
Lecture 6

Examples of derived algebraic
stacks

In this last lecture, we present examples of derived algebraic stacks.

6.1 The derived moduli space of local systems

We come back to the example that we presented in the first lecture, namely the
moduli problem of linear representations of a discrete group. We will now recon-
sider it from the point of view of derived algebraic geometry. We will try to treat
this example in some detail, as we think it is a rather simple, but interesting,
example of a derived algebraic stack.

A linear representation of a group G can also be interpreted as a local system
on the space BG. We will therefore study the moduli problem from this topological
point of view. We fix a finite CW-complex X and we are going to define a derived

algebraic derived 1-stack and we will describe its higher tangent spaces in terms
of cohomology groups of X. When X = BG for a discrete group G, the derived
algebraic stack RLoc(X) is the correct moduli space of linear representations of G.

We start by considering the non-derived algebraic 1-stack Vect classifying
projective modules of finite type. By definition, Vect sends a commutative ring
A to the nerve of the groupoid of projective A-modules of finite type. The stack
Vect is a 1-stack. It is easy to see that Vect is an algebraic 1-stack. Indeed, we
have a decomposition

Vect '
∐
n

Vectn,

where Vectn ⊂ Vect is the substack of projective modules of rank n (recall that
a projective A-module of finite type M is of rank n if, for any field K and any
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stack RLoc(X) classifying local systems on X. We will see that this stack is an
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morphism A −→ K, the K-vector space M⊗AK is of dimension n). It is therefore
enough to prove that Vectn is an algebraic 1-stack. This last statement will itself
follow from the identification

Vectn ' [∗/Gln] = BGln,

where Gln is the affine group scheme sending A to Gln(A). In order to prove that
Vectn ' BGln, we construct a morphism of simplicial presheaves

BGln −→ Vectn

by sending the base point of BGln to the trivial projective module of rank n. For
a given commutative ring A, the morphism

BGln(A) −→ Vectn(A)

sends the base point to An and identifies Gln(A) with the automorphism group
of An. The claim is that the morphism BGln −→ Vectn is a local equivalence of
simplicial presheaves. As, by construction, this morphism induces isomorphisms
on all higher homotopy sheaves, it only remains to show that it induces an isomor-
phism on the sheaves π0. But this in turn follows from the fact that π0(Vectn) ' ∗,
because any projective A-module of finite type is locally free for the Zariski topol-
ogy on SpecA.

The algebraic stack Vect is now considered as an algebraic derived stack
using the inclusion functor j : Ho(sPr(Aff )) −→ Ho(dAff ∼). We consider a fibrant
model F ∈ dAff ∼ for j(Vect), and we define a new simplicial presheaf

RLoc(X) : dAff op −→ sSet

which sends A ∈ sComm to Map(X, |F (A)|), the simplicial set of continuous maps
from X to |F (A)|.

Definition 6.1.1. The derived stack RLoc(X) defined above is called the derived
moduli stack of local systems on X.

We will now describe some basic properties of the derived stack RLoc(X).
We start by a description of its classical part h0(RLoc(X)), which will show that it
does classify local systems on X. We will then show that RLoc(X) is an algebraic
derived stack locally of finite presentation over SpecZ, and that it can be written as

RLoc(X) '
∐
n

RLocn(X)

where RLocn(X) is the part classifiying local systems of rank n and is itself
strongly of finite type. Finally, we will compute its tangent spaces in terms of
the cohomology of X.

For A ∈ Comm, note that h0(RLoc(X))(A) is by definition the simplicial set
Map(X, |F (A)|). Now, F (A) is a fibrant model for j(Vect)(A) ' Vect(A), and
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so it is equivalent to the nerve of the groupoid of projective A-modules of finite
rank. The simplicial set Map(X, |F (A)|) is then naturally equivalent to the nerve
of the groupoid of functors Fun(Π1(X), F (A)) from the fundamental groupoid of
X to F (A). This last groupoid is in turn equivalent to the groupoid of local sys-
tems of projective A-modules of finite type on the space X. Thus, we see that
h0(RLoc(X))(A) is naturally equivalent to the nerve of the groupoid of local sys-
tems of projective A-modules of finite type on the space X. We thus have the
following properties:

1. The set π0(h0(RLoc(X))(A)) is functorially in bijection with the set of iso-
morphism classes of local systems of projective A-modules of finite type on X.
In particular, when A is a field this is also the set of local systems of finite-
dimensional vector spaces over X.

2. For a local system E ∈ π0(h0(RLoc(X))(A)), we have

π1(h0(RLoc(X))(A), E) = Aut(E),

the automorphism group of E as a sheaf of A-modules on X.

3. For all i > 1 and all E ∈ π0(h0(RLoc(X))(A)), we have

πi(h
0(RLoc(X))(A), E) = 0.

Let us explain now why the derived stack RLoc(X) is algebraic. We start
with the trivial case where X is a contractible space. Then, by definition, we
have RLoc(X) ' RLoc(∗) ' j(Vect). As we already know that j(Vect) is an
algebraic stack, this implies that RLoc(X) is an algebraic derived stack when X
is contractible.

The next step is to prove that RLoc(Sn) is algebraic for any n ≥ 0. This can
be seen by induction on n. The case n = 0 is obvious. Moreover, for any n > 0 we
have a homotopy pushout of topological spaces

Sn−1 //

��

Dn

��

Dn // Sn,

where Dn is the n-dimensional ball. This implies the existence of a homotopy
pullback diagram of derived stacks

RLoc(Sn) //

��

RLoc(Dn)

��

RLoc(Dn) // RLoc(Sn−1).
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By induction on n and by what we have just seen, the derived stacks RLoc(Dn)
and RLoc(Sn−1) are algebraic. By the stability of algebraic derived stacks by
homotopy pullbacks, we deduce that RLoc(Sn) is an algebraic derived stack.

We are now ready to show that RLoc(X) is algebraic. We write Xk to de-
note the k-th skeleton of X. Since X is a finite CW-complex, there is an n such
that X = Xn. Moreover, for any k there exists a homotopy pushout diagram of
topological spaces ∐

Sk−1 //

��

∐
Dk

��

Xk−1
// Xk,

where the disjoint unions are finite. This implies that we have a homotopy pullback
square of derived stacks

RLoc(Xk) //

��

RLoc(Xk−1)

��∏hRLoc(Dk) //
∏h RLoc(Sk−1).

By the stability of algebraic derived stacks by finite homotopy limits, we deduce
that RLoc(Xk) is algebraic by induction on k (the case k = 0 being clear, as
RLoc(X0) is a finite product of RLoc(∗)).

To finish the study of this example, we will compute the higher tangent spaces
of the derived stack RLoc(X). We let A be a commutative algebra and consider
the natural morphism

RLoc(∗)(A⊕A[i]) −→ RLoc(∗)(A).

This morphism has a natural section and its homotopy fiber at an A-module E is
equivalent to K(End(E), i+ 1). It is therefore naturally equivalent to

[K(End(−), i+ 1)/Vect(A)] −→ N(Vect(A)),

where Vect(A) is the groupoid of projective A-modules of finite type, N(Vect(A))
is its nerve, and [K(End(−), i + 1)/Vect(A)] is the homotopy colimit of the sim-
plicial presheaf Vect(A) −→ sSet sending E to K(End(E), i + 1) —this is a gen-
eral fact: for any simplicial presheaf F : I −→ sSet we have a natural morphism
HocolimI F −→ N(I) ' HocolimI(∗). We consider the geometric realization of
this morphism to get a map of topological spaces

|[K(End(−), i+ 1)/Vect(A)]| −→ |N(Vect(A))|,

which is equivalent to the geometric realization of

RLoc(∗)(A⊕A[i]) −→ RLoc(∗)(A).
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We take the image of this morphism by Map(X,−) to get

RLoc(X)(A⊕A[i]) ' Map(X,RLoc(∗)(A⊕A[i])) −→

Map(X,RLoc(∗)(A)) ' RLoc(X)(A).

This implies that the morphism

RLoc(∗)(A⊕A[i]) −→ RLoc(∗)(A)

is equivalent to the morphism

Map(X, |[K(End(−), i+ 1)/Vect(A)]|) −→ Map(X, |N(Vect(A))|).

A morphism X −→ |N(Vect(A))| corresponds to a local system E of projective
A-modules of finite type on X. The homotopy fiber of the above morphism at E is
then equivalent to the simplicial set of homotopy lifts of X −→ |N(Vect(A))| to a
morphism X −→ |[K(End(−), i+1)/Vect(A)]|. This simplicial set is in turn natu-
rally equivalent to DK(C∗(X,End(E))[i+1]), the simplicial set obtained from the
complex C∗(X,End(E))[i+1] by the Dold–Kan construction. Here C∗(X,End(E))
denotes the complex of cohomology of X with coefficients in the local system
End(E). We therefore have the following formula for the higher tangent complexes:

T iERLoc(X) ' H0(C∗(X,End(E))[i+ 1]) ' Hi+1(X,End(E)).

More generally, it is possible to prove that there is an isomorphism in D(A)

TERLoc(X) ' C∗(X,End(E))[1].

6.2 The derived moduli of maps

As for non-derived stacks, the homotopy category of derived stacks Ho(dAff ∼) is
cartesian closed. The corresponding internal Hom will be denoted by RHom. Note
that, even though we use the same notations for the internal Homs of stacks and
derived stacks, the inclusion functor

j : Ho(sPr(Aff )) −→ Ho(dAff ∼)

does not commute with them. However, we always have

h0(RHom(F, F ′)) ' RHom(h0(F ), h0(F ′))

for all derived stacks F and F ′. The situation is therefore very similar to the case
of homotopy pullbacks.

We have just seen an example of a derived stack constructed as an internal
Hom between two stacks. Indeed, if we use again the notations of the last example,
we have

RLoc(X) ' RHom(K,Vect),
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where K = S∗(X) is the singular simplicial set of X.
We now consider another example. Let X and Y be two schemes, and assume

that X is flat and proper (say over Spec k for some base ring k), and that Y is
smooth over k. It is possible to prove that the derived stack

RHomdAff /Spec k(X,Y )

is a derived scheme which is homotopically finitely presented over Spec k. We will
not sketch the argument here, as it is out of the scope of these lectures, and we
refer to [HAGII] for more details. The derived scheme RHom(X,Y ) is called the
derived moduli space of maps from X to Y . Its classical part h0(RHom(X,Y )) is
the usual moduli scheme of maps from X to Y , and for such a map we have

TfRHomdAff /Spec k(X,Y ) ' C∗(X, f∗(TY )),

where all these tangent complexes are relative to Spec k.
We mention here that these derived mapping spaces of maps can also be used

in order to construct the so-called derived moduli of stable maps to an algebraic
variety, by letting X vary in the moduli space of stable curves. We refer to [To1] for
more details about this construction, and for some explanations of how Gromov–
Witten theory can be extracted from this derived stack of stable maps.
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