
Lecture 4

Tensor product of dendroidal
sets

Like any category of presheaves, the category of dendroidal sets is cartesian closed.
In this lecture, we will discuss another monoidal structure, which is also closed,
and seems more relevant than the cartesian structure. It is closely related to the
tensor product of operads introduced by Boardman and Vogt, and it makes the
embedding of simplicial sets into dendroidal sets into a strong monoidal functor.

4.1 The Boardman–Vogt tensor product

The category of small categories Cat is a cartesian closed category for which
the internal hom HomCat(C,D) between two categories C and D is defined as
the category whose objects are functors from C to D and whose morphisms are

of coloured operads is a closed symmetric monoidal category with the so-called
Boardman–Vogt tensor product [BV73, Definition 2.14].

We recall the definition of the Boardman–Vogt tensor product for coloured
operads.

Definition 4.1.1. Let P be a symmetric C-coloured operad and let Q be a symmet-
ric D-coloured operad. The Boardman–Vogt tensor product P ⊗BV Q is a (C×D)-
coloured operad defined in terms of generators and relations in the following way.
For each d ∈ D and each operation p ∈ P (c1, . . . , cn; c) there is a generator

p⊗ d ∈ P ⊗BV Q((c1, d), . . . , (cn, d); (c, d)).

Similarly, for each c ∈ C and each q ∈ Q(d1, . . . , dm; d) there is a generator

c⊗ q ∈ P ⊗BV Q((c, d1), . . . , (c, dm); (c, d)).
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natural transformations between them. In this section, we show that the category
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These generators are subject to the following relations:

(i) (p⊗ d) ◦ ((p1 ⊗ d), . . . , (pn ⊗ d)) = (p ◦ (p1, . . . , pn))⊗ d.

(ii) σ∗(p⊗ d) = (σ∗p)⊗ d for every σ ∈ Σn.

(iii) (c⊗ q) ◦ ((c⊗ q1), . . . , (c⊗ qm)) = c⊗ (q ◦ (q1, . . . , qm)).

(iv) σ∗(c⊗ q) = c⊗ (σ∗q) for every σ ∈ Σm.

(v) σ∗n,m((p ⊗ d) ◦ ((c1 ⊗ q), . . . , (cn ⊗ q))) = (c ⊗ q) ◦ ((p ⊗ d1), . . . , (p ⊗ dm)),
where σn,m ∈ Σnm is the permutation described as follows. Consider Σnm as
the set of bijections of the set {0, 1, . . . , nm−1}. Each element of this set can
be written uniquely in the form kn + j where 0 ≤ k < m and 0 ≤ j < n as
well as in the form km+j where 0 ≤ k < n and 0 ≤ j < m. The permutation
σn,m is then defined by σn,m(kn+ j) = jm+ k.

Observe that relations (i) and (ii) imply that for every d ∈ D the map
P −→ P ⊗BV Q given by p 7−→ p⊗ d is a map of operads. Similarly, relations (iii)
and (iv) ensure that for every c ∈ C the map Q −→ P ⊗BV Q given by q 7−→ c⊗ q
is a map of operads.

Example 4.1.2. We illustrate relation (v), called the interchange relation, with the
following examples. Suppose that n = 2 and m = 3. The left-hand operation of
relation (v), before applying σ∗2,3, can be represented by the tree

(c1,d1)

(c1,d2)

(c1,d3) (c2,d1)

(c2,d2)

(c2,d3)

c1⊗q •

(c1,d)

•

(c2,d)

c2⊗q

◦
(c,d)

p⊗d

The right-hand operation can be represented by the tree

(c1,d1) (c2,d1) (c1,d2) (c2,d2) (c1,d3) (c2,d3)

p⊗d1◦

(c,d1)

p⊗d2◦
(c,d2)

◦

(c,d3)

p⊗d3

•
(c,d)

c⊗q

And the permutation σ2,3 corresponds to the permutation (2 4 5 3) of Σ6. We
represent the vertices coming from operations in P by a white dot ◦ and the
vertices coming from operations in Q by a black dot •.
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The Boardman–Vogt tensor product preserves colimits in each variable sep-
arately. In fact, there is a corresponding internal hom making the category of
coloured operads closed monoidal.

Theorem 4.1.3. The category Oper with the Boardman–Vogt tensor product ⊗BV
is a closed symmetric monoidal category.

Proof. The unit for the tensor product is the initial operad I on one colour, i.e.,
I(∗, ∗) = {∗} and the empty set otherwise. It follows from the definition that this
tensor product is associative, commutative and unital. This proves that Oper is
symmetric monoidal.

We define the internal hom for coloured operads as follows. Let P be a
C-coloured operad and Q a D-coloured operad. Then HomOper (P,Q) is the operad
whose colours are the maps of operads P −→ Q, and if α1, . . . , αn, β are n + 1
such maps, then the elements of

HomOper (P,Q)(α1, . . . , αn;β)

are maps f assigning to each colour c ∈ C an element fc ∈ Q(α1c, . . . , αnc;βc).
The maps fc should be natural with respect to all the operations in P . For example,
if p ∈ P (c1, c2; c), then

β(p)(fc1 , fc2) ∈ Q(α1c1, . . . , αnc1, α1c2, . . . , αnc2;βc)

is the image under a suitable permutation of

fc(α1(p), . . . , αn(p)) ∈ Q(α1c1, α1c2, . . . , αnc1, αnc2;βc).

We need to construct a bijection

Oper(P ⊗BV Q,R) ∼= Oper(P,HomOper (Q,R))

natural in P , Q and R.
Let ϕ : P ⊗BV Q −→ R be a map of coloured operads. For each c ∈ C we

have a map of operads ϕc defined by the composition

Q −→ P ⊗BV Q
ϕ−→ R

where the first map sends q to c⊗ q. This defines a map from the colours of P to
the colours of HomOper (Q,R). Now, if we have an operation p ∈ P (c1, . . . , cn; c),
we define

fd = ϕ(p⊗ d) ∈ R(ϕc1d, . . . , ϕcnd;ϕcd)

for every d ∈ D.
Conversely, let ψ : P −→ HomOper (Q,R) be a map of coloured operads. To

construct a map ψ : P ⊗BV Q −→ R, we need to define it on the colours and the
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generators of P ⊗BV Q. If (c, d) ∈ C ×D, then ψ(c, d) = ψ(c)(d). For a generator
of the form c⊗ q, where q ∈ Q(d1, . . . , dn; d), we define

ψ(c⊗ q) = ψ(c)(q).

For a generator of the form p⊗ d, where p ∈ P (c1, . . . , cn; c), we define

ψ(p⊗ d) = ψ(p)d.

It is now easy to check that ψ thus defined is compatible with the relations of the
Boardman–Vogt tensor product. �

Remark 4.1.4. Note that in the definition of the Boardman–Vogt tensor product
it is crucial that the coloured operads involved are symmetric. However, the tensor
product still makes sense without the symmetries when one of the operads involved
has only unary operations.

4.2 Tensor product of dendroidal sets

The category of dendroidal sets is a category of presheaves, hence cartesian closed.
The cartesian product of dendroidal sets extends the cartesian product of simplicial
sets, i.e.,

i!(X × Y ) ∼= i!(X)× i!(Y )

for every two simplicial sets X and Y . (Note, however, that i! does not preserve
the terminal object.)

As mentioned before, there is another closed monoidal structure on dSets,
strongly related with the Boardman–Vogt tensor product of coloured operads. For
any two trees T and S in Ω, the tensor product of the representables Ω[T ] and
Ω[S] is defined as

Ω[T ]⊗ Ω[S] = Nd(Ω(T )⊗BV Ω(S)),

where Nd is the dendroidal nerve functor (see Example 3.1.4), Ω(T ) and Ω(S) are
the coloured operads associated to the trees T and S respectively (see Section 2.3),
and ⊗BV is the Boardman–Vogt tensor product.

This defines a tensor product in the whole category of dendroidal sets, since,
being a category of presheaves, every object is a canonical colimit of representables
and ⊗ preserves colimits in each variable.

Definition 4.2.1. Let X and Y be two dendroidal sets and let X = lim−→Ω[T ] and
Y = lim−→Ω[S] be their canonical expressions as colimits of representables. Then
the tensor product X ⊗ Y is defined as

X ⊗ Y = lim−→Ω[T ]⊗ lim−→Ω[S] = lim−→Nd(Ω(T )⊗BV Ω(S)).
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It follows from general category theory [Kel82] that this tensor product is
automatically closed, and that the set of T -dendrices of the internal hom is defined
by

HomdSets(X,Y )T = dSets(Ω[T ]⊗X,Y ),

for every two dendroidal sets X and Y and every T in Ω. The dendroidal structure
of HomdSets(X,Y ) is given in the obvious way.

Theorem 4.2.2. The category of dendroidal sets admits a closed symmetric monoi-
dal structure. This monoidal structure is uniquely determined (up to isomorphism)
by the property that there is a natural isomorphism

Ω[T ]⊗ Ω[S] ∼= Nd((Ω(T )⊗BV Ω(S))

for any two objects T and S of Ω. The unit of the tensor product is the representable
dendroidal set Ω[η] = i!(∆[0]) = U . �

The following are some basic properties of the tensor product of dendroidal
sets in relation to the Boardman–Vogt tensor product of coloured operads and to
the cartesian product of simplicial sets.

Proposition 4.2.3. The following properties hold:

(i) For any two simplicial sets X and Y , there is a natural isomorphism

i!(X)⊗ i!(Y ) ∼= i!(X × Y ).

(ii) For any two dendroidal sets X and Y , there is a natural isomorphism

τd(X ⊗ Y ) ∼= τd(X)⊗BV τd(Y ).

(iii) For any two coloured operads P and Q, there is a natural isomorphism

τd(Nd(P )⊗Nd(Q)) ∼= P ⊗BV Q.

Proof. To prove (i), it is enough to check that it holds for the representables
in sSets. Note first that, if we view [n] and [m] in ∆ as categories, then by using
the linear order one has that

j!([n]× [m]) ∼= j!([n])⊗BV j!([m]).

Therefore, there is a chain of natural isomorphisms

i!(∆[n]×∆[m]) ∼= i!(N([n])×N([m])) ∼= i!(N([n]× [m]))
∼= Ndj!([n]× [m]) ∼= Nd(j!([n])⊗BV j!([m])) ∼= Nd(Ω(Ln)⊗BV Ω(Lm))

∼= Ω[Ln]⊗ Ω[Lm] ∼= i!(∆[n])⊗ i!(∆[m]),
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where Ln and Lm denote the linear tree with n and m vertices and n + 1 and
m+ 1 edges respectively.

Again, to prove (ii) it suffices to do it for representables in dSets. But this is
clear by using the natural isomorphism τdNd ∼= id. More precisely,

τd(Ω[T ]⊗ Ω[S]) ∼= τdNd(Ω(T )⊗BV Ω(S))
∼= Ω(T )⊗BV Ω(S) ∼= τd(Ω[T ])⊗BV τd(Ω[S]).

Part (iii) follows from part (ii) by using again that τdNd ∼= id and replacing X by
Nd(P ) and Y by Nd(Q). �

Remark 4.2.4. There is no tensor product in the category of planar dendroidal sets
coming from the Boardman–Vogt tensor product, since the latter is defined only
for symmetric operads. However, as we have seen in Remark 4.1.4, the Boardman–
Vogt tensor product still makes sense for non-symmetric operads when at least one
of them has only unary operations. This means that, although we cannot define
X ⊗ Y for planar dendroidal sets X and Y in general, we can define u!(K) ⊗ Y
where K is any simplicial set and Y is any planar dendroidal set. In fact, pdSets
is a simplicial category with tensors and cotensors.

Theorem 4.2.5. The category pdSets of planar dendroidal sets is enriched, tensored
and cotensored over simplicial sets.

Proof. Given two planar dendroidal sets X and Y , the simplicial enrichment
Hom(X,Y ) is defined by

Hom(X,Y )n = pdSets(u!(∆[n])⊗X,Y )

where u! : sSets −→ pdSets is the left adjoint to the functor u∗ induced by the
inclusion u : ∆ −→ Ωp. If K is any simplicial set, we define a tensor

K ⊗ Y = u!(K)⊗ Y

and a cotensor
(Y K)T = pdSets(Ωp[T ]⊗ u!(K), Y )

for every planar dendroidal set Y . �

Thus, the Boardman–Vogt tensor product makes sSets into a cartesian closed
category, pdSets into a simplicial category with tensors and cotensors, and dSets
into a closed symmetric monoidal category. In fact, if we consider the cartesian
structures on Cat and sSets, the Boardman–Vogt tensor product on Oper and the
tensor product of dendroidal sets, then in the commutative diagram

sSets
i! //

τ

��

dSets
i∗
oo

τd

��

Cat

N

OO

j! //
Oper

j∗
oo

Nd

OO
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the functors i!, N , τ , j! and τd are strong monoidal. However, i∗ and j∗ are not
strong monoidal functors. For example, if we denote by T1, T2 and T3 the following
trees:

•

T1

•

T2

•

• •

T3

then i∗(Ω[T1]) = ∅ and i∗(Ω[T2]) = ∆[0], but Ω[T1]⊗ Ω[T2] = Ω[T3] and

i∗(Ω[T3]) = ∆[1] ∪∆[0] ∆[1].

Remark 4.2.6. If E is a complete and cocomplete monoidal category, then the
category EΩop

of dendroidal objects in E also has a Boardman–Vogt type tensor
product. For any two objects X and Y in EΩop

, their tensor product is defined by
the following formula:

(X ⊗ Y )T = lim−→
Ω[T ]→Ω[R]⊗Ω[S]

XR ⊗E YS ,

where ⊗E is the tensor product of E. If E is closed, then so is EΩop

(see [MW07,
Appendix A] and [BM08, §7]).

4.3 Shuffles of trees

In this section, we describe the tensor product Ω[S]⊗Ω[T ] for any two trees in Ω, in
order to give a better understanding of the tensor product of dendroidal sets. Sup-
pose first that S = Ln and T = Lm are linear trees. Then, by Proposition 4.2.3(i),

Ω[Ln]⊗ Ω[Lm] = i!(∆[n])⊗ i!(∆[m]) ∼= i!(∆[n]×∆[m]).

The non-degenerate simplices of a product of two representables in simplicial sets
are computed by means of shuffles. An (n,m)-shuffle is a path of maximal length
in the partially ordered set [n] × [m]. The non-degenerate (n + m)-simplices of
∆[n]×∆[m] correspond to (n,m)-shuffles. In fact,

∆[n]×∆[m] =
⋃

(n,m)

∆[n+m],

where the union is taken over all possible (n,m)-shuffles.

Example 4.3.1. Let n = 2 and m = 1. There are three (2, 1)-shuffles in [2] × [1],
namely (00, 01, 02, 12), (00, 01, 11, 12) and (00, 10, 11, 12). If we picture ∆[2]×∆[1]
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as the following prism

00 01

10 11

12

02

we can see that each (2, 1)-shuffle corresponds to a tetrahedron, and that they give
a decomposition of ∆[2]×∆[1] as the union of three copies of ∆[3]:

(00, 01, 02, 12) (00, 01, 11, 12) (00, 10, 11, 12)

To give an explicit description of the tensor product of any two representables
in Ω, we need to introduce shuffles of trees. Recall that we denote by E(T ) the set
of edges of a given tree T .

Definition 4.3.2. Let S and T be two objects of Ω. A shuffle of S and T is a tree
R whose set of edges is a subset of E(S)×E(T ). The root of R is (a, x) where a is
the root of S and x is the root of T , and its leaves are labelled by all pairs of the
form (lS , lT ), where lS is a leaf of S and lT is a leaf of T . Its vertices are either of
the form

· · ·
u

(a1,x) (an,x)

(b,x)

or •
· · ·
v

(a,x1) (a,xm)

(a,y)

where u is a vertex of S with input edges a1, . . . , an and output b, and v is a vertex
of T with input edges x1, . . . , xm and output y. We will refer to the first type of
vertices as white vertices and to the second type of vertices as black vertices. To
make this distinction clear, we picture them as ◦ and • respectively.

Note that there is a bijection between the shuffles of two linear trees Ln and
Lm and the (n,m)-shuffles of [n]× [m].

Example 4.3.3. Let S and T be the trees

b c

a

d f

S

e

•
x

y

T
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Then the set of shuffles of S and T consists of the following three trees:

•

• • •

(a,x)

(d,y)

(e,y)

(f,y)

(b,y)

(b,x) (c,x)

(f,x)(d,x) (e,x)

• •

(a,x)

(e,y)

(b,y) (c,y)

(b,x) (c,x)

(f,y)(d,y)

•
(a,y)

(a,x)

(b,y) (c,y)

(d,y)

(e,y)

(f,y)

R1 R2 R3

The set of shuffles of two trees S and T has a natural partial order. The
minimal tree R1 in this poset is the one obtained by stacking a copy of the black
tree T on top of each of the inputs of the white tree S. More precisely, on the
bottom of R1 there is a copy S ⊗ rT of the tree S all of whose edges are renamed
(a, rT ) where rT is the output edge at the root of T . For each input edge b of S,
a copy of T is grafted on the edge (b, rT ) of S ⊗ rT , with edges x in T renamed
(b, x). The maximal tree RN in the poset is the similar tree with copies of the
white tree S grafted on each of the input edges of the black tree. Schematically,
the trees R1 and RN look like

S

T T T

R1

T

S S S S

RN

There are intermediate shuffles Rk (1 < k < N) between R1 and RN obtained
by letting the black vertices in R1 slowly percolate in all possible ways towards
the root of the tree. Shuffles are also called percolation schemes. The percolation
rule or percolation relation can be made explicit as follows. Each Rk is obtained
from an earlier Rl by replacing a configuration

• •. . . . . . . . .

. . . . . .

(a,x)

(a,ym)(a,y1)

(b1,y1) (bn,ym)(bn,y1) (b1,ym)

(4.1)
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in Rl by a configuration

•

. . . . . . . . .

. . . . . .

(a,x)

(bn,x)(b1,x)

(b1,y1) (bn,ym)(b1,ym) (bn,y1)

(4.2)

in Rk. If a shuffle Rk is obtained from another Rl by means of the above rule,
then we say that Rk is obtained by a single percolation step and denote this by
Rl ≤ Rk. This generates a partial order on the set of all shuffles.

It is important to make explicit the percolation relation above for trees with
no input edges, i.e., n = 0 or m = 0. If m = 0 and n 6= 0, then we have the relation

(a,x)

•

. . . . . . . . .

(a,x)

(bn,x)(b1,x)
//

If n = 0 and m 6= 0, then we have the relation

• •. . . . . . . . .

(a,x)

(a,ym)(a,y1)
•

(a,x)

//

And if n = m = 0, we have the relation

(a,x)

•
(a,x)//

Example 4.3.4 (Taken from [MW09, Example 9.4]). Let S and T be the following
two trees; here, we have singled out one particular edge e in S, we have numbered
the edges of T as 1, . . . , 5, and denoted the colour (e, i) in Rj by ei.

e

•

• •

1

2 4

3 5

S T

There are fourteen shuffles R1, . . . , R14 of S and T in this case. Here is the
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complete list of them:

• •
• •• •

e1

R1

•

• •• •

e1

e4e2

R2

•
•

• •

e1

e4e2

e5

R3

•
•

••

e1

e4e2

e3

R4

•
• •

e1

e4e2

e3 e5

R5

•

• •• •

e2 e4

R6

•

•
• •

e2

e5

R7

•
•

• •

e2

e5

R8

•

•
••

R9

•

• •

R10

•
•

•
e2

e3 e5

R11

•
•

••
e3

e4

R12

•
•

•
e3 e5

e4

R13

•
• •

R14
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The poset structure on the shuffles above is:

R1

R2

R3 R6 R4

R7 R5 R9

R8 R10 R12

R11 R13

R14

Lemma 4.3.5. Every shuffle Ri of S and T is equipped with a canonical monomor-
phism

m : Ω[Ri] // // Ω[S]⊗ Ω[T ].

The dendroidal subset given by the image of this monomorphism will be denoted
by m(Ri).

Proof. The vertices of the dendroidal set Ω[Ri] are the edges of the tree Ri. The
map m is completely determined by asking it to map an edge named (a, x) in Ri
to the vertex with the same name in Ω[S]⊗ Ω[T ]. This map is a monomorphism.
Indeed, any map

Ω[R] −→ X

from a representable dendroidal set to an arbitrary one is a monomorphism as
soon as the map Ω[R]| −→ X| on vertices is. �

Corollary 4.3.6. For any two objects T and S in Ω, we have that

Ω[S]⊗ Ω[T ] =

N⋃
i=1

m(Ri), (4.3)

where the union is taken over all possible shuffles of S and T .

The Boardman–Vogt relation says that if Rk is obtained from Rl by a single
percolation step as above, then the image under m of the face of Ω[Rk] obtained by
contracting all the edges (b1, x), . . . , (bn, x) in (4.2) above coincides (as a subobject
of Ω[S] ⊗ Ω[T ]) with the image of the face of Ω[Rl] obtained by contracting the
edges (a, y1), . . . , (a, ym) in (4.1).

The following example illustrates that in the set of shuffles appearing in (4.3)
some of them can be faces of others when one of the trees has vertices of valence
zero. Thus, not all the shuffles are always needed in the union (4.3).



4.3. Shuffles of trees 53

Example 4.3.7. Let S and T be the following two trees and observe that the tree
S has a vertex of valence zero.

a

b d
c

•

•

1

2 3

4

S T

There are six shuffles R1, . . . , R6 of S and T . The colours (e, k) of the edges in Ri
are denoted by ek.

• •
• •

a1

d1b1
c1

b2 b3 d2 d3

b4 d4

R1

• • •
• •

a1

d1b1
c1

c3c2b2 b3 d2 d3

b4 d4

R2

•

• •

a1

a3a2

b2 d2 b3 d3

d4

c2 c3

b4

R3

• •
•

•
• •

a1

d1b1
c1

c3c2b2 b3 d2 d3

b4 c4 d4

R4

•

• • •

a1

a3a2

b2 d2 b3 d3

d4

c2 c3

b4 c4

R5

•
•

a1

a3a2

b2 d2

c2 a4

b4 d4

c4

R6

Observe that, in this case, R1 is a face of R2, which is a face of R4. Similarly,
R3 is a face of R5. Hence,

Ω[S]⊗ Ω[T ] = m(R4) ∪m(R5) ∪m(R6).
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The poset structure on the shuffles above is the following:

R1

R2

R3 R4

R5

R6
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