
Lecture 6

Boardman–Vogt resolution and
homotopy coherent nerve

In this lecture, we describe a generalization of the W -construction of Boardman
and Vogt for coloured operads in any monoidal category with a suitable notion
of interval. This generalized W -construction is then used to define the homotopy

nerve will play a fundamental role in the definition of homotopy P -algebras and
weak higher categories.

6.1 The classical W -construction

In this section we recall the Boardman–Vogt resolution of operads in the category
of topological spaces (see [BV73, Ch. III]).

Let Top denote the category of compactly generated topological spaces. The
W -construction is a functor

W : OperC(Top) −→ OperC(Top),

where OperC(Top) denotes the category of C-coloured operads in Top, together
with a natural transformation γ : W −→ id (i.e., W is an augmented endofunctor
in OperC(Top)). To each topological coloured operad P there is an associated
topological coloured operad W (P ) and a natural map γP : W (P ) −→ P .

If we think of the maps of coloured operads P −→ Top (considering Top as
a coloured operad with the cartesian product) as describing P -algebras in Top,
then the maps W (P ) −→ Top will describe homotopy P -algebras in Top. The
augmentation induces a map

OperC(Top)(P,Top)
γ∗P−→ OperC(Top)(W (P ),Top)
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which views any P -algebra as a homotopy P -algebra.

In the case of non-symmetric operads, the functor W can be explicitly de-
scribed as follows. Let P be a non-symmetric C-coloured operad in Top and let
H = [0, 1] be the unit interval. The colours of W (P ) are the same as those of P and
the space of operations W (P )(c1, . . . , cn; c) is a quotient of a space of labelled pla-
nar trees. We consider, for c1, . . . , cn, c in C, the topological space A(c1, . . . , cn; c)
of planar trees whose edges are labelled by elements of C and, in particular, for
every such tree the input edges are labelled by the given c1, . . . , cn and the out-
put edge is labelled by c. We assign to each of the inner edges of these trees a
length t ∈ H. Each vertex with input edges labelled by b1, . . . , bm ∈ C (in the
planar order) and output edge labelled by b ∈ C is labelled by an element of
P (b1, . . . , bm; b).

Example 6.1.1. The following tree is an element of A(c, c, d; e):

•

•

q

b t d

p

c c

e

3

where p ∈ P (c, c; b), q ∈ P (b, d; e), and t ∈ [0, 1].

There is a canonical topology in A(c1, . . . , cn; c) induced by the topology of
P and the standard topology of the unit interval. The space W (P )(c1, . . . , cn; c)
is the quotient space of A(c1, . . . , cn; c) obtained by the following two relations:

(i) If a tree has a unary vertex v labelled by an identity, then we identify such
tree with the tree obtained by removing this vertex and identifying the input
edge x of v with its output edge y. The length assigned to the new edge is
the maximum of the lengths of the edges x and y, or it has no length if the
new edge is outer.

•

•

•

s

1c

t

•

•
max(s,t)

∼

(ii) If there is a tree with an internal edge e with zero length, then we identify it
with the tree obtained by contracting the edge e, using the corresponding ◦i
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operation of the coloured operad P .

•

•

q

p

0e

•p◦iq
∼

The collection W (P )(c1, . . . , cn; c) for c1, . . . , cn, c ∈ C forms a C-coloured
operad. The unit for each colour c is the tree | coloured by c. Composition is given
by grafting, assigning length 1 to the newly arisen internal edges.

Remark 6.1.2. There is a W -construction for symmetric operads defined in a
similar way (see [BM07, §3]). The forgetful functor from symmetric operads to
non-symmetric operads has a left adjoint which identifies the category of non-
symmetric operads with a full coreflective subcategory of the category of symmet-
ric operads. If

Σ : Oper 6Σ(Top)
//

oo Oper(Top) : U

is the free-forgetful adjunction relating non-symmetric operads and symmetric
operads, then W (ΣP ) = Σ(WP ).

Example 6.1.3. Let P be the non-symmetric coloured operad with only one colour

and P (c, (n). . . , c; c) = P (n) consisting of a single n-ary operation for n ≥ 1 and
P ( ; c) = P (0) = ∅.

The operad W (P ) will again have only one colour. Since every unary vertex
in a labelled tree in W (P )(n) can only be labelled by the identity, it is enough
(by relation (i) in the definition of W (P )) to consider only those trees in W (P )(n)
without unary vertices. We call these trees regular trees. Thus, if n = 1, 2, then
W (P )(n) is a one-point space. For the case n = 3, we need to consider all possible
regular trees with three inputs. There are three such trees:

•

•

• •

•

The tree in the middle contributes one point to the space W (P )(3) while each
other tree contributes a copy of the interval [0, 1] (both have only one inner edge).
There is one identification to be made when the length of the inner edge is zero,
in which case the corresponding tree is identified with the tree in the middle. The
space W (P )(3) is then the disjoint union of two copies of [0, 1] where we identify
the ends named 0 to a single point. What we get is that W (P )(3) = [−1, 1].
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It is convenient to keep track of the trees corresponding to each point in the
interval [−1, 1]. The point 0 corresponds to the middle tree in the picture, while a
point t ∈ (0, 1] (resp. t ∈ [−1, 0)) corresponds to the tree on the right (resp. left)
where the length of the inner edge is t.

The case n = 4 is a bit more involved. There are eleven regular trees with
four inputs, five of them with one internal edge and five of them with two internal
edges. Here is the complete list of them:

•
•

•

S1

•
•
•

S2

•
• •

S3

•
•

•

S4

•
•
•

S5

•
•

T1

•
•

T2

•
•

T3

•
•

T4

•
•

T5

•
R

Each of the trees Si contributes a copy of the square [0, 1]× [0, 1] and each of
the trees Ti contributes a copy of the interval [0, 1]. There are several identifications
when the lengths of the internal edges are zero. The space W (P )(4) consists of
five copies of [0, 1]× [0, 1] glued together by means of these identifications. Thus,
W (P )(4) is a pentagon, that we can picture as follows:

S5 S4

S2

S1

S3

T5

T3T4

T2 T1

R
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Each point in the pentagon corresponds to an element ofW (P )(4). The center
corresponds to the tree R, the vertices correspond to the trees Si, and the middle
points of the edges correspond to the trees Ti when the length of the internal edge
is 1. Moving from the boundary towards the center shrinks the length of the inner
edges of the trees from 1 to 0.

One can compute in this way W (P )(n) for every n. In fact, W (P )(n) is a
subdivision of the n-th Stasheff polytope for every n.

Example 6.1.4. Let Top be the category of compactly generated topological spaces
with the interval given by the unit interval [0, 1]. Let C be a small category con-
sidered as a discrete topological category, i.e., C(A,B) is viewed as a discrete
topological space for every A and B in C. Thus, we can view C as a coloured
operad in Top, where the colours are the objects of C and where all operations are
unary.

Then W (C) will be again a topological operad with only unary operations,
i.e., a topological category. The objects (colours) of W (C) are the same as those
of C. The morphisms W (C)(A,B) are represented by sequences of morphisms in C

A = C0
f1 //

t1
C1

f2 // · · ·
fn−1
//
tn−1

Cn−1
fn // Cn = B

with ‘waiting times’ ti ∈ [0, 1] for 1 ≤ i ≤ n − 1. If ti = 0, such a sequence is
identified with

A = C0
f1 //

t1
C1

f2 // · · · −→
ti−1

Ci−1

fi+1fi
//
ti+1

Ci+1 −→ · · ·
fn−1

//
tn−1

Cn−1
fn // Cn = B.

If fi = id, then the sequence is identified with

A = C0
f1 //

t1
C1

f2 // · · · −→
s

Ci−1

fi+1
//
ti+1

Ci+1 −→ · · ·
fn−1

//
tn−1

Cn−1
fn // Cn = B,

where s = max(ti−1, ti).
We will study this example in the following particular case. Let C = [n] be

the linear tree viewed as a discrete topological category. An [n]-algebra in Top
consists of a sequence of spaces X0, . . . , Xn and maps fji : Xi −→ Xj for i ≤ j
such that fii = id and

fkj ◦ fji = fki (6.1)

if i ≤ j ≤ k.
The topological category W ([n]) has objects 0, 1, . . . , n, and a morphism

i −→ j in W ([n]) is a sequence of ‘times’ ti+1, . . . , tj−1 where tk ∈ [0, 1]. In
other words, W ([n])(i, j) is the cube [0, 1]j−i−1 if i + 1 ≤ j; a point if i = j; and
the empty set if i > j. Composition on W ([n]) is given by juxtaposing two such
sequences putting an extra time 1 in the middle, i.e.,

(ti+1, . . . , tj−1) : i −→ j and (tj+1, . . . , tk−1) : j −→ k
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compose into
(ti+1, . . . , tj−1, 1, tj+1, . . . , tk−1) : i −→ k.

A W ([n])-algebra is then a sequence of spaces X0, . . . , Xn and maps fji as before,
but for which condition (6.1) holds only up to specified coherent higher homotopies.

Remark 6.1.5. For any non-symmetric C-coloured operad P in Top, consider all
planar trees T with input edges c1, . . . , cn and output edge c, such that each vertex
of T with input edges b1, . . . , bm and output edge b is labelled by an element of
P (b1, . . . , bm; b). Then

A(c1, . . . , cn; c) ∼=
∐
T

HT ,

where the coproduct is taken over all such trees T andHT = H×k, whereH = [0, 1]
and k is the number of inner edges of T .

The remaining identifications to construct W (P )(c1, . . . , cn; c) are completely
determined by the combinatorics of the trees T . This observation is the key to
generalizing the W -construction to coloured operads in other monoidal categories.

6.2 The generalized W -construction

In this section, we generalize the W -construction to coloured operads in monoidal
categories. For this, one needs a suitable replacement of the unit interval [0, 1]
used above to give lengths to the inner edges of the trees.

Definition 6.2.1. Let E be a monoidal category with tensor product ⊗ and unit I.
An interval in E is an object H equipped with two ‘points’, i.e., maps 0, 1: I ⇒ H,
an augmentation ε : H −→ I satisfying ε ◦ 0 = id = ε ◦ 1, and a binary operation
(playing the role of the maximum)

∨ : H ⊗H −→ H

which is associative, and for which 0 is unital and 1 is absorbing, i.e.,

0 ∨ x = x = x ∨ 0 and 1 ∨ x = 1 = x ∨ 1

for any x : I −→ H.

Example 6.2.2. The unit interval [0, 1] is an interval in Top. One can choose as ∨
the maximum operation or the ‘reversed’ multiplication, i.e., s∨ t is defined by the
identity (1− s ∨ t) = (1− s)(1− t).

The groupoid J = (0
∼←→ 1) is an interval in Cat . Another possible interval

for Cat is the two-object category I = (0 −→ 1).

For any interval H and any coloured operad P in E, there is a new coloured
operad WH(P ) (on the same colours as P ) together with a natural map of op-
erads WH(P ) −→ P . The operad WH(P ) is constructed as W (P ) in the case of
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topological spaces, now glueing objects of the form H⊗k instead of cubes [0, 1]k

(see Remark 6.1.5). The functor WH is called the W -construction in E associ-
ated to the interval H. As was pointed out in the case of topological operads, the
W -construction can be defined in a similar way for symmetric coloured operads
in E (cf. Remark 6.1.2). We refer the reader to [BM06] and [BM07] for more details
on the generalized W -construction.

Example 6.2.3. Let Cat be the category of (small) categories with the groupoid in-
terval J = (0

∼←→ 1). Let I denote the unit for the cartesian product of categories,
i.e., I is the category with one object and one (identity) morphism. Consider a non-
symmetric operad P in Cat with P (n) = I corresponding to one n-ary operation
for every n ≥ 1, and P (0) = ∅.

The operad WJ(P ) is a one-colour operad and, as in Example 6.1.3, the
term WJ(P )(n) is described by using regular trees (i.e., trees with no unary ver-
tices) with n leaves. If n = 1, 2, then WJ(P )(n) is the one-object category I. For
n = 3, there are three regular trees, two with one inner edge (each contribut-
ing a copy of J) and one without inner edges (contributing a copy of I). In the
W -construction, we identify the object named 0 in every copy of J with the unique
object of I. Hence, WJ(P )(3) is a category with three objects and a unique iso-
morphism between any two objects. We can picture it as

1
∼←→ 0

∼←→ 1.

Similarly, in the case n = 4, there are eleven regular trees with four inputs (see
Example 6.1.3), five of them with two internal edges and five of them with one
internal edge. Each of the trees with two internal edges contributes a copy of
J × J to WJ(P )(4). Using the identifications given by the W -construction, one
can show that WJ(P )(4) consists of a category with eleven objects and a unique
isomorphism between any two objects, and we can picture it as

•

•

•

•

•

•

•

• •

••

''

∼
gg

$$

∼dd
��

∼ ??

��

∼ ??
oo ∼ // oo ∼ //

__ ∼
��

__ ∼
��

::∼
zz

77
∼

ww

77
∼

ww

))

∼
ii

��

∼

OO

uu

∼
55

gg
∼
''

6.3 The homotopy coherent nerve

In this section, we use the generalized W -construction to define, for every coloured
operad P in a symmetric monoidal category, a dendroidal set hcNd(P ) called the
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homotopy coherent nerve of P . This dendroidal set is similar to the one obtained
via the dendroidal nerve construction, but with homotopies built into it.

Let E be a symmetric monoidal category with an interval H. For each tree
T in Ω we can consider the operad Ω(T ) as a discrete operad in E. This is done
by applying to the operad Ω(T ) in Sets the strong monoidal functor Sets −→ E

sending any set X to
∐
x∈X I, where I is the unit of E. Then we have a functor

Ω −→ Oper(E)

that assigns to each tree T the operad WH(Ω(T )). By Kan extension, this functor
induces a pair of adjoint functors

hcτd : dSets
//

oo Oper(E) : hcNd. (6.2)

Definition 6.3.1. The functor hcNd : Oper(E) −→ dSets is called the homotopy
coherent nerve functor.

More explicitly, for every tree T in Ω and any coloured operad P in E, the
homotopy coherent nerve is given by

hcNd(P )T = Oper(WH(Ω(T )), P ).

To have a better understanding of the functor hcNd it will be useful to have
a description of the operad WH(Ω(T )). We do it in the case E = Top, although a
similar description applies to any monoidal category E with an interval.

Example 6.3.2. Let E = Top be the category of compactly generated topological
spaces with the interval H = [0, 1]. Let T be any tree in Ω. The colours of the
operad W (Ω(T )) are the same as those of Ω(T ), i.e., the edges of T . If σ =
(e1, . . . , en, e) are edges of T such that there is a subtree Tσ of T with e1, . . . , en
as input edges and e as output edge, then

W (Ω(T ))(e1, . . . , en; e) = H#inn(Tσ)

where inn(Tσ) is the set of inner edges of Tσ. In fact, W (Ω(T ))(e1, . . . , en; e) is
a #inn(Tσ)-dimensional cube representing the space of assignments of lengths
ti ∈ [0, 1] to the internal edges of Tσ. It is the one-point space if inn(Tσ) is the
empty set.

If there is no subtree in T with e1, . . . , en as input edges and e as output
edge, then

W (Ω(T ))(e1, . . . , en; e) = ∅.
The composition operations in W (Ω(T )) are given in terms of the ◦i operations
as follows. If σ = (e1, . . . , en; e) and σ′ = (d1, . . . , dm; ei) represent two subtrees
of T , then the composition map

W (Ω(T ))(e1, . . . , en; e)×W (Ω(T ))(d1, . . . , dm; ei)

◦i
��

W (Ω(T ))(e1, . . . , ei−1, d1, . . . , dm, ei+1, . . . , en; e)
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is defined by grafting the trees Tσ and Tσ′ along the edge ei to form another
subtree Tσ◦iσ′ . This new tree Tσ◦iσ′ has as internal edges the ones of Tσ and the
ones of Tσ′ plus a new one ei which is assigned length 1.

The left adjoint hcτd is closely related to the W -construction. Let P be a
coloured operad in Sets and let PE be the corresponding operad in E obtained via
the functor Sets −→ E. Then we have the following proposition:

Proposition 6.3.3. Let E be a symmetric monoidal category with an interval H
and let P be any coloured operad in Sets. Then there is a natural isomorphism of
operads

hcτd(Nd(P )) ∼= WH(PE).

Proof. The dendroidal set Nd(P ) is a colimit of representables Ω[T ] over all mor-
phisms Ω[T ] −→ Nd(P ). Since, by adjunction,

dSets(Ω[T ], Nd(P )) ∼= Oper(τd(Ω[T ]), P ) ∼= Oper(Ω(T ), P ),

it follows that
Nd(P ) = lim−→

Ω(T )→P
Ω[T ].

Using the fact that hcτd preserves colimits and that hcτd(Ω[T ]) ∼= WH(Ω(T )), we
have that

hcτd(Nd(P )) = lim−→
Ω(T )→P

WH(Ω(T )).

The required isomorphism follows now by direct inspection of the explicit con-
struction of WH(PE) given in [BM06]. �

An immediate consequence of this result is that there is a natural bijection

dSets(Nd(P ), hcNd(Q)) ∼= Oper(WH(PE), Q).

More generally, we have the following theorem:

Theorem 6.3.4. Let E be a symmetric monoidal category with an interval H. Then
there is a natural isomorphism

HomdSets(Nd(P ), hcNd(Q))T ∼= Oper(WH(PE ⊗BV Ω(T )), Q)

for every tree T in Ω and coloured operads P and Q in sets.

Proof. By the definition of the internal hom in dendroidal sets, we have that

HomdSets(Nd(P ), hcNd(Q))T = dSets(Nd(P )⊗ Ω[T ], hcNd(Q)).

The required natural isomorphism follows now from the adjunction (6.2) and
Proposition 6.3.3, using the fact that

Nd(P )⊗ Ω[T ] ∼= Nd(P ⊗BV Ω(T ))

for every operad P and every tree T in Ω. �
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