
Lecture 3

Dendroidal sets

In this lecture, we introduce the basic notions and terminology for the category of
dendroidal sets.

3.1 Basic definitions and examples

In this section we define the categories of dendroidal sets and planar dendroidal
sets as categories of presheaves over Ω and Ωp. We establish the relation of these
categories with the category of simplicial sets and with the category of operads
by means of natural adjoint functors between them. Namely, we construct a den-

nerve construction from small categories to simplicial sets.

Definition 3.1.1. The category dSets of dendroidal sets is the category of presheaves
on Ω. The objects are functors Ωop −→ Sets and the morphisms are given by nat-
ural transformations. The category pdSets of planar dendroidal sets is defined
similarly by replacing Ω by Ωp.

Thus, a dendroidal set X is given by a set X(T ), denoted by XT , for each
tree T , together with a map α∗ : XT −→ XS for each morphism α : S −→ T in Ω.
Since X is a functor, (id)∗ = id, and if α : S −→ T and β : R −→ S are morphisms
in Ω, then (α ◦ β)∗ = β∗ ◦α∗. The set XT is called the set of dendrices of shape T
or the set of T -dendrices.

A morphism of dendroidal sets f : X −→ Y is given by maps f : XT −→ YT
for each tree T , commuting with the structure maps, i.e., if α : S −→ T is any
morphism in Ω and x ∈ XT , then f(α∗x) = α∗f(x).

Given two dendroidal sets Y and X, we say that Y is a dendroidal subset
of X if YT ⊆ XT for every tree T and the inclusion map Y ↪→ X is a morphism of
dendroidal sets.
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Definition 3.1.2. A dendrex x ∈ XT is called degenerate if there exists a dendrex
y ∈ XS and a degeneracy σ : T −→ S such that σ∗(y) = x.

There are canonical inclusions and evident restriction functors

∆

i
  

u // Ωp

v

��

Ω

sSets pdSets
u∗oo

dSets

v∗

OO

i∗

dd

which all have left and right adjoints

sSets

i!

""

u! //
pdSets

u∗
oo

v!

��

dSets

i∗

bb

v∗

OO
sSets

i∗

""

u∗ //
pdSets

u∗
oo

v∗

��

dSets

i∗

bb

v∗

OO

given by the corresponding Kan extensions. For example, the functor i∗ sends a
dendroidal set X to the simplicial set

i∗(X)n = Xi([n]).

Its left adjoint i! : sSets −→ dSets is ‘extension by zero’, and sends a simplicial set
X to the dendroidal set given by

i!(X)T =

{
Xn if T ∼= i([n]),
∅ otherwise.

It follows that i! is full and faithful and that i∗i! is the identity functor on simplicial
sets.

Example 3.1.3. Let T be a tree. The standard T -dendrex is the representable
presheaf Ω(−, T ). We will denote it by Ω[T ] (just like ∆[n] in sSets). Explicitly,
we have that

Ω[T ]S = Ω(S, T )

for every tree S. The relation i!(∆[n]) = Ω[i([n])] holds for every n.

By the Yoneda Lemma, each dendrex x of shape T in a dendroidal set X
corresponds bijectively to a map of dendroidal sets x̂ : Ω[T ] −→ X. Note that
Ω[−] is functorial, i.e., if α : S −→ T is a map of dendroidal sets then we have an
induced map Ω[α] : Ω[S] −→ Ω[T ].
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Example 3.1.4. The functor Ω −→ Oper which sends a tree T to the coloured
operad Ω(T ) induces an adjunction

τd : dSets
//

oo Oper : Nd. (3.1)

The functor Nd is called the dendroidal nerve. Explicitly, for any operad P the
dendroidal nerve of P is the dendroidal set

Nd(P )T = Oper(Ω(T ), P ).

The dendroidal nerve functor is fully faithful and Nd(Ω(T )) = Ω[T ] for every T
in Ω. It extends the usual nerve functor from categories to simplicial sets. If E is any
monoidal category and E is the associated coloured operad (see Example 1.3.5),
then

i∗(Nd(E)) = N(E).

For a dendroidal set X, we refer to the left adjoint τd(X) as the operad generated
by X. It can be explicitly described as follows. For any dendroidal set X, the set
of colours col(τd(X)) is equal to Xη. The operations of the operad are generated
by the elements of XCn , where Cn is the n-th corolla, with the following relations:

(i) s(xa) = idxa ∈ τd(X)(xa;xa) if xa ∈ Xη and s = σ∗, where σ is the degener-
acy σ : C1 −→ η.

(ii) If T is a tree of the form

•

•
xa1 xan

xa

xai
v

xb1 xbm

w

· · · · · ·

· · · · · ·

T

and x ∈ XT , then dw(x) ◦xai dv(x) = dxai (x), where

dw(x) ∈ τd(X)(xa1 , . . . , xan ;xa),

dv(x) ∈ τd(X)(xb1 , . . . , xbm ;xai),

daxi (x) ∈ τd(X)(xa1 , . . . , xai−1 , xb1 , . . . , xbm , xai+1 , . . . , xan ;xa),

and dw = ∂∗w is induced by the face map associated to removing the root
vertex; dv = ∂∗v is induced by the outer face map by cutting the upper part
of the tree; and dxai = ∂∗xai

is induced by the inner face map by contracting

the edge labeled xai .

For example, τd(Ω[T ]) = Ω(T ) for every tree T in Ω.
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The functor τd also extends the functor τ : sSets −→ Cat left adjoint to the
simplicial nerve, i.e., τ(X) = j∗τd(i!(X)) for every simplicial set X. In particular,
there is a diagram of adjoint functors

sSets
i! //

τ

��

dSets
i∗
oo

τd

��

Cat

N

OO

j! //
Oper

j∗
oo

Nd

OO

with left adjoints on top or to the left. Moreover, the following commutativity
relations hold up to natural isomorphisms:

τN = id, τdNd = id, i∗i! = id, j∗j! = id,

and

j! τ = τd i!, Nj∗ = i∗Nd, i!N = Nd j!.

There is also a column in the middle of the square relating planar dendroidal sets
with non-Σ operads.

Remark 3.1.5. Not everything commutes in the above diagram. The canonical
map τi∗(X) −→ j∗τd(X) is not an isomorphism in general. This can be viewed,
for example, by taking the representable dendroidal set Ω[T ], where T is the tree
with three edges, one binary vertex and one nullary vertex:

•

•
b c

a

u

v

Let X = ∂uΩ[T ]∪∂vΩ[T ] ⊆ ∂Ω[T ] be the union of the outer faces. Then i∗(X) = 0.
But τd(X) = Ω(T ), so j∗τd(X) 6= 0.

Later we shall have to use that the Yoneda embedding Ω −→ dSets, mapping
a tree T to the representable dendroidal set Ω[T ], preserves pushouts of the form
given in Lemma 2.3.3. We state this explicitly as follows.

Proposition 3.1.6. Let the diagram

R
f
// //

g
����

S

����

T // // P
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be a pushout square of surjections in Ω. Then this pushout square is absolute, i.e.,
preserved by any functor. In particular, the induced square

Ω[R] // //

����

Ω[S]

����

Ω[T ] // // Ω[P ]

is a pushout square in dSets.

Note that any surjection in Ω has a section, hence remains an epimorphism
after applying the Yoneda embedding (or any other functor).

The proof is based on the well-known fact that split coequalizers are absolute
[Mac71, Ch. VI, §6]. We recall that a diagram

A
k //

l
// B

p
// C

is split if there exist maps t : C −→ B and s : B −→ A such that pt = idC ,
ks = idB and tp = ls. Any such split diagram is a coequalizer.

Lemma 3.1.7. Consider a square

X
f
//

g

��

Y

u

��

Z
v // P ,

(3.2)

a section s : Z −→ X of g, and the induced diagram

X
f
//

fsg
// Y

u // P. (3.3)

(i) The diagram (3.2) is a pushout if and only if (3.3) is a coequalizer.

(ii) If there are sections j : Y −→ X of f and t : P −→ Y of u satisfying the
identity tu = (fsg)j, then (3.3) is a split coequalizer with ‘splitting’

X
j←− Y t←− P.

In particular, the pushout (3.2) is absolute if such sections s, t and j exist.

Proof. Part (ii) is clear from the definition, and part (i) is an elementary diagram
chase. By way of example, we prove that (3.2) is a pushout if (3.3) is a coequalizer.
Take another object W , and arrows ϕ : Y −→W and ψ : Z −→W with ϕf = ψg.
We look for a unique χ : P −→W with χu = ϕ and χv = ψ. Now ϕfsg = ψgsg =
ψg = ϕf , so ϕ factors uniquely through the coequalizer u in (3.3) as ϕ = χu.
Then also ψ = χv; indeed, χv = χvgs = χufs = ϕfs = ψgs = ψ. �
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Lemma 3.1.8. In any pushout square of degeneracies

R
σv //

σw

��

S

σw

��

T
σv // P

(3.4)

in Ω, there exist sections s, t and j

R S
j

oo

T

s

OO

P

t

OO

(of σw, σw and σv respectively) satisfying the equation

tσw = σvsσwj : S −→ S.

Proof. Let v and w be the vertices

•v
a

b

and •w
x

y

in R, with v 6= w. Sections of the maps in the pushout square (3.4) correspond to
set-theoretic sections of sets of edges

E(R) //

��

E(S)

��

E(T ) // E(P ).

Since these sections are uniquely determined outside the edges a, b, x, y, it really
comes down to finding sections in the following pushout diagram of sets:

U //

��

U/X

��

U/A // V ,

(3.5)

where A = {a, b}, X = {x, y}, and U = A ∪X. We can distinguish two cases:
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If A and X are disjoint, then the diagram (3.5) looks like

A+X
f
//

g

��

A+ {1}

u

��

{0}+X
v // {0, 1}

and we can take any sections s, j and t,

A+X A+ {1}
j

oo

{0}+X

s

OO

{0, 1},

t

OO

with s(0) = t(0). Then fsgj = tu, as required.
If A and X are not disjoint, say x = b, then the diagram (3.5) looks like

{a, b = x, y}
f
//

g

��

{a, b}

u

��

{x, y} v // {0}

with fa = a, fb = fy = b and ga = gb, gy = y. Then one can take sections s, j
and t,

{a, b, y} {a, b}
j
oo

{x, y}

s

OO

{0},

t

OO

with s(x) = b, t(0) = b, j(b) = b, to obtain the identity fsgj = tu again. �

Proof of Proposition 3.1.6. It suffices (as in Lemma 2.3.3) to consider the case
where the surjections f and g are degeneracies

σv : R −→ S = R\v and σw : R −→ T = R\w.

The proposition is evidently true in the case v = w. If v 6= w, then Lemma 3.1.8
completes the proof. �

3.2 Faces, boundaries and horns

In this section we define face maps, boundaries and horns in the context of den-
droidal sets.
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Definition 3.2.1. Let T be an object of Ω and α : S −→ T a face map in Ω. The
α-face of Ω[T ] is the dendroidal subset of Ω[T ] given by the image of the map
Ω[α] : Ω[S] −→ Ω[T ]. We denote it by ∂αΩ[T ]. We write Φ1(T ) for the set of all
faces of T .

Thus we have that

∂αΩ[T ]R = {R β−→ S
α−→ T where β ∈ Ω[S]R}.

When the face map α is an inner face obtained by contracting an inner edge e, we
denote ∂α by ∂e.

Definition 3.2.2. Let T be an object of Ω. The boundary of Ω[T ] is the dendroidal
subset ∂Ω[T ] of Ω[T ] obtained as the union of all possible faces of Ω[T ]. Namely,

∂Ω[T ] =
⋃

α∈Φ1(T )

∂αΩ[T ].

If we take the union of all the faces except for one, we have the definition of
a horn.

Definition 3.2.3. Let T be an object of Ω and α ∈ Φ1(T ) a face of T . The α-horn
of Ω[T ] is the dendroidal subset Λα[T ] of Ω[T ] obtained as the union over all faces
of T except α. That is,

Λα[T ] =
⋃

β 6=α∈Φ1(T )

∂βΩ[T ].

As before, if α is an inner face map contracting an edge e, then we denote Λα[T ]
by Λe[T ]. The horns of the form Λe[T ] are called inner horns. The other horns are
called outer horns.

A horn in a dendroidal set X is given by a map of dendroidal sets

Λα[T ] −→ X.

This horn is inner if Λα[T ] is an inner horn and it is outer if Λα[T ] is an outer
horn.

The definitions of faces, boundaries and horns in dendroidal sets naturally
extend the corresponding ones for simplicial sets. For example, if Λk[n] ⊆ ∆[n]
denotes the simplicial k-horn, then the dendroidal set

i!(Λ
k[n]) ⊆ i!(∆[n]) = Ω[Ln],

where Ln denotes the linear tree with n vertices and n+ 1 edges, is a horn in the
dendroidal sense. Moreover, the horn Λk[n] is an inner horn (i.e., 0 < k < n) if
and only if i!(Λ

k[n]) is an inner horn.
Boundaries and horns can also be described in term of colimits. This extends,

in the case of simplicial sets, the presentation of the boundary ∂∆[n] and the horn
Λk[n] as a colimit of standard simplices.



3.2. Faces, boundaries and horns 31

Let T1 −→ T2 −→ · · · −→ Tn be a sequence of n face maps in Ω. The compo-
sition of these maps is called a subface of codimension n of Tn. Note that subfaces
of codimension 1 are precisely the face maps. It follows from the dendroidal iden-
tities in Section 2.2.3 that every subface of a tree of codimension 2 decomposes
in exactly two different ways as a composition of faces. Let Φ2(T ) be the set of
all subfaces of codimension 2 of T . Thus, for each β : S −→ T in Φ2(T ) there are
exactly two maps β1 : S −→ T1 and β2 : S −→ T2 through which β factors. Using
β1 and β2, we can define two maps γ1 and γ2,

∐
(S→T )∈Φ2(T )

Ω[S]
γ1 //

γ2
//
∐

(R→T )∈Φ1(T )

Ω[R],

where the components of γi are the compositions

Ω[S]
Ω[βi]

// Ω[Ti] // Ω[R]

for each β : S −→ T in Φ2(T ) and i = 1, 2.

Lemma 3.2.4. Let T be an object of Ω. Then the boundary ∂Ω[T ] can be obtained
as the coequalizer

∐
(S→T )∈Φ2(T )

Ω[S]
γ1 //

γ2
//
∐

(R→T )∈Φ1(T )

Ω[R] // ∂Ω[T ].

Proof. The universal property is verified by using the definition of ∂Ω[T ] and the
fact that every subface of codimension 2 decomposes exactly in two different ways
as a composition of faces. �

Corollary 3.2.5. A map of dendroidal sets ∂Ω[T ] −→ X corresponds exactly to
a sequence of dendrices {xR}(R→T )∈Φ1(T ) that agree on common faces, i.e., if
β : S → T is a subface of codimension 2 which factors as

S
β1 //

β

  

β2

��

T1

α1

��

T2 α2

// T ,

then β∗1(xT1) = β∗2(xT2). �

If α is a face of T , the α-horn Λα[T ] can be computed using the same co-
equalizer as before, but excluding the face α.
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Lemma 3.2.6. Let T be an object of Ω and α a face of T . Then the horn Λα[T ] is
the coequalizer

∐
(S→T )∈Φ2(T )

Ω[S]
γ1 //

γ2
//
∐

(R→T )6=α∈Φ1(T )

Ω[R] // Λα[T ].

Proof. The proof is analogous to that of Lemma 3.2.4. �

Corollary 3.2.7. Let α be a face map in T . A horn Λα[T ] −→ X in X corresponds
exactly to a sequence of dendrices {xR}(R→T )6=α∈Φ1(T ) that agree on common faces,
i.e., if β : S −→ T is a subface of codimension 2 which factors as

S
β1 //

β

  

β2

��

T1

α1

��

T2 α2

// T ,

where α1, α2 6= α, then β∗1(xT1
) = β∗2(xT2

). �

Finally, we will use the following terminology for dendrices in a dendroidal
set. Let α : S −→ T be a map in Ω, let X be a dendroidal set, and let t ∈ XT be
a T -dendrex. Consider the S-dendrex given by α∗(t). Then:

(i) α∗(t) is a face (resp. inner face, outer face) of t if α is a face (resp. inner
face, outer face) of T .

(ii) α∗(t) is a subface of t if α is a subface of T .

(iii) α∗(t) is isomorphic to t if α is an isomorphism.

(iv) α∗(t) is a degeneracy of t is α is a composition of degeneracies.

3.3 Skeleta and coskeleta

Let Ω≤n denote the full subcategory of Ω consisting of trees with n or less vertices.
Similarly, one can define the full subcategory ∆≤n as the full subcategory of ∆
with objects [k] where 0 ≤ k ≤ n. There is a commutative diagram

∆≤n
j
//

in

��

Ω≤n

in

��

∆
i
// Ω,

where in denotes the fully faithful inclusion functor. The functors in induce func-
tors i∗n between the corresponding categories of presheaves and thus we have a
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commutative diagram

sSets≤n dSets≤n
j∗
oo

sSets

i∗n

OO

dSets
i∗

oo

i∗n

OO (3.6)

consisting of the inverse image functor of a pullback of presheaf toposes, together
with the corresponding left adjoints in!, j! and i!, and right adjoints in∗, j∗ and i∗.
Moreover, all α∗ and α! are full and faithful (α = in, j, i).

Definition 3.3.1. Let X be a dendroidal set. The n-th skeleton of X is defined
as Skn(X) = in!in

∗(X) and the n-th coskeleton of X as coSkn(X) = in∗in
∗(X).

(One can define with a similar formula the n-th skeleton of a simplicial set.)

There are natural morphisms

Skn(X) −→ X −→ coSkn(X)

given by the counit and the unit of the corresponding adjunctions, for every den-
droidal set X. There are also inclusions Skn(X) ⊆ Skn+1(X) for every n ≥ 0. It
follows that X = ∪∞n=0 Skn(X), and this presentation of X is called the skeletal
filtration of X. One defines similarly the coskeletal filtration of a dendroidal set.

Recall that the functor i∗n : dSets −→ dSets≤n is defined on representables as

i∗n(Ω[T ]) = Ω(in(−), T )

for every T in Ω≤n. Its left adjoint in! is defined on representables as

in!(Ω
≤n[T ]) = Ω(−, in(T ))

for every T in Ω. The fact that in is fully faithful implies that in
∗in!(Ω[T ]) = Ω[T ]

for every object T in Ω. Hence, in
∗in!(X) = X for all X, since every dendroidal set

is a canonical colimit of representables. Using the adjunction one can check that
also in

∗in∗(X) = X for all X. It follows that in! and in∗ are both fully faithful.

Definition 3.3.2. A dendroidal set X is called n-coskeletal if X = coSkn(X).

Proposition 3.3.3. A dendroidal set X is n-coskeletal if, for every dendroidal set Y ,
each map Skn(Y ) −→ X extends uniquely along Skn(Y ) −→ Y to a map Y −→ X.

Proof. Since X is n-coskeletal, X = coSkn(X). By an adjointness argument, there
is a bijection between the sets of maps dSets(Y,X) and dSets(Skn(Y ), X). �

If we make the definition of the Kan extension in! explicit, we find that, for
any tree R in Ω,

Skn(X)R = lim−→
(T,α)

Ω(R, T ),
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where the colimit ranges over all trees T with at most n vertices and all α ∈ XT ,
i.e., maps α : Ω[T ] −→ X. In other words, Skn(X)R consists of equivalence classes
of pairs (α, u), with u : R −→ T in Ω and α : Ω[T ] −→ X in dSets, and |V (T )| ≤ n.
The equivalence relation on such pairs is generated by

(αv, u) ∼ (α, vu)

where R
u−→ T ′

v−→ T and Ω[T ]
α−→ X. The counit maps the equivalence class of

(α, u) to u∗(α), or, in another notation, it maps (α, u) to the composition α ◦ u,

Ω[R]
u−→ Ω[T ]

α−→ X.

Lemma 3.3.4. For each n ≥ 0, the counit of the adjunction Skn(X) −→ X is a
monomorphism for every dendroidal set X.

Proof. To show that Skn(X) −→ X is injective, we need to prove that, if a diagram
of the form

Ω[S]
α // X

Ω[R]

u

OO

v // Ω[T ]

β

OO

in dSets commutes, where S and T have at most n vertices, then (α, u) ∼ (β, v).
To see this, factor u = if and v = jg as in Lemma 2.3.2, and take the pushout P
in Ω,

S

S′
OO

i

OO

h // // P

R

f

OOOO

g
// // T ′

k

OOOO

//
j
// T.

Then the functor Ω[−] preserves this pushout by Proposition 3.1.6, so we obtain
a diagram in dSets of the form

Ω[S]
α // X

Ω[S′]
OO

i

OO

h // // Ω[P ]

γ

;;

Ω[R]

f

OOOO

g
// // Ω[T ′]

k

OOOO

//
j
// Ω[T ].

β

OO
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Now S′, P and T ′ have at most n vertices since S and T do, so we can use the
equivalence relation defining Skn(X), and find

(α, u) = (α, if) ∼ (αi, f) = (γh, f) ∼ (γ, hf),

and, in exactly the same way, (β, v) ∼ (γ, kg). Since hf = kg, this shows that
(α, u) ∼ (β, v) and proves the lemma. �

The following proposition relates the skeleton and coskeleton constructions
between the category of simplicial sets and the category of dendroidal sets.

Proposition 3.3.5. The following relations hold:

(i) i∗(Skn(X)) = Skn(i∗(X)) and i∗(coSkn(X)) = coSkn(i∗(X)) for every den-
droidal set X and every n ≥ 0.

(ii) i!(Skn(X)) = Skn(i!(X)) and i∗(coSkn(X)) = coSkn(i∗(X)) for every sim-
plicial set X and every n ≥ 0.

Proof. The proof is straightforward by using the following commutativity relations
between the functors involved:

i∗in! = in!j
∗, j∗i

∗
n = i∗ni∗, i∗ni! = j!i

∗
n, i∗in∗ = in∗j

∗,

which follow from the fact that (3.6) is a pullback of presheaf toposes. �

3.4 Normal monomorphisms

Recall from Definition 3.1.2 that a dendrex t ∈ XT is called degenerate if t = σ(s)
where σ is a composition of degeneracies and s is another dendrex. Any dendrex
t ∈ XT where T is a tree with no unary vertices is non-degenerate.

Lemma 3.4.1. Any dendrex x ∈ XT is the restriction σ∗(y) of a non-degenerate
dendrex y ∈ XR along a surjection σ : T // // R in Ω. Moreover, given x, the map
σ and the dendrex y are unique up to isomorphism.

Proof. By the Yoneda Lemma, x corresponds to a map x̂ : Ω[T ] −→ X. Consider,
among all possible factorizations

Ω[T ]
σ // // Ω[R]

ŷ
// X

of x̂, those where R has a minimal number of vertices, so that y is necessarily
non-degenerate. It suffices to show that any two such ‘minimal’ factorizations are
isomorphic. But, given another one,

Ω[T ]
σ′ // // Ω[R]

ŷ′
// X,
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we can form the pushout

T
σ′ // //

σ
����

R′

τ ′

����

R
τ // // P

in Ω by Lemma 2.3.3. Since Ω[−] of this pushout is a pushout in dendroidal sets (by
Proposition 3.1.6) and since ŷσ = x̂ = ŷ′σ′ by assumption, we find ẑ : Ω[P ] −→ X
with ẑτ = ŷ and ẑτ ′ = ŷ′. But then, by minimality of R and R′, both τ and τ ′

must be isomorphisms. Thus, we have the following diagram:

Ω[T ]
σ′ //

σ

��

Ω[R′]

ŷ′

��

Ω[R]
ŷ

//

∼
;;

X,

and (σ, ŷ) and (σ′, ŷ′) are isomorphic. �

For n > 0, we can consider the following commutative diagram:

∐
(T,t) ∂Ω[T ] //

��

Skn−1(X)

��∐
(T,t) Ω[T ] // Skn(X),

(3.7)

where the coproducts are taken over all isomorphism classes of pairs (T, t) in the
category of elements of X such that T has n vertices and t ∈ XT is non-degenerate.
For the case n = 0, note that Sk0(X) =

∐
x∈Xη Ω[η].

Definition 3.4.2. A monomorphism X // // Y in dSets is called normal if, for every
tree T in Ω, every non-degenerate element y ∈ YT which is not in the image of XT

has a trivial stabilizer Aut(T )y ⊆ Aut(T ), where Aut(−) denotes the automor-
phism group of the corresponding tree. An object X is called normal if the map
∅ // // X is a normal monomorphism.

Example 3.4.3. For every tree T in Ω, the representable dendroidal set Ω[T ] is
normal. If σ : X // // Y is a monomorphism and Y is normal, then σ is a normal
monomorphism.

The skeletal filtration of a dendroidal set is called normal if the diagram (3.7)
is a pushout. This property gives a characterization of normal dendroidal sets:
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Proposition 3.4.4. A dendroidal set is normal if and only if it admits a normal
skeletal filtration.

Proof. If a dendroidal set X admits a normal skeletal filtration, it is easy to see
that X is normal, and the proof is left to the reader.

We prove in detail the other direction. Let us fix a representing element
(T, β) in each isomorphism class [(T, β)] of non-degenerate dendrices β ∈ XT , i.e.,

β̂ : Ω[T ] −→ X. We begin by observing that, in the category of sets, a pullback
diagram of the form

A
q
//

��

n

��

C
��

m

��

B
p
// // D,

with p an epimorphism and m a monomorphism as indicated, is a pushout if and
only if, as subsets of B × B, the set B ×D B is contained in the union of the
diagonal B → B × B and A×C A // // B ×D B . Since pullbacks and pushouts
in presheaf categories are computed pointwise, the same observation applies to
pushout diagrams in the category of dendroidal sets. Let us now check that the
diagram

∂P =
∐
∂Ω[T ] //

��

��

Skn−1(X)
��

��

##

##

P =
∐

Ω[T ] // Skn(X) // // X

is a pushout. The square is clearly a pullback and we know that Skn(X) −→ X
is a monomorphism for each n, by Lemma 3.3.4. Hence it is enough to prove that
P ×X P // // P × P is contained in the union of the diagonal P −→ P × P and
∂P ×X ∂P // // P × P . To this end, fix one representative (T, α) in each isomor-
phism class [(T, α)] (these classes index the coproduct in the diagram). For a tree
R, an element ξ ∈ (P ×X P )R is a commutative square

Ω[S]
α // X

Ω[R]
v //

u

OO

Ω[T ],

β

OO

where (S, α) and (T, β) are representatives as above; in particular, α ∈ XS and
β ∈ XT are non-degenerate. If neither u : R −→ S nor v : R −→ T is surjective,
then u and v factor through ∂Ω[S] and ∂Ω[T ], so the element ξ ∈ (P ×X P )R in
fact lies in (∂P ×X ∂P )R. Hence we may assume that one of u and v is surjective;
say u is. Now factor v = gj as an epimorphism followed by a monomorphism, and
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form the pushout

S
h // // P

R

u

OOOO

g
// // T ′ //

j
//

k

OOOO

T .

We use Proposition 3.1.6 to find a diagram

Ω[S]
h // // Ω[P ]

γ
// X

Ω[R]

u

OOOO

g
// // Ω[T ′] //

j
//

k

OOOO

Ω[T ]

β

OO

with γh = α. But α is non-degenerate, so h must be an isomorphism. But then
we have maps

T T ′oo
j

oo h−1k // // S,

where S and T have exactly n vertices. So j must be an isomorphism, as must
be k. Thus, writing θ = h−1k, we have

Ω[S]
α // X

Ω[R]

u

OOOO

v // // Ω[T ].

β

OO

∼
θ

bb

In other words, (S, α) and (T, β) lie in the same isomorphism class, hence they
must be equal by our choice of representatives. But then θ = id, since X is assumed
normal. We conclude that u = v as well, so the element ξ ∈ P ×X P represented
by (α, u) and (β, v) lies in fact in the diagonal. This completes the proof. �

Lemma 3.4.5. Let p : Y −→ X be a map of dendroidal sets, and assume that X is
normal. Then Y is normal as well.

Proof. First recall that any normal object has a nice skeletal filtration, i.e., can
be built up by attaching cells x by pushouts of the form

∂Ω[T ] //

��

��

A
��

��

Ω[T ]
x // B.

Such an attached cell x always comes with a map Ω[T ]
x−→ B which is ‘injective on

its interior’ (just like for usual cell complexes). Indeed, by looking at pushouts of
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this form in Sets as before, one sees that the kernel pair Ω[T ]×BΩ[T ] ⊆ Ω[T ]×Ω[T ]
of the map x is the union of the diagonal Ω[T ] and ∂Ω[T ]×A ∂Ω[T ]. This simple
observation implies that, for any non-degenerate dendrex x ∈ X(T ) in a normal

dendroidal setX, the corresponding map Ω[T ]
x−→ X has the cancellation property

with respect to epimorphisms in Ω:

if Ω[R]
β
// //

γ
// // Ω[T ]

x // X and xβ = xγ, then β = γ.

To prove the lemma, let y ∈ Y (T ) be non-degenerate and suppose that α ∈ Aut(T )
fixes y, with α 6= 1. Then α also fixes py, so py must be degenerate by the
assumption that X is normal; say that py = ρ∗x, where ρ : T // // R and x ∈ X(R)
is non-degenerate,

T
α
∼
// T

ρ
����

y
// Y

p

��

R
x
// X.

Then x(ρα) = xρ because yα = y; hence, ρα = ρ by the cancellation property.
This means that α is an automorphism of T which permutes the edges on each of
the fibers of ρ. But these fibers are linear, so α must be the identity. �
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