




 
Advanced Courses in Mathematics 
CRM Barcelona 
 
Centre de Recerca Matemàtica 
 
Managing Editor: 
Carles Casacuberta 
 



 

 
 
 
 
 
Editors for this volume: 
Carles Casacuberta (Universitat de Barcelona) 
Joachim Kock (Universitat Autònoma de Barcelona) 
 
 

and Algebraic Geometry 

Ieke Moerdijk • Bertrand Toën

Simplicial Methods for Operads  



 

 

 

concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, 

of the copyright owner must be obtained.  
 
Cover design: deblik, Berlin  
 
Printed on acid-free paper  
 

 
www.birkhauser-science.com

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is 

Springer Basel AG is part of Springer Science+Business Media  

reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission 

ISBN 978-3-0348-0051-8  e-ISBN 978-3-0348-0052-5 
DOI 10.1007/978-3-0348-0052-5  

Ieke Moerdijk 
Mathematisch Instituut 
Universiteit Utrecht 
Postbus 80.010 
3508 TA Utrecht 
The Netherlands 
e-mail: I.Moerdijk@uu.nl 

Bertrand Toën 
I3M UMR 5149 
Université Montpellier 2 
Case Courrier 051 
Place Eugène Bataillon 
34095 Montpellier Cedex 
France 
e-mail: btoen@math.univ-montp2.fr 

 
 

2010 Mathematics Subject Classification: primary: 55U40, 18G30; 
secondary: 55P48, 18D50, 18F10, 14A20

© Springer Basel AG 2010  

http://www.birkhauser-science.com


Foreword

This book is an introduction to two higher-categorical topics in algebraic topology
and algebraic geometry relying on simplicial methods. It is based on lectures de-
livered at the Centre de Recerca Matemàtica in February 2008, as part of a special
year on Homotopy Theory and Higher Categories.

Ieke Moerdijk’s lectures constitute an introduction to the theory of dendroidal
sets, an extension of the theory of simplicial sets designed as a foundation for the
homotopy theory of operads. The theory has many features analogous to the theory
of simplicial sets, but it also reveals many new phenomena, thanks to the presence
of automorphisms of trees. Dendroidal sets admit a closed symmetric monoidal
structure related to the Boardman–Vogt tensor product. The lecture notes develop
the theory very carefully, starting from scratch with the combinatorics of trees, and
culminating with a model structure on the category of dendroidal sets for which
the fibrant objects are the inner Kan dendroidal sets. The important concepts are
illustrated with detailed examples.

The lecture series by Bertrand Toën is a concise introduction to derived al-
gebraic geometry. While classical algebraic geometry studies functors from the
category of commutative rings to the category of sets, derived algebraic geometry
is concerned with functors from simplicial commutative rings (to allow derived
tensor products instead of the usual ones) to simplicial sets (to allow derived quo-
tients instead of the usual ones). The central objects are derived (higher) stacks,
which are functors satisfying a certain up-to-homotopy descent condition. The lec-
tures start with motivating examples from moduli theory, to move on to simplicial
presheaves and algebraic (higher) stacks; next comes the homotopy theory of sim-
plicial commutative rings, and finally everything comes together in the notion of
derived (higher) stack. Some proofs are given as exercises that involve consulting
the literature.

Both lecture series assume a working knowledge of Quillen model categories.
For Toën’s lectures, some background in algebraic geometry à la Grothendieck is
also necessary.

We are very thankful to the CRM for hosting the advanced course as well
as the whole research programme on Homotopy Theory and Higher Categories.
The former director Manuel Castellet and his successor Joaquim Bruna made this
possible. The CRM secretaries were much more than helpful at all times. We are
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also very much indebted to the programme co-organisers, André Joyal, Amnon
Neeman, and Frank Neumann.

We acknowledge financial support from the i-MATH programme (Ingenio
Mathematica, Consolider – Ingenio 2010) under grant PMII-C2-0055, the Catalan
Government (Generalitat de Catalunya) under grant 2007/ARCS00104, and the
Spanish Ministry of Science and Innovation under grant MTM2007-29363-E.

Above all, we thank, of course, the two authors, for their expertise, patience
and kind collaboration.

Carles Casacuberta and Joachim Kock
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Part I

Ieke Moerdijk

Lectures on Dendroidal Sets

Notes written by Javier J. Gutiérrez



Preface

The theory of dendroidal sets forms a new attempt to give a combinatorial theory
of topological structures which involve operations with one output and multiple
inputs, such as the theory of operads. The theory seems to be developing in a
way similar to that of simplicial sets, although there are some noticeable differ-
ences. For example, the combinatorics of finite linear orders is replaced by that of
finite rooted trees, which causes some technical complications. Other important
differences are that the cartesian product of simplicial sets is replaced by a closed
symmetric monoidal structure, which no longer commutes with the nerve construc-
tion. Related to this, the category Ω which takes the place of the simplicial index
category ∆ does not have a terminal object, and in fact the homotopy type of its
classifying space BΩ is as yet unknown.1 Finally, an important gap (at least, up
to now) in the theory is the lack of a suitable geometric realization functor which
is compatible with this monoidal structure —a functor from dendroidal sets into
the category of topological spaces or into a closely related category.

The notes which you have in front of you are a faithful presentation of the
lectures that I gave in the context of an advanced course on Simplicial Methods
in Higher Categories, as part of a special year on Homotopy Theory and Higher
Categories at the CRM in Barcelona. In these lectures, I have reported on re-
cent research, done partly in collaboration with Clemens Berger, Denis-Charles
Cisinski and Ittay Weiss, as listed in the references. The lectures owe a lot to their
insights, and I apologize for what they undoubtedly consider as an inadequate
representation of their ideas about operads and dendroidal sets.

I would like to thank the people involved in the organization of the CRM
special year, in particular the coordinators Carles Casacuberta and Joachim Kock,
for giving me the opportunity to expose the theory of dendroidal sets, and for
providing me with such an inspiring and active audience. But above all, I am
immensely grateful to Javier Gutiérrez, who helped me turn scattered notes of the
lectures and bits from unpublished papers into a coherent text.

Ieke Moerdijk

1Added in proof: I have shown in the meantime that BΩ is contractible.



Lecture 1

Operads

Operads are tools used to describe algebraic structures in monoidal categories.
They are very important in categories with a good notion of homotopy, where they
are useful for the study of homotopy invariant algebraic structures and hierarchies
of higher homotopies. In this first lecture, we recall the definition of operads and
coloured operads, and give some examples.

1.1 Operads

In what follows, E will denote a cocomplete symmetric monoidal category, with
tensor product denoted by ⊗ and unit I. We will also assume that E is closed and
write HomE

denoted by Σn.
An operad P in E consists of objects P (n) of E for n ≥ 0 together with the

following data:

• A unit, given by a morphism I −→ P (1).

• A composition product or substitution, given by morphisms

P (n)⊗ P (k1)⊗ · · · ⊗ P (kn) −→ P (k)

for every n and k1, . . . , kn
∑n
i=1 ki.

• A permutation of variables, given by an action of Σn from the right on P (n)
for every n. (Σ0 and Σ1 will both denote the trivial group.)

One can think of P (n) as the ‘space of operations of n variables’. The composition
product satisfies well-known equivariance, associativity and unit conditions.

A map of operads f : P −→ Q is given by morphisms fn : P (n) −→ Q(n)

action of the symmetric group.

(X,Y ) for the internal hom. The symmetric group in n letters will be

for every n that are compatible with the composition product, the unit and the

, and k =

5I. Moerdijk and B. Toën, Simplicial Methods for Operads and Algebraic Geometry, Advanced Courses
in Mathematics - CRM Barcelona, DOI 10.1007/978-3-0348-0052-5_1, © Springer Basel AG 2010
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For emphasis, we sometimes speak of these operads as symmetric operads.
A non-symmetric or non-Σ operad is one without the permutations.

An algebra for an operad P , or a P -algebra, is an object A of E together with
an action by operations

P (n)⊗A⊗
(n)
· · · ⊗A −→ A

compatible with the composition product, the unit and the symmetric group ac-
tions.

Example 1.1.1. The commutative operad Com is defined by Com(n) = I for all n.
A Com-algebra is a commutative monoid in E. The associative operad Ass is
defined by Ass(n) = I[Σn], where I[Σn] denotes a coproduct of copies of the unit
of the monoidal category indexed by the elements of Σn. The composition product
is described by substitution of block matrices. An Ass-algebra is a monoid in E.

Example 1.1.2. Let E be the category Top of topological spaces. Let D2 = B(0, 1)
be the unit disk in the plane with center in the origin. We denote by Cn(D2) the
configuration space of n different points in D2, i.e.,

Cn(D2) = {(x1, . . . , xn) | xi ∈ D2, xi 6= xj if i 6= j}.

The little 2-disks operad D2 is defined as follows. For every n, the topologi-
cal space D2(n) is the subspace of Cn(D2) × (0, 1]n consisting of those points
(x1, . . . , xn; t1, . . . , tn) such that the disks B(xi, ti) are contained in D2 and have
disjoint interiors. The following picture represents a point in D2(4):

1
2

3
4

The symmetric group Σn acts on D2(n) by permuting the labels of the disks. The
composition product γ is defined by composition of embeddings as illustrated in
the following example:

1

2

12

3
1

2 12

3

4
5

× × //

D2(2) (D2(3) D2(2)) D2(5)× × //

Any double loop space Ω2X is naturally an algebra over D2. In fact, by
observing that the sphere S2 is the unit disk with its boundary collapsed to a point,
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one can see that a configuration of n little 2-disks shows how to glue together n
based maps S2 −→ X to make a single map S2 −→ X. The converse is essentially
true, namely any connected space X that is a D2-algebra has the homotopy type
of a double loop space (see [May72, BV73]).

Every non-Σ operad P ‘generates’ a symmetric operad ΣP with the same
algebras. The operad ΣP is defined by (ΣP )(n) = P (n)⊗ I[Σn]. For example, the
non-Σ operad P (n) = I for every n has as algebras the monoids and Ass as its
associated symmetric operad.

1.2 Coloured operads

Let C be a set, whose elements will be called colours. A C-coloured operad in E

consists of the following data:

• For each sequence c1, . . . , cn, c of elements of C, an object P (c1, . . . , cn; c)
of E. This object represents the set of operations which take inputs of colours
c1, . . . , cn and produce an output of colour c.

• Units, given by a morphism I −→ P (c; c) for every c in C.

• For every (n+ 1)-tuple of colours (c1, . . . , cn; c) and n given tuples

(d1,1, . . . , d1,k1 ; c1), . . . , (dn,1, . . . , dn,kn ; cn),

a composition product given by morphisms

P (c1, . . . , cn; c)⊗ P (d1,1, . . . , d1,k1 ; c1)⊗ · · · ⊗ P (dn,1, . . . , dn,kn ; cn)

−→ P (d1,1, . . . , d1,k1 , . . . , dn,1, . . . , dn,kn ; c).

• Permutations, given by an action of the symmetric group. Any σ of Σn gives
a map

σ∗ : P (c1, . . . , cn; c) −→ P (cσ(1), . . . , cσ(n); c).

Moreover, the composition product has to be compatible with the action of the
symmetric groups and subject to associativity and unitary compatibility relations.

A map of coloured operads from a C-coloured operad P to a D-coloured
operad Q is given by a map f : C −→ D of colours and maps

ϕc1,...,cn;c : P (c1, . . . , cn; c) −→ Q(f(c1), . . . , f(cn); f(c))

compatible with all the structure maps. We denote by Oper(E) the category whose
objects are coloured operads in E and whose morphisms are maps of coloured
operads. We use the notation Oper for the category of coloured operads in the
category Sets of sets and functions.
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A P -algebra now consists of a family of objects (Ac)c∈C of E together with
actions

P (c1, . . . , cn; c)⊗Ac1 ⊗ · · · ⊗Acn −→ Ac.

There is a corresponding notion of non-Σ coloured operad (and an associated
notion of algebra). Every non-Σ C-coloured operad P generates a (symmetric)
C-coloured operad ΣP with the same algebras. The operad ΣP is defined as
follows:

(ΣP )(c1, . . . , cn; c) =
∐
σ∈Σn

P (cσ−1(1), . . . , cσ−1(n); c). (1.1)

In fact, the functor that assigns to every non-Σ operad P the symmetric operad ΣP
is left adjoint to the forgetful functor from the category of (symmetric) C-coloured
operads to the category of non-Σ C-coloured operads.

1.3 Examples of coloured operads

Example 1.3.1. If C = {c}, then a C-coloured operad P is just an ordinary operad,
where one writes P (n) instead of P (c, . . . , c; c) with n inputs.

Example 1.3.2. Let Mod be a coloured operad with two colours C = {r,m}, for
which the only non-zero terms are

Mod(r, (n). . . , r; r) = I[Σn]

for n ≥ 0, and
ModP (c1, . . . , cn;m) = I[Σn]

for n ≥ 1 when exactly one ci is m and the rest (if any) are equal to r. Then an
algebra over Mod is a pair (R,M) of objects of E where R is a monoid and M is
an object of E on which R acts (i.e., a module over R).

Example 1.3.3. Every small category C can be viewed as a coloured operad in
Sets. The set of colours is the set of objects of C and the only operations are
unary operations. The composition product is given by the composition between
sets of morphisms in C. The algebras over this coloured operad are the covariant
functors from C to Sets. Similarly, any small E-enriched category can be viewed
as an operad in E.

Conversely, the unary operations in a C-coloured operad P give an E-enriched
category whose objects are the elements of C. These two constructions define
adjoint functors

j! : Cat(E)
//

oo Oper(E) : j∗,

where Cat(E) denotes the category of small E-enriched categories.

Example 1.3.4. Every monoidal category E can be viewed as a coloured operad E

in Sets. The set of colours is the set of objects of E, and

E(E1, . . . , En;E) = E(E1 ⊗ · · · ⊗ En;E).
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An E-algebra X consists of a set X(E) for every object E of E and a map

X(f) : X(E1)× · · · ×X(En) −→ X(E)

for every map f : E1 ⊗ · · · ⊗En −→ E in E. In particular, for n = 2 and n = 0 we
obtain maps X(E)×X(F ) −→ X(E ⊗ F ) and ∗ −→ X(I). Hence E-algebras are
lax monoidal functors from E to Sets.

More generally, any V-enriched monoidal category E can be viewed as an
operad in V. Its algebras are lax monoidal V-functors from E to V.

Example 1.3.5. For a given set S, there is a non-Σ operad CatS in Sets whose
algebras are categories with the set S as objects. The set of colours for this operad
is S × S and

CatS((s1, s
′
1), . . . , (sn, s

′
n); (s, s′)) =

{
∗ if s′1 = s2, s

′
2 = s3, . . . , s1 = s, s′n = s′,

∅ otherwise;

CatS( ; (s, s′)) =

{
∗ if s = s′,
∅ otherwise.

For a CatS-algebra A, the set A(s,s′) is the set of arrows from s to s′.

Example 1.3.6. Let C be a set of colours and E any closed symmetric monoidal
category. We describe a coloured operad SCE in E whose algebras are C-coloured
operads in E. Observe that it is enough to describe an operad SC in the category
of sets with this property. In fact, then the strong symmetric monoidal functor
(−)E : Sets −→ E defined as XE =

∐
x∈X I sends coloured operads to coloured

operads. Hence the image of SC under this functor, denoted by SCE , is a coloured
operad in E whose algebras are C-coloured operads in E.

The colours of SC are

col(SC) = {(c1, . . . , cn; c) | ci, c ∈ C, n ≥ 0}.

We will use the following notation: ci = (ci,1, . . . , ci,ki ; ci) and a = (a1, . . . , am; a).
For each (n + 1)-tuple of colours (c1, . . . , cn; a) the elements of SC(c1, . . . , cn; a)
are equivalence classes of triples (T, σ, τ) where:

• T is a planar rooted tree with m input edges coloured by a1, . . . , am, a root
edge coloured by a, and n vertices. See §2.1 for an explanation of the termi-
nology.

• σ is a bijection σ : {1, . . . , n} −→ V (T ) with the property that σ(i) has ki
input edges coloured from left to right by ci,1, . . . , ci,ki and one output edge
coloured by ci.

• τ is a bijection τ : {1, . . . ,m} −→ in(T ) such that τ(i) has colour ai. Here
in(T ) denotes the set of input edges of T .
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Two such triples (T, σ, τ), (T ′σ′, τ ′) are equivalent if and only if there is a planar
isomorphism ϕ : T −→ T ′ such that ϕ ◦ σ = σ′, ϕ ◦ τ = τ ′, and ϕ respects the
colouring, i.e., if e is an edge of T of colour c, then the edge ϕ(e) in T ′ has colour
c too. Any element α in Σn induces a map

α∗ : SC(c1, . . . , cn; a) −→ SC(cα(1), . . . , cα(n); a)

that sends (T, σ, τ) to (T, σ ◦ α, τ). That is, α∗(T ) is the same tree as T but with
a renumbering of the vertices given by α.

Let σ be any element in Σm and a1 = (aσ(1), . . . , aσ(m); a). The set SC(a1; a)
can be identified with the subset of elements of Σm that permute (aσ(1), . . . , aσ(m))
into (a1, . . . , am). In particular, if a = a1 then the set SC(a; a) can be identified
with the (opposite) subgroup of Σm that leaves the colours a1, . . . , am invariant.
There is a distinguished element 1a in SC(a; a) corresponding to the tree

•
a

1 2 3 m

a1

a2 a3

am

The composition product on SC is defined as follows. Given an element (T, σ, τ)
of SC(c1, . . . , cn; a) and n elements (T1, σ1, τ1), . . . , (Tn, σn, τn) of

SC(d1,1, . . . , d1,k1 ; c1), . . . , SC(dn,1, . . . , dn,kn ; cn)

respectively, we get an element T ′ of

SC(d1,1, . . . , d1,k1 , d2,1, . . . , d2,k2 , . . . , dn,1, . . . , dn,kn ; a)

in the following way:

(i) T ′ is obtained by replacing the vertex σ(i) of T by the tree Ti for every i.
This is done by identifying the input edges of σ(i) in T with the input edges
of Ti via the bijection τi. The ci,j-coloured input edge of σ(i) is matched with
the ci,j-coloured input edge τi(j) of Ti. (Note that the colours of the input
edges and the output of σ(i) coincide with the colours of the input edges and
the root of Ti.)

(ii) The vertices of T ′ are numbered following the order, i.e., first number the
subtree T1 in T ′ ordered by σ1, then T2 ordered by σ2, and so on.

(iii) The input edges of T ′ are numbered following τ and the identifications given
by τi.

The above composition product endows the collection SC with a coloured operad
structure. Algebras over this operad SC are precisely C-coloured operads in Sets.



Lecture 2

Trees as operads

In this lecture, we introduce convenient categories of trees that will be used for the
definition of dendroidal sets. These categories are generalizations of the simplicial
category ∆ used to define simplicial sets. First we consider the case of planar trees
and then the more general case of non-planar trees.

2.1 A formalism of trees

A tree is a non-empty connected finite graph with no loops. A vertex in a graph
is called outer if it has only one edge attached to it. All the trees we will consider
are rooted trees, i.e., equipped with a distinguished outer vertex called the output
and a (possibly empty) set of outer vertices (not containing the output vertex)
called the set of inputs.

When drawing trees, we will delete the output and input vertices from the
picture. From now on, the term ‘vertex’ in a tree will always refer to a remaining
vertex. Given a tree T , we denote by V (T ) the set of vertices of T and by E(T )
the set of edges of T .

The edges attached to the deleted input vertices are called input edges or
leaves; the edge attached to the deleted output vertex is called output edge or root.
The rest of the edges are called inner edges. The root induces an obvious direction
in the tree, ‘from the leaves towards the root’. If v is a vertex of a finite rooted tree,
we denote by out(v) the unique outgoing edge and by in(v) the set of incoming
edges (note that in(v) can be empty). The cardinality of in(v) is called the valence
of v, the element of out(v) is the output of v, and the elements of in(v) are the
inputs of v.

As an example, consider the following picture of a tree:

I. Moerdijk and B. Toën, Simplicial Methods for Operads and Algebraic Geometry, Advanced Courses 11
in Mathematics - CRM Barcelona, DOI 10.1007/978-3-0348-0052-5_2, © Springer Basel AG 2010
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•

• •

a

r

d

w

b
c

v

e f

The output vertex at the edge a and the input vertices at e, f and c have been
deleted. This tree has three vertices r, v and w of respective valences 3, 2, and 0.
It also has three input edges or leaves, namely e, f and c. The edges b and d are
inner edges and the edge a is the root. A tree with no vertices

e

whose input edge (which we denote by e) coincides with its output edge will be
denoted by ηe, or simply by η.

Definition 2.1.1. A planar rooted tree is a rooted tree T together with a linear
ordering of in(v) for each vertex v of T .

The ordering of in(v) for each vertex is equivalent to drawing the tree on
the plane. When we draw a tree we will always put the root at the bottom. One
drawback of drawing a tree on the plane is that it immediately becomes a planar
tree; we thus may have many different ‘pictures’ for the same tree. For example,
the two trees

•

•

e

dc

a b

•

•

e

cd

ab

are two different planar representations of the same tree.

2.2 Planar trees

Let T be a planar rooted tree. Any such tree generates a non-Σ operad, which we
denote by Ωp(T ). The set of colours of Ωp(T ) is the set E(T ) of edges of T ,
and the operations are generated by the vertices of the tree. More explicitly,
each vertex v with input edges e1, . . . , en and output edge e defines an opera-
tion v ∈ Ωp(T )(e1, . . . , en; e). The other operations are the unit operations and
the operations obtained by compositions. This operad has the property that, for
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all e1, . . . , en, e, the set of operations Ωp(T )(e1, . . . , en; e) contains at most one
element. For example, consider the same tree T pictured before:

•

• •

a

r

d

w

b
c

v

e f

T

The operad Ωp(T ) has six colours a, b, c, d, e, and f . Then v ∈ Ωp(T )(e, f ; b),
w ∈ Ωp(T )( ; d), and r ∈ Ωp(b, c, d; a) are the generators, while the other operations
are the units 1a, 1b, . . . , 1f and the operations obtained by compositions, namely
r ◦1 v ∈ Ωp(T )(e, f, c, d; a), r ◦3 w ∈ Ωp(T )(b, c; a), and

r(v, 1c, w) = (r ◦1 v) ◦4 w = (r ◦3 w) ◦1 v ∈ Ωp(T )(e, f, c; a).

This is a complete description of the operad Ωp(T ).

Definition 2.2.1. The category of planar rooted trees Ωp is the full subcategory of
the category of non-Σ coloured operads whose objects are Ωp(T ) for any tree T .

We can view Ωp as the category whose objects are planar rooted trees. The
set of morphisms from a tree S to a tree T is given by the set of non-Σ coloured
operad maps from Ωp(S) to Ωp(T ). Observe that any morphism S −→ T in Ωp is
completely determined by its effect on the colours (i.e., edges).

The category Ωp extends the simplicial category ∆. Indeed, any n ≥ 0 defines
a linear tree

•

•

•

•

0

1

2

n

v1

v2

vn

Ln

with n+ 1 edges and n vertices v1, . . . , vn. We denote this tree by [n] or Ln. Any
order-preserving map {0, . . . , n} −→ {0, . . . ,m} defines an arrow [n] −→ [m] in
the category Ωp. In this way, we obtain an embedding

∆
u // Ωp.

This embedding is fully faithful. Moreover, it describes ∆ as a sieve (or ideal)
in Ωp, in the sense that for any arrow S −→ T in Ωp, if T is linear then so is S.
In the next sections we give a more explicit description of the morphisms in Ωp.
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2.2.1 Face maps

Let T be a planar rooted tree and b an inner edge in T . Let us denote by T/b the
tree obtained from T by contracting b. Then there is a natural map ∂b : T/b −→ T
in Ωp, called the inner face map associated with b. This map is the inclusion
on both the colours and the generating operations of Ωp(T/b), except for the
operation u, which is sent to r ◦b v. Here r and v are the two vertices in T at the
two ends of b, and u is the corresponding vertex in T/b, as in the picture:

•

•

a

u

d

w
c

e
f

T/b

•

• •

a

r

d

w

b
c

v

e f

T

//
∂b

Now let T be a planar rooted tree and v a vertex of T with exactly one inner
edge attached to it. Let T/v be the tree obtained from T by removing the vertex v
and all the outer edges. There is a face map associated to this operation, denoted
∂v : T/v −→ T , which is the inclusion both on the colours and on the generating
operations of Ωp(T/v). These types of face maps are called the outer faces of T .
The following are two outer face maps:

•

•

a

r

d

w

b
c

T/v

•

• •

a

r

d

w

b
c

v

e f

T

•

•

a

r

db
c

v

e f

T/w

//
∂v ∂woo

Note that the possibility of removing the root vertex of T is included in this
definition. This situation can happen only if the root vertex is attached to exactly
one inner edge, thus not every tree T has an outer face induced by its root.
There is another particular situation which requires special attention, namely the
inclusion of the tree with no vertices η into a tree with one vertex, called a corolla.
In this case we get n+ 1 face maps if the corolla has n leaves. The operad Ωp(η)
consists of only one colour and the identity operation on it. Then a map of operads
Ωp(η) −→ Ωp(T ) is just a choice of an edge of T .

We will use the term face map to refer to an inner or outer face map.

2.2.2 Degeneracy maps

There is one more type of map that can be associated with a vertex v of valence
one in T as follows. Let T\v be the tree obtained from T by removing the vertex
v and merging the two edges incident to it into one edge e. Then there is a map
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σv : T −→ T\v in Ωp called the degeneracy map associated with v, which sends
the colours e1 and e2 of Ωp(T ) to e, sends the generating operation v to ide, and
is the identity for the other colours and operations. It can be pictured like this:

•

• •

•

e2

e1
v

T

•

• •
e

T\v

//
σv

Face maps and degeneracy maps generate the whole category Ωp. The fol-
lowing lemma is the generalization to Ωp of the well-known fact that in ∆ each
arrow can be written as a composition of degeneracy maps followed by face maps.
For the proof of this fact we refer the reader to Lemma 2.3.2, where we prove a
similar statement in the category of non-planar trees.

Lemma 2.2.2. Any arrow f : A −→ B in Ωp decomposes (up to isomorphism) as

A
f
//

σ
��

B

C

δ

OO

where σ : A −→ C is a composition of degeneracy maps and δ : C −→ B is a
composition of face maps. �

2.2.3 Dendroidal identities

In this section we are going to make explicit the relations between the generating
maps (faces and degeneracies) of Ωp. The identities that we obtain generalize the
simplicial ones in the category ∆.

Elementary face relations

Let ∂a : T/a −→ T and ∂b : T/b −→ T be distinct inner faces of T . It follows
that the inner faces ∂a : (T/b)/a −→ T/b and ∂b : (T/a)/b −→ T/a exist, we have
(T/a)/b = (T/b)/a, and the following diagram commutes:

(T/a)/b
∂b //

∂a

��

T/a

∂a

��

T/b
∂b // T .
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Let ∂v : T/v −→ T and ∂w : T/w −→ T be distinct outer faces of T , and as-
sume that T has at least three vertices. Then the outer faces ∂w : (T/v)/w −→ T/v
and ∂v : (T/w)/v −→ T/w also exist, (T/v)/w = (T/w)/v, and the following dia-
gram commutes:

(T/v)/w
∂w //

∂v

��

T/v

∂v

��

T/w
∂w // T .

In case that T has only two vertices, there is a similar commutative diagram
involving the inclusion of η into the n-th corolla.

The last remaining case is when we compose an inner face with an outer one
in any order. There are several possibilities and in all of them we suppose that
∂v : T/v −→ T is an outer face and ∂e : T/e −→ T is an inner face.

• If in T the edge e is not adjacent to the vertex v, then the outer face
∂v : (T/e)/v −→ T/e and the inner face ∂e : (T/v)/e −→ T/v exist,
(T/e)/v = (T/v)/e, and the following diagram commutes:

(T/v)/e
∂e //

∂v

��

T/v

∂v

��

T/e
∂e // T .

• Suppose that in T the inner edge e is adjacent to the vertex v and denote the
other adjacent vertex to e by w. Observe that v and w contribute a vertex
v ◦e w or w ◦e v to T/e. Let us denote this vertex by z. Then the outer face
∂z : (T/e)/z −→ T/e exists if and only if the outer face ∂w : (T/v)/w −→ T/v
exists, and in this case (T/e)/z = (T/v)/w. Moreover, the following diagram
commutes:

(T/v)/w

∂w

��

(T/e)/z
∂z // T/e

∂e

��

T/v
∂v // T .

It follows that we can write ∂v∂w = ∂e∂z, where z = v ◦e w if v is ‘closer’ to
the root of T or z = w ◦e v if w is ‘closer’ to the root of T .

Elementary degeneracy relations

Let σv : T −→ T\v and σw : T −→ T\w be two degeneracies of T . Then the
degeneracies σv : T\w −→ (T\w)\v and σw : T\v −→ (T\v)\w exist, we have



2.3. Non-planar trees 17

(T\v)\w = (T\w)\v, and the following diagram commutes:

T
σv //

σw

��

T\v

σw

��

T\w σv // (T\v)\w.

Combined relations

Let σv : T −→ T\v be a degeneracy and ∂ : T ′ −→ T be a face map such that
σv : T ′ −→ T ′\v makes sense (i.e., T ′ still contains v and its two adjacent edges as
a subtree). Then there exists an induced face map ∂ : T ′\v −→ T\v determined
by the same vertex or edge as ∂ : T ′ −→ T . Moreover, the following diagram
commutes:

T
σv // T\v

T ′

∂

OO

σv // T ′\v.

∂

OO

Let σv : T −→ T\v be a degeneracy and ∂ : T ′ −→ T be a face map induced
by one of the adjacent edges to v or the removal of v, if that is possible. It follows
that T ′ = T\v and the composition

T\v ∂ // T
σv // T\v

is the identity map idT\v.

2.3 Non-planar trees

Any non-planar tree T generates a (symmetric) coloured operad Ω(T ). Similarly
as in the case of planar trees, the set of colours of Ω(T ) is the set of edges E(T )
of T . The operations are generated by the vertices of the tree, and the symmetric
group on n letters Σn acts on each operation with n inputs by permuting the
order of its inputs. Each vertex v of the tree with output edge e and a numbering
of its input edges e1, . . . , en defines an operation v ∈ Ω(e1, . . . , en; e). The other
operations are the unit operations and the operations obtained by compositions
and the action of the symmetric group. For example, consider the tree

•

• •

a

r

d

w

b
c

v

e f

T
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The operad Ω(T ) has six colours a, b, c, d, e, and f . The generating operations are
the same as the generating operations of Ωp(T ). All the operations of Ωp(T ) are
operations of Ω(T ), but there are more operations in Ω(T ) obtained by the action
of the symmetric group. For example if σ is the transposition of two elements of
Σ2, we have an operation v ◦ σ ∈ Ω(f, e; b). Similarly if σ is the transposition
of Σ3 that interchanges the first and third elements, then there is an operation
r ◦ σ ∈ Ω(d, c, b; a).

More formally, if T is any tree, then Ω(T ) = Σ(Ωp(T )), where T is a planar
representative of T . In fact, a choice of a planar structure on T is precisely a choice
of generators for Ω(T ).

Definition 2.3.1. The category of rooted trees Ω is the full subcategory of the
category of coloured operads whose objects are Ω(T ) for any tree T .

We can view Ω as the category whose objects are rooted trees. The set of mor-
phisms from a tree S to a tree T is given by the set of coloured operad maps from
Ω(S) to Ω(T ). Note that any morphism S −→ T in Ω is completely determined
by its effect on the colours (i.e., edges).

The morphisms in Ω are generated by faces and degeneracies (as in the planar
case) and also by (non-planar) isomorphisms.

Lemma 2.3.2. Any arrow f : S −→ T in Ω decomposes as

S
f
//

σ

��

T

S′
ϕ
// T ′

δ

OO

where σ : S −→ S′ is a composition of degeneracy maps, ϕ : S′ −→ T ′ is an
isomorphism, and δ : T ′ −→ T is a composition of face maps.

Proof. We proceed by induction on the sum of the number of vertices of S and T .
If T and S have no vertices, then T = S = η and f is the identity. Note that,
without loss of generality, we can assume that f sends the root of S to the root
of T ; otherwise we can factor it as a map S −→ T ′ that preserves the root followed
by a map T ′ −→ T that is a composition of outer faces. Also, we can assume
that f is an epimorphism on the leaves since, if this is not the case, f factors as

S −→ T/v
∂v−→ T , where v is the vertex below the leaf in T that is not in the

image of f .
If a and b are edges of S such that f(a) = f(b), then a and b must be on the

same (linear) branch of S and f sends intermediate vertices to identities.
Since f is a map of coloured operads, we can factor it in a unique way

as a surjection followed by an injection on the colours. This corresponds to a
factorization in Ω,

S
ψ−→ S′

ξ−→ T,
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where ψ is a composition of degeneracies and ξ is bijective on leaves, sends the root
of S′ to the root of T , and is injective on the colours (by the previous observations).

If ξ is surjective on colours, then ξ is an isomorphism. If ξ is not surjective,
then there is an edge e in T not in the image of ξ. Since e is an internal edge (not
a leaf), ξ factors as

S′
ξ′−→ T/e

∂e−→ T.

Now we continue by induction on the map ξ′. �

In general, limits and colimits do not exist in the category Ω; for example,
Ω lacks sums and products. However, certain pushouts do exist in Ω, as expressed
in the following lemma:

Lemma 2.3.3. Let f : R // // S and g : R // // T be two surjective maps in Ω. Then
the pushout

R
f
// //

g
����

S

��

T // P

exists in Ω.

Proof. The maps f and g can each be written as a composition of an isomorphism
and a sequence of degeneracy maps by Lemma 2.3.2. Since pushout squares can be
pasted together to get larger pushout squares, it thus suffices to prove the lemma
in the case where f and g are degeneracy maps given by unary vertices v and w
in R, i.e., f : R −→ S is σv : R −→ R\v and g : R −→ T is σw : R −→ R\w. If
v = w, then the following diagram is a pushout:

R
σv //

σv

��

R\v

R\v R\v.

If v 6= w, then the commutative square

R
σv //

σw

��

R\v

σw

��

R\w σv // (R\v)\w = (R\w)\v

is also a pushout, as one easily checks. �
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2.3.1 Dendroidal identities with isomorphisms

The dendroidal identities for the category Ω are the same as for the category Ωp
plus some more relations involving the isomorphisms in Ω. As an example, we give
the following relation, that involves inner faces and isomorphisms. Let T be a tree
with an inner edge a and let f : T −→ T ′ be a (non-planar) isomorphism. Then the
trees T/a and T ′/b exist, where b = f(a), the map f restricts to an isomorphism
f : T/a −→ T ′/b, and the following diagram commutes:

T/a
∂a //

f

��

T

f

��

T ′/b
∂b // T ′.

Similar relations hold for outer faces and degeneracies.

2.3.2 Isomorphisms along faces and degeneracies

For any tree T in Ω, let P (T ) be the set of planar structures of T . Note that
P (T ) 6= ∅ for every tree T . Thus, the category Ω is equivalent to the category
Ω′ whose objects are planar trees, i.e., pairs (T, p) where T is an object of Ω and
p ∈ P (T ), and whose morphisms are given by

Ω′((T, p), (T ′, p′)) = Ω(T, T ′).

A morphism ϕ : (T, p) −→ (T ′, p′) in Ω′ is called planar if, when we pull back the
planar structure p′ on T ′ to one on T along ϕ, then it coincides with p. Using
this equivalent formulation of Ω, the category Ωp is then the subcategory of Ω
consisting of the same objects and planar maps only, i.e., compositions of faces
and degeneracies. In Ωp, the only automorphisms are identities.

If δ : T // // S is a composition of faces and α : S −→ S′ is an isomorphism,
there is a factorization

T //
δ //

∼α′

��

S

α∼
��

T ′ //
δ′ // S′,

where δ′ is again a composition of faces and α′ is an isomorphism. This factor-
ization is unique if one fixes some conventions, e.g., one takes the objects of Ω to
be planar trees, and takes faces and degeneracies to be planar maps. Similarly,
isomorphisms can be pushed forward and pulled back along a composition of de-
generacies. Let σ : T −→ S be a composition of degeneracies and α : S −→ S′ and
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β : T −→ T ′ be two isomorphisms. Then there are factorizations

T

α′

��

σ // S

α

��

T ′
σ′ // S′

T

β

��

σ // S

β′

��

T ′
σ′′ // S′

where α′ and β′ are isomorphisms and σ′ and σ′′ are compositions of degeneracies.
Thus, any arrow in Ω can be written in the form δσα or δασ with δ a

composition of faces, σ a composition of degeneracies, and α an isomorphism.

2.3.3 The presheaf of planar structures

Let P : Ωop −→ Sets be the presheaf on Ω that sends each tree to its set of planar
structures. Observe that P (T ) is a torsor under Aut(T ) for every tree T , where
Aut(T ) denotes the set of automorphisms of T . Recall that the category of elements
Ω/P is the category whose objects are pairs (T, x) with x ∈ P (T ). A morphism
between two objects (T, x) and (S, y) is given by a morphism f : T −→ S in Ω
such that P (f)(y) = x. Hence, Ω/P = Ωp and we have a projection v : Ωp −→ Ω.
There is a commutative triangle

∆
u //

i
��

Ωp

v

��

Ω,

where i is the fully faithful embedding of ∆ into Ω which sends the object [n] in
∆ to the linear tree Ln with n vertices and n+ 1 edges for every n ≥ 0.

2.3.4 Relation with the simplicial category

We have seen that both the categories Ω and Ωp extend the category ∆, by viewing
the objects of ∆ as linear trees. In fact, it is possible to obtain ∆ as a comma
category of Ω or of Ωp as follows.

Let η be the tree in Ω consisting of no vertices and one edge, and let ηp be
the planar representative of η in Ωp. If T is any tree in Ω, then Ω(T, η) consists
of only one morphism if T is a linear tree, or it is the empty set otherwise. The
same happens for Ωp and ηp. Thus, Ω/η = Ωp/ηp = ∆.



Lecture 3

Dendroidal sets

In this lecture, we introduce the basic notions and terminology for the category of
dendroidal sets.

3.1 Basic definitions and examples

In this section we define the categories of dendroidal sets and planar dendroidal
sets as categories of presheaves over Ω and Ωp. We establish the relation of these
categories with the category of simplicial sets and with the category of operads
by means of natural adjoint functors between them. Namely, we construct a den-

nerve construction from small categories to simplicial sets.

Definition 3.1.1. The category dSets of dendroidal sets is the category of presheaves
on Ω. The objects are functors Ωop −→ Sets and the morphisms are given by nat-
ural transformations. The category pdSets of planar dendroidal sets is defined
similarly by replacing Ω by Ωp.

Thus, a dendroidal set X is given by a set X(T ), denoted by XT , for each
tree T , together with a map α∗ : XT −→ XS for each morphism α : S −→ T in Ω.
Since X is a functor, (id)∗ = id, and if α : S −→ T and β : R −→ S are morphisms
in Ω, then (α ◦ β)∗ = β∗ ◦α∗. The set XT is called the set of dendrices of shape T
or the set of T -dendrices.

A morphism of dendroidal sets f : X −→ Y is given by maps f : XT −→ YT
for each tree T , commuting with the structure maps, i.e., if α : S −→ T is any
morphism in Ω and x ∈ XT , then f(α∗x) = α∗f(x).

Given two dendroidal sets Y and X, we say that Y is a dendroidal subset
of X if YT ⊆ XT for every tree T and the inclusion map Y ↪→ X is a morphism of
dendroidal sets.

I. Moerdijk and B. Toën, Simplicial Methods for Operads and Algebraic Geometry, Advanced Courses 23

droidal nerve functor from operads to dendroidal sets generalizing the classical

in Mathematics - CRM Barcelona, DOI 10.1007/978-3-0348-0052-5_3, © Springer Basel AG 2010
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Definition 3.1.2. A dendrex x ∈ XT is called degenerate if there exists a dendrex
y ∈ XS and a degeneracy σ : T −→ S such that σ∗(y) = x.

There are canonical inclusions and evident restriction functors

∆

i
  

u // Ωp

v

��

Ω

sSets pdSets
u∗oo

dSets

v∗

OO

i∗

dd

which all have left and right adjoints

sSets

i!

""

u! //
pdSets

u∗
oo

v!

��

dSets

i∗

bb

v∗

OO
sSets

i∗

""

u∗ //
pdSets

u∗
oo

v∗

��

dSets

i∗

bb

v∗

OO

given by the corresponding Kan extensions. For example, the functor i∗ sends a
dendroidal set X to the simplicial set

i∗(X)n = Xi([n]).

Its left adjoint i! : sSets −→ dSets is ‘extension by zero’, and sends a simplicial set
X to the dendroidal set given by

i!(X)T =

{
Xn if T ∼= i([n]),
∅ otherwise.

It follows that i! is full and faithful and that i∗i! is the identity functor on simplicial
sets.

Example 3.1.3. Let T be a tree. The standard T -dendrex is the representable
presheaf Ω(−, T ). We will denote it by Ω[T ] (just like ∆[n] in sSets). Explicitly,
we have that

Ω[T ]S = Ω(S, T )

for every tree S. The relation i!(∆[n]) = Ω[i([n])] holds for every n.

By the Yoneda Lemma, each dendrex x of shape T in a dendroidal set X
corresponds bijectively to a map of dendroidal sets x̂ : Ω[T ] −→ X. Note that
Ω[−] is functorial, i.e., if α : S −→ T is a map of dendroidal sets then we have an
induced map Ω[α] : Ω[S] −→ Ω[T ].
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Example 3.1.4. The functor Ω −→ Oper which sends a tree T to the coloured
operad Ω(T ) induces an adjunction

τd : dSets
//

oo Oper : Nd. (3.1)

The functor Nd is called the dendroidal nerve. Explicitly, for any operad P the
dendroidal nerve of P is the dendroidal set

Nd(P )T = Oper(Ω(T ), P ).

The dendroidal nerve functor is fully faithful and Nd(Ω(T )) = Ω[T ] for every T
in Ω. It extends the usual nerve functor from categories to simplicial sets. If E is any
monoidal category and E is the associated coloured operad (see Example 1.3.5),
then

i∗(Nd(E)) = N(E).

For a dendroidal set X, we refer to the left adjoint τd(X) as the operad generated
by X. It can be explicitly described as follows. For any dendroidal set X, the set
of colours col(τd(X)) is equal to Xη. The operations of the operad are generated
by the elements of XCn , where Cn is the n-th corolla, with the following relations:

(i) s(xa) = idxa ∈ τd(X)(xa;xa) if xa ∈ Xη and s = σ∗, where σ is the degener-
acy σ : C1 −→ η.

(ii) If T is a tree of the form

•

•
xa1 xan

xa

xai
v

xb1 xbm

w

· · · · · ·

· · · · · ·

T

and x ∈ XT , then dw(x) ◦xai dv(x) = dxai (x), where

dw(x) ∈ τd(X)(xa1 , . . . , xan ;xa),

dv(x) ∈ τd(X)(xb1 , . . . , xbm ;xai),

daxi (x) ∈ τd(X)(xa1 , . . . , xai−1 , xb1 , . . . , xbm , xai+1 , . . . , xan ;xa),

and dw = ∂∗w is induced by the face map associated to removing the root
vertex; dv = ∂∗v is induced by the outer face map by cutting the upper part
of the tree; and dxai = ∂∗xai

is induced by the inner face map by contracting

the edge labeled xai .

For example, τd(Ω[T ]) = Ω(T ) for every tree T in Ω.
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The functor τd also extends the functor τ : sSets −→ Cat left adjoint to the
simplicial nerve, i.e., τ(X) = j∗τd(i!(X)) for every simplicial set X. In particular,
there is a diagram of adjoint functors

sSets
i! //

τ

��

dSets
i∗
oo

τd

��

Cat

N

OO

j! //
Oper

j∗
oo

Nd

OO

with left adjoints on top or to the left. Moreover, the following commutativity
relations hold up to natural isomorphisms:

τN = id, τdNd = id, i∗i! = id, j∗j! = id,

and

j! τ = τd i!, Nj∗ = i∗Nd, i!N = Nd j!.

There is also a column in the middle of the square relating planar dendroidal sets
with non-Σ operads.

Remark 3.1.5. Not everything commutes in the above diagram. The canonical
map τi∗(X) −→ j∗τd(X) is not an isomorphism in general. This can be viewed,
for example, by taking the representable dendroidal set Ω[T ], where T is the tree
with three edges, one binary vertex and one nullary vertex:

•

•
b c

a

u

v

Let X = ∂uΩ[T ]∪∂vΩ[T ] ⊆ ∂Ω[T ] be the union of the outer faces. Then i∗(X) = 0.
But τd(X) = Ω(T ), so j∗τd(X) 6= 0.

Later we shall have to use that the Yoneda embedding Ω −→ dSets, mapping
a tree T to the representable dendroidal set Ω[T ], preserves pushouts of the form
given in Lemma 2.3.3. We state this explicitly as follows.

Proposition 3.1.6. Let the diagram

R
f
// //

g
����

S

����

T // // P



3.1. Basic definitions and examples 27

be a pushout square of surjections in Ω. Then this pushout square is absolute, i.e.,
preserved by any functor. In particular, the induced square

Ω[R] // //

����

Ω[S]

����

Ω[T ] // // Ω[P ]

is a pushout square in dSets.

Note that any surjection in Ω has a section, hence remains an epimorphism
after applying the Yoneda embedding (or any other functor).

The proof is based on the well-known fact that split coequalizers are absolute
[Mac71, Ch. VI, §6]. We recall that a diagram

A
k //

l
// B

p
// C

is split if there exist maps t : C −→ B and s : B −→ A such that pt = idC ,
ks = idB and tp = ls. Any such split diagram is a coequalizer.

Lemma 3.1.7. Consider a square

X
f
//

g

��

Y

u

��

Z
v // P ,

(3.2)

a section s : Z −→ X of g, and the induced diagram

X
f
//

fsg
// Y

u // P. (3.3)

(i) The diagram (3.2) is a pushout if and only if (3.3) is a coequalizer.

(ii) If there are sections j : Y −→ X of f and t : P −→ Y of u satisfying the
identity tu = (fsg)j, then (3.3) is a split coequalizer with ‘splitting’

X
j←− Y t←− P.

In particular, the pushout (3.2) is absolute if such sections s, t and j exist.

Proof. Part (ii) is clear from the definition, and part (i) is an elementary diagram
chase. By way of example, we prove that (3.2) is a pushout if (3.3) is a coequalizer.
Take another object W , and arrows ϕ : Y −→W and ψ : Z −→W with ϕf = ψg.
We look for a unique χ : P −→W with χu = ϕ and χv = ψ. Now ϕfsg = ψgsg =
ψg = ϕf , so ϕ factors uniquely through the coequalizer u in (3.3) as ϕ = χu.
Then also ψ = χv; indeed, χv = χvgs = χufs = ϕfs = ψgs = ψ. �
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Lemma 3.1.8. In any pushout square of degeneracies

R
σv //

σw

��

S

σw

��

T
σv // P

(3.4)

in Ω, there exist sections s, t and j

R S
j

oo

T

s

OO

P

t

OO

(of σw, σw and σv respectively) satisfying the equation

tσw = σvsσwj : S −→ S.

Proof. Let v and w be the vertices

•v
a

b

and •w
x

y

in R, with v 6= w. Sections of the maps in the pushout square (3.4) correspond to
set-theoretic sections of sets of edges

E(R) //

��

E(S)

��

E(T ) // E(P ).

Since these sections are uniquely determined outside the edges a, b, x, y, it really
comes down to finding sections in the following pushout diagram of sets:

U //

��

U/X

��

U/A // V ,

(3.5)

where A = {a, b}, X = {x, y}, and U = A ∪X. We can distinguish two cases:
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If A and X are disjoint, then the diagram (3.5) looks like

A+X
f
//

g

��

A+ {1}

u

��

{0}+X
v // {0, 1}

and we can take any sections s, j and t,

A+X A+ {1}
j

oo

{0}+X

s

OO

{0, 1},

t

OO

with s(0) = t(0). Then fsgj = tu, as required.
If A and X are not disjoint, say x = b, then the diagram (3.5) looks like

{a, b = x, y}
f
//

g

��

{a, b}

u

��

{x, y} v // {0}

with fa = a, fb = fy = b and ga = gb, gy = y. Then one can take sections s, j
and t,

{a, b, y} {a, b}
j
oo

{x, y}

s

OO

{0},

t

OO

with s(x) = b, t(0) = b, j(b) = b, to obtain the identity fsgj = tu again. �

Proof of Proposition 3.1.6. It suffices (as in Lemma 2.3.3) to consider the case
where the surjections f and g are degeneracies

σv : R −→ S = R\v and σw : R −→ T = R\w.

The proposition is evidently true in the case v = w. If v 6= w, then Lemma 3.1.8
completes the proof. �

3.2 Faces, boundaries and horns

In this section we define face maps, boundaries and horns in the context of den-
droidal sets.
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Definition 3.2.1. Let T be an object of Ω and α : S −→ T a face map in Ω. The
α-face of Ω[T ] is the dendroidal subset of Ω[T ] given by the image of the map
Ω[α] : Ω[S] −→ Ω[T ]. We denote it by ∂αΩ[T ]. We write Φ1(T ) for the set of all
faces of T .

Thus we have that

∂αΩ[T ]R = {R β−→ S
α−→ T where β ∈ Ω[S]R}.

When the face map α is an inner face obtained by contracting an inner edge e, we
denote ∂α by ∂e.

Definition 3.2.2. Let T be an object of Ω. The boundary of Ω[T ] is the dendroidal
subset ∂Ω[T ] of Ω[T ] obtained as the union of all possible faces of Ω[T ]. Namely,

∂Ω[T ] =
⋃

α∈Φ1(T )

∂αΩ[T ].

If we take the union of all the faces except for one, we have the definition of
a horn.

Definition 3.2.3. Let T be an object of Ω and α ∈ Φ1(T ) a face of T . The α-horn
of Ω[T ] is the dendroidal subset Λα[T ] of Ω[T ] obtained as the union over all faces
of T except α. That is,

Λα[T ] =
⋃

β 6=α∈Φ1(T )

∂βΩ[T ].

As before, if α is an inner face map contracting an edge e, then we denote Λα[T ]
by Λe[T ]. The horns of the form Λe[T ] are called inner horns. The other horns are
called outer horns.

A horn in a dendroidal set X is given by a map of dendroidal sets

Λα[T ] −→ X.

This horn is inner if Λα[T ] is an inner horn and it is outer if Λα[T ] is an outer
horn.

The definitions of faces, boundaries and horns in dendroidal sets naturally
extend the corresponding ones for simplicial sets. For example, if Λk[n] ⊆ ∆[n]
denotes the simplicial k-horn, then the dendroidal set

i!(Λ
k[n]) ⊆ i!(∆[n]) = Ω[Ln],

where Ln denotes the linear tree with n vertices and n+ 1 edges, is a horn in the
dendroidal sense. Moreover, the horn Λk[n] is an inner horn (i.e., 0 < k < n) if
and only if i!(Λ

k[n]) is an inner horn.
Boundaries and horns can also be described in term of colimits. This extends,

in the case of simplicial sets, the presentation of the boundary ∂∆[n] and the horn
Λk[n] as a colimit of standard simplices.
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Let T1 −→ T2 −→ · · · −→ Tn be a sequence of n face maps in Ω. The compo-
sition of these maps is called a subface of codimension n of Tn. Note that subfaces
of codimension 1 are precisely the face maps. It follows from the dendroidal iden-
tities in Section 2.2.3 that every subface of a tree of codimension 2 decomposes
in exactly two different ways as a composition of faces. Let Φ2(T ) be the set of
all subfaces of codimension 2 of T . Thus, for each β : S −→ T in Φ2(T ) there are
exactly two maps β1 : S −→ T1 and β2 : S −→ T2 through which β factors. Using
β1 and β2, we can define two maps γ1 and γ2,

∐
(S→T )∈Φ2(T )

Ω[S]
γ1 //

γ2
//
∐

(R→T )∈Φ1(T )

Ω[R],

where the components of γi are the compositions

Ω[S]
Ω[βi]

// Ω[Ti] // Ω[R]

for each β : S −→ T in Φ2(T ) and i = 1, 2.

Lemma 3.2.4. Let T be an object of Ω. Then the boundary ∂Ω[T ] can be obtained
as the coequalizer

∐
(S→T )∈Φ2(T )

Ω[S]
γ1 //

γ2
//
∐

(R→T )∈Φ1(T )

Ω[R] // ∂Ω[T ].

Proof. The universal property is verified by using the definition of ∂Ω[T ] and the
fact that every subface of codimension 2 decomposes exactly in two different ways
as a composition of faces. �

Corollary 3.2.5. A map of dendroidal sets ∂Ω[T ] −→ X corresponds exactly to
a sequence of dendrices {xR}(R→T )∈Φ1(T ) that agree on common faces, i.e., if
β : S → T is a subface of codimension 2 which factors as

S
β1 //

β

  

β2

��

T1

α1

��

T2 α2

// T ,

then β∗1(xT1) = β∗2(xT2). �

If α is a face of T , the α-horn Λα[T ] can be computed using the same co-
equalizer as before, but excluding the face α.
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Lemma 3.2.6. Let T be an object of Ω and α a face of T . Then the horn Λα[T ] is
the coequalizer

∐
(S→T )∈Φ2(T )

Ω[S]
γ1 //

γ2
//
∐

(R→T )6=α∈Φ1(T )

Ω[R] // Λα[T ].

Proof. The proof is analogous to that of Lemma 3.2.4. �

Corollary 3.2.7. Let α be a face map in T . A horn Λα[T ] −→ X in X corresponds
exactly to a sequence of dendrices {xR}(R→T )6=α∈Φ1(T ) that agree on common faces,
i.e., if β : S −→ T is a subface of codimension 2 which factors as

S
β1 //

β

  

β2

��

T1

α1

��

T2 α2

// T ,

where α1, α2 6= α, then β∗1(xT1
) = β∗2(xT2

). �

Finally, we will use the following terminology for dendrices in a dendroidal
set. Let α : S −→ T be a map in Ω, let X be a dendroidal set, and let t ∈ XT be
a T -dendrex. Consider the S-dendrex given by α∗(t). Then:

(i) α∗(t) is a face (resp. inner face, outer face) of t if α is a face (resp. inner
face, outer face) of T .

(ii) α∗(t) is a subface of t if α is a subface of T .

(iii) α∗(t) is isomorphic to t if α is an isomorphism.

(iv) α∗(t) is a degeneracy of t is α is a composition of degeneracies.

3.3 Skeleta and coskeleta

Let Ω≤n denote the full subcategory of Ω consisting of trees with n or less vertices.
Similarly, one can define the full subcategory ∆≤n as the full subcategory of ∆
with objects [k] where 0 ≤ k ≤ n. There is a commutative diagram

∆≤n
j
//

in

��

Ω≤n

in

��

∆
i
// Ω,

where in denotes the fully faithful inclusion functor. The functors in induce func-
tors i∗n between the corresponding categories of presheaves and thus we have a
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commutative diagram

sSets≤n dSets≤n
j∗
oo

sSets

i∗n

OO

dSets
i∗

oo

i∗n

OO (3.6)

consisting of the inverse image functor of a pullback of presheaf toposes, together
with the corresponding left adjoints in!, j! and i!, and right adjoints in∗, j∗ and i∗.
Moreover, all α∗ and α! are full and faithful (α = in, j, i).

Definition 3.3.1. Let X be a dendroidal set. The n-th skeleton of X is defined
as Skn(X) = in!in

∗(X) and the n-th coskeleton of X as coSkn(X) = in∗in
∗(X).

(One can define with a similar formula the n-th skeleton of a simplicial set.)

There are natural morphisms

Skn(X) −→ X −→ coSkn(X)

given by the counit and the unit of the corresponding adjunctions, for every den-
droidal set X. There are also inclusions Skn(X) ⊆ Skn+1(X) for every n ≥ 0. It
follows that X = ∪∞n=0 Skn(X), and this presentation of X is called the skeletal
filtration of X. One defines similarly the coskeletal filtration of a dendroidal set.

Recall that the functor i∗n : dSets −→ dSets≤n is defined on representables as

i∗n(Ω[T ]) = Ω(in(−), T )

for every T in Ω≤n. Its left adjoint in! is defined on representables as

in!(Ω
≤n[T ]) = Ω(−, in(T ))

for every T in Ω. The fact that in is fully faithful implies that in
∗in!(Ω[T ]) = Ω[T ]

for every object T in Ω. Hence, in
∗in!(X) = X for all X, since every dendroidal set

is a canonical colimit of representables. Using the adjunction one can check that
also in

∗in∗(X) = X for all X. It follows that in! and in∗ are both fully faithful.

Definition 3.3.2. A dendroidal set X is called n-coskeletal if X = coSkn(X).

Proposition 3.3.3. A dendroidal set X is n-coskeletal if, for every dendroidal set Y ,
each map Skn(Y ) −→ X extends uniquely along Skn(Y ) −→ Y to a map Y −→ X.

Proof. Since X is n-coskeletal, X = coSkn(X). By an adjointness argument, there
is a bijection between the sets of maps dSets(Y,X) and dSets(Skn(Y ), X). �

If we make the definition of the Kan extension in! explicit, we find that, for
any tree R in Ω,

Skn(X)R = lim−→
(T,α)

Ω(R, T ),
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where the colimit ranges over all trees T with at most n vertices and all α ∈ XT ,
i.e., maps α : Ω[T ] −→ X. In other words, Skn(X)R consists of equivalence classes
of pairs (α, u), with u : R −→ T in Ω and α : Ω[T ] −→ X in dSets, and |V (T )| ≤ n.
The equivalence relation on such pairs is generated by

(αv, u) ∼ (α, vu)

where R
u−→ T ′

v−→ T and Ω[T ]
α−→ X. The counit maps the equivalence class of

(α, u) to u∗(α), or, in another notation, it maps (α, u) to the composition α ◦ u,

Ω[R]
u−→ Ω[T ]

α−→ X.

Lemma 3.3.4. For each n ≥ 0, the counit of the adjunction Skn(X) −→ X is a
monomorphism for every dendroidal set X.

Proof. To show that Skn(X) −→ X is injective, we need to prove that, if a diagram
of the form

Ω[S]
α // X

Ω[R]

u

OO

v // Ω[T ]

β

OO

in dSets commutes, where S and T have at most n vertices, then (α, u) ∼ (β, v).
To see this, factor u = if and v = jg as in Lemma 2.3.2, and take the pushout P
in Ω,

S

S′
OO

i

OO

h // // P

R

f

OOOO

g
// // T ′

k

OOOO

//
j
// T.

Then the functor Ω[−] preserves this pushout by Proposition 3.1.6, so we obtain
a diagram in dSets of the form

Ω[S]
α // X

Ω[S′]
OO

i

OO

h // // Ω[P ]

γ

;;

Ω[R]

f

OOOO

g
// // Ω[T ′]

k

OOOO

//
j
// Ω[T ].

β

OO
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Now S′, P and T ′ have at most n vertices since S and T do, so we can use the
equivalence relation defining Skn(X), and find

(α, u) = (α, if) ∼ (αi, f) = (γh, f) ∼ (γ, hf),

and, in exactly the same way, (β, v) ∼ (γ, kg). Since hf = kg, this shows that
(α, u) ∼ (β, v) and proves the lemma. �

The following proposition relates the skeleton and coskeleton constructions
between the category of simplicial sets and the category of dendroidal sets.

Proposition 3.3.5. The following relations hold:

(i) i∗(Skn(X)) = Skn(i∗(X)) and i∗(coSkn(X)) = coSkn(i∗(X)) for every den-
droidal set X and every n ≥ 0.

(ii) i!(Skn(X)) = Skn(i!(X)) and i∗(coSkn(X)) = coSkn(i∗(X)) for every sim-
plicial set X and every n ≥ 0.

Proof. The proof is straightforward by using the following commutativity relations
between the functors involved:

i∗in! = in!j
∗, j∗i

∗
n = i∗ni∗, i∗ni! = j!i

∗
n, i∗in∗ = in∗j

∗,

which follow from the fact that (3.6) is a pullback of presheaf toposes. �

3.4 Normal monomorphisms

Recall from Definition 3.1.2 that a dendrex t ∈ XT is called degenerate if t = σ(s)
where σ is a composition of degeneracies and s is another dendrex. Any dendrex
t ∈ XT where T is a tree with no unary vertices is non-degenerate.

Lemma 3.4.1. Any dendrex x ∈ XT is the restriction σ∗(y) of a non-degenerate
dendrex y ∈ XR along a surjection σ : T // // R in Ω. Moreover, given x, the map
σ and the dendrex y are unique up to isomorphism.

Proof. By the Yoneda Lemma, x corresponds to a map x̂ : Ω[T ] −→ X. Consider,
among all possible factorizations

Ω[T ]
σ // // Ω[R]

ŷ
// X

of x̂, those where R has a minimal number of vertices, so that y is necessarily
non-degenerate. It suffices to show that any two such ‘minimal’ factorizations are
isomorphic. But, given another one,

Ω[T ]
σ′ // // Ω[R]

ŷ′
// X,
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we can form the pushout

T
σ′ // //

σ
����

R′

τ ′

����

R
τ // // P

in Ω by Lemma 2.3.3. Since Ω[−] of this pushout is a pushout in dendroidal sets (by
Proposition 3.1.6) and since ŷσ = x̂ = ŷ′σ′ by assumption, we find ẑ : Ω[P ] −→ X
with ẑτ = ŷ and ẑτ ′ = ŷ′. But then, by minimality of R and R′, both τ and τ ′

must be isomorphisms. Thus, we have the following diagram:

Ω[T ]
σ′ //

σ

��

Ω[R′]

ŷ′

��

Ω[R]
ŷ

//

∼
;;

X,

and (σ, ŷ) and (σ′, ŷ′) are isomorphic. �

For n > 0, we can consider the following commutative diagram:

∐
(T,t) ∂Ω[T ] //

��

Skn−1(X)

��∐
(T,t) Ω[T ] // Skn(X),

(3.7)

where the coproducts are taken over all isomorphism classes of pairs (T, t) in the
category of elements of X such that T has n vertices and t ∈ XT is non-degenerate.
For the case n = 0, note that Sk0(X) =

∐
x∈Xη Ω[η].

Definition 3.4.2. A monomorphism X // // Y in dSets is called normal if, for every
tree T in Ω, every non-degenerate element y ∈ YT which is not in the image of XT

has a trivial stabilizer Aut(T )y ⊆ Aut(T ), where Aut(−) denotes the automor-
phism group of the corresponding tree. An object X is called normal if the map
∅ // // X is a normal monomorphism.

Example 3.4.3. For every tree T in Ω, the representable dendroidal set Ω[T ] is
normal. If σ : X // // Y is a monomorphism and Y is normal, then σ is a normal
monomorphism.

The skeletal filtration of a dendroidal set is called normal if the diagram (3.7)
is a pushout. This property gives a characterization of normal dendroidal sets:
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Proposition 3.4.4. A dendroidal set is normal if and only if it admits a normal
skeletal filtration.

Proof. If a dendroidal set X admits a normal skeletal filtration, it is easy to see
that X is normal, and the proof is left to the reader.

We prove in detail the other direction. Let us fix a representing element
(T, β) in each isomorphism class [(T, β)] of non-degenerate dendrices β ∈ XT , i.e.,

β̂ : Ω[T ] −→ X. We begin by observing that, in the category of sets, a pullback
diagram of the form

A
q
//

��

n

��

C
��

m

��

B
p
// // D,

with p an epimorphism and m a monomorphism as indicated, is a pushout if and
only if, as subsets of B × B, the set B ×D B is contained in the union of the
diagonal B → B × B and A×C A // // B ×D B . Since pullbacks and pushouts
in presheaf categories are computed pointwise, the same observation applies to
pushout diagrams in the category of dendroidal sets. Let us now check that the
diagram

∂P =
∐
∂Ω[T ] //

��

��

Skn−1(X)
��

��

##

##

P =
∐

Ω[T ] // Skn(X) // // X

is a pushout. The square is clearly a pullback and we know that Skn(X) −→ X
is a monomorphism for each n, by Lemma 3.3.4. Hence it is enough to prove that
P ×X P // // P × P is contained in the union of the diagonal P −→ P × P and
∂P ×X ∂P // // P × P . To this end, fix one representative (T, α) in each isomor-
phism class [(T, α)] (these classes index the coproduct in the diagram). For a tree
R, an element ξ ∈ (P ×X P )R is a commutative square

Ω[S]
α // X

Ω[R]
v //

u

OO

Ω[T ],

β

OO

where (S, α) and (T, β) are representatives as above; in particular, α ∈ XS and
β ∈ XT are non-degenerate. If neither u : R −→ S nor v : R −→ T is surjective,
then u and v factor through ∂Ω[S] and ∂Ω[T ], so the element ξ ∈ (P ×X P )R in
fact lies in (∂P ×X ∂P )R. Hence we may assume that one of u and v is surjective;
say u is. Now factor v = gj as an epimorphism followed by a monomorphism, and
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form the pushout

S
h // // P

R

u

OOOO

g
// // T ′ //

j
//

k

OOOO

T .

We use Proposition 3.1.6 to find a diagram

Ω[S]
h // // Ω[P ]

γ
// X

Ω[R]

u

OOOO

g
// // Ω[T ′] //

j
//

k

OOOO

Ω[T ]

β

OO

with γh = α. But α is non-degenerate, so h must be an isomorphism. But then
we have maps

T T ′oo
j

oo h−1k // // S,

where S and T have exactly n vertices. So j must be an isomorphism, as must
be k. Thus, writing θ = h−1k, we have

Ω[S]
α // X

Ω[R]

u

OOOO

v // // Ω[T ].

β

OO

∼
θ

bb

In other words, (S, α) and (T, β) lie in the same isomorphism class, hence they
must be equal by our choice of representatives. But then θ = id, since X is assumed
normal. We conclude that u = v as well, so the element ξ ∈ P ×X P represented
by (α, u) and (β, v) lies in fact in the diagonal. This completes the proof. �

Lemma 3.4.5. Let p : Y −→ X be a map of dendroidal sets, and assume that X is
normal. Then Y is normal as well.

Proof. First recall that any normal object has a nice skeletal filtration, i.e., can
be built up by attaching cells x by pushouts of the form

∂Ω[T ] //

��

��

A
��

��

Ω[T ]
x // B.

Such an attached cell x always comes with a map Ω[T ]
x−→ B which is ‘injective on

its interior’ (just like for usual cell complexes). Indeed, by looking at pushouts of
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this form in Sets as before, one sees that the kernel pair Ω[T ]×BΩ[T ] ⊆ Ω[T ]×Ω[T ]
of the map x is the union of the diagonal Ω[T ] and ∂Ω[T ]×A ∂Ω[T ]. This simple
observation implies that, for any non-degenerate dendrex x ∈ X(T ) in a normal

dendroidal setX, the corresponding map Ω[T ]
x−→ X has the cancellation property

with respect to epimorphisms in Ω:

if Ω[R]
β
// //

γ
// // Ω[T ]

x // X and xβ = xγ, then β = γ.

To prove the lemma, let y ∈ Y (T ) be non-degenerate and suppose that α ∈ Aut(T )
fixes y, with α 6= 1. Then α also fixes py, so py must be degenerate by the
assumption that X is normal; say that py = ρ∗x, where ρ : T // // R and x ∈ X(R)
is non-degenerate,

T
α
∼
// T

ρ
����

y
// Y

p

��

R
x
// X.

Then x(ρα) = xρ because yα = y; hence, ρα = ρ by the cancellation property.
This means that α is an automorphism of T which permutes the edges on each of
the fibers of ρ. But these fibers are linear, so α must be the identity. �



Lecture 4

Tensor product of dendroidal
sets

Like any category of presheaves, the category of dendroidal sets is cartesian closed.
In this lecture, we will discuss another monoidal structure, which is also closed,
and seems more relevant than the cartesian structure. It is closely related to the
tensor product of operads introduced by Boardman and Vogt, and it makes the
embedding of simplicial sets into dendroidal sets into a strong monoidal functor.

4.1 The Boardman–Vogt tensor product

The category of small categories Cat is a cartesian closed category for which
the internal hom HomCat(C,D) between two categories C and D is defined as
the category whose objects are functors from C to D and whose morphisms are

of coloured operads is a closed symmetric monoidal category with the so-called
Boardman–Vogt tensor product [BV73, Definition 2.14].

We recall the definition of the Boardman–Vogt tensor product for coloured
operads.

Definition 4.1.1. Let P be a symmetric C-coloured operad and let Q be a symmet-
ric D-coloured operad. The Boardman–Vogt tensor product P ⊗BV Q is a (C×D)-
coloured operad defined in terms of generators and relations in the following way.
For each d ∈ D and each operation p ∈ P (c1, . . . , cn; c) there is a generator

p⊗ d ∈ P ⊗BV Q((c1, d), . . . , (cn, d); (c, d)).

Similarly, for each c ∈ C and each q ∈ Q(d1, . . . , dm; d) there is a generator

c⊗ q ∈ P ⊗BV Q((c, d1), . . . , (c, dm); (c, d)).

I. Moerdijk and B. Toën, Simplicial Methods for Operads and Algebraic Geometry, Advanced Courses 41

natural transformations between them. In this section, we show that the category
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These generators are subject to the following relations:

(i) (p⊗ d) ◦ ((p1 ⊗ d), . . . , (pn ⊗ d)) = (p ◦ (p1, . . . , pn))⊗ d.

(ii) σ∗(p⊗ d) = (σ∗p)⊗ d for every σ ∈ Σn.

(iii) (c⊗ q) ◦ ((c⊗ q1), . . . , (c⊗ qm)) = c⊗ (q ◦ (q1, . . . , qm)).

(iv) σ∗(c⊗ q) = c⊗ (σ∗q) for every σ ∈ Σm.

(v) σ∗n,m((p ⊗ d) ◦ ((c1 ⊗ q), . . . , (cn ⊗ q))) = (c ⊗ q) ◦ ((p ⊗ d1), . . . , (p ⊗ dm)),
where σn,m ∈ Σnm is the permutation described as follows. Consider Σnm as
the set of bijections of the set {0, 1, . . . , nm−1}. Each element of this set can
be written uniquely in the form kn + j where 0 ≤ k < m and 0 ≤ j < n as
well as in the form km+j where 0 ≤ k < n and 0 ≤ j < m. The permutation
σn,m is then defined by σn,m(kn+ j) = jm+ k.

Observe that relations (i) and (ii) imply that for every d ∈ D the map
P −→ P ⊗BV Q given by p 7−→ p⊗ d is a map of operads. Similarly, relations (iii)
and (iv) ensure that for every c ∈ C the map Q −→ P ⊗BV Q given by q 7−→ c⊗ q
is a map of operads.

Example 4.1.2. We illustrate relation (v), called the interchange relation, with the
following examples. Suppose that n = 2 and m = 3. The left-hand operation of
relation (v), before applying σ∗2,3, can be represented by the tree

(c1,d1)

(c1,d2)

(c1,d3) (c2,d1)

(c2,d2)

(c2,d3)

c1⊗q •

(c1,d)

•

(c2,d)

c2⊗q

◦
(c,d)

p⊗d

The right-hand operation can be represented by the tree

(c1,d1) (c2,d1) (c1,d2) (c2,d2) (c1,d3) (c2,d3)

p⊗d1◦

(c,d1)

p⊗d2◦
(c,d2)

◦

(c,d3)

p⊗d3

•
(c,d)

c⊗q

And the permutation σ2,3 corresponds to the permutation (2 4 5 3) of Σ6. We
represent the vertices coming from operations in P by a white dot ◦ and the
vertices coming from operations in Q by a black dot •.
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The Boardman–Vogt tensor product preserves colimits in each variable sep-
arately. In fact, there is a corresponding internal hom making the category of
coloured operads closed monoidal.

Theorem 4.1.3. The category Oper with the Boardman–Vogt tensor product ⊗BV
is a closed symmetric monoidal category.

Proof. The unit for the tensor product is the initial operad I on one colour, i.e.,
I(∗, ∗) = {∗} and the empty set otherwise. It follows from the definition that this
tensor product is associative, commutative and unital. This proves that Oper is
symmetric monoidal.

We define the internal hom for coloured operads as follows. Let P be a
C-coloured operad and Q a D-coloured operad. Then HomOper (P,Q) is the operad
whose colours are the maps of operads P −→ Q, and if α1, . . . , αn, β are n + 1
such maps, then the elements of

HomOper (P,Q)(α1, . . . , αn;β)

are maps f assigning to each colour c ∈ C an element fc ∈ Q(α1c, . . . , αnc;βc).
The maps fc should be natural with respect to all the operations in P . For example,
if p ∈ P (c1, c2; c), then

β(p)(fc1 , fc2) ∈ Q(α1c1, . . . , αnc1, α1c2, . . . , αnc2;βc)

is the image under a suitable permutation of

fc(α1(p), . . . , αn(p)) ∈ Q(α1c1, α1c2, . . . , αnc1, αnc2;βc).

We need to construct a bijection

Oper(P ⊗BV Q,R) ∼= Oper(P,HomOper (Q,R))

natural in P , Q and R.
Let ϕ : P ⊗BV Q −→ R be a map of coloured operads. For each c ∈ C we

have a map of operads ϕc defined by the composition

Q −→ P ⊗BV Q
ϕ−→ R

where the first map sends q to c⊗ q. This defines a map from the colours of P to
the colours of HomOper (Q,R). Now, if we have an operation p ∈ P (c1, . . . , cn; c),
we define

fd = ϕ(p⊗ d) ∈ R(ϕc1d, . . . , ϕcnd;ϕcd)

for every d ∈ D.
Conversely, let ψ : P −→ HomOper (Q,R) be a map of coloured operads. To

construct a map ψ : P ⊗BV Q −→ R, we need to define it on the colours and the
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generators of P ⊗BV Q. If (c, d) ∈ C ×D, then ψ(c, d) = ψ(c)(d). For a generator
of the form c⊗ q, where q ∈ Q(d1, . . . , dn; d), we define

ψ(c⊗ q) = ψ(c)(q).

For a generator of the form p⊗ d, where p ∈ P (c1, . . . , cn; c), we define

ψ(p⊗ d) = ψ(p)d.

It is now easy to check that ψ thus defined is compatible with the relations of the
Boardman–Vogt tensor product. �

Remark 4.1.4. Note that in the definition of the Boardman–Vogt tensor product
it is crucial that the coloured operads involved are symmetric. However, the tensor
product still makes sense without the symmetries when one of the operads involved
has only unary operations.

4.2 Tensor product of dendroidal sets

The category of dendroidal sets is a category of presheaves, hence cartesian closed.
The cartesian product of dendroidal sets extends the cartesian product of simplicial
sets, i.e.,

i!(X × Y ) ∼= i!(X)× i!(Y )

for every two simplicial sets X and Y . (Note, however, that i! does not preserve
the terminal object.)

As mentioned before, there is another closed monoidal structure on dSets,
strongly related with the Boardman–Vogt tensor product of coloured operads. For
any two trees T and S in Ω, the tensor product of the representables Ω[T ] and
Ω[S] is defined as

Ω[T ]⊗ Ω[S] = Nd(Ω(T )⊗BV Ω(S)),

where Nd is the dendroidal nerve functor (see Example 3.1.4), Ω(T ) and Ω(S) are
the coloured operads associated to the trees T and S respectively (see Section 2.3),
and ⊗BV is the Boardman–Vogt tensor product.

This defines a tensor product in the whole category of dendroidal sets, since,
being a category of presheaves, every object is a canonical colimit of representables
and ⊗ preserves colimits in each variable.

Definition 4.2.1. Let X and Y be two dendroidal sets and let X = lim−→Ω[T ] and
Y = lim−→Ω[S] be their canonical expressions as colimits of representables. Then
the tensor product X ⊗ Y is defined as

X ⊗ Y = lim−→Ω[T ]⊗ lim−→Ω[S] = lim−→Nd(Ω(T )⊗BV Ω(S)).
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It follows from general category theory [Kel82] that this tensor product is
automatically closed, and that the set of T -dendrices of the internal hom is defined
by

HomdSets(X,Y )T = dSets(Ω[T ]⊗X,Y ),

for every two dendroidal sets X and Y and every T in Ω. The dendroidal structure
of HomdSets(X,Y ) is given in the obvious way.

Theorem 4.2.2. The category of dendroidal sets admits a closed symmetric monoi-
dal structure. This monoidal structure is uniquely determined (up to isomorphism)
by the property that there is a natural isomorphism

Ω[T ]⊗ Ω[S] ∼= Nd((Ω(T )⊗BV Ω(S))

for any two objects T and S of Ω. The unit of the tensor product is the representable
dendroidal set Ω[η] = i!(∆[0]) = U . �

The following are some basic properties of the tensor product of dendroidal
sets in relation to the Boardman–Vogt tensor product of coloured operads and to
the cartesian product of simplicial sets.

Proposition 4.2.3. The following properties hold:

(i) For any two simplicial sets X and Y , there is a natural isomorphism

i!(X)⊗ i!(Y ) ∼= i!(X × Y ).

(ii) For any two dendroidal sets X and Y , there is a natural isomorphism

τd(X ⊗ Y ) ∼= τd(X)⊗BV τd(Y ).

(iii) For any two coloured operads P and Q, there is a natural isomorphism

τd(Nd(P )⊗Nd(Q)) ∼= P ⊗BV Q.

Proof. To prove (i), it is enough to check that it holds for the representables
in sSets. Note first that, if we view [n] and [m] in ∆ as categories, then by using
the linear order one has that

j!([n]× [m]) ∼= j!([n])⊗BV j!([m]).

Therefore, there is a chain of natural isomorphisms

i!(∆[n]×∆[m]) ∼= i!(N([n])×N([m])) ∼= i!(N([n]× [m]))
∼= Ndj!([n]× [m]) ∼= Nd(j!([n])⊗BV j!([m])) ∼= Nd(Ω(Ln)⊗BV Ω(Lm))

∼= Ω[Ln]⊗ Ω[Lm] ∼= i!(∆[n])⊗ i!(∆[m]),
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where Ln and Lm denote the linear tree with n and m vertices and n + 1 and
m+ 1 edges respectively.

Again, to prove (ii) it suffices to do it for representables in dSets. But this is
clear by using the natural isomorphism τdNd ∼= id. More precisely,

τd(Ω[T ]⊗ Ω[S]) ∼= τdNd(Ω(T )⊗BV Ω(S))
∼= Ω(T )⊗BV Ω(S) ∼= τd(Ω[T ])⊗BV τd(Ω[S]).

Part (iii) follows from part (ii) by using again that τdNd ∼= id and replacing X by
Nd(P ) and Y by Nd(Q). �

Remark 4.2.4. There is no tensor product in the category of planar dendroidal sets
coming from the Boardman–Vogt tensor product, since the latter is defined only
for symmetric operads. However, as we have seen in Remark 4.1.4, the Boardman–
Vogt tensor product still makes sense for non-symmetric operads when at least one
of them has only unary operations. This means that, although we cannot define
X ⊗ Y for planar dendroidal sets X and Y in general, we can define u!(K) ⊗ Y
where K is any simplicial set and Y is any planar dendroidal set. In fact, pdSets
is a simplicial category with tensors and cotensors.

Theorem 4.2.5. The category pdSets of planar dendroidal sets is enriched, tensored
and cotensored over simplicial sets.

Proof. Given two planar dendroidal sets X and Y , the simplicial enrichment
Hom(X,Y ) is defined by

Hom(X,Y )n = pdSets(u!(∆[n])⊗X,Y )

where u! : sSets −→ pdSets is the left adjoint to the functor u∗ induced by the
inclusion u : ∆ −→ Ωp. If K is any simplicial set, we define a tensor

K ⊗ Y = u!(K)⊗ Y

and a cotensor
(Y K)T = pdSets(Ωp[T ]⊗ u!(K), Y )

for every planar dendroidal set Y . �

Thus, the Boardman–Vogt tensor product makes sSets into a cartesian closed
category, pdSets into a simplicial category with tensors and cotensors, and dSets
into a closed symmetric monoidal category. In fact, if we consider the cartesian
structures on Cat and sSets, the Boardman–Vogt tensor product on Oper and the
tensor product of dendroidal sets, then in the commutative diagram

sSets
i! //

τ

��

dSets
i∗
oo

τd

��

Cat

N

OO

j! //
Oper

j∗
oo

Nd

OO
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the functors i!, N , τ , j! and τd are strong monoidal. However, i∗ and j∗ are not
strong monoidal functors. For example, if we denote by T1, T2 and T3 the following
trees:

•

T1

•

T2

•

• •

T3

then i∗(Ω[T1]) = ∅ and i∗(Ω[T2]) = ∆[0], but Ω[T1]⊗ Ω[T2] = Ω[T3] and

i∗(Ω[T3]) = ∆[1] ∪∆[0] ∆[1].

Remark 4.2.6. If E is a complete and cocomplete monoidal category, then the
category EΩop

of dendroidal objects in E also has a Boardman–Vogt type tensor
product. For any two objects X and Y in EΩop

, their tensor product is defined by
the following formula:

(X ⊗ Y )T = lim−→
Ω[T ]→Ω[R]⊗Ω[S]

XR ⊗E YS ,

where ⊗E is the tensor product of E. If E is closed, then so is EΩop

(see [MW07,
Appendix A] and [BM08, §7]).

4.3 Shuffles of trees

In this section, we describe the tensor product Ω[S]⊗Ω[T ] for any two trees in Ω, in
order to give a better understanding of the tensor product of dendroidal sets. Sup-
pose first that S = Ln and T = Lm are linear trees. Then, by Proposition 4.2.3(i),

Ω[Ln]⊗ Ω[Lm] = i!(∆[n])⊗ i!(∆[m]) ∼= i!(∆[n]×∆[m]).

The non-degenerate simplices of a product of two representables in simplicial sets
are computed by means of shuffles. An (n,m)-shuffle is a path of maximal length
in the partially ordered set [n] × [m]. The non-degenerate (n + m)-simplices of
∆[n]×∆[m] correspond to (n,m)-shuffles. In fact,

∆[n]×∆[m] =
⋃

(n,m)

∆[n+m],

where the union is taken over all possible (n,m)-shuffles.

Example 4.3.1. Let n = 2 and m = 1. There are three (2, 1)-shuffles in [2] × [1],
namely (00, 01, 02, 12), (00, 01, 11, 12) and (00, 10, 11, 12). If we picture ∆[2]×∆[1]
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as the following prism

00 01

10 11

12

02

we can see that each (2, 1)-shuffle corresponds to a tetrahedron, and that they give
a decomposition of ∆[2]×∆[1] as the union of three copies of ∆[3]:

(00, 01, 02, 12) (00, 01, 11, 12) (00, 10, 11, 12)

To give an explicit description of the tensor product of any two representables
in Ω, we need to introduce shuffles of trees. Recall that we denote by E(T ) the set
of edges of a given tree T .

Definition 4.3.2. Let S and T be two objects of Ω. A shuffle of S and T is a tree
R whose set of edges is a subset of E(S)×E(T ). The root of R is (a, x) where a is
the root of S and x is the root of T , and its leaves are labelled by all pairs of the
form (lS , lT ), where lS is a leaf of S and lT is a leaf of T . Its vertices are either of
the form

· · ·
u

(a1,x) (an,x)

(b,x)

or •
· · ·
v

(a,x1) (a,xm)

(a,y)

where u is a vertex of S with input edges a1, . . . , an and output b, and v is a vertex
of T with input edges x1, . . . , xm and output y. We will refer to the first type of
vertices as white vertices and to the second type of vertices as black vertices. To
make this distinction clear, we picture them as ◦ and • respectively.

Note that there is a bijection between the shuffles of two linear trees Ln and
Lm and the (n,m)-shuffles of [n]× [m].

Example 4.3.3. Let S and T be the trees

b c

a

d f

S

e

•
x

y

T
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Then the set of shuffles of S and T consists of the following three trees:

•

• • •

(a,x)

(d,y)

(e,y)

(f,y)

(b,y)

(b,x) (c,x)

(f,x)(d,x) (e,x)

• •

(a,x)

(e,y)

(b,y) (c,y)

(b,x) (c,x)

(f,y)(d,y)

•
(a,y)

(a,x)

(b,y) (c,y)

(d,y)

(e,y)

(f,y)

R1 R2 R3

The set of shuffles of two trees S and T has a natural partial order. The
minimal tree R1 in this poset is the one obtained by stacking a copy of the black
tree T on top of each of the inputs of the white tree S. More precisely, on the
bottom of R1 there is a copy S ⊗ rT of the tree S all of whose edges are renamed
(a, rT ) where rT is the output edge at the root of T . For each input edge b of S,
a copy of T is grafted on the edge (b, rT ) of S ⊗ rT , with edges x in T renamed
(b, x). The maximal tree RN in the poset is the similar tree with copies of the
white tree S grafted on each of the input edges of the black tree. Schematically,
the trees R1 and RN look like

S

T T T

R1

T

S S S S

RN

There are intermediate shuffles Rk (1 < k < N) between R1 and RN obtained
by letting the black vertices in R1 slowly percolate in all possible ways towards
the root of the tree. Shuffles are also called percolation schemes. The percolation
rule or percolation relation can be made explicit as follows. Each Rk is obtained
from an earlier Rl by replacing a configuration

• •. . . . . . . . .

. . . . . .

(a,x)

(a,ym)(a,y1)

(b1,y1) (bn,ym)(bn,y1) (b1,ym)

(4.1)
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in Rl by a configuration

•

. . . . . . . . .

. . . . . .

(a,x)

(bn,x)(b1,x)

(b1,y1) (bn,ym)(b1,ym) (bn,y1)

(4.2)

in Rk. If a shuffle Rk is obtained from another Rl by means of the above rule,
then we say that Rk is obtained by a single percolation step and denote this by
Rl ≤ Rk. This generates a partial order on the set of all shuffles.

It is important to make explicit the percolation relation above for trees with
no input edges, i.e., n = 0 or m = 0. If m = 0 and n 6= 0, then we have the relation

(a,x)

•

. . . . . . . . .

(a,x)

(bn,x)(b1,x)
//

If n = 0 and m 6= 0, then we have the relation

• •. . . . . . . . .

(a,x)

(a,ym)(a,y1)
•

(a,x)

//

And if n = m = 0, we have the relation

(a,x)

•
(a,x)//

Example 4.3.4 (Taken from [MW09, Example 9.4]). Let S and T be the following
two trees; here, we have singled out one particular edge e in S, we have numbered
the edges of T as 1, . . . , 5, and denoted the colour (e, i) in Rj by ei.

e

•

• •

1

2 4

3 5

S T

There are fourteen shuffles R1, . . . , R14 of S and T in this case. Here is the
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complete list of them:

• •
• •• •

e1

R1

•

• •• •

e1

e4e2

R2

•
•

• •

e1

e4e2

e5

R3

•
•

••

e1

e4e2

e3

R4

•
• •

e1

e4e2

e3 e5

R5

•

• •• •

e2 e4

R6

•

•
• •

e2

e5

R7

•
•

• •

e2

e5

R8

•

•
••

R9

•

• •

R10

•
•

•
e2

e3 e5

R11

•
•

••
e3

e4

R12

•
•

•
e3 e5

e4

R13

•
• •

R14
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The poset structure on the shuffles above is:

R1

R2

R3 R6 R4

R7 R5 R9

R8 R10 R12

R11 R13

R14

Lemma 4.3.5. Every shuffle Ri of S and T is equipped with a canonical monomor-
phism

m : Ω[Ri] // // Ω[S]⊗ Ω[T ].

The dendroidal subset given by the image of this monomorphism will be denoted
by m(Ri).

Proof. The vertices of the dendroidal set Ω[Ri] are the edges of the tree Ri. The
map m is completely determined by asking it to map an edge named (a, x) in Ri
to the vertex with the same name in Ω[S]⊗ Ω[T ]. This map is a monomorphism.
Indeed, any map

Ω[R] −→ X

from a representable dendroidal set to an arbitrary one is a monomorphism as
soon as the map Ω[R]| −→ X| on vertices is. �

Corollary 4.3.6. For any two objects T and S in Ω, we have that

Ω[S]⊗ Ω[T ] =

N⋃
i=1

m(Ri), (4.3)

where the union is taken over all possible shuffles of S and T .

The Boardman–Vogt relation says that if Rk is obtained from Rl by a single
percolation step as above, then the image under m of the face of Ω[Rk] obtained by
contracting all the edges (b1, x), . . . , (bn, x) in (4.2) above coincides (as a subobject
of Ω[S] ⊗ Ω[T ]) with the image of the face of Ω[Rl] obtained by contracting the
edges (a, y1), . . . , (a, ym) in (4.1).

The following example illustrates that in the set of shuffles appearing in (4.3)
some of them can be faces of others when one of the trees has vertices of valence
zero. Thus, not all the shuffles are always needed in the union (4.3).
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Example 4.3.7. Let S and T be the following two trees and observe that the tree
S has a vertex of valence zero.

a

b d
c

•

•

1

2 3

4

S T

There are six shuffles R1, . . . , R6 of S and T . The colours (e, k) of the edges in Ri
are denoted by ek.

• •
• •

a1

d1b1
c1

b2 b3 d2 d3

b4 d4

R1

• • •
• •

a1

d1b1
c1

c3c2b2 b3 d2 d3

b4 d4

R2

•

• •

a1

a3a2

b2 d2 b3 d3

d4

c2 c3

b4

R3

• •
•

•
• •

a1

d1b1
c1

c3c2b2 b3 d2 d3

b4 c4 d4

R4

•

• • •

a1

a3a2

b2 d2 b3 d3

d4

c2 c3

b4 c4

R5

•
•

a1

a3a2

b2 d2

c2 a4

b4 d4

c4

R6

Observe that, in this case, R1 is a face of R2, which is a face of R4. Similarly,
R3 is a face of R5. Hence,

Ω[S]⊗ Ω[T ] = m(R4) ∪m(R5) ∪m(R6).
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The poset structure on the shuffles above is the following:

R1

R2

R3 R4

R5

R6



Lecture 5

A Reedy model structure on
dendroidal spaces

In this lecture, which is based on [BM08], we extend the classical notion of Reedy
category to include categories with non-trivial automorphisms, called generalized
Reedy categories. We prove that, for any cofibrantly generated model category
E and any generalized Reedy category R, the category of functors ER carries a
canonical model structure of Reedy type. Generalized Reedy categories include
Segal’s category Γ, Connes’ cyclic category Λ, and the category of trees Ω.

In particular, we describe a Reedy-like model structure on the category of
dendroidal spaces sSetsΩop

in which the weak equivalences, fibrations and cofibra-
tions can be described explicitly in terms of those in sSets.

5.1 Strict Reedy categories

In this section we recall the classical theory of Reedy categories and model struc-
tures on categories of diagrams over Reedy categories (see [Ree74], [Hir03, Ch. 15],
[Hov99, §5.2]).

Definition 5.1.1. A strict Reedy category is a small category R together with sub-
categories (on the same objects) R+ and R− and a degree function d : Ob(R) −→ N
such that:

(i) Every non-identity morphism in R+ raises degree and every non-identity
morphism in R− lowers degree.

(ii) Every morphism r
f−→ s in R factors uniquely as r

h−→ t
g−→ s, where h ∈ R−

and g ∈ R+.

Any strict Reedy category is dualizable, i.e., if R is a strict Reedy category,
so is its opposite Rop, by switching the roles of R+ and R−. However, the notion

I. Moerdijk and B. Toën, Simplicial Methods for Operads and Algebraic Geometry, Advanced Courses 55
in Mathematics - CRM Barcelona, DOI 10.1007/978-3-0348-0052-5_5, © Springer Basel AG 2010
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of a strict Reedy category is not invariant under equivalence of categories. In fact,
in a strict Reedy category every automorphism is an identity.

Example 5.1.2. The following are examples of strict Reedy categories.

(i) The simplicial category ∆. The degree function is defined by d([n]) = n; the
subcategory ∆+ consists of the monomorphisms (compositions of faces), and
the subcategory ∆− consists of the epimorphisms (compositions of degenera-
cies).

(ii) The category ∆op.

(iii) The category of natural numbers (N,≤).

(iv) The categories · ←− · −→ · and · //
// ·

(v) The category of planar trees Ωp. The degree function is given by the number
of vertices in the tree. The morphisms in Ω+

p are the ones inducing an injection
between the sets of edges, and the morphisms in Ω−p are the ones inducing a
surjection between the sets of edges.

We recall the definition of latching and matching objects in the functor cat-
egory ER. Let X : R −→ E be a functor and r an object of R. The r-th latching
object Lr(X) is defined to be

Lr(X) = lim−→
s→r

Xs

where the colimit is taken over the full subcategory of R+/r excluding the identity
morphism. Dually, the r-th matching object Mr(X) is defined to be

Mr(X) = lim←−
r→s

Xs

where the limit is taken over the full subcategory r/R− excluding the identity mor-
phism. We will assume that the category E is sufficiently complete and cocomplete
for these limits and colimits to exist.

For every X in ER and every r in R there are natural maps

Lr(X) −→ Xr −→Mr(X)

relating the latching and matching objects.

5.2 Model structures for strict Reedy categories

Let E be a cofibrantly generated model category and R a strict Reedy category.
The model structure on the functor category ER is defined in terms of the latching
and matching objects.
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Definition 5.2.1. Let f : X −→ Y be a morphism in ER.

(i) f is a Reedy weak equivalence if, for each r in R, the induced map

fr : Xr −→ Yr

is a weak equivalence in E.

(ii) f is a Reedy fibration if, for each r in R, the natural map

Xr −→Mr(X)×Mr(Y ) Yr

is a fibration in E.

(iii) f is a Reedy cofibration if, for each r in R, the natural map

Xr ∪Lr(X) Lr(Y ) −→ Yr

is a cofibration in E.

The following classical result provides the functor category ER with a model
structure. In the case of the category of cosimplicial spaces, this fact was proved
by Bousfield and Kan [BK72]. A model structure for simplicial objects in arbitrary
model categories was proved by Reedy [Ree74]. An exposition of these results with
more details can be found in [Hir03, Ch. 15] or [Hov99, §5.2].

Theorem 5.2.2. Let E be a cofibrantly generated model category and let R be a
strict Reedy category. Then the functor category ER has a (so-called Reedy) model
structure in which the weak equivalences, fibrations and cofibrations are the Reedy
weak equivalences, Reedy fibrations and Reedy cofibrations respectively, described
above. �

5.3 Generalized Reedy categories

An important fact about strict Reedy categories is that every automorphism is an
identity. In this section we introduce the notion of a generalized Reedy category
extending that of strict Reedy categories, by allowing non-trivial automorphisms.

Definition 5.3.1. A generalized Reedy category is a small category R together
with subcategories (on the same objects) R+ and R− and a degree function
d : Ob(R) −→ N such that:

(i) Every non-isomorphism in R+ raises degree; every non-isomorphism in R−
lowers degree; every isomorphism in R preserves the degree.

(ii) R+ ∩ R− = Iso(R), where Iso(R) denotes the set of isomorphisms in R.

(iii) Every morphism f in R factors as f = g ◦ h with g ∈ R+ and h ∈ R−, and
this factorization is unique up to isomorphism.
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(iv) If θ ◦ f = f and θ is an isomorphism in R and f ∈ R−, then θ is an identity.

We say that R is dualizable if, moreover, the following condition holds:

(iv)’ If f ◦ θ = f and θ is an isomorphism in R and f ∈ R+, then θ is an identity.

Remark 5.3.2. The notion of generalized Reedy category is invariant under equiv-
alence of categories, i.e., if R −→ R′ is an equivalence of categories and R is a
generalized Reedy category, so is R′. Note that a generalized Reedy category R is
dualizable if and only if the opposite category Rop is a generalized Reedy category.

Example 5.3.3. The following are examples of dualizable generalized Reedy cate-
gories:

(i) Any strict Reedy category is a generalized Reedy category. A generalized
Reedy category is equivalent to a strict one if and only if it has no non-trivial
automorphisms, and is itself strict if and only if it is moreover skeletal.

(ii) The cyclic category Λ.

(iii) Segal’s category Γ is a generalized Reedy category. In fact, Γop is equivalent
to the category Fin∗ of finite pointed sets, and one can take Fin+

∗ to consist
of monomorphisms and Fin−∗ of epimorphisms, while the degree function is
given by cardinality.

(iv) The category of finite sets Fin.

(v) The category of trees Ω. The degree function is given by the number of
vertices in the tree. The morphisms in Ω+ are the ones inducing an injection
between the sets of edges, and the morphisms in Ω− are the ones inducing a
surjection between the sets of edges.

For a generalized Reedy category, the definition of latching and matching
objects still makes sense. These notions generalize the notions of latching and
matching objects in the case of strict Reedy categories.

Let R be a generalized Reedy category and r any object of R. We denote by
R+(r) the full subcategory of R+/r excluding the invertible morphisms of R+ with
codomain r. Similarly, we denote by R−(r) the full subcategory of r/R− excluding
the invertible morphisms of R− with domain r.

Definition 5.3.4. Let R be a generalized Reedy category. Let r be an object of R
and X and object of ER.

(i) The r-th latching object Lr(X) is defined to be

Lr(X) = lim−→
s→r

Xs

where the colimit is taken over the category R+(r).
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(ii) The r-th matching object Mr(X) is defined to be

Mr(X) = lim←−
r→s

Xs

where the limit is taken over the category R−(r).

We will assume that the category E is sufficiently complete and cocomplete for
these limits and colimits to exist.

Note that, for every r ∈ R, we have that Aut(r) = IsoR(r, r) acts both on
Lr(X) and Mr(X) and that there are natural Aut(r)-equivariant morphisms

Lr(X) −→ Xr −→Mr(X).

It is possible to give a more global definition of latching and matching objects
by using groupoids of objects of fixed degree. For each natural number n, the
full subgroupoid of Iso(R) spanned by the objects of degree n will be denoted
by Gn(R). We denote by R+((n)) the category with objects the non-invertible
morphisms u : s −→ r in R+ such that d(r) = n, and with morphisms from u to
u′ the commutative squares

s
f
//

u

��

s′

u′

��

r
∼
g
// r′

such that f ∈ R+ and g ∈ Gn(R). The subcategory R+(n) of R+((n)) contains all
the morphisms for which g is an identity. Observe that

R+(n) =
∐

d(r)=n

R+(r),

where R+(r) is the category used in Definition 5.3.4. There is a diagram of cate-
gories

R R+((n))
dnoo

cn // Gn(R)
jn // R

where dn is the domain functor, cn is the codomain functor and jn is the inclusion.
Dually, we denote by R−((n)) the category with objects the non-invertible

morphisms u : r −→ s in R− such that d(r) = n, and with morphisms from u to
u′ the commutative squares

r
g

∼
//

u

��

r′

u′

��

s
f
// s′
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such that f ∈ R− and g ∈ Gn(R). The subcategory R−(n) of R−((n)) contains all
the morphisms for which g is an identity. Observe that

R−(n) =
∐

d(r)=n

R−(r).

There is a diagram of categories

R R−((n))
γnoo

δn // Gn(R)
jn // R

where γn is the codomain functor, δn is the domain functor and jn is the inclusion.
The definition of a latching object Ln(X) and a matching object Mn(X) in

EGn(R) for an object X of ER is now the following:

Ln(X) = (cn)!d
∗
n(X) and Mn(X) = (δn)∗γ

∗
n(X).

Here we have used the following notation: for a functor f : A −→ B between small
categories, we denote by f∗ : EB −→ EA the evident functor given by reindexing
the diagrams, while f!, f∗ : EA −→ EB are its left and right adjoints.

We write Xn = j∗n(X), so that in each degree n we have a latching map and
a matching map

Ln(X) −→ Xn −→Mn(X).

Observe that
Ln(X)r = lim−→

s→r
Xs and Mn(X)r = lim←−

r→s
Xs

where the colimit is taken over the category R+(r) and the limit is taken over the
category R−(r). Thus, we will simplify the notation and write Lr(X) for Ln(X)r
and Mr(X) for Mn(X)r.

5.4 Model structures for generalized Reedy categories

Recall that if E is a cofibrantly generated model category and G is a finite group,
then there is a model structure in the category EG of objects of E with a right
G-action, in which weak equivalences and fibrations are defined pointwise, i.e., by
forgetting the G-action.

Let E be a cofibrantly generated model category and R a generalized Reedy
category. The model structure on the functor category ER is defined in terms of
latching and matching objects and the model structure of the category EAut(r) for
every r in R.

Definition 5.4.1. Let f : X −→ Y be a morphism in ER.

(i) f is a Reedy weak equivalence if, for each r in R, the induced map

fr : Xr −→ Yr

is a weak equivalence in EAut(r) (i.e., a weak equivalence in E).
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(ii) f is a Reedy fibration if, for each r in R, the natural map

Xr −→Mr(X)×Mr(Y ) Yr

is a fibration in EAut(r) (i.e., a fibration in E).

(iii) f is a Reedy cofibration if, for each r in R, the natural map

Xr ∪Lr(X) Lr(Y ) −→ Yr

is a cofibration in EAut(r).

A Reedy fibration that is also a Reedy weak equivalence is called a Reedy trivial
fibration. A Reedy cofibration that is also a Reedy weak equivalence is called a
Reedy trivial cofibration.

We can reformulate the definition of the classes of maps in Definition 5.4.1
by using the latching and matching objects defined previously.

Lemma 5.4.2. Let E be a cofibrantly generated model category, R a generalized
Reedy category, and f : X −→ Y a morphism in ER.

(i) f is a Reedy weak equivalence if and only if, for each natural number n, the
morphism Xn −→ Yn is a weak equivalence in EGn(R).

(ii) f is a Reedy fibration if and only if, for each natural number n, the morphism
Xn −→Mn(X)×Mn(Y ) Yn is a fibration in EGn(R).

(iii) f is a Reedy cofibration if and only if, for each natural number n, the mor-
phism Xn ∪Ln(X) Ln(Y ) −→ Yn is a cofibration in EGn(R).

Proof. There is an equivalence of categories EGn(R) ∼−→
∏
r E

Aut(r) where r runs
through a set of representatives for the connected components of the groupoid
Gn(R). �

To prove the main theorem of this section we will need some technical lem-
mas on Reedy fibrations and cofibrations. We omit the proofs, that can be found
in [BM08, §5].

Lemma 5.4.3. Let f : A −→ B be a Reedy cofibration such that fr : Ar −→ Br is
a weak equivalence for all objects r of R of degree < n. Then the induced map
Ln(f) : Ln(A) −→ Ln(B) is a pointwise trivial cofibration (i.e., Ln(f)r is a trivial
cofibration in E for each object r of R). If f is a Reedy trivial cofibration, then it
has the left lifting property with respect to Reedy fibrations. �

Lemma 5.4.4. Let f : A −→ B be a Reedy fibration such that fr : Ar −→ Br
is a weak equivalence for all objects r of R of degree < n. Then the induced map
Mn(f) : Mn(A) −→Mn(B) is a pointwise trivial fibration (i.e., Mn(f)r is a trivial
fibration in E for each object r of R). If f is a Reedy trivial fibration, then it has
the right lifting property with respect to Reedy cofibrations. �
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The following theorem provides a model structure for the functor category
ER when R is a generalized Reedy category.

Theorem 5.4.5. Let R be a generalized Reedy category and E a cofibrantly generated
model category. Then the functor category ER with the Reedy weak equivalences,
Reedy fibrations and Reedy cofibrations is a model category.

Proof. The category ER is complete and cocomplete. Limits and colimits in ER are
constructed pointwise. The class of Reedy weak equivalences has the ‘two out of
three’ property. Moreover, all three classes are closed under retracts. The lifting
axiom is proved in Lemma 5.4.3 and Lemma 5.4.4.

It only remains to prove the factorization axiom. Given a map f : X −→ Y
in ER, we are going to construct inductively a factorization X −→ A −→ Y of f
into a trivial Reedy cofibration followed by a Reedy fibration.

For n = 0, factor f0 in EG0(R) as X0 −→ A0 −→ Y0 into a trivial cofibration
followed by a fibration. Next, if X≤n−1 −→ A≤n−1 −→ Y≤n−1 is a factorization
of f≤n−1 into a trivial Reedy cofibration followed by a Reedy fibration in ER≤n−1 ,
where R≤n−1 is the full subcategory of R of objects of degree ≤ n− 1, we obtain
the following commutative diagram in EGn(R):

Ln(X) //

��

Ln(A) // Ln(Y )

��

Xn

��

Yn

��

Mn(X) // Mn(A) // Mn(Y ).

In this diagram, Ln(A) denotes the object defined by the usual formula

Ln(A) = lim−→
s→r

As,

which makes sense although, up to now, A has only been defined on R≤n−1.
Similarly for Mn(A). There is a again a canonical map Ln(A) −→ Mn(A) fitting
in the diagram above. Together with the given map Xn −→ Yn, this induces a map
Xn ∪Ln(X) Ln(A) −→ Mn(A) ×Mn(Y ) Yn which we factor as a trivial cofibration

followed by a fibration in EGn(R):

Xn ∪Ln(X) Ln(A) //
∼ // An // // Mn(A)×Mn(Y ) Yn.

The object An of EGn(R) together with the maps Ln(A) −→ An −→Mn(A) define
an extension of A≤n−1 to an object A≤n in EGn(R) together with a factorization
of f≤n : X≤n −→ Y≤n into a Reedy cofibration X≤n −→ A≤n followed by a Reedy
fibration A≤n −→ Y≤n. The former map is a trivial Reedy cofibration, because
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the map Xn −→ An decomposes into two maps Xn −→ Xn∪Ln(X)Ln(A) −→ An,
the first one of which is a weak equivalence by Lemma 5.4.3, and the second one
by construction. This defines the required factorization of f≤n in ER≤n .

The factorization of f into a Reedy cofibration followed by a trivial Reedy
fibration is constructed dually, using Lemma 5.4.4 instead of Lemma 5.4.3. �

5.5 Dendroidal objects and simplicial objects

The categories ∆op, Ωop
p and Ωop are generalized Reedy categories, as we have

seen in Example 5.3.3. We will write sE = E∆op

for the category of simplicial
objects in E, pdE = EΩop

p for the category of planar dendroidal objects in E, and
dE = EΩop

for the category of dendroidal objects in E. If E is a cofibrantly generated
model category, then there is a model structure in sE, pdE and dE described in
Theorem 5.4.5. The inclusion functors

∆
u //

i
  

Ωp

v

��

Ω

induce the corresponding diagrams of adjoint functors

sE

i!

  

u! //
pdE

u∗
oo

v!

��

dE

i∗

``

v∗

OO
sE

i∗

  

u∗ //
pdE

u∗
oo

v∗

��

dE

i∗

``

v∗

OO

where u!, v! and i! are left adjoints to u∗, v∗ and i∗, and u∗, v∗ and i∗ are right
adjoints to u∗, v∗ and i∗ respectively.

We will show that these functors are Quillen pairs between the Reedy model
structures of simplicial objects in E and dendroidal objects in E.

Lemma 5.5.1. The functor i∗ : dE −→ sE preserves Reedy weak equivalences.

Proof. Let f : X −→ Y be a Reedy weak equivalence in dE. This means that
fT : XT −→ YT is a weak equivalence in EAut(T ) for every tree T in Ω. In particular,
it is a weak equivalence when T = [n], the linear tree with n vertices for every n.
Therefore i∗(f)[n] : X[n] −→ Y[n] is a weak equivalence for every n and hence i∗(f)
is a weak equivalence in sE. �

In order to prove that i∗ preserves fibrations, we need to establish the relation
between matching objects in dE and matching objects in sE.
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Lemma 5.5.2. M[n](i
∗(X)) = Mi([n])(X) for every X in dE and every n.

Proof. We know that Mi([n])X = lim←−
T→i([n])

XT . Since the maps T −→ i([n]) used to

define the limit are in Ω+ (i.e., are compositions of face maps), this implies that
T = i([m]) for some m < n. It follows that

Mi([n])X = lim←−
i([m])→i([n])

Xi([m]) = lim←−
[m]→[n]

X(i([m])) = M[n](i
∗(X))

for every n. �

Proposition 5.5.3. The pair of adjoint functors (i!, i
∗) is a Quillen pair.

Proof. The functor i∗ preserves Reedy fibrations by Lemma 5.5.2 and trivial Reedy
fibrations. Hence, its left adjoint i! preserves Reedy cofibrations and trivial Reedy
cofibrations. �

The functor i∗ preserves not only fibrations but also cofibrations:

Lemma 5.5.4. L[n](i
∗X) = Li([n])X for every X in dE and every n.

Proof. We know that Li([n])X = lim−→
i([n])→T

XT . Since i([n]) is a linear tree and the maps

i([n]) −→ T are compositions of degeneracies, it implies that T has to be a linear
tree T = i([m]) for some m < n. It follows that

Li([n])X = lim−→
[n]→[m]

i∗X = L[n]i
∗X

for every n. �

Proposition 5.5.5. The pair of adjoint functors (i∗, i∗) is a Quillen pair.

Proof. The functor i∗ preserves Reedy cofibrations by Lemma 5.5.4 and trivial
Reedy cofibrations. Hence, its right adjoint i∗ preserves Reedy fibrations and triv-
ial Reedy fibrations. �

A similar argument for the inclusion u : ∆ −→ Ωp gives the following propo-
sition.

Proposition 5.5.6. The pairs of adjoint functors (u!, u
∗) and (u∗, u∗) are Quillen

pairs. �

If we consider the inclusion v : Ωp −→ Ω, one can use the fact that any
map in Ω+ and Ω− factors as an isomorphism followed by a planar map to prove
analogues to Lemma 5.5.2 and Lemma 5.5.4:

Lemma 5.5.7. MT (v∗X) = Mv(T )X and LT (v∗X) = Lv(T )X for every X in dE
and every T in Ω. �
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Corollary 5.5.8. The pairs of adjoint functors (v!, v
∗) and (v∗, v∗) are Quillen

pairs.

Proof. The functor v∗ preserves Reedy weak equivalences, since they are defined
levelwise. By Lemma 5.5.7, it preserves Reedy fibrations, trivial Reedy fibrations,
Reedy cofibrations and trivial Reedy cofibrations. Hence, its left adjoint v! pre-
serves Reedy cofibrations and trivial Reedy cofibrations, and its right adjoint i∗
preserves Reedy fibrations and trivial Reedy fibrations. �

5.6 Dendroidal Segal objects

In this section we introduce the notion of a (complete) dendroidal Segal object
and prove that there is a model structure on the category of dendroidal spaces
whose fibrant objects are the (complete) dendroidal Segal spaces. We will see later
that the model structure of complete dendroidal Segal spaces is Quillen equivalent
to the model structure for dendroidal sets given in Lecture 8. A more detailed
discussion of the subject of this section can be found in [CM09b].

Let T be any object of Ω with at least one vertex. The Segal core of Ω[T ] is
the subobject

Sc[T ] // // Ω[T ]

given by all the corollas in T ; more precisely, Sc[T ] is the union of all the images
of morphisms Ω[R] // // Ω[T ] where R is a corolla and R // // T is completely
determined by the vertex of T in its image. If we denote by Cn the n-th corolla

•

1 2 3 n

then we can write
Sc[T ] =

⋃
v

Ω[Cn(v)],

where the union is over all the vertices v in T , and n(v) is the number of input
edges at v. It will be convenient to define Sc[T ] = Ω[T ] if T is the tree with no
vertices; i.e., Ω[T ] = U .

In the following definition, J denotes the dendroidal object obtained from
the category J = (0

∼←→ 1) by including it into dendroidal sets and then applying
the functor dSets −→ dE induced by the strong monoidal functor Sets −→ E, as in
Example 1.3.6. Similarly, Ω[T ] and Sc[T ] are viewed as objects of EΩop

in (5.1). The
category EΩop

is closed monoidal (see Remark 4.2.6) with internal hom denoted
by Hom(−,−), while hom(−,−) is the E-valued hom defined by hom(X,Y ) =
Hom(X,Y )T for T = η.
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Definition 5.6.1. Let E be a cofibrantly generated monoidal model category and
X a dendroidal object in E. Then X is said to satisfy the Segal condition if, for
any tree T , the map

hom(Ω[T ], X) −→ hom(Sc[T ], X) (5.1)

is a weak equivalence in E. If moreover the map

Hom(J,X) −→ Hom({0}, X) = X (5.2)

is a weak equivalence in EΩop

, then X is said to satisfy the complete Segal condition.

A Reedy fibrant dendroidal object satisfying the Segal condition will be called
a dendroidal Segal object. A Reedy fibrant dendroidal object satisfying the com-
plete Segal condition will be called a complete dendroidal Segal object.

Remark 5.6.2. If E is the category of simplicial sets and X is a Reedy fibrant
dendroidal space, then the map (5.1) is a Kan fibration of simplicial sets. So a
Reedy fibrant dendroidal set is a dendroidal Segal space if and only if the map
(5.1) is a trivial fibration of simplicial sets, for any tree T . Thus, the following are
equivalent for a Reedy fibrant X (recall that an object X is said to have the right
lifting property with respect to a map A −→ B if the map X −→ 1 does):

(i) X is a dendroidal Segal space.

(ii) X has the right lifting property with respect to

∂∆[n]⊗ Ω[T ] ∪∆[n]⊗ Sc[T ] // // ∆[n]⊗ Ω[T ]

for any n ≥ 0 and any tree T with at least one vertex.

(iii) X has the right lifting property with respect to

A⊗ Ω[T ] ∪B ⊗ Sc[T ] // // B ⊗ Ω[T ]

for any monomorphism A // // B of simplicial sets and any tree T with at
least one vertex.

One can obtain a similar characterization for complete dendroidal Segal spaces
by adding the map (5.2) to the maps Sc[T ] // // Ω[T ] in the right lifting property
conditions.

Theorem 5.6.3. There is a model structure on the category of dendroidal spaces,
called the (complete) Segal model structure, in which the fibrant objects are precise-
ly the (complete) Segal dendroidal spaces.

Proof. The Segal model structure is obtained by a left Bousfield localization of
the Reedy model structure on sSetsΩop

with respect to the map∐
T

(Sc[T ] // // Ω[T ]),
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where T runs over all the trees with at least one vertex. The complete Segal model
structure is obtained from the previous one by localizing further with respect to
the map {0} −→ J . �

The ‘complete’ model structure of Theorem 5.6.3 is closely related to the
model structure on dendroidal sets to be discussed in Lecture 8. In fact, one has
the following theorem, for the proof of which we refer to [CM09b]:

Theorem 5.6.4. The category of dendroidal spaces with the complete Segal model
structure is Quillen equivalent to the category of dendroidal sets. �



Lecture 6

Boardman–Vogt resolution and
homotopy coherent nerve

In this lecture, we describe a generalization of the W -construction of Boardman
and Vogt for coloured operads in any monoidal category with a suitable notion
of interval. This generalized W -construction is then used to define the homotopy

nerve will play a fundamental role in the definition of homotopy P -algebras and
weak higher categories.

6.1 The classical W -construction

In this section we recall the Boardman–Vogt resolution of operads in the category
of topological spaces (see [BV73, Ch. III]).

Let Top denote the category of compactly generated topological spaces. The
W -construction is a functor

W : OperC(Top) −→ OperC(Top),

where OperC(Top) denotes the category of C-coloured operads in Top, together
with a natural transformation γ : W −→ id (i.e., W is an augmented endofunctor
in OperC(Top)). To each topological coloured operad P there is an associated
topological coloured operad W (P ) and a natural map γP : W (P ) −→ P .

If we think of the maps of coloured operads P −→ Top (considering Top as
a coloured operad with the cartesian product) as describing P -algebras in Top,
then the maps W (P ) −→ Top will describe homotopy P -algebras in Top. The
augmentation induces a map

OperC(Top)(P,Top)
γ∗P−→ OperC(Top)(W (P ),Top)
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which views any P -algebra as a homotopy P -algebra.

In the case of non-symmetric operads, the functor W can be explicitly de-
scribed as follows. Let P be a non-symmetric C-coloured operad in Top and let
H = [0, 1] be the unit interval. The colours of W (P ) are the same as those of P and
the space of operations W (P )(c1, . . . , cn; c) is a quotient of a space of labelled pla-
nar trees. We consider, for c1, . . . , cn, c in C, the topological space A(c1, . . . , cn; c)
of planar trees whose edges are labelled by elements of C and, in particular, for
every such tree the input edges are labelled by the given c1, . . . , cn and the out-
put edge is labelled by c. We assign to each of the inner edges of these trees a
length t ∈ H. Each vertex with input edges labelled by b1, . . . , bm ∈ C (in the
planar order) and output edge labelled by b ∈ C is labelled by an element of
P (b1, . . . , bm; b).

Example 6.1.1. The following tree is an element of A(c, c, d; e):

•

•

q

b t d

p

c c

e

3

where p ∈ P (c, c; b), q ∈ P (b, d; e), and t ∈ [0, 1].

There is a canonical topology in A(c1, . . . , cn; c) induced by the topology of
P and the standard topology of the unit interval. The space W (P )(c1, . . . , cn; c)
is the quotient space of A(c1, . . . , cn; c) obtained by the following two relations:

(i) If a tree has a unary vertex v labelled by an identity, then we identify such
tree with the tree obtained by removing this vertex and identifying the input
edge x of v with its output edge y. The length assigned to the new edge is
the maximum of the lengths of the edges x and y, or it has no length if the
new edge is outer.

•

•

•

s

1c

t

•

•
max(s,t)

∼

(ii) If there is a tree with an internal edge e with zero length, then we identify it
with the tree obtained by contracting the edge e, using the corresponding ◦i
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operation of the coloured operad P .

•

•

q

p

0e

•p◦iq
∼

The collection W (P )(c1, . . . , cn; c) for c1, . . . , cn, c ∈ C forms a C-coloured
operad. The unit for each colour c is the tree | coloured by c. Composition is given
by grafting, assigning length 1 to the newly arisen internal edges.

Remark 6.1.2. There is a W -construction for symmetric operads defined in a
similar way (see [BM07, §3]). The forgetful functor from symmetric operads to
non-symmetric operads has a left adjoint which identifies the category of non-
symmetric operads with a full coreflective subcategory of the category of symmet-
ric operads. If

Σ : Oper 6Σ(Top)
//

oo Oper(Top) : U

is the free-forgetful adjunction relating non-symmetric operads and symmetric
operads, then W (ΣP ) = Σ(WP ).

Example 6.1.3. Let P be the non-symmetric coloured operad with only one colour

and P (c, (n). . . , c; c) = P (n) consisting of a single n-ary operation for n ≥ 1 and
P ( ; c) = P (0) = ∅.

The operad W (P ) will again have only one colour. Since every unary vertex
in a labelled tree in W (P )(n) can only be labelled by the identity, it is enough
(by relation (i) in the definition of W (P )) to consider only those trees in W (P )(n)
without unary vertices. We call these trees regular trees. Thus, if n = 1, 2, then
W (P )(n) is a one-point space. For the case n = 3, we need to consider all possible
regular trees with three inputs. There are three such trees:

•

•

• •

•

The tree in the middle contributes one point to the space W (P )(3) while each
other tree contributes a copy of the interval [0, 1] (both have only one inner edge).
There is one identification to be made when the length of the inner edge is zero,
in which case the corresponding tree is identified with the tree in the middle. The
space W (P )(3) is then the disjoint union of two copies of [0, 1] where we identify
the ends named 0 to a single point. What we get is that W (P )(3) = [−1, 1].
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It is convenient to keep track of the trees corresponding to each point in the
interval [−1, 1]. The point 0 corresponds to the middle tree in the picture, while a
point t ∈ (0, 1] (resp. t ∈ [−1, 0)) corresponds to the tree on the right (resp. left)
where the length of the inner edge is t.

The case n = 4 is a bit more involved. There are eleven regular trees with
four inputs, five of them with one internal edge and five of them with two internal
edges. Here is the complete list of them:

•
•

•

S1

•
•
•

S2

•
• •

S3

•
•

•

S4

•
•
•

S5

•
•

T1

•
•

T2

•
•

T3

•
•

T4

•
•

T5

•
R

Each of the trees Si contributes a copy of the square [0, 1]× [0, 1] and each of
the trees Ti contributes a copy of the interval [0, 1]. There are several identifications
when the lengths of the internal edges are zero. The space W (P )(4) consists of
five copies of [0, 1]× [0, 1] glued together by means of these identifications. Thus,
W (P )(4) is a pentagon, that we can picture as follows:

S5 S4

S2

S1

S3

T5

T3T4

T2 T1

R
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Each point in the pentagon corresponds to an element ofW (P )(4). The center
corresponds to the tree R, the vertices correspond to the trees Si, and the middle
points of the edges correspond to the trees Ti when the length of the internal edge
is 1. Moving from the boundary towards the center shrinks the length of the inner
edges of the trees from 1 to 0.

One can compute in this way W (P )(n) for every n. In fact, W (P )(n) is a
subdivision of the n-th Stasheff polytope for every n.

Example 6.1.4. Let Top be the category of compactly generated topological spaces
with the interval given by the unit interval [0, 1]. Let C be a small category con-
sidered as a discrete topological category, i.e., C(A,B) is viewed as a discrete
topological space for every A and B in C. Thus, we can view C as a coloured
operad in Top, where the colours are the objects of C and where all operations are
unary.

Then W (C) will be again a topological operad with only unary operations,
i.e., a topological category. The objects (colours) of W (C) are the same as those
of C. The morphisms W (C)(A,B) are represented by sequences of morphisms in C

A = C0
f1 //

t1
C1

f2 // · · ·
fn−1
//
tn−1

Cn−1
fn // Cn = B

with ‘waiting times’ ti ∈ [0, 1] for 1 ≤ i ≤ n − 1. If ti = 0, such a sequence is
identified with

A = C0
f1 //

t1
C1

f2 // · · · −→
ti−1

Ci−1

fi+1fi
//
ti+1

Ci+1 −→ · · ·
fn−1

//
tn−1

Cn−1
fn // Cn = B.

If fi = id, then the sequence is identified with

A = C0
f1 //

t1
C1

f2 // · · · −→
s

Ci−1

fi+1
//
ti+1

Ci+1 −→ · · ·
fn−1

//
tn−1

Cn−1
fn // Cn = B,

where s = max(ti−1, ti).
We will study this example in the following particular case. Let C = [n] be

the linear tree viewed as a discrete topological category. An [n]-algebra in Top
consists of a sequence of spaces X0, . . . , Xn and maps fji : Xi −→ Xj for i ≤ j
such that fii = id and

fkj ◦ fji = fki (6.1)

if i ≤ j ≤ k.
The topological category W ([n]) has objects 0, 1, . . . , n, and a morphism

i −→ j in W ([n]) is a sequence of ‘times’ ti+1, . . . , tj−1 where tk ∈ [0, 1]. In
other words, W ([n])(i, j) is the cube [0, 1]j−i−1 if i + 1 ≤ j; a point if i = j; and
the empty set if i > j. Composition on W ([n]) is given by juxtaposing two such
sequences putting an extra time 1 in the middle, i.e.,

(ti+1, . . . , tj−1) : i −→ j and (tj+1, . . . , tk−1) : j −→ k
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compose into
(ti+1, . . . , tj−1, 1, tj+1, . . . , tk−1) : i −→ k.

A W ([n])-algebra is then a sequence of spaces X0, . . . , Xn and maps fji as before,
but for which condition (6.1) holds only up to specified coherent higher homotopies.

Remark 6.1.5. For any non-symmetric C-coloured operad P in Top, consider all
planar trees T with input edges c1, . . . , cn and output edge c, such that each vertex
of T with input edges b1, . . . , bm and output edge b is labelled by an element of
P (b1, . . . , bm; b). Then

A(c1, . . . , cn; c) ∼=
∐
T

HT ,

where the coproduct is taken over all such trees T andHT = H×k, whereH = [0, 1]
and k is the number of inner edges of T .

The remaining identifications to construct W (P )(c1, . . . , cn; c) are completely
determined by the combinatorics of the trees T . This observation is the key to
generalizing the W -construction to coloured operads in other monoidal categories.

6.2 The generalized W -construction

In this section, we generalize the W -construction to coloured operads in monoidal
categories. For this, one needs a suitable replacement of the unit interval [0, 1]
used above to give lengths to the inner edges of the trees.

Definition 6.2.1. Let E be a monoidal category with tensor product ⊗ and unit I.
An interval in E is an object H equipped with two ‘points’, i.e., maps 0, 1: I ⇒ H,
an augmentation ε : H −→ I satisfying ε ◦ 0 = id = ε ◦ 1, and a binary operation
(playing the role of the maximum)

∨ : H ⊗H −→ H

which is associative, and for which 0 is unital and 1 is absorbing, i.e.,

0 ∨ x = x = x ∨ 0 and 1 ∨ x = 1 = x ∨ 1

for any x : I −→ H.

Example 6.2.2. The unit interval [0, 1] is an interval in Top. One can choose as ∨
the maximum operation or the ‘reversed’ multiplication, i.e., s∨ t is defined by the
identity (1− s ∨ t) = (1− s)(1− t).

The groupoid J = (0
∼←→ 1) is an interval in Cat . Another possible interval

for Cat is the two-object category I = (0 −→ 1).

For any interval H and any coloured operad P in E, there is a new coloured
operad WH(P ) (on the same colours as P ) together with a natural map of op-
erads WH(P ) −→ P . The operad WH(P ) is constructed as W (P ) in the case of
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topological spaces, now glueing objects of the form H⊗k instead of cubes [0, 1]k

(see Remark 6.1.5). The functor WH is called the W -construction in E associ-
ated to the interval H. As was pointed out in the case of topological operads, the
W -construction can be defined in a similar way for symmetric coloured operads
in E (cf. Remark 6.1.2). We refer the reader to [BM06] and [BM07] for more details
on the generalized W -construction.

Example 6.2.3. Let Cat be the category of (small) categories with the groupoid in-
terval J = (0

∼←→ 1). Let I denote the unit for the cartesian product of categories,
i.e., I is the category with one object and one (identity) morphism. Consider a non-
symmetric operad P in Cat with P (n) = I corresponding to one n-ary operation
for every n ≥ 1, and P (0) = ∅.

The operad WJ(P ) is a one-colour operad and, as in Example 6.1.3, the
term WJ(P )(n) is described by using regular trees (i.e., trees with no unary ver-
tices) with n leaves. If n = 1, 2, then WJ(P )(n) is the one-object category I. For
n = 3, there are three regular trees, two with one inner edge (each contribut-
ing a copy of J) and one without inner edges (contributing a copy of I). In the
W -construction, we identify the object named 0 in every copy of J with the unique
object of I. Hence, WJ(P )(3) is a category with three objects and a unique iso-
morphism between any two objects. We can picture it as

1
∼←→ 0

∼←→ 1.

Similarly, in the case n = 4, there are eleven regular trees with four inputs (see
Example 6.1.3), five of them with two internal edges and five of them with one
internal edge. Each of the trees with two internal edges contributes a copy of
J × J to WJ(P )(4). Using the identifications given by the W -construction, one
can show that WJ(P )(4) consists of a category with eleven objects and a unique
isomorphism between any two objects, and we can picture it as

•

•

•

•

•

•

•

• •

••

''

∼
gg

$$

∼dd
��

∼ ??

��

∼ ??
oo ∼ // oo ∼ //

__ ∼
��

__ ∼
��

::∼
zz

77
∼

ww

77
∼

ww

))

∼
ii

��

∼

OO

uu

∼
55

gg
∼
''

6.3 The homotopy coherent nerve

In this section, we use the generalized W -construction to define, for every coloured
operad P in a symmetric monoidal category, a dendroidal set hcNd(P ) called the
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homotopy coherent nerve of P . This dendroidal set is similar to the one obtained
via the dendroidal nerve construction, but with homotopies built into it.

Let E be a symmetric monoidal category with an interval H. For each tree
T in Ω we can consider the operad Ω(T ) as a discrete operad in E. This is done
by applying to the operad Ω(T ) in Sets the strong monoidal functor Sets −→ E

sending any set X to
∐
x∈X I, where I is the unit of E. Then we have a functor

Ω −→ Oper(E)

that assigns to each tree T the operad WH(Ω(T )). By Kan extension, this functor
induces a pair of adjoint functors

hcτd : dSets
//

oo Oper(E) : hcNd. (6.2)

Definition 6.3.1. The functor hcNd : Oper(E) −→ dSets is called the homotopy
coherent nerve functor.

More explicitly, for every tree T in Ω and any coloured operad P in E, the
homotopy coherent nerve is given by

hcNd(P )T = Oper(WH(Ω(T )), P ).

To have a better understanding of the functor hcNd it will be useful to have
a description of the operad WH(Ω(T )). We do it in the case E = Top, although a
similar description applies to any monoidal category E with an interval.

Example 6.3.2. Let E = Top be the category of compactly generated topological
spaces with the interval H = [0, 1]. Let T be any tree in Ω. The colours of the
operad W (Ω(T )) are the same as those of Ω(T ), i.e., the edges of T . If σ =
(e1, . . . , en, e) are edges of T such that there is a subtree Tσ of T with e1, . . . , en
as input edges and e as output edge, then

W (Ω(T ))(e1, . . . , en; e) = H#inn(Tσ)

where inn(Tσ) is the set of inner edges of Tσ. In fact, W (Ω(T ))(e1, . . . , en; e) is
a #inn(Tσ)-dimensional cube representing the space of assignments of lengths
ti ∈ [0, 1] to the internal edges of Tσ. It is the one-point space if inn(Tσ) is the
empty set.

If there is no subtree in T with e1, . . . , en as input edges and e as output
edge, then

W (Ω(T ))(e1, . . . , en; e) = ∅.
The composition operations in W (Ω(T )) are given in terms of the ◦i operations
as follows. If σ = (e1, . . . , en; e) and σ′ = (d1, . . . , dm; ei) represent two subtrees
of T , then the composition map

W (Ω(T ))(e1, . . . , en; e)×W (Ω(T ))(d1, . . . , dm; ei)

◦i
��

W (Ω(T ))(e1, . . . , ei−1, d1, . . . , dm, ei+1, . . . , en; e)
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is defined by grafting the trees Tσ and Tσ′ along the edge ei to form another
subtree Tσ◦iσ′ . This new tree Tσ◦iσ′ has as internal edges the ones of Tσ and the
ones of Tσ′ plus a new one ei which is assigned length 1.

The left adjoint hcτd is closely related to the W -construction. Let P be a
coloured operad in Sets and let PE be the corresponding operad in E obtained via
the functor Sets −→ E. Then we have the following proposition:

Proposition 6.3.3. Let E be a symmetric monoidal category with an interval H
and let P be any coloured operad in Sets. Then there is a natural isomorphism of
operads

hcτd(Nd(P )) ∼= WH(PE).

Proof. The dendroidal set Nd(P ) is a colimit of representables Ω[T ] over all mor-
phisms Ω[T ] −→ Nd(P ). Since, by adjunction,

dSets(Ω[T ], Nd(P )) ∼= Oper(τd(Ω[T ]), P ) ∼= Oper(Ω(T ), P ),

it follows that
Nd(P ) = lim−→

Ω(T )→P
Ω[T ].

Using the fact that hcτd preserves colimits and that hcτd(Ω[T ]) ∼= WH(Ω(T )), we
have that

hcτd(Nd(P )) = lim−→
Ω(T )→P

WH(Ω(T )).

The required isomorphism follows now by direct inspection of the explicit con-
struction of WH(PE) given in [BM06]. �

An immediate consequence of this result is that there is a natural bijection

dSets(Nd(P ), hcNd(Q)) ∼= Oper(WH(PE), Q).

More generally, we have the following theorem:

Theorem 6.3.4. Let E be a symmetric monoidal category with an interval H. Then
there is a natural isomorphism

HomdSets(Nd(P ), hcNd(Q))T ∼= Oper(WH(PE ⊗BV Ω(T )), Q)

for every tree T in Ω and coloured operads P and Q in sets.

Proof. By the definition of the internal hom in dendroidal sets, we have that

HomdSets(Nd(P ), hcNd(Q))T = dSets(Nd(P )⊗ Ω[T ], hcNd(Q)).

The required natural isomorphism follows now from the adjunction (6.2) and
Proposition 6.3.3, using the fact that

Nd(P )⊗ Ω[T ] ∼= Nd(P ⊗BV Ω(T ))

for every operad P and every tree T in Ω. �



Lecture 7

Inner Kan complexes and
normal dendroidal sets

7.1 Inner Kan complexes

In this section, we introduce the notion of inner Kan complexes in the category of
dendroidal sets. We begin by recalling the definition of an inner Kan complex in

k

horn if 0 < k < n.

Definition 7.1.1. A simplicial set X satisfies the restricted Kan condition if every
inner horn f : Λk[n] −→ X has a filler, i.e., there exists a map g : ∆[n] −→ X such
that f = g ◦ j, where j : Λk[n] // // ∆[n] denotes the inclusion

Λk[n]
f
//

��

j

��

X,

∆[n]

g

==
(7.1)

or, equivalently, if the induced map

j∗ : sSets(∆[n], X) −→ sSets(Λk[n], X) (7.2)

is surjective for every 0 < k < n.

A simplicial set satisfying the restricted Kan condition is called an inner
Kan simplicial set (a quasi-category in Joyal’s terminology). If the filler of (7.1)
is unique or, equivalently, if the map (7.2) is a bijection, then X is called a strict
inner Kan simplicial set.

I. Moerdijk and B. Toën, Simplicial Methods for Operads and Algebraic Geometry, Advanced Courses 79

the category of simplicial sets. A horn Λ [n] in simplicial sets is called an inner

in Mathematics - CRM Barcelona, DOI 10.1007/978-3-0348-0052-5_7, © Springer Basel AG 2010



80 Lecture 7. Inner Kan complexes and normal dendroidal sets

The definition of an inner Kan complex for dendroidal sets is similar to the
one for simplicial sets, but using the inner horns defined in Lecture 3. Recall from
Section 3.2 that if T is any tree, e is any inner edge of T , and ∂e is the face map
in Ω contracting e, then the inner horn Λe[T ] is defined as

Λe[T ] =
⋃

β 6=∂e∈Φ1(T )

∂βΩ[T ],

where Φ1(T ) is the set of all faces of T and ∂βΩ[T ] is the β-face of Ω[T ].
The inner horn Λe[T ] is a subobject of the boundary ∂Ω[T ] and extends the

notion of inner horn for simplicial sets, namely

i!(Λ
k[n]) = Λk[Ln] (7.3)

as a subobject of i!(∆[n]) = Ω[Ln], where Ln = i([n]) is the linear tree with n
vertices and n+ 1 edges.

Definition 7.1.2. A dendroidal set X is an inner Kan complex if, for every tree T ,
every inner horn f : Λe[T ] −→ X has a filler, i.e., there exists a map g : Ω[T ] −→ X
such that f = g ◦ j, where j : Λe[T ] −→ Ω[T ] denotes the inclusion

Λe[T ]
f
//

��

j

��

X,

Ω[T ]

g

==
(7.4)

or, equivalently, if the induced map

j∗ : dSets(Ω[T ], X) −→ dSets(Λe[T ], X) (7.5)

is surjective for every tree T and every inner edge e of T .

If the filler of (7.4) is unique or, equivalently, if the map (7.5) is a bijection,
then X is called a strict inner Kan complex.

A map f : X −→ Y of dendroidal sets is an inner Kan fibration if it has the
left lifting property with respect to any inner horn inclusion Λe[T ] −→ Ω[T ], for
every tree T and every inner edge e of T . Thus, a dendroidal set X is an inner
Kan complex if the map X −→ 1 is an inner Kan fibration, where 1 denotes the
terminal object of the category dSets.

Proposition 7.1.3. Let K be any simplicial set and let X be any dendroidal set.
Then:

(i) The dendroidal set i!(K) is an inner Kan complex if and only if K is an
inner Kan simplicial set.
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(ii) If X is an inner Kan complex, then the simplicial set i∗(X) is an inner Kan
simplicial set.

Proof. The results follow immediately from the fact that i! is fully faithful, the
adjunction between i! and i∗, and (7.3). �

A source of strict inner Kan complexes is given by dendroidal nerves of op-
erads (see Example 3.1.4).

Proposition 7.1.4. Let P be any coloured operad in Sets. Then Nd(P ) is a strict
inner Kan complex.

Proof. Any dendrex x ∈ Nd(P )T is given by a map x : Ω[T ] −→ Nd(P ), which
corresponds by the adjunction (3.1) to a map of operads Ω(T ) −→ P . If we
choose a planar representative for T , then Ω(T ) is a free operad generated by
the operations corresponding to the vertices of the (planar representative of the)
tree T . It follows that x is equivalent to a labeling of the (planar representative
of the) tree T as follows. The edges of T are labeled by the colours of P and the
vertices are labeled by operations in P , where the inputs of such an operation are
given by the labels of the incoming edges to the vertex, and the output is the label
of the outgoing edge from the vertex. Any inner horn Λe[T ] −→ Nd(P ) completely
determines such a labeling of the tree T and thus determines a unique extension
Ω(T ) −→ P . �

Remark 7.1.5. The converse of this result is also true, as we will prove in Sec-
tion 7.3.

Proposition 7.1.6. Any strict inner Kan complex X is 2-coskeletal.

Proof. Let X be a strict inner Kan complex and let A be any dendroidal set.
Suppose that a map f : Sk2A −→ Sk2X is given. We first show that this map f
can be extended to a dendroidal map f̂ : A −→ X. Assume that f was extended
to a map fk : SkkA −→ SkkX for k ≥ 2. Let a ∈ Skk+1(A) be a non-degenerate
dendrex and suppose that a /∈ Skk(A). Hence, a ∈ AT and T has exactly k + 1
vertices. Now, we choose an inner horn Λe[T ], which always exists since k ≥ 2. The
set {β∗a}β 6=∂e where β runs over all faces of T defines a horn Λe[T ] −→ A. Since
this horn factors through the k-skeleton of A, we obtain, by composition with fk,
a horn Λe[T ] −→ X in X given by {f(β∗a)}β 6=α. If fk+1(a) ∈ XT denotes the
unique filler of that horn, then we have that β∗fk+1(a) = f(β∗a) for each β 6= ∂e.

To obtain the same property for ∂e, observe that the dendrices f(∂∗ea) and
∂∗efk+1(a) both have the same boundary and that they are both of shape S, where
S has k vertices. Since k ≥ 2, we have that S has an inner face, but then it follows
that both f(∂∗ea) and ∂∗efk+1(a) are fillers for the same inner horn in X and hence
equal. If we repeat this process for all dendrices in Skk+1(A), we get that fk can
be extended to fk+1 : Skk+1(A) −→ Skk+1(X). This holds for all k ≥ 2, which

implies that f can be extended to f̂ : A −→ X.
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In order to prove the uniqueness of f̂ , assume that g is another extension of
f and that it has been shown that f̂ and g agree on all dendrices of shape T where
T has at most k vertices. Let a ∈ XS be a dendrex of shape S, where S has k+ 1
vertices. Then the dendrices f̂(a) and g(a) are dendrices in X that have the same
boundary. Since k ≥ 2, it follows that these dendrices are both fillers for the same
inner horn, hence they are the same and thus f̂ = g. �

7.2 Inner anodyne extensions

In this section, we develop the notion of inner anodyne extensions for dendroidal
sets.

Definition 7.2.1. Let M be a class of monomorphisms in dSets. We say that M

is saturated if it contains all the isomorphisms and it is closed under pushouts,
retracts, arbitrary coproducts, and colimits of sequences (indexed by ordinals).

Given an arbitrary class of monomorphisms M, the saturated class generated
by M is the smallest saturated class that contains M, i.e., the intersection of all
the saturated classes containing M.

Definition 7.2.2. The class of inner anodyne extensions in dSets is the saturated
class generated by the set of inner horn inclusions. Thus, it is also the class of
maps having the left lifting property with respect to the inner Kan fibrations.

The surjectivity property for inner Kan complexes extends to inner anodyne
extensions, namely if u : U −→ V is an inner anodyne extension, then the map

u∗ : dSets(V,K) −→ dSets(U,K)

is surjective for any inner Kan complex K. Similarly, u∗ is a bijection for any strict
inner Kan complex K.

Given any tree T , let I(T ) be the subset of the edges of T consisting of only
the inner edges. For any nonempty subset E ⊂ I(T ), we denote by ΛE [T ] the union
of all the faces of Ω[T ] except those obtained by contracting an edge from E, i.e.,

ΛE [T ] =
⋃

α∈Φ1(T )\∂E

∂αΩ[T ],

where ∂E = {∂e | e ∈ E}. Observe that, if E = {e}, then ΛE [T ] = Λe[T ].

Lemma 7.2.3. For any nonempty E ⊆ I(T ), the inclusion ΛE [T ] // // Ω[T ] is inner
anodyne.

Proof. We will proceed by induction on the number n of elements of E. If n = 1,
then ΛE [T ] // // Ω[T ] is an inner horn inclusion, thus inner anodyne.
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Assume that the result holds for n < k and suppose that E has k elements.
Let e be any element of E and let F = E \ {e}. Then the map ΛE [T ] −→ Ω[T ]
factors as

ΛE [T ] //

$$

ΛF [T ]

��

Ω[T ],

where the vertical map in the diagram is inner anodyne by the induction hypothe-
sis, since F has k−1 elements. We can express the horizontal map as the following
pushout:

ΛF [T/e] //

��

ΛE [T ]

��

Ω[T/e] // ΛF [T ].

Now, the map on the left is inner anodyne (again by the induction hypothesis),
hence so is the map on the right, since inner anodyne extensions are closed un-
der pushouts. Therefore ΛE [T ] −→ Ω[T ] is a composition of two inner anodyne
extensions and thus it is inner anodyne too. �

The above lemma implies that ΛI [T ] −→ Ω[T ] is inner anodyne, where ΛI [T ]
is an abbreviation for ΛI(T )[T ].

We now consider how dendrices in an inner Kan complex can be grafted.
Recall that for any two trees T and S, and l a leaf of T , we denote by T ◦l S the
tree obtained by grafting S onto T by identifying l with the root of S. Both S
and T naturally embed as subfaces of T ◦l S, which induces the obvious inclusions
Ω[S] // // Ω[T ◦l S] and Ω[T ] // // Ω[T ◦l S], the pushout of which we denote by
Ω[T ] ∪l Ω[S] −→ Ω[T ◦l S].

Lemma 7.2.4. For any two trees T and S and any leaf l of T , the inclusion

Ω[T ] ∪l Ω[S] −→ Ω[T ◦l S]

is an inner anodyne extension.

Proof. We may assume that T 6= | 6= S, otherwise the result is obvious. We proceed
by induction on the sum n of the number of vertices of T and S. Let R = T ◦lS. If
n = 2, then Ω[T ]∪lΩ[S] −→ Ω[T ◦lS] is a horn inclusion, and thus inner anodyne.

Assume that the result holds for 2 ≤ n < k and that the sum of the number
of vertices of T and S is k. Recall that ΛI [R] is the union of all the outer faces
of Ω[R]. Observe that the map Ω[T ] ∪l Ω[S] −→ Ω[R] factors as

Ω[T ] ∪l Ω[S] //

&&

ΛI [R]

��

Ω[R]
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and that the vertical map is inner anodyne by Lemma 7.2.3. We will show that
the horizontal map is inner anodyne by expressing it as a pushout of an inner
anodyne extension.

For the purpose of this proof, let us say that an external cluster of a tree is a
vertex v with the property that one of the edges adjacent to it is inner while all the
rest are outer. Let Cl(T ) (resp. Cl(S)) denote the set of all external clusters of T
(resp. of S) which do not contain l (resp. the root of S). For each vertex v ∈ Cl(T ),
the face ∂v of Ω[R] corresponding to v is isomorphic to Ω[(T/v) ◦l S] and the map
Ω[T/v]∪l Ω[S] −→ Ω[(T/v) ◦l S] is inner anodyne by the induction hypothesis. In
a similar way, for every w ∈ Cl(S) the face ∂w of Ω[R] that corresponds to w is
isomorphic to Ω[T ◦l (S/w)] and the map Ω[T ]∪lΩ[S/w] −→ Ω[T ◦l (S/w)] is inner
anodyne, again by the induction hypothesis. The following diagram is a pushout:( ∐

c∈Cl(T )

(Ω[T/c] ∪l Ω[S])

)∐( ∐
c∈Cl(T )

(Ω[T ] ∪l Ω[S/c])

)
//

��

Ω[T ] ∪l Ω[S]

��
( ∐
c∈Cl(T )

(Ω[(T/c) ◦l S])

)∐( ∐
c∈Cl(T )

(Ω[T ◦l (S/c)])

)
// ΛI [R],

where the left vertical map is the coproduct of all the inner anodyne extensions
mentioned above, thus inner anodyne. This implies that the vertical map on the
right is inner anodyne too. �

7.3 Homotopy in an inner Kan complex

In this section, we study a notion of homotopy inside dendroidal sets. Two den-
drices are said to be homotopic if one is a composition of the other with a degen-
erate dendrex. We will show that this homotopy theory within a dendroidal set
is well behaved if the dendroidal set is an inner Kan complex. In that case, the
resulting homotopy relation is an equivalence relation. From this it follows that to
every inner Kan complex X we can associate an operad Ho(X), which we call the
homotopy operad associated to X. The aim of this section is to prove a converse
of Proposition 7.1.4, namely

Theorem 7.3.1. A dendroidal set X is a strict inner Kan complex if and only if
X is the dendroidal nerve of an operad.

For each n ≥ 0, let Cn be the n-th corolla:

•
0

1 n
· · · · · ·
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For each 0 ≤ i ≤ n, we denote by i : η −→ Cn the outer face map in Ω that sends
the unique edge of η to the edge i in Cn. An element f ∈ XCn will be denoted by

•
0

1 n

f

· · · · · ·

Definition 7.3.2. Let X be an inner Kan complex and let f, g ∈ XCn and n ≥ 0.
For 1 ≤ i ≤ n, we say that f is homotopic to g along the edge i, and denote it by
f ∼i g, if there is a dendrex H of shape

•

•

0

1 n

f

i

i′

· · · · · ·

whose three faces are:

•
0

1 n

f

i
· · · · · ·

•
0

1 n
g

i′
· · · · · ·

•
i

i′

id

where the ‘id’ in the third tree is a degeneracy of i. In the same way, we will say
that f is homotopic to g along the edge 0, and denote it by f ∼0 g, if there is a
dendrex of shape

•

•
0

0′

1 n
· · · · · ·

whose three faces are:

•
0′

0

id •
0′

1 n
g

· · · · · ·
•

0

1 n

f

· · · · · ·

When f ∼i g for some 0 ≤ i ≤ n, we will refer to the corresponding H as a
homotopy from f to g along i.

Remark 7.3.3. Notice that, in a strict inner Kan complex X, the homotopy relation
just defined is the identity relation.
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Proposition 7.3.4. Let X be an inner Kan complex. The relations ∼i on the set
XCn are equivalence relations for each 0 ≤ i ≤ n, and these equivalence relations
all coincide.

Proof. For a detailed proof, see [MW09, Proposition 6.3 and Lemma 6.4]. �

Due to this proposition, we will use the notation f ∼ g instead of f ∼i g.
Given an inner Kan complex X and x1, . . . , xn, x ∈ Xη, we denote by

X(x1, . . . , xn;x) ⊆ XCn

the set of all dendrices f such that 0∗(f) = x and i∗(f) = xi for 1 ≤ i ≤ n. We
can define a coloured collection Ho(X) as follows. The set of colours is the set Xη,
and given objects x1, . . . , xn, x ∈ Xη, we define

Ho(x1, . . . , xn;x) = X(x1, . . . , xn;x0)/ ∼

where ∼ is the equivalence relation on XCn given by Proposition 7.3.4. In order to
put an operad structure on the collection Ho(X), we need to define the composition
operations ◦i.

Definition 7.3.5. Let X be an inner Kan complex and let f ∈ XCn and g ∈ XCm

be two dendrices in X. A dendrex h ∈ XCn+m−1 is a ◦i-composition of f and g,
denoted by h ∼ f ◦i g, if there is a dendrex λ in X,

•

•

0

1 n

f

i· · · · · ·
1′ m′

g

· · · · · ·

with inner face

•
0

1

m′1′

n

h

· · · · · ·· · ·

The dendrex λ is called a witness for the composition.

Remark 7.3.6. Notice that, for 1 ≤ i ≤ n, we have by definition that H : f ∼i g if
and only if H is a witness for the composition g ∼ f ◦i id. Similarly, for i = 0 we
have that H : f ∼0 g if and only if H is a witness for the composition g ∼ id ◦ f .

If X is an inner Kan complex and f ∼ f ′ and g ∼ g′, then, if h ∼ f ◦i g and
h′ ∼ f ′ ◦i g′, we have that h ∼ h′ (see [MW09, Lemma 6.9]). Hence composition
is well defined on homotopy classes.
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Proposition 7.3.7. There is a unique structure of a symmetric coloured operad on
Ho(X) for which the canonical map of collections Sk1(X) −→ Ho(X) extends to
a map of dendroidal sets X −→ Nd(Ho(X)). The latter map is an isomorphism
whenever X is a strict inner Kan complex.

Proof. Given [f ] ∈ Ho(X)(x1, . . . , xn;x) and [g] ∈ Ho(X)(y1, . . . , ym;xi), the as-
signment

[f ] ◦i [g] = [f ◦i g]

is well defined by Remark 7.3.6. This gives the ◦i operations in the coloured operad
Ho(X). The actions of the symmetric group Σn are defined in the following way.
For any element σ ∈ Σn, let σ : Cn −→ Cn be the induced map in Ω that permutes
the edges of the n-th corolla. The map σ∗ : XCn −→ XCn restricts to a function

σ∗ : X(x1, . . . , xn;x) −→ X(xσ(1), . . . , xσ(n);x)

that respects the homotopy relation. Hence, we get a map

σ∗ : Ho(X)(x1, . . . , xn;x) −→ Ho(X)(xσ(1), . . . , xσ(n);x).

It is straightforward that these structure maps provide the coloured collection
Ho(X) with an operad structure.

To prove that the quotient map q : Sk1(X) −→ Ho(X) extends to a map
q : X −→ Nd(Ho(X)) of dendroidal sets, it is enough to give its values for dendrices
x ∈ XT where T is a tree with two vertices, since Nd(Ho(X)) is 2-coskeletal by
Proposition 7.1.6. So, let T be a tree with two vertices and e be the inner edge of
this tree. Then the map

Λe[T ] // // Ω[T ]
x // X

factors through Sk1(X), so its composition Λe[T ] −→ Nd(Ho(X)) with q has a
unique extension by Proposition 7.1.4. We take this extension to be q(x) : Ω[T ] −→
Nd(Ho(X)) and this defines the map q : Sk2(X) −→ Sk2(Nd(Ho(X))), and hence
all of q : X −→ Nd(Ho(X)) by 2-coskeletality.

If X is itself a strict inner Kan complex, then the homotopy relation is
the identity relation, so Sk1(X) −→ Ho(X) is the identity map. Since X and
Nd(Ho(X)) are strict inner Kan complexes, it follows that q : X −→ Nd(Ho(X))
is an isomorphism. �

The following result together with Proposition 7.3.7 provide the proof of
Theorem 7.3.1.

Proposition 7.3.8. The natural map τd(X) −→ Ho(X) is an isomorphism of oper-
ads for every inner Kan complex X.

Proof. It is enough to prove that the map q : X −→ Nd(Ho(X)) of Proposi-
tion 7.3.7 has the universal property of the unit of the adjunction. This means
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that, for any operad P and any map ϕ : X −→ Nd(P ), there is a unique map of
operads ψ : Ho(X) −→ P such that Nd(ψ)q = ϕ. Observe that ϕ induces a map
Ho(X) −→ Ho(Nd(P )) such that the diagram

Sk1(X)
ϕ
//

q

��

Sk1Nd(P )

qP

��

Ho(X)
Ho(ϕ)

// Ho(Nd(P ))

commutes. Now, Ho(Nd(P )) = P and qP is the identity, as we can see from
the proof of Proposition 7.3.7. Hence, Ho(ϕ) defines a map ψ : Ho(X) −→ P of
coloured collections. In fact, one can see that ψ is a map of operads, and the
uniqueness follows from the surjectivity of q. �

Proof of Theorem 7.3.1. One direction was already proved in Proposition 7.1.4.
For the other one, suppose that X is a strict inner Kan complex. Then Proposi-
tion 7.3.7 and Proposition 7.3.8 imply that X ∼= Nd(τd(X)). �

7.4 Homotopy coherent nerves are inner Kan

Throughout this section, E will denote a monoidal model category with cofibrant
unit I. We will also assume that E is equipped with an interval in the sense of
[BM06], which we denote by H. Recall from Definition 6.2.1 that such an interval
is given by an object H of E together with maps

I
0 //

1
// H

ε // I and H ⊗H ∨−→ H

satisfying certain conditions. This means in particular that H is an interval in
Quillen’s sense ([Qui67]), so 0 and 1 together define a cofibration I

∐
I −→ H,

and ε is a weak equivalence. In Section 6.2 we explained how such an interval
H allows one to construct for each coloured operad P in E a Boardman–Vogt
resolution WH(P ) −→ P . Each operad in Sets can be viewed as an operad in
E via the strong monoidal functor Sets −→ E, as in Example 1.3.6, and hence
has such a Boardman–Vogt resolution. When we apply this construction to the
operads Ω(T ), we obtain the homotopy coherent dendroidal nerve hcNd(P ) of any
operad P in E, defined as the dendroidal set given by

hcNd(P )T = Oper(WH(Ω(T )), P ).

The goal of this section is to prove that the homotopy coherent nerve is an inner
Kan complex.

Theorem 7.4.1. Let P be a C-coloured operad in E such that, for every (n + 1)-
tuple (c1, . . . , cn, c) of colours of P , the object P (c1, . . . , cn; c) is fibrant in E. Then
hcNd(P ) is an inner Kan complex.
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As observed in Section 6.3, our construction of the dendroidal homotopy
coherent nerve specializes to that of the homotopy coherent nerve of an E-enriched
category. In the case where E is the category of topological spaces or simplicial
sets, one recovers the classical definition of Cordier and Porter ([CP86]). It follows
as a particular case of Theorem 7.4.1 that the homotopy coherent nerve of an
E-enriched category with fibrant Hom objects is a quasi-category in the sense of
Joyal. This was proved in [CP86] when E is the category of simplicial sets.

Recall from Example 6.3.2, in the case E = Top, the description of the
operads WH(Ω(T )) involved in the definition of the homotopy coherent nerve. We
have a similar description for these operads in the case of a general monoidal model
category E. First of all, recall from (1.1) the symmetrization functor

Σ: Oper 6Σ(E) −→ Oper(E),

which is left adjoint to the forgetful functor from symmetric operads to non-
symmetric ones. If T is a tree in Ω, then any planar representative T̄ of T naturally
describes a non-Σ operad Ω(T̄ ) such that Ω(T ) = Σ(Ω(T̄ )). It follows that

WH(Ω(T )) = Σ(WH(Ω(T̄ ))),

since the W -construction commutes with symmetrization.
The coloured operad WH(Ω(T̄ )) can be described explicitly (Example 6.3.2).

The colours of WH(Ω(T̄ )) are the colours of Ω(T̄ ), i.e., the edges of T . Let
σ = (e1, . . . , en; e) be an (n + 1)-tuple of colours of Ω(T̄ ). If Ω(T̄ )(σ) = ∅, then
WH(Ω(T̄ ))(σ) = 0. If Ω(T̄ )(σ) 6= ∅, then there is a subtree Tσ of T (and a corre-
sponding planar subtree T̄σ of T̄ ) whose leaves are e1, . . . , en and whose root is e.
Thus we have that

WH(Ω(T̄ ))(e1, . . . , en; e) =
⊗

f∈inn(σ)

H,

where inn(σ) is the set of inner edges of Tσ (or of T̄σ). This last tensor product
can be interpreted as the ‘space’ of assignments of lengths to inner edges in T̄σ;
it is the unit if inn(σ) is empty.

The composition product in the coloured operad WH(Ω(T̄ )) is given in terms
of the ◦i-operations. If σ = (e1, . . . , en; e) and ρ = (f1, . . . , fm; ei) are two (n+ 1)-
tuples of colours, then the composition map

Ω(T̄ )(e1, . . . , en; e0)⊗ Ω(T̄ )(f1, . . . , fm; e)

◦i
��

Ω(T̄ )(e1, . . . , ei−1, f1, . . . , fm, ei+1, . . . , en; e)

(7.6)

is defined as follows. The trees T̄σ and T̄ρ are grafted along ei to form the tree
T̄σ ◦ei T̄ρ, that is again a planar subtree of T̄ . In fact, T̄σ ◦ei T̄ρ = T̄σ◦iρ, where
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σ ◦i ρ = (e1, . . . , ei−1, f1, . . . , fm, ei+1, . . . , en; e0). For the sets of inner edges we
have

inn(σ ◦i ρ) = inn(σ) ∪ inn(ρ) ∪ {ei}.

The composition product in (7.6) is the map

H⊗inn(σ) ⊗H⊗inn(ρ) //

∼=
��

H⊗inn(σ◦iρ)

∼=
��

H⊗inn(σ)∪inn(ρ) ⊗ I id⊗1
// H⊗inn(σ)∪inn(ρ) ⊗H,

where 1: I −→ H is one of the endpoints of the interval H.

This description of the operad WH(Ω(T̄ )) is functorial in the planar tree T .
In particular, for an inner edge e of T , the tree T/e inherits a planar structure
T/e from T̄ , and WH(Ω(T/e)) −→WH(Ω(T̄ )) is the natural map assigning length
0 to the edge e.

Proof of Theorem 7.4.1. Let T be a tree in Ω and a an inner edge of T . We need
to find an extension to the following diagram:

Λa[T ]
ϕ
//

��

��

hcNd(P ).

Ω[T ]

::

Let T̄ be a planar representative of T . An extension ψ : Ω[T ] −→ hcNd(P ) corre-
sponds, by adjointness, to a morphism of non-Σ operads

ψ̂ : WH(Ω(T̄ )) −→ P.

For each face map S −→ T , the tree S inherits a planar structure S̄ from T̄ , and
the given map ϕ : Λa[T ] −→ hcNd(P ) corresponds, again by adjointness, to a map
of operads in E,

ϕ̂ : WH(Λa[T ]) −→ P,

where we view WH(Λa[T ]) as the colimit of operads in E,

WH(Λa[T ]) = colim W (Ω(S̄)) (7.7)

over all the faces of T except the one contracting a. In other words, ϕ corresponds
to a compatible family of maps

ϕ̂S : WH(Ω(S̄)) −→ P.
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We will show that there exists an operad map ψ̂ extending ϕ̂S for all faces S 6= T/a.
Note that the colours of Ω(T̄ ) are the same as those of the colimit in (7.7), so we
have a map ψ0 = ϕ0 on colours:

ψ0 : E(T ) −→ {Colours of P}.

If σ = (e1, . . . , en; e) is an (n + 1)-tuple of edges of T such that WH(Ω(T̄ )) 6= ∅,
and Tσ ⊆ T (with Tσ 6= T ), then Tσ is contained in an outer face S of T . Hence
WH(Ω(T̄ ))(σ) = WH(Ω(T̄σ))(σ) = WH(Ω(S̄))(σ), and we have a map

ϕ̂S(σ) : WH(Ω(T̄ ))(σ) −→ P (σ),

given by ϕ̂S : WH(Ω(S̄)) −→ P . Thus, the only part of the map of operads

ψ̂ : WH(Ω(T̄ )) −→ P not determined by ϕ is the one when Tτ = T , where
τ = (e1, . . . , en; e) and e1, . . . , en are all the input edges of T̄ (in the planar order)

and e is the output edge. In this case, ψ̂(τ) has to be a map

ψ̂ : WH(Ω(T̄ ))(τ) = H⊗i(τ) −→ P (τ)

such that ψ̂(σ) = ϕ̂S(σ) if σ 6= τ , and together with these ψ̂(σ) respects operad

composition. The first condition determines ψ̂(τ) on the subobject of H⊗i(τ) which
is given by a value 0 on one of the tensor factors marked by an edge ei other than
the given a. The second condition determines ψ̂(τ) on the subobject of H⊗i(τ)

which is given by a value 1 on one of the factors. Thus, if we write 1 for the map
I // // H and ∂H // // H for the map I

∐
I −→ H, and define ∂H⊗k // // H⊗k

by the Leibniz rule (i.e., ∂(A⊗B) = ∂(A)⊗B ∪A⊗ ∂(B)), then the problem of

finding ψ̂(τ) is the same as finding an extension to the diagram

∂(H⊗inn(σ)\{a} ⊗H) ∪H⊗inn(σ)\{a} ⊗ I //

��

��

P (τ)

H⊗inn(σ)\{a} ⊗H
∼= // H⊗inn(σ).

ψ̂(σ)

OO

This extension exists because P (τ) is fibrant by assumption, and the left-hand
map is a trivial cofibration by the pushout-product axiom for monoidal model
categories. �

7.5 The exponential property

Recall from Theorem 4.2.2 that the category of dendroidal sets is a closed sym-
metric monoidal category. The main result of this section is that the internal hom
of this monoidal structure HomdSets(D,Y ) is an inner Kan complex if D is normal
and Y is inner Kan. It is a consequence of the following result from [MW09], which
we quote here without proof:
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Theorem 7.5.1 ([MW09, Propostion 9.2]). Let S and T be any two trees in Ω.
Then the natural map

∂Ω[S]⊗ Ω[T ]
⋃

∂Ω[S]⊗Λe[T ]

Ω[S]⊗ Λe[T ] // // Ω[S]⊗ Ω[T ]

is inner anodyne, where e is any inner edge of T . �

It follows by standard arguments with saturated classes that, if A // // B is
a normal monomorphism and C // // D is inner anodyne, then

A⊗D
⋃
A⊗C

B ⊗ C // // B ⊗D (7.8)

is again inner anodyne. Using the Hom-⊗ adjunction, one draws the standard
conclusions, such as that if Y −→ X is an inner Kan fibration and C // // D is
inner anodyne, then

Hom(D,Y ) −→ Hom(C, Y )×Hom(C,X) Hom(D,X) (7.9)

has the right lifting property with respect to normal monomorphisms. If C // // D
is just normal, then (7.9) is an inner Kan fibration. In particular, taking C = ∅
and X = 1 (the terminal object of dSets), we obtain the following.

Theorem 7.5.2 ([MW09, Theorem 9.1]). Let Y and D be dendroidal sets and as-
sume that D is a normal dendroidal set. If Y is a (strict) inner Kan complex, then
so is HomdSets(D,Y ). �

The result given by Theorem 7.5.1 is also true in pdSets. However, for the
tensor product to be defined, one has to assume that either S or T is linear (see
Remark 4.2.4). The general statement analogous to (7.8) for pdSets takes the
following form. Let K // // L be a monomorphism between simplicial sets and let
C // // D be a monomorphism in pdSets. Then

u!(K)⊗D
⋃

u!(K)⊗C

u!(L)⊗ C // // u!(L)⊗D

is inner anodyne whenever K // // L or C // // D is.



Lecture 8

Model structures on
dendroidal sets

In this lecture, we will discuss the existence of closed Quillen model category
structures on the categories of dendroidal sets and of planar dendroidal sets. The
existence of these structures was first proved in [CM09a] using results from [Cis06].
Here we present a somewhat different proof based on a result from [Joy02] and
a technical result from [CM09a] which involves some combinatorial arguments

proof. Assuming them, the proof of the model structure given in the subsequent
sections is self contained.

8.1 Preliminaries

We begin by recalling Joyal’s result. Recall from [Joy02] that, if X is a simplicial
inner Kan complex, then k(X) ⊆ X denotes the maximal Kan complex contained
in X. This simplicial set k(X) has the same vertices as X, while an n-simplex
x : ∆[n] −→ X belongs to k(X) if and only if, for every 0 ≤ i < j ≤ n, the
1-simplex xij : ∆[1] −→ X (given by restricting x along the map ∆[1] −→ ∆[n]
sending 0 to i and 1 to j) represents an isomorphism in the category τ(X).

Recall also that a map f : D −→ C between categories is called a categorical
fibration if, for any object d ∈ D and any isomorphism α : f(d) −→ c in C, there
is an isomorphism β : d −→ e in D with f(β) = α.

Lemma 8.1.1. Let p : Y −→ X be an inner Kan fibration between inner Kan
complexes in sSets. Let β : y0 −→ y1 be a morphism in τ(Y ), and let x ∈ X1

be a 1-simplex in X which represents the morphism τ(p)(β) : x0 −→ x1 in τ(X).
Then there exists a 1-simplex y : y0 −→ y1 in Y with p(y) = x which represents β.

I. Moerdijk and B. Toën, Simplicial Methods for Operads and Algebraic Geometry, Advanced Courses 93

about trees. In the first section, we explain these two auxiliary results without

in Mathematics - CRM Barcelona, DOI 10.1007/978-3-0348-0052-5_8, © Springer Basel AG 2010
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Proof. Given β and x, choose any 1-simplex z ∈ Y1 representing β. Then p(z)
represents the same arrow in τ(X) as x. Thus, there is a ‘homotopy’ H ∈ X2

which looks like
x1

H :

x0 x
//

p(z)
CC

x1.

Now use that p is an inner Kan fibration to find a filling of the inner horn

y1

K :

y0 y
//

z

CC

y1

in Y with p(K) = H,

Λ1[2] //

��

��

Y

p

��

∆[2]
H
//

K

==

X.

Then d1(z) = y is the required 1-simplex representing β over x. �

Proposition 8.1.2. Let p : Y −→ X be an inner Kan fibration between simplicial
inner Kan complexes. If τ(Y ) −→ τ(X) is a categorical fibration, k(Y ) −→ k(X)
is a Kan fibration.

Proof. This essentially follows from [Joy02, Theorem 2.2]. Indeed, consider a com-
mutative diagram

Λi[n]
g
//

��

��

Y

p

��

∆[n]
f
// X

and suppose that f and g factor through k(X) and k(Y ) respectively. If 0 < i < n,
a diagonal lift to the diagram exists by the assumption on p. If i = 0 and n > 1,
then a diagonal lift exists by [Joy02, Theorem 2.2], since g is assumed to factor
through k(Y ). The same is true if i = n by the dual of Joyal’s result.

In each of these cases, the lift h : ∆[n] −→ Y factors through k(Y ). Indeed,
at most one of the 1-dimensional ribbons of ∆[n] does not belong to Λi[n], and the
image of this ribbon under h must represent an isomorphism in τ(Y ) because all
the other ribbons do by assumption. This covers the case n > 1. If n = 1, then a
‘lift up to homotopy’ exists by the assumption that τ(Y ) −→ τ(X) is a categorical
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fibration, and this lift can be strictified by Lemma 8.1.1 or its dual version. This
concludes the proof of the proposition. �

Corollary 8.1.3. Under the assumptions of Proposition 8.1.2, if τ(Y ) −→ τ(X) is
an equivalence of categories, then any commutative diagram in sSets

1 + 1
y
//

��

��

Y

p

��

J
F
// X

has a diagonal filling.

Proof. Consider the canonical inclusion ∆[1] −→ J . The map F restricts to a
1-simplex f : ∆[1] −→ X representing an isomorphism in τ(X), while y corre-
sponds to two vertices y0 and y1 in Y . Since τ(Y ) −→ τ(X) is an equivalence of
categories, there exists a g : y0 −→ y1 in Y1 such that p(y) represents the same
morphism as f in τ(X). By Lemma 8.1.1, we can modify g so that p(g) = f .

Next, since F : J −→ X and this g : ∆[1] −→ Y factor through the Kan
complexes k(X) and k(Y ) respectively, and ∆[1] // // J is a trivial cofibration in
the ordinary model structure on sSets, we find a lifting in

∆[1] //

��

��

k(Y ) ⊆ Y

��

p

��

J
F
//

99

k(X) ⊆ X,

by Proposition 8.1.2. �

We wish to apply Proposition 8.1.2 and Corollary 8.1.3 to simplicial sets aris-
ing as homs between (planar) dendroidal sets. To this end, we need the following
result from [CM09a], which we state without proof.

Proposition 8.1.4. The following hold:

(i) If X is an inner Kan complex in pdSets and A // // B is a monomorphism
in pdSets, then the map of simplicial inner Kan complexes

Hom(B,X) −→ Hom(A,X)

induces a categorical fibration

τ Hom(B,X) −→ τ Hom(A,X).
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(ii) If X is an inner Kan complex in dSets and A // // B is a monomorphism in
dSets where A and B are normal dendroidal sets, then the map of simplicial
inner Kan complexes

i∗HomdSets(B,X) −→ i∗HomdSets(A,X)

induces a categorical fibration

τi∗HomdSets(B,X) −→ τi∗HomdSets(A,X).

Proof. Case (ii) is proved in detail in [CM09a], and exactly the same argument
shows (i). �

8.1.1 Tensor product

Recall from Section 4.1 that the Boardman–Vogt tensor product P ⊗ Q of two
operads P and Q is defined for symmetric operads only. It induces a symmet-
ric monoidal closed structure ⊗, Hom on dSets, completely determined by the
definition of the tensor of two representables,

Ω[S]⊗ Ω[T ] = Nd(Ω(S)⊗BV Ω(T )),

where Ω(S) and Ω(T ) are the coloured operads associated to S and T .
A trivial but important observation from Lecture 4 is that one does not need

the symmetries to describe P ⊗ Q if P or Q has unary operations only. Thus, in
pdSets, one can define

u!(∆[n])⊗ Ωp[T ],

and this makes pdSets into a simplicial category with tensors and cotensors (see
Theorem 4.2.5). The simplicial structure on pdSets will alternatively be denoted
by

S ⊗X or u!(S)⊗X.

In summary, the Boardman–Vogt tensor product makes sSets into a cartesian
closed category, pdSets into a simplicial category, and dSets into a symmetric
monoidal closed category. Moreover, the functors i!, u! and v! preserve the tensor
structure up to isomorphism. In particular, the unit for the monoidal structure in
dSets is

U = i!(∆[0]) = Ω[η],

where η is the tree with just one edge and no vertices. We will also write

Up = u!(∆[0]) = Ωp[η].

Recall also that dSets/U = sSets and pdSets/Up = sSets.



8.1. Preliminaries 97

8.1.2 Intervals

We denote by J the simplicial set N(0
∼←→ 1). It has the structure of an interval

(see Definition 6.2.1):

1 + 1 // // J // 1,

so it can be used to describe ‘J-homotopies’. It induces similar intervals Jp = u!(J)
in pdSets and Jd = i!(J) in dSets, with structure maps

Up + Up // // Jp
ε // Up and U + U // // Jd // U,

so that we can speak of two maps in pdSets being Jp-homotopic, and maps in
dSets being Jd-homotopic.

8.1.3 Normalization

Recall that a monomorphism X // // Y in dSets is called normal if, for every tree
T in Ω, every non-degenerate element y ∈ Y (T ) which is not in the image of X(T )
has a trivial stabilizer Aut(T )y ⊆ Aut(T ). An object X is called normal if the
map ∅ // // X is a normal monomorphism.

The normal monomorphisms in dSets form a saturated class. In fact, it is the
saturation of all the boundary inclusions

∂Ω[T ] // // Ω[T ],

and also the saturation of the class of images

v!A // // v!B

of monomorphisms A // // B in pdSets. By the usual small object argument, every
map X −→ Y of dendroidal sets factors as a normal monomorphism X // // Z
and a map Z −→ Y having the right lifting property with respect to all normal
monomorphisms. In particular, when we apply this to X = ∅, we find for each
object Y a normal object Yn and a cover Yn // // Y having the right lifting property
with respect to all normal monomorphisms. We call such a cover Yn // // Y a
normalization of Y .

Lemma 8.1.5. Normalizations are unique up to Jd-homotopy equivalence. The
standard construction gives for every Y a normalization Yn // // Y with countable
fibers.

Proof. Let p : V −→ Y and q : W −→ Y be two normalizations. We find maps
f : V −→W and g : W −→ V over Y by lifting in

∅ //

��

W

����

V //

>>

Y

resp. ∅ //

��

V

����

W //

>>

Y .
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Next, lifting in

V + V
(id, gf)

//
��

��

V

����

Jd ⊗ V // Y

and W +W
(id, fg)

//
��

��

W

����

Jd ⊗W // Y

shows that f and g are mutually inverse up to Jd-homotopy.
To prove the second part, observe that the standard construction produces

Yn as
⋃
Y (i) where Y (0) = ∅ and Y (i+1) = Y (i)′ ; here, for any map f : B −→ Y ,

we write f ′ : B′ −→ Y for the map constructed as the pushout∐
∂Ω[T ] //

��

��

B
��

��
f

��

∐
Ω[T ] //

,,

B′

f ′

��

Y

where the sum is over all T and all maps e, e′ fitting into a commutative square

∂Ω[T ]
e′ //

��

B

f

��

Ω[T ]
e // Y .

We claim that if f : B −→ Y has countable fibers, then so does f ′ : B′ −→ Y .
Indeed, fix R ∈ Ω and y ∈ Y (R), and consider the elements b′ ∈ B′(R) with
f ′(b′) = y. Such elements b′ either (1) lie in B(R), or (2) are given by a triple
(γ : R −→ T , e : Ω[T ] −→ Y , e′ : ∂Ω[T ] −→ B) with eγ = y, and e, e′ fitting
into a commutative square as above. In this second case, we may assume that
γ : R −→ T does not factor through the boundary of Ω[T ], because in that case
b′ ∈ B′(R) is (represented by) an element of B(R) and we are back in the first
case. Now, for the first case b′ ∈ B(R) there are only countably many choices,
because f−1(y) is assumed to be countable. For the second case, since we can
assume that γ : R −→ T does not factor through the boundary, the map γ is a
composition of degeneracies and an isomorphism, hence it is a (split) epimorphism.
So e is uniquely determined by γ and the equation eγ = y. Since there are at most
countably many such γ, there are at most countable many choices e′ giving a
commutative square as above, by the assumption that B −→ Y has countable
fibers. This proves that B′ −→ Y has countable fibers again. �
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Using Lemma 3.4.5, we can see that one can easily pull back or push for-
ward normalizations: given a map X −→ Y and a normalization Yn // // Y of Y ,
the pullback X ×Y Yn −→ X is a normalization of X; and vice versa, given a
normalization Xn

// // X of X, one obtains one of Y by factoring the composite
Xn

// // X // Y as a normal monomorphism followed by a map having the right
lifting property with respect to all normal monomorphisms.

8.2 A Quillen model structure on planar dendroidal sets

In this section we state the main result for planar dendroidal sets, and consider
some of its consequences. Let us define a map f : X −→ Y in pdSets to be a weak
equivalence if, for every inner Kan complex K, the induced map

f∗ : τ Hom(Y,K) −→ τ Hom(X,K) (8.1)

is an equivalence of categories. (Recall that pdSets is a simplicial category, and
that Hom(X,K) is a quasi-category for any two planar dendroidal sets X and K
with K inner Kan.)

Theorem 8.2.1. These weak equivalences are part of a closed model structure on
the category of planar dendroidal sets, in which the cofibrations are the monomor-
phisms.

Outline of proof. The plan of the proof is quite standard, and isolates the difficult
parts as Proposition 8.2.5 to be proved later. Recall that a monomorphism between
planar dendroidal sets is a map u : A −→ B which induces a one-to-one map of
sets A(T ) −→ B(T ) for every planar tree T (an object of Ωp). By the closedness
of the model structure, the fibrations are the maps with the right lifting property
with respect to the trivial cofibrations. The axioms CM1–CM5 of [Qui69] can now
be verified along the following lines:

CM1. The category pdSets has all small limits and colimits, and these are
calculated ‘pointwise’, like in any presheaf category.

CM2. (2 out of 3) The ‘two out of three’ property for weak equivalences
follows from the corresponding one for categories.

CM3. (Retracts) The classes of cofibrations and fibrations are clearly closed
under retracts. The class of weak equivalences is as well, by functoriality of f 7→ f∗

in (8.1) and the corresponding fact for (weak) equivalences between categories.

CM4. (Lifting) Consider a commutative square

A
f
//

u

��

Y

p

��

B
g
// X,

(8.2)
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where u is a cofibration and p is a fibration. If u is also a weak equivalence, then
a diagonal filling exists by definition of the fibrations. And if p is also a weak
equivalence, we factor p as p = qv where v is a cofibration and q has the right
lifting property with respect to all the cofibrations, as in (CM5a) below. Then
both q and v are weak equivalences (by CM2 and Proposition 8.2.5). By definition
of the fibrations, there is a map r with rv = idY ad pr = q. Also, since q has the
right lifting property with respect to all the cofibrations, there is a map h with
qh = g and hu = vf . Then rh is the required lifting in (8.2), as p(rh) = g and
(rh)u = f .

CM5a. Since, as in any presheaf category, there is a small set of generators for
the monomorphisms, the usual small object argument provides for any f : Y −→ X
a factorization into a monomorphism v : Y −→ Z and a map q : Z −→ X having
the right lifting property with respect to all monomorphisms. Such a map q is
evidently a fibration, and we will show separately in Proposition 8.2.5 that it is
also a weak equivalence.

CM5b. The main difficulty will be to show that there is a small set of genera-
tors for the trivial cofibrations. This will be proved in Section 8.3. The usual small
object argument then provides a factorization of an arbitrary map p : Y −→ X
into a trivial cofibration v : Y −→ Z followed by a map q : Z −→ X having the
right lifting property with respect to the trivial cofibrations, i.e., a fibration. �

Theorem 8.2.2. In the model structure of Theorem 8.2.1, the fibrant objects are
exactly the inner Kan complexes.

Proof. In one direction, it is clear that every fibrant object is an inner Kan com-
plex, because each inner horn Λep[T ] // // Ωp[T ] is in fact a weak equivalence,

cf. Proposition 8.3.1(i) below. Conversely, let K be an inner Kan complex in
pdSets, and let u : A // // B be a trivial cofibration. By the exponential property
(see Section 7.5), both simplicial sets Hom(A,K) and Hom(B,K) are inner Kan
complexes, and the map Hom(B,K) −→ Hom(A,K) is an inner Kan fibration.
Moreover,

τ Hom(B,K) −→ τ Hom(A,K)

is an equivalence of categories by definition of the weak equivalences, and a fibra-
tion between categories by Proposition 8.1.4(i). But any equivalence of categories
which is also a fibration is surjective on objects. In this case, this means that
Hom(B,K) −→ Hom(A,K) is surjective on vertices, i.e., that any map A −→ K
extends to B. This proves that K is fibrant. �

Corollary 8.2.3. There exists a closed model structure on simplicial sets in which
the cofibrations are the monomorphisms and the fibrant objects are exactly the
quasi-categories.

Proof. Recall that pdSets/Up = sSets, where Up = u!(∆[0]). As for any slice
category, the model structure of Theorem 8.2.1 induces one on pdSets/Up, with
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the ‘same’ cofibrations, weak equivalences and fibrations. Its fibrant objects are
the fibrations X̂ −→ Up, corresponding under the equivalence pdSets/Up = sSets
to simplicial sets X for which u!(X) −→ u!(∆[0]) is a fibration in pdSets. If X is
such a simplicial set, then clearly X is a quasi-category because u! is fully faithful.
And conversely, if X is a quasi-category, then u!(X) is an inner Kan complex by
Proposition 7.1.3, hence fibrant by Theorem 8.2.2. But, in general, if F is a fibrant
object and V −→ 1 is any monomorphism into the terminal object, then F −→ V
is a fibration, as one immediately verifies. In particular, u!(X) −→ u!(∆[0]) is a
fibration. �

Remark 8.2.4. It follows that the model structure of Corollary 8.2.3 coincides with
the one established by Joyal; see [Joy02], [Lur09].

To conclude this section, we prove the following proposition, referred to in
the proof of Theorem 8.2.1 above.

Proposition 8.2.5. Any map in pdSets which has the right lifting property with
respect to all monomorphisms is a Jp-homotopy equivalence (in fact, a Jp-defor-
mation retract). Any Jp-homotopy equivalence in pdSets is a weak equivalence.

Proof. Let f : Y −→ X be a map having the right lifting property with respect to
all monomorphisms. Lifting in

∅ //

��

Y

f

��

X X

shows that f has a section s : X −→ Y . Next, using the interval

Up + Up // // Jp
ε // Up,

the lift in

(Up + Up)⊗ Y
⋃

(Up+Up)⊗X Jp ⊗X //

��

��

Y

f

��

Jp ⊗X // X

shows that sf is Jp-homotopic to the identity, by a homotopy relative to X.
To prove the second part, suppose that f : Y

//
oo X : g are mutually

Jp-homotopy inverse, by homotopies H1 : Jp ⊗ X −→ X between fg and idX ,
and H2 : Jp ⊗ Y −→ Y between gf and idY . Let K be any inner Kan complex in
pdSets, and consider the maps of simplicial sets

f∗ : Hom(X,K)
//

oo Hom(Y,K) : g∗.
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These are again mutually homotopy inverse for the simplicial interval J , by ho-
motopies

H̃1 : J ×Hom(X,K) −→ Hom(X,K)

H̃2 : J ×Hom(Y,K) −→ Hom(Y,K)

defined explicitly in terms of H1 and H2. Applying the functor τ : sSets −→ Cat
to these, we find that τ Hom(X,K)

//
oo τ Hom(Y,K) are mutually homotopy

inverse for the interval τ(J) = (0
∼←→ 1); i.e., they are equivalences of categories,

mutually inverse up to natural isomorphism. �

8.3 Trivial cofibrations

In this section, we discuss various properties of the class of trivial cofibrations
between planar dendroidal sets. In particular, we show that there is a small set
generating them, cf. Proposition 8.3.7.

To begin with, we will construct for each planar dendroidal set X a trivial
cofibration

X // // X∞

into an inner Kan complex X∞. This is done using the familiar small object
argument. We let X∞ = lim−→X(n) where X(0) = X and X(n+1) = X ′(n), while for

any planar dendroidal set Y , the planar dendroidal set Y ′ is constructed as the
pushout ∐

Λe[T ] //

��

��

Y
��

��∐
Ωp[T ] // Y ′

(8.3)

where the sum is over all planar trees T (objects of Ωp), all inner edges e, and
all maps Λe[T ] −→ Y . We summarize the properties of the construction in the
following proposition.

Proposition 8.3.1. Let X be any planar dendroidal set and let X∞ be the planar
dendroidal set constructed above.

(i) The map X −→ X∞ is a trivial cofibration.

(ii) For any object X of pdSets, X∞ is an inner Kan complex.

(iii) The construction X 7−→ X∞ is functorial. If X −→ Y is a (trivial) cofibra-
tion, so is X∞ −→ Y∞.
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Proof. To prove part (i), it is enough to show that X −→ X ′ is a trivial cofibration.
The map is clearly a monomorphism. To see that it is a weak equivalence, consider
an inner Kan complex K and the pullback of simplicial sets

Hom(X ′,K) //

��

Hom(B,K)

��

Hom(X,K) // Hom(A,K),

where A =
∐

Λe[T ] and B =
∐

Ωp[T ] are the coproducts as in (8.3). We claim
that Hom(B,K) −→ Hom(A,K) has the right lifting property with respect to
all monomorphisms of simplicial sets. Indeed, it is a product of maps of the form
Hom(Ωp[T ],K) −→ Hom(Λe[T ],K), and each of these has it (cf. Section 7.2). Then
the same is true for Hom(X ′,K) −→ Hom(X,K). Hence this map is a homotopy
equivalence of simplicial sets, and therefore τ Hom(X ′,K) −→ τ Hom(X,K) is
an equivalence of categories.

Part (ii) is clear, because any map Λe[T ] −→ X∞ factors through some X(n);
hence an extension to Ωp[T ] exists, mapping to X(n+1).

To prove part (iii), note that it follows from the construction that X ′ −→ Y ′

is a monomorphism whenever X −→ Y is. Indeed, the pushout for Y ′ can be
viewed as

A+A∗ //

��

Y

��

B +B∗ // Y ′

where A =
∐

Λe[T ] (resp. B =
∐

Ωp[T ]) is the sum over all maps Λe[T ] −→ Y
which factor through X, and A∗ (resp. B∗) is the sum over all such which do not.
Then we can construct the pushout in two steps, as

A′ // //

��

B′

��

A
��

��

// X

��

// // Y

��

B // X ′ // // Y − // // Y ′

where all squares are pushouts. Since (as in any topos) the pushout of a monomor-
phism is a monomorphism, the maps X ′ −→ Y − and Y − −→ Y ′ are monomor-
phisms. It follows by passing to the colimit that X∞ −→ Y∞ is a monomorphism.
Moreover, by (i), if X −→ Y is a weak equivalence, then so is X∞ −→ Y∞. �

Proposition 8.3.2. Any trivial cofibration between inner Kan complexes is a defor-
mation retract.
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Proof. Let u : A −→ B be a trivial cofibration between inner Kan complexes. By
Theorem 8.2.2, A and B are both fibrant. Thus, lifting in

A
��

u

��

A

��

B //

r

??

1

gives a retraction r. To show that ur ' idB (rel. A) we need a lifting in

(Up + Up)⊗B
⋃
Jp ⊗A

ϕ
//

��

��

B

��

Jp ⊗B // 1,

where ϕ is given by ur and idB on the summand (Up + Up) ⊗ B = B + B, and
by the composition of ε ⊗ A : Jp ⊗ A −→ Up ⊗ A = A and u : A −→ B on the
summand Jp⊗A. Such a lifting in the previous diagram of planar dendroidal sets
is equivalent to a lifting in simplicial sets for

1 + 1 //
��

��

Hom(B,B)

��

J // Hom(A,B),

and this exists by Corollary 8.1.3. �

Corollary 8.3.3. A map X // // Y in pdSets is a trivial cofibration if and only if
X∞ // // Y∞ is a deformation retract.

Proof. This follows from Propositions 8.3.1 and 8.3.2, and the ‘two out of three’
property (CM2). �

Corollary 8.3.4. The class of trivial cofibrations is closed under pushouts.

Proof. Consider a pushout as in the back of the diagram

A //

��

��

C

��

��

A∞ //

��

C̃

��

B

��

// D

��

B∞ // D̃
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and assume that A −→ B is a trivial cofibration. Form the square as indicated
on the left of the cube, and construct C̃ and D̃ so as to make top and bottom
pushouts. Then C −→ C̃ and D −→ D̃ are compositions of pushouts along sums
of inner horns Λe[T ] −→ Ωp[T ], hence weak equivalences (as in the proof of Propo-
sition 8.3.1(i)). Moreover, since both bottom and top of the cube are pushouts,
so is its front. Now A∞ // // B∞ is a deformation retract, and these are stable

under pushout, so C̃ −→ D̃ is a deformation retract as well, and hence a weak
equivalence (cf. Proposition 8.2.5). It follows by ‘two out of three’ that C −→ D
is a weak equivalence. �

We will now consider countable planar dendroidal sets, i.e., planar dendroidal
sets X for which X(T ) is countable for each tree T ∈ Ωp. Or equivalently, since
Ωp has (or can be taken to have) only countably many objects, X is countable if
and only if its underlying set of dendrices

∐
X(T ) is.

Lemma 8.3.5. Let X be any planar dendroidal set.

(i) If X is countable, then so is X∞.

(ii) If U ⊆ X∞ is countable, then there exists a countable A ⊆ X with U ⊆ A∞.

Proof. Part (i) is clear. For part (ii), we will show by induction on n that, if
V ⊆ X(n) is countable, then there exists a countableB ⊆ X with V ⊆ B(n) ⊆ X(n).
Assertion (ii) then follows. Indeed, for U ⊆ X∞ countable, let U(n) = X(n)∩U , and
let An ⊆ X be countable with the property that (An)(n) ⊇ U(n). Let A = ∪nAn.
Then

U =
⋃
U(n) ⊆

⋃
(An)(n) ⊆

⋃
m

(⋃
n

An

)
(m)

=
⋃
m

A(m) = A∞.

So, let us prove the inductive statement. For n = 1, we have a countable V ⊆ X ′

and hence V ∩X is countable. Moreover, the dendrices of V which are in X are
all contained in a smaller pushout X ⊆ X0 ⊆ X ′, constructed as∐

α Λe[T ] //
��

��

X

��∐
α Ωp[T ] // X0

and involving only the sums over countably many maps α : Λe[T ] −→ X (for
varying T and e). So, if we let B be the union of V ∩X and the images of these
maps, then B is countable and V ⊆ B′. Now suppose that the statement has
been proved for X(n). Let V ⊆ X(n+1) be countable. By the case n = 1 and
writing X(n+1) = X ′(n), we find a countable C ⊆ X(n) with C ′ ⊇ V . And by
the induction hypothesis, we next find a countable B ⊆ X with B(n) ⊇ C. Then
B(n+1) ⊇ C ′ ⊇ V . This completes the induction and the proof of the lemma. �
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Lemma 8.3.6. Let u : X // // Y be a trivial cofibration, and let A ⊆ X and B ⊆ Y
be countable planar dendroidal subsets. Then there exist larger such subsets A ⊆
A ⊆ X and B ⊆ B ⊆ Y such that

(i) A and B are both countable,

(ii) u restricts to a trivial cofibration A −→ B,

(iii) u−1(B) = A.

Proof. By Corollary 8.3.3, the extension u∞ : X∞ −→ Y∞ of u is a deformation
retract. Let us write r : Y∞ −→ X∞ for the retraction and

H : J ⊗ Y∞ −→ Y∞

for the homotopy, with H(0,−) = id and H(1,−) = u∞r. Since A and B are
countable, there are countable A′ ⊆ X∞ and B′ ⊆ Y∞ for which r(B) ⊆ A′

and u(A) ⊆ B′ while H(J ⊗ B) ⊂ B′. Replacing A and B by A′ and B′, and
repeating this countably many times, we find countable A1 ⊆ X∞ and B1 ⊆ Y∞
with A ⊆ A1, B ⊆ B1, and such that u∞, r and H restrict to a deformation
retract

A1

u∞ //
B1,

r
oo H : J ⊗B1 −→ B1.

Next, by Lemma 8.3.5, there exist countable U1 ⊆ X and V1 ⊆ Y for which
A1 ⊆ (U1)∞ and B1 ⊆ (V1)∞. We may choose U1 and V1 in such a way that
u−1(V1) = U1, of course. Now repeat this construction, with U1 for A and V1 for B,
so as to find countable A2 ⊂ X∞ and B2 ⊆ Y∞ such that U1 ⊆ A2 and V1 ⊆ B2 and
the deformation retraction restricts to A2

//
oo B2 and H : J ⊗B2 −→ B2. Next,

by Lemma 8.3.5, find U2 ⊆ X and V2 ⊆ Y with A2 ⊆ (U2)∞ and B2 ⊆ (V2)∞,
and enlarge these if necessary so as to arrange that u−1(V2) = U2.

Continuing in this way, we build up a ladder

A ⊆ A1 ⊆

��

(U1)∞ ⊆

��

A2 ⊆

��

(U2)∞ ⊆

��

. . . ⊆ X∞
u∞

��

B ⊆ B1 ⊆ (V1)∞ ⊆ B2 ⊆ (V2)∞ ⊆ . . . ⊆ Y∞

r

OO

such that Ak is a deformation retract of Bk. Let A = ∪Un and B = ∪Vn. Then
A and B are countable, and u−1(B) = A because u−1(Vk) = Uk. Moreover,
A∞ = (∪Un)∞ = ∪An and B∞ = (∪Vn)∞ = ∪Bn. Since each u : An −→ Bn is a
deformation retract and in particular a weak equivalence, so is A∞ −→ B∞. By
Corollary 8.3.3, A −→ B is a weak equivalence. �

Proposition 8.3.7. The trivial cofibrations between countable objects generate the
trivial cofibrations in pdSets.
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Proof. Let u : X // // Y be a trivial cofibration. Consider the set E of all (non-
degenerate) dendrices in Y which are not in the image of u, and fix a well ordering
on E. We are going to construct a decomposition of u into a sequence

X = X0
// // X1

// // X2
// // . . . // // Xξ

// // Xξ+1
// // . . . // // Y, (8.4)

where Xλ = lim−→ ξ<λ
Xξ at limit ordinals λ, and each Xξ

// // Xξ+1 is a pushout

of a trivial cofibration between countable planar dendroidal sets. We construct Xξ

together with uξ : Xξ −→ Y by induction. Let X0 = X and u0 = u : X // // Y.
Also, at limit ordinals λ, let Xλ be the colimit as indicated, and let uλ be the
map determined by the uξ for ξ < λ and the universal property of the colimit. To
construct Xξ+1 from Xξ and uξ+1 from uξ, let y ∈ Y (T ) be the first dendrex in
the well ordering on E for which y 6∈ image(uξ). Let B ⊆ Y be a countable planar
dendroidal subset containing y, and let A = u−1

ξ (B) ⊆ Xξ. Then, by Lemma 8.3.6,

there are countable A and B with A ⊆ A ⊆ Xξ and B ⊆ B ⊆ Y , such that uξ
restricts to a trivial cofibration A −→ B and u−1

ξ (B) = A. Now form the pushout

A //
��

∼
��

Xξ
��

∼

��

B // Xξ+1

and let uξ+1 : Xξ+1 −→ Y be the map induced by uξ : Xξ
// // Y and B ⊆ Y .

This map uξ+1 is again a monomorphism, because the square is also a pullback
(u−1
ξ (B) = A). This construction stops when no such first y can be found, in which

case Xξ = Y . (In particular, the length of the sequence (8.4) is bounded by the
length of the well ordering on E.) �

8.4 A Quillen model structure on dendroidal sets

In this section, we show how to modify the preceding arguments, so as to obtain
a model structure on the category of dendroidal sets. We call a map f : X −→ Y
between dendroidal sets a weak equivalence if there are normalizations Xn of X
and Yn of Y which fit into a commutative square (cf. Section 8.1.3)

Xn
fn //

����

Yn

����

X
f
// Y ,

such that, for any inner Kan complex K in dSets, the map

τi∗Hom(Yn,K) −→ τi∗Hom(Xn,K)



108 Lecture 8. Model structures on dendroidal sets

is an equivalence of categories. We note that this definition is independent of the
choice of the normalization, since they are unique up to homotopy equivalence
(see Lemma 8.1.5).

Theorem 8.4.1. These weak equivalences are part of a closed model structure on
the category of dendroidal sets, in which the cofibrations are the normal monomor-
phisms.

Proposition 8.4.2. In this model structure, the fibrant objects are precisely the inner
Kan complexes.

Proposition 8.4.3. The induced model structure on dSets/U = sSets coincides with
the Joyal structure.

The proof of Theorem 8.4.1 follows exactly the same pattern as that of The-
orem 8.2.1. Thus, to establish Theorem 8.4.1, it suffices to prove the following
three propositions (analogous to Proposition 8.2.5, Corollary 8.3.4 and Proposi-
tion 8.3.7).

Proposition 8.4.4. Let Y −→ X be a map of dendroidal sets having the right
lifting property with respect to all normal monomorphisms. Then Y −→ X is a
weak equivalence.

Proposition 8.4.5. The class of trivial cofibrations between dendroidal sets is closed
under compositions, retracts and pushouts.

Proposition 8.4.6. The class of trivial cofibrations between dendroidal sets contains
a small set of generators.

Proof of Proposition 8.4.4. Consider such a map f : Y −→ X. Choose a normal-
ization r : Xn

// // X , and find a lift as in

∅ //

��

Y

f

��

Xn r
// //

s

>>

X.

Next, factor the map s as a normal monomorphism i : Xn
// // Z followed by a

map t : Z −→ Y having the right lifting property with respect to all normal
monomorphisms, and lift in

Xn

i

��

Xn

r
����

Z
ft
//

w

==

X.

Then t : Z −→ Y is a normalization of Y , and Xn is a retract of Z since wi = idXn .
In fact, it is a deformation retract, i.e., the composition iw is Jd-homotopic to the
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identity on Z, as one sees by lifting in

(U + U)⊗ Z
⋃
Jd ⊗Xn

��

��

ϕ
// Z

ft

��

Jd ⊗ Z

εZ

77

ψ
// X.

Here the map on the left is a normal monomorphism and ft has the right lifting
property with respect to all normal monomorphisms. The map ψ is ftεZ , and ϕ
is given by idZ and iw on the two copies of Z, and by iεXn on Jd ⊗ Xn. Thus,
w : Z

//
oo Xn : i is a Jd-homotopy equivalence, and hence so are the induced

maps
τi∗Hom(Xn,K)

//
oo τi∗Hom(Y,K),

i.e., this is an equivalence of categories (as in the proof of Proposition 8.2.5). �

Proof of Proposition 8.4.2. To prove that any fibrant dendroidal set is inner Kan
it suffices to show that each inner horn inclusion

Λe[T ] −→ Ω[T ]

is a trivial cofibration. It is a normal monomorphism between normal objects, and,
for any other normal monomorphism A −→ B, the map

Λe[T ]⊗B
⋃

Ω[T ]⊗A // // Ω[T ]⊗B

is inner anodyne (see Section 7.5). It follows that, for any inner Kan complex K,
the map Hom(Ω[T ],K) −→ Hom(Λe[T ],K) has the right lifting property with
respect to all normal monomorphisms. But then the map

i∗Hom(Ω[T ],K) −→ i∗Hom(Λe[T ],K)

of simplicial sets has the right lifting property with respect to all monomorphisms,
hence it is a homotopy equivalence, and therefore τ maps it to an equivalence of
categories.

Conversely, suppose that X is an inner Kan complex. First of all, note that
X −→ 1 has the right lifting property with respect to trivial cofibrations between
normal objects. Indeed, if A // // B is such a trivial cofibration, then

Hom(B,X) −→ Hom(A,X)

is an inner Kan fibration between inner Kan complexes, and

τi∗Hom(B,X) −→ τi∗Hom(A,X)
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is a categorical fibration and an equivalence of categories, hence surjective on
objects. This means that every map A −→ X extends to B:

A //
��

��

X.

B

>>

(This is the same argument as for pdSets; cf. Theorem 8.2.2.)
So, it is enough to show that the class of trivial cofibrations is the saturation

of the class of trivial cofibrations between normal objects. Take an arbitrary trivial
cofibration u : A // // B. Construct the normalization q : B′ −→ B and pull it back
to get a normalization p : A′ −→ A, as in the square

A′ //
u′ //

p

��

B′

q

��

A //
u
// B.

Now form the pushout (which will then also be a pullback)

A′ //
u′ //

p

��

B′

r

��

A //
u
// P .

(8.5)

By the universal property of this pushout, there is a unique map s : P −→ B with
sr = q and sv = u. If we can prove that s has the right lifting property with
respect to normal monomorphisms, then the proof is finished since we can find a
lift

A
v //

u

��

P

s

��

B

w

>>

B

which makes u a retract of v:

A

u

��

A

v

��

A

u

��

B
w
// P

s
// B.

So u is a retract of a pushout of a trivial cofibration between normal objects
(namely u′), as desired.
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To prove that s has the right lifting property with respect to normal mono-
morphisms, take a normal monomorphism U // // V and a square

U //
��

��

P

s

��

V // B.

We may assume that U is normal (in fact, we may assume that U // // V is of the
form ∂Ω[T ] −→ Ω[T ]). To find a lift V −→ P , it is enough to lift U −→ P to
U −→ B′:

B′

��

U

>>

// P

and then use the right lifting property of B′ −→ B:

U //
��

��

B′

��

P
��

V

@@

// B.

For this, pull back the pushout square (8.5) along U −→ P to form the cube

Q′ //

��

��

U ′

��

��

A′ //

��

B′

r

��

Q

��

// U

��

A // P .

In this diagram, the left, right, bottom and top squares are pullbacks, while the
front and back are also pushouts. Then Q′ −→ Q is a normalization and Q is
normal (because it lies over U). So Q′ −→ Q has a section. But then so does its

pushout U ′ −→ U , say σ : U −→ U ′. The composition U
σ−→ U ′ −→ B′ is the

required lift and this finishes the proof. �

Proof of Proposition 8.4.3. The model structure on dSets restricts to one on sSets
(since sSets = dSets/U), in which the cofibrations are all the monomorphisms.
Moreover, a map X −→ Y of simplicial sets is a weak equivalence in this model
structure if and only if, for any dendroidal inner Kan complex, the map

τi∗Hom(i!Y,K) −→ τi∗Hom(i!X,K)
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is an equivalence of categories. But i∗Hom(i!Y,K) = i∗Hom(Y, i∗K), and i∗(K)
is an inner Kan complex of simplicial sets; conversely, every inner Kan complex F
of simplicial sets is of this form, for K = i!(F ). So the weak equivalences are also
the same as in the Joyal structure. �

Lemma 8.4.7. Any trivial cofibration between normal inner Kan complexes is a
deformation retract.

Proof. This is proved in much the same way as Proposition 8.3.2, except that we
cannot use that inner Kan complexes are fibrant. Let u : A // // B be a trivial
cofibration, and assume that A and B are both inner Kan as well as normal.
Consider the map

u∗ : Hom(B,A) −→ Hom(A,A).

This is a map between dendroidal inner Kan complexes, as well as an inner Kan
fibration. Then i∗(u∗) : i∗Hom(B,A) −→ i∗Hom(A,A) is an inner Kan fibration of
simplicial sets between quasi-categories. Thus τ maps it to a fibration of categories
(see Proposition 8.1.4(ii)) as well as to an equivalence of categories. But then

τi∗Hom(B,A) −→ τi∗Hom(A,A)

must be surjective on objects, which means that there is a retraction r : B −→ A
with ru = idA. Next, to see that ur is homotopic (rel. A) to the identity on B, we
need to lift in

U + U //
��

��

Hom(B,B)

��

Jd //

99

Hom(A,B).

By adjunction, finding such a lift corresponds to finding a lift in the square

1 + 1 //

��

i∗Hom(B,B)

��

J //

88

i∗Hom(A,B)

in the category of simplicial sets. Such a lifting exists by Corollary 8.1.3. �

For a dendroidal set, we again write X −→ X∞ for the object obtained
by iterated pushouts along sums of inner horn inclusions as in Section 8.3. So
X∞ is an inner Kan complex, and X −→ X∞ is inner anodyne. Moreover, the
construction is functorial. Also note that X // // X∞ is normal, so X∞ is normal
whenever X is.

Lemma 8.4.8. For any normal object X, the map X −→ X∞ is a trivial cofibration.
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Proof. This claim is proved exactly as Proposition 8.3.1(i). In fact, the argument
shows that every inner anodyne extension between normal objects is a trivial
cofibration. �

Corollary 8.4.9. A cofibration (i.e., a normal monomorphism) u : X // // Y is triv-
ial if and only if it fits into a diagram

X
��

u

��

Xn
p
oooo // a //

��

v

��

(Xn)∞

w

��

Y Ynq
oooo //

b
// (Yn)∞

where p and q are normalizations of X and Y , a and b are inner anodyne, u and
v are normal monomorphisms, and w is a deformation retract.

Proof. If u is a trivial cofibration, one can construct a diagram as indicated. Then
w is a deformation retract by Lemma 8.4.7.

Conversely, suppose that we have a diagram as above. Then p and q are weak
equivalences by Proposition 8.4.4, and a and b are so as well by the remark just
made. Since any deformation retract is a weak equivalence, it follows that u is a
weak equivalence by the ‘two out of three’ property. �

Proof of Proposition 8.4.5. By functoriality of normalization, it is clear that the
trivial cofibrations are closed under retracts and composition. For the case of
pushouts, consider a pushout diagram

A //
��

��

C
��

��

B // D

(8.6)

where A // // B is a trivial cofibration. Take a normalization Dn
// // D and con-

struct a cube
An //

��

��

Cn

��

��

Bn //

��

Dn

��

A

��

// C

��

B // D

of which all vertical faces are pullback squares. Since, in a topos, pushouts are
preserved by pullbacks, the top face is again a pushout. Since An // // A, Bn // // B
and Cn // // C are all normalizations, this reduces the problem to the case where all
objects in the square (8.6) are normal. So we assume this from now on. Construct
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A // // A∞ and B // // B∞, and form another cube in which top and bottom are
pushouts, so that the front is automatically a pushout as well:

A //
��

��

��

C

��

��

A∞ //

��

C̃

��

B��
��

// D

��

B∞ // D̃.

Then C −→ C̃ and D −→ D̃ are inner anodyne maps between normal objects,
hence weak equivalences. Moreover, A∞ −→ B∞ is a deformation retract by
Lemma 8.4.7, and hence so is its pushout C̃ −→ D̃. Thus C̃ −→ D̃ is a weak
equivalence. It follows that C −→ D is also a weak equivalence. �

Finally, we prove Proposition 8.4.6. By the argument of Proposition 8.3.7, it
suffices to show the analog of Lemma 8.3.6:

Lemma 8.4.10. Let u : X // // Y be a trivial cofibration between dendroidal sets,
and let A ⊆ X, B ⊆ Y be countable subsets. Then there are larger countable
subsets A ⊆ A ⊆ X and B ⊆ B ⊆ Y such that

(i) A and B are both countable,

(ii) u restricts to a trivial cofibration A −→ B,

(iii) u−1(B) = A.

Proof. Take A ⊆ X // u // Y ⊇ B as stated in the lemma. Let p : Xn
// // X

and q : Yn // // Y be the functorial normalizations with countable fibers (cf. Sec-
tion 8.1.3). Let A0 = A and B0 = B ∪ u(A0), so that u maps A0 into B0. We
have normal covers p−1(A0) −→ A0 and q−1(B0) −→ B0, and p−1(A0) ⊆ Xn and
q−1(B0) ⊆ Yn are both countable. Using Corollary 8.4.9 and the argument in the

proof of Lemma 8.3.6, we find that there exist countable Ã1 and B̃1 with

p−1(A0) ⊆ Ã1 ⊆ Xn, q−1(B0) ⊆ B̃1 ⊆ Yn,

and such that Xn −→ Yn restricts to a trivial cofibration Ã1 −→ B̃1. Let B1 =
q(B̃1) ⊇ B0 be the image of B̃1, and let A1 = p(Ã1)∪u−1(B1). Then A1 and B1 are
countable again. So, by the same argument, p−1(A1) and q−1(B1) are contained

in countable Ã2 ⊆ Xn and B̃2 ⊆ Yn such that Xn −→ Yn restricts to a weak
equivalence Ã2 −→ B̃2. Now let B2 = q(B̃2) and A2 = p(Ã2) ∪ u−1(B2), and so
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on. In this way, we build a ladder of countable dendroidal sets

A0

u

��

// // A1
// //

��

A2
// //

��

. . . // // X
��

��

B0
// // B1

// // B2
// // . . . // // Y

for which the normal covers p−1(Ai) and q−1(Bi) are interpolated by trivial cofi-

brations Ãi −→ B̃i,

p−1(A0)

��

// // Ã1
// //

∼
��

p−1(A1) // //

��

Ã2
// //

∼
��

. . . // // Xn

��

q−1(B0) // // B̃1
// // q−1(B1) // // B̃2

// // . . . // // Yn.

It follows that if we let A = ∪An ⊆ X and B = ∪Bn ⊆ Y , then p−1(A) −→ q−1(B)
is a trivial cofibration, and hence so is A −→ B. Moreover, u−1(B) = A by
construction. �

Proof of Theorem 8.4.1. Lemma 8.4.10 together with the argument of Proposi-
tion 8.3.7 proves Proposition 8.4.6 and completes the proof. �
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Part II

Simplicial Presheaves and
Derived Algebraic Geometry

Bertrand Toën



Lecture 1

Motivation and objectives

The purpose of this first lecture is to present some motivations for derived al-
gebraic geometry and to describe the objectives of this series of lectures. I will
start with a brief review of the notion of moduli problems and moduli spaces.
In a second part, I will present the particular example of the moduli problem of
linear representations of a discrete group. The study of this example will show the
importance of two useful constructions to produce and understand moduli spaces:

generally, quotients by groupoids). As many algebraic constructions, these fail to
be exact in some sense, and possess derived versions. This will provide motivation
for derived algebraic geometry, which is a geometrico-algebraic setting in which
these derived versions exist and are well behaved.

We warn the reader that this section is highly informal and that several
notions and ideas will be explained more formally during the lectures.

1.1 The notion of moduli spaces

The main object studied in algebraic geometry are schemes (or, more generally,
algebraic spaces —these notions will be redefined later). They often appear as
solutions to moduli functors (or, equivalently, moduli problems), which intuitively
means that their points classify certain geometrico-algebraic objects (e.g., a scheme
whose points are in one-to-one correspondence with algebraic subvarieties of the
projective space Pn). More precisely, we are often given a moduli functor

F : Comm −→ Set

from the category of commutative rings to the category of sets. Each set F (A) has
to be thought of as a set of families of objects parametrized by the scheme SpecA
—we will later see many examples. When it exists, a scheme X is then called a
moduli space for F (or a solution to the moduli problem F ; we also say that the
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scheme X represents F or that F is representable by X) if there are functorial
bijections

F (A) ' Hom(SpecA,X).

An important special case is when X is an affine scheme, say SpecB. Then X
represents F if and only if there are functorial isomorphisms

F (A) ' Hom(B,A),

where Hom(B,A) is the set of ring morphisms from B to A.
We mention here a very basic, but fundamental example of a moduli space,

namely the projective space Pn —of course, more elaborate examples will be given
in these notes. We define a functor Pn : Comm −→ Set as follows. For A ∈ Comm,
we let Pn(A) be the set of sub-A-modules M ⊂ An+1 such that the quotient
An+1/M is projective of rank 1 over A (i.e., an invertible A-module). For a mor-
phism A −→ B in Comm, the application F (A) −→ F (B) sends M ⊂ An+1 to
M ⊗AB ⊂ Bn+1. Note here that, as An+1/M is projective, M is a direct factor in
An+1, and thus M ⊗A B is a sub-A-module of Bn+1. This defines the functor Pn.
It is well known that this functor is representable by a scheme, which is denoted
by Pn and called the projective space of dimension n.

The notion of moduli space is extremely important for at least two reasons:

1. A good geometric understanding of the moduli space of a given moduli prob-
lem can be considered as a step towards a solution to the corresponding clas-
sification problem. For instance, a good enough understanding of the moduli
space of algebraic curves could be understood as a solution to the problem
of classifying algebraic curves.

2. The notion of moduli problems is a rich source to construct new and inter-
esting schemes. Indeed, the fact that a given scheme X is the solution to a
moduli problem often makes its geometry rather rich. Typically, the scheme
will have interesting subschemes corresponding to objects satisfying certain
additional properties.

1.2 Construction of moduli spaces: one example

For a given moduli problem F : Comm −→ Set, the question of the existence
of a moduli space is never an easy question. There are two general strategies to
prove the existence of such a moduli space, either by applying the so-called Artin’s
representability theorem, or by a more direct approach consisting of constructing
the moduli space explicitly. The first approach is the most powerful to prove the
existence, but the second one is often needed to have a better understanding of
the moduli space itself (e.g., to prove that it satisfies some further properties). In
this section we will study the particular example of the moduli problem of linear
representations of a discrete group, and will try to construct the corresponding
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moduli space by a direct approach. This example is chosen so that the moduli
space does not exist, which is most often the case, but still the approach to the
construction that we present is right, at least when it is done in the context of
derived algebraic geometry —we will of course come back to this fundamental
example later on, when the techniques of derived stacks are at our disposal.

So let Γ be a group, that will be assumed to be finitely presented. We want
to study finite-dimensional linear representations of Γ, and for this we are looking
for a moduli space of those. We start by defining a moduli functor

R(Γ) : Comm −→ Set,

sending a commutative ring A to the set of isomorphism classes of A[Γ]-modules
whose underlying A-module is projective and of finite type over A. As projective
A-modules of finite type correspond to vector bundles on the scheme SpecA,
R(Γ)(A) can also be identified with the set of isomorphism classes of vector bundles
on SpecA endowed with an action of Γ. For a morphism of commutative rings
A −→ A′, we have a base-change functor −⊗AA′ from A[Γ]-modules to A′[Γ]-mod-
ules, which induces a function

R(Γ)(A) −→ R(Γ)(A′).

This defines the moduli functor R(Γ).
The strategy to try to construct a solution to this moduli problem is to start

by studying a framed (or rigidified) version of it. We introduce, for any integer n,
an auxiliary moduli problem R′n(Γ), whose value at a commutative ring A is the
set of group morphisms Γ −→ Gln(A). We set R′(Γ) =

∐
nR
′
n(Γ) and define a

morphism (i.e., a natural transformation of functors)

π : R′(Γ) −→ R(Γ),

sending a morphism ρ : Γ −→ Gln(A) to the A-module An together with the action
of Γ defined by ρ. At this point we would like to argue in two steps:

1. The moduli functor R′(Γ) is representable.

2. The moduli functor R(Γ) is the disjoint union (for all n) of the quotients of
the schemes R′n(Γ) by the group schemes Gln.

For step 1, we write a presentation of Γ by generators and relations

Γ ' 〈g1, . . . , gm〉/〈r1, . . . , rp〉.

From this presentation, we deduce the existence of a cartesian square of moduli
functors

R′n(Γ) //

��

Glmn

��

{1} // Glpn,
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where Gln is the functor A 7−→ Gln(A). The functor Gln is representable by an
affine scheme. Indeed, if we set

Cn = Z[Ti,j ][Det(Ti,j)
−1],

where Ti,j are formal variables with 1 ≤ i, j ≤ n, then the affine scheme SpecCn
represents the functor Gln. This implies that Glrn is also representable by an affine
scheme for any integer r, precisely Spec (C⊗rn ). And, finally, we see that R′n(Γ) is
representable by the affine scheme

Spec (C⊗mn ⊗C⊗p
r

Z).

This sounds good, but an important observation here is that in general C⊗mn is
not a flat C⊗pr -algebra, and thus that the tensor product C⊗mn ⊗C⊗p

r
Z is not

well behaved from the point of view of homological algebra. Geometrically, this is
related to the fact that R′n(Γ) is the intersection of two subschemes in Glmn ×Glpn,
namely the graph of the morphism Glmn −→ Glpn and Glmn ×{1}, and that these two
subschemes are not in general position. A direct consequence of this is the fact that
the scheme R′n(Γ) can be badly singular at certain points, precisely the points for
which the above intersection is not transversal. Another bad consequence is that
the tangent complex (a derived version of the tangent space —we will review this
notion later in the course) is not easy to compute for the scheme R′n(Γ). The main
philosophy of derived algebraic geometry is that the tensor product C⊗mn ⊗C⊗p

r
Z

should be replaced by its derived version C⊗mn ⊗L
C⊗p

r
Z, which also encodes the

higher Tor’s

Tor
C⊗p

r
∗ (C⊗mn ,Z),

for instance by considering simplicial commutative rings. Of course, C⊗mn ⊗L
C⊗p

r
Z

is no longer a commutative ring, and thus the notion of scheme should be extended
in order to be able to consider objects of the form “SpecA”, where A is now a
simplicial commutative ring.

Exercise 1.2.1. Suppose that Γ = Z2, presented by the standard presentation
Γ = 〈g1, g2〉/〈[g1, g2]〉. Show that the morphism Cn −→ C⊗2

n is indeed a non-flat
morphism.

We now consider step 2. The functor Gln : Comm −→ Set sending A to
Gln(A) is a group object (in the category of functors) and acts naturally on R′n(Γ).
For a given A ∈ Comm, the action of Gln(A) on R′n(Γ)(A) = Hom(Γ, Gln(A)) is
the one induced by the conjugation action of Gln(A) on itself. The morphism
R′n(Γ) −→ R(Γ) is equivariant for this action and thus factorizes as a morphism

R′n(Γ)/Gln −→ R(Γ).

We thus obtain a morphism of functors∐
n

R′n(Γ)/Gln −→ R(Γ).
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Intuitively, this morphism should be an isomorphism, and in fact it is close to
being one. It is a monomorphism, but it is not an epimorphism because not every
projective A-module of finite type is free. However, up to a localization for the
Zariski topology on SpecA, this is the case, and therefore we see that the above
morphism is an epimorphism in the sense of sheaf theory.

In other words, this morphism is an isomorphism if the left-hand side is
understood as the quotient sheaf with respect to the Zariski topology on the
category Commop. This sounds like a good situation, as both functors R′n(Γ) and
Gln are representable by affine schemes. However, the quotient sheaf of an affine
scheme by the action of an affine group scheme is in general not a scheme when
the action has fixed points. It is, for instance, not so hard to see that the quotient
sheaf A1/(Z/2) is not representable by any scheme (here A1 = SpecZ[T ] is the
affine line and the action is induced by the involution T 7−→ −T ; see Ex. 1.2.2).
In our situation, the action of Gln on R′n(Γ) has many fixed points, since, for a
given A ∈ Comm, the stabilizer of a given morphism Γ −→ Gln(A) is precisely
the group of automorphisms of the corresponding A[Γ]-module.

We see here that the reason for the non-representability of the quotients
R′n(Γ)/Gln is the existence of non-trivial automorphism groups. Here the phi-
losophy is the same as for the previous point: the quotient construction is not
exact in some sense, and should be derived. The derived quotient of a group G
acting on a set X is the groupoid [X/G], whose objects are the points of X and
whose morphisms from x to y are the elements g ∈ G such that gx = y. The set
of isomorphism classes of objects in [X/G] is the usual quotient X/G, but the
derived quotient [X/G] also remembers the stabilizers of the action in the auto-
morphism groups of [X/G]. This suggests that the right thing to do is to replace∐
nR
′
n(Γ)/Gln by the more involved construction

∐
n[R′n(Γ)/Gln], which is now a

functor from Comm to the category of groupoids rather than the category of sets.

In the same way, this suggests that the functor R(Γ) should rather be replaced
by R(Γ), sending a commutative ring A to the whole groupoid of A[Γ]-modules
whose underlying A-module is projective and of finite type. We see here that we
need again to extend the notion of scheme in order to be able to find a geometric
object representing R(Γ), as the functor represented by a scheme is always set-
valued by definition.

Exercise 1.2.2. Let Z/2 act on the scheme A1 = SpecZ[T ] by T 7−→ −T . We
denote by F : Comm −→ Set the functor represented by A1.

1. Show that the quotient of A1 by Z/2 exists in the category of affine schemes
and is isomorphic to Spec (Z[T ]Z/2) ' A1.

2. Suppose now that we are given a Grothendieck topology τ on Commop = Aff,
the category of affine schemes. Let F0 = F/(Z/2) be the quotient sheaf for
this topology. Prove that the natural morphism F × Z/2 −→ F ×F0

F is an
epimorphism of sheaves.
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3. Show that, if the topology τ is sub-canonical, then F0 is represented by an
affine scheme if and only if it is represented by A1.

4. Assume now that τ is the ffp (flat and finitely presented) topology. Use (2)
and (3) to show that F0 cannot be represented by an affine scheme.

1.3 Conclusions

We arrive at the conclusions of this first lecture. The fundamental objects of
algebraic geometry are functors

Comm −→ Set.

However, we have seen that certain constructions on rings (tensor products), or on
sets (quotients), are not exact and should rather be derived in order to be better
behaved. Deriving the tensor product for commutative rings forces us to intro-
duce simplicial commutative rings, and deriving quotients forces us to introduce
groupoids (when it is a quotient by a group) and, more generally, simplicial sets
(when it is a more complicated quotient). The starting point of derived algebraic
geometry is that its fundamental objects are functors

sComm −→ sSet

from the category of simplicial commutative rings to the category of simplicial sets.
The main objective of the series of lectures is to explain how the basic notions of
algebraic geometry (schemes, algebraic spaces, flat, smooth, and étale morphisms)
can be extended to this derived setting, and how this is useful for the study of
moduli problems.

We will proceed in two steps. We will first explain how to do half of the job
and to allow derived quotients, but not derived tensor products (i.e., considering
functors Comm −→ sSet). In other words, we will start to explain formally how
the quotient problem (step 2 of the preceding section) can be solved. This will be
done by introducing the notions of stacks and algebraic stacks, which are based
on the well-known homotopy theory of simplicial presheaves of Jardine and Joyal.
Later on we will explain how to incorporate derived tensor products and simplicial
commutative rings to the picture.



Lecture 2

Simplicial presheaves as stacks

The purpose of this second lecture is to present the homotopy theory of simplicial
presheaves on a Grothendieck site and explain how these are models for stacks. In
the next lecture, simplicial presheaves will be used to produce models for (higher)

of algebraic n-stacks, a far-reaching generalization of the notion of schemes for
which all quotients by reasonable equivalence relations exist.

2.1 Review of the model category of simplicial

presheaves

We let (C, τ) be a Grothendieck site. Recall that this means that we are given
a category C together with a Grothendieck topology τ on C. The Grothendieck
topology τ is the data for any object X ∈ C of a family cov(X) of sieves over X
(i.e., subfunctors of the representable functor hX = Hom(−, X)) satisfying the
following three conditions:

1. For any X ∈ C, we have hX ∈ cov(X).

2. For any morphism f : Y −→ X in C and any u ∈ cov(X), we have

f∗(u) = u×hX
hY ∈ cov(Y ).

3. Let X ∈ C, u ∈ cov(X), and let v be any sieve on X. If for all Y ∈ C and
any f ∈ u(Y ) ⊂ Hom(Y,X) we have f∗(v) ∈ cov(Y ), then v ∈ cov(X).

Recall that for such a Grothendieck site we have its associated category of
presheaves Pr(C), which by definition is the category of all functors from Cop to
the category of sets. The full subcategory of sheaves Sh(C) is defined to be the
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subcategory of presheaves F : Cop −→ Set such that, for any X ∈ C and any
u ∈ cov(X), the natural map

F (X) ' HomPr(C)(hX , F ) −→ HomPr(C)(u, F )

is bijective. A standard result from sheaf theory states that the inclusion functor

i : Sh(C) ↪−→ Pr(C)

has an exact (i.e., commuting with finite limits) left adjoint

a : Pr(C) −→ Sh(C)

called the associated sheaf functor.
We now let sPr(C) be the category of simplicial objects in Pr(C). We start

to endow the category sPr(C) with a levelwise model category structure defined
as follows.

Definition 2.1.1. Let f : F −→ F ′ be a morphism in sPr(C).

1. The morphism f is a global fibration if for any X ∈ C the induced map

F (X) −→ F ′(X)

is a fibration of simplicial sets (for the standard model category structure,
i.e., a Kan fibration).

2. The morphism f is a global equivalence if for any X ∈ C the induced map

F (X) −→ F ′(X)

is an equivalence1 of simplicial sets (again for the standard model category
structure on simplicial sets).

3. The morphism f is a global cofibration if it has the right lifting property with
respect to every fibration which is also an equivalence.

It is well known that the above definitions endow the category sPr(C) with a
cofibrantly generated model category structure. This model category is moreover
proper and cellular (in the sense of [Hi]). This model structure will be referred to
as the global model structure. There is a small set theory problem here when the
category C is not small. This problem can be easily solved by fixing universes and
will simply be neglected in the sequel.

We now take into account the Grothendieck topology τ on C in order to refine
the global model structure. This is an important step, since when the quotient of a
group action on a scheme exists, the presheaf represented by the quotient scheme is

1In these notes the expression equivalence always refers to weak equivalence.
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certainly not the quotient presheaf. However, for free actions the sheaf represented
by the quotient scheme is the quotient sheaf.

We start by introducing the so-called homotopy sheaves of a simplicial pre-
sheaf F : Cop −→ sSet. We define a presheaf

πpr
0 (F ) : Cop −→ Set

simply by sending X ∈ C to π0(F (X)). In the same way, for any X ∈ C and any
0-simplex s ∈ F (X)0, we define presheaves of groups on C/X,

πpr
i (F, s) : (C/X)op −→ Gp

sending f : Y −→ X to πi(F (Y ), f∗(s)). Here, F (Y ) is the simplicial set of values
of F over Y , f∗(s) ∈ F (Y )0 is the inverse image of the base point s, and finally
πi(F (Y ), f∗(s)) denotes the correct homotopy groups of the simplicial set F (Y )
based at f∗(s). By correct we mean either the simplicial (or combinatorial) homo-
topy groups of a fibrant model for F (Y ), or more easily the topological homotopy
groups of the geometric realization |F (Y )|.

The associated sheaves to the presheaves πpr
0 (F ) and πpr

i (F, s) will be denoted
by π0(F ) and πi(F, s). These are called the homotopy sheaves of F . They are
functorial in F .

Definition 2.1.2. Let f : F −→ F ′ be a morphism of simplicial presheaves.

1. The morphism f is a local equivalence if it satisfies the following two condi-
tions:

(a) The induced morphism π0(F ) −→ π0(F ′) is an isomorphism of sheaves.

(b) For any X ∈ C, any s ∈ F (X)0 and any i > 0, the induced morphism
πi(F, s) −→ πi(F

′, f(s)) is an isomorphism of sheaves on C/X.

2. The morphism f is a local cofibration if it is a global cofibration in the sense
of Definition 2.1.1.

3. The morphism f is a local fibration if it has the left lifting property with
respect to every local cofibration which is also a local equivalence.

For simplicity, we will use the expressions equivalence, fibration and cofibration in
order to refer to local equivalence, local fibration and local cofibration.

It is also well known that the above definition endows the category sPr(C)
with a model category structure, but this is a much harder result than the existence
of the global model structure. This result, as well as several small modifications,
is due to Joyal (for simplicial sheaves) and Jardine (for simplicial presheaves), and
we refer to [Bl, DHI] for recent references. Unless the contrary is specified, we
will always assume that the category sPr(C) is endowed with this model category
structure, which will be called the local model structure.
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A nice result proved in [DHI] is the following characterization of fibrant
objects in sPr(C) (for the local model structure). Recall first that a hypercovering
of an object X ∈ C is the data of a simplicial presheaf H together with a morphism
H −→ X satisfying the following two conditions:

1. For any integer n, the presheaf Hn is a disjoint union of representable pre-
sheaves.

2. For any n ≥ 0, the morphism of presheaves (of sets)

Hn ' Hom(∆n, H) −→ Hom(∂∆n, H)×Hom(∂∆n,X) Hom(∆n, X)

induces an epimorphism on the associated sheaves.

Here ∆n denotes the simplicial simplex of dimension n as well as the corre-
sponding constant simplicial presheaf. In the same way ∂∆n is the (n−1)-skeleton
of ∆n and is considered here as a constant simplicial presheaf. Finally, Hom de-
notes here the presheaf of morphisms between two simplicial presheaves. This
second condition can equivalently be stated by saying that, for any Y ∈ C and
any commutative square of simplicial sets

∂∆n //

��

H(Y )

��

∆n // X(Y ) = Hom(Y,X),

there exists a covering sieve u ∈ cov(Y ) such that for any f : U −→ Y in the sieve u
there exists a morphism ∆n −→ H(U) making the following square commutative:

∂∆n //

��

H(U)

��

∆n //

;;

X(U) = Hom(U,X).

This property is also called the local lifting property, and is the local analog of the
lifting property characterizing trivial fibrations of simplicial sets. In particular,
it implies that the homotopy sheaves of H and of X coincide, and thus that
H −→ X is a local equivalence. In low dimensions, this local lifting condition says
the following:

• (n = 0) The morphism H0 −→ X induces an epimorphism on the associated
sheaves.

• (n = 1) The morphism H1 −→ H0 ×X H0 induces an epimorphism on the
associated sheaves.

• (n = 2) The morphism H2 −→ H1 ×H0×H0
(H1 ×H0

H1) induces an epimor-
phism on the associated sheaves.
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Note that, for n > 1, the simplicial set ∂∆n is connected, and thus the
morphism X∆n −→ X∂∆n

is, in this case, an isomorphism. This implies that,
for n > 1, the condition 2 of being a hypercovering is equivalent to the simpler
condition that

Hn −→ H∂∆n

induces an epimorphism on the associated sheaves. Therefore, this condition only
depends on Hn for n > 1, and not upon X or upon the morphism H −→ X.

For F ∈ sPr(C), any X ∈ C and any hypercovering H of X, we can define
an augmented cosimplicial diagram of simplicial sets

F (X) −→ ([n] 7−→ F (Hn)) .

Here, each Hn is a coproduct of representables, say Hn =
∐
iHn,i, and by defi-

nition we set F (Hn) =
∏
i F (Hn,i). (When this product is infinite, it should be

taken with some care, by first replacing each F (Hn,i) by its fibrant model.)
With these notions and notations, it is possible to prove (see [DHI]) that

an object F ∈ sPr(C) is fibrant (for the local model structure) if and only if it
satisfies the following two conditions:

1. For any X ∈ C, the simplicial set F (X) is fibrant.

2. For any X ∈ C and any hypercovering H −→ X, the natural map

F (X) −→ Holim[n]∈∆ F (Hn)

is an equivalence of simplicial sets.

The above first condition is rather mild and the second condition is of course
the important one. It is a homotopy analog of the sheaf condition, in the sense
that when F is a presheaf of sets, considered as a simplicial presheaf constant in
the simplicial direction, then this second condition for F is equivalent to the fact
that F is a sheaf (this is because the homotopy limit is then simply a usual limit
in the category of sets and the condition becomes the usual descent condition for
sheaves).

Definition 2.1.3. 1. An object F ∈ sPr(C) is called a stack if, for any X ∈ C
and any hypercovering H −→ X, the natural map

F (X) −→ Holim[n]∈∆ F (Hn)

is an equivalence of simplicial sets.

2. The homotopy category Ho(sPr(C)) will be called the homotopy category of
stacks on the site (C, τ) (or simply the category of stacks). Most often objects
in Ho(sPr(C)) will simply be called stacks. The expressions morphism of
stacks and isomorphism of stacks will refer to morphisms and isomorphisms
in Ho(sPr(C)). The set of morphisms of stacks from F to F ′ will be denoted
by [F, F ′].
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The following exercise is to understand that, for a given simplicial presheaf,
being a stack and being a sheaf of simplicial sets are two different notions having
nothing in common.

Exercise 2.1.4. 1. Show that a presheaf of sets F : Cop −→ Set, considered as
a simplicial presheaf, is a stack if and only if it is a sheaf of sets.

2. Let G be a sheaf of groups on C and consider the simplicial presheaf

BG : Cop −→ sSet
X 7−→ B(G(X)).

Here, if H is any discrete group, BH is its simplicial classifying space, whose
set of n-simplices is Hn and whose face maps are given by the group structure
together with the various projections, and whose degeneracies are given by
the generalized diagonal maps. Prove that BG is a sheaf of simplicial sets,
but that it is not a stack as soon as there exists an object X ∈ C with
H1(X,G) 6= ∗.

3. For any X ∈ C, we let F(X) be the nerve of the groupoid of sheaves of sets
over X (its objects are sheaves of sets on the site C/X and its morphisms are
isomorphisms between such sheaves). Show how to make X 7−→ F(X) into
a simplicial presheaf on C. Show that F is a stack which is not a sheaf of
simplicial sets in general (e.g., show that the set-valued presheaf of 0-simplices
F0 is not a sheaf on C).

In the sequel, we will often use the following terminology and notations.

• For a diagram of stacks F −→ H ←− G, we denote by F ×hH G the cor-
responding homotopy fiber product of simplicial presheaves (note that this
construction is not functorially defined on Ho(sPr(C)) and requires some lift
of the diagrams to sPr(C)).

• A morphism of stacks F −→ F ′ in Ho(sPr(C)) is an epimorphism if the
induced morphism π0(F ) −→ π0(F ′) is a sheaf epimorphism.

• A morphism of stacks F −→ F ′ is a monomorphism if the diagonal morphism
F −→ F ×hF ′ F is an isomorphism.

Exercise 2.1.5. 1. Show that a morphism of stacks f : F −→ F ′ is a monomor-
phism if and only if it satisfies the following two conditions:

(a) The induced morphism π0(F ) −→ π0(F ′) is a monomorphism.

(b) For all X ∈ C and all s ∈ F (X), the induced morphisms πi(F, s) −→
πi(F

′, f(s)) are isomorphisms for all i > 0.

2. Show that a morphism of stacks F −→ F ′ is an epimorphism (resp. a mono-
morphism) if and only if, for any X ∈ C and any morphism X −→ F ′ in
Ho(sPr(C)), the induced projection F×hF ′X −→ X is an epimorphism (resp.
a monomorphism).
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2.2 Basic examples

The most fundamental example of a stack is the stack of stacks, whose existence
expresses that stacks can be defined locally and glued. This example of a stack is
important for conceptual reasons, but also because it can be used to construct
many examples of other stacks. Its precise definition goes as follows. For X ∈ C,
we consider the category sPrW (C/X) whose objects are simplicial presheaves on
C/X and whose morphisms are the local equivalences. For a morphism f : Y −→ X
in C, we have a base-change functor sPrW (C/X) −→ sPrW (C/Y ) which makes
X 7−→ sPrW (C/X) into a presheaf of categories. Taking the nerve of all the cat-
egories sPrW (C/X), we obtain a simplicial presheaf

S : Cop −→ sSet

X 7−→ N(sPrW (C/X)).

Theorem 2.2.1. The simplicial presheaf S defined above is a stack. It is called the
stack of stacks.

Sketch of a proof: There are several different ways to prove the above theorem,
unfortunately none of them being really easy. We sketch here the main steps for
one of them, but a complete and detailed proof would be much too long for these
notes, as well as not very instructive.

Step 1: We first extend the functor S : Cop −→ sSet to a functor

S ′ : sPr(C)op −→ sSet.

This will cause some set-theoretic troubles because sPr(C) is a non-small category.
This issue can be solved in at least two different ways: either by using universes
or by choosing a large enough bound on the cardinalities of the presheaves that
we want to consider. For F ∈ sPr(C)op, we consider the category FibW /F whose
objects are fibrations F ′ −→ F in sPr(C) and whose morphisms are local equiva-
lences in sPr(C)/F . Each F ′ −→ F determines a base-change functor

F ′ ×F − : FibW /F −→ FibW /F ′.

This does not define a presheaf of categories on sPr(C), but only a lax functor.
However, any lax functor is equivalent to a strict functor by a natural construction
called rectification (see for example [Hol, §3.3]). We will therefore proceed as if
F 7−→ FibW /F were a genuine presheaf of categories. Taking the nerves of all the
categories FibW /F provides a simplicial presheaf

S ′ : sPr(C)op −→ sSet
F 7−→ N(FibW /F ).

This simplicial presheaf, restricted to C ↪−→ sPr(C), is naturally equivalent to S,
as its value on X ∈ C is the nerve of the category of equivalences between fibrant
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objects in sPr(C)/X ' sPr(C/X). This nerve is itself equivalent to the nerve
of local equivalences between all simplicial objects in sPr(C/X), as the fibrant
replacement functor gives an inverse up to homotopy of the natural inclusion.

The conclusion of this first step is that S possesses, up to a natural equiva-
lence, an extension S ′ as a presheaf on sPr(C).

Step 2: The functor S ′ : sPr(C)op −→ sSet sends local equivalences to equivalences,
and homotopy colimits in sPr(C) to homotopy limits in sSet. Indeed, the fact that
S ′ preserves equivalences follows formally from the fact that the model category
sPr(C) is right proper. That it sends homotopy colimits to homotopy limits is
more subtle. First of all, any homotopy colimit can be obtained by a succession
of homotopy pushouts and homotopy disjoint unions. Therefore, in order to prove
that S ′ sends homotopy colimits to homotopy limits it is enough to prove the
following two statements:

1. For any family of objects {Fi}i∈I in sPr(C), the natural morphism

S ′
(∐

i

Fi

)
−→

∏
i

S ′(Fi)

is a weak equivalence.

2. For any homotopy pushout diagram in sPr(C)

F0
//

��

F1

��

F2
// F ,

the induced diagram

S ′(F ) //

��

S ′(F2)

��

S ′(F1) // S ′(F0)

is homotopy cartesian in sSet.

Statement 1 follows from the fact that the model category sPr(C)/(
∐
i Fi) is

the product of the model categories sPr(C)/Fi (there is a small issue with infinite
products that we do not mention here). Statement 2 is the key of the proof of the
theorem and is the hardest point. It can be deduced from [Re, Theorem 1.4] as
follows. We assume that we have a diagram

F1 F0
ioo

j
// F2,

with i and j cofibrations between cofibrant objects (requiring one of the two mor-
phisms to be a cofibration would be enough here). We let F be the pushout of
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this diagram in sPr(C), which is therefore also a homotopy pushout. We have a
diagram of Quillen adjunctions obtained by base change (we write here the right
adjoints):

sPr(C)/F //

��

sPr(C)/F1

��

sPr(C)/F2
// sPr(C)/F0.

Because of [Re, Theorem 1.4], this diagram of model categories satisfies the (oppo-
site) conditions of [To2, Lemma 4.2], which ensures that the corresponding diagram
of simplicial sets obtained by taking the nerve of the categories of equivalences be-
tween fibrant objects

FibW /F //

��

FibW /F1

��

FibW /F2
// FibW /F0

is homotopy cartesian.

Step 3: We can now conclude from steps 1 and 2 that S is a stack. Indeed, let
H −→ X be a hypercovering. The morphism

S(X) −→ Holimn S(Hn)

is equivalent to
S ′(X) −→ Holimn S ′(Hn).

But, as S ′ converts homotopy colimits to homotopy limits, we see that this last
morphism is an equivalence because the morphism

H ' Hocolimn Hn −→ X

is a local equivalence. 2

To finish this section, we present some basic and general examples of stacks.
These are very general examples and we will see more specific examples in the
context of algebraic geometry in the next lectures.

Sheaves: We start by noticing that there is a full embedding

Sh(C) −→ Ho(sPr(C))

from the category of sheaves (of sets) to the homotopy category of stacks, simply
by considering a sheaf of sets as a simplicial presheaf (constant in the simplicial di-
rection). This inclusion functor has a left adjoint, which sends a simplicial presheaf
F to the sheaf π0(F ). This will allow us to consider any sheaf as a stack, and in the
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sequel we will do this implicitly. In this way, the category of stacks Ho(sPr(C))
is an extension of the category of sheaves. Moreover, any object in Ho(sPr(C)) is
isomorphic to a homotopy colimit of sheaves (this is because any simplicial set X
is naturally equivalent to the homotopy colimit of the diagram [n] 7−→ Xn), which
shows that stacks are obtained from sheaves by taking derived quotients.

Classifying stacks: Let G be a group object in sPr(C), that is, a presheaf of simpli-
cial groups. From it we construct a simplicial presheaf BG by applying levelwise
the classifying space construction. More explicitly, BG is the simplicial presheaf
whose presheaf of n-simplices is (Gn)n, and whose faces and degeneracies are de-
fined using the composition and units in G as well as the faces and degeneracies
of the underlying simplicial set of G. The simplicial presheaf BG has a natural
global point ∗, and by construction we have

πi(BG, ∗) ' πi−1(G, e).

When G is abelian, the simplicial presheaf BG is again an abelian group object
in sPr(C), and the construction can then be iterated.

When A is a sheaf of abelian groups on C, we let

K(A,n) = B . . . B︸ ︷︷ ︸
n times

(A).

By construction, K(A,n) is a pointed simplicial presheaf such that

πi(K(A,n), ∗) = 0 if i 6= n, πn(K(A,n), ∗) ' A,

and this characterizes K(A,n) uniquely up to an isomorphism in Ho(sPr(C)).

Exercise 2.2.2. 1. Let X ∈ C and let H −→ X be a hypercovering. Show that
there exist natural isomorphisms

πi(Holim[n]∈∆K(A,n)(Hn)) ' Ȟn−i(H/X,A),

where the right-hand side is Čech cohomology of X with coefficients in A
with respect to the hypercovering H (see [Ar-Ma]).

2. Deduce from part 1 that the simplicial presheaf K(A,n) is a stack if and
only if A is a locally acyclic sheaf (i.e., for any X ∈ C we have Hi(X,A) = 0
for i > 0).

3. Use part 2 and induction on n to prove that for any X ∈ C there exist natural
isomorphisms

[X,K(A,n)] ' Hn(X,A),

where the left-hand side is the set of morphisms in Ho(sPr(C)) and the
right-hand side denotes sheaf cohomology.
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Truncations and n-stacks: A stack F ∈ Ho(sPr(C)) is n-truncated, or an n-stack,
if for any X ∈ C and any s ∈ F (X)0 we have πi(F, s) = 0 for all i > n. The
full subcategory of n-stacks will be denoted by Ho(sPr≤n(C)). We note that
Ho(sPr≤0(C)) is the essential image of the inclusion morphism

Sh(C) −→ Ho(sPr(C)),

and thus that there is an equivalence of categories Sh(C) ' Ho(sPr≤0(C)).
The inclusion functor Ho(sPr≤n(C)) ↪−→ Ho(sPr(C)) admits a left adjoint

t≤n : Ho(sPr(C)) −→ Ho(sPr≤n(C))

called the truncation functor. We have t≤0 ' π0, and in general t≤n is obtained by
applying levelwise the usual truncation functor for simplicial sets. Another possi-
ble understanding of this situation is by introducing the left Bousfield localization
(in the sense of [Hi]) of the model category sPr(C) by inverting all the morphisms
∂∆n+2 × X −→ X, for all X ∈ C. The fibrant objects for this localized model
structure are precisely the n-truncated fibrant simplicial presheaves, and its ho-
motopy category can be naturally identified with Ho(sPr≤n(C)). The functor t≤n
is then the localization functor for this left Bousfield localization.

For any stack F , there exists a tower of stacks

F −→ · · · −→ t≤n(F ) −→ t≤n−1(F ) −→ · · · −→ t≤0(F ) = π0(F ),

called the Postnikov tower for F . A new feature here is that this tower does not
converge in general, or in other words the natural morphism

F −→ Holimn t≤n(F )

is not an equivalence in general. It is the case under some rather strong bounded-
ness conditions on the cohomological dimension of the sheaves of groups πi(F ).

Exercise 2.2.3. Suppose that there exists an integer d such that, for any X ∈ C
and any sheaf of abelian groups A on C/X, we have Hi(X,A) = 0 for all i > d.
Prove that, for any stack F , the natural morphism

F −→ Holimn t≤n(F )

is an isomorphism in Ho(sPr(C)).

Internal Hom: An important property of the category Ho(sPr(C)) is that it ad-
mits internal Homs (i.e., is cartesian closed). One way to see this is to use the
injective model structure on sPr(C), originally introduced in [Ja]. In order to
distinguish this model structure from the projective model structure that we are
using in these notes, we denote by sPr inj(C) the category of simplicial presheaves
endowed with the injective model structure. Its equivalences are the local equiv-
alences of Definition 2.1.2, and its cofibrations are the monomorphisms of sim-
plicial presheaves. The nice property of the model category sPr inj(C) is that it
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becomes a monoidal model category in the sense of [Ho] when endowed with the
monoidal structure given by the direct product. A formal consequence of this is
that Ho(sPr inj(C)) = Ho(sPr(C)) is cartesian closed (see for instance [Ho, Theo-
rem 4.3.2]).

Explicitly, if F and F ′ are two stacks, we define a simplicial presheaf

RHom(F, F ′) : Cop −→ sSet

by
RHom(F, F ′)(X) = Hom(X × F,R(F ′)),

where Hom denotes the natural simplicial enrichment of the category sPr(C)
and R(F ′) is a fibrant model for F ′ as an object in sPr inj(C). When the ob-
ject RHom(F, F ′) is considered in Ho(sPr(C)), it is possible to show that we have
functorial isomorphisms

[F ′′,RHom(F, F ′)] ' [F ′′ × F, F ′]

for any F ′′ ∈ Ho(sPr(C)). The stack RHom(F, F ′) is called the stack of morphisms
from F to F ′.

Exercise 2.2.4. Assume that C possesses finite products. Prove that the model
category sPr(C), as usual with its projective local model structure, is a monoidal
model category for the monoidal structure given by the direct product (for this, use
e.g. [Ho, Corollary 4.2.5] and the explicit generating cofibrations A×X −→ B×X,
where A −→ B is a cofibration in sSet).

Substacks defined by local conditions: Let F be a stack on C, and F0 its presheaf
of 0-dimensional simplices. A condition on objects on F is, by definition, a sub-
presheaf G0 ⊂ F0. Such a condition is saturated if there exists a pullback square

G0
//

��

F0

��

E // πpr
0 (F ).

Equivalently, the condition is saturated if, for any X ∈ C, the subset G0(X) ⊂
F0(X) is a union of connected components. Finally, we say that a saturated con-
dition on F is local if, for any X ∈ C and any x ∈ F0(X), we have

(x ∈ G0(X))⇐⇒ (∃u ∈ cov(X) such that f∗(x) ∈ G0(U) ∀f : U −→ X in u) .

Let G0 ⊂ F0 be a saturated local condition on F . We define a sub-simplicial
presheaf G ⊂ F as follows. For [n] ∈ ∆, G(X)n is the subset of F (X)n consisting
of all n-dimensional simplices α such that all 0-dimensional faces of α belong to
G0(X). As the condition is saturated, G(X) is a union of connected components
of F (X). Moreover, since the condition is local and F is a stack, it is easily seen
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that G is itself a stack. The stack G is called the substack of F defined by the
condition G0.

Twisted forms: Let F ∈ Ho(sPr(C)) be a stack. We consider the following con-
dition GF on the stack of stacks S. For X ∈ C, the set S(X)0 is by definition
the set of simplicial presheaves on C/X. We let GF (X) ⊂ S(X)0 be the subset
corresponding to all simplicial presheaves F ′ such that there exists a covering sieve
u ∈ cov(x) such that, for all U −→ X in u, the restrictions of F and F ′ are iso-
morphic in Ho(sPr(C/U)). This condition is a saturated and local condition on S,
and therefore defines, as explained in our previous example, a substack SF ⊂ S.
The stack SF is called the stack of twisted forms of F .

Exercise 2.2.5. Let F and G be two stacks. Prove that there exists a natural
bijection between [G,SF ] and the subset of isomorphism classes of objects in
Ho(sPr(C)/G) consisting of all objects G′ −→ G satisfying the following con-
dition: There is a family of objects {Xi} of C and an epimorphism

∐
iXi −→ G

such that, for any i, the stack G′ ×hG Xi is isomorphic in Ho(sPr(C/Xi)) to the
restriction of F .

More about twisted forms: Let F be a given stack, for which we want to under-
stand better the stack of twisted forms SF . We consider the presheaf of simplicial
monoids

REnd(F ) : X 7−→ Hom(X ×R(F ), R(F )),

where R(F ) is an injective fibrant model for F . The monoid structure on this
presheaf is induced by composing endomorphisms. We define another presheaf of
simplicial monoids by the following homotopy pullback square:

RAut(F )

��

// REnd(F )

��

π0(REnd(F ))inv // π0(REnd(F )),

where π0(REnd(F ))inv denotes the subsheaf of invertible elements in the sheaf of
monoids π0(REnd(F )).

The stack RAut(F ) is called the stack of auto-equivalences of F . It is repre-
sented by a presheaf in simplicial monoids for which all elements are invertible up
to homotopy. Even if this is not, strictly speaking, a presheaf of simplicial groups,
we can apply the classifying space construction to get a new stack BRAut(F ).
There exists a natural morphism of stacks

BRAut(F ) −→ S

constructed as follows. The simplicial monoid Aut(F ) acts on the simplicial pre-
sheaf R(F ) in an obvious way. We form the Borel construction for this action to
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get a new simplicial presheaf [F/Aut(F )], which is, by definition, the homotopy
colimit of the standard simplicial object

([n] 7−→ Aut(F )n × F ) .

There exists a natural projection

[F/Aut(F )] −→ [∗/Aut(F )] = B/Aut(F ),

giving an object in Ho(sPr(C)/(B/Aut(F ))). By Exercise 2.2.5, this object cor-
responds to a well-defined morphism in Ho(sPr(C)),

BRAut(F ) −→ SF ⊂ S.

Moreover, [HAGII, Proposition A.0.6] implies that the morphism

BRAut(F ) −→ SF

is in fact an isomorphism.
An important example is when F = K(A,n), for A a sheaf of abelian groups,

as twisted forms of F are sometimes referred to as n-gerbes with coefficients in A.
It can be shown that the monoid RAut(F ) is the semi-direct product of K(A,n)
by the sheaf of groups aut(A). In other words, we have

SK(A,n) ' [K(A+ 1, n)/aut(A)],

or, in other words, we have a split fibration sequence

K(A,n+ 1) −→ SK(A,n) −→ Baut(A).

As a consequence, we see that the set of equivalence classes of n-gerbes on X with
coefficients in A is in bijection with the set of pairs (ρ, α), where ρ ∈ H1(X, aut(A))
and α ∈ Hn+1(X,Aρ), where Aρ is the twisted form of A determined by ρ.

Another important application is the description of the inductive construc-
tion of the Postnikov tower of a stack F . We first assume that F is simply connected
and connected (i.e., that the sheaves π0(F ) and π1(F ) are trivial on C). This im-
plies that we have globally defined sheaves πn(F ) on C. The natural projection in
the Postnikov tower

t≤n+1(F ) −→ t≤n(F )

produces an object in Ho(sPr(C))/t≤n(F ), which, by Exercise 2.2.5, produces a
morphism of stacks

t≤n(F ) −→ SK(πn(F ),n),

which is the n-th Postnikov invariant of F . It determines, in particular, a class
kn ∈ Hn+1(t≤n(F ), πn(F )) which completely determines the object t≤n+1(F ). For
a general F , possibly non-connected and non-simply connected, it is possible, by
changing the base site C, to reduce to the connected and simply connected case.
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Exercise 2.2.6. Let F be any stack and let Π1(F ) be its associate presheaf of
fundamental groupoids, sending X to Π1(F (X)). We let p : D =

∫
C

Π1(F ) −→ C
be the Grothendieck construction of the functor Π1(F ), endowed with the topology
induced from the one on C. Recall that objects in D are pairs (X,x) consisting
of X ∈ C and x ∈ Π1(F (X)), and morphisms (X,x) −→ (Y, y) consist of pairs
(u, f), where u : X −→ Y is in C and f : u∗(x) −→ y is in Π1(F (Y )).

1. Show that the functor

D −→ Ho(sPr(C)/t≤1(F )),

sending (X,x) to x : X −→ F , extends to an equivalence

Ho(sPr(D)) ' Ho(sPr(C)/t≤1(F )).

2. Show that, under this equivalence, the image of F −→ t≤1(F ) is a connected
and simply connected object in Ho(sPr(D)).

3. Deduce the existence of Postnikov invariants kn ∈ Hn+1(t≤n(F ), πn(F ))
for F , where the cohomology group now means cohomology with coefficients
in a sheaf πn(F ) living on t≤1(F ).



Lecture 3

Algebraic stacks

In the previous lecture we introduced the notion of stacks over some site. We
will now consider the more specific case of stacks over the étale site of affine
schemes and introduce an important class of stacks called algebraic stacks. These
are generalizations of schemes and algebraic spaces for which quotients by smooth
actions always exist.

rings and set Aff = Commop. For A ∈ Comm, we denote by SpecA the corre-
sponding object in Aff (therefore “Spec” is a formal notation here). We endow Aff
with the étale topology defined as follows. Recall that a morphism of commutative
rings A −→ B is étale if it satisfies the following three conditions:

1. B is flat as an A-module.

2. B is finitely presented as a commutative A-algebra; that is, of the form
A[T1, . . . , Tn]/(P1, . . . , Pr).

3. B is flat as a B ⊗A B-module.

There exist several equivalent characterizations of étale morphisms (see e.g.
[SGA1]); for instance, the third condition can be equivalently replaced by the
condition Ω1

B/A = 0, where Ω1
B/A is the B-module of relative Kähler derivations

(corepresenting the functor sending a B-module M to the set of A-linear deriva-
tions on B with coefficients in M). Étale morphisms are stable under base change
and composition in Aff, i.e., by cobase change and composition in Comm. Geomet-
rically, an étale morphism A −→ B should be thought of as a “local isomorphism”
of schemes SpecB −→ SpecA, though here local should not be understood in the
sense of the Zariski topology.

Now, a family of morphisms {A −→ Ai}i∈I is an étale covering if each mor-
phism A −→ Ai is étale and if the family of base-change functors

−⊗A Ai : A-Mod −→ Ai-Mod

I. Moerdijk and B. Toën, Simplicial Methods for Operads and Algebraic Geometry, Advanced Courses 143

Throughout this lecture we will consider the category Comm of commutative
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is conservative. This defines a topology on Aff by defining that a sieve on SpecA
is a covering sieve if it is generated by an étale covering family.

Finally, a morphism SpecB −→ SpecA is a Zariski open immersion if it
is étale and a monomorphism (this is equivalent to imposing that the natural
morphism B ⊗A B −→ B is an isomorphism, or equivalently that the forgetful
functor B-Mod −→ A-Mod is fully faithful).

3.1 Schemes and algebraic n-stacks

We start by the definition of schemes and then define algebraic n-stacks as certain
succesive quotients of schemes.

For SpecA ∈ Aff, we can consider the presheaf represented by SpecA,

SpecA : Aff op = Comm −→ Set,

by setting (SpecA)(B) = Hom(A,B). A standard result of commutative algebra
(faithfully flat descent) states that the presheaf SpecA is always a sheaf. We thus
consider SpecA as a stack and as an object in Ho(sPr(Aff )). This defines a fully
faithful functor

Aff −→ Ho(sPr(Aff )).

Any object in Ho(sPr(Aff )) isomorphic to a sheaf of the form SpecA will be
called an affine scheme. The full subcategory of Ho(sPr(Aff )) consisting of affine
schemes is equivalent to Aff = Commop, and these two categories will be implicitly
identified.

Definition 3.1.1. 1. Let SpecA be an affine scheme, F a stack and i : F −→
SpecA a morphism. We say that i is a Zariski open immersion (or simply
an open immersion) if it satisfies the following two conditions:

(a) The stack F is a sheaf (i.e., 0-truncated) and the morphism i is a
monomorphism of sheaves.

(b) There exists a family of Zariski open immersions {A −→ Ai}i such that
F is the image of the morphism of sheaves∐

i

SpecAi −→ SpecA.

2. A morphism of stacks F −→ F ′ is a Zariski open immersion (or simply
an open immersion) if, for any affine scheme SpecA and any morphism
SpecA −→ F ′, the induced morphism

F ×hF ′ SpecA −→ SpecA

is a Zariski open immersion in the above sense.
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3. A stack F is a scheme if there exists a family of affine schemes {SpecAi}i
and Zariski open immersions SpecAi −→ F such that the induced morphism
of sheaves ∐

i

SpecAi −→ F

is an epimorphism. Such a family of morphisms {SpecAi −→ F} will be
called a Zariski atlas for F .

Exercise 3.1.2. 1. Show that any Zariski open immersion F −→ F ′ is a mono-
morphism of stacks.

2. Deduce from this fact that a scheme F is always 0-truncated, and thus equiv-
alent to a sheaf.

We now pass to the definition of algebraic stacks. These are stacks obtained
by gluing schemes along smooth quotients, and we first need to recall the notion
of smooth morphisms of schemes.

Recall that a morphism of commutative rings A −→ B is smooth if it is flat
of finite presentation and if moreover B is of finite Tor dimension as a B ⊗A B-
module. Smooth morphisms are the algebraic analog of submersions, and there
exist equivalent definitions making this analogy more clear (see [SGA1]). Smooth
morphisms are stable under composition and base change in Aff. The notion of
smooth morphisms can be extended to a notion for all schemes in the following
way. We say that a morphism of schemes X −→ Y is smooth if there exist Zariski
atlases {SpecAi −→ X} and {SpecAj −→ Y } together with commutative squares

X // Y

SpecAi //

OO

SpecAj ,

OO

with SpecAi −→ SpecAj a smooth morphism —here j depends on i. Again,
smooth morphisms of schemes are stable under composition and base change.

We are now ready to define the notion of algebraic stack. The definition is by
induction on an algebraicity index n representing the number of successive smooth
quotients we take. This index will be forgotten after the definition is achieved.

Definition 3.1.3. 1. A stack F is 0-algebraic if it is a scheme.

2. A morphism of stacks F −→ F ′ is 0-algebraic (or 0-representable) if, for any
scheme X and any morphism X −→ F ′, the stack F ×hF ′ X is 0-algebraic
(i.e., a scheme).

3. A 0-algebraic morphism of stacks F −→ F ′ is smooth if, for any scheme X
and any morphism X −→ F ′, the morphism of schemes F ×hF ′ X −→ X is
smooth.
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4. We now let n > 0, and assume that the notions of (n − 1)-algebraic stack,
(n−1)-algebraic morphism and smooth (n−1)-algebraic morphism have been
defined.

(a) A stack F is n-algebraic if there exists a scheme X together with a
smooth (n− 1)-algebraic morphism X −→ F which is an epimorphism.
Such a morphism X −→ F is called a smooth n-atlas for F .

(b) A morphism of stacks F −→ F ′ is n-algebraic (or n-representable) if,
for any scheme X and any morphism X −→ F ′, the stack F ×F ′ X is
n-algebraic.

(c) An n-algebraic morphism of stacks F −→ F ′ is smooth if, for any scheme
X and any morphism X −→ F ′, there exists a smooth n-atlas Y −→
F ×hF ′ X such that each morphism Y −→ X is a smooth morphism of
schemes.

5. An algebraic stack is a stack which is n-algebraic for some integer n. An
algebraic n-stack is an algebraic stack which is also an n-stack. An algebraic
space is an algebraic 0-stack.

6. A morphism of stacks F −→ F ′ is algebraic (or representable) if it is n-algeb-
raic for some n.

7. A morphism of stacks F −→ F ′ is smooth if it is n-algebraic and smooth for
some integer n.

Long, but formal arguments show that algebraic stacks satisfy the following
properties:

• Algebraic stacks are stable under finite homotopy limits (i.e., by homotopy
pullbacks).

• Algebraic stacks are stable under disjoint union.

• Algebraic morphisms of stacks are stable under composition and base change.

• Algebraic stacks are stable under smooth quotients. Thus, if F −→ F ′ is a
smooth epimorphism of stacks, then F ′ is algebraic if and only if F is so.

Exercise 3.1.4. Let F be an algebraic n-stack, X ∈ Aff, and x : X −→ F a mor-
phism of stacks. Show that the sheaf πn(F, x) is representable by an algebraic
space, locally of finite type over X.

The standard finiteness properties of schemes can be extended to algebraic
stacks in the following way:

• An algebraic morphism F −→ F ′ is locally of finite presentation if, for
any scheme X and any morphism X −→ F ′, there exists a smooth atlas
Y −→ F ×hF ′ X such that the induced morphism Y −→ X is locally of finite
presentation.
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• An algebraic morphism F −→ F ′ is quasi-compact if, for any affine scheme
X and any morphism X −→ F ′, there exists a smooth atlas Y −→ F ×hF ′ X
with Y an affine scheme.

• An algebraic stack F is strongly quasi-compact if, for all n, the induced
morphism

F −→ RHom(∂∆n, F )

is quasi-compact.

• An algebraic stack morphism F −→ F ′ is strongly of finite presentation if,
for any affine scheme X and any morphism X −→ F ′, the stack F ×hF ′ X is
locally of finite presentation and strongly quasi-compact.

Note that, when n = 0, we have RHom(∂∆n, F ) ' F ×F , and the condition
of strongly quasi-compactness implies in particular that the diagonal morphism
F −→ F × F is quasi-compact. In general, being strongly quasi-compact involves
quasi-compactness conditions for all the “higher diagonals”.

Exercise 3.1.5. Let X be an affine scheme and G be a sheaf of groups on Aff/X.
We form the classifying stack K(G, 1) ∈ Ho(sPr(Aff )/X), and consider it in
Ho(sPr(Aff )).

1. Show that, if K(G, 1) is an algebraic stack, then G is represented by an
algebraic space locally of finite type.

2. Conversely, if G is representable by an algebraic space which is smooth
over X, then K(G, 1) is an algebraic stack.

3. Assume that K(G, 1) is algebraic. Show that K(G, 1) is quasi-compact. Show
that K(G, 1) is strongly quasi-compact if and only if G is quasi-compact.

3.2 Some examples

Classifying stacks: Suppose that G is a sheaf of groups over some affine scheme X,
and assume that G is an algebraic space, flat and of finite presentation over X.
We can form K(G, 1) ∈ Ho(sPr(Aff )), the classifying stack of the group G, as
explained in §2.2. The stack K(G, 1) is however not exactly the right object to
consider, at least when G is not smooth over X. Indeed, for Y an affine scheme
over X, [Y,K(G, 1)] classifies G-torsors over Y which are locally trivial for the
étale topology on Y . This is a rather unnatural condition, as there exist G-torsors,
locally trivial for the flat topology on Y , which are not étale locally trivial (for
instance, when X = Spec k is a perfect field of characteristic p, the Frobenius
map Fr: Gm −→ Gm is a µp-torsor over Gm which is not étale locally trivial). To
remedy this, we introduce a slight modification of the classifying stack K(G, 1) by
changing the topology in the following way. We consider the simplicial presheaf
BG : X 7−→ B(G(X)), viewed as an object in sPrffqc(Aff ), the model category of
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simplicial presheaves on the site of affine schemes endowed with the faithfully flat
and quasi-compact topology (“ffqc” for short). Note that étale coverings are ffqc
coverings, and therefore we have a natural full embedding

Ho(sPrffqc(Aff )) ⊂ Ho(sPr(Aff )),

where the objects in Ho(sPrffqc(Aff )) are stacks satisfying the more restrictive
descent condition for ffqc hypercoverings. We consider the simplicial presheaf
BG ∈ sPr(Aff ), and denote by Kfl(G, 1) ∈ Ho(sPrffqc(Aff )) ⊂ Ho(sPr(Aff ))
a fibrant replacement of BG in the model category of stacks for the ffqc topology.
It is a non-trivial statement that Kfl(G, 1) is an algebraic stack (see for instance
[La-Mo, Proposition 10.13.1]). Moreover, the natural morphism Kfl(G, 1) −→ X
is smooth. Indeed, we choose a smooth and surjective morphism Y −→ Kfl(G, 1),
with Y an affine scheme. The composition Y −→ X is clearly a flat surjective
morphism of finite presentation. We let X ′ = Y ×hKfl(G,1) X, and consider the

diagram of stacks

X ′
v //

u
  

Y

q

��

// Kfl(G, 1)

zz
X.

In this diagram, v is a flat surjective morphism of finite presentation, because it
is the base change of the trivial section X −→ Kfl(G, 1), which is flat, surjective
and of finite presentation. Moreover, u is a smooth morphism, because it is the
base change of the smooth atlas Y −→ Kfl(G, 1). We conclude that the morphism
q is also smooth.

Higher classifying stacks: Assume now that A is a sheaf of abelian groups over an
affine scheme X which is an algebraic space, flat and of finite presentation over X.
We form the simplicial presheaf Bn(A) = B(Bn−1(A)), by iterating the classifying
space construction. We denote by Kfl(A,n) ∈ Ho(sPrffqc(Aff )) ⊂ Ho(sPr(Aff ))
a fibrant model for Bn(A) with respect to the ffqc topology. It is again true that
Kfl(A,n) is an algebraic n-stack when n > 1. Indeed, K(A,n) is the quotient of
X by the trivial action of the group stack K(A,n − 1). As this group stack is
algebraic and smooth for n > 1, the quotient stack is again an algebraic stack.

Groupoid quotients: We describe here the standard way to construct algebraic
stacks using quotients by smooth groupoid actions. We start with a simplicial
object in sPr(C),

F∗ : ∆op −→ sPr(Aff ).

We say that F∗ is a Segal groupoid if it satisfies the following two conditions:

1. For any n > 1, the natural morphism

Fn −→ F1 ×hF0
F1 ×hF0

· · · ×hF0
F1,
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induced by the morphism [1] −→ [n] sending 0 to i and 1 to i + 1 (for
0 ≤ i < n) is an isomorphism of stacks.

2. The natural morphism
F2 −→ F1 ×hF0

F1

induced by the morphism [1] −→ [2] sending 0 to 0 and 1 to 1 or 2 is an
isomorphism of stacks.

Exercise 3.2.1. Let F∗ be a Segal monoid object in sPr(Aff ), and suppose that
Fn(X) is a set for all n and all X. Show that F∗ is the nerve of a presheaf of
groupoids on Aff.

We now assume that F∗ is a Segal groupoid and moreover that all the
face morphisms F1 −→ F0 are smooth morphisms between algebraic stacks. We
consider the homotopy colimit of the diagram [n] 7−→ Fn, and denote it by
|F∗| ∈ Ho(sPr(Aff )). The stack |F∗| is called the quotient stack of the Segal
groupoid F∗. It can been proved that |F∗| is again an algebraic stack. Moreover,
if each Fi is an algebraic n-stack, then |F∗| is an algebraic (n + 1)-stack. This is
a formal way to produce higher algebraic stacks starting, say, from schemes, but
this is often not the way stacks arise in practice.

An important very special case of the quotient stack construction is the case
of a smooth group scheme G acting on a scheme X. In this case we form the
groupoid object B(X,G) whose value in degree n is X×Gn, and whose transition
morphisms are given by the action of G on X. This is a groupoid object in schemes
and thus can be considered as a groupoid object in sheaves, and therefore as a very
special kind of Segal groupoid. The quotient stack of this Segal groupoid is denoted
by [X/G] and is called the quotient stack of X by G. It is an algebraic 1-stack
for which a natural smooth atlas is the natural projection X −→ [X/G]. It can
be characterized by a universal property: morphisms of stacks [X/G] −→ F are in
one-to-one correspondence with morphisms of G-equivariant stacks X −→ F (here
we need to use a model category G-sPr(Aff ) of G-equivariant simplicial presheaves
in order to have the correct homotopy category of G-equivariant stacks).

Simplicial presentation: Algebraic stacks can also be characterized as the simplicial
presheaves represented by a certain kind of simplicial schemes. For this, we let X∗
be a simplicial object in the category of schemes. For any finite simplicial set K
(finite here means generated by a finite number of cells), we can form XK

∗ , which
is the scheme of morphisms from K to X∗. It is, by definition, the equalizer of the
two natural morphisms ∏

[n]

XKn
n

//
//

∏
[p]−→[q]

XKq
p .

This equalizer exists as a scheme when K is finite (because it then only involves
finite limits).



150 Lecture 3. Algebraic stacks

A simplicial scheme X∗ is then called a weak smooth groupoid if, for any
0 ≤ k ≤ n, the natural morphism

Xn = X∆n

∗ −→ XΛn,k

∗

is a smooth and surjective morphism of schemes (surjective here has to be under-
stood pointwise, but as the morphism is smooth this is equivalent to saying that it
induces an epimorphism on the corresponding sheaves). A weak smooth groupoid
X∗ is moreover n-truncated if, for any k > n+ 1, the natural morphism

Xk = X∆k

∗ −→ X∂∆k

∗

is an isomorphism.
It is then possible to prove that a stack F is an algebraic n-stack if there exists

an n-truncated weak smooth groupoid X∗ and an isomorphism in Ho(sPr(Aff ))
F ' X∗. We refer to [Pr] for details.

Some famous algebraic 1-stacks: We review here two famous examples of algebraic
1-stacks, namely the stack of smooth and proper curves and the stack of vector
bundles on a curve. We refer to [La-Mo] for more details.

For X ∈ Aff an affine scheme, we let Mg(X) be the full subgroupoid of
sheaves F on Aff/X such that the corresponding morphism of sheaves F −→ X
is representable by a smooth and proper curve of genus g over X (i.e., F is itself
a scheme, and the morphism F −→ X is smooth, proper, with geometric fibers
being connected curves of genus g). For Y −→ X in Aff, we have a restriction
functor from sheaves on Aff/X to sheaves on Aff/Y , and this defines a natural
functor of groupoids

Mg(X) −→Mg(Y ).

This defines a presheaf of groupoids on Aff, and taking the nerve of these groupoids
gives a simplicial presheaf denoted by Mg. The stack Mg is called the stack of
smooth curves of genus g. It is such that, for X ∈ Aff, Mg(X) is a 1-truncated
simplicial set whose π0 is the set of isomorphism classes of smooth proper curves
of genus g over X, and whose π1 at a given curve is its automorphism group. It
is a well-known theorem that Mg is an algebraic 1-stack which is smooth and
of finite presentation over SpecZ. This stack is even Deligne–Mumford, that is,
the diagonal morphism Mg −→ Mg ×Mg is unramified (i.e., locally a closed
immersion for the étale topology). Equivalently, this means that there exists an
atlas X −→Mg which is étale rather than only smooth.

Another very important and famous example of an algebraic 1-stack is the
stack ofG-bundles on some smooth projective curve C (say, over some base field k).
Let G be a smooth affine algebraic group over k. We start by considering the stack
BG, which is a stack over Spec k. It is the quotient stack [Spec k/G] for the trivial
action of G on Spec k. As G is a smooth algebraic group, this stack is an algebraic
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1-stack. When C is a smooth and proper curve over Spec k, we can consider the
stack of morphisms (of stacks over Spec k)

BunG(C) = RHomAff /Spec k(C,BG),

which by definition is the stack of principal G-bundles on C. By definition, for
X ∈ Aff, BunG(C)(X) is a 1-truncated simplicial set whose π0 is the set of iso-
morphism classes of principal G-bundles on C and whose π1 at a given bundle is
its automorphism group. It is also a well-known theorem that the stack BunG(C)
is an algebraic 1-stack, which is smooth and locally of finite presentation over
Spec k. However, this stack is not quasi-compact and is only a countable union of
quasi-compact open substacks.

Higher linear stacks: Let X = SpecA be an affine scheme and E be a positively
graded cochain complex of A-modules. We assume that E is perfect, i.e., it is quasi-
isomorphic to a bounded complex of projective A-modules of finite type. We define
a stack V(E) over X in the following way. For every commutative A-algebra B,
we set

V(E)(B) = Map(E,B),

where Map denotes the mapping space of the model category of complexes of
A-modules. More explicitly, V(E)(B) is the simplicial set whose set of n-simplicies
is the set Hom(Q(E)⊗AC∗(∆n, A), B). Here Q(E) is a cofibrant resolution of E in
the model category of complexes of A-modules (for the projective model structure,
for which equivalences are quasi-isomorphisms and fibrations are epimorphisms),
C∗(∆

n, A) is the homology complex of the simplicial set ∆n with coefficients
in A, and the Hom is taken in the category of complexes of A-modules. In other
words, V(E)(B) is the simplicial set obtained from the complex Hom∗(Q(E), B)
by the Dold–Kan correspondence. When B varies in the category of commuta-
tive A-algebras, this defines a simplicial presheaf V(E) together with a morphism
V(E) −→ X = SpecA. For every commutative A-algebra B, we have

πi(V(E)(B)) ' Ext−i(E,B).

It can be shown that the stack V(E) is an algebraic n-stack strongly of finite
presentation over X, where n is such that Hi(E) = 0 for all i > n, and that V(E)
is smooth if and only if the Tor amplitude of E is non-negative (i.e., E is quasi-
isomorphic to a complex of projective A-modules of finite type which is moreover
concentrated in non-negative degrees). For this, we can first assume that E is a
bounded complex of projective modules of finite type. We then set K = E≤0, the
part of E which is concentrated in non-positive degrees, and we have a natural
morphism of complexes E −→ K. This morphism induces a morphism of stacks

V(K) −→ V(E).
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By definition, V(K) is naturally equivalent to the affine scheme SpecA[H0(K)],
where A[H0(K)] denotes the free commutative A-algebra generated by the A-mod-
ule H0(K). It is well known that V(H0(k)) is smooth over SpecA if and only if
H0(K) is projective and of finite type. This is equivalent to saying that E has
non-negative Tor amplitude. The only thing to check is then that the natural
morphism

V(K) −→ V(E)

is (n− 1)-algebraic and smooth. But this follows by induction on n, as this mor-
phism is locally on V(E) of the form Y ×V(L) −→ Y , for L the homotopy cofiber
(i.e., the cone) of the morphism E −→ K. This homotopy cofiber is itself quasi-
isomorphic to E>0[1], and thus is a perfect complex of non-negative Tor amplitude
with Hi(L) = 0 for i > n− 1.

Exercise 3.2.2. Let X = A1 = SpecZ[T ] and let E be the complex of Z[T ]-modules
given by

0 // Z[T ]
×T
// Z[T ] // 0,

concentrated in degrees 1 and 2. Show that V(E) is an algebraic 2-stack such that
the sheaf π1(V(E)) is not representable by any affine scheme (it is in fact not
representable by any algebraic space).

The algebraic 2-stack of abelian categories: This is a non-trivial example of an
algebraic 2-stack. The material is taken from [An]. For a commutative ring A, we
consider the following category Ab(A). Its objects are abelian A-linear categories
which are equivalent to the category R-Mod of left R-modules for some associative
A-algebra R which is projective and of finite type as an A-module. The mor-
phisms in Ab(A) are the A-linear equivalences of categories. For a morphism of
commutative rings A −→ B, we have a functor

Ab(A) −→ Ab(B)

sending an abelian category C to CB/A, the category of B-modules in C. Precisely
CB/A can be taken to be the category of all A-linear functors from BB, the A-linear
category with a unique object and B as its A-algebra of endomorphisms, to C. This
defines a presheaf of categories A 7−→ Ab(A) on Aff. Taking the nerves of these
categories, we obtain a simplicial presheaf Ab ∈ sPr(Aff ). The simplicial presheaf
Ab is not a stack, but we still consider it as an object in Ho(sPr(Aff )). The main
result of [An] states that Ab is an algebraic 2-stack which is locally of finite
presentation.

The algebraic n-stack of [n, 0]-perfect complexes: For a commutative ring A, we
consider a category P (A) defined as follows. Its objects are the cofibrant com-
plexes of A-modules (for the projective model structure) which are perfect (i.e.,
quasi-isomorphic to a bounded complex of projective modules of finite type). The
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morphisms in P (A) are the quasi-isomorphisms of complexes of A-modules. For a
morphism of commutative rings A −→ B, we have a base-change functor

−⊗A B : P (A) −→ P (B).

This does not however define, stricly speaking, a presheaf of categories, as the
base-change functors are only compatible with composition up to a natural iso-
morphism. In other words, A 7−→ P (A) is only a weak functor from Comm to the
2-category of categories. Fortunately, there exists a standard procedure to replace
any weak functor by an equivalent strict functor: it consists in replacing P by the
presheaf of cartesian sections of the Grothendieck construction

∫
P −→ Comm

(see [SGA1]). Thus, we define a new category P ′(A) whose objects consist of the
following data:

1. For any commutative A-algebra B, an object EB ∈ P (B).

2. For any commutative A-algebra B and any commutative B-algebra C, an
isomorphism in P ′(C),

φB,C : EB ⊗B C ' EC .

We require moreover that, for any commutative A-algebra B, any commu-
tative B-algebra C, and any commutative C-algebra D, the two possible isomor-
phisms

φC,D ◦ (φB,C ⊗C D) : (EB ⊗B C)⊗C D ' EB ⊗B D −→ ED

φB,D : EB ⊗B D −→ ED

are equal. The morphisms in P ′(A) are simply taken to be families of morphisms
EB −→ E′B which commute with the collections φB,C and φ′B,C .

With these definitions, A 7−→ P ′(A) is a functor Comm −→ Cat, and there is
moreover an equivalence of lax functors P ′ −→ P . We compose the functor P ′ with
the nerve construction and get a simplicial presheaf Perf on Aff. It can be proved
that the simplicial presheaf Perf is a stack in the sense of Definition 2.1.3 (1). This
is not an obvious result (see for instance [H-S] for a proof), and can be reduced
to the well-known flat cohomological descent for quasi-coherent complexes. It can
also be proved that, for X = SpecA ∈ Aff, the simplicial set Perf(X) satisfies the
following properties:

1. The set π0(Perf(X)) is in a natural bijection with the set of quasi-isomor-
phism classes of perfect complexes of A-modules.

2. For x ∈ Perf(X) corresponding to a perfect complex E, we have

π1(Perf(X), x) ' Aut(E),

where the automorphism group is taken in the derived category D(A) of the
ring A.
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3. For x ∈ Perf(X) corresponding to a perfect complex E, we have

πi(Perf(X), x) ' Ext1−i(E,E)

for any i > 1. Again, these Ext groups are computed in the triangulated
category D(A).

For any n ≥ 0 and a ≤ b with b − a = n, we can define a subsimplicial
presheaf Perf [a,b] ⊂ Perf which consists of all perfect complexes of Tor amplitude
contained in the interval [a, b] (i.e., complexes quasi-isomorphic to a complex of
projective modules of finite type concentrated in degrees [a, b]). It can be proved

that the substacks Perf [a,b] form an open covering of Perf . Moreover, Perf [a,b]

is an algebraic (n+ 1)-stack which is locally of finite presentation. This way, even
though Perf is not, strictly speaking, an algebraic stack (because it is not an
n-stack for any n), it is an increasing union of open algebraic substacks. We say

that Perf is locally algebraic. The fact that Perf [a,b] is an algebraic (n+ 1)-stack
is not easy either. We refer to [To-Va] for a complete proof.

Exercise 3.2.3. 1. Show how to define a stack MPerf of morphisms between
perfect complexes, whose value at X ∈ Aff is equivalent to the nerve of the
category of quasi-isomorphisms in the category of morphisms between perfect
complexes over X.

2. Show that the morphism source and target define an algebraic morphism of
stacks

π : MPerf −→ Perf ×Perf .

(Here you will need the following result of homotopical algebra: If M is
a model category and Mor(M) denotes the model category of morphisms,
then the homotopy fiber of the source and target map N(wMor(M)) −→
N(wM) × N(wM), taken at a point (x, y), is naturally equivalent to the
mapping space Map(x, y).)

3. Show that the morphism π is locally smooth near any point corresponding
to a morphism E −→ E′ of perfect complexes such that Exti(E,E′) = 0 for
all i > 0.

3.3 Coarse moduli spaces and homotopy sheaves

The purpose of this part is to show that algebraic n-stacks strongly of finite presen-
tation can be approximated by schemes by means of some dévissage. The existence
of this approximation has several important consequences about the behaviour of
algebraic n-stacks, such as the existence of virtual coarse moduli spaces or ho-
motopy group schemes. Conceptually, the results of this part show that algebraic
n-stacks are not that far from being schemes or algebraic spaces, and that for
many purposes they behave like convergent series of schemes.
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Convention: Throughout this part, all algebraic n-stacks will be strongly of finite
presentation over some affine base scheme Spec k (for k some commutative ring).

The key notion is that of total gerbe, whose precise definition is as follows.

Definition 3.3.1. Let F be an algebraic n-stack. We say that F is a total (n-)gerbe
if for all i > 0 the natural projection

I
(i)
F = RHom(Si, F ) −→ F

is a flat morphism.

In the previous definition, I
(i)
F is called the i-th inertia stack of F . Note

that, when F is a 1-stack, I
(1)
F is equivalent to the inertia stack of F in the usual

sense. In particular, for an algebraic 1-stack, being a total gerbe in the sense of
Definition 3.3.1 is equivalent to the fact that the projection morphism

F ×hF×F F −→ F

is flat, and thus equivalent to the usual notion of gerbes for algebraic 1-stacks (see
[La-Mo, Definition 3.15]).

Proposition 3.3.2. Let F be an algebraic n-stack which is a total gerbe. Then the
following conditions are satisfied:

1. If M(F ) is the sheaf associated to π0(F ) for the flat (ffqc) topology, then
M(F ) is represented by an algebraic space and the morphism F −→ M(F )
is flat and of finite presentation.

2. For any X ∈ Aff and any morphism x : X −→ F , πfli (F, x), the sheaf on X
associated to πi(F, x) with respect to the ffqc topology, is an algebraic space,
flat, and of finite presentation over X.

Proof: Condition 1 follows from a well-known theorem of Artin, ensuring repre-
sentability by algebraic spaces of quotients of schemes by flat equivalence relations.
The argument goes as follows. We choose a smooth atlas X −→ F with X an affine
scheme, and we let X1 = X×hF X. We define R ⊂ X×X, the sub-ffqc-sheaf image
of X1 −→ X ×X, which defines an equivalence relation on X. Clearly, M(F ) is
isomorphic to the quotient ffqc-sheaf (X/R)fl. We now prove the following two
properties:

1. The sheaf R is an algebraic space.

2. The two projections R −→ X are smooth.

In order to prove property 1, we consider the natural projection X1 −→ R.
Let x, y : Y −→ R ⊂ X × X be morphisms with Y affine. Then X1 ×hR Y is
equivalent to Ωx,yF ' Y ×hF Y , the stack of paths from x to y. As the objects
x and y are locally (for the flat topology) equivalent on Y because (x, y) ∈ R,
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the stack Ωx,yF ' Y ×hF Y is algebraic and locally (for the flat topology on Y )
equivalent to the loop stack ΩxF , defined by the homotopy cartesian square

ΩxF //

��

I
(1)
F

��

Y // F .

By hypothesis on F , we deduce that X1×hR Y −→ Y is flat, surjective and of finite
presentation. As this is true for any Y −→ R, we have that the morphism of stacks
X1 −→ R is surjective, flat and finitely presented. If U −→ X1 is a smooth atlas,
we have that the sheaf R is isomorphic to the quotient ffqc-sheaf

R ' Colim (U ×X×X U
//
// U) ,

and, by what we have just seen, the projections U ×X×X U −→ U are flat and
finitely presented morphisms of affine schemes. By [La-Mo, Corollary 10.4], we
have that R is an algebraic space.

We now consider property 2. For this, we consider the diagram

U // R // X.

The first morphism is a flat and finitely presented cover, and the composition of
the two morphisms equals the composition U −→ X1 −→ X, and is thus smooth.
Hence R −→ X is locally (for the flat finitely presented topology on R) a smooth
morphism, and therefore it is smooth. This finishes the proof of the first part of
the proposition, as X −→M(F ) is now a smooth atlas, showing that M(F ) is an
algebraic space.

To prove the second statement of the proposition, we will use (1) applied to
certain stacks of iterated loops. We let x : X −→ F and consider the loop stack
ΩxF of F at x, defined by

ΩxF = X ×hF X.

In the same way, we have the iterated loop stacks

Ω(i)
x F = Ωx(Ω(i−1)

x F ).

Note that we have homotopy cartesian squares

Ω
(i)
x F //

��

I
(i)
F

��

X // F ,
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showing that Ω
(i)
x F −→ X is flat for any i. Moreover, for any Y ∈ Aff and any

s : Y −→ Ω
(i)
x F , we have a homotopy cartesian square

Ω
(j)
s Ω

(i)
x F //

��

I
(j)

Ω
(i)
x F

��

Y // Ω
(i)
x F.

Now, as Ω
(i)
x F is a group object over X, we have isomorphisms of stacks over Y ,

Ω(j)
s Ω(i)

x F ' Ω(j+i)
x F ×X Y

obtained by translating along the section s. Therefore, we have that

I
(j)

Ω
(i)
x F
−→ Ω(i)

x F

is flat for any i and any j. We can therefore apply (1) to the stacks Ω
(i)
x F . As we

have
M(Ω(i)

x F ) ' πfli (F, x),

this gives that the sheaves πfli (F, x) are algebraic spaces. Moreover, the morphism

Ω
(i)
x F −→ πfli (F, x) is flat, surjective and of finite presentation, showing that so is

πfli (F, x) as an algebraic space over X. 2

Exercise 3.3.3. 1. Let f : F −→ F ′ be a morphism of finite presentation between
algebraic stacks strongly of finite presentation over some affine scheme. As-
sume that F ′ is reduced. Show that there exists a non-empty open substack
U ⊂ F ′ such that the base-change morphism F ×hF ′ U −→ U is flat (use
smooth atlases and the generic flatness theorem statement that the result is
true when F and F ′ are affine schemes).

2. Deduce from (1) that, if F is a reduced algebraic stack strongly of finite
presentation over some affine scheme, then F has a non-empty open substack
U ⊂ F which is a total gerbe in the sense of Definition 3.3.1.

The previous exercise, together with Proposition 3.3.2, has the following im-
portant consequence:

Corollary 3.3.4. Let F be an algebraic stack strongly of finite presentation over
some affine scheme X. There exists a finite sequence of closed substacks

∅ ⊂ Fr ⊂ Fr−1 ⊂ · · · ⊂ F1 ⊂ F0 = F

such that each Fi −Fi+1 is a total gerbe. We can moreover choose the Fi with the
following properties:
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1. For all i, the ffqc-sheaf M(Fi − Fi+1) is a scheme of finite type over X.

2. For all i, all affine schemes Y , all morphisms y : Y −→ (Fi − Fi+1), and
all j > 0, the ffqc-sheaf πj(Fi − Fi+1, y) is a flat algebraic space of finite
presentation over Y .

In other words, any algebraic stack F strongly finitely presented over some
affine scheme gives rise to several schemes M(Fi − Fi+1), which are stratified
pieces of the non-existing coarse moduli space for F . Over each of these schemes,
locally for the étale topology, we have the flat groups πj(Fi − Fi+1). Therefore,
up to a stratification, the stack F behaves very much like a homotopy type whose
homotopy groups would be represented by schemes (or algebraic spaces).

Exercise 3.3.5. Recall that an algebraic stack is Deligne–Mumford if it possesses
an étale atlas (rather than simply smooth).

1. Let F be an algebraic stack which is étale over an affine scheme X. Prove
that F is Deligne–Mumford and that F is a total gerbe. Show also that the
projection F −→M(F ) is an étale morphism.

2. Let F be a Deligne–Mumford stack and p : F −→ t≤1(F ) be its 1-truncation.
Show that t≤1(F ) is itself a Deligne–Mumford 1-stack and that p is étale.



Lecture 4

Simplicial commutative algebras

In this lecture we review the homotopy theory of simplicial commutative rings. It
will be used throughout the next lectures in order to define and study the notion
of derived schemes and derived stacks.

4.1 Quick review of the model category of commutative

simplicial algebras and modules

We let sComm be the category of simplicial objects in Comm, that is, of simplicial
commutative algebras. For A ∈ sComm a simplicial commutative algebra, we
let sA-Mod be the category of simplicial A-modules. Recall that an object in
sA-Mod is the data of a simplicial abelian group Mn together with An-module
structures on Mn in such a way that the transition morphisms Mn −→ Mm are
morphisms of An-modules (for the An-module structure on Mm induced by the
morphism An −→ Am). We will say that a morphism in sComm or in sA-Mod
is an equivalence (resp. a fibration), if the morphism induced on the underlying
simplicial sets is so. It is well known that this defines model category structures

and cellular.

For any simplicial commutative algebra A, let π∗(A) = ⊕nπn(A). We do not
specify base points since the underlying simplicial set of a simplicial algebra is a
simplicial abelian group, and thus its homotopy groups do not depend on the base
point (by convention we will take 0 as base point). The graded abelian group π∗(A)
has a natural structure of a graded commutative (in the graded sense) algebra.
The multiplication of two elements a ∈ πn(A) and b ∈ πm(A) is defined as follows.
We represent a and b by morphisms of pointed simplicial sets

a : Sn = (S1)∧n −→ A, b : Sm = (S1)∧n −→ A,
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where S1 is a model for the pointed simplicial circle. We then consider the induced
morphism

a⊗ b : Sn × Sm −→ A×A −→ A⊗A.
Composing with the multiplication in A we get a morphism of simplicial sets

ab : Sn × Sm −→ A.

This last morphism sends Sn × ∗ and ∗ × Sm to the base point 0 ∈ A. Therefore,
it factorizes as a morphism

Sn ∧ Sm ' Sn+m −→ A.

As the left-hand side has the homotopy type of Sn+m, we obtain a morphism

Sn+m −→ A

which gives an element ab ∈ πn+m(A). This multiplication is associative, unital
and graded commutative. In the same way, if A is a simplicial commutative algebra
and M a simplicial A-module, π∗(M) = ⊕nπn(M) has a natural structure of a
graded π∗(A)-module.

For a morphism of simplicial commutative rings f : A −→ B, we have an
adjunction

−⊗A B : sA-Mod −→ sB-Mod, sA-Mod←− sB-Mod : f∗,

where the right adjoint f∗ is the forgetful functor. This adjunction is a Quillen ad-
junction which is moreover a Quillen equivalence if f is an equivalence of simplicial
algebras. The left derived functor of −⊗A B will be denoted by

−⊗L
A B : Ho(sA-Mod ) −→ Ho(sB-Mod ).

Finally, a (non-simplicial) commutative ring will always be considered as
a constant simplicial commutative ring and thus as an object in sComm. This
induces a fully faithful functor Comm −→ sComm which induces a fully faithful
embedding

Comm −→ Ho(sComm)

on the level of the homotopy category. This last functor possesses a left adjoint

π0 : Ho(sComm) −→ Comm.

In the same manner, if A ∈ sComm, then any (non-simplicial) π0(A)-module can
be considered as a constant simplicial A-module, and thus as an object in sA-Mod.
This also defines a full embedding

π0(A)-Mod −→ Ho(sA-Mod )

which admits a left adjoint

π0 : Ho(sA-Mod ) −→ π0(A)-Mod.
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4.2 Cotangent complexes

We start by recalling the notion of trivial square-zero extension of a commutative
ring by a module. For any commutative ring A and any A-module M , we define
another commutative ring A⊕M . The underlying abelian group of A⊕M is the
direct sum of A and M , and the multiplication is defined by the following formula:

(a,m) · (a′,m′) = (aa′, am′ + a′m).

The commutative ring A⊕M is called the trivial square-zero extension of A by M .
It is an augmented A-algebra by the natural morphisms

A −→ A⊕M −→ A,

sending respectively a to (a, 0) and (a,m) to a. The main property of the ring
A⊕M is that the set of sections of the projection A⊕M −→ A (as morphisms or
rings) is in natural bijection with the set Der(A,M) of derivations from A to M
(this can be taken as a definition of Der(A,M)). A standard result states that the
functor

A-Mod −→ Set

sending M to Der(A,M) is corepresented by an A-module Ω1
A, the A-module of

Kähler differentials on A.

Exercise 4.2.1. Let A be a commutative ring and consider the category Comm/A
of commutative rings augmented over A. Show that M 7−→ A ⊕ M defines an
equivalence of categories between the category A-Mod of A-modules and the cat-
egory Ab(Comm/A) of abelian group objects in Comm/A. Show that, under this
equivalence, Ω1

A is the free abelian group object in Comm/A over a single genera-
tor.

The generalization of the above notion to the context of simplicial commuta-
tive rings leads to the notion of cotangent complexes and André–Quillen homology
(and cohomology). We let A be a simplicial commutative ring and M ∈ sA-Mod
be a simplicial A-module. By applying the construction of the trivial square-zero
extension levelwise for each An and each Mn, we obtain a new simplicial commu-
tative ring A⊕M together with two morphisms

A −→ A⊕M −→ A.

The model category sComm is a simplicial model category. We will de-
note by Hom its simplicial Hom sets and by RHom its derived version (i.e.,
RHom(A,B) = Hom(Q(A), B), where Q(A) is a cofibrant model for A). The
simplicial set RDer(A,M) of derived derivations from A to M is by definition the
homotopy fiber of the natural morphism

RHom(A,A⊕M) −→ RHom(A,A)



162 Lecture 4. Simplicial commutative algebras

taken at the identity. On the other hand, we have

RDer(A,M) ' RHomsComm/A(A,A⊕M),

where HomsComm/A denotes the simplicial Hom sets of the model category of
commutative simplicial rings over A. It is a well-known result that the functor

RDer(A,−) : Ho(sA-Mod ) −→ Ho(sSet)

is corepresented by a simplicial A-module LA called the cotangent complex of A
(see for example [Q, Go-Ho]). One possible construction of LA is as follows. We
start by considering a cofibrant replacement Q(A) −→ A for A. We then ap-
ply the construction of Kähler differentials levelwise for Q(A) to get a simplicial
Q(A)-module Ω1

Q(A). We then set

LA = Ω1
Q(A) ⊗

L
Q(A) A ∈ Ho(sA-Mod ).

In this way, A 7−→ LA is the left derived functor of A 7−→ Ω1
A. We note that, by

adjunction, we always have

π0(LA) ' Ω1
π0(A).

The cotangent complex is functorial in A. Therefore, for any morphism
of simplicial commutative rings A −→ B we have a morphism LA −→ LB in
Ho(sA-Mod ). By adjunction, this morphism can also be considered as a morphism
in Ho(sB-Mod ),

LA ⊗L
A B −→ LB .

The homotopy cofiber of this morphism will be denoted by LB/A and called the
relative cotangent complex of B over A.

An important fact concerning cotangent complexes is that they can be used in
order to describe Postnikov invariants of commutative rings as follows. A simplicial
commutative ring A is said to be n-truncated if πi(A) = 0 for all i > n. The
inclusion functor of the full subcategory Ho(sComm≤n) of n-truncated simplicial
commutative rings has a left adjoint

τ≤n : Ho(sComm) −→ Ho(sComm≤n),

called the n-th truncation functor. These functors can easily be obtained by ap-
plying the general machinery of left Bousfield localizations to sComm. They are
the localization functors associated to the left Bousfield localizations of sComm
with respect to the morphism Sn+1 ⊗ Z[T ] −→ Z[T ]. For any A ∈ Ho(sComm),
we then have a Postnikov tower

A // . . . // τ≤n(A) // τ≤n−1(A) // . . . // τ≤0(A) = π0(A).
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It can be proved that for any n > 0 there is a homotopy pullback square

τ≤n(A)

��

// τ≤n−1(A)

0

��

τ≤n−1(A)
kn

// τ≤n−1(A)⊕ πn(A)[n+ 1],

where πn(A)[n + 1] is the simplicial A-module Sn+1 ⊗ πn(A) (i.e., the (n + 1)-
suspension of πn(A)), 0 stands for the trivial derivation, and kn is a certain de-
rived derivation with values in πn(A)[n + 1]. This derivation is an element in
[Lτ≤n−1(A), πn(A)[n+ 1]] which is by definition the n-th Postnikov invariant of A.
This element completely determines the simplicial commutative ring τ≤n(A) from
τ≤n−1(A) and the π0(A)-module πn(A). It is non-zero precisely when the projec-
tion τ≤n(A) −→ τ≤n−1(A) has no sections (in Ho(sComm)). It is zero precisely
when τ≤n(A) is equivalent (as an object over τ≤n−1(A)) to τ≤n−1(A)⊕ πn(A)[n].

Exercise 4.2.2. 1. Let A be a simplicial commutative ring with π0(A) being
isomorphic either to Z, Q or Z/p. Show that the natural projection A −→
π0(A) has a section in Ho(sComm). Show moreover that this section is unique
when π0(A) is either Z or Q.

2. Give an example of a simplicial commutative ring A such that the natural
projection A −→ π0(A) has no sections in Ho(sComm).

4.3 Flat, smooth and étale morphisms

We arrive at the three fundamental notions of flat, smooth and étale morphisms
of commutative simplicial rings. The material of this section is less standard than
the one of the previous section and thus we refer to [HAGII, §2.2.2] for details.

Definition 4.3.1. Let f : A −→ B be a morphism of simplicial commutative rings.

1. The morphism f is homotopically of finite presentation if, for any filtered
system of commutative simplicial A-algebras {Cα}, the natural map

ColimαRHomA/sComm(Cα, B) −→ RHomA/sComm(Colimα Cα, B)

is an equivalence.

2. The morphism f is flat if the base-change functor

−⊗L
A B : Ho(sA-Mod ) −→ Ho(sB-Mod )

commutes with homotopy pullbacks.

3. The morphism f is formally étale if LB/A ' 0.
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4. The morphism f is formally smooth if for any simplicial B-module M with
π0(M) = 0 we have [LB/A,M ] = 0.

5. The morphism f is smooth if it is formally smooth and homotopically of
finite presentation.

6. The morphism f is étale if it is formally étale and homotopically of finite
presentation.

7. The morphism f is a Zariski open immersion if it is flat, homotopically of
finite presentation and if moreover the natural morphism B ⊗L

A B −→ B is
an equivalence.

All these notions of morphisms are stable under composition in Ho(sComm).
They are also stable under homotopy cobase change in the sense that, if a mor-
phism f : A −→ B is homotopically of finite presentation (resp. flat, formally
étale, etc.), then for any A −→ A′ the induced morphism A′ −→ A′⊗L

AB is again
homotopically of finite presentation (resp. flat, formally étale, etc.).

Here follows a sample of standard results concerning the above notions.

• A Zariski open immersion is étale, an étale morphism is smooth, and a smooth
morphism is flat.

• A morphism A −→ B is flat (resp. étale, smooth, a Zariski open immersion)
if and only if it satisfies the two following properties.

1. The induced morphism of rings π0(A) −→ π0(B) is flat (resp. étale,
smooth, a Zariski open immersion) in the usual sense.

2. For all i > 0 the induced morphism

πi(A)⊗π0(A) π0(B) −→ πi(B)

is bijective.

• An important direct consequence of the last point is that a morphism of
(non-simplicial) commutative rings is flat (resp. étale, smooth, a Zariski open
immersion) in the usual sense if and only if it is so in the sense of Defini-
tion 4.3.1.

• A morphism A −→ B is homotopically of finite presentation if and only if
B is equivalent to a retract of a finite cellular A-algebra. Recall here that a
finite cellular A-algebra is a commutative A-algebra B′ such that there exists
a finite sequence

A = B′0 // B′1 // . . . // B′n = B′

such that for any i there exists a cocartesian square of commutative simplicial
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rings

B′i
// B′i+1

∂∆ni ⊗A //

OO

∆ni ⊗A.

OO

In particular, if A −→ B is a morphism of commutative rings, being homo-
topically finitely presented is a much stronger condition than being finitely
presented in the usual sense. For instance, if B is a commutative k-algebra
of finite type (for k a field) which admits a singularity which is not a local
complete intersection, then B is not homotopically finitely presented over k.
Intuitively, B is homotopically finitely presented over A when it admits (up
to a retract) a finite resolution by free A-algebras of finite type.

• For a given A ∈ sComm, there exists a functor

π0 : Ho(A/sComm) −→ π0(A)/Comm

from the homotopy category of commutative simplicial A-algebras to the
category of commutative π0(A)-algebras. This functor induces an equivalence
on the full subcategories of étale morphisms and Zariski open immersions.
The corresponding fact for smooth and flat morphisms is not true.

Exercise 4.3.2. Let A −→ B be a morphism in sComm. Show that A −→ B is
formally étale if and only if B ⊗L

A B −→ B is formally smooth.

Exercise 4.3.3. 1. Let A −→ B be a morphsm in sComm which is formally
étale and such that π0(A) −→ π0(B) is an isomorphism. Show that f is an
isomorphism in Ho(sComm).

2. Deduce from part 1 that, if A −→ B is formally étale, then the natural
morphism

B −→ B ⊗L
B⊗L

AB
B

is an isomorphism in Ho(sComm).

3. Let A −→ B be a morphism in Ho(sComm) which is formally étale. Show
that, for any C ∈ A/sComm, the mapping space MapA/sComm(B,C) is ho-
motopically discrete (i.e., equivalent to a set).

Exercise 4.3.4. Let f : A −→ B be a morphism of non-simplicial commutative
rings. Show that f is homotopically of finite presentation in sComm if and only
if it is finitely presented as a morphism of rings and LB/A is a perfect simplicial
B-module (i.e., corresponds to a perfect complex of B-modules by the Dold–Kan
correspondence).
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Derived stacks and derived
algebraic stacks

We arrive at the notions of derived stacks and derived algebraic stacks. We first

motopy theory of simplicial presheaves presented in §2, but where the category
Comm must be replaced by the more complicated model category sComm. The
new feature here is to take into account correctly the model category structure of
sComm, which makes the definitions a bit more technical.

5.1 Derived stacks

We set dAff = sCommop, which is by definition the category of derived affine
schemes. It is endowed with the dual model category structure of sComm. An ob-
ject in dAff corresponding to A ∈ sComm will be formally denoted by SpecA. This
“Spec” has only a formal meaning, and we will define another, more interesting,
Spec functor that will be denoted by RSpec.

We consider sPr(dAff ), the category of simplicial presheaves on dAff. We will
define three different model category structures on sPr(dAff ), each one being a
left Bousfield localization of the previous one. In order to avoid confusion, we will
use different notations for these three model categories (contrary to what we have
done in Lectures 2 and 3), even though the underlying categories are identical.
They will be denoted by sPr(dAff ), dAff ∧ and dAff ∼.

The first model structure is the projective levelwise model category struc-
ture on sPr(dAff ), for which equivalences and fibrations are defined levelwise. We
do not give any specific name to this model category. We consider the Yoneda
embedding

h : dAff −→ sPr(dAff )

X 7−→ hX = Hom(−, X).
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Here hX is a presheaf of sets and is considered as a simplicial presheaf constant
in the simplicial direction. For any equivalence X −→ Y in dAff we deduce a
morphism hX −→ hY in sPr(dAff ). By definition, the model category dAff ∧ is
the left Bousfield localization of the model category sPr(dAff ) with respect to the
set of all morphisms hX −→ hY obtained from equivalences X −→ Y in dAff. The
model category dAff ∧ is called the model category of prestacks over dAff.

The fibrant objects in dAff ∧ are the simplicial presheaves F : dAff op −→ sSet
satisfying the following two conditions:

1. For any X ∈ dAff, the simplicial set F (X) is fibrant.

2. For any equivalence X −→ Y in dAff, the induced morphism F (Y ) −→ F (X)
is an equivalence of simplicial sets.

The first condition above is technical, but the second one is not. This sec-
ond condition is called the prestack condition. This is the essential new feature of
derived stack theory compared with stack theory, in which this condition did not
appear (simply because there is no notion of equivalence in Comm except the triv-
ial one, i.e., the notion of isomorphism). The standard results about left Bousfield
localizations imply that Ho(dAff ∧) is naturally equivalent to the full subcate-
gory of Ho(sPr(dAff )) consisting of all simplicial presheaves satisfying condition 2
above. We will implicitly identify these two categories. Moreover, the inclusion
functor

Ho(dAff ∧) −→ Ho(sPr(dAff ))

has a left adjoint which simply consists in sending a simplicial presheaf F to its
fibrant model.

Exercise 5.1.1. The natural projection dAff −→ Ho(dAff ) induces a functor

Ho(sPr(Ho(dAff ))) −→ Ho(dAff ∧).

Show that this functor is not an equivalence of categories.

We come back to the Yoneda functor

h : dAff −→ sPr(dAff ) = dAff ∧.

We compose it with the natural functor dAff ∧ −→ Ho(dAff ∧) and obtain a functor

h : dAff −→ Ho(dAff ∧).

By construction, h sends equivalences in dAff to isomorphisms in Ho(dAff ∧).
Therefore it induces a well-defined functor

Ho(h) : Ho(dAff ) −→ Ho(dAff ∧).

A general result, called the Yoneda lemma for model categories (see [HAGI]),
states two properties concerning Ho(h):
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1. The functor Ho(h) is fully faithful. This is the model category version of the
Yoneda lemma for categories.

2. For X ∈ dAff, the object Ho(h)(X) ∈ Ho(sPr(dAff )) can be described as
follows. We take a fibrant model R(X) for X in dAff (i.e., if X = SpecA,
then R(X) = SpecQ(A) for Q(A) a cofibrant model for A in sComm). We
consider the simplicial presheaf hR(X) : Y 7−→ Hom(Y,R(X)), where Hom
denotes the simplicial Hom sets of dAff. When X = SpecA, this simplicial
presheaf is also SpecB 7−→ Hom(Q(A), B). Then the simplicial presheaf
Ho(h)(X) is equivalent to hR(X). When X = SpecA, we will also use the
following notation:

RSpecA = Ho(h)(X) ' hR(X) ' Hom(Q(A),−).

In an equivalent way, the Yoneda lemma in this setting states that the functor
A 7−→ Hom(Q(A),−) induces a fully faithful functor

Ho(Comm)op −→ Ho(dAff ∧) ⊂ Ho(sPr(dAff )).

We now introduce the notion of local equivalences for morphisms in dAff ∧

which will be our equivalences for the final model structure. For this, we endow
the category Ho(dAff ) with a Grothendieck topology as follows. We say that a
family of morphisms {A −→ Ai}i is an étale covering if each of the morphisms
A −→ Ai is étale in the sense of Definition 4.3.1 and if the family of functors

{− ⊗L
A Ai : Ho(sA-Mod ) −→ Ho(sAi-Mod )}i

is conservative. By definition, the étale topology on Ho(dAff ) is the topology for
which covering sieves are generated by étale covering families. In the same way,
for any fixed X ∈ dAff we define an étale topology on Ho(dAff/X).

The étale topology on Ho(dAff ) can be used in order to define homotopy
sheaves for objects F ∈ Ho(dAff ∧). We start by defining homotopy presheaves
as follows. Let F : dAff op −→ sSet be an object in Ho(dAff ∧), so in particular
we assume that F sends equivalences in dAff to equivalences in sSet. We consider
the presheaf of sets X 7−→ π0(F (X)). This presheaf sends equivalences in dAff to
isomorphisms in Set and thus factorizes as a functor πpr

0 (F ) : Ho(dAff )op −→ Set.
Similarly, for X ∈ dAff and s ∈ F (X), we define a presheaf of groups on dAff/X
which sends f : Y −→ X to πi(F (Y ), f∗(s)). Again this presheaf sends equiv-
alences to isomorphisms and thus induces a functor πpr

i (F, s) : Ho(dAff/X)op −→
Set. With these notations, the associated sheaves (for the étale topology defined
above) to πpr

0 (F ) and πpr
i (F, s) are denoted by π0(F ) and πi(F, s) and are called

the homotopy sheaves of F . These are defined for F : dAff op −→ sSet sending
equivalences to equivalences. Now, for a general simplicial presheaf, we set

π0(F ) = π0(F∧), πi(F, s) = πi(F
∧, s),

where F∧ is a fibrant model for F in dAff ∧.
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Definition 5.1.2. Let f : F −→ F ′ be a morphism of simplicial presheaves in dAff.

1. The morphism f is a local equivalence if it satisfies the following two condi-
tions:

(a) The induced morphism π0(F ) −→ π0(F ′) is an isomorphism of sheaves
in Ho(dAff ).

(b) For any X ∈ dAff, any s ∈ F (X)0 and any i > 0, the induced morphism
πi(F, s) −→ πi(F

′, f(s)) is an isomorphism of sheaves in dAff/X.

2. The morphism f is a local cofibration if it is a cofibration in dAff ∧ (or
equivalently in sPr(dAff )).

3. The morphism f is a local fibration if it has the left lifting property with
respect to every local cofibration which is also a local equivalence.

For simplicity, we will use the expressions equivalence, fibration and cofibration in
order to refer to local equivalence, local fibration and local cofibration.

It can be proved (see [HAGI]) that these notions of equivalence, fibration and
cofibration define a model category structure on sPr(dAff ). This model category
will be denoted by dAff ∼. As for the case of simplicial presheaves, it is possible
to characterize fibrant objects in dAff ∼ as functors F : dAff op −→ sSet satisfying
the following three conditions (we do not make precise the definition of étale
hypercovering in this context —it is very similar to the one we gave for simplicial
presheaves in §2.1):

1. For any X ∈ dAff, the simplicial set F (X) is fibrant.

2. For any equivalence X −→ Y in dAff, the induced morphism F (Y ) −→ F (X)
is an equivalence of simplicial sets.

3. For any X ∈ dAff and any étale hypercovering H −→ X, the natural mor-
phism

F (X) −→ Holim[n]∈∆ F (Hn)

is an equivalence of simplicial sets.

Definition 5.1.3. 1. An object F ∈ sPr(dAff ) is called a derived stack if it
satisfies the conditions 2 and 3 above.

2. The homotopy category Ho(dAff ∼) will be called the homotopy category
of derived stacks. Most often objects in Ho(dAff ∼) will simply be called
derived stacks. The expressions morphism of derived stacks and isomorphism
of derived stacks will refer to morphisms and isomorphisms in Ho(dAff ∼).
The set of morphisms of derived stacks from F to F ′ will be denoted by
[F, F ′].

It can be shown that dAff ∼ is not Quillen equivalent to a model category
of the form sPr(C) for any Grothendieck site C. The data of dAff, together with
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the étale topology on Ho(dAff ), is therefore a new kind of object, that cannot be
recovered from Grothendieck’s theory of sites and topoi. The object (dAff, et) is
called a model site, and dAff ∼, et a model topos, as they are homotopy-theoretical
versions of sites and topoi. We refer to [HAGI] for more about these notions.

To finish this first section, we mention how stacks and derived stacks are
compared. For this, we consider the functor Comm −→ sComm which consists in
considering a commutative ring as a constant simplicial commutative ring. This
induces a functor i : Aff −→ dAff. Pulling back along this functor induces a functor

i∗ : dAff ∼ −→ sPr(Aff ).

This functor is seen to be right Quillen and its left adjoint is denoted by

i! : sPr(Aff ) −→ dAff ∼.

The derived Quillen adjunction is denoted by

j : Ho(sPr(Aff )) −→ Ho(dAff ∼), Ho(sPr(Aff ))←− Ho(dAff ∼) : h0.

The functor j is fully faithful, as follows from the fact that the functor Comm −→
Ho(sComm) is fully faithful and compatible with the étale topologies on both sides.
Therefore, any stack can be considered as a derived stack. The functor h0 is called
the classical part functor, and remembers only the part related to non-simplicial
commutative rings of a given derived stack. Using the functor j we will see any
stack as a derived stack.

Definition 5.1.4. Given a stack F ∈ Ho(sPr(Aff )), a derived extension of F is the

data of a derived stack F̃ ∈ Ho(dAff ∼) together with an isomorphism of stacks

F ' h0(F̃ ).

The existence of the full embedding j implies that any stack admits a derived
extension j(F ), but this extension is somehow the trivial one. The striking fact
about derived algebraic geometry is that most (if not all) of the moduli problems
admit natural derived extensions, and these are not trivial in general. We will see
many such examples in the next lecture.

5.2 Algebraic derived n-stacks

We now mimic the definitions of schemes and algebraic stacks given in §3 for our
new context of derived stacks.

We start by considering the Yoneda embedding

Ho(dAff ) −→ Ho(dAff ∧).

The faithfully flat descent stays true in the derived setting, and this embedding
induces a fully faithful functor

Ho(dAff ) −→ Ho(dAff ∼).
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Equivalently, this means that, for any A ∈ sComm, the prestack RSpecA, sending
B to Hom(Q(A), B), satisfies the descent condition for étale hypercoverings (i.e.,
it is a derived stack). Objects in the essential image of this functor will be called
derived affine schemes, and the full subcategory of Ho(dAff ∼) consisting of derived
affine schemes will be implicitly identified with Ho(dAff ).

One of the major differences between stacks and derived stacks is that derived
affine schemes are not 0-truncated. The definition of Zariski open immersion given
in Definition 3.1.1 has therefore to be slightly modified.

Definition 5.2.1. 1. A morphism of derived stacks F −→ F ′ is a monomorphism
if the induced morphism F −→ F ×hF ′ F is an equivalence.

2. A morphism of derived stacks F −→ F ′ is an epimorphism if the induced
morphism π0(F ) −→ π0(F ′) is an epimorphism of sheaves.

3. Let X = RSpecA be a derived affine scheme, F a derived stack and i : F −→
RSpecA a morphism. We say that i is a Zariski open immersion (or simply
an open immersion) if it satisfies the following two conditions:

(a) The morphism i is a monomorphism.

(b) There exists a family of Zariski open immersions {A −→ Ai}i such that
the morphisms RSpecAi −→ RSpecA all factor through F in a way
that the resulting morphism∐

i

RSpecAi −→ RSpecA

is an epimorphism.

4. A morphism of derived stacks F −→ F ′ is a Zariski open immersion (or
simply an open immersion) if, for any derived affine scheme X and any
morphism X −→ F ′, the induced morphism

F ×hF ′ X −→ X

is a Zariski open immersion in the above sense.

5. A derived stack F is a derived scheme if there exist a family of derived affine
schemes {RSpecAi}i and Zariski open immersions RSpecAi −→ F such that
the induced morphism of sheaves∐

i

RSpecAi −→ F

is an epimorphism. Such a family of morphisms {RSpecAi −→ F} will be
called a Zariski atlas for F .
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We say that a morphism of derived schemes X −→ Y is smooth (resp. flat
or étale) if there exist Zariski atlases {RSpecAi −→ X} and {RSpecAj −→ Y }
together with commutative squares in Ho(dAff ∼)

X // Y

RSpecAi //

OO

RSpecAj ,

OO

with RSpecAi −→ RSpecAj a smooth (resp. flat or étale) morphism —here j
depends on i. Smooth morphisms of derived schemes are stable under composition
and homotopy base change.

The following is the main definition of this series of lectures.

Definition 5.2.2. 1. A derived stack F is 0-algebraic if it is a derived scheme.

2. A morphism of derived stacks F −→ F ′ is 0-algebraic (or 0-representable) if,
for any derived scheme X and any morphism X −→ F ′, the derived stack
F ×hF ′ X is 0-algebraic (i.e., a derived scheme).

3. A 0-algebraic morphism of derived stacks F −→ F ′ is smooth if, for any
derived scheme X and any morphism X −→ F ′, the morphism of derived
schemes F ×hF ′ X −→ X is smooth.

4. We now let n > 0 and assume that the notions of (n − 1)-algebraic derived
stack, (n − 1)-algebraic morphism and smooth (n − 1)-algebraic morphism
have been defined.

(a) A derived stack F is n-algebraic if there exists a derived scheme X
together with a smooth (n − 1)-algebraic morphism X −→ F which is
an epimorphism. Such a morphism X −→ F is called a smooth n-atlas
for F .

(b) A morphism of derived stacks F −→ F ′ is n-algebraic (or n-represent-
able) if, for any derived scheme X and any morphism X −→ F ′, the
derived stack F ×F ′ X is n-algebraic.

(c) An n-algebraic morphism of derived stacks F −→ F ′ is smooth (resp.
flat or étale) if, for any derived scheme X and any morphism X −→ F ′,
there exists a smooth n-atlas Y −→ F ×hF ′ X such that each morphism
Y −→ X is a smooth (resp. flat or étale) morphism of derived schemes.

5. A derived algebraic stack is a derived stack which is n-algebraic for some n.

6. A morphism of derived stacks F −→ F ′ is algebraic (or representable) if it is
n-algebraic for some n.

7. A morphism of derived stacks F −→ F ′ is smooth (resp. flat or étale) if it is
n-algebraic and smooth (resp. flat or étale) for some n.
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We finish this part with some basic properties of derived algebraic stacks,
and in particular with a comparison between the notions of algebraic stacks and
derived algebraic stacks.

• Derived algebraic stacks are stable under finite homotopy limits (i.e., homo-
topy pullbacks).

• Derived algebraic stacks are stable under disjoint union.

• Algebraic morphisms of derived stacks are stable under composition and
homotopy base change.

• Derived algebraic stacks are stable under smooth quotients. To be more pre-
cise, if F −→ F ′ is a smooth epimorphism of derived stacks, then F ′ is
algebraic if and only if F is so.

• A (non-derived) stack F is algebraic if and only if the derived stack j(F ) is
algebraic.

• If F is an algebraic derived stack, then the stack h0(F ) is an algebraic stack.
When h0(F ) is an algebraic n-stack, we say that F is a derived algebraic
n-stack (although it is not n-truncated as a simplicial presheaf on dAff ).

• A derived algebraic space is a derived algebraic stack F such that h0(F ) is
an algebraic space. In other words, a derived algebraic space is a derived
algebraic 0-stack.

• If F is an algebraic derived n-stack and A is an m-truncated commutative
simplicial ring, then F (A) is an (n+m)-truncated simplicial set.

• If f : F −→ F ′ is a flat morphism of derived algebraic stacks, and if F ′ is an
algebraic stack (i.e., of the form j(F ′′) for an algebraic stack F ′′), then F is
itself an algebraic stack.

We see that the formal properties of derived algebraic stacks are the same as
the formal properties of non-derived algebraic stacks. However, we would like to
make the important comment here that the inclusion functor j : Ho(sPr(Aff )) ↪−→
Ho(dAff ∼) from stacks to derived stacks does not commute with homotopy pull-
backs. In other words, if F ←− H −→ G is a diagram of stacks, then the natural
morphism

j(F ×hH G) −→ j(F )×hj(H) j(G)

is not an isomorphism in general. As this morphism induces an isomorphism on h0,
this is an example of a non-trivial derived extension of a stack as a derived stack.
Each time a stack is presented as a certain finite homotopy limit of other stacks,
it has a natural (and in general non-trivial) derived extension by considering the
same homotopy limit in the bigger category of derived stacks.
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5.3 Cotangent complexes

To finish this lecture, we now explain the notion of cotangent complexes of a
derived stack at a given point. We let F be an algebraic derived stack and X =
SpecA be a (non-derived) affine scheme. We fix a point (i.e., a morphism of stacks)

x : X −→ F.

We let D≤0(A) be the non-positive derived category of cochain complexes of
A-modules. By the Dold–Kan correspondence, we will also identify D≤0(A) with
the homotopy category Ho(sA-Mod ) of simplicial A-modules. We define a functor

Derx(F,−) : D≤0(A) −→ Ho(sSet)

in the following way. For M ∈ D≤0(A), we form A⊕M , which is now a commu-
tative simplicial ring (here we consider M as a simplicial A-module), and we set
X[M ] = RSpec(A⊕M). The natural projection A⊕M −→ A induces a morphism
of derived schemes X −→ X[M ]. By definition, the simplicial set Derx(F,M) is
the homotopy fiber of the natural morphism

F (X[M ]) −→ F (X)

taken at the point x (here we use the Yoneda lemma, stating that π0(F (X)) '
[X,F ]). The simplicial set Derx(F,M) is called the simplicial set of derivations of
F at the point x with coefficients in M . This is functorial in M and thus defines
a functor

Derx(F,−) : D≤0(A) −→ Ho(sSet).

It can be proved that this functor is corepresentable by a complex of A-modules.
More precisely, there exists a complex of A-modules (a priori not concentrated in
non-positive degrees any more) LF,x, called the cotangent complex of F at x, and
such that there exist natural isomorphisms in Ho(sSet),

Derx(F,M) ' Map(LF,x,M),

where Map are the mapping spaces of the model category of (unbounded) com-
plexes of A-modules. When the derived stack F is affine, this is a reformulation
of the existence of a cotangent complex as recalled in §4. In general, one reduces
the statement to the affine case by a long and tedious induction (on n, proving
the result for algebraic derived n-stacks). Finally, with a bit of care, we can show
that LF,x is unique and functorial —although this requires us to state a refined
universal property; see [HAGII].

Definition 5.3.1. With notation as above, the complex LF,x is called the cotan-
gent complex of F at the point x. Its dual TF,x = RHom(LF,x, A) is called the
tangent complex of F at x. The cohomology groups

T iF,x = Hi(TF,x)

are called the higher tangent spaces of F at x.
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For a derived algebraic n-stack F and a point x : X = SpecA −→ F , the
cotangent complex LF,x belongs to the derived category D≤n(A) of complexes con-
centrated in degrees ]−∞, n]. The part of LF,x concentrated in negative degrees
is the one related to the derived part of F (i.e., the one making the difference be-
tween commutative rings and commutative simplicial rings), and the non-negative
part is related to the stacky part of F (i.e., the part related to the higher ho-
motopy sheaves of h0(F )). For instance, when F is a derived scheme, its stacky
part is trivial and thus LF,x belongs to D≤0(A). On the other hand, when F is a
smooth algebraic n-stack (say over SpecZ to simplify), then LF,x is concentrated
in degrees [0, n] —even more is true: it is of Tor-amplitude concentrated in degrees
[0, n].

In the next lecture we will give several examples of derived stacks which
will show that the tangent complexes contain interesting cohomological informa-
tion. Also, tangent complexes are very useful to provide smoothness and étaleness
criteria, which are in general easy to check in practice. For this reason, proving
smoothness is in general much easier in the context of derived algebraic geometry
than in the usual context of algebraic geometry. Here is, for instance, a smoothness
criterion (see [HAGII] for details).

Let f : F −→ F ′ be a morphism of algebraic derived stacks. For any affine
scheme X = SpecA and any point x : X −→ F , we consider the homotopy fiber
of the natural morphism

LF,x −→ LF ′,x,

which is called the relative cotangent complex of f at x and is denoted by Lf,x.
We assume that f is locally homotopically of finite presentation (i.e., F and F ′

admit atlases compatible with f such that the induced morphism on the atlases is
homotopically of finite presentation). Then f is smooth if and only if, for any affine
scheme X = SpecA and any x : X −→ F , the complex Lf,x is of non-negative Tor
amplitude (i.e., for all M ∈ D≤−1(A) we have [Lf,x,M ] = 0).

Exercise 5.3.2. Show that a morphism of derived algebraic stacks f : F −→ F ′ is an
isomorphism in Ho(dAff ∼) if and only if it satisfies the following three conditions:

1. The morphism is locally homotopically finitely presented.

2. For all fields K, the induced morphism

F (K) −→ G(K)

is an equivalence.

3. For all fields K and all morphisms x : SpecK −→ F , we have Lf,x ' 0.

Exercise 5.3.3. By definition, a derived scheme is a derived algebraic stack F such
that h0(F ) is a scheme.

1. Show the existence of an equivalence between the small Zariski site of F and
the one of h0(F ).
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2. For U = RSpecA −→ F an open Zariski immersion, we let πvirt
i (U) = πi(A),

which is a π0(A)-module. Show that U 7−→ πvirt
i (U) defines quasi-coherent

sheaves on the scheme h0(F ).

3. Suppose that h0(F ) is now a locally noetherian scheme. Assume that, for any
Zariski open immersion RSpecA −→ F , the homotopy groups πi(A) are of
finite type and vanish for i big enough. Show that the class

[F ]virt =
∑
i

(−1)i[πvirt
i ] ∈ G0(h0(F ))

is a well-defined class in the Grothendieck group of coherent sheaves. It is
called the virtual K-theory fundamental class of F .



Lecture 6

Examples of derived algebraic
stacks

In this last lecture, we present examples of derived algebraic stacks.

6.1 The derived moduli space of local systems

We come back to the example that we presented in the first lecture, namely the
moduli problem of linear representations of a discrete group. We will now recon-
sider it from the point of view of derived algebraic geometry. We will try to treat
this example in some detail, as we think it is a rather simple, but interesting,
example of a derived algebraic stack.

A linear representation of a group G can also be interpreted as a local system
on the space BG. We will therefore study the moduli problem from this topological
point of view. We fix a finite CW-complex X and we are going to define a derived

algebraic derived 1-stack and we will describe its higher tangent spaces in terms
of cohomology groups of X. When X = BG for a discrete group G, the derived
algebraic stack RLoc(X) is the correct moduli space of linear representations of G.

We start by considering the non-derived algebraic 1-stack Vect classifying
projective modules of finite type. By definition, Vect sends a commutative ring
A to the nerve of the groupoid of projective A-modules of finite type. The stack
Vect is a 1-stack. It is easy to see that Vect is an algebraic 1-stack. Indeed, we
have a decomposition

Vect '
∐
n

Vectn,

where Vectn ⊂ Vect is the substack of projective modules of rank n (recall that
a projective A-module of finite type M is of rank n if, for any field K and any

I. Moerdijk and B. Toën, Simplicial Methods for Operads and Algebraic Geometry, Advanced Courses 179

stack RLoc(X) classifying local systems on X. We will see that this stack is an
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morphism A −→ K, the K-vector space M⊗AK is of dimension n). It is therefore
enough to prove that Vectn is an algebraic 1-stack. This last statement will itself
follow from the identification

Vectn ' [∗/Gln] = BGln,

where Gln is the affine group scheme sending A to Gln(A). In order to prove that
Vectn ' BGln, we construct a morphism of simplicial presheaves

BGln −→ Vectn

by sending the base point of BGln to the trivial projective module of rank n. For
a given commutative ring A, the morphism

BGln(A) −→ Vectn(A)

sends the base point to An and identifies Gln(A) with the automorphism group
of An. The claim is that the morphism BGln −→ Vectn is a local equivalence of
simplicial presheaves. As, by construction, this morphism induces isomorphisms
on all higher homotopy sheaves, it only remains to show that it induces an isomor-
phism on the sheaves π0. But this in turn follows from the fact that π0(Vectn) ' ∗,
because any projective A-module of finite type is locally free for the Zariski topol-
ogy on SpecA.

The algebraic stack Vect is now considered as an algebraic derived stack
using the inclusion functor j : Ho(sPr(Aff )) −→ Ho(dAff ∼). We consider a fibrant
model F ∈ dAff ∼ for j(Vect), and we define a new simplicial presheaf

RLoc(X) : dAff op −→ sSet

which sends A ∈ sComm to Map(X, |F (A)|), the simplicial set of continuous maps
from X to |F (A)|.

Definition 6.1.1. The derived stack RLoc(X) defined above is called the derived
moduli stack of local systems on X.

We will now describe some basic properties of the derived stack RLoc(X).
We start by a description of its classical part h0(RLoc(X)), which will show that it
does classify local systems on X. We will then show that RLoc(X) is an algebraic
derived stack locally of finite presentation over SpecZ, and that it can be written as

RLoc(X) '
∐
n

RLocn(X)

where RLocn(X) is the part classifiying local systems of rank n and is itself
strongly of finite type. Finally, we will compute its tangent spaces in terms of
the cohomology of X.

For A ∈ Comm, note that h0(RLoc(X))(A) is by definition the simplicial set
Map(X, |F (A)|). Now, F (A) is a fibrant model for j(Vect)(A) ' Vect(A), and
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so it is equivalent to the nerve of the groupoid of projective A-modules of finite
rank. The simplicial set Map(X, |F (A)|) is then naturally equivalent to the nerve
of the groupoid of functors Fun(Π1(X), F (A)) from the fundamental groupoid of
X to F (A). This last groupoid is in turn equivalent to the groupoid of local sys-
tems of projective A-modules of finite type on the space X. Thus, we see that
h0(RLoc(X))(A) is naturally equivalent to the nerve of the groupoid of local sys-
tems of projective A-modules of finite type on the space X. We thus have the
following properties:

1. The set π0(h0(RLoc(X))(A)) is functorially in bijection with the set of iso-
morphism classes of local systems of projective A-modules of finite type on X.
In particular, when A is a field this is also the set of local systems of finite-
dimensional vector spaces over X.

2. For a local system E ∈ π0(h0(RLoc(X))(A)), we have

π1(h0(RLoc(X))(A), E) = Aut(E),

the automorphism group of E as a sheaf of A-modules on X.

3. For all i > 1 and all E ∈ π0(h0(RLoc(X))(A)), we have

πi(h
0(RLoc(X))(A), E) = 0.

Let us explain now why the derived stack RLoc(X) is algebraic. We start
with the trivial case where X is a contractible space. Then, by definition, we
have RLoc(X) ' RLoc(∗) ' j(Vect). As we already know that j(Vect) is an
algebraic stack, this implies that RLoc(X) is an algebraic derived stack when X
is contractible.

The next step is to prove that RLoc(Sn) is algebraic for any n ≥ 0. This can
be seen by induction on n. The case n = 0 is obvious. Moreover, for any n > 0 we
have a homotopy pushout of topological spaces

Sn−1 //

��

Dn

��

Dn // Sn,

where Dn is the n-dimensional ball. This implies the existence of a homotopy
pullback diagram of derived stacks

RLoc(Sn) //

��

RLoc(Dn)

��

RLoc(Dn) // RLoc(Sn−1).
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By induction on n and by what we have just seen, the derived stacks RLoc(Dn)
and RLoc(Sn−1) are algebraic. By the stability of algebraic derived stacks by
homotopy pullbacks, we deduce that RLoc(Sn) is an algebraic derived stack.

We are now ready to show that RLoc(X) is algebraic. We write Xk to de-
note the k-th skeleton of X. Since X is a finite CW-complex, there is an n such
that X = Xn. Moreover, for any k there exists a homotopy pushout diagram of
topological spaces ∐

Sk−1 //

��

∐
Dk

��

Xk−1
// Xk,

where the disjoint unions are finite. This implies that we have a homotopy pullback
square of derived stacks

RLoc(Xk) //

��

RLoc(Xk−1)

��∏hRLoc(Dk) //
∏h RLoc(Sk−1).

By the stability of algebraic derived stacks by finite homotopy limits, we deduce
that RLoc(Xk) is algebraic by induction on k (the case k = 0 being clear, as
RLoc(X0) is a finite product of RLoc(∗)).

To finish the study of this example, we will compute the higher tangent spaces
of the derived stack RLoc(X). We let A be a commutative algebra and consider
the natural morphism

RLoc(∗)(A⊕A[i]) −→ RLoc(∗)(A).

This morphism has a natural section and its homotopy fiber at an A-module E is
equivalent to K(End(E), i+ 1). It is therefore naturally equivalent to

[K(End(−), i+ 1)/Vect(A)] −→ N(Vect(A)),

where Vect(A) is the groupoid of projective A-modules of finite type, N(Vect(A))
is its nerve, and [K(End(−), i + 1)/Vect(A)] is the homotopy colimit of the sim-
plicial presheaf Vect(A) −→ sSet sending E to K(End(E), i + 1) —this is a gen-
eral fact: for any simplicial presheaf F : I −→ sSet we have a natural morphism
HocolimI F −→ N(I) ' HocolimI(∗). We consider the geometric realization of
this morphism to get a map of topological spaces

|[K(End(−), i+ 1)/Vect(A)]| −→ |N(Vect(A))|,

which is equivalent to the geometric realization of

RLoc(∗)(A⊕A[i]) −→ RLoc(∗)(A).
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We take the image of this morphism by Map(X,−) to get

RLoc(X)(A⊕A[i]) ' Map(X,RLoc(∗)(A⊕A[i])) −→

Map(X,RLoc(∗)(A)) ' RLoc(X)(A).

This implies that the morphism

RLoc(∗)(A⊕A[i]) −→ RLoc(∗)(A)

is equivalent to the morphism

Map(X, |[K(End(−), i+ 1)/Vect(A)]|) −→ Map(X, |N(Vect(A))|).

A morphism X −→ |N(Vect(A))| corresponds to a local system E of projective
A-modules of finite type on X. The homotopy fiber of the above morphism at E is
then equivalent to the simplicial set of homotopy lifts of X −→ |N(Vect(A))| to a
morphism X −→ |[K(End(−), i+1)/Vect(A)]|. This simplicial set is in turn natu-
rally equivalent to DK(C∗(X,End(E))[i+1]), the simplicial set obtained from the
complex C∗(X,End(E))[i+1] by the Dold–Kan construction. Here C∗(X,End(E))
denotes the complex of cohomology of X with coefficients in the local system
End(E). We therefore have the following formula for the higher tangent complexes:

T iERLoc(X) ' H0(C∗(X,End(E))[i+ 1]) ' Hi+1(X,End(E)).

More generally, it is possible to prove that there is an isomorphism in D(A)

TERLoc(X) ' C∗(X,End(E))[1].

6.2 The derived moduli of maps

As for non-derived stacks, the homotopy category of derived stacks Ho(dAff ∼) is
cartesian closed. The corresponding internal Hom will be denoted by RHom. Note
that, even though we use the same notations for the internal Homs of stacks and
derived stacks, the inclusion functor

j : Ho(sPr(Aff )) −→ Ho(dAff ∼)

does not commute with them. However, we always have

h0(RHom(F, F ′)) ' RHom(h0(F ), h0(F ′))

for all derived stacks F and F ′. The situation is therefore very similar to the case
of homotopy pullbacks.

We have just seen an example of a derived stack constructed as an internal
Hom between two stacks. Indeed, if we use again the notations of the last example,
we have

RLoc(X) ' RHom(K,Vect),
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where K = S∗(X) is the singular simplicial set of X.
We now consider another example. Let X and Y be two schemes, and assume

that X is flat and proper (say over Spec k for some base ring k), and that Y is
smooth over k. It is possible to prove that the derived stack

RHomdAff /Spec k(X,Y )

is a derived scheme which is homotopically finitely presented over Spec k. We will
not sketch the argument here, as it is out of the scope of these lectures, and we
refer to [HAGII] for more details. The derived scheme RHom(X,Y ) is called the
derived moduli space of maps from X to Y . Its classical part h0(RHom(X,Y )) is
the usual moduli scheme of maps from X to Y , and for such a map we have

TfRHomdAff /Spec k(X,Y ) ' C∗(X, f∗(TY )),

where all these tangent complexes are relative to Spec k.
We mention here that these derived mapping spaces of maps can also be used

in order to construct the so-called derived moduli of stable maps to an algebraic
variety, by letting X vary in the moduli space of stable curves. We refer to [To1] for
more details about this construction, and for some explanations of how Gromov–
Witten theory can be extracted from this derived stack of stable maps.
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