
Lecture 7

Inner Kan complexes and
normal dendroidal sets

7.1 Inner Kan complexes

In this section, we introduce the notion of inner Kan complexes in the category of
dendroidal sets. We begin by recalling the definition of an inner Kan complex in

k

horn if 0 < k < n.

Definition 7.1.1. A simplicial set X satisfies the restricted Kan condition if every
inner horn f : Λk[n] −→ X has a filler, i.e., there exists a map g : ∆[n] −→ X such
that f = g ◦ j, where j : Λk[n] // // ∆[n] denotes the inclusion

Λk[n]
f
//

��

j

��

X,

∆[n]

g

==
(7.1)

or, equivalently, if the induced map

j∗ : sSets(∆[n], X) −→ sSets(Λk[n], X) (7.2)

is surjective for every 0 < k < n.

A simplicial set satisfying the restricted Kan condition is called an inner
Kan simplicial set (a quasi-category in Joyal’s terminology). If the filler of (7.1)
is unique or, equivalently, if the map (7.2) is a bijection, then X is called a strict
inner Kan simplicial set.
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80 Lecture 7. Inner Kan complexes and normal dendroidal sets

The definition of an inner Kan complex for dendroidal sets is similar to the
one for simplicial sets, but using the inner horns defined in Lecture 3. Recall from
Section 3.2 that if T is any tree, e is any inner edge of T , and ∂e is the face map
in Ω contracting e, then the inner horn Λe[T ] is defined as

Λe[T ] =
⋃

β 6=∂e∈Φ1(T )

∂βΩ[T ],

where Φ1(T ) is the set of all faces of T and ∂βΩ[T ] is the β-face of Ω[T ].
The inner horn Λe[T ] is a subobject of the boundary ∂Ω[T ] and extends the

notion of inner horn for simplicial sets, namely

i!(Λ
k[n]) = Λk[Ln] (7.3)

as a subobject of i!(∆[n]) = Ω[Ln], where Ln = i([n]) is the linear tree with n
vertices and n+ 1 edges.

Definition 7.1.2. A dendroidal set X is an inner Kan complex if, for every tree T ,
every inner horn f : Λe[T ] −→ X has a filler, i.e., there exists a map g : Ω[T ] −→ X
such that f = g ◦ j, where j : Λe[T ] −→ Ω[T ] denotes the inclusion

Λe[T ]
f
//

��

j

��

X,

Ω[T ]

g

==
(7.4)

or, equivalently, if the induced map

j∗ : dSets(Ω[T ], X) −→ dSets(Λe[T ], X) (7.5)

is surjective for every tree T and every inner edge e of T .

If the filler of (7.4) is unique or, equivalently, if the map (7.5) is a bijection,
then X is called a strict inner Kan complex.

A map f : X −→ Y of dendroidal sets is an inner Kan fibration if it has the
left lifting property with respect to any inner horn inclusion Λe[T ] −→ Ω[T ], for
every tree T and every inner edge e of T . Thus, a dendroidal set X is an inner
Kan complex if the map X −→ 1 is an inner Kan fibration, where 1 denotes the
terminal object of the category dSets.

Proposition 7.1.3. Let K be any simplicial set and let X be any dendroidal set.
Then:

(i) The dendroidal set i!(K) is an inner Kan complex if and only if K is an
inner Kan simplicial set.
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(ii) If X is an inner Kan complex, then the simplicial set i∗(X) is an inner Kan
simplicial set.

Proof. The results follow immediately from the fact that i! is fully faithful, the
adjunction between i! and i∗, and (7.3). �

A source of strict inner Kan complexes is given by dendroidal nerves of op-
erads (see Example 3.1.4).

Proposition 7.1.4. Let P be any coloured operad in Sets. Then Nd(P ) is a strict
inner Kan complex.

Proof. Any dendrex x ∈ Nd(P )T is given by a map x : Ω[T ] −→ Nd(P ), which
corresponds by the adjunction (3.1) to a map of operads Ω(T ) −→ P . If we
choose a planar representative for T , then Ω(T ) is a free operad generated by
the operations corresponding to the vertices of the (planar representative of the)
tree T . It follows that x is equivalent to a labeling of the (planar representative
of the) tree T as follows. The edges of T are labeled by the colours of P and the
vertices are labeled by operations in P , where the inputs of such an operation are
given by the labels of the incoming edges to the vertex, and the output is the label
of the outgoing edge from the vertex. Any inner horn Λe[T ] −→ Nd(P ) completely
determines such a labeling of the tree T and thus determines a unique extension
Ω(T ) −→ P . �

Remark 7.1.5. The converse of this result is also true, as we will prove in Sec-
tion 7.3.

Proposition 7.1.6. Any strict inner Kan complex X is 2-coskeletal.

Proof. Let X be a strict inner Kan complex and let A be any dendroidal set.
Suppose that a map f : Sk2A −→ Sk2X is given. We first show that this map f
can be extended to a dendroidal map f̂ : A −→ X. Assume that f was extended
to a map fk : SkkA −→ SkkX for k ≥ 2. Let a ∈ Skk+1(A) be a non-degenerate
dendrex and suppose that a /∈ Skk(A). Hence, a ∈ AT and T has exactly k + 1
vertices. Now, we choose an inner horn Λe[T ], which always exists since k ≥ 2. The
set {β∗a}β 6=∂e where β runs over all faces of T defines a horn Λe[T ] −→ A. Since
this horn factors through the k-skeleton of A, we obtain, by composition with fk,
a horn Λe[T ] −→ X in X given by {f(β∗a)}β 6=α. If fk+1(a) ∈ XT denotes the
unique filler of that horn, then we have that β∗fk+1(a) = f(β∗a) for each β 6= ∂e.

To obtain the same property for ∂e, observe that the dendrices f(∂∗ea) and
∂∗efk+1(a) both have the same boundary and that they are both of shape S, where
S has k vertices. Since k ≥ 2, we have that S has an inner face, but then it follows
that both f(∂∗ea) and ∂∗efk+1(a) are fillers for the same inner horn in X and hence
equal. If we repeat this process for all dendrices in Skk+1(A), we get that fk can
be extended to fk+1 : Skk+1(A) −→ Skk+1(X). This holds for all k ≥ 2, which

implies that f can be extended to f̂ : A −→ X.
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In order to prove the uniqueness of f̂ , assume that g is another extension of
f and that it has been shown that f̂ and g agree on all dendrices of shape T where
T has at most k vertices. Let a ∈ XS be a dendrex of shape S, where S has k+ 1
vertices. Then the dendrices f̂(a) and g(a) are dendrices in X that have the same
boundary. Since k ≥ 2, it follows that these dendrices are both fillers for the same
inner horn, hence they are the same and thus f̂ = g. �

7.2 Inner anodyne extensions

In this section, we develop the notion of inner anodyne extensions for dendroidal
sets.

Definition 7.2.1. Let M be a class of monomorphisms in dSets. We say that M

is saturated if it contains all the isomorphisms and it is closed under pushouts,
retracts, arbitrary coproducts, and colimits of sequences (indexed by ordinals).

Given an arbitrary class of monomorphisms M, the saturated class generated
by M is the smallest saturated class that contains M, i.e., the intersection of all
the saturated classes containing M.

Definition 7.2.2. The class of inner anodyne extensions in dSets is the saturated
class generated by the set of inner horn inclusions. Thus, it is also the class of
maps having the left lifting property with respect to the inner Kan fibrations.

The surjectivity property for inner Kan complexes extends to inner anodyne
extensions, namely if u : U −→ V is an inner anodyne extension, then the map

u∗ : dSets(V,K) −→ dSets(U,K)

is surjective for any inner Kan complex K. Similarly, u∗ is a bijection for any strict
inner Kan complex K.

Given any tree T , let I(T ) be the subset of the edges of T consisting of only
the inner edges. For any nonempty subset E ⊂ I(T ), we denote by ΛE [T ] the union
of all the faces of Ω[T ] except those obtained by contracting an edge from E, i.e.,

ΛE [T ] =
⋃

α∈Φ1(T )\∂E

∂αΩ[T ],

where ∂E = {∂e | e ∈ E}. Observe that, if E = {e}, then ΛE [T ] = Λe[T ].

Lemma 7.2.3. For any nonempty E ⊆ I(T ), the inclusion ΛE [T ] // // Ω[T ] is inner
anodyne.

Proof. We will proceed by induction on the number n of elements of E. If n = 1,
then ΛE [T ] // // Ω[T ] is an inner horn inclusion, thus inner anodyne.
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Assume that the result holds for n < k and suppose that E has k elements.
Let e be any element of E and let F = E \ {e}. Then the map ΛE [T ] −→ Ω[T ]
factors as

ΛE [T ] //

$$

ΛF [T ]

��

Ω[T ],

where the vertical map in the diagram is inner anodyne by the induction hypothe-
sis, since F has k−1 elements. We can express the horizontal map as the following
pushout:

ΛF [T/e] //

��

ΛE [T ]

��

Ω[T/e] // ΛF [T ].

Now, the map on the left is inner anodyne (again by the induction hypothesis),
hence so is the map on the right, since inner anodyne extensions are closed un-
der pushouts. Therefore ΛE [T ] −→ Ω[T ] is a composition of two inner anodyne
extensions and thus it is inner anodyne too. �

The above lemma implies that ΛI [T ] −→ Ω[T ] is inner anodyne, where ΛI [T ]
is an abbreviation for ΛI(T )[T ].

We now consider how dendrices in an inner Kan complex can be grafted.
Recall that for any two trees T and S, and l a leaf of T , we denote by T ◦l S the
tree obtained by grafting S onto T by identifying l with the root of S. Both S
and T naturally embed as subfaces of T ◦l S, which induces the obvious inclusions
Ω[S] // // Ω[T ◦l S] and Ω[T ] // // Ω[T ◦l S], the pushout of which we denote by
Ω[T ] ∪l Ω[S] −→ Ω[T ◦l S].

Lemma 7.2.4. For any two trees T and S and any leaf l of T , the inclusion

Ω[T ] ∪l Ω[S] −→ Ω[T ◦l S]

is an inner anodyne extension.

Proof. We may assume that T 6= | 6= S, otherwise the result is obvious. We proceed
by induction on the sum n of the number of vertices of T and S. Let R = T ◦lS. If
n = 2, then Ω[T ]∪lΩ[S] −→ Ω[T ◦lS] is a horn inclusion, and thus inner anodyne.

Assume that the result holds for 2 ≤ n < k and that the sum of the number
of vertices of T and S is k. Recall that ΛI [R] is the union of all the outer faces
of Ω[R]. Observe that the map Ω[T ] ∪l Ω[S] −→ Ω[R] factors as

Ω[T ] ∪l Ω[S] //

&&

ΛI [R]

��

Ω[R]
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and that the vertical map is inner anodyne by Lemma 7.2.3. We will show that
the horizontal map is inner anodyne by expressing it as a pushout of an inner
anodyne extension.

For the purpose of this proof, let us say that an external cluster of a tree is a
vertex v with the property that one of the edges adjacent to it is inner while all the
rest are outer. Let Cl(T ) (resp. Cl(S)) denote the set of all external clusters of T
(resp. of S) which do not contain l (resp. the root of S). For each vertex v ∈ Cl(T ),
the face ∂v of Ω[R] corresponding to v is isomorphic to Ω[(T/v) ◦l S] and the map
Ω[T/v]∪l Ω[S] −→ Ω[(T/v) ◦l S] is inner anodyne by the induction hypothesis. In
a similar way, for every w ∈ Cl(S) the face ∂w of Ω[R] that corresponds to w is
isomorphic to Ω[T ◦l (S/w)] and the map Ω[T ]∪lΩ[S/w] −→ Ω[T ◦l (S/w)] is inner
anodyne, again by the induction hypothesis. The following diagram is a pushout:( ∐

c∈Cl(T )

(Ω[T/c] ∪l Ω[S])

)∐( ∐
c∈Cl(T )

(Ω[T ] ∪l Ω[S/c])

)
//

��

Ω[T ] ∪l Ω[S]

��
( ∐
c∈Cl(T )

(Ω[(T/c) ◦l S])

)∐( ∐
c∈Cl(T )

(Ω[T ◦l (S/c)])

)
// ΛI [R],

where the left vertical map is the coproduct of all the inner anodyne extensions
mentioned above, thus inner anodyne. This implies that the vertical map on the
right is inner anodyne too. �

7.3 Homotopy in an inner Kan complex

In this section, we study a notion of homotopy inside dendroidal sets. Two den-
drices are said to be homotopic if one is a composition of the other with a degen-
erate dendrex. We will show that this homotopy theory within a dendroidal set
is well behaved if the dendroidal set is an inner Kan complex. In that case, the
resulting homotopy relation is an equivalence relation. From this it follows that to
every inner Kan complex X we can associate an operad Ho(X), which we call the
homotopy operad associated to X. The aim of this section is to prove a converse
of Proposition 7.1.4, namely

Theorem 7.3.1. A dendroidal set X is a strict inner Kan complex if and only if
X is the dendroidal nerve of an operad.

For each n ≥ 0, let Cn be the n-th corolla:

•
0

1 n
· · · · · ·
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For each 0 ≤ i ≤ n, we denote by i : η −→ Cn the outer face map in Ω that sends
the unique edge of η to the edge i in Cn. An element f ∈ XCn will be denoted by

•
0

1 n

f

· · · · · ·

Definition 7.3.2. Let X be an inner Kan complex and let f, g ∈ XCn and n ≥ 0.
For 1 ≤ i ≤ n, we say that f is homotopic to g along the edge i, and denote it by
f ∼i g, if there is a dendrex H of shape

•

•

0

1 n

f

i

i′

· · · · · ·

whose three faces are:

•
0

1 n

f

i
· · · · · ·

•
0

1 n
g

i′
· · · · · ·

•
i

i′

id

where the ‘id’ in the third tree is a degeneracy of i. In the same way, we will say
that f is homotopic to g along the edge 0, and denote it by f ∼0 g, if there is a
dendrex of shape

•

•
0

0′

1 n
· · · · · ·

whose three faces are:

•
0′

0

id •
0′

1 n
g

· · · · · ·
•

0

1 n

f

· · · · · ·

When f ∼i g for some 0 ≤ i ≤ n, we will refer to the corresponding H as a
homotopy from f to g along i.

Remark 7.3.3. Notice that, in a strict inner Kan complex X, the homotopy relation
just defined is the identity relation.
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Proposition 7.3.4. Let X be an inner Kan complex. The relations ∼i on the set
XCn are equivalence relations for each 0 ≤ i ≤ n, and these equivalence relations
all coincide.

Proof. For a detailed proof, see [MW09, Proposition 6.3 and Lemma 6.4]. �

Due to this proposition, we will use the notation f ∼ g instead of f ∼i g.
Given an inner Kan complex X and x1, . . . , xn, x ∈ Xη, we denote by

X(x1, . . . , xn;x) ⊆ XCn

the set of all dendrices f such that 0∗(f) = x and i∗(f) = xi for 1 ≤ i ≤ n. We
can define a coloured collection Ho(X) as follows. The set of colours is the set Xη,
and given objects x1, . . . , xn, x ∈ Xη, we define

Ho(x1, . . . , xn;x) = X(x1, . . . , xn;x0)/ ∼

where ∼ is the equivalence relation on XCn given by Proposition 7.3.4. In order to
put an operad structure on the collection Ho(X), we need to define the composition
operations ◦i.

Definition 7.3.5. Let X be an inner Kan complex and let f ∈ XCn and g ∈ XCm

be two dendrices in X. A dendrex h ∈ XCn+m−1 is a ◦i-composition of f and g,
denoted by h ∼ f ◦i g, if there is a dendrex λ in X,

•

•

0

1 n

f

i· · · · · ·
1′ m′

g

· · · · · ·

with inner face

•
0

1

m′1′

n

h

· · · · · ·· · ·

The dendrex λ is called a witness for the composition.

Remark 7.3.6. Notice that, for 1 ≤ i ≤ n, we have by definition that H : f ∼i g if
and only if H is a witness for the composition g ∼ f ◦i id. Similarly, for i = 0 we
have that H : f ∼0 g if and only if H is a witness for the composition g ∼ id ◦ f .

If X is an inner Kan complex and f ∼ f ′ and g ∼ g′, then, if h ∼ f ◦i g and
h′ ∼ f ′ ◦i g′, we have that h ∼ h′ (see [MW09, Lemma 6.9]). Hence composition
is well defined on homotopy classes.
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Proposition 7.3.7. There is a unique structure of a symmetric coloured operad on
Ho(X) for which the canonical map of collections Sk1(X) −→ Ho(X) extends to
a map of dendroidal sets X −→ Nd(Ho(X)). The latter map is an isomorphism
whenever X is a strict inner Kan complex.

Proof. Given [f ] ∈ Ho(X)(x1, . . . , xn;x) and [g] ∈ Ho(X)(y1, . . . , ym;xi), the as-
signment

[f ] ◦i [g] = [f ◦i g]

is well defined by Remark 7.3.6. This gives the ◦i operations in the coloured operad
Ho(X). The actions of the symmetric group Σn are defined in the following way.
For any element σ ∈ Σn, let σ : Cn −→ Cn be the induced map in Ω that permutes
the edges of the n-th corolla. The map σ∗ : XCn −→ XCn restricts to a function

σ∗ : X(x1, . . . , xn;x) −→ X(xσ(1), . . . , xσ(n);x)

that respects the homotopy relation. Hence, we get a map

σ∗ : Ho(X)(x1, . . . , xn;x) −→ Ho(X)(xσ(1), . . . , xσ(n);x).

It is straightforward that these structure maps provide the coloured collection
Ho(X) with an operad structure.

To prove that the quotient map q : Sk1(X) −→ Ho(X) extends to a map
q : X −→ Nd(Ho(X)) of dendroidal sets, it is enough to give its values for dendrices
x ∈ XT where T is a tree with two vertices, since Nd(Ho(X)) is 2-coskeletal by
Proposition 7.1.6. So, let T be a tree with two vertices and e be the inner edge of
this tree. Then the map

Λe[T ] // // Ω[T ]
x // X

factors through Sk1(X), so its composition Λe[T ] −→ Nd(Ho(X)) with q has a
unique extension by Proposition 7.1.4. We take this extension to be q(x) : Ω[T ] −→
Nd(Ho(X)) and this defines the map q : Sk2(X) −→ Sk2(Nd(Ho(X))), and hence
all of q : X −→ Nd(Ho(X)) by 2-coskeletality.

If X is itself a strict inner Kan complex, then the homotopy relation is
the identity relation, so Sk1(X) −→ Ho(X) is the identity map. Since X and
Nd(Ho(X)) are strict inner Kan complexes, it follows that q : X −→ Nd(Ho(X))
is an isomorphism. �

The following result together with Proposition 7.3.7 provide the proof of
Theorem 7.3.1.

Proposition 7.3.8. The natural map τd(X) −→ Ho(X) is an isomorphism of oper-
ads for every inner Kan complex X.

Proof. It is enough to prove that the map q : X −→ Nd(Ho(X)) of Proposi-
tion 7.3.7 has the universal property of the unit of the adjunction. This means
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that, for any operad P and any map ϕ : X −→ Nd(P ), there is a unique map of
operads ψ : Ho(X) −→ P such that Nd(ψ)q = ϕ. Observe that ϕ induces a map
Ho(X) −→ Ho(Nd(P )) such that the diagram

Sk1(X)
ϕ
//

q

��

Sk1Nd(P )

qP

��

Ho(X)
Ho(ϕ)

// Ho(Nd(P ))

commutes. Now, Ho(Nd(P )) = P and qP is the identity, as we can see from
the proof of Proposition 7.3.7. Hence, Ho(ϕ) defines a map ψ : Ho(X) −→ P of
coloured collections. In fact, one can see that ψ is a map of operads, and the
uniqueness follows from the surjectivity of q. �

Proof of Theorem 7.3.1. One direction was already proved in Proposition 7.1.4.
For the other one, suppose that X is a strict inner Kan complex. Then Proposi-
tion 7.3.7 and Proposition 7.3.8 imply that X ∼= Nd(τd(X)). �

7.4 Homotopy coherent nerves are inner Kan

Throughout this section, E will denote a monoidal model category with cofibrant
unit I. We will also assume that E is equipped with an interval in the sense of
[BM06], which we denote by H. Recall from Definition 6.2.1 that such an interval
is given by an object H of E together with maps

I
0 //

1
// H

ε // I and H ⊗H ∨−→ H

satisfying certain conditions. This means in particular that H is an interval in
Quillen’s sense ([Qui67]), so 0 and 1 together define a cofibration I

∐
I −→ H,

and ε is a weak equivalence. In Section 6.2 we explained how such an interval
H allows one to construct for each coloured operad P in E a Boardman–Vogt
resolution WH(P ) −→ P . Each operad in Sets can be viewed as an operad in
E via the strong monoidal functor Sets −→ E, as in Example 1.3.6, and hence
has such a Boardman–Vogt resolution. When we apply this construction to the
operads Ω(T ), we obtain the homotopy coherent dendroidal nerve hcNd(P ) of any
operad P in E, defined as the dendroidal set given by

hcNd(P )T = Oper(WH(Ω(T )), P ).

The goal of this section is to prove that the homotopy coherent nerve is an inner
Kan complex.

Theorem 7.4.1. Let P be a C-coloured operad in E such that, for every (n + 1)-
tuple (c1, . . . , cn, c) of colours of P , the object P (c1, . . . , cn; c) is fibrant in E. Then
hcNd(P ) is an inner Kan complex.
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As observed in Section 6.3, our construction of the dendroidal homotopy
coherent nerve specializes to that of the homotopy coherent nerve of an E-enriched
category. In the case where E is the category of topological spaces or simplicial
sets, one recovers the classical definition of Cordier and Porter ([CP86]). It follows
as a particular case of Theorem 7.4.1 that the homotopy coherent nerve of an
E-enriched category with fibrant Hom objects is a quasi-category in the sense of
Joyal. This was proved in [CP86] when E is the category of simplicial sets.

Recall from Example 6.3.2, in the case E = Top, the description of the
operads WH(Ω(T )) involved in the definition of the homotopy coherent nerve. We
have a similar description for these operads in the case of a general monoidal model
category E. First of all, recall from (1.1) the symmetrization functor

Σ: Oper 6Σ(E) −→ Oper(E),

which is left adjoint to the forgetful functor from symmetric operads to non-
symmetric ones. If T is a tree in Ω, then any planar representative T̄ of T naturally
describes a non-Σ operad Ω(T̄ ) such that Ω(T ) = Σ(Ω(T̄ )). It follows that

WH(Ω(T )) = Σ(WH(Ω(T̄ ))),

since the W -construction commutes with symmetrization.
The coloured operad WH(Ω(T̄ )) can be described explicitly (Example 6.3.2).

The colours of WH(Ω(T̄ )) are the colours of Ω(T̄ ), i.e., the edges of T . Let
σ = (e1, . . . , en; e) be an (n + 1)-tuple of colours of Ω(T̄ ). If Ω(T̄ )(σ) = ∅, then
WH(Ω(T̄ ))(σ) = 0. If Ω(T̄ )(σ) 6= ∅, then there is a subtree Tσ of T (and a corre-
sponding planar subtree T̄σ of T̄ ) whose leaves are e1, . . . , en and whose root is e.
Thus we have that

WH(Ω(T̄ ))(e1, . . . , en; e) =
⊗

f∈inn(σ)

H,

where inn(σ) is the set of inner edges of Tσ (or of T̄σ). This last tensor product
can be interpreted as the ‘space’ of assignments of lengths to inner edges in T̄σ;
it is the unit if inn(σ) is empty.

The composition product in the coloured operad WH(Ω(T̄ )) is given in terms
of the ◦i-operations. If σ = (e1, . . . , en; e) and ρ = (f1, . . . , fm; ei) are two (n+ 1)-
tuples of colours, then the composition map

Ω(T̄ )(e1, . . . , en; e0)⊗ Ω(T̄ )(f1, . . . , fm; e)

◦i
��

Ω(T̄ )(e1, . . . , ei−1, f1, . . . , fm, ei+1, . . . , en; e)

(7.6)

is defined as follows. The trees T̄σ and T̄ρ are grafted along ei to form the tree
T̄σ ◦ei T̄ρ, that is again a planar subtree of T̄ . In fact, T̄σ ◦ei T̄ρ = T̄σ◦iρ, where
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σ ◦i ρ = (e1, . . . , ei−1, f1, . . . , fm, ei+1, . . . , en; e0). For the sets of inner edges we
have

inn(σ ◦i ρ) = inn(σ) ∪ inn(ρ) ∪ {ei}.

The composition product in (7.6) is the map

H⊗inn(σ) ⊗H⊗inn(ρ) //

∼=
��

H⊗inn(σ◦iρ)

∼=
��

H⊗inn(σ)∪inn(ρ) ⊗ I id⊗1
// H⊗inn(σ)∪inn(ρ) ⊗H,

where 1: I −→ H is one of the endpoints of the interval H.

This description of the operad WH(Ω(T̄ )) is functorial in the planar tree T .
In particular, for an inner edge e of T , the tree T/e inherits a planar structure
T/e from T̄ , and WH(Ω(T/e)) −→WH(Ω(T̄ )) is the natural map assigning length
0 to the edge e.

Proof of Theorem 7.4.1. Let T be a tree in Ω and a an inner edge of T . We need
to find an extension to the following diagram:

Λa[T ]
ϕ
//

��

��

hcNd(P ).

Ω[T ]

::

Let T̄ be a planar representative of T . An extension ψ : Ω[T ] −→ hcNd(P ) corre-
sponds, by adjointness, to a morphism of non-Σ operads

ψ̂ : WH(Ω(T̄ )) −→ P.

For each face map S −→ T , the tree S inherits a planar structure S̄ from T̄ , and
the given map ϕ : Λa[T ] −→ hcNd(P ) corresponds, again by adjointness, to a map
of operads in E,

ϕ̂ : WH(Λa[T ]) −→ P,

where we view WH(Λa[T ]) as the colimit of operads in E,

WH(Λa[T ]) = colim W (Ω(S̄)) (7.7)

over all the faces of T except the one contracting a. In other words, ϕ corresponds
to a compatible family of maps

ϕ̂S : WH(Ω(S̄)) −→ P.
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We will show that there exists an operad map ψ̂ extending ϕ̂S for all faces S 6= T/a.
Note that the colours of Ω(T̄ ) are the same as those of the colimit in (7.7), so we
have a map ψ0 = ϕ0 on colours:

ψ0 : E(T ) −→ {Colours of P}.

If σ = (e1, . . . , en; e) is an (n + 1)-tuple of edges of T such that WH(Ω(T̄ )) 6= ∅,
and Tσ ⊆ T (with Tσ 6= T ), then Tσ is contained in an outer face S of T . Hence
WH(Ω(T̄ ))(σ) = WH(Ω(T̄σ))(σ) = WH(Ω(S̄))(σ), and we have a map

ϕ̂S(σ) : WH(Ω(T̄ ))(σ) −→ P (σ),

given by ϕ̂S : WH(Ω(S̄)) −→ P . Thus, the only part of the map of operads

ψ̂ : WH(Ω(T̄ )) −→ P not determined by ϕ is the one when Tτ = T , where
τ = (e1, . . . , en; e) and e1, . . . , en are all the input edges of T̄ (in the planar order)

and e is the output edge. In this case, ψ̂(τ) has to be a map

ψ̂ : WH(Ω(T̄ ))(τ) = H⊗i(τ) −→ P (τ)

such that ψ̂(σ) = ϕ̂S(σ) if σ 6= τ , and together with these ψ̂(σ) respects operad

composition. The first condition determines ψ̂(τ) on the subobject of H⊗i(τ) which
is given by a value 0 on one of the tensor factors marked by an edge ei other than
the given a. The second condition determines ψ̂(τ) on the subobject of H⊗i(τ)

which is given by a value 1 on one of the factors. Thus, if we write 1 for the map
I // // H and ∂H // // H for the map I

∐
I −→ H, and define ∂H⊗k // // H⊗k

by the Leibniz rule (i.e., ∂(A⊗B) = ∂(A)⊗B ∪A⊗ ∂(B)), then the problem of

finding ψ̂(τ) is the same as finding an extension to the diagram

∂(H⊗inn(σ)\{a} ⊗H) ∪H⊗inn(σ)\{a} ⊗ I //

��

��

P (τ)

H⊗inn(σ)\{a} ⊗H
∼= // H⊗inn(σ).

ψ̂(σ)

OO

This extension exists because P (τ) is fibrant by assumption, and the left-hand
map is a trivial cofibration by the pushout-product axiom for monoidal model
categories. �

7.5 The exponential property

Recall from Theorem 4.2.2 that the category of dendroidal sets is a closed sym-
metric monoidal category. The main result of this section is that the internal hom
of this monoidal structure HomdSets(D,Y ) is an inner Kan complex if D is normal
and Y is inner Kan. It is a consequence of the following result from [MW09], which
we quote here without proof:
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Theorem 7.5.1 ([MW09, Propostion 9.2]). Let S and T be any two trees in Ω.
Then the natural map

∂Ω[S]⊗ Ω[T ]
⋃

∂Ω[S]⊗Λe[T ]

Ω[S]⊗ Λe[T ] // // Ω[S]⊗ Ω[T ]

is inner anodyne, where e is any inner edge of T . �

It follows by standard arguments with saturated classes that, if A // // B is
a normal monomorphism and C // // D is inner anodyne, then

A⊗D
⋃
A⊗C

B ⊗ C // // B ⊗D (7.8)

is again inner anodyne. Using the Hom-⊗ adjunction, one draws the standard
conclusions, such as that if Y −→ X is an inner Kan fibration and C // // D is
inner anodyne, then

Hom(D,Y ) −→ Hom(C, Y )×Hom(C,X) Hom(D,X) (7.9)

has the right lifting property with respect to normal monomorphisms. If C // // D
is just normal, then (7.9) is an inner Kan fibration. In particular, taking C = ∅
and X = 1 (the terminal object of dSets), we obtain the following.

Theorem 7.5.2 ([MW09, Theorem 9.1]). Let Y and D be dendroidal sets and as-
sume that D is a normal dendroidal set. If Y is a (strict) inner Kan complex, then
so is HomdSets(D,Y ). �

The result given by Theorem 7.5.1 is also true in pdSets. However, for the
tensor product to be defined, one has to assume that either S or T is linear (see
Remark 4.2.4). The general statement analogous to (7.8) for pdSets takes the
following form. Let K // // L be a monomorphism between simplicial sets and let
C // // D be a monomorphism in pdSets. Then

u!(K)⊗D
⋃

u!(K)⊗C

u!(L)⊗ C // // u!(L)⊗D

is inner anodyne whenever K // // L or C // // D is.
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