d∑
i=1

‖f̃ i‖2
Lp(T ) + λ−1‖f̃0‖2

Lp(T )

)
,

where

‖f̃ i‖p
Lp(T ) = ‖f i‖p

Lp(S,T ) + ‖f̃ i‖p
Lp(S−1,S) ≤ ‖f

i‖p
Lp(S,T ) + 2p‖Div‖p

Lp(0,1)

≤ ‖f i‖p
Lp(S,T ) + 2p‖uS‖p

W
1−2/p
p

,

‖f̃0‖p
Lp(T ) ≤ ‖f

0‖p
Lp(S,T ) +N(1 + λp)‖v‖p

Lp(0,1)

≤ ‖f0‖p
Lp(S,T ) +N(1 + λp)‖uS‖p

W
1−2/p
p

.

Since λ ≥ λ0 ≥ 1, we have 1+λp ≤ 2λp and we get our assertion thus proving the
theorem. �

Here is an existence theorem.

Theorem 3.3. Let the above assumptions be satisfied with γ taken from Theorem
3.1. Take λ ≥ λ0, where λ0 is defined in Theorem 3.1. Then for any f j ∈ Lp(T ),
j = 0, . . . , d, there exists a unique solution of (2.1) with S = −∞.
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It turns out that the solution, if it exists, is independent of the space in which
we are looking for solutions.

Theorem 3.4. Let 1 < p1 ≤ p2 <∞ and let

γ = inf
p∈[p1,p2]

γ(d, δ, p),

where γ(d, δ, p) is taken from Theorem 3.1. Suppose that Assumptions 3.1 through
3.3 are satisfied with so-defined γ and with p = p1 and p = p2.

(i) Let −∞ < S < T < ∞, f j ∈ Lp1(S, T ) ∩ Lp2(S, T ), j = 0, . . . , d, uS ∈
W

1−2/p1
p1 ∩ W 1−2/p2

p2 , and let u ∈ W1
p1

(S, T ) ∪ W1
p2

(S, T ) be a solution of
(2.1). Then u ∈ W1

p1
(S, T ) ∩W1

p2
(S, T ).

(ii) Let S = −∞, T =∞, f j ∈ Lp1 ∩Lp2 , j = 0, . . . , d, and let u ∈ W1
p1
∪W1

p2
be

a solution of (2.1) with

λ ≥ sup
p∈[p1,p2]

λ0(d, δ, p, ρ0, ρ1,K), (3.4)

where λ0(d, δ, p, ρ0, ρ1,K) is taken from Theorem 3.1. Then u ∈ W1
p1
∩W1

p2
.

This theorem is proved in Section 6. The following theorem is about Cauchy’s
problem with nonzero initial data.

Theorem 3.5. Let S > −∞ and take a function uS ∈ W 1−2/p
p . Let the above

assumptions be satisfied with γ taken from Theorem 3.1. Take λ ≥ λ0, where λ0 is
defined in Theorem 3.1. Then for any f j ∈ Lp(S, T ), j = 0, . . . , d, there exists a
unique solution of (2.1) with initial value uS.

Proof. As in the proof of Theorem 3.2 we extend our coefficients and f j
t for t < S

and then find a unique solution ũt of

∂tũt = L̃tũt − λũt +Dif̃
i
t + f̃0

t t ∈ (−∞, T ] ∩ R,

By construction (t − S + 1)vS−t satisfies this equation for t ≤ S, so that by
uniqueness (Theorem 3.1 with S in place of T ) it coincides with ũt for t ≤ S. In
particular, ũS = v0 = uS. Furthermore ũ satisfies (2.1) since the coefficients of L̃t

coincide with the corresponding coefficients of Lt for finite t ∈ [S, T ]. The theorem
is proved.

Remark 3.1. If both S and T are finite, then in the above theorem one can take
λ = 0. To show this take a large λ > 0 and replace the unknown function ut with
vte

λt. This leads to an equation for vt with the additional term −λvt and the free
terms multiplied by e−λt. The existence of solution v will be then equivalent to
the existence of u if S and T are finite.

Remark 3.2. From the above proof and from Theorem 3.4 it follows that the
solution, if it exists, is independent of p in the same sense as in Theorem 3.4.

Here is a result for elliptic equations.
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Theorem 3.6. Let the coefficients of Lt be independent of t, so that we can set
L = Lt and drop the subscript t elsewhere, let Assumptions 3.1 (i), (ii) be satisfied,
and let b, b, and c be locally integrable. Then there exist

γ = γ(d, δ, p) ∈ (0, 1],

N = N(d, δ, p), λ0 = λ0(d, δ, p, ρ0, ρ1,K) ≥ 1

such that, if Assumptions 3.2 and 3.3 are satisfied and λ ≥ λ0 and u is a W 1
p -

solution of
Lu− λu +Dif

i + f0 = 0 (3.5)

in Rd with some f j ∈ Lp, j = 0, . . . , d, then

λ‖u‖2Lp
+ ‖Du‖2Lp

≤ N
( d∑

i=1

‖f i‖2Lp
+ λ−1‖f0‖2Lp

)
. (3.6)

Furthermore, for any f j ∈ Lp, j = 0, . . . , d, and λ ≥ λ0 there exists a unique
solution u ∈W 1

p of (3.5).

This result is obtained from the previous ones in a standard way (see, for
instance, the proof of Theorem 2.1 of [13]). One of remarkable features of (3.6) is
that N is independent of b, b, and c. It is remarkable even if they are constant,
when there is no assumptions on them apart from c ≥ 0. Another point worth
noting is that if b = b ≡ 0, then for the solution u we have cu ∈ W−1

p . However,
generally it is not true that cu ∈ W−1

p for any u ∈ W 1
p . For instance u(x) :=

(1 + |x|)−1 ∈ W 1
p if p > d, but if c(x) = |x|, then (1 − Δ)−1/2(cu)(x) → 1 as

|x| → ∞ and (1 − Δ)−1/2(cu) is not integrable to any power r > 1. Therefore
generally, (L − λ)W 1

p ⊃ W−1
p with proper inclusion, that does not happen if the

coefficients of L are bounded.

Remark 3.3. It follows, from the arguments leading to the proof of Theorem 3.6
(see [13]) and from Theorem 3.4, that the solution in Theorem 3.6 is independent
of p like in Theorem 3.4 if γ is chosen as in Theorem 3.4 and λ ≥ RHS of (3.4)+1.

4. Differentiating compositions of generalized functions
with differentiable functions

Let D be the space of generalized functions on Rd. We need a formula for the time
derivative of ut(x + xt), where ut behaves like a function from W1

p and xt is an
Rd-valued differentiable function. The formula is absolutely natural and probably
well known. We refer the reader to [16] where such a formula is derived in a much
more general setting of stochastic processes. Recall that for any v ∈ D and φ ∈ C∞

0

the function (v, φ(· − x)) is infinitely differentiable with respect to x, so that the
sup in (4.1) below is measurable.



398 N.V. Krylov

Definition 4.1. Denote by D(S, T ) the set of all D-valued functions u (written as
ut(x) in a common abuse of notation) on [S, T ]∩R such that, for any φ ∈ C∞

0 , the
function (ut, φ) is measurable. Denote by D1(S, T ) the subset of D(S, T ) consisting
of u such that, for any φ ∈ C∞

0 , R ∈ (0,∞), and finite t1, t2 ∈ [S, T ] such that
t1 < t2 we have ∫ t2

t1

sup
|x|≤R

|(ut, φ(· − x))| dt <∞. (4.1)

Definition 4.2. Let f, u ∈ D(S, T ). We say that the equation

∂tut(x) = ft(x), t ∈ [S, T ] ∩ R, (4.2)

holds in the sense of distributions if f ∈ D1(S, T ) and for any φ ∈ C∞
0 for all finite

s, t ∈ [S, T ] we have

(ut, φ) = (us, φ) +
∫ t

s

(fr, φ) dr.

Let xt be an Rd-valued function given by

xt =
∫ t

0

b̂s ds,

where b̂s is an Rd-valued locally integrable function on R. Here is the formula.

Theorem 4.3. Let f, u ∈ D(S, T ). Introduce

vt(x) = ut(x+ xt)

and assume that (4.2) holds (in the sense of distributions). Then

∂tvt(x) = ft(x+ xt) + b̂itDivt(x), t ∈ [S, T ] ∩ R

(in the sense of distributions).

Corollary 4.4. Under the assumptions of Theorem 4.3 for any η ∈ C∞
0 we have

∂t[ut(x)η(x − xt)] = ft(x)η(x − xt)− ut(x)b̂itDiη(x − xt), t ∈ [S, T ] ∩R.

Indeed, what we claim is that for any φ ∈ C∞
0 and finite s, t ∈ [S, T ]

((utφ)(· + xt), η) = (usφ, η) +
∫ t

s

([
frφ+ b̂irDi(urφ)

]
(·+ xr), η

)
dr.

However, to obtain this result it suffices to write down an obvious equation for
utφ, then use Theorem 4.3 and, finally, use Definition 4.2 to interpret the result.

5. Proof of Theorem 3.1

Throughout this section we suppose that Assumptions 3.1, 3.2, and 3.3 are satisfied
(with a γ ∈ (0, 1]) and start with analyzing the integral in (2.3). Recall that q was
introduced before Assumption 3.2.
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Lemma 5.1. Let 1 ≤ r < p and

η := 1 +
d

p
− d
r
≥ 0 (5.1)

with strict inequality if r = 1. Then for any U ∈ Lr and ε > 0 there exist V j ∈ Lp,
j = 0, 1, . . . , d, such that U = DiV

i + V 0 and
d∑

j=1

‖V j‖Lp ≤ N(d, p, r)εη/(1−η)‖U‖Lr , ‖V 0‖Lp ≤ N(d, p, r)ε−1‖U‖Lr . (5.2)

In particular, for any w ∈W 1
p′

|(U,w)| ≤ N(d, p, r)‖U‖Lr‖w‖W 1
p′ .

Proof. If the result is true for ε = 1, then for arbitrary ε > 0 it is easily obtained
by scaling. Thus let ε = 1 and denote by R0(x) the kernel of (1 − Δ)−1. For
i = 1, . . . , d set Ri = −DiR0. One knows (see, for instance, Theorem 12.7.1 of
[12]) that Rj(x) decrease faster than |x|−n for any n > 0 as |x| → ∞ (actually,
exponentially fast) and (see, for instance, Theorem 12.7.4 of [12]) that for all x �= 0

|Rj(x)| ≤
N

|x|d−1
, j = 0, 1, . . . , d.

Define
V j = Rj ∗ U, j = 0, 1, . . . , d.

If r = 1, one obtains (5.2) from Young’s inequality since, owing to the strict
inequality in (5.1), we have p < d/(d − 1), so that Rj ∈ Lp. If r > 1, then for ν
defined by

1
p

=
1
r
− ν
d

we have ν ∈ (0, 1], so that

|Rj(x)| ≤
N

|x|d−ν
, j = 0, 1, . . . , d,

and we obtain (5.2) from the Sobolev-Hardy-Littlewood inequality (see, for in-
stance, Lemma 13.8.5 of [12]). After this it only remains to notice that in the
sense of generalized functions

DiV
i + V0 = R0 ∗ U −ΔR0 ∗ U = U.

The lemma is proved. �

Observe that by Hölder’s inequality for r = pq/(p+ q) (∈ [1, p) due to q ≥ p′,
see (3.1)) we have

‖hv‖Lr ≤ ‖h‖Lq‖v‖Lp .

Furthermore, if r = 1, then q = p′ > d (see (3.1)), p < d/(d − 1), and η > 0. In
this way we come to the following.
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Corollary 5.2. Let h ∈ Lq, v ∈ Lp, and w ∈ W 1
p′ . Then for any ε > 0 there exist

V j ∈ Lp, j = 0, 1, . . . , d, such that hv = DiV
i + V 0 and

d∑
j=1

‖V j‖Lp ≤ N(d, p)ε(q−d)/d‖h‖Lq‖v‖Lp ,

‖V 0‖Lp ≤ N(d, p)ε−1‖h‖Lq‖v‖Lp .

In particular,
|(hv,w)| ≤ N(d, p)‖h‖Lq‖v‖Lp‖w‖W 1

p′ . (5.3)

Lemma 5.3. Let h ∈ Lq and u ∈W 1
p . Then for any ε > 0 we have

‖hu‖Lp ≤ N(d, p)‖h‖Lq

(
ε(q−d)/d‖Du‖Lp + ε−1‖u‖Lp

)
. (5.4)

Proof. As above it suffices to concentrate on ε = 1. In case q > p observe that by
Hölder’s inequality

‖hu‖Lp ≤ ‖h‖Lq‖u‖Ls,

where s = pq/(q−p). After that it only remains to use embedding theorems (notice
that 1 − d/p ≥ −d/s since q ≥ d). In the remaining case q = p, which happens
only if p > d (see (3.1)). In that case the above estimate remains true if we set
s = ∞. The lemma is proved. �

Before we extract some consequences from the lemma we take a nonnegative
ξ ∈ C∞

0 (Bρ1) with unit integral and define

b̄s(x) =
∫

Bρ1

ξ(y)bs(x− y) dy, b̄s(x) =
∫

Bρ1

ξ(y)bs(x− y) dy,

c̄s(x) =
∫

Bρ1

ξ(y)cs(x − y) dy. (5.5)

We may assume that |ξ| ≤ N(d)ρ−d
1 .

One obtains the first assertion of the following corollary from (5.3) by ob-
serving that

‖IBρ1 (xt)(bt − b̄t(xt))‖q
Lq

=
∫

Bρ1 (xt)

|bt − b̄t(xt)|q dx

=
∫

Bρ1 (xt)

∣∣∣∣∣
∫

Bρ1 (xt)

[bt(x)− bt(y)]ξ(xt − y) dy
∣∣∣∣∣
q

dx

≤ N
∫

Bρ1(xt)

∣∣∣∣∣ρ−d
1

∫
Bρ1 (xt)

|bt(x)− bt(y)| dy
∣∣∣∣∣
q

dx

≤ Nρ−d
1

∫
Bρ1 (xt)

∫
Bρ1 (xt)

|bt(x)− bt(y)|q dy dx

≤ Nρ−d
1 KIq>d +Nγ. (5.6)
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The second assertion follows from estimates like (5.6) and (5.4) where one
chooses ε appropriately if q > d.

Corollary 5.4. Let u ∈ W1
p(S, T ), let xs be an Rd-valued measurable function, and

let η ∈ C∞
0 (Bρ1). Set ηs(x) = η(x − xs),

K1 = sup |η|+ sup |Dη|.

Then on (S, T )
(i) For any w ∈W 1

p′ and v ∈ Lp

(|bs − b̄s(xs)|ηsv, |w|) ≤ N(d, p, ρ1,K)‖ηsv‖Lp‖w‖W 1
p′ ;

(ii) We have

‖ηs|bs − b̄s(xs)|us‖Lp + ‖ηs|cs − c̄s(xs)|us‖Lp

≤ N(d, p)γ1/q‖ηsDus‖Lp +N(d, p, γ, ρ1,K,K1)‖IBρ1 (xs)us‖Lp .

(iii) Almost everywhere on (S, T ) we have

(bis − b̄is(xs))ηsDius = DiV
i
s + V 0

s , (5.7)
d∑

j=1

‖V j‖Lp ≤ N(d, p)γ1/q‖ηsDus‖Lp ,

‖V 0
s ‖Lp ≤ N(d, p, γ, ρ1,K)‖ηsDus‖Lp , (5.8)

where V j
s , j = 0, . . . , d, are some measurable Lp-valued functions on (S, T ).

To prove (iii) observe that one can find a Borel set A ⊂ (S, T ) of full measure
such that IADiu, i = 1, . . . , d, are well defined as Lp-valued Borel measurable func-
tions. Then (5.7) with IADiu in place of Diu and (5.8) follow from (5.6), Corollary
5.2, and the fact that the way V j are constructed uses bounded hence continuous
operators and translates the measurability of the data into the measurability of the
result. Since we are interested in (5.7) and (5.8) holding only almost everywhere
on (S, T ), there is no actual need for the replacement.

Corollary 5.5. Let u ∈ W1
p(S, T ), R ∈ (0,∞), φ ∈ C∞

0 (BR), and let finite S′, T ′ ∈
(S, T ) be such that S′ < T ′. Then there is a constant N independent of u and φ
such that∫ T ′

S′
(|(bisDius, φ)|+ |(bi

sus, Diφ)|+ |(csus, φ)|) ds ≤ N‖u‖W1
p(S,T )‖φ‖W 1

p′ , (5.9)

so that requirement (i) in Definition 2.3 can be dropped.

Proof. By having in mind partitions of unity we convince ourselves that it suffices
to prove (5.9) under the assumption that φ has support in a ball B of radius ρ1. Let
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x0 be the center of B and set xs ≡ x0. Observe that the estimates from Corollary
5.4 imply that

|(bi
sus, Diφ)| ≤ |(bi

s − b̄i
s(x0))us, Diφ)|+ |b̄i

s(x0)(us, Diφ)|
≤ N‖us‖W 1

p
‖φ‖W 1

p′ + |b̄s(x0)| ‖us‖W 1
p
‖φ‖W 1

p′ .

By recalling Assumption 3.1 (iii) and Hölder’s inequality we get∫ T ′

S′
|(bi

sus, Diφ)| ds ≤ N‖u‖W1
p(S,T )‖φ‖W 1

p′ .

Similarly the integrals of |(bisDius, φ)| and |(csus, φ)| are estimated and the
corollary is proved. �

Since bounded linear operators are continuous we obtain the following.

Corollary 5.6. Let φ ∈ C∞
0 , T ∈ (0,∞). Then the operators

u· →
∫ ·

0

(bitDiut, φ) dt, u· →
∫ ·

0

(bi
tut, Diφ) dt, u· →

∫ ·

0

(ctut, φ) dt

are continuous as operators from W1
p(∞) to Lp([−T, T ]).

This result will be used in Section 6.
Before we continue with the proof of Theorem 3.1, we notice that, if u ∈

W1
p (S, T ), then as we know (see, for instance, Theorem 2.1 of [14]), the function

ut is a continuous Lp-valued function on [S, T ] ∩R.
Now we are ready to prove Theorem 3.1 in a particular case.

Lemma 5.7. Let bi, bi, and c be independent of x and let S = −∞. Then the
assertion of Theorem 3.1 holds, naturally, with λ0 = λ0(d, δ, p, ρ0) (independent of
ρ1 and K).

Proof. First let c ≡ 0. We want to use Theorem 4.3 to get rid of the first-order
terms. Observe that (2.1) reads as

∂tut = Di(a
ij
t Djut + [bi

t + bit]ut + f i
t ) + f0

t − λut, t ≤ T. (5.10)

Recall that from the start (see Definition 2.3) it is assumed that u ∈ W1
p(T ).

Then one can find a Borel set A ⊂ (−∞, T ) of full measure such that IAf j , j =
0, 1, . . . , d, and IADiu, i = 1, . . . , d, are well defined as Lp-valued Borel functions
satisfying ∫ T

−∞
IA

⎛⎝ d∑
j=0

‖f j
t ‖

p
Lp

+ ‖Dut‖p
Lp

⎞⎠ dt <∞.

Replacing f j and Diu in (5.10) with IAf j and IADiu, respectively, will not affect
(5.10). Similarly one can treat the term ht = (bi

t + bit)ut for which∫ T ′

S′
‖ht‖Lp dt <∞
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for each finite S′, T ′ ∈ (−∞, T ], owing to Assumption 3.1 and the fact that u ∈
Lp(T ).

After these replacements all terms on the right in (5.10) will be of class
D1(−∞, T ) since a is bounded. This allows us to apply Theorem 4.3 and for

Bi
t =

∫ t

0

(bi
s + bis) ds, ût(x) = ut(x−Bt)

obtain that
∂tût = Di(â

ij
t Dj ût)− λût +Dif̂

i
t + f̂0

t , (5.11)

where
(âij

t , f̂
j
t )(x) = (aij

t , f
j
t )(x −Bt).

Obviously, û is in W1
p(T ) and its norm coincides with that of u. Equation

(5.11) shows that û ∈ W1
p (T ).

By Theorem 4.4 and Remark 2.4 of [11] there exist γ = γ(d, δ, p) and λ0 =
λ0(d, δ, p, ρ0) such that if λ ≥ λ0, then

‖Dû‖Lp(T ) + λ1/2‖û‖Lp(T ) ≤ N
(

d∑
i=1

‖f̂ i‖Lp(T ) + λ−1/2‖f̂0‖Lp(T )

)
. (5.12)

Actually, Theorem 4.4 of [11] is proved there only for T = ∞, but it is a standard
fact that such an estimate implies what we need for any T (cf. the proof of Theorem
6.4.1 of [12]). Since the norms in Lp andW 1

p are translation invariant, (5.12) implies
(3.3) and finishes the proof of the lemma in case c ≡ 0.

Our next step is to abandon the condition c ≡ 0 but assume that for an
S > −∞ we have ut = f j

t = 0 for t ≤ S. Observe that without loss of generality
we may assume that T <∞. In that case introduce

ξt = exp
(∫ t

S

cs ds

)
.

Then we have v := ξu ∈ W1
p(T ) and

∂tvt = Di(a
ij
t Djvt + [bi

t + bit]vt + ξtf i
t ) + ξtf0

t − λvt, t ≤ T.

By the above result for all T ′ ≤ T∫ T ′

−∞
ξpt ‖Dut‖p

Lp
dt+ λp/2

∫ T ′

−∞
ξpt ‖ut‖p

Lp
dt

≤ N1

d∑
i=0

∫ T ′

−∞
ξpt ‖f i

t‖
p
Lp
dt+N1λ

−p/2

∫ T ′

−∞
ξpt ‖f0

t ‖
p
Lp
dt. (5.13)

We multiply both part of (5.13) by pcT ′ξ−p
T ′ and integrate with respect to T ′ over

(S, T ). We use integration by parts observing that both parts vanish at T ′ = S.
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Then we obtain∫ T

−∞
‖Dut‖p

Lp
dt+ λp/2

∫ T

−∞
‖ut‖p

Lp
dt

− ξ−p
T

∫ T

−∞
ξpt ‖Dut‖p

Lp
dt− ξ−p

T λp/2

∫ T

−∞
ξpt ‖ut‖p

Lp
dt

≤ N1

d∑
i=0

∫ T

−∞
‖f i

t‖
p
Lp
dt+N1λ

−p/2

∫ T

−∞
‖f0

t ‖
p
Lp
dt

− ξ−p
T N1

d∑
i=0

∫ T

−∞
ξpt ‖f i

t‖
p
Lp
dt− ξ−p

T N1λ
−p/2

∫ T

−∞
ξpt ‖f0

t ‖
p
Lp
dt.

By adding up this inequality with (5.13) with T ′ = T multiplied by ξ−p
T we ob-

tain (3.3).
The last step is to avoid assuming that ut = 0 for large negative t. In that

case we find a sequence Sn → −∞ such that uSn → 0 in W 1
p and denote by vn

t

the unique solution of class W1
p((0, 1)×Rd) of the heat equation ∂vn

t = Δvn
t with

initial condition uSn . After that we modify ut and the coefficients of Lt for t ≤ Sn

as in the proof of Theorem 3.2 by taking there vn
t and Sn in place of vt and S,

respectively. Then by the above result we obtain

λ‖u‖2
Lp(Sn,T ) + ‖Du‖2

Lp(Sn,T ) ≤ N
(

d∑
i=1

‖f̃ i‖2
Lp(T ) + λ−1‖f̃0‖2

Lp(T )

)
,

≤ N
(

d∑
i=1

‖f i‖2
Lp(T ) + λ−1‖f0‖2

Lp(T )

)
+N(1 + λ−1)‖uSn‖

p
W 1

p
.

By letting n→∞ we come to (3.3) and the lemma is proved. �

Remark 5.1. In [11] the assumption corresponding to Assumption 3.3 is much
weaker since in the corresponding counterpart of (3.2) there is no supremum over
x ∈ Rd. We need our stronger assumption because we need aij

t (x − Bt) to satisfy
the assumption in [11] for any function Bt.

To proceed further we need a construction. Recall that b̄ and b̄ are introduced
in (5.5). From Lemma 4.2 of [13] and Assumption 3.2 it follows that, for ht = b̄t, b̄t,
it holds that |Dnht| ≤ κn, where κn = κn(n, d, p, ρ1,K) ≥ 1 and Dnht is any
derivative of ht of order n ≥ 1 with respect to x. By Corollary 4.3 of [13] we have
|ht(x)| ≤ K(t)(1 + |x|), where the function K(t) is locally integrable with respect
to t on R. Owing to these properties, for any (t0, x0) ∈ Rd+1, the equation

xt = x0 −
∫ t

t0

(b̄s + b̄s)(xs) ds, t ≥ t0,

has a unique solution xt = xt0,x0,t.
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Next, for i = 1, 2 set χ(i)(x) to be the indicator function of Bρ1/i and intro-
duce

χ
(i)
t0,x0,t(x) = χ(i)(x − xt0,x0,t).

Here is a crucial estimate.

Lemma 5.8. Suppose that Assumptions 3.1, 3.2, and 3.3 are satisfied with a γ ∈
(0, γ(d, p, δ)], where γ(d, p, δ) is taken from Lemma 5.7. Take (t0, x0) ∈ Rd+1 and
assume that t0 < T and that we are given a function u which is a solution of (2.1)
with S = t0, with zero initial condition, some f j ∈ Lp(t0, T ), and λ ≥ λ0, where
λ0 = λ0(d, δ, p, ρ0) is taken from Lemma 5.7. Then

λ‖χ(2)
t0,x0

u‖2
Lp(t0,T ) + ‖χ(2)

t0,x0
Du‖2

Lp(t0,T )

≤ N
d∑

i=1

‖χ(1)
t0,x0

f i‖2
Lp(t0,T ) +Nλ−1‖χ(1)

t0,x0
f0‖2

Lp(t0,T )

+Nγ2/q‖χ(1)
t0,x0

Du‖2
Lp(t0,T ) +N∗λ−1‖χ(1)

t0,x0
Du‖2

Lp(t0,T )

+N∗‖χ(1)
t0,x0

u‖2
Lp(t0,T ) +N∗λ−1

d∑
i=1

‖χ(1)
t0,x0

f i‖2
Lp(t0,T ), (5.14)

where and below in the proof by N we denote generic constants depending only on
d, δ, and p and by N∗ constants depending only on the same objects, γ, ρ1, and K.

Proof. Shifting the origin allows us to assume that t0 = 0 and x0 = 0. With this
stipulations we will drop the subscripts t0, x0.

Fix a ζ ∈ C∞
0 with support in Bρ1 and such that ζ = 1 on Bρ1/2 and

0 ≤ ζ ≤ 1. Set xt = x0,0,t,

b̂t = b̄t(xt), b̂t = b̄t(xt), ĉt = c̄t(xt)

ηt(x) = ζ(x − xt), vt(x) = ut(x)ηt(x).
The most important property of ηt is that

∂tηt = (b̂i
t + b̂it)Diηt.

Also observe for the later that we may assume that

χ
(2)
t ≤ ηt ≤ χ(1)

t , |Dηt| ≤ Nρ−1
1 χ

(1)
t , (5.15)

where χ(i)
t = χ(i)

0,0,t and N = N(d).
By Corollary 4.4 (also see the argument before (5.11)) we obtain that for

finite t ∈ [0, T ]

∂tvt = Di(ηta
ij
t Djut + bi

tvt)− (aij
t Djut + bi

tut)Diηt

+ bitηtDiut − (ct + λ)vt +Di(f i
tηt)− f i

tDiηt + f0
t ηt + (b̂i

t + b̂it)utDiηt.

We transform this further by noticing that

ηta
ij
t Djut = aij

t Djvt − aij
t utDjηt.
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To deal with the term bitηtDiut we use Corollary 5.4 and find the correspond-
ing functions V j

t . Then simple arithmetics show that

∂tvt = Di

(
aij

t Djvt + b̂i
tvt

)
− (ĉt + λ)vt + b̂itDivt +Dif̂

i
t + f̂0

t ,

where

f̂0
t = f0

t ηt − f i
tDiηt − aij

t (Djut)Diηt + (b̂i
t − bi

t)utDiηt + V 0
t + (ĉt − ct)utηt,

f̂ i
t = f i

tηt − a
ij
t utDjηt + (bi

t − b̂i
t)utηt + V i

t , i = 1, . . . , d.

It we extend ut and f j
t as zero for t < 0, then it will be seen from Lemma 5.7

that for λ ≥ λ0

λ‖v‖2
Lp(0,T ) + ‖Dv‖2

Lp(0,T ) ≤ N
d∑

i=1

‖f̂ i‖2
Lp(0,T ) +Nλ−1‖f̂0‖2

Lp(0,T ). (5.16)

Recall that here and below by N we denote generic constants depending only on
d, δ, and p.

Now we start estimating the right-hand side of (5.16). First we deal with f̂ i
t .

Recall (5.15) and use Corollary 5.4 to get

‖(bi
t − b̂i

t)utηt‖2Lp
≤ Nγ2/q‖χ(1)

t Dut‖2Lp
+N∗‖χ(1)

t ut‖2Lp
(5.17)

(we remind the reader that by N∗ we denote generic constants depending only on
d, δ, p, γ, ρ1, and K). By adding that

‖aijuDjη‖2Lp(0,T ) ≤ N∗‖χ(1)
· u‖2Lp(0,T ),

we derive from (5.8) and (5.17) that
d∑

i=1

‖f̂ i‖2
Lp(0,T ) ≤ N

d∑
i=1

‖χ(1)
· f

i‖2
Lp(0,T ) (5.18)

+Nγ2/q‖χ(1)
· Du‖2Lp(0,T ) +N∗‖χ(1)

· u‖2Lp(0,T ).

While estimating f̂0 we use (5.8) again and observe that we can deal with
(b̂i

t − bi
t)utDiηt and (ct − ĉt)utηt as in (5.17) this time without paying too much

attention to the dependence of our constants on γ, ρ1, and K and obtain that

‖(b̂i − bi)uDiη‖2Lp(0,T ) + ‖(c− ĉ)uη‖2
Lp(0,T )

≤ N∗(‖χ(1)
· Du‖2Lp(0,T ) + ‖χ(1)

· u‖2Lp(0,T )).

By estimating also roughly the remaining terms in f̂0 and combining this with
(5.18) and (5.16), we see that the left-hand side of (5.16) is less than the right-
hand side of (5.14). However,

|χ(2)
t Dut| ≤ |ηtDut| ≤ |Dvt|+ |utDηt| ≤ |Dvt|+Nρ−1

1 |utχ
(1)
t |

which easily leads to (5.14). The lemma is proved.
Next, from the result giving “local” in space estimates we derive global in

space estimates but for functions having, roughly speaking, small “past” support
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in the time variable. In the following lemma κ1 is the number introduced before
Lemma 5.8.

Lemma 5.9. Suppose that Assumptions 3.1, 3.2, and 3.3 are satisfied with a γ ∈
(0, γ(d, p, δ)], where γ(d, p, δ) is taken from Lemma 5.7. Assume that u is a solution
of (2.1) with S = −∞, some f j ∈ Lp(T ), and λ ≥ λ0, where λ0 = λ0(d, δ, p, ρ0)
is taken from Lemma 5.7. Take a finite t0 ≤ T and assume that ut = 0 if t ≤ t0.
Then for It0 := I(t0,T ′), where T ′ = (t0 + κ−1

1 ) ∧ T , we have

λp/2‖It0u‖
p
Lp

+ ‖It0Du‖
p
Lp
≤ N

d∑
i=1

‖It0f i‖p
Lp

+Nλ−p/2‖It0f0‖p
Lp

(5.19)

+Nγp/q‖It0Du‖
p
Lp

+N∗λ−p/2‖It0Du‖
p
Lp

+N∗‖It0u‖
p
Lp

+N∗λ−p/2
d∑

i=1

‖It0f i‖p
Lp
,

where and below in the proof by N we denote generic constants depending only on
d, δ, and p and by N∗ constants depending only on the same objects, γ, ρ1, and K.

Proof. Take x0 ∈ Rd and use the notation introduced before in Lemma 5.8. By
this lemma with T ′ in place of T we have

λp/2‖It0χ
(2)
t0,x0

u‖p
Lp

+ ‖It0χ
(2)
t0,x0

Du‖p
Lp

≤ N
d∑

i=1

‖It0χ
(1)
t0,x0

f i‖p
Lp

+Nλ−p/2‖It0χ
(1)
t0,x0

f0‖p
Lp

+Nγp/q‖It0χ
(1)
t0,x0

Du‖p
Lp

+N∗λ−p/2‖It0χ
(1)
t0,x0

Du‖p
Lp

+N∗‖It0χ
(1)
t0,x0

u‖p
Lp

+N∗λ−p/2
d∑

i=1

‖It0χ
(1)
t0,x0

f i‖p
Lp
. (5.20)

One knows that for each t ≥ t0, the mapping x0 → xt0,x0,t is a diffeomorphism
with Jacobian determinant given by∣∣∣∣∂xt0,x0,t

∂x0

∣∣∣∣ = exp
(
−

∫ t

t0

d∑
i=1

Di[b̄i
s + b̄is](xt0,x0,s) ds

)
.

By the way the constant κ1 is introduced, we have

e−Nκ1(t−t0) ≤
∣∣∣∣∂xt0,x0,t

∂x0

∣∣∣∣ ≤ eNκ1(t−t0),

where N depends only on d. Therefore, for any nonnegative Lebesgue measurable
function w(x) it holds that

e−Nκ1(t−t0)

∫
Rd

w(y) dy ≤
∫

Rd

w(xt0,x0,t) dx0 ≤ eNκ1(t−t0)

∫
Rd

w(y) dy.
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In particular, since∫
Rd

|χ(i)
t0,x0,t(x)|p dx0 =

∫
Rd

|χ(i)(x − xt0,x0,t)|p dx0,

we have

e−Nκ1(t−t0) = N∗
i e

−Nκ1(t−t0)

∫
Rd

|χ(i)(x − y)|p dy

≤ N∗
i

∫
Rd

|χ(i)
t0,x0,t(x)|p dx0 ≤ N∗

i e
Nκ1(t−t0)

∫
Rd

|χ(i)(x− y)|p dy = eNκ1(t−t0),

where N∗
i = |B1|−1ρ−d

1 i
d and |B1| is the volume of B1. It follows that∫

Rd

|χ(1)
t0,x0,t(x)|p dx0 ≤ (N∗

1 )−1eNκ1(t−t0),

(N∗
2 )−1e−Nκ1(t−t0) ≤

∫
Rd

|χ(2)
t0,x0,t(x)|p dx0.

Furthermore, since ut = 0 if t ≤ t0 and T ′ ≤ t0 + κ−1
1 , in evaluating the norms

in (5.20) we need not integrate with respect to t such that κ1(t − t0) ≥ 1 or
κ1(t− t0) ≤ 0, so that for all t really involved we have∫

Rd

|χ(1)
t0,x0,t(x)|2 dx0 ≤ (N∗

1 )−1eN , (N∗
2 )−1e−N ≤

∫
Rd

|χ(2)
t0,x0,t(x)|2 dx0.

After this observation it only remains to integrate (5.20) through with respect to
x0 and use the fact that N∗

1 = 2−dN∗
2 . The lemma is proved. �

Proof of Theorem 3.1. Obviously we may assume that S = −∞. Then first we
show how to choose an appropriate γ = γ(d, δ, p) ∈ (0, 1]. For one, we take
it smaller than the one from Lemma 5.7. Then call N0 the constant factor of
γp/q‖It0Du‖

p
Lp

in (5.19). We know that N0 = N0(d, δ, p) and we choose γ ∈ (0, 1]
so that N0γ

p/q ≤ 1/2. Then under the conditions of Lemma 5.9 we have

λp/2‖It0u‖
p
Lp

+ ‖It0Du‖
p
Lp
≤ N

d∑
i=1

‖It0f i‖p
Lp

+Nλ−p/2‖It0f0‖p
Lp

+N∗λ−p/2‖It0Du‖
p
Lp

+N∗‖It0u‖
p
Lp

+N∗λ−p/2
d∑

i=1

‖It0f i‖p
Lp
. (5.21)

After γ has been fixed we recall that κ1 = κ1(d, p, ρ1,K) and take a ζ ∈ C∞
0 (R)

with support in (0, κ−1
1 ) such that∫ ∞

−∞
ζp(t) dt = 1. (5.22)

For s ∈ R define ζs
t = ζ(t − s), us

t (x) = ut(x)ζs
t . Obviously us

t = 0 if t ≤ s ∧ T .
Therefore, we can apply (5.21) to us

t with t0 = s ∧ T observing that

∂tu
s
t = Di(a

ij
t Dju

s
t + bi

tu
s
t ) + bitu

s
t − (ct + λ)us

t +Di(ζs
t f

i
t ) + ζs

t f
0
t + (ζs

t )′ut.



Divergence Equations with Growing Coefficients 409

Then from (5.21) for λ ≥ λ0, where λ0 = λ0(d, δ, p, ρ0) is taken from Lemma 5.7,
we obtain

λp/2‖Is∧T ζ
su‖p

Lp
+ ‖Is∧T ζ

sDu‖p
Lp

(5.23)

≤ N
d∑

i=1

‖Is∧T ζ
sf i‖p

Lp
+Nλ−p/2‖Is∧T ζ

sf0‖p
Lp

+N‖Is∧T (ζs)′u‖p
Lp

+N∗λ−p/2‖Is∧T ζ
sDu‖p

Lp
+N∗‖Is∧T ζ

su‖p
Lp

+N∗λ−p/2
d∑

i=1

‖Is∧T ζ
sf i‖p

Lp
.

We integrate through (5.23) with respect to s ∈ R, observe that

Is∧T<t<[(s∧T )+κ−1
1 ]∧T = It<T Is∧T<t<(s∧T )+κ−1

1
= It<T Is<t<s+κ−1

1
,

and that (5.22) yields∫ ∞

−∞
Is∧T (t)(ζs

t )p ds =
∫ ∞

−∞
Is∧T<t<[(s∧T )+κ−1

1 ]∧T ζ
p(t− s) ds

= It<T

∫ t

t−κ−1
1

ζp(t− s) ds = It<T .

We also notice that, since κ1 depends only on d, p, ρ1,K, we have∫ ∞

−∞
|ζ′(s)|p ds = N∗.

Then we conclude

λp/2‖u‖p
Lp(T ) + ‖Du‖p

Lp(T )

≤ N1

d∑
i=1

‖f i‖p
Lp(T ) +N1λ

−p/2‖f0‖p
Lp(T )

+N∗
1λ

−p/2‖Du‖p
Lp(T ) +N∗

1 ‖u‖
p
Lp(T ) +N∗

1λ
−p/2

d∑
i=1

‖f i‖p
Lp(T ).

Without losing generality we assume that N1 ≥ 1 and we show how to choose
λ0 = λ0(d, δ, p, ρ0, ρ1,K) ≥ 1. Above we assumed that λ ≥ λ0(d, δ, p, ρ0), where
λ0(d, δ, p, ρ0) is taken from Lemma 5.7. Therefore, we take

λ0 = λ0(d, δ, p, ρ0, ρ1,K) ≥ λ0(d, δ, p, ρ0)

such that λp/2
0 ≥ 2N∗

1 . Then we obviously come to (3.3) (with S = −∞). The
theorem is proved. �
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6. Proof of Theorems 3.3 and 3.4

We need two auxiliary results.

Lemma 6.1. For any τ, R ∈ (0,∞), we have∫ τ

−τ

∫
BR

(|bs(x)|p
′
+ |bs(x)|p

′
+ cp

′
s (x)) dxds <∞. (6.1)

Proof. Obviously it suffices to prove (6.1) with Bρ1(x0) in place of BR for any x0.
In that case, for instance, (notice that q ≥ p′, see (3.1))∫

Bρ1 (x0)

|bs(x)|p
′
dx ≤ N

(∫
Bρ1 (x0)

|bs(x) − b̄s(x0)|q dx
)p′/q

+N |b̄s(x0)|p
′
.

According to (5.6) ∫
Bρ1 (x0)

|bs(x)|p
′
dx ≤ N +N |b̄s(x0)|p

′

and in what concerns b it only remains to use Assumption 3.1 (iii). Similarly, bs
and cs are treated. The lemma is proved. �

The solution of our equation will be obtained as the weak limit of the solutions
of equations with cut-off coefficients. Therefore, the following result is appropriate.
By the way, observe that usual way of proving the existence of solutions based on
a priori estimates and the method of continuity cannot work in our setting mainly
because of what is said after Theorem 3.6.

Lemma 6.2. Let φ ∈ C∞
0 , τ ∈ (0,∞). Let um, u ∈ W1

p, m = 1, 2, . . . , be such
that um → u weakly in W1

p. For m = 1, 2, . . . define χm(t) = (−m) ∨ t ∧ m,
bi

mt = χm(bi
t), b

i
mt = χm(bit), and cmt = χm(ct). Then the functions∫ t

0

(bimsDiu
m
s , φ) ds,

∫ t

0

(bi
msu

m
s , Diφ) ds,

∫ t

0

(cmsu
m
s , φ) ds (6.2)

converge weakly in the space Lp([−τ, τ ]) as m→∞ to∫ t

0

(bisDius, φ) ds,
∫ t

0

(bi
sus, Diφ) ds,

∫ t

0

(csus, φ) ds, (6.3)

respectively.

Proof. By Corollary 5.6 and by the fact that (strongly) continuous operators are
weakly continuous we obtain that∫ t

0

(bisDiu
m
s , φ) ds→

∫ t

0

(bisDius, φ) ds

as m → ∞ weakly in the space Lp([−τ, τ ]). Therefore, in what concerns the first
function in (6.2), it suffices to show that∫ t

0

(Diu
m
s , (b

i
s − bims)φ) ds→ 0
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weakly in Lp([−τ, τ ]). In other words, it suffices to show that for any ξ∈Lp′ ([−τ,τ ])∫ τ

−τ

ξt
( ∫ t

0

(Diu
m
s , (b

i
s − bims)φ) ds

)
dt→ 0.

This relation is rewritten as∫ τ

−τ

(Diu
m
s , ηs(b

i
s − bims)φ) ds→ 0, (6.4)

where

ηs :=
∫ τsgn s

s

ξt dt

is bounded on [−τ, τ ]. However, by the dominated convergence theorem and Lemma
6.1, we have ηs(bis − bims)φ→ 0 as m→∞ strongly in Lp′(−τ, τ) and by assump-
tion Dum → Du weakly in Lp(−τ, τ). This implies (6.4). Similarly, one proves our
assertion about the remaining functions in (6.2). The lemma is proved. �

Proof of Theorem 3.3. Owing to Theorem 3.1 implying that the solution on
(−∞, T ] ∩ R is unique, without loss of generality we may assume that T = ∞.
Define bmt, bmt, and cmt as in Lemma 6.2 and consider equation (2.1) with bmt,
bmt, and cmt in place of bt, bt, and ct, respectively. Obviously, bmt, bmt, and cmt

satisfy Assumption 3.2 with the same γ and K as bt, bt, and ct do. By Theorem
3.1 and the method of continuity for λ ≥ λ0(d, δ, p, ρ0, ρ1,K) there exists a unique
solution um of the modified equation on R.

By Theorem 3.1 we also have

‖um‖Lp + ‖Dum‖Lp ≤ N,

where N is independent of m. Hence the sequence of functions um is bounded in
the space W1

p and consequently has a weak limit point u ∈ W1
p. For simplicity of

presentation we assume that the whole sequence um converges weakly to u. Take
a φ ∈ C∞

0 . Then by Lemma 6.2 the functions (6.2) converge to (6.3) weakly in
Lp([−τ, τ ]) as m→∞ for any τ . Obviously, the same is true for (um

t , φ) → (ut, φ)
and the remaining terms entering the equation for um

t . Hence, by passing to the
weak limit in the equation for um

t we see that for any φ ∈ C∞
0 equation (2.3) holds

for almost any s, t ∈ R.
Now notice that, for each t ∈ R, owing to Corollary 5.5 the equation

(ût, φ) :=
∫ 1

0

(us, φ) ds+
∫ 1

0

( ∫ t

s

[
(birDiur − (cr + λ)ur + f0

r , φ)

− (aij
r Djur + bi

rur + f i
r, Diφ)

]
dr

)
ds (6.5)

defines a distribution. Furthermore, by the above for any φ ∈ C∞
0 we have (ut, φ) =

(ût, φ) (a.e.). A standard argument shows that for almost all t ∈ R, (ut, φ) = (ût, φ)
for any φ ∈ C∞

0 , that is ut = ût (a.e.) and ût ∈ W1
p. In particular, we see that we
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can replace ur in (6.5) with ûr. Finally, for any t1, t2 ∈ R

(ût2 , φ)− (ût1 , φ)

=
∫ 1

0

(∫ t2

t1

[
(birDiûr − (cr + λ)ûr + f0

r , φ)− (aij
r Djûr + bi

rûr + f i
r, Diφ)

]
dr

)
ds

=
∫ t2

t1

[
(birDiûr − (cr + λ)ûr + f0

r , φ) − (aij
r Dj ûr + bi

rûr + f i
r, Diφ)

]
dr

and the theorem is proved. �

Proof of Theorem 3.4. (i) One reduces the general case to the one that uS = 0 as
in the proof of Theorem 3.2. Also, obviously, one can assume that λ is as large
as we like, say satisfying (3.4), since S and T are finite. By continuing ut(x) as
zero for t ≤ S we see that we may assume that S = ∞. If we set f j

t = 0 for
t ≥ T and use Theorem 3.3 about the existence of solutions on (−∞,∞) along
with Theorem 3.1, which guarantees uniqueness of solutions on (−∞, T ], then we
see that we only need to prove assertion (ii) of the theorem.

(ii) In the above proof of Theorem 3.3 we have constructed the unique so-
lutions of our equations as the weak limits of the solutions of equations with
cut-off coefficients. Therefore, if we knew that the result is true for equations with
bounded coefficients, then we would obtain it in our general case as well.

Thus it only remains to concentrate on equations with bounded coefficients.
Existence an uniqueness theorems also show that it suffices to prove that, if u is
the solution corresponding to p = p2, then u ∈ W1

p1
.

Take a ζ ∈ C∞
0 (Rd+1) such that ζ(0) = 1, set ζn

t (x) = ζ(t/n, x/n), and notice
that un

t := utζ
n
t satisfies

∂tu
n
t = Ltu

n
t − λun

t +Dif
i
nt + f0

nt,

where

f i
nt = f i

tζ
n
t − uta

ij
t Djζ

n
t , i ≥ 1,

f0
nt = f0

t ζ
n
t − f i

tDiζ
n
t − (aij

t Djut + ai
tut)Diζ

n
t − bitutDiζ

n
t + ut∂tζ

n
t .

Since un
t has compact support and p1 ≤ p2, it holds that un ∈ W1

p for any p ∈ [1, p2]
and by Theorem 3.1 for p ∈ [p1, p2] we have

‖un‖W1
p
≤ N

d∑
i=0

‖f i
n‖Lp . (6.6)

One knows that
‖f i‖Lp ≤ N(‖f i‖Lp1

+ ‖f i‖Lp2
),

so that by Hölder’s inequality

‖f i
n‖Lp ≤ N +N‖uDζn‖Lp ≤ N + ‖u‖Lp2

‖Dζn‖Lq ,
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with constants N independent of n, where

q =
pp2
p2 − p

.

Similar estimates are available for other terms in the right-hand side of (6.6). Since

‖∂tζ
n‖Lq + ‖Dζn‖Lq = Nn−1+(p2−p)(d+1)/(p2p) → 0

as n→∞ if
1
p
− 1
p2
<

1
d+ 1

, (6.7)

estimate (6.6) implies that u ∈ W1
p.

Thus knowing that u ∈ W1
p2

allowed us to conclude that u ∈ W1
p as long as

p ∈ [p1, p2] and (6.7) holds. We can now replace p2 with a smaller p and keep going
in the same way each time increasing 1/p by the same amount until p reaches p1.
Then we get that u ∈ W1

p1
. The theorem is proved �
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1. Introduction

Given a second-order elliptic partial differential operator with real coefficients

A =
N∑

i,j=1

Di (aijDj) +
N∑

i=1

FiDi − V = A0 + F ·D − V, (1.1)

where A0 =
∑N

i,j=1Di (aijDj), we consider the parabolic problem{
ut(x, t) = Au(x, t), x ∈ RN , t > 0,
u(x, t) = f(x), x ∈ RN ,

(1.2)

where f ∈ Cb(RN ).
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We assume the following conditions on the coefficients of A which will be
kept in the whole paper without further mentioning.

(H) aij = aji, Fi : RN → R, V : RN → [0,+∞), with aij ∈ C1+α(RN),
V, Fi ∈ Cα

loc(R
N ) for some 0 < α < 1 and

λ|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2

for every x, ξ ∈ RN and suitable 0 < λ ≤ Λ.

Notice that neither the drift F = (F1, . . . , FN ) or the potential V are assumed to
be bounded in RN .

Problem (1.2) has always a bounded solution but, in general, there is no
uniqueness. However, if f is nonnegative, it is not difficult to show that (1.2) has
a minimal solution u among all non negative solutions. Taking such a solution u
one constructs a semigroup of positive contractions T (·) on Cb(RN ) such that

u(x, t) = T (t)f(x), t > 0, x ∈ RN

solves (1.2). Furthermore, the semigroup can be represented in the form

T (t)f(x) =
∫
RN

p(x, y, t)f(y) dy, t > 0, x ∈ RN ,

for f ∈ Cb(RN ). Here p is a positive function and for almost every y ∈ RN , it
belongs to C2+α,1+α/2

loc (RN × (0,∞)) as a function of (x, t) and solves the equation
∂tp = Ap, t > 0. We refer to Section 2, [8, Chapter 1] and [11] (in the case V = 0)
for a review of these results as well as for conditions ensuring uniqueness for (1.2).

Now, we fix x ∈ RN and consider p as a function of (y, t). Then p satisfies

∂tp = A∗p, t > 0, (1.3)

in the following sense (see [10, Lemma 2.1]): Let 0 ≤ t1 < t2 and ϕ ∈ C2,1(Q(t1, t2))
(see below for the notation) be such that ϕ(·, t) has compact support for every
t ∈ [t1, t2]. Then∫

Q(t1,t2)

(∂tϕ(y, t) +Aϕ(y, t)) p(x, y, t) dy dt (1.4)

=
∫
RN

(p(x, y, t2)ϕ(y, t2)− p(x, y, t1)ϕ(y, t1)) dy.

The aim of this paper is to study global regularity properties of the kernel p
as a function of (y, t) ∈ RN × (a, T ) for 0 < a < T .

We prove that p(x, ·, ·) belongs to W 1,0
k (RN × (a, T )) (see below for the no-

tation) provided that∫ T

a0

∫
RN

(
V (y)k + |F (y)|k

)
p(x, y, t) dy dt <∞, ∀k > 1
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for fixed x ∈ RN and 0 < a0 < a. This generalizes [10, Corollary 3.1 and
Lemma 3.1] and in some sense Theorem 4.1 in [2]. Assuming that certain Lyapunov
functions (exponentials or powers) are integrable with respect to p(x, y, t) dy for
(x, t) ∈ RN × (a, T ), pointwise upper bounds for p are obtained. If in addition
V ∈ W 1,∞

loc (RN ), F ∈ W 1,∞
loc (RN ,RN ) are such that DV, DF are dominated by

some exponential functions, then p ∈ W 2,1
k (RN × (a, T )) for all k > 1. As a con-

sequence, we obtain also upper bounds for |Dyp|. In the case where F and V and
their corresponding derivatives up to the second order satisfy growth conditions
of exponential type, upper bounds are also obtained for |Dyyp| and |∂tp|. As a
consequence, we deduce that the semigroup T (·) is differentiable on Cb(RN ) for
t > 0.

In the case where V = 0, regularity and pointwise estimates for p can be
found in [10], [14] and for the solution of (1.3) with a L1-function as the initial
datum we refer to [3], [4].

Other bounds for the transition densities p are obtained in [1], using time
dependent Lyapunov functions techniques.

Notation. BR(x) denotes the open ball of RN of radius R and center x. If x = 0 we
simply write BR. For 0 ≤ a < b, we use Q(a, b) for RN × (a, b) and QT for Q(0, T )
(here the intervals can be either open or closed). We write C = C(a1, . . . , an) to
point out that the constant C depends on the quantities a1, . . . , an. To simplify
the notation, we understand the dependence on the dimension N and on quanti-
ties determined by the matrix (aij) as the ellipticity constant or the modulus of
continuity of the coefficients.

If u : RN × J → R, where J ⊂ [0,∞[ is an interval, we use the following
notation:

∂tu =
∂u

∂t
, Diu =

∂u

∂xi
, Diju = DiDju

Du = (D1u, . . . , DNu), D2u = (Diju)

and

|Du|2 =
N∑

i=1

|Diu|2, |D2u|2 =
N∑

i,j=1

|Diju|2.

Let us come to notation for function spaces. Cj
b (RN ) is the space of j times differ-

entiable functions in RN , with bounded derivatives up to the order j. C∞
c (RN ) is

the space of test functions. Cα(RN ) denotes the space of all bounded and α-Hölder
continuous functions on RN .

For 1 ≤ k ≤ ∞, j ∈ N, W j
k (RN ) denotes the classical Sobolev space of all

Lk-functions having weak derivatives in Lk(RN ) up to the order j. Its usual norm
is denoted by ‖ · ‖j,k and by ‖ · ‖k when j = 0.

Let us now define some spaces of functions of two variables (following basically
the notation of [7]). C0(Q(a, b)) is the Banach space of continuous functions u
defined in Q(a, b) such that lim|x|→∞ u(x, t) = 0 uniformly with respect to t ∈
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[a, b]. C2,1(Q(a, b)) is the space of all bounded functions u such that ∂tu, Du
and Diju are bounded and continuous in Q(a, b). For 0 < α ≤ 1 we denote by
C2+α,1+α/2(Q(a, b)) the space of all bounded functions u such that ∂tu, Du and
Diju are bounded and α-Hölder continuous in Q(a, b) with respect to the parabolic
distance d((x, t), (y, s)) := |x − y| + |t − s| 12 . Local Hölder spaces are defined, as
usual, requiring that the Hölder condition holds in every compact subset.

We shall also use parabolic Sobolev spaces. We denote by W r,s
k (Q(a, b))

the space of functions u ∈ Lk(Q(a, b)) having weak space derivatives Dα
xu ∈

Lk(Q(a, b)) for |α| ≤ r and weak time derivatives ∂β
t u ∈ Lk(Q(a, b)) for β ≤ s,

equipped with the norm

‖u‖W r,s
k (Q(a,b)) := ‖u‖Lk(Q(a,b)) +

∑
|α|≤r

‖Dα
xu‖Lk(Q(a,b)) +

∑
|β|≤s

‖∂β
t u‖Lk(Q(a,b)).

Hk,1(QT ) denotes the space of all functions u ∈W 1,0
k (QT ) with ∂tu ∈ (W 1,0

k′ (QT ))′,
the dual space of W 1,0

k′ (QT ), endowed with the norm

‖u‖Hk,1(QT ) := ‖∂tu‖(W 1,0
k′ (QT ))′ + ‖u‖W 1,0

k (QT )

where 1
k + 1

k′ = 1. Finally, for k > 2, Vk(QT ) is the space of all functions u ∈
W 1,0

k (QT ) such that there exists C > 0 for which∣∣∣∣∫
QT

u∂tφdx dt

∣∣∣∣ ≤ C (
‖φ‖

L
k

k−2 (QT )
+ ‖Dφ‖

L
k

k−1 (QT )

)
for every φ ∈ C2,1

c (Q(a, b)). Notice that k
k−1 = k′, k

k−2 =
(

k
2

)′
. Vk(QT ) is a Banach

space when endowed with the norm

‖u‖Vk(QT ) = ‖u‖W 1,0
k (QT ) + ‖∂tu‖ k

2 ,k;QT
,

where ‖∂tu‖ k
2 ,k;QT

is the best constant C such that the above estimate holds.
The space Hk,1(QT ) was introduced and studied by Krylov [6]. All properties

of the spaces Hk,1(QT ) and Vk(QT ) needed here, can be found in [10, Appendix].
In the whole paper the transition density p will be considered as a function

of (y, t) for arbitrary but fixed x ∈ RN . The writing ‖p‖ therefore stands for any
norm of p as function of (y, t), for a fixed x.

2. Local regularity and integrability of transition densities

As a first step we recall some local regularity results for the kernel p associated
with the minimal semigroup

T (t)f(x) =
∫
RN

p(x, y, t)f(y) dy,

i.e., the semigroup which defines the minimal bounded positive solutions of equa-
tion (1.2) when f ≥ 0.
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Regularity properties of the kernels p with respect to the variables (y, t) are
known even under weaker conditions than our hypothesis (H), see [2]. We combine
the results of [2] with the Schauder estimates to obtain regularity of p with respect
to all the variables (x, y, t). The proof is similar to the one of Proposition 2.1 in [10].

Proposition 2.1. Under assumption (H) the kernel p = p(x, y, t) is a positive con-
tinuous function in RN ×RN × (0,∞) which enjoys the following properties.

(i) For every x ∈ RN , 1 < s < ∞, the function p(x, ·, ·) belongs to Hs,1
loc(R

N ×
(0,∞)). In particular p,Dyp ∈ Ls

loc(R
N × (0,∞)) and p(x, ·, ·) is continuous.

(ii) For every y ∈ RN the function p(·, y, ·) belongs to C2+α,1+α/2
loc (RN × (0,∞))

and solves the equation ∂tp = Ap, t > 0. Moreover

sup
|y|≤R

‖p(·, y, ·)‖C2+α,1+α/2(BR×[ε,T ]) <∞

for every 0 < ε < T and R > 0.
(iii) If, in addition, F ∈ C1(RN), then p(x, ·, ·) ∈ W 2,1

s,loc(QT ) for every x ∈ RN ,
1 < s <∞, and satisfies the equation ∂tp = A∗

yp, where

A∗ = A0 − F ·D − (V + divF )

is the formal adjoint of A.

The uniqueness of the bounded solution of (1.2) does not hold in general, but
it is ensured by the existence of a Lyapunov function (cf. [10, Proposition 2.2]),
that is a C2+α

loc -function W : RN → [0,∞) such that lim|x|→∞W (x) = +∞ and
AW ≤ λW for some λ > 0. Lyapunov functions are easily found imposing suitable
conditions on the coefficients of A. For instance, W (x) = |x|2 is a Lyapunov
function for A provided that

∑
i aii(x) + F (x) · x − |x|2V (x) ≤ C|x|2 for some

C > 0. The following result can be proved as in [10, Proposition 2.2].

Proposition 2.2. Let W be a Lyapunov function for A and let u, v ∈ Cb(RN ×
[0, T ]) ∩ C2,1(RN × (0, T ]) solve (1.2). Then u = v.

Now we turn our attention to integrability properties of p and show how they
can be deduced from the existence of suitable Lyapunov functions. In the proof
of Proposition 2.4 below we need to approximate the semigroup (T (t))t≥0 with
semigroups generated by uniformly elliptic operators. This is done in the next
lemma.

Lemma 2.3. Assume that A has a Lyapunov function W . Take η ∈ C∞
c (R) with

η(s) = 1 for |s| ≤ 1, η(s) = 0 for |s| ≥ 2, and define ηn(x) = η
(∣∣ x

n

∣∣), Fn = ηnF ,
Vn := ηnV and An = A0 +Fn ·D−Vn. Consider the analytic semigroup (Tn(t))t≥0

generated by An in Cb(RN). Then, for every f ∈ C2+α(RN ) there exists a sequence
(nk) such that Tnk

(·)f(·)→ T (·)f(·) in C2,1(RN × [0, T ]).

Proof. Let un(x, t) = Tn(t)f(x), u(x, t) = T (t)f(x) and fix a radius � > 0. If
n > �+ 1 the Schauder estimates for the operator A (see, e.g., [5, Theorem 8.1.1])
yield

‖un‖C2+α,1+α/2(B�×[0,T ]) ≤ C�‖f‖C2+α(RN ).



420 K. Laidoune, G. Metafune, D. Pallara and A. Rhandi

By a standard diagonal argument we find a subsequence (nk) such that unk
con-

verges to a function u in C2,1(RN × (0,∞)). Since ∂tunk
−Aunk

= 0 in B�× [0, T ]
for nk > � we have ∂tu − Au = 0 in RN × [0, T ]. Moreover, u(x, 0) = f(x)
and |u(x, t)| ≤ ‖f‖∞, since this is true for un. By Proposition 2.2 we infer that
u(x, t) = T (t)f(x). �

The integrability of Lyapunov functions with respect to the measures p(x, y, t) dy
is given by the following result, which is an extension of [12, Lemma 3.9], where
the case V = 0 is considered.

Proposition 2.4. A Lyapunov function W is integrable with respect to the measures
p(x, y, t)dy. Setting

ζ(x, t) =
∫
RN

p(x, y, t)W (y) dy, (2.1)

the inequality ζ(t, x) ≤ eλtW (x) holds. Moreover, |AW | is integrable with re-
spect to p(x, ·, t), ζ ∈ C2,1(RN × (0,∞)) ∩ C(RN × [0,∞)) and Dtζ(x, t) ≤∫
RN p(x, y, t)AW (y) dy.

Proof. For α ≥ 0, set Wα :=W ∧ α and ζα(x, t) :=
∫
RN p(x, y, t)Wα(y) dy.

Let us consider, for every 0 < ε < 1, ψε ∈ C∞(R) such that ψε(t) = t for
t ≤ α, ψε constant in [α + ε,∞), ψ′

ε ≥ 0, and ψ′′
ε ≤ 0. Since ψ′′

ε ≤ 0 one deduces
that

tψ′
ε(t) ≤ ψε(t), ∀t ≥ 0. (2.2)

Now we approximate A with An := A0 +Fn ·∇−Vn and (T (t))t≥0 with (Tn(t))t≥0

as in Lemma 2.3. Denoting by pn(x, y, t) the kernel of (Tn(t))t≥0, since ψε ◦W ∈
C2+α

b (RN ) we have

∂tTn(t)(ψε ◦W )(x) =
∫
RN

pn(x, y, t)An(ψε ◦W )(y) dy.

On the other hand, by (2.2), we obtain

An(ψε ◦W )(x) = ψ′
ε(W (x))AnW (x) + Vn(x) [ψ′

ε(W (x))W (x) − ψε(W (x))]

+ ψ′′
ε (W (x))

N∑
i,j=1

aij(x)DiW (x)DjW (x)

≤ ψ′
ε(W (x))AnW (x).

Thus,

∂tTn(t)(ψε ◦W )(x) ≤
∫
RN

pn(x, y, t)ψ′
ε(W (y))AnW (y) dy

and also

∂tTn(t)(ψε ◦W )(x) ≤
∫
RN

pn(x, y, t)ψ′
ε(W (y))AW (y) dy



Estimates on Transition Kernels 421

if n is sufficiently large since, for fixed ε, the function ψ′
ε◦W has compact support.

Letting n → ∞ and using Lemma 2.3 (possibly passing to a subsequence) we
deduce

∂tT (t)(ψε ◦W )(x) ≤
∫
RN

p(x, y, t)ψ′
ε(W (y))AW (y) dy. (2.3)

Next we observe that ψε ◦W ≤ α + 1, ψ′
ε(t) → χ(−∞,α](t), and ψε ◦W → Wα

pointwise as ε → 0. From [8, Proposition 2.2.9] we deduce that T (t)(ψε ◦W ) →
T (t)Wα in C2,1(RN × (0,∞)). So, letting ε → 0 in (2.3) and using dominated
convergence in the right-hand side (all the integrals can be taken on the compact
set {W ≤ α+ 1}, where AW is bounded) we get

Dtζα(x, t) ≤
∫
{W≤α}

p(x, y, t)AW (y) dy. (2.4)

To conclude we proceed as in the proof of [12, Lemma 3.9]. From (2.4) we obtain

Dtζα(x, t) ≤ λζα(x, t) (2.5)

and hence, by Gronwall’s lemma, ζα(x, t) ≤ eλtWα(x). Letting α→ ∞ we obtain
ζ(x, t) ≤ eλtW (x) and then W is summable with respect to the measure p(x, ·, t).
The inequality 0 ≤ ζα ≤ ζ and the interior Schauder estimates show that the
family (ζα) is relatively compact in C2,1(RN × (0,∞)). Since ζα → ζ pointwise
as α → +∞, it follows that ζ ∈ C2,1(RN × (0,∞)). Moreover, the inequality
ζα(x, t) ≤ ζ(x, t) ≤ eλtW (x) implies that ζ(·, t) → W (·) as t → 0+, uniformly on
compact sets. Set E = {x ∈ RN : AW (x) ≥ 0}. Clearly∫

E

p(x, y, t)AW (y) dy ≤ λ
∫

E

p(x, y, t)W (y) dy ≤ λζ(x, t) <∞. (2.6)

Moreover, letting α→ +∞ in (2.3), we obtain that

Dtζ(x, t) ≤ lim inf
α→+∞

∫
{W≤α}

p(x, y, t)AW (y) dy.

This fact and (2.6) imply that |AW | is summable with respect to p(x, ·, t) and that
the above lim inf is a limit, so that the proof is complete. �

Assuming that AW tends to −∞ faster than −W one obtains, by Proposition
2.4, that the function ζ in (2.1) is bounded with respect to the space variables, see
[12, Theorem 3.10] for the case V = 0.

Proposition 2.5. Assume that the Lyapunov function W satisfies the inequality
AW ≤ −g(W ) where g : [0,∞) → R is a differentiable convex function such that
g(0) ≤ 0, lims→+∞ g(s) = +∞ and 1/g is integrable in a neighbourhood of +∞.
Then for every a > 0 the function ζ defined in (2.1) is bounded in RN × [a,∞).
Moreover, the semigroup (T (t))t≥0 is compact in Cb(RN ).
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Proof. Observe that g(s) ≤ sg′(s), since g is convex with g(0) ≤ 0. Let us prove
that ∫

RN

p(x, y, t)g(W (y)) dy ≥ g(ζ(x, t)). (2.7)

For, fix x and t and set s0 = ζ(x, t). Then, for all y ∈ RN we have

g(W (y)) ≥ g(s0) + g′(s0)(W (y)− s0)

and therefore, multiplying by p(x, y, t) and integrating∫
RN

p(x, y, t)g(W (y)) dy

≥ g(s0)
∫
RN

p(x, y, t) dy + g′(s0)s0
(
1−

∫
RN

p(x, y, t) dy
)
≥ g(s0).

From Proposition 2.4 and (2.7) we deduce

Dtζ(x, t) ≤
∫
RN

p(x, y, t)AW (y) dy ≤ −
∫
RN

p(x, y, t)g(W (y)) dy ≤ −g(ζ(x, t))

and therefore ζ(x, t) ≤ z(x, t), where z is the solution of the ordinary Cauchy
problem {

z′ = −g(z)
z(x, 0) =W (x).

Let � denote the greatest zero of g. Then z(x, t) ≤ � if W (x) ≤ �. On the other
hand, if W (x) > �, then z is decreasing and satisfies

t =
∫ W (x)

z(x,t)

ds

g(s)
≤

∫ ∞

z(x,t)

ds

g(s)
. (2.8)

This inequality easily yields, for every a > 0, a constant C(a) such that z(x, t) ≤
C(a) for every t ≥ a and x ∈ RN .

The compactness of (T (t))t≥0 in Cb(RN ) can be proved as in [12, Theorem
3.10]. �

Remark 2.6. If
∫
RN p(x, y, t) dy = 1 (as is the case if V = 0) then (2.7) follows

from Jensen’s inequality and the condition g(0) ≤ 0 is not needed.

Let us state a condition under which certain exponentials or polynomials are
Lyapunov functions. Using the same procedure as for the case V = 0 (see [10,
Proposition 2.5 and 2.6]) we obtain the following results.

Proposition 2.7. Let Λ be the maximum eigenvalue of (aij) as in (H). Assume that

lim sup
|x|→∞

|x|1−β

(
F (x) · x|x| −

V (x)
δβ|x|β−1

)
< −c, (2.9)
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0 < c < ∞, for some c, δ > 0, β > 1 such that δ < (βΛ)−1c. Then W (x) =
exp{δ|x|β} is a Lyapunov function. Moreover, if β > 2, there exist positive con-
stants c1, c2 such that

ζ(x, t) ≤ c1 exp
(
c2t

−β/(β−2)
)

(2.10)

for x ∈ RN , t > 0.

Proposition 2.8. Assume that

lim sup
|x|→∞

|x|1−β

(
F (x) · x|x| −

|x|
2α
V (x)

)
< 0, (2.11)

for some α > 0, β > 2. Then W (x) =
(
1 + |x|2

)α is a Lyapunov function and
there exists a positive constant c such that

ζ(x, t) ≤ ct−(2α)/(β−2) (2.12)

for x ∈ RN , 0 < t ≤ 1.

Remark 2.9. Proposition 2.7 will be used to check the integrability of |F |k and V k

with respect to p, assuming that |F |, V grow at infinity not faster than exp{|x|γ}
for some γ < β.

3. Uniform and pointwise bounds on transition densities

In this section we fix T > 0 and consider p as a function of (y, t) ∈ RN × (0, T ) for
arbitrary, but fixed, x ∈ RN . Further, fix 0 < a0 < a < b < b0 ≤ T and assume
for definiteness b0 − b ≥ a− a0. Setting

Γ(k, x, a0, b0) :=

(∫
Q(a0,b0)

(1 + |F (y)|k + V (y)k)p(x, y, t) dy dt

) 1
k

, (3.1)

the proofs of Proposition 3.1, Lemma 3.1 and Proposition 3.2 in [10] remain valid
for the case V �= 0. So, we obtain that

p ∈ Hs,1(Q(a, b)) for all s ∈ (1, k),

provided that Γ(k, x, a0, b0) < ∞ for some k > N + 2. Hence, by the embedding
theorem for Hs,1, s > N + 2, (see [10, Theorem 7.1]), we have

Theorem 3.1. If Γ(k, x, a0, b0) < ∞ for some k > N + 2, then p belongs to
L∞(Q(a, b)).

To obtain uniform and pointwise bounds on p we introduce the functions

Γ1(k, x, a0, b0) =

(∫
Q(a0,b0)

(1 + |F (y)|k)p(x, y, t) dy dt

) 1
k

, (3.2)
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Γ2(k, x, a0, b0) =

(∫
Q(a0,b0)

V
k
2 (y)p(x, y, t) dy dt

) 2
k

. (3.3)

Clearly Γ1(k, x, a0, b0) + Γ2(k, x, a0, b0) ≤ CΓ(k, x, a0, b0). The following re-
sult shows that only the assumption Γ1(k, x, a0, b0),Γ2(k, x, a0, b0) < ∞ for some
k > N + 2 is needed to obtain the boundedness of p.

Theorem 3.2. If Γ1(k, x, a0, b0),Γ2(k, x, a0, b0) <∞ for some k > N + 2 then

‖p‖L∞(Q(a,b)) ≤ C
(

Γk
1(k, x, a0, b0) + Γ

k
2
2 (k, x, a0, b0) +

b0 − a0
(a− a0)

k
2

)
. (3.4)

Proof. Step 1. Assume first that Γ(k, x, a0, b0) < ∞ so that p ∈ L∞(Q(a, b)) for
every a0 < a < b < b0 by Theorem 3.1 and consider q = η

k
2 p ∈ L∞(QT ) where η is

a smooth function with compact support in (a0, b0) such that 0 ≤ η ≤ 1, η(t) = 1
for a ≤ t ≤ b. Clearly q ∈ L∞(QT ).

Let ϕ ∈ C2,1(QT ) be such that ϕ(·, t) has compact support for every t. From
(1.4) we obtain∣∣∣∣∫

QT

q(∂tϕ+A0ϕ) dy dt
∣∣∣∣ =

∣∣∣∣∫
QT

(qF ·Dϕ− V qϕ+
k

2
pϕη

k−2
2 ∂tη) dy dt

∣∣∣∣ .
Next we note that

‖pη
k−2
2 ‖

L
k
2 (QT )

≤ ‖q‖
k−2

k

L∞(QT )(b0 − a0)
2
k

and that

‖Fq‖Lk(QT ) ≤ ‖q‖
k−1

k

L∞(QT )Γ1(k, x, a0, b0)

‖V q‖
L

k
2 (QT )

≤ ‖q‖
k−2

k

L∞(QT )Γ2(k, x, a0, b0).

Since also

‖q‖Lk(QT ) ≤ ‖q‖
k−1

k

L∞(QT )(b0 − a0)
1
k ,

‖q‖
L

k
2 (QT )

≤ ‖q‖
k−2

k

L∞(QT )(b0 − a0)
2
k ,

Theorem 7.3 in [10] now implies that

‖q‖L∞(QT ) ≤ C
(
‖q‖

k−1
k

L∞(QT )Γ1(k, x, a0, b0)

+ ‖q‖
k−2

k

L∞(QT )

(
Γ2(k, x, a0, b0) +

(b0 − a0)
2
k

a− a0

))
and hence, after a simple calculation,

‖q‖L∞(QT ) ≤ C
(

Γk
1(k, x, a0, b0) + Γ

k
2
2 (k, x, a0, b0) +

b0 − a0
(a− a0)

k
2

)
and (3.4) follows.
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Step 2. Let us now consider the general case. Fix a smooth function θ ∈ C∞
c (R)

such that θ(s) = 1 for |s| ≤ 1, θ(s) = 0 for |s| ≥ 2 and define θn(x) = θ
(

|x|
n

)
,

Vn = V θn. We consider the minimal semigroup (Un(t))t≥0 generated in Cb(RN ) by
the operator An = A0+F ·D−Vn. Since Vn ≤ V the procedure for constructing the
minimal semigroup recalled in Section 2 and the maximum principle yield Un(t)f ≤
T (t)f for every f ∈ Cb(RN ). If pn denotes the kernel of Un the above inequality
is equivalent to pn(x, y, t) ≤ p(x, y, t). To show that pn converges pointwise to p
we consider the analytic semigroup (Tn(t))t≥0 generated by A on Cb(Bn), under
Dirichlet boundary conditions (Bn is the ball of centre 0 and radius n). Since
Vn = V in Bn, the maximum principle gives Tn(t)f ≤ Un(t)f ≤ T (t)f in Bn for
every f ∈ Cb(RN ), f ≥ 0. Then rn(x, y, t) ≤ pn(x, y, t) ≤ p(x, y, t) for x, y ∈ Bρ

with ρ < n, where rn is the kernel of Tn in Bn. Letting n→∞ we see that pn → p
pointwise, since this is true for rn, see [11, Theorem 4.4].
The proof now easily follows by approximation from Step 1. Let Γn

i (k, x, a0, b0) be
the functions defined in (3.1), (3.2), (3.3) relative to pn. Since pn ≤ p and Vn ≤ V ,
it follows that Γn

i (k, x, a0, b0) ≤ Γi(k, x, a0, b0). Moreover, Γn(k, x, a0, b0) <∞ for
every n, since Vn is bounded. Then we obtain from Step 1

‖pn‖L∞(Q(a,b)) ≤ C
(

Γk
1(k, x, a0, b0) + Γ

k
2
2 (k, x, a0, b0) +

b0 − a0
(a− a0)

k
2

)

and the statement follows letting n→∞. �

Now we apply similar techniques to obtain pointwise bounds.
We consider the following assumption depending on the weight function ω

which, in our examples, will be a polynomial or an exponential.

(H1) W1,W2 are Lyapunov functions for A, W1 ≤ W2 and there exists 1 ≤ ω ∈
C2(RN ) such that

(i) ω ≤ cW1, |Dω| ≤ cω k−1
k W

1
k
1 , |D2ω| ≤ cω k−2

k W
2
k
1

(ii) ωV
k
2 ≤ cW2 and ω|F |k ≤ cW2

for some k > N + 2 and a constant c > 0.

We denote by ζ1, ζ2 the functions defined by (2.1) and associated withW1,W2,
respectively.

By Proposition 2.4 we know that (H1) implies Γi(k, x, a0, b0) <∞ for i = 1, 2.
In particular, since k > N +2, Theorem 3.2 shows that p(x, ·, ·) ∈ L∞(Q(a, b)) for
every x ∈ RN .

The use of different Lyapunov functions allows us to obtain more precise
estimates in the theorem below and its corollaries.

The proof of the following result is similar to the one of [10, Theorem 4.1].
For reader’s convenience we give the details.
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Theorem 3.3. Assume (H1). Then, there exists a constant C > 0 such that

0 < ω(y)p(x, y, t) ≤ C
(∫ b0

a0

ζ2(x, t) dt+
1

(a− a0)
k
2

∫ b0

a0

ζ1(x, t) dt

)
(3.5)

for all x, y ∈ RN , a ≤ t ≤ b.

Proof. Step 1. Assume first that ω is bounded. As in the proof of Theorem 3.2 we
choose a smooth function η(t) such that η(t) = 1 for a ≤ t ≤ b and η(t) = 0 for
t ≤ a0 and t ≥ b0, 0 ≤ η′ ≤ 2

a−a0
. We consider ψ ∈ C2,1(QT ) such that ψ(·, T ) = 0

and such that ψ(·, t) has compact support for all t. Setting q = η
k
2 p and taking

ϕ(y, t) = η
k
2 (t)ω(y)ψ(y, t), from (1.4) we obtain∫

QT

ωq (−∂tψ −A0ψ) dydt =
∫

QT

[
q
(
ψA0ω + 2

N∑
i,j=1

aijDiωDjψ+ (3.6)

ωF ·Dψ + ψF ·Dω − V ωψ
)

+
k

2
pωψη

k−2
2 ∂tη

]
dy dt.

Since ω is bounded, then ωq ∈ L1(QT ) ∩ L∞(QT ), by Theorem 3.2 and then [10,
Theorem 7.3] yields

‖ωq‖L∞(QT ) ≤ C
(
‖ωq‖Lk(QT ) + ‖ωq‖

L
k
2 (QT )

+ ‖qD2ω‖
L

k
2 (QT )

+ ‖qDω‖Lk(QT )

+ ‖ωqF‖Lk(QT ) + ‖qFDω‖
L

k
2 (QT )

+ ‖qV ω‖
L

k
2 (QT )

+
1

a− a0
‖pωη

k−2
2 |

L
k
2 (QT )

)
.

Next observe that

‖ωq‖Lk(QT ) ≤ ‖ωq‖
k−1

k

L∞(QT )‖ωq‖
1
k

L1(QT ) ≤ ‖ωq‖
k−1

k

L∞(QT )

(∫ b0

a0

ζ1 dt

) 1
k

,

‖ωq‖
L

k
2 (QT )

≤ ‖ωq‖
k−2

k

L∞(QT )‖ωq‖
2
k

L1(QT ) ≤ ‖ωq‖
k−2

k

L∞(QT )

(∫ b0

a0

ζ1 dt

) 2
k

,

and that, by (H1)(ii),

‖ωqF‖Lk(QT ) ≤ ‖ωq‖
k−1

k

L∞(QT )‖ωqF
k‖

1
k

L1(QT ) ≤ ‖ωq‖
k−1

k

L∞(QT )

(∫ b0

a0

ζ2 dt

) 1
k

,

‖ωqV ‖
L

k
2 (QT )

≤ ‖ωq‖
k−2

k

L∞(QT )‖ωqV
k
2 ‖

2
k

L1(QT ) ≤ ‖ωq‖
k−2

k

L∞(QT )

(∫ b0

a0

ζ2 dt

) 2
k

.

Moreover, as in the proof of Theorem 3.2 one has

‖ωpη
k−2
2 ‖

L
k
2 (QT )

≤ ‖ωq‖
k−2

k

L∞(QT )‖ωp‖
2
k

L1(Q(a0,b0)) ≤ ‖ωq‖
k−2

k

L∞(QT )

(∫ b0

a0

ζ1 dt

) 2
k

.
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Next we combine (H1)(i) and (H1)(ii) to estimate the remaining terms

‖DωqF‖
L

k
2 (QT )

≤
(∫

QT

q
k
2 ω

k−2
2 W2

) 2
k

≤ ‖ωq‖
k−2
2

L∞(QT )

(∫ b0

a0

ζ2 dt

) 2
k

and, similarly,

‖D2ωq‖
L

k
2 (QT )

≤ ‖ωq‖
k−2

k

L∞(QT )

(∫ b0

a0

ζ1 dt

) 2
k

‖Dωq‖Lk(QT ) ≤ ‖ωq‖
k−1

k

L∞(QT )

(∫ b0

a0

ζ1 dt

) 1
k

.

Collecting similar terms and recalling that W1 ≤W2 we obtain

‖ωq‖L∞(QT ) ≤ C‖ωq‖
k−1

k

L∞(QT )

(∫ b0

a0

ζ2 dt

) 1
k

+ C‖ωq‖
k−2

k

L∞(QT )

⎛⎝(∫ b0

a0

ζ2 dt

) 2
k

+
1

a− a0

(∫ b0

a0

ζ1 dt

) 2
k

⎞⎠
hence, after simple computations,

‖ωq‖L∞(QT ) ≤ C
(∫ b0

a0

ζ2 dt+
1

(a− a0)
k
2

∫ b0

a0

ζ1 dt

)
and (3.5) follows for a bounded ω.
Step 2. If ω is not bounded, we consider ωε = ω

1+εω . A straightforward computation
shows that ωε satisfies (H1) with a constant C independent of ε. Therefore, from
Step 1 we obtain

0 < ωε(y)p(x, y, t) ≤ C
(∫ b0

a0

ζ2(x, t) dt+
1

(a− a0)
k
2

∫ b0

a0

ζ1(x, t) dt

)
, (3.7)

with C independent of ε and, letting ε→ 0, the statement is proved. �

Corollary 3.4. Assume that

lim sup
|x|→∞

|x|1−β

(
F (x) · x|x| −

V (x)
δβ|x|β−1

)
< −c, 0 < c <∞ (3.8)

for some δ > 0, c > 0, β > 2 such that δ < (βΛ)−1c, where Λ is the maximum
eigenvalue of (aij), and that V (x) + |F (x)| ≤ c1ec2|x|β−ε

for some ε, c1, c2 > 0.
Then

0 < p(x, y, t) ≤ c3 exp
(
c4t

− β
β−2

)
exp

(
−δ|y|β

)
for x, y ∈ RN , 0 < t ≤ T , for suitable c3, c4 > 0.
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Proof. We take ω(y) = eδ|y|
β

, W1(y) = W2(y) = eγ|y|
β

for δ < γ < (βΛ)−1c and
use Theorem 3.3 with a = t and a − a0 = b0 − b = b − a = t

2 . The thesis then
follows using Proposition 2.7. �
Example.

(i) The above corollary applies with any γ < (βΛ)−1c and without any restriction
on V ≥ 0 when

lim sup
|x|→∞

|x|1−β

(
F (x) · x|x|

)
< −c, 0 < c <∞,

for some β > 2 and |F (x)| ≤ c1ec2|x|β−ε

for some ε, c1, c2 > 0. This is obvious
if V = 0 and, in the general case, it follows by observing that the kernel
p is pointwise dominated, by the maximum principle, by the corresponding
kernel of the operator with V = 0.

(ii) Let us consider the Schrödinger operator Δ− a2|x|s with a > 0, s > 2. Then
Corollary 3.4 applies with β = 1 + s

2 and any δ < 2a
s+2 . This yields

0 < p(x, y, t) ≤ c3 exp
(
c4t

− s+2
s−2

)
exp

(
−δ|y|

s+2
2

)
:= c(t)φ(y).

Using the symmetry of p and the semigroup law (see [9, Example 3.13]), we
obtain

p(x, y, t) ≤ c3 exp
(
c4t

− s+2
s−2

)
exp

(
−δ|x|

s+2
2

)
exp

(
−δ|y|

s+2
2

)
.

This estimate was obtained in [9, Example 3.13].
(iii) Let us generalize the previous situation to the case of the operators

A = Δ− |x|r x|x| ·D − |x|
s

with r > 1. We distinguish three cases.
(a) If s < 2r, then β = r + 1 and δ can be any positive number less than

1
r+1 . Therefore

0 < p(x, y, t) ≤ c1 exp
(
c2t

− r+1
r−1

)
exp

(
−δ|y|r+1

)
.

(b) If s = 2r, then β = r + 1 as before but now δ must be less than 1+
√

5
2(r+1) .

(c) If s > 2r, then β = 1 + s
2 and δ < 2

s+2 . Then we get, as in (ii)

0 < p(x, y, t) ≤ c1 exp
(
c2t

− s+2
s−2

)
exp

(
−δ|y|

s+2
2

)
:= c(t)φ(y). (3.9)

In this case one can also obtain estimates with respect to x proceeding
as in (ii). We consider the formal adjoint A∗ = Δ + |x|r x

|x| ·D + (N +
r − 1)|x|r−1 − |x|s. The associated minimal semigroup has the kernel
p∗(x, y, t) = p(y, x, t) which satisfies (3.9), by the same argument as
above. This yields p(t, x, y) ≤ c(t)φ(x) and, proceeding as in (ii),

p(x, y, t) ≤ c1 exp
(
c2t

− s+2
s−2

)
exp

(
−δ|x|

s+2
2

)
exp

(
−δ|y|

s+2
2

)
.
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Under conditions similar to those of Corollary 3.4, the estimate of p can be
improved with respect to the time variable, loosing the exponential decay in y.

Corollary 3.5. Assume that

lim sup
|x|→∞

|x|1−β

(
F (x) · x|x| −

|x|
2α
V (x)

)
< 0, (3.10)

for some α > 0 and β > 2. If |F (x)|+
√
V (x) ≤ c(1+|x|2)γ1 and ω(x) := (1+|x|2)γ2

with 0 < kγ1 + γ2 ≤ α, γ1 ≥ β−2
4 and k > N + 2, then there exists a constant

C > 0 such that

0 < p(x, y, t) ≤ C
tσ

(1 + |y|2)−γ2 ,

for all x, y ∈ RN , 0 < t ≤ 1 where

σ =
2

β − 2
((k − 2)γ1 + γ2) .

Proof. Observe that Wr(x) = (1+ |x|2)r is a Lyapunov function for every 0 < r ≤
α. If ζr(x, t) is the corresponding function defined in (2.1), then Proposition 2.8
yields

ζr(x, t) ≤ crt
−2r
β−2

for x ∈ RN and 0 < t ≤ 1. We set a = t and a−a0 = b0−b = b−a = ts

2 where s ≥ 1
will be chosen later and we apply Theorem 3.3 with ω(x) =W1(x) =

(
1 + |x|2

)γ2

and W2(x) =
(
1 + |x|2

)kγ1+γ2 . Thus we obtain

p(x, y, t) ≤ C
(
t−

2(kγ1+γ2)
β−2 +s + t−

2γ2
β−2−s k

2 +s
)

(1 + |y|2)−γ2 .

Minimizing over s we get s = 4γ1
β−2 and the thesis follows. �

Example. Let us consider again the operators

A = Δ− |x|r x|x| ·D − |x|
s

with r > 1. Again we distinguish three cases.

(a) If s+ 1 ≤ r, then β = r+ 1 and γ1 = r
2 . It is easily seen that (3.10) holds for

every α > 0 and hence

p(x, y, t) ≤ Ct−(k−2) r
r−1−

2γ1
r−1

(
1 + |y|2

)−γ2

for every γ2 ≥ 0, 0 < t ≤ 1, y ∈ RN .
(b) If r < s+ 1, then (3.10) holds for β = s+ 2 and every α > 0. So, we have to

distinguish two cases.
(i) If s ≤ 2r, then γ1 = r

2 and

p(x, y, t) ≤ Ct−(k−2) r
s−

2γ1
s

(
1 + |y|2

)−γ2
,
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(ii) If s > 2r, then γ1 = s
4 and

p(x, y, t) ≤ Ct−
k−2
2 − 2γ1

s

(
1 + |y|2

)−γ2
,

for every γ2 ≥ 0, 0 < t ≤ 1, y ∈ RN .

Remark 3.6. The results of this section generalize Theorem 4.1 and its corollaries
in [10] and also the results obtained in [9] in the case of exponential decay but not
for polynomial decay, where the results in [9] are more precise.

4. Regularity properties

In this section we obtain the differentiability of the transition semigroup T (·)
associated with the transition kernels p in Cb(RN) in the case where the coefficients
F and V are of exponential type.

We assume here that aij ∈ C2
b (RN ), V ∈ C1(RN ) and F ∈ C2(RN ). All

results of this section can be proved exactly by the same arguments as in [10,
Section 5 and Section 6].

Theorem 4.1. Suppose that there exist constants β > 2, c > 0 such that

lim sup
|x|→∞

|x|1−β

(
F (x) · x|x| −

V (x)
δβ|x|β−1

)
< −c.

Assume moreover that

V (x) + |DV (x)| + |F (x)|+ |DF (x)| + |D2F (x)| ≤ c1 exp(c2|x|β−ε)

for some ε, c1, c2 > 0. Then the following estimates hold

(i) 0 < p(x, y, t) ≤ c3 exp{c4t−
β

β−2 } exp{−γ|y|β}
(ii) |Dyp(x, y, t)| ≤ c3 exp{c4t−

β
β−2 } exp{−γ|y|β}

(iii) |D2
yp(x, y, t)| ≤ c3 exp{c4t−

β
β−2 } exp{−γ|y|β}

(iv) |∂tp(x, y, t)| ≤ c3 exp{c4t−
β

β−2 } exp{−γ|y|β}
for suitable c3, c4, γ > 0 and for all 0 < t ≤ T and x, y ∈ RN .

Remark 4.2. (a) Assuming only that there exist constants β > 2, c > 0 such
that

lim sup
|x|→∞

|x|1−β

(
F (x) · x|x| −

V (x)
δβ|x|β−1

)
< −c,

and V (x) + |F (x)| ≤ C exp(|x|γ) for some C > 0 and γ < β, the functions
p log2 p and p log p are integrable in Q(a, b) and in RN for fixed t ∈ [a, b]
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respectively and∫
Q(a,b)

|Dyp(x, y, t)|2
p(x, y, t)

dy dt

≤ 1
λ2

∫
Q(a,b)

(|F (y)|2 + V 2(y))p(x, y, t) dy dt

+
∫

Q(a,b)

p(x, y, t) log2 p(x, y, t) dy dt

+
2
λ

∫
RN

[
p(x, y, t)− p(x, y, t) log p(x, y, t)

]t=b

t=a
dy <∞.

In particular, p
1
2 belongs to W 1,0

2 (Q(a, b)) (see [10, Theorem 5.1]). This im-
plies in particular that p ∈ W 2,1

k (Q(a, b)) provided that also DF is of expo-
nential type for some k > N + 2 (see [10, Theorem 5.2]).

(b) From Theorem 3.3 and (a) (cf. [10, Theorem 5.3]) one can observe that the
assumption aij ∈ C2

b (RN ) is not needed for (i) and (ii).

As a consequence we obtain the differentiability of T (·) in Cb(RN ).

Theorem 4.3. Under the assumptions of Theorem 4.1, the transition semigroup
T (·) is differentiable on Cb(RN ) for t > 0.

Example. Let a ∈ R. From Theorem 4.3 we deduce that the operator

A = Δ− |x|rx ·D − a2|x|s

with r > 0 and s ≥ 0 generates a differentiable semigroup in Cb(RN). This result
is known for a = 0 (see [13, Proposition 4.4]).
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Metric-induced Morphogenesis
and Non-Euclidean Elasticity:
Scaling Laws and Thin Film Models

Marta Lewicka

Abstract. The purpose of this paper is to report on recent developments con-
cerning the analysis and the rigorous derivation of thin film models for struc-
tures exhibiting residual stress at free equilibria. This phenomenon has been
observed in different contexts: growing leaves, torn plastic sheets and specifi-
cally engineered polymer gels. The study of wavy patterns in these contexts
suggest that the sheet endeavors to reach a non-attainable equilibrium and
hence assumes a non-zero stress rest configuration.
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1. Elastic energy of a growing tissue and
non-Euclidean elasticity

This paper concerns elastic structures which exhibit non-zero strain at free equi-
libria. Many growing tissues (leaves, flowers or marine invertebrates) attain com-
plicated configurations during their free growth. Recent work has focused on some
of the related questions by using variants of thin plate theory [1, 5, 4, 23]. How-
ever, the theories used are not all identical and some of them arbitrarily ignore
certain terms and boundary conditions without prior justification. This suggests
that it might be useful to rigorously derive an asymptotic theory for the shape of
a residually strained thin lamina to clarify the role of the assumptions used while
shedding light on the errors associated with the use of the approximate theory
that results. Recently, such rigorous derivations were carried out [8, 17, 19, 21] in
the context of standard nonlinear elasticity for thin plates and shells.

The purpose of this paper is to present these results in a concise manner,
departing from the 3d incompatible elasticity theory conjectured to explain the
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mechanism for the spontaneous formation of non-Euclidean metrics. Namely, recall
that a smooth Riemannian metric on a simply connected domain can be realized
as the pull-back metric of an orientation preserving deformation if and only if
the associated Riemann curvature tensor vanishes identically. When this condi-
tion fails, one seeks a deformation yielding the closest metric realization. It is
conjectured that the same principle plays a role in the developmental processes
of naturally growing tissues, where the process of growth provides a mechanism
for the spontaneous formation of non-Euclidean metrics and consequently leads to
complicated morphogenesis of the thin film exhibiting waves, ruffles and non-zero
residual stress.

Below, we set up a variational model describing this phenomenon by introduc-
ing the non-Euclidean version of the nonlinear elasticity functional, and establish
its Γ-convergence under a proper scaling. Heuristically, a sequence of function-
als Fn is said to Γ-converge to a limit functional F if the minimizers of Fn, if
converging, have a minimizer of F as a limit.

Consider a sequence of thin 3d films Ωh = Ω × (−h/2, h/2), viewed as the
reference configurations of thin elastic tissues. Here, Ω ⊂ R2 is an open, bounded
and simply connected set which we refer to as the mid-plate of thin films under
consideration. Each Ωh is now assumed to undergo a growth process, described
instantaneously by a (given) smooth tensor:

ah = [ah
ij ] : Ωh −→ R3×3 such that det ah(x) > 0.

According to the formalism in [25], the multiplicative decomposition

∇u = Fah (1.1)

is postulated for the gradient of any deformation u : Ωh −→ R3. The tensor
F = ∇u(ah)−1 corresponds to the elastic part of u, and accounts for the reorga-
nization of Ωh in response to the growth tensor ah. The validity of decomposition
(1.1) into an elastic and inelastic part requires that it is possible to separate out a
reference configuration, and thus this formalism is most relevant for the descrip-
tion of processes such as plasticity, swelling and shrinkage in thin films, or plant
morphogenesis.

The elastic energy of u depends now only on F :

Ih
W (u) =

1
h

∫
Ωh

W (F ) dx =
1
h

∫
Ωh

W (∇u(ah)−1) dx, ∀u ∈W 1,2(Ωh,R3).

(1.2)
We remark that although our results are valid for thin laminae that might be
residually strained by a variety of means, we only consider the one-way coupling
of growth to shape and ignore the feedback from shape back to growth (plasticity,
swelling, shrinkage etc.). However, it seems fairly easy to include this coupling
once the basic coupling mechanisms are known.

In (1.2), the energy density W : R3×3 −→ R+ is a nonlinear function, as-
sumed to be C2 in a neighborhood of SO(3) and assumed to satisfy the following
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conditions of normalization, frame indifference and nondegeneracy:

∃c > 0 ∀F ∈ R3×3 ∀R ∈ SO(3) W (R) = 0, W (RF ) =W (F ),

W (F ) ≥ c dist2(F, SO(3)).
(1.3)

The reason for using a nonlinear elasticity model (rather than the more familiar
linear elasticity) is that, as our analysis shows, the resulting deformations uh when
h → 0, are expected to be of order O(1), even though their gradients are locally
O(h) close to rigid rotations.

We now compare the above approach with the ‘target metric’ formalism [5,
20]. On each Ωh one assumes to be given a smooth Riemannian metric gh = [gh

ij ].
A deformation u of Ωh is then an orientation preserving realization of gh, when

(∇u)T∇u = gh and det∇u > 0,

or equivalently, by the polar decomposition theorem,

∇u(x) ∈ Fh(x) =
{
R
√
gh(x); R ∈ SO(3)

}
a.e. in Ωh. (1.4)

It is hence instructive to study the following energy, bounding from below Ih
W (u):

Ĩh
dist(u) =

1
h

∫
Ωh

dist2(∇u(x),Fh(x)) dx ∀u ∈ W 1,2(Ωh,R3). (1.5)

The functional Ĩh
dist measures the average pointwise deviation of the deformation u

from being an orientation preserving realization of gh. Note that Ĩh
dist is comparable

in magnitude with Ih
W , for W = dist2(·, SO(3)). Also, observe that the intrinsic

metric of the material is transformed by ah to the target metric gh = (ah)T ah

and, for isotropicW , only the symmetric positive definite part of ah given by
√
gh

plays a role in determining the deformed shape.

2. The residual stress and a result on its scaling

Note that one could define the energy as the difference between the pull-back
metric of a deformation u and the given metric: Ih

str(u) =
∫
|(∇u)T∇u − gh|2 dx.

However, such ‘stretching’ functional is not appropriate from the variational point
of view, because there always exists u ∈ W 1,∞ such that Ih

str(u) = 0. Further,
if the Riemann curvature tensor Rh associated to gh does not vanish identically,
say Rh

ijkl(x) �= 0, then u has a ‘folding structure’ [9]; it cannot be orientation
preserving (or reversing) in any open neighborhood of x.

As proved in [20], the functionals Ih
W , Ĩh

W below and Ĩh
dist have strictly positive

infima for non-flat gh, which points to the existence of non-zero stress at free
equilibria (in the absence of external forces or boundary conditions):

Theorem 2.1. For each fixed h, the following two conditions are equivalent:
(i) The Riemann curvature tensor Rh

ijkl �≡ 0,
(ii) inf

{
Ĩh
dist(u); u ∈W 1,2(Ωh,R3)

}
> 0.
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Several interesting questions further arise in the study of the proposed energy
functionals. A first one is to determine the scaling of the infimum energy in terms
of the vanishing thickness h → 0. Another is to find the limiting zero-thickness
theories under the obtained scaling laws.

In [20], we considered the case where gh is given by a tangential Riemannian
metric [gαβ] on Ω, and is independent of the thickness variable:

gh = g(x′, x3) =

⎡⎣ [
gαβ(x′)

] 0
0

0 0 1

⎤⎦ ∀x′ ∈ Ω, x3 ∈ (−h/2, h/2). (2.1)

The above particular choice of the metric is motivated by the results of [14]. The
experiment presented therein consisted in fabricating programmed flat disks of
gels having a non-constant monomer concentration which induces a ‘differential
shrinking factor’. A disk was then activated in a temperature raised above a critical
threshold, wherein the gel shrunk with a factor proportional to its concentration.
This process defined a new target metric on the disk, of the form (2.1) and radially
symmetric. Consequently, the metric induced a 3d configuration in the initially
planar plate; one of the most remarkable features of this deformation is the onset
of some transversal oscillations (wavy patterns), which broke the radial symmetry.

Following our point of view, note that if [gαβ ] in (2.1) has non-zero Gaussian
curvature κ[gαβ ], then each Rh �≡ 0. In [20], we observed the following:

Theorem 2.2. [gαβ] has an isometric immersion y ∈W 2,2(Ω,R3) if and only if

h−2 inf Ĩh
dist ≤ C

(for a uniform constant C). Also, κ[gαβ ] �≡ 0 if and only if, with a uniform positive
constant c:

h−2 inf Ĩh
dist ≥ c > 0.

The existence (or lack thereof) of local or global isometric immersions of a
given 2d Riemannian manifold into R3 is a longstanding problem in differential ge-
ometry, its main feature being finding the optimal regularity. By a classical result
of Kuiper [15], a C1 isometric embedding into R3 can be obtained by means of con-
vex integration (see also [9]). This regularity is far from W 2,2, where information
about the second derivatives is also available. On the other hand, a smooth isom-
etry exists for some special cases, e.g., for smooth metrics with uniformly positive
or negative Gaussian curvatures on bounded domains in R2 (see [11], Theorems
9.0.1 and 10.0.2). Counterexamples to such theories are largely unexplored. By
[13], there exists an analytic metric [gαβ ] with nonnegative Gaussian curvature on
a 2d sphere, with no C3 isometric embedding. However such metric always admits
a C1,1 embedding (see [10] and [12]). For a related example see also [24].
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3. The prestrained Kirchhoff model

Consider now a class of more general 3d non-Euclidean elasticity functionals:

Ĩh
W (u) =

∫
Ωh

W (x′,∇u(x)) dx, (3.1)

where the inhomogeneous stored energy densityW : Ω×Rn×n −→ R+ satisfies the
conditions given below of frame invariance, normalization, growth and regularity,
as in (1.3): with respect to the energy well Fh given in (1.4), relative to gh = g as
in (2.1). Note that Fh(x) = F(x′) is independent of h and of x3.

(i) W (x′, RF ) =W (x′, F ) for all R ∈ SO(3),
(ii) W (x′,

√
g(x′)) = 0,

(iii) W (x′, F ) ≥ c dist2(F,F(x′)), with some uniform constant c > 0,
(iv) W has regularity C2 in some neighborhood of the set {(x′, F ); x′ ∈ Ω,

F ∈ F(x′)}.
Properties (i)–(iii) are assumed to hold for all x ∈ Ω and all F ∈ R3×3.

The following two results provide a description of the limiting behavior of
the energies Ĩh

W as h → 0. Namely, we prove that any sequence of deformations
uh with Ĩh

W (uh) ≤ Ch2, converges to a W 2,2 regular isometric immersion y of the
metric [gαβ]. Conversely, every y with these properties can be recovered as a limit
of uh whose energy scales like h2. The Γ-limit [3] of the energies is a curvature
functional on the space of all W 2,2 realizations y of [gαβ ] in R3:

1
h2
Ĩh
W

Γ−→ I2(y) where I2(y) =
1
24

∫
Ω

Q̃2(x′)
(√

[gαβ ]
−1

(∇y)T∇"n
)

dx′. (3.2)

Here "n is the unit normal to the image surface y(Ω), while Q̃2(x′) are the follow-
ing quadratic forms, nondegenerate and positive definite on the symmetric 2 × 2
tensors:

Q̃3(x′)(F ) = ∇2W (x′, ·)|√g(x′)(F, F ),

Q̃2(x′)(F2×2) = min{Q̃3(x′)(F̃ ); F̃2×2 = F2×2}.
We use the following notational convention: for a matrix F , its n × m principle
minor is denoted by Fn×m and the superscript T refers to the transpose of a matrix
or an operator.

Theorem 3.1. Assume that a given sequence of deformations uh ∈ W 1,2(Ωh,R3)
satisfies

Ĩh
W (uh) ≤ Ch2, (3.3)

where C > 0 is a uniform constant. Then, for some sequence of constants ch ∈ R3,
the following holds for the renormalized deformations yh(x′, x3) = uh(x′, hx3) −
ch ∈W 1,2(Ω1,R3):

(i) yh converge, up to a subsequence, in W 1,2(Ω1,R3) to y(x′, x3) = y(x′) and
y ∈W 2,2(Ω,R3).
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(ii) The matrix field Q(x′) with columns Q(x′) =
[
∂1y(x′), ∂2y(x′), "n(x′)

]
∈

F(x′), for a.e. x′ ∈ Ω. Here,

"n =
∂1y × ∂2y
|∂1y × ∂2y|

(3.4)

is the (well-defined) normal to the image surface y(Ω). Consequently, y real-
izes the mid-plate metric: (∇y)T∇y = [gαβ ].

(iii) We have the lower bound: lim inf
h→0

1
h2
Ĩh
W (uh) ≥ I2(y), where I2 is given

in (3.2).

We further prove that the lower bound in (iii) above is optimal, in the
following sense. Let y ∈ W 2,2(Ω,R3) be a Sobolev regular isometric immersion
of the given mid-plate metric, that is (∇y)T∇y = [gαβ ]. The normal vector
"n ∈W 1,2(Ω,R3) is then given by (3.4) and it is well defined because |∂1y× ∂2y| =
(det g)1/2 > 0. We have:

Theorem 3.2. For every isometric immersion y ∈ W 2,2(Ω,R3) of [gαβ ], there exists
a sequence of recovery deformations uh ∈ W 1,2(Ωh,R3) such that the assertion (i)
of Theorem 3.1 holds, together with

lim
h→0

1
h2
Ĩh
W (uh) = I2(y).

Assume now a slightly more general case of plates with slowly varying thick-
ness, that is when

Ωh = {(x′, x3); x ∈ Ω, −hq1(x′) < x3 < hq2(x′)}
with some positive C1 functions q1, q2 : Ω −→ (0,∞). In this setting, the same
results as in Theorem 3.1 and 3.2 have been re-proved in [22], with the limiting
functional

Iq1,q2
2 (y) =

1
24

∫
Ω

(
q1(x′) + q2(x′)

)3Q̃2(x′)
(√

[gαβ]
−1

(∇y)T∇"n
)

dx′.

For classical elasticity (gh = Id) of shells with mid-surface of arbitrary geometry
and slowly oscillating boundaries as above, the analysis has been previously carried
out in [18].

An important reference in the context of Theorems 3.1 and 3.2 (for flat
films) is [26], containing the derivation of Kirchhoff plate theory for heterogeneous
multilayers from 3d nonlinear energies given through an inhomogeneous density in∫
W (x3/h,∇u).

4. A rigidity estimate

As a crucial ingredient of the proof of compactness in Theorem 3.1, we present
a generalization of the nonlinear rigidity estimate obtained [7] in the Euclidean
setting, extended to the non-Euclidean metrics in [20]. Note that in case gh =
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Id, the infimum of Ih
dist in (1.5) is naturally 0 and is attained only by the rigid

motions. In [7], the authors proved an optimal estimate of the deviation in W 1,2

of a deformation u (on Ωh), from rigid motions, in terms of the energy Ih
dist(u). In

our setting, since there is no realization of Ih
dist(u) = 0 if the Riemann curvature of

the metric gh is non-zero, we choose to estimate the deviation of the deformation
from a linear map at the expense of an extra term, proportional to the gradient
of the metric.

Theorem 4.1. Let U be an open, bounded subset of Rn and let g be a smooth (up
to the boundary) metric on U . For every u ∈ W 1,2(U ,Rn) there exists Q ∈ Rn×n

such that:∫
U
|∇u(x)−Q|2 dx≤C

(∫
U

dist2
(
∇u,SO(n)

√
g(x)

)
dx+‖∇g‖2L∞(diam U)2|U|

)
,

where the constant C depends on ‖g‖L∞, ‖g−1‖L∞, and on the domain U . The
dependence on U is uniform for a family of domains which are bilipschitz equivalent
with controlled Lipschitz constants.

For an embeddable metric g (i.e., whose Rijkl ≡ 0) a related result has been
obtained in [2]; namely an estimate of the deviation of (orientation preserving)
deformation u from the realizations of g in terms of the L1 stretching energy∫
|(∇u)T∇u− g|.

5. A hierarchy of scalings

Given a sequence of growth tensors ah (say, each close to Id) defined on Ωh, the gen-
eral objective is now to analyze the behavior of the minimizers of the correspond-
ing energies Ih

W as h → 0. By Theorem 2.1, the infimum: mh = inf
{
Ih
W (u); u ∈

W 1,2(Ωh,R3)
}

must be strictly positive whenever the Riemann tensor of the met-

ric gh = (ah)T ah does not vanish identically on Ωh. This condition for gh, under
suitable scaling properties, can be translated into a first-order curvature condition
(5.1) below. In a first step (Theorem 5.1) we established [16] a lower bound on mh

in terms of a power law: mh ≥ chβ, for all values of β greater than a critical β0

in (5.2). This critical exponent depends on the asymptotic behavior of the pertur-
bation ah − Id in terms of the thickness h. Under existence conditions for certain
classes of isometries, it can be shown that actually mh ∼ hβ0 .

Theorem 5.1. For a given sequence of growth tensors ah define their variations:

Var(ah) = ‖∇tan(ah
|Ω)‖L∞(Ω) + ‖∂3ah‖L∞(Ωh)

together with the scaling in h:

ω1 = sup
{
ω; lim

h→0

1
hω

Var(ah) = 0
}
.

Assume that: ‖ah‖L∞(Ωh) + ‖(ah)−1‖L∞(Ωh) ≤ C and ω1 > 0.
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Further, assume that for some ω0 ≥ 0, there exists the limit

εg(x′) = lim
h→0

1
hω0

�

∫ h/2

−h/2

ah(x′, t)− Id dt in L2(Ω,R3×3),

which moreover satisfies
curlT curl (εg)2×2 �≡ 0, (5.1)

and that ω0 < min{2ω1, ω1 + 1}.
Then, for every β with

β > β0 = max{ω0 + 2, 2ω0}, (5.2)

there holds: lim sup
h→0

1
hβ

inf Ih
0 = +∞.

We expect it should be possible to rigorously derive a hierarchy of prestrained
limiting theories, differentiated by the embeddability properties of the target met-
rics, encoded in the scalings of (the components of) their Riemann curvature ten-
sors. This is in the same spirit as the different scalings of external forces leading
to a hierarchy of nonlinear elastic plate theories, displayed by Friesecke, James
and Müller in[8]. For shells, which are thin films with mid-surface or arbitrary
(non-flat) geometry, an infinite hierarchy of models was proposed, by means of
asymptotic expansion in [21], and it remains in agreement with all the rigorously
obtained results [6, 17, 18, 19].

6. The prestrained von Kármán model

Towards studying the dynamical growth problem (that is, incorporating the feed-
back from the minimizing shape uh at the prior time-step, to growth tensor ah at
the current time-step) in [16] we considered the growth tensor

ah(x′, x3) = Id + h2εg(x′) + hx3γg(x′), (6.1)

with given matrix fields εg, γg : Ω −→ R3×3. Note that the assumptions of Theorem
5.1 do not hold, since in the present case ω0 = 2ω1 = ω1 + 1 = 2.

We proved that, in this setting inf Ih
W ≤ Ch4, while the lower bound

h−4 inf Ih
W ≥ c > 0 is equivalent to

curl((γg)2×2) �≡ 0 or 2curlT curl(εg)2×2 + det(γg)2×2 �≡ 0, (6.2)

which are the (negated) linearized Gauss-Codazzi equations corresponding to the
metric I = Id+h2(εg)2×2 and the second fundamental form II = 1

2h(γg)2×2 on Ω.
Equivalently, the above conditions guarantee that the highest-order terms in the
expansion of the Riemann curvature tensor components R1213, R2321 and R1212

of gh = (ah)T ah do not vanish. Also, either of them implies that inf I4 > 0 (see
definition below), which yields the lower bound on inf Ih

W .
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The Γ-limit of the rescaled energies is, in turn, expressed in terms of the out-
of-plane displacement v ∈ W 2,2(Ω,R) and in-plane displacement w ∈W 1,2(Ω,R2):

1
h4
Ih
W

Γ−→ I4 where

I4(w, v) =
1
24

∫
Ω

Q2

(
∇2v +

1
2
(γg)2×2

)
+

1
2

∫
Ω

Q2

(
sym∇w +

1
2
∇v ⊗∇v − 1

2
(εg)2×2

)
,

(6.3)

with the quadratic nondegenerate form Q2, acting on matrices F ∈ R2×2:

Q2(F ) = min{Q3(F̃ ); F̃ ∈ R3×3, F̃2×2 = F} and Q3(F̃ ) = D2W (Id)(F̃ ⊗ F̃ ).

The two terms in (6.3) measure: the first order in h change of II, and the second
order change in I, under the deformation id + hve3 + h2w of Ω. Moreover, any
sequence of deformations uh with Ih

W (uh) ≤ Ch4 is, asymptotically, of this form.

More precisely, we proved in [16]:

Theorem 6.1. Let the growth tensor ah be as in (6.1). Assume that the energies of
a sequence of deformations uh ∈ W 1,2(Ωh,R3) satisfy

Ih
W (uh) ≤ Ch4, (6.4)

where W fulfills (1.3). Then there exist proper rotations R̄h ∈ SO(3) and transla-
tions ch ∈ R3 such that, for the normalized deformations

yh(x′, x3) = (R̄h)Tuh(x′, hx3)− ch : Ω1 −→ R3,

the following holds:
(i) yh(x′, x3) converge in W 1,2(Ω1,R3) to x′.
(ii) The scaled displacements

V h(x′) =
1
h

�

∫ 1/2

−1/2

yh(x′, t)− x′ dt (6.5)

converge (up to a subsequence) in W 1,2(Ω,R3) to the vector field of the
form (0, 0, v)T , with the only non-zero out-of-plane scalar component: v ∈
W 2,2(Ω,R).

(iii) The scaled in-plane displacements h−1V h
tan converge (up to a subsequence)

weakly in W 1,2(Ω,R2) to an in-plane displacement field w ∈ W 1,2(Ω,R2).
(iv) Recalling the definition (6.3), there holds

lim inf
h→0

1
h4
Ih
W (uh) ≥ I4(w, v).

The limsup part of the Γ-convergence statement in Theorem 6.2 establishes
that for any pair of displacements (w, v) in suitable limit spaces, one can construct
a sequence of 3d deformations of thin plates Ωh which approximately yield the
energy I4(w, v). The form of such recovery sequence delivers an insight on how to
reconstruct the 3d deformations out of the data on the mid-plate Ω. In particular,
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comparing the present von Kármán growth model with the classical model ([8],
Section 6.1) we observe a novel warping effect in the non-tangential growth.

Theorem 6.2. Assume the setting of Theorem 6.1. For every w ∈ W 1,2(Ω,R3) and
every v ∈ W 2,2(Ω,R), there exists a sequence of deformations uh ∈ W 1,2(Sh,R3)
such that the following holds:

(i) The sequence yh(x′, x3) = uh(x′, hx3) converges in W 1,2(Ω1,R3) to x′.

(ii) V h(x′) = h−1�

∫ h/2

−h/2

(uh(x′, t)− x′) dt converges in W 1,2(Ω,R3) to (0, 0, v)T .

(iii) h−1V h
tan converges in W 1,2(Ω,R2) to w.

(iv) Recalling the definition (6.3) one has:

lim
h→0

1
h4
Ih
W (uh) = I4(w, v).

The main consequences of the Γ-convergence results above are as follows:

Corollary 6.3. Assume the setting of Theorem 6.1. Then:

(i) There exist uniform constants C, c ≥ 0 such that, for every h,

c ≤ 1
h4

inf Ih
W ≤ C. (6.6)

If moreover (6.2) holds then one may have c > 0.
(ii) There exists at least one minimizing sequence uh ∈ W 1,2(Ωh,R3 for Ih

W :

lim
h→0

( 1
h4
Ih
W (uh)− 1

h4
inf Ih

W

)
= 0. (6.7)

For any such sequence the convergences (i), (ii) and (iii) of Theorem 6.1 hold
and the limit (w, v) is a minimizer of I4.

(iii) For any minimizer (w, v) of I4, there exists a minimizing sequence uh, sat-
isfying (6.7) together with (i), (ii), (iii) and (iv) of Theorem 6.2.

7. The prestrained von Kármán equations

For elastic energy W satisfying (1.3) which is additionally isotropic,

∀F ∈ R3×3 ∀R ∈ SO(3) W (FR) =W (F ), (7.1)

one can see [8] that the quadratic forms in I4 are given explicitly as

Q3(F ) = 2μ|sym F |2 + λ|tr F |2,

Q2(F2×2) = 2μ|sym F2×2|2 +
2μλ

2μ+ λ
|tr F2×2|2,

(7.2)

for all F ∈ R3×3. Here, tr stands for the trace of a quadratic matrix, and μ and λ
are the Lamé constants, satisfying: μ ≥ 0, 3λ+ μ ≥ 0.
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Under these conditions, the Euler-Lagrange equations of the limiting func-
tional I4 are equivalent, under a change of variables which replaces the in-plane
displacement w by the Airy stress potential Φ, to the new system proposed in [23]:

Δ2Φ = −S(KG + λg), BΔ2v = [v,Φ]−BΩg,

where S = μ(3λ+2μ)/(λ+μ) is the Young’s modulus,KG the Gaussian curvature,
B = S/(12(1− ν2)) the bending stiffness, and ν = λ/(2(λ+ μ)) the Poisson ratio
given in terms of the Lamé constants λ and μ. The corrections due to the prestrain
are

λg = curlT curl (εg)2×2, Ωg = divT div ((γg)2×2 + ν cof (γg)2×2) .

More precisely:

Theorem 7.1. Assume (1.3) and (7.1). Then the leading order displacements in a
thin tissue which tries to adapt itself to an internally imposed metric gh = (ah)T ah

with ah as in (6.1) satisfy:

Δ2Φ = −S
(

det∇2v + curlT curl(εg)2×2

)
,

BΔ2v = cof∇2Φ : ∇2v −B divT div
(
(γg)2×2 + ν cof(γg)2×2

)
,

together with the (free) boundary conditions on ∂Ω:

Φ = ∂�nΦ = 0,

Ψ̃ : ("n⊗ "n) + ν Ψ̃ : (τ ⊗ τ) = 0,

(1− ν)∂τ

(
Ψ̃ : ("n⊗ τ)

)
+ div

(
Ψ̃ + ν cofΨ̃

)
"n = 0.

Here "n denotes the normal, τ the tangent to ∂Ω, while

Ψ̃ = ∇2v + sym(γg)2×2.

The in-plane displacement w can be recovered from the Airy stress potential Φ and
the out-of-plane displacement v, uniquely up to rigid motions, by means of

cof∇2Φ = 2μ
(
sym∇w +

1
2
∇v ⊗∇v − sym(εg)2×2

)
+

2μλ
2μ+ λ

(
div w +

1
2
|∇v|2 − tr(εg)2×2

)
Id.

Notice that in the particular case when (symκg)2×2 = 0 on ∂Ω, the two last
boundary conditions become:

∂2
�n�nv + ν

(
∂2

ττv −K∂�nv
)

= 0,

(2− ν)∂τ∂�n∂τv + ∂3
�n�n�nv +K

(
Δv + 2∂2

�n�nv
)

= 0,

where K stands for the (scalar) curvature of ∂Ω, so that ∂τ τ = K"n. If additionally
∂Ω is polygonal, then the above equations simplify to equations (5) in [23].
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Abstract. We consider a class of second-order linear nonautonomous parabolic
equations in Rd with time periodic unbounded coefficients. We give sufficient
conditions for the evolution operator G(t, s) be compact in Cb(R

d) for t > s,
and describe the asymptotic behavior of G(t, s)f as t − s → ∞ in terms
of a family of measures μs, s ∈ R, solution of the associated Fokker-Planck
equation.
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1. Introduction

Linear nonautonomous parabolic equations in Rd are a classical subject in the
mathematical literature. Most papers and books about regular solutions are de-
voted to the case of bounded coefficients (e.g., [9, 5], but the list is very long),
and recently the interest towards unbounded coefficients grew up. The standard
motivations to the study of unbounded coefficients are on one side the well known
connections with stochastic ODEs with unbounded nonlinearities, and on the other
side the changes of variables that transform bounded into unbounded coefficients,
occurring in different mathematical models. However, only for a few equations
with unbounded coefficients it is possible to recover the familiar results about the
bounded coefficients case. Many of them exhibit very different, and at first glance

This work was partially supported by the GNAMPA research project 2009 “Equazioni differenziali
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surprising, aspects. Therefore, a third motivation is the interest in new phenomena
in PDEs.

This paper deals with one of these new phenomena, giving sufficient condi-
tions in order that the evolution operator G(t, s) associated to a class of second-
order parabolic equations is a compact contraction in Cb(Rd) for t > s. Precisely,
Cauchy problems such as

ut(t, x) = A(t)u(t, ·)(x), t > s, x ∈ Rd, (1.1)

u(s, x) = ϕ(x), x ∈ Rd, (1.2)
will be considered, where the elliptic operators A(t) are defined by

(A(t)ϕ)(x) :=
d∑

i,j=1

qij(t, x)Dijϕ(x) +
d∑

i=1

bi(t, x)Diϕ(x)

:= Tr
(
Q(t, x)D2ϕ(x)

)
+ 〈b(t, x),∇ϕ(x)〉, (1.3)

and the (smooth enough) coefficients qij , bi are allowed to be unbounded. If ϕ is
smooth and it has compact support, a classical bounded solution to (1.1)–(1.2) is
readily constructed, as the limit as R→∞ of the solutions uR of Cauchy-Dirichlet
problems in the balls B(0, R). However, classical bounded solutions need not be
unique. Under assumptions that guarantee positivity preserving in (1.1)–(1.2) (and
hence, uniqueness of its bounded classical solution), a basic study of the evolution
operator G(t, s) for (1.1) in Cb(Rd) is in the paper [8]. The evolution operator
turns out to be Markovian, since it has the representation

G(t, s)ϕ(x) =
∫

Rd

ϕ(y)pt,s,x(dy), t > s, x ∈ Rd, ϕ ∈ Cb(Rd),

where the probability measures pt,s,x are given by pt,s,x(dy) = g(t, s, x, y)dy for a
positive function g.

It is easy to see that if a Markovian G(t, s) is compact in Cb(Rd), then it does
not preserve C0(Rd), the space of the continuous functions vanishing as |x| → ∞,
and it cannot be extended to a bounded operator in Lp(Rd, dx) for 1 ≤ p < ∞.
Therefore, much of the theory developed for bounded coefficients fails.

When a parabolic problem is not well posed in Lp spaces with respect to the
Lebesgue measure, it is natural to look for other measures μ, and in particular
to weighted Lebesgue measures, such that G(t, s) acts in Lp(Rd, μ). This is well
understood in the autonomous case A(t) ≡ A, where the dynamics is held by
a semigroup T (t) and G(t, s) = T (t − s). Then, an important role is played by
invariant measures, that are Borel probability measures μ such that∫

Rd

T (t)ϕdμ =
∫

Rd

ϕdμ, ϕ ∈ Cb(Rd).

If a Markov semigroup has an invariant measure μ, it can be extended in a standard
way to a contraction semigroup in all the spaces Lp(Rd, μ), 1 ≤ p < ∞. Under
broad assumptions the invariant measure is unique, and it is strongly related with
the asymptotic behavior of T (t), since limt→∞ T (t)ϕ =

∫
Rd ϕdμ, locally uniformly
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if ϕ ∈ Cb(Rd) and in Lp(Rd, μ) if ϕ ∈ Lp(Rd, μ), 1 < p <∞. In the nonautonomous
case the role of the invariant measure is played by families of measures {μs : s ∈
R}, called evolution systems of measures, that satisfy∫

Rd

G(t, s)ϕdμt =
∫

Rd

ϕdμs, t > s, ϕ ∈ Cb(Rd). (1.4)

If (1.4) is satisfied, the function s �→ μs satisfies (at least, formally) the Fokker-
Planck equation

Dsμs +A(s)∗μs = 0, s ∈ R,

which is a parabolic equation for measures without any initial, or final, condition.
Therefore it is natural to have infinitely many solutions, and to look for uniqueness
of special solutions. For instance, in the autonomous case the unique stationary
solution is the invariant measure, in the periodic case A(t) = A(t + T ) under
reasonable assumptions there is a unique T -periodic solution, etc. Arguing as in
the autonomous case, it is easy to see that if (1.4) holds then G(t, s) may be
extended to a contraction from Lp(Rd, μs) to Lp(Rd, μt) for t > s. Therefore, it is
natural to investigate asymptotic behavior of G(t, s) not only in Cb(Rd) but also
in these Lp spaces.

A basic study of the evolution operator for parabolic equations with (smooth
enough) unbounded coefficients is in [8]. In its sequel [10] we studied asymptotic
behavior of G(t, s) in the case of time-periodic coefficients.

In this paper sufficient conditions will be given for the evolution operator
G(t, s) be compact in Cb(Rd). Then, compactness will be used to obtain asymp-
totic behavior results in the case of time-periodic coefficients. Indeed, compact-
ness implies that there exists a unique T -periodic evolution system of measures
{μs : s ∈ R}, and that denoting by msϕ the mean value

msϕ :=
∫

Rd

ϕ(x)μs(dx), s ∈ R, ϕ ∈ Cb(Rd), (1.5)

there is ω < 0 such that for each ε > 0 we have

‖G(t, s)ϕ−msϕ‖∞ ≤Mεe
(ω+ε)(t−s)‖ϕ‖∞, t > s, ϕ ∈ Cb(Rd), (1.6)

for some Mε > 0. As a consequence, for every p ∈ (1,∞) and ε > 0 we get

‖G(t, s)ϕ−msϕ‖Lp(Rd,μt) ≤Me
(ω+ε)(t−s)‖ϕ‖Lp(Rd,μs), t > s, ϕ ∈ Lp(Rd, μs),

(1.7)
for some M = M(p, ε) > 0. Note that while the constant M may depend on
p, the exponential rate of decay is independent of p. These results complement
the asymptotic behavior results of [10], where (1.7) was obtained under different
assumptions.

2. Preliminaries: the evolution operator G(t, s)

We use standard notations. Cb(Rd) is the space of the bounded continuous func-
tions from Rd to R, endowed with the sup norm. C0(Rd) is the space of the
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continuous functions that vanish at infinity. For k ∈ N ∪ {0}, Ck
c (Rd) is the space

of k times differentiable functions with compact support. For 0 < α < 1, a < b and
R > 0, Cα/2,α([a, b]×B(0, R)) and C1+α/2,2+α([a, b]×B(0, R)) are the usual para-
bolic Hölder spaces in the set [a, b]×B(0, R); Cα/2,α

loc (R1+d) and C1+α/2,2+α
loc (R1+d)

are the subspaces of Cb(R1+d) consisting of functions whose restrictions to [a, b]×
B(0, R) belong to Cα/2,α([a, b]×B(0, R)) and to C1+α/2,2+α([a, b]×B(0, R)), re-
spectively, for every a < b and R > 0.

In this section we recall some results from [8] about the evolution operator for
parabolic equations with unbounded coefficients. They were proved under standard
regularity and ellipticity assumptions, and nonstandard qualitative assumptions.

Hypothesis 2.1.

(i) The coefficients qij, bi (i, j = 1, . . . , d) belong to Cα/2,α
loc (R1+d) for some

α ∈ (0, 1).
(ii) For every (s, x) ∈ R1+d, the matrix Q(s, x) is symmetric and there exists a

function η : R1+d → R such that 0 < η0 := infR1+d η and

〈Q(s, x)ξ, ξ〉 ≥ η(s, x)|ξ|2, ξ ∈ Rd, (s, x) ∈ R1+d.

(iii) There exist a positive function W ∈ C2(Rd) and a number λ ∈ R such that

lim
|x|→∞

W (x) = ∞ and sup
s∈R, x∈Rd

(A(s)W )(x) − λW (x) < 0.

Assumptions (i) and (ii) imply that for every s ∈ R and ϕ ∈ Cb(Rd), the
Cauchy problem {

Dtu(t, x) = A(t)u(t, x), t > s, x ∈ Rd,

u(s, x) = ϕ(x), x ∈ Rd,
(2.1)

has a bounded classical solution. Assumption (iii) implies that the bounded classi-
cal solution to (2.1) is unique (in fact, a maximum principle that yields uniqueness
is proved in [8] under a slightly weaker assumption). The evolution operatorG(t, s)
is defined by

G(t, s)ϕ = u(t, ·), t ≥ s ∈ R, (2.2)

where u is the unique bounded solution to (2.1). Some of the properties of G(t, s)
are in next theorem.

Theorem 2.2. Let Hypothesis 2.1 hold. Define Λ := {(t, s, x) ∈ R2+d : t > s, x ∈
Rd}. Then:

(i) for every ϕ ∈ Cb(Rd), the function (t, s, x) �→ G(t, s)ϕ(x) is continuous in Λ.
For each s ∈ R, (t, x) �→ G(t, s)ϕ(x) belongs to C1+α/2,2+α

loc ((s,∞)× Rd);
(ii) for every ϕ ∈ C2

c (Rd), the function (t, s, x) �→ G(t, s)ϕ(x) is continuously
differentiable with respect to s in Λ and DsG(t, s)ϕ(x) = −G(t, s)A(s)ϕ(x)
for any (t, s, x) ∈ Λ;
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(iii) for each (t, s, x) ∈ Λ there exists a Borel probability measure pt,s,x in Rd such
that

G(t, s)ϕ(x) =
∫

Rd

ϕ(y)pt,s,x(dy), ϕ ∈ Cb(Rd). (2.3)

Moreover, pt,s,x(dy) = g(t, s, x, y)dy for a positive function g.
(iv) G(t, s) is strong Feller; extending it to L∞(Rd, dx) through formula (2.3), it

maps L∞(Rd, dx) (and, in particular, Bb(Rd)) into Cb(Rd) for t > s, and

‖G(t, s)ϕ‖∞ ≤ ‖ϕ‖∞, ϕ ∈ L∞(Rd, dx), t > s.

(v) If (ϕn) is a bounded sequence in Cb(Rd) that converges uniformly to ϕ in each
compact set K ⊂ Rd, then for each s ∈ R and T > 0, G(·, s)ϕn converges to
G(·, s)ϕ uniformly in [s, s+ T ]×K, for each compact set K ⊂ Rd.

(vi) For every s ∈ R and R > 0, 0 < ε < T there is C = C(s, ε, T,R) > 0 such
that

sup
s+ε≤t≤s+T

‖G(t, s)ϕ‖C2(B(0,R)) ≤ C‖ϕ‖∞, ϕ ∈ Cb(Rd).

Statements (i) to (v) are explicitly mentioned in [8] (Thm. 2.1, Prop. 2.4, Cor.
2.5, Prop. 3.1, Lemma 3.2). Statement (vi) is hidden in the proof of Theorem 2.1,
where G(t, s)ϕ is obtained by an approximation procedure, in three steps: first,
for ϕ ∈ C2+α

c (Rd), then for ϕ ∈ C0(Rd), and then for ϕ ∈ Cb(Rd). At each step,
we have interior Schauder estimates for a sequence un that approaches G(t, s)ϕ,
namely for s ∈ R and R > 0, 0 < ε < T there is C = C(s, ε, T,R) > 0 such that

‖un‖C1+α/2,2+α([s+ε,s+T ]×B(0,R)) ≤ C‖ϕ‖∞, n ∈ N,

and un converges to G(t, s)ϕ locally uniformly. This yields (vi).

To get evolution system of measures we have to strengthen assumption 2.1(iii).
The following theorem is proved in [8].

Theorem 2.3. Under Hypotheses 2.1, assume in addition that there exist a positive
function W ∈ C2(Rd) and numbers a, c > 0 such that

lim
|x|→∞

W (x) = +∞ and (A(s)W )(x) ≤ a− cW (x), (s, x) ∈ R1+d.

(2.4)
Then there exists a tight(1) evolution system of measures {μs : s ∈ R} for G(t, s).
Moreover,

G(t, s)W (x) :=
∫

Rd

W (y)pt,s,x(dy) ≤W (x) +
a

c
, t > s, x ∈ Rd, (2.5)

and ∫
Rd

W (y)μt(dy) ≤ minW +
a

c
, t ∈ R. (2.6)

1i.e., ∀ε > 0 ∃R = R(ε) > 0 such that μs(B(0, R)) ≥ 1 − ε, for all s ∈ R.
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3. Compactness in Cb(Rd)

A necessary and sufficient condition for G(t, s) be compact in Cb(Rd) for t > s is
very similar to the corresponding condition in the autonomous case ([13]).

Proposition 3.1. Under Hypothesis 2.1 the following statements are equivalent:

(a) for any t > s, G(t, s) : Cb(Rd)→ Cb(Rd) is compact.
(b) for any t > s the family of measures {pt,s,x(dy) : x ∈ Rd} is tight, i.e., for

every ε > 0 there exists R = R(t, s, ε) > 0 such that

pt,s,x(B(0, R)) ≥ 1− ε, x ∈ Rd.

Proof. We follow the proof given in [13, Prop. 3.6] for the autonomous case.
Let statement (a) hold. For every R > 0 let ϕR : Rd → R be a continuous

function such that 1B(0,R) ≤ ϕR ≤ 1B(0,R+1). Since ‖ϕR‖∞ ≤ 1 and G(t, s) is com-
pact, there is a sequence G(t, s)ϕRn that converges uniformly in the whole Rd to a
limit function g. Since ϕR goes to 1 as R → +∞, uniformly on each compact set
and ‖ϕR‖∞ ≤ 1 for every R, by Theorem 2.2(v) limR→∞G(t, s)ϕR = G(t, s)1 = 1

uniformly on each compact set. Then, g ≡ 1 and limR→+∞ ‖G(t, s)ϕR−1‖∞ = 0.
Therefore, fixed any ε > 0, we have

pt,s,x(B(0, R)) = (G(t, s)1B(0,R))(x) ≥ (G(t, s)ϕR)(x) ≥ 1− ε, x ∈ Rd,

for R large enough.
Let now statement (b) hold. For t > s fix r ∈ (s, t) and recall that (see

formula (2.3))

(G(t, s)ϕ)(x) = (G(t, r)G(r, s)ϕ)(x) =
∫

Rd

(G(r, s)ϕ)(y)pt,r,x(dy),

for any ϕ ∈ Cb(Rd) and any x ∈ Rd. For every R > 0 set

(GRϕ)(x) =
∫

B(0,R)

(G(r, s)ϕ)(y)pt,r,x(dy), x ∈ Rd.

Each GR : Cb(Rd) → Cb(Rd) is a compact operator, since it may be written as
GR = S◦R◦G(r, s) where G(r, s) : Cb(Rd)→ Cb(Rd) is continuous,R : Cb(Rd) →
C(B(0, R)) is the restriction operator, and S : C(B(0, R)) → Cb(Rd) is defined by

Sψ(x) =
∫

B(0,R)

ψ(y)pt,r,x(dy) = (G(t, r)ψ̃)(x), x ∈ B(0, R),

where ψ̃(x) is the null extension of ψ to the whole Rd. Now, R◦G(s, r) : Cb(Rd) →
C(B(0, R)) is compact by Theorem 2.2(v), and S is continuous from C(B(0, R))
to Cb(Rd) because G(t, r) is strong Feller by Theorem 2.2(iv).

Moreover, GR → G(t, s) in L(Cb(Rd)), as R → +∞. Indeed, for ε > 0 there
is R0 > 0 such that pt,r,x(B(0, R)) ≥ 1 − ε for each x ∈ Rd and R ≥ R0, and
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consequently

|(G(t, s)ϕ)(x) − (GRϕ)(x)| ≤ ‖G(r, s)ϕ‖∞
∫

Rd\B(0,R)

pt,r,x(dy) ≤ ε‖ϕ‖∞,

for R ≥ R0 and for each x ∈ Rd.
Being limit of compact operators, G(t, s) is compact. �

Remark 3.2. Some remarks are in order.
(i) An insight in the proof shows that if G(t, s) is compact for some t > s, then

the family {pt,s,x(dy) : x ∈ Rd} is tight; conversely if for some r > s the
family {pr,s,x(dy) : x ∈ Rd} is tight then G(t, s) is compact for each t > r.

(ii) If for some r > s the family {pr,s,x(dy) : x ∈ Rd} is tight, then the family
{pt,s,x(dy) : t ≥ r, x ∈ Rd} is tight. Indeed, for every R > 0 we have

pt,s,x(Rd \B(0, R)) = (G(t, s)1Rd\B(0,R))(x)

= (G(t, r)G(r, s)1Rd\B(0,R))(x)

≤ ‖G(r, s)1Rd\B(0,R)‖∞,

so that, if pr,s,x(Rd \ B(0, R)) = G(r, s)1Rd\B(0,R)(x) ≤ ε for every x, also
pt,s,x(Rd \B(0, R)) ≤ ε for every x.

(iii) As in the autonomous case ([13]), if G(t, s) is compact in Cb(Rd), it does not
preserve Lp(Rd, dx) for any p ∈ [1,+∞) and it does not preserve C0(Rd).
Indeed, let R > 0 be so large that pt,s,x(B(0, R)) ≥ 1/2 for every x ∈ Rd,
and let ϕ ∈ Cc(Rd) be such that ϕ ≥ 1B(0,R). Then,

(G(t, s)ϕ)(x) ≥ (G(t, s)1B(0,R))(x) = pt,s,x(B(0, R)) ≥ 1
2
,

for every x, so that G(t, s)ϕ does not belong to any space Lp(Rd, dx) and to
C0(Rd).

(iv) A similar argument shows that inf G(t, s)ϕ > 0 for each t > s and ϕ ∈
Cb(Rd) \ {0}, ϕ ≥ 0. Indeed, if ϕ(x) > 0 for each x, and R > 0 is as before,
then (G(t, s)ϕ)(x) ≥ δ(G(t, s)1B(0,R))(x) ≥ δ/2, with δ = min|x|≤R ϕ(x) > 0.
If ϕ(x) ≥ 0 for each x, it is sufficient to recall that G(t, s)ϕ = G(t, (s +
t)/2)G((s+ t)/2, s)ϕ and that G((s+ t)/2, s)ϕ(x) > 0 for each x by Theorem
2.2 (iii).

However, to check the tightness condition of Proposition 3.1 is not obvious,
since the measures pt,s,x are not explicit, in general. In the case of time-depending
Ornstein-Uhlenbeck operators (e.g., [1]),

(A(t)ϕ)(x) =
1
2
Tr

(
Q(t)D2

xϕ(x)
)

+ 〈A(t)x + f(t),∇ϕ(x)〉, x ∈ Rd,

the measures pt,s,x are explicit Gaussian measures and it is possible to see that the
tightness condition does not hold. Alternatively, one can check that G(t, s) maps
Lp(Rd, dx) into itself for every p ∈ (1,∞) and therefore it cannot be compact in
Cb(Rd).
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If the assumptions of Theorem 2.3 hold, estimate (2.5) implies that the family
{pt,s,x : t > s, x ∈ B(0, r)} is tight for every r > 0. However, this is not enough
for compactness. To obtain compactness we have to strengthen condition (2.4) on
the auxiliary function W .

Theorem 3.3. Let Hypotheses 2.1 hold. Assume in addition that there exist a C2

function W : Rd �→ R, such that lim|x|→∞W (x) = +∞, a number R > 0 and
a convex increasing function g : [0,+∞) → R such that 1/g is in L1(a,+∞) for
large a, and

(A(s)W )(x) ≤ −g(W (x)), s ∈ R, |x| ≥ R. (3.1)

Then, for every δ > 0 there is C = C(δ) > 0 such that (G(t, s)W )(x) ≤ C for
every x ∈ Rd and s ≤ t− δ. Consequently, the family of probabilities {pt,s,x(dy) :
s ≤ t− δ, x ∈ Rd} is tight, and G(t, s) is compact in Cb(Rd) for t > s.

Proof. As a first step we show that

(G(t, s)W )(x)−(G(t, r)W )(x) ≥ −
∫ s

r

(G(t, σ)A(σ)W )(x)dσ, r < s < t, x ∈ Rd.

(3.2)
Let ϕ ∈ C∞(R) be a nonincreasing function such that ϕ ≡ 1 in (−∞, 0], ϕ ≡ 0 in
[1,+∞), and define ψn(t) =

∫ t

0 ϕ(s − n)ds for each n ∈ N. The functions ψn are
smooth and enjoy the following properties:
• ψn(t) = t for t ∈ [0, n],
• ψn(t) ≡ const. for t ≥ n+ 1,
• 0 ≤ ψ′

n ≤ 1 and ψ′′
n ≤ 0,

• for every t ≥ 0, the sequence (ψ′
n(t)) is increasing.

Then, the function Wn := ψn ◦W belongs to C2
b (Rd) and it is constant outside a

compact set. By Theorem 2.2(ii), applied to Wn − c, we have

(G(t, s)Wn)(x)−(G(t, r)Wn)(x) = −
∫ s

r

(G(t, σ)A(σ)Wn)(x) dσ

= −
∫ s

r

G(t, σ) {ψ′
n(W )(A(σ)W ) + ψ′′

n(W )〈Q∇W,∇W 〉} (x)dσ

≥ −
∫ s

r

G(t, σ)(ψ′
n(W )A(σ)W )(x)dσ

= −
∫ s

r

dσ

∫
Eσ

ψ′
n(W (y))(A(σ)W )(y)pt,σ,x(dy)

−
∫ s

r

dσ

∫
Rd\Eσ

ψ′
n(W (y))(A(σ)W )(y)pt,σ,x(dy),

where Eσ = {x ∈ Rd : (A(σ)W )(x) > 0}. Letting n→ +∞, the left-hand side goes
to (G(t, s)W )(x) − (G(t, r)W )(x). Concerning the right-hand side, both integrals
converge by monotone convergence. We have to prove that their limits are finite.
The first term converges to −

∫ s

r dσ
∫

Eσ
(A(σ)W )(y)pt,σ,x(dy), which is finite since
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the sets Eσ are equibounded in Rd (recall that the function A(σ)W tends to −∞
as |x| → +∞, uniformly with respect to σ ∈ [r, s]). The second term may be
estimated by

−
∫ s

r

dσ

∫
Rd\Eσ

ψ′
n(W (y))(A(σ)W )(y)pt,σ,x(dy)

≤
∫ s

r

dσ

∫
Eσ

ψ′
n(W (y))(A(σ)W )(y)pt,σ,x(dy) + (G(t, s)Wn)(x) − (G(t, r)Wn)(x).

Letting n→ +∞, we obtain that
∫ s

r dσ
∫

Rd\Eσ
(A(σ)W )(y)pt,σ,x(dy) is finite.

Summing up, the function σ �→ (G(t, σ)(A(σ)W ))(x) is in L1(r, s) and (3.2)
follows.

Possibly replacing g by g̃ = g −C for a suitable constant C, we may assume
that (A(s)W )(x) ≤ −g(W (x)) for every s ∈ R and x ∈ Rd.

Fix x ∈ Rd, t ∈ R, and set

β(s) := (G(t, t− s)W )(x), s ≥ 0.

Then β is measurable, since it is the limit of the sequence of continuous functions
s �→ G(t, t− s)Wn(x). Inequality (3.2) implies

β(b)− β(a) ≤ −
∫ t−a

t−b

(G(t, σ)g(W ))(x)dσ, a < b,

and, since g is convex,

(G(t, σ)g(W ))(x) =
∫

Rd

g(W (y))pt,σ,x(dy)

≥ g
(∫

Rd

W (y)pt,σ,x(dy)
)

= g((G(t, σ)W )(x))

so that

β(b)− β(a) ≤ −
∫ t−a

t−b

g((G(t, σ)W )(x))dσ

= −
∫ t−a

t−b

g(β(t− σ))dσ

= −
∫ b

a

g(β(σ))dσ,

(3.3)

for any a < b. Then, for every s ≥ 0, β(s) ≤ ζ(s), where ζ is the solution of the
Cauchy problem {

ζ ′(s) = −g(ζ(s)), s ≥ 0,

ζ(0) =W (x).

Indeed, assume by contradiction that there exists s0 > 0 such that β(s0) > ζ(s0),
and denote by I the largest interval containing s0 such that β(s) > ζ(s) for each
s ∈ I.
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Inequality (3.3) implies that β(b)− β(a) ≤ −m(b− a) for b > a, with m := min g.
In other words, the function s �→ β(s) + ms is decreasing. This implies that I
contains some left neighborhood of s0. Indeed, since s �→ β(s) +ms is decreasing,
then

lim
s→s−

0

β(s) +ms ≥ β(s0) +ms0 > ζ(s0) +ms0 = lim
s→s−

0

ζ(s) +ms

so that lims→s−
0
(β(s)− ζ(s)) > 0, which yields β > ζ in a left neighborhood of s0.

Let a = inf I. Then a < s0, and there is a sequence (sn) ↑ a such that
β(sn) ≤ ζ(sn), so that β(a) +ma ≤ limn→∞ β(sn) +msn ≤ ζ(a) +ma, that is
β(a) ≤ ζ(a). On the other hand, for each s ∈ I we have

β(s)− β(a) ≤
∫ s

a

−g(β(σ))dσ, ζ(s) − ζ(a) =
∫ s

a

−g(ζ(σ))dσ,

so that

β(s)− ζ(s) ≤
∫ s

a

[−g(β(σ)) + g(ζ(σ))] dσ, s ∈ I.

Since β(σ) > ζ(σ) for every σ ∈ I and g is increasing, the integral in the right-hand
side is nonpositive, a contradiction. Therefore, β(s) ≤ ζ(s) for every s ≥ 0.

By standard arguments about ODE’s, for every δ > 0 there is C = C(δ)
independent on the initial datum W (x) such that ζ(s) ≤ C for every s ≥ δ.
Therefore,

β(s) = (G(t, t− s)W )(x) ≤ C, s ≥ δ,
with C independent of t. This implies that for every δ > 0 the family of proba-
bilities pt,s,x(dy) with s ≤ t − δ and x ∈ Rd is tight, because for every R > 0 we
have

pt,s,x(Rd \B(0, R)) =
∫

Rd\B(0,R)

pt,s,x(dy)

≤ 1
inf{W (y) : |y| ≥ R}

∫
Rd\B(0,R)

W (y)pt,s,x(dy)

≤ 1
inf{W (y) : |y| ≥ R}(G(t, s)W )(x) ≤ C

inf{W (y) : |y| ≥ R}
and inf{W (y) : |y| ≥ R} goes to +∞ as r → +∞. So, condition (b) of Proposition
3.1 is satisfied. �

Example (As in the autonomous case). If there is R > 0 such that

Tr Q(s, x) + 〈b(s, x), x〉 − 2
|x|2 〈Q(s, x)x, x〉 ≤ −c|x|2(log |x|)γ , s ∈ R, |x| ≥ R,

with c > 0 and γ > 1, then the condition (3.1) is satisfied by any W such that
W (x) = log |x| for |x| ≥ R, with g(s) = csγ . If the regularity and ellipticity
assumptions 2.1(i)(ii) hold, Theorem 3.3 implies that the evolution operatorG(t, s)
is compact in Cb(Rd) for t > s.
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4. Compactness and asymptotic behavior

In this section we derive asymptotic behavior results from compactness of G(t, s)
in Cb(Rd).

Throughout the section we assume that Hypothesis 2.1 holds, and that the
coefficients qij and bi, i, j = 1, . . . , d are periodic in time, with period T > 0.
Then the asymptotic behavior of G(t, s) is driven by the spectral properties of the
operators

V (s) := G(s+ T, s), s ∈ R.

This is well known in the case of evolution operators associated to families A(t) of
generators of analytic semigroups, see, e.g., [7, §7.2], [11, Ch. 6], [6]. Most of the
arguments are independent of analyticity and will be adapted to our situation.

To begin with, since each V (s) is a contraction in Cb(Rd), its spectrum is
contained in the unit circle. Its spectral radius is 1, since 1 is an eigenvalue. The
nonzero eigenvalues of V (s) are independent of s, since the equality G(t, s)V (s) =
V (t)G(t, s) implies that for each eigenfunction ϕ of V (s), G(t, s)ϕ �= 0 is an eigen-
function of V (t) with the same eigenvalue, for t > s.

If G(t, s) is compact in Cb(Rd) for t > s, then σ(V (s))\{0} consists of isolated
eigenvalues, hence it is independent of s. Therefore,

sup{|λ| : λ ∈ σ(V (s)), |λ| < 1, s ∈ R} := r < 1. (4.1)

Denoting by Q(s) the spectral projection

Q(s) =
1

2πi

∫
∂B(0,a)

(λI − V (s))−1dλ, s ∈ R,

with any a ∈ (r, 1), it is not difficult to see that for every ε > 0 there is Mε > 0
such that

‖G(t, s)Q(s)ϕ‖∞ ≤Mεe
(t−s)(log r(s)+ε)/T ‖ϕ‖∞, t > s, ϕ ∈ Cb(Rd). (4.2)

(The proof may be obtained from the proof of (4.4) in Proposition 4.4, replacing
the Lp spaces considered there by Cb(Rd).)

In the proof of the next proposition we use an important corollary of the
Krein-Rutman Theorem, whose proof may be found in, e.g., [3, Ch. 1].

Theorem 4.1. Let K be a cone with nonempty interior part K̊ in a Banach space
X, and let L : X �→ X be a linear compact operator such that Lϕ ∈ K̊ for each
ϕ ∈ K \ {0}. Then the spectral radius r of L is a simple eigenvalue of L, and all
the other eigenvalues have modulus < r.

Proposition 4.2. If G(t, s) is compact in Cb(Rd) for t > s, then 1 is a simple
eigenvalue of V (s) for each s, and it is the unique eigenvalue on the unit circle.
The spectral projection P (s) = I −Q(s) is given by

P (s)ϕ(x) =
∫

Rd

ϕ(y)μs(dy), ϕ ∈ Cb(Rd), s ∈ R, x ∈ Rd,

where {μs : s ∈ R} is a T -periodic evolution system of measures.
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Proof. LetK = {ϕ ∈ Cb(Rd) : ∀x ∈ Rd, ϕ(x) ≥ 0} be the cone of the nonnegative
functions in Cb(Rd). By Remark 3.2(iv), if ϕ ∈ Cb(Rd) \ {0} is such that ϕ(x) ≥ 0
for each x, then inf V (s)ϕ = inf G(s + T, s)ϕ(x) > 0. In other words, V (s) maps
K \ {0} into the interior part of K. Theorem 4.1 implies that the spectral radius
1 of V (s) is a simple eigenvalue, and it is the unique eigenvalue of V (s) on the
unit circle. The associated spectral projection P (s) = I −Q(s), with Q(s) defined
above, may be expressed as

P (s)ϕ = msϕ1, ϕ ∈ Cb(Rd),

for some ms in the dual space of Cb(Rd). To prove that msϕ =
∫

Rd ϕ(y)μs(dy) for
some measure μs we use the Stone–Daniell Theorem (e.g., [4, Thm. 4.5.2]): it is
enough to check that msϕ ≥ 0 if ϕ ≥ 0, and that for each sequence (ϕn) ⊂ Cb(Rd)
such that (ϕn(x)) is decreasing and converges to 0 for each x ∈ Rd, we have
limn→∞msϕn = 0. In this case, μs is a probability measure for every s, because
P (s)1 = 1.

By the general spectral theory, P (s) = limλ→1− Vλ, where Vλ := (λ−1)(λI−
V (s))−1. In its turn, (λI − V (s))−1 =

∑∞
k=0 V (s)k/λk+1 maps nonnegative func-

tions into nonnegative functions because V (s) does. Therefore,msϕ1 = P (s)ϕ ≥ 0
for each ϕ ≥ 0.

Let now ϕn ↓ 0. We claim that V (s)ϕn converges to 0 uniformly. Indeed,
since the measures {ps+T,s,x : x ∈ Rd} are tight, for each ε > 0 there is R > 0
such that

∫
Rd\B(0,R)

ps+T,s,x(dy) ≤ ε, for each x ∈ Rd. On the other hand, ϕn

converges to 0 uniformly on B(0, R) by the Dini Monotone Convergence Theorem,
so that for n large, say n ≥ n0, we have ϕn(y) ≤ ε, for |y| ≤ R. Therefore, for
n ≥ n0 we have

0 ≤ V (s)ϕn(x) =
∫

B(0,R)

ϕn(y)ps+T,s,x(dy) +
∫

Rd\B(0,R)

ϕn(y)ps+T,s,x(dy)

≤ ε+ ‖ϕn‖∞ε

for each x ∈ Rd. Since V (s)ϕn converges to 0 uniformly, then P (s)V (s)ϕn =
V (s)P (s)ϕn converges to 0 uniformly. But V (s) is the identity on the range of P (s).
Then, P (s)ϕn converges uniformly to 0, which implies that limn→∞msϕn = 0.

Let us prove that {μs : s ∈ R} is a T -periodic evolution system of measures.
Since s �→ P (s) is T -periodic, then μs = μs+T for each s ∈ R. Moreover, since
V (t)G(t, s) = G(t, s)V (s), then P (t)G(t, s)ϕ = G(t, s)P (s)ϕ, for each ϕ ∈ Cb(Rd).
This means ∫

Rd

G(t, s)ϕdμt1 = G(t, s)
(∫

Rd

ϕdμs 1

)
, ϕ ∈ Cb(Rd),

and since G(t, s)1 = 1, then∫
Rd

G(t, s)ϕdμt =
∫

Rd

ϕdμs, ϕ ∈ Cb(Rd),

so that {μs : s ∈ R} is an evolution system of measures. �
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Corollary 4.3. Assume that G(t, s) is compact in Cb(Rd) for t > s. Then:
(i) There exists a unique T -periodic evolution system of measures {μs : s ∈ R};
(ii) Setting ω0 = log r/T , where r is defined in (4.1), for each ω > ω0 there exists

M =M(ω) > 0 such that

‖G(t, s)ϕ−
∫

Rd

ϕdμs‖∞ ≤Meω(t−s)‖ϕ‖∞, t > s, ϕ ∈ Cb(Rd), (4.3)

while for ω < ω0 there is no M such that (4.3) holds.

Proof. Let {μs : s ∈ R} be the T -periodic evolution system of measures given
by Proposition 4.2. Since P (s)ϕ =

∫
Rd ϕdμs1, estimate (4.2) implies (4.3). Since

there exist eigenvalues of V (s) with modulus r, (4.3) cannot hold for ω < ω0.
Indeed, if V (s)ϕ = rϕ then P (s)ϕ = 0 and G(s + nT, s)ϕ = rnϕ = eω0nTϕ for
each n ∈ N, so that ‖G(s+ nT, s)ϕ−msϕ‖∞ = ‖G(s+ nT, s)ϕ‖∞ = eω0nT ‖ϕ‖∞.

If {νs : s ∈ R} is another T -periodic evolution system of measures, fix t ∈ R
and ϕ ∈ Cb(Rd). Since G(t, s)ϕ −

∫
Rd ϕdμs goes to zero uniformly as s → −∞,

then

0 = lim
s→−∞

∫
Rd

(
G(t, s)ϕ−

∫
Rd

ϕdμs

)
dνt = lim

s→−∞

(∫
Rd

ϕdνs −
∫

Rd

ϕdμs

)
.

Since s �→
∫

Rd ϕdνs−
∫

Rd ϕdμs is T -periodic and goes to 0 as s→ −∞, it vanishes
in R. By the arbitrariness of ϕ, νs = μs for every s ∈ R. �

Once we have an evolution system of measures {μs : s ∈ R}, G(t, s) is ex-
tendable to a contraction (still denoted by G(t, s)) from Lp(Rd, μs) to Lp(Rd, μt)
for t > s. Compactness and asymptotic behavior results in Cb(Rd) imply compact-
ness and asymptotic behavior results in such Lp spaces, as the next proposition
shows.

Proposition 4.4. Let G(t, s) be compact in Cb(Rd) for t > s. Then for every p ∈
(1,∞), G(t, s) : Lp(Rd, μs) �→ Lp(Rd, μt) is compact for t > s. Moreover, for every
ω ∈ (ω0, 0) and p ∈ (1,∞) there exist M =M(ω, p) > 0 such that

‖G(t, s)ϕ−
∫

Rd

ϕdμs‖Lp(Rd,μt) ≤Meω(t−s)‖ϕ‖Lp(Rd,μs), t > s, ϕ ∈ Lp(Rd, μs),

(4.4)
and for every ω < ω0 there is no M such that (4.4) holds. Here ω0 is given by
Corollary 4.3(ii).

Proof. Let us prove that G(t, s) : Lp(Rd, μs) �→ Lp(Rd, μt) is compact for t > s.
We have G(t, s) = G(t, (t + s)/2)G((t + s)/2, s) where G((t + s)/2, s) is bounded
from L∞(Rd) to Cb(Rd) by Theorem 2.2(iv), and G(t, (t + s)/2) is compact in
Cb(Rd). Therefore, G(t, s) is compact in L∞(Rd).

Now, if μ1 and μ2 are probability measures and a linear operator is bounded
from L1(Rd, μ1) to L1(Rd, μ2) and compact from L∞(Rd, μ1) to L∞(Rd, μ2), then
it is compact from Lp(Rd, μ1) to Lp(Rd, μ2), for every p ∈ (1,∞) (the proof is the
same as in [13, Prop. 4.6], where only one probability measure was considered).
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Let us prove (4.4). Since L∞(Rd, μt) = L∞(Rd, μs) = L∞(Rd, dx) by [8,
Prop. 5.2], interpolating (4.3) and ‖G(t, s)ϕ −msϕ‖L1(Rd,μt) ≤ 2‖ϕ‖L1(Rd,μs) we
obtain that ‖G(t, s)−ms‖L(Lp(Rd,μs),Lp(Rd,μt)) decays exponentially as (t−s)→∞.
However, the decay rate that we obtain by interpolation depends on p. To prove
(4.4) it is enough to show that the spectrum of the operators V (s) in Lp(Rd, μs)
does not depend on s, and coincides with the spectrum in Cb(Rd). Since V (s) =
G(s+T, s), then V (s) is compact in Lp(Rd, μs). Therefore, its Lp spectrum (except
zero) consists of eigenvalues, that are independent of s. They are independent of
p too, as well as the associated spectral projections, by [2, Cor. 1.6.2].

The statement follows now as in the case of evolution operators in a fixed
Banach space as in the mentioned references [7, 11, 6]. Note however that our
Banach spaces Lp(Rd, μs) vary with s, so that the classical theory cannot be used
verbatim. For the reader’s convenience we give the proof below.

Let t− s = σ + kT , with k ∈ N and σ ∈ [0, T ). We have

‖G(t, s)ϕ−msϕ‖Lp(Rd,μt) = ‖G(t, t− σ)V (s)k(I − P (s))ϕ‖Lp(Rd,μt)

≤ ‖V (s)k(I − P (s))ϕ‖Lp(Rd,μs)

= ‖[V (s)(I − P (s))]kϕ‖Lp(Rd,μs).

For ω > ω0 let ε > 0 be such that log(r + ε) ≤ ω, and let k(s) ∈ N be such that
‖[V (s)(I−P (s))]kϕ‖Lp(Rd,μs) ≤ (r+ε)k for each k > k(s). Therefore, if the integer
part [(t− s)/T ] is larger than k(s) we have

‖G(t, s)ϕ−msϕ‖Lp(Rd,μt) ≤ (r + ε)k‖ϕ‖Lp(Rd,μs)

≤ e(t−s)ω‖ϕ‖Lp(Rd,μs),

for each ϕ ∈ Lp(Rd, μs). Using the obvious inequality

‖G(t, s)ϕ−msϕ‖Lp(Rd,μt) ≤ 2‖ϕ‖Lp(Rd,μs) for [(t− s)/T ] ≤ k(s),
we arrive at

‖G(t, s)ϕ−msϕ‖Lp(Rd,μt) ≤Mse
(t−s)ω‖ϕ‖Lp(Rd,μs), ϕ ∈ Lp(Rd, μs)

for someMs > 0. It remains to show thatMs can be taken independent of s. Since
V is T -periodic, we may take k(s) = k(s + T ) and hence Ms = Ms+T for every
s ∈ R. Therefore it is enough to show that Ms can be taken independent of s for
s ∈ [0, T ). For 0 ≤ s < T and t ≥ T we have mTG(T, s)ϕ =

∫
Rd G(T, s)ϕdμT =

msϕ, hence

‖G(t, s)ϕ−msϕ‖Lp(Rd,μt) = ‖(G(t, T )−mT )G(T, s)ϕ‖Lp(Rd,μt)

≤MT e
ω(t−T )‖G(T, s)ϕ‖Lp(Rd,μT )

≤MT e
|ω|T eω(t−s)‖ϕ‖Lp(Rd,μs)

So, we can take Ms =MT e
|ω|T for 0 ≤ s < T . (4.4) follows. �
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Abstract. Let P be the Ornstein-Uhlenbeck semigroup associated with the
stochastic Cauchy problem

dU(t) = AU(t) dt + dWH(t),

where A is the generator of a C0-semigroup S on a Banach space E, H is
a Hilbert subspace of E, and WH is an H-cylindrical Brownian motion. As-
suming that S restricts to a C0-semigroup on H , we obtain Lp-bounds for
DHP (t). We show that if P is analytic, then the invariance assumption is
fulfilled. As an application we determine the Lp-domain of the generator of
P explicitly in the case where S restricts to a C0-semigroup on H which is
similar to an analytic contraction semigroup. The results are applied to the
1D stochastic heat equation driven by additive space-time white noise.
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1. Introduction

Consider the stochastic Cauchy problem
dU(t) = AU(t) dt+ dWH(t), t � 0,

U(0) = x.
(SCP)

Here A generates a C0-semigroup S = (S(t))t�0 on a real Banach space E, H
is a real Hilbert subspace continuously embedded in E, WH is an H-cylindrical
Brownian motion on a probability space (Ω,F P ), and x ∈ E. A weak solution is
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(JvN) of the Netherlands Organisation for Scientific Research (NWO).
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a measurable adapted E-valued process Ux = (Ux(t))t�0 such that t �→ Ux(t) is
integrable almost surely and for all t � 0 and x∗ ∈ D(A∗) one has

〈Ux(t), x∗〉 = 〈x, x∗〉+
∫ t

0

〈Ux(s), A∗x∗〉 ds+WH(t)i∗x∗ almost surely.

Here i : H ↪→ E is the inclusion mapping. A necessary and sufficient condition for
the existence of a weak solution is that the operators It : L2(0, t;H)→ E,

Itg :=
∫ t

0

S(s)ig(s) ds,

are γ-radonifying for all t � 0. If this is the case, then s �→ S(t−s)i is stochastically
integrable on (0, t) with respect to WH and the process Ux is given by

Ux(t) = S(t)x+
∫ t

0

S(t− s)i dWH(s), t � 0.

For more information and an explanation of the terminology we refer to [30].
Assuming the existence of the solution Ux, on the Banach space Cb(E) of

all bounded continuous functions f : E → R one defines the Ornstein-Uhlenbeck
semigroup P = (P (t))t�0 by

P (t)f(x) := Ef(Ux(t)), t � 0, x ∈ E. (1.1)

The operators P (t) are linear contractions on Cb(E) and satisfy P (0) = I and
P (s)P (t) = P (s + t) for all s, t � 0. For all f ∈ Cb(E) the mapping (t, x) �→
P (t)f(x) is continuous, uniformly on compact subsets of [0,∞)× E.

If the operator I∞ : L2(0,∞;H)→ E defined by

I∞g :=
∫ ∞

0

S(t)ig(t) dt

is γ-radonifying, then the problem (SCP) admits a unique invariant measure μ∞.
This measure is a centred Gaussian Radon measure on E, and its covariance
operator equals I∞I∗∞. Throughout this paper we shall assume that this measure
exists; if (SCP) has a solution, then this assumption is for instance fulfilled if S
is uniformly exponentially stable. The reproducing kernel Hilbert space associated
with μ∞ is denoted by H∞. The inclusion mapping H∞ ↪→ E is denoted by i∞.
Recall that Q∞ := i∞i

∗
∞ = I∞I

∗
∞. It is well known that S restricts to a C0-

contraction semigroup on H∞ [5] (the proof for Hilbert spaces E extends without
change to Banach spaces E), which we shall denote by S∞.

By a standard application of Jensen’s inequality, the semigroup P has a
unique extension to a C0-contraction semigroup to the spaces Lp(E, μ∞), 1 �
p <∞. By slight abuse of notation we shall denote this semigroup by P again. Its
infinitesimal generator will be denoted by L. In order to give an explicit expression
for L it is useful to introduce, for integers k, l � 0, the space FCk,l

b (E) consisting
of all functions f ∈ Cb(E) of the form

f(x) = ϕ(〈x, x∗1〉, . . . , 〈x, x∗N 〉)
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with f ∈ Ck
b (RN ) and x∗1, . . . , x

∗
N ∈ D(A∗l). With this notation one has that

FC2,1
b (E) is a core for L, and on this core one has

Lf(x) =
1
2

trD2
Hf(x) + 〈x,A∗Df(x)〉.

Here,

DHf(x) =
N∑

n=1

∂ϕ

∂xn
(〈x, x∗1〉, . . . , 〈x, x∗N 〉)⊗ i∗x∗n,

Df(x) =
N∑

n=1

∂ϕ

∂xn
(〈x, x∗1〉, . . . , 〈x, x∗N 〉)⊗ x∗n,

denote the Fréchet derivatives into the directions of H and E, respectively.

2. Gradient estimates: the H-invariant case

Our first result gives a pointwise gradient bound for P under the assumption that
S restricts to a C0-semigroup on H which will be denoted by SH . As has been
shown in [17, Corollary 5.6], under this assumption the operator DH is closable as
a densely defined operator from Lp(E, μ∞) to Lp(E, μ;H) for all 1 � p <∞. The
domain of its closure is denoted by Dp(DH).

Proposition 2.1 (Pointwise gradient bounds). If S restricts to a C0-semigroup on
H, then for all 1 < p < ∞ there exists a constant C � 0 such that for all t > 0
and f ∈ FC1,0

b (E) we have
√
t|DHP (t)f(x)| � Cκ(t)(P (t)|f |p(x))1/p,

where κ(t) := sups∈[0,t] ‖SH(s)‖L (H).

Proof. The proof follows the lines of [25, Theorem 8.10] and is inspired by the
proof of [10, Theorem 6.2.2], where the null controllable case was considered.

The distribution μt of the random variable U0(t) is a centred Gaussian Radon
measure on E. Let Ht denote its RKHS and let it : Ht ↪→ E be the inclusion
mapping. As is well known and easy to prove, cf. [9, Appendix B] one has

Ht =
{∫ t

0

S(t− s)ig(s) ds : g ∈ L2(0, t;H)
}

with

‖h‖Ht = inf
{
‖g‖L2(0,t;H) : h =

∫ t

0

S(t− s)ig(s) ds
}
.

The mapping
φμt : i∗tx

∗ �→ 〈·, x∗〉, x∗ ∈ E∗,

defines an isometry from Ht onto a closed subspace of L2(E, μt). For h ∈ Ht we
shall write φμt

h (x) := (φμth)(x).
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Fix h ∈ H . Since S restricts to a C0-semigroup SH on H we may consider
the function g ∈ L2(0, t;H) given by g(s) = 1

tS(s)h. From the identity S(t)h =∫ t

0 S(t− s)g(s) ds we deduce that S(t)h ∈ Ht and

‖S(t)h‖2Ht
� ‖g‖2L2(0,t;H) =

1
t2

∫ t

0

‖S(s)h‖2H ds � 1
t
κ(t)2‖h‖2H. (2.1)

Fix a function f ∈ FC1,0
b (E), that is, f(x) = ϕ(〈x, x∗1〉, . . . , 〈x, x∗N 〉) with

ϕ ∈ C1
b(RN ) and x∗1, . . . , x

∗
N ∈ E∗. It is easily checked that for all t > 0 we

have P (t)f ∈ FC1,0
b (E); in particular this implies that P (t)f ∈ Dp(DH). By the

Cameron-Martin formula [3],
1
ε

(
P (t)f(x+ εh)−P (t)f(x)

)
=

1
ε

∫
E

(
f(S(t)(x+ εh) + y)− f(S(t)x+ y)

)
dμt(y)

=
∫

E

1
ε
(EεS(t)h − 1)f(S(t)x+ y) dμt(y),

where for h ∈ Ht we write

Eh(x) := exp(φμt

h (x) − 1
2‖h‖

2
Ht

).

It is easy to see that for each h ∈ Ht the family
(

1
ε (Eεh − 1)

)
0<ε<1

is uniformly
bounded in L2(E, μt), and therefore uniformly integrable in L1(E, μt). Passage to
the limit ε ↓ 0 in the previous identity now gives

[DHP (t)f(x), h] =
∫

E

f(S(t)x+ y)φμt

S(t)h(y) dμt(y).

By Hölder’s inequality with 1
r + 1

q = 1 and the Kahane-Khintchine inequality,
which can be applied since φμt

S(t)h is a Gaussian random variable,

|[DHP (t)f(x), h]|

�
(∫

E

|f(S(t)x + y)|r dμt(y)
) 1

r
(∫

E

|φμt

S(t)h(y)|q dμt(y)
) 1

q

� Kq

( ∫
E

|f(S(t)x+ y)|r dμt(y)
) 1

r
(∫

E

|φμt

S(t)h(y)|2 dμt(y)
) 1

2

= Kq(P (t)|f |r(x)) 1
r ‖S(t)h‖Ht .

Using (2.1) we find that∣∣√t[DHP (t)f(x), h]
∣∣ � Kqκ(t)(P (t)|f |r(x)) 1

r ‖h‖H ,

and by taking the supremum over all h ∈ H of norm 1 we obtain the desired
estimate. �
Corollary 2.2. If S restricts to a C0-semigroup on H, then for all 1 < p <∞ the
operators DHP (t), t > 0, extend uniquely to bounded operators from Lp(E, μ∞)
to Lp(E, μ∞;H), and there exists a constant C � 0 such that for any t > 0,

√
t‖DHP (t)‖L (Lp(E,μ∞),Lp(E,μ∞;H)) � Cκ(t).
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Proof. Integrating the inequality of the proposition and using the fact that μ∞ is
an invariant measure for P we obtain

‖
√
tDHP (t)f‖p

Lp(E,μ∞) � Cpκ(t)p

∫
E

P (t)|f |p(x) dμ∞(x)

= Cpκ(t)p

∫
E

|f |p(x) dμ∞(x) = Cpκ(t)p‖f‖p
Lp(E,μ∞). �

3. Gradient estimates: the analytic case

Analyticity of the semigroup P on Lp(E, μ∞) has been investigated by several
authors [15, 16, 18, 24]. The following result of [18] is our starting point. Recall
that in the definition of an analytic C0-contraction semigroup, contractivity is
required on an open sector containing the positive real axis.

Proposition 3.1. For any 1 < p <∞ the following assertions are equivalent:
(1) P is an analytic C0-semigroup on Lp(E, μ∞);
(2) P is an analytic C0-contraction semigroup on Lp(E, μ∞);
(3) S restricts to an analytic C0-contraction semigroup on H∞;
(4) Q∞A

∗ acts as a bounded operator in H.

A more precise formulation of (4) is that there should exist a bounded op-
erator B : H → H such that iBi∗x∗ = Q∞A

∗x∗ for all x∗ ∈ E∗. The identity
Q∞A

∗ +AQ∞ = −ii∗ implies that B +B∗ = −I.
In what follows we shall simply say that ‘P is analytic’ to express that the

equivalent conditions of the proposition are satisfied for some (and hence for all)
1 < p <∞.

The next result has been shown in [24] for p = 2 and was extended to 1 <
p <∞ in [25].

Proposition 3.2. If P is analytic, then FC2,1
b (E) is a core for the generator L of

P in Lp(E, μ∞), and on this core L is given by

L = D∗
HBDH .

Our first aim is to show that analyticity of P implies that H is S-invariant.
For self-adjoint P this was proved in [7, 18].

Theorem 3.3. If P is analytic, then S restricts to a bounded analytic C0-semigroup
SH on H.

Proof. Consider the linear mapping

V : i∗∞x
∗ �→ i∗x∗, x∗ ∈ E∗. (3.1)

It is shown in [17] that i∗∞x
∗ = 0 implies i∗x∗ = 0, so that this mapping is well

defined, and that the closability of DH implies the closability of V as a densely
defined operator fromH∞ toH . With slight abuse of notation we denote its closure
by V again and let D(V ) the domain of the closure.
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By [1, Proposition 7.1], the operator −V V ∗B is sectorial of angle < π
2 , and

therefore G := V V ∗B generates a bounded analytic C0-semigroup (T (t))t≥0 on
H. To prove the theorem, by uniqueness of analytic continuation and duality it
suffices to show that T (t) ◦ i∗ = i∗ ◦ S∗(t) for all t � 0.

For all x∗ ∈ D(A∗) we have Bi∗x∗ ∈ D(V ∗) and V ∗Bi∗x∗ = i∗∞A
∗x∗. Indeed,

for y∗ ∈ E∗ one has

[Bi∗x∗, V i∗∞y
∗] = 〈i∗∞A∗x∗, i∗∞y

∗〉,
which implies the claim. By applying the operator V to this identity we ob-
tain i∗x∗ ∈ D(G) and Gi∗x∗ = i∗A∗x∗, from which it follows that T (t)i∗x∗ =
i∗S∗(t)x∗. This proves the theorem, with SH = T ∗. �

This result should be compared with [18, Theorem 9.2], where it is shown
that if S restricts to an analytic C0-semigroup on H which is contractive in some
equivalent Hilbert space norm, then P is analytic on Lp(E, μ∞).

Under the assumption that P is analytic on Lp(E, μ∞), the gradient estimates
of the previous section can be improved as follows. Recall that a collection of
bounded operators T between Banach spaces X and Y is said to be R-bounded if
there exists a constant C such that for any finite subset T1, . . . , Tn ⊂ T and any
x1, . . . , xn ∈ X we have

E
∥∥∥ n∑

j=1

rjTjxj

∥∥∥2

� C2E
∥∥∥ n∑

j=1

rjxj

∥∥∥2

,

where (rj)j�1 is an independent collection of Rademacher random variables. The
notion of R-boundedness plays an important role in recent advances in the theory
of evolution equations (see [12, 21]).

Theorem 3.4. If P is analytic, then for all 1 < p <∞ the set

{
√
tDHP (t) : t > 0}

is R-bounded in L (Lp(E, μ∞), Lp(E, μ∞;H)) and we have the square function
estimate ∥∥∥(∫ t

0

‖DHP (t)f‖2H dt
)1/2∥∥∥

Lp(E,μ∞)
� ‖f‖Lp(E,μ∞)

with implied constant independent of f ∈ Lp(E, μ∞).

Proof. By Proposition 3.2 and Theorem 3.3, the theorem is a special case of [25,
Theorem 2.2]. �

The above result plays a crucial role in our recent paper [25] in which Lp-
domain characterisations for the operator L and its square root have been obtained.
Before stating the result, let us informally sketch how Theorem 3.4 enters the argu-
ment. In order to prove a domain characterisation for the operator L, we first aim
to obtain two-sided estimates for ‖

√
−Lf‖Lp(E,μ∞) in terms of suitable Sobolev

norms. For this purpose we consider a variant of an operator theoretic framework
introduced in [2] in the analysis of the famous Kato square root problem. The
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idea behind this framework is that the second-order operator L can be naturally
studied through the first-order Hodge-Dirac-type operator

Π =
[

0 −D∗
HB

DH 0

]
on Lp(E, μ∞)⊕ Lp(E, μ∞;H).

This operator is bisectorial and its square is the sectorial operator given by

−Π2 =
[
D∗

VBDV 0
0 DVD

∗
VB

]
=

[
L 0
0 L

]
,

where L := DVD
∗
VB. The approach in [25] consists of proving estimates for

√
−Lf

along the lines of the following formal calculation:

‖DHf‖p = ‖Π(f, 0)‖p � ‖Π/
√

Π2‖p ‖
√

Π2(f, 0)‖p = ‖Π/
√

Π2‖p ‖
√
Lf‖p.

Oversimplifying things considerably, the proof consists of turning this calculation
into rigorous mathematics. This can be done once we know that the operator
Π/
√

Π2 is bounded. Since the function z �→ z/
√
z2 is a bounded analytic function

on each bisector around the real axis, it suffices to show that Π has a bounded
H∞-functional calculus. This in turn will follow if we show that

1. the resolvent set {(it−Π)−1}t∈R\{0} is R-bounded;
2. the operator Π2 admits a bounded functional calculus.

To prove (1), we observe that

(I − itΠ)−1 =
[

(1− t2L)−1 −it(I − t2L)−1D∗
HB

itDH(I − t2L)−1 (I − t2L)−1

]
, t ∈ R \ {0}.

It suffices to prove R-boundedness for each of the entries separately. The diagonal
entries can be dealt with using abstract results on R-boundedness for positive con-
traction semigroups on Lp-spaces. The R-boundedness for the off-diagonal entries
can be derived using Theorem 3.4.

To prove (2) we use the fact that the semigroup generated by L equals P ⊗
S∗

H on the range of the gradient DH . Here SH denotes the restriction of the
semigroup S to H (see Theorem 3.3). Therefore (2) follows, provided that the
negative generator −AH of SH has a bounded H∞-calculus. This reduces the
original question about

√
−L to a question about the operatorAH , which is defined

directly in terms of the data H and A of the problem. The latter question should
be thought of as expressing the compatibility of the drift (represented by the
operator A) and the noise (represented by the Hilbert spaceH). This compatibility
condition is not automatically satisfied. In fact, by a result of Le Merdy [22], −AH

admits a bounded H∞-functional calculus onH if and only if SH is an analytic C0-
contraction semigroup on H with respect to some equivalent Hilbert space norm.
Such needs not always be the case, as is shown by well-known examples [26].

The following result summarises the informal discussion above and provides
an additional equivalent condition in terms of the operatorA∞. In this result we let
Dp(D2

H) denote the second-order Sobolev space associated with the operator DH .
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Theorem 3.5. Let 1 < p < ∞. If P is analytic on Lp(E, μ∞), then the following
assertions are equivalent:
(1) Dp(

√
−L) = Dp(DH) with norm equivalence

‖
√
−Lf‖Lp(E,μ∞) � ‖DHf‖Lp(E,μ∞;H);

(2) D(
√
−A∞) = D(V ) with norm equivalence

‖
√
−A∞h‖H∞ � ‖V h‖H ;

(3) −AH admits a bounded H∞-functional calculus on H.
If these equivalent conditions are satisfied we have

Dp(L) = Dp(D2
H) ∩ Dp(A∗

∞D),

where D is the Malliavin derivative in the direction of H∞.

Proof. By Proposition 3.2 and Theorem 3.3, the theorem is a special case of [25,
Theorems 2.1, 2.2] provided we replace A∞ by A∗

∞ in (2). The equivalence of (2)
for A∞ and A∗

∞, however, is well known (see also [25, Lemma 10.2]). �

The problem of identifying the domains of
√
−L and L has a long and in-

teresting history. We finish this paper by presenting three known special cases of
Theorem 3.5. In each case, it is easy to verify that (3) is satisfied.

Example 1. For the classical Ornstein-Uhlenbeck operator, which corresponds to
H = E = Rd and A = −I, conditions (2) and (3) of Theorem 3.5 are trivially
fulfilled and (1) reduces to the classical Meyer inequalities of Malliavin calculus.
For a discussion of Meyer’s inequalities we refer to the book of Nualart [31].

Example 2. Meyer’s inequalities were extended to infinite dimensions by Shigekawa
[32], and Chojnowska-Michalik and Goldys [6, 7], who considered the case where
E is a Hilbert space and AH is self-adjoint. Both authors deduce the generalised
Meyer inequalities from square functions estimates. The identification of Dp(L)
in the self-adjoint case is due to Chojnowska-Michalik and Goldys [6, 7], who
extended the case p = 2 obtained earlier by Da Prato [8].

So far, these examples were concerned with the selfadjoint case.

Example 3. A non-selfadjoint extension of Meyer’s inequalities has been given
for the case E = Rd by Metafune, Prüss, Rhandi, and Schnaubelt [27] under
the non-degeneracy assumption H = Rd. In this situation the semigroup P is
analytic on Lp(μ∞) [15], see also [16, 18]; no symmetry assumptions need to be
imposed on A. The S-invariance of H and the fact that the generator of S =
SH admits a bounded H∞-calculus are trivial. Therefore, (3) is satisfied again.
Note that the domain characterisation reduces to Dp(L) = Dp(D2), where D is
the derivative on Rd. The techniques used in [27] to prove (1) are very different,
involving diagonalisation arguments and the non-commuting Dore-Venni theorem.
The identification of Dp(L) = Dp(D2) for p = 2 had been obtained previously by
Lunardi [23].
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Our final corollary extends the characterisations of Dp(L) contained in Ex-
amples 2 and 3 and lifts the non-degeneracy assumption on H in Example 3.

Corollary 3.6. If S restricts to an analytic C0-semigroup on H which is contractive
with respect to some equivalent Hilbert space norm, then for all 1 < p < ∞ we
have

Dp(L) = Dp(D2
H) ∩ Dp(A∗

∞D),

where D is the Malliavin derivative in the direction of H∞.

Proof. As has already been mentioned in the discussion preceding Theorem 3.4,
the assumptions imply that P is analytic. Moreover, since the restricted semigroup
SH is similar to an analytic contraction semigroup, its negative generator −AH

admits a bounded H∞-calculus, and the result follows from Theorem 3.5. �

Let us finally mention that the results in [25] have been proved for a more
general class of elliptic operators on Wiener spaces (cf. Section 3 of that paper).
In this setting the data consist of

• an arbitrary Gaussian measure μ on a separable Banach space E with repro-
ducing kernel Hilbert space H ;

• an analytic C0-contraction semigroup S on H with generator A .

Given these data, the semigroup P is defined on L2(E, μ) by second quantisation
of the semigroup S . Roughly speaking, this means that one uses the Wiener-Itô
isometry to identify L2(E, μ) with the symmetric Fock space over H , i.e., the
direct sum of symmetric tensor powers of H . The semigroup P is then defined
by applying S to each factor

P(t)
∑

σ∈Sn

(hσ(1) ⊗ · · · ⊗ hσ(n)) :=
∑

σ∈Sn

S (t)hσ(1) ⊗ · · · ⊗S (t)hσ(n),

where Sn is the permutation group on {1, . . . , n}. For the details of this con-
struction we refer to [19]. Equivalently, the semigroup P can be defined via the
following generalisation of the classical Mehler formula,

P(t)f(x) =
∫

E

f(S (t)x+
√
I −S ∗(t)S (t)y) dμ(y),

which makes sense by virtue of the fact that any bounded linear operator on H
admits a unique measurable linear extension to E [3]. The generator L of the
semigroup P is the elliptic operator formally given by

L = D∗AD,

where D denotes the Malliavin derivative associated with μ and its adjoint D∗ is
the associated divergence operator. The application to Ornstein-Uhlenbeck oper-
ators described in this paper is obtained by taking μ ∼ μ∞ and A ∼ A∗

∞ (cf.
[5, 28]).
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4. An example

In this section we present an example of a Hilbert space E, a continuously em-
bedded Hilbert subspace H ↪→ E, and a C0-semigroup generator A on E such
that:

• the semigroup S generated by A fails to be analytic;
• the stochastic Cauchy problem

dU(t) = AU(t) dt+ dWH(t)

admits a unique invariant measure, which we denote by μ∞.
• the associated Ornstein-Uhlenbeck semigroup P is analytic on L2(E, μ∞).

Thus, although analyticity of P implies analyticity of SH (Theorem 3.3), it does
not imply analyticity of S.

Let E = L2(R+, e
−x dx) be the space of all measurable functions f on R+

such that

‖f‖ :=
(∫ ∞

0

|f(x)|2 e−xdx
) 1

2
<∞.

The rescaled left translation semigroup S,

S(t)f(x) := e−tf(x+ t), f ∈ E, t > 0, x > 0,

is strongly continuous and contractive on E, and satisfies ‖S(t)‖ = e−t/2. Let
H = H2(C+) be the Hardy space of analytic functions g on the open right half-
plane C+ = {z ∈ C : Re z > 0} such that

‖g‖H := sup
x>0

(∫ ∞

−∞
|g(x+ iy)|2 dy

) 1
2
<∞.

Since limx→+∞ g(x) = 0 for all g ∈ H , the restriction mapping i : g �→ g|R+

is well defined as a bounded operator from H to E. By uniqueness of analytic
continuation, this mapping is injective. Since i factors through L∞(R+, e

−x dx),
i is Hilbert-Schmidt [29, Corollary 5.21]. As a consequence (see, e.g., [9, Chapter
11]), the Cauchy problem dU(t) = AU(t) dt + dWH(t) admits a unique invariant
measure μ∞.

The rescaled left translation semigroup SH ,

SH(t)g(z) := e−tg(z + t), f ∈ H, t � 0, Re z > 0,

is strongly continuous on H , it extends to an analytic contraction semigroup of
angle 1

2π, and satisfies ‖SH(t)‖H = e−t/2. Clearly, for all t � 0 we have S(t) ◦ i =
i ◦ SH(t). By these observations combined with [18, Theorem 9.2], the associated
Ornstein-Uhlenbeck semigroup P is analytic.
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5. Application to the stochastic heat equation

In this final section we shall apply our results to the following stochastic PDE with
additive space-time white noise:

∂u

∂t
(t, y) =

∂2u

∂y2
(t, y) +

∂2W

∂t ∂y
(t, y), t � 0, y ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t � 0,

u(0, y) = 0, y ∈ [0, 1].

(5.1)

This equation can be cast into the abstract form (SCP) by taking H = E =
L2(0, 1) and A the Dirichlet Laplacian Δ on E. The resulting equation

dU(t) = AU(t) dt + dW (t),

U(0) = 0,

where now W denotes an H-cylindrical Brownian motion, has a unique solution
U given by

U(t) =
∫ t

0

S(t− s) dW (s), t � 0,

where S denotes the heat semigroup on E generated by A. Let μ∞ denote the
unique invariant measure on E associated with U , and let H∞ denote its repro-
ducing kernel Hilbert space. Let i∞ : H∞ ↪→ E denote the canonical embedding
and let i : H → E be the identity mapping. By [17, Theorem 3.5, Corollary 5.6]
the densely defined operator V : i∗∞x∗ �→ i∗x∗ defined in (3.1) is closable from H∞
to H .

Let L be the generator of the Ornstein-Uhlenbeck semigroup P on Lp(E, μ∞)
associated with U . Since P is analytic, the results of Sections 2 and 3 can be
applied. Noting that Δ is selfadjoint onH, condition (3) of Theorem 3.5 is satisfied
and therefore

Dp(
√
−L) = Dp(D) (1 < p <∞)

where D = DH = DE denotes the Fréchet derivative on Lp(E, μ∞).
One can go a step further by noting that the problem (5.1) is well posed even

on the space

Ẽ := C0[0, 1] = {f ∈ C[0, 1] : f(0) = f(1) = 0},

in the sense that the random variables U(t) are Ẽ-valued almost surely and that
U admits has a modification Ũ with continuous (in fact, even Hölder continuous)
trajectories in Ẽ. Moreover, the invariant measure μ∞ is supported on Ẽ. In anal-
ogy to (1.1) this allows us to define an “Ornstein-Uhlenbeck semigroup” P̃ on
Lp(Ẽ, μ∞) associated with Ũ by

P̃ (t)f(x) := Ef(Ũx(t)), t � 0, x ∈ Ẽ,

where Ũx(t) = S̃(t)x+ Ũ(t) and S̃ is the heat semigroup on Ẽ. It is important to
observe that we are not in the framework considered in the previous sections, due
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to the fact that H = L2(0, 1) is not continuously embedded in Ẽ. Let L̃ denote
the generator of P̃ . Under the natural identification

Lp(Ẽ, μ∞) = Lp(E, μ∞)

(using that the underlying measure spaces are identical up to a set of measure
zero), we have P̃ (t) = P (t) and L̃ = L, so that

Dp(
√
−L̃) = Dp(

√
−L) = Dp(D) (1 < p <∞). (5.2)

This representation may seem somewhat unsatisfactory, as the right-hand
side refers explicitly to the ambient space E in which Ẽ is embedded. An intrinsic
representation of Dp(

√
−L̃) can be obtained as follows. For functions F : Ẽ → R

of the form

F (f) = φ
( ∫ 1

0

fg1 dt, . . . ,

∫ 1

0

fgN dt
)
, f ∈ Ẽ,

with φ ∈ C2
b(RN ) and g1, . . . , gN ∈ H , we define D̃F : Ẽ → H by

D̃F (f) =
N∑

n=1

∂φ

∂yn

(∫ 1

0

fg1 dt, . . . ,

∫ 1

0

fgN dt
)
gn, f ∈ Ẽ.

This operator is closable in Lp(Ẽ, μ∞) for all 1 � p <∞. On L2(Ẽ, μ∞) we have
the representation

L̃ = D̃∗D̃.

As a result we can apply [25, Theorem 2.1] directly to the operator V and obtain
that

Dp(
√
−L̃) = Dp(D̃) (1 < p <∞). (5.3)

This answers a question raised by Zdzis�law Brzeźniak (personal communication).
To make the link between the formulas (5.2) and (5.3) note that, under the iden-
tification Lp(Ẽ, μ∞) = Lp(E, μ∞), one also has Dp(D̃) = Dp(D).

Remark 5.1. It is possible to give explicit representations for the space H∞ and
the operator V . To begin with, the covariance operator Q∞ of μ∞ is given by

Q∞f =
∫ ∞

0

S(t)S∗(t)f dt =
∫ ∞

0

S(2t)f dt = 1
2Δ−1f, f ∈ E.

It follows that the reproducing kernel Hilbert spaceH∞ associated with μ∞ equals

H∞ = R(
√
Q∞) = D(

√
−Δ) = H1

0 (0, 1).

Noting that Q∞ = i∞ ◦ i∗∞, we see that the operator V : i∗∞x∗ �→ i∗x∗ is given by

D(V ) = H2(0, 1) ∩H1
0 (0, 1),

V f = 2Δf, f ∈ D(V ).

Remark 5.2. Formulas for Dp(L̃) analogous to (5.2) and (5.3) can be deduced from
Theorem 3.5 and [25, Theorem 2.2] in a similar way.
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The Ornstein-Uhlenbeck operators L and L̃ considered above are symmetric
on L2(E, μ∞), and therefore the domain identifications for their square roots could
essentially be obtained from the results of [6, 32]. The above argument, however,
can be applied to a large class of second order elliptic differential operators A on
L2(0, 1) (but explicit representations as in Remark 5.1 are only possible when A
is selfadjoint).

In fact, under mild assumptions on the coefficients and under various types
of boundary conditions, such operators A have a bounded H∞-calculus on H =
E = L2(0, 1) (see [11, 14, 20] and there references therein). By the result of Le
Merdy [22] mentioned earlier, this implies that the analytic semigroup S generated
by A is contractive in some equivalent Hilbertian norm. Hence, by [18, Theorem
9.2], the associated Ornstein-Uhlenbeck semigroup is analytic. Typically, under
Dirichlet boundary conditions, S is uniformly exponentially stable. This implies
(see [9]) that the solution U of (SCP) admits a unique invariant measure. Finally,
the analyticity of S typically implies space-time Hölder regularity of U (see [4, 13]),
so that the corresponding stochastic PDE is well posed in Ẽ = C0[0, 1]. We plan
to provide more details in a forthcoming publication.
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Abstract. We prove R-sectoriality or, equivalently, Lp-maximal regularity for
a class of operators on cylindrical domains of the form Rn−k × V , where
V ⊂ Rk is a domain with compact boundary, Rk, or a half-space. Instead of ex-
tensive localization procedures, we present an elegant approach via operator-
valued multiplier theory which takes advantage of the cylindrical shape of
both, the domain and the operator.
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1. Introduction

This note considers the vector-valued Lp-approach to boundary value problems of
the type

∂tu+A(x,D)u = f in R+ × Ω,
Bj(x,D)u = 0 on R+ × ∂Ω (j = 1, . . . ,m),

u|t=0 = u0 in Ω,
(1.1)

on cylindrical domains Ω ⊂ Rn of the form

Ω = Rn−k × V, (1.2)

The authors would like to express their gratitude to Robert Denk for fruitful discussions and
kind advice. They also would like to thank the anonymous referee for helpful comments and for
pointing out references [10], [15], [16].
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where V is a standard domain (see Definition 2.1) in Rk. Here

A(x,D) =
∑

|α|≤2m

aα(x)Dα

is a differential operator in Ω of order 2m for m ∈ N and

Bj(x,D) =
∑

|β|≤mj

bβ(x)Dβ , mj < 2m, j = 1, . . . ,m,

are operators acting on the boundary.
Under the assumption that (1.1) is parameter-elliptic and cylindrical, we will

prove R-sectoriality for the operator A of the corresponding Cauchy problem.
Recall that R-sectoriality is equivalent to maximal regularity, cf. [21, Theorem
4.2]. Maximal regularity, in turn, is a powerful tool for the treatment of related
nonlinear problems.

Roughly speaking, the assumption ‘cylindrical’ implies that A resolves into
two parts

A = A1 +A2

such that A1 acts merely on Rn−k and A2 acts merely on V (see Definition 2.2).
Note that many standard systems, such as the heat equation with Dirichlet or
Neumann boundary conditions, are of this form. Also note that many physical
problems naturally lead to equations in cylindrical domains. We refer to the text-
book [10] for an introduction to such type problems. Therefore, boundary value
problems of this type are certainly of independent interest. On the other hand,
they also naturally appear during localization procedures of boundary value prob-
lems on general domains. For instance, if a system of equations via localization is
reduced to a half-space or a layer problem, then one is usually faced to a problem
in the domain

Ω = Rn−1 × V,
where V = (0, d) and d ∈ (0,∞]. Such reduced problems are often of the above
type.

Of course, also problem (1.1) could be treated by a localization procedure em-
ploying an infinite partition of the unity (note that the boundary is non-compact).
However, such procedures are generally extensive and take quite some pages of ex-
hausting calculations and estimations. For this reason, here we pursue a different
strategy. In fact, we essentially take advantage of the cylindrical structure of the
domain and the operator and employ operator-valued multiplier theory. Roughly
speaking, by this method R-sectoriality of (1.1) in Ω is reduced to the correspond-
ing result on the cross-section V , for which it is well known (see, e.g., [11]). This
approach reveals a much shorter and more elegant way to prove the important
maximal regularity for boundary value problems of type (1.1) on cylindrical do-
mains of the form (1.2). The chosen approach also demonstrates the strength of
operator-valued multiplier theory and its significance in the treatment of partial
differential equations in general.
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We remark that the idea of such a splitting of the variables and operators is al-
ready performed by Guidotti in [15] and [16]. In these papers the author constructs
semiclassical fundamental solutions for a class of elliptic operators on cylindrical
domains. This proves to be a strong tool for the treatment of related elliptic and
parabolic ([15] and [16]), as well as of hyperbolic ([16]) problems. In particular,
this approach leads to semiclassical representation formulas for solutions of related
elliptic and parabolic boundary value problems. Based on these formulas and on
a multiplier result of Amann [6] the author derives a couple of interesting results
for these problems in a Besov space setting. In particular, the given applications
include asymptotic behavior in the large, singular perturbations, exact boundary
conditions on artificial boundaries, and the validity of maximum principles. Very
recently in [13] the wellposedness of a class of parabolic boundary value problems
in a vector-valued Hölder space setting is proved, when Ω = [0, L] × V , the first
part is given by A1 = a(xn)∂2m

n , xn ∈ [0, L], and when A2 is uniformly elliptic.
In contrast to [15], [16], and [13], here we present the Lp-approach to cylin-

drical boundary value problems. Therefore the notion of R-boundedness comes
into play, which is not required in the framework of Besov or Hölder spaces. Also
note that in [15] and [16] A1 = −Δ is assumed, with a remark on possible gen-
eralizations. Here we explicitly consider a wider class of first parts A1 including
higher-order operators with variable coefficients. Moreover, with a Banach space
E, we consider E-valued solutions and allow the coefficients of the second part
A2 to be operator-valued. Applications for equations with operator-valued coeffi-
cients are, for instance, given by coagulation-fragmentation systems (cf. [8]), spec-
tral problems of parametrized differential operators in hydrodynamics (cf. [12]),
or (homogeneous) systems in general. Albeit in this note we concentrate on the
proof of maximal regularity for problems of type (1.1), we remark that further
applications similar to the ones given in [15] and [16] also in the Lp-framework
considered here are possible.

Note that E-valued boundary value problems in standard domains, such as
Rn, a half-space, and domains with a compact boundary were extensively stud-
ied in [11]. There a bounded H∞-calculus and hence maximal regularity for the
operator of the associated Cauchy problem is proved in the situation when E is
of class HT . The results obtained in the paper at hand also extend the maximal
regularity results proved in [11] to a class of domains with non-compact boundary.
For classical papers on scalar-valued boundary value problems we refer to [14], [1],
[2], and [20] in the elliptic case and to [4] and [3] in the parameter-elliptic case.
(For a more comprehensive list see also [11].) For an approach to a class of elliptic
differential operators with Dirichlet boundary conditions in uniform C2-domains
we refer to [17] and [9]. We want to remark that all cited results above are based
on standard localization procedures for the domain, contrary to the approach pre-
sented in this paper. Here we only localize a certain part of the coefficients but
not the domain.

This paper is structured as follows. In Section 2 we define the notion of a
cylindrical boundary value problem and give the precise statement of our main
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result. In Section 3 we recall the notion of parameter-ellipticity and of R-bounded
operator families. The proof of our main result Theorem 2.3 then is given in
Section 4. The main steps are split in three subsections. In Subsection 4.1 we
treat the corresponding operator-valued model problem, that is, here we assume
(partly) constant coefficients. By a perturbation argument, in Subsection 4.2 we
extend the R-sectoriality of the model problem to slightly varying coefficients. The
general case then is handled in Subsection 4.3. The statement of the main result is
restricted to the case that the two parts A1 and A2 are of the same order. However,
the same proof works for mixed-order systems. This will be briefly outlined in
Section 5.

2. Main result

We proceed with the precise statement of our main result.

Definition 2.1. Let k ∈ N. We call V ⊂ Rk a standard domain, if it is Rk, the
half-space Rk

+ = {x = (x1, . . . , xk) ∈ Rk : xk > 0}, or if it has compact boundary.

Let F be a Banach space and let Ω := Rn−k×V ⊂ Rn, where V is a standard
domain in Rk. For x ∈ Ω we write x = (x1, x2) ∈ Rn−k × V , whenever we want
to refer to the cylindrical geometry of Ω. Accordingly, we write α = (α1, α2) ∈
Nn−k

0 × Nk
0 for a multiindex α ∈ Nn

0 . In the sequel we consider the vector-valued
boundary value problem

λu +A(x,D)u = f in Ω,
Bj(x,D)u = 0 on ∂Ω (j = 1, . . . ,m), (2.1)

with A(x,D) =
∑

|α|≤2m aα(x)Dα, m ∈ N, a differential operator in the interior
and operators Bj(x,D) =

∑
|β|<2m bβ(x)Dβ on the boundary. Vector-valued in

this context means that u is F -valued, hence derivatives have to be understood in
appropriate F -valued spaces. Accordingly the coefficients of A(·, D) and Bj(·, D)
are operator-valued, that is L(F )-valued. In particular, we will consider the fol-
lowing class of operators.

Definition 2.2. The boundary value problem (2.1) is called cylindrical if the oper-
ator A(·, D) is represented as

A(x,D) = A1(x1, D) +A2(x2, D)

:=
∑

|α1|≤2m

a1α1(x1)D(α1,0) +
∑

|α2|≤2m

a2α2(x2)D(0,α2)

and the boundary operator is given as

Bj(x,D) = B2,j(x2, D) :=
∑

|β2|≤mj

b2j,β2(x2)D(0,β2) (mj < 2m, j = 1, . . . ,m).

Thus the differential operators A(x,D) and Bj(x,D) resolve completely into parts
of which each one acts just on Rn−k or just on V .
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As the Lp(Ω, F )-realization of the boundary value problem

(A,B) := (A(·, D), B1(·, D), . . . , Bm(·, D))

given by (2.1) we define for 1 < p <∞,

D(A) := {u ∈ W 2m,p(Ω, F ); Bj(·, D)u = 0 (j = 1, . . . ,m)}
Au := A(·, D)u, u ∈ D(A).

From now on the cross-section V is assumed to be a standard domain with
C2m-boundary. Furthermore, the following smoothness assumptions on the coeffi-
cients may hold:

a1α1 ∈ C(Rn−k,C) for |α1| = 2m, a1α1(∞) := lim
|x1|→∞

a1α1(x1) exists,

a2α2 ∈ C(V ,L(F )) for |α2| = 2m, a2α2(∞) := lim
|x2|→∞

a2α2(x2) exists,

a1α1 ∈ [L∞ + Lrν ](Rn−k,C) for |α1| = ν < 2m, rν ≥ p,
2m− ν
n− k >

1
rν
,

a2α2 ∈ [L∞ + Lrν ](V,L(F )) for |α2| = ν < 2m, rν ≥ p,
2m− ν
k

>
1
rν
,

b2j,β2 ∈ C2m−mj (∂V,L(F )) (j = 1, . . . ,m; |β2| ≤ mj).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.2)

Our main result reads as follows. For a rigorous definition of maximal regularity,
R-sectoriality, and parameter-ellipticity we refer to the subsequent section (i.p.
Definitions 3.2, 3.4, and 3.10).

Theorem 2.3. Let 1 < p < ∞, let F be a Banach space of class HT enjoying
property (α), and let Ω := Rn−k×V ⊂ Rn, where V is a standard domain of class
C2m in Rk. For the boundary value problem (2.1) we assume that

(i) it is cylindrical,
(ii) the coefficients of A(·, D) and Bj(·, D), j = 1, . . . ,m, satisfy (2.2),
(iii) it is parameter-elliptic in Ω of angle ϕ(A,B) ∈ [0, π/2),
(iv) the boundary value problem (A#(∞, D), B1(·, D), . . . , Bm(·, D)) with the limit

operator A#(∞, D) :=
∑

|α|=2m aα(∞)Dα is parameter-elliptic in Ω with
angle less or equal to ϕ(A,B).

Then for each φ > ϕ(A,B) there exists δ = δ(φ) ≥ 0 such that A+ δ is R-sectorial
in Lp(Ω, F ) with φRS

A+δ ≤ φ and we have

R({λ �
2mDα(λ+A+ δ)−1; λ ∈ Σπ−φ, � ∈ N0, α ∈ Nn

0 , 0 ≤ �+ |α| ≤ 2m}) <∞.
(2.3)

By [21, Theorem 4.2] we obtain

Corollary 2.4. Let the assumptions of Theorem 2.3 be given. Then the operator
A+ δ has maximal regularity on Lp(Ω, F ).

Example. It is not difficult to verify that problem (2.1) with A = −Δ the negative
Laplacian in Ω subject to Dirichlet or Neumann boundary conditions satisfies the
assumptions of Theorem 2.3.
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3. R-sectoriality and parameter-ellipticity

Throughout this article X,Y,E, and F denote Banach spaces. Given any closed
operatorA acting on a Banach space we denote byD(A), ker(A), and R(A) domain
of definition, kernel, and range of the operator and by ρ(A) and σ(A) its resolvent
set and spectrum respectively. The symbol L(X,Y ) stands for the Banach space of
all bounded linear operators from X to Y equipped with operator norm ‖·‖L(X,Y ).
As an abbreviation we set L(X) := L(X,X).

For p ∈ [1,∞) and a domain G ⊂ Rn, Lp(G,F ) denotes the F -valued
Lebesgue space of all p-Bochner-integrable functions, i.e., of functions f : G→ F
satisfying

‖f‖Lp(G,F ) :=

⎛⎝∫
G

‖f(x)‖p
Fdx

⎞⎠
1
p

<∞.

We also write L∞(G,F ) for the space consisting of all functions f satisfying
‖f‖∞ := ess supx∈G ‖f(x)‖F < ∞. The F -valued Sobolev space of order m ∈
N0 := N ∪ {0} is denoted by Wm,p(G,F ), that is the space of all f ∈ Lp(G,F )
whose F -valued distributional derivatives up to order m are functions in Lp(G,F )
again. Its norm is given by

‖f‖W m,p(G,F ) :=

⎛⎝ ∑
|α|≤m

‖Dαf‖p
Lp(G,F )

⎞⎠
1
p

,

where α ∈ Nn
0 is a multiindex. We write ‖ · ‖p := ‖ · ‖Lp(G,F ) and ‖ · ‖p,m :=

‖ · ‖W m,p(G,F ), if no confusion seems likely. Finally, for m ∈ N0 ∪ {∞}, Cm(G,F )
denotes the space of all m-times continuously differentiable functions. For general
facts on vector-valued function spaces we refer to the nice booklet of Amann, [7].

Definition 3.1. A closed linear operator A in a Banach spaceX is called sectorial, if
1. D(A) = X , ker(A) = {0}, R(A) = X ,
2. (−∞, 0) ⊂ ρ(A) and there is some C > 0 such that ‖t(t+A)−1‖L(X) ≤ C for

all t > 0.
In this case it is well known, see, e.g., [11], that there exists a φ ∈ [0, π) such that
the uniform estimate in 2. extends to all

λ ∈ Σπ−φ := {z ∈ C\{0}; | arg(z)| < π − φ}.
The number

φA := inf{φ : ρ(−A) ⊃ Σπ−φ, sup
λ∈Σπ−φ

‖λ(λ+A)−1‖L(X) <∞}

is called spectral angle of A. The class of sectorial operators is denoted by S(X).

Observe that σ(A) ⊂ ΣφA . In case φA < π
2 , the operator −A generates

a bounded holomorphic C0-semigroup on X . For a suitable treatment of related
nonlinear problems, however, the generation of a holomorphic semigroup might not
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be enough. Then the stronger property of maximal regularity is required which is
defined as follows.

Definition 3.2. Let 1 ≤ p ≤ ∞, let X be a Banach space, and let A : D(A) → X
be closed and densely defined. Then A is said to have (Lp-) maximal regularity, if
for each f ∈ Lp(R+, X) there is a unique solution u : R+ → D(A) of the Cauchy
problem {

u′ +Au = f in R+,
u(0) = 0,

satisfying the estimate

‖u′‖Lp(R+,X) + ‖Au‖Lp(R+,X) ≤ C‖f‖Lp(R+,X)

with a C > 0 independent of f ∈ Lp(R+, X).

If the Banach space X is of class HT (see Definition 3.6), by [21, Theorem
4.2] it is well known that the property of having maximal regularity is equivalent
to the R-sectoriality of an operator A. This concept is based on the notion of R-
bounded operator families, which we introduce next. We refer to [11] and [18] for
a comprehensive introduction to the notion of R-bounded operator families and
restrict ourselves here to the definition.

Definition 3.3. A family T ⊂ L(X,Y ) is called R-bounded, if there exist a C > 0
and a p ∈ [1,∞) such that for all N ∈ N, Tj ∈ T , xj ∈ X and all independent
symmetric {−1, 1}-valued random variables εj on a probability space (G,M, P )
for j = 1, . . . , N , we have that∥∥∥∥ N∑

j=1

εjTjxj

∥∥∥∥
Lp(G,Y )

≤ C
∥∥∥∥ N∑

j=1

εjxj

∥∥∥∥
Lp(G,X)

. (3.1)

The smallest C > 0 such that (3.1) is satisfied is called R-bound of T and denoted
by R(T ).

Definition 3.4. A closed operator A in X satisfying condition 1. of Definition 3.1
is called R-sectorial, if there exist an angle φ ∈ [0, π) and a constant Cφ > 0 such
that

R({λ(λ+A)−1 : λ ∈ Σπ−φ}) ≤ Cφ. (3.2)

The class of R-sectorial operators is denoted by RS(X) and we call φRS
A given as

the infimum over all angles φ such that (3.2) holds the R-angle of A.

We remark that in general R-boundedness is stronger than the uniform
boundedness with respect to the operator norm. Therefore R-sectoriality always
implies the sectoriality of an operator A and we have

φA ≤ φRS
A .

We will use the following two results on R-boundedness frequently in subsequent
proofs. The first one shows that R-bounds behave as uniform bounds concerning
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sums and products. This follows as a direct consequence of the definition of R-
boundedness. The second one is known as the contraction principle of Kahane. A
proof can be found in [18] or [11].

Lemma 3.5.

a) Let X,Y , and Z be Banach spaces and let T ,S ⊂ L(X,Y ) as well as U ⊂
L(Y, Z) be R-bounded. Then T + S ⊂ L(X,Y ) and UT ⊂ L(X,Z) are R-
bounded as well and we have

R(T + S) ≤ R(S) +R(T ), R(UT ) ≤ R(U)R(T ).

Furthermore, if T denotes the closure of T with respect to the strong operator
topology, then we have R(T ) = R(T ).

b) [contraction principle of Kahane]
Let p ∈ [1,∞). Then for all N ∈ N, xj ∈ X, εj as above, and for all aj , bj ∈ C
with |aj | ≤ |bj | for j = 1, . . . , N ,∥∥∥∥ N∑

j=1

ajεjxj

∥∥∥∥
Lp(G,X)

≤ 2
∥∥∥∥ N∑

j=1

bjεjxj

∥∥∥∥
Lp(G,X)

(3.3)

holds.

Let E be a Banach space and let S(Rn, E) denote the Schwartz space of all
rapidly decreasing E-valued functions and let S′(Rn, E) := L(S(Rn,C), E). Then
the E-valued Fourier transform

Fϕ(ξ) :=
1

(2π)n/2

∫
Rn

e−iξ·xϕ(x)dx

defines an isomorphism of the space S(Rn, E) which extends by duality to the
larger space S′(Rn, E). Given two Banach spaces E1, E2 and any operator-valued
function m ∈ L∞(Rn,L(E1, E2)), we may define the operator

Tm : S(Rn, E1)→ S′(Rn, E2); Tmϕ := F−1mFϕ.
We saym defines an operator-valued Fourier multiplier, if Tm extends to a bounded
operator

Tm : Lp(Rn, E1) → Lp(Rn, E2).

In order to state the operator-valued multiplier result our approach is based
on, two further notions from Banach space geometry are required.

Definition 3.6.

a) The Hilbert transform H : S(R, E) → S ′(R, E) is given by Hf := F−1mFf
where m(ξ) := iξ

|ξ| . The Banach space E is of class HT or, equivalently, a
UMD space, if there exists a q ∈ (1,∞) such that H extends to a bounded
operator on Lq(R, E). In other words, mE := m · idE is an operator-valued
(one variable) Fourier multiplier.
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b) A Banach space E is said to have property (α), if there exists a C > 0 such
that for all n ∈ N, αij ∈ C with |αij | ≤ 1, all xij ∈ E, and all indepen-
dent symmetric {−1, 1}-valued random variables ε1i on a probability space
(G1,M1, P1) and ε2j on a probability space (G2,M2, P2) for i, j = 1, . . . , N ,
we have that ∫

G1

∫
G2

∥∥∥∥ N∑
i,j=1

ε1i (u)ε
2
j(v)αijxij

∥∥∥∥
E

dudv

≤ C
∫

G1

∫
G2

∥∥∥∥ N∑
i,j=1

ε1i (u)ε
2
j(v)xij

∥∥∥∥
E

dudv.

By Plancherel’s theorem Hilbert spaces are of class HT . Besides that, it is well
known that the spaces Lp(G,F ) are of class HT provided that 1 < p < ∞ and
that F is of class HT . Moreover, Cn and the spaces Lp(G,F ) enjoy property (α)
for 1 ≤ p <∞, if F does so (cf. [18]).

We are now in position to state the mentioned operator-valued Fourier mul-
tiplier theorem. For a proof we refer to [18, Proposition 5.2].

Proposition 3.7. Let E1, E2 be Banach spaces of class HT with property (α),
1 < p < ∞, and set Xi := Lp(Rn, Ei), i = 1, 2. Given any set Λ, let mλ ∈
Cn(Rn\{0},L(E1, E2)) for λ ∈ Λ and assume that

R({ξαDαmλ(ξ); ξ ∈ Rn\{0}, λ ∈ Λ, α ∈ {0, 1}n}) ≤ Cm <∞.

Then for all λ ∈ Λ we have

Tλ := F−1mλF ∈ L(X1, X2)

and that
R({Tλ; λ ∈ Λ}) ≤ C(n, p, E1, E2)Cm <∞.

Next we recall the notion of parameter-ellipticity from [11]. Let F be a Banach
space, G ⊂ Rn be a domain, and set

A(x,D) :=
∑

|α|≤2m

aα(x)Dα,

where m ∈ N, α ∈ Nn
0 , and aα : G→ L(F ). For λ ∈ C and boundary operators

Bj(x,D) :=
∑

|β|≤mj

bj,β(x)Dβ ,

where mj < 2m, β ∈ Nn
0 , and bj,β : ∂G→ L(F ) for j = 1, . . . ,m, we consider the

boundary value problem

λu+A(x,D)u = f in G,

Bj(x,D)u = 0 on ∂G (j = 1, . . . ,m).
(3.4)
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Definition 3.8. Let F be a Banach space, G ⊂ Rn, m ∈ N, and aα ∈ L(F ). The
L(F )-valued homogeneous polynomial

a(ξ) :=
∑

|α|=2m

aαξ
α (ξ ∈ Rn)

is called parameter-elliptic, if there exists an angle φ ∈ [0, π) such that the spectrum
σ(a(ξ)) of a(ξ) in L(F ) satisfies

σ(a(ξ)) ⊂ Σφ (ξ ∈ Rn, |ξ| = 1). (3.5)

Then
ϕ := inf{φ : (3.5) holds}

is called angle of ellipticity of a.
A differential operatorA(x,D) :=

∑
|α|≤2m

aα(x)Dα with coefficients aα : G→ L(F )

is called parameter-elliptic in G with angle of ellipticity ϕ, if the principal part of
its symbol

a#(x, ξ) :=
∑

|α|=2m

aα(x)ξα

is parameter-elliptic with this angle of ellipticity for all x ∈ G.

Definition 3.9. Let F be a Banach space and let G ⊂ Rn be a C1-domain. Let
aα : G → L(F ) and bj,β : ∂G → L(F ). Set B#

j (x,D) :=
∑

|β|=mj

bβ,j(x)Dβ and

let A#(x,D) :=
∑

|α|=2m

aα(x)Dα be parameter-elliptic in G of angle of ellipticity

ϕ ∈ [0, π). For each x0 ∈ ∂G we write the boundary value problem in local
coordinates about x0. The boundary value problem (3.4) is said to satisfy the
Lopatinskii-Shapiro condition, if for each φ > ϕ the ODE on R+

(λ+A#(x0, ξ
′, Dxn))v(xn) = 0, xn > 0,

B#
j (x0, ξ

′, Dxn)v(0) = hj , j = 1, . . . ,m,

v(xn) → 0, xn →∞,
has a unique solution v ∈ C((0,∞), F ) for each (h1, . . . , hm)T ∈ Fm and each
λ ∈ Σπ−φ and ξ′ ∈ Rn−1 with |ξ′|+ |λ| �= 0.

We refer to [22] for an introduction to the Lopatinskii-Shapiro condition for
scalar-valued boundary value problems and to [11] for an extensive treatment of
the F -valued case. Parameter-ellipticity of a boundary value problem now reads
as follows.

Definition 3.10. The boundary value problem (A,B) given through (3.4) is called
parameter-elliptic in G of angle ϕ ∈ [0, π), if A(·, D) is parameter-elliptic in G of
angle ϕ ∈ [0, π) and if the Lopatinskii-Shapiro condition holds. To indicate that ϕ
is the angle of ellipticity of the boundary value problem (A,B) we use the subscript
notation ϕ(A,B).
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4. Proof of the main result

We denote by

D(A2) := {u ∈ W 2m,p(V, F ); B2,j(·, D)u = 0 (j = 1, . . . ,m)}
A2u := A2(·, D)u, u ∈ D(A2),

the Lp(V, F )-realization of the induced boundary value problem

λu+A2(x2, D)u = f in V,

B2,j(x2, D)u = 0 on ∂V (j = 1, . . . ,m),
(4.1)

on the cross-section V of Ω. As the original boundary value problem (2.1) is as-
sumed to be parameter-elliptic with ellipticity angle ϕ(A,B) ∈ [0, π/2), it is easy
to see that the same is valid for the boundary value problem (4.1) and that the
corresponding angle ϕ(A2,B2) is no larger than ϕ(A,B). By employing finite open
coverings of V , in [11] the following result is proved.

Proposition 4.1. Let V ⊂ Rk be a standard domain of class C2m. Given the as-
sumptions (2.2) on the coefficients a2 and b2, for each φ > ϕ(A2,B2) there exists a
δ2 = δ2(φ) ≥ 0 such that A2 + δ2 ∈ RS(Lp(V, F )) with φRS

A2+δ2
≤ φ. Moreover, we

have

R({λ1− |γ|
2mDγ(λ+A2 + δ2)−1; λ ∈ Σπ−φ, 0 ≤ |γ| ≤ 2m}) <∞. (4.2)

Remark 4.2. In [11] just the case k ≥ 2 is treated, whereas the case k = 1 is well
known.

From the definition it is clear that the coefficients of the cylindrical parts
A1 and A2 of A only depend on x1 or x2, respectively. For the sake of simplicity
we therefore drop the special indications for x, if no confusion seems likely. To be
precise we write

Ai(xi, D) = Ai(x,D) =
∑

|α|≤2m

ai
α(x)Dα

for i = 1, 2, where

a1α(x) =
{

0 , α2 �= 0,
a1α1(x1), α2 = 0,

a2α(x) =
{

0 , α1 �= 0,
a2α2(x2), α1 = 0.

Further we set E := Lp(Ω, F ) and X := Lp(Rn−k, E) ∼= Lp(Ω, F ). Given an
operator T : D(T ) ⊂ E → E, its canonical extension is defined by

D(T̃ ) := Lp(Rn−k, D(T ))

(T̃ u)(x) := T (u(x)), u ∈ D(T̃ ), x ∈ Rn−k.
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4.1. Constant coefficients a1
α

In the first step we consider the model problem for the cylindrical boundary value
problem (2.1), i.e., we assume A1(x,D) on Rn−k to be given as homogeneous
differential operator

A1(D) :=
∑

|α|=2m

a1αD
α

with constant coefficients a1α ∈ C. Let A1 denote its realization in X with domain
D(A1) :=W 2m,p(Rn−k, E). We set

A0(·, D) := A1(D) +A2(·, D)

and
A0 := A1 + Ã2, D(A0) := D(A1) ∩D(Ã2).

Note that no further restrictions on A2(x,D) have to be assumed.
Since it will always be clear from the context what we mean, from now on

we do not distinguish between Ã2 and A2. In other words, from this point on we
drop again the tilde notation and just write A2 for simplicity.

Let φ > ϕ(A0,B), λ ∈ Σπ−φ and u ∈ S(Rn−k, D(A2)) ⊂ D(A0). Applying
E-valued Fourier transform F to f := (λ+A0 + δ2)u gives us

(λ + a1(·) +A2 + δ2)Fu = Ff.
Hence we formally have

u = F−1m0
λFf,

where m0
λ is given by the operator-valued symbol

m0
λ(ξ) := (λ+ a1(ξ) +A2 + δ2)−1, ξ ∈ Rn−k.

Note that m0
λ ∈ C∞(Rn−k,L(E)) is well defined if

−(λ+ a1(ξ)) ∈ ρ(A2 + δ2) (ξ ∈ Rn−k).

In view of ϕ(A2,B2) ≤ ϕ(A0,B) and Proposition 4.1 this is obviously satisfied in
case that λ + a1(ξ) ∈ Σπ−φ. This, however, follows directly from the parame-
ter-ellipticity of A1(D), which is obtained as an immediate consequence of the
parameter-ellipticity of (A0, B), and since the ellipticity angle ϕA1 of A1 fulfills
ϕA1 ≤ ϕ(A0,B) < φ.

In order to obtain

(λ +A0 + δ2)−1 = F−1m0
λFf ∈ L(X),

the idea is to apply the operator-valued multiplier result of Proposition 3.7 to m0
λ.

For this purpose, we next establish suitable representation formulas for derivatives
of m0

λ.

Lemma 4.3. Let φ > ϕ(A0,B). Given α ∈ {0, 1}n−k, let

Zα :=

⎧⎨⎩W = (ω1, . . . , ωr) ∈ ({0, 1}n−k)r; r ≤ n− k, ωj �= 0,
r∑

j=1

ωj = α

⎫⎬⎭
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denote the set of all additive decompositions of α into r = rW many positive
multiindices. Then, with CW := (−1)rr!, the formula

ξαDαm0
λ(ξ) = (λ+ a1(ξ) +A2 + δ2)−1

·
∑

W∈Zα

CW

⎛⎝ r∏
j=1

ξω
j

Dωj

a1(ξ)

⎞⎠ (λ+ a1(ξ) +A2 + δ2)−r

holds for all λ ∈ Σπ−φ and ξ ∈ Rn−k.

Proof. Let |α| = 1. Then there exists i ∈ {1, . . . , n − k} such that α = ei. In this
case Zα = {(α)} and we get immediately

ξiDim
0
λ(ξ) = −ξi(Dia1)(ξ)(λ + a1(ξ) +A2 + δ)−2

= (λ + a1(ξ) +A2 + δ2)−1(−1)ξα(Dαa1)(ξ)(λ + a1(ξ) +A2 + δ)−1.

Now assume the statement to be true for α ∈ {0, 1}n−k with |α| < n− k.
Then for l ∈ {1, . . . , n− k} such that αl = 0 we obtain

ξlξ
αDlD

αm0
λ(ξ)

= ξlDl

∑
W∈Zα

CW

⎛⎝ rW∏
j=1

ξω
j

Dωj

a1(ξ)

⎞⎠ (λ+ a1(ξ) +A2 + δ2)−(1+rW)

= ξl
∑

W∈Zα

CW

·

⎡⎣ rW∑
i=1

ξω
i

(DlD
ωi

a1)(ξ)

⎛⎝∏
j �=i

ξω
j

Dωj

a1(ξ)

⎞⎠ (λ+ a1(ξ) +A2 + δ2)−(1+rW )

+

⎛⎝∏
j

ξω
j

Dωj

a1(ξ)

⎞⎠ (−(1 + rW))(Dla1)(ξ)(λ + a1(ξ) +A2 + δ2)−(2+rW)

⎤⎦
= (λ+ a1(ξ) +A2 + δ2)−1

·
∑

W∈Zα+el

CW

⎛⎝ rW∏
j=1

ξω
j

Dωj

a1(ξ)

⎞⎠ (λ+ a1(ξ) +A2 + δ2)−rW . �

In the sequel we denote by (β, γ) ∈ Nn−k
0 × Nk

0 a multiindex such that β is
the part corresponding to the variables x1 ∈ Rn−k and γ corresponding to the
variables x2 ∈ V . In order to obtain the general estimate (2.3) for the full operator
A, we also have to consider the more involved symbols

mλ(ξ) := λ1− |β|+|γ|
2m ξβDγm0

λ(ξ) = λ1− |β|+|γ|
2m ξβDγ(λ + a1(ξ) +A2 + δ2)−1

for λ ∈ Σπ−φ, ξ ∈ Rn−k, and |β|+ |γ| ≤ 2m.
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Lemma 4.4. Let φ > ϕ(A0,B). For α ∈ {0, 1}n−k we have

ξαDαmλ(ξ) = λ1− |β|+|γ|
2m ξβDγ(λ+ a1(ξ) +A2 + δ2)−1

·
∑

α′≤α

Cα′,β

∑
W∈Zα−α′

CW

r∏
j=1

(
ξω

j

(Dωj

a1)(ξ)(λ + a1(ξ) +A2 + δ2)−1
)
,

for all λ ∈ Σπ−φ, ξ ∈ Rn−k, and (β, γ) ∈ Nn−k
0 ×Nk

0 such that |β|+ |γ| ≤ 2m, and
with certain constants Cα′,β ∈ Z.

Proof. We first show

ξαDαmλ(ξ) = λ1− |β|+|γ|
2m ξβ

∑
α′≤α

(
∏

i;α′
i �=0

βi)ξα−α′
Dα−α′

Dγ(λ+ a1(ξ) +A2 + δ2)−1.

(4.3)

Let α = ei for some i ∈ {1, . . . , n− k}. Then

ξiDimλ(ξ)

= λ1− |β|+|γ|
2m ξβ

(
βiD

γ(λ+ a1(ξ) + A2 + δ2)−1 + ξiDiD
γ(λ+ a1(ξ) +A2 + δ2)−1

)
already proves (4.3) for the case |α| = 1. Assume the statement to be true for
α ∈ {0, 1}n−k with |α| < n− k. For l ∈ {1, . . . , n− k} such that αl = 0 we have

ξlξ
αDlD

αmλ(ξ)

= λ1− |β|+|γ|
2m ξlDl

∑
α′≤α

(
∏

i;α′
i �=0

βi)ξβξα−α′
Dα−α′

Dγ(λ + a1(ξ) +A2 + δ2)−1

= λ1− |β|+|γ|
2m

⎛⎝ ∑
α′≤α

(
∏

i;α′
i �=0

βi)βlξ
βξα−α′

Dα−α′
Dγ(λ+ a1(ξ) +A2 + δ2)−1

+
∑

α′≤α

(
∏

i;α′
i �=0

βi)ξβξα+el−α′
Dα+el−α′

Dγ(λ + a1(ξ) +A2 + δ2)−1

⎞⎠
= λ1− |β|+|γ|

2m ξβ⎛⎝ ∑
α′≤α+el;α′

l=1

(
∏

i;α′
i �=0

βi)ξα+el−α′
Dα+el−α′

Dγ(λ+ a1(ξ) +A2 + δ2)−1

+
∑

α′≤α+el;α′
l=0

(
∏

i;α′
i �=0

βi)ξα+el−α′
Dα+el−α′

Dγ(λ+ a1(ξ) +A2 + δ2)−1

⎞⎠
= λ1− |β|+|γ|

2m ξβ
∑

α′≤α+el

(
∏

i;α′
i �=0

βi)ξα−α′
Dα−α′

Dγ(λ+ a1(ξ) +A2 + δ2)−1.
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This proves (4.3). Setting Cα′,β :=
∏

i;α′
i �=0

βi and applying Lemma 4.3 now yields

ξαDαmλ(ξ) = λ1− |β|+|γ|
2m ξβDγ

∑
α′≤α

Cα′,β

·
∑

W∈Zα−α′

CW

⎛⎝ r∏
j=1

ξω
j

Dωj

a1(ξ)

⎞⎠Dγ(λ+ a1(ξ) +A2 + δ2)−(r+1)

= λ1− |β|+|γ|
2m ξβDγ(λ+ a1(ξ) +A2 + δ2)−1

∑
α′≤α

Cα′,β

·
∑

W∈Zα−α′

CW

r∏
j=1

(
ξω

j

(Dωj

a1)(ξ)(λ + a1(ξ) +A2 + δ2)−1
)
.

This proves the assertion. �

With the above formulas at hand we can prove R-sectoriality for the model
problem.

Proposition 4.5. For each φ > ϕ(A0,B) we have A0 + δ2 ∈ RS(X) with δ2 = δ2(φ)
as in Proposition 4.1. Moreover, φRS

A0+δ2
≤ φ and it holds that

R({λ1− |β|+|γ|
2m DβDγ(λ+A0 + δ2)−1; λ ∈ Σπ−φ, 0 ≤ |β|+ |γ| ≤ 2m}) <∞. (4.4)

Furthermore, the domain of A0 is given as

D(A0) = Lp(Rn−k, D(A2)) ∩
2m⋂
j=1

W j,p(Rn−k,W 2m−j,p(V, F )).

Proof. Let φ > ϕ(A0,B). We show that mλ fulfills the assumptions of the multiplier
result Proposition 3.7, i.e., that

R({ξαDαmλ(ξ); ξ ∈ Rn−k, λ ∈ Σπ−φ, α ∈ {0, 1}n−k}) <∞.

As R-boundedness by virtue of Lemma 3.5 is preserved under summation and
composition of R-bounded operator families, it suffices by Lemma 4.4 to prove
that

R({λ1− |β|+|γ|
2m ξβDγ(λ+ a1(ξ) +A2 + δ2)−1;

ξ ∈ Rn−k, λ ∈ Σπ−φ, 0 ≤ |β|+ |γ| ≤ 2m}) <∞

and that

R({ξα(Dαa1)(ξ)(λ + a1(ξ) +A2 + δ2)−1;

ξ ∈ Rn−k, λ ∈ Σπ−φ, α ∈ {0, 1}n−k}) <∞.
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Thanks to (4.2) this follows by the contraction principle of Kahane if we can show
that both

κ1(λ, ξ) :=
λ1− |β|+|γ|

2m ξβ

(λ + a1(ξ))1−
|γ|
2m

and κ2(λ, ξ) :=
ξαDαa1(ξ)
λ+ a1(ξ)

are uniformly bounded in (λ, ξ) ∈ Σπ−φ ×Rn−k. To see this, we first observe that

κ1(s2mλ, sξ) = κ1(λ, ξ) (s > 0),

hence that κ1 is quasi-homogeneous of degree zero. We set

K := {(λ, ξ) ∈ Σπ−φ × Rn−k : |λ|+ |ξ|2m = 1}. (4.5)

By the ellipticity condition, we obtain a1(ξ) ∈ Σϕ
A1

for all ξ ∈ Rn−k \ {0}. Since
ϕA1 < φ, it therefore easily follows that

λ+ a1(ξ) �= 0 on K.

Consequently, κ1 is a continuous function on the compact set K and we obtain

|κ1(λ, ξ)| ≤M ((λ, ξ) ∈ K).

By the quasi-homogeneity of κ1 this implies

|κ1(s2mλ, sξ)| ≤M ((λ, ξ) ∈ K, s > 0).

We have
|s2mλ|+ |sξ|2m = s2m(|λ| + |ξ|2m).

Thus, if we set s = (|λ|+ |ξ|2m)−1/2m we deduce

(s2mλ, sξ) ∈ K ((λ, ξ) ∈ Σπ−φ × Rn−k)

and therefore that

|κ1(λ, ξ)| = |κ1(s2mλ, sξ)| ≤M ((λ, ξ) ∈ Σπ−φ × Rn−k).

The uniform boundedness of κ2 can be proved in exactly the same way. By applying
Proposition 3.7, relation (4.4) follows.

In particular, we have

(λ+A0 + δ2)−1 = F−1m0
λFf ∈ L(X)

and

D(A0) ⊂
2m⋂
j=1

W j,p(Rn−k,W 2m−j,p(V, F )).

Furthermore, we can represent the resolvent applied to f ∈ S(Rn−k, E) as a
Bochner integral via

(λ +A0 + δ2)−1f(x1) =
1

(2π)(n−k)/2

∫
Rn−k

eix
1·ξ(λ+ a1(ξ) +A2 + δ2)−1Ff(ξ)dξ.

Since taking the trace acts as a bounded operator on E, it commutes with the
integral sign. This yields

B2,j(λ+A0 + δ2)−1f = 0 (f ∈ S(Rn−k, E)).
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Employing a density argument we conclude that

D(A0) = Lp(Rn−k, D(A2)) ∩
2m⋂
j=1

W j,p(Rn−k,W 2m−j,p(V, F )).

Assuming that (A0 + δ2)u = 0 for u ∈ D(A0) next implies that

(a1(ξ) +A2 + δ2)Fu(ξ) = 0 (ξ ∈ Rn−k).

Since A2 + δ2 is sectorial and a1 parameter-elliptic this yields Fu = 0, hence
u = 0. By permanence properties for sectorial operators, i.e., in this case for
A2 + δ2, we obtain that the same is true for the dual operator of A0 + δ2. This
implies that A0 + δ2 is injective and has dense range. Hence we have proved that
A0 + δ2 ∈ RS(X). �
4.2. Slightly varying coefficients a1

α

By a perturbation argument in this paragraph we generalize the R-sectoriality
for constant coefficients to the case of slightly varying coefficients of A1. To this
end, we will employ the following perturbation result which is based on a standard
Neumann series argument.

Lemma 4.6. Let R be a linear operator in X such that D(A0) ⊂ D(R) and let δ2
be given as in Proposition 4.5. Assume that there are η > 0 and δ > δ2 such that

‖Rx‖X ≤ η‖(A0 + δ)x‖X (x ∈ D(A)).

Then A0 + R + δ ∈ RS(X), φRS
A0+R+δ ≤ φRS

A0+δ2
, and for every φ > ϕ(A0,B) we

have

R({λ �
2mDβDγ(λ+A0 +R+δ)−1; λ ∈ Σπ−φ, 0 ≤ �+ |β|+ |γ| ≤ 2m}) <∞, (4.6)

whenever η < R({(A0 + δ)(λ +A0 + δ)−1})−1.

Proof. As

‖R(λ+A0 + δ)−1‖L(X) ≤ η‖(A0 + δ)(λ+A0 + δ)−1‖L(X)

≤ ηR({(A0 + δ)(λ +A0 + δ)−1})
< 1

by assumption, we see that

λ+A0 +R+ δ =
(

1 +R(λ+A0 + δ)−1

)
(λ+A0 + δ)

is invertible. This implies

λ
�

2mDβDγ(λ+A0 +R+ δ)−1

= λ
�

2mDβDγ(λ +A0 + δ)−1
∞∑

j=0

(−R(λ+A0 + δ)−1)j .

By assumption we have δ0 := δ − δ2 > 0. The fact that

|λ+ δ0| ≥ cφδ0 (λ ∈ Σπ−φ)
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for some cφ > 0 yields the existence of a Mφ > 0 such that

|λ�/2m|
|(λ+ δ0)1−(|β|+|γ|)/2m| ≤Mφ (λ ∈ Σπ−φ).

Thanks to the contraction principle of Kahane and Proposition 4.5 we deduce

R({λ �
2mDβDγ(λ+A0 + δ)−1})

≤ CR({(λ+ δ0)1−
|β|+|γ|

2m DβDγ((λ+ δ0) +A0 + δ2)−1}) ≤ C.

Lemma 3.5(a) then yields

R({λ �
2mDβDγ(λ+A0 + δ)−1(−R(λ+A0 + δ)−1)j})

≤ R({λ �
2mDβDγ(λ+A0 + δ)−1})R({(R(λ+A0 + δ)−1)j})

≤ CηjR({(A0 + δ)(λ +A0 + δ)−1)})j ≤ Cνj (j ∈ N0)

with ν := ηR({(A0 + δ)(λ+A0 + δ)−1}) < 1. Employing again Lemma 3.5(a), in
particular the fact that the R-bound is preserved when taking the closure in the
strong operator topology, the assertion follows. �

Corollary 4.7. Let R(x1, D) :=
∑

|α1|=2m rα1 (x1)D(α1,0) be given such that the
condition

∑
|α1|=2m

‖rα1‖∞ < η is satisfied. Set

Ava(x,D) := A0(x2, D) +R(x1, D), x ∈ Ω, (4.7)

and denote its X-realization by Ava defined on D(Ava) = D(A0). Then there
exists a δ > 0 such that Ava + δ ∈ RS(X) with φRS

Ava+δ ≤ φRS
A0+δ2

provided that η
is sufficiently small. In this case for φ > ϕ(A0,B) we have

R({λ �
2mDβDγ(λ+Ava + δ)−1; λ ∈ Σπ−φ, 0 ≤ l + |β|+ |γ| ≤ 2m}) <∞. (4.8)

Proof. By Proposition 4.5, in particular by relation (4.4), there exists a C > 0
such that

‖D(α1,0)(A0 + δ)−1‖L(X) ≤ C (α1 ∈ Nn−k
0 , |α1| = 2m)

for each δ > δ2. For a fixed δ > δ2 this implies

‖Ru‖p ≤
∑

|α1|=2m

‖rα1‖∞‖D(α1,0)(A0 + δ)−1(A0 + δ)u‖p

≤ Cη‖(A0 + δ)u‖p (u ∈ D(A0)).

Thus, if we assume that η < 1/CR({(A0+δ)(λ+A0 +δ)−1}), the assertion follows
from Lemma 4.6. �
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4.3. Variable coefficients a1
α

In the next lemma we establish estimates that will turn out to be crucial for the
localization procedure.

Lemma 4.8. Let 1 < p <∞, (β1, 0) ∈ Nn−k
0 × Nk

0 , |(β1, 0)| = ν < 2m, and rν ≥ p
such that 2m−ν > n−k

rν
. Let b ∈ [L∞+Lrν ](Rn−k), Ava be the operator as defined

in (4.7), and assume that φ > ϕ(A,B).

(a) For every ε > 0 there exists C(ε) > 0 such that

‖bD(β1,0)u‖p ≤ ε‖u‖p,2m + C(ε)‖u‖p (u ∈W 2m,p(Rn−k, E)).

(b) For every ε > 0 there exists a δ = δ(ε) > 0 such that

R({bD(β1,0)(λ+Ava + δ)−1; λ ∈ Σπ−φ}) ≤ ε.

Proof. (a) Let ε > 0 be arbitrary. For simplicity we set β = (β1, 0). For b ∈
L∞(Rn−k) we obtain by Hölder’s inequality and vector-valued complex interpola-
tion (see, e.g., [5]) that

‖bDβu‖p ≤ ‖b‖∞‖u‖p,ν ≤ C‖b‖∞‖u‖
ν

2m
p,2m‖u‖

1− ν
2m

p (u ∈W 2m,p(Rn−k, E)).

With the help of Young’s inequality we then can achieve that

‖bDβu‖p ≤ ε‖u‖p,2m + C(ε)‖u‖p (u ∈ W 2m,p(Rn−k, E)).

Now let b ∈ Lrν (Rn−k), r := rν

p , and 1
r + 1

r′ = 1. Then Hölder’s inequality and the
vector-valued version of the Gagliardo-Nirenberg inequality (see [19]) imply

‖bDβu‖p ≤ C‖b‖pr‖Dβu‖pr′ ≤ C‖b‖rν‖u‖τ
p,2m‖u‖1−τ

p ,

where τ = n−k
rν(2m−ν) ∈ (0, 1) by our assumption on rν . Again an application of

Young’s inequality yields

‖bDβu‖p ≤ ε‖u‖p,2m + C(ε)‖u‖p (u ∈ W 2m,p(Rn−k, E)).

(b) Let (εj)j∈N be a family of independent symmetric {−1, 1}-valued random
variables on a probability space ([0, 1],M, P ), λj ∈ Σπ−φ, and fj ∈ X . For b ∈
L∞(Rn−k), δ0 > 0, and arbitrary t ∈ [0, 1] we have∥∥∥∥ N∑

j=1

εj(t)bDβ(λj + δ0 +Ava + δ)−1fj

∥∥∥∥
p

≤ ‖b‖∞
∥∥∥∥ N∑

j=1

εj(t)Dβ(λj + δ0 +Ava + δ)−1fj

∥∥∥∥
p

.

Note that there is a cφ > 0 such that

|λ+ δ0| ≥ cφδ0 (λ ∈ Σπ−φ, δ0 > 0).



498 T. Nau and J. Saal

Taking Lp-norm with respect to t and applying the contraction principle of Kahane
therefore yields∥∥∥∥ N∑

j=1

εj(·)bDβ(λj + δ0 +Ava + δ)−1fj

∥∥∥∥
Lp([0,1],X)

≤ C‖b‖∞
∥∥∥∥ N∑

j=1

εj(·)
(
λj + δ0
δ0

)1− |β|
2m

Dβ(λj + δ0 +Ava + δ)−1fj

∥∥∥∥
Lp([0,1],X)

.

Thanks to (4.8) this implies∥∥∥∥ N∑
j=1

εj(·)bDβ(λj + δ0 +Ava + δ)−1fj

∥∥∥∥
Lp([0,1],X)

≤ C‖b‖∞δ
−(1− |β|

2m )
0

∥∥∥∥ N∑
j=1

εj(·)fj
∥∥∥∥

Lp([0,1],X)

.

Thus for δ0 > (C‖b‖∞/ε)1/(1−|β|/2m) the assertion follows.
In case that b ∈ Lrν (Rn−k), Hölder’s inequality and the Gagliardo-Nirenberg

inequality imply for τ(2m− ν) = n−k
rν

and arbitrary t ∈ [0, 1] that∥∥∥∥ N∑
j=1

εj(t)bDβ(λj + δ0 +Ava + δ)−1fj

∥∥∥∥
p

≤ ‖b‖pr

∥∥∥∥ N∑
j=1

εj(t)Dβ(λj + δ0 +Ava + δ)−1fj

∥∥∥∥
pr′

≤ C‖b‖rν

( ∑
|α|=2m

∥∥∥∥ N∑
j=1

εj(t)Dα(λj + δ0 +Ava + δ)−1fj

∥∥∥∥p

p

)τ/p

·
∥∥∥∥ N∑

j=1

εj(t)(λj + δ0 +Ava + δ)−1fj

∥∥∥∥1−τ

p

.

Taking Lp-norm with respect to t and applying once more Hölder’s inequality we
deduce∥∥∥∥ N∑

j=1

εj(·)bDβ(λj + δ0 +Ava + δ)−1fj

∥∥∥∥
Lp([0,1],X)

≤ C‖b‖rν

( ∑
|α|=2m

∥∥∥∥ N∑
j=1

εj(·)Dα(λj + δ0 +Ava + δ)−1fj

∥∥∥∥p

Lp([0,1],X)

)τ/p

·
∥∥∥∥ N∑

j=1

εj(·)(λj + δ0 +Ava + δ)−1fj

∥∥∥∥1−τ

Lp([0,1],X)

.
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The contraction principle of Kahane then gives us∥∥∥∥ N∑
j=1

εj(·)bDβ(λj + δ0 +Ava + δ)−1fj

∥∥∥∥
Lp([0,1],X)

≤ C‖b‖rν

( ∑
|α|=2m

∥∥∥∥ N∑
j=1

εj(·)Dα(λj + δ0 +Ava + δ)−1fj

∥∥∥∥p

Lp([0,1],X)

)τ/p

·
∥∥∥∥ N∑

j=1

εj(·)
λj + δ0
δ0

(λj + δ0 +Ava + δ)−1fj

∥∥∥∥1−τ

Lp([0,1],X)

.

Taking into account (4.8) we arrive at∥∥∥∥ N∑
j=1

εj(·)bDβ(λj + δ0 +Ava + δ)−1fj

∥∥∥∥
Lp([0,1],X)

≤ C‖b‖rνδ
τ−1
0

∥∥∥∥ N∑
j=1

εj(·)fj
∥∥∥∥

Lp([0,1],X)

.

Choosing δ0 > (C‖b‖rν/ε)1/(1−τ) proves the lemma. �

Proof of Theorem 2.3. We denote by

A#
1 (x,D) :=

∑
|α|=2m

a1α(x)Dα

the principal part ofA1(x,D) and byA#
1 its realization inX with domainD(A#

1 ) =
W 2m,p(Rn−k, E). Recall that A#

1 (x,D) = A#
1 (x1, D) does not depend on x2 ∈ V .

Freezing the coefficients at some arbitrary x1
0 ∈ Rn−k ∪ {∞}, Proposition 4.5

applies to A1(D) := A#
1 (x1

0, D).
So, we first choose a large ball Br0(0) ⊂ Rn−k with a fixed radius r0 > 0 such

that

|a1α1(x1)− a1α1(∞)| ≤ η/Mα, for all |x1| ≥ r0, |α1| = 2m,

and set U0 := Rn−k\Br0(0). Here Mα =
∣∣{α1 ∈ Nn−k

0 ; |α1| = 2m, aα1 �= 0}
∣∣

and η = η(∞) is the constant given in Corollary 4.7 for the principal part of
the ’limiting operator’ A#

1 (∞, D) =
∑

|α|=2m a
1
α(∞)Dα. For every x1

0 ∈ Br0(0)
let η = η(x1

0) be the constant given in Corollary 4.7 for the ’frozen coefficients
operator’ A1(D) := A#

1 (x1
0, D). By our continuity assumptions on the coefficients

then there exists a radius r = r(x1
0) such that

|a1α1(x1)− a1α1(x1
0)| ≤ η(x1

0)/Mα, for all |x1 − x1
0| ≤ r(x1

0), |α1| = 2m.
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Obviously the collection {Br(x1
0)

(x1
0)) : x1

0 ∈ Br0(0)} represents an open covering
of Br0(0). Thus, by compactness we have

Br0(0) ⊆
N⋃

j=1

Br(x1
j)

(x1
j )

for a certain finite set (x1
j )

N
j=1.

For simplicity we set xj := (x1
j , 0), rj := r(x1

j ), and Uj := Brj (x1
j ) for j =

1, . . . , N , as well as x1
0 := ∞. For each j = 0, . . . , N we define coefficients of

A#
1 (x,D)-localizations

A1,loc
j (x,D) :=

∑
|α|=2m

a1j,α(x)Dα

by reflection, i.e., we set

a10,α(x) =

{
a1α(x) , x1 /∈ Br0(0),
a1α( r2

0
|x|2x), x1 ∈ Br0(0),

and

a1j,α(x) =

{
a1α(x) , x1 ∈ Brj (x1

j ),

a1α(xj + r2
j

|x−xj|2 (x− xj)), x1 /∈ Brj (x1
j ).

Then by definition we have∑
|α1|=2m

|a1j,α1(x) − a1α1(xj)| ≤ η(x1
j )

for x = (x1, 0) ∈ Rn−k × Rk and j = 0, . . . , N , that is, A1,loc
j (x,D) is a small

variation of A#(x1
j , D) := A#

1 (x1
j , D) +A2(x,D). Hence Corollary 4.7 applies to

Aloc
j := A1,loc

j +A2.

In other words, for each φ > ϕ(A,B) there exists δ = δ(φ) > 0 such that Aloc
j + δ ∈

RS(X) and we have

R({λ �
2mDβDγ(λ+Aloc

j + δ)−1; λ ∈ Σπ−φ, 0 ≤ �+ |β|+ |γ| ≤ 2m}) ≤ Cφ <∞
(4.9)

for j = 0, . . . , N .
Next we choose a partition of unity (ϕj)N

j=0 ⊂ C∞(Rn−k) of Rn−k sub-
ordinate to the open covering (Uj)N

j=0 such that 0 ≤ ϕj ≤ 1. In addition, we
fix ψj ∈ C∞(Rn−k) such that ψj ≡ 1 on supp ϕj and supp ψj ⊂ Uj . We set
B(x,D) := A(x,D)−A#(x,D) and pick λ ∈ Σπ−φ. Then

λu+A(·, D)u = f

holds if and only if
λu +A#(·, D)u = f − B(·, D)u.
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Multiplying the line above by ϕj we obtain

λϕju+A#(·, D)ϕju = ϕjf + [A#(·, D), ϕj ]u− ϕjB(·, D)u,

where the commutators

[A#(·, D), ϕj ] := A#(·, D)ϕj − ϕjA
#(·, D) = [A#

1 (·, D), ϕj ]

do only depend on A#
1 (·, D). Applying the resolvent of Aloc

j to the localized equa-
tions we deduce

ϕju = (λ+Aloc
j + δ)−1ϕjf + (λ+Aloc

j + δ)−1([A#(·, D), ϕj ]u− ϕjB(·, D)u).

By multiplying with ψj and by summing up over j we gain the representation

u =
N∑

j=0

ψj(λ+Aloc
j +δ)−1ϕjf+

N∑
j=0

ψj(λ+Aloc
j +δ)−1([A#(·, D), ϕj ]u−ϕjB(·, D))u.

Hence we obtain

(I −
N∑

j=0

ψj(λ+Aloc
j + δ)−1Cj(·, D))u =

N∑
j=0

ψj(λ+Aloc
j + δ)−1ϕjf,

where
Cj(·, D) := [A#

1 (·, D), ϕj ]− ϕjB(·, D)
is a differential operator in X of lower order whose coefficients fulfill the assump-
tions of Lemma 4.8. We set

R0(λ, δ) :=
N∑

j=0

ψj(λ+Aloc
j + δ)−1ϕj (4.10)

and

R1(λ, δ) :=
N∑

j=0

ψj(λ+Aloc
j + δ)−1Cj(·, D).

Relation (4.9) and Lemma 4.8(a) now imply that

‖R1(λ, δ′ + δ0)u‖W 2m,p(Ω,F ) + δ0‖R1(λ, δ′ + δ0)u‖p

≤ C
(
‖R1(λ+ δ0, δ′)u‖W 2m,p(Ω,F ) + |λ+ δ0|‖R1(λ+ δ0, δ′)u‖p

)
≤ C‖Cj(·, D)u‖p

≤ C
(
ε‖u‖W 2m,p(Rn−k,E) + C(ε)‖u‖p

)
≤ 1

2
(
‖u‖W 2m,p(Rn−k,E) + δ0‖u‖p

)
≤ 1

2
(
‖u‖W 2m,p(Ω,F ) + δ0‖u‖p

)
(λ ∈ Σπ−φ)

for some δ′ > 0 and provided that δ0 > 0 is sufficiently large. Setting δ := δ′ + δ0
we see that then

Lλ := (I −R1(λ, δ))−1R0(λ, δ) : Lp(Rn−k, E) → D(A)
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is a left inverse of λ+A+ δ which admits an estimate

|λ|‖Lλf‖p ≤ C‖f‖p (λ ∈ Σπ−φ).

Thus, if we can prove that there exists a right inverse as well, we obtain A+ δ ∈
S(X) and φA+δ ≤ φ.

To this end, let f ∈ X be arbitrary. Then

(λ+A(·, D) + δ)R0(λ, δ)f = (λ +A#(·, D) + δ)R0(λ, δ)f + B(·, D)R0(λ, δ)f

= (λ+A#(·, D) + δ)
N∑

j=0

ψj(λ+Aloc
j + δ)−1ϕjf

+ B(·, D)
N∑

j=0

ψj(λ+Aloc
j + δ)−1ϕjf

=
N∑

j=0

ψj(λ+A#(·, D) + δ)(λ+Aloc
j + δ)−1ϕjf

+
N∑

j=0

D(·, D)(λ + Aloc
j + δ)−1ϕjf,

where

D(·, D) := [A#
1 (·, D), ψj ] + B(·, D)ψj

is again a differential operator in X of lower order whose coefficients fulfill the
assumptions of Lemma 4.8. Since supp ψj ⊂ Uj and ψ ≡ 1 on supp ϕj , we obtain

(λ+A(·, D) + δ)R0(λ, δ)f = f +R2(λ, δ)f

with

R2(λ, δ) :=
N∑

j=0

D(·, D)(λ +Aloc
j + δ)−1ϕj .

Lemma 4.8(b) implies ‖R2(λ, δ)‖L(X) ≤ 1/2 for large enough δ > 0. Consequently,
Rλ := R0(λ, δ)(I +R2(λ, δ))−1 is a right inverse of λ+A+ δ.

With the help of the Leibniz rule and the contraction principle of Kahane,
from representation (4.10) and relation (4.9) we obtain that

R({λ �
2mDβDγR0(λ, δ)}) ≤ C(N + 1).

In view of Lemma 4.8(b) and Lemma 3.5 the representation

(λ +A+ δ)−1 = R0(λ, δ)
∞∑

i=0

R2(λ, δ)i
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as a Neumann series finally gives us

R({λ �
2mDβDγ(λ+A+ δ)−1; λ ∈ Σπ−φ, 0 ≤ �+ |β|+ |γ| ≤ 2m})

≤ R({λ �
2mDβDγR0(λ, δ)})R({

∞∑
i=0

R2(λ, δ)i})

≤ (N + 1)C
∞∑

i=0

(N + 1)i(Cε)i =
(N + 1)C

1− (N + 1)Cε
<∞.

Hence the proof of Theorem 2.3 is complete. �

5. Mixed orders

All parts of the proof can easily be adjusted to the situation when the differential
operators A1(·, D) and A2(·, D) have different orders, say 2m1 and 2m2 respec-
tively. Then a cylindrical boundary value problem is given as

λu +A(x,D)u = f in Ω,

Bj(x,D)u = 0 on ∂Ω (j = 1, . . . ,m),
(5.1)

with

A(x,D) = A1(x1, D) +A2(x2, D)

:=
∑

|α1|≤2m1

a1α1(x1)D(α1,0) +
∑

|α2|≤2m2

a2α2(x2)D(0,α2)

and

Bj(x,D) = B2,j(x2, D)

:=
∑

|β2|≤m2,j

b2j,β2(x2)D(0,β2) (m2,j < 2m2, j = 1, . . . ,m2).

However, then the notion of parameter-ellipticity for the entire cylindrical bound-
ary value problem is no longer appropriate. Instead we assume the differential
operator A1(·, D) to be parameter-elliptic in Rn−k as well as the boundary value
problem

λu +A2(x,D)u = f in V,

B2,j(x,D)u = 0 on ∂V (j = 1, . . . ,m),
(5.2)

to be parameter-elliptic in the cross-section V of Ω with a joint angle of parameter-
ellipticity ϕ ∈ [0, π/2). The exact same proof as the one of Theorem 2.3 can be
used to show the following result.

Theorem 5.1. Given the assumptions of Theorem 2.3, let A1(·, D) in Rn−k as well
as the boundary value problem (5.2) in V be parameter-elliptic with a joint angle
of parameter-ellipticity ϕ ∈ [0, π/2). For Ω = Rn−k × V we define the Lp(Ω, F )-
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realization of the cylindrical boundary value problem (5.1) by

D(A) =
{
u ∈ Lp(Ω, F ); Dαu ∈ Lp(Ω, F )

for
|α1|
2m1

+
|α2|
2m2

≤ 1 and Bj(·, D)u = 0 (j = 1, . . . ,m)
}

Au = A(·, D)u, u ∈ D(A).

Then for each φ > ϕ there exists δ = δ(φ) > 0 such that A + δ ∈ RS(Lp(Ω, F ))
with φRS

A+δ ≤ φ. Moreover, for α = (α1, α2) ∈ Nn−k
0 × Nk

0 we have

R
({
λ1−( |α1|

2m1
+ |α2|

2m2
)Dα(λ+A+ δ)−1; λ ∈ Σπ−φ, 0 ≤ |α1|

2m1
+
|α2|
2m2

≤ 1
})

<∞.
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Birkhäuser Verlag, Basel, 2002.

[11] R. Denk, M. Hieber, and J. Prüss, R-boundedness, Fourier multipliers and problems
of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (2003), viii+114.
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Analytic Solutions for the
Two-phase Navier-Stokes Equations
with Surface Tension and Gravity

Jan Prüss and Gieri Simonett

Dedicated to Herbert Amann on the occasion of his 70th birthday

Abstract. We consider the motion of two superposed immiscible, viscous, in-
compressible, capillary fluids that are separated by a sharp interface which
needs to be determined as part of the problem. Allowing for gravity to act
on the fluids, we prove local well-posedness of the problem. In particular,
we obtain well-posedness for the case where the heavy fluid lies on top of the
light one, that is, for the case where the Rayleigh-Taylor instability is present.
Additionally we show that solutions become real analytic instantaneously.

Mathematics Subject Classification (2000). Primary: 35R35. Secondary: 35Q10,
76D03, 76D45, 76T05.

Keywords. Navier-Stokes equations, free boundary problem, surface tension,
gravity, Rayleigh-Taylor instability, well-posedness, analyticity.

1. Introduction and main results

We consider a free boundary problem describing the motion of two immiscible,
viscous, incompressible capillary fluids, fluid1 and fluid2, occupying the regions

Ωi(t) = {(x, y) ∈ Rn × R : (−1)i(y − h(t, x)) > 0, t ≥ 0}, i = 1, 2.

The fluids, thus, are separated by the interface

Γ(t) := {(x, y) ∈ Rn × R : y = h(t, x) : x ∈ Rn, t ≥ 0},
called the free boundary, which needs to be determined as part of the problem.
The motion of the fluids is governed by the incompressible Navier-Stokes equations
where surface tension on the free boundary is included. In addition, we also allow

The research of GS was partially supported by NSF, Grant DMS-0600870.
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for gravity to act on the fluids. The governing equations then are given by the
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(
∂tu+ (u|∇)u

)
− μΔu+∇q = 0 in Ω(t)

div u = 0 in Ω(t)

−[[S(u, q)ν]] = σκν + [[ρ]]γayν on Γ(t)

[[u]] = 0 on Γ(t)

V = (u|ν) on Γ(t)

u(0) = u0 in Ω0

Γ(0) = Γ0 .

(1.1)

Here ρ and μ are given by

ρ = ρ1χΩ1(t) + ρ2χΩ2(t), μ = μ1χΩ1(t) + μ2χΩ2(t),

with χ the indicator function, where the constants ρi and μi denote the densities
and viscosities of the respective fluids. The constant σ > 0 denotes the surface
tension, and γa is the acceleration of gravity. Moreover, S(u, q) is the stress tensor
defined by

S(u, q) = μi

(
∇u+ (∇u)T

)
− qI in Ωi(t),

where q = q̃ + ργay denotes the modified pressure incorporating the potential of
the gravity force, and

[[v]] = (v|Ω2(t)
− v|Ω1(t)

)
|Γ(t)

denotes the jump of the quantity v, defined on the respective domains Ωi(t), across
the interface Γ(t). Finally, κ = κ(t, ·) is the mean curvature of the free boundary
Γ(t), ν = ν(t, ·) is the unit normal field on Γ(t), and V = V (t, ·) is the normal
velocity of Γ(t). Here we use the convention that ν(t, ·) points from Ω1(t) into
Ω2(t), and that κ(t, x) is negative when Ω1(t) is convex in a neighborhood of
x ∈ Γ(t).
Given is the initial position Γ0 = graph (h0) of the interface, and the initial velocity

u0 : Ω0 → Rn+1, Ω0 := Ω1(0) ∪ Ω2(0).

The unknowns are the velocity field u(t, ·) : Ω(t) → Rn+1, the pressure field
q(t, ·) : Ω(t)→ R, and the free boundary Γ(t), where Ω(t) := Ω1(t) ∪ Ω2(t).
Our main result shows that problem (1.1) admits a unique local smooth solution,
provided that ‖∇h0‖∞ := supx∈Rn |∇h0(x)| is sufficiently small.

Theorem 1.1. Let p > n + 3. Then given β > 0, there exists η = η(β) > 0 such
that for all initial values

(u0, h0) ∈ W 2−2/p
p (Ω0,R

n+1)×W 3−2/p
p (Rn), [[u0]] = 0,

satisfying the compatibility conditions

[[μD(u0)ν0 − μ(ν0|D(u0)ν0)ν0]] = 0, div u0 = 0 on Ω0,
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with D(u0) := (∇u0 + (∇u0)T), and the smallness-boundedness condition

‖∇h0‖∞ ≤ η, ‖u0‖∞ ≤ β,
there is t0 = t0(u0, h0) > 0 such that problem (1.1) admits a classical solu-
tion (u, q,Γ) on (0, t0). The solution is unique in the function class described in
Theorem 4.2. In addition, Γ(t) is a graph over Rn given by a function h(t) and
M =

⋃
t∈(0,t0)

(
{t} × Γ(t)

)
is a real analytic manifold, and with

O := {(t, x, y) : t ∈ (0, t0), x ∈ Rn, y �= h(t, x)},
the function (u, q) : O → Rn+2 is real analytic.

Remarks 1.2. (a) More precise statements for the transformed problem will be
given in Section 4. Due to the restriction p > n+ 3 we obtain

h ∈ C(J ;BUC2(Rn)) ∩ C1(J ;BUC1(Rn)),

with J = [0, t0], where BUC means bounded and uniformly continuous. In partic-
ular, the normal of Ω1(t), the normal velocity of Γ(t), and the mean curvature of
Γ(t) are well defined and continuous, so that (1.1) makes sense pointwise. For u
we obtain

u ∈ BUC(J × Rn+1,Rn+1), ∇u ∈ BUC(O,R(n+1)2 ).

Also interesting is the fact that the surface pressure jump is analytic on M as
well.
(b) It is possible to relax the assumption p > n + 3. In fact, p > (n + 3)/2 turns
out to be sufficient. In order to keep the arguments simple, we impose here the
stronger condition p > n+ 3.
(c) It is well known that the situation where gravity is acting on two superposed
immiscible fluids – with the heavier fluid lying above a fluid of lesser density – leads
to an instability, the Rayleigh-Taylor instability. In this case, small disturbances
of the equilibrium situation (u, h) = (0, 0) can cause instabilities, where the heavy
fluid moves down under the influence of gravity, and the light material is displaced
upwards, leading to vortices. Our results show that problem (1.1) is also well
posed in this case, provided ‖∇h0‖∞ is small enough, yielding smooth solutions
for a short time. In the forthcoming publication [29] we will give a rigorous proof
showing that the equilibrium solution (u, h) = (0, 0) is Lp-unstable. To the best
of our knowledge these are the first rigorous results concerning the Navier-Stokes
equations subject to the Rayleigh-Taylor instability.
(d) If γa = 0 then it is shown in [28] that problem (1.1) admits a solution with
the same regularity properties on an arbitrary fixed time interval [0, t0], provided
that ‖u0‖W

2−2/p
p (Ω0)

and ‖h0‖W
3−2/p
p (Rn)

are sufficiently small (depending on t0).

(e) We point out that in Theorem 1.1 we only need a smallness condition on the
sup-norm of ∇h0 (relative to the vertical component of the velocity). In case of a
more general geometry, this condition can always be achieved by a judicious choice
of a reference manifold.
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The motion of a layer of viscous, incompressible fluid in an ocean of infi-
nite extent, bounded below by a solid surface and above by a free surface which
includes the effects of surface tension and gravity (in which case Ω0 is a strip,
bounded above by Γ0 and below by a fixed surface Γb) has been considered by
Allain [1], Beale [7], Beale and Nishida [8], Tani [35], by Tani and Tanaka [36], and
by Shibata and Shimizu [32]. If the initial state and the initial velocity are close
to equilibrium, global existence of solutions is proved in [7] for σ > 0, and in [36]
for σ ≥ 0, and the asymptotic decay rate for t→∞ is studied in [8]. We also refer
to [9], where in addition the presence of a surfactant on the free boundary and in
one of the bulk phases is considered.
In case that Ω1(t) is a bounded domain, γa = 0, and Ω2(t) = ∅, one obtains the
one-phase Navier-Stokes equations with surface tension, describing the motion of
an isolated volume of fluid. For an overview of the existing literature in this case
we refer to the recent publications [28, 31, 32, 33].
Results concerning the two-phase problem (1.1) with γa = 0 in the 3D-case are
obtained in [11, 12, 13, 34]. In more detail, Densiova [12] establishes existence and
uniqueness of solutions (of the transformed problem in Lagrangian coordinates)
with v ∈ W s,s/2

2 for s ∈ (5/2, 3) in case that one of the domains is bounded. Tanaka
[34] considers the two-phase Navier-Stokes equations with thermo-capillary con-
vection in bounded domains, and he obtains existence and uniqueness of solutions
with (v, θ) ∈ W s,s/2

2 for s ∈ (7/2, 4), with θ denoting the temperature.
In order to prove our main result we transform problem (1.1) into a problem on
a fixed domain. The transformation is expressed in terms of the unknown height
function h describing the free boundary. Our analysis proceeds with establish-
ing maximal regularity results for an associated linear problem. relying on the
powerful theory of maximal regularity, in particular on the H∞-calculus for sec-
torial operators, the Dore-Venni theorem, and the Kalton-Weis theorem, see for
instance [2, 14, 16, 22, 23, 26, 30].

Based on the linear estimates we can solve the nonlinear problem by the
contraction mapping principle. Analyticity of solutions is obtained as in [28] by
the implicit function theorem in conjunction with a scaling argument, relying on
an idea that goes back to Angenent [4, 5] and Masuda [24]; see also [17, 18, 20].

The plan for this paper is as follows. Section 2 contains the transformation of
the problem to a half-space and the determination of the proper underlying linear
problem. In Section 3 we analyze this linearization and prove the crucial maxi-
mal regularity result in an Lp-setting. Section 4 is then devoted to the nonlinear
problem and contains the proof of our main result. Finally we collect and prove in
an appendix some of the technical results used in order to estimate the nonlinear
terms.
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2. The transformed problem

The nonlinear problem (1.1) can be transformed to a problem on a fixed domain
by means of the transformations

v(t, x, y) := (u1, . . . , un)(t, x, y + h(t, x)),

w(t, x, y) := un+1(t, x, y + h(t, x)),

π(t, x, y) := q(t, x, y + h(t, x)),

where t ∈ J = [0, a], x ∈ Rn, y ∈ R, y �= 0. With a slight abuse of notation we will
in the sequel denote the transformed velocity again by u, that is, we set u = (v, w).
With this notation we obtain the transformed problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tu− μΔu+∇π = F (u, π, h) in Ṙn+1

div u = Fd(u, h) in Ṙn+1

−[[μ∂yv]]− [[μ∇xw]] = Gv(u, [[π]], h) on Rn

−2[[μ∂yw]] + [[π]]− σΔh− [[ρ]]γah = Gw(u, h) on Rn

[[u]] = 0 on Rn

∂th− γw = −(γv|∇h) on Rn

u(0) = u0, h(0) = h0,

(2.1)

for t > 0, where Ṙn+1 = {(x, y) ∈ Rn × R : y �= 0}.
The nonlinear functions have been computed in [28] and are given by:

Fv(v, w, π, h) = μ{−2(∇h|∇x)∂yv + |∇h|2∂2
yv −Δh∂yv}+ ∂yπ∇h

+ ρ{−(v|∇x)v + (∇h|v)∂yv − w∂yv} + ρ∂th∂yv,

Fw(v, w, h) = μ{−2(∇h|∇x)∂yw + |∇h|2∂2
yw −Δh∂yw}

+ ρ{−(v|∇x)w + (∇h|v)∂yw − w∂yw} + ρ∂th∂yw,

Fd(v, h) = (∇h|∂yv)

(2.2)

and

Gv(v, w, [[π]], h) = − [[μ(∇xv + (∇xv)T)]]∇h+ |∇h|2[[μ∂yv]] + (∇h| [[μ∂yv]])∇h
− [[μ∂yw]]∇h+ {[[π]]− σ(Δh−Gκ(h))}∇h,

Gw(v, w, h) = − (∇h| [[μ∇xw]]) − (∇h| [[μ∂yv]]) + |∇h|2[[μ∂yw]] − σGκ(h)
(2.3)

with

Gκ(h) =
|∇h|2Δh

(1 +
√

1 + |∇h|2)
√

1 + |∇h|2
+

(∇h|∇2h∇h)
(1 + |∇h|2)3/2

, (2.4)

where ∇2h denotes the Hessian matrix of all second-order derivatives of h.

Before studying solvability results for problem (2.1) let us first introduce
suitable function spaces. Let Ω ⊆ Rm be open and X be an arbitrary Banach
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space. By Lp(Ω;X) and Hs
p(Ω;X), for 1 ≤ p ≤ ∞, s ∈ R, we denote the X-

valued Lebesgue and the Bessel potential spaces of order s, respectively. We will
also frequently make use of the fractional Sobolev-Slobodeckij spaces W s

p (Ω;X),
1 ≤ p <∞, s ∈ R \ Z, with norm

‖g‖W s
p (Ω;X) = ‖g‖

W
[s]
p (Ω;X)

+
∑

|α|=[s]

(∫
Ω

∫
Ω

‖∂αg(x)− ∂αg(y)‖p
X

|x− y|m+(s−[s])p
dx dy

)1/p

, (2.5)

where [s] denotes the largest integer smaller than s. Let a ∈ (0,∞] and J = [0, a].
We set

0W
s
p (J ;X) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{g ∈W s

p (J ;X) : g(0) = g′(0) = · · · = g(k)(0) = 0},

if k + 1
p < s < k + 1 + 1

p , k ∈ N ∪ {0},

W s
p (J ;X), if s < 1

p .

The spaces 0H
s
p(J ;X) are defined analogously. Here we remind that Hk

p =W k
p for

k ∈ Z and 1 < p <∞, and that W s
p = Bs

pp for s ∈ R \ Z.
For Ω ⊂ Rm open and 1 ≤ p < ∞, the homogeneous Sobolev spaces Ḣ1

p (Ω) of
order 1 are defined as

Ḣ1
p (Ω) := ({g ∈ L1,loc(Ω) : ‖∇g‖Lp(Ω) <∞}, ‖ · ‖Ḣ1

p(Ω))

‖g‖Ḣ1
p(Ω) :=

( m∑
j=1

‖∂jg‖p
Lp(Ω)

)1/p

.
(2.6)

Then Ḣ1
p (Ω) is a Banach space, provided we factor out the constant functions

and equip the resulting space with the corresponding quotient norm, see for in-
stance [21, Lemma II.5.1]. We will in the sequel always consider the quotient space
topology without change of notation. In case that Ω is locally Lipschitz, it is known
that Ḣ1

p (Ω) ⊂ H1
p,loc(Ω), see [21, Remark II.5.1], and consequently, any function

in Ḣ1
p (Ω) has a well-defined trace on ∂Ω.
For s ∈ R and 1 < p <∞ we also consider the homogeneous Bessel-potential

spaces Ḣs
p(Rn) of order s, defined by

Ḣs
p(Rn) := ({g ∈ S′(Rn) : İsg ∈ Lp(Rn)}, ‖ · ‖Ḣs

p(Rn)),

‖g‖Ḣs
p(Rn) := ‖İsg‖Lp(Rn),

(2.7)

where S′(Rn) denotes the space of all tempered distributions, and İs is the Riesz
potential given by

İsg := (−Δ)s/2g := F−1(|ξ|sFg), g ∈ S′(Rn).

By factoring out all polynomials, Ḣs
p(Rn) becomes a Banach space with the natural

quotient norm. For s ∈ R\Z, the homogeneous Sobolev-Slobodeckij spaces Ẇ s
p (Rn)

of fractional order can be obtained by real interpolation as

Ẇ s
p (Rn) := (Ḣk

p (Rn), Ḣk+1
p (Rn))s−k,p, k < s < k + 1,
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where (·, ·)θ,p is the real interpolation method. It follows that

İs ∈ Isom(Ḣt+s
p (Rn), Ḣt

p(R
n)) ∩ Isom(Ẇ t+s

p (Rn), Ẇ t
p(Rn)), s, t ∈ R, (2.8)

with Ẇ k
p = Ḣk

p for k ∈ Z. We refer to [6, Section 6.3] and [37, Section 5] for
more information on homogeneous functions spaces. In particular, it follows from
parts (ii) and (iii) in [37, Theorem 5.2.3.1] that the definitions (2.6) and (2.7) are
consistent if Ω = Rn, s = 1, and 1 < p <∞. We note in passing that(∫

Rn

∫
Rn

|g(x)− g(y)|p
|x− y|n+sp

dx dy

)1/p

,

(∫ ∞

0

t(1−s)p‖ d
dt
P (t)g‖p

Lp(Rn)

dt

t

)1/p

(2.9)

define equivalent norms on Ẇ s
p (Rn) for 0 < s < 1, where P (·) denotes the Poisson

semigroup, see [37, Theorem 5.2.3.2 and Remark 5.2.3.4]. Moreover,

γ± ∈ L(Ẇ 1
p (Rn+1

± ), Ẇ 1−1/p
p (Rn)), (2.10)

where γ± denotes the trace operators, see for instance [21, Theorem II.8.2].

3. The linearized two-phase Stokes problem with free boundary

It turns out that, unfortunately, the nonlinear term (γv|∇h) occurring in (2.1)
cannot be made small in the norm of F4(a), defined below in (4.2), by merely taking
‖∇h‖∞ small. This can, however, be achieved for the modified term (b− γv|∇h),
provided b is properly chosen so that b(0) = γv0. As a consequence, we now need
to consider the modified linear problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tu− μΔu+∇π = f in Ṙn+1

div u = fd in Ṙn+1

−[[μ∂yv]]− [[μ∇xw]] = gv on Rn

−2[[μ∂yw]] + [[π]] = gw + σΔh+ [[ρ]]γah on Rn

[[u]] = 0 on Rn

∂th− γw + (b(t, x)|∇)h = gh on Rn

u(0) = u0, h(0) = h0.

(3.1)

Here we mention that the simpler case where b = 0 and γa = 0 was studied in [28,
Theorem 5.1]. We obtain the following maximal regularity result.

Theorem 3.1. Let p > n + 3 be fixed, and assume that ρj and μj are positive
constants for j = 1, 2, and set J = [0, a]. Suppose

b0 ∈ Rn, b1 ∈ W 1−1/2p
p (J ;Lp(Rn,Rn)) ∩ Lp(J ;W 2−1/p

p (Rn,Rn)),
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and set b(·) = b0 + b1(·). Then the Stokes problem with free boundary (3.1) admits
a unique solution (u, π, h) with regularity

u ∈ H1
p (J ;Lp(Rn+1,Rn+1)) ∩ Lp(J ;H2

p (Ṙn+1,Rn+1)),

π ∈ Lp(J ; Ḣ1
p (Ṙn+1)),

[[π]] ∈W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)),

h ∈W 2−1/2p
p (J ;Lp(Rn)) ∩H1

p (J ;W 2−1/p
p (Rn)) ∩ Lp(J ;W 3−1/p

p (Rn))

(3.2)

if and only if the data (f, fd, g, gh, u0, h0) satisfy the following regularity and com-
patibility conditions:
(a) f ∈ Lp(J ;Lp(Rn+1,Rn+1)),

(b) fd ∈ H1
p (J ; Ḣ−1

p (Rn+1)) ∩ Lp(J ;H1
p (Ṙn+1)),

(c) g = (gv, gw) ∈ W 1/2−1/2p
p (J ;Lp(Rn,Rn+1)) ∩ Lp(J ;W 1−1/p

p (Rn,Rn+1)),

(d) gh ∈W 1−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)),

(e) u0 ∈W 2−2/p
p (Ṙn+1,Rn+1), h0 ∈W 3−2/p

p (Rn),

(f) div u0 = fd(0) in Ṙn+1 and [[u0]] = 0 on Rn if p > 3/2,
(g) −[[μ∂yv0]]− [[μ∇xw0]] = gv(0) on Rn if p > 3.

The solution map [(f, fd, g, gh, u0, h0) �→ (u, π, h)] is continuous between the cor-
responding spaces.

If b1 ≡ 0 then the result is true for all p ∈ (1,∞), p �= 3/2, 3.

Proof. (i) Since F4(a), defined by

F4(a) :=W 1−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)),

is a multiplication algebra for p > n+3, the operator [h �→ (b|∇)h] maps the space

E4(a) :=W 2−1/2p
p (J ;Lp(Rn)) ∩H1

p (J ;W 2−1/p
p (Rn)) ∩ Lp(J ;W 3−1/p

p (Rn))

continuously into F4(a) with bound |b0|+ Ca‖b1‖F4(a), see Lemma 5.5(a).
As in the proof of [28, Theorem 5.1] it suffices to consider the reduced problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tu− μΔu +∇π = 0 in Ṙn+1

div u = 0 in Ṙn+1

−[[μ∂yv]]− [[μ∇xw]] = 0 on Rn

−2[[μ∂yw]] + [[π]] = σΔh+ [[ρ]]γah on Rn

[[u]] = 0 on Rn

∂th− γw + (b(t, x)|∇)h = g̃h on Rn

u(0) = 0, h(0) = 0,

(3.3)

where the function g̃h ∈ 0F4(a) is defined in a similar way as in formula (5.5) in
[28]. This can be accomplished by choosing h1 := h1,b ∈ E4(a) such that

h1(0) = h0, ∂th1(0) = gh(0) + γw0 − (b(0)|∇h0),
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and then setting g̃h := g̃h,b := gh + γw1 − (b|∇h1)− ∂th1, where w1 has the same
meaning as in step (i) of the proof of [28, Theorem 5.1].
(ii) We first consider the reduced problem (3.3) for the case where b ≡ b0 is
constant. The corresponding boundary symbol sb0(λ, ξ) is given by

sb0(λ, ξ) = λ+
(
σ|ξ| − [[ρ]]γa/|ξ|

)
k(z) + i(b0|ξ), (3.4)

where we use the same notation as in the proof of [28, Theorem 5.1]. Here we
remind that k has the following properties: k is holomorphic in C \ R− and

k(0) =
1

2(μ1 + μ2)
, zk(z)→ 1

ρ1 + ρ2
for |z| → ∞, (3.5)

uniformly in z ∈ Σ̄ϑ for ϑ ∈ [0, π) fixed. In particular there is a constant N = N(ϑ)
such that

|k(z)|+ |zk(z)| ≤ N, z ∈ Σϑ. (3.6)
In the following we fix β > 0. For further analysis it will be convenient to introduce
the related extended symbol

s̃(λ, τ, ζ) := λ+ στk(z) + iτζ − [[ρ]]γak(z)/τ, (3.7)

where (λ, τ) ∈ Σπ/2+η × Ση with η sufficiently small, z := λ/τ2, and ζ ∈ Uβ,δ

with Uβ,δ := {ζ ∈ C : |Re ζ| < β + 1, |Im ζ| < δ} and δ ∈ (0, 1]. Clearly
s̃(λ, |ξ|, (b0|ξ/|ξ|)) = sb0(λ, ξ) for (λ, ξ) ∈ Ση × Ṙn.
We are going to show that for every fixed β > 0 there are positive constants λ0,
δ, η = η(β), and cj = cj(β, λ0, δ, η) such that

c0
[
|λ|+ |τ |

]
≤ |s̃(λ, τ, ζ)| ≤ c1

[
|λ|+ |τ |

]
, (3.8)

for all (λ, τ, ζ) ∈ Σπ/2+η × Ση × Uβ,δ with |λ| ≥ λ0. The upper estimate is easy
to obtain: fixing ϑ ∈ (π/2, π) and λ0 > 0, it follows from (3.6) and the identity
k(z)/τ = zk(z)τ/λ that

|s̃(λ, τ, ζ)| ≤ |λ|+
(
σN + (β + 2) + |[[ρ]]|γaN/λ0

)
|τ | ≤ c1

[
|λ|+ |τ |

]
(3.9)

for all (λ, τ, ζ) ∈ Σπ/2+η × Ση × Uβ,δ, where |λ| ≥ λ0 and η ∈ (0, η0) with η0 :=
(ϑ− π/2)/3.

In order to obtain a lower estimate we proceed as follows. Suppose first that
β, λ0 > 0 are fixed and η0 is as above. Then we obtain

|s̃(λ, τ, ζ)| ≥ |λ| −
(
σN + (β + 2) + |[[ρ]]|γaN/λ0

)
|τ |

≥ (1/2)|λ|+ (m/4)|τ | = c0(β, λ0)[|λ|+ |τ |],
(3.10)

provided (λ, τ, ζ) ∈ Σπ/2+η × Ση × Uβ,δ, η ∈ (0, η0), and |λ| ≥ λ0 as well as
|λ| ≥ m|τ | with

(m/4) ≥ σN + (β + 2) + |[[ρ]]|γaN/λ0.

Next we will derive an estimate from below in case that |λ| ≤M |τ |2 withM a pos-
itive constant. From (3.5) follows that there are constants H,L,R > 0, depending
on M , such that

L ≤ Re (σk(z)) ≤ R, |Im (σk(z))| ≤ H, (3.11)
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whenever (λ, τ) ∈ Σπ/2+η × Ση, for η ∈ (0, η0) and |λ| ≤ M |τ |2, where z = λ/τ2.
By choosing δ small enough we obtain from (3.11) and the definition of Uβ,δ

0 < L− δ ≤ Re (σk(z) + iζ) ≤ R+ δ, |Im (σk(z) + iζ)| ≤ H + (β + 1)

provided (λ, τ, ζ) ∈ Σπ/2+η × Ση × Uβ,δ, η ∈ (0, η0) and |λ| ≤ M |τ |2, where
z = λ/τ2. By choosing η small enough we conclude that there is α = α(M,β, δ, η) ∈
(0, π/2) such that

τ(σk(z) + iζ) ∈ Σα (3.12)
whenever (λ, τ, ζ) ∈ Σπ/2+η × Ση × Uβ,δ and |z| ≤ M with z = λ/τ2. We can
additionally assume that η is chosen so that ψ := π/2− α− η > 0. This implies

|s̃(λ, τ, ζ)| ≥ c(ψ)
[
|λ|+ |τ | |σk(z) + iζ|

]
− |τ ||[[ρ]]|γaN/λ1

≥ c(ψ)min(1, L− δ)
[
|λ|+ |τ |

]
− |τ ||[[ρ]]|γaN/λ1

≥ c0(M,β, λ1)
[
|λ|+ |τ |

]
,

(3.13)

provided (λ, τ, ζ) ∈ Σπ/2+η × Ση × Uβ,δ, |λ| ≤ M |τ |2 and |λ| ≥ λ1, where λ1 is
chosen big enough.

Noting that the curves |λ| = m|τ | and |λ| =M |τ |2 intersect at (m/M,m2/M)
we obtain (3.8) by choosing λ0 := max(λ1,m

2/M).
(iii) In the following, we fix β > 0 and we assume that b0 ∈ Rn with |b0| ≤ β.
Let then Sb0 be the operator corresponding to the symbol sb0 . It is clear that
Sb0 is bounded from 0E4(a) to 0F4(a) =: X and it remains to prove that it is
boundedly invertible. For this we use the H∞-calculus and similar arguments as
in [27, Section 4] and [28, Section 5]. First we note that Dn admits an R-bounded
H∞-calculus in X with angle 0; this follows from [14, Theorem 4.11]. Therefore
by the estimates obtained in (3.8), the operator family

{(λ+D1/2
n )s̃−1(λ,D1/2

n , ζ) : (λ, ζ) ∈ Σπ/2+η × Uβ,δ, |λ| ≥ λ0}
is R-bounded. Since G = ∂t is in H∞(X) with angle π/2, the theorem of Kalton
and Weis [22, Theorem 4.4] implies that the operator family

{(G+D1/2
n )s̃−1(G,D1/2

n , ζ) : ζ ∈ Uβ,δ}
is bounded and holomorphic on Uβ,δ. Finally, we employ the Dunford calculus for
the bounded linear operator Rb0 := (b0|R), where R denotes the Riesz operator
with symbol ξ/|ξ|, ξ ∈ Ṙn. The operator Rb0 is bounded and its spectrum is
σ(Rb0) = [−|b0|, |b0|], as, e.g., the Mikhlin theorem shows. Since the operator
family

{(G+D1/2
n )s̃−1(G,D1/2

n , ζ) : ζ ∈ Uβ,δ}
is bounded and holomorphic in a neighborhood of σ(Rb0 ), the classical Dunford
calculus shows that the operator

(G+D1/2
n )s̃−1(G,D1/2

n , Rb0)

is bounded in X , uniformly for all b0 ∈ Rn with |b0| ≤ β. This shows that Sb0 :
0E4(a)→ 0F4(a) is boundedly invertible, uniformly for all b0 ∈ Rn with |b0| ≤ β.
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We emphasize that the bound for the operator S−1
b0

: 0F4(a) → 0E4(a) de-
pends only on the parameters ρj , μj , σ, γa, p and β, for |b0| ≤ β.
(iv) By means of a perturbation argument the result for constant b can be extended
to variable b = b0 + b1(t, x). In fact, given β > 0 there exists a number η > 0 such
that the solution operator S−1

b exists and is bounded uniformly, provided |b0| ≤ β
and ‖b1‖∞ + ‖b1‖F4(a) ≤ 2η. This follows easily from the estimate

‖(b1|∇h)‖0F4(a) ≤ c0(‖b1‖∞ + ‖b1‖F4(a))‖h‖0E4(a),

see Lemma 5.5(c).
(v) In the general case we use a localization technique, similar to [3, Section 9].
For this purpose we first decompose J into subintervals Jk = [kδ, (k + 1)δ] of
length δ > 0 and solve the problem successively on these subintervals. Since b ∈
BUC(J ;C0(Rn,Rn)), i.e., b is bounded and uniformly continuous, given any η > 0
we may choose δ > 0 and ε > 0 such that

|b(t, x)− b(s, y)| ≤ η for all (t, x), (s, y) ∈ J × Rn

with |t−s| ≤ δ and |x−y|∞ ≤ ε. Let {Uj := xj+(ε/2)Q : j ∈ N} be an enumeration
of the open covering {(ε/2)(z/2 +Q) : z ∈ Zn} of Rn, where Q = (−1, 1)n. Clearly,

|b(t, x)− b(s, y)| ≤ η, s, t ∈ Jk, x, y ∈ Uj . (3.14)

Let φ be a smooth cut-off function with support contained in (ε/2)Q such that
φ ≡ 1 on (ε/4)Q. Define

φj := (τxjφ)
(∑

k∈N

(τxk
φ)2

)−1/2

, j ∈ N,

where (τxjφ)(x) := φ(x − xj). Consequently, φj is a smooth cut-off function with
supp(φj) ⊂ Uj and

∑
j φ

2
j ≡ 1. For a function space F(J ; Rn) ⊂ Lp(J ;Lp(Rn)) we

define
r(hj) :=

∑
j

φjhj , (hj) ∈ F(J ; Rn)N,

rch := (φjh), h ∈ F(J ; Rn).

Similarly as in [3, Section 9] one shows that

r ∈ L(�p(F(J ; Rn)),F(J ; Rn)), rc ∈ L(F(J ; Rn), �p(F(J ; Rn))), rrc = I, (3.15)

for F(J ; Rn) ∈ {F4(a),E4(a)}.
Let θ be a smooth cut-off function with supp(θ) ⊂ (ε/2)Q such that θ ≡ 1

on supp(φ) and let θj := τxjθ. Define

bj,k(t, x) := θj(x) (b(t, x)− b(kδ, xj)) , (t, x) ∈ J × Rn.

It follows that

‖bj,k‖BC(Jk×Rn) + ‖bj,k‖F4(Jk) ≤ c0η, k = 0, . . . ,m, j ∈ N, (3.16)

provided δ is chosen small enough, where BC stands for bounded and contin-
uous. Indeed, the estimates for ‖bj,k‖BC(Jk,Rn) follow immediately from (3.14),
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while the estimates for ‖bj,k‖F4(Jk) can be shown by approximating b by func-
tions that have better time regularity and by carefully estimating the products
‖θj(b − b(kδ, xj))‖F4(Jk).

We now concentrate on the first interval J0 = [0, δ]. Let L ∈ L(0E4(a), 0F4(a))
denote the operator with symbol στk(z), i.e.,

L := (σD1/2
n − [[ρ]]γaD

−1/2
n )k(GD−1

n ) := L1 + L2.

If follows from (3.16) and step (iii) that the operator

Sj := G+ L+ (b(0, xj) + bj,0|∇) : 0E4(δ) → 0F4(δ)

is invertible. Moreover, there is a constant C0, depending only on supj |b(0, xj)| –
and therefore only on ‖b‖BC(J×Rn) – such that ‖S−1

j ‖L(0F4(δ),0E4(δ)) ≤ C0, j ∈ N.

(vi) Suppose that for a given g ∈ 0F4(δ) we have a solution h ∈ 0E4(δ) of

Gh+ Lh+ (b|∇)h = g.

Multiplying this equation by φj , using that b ∂αφj = (b(0, xj) + bj,0) ∂αφj and
rrc = I this yields

Sjφjh− [L, φj ]h− (b|∇φj)h = (Sj − [L, φj ]r − (b|∇φj)r) rch = rcg,

where [·, ·] denotes the commutator. We now interpret this equation as an equation
in �p(0F4(δ)). It follows from step (iv) that (Sj) ∈ Isom(�p(0E4(δ)), �p(0F4(δ))) and

‖(S−1
j )‖L(�p(0F4(δ)),�p(0E4(δ))) ≤ C0. (3.17)

We shall show below in step (vi) that the commutators satisfy

([L, φj ] + (b|∇φj)) ∈ L(0F(a), �p(0F4(a))). (3.18)

Assuming this property, it follows from (3.15) that

‖(([L, φj ] + (b|∇φj))r(hj))‖�p(0F4(δ)) ≤ C‖(hj)‖�p(0F4(δ)) ≤ Cδα‖(hj)‖�p(0E4(δ))

for some α depending only on p and n. Therefore, choosing δ small enough we can
conclude that (Sj − ([L, φj ] + (b|∇φj))r) ∈ Isom(�p(0E4(δ)), �p(0F4(δ))) with

‖ (Sj − ([L, φj ] + (b|∇φj))r)
−1 ‖ ≤ 2C0.

Let Tb := r (Sj − ([L, φj ] + (b|∇φj))r)
−1 rc. Then Tb ∈ L(0F4(δ), 0E4(δ)) is a left

inverse of Sb := G+ L+ (b|∇). Hence

‖h‖0E4(δ) = ‖TbSbh‖0E4(δ) ≤ 2C0‖r‖ ‖rc‖ ‖Sbh‖0E4(δ), h ∈ 0E4(δ). (3.19)

Replacing b by ρb, ρ ∈ [0, 1], we have a continuous family {Sρb} of operators Sρb

which all satisfy the a priori estimate (3.19) uniformly in ρ ∈ [0, 1]. Since S0 is an
isomorphism, we can infer from a homotopy argument that Sb is an isomorphism
as well. Repeating successively these arguments for the intervals Jk, including the
reduction from step (i), proves the assertion of the corollary.
(vii) We still have to verify the estimate in (3.18). Since the covering {Uj : j ∈ N}
has finite multiplicity, one obtains

‖((∂αφj)g)‖�p(0F4(a)) ≤ C(α)‖g‖0F4(a), g ∈ 0F4(a). (3.20)
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This together with Proposition 5.5(b) shows that

‖(b|∇φj)h‖�p(0F4(a) ≤ C‖bh‖0F4(a) ≤ C0(‖b‖∞ + ‖b‖F4(a))‖h‖0F4(a).

The estimates for the commutators [L, φj ] are more involved. The operator A =
GD−1

n with canonical domain is sectorial and admits a bounded H∞-calculus with
angle π/2 in 0H

s
p(J ;Kr

p(Rn)), for K ∈ {H,W}, and also in 0W
s
p(J ;Kr

p(Rn)) by
real interpolation. Hence fixing θ ∈ (0, π/2), the following resolvent estimate holds
in these spaces:

‖z(z −A)−1‖ ≤M, for all z ∈ −Σθ.

The function k(z) is holomorphic in C \ (−∞,−2δ0] for some δ0 > 0 and behaves
like 1/z as |z| → ∞. Choose the contour

Γ = (∞, δ0]eiψ ∪ δ0ei[ψ,2π−ψ] ∪ [δ0,∞)e−iψ ,

where π > ψ > π − θ. Then we have the Dunford integral

k(A) =
1

2πi

∫
Γ

k(z)(z −A)−1dz,

which is absolutely convergent. This shows that k(A) is bounded, as is Ak(A)
thanks to A ∈ H∞, thus A1/2k(A) is bounded as well. Therefore the identity
k(A)D−1/2

n = G−1/2A1/2k(A) shows that L2 is bounded since G−1/2 is, and (3.18)
follows for [L2, φj ]. For the commutator [L1, φj ] we obtain

[L1, φj ] = σ[k(A)D1/2
n , φj ] = σ[k(A), φj ]D1/2

n + σk(A)[D1/2
n , φj ].

Using the Dunford integral for k(A) this yields

[k(A), φj ] =
1

2πi

∫
Γ

k(z)[(z−A)−1, φj ]dz =
1

2πi

∫
Γ

k(z)(z−A)−1[A, φj ](z−A)−1dz,

hence with

[A, φj ] = GD−1
n [φj , Dn]D−1

n = A(Δφj + 2(∇φj |∇))D−1
n

= A(ΔφjD
−1
n + 2i(∇φj |R)D−1/2

n ),

we have

[k(A),φj ]D1/2
n =

1
2πi

∫
Γ

k(z)A(z−A)−1{−ΔφjG
−1/2A1/2+2i(∇φj|R)}(z−A)−1dz.

Let h ∈ 0F4 be given. Then we obtain from

‖k(z)A(z −A)−1‖L(0F4) ≤ C/|z|, ‖A1/2(z −A)−1‖L(0F4) ≤ C/|z|1/2, z ∈ Γ,

from (3.20), and from Minkowski’s inequality for integrals∥∥∥( ∫
Γ

k(z)A(z −A)−1ΔφjG
−1/2A1/2(z −A)−1h dz

)∥∥∥
�p(0F4)

≤ C
∫

Γ

1
|z|‖(ΔφjG

−1/2A1/2(z −A)−1h)‖�p(0F4) |dz|

≤ C
∫

Γ

1
|z|3/2

‖h‖0F4 |dz| ≤ C‖h‖0F4
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where we also used that G−1/2 is bounded on compact intervals. In the same way
we can estimate the second term in the integral representation of [k(A), φj ]D1/2,
this time using the fact that R is bounded.

To estimate the commutators [D1/2
n , φj ] in 0F4 note that

(Dn)1/2 = Dn(Dn)−1/2 =
1√
π
Dn

∫ ∞

0

e−Dntt−
1
2 dt

=
1√
π

(
Dn

∫ 1

0

e−Dntt−
1
2 dt+Dn

∫ ∞

1

e−Dntt−
1
2 dt

)
=:

1√
π

(T1 + T2),

with e−Dnt denoting the bounded analytic semigroup generated by the Laplacian
in Hs

p(Rn) which extends by real interpolation to W s
p (Rn), and then canonically

to 0F4. Thus by (3.20) there is a constant C > 0 such that for h ∈ 0F4 we have

‖(φjT2h)‖�p(0F4) =
∥∥∥∥(φj

∫ ∞

1

Dne
−Dntt−

1
2h dt)

∥∥∥∥
�p(0F4)

≤ C
∥∥∥∥∫ ∞

1

Dne
−Dntt−

1
2h dt

∥∥∥∥
0F4

≤ C
∫ ∞

1

t−
3
2 dt ‖h‖0F4 ≤ C‖h‖0F4 ,

‖(T2φjh)‖�p(0F4) =
∥∥∥∥∫ ∞

1

Dne
−Dntt−

1
2 (φjh) dt

∥∥∥∥
�p(0F4)

≤ C‖(φjh)‖�p(0F4) ≤ C‖h‖0F4 .

Hence ‖([φj , T2]h)‖�p(0F4) ≤ C‖h‖0F4 .
We consider next the commutator [T1,φj ]. Let kt(x)=(2πt)−n/2exp(−|x|2/4t)

denote the Gaussian kernel. Then for fixed t > 0, the operatorDne
−Dnt is the con-

volution with kernel −Δkt(x), which is of class C∞. It is not difficult to see that
there are constants C, c > 0 such that

|Δkt(x)| ≤ Ct−(n+2)/2 e−c|x|2/t, x ∈ Rn, t > 0. (3.21)

Choosing a cut-off function χ ∈ C∞(Rn) with χ ≡ 1 in Bρ(0), supp (χ) ⊂ B2ρ(0)
and 0 ≤ χ ≤ 1 elsewhere, we set

−Δkt(x) = −(1−χ(x))Δkt(x)−χ(x)Δkt(x) =: k3,t(x)+ k4,t(x), x ∈ Rn, t > 0,

and we denote by Tl the convolution operators with kernels
∫ 1

0
kl,tt

−1/2dt, l = 3, 4.
For the kernel of T3 we obtain from (3.21) the estimate

|
∫ 1

0

k3,t(x)t−1/2 dt| ≤ C
∫ 1

0

e−c|x|2/tt−(n+3)/2 dt

≤ Ce−c1|x|2
∫ ∞

1

e−c2|x|2ss(n−1)/2ds ≤ Ce−c1|x|2 ,
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as k3,t(x) = 0 for |x| ≤ ρ. Thus this kernel is in L1(Rn) and hence we may estimate
the commutator [T3, φj ] in the same way as [T2, φj ].

For the remaining commutator [T4, φj ] note that

∂α[T4, φj ] =
∑
β≤α

(
α

β

)
[T4, ∂

βφj ]∂α−β .

This shows that it is enough to estimate the commutator [T4, φj ] in Lp(Rn), as it
then extends to Hm

p (Rn) and by interpolation to W s
p (Rn), and then canonically

to 0F4. Next we observe that for x, y ∈ Rn

∂αφj(y)− ∂αφj(x) = ∂αφ′j(x)(y − x) + rj,α(x, y),

where |rj,α(x, y)| ≤ C|x−y|2, with some constant C independent of j and |α| ≤ 2.
Therefore

[T4, φj ]h(x) =
∫ 1

0

∫
Rn

(φj(y)− φj(x))k4,t(x− y)h(y) dy t−
1
2 dt

= −φ′j(x)
∫

Rn

∫ 1

0

(y − x)k4,t(x− y)t−
1
2 dt h(y) dy+

+
∫

Rn

∫ 1

0

rj(x, y)k4,t(x− y)t−
1
2 dt h(y) dy

=: T5,jh(x) + T6,jh(x).

We observe that the support of the kernel k4,t is contained in B2ρ(0), and conse-
quently we may replace h by ψjh, where ψj is a cut-off function which equals 1
on supp(φj) + B2ρ(0). In the following we fix a smooth cut-off function ψ which
equals 1 on supp(φ) +B2ρ(0) and then set ψj := τxjψ. We then have

‖(Tl,jh)‖�p(Lp) = ‖(Tl,jψjh)‖�p(Lp) ≤ sup
k
‖Tl,k‖L(Lp)‖(ψjh)‖�p(Lp) ≤ C‖h‖Lp ,

provided we can show that the operators Tl,k are Lp-bounded with bound inde-
pendent of k ∈ N for l = 5, 6.

The operators Tl,j satisfy

T5,jh = φ′j(q ∗ h) with q(x) = χ(x)
∫ 1

0

xΔkt(x)t−
1
2 dt, x ∈ Rn

|T6,jh| ≤ r ∗ |h| with r(x) = Cχ(x)
∫ 1

0

|x|2|Δkt(x)|t−
1
2 dt, x ∈ Rn.

The Fourier transform of q is given by q̂(ξ) = Cχ̂ ∗
∫ 1

0 ∇ξ(|ξ|2e−t|ξ|2)t−1/2dt and
we verify that

sup
α≤(1,...,1)

sup
ξ∈Rn

|ξ||α||∂αq̂(ξ)| ≤M

for some M <∞. It thus follows from Mikhlin’s multiplier theorem that

‖T5,jh‖Lp ≤ C‖φ′j‖∞‖h‖Lp ≤ C‖h‖Lp .
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Finally, in order to estimate T6,j we infer from (3.21) that

r(x) ≤ C
∫ 1

0

|x|2e−c|x|2/t t−
n+3
2 dt ≤ Ce−c1|x|2 |x|−(n−1)

∫ ∞

1

e−c2ss(n−1)/2ds

for x ∈ Rn. It follows that r ∈ L1(Rn) which implies by Young’s inequality
‖T6,jh‖p ≤ C‖h‖p with a uniform constant C. �

Remarks 3.2. (a) We mention that the proof for the estimate of [D1/2
n , φj ] follows

the ideas of [15, Lemma 6.4].

(b) If ρ2 ≤ ρ1, i.e., the light fluid lies above the heavy one, then the estimate (3.8)
can be improved in the following sense: for every β > 0 and λ0 > 0 there are
positive constants δ, η = η(β) and cj = cj(β, λ0, δ, η) such that

c0
[
|λ|+ |τ |

]
≤ s̃(λ, τ, ζ) ≤ c1

[
|λ|+ |τ |

]
(3.22)

for all (λ, τ, ζ) ∈ Σπ/2+η × Ση × Uβ,δ and |λ| ≥ λ0. For this we observe that
estimates (3.9) and (3.10) certainly also hold in case that ρ2 ≤ ρ1. On the other
hand, given M > 0 we conclude as in (3.11) that L ≤ Re ((ρ1 − ρ2)γak(z)) ≤ R
and |Im ((ρ1 − ρ2)γak(z))| ≤ H for |z| ≤ M , with appropriate positive constants
L,R,H. This shows that there exists α = α(M,η) ∈ (0, π/2) such that

(ρ1 − ρ2)γak(z)/τ ∈ Σα, (λ, τ) ∈ Σπ/2+η × Ση, |z| ≤M (3.23)

with η ∈ (0, η0) chosen small enough, where we can assume that α coincides with
the angle in (3.12). Combining (3.12) and (3.23) yields

|s̃(λ, τ, ζ)| ≥ c(ψ)
[
|λ|+ |τ(σk(z) + iζ) + (ρ1 − ρ2)γak(z)/τ |

]
≥ c(ψ)c(α)

[
|λ|+ |τ(σk(z) + iζ)|+ |(ρ1 − ρ2)γak(z)/τ |

]
≥ c0(M,β, δ, η)

[
|λ|+ |τ |]

provided (λ, τ, ζ) ∈ Σπ/2+η × Ση × Uβ,δ and |λ| ≤ M |τ |2. Noting again that the
curves |λ| = m|τ | and |λ| =M |τ |2 intersect at (m/M,m2/M) we obtain (3.22) by
choosing M big enough.

(c) If ρ2 ≤ ρ1 we can conclude from the lower estimate in (3.22) that the function
s̃ does not have zeros in Σπ/2×R+× [−β, β]. This holds in particular true for the
symbol s(λ, τ) := s̃(λ, τ, 0), indicating that there are no instabilities in case that
the light fluid lies on top of the heavy one.

(d) If ρ2 > ρ1 then it is shown in [29] that the symbol s has for each τ ∈ (0, τ∗) with
τ∗ := ((ρ2 − ρ1)γa/σ)1/2 a zero λ = λ(τ) > 0, pertinent to the Rayleigh-Taylor
instability.

(e) Further mapping properties of the boundary symbol s(λ, τ) := s̃(λ, τ, 0) and the
associated operator S in case that γa = 0 have been derived in [27]. In particular,
we have investigated the singularities and zeros of s, and we have studied the
mapping properties of S in case of low and high frequencies, respectively.
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4. The nonlinear problem

In this section we prove existence and uniqueness of solutions for the nonlinear
problem (2.1), and we show additionally that solutions immediately regularize
and are real analytic in space and time. In order to facilitate this task, we first
introduce some notation. We set

E1(a) := {u ∈ H1
p (J ;Lp(Rn+1,Rn+1)) ∩ Lp(J ;H2

p (Ṙn+1,Rn+1)) : [[u]] = 0},
E2(a) := Lp(J ; Ḣ1

p (Ṙn+1)),

E3(a) :=W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)),

E4(a) :=W 2−1/2p
p (J ;Lp(Rn)) ∩H1

p (J ;W 2−1/p
p (Rn))

∩W 1/2−1/2p
p (J ;H2

p (Rn)) ∩ Lp(J ;W 3−1/p
p (Rn)),

E(a) := {(u, π, q, h) ∈ E1(a)× E2(a)× E3(a)× E4(a) : [[π]] = q}.
(4.1)

The space E(a) is given the natural norm

‖(u, π, q, h)‖E(a) = ‖u‖E1(a) + ‖π‖E2(a) + ‖q‖E3(a) + ‖h‖E4(a)

which turns it into a Banach space. Moreover, we set

F1(a) := Lp(J ;Lp(Rn+1,Rn+1)),

F2(a) := H1
p (J ;H−1

p (Rn+1)) ∩ Lp(J ;H1
p (Ṙn+1)),

F3(a) :=W 1/2−1/2p
p (J ;Lp(Rn,Rn+1)) ∩ Lp(J ;W 1−1/p

p (Rn,Rn+1)),

F4(a) :=W 1−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)),

F(a) := F1(a)× F2(a)× F3(a)× F4(a).

(4.2)

The generic elements of F(a) are the functions (f, fd, g, gh).

Let b ∈ F4(a)n be a given function. Then we define the nonlinear mapping

Nb(u, π, q, h) :=
(
F (u, π, h), Fd(u, h), G(u, q, h), (b− γv|∇h)

)
(4.3)

for (u, π, q, h) ∈ E(a), where, as before, u = (v, w), F = (Fv, Fw) and G =
(Gv, Gw). We will now study the mapping properties of Nb and we will derive
estimates for the Fréchet derivative of Nb. In the following, the notion Cω means
real analytic.

Proposition 4.1. Suppose p > n+ 3 and b ∈ F4(a)n. Then

Nb ∈ Cω(E(a) ,F(a)), a > 0. (4.4)

Let DNb(u, π, q, h) denote the Fréchet derivative of Nb at (u, π, q, h) ∈ E(a). Then
DNb(u, π, q, h) ∈ L(0E(a), 0F(a)), and for any number a0 > 0 there is a positive
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constant M0 =M0(a0, p) such that

‖DNb(u, π, q, h)‖L(0E(a), 0F(a))

≤M0

[
‖b− γv‖BC(J;BC)∩ F4(a) + ‖(u, π, q, h)‖E(a)

]
+M0

[(
‖∇h‖BC(J;BC1) + ‖h‖E4(a) + ‖u‖BC(J;BC)

)
‖u‖E1(a)

]
+M0

[
P (‖∇h‖BC(J;BC))‖∇h‖BC(J;BC) +Q

(
‖∇h‖BC(J;BC1), ‖h‖E4(a)

)
‖h‖E4(a)

]
for all (u, π, q, h) ∈ E(a) and all a ∈ (0, a0]. Here, P and Q are fixed polynomials
with coefficients equal to one.

Proof. The proof of the proposition is relegated to the end of the appendix. �

Given h0 ∈W 3−2/p
p (Rn) we define

Θh0(x, y) := (x, y + h0(x)), (x, y) ∈ Rn × R. (4.5)

Letting Ωh0,i := {(x, y) ∈ Rn×R : (−1)i(y−(h0(x)) > 0} and Ωh0 := Ωh0,1∪Ωh0,2

we obtain from Sobolev’s embedding theorem that

Θh0 ∈ Diff2(Ṙn+1,Ωh0) ∩Diff2(Rn+1
− ,Ωh0,1) ∩Diff2(Rn+1

+ ,Ωh0,2),

i.e., Θh0 yields a C2-diffeomorphism between the indicated domains. The inverse
transformation obviously is given by Θ−1

h0
(x, y) = (x, y − h0(x)). It then follows

from the chain rule and the transformation rule for integrals that

Θ∗
h0
∈ Isom(Hk

p (Ṙn+1), Hk
p (Ωh0)), [Θ∗

h0
]−1 = Θh0

∗ , k = 0, 1, 2,

where we use the notation
Θ∗

h0
u := u ◦Θh0 , u : Ωh0 → Rm,

Θh0
∗ v := v ◦Θ−1

h0
, v : Ṙn+1 → Rm.

We are now ready to prove our main result of this section.

Theorem 4.2. (Existence of solutions for the nonlinear problem (2.1)).
(a) For every β > 0 there exists a constant η = η(β) > 0 such that for all initial

values

(u0, h0) ∈W 2−2/p
p (Ṙn+1,Rn+1)×W 3−2/p

p (Rn) with [[u0]] = 0,

satisfying the compatibility conditions

[[μD(Θh0
∗ u0)ν0 − μ(ν0|D(Θh0

∗ u0)ν0)ν0]] = 0, div(Θh0
∗ u0) = 0, (4.6)

and the smallness-boundedness condition

‖∇h0‖∞ ≤ η, ‖u0‖∞ ≤ β, (4.7)

there is a number t0 = t0(u0, h0) such that the nonlinear problem (2.1) admits
a unique solution (u, π, [[π]], h) ∈ E1(t0).

(b) The solution has the additional regularity properties

(u, π) ∈ Cω((0, t0)× Ṙn+1,Rn+2), [[π]], h ∈ Cω((0, t0)× Rn). (4.8)

In particular, M =
⋃

t∈(0,t0)

(
{t} × Γ(t)

)
is a real analytic manifold.
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Proof. The proof of this result proceeds in a similar way as the proof of Theo-
rem 6.3 in [28].

For a given function b ∈ F4(a)n we consider the nonlinear problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tu− μΔu+∇π = F (u, π, h) in Ṙn+1

div u = Fd(u, h) in Ṙn+1

−[[μ∂yv]]− [[μ∇xw]] = Gv(u, [[π]], h) on Rn

−2[[μ∂yw]] + [[π]]− σΔh = Gw(u, h) on Rn

[[u]] = 0 on Rn

∂th− γw + (b|∇h) = (b− γv|∇h) on Rn

u(0) = u0, h(0) = h0,

(4.9)

which clearly is equivalent to (2.1).
In order to economize our notation we set z := (u, π, q, h) for (u, π, q, h) ∈ E(a).
With this notation, the nonlinear problem (2.1) can be restated as

Lbz = Nb(z), (u(0), h(0)) = (u0, h0), (4.10)

where Lb denotes the linear operator on the left-hand side of (4.9), and Nb corre-
spondingly denotes the nonlinear mapping on the right-hand site of (4.9).

It is convenient to first introduce an auxiliary function z∗ = z∗b ∈ E(a) which
resolves the compatibility conditions and the initial conditions in (4.10), and then
to solve the resulting reduced problem

Lbz = Nb(z + z∗)− Lbz
∗ =: Kb(z), z ∈ 0E(a), (4.11)

by means of a fixed point argument.
(i) Suppose that (u0, h0) satisfies the (first) compatibility condition in (4.6), and
let

[[π0]] := θ∗h0
{[[μ(ν0|D(Θh0

∗ u0)ν0)]] + σκ},
where θh0 := Θh0 |Rn+1×{0}. Here we observe that θ∗h0

[[ω]] = [[Θ∗
h0
ω]] for any function

ω : Ωh0 → Rm which has one-sided limits. It is then clear from the definition in
(2.3)–(2.4) that the following compatibility conditions hold:

−[[μ∂yv0]]− [[μ∇xw0]] = Gv(u0, [[π0]], h0) on Rn

−2[[μ∂yw0]] + [[π0]]− σΔh0 = Gw(u0, h0) on Rn (4.12)

where, as before, u0 = (v0, w0). Next we introduce special functions (0, f∗d , g
∗, g∗h) ∈

F(a) which resolve the necessary compatibility conditions. First we set

c∗(t) :=

{
R+e

−tDn+1E+(v0|∇h0) in Rn+1
+ ,

R−e
−tDn+1E−(v0|∇h0) in Rn+1

− ,
(4.13)

where E± ∈ L(W 2−2/p
p (Rn+1

± ),W 2−2/p
p (Rn+1)) is an appropriate extension oper-

ator and R± is the restriction operator. Due to (v0|∇h0) ∈ W 2−2/p
p (Ṙn+1) we
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obtain
c∗ ∈ H1

p (J ;Lp(Rn+1)) ∩ Lp(J ;H2
p (Ṙn+1)).

Consequently,

f∗d := ∂y c
∗ ∈ F2(a) and f∗d (0) = Fd(v0, h0). (4.14)

Next we set

g∗(t) := e−DntG(u0, [[π0]], h0). g∗h(t) := e−Dnt(b(0)− γv0|∇h0). (4.15)

It then follows from (4.14) and [19, Lemma 8.2] that (0, f∗d , g
∗, g∗h) ∈ F(a). (4.12)

and the second condition in (4.6) show that the necessary compatibility conditions
of Theorem 3.1 are satisfied and we can conclude that the linear problem

Lbz
∗ = (0, f∗d , g

∗, g∗h), (u∗(0), h∗(0)) = (u0, h0), (4.16)

has a unique solution z∗ = z∗b ∈ E(a). With the auxiliary function z∗ now deter-
mined, we can focus on the reduced equation (4.11), which can be converted into
the fixed point equation

z = L−1
b Kb(z), z ∈ 0E(a). (4.17)

Due to the choice of (f∗d , g
∗, g∗h) we have Kb(z) ∈ 0F(a) for any z ∈ 0E(a), and it

follows from Proposition 4.1 that

Kb ∈ Cω(0E(a), 0F(a)).

Consequently, L−1
b Kb : 0E(a) → 0E(a) is well defined and smooth.

(ii) An inspection of the proof of Theorem 3.1 shows that given β > 0 we can find
a positive number δ0 = δ0(b) such that

L−1
b ∈ L(0F(a), 0E(a)), ‖L−1

b ‖L(0F(a),0E(a)) ≤M, a ∈ [0, δ0], (4.18)

whenever b ∈ F4(a)n and ‖b‖BC[0,a],BC(Rn)) ≤ β. It should be pointed out that
the bound M is universal for all functions b ∈ F4(a)n with ‖b‖∞ ≤ β, whereas the
number δ0 = δ(b) may depend on b.

(iii) We will now fix a pair of initial values (u0, h0) ∈ W 2−2/p
p (Ṙn+1)×W 3−2/p

p (Rn)
satisfying (4.6) and (4.7) with

η := 1/(16M0M), (4.19)

where the constants M0 and M are given in (4.1) and (4.18), respectively. We
choose

b(t) := e−Dntγv0, t ≥ 0. (4.20)
Then b ∈ F4(a)n and ‖b‖BC([0,a];BC(Rn)) ≤ ‖γv0‖BC(Rn) ≤ β for any a > 0, as
{e−Dnt : t ≥ 0} is a contraction semigroup on BUC(Rn). Hence the estimate
(4.18) holds true for this (and any other choice) of initial values. It should be
pointed out once more that the bound M is universal for all initial values u0 with
‖v0‖∞ ≤ β – and hence for b(t) := e−Dntγv0 – whereas the number δ0 may depend
on γv0.
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We note in passing that g∗h = 0 for this particular choice of the function b.
Without loss of generality we can assume that M0,M ≥ 1. We shall show that
L−1

b Kb is a contraction on a properly defined subset of 0E(a) for a ∈ (0, δ0] chosen
sufficiently small. For r > 0 and a ∈ (0, δ0] we set

0BE(a)(z∗, r) := {z ∈ E1(a) : z − z∗ ∈ 0E(a), ‖z − z∗‖E(a) < r}.

We remark that a and r are independent parameters that can be chosen as we
please. Let then r0 > 0 be fixed. It is not difficult to see that there exists a number
R0 = R0(u0, h0, δ0, r0) such that

‖∇(h+ h∗)‖BC(J;BC1) + ‖h+ h∗‖E4(a) + ‖u+ u∗‖BC(J;BC)

+Q
(
‖∇(h+ h∗)‖BC(J;BC1), ‖h+ h∗‖E4(a)

)
≤ R0

for all u ∈ 0BE1(a)(0, r) and h ∈ 0BE4(a)(0, r), with a ∈ (0, δ0] and r ∈ (0, r0]
arbitrary, where z∗ = (u∗, π∗, q∗, h∗) is the solution of equation (4.16) and where
Q is defined in Proposition 4.1. Let M1 := M0(1 + R0). It then follows from
Proposition 4.1 and (4.18) that

‖D(L−1
b Kb)(z)‖0E(a)

≤M1M
[
‖b− γ(v + v∗)‖BC(J;BC)∩ F4(a) + ‖z + z∗‖E(a)

]
+M0M

[
P
(
‖∇(h+ h∗)‖BC(J;BC)

)
‖∇(h+ h∗)‖BC(J;BC)

] (4.21)

for all z ∈ 0BE(a)(0, r) and a ∈ (0, δ0].

(iv) For (u0, h0) fixed, the norm of z∗ in E(a) (which involves various integral
expressions evaluated over the interval (0, a)) can be made as small as we like by
choosing a ∈ (0, δ0] small. Let then a1 ∈ (0, δ0] be fixed so that

‖∇h∗‖BC([0,a1],BC) ≤ 2η,

M1M
(
‖b− γv∗‖BC([0,a1];BC)∩ F4(a1) + ‖z∗‖E(a1)

)
≤ 1/8.

(4.22)

Since (∇h∗, b− γv∗) ∈ 0BC([0, δ0], BC(Rn)) and ‖∇h∗(0)‖∞ = ‖∇h0‖∞ ≤ η, the
estimates in (4.22) certainly hold for a1 sufficiently small.
In a next step we choose 2r1 ∈ (0, r0] so that

‖∇h‖0BC([0,a1],BC(Rn) ≤ η,
M1M

(
‖γv‖0BC([0,a1];BC)∩ 0F4(a1) + ‖z‖0E(a1)

)
≤ 1/8,

(4.23)

for all h ∈ 0BE(a1)(0, 2r1), v ∈ 0BE(a1)(0, 2r1), and z ∈ 0BE(a1)(0, 2r1). It follows
from Proposition 5.1 that (4.23) can indeed be achieved. Combining (4.19)–(4.23)
gives

‖D(L−1
b Kb)(z)‖0E(a) ≤ 1/2, z ∈ 0BE(a1)(0, 2r1) (4.24)

showing that L−1
b Kb : 0BE(a1)(0, r1)→ 0E(a1) is a contraction, where 0BE(a1)(0, r1)

denotes the closed ball in 0E(a1) with center at 0 and radius r1.

It remains so show that L−1
b Kb maps 0BE(a1)(0, r1) into itself. From (4.24) and the
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mean value theorem follows

‖L−1
b Kb(z)‖0E(a1) ≤ ‖L−1

b Kb(z)− L−1
b Kb(0)‖0E(a1) + ‖L−1

b Kb(0)‖0E(a1)

≤ r1/2 + ‖L−1
b Kb(0)‖0E(a1), z ∈ 0BE(a1)(0, r1).

Here we observe that the norm of L−1
b Kb(0) = L−1

b (K(z∗) − (0, f∗d , g
∗, g∗h)) in

0E(a1) can be made as small as we wish by choosing a1 small enough. We may
assume that a1 was already chosen so that ‖L−1

b Kb(0)‖0E(a1) ≤ r1/2.

(v) We have shown in (iv) that the mapping

L−1
b Kb : 0BE(a1)(0, r1)→ 0BE(a1)(0, r1)

is a contraction. By the contraction mapping theorem L−1
b Kb has a unique fixed

point ẑ ∈ 0BE(a1)(0, r1) ⊂ 0E(a1) and it follows immediately from (4.10)–(4.11)
that ẑ+z∗ is the (unique) solution of the nonlinear problem (2.1) in 0BE(a1)(z

∗, r1).
Setting t0 = a1 gives the assertion in part (a) of the Theorem.

(vi) The proof that (u, π, q, h) is analytic in space and time proceeds exactly in
the same way as in steps (vi)–(vii) of the proof of Theorem 6.3 in [28], with the
only difference that here g∗h = g∗h,λ,ν = 0, and that the operator Dν in formula
(6.30) of [28] is to be replaced by Dλ,ν , defined by

Dλ,νh := (λbλ,ν − ν|∇h), bλ,ν(t, x) := b(λt, x+ tν). (4.25)

We note that D1,0 = (b|∇·). In the same way as in [25, Lemma 8.2] one obtains
that

[(λ, ν) �→ bλ,ν ] : (1− δ, 1 + δ)× Rn → F4(a) (4.26)

is real analytic. The remaining arguments are now the same as in [28], and this
completes the proof of Theorem 4.2. �

Proof of Theorem 1.1. Clearly, the compatibility conditions of Theorem 1.1 are
satisfied if and only if (4.6) is satisfied. Moreover, the smallness-boundedness con-
dition of Theorem 1.1 is equivalent to (4.7), where we have slightly abused notation
by using the same symbol for u0 and its transformed version Θ∗

h0
u0.

Theorem 4.2 yields a unique solution (v, w, π, [π], h) ∈ E(t0) which satisfies
the additional regularity properties listed in part (b) of the theorem. Setting

(u, q)(t, x, y) = (v, w, π)(t, x, y − h(t, x)), (t, x, y) ∈ O,

we then conclude that (u, q) ∈ Cω(O,Rn+2) and [q] ∈ Cω(M). The regularity
properties listed in Remark 1.2(a) are implied by Proposition 5.1(a),(c). Finally,
since π(t, x, y) is defined for every (t, x, y) ∈ O, we can conclude that

q(t, ·) ∈ Ḣ1
p (Ω(t)) ⊂ UC(Ω(t))

for every t ∈ (0, t0). �
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5. Appendix

In this section we state and prove some technical results that were used above.

Proposition 5.1. Suppose p > n+ 3. Then the following embeddings hold:

(a) E1(a) ↪→ BC(J ;W 2−2/p
p (Ṙn+1,Rn+1)) ↪→ BC(J ;BC1(Ṙn+1,Rn+1)) and

there is a constant C0 = C0(p) such that

‖u‖
0BC(J;W

2−2/p
p )

+ ‖u‖0BC(J;BC1) ≤ C0‖u‖0E1(a)

for all u ∈ 0E1(a) and all a ∈ (0,∞).
(b) E3(a) ↪→ BC(J ;BC(Rn)) and there exists a constant C0 = C0(p) such that

‖g‖0BC(J;BC) ≤ C0‖g‖0E3(a)

for all g ∈ 0E3(a) and all a ∈ (0,∞).
(c) F4(a) ↪→ BC(J ;W 1

p (Rn)) ∩ BC(J ;BC1(Rn)) and there exists a constant
C0 = C0(p) such that

‖g‖0BC(J;W 1
p ) + ‖g‖0BC(J;BC1) ≤ C0‖g‖0F4(a)

for all g ∈ 0F4(a) and all a ∈ (0,∞).
(d) E4(a) ↪→ BC1(J ;BC1(Rn)) ∩ BC(J ;BC2(Rn)) and there exists a constant

C0 = C0(p) such that

‖h‖0BC1(J;BC1) + ‖h‖0BC(J;BC2) ≤ C0‖h‖0E4(a)

for all h ∈ 0E4(a) and all a ∈ (0,∞).
(e) ∂j ∈ L(E4(a),E3(a)) ∩ L(E4(a),F4(a)) for j = 1, . . . , n. Moreover, for every

given a0 > 0 there is a constant C0 = C0(a0, p) such that

‖∂jh‖E3(a) + ‖∂jh‖F4(a) ≤ C0‖h‖E4(a)

for all h ∈ E4(a) and all a ∈ (0, a0].

Proof. We refer to [25, Proposition 6.2] for a proof of (a)–(b). The assertion in
(c) can established in the same way, using that F4(a) ↪→ BC(J ;W 2−3/p

p (Rn)), see
[19, Remark 5.3(d)]. In order to show that the embedding constant in (d) does not
depend on a ∈ (0, a0] we define an extension operator in the following way: for
h ∈ 0BC

1([0, a];X), with X an arbitrary Banach space, we first set h̃(t) := 0 for
t ≤ 0, so that h̃ ∈ BC1((−∞, a];X), and then define

(Eh)(t) :=

{
h(t) if 0 ≤ t ≤ a,
3h̃(2a− t)− 2h̃(3a− 2t) if a ≤ t.

(5.1)

A moment of reflection shows that Eh ∈ 0BC
1([0,∞);X), and that Eh is an ex-

tension of h. It is evident that the norm of E : 0BC
1([0, a];X)→ 0BC

1([0,∞);X)
is independent of a ∈ [0, a0]. The assertion follows now by the same arguments as
in the proof of [25, Proposition 6.2].
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Let a0 > 0 be fixed. In order to establish part (e) it suffices to show that there is
a constant C0 = C(a0, p, r) such that

‖g‖W r
p ([0,a];X) ≤ C0‖g‖H1

p([0,a];X), a ∈ (0, a], (5.2)

where X is an arbitrary Banach space and r ∈ [0, 1]. This follows from Hardy’s
inequality as follows: for r ∈ (0, 1) fixed we have

1
2
〈g〉pW r

p ([0,a];X) =
∫ a

0

∫ a

s

‖g(t)− g(s)‖p
X

(t− s)1+rp
dt ds

=
∫ a

0

∫ a−s

0

‖g(s+ τ)− g(s)‖p
X

τ1+rp
dτ ds

≤
∫ a

0

∫ a−s

0

1
τ1+rp

(∫ τ

0

‖∂g(s+ σ)‖X dσ

)p

dτ ds

≤ c(r, p)
∫ a

0

∫ a−s

0

1
τ1−(1−r)p

‖∂g(s+ τ)‖p
X dτ ds

= c(r, p)
∫ a

0

1
τ1−(1−r)p

∫ a−τ

0

‖∂g(s+ τ)‖p
X ds dτ

≤ c(r, p)
∫ a

0

1
τ1−(1−r)p

dτ ‖∂g‖p
Lp([0,a];X)

where ∂g is the derivative of g, and this readily yields (5.2). �

Our next result will be important in order to derive estimates for the nonlin-
earities in (2.1).

Lemma 5.2. Suppose p > n+ 3. Let a0 ∈ (0,∞) be given. Then
(a) E3(a) is a multiplication algebra and we have the following estimate

‖g1g2‖E3(a) ≤ (‖g1‖∞ + ‖g1‖E3(a))(‖g2‖∞ + ‖g2‖E3(a)) (5.3)

for all (g1, g2) ∈ E3(a)× E3(a) and all a > 0.
(b) There exists a constant C0 = C0(a0, p) such that

‖g1g2‖0E3(a) ≤ C0(‖g1‖∞ + ‖g1‖E3(a))‖g2‖0E3(a) (5.4)

for all (g1, g2) ∈ E3(a)× 0E3(a) and all a ∈ (0, a0].
(c) There exists a constant C0 = C0(a0, p) such that

‖g∂jh‖0E3(a) ≤ C0‖g‖E3(a)‖h‖0E4(a), j = 1, . . . , n, (5.5)

for all (g, h) ∈ E3(a)× 0E4(a) and a ∈ (0, a0].

(d) Suppose (g, ψ) ∈ E3(a)× E3(a) and let β(t, x) :=
√

1 + ψ2(t, x). Then
g

βk
∈

E3(a) for k ∈ N and the following estimate holds∥∥∥∥ gβk

∥∥∥∥
E3(a)

≤ (1 + ‖ψ‖E3(a))k(‖g‖∞ + ‖g‖E3(a)). (5.6)
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Proof. The assertions in (a)–(b) follow from (the proof of) Proposition 6.6.(ii) and
(iv) in [25].

(c) To economize our notation we set r = 1/2− 1/2p and θ = 1− 1/p.
Suppose that (g, h) ∈ E3(a)× 0E4(a). We first observe that

‖g∂jh‖W r
p (J;Lp) ≤

(
‖g‖Lp(J;Lp) + 〈g〉W r

p (J;Lp

)
‖∂jh‖0BC(J;L∞)

+
(∫ a

0

∫ a

0

‖g(s)(∂jh(t)− ∂jh(s))‖p
Lp

dt ds

|t− s|1+rp

)1/p

.

Using Hölder’s inequality, and the fact that (1− r − 1/p) = r > 0, we obtain the
estimate∫ a

0

∫ a

0

‖g(s)(∂jh(t)− ∂jh(s))‖p
Lp

dt ds

|t− s|1+rp

≤
∫ a

0

∫ a

0

‖g(s)‖p
L∞

(∣∣∣∣∫ t

s

‖∂t∂jh(τ)‖Lpdτ

∣∣∣∣)p
dt ds

|t− s|1+rp

≤
∫ a

0

‖g(s)‖p
L∞

(∫ a

0

dt

|t− s|1−(1−r−1/p)p

)
ds

∫ a

0

‖∂t∂jh(τ)‖p
Lp
dτ

≤ C0(a0, p)‖g‖p
Lp(J;L∞)‖∂t∂jh‖p

Lp(J;Lp)

(5.7)

for a ∈ (0, a0]. Hence we conclude that

‖g∂jh‖0W r
p (J;Lp) ≤ C0‖g‖W r

p (J;Lp)

(
‖∂jh‖0BC(J;L∞) + ‖∂t∂jh‖Lp(J;Lp)

)
≤ C0‖g‖E3(a)‖h‖0E4(a)

(5.8)

uniformly in a ∈ (0, a0]. It is easy to verify that

‖g∂jh‖Lp(J;W θ
p ) ≤ ‖g‖Lp(J;W θ

p )‖∂jh‖0BC(J;L∞) + ‖g‖Lp(J;L∞)‖∂jh‖0BC(J;W θ
p )

≤ C0‖g‖E3(a)‖h‖0E4(a).

(5.9)

Combining the estimates (5.8)–(5.9) yields (5.5).

(d) As in the proof of Proposition 6.6.(v) in [25] we obtain

‖g/β‖W r
p (J;Lp) ≤ ‖1/β‖∞(‖g‖Lp(J;Lp) + 〈g〉W r

p (J;Lp)) + ‖g‖∞〈1/β〉W r
p (J;Lp)

≤ (1 + 〈1/β〉W r
p (J;Lp))(‖g‖∞ + ‖g‖W r

p (J;Lp)).

Thus it remains to estimate the term 〈1/β〉W r
p (J;Lp). Using that β2(t, x)−β2(s, x) =

ψ2(t, x) − ψ2(s, x) one easily verifies that∣∣∣∣ 1
β(s, x)

− 1
β(t, x)

∣∣∣∣ =
∣∣∣∣ β2(t, x)− β2(s, x)
β(s, x)β(t, x)(β(t, x) + β(s, x))

∣∣∣∣ ≤ |ψ(t, x)− ψ(s, x)|

and this yields 〈1/β〉W r
p (J;Lp) ≤ 〈ψ〉W r

p (J;Lp). Consequently,

‖g/β‖W r
p (J;Lp) ≤ (1 + ‖ψ‖W r

p (J:Lp))(‖g‖∞ + ‖g‖W r
p (J;Lp)).
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A similar argument shows that

‖g/β‖Lp(J;W θ
p ) ≤ (1 + ‖ψ‖Lp(J;W θ

p ))(‖g‖∞ + ‖g‖Lp(J;W θ
p )).

Combining the last two estimates gives (5.6) for k = 1. The general case then
follows by induction. �

Corollary 5.3. Suppose p > n+ 3. Let a0 ∈ (0,∞) and k ∈ N with k ≥ 1 be given.

(a) There exists a constant C0 = C0(a0, p, k) such that

‖(g1 · · · gk)ḡ‖0E3(a) ≤ C0

k∏
i=1

(
‖gi‖∞ + ‖gi‖E3(a)

)
‖ḡ‖0E3(a)

for all functions gi ∈ E3(a), 1 ≤ i ≤ k, ḡ ∈ 0E3(a), and all a ∈ (0, a0].

(b) There exists a constant C0 = C0(a0, p, k) such that

‖g(∂�1h · · · ∂�k
h∂j h̄)‖0E3(a)

≤ C0

(
‖∇h‖k

∞+‖h‖E4(a)‖∇h‖k−1
∞ + ‖∇h‖k

BC(J;W
1−1/p
p )

)
‖g‖E3(a)‖h̄‖0E4(a)

≤ C0

(
‖∇h‖k

BC(J;BC1) + ‖h‖E4(a)‖∇h‖k−1
∞

)
‖g‖E3(a)‖h̄‖0E4(a)

for h ∈ E4(a), h̄ ∈ 0E4(a), a ∈ (0, a0], 1 ≤ j ≤ n, and �i ∈ {1, . . . n} with
i = 1, . . . , k.

Proof. (a) follows from (5.4) by iteration.
(b) The first line in (5.8) shows that

‖g(∂�1h · · · ∂�k
h∂j h̄)‖W r

p (J;Lp)

≤ C0‖g‖W r
p (J;Lp)(‖∂�1h · · ·∂�k

h∂jh̄‖0BC(J;L∞) + ‖∂t(∂�1h · · ·∂�k
h∂j h̄)‖Lp(J;L∞)).

Next we note that

‖∂�1h · · ·∂�k
h(∂t∂j h̄)‖Lp(J;L∞) ≤ ‖∇h‖k

∞‖∂t∂j h̄‖Lp(J;L∞),

and

‖∂�1h···(∂t∂�ih)···∂�k
h∂j h̄‖Lp(J;L∞)≤‖∂t∂�ih‖Lp(J;L∞)‖∇h‖k−1

∞ ‖∂jh̄‖0BC(J;L∞).

Proposition 6.1(d) now implies the assertion for ‖ · ‖W r
p (J;Lp). On the other hand

we have by (5.9) for θ = 1− 1/p

‖g(∂�1h · · ·∂�k
h∂j h̄)‖Lp(J;W θ

p )

≤ ‖g‖Lp(J;W θ
p )‖∂�1h · · ·∂�k

h∂j h̄‖∞ + ‖g‖Lp(J;L∞)‖∂�1h · · ·∂�k
h∂j h̄‖0BC(J;W θ

p )

≤ C0‖g‖E3(a)

(
‖∇h‖k

∞ + ‖∇h‖k

BC(J;W
1−1/p
p )

)
‖h‖0E4(a)

since W θ
p (Rn) is a multiplication algebra. The last inequality then follows from

Sobolev’s embedding theorem. �
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Remark 5.4. It can be shown that the estimate in (5.5) can be improved as follows:
For every a0 ∈ (0,∞) there is a constant C0 = C0(a0, p) > 0 and a constant
θ = θ(p) > 0 such that

‖g∂jh‖0E3(a) ≤ C0 a
θ‖g‖E3(a)‖h‖0E4(a)

holds for all (g, h) ∈ E3(a)× 0E4(a) and a ∈ (0, a0]. In the same way, the constant
C0 in Corollary 5.3(b) can be replaced by C0a

θ.

Lemma 5.5. Suppose p > n+ 3. Let a0 ∈ (0,∞) be given. Then
(a) F4(a) is a multiplication algebra and we have the estimate

‖g1g2‖F4(a) ≤ Ca‖g1‖F4(a)‖g2‖F4(a)

for all (g1, g2) ∈ F4(a)× F4(a), where the constant Ca depends on a.
(b) There exists a constant C0 = C0(a0, p) such that

‖g1g2‖0F4(a) ≤ C0(‖g1‖∞ + ‖g1‖F4(a))‖g2‖0F4(a) (5.10)

for all (g1, g2) ∈ F4(a)× 0F4(a) and all a ∈ (0, a0].
(c) There exists a constant C0 = C0(a0, p) such that

‖g∂jh‖0F4(a) ≤ C0(‖g‖∞ + ‖g‖F4(a))‖h‖0E4(a), j = 1, . . . , n, (5.11)

for all (g, h) ∈ F4(a)× 0E4(a) and a ∈ (0, a0].

Proof. Here we equip F4(a) with the (equivalent) norm

‖g‖F4(a) = ‖g‖
W

1−1/2p
p (J;Lp)

+
n∑

i=1

‖∂ig‖Lp(J;W
1−1/p
p )

. (5.12)

(a) This follows from Proposition 5.1(c) by similar arguments as in the proof of
Proposition 6.6(ii) and (iv) in [25].
(b) It follows from part (a) and Proposition 5.1(c) that

‖g1g2‖0W r
p (J;Lp) ≤ C0(‖g1‖∞+‖g1‖W r

p (J;Lp))‖g2‖0F4(a), (g1, g2) ∈ F4(a)×0F4(a)

where r = 1− 1/2p. Next, observe that again by Proposition 5.1(c)

‖(∂ig1)g2‖Lp(J;W θ
p )

≤ ‖∂ig1‖Lp(J;W θ
p )‖g2‖0BC(J;L∞) + ‖∂ig1‖Lp(J;L∞)‖g2‖0BC(J;W θ

p )

≤ C0‖g1‖F4(a)‖g2‖0F4(a)

where θ = 1− 1/p. Moreover,

‖g1∂ig2‖Lp(J;W θ
p ) ≤ ‖g1‖Lp(J;W θ

p )‖∂ig2‖0BC(J;L∞) + ‖g1‖∞‖∂ig2‖Lp(J;W θ
p )

≤ C0(‖g1‖∞ + ‖g1‖F4(a))‖g2‖0F4(a).

The estimates above in conjunction with (5.12) yields (5.10).
(c) follows from (b) by setting g2 = ∂jh and from Proposition 5.1(e), which cer-
tainly is also true for 0E4(a). �
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Proof of Proposition 4.1. It follows as in the proof of [28, Proposition 6.2] that
Nb ∈ Cω(E(a),F(a)), and moreover, that DHb(z) ∈ L(0E(a), 0F(a)) for z ∈ E(a).
It thus remains to prove the estimates stated in the proposition.

Without always writing this explicitly, all the estimates derived below will
be uniform in a ∈ (0, a0], for a0 > 0 fixed. Moreover, all estimates will be uniform
for (ū, π̄, q̄, h̄) ∈ 0E(a).

(i) Without changing notation we consider here the extension of h from Rn to
Rn+1 defined by h(t, x, y) = h(t, x) for (x, y) ∈ Rn × R and t ∈ J . With this
interpretation we have

‖∂h‖∞,J×Rn+1 = ‖∂h‖∞,J×Rn, h ∈ E(a), ∂ ∈ {∂j ,Δ, ∂t}, (5.13)

where ‖ · ‖∞,U denotes the sup-norm for the set U ⊂ J × Rn+1. Next we observe
that

BC(J ;BC(Rn+1)) · Lp(J ;Lp(Rn+1)) ↪→ Lp(J ;Lp(Rn+1)),

BC(J ;Lp(Rn+1)) · Lp(J ;BC(Rn+1)) ↪→ Lp(J ;Lp(Rn+1)),

BC(J ;BC(Rn+1)) ·BC(J ;BC(Rn+1)) ↪→ BC(J ;BC(Rn+1)),

(5.14)

that is, multiplication is continuous and bilinear in the indicated function spaces
(with norm equal to 1).

Let us first consider the term F1(u, h) := |∇h|2∂2
yu appearing in the definition

of F . Its Fréchet derivative at (u, h) is given by

DF1(u, h)[ū, h̄] = |∇h|2∂2
y ū+ 2(∇h|∇h̄)∂2

yu.

Suppose (ū, h̄) ∈ 0E1(a) × 0E4(a). From (5.13), the first and third line in (5.14)
and Proposition 5.1(d) follows the estimate

‖DF1(u, h)[ū, h̄]‖0F(a) ≤ C0‖∇h‖∞(‖∇h‖∞ + ‖u‖E1(a))(‖ū‖0E1(a) + ‖h̄‖0E4(a))

for all (u, h) ∈ E1(a) × E4(a). It is important to note that the constant C0 does
not depend on the length of the interval J = (0, a) for a ∈ (0, a0].

Next, let us take a closer look at the term F2(u, h) := Δh∂yu in the definition
of F . The Fréchet derivative is DF2(u, h)[ū, h̄] = Δh∂yū + Δh̄∂yu. We infer from
(5.13), the first and second line in (5.14), and Proposition 5.1 that

‖DF2(u, h)[ū, h̄]‖0F(a) ≤ (‖Δh‖Lp(J;L∞) + ‖∂yu‖Lp(J;Lp))·
(‖∂yū‖0BC(J;Lp) + ‖Δh̄‖0BC(J;L∞))

≤ C0(‖h‖E4(a) + ‖u‖E1(a))(‖ū‖0E1(a) + ‖h̄‖0E4(a))

for all (u, h) ∈ E1(a)× E4(a).

The derivative of F3(u, h) := (u|∇h)∂yu, where ∇h := (∇h, 0), is given by

DF3(u, h)[ū, h̄] = (ū|∇h)∂yu+ (u|∇h)∂yū+ (u|∇h̄)∂yu
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and it follows from (5.13)–(5.14) and Proposition 5.1(a), (d) that there is a constant
C0 > 0 such that

‖DF3(u, h)[ū, h̄]‖0F(a) ≤ C0(‖∇h‖∞ + ‖u‖∞)‖u‖E1(a)(‖ū‖0E1(a) + ‖h̄‖0E4(a))

for all (u, h) ∈ E1(a)× E4(a).
Let us also consider the term F4(u, h) := ∂th∂yu. Observing that

DF4(u, h)[ū, h̄] = ∂th∂yū+ ∂th̄∂yu,

that ∂t : E4(a)→ F4(a) is linear and continuous and

F4(a) ↪→ Lp(J ;BC1(Rn)) ∩BC(J ;BC1(Rn)) (5.15)

we conclude from (5.13)–(5.15) and Proposition 5.1(a), (c) that there is a constant
C0 = C0(a0) such that

‖DF4(u, h)[ū, h̄]‖0F(a) ≤ (‖∂th‖Lp(J;L∞) + ‖∂yu‖Lp(J;Lp))

(‖∂yū‖0BC(J;Lp) + ‖∂th̄‖0BC(J;L∞))

≤ C0(‖h‖E4(a) + ‖u‖E1(a))(‖ū‖0E1(a) + ‖h̄‖0E4(a))

for all (u, h) ∈ E1(a)× E4(a).
The derivative of F5(π, h) := ∂yπ∇h is given by

DF5(π, h)[π̄, h̄] = ∂yπ̄∇h+ ∂yπ∇h̄.
It follows from (5.13)–(5.14) and Proposition 5.1(d) that there exists C0 such that

‖DF5(π, h)[π̄, h̄]‖0F(a) ≤ (‖∇h‖∞ + ‖∂yπ‖Lp(J;Lp))

(‖∂yπ̄‖Lp(J;Lp) + ‖∇h‖0BC(J;L∞))

≤ C0(‖∇h‖∞ + ‖π‖E2(a))(‖π̄‖0E2(a) + ‖h̄‖0E4(a))

for all (π, h) ∈ E2(a) × E4(a). The remaining terms in the definition of F can be
analyzed in the same way. Summarizing we have shown that there is a constant
C0 such that

‖DF (u, π, h)[ū, π̄, h̄]‖0F1(a)

≤C0

[
‖∇h‖∞ + ‖∇h‖2∞ + ‖(u, π, h)‖E(a)

+ (‖∇h‖∞+ ‖u‖∞)‖u‖E1(a)

]
‖(ū, π̄, h̄)‖0E(a)

(5.16)

for all (u, π, h) ∈ E(a) and all a ∈ (0, a0].
(ii) We will now consider the nonlinear function Fd(u, h) = (∇h|∂yv), stemming
from the transformed divergence. Since h(x, y) := h(x) does not depend on y we
have

Fd(u, h) = (∇h|∂yu) = ∂y(∇h|u). (5.17)

We note that

∂y ∈ L
(
H1

p (J ;Lp(Rn+1)), H1
p (J ;H−1

p (Rn+1))
)
. (5.18)
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The norm of this linear mapping does not depend on the length of the interval
J = [0, a]. It is easy to see that multiplication is continuous in the following
function spaces:

H1
p (J ;BC(Rn+1)) ·H1

p (J ;Lp(Rn+1)) ↪→ H1
p (J ;Lp(Rn+1))

BC(J ;BC1(Ṙn+1)) · Lp(J ;H1
p (Ṙn+1)) ↪→ Lp(J ;H1

p (Ṙn+1)).
(5.19)

The derivative of Fd at (u, h) ∈ E1(a)× E4(a) is given by

DFd(u, h)[ū, h̄] = (∇h|∂yū) + (∇h̄|∂yu) = ∂y((∇h|ū) + (∇h̄|u)).

We want to derive a uniform estimate for DFd(u, h)[ū, h̄] which does not depend
on the length of the interval J = [0, a]. We conclude from (5.13)–(5.15) that

‖(∇h|ū)‖0H1
p(J;Lp) ∼ ‖(∇h|ū)‖Lp(J;Lp) + ‖(∂t∇h|ū)‖Lp(J;Lp) + ‖(∇h|∂tū)‖Lp(J;Lp)

≤ ‖∇h‖∞‖ū‖Lp(J;Lp) + ‖∂t∇h‖Lp(J;L∞)‖ū‖0BC(J;Lp) + ‖∇h‖∞‖∂tū‖Lp(J;Lp)

≤ C0(‖∇h‖∞ + ‖h‖E4(a))‖ū‖0H1
p(J;Lp).

Similar arguments also yield ‖(∇h̄|u)‖0H1
p(J;Lp) ≤ C0‖u‖H1

p(J;Lp)‖h̄‖0E4(a). These
estimates in combination with (5.18) show that there is a constant C0 such that

‖(∇h|∂yū) + (∂yu|∇h̄)‖0H1
p(J;H−1

p )

≤ C0(‖∇h‖∞ + ‖h‖E4(a) + ‖u‖E1(a))(‖ū‖0E1(a) + ‖h̄‖0E4(a))

for all (u, h) ∈ E1(a)× E4(a), where C0 is uniform in a ∈ (0, a0]. Observing that

‖(∇h|∂yū)‖Lp(J;Lp) + Σn+1
j=1 ‖(∂j∇h|∂yū) + (∇h|∂j∂yū)‖Lp(J;Lp)

defines an equivalent norm for ‖(∇h|∂yū)‖Lp(J;H1
p), we infer once more from (5.13)–

(5.14) and Proposition 5.1 that

‖(∇h|∂yū)‖Lp(J;H1
p) ≤ C0(‖h‖E4(a) + ‖∇h‖∞)‖ū‖0E1(a)

‖(∇h̄|∂yu)‖Lp(J;H1
p) ≤ C0‖u‖Lp(J;H2

p)‖h̄‖0E4(a).

Summarizing we have shown that there exists a constant C0 such that

‖DFd(u, h)[ū, h̄]‖0F2(a)

≤ C0(‖∇h‖∞ + ‖h‖E4(a) + ‖u‖E1(a))(‖ū‖0E1(a) + ‖h̄‖0E4(a))
(5.20)

for all (u, h) ∈ E1(a)× E4(a) and a ∈ (0, a0].

(iii) We remind that

[[μ∂i ·]] ∈ L
(
H1

p (J ;Lp(Ṙn+1)) ∩ Lp(J ;H2
p (Ṙn+1)),E3(a)

)
(5.21)

where [[μ∂iu]] denotes the jump of the quantity μ∂iu with u a generic function from
Ṙn+1 → R, and where ∂i = ∂xi for i = 1, . . . , n and ∂n+1 = ∂y.
The mapping G(u, q, h) is made up of terms of the form

[[μ∂iuk]]∂jh, [[μ∂iuk]]∂jh∂lh, q∂jh, Δh∂jh, Gκ(h), Gκ(h)∂jh
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where uk denotes the kth component of a function u ∈ E1(a). It follows from
Lemma 5.2(a) and (5.21) that the mappings

(u, h) �→ [[μ∂iuk]]∂jh, [[μ∂iuk]]∂jh∂lh : E1(a)× E4(a)→ E3(a),

(q, h) �→ q∂jh : E3(a)× E4(a) → E3(a), h �→ Δh∂jh : E4(a)→ E3(a)

are multilinear and continuous.
Let us now take a closer look at the term G1(u, h) := [[μ∂iuk]]∂jh. Its Fréchet

derivative is given by

DG1(u, h)[ū, h̄] = ∂jh[[μ∂iūk]] + [[μ∂iuk]]∂j h̄.

Setting g1 = ∂jh and g2 := [[μ∂iūk]] we obtain from (5.4) and (5.21) the estimate

‖∂jh[[μ∂iūk]]‖0E3(a) ≤ C0(‖∇h‖∞ + ‖∇h‖E3(a))‖ū‖0E1(a).

On the other hand, setting g := [[μ∂iuk]] we conclude from (5.5) and (5.21) that

‖[[μ∂iuk]]∂j h̄‖0E3(a) ≤ C0‖u‖E1(a)‖h̄‖0E4(a).

Consequently,

‖DG1(u, h)[ū, h̄]‖0E3(a)

≤ C0(‖∇h‖∞ +‖∇h‖E3(a) + ‖u‖E1(a))(‖ū‖0E1(a) + ‖h̄‖0E4(a))
(5.22)

for all (u, h) ∈ E1(a)× E4(a), and all a ∈ (0, a0].

Given (u, h) ∈ E1(a)×E4(a) let G2(u, h) := [[μ∂iuk]]∂jh∂lh. The Fréchet derivative
of G2 is given by

DG2(u, h)[ū, h̄] = ∂jh∂lh[[μ∂iūk]] + [[μ∂iuk]]∂jh∂j h̄+ [[μ∂iuk]]∂lh∂jh̄.

From Corollary 5.3(a),(b) and (5.21) follows that there is a constant C0 such that

‖DG2(u, h)[ū, h̄]‖0E3(a) ≤ C0(‖∇h‖∞ + ‖h‖E4(a))2‖ū‖0E1(a)

+ C0

(
‖∇h‖BC(J;BC1) + ‖h‖E4(a)

)
‖u‖E1(a)‖h̄‖0E4(a))

(5.23)

for all (u, h) ∈ E1(a)× E4(a) and all a ∈ (0, a0].

The terms G3(q, h) := q∂jh and G4(h) := Δh∂jh can be analyzed in the same way
as the term G1, yielding the following estimates

‖DG3(q, h)[q̄, h̄]‖0E3(a)

≤ C0(‖∇h‖∞+ ‖∇h‖E3(a)+ ‖q‖E3(a))(‖q̄‖0E3(a) + ‖h̄‖0E4(a))
(5.24)

as well as

‖DG4(h)h̄‖0E3(a) ≤ C0(‖∇h‖∞ + ‖∇h‖E3(a) + ‖∇2h‖E3(a))‖h̄‖0E4(a). (5.25)

Let us now consider the term

G5(h) =
1

(1 + β)β
(∂jh)2Δh, β(t, x) :=

√
1 + |∇h(t, x)|2,
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appearing in the definition of Gκ. The Fréchet derivative of G5 at h is given by

DG5(h)h̄ = −
( 1

(1+β)2β2
+

1
(1+β)β3

)
(∂jh)2Δh∂kh∂kh̄

+
1

(1+β)β
(
2∂jhΔh∂j h̄+ (∂jh)2Δh̄

)
.

Before continuing, we note that the term 1/(1 + β) can be treated in exactly the
same way as 1/β, as a short inspection of the proof of Lemma 5.2(d) shows. It
follows then from Corollary 5.3(a)–(b) and from (5.6) that there is a constant C0

such that

‖DG5(h)h̄‖0E3(a) ≤ C0

[
P (‖∇h‖∞)+Q(‖∇h‖BC(J;BC1), ‖h‖E4(a))

]
‖h̄‖0E4(a)

(5.26)
for all h ∈ E4(a) and all a ∈ (0, a], where P and Q are polynomials with coefficients
equal to one and vanishing zero-order terms. Analogous arguments can be used
for the remaining terms (∇h|∇2h∇h)/β3 and Gκ(h)∂jh appearing in G, yielding
the same estimate as in (5.26).
(iv) It remains to consider the nonlinear term Hb(v, h) := (b − γv|∇h). The
Fréchet derivative is given by DHb(v, h)[v̄, h̄] = −(∇h|γv̄) + (b − γv|∇h̄). From
Lemma 5.5(b) with g1 = ∂jh and g2 = γv̄k, where v̄k denotes the kth component of
v̄, follows ‖(∇h|γv̄)‖0F4(a) ≤ C0(‖∇h‖∞ + ‖h‖E4(a))‖v̄‖0E1(a). Lemma 5.5(c) with
g = (b− γv)k and h = h̄ implies

‖(b− γv|∇h̄)‖0F4(a) ≤ C0(‖b− γv‖∞ + ‖b− γv‖F4(a))‖h̄‖0E4(a).

We have, thus, shown that

‖DHb(v, h)‖ ≤ C0(‖∇h‖∞ + ‖h‖E4(a) + ‖b− γv‖BC(J;BC)∩F4(a)). (5.27)

Combining the estimates in (5.16), (5.20) and (5.22)–(5.27) yields the assertions
of Proposition 4.1. �
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Abstract. In this paper we investigate quasilinear parabolic systems of con-
served Penrose-Fife type. We show maximal Lp-regularity for this problem
with inhomogeneous boundary data. Furthermore we prove global existence
of a solution, under the assumption that the absolute temperature is bounded
from below and above. Moreover, we apply the Lojasiewicz-Simon inequality
to establish the convergence of solutions to a steady state as time tends to
infinity.
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1. Introduction and the model

We are interested in the conserved Penrose-Fife type equations

∂tψ = Δμ, μ = −Δψ + Φ′(ψ)− λ′(ψ)ϑ, t ∈ J, x ∈ Ω,

∂t (b(ϑ) + λ(ψ))−Δϑ = 0, t ∈ J, x ∈ Ω,
(1.1)

where ϑ = 1/θ and θ denotes the absolute temperature of the system, ψ is the
order parameter and Ω ⊂ Rn is a bounded domain with boundary ∂Ω ∈ C4.
The function Φ′ is the derivative of the physical potential, which characterizes
the different phases of the system. A typical example is the double well potential
Φ(s) = (s2 − 1)2 with the two distinct minima s = ±1. Typically, the nonlinear
function λ is a polynomial of second order.

For an explanation of (1.1) we will follow the lines of Alt & Pawlow [2] (see
also Brokate & Sprekels [4, Section 4.4]). We start with the rescaled Landau-
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Ginzburg functional (total Helmholtz free energy)

F(ψ, θ) =
∫

Ω

(
γ(θ)
2θ
|∇ψ|2 +

f(ψ, θ)
θ

)
dx,

where the free energy density F (ψ, θ) := γ(θ)
2 |∇ψ|2 + f(ψ, θ) is rescaled by 1/θ.

The reduced chemical potential μ is given by the variational derivative of F with
respect to ψ, i.e.,

μ =
δF
δψ

(ψ, θ) =
1
θ

(
−γ(θ)Δψ +

∂f(ψ, θ)
∂ψ

)
.

Assuming that ψ is a conserved quantity, we have the conservation law

∂tψ + divj = 0.

Here j is the flux of the order parameter ψ, for which we choose the well-accepted
constitutive law j = −∇μ, i.e., the phase transition is driven by the chemical
potential μ (see [4, (4.4)]). The kinetic equation for ψ thus reads

∂tψ = Δμ, μ =
1
θ

(
−γ(θ)Δψ +

∂f(ψ, θ)
∂ψ

)
.

If the volume of the system is preserved, the internal energy e is given by the
variational derivative

e =
δF(ψ, θ)
δ(1/θ)

.

This yields the expression

e(ψ, θ) = f(ψ, θ)− θ∂f(ψ, θ)
∂θ

+
1
2

(
γ(θ)− θ∂γ(θ)

∂θ

)
|∇ψ|2.

It can be readily checked that the Gibbs relation

e(ψ, θ) = F (ψ, θ)− θ∂F (ψ, θ)
∂θ

.

holds. If we assume that no mechanical stresses are active, the internal energy e
satisfies the conservation law

∂te+ divq = 0,

where q denotes the heat flux of the system. Following Alt & Pawlow [2], we
assume that q = ∇

(
1
θ

)
, so that the kinetic equation for e reads

∂te+ Δ
(

1
θ

)
= 0.

Let us now assume that γ(θ) = θ and f(ψ, θ) = θΦ(ψ) − λ(ψ) − θ log θ. In this
case we obtain e = θ − λ(ψ) and

μ = −Δψ + Φ′(ψ)− λ′(ψ)
1
θ
,

hence system (1.1) for ϑ = 1/θ and b(s) = −1/s, s > 0. Suppose (j|ν) = (q|ν) = 0
on ∂Ω with ν = ν(x) being the outer unit normal in x ∈ ∂Ω. This yields the
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boundary conditions ∂νμ = 0 and ∂νϑ = 0 for the chemical potential μ and the
function ϑ, respectively. Since (1.1) is of fourth order with respect to the function ψ
we need an additional boundary condition. An appropriate and classical one from
a variational point of view is ∂νψ = 0. Finally, this yields the initial-boundary
value problem

∂tψ −Δμ = f1, μ = −Δψ + Φ′(ψ)− λ′(ψ)ϑ, t ∈ J, x ∈ Ω,

∂t (b(ϑ) + λ(ψ)) −Δϑ = f2, t ∈ J, x ∈ Ω,
∂νμ = g1, ∂νψ = g2, ∂νϑ = g3, t ∈ J, x ∈ ∂Ω,

ψ(0) = ψ0, ϑ(0) = ϑ0, t = 0, x ∈ Ω.

(1.2)

The functions fj, gj , ψ0, ϑ0,Φ, λ and b are given. Note that if θ has only a small
deviation from a constant value θ∗ > 0, then the term 1/θ can be linearized
around θ∗ and (1.2) turns into the nonisothermal Cahn-Hilliard equation for the
order parameter ψ and the relative temperature θ − θ∗, provided b(s) = −1/s.

In the case of the Penrose-Fife equations, Brokate & Sprekels [4] and
Zheng [20] proved global well-posedness in an L2-setting if the spatial dimen-
sion is equal to 1. Sprekels & Zheng showed global well-posedness of the non-
conserved equations (that is ∂tψ = −μ) in higher space dimensions in [18], a
similar result can be found in the article of Laurencot [11]. Concerning asymp-
totic behavior we refer to the articles of Kubo, Ito & Kenmochi [10], Shen &
Zheng [17], Feireisl & Schimperna [8] and Rocca & Schimperna [14]. The
last two authors studied well-posedness and qualitative behavior of solutions to
the non-conserved Penrose-Fife equations. To be precise, they proved that each
solution converges to a steady state, as time tends to infinity. Shen & Zheng [17]
established the existence of attractors for the non-conserved equations, whereas
Kubo, Ito & Kenmochi [10] studied the non-conserved as well as the conserved
Penrose-Fife equations. Beside the proof of global well-posedness in the sense of
weak solutions they also showed the existence of a global attractor. Finally, we
want to mention that the physical potential Φ may also be of logarithmic type,
such that Φ′(s) has singularities at s = ±1. This forces the order parameter to
stay in the physically reasonable interval (−1, 1), provided that the initial value
ψ(0) = ψ0 ∈ (−1, 1). In general, such a result cannot be obtained in the case of the
double well potential, since there is no maximum principle available for the fourth-
order equation (1.2)1. For a result on global existence, uniqueness and asymptotic
behaviour of solutions of the Cahn-Hilliard equation in case of a logarithmic po-
tential, we refer the reader, e.g., to Abels & Wilke [1] and the references cited
therein. However, in this paper we will only deal with smooth potentials.

In the following sections we will prove well-posedness of (1.2) for solutions in
the maximal Lp-regularity classes

ψ ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H4

p (Ω)),

ϑ ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)),
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where J = [0, T ], T > 0. In Section 2 we investigate a linearized version of (1.2)
and prove maximal Lp-regularity. Section 3 is devoted to local well-posedness of
(1.2). To this end we apply the contraction mapping principle. In Section 4, we
show that the solution exists globally in time, under the unproven assumption
that the inverse of the absolute temperature is uniformly bounded from below and
above. Actually, it is a formidable task to derive such bounds for ϑ. As far as
we know, it has been proven only in some particular cases for the non-conserved
system, i.e., if (1.2)1 is replaced by

∂tψ −Δψ = λ′(ψ)ϑ− Φ′(ψ),

a semilinear heat equation for the order parameter ψ. For more details, we refer
the reader to the references [9] and [16].

Finally, in Section 5, we study the asymptotic behavior of the solution to
(1.2) as t → ∞. The Lojasiewicz-Simon inequality will play an important role in
the analysis.

2. The linear problem

In this section we deal with a linearized version of (1.2).

∂tu+ Δ2u+ Δ(η1v) = f1, t ∈ J, x ∈ Ω,
∂tv − a0Δv + η2∂tu = f2, t ∈ J, x ∈ Ω,

∂νΔu+ ∂ν(η1v) = g1, t ∈ J, x ∈ ∂Ω,
∂νu = g2, ∂νv = g3, t ∈ J, x ∈ ∂Ω,
u(0) = u0, v(0) = v0, t = 0, x ∈ Ω.

(2.1)

Here η1 = η1(x), η2 = η2(x), a0 = a0(x) are given functions such that

η1 ∈ B4−4/p
pp (Ω), η2 ∈ B2−2/p

pp (Ω) and a0 ∈ C(Ω). (2.2)

We assume furthermore that a0(x) ≥ σ > 0 for all x ∈ Ω and some constant σ > 0.
Hence equation (2.1)2 does not degenerate. We are interested in solutions

u ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H4

p (Ω)) =: E1(T )

and
v ∈ H1

p (J ;Lp(Ω)) ∩ Lp(J ;H2
p (Ω)) =: E2(T )

of (2.1). By the well-known trace theorems (cf. [3, Theorem 4.10.2])

E1(T ) ↪→ C(J ;B4−4/p
pp (Ω)) and E2(T ) ↪→ C(J ;B2−2/p

pp (Ω)), (2.3)

we necessarily have u0 ∈ B4−4/p
pp (Ω) =: X1

γ , v0 ∈ B2−2/p
pp (Ω) =: X2

γ and the comp-
atibility conditions

∂νΔu0 + ∂ν(η1v0) = g1|t=0, ∂νu0 = g2|t=0, as well as ∂νv0 = g3|t=0,
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whenever p > 5, p > 5/3 and p > 3, respectively (cf. [6, Theorem 2.1]). In the
sequel we will assume that p > (n+ 2)/2 and p ≥ 2. This yields the embeddings

B4−4/p
pp (Ω) ↪→ H2

p (Ω) ∩ C1(Ω̄) and B2−2/p
pp (Ω) ↪→ H1

p (Ω) ∩C(Ω̄).

We are going to prove the following theorem.

Theorem 2.1. Let n ∈ N, Ω ⊂ Rn a bounded domain with boundary ∂Ω ∈ C4

and let p > (n + 2)/2, p ≥ 2, p �= 3, 5. Assume in addition that η1 ∈ B4−4/p
pp (Ω),

η2 ∈ B2−2/p
pp (Ω) and a0 ∈ C(Ω̄), a0(x) ≥ σ > 0 for all x ∈ Ω̄. Then the linear

problem (2.1) admits a unique solution

(u, v) ∈ H1
p (J0;Lp(Ω)2) ∩ Lp(J0; (H4

p (Ω)×H2
p (Ω))),

if and only if the data are subject to the following conditions.
1. f1, f2 ∈ Lp(J0;Lp(Ω)) = X(J0),
2. g1 ∈W 1/4−1/4p

p (J0;Lp(∂Ω)) ∩ Lp(J0;W
1−1/p
p (∂Ω)) = Y1(J0),

3. g2 ∈W 3/4−1/4p
p (J0;Lp(∂Ω)) ∩ Lp(J0;W

3−1/p
p (∂Ω)) = Y2(J0),

4. g3 ∈W 1/2−1/2p
p (J0;Lp(∂Ω)) ∩ Lp(J0;W

1−1/p
p (∂Ω)) = Y3(J0),

5. u0 ∈ B4−4/p
pp (Ω) = X1

γ , v0 ∈ B2−2/p
pp (Ω) = X2

γ ,
6. ∂νΔu0 + ∂ν(η1v0) = g1|t=0, p > 5,
7. ∂νu0 = g2|t=0, ∂νv0 = g3|t=0, p > 3.

Proof. Suppose that the function u ∈ E1(T ) in (2.1) is already known. Then in a
first step we will solve the linear heat equation

∂tv − a0Δv = f2 − η2∂tu, (2.4)

subject to the boundary and initial conditions ∂νv = g3 and v(0) = v0. By the
properties of the function a0 we may apply [6, Theorem 2.1] to obtain a unique
solution v ∈ E2(T ) of (2.4), provided that f2 ∈ Lp(J × Ω), v0 ∈ B2−2/p

pp (Ω),

g3 ∈ W 1/2−1/2p
p (J ;Lp(∂Ω)) ∩ Lp(J ;W 1−1/p

p (∂Ω)) =: Y3(J),

and the compatibility condition ∂νv0 = g3|t=0 if p > 3 is valid. The solution may
then be represented by the variation of parameters formula

v(t) = v1(t)−
∫ t

0

e−A(t−s)η2∂tu(s) ds, (2.5)

where A denotes the Lp-realization of the differential operator A(x) = −a0(x)ΔN ,
ΔN means the Neumann-Laplacian and e−At stands for the bounded analytic
semigroup, which is generated by −A in Lp(Ω). Furthermore the function v1 ∈
E2(T ) solves the linear problem

∂tv1 − a0Δv1 = f2, ∂νv1 = g3, v1(0) = v0.

We fix a function w∗ ∈ E1(T ) such that w∗|t=0 = u0 and make use of (2.5) and
the fact that (u− w∗)|t=0 = 0 to obtain

v(t) = v1(t) + v2(t)− (∂t +A)−1η2∂t(u− w∗)
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with v2(t) := −
∫ t

0
e−A(t−s)η2∂tw

∗. Set v∗ = v1 + v2 ∈ E2(T ) and

F (u) = −(∂t +A)−1η2∂t(u− w∗).

Then we may reduce (2.1) to the problem

∂tu+ Δ2u = ΔG(u) + f1, t ∈ J, x ∈ Ω,

∂νΔu = ∂νG(u) + g1, t ∈ J, x ∈ ∂Ω,
∂νu = g2, t ∈ J, x ∈ ∂Ω,
u(0) = u0, t = 0, x ∈ Ω,

(2.6)

where G(u) := −η1(F (u) + v∗). For a given T ∈ (0, T0] we set

0E1(T ) = {u ∈ E1(T ) : u|t=0 = 0}
and

E0(T ) := X(T )× Y1(T )× Y2(T )

0E0(T ) := {(f, g, h) ∈ E0(T ) : g|t=0 = h|t=0 = 0},

where X(T ) := Lp((0, T )× Ω),

Y1(T ) :=W 1/4−1/4p
p (0, T ;Lp(∂Ω)) ∩ Lp(0, T ;W 1−1/p

p (∂Ω)),

and
Y2(T ) :=W 3/4−1/4p

p (0, T ;Lp(∂Ω)) ∩ Lp(0, T ;W 3−1/p
p (∂Ω)).

The spaces E1(T ) and E0(T ) are endowed with the canonical norms | · |1 and | · |0,
respectively. We introduce the new function ũ := u− w∗ ∈0E1(T ) and we set

F̃ (ũ) := −(∂t +A)−1η2∂tũ

as well as G̃(ũ) := −η1F̃ (ũ). If u ∈ E1(T ) is a solution of (2.6), then the function
ũ ∈0E1(T ) solves the problem

∂tũ+ Δ2ũ = ΔG̃(ũ) + f̃1, t ∈ J, x ∈ Ω,

∂νΔũ = ∂νG̃(ũ) + g̃1, t ∈ J, x ∈ ∂Ω,
∂ν ũ = g̃2, t ∈ J, x ∈ ∂Ω,
ũ(0) = 0, t = 0, x ∈ Ω,

(2.7)

with the modified data

f̃1 := f1 −Δ(η1v∗)− ∂tw
∗ −Δ2w∗ ∈ X(T ),

g̃1 := g1 − ∂ν(ηv∗)− ∂νΔw∗ ∈0Y1(T ),
and

g̃2 := g2 − ∂νw
∗ ∈0Y2(T ).

Observe that by construction we have g̃1|t=0 = 0 and g̃2|t=0 = 0 if p > 5 and
p > 5/3, respectively.
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Let us estimate the term ΔG̃(u) in Lp(J ;Lp(Ω)), where u ∈ 0E1(T ). We
compute

|ΔG̃(u)|Lp(J;Lp(Ω)) ≤ |F̃ (u)Δη1|Lp(J;Lp(Ω))

+ 2|(∇F̃ (u)|∇η1)|Lp(J;Lp(Ω)) + |η1ΔF̃ (u)|Lp(J;Lp(Ω)).

Since η1 ∈ B4−4/p
pp (Ω) does not depend on the variable t, we obtain

|F̃ (u)Δη1|Lp(J;Lp(Ω)) ≤ |Δη1|Lp(Ω)|F̃ (u)|Lp(J;L∞(Ω)),

|(∇F̃ (u)|∇η1)|Lp(J;Lp(Ω)) ≤ |∇η1|L∞(Ω)|∇F̃ (u)|Lp(J;Lp(Ω)),

and
|η1ΔF̃ (u)|Lp(J;Lp(Ω)) ≤ |η1|L∞(Ω)|ΔF̃ (u)|Lp(J;Lp(Ω)).

Therefore we have to estimate F̃ (u) for each u ∈ 0E1(T ) in the topology of the
spaces Lp(J ;L∞(Ω)) and Lp(J ;H2

p (Ω)). Let u ∈0E1 and recall that F̃ (u) is defined
by F̃ (u) = −(∂t+A)−1η2∂tu. The operator (∂t+A)−1 is a bounded linear operator
from Lp(J ;Lp(Ω)) to 0H

1
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)) = 0E2(T ). Moreover, by the
trace theorem and by Sobolev embedding, it holds that

0H
1
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)) ↪→ C(J ;B2−2/p
pp (Ω)) ↪→ C(J ;C(Ω̄)).

Note that the bound of (∂t + A)−1 as well as the embedding constant do not
depend on the length of the interval J = [0, T ] ⊂ [0, T0] = J0, since the time trace
at t = 0 vanishes. With these facts, we obtain

|(∂t +A)−1η2∂tu|Lp(J;L∞(Ω)) ≤ T 1/p|(∂t +A)−1η2∂tu|L∞(J;L∞(Ω))

≤ T 1/pC|(∂t +A)−1η2∂tu|E2(T )

≤ T 1/pC|η2∂tu|Lp(J;Lp(Ω))

≤ T 1/pC|η2|L∞(Ω)|u|E1(T ).

To estimate F̃ (u) in Lp(J ;H2
p (Ω)) we need another representation of F̃ (u). To be

precise, we rewrite F̃ (u) as follows

F̃ (u) = −(∂t +A)−1η2∂tu = −∂1/2
t (∂t +A)−1∂

1/2
t (η2u).

This is possible, since u ∈0E1(T ). Now observe that for each u ∈0E1 it holds that
η2u ∈0H

3/4
p (J ;H1

p (Ω)). This can be seen as follows. First of all, it suffices to show
that η2u ∈ Lp(J ;H1

p (Ω)), since η2 does not depend on the variable t. But

|η2u|Lp(J;H1
p(Ω)) ≤ |η2∇u|Lp(J;Lp(Ω)) + |u∇η2|Lp(J;Lp(Ω))

≤ C
(
|η2|L∞(Ω)|u|E1(T ) + |u|Lp(J;L∞(Ω))|η2|H1

p(Ω)

)
≤ C|u|E1(T )|η2|B2−2/p

pp (Ω)
,

and this yields the claim, since

u ∈0H
1
p (J ;Lp(Ω)) ∩ Lp(J ;H4

p (Ω)) ↪→0H
3/4
p (J ;H1

p (Ω)),
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by the mixed derivative theorem. It follows readily that

∂
1/2
t (η2u) ∈0H

1/4
p (J ;H1

p (Ω))
and

(∂t +A)−1(I +A)1/2∂
1/2
t (η2u) ∈0H

5/4
p (J ;Lp(Ω)) ∩0H

1/4
p (J ;H2

p (Ω)).

Since the operator (I+A)1/2 with domain D((I+A)1/2) = H1
p (Ω) commutes with

the operator (∂t +A)−1, this yields

(∂t +A)−1∂
1/2
t (η2u) ∈0H

5/4
p (J ;H1

p (Ω)) ∩0H
1/4
p (J ;H3

p (Ω))

for each fixed u ∈0E1(T ). By the mixed derivative theorem we obtain furthermore

0H
5/4
p (J ;H1

p (Ω)) ∩0H
1/4
p (J ;H3

p (Ω)) ↪→0H
3/4
p (J ;H2

p (Ω)).

Therefore

F̃ (u) = −∂1/2
t (∂t +A)−1∂

1/2
t (η2u) ∈0H

1/4
p (J ;H2

p (Ω)),

and there exists a constant C > 0 being independent of T > 0 and u ∈ 0E1(T )
such that

|F̃ (u)|
H

1/4
p (J;H2

p(Ω))
≤ C|u|E1(T ),

for each u ∈0E1(T ). In particular this yields the estimate

|F̃ (u)|Lp(J;H2
p(Ω)) ≤ T 1/2p|F̃ (u)|L2p(J;H2

p(Ω))

≤ T 1/2p|F̃ (u)|
H

1/4
p (J;H2

p(Ω))
≤ T 1/2pC|u|E1(T ),

by Hölder’s inequality and C > 0 does not depend on the length T of the interval
J . We have thus shown that

|ΔG̃(u)|Lp(J;Lp(Ω)) ≤ μ1(T )C|u|E1(T ),

where we have set μ1(T ) := T 1/2p(1+T 1/2p). Observe that μ1(T )→ 0+ as T → 0+.
The next step consists of estimating the term ∂νG̃(u) in 0W

1/4−1/4p
p (J ;Lp(∂Ω))∩

Lp(J ;W 1−1/p
p (∂Ω)). To this end, we recall the trace map

0H
1/2
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)) ↪→0W
1/4−1/4p
p (J ;Lp(∂Ω)) ∩ Lp(J ;W 1−1/p

p (∂Ω))

for the Neumann derivative on ∂Ω. Therefore, by the results above, it remains to
estimate G̃(u) in 0H

1/2
p (J ;Lp(Ω)). By the complex interpolation method we have

|w|
H

1/2
p (J;Lp(Ω))

≤ C|w|1/2
Lp(J;Lp(Ω))|w|

1/2
H1

p(J;Lp(Ω))

for each w ∈0H
1
p (J ;Lp(Ω)), and C > 0 does not depend on T > 0. Using Hölder’s

inequality, this yields

|w|
H

1/2
p (J;Lp(Ω))

≤ T 1/4pC|w|1/2
L2p(J;Lp(Ω))|w|

1/2
H1

p(J;Lp(Ω))

≤ T 1/4pC|w|H1
p (J;Lp(Ω)).
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Finally we obtain the estimate

|G̃(u)|
H

1/2
p (J;Lp(Ω))

≤ T 1/2p|η1|L∞(Ω)C|u|E1(T ),

which in turn implies

|∂νG̃(u)|Y1(J) ≤ |G̃(u)|
H

1/2
p (J;Lp(Ω))

+ | ˜G(u)|Lp(J;H2
p(Ω)) ≤ μ2(T )C|u|E1(T ),

where μ2(T ) := T 1/4p(1+T 1/4p) and μ2(T )→ 0+ as T → 0+. Define two operators
L,B :0E1(T )→0E0(T ) by means of

Lu :=

⎡⎣∂tu+ Δ2u
∂νΔu
∂νu

⎤⎦ and Bu :=

⎡⎣ΔG̃(u)
∂νG̃(u)

0

⎤⎦ .
With these definitions, we may rewrite (2.7) in the abstract form

Lu = Bu+ f, f := (f̃1, g̃1, g̃2) ∈0E0(T ).

By [6, Theorem 2.1], the operator L is bijective with bounded inverse L−1, hence
u ∈0E1(T ) is a solution of (2.7) if and only if (I −L−1B)u = L−1f . Observe that
L−1B is a bounded linear operator from 0E1(T ) to 0E1(T ) and

|L−1Bu|E1(T ) ≤ |L−1|B(E0(T ),E1(T ))|Bu|E0(T ) ≤ (μ1(T ) + μ2(T ))C|u|E1(T ).

Here the constant C > 0 as well as the bound of L−1 are independent of T > 0.
This shows that choosing T > 0 sufficiently small, we may apply a Neumann series
argument to conclude that (2.7) has a unique solution u ∈ 0E1(T ) on a possibly
small time interval J = [0, T ]. Since the linear system (2.7) is invariant with respect
to time shifts, we may set J = J0. �

3. Local well-posedness

In this section we will use the following setting. For T0 > 0, to be fixed later, and
a given T ∈ (0, T0] we define

E1(T ) := E1(T )× E2(T ), 0E1(T ) := {(u, v) ∈ E1(T ) : (u, v)|t=0 = 0}
and

E0(T ) := X(T )×X(T )× Y1(T )× Y2(T )× Y3(T ),
as well as

0E0(T ) := {(f1, f2, g1, g2, g3) ∈ E0(T ) : g1|t=0 = g2|t=0 = g3|t=0 = 0},
with canonical norms | · |1 and | · |0, respectively. The aim of this section is to find
a local solution (ψ, ϑ) ∈ E1(T ) of the quasilinear system

∂tψ −Δμ = f1, μ = −Δψ + Φ′(ψ)− λ′(ψ)ϑ, t ∈ J, x ∈ Ω,

∂t (b(ϑ) + λ(ψ)) −Δϑ = f2, t ∈ J, x ∈ Ω,
∂νμ = g1, ∂νψ = g2, ∂νϑ = g3, t ∈ J, x ∈ ∂Ω,

ψ(0) = ψ0, ϑ(0) = ϑ0, t = 0, x ∈ Ω.

(3.1)
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To this end, we will apply Banach’s fixed point theorem. For this purpose let
p > (n + 2)/2, p ≥ 2, f1, f2 ∈ X(T0), gj ∈ Yj(0, T0), j = 1, 2, 3, ψ0 ∈ X1

γ and
ϑ0 ∈ X2

γ be given such that the compatibility conditions

∂νΔψ0−∂νΦ′(ψ0)+∂ν(λ′(ψ0)ϑ0) = −g1|t=0, ∂νψ0 = g2|t=0 and ∂νϑ0 = g3|t=0

are satisfied, whenever p > 5, p > 5/3 and p > 3, respectively. In the sequel
we will assume that λ, φ ∈ C4−(R), b ∈ C3−(0,∞) and b′(s) > 0 for all s > 0.
Note that by the Sobolev embedding theorem we have ϑ0 ∈ C(Ω̄) as well as
b′(ϑ0) ∈ C(Ω̄). Since ϑ represents the inverse of the absolute temperature of the
system, it is reasonable to assume ϑ0(x) > 0 for all x ∈ Ω̄. Therefore, there exists
a constant σ > 0 such that ϑ0(x), b′(ϑ0(x)) ≥ σ > 0 for all x ∈ Ω̄. We define
a0(x) := 1/b′(ϑ0(x)), η1(x) = λ′(ψ0(x)) and η2(x) = a0(x)η1(x). By assumption,
it holds that a0 ∈ B2−2/p

pp (Ω), η1 ∈ B4−4/p
pp (Ω) and η2 ∈ B2−2/p

pp (Ω), cf. [15, Section
4.6 & Section 5.3.4].

Thanks to Theorem 2.1 we may define a pair of functions (u∗, v∗) ∈ E1(T0)
as the solution of the problem

∂tu
∗ + Δ2u∗ + Δ(η1v∗) = f1, t ∈ [0, T0], x ∈ Ω,

∂tv
∗ − a0Δv∗ + η2∂tu

∗ = a0f2, t ∈ [0, T0], x ∈ Ω,

∂νΔu∗ + ∂ν(η1v∗) = −g1 − e−B2tg0, t ∈ [0, T0], x ∈ ∂Ω,
∂νu

∗ = g2, t ∈ [0, T0], x ∈ ∂Ω,
∂νv

∗ = g3, t ∈ [0, T0], x ∈ ∂Ω,
u∗(0) = ψ0, v

∗(0) = ϑ0, t = 0, x ∈ Ω,

(3.2)

where B = −Δ∂Ω is the Laplace-Beltrami operator on ∂Ω and e−B2t is the analytic
semigroup which is generated by −B2. Furthermore g0 = 0 if p < 5 and g0 =
−g1|t=0 − (∂νΔψ0 + ∂ν(η1ϑ0)) if p > 5.

Define a linear operator L :0E1(T0)→0E0(T0) by

L(u, v) =

⎡⎢⎢⎢⎢⎣
∂tu+ Δ2u+ η1Δv
∂tv − a0Δv + η2∂tu
∂νΔu+ ∂ν(η1v)

∂νu
∂νv

⎤⎥⎥⎥⎥⎦ .
Then, by Theorem 2.1, the operator L : 0E1(T0) → 0E0(T0) is bounded and bi-
jective, hence an isomorphism with bounded inverse L−1. For all (u, v) ∈ 0E1(T )
we set

G1(u, v) = (λ′(ψ0)− λ′(u))v + Φ′(u),

G2(u, v) = (a0λ′(ψ0)− a(v)λ′(u))∂tu− (a0 − a(v))Δv − (a0 − a(v))f2,



Conserved Penrose-Fife Type Models 551

where a(v(t, x)) = 1/b′(v(t, x)) and a0 = a(ϑ0). Lastly we define a nonlinear
mapping G : E1(T )×0E1(T )→0E0(T ) by

G((u∗, v∗); (u, v)) =

⎡⎢⎢⎢⎢⎣
ΔG1(u+ u∗, v + v∗)
G2(u+ u∗, v + v∗)

∂νG1(u+ u∗, v + v∗)− g̃0
0
0

⎤⎥⎥⎥⎥⎦ ,
where g̃0 = 0 if p < 5 and g̃0 = e−B2t∂νG1(ψ0, ϑ0) if p > 5. Then it is easy to see
that ψ = u + u∗ ∈ E1(T ) and ϑ = v + v∗ ∈ E2(T ) is a solution of (1.2) if and
only if

L(u, v) = G((u∗, v∗); (u, v))

or equivalently
(u, v) = L−1G((u∗, v∗); (u, v)).

In order to apply the contraction mapping principle we consider a ball BR =
B1

R × B2
R ⊂0E1(T ), where R ∈ (0, 1]. Furthermore we define a mapping T : BR →

0E1(T ) by T (u, v) = L−1G((u∗, v∗); (u, v)). We shall prove that T BR ⊂ BR and
that T defines a strict contraction on BR. To this end we define the shifted ball
BR(u∗, v∗) = B1

R(u∗)× B2
R(v∗) ⊂ E1(T ) by

BR(u∗, v∗) = {(u, v) ∈ E1(T ) : (u, v) = (ũ, ṽ) + (u∗, v∗), (ũ, ṽ) ∈ BR}.

To ensure that the mapping G2 is well defined, we choose T0 > 0 and R > 0
sufficiently small. This yields that all functions v ∈ B2

R(v∗) have only a small
deviation from the initial value ϑ0. To see this, write

|ϑ0(x)− v(t, x)| ≤ |ϑ0(x)− v∗(t, x)| + |v∗(t, x) − v(t, x)| ≤ μ(T ) +R,

for all functions v ∈ B2
R(v∗), where μ = μ(T ) is defined by

μ(T ) = max
(t,x)∈[0,T ]×Ω

|v∗(t, x) − ϑ0(x)|.

Observe that μ(T ) → 0 as T → 0, by the continuity of v∗ and ϑ0. This in turn
implies that v(t, x) ≥ σ/2 > 0 and b′(v(t, x)) ≥ σ/2 > 0 for (t, x) ∈ [0, T ] × Ω̄
and all v ∈ B2

R(v∗), with T0 > 0, R > 0 being sufficiently small. Moreover, for all
v, v̄ ∈ B2

R(v∗) we obtain the estimates

|a(ϑ0(x)) − a(v(t, x))| ≤ C|ϑ0(x)− v(t, x)| (3.3)
and

|a(v̄(t, x)) − a(v(t, x))| ≤ C|v̄(t, x)− v(t, x)|, (3.4)

valid for all (t, x) ∈ [0, T ] × Ω̄, with some constant C > 0, since b′ is locally
Lipschitz continuous.

The next proposition provides all the facts to show the desired properties of
the operator T .
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Proposition 3.1. Let n ∈ N and p > (n + 2)/2, p ≥ 2, b ∈ C2−(0,∞), b′(s) > 0
for all s > 0, λ,Φ ∈ C4−(R) and ϑ0(x) > 0 for all x ∈ Ω̄. Then there exists a
constant C > 0, independent of T , and functions μj = μj(T ) with μj(T ) → 0 as
T → 0, such that for all (u, v), (ū, v̄) ∈ BR(u∗, v∗) the following statements hold.

1. |ΔG1(u, v)−ΔG1(ū, v̄)|X(T ) ≤ (μ1(T ) +R)|(u, v)− (ū, v̄)|E1(T ),

2. |G2(u, v)−G2(ū, v̄)|X(T ) ≤ C(μ2(T ) +R)|(u, v)− (ū, v̄)|E1(T ),

3. |∂νG1(u, v)− ∂νG1(ū, v̄)|Y1(T ) ≤ C(μ3(T ) +R)|(u, v)− (ū, v̄)|E1(T ).

The proof is given in the Appendix.

It is now easy to verify the self-mapping property of T . Let (u, v) ∈ BR. By
Proposition 3.1 there exists a function μ = μ(T ) with μ(T ) → 0 as T → 0 such
that

|T (u, v)|1 = |L−1G((u∗, v∗), (u, v))|1 ≤ |L−1||G((u∗, v∗), (u, v))|0
≤ C(|G((u∗, v∗), (u, v))−G((u∗, v∗), (0, 0))|0 + |G((u∗, v∗), (0, 0))|0)
≤ C(|ΔG1(u+ u∗, v + v∗)−ΔG1(u∗, v∗)|X(T )

+ |G2(u+ u∗, v + v∗)−G2(u∗, v∗)|X(T )

+ |∂νG1(u + u∗, v + v∗)− ∂νG1(u∗, v∗)|Y1(T )

+ |G((u∗, v∗), (0, 0))|0)
≤ C(μ(T ) +R)|(u, v)|1 + |G((u∗, v∗), (0, 0))|0
≤ C(μ(T ) +R)R+ |G((u∗, v∗), (0, 0))|0.

Hence we see that T BR ⊂ BR if T and R are sufficiently small, since
G((u∗, v∗), (0, 0)) is a fixed function. Furthermore for all (u, v), (ū, v̄) ∈ BR we
have

|T (u, v)− T (ū, v̄)|1 = |L−1(G((u∗, v∗), (u, v))−G((u∗, v∗), (ū, v̄)))|1
≤ |L−1||G((u∗, v∗), (u, v))−G((u∗, v∗), (ū, v̄))|0
≤ C(|ΔG1(u+ u∗, v + v∗)−ΔG1(ū+ u∗, v̄ + v∗)|X(T )

+ |∂νG1(u + u∗, v + v∗)− ∂νG1(ū+ u∗, v̄ + v∗)|Y1(T )

+ |G2(u+ u∗, v + v∗)−G2(ū + u∗, v̄ + v∗)|X(T ))

≤ C(μ(T ) +R)|(u, v)− (ū, v̄)|1.
Thus T is a strict contraction on BR, if T and R are again small enough. Therefore
we may apply the contraction mapping principle to obtain a unique fixed point
(ũ, ṽ) ∈ BR of T . In other words the pair (ψ, ϑ) = (ũ + u∗, ṽ + v∗) ∈ E1(T ) is the
unique local solution of (1.2). We summarize the preceding calculations in

Theorem 3.2. Let n ∈ N, p > (n+ 2)/2, p ≥ 2, p �= 3, 5, b ∈ C3−(0,∞), b′(s) > 0
for all s > 0 and let λ,Φ ∈ C4−(R). Then there exists an interval J = [0, T ] ⊂
[0, T0] = J0 and a unique solution (ψ, ϑ) of (1.2) on J , with

ψ ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H4

p (Ω))



Conserved Penrose-Fife Type Models 553

and

ϑ ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)), ϑ(t, x) > 0 for all (t, x) ∈ J × Ω̄,

provided the data are subject to the following conditions.

1. f1, f2 ∈ Lp(J0 × Ω),
2. g1 ∈W 1/4−1/4p

p (J0;Lp(∂Ω)) ∩ Lp(J0;W
1−1/p
p (∂Ω)),

3. g2 ∈W 3/4−1/4p
p (J0;Lp(∂Ω)) ∩ Lp(J0;W

3−1/p
p (∂Ω)),

4. g3 ∈W 1/2−1/2p
p (J0;Lp(∂Ω)) ∩ Lp(J0;W

1−1/p
p (∂Ω)),

5. ψ0 ∈ B4−4/p
pp (Ω), ϑ0 ∈ B2−2/p

pp (Ω),
6. ∂νΔψ0 − ∂νΦ′(ψ0) + ∂ν(λ′(ψ0)ϑ0) = −g1|t=0, if p > 5,
7. ∂νψ0 = g2|t=0, ∂νϑ0 = g3|t=0, if p > 3,
8. ϑ0(x) > 0 for all x ∈ Ω̄.

The solution depends continuously on the given data and if the data are inde-
pendent of t, the map (ψ0, ϑ0) �→ (ψ, ϑ) defines a local semiflow on the natural
(nonlinear) phase manifold

Mp := {(ψ0, ϑ0) ∈ B4−4/p
pp (Ω)×B2−2/p

pp (Ω) : ψ0 and ϑ0 satisfy 6.− 8.}.

4. Global well-posedness

In this section we will investigate the global existence of the solution to the con-
served Penrose-Fife type system

∂tψ −Δμ = 0, μ = −Δψ + Φ′(ψ)− λ′(ψ)ϑ, t > 0, x ∈ Ω,

∂t (b(ϑ) + λ(ψ)) −Δϑ = 0, t > 0, x ∈ Ω,
∂νμ = 0, ∂νψ = 0, ∂νϑ = 0, t > 0, x ∈ ∂Ω,

ψ(0) = ψ0, ϑ(0) = ϑ0, t = 0, x ∈ Ω,

(4.1)

with respect to time if the spatial dimension n is less or equal to 3. Note that
the boundary conditions are equivalent to ∂νϑ = ∂νψ = ∂νΔψ = 0. A successive
application of Theorem 3.2 yields a maximal interval of existence Jmax = [0, Tmax)
for the solution (ψ, ϑ) ∈ E1(T )×E2(T ) of (4.1), where T ∈ (0, Tmax). In the sequel
we will make use of the following assumptions.

(H1) Φ ∈ C4−(R) and there exist some constants cj > 0, γ ≥ 0 such that

Φ(s) ≥ −η
2
s2 − c1, |Φ′′′(s)| ≤ c2(1 + |s|γ),

for all s ∈ R, where η < λ1 with λ1 being the smallest nontrivial eigenvalue of
the negative Laplacian on Ω with Neumann boundary conditions and γ < 3
if n = 3.

(H2) λ ∈ C4−(R) and λ′′, λ′′′ ∈ L∞(R). In particular, there is a constant c > 0
such that |λ′(s)| ≤ c(1 + |s|) for all s ∈ R.
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(H3) b ∈ C3−((0,∞)), b′(s) > 0 on (0,∞) and there is a constant κ > 1 such that
1
κ
≤ ϑ(t, x) ≤ κ

on Jmax × Ω. In particular, there exists σ > 1 such that
1
σ
≤ b′(ϑ(t, x)) ≤ σ,

on Jmax × Ω.
Remark: Condition (H1) is certainly fulfilled, if Φ is a polynomial of degree 2m,
m < 3.

We prove global well-posedness with respect to time by contradiction. For this
purpose, assume that Tmax <∞. Multiply ∂tψ = Δμ by μ and integrate by parts
to the result

d

dt

(
1
2
|∇ψ|22 +

∫
Ω

Φ(ψ) dx
)

+ |∇μ|22 −
∫

Ω

λ′(ψ)ϑ∂tψ dx = 0. (4.2)

Next we multiply (4.1)2 by ϑ and integrate by parts. This yields∫
Ω

ϑb′(ϑ)∂tϑ dx + |∇ϑ|22 +
∫

Ω

λ′(ψ)ϑ∂tψ dx = 0. (4.3)

Set β′(s) = sb′(s) and add (4.2) to (4.3) to obtain the equation

d

dt

(1
2
|∇ψ|22 +

∫
Ω

Φ(ψ) dx+
∫

Ω

β(ϑ) dx
)

+ |∇μ|22 + |∇ϑ|22 = 0. (4.4)

Integrating (4.4) with respect to t, we obtain

E(ψ(t), ϑ(t)) +
∫ t

0

(
|∇μ(s)|22 + |∇ϑ(s)|22

)
dt = E(ψ0, ϑ0), (4.5)

for all t ∈ Jmax, where

E(u, v) :=
1
2
|∇u|22 +

∫
Ω

Φ(u) dx +
∫

Ω

β(v) dx.

It follows from (H1) and the Poincaré-Wirtinger inequality that

ε

2

∫
Ω

|∇ψ(t)|2 dx+
1− ε

2

∫
Ω

|∇ψ(t)|2 dx+
∫

Ω

Φ(ψ(t)) dx

≥ ε
2

∫
Ω

|∇ψ(t)|2 dx+
(1 − ε)λ1 − η

2
|ψ(t)|22 − c1|Ω| −

λ1

2|Ω|

(∫
Ω

ψ0 dx

)
,

since by equation ∂tψ = Δμ and the boundary condition ∂νμ = 0, it holds that∫
Ω

ψ(t, x) dx ≡
∫

Ω

ψ0(x) dx, t ∈ Jmax.

Hence for a sufficiently small ε > 0 we obtain the a priori estimates

ψ ∈ L∞(Jmax;H1
2 (Ω)) and |∇μ|, |∇ϑ| ∈ L2(Jmax;L2(Ω)), (4.6)
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since β(ϑ(t, x)) is uniformly bounded on Jmax × Ω, by (H3). However, things are
more involved for higher-order estimates. Here we have the following result.

Proposition 4.1. Let n ≤ 3, p > (n + 2)/2, p ≥ 2 and let (ψ, ϑ) be the maximal
solution of (4.1) with initial value ψ0 ∈ B4−4/p

pp (Ω) and ϑ0 ∈ B2−2/p
pp (Ω). Suppose

furthermore b ∈ C3−(0,∞), b′(s) > 0 for all s > 0, λ,Φ ∈ C4−(R) and let (H1)–
(H3) hold.

Then ψ ∈ L∞(Jmax × Ω) and ϑ ∈ H1
2 (Jmax;L2(Ω)) ∩ L∞(Jmax;H1

2 (Ω)).
Moreover, it holds that ∂tψ ∈ Lr(Jmax × Ω), where r := min{p, 2(n+ 4)/n}.

Proof. The proof is given in the Appendix. �

Define the new function u = b(ϑ). Then u satisfies the nonautonomous linear
differential equation in divergence form

∂tu− div(a(t, x)∇u) = f, (4.7)

subject to the boundary and initial conditions ∂νu = 0 and u(0) = b(ϑ0) =: u0,
where a(t, x) := 1/b′(ϑ(t, x)) and f := −λ′(ψ)∂tψ. With (H3), the regularity of ϑ
from Proposition 4.1 carries over to the function u; in particular u0 ∈ B2−2/p

pp (Ω).
This yields, that u is a weak solution of (4.7) in the sense of Lieberman [12] &
DiBenedetto [7], and u is bounded by (H3).

Furthermore, by (H3)

0 <
1
σ
≤ a(t, x) ≤ σ <∞,

for all (t, x) ∈ Jmax×Ω. Note that by Proposition 4.1 it holds that f = −λ′(ψ)∂tψ ∈
Lr(Jmax×Ω), r := min{p, 2(n+ 4)/n}. Consider the case r = 2(n+ 4)/n. Then it
can be readily checked that

n+ 2
2

<
2(n+ 4)
n

= r

provided n ≤ 5. It follows from Lieberman [12] & DiBenedetto [7] that there
exists a real number α ∈ (0, 1/2) such that u ∈ Cα,2α(ΩTmax), provided f ∈
Lp(Jmax × Ω) and p > (n+ 2)/2. Here Cα,2α(ΩTmax) is defined as

Cα,2α(ΩTmax) := {v ∈ C(ΩTmax) : sup
(t,x),(s,y)∈ΩTmax

|v(t, x) − v(s, y)|
|t− s|α + |x− y|2α

<∞}.

and we have set ΩTmax = (0, Tmax)×Ω. The properties of the function b then yield
that ϑ = b−1(u) ∈ Cα,2α(ΩTmax). In a next step we solve the initial-boundary
value problem

∂tϑ− a(t, x)Δϑ = g, t ∈ Jmax, x ∈ Ω,
∂νϑ = 0, t ∈ Jmax, x ∈ ∂Ω,
ϑ(0) = ϑ0, t = 0, x ∈ Ω,

(4.8)
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with g := −a(t, x)λ′(ψ)∂tψ ∈ Lr(Jmax × Ω) and r = 2(n + 4)/n > (n + 2)/2. By
[6, Theorem 2.1] we obtain

ϑ ∈ H1
r (Jmax;Lr(Ω)) ∩ Lr(Jmax;H2

r (Ω)),

of (4.8), since
ϑ0 ∈ B2−2/p

pp (Ω) ↪→ B2−2/r
rr (Ω), p ≥ r.

At this point we use equation (6.8) from the proof of Proposition 4.1 to conclude
∂tψ ∈ Ls(Jmax × Ω), with s = min{p, q} where q is restricted by

1
q
≥ 1
r
− 2
n+ 4

.

For the case r = 2(n+ 4)/n, this yields
1
q
≥ n− 4

2(n+ 4)
,

i.e., q may be arbitrarily large in case n ≤ 3 and we may set s = p. Now we solve
(4.8) again, this time with g ∈ Lp(Jmax × Ω), to obtain

ϑ ∈ H1
p (Jmax;Lp(Ω)) ∩ Lp(Jmax;H2

p (Ω))

and therefore ϑ(Tmax) ∈ B2−2/p
pp (Ω) is well defined. Next, consider the equation

∂tψ + Δ2ψ = ΔΦ′(ψ)−Δ(λ′(ψ)ϑ),

subject to the initial and boundary conditions ψ(0) = ψ0 and ∂νψ = ∂νΔψ = 0.
By maximal Lp-regularity there exists a constant M =M(Jmax) > 0 such that

|ψ|E1(T ) ≤M(1 + |ΔΦ′(ψ)|X(T ) + |Δ(λ′(ψ)ϑ)|X(T )). (4.9)

for each T ∈ Jmax. Since ϑ ∈ E2(Tmax) we may apply [13, Lemma 4.1] to the result

|ΔΦ′(ψ)|X(T ) + |Δ(λ′(ψ)ϑ)|X(T ) ≤ C(1 + |ψ|δE1(T )), (4.10)

with some δ ∈ (0, 1) and C > 0 being independent of T ∈ Jmax. Combining (4.9)
with (4.10), we obtain the estimate

|ψ|E1(T ) ≤ C(1 + |ψ|δE1(T )),

which in turn yields that |ψ|E1(T ) is bounded as T ↗ Tmax, since δ ∈ (0, 1).
Therefore the value ψ(Tmax) ∈ B4−4/p

pp (Ω) is well defined and we may continue the
solution (ψ, ϑ) beyond the point Tmax, contradicting the assumption that Jmax =
[0, Tmax) is the maximal interval of existence.

We summarize these considerations in

Theorem 4.2. Let n ≤ 3, p > (n+2)/2, p ≥ 2 and p �= 3, 5. Assume that (H1)–(H3)
hold. Then for each T0 > 0 there exists a unique solution

ψ ∈ H1
p (J0;Lp(Ω)) ∩ Lp(J0;H4

p (Ω)) = E1(T0)
and

ϑ ∈ H1
p (J0;Lp(Ω)) ∩ Lp(J0;H2

p (Ω)) = E2(T0),
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of (1.2), provided the data are subject to the following conditions:

1. ψ0 ∈ B4−4/p
pp (Ω), ϑ0 ∈ B2−2/p

pp (Ω);
2. ∂νΔψ0 = 0, if p > 5, ∂νψ0 = 0;
3. ∂νϑ0 = 0, if p > 3, ϑ0(x) > 0 for all x ∈ Ω̄.

The solution depends continuously on the given data and the map (ψ0, ϑ0) �→ (ψ, ϑ)
defines a semiflow on the natural phase manifold

Mp := {(ψ0, ϑ0) ∈ B4−4/p
pp (Ω)×B2−2/p

pp (Ω) : ψ0 and ϑ0 satisfy 2. & 3.}.

5. Asymptotic behavior

Let n ≤ 3. In the following we will investigate the asymptotic behavior of global
solutions of the homogeneous system

∂tψ −Δμ = 0, μ = −Δψ + Φ′(ψ)− λ′(ψ)ϑ, t > 0, x ∈ Ω,

∂t (b(ϑ) + λ(ψ)) −Δϑ = 0, t > 0, x ∈ Ω,
∂νμ = 0, t > 0, x ∈ ∂Ω,
∂νψ = 0, t > 0, x ∈ ∂Ω,
∂νϑ = 0, t > 0, x ∈ ∂Ω,

ψ(0) = ψ0, ϑ(0) = ϑ0, t = 0, x ∈ Ω,

(5.1)

as t → ∞. To this end let (ψ0, ϑ0) ∈ Mp, p > (n + 2)/2, p ≥ 2 and denote by
(ψ(t), ϑ(t)) the unique global solution of (5.1). In the sequel we will make use of
the following assumptions.

(H4) b ∈ C3−((0,∞)), b′(s) > 0 on (0,∞) and there is a constant κ > 1 such that

1
κ
≤ ϑ(t, x) ≤ κ

on Jmax × Ω. In particular, there exists σ > 1 such that
1
σ
≤ b′(ϑ(t, x)) ≤ σ,

on Jmax × Ω.
(H5) The functions Φ, λ and b are real analytic on R.

We remark that assumption (H4) is identical to (H3) for a global solution. We
stated it here for the sake of readability.

Note that the boundary conditions (5.1)3,5 yield∫
Ω

ψ(t, x) dx ≡
∫

Ω

ψ0(x) dx,

and ∫
Ω

(b(ϑ(t, x)) + λ(ψ(t, x))) dx ≡
∫

Ω

(b(ϑ0(x)) + λ(ψ0(x))) dx.
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Replacing ψ by ψ̃ = ψ − c, where c := 1
|Ω|

∫
Ω
ψ0(x) dx we see that

∫
Ω
ψ̃ dx ≡ 0, if

Φ(s) and λ(s) are replaced by Φ̃(s) = Φ(s+ c) and λ̃(s) = λ(s + c), respectively.
Similarly we can achieve that∫

Ω

(b(ϑ(t, x)) + λ(ψ(t, x))) dx ≡ 0,

by a shift of λ, to be precise λ̄(s) := λ(s) − d, where

d :=
1
|Ω|

∫
Ω

(b(ϑ0(x)) + λ(ψ0(x))) dx.

With these modifications of the data we obtain the constraints∫
Ω

ψ(t, x) dx ≡ 0 and
∫

Ω

(b(ϑ(t, x)) + λ(ψ(t, x))) dx ≡ 0. (5.2)

Recall from Section 4 the energy functional

E(u, v) =
1
2
|∇u|22 +

∫
Ω

Φ(u) dx+
∫

Ω

β(v) dx,

defined on the energy space V = V1 × V2, where

V1 :=
{
u ∈ H1

2 (Ω) :
∫

Ω

u dx = 0
}
, V2 := Hr

2 (Ω), r ∈ (n/4, 1).

and V is equipped with the canonical norm |(u, v)|V := |u|H1
2(Ω) + |v|Hr

2 (Ω). It is
convenient to embed V into a Hilbert space H = H1 ×H2 where

H1 :=
{
u ∈ L2(Ω) :

∫
Ω

u dx = 0
}

and H2 := L2(Ω).

Proposition 5.1. Let (ψ, ϑ) ∈ E1 × E2 be a global solution of (5.1) and assume
(H1)–(H4). Then

1. ψ ∈ L∞(R+;H2s
p (Ω)), s ∈ [0, 1), p ∈ (1,∞), ∂tψ ∈ L2(R+ × Ω);

2. ϑ ∈ L∞(R+;H1
2 (Ω)), ∂tϑ ∈ L2(R+ × Ω).

In particular the orbits ψ(R+) and ϑ(R+) are relatively compact in H1
2 (Ω) and

Hr
2 (Ω), respectively, where r ∈ [0, 1).

Proof. Assertions 1 & 2 follow directly from (H1)–(H4) and the proof of Propo-
sition 4.1, which is given in the Appendix. Indeed, one may replace the interval
Jmax by R+, since the operator −A2 = −Δ2

N generates an exponentially stable,
analytic semigroup e−A2t in the space

Xp := {u ∈ Lp(Ω) :
∫

Ω

u dx = 0}

with domain

D(A2) = {u ∈ H4
p (Ω) ∩ Xp : ∂νu = ∂νΔu = 0 on ∂Ω}. �

By Assumption (H4), there exists some bounded interval Jϑ ⊂ R+ with
ϑ(t, x) ∈ Jϑ for all t ≥ 0, x ∈ Ω. Therefore we may modify the nonlinearities b
and β outside Jϑ in such a way that b, β ∈ C3−

b (R).
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Unfortunately the energy functional E is not yet the right one for our purpose,
since we have to include the nonlinear constraint∫

Ω

(λ(ψ) + b(ϑ)) dx = 0,

into our considerations. The linear constraint
∫
Ω ψ dx = 0 is part of the definition

of the space H1. For the nonlinear constraint we use a functional of Lagrangian
type which is given by

L(u, v) = E(u, v)− vF (u, v),

defined on V , where F (u, v) :=
∫
Ω
(λ(u) + b(v)) dx and w̄ = 1

|Ω|
∫
Ω
w dx for a

function w ∈ L1(Ω). Concerning the differentiability of L we have the following
result.

Proposition 5.2. Under the conditions (H1)–(H4), the functional L is twice con-
tinuously Fréchet differentiable on V and the derivatives are given by

〈L′(u, v), (h, k)〉V ∗,V

= 〈E′(u, v), (h, k)〉V ∗,V − kF (u, v)− v〈F ′(u, v), (h, k)〉V ∗,V (5.3)

and

〈L′′(u, v)(h1, k1), (h2, k2)〉V ∗,V = 〈E′′(u, v)(h1, k1), (h2, k2)〉V ∗,V

− k1〈F ′(u, v), (h2, k2)〉V ∗,V − k2〈F ′(u, v), (h1, k1)〉V ∗,V

− v〈F ′′(u, v)(h1, k1), (h2, k2)〉V ∗,V , (5.4)

where (h, k), (hj , kj) ∈ V, j = 1, 2, and

〈E′(u, v), (h, k)〉V ∗,V =
∫

Ω

∇u∇h dx+
∫

Ω

Φ′(u)h dx+
∫

Ω

β′(v)k dx,

〈E′′(u, v)(h1, k1), (h2, k2)〉V ∗,V

=
∫

Ω

∇h1∇h2 dx+
∫

Ω

Φ′′(u)h1h2 dx+
∫

Ω

β′′(v)k1k2 dx,

〈F ′(u, v), (h, k)〉V ∗,V =
∫

Ω

λ′(u)h dx+
∫

Ω

b′(v)k dx

and

〈F ′′(u, v)(h1, k1), (h2, k2)〉V ∗,V =
∫

Ω

λ′′(u)h1h2 dx+
∫

Ω

b′′(v)k1k2 dx.

Proof. We only consider the first derivative, the second one is treated in a similar
way. Since the bilinear form

a(u, v) :=
∫

Ω

∇u(x)∇v(x) dx (5.5)
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defined on V1 × V1 is bounded and symmetric, the first term in E is twice contin-
uously Fréchet differentiable. For the functional

G1(u) :=
∫

Ω

Φ(u) dx, u ∈ V1,

we argue as follows. With u, h ∈ V1 it holds that

Φ(u(x) + h(x)) − Φ(u(x)) − Φ′(u(x))h(x)

=
∫ 1

0

d

dt
Φ(u(x) + th(x)) dt−

∫ 1

0

Φ′(u(x))h(x) dt

=
∫ 1

0

(
Φ′(u(x) + th(x)) − Φ′(u(x))

)
h(x) dt

=
∫ 1

0

∫ t

0

d

ds
Φ′(u(x) + sh(x))h(x) ds dt

=
∫ 1

0

∫ t

0

Φ′′(u(x) + sh(x))h(x)2 ds dt

=
∫ 1

0

Φ′′(u(x) + sh(x))h(x)2(1− s) ds.

From the growth condition (H1), Hölder’s inequality and the Sobolev embedding
theorem it follows that∣∣∣ ∫

Ω

(
Φ(u(x) + h(x)) − Φ(u(x))− Φ′(u(x))h(x)

)
dx

∣∣∣
≤ C

∫
Ω

(1 + |u(x)|4 + |h(x)|4)|h(x)|2 dx

≤ C(1 + |u|46 + |h|46)|h|26
≤ C(1 + |u|4V1

+ |h|4V1
)|h|2V1

.

This proves that G1 is Fréchet differentiable and also G′
1(u) = Φ′(u) ∈ L6/5(Ω) ↪→

V ∗
1 . The next step is the proof of the continuity of G′

1 : V1 → V ∗
1 . We make again

use of (H1), the Hölder inequality and the Sobolev embedding theorem to obtain

|G′
1(u)−G′

1(ū)|V ∗
1
≤ C

(∫
Ω

|Φ′(u(x)) − Φ′(ū(x))| 65 dx
) 5

6

≤ C
(∫

Ω

∫ 1

0

|Φ′′(tu(x) + (1− t)ū(x))| 65 |u(x)− ū(x)| 65 dt dx
) 5

6

≤ C
(∫

Ω

(1 + |u(x)| 245 + |ū(x)| 245 )|u(x)− ū(x)| 65 dx
) 5

6

≤ C
(∫

Ω

(1 + |u(x)|6 + |ū(x)|6) dx
) 2

3
(∫

Ω

|u(x)− ū(x)|6
) 1

6

≤ C(1 + |u|4V1
+ |ū|4V1

)|u− ū|V1 .
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Actually this proves thatG′
1 is even locally Lipschitz continuous on V1. The Fréchet

differentiability of G′
1 and the continuity of G′′

1 can be proved in an analogue
way. The fundamental theorem of differential calculus and the Sobolev embedding
theorem yield the estimate

|Φ′(u + h)− Φ′(u)− Φ′′(u)h|V ∗
1

≤ C
(∫

Ω

∫ 1

0

|Φ′′′(u(x) + sh(x))| 65 |h(x)| 125 ds dx
) 5

6

.

We apply Assumption (H1) and Hölder’s inequality to the result

|Φ′(u+ h)− Φ′(u)− Φ′′(u)h|V ∗
1

≤ C
(∫

Ω

(1 + |u(x)| 185 + |h(x)| 185 )|h(x)| 125 dx
) 5

6

≤ C
(∫

Ω

(1 + |u(x)|6 + |h(x)|6) dx
) 1

2
(∫

Ω

|h(x)|6 dx
) 1

3

= C(1 + |u|3V1
+ |h|3V1

)|h|2V1
.

Hence the Fréchet derivative is given by the multiplication operator G′′
1 (u) defined

by G′′
1 (u)v = Φ′′(u)v for all v ∈ V1 and Φ′′(u) ∈ L3/2(Ω). We will omit the proof

of continuity of G′′
1 . The way to show the C2-property of the functional

G2(u) :=
∫

Ω

λ(u(x)) dx, u ∈ V1,

is identical to the one above, by Assumption (H2). Concerning the C2-differenti-
ability of the functionals

G3(v) :=
∫

Ω

β(v(x)) dx and G4(v) :=
∫

Ω

b(v(x)) dx, v ∈ V2,

one may adopt the proof for G1 and G2. In fact, this time it is easier, since β and b
are assumed to be elements of the space C3−

b (R), however one needs the assumption
r ∈ (n/4, 1). We will skip the details. Finally the product rule of differentiation
yields that L is twice continuously Fréchet differentiable on V1 × V2. �

The corresponding stationary system to (5.1) will be of importance for the
forthcoming calculations. Setting all time-derivatives in (5.1) equal to 0 yields

Δμ = 0 and Δϑ = 0,

subject to the boundary conditions ∂νμ = ∂νϑ = 0. Thus we have μ ≡ μ∞ = const,
ϑ ≡ ϑ∞ = const and there remains the nonlinear elliptic problem of second order{

−Δψ∞ + Φ′(ψ∞)− λ′(ψ∞)ϑ∞ = μ∞, x ∈ Ω,
∂νψ∞ = 0, x ∈ ∂Ω,

(5.6)
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with the constraints (5.2) for the unknowns ψ∞ and ϑ∞. The following proposition
collects some properties of the functional L and the ω-limit set

ω(ψ, ϑ) := {(ϕ, θ) ∈ V1 × V2 : ∃ (tn) ↗∞ s.t.

(ψ(tn), ϑ(tn)) → (ϕ, θ) in V1 × V2}.

Proposition 5.3. Under Hypotheses (H1)–(H4) the following assertions are true.

1. The ω-limit set is nonempty, connected and compact.
2. Each point (ψ∞, ϑ∞) ∈ ω(ψ, ϑ) is a strong solution of the stationary problem

(5.6), where ϑ∞, μ∞ = const and (ψ∞, ϑ∞) satisfies the constraints (5.2) for
the unknowns ϑ∞, μ∞.

3. The functional L is constant on ω(ψ, ϑ) and each point (ψ∞, ϑ∞) ∈ ω(ψ, ϑ)
is a critical point of L, i.e., L′(ψ∞, ϑ∞) = 0 in V ∗.

Proof. The fact that ω(ψ, ϑ) is nonempty, connected and compact follows from
Proposition 5.1 and some well-known facts in the theory of dynamical systems.

Now we turn to 2. Let (ψ∞, ϑ∞) ∈ ω(ψ, ϑ). Then there exists a sequence
(tn) ↗ +∞ such that (ψ(tn), ϑ(tn)) → (ψ∞, ϑ∞) in V as n→∞. Since ∂tψ, ∂tϑ ∈
L2(R+ × Ω) it follows that ψ(tn + s) → ψ∞ and ϑ(tn + s) → ϑ∞ in L2(Ω) for all
s ∈ [0, 1] and by relative compactness also in V . This can be seen as follows.

|ψ(tn + s)− ψ∞|2 ≤ |ψ(tn + s)− ψ(tn)|2 + |ψ(tn)− ψ∞|2

≤
∫ tn+s

tn

|∂tψ(t)|2 dt+ |ψ(tn)− ψ∞|2

≤ s1/2

(∫ tn+s

tn

|∂tψ(t)|22 dt
)1/2

+ |ψ(tn)− ψ∞|2.

Then, for tn →∞ this yields ψ(tn + s) → ψ∞ for all s ∈ [0, 1]. The proof for ϑ is
the same. Integrating (4.4) with f1 = f2 = 0 from tn to tn + 1 we obtain

E(ψ(tn + 1), ϑ(tn + 1))− E(ψ(tn), ϑ(tn))

+
∫ 1

0

∫
Ω

(
|∇μ(tn + s, x)|2 + |∇ϑ(tn + s, x)|2

)
dx ds = 0.

Letting tn → +∞ yields

|∇μ(tn + ·, ·)|, |∇ϑ(tn + ·, ·)| → 0 in L2([0, 1]× Ω).

This in turn yields a subsequence (tnk
) such that ∇μ(tnk

+ s),∇ϑ(tnk
+ s) → 0

in L2(Ω; Rn) for a.e. s ∈ [0, 1]. Hence ∇ϑ∞ = 0, since the gradient is a closed
operator in L2(Ω; Rn). This in turn yields that ϑ∞ is a constant.
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Furthermore the Poincaré-Wirtinger inequality implies that

|μ(tnk
+ s∗)− μ(tnl

+ s∗)|2

≤ Cp

(
|∇μ(tnk

+ s∗)−∇μ(tnl
+ s∗)|2+

∫
Ω

|Φ′(ψ(tnk
+ s∗))− Φ′(ψ(tnl

+ s∗))| dx

+
∫

Ω

|λ′(ψ(tnk
+ s∗))ϑ(tnk

+ s∗)− λ′(ψ(tnl
+ s∗))ϑ(tnl

+ s∗)| dx
)
,

for some s∗ ∈ [0, 1]. Taking the limit k, l→∞ we see that μ(tnk
+ s∗) is a Cauchy

sequence in L2(Ω), hence it admits a limit, which we denote by μ∞. In the same
manner as for ϑ∞ we therefore obtain ∇μ∞ = 0, hence μ∞ is a constant. Observe
that the relation

μ∞ =
1
|Ω|

(∫
Ω

(Φ′(ψ∞)− λ′(ψ∞)ϑ∞) dx
)

is valid. Multiplying (5.1)1 by a function ϕ ∈ H1
2 (Ω) and integrating by parts we

obtain

(μ(tnk
+ s∗), ϕ)2 = (∇ψ(tnk

+ s∗),∇ϕ)2
+ (Φ′(ψ(tnk

+ s∗)), ϕ)2 − (λ′(ψ(tnk
+ s∗))ϑ(tnk

+ s∗), ϕ)2.

As tnk
→∞ it follows that

(μ∞, ϕ)2 = (∇ψ∞,∇ϕ)2 + (Φ′(ψ∞), ϕ)2 − ϑ∞(λ′(ψ∞), ϕ)2. (5.7)

By the Lax-Milgram theorem the bounded, symmetric and elliptic form

a(u, v) :=
∫

Ω

∇u∇v dx,

defined on the space V1 × V1 induces a bounded operator A : V1 → V ∗
1 with

nonempty resolvent, such that

a(u, v) = 〈Au, v〉V ∗
1 ,V1 ,

for all (u, v) ∈ V1 × V1. It is well known that the domain of the part Ap of the
operator A in

Xp = {u ∈ Lp(Ω) :
∫

Ω

u dx = 0}

is given by

D(Ap) = {u ∈ Xp ∩H2
p (Ω), ∂νu = 0}.

Going back to (5.7) we obtain from (H1) and (H2) that ψ∞ ∈ D(Aq), where
q = 6/(β + 2). Since q > 6/5 we may apply a bootstrap argument to conclude
ψ∞ ∈ D(A2). Integrating (5.7) by parts, assertion 2 follows.
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In order to prove 3., we make use of (5.3) to obtain

〈L′(ψ∞, ϑ∞), (h, k)〉V ∗,V

= 〈E′(ψ∞, ϑ∞), (h, k)〉V ∗,V − ϑ∞〈F ′(ψ∞, ϑ∞), (h, k)〉V ∗,V

=
∫

Ω

(−Δψ∞ + Φ′(ψ∞))h dx+
∫

Ω

β′(ϑ∞)k dx

− ϑ∞
∫

Ω

(λ′(ψ∞)h+ b′(ϑ∞)k) dx

=
∫

Ω

μ∞h dx = 0,

for all (h, k) ∈ V , since μ∞ and ϑ∞ are constant. A continuity argument finally
yields the last statement of the proposition. �

The following result is crucial for the proof of convergence.

Proposition 5.4 (Lojasiewicz-Simon inequality). Let (ψ∞, ϑ∞) ∈ ω(ψ, ϑ) and as-
sume (H1)–(H5). Then there exist constants s ∈ (0, 1

2 ], C, δ > 0 such that

|L(u, v)− L(ψ∞, ϑ∞)|1−s ≤ C|L′(u, v)|V ∗ ,

whenever |(u, v)− (ψ∞, ϑ∞)|V ≤ δ.

Proof. We show first that dimN(L′′(ψ∞, ϑ∞)) <∞. By (5.4) we obtain

〈L′′(ψ∞, ϑ∞)(h1, k1), (h2, k2)〉V ∗,V

=
∫

Ω

∇h1∇h2 dx+
∫

Ω

Φ′′(ψ∞)h1h2 dx+
∫

Ω

β′′(ϑ∞)k1k2 dx

− k1
∫

Ω

(λ′(ψ∞)h2 + b′(ϑ∞)k2) dx

− k2
∫

Ω

(λ′(ψ∞)h1 + b′(ϑ∞)k1) dx

− ϑ∞
∫

Ω

(λ′′(ψ∞)h1h2 + b′′(ϑ∞)k1k2) dx.

Since β′′(s) = b′(s) + sb′′(s) and ϑ∞ ≡ const we have

〈L′′(ψ∞, ϑ∞)(h1, k1), (h2, k2)〉V ∗,V

=
∫

Ω

∇h1∇h2 dx+
∫

Ω

(
Φ′′(ψ∞)h1 − k1λ′(ψ∞)− ϑ∞λ′′(ψ∞)h1

)
h2 dx

+
∫

Ω

(b′(ϑ∞)(k1 − 2k1)− λ′(ψ∞)h1)k2 dx

for all (hj , kj) ∈ V . If (h1, k1) ∈ N(L′′(ψ∞, ϑ∞)), it follows that

b′(ϑ∞)(k1 − 2k1)− λ′(ψ∞)h1 = 0.
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It is obvious that a solution k1 to this equation must be constant, hence it is
given by

k1 = −(b′(ϑ∞))−1λ′(ψ∞)h1, (5.8)
where we also made use of (H4). Concerning h1 we have

〈Ah1, h2〉V ∗
1 ,V1 =

∫
Ω

(k1λ′(ψ∞) + ϑ∞λ′′(ψ∞)h1 − Φ′′(ψ∞)h1)h2 dx, (5.9)

since k1 is constant. By Proposition 5.3 it holds that ψ∞ ∈ D(A2) ↪→ L∞(Ω),
hence Ah1 ∈ H1, which means that h1 ∈ D(A2) and from (5.9) we obtain

A2h1 + P (Φ′′(ψ∞)h1 − ϑ∞λ′′(ψ∞)h1 − k1λ′(ψ∞)) = 0,

where P denotes the projection P : H2 → H1, defined by Pu = u − u. It is an
easy consequence of the embedding D(A2) ↪→ L∞(Ω) that the linear operator
B : H1 → H1 given by

Bh1 = P (Φ′′(ψ∞)h1 − ϑ∞λ′′(ψ∞)h1 − k1λ′(ψ∞))

is bounded, where k1 is given by (5.8). Furthermore the operator A2 defined in
the proof of Proposition 5.3 is invertible, hence A−1

2 B : H1 → D(A2) is a compact
operator by compact embedding and this in turn yields that (I + A−1

2 B) is a
Fredholm operator. In particular it holds that dimN(I + A−1

2 B) < ∞, whence
N(L′′(ψ∞, ϑ∞)) is finite dimensional and moreover

N(L′′(ψ∞, ϑ∞)) ⊂ D(A2)× (Hr
2 (Ω) ∩ L∞(Ω)) ↪→ L∞(Ω)× L∞(Ω).

By Hypothesis (H5), the restriction of L′ to the space D(A2)× (Hr
2 (Ω) ∩L∞(Ω))

is analytic in a neighbourhood of (ψ∞, θ∞). For the definition of analyticity in
Banach spaces we refer to [5, Section 3]. Now the claim follows from [5, Theorem
3.10 & Corollary 3.11]. �

Let us now state the main result of this section.

Theorem 5.5. Assume (H1)–(H5) and let (ψ, ϑ) be a global solution of (5.1). Then
the limits

lim
t→∞

ψ(t) =: ψ∞, and lim
t→∞

ϑ(t) =: ϑ∞ = const

exist in H1
2 (Ω) and Hr

2 (Ω), r ∈ (0, 1), respectively, and (ψ∞, ϑ∞) is a strong
solution of the stationary problem (5.6).

Proof. Since by Proposition 5.3 the ω-limit set is compact, we may cover it by
a union of finitely many balls with center (ϕi, θi) ∈ ω(ψ, ϑ) and radius δi > 0,
i = 1, . . . , N . Since L(u, v) ≡ L∞ on ω(ψ, ϑ) and each (ϕi, θi) is a critical point
of L, there are uniform constants s ∈ (0, 1

2 ], C > 0 and an open set U ⊃ ω(ψ, ϑ),
such that

|L(u, v)− L∞|1−s ≤ C|L′(u, v)|V ∗ , (5.10)
for all (u, v) ∈ U . Define H : R+ → R+ by

H(t) := (L(ψ(t), ϑ(t)) − L∞)s.
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The function H is nonincreasing and limt→∞H(t) = 0, since L(ψ(t), ϑ(t)) =
E(ψ(t), ϑ(t)) and since E is a strict Lyapunov functional for (5.1), which follows
from (4.4). Furthermore we have limt→∞ dist((ψ(t), ϑ(t)), ω(ψ, ϑ)) = 0, i.e., there
exists t∗ ≥ 0, such that (ψ(t), ϑ(t)) ∈ U , for all t ≥ t∗. Next, we compute and
estimate the time derivative of H . By (4.4) and Proposition 5.4 we obtain

− d
dt
H(t) = s

(
− d
dt
L(ψ(t), ϑ(t))

)
|L(ψ(t), ϑ(t)) − L∞|s−1

≥ C |∇μ(t)|
2
2 + |∇ϑ(t)|22

|L′(ψ(t), ϑ(t))|V ∗
(5.11)

So have to estimate the term |L′(ψ(t), ϑ(t))|V ∗ . For convenience we will write
ψ = ψ(t) and ϑ = ϑ(t). From (5.3) we obtain with h̄ = 0

〈L′(ψ, ϑ), (h, k)〉V ∗,V

=
∫

Ω

(−Δψ + Φ′(ψ))h dx+
∫

Ω

ϑb′(ϑ)k dx− ϑ
∫

Ω

(λ′(ψ)h+ b′(ϑ)k) dx

=
∫

Ω

(μ− μ)h dx+
∫

Ω

(ϑ− ϑ)λ′(ψ)h dx+
∫

Ω

(ϑ− ϑ)b′(ϑ)k dx
(5.12)

An application of the Hölder and Poincaré-Wirtinger inequality yields the esti-
mates ∣∣∣∣∫

Ω

(ϑ− ϑ)λ′(ψ)h dx
∣∣∣∣ ≤ |λ′(ψ)|∞|ϑ− ϑ|2|h|2 ≤ c|∇ϑ|2|h|2, (5.13)∣∣∣∣∫

Ω

(ϑ− ϑ)b′(ϑ)k dx
∣∣∣∣ ≤ |b′(ϑ)|∞|ϑ− ϑ|2|k|2 ≤ c|∇ϑ|2|k|2 (5.14)

and ∣∣∣∣∫
Ω

(μ− μ)h dx
∣∣∣∣ ≤ c|∇μ|2|h|2, (5.15)

whence we obtain

|L′(ψ(t), ϑ(t))|V ∗ ≤ C(|∇μ(t)|2 + |∇ϑ(t)|2),
by taking the supremum over all functions (h, k) ∈ V with norm less than 1 in
(5.12)–(5.15). This in connection with (5.11) yields

− d
dt
H(t) ≥ C(|∇μ(t)|2 + |∇ϑ(t)|2),

hence |∇μ|, |∇ϑ| ∈ L1([t∗,∞), L2(Ω)). Using the equation ∂tψ = Δμ we see that
∂tψ ∈ L1([t∗,∞), H1

2 (Ω)∗), hence the limit

lim
t→∞

ψ(t) =: ψ∞

exists in H1
2 (Ω)∗ and even in H1

2 (Ω) thanks to Proposition 5.1. From equation
(5.1)2 it follows that ∂te ∈ L1([t∗,∞);H1

2 (Ω)∗), where e := b(ϑ) + λ(ψ), i.e., the



Conserved Penrose-Fife Type Models 567

limit limt→∞ e(t) exists in H1
2 (Ω)∗. This in turn yields that the limit

lim
t→∞

b(ϑ(t)) =: b∞

exists in L2(Ω), by relative compactness, cf. Proposition 5.1. By the monotonicity
assumption (H3) we obtain ϑ(t) = b−1(b(ϑ(t))) and thus the limit of ϑ(t) as t
tends to infinity exists in L2(Ω). From the relative compactness of the orbit ϑ(R+)
it follows that the limit

lim
t→∞

ϑ(t) =: ϑ∞

also exists in Hr
2 (Ω), r ∈ [0, 1). Finally Proposition 5.3 yields the last statement

of the theorem. �

6. Appendix

Proof of Proposition 3.1 Let (u, v), (ū, v̄) ∈ BR(u∗, v∗). By the Sobolev embedding
it holds that u, ū and v, v̄ are uniformly bounded in C1(Ω) and C(Ω), respectively.
Furthermore, we will use the following inequality, which has been proven in [19,
Lemma 6.2.3].

|f(w)−f(w̄)|Hs
p(Lp) ≤ μ(T )(|w−w̄|Hs0

p (Lp)+|w−w̄|∞,∞), 0 < s < s0 < 1, (6.1)

valid for every f ∈ C2−(R) and all w, w̄ ∈ B1
R(u∗)∪B2

R(v∗). Here μ = μ(T ) denotes
a function, with the property μ(T ) → 0 as T → 0. The proof consists of several
steps

(i) By Hölder’s inequality it holds that

|ΔΦ′(u)−ΔΦ′(ū)|X(T )

≤ |ΔuΦ′′(u)−ΔūΦ′′(ū)|X(T ) + ||∇u|2Φ′′′(u)− |∇ū|2Φ′′′(ū)|X(T )

≤ |Δu|rp,rp|Φ′′(u)− Φ′′(ū)|r′p,r′p + |Δu−Δū|rp,rp|Φ′′(ū)|r′p,r′p

+ T 1/p
(
|∇u|2∞,∞|Φ′′′(u)− Φ′′′(ū)|∞,∞ + |∇u−∇ū|∞,∞|Φ′′′(ū)|∞,∞

)
≤ T 1/r′p (|Δu|rp,rp|Φ′′(u)− Φ′′(ū)|∞,∞ + |Δu−Δū|rp,rp|Φ′′(ū)|∞,∞)

+ T 1/p
(
|∇u|2∞,∞|Φ′′′(u)− Φ′′′(ū)|∞,∞ + |∇u−∇ū|∞,∞|Φ′′′(ū)|∞,∞

)
,

since u, ū ∈ C(J ;C1(Ω)). We have

Δw ∈ Hθ2/2
p (J ;H2(1−θ2)

p (Ω)) ↪→ Lrp(J × Ω), θ2 ∈ [0, 1],

for every function w ∈ E1(T ), since r > 1 may be chosen close to 1. Therefore we
obtain

|ΔΦ′(u)−ΔΦ′(ū)|X(T ) ≤ μ(T ) (R + |u∗|1) |u− ū|1,

due to the assumption Φ ∈ C4−(R).
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(ii) Consider the term (λ′(ψ0)− λ′(u))Δv − (λ′(ψ0)− λ′(ū))Δv̄.
|(λ′(ψ0)− λ′(u))Δv − (λ′(ψ0)− λ′(ū))Δv̄|X(T )

≤ |(λ′(ψ0)− λ′(u))Δ(v − v̄)|X(T ) + |(λ′(u)− λ′(ū))Δv̄|X(T )

≤ |ψ0 − u|∞,∞|v − v̄|E2(T ) + |u− ū|∞,∞|v̄|E2(T )

≤ (|ψ0 − u∗|∞,∞ + |u∗ − u|∞,∞)|v − v̄|E2(T )

+ |u− ū|E1(T )(|v̄ − v∗|E2(T ) + |v∗|E2(T ))

≤ C(μ(T ) +R)|(u, v)− (ū, v̄)|1,

since λ ∈ C4−(R). Next, we consider the term ∇(λ′(ψ0)− λ′(u))∇v −∇(λ′(ψ0)−
λ′(ū))∇v̄. We obtain

|∇(λ′(ψ0)− λ′(u))∇v −∇(λ′(ψ0)− λ′(ū))∇v̄|X(T )

≤ |∇(λ′(ψ0)− λ′(u))|∞|∇(v − v̄)|X(T ) + |∇(λ′(u)− λ′(ū))|∞|∇v̄|X(T ).

Since

∇(λ′(ψ0)− λ′(u)) = ∇ψ0(λ′′(ψ0)− λ′′(u)) + λ′′(u)(∇ψ0 −∇u),
and the same for ∇(λ′(u)− λ′(ū)), we may argue as above, to conclude

|∇(λ′(ψ0)− λ′(u))|∞,∞|∇(v − v̄)|X(T ) + |∇(λ′(u)− λ′(ū))|∞,∞|∇v̄|X(T )

≤ (μ(T ) +R)|(u, v)− (ū, v̄)|1.
Finally, we estimate the remaining part with Hölder’s inequality to the result

|vΔ(λ′(ψ0)− λ′(u))− v̄Δ(λ′(ψ0)− λ′(ū))|X(T )

≤ |v − v̄|∞,∞|Δ(λ′(ψ0)− λ′(u))|X(T ) + |v̄|r′p,r′p|Δ(λ′(u)− λ′(ū))|rp,rp, (6.2)

where 1/r + 1/r′ = 1. For the first part, we obtain

|Δ(λ′(ψ0)− λ′(u))|X(T )

≤ |Δψ0|p|λ′′(ψ0)− λ′′(u)|∞,∞ + |Δψ0 −Δu|p|λ′′(u)|∞,∞

+ |∇ψ0|2∞,∞|λ′′′(ψ0)− λ′′′(u)|∞,∞ + |λ′′′(u)|∞,∞|∇ψ0 −∇u|∞,∞

≤ C(|ψ0 − u|∞,∞ + |∇ψ0 −∇u|∞,∞ + |Δψ0 −Δu|p,p)

≤ C(μ(T ) +R),

since ψ0 ∈ H2
p (Ω)∩C1(Ω) and λ ∈ C4−(R). For the second term in (6.2) we obtain

|Δ(λ′(u)− λ′(ū))|rp,rp

≤ |Δu|rp,rp|λ′′(u)− λ′′(ū)|∞,∞ + |λ′′(ū)|∞,∞|Δu−Δū|rp,rp

+ |∇u|2∞,∞|λ′′′(u)− λ′′′(ū)|∞,∞ + |λ′′′(ū)|∞,∞|∇u −∇ū|∞,∞

≤ C|u − ū|E1(T ),

since u, ū ∈ C(J ;C1(Ω)) and r > 1 can be chosen close enough to 1, due to the
fact that v̄ ∈ C(J ;C(Ω)).
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Finally, we observe

|v̄|r′p,r′p ≤ |v̄ − v∗|r′p,r′p + |v∗|r′p,r′p ≤ μ(T ) +R.

(iii) For simplicity we set f(u, v) = a0λ′(ψ0)− a(v)λ′(u). Then we compute

|f(u, v)∂tu− f(ū, v̄)∂tū|X(T )

≤ |∂tu(f(u, v)− f(ū, v̄))|X(T ) + |f(ū, v̄)(∂tu− ∂tū)|X(T ) (6.3)

≤ (|∂tu− ∂tu
∗|X(T ) + |∂tu

∗|X(T ))|f(u, v)− f(ū, v̄)|∞,∞

+ |f(ū, v̄)|∞,∞|∂tu− ∂tū|X(T )

≤ C(μ3(T ) +R)|f(u, v)− f(ū, v̄)|∞,∞

+ |f(ū, v̄)|∞,∞|∂tu− ∂tū|X(T ).

Next we estimate

|f(u, v)− f(ū, v̄)|∞,∞

≤ |a(v)(λ′(u)− λ′(ū))|∞,∞ + |λ′(ū)(a(v)− a(v̄))|∞,∞

≤ |a(v)|∞,∞|λ′(u)− λ′(ū)|∞,∞ + |λ′(ū)|∞,∞|a(v)− a(v̄)|∞,∞

≤ C(|u − ū|∞,∞ + |v − v̄|∞,∞) ≤ C|(u, v)− (ū, v̄)|1.
Furthermore, we have

|f(ū, v̄)|∞,∞ ≤ |a0|∞,∞|λ′(ψ0)− λ′(ū)|∞,∞ + |λ′(ū)|∞,∞|a0 − a(v̄)|∞,∞

≤ C(|ψ0 − ū|∞,∞ + |ϑ0 − v̄|∞,∞)

≤ C(|ψ0 − u∗|∞,∞ + |u∗ − ū|∞,∞ + |ϑ0 − v∗|∞,∞ + |v∗ − v̄|∞,∞)

≤ C(μ(T ) +R).

The estimate of (a0− a(v))Δv− (a0− a(v̄))Δv̄ in Lp(J ;Lp(Ω)) can be carried out
in a similar way.

(iv) We compute

|(a(v)− a(v̄)f2|X(T ) ≤ |a(v)− a(v̄)|∞,∞|f2|X(T ) ≤ |v − v̄|∞,∞|f2|X(T )

≤ μ(T )|v − v̄|E2(T ) ≤ μ(T )|(u, v)− (ū, v̄)|1,
since f2 ∈ X(T ) is a fixed function, hence |f2|X(T ) → 0 as T → 0.

(v) By trace theory, we obtain

|∂ν(Φ′(u)− Φ′(ū))|Y1(T )

≤ C|Φ′(u)− Φ′(ū)|
H

1/2
p (J;Lp(Ω))

+ |Φ′(u)− Φ′(ū)|Lp(J;H2
p(Ω)).

The second norm has already been estimated in (i), so it remains to estimate
Φ′(u)− Φ′(ū) in H1/2

p (J ;Lp(Ω)). Here we will use (6.1), to obtain

|Φ′(u)− Φ′(ū)|
H

1/2
p (Lp)

≤ μ(T )(|u− ū|Hs0
p (Lp) + |u− ū|∞,∞)

≤ μ(T )C|u− ū|E1(T ) ≤ μ(T )C|(u, v)− (ū, v̄)|1,
since s0 < 1.
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(vi) We may apply (ii) and trace theory, to conclude that it suffices to estimate

(λ′(ψ0)− λ′(u))v − (λ′(ψ0)− λ′(ū))v̄
= (λ′(ψ0)− λ′(u))(v − v̄)− (λ′(u)− λ′(ū))v̄

in H1/2
p (J ;Lp(Ω)). This yields

|(λ′(ψ0)− λ′(u))(v − v̄)|H1/2
p (Lp)

≤ |λ′(ψ0)− λ′(u)|H1/2
p (Lp)

|v − v̄|∞,∞ + |λ′(ψ0)− λ′(u)|∞,∞|v − v̄|H1/2
p (Lp)

≤ (|λ′(ψ0)− λ′(u∗)|H1/2
p (Lp)

+ |λ′(u∗)− λ′(u)|
H

1/2
p (Lp)

)|v − v̄|E2(T )

+ (|ψ0 − u∗|∞,∞ + |u∗ − u|∞,∞)|v − v̄|E2(T )

≤
(
|λ′(ψ0)− λ′(u∗)|H1/2

p (Lp)
+ μ(T )R+ (μ(T ) +R)

)
|v − v̄|E2(T ).

Clearly λ′(ψ0) − λ′(u∗) ∈ 0H
1/2
p (J ;Lp(Ω)), since ψ0 does not depend on t and

since λ ∈ C4−(R). Therefore it holds that

|λ′(ψ0)− λ′(u∗)|H1/2
p (Lp)

→ 0

as T → 0. The second part (λ′(u)− λ′(ū))v̄ can be treated as follows.

|(λ′(u)− λ′(ū))v̄|
H

1/2
p (Lp)

≤ |λ′(u)− λ′(ū)|
H

1/2
p (Lp)

|v̄|∞,∞ + |λ′(u)− λ′(ū)|∞,∞|v̄|H1/2
p (Lp)

≤ C(μ(T ) +R+ μ(T ))|u− ū|E1(T ),

where we applied again (6.1). This completes the proof of the proposition.

Proof of Proposition 4.1 Let Jδ
max := [δ, Tmax] for some small δ > 0. Setting

A2 = Δ2
N with domain

D(A2) = {u ∈ H4
p (Ω) : ∂νu = ∂νΔu = 0 on ∂Ω},

the solution ψ(t) of equation (4.1)1 may be represented by the variation of param-
eters formula

ψ(t) = e−A2tψ0 +
∫ t

0

Ae−A2(t−s)
(
λ′(ψ(s))ϑ(s) − Φ′(ψ(s))

)
ds, t ∈ Jmax, (6.4)

where e−A2t denotes the analytic semigroup, generated by −A2 = −Δ2
N in Lp(Ω).

By (H1), (H2) and (4.6) it holds that

Φ′(ψ) ∈ L∞(Jmax;Lq0(Ω)) and λ′(ψ) ∈ L∞(Jmax;L6(Ω)),

with q0 = 6/(γ + 2). We then apply Ar, r ∈ (0, 1), to (6.4) and make use of
semigroup theory to obtain

ψ ∈ L∞(Jδ
max;H

2r
q0

(Ω)), (6.5)
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valid for all r ∈ (0, 1), since q0 < 6. It follows from (6.5) that ψ ∈ L∞(Jδ
max;Lp1(Ω))

if 2r − 3/q0 ≥ −3/p1, and

Φ′(ψ) ∈ L∞(Jδ
max;Lq1(Ω)) as well as λ′(ψ) ∈ L∞(Jδ

max;Lp1(Ω)),

with q1 = p1/(γ + 2). Hence we have this time

ψ ∈ L∞(Jδ
max;H

2r
q1

(Ω)), r ∈ (0, 1).

Iteratively we obtain a sequence (pn)n∈N0 such that

2r − 3
qn
≥ − 3

pn+1
, n ∈ N0

with qn = pn/(γ + 2) and p0 = 6. Thus the sequence (pn)n∈N0 may be recursively
estimated by

1
pn+1

≥ γ + 2
pn

− 2r
3
,

for all n ∈ N0 and r ∈ (0, 1). From this definition it is not difficult to obtain the
following estimate for 1/pn+1.

1
pn+1

≥ (γ + 2)n+1

p0
− 2r

3

n∑
k=0

(γ + 2)k

=
(γ + 2)n+1

p0
− 2r

3

(
(γ + 2)n+1 − 1

γ1 + 1

)
= (γ + 2)n+1

(
1
p0
− 2r

3γ + 3

)
+

2r
3γ + 3

, n ∈ N0. (6.6)

By the assumption (H1) on γ we see that the term in brackets is negative if
r ∈ (0, 1) is sufficiently close to 1 and therefore, after finitely many steps the
entire right side of (6.6) is negative as well, whence we may choose pn arbitrarily
large or we may even set pn = ∞ for n ≥ N and a certain N ∈ N0. In other words
this means that for those r ∈ (0, 1) we have

ψ ∈ L∞(Jδ
max;H

2r
p (Ω)), (6.7)

for all p ∈ [1,∞]. It is important, that we can achieve this result in finitely many
steps!

Next we will derive an estimate for ∂tψ. For all forthcoming calculations we
will use the abbreviation ψ = ψ(t) and ϑ = ϑ(t). Since we only have estimates on
the interval Jδ

max, we will use the following solution formula.

ψ(t) = e−A2(t−δ)ψδ +
∫ t−δ

0

Ae−A2s
(
λ′(ψ)ϑ− Φ′(ψ)

)
(t− s) ds, t ∈ Jδ

max

where ψδ := ψ(δ). Differentiating with respect to t, we obtain

∂tψ(t) = A
∫ t−δ

0

e−A2s(λ′′(ψ)ϑ∂tψ + λ′(ψ)∂tϑ− Φ′′(ψ)∂tψ)(t− s) ds

+ F (t, ψδ, ϑδ), (6.8)
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for all t ≥ δ and with

F (t, ψδ, ϑδ) := Ae−A2(t−δ)(λ′(ψδ)ϑδ − Φ′(ψδ))−A2e−A2(t−δ)ψδ.

Let us discuss the function F in detail. By the trace theorem we have ψδ ∈
B

4−4/p
pp (Ω) and ϑδ ∈ B2−2/p

pp (Ω). Since we assume p > (n + 2)/2, it holds that
ψδ, ϑδ ∈ L∞(Ω). Furthermore, the semigroup e−A2t is analytic. Therefore there
exist some constants C > 0 and ω ∈ R such that

|F (t, ψδ, ϑδ)|Lp(Ω) ≤ C
(

1
(t− δ)1/2

+
1
t− δ

)
eωt,

for all t > δ. This in turn implies that

F (·, ψδ, ϑδ) ∈ Lp(Jδ′
max × Ω)

for all p ∈ (1,∞), where 0 < δ < δ′ < Tmax. We will now use equations (5.1)1,2 to
rewrite the integrand in (6.8) in the following way.

(λ′′(ψ)ϑ− Φ′′(ψ))∂tψ + λ′(ψ)∂tϑ

= (λ′′(ψ)ϑ− Φ′′(ψ))Δμ+
λ′(ψ)
b′(ϑ)

Δϑ− λ
′(ψ)2

b′(ϑ)
Δμ

= div
[(
λ′′(ψ)ϑ− λ

′(ψ)2

b′(ϑ)
− Φ′′(ψ)

)
∇μ

]
+ div

[
λ′(ψ)
b′(ϑ)

∇ϑ
]

(6.9)

−∇
(
λ′′(ψ)ϑ− λ

′(ψ)2

b′(ϑ)
− Φ′′(ψ)

)
· ∇μ−∇λ

′(ψ)
b′(ϑ)

· ∇ϑ.

Thus we obtain a decomposition of the following form

(λ′′(ψ)ϑ− Φ′′(ψ))∂tψ + λ′(ψ)∂tϑ

= div(fμ∇μ+ fϑ∇ϑ) + gμ∇μ+ gϑ∇ϑ+ hμ∇ϑ∇μ+ hϑ|∇ϑ|2,
with

fμ := λ′′(ψ)ϑ − λ
′(ψ)2

b′(ϑ)
− Φ′′(ψ), fϑ :=

λ′(ψ)
b′(ϑ)

,

gμ := −
(
λ′′′(ψ)ϑ− 2

λ′(ψ)λ′′(ψ)
b′(ϑ)

− Φ′′(ψ)
)
∇ψ, gϑ := −λ

′′(ψ)
b′(ϑ)

∇ψ,

hμ := λ′′(ψ)− b
′′(ϑ)λ′(ψ)2

b′(ϑ)2
, hϑ :=

b′′(ϑ)λ′(ψ)
b′(ϑ)2

.

By Assumption (H3) and the first part of the proof it holds that fj, gj , hj ∈
L∞(Jδ

max × Ω) for each j ∈ {μ, ϑ} and this in turn yields that

div(fμ∇μ+ fϑ∇ϑ) ∈ L2(Jδ
max;H

1
2 (Ω)∗),

gμ · ∇μ+ gϑ · ∇ϑ ∈ L2(Jδ
max × Ω),

hμ∇ϑ · ∇μ+ hϑ|∇ϑ|2 ∈ L1(Jδ
max × Ω),
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where we also made use of (4.6). Setting

T1 = Ae−A2t ∗ div(fμ∇μ+ fϑ∇ϑ), T2 = Ae−A2t ∗ (gμ · ∇μ+ gϑ · ∇ϑ)

and

T3 = Ae−A2t ∗ (hμ∇ϑ · ∇μ+ hϑ|∇ϑ|2),

we may rewrite (6.8) as

∂tψ = T1 + T2 + T3 + F (t, ψ0, ϑ0).

Going back to (6.8) we obtain

T1 ∈ H1/4
2 (Jδ

max;L2(Ω)) ∩ L2(Jδ
max;H

1
2 (Ω)) ↪→ L2(Jδ

max × Ω),

T2 ∈ H1/2
2 (Jδ

max;L2(Ω)) ∩ L2(Jδ
max;H

2
2 (Ω)) ↪→ L2(Jδ

max × Ω), and

F (·, ψδ, ϑδ) ∈ L2(Jδ′
max × Ω).

Observe that we do not have full regularity for T3 sinceA has no maximal regularity
in L1(Ω), but nevertheless we obtain

T3 ∈ H1/2−
1 (Jδ

max;L1(Ω)) ∩ L1(Jδ
max;H

2−
1 (Ω)).

Here we used the notation Hs−
p := Hs−ε

p and ε > 0 is sufficiently small. An
application of the mixed derivative theorem then yields

H
1/2−
1 (Jδ

max;L1(Ω)) ∩ L1(Jδ
max;H

2−
1 (Ω)) ↪→ Lp(Jδ

max;L2(Ω)),

if p ∈ (1, 8/7), whence

∂tψ ∈ L2(Jδ′
max × Ω) + Lp(Jδ′

max;L2(Ω))

for some 1 < p < 8/7. Now we go back to (6.9) where we replace this time only
∂tϑ by the differential equation (5.1)2 to obtain

(λ′′(ψ)ϑ − Φ′′(ψ))∂tψ + λ′(ψ)∂tϑ

=
(
λ′′(ψ)ϑ− Φ′′(ψ) − λ

′(ψ)2

b′(ϑ)

)
∂tψ

+ div
[
λ′(ψ)
b′(ϑ)

∇ϑ
]
− λ

′′(ψ)
b′(ϑ)

∇ψ · ∇ϑ+
λ′(ψ)b′′(ϑ)
b′(ϑ)2

|∇ϑ|2

= f∂tψ + div [g∇ϑ] + h · ∇ϑ+ k|∇ϑ|2.

Rewrite (6.8) in the following way

∂tψ = S1 + S2 + S3 + S4 + F (t, ψ0, ϑ0), (6.10)
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where the functions Sj are defined in the same manner as Tj. Since f, g, h ∈
L∞(Jδ

max × Ω) it follows again from regularity theory that

S1 ∈ H1/2
2 (Jδ′

max;L2(Ω)) ∩ L2(Jδ′
max;H

2
2 (Ω))

+H1/2
p (Jδ′

max;L2(Ω)) ∩ Lp(Jδ′
max;H

2
2 (Ω)),

S2 ∈ H1/4
2 (Jδ′

max;L2(Ω)) ∩ L2(Jδ′
max;H

1
2 (Ω)),

S3 ∈ H1/2
2 (Jδ′

max;L2(Ω)) ∩ L2(Jδ′
max;H

2
2 (Ω)),

and it can be readily verified that

H1/2
p (Jδ′

max;L2(Ω)) ∩ Lp(Jδ′
max;H

2
2 (Ω)) ↪→ L2(Jδ′

max × Ω),

whenever p ∈ [1, 2]. Now we turn our attention to the term S4 = Ae−A2t ∗ k|∇ϑ|2.
First we observe that by the mixed derivative theorem the embedding

Zq := H1/2−
q (Jδ′

max;L1(Ω)) ∩ Lq(Jδ′
max;H

2−
1 (Ω)) ↪→ L2(Jδ′

max × Ω)

is valid, provided that q ∈ (8/5, 2]. Hence it holds that

|S4|2,2 ≤ C|S4|Zq ≤ C|k|∇ϑ|2|q,1 ≤ C|∇ϑ|22q,2,

with some constant C > 0. Taking the norm of ∂tψ in L2(Jδ′
max × Ω) we obtain

from (6.10)

|∂tψ|2,2 ≤ C

⎛⎝ 3∑
j=1

|Sj |2,2 + |∇ϑ|22q,2 + |F (·, ψδ, ϑδ)|2,2

⎞⎠ .
The Gagliardo-Nirenberg inequality in connection with (4.6) yields the estimate

|∇ϑ|22q,2 ≤ c|∇ϑ|2a
2,2|∇ϑ|

2(1−a)
∞,2 ≤ c|∇ϑ|2(1−a)

∞,2 ,

provided that a = 1/q. Multiply (4.1)2 by ∂tϑ and integrate by parts to the result∫
Ω

b′(ϑ(t, x))|∂tϑ(t, x)|2 dx+
1
2
d

dt
|∇ϑ(t)|22 = −

∫
Ω

λ′(ψ(t, x))∂tψ(t, x)∂tϑ(t, x) dx.

Making use of (H3) and Young’s inequality we obtain

C1|∂tϑ|22,2 +
1
2
|∇ϑ(t)|22 ≤ C2(|∂tψ|22,2 + |∇ϑ0|22), (6.11)

after integrating w.r.t. t. This in turn yields the estimate

|∇ϑ|22q,2 ≤ c|∇ϑ|
2(1−a)
∞,2 ≤ c(1 + |∂tψ|2(1−a)

2,2 ).

In order to gain something from this inequality we require that 2(1− a) < 1, i.e.,
q is restricted by 1 < q < 2. Finally, if we choose q ∈ (8/5, 2) and use the uniform
boundedness of the L2 norms of Sj , j ∈ {1, 2, 3} we obtain

|∂tψ|2,2 ≤ C(1 + |∂tψ|2(1−a)
2,2 ).

Since by construction 2(1− a) < 1, it follows that the L2-norm of ∂tψ is bounded
on Jδ′

max × Ω. In particular, this yields the statement for ϑ by equation (6.11).
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Now we go back to (6.8) with δ replaced by δ′. By Assumption (H5), by the
bounds ∂tϑ, ∂tψ ∈ L2(Jδ′

max;L2(Ω)) and by the first part of the proof we obtain

λ′′(ψ)ϑ∂tψ + λ′(ψ)∂tϑ− Φ′′(ψ)∂tψ ∈ L2(Jδ′
max;L2(Ω)).

Since the operator A2 = Δ2 with domain

D(A2) = {u ∈ H4
p (Ω) : ∂νu = ∂νΔu = 0}

has the property of maximal Lp-regularity (cf. [6, Theorem 2.1]), we obtain from
(6.8)

∂tψ − F (·, ψδ′ , ϑδ′) ∈ H1/2
2 (Jδ′

max;L2(Ω)) ∩ L2(Jδ′
max;H

2
2 (Ω)) ↪→ Lr(Jδ′

max;Lr(Ω)),

and the last embedding is valid for all r ≤ 2(n + 4)/n. By the properties of the
function F it follows

∂tψ ∈ Lr(Jδ′′
max;Lr(Ω)),

for all r ≤ 2(n + 4)/n and some 0 < δ′′ < Tmax. To obtain an estimate for the
whole interval Jmax, we use the fact that we already have a local strong solution,
i.e., ∂tψ ∈ Lp(0, δ′′;Lp(Ω)), p > (n+ 2)/2. The proof is complete.
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Abstract. We consider a class of singular parabolic problems with Dirichlet
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over we study the asymptotic behaviour when the solution is approaching the
extinction time.
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1. Introduction

Let u(x, t) be the weak solution of the following initial boundary value problem:

ut = div A(x, t,∇u), (x, t) ∈ Ω× (t > 0), (1.1)

u(x, t) = 0, (x, t) ∈ ∂Ω× (t > 0), (1.2)

u(x, 0) = u0(x) ≥ 0, x ∈ Ω, (1.3)

where Ω is a bounded domain in RN with Lipschitz boundary, u0 ∈ L1(Ω) and∫
Ω
u0(x)dx > 0. The functions A := (A1, . . . , AN ) are regular and are assumed to

satisfy the following structure conditions:

A(x, t,∇u) · ∇u ≥ c0|∇u|p, (1.4)

|A(x, t,∇u)| ≤ c1|∇u|p−1, (1.5)

with 2N
N+1 < p < 2 and c0, c1 given positive constants.
A function u ∈ Cloc(R+;L2

loc(Ω)) ∩ Lp
loc(R

+;W 1,p
loc (Ω)) is a weak solution of

(1.1)–(1.3), if for any compact subsetK of Ω and for every subinterval [t1, t2] ∈ R+,∫
K

u φ dx|t2t1 +
∫ t2

t1

∫
K

(−u φt + A(x, t,∇u) · ∇φ) dx dt = 0, (1.6)
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for all φ ∈ W 1,2
loc (R+;L2(K)) ∩ Lp

loc(R
+;W 1,p

0 (K)), where φ is a bounded testing
function. We use this definition of solution because ut may have a modest degree
of regularity and in general has meaning only in the sense of distributions. For
more details see [2], Chap. II, Remark 1.1.

In the last few years, several papers were devoted to the study of the asymp-
totic behaviour of solutions to the porous media and the p-Laplace equations. We
refer the reader to the recent monograph by Vazquez ([12]) and to the references
therein. In almost all these references the Authors use elliptic results to study the
asymptotic behaviour of the solutions. If, on one hand, this makes the proof sim-
ple and very elegant, on the other hand it appears that this method is not flexible
and cannot be applied for more general operators. In recent papers ([8]), ([9]) the
Authors followed an alternative approach introduced by Berryman-Holland ([1])
and used in the context of the asymptotic behaviour of solutions to degenerate
parabolic equations in [3], [7] and [10]. This approach is more parabolic than the
previous one, namely, relying on the properties of the evolution equations, it is
possible to study the asymptotic behaviour of the solutions and derive the elliptic
properties of the asymptotic limit as a by-product.

This new method is applied to study the case of equations with time depen-
dent coefficients for the degenerate case.

We recall to the reader that in the singular case the phenomenon of the
extinction of the solution in finite time occurs. This fact compels us to employ
different techniques and mathematical tools with respect to the degenerate case.
This generalization is based on recent techniques developed in [5], that allow us
to avoid the use of comparison functions as in [3] and [10]. With respect to the
results proved in [8] and [9], here we use the Rayleigh quotient.

Remark 1.1. For the sake of simplicity, in this paper we consider only the case
of initial boundary value problem (1.1)–(1.3), under the structure assumptions
(1.4)–(1.5). It is possible to prove similar results in the case of porous-medium like
equations, or even doubly nonlinear equations and for mixed boundary conditions
(using the techniques introduced in [10]).

Remark 1.2. As we take the initial datum in L1(Ω) we are compelled to limit
ourselves to the case 2N

N+1 < p < 2. Actually, under this threshold, solutions of a
Cauchy-Dirichlet problem with initial datum in L1 could be unbounded (see, for
instance, [2]).

The structure of the paper is as follows: in Section 2 we prove some prelim-
inary results, that will be useful in the sequel. In Section 3, first we state some
estimates from above, valid for the solution of the initial value problem (1.1)–(1.3)
and then we prove proper estimates from below. In Section 4 we study the be-
haviour of solution up to the boundary. Finally in Section 5 we are able to prove
the results concerning the asymptotic behaviour of the solution.
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2. Notation and preliminary results

We recall some notation and some results we will need to prove the main results.

Let A be a domain of RN and let |A| denote the Lebesgue measure of the set
A. For ρ > 0, let Bρ(x) ⊂ RN be the ball centered at x of radius ρ, Bρ = Bρ(0)
and Ωρ(x) be equal to Bρ(x) ∩ Ω.

We introduce the set

Qρ,τ (x0, t0) := Bρ(x0)× (t0, t0 + τ),

with Qρ,τ ⊂ Ω× (t > 0) and

Ωρ,τ (x0, t0) := Ωρ(x0)× (t0, t0 + τ).

We recall now some results proved in [5] to which we refer the reader for the proof:

Theorem 2.1 (L1
loc-L

∞
loc Harnack-type estimates). Let u be a non-negative, weak

solution to (1.1)–(1.5). Assume p is in the super-critical range 2N
N+1 < p < 2.

There exists a positive constant γ depending only upon the data, such that for all
cylinders

Ω2ρ(y)× [t, t+ s] , (2.1)

sup
Ωρ(y)×[t+ s

2 ,t+s]

u ≤ γ

(s)
N
λ

(∫
Ω2ρ(y)

u(x, t)dx

) p
λ

+ γ
(
s

ρp

) 1
2−p

(2.2)

where
λ

def
= N(p− 2) + p. (2.3)

Theorem 2.2 (An L1
loc Form of the Harnack Inequality for all 1 < p < 2 ). Let u

be a non-negative, weak solution to (1.1)–(1.5). Assume 1 < p < 2 and consider a
ball Bρ(y) such that B2ρ(y) ⊂ Ω. Then there exists a positive constant γ depending
only upon the data, such that for all cylinders B2ρ(y)× [s, t],

sup
s<τ<t

∫
Bρ(y)

u(x, τ)dx ≤ γ inf
s<τ<t

∫
B2ρ(y)

u(x, τ)dx + γ
(
t− s
ρλ

) 1
2−p

(2.4)

where λ = N(p−2)+p. The constant γ = γ(p)→∞ as either p→ 2 or as p→ 1.

Theorem 2.3 (Intrinsic Harnack estimate). Let u be a non-negative, weak solution
to (1.1)–(1.5). Assume p is in the super-critical range p∗ = 2N

N+1 < p < 2. There
exist positive constants δ∗ and c, depending only upon the data, such that for all
Po ∈ Ω× (0,∞) and all cylinders of the type Q8ρ(Po) ⊂ Ω× (0,∞),

c u(xo, to) ≤ inf
Bρ(xo)

u(·, t) (2.5)

for all times
to − δ∗[u(Po)]2−pρp ≤ t ≤ to + δ∗[u(Po)]2−pρp. (2.6)

The constants c and δ∗ tend to zero as either p→ 2 or as p→ p∗.
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We point out that this inequality is simultaneously a “forward and backward
in time” Harnack estimate as well as a Harnack estimate of elliptic type. Inequal-
ities of this type would be false for non-negative solutions of the heat equation.
This is reflected in (2.10)–(2.11), as the constants c and δ∗ tend to zero as p→ 2.
As proved in [5], it turns out that these inequalities lose meaning also as p tends
to the critical value p∗

Remark 2.4. Let us stress that all the above results hold in the context of local
non-negative solutions of singular parabolic equations. For our purpose and for
the sake of simplicity, we stated them only for non-negative solutions of a Cauchy-
Dirichlet problem.

Let us quote now a well-known regularity result for singular parabolic equa-
tions (for the proof, see [2], Theorems 1.1 and 1.2, pages 77–78).

Theorem 2.5 (Regularity result). Let u be a local weak solution to (1.1)–(1.3) in a
domain Ω and assume that the structure conditions (1.4) and (1.5) hold. Assume
1 < p < 2. Then for each closed set K strictly contained in Ω, u is uniformly
Hölder continuous in K with the Hölder continuity constant that depends in a
quantitative way on the data. The same result holds for a solution of a Cauchy-
Dirichlet problem. More precisely, assume that u is a local weak solution to (1.1)–
(1.5). Assume 1 < p < 2. Then for each ε > 0, u is uniformly Hölder continuous
in Ω× (ε,∞) with the constant of Hölder continuity that depends in a quantitative
way on the data.

Remark 2.6. All the results previously stated hold in the case that the function
A = (A1, . . . , An) is assumed to be only measurable. The following result requires
differentiability of the coefficients.

We consider now some auxiliary results to be used later. First we introduce
the Rayleigh quotient

E(u(t)) =

∫
Ω A(x, t,∇u) · ∇u dx

(
∫
Ω u

2dx)p/2
. (2.7)

In addition, set s(x, t) := ∇u(x, t), that is, si = uxi , i = 1, . . . , N .
Let us denote by At the derivatives of A(x, t, s) with respect to t and with

As :=
∂(A1, . . . , AN )
∂(ux1, . . . , uxN )

.

Now we prove the following

Theorem 2.7 (Rayleigh quotient). Let u be a non-negative, weak solution to (1.1)–
(1.3) and assume that the structure conditions (1.4) and (1.5) hold with p in the
supercritical range p∗ = 2N

N+1 < p < 2. Let T ∗ be the extinction time. Assume

the functions Ai(x, t,∇u) to be differentiable, (2.8)∫
Ω

At(x, t,∇u) · ∇u dx ≤ 0, (2.9)
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and ∫
Ω

div(A(x, t,∇u)) div(As(x, t,∇u)∇u) dx (2.10)

≥ (p− 1)
∫

Ω

| div A(x, t,∇u)|2 dx.

Then
||u||L2 ≤ [(2− p)E(u(0))(T ∗ − t)] 1

2−p . (2.11)

Remark 2.8. Condition (2.10) is naturally verified by equations like the p-La-
placian.

Proof. Following [4], Prop. 13, we prove that E(u(t)) under restrictions (2.8)–
(2.10) is non-increasing in time.

From the equation (1.1) we have

1
2
d

dt
||u||2L2 = −

∫
Ω

A(x, t,∇u) · ∇u dx. (2.12)

On the other hand, by applying the divergence theorem and Hölder inequality we
get∫

Ω

A(x, t,∇u) · ∇u dx = −
∫

Ω

u div A dx ≤ ||u||L2

( ∫
Ω

| div A|2 dx
) 1

2
, (2.13)

from which we obtain∫
Ω

| div A|2 dx ≥

( ∫
Ω

A(x, t,∇u) · ∇u dx
)2∫

Ω
u2dx

. (2.14)

Moreover, by using once more (1.1), we have

d

dt

∫
Ω

A(x, t,∇u)·∇u dx = −
∫

Ω

| div A|2 dx+
∫

Ω

(At ∇u+As∇ut∇u) dx. (2.15)

By inserting (2.9) and (2.10) in (2.15) and then using (2.14) we obtain

d

dt

∫
Ω

A(x, t,∇u) · ∇u dx ≤ −p
∫

Ω

| div A|2 dx ≤ −p

( ∫
Ω A · ∇u dx

)2∫
Ω
u2dx

. (2.16)

From (2.12) and (2.16) we deduce
d
dt

∫
Ω

A(x, t,∇u) · ∇u dx∫
Ω A(x, t,∇u) · ∇u dx ≤ −p

∫
Ω

A(x, t,∇u) · ∇u dx∫
Ω u

2 dx
=
p

2

d
dt

∫
Ω
u2 dx∫

Ω u
2dx

(2.17)

and (2.17) implies thatE(u(t)) is non-increasing in time. To prove (2.11) we remark
that inserting the Rayleigh quotient in (2.12) we get

d

dt
||u(t)||2−p

2 = −(2− p)E(u(t)). (2.18)

From (2.18) one easily deduces (2.11). �
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Remark 2.9. If we assume A(x, t,∇u) depending on u, Theorem 2.7 holds by
replacing (2.10) with∫

Ω

div A(x, t, u,∇u) [div(As∇u)−Au] dx ≥ (p− 1)
∫

Ω

| div A|2 dx.

3. Estimate from above and below

We show in this section that the solution of (1.1)–(1.3) is bounded both from
above and from below under structure conditions (1.4)–(1.5) and (2.8)–(2.10).

3.1. L2-estimate from below

In this section we prove the estimates from above that we will need in the proof
of the main result.

Theorem 3.1. Let u be a non-negative, weak solution to (1.1)–(1.3). Assume (1.4),
(1.5) and (2.8)–(2.10) hold. Assume p is in the supercritical range p∗ = 2N

N+1 <
p < 2. Then there is a finite time T ∗, depending only upon N, p and u0, such that
u(·, t) = 0 for all t ≥ T ∗. Moreover there exists a constant γ2 > 0 depending only
upon N and p such that, for each 0 < t < T ∗,

γ2 ||u||2−p
L2 |Ω|

N(p−2)+2p
2N ≥ (T ∗ − t). (3.1)

Proof. We follow the same pattern of [4], [6] and [10], to which we refer for more
details.

First of all note that by Theorem 2.1 for each t > 0, u(·, t) belongs to L∞ and
its L∞-norm is controlled by the L1-norm of the initial datum. As the measure
of Ω is finite, we have that, for any t > 0, u(·, t) belongs to L2 and its norm is
controlled by the L1-norm of the initial datum.

From the definition of weak solution, choosing as test function φ = u and
integrating in the space variables, it follows that

1
2
d

dt
||u||2L2 = −

∫
Ω

A(x, t,∇u) · ∇u dx. (3.2)

By the structure condition (1.4), we get

1
2
d

dt
||u||2L2 ≤ − c0

∫
Ω

|∇u|pdx. (3.3)

By the Hölder and Sobolev inequalities(∫
Ω

u2dx
) p

2 ≤ γ|Ω|
N(p−2)+2p

N

∫
Ω

|∇u|pdx, (3.4)

where the constant γ does not depend upon |Ω|, p,N. Plugging (3.4) into (3.3), we
have

1
2
d

dt
‖u‖2L2 ≤ −

1

γ|Ω|N(p−2)+2p
N

(∫
Ω

u2dx

) p
2

. (3.5)
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For any t > 0, the function ψ :=
∫
Ω
u2(x, t)dx satisfies the following ordinary

differential inequality:

ψ̇ +
2

γ|Ω|N(p−2)+2p
N

ψp/2 ≤ 0 (3.6)

with ψ(ε) < ∞ for any ε > 0 (the solution belongs to L2 for any positive time).
Therefore, by starting from a positive time and by integrating (3.6), one can deduce
the existence of a finite extinction time T ∗. �

In an analogous way, it is possible to prove (3.1) by the ordinary differential
inequality (3.6).

3.2. L2-estimates from above

In an almost straightforward way from Theorem 2.2 we have

Theorem 3.2. Let u be a non-negative, weak solution to (1.1)–(1.3). Assume (1.4),
(1.5) and (2.8)–(2.10) hold. Assume p is in the super-critical range p∗ = 2N

N+1 <

p < 2. Then there is a constant γ3 (depending only upon N and p) such that, for
any to < T ∗, (∫

Ω

u2(x, to)dx
) 1

2 ≤ γ3 (T ∗ − to)
1

2−p . (3.7)

Proof. Arguing as in [4], page 72, we have that

d

dt
||u||2−p

L2 = −(2− p)E(u(t)). (3.8)

By Theorem 2.7 we have that E(u(t)) is non-increasing in time and choosing a
time t0, we have for any t0 < t < T ∗,

||u||L2 ≤ [(2− p)E(u(t0))(T ∗ − t0)]
1

2−p . (3.9)

We need now an estimate of E(u(t0)) =

∫
Ω

A · ∇udx∫
Ω u

2dx
from above. By Theorem 3.1

and (1.5) we obtain

E(u(t0)) ≤ γ̃
∫

Ω

|A(x, t,∇u) · ∇u| dx ≤ γ̃ c1
∫

Ω

|∇u|pdx. (3.10)

In order to get an estimate from above
∫
Ω |∇u|

p dx we follow [8], Theorem 4.1,
step 2.

By L∞ estimate (2.2), Theorem 2.1, we have that for any t such that T∗
2 <

t < T ∗, u(t) ∈ L∞(Ω) and then u ∈ L2(Ω), since Ω is bounded. Now we have to
prove that there exists a time t0 such that

∫
Ω |∇u|pdx is bounded. Indeed starting

from (1.6) with φ = u, we get

1
2

∫
Ω

u2(x, T ∗)dx − 1
2

∫
Ω

u2

(
x,
T ∗

2

)
dx ≤ − c0

∫ T∗

T∗
2

∫
Ω

|∇u|pdxdt, (3.11)
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which yields

c0

∫ T∗

T∗
2

∫
Ω

|∇u|pdxdt ≤ 1
2

∫
Ω

u2

(
x,
T ∗

2

)
dx. (3.12)

This implies that there exists a time level t0 ∈ [T∗
2 , T

∗] where

c0

∫
Ω

|∇u|pdx ≤ 1
T ∗

∫
Ω

u2

(
x,
T ∗

2

)
dx. (3.13)

So we can estimate E(u(t0)) and therefore ||u||L2 . �
3.3. L∞-estimates from above

By Theorem 2.1 and by inequality (3.7) we get the L∞-estimates from above.

Theorem 3.3. Let u be a non-negative, weak solution to (1.1)–(1.3). Assume (1.4),
(1.5) and (2.8)–(2.10) hold. Assume p is in the super-critical range p∗ = 2N

N+1 <

p < 2. Then there is a constant γ4 (depending only upon N and p) such that, for
any to < T ∗,

sup
Ω
u(x, to) ≤ γ4 (T ∗ − to)

1
2−p . (3.14)

Proof. Inequality (3.14) follows from (2.2) choosing t = T ∗−2to, t+s = T ∗, ρ = dΩ,
where dΩ is the diameter of Ω and estimating

∫
Ω
u(x, to)dx with γ (T ∗ − to)

1
2−p

by using (3.7). �
3.4. L∞ interior estimates from below

From Theorems 3.1 and 3.3 we can deduce estimates in the interior of Ω. More
precisely

Theorem 3.4. Let u be a non-negative, weak solution to (1.1)–(1.3). Assume (1.4),
(1.5) and (2.8)–(2.10) hold. Assume p is in the super-critical range p∗ = 2N

N+1 <
p < 2. There exists a positive number d, depending only upon the geometry of
Ω, p and N , such that for any T∗

2 < to < T ∗, there is a point xo ∈ Ω with
dist(xo, ∂Ω) > d such that

u(xo, to) ≥ γ5(T ∗ − to)
1

2−p , (3.15)

where γ5 is a positive constant depending only upon the data.

Proof. By (3.1) we have

sup
Ω
u(x, to) ≥ |Ω|−

1
2 ||u||L2 ≥ γ6(T ∗ − to)

1
(2−p) (3.16)

and then by (3.14)
||u||L2 ≥ γ7 sup

Ω
u(x, to), (3.17)

with γ7 = γ7(n, p,Ω).
Define the set A as the set of the points x ∈ Ω where

u(x, to) ≥
γ7√
2|Ω|

sup
Ω
u(x, to).
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Let γ8 =
γ7√
2 |Ω|

sup
Ω
u(x, to). By (3.17) we have

|A| ≥ 1
2
γ2
7 . (3.18)

Since the set A has strictly positive measure and Ω is a bounded regular set,
then there exists a positive constant d such that there exists a point xo ∈ A with
dist(xo,A) > d. Then (3.15) follows from the definition of γ8 and (3.16). �

The following statement is a direct consequence of Theorem 3.4 and of the
intrinsic Harnack estimates of Theorem 2.3.

Theorem 3.5. Let u be a non-negative, weak solution to (1.1)–(1.3). Assume (1.4),
(1.5) and (2.8)–(2.10) hold. Assume that p is in the super-critical range p∗ =
2N

N+1 < p < 2. For any positive number d there is a constant γ9 depending only
upon the geometry of Ω, d, p and N , such that, for any T∗

2 < to < T
∗, for any

point xo ∈ Ω with dist(xo, ∂Ω) > d,

u(xo, to) ≥ γ9(T ∗ − to)
1

2−p . (3.19)

4. Estimates at the boundary from above and from below

Thanks to the previous estimates, we can extend some results up to the boundary.
Let d(x) be the distance from the point x to the boundary ∂Ω.

Theorem 4.1. Let u be a non-negative, weak solution to (1.1)–(1.3). Assume (1.4),
(1.5) and (2.8)–(2.10) hold. Assume p is in the super-critical range p∗ = 2N

N+1 <

p < 2. There exist two constants β ∈ (0, 1) and γ10, such that for each x ∈ Ω and
for each T∗

2 < t < T
∗,

u(x, t) ≥ (T ∗ − t)
1

2−p γ10 d(x)β . (4.1)

Proof. Denote by Kn = {x ∈ Ω such that d(x) ≥ 2−n}. As the boundary is
Lipschitz-continuous, there exists n0 such that for each n ≥ n0 the distance be-
tweenKn and any point x ∈ Kn+1 is less than or equal to 2−(n+1). By Theorem 3.5
for any xo ∈ Kno and for any T∗

2 < t < T
∗,

u(xo, t) ≥ γ9 (T ∗ − t) 1
2−p . (4.2)

By Theorem 2.3 we have that for each x ∈ Kn0+1,

u(x, t) ≥ c u(xo, t) ≥ c γ9 (T ∗ − t) 1
2−p .

By induction for any x ∈ Kn0+n one gets that

u(x, t) ≥ cnγ9 (T ∗ − t) 1
2−p . (4.3)

As we are working with 2−n−1 ≤ d(x) ≤ 2−n, inequality (4.3) easily implies the
statement of the theorem. �
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Theorem 4.2. Let u be a non-negative, weak solution to (1.1)–(1.3). Assume (1.4),
(1.5) and (2.8)–(2.10) hold. Assume that p is in the super-critical range p∗ =
2N

N+1 < p < 2. There exist two constants η ∈ (0, 1) and γ, such that for each x ∈ Ω
and for each T∗

2 < t < T
∗,

γ d(x)η ≥ u(x, t) (T ∗ − t) 1
2−p . (4.4)

Proof. Let xo be a point of ∂Ω. As the boundary is Lipschitz continuous, there
is a bi-Lipschitz continuous diffeomorphism T that maps a neighborhood of xo

in the hemisphere B+(0, 1) = {x ∈ B(0, 1) such that xN > 0}. The function
v(y, t) = u(T −1y, t) is a solution of

vt = div A1(y, t,∇v), (y, t) ∈ B+(0, 1)× (t > 0), (4.5)

v(y, t) = 0, t > 0 y ∈ B(0, 1) ∩ {y ∈ RN such that yN = 0}, (4.6)

where

A1(y, t,∇v) = A(T −1y, t, J(T −1)(y)∇u(T −1y, t)|J(T −1)(y)|).
J(T −1)(y) is the Jacobian matrix and |J(T −1)(y)| is the Jacobian determinant.
Let us extend v in B(0, 1). Denote by ȳ the first N − 1 components of the vector
y. Define w(y, t) = v(y, t) if yn ≥ 0 and w(y, t) = −v(ȳ,−yN), t) if yn ≤ 0. The
function w is a solution of

wt = div A2(y, t,∇w), (w, t) ∈ B(0, 1)× (t > 0), (4.7)

where A2 is equal to A1 if yN ≥ 0; when yN ≤ 0,

A2(y; t;D1w, . . . , DN−1w,DNw)

= −A2

(
(ȳ,−yN); t,D1w((ȳ,−yN), t), . . . , DN−1w((ȳ,−yN), t),

−DNw((ȳ,−yN), t)
)
.

As A2 satisfies the structure conditions (1.4)–(1.5) by Theorem 2.5, the func-
tion w is Hölder continuous and this implies (4.4). �

5. Asymptotic behaviour

In this section we investigate the behavior of the solution of (1.1)–(1.3) when it
is approaching the extinction time. We work as in [3], [10] and [4] and we set
t = T ∗ − T ∗e−τ and

w(x, τ) =
u(x, T ∗ − T ∗e−τ )

(T ∗e−τ )
1

2−p

. (5.1)

The function w(x, τ) is a non-negative solution of the equation

wτ = div Ã(x, τ,∇w) +
1

2− pw, (5.2)
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where

Ã(x, τ,∇w) := (T ∗e−τ )−
p−1
2−p A(x, T ∗ − T ∗e−τ , (T ∗e−τ )

1
2−p∇w) (5.3)

and
w(x, 0) = u0(x) (T ∗)−

1
2−p .

Note that Ã satisfies the structure conditions (1.4)–(1.5). From the results of the
previous section we have:

Theorem 5.1. For any positive time t1, for any closed set K strictly contained in
Ω there are strictly positive constants C1 − C5, depending only upon the data, t1
and K, such that for any t ≥ t1,
• for any x ∈ Ω,

w(x, t) ≤ C1; (5.4)
• for any x ∈ K,

w(x, t) ≥ C2; (5.5)
• for any x ∈ Ω,

C3d(x)β ≤ w(x, t) ≤ C4d(x)η, (5.6)
where d(x) the distance from the point x to the boundary ∂Ω;

• w is uniformly α-Hölder continuous with the Hölder continuity constant that
depends only upon the data and

||w||
C

α, α
p (Ω,[t1,∞])

≤ C5.

By Theorem 5.1, w(t) is equi-Hölder continuous, therefore, up to a subse-
quence, there is a function v ∈ Cα(Ω) such that w → v in Cα.

If we want the function v to be the solution of a suitable partial differential
equation, we have to assume some hypotheses on the coefficient Ã(x, τ, s̃) in (5.2),
where s̃(x, t) := ∇w(x, t), that is, s̃i = wxi , i = 1, . . . , N .

Ã(x, τ, s̃) is a C0 function with respect to time, (5.7)

∃ a function H(x, τ, s̃) such that
∂H

∂s̃i
= Ãi, (5.8)

and
∂H

∂τ
≤ 0, (5.9)

∃ a positive constant C6 :
∫

Ω

H(x, τ,∇w) dx ≥ C6. (5.10)

Note that the assumption of continuity on A(x, t, s) implies that

∃ lim
τ→+∞

Ã(x, τ, s̃) = A∞(x, s̃).

Theorem 5.2. Assume that hypotheses (1.4) and (1.5) hold. Then the function v
belongs to W 1,p

0 ∩ L2(Ω) and it is a non-trivial solution of

div(A∞(x,∇v)) = − 1
2− pv. (5.11)
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Proof. The functional

F (x, τ,∇w(x, τ)) =
∫

Ω

H(x, τ,∇w) dx − 1
2(2− p)

∫
Ω

w2(x, τ) dx

is monotone decreasing in time. In fact

d

dτ

∫
Ω

H dx =
∫

Ω

[
∂H

∂s̃i
∇iwτ +

∂H

∂τ

]
dx

≤
∫

Ω

∂H

∂s̃i
∇iwτ dx

= −
∫

Ω

(div Ã) wτ dx

= −
∫

Ω

(wτ )2 dx+
1

2− p

∫
Ω

wwτ dx.

Then
dF

dτ
≤ −

∫
Ω

(wτ )2 ≤ 0.

As the functional F is bounded from below, this implies that, up to a subsequence,
dF

dτ
(and therefore

∫
Ω
w2

τ (x)dx) converges to zero.

Then w converges to its limit v ∈ W 1,p
0 ∩ L2(Ω) and v is the solution of

(5.11). �
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1. Introduction

The object of study of this paper is the following partial functional differential
equation with delay:

(PFDE)

{
u̇(t) +Bu(t) � F (ut), t ≥ 0
u|I = ϕ ∈ Ê.

B ⊂ X×X is a (generally) nonlinear and multivalued operator in a Banach (state)
space X, with (B + ωI) accretive, some ω ∈ R , and, for given I = [−R, 0], R > 0
(finite delay), or I = (−∞, 0] (infinite delay), and t ≥ 0, ut : I → X is the history
of u up to t : ut(s) = u(t+ s), s ∈ I, and ϕ : I → X is a given initial history out
of a subset Ê of a space E of continuous functions from I to X. Moreover, F is a
given history-responsive operator with domain D(F ) ⊂ E and range in X.

Our objective is a solution to the following problem of linearized stability for
(PFDE): Assume that there exists an equilibrium solution ϕe ∈ E to (PFDE), let
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xe = ϕe(0), and assume that there exist ‘linearizations’ B̃ of B at xe, and F̃ of F
at ϕe such that the solution semigroup (in E) to the ‘linearization’

(PFDE)lin

{
u̇(t) + B̃u(t) � F̃ (ut), t ≥ 0
u|I = ϕ ∈ E

of (PFDE) is exponentially stable. Is it then true that the equilibrium ϕe is locally
exponentially stable with respect to the nonlinear problem (PFDE)?

The existing positive results in this direction generally are for the semilinear
case, with B : D(B) ⊂ X → X linear and single-valued, and either the infinitesimal
generator of a C0-semigroup of bounded linear operators on X, or a Hille-Yosida
operator, and under the assumption that F be globally Fréchet-differentiable with
F ′ : E → B(E,X) being locally Lipschitz, or just Fréchet-differentiable at ϕe (c.f.
[1] [15, Thm. 6.1], [19, 20, 27]). For more general B ⊂ X × X linear, and F not
globally, but possibly defined only on ‘thin’ subsets of E, see [25, Thm. 4.2]. For
general, possibly nonlinear B ⊂ X ×X, and under local range conditions on both
B and F (possibly defined only on ‘thin’ subsets of E), a positive answer has been
given in [24, Thm. 4.1].

The purpose of this paper is to extend all of these results in two directions:
(a) the fully nonlinear case with B ⊂ X ×X nonlinear, ω-accretive, and linearly
‘resolvent-differentiable’ at xe (Definition 2.2), and (b) the local case of F possibly
being defined only on a ‘thin’ subset of E, and not necessarily locally Lipschitz,
and under a subtangential condition on B and F as in [25].

As has been demonstrated by the applications in [25, Section 5], the generality
in having F only defined on ‘thin’ subsets (possibly not even containing an interior
point), and not necessarily locally Lipschitz, is crucial for population models set
up in the (natural) state space L1(Ω), Ω an open subset of Rn.

For existence results for (PFDE) in general, mostly in the global context, we
refer here to [4, 5, 6, 7, 12, 13, 14, 16, 21, 23, 26, 28, 29, 30]; for a much more
complete list, the reader is referred to the survey [22]. The monograph [31] surveys
the semilinear case with B the generator of a C0-semigroup.

Notation and terminology. Throughout this paper, all Banach spaces are assumed
to be over the reals. ForX a Banach space, and λ ∈ R \{0}, define [·, ·]λ : X×X →
R by

[x, y]λ =
‖x+ λy‖ − ‖x‖

λ
.

Then, as, for fixed x, y ∈ X, the function {λ→ [x, y]λ} is nondecreasing for λ > 0,
one can define the bracket [x, y] (the right-hand Gâteaux-derivative of the norm
at x in the direction of y) by

[x, y] = lim
λ↘0

[x, y]λ = inf
λ>0

[x, y]λ.

(cf. [3, 18]).
B(X) denotes the space of all bounded linear operators fromX into X. Given

a subset D of X, clD will denote its closure in X. Recall that a subset C ⊂ X×X
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is said to be accretive in X if for each λ > 0, and each pair (xi, yi) ∈ C, i ∈ {1, 2},
we have ‖(x1 + λy1)− (x2 + λy2)‖ ≥ ‖x1 − x2‖ , and ω-accretive in X for some
ω ∈ R , if (C + ωI) is accretive. If, in addition, R(I + λC) = X for all λ > 0 with
λω < 1, then C is said to be m−ω-accretive. If C ⊂ X ×X is ω-accretive, then,
for any λ > 0 with λω < 1, JC

λ = (I + λC)−1 denotes the resolvent of C.

Notions of solutions. Given an initial-history spaceE of functions from I toX, T >
0, and B ⊂ X ×X ω-accretive for some ω ∈ R, a function u : I ∪ [0, T ]→ X will
be called a mild solution to (PFDE) if (i) u|I = ϕ, and (ii) u|[0,T ]

is continuous
and is a mild solution to the initial value problem

(CP)
{
u̇(t) +Bu(t) � f(t), 0 ≤ t ≤ T,
u(0) = ϕ(0)

with f(t) = F (ut). In turn, given f ∈ L1(0, T ;X), a continuous function u :
[0, T ]→ X with u(0) = ϕ(0) is a mild solution to (CP) if, given any ε > 0, there ex-
ists an ε-discrete-scheme approximationDB(t0, . . . , tN ;u0, . . . , uN ; f1, . . . , fn) con-
sisting of an ε-partition of the interval [0, T ],

0 ≤ t0 < t1 < · · · < tN ≤ T, t0 < ε, T − tN < ε, ti − ti−1 < ε, i ∈ {1, . . . , N},
(1.1)

and elements {u0, u1, . . . , uN}, and {f1, f2, . . . , fN} in X such that

ui ∈ D(B), i ∈ {1, . . . , N}, (1.2)
ui − ui−1

ti − ti−1
+Bui � fi, i ∈ {1, . . . , N},

N∑
1

∫ ti

ti−1

‖fi − f(τ)‖ dτ < ε, ‖u0 − u(0)‖ < ε, and

such that, if the step function uε : [t0, tN ]→ X is defined by

uε(t) =
{
u0 t = t0,

ui t ∈ (ti−1, ti], i ∈ {1, . . . , N},
then ‖uε(t)− u(t)‖ < ε uniformly over t ∈ [t0, tN ].

For all these notions and the general theory of accretive sets and evolution
equations, the reader is referred to [3, 18].

2. Linearized stability for (PFDE)

We shall place our results in the context of general local subtangential conditions
on B and F for the existence of solutions to (PFDE), as well as in the context of
a general class of initial-history spaces E as in [25].

2.A The initial history space. Given a Banach (state) space X, and letting I =
(−∞, 0] (infinite delay), or I = [−R, 0] for some R > 0 (finite delay), the initial
history space is assumed to be a Banach space (E, ‖·‖) of continuous functions
ϕ : I → X with the following properties:
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(E1) (a) For all ϕ ∈ E, ‖ϕ(0)‖ ≤ ‖ϕ‖ .
(b) For all x ∈ X, x̃ ∈ E, where x̃(s) ≡ x, s ∈ I, and
(c) there exists CE ≥ 1 such that ‖x̃‖ ≤ CE ‖x‖ for all x ∈ X.
(d) For ϕ, (ϕn)n in E, if ‖ϕn − ϕ‖ → 0, then (1) ‖ϕn(s)− ϕ(s)‖ → 0 for

all s ∈ I, and (2)
∫ β

α ϕn(s)ds→
∫ β

α ϕ(s)ds for all α, β ∈ I, α < β.
(E2) If λ > 0, x ∈ X,ψ ∈ E, and ϕψ

λ,x ∈ C1(I;X) is the solution to ϕ− λϕ′ =

ψ, with ϕ(0) = x, then ϕψ
λ,x ∈ E, and

∥∥∥ϕψ
λ,x

∥∥∥ ≤ max{‖x‖ , ‖ψ‖}.
(E3) (a) If x : I ∪ [0,∞)→ X is continuous, and x|I ∈ E, then

(i) xt ∈ E for all t ≥ 0, and
(ii) the map {t→ xt} is continuous from R+ into E.

(b) There exist M0 ≥ 1, and a locally bounded function M1 : R+ → R+

such that, given x : I ∪ [0,∞)→ X as in (a) above,
‖xt‖ ≤M0 ‖x0‖+M1(t)max0≤s≤t ‖x(s)‖ for all t ≥ 0.

(Concerning these axioms for E, compare [9, 11].)
Examples. In the finite-delay case, usually, the initial-history space will be E =
C([−R, 0];X) with sup-norm. For the infinite-delay case I = (−∞, 0], the most
prominent initial-history spaces are weighted sup-norm spaces of the type Ev =
{ϕ ∈ C(R−, X) : vϕ ∈ BUC(R−;X)}, with norm ‖ϕ‖v := sup{v(s) ‖ϕ(s)‖ | s ∈
R−}, where the (weight-) function v : R− → (0, 1] has the following properties:
(v1) v is continuous, nondecreasing, and v(0) = 1;
(v2) limu→0− v(s+ u)/v(s) = 1 uniformly over s ∈ R−.

Typical such weight functions are v(s) ≡ 1 (with, in this case, Ev = BUC(R−, X)
with sup-norm), v(s) = eμs, or v(s) = (1+|s| )−μ, μ > 0 (spaces of ‘fading memory
type’). (The Banach spacesEv are sometimes called UCg-spaces, v = 1/g, and have
been considered by various authors, cf. [11].)

Aside from Ev, also the following subspaces fulfill axioms (E1)–(E3):
(a) Evl

= {ϕ ∈ Ev | lims→−∞ v(s)ϕ(s) exists}, and
(b) Ev0 = {ϕ ∈ Ev | lims→−∞ v(s)ϕ(s) = 0}, in case lims→−∞ v(s) = 0.

2.B The framework for (PFDE). Given an initial-history space E as in 2.A, we
start from the following assumptions:
(A1) B ⊂ X ×X is ω-accretive for some ω ∈ R .

(A2) X̂ ⊂ X is a closed subset of X with X̂ ∩D(B) �= ∅.
(A3) (a) Ê0 = {ϕ ∈ E | ϕ(0) ∈ cl (D(B) ∩ X̂)}.

(b) Ê ⊂ Ê0 is a closed subset of Ê0.

(c) If x ∈ X̂ ∩D(B), ψ ∈ Ê, and λ > 0 is sufficiently small, then
ϕψ

λ,x ∈ Ê, where ϕψ
λ,x is the solution ϕ ∈ E to ϕ− λϕ′ = ψ, ϕ(0) = x.

(A4) The operator F : Ê0 → X is such that
(a) F : Ê0 → X is continuous;
(b) there exists LF > 0 such that, if ϕ1, ϕ2 ∈ Ê0 with ϕ1(0) = ϕ2(0),

then ‖Fϕ1 − Fϕ2‖ ≤ LF ‖ϕ1 − ϕ2‖ , and
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(c) there exists MF > 0 such that, if ϕ1, ϕ2 ∈ Ê0 with ‖ϕ1 − ϕ2‖ =
‖ϕ1(0)− ϕ2(0)‖ , then [ϕ1(0)− ϕ2(0), Fϕ1 − Fϕ2] ≤MF ‖ϕ1 − ϕ2‖ .

2.C Solution theory for (PFDE). As for the existence of solutions to (PFDE), we
recall the main existence result of [25, Thm. 2.1]:

Theorem 2.1. Given the assumptions (A1)–(A4), if

(STC) lim inf
λ→0+

1
λ

dist(ψ(0) + λF (ψ); (I + λB)(D(B) ∩ X̂)) = 0 for all ψ ∈ Ê,

then we have:

(a) For all ϕ ∈ Ê there exists a global mild solution uϕ to

(PFDE)
{
u̇(t) +Bu(t) � F (ut), t ≥ 0,
u0 = ϕ

with (uϕ)t ∈ Ê for all t ≥ 0. In particular, uϕ(t) ∈ X̂ for all t ≥ 0.
(b) If, in addition, either F |

Ê
: Ê → X is locally Lipschitz-continuous on Ê,

or there exists M0 > 0 such that [ϕ(0) − ψ(0), Fϕ − Fψ] ≤ M0 ‖ϕ− ψ‖ for
all ϕ, ψ ∈ Ê, then, for any ϕ ∈ Ê, the mild solution uϕ as in (a) is unique
amongst all mild solutions u to (PFDE) with the property that ut ∈ Ê for all
t ≥ 0.

For our result on linearized stability, we need the following approach to con-
structing the mild solution uϕ :

Associate with (PFDE) the operator A in E defined by{
D(A) = {ϕ ∈ Ê0 | ϕ′ ∈ E,ϕ(0) ∈ D(B), ϕ′(0) ∈ Fϕ−Bϕ(0)}
Aϕ := −ϕ′ , ϕ ∈ D(A).

(2.1)

Given the assumptions of Theorem 2.1, the following assertions hold ([25]):

(S1) The operator A is γ-accretive in E with γ = max{0, ω +MF}.
(S2) For every ϕ ∈ Ê, there exists a unique mild solution Φϕ : R+ → E to the

Cauchy problem in E corresponding to A,

(CP)(A;ϕ; 0)
{

Φ̇(t) +AΦ(t) = 0, t ≥ 0,
Φ(0) = ϕ.

The solution semigroup (S(t))t≥0 generated by −A via S(t)ϕ := Φϕ(t) leaves
Ê invariant.

(S3) If ϕ ∈ Ê, and uϕ : I ∪R+ → X is defined by

uϕ(t) =
{
ϕ(t) t ∈ I
(S(t)ϕ)(0) t ≥ 0, (2.2)

then S(t)ϕ = (uϕ)t for t ≥ 0 (i.e., (S(t))t≥0 acts as a translation), and the
function uϕ is a global mild solution to (PFDE).
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2.D Resolvent differentiability. The following concept of differentiating a (possibly)
multivalued operator will be basic for our result.

Definition 2.2. For C ⊂ Z × Z an α-accretive operator in a Banach space Z,
and z0 ∈ Z with z0 ∈ R(I + λC) for all λ > 0, λα < 1, an α̃-accretive operator
C̃ ⊂ Z × Z with (R(I + λC) − z0) ⊂ R(I + λC̃) for all λ > 0 small enough, is
called a resolvent-differential of C at z0, if the following holds:

(RD)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

There exists a function η :
⋃
{{λ} ×R(I + λC) | 0 < λ < λ0} → R+,

someλ0 > 0, λ0α < 1, with lim(λ,z)→(0,ẑ) η(λ, z) = 0, such that for
every ε > 0, there exist δ > 0, andλ1 > 0, λ1 ≤ λ0, such that, if
z ∈ R(I + λC), and ‖z − z0‖ < δ, then∥∥∥JC

λ z − JC
λ z0 − J C̃

λ (z − z0)
∥∥∥ ≤ ελ ‖z − z0‖ + λη(λ, z)

for all 0 < λ ≤ λ1.

Remark 2.3. The notion of resolvent-differentiability has originally been intro-
duced in [24]. As discussed in [24, Remarks 2.2], with regard to ω-accretive op-
erators, this notion seems to be the natural extension of Fréchet-differentiability
from ‘single-valued’ to ‘multivalued’. In particular, while the principle of linearized
stability for the Cauchy problem u̇(t) + Au(t) � 0 holds for A single-valued and
Fréchet-differentiable at the equilibrium, it carries over to (α-accretive) multival-
ued A if A has a linear resolvent-differential Ã at the equilibrium ([24, Thm. 2.1]).
More to the point, if A : D(A) ⊂ X → X is (single-valued and) α-accretive,
with R(I + λA) ⊃ D(A) for λ > 0 small enough, x0 ∈ D(A), and A has an F-
differential Ã ∈ B(X) at x0 relative to D(A) (in the sense of (L) (3) below), then
Ã is a resolvent-differential of A at x0 (with η(λ, x) = M

∥∥JA
λ x0 − x0

∥∥ , for some
constant M > 0); see [24, Remark 2.3].

In order to formulate the linearization principle for (PFDE), we start from
the following additional assumptions.
(L) (1) There exists an equilibrium solution ϕe ∈ D(A) ∩ Ê of the solution semi-

group (S(t))t≥0 for (PFDE) such that xe := ϕe(0) ∈ R(I+λB) for all λ > 0,
λω < 1.

(2) There exists a linear and m−ω̃-accretive resolvent-differential B̃ ⊂ X ×X of
B at xe, some ω̃ ∈ R .

(3) There exists a bounded linear operator F̃ : E → X that is a D(A)-Fréchet-
derivative of F at ϕe, i.e., given any ε > 0, there exists δ > 0 such that, if
ϕ ∈ D(A), and ‖ϕ− ϕe‖ < δ, then∥∥∥Fϕ− Fϕe − F̃ (ϕ− ϕe)

∥∥∥ ≤ ε ‖ϕ− ϕe‖ .

With assumption (L) in place, we consider in E the solution operator Ã{
D(Ã) = {ϕ ∈ E | ϕ′ ∈ E,ϕ(0) ∈ D(B̃), ϕ′(0) ∈ F̃ (ϕ) − B̃ϕ(0)}
Ãϕ := −ϕ′ , ϕ ∈ D(Ã),

associated with (PFDE)lin.
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We are now able to formulate the main result on linearized stability for
(PFDE).

Theorem 2.4. Given the assumptions (L) and those of Theorem 2.1, if there exists
γ̃ > 0 such that the linearized operator (Ã − γ̃I) ⊂ E × E is accretive, then the
initial history problem (PFDE) is locally exponentially stable at the equilibrium ϕe

in the following sense: given any 0 < γ1 < γ̃, there exists δ > 0 such that, for all
ϕ ∈ Ê with ‖ϕ− ϕe‖ < δ,∥∥uϕ(t)− xe

∥∥ ≤ ∥∥(uϕ)t − ϕe

∥∥ ≤ e−γ1t ‖ϕ− ϕe‖ for all t ≥ 0,

where uϕ : R+ → X is the mild solution to (PFDE) as in Theorem 2.1.

Remarks 2.5. 1. The main improvement of Theorem 2.4 over existing results is the
general fully nonlinear and local context of assumptions (A1)–(A4), as opposed
to having B m−ω-accretive, and F globally defined, in tandem with the facts (a)
that B need not be linear, but just linearly resolvent-differentiable at xe, and (b)
that F need not be Fréchet-differentiable, but only D(A)-differentiable at ϕe as in
assumption (L), (3). In this regard, notice that, if B ⊂ X ×X is m−ω-accretive,
and F is globally defined and Lipschitz, then (A1)–(A4) and condition (STC) are
fulfilled automatically for X̂ = X, and Ê = Ê0.

2. In particular, we note that in the global case X̂ = X , Ê = Ê0, and F : E → X
globally Lipschitz, versions of Theorem 2.4 have been proved (a) in the finite-
delay case for B : D(B) ⊂ X → X linear and single-valued, and generating
a C0-semigroup, under the assumption that F be globally Fréchet-differentiable
with F ′ : E → B(E,X) being locally Lipschitz ([15, Thm. 6.1], [19, 20]), and (b) in
the infinite-delay case for B : D(B) ⊂ X → X (single-valued and) a Hille-Yosida
operator, and F Fréchet-differentiable at the equilibrium ([1]). (Note that Hille-
Yosida operators are – single-valued, linear and – m−ω-accretive for an equivalent
norm on X.)

3. Under local range flow-invariance conditions for X̂ ⊂ X, and Ê ⊂ E, more
restrictive than condition (STC) (compare [25, Lemma 2.7]), versions of Theorem
2.4 have been proved in [27, Thm. 2.4] for B : D(B) ⊂ X → X linear, and the
infinitesimal generator of a C0-semigroup of bounded linear operators on X, and in
[24, Thm. 4.1] for linearly resolvent-differentiable B ⊂ X×X ω-accretive. In both
of these instances, the corresponding proofs were based on the range condition
R(I + λA) ⊃ Ê for λ > 0 small enough, so that, in constructing the solution
semigroup in E, we were able to work with the resolvents of A. This marks a
substantial difference to the proof for the more general situation of Theorem 2.4,
where, instead, we are forced to consider general ε-discrete-scheme approximations
(see Section 3).

Finally, we note that the special version of Theorem 2.4 for B = B̃ has been
given in [25, Thm. 4.2], by means of a much more direct method of proof than the
one for the nonlinear case in Section 3 below.
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4. As Theorem 2.4 touches upon exponential asymptotic stability of the solution
semigroup to (PFDE)lin, we note that there are instances where this can be read
directly from the relevant parameters of B̃ and F̃ , cf. [25, Prop. 4.4].

Examples 1. Given a bounded open domain Ω ⊂ RN , 1 ≤ N ≤ 3, of class C2,
we let X := C0(Ω) := {u ∈ C(Ω̄) | u|∂Ω

= 0} with sup-norm, and consider the
Dirichlet-Laplacian in X,{

D(Δ0) = {u ∈ C0(Ω) | Δu ∈ C0(Ω)}
Δ0u := Δu ∈ D(Ω)′, (2.3)

and note that, given any d > 0, (−dΔ0) is m−ωd-accretive for some ωd < 0 in X
(cf. [2, Section 6.1]).
2. Given real numbers α ≤ 0, β ≥ 0, [α, β] denotes the order interval of all u ∈ X
such that α ≤ u(ω) ≤ β for all ω ∈ Ω̄.

For a continuous and monotonically non-decreasing function β : R → R ,
with β(0) = 0, we denote by β̃ : X → X its realization in X = C0(Ω), given
by (β̃u)(ω) = β(u(ω)), ω ∈ Ω̄, and consider the following nonlinearly perturbed
model of a diffusive population with delay in the birth process:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂

∂t
u(x, t) + (−dΔ0 + β̃)u(x, t)

= au(x, t)
[
1− bu(x, t)−

∫ 0

−1
u(x, t+ r(s))dη(s)

]
u|[−R,0]

= ϕ ∈ C([−R, 0];C0(Ω))

(2.4)

where a, b, d > 0, η is a positive bounded regular Borel measure on [−1, 0] with
(‖η‖ > 0 and) b+‖η‖ = 1, and r : [−1, 0]→ [−R, 0] is a continuous delay function.
(For the special case of β ≡ 0, this equation serves as a model for the density of
red blood cells in an animal, cf. [10, 19, 32].)

Proposition 2.6.

(a) For all ϕ ∈ E := C([−R, 0];C0(Ω)) with ϕ(s) ≥ 0 for all s ∈ [−R, 0], there
exists a unique global mild solution uϕ to (2.4) with

uϕ(t) ∈ [0,max{1/b, ‖ϕ(0)‖}]
for all t ≥ 0.

(b) If β : R → R is differentiable at 0 ∈ R , with β′(0) = ρ, and a < −ωd + ρ,
then the zero equilibrium of (2.4) is locally exponentially stable.

(Note that, by the definition of the function β, ρ ≥ 0.)

Remarks 2.7. 1. The assertions of Proposition 2.6 actually hold for −dΔ0 being
replaced by any m−ω-accretive linear operator D ⊂ C0(Ω) × C0(Ω), and the
operator β̃ being replaced by any (single-valued) m-accretive operator C : D(C) ⊂
X → X with D(C) ⊃ D(D), C(0) = 0, and such that B := D + C is m−α-
accretive, some α ∈ R , and such that

(i) the resolvents of B = D + C are order-preserving, and there exists



Linearized Stability 599

(ii) a D(C)-Fréchet derivative C̃ ∈ B(X) of C at 0 ∈ X : for every ε > 0
there exists δ > 0 such that x ∈ D(D), ‖x‖ < δ ⇒

∥∥Cx− C̃x∥∥ < ε ‖x‖ ,
(and, clearly, for proposition (b), such that B̃ = D+ C̃ is ω̃-accretive with ω̃ < 0,
and such that a < −ω̃).

2. With the operators B = (−dΔ0 + β̃), or, more generally, of the form B = D+C
as specified just above, assertions analogous to those of Proposition 2.6 hold as
well for the following variant of model (2.4)⎧⎪⎪⎨⎪⎪⎩

u̇(t) +Bu(t) � u(t)
[
1 + au(t)− b(u(t))2

−(1 + a− b)
∫ 0

−R
f(s)u(t+ s)ds

]
, t ≥ 0

u|[−R,0]
= ϕ,

(2.5)

as well as a variant of (2.4) with temporal averages over the past being replaced
by spatio-temporal averages, such as⎧⎪⎪⎨⎪⎪⎩

u̇(t) +Bu(t) � au(t)
[
1− bu(t)
−

∫ t

−R

∫
Ω
g(· − y, t− s)u(s)(y)dyds

]
, t ≥ 0

u|(−R,0]
= ϕ

(2.6)

For a discussion of the models (2.4)–(2.6) for the state space C(Ω̄), and for B =
−Δ, with either Dirichlet or Neumann boundary conditions, a (partial) list of
references is [8, 10, 17, 19, 20, 32]. In the L1(Ω)-context (with Ω not necessarily
bounded), and the operatorB being any m-completely accretive operator in L1(Ω),
existence and flow-invariance of solutions to models (2.4)–(2.6) have been treated
in [25, Section 5].

Proof of Proposition 2.6 and Remark 2.7. As for proposition (a), note first that
the operator B := (−dΔ0+β̃) is m-accretive in X (as it is an additive perturbation
of an m-accretive operator by a single-valued continuous and s-accretive operator,
[3, Prop. 2.23, Thm. 16.4]). Moreover, the resolvents JB

λ are order-preserving, so
that JB

λ [0, α] ⊂ [0, α] for any α > 0. The proof of (a) now follows from [25,
Thm. 2.5] along the lines of the corresponding proof of [25, Prop. 5.1 (a)] (with
appropriate changes due to the change from the L1- to the sup-norm).
As for proposition (b), we note (without proof here) the following general fact:
Assume that, given a Banach space X,

(i) D ⊂ X ×X is m−ω-accretive linear,
(ii) C : D(C) ⊂ X → X, with D(C) ⊃ D(D) is such that B := D + C is

α-accretive, some α ∈ R , with R(I + λB) ⊃ D(B) = D(D), for λ > 0 small
enough,

(iii) x0 ∈ D(B), and there exists
(iv) C̃ ∈ B(X) such that for every ε > 0 there exists δ > 0 such that x ∈ D(D),

‖x− x0‖ < δ implies
∥∥∥Cx − Cx0 − C̃(x − x0)

∥∥∥ < ε ‖x− x0‖ ,
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then B̃ := D + C̃ is a resolvent-differential of B at x0 (in the sense of Definition
2.2).

In particular, the operator (−dΔ0 + ρI) is a resolvent-differential of the op-
erator B := (−dΔ0 + β̃) at 0 ∈ C0(Ω).

Next, note that, (for any α > 0, and) for F : Ê0,α = {ϕ ∈ C([−R, 0];C0(Ω)) |
ϕ(0) ∈ [0, α]} → C0(Ω), Fϕ = aϕ(0)[1− bϕ(0)−

∫ 0

−1
ϕ(r(s))dη(s)], F̃ϕ = aϕ(0) is

a D(A)-Fréchet-derivative of F at ϕe ≡ 0 (with A the solution operator of (2.4)
as in 2.C above).

Proposition (b) follows by combining the foregoing two facts with Theorem
2.4, the assumption a < −ωd + ρ, and the fact that, for finite delay, the solu-
tion semigroup to (PFDE) is exponentially stable if, in the setting of 2.B above,
(ω +MF ) < 0 ([25, Prop. 4.4]). �

3. Proof of Theorem 2.4

Step 1: Given 0 < γ1 < γ̃ as in Theorem 2.4, let ε1 = γ̃ − γ1. According to
assumptions (L) (2) and (3), given ε = ε1

4 , there exist δ > 0, and λ0 > 0, λ0ω < 1,
such that

ϕ ∈ Ê, ‖ϕ− ϕe‖ < 4δ =⇒
∥∥∥Fϕ− Fϕe − F̃ (ϕ− ϕe)

∥∥∥ < ε ‖ϕ− ϕe‖ , (3.1)

and

0 < λ < λ0, x ∈ R(I + λB), ‖x− xe‖ < 4δ =⇒ (3.2)∥∥∥JB
λ x− JB

λ xe − J B̃
λ (x− xe)

∥∥∥ ≤ ελ ‖x− xe‖+ λη(λ;x).

(For (3.1) to hold for ϕ ∈ Ê, we have used assumption (L) (3), in conjunction with
the fact that, by [25, proof of Thm. 2.1, Step 3], cl D(A) = Ê0.)

Let ϕ ∈ Ê such that ‖ϕ− ϕe‖ < δ.

Choose T0 > 0 such that eγT0 < 2, and let Mϕ := sup{‖y‖ | y ∈ F (S[0, T0 + 1]ϕ)}
(with (S(t))t≥0 the solution semigroup associated to A as in (S2) above).

Let η0 := min{λ0, (3(
∥∥∥F̃∥∥∥+ |ω̃| )+1)−1, δ(max{(3+Mϕ), (‖Fϕe‖+1)})−1},

and choose a strictly decreasing nullsequence (ηn)n of positive reals ηn < η0.

As, according to (S2), there exists a unique global mild solution to (CP)(A;ϕ; 0),
there exist for T := T0 + 1, and all n ∈ N, ηn-discrete-scheme approximations
DA(0 = tn0 , t

n
1 , . . . , t

n
Ñn

;ϕ = ϕn
0 , ϕ

n
1 , . . . , ϕ

n
Ñn

;ψn
1 , . . . , ψ

n
Ñn

) to (CP)(A;ϕ; 0), con-
sisting of an ηn-partition of the interval [0, T ],

0 = tn0 < t
n
1 < · · · < tnÑn

≤ T, tni −tni−1 < ηn, i ∈ {1, . . . , Ñn}, T−tnÑn
< ηn, (3.3)
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and elements {ϕn
0 = ϕ, ϕn

1 , . . . , ϕ
n
Ñn
}, and {ψn

1 , . . . , ψ
n
Ñn
} in E such that

ϕn
i ∈ D(A), i ∈ {1, . . . , Ñn}, (3.4)
ϕn

i − ϕn
i−1

tni − tni−1

+Aϕn
i = ψn

i , i ∈ {1, . . . , Ñn},

Ñn∑
1

(tni − tni−1) ‖ψn
i ‖ < ηn, and

such that, if the step function Φn : [0, tn
Ñn

] → E is defined by

Φn(t) =

{
ϕ t = 0,

ϕn
i t ∈ (tni−1, t

n
i ], i ∈ {1, . . . , Ñn}, then

‖Φn(t)− S(t)ϕ‖ < ηn uniformly over t ∈ [0, tn
Ñn

]. (3.5)

Furthermore, with this choice, we have

lim
n→∞

‖F (Φn(t)) − F (S(t)ϕ)‖ = 0 uniformly over t ∈
[
0, T0 +

1
2

]
. (3.6)

(For all this, compare Step 3 of the proof of [25, Thm. 2.1].)

Step 2: Given n ∈ N, let Nn ∈ N, Nn ≤ Ñn, such that tnNn−1 ≤ T0 ≤ tnNn
, and let

hn
i := tni − tni−1, i ∈ {1, . . . , Nn}, and choose n0 ∈ N such that eγ(T0+ηn0) < 2, and,

according to (3.6),

‖F (Φn(tni ))− F (S(tni )ϕ)‖ < 1 for all n ≥ n0, and all i ∈ {1, . . . , Nn}. (3.7)

From now on, we restrict ourselves to n ≥ n0, and, for the time being, suppress
the upper index n for the above discrete-scheme approximations.

Our next goal is an estimate on ‖ϕi − ϕe‖ , i ∈ {1, . . . , Nn} :
With, for λ > 0, Jλ = (I+λA)−1, and J̃λ = (I+λÃ)−1 denoting the resolvents of
A and, respectively, of Ã, we first note that, from (3.4), ϕi = Jhi(ϕi−1 +hiψi), i ∈
{1, . . . , Nn}. Thus,

ϕi − ϕe = Jhi(ϕi−1 + hiψi)− ϕe − J̃hi(ϕi−1 + hiψi − ϕe) (3.8)

+ J̃hi(ϕi−1 + hiψi − ϕe), i ∈ {1, . . . , Nn}.

(Here, we use that, according to [26, Thm. 2.1] (with X̂ = X and Ê = E),
R(I + λÃ) = E for all λ > 0 small enough.)
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As for the first term on the right of (3.8), given λ > 0 small enough, and ψ ∈
R(I + λA), from the definitions of A and Ã, we have∥∥∥Jλψ − ϕe − J̃λ(ψ − ϕe)

∥∥∥ =
∥∥∥(Jλψ)(0)− xe − (J̃λ(ψ − ϕe))(0)

∥∥∥
(Jλψ)(0) = JB

λ (ψ(0) + λF (Jλψ))

(J̃λ(ψ − ϕe))(0) = J B̃
λ ((ψ − ϕe)(0) + λF̃ (J̃λ(ψ − ϕe))

xe = JB
λ (xe + λFϕe).

Thus, ∥∥∥Jλψ − ϕe − J̃λ(ψ − ϕe)
∥∥∥ =

∥∥∥(Jλψ)(0)− xe − (J̃λ(ψ − ϕe))(0)
∥∥∥

≤
∥∥∥JB

λ (ψ(0) + λF (Jλψ))− JB
λ xe − J B̃

λ (ψ(0)− xe + λF (Jλψ))
∥∥∥

+
∥∥∥JB

λ (xe + λFϕe)− JB
λ xe − J B̃

λ (λFϕe)
∥∥∥

+ λ
∥∥∥J B̃

λ (F (Jλψ)− Fϕe − F̃ (Jλψ − ϕe))
∥∥∥

+ λ
∥∥∥J B̃

λ F̃ (Jλψ − ϕe − J̃λ(ψ − ϕe))
∥∥∥ ,

so that(
1− λ

∥∥F̃∥∥
1− λω̃

)∥∥∥Jλψ − ϕe − J̃λ(ψ − ϕe)
∥∥∥ (3.9)

≤
∥∥∥JB

λ (ψ(0) + λF (Jλψ))− JB
λ xe − J B̃

λ (ψ(0)− xe + λF (Jλψ))
∥∥∥ (3.10)

+
∥∥∥JB

λ (xe + λFϕe)− JB
λ xe − J B̃

λ (λFϕe)
∥∥∥ (3.11)

+
λ

1− λω̃

∥∥∥F (Jλψ)− Fϕe − F̃ (Jλψ − ϕe)
∥∥∥ (3.12)

Specializing to λ = hi, and ψ = ϕi−1 + hiψi (recall: hi = hn
i , ϕi = ϕn

i , and
ψi = ψn

i , and n ≥ n0), we now estimate the terms on the right of (3.9) by means
of the differentiability assumptions (3.1) and (3.2):

The term (3.10):∥∥ϕi−1(0)− xe + hiψi(0) + hiF (ϕi)
∥∥

≤
∥∥ϕi−1 − ϕe

∥∥ + hi(‖ψi‖+ ‖F (ϕi)‖)
≤ ‖Φn(ti−1)− S(ti−1)ϕ‖+ ‖S(ti−1)ϕ− S(ti−1)ϕe‖+ hi ‖ψi‖

+ hi(‖F (Φn(ti))− F (S(ti)ϕ)‖+ ‖F (S(ti)ϕ)‖)
≤ ηn + eγT0 ‖ϕ− ϕe‖+ ηn + hi(1 +Mϕ) < 3δ
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(according to (3.4)–(3.7), and the choice of η0 ≥ ηn). Thus, from (3.2),∥∥JB
hi

(ϕi−1(0) + hiFϕi)− JB
hi
xe − J B̃

hi
(ϕi−1(0)− xe + hiψi(0) + hiFϕi)

∥∥ (3.13)

≤ εhi(
∥∥ϕi−1 − ϕe

∥∥ + hi ‖ψi‖+ hi ‖Fϕi‖) + hiη(hi;ϕi−1(0) + hiψi(0) + hiFϕi)

The term (3.11): As hi ‖Fϕe‖ < η0 ‖Fϕe‖ < δ, from (3.2),∥∥∥JB
hi

(xe + hiFϕe)− JB
hi
xe − J B̃

hi
(hiFϕe)

∥∥∥ (3.14)

≤ εh2
i ‖Fϕe‖+ hiη(hi;xe + hiFϕe). (3.15)

The term (3.12): As ‖ϕi − ϕe‖ ≤ ‖Φn(ti)− S(ti)ϕ‖ + ‖S(ti)ϕ− S(ti)ϕe‖ < ηn +
eγ(T0+ηn) ‖ϕ− ϕe‖ < 3δ, (3.1) reveals that∥∥∥F (ϕi)− Fϕe − F̃ (ϕi − ϕe)

∥∥∥ ≤ ε ‖ϕi − ϕe‖ . (3.16)

Noting that, according to the choice of η0, 0 < (1− hiω̃)(1− hi(ω̃+
∥∥∥F̃∥∥∥))−1 ≤ 2,

and (1− hi(ω̃ +
∥∥∥F̃∥∥∥))−1 ≤ 3

2 , and using the estimates (3.9)–(3.16), we conclude
from (3.8) that, for all n ≥ n0, and all i ∈ {1, . . . , Nn},

‖ϕi − ϕe‖ ≤
∥∥ϕi−1 − ϕe

∥∥(
1

1 + hiγ̃
+ 2εhi

)
+ hi ‖ψi‖

((
1

1 + hiγ̃
+ 2εhi

)
+ 2εhi ‖ϕi − ϕe‖+ 2εhiηn(‖Fϕi‖+ ‖Fϕe‖) (3.17)

+ 2hi(η(hi;ϕi−1(0) + hiψi(0) + hiFϕi) + η(hi;xe + hiFϕe)

)
.

With regard to this inequality, we note the following estimates:
First, as Fϕi = F (Φn(ti)), we have

‖Fϕi‖ ≤ ‖F (Φn(ti))− F (S(ti)ϕ)‖+ ‖F (S(ti)ϕ)‖ < 1 +Mϕ (3.18)

for all n ≥ n0, i ∈ {1, . . . , Nn}.(
1

1 + hiγ̃
+ 2εhi

)∥∥ϕi−1 − ϕe

∥∥ + 2εhi ‖ϕi − ϕe‖ =
∥∥ϕi−1 − ϕe

∥∥ (3.19)

+ hi

(
2ε− γ̃

1 + hiγ̃

)(∥∥ϕi−1 − ϕe

∥∥− ‖ϕi − ϕe‖) + hi

(
4ε− γ̃

1 + hiγ̃

)
‖ϕi − ϕe‖

)
≤

∥∥ϕi−1 − ϕe

∥∥ + Chi

∥∥ϕi − ϕi−1

∥∥ + hi

(
ε1 −

γ̃

1 + ηnγ̃

)
‖ϕi − ϕe‖

for a positive constant C (independent of n ≥ n0, and i ∈ {1, . . . , Nn}).∥∥ϕi − ϕi−1

∥∥ = ‖Φn(ti)− Φn(ti−1)‖ (3.20)

≤ ‖Φn(ti)− S(ti)ϕ‖+ ‖S(ti)ϕ− S(ti−1)ϕ‖+ ‖S(ti−1)ϕ− Φn(ti−1)‖
≤ 2ηn + ρϕ(ηn),
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where, for η > 0, ρϕ(η) := sup {‖S(t)ϕ− S(s)ϕ‖ | s, t ∈ [0, T0 + 1], |t− s| ≤ η}.
(Note that, as S(·)ϕ is uniformly continuous on [0, T0+1], ρϕ(ηn)→ 0 as n→∞.)
Invoking these estimates in (3.17), leads to

‖ϕi − ϕe‖ −
∥∥ϕi−1 − ϕe

∥∥ (3.21)

≤ hi

(
ε1 −

γ̃

1 + ηnγ̃

)
‖ϕi − ϕe‖+ C1hi ‖ψi‖+ C2hi(ηn + ρϕ(ηn))

+ 2hi(η(hi;ϕi−1(0) + hiψi(0) + hiFϕi) + η(hi;xe + hiFϕe))

for all n ≥ n0, i ∈ {1, . . . , Nn}, and suitable positive constants C1 and C2.

Step 3: Given 0 < s < t < T0, choose n1 ≥ n0 large enough so that ηn1 <
min {s, 1

2 (t−s), T0− t}. Then, reinvoking the upper indices, for every n ≥ n1 there
exist indices 2 ≤ l ≤ k ≤ Nn such that s ∈ (tnl−1, t

n
l ], and t ∈ (tnk−1, t

n
k ]. Summing

(3.21) from i = (l+1) to i = k (and taking into account the properties (3.4)–(3.6)
of the discrete-scheme approximations) leads to

‖Φn(t)− ϕe‖ − ‖Φn(s)− ϕe‖ = ‖ϕn
k − ϕe‖ − ‖ϕn

l − ϕe‖ (3.22)

≤
(
ε1 −

γ̃

1 + ηnγ̃

) k∑
l+1

hn
i ‖ϕn

i − ϕe‖+ C1ηn + C2(T0 + 1)(ηn + ρϕ(ηn))

+ 2
k∑

l+1

hn
i (η(hn

i ;ϕn
i−1(0) + hn

i ψ
n
i (0) + hn

i Fϕ
n
i ) + η(hn

i ;xe + hn
i Fϕe))

At this point, first note that hn
i ‖ϕn

i − ϕe‖ =
∫ tn

i

tn
i−1
‖Φn(τ)− ϕe‖ dτ, so that, by

the choice of ε1,(
ε1 −

γ̃

1 + ηnγ̃

) k∑
l+1

hn
i ‖ϕn

i − ϕe‖ (3.23)

=
(
ε1 −

γ̃

1 + ηnγ̃

)∫ tn
k

tn
l

‖Φn(τ) − ϕe‖ dτ −→ −γ1
∫ t

s

‖S(τ)ϕ− ϕe‖ dτ

as n→∞.
Next, with regard to the last term on the right of (3.22), we will show that

lim
n→∞

(η(hn
i ;ϕn

i−1(0) + hn
i ψ

n
i (0) + hn

i Fϕ
n
i ) + η(hn

i ;xe + hn
i Fϕe)) = 0 (3.24)

uniformly over i ∈ {1, . . . , Nn}.
As

∑k
l+1 h

n
i ≤ (T0 +1), this will show that the last term on the right of (3.22)

tends to zero as n→∞.
Proof of (3.24): The result for the second term follows directly from the assump-
tions on the function η, and the fact that 0 ≤ hn

i ≤ ηn → 0, and ‖xe + hn
i Fϕe − xe‖

≤ ηn ‖Fϕe‖ → 0 as n→∞ uniformly over i ∈ {1, . . . , Nn}.
As for the first term, assume that (η(hn

i ;ϕn
i−1(0)+hn

i ψ
n
i (0)+hn

i Fϕ
n
i ))n does

not converge to zero uniformly over i ∈ {1, . . . , Nn}. Then there exist β > 0,
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and sequences (nk)k ⊂ N, nk → ∞, and (ik)k, ik ∈ {1, . . . , Nnk
}, such that, with

λk := hnk

ik
, and zk := ϕnk

ik−1(0) + hnk

ik
ψnk

ik−1(0) + hnk

ik
Fϕnk

ik−1,

η(λk; zk) ≥ β for all k ∈ N. (3.25)

We now notice that, for all n ∈ N, and all i ∈ {1, . . . , Nn}, and with uϕ denoting
the mild solution to (PFDE) according to (S3) above,∥∥ϕn

i−1(0) + hn
i ψ

n
i (0) + hn

i Fϕ
n
i − uϕ(tni−1)

∥∥
≤

∥∥Φn(tni−1)(0)− (S(tni−1)ϕ)(0)
∥∥ + hn

i ‖ψn
i ‖+ hn

i ‖Fϕn
i ‖ ≤ ηn(2 +Mϕ).

Thus, {ϕn
i−1(0)+hn

i ψ
n
i (0)+hn

i Fϕ
n
i | i ∈ {1, . . . , Nn}} ⊂ uϕ[0, T0]+ηn(2+Mϕ)BX

(with BX denoting the closed unit ball of X).
In particular, zk = xk + yk, k ∈ N, for sequences (xk)k ⊂ uϕ[0, T0], and

(yk)k ⊂ ηnk
(2 + Mϕ)BX . As uϕ[0, T0] is compact, there exist x0 ∈ X, and a

subsequence (xkl
)l of (xk)k such that xkl

→ x0. Altogether, we have λkl
→ 0, and

zkl
→ x0, so that, by the assumptions on the function η, η(λkl

; zkl
) → 0. This

contradiction to (3.25) completes the proof of (3.24).

With (3.23) and (3.24) in place, we conclude from (3.22), by letting n→∞,

‖S(t)ϕ− ϕe‖ − ‖S(s)ϕ− ϕe‖ ≤ −γ1
∫ t

s

‖S(τ)ϕ − ϕe‖ dτ for all 0 < s ≤ t < T0.

By continuity in s, t on either side, this holds for all 0 ≤ s ≤ t ≤ T0. Altogether,
we thus conclude that

‖S(t)ϕ− ϕe‖ ≤ e−γ1t ‖ϕ− ϕe‖ for all 0 ≤ t ≤ T0, ϕ ∈ Ê, ‖ϕ− ϕe‖ < δ. (3.26)

At this point, let ϕ ∈ Ê, ‖ϕ− ϕe‖ < δ, and let T1 = sup {t > 0 | ‖S(s)ϕ− ϕe‖ ≤
e−γ1s ‖ϕ− ϕe‖ for all 0 ≤ s ≤ t}. From (3.26), we know that T1 ≥ T0. Assum-
ing that T1 < ∞, there exists T1 < t1 ≤ T1 + T0 such that ‖S(t1)ϕ− ϕe‖ >
e−γ1t1 ‖ϕ− ϕe‖ . However, ‖S(T1)ϕ− ϕe‖ ≤ e−γ1T1 ‖ϕ− ϕe‖ < δ, so that, as
0 ≤ t1−T1 ≤ T0, according to (3.26), ‖S(t1)ϕ− ϕe‖ = ‖S(t1 − T1)S(T1)ϕ− ϕe‖ ≤
e−γ1(t1−T1) ‖S(T1)ϕ− ϕe‖ ≤ e−γ1t1 ‖ϕ− ϕe‖ .
This contradiction serves to complete the proof of Theorem 2.4. �
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Stochastic Equations with Boundary Noise

Roland Schnaubelt and Mark Veraar

Abstract. We study the wellposedness and pathwise regularity of semilinear
non-autonomous parabolic evolution equations with boundary and interior
noise in an Lp setting. We obtain existence and uniqueness of mild and weak
solutions. The boundary noise term is reformulated as a perturbation of a
stochastic evolution equation with values in extrapolation spaces.
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1. Introduction

In this paper we investigate the wellposedness and pathwise regularity of semilin-
ear non-autonomous parabolic evolution equations with boundary noise. A model
example which fits in the class of problems we study is given by

∂u

∂t
(t, s) = A(t, s,D)u(t, s) on (0, T ]× S,

B(t, s,D)u(t, s) = c(t, u(t, s))
∂w

∂t
(t, s) on (0, T ]× ∂S, (1.1)

u(0, s) = u0(s), on S.

Here S ⊂ Rd is a bounded domain with C2 boundary, A(t, ·, D) = div(a(t, ·)∇) for
uniformly positive definite, symmetric matrices a(t, s) with the conormal boundary
operator B(t, s,D), c(t, ξ) is Lipschitz in ξ ∈ C, (w(t))t≥0 is a Brownian motion
for an filtration {Ft}t≥0 and with values in Lr(∂S) for some r ≥ 2, and u0 is an
F0-measurable initial value. Actually, we also allow for lower-order terms, interior
noise, nonlocal nonlinearities, and more general stochastic terms, see Section 4.

The second named author was supported by the Alexander von Humboldt foundation and by
a “VENI subsidie” (639.031.930) in the “Vernieuwingsimpuls” programme of the Netherlands
Organization for Scientific Research (NWO).
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As a first step one has to give a precise meaning to the formal boundary
condition in (1.1). We present two solution concepts for (1.1) in Section 4, namely
a mild and a weak one, which are shown to be equivalent. Our analysis is then based
on the mild version of (1.1), which fits into the general framework of [30] where
parabolic non-autonomous evolution equations in Banach spaces were treated.
The results in [30] rely on the stochastic integration theory in certain classes of
Banach spaces (see [8, 22, 24]). In order to use [30], the inhomogeneous boundary
term is reformulated as an additive perturbation of a stochastic evolution equation
corresponding to homogeneous boundary conditions. This perturbation maps into
a so-called extrapolation space for the realization A(t) of A(t, ·, D) in Lp(S) with
the boundary condition B(t, ·, D)u = 0 (where p ∈ [2, r]). Such an approach was
developed for deterministic problems by Amann in, e.g., [5] and [6]. We partly use
somewhat different techniques taken from [19], see also the references therein. For
this reformulation, one further needs the solution map of a corresponding elliptic
boundary value problem with boundary data in Lr(∂S) which is the range space of
the Brownian motion. Here we heavily rely on the theory presented in [5], see also
the references therein. We observe that in [5] a large class of elliptic systems was
studied. Accordingly, we could in fact allow for systems in (1.1), but we decided
to restrict ourselves to the scalar case in order to simplify the presentation.

We establish in Theorem 4.3 the existence and uniqueness of a mild solution
u to (1.1). Such a solution is a process u : [0, T ] × Ω → Lp(S) where (Ω, P )
is the probability space for the Brownian motion. We further show that for a.e.
fixed ω ∈ Ω the path t �→ u(t, ω) is (Hölder) continuous with values in suitable
interpolation spaces between Lp(S) and the domain of A(t), provided that u0

belongs to a corresponding interpolation space a.s. As a consequence, the paths
of u belong to C([0, T ], Lq(S)) for all q < dp/(d − 1). At this point, we make use
of the additional regularity provided by the Lp approach to stochastic evolution
equations.

In [21] an autonomous version of (1.1) has been studied in a Hilbert space
situation (i.e., r = p = 2) employing related techniques. However, in this paper
only regularity in the mean and no pathwise regularity has been treated. In [13,
§13.3], Da Prato and Zabczyk have also investigated boundary noise of Neumann
type. They deal with a specific situation where a(t) = I, the domain is a cube and
the noise acts on one face which allows more detailed results. See also [3], [12], [14]
and [28] for further contributions to problems with boundary noise. As explained
in Remark 4.9 we cannot treat Dirichlet type boundary conditions due to our
methods. In one space dimension Dirichlet boundary noise has been considered in
[4] in weighted Lp-spaces by completely different techniques, see also [12].

In the next section, we first recall the necessary material about parabolic
deterministic evolution equations and about stochastic integration. Then we study
an abstract stochastic evolution equation related to (1.1) in Section 3. Finally,
in the last section we treat a more general version of (1.1) and discuss various
examples concerning the stochastic terms.
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2. Preliminaries

We write a �K b if there exists a constant c only depending on K such that
a ≤ cb. The relation a �K b expresses that a �K b and b �K a. If it is clear
what is meant, we just write a � b for convenience. Throughout, X denotes a
Banach space, X∗ its dual, and B(X,Y ) the space of linear bounded operators
from X into another Banach space Y . If the spaces are real, everything below
should be understood for the complexification of the objects under consideration.
The complex interpolation space for an interpolation couple (X1, X2) of order
η ∈ (0, 1) is designated by [X1, X2]η. We refer to [29] for the relevant definitions
and basic properties.

2.1. Parabolic evolution families

We briefly discuss the approach to non-autonomous parabolic evolution equations
developed by Acquistapace and Terreni, [2]. For w ∈ R and φ ∈ [0, π], set Σ(φ,w) =
{λ ∈ C : |arg(z −w)| ≤ φ}. A family (A(t), D(A(t)))t∈[0,T ] satisfies the hypothesis
(AT) if the following two conditions hold, where T > 0 is given.

(AT1) A(t) are densely defined, closed linear operators on a Banach space X and
there are constants w ∈ R, K ≥ 0, and φ ∈ (π

2 , π) such that Σ(φ,w) ⊂
�(A(t)) and

‖R(λ,A(t))‖ ≤ K

1 + |λ− w|
holds for all λ ∈ Σ(φ,w) and t ∈ [0, T ].

(AT2) There are constants L ≥ 0 and μ, ν ∈ (0, 1] such that μ+ ν > 1 and

‖Aw(t)R(λ,Aw(t))(Aw(t)−1 −Aw(s)−1)‖ ≤ L|t− s|μ(|λ|+ 1)−ν

holds for all λ ∈ Σ(φ, 0) and s, t ∈ [0, T ], where Aw(t) = A(t) − w.

Condition (A1) just means sectoriality with angle φ > π/2 and uniform
constants, whereas (A2) says that the resolvents satisfy a Hölder condition in
stronger norms. In fact, Acquistapace and Terreni have studied a somewhat weaker
version of (AT2) and allowed for non dense domains. Later on, we work on reflexive
Banach spaces, where sectorial operators are automatically densely defined so that
we have included the density assumption in (AT1) for simplicity. The conditions
(AT) and several variants of them have intensively been studied in the literature,
where also many examples can be found, see, e.g., [1, 2, 6, 26, 31]. If (AT1) holds
and the domains D(A(t)) are constant in time, then the Hölder continuity of A(·)
in B(D(A(0)), X) with exponent η implies (AT2) with μ = η and ν = 1 (see [2,
Section 7]).

Let η ∈ (0, 1), θ ∈ [0, 1], and t ∈ [0, T ]. Assume that (AT1) holds. The
fractional power (−Aw(t))−θ ∈ B(X) is defined by

(−Aw(t))−θ =
1

2πi

∫
Γ

(w − λ)−θR(λ,A(t)) dλ,
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where the contour Γ = {λ : arg(λ−w) = ±φ} is orientated counter clockwise. The
operator (w−A(t))θ is defined as the inverse of (w−A(t))−θ . We will also use the
complex interpolation space

Xt
η = [X,D(A(t))]η .

Moreover, the extrapolation space Xt
−θ is the completion of X with respect to the

norm ‖x‖Xt
−θ

= ‖(−Aw(t))−θx‖. Let A−1(t) : X → Xt
−1 be the unique continuous

extension of A(t) which is sectorial of the same type. Then (w−A−1(t))α : Xt
−θ →

Xt
−θ−α is an isomorphism, where 0 ≤ θ ≤ α + θ ≤ 1. If X is reflexive, then one

can identify the dual space (Xt
−1)

∗ with D(A(t)∗) endowed with its graph norm
and the adjoint operator A−1(t)∗ with A(t)∗ ∈ B(D(A(t)∗), X∗). We mostly write
A(t) instead of A−1(t). See, e.g., [6, 19] for more details.

Under condition (AT), we consider the non-autonomous Cauchy problem

u′(t) = A(t)u(t), t ∈ [s, T ],

u(s) = x,
(2.1)

for given x ∈ X and s ∈ [0, T ). A function u is a classical solution of (2.1) if
u ∈ C([s, T ];X) ∩ C1((s, T ];X), u(t) ∈ D(A(t)) for all t ∈ (s, T ], u(s) = x, and
du
dt (t) = A(t)u(t) for all t ∈ (s, T ]. The solution operators of (2.1) give rise to
the following definition. A family of bounded operators (P (t, s))0≤s≤t≤T on X is
called a strongly continuous evolution family if

1. P (s, s) = I for all s ∈ [0, T ],
2. P (t, s) = P (t, r)P (r, s) for all 0 ≤ s ≤ r ≤ t ≤ T ,
3. the map {(τ, σ) ∈ [0, T ]2 : σ ≤ τ} � (t, s) → P (t, s) is strongly continuous.

The next theorem says that the operators A(t), 0 ≤ t ≤ T , ‘generate’ an
evolution family having parabolic regularity. It is a consequence of [1, Theorem 2.3],
see also [2, 6, 26, 31].

Theorem 2.1. If condition (AT) holds, then there exists a unique strongly continu-
ous evolution family (P (t, s))0≤s≤t≤T such that u = P (·, s)x is the unique classical
solution of (2.1) for every x ∈ X and s ∈ [0, T ). Moreover, (P (t, s))0≤s≤t≤T is
continuous in B(X) on 0 ≤ s < t ≤ T and there exists a constant C > 0 such that

‖P (t, s)x‖Xt
α
≤ C(t− s)β−α‖x‖Xs

β
(2.2)

for all 0 ≤ β ≤ α ≤ 1 and 0 ≤ s < t ≤ T .

We further recall from [32, Theorem 2.1] that there is a constant C > 0 such that

‖P (t, s)(w − A(s))θx‖ ≤ C(μ− θ)−1(t− s)−θ‖x‖ (2.3)

for all 0 ≤ s < t ≤ T , θ ∈ (0, μ) and x ∈ D((w − A(s))θ). Clearly, (2.3) allows to
extend P (t, s) to a bounded operator P−θ(t, s) : Xs

−θ → X satisfying

‖P−θ(t, s)(w −A−1(s))θ‖ ≤ C(μ− θ)−1(t− s)−θ (2.4)

for all 0 ≤ s < t ≤ T and θ ∈ (0, μ). Again, we mostly omit the index −θ.
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2.2. Stochastic integration

Let H be a separable Hilbert space with scalar product [·, ·], X be a Banach
space, and (S,Σ, μ) be a measure space. A function φ : S → X is called strongly
measurable if it is the pointwise limit of a sequence of simple functions. Let X1

and X2 be Banach spaces. An operator-valued function Φ : S → B(X1, X2) will be
called X1-strongly measurable if the X2-valued function Φx is strongly measurable
for all x ∈ X1.

Throughout this paper (Ω,F ,P) is a probability space with a filtration (Ft)t≥0

and (γn)n≥1 is a Gaussian sequence; i.e., a sequence of independent, standard, real-
valued Gaussian random variables defined on (Ω,F ,P). An operator R ∈ B(H,X)
is said to be a γ-radonifying operator if there exists an orthonormal basis (hn)n≥1

of H such that
∑

n≥1 γnRhn converges in L2(Ω;X), see [7, 17]. In this case we
define

‖R‖γ(H,X) :=
(
E
∥∥∥∑

n≥1

γnRhn

∥∥∥2) 1
2
.

This number does not depend on the sequence (γn)n≥1 and the basis (hn)n≥1,
and defines a norm on the space γ(H,X) of all γ-radonifying operators from
H into X . Endowed with this norm, γ(H,X) is a Banach space, and it holds
‖R‖ ≤ ‖R‖γ(H,X). Moreover, γ(H, X) is an operator ideal in the sense that if
S1 ∈ B(H̃,H) and S2 ∈ B(X, X̃), then R ∈ γ(H, X) implies S2RS1 ∈ γ(H̃, X̃) and

‖S2RS1‖γ(H̃,X̃) ≤ ‖S2‖‖R‖γ(H,X)‖S1‖. (2.5)

If X is a Hilbert space, then γ(H,X) = C2(H,X) isometrically, where
C2(H,X) is the space of Hilbert-Schmidt operators. Also for X = Lp there is
a convenient characterization of R ∈ γ(H,Lp) given in [10, Theorem 2.3]. We use
a slightly different formulation taken from [23, Lemma 2.1].

Lemma 2.2. Let (S,Σ, μ) be a σ-finite measure space and let 1 ≤ p < ∞. For an
operator R ∈ B(H,Lp(S)) the following assertions are equivalent.

1. R ∈ γ(H,Lp(S)).
2. There exists a function g ∈ Lp(S) such that for all h ∈ H we have |Rh| ≤
‖h‖H · g μ-almost everywhere.

Moreover, in this situation we have

‖R‖γ(H,Lp(S)) �p ‖g‖Lp(S). (2.6)

A Banach space X is said to have type 2 if there exists a constant C ≥ 0 such
that for all finite subsets {x1, . . . , xN} of X we have(

E
∥∥∥ N∑

n=1

rnxn

∥∥∥2) 1
2 ≤ C

( N∑
n=1

‖xn‖2
) 1

2
.

Hilbert spaces and Lp-spaces with p ∈ [2,∞) have type 2. We refer to [17] for
details. We will also need UMD Banach spaces. The definition of a UMD space
will be omitted, but we recall that every UMD space is reflexive. We refer to [11] for
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an overview on the subject. Important examples of UMD spaces are the reflexive
scale of Lp, Sobolev, Bessel-potential and Besov spaces.

A detailed stochastic integration theory for operator-valued processes Φ :
[0, T ]× Ω → B(H,X), where X is a UMD space, has been developed in [22]. The
full generality of this theory is not needed here, since we can work with UMD
spaces X of type 2 which allow for a somewhat simpler theory. Instead of of being
a UMD space with type 2, one can also assume that X is a space of martingale
type 2 (cf. [8, 24]).

A family WH = (WH(t))t∈R+ of bounded linear operators from H to L2(Ω)
is called an H-cylindrical Brownian motion if

(i) {WH(tj)hk : j = 1, . . . , J ; k = 1, . . . ,K} is a Gaussian vector for all choices
of tj ≥ 0 and hk ∈ H , and {WH(t)h : t ≥ 0} is a standard scalar Brownian
motion with respect to the filtration (Ft)t≥0 for each h ∈ H ;

(ii) E(WH(s)g ·WH(t)h) = (s ∧ t) [g, h]H for all s, t ∈ R+ and g, h ∈ H.
Now let X be a UMD Banach space with type 2. For an H-strongly measur-

able and adapted Φ : [0, T ]×Ω→ γ(H,X) which belongs to L2((0, T )×Ω; γ(H,X))
one can define the stochastic integral

∫ T

0 Φ(s) dWH(s) as a limit of integrals of
adapted step processes, and there is a constant C not depending on Φ such that

E
∥∥∥ ∫ T

0

Φ(s) dWH(s)
∥∥∥2

≤ C2‖Φ‖2L2((0,T )×Ω;γ(H,X)),

cf. [8], [22], and the references therein. By a localization argument one may extend
the class of integrable processes to all H-strongly measurable and adapted Φ :
[0, T ]× Ω → γ(H,X) which are contained in L2(0, T ; γ(H,X)) a.s. Below we use
in particular the next result (see [8] and [22, Corollary 3.10]).

Proposition 2.3. Let X be a UMD space with type 2 and WH be a H-cylindrical
Brownian motion. Let Φ : [0, T ] × Ω → γ(H,X) be H-strongly measurable and
adapted. If Φ ∈ L2(0, T ; γ(H,X)) a.s., then Φ is stochastically integrable with
respect to WH and for all p ∈ (1,∞) it holds(

E sup
t∈[0,T ]

∥∥∥ ∫ t

0

Φ(s) dWH(s)
∥∥∥p) 1

p �X,p ‖Φ‖Lp(Ω;L2(0,T ;γ(H,X))).

In the setting of Proposition 2.3 we also have, for x∗ ∈ X∗,〈∫ T

0

Φ(s) dWH(s), x∗
〉

=
∫ T

0

Φ(s)∗x∗ dWH(s) a.s., (2.7)

cf. [22, Theorem 5.9].
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3. The abstract stochastic evolution equation

Let H1 and H2 be separable Hilbert spaces, and let X and Y be Banach spaces.
On X we consider the stochastic evolution equation⎧⎪⎨⎪⎩

dU(t) = (A(t)U(t) + F (t, U(t)) + ΛG(t)G(t, U(t))) dt

+B(t, U(t)) dWH1 (t) + ΛC(t)C(t, U(t)) dWH2 (t), t ∈ [0, T ],

U(0) = u0.

(SE)

Here (A(t))t∈[0,T ] is a family of closed operators on X satisfying (AT). The pro-
cesses WH1 and WH2 are independent cylindrical Brownian motions with respect
to (Ft)t∈[0,T ]. The initial value is a strongly F0-measurable mapping u0 : Ω → X .
We assume that the mappings ΛG(t) : Y t → Xt

−θG
and ΛC(t) : Y t → Xt

−θC
are

linear and bounded, where the numbers θG, θC ∈ [0, 1] are specified below. In Sec-
tion 4, the operators ΛG(t) and ΛC(t) are used to treat inhomogeneous boundary
conditions. Concerning A(t), we make the following hypothesis.
(H1) Assume that (A(t))t∈[0,T ] and (A(t)∗)t∈[0,T ] satisfy (AT) and that there exists

an η0 ∈ (0, 1] and a family of Banach spaces (X̃η)η∈[0,η0] such that

X̃η0 ↪→ X̃η1 ↪→ X̃η2 ↪→ X̃0 = X for all η0 > η1 > η2 > 0,

and each X̃η is a UMD space with type 2. Moreover, it holds

[X,D(A(t))]η ↪→ X̃η for all η ∈ [0, η0],

where the embeddings are bounded uniformly in t ∈ [0, T ].
Assumption (H1) has been employed in [30] to deduce space time regularity results
for equations of the form (SE), where spaces such as X̃η have been used to get
rid of the time dependence of interpolation spaces; see also [20, (H2)]. We have
included an assumption on (A(t)∗)t∈[0,T ] for the treatment of variational solutions.
This could be done in a more general way as well, but for us the above setting
suffices. Assumption (H1) can be verified in many applications, see, e.g., Section 4.

Let a ∈ [0, η0). The nonlinear terms F,G,B and C in (SE) map as follows:

F : [0, T ]× Ω× X̃a → X, G(t) : Ω× X̃a → Y t,

B(t) : Ω× X̃a → γ(H,Xt
−1), C(t) : Ω× X̃a → γ(H2, Y

t),
for each t ∈ [0, T ], where Y t are Banach spaces. We put G(t)(ω, x) = G(t, ω, x),
B(t)(ω, x) = B(t, ω, x) and C(t)(ω, x) = C(t, ω, x) for (t, ω, x) ∈ [0, T ] × Ω ×X .
Assuming (H1) and a ∈ [0, η0), we state our main hypotheses on F,G,B and C.

(H2) For all x ∈ X̃a, the map (t, ω) �→ F (t, ω, x) is strongly measurable and
adapted. The function F has linear growth and is Lipschitz continuous in
space uniformly in [0, T ] × Ω; that is, there are constants LF and CF such
that for all t ∈ [0, T ], ω ∈ Ω and x, y ∈ X̃a we have

‖F (t, ω, x)− F (t, ω, y)‖X ≤ LF‖x− y‖X̃a
,

‖F (t, ω, x)‖X ≤ CF (1 + ‖x‖X̃a
).
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(H3) For all x ∈ X̃a, the map (t, ω) �→ (−Aw(t))−θGΛG(t)G(t, ω, x) ∈ X is strongly
measurable and adapted. The function (−Aw)−θGΛGG has linear growth and
is Lipschitz continuous in space uniformly in [0, T ]×Ω; i.e., there are constants
LG and CG such that for all t ∈ [0, T ], ω ∈ Ω and x, y ∈ X̃a we have

‖(−Aw(t))−θGΛG(t)(G(t, ω, x) −G(t, ω, y))‖X ≤ LG‖x− y‖X̃a
,

‖(−Aw(t))−θGΛG(t)G(t, ω, x)‖X ≤ CG(1 + ‖x‖X̃a
).

(H4) Let θB ∈ [0, μ) satisfy a + θB < 1
2 . For all x ∈ X̃a, the map (t, ω) �→

(−Aw(t))−θB(t, ω, x) ∈ γ(H1, X) is strongly measurable and adapted. The
function (−Aw)−θBB has linear growth and is Lipschitz continuous in space
uniformly in [0, T ]×Ω; that is, there are constants LB and CB such that for
all t ∈ [0, T ], ω ∈ Ω and x, y ∈ X̃a we have

‖(−Aw(t))−θB (B(t, ω, x) −B(t, ω, y))‖γ(H1,X) ≤ LB‖x− y‖X̃a
,

‖(−Aw(t))−θBB(t, ω, x)‖γ(H1,X) ≤ CB(1 + ‖x‖X̃a
).

(H5) Let θC ∈ [0, μ) satisfy a + θC < 1
2 . For all x ∈ X̃a, the mapping (t, ω) �→

(−Aw(t))−θC ΛC(t)C(t, ω, x) ∈ γ(H2, X) is strongly measurable and adapted.
The function (−Aw)−θC ΛCC has linear growth and is Lipschitz continuous
in space uniformly in [0, T ]×Ω; that is, there are constants LG and CG such
that for all t ∈ [0, T ], ω ∈ Ω and x, y ∈ X̃a we have

‖(−Aw(t))−θC ΛC(t)(C(t, ω, x) − C(t, ω, y))‖γ(H2,X) ≤ LC‖x− y‖X̃a
,

‖(−Aw(t))−θC ΛC(t)C(t, ω, x)‖γ(H2,X) ≤ CC(1 + ‖x‖X̃a
).

We introduce our first solution concept.

Definition 3.1. Assume that (H1)–(H5) hold for some θG, θB, θC ≥ 0 and a ∈
[0, η0). Let r ∈ (2,∞) satisfy min{1 − θG, 1

2 − θB,
1
2 − θC} >

1
r . We call an X̃a-

valued process (U(t))t∈[0,T ] a mild solution of (SE) if

(i) U : [0, T ] × Ω → X̃a is strongly measurable and adapted, and we have U ∈
Lr(0, T ; X̃a) almost surely,

(ii) for all t ∈ [0, T ], we have

U(t)=P (t, 0)u0+P∗F (·, U)(t)+P∗ΛGG(·, U)(t)+P,1B(·, U)(t)+P,2ΛCC(·, U)(t)

in X almost surely.

Here we have used the abbreviations

P ∗ φ(t) =
∫ t

0

P (t, s)φ(s) ds, P ,k Φ(t) =
∫ t

0

P (t, s)Φ(s) dWHk
(s), k = 1, 2,

whenever the integrals are well defined. Under our hypotheses both P ∗F (·, U)(t)
and P ∗ΛGG(·, U)(t) are in fact well defined in X . Indeed, for the first one this is
clear from (H2). For the second one we may write

P (t, s)ΛG(s)G(s, U(s)) = P (t, s)(−Aw(s))θG(−Aw(s))−θGΛG(s)G(s, U(s))
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It then follows from (2.4), Hölder’s inequality, and (H3) that∫ t

0

‖P (t, s)ΛG(s)G(s, U(s))‖X ds

�
∫ t

0

(t− s)−θG‖(−Aw(s))−θGΛG(s)G(s, U(s))‖X ds

� 1 + ‖U‖Lr(0,T ;X̃a),

using that 1 − θG > 1
r . Similarly one can show that P ,1 B(·, U)(t) and P ,2

ΛCC(·, U)(t) are well defined in X , taking into account Proposition 2.3: Estimate
(2.4), Hölder’s inequality and (H4) imply that∫ t

0

‖P (t, s)B(s, U(s))‖2γ(H1,X) ds

�
∫ t

0

(t− s)−2θB‖(−Aw(s))−θBB(s, U(s))‖2γ(H1,X) ds

� 1 + ‖U‖2
Lr(0,T ;X̃a)

since 1
2 − θB >

1
r . In the same way it can be proved that the integral with respect

to WH2 is well defined.
We also recall the definition of a variational solution from [30]. To that pur-

pose, for t ∈ [0, T ], we set

Γt =
{
ϕ ∈ C1([0, t];X∗) : ϕ(s) ∈ D(A(s)∗) for all s ∈ [0, t]

and [s �→ A(s)∗ϕ(s)] ∈ C([0, t];X∗)
}
.

(3.1)

Definition 3.2. Assume that (H1)–(H5) hold with a ∈ [0, η0). An X̃a-valued process
(U(t))t∈[0,T ] is called a variational solution of (SE) if

(i) U belongs to L2(0, T ; X̃a) a.s. and U is strongly measurable and adapted,
(ii) for all t ∈ [0, T ] and all ϕ ∈ Γt, almost surely we have

〈U(t), ϕ(t)〉 − 〈u0, ϕ(0)〉 =
∫ t

0

[〈U(s), ϕ′(s)〉 + 〈U(s), A(s)∗ϕ(s)〉 (3.2)

+ 〈F (s, U(s)), ϕ(s)〉 + 〈ΛG(s)G(s, U(s)), ϕ(s)〉] ds

+
∫ t

0

B(s, U(s))∗ϕ(s) dWH1 (s)

+
∫ t

0

(ΛC(s)C(s, U(s)))∗ϕ(s) dWH2 (s).

The integrand B(s, U(s))∗ϕ(s) in (3.2) should be read as

((−Aw(s))−θBB(s, U(s)))∗(−Aw(s)∗)θBϕ(s).

It follows from (H4) that the function s �→ ((−Aw(s))−θBB(s, U(s)))∗ is X∗-
strongly measurable. Moreover, the map

s �→ (−Aw(s)∗)θBϕ(s) = (−Aw(s)∗)−1+θB (−Aw(s)∗)ϕ(s)
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belongs to C([0, t];X∗) by the Hölder continuity of s �→ (−Aw(s))−1+θB (cf. [26,
(2.10) and (2.11)]) and the assumption on ϕ. Using (H4), we thus obtain that the
integrand is contained in L2(0, T ;H1) a.s. As a result, the first stochastic integral
in (3.2) is well defined. The other integrands have to be interpreted similarly.

The next result shows that both solution concepts are equivalent in our set-
ting. It follows from Proposition 5.4 and Remark 5.3 in [30] in the same way as
Theorem 3.4 below. (Remark 5.3 can be used since X is reflexive as a UMD space.)

Proposition 3.3. Assume that (H1)–(H5) hold for some θG, θB, θC ≥ 0 and a ∈
[0, η0). Let r ∈ (2,∞) satisfy max{θC , θB} < 1

2 −
1
r and θG < 1 − 1

r . Let U :
[0, T ]×Ω → X̃a be a strongly measurable and adapted process such that U belongs
to Lr(0, T ; X̃a) a.s. Then U is a mild solution of (SE) if and only if U is a
variational solution of (SE).

We can now state the main existence and regularity result for (SE).

Theorem 3.4. Assume that (H1)–(H5) hold for some θG, θB, θC ≥ 0 and a ∈ [0, η0).
Let u0 : Ω → X̃0

a be strongly F0 measurable. Then the following assertions hold.

(1) There is a unique mild solution U of (SE) with paths in C([0, T ]; X̃a) a.s.
(2) For every δ, λ > 0 with

δ + a+ λ < min{1− θG, 1
2 − θB,

1
2 − θC , η0}

there exists a version of U such that U − P (·, 0)u0 in Cλ([0, T ]; X̃δ+a) a.s.
(3) If δ, λ > 0 are as in (2) and if u0 ∈ X̃a+δ+λ a.s., then U has a version with

paths in Cλ([0, T ]; X̃δ+a) a.s.

Proof. Assertions (1) and (2) can be reduced to the case{
dU(t) = (A(t)U(t) + F̃ (t, U(t)) + B̃(t, U(t)) dWH(t), t ∈ [0, T ],

U(0) = u0.

taking F̃ = F + ΛGG and B̃ = (B,ΛCC) and H = H1 × H2. The theorem now
follows from [30, Theorem 6.3]. In view of (2), for assertion (3) we only have to
show that P (·, 0)u0 has the required regularity, which is proved in [30, Lemma
2.3]. We note that, in order to apply the above results from [30] here, one has to
replace in [30] the real interpolation spaces of type (η, 2) by complex interpolation
spaces of exponent η. This can be done using the arguments given in [30]. �
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4. Boundary noise

Let S ⊆ Rd be a bounded domain with C2-boundary and outer unit normal vector
of n(s). On S we consider the stochastic equation with boundary noise

∂u

∂t
(t, s) = A(t, s,D)u(t, s) + f(t, s, u(t, s)) (4.1)

+ b(t, s, u(t, s))
∂w1

∂t
(t, s), s ∈ S, t ∈ (0, T ],

B(t, s,D)u(t, s) = G(t, u(t, ·))(s) + C̃(t, u(t, ·))(s)∂w2

∂t
(t, s) , s ∈ ∂S, t ∈ (0, T ],

u(0, s) = u0(s), s ∈ S.

Here wk are Brownian motions as specified below, and we use the differential
operators

A(t, s,D) =
d∑

i,j=1

Di

(
aij(t, s)Dj

)
+ a0(t, s), B(t, s,D) =

d∑
i,j=1

aij(t, s)ni(s)Dj .

For simplicity we only consider the case of a scalar equation, but systems could
be treated in the same way, cf., e.g., [5, 16].

(A1) We assume that the coefficients of A and B are real and satisfy

aij ∈ Cμ([0, T ];C(S)), aij(t, ·) ∈ C1(S), Dkaij ∈ C([0, T ]× S),

a0 ∈ Cμ([0, T ], Ld(S)) ∩ C([0, T ];C(S))

for a constant μ ∈ (1
2 , 1] and all i, j, k = 1, . . . , d and t ∈ [0, T ]. Further, let

(aij) be symmetric and assume that there is a κ > 0 such that

d∑
i,j=1

aij(t, s)ξiξj ≥ κ|ξ|2 for all s ∈ S, t ∈ [0, T ], ξ ∈ Rd. (4.2)

In the following we reformulate the problem (4.1) as (SE) thereby giving (4.1)
a precise sense. Set X = Lp(S) for some p ∈ (1,∞). Let α ∈ [0, 2] satisfy α− 1

p �= 1.
We introduce the space

Hα,p
B(t)(S) =

{{
f ∈ Hα,p(S) : B(t, ·, D)f = 0

}
, α− 1

p > 1,
Hα,p(S), α− 1

p < 1,

where Hα,p(S) denotes the usual Bessel-potential space (see [29]). We also set

X̃η = H2η,p(S) for all η ≥ 0.

We further define A(t) : D(A(t)) → X by A(t)x = A(t, ·, D)x and

D(A(t)) = {x ∈ H2,p(S) : B(t, ·, D)x = 0} = H2,p
B(t)(S).
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Lemma 4.1. Let X = Lp(S) and p ∈ (1,∞). Assume that (A1) is satisfied. The
following assertions hold.
(1) The operators A(t), t ∈ [0, T ], satisfy (AT) and the graph norms of A(t) are

uniformly equivalent with ‖ · ‖H2,p(S). In particular, (A(t))t∈[0,T ] generates a
unique strongly continuous evolution family (P (t, s))0≤s≤t≤T on X.

(2) We have Xt
θ = H2θ,p

B(t) (S) for all θ ∈ (0, 1) with 2θ − 1
p �= 1, as well as

Xt
η = X̃η = H2η,p(S) for all η ∈ [0, 1

2 + 1
2p ), in the sense of isomorphic

Banach spaces. The norms of these isomorphisms are bounded uniformly for
t ∈ [0, T ].

(3) Let p ∈ [2,∞). Then condition (H1) holds with η0 = 1/2.

Proof. (1): See [1] and [31]. Note that A(t)∗ on Lp′
(S) = X∗ is given by A∗(t)ϕ =

A(t, ·, D)ϕ with D(A(t)∗) = H2,p′

B(t)(S), and thus also (A(t)∗)0≤t≤T satisfies (AT).
(2): Let θ ∈ (0, 1) and p ∈ (1,∞) satisfy 2θ − 1

p �= 1. Then Theorem 5.2 and
Remark 5.3(c) in [5] show that

Xt
θ = [Lp(S), D(A(t))]θ = [Lp(S), H2,p

B(t)(S)]θ = H2θ,p
B(t)(S) (4.3)

isomorphically, see also [27, Theorem 4.1] and [29, Theorem 1.15.3]. Inspecting the
proofs given in [27] one sees that the isomorphisms in (4.3) are bounded uniformly
in t ∈ [0, T ]. Similarly, if 2θ − 1

p < 1, then Xt
θ = H2θ,p

B(t) (S) = H2θ,p(S) = X̃θ.

(3): This is clear from (1), (2) and the definitions. Note that the spaces X̃t
η

are UMD spaces with type 2 because they are isomorphic to closed subspaces of
Lp-spaces with p ∈ [2,∞). �

Remark 4.2. Let the constant w ≥ 0 be given by (AT). In problem (4.1) we replace
A and f by A − w and f + w, respectively, without changing the notation. This
modification does not affect the assumptions (A1) and (A2), and from now we can
thus take w = 0 in (AT).

Next, we apply Theorem 9.2 and Remark 9.3(e) of [5] in order to construct
the operators ΛC(t) and ΛD(t). In [5] it is assumed that ∂S ∈ C∞. However, the
results from [5] used below remain valid under our assumption that ∂S ∈ C2, due
to Remark 7.3 of [5] combined with Theorem 2.3 of [15].

Let t ∈ [0, T ]. In view of our main Theorem 4.3 we consider only p ≥ 2 and
α ∈ (1, 1 + 1

p ) though some of the results stated below can be generalized to other
exponents. Let

Y = ∂Wα,p(S) :=Wα−1−1/p,p(∂S)
be the Slobodeckii space of negative order on the boundary which is defined via
duality, e.g., in (5.16) of [5]. Let y ∈ Y . Theorem 9.2 and Remark 9.3(e) of [5] give
a unique weak solution x ∈ Hα,p(S) of the elliptic problem

A(t, ·, D)x = 0 on S,

B(t, ·, D)x = y on ∂S.
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(Weak solutions are defined by means of test functions v ∈ H2−α,p′
(S), see [5,

(9.4)].) We set N(t)y := x. Formula (9.15) of [5] implies that the ‘Neumann
map’ N(t) belongs B(∂Wα,p(S), Hα,p(S)) and that the map N(·) : [0, T ] →
B(∂Wα,p(S), Hα,p(S)) is continuous.

Concerning the other terms in the first line of (4.1) and the noise terms, we
make the following hypotheses.
(A2) The functions f, b : [0, T ]× Ω × S × R → R are jointly measurable, adapted

to (Ft)t≥0, and Lipschitz functions and of linear growth in the third variable,
uniformly in the other variables.

(A3) For k = 1, 2, the process wk can be written in the form ikWHk
, where i1 ∈

γ(H1, L
r(S)) for some r ∈ [1,∞) and i2 ∈ γ(H2, L

s(∂S)) for some s ∈ [1,∞),
and WH1 and WH2 are independent Hk-cylindrical Brownian motions with
respect to (Ft)t≥0.
Supposing that (A2) holds, we define F : [0, T ] × Ω × X → X by setting

F (t, ω, x)(s) = f(t, ω, s, x(s)). Then F satisfies (H2). We further define the func-
tion B(t, ω, x)h on S for (t, ω, x) ∈ [0, T ]× Ω×X and h ∈ H1 by means of

B(t, ω, x)h = b(t, ω, ·, x(·)) i1h (4.4)

In Examples 4.7 and 4.8 we give conditions on w1 and θB such that (−A)−θBB
maps [0, T ]× Ω×X into γ(H1, X) and (H4) holds.

Assumption (A3) has to be interpreted in the sense that

wk(t, s) =
∑
n≥1

(ikhk
n)(s)WHk

(t)hk
n, t ∈ R+, s ∈ S, k = 1, 2,

where (hk
n)n≥1 is an orthonormal basis for Hk, and the sum converges in Lr(S)

if k = 1 and in Ls(∂S) if k = 2. We note that then (wk(t, ·))t≥0 is a Brownian
motion with values in Lr(S) and Ls(∂S), respectively. Conversely, if (wk(t, ·))t≥0,
k = 1, 2, are independent Brownian motions with values in Lr(S) and Ls(∂S),
then we can always construct ik and WHk

as above, cf. Example 4.6 below.
We recall that Hα,p(S) = Xt

α
2

for t ∈ [0, T ] and α ∈ (1, 1 + 1
p ) by Lemma

4.1(2). Moreover, the operatorA(t) has bounded imaginary powers inX (uniformly
in t ∈ [0, T ]), see, e.g., Example 4.7.3(d) and Section 4.7 in [6]. It then follows that

Hα,p(S) = Xt
α
2

= D((−A(t))
α
2 ) (4.5)

with uniformly equivalent norms for t ∈ [0, T ], see, e.g., [29, Theorem 1.15.3].
Therefore, the extrapolated operator A−1(t) maps Hα,p(S) into Xt

α
2 −1, and hence

Λ(t) = ΛG(t) = ΛC(t) := −A−1(t)N(t) ∈ B(Y,Xt
α
2 −1)

with uniformly bounded norms for t ∈ [0, T ]. Let θ ∈ [1 − α
2 , 1]. As above, we

further obtain Xt
α
2 −1+θ = Hα−2+2θ,p(S) ↪→ X , so that

(−A(t))−θΛ(t) ∈ B(Y,Hα−2+2θ,p(S)) (4.6)

with uniformly bounded norms for t ∈ [0, T ].



622 R. Schnaubelt and M. Veraar

In order to relate the boundary noise term in (4.1) with (SE), we set

(C(t, ω, x)h)(s) = C̃(t, ω, x)(s)(i2h)(s)

for h ∈ H2. We aim at the mapping property C(t, ω, x) : H2 → Y = ∂Wα,p(S)
since it will enable us to verify the hypothesis (H5). In fact, if C(t, ω, x) ∈ B(H2, Y )
then (−A(t))−θΛ(t)C(t, ω, x) maps H2 continuously into Hα−2+2θ,p(S) ↪→ X if
θ ∈ [1 − α

2 , 1]. In Examples 4.4 and 4.6 we give conditions on C̃ and i2 implying
(H5) for C. The deterministic boundary term G can be treated in a similar way.

We want to present a variational formulation of (4.1), starting with an infor-
mal discussion. Let ϕ ∈ Γt, where Γt is given by (3.1). Then ϕ(r) ∈ D(A(r)∗) =
W 2,p′

B(r)(S). Formally, multiplying (4.1) by ϕ, integrating over [0, t]× S, integrating
by parts and interchanging the order of integration, we obtain that, almost surely,∫

S

[u(t, s)ϕ(t)(s) − u0(s)ϕ(0)(s)] ds (4.7)

=
∫ t

0

∫
S

u(r, s)[A(r, ·, D)ϕ(r) + ϕ′(r)](s) ds dr

+
∫ t

0

∫
S

f(r, s, u(r, s))ϕ(r)(s) ds dr

+
∫

S

∫ t

0

b(r, s, u(r, s))ϕ(r)(s) dw1(r, s) ds+ T1.

In the boundary term T1 the part with ∇ϕ(r) disappears since ϕ(r) ∈ D(A(r)∗),
and the other term is given by

T1 =
∫

∂S

∫ t

0

B(r, ·, D)u(r, ·)tr(ϕ(r)) dr dσ

=
∫

∂S

∫ t

0

G(r, u(r, ·))tr(ϕ(r)) dr dσ +
∫

∂S

∫ t

0

C̃(r, u(r, ·))tr(ϕ(r))dw2(r, ·) dσ

where tr denotes the trace operator on W 2,p′

B(r)(S).
We now start from the equation (4.7) and rewrite it using (2.7) and the

notation introduced above. Setting u(t, s) =: U(t)(s), equality (4.7) becomes

〈U(t), ϕ(t)〉 − 〈u0, ϕ(0)〉 =
∫ t

0

〈U(r), (A(r, ·, D)ϕ(r) + ϕ′(r)〉 dr + T1 (4.8)

+
∫ t

0

〈F (r, U(r)), ϕ(r)〉 dr +
∫ t

0

B(r, U(r))∗ϕ(r) dWH1 (r),

and the boundary term yields

T1 =
∫ t

0

〈G(r, U(r)), tr(ϕ(r))〉 dr +
∫ t

0

C(r, U(r))∗tr(ϕ(r)) dWH2 (r).
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Here the brackets denote the duality pairing on Lp(S) and Lp(∂S), respectively.
We claim that for all x ∈ W 2,p′

B(t)(S) it holds

tr(x) = Λ(t)∗x = (−A−1(t)N(t))∗x.

Indeed, let α ∈ (1, 1+ 1
p ), x ∈ W 2,p′

B(t)(S) = D(A∗(t)) and y ∈ Y = ∂Wα,p(S). Then
we have N(t)y ∈ Hα,p(S) and a(t)∇x · n = 0 on ∂S. Observe that Λ(t)∗ maps
D(A(t)∗) into Y ∗. Integrating by parts and using formula (9.4) of [5], we obtain

〈y,Λ(t)∗x〉Y = 〈Λ(t)y, x〉Xt
−1

= −〈N(t)y,A(t)∗x〉X

= −
∫

S

N(t)y[∇ · (a(t)∇x) + a0(t)x] ds

= 0 +
∫

S

[(a(t)∇N(t)y) · ∇x+ a0(t)(N(t)y)x] ds = 〈y, tr(x)〉Y ,

which proves the claim. Therefore, T1 becomes

T1 =
∫ t

0

〈Λ(t)G(r, U(r)), ϕ(r)〉 dr +
∫ t

0

(Λ(t)C(r, U(r)))∗ϕ(r) dWH2 (r).

Combining this expression with (4.8) we arrive at the definition of a variational
solution to the stochastic evolution equation (4.1), as introduced in Definition
3.2. The above calculations thus motivate the following definitions. We say u is a
variational (resp. mild) solution to (4.1) if U(t)(s) = u(t, s) is a variational (resp.
mild) solution to (SE) with the above definitions of A(t), F , ΛG, G, B, ΛC , C and
WHk

. We can now state out main result.

Theorem 4.3. Let p ∈ [2,∞), X = Lp(S), α ∈ (1, 1 + 1
p ), θB ∈ [0, 1

2 ), θC ∈
(1− α

2 ,
1
2 ) and θG ∈ (1− α

2 , 1). Assume that (A1)–(A3) and (H3)–(H5) hold, where
C,G,B,ΛC and ΛG are defined above. Let u0 : Ω → X be strongly F0-measurable.
Then the following assertions are true.
(1) There exists a unique variational and mild solution u of (4.1) with paths in

C([0, T ];X) a.s.
(2) For every δ, λ > 0 with δ + λ < min{1 − θG, 1

2 − θB,
1
2 − θC} there exists a

version of u such that u− P (·, 0)u0 in Cλ([0, T ]; X̃δ) a.s.
(3) If δ, λ > 0 are as in (2) and if u0 ∈ X̃δ+λ a.s., then u has a version with

paths in Cλ([0, T ]; X̃δ).

Note that we need 1
2 − θC <

α
2 −

1
2 <

1
2p . Thus, if 1

2 − θB ≥
1
2p , 1− θG ≥ 1

2p

and the other assumptions in Theorem 4.3 hold, then we can take λ, δ ≥ 0 with
δ+λ < 1

2p and deduce that u−P (·, 0)u0 belongs to Cλ([0, T ]; X̃δ) a.s. If we also have

u0 ∈ H
1
p ,p(S), then we obtain a solution u of (4.1) with paths in C([0, T ];H2δ,p(S))

for all δ < 1
2p . In this case Sobolev’s embedding (see [29, Theorem 4.6.1]) implies

that

u ∈ C([0, T ];Lq(S)) for all
{
q < dp

d−1 if d ≥ 2,
q <∞, if d = 1.
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Proof of Theorem 4.3. The existence and uniqueness of a mild solution with the
asserted regularity follows from Theorem 3.4 and the above observations. The
equivalence with the variational solution is a consequence of Proposition 3.3. �

We now discuss several examples under which (H4) and (H5) hold. The hy-
pothesis (H3) can be treated in the same way. We start with some observations
concerning Gaussian random variables ξ with values in a Banach space Z, see,
e.g., [7], [9] and the references therein. The covariance Q ∈ B(Z∗, Z) of ξ is given
by Qx∗ = E(〈ξ, x∗〉ξ) for x∗ ∈ Z∗. One introduces an inner product [·, ·] on the
range of Q by setting

[Qx∗, Qy∗] := 〈Qx∗, y∗〉 = E(〈ξ, x∗〉 〈ξ, y∗〉) (4.9)

for x∗, y∗ ∈ Z∗, and we define ‖Qx∗‖2H = [Qx∗, Qx∗]. The reproducing kernel
Hilbert space H of ξ is the completion of QZ∗ with respect to ‖ · ‖H . Then the
identity on QZ∗ can be extended to a continuous embedding i : H ↪→ E, and
it holds Q = ii∗. On the other hand, the random variables wk(t, ·) in (A3) are
Gaussian with covariance Qk = t iki∗k for all t ≥ 0 and k = 1, 2.

Example 4.4. Let (A3) hold with H2 = L2(∂S). Assume that covariance operator
Q2 ∈ B(L2(∂S)) of w2 is compact. Then there exist numbers (λn)n≥1 in R+ and
an orthonormal system (en)n≥1 in L2(∂S) such that

Q2 =
∑
n≥1

λnen ⊗ en.

Assume that ∑
n≥1

λn‖en‖2∞ <∞.

We observe that the operator i2 is given by i2 =
∑

n≥1

√
λnen⊗ en and belongs to

B(L2(∂S), L∞(∂S)). Let p ∈ [2,∞). Assume that C̃ : [0, T ]×Ω×Lp(S)→ Lp(∂S)
is strongly measurable and adapted, as well as Lipschitz and of linear growth in
the third variable uniformly in [0, T ]×Ω. Then (H5) holds for C = C̃i2 with a = 0
and every θC ∈ (1− α

2 ,
1
2 ), where α ∈ (1, 1 + 1

p ).

Proof. Lemma 2.2 implies that i2 ∈ γ(H2, L
p(∂S)). Fix t ∈ [0, T ], ω ∈ Ω and

x, y ∈ X = Lp(S). Denote K = ‖i2‖B(H2,L∞(∂S)). The embedding Lp(∂S) ↪→ Y =
∂Wα,p(S) and (2.5) yield

‖C(t, ω, x)− C(t, ω, y)‖γ(H2,Y ) �p,α ‖C(t, ω, x)− C(t, ω, y)‖γ(H2,Lp(∂S)). (4.10)

Furthermore, for h ∈ H2 and s ∈ S we have

|((C(t, ω, x) − C(t, ω, y))h)(s)| = |C̃(t, ω, x)(s) − C̃(t, ω, y)(s)| |i2h(s)|
≤ K|C̃(t, ω, x)(s)− C̃(t, ω, y)(s)| ‖h‖H2 . (4.11)

Lemma 2.2 and the assumptions of the example then imply that

‖C(t, ω, x)− C(t, ω, y)‖γ(H2,Lp(∂S)) �p K‖C̃(t, ω, x)− C̃(t, ω, y)‖Lp(∂S)

≤ KLC̃‖x− y‖Lp(S).
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Using (4.6), we can now deduce the first part of (H5). The second part is shown
in a similar way. �
Remark 4.5. Note that in Example 4.4 the noise could be a bit more irregular since
in (4.10) one can still regain some integrability by choosing α and θC appropriately.

Example 4.6. Let q ∈ (p,∞] and s ∈ [p,∞) satisfy 1
p = 1

q + 1
s . We assume that w2

is an Ls(∂S)-valued Brownian motion. Let H2 be the reproducing kernel Hilbert
space of the Gaussian random variable w2(1) = w2(1, ·) with covariance Q and i2
be the embedding of H2 into Ls(∂S). Then we have i2 ∈ γ(H2, L

s(∂S)) (cf. [7],
[9] and the references therein for details). It is easy to check that t−1/2w2(t) also
has the covariance Q for t > 0. Due to Proposition 2.6.1 in [18] we thus obtain

t−1/2w2(t) =
∑
n≥1

〈t−1/2w2(t), x∗n〉Qx∗n

in X a.s. for every orthonormal basis (Qx∗n)n≥1 of H2. Therefore

w2(t) =
∑
n≥1

〈w2(t), x∗n〉Qx∗n

converges in X a.s. We now define WH2(t) : QLs′
(∂S)→ L2(Ω) by setting

WH2(t)Qx
∗ =

∑
n≥1

〈w2(t), x∗n〉〈Qx∗n, x∗〉 = 〈w2(t), x∗〉

for each x∗ ∈ Ls′
(∂S) and t ≥ 0. Then we deduce ‖WH2(t)Qx∗‖22 = 〈Qx∗, x∗〉 =

‖Qx∗‖2H2
from (4.9), and thus WH2 extends to a bounded operator from H2 into

L2(Ω). It is easy to check that WH2 is the required cylindrical Brownian motion
with w2 = i2WH2 ; i.e., (A3) holds for k = 2. Assume that C̃ : [0, T ]× Ω ×X :→
Lq(∂S) is strongly measurable and adapted, as well as Lipschitz and of linear
growth in the third variable uniformly in [0, T ]×Ω. Then (H5) holds for C = C̃i2,
where we take a = 0, θC ∈ (1 − α

2 ,
1
2 ) and α ∈ (1, 1 + 1

p ).

Proof. Fix t ∈ [0, T ], ω ∈ Ω and x, y ∈ X = Lp(S). We argue as in the previ-
ous example, but in (4.11) we consider C̃(t, ω, x)− C̃(t, ω, y) as an multiplication
operator from Ls(∂S) to Lp(∂S). Using Hölder’s inequality and (2.5), we thus
obtain

‖C(t, ω, x)− C(t, ω, y)‖γ(H2,Y ) �p,α ‖C(t, ω, x)− C(t, ω, y)‖γ(H2,Lp(∂S))

≤ ‖C̃(t, ω, x)− C̃(t, ω, y)‖Lq(∂S)‖i2‖γ(H2,Ls(∂S))

≤ LC̃‖x− y‖Lp(∂S)‖i2‖γ(H2,Ls(∂S)).

The first part of (H5) now follows in view of (4.6). The second part can be proved
in the same way. �

We now come to condition (H4).

Example 4.7. Assume that (A1)–(A3) hold with r ∈ (d,∞). Then (H4) is satisfied
for all θB ∈ ( d

2r ,
1
2 ).



626 R. Schnaubelt and M. Veraar

Proof. Let 1
q = 1

p + 1
r and θB ∈ ( d

2r ,
1
2 ). As in Example 5.5 of [25] one can show

Lq(S) ↪→ Xt
−θB
, (4.12)

where the embedding is uniformly bounded for t ∈ [0, T ]. Fix t ∈ [0, T ], ω ∈ Ω and
x, y ∈ X = Lp(S). Arguing as in the previous example, by means of (4.12), (4.4),
Hölder’s inequality, (A2) and (2.5) we can estimate

‖(−A(t))−θB (B(t, ω, x) −B(t, ω, y))‖γ(H1,X)

�θB ,p,r,n ‖B(t, ω, x)−B(t, ω, y)‖γ(H1,Lq(S)))

≤ ‖b(t, ω, x)− b(t, ω, y)‖Lp(S)‖i1‖γ(H2,Lr(S))

≤ Lb‖x− y‖Lp(S)‖i1‖γ(H2,Lr(S)).

This proves the first part of (H4). The second part is obtained in a similar way. �

Finally, we consider the white noise situation in the case d = 1.

Example 4.8. Let d = 1 and p > 2 and assume that (A1)–(A3) hold with i1 = I.
Then (H4) is satisfied for all θB ∈ ( 1

2p + 1
4 ,

1
2 ).

Proof. Let 1
q = 1

p + 1
2 and θB ∈ ( 1

2p + 1
4 ,

1
2 ). Fix t ∈ [0, T ], ω ∈ Ω and x, y ∈ X =

Lp(S). Observe that (−A(t))−θB can be extended to Lq(S) where it coincides with
the fractional power of the corresponding realization Aq(t) of A(t, ·, D) on Lq(S)
with the boundary condition B(t, ·, D)v = 0. We further obtain

D((−Aq(t))θB ) ↪→ (Lq(S), H2,q(S))θB ,∞ ↪→ [Lq(S), H2,q(S)]ϑ = H2ϑ,q(S).

for ϑ ∈ ( 1
2p + 1

4 , θB) with uniform embedding constants, see Sections 1.10.3 and
1.15.2 of [29] and (4.3). Sobolev’s embedding then yields that D((−Aq(t))θB ) ↪→
C(S). Using also Hölder’s inequality, we thus obtain

|[((−A(t))−θB(B(t, ω, x) −B(t, ω, y))h)](s)|
�θB,p ‖(B(t, ω, x)−B(t, ω, y))h‖Lq(S)

≤ ‖b(t, ω, x)− b(t, ω, y)‖Lp(S)‖h‖L2(S)

≤ Lb‖x− y‖Lp(S)‖h‖L2(S)

for all s ∈ S. Now we can apply Lemma 2.2 to obtain that

‖(−A(t))−θB (B(t, ω, x) −B(t, ω, y))‖γ(H1,X) �θB ,p,n Lb‖x− y‖Lp(S).

The other condition (H4) can be verified in the same way. �

In the next remark we explain why one cannot consider Dirichlet boundary
conditions with the above methods. This problem was not stated clearly in [21]. In
the one-dimensional case with S = R+, a version of (4.1) with Dirichlet boundary
conditions has been treated in [4] using completely other methods and working on
a weighted Lp space on R+.
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Remark 4.9. Since we are looking for a solution in X = Lp(S), we have to require
that α− 2 + 2θC ≥ 0, see (4.6). The restriction θC < 1

2 in Theorem 3.4 then leads
to 1 − α

2 ≤ θC <
1
2 , so that α > 1. On the other hand, in the case of Dirichlet

boundary conditions one has ∂Wα,p(S) = Wα− 1
p ,p(∂S) and the Neumann map

N(t) has to be replaced by the Dirichlet map D(t) ∈ B(∂Wα,p(S),Wα,p(S)),
where D(t)y := x ∈Wα,p(S) is the solution of the elliptic problem

A(t, ·, D)x = 0 on S,
x = y on ∂S

for a given y ∈ ∂Wα,p(S). To achieve that ΛC(t) := −A−1(t)D(t) maps into Xt
−θC

,
we need that Hα,p(S) = Hα,p

B(t)(S), and hence α− 1
p < 0 in the Dirichlet case; which

contradicts α > 1 and p ≥ 1.
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Abstract. In the present note, we address the question about behavior of L3-
norm of the velocity field as time t approaches blow-up time T . It is known
that the upper limit of the above norm must be equal to infinity. We show
that, for blow-ups of type I, the lower limit of L3-norm equals to infinity as
well.
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1. Motivation

Consider the Cauchy problem for the classical 3D-Navier-Stokes system

∂tv + v · ∇ v − νΔ v = −∇ q
div v = 0

}
in Q+, (1.1)

v|t=0 = a ∈ C∞
0,0(R

3). (1.2)
Here, v and q stand for the velocity field and for the pressure field, respectively,
Q+ = R3×]0,+∞[, and

C∞
0,0(R

3) = {a ∈ C∞
0 (R3) : div a = 0 in R3 }.

In what follows, we always assume that ν = 1.
It is well known due to J. Leray, see [5], the Cauchy problem (1.1), (1.2)

has at least one solution called the weak Leray-Hopf solution. To give its modern
definition, let us introduce standard energy spaces H and V . H is the closure of
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the set C∞
0,0(R

3) in L2(R3) and V is the closure of the same set with respect to
the norm generated by the Dirichlet integral.

Definition 1.1. A velocity field v ∈ L∞(0,+∞;H)∩L2(0,+∞;V ) is called a weak
Leray-Hopf solution to the Cauchy problem (1.1), (1.2) if the following conditions
hold: ∫

Q+

(v · ∂tw + v ⊗ v : ∇w −∇ v : ∇w) dxdt = 0 (1.3)

for any w ∈ C∞
0 (Q+) with divw = 0 in Q+; the function

t �→
∫
R3

v(x, t) · w(x)dx (1.4)

is continuous on [0,+∞[ for all w ∈ L2(R3);

‖v(·, t)− a(·)‖2 → 0 (1.5)

as t→ +0;

‖v(·, t)‖22 + 2
∫ t

0

∫
R3

|∇ v|2dxdt′ ≤ ‖a‖22 (1.6)

for all t ∈ [0,+∞[.

The definition does not contain the pressure field at all. However, using the
linear theory, we can introduce so-called associated pressure q(·, t), which, for all
t > 0, is the Newtonian potential of vi,j(·, t)vj,i(·, t) and satisfies the pressure
equation

−Δ q(·, t) = vi,j(·, t)vj,i(·, t) = div div v(·, t)⊗ v(·, t) (1.7)

in R3. Since v is known to belong L 10
3

(Q+), pressure q is in L 5
3
(Q+). Moreover,

the Navier-Stokes system is satisfied in the sense of distributions and even a.e. in
Q+. We refer to the paper [3] for details.

Uniqueness of weak Leray-Hopf solutions is still unknown. However, there is
a simple but deep connection between smoothness and uniqueness. It has been
pointed out by J. Leray in his celebrated paper [5] and reads: any smooth solution
to (1.1), (1.2) is unique in the class of weak Leray-Hopf solutions. The problem of
smoothness of weak Leray-Hopf solutions is actually one of the seven Millennium
problems.

In the paper, we deal with certain necessary conditions for possible blow-ups
of solutions to the Cauchy problem (1.1), (1.2). Suppose that T > 0 is the first
moment of time when singularities occur. Then, as it has been shown by J. Leray,
given 3 < s ≤ +∞, there exists a constant cs such that

‖v(·, t)‖s,R3 ≥ cs

(T − t) s−3
2s

(1.8)

for T/2 ≤ t < T .
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However, in the marginal case s = 3, we have a weaker result

lim sup
t→T−0

‖v(·, t)‖3 = +∞, (1.9)

which has been established in [2]. Apparently, a natural question can be raised
whether the statement

lim
t→T−0

‖v(·, t)‖3 = +∞ (1.10)

is true or not. In [9], there has been proved a weaker version of (1.10), namely,

lim
t→T−0

1
T − t

T∫
t

‖v(·, τ)‖33dτ = +∞. (1.11)

The aim of the present paper is to show validity of (1.10) provided the blow-
up of type I takes place, i.e.,

‖v(·, t)‖∞ ≤ C∞√
T − t

(1.12)

for any T/2 ≤ t < T and for some positive constant C∞. Our main result can be
formulated as follows.

Theorem 1.1. Let T be a blow-up time and let, for some 3 < s ≤ +∞, there exist
a positive constant Cs such that

‖v(·, t)‖s ≤
Cs

(T − t) s−3
2s

(1.13)

for any T/2 ≤ t < T . Then (1.10) holds.

Let us outline our proof of Theorem 1.1. Firstly, we reduce the general case
to a particular one s = +∞ showing that if (1.13) is true for some 3 < s < +∞,
then it is true for s = +∞ as well. Secondly, assuming that (1.10) is violated, i.e.,
a sequence tk tending to T exists such that

sup
k
‖v(·, tk)‖3 =M < +∞, (1.14)

we may use a blow-up machinery and construct a non-trivial ancient solution
defined in R3×] −∞, 0[ with the following properties. It vanishes at time t = 0
and its L3-norm is finite say at time t = −1. In order to apply backward uniqueness
results, proved in [2], we need to check that the above ancient solution has a certain
behavior at infinity with respect to spatial variables. This can be done with the
help of the conception of so-called local energy solutions to the Cauchy problem,
see [4] and also [7].

Finally, we would like to make the following remark regarding to condition
(1.13). It is interesting to figure out whether condition (1.14) itself implies regu-
larity. It is worthy to note that the important consequence of (1.14) is that

v(·, T ) ∈ L3(R3). (1.15)
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Then any reasonable blow up procedure at a singular point gives an ancient solu-
tion vanishing at time t = 0 and a hope to apply backward uniqueness. Actually,
condition (1.13) is one of others that ensure the existence of an ancient solu-
tion with such a property. In principle, we could use the universal scaling as in
[10], which provides the existence of the limit of scaled functions with no addi-
tional assumption. But in such a case, we would loose possibility to use backward
uniqueness results because it is unknown whether or not the corresponding an-
cient solution is zero at t = 0. This also raises the interesting question why we are
still not able to prove smoothness of L3,∞-solution with the help of the universal
scaling.

2. Some auxiliary things

In the paper, we are going to use the following notion. B(x0, R) stands for a spatial
ball centered at a point x0 and having radius R, B(R) = B(0, R), and B = B(1).
By Q(z0, R), where z0 = (x0, t0) is a space-time point, we denote a parabolic ball
B(x0, R)×]t0 − R2, t0[, and Q(R) = Q(0, R), Q = Q(1). All constants depending
on non-essential parameters will be denoted simply by c.

Lemma 2.1. Suppose that (1.13) holds for some 3 < s < +∞. Then it is true for
s = +∞.

Proof. From (1.7) and (1.13) it follows that q(·, t) ∈ L s
2
(R3) for T/2 < t < T .

Fix ε > 0 and z0 = (x0, t0) with t0 < T arbitrarily. Applying (1.13) and
Hölder inequality, we find

1
R2

∫
Q(z0,R)

(|v|3 + |q| 32 )dz ≤ c(s) 1
R2

( ∫
Q(z0,R)

(|v|s + |q| s2 )dz
) 3

s

R5(1− 3
s )

≤ c(s)R5(1− 3
s )−2

( t0∫
t0−R2

Cs
s

(T − t) s−3
2

dt
) 3

s ≤ c(s)C3
sR

3− 15
s R2 3

s
1

(T − t0)3
s−3
2s

≤ c(s)C3
s

( R√
T − t0

)3 s−3
2s

.

We let R =
√
γ(T − t0) and pick up 0 < γ < 1 so that c(s)C3

sγ
3 s−3

2s ≤ ε/2. Now,
we apply the local regularity theory for suitable weak solutions to the Navier-
Stokes equations, developed in [1], [6], [3], and [2]. It reads that if ε ≤ ε0, where
ε0 is a universal constant, then

|v(z0)| ≤
c

R
=

c√
γ(T − t0)

for all z0 = (x0, t0) with x0 ∈ R3 and T/2 < t0 < T and for some universal
constant c. �

So, we need prove Theorem 1.1 in a particular case s = +∞ only.
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3. Ancient solution

By assumptions of Theorem 1.1, there must be singular points at t = T . We take
any of them say x0 ∈ R3. Then local regularity theory gives the following inequality

1
R2

∫
Q((x0,T ),R)

(|v|3 + |q| 32 )dz ≥ ε0 > 0 (3.1)

for 0 < R < R0 = 1
3 min{1,

√
T} with universal constant ε0. Without loss of

generality, we may assume that x0 = 0.
Proceeding in the same way as in [10], we can find that condition (1.13)

implies the following bound

sup
0<R≤R0

{
1
R2

∫
Q((0,T ),R)

(|v|3 + |q| 32 )dz +
1
R

∫
Q((0,T ),R)

|∇ v|2dz

+
1
R

sup
T−R2<t<T

∫
B(R)

|v(x, t)|2dx
}

=M1 < +∞. (3.2)

Next, we may scale our functions v and q essentially in the same way as it
has been done in [9], namely,

u(k)(y, s) = Rkv(Rky, T +R2
ks), p(k)(y, s) = R2

kq(Rky, T +R2
ks)

for y ∈ B(R0/Rk) and for s ∈]− (R0/Rk)2, 0[, where Rk =
√
T − tk.

Now, let us see what happens if k → +∞. This is more or less well-understood
procedure and the reader can find details in [2], [9]–[11]. As a result, we have two
measurable functions u and p defined on Q− = R3×] −∞, 0[ with the following
properties:

u(k) → u in L3(Q(a)),

∇u(k) ⇀ ∇u in L2(Q(a)),

p(k) ⇀ p in L 3
2
(Q(a)),

u(k) → u in C([−a2, 0];L 9
8
(B(a)))

(3.3)

for any a > 0. The pair u and p satisfies the Navier-Stokes equations in Q− in the
sense distributions. We call it an ancient solution to the Navier-Stokes equations.
Moreover, since inequalities (1.12) and (3.2) are invariant with respect to the
Navier-Stokes scaling, we can show that

sup
0<a<+∞

{
1
a2

∫
Q(a)

(|u|3 + |p| 32 )de +
1
a

∫
Q(a)

|∇u|2de

+
1
a

sup
−a2<s<0

∫
B(a)

|u(y, s)|2dy
}
≤M1 < +∞ (3.4)
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and

|u(y, s)| ≤ C∞√
−s

(3.5)

for all e = (y, s) ∈ Q−.
The important consequence of (1.15) and the last line in (3.3), is the following

fact

u(·, 0) = 0 (3.6)

in R3, see [9] in a similar situation.
Now, our goal is to show that the above ancient solution is non-trivial. Un-

fortunately, we cannot get this by direct passing to the limit in the formula

1
a2

∫
Q(a)

(|u(k)|3 + |p(k)| 32 )de =
1

a2R2
k

∫
Q(aRk)

(|v|3 + |q| 32 )dz ≥ ε0 > 0 (3.7)

for aRk < 3/4. The reason is simple: there is no hope to prove strong convergence
of the pressure. However, we still have local strong convergence of u(k) so that

1
a2

∫
Q(a)

|u(k)|3de→ 1
a2

∫
Q(a)

|u|3de (3.8)

for any 0 < a ≤ 3/4.
To prove that our ancient solution is non-trivial, let us first note that accord-

ing to (3.2)

1
a2

∫
Q(a)

(|u(k)|3 + |p(k)| 32 )de ≤M1 (3.9)

for sufficient large k and for all a ∈]0, 3/4].
The second observation is quite typical when treating the pressure. In the

ball B(3/4), the pressure can be split into two parts

p(k) = p(k)
1 + p(k)

2 ,

where the first term is defined by the variational identity∫
B(3/4)

p
(k)
1 (y, s)Δϕ(y)dy = −

∫
B(3/4)

u(k)(y, s)⊗ u(k)(y, s) : ∇2ϕ(y)dy

being valid for any ϕ ∈ W 2
3 (B(3/4)) with ϕ = 0 on ∂B(3/4). It is not difficult to

show that the first counter-part of the pressure satisfies the estimate

‖p(k)
1 (·, s)‖ 3

2 ,B(3/4) ≤ c‖u(k)(·, s)‖23,B(3/4) (3.10)
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for all −∞ < s < 0 while the second one is a harmonic function in B(3/4) for the
same s. Since p(k)

2 (·, s) is harmonic, we have

sup
y∈B(1/2)

|p(k)
2 (y, s)| 32 ≤ c

∫
B(3/4)

|p(k)
2 (y, s)| 32 dy (3.11)

≤ c
∫

B(3/4)

|p(k)(y, s)| 32 dy + c
∫

B(3/4)

|u(k)(y, s)|3dy.

Then, for any 0 < a < 1/2,

ε0 ≤
1
a2

∫
Q(a)

(|u(k)|3 + |p(k)| 32 )de ≤ c 1
a2

∫
Q(a)

(|u(k)|3 + |p(k)
1 | 32 + |p(k)

2 | 32 )de

≤ c 1
a2

∫
Q(a)

(|u(k)|3 + |p(k)
1 | 32 )de+ ca3

1
a2

0∫
−a2

sup
y∈B(1/2)

|p(k)
2 (y, s)| 32 ds.

Combining (3.9)–(3.11), we find

ε0 ≤ c
1
a2

∫
Q(3/4)

|u(k)|3de+ ca

0∫
−a2

ds

∫
B(3/4)

(
|p(k)(y, s)| 32 + |u(k)(y, s)|3

)
dy

≤ c 1
a2

∫
Q(3/4)

|u(k)|3de+ ca
∫

Q(3/4)

(
|p(k)| 32 + |u(k)|3

)
de

≤ c 1
a2

∫
Q(3/4)

|u(k)|3de+ cM1a

for the same a. Passing to the limit and choosing sufficiently small a, we show that

0 < cε0a2 ≤
∫

Q(3/4)

|u|3de (3.12)

for some positive 0 < a < 1/2. So, our ancient solution u is non-trivial.
If would show that for some positive R∗

|u|+ |∇u| ∈ L∞((R3 \B(R∗))×]− (5/6)2, 0[),

we could use arguments from [2] and conclude that, by (3.6), ∇∧u ≡ 0 in R3×]−
(3/4)2, 0[ which, together with the incompressibility condition, means that u(·, t)
is harmonic in R3. And it is bounded there. So, u must be a function of t only. But
estimate (3.4) says that such a function must be zero in ]− (3/4)2, 0[. The latter
contradicts (3.12).
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4. Spatial decay for ancient solutions

We know that

‖u(k)(·,−1)‖3 ≤M
and thus by (3.3)

‖u(·,−1)‖3 ≤M. (4.1)

Now, let us consider the following Cauchy problem

∂tw + w · ∇w −Δw = −∇ r
divw = 0

}
in Q̃ = R3×]− 1, 1[, (4.2)

w(·,−1) = u(·,−1). (4.3)
We would like to construct a solution to problem (4.2), (4.3) satisfying the local
energy inequality. To this end, let us recall notation and some facts from [7].

Lm,unif = {u ∈ Lm,loc : ‖u‖Lm,unif = sup
x0∈R3

( ∫
B(x0,1)

|u(x)|mdx
)1/m

< +∞},

Em = {u ∈ Lm,unif :
∫

B(x0,1)

|u(x)|mdx→ 0 as |x0| → +∞},

◦
Em = {u ∈ Em : div u = 0 in R3}.

Apparently,

u(·,−1) ∈
◦
E2 . (4.4)

Definition 4.1. A pair of functions w and r defined in the space-time cylinder Q̃
is called a local energy weak Leray-Hopf solution or simply local energy solution
to the Cauchy problem (4.2), (4.3) if the following conditions are satisfied:

w ∈ L∞(−1, 1;L2,unif), sup
x0∈R3

∫ 1

−1

∫
B(x0,1)

|∇w|2dz < +∞,

r ∈ L 3
2
(−1, 1;L 3

2 ,loc(R
3)); (4.5)

w and r meet (4.2) in the sense of distributions; (4.6)

the function t �→
∫

R3
w(x, t) · w̃(x) dxis continuous on [−1, 1] (4.7)

for any compactly supported function w̃ ∈ L2(R3); for any compact K,

‖w(·, t)− u(·,−1)‖L2(K) → 0 as t→ −1 + 0; (4.8)∫
R3
ϕ|w(x, t)|2 dx+ 2

∫ t

−1

∫
R3

ϕ|∇w|2 dxdt

≤
∫ t

−1

∫
R3

(
|w|2(∂tϕ+ Δϕ) + w · ∇ϕ(|w|2 + 2r)

)
dxdt (4.9)
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for a.a. t ∈]− 1, 1[ and for all nonnegative functions ϕ ∈ C∞
0 (R3×]− 1, 2[); for any

x0 ∈ R3, there exists a function cx0 ∈ L 3
2
(−1, 1) such that

rx0(x, t) ≡ r(x, t) − cx0(t) = r1x0
(x, t) + r2x0

(x, t), (4.10)

for (x, t) ∈ B(x0, 3/2)×]− 1, 1[, where

r1x0
(x, t) = −1

3
|w(x, t)|2 +

1
4π

∫
B(x0,2)

K(x− y) : w(y, t)⊗ w(y, t) dy,

r2x0
(x, t) =

1
4π

∫
R3\B(x0,2)

(K(x− y)−K(x0 − y)) : w(y, t)⊗ w(y, t) dy

and K(x) = ∇2(1/|x|).

We have, see [4] and also [7].

Proposition 4.1. Under assumption (4.4), there exists at least one local energy
solution to problem (4.2), (4.3).

To describe spatial decay of local energy solution, we need additional notation

αw(t) = ‖w(·, t)‖2L2,unif
, βw(t) = sup

x0∈R3

t∫
−1

∫
B(x0,1)

|∇w|2dxdt′,

γw(t) = sup
x0∈R3

t∫
−1

∫
B(x0,1)

|w|3dxdt′, δr(t) = sup
x0∈R3

t∫
−1

∫
B(x0,3/2)

|rx0 |
3
2 dxdt′.

One of the most important properties of local energy solutions is a kind of uniform
local boundedness of the energy, i.e.,

sup
−1≤t≤1

αw(t) + βw(1) + γ
2
3
w(1) ≤ A < +∞. (4.11)

Next, fix a smooth cut-off function χ so that χ(x) = 0 if x ∈ B, χ(x) = 1 if
x /∈ B(2), and then let χR(x) = χ(x/R). Hence, one can define

αR
w(t) = ‖χRw(·, t)‖2L2,unif

, βR
w (t) = sup

x0∈R3

t∫
−1

∫
B(x0,1)

|χR∇w|2dxdt′,

γR
w (t) = sup

x0∈R3

t∫
−1

∫
B(x0,1)

|χRw|3dxdt′, δRr (t) = sup
x0∈R3

t∫
−1

∫
B(x0,3/2)

|χRrx0 |
3
2 dxdt′.

As it was shown in [7], the following decay estimate is true.
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Lemma 4.2. Assume that the pair w and r is a local energy solution to (4.2), (4.3).
Then

sup
−1≤t≤

αR
w(t) + βR

w (1) + (γR
w )

2
3 (1) + (δRr )

4
3 (1)

≤ C(A)
[
‖χRu(·,−1)‖2L2,unif

+ 1/R
2
3

]
.

(4.12)

Since any local energy solution to the Cauchy problem (4.2), (4.3) is also
a suitable weak solution to the Navier-Stokes equations, one can apply the local
regularity theory to them and deduce from Lemma 4.2 that there exists a positive
number R∗ such that

|w(z)|+ |∇w(z)| ≤ A1 (4.13)

for all z = (x, t) ∈
(
R3 \B(R∗)

)
× [−(5/6)2, 1].

If we would show that
u ≡ w (4.14)

on R3 × [0, 1[, this would make it possible to apply backward uniqueness results
(actually, to vorticity equations) and conclude that u = 0 on R3 × [−(3/4)2, 0]
which contradicts (3.12). So, the rest of the paper is devoted to a proof of (4.14).

Our first observation in this direction is that u is C∞-function in Q−. This
follows from (3.5). Detail discussion on differentiability properties of bounded an-
cient solutions can be found in [8] and [10]. In addition, the pressure p(·, t) is a
BMO-solution to the pressure equations

−Δp(·, t) = divdiv u(·, t)⊗ u(·, t)
in R3.

Using a suitable cut-off function in time and differentiability properties of w
and u, we can get the following three relations:∫

R3

ϕ(x)w(x, τ) · u(·, t)dx
∣∣∣τ=t

τ=−1

=

t∫
−1

∫
R3

(w ⊗ w −∇w) : (ϕ∇u + u⊗∇ϕ)dxdτ

+

t∫
−1

∫
R3

ru · ∇ϕdxdτ +

t∫
−1

∫
R3

φw · ∂tudxdτ ;

∫
R3

ϕ(x)|w(x, τ)|2dx
∣∣∣τ=t

τ=−1
+ 2

t∫
−1

∫
R3

ϕ|∇w|2dxdτ

≤
t∫

−1

∫
R3

(
|w|2Δϕ+ w · ∇ϕ(|w|2 + 2r)

)
dxdτ ;
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∫
R3

ϕ(x)|u(x, τ)|2dx
∣∣∣τ=t

τ=−1
+ 2

t∫
−1

∫
R3

ϕ|∇u|2dxdτ

=

t∫
−1

∫
R3

(
|u|2Δϕ+ u · ∇ϕ(|u|2 + 2p)

)
dxdτ

for any 0 ≤ ϕ ∈ C∞
0 (R3). Letting u = w− u and p = r− p, we can find from them

the main inequality∫
R3

ϕ(x)|u(x, t)|2dx + 2

t∫
−1

∫
R3

ϕ|∇u|2dxdτ (4.15)

≤
t∫

−1

∫
R3

(
|u|2Δϕ+ u · ∇ϕ(|u|2 + 2p) + u · ∇ϕ|u|2 − 2ϕ∇u : u⊗ u

)
dxdτ

for a.a. t in ]− 1, 0[.
Next, for u and u, we may introduce the analogous quantities

αu(t) = ‖u(·, t)‖2L2,unif
, αu(t) = ‖u(·, t)‖2L2,unif

βu(t) = sup
x0∈R3

t∫
−1

∫
B(x0,1)

|∇u|2dxdt′, βu(t) = sup
x0∈R3

t∫
−1

∫
B(x0,1)

|∇u|2dxdt′,

γu(t) = sup
x0∈R3

t∫
−1

∫
B(x0,1)

|u|3dxdt′, γu(t) = sup
x0∈R3

t∫
−1

∫
B(x0,1)

|u|3dxdt′,

δp(t) = sup
x0∈R3

t∫
−1

∫
B(x0,3/2)

|px0 |
3
2 dxdt′, δp(t) = sup

x0∈R3

t∫
−1

∫
B(x0,3/2)

|px0
| 32 dxdt′

where

px0(x, t) ≡ p(x, t)− p0x0
(t) = p1x0

(x, t) + p2x0
(x, t),

p1x0
(x, t) = −1

3
|u(x, t)|2 +

1
4π

∫
B(x0,2)

K(x− y) : u(y, t)⊗ u(y, t) dy,

p2x0
(x, t) =

1
4π

∫
R3\B(x0,2)

(K(x− y)−K(x0 − y)) : u(y, t)⊗ u(y, t) dy,

px0
(x, t) ≡ p(x, t)− p0x0

(t) = p1x0
(x, t) + p2x0

(x, t),

p1x0
(x, t) = r1x0

(x, t)− p1x0
(x, t),

p2x0
(x, t) = r2x0

(x, t)− p2x0
(x, t).
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By (3.5) and by our definitions,

αu(t) ≤ c

(−t) , βu(t) ≤ c

(−t)2 , γu(t) + δp(t) ≤
c

(−t) 3
2

(4.16)

for all −1 ≤ t < 0. Indeed, the first bound follows directly from (3.5). To get the
second one, we need to use (3.5), BMO-estimate of the pressure via velocity field,
and then local regularity theory in the same way as in the proof of Lemma 2.1. It
is useful to note that the above arguments imply the estimate |∇u(x, t)| ≤ c/(−t)
for all (x, t) ∈ Q−. As to the third bound, the second term is estimated with the
help of the singular integral theory, (3.5), and definitions of p1x0

and p2x0
.

We fix x0 ∈ R3 and a smooth non-negative function ϕ such that ϕ ≡ 1
in B and sptϕ ⊂ B(3/2) and let ϕx0(x) = ϕ(x − x0). Considering (4.15) with
such a cut-off function ϕx0 , taking into account (4.11) and (4.16), and arguing for
example as in [7], we can find the inequality

αu(t0) + βu(t0) ≤ c
[ t0∫
−1

αu(t)dt+ γu(t0) + sup
x0∈R3

t0∫
−1

∫
B(x0,3/2)

|px0
||u|dxdt

+
c√
−t0

t0∫
−1

αu(t)dt+
c

(−t0)

t0∫
−1

αu(t)dt
]

(4.17)

for all −1 ≤ t0 < 0.
Next, we can re-write the well-known (in the theory of the Navier-Stokes

equations) multiplicative inequality in terms of quantities introduced above

γu(t0) ≤ c
( t0∫
−1

α3
u(t)dt

) 1
4
(
βu(t0) +

t0∫
−1

αu(t)dt
) 3

4
.

To simplify the latter, we first make use of (4.11) and (4.16) in the following way

αu(t0) ≤ c(αw(t0) + αu(t0)) ≤ c
(
A+

c

(−t0)

)
≤ C(A)

(−t0)
for all −1 ≤ t0 < 0. And thus

γu(t0) ≤
C(A)√
−t0

( t0∫
−1

αu(t)dt
) 1

4
(
βu(t0) +

t0∫
−1

αu(t)dt
) 3

4
(4.18)

It remains to estimate the third term on the right-hand side of (4.17)

I = sup
x0∈R3

t0∫
−1

∫
B(x0,3/2)

|px0
||u|dxdt ≤ I1 + I2, (4.19)
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where

I1 = sup
x0∈R3

t0∫
−1

∫
B(x0,3/2)

|p1x0
||u|dxdt ≤ I ′1 + I ′′1 ,

I2 = sup
x0∈R3

t0∫
−1

∫
B(x0,3/2)

|p2x0
||u|dxdt,

and

I ′1 = c sup
x0∈R3

t0∫
−1

∫
B(x0,3/2)

∣∣∣|w|2 − |u|2∣∣∣|u|dxdt,
I ′′1 = c sup

x0∈R3

t0∫
−1

∫
B(x0,3/2)

∣∣∣ ∫
B(x0,2)

K(x− y) :
(
w(y, t)⊗ w(y, t)

− u(y, t)⊗ u(y, t)
)
dy

∣∣∣|u(x, t)|dxdt.
I ′1 is evaluated easily, namely,

I ′1 ≤ c sup
x0∈R3

t0∫
−1

∫
B(x0,3/2)

|u|2(|u|+ 2|u|)dxdt ≤ cγu(t0) +
c√
−t0

t0∫
−1

αu(t)dt. (4.20)

To estimate I ′′1 , we exploit the same idea and L 3
2
- and L2-estimates for singular

integrals

I ′′1 ≤ c sup
x0∈R3

t0∫
−1

∫
B(x0,3/2)

|u(x, t)|
{∣∣∣ ∫

B(x0,2)

K(x− y) : u(y, t)⊗ u(y, t)dy
∣∣∣

+
∣∣∣ ∫
B(x0,2)

K(x− y) :
(
u(y, t)⊗ u(y, t) + u(y, t)⊗ u(y, t)

)
dy

∣∣∣}dxdt
≤ cγu(t0) +

c√
−t0

t0∫
−1

αu(t)dt.

So, by (4.20), we have

I1 ≤ cγu(t0) +
c√
−t0

t0∫
−1

αu(t)dt. (4.21)



644 G. Seregin

In order to find upper bound for I2, we simply repeat arguments of Lemma
2.1 in [7] with R = 1 there. This gives us the following estimate

|p2x0
(x, t)| ≤ c

∫
R3\B(x0,2)

∣∣∣K(x− y)−K(x0 − y)
∣∣∣∣∣∣w(y, t)⊗ w(y, t)

− u(y, t)⊗ u(y, t)
∣∣∣dx

≤ c‖w(·, t)⊗ w(·, t) − u(·, t)⊗ u(·, t)‖L1,unif

being valid for any x ∈ B(x0, 32/) and thus

I2 ≤ c sup
x0∈R3

t0∫
−1

‖w(·, t)⊗ w(·, t) − u(·, t)⊗ u(·, t)‖L1,unif

∫
B(x0,3/2)

|u(x, t)|dx.

Furthermore, by (4.11),

‖w(·, t)⊗ w(·, t) − u(·, t)⊗ u(·, t)‖L1,unif

= sup
x0∈R3

∫
B(x0,1)

|u(y, t)⊗ w(y, t) + u(y, t)⊗ u(y, t)|dx

≤ α
1
2
u (t)α

1
2
w(t) + α

1
2
u (t)α

1
2
u (t) ≤ C(A)√

−t
α

1
2
u (t).

So,

I2 ≤
C(A)√
−t0

t0∫
−1

αu(t)dt

and, by (4.18) and (4.21), we have

I ≤ cγu(t0) +
C(A)√
−t0

t0∫
−1

αu(t)dt

≤ C(A)√
−t0

[( t0∫
−1

αu(t)dt
) 1

4
(
βu(t0) +

t0∫
−1

αu(t)dt
) 3

4
+

t0∫
−1

αu(t)dt
]
. (4.22)

Combining (4.17) and (4.22) and applying Young inequality, we arrive at the final
estimate

αu(t0) ≤ C(A, δ)

t0∫
−1

αu(t)dt

which is valid for all −1 ≤ t0 ≤ δ < 0. The latter says that αu(t) = 0 in [−1, 0[
and, hence, u(·, t) = w(·, t) for the same t.

This completes the proof of Theorem 1.1. �
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Dedicated to Professor Herbert Amann on the occasion of his 70th birthday.

Abstract. We consider the free boundary problem of the two-phase Navier-
Stokes equation with surface tension and gravity in the whole space. We prove
a local-in-time unique existence theorem in the space W 2,1

q,p with 2 < p < ∞
and n < q < ∞ for any initial data satisfying certain compatibility conditions.
Our theorem is proved by the standard fixed point argument based on the
maximal Lp-Lq regularity theorem for the corresponding linearized equations.
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76D05, 76D03, 76T10.

Keywords. Navier-Stokes equations, free boundary problems, surface tension,
gravity force, local solvability.

1. Introduction and results

In this paper, we show the results for a local-in-time existence theorem of the free
boundary problems related to the motion of a viscous, incompressible fluid for the
two-phase Navier-Stokes equations in the whole space Rn (n ≥ 2). The effect of
surface tension on a free boundary and the effect of gravity force are included.

The free interface Γ(t) is given only at initial time t = 0 as

Γ(0) = {x = (x′, xn) ∈ Rn | xn = α(x′), x′ ∈ Rn−1}

for α(x′) ∈W 3−1/q
q (Rn−1), while that at t > 0 remains to be determined. We set

Ω(t) = Ω+(t) ∪ Ω−(t) = Rn \ Γ(t).

This work was partially supported by JSPS Grant-in-aid for Scientific Research (C) #20540164.
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The initial domain Ω(0) = Ω+(0) ∪ Ω−(0) occupied by the fluid is defined by

Ω+(t) = {x = (x′, xn) ∈ Rn | xn > α(x′), x′ ∈ Rn−1},
Ω−(t) = {x = (x′, xn) ∈ Rn | xn < α(x′), x′ ∈ Rn−1},

under the assumption ‖∇′α‖L∞(Rn−1) ≤ K0 for some K0 with 0 < K0 ≤ 1. Such a
domain is called a bent space.

Let the initial velocity v0 and the initial domain Ω(0) be given. Our problem
is to find the domain Ω±(t), the velocity vector field v(x, t) = T (v1, . . . , vn), and
the scalar pressure θ(x, t), x ∈ Ω(t) satisfying the Navier-Stokes equations:

ρ(∂tv + (v · ∇)v) −DivS(v, θ) = 0 in Ω(t), t > 0,

div v = 0 in Ω(t), t > 0,

[[S(v, θ)νt]] = σHνt + [[ρ]]cgxnνt on Γ(t), t > 0,

V = v · νt on Γ(t), t > 0,

v|t=0 = v0 in Ω(0). (1.1)

Here ρ and μ are given by

ρ =

{
ρ+ in Ω+(t)
ρ− in Ω−(t)

, μ =

{
μ+ in Ω+(t)
μ− in Ω−(t)

,

where positive constants ρ± and μ± denote the densities and viscosities, respec-
tively, which may have a jump across Γ(t). For given functions v±(t) defined on
Ω±(t), we set

v(x, t) =
{
v+(x, t) x ∈ Ω+(t),
v−(x, t) x ∈ Ω−(t).

On the other hand, given function v(t) defined on Ω(t), v±(t) denotes the restric-
tion of v(t) to Ω±(t).

[[v(t)]] = (v+(t)− v−(t))|Γ(t)

denotes the jump of v on the interface. Positive constants σ and cg denote the
coefficient of surface tension and the acceleration of gravity, respectively. νt is the
unit outward normal to Γ(t) of Ω+(t), S(v, θ) = μD(v) − θI is the stress tensor,
D(v) = (Dij(v)) = (∂vi/∂xj + ∂vj/∂xi) is the deformation tensor, H is the mean
curvature given by Hνt = ΔΓ(t)x, where ΔΓ(t) is the Laplace-Beltrami operator
on Γ(t), and V is the velocity of the evolution of Γ(t) in the direction of νt. For
differentiation, we use the symbol: div v =

∑n
j=1 ∂jvj ,

(v · ∇)v = T

( n∑
j=1

vj∂jv1, . . . ,

n∑
j=1

vj∂jvn

)
, DivS = T

( n∑
j=1

∂jS1j , . . . ,

n∑
j=1

∂jSnj

)
,

where ∂j = ∂/∂xj, TM denotes the transposed M , and S = (Sij) (n× n matrix).
Now, we shall discuss some known results of the unique existence theorem

of problem (1.1). Let W 2,1
q,p (Ω × (0, T )) = Lp((0, T ),W 2

q (Ω)) ∩W 1
p ((0, T ), Lq(Ω)),

and for simplicity we write W 2,1
q,p = W 2,1

q,p (Ω× (0, T )) for some T > 0 and W 2,1
p =
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W 2,1
p,p . We state only the case for the incompressible Navier-Stokes equations for

unbounded domain and the case where the surface tension is taken into account.
For one-phase ocean problems, Allain [2] proved local unique solvability when

n = 2. Tani [25] proved the local unique solvability inWα, α
2

2 with α ∈ (5/2, 3) when
n = 3. Beale [5] proved the global unique solvability in Wα, α

2
2 with α ∈ (3, 7/2)

when n = 3, provided that the initial data are sufficiently small. Beale and Nishida
[6] obtained the asymptotic power-like in time decay of the global solutions. Tani
and Tanaka [26] proved the global solvability in Wα, α

2
2 with α ∈ (5/2, 3) when

n = 3, provided that initial data are sufficiently small.
For two-phase problems, Denisova [9, 10] proved the local unique solvability

for arbitrary initial data in Wα, α
2

2 with α ∈ (5/2, 3) when n = 3. Denisova and
Solonnikov [11, 12] proved the local unique solvability for arbitrary initial data in
the Hölder spaces when n = 3. Tanaka [27] obtained the global unique solvability
in Wα, α

2
2 with α ∈ (5/2, 3) for small initial data when n = 3. Abels [1] considered

varifold and measure-valued varifold solutions for singular free interfaces. All of
these results except for [1] were obtained in the L2 framework or in the Hölder
space setting.

Prüss and Simonett [17, 18, 19] proved local unique solvability in W 2,1
p (p >

n+2) for two-phase free boundary problems with surface tension and gravity. They
proved the maximal regularity theorem relying on the H∞-calculus for linearized
problems and using the Hanzawa transform connecting a free boundary with a
fixed boundary.

In this paper, we prove a local unique existence theorem of (1.1) in the space
W 2,1

q,p (2 < p < ∞ and n < q < ∞) for any initial data that satisfy certain
compatibility conditions and for an initial domain as a bent space. Our approach
is completely different from Prüss and Simonett [17, 18, 19]; indeed, we prove
a maximal regularity theorem relying on the operator-valued Fourier multiplier
theorem from Weis [28] and Denk, Hieber and Prüss [13] for linearized problems
and using the Lagrangean transform connecting a free boundary with a fixed
boundary. We believe that solving the problem (1.1) in the spaceW 2,1

q,p is important
not only from the viewpoint of a lower regularity condition for the initial data but
also from the viewpoint of the scaling argument. When we consider the scaling for
positive parameter λ,

v(x, t) → vλ(x, t) = λv(λx, λ2t),

θ(x, t) → θλ(x, t) = λ2θ(λx, λ2t),

which maintains the problem (1.1) invariant. Since it holds that

‖vλ‖Lp((0,∞),Lq(Rn)) = λ1− 2
p−n

q ‖v‖Lp((0,∞),Lq(Rn)),

2
p

+
n

q
= 1 (1.2)

is the critical scale under the scaling.
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Before stating our main results, we first discuss the formulation of the prob-
lem (1.1) by the Lagrange coordinate, instead of the Euler coordinate. Aside from
the dynamical boundary condition, a further kinematic condition for Γ(t) is sat-
isfied that gives Γ(t) as a set of points x = x(ξ, t), ξ ∈ Γ(0), where x(ξ, t) is the
solution of the Cauchy problem:

dx

dt
= v(x, t), x|t=0 = ξ. (1.3)

This expresses the fact that the free surface Γ(t) exists for all t > 0 of the same
fluid particles, which do not leave it and are not incident on it from Ω(t).

From here, we write Ω = Ω(0) and Γ = Γ(0). The problem (1.1) can therefore
be written as an initial boundary value problem in the given region Ω if we go over
from Euler coordinates x ∈ Ω(t) to the Lagrange coordinates ξ ∈ Ω connected with
x by (1.3). If a velocity vector field u(ξ, t) = T (u1, . . . , un) is known as a function
of the Lagrange coordinates ξ, then this connection can be written in the form:

x = ξ +
∫ t

0

u(ξ, τ) dτ ≡ Xu(ξ, t). (1.4)

Passing to the Lagrange coordinates in (1.1) and setting θ(Xu(ξ, t), t) = π(ξ, t),
we obtain

ρ∂tu−DivS(u, π) = DivQ(u) +R(u)∇π in Ω, t > 0,

div u = E(u) = divẼ(u) in Ω, t > 0,

[[(S(u, π) +Q(u))νtu]]− σHνtu − [[ρ]]cgXu,nνtu = 0 on Γ, t > 0,

[[u]] = 0 on Γ, t > 0,

u|t=0 = u0(ξ) in Ω, (1.5)

where u0(ξ) = v0(x) and Xu,n stands for the n-th component of Xu. Moreover, νtu
stands for the unit outer normal to Γ(t) given by νtu = TA−1ν/|TA−1ν|, where ν
denotes the unit outer normal to Γ of Ω+, namely

ν = (
√

gα)−1(∇′α,−1), gα = 1 + |∇′α|2.
A is the matrix whose element {ajk} is the Jacobian of (1.4):

ajk =
∂xj

∂ξk
= δjk +

∫ t

0

∂uj

∂ξk
dτ,

and Q(u), R(π), E(u) and Ẽ(u) are nonlinear terms of the following form:

Q(u) = μV1

(∫ t

0

∇u dτ
)
∇u, R(u) = V2

(∫ t

0

∇u dτ
)
,

E(u) = V3

(∫ t

0

∇u dτ
)
∇u, Ẽ(u) = V4

(∫ t

0

∇u dτ
)
u, (1.6)

with some polynomials Vj(·) of
∫ t

0
∇u dτ , j = 1, 2, 3, 4, such as Vj(0) = 0 (cf.

Appendix in [20]).



Local Solvability of Free Boundary Problems 651

We discuss a local in time unique existence theorem for the problem (1.5)
instead of the problem (1.1). In order to state our main results precisely, we in-
troduce the function spaces. For the differentiations of scalar θ and n-vector of
function u = (u1, . . . , un), we use the following symbol:

∇θ = (∂1θ, . . . , ∂nθ), ∇2θ = (∂i∂jθ | i, j = 1, . . . n),

∇u = (∂iuj | i, j = 1, . . . , n), ∇2u = (∂i∂juk | i, j, k = 1, . . . , n).

Let Lq(G) and Wm
q (G) denote the usual Lebesgue space and Sobolev space on a

given domain G, while ‖·‖Lq(G) and ‖·‖W m
q (G) denote their norms, respectively. v ∈

Wm
q (Ṙn) means that v± ∈ Wm

q (Rn
±) while ‖v‖W m

q (Ṙn) = ‖v‖W m
q (Rn

+) +‖v‖W m
q (Rn

−).

Note that v ∈ W 1
q (Rn) is equivalent to v ∈ W 1

q (Ṙn) and [[v]] = 0. Given Banach
space X with norm ‖ · ‖X , Xn denotes the n-product space of X , while the norm
of Xn is denoted by ‖ · ‖X for simplicity, that is

Xn = {f = (f1, . . . , fn) | fi ∈ X}, ‖f‖X =
n∑

j=1

‖fj‖X for f = (f1, . . . , fn) ∈ Xn.

Set
Ŵ 1

q (G) = {θ ∈ Lq,loc(G) | ∇θ ∈ Lq(G)n}.
Let Ŵ−1

q (G) denote the dual space of Ŵ 1
q′ (G), where 1/q + 1/q′ = 1. For θ ∈

Ŵ−1
q (G) ∩ Lq(G), we have

‖θ‖Ŵ−1
q (G) = sup

{∣∣∣∫
G

θϕ dx
∣∣∣ | ϕ ∈ Ŵ 1

q′(G), ‖∇ϕ‖Lq′ (G) = 1
}
.

For 1 ≤ p ≤ ∞, Lp(R, X) and Wm
p (R, X) denote the usual Lebesgue space and

Sobolev space of X-valued functions defined on the whole line R, and ‖ · ‖Lp(R,X)

and ‖ · ‖W m
p (R,X) denote their norms, respectively. Set

Lp,γ0(R, X) = {f : R → X | e−γtf(t) ∈ Lp(R, X) for any γ ≥ γ0},
Lp,γ0,(0)(R, X) = {f ∈ Lp,γ0(R, X) | f(t) = 0 for t < 0},
Wm

p,γ0
(R, X) = {f ∈ Lp,γ0(R, X) | e−γt∂j

t f(t) ∈ Lp(R, X)

for j = 1, . . . ,m and γ ≥ γ0},
Wm

p,γ0,(0)(R, X) =Wm
p,γ0

(R, X) ∩ Lp,γ0,(0)(R, X),

Lp,(0)(R, X) = Lp,0,(0)(R, X), Wm
p,(0)(R, X) =Wm

p,0,(0)(R, X).

Let L and L−1
λ denote the Laplace transform and its inverse transform, that is

L[f ](λ) =
∫ ∞

−∞
e−λtf(t) dt, L−1

λ [g](t) =
1
2π

∫ ∞

−∞
eλtg(λ) dτ, (1.7)

where λ = γ + iτ . Given s ∈ R and X-valued function f(t), we set

Λs
γf(t) = L−1

λ [|λ|sL[f ](λ)](t).
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We introduce the Bessel potential space ofX-valued functions of order s as follows:

Hs
p,γ0

(R, X) = {f : R → X | e−γtΛs
γf(t) ∈ Lp(R, X) for any γ ≥ γ0},

Hs
p,γ0,(0)(R, X) = {f ∈ Hs

p,γ0
(R, X) | f(t) = 0 for t < 0},

Hs
p,(0)(R, X) = Hs

p,0,(0)(R, X).

IfX is a UMD space and 1 < p <∞, then replacing the Fourier multiplier theorem
of S.G. Mihlin [15, 16] by that of J. Bourgain [7] in the paper due to A.P. Calderón
[8] about the Bessel potential space, we see that Hs

p,γ(R, X) is continuously imbed-
ded into Hr

p,γ(R, X) when s > r ≥ 0 and Hs
p,γ(R, X) = W s

p,γ(R, X) when s is a
non-negative integer. Moreover, the Sobolev imbedding theorem holds, that is if
1 < p < q <∞, s > r ≥ 0 and s− r = 1/p− 1/q, then Hs

p,γ(R, X) is continuously
imbedded into Hr

q,γ(R, X), and if 0 < s − 1/p < 1, then every function in Hs
p,γ

coincides almost everywhere with a Lipschitz continuous function of order s−1/p.
For notational simplicity, we write

W 2,1
q,p,γ0

(G× R) = Lp,γ0(R,W
2
q (G)) ∩W 1

p,γ0
(R, Lq(G)),

W 2,1
q,p,γ0,(0)(G× R) = Lp,γ0,(0)(R,W 2

q (G)) ∩W 1
p,γ0,(0)(R, Lq(G)),

H1,1/2
q,p,γ0

(G× R) = Lp,γ0(R,W
1
q (G)) ∩H

1
2
p,γ0(R, Lq(G)),

H
1,1/2
q,p,γ0,(0)(G× R) = Lp,γ0,(0)(R,W 1

q (G)) ∩H
1
2
p,γ0,(0)(R, Lq(G)),

W 2,1
q,p,(0)(G× R) =W 2,1

q,p,0,(0)(G× R), H
1,1/2
q,p,(0)(G× R) = H1,1/2

q,p,0,(0)(G× R).

The Bessel potential space H
1
2
p,γ0(R,W 1

q (G)) is obtained by complex interpolation:

H
1
2
p,γ0(R,W

1
q (G)) = [Lp,γ0(R,W

2
q (G)),W 1

p,γ0
(R, Lq(G))]1/2

where [·, ·]s denotes the complex interpolation functor (cf. Shibata-Shimizu [21]),
and therefore,

H
1
2
p,γ0(R,W

1
q (G)) ⊃W 2,1

q,p,γ0
(G× R). (1.8)

The following theorem is the main result in this paper.

Theorem 1.1. Let α ∈W 3−1/q
q (Rn−1), 2 < p <∞ and n < q <∞. Assume that

there exists constant K0 with 0 < K0 ≤ 1 such that ‖∇′α‖L∞(Rn−1) ≤ K0. Then
for any initial data u0 ∈ (Lq(Ω),W 2

q (Ω))1−1/p,p = B2(1−1/p)
q,p (Ω) which satisfies the

compatibility conditions:

div u0 = 0 in Ω, [[D(u0)ν − (D(u0)ν, ν)ν]] = 0 on Γ, [[u0]] = 0 on Γ, (1.9)

there exists T > 0 depending on ‖u0‖B
2(1−1/p)
q,p (Ω)

and ‖α‖
W

3−1/q
q (Rn−1)

such that
the problem (1.5) admits a unique solution

(u, π) ∈W 2,1
q,p (Ω× (0, T ))× Lp((0, T ), Ŵ 1

q (Ω)).

Here, (·, ·)1−1/p,p denotes the real interpolation functor.
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To prove Theorem 1.1, we use the contraction mapping principle based on
the Lp-Lq maximal regularity theorem of the following linearized problem:

ρ∂tu−DivS(u, π) = ρf in Ω, t > 0,
div u = fd in Ω, t > 0,
∂tη − ν · u = d on Γ, t > 0,

[[S(u, π)ν]]− (σΔΓ + [[ρ]]cg)η ν = [[h]] on Γ, t > 0,

[[u]] = 0 on Γ, t > 0,

u|t=0 = 0 in Ω,

η|t=0 = 0 on Γ. (1.10)

Theorem 1.2. Let 1<p,q<∞, n<r<∞ and q≤r. Assume that ‖α‖
W

3−1/r
r (Rn−1)

≤
M . Then there exist K0 with 0 < K0 ≤ 1 and γ0 > 1 depending on M , p, q and n
such that if ‖∇′α‖L∞(Rn−1) ≤ K0, then the following assertion holds: For f , fd, d
and h of (1.10) satisfying the conditions

f ∈ Lp,γ0,(0)(R, Lq(Ω))n, fd ∈ Lp,γ0,(0)(R,W 1
q (Ω)) ∩W 1

p,γ0,(0)(R, Lq(Ω)),

d ∈ Lp,γ0,(0)(R,W 2−1/q
q (Rn−1)), h ∈ H1,1/2

q,p,γ0,(0)(Ω× R)n,

the problem (1.10) admits a unique solution (u, π, η) such that

u ∈ W 2,1
q,p,γ0,(0)(Ω× R)n, π ∈ Lp,γ0,(0)(R, Ŵ 1

q (Ω)),

η ∈W 1
p,γ0,(0)(R,W

2−1/q
q (Rn−1)) ∩ Lp,γ0,(0)(R,W 3−1/q

q (Rn−1)).

Moreover there exists an extension of the pressure π̄ such that [[π̄]] = [[π]] and
π̄ ∈ H1,1/2

q,p,γ0,(0)(Ω× R). The solution satisfies the estimate

‖e−γt u‖W 2,1
q,p (Ω×R) + ‖e−γt∇π‖Lp(R,Lq(Ω)) + ‖e−γt π̄‖

H
1,1/2
q,p (Ω×R)

+ ‖e−γt(∂tη,∇′η)‖
Lp(R,W

2−1/q
q (Rn−1))

≤ C
(
‖e−γt f‖Lp(R,Lq(Ω)) + ‖e−γtd‖

Lp(R,W
2−1/q
q (Rn−1))

+ ‖e−γtfd‖Lp(R,W 1
q (Ω)) + ‖e−γt∂tf̄d‖Lp(R,Lq(Ω)) + ‖e−γth‖

H
1,1/2
q,p (Ω×R)

)
for all γ ≥ γ0, where positive constant C depends on M , γ0, p, q, and n.

In §2 and §3 we prove Theorem 1.2. In §2 we consider the Neumann problem
in a bent space and in §3 consider a problem with surface tension and gravity in
a bent space. In §4, we reduce the boundary condition to a linearized problem. §5
is devoted to initial flow. In §6, we solve the nonlinear problem by the contraction
mapping principle based on Theorem 1.2.
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2. Analysis in a bent space for the Neumann problem

In this section, we consider the Neumann problem in a bent space:

ρ∂tu−DivS(u, π) = ρf in Ω, t > 0,
div u = fd in Ω, t > 0,
[[S(u, π)ν]] = [[h]] on Γ, t > 0,
[[u]] = 0 on Γ, t > 0,
u|t=0 = 0 in Ω. (2.1)

We set

Ip,q,γ0(Ω× R) = {(f, fd, h) ∈ Lp,γ0,(0)(R, Lq(Ω))n × (Lp,γ0,(0)(R,W 1
q (Ω))

∩W 1
p,γ0,(0)(R, Ŵ

−1
q (Rn)))×H1,1/2

q,p,γ0,(0)(Ω× R)n},

Dp,q,γ0(Ω× R) = {(u, π, π̄) ∈ W 2,1
q,p,γ0,(0)(Ω× R)n × Lp,γ0,(0)(R, Ŵ 1

q (Ω))

×H1,1/2
q,p,γ0,(0)(Ω× R) | [[π̄]] = [[π]]}.

The following theorem is the main result in this section.

Theorem 2.1. Let 1 < p, q <∞, n < r <∞ and q ≤ r. Assume that
‖α‖

W
2−1/r
r (Rn−1)

≤M . Then there exist constants K0 with 0 < K0 ≤ 1 and γ0 > 0
depending on M , p, q and n such that if ‖∇′α‖L∞(Rn−1) ≤ K0, then the following
assertion holds: For (f, fd, h) ∈ Ip,q,γ0(Ω×R), the problem (2.1) admits a unique
solution (u, π, π̄) ∈ Dp,q,γ0(Ω× R) satisfying an estimate:

‖e−γt u‖W 2,1
q,p (Ω×R) + ‖e−γt∇π‖Lp(R,Lq(Ω)) + ‖e−γt π̄‖

H
1,1/2
q,p (Ω×R)

≤ C
(
‖e−γtf‖Lp(R,Lq(Ω)) + ‖e−γtfd‖Lp(R,W 1

q (Ω))

+ ‖e−γt(∂tfd, γfd)‖Lp(R,Ŵ−1
q (Rn)) + ‖e−γth‖

H
1,1/2
q,p (Ω×R)

)
for any γ ≥ γ0, where C is a positive constant depending on M , p, q and n.

Let

Ṙn = Rn \ Rn
0 = Rn

+ ∪ Rn
−,

Rn
0 = {x = (x′, xn) ∈ Rn | xn = 0, x′ ∈ Rn−1},

Rn
± = {x = (x′, xn) ∈ Rn | ±xn > 0, x′ ∈ Rn−1}.

In order to prove Theorem 2.1, we based our argument on the maximal Lp-Lq

regularity result of the Neumann problem with the plainer interface Rn
0 :

ρ∂tu−DivS(u, p) = ρf, in Ṙn, t > 0,

div u = fd in Ṙn, t > 0,
[[S(u, p)ν0]] = [[h]] on Rn

0 , t > 0,
[[u]] = 0 on Rn

0 , t > 0,

u|t=0 = 0 in Ṙn, (2.2)
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where ν0 = T (0, . . . , 0,−1). We set

Ip,q(Ṙn × R) = {(f, fd, h) ∈ Lp,(0)(R, Lq(Ṙn))n × (Lp,(0)(R,W 1
q (Ṙn))

∩W 1
p,(0)(R, Ŵ

−1
q (Rn)))×H1,1/2

q,p,(0)(Ṙ
n × R)n},

Dp,q(Ṙn × R) = {(u, π, π̄) ∈W 2,1
q,p,(0)(Ṙ

n × R)n × Lp,(0)(R, Ŵ 1
q (Ṙn))

×H1,1/2
q,p,(0)(Ṙ

n × R) | [[π̄]] = [[π]]}.

We obtained the following result (cf. Theorem 1.2 in [23]).

Theorem 2.2. Let 1 < p, q < ∞. For (f, fd, h) ∈ Ip,q(Ṙn × R), the problem (2.2)
admits a unique solution (u, π, π̄) ∈ Dp,q(Ṙn × R) satisfying the estimate:

‖e−γt u‖W 2,1
q,p (Ṙn×R) + ‖e−γt∇π‖Lp(R,Lq(Ṙn))

+ ‖e−γt π̄‖
H

1,1/2
q,p (Ṙn×R)

+ ‖γe−γt u‖Lp(R,Lq(Ṙn))

≤C(‖e−γtf‖Lp(R,Lq(Ṙn)) + ‖e−γtfd‖Lp(R,W 1
q (Ṙn))

+ ‖e−γt(∂tfd, γfd)‖Lp(R,Ŵ−1
q (Rn)) + ‖e−γth‖

H
1,1/2
q,p (Ṙn×R)

)

for any γ ≥ γ0, where C is a positive constant depending on p, q and n.

For a function α(x′) defined on x′ ∈ Rn−1, we have an extension A±(x).

Lemma 2.3. Let n < r < ∞ and 0 < ε < 1. For α ∈ W 2−1/r
r (Rn−1), there exists

A±(x) ∈ W 2
r (Rn

±) which satisfies A±|xn=±0 = α, ‖∂nA±‖L∞(Rn
±) ≤ ε and

‖A±‖Lr(Rn
±) ≤ C‖α‖Lr(Rn−1),

‖∇kA±‖Lr(Rn
±) ≤ C‖α‖W

k−1/r
r (Rn−1)

, k = 1, 2. (2.3)

Proof. For ±xn > 0, if we set

A±(x) = 2Fξ′ [e∓
√

1+|ξ′|2xnα̂(ξ′)](x′)−Fξ′ [e∓2
√

1+|ξ′|2xn α̂(ξ′)](x′),

then A± satisfies A±|xn=±0 = α, ∂nA±|xn=±0 = 0. For A±(x′, sxn), since we can
take s > 0 so small as

|∂nA±(x′, sxn)| ≤ s‖∂nA±‖L∞(Rn
±) ≤ s‖A±‖W 2

r (Rn
±) ≤ ε,

it holds that ‖∂nA±‖L∞(Rn
±) ≤ ε. For the estimate (2.3), see, e.g., §2, Theorem 8.2

in [14]. �

In what follows, we prove Theorem 2.1. For A±(y) defined in Lemma 2.3, we
set A(y) = A+(y), yn > 0, A(y) = A−(y), yn < 0. Let us consider the map x ∈
Ω → Ṙn � y defined by the formula: x = T (y′, yn + A(y)) with y′ = (y1, . . . , yn).
If we set f(yn) = yn +A(·, yn), then by Lemma 2.3,

∂nf = 1 + ∂nA ≥ 1− ‖∂nA‖L∞(Ṙn) ≥
1
2
,
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it follows that f(yn) is a strictly monotone increasing function. Therefore there
exists an inverse function yn = f−1(·, xn) which satisfies

yn > 0 ⇒ xn > A+(y′, 0) = α(x′),

yn < 0 ⇒ xn < A−(y′, 0) = α(x′).

This shows that Ω and Ṙn are homeomorphic.
By using

∂yn
∂xj

= − ∂jA

1 + ∂nA
,
∂yn
∂xn

=
1

1 + ∂nA
= 1− ∂nA

1 + ∂nA
,

by the chain rule we have
∂

∂xj
=
∂

∂yj
− ∂jA

1 + ∂nA

∂

∂yn
,

∂

∂xn
=

∂

∂yn
− ∂nA

1 + ∂nA

∂

∂yn
. (2.4)

We set y = Φ(x) = T (x′, xn − A(x′, f−1(x)). For (u, π, π̄) ∈ Dp,q,γ0(Ω× R) which
satisfy (2.1), we set

v(y) = u ◦Φ−1(y) = u(x), θ(y) = π ◦ Φ−1(y) = π(x).

Then by (2.4), (2.1) is equivalent to the equation:

ρ∂tv − DivS(v, θ) = ρf̃ + F (v, θ) in Ṙn, t > 0,

div v = (1 + ∂nA)f̃d + Fd(v) in Ṙn, t > 0,

[[S(v, θ)ν0]] = [[H0 +H(v)]] on Rn
0 , t > 0,

[[v]] = 0 on Rn
0 , t > 0,

v|t=0 = 0 in Ṙn, (2.5)

where f̃ = f ◦Φ−1, f̃d = fd◦Φ−1, and F = T (F1, . . . , Fn), Fd,H0 = T (H0
1 , . . . , H

0
n)

and H = T (H1, . . . , Hn) are given by

F±i(v, θ) = −μ±
n∑

�=1

∂�

(
∂�A

1 + ∂nA
∂nvi +

∂iA

1 + ∂nA
∂nv�

)

−
n∑

�=1

∂�A

1 + ∂nA
∂n

{
μ±

(
∂�vi + ∂iv� −

∂�A

1 + ∂nA
∂nvi −

∂iA

1 + ∂nA
∂nv�

)
− δi�θ

}
,

i = 1, . . . , n,

Fd(v) =
n∑

j=1

∂n(∂jAvj)−
n∑

j=1

∂j(∂nAvj),

H0
±i =

√
gα(h̃±i + ∂nAh̃±n), i = 1, . . . , n− 1, h̃i = hi ◦ Φ−1, h̃n = hn ◦ Φ−1,

H0
±n =

√
gαh̃±n,

H±i(v) = 2μ±∂iA∂nvn −B±i(v)− ∂iAB±n(v), i = 1, . . . , n− 1,

H±n(v) = −B±n(v),
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B±i(v) =μ±

(
∂nA

1 + ∂nA
∂nvi +

∂iA

1 + ∂nA
∂ivn

)
+ μ±

n−1∑
�=1

∂�A

(
∂�vi + ∂iv� −

∂�A

1 + ∂nA
∂nvi −

∂iA

1 + ∂nA
∂nv�

)
,

i = 1, . . . , n− 1,
B±n(v) =2μ±

∂nA

1 + ∂nA
∂nvn

+ μ±
n−1∑
�=1

∂�A

(
∂�vn + ∂nv� −

∂�A

1 + ∂nA
∂�vn −

∂nA

1 + ∂nA
∂nv�

)
. (2.6)

By using Theorem 2.2, we solve (2.5) by the contraction mapping principle. Given
(v, θ, θ̄) ∈ Dp,q(Ṙn × R), let (w, κ, κ̄) be a solution to the equation:

ρ∂tw −DivS(w, κ) = ρf̃ + F (v, θ) in Ṙn, t > 0

divw = (1 + ∂nA)f̃d + Fd(v) in Ṙn, t > 0

[[S(w, κ)ν0]] = [[H0 +H(v)]] on Rn
0 , t > 0

[[w]] = 0 on Rn
0 , t > 0.

w|t=0 = 0 in Rn
0 . (2.7)

We remark that if fd ∈W 1
p,(0)(R, Ŵ

−1
q (Rn)), then

(1 + ∂nA)f̃d ∈W 1
p,(0)(R, Ŵ

−1
q (Rn)). (2.8)

Indeed, for ϕ ∈ Ŵ 1
q′(Ω) we set ψ(y) = ϕ ◦ Φ−1(y) = ϕ(x). We have∫

Ω

fd(x)ϕ(x) dx =
∫

Ṙn

f̃d(y)ψ(y)(1 + ∂nA) dy

because of the Jacobian det ∂x
∂y = 1 + ∂nA. Therefore it holds that

|((1 + ∂nA)f̃d, ψ)
Ṙn | = |(fd, ϕ)Ω| ≤ ‖fd‖W−1

q (Rn)‖∇ϕ‖Lq′(Rn)

≤ C‖fd‖W−1
q (Rn)‖∇ψ‖Lq′(Rn),

which shows

‖(1 + ∂nA)f̃d‖W 1
p (R,Ŵ−1

q (Rn)) ≤ C‖fd‖W 1
p (R,Ŵ−1

q (Rn)). (2.9)

Also we have

‖(1 + ∂nA)f̃d‖Lp(R,W 1
q (Ṙn)) ≤ C‖fd‖Lp(R,W 1

q (Ω)). (2.10)

For notational simplicity we set

K1 = ‖∇A‖L∞(Ṙn), K2 = ‖A‖W 2
r (Ṙn).

We may assume that 0 < K1 < 1 a priori, and therefore K�
1 ≤ K1 for � ≥ 1. For

a ∈ Lr(Ṙn) and b ∈ Lp,(0)(R,W 1
q (Ṙn)), we have

‖ab‖Lp(R,Lq(Ṙn)) ≤ C‖a‖Lr(Ṙn)‖b‖Lp(R,W 1
q (Ṙn)). (2.11)
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In fact, by the assumption q ≤ r, choosing s in such a way that 1/q = 1/r + 1/s,
noting that n(1/q − 1/s) = n/r < 1 and using the Hölder inequality and the
Sobolev imbedding theorem we have

‖ab(t)‖Lq(Ṙn) ≤ ‖a‖Lr(Ṙn)‖b(t)‖Ls(Ṙn) ≤ C‖a‖Lr(Ṙn)‖b(t)‖W 1
q (Ṙn).

Applying the Hölder inequality and the Sobolev imbedding theorem to F (v, θ) in
(2.6) and using (2.11), we see that

‖e−γtF (v, θ)‖Lp(R,Lq(Ṙn))

≤ C1K1‖e−γt(∂tv,∇2v,∇θ)‖Lp(R,Lq(Ṙn)) + C2K2‖e−γtv‖Lp(R,W 1
q (Ṙn)). (2.12)

Here and hereafter, C1 and C2 denote generic constants independent of K1 and
K2. By the interpolation inequality, it holds that

‖e−γt∇v‖Lq(Ṙn) ≤ ε‖e
−γt∇2v‖Lq(Ṙn) +

1
4ε
‖e−γtv‖Lq(Ṙn),

which implies

‖e−γt∇v‖Lp(R,Lq(Ṙn)) ≤ ε‖e
−γt∇2v‖Lp(R,Lq(Ṙn)) +

1
4εγ

‖γe−γtv‖Lp(R,Lq(Ṙn)).

(2.13)
Combining (2.12) and (2.13), we have

‖e−γtF (v, θ)‖Lp(R,Lq(Ṙn)) ≤ C1K1‖e−γt(∂tv,∇2v,∇θ)‖Lp(R,Lq(Ṙn))

+ C2K2

(
ε‖e−γt∇2v‖Lp(R,Lq(Ṙn)) +

C(ε) + 1
γ

‖γe−γtv‖Lp(R,Lq(Ṙn))

)
. (2.14)

The function Fd(v) is also expressed by Fd(v) = div F̃d(v). By (2.11) and (2.13)
we obtain

‖e−γt∂tF̃d(v)‖Lp(R,Lq(Ṙn)) ≤ C1K1‖e−γt∂tv‖Lp(R,Lq(Ṙn)), (2.15)

‖e−γt∇Fd(v)‖Lp(R,Lq(Ṙn)) ≤ C1K1‖e−γt∇2v‖Lp(R,Lq(Ṙn))

+ C2K2

(
ε‖e−γtv‖Lp(R,W 1

q (Ṙn)) +
C(ε) + 1
γ

‖γe−γtv‖Lp(R,Lq(Ṙn))

)
. (2.16)

Applying (2.11) to B(v) in (2.6), we see that

‖e−γt〈Dt〉
1
2B(v)‖Lp(R,Lq(Ṙn)) + ‖e−γt∇B(v)‖Lp(R,Lq(Ṙn))

≤ C1K1‖e−γt(∂tv, 〈Dt〉
1
2∇v,∇2v)‖Lp(R,Lq(Ṙn))

+ C2K2

(
‖e−γt〈Dt〉

1
2 v‖Lp(R,Lq(Ṙn)) + ‖e−γtv‖Lp(R,W 1

q (Ṙn))

)
.

By using the relation (cf. Proposition 2.6 in [21])

‖e−γt〈Dt〉
1
2 u‖Lp(R,Lq(Ṙn))

≤ CR− 1
2 ‖e−γt∂tu‖Lp(R,Lq(Ṙn)) + CR

1
2 ‖γe−γtu‖Lp(R,Lq(Ṙn)) (2.17)



Local Solvability of Free Boundary Problems 659

for every u ∈ H
1
2
p,(0)(R, Lq(Ṙn)), 1 ≤ R <∞ and (2.13), we obtain

‖e−γt〈Dt〉
1
2B(v)‖Lp(R,Lq(Ṙn)) + ‖e−γt∇B(v)‖Lp(R,Lq(Ṙn))

≤ C1K1‖e−γt(∂tv, 〈Dt〉
1
2∇v,∇2v)‖Lp(R,Lq(Ṙn))

+ C2K2

(
R− 1

2 ‖e−γt∂tv‖Lp(R,Lq(Ṙn)) + ε‖e−γt∇2v‖Lp(R,Lq(Ṙn))

+
C(ε) + 1
γ

‖γe−γtv‖Lp(R,Lq(Ṙn))

)
. (2.18)

Obviously we have

‖〈Dt〉
1
2H0‖Lq(Ṙn) + ‖∇H0‖Lp(R,Lq(Ṙn)) ≤ C‖(〈Dt〉

1
2 h̃,∇h̃)‖Lp(R,Lq(Ṙn)). (2.19)

For notational simplicity we set

[(v, θ, θ̄)]p,q,γ = ‖e−γt v‖W 2,1
q,p (Ṙn×R)

+ ‖e−γt∇θ‖Lp(R,Lq(Ṙn)) + ‖e−γt θ̄‖
H

1,1/2
q,p (Ṙn×R)

+ ‖γe−γt v‖Lp(R,Lq(Ṙn))

for (v, θ, θ̄) ∈ Dp,q(Ṙn×R) and for any γ ≥ 0. Applying Theorem 2.2 to (2.7) and
using (2.9), (2.10), (2.14)–(2.16), (2.18) and (2.19), we have

[(w, κ, κ̄)]p,q,γ (2.20)

≤ (C1K1 + C2K2ε+ C2K2R
− 1

2 + C2K2(R
1
2 + C(ε) + 1)γ−1)[(v, θ, θ̄)]p,q,γ + CIγ ,

where

Iγ = ‖e−γtf̃‖Lp(R,Lq(Ṙn)) + ‖e−γt(1 + ∂nA)f̃d‖W 1
p (R,Ŵ−1

q (Rn))

+ ‖e−γt(1 + ∂nA)f̃d‖Lp(R,W 1
q (Ṙn)) + ‖e−γt(〈Dt〉

1
2 fd,∇h̃)‖Lp(R,Lq(Ṙn))

for any γ ≥ 0. We define the map Φ on Dp,q(Ṙn × R) by Φ(v, θ, θ̄) = (w, κ, κ̄).
Since the equation (2.7) is linear, from (2.20) we have

[Φ(v1, θ1, θ̄1)− Φ(v2, θ2, θ̄2)]p,q,γ

≤ (C1K1 + C2K2ε+ C2K2R
− 1

2 + C2K2(R
1
2 + C(ε) + 1)γ−1

0 )

× [(v1, θ1, θ̄1)− (v2, θ2, θ̄2)]p,q,γ (2.21)

for any γ > γ0. After choosing K1, ε and R in such a way that

C1K1 ≤ 1/8, C2K2ε ≤ 1/8, C2K2R
− 1

2 ≤ 1/8,

we take γ0 in such a way that

C2K2(R
1
2 + C(ε) + 1)γ−1

0 ≤ 1/8.

Then (2.21) shows that Φ is a contraction map on Dp,q(Ṙn × R), and therefore
by the fixed point theorem of S. Banach, we see that the map Φ admits a unique
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fixed point (v, θ, θ̄) ∈ Dp,q(Ṙn×R), which solves the equation (2.5). Moreover from
(2.20) with (w, κ, κ̄) = (v, θ, θ̄) and C1K1+C2K2ε+C2K2R

− 1
2 +C2K2(R

1
2 +C(ε)+

1)γ−1
0 ≤ 1/2, we have [(v, θ, θ̄)]p,q,γ ≤ 2CIγ for γ ≥ γ0, from which Theorem 2.1

follows immediately.

3. Analysis in a bent space for a problem
with surface tension and gravity

In this section we consider the problem with surface tension and gravity in a bent
space:

ρ∂tu−DivS(u, π) = 0 in Ω, t > 0,
div u = 0 in Ω, t > 0,
∂tη − ν · u = d on Γ, t > 0,

[[S(u, π)ν]] − (σΔΓ + [[ρ]]cg)η ν = 0 on Γ, t > 0,

[[u]] = 0 on Γ, t > 0,

u|t=0 = 0 in Ω, η|t=0 = 0 on Γ. (3.1)

We set

Ep,q,γ0(Ω× R) = {(u, π, π̄, η) ∈ W 2,1
q,p,γ0,(0)(Ω× R)n × Lp,γ0,(0)(R, Ŵ 1

q (Ω))

×H1,1/2
q,p,γ0,(0)(Ω× R)× (W 1

p,γ0,(0)(R,W
2−1/q
q (Γ)) ∩ Lp,γ0,(0)(R,W 3−1/q

q (Γ)))

| [[π̄]] = [[π]]}.

The following theorem is the main result in this section.

Theorem 3.1. Let 1 < p, q <∞, n < r <∞ and q ≤ r. Assume that
‖α‖

W
3−1/r
r (Rn−1)

≤M . Then there exists constant K0 with 0 < K0 ≤ 1 and γ0 > 1
depending on M , p, q and n such that if ‖∇′α‖L∞(Rn−1) ≤ K0, then the following
assertion holds: For d ∈ Lp,γ0,(0)(R,W

2−1/q
q (Γ)), the problem (3.1) admits a unique

solution (u, π, π̄, η) ∈ Ep,q,γ0(Ω× R) satisfying the estimate:

‖e−γt u‖W 2,1
q,p (Ω×R) + ‖e−γt∇π‖Lp(R,Lq(Ω))

+‖e−γt π̄‖
H

1,1/2
q,p (Ω×R)

+‖e−γt(∂tη,∇′η)‖
Lp(R,W

2−1/q
q (Rn−1))

≤ C‖e−γtd‖
Lp(R,W

2−1/q
q (Rn−1))

for any γ ≥ γ0, where C is a constant depending on M , γ0, p, q and n.
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A proof of Theorem 1.2

Combining Theorem 2.1 and Theorem 3.1, we obtain Theorem 1.2.

In order to prove Theorem 3.1, we based our argument on the maximal Lp-Lq

regularity result of the problem with surface tension and gravity with plainer
interface in Rn:

ρ∂tu−DivS(u, π) = 0 in Ṙn, t > 0,

div u = 0 in Ṙn, t > 0,
∂tη − ν0 · u = d on Rn

0 , t > 0,

[[S(u, π)ν0]]− (σΔ′ + [[ρ]]cg)η ν0 = [[g]] on Rn
0 , t > 0,

[[u]] = 0 on Rn
0 , t > 0,

u|t=0 = 0 in Ṙn, η|t=0 = 0 on Rn−1, (3.2)

where ν0 = T (0, . . . , 0,−1). We set

Ep,q,γ0(Ṙ
n × R) = {(u, π, π̄, η) ∈ W 2,1

q,p,γ0,(0)(Ṙ
n × R)n × Lp,γ0,(0)(R, Ŵ 1

q (Ṙn))

×H1,1/2
q,p,γ0,(0)(Ṙ

n × R)× (W 1
p (R,W 2−1/q

q (Rn−1)) ∩ Lp(R,W 3−1/q
q (Rn−1)))

| [[π̄]] = [[π]]}.

We obtained the following result (cf. Theorem 1.4 in [23]).

Theorem 3.2. Let 1 < p, q <∞. There exists a constant γ0 > 1 depending on p, q
and n such that the following assertion holds: For d ∈ Lp,γ0,(0)(R,W

2−1/q
q (Rn−1))

and g∈H1,1/2
q,p,γ0(0)(Ṙ

n×R)n, the problem (3.2) admits a unique solution (u,π,π̄,η)∈
Ep,q,γ0(Ṙn×R) satisfying the estimate:

‖e−γt u‖W 2,1
q,p (Ṙn×R) + ‖e−γt∇π‖Lp(R,Lq(Ṙn))

+ ‖e−γt π̄‖
H

1,1/2
q,p (Ṙn×R)

+ ‖γe−γt u‖Lp(R,Lq(Ṙn))

+ ‖e−γt(∂tη,∇′η)‖
Lp(R,W

2−1/q
q (Rn−1))

≤ C
(
‖e−γtd‖

Lp(R,W
2−1/q
q (Rn−1))

+ ‖e−γtg‖
H

1,1/2
q,p (Ṙn×R)

)
for any γ ≥ γ0, where C is a constant depending on M , γ0, p, q and n.

In what follows, we prove Theorem 3.1. We use the same notation as in §2.
A Laplace-Beltrami operator on Γ is defined by

ΔΓη =
1√
g

n−1∑
j,k=1

∂j(
√

ggjk∂kη), gjk =
(1 + |∇′α|2)δjk − ∂jα∂kα

g
, g = 1 + |∇′α|2.
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We derive an equivalent equation to (3.1) in Ṙn. If we set

v(y) = u ◦ Φ−1(y) = u(x), θ(y) = p ◦ Φ−1(y) = p(x),

then by (2.4) we have

ρ∂tv −DivS(v, θ) = F (v, θ) in Ṙn, t > 0,

div v = Fd(v) in Ṙn, t > 0,

∂tη + vn = d+D(v) on Rn
0 , t > 0,

[[S(v, θ)ν0]]− (σΔ′ + [[ρ]]cg)η ν0 = [[H(v)]] + T (η)ν0 on Rn
0 , t > 0,

[[v]] = 0 on Rn
0 , t > 0,

v|t=0 = 0 in Ṙn, η|t=0 = 0 on Rn−1, (3.3)

where F (v, θ), Fd(v) and H(v) are same as in (2.6), D(v) and the nth component
of T (η) expressed by Tn(η) are given by

D(v) = (
√

g)−1(∇′α,
√

1 + |∇′α|2 − 1) · v,

Tn(η) = −σg−1|∇′α|2Δ′η − σg−2
n−1∑

j,k=1

∂jα∂kα∂j∂kη. (3.4)

We seek the solution of (3.3) by setting v = w + z and θ = κ+ τ such that (w, κ)
satisfies the Neumann problem:

ρ∂tw −DivS(w, κ) = F (w, κ) in Ṙn, t > 0,

divw = Fd(w) in Ṙn, t > 0,

[[S(w, κ)ν0]] = [[H(w)]] on Rn
0 , t > 0,

[[w]] = 0 on Rn
0 , t > 0,

w|t=0 = 0 in Ṙn, (3.5)

and (z, τ, η) satisfies the equation:

ρ∂tz −DivS(z, τ) = 0 in Ṙn, t > 0,

div z = 0 in Ṙn, t > 0,

∂tη + zn = d+D(z) on Rn
0 , t > 0,

[[S(z, τ)ν0]]− (σΔ′ + [[ρ]]cg)η ν0 = T (η)ν0 on Rn
0 , t > 0,

[[z]] = 0 on Rn
0 , t > 0,

z|t=0 = 0 in Ṙn, η|t=0 = 0 in Rn−1. (3.6)

Since we know the unique solvability of (3.5) because (3.5) is the same problem as
(2.5), we solve (3.6) by the contradiction mapping principle based on Theorem 3.2.
Given (v, θ, θ̄, η) ∈ Ep,q,γ0(Ṙn × R), let (w, κ, κ̄, ζ) ∈ Ep,q,γ0(Ṙn × R) be a unique
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solution to the equation:

ρ∂tw −DivS(w, κ) = 0 in Ṙn, t > 0,

divw = 0 in Ṙn, t > 0,

∂tη + wn = d+D(v) on Rn
0 , t > 0,

[[S(w, κ)ν0]]− (σΔ′ + [[ρ]]cg)ζ ν0 = T (η)ν0 on Rn
0 , t > 0,

[[w]] = 0 on Rn
0 , t > 0,

w|t=0 = 0 in Rn
0 , η|t=0 = 0 in Rn−1. (3.7)

The next lemma is proved in the same way as Lemma 2.3.

Lemma 3.3. Let 1 < r <∞, 0 < ε < 1 and α ∈ W 3−1/r
r (Rn−1). Then there exists

A±(x) ∈ W 3
r (Rn

±) which satisfies A±|xn=±0 = α, ‖∂nA±‖L∞(Rn
±) ≤ ε and

‖A±‖Lr(Rn
±) ≤ C‖α‖Lr(Rn−1),

‖∇kA±‖Lr(Rn
±) ≤ C‖α‖W

k−1/r
r (Rn−1)

, k = 1, 2, 3. (3.8)

Let φ(xn) be a function in C∞(R) such that φ(xn) = 1 when xn < 1 and
φ(xn) = 0 when xn > 2. We extend η to the function Y± defined on Rn

± by using
the formula

Y+(x, t) = φ(xn)L−1
λ F−1

ξ′ [e−(1+|ξ′|2)1/2xnLFξ′ [η](ξ′, λ)](x′, t) xn > 0,

Y−(x, t) = 0 xn < 0,

where Fx′ and F−1
ξ′ denote the Fourier transform and its inversion transform with

respect to x′, and L and L−1
λ denote the Laplace transform and its inversion

transform defined by (1.7). We know that

[[Y ]] = η, ‖Y ‖W �
q (Ṙn) ≤ C‖η‖W

�−1/q
q (Rn−1)

, � = 1, 2, 3. (3.9)

For the estimate of D(v) and T (η) in (3.7), we use extended functions A and
Y instead of α and η:

D(v) = (
√

gA)−1(∇′A,
√

1 + |∇′A|2 − 1) · v, gA = 1 + |∇′A|2,

Tn(η) = −σg−1
A |∇′A|2Δ′Y − σg−2

A

n−1∑
j,k=1

∂jA∂kA∂j∂kY.

We set

K1 = ‖∇A‖L∞(Ṙn), K2 = ‖A‖W 3
r (Ṙn).

By the Sobolev imbedding theorem under the assumption n < r <∞ we have

‖A‖W 2∞(Ṙn) ≤ CK2. (3.10)
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We assume that 0 < K1 < 1 a priori, and therefore K�
1 ≤ K1 for � ≥ 1. Using

(2.11) and (3.10) we have

‖e−γtD(v)‖Lp(R,W 2
q (Ṙn))

≤ C1K1‖e−γt∇2v‖Lp(R,Lq(Ṙn)) + C2K2‖e−γtv‖Lp(R,W 1
q (Ṙn)), (3.11)

‖e−γt(〈Dt〉
1
2T (Y ),∇T (Y ))‖Lp(R,Lq(Ṙn))

≤ C1K1‖e−γt(〈Dt〉
1
2Y,∇′Y )‖Lp(R,W 2

q (Rn−1)) + C2K2‖e−γtY ‖Lp(R,W 2
q (Rn−1))

(3.12)

for γ ≥ γ0. For notational simplicity we set

[(v, θ, θ̄, η)]p,q,γ0

= ‖e−γt v‖W 2,1
q,p (Ṙn×R) + ‖e−γt∇θ‖Lp(R,Lq(Ṙn)) + ‖e−γt θ̄‖

H
1,1/2
q,p (Ṙn×R)

+ ‖γe−γt v‖Lp(R,Lq(Ṙn)) + ‖e−γt(∂tη,∇η)‖Lp(R,W
2−1/q
q (Ṙn−1))

for (v, θ, θ̄, η) ∈ Ep,q,γ0(Ṙn × R) and γ ≥ γ0. Applying Theorem 3.2 to (3.7) and
using (3.11) and (3.12), for any γ ≥ γ0 with γ0 ≥ 1 we have

[(w, κ, κ̄, ζ)]p,q,γ0 ≤ (C1K1 + C2K2ε+ C2K2(C(ε) + 1)γ−1
0 )[(v, θ, θ̄, η)]p,q,γ0

+ C‖d‖
Lp(R,W

2−1/q
q (Rn−1))

. (3.13)

We define the map Φ on Ep,q,γ0(Ṙn × R) by Φ(v, θ, θ̄, η) = (w, κ, κ̄, ζ). Since the
equation (3.7) is linear, from (3.13) we have

[Φ(v1, θ1, θ̄1, η1)− Φ(v2, θ2, θ̄2, η2)]p,q,γ0

≤ (C1K1 + C2K2ε+ C2K2(C(ε) + 1)γ−1
0 )[(v1, θ1, θ̄1, η1)− (v2, θ2, θ̄2, η2)]p,q,γ0

(3.14)

for any γ ≥ γ0. After choosing K1 and ε in such a way that

C1K1 ≤ 1/8, C2K2ε ≤ 1/8,

we take γ0 in such a way that

C2K2(C(ε) + 1)γ−1
0 ≤ 1/4.

Then (3.14) shows that Φ is a contraction map on Ep,q,γ0(Ṙ
n×R), and therefore by

the fixed point theorem of S. Banach, we see that the map Φ admits a unique fixed
point (v, θ, θ̄, η) ∈ Ep,q,γ0(Ṙ

n×R), which solves the equation (3.6). Moreover from
(3.13) with (w, κ, κ̄, ζ) = (v, θ, θ̄, η) and C1K1+C2K2ε+C2K2(C(ε)+1)γ−1

0 ≤ 1/2,
we have [(v, θ, θ̄, η)]p,q,γ0 ≤ 2C‖e−γtd‖

Lp(R,W
2−1/q
q (Rn−1))

, from which Theorem 3.1
follows immediately.
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4. Reduction of the boundary condition to linearized problems

In this section, we shall discuss the reduction of the boundary condition

[[(S(u, π) +Q(u))νtu]]− σHνtu − [[ρ]]cgXu,nνtu = 0, (4.1)

which is the first key step in our proof of Theorem 1.1. Let Πt and Π be projections
to tangent hyperplanes of Γ(t) and Γ, which are defined by

Πtd = d− (d, νtu)νtu, Πd = d− (d, ν)ν (4.2)

for an arbitrary vector field d defined on Γ(t) and Γ, respectively. We know the
following fact (cf. Solonnikov [24] and Shibata-Shimizu [22, Appendix]).

Lemma 4.1. If νt · ν �= 0, then for arbitrary vector d, d = 0 is equivalent to

ΠΠtd = 0, ν · d = 0. (4.3)

We apply Lemma 4.1 for (4.1). Since we obtain

[[Πt(μD(u) +Q(u))νtu]] = 0 (4.4)

by applying Πt to the left-hand side of (4.1), the first equation of (4.3) for (4.1)
is given by

[[ΠμD(u)ν]] = −[[Π(Πt −Π)(μD(u)νtu) + Π(μD(u)(νtu − ν)) + ΠΠt(Q(u)νtu)]],
(4.5)

where we have used ΠΠ = Π.
On the other hand, we consider the inner product of the boundary condition

with ν. Using the fact that Hνtu = ΔΓ(t)Xu and substituting (1.4) for (4.1), we
obtain

[[ν · (S(u, π) +Q(u))νtu]]− σν · (ΔΓ(t) −ΔΓ)
(
ξ +

∫ t

0

u(ξ, τ) dτ
)

− σν ·ΔΓ

(
ξ +

∫ t

0

u(ξ, τ) dτ
)
− [[ρ]]cgν ·

(
ξn +

∫ t

0

un(ξ, τ) dτ
)
νtu = 0. (4.6)

Taking a commutator between ΔΓ and ν·, we have

ν ·ΔΓ

∫ t

0

u dτ = ΔΓ

(∫ t

0

ν ·u dτ
)
− (ΔΓν) ·

∫ t

0

u dτ −2
(
∇Γ ·

∫ t

0

u dτ
)
∇Γ ·ν. (4.7)

By (4.6) and (4.7), we obtain

[[ν · S(u, π)ν]]− σΔΓ

∫ t

0

ν · u dτ

+ σ
{

ΔΓν ·
∫ t

0

u dτ + ν · (ΔΓ −ΔΓ(t))
∫ t

0

u dτ + ν · (ΔΓ −ΔΓ(t))ξ
}

= [[ν · S(u, π)(ν − νtu)− ν ·Q(u)νtu]] + σH0(Γ) + [[ρ]]cgξn

+ [[ρ]]cg
∫ t

0

un dτ ν · νtu + [[ρ]]cgξn ν · (νtu − ν)− 2σ
(
∇Γ ·

∫ t

0

u dτ
)
∇Γ · ν,

(4.8)
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where we have used ν ·ΔΓξ = H0(Γ). We denote the terms in the bracket of the
left-hand side of (4.8) by F (u), that is

F (u) = ΔΓν ·
∫ t

0

u dτ + ν · (ΔΓ −ΔΓ(t))
∫ t

0

u dτ + ν · (ΔΓ −ΔΓ(t))ξ.

In (4.8), since ΔΓ(t) and ΔΓ contain the second-order tangential derivatives of Xu,
in order to avoid the loss of regularity we apply the inverse operator (m−ΔΓ)−1

with sufficiently large number m to F (u). Namely, we proceed as follows:

[[ν · S(u, π)ν]] + σ(m−ΔΓ)
(∫ t

0

ν · u dτ + (m−ΔΓ)−1F (u)
)
− σm

∫ t

0

ν · u dτ

= [[ν · S(u, π)(ν − νtu)− ν ·Q(u)νtu]] + σH0(Γ) + [[ρ]]cgξn

+ [[ρ]]cg
∫ t

0

un dτ ν · νtu + [[ρ]]cgξn ν · (νtu − ν)− 2σ
(
∇Γ ·

∫ t

0

u dτ
)
∇Γ · ν.

(4.9)

We introduce a function η by the formula

η =
∫ t

0

ν · u dτ + (m−ΔΓ)−1F (u) on Γ. (4.10)

Then, from (4.9) and (4.10), we obtain the two equations on the boundary Γ as
follows:

[[ν · S(u, π)ν]] + σ(m−ΔΓ)η

= [[ν · S(u, π)(ν − νtu)− ν ·Q(u)νtu]] + σH0(Γ) + [[ρ]]cgξn

+ [[ρ]]cg
∫ t

0

un dτ ν · νtu + [[ρ]]cgξn ν · (νtu − ν)− 2σ
(
∇Γ ·

∫ t

0

u dτ
)
∇Γ · ν

+ σm
∫ t

0

ν · u dτ, (4.11)

∂tη − ν · u = (m−ΔΓ)−1Ḟ (u), (4.12)

where Ḟ (u) denotes the derivative of F (u) with respect to t.
Finally we arrive at the equivalent equation to (1.5) as follows:

ρ∂tu−DivS(u, π) = DivQ(u) +R(u)∇π in Ω, t > 0,

div u = E(u) = divẼ(u) in Ω, t > 0,

∂tη − ν · u = G(u) on Γ, t > 0,

[[ΠμD(u)ν]] = [[Ht(u)]] on Γ, t > 0,

[[ν · S(u, π)ν]] + σ(m−ΔΓ)η = [[Hn(u, π)]] + σH0(Γ) + [[ρ]]cgξn on Γ, t > 0,

[[u]] = 0 on Γ, t > 0,

u|t=0 = u0(ξ) in Ω, η|t=0 = 0 on Γ, (4.13)



Local Solvability of Free Boundary Problems 667

where

G(u) = (m−ΔΓ)−1Ḟ (u),

Ḟ (u) = ΔΓν · u− ν · Δ̇Γ(t)

∫ t

0

u dτ + ν · (ΔΓ −ΔΓ(t))u− ν · Δ̇Γ(t)ξ,

[[Ht(u)]] = −[[Π(Πt −Π)(μD(u)νtu) + Π(μD(u)(νtu − ν)) + ΠΠt(Q(u)νtu)]],

[[Hn(u, π)]] = [[ν · S(u, π)(ν − νtu)− ν · (Q(u)νtu)]]

+ [[ρ]]cg
∫ t

0

un dτ ν · νtu + [[ρ]]cgξn ν · (νtu − ν)

− 2σ
(
∇Γ ·

∫ t

0

u dτ
)
∇Γ · ν + σm

∫ t

0

ν · u dτ,

and Q(u), R(u), E(u) and Ẽ(u) are nonlinear terms defined by (1.6).

5. Initial flow

In this section, we shall discuss the initial flow to reduce the problem (4.13) to the
case where u0(ξ) = 0 and σH0(Γ) + [[ρ]]cgξn = 0. We study the problem in two
steps.

Step 1. Let (u1, π1) be a solution to the problem:

ρλu1 −Div S(u1, π1) = 0 in Ω,
div u1 = 0 in Ω,

[[S(u1, π1)ν]] = (σH0(Γ) + [[ρ]]cgξn)ν on Γ,

[[u1]] = 0 on Γ. (5.1)

If positive number λ is large enough, then we know that (5.1) admits a unique
solution

(u1, π1) ∈W 2
q (Ω)× Ŵ 1

q (Ω)

which satisfies the estimate

|λ|‖u1‖Lq(Ω) + ‖∇2u1‖Lq(Ω) + ‖∇π1‖Lq(Ω)

≤ C1(σ‖H0(Γ)‖
W

1−1/q
q (Γ)

+ cg‖α‖W
1−1/q
q (Γ)

). (5.2)

Step 2. We consider the linear time-dependent problem in the time interval (0, 2):

ρ∂tu2 −Div S(u2, π2) = −ρλu1 in Ω× (0, 2),

div u2 = 0 in Ω× (0, 2),

[[S(u2, π2)ν]] = 0 on Γ× (0, 2),

[[u2]] = 0 on Γ× (0, 2),

u2|t=0 = u0(ξ)− u1(ξ) in Ω. (5.3)
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In order to treat (5.3), we discuss an analytic semigroup to the initial boundary
value problem

ρ∂tu−DivS(u, π) = 0 div u = 0 in Ω, t > 0,

[[S(u, π)ν]] = 0 [[u]] = 0 on Γ, t > 0,

u|t=0 = u0 in Ω. (5.4)

A corresponding resolvent problem to (5.4) is

λu − 1
ρ
DivS(u, π) = u0 div u = 0 in Ω,

[[S(u, π)ν]] = 0 [[u]] = 0 on Γ. (5.5)

Let us introduce the Helmholtz decomposition

Lq(Ω)n = Jq(Ω)⊕Gq(Ω) (5.6)

for 1 < q <∞, where ⊕ is the direct sum and

Jq(Ω) = {u ∈ C∞
0 (Ω)n | div u = 0 in Ω} ‖·‖Lq(Ω)

,

Gq(Ω) = {∇π | π ∈ Ŵ 1
q (Ω), [[π]] = 0}.

Let us define the solution operator K from W 2
q (Ω)n into Ŵ 1

q (Ω) by the formula
K(u) = π:

Δπ = 0 in Ω,

[[π]] = [[ν · μD(u)ν − div u]] on Γ,

[[ρ−1∂νπ]] = [[ρ−1ν · (μDivD(u)−∇div u)]] on Γ.

We introduce an operator Aq and the domain D(Aq):

Aqu = −DivS(u,K(u)) for u ∈ D(Aq),

D(Aq) = {u ∈ Jq(Ω) ∩W 2
q (Ω)n | [[S(u,K(u))ν]] = 0, [[u]] = 0}.

By a similar argument as §3 in [21] we obtain the following.

Theorem 5.1.

(1) The operator Aq generates an analytic semigroup {e−tAq}t≥0 on Jq(Ω).

(2) If u0 ∈ (Jq(Ω),D(Aq))1−1/p,p, then (5.4) admits a unique solution (u, π, π̄) ∈
Dp,q,γ0(Ω× R) which satisfies the estimate

‖e−γt u‖W 2,1
q,p (Ω×R) + ‖e−γt∇π‖Lp(R,Lq(Ω)) + ‖e−γt π̄‖

H
1,1/2
q,p (Ω×R)

≤ C‖u0‖(Jq(Ω),D(Aq))1−1/p,p

for any γ ≥ γ0.
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If the initial data u0 ∈ (Lq(Ω),W 2
q (Ω))1−1/p,p = B

2(1−1/p)
q,p (Ω) satisfies the

compatibility condition (1.9), then by Theorem 5.1 we know that the problem
(5.3) admits a unique solution

u2 ∈W 2,1
q,p (Ω× (0, 2)), π2 ∈ Lp((0, 2), Ŵ 1

q (Ω)).

Moreover there exists π̄2 ∈ H1,1/2
q,p (Ω × (0, 2)) such that [[π̄]] = [[π2]]. (u2, π2, π̄2)

satisfies the estimate

‖u2‖W 2,1
q,p (Ω×(0,2)) + ‖π2‖Lp((0,2),Ŵ 1

q (Ω)) + ‖π̄2‖H
1,1/2
q,p (Ω×(0,2))

≤ C2‖u0 + u1‖B
2(1−1/p)
q,p (Ω))

. (5.7)

If we set z = u1 + u2 and τ = π1 + π2, then (z, τ) satisfies the time-dependent
linear equation in the time interval (0, 2):

ρ∂tz −Div S(z, τ) = 0 in Ω× (0, 2),

div z = 0 in Ω× (0, 2),

[[S(z, τ)ν]] = (σH0(Γ) + [[ρ]]cgξn)ν on Γ× (0, 2),

[[z]] = 0 on Γ× (0, 2),

z|t=0 = u0 in Ω. (5.8)

z is our initial flow.
Now, we look for a solution (u, π) of the equation (4.13) of the form: u = z+w

and π = τ + κ in the time interval (0, T ) with 0 < T ≤ 1. Setting τ̄ = π1 + π̄2, we
see that w, κ and η should satisfy the equations:

ρ∂tw −Div S(w, κ) = DivQ(z + w) +R(z + w)∇(τ + κ) in Ω× (0, T ),

divw = E(z + w) = divẼ(z + w) in Ω× (0, T ),

∂tη − ν · w = G(z + w) + ν · z on Γ× (0, T ),

[[ΠμD(w)ν]] = [[Ht(z + w)]] on Γ× (0, T ),

[[ν · S(w, κ)ν]] + σ(m−ΔΓ)η = [[Hn(z + w, τ̄ + κ)]] on Γ× (0, T ),

[[w]] = 0 on Γ× (0, T ),

w|t=0 = 0 in Ω, η|t=0 = 0 on Γ. (5.9)

6. The nonlinear problem

In this section we solve (5.9), namely we shall prove the following theorem.

Theorem 6.1. Let 2 < p < ∞ and n < q < ∞. Let (u1, π1) be a solution of
(5.1) and (u2, π2, η2) be a solution of (5.3). Then there exists T > 0 depending on
‖u0‖B

2(1−1/p)
q,p (Ω)

and ‖α‖
W

3−1/q
q (Rn−1)

such that (5.9) admits a unique solution

w ∈W 2,1
q,p (Ω× (0, T ))n, κ ∈ Lp((0, T ), Ŵ 1

q (Ω)),

η ∈ W 1
p ((0, T ),W 2−1/q

q (Γ)) ∩ Lp((0, T ),W 3−1/q
q (Γ)).
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We prove Theorem 6.1 by using the maximal Lp-Lq regularity theorem. If
e−γ0tu ∈ Lp(R, Lq(Ω)) for γ0 > 1, then u ∈ Lp((0, T ), Lq(Ω)) for any T with
0 < T <∞, because it holds that∫ T

0

‖u‖p
Lq(Ω) dt =

∫ T

0

‖epγ0te−γ0tu‖p
Lq(Ω) dt

≤ epγ0T

∫ ∞

0

‖e−γ0tu‖p
Lq(Ω) dt

≤ C‖e−γ0tu‖Lp(R,Lq(Ω)).

Therefore as a corollary of Theorem 1.2 with q = r, it holds that the maximal
regularity of (1.10) is local in time.

Theorem 6.2. Let 1 < p, q < ∞. If the right-hand members f , fd, d and h of
(1.10) satisfy the conditions

f ∈ Lp((0, T ), Lq(Ω))n, fd ∈ Lp((0, T ),W 1
q (Ω)) ∩W 1

p ((0, T ), Ŵ−1
q (Rn)),

d ∈ Lp((0, T ),W 2−1/q
q (Γ)), h ∈ H1,1/2

q,p (Ω× (0, T ))n

and compatibility conditions

f̄d|t=0 = 0, h|t=0 = 0,

then (1.10) admits a unique solution (u, π, η):

u ∈W 2,1
q,p (Ω× (0, T )), π ∈ Lp((0, T ), Ŵ 1

q (Ω)),

η ∈ W 1
p ((0, T ),W 2−1/q

q (Γ)) ∩ Lp((0, T ),W 3−1/q
q (Γ)).

Moreover there exists [[π̄]] = [[π]] such that π̄ ∈ H1,1/2
q,p (Ω × (0, T )). The solutions

satisfy the estimate

‖u‖W 2,1
q,p (Ω×(0,T )) + ‖∇π‖Lp((0,T ),Lq(Ω)) + ‖π̄‖

H
1,1/2
q,p (Ω×(0,T ))

+ ‖∂tη‖Lp((0,T ),W
2−1/q
q (Γ))

+ ‖η‖
Lp((0,T ),W

3−1/q
q (Γ))

≤ C
(
‖f‖Lp((0,T ),Lq(Ω)) + ‖d‖

Lp((0,T ),W
2−1/q
q (Γ))

+ ‖fd‖Lp((0,T ),W 1
q (Ω)) + ‖∂tfd‖Lp((0,T ),Ŵ−1

q (Rn)) + ‖h‖
H

1,1/2
q,p (Ω×(0,T ))

)
. (6.1)

In what follows we construct a solution of (5.9) by the contraction mapping
principle based on Theorem 6.2.

Step 1. We set

M = max(C1, C2)
{
σ‖H0(Γ)‖

W
1−1/q
q (Γ)

+ [[ρ]]cg‖α‖W
1−1/q
q (Γ)

+ ‖u0‖B
2(1−1/p)
q,p (Ω)

}
.

(6.2)
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By (5.2) and (5.7) we define the underlying space IR,T by

IR,T ={(v, θ, θ̄, η) |

v ∈W 2,1
q,p (Ω× (0, T ))n, θ ∈ Lp((0, T ), Ŵ 1

q (Ω)), θ̄ ∈ H1, 1
2

q,p,0(Ω× (0, T )),

∂tη ∈ Lp((0, T ),W 2−1/q
q (Γ)), η ∈ Lp((0, T ),W 3−1/q

q (Γ)),

θ = θ̄ on Γ× (0, T ), (As.1)

v(ξ, 0) = 0 in Ω, η(ξ′, 0) = 0 on Γ, (As.2)

‖v‖W 2,1
q,p (Ω×(0,T )) + ‖θ‖Lp((0,T ),W 1

q (Ω)) + ‖θ̄‖
H

1,1/2
q,p (Ω×(0,T ))

+ ‖∂tη‖Lp((0,T ),W
2−1/q
q (Γ))

+ ‖η‖
Lp((0,T ),W

3−1/q
q (Γ))

≤ R}, (As.3)

where T is a positive number and R ≥ 1 is a large number determined later. Since
we consider the local in time solvability of (5.9), we may assume that 0 < T ≤ 1
in the course of our proof of Theorem 6.1.

Given (v, θ, θ̄, η, ) ∈ IR,T , let (V,Θ, Y ) be a solution to the linear equation

ρ∂tV −DivS(V,Θ)

= DivQ(u1 + u2 + v) +R(u1 + u2 + v)∇(π1 + π2 + θ) in Ω, t > 0,

div V = E(u1 + u2 + v) = divẼ(u1 + u2 + v) in Ω, t > 0,

∂tY − ν · V = G(u1 + u2 + v) + ν · (u1 + u2) on Γ, t > 0,

[[ΠμD(V )ν]] = [[Ht(u1 + u2 + v)]] on Γ, t > 0,

[[ν · S(V,Θ)ν]] + σ(m−ΔΓ)Y = [[Hn(u1 + u2 + v, π1 + π̄2 + θ̄)]] on Γ, t > 0,

[[V ]] = 0 on Γ, t > 0,

V |t=0 = 0 in Ω, Y |t=0 = 0 on Γ. (6.3)

Our task is to show that if we define the map Φ(v, θ, θ̄, η) = (V,Θ, Θ̄, Y ), then
Φ is a contraction map from IR,T into itself. To do so we check the condition on
the right-hand members in (6.3), to apply Theorem 6.2 to (6.3). All the constants
independent of R and T are denoted by C in what follows. To estimate L∞ norm
of functions and the multiplication of several functions we use the following fact:

W 1
q (Ω) ⊂ L∞(Ω), ‖f‖L∞(Ω) ≤ C‖f‖W 1

q (Ω) for f ∈W 1
q (Ω),∥∥∥∥∥∥f

N∏
j=1

gj

∥∥∥∥∥∥
Lq(Ω)

≤ C‖f‖Lq(Ω)

N∏
j=1

‖gj‖W 1
q (Ω) for f ∈ Lq(Ω), gj ∈W 1

q (Ω),

∥∥∥∥∥∥
N∏

j=1

fj

∥∥∥∥∥∥
W 1

q (Ω)

≤ C
N∏

j=1

‖fj‖W 1
q (Ω) for fj ∈W 1

q (Ω) (j = 1, . . . , N), (6.4)

which follows from the Sobolev imbedding theorem and the assumption: n < q <
∞. Here and hereafter, p′ denotes the dual exponent of p, that is p′ = p/(p− 1).
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Lemma 6.3 (Lemma 2.2 in [20]). (1) Let 0 < T ≤ 1 and set

W 2,1
q,p,0(Ω× (0, T )) = {v ∈ W 2,1

q,p (Ω× (0, T )) : v(ξ, 0) = 0}.

Then, there exists a bounded linear operator E :W 2,1
q,p,0(Ω× (0, T ))→W 2,1

q,p (Ω×R)
such that Ev = v on Ω× (0, T ), Ev = 0 for t �∈ [0, 2T ] and

‖Ev‖W 2,1
q,p (Ω×R) ≤ C‖v‖W 2,1

q,p (Ω×(0,T ))

for any v ∈W 2,1
q,p,0(Ω× (0, T )), where C is independent of T .

(2) There exists a bounded linear operator E2 : W 2,1
q,p (Ω × (0, 2)) → W 2,1

q,p (Ω × R)
such that E2u2 = u2 on Ω× (0, 1), E2u2 = 0 for t �∈ [−2, 2] and

‖E2u2‖W 2,1
q,p (Ω×R) ≤ C‖u2‖W 2,1

q,p (Ω×(0,2))

for any u2 ∈W 2,1
q,p (Ω× (0, 2)).

Lemma 6.4. For 0 < t ≤ T < 1 we obtain

(1)
∥∥∥∫ t

0

(u1 + u2 + v) dτ
∥∥∥

L∞((0,T ),W 2
q (Ω))

≤ T 1/p′
(2M +R), (6.5)

(2)
∥∥∥∫ t

0

(u1 + u2 + v) dτ
∥∥∥

Lp((0,T ),W 2
q (Ω))

≤ T (2M +R), (6.6)

(3)
∥∥∥∫ t

0

(u1 + E2u2 + Ev) dτ
∥∥∥

H
1,1/2
q,p (Ω×R)

≤ T 1
2 (2M +R), (6.7)

(4) ‖u1 + u2 + v‖L∞((0,T ),W 1
q (Ω)) ≤ C(2M + T

1
2−

1
pR), (6.8)

(5) ‖u1 + u2 + v‖Lp((0,T ),W 1
q (Ω)) ≤ CT

1
p (2M +R). (6.9)

Proof. The first inequality follows from∥∥∥∫ t

0

∇(u1 + u2 + v) dτ
∥∥∥

W 1
q (Ω)

≤
∫ t

0

‖u1 + u2 + v‖W 2
q (Ω) dt

≤ ‖u1‖W 2
q (Ω)

∫ t

0

dt+
(∫ t

0

dt
)1/p′

(‖u2‖Lp((0,T ),W 2
q (Ω)) + ‖v‖Lp((0,T ),W 2

q (Ω)))

≤ t1/p′
(2M +R),

where we have used (5.2), (5.7) and (As.3). The second inequality is easily derived.
By using the complex interpolation relation

H1/2
p (R, Lq(Ω)) = [Lp(R, Lq(Ω)),W 1

p (R, Lq(Ω))]1/2,

between∥∥∥∥∫ t

0

(u1 + E2u2 + Ev) dτ
∥∥∥∥

W 1
p (R,Lq(Ω))

≤ ‖u1 + E2u2 + Ev‖W 1
p (R,Lq(Ω)) (6.10)

and∥∥∥∥∫ t

0

(u1 + E2u2 + Ev) dτ
∥∥∥∥

Lp(R,Lq(Ω))

≤ T ‖u1 + E2u2 + Ev‖Lp(R,Lq(Ω)), (6.11)
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we obtain∥∥∥∥∫ t

0

(u1 + E2u2 + Ev) dτ
∥∥∥∥

H
1
2

p (R,Lq(Ω))

≤ T 1
2 ‖u1 + E2u2 + Ev‖

H
1
2

p (R,Lq(Ω))

≤ T 1
2 (2M +R). (6.12)

Combining (6.6) and (6.12) we have the inequality (3). To obtain the fourth in-
equality, we use the relation

H
1
2
p ((0, T ),W 1

q (Ω)) ⊂ Lip
1
2−

1
p ([0, T ],W 1

q (Ω)), (6.13)

and we have

‖u2(t)‖W 1
q (Ω) ≤ ‖u0‖W 1

q (Ω) + C‖u2‖
H

1
2

p ((0,2),W 1
q (Ω))

t
1
2−

1
p (6.14)

‖v(t)‖W 1
q (Ω) ≤ C‖v‖

H
1
2

p ((0,1),W 1
q (Ω))

t
1
2−

1
p (6.15)

for 0 < t < 1. For the last inequality, we use (6.14) and (6.15). �

Remark 6.5. In order to simplify the estimate of polynomials of
∫ t

0 ∇(u1+u2+v) dτ ,
we choose T > 0 so small that∥∥∥∫ t

0

∇(u1 + u2 + v) dτ
∥∥∥

W 1
q (Ω)

≤ 1 (6.16)

for 0 < t ≤ T .

Step 2 (Estimate of G). Nonlinear terms Q, R, E and Ẽ are the same terms as
that of a free boundary problem without surface tension and gravity estimated as
in §2 in [20]. Therefore in this paper we estimate nonlinear terms G, Ht and Hn.
We consider the term

G(u) = (m−ΔΓ)−1Ḟ (u),

where Ḟ (u) denotes the derivative of F (u) with respect to t, and given by

Ḟ (u) = ΔΓν · u− ν · Δ̇Γ(t)

∫ t

0

u dτ + ν · (ΔΓ −ΔΓ(t))u− ν · Δ̇Γ(t)ξ.

By (6.2), we have

‖α‖
W

3−1/q
q (Γ)

≤M. (6.17)

Since ν = (∇′α,−1)/
√

1 + |∇′α|2, we have

‖ν‖
W

2−1/q
q (Γ)

≤M. (6.18)
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The radius vectors of surfaces Γ and Γ(t) for (1.1) are equal to r0 = (ξ′, α(ξ′)) and

rt =

(
ξ1 +

∫ t

0

u1(ξ′, α(ξ′), τ) dτ, . . . , ξn−1 +
∫ t

0

un−1(ξ′, α(ξ′), τ) dτ,

α(ξ′) +
∫ t

0

un(ξ′, α(ξ′), τ) dτ

)
.

ΔΓ and ΔΓ(t) are defined by

ΔΓ =
1√
g

n−1∑
j,k=1

∂

∂ξj

ĝjk√
g

∂

∂ξk
, ΔΓ(t) =

1√
g

t

n−1∑
j,k=1

∂

∂ξj

ĝtjk√
g

t

∂

∂ξk
(6.19)

where

gjk =
∂r0
∂ξj

· ∂r0
∂ξk
, gtjk =

∂rt
∂ξj

· ∂rt
∂ξk
.

We set G as a matrix whose jk elements are denoted by gjk, and set

g = detG = det(gjk) = 1 + |∇′α|2.

ĝjk are elements of a cofactor matrix of G and

G−1 =
ĝjk

g
=

(1 + |∇′α|2)δjk − ∂jα∂kα

g
.

We set Gt as a matrix whose jk elements are denoted by gtjk. ĝtjk are elements
of a cofactor matrix of Gt,

gt = detGt = det(gtjk), G−1
t =

ĝtjk

gt
.

If we set

βij =
∫ t

0

∂ui

∂ξj
(ξ′, α(ξ′), τ) dτ,

then we have
∂rti
∂ξj

= δij + βij + ∂jαβin, i = 1, . . . , n− 1,

∂rtn
∂ξj

= ∂jα+ βnj + ∂jαβnn,

and

gtjk = δjk + βjk + βkj +
n∑

�=1

β�jβ�k + ∂kα

(
βjn + βnj +

n∑
�=1

β�jβ�n

)

+ ∂jα(βkn + βnk +
n∑

�=1

β�nβ�k) + ∂jα∂kα

(
1 + 2βnn +

n∑
�=1

β2
�n

)
.
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Therefore gtjk, ĝtjk and gt are expressed by

gtjk = gjk + J1(∇′α)K1

(∫ t

0

∇′(u1 + u2 + v) dτ
)
, (6.20)

ĝtjk = ĝjk + J2(∇′α)K2

(∫ t

0

∇′(u1 + u2 + v) dτ
)
, (6.21)

gt = g + J3(∇′α)K3

(∫ t

0

∇′(u1 + u2 + v) dτ
)
, (6.22)

where J1(·), J2(·) and J3(·) are polynomials of ∇α, and K1(·), K2(·) and K3(·)
are polynomials of

∫ t

0 ∇(u1 + u2 + v) dτ , respectively, such as Kj(0) = 0.

Proposition 6.6 (cf. Amann [4]). Let 1 < q < ∞. For every f ∈ W−1/q
q (Γ), there

exists m >> 1 such that

‖(m−ΔΓ)−1f‖
W

2−1/q
q (Γ)

≤ Cq,Γ‖f‖W
−1/q
q (Γ)

(6.23)

holds.

Proposition 6.7. Let 1 < q <∞.
(1) For every f ∈W−1/q

q (Γ) and g ∈W 1
q (Ω) we have

‖fg‖
W

−1/q
q (Γ)

≤ Cq,Γ‖f‖W
−1/q
q (Γ)

‖g‖W 1
q (Ω). (6.24)

(2) For f ∈ W−1/q
q (Γ) and gj ∈ W 1−1/q

q (Γ) (j = 1, . . . , N), we have∥∥∥∥∥∥f
N∏

j=1

gj

∥∥∥∥∥∥
W

−1/q
q (Γ)

≤ C‖f‖
W

−1/q
q (Γ)

N∏
j=1

‖gj‖W
1−1/q
q (Γ)

.

(3) For fj ∈ W 1−1/q
q (Γ) (j = 1, . . . , N), we have∥∥∥∥∥∥

N∏
j=1

gj

∥∥∥∥∥∥
W

1−1/q
q (Γ)

≤ C
N∏

j=1

‖fj‖W
1−1/q
q (Γ)

.

Proof. Let 1/q+ 1/q′ = 1. For ϕ ∈W 1−1/q′

q′ (Γ) there exists ψ ∈W 1
q′ (Ω) such that

ψ|Γ = ϕ, ‖ψ‖W 1
q′ (Ω) ≤ C‖ϕ‖W

1−1/q′
q′ (Γ)

.

It holds that

‖gϕ‖
W

1−1/q′
q′ (Γ)

≤ C‖gψ‖W 1
q′ (Ω) ≤ C

(
‖∇gψ‖Lq′(Ω) + ‖g‖L∞(Ω)‖ψ‖W 1

q′(Ω)

)
.

(6.25)
Let 1/q′ = 1/q + 1/r. Since n( 1

q′ − 1
r ) < 1, by the embedding relation, W 1

q′ (Ω) ⊂
Lr(Ω) holds. Therefore we have

‖∇gψ‖Lq′(Ω) ≤ C‖g‖W 1
q (Ω)‖ψ‖Lr(Ω)

≤ C‖g‖W 1
q (Ω)‖ψ‖W 1

q′ (Ω) ≤ C‖g‖W 1
q (Ω)‖ϕ‖

W
1− 1

q′
q′ (Γ)

. (6.26)
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Combining (6.25) with (6.26), we obtain∣∣∣∣∫
Γ

fgϕ dσ

∣∣∣∣ ≤ C‖f‖
W

− 1
q

q (Γ)
‖gϕ‖

W
1− 1

q′
q′ (Γ)

≤ C‖f‖
W

− 1
q

q (Γ)
‖g‖W 1

q (Ω)‖ϕ‖
W

1− 1
q′

q′ (Γ)
,

which implies that

‖fg‖
W

− 1
q

q (Γ)
= sup

ϕ∈C∞
0 (Γ), ‖ϕ‖

W
1− 1

q′
q′ (Γ)

=1

∣∣∣∣∫
Γ

fgϕ dσ

∣∣∣∣ ≤ C‖f‖
W

− 1
q

q (Γ)
‖g‖W 1

q (Ω).

Assertions (2) and (3) are corollaries of (1). �

First we consider the term: (m−ΔΓ)−1ΔΓν · (u1 + u2 + v). By Propositions
6.6 and 6.7, we have

‖(m−ΔΓ)−1ΔΓν · (u1 + u2 + v)‖
W

2−1/q
q (Γ)

≤ Cq,Γ‖ΔΓν · (u1 + u2 + v)‖
W

−1/q
q (Γ)

≤ Cq,Γ‖ΔΓν‖W
−1/q
q (Γ)

‖u1 + u2 + v‖W 1
q (Ω).

By (6.18) and (6.9),

‖(m−ΔΓ)−1ΔΓν · (u1 + u2 + v)‖
Lp((0,T ),W

2−1/q
q (Γ))

≤ Cq,Γ‖ΔΓν‖W
−1/q
q (Γ)

‖u1 + u2 + v‖Lp((0,T ),W 1
q (Ω))

≤ CM(2M +R)T
1
p . (6.27)

Next we consider the term: (m−ΔΓ)−1ν · Δ̇Γ(t)

∫ t

0
(u1 + u2 + v) dτ . Δ̇Γ(t) is

given by

Δ̇Γ(t) =
n−1∑

j,k=1

∂t

( ĝtjk

gt

) ∂2

∂ξj∂ξk
+

n−1∑
k=1

⎡⎣n−1∑
j=1

∂t

(∂j ĝtjk

gt
− ĝtjk∂jgt

2g2
t

)⎤⎦ ∂

∂ξk
. (6.28)

Since

‖gt‖L∞((0,T ),W
1−1/q
q (Γ))

≤ CM,
‖∂tĝtjk‖Lp((0,T ),W

−1/q
q (Γ))

≤ C‖∇′α‖
W

1−1/q
q (Γ)

‖∇′(u1 + u2 + v)‖Lp((0,T ),W 1
q (Ω)) ≤ C(2M +R)M,

‖∂tĝtjk∇′gt‖L∞((0,T ),W
−1/q
q (Γ))

≤ C‖∇′α‖
W

1−1/q
q (Γ)

‖∇′(u1 + u2 + v)‖Lp((0,T ),W 1
q (Ω))

× ‖∇′g +∇′(J3K3)‖L∞((0,T ),W
1−1/q
q (Γ))

≤ C(2M +R)M2,
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we have∥∥∥∥∂tĝtjk

gt

∥∥∥∥
Lp((0,T ),W

1−1/q
q (Γ))

(6.29)

≤ C(‖∂tĝtjk‖Lp((0,T ),W
1−1/q
q (Γ))

+ ‖(∂tĝtjk)∇′gt‖Lp((0,T ),W
−1/q
q (Γ))

)

≤ C(2M +R)M2, (6.30)∥∥∥∥∂t

( ĝtjk

gt

)∥∥∥∥
Lp((0,T ),W

1−1/q
q (Γ))

≤ C(2M +R)M2, (6.31)∥∥∥∥∂t

(∂j ĝtjk

gt

)
, ∂t

( ĝtjk∂jgt

2g2
t

)∥∥∥∥
Lp((0,T ),W

−1/q
q (Γ))

≤ C(2M +R)M2. (6.32)

Therefore we obtain from (6.18), (6.9), (6.31) and (6.32),∥∥∥∥(m−ΔΓ)−1ν · Δ̇Γ(t)

∫ t

0

(u1 + u2 + v) dτ
∥∥∥∥

Lp((0,T ),W
2−1/q
q (Γ))

≤ Cq,Γ

∥∥∥∥ν · Δ̇Γ(t)

∫ t

0

(u1 + u2 + v) dτ
∥∥∥∥

Lp((0,T ),W
−1/q
q (Γ))

≤ Cq,Γ‖ν‖W
1−1/q
q (Γ))

∥∥∥∥∂t

( ĝtjk

gt

)∥∥∥∥
Lp((0,T ),W

1−1/q
q (Γ))

×
∥∥∥∥∫ t

0

∇′2(u1 + u2 + v) dτ
∥∥∥∥

L∞((0,T ),Lq(Ω))

+ Cq,Γ‖ν‖W
1−1/q
q (Γ)

(∥∥∥∥∂t

(∂j ĝtjk

gt

)∥∥∥∥
Lp((0,T ),W

−1/q
q (Γ))

+
∥∥∥∥∂t

( ĝtjk∂jgt

2g2
t

)∥∥∥∥
Lp((0,T ),W

1−1/q
q (Γ))

)∥∥∥∥∫ t

0

∇′(u1 + u2 + v) dτ
∥∥∥∥

L∞((0,T ),W 1
q (Ω))

≤ Cq,ΓT
1/p′

(2M +R)2M3. (6.33)

Next we consider the term: (m − ΔΓ)−1ν · (ΔΓ − ΔΓ(t))(u1 + u2 + v). By
(6.19),

(ΔΓ −ΔΓ(t))u

=
n−1∑

j,k=1

( ĝjk

g
− ĝtjk

gt

) ∂2u

∂ξj∂ξk

+
n−1∑
k=1

⎡⎣n−1∑
j=1

(∂j ĝjk

g
− ∂j ĝtjk

gt

)
−

( ĝjk∂jg

2g2
− ĝtjk∂jgt

2g2
t

)⎤⎦ ∂u
∂ξk
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=
n−1∑

j,k=1

(gt − g)ĝjk + g(ĝjk − ĝtjk)
ggt

∂2u

∂ξj∂ξk

+
n−1∑

j,k=1

(gt − g)∂j ĝjk + g(∂j ĝjk − ∂j ĝtjk)
ggt

∂u

∂ξk

+
n−1∑

j,k=1

(g2
t − g2)ĝjk∂jg + g2(ĝjk − ĝtjk)∂jg + g2ĝtjk(∂jg− ∂jgt)

2ggt

∂u

∂ξk
.

Since

‖gt − g‖
W

1−1/q
q (Γ)

≤ C
(
‖∇′2α‖

W
−1/q
q (Γ)

‖
∫ t

0

∇′(u1 + u2 + v) dτ‖W 1
q (Ω)

+‖∇′α‖
W

1−1/q
q (Γ)

‖
∫ t

0

∇′2(u1 + u2 + v) dτ‖Lq(Ω)

)
≤ CT 1/p′

(2M +R)M,

‖gt − g‖
L∞((0,T ),W

1−1/q
q (Γ))

≤ CT 1/p′
(2M +R)M,

‖ĝtjk − ĝjk‖L∞((0,T ),W
1−1/q
q (Γ))

≤ CT 1/p′
(2M +R)M,

‖g, ĝjk, ĝtjk‖L∞((0,T ),W
1−1/q
q (Γ))

≤ CM,

and for example

‖(gt − g)ĝjk∇′2(u1 + u2 + v)‖
Lp((0,T ),W

−1/q
q (Γ))

≤ C‖gt − g‖
L∞((0,T ),W

1−1/q
q (Γ))

× ‖ĝjk‖L∞((0,T ),W
1−1/q
q (Γ))

‖∇′2(u1 + u2 + v)‖Lp((0,T ),Lq(Ω))

≤ CT 1/p′
(2M +R)2M,

we have

‖(ΔΓ −ΔΓ(t))(u1 + u2 + v)‖
Lp((0,T ),W

−1/q
q (Γ))

≤ CT 1/p′
(2M +R)2M2.

Therefore we obtain

‖(m−ΔΓ)−1ν · (ΔΓ −ΔΓ(t))(u1 + u2 + v)‖
Lp((0,T ),W

2−1/q
q (Γ))

≤ C‖ν‖
W

1−1/q
q (Γ)

‖(ΔΓ −ΔΓ(t))(u1 + u2 + v)‖
Lp((0,T ),W

−1/q
q (Γ))

≤ CT 1/p′
(2M +R)2M3. (6.34)

Finally we consider the term: (m−ΔΓ)−1ν · Δ̇Γ(t)ξ. By a direct calculation with

Δ̇Γ(t)ξ� =
n−1∑
j=1

(∂j
˙̂gtj�

gt
− ∂j ĝtj�ġt

g2
t

−
˙̂gtj�∂jgt

2g2
t

− ĝtj�∂j ġt

2g2
t

+
ĝtj�∂jgtġt

g3
t

)
,
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Δ̇Γ(t)ξn =
n−1∑

j,k=1

( ˙̂gtjk

gt
− ĝtjkġt

g2
t

) ∂2α

∂ξj∂ξk

+
n−1∑

j,k=1

(∂j
˙̂gtjk

gt
− ∂j ĝtjkġt

g2
t

−
˙̂gtjk∂jgt

2g2
t

− ĝtjk∂j ġt

2g2
t

+
ĝtjk∂jgtġt

g3
t

) ∂α
∂ξk
,

it holds that

ν · Δ̇Γ(t)ξ =
1√

1 + |∇′α|2
n−1∑

j,k=1

(
∂tĝtjk

gt
− ĝtjk∂tgt

g2
t

)
∂2α

∂ξj∂ξk
(6.35)

(cf. [24]). Since, from (6.9),∥∥∥∥∂tĝtjk

gt

∥∥∥∥
Lp((0,T ),W

−1/q
q (Γ))

≤C‖∇′α‖
W

−1/q
q (Γ))

‖∇′(u1 + u2 + v)‖Lp((0,T ),Lq(Ω))

≤CT 1
p (2M +R)M,∥∥∥∥ ĝtjk∂tĝt

g2
t

∥∥∥∥
Lp((0,T ),W

−1/q
q (Γ))

≤CT 1
p (2M +R)M2,

we have∥∥∥(m−ΔΓ)−1ν · Δ̇Γ(t)ξ
∥∥∥

Lp((0,T ),W
2−1/q
q (Γ))

≤ C
(∥∥∥∥∂tĝtjk

gt

∥∥∥∥
Lp((0,T ),W

−1/q
q (Γ))

+
∥∥∥∥ ĝtjk∂tgt

g2
t

∥∥∥∥
Lp((0,T ),W

−1/q
q (Γ))

)
‖α‖2

W
3−1/q
q (Γ)

≤ C((2M +R)t
1
p )M4. (6.36)

Therefore from (6.27), (6.33), (6.34) and (6.36), we obtain

G(u1 + u2 + v) + ν · (u1 + u2) ∈ Lp((0, T ),W 2−1/q
q (Γ)),

‖G(u1 + u2 + v) + ν · (u1 + u2)‖Lp((0,T ),W
2−1/q
q (Γ))

≤ C{T
1
p (2M +R)M4 + T 1/p′

(2M +R)2M3}. (6.37)

Step 3 (Estimate of Ht and Hn). Next we estimate the right-hand side of the
boundary condition Ht and Hn. From the definition of H1,1/2

q,p (Ω×R), we have to
extend not only u2 and v but also

∫ t

0
∇(u1 + u2 + v) dτ to the whole time R. To

do this, we use Lemma 6.3 and the following lemma.

Lemma 6.8 (Lemma 2.4 in [20]). Let 2 < p <∞ and n < q <∞. Set

Ŵ 1,1
q,p (Ω̇× I) = {f ∈W 1,1

q,∞(Ω̇× I) : ∂tf ∈ Lp(I,W 1
q (Ω̇))}.

Let 0 < T ≤ 1. Then, there exist linear operators F1 : W 1
q (Ω) → Ŵ 1,1

q,p (Ω × R),
F2 : W 2,1

q,p (Ω × (0, 2)) → Ŵ 1,1
q,p (Ω × R), F3 : W 2,1

q,p,0(Ω × (0, T )) → Ŵ 1,1
q,p (Ω × R),
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such that

Fjz(ξ, t) =
∫ t

0

∇z(ξ, τ) dτ, 0 ≤ t ≤ T,

Fjz = 0 for t �∈ [0, 2T ],

‖F1z‖L∞(R,W 1
q (Ω)) ≤ CT ‖z‖W 1

q (Ω),

‖∂t(F1z)‖L∞(R,Lq(Ω)) ≤ C‖z‖W 1
q (Ω),

‖∂t(F1z)‖Lp(R,W 1
q (Ω)) ≤ C‖z‖W 1

q (Ω),

‖Fjz‖L∞(R,W 1
q (Ω)) ≤ CT 1/p′

‖z‖W 2,1
q,p (Ω×Ij)

for j = 2, 3,

‖∂t(Fjz)‖L∞(R,Lq(Ω)) ≤ C‖z‖W 2,1
q,p (Ω×Ij) for j = 2, 3,

‖∂t(Fjz)‖Lp(R,W 1
q (Ω)) ≤ C‖z‖W 2,1

q,p (Ω×Ij)
for j = 2, 3,

where I2 = (0, 2), I3 = (0, T ), and C is independent of z and T .

We recall that

[[Ht(u)]] = −[[Π(Πt −Π)(μD(u)νtu) + Π(μD(u)(νtu − ν)) + ΠΠt(Q(u)νtu)]],

where Q(u) is defined in (1.6). We consider the term Ht(u1+E2u2 +Ev) instead of
Ht(u1 +u2 +v) with time integral F1u1 +F2u2 +F3v, because we have to estimate
the norm of H1,1/2

q,p (Ω× R). Since

(tA−1)jk

= δjk +Bjk

(∫ t

0

∇′
ku1 dτ, . . . ,

∫ t

0

∇′
kuj−1 dτ,

∫ t

0

∇′
kuj+1 dτ, . . . ,

∫ t

0

∇′
kun dτ

)
,

(6.38)

where Bjk is some polynomial such as Bij(0, . . . , 0) = 0 (cf. (A.5) Appendix in
[20]), we can write

tA−1ν = ν +B
(∫ t

0

∇u dτ
)
ν,

where (j, k) component of B is given by Bjk in (6.38). Therefore we obtain

νtu =
tA−1ν

|tA−1ν| =
ν +B(

∫ t

0
∇u dτ)ν

|ν +B(
∫ t

0
∇u dτ)ν|

, (6.39)

νtu − ν =
Bν

|(I +B)ν| − ν
ν · Bν +Bν · (I +B)ν

|ν||(I +B)ν|(|(I +B)ν|+ |ν|) , (6.40)

∂tνtu =
∂tB ν

|(I +B)ν| −
(I +B)ν(I +B)ν) · ∂tBν

|(I + B)ν|3 . (6.41)

By (6.4) and (6.5), we obtain∥∥∥B(F1u1 + F2u2 + F3v)
∥∥∥

L∞(R,W 1
q (Ω))

≤ CT 1/p′
(2M +R), (6.42)
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and by (6.4), (6.40)–(6.42) and (6.18), we obtain

‖ν̃t(u1+E2u2+Ev)‖L∞(R,W 1
q (Ω)) ≤ CM, (6.43)

‖νt(u1+E2u2+Ev) − ν‖L∞(R,W 1
q (Ω)) ≤ ‖B‖L∞(R,W 1

q (Ω))‖ν‖W 1
q (Ω)

≤ CT 1/p′
(2M +R)M. (6.44)

Here and hereafter νtu and ν denote again the extension of νtu and ν, respectively,
on Γ to Ω. By∥∥∥∂tB(F1u1 + F2u2 + F3v)

∥∥∥
L∞((0,T ),Lq(Ω))

≤ C‖u1 + E2u2 + Ev‖L∞(R,W 1
q (Ω))

≤ C(2M +R), (6.45)∥∥∥∂tB(F1u1 + F2u2 + F3v)
∥∥∥

Lp((0,T ),W 1
q (Ω))

≤ C‖u1 + E2u2 + Ev‖Lp(R,W 2
q (Ω))

≤ C(2M +R), (6.46)

and (6.4), (6.16), (As.3), (5.1), (5.3), we have

‖∂tνt(u1+E2u2+Ev)‖L∞(R,Lq(Ω)) ≤ C‖u1 + E2u2 + Ev‖L∞(R,W 1
q (Ω)) ≤ C(2M +R),

(6.47)

‖∂tνt(u1+E2u2+Ev)‖Lp(R,W 1
q (Ω)) ≤ C‖u1 + E2u2 + Ev‖Lp(R,W 2

q (Ω)) ≤ C(2M +R).
(6.48)

To estimate the norm of H1,1/2
q,p (Ω× R), we use the following lemma.

Lemma 6.9 (Lemma 2.6 in [20]). Let 1 < p < ∞, n < q < ∞ and 0 < T ≤ 1.
Let Ŵ 1,1

q,p (Ω × R) be the same space as in Lemma 6.8. If f ∈ Ŵ 1,1
q,p (Ω × R), g ∈

H
1,1/2
q,p (Ω× R) and f vanishes when t �∈ [0, 2T ], then we have

‖fg‖
H

1,1/2
q,p (Ω×R)

≤

Cp,q[‖f‖L∞(R,W 1
q (Ω))+T (q−n)/(pq)‖ft‖(1−n/(2q))

L∞(R,Lq(Ω))‖ft‖
n/(2q)
Lp(R,W 1

q (Ω))]‖g‖H
1,1/2
q,p (Ω×R)

.

Proposition 2.8 in [20] and Lemma 6.3 yield the following lemma.

Lemma 6.10. Let 1 < p, q <∞. For u2 ∈W 2,1
q,p (Ω×(0, 2)) and v ∈W 2,1

q,p (Ω×(0, T )),
there exists a constant Cp,q > 0 such that

‖E2u2‖H
1/2
p (R,W 1

q (Ω))
≤ Cp,q‖u2‖W 2,1

q,p (Ω×(0,2)),

‖Ev‖
H

1/2
p (R,W 1

q (Ω))
≤ Cp,q‖v‖W 2,1

q,p (Ω×(0,T )).

By (4.2), it holds that

(Π−Πt)d = (d, νtu)νtu − (d, ν)ν = (d, νtu)(νtu − ν) + (d, νtu − ν)ν. (6.49)

Setting f = νt(u1+E2u2+Ev) and g = D(u1 + E2u2 + Ev), and applying Lemma 6.9,
we have from (6.44), (6.47), (6.48) and Lemma 6.10,

‖D(u1 + E2u2 + Ev)νt(u1+E2u2+Ev)‖H
1,1/2
q,p (Ω×R)

≤ C(2M +R)M. (6.50)
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Setting f = νt(u1+E2u2+Ev) − ν and g = (D(u1 + E2u2 + Ev)νt(u1+E2u2+Ev),
νt(u1+E2u2+Ev)), and applying Lemma 6.9, we have from Lemma 6.10,

‖(D(u1 + E2u2 + Ev)νt(u1+E2u2+Ev), νt(u1+E2u2+Ev))

× (νt(u1+E2u2+Ev) − ν)‖H
1,1/2
q,p (Ω×R)

≤ C(T
1
p′M + T

q−n
pq )(2M +R)2M2. (6.51)

Combining (6.49), (6.50) and (6.51) we have

‖Π(Π−Πt)μD(u1 + E2u2 + Ev)νtu1+E2u2+Ev‖H
1,1/2
q,p (Ω×R)

≤ C(T
1
p′M + T

q−n
pq )(2M +R)2M3. (6.52)

In a similar manner we obtain

‖ΠμD(u1 + E2u2 + Ev)(νt(u1+E2u2+Ev) − ν)‖H
1,1/2
q,p (Ω×R)

≤ C(T
1
p′M + T

q−n
pq )(2M +R)2M2, (6.53)

‖ΠΠtQ(u1 + E2u2 + Ev)νt(u1+E2u2+Ev)‖H
1,1/2
q,p (Ω×R)

≤ C(T
1
p′ + T

q−n
pq )(2M +R)2M3. (6.54)

Therefore by (6.52), (6.53), and (6.54) we obtain

Ht(u1 + E2u2 + Ev) ∈ H1,1/2
q,p (Ω× R),

‖Ht(u1 + E2u2 + Ev)‖
H

1,1/2
q,p (Ω×R)

≤ C(T
1
p′M + T

q−n
pq )(2M +R)2M3. (6.55)

From the definition of H1,1/2
q,p (Ω× (0, T )), we see that

Ht(u1 + u2 + v) ∈ H1,1/2
q,p (Ω× (0, T )),

‖Ht(u1 + u2 + v)‖
H

1,1/2
q,p (Ω×(0,T ))

≤ C(T
1
p′M + T

q−n
pq )(2M +R)2M3. (6.56)

Finally we consider the term Hn. We recall that

[[Hn(u, π)]] = [[ν · S(u, π)(ν − νtu)− ν ·Q(u)νtu]]

+ [[ρ]]cg
∫ t

0

un dτ ν · νtu + [[ρ]]cgξn ν · (νtu − ν)

− 2σ
(
∇Γ ·

∫ t

0

u dτ
)
∇Γ · ν + σm

∫ t

0

ν · u dτ.

We consider the term Hn(u1 + E2u2 + Ev, π1 + π̄2 + θ̄) instead of Hn(u1 + u2 +
v, π1 + π2 + θ) with time integral F1u1 + F2u2 + F3v, because we have to estimate
the norm of H1,1/2

q,p (Ω×R). Similar to the way we estimated Ht(u1 + E2u2 + Ev),
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we have

‖ν · (S(u1 + E2u2 + Ev, π1 + π̄2 + θ̄)(ν − νt(u1+E2u2+Ev))‖H
1,1/2
q,p (Ω×R)

≤ C(T
1
p′M + T

q−n
pq )(2M +R)2M2, (6.57)

‖ν ·Q(u1 + E2u2 + Ev)νt(u1+E2u2+Ev)‖H
1,1/2
q,p (Ω×R)

≤ C(T
1
p′ + T

q−n
pq )(2M +R)2M2. (6.58)

Let χ(t) be a function in C∞
0 (R) such that χ(t) = 1 for |t| ≤ 1 and χ(t) = 0

for |t| ≥ 2. Setting f = νt(u1+E2u2+Ev) − ν and g = χ(t)ξnν, and applying Lemma
6.9, we have

‖(νt(u1+E2u2+Ev) − ν)χ(t)ξnν‖H
1,1/2
q,p (Ω×R)

≤ C(T 1/p′
M + T

q−n
pq )(2M +R)‖χ(t)ξnν‖Lp(R,W 1

q (Ω))

≤ C(T 1/p′
M + T

q−n
pq )(2M +R)M2.

By the definition of H1,1/2
q,p (Ω× (0, T )), we see that

‖(νt(u1+u2+v) − ν)ξnν‖H
1,1/2
q,p (Ω×(0,T ))

≤ C(T 1/p′
M + T

q−n
pq )(2M +R)M2. (6.59)

By (6.7) we have∥∥∥∥(∇Γ · ν)∇Γ ·
∫ t

0

u dτ

∥∥∥∥
H

1,1/2
q,p (Ω×(0,T ))

≤ C(T 1/p′
M + T

q−n
pq )(2M +R)M2. (6.60)

Therefore from (6.57), (6.58), (6.7), (6.59) and (6.60), we obtain

Hn(u1 + u2 + v, π1 + π2 + θ) ∈ H1,1/2
q,p (Ω× (0, T )),

‖Hn(u1 + u2 + v, π1 + π2 + θ)‖
H

1,1/2
q,p (Ω×(0,T ))

≤ C(T 1/p′
M + T

q−n
pq )(2M +R)M2.

(6.61)

Step 4. Combining (6.37), (6.56), (6.61), we have

‖V ‖W 2,1
q,p (Ω×(0,T )) + ‖Θ‖Lp((0,T ),Ŵ 1

q (Ω)) + ‖Θ̄‖
H

1,1/2
q,p (Ω×(0,T ))

+ ‖∂tY ‖Lp((0,T ),W
2−1/q
q (Γ))

+ ‖Y ‖
Lp((0,T ),W

3−1/q
q (Γ))

≤ C{T 1
p (2M +R)M4 + (T

1
p′M + T

q−n
pq )(2M +R)2M3}. (6.62)

Here we also use

‖DivQ(u1 + u2 + v), R(u1 + u2 + v)∇(π1 + π2 + θ)‖Lp((0,T ),Lq(Ω))

≤ CT
1
p′ (2M +R)2,

‖E(u1 + u2 + v)‖Lp((0,T ),W 1
q (Ω)) ≤ CT

1
p′ (2M +R)2,

‖Ẽ(u1 + u2 + v)‖W 1
p ((0,T ),Lq(Ω))C(T

1
p′ + T

q−n
pq )(2M +R)2
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(cf. §2 in [20]). For given M defined by (6.2), we choose R > 0 and T > 0 such
that the right-hand member of (6.62) is less than R, then by (6.62) we have

‖V ‖W 2,1
q,p (Ω×(0,T )) + ‖Θ‖Lp((0,T ),Ŵ 1

q (Ω)) + ‖Θ̄‖
H

1,1/2
q,p (Ω×(0,T ))

(6.63)

+ ‖∂tY ‖Lp((0,T ),W
2−1/q
q (Γ))

+ ‖Y ‖
Lp((0,T ),W

3−1/q
q (Γ))

≤ R.

Moreover from the definition of E(u1 + u2 + v), Ẽ(u1 + u2 + v), Ht(u1 + u2 + v)
and Hn(u1 + u2 + v, π1 + π2 + θ), we see that

E(u1 + u2 + v)|t=0 = Ẽ(u1 + u2 + v)|t=0 = 0,

Ht(u1 + u2 + v)|t=0 = Hn(u1 + u2 + v, π1 + π2 + θ)|t=0 = 0.

Therefore for the map Φ(v, θ, θ̄, η) = (V,Θ, Θ̄, Y ) it maps IR,T into itself.
Now we show that Φ is a contraction map. To do this, given (vi, θi, θ̄i, ηi) ∈

IR,T (i = 1, 2), we set

(Vi,Θi, Θ̄i, Yi) = Φ(vi, θi, θ̄i, ηi), i = 1, 2.

From (6.3), we see that V1 − V2, Θ1 −Θ2 and Y1 − Y2 satisfy the linear equation

∂t(V1 − V2)−DivS(V1 − V2,Θ1 −Θ2) = DivQ(u1 + u2 + v1)

−DivQ(u1 + u2 + v2) +R(π1 + π2 + θ1)−R(π1 + π2 + θ2) in Ω, t > 0,

div (V1 − V2) = E(u1 + u2 + v1)− E(u1 + u2 + v2)

= divẼ(u1 + u2 + v1)− divẼ(u1 + u2 + v2) in Ω, t > 0,

∂t(Y1 − Y2)− ν · (V1 − V2) = G(u1 + u2 + v1)−G(u1 + u2 + v2) on Γ, t > 0,

[[ΠD(V1 − V2)ν]] = [[Ht(u1 + u2 + v1)−Ht(u1 + u2 + v2)]] on Γ, t > 0,

[[ν · S(V1 − V2,Θ1 −Θ2)ν]] + σ(m −ΔΓ)(Y1 − Y2)

= [[Hn(u1 + u2 + v1, π1 + π̄2 + θ̄1)

−Hn(u1 + u2 + v2, π1 + π̄2 + θ̄2)]] on Γ, t > 0,

[[V1 − V2]] = 0 on Γ, t > 0,

(V1 − V2)|t=0 = 0 in Ω, (Y1 − Y2)|t=0 = 0 on Γ. (6.64)

Applying the same argument as in the proof of (6.63), we can show that

‖V1 − V2‖W 2,1
q,p ((0,T )×Ω) + ‖Θ1 −Θ2‖Lp((0,T ),Ŵ 1

q (Ω))

+ ‖Θ̄1 − Θ̄2‖H
1,1/2
q,p (Ω×(0,T ))

+ ‖Y1 − Y2‖Lp((0,T ),W
2−1/q
q (Γ))

≤C{T 1
pM4 + (T

1
p′ + T

q−n
pq )(2M +R)M3}

×
[
‖v1 − v2‖W 2,1

q,p ((0,T )×Ω) + ‖θ1 − θ2‖Lp((0,T ),Ŵ 1
q (Ω))

+ ‖θ̄1 − θ̄2‖H
1,1/2
q,p (Ω×(0,T ))

+ ‖η1 − η2‖Lp((0,T ),W
2−1/q
q (Γ))

]
. (6.65)
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Choosing T > 0 so small that

C{T
1
pM4 + (T

1
p′ + T

q−n
pq )(2M +R)M3} ≤ 1

2
in (6.65), we see that Φ is a contraction map on IR,T . Therefore Φ has the fixed
point (V,Θ, Θ̄, Y ) which solves (6.3). This completes the proof of Theorem 6.1.
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Abstract. The paper contains analysis of the spectrum of a linear problem
arising in the study of the stability of a finite isolated mass of uniformly ro-
tating viscous incompressible self-gravitating liquid. It is assumed that the
capillary forces on the free boundary of the liquid are not taken into account.
It is proved that when the second variation of the energy functional can take
negative values, then the spectrum of the problem contains finite number of
points with positive real parts, which means instability of the rotating liquid
in a linear approximation. The proof relies on the theorem on the invari-
ant subspaces of dissipative operators in the Hilbert space with an indefinite
metrics.
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1. Formulation of main result

This paper is devoted to the problem of stability of a finite mass of a viscous
incompressible liquid of a unit density uniformly rotating about a fixed axis (x3-
axis). The liquid is subject to the forces of self-gravitation; the surface tension on
the free boundary is not taken into account. The velocity and the pressure of the
rotating liquid are given by

V (x) = ω(e3 × x), P (x) =
ω2

2
|x′|2 + p0, (1.1)

where ω is the angular velocity of rotation, e3 = (0, 0, 1), x′ = (x1, x2, 0), p0 =
const. The domain F occupied by the liquid (the equilibrium figure) is defined by
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the equation
ω2

2
|x′|2 + κU(x) + p0 = 0, x ∈ G = ∂F , (1.2)

where U(x) =
∫
F

dy
|x−y| .

In what follows we assume that F is a given bounded domain with a smooth
boundary defined by (1.2). The barycenter of F is located on the axis of rotation,
moreover, we assume that ∫

F
xidx = 0, i = 1, 2, 3.

For simplicity we assume that F is rotationally symmetric with respect to
the x3-axis. The case of non-symmetric F is considered below in Sec. 4.

The functions (1.1) represent a solution of the free boundary problem gov-
erning the evolution of an isolated liquid mass bounded only by a free surface:

vt + (v · ∇)v − ν∇2v +∇p = 0,

∇ · v(x, t) = 0, x ∈ Ωt, t > 0,
T (v, p)n = κU(x, t)n(x), (1.3)
Vn = v · n, x ∈ Γt = ∂Ωt,

v(x, 0) = v0(x), x ∈ Ω0,

where Ωt is a domain occupied by the liquid, unknown for t > 0 and given for t = 0,
Γt is the boundary of Ωt, n is the exterior normal to Γt, T (v, p) = −pI + νS(v) is
the stress tensor, S(v) =

(
∂vj

∂xk
+ ∂vk

∂vj

)
j,k=1,2,3

is the doubled rate-of-strain tensor,

n is the exterior normal to Γt, Vn is the velocity of evolution of Γt in the normal
direction,

U(x, t) =
∫

Ωt

dy

|x− y|
is the Newtonian potential. The solution of (1.3) obeys the conservation laws

|Ωt| = |Ω0|,∫
Ωt

v(x, t)dx =
∫

Ω0

v0(x)dx,∫
Ωt

v(x, t) · ηi(x)dx =
∫

Ω0

v0(x) · ηi(x)dx, i = 1, 2, 3,

where ηi(x) = ei × x, ei = (δij)j=1,2,3.
It is customary to consider the free boundary problem for the perturbations

of V and P written in the coordinate system rotating about the x3-axis with the
same angular velocity ω. It has the form

wt + (w · ∇)w + 2ω(e3 ×w)− ν∇2w +∇s = 0,

∇ ·w(y, t) = 0, y ∈ Ω′
t, t > 0,

T (w, s)n′ = (
ω2

2
|y′|2 + κU ′(y, t) + p0)n′, (1.4)
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V ′
n = w · n′, y ∈ Γ′

t,

w(y, 0) = v0(y)− V (y) ≡ w0(y), y ∈ Ω0,

where Ω′
t = Z(ωt)Ωt,

Z(θ) =

⎛⎝ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞⎠ ,
w0 is a small perturbation of V , Ω0 is a given domain close to F .

To the solution (1.2) of (1.3) corresponds the zero solution of (1.4).
We assume that

|Ω0| = |F|,
∫

Ω0

v0(x)dx =
∫
F

V (x)dx = 0,∫
Ω0

xidx = 0,
∫

Ω0

v0(x) · ηi(x)dx =
∫
F

V (x) · ηi(x)dx, i = 1, 2, 3, (1.5)

which implies

|Ω′
t| = |F|,

∫
Ω′

t

xidx = 0, i = 1, 2, 3,∫
Ω′

t

w(x, t)dx = 0,∫
Ω′

t

w(x, t) · ηi(x)dx + ω
∫

Ω′
t

η3(x) · ηi(x)dx = ω
∫
F

η3(x) · ηi(x)dx, i = 1, 2, 3.

(1.6)

If Γ′
t is close to G, then it can be given by the relation

x = y + N (y)ρ(y, t), y ∈ G, (1.7)

where N is the exterior normal to G and ρ is a small function. The conditions
(1.5) are equivalent to∫

G
ϕ(y, ρ)dS = 0,

∫
G
ψi(y, ρ)dS = 0, i = 1, 2, 3, (1.8)

where

ϕ(y, ρ) = ρ− ρ
2

2
H(y) +

ρ3

3
K(y),

ψi(y, ρ) = ϕ(y, ρ)yi +Ni(y)
(ρ2

2
− ρ

3

3
H(y) +

ρ4

4
K(y)

)
,

H and K are the doubled mean curvature and the Gaussian curvature of G, re-
spectively. The kinematic boundary condition Vn = w · n can be written in the
form

ρt(y, t) =
w(x, t) · n(x)
N(y) · n(x)

, x = y + N(y)ρ(y, t). (1.9)
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Linearization of (1.4), (1.6), (1.8) with respect to w, q, ρ leads to

vt + 2ω(e3 × v)− ν∇2v +∇p = 0,

∇ · v(x, t) = 0, x ∈ F , t > 0,

T (v, p)N + NB0ρ = 0, (1.10)

ρt = N(x) · v(y, t) x ∈ G = ∂F ,
v(x, 0) = v0(x), x ∈ F , ρ(x, 0) = ρ0(x), x ∈ G,∫

G
ρ(y, t)dS = 0,

∫
G
ρ(y, t)yidS = 0, (1.11)∫

F
v(y, t)dy = 0,∫

F
v(y, t) · ηi(y)dy + ω

∫
G
ρ(y, t)η3(y) · ηi(y)dS = 0,

i = 1, 2, 3, (1.12)
where v(x, t) = (v1, v2, v3), p(x, t), x ∈ F , and ρ(x, t), x ∈ G, are unknown func-
tions,

B0ρ(x, t) = b(x)ρ− κ
∫
G

ρ(y, t)dS
|x− y| ,

b(x) = −ω2x′ ·N (x)− κ∂U(x)
∂N

.

We assume that b(x) ≥ b0 > 0.
Both conditions (1.11) and (1.12) hold for arbitrary t > 0, provided they are

satisfied for the initial data v0 and ρ0.
The behavior of the solutions of (1.10)–(1.12) for large t is determined by

the spectrum of the corresponding stationary operator. Therefore we consider the
spectral problem

λv + 2ω(e3 × v)− ν∇2v +∇p = 0,

∇ · v(x, t) = 0, x ∈ F , t > 0, (1.13)

T (v, p)N + NB0ρ = 0,

λρ = N(x) · v(y), x ∈ G,
in the space of complex-valued functions defined by the conditions (1.11) and
(1.12), i.e., ∫

G
ρ(y)dS = 0,

∫
G
ρ(y)yidS = 0, (1.14)∫

F
v(y)dy = 0,∫

F
v(y) · ηi(y)dy + ω

∫
G
ρ(y)η3(y) · ηi(y)dS = 0,

i = 1, 2, 3, (1.15)
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Our objective is to prove the following theorem.

Theorem 1. Let

Bρ = B0ρ+
ω2|x′|2∫
F |z′|2dz

∫
G
ρ|y′|2dS. (1.16)

If

S =
∫
F

(x2
1 − x2

3)dx =
∫
F

(x2
2 − x2

3)dx > 0 (1.17)

and if the quadratic form∫
G
ρBρdS (1.18)

=
∫
G
b(x)ρ2dS − κ

∫
G

∫
G

ρ(x)ρ(y)dSxdSy

|x− y| +
ω2

‖η3‖2L2(F)

( ∫
G
ρ(x)|x′|2dS

)2

takes negative values for some ρ(y) satisfying (1.14), then the problem (1.10) has
a finite number of the points of spectrum with the positive real part.

The quadratic form (1.18) is the second variation of the energy functional.
Therefore the statements similar to that of Theorem 1 are referred to as the in-
version of the Lagrange theorem. On the basis of Theorem 1 the instability of the
zero solution of a nonlinear problem (1.10)–(1.12) can be proved [1].

When the form (1.18) is positive definite in the space (1.14), then the uni-
formly rotating liquid is stable [2].

The results of the present paper are not quite new. Theorem 1 is proved
in [3, 4]; the proof given here is more complete and simple. As in [3, 4], it is
based on the theorem on invariant subspaces of dissipative operators in the Hilbert
space with indefinite metrics [5]. We follow the ideas of the paper [6] where this
theorem is applied to the problem of motion of a top with cavities filled with
a viscous incompressible liquid. Another proof of existence of solutions of the
evolution problem (1.10)–(1.12) with the exponential growth for large t > 0 based
on the construction of the appropriate Lyapunov function is given in [7]. The
method of construction of such function is proposed in [8].

2. Auxiliary propositions

We start with some definitions and auxiliary relations. We introduce the following
spaces:

J ⊂ L2(F): the space of all the divergence free (in a weak sense) vector fields
from L2(F),

J̃ : the subspace of vector fields u ∈ J such that∫
F

u(x)dx = 0,
∫
F

u(x) · η3(x)dx = 0, (2.1)



692 V.A. Solonnikov

J⊥: the subspace of vector fields u ∈ J such that∫
F

u(x) · η(x)dx = 0,

where η(x) = a + b× x is an arbitrary vector of rigid motion,
H : the subspace of functions from L2(G) satisfying the orthogonality conditions

(1.14),
H1: the subspace of functions from L2(G) satisfying the orthogonality conditions

(1.14) and ∫
G
ρ(y)y3yαdS = 0, α = 1, 2. (2.2)

We set (f, g) =
∫
G f(x)g(x)dS and we denote by PJ , P̃ and P⊥ orthogonal

(in L2(F)) projections on J , J̃ and J⊥, respectively. We also introduce orthogonal
in L2(G) projections P and P1 on H and H1.
Proposition 1. Arbitrary vector field of rigid motion η(x) = a + b × x, where a
and b are constant vectors, satisfies the equation

B0(η ·N) = −ω2η(x) · x′, x ∈ G. (2.3)

Proof. We take arbitrary small smooth function r(x) and consider the integral

I(r) =
∫

Γ

(ω2

2
|x′|2 + κU(x) + p0

)
η(x) · ndS,

where U(x) =
∫
Ω
|x− y|−1dy and Ω is a domain whose boundary Γ is given by the

equation
x = y + N (y)r(y), y ∈ G.

It can be shown that only the term containing ω2 is different from zero; indeed,
we have

∫
Γ η · ndS =

∫
F ∇ · η(x)dx = 0 and∫

Γ

U(x)n(x)dS =
∫

Ω

∇U(x)dx =
∫

Ω

∫
Ω

y − x
|y − x|3 dxdy = 0,∫

Γ

U(x)ηi(x) · n(x)dS =
∫

Ω

∇U(x) · ηi(x)dx

=
∫

Ω

∫
Ω

y − x
|y − x|3 · ηi(x− y)dxdy +

∫
Ω

∫
Ω

y − x
|y − x|3 · ηi(y)dxdy

= −
∫

Ω

∇U(y) · ηi(y)dy,

from which we can conclude that∫
Γ

U(x)ηi(x) · n(x)dS = 0.

Hence

I[r] =
ω2

2

∫
Γ

|x′|2η(x) · n(x)dS = ω2

∫
Ω

η(x) · x′dx (2.4)
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and I[0] = 0. Now we compute the first variation of both parts of this equation
with respect to r, making use of the formula

δU = κ
∂U(x)
∂N

+ κ
∫
G

ρ(y, t)dS
|x− y| ,

(the proof can be found in [9]). In view of (1.2), we have

−
∫
G
B0rη(x) ·N(x)dS = ω2

∫
G
r(x)η(x) · x′dS,

i.e., ∫
G
r(x)B0(η(x) ·N (x))dS = −ω2

∫
G
r(x)η(x) · x′dS.

Since r(x) is arbitrary, this equation is equivalent to (2.3). The proposition is
proved.

From ∫
G
|x′|2η(x) ·N(x)dS = 2

∫
F

η(x) · x′dx = 0

it follows that also
B(η ·N ) = −ω2η(x) · x′. (2.5)

Direct computations show that∫
G

η1(x) ·N(x)x2x3dS = S,
∫
G

η2(x) ·N(x)x1x3dS = −S,

∫
G

η1(x) ·N(x)x1x3dS =
∫
G

η2(x) ·N(x)x2x3dS = 0. (2.6)

Indeed,∫
G

η1(x) ·N(x)x2x3dS =
∫
F

η1(x) · ∇(x2x3)dx

=
∫
G
(e3x2 − e2x3)(e3x2 + e2x3)dx =

∫
F

(x2
2 − x2

3)dx,

and other equations are verified in the same way.
As a consequence, we obtain∫

G
η1 ·NB(η1 ·N)dS = ω2

∫
G
x3x2η1 ·NdS = ω2S,

which shows that (1.17) is necessary for the positivity of the quadratic form (1.18).

Making use of (2.6), we can easily prove

Proposition 2. An arbitrary ρ ∈ L2(G) can be represented in the form

ρ(x) = ρ1(x) + ρ2(x) (2.7)
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where

ρ1(x) = S−1(η1(x) ·N(x)I2(ρ)− η2(x) ·N(x)I1(ρ)),

Iα(ρ) =
∫
G
ρ(x)x3xαdS, α = 1, 2,

and ρ2 satisfies the orthogonality conditions (2.2). If ρ ∈ H, then ρ2 ∈ H1. If
ρ = ηβ ·N , β = 1, 2, then ρ2 = 0.

The equation (2.7) defines a non-orthogonal projection Q on the space (2.2):

ρ2 = Qρ = ρ− S−1
(
η1(x) ·N(x)I2(ρ)− η2(x) ·N(x)I1(ρ)

)
.

In view of (2.5), we have (Bρ1, ρ2) = 0, which implies

(B̂ρ, ρ) = (Bρ, ρ) = (B̂ρ1, ρ1) + (B̂ρ2, ρ2),

if
∫
G ρdS = 0 (B̂ is defined in (3.4)). Since

(Bρ1, ρ1) = ω2S−1
2∑

α=1

I2α(ρ) ≥ 0,

we have
(B̂Qρ,Qρ) ≤ (B̂ρ, ρ). (2.8)

3. On the problem (1.13)–(1.15)

We pass to the analysis of the spectral problem (1.13)–(1.15). By (1.15),

v(x) = v⊥(x) +
3∑

i=1

di(ρ)ηi(x),

where v⊥ = P⊥v and

di(ρ) = − ω

‖ηi‖2L2(F)

∫
G
ρ(x)η3(x) · ηi(x)dS.

We introduce new velocity and pressure according to the formulas

u = v − d3(ρ)η3(x), q = p− ω|x′|2d3(ρ) +
1
|G|

∫
G
BρdS

and convert (1.13)–(1.15) to

λu + 2ω(e3 × u)− ν∇2u +∇q =
ωη3(x)
‖η3‖2L2(F)

∫
G

u ·N |x′|2dS,

∇ · u(x) = 0, x ∈ F ,
T (v, q)N + N B̂ρ = 0, (3.1)

λρ = N (x) · u(x) x ∈ G,
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G
ρ(y)dS = 0,

∫
G
ρ(y)yidS = 0, (3.2)∫

F
u(y)dy = 0,

∫
F

u(y) · η3(y)dy = 0,∫
F

u(y, t) · ηj(y)dy + ω
∫
G
ρ(y, t)η3(y) · ηj(y)dS = 0, j = 1, 2, (3.3)

where

B̂ρ = Bρ− 1
|G|

∫
G
BρdS. (3.4)

Since∫
F

(e3 × u) · η3(x)dx =
∫
F

(e2u1 − e1u2) · η3(x)dx =
1
2

∫
G

u ·N |x′|2dS,

one can show by a simple calculation that (3.1) is equivalent to

λu + 2ωP̃ (e3 × u)− ν∇2u +∇r = 0,

∇ · u = 0, x ∈ F , (3.5)

S(u)N −N(N · S(u)N )|G = 0,

λρ = N (x) · u(x) x ∈ G,
where r is a solution of the Dirichlet problem

∇2r(x) = 0, x ∈ F , r(x) = νN · S(u)N + B̂ρ, x ∈ G. (3.6)

The pressure is excluded, and we can write (3.5), (3.6), (3.2), (3.3) in the
following abstract form:

λU = AU, (3.7)
where U = (u, ρ)T , A = (Aij)i,j=1,2,

A11u = ν∇2u−∇r1 − 2ωP̃ (e3 × u), A12ρ = −∇r2,
A21u = u ·N , A22ρ = 0,

∇2r1 = 0, ∇2r2 = 0, x ∈ F ,
r1 = νN · S(u)N , r2 = B̂ρ, x ∈ G.

As the domain of A, D(A), we take the set U = (u, ρ)T with u ∈ W 2
2 (F)

and ρ ∈ W 1/2
2 (G), satisfying (3.2), (3.3) and the boundary condition

S(u)N −N(N · S(u)N )|G = 0.

We also consider a modified problem

λu + 2ωP̃ (e3 × u)− ν∇2u +∇r = 0,

∇ · u = 0, x ∈ F , (3.8)

S(u)N −N(N · S(u)N )|G = 0,

λρ = N(x) · u(x)−Q0(N · u), x ∈ G,
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where Q0 is the orthogonal projection on the finite-dimensional space Ker |HB̂
that consists of the elements of H satisfying the equation B̂ρ = 0. This problem
can be written in the form similar to (3.7):

λU = A′U,

where A′ is the 2× 2 matrix operator with

A′
11u = A11u, A′

12ρ = A12ρ,

A′
21u = u ·N −Q0(u ·N), A′

22ρ = 0.

The domain of A′ consists of all the elements of D(A) satisfying the additional
orthogonality condition∫

G
ρ(x)ϕ(x)dS = 0, ∀ϕ ∈ Ker|HB̂. (3.9)

The following proposition is proved by a direct calculation (see [3]).

Proposition 3. If U = (u, ρ)T ∈ D(A′), then (f , g)T = A′U satisfies the conditions∫
G
gdS = 0,

∫
G
gϕdS = 0,

∫
G
gxidS = 0, i = 1, 2, 3,∫

F
f(x)dx = 0,

∫
F

f (x) · η3(x)dx = 0, (3.10)∫
F

f (x) · ηα(x)dx + ω
∫
G
g(x)η3(x) · ηα(x)dS = 0, α = 1, 2,

where ϕ is an arbitrary element of Ker |HB̂.
If f and g satisfy (3.10) and λ �= 0,±iω, then the solution u ∈ W 2

2 (F),
ρ ∈W 1/2

2 (G) satisfies (3.2), (3.3), (3.9).

The next proposition characterizes the spectrum of A′.

Proposition 4. The spectrum of A′ consists of a countable number of eigenvalues
with the accumulation points λ = ∞ and λ = 0. There are no eigenvalues in the
domain Reλ� 1 of the complex plane λ and on the imaginary axis.

Proof. We transform the problem (3.1)–(3.3) once more. We use the relations

2ω
∫
F

(e3 × u) · η1dx = ω
∫
G

u ·Nη3 · η1dS − ω
∫
F

u · η2dx

= ω
∫
G

u ·Nη3 · η1dS − ωS0d2(ρ),

2ω
∫
F

(e3 × u) · η2dx = ω
∫
G

u ·Nη3 · η2dS + ω
∫
F

u · η1dx

= ω
∫
G

u ·Nη3 · η2dS + ωS0d1(ρ),
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where S0 =
∫
F (x2

1 + x2
3)dx =

∫
F (x2

2 + x2
3)dx. There relations enable us to write

the first equation in (3.5) in the form

−ν∇2u⊥ +∇r = −λu⊥ − 2ωP⊥(e3 × u) + ω
(
η1d2(ρ)− η2d1(ρ)

)
. (3.11)

Following [10] and [11], Ch. 8, we introduce the operator T1 that makes
correspond the solution w⊥ ∈ W 2

2 (F) ∩ J⊥ of the problem

−ν∇2w⊥ +∇q = f (x), x ∈ F ,
T (w⊥, q)N |G = 0

to the vector field f ∈ J⊥, and the operator T2 defined by T2ψ = v⊥ where
v⊥ ∈ W 2

2 (F) ∩ J⊥ is a solution of the problem

−ν∇2v⊥ +∇p = l0(ψ) +
3∑

i=1

li(ψ)ηi(x), x ∈ F , (3.12)

T (v⊥, p)N |G = ψ(x)N (x)

with

l0(ψ) = − 1
|F|

∫
G
ψ(x)N (x)dS, li(ψ) = − 1

‖ηi‖2L2(F)

∫
G
ψηi ·NdS,

and ψ is an element ofW 1/2
2 (G) satisfying the condition

∫
G ψdS = 0. The operator

T2 can be extended to W−1/2
2 (G), and then its range is contained in W 1

2 (F)∩J⊥,
and v⊥ = T 2ψ is a weak solution of (3.12) satisfying the integral identity

ν

2

∫
F
S(v⊥) : S(ϕ)dx =

3∑
i=1

∫
F
li(ψ)ηi(x) ·ϕ(x)dx

+
∫
G
ψ(x)N (x) ·ϕ(x)dS, ∀ϕ ∈W 1

2 (F) ∩ J⊥

(we note that the necessary compatibility conditions

l0(ψ) ·
∫
F

η(x)dx +
3∑

i=1

li(ψ)
∫
F

ηi(x) · η(x)dx +
∫
G
ψ(x)N (x) · η(x)dS = 0,

∀η(x) = a + b× x, are satisfied).
It is clear that

‖T1f‖W 2
2 (F) ≤ c‖f‖L2(F),

‖T2ψ‖W 1
2 (F) ≤ c‖ψ‖W

−1/2
2 (G)

,

From (3.11) and from the boundary condition T (u⊥, r)N = −B̂(ρ)N we can
conclude that

u⊥ = −T1(λu⊥ + 2ωP⊥(e3 × u))−T2(B̂ρ)

= −T1(λu⊥ + 2ωP⊥(e3 × u))− 1
λ
T2(B̂(u ·N )). (3.13)
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Finally, we add the equation

η1d1(ρ) + η2d2(ρ) =
ωη1

S0

∫
G
ρ(x)x3x1dS +

ωη2

S0

∫
G
ρ(x)x3x2dS

= −η1(x)
ωS0

∫
G
B̂ρη2 ·NdS +

η2(x)
ωS0

∫
G
B̂ρη1 ·NdS

= −η1(x)
λωS0

∫
G
B̂(u ·N)η2 ·NdS +

η2(x)
λωS0

∫
G
B̂(u ·N)η1 ·NdS

to (3.13) and obtain

u = −λT1P⊥u− 2ωT1P⊥(e3 × u)− 1
λ
T3B̂(u ·N ) ≡ L(λ)u, (3.14)

where

T3ψ = T2ψ +
η1(x)
ωS0

∫
G
ψη2 ·NdS −

η2(x)
ωS0

∫
G
ψη1 ·NdS.

Since u ·N ∈ W−1/2
2 (G) for arbitrary u ∈ J , the operator L(λ) is well defined

in J̃ and is completely continuous, moreover, L(λ) is a holomorphic function of λ
everywhere except for λ = 0 and λ =∞.

We have shown that (3.5), (3.6) imply the equation (3.14) for u ∈ J̃ ; now we
prove that (3.5), (3.6) follow from (3.14). Indeed, if (3.14) holds, then

u⊥ = −T1(λu⊥ + 2ωP⊥(e3 × u))− 1
λ
T2(B̂(u ·N )),∫

F
u(x) · η1(x)dx = − 1

λω

∫
G
B̂(u ·N)η2 ·NdS

=
ω

λ

∫
G
(u(x) ·N(x) −Q0(u ·N ))x3x1dS,∫

F
u(x) · η2(x)dx =

ω

λ

∫
G
(u(x) ·N(x) −Q0(u ·N ))x3x2dS.

From the smoothing properties of T 1 and T 2 mentioned above it follows that the
equation (3.11) is satisfied with ρ = λ−1(I −Q0)u ·N and as a consequence (3.2),
(3.3), (3.8), (3.9) hold.

We are in a position to apply the theorem on the holomorphic operator
function to L(λ). One of the assumptions of this theorem is that (3.14) implies
u = 0 for a certain λ �= 0. We verify this assumption for λ in the half-plane Reλ ≥
L� 1. To this end, we multiply the first equation in (3.8) by u and integrate the
product over F . We integrate by parts and use the boundary conditions, which
leads to

λ‖u‖2 +2ω
∫
F

(u1ū2− ū1u2)dx+
1
λ

∫
G
B̂(u ·N)ū ·NdS+

ν

2
‖S(u⊥)‖2 = 0, (3.15)

where ‖ · ‖ is the norm in L2(F). Moreover, from

λρ = (I −Q0)u ·N
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it follows that

λdα(ρ) = dα(u ·N) = dα(u⊥ ·N) +
2∑

β=1

dβ(ρ)dα(ηβ ·N ), α = 1, 2.

Hence for large Reλ we have
∑2

α=1 |dα(ρ)| ≤ c
∑2

β=1 |dβ(u⊥ ·N )| and∣∣∣ ∫
G
B̂(u ·N )ū ·NdS

∣∣∣ =
∣∣∣ ∫

G
B(u ·N )ū ·NdS

∣∣∣
=

∣∣∣ ∫
G
B(u⊥ ·N +

2∑
α=1

dα(ρ)ηα ·N )(ū⊥ ·N +
2∑

α=1

d̄α(ρ)ηα ·N)dS
∣∣∣

≤ c
∫
G
|u⊥ ·N |2dS. (3.16)

From (3.15) and (3.16) we can conclude that

Reλ‖u‖2 +
ν

2
‖S(u⊥)‖2 ≤ cReλ−1

∫
G
|u⊥ ·N |2dS,

and, as a consequence, that u = 0 and ρ = 0, if Reλ is sufficiently large.
According to the theorem on the holomorphic operator function [12], the

spectrum of the pencil I−L(λ) consists of a countable number of eigenvalues with
the accumulation points at zero and infinity. It can be verified that every λ �= 0
that does not coincide with these eigenvalues belongs to the resolvent set of the
operator A′. Let u ∈ J̃ be the solution of the equation

u = L(λ)u + h, where h = − 1
λ

T 3B̂g + T 1P⊥f ∈ J̃

with arbitrary f ∈ J̃ , g ∈ W 3/2
2 (G) satisfying (3.10). By repeating the above

arguments it is not difficult to show that U = (u, ρ)T with ρ = λ−1(u ·N + g) is
a solution of

λU = A′U + F, F = (f , g)T .

From the estimate
‖u‖ ≤ c‖h‖

and from the properties of T 1 and T 2 it follows that

‖u‖W 2
2 (F) + ‖ρ‖

W
1/2
2 (G)

≤ c
(
‖f‖L2(F) + ‖g‖

W
3/2
2 (G)

)
.

This completes the proof of the first statement of the proposition.
Now we pass to the proof of the second statement. Let λ �= 0 be an imaginary

eigenvalue of A′. We multiply the first equation in (3.8) by u(x) and integrate over
F . Then we integrate by parts and use the boundary conditions. This leads to

λ‖u‖2L2(F) + 2ω
∫
F

(u1ū2 − u2ū1)dx−
∫
G
B̂(ρ)ū ·NdS +

ν

2
‖S(u⊥)‖2L2(F) = 0.

(3.17)
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Since ∫
G
B̂(ρ)ū ·NdS =

∫
G
B̂(ρ)(ū ·N −Q0(ū ·N))dS =

1
λ̄

∫
G
Bρρ̄dS,

the first three terms in (3.17) are imaginary, hence ‖S(u⊥)‖2L2(F) = 0, u⊥(x) = 0

and u(x) =
∑2

α=1 dα(ρ)ηα(x). The first equation in (3.1) reduces to

λ

2∑
α=1

dαηα + 2ω(e3 ×
2∑

α=1

dαηα) +∇q

= η3(x)
ω

‖η2‖2L2(F)

∫
G

2∑
α=1

dαηα(y) ·N(y)|y′|2dS = 0.

Applying the operator rot to this equation one arrives at

2λ
2∑

α=1

dαeα = 2ω(d2e1 − d1e2),

i.e., to
λd1(ρ) = ωd2(ρ), λd2(ρ) = −ωd1(ρ). (3.18)

Moreover, taking the relations dα(Q0ηβ ·N) = 0 and (2.6) into account, we obtain

λd1(ρ) = d1(
2∑

α=1

dα(ρ)ηα ·N) = −ωSS0
d2(ρ), λd2(ρ) =

ωS
S0
d1(ρ). (3.19)

From (3.18), (3.19) it follows that d1 = d2 = 0, and, as a consequence, u = 0,
q = 0, ρ = 0.

Finally, if u, ρ is a solution of (3.8) with λ = 0, then the same arguments yield
u⊥ = 0 and u =

∑2
α=1 dα(ρ)ηα(x). Multiplying the equation (I −Q0)u ·N |G = 0

by x3xβ and integrating, we arrive at
∫
G u ·Nx3xβdS = 0, i.e., at

2∑
α=1

dα(ρ)
∫
G

ηα(x) ·N(x)x3xβdS = 0, β = 1, 2.

This implies d1 = d2 = 0, hence ∇q = 0, q = q0 = const. From the boundary
condition −q0 + B(ρ) = 0 it follows that B̂(ρ) = 0. In view of (3.9), this implies
ρ = 0. The proposition is proved.

Proof of Theorem 1. We go back to Proposition 2. By (2.8), the quadratic form
(B̂r, r) can take negative values for some r ∈ H1. We introduce the space H2 =
H1 - KerB̂ and the projection P2 on this space. We note that B2 = P2B̂P2 =
bI + K, where b(x) > 0 and K is an integral operator with a weakly singular
kernel, hence B2 has a finite number of negative eigenvalues (see [14], Ch. 10). We
denote by H− the space spanned by the corresponding eigenfunctions of B2. For
r ∈ H−, r �= 0, we have (B2r, r) < 0 and r ∈ H2 - H− ≡ H+, r �= 0, satisfy
the inequality (B2r, r) > 0. Hence H2 = H+ ⊕H− is a Pontryagin space with the
indefinite scalar product (B2r, ρ) = (B̂r, ρ).
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Next, we introduce the space Y of the elements U = (u, ρ)T , with u ∈ J̃(F)
and ρ ∈ H-KerB̂ satisfying the condition (3.3), i.e., by (2.7), ρ = Σ(u)+r, where

Σ(u) =
1
ωS

(
P0η1(x) ·N (x)

∫
F

u(z) ·η2(z)dz−P0η2(x) ·N (x)
∫
F

u(z) ·η1(z)dz
)
,

r ∈ H2, P0 = I −Q0. We also set J0 =
(
I 0
0 B̂

)
and J = ΠJ0Π where Π is the

orthogonal projection (in L2(F) × L2(G)) on the space Y . Let [U, V ] be a scalar
product in L2(F)× L2(G). For arbitrary U ∈ Y we have

[JU,U ] = [J0U,U ] = ‖u‖2L2(F) + (BΣu,Σu) + (BQρ,Qρ)

= ‖u‖2L2(F) + S−1
2∑

α=1

∣∣∣ ∫
F

u · ηαdx
∣∣∣2 + (B2r, r).

The spaces Y+ and Y− of the elements U+ = (u,Σ(u) + r+)T and U− = (0, r−)
possess the properties [J (U+, U+)] > 0, [J (U−, U−)] < 0 for non-zero U+ and
U−, respectively, moreover, they are J -orthogonal: [JU+, U−] = 0. Finally, the
operator J is bounded, self-adjoint and invertible in Y : if JU = 0, then [JU, V ] =
0, ∀V ∈ Y ; taking V = U+ − U− we obtain

0 = [J0(U+ + U−), (U+ − U−)]

= ‖u‖2L2(F) + S−1
2∑

α=1

∣∣∣ ∫
F

u · ηαdx
∣∣∣2 + (B2r+, r+)− (B2r−, r−),

which implies U = 0. Hence Y is the Pontryagin space and [JU, V ] is an indefinite
scalar product in Y .

Now we consider the expression [JA′U,U ] for U ∈ Y .
In view of Proposition 3, A′U ∈ Y, hence

[JA′U,U ] = [J0A′U,U ] = [A′U,J0U ]

=
∫
F

(∇2u−∇(r1 + r2)− 2ω(e3 × u)) · udx+
∫
G

u ·N B̂(ρ̄)dS

= −ν
2

∫
F
|S(u)|2dx + 2ω

∫
F

(u2ū1 − u1ū2)dx+
∫
G
(u ·NB̂ρ̄− B̂ρū ·N )dS.

Hence Re[JA′U,U ] ≤ 0, which means that −iA′ is a J -dissipative operator
in Y . By the Pontryagin-M. Krein-Langer-Azizov theorem [5], A′ has a finite-
dimensional invariant subspace L and the eigenvalues of A′|L have non-negative
real parts. We have seen above that the operator A′ can not have imaginary eigen-
values (including λ = 0). Hence these eigenvalues have positive real parts.

If λ �= 0 and U ′ = (u, ρ′)T satisfies the equationA′U ′ = λU ′ then U = (u, ρ)T

with ρ = ρ′ + λ−1Q0(u ·N) satisfies (3.7) with the same λ. This completes the
proof of Theorem 1.
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4. The case of non-symmetric F
In this case the equation (1.2) defines one-parameter family of equilibrium figures
Fθ obtained by rotation of the angle θ of one of them, F0, around the x3-axis. In
what follows we mean by F arbitrary such figure. As shown in [13], a linearized
problem (1.10) takes the form

vt + 2ω(e3 × v)− ν∇2v +∇p = 0,

∇ · v(x, t) = 0, x ∈ F , t > 0,

T (v, p)N + NB0ρ = 0, (4.1)

ρt = N(x) · v(y, t)− h(x)∫
G h

2(z)dS

∫
G
h(y)v(y, t) ·N(y)dS, x ∈ G,

v(x, 0) = v0(x), x ∈ F , ρ(x, 0) = ρ0(x), x ∈ G,
where

h(x) = η3(x) ·N(x).

In the case of axially symmetric F we have h(x) = 0, and the term with the
integral in the boundary condition drops out. The orthogonality conditions (1.11),
(1.12) should be supplemented with∫

G
ρ(x, t)h(x)dS = 0.

By (2.5), Bh = 0.
The operator A is defined as above but the definition of its domain D(A)

contains the additional orthogonality condition∫
G
ρ(x)h(x)dS = 0. (4.2)

Theorem 1 takes the following form:

Theorem 1′. Let

min
|θ|≤π

∫
F

((x1 cos θ + x2 sin θ)2 − x2
3)dx ≥ c0 > 0. (4.3)

If the quadratic form (1.18) takes negative values for some ρ satisfying the condi-
tions (1.14), (4.2), then the operator A has a finite number of eigenvalues with a
positive real part.

Since h ∈ KerB̂, the proof of this theorem reduces to the analysis of the
spectrum of the operator A′, that is carried out as above. We prove the analogue
of Proposition 2.

Proposition 2′. Arbitrary ρ ∈ L2(G) can be represented in the form (2.7), where ρ2
satisfies the conditions (2.2) and

ρ1(x) = a1η1(x) ·N (x) + a2η2(x) ·N (x).
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The constants a1, a2 are found from the algebraic system
2∑

β=1

∫
G
y3yαηβ(y) ·N(y)dSaβ =

∫
G
ρ(y)y3yαdS, α = 1, 2. (4.4)

If ρ ∈ H, then ρ2 ∈ H1. If ρ = ηβ(x) ·N(x), β = 1, 2, then ρ2 = 0.

Proof. We turn to the equations (2.6):

(η1 ·N , x3x2) =
∫
F

(x2
2 − x2

3)dx ≡ B

(η2 ·N , x3x1) =
∫
F

(x2
3 − x2

1)dx ≡ −A,

(η1 ·N , x3x1) = −(η2 ·N , x3x2) =
∫
F
x1x2dx ≡ C.

It follows that (
(B(ηα ·N ),ηβ ·N)

)
α,β=1,2

= ω2

(
B −C
−C A

)
. (4.5)

This matrix is positive definite, because, by (1.17),

Bξ21 − 2Cξ2ξ2 +Aξ22 =
∫
F

(
(x2ξ1 − x1ξ2)2 − x2

3(ξ
2
1 + ξ22)

)
dx ≥ c0(ξ21 + ξ22).

Hence its determinant is positive. The determinant of the matrix(
(y3yα,ηβ ·N

)
α,β=1,2

= ω2

(
C −A
B −C

)
is negative, and the system (4.4) for a1, a2 is uniquely solvable. The proposition is
proved.

As above, we have

(Bρ, ρ) = (Bρ1, ρ1) + (Bρ2, ρ2).

By the positivity of the matrix (4.5),

(Bρ1, ρ1) =
2∑

α,β=1

(Bηα ·N ,ηβ ·N)aαaβ ≥ c(a21 + a22) ≥ c(I21 (ρ) + I22 (ρ)).

It is also clear that
(Bρ1, ρ1) ≤ c(I21 (ρ) + I22 (ρ)).

Further arguments related to the analysis of the spectrum ofA′ are essentially
the same as in Sec. 3. If A′U ′ = λU ′ where λ �= 0 and U ′ = (u, ρ′)T , then AU = λU
with U = (u, ρ)T ,

ρ = ρ′ + λ−1
(
Q0(u ·N )− h∫

G h
2dS

∫
G

u ·NhdS
)
.

This proves Theorem 1′.
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Abstract. We consider a model describing a situation in which a population
follows the density gradient of a nutrient that is produced at a spatially inho-
mogeneous rate of production and subject to diffusion. We show the stability
of the equilibrium solution.
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1. Introduction

In the paper [3] Chen, Friedman and Hu consider the partial differential equations

ut + div (u∇φ) = G (u, φ) , (1.1)
φt −Δφ = F (u, φ) ,

or, equivalently,

ut +∇u∇φ = G (u, φ)− uΔφ, (1.2)
φt −Δφ = F (u, φ) .

on a bounded domain Ω with the boundary condition
∂φ

∂n
= 0 (1.3)

on ∂Ω. These equations provide a model for a system in which certain cells of
density u move through the region Ω in the direction of the gradient of the density
φ of the nutrient nourishing them. Their rate of reproduction also may depend
on the cell density and the density of the nutrient. Models of this kind are often
referred to as Keller-Segel models. For a review of this topic see, e.g., [6] and [7].

The author gratefully acknowledges support from the Max-Planck-Institute for Mathematics in
the Sciences in Leipzig, Germany, during the completion of this paper.
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In most cases they take the form of a parabolic system of equations, while in our
case the first equation in (1.2) is, if we assume φ to be given for the moment, a
hyperbolic equation. This is also, e.g., true in [4], but in contrast to [3] the second
equation there is elliptic.

The characteristic curves for the hyperbolic equation are parallel to ∂Ω owing
to condition (1.3), thus no boundary condition for u is needed. Examples of F and
G discussed in [3] are

G (u, φ) = μk (u)φ− γu,
F (u, φ) = δ − k (u)φ

with positive numbers γ, δ, μ and a function k (u), in particular

k (u) =
u

1 + u
.

Under certain assumptions Chen, Friedman and Hu prove the existence of a long-
term solution and the local stability of certain equilibrium states of the system.
These equilibria are such that u and φ equal constant numbers u∗ and φ∗, respec-
tively, in Ω. Constant equilibrium solutions (u∗, φ∗) must fulfill the equations

G (u∗, φ∗) = 0, F (u∗, φ∗) = 0, (1.4)

thus we have two equations for two unknowns. In this paper we will only consider
the stability of equilibria, therefore the global assumptions about F and G made
in [3] are of no significance to us. Defining[

∂G
∂u

∂G
∂φ

∂F
∂u

∂F
∂φ

]
(u∗, φ∗) =

[
a b
c d

]
= J,

Chen, Friedman and Hu assume the following two conditions for the stability of
the equilibria.

1. All eigenvalues of J have negative real part, or ad− cb > 0, a+ d < 0,
2. a+ cu∗ < 0.

This means that, assuming Condition 2, any constant solution of the system
of partial differential equations is stable with respect to spatially non-constant
perturbations if it is stable with respect to spatially constant perturbations. Now
it would be interesting to allow F and G, in particular the production rates for
the nutrient, to depend on the position x ∈ Ω. Equations (1.4) would then become

G (u∗, φ∗, x) = 0, F (u∗, φ∗, x) = 0. (1.5)

In most cases these equations only have solutions depending on x, and then they
are no longer the proper equations for an equilibrium, and one has to consider the
equations

∇u∗∇φ∗ = G (u∗, φ∗, x) − u∗Δφ∗,
−Δφ∗ = F (u∗, φ∗, x)

(1.6)

instead. Unless φ∗ is constant, the cells would still move around in such an equilib-
rium state. The case of constant φ∗ is of interest, though, as one would expect it



Stability for a Parabolic-hyperbolic System 707

to make sense to have equilibria without any movement with a population density
varying with the density of nutrient production. In case k (u) = u, i.e.,

G (u, φ, x) = μuφ− γu, F (u, φ, x) = δ (x)− uφ. (1.7)

there are such equilibria with a variable u∗ and a constant φ∗, as F = G = 0 is
equivalent to

u∗φ∗ = δ (x) ,
μu∗φ∗ = γu∗,

and
φ∗ =

γ

μ
,

u∗ (x) =
μ

γ
δ (x) ,

while for other k there may not be such equilibria.
For k (u) = u the Jacobian matrix is[

∂G
∂u

∂G
∂φ

∂F
∂u

∂F
∂φ

]
(u∗, φ∗) =

[
μφ∗ − γ μu∗
−φ∗ −u∗

]
=

[
0 μ2

γ δ (x)
− γ

μ −μ
γ δ (x)

]
,

its trace is −μ
γ δ (x), its determinant is μδ (x) and a + cu∗ = −δ (x). This means

that if δ (x) > 0 everywhere, Conditions 1 and 2 are always fulfilled pointwise.
For the remainder of the paper we assume that the functions F and G belong

to C4 as functions of all their variables, and that ∂Ω belongs to C4 as well, that
G (u∗ (x) , φ∗, x) = F (u∗ (x) , φ∗, x) = 0 for a constant φ∗ and a strictly positive
function u∗ ∈ C4

(
Ω
)
, and that Condition 2 is fulfilled pointwise. The formal

linearization of equations (1.2) at such an equilibrium is the system

vt = −∇u∗∇ϕ+Gu (u∗, φ∗, x) v +Gφ (u∗, φ∗, x)ϕ− u∗Δϕ,
ϕt −Δϕ = Fu (u∗, φ∗, x) v + Fφ (u∗, φ∗, x)ϕ

(1.8)

for perturbations ϕ of φ∗ and v of u∗. Before we begin stating our result, we express
equations (1.2) in terms of the variables v = u− u∗ and ϕ = φ− φ∗. We have

vt +∇v∇ϕ = −∇u∗∇ϕ+ Ĝ (v, ϕ, x) − (v + u∗)Δϕ,

ϕt −Δϕ = F̂ (v, ϕ, x)
(1.9)

with F̂ (v, ϕ, x) = F (v + u∗, ϕ+ φ∗, x) and Ĝ (v, ϕ, x) = G (v + u∗, ϕ+ φ∗, x).
Let us also rewrite the system (1.8) in the form Ut = LU with U =

[
v ϕ

]T ,

LU =
[
−∇u∗∇ϕ+Gu (u∗, φ∗, x) v +Gφ (u∗, φ∗, x)ϕ− u∗Δϕ

Δϕ+ Fu (u∗, φ∗, x) v + Fφ (u∗, φ∗, x)ϕ

]
,

introducing the notations

D (L) =
{
U =

[
v ϕ

]T | ϕ (x) ∈ C3
(
Ω
)
, v (x) ∈ C1

(
Ω
)
,
∂ϕ

∂n
= 0

}
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and
σe = {z ∈ C | there is a U ∈ D (L) \ {0} with LU = zU}

for the set of eigenvalues of L.
We prove that spectral stability implies dynamic stability, i.e., that the ab-

sence of eigenvalues of the formal linearization with non-negative real part implies
the non-linear stability of the equilibrium. In addition, for constant equilibria and
for the functions F and G given in (1.7) we reproduce the result of Chen, Friedman
and Hu that Conditions 1 and 2 imply stability. We work in Sobolev spaces W k

p

with p > 3. To be precise, we prove

Theorem 1.1. Assume that

σe ∩ {z ∈ C | Re (z) ≥ 0} = Ø. (1.10)

Then there is a number η > 0 such that if ϕ0 ∈ W 3
p and v0 ∈ W 1

p and ‖ϕ0‖W 3
p

+
‖v0‖W 1

p
≤ η, then there exists a unique solution (v, ϕ) of equations (1.9) for

t ∈ [0,∞) such that v ∈ C0
(
[0,∞) ,W 1

p (Ω)
)
∩ C1 ([0,∞) , Lp (Ω)), ϕ ∈ C0(

[0,∞) ,W 3
p (Ω)

)
∩ C1

(
[0,∞) ,W 1

p (Ω)
)
, ∂ϕ

∂n = 0 and ϕ (0) = ϕ0, v (0) = v0. Also
‖ϕ (t)‖W 3

p
+ ‖v (t)‖W 1

p
→ 0 as t→∞.

Condition (1.10) is implied by Conditions 1 and 2 if F and G are either indepen-
dent of x or of the form given in equations (1.7).

The system (1.2) is similar to the equations for viscous compressible fluids in
that it combines a hyperbolic equation with a parabolic one. Therefore it seems
reasonable to transform the equations into Lagrange coordinates produced by the
vector field ∇φ. Doing this, we encounter the problem that if we control k spatial
derivatives of φ, we only control k − 1 derivatives of the Lagrange coordinates
and therefore k − 2 of those of the transform of the normal n, leading to a priori
estimates of only k − 1 derivatives of φ. Thus we have a loss of regularity, which
does not occur in the original coordinates. To avoid this we will transform the
dependent variables in our problem.

2. Notation

Let Ω ⊂ Rn be a domain. By Lp (Ω) we denote for p ∈ (1,∞) the set of all
measurable real (or complex, the distinction will usually not cause any difficulty)
functions for which the pth power of their absolute value is integrable, by W k

p (Ω)
for integer k > 0 and again p ∈ (1,∞) the subset of Lp (Ω) of all functions having
distributional derivatives up to order k belonging to Lp (Ω) also. If the set is the
domain Ω mentioned above, it is usually omitted. If B is any Banach space, we
denote by Ck (Ω, B) the set of all k-times continuously differentiable functions
from Ω to B, by Ck

(
Ω, B

)
the subset of functions for which all these derivatives

have a continuous extension to Ω.



Stability for a Parabolic-hyperbolic System 709

3. Local existence

We will first show that for given initial values a solution exists for a time interval
of a length going to infinity as the size of the initial values goes to zero. A similar
result in Hölder spaces was already proved in [3]. There is not much genuinely new
in this section, the point is just to state precisely what we need here and give an
outline of a proof. We confine ourselves to initial values such that ϕ0 ∈W 3

p ,
∂ϕ0
∂n = 0

and v0 ∈W 1
p .

The operator Δ with the boundary conditions ∂ϕ
∂n = 0 generates an analytic

semigroup on the space Lp (Ω) with the domain of definition

D (Δ) =
{
ϕ ∈ Lp (Ω) | ϕ ∈ W 2

p (Ω) ,
∂ϕ

∂n
= 0

}
.

We will prove the existence of a solution by a fixed point argument in the space

B2 =
{

(v, ϕ) | v ∈ C0
(
[0, T ] ,W 1

p (Ω)
)
∩ C1 ([0, T ] , Lp (Ω)) ,

ϕ ∈ C0
(
[0, T ] ,W 3

p (Ω)
)
∩ C1

(
[0, T ] ,W 1

p (Ω)
)}

with the norm

‖(v, ϕ)‖2 = max
0≤t≤T

(
‖v (t)‖W 1

p
+ ‖vt (t)‖Lp + ‖ϕ (t)‖W 3

p
+ ‖ϕt (t)‖W 1

p

)
.

The result is the following.

Theorem 3.1. There is a positive number C such that if

η = ‖ϕ0‖W 3
p

+ ‖v0‖W 1
p

and ∂ϕ0
∂n = 0, then a unique solution (v, ϕ) of the system (1.9) exists on any

interval [0, T ] with T ≤ −C − C−1 log (η) if this number is positive. In addition
then

‖(v, ϕ)‖2 ≤ CeCT η ≤ 1

and if T ≥ 1, then also

‖ϕ (T )‖W 3
p
≤ C

[
‖(ϕ, v)‖C0([T−1,T ],W 1

p ) + ‖(ϕt, vt)‖Lp([T−1,T ]×Ω)

]
.

Proof. To reformulate our problem as a fixed-point equation let us assume (v̂, ϕ̂) ∈
B2 and ‖(v̂, ϕ̂)‖2 ≤ 1. Then we define (v, ϕ) as the solution of the system of
equations

vt +∇v∇ϕ̂ = −∇u∗∇ϕ̂+ Ĝ (v̂, ϕ̂, x)− (v̂ + u∗)Δϕ̂ = ĝ,

ϕt −Δϕ = F̂ (v̂, ϕ̂, x)
(3.1)

with the initial values ϕ (0) = ϕ0, v (0) = v0. We can differentiate the second
equation with respect to time and obtain for f = ϕt that

ft −Δf = F̂v (v̂, ϕ̂, x) v̂t + F̂ϕ (v̂, ϕ̂, x) ϕ̂t,
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which implies by standard estimates for semigroups – a fairly abstract and general
version is contained in Theorem 5.2.1. in [1] – that

‖f (t)‖W 1
p
≤ C

(
‖ϕ0‖W 3

p
+ ‖v0‖W 1

p

)
+ Ct1/2 ‖(v̂, ϕ̂)‖2

and therefore

‖ϕ (t)‖W 3
p

+ ‖ϕt (t)‖W 1
p
≤ C

(
‖ϕ0‖W 3

p
+ ‖v0‖W 1

p

)
+ Ct1/2 ‖(v̂, ϕ̂)‖2

by standard elliptic estimates. (See, among many others, [2].) Introducing charac-
teristic coordinates by

dTt

dt
= ∇ϕ (Tt (x) , t) , T0 (x) = x,

we obtain
‖Tt‖W 2

p
+

∥∥T−1
t

∥∥
W 2

p
≤ C (T ) ‖(v̂, ϕ̂)‖2 . (3.2)

Therefore also
‖ĝ ◦ Tt‖W 1

p
≤ C (T ) ‖(v̂, ϕ̂)‖2

(for the definition of ĝ see equations (3.1)) and

‖vt (t)‖Lp + ‖v (t)‖W 1
p
≤ C ‖v0‖W 1

p
+ TC (T ) ‖(v̂, ϕ̂)‖2

with an increasing function C (T ). We therefore have

‖(v, ϕ)‖2 ≤ C1

(
‖ϕ0‖W 3

p
+ ‖v0‖W 1

p

)
+ T 1/2C (T ) ‖(v̂, ϕ̂)‖2 ,

where C (T ) now denotes a different increasing function. If we make T = T0 so
small that T 1/2

0 C (T0) ≤ 1/2 and then restrict the initial values by the inequality

‖ϕ0‖W 3
p

+ ‖v0‖W 1
p
≤ 1

2C1
= η1,

the mapping taking (v̂, ϕ̂) to (v, ϕ) maps the ball ‖(v, ϕ)‖2 ≤ 1 to itself. It is also
easy to see that at least sufficiently high powers of the mapping are contractions
in lower-order norms, and thus it has a unique fixed point. Also with C2 = 2C1

we have
‖ϕ (t)‖W 3

p
+ ‖v (t)‖W 1

p
≤ C2

(
‖ϕ0‖W 3

p
+ ‖v0‖W 1

p

)
for t ∈ [0, T0]. If the initial value was small enough we can repeat this process, and
we then obtain the existence of a solution on the interval [0, T0k] if ηCk−1

2 ≤ η1
and the inequality

‖ϕ (t)‖W 3
p

+ ‖v (t)‖W 1
p
≤ Ck

2

(
‖ϕ0‖W 3

p
+ ‖v0‖W 1

p

)
for 0 ≤ t ≤ T0k. From this we can easily derive our claims with the exception of
the last inequality. To obtain that inequality, observe that the right-hand side of
the equation for ϕ belongs to C1/2 ([T − 1, T ] , Lp) and this norm can be estimated
by the right-hand side above. Using Theorem 2.5.3, Section III in [1], we then have
that ‖ϕ‖C1/2([T−1/2,T ],W 2

p ) is bounded. Then we can differentiate the equation with
respect to t and use the usual parabolic estimates to get ‖ϕt‖W 2,1

p ([T−1/3,T ]×Ω) and
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therefore ‖ϕt (t)‖
W

2−2/p
p

for t ∈ [T − 1/4, T ] is bounded. (See, e.g., Theorem 7.20
in [9].) Using standard elliptic estimates, we can then obtain our claims. �

4. Long term existence and stability

Throughout the following calculations we assume that ‖(v, ϕ)‖2 ≤ 1. In this sec-
tion we will prove a priori estimates for small solutions of the equations (1.2) by
considering them as solutions of the inhomogeneous version of the linearized equa-
tions (1.8). They are not particularly hard to solve, but in switching to Lagrange
coordinates, as was already indicated, if we do not look at the non-linear problem
from the right angle, we have a loss of regularity. In order to avoid this problem,
we transform the equation, using the second equation in (1.9) to remove u∗Δϕ
from the first. Then we have

vt +∇v∇ϕ = −∇u∗∇ϕ+ Ĝ (v, ϕ, x)− u∗
(
ϕt − F̂ (v, ϕ, x)

)
− vΔϕ,

ϕt −Δϕ = F̂ (v, ϕ, x) .
(4.1)

This leads to the equations

(v + u∗ϕ)t +∇ (v + u∗ϕ)∇ϕ
= ∇ (u∗ϕ)∇ϕ−∇u∗∇ϕ+ Ĝ (v, ϕ, x) + u∗F̂ (v, ϕ, x) − vΔϕ,

ϕt −Δϕ = F̂ (v, ϕ, x) ,

suggesting the definition w = v + u∗ϕ. With these new variables the equilibrium
in question is still located at w = 0, ϕ = 0, and for (w,ϕ) we have the equations

wt +∇w∇ϕ
= −∇u∗∇ϕ+ u∗ |∇ϕ|2 + ϕ∇u∗∇ϕ

+ Ĝ (w − u∗ϕ, ϕ, x) + u∗F̂ (w − u∗ϕ, ϕ, x)− (w − u∗ϕ) Δϕ,

ϕt −Δϕ = F̂ (w − u∗ϕ, ϕ, x) .

(4.2)

Letting

G (P,w, ϕ, x) = u∗ |P |2 + ϕ∇u∗P + Ĝ (w − u∗ϕ, ϕ, x) + u∗F̂ (w − u∗ϕ, ϕ, x)
and

F (w,ϕ, x) = F̂ (w − u∗ϕ, ϕ, x)
we obtain

wt +∇w∇ϕ = −∇u∗∇ϕ+ G (∇ϕ,w, ϕ, x) − (w − u∗ϕ) Δϕ,

ϕt + |∇ϕ|2 −Δϕ = F (w,ϕ, x) + |∇ϕ|2 .
(4.3)

Let us define
A (x) = Gw (0, 0, 0, x) , B (x) = Gϕ (0, 0, 0, x) ,

C (x) = Fw (0, 0, x) , D (x) = Fϕ (0, 0, x)
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and

R1 = u∗ |∇ϕ|2 + ϕ∇u∗∇ϕ− (w − u∗ϕ)Δϕ+ G (0, w, ϕ, x) −A (x)w −B (x)ϕ,

R2 = F (w,ϕ, x) − C (x)w −D (x)ϕ+ |∇ϕ|2 .
Then

‖R1‖W 1
p
≤ C

(
‖w‖2W 1

p
+ ‖ϕ‖2W 2

p
+ ‖Δϕ‖2W 1

p

)
,

‖R2‖Lp ≤ C
(
‖ϕ‖2W 1

2p
+ ‖w‖2L2p

)
and

wt +∇w∇ϕ = −∇u∗∇ϕ+A (x)w +B (x)ϕ+R1,

ϕt +∇ϕ∇ϕ−Δϕ = C (x)w +D (x)ϕ+R2.
(4.4)

Now we introduce Lagrange coordinates by

T ′
t (y) = ∇ϕ (Tt (y) , t) , T0 (y) = y.

Then let w̃ (y, t) = w (Tt (y) , t) and

∇T (f ◦ Tt) = (∇f) ◦ Tt, Lt (f ◦ Tt) = Δf ◦ Tt.

We refrain from stating the exact form of these differential operators, although
they will be needed later in the proof, but we leave these calculations to the
reader. Then, in these new coordinates, equation (1.9) is equivalent to

w̃t = −∇T ũ∗∇T ϕ̃+ Ãw̃ + B̃ϕ̃+ R̃1,

ϕ̃t − Ltϕ̃ = C̃ (x) w̃ + D̃ (x) ϕ̃+ R̃2.
(4.5)

This is why we consider the evolution equation

w̃t = −∇T ũ∗∇T ϕ̃+ Ãw̃ + B̃ϕ̃,

ϕ̃t − Ltϕ̃ = D̃ϕ̃+ C̃w̃
(4.6)

with the boundary values
ñ · ∇T ϕ̃ = 0.

We will find out that this is now accessible to arguments considering this as a
perturbation of the equation

w̃t = −∇u∗∇ϕ̃+Aw̃ +Bϕ̃,

ϕ̃t −Δϕ̃ = Dϕ̃+ Cw̃
(4.7)

with boundary condition ∂ϕ̃
∂n = 0. We now omit the ˜ in the notation. We want to

show we can use the theory of analytic semigroups by studying the operator

A

[
w
ϕ

]
=

[
−∇u∗∇ϕ+Aw +Bϕ

Δϕ+Dϕ+ Cw

]
.

Then A : D (A)→ B with

B =
{
U =

[
w
ϕ

]
| w ∈W 1

p , ϕ ∈ Lp

}
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and

D (A) =
{[

w
ϕ

]
∈ B | ϕ ∈W 2

p ,
∂ϕ

∂n
= 0

}
.

Then equation (4.7) becomes Ut = AU and we have the following result.

Lemma 4.1. Assume that no z with Re (z) ≥ 0 is an eigenvalue of A. Then this
half-plane belongs to the resolvent set of A and there exists a number C such that∥∥∥(zI − A)−1

∥∥∥
L(B)

≤ C (1 + |z|)−1

for z with Re (z) ≥ 0. There also is an ε > 0 such that

‖exp (tA)‖L(B) ≤ Ce−εt.

Proof. First we prove the resolvent estimate. If

zU − AU = F =
[
F1 F2

]T
,

then
(z −A)w = −∇u∗∇ϕ+Bϕ+ F1,

zϕ−Δϕ = Dϕ+ Cw + F2
(4.8)

We have

A =
∂G

∂w
(0, 0, 0, x) =

∂Ĝ

∂v
(0, 0, x) + u∗

∂F̂

∂v
(0, 0, x)

=
∂G

∂u
(u∗, φ∗, x) + u∗

∂F

∂u
(u∗, φ∗, x) = a+ cu∗ < 0,

thus
A = a+ cu∗ (4.9)

and max
x∈Ω

A (x) < 0. From the first equation in (4.8) for Re (z) ≥ 0

w = (z −A)−1 (−∇u∗∇ϕ+Bϕ+ F1) (4.10)

and
zϕ−Δϕ = Dϕ+ C (−∇u∗∇ϕ+Bϕ+ F1) (z −A)−1 + F2.

From standard elliptic estimates we then obtain

‖ϕ‖W 2
p

+ |z| ‖ϕ‖Lp ≤ C
(
‖ϕ‖W 1

p
+ ‖F‖Lp

)
.

From equation (4.10) then

‖w‖W 1
p

(1 + |z|) ≤ C
(
‖F‖B + ‖ϕ‖W 1

p

)
.

This proves ∥∥∥(zI − A)−1
∥∥∥

L(B)
≤ C |z|−1
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for large z. By standard compactness arguments one also has that if the only
solution of AU = zU is zero for all z with Re (z) ≥ 0, then the resolvent set
contains all such z and ∥∥∥(zI − A)−1

∥∥∥
L(B)

≤ C (1 + |z|)−1

for such z. The existence of solutions for very large z is obvious in view of the
above considerations, and then it carries over to smaller z owing to the estimates
we proved. The remainder is a consequence of, e.g., Theorem 2.1, Part II in [5]. �

Lemma 4.2. For U =
[
ϕ v + u∗ϕ

]T the equation AU = zU is equivalent to

zv = −∇u∗∇ϕ+ av + bϕ− u∗Δϕ
and

zϕ = Δϕ+ dϕ+ cv.

Proof. Using equations (4.8) and (4.9) and remembering the definition of A,B,C,
and D in equations (4.4), this is an easy calculation. �

Now we want to obtain the information we need about the long-term behavior
by considering the problem as a perturbation of this linearization. To do this we
also need to consider the equation

wt = −∇u∗∇ϕ+Aw +Bϕ+ f1,

ϕt −Δϕ = Dϕ+ Cw + f2,
∂ϕ

∂n
= g on ∂Ω.

(4.11)

It is easy to show the following result.

Lemma 4.3. Assume f1 belongs to Lp
(
(0, T ) ,W 1

p

)
, f2 to Lp ((0, T )× Ω) and g to

W 1−1/p,1/2−1/2p ((0, T )× ∂Ω) as well as g (0) = 0. Then there is exactly one pair
of functions ϕ ∈ W 2,1

p , w ∈ C0
(
[0, T ] ,W 1

p

)
with wt ∈ Lp ((0, T )× Ω) fulfilling

equation (4.11) and ϕ (0) = 0, w (0) = 0 as well as the estimate

‖ϕ‖W 2,1
p

+ ‖w‖C0([0,T ],W 1
p ) + ‖wt‖Lp((0,T )×Ω)

≤ C (T )
(
‖f2‖Lp((0,T )×Ω) + ‖g‖

W
1−1/p,1/2−1/2p
p ((0,T )×∂Ω)

+ ‖f1‖Lp((0,T ),W 1
p )
)
.

Proof. For sufficiently short time intervals we can treat this system as a pertur-
bation of the single equations wt = f1 and ϕt − Δϕ = f2,

∂ϕ
∂n = g. Then we can

continue step by step, also using the information about the operator A we already
derived. There we can use Theorem 5.4 in [8]. A proof can also be done in a similar
way to that of Theorem 13 in [10]. �

Now the solution ϕ, v constructed in Theorem 3.1 has the property that

‖(v, ϕ)‖2 ≤ C (T )
(
‖v (0)‖W 1

p
+ ‖ϕ (0)‖W 3

p

)
.

We also have

‖Tt − idΩ‖W 2
p

+
∥∥T−1

t − idΩ
∥∥

W 2
p
≤ C (T )

(
‖v (0)‖W 1

p
+ ‖ϕ (0)‖W 3

p

)
.
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Thus ∥∥∥R̃1 (t)
∥∥∥

W 1
p

+
∥∥∥R̃2 (t)

∥∥∥
Lp
≤ C (T )

(
‖v (0)‖W 1

p
+ ‖ϕ (0)‖W 3

p

)2

,

it is also easy to see that the remaining error terms one has to incorporate into f1
and f2 to make w̃ and ϕ̃ solutions of (4.11) can be estimated in the same way. If
we write w̃ and ϕ̃ in the form w̃ = w1 + w2 and ϕ̃ = ϕ1 + ϕ2 where (w1, ϕ1) solve
equation (4.11) with f1 = f2 = 0 and (w1, ϕ1) (0) = (w0, ϕ0), while (w1, ϕ1) solve
equation (4.11) with the given f1 and f2 and (w2, ϕ2) (0) = 0, then combining
Lemmas 4.1, 4.2 and 4.3 we have

‖ϕ̃‖W 2,1
p ((T−1,T )×Ω) + ‖w̃‖C0([T−1,T ],W 1

p ) + ‖w̃t‖Lp((T−1,,T )×Ω)

≤ C (T )
(
‖v0‖W 1

p
+ ‖ϕ0‖W 3

p

)2

+ Ce−εT
(
‖ϕ0‖W 3

p
+ ‖v0‖W 1

p

)
.

Then we can use the last inequality in Theorem 3.1, which one can easily see is
still true if we replace v by w, to obtain

‖ϕ(T )‖W 3
p
+‖v(T )‖W 1

p
≤C (T )

(
‖ϕ0‖W 3

p
+‖v0‖W 1

p

)2

+Ce−εT
(
‖ϕ0‖W 3

p
+‖v0‖W 1

p

)
.

For T so large that Ce−εT < 1/2 and initial values small enough to assure the
existence of a solution on [0, T ] we then have

‖ϕ (T )‖W 3
p

+ ‖v (T )‖W 1
p
≤ 1

2

(
‖ϕ0‖W 3

p
+ ‖v0‖W 1

p

)
+ C

(
‖ϕ0‖W 3

p
+ ‖v0‖W 1

p

)2

.

For sufficiently small initial values then

‖ϕ (T )‖W 3
p

+ ‖v (T )‖W 1
p
≤ 3

4

(
‖ϕ0‖W 3

p
+ ‖v0‖W 1

p

)
.

This allows us to continue the solution indefinitely and implies that it converges
to zero as claimed. This concludes the proof of the first part of Theorem 1.1.

5. Excluding eigenvalues

For Re (z) ≥ 0 we have to conclude v = 0, ϕ = 0 from[
zv

zϕ−Δϕ

]
=

[
−∇u∗∇ϕ+ av + bϕ− u∗Δϕ

cv + dϕ

]
and ∂ϕ

∂n = 0, where we have suppressed the variable x throughout. Solving the
lower equation for Δϕ we obtain

Δϕ = (z − d)ϕ− cv.
We can use this to replace Δϕ in the upper equation, which results in

zv = −∇u∗∇ϕ+ av + bϕ− u∗ ((z − d)ϕ− cv) .
We assumed −a−u∗c > 0, thus −a−u∗c+z �= 0, and we can solve for v to obtain

v =
b+ u∗d− u∗z
z − a− u∗c

ϕ− ∇u∗∇ϕ
z − a− u∗c

.
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Replacing v in the second equation gives us

Δϕ =
ad− bc− z (a+ d) + z2

z − a− u∗c
ϕ+

c∇u∗
z − a− u∗

∇ϕ.

To duplicate the conditions of Chen, Friedman and Hu, we assume F and G do
not explicitly depend on x and neither does u∗, and D = ad−bc > 0, τ = a+d < 0
and Γ = a+ u∗c < 0. If ϕ �= 0 it has to be an eigenfunction of −Δ with Neumann
boundary conditions for an eigenvalue λk ≥ 0, thus

D − τz + z2

z − Γ
= −λk

and
−λkΓ +D + (λk − τ) z + z2 = 0.

This is an equation which cannot have any roots with a non-negative real part, as
−λkΓ +D > 0 and λk − τ > 0.

For variable equilibria, considering the case with a variable δ we have

Γ = −δ,D = μδ, τ = −μ
γ
δ

and therefore

Δϕ =
μδ + z μ

γ δ + z2

δ + z
ϕ− ∇δ

δ + z
∇ϕ

and

div ((δ + z)∇ϕ) = (δ + z)Δϕ+∇δ∇ϕ =
(
μδ + z

μ

γ
δ + z2

)
ϕ.

If we multiply the equation by ϕ and integrate over Ω, we obtain after an integra-
tion by parts that

−
∫
Ω

(δ + z) |∇ϕ|2 dx =
∫
Ω

(
μδ + z

μ

γ
δ + z2

)
|ϕ|2 dx.

Therefore∫
Ω

μδ |ϕ|2 + δ |∇ϕ|2 dx+ z
∫
Ω

μ

γ
δ |ϕ|2 + |∇ϕ|2 dx+ z2

∫
Ω

|ϕ|2 dx = 0.

If ϕ �= 0, we have a quadratic equation with only positive coefficients which again
cannot have a root in the half-plane described by Re (z) ≥ 0.
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