
Autonomics Development: A Domain-Specific Aspect Language Approach, 41–66
Book Series: Autonomic Systems
© 2010 Springer Basel AG

3 An Aspect-Oriented Approach

3.1 Introduction
Object-orientation has been presented as the technology that will finally make soft-
ware reuse a reality as the object model provides a better fit with domain models
than procedural programming [63]. Object-orientation, currently the dominant
programming paradigm, allows a programmer to build a system by decomposing
a problem domain into objects that contain both data and the methods used to
manipulate the data, thereby providing both abstraction and encapsulation. In ad-
dition, object-oriented languages typically provide an inheritance mechanism that
allows an object to reuse the data and methods of its parent, thereby enabling
polymorphism.

There are, however, many programming problems where the object-oriented
programming (OOP) technique, or the procedural programming technique it re-
places, are not sufficient to capture the important design decisions a program
needs to implement. Kiczales et al. [59] refer to these design decisions as aspects
and claim the reason they are so difficult to capture is because they crosscut the
systems basic functionality. Kiczales et al. claim that AOP makes it possible to
clearly express programs involving such aspects, including appropriate isolation,
composition and reuse of the aspect code.

3.2 Crosscutting Concerns and Aspects
Separation of concerns has long been a guiding principle of software engineering as
it allows one to identify, encapsulate and manipulate only those parts of software
that are relevant to a particular goal or purpose [79]. Unfortunately, there can be
many concerns that crosscut one another leading to tangled code that is difficult
to understand, reuse and evolve. Concerns are said to crosscut if the methods
related to those concerns intersect [31] as illustrated in the UML for a simple
picture editor1 in Figure 3.1.

Figure 3.1 illustrates two implementations of the FigureElement interface,
Point and Line. Although these classes exhibit good modularity, consider the
concern that the screen manager must be notified whenever a FigureElement
moves. In this case every time a FigureElement changes, the screen manager must

1This example is reproduced from Kiczales et al. [60].

42 3 An Aspect-Oriented Approach

Figure
+incrXY(int, int)
FigureElement

+getX() : int
+getY() : int
+setX(int)
+setY(int)
+incrXY(int, int)

Point
+getX() : int
+getY() : int
+setX(int)
+setY(int)
+incrXY(int, int)

Line

moveTracking

Figure 3.1. Aspects crosscut classes in a simple figure editor.

be informed by calling the screen manager’s moveTracking method, as illustrated
by the band surrounding the methods that implements this concern in Figure 3.1.
This concern is called a crosscutting concern as it crosscuts methods in both the
Line and the Point classes.

AOP is an attempt to isolate and modularise these concerns and then weave
or compose them together with an existing program, thereby allowing the concern
to be applied in an oblivious way (the existing code is unaware of the crosscutting
concern). An aspect can therefore be considered as a modular unit of crosscutting
implementation [61].

It is important to note that the goal for AOP is not as a replacement for
object-orientation, it is to build on object-orientation by supporting separation of
concerns that cannot be adequately expressed in object-oriented languages [31].

3.3 AOP Semantics
AOP introduces new semantics to describe crosscutting concerns and aspects.
Much of the semantic model is based on the AspectJ language developed by Kicza-
les et al. [59] at Xerox’s Palo Alto Research Centre.

According to Kiczales et al. [59], aspect-oriented languages have three critical
elements: a join point model, a means of identifying join points, and a means of
effecting implementation at join points. These elements can be described as:

3.4 Static and Dynamic Weaving 43

Join points. A join point model makes it possible to define the structure of cross-
cutting concerns. Join points are well-defined points in the execution flow of
a program [59], such as method calls, constructors, function calls etc. Join
points can therefore be considered as places in a program where aspects may
be applied.

Pointcuts. A pointcut is a means used to identify a join point. This is typically
a filter mechanism that defines a subset of join points [59]. A cflow is a
type of pointcut that identifies join points based on whether they occur in
the dynamic context of other join points. For example, the cflow statement
cflow(move()) in the AspectJ language picks out each join point that occurs
between when the move() method is called and when it returns, which may
occur multiple times in the case of a recursive call [6].

Advice. The advice is used to define additional code that is run at join points.
In most AOP languages there are a number of different advice declarations
that define when the advice runs when a join point is reached. These are
typically before, after, or around the join point.

Weaving. The process of adding aspects to existing code to produce a coherent pro-
gram is known as weaving. Weaving is either done at compile time (static
weaving) or at runtime (dynamic weaving) and some systems, such as com-
position filters [12], allow aspects to be added and removed dynamically.
Weaving is achieved using a technique known as bytecode rewriting, which
alters existing bytecode, either dynamically as it is loaded or statically by
altering the bytecode contained in an existing class file.

As well as the above general AOP semantics, various aspect implementations
provide their own semantics.

3.4 Static and Dynamic Weaving
Static weaving refers to the modification of the source code of a class by inserting
aspect-specific statements at join points [21]. Java applications are compiled to
bytecode, a portable format that is interpreted by the Java virtual machine at
runtime, and consequently most Java AOP systems alter the bytecode, not the
source code. This has the added advantage of allowing Java AOP systems to be
used where the source code is not available.

Dynamic weaving refers to the ability to weave and unweave aspects at run-
time without having to restart the application [84].

A number of methods have been proposed to implement aspect-oriented func-
tionality. These can be broadly classified as language-based implementations,
framework-based implementations and domain-specific language implementations.

44 3 An Aspect-Oriented Approach

3.5 Language-Based Implementations
A number of language-based approaches have been proposed to implement aspect-
oriented programming. Many of these languages, such as AspectJ [60], Caesar [71],
Jiazzi [68], AspectC [20], and JAsCo [106] have been designed as extensions to ex-
isting languages. Other novel language-based concepts, such as composition filters
that manipulate the messages passing between objects, have also been proposed
[12].

These languages and systems have typically been produced by the research
community attempting to understand the practical value of AOP in terms of how
aspects are used, the types of designs and patterns that may emerge, and how
effective crosscutting modularity actually is [60]. The most popular language-
based system is currently AspectJ.

3.5.1 AspectJ

AspectJ is an extension to the Java programming language that was developed by
Kiczales et al. [59] at Xerox’s Palo Alto Research Centre. The AspectJ language
is designed to be a simple and practical aspect-oriented extension to the Java
language that can be used to code crosscutting concerns that would otherwise
lead to tangled code [60].

AspectJ is designed as a compatible extension to Java where compatibility is
defined by Kiczales et al. [60] as:

• Upward compatibility – all legal Java programs are legal AspectJ programs.
• Platform compatibility – all legal AspectJ programs must run on standard

Java virtual machines.
• Tool Compatibility – all existing tools, including IDEs, documentation tools,

and design tools should be able to be extended to support AspectJ.
• Programmer compatibility – programming in AspectJ must feel like a natural

extension to programming in Java.

While early versions of AspectJ operated on source code, later versions alter
the bytecode generated by the Java compiler, thereby allowing aspects to be used
in situations where the source code is not available.

As discussed in Section 3.3 join points are well-defined points in the execution
flow of a program. AspectJ supports a number of join points as listed in Table 3.1
[60].

A pointcut in AspectJ is a set of join points that may be matched at runtime.
For example, the pointcut2:

call(void Point.setX(int)) ||
call(void Point.setY(int))

2These examples are reproduced from Kiczales et al. [60, 61].

3.5 Language-Based Implementations 45

Table 3.1. The dynamic join points of AspectJ.

Kind of join point Points in the program execution at which . . .
method call A method (or a constructor of a class) is called.
constructor call Call join points are in the calling object, or in

no object if the call is from a static method.
method call reception An object receives a method or constructor call.
constructor call reception Reception join points are before method or con-

structor dispatch, i. e. they happen inside the
called object, at a point in the control flow after
control has been transferred to the called
object, but before any particular method or
constructor has been called.

method execution An individual method or constructor is invoked.
constructor execution
field get A field of an object, class or interface is read.
field set A field of an object or class is set.
exception handler execution An exception handler is invoked.
class initialisation Static initialisers for a class are run.
object initialisation When the dynamic initialisers for a class are

run during object creation.

matches any call to either the setX or setY methods defined by Point that return
void and have a parameter of int. Pointcuts may also be declared by name, for
example:

pointcut weAreMoving():
call(void Point.setX(int)) ||
call(void Point.setY(int));

As well as pointcuts that match an explicit method call, as described above,
pointcuts may also contain wildcard characters that can match a number of dif-
ferent methods. Consider the following:

call (public String Figure.get∗(..))
call (public ∗ Figure.∗(..))

The first matches any call to public methods defined in Figure that start with
get, take any number of parameters, and return a String. The second matches
any call to a public method defined in Figure.

AspectJ defines the advice declaration to stipulate the code that is run at a
join point. Three types of advice are supported:

46 3 An Aspect-Oriented Approach

aspect SimpleTracing {
pointcut traced() :

call(void Display.update()) ||
call(void Display.repaint(..));

before(): traced() {
println("Entering: " + thisJoinPoint);

}

void println(String s) {
// write message

}
}

Figure 3.2. AspectJ SimpleTracing Example.

• Before advice – runs at the moment a join point is reached.
• After advice – runs after the join point has been reached.
• Around advice – runs when the join point is reached and has explicit control

over whether the method is run or not.

An advice is declared using one of the advice keywords. For example, the following
advice prints a message after the weAreMoving method is called using the after
keyword:
after(): weAreMoving() {

System.out.println("We have moved");
}

Aspects wrap up pointcuts, advice, and inter-type declarations in a modular
unit of crosscutting implementation and is defined similar to a class. Inter-type
declarations are members of an aspect (fields, members and constructors) that are
owned by other types, and aspects can also declare that other types implement
new interfaces or extend a new class [6].

Aspects can contain methods, fields, and initialisers in addition to the cross-
cutting members. The following is an example of a simple aspect that is used to
print messages before certain display operations:

As can be seen from the example in Figure 3.2, aspects in AspectJ are not
reusable because the context on which an aspect needs to be deployed is specified
directly in the aspect definition – the pointcut is part of the aspect [106]. Although
AspectJ allows aspects to be inherited from other aspects, it is only allowed if the
inherited aspect has been declared as abstract. Concrete aspects are therefore not
reusable. In addition, any change to a class may result in the necessity to alter
the aspect as the pointcut definition may no longer be valid.

Recognising this limitation, a number of researchers have been focusing on re-
moving the join point interception model from the aspect implementation. Lieber-
herr et al. [64] have developed the concept of Aspectual Components, which

3.6 Framework-Based Implementations 47

attempts to separate the pointcut from the advice, thereby making the advice
reusable. This method has subsequently been adopted by Suvée et al. [106] in the
JAsCo language. The Caesar system [71], uses an aspect collaboration interface,
a higher-level module concept that decouples the aspect implementation from the
aspect bindings, to enable reuse and componentisation of aspects.

As well as providing aspects, AspectJ also provides introductions, a mecha-
nism for adding fields, methods and interfaces to existing classes. Introductions are
motivated by the observation that concerns have an impact on the type structure
of programs which compromises modularisation, because different fields and meth-
ods in the type structure may come from different concerns. With introductions,
these fields and methods can be removed from the various concerns, modularised,
and applied to the various classes at runtime [46].

3.6 Framework-Based Implementations
One approach to the implementation of AOP is by providing an object-oriented
framework [80], a reusable semi-complete application that can be specialised to
produce custom applications [55]. A framework dictates the architecture of an
application by [41]:

• Defining its overall structure.
• Partitioning the application into classes and objects.
• Defining the key responsibilities of the classes and objects.
• Dictating how the classes and objects collaborate.
• Defining the application’s thread of control.

These design parameters are predefined so that an application programmer can
concentrate on the specifics of the application and not on the architecture [41].

The important classes in a framework are usually abstract. An abstract class
is a class with no instances and is used only as a superclass [36]. As well as
providing an interface, an abstract class provides part of the implementation of
its subclasses by using either a template method or a hook method. A template
method defines part of the implementation in an abstract class and defers other
parts to subclasses by calling methods that are defined as abstract [41]. A hook
method defines a default implementation that can be overridden by subclasses
[86]. Abstract classes that are intended to be subclassed by the framework user
are known as hot spots as they encapsulate possible variations [85].

Frameworks usually come with a component library containing concrete sub-
classes of the abstract classes in the framework [36]. According to Fayad et al.
[36], frameworks provide the following benefits:

Modularity. Implementation details are hidden behind stable interfaces. This helps
to improve quality by localising the impact of design and implementation
changes.

48 3 An Aspect-Oriented Approach

1 public class MyAspect {
2 public Object trace(MethodInvocation invocation)
3 throws Throwable {
4 try {
5 System.out.println("Entering method");
6 // proceed to next advice or actual call
7 return invocation.invokeNext();
8 } finally {
9 System.out.println("Leaving method");

10 }
11 }
12 }

Figure 3.3. JBoss aspect example.

Reusability. The stable interfaces provided by frameworks define generic compo-
nents that can be reused in new applications.

Extensibility. A framework provides hook methods that can be re-implemented by
subclasses.

Inversion of control. This allows the framework, as opposed to the application, to
decide which application specific methods to invoke in response to external
events.

Frameworks are designed to either be used as a general purpose framework
usable in any environment, such as AspectWerkz [16], or to be used in a specific
environment, such as the JEE framework. Components that have been developed
to a specific framework environment cannot be reused outside that environment,
severely limiting reuse.

3.6.1 The JBoss AOP Framework

The JBoss AOP framework provides a framework that can be used to develop
aspect-oriented applications that are either tightly coupled to the JBoss JEE ap-
plication server or are standalone. To use the framework, the programmer defines
AOP constructs as Java classes and binds them to application code using XML or
Java 1.5 annotations [54].

Aspect classes are defined as normal Java class that define zero or more ad-
vices, pointcuts and/or mixins (a mixin class is a class that is used to implement
multiple unrelated interfaces and is often used as an alternative to multiple inher-
itance [17]).

Figure 3.3 contains an example of an aspect called MyAspect3, which contains
an advice, trace (line two), that traces calls to any method. The return statement,
invocation.invokeNext() (line seven) is required in order to ensure that either

3All examples presented in this section are reproduced from: JBoss AOP – Aspect-Oriented
Framework for Java [54].

3.6 Framework-Based Implementations 49

Table 3.2. Pointcuts supported by JBoss AOP.

Pointcut Type Description
execution(method Specifies that an interception occurs whenever a
or constructor) specified method or constructor is called.
get(field expression) Specifies that an interception occurs when a

specified field is accessed to be read.
set(field expression) Specifies that an interception occurs when a
field specified field is accessed to be written to.
field(field expression) Specifies that an interception occurs when a

specified field is accessed to be read from or written
to.

all(type expression) Specifies that calls to a specified constructor,
method or field of a particular class will be inter-
cepted.

call(method Specifies that calls to a specified constructor or
or constructor) method will be intercepted.
within(type expression) Matches any join point (method or constructor

call) within any code within a particular call.
withincode(method Matches any join point (method or constructor
or constructor) call) within a particular method or constructor.
has(method Used as an additional requirement for matching.
or constructor) If a join point is matched, its class must also have a

constructor or method that matches the has ex-
pression.

hasfield(field expression) Used as an additional requirement for matching. If
a join point is matched, its class must also have a
constructor or method that matches the hasfield
expression.

the next advice in the chain (if there is more than one) or the actual method or
constructor invocation is called. Failure to adhere to this protocol results in the
failure to call other advice and/or the method or constructor.

The framework also supports other invocation types such as all invocations,
public Object trace(Invocation invocation), and constructor invocations,
public Object trace(ConstructorInvocation invocation).

XML files are used by the framework to describe pointcuts and the attach-
ment of pointcuts to aspects. Table 3.2 lists the types of pointcuts supported by
the JBoss AOP framework [54].

For example, the XML constructs used to trace all calls to the withdraw
method on any object that has a parameter of double using the MyAspect aspect
example presented in Figure 3.3 is:

50 3 An Aspect-Oriented Approach

<aop>
<aspect class="MyAspect"/>
<bind pointcut=

"execution(* void *->withdraw(double amount))">
<advice name="trace" aspect="MyAspect"/>

</bind>
</aop>

One of the more interesting features of the JBoss AOP framework is that it
allows for the use of introductions and mixins. An introduction is used to alter an
existing class so that it implements one or more additional interfaces. For example
the class:

public class POJO {
private String field;

}

can be made to implement the java.io.Externalizable interface by using the
following XML:

<introduction class="POJO">
<mixin>

<interfaces>
java.io.Externalizable

</interfaces>
<class>ExternalizableMixin</class>
<construction>

new ExternalizableMixin(this)
</construction>

</mixin>
</introduction>

The class element above defines the mixin class that will implement the ex-
ternalizable interface, while the construction element specifies the Java code that
will be used to initialise the mixin class when it is created.

The JBoss AOP framework also has the ability to allow the deployment and
undeployment of aspects at runtime. This is achieved by using the aopc compiler
to ’prepare’ join points in the application to accept advices at runtime. Preparing
alters the bytecode by inserting dummy placeholders where advice can later be
applied [54].

The JBoss AOP framework is an extensive elegant framework that supports
many complex AOP constructs as well as many useful features, such as the hot
deployment/undeployment of aspects at runtime. As with many object-oriented
frameworks it requires the programmer to adhere to a specified protocol, such as
ensuring that the invocation.invokeNext() method is called in an aspect. If
the programmer fails to adhere to this protocol, the application will not behave as
expected. Unfortunately these types of issues can only be picked up at runtime,
not compile time.

3.7 AOP and Autonomics 51

Table 3.3. Four aspects of self-management with autonomic
computing.

Concept Current Computing Autonomic Computing
Self- Corporate data centres have Automated configuration of
configuration multiple vendors and plat- components and systems fol-

forms. Installing, configuring, lows high-level policies. Rest
and integrating systems is of system adjusts automati-
time consuming and error cally and seamlessly.
prone.

Self- Systems have hundreds of Components and systems
optimisation manually set, nonlinear tun- continually seek opportuni-

ing parameters, and their ties to improve their own per-
number increases with each formance and efficiency.
release.

Self-healing Problem determination in System automatically detects,
large, complex systems can diagnoses, and repairs local-
take a team of programmers ised software and hardware
weeks. problems.

Self- Detection of and recovery System automatically defends
protection from attacks and cascading against malicious attacks or

failures is manual. cascading failures. It uses early
warning to anticipate and
prevent systemwide failures.

3.7 AOP and Autonomics
Autonomic computing is an initiative proposed by the IBM corporation to over-
come an impending complexity crisis in the development of applications [52]. Ac-
cording to IBM, this complexity is growing beyond human ability to manage it.

To overcome this, IBM proposes that systems are developed to manage them-
selves, given high-level objectives by administrators, so that they may adjust their
operation, workloads, demands and external conditions in the face of hardware or
software failures. IBM cites four aspects of self-management, which are detailed
in Table 3.3 [56].

To meet the autonomic computing vision of self-managing, self-healing and
self-optimising systems requires a system to be able to dynamically adapt to its
environment. However, a key challenge limiting the use of autonomic features in
applications is the lack of tools and frameworks that can alleviate the complexities
stemming from the use of manual development methods [56].

McKinley et al. [69] define two general approaches to implement adaptive
software:

52 3 An Aspect-Oriented Approach

Separation of
concerns

Computational
reflection

Component-
based design

Compositional adaption

Middleware

Figure 3.4. Main technologies supporting compositional adap-
tion.

Parameter adaption modifies program variables that are used to determine be-
haviour, for example by adjusting a retry count depending on current net-
work conditions. This type of adaption is severely limited as it does not allow
new algorithms and software components to be added to an application after
initial design and development.

Compositional adaption allows an application to replace parts of a program’s com-
ponents with another to improve the program’s fit into the current operating
environment, for example by adding new behaviour to a deployed system.
While this is much more flexible than parameter adaption, incorrect use may
result in a program that is difficult to test and debug.

McKinley et al. [69] define three main technologies, illustrated in Figure 3.44, that
can be used to support compositional adaption; separation of concerns, computa-
tional reflection, and component-based design.

There are two main techniques used to implement compositional adaption in
application code. The first is to use a language, such as CLOS or Python, that
directly supports dynamic recomposition, and the second is to weave the adaptive
code into the functional code using aspect-oriented techniques [69].

For the purposes of this discussion we concentrate on using the AOP tech-
nique to develop adaptive software and present relevant implementations of this
approach.

4This diagram is reproduced from McKinley et al. [69].

3.7 AOP and Autonomics 53

branch

Woven dynamic aspect code

Replaced instruction in original
code

Jump back to instruction after
join point

Kernel Code Dynamic Aspect

Figure 3.5. TOSKANA Code Splicing.

3.7.1 The TOSKANA Toolkit

Engel and Freisleben [33] have developed the TOSKANA toolkit to dynamically
apply aspects to the NetBSD operating system. This toolkit provides a set of
tools, macros and libraries for developing and deploying dynamic aspects in the
kernel space of NetBSD.

Aspects are developed using standard C macros and are inserted into the
kernel as loadable kernel modules. A runtime library, called aspectlib.ko, dynam-
ically applies join points using a technique known as code splicing. Code splicing
replaces the bit patterns of instructions in native code with a branch to a loca-
tion outside the predefined code flow, where additional instructions followed by
the originally replaced instruction and a jump back to the instruction after the
splicing location are inserted. As the execution of kernel functions may usually be
interrupted at any time, the splicing operation is performed atomically [33]. This
process is illustrated in Figure 3.55.

TOSKANA supports before, after and around advice variants and these are
implemented using the BEFORE, AFTER and AROUND macros in standard C
code as illustrated below:

#include <sys/aspects.h>
...
void aspect_init(void) { /∗ deploy three aspects ∗/

BEFORE(sys_open, open_aspect);
AFTER(sys_open, close_aspect);
AROUND(func, some_aspect);

}
ASPECT open_aspect(void) {

...
}

5This diagram is reproduced from Engel and Freisleben [33].

54 3 An Aspect-Oriented Approach

ASPECT close_aspect(void) {
...

}
ASPECT some_aspect(void) {

...
PROCEED();
...

}

The code is then compiled as a standard NetBSD kernel module. At runtime,
the user mode dynamic code weaver weave is used to load the requested kernel
module and execute its corresponding initialisation function (aspect_init()), which
calls a support library to do the actual weaving using the code splicing technique.
Subsequent functions calls are then routed through the user-provided aspects.

Engel and Freisleben [33] provide a number of use cases of adding adaption
to NetBSD using this approach:

Self-Configuration. In common with most operating systems, new devices may be
added or removed from the NetBSD operating system dynamically. While
adding a new device does not affect running processes, removing one may.
For example removing a USB memory key that contains a file system that
is currently being accessed by a process. The cross-cutting functionality
affected here is the call to the VOP_OPEN function, located in 43 areas in
the architecture-specific, base kernel, file system and device driver code in
the operating system. In this scenario an aspect may intercept the device
removal and signal the different parts of the operating system affected that
a device is no longer available if the operating system tries to open a file on
the now non-existent device.

Self-Healing. The NetBSD system, in common with all operating systems, may
run out of memory if a process requests more memory than that which is
available in the virtual memory system. Using an aspect, the out-of-memory
error condition can be intercepted and the aspect can add additional virtual
memory dynamically by adding additional swap files to the system.

Self-Optimization. To calculate the number of free blocks in a file system, the op-
erating system skims through the free block list and counts the number of
bits that indicate a free block. However, if the operating system could detect
that reading the free block count occurs more frequently than updating the
free block bitmap, an optimisation could be achieved by dynamically switch-
ing the free block calculation so that the number of free blocks is calculated
prior to every bitmap update instead of every call to a readout. This pro-
vides self optimisation because the system can dynamically shift the count
of free blocks depending on changing conditions and this functionality can
be provided in an aspect.

3.7 AOP and Autonomics 55

behavior RSSBehavior()
{
 //Instance variable declarations...
 octet[] examples::bette::SlideShow.:read (in long gifNumber)
 {
 return_value octet[] result;
 local instr::Trace_rec rec;

 after METHODENTRY {
 methodlD = "read";
 rec = rssQosket.createTraceRec(methodlD);
 }
 inplaceof METHODCALL {
 region slow {
 java_code #{
 iServer =
 (com.bbn.quo.examples.bette.SlideShowlnstrumented)
 rssQosket.getlnstrumentedServer();
 }#;
 instrumented_result = iServer.read(gifNumber,rec);
 result = instrumented_result.getBytes();
 rec = instrnmented_result.getRecord();
 }
 }
};

Advice

Region

Advice

Join Point

Method

Figure 3.6. QuO ASL example.

This approach presents the possibility of operating systems being able to be
modularised to a far greater extent than that which is currently possible and, as
described above, provides the possibly to add autonomic computing functionality.

3.7.2 The QuO Toolkit

Middleware technologies, such as CORBA [77], allow the development of dis-
tributed applications without the developer needing to be aware of details of the
distribution technology involved. As these applications may be distributed across
a number of different physical machines connected via one or more networks, the
applications concerned may need to adapt to the changing network and system
conditions to maintain an acceptable quality of of service (QoS).

Duzan et al. [30] have developed the QuO toolkit which builds QoS as an
aspect and weaves the aspect into the boundary between the application and the
middleware. QoU defines an aspect model, which includes join points specific
to distribution and adaption, and an adaption model which defines the adaption
strategy to be used. The QuO toolkit consists of four main entities [30]:

1. Contracts, which are used to define an adaption policy in QuO. Contracts
are defined using QUO’s Contract Definition Language (CDL).

2. System Condition Objects, which are used to monitor the environment.

56 3 An Aspect-Oriented Approach

3. Callbacks, which are used for system, middleware and out-of-band application
adaption.

4. Delegates, which define the aspect-oriented weaving of the adaptive behaviour
into wrappers around application interfaces.

QuO provides an Aspect Specification Language (ASL), which is used to
define the monitoring or control behaviour and is compiled to produce a delegate,
which acts as a proxy for calls to an object reference or a servent (the remote
object).

Figure 3.6 illustrates an example of QuO’s ASL used to define two advices
that are to be applied for the method examples::bette::SlideShow::read.

Although delegates may be defined for other middleware environments, the
current implementation of the QuO toolkit is designed for the CORBA envi-
ronment and therefore the ASL advice is applied to a particular method in the
CORBA IDL, e. g. examples::bette::SlideShow::read in Figure 3.6.

The region statement in the ASL Figure 3.6 refers to a region defined in QuO’s
Contract Definition Language (not shown), which defines the meaning of the term
’slow’. In this example, once the system reaches that state, the corresponding
advice is executed.

3.7.3 Reflection and AOP

A reflective system is a system that incorporates structures about itself. The sum
of these structures is called the self-representation of the system, which makes it
possible for the system to answer questions about itself and support actions on its
behalf [67].

In a language that supports reflection, each object is given a meta-object,
which holds the reflective information available about the object [67]. Metaobject
protocols (MOP’s) are interfaces, to the language that give users the ability to
incrementally modify the language’s behaviour and implementation [58], typically
by using a set of classes and methods that allow a program to inspect and alter
the state of the application.

Reflection is a common way of developing adaptive software and Grace et al.
[43] have proposed combining the use of AOP and reflective middleware to imple-
ment dynamic adaptive systems to provide the following benefits:

• The ability to support fine-grained introspection and dynamic adaption of
aspects including the ability to adapt or re-order advice behaviour and re-
configure the joinpoint set thereby supporting self-adaption and system wide
validation of crosscutting concerns.

• The provision of multiple system viewpoints to support complex adaptions.
For example an MOP to manage component adaption, another to manage
crosscutting module adaption and another to manage resource usage adap-
tion.

3.8 AOP and the Distribution Concern 57

• Increased performance (compared to a purely reflective implementation) by
deploying reflection using aspects only where required.

Surajbali et al. [105] argue that the reflective middleware approach is limiting as
the reflective APIs have been found to expose a steep learning curve and places
too much expressive power in the hands of developers. Instead their approach
is to build an AOP support layer on top of an underlying component-based re-
flective middleware substrate. Surajbali et al. [105] provide an implementation of
their model using the OpenCOM component model and the GridKit middleware
platform and claim their approach provides the following benefits [105]:

• The complexity of the reflection layer is hidden from programmers.
• The AOP support layer can be dynamically deployed and undeployed when

required thereby avoiding overhead when not in use.
• As the AOP support layer is constructed from OpenCOM components like the

rest of the system, the underlying middleware system and the AOP support
layer can be the target of an advice.

• As distributed dynamic aspects are supported, aspects can be dynamically
deployed across a distributed system on the basis of distributed pointcut
expressions.

Greenwood and Blair [44] have proposed the use of dynamic AOP to imple-
ment autonomics. This approach allows adaptions to be encapsulated as aspects,
thereby allowing adaptions to be contained and applied retrospectively at runtime.

Greenwood and Blair’s implementation [45] uses the AspectWerkz [16] dy-
namic AOP framework combined with reflection and a policy framework to define
adaptive behaviour based on Event-Condition-Action rules.

3.8 AOP and the Distribution Concern
Several attempts have been made to apply distribution aspects to existing Java
code. These attempts typically target a single distribution protocol, RMI, and
either generate code in the general purpose aspect language, AspectJ [18, 91, 114],
use a domain-specific language [66, 73], extend Java [83], or extend the AspectJ
language to provide distribution [74].

While RMI is the most widely used distribution protocol in Java systems and
is used as the protocol for Enterprise JavaBeans (EJB), Jini and JavaSpaces, there
are a number of other distributed systems, such as CORBA, JMS, SOAP, HTTP,
Java sockets etc. that Java programmers may choose to use and indeed may have
to use to solve a particular integration problem.

Programmers therefore have a large choice of protocols, each with its own
framework and possibly different programming convention. This significantly com-
plicates distributed systems development.

58 3 An Aspect-Oriented Approach

3.8.1 Domain-Specific Aspect Language Implementations

We define a domain-specific aspect language as a language designed for a specific
domain e. g. distribution, that is used by an aspect weaver to insert code based on
instructions and possibly code contained in the language into existing code either
statically, at compile time, or dynamically at runtime.

A number of domain-specific aspect languages have been proposed including
KALA for the transactional domain [35], ERTSAL for the real-time domain [94]
and ALPH for the healthcare domain [72].

Many domain-specific languages (e. g. Orca [8]) have been proposed to aid
distributed programming, and seminal work on aspect-orientation proposes a num-
ber of domain-specific aspect languages, such as the D language framework consist-
ing of the domain-specific aspect languages COOL, for concurrency management,
and RIDL for distribution [66], and the RG language [70], amongst others.

Since the RIDL language was conceived, little work has been done on domain-
specific aspect languages for the distribution concern and the closest work to ours
thus far are RIDL and AWED, which we describe in this section.

3.8.1.1 The D Language Framework

The D language framework consists of three sub-languages:

• JCore, an object-oriented language used to express the basic functionality
and the activity of the system. JCore is a subset of Java 1.0.

• COOL, an aspect language used to express the co-ordination of threads.
• RIDL, an aspect language used to express distribution and remote access

strategies.

A tool that implements an aspect weaver takes the programs written in the
different sub-languages and combines them to produce an executable program with
the specified distributed behaviour. The D framework consists of three types of
modules [65]:

• Classes – Used to implement functional components.
• Coordinators – Used to implement the thread coordination aspect.
• Portals – Used to define code for dealing with application-level data transfers

over remote method invocations.

For the purposes of this discussion, we concentrate on RIDL, the aspect
language used to express remote access strategies.

RIDL is used to define remote RMI objects, the parameter passing mode for
each distributed method in those objects, and the parts of the object graph that
should be copied if the call uses the copy-by-value semantics.

In order for an object to become a remote object, RIDL requires that a
remote interface and portal be defined (for that object) that stipulates the subset of

3.8 AOP and the Distribution Concern 59

public class BoundedBufferV1 {
private Book array[];
private int takePtr = 0, putPtr = 0;
protected int usedSlots = 0, size;
BoundedBufferV1(int capacity) throws IllegalArgumentException {

if (capacity <= 0) throw new IllegalArgumentException();
array = new Object[capacity];
size = capacity ;

}
public int count() { return usedSlots; }
public int capacity() { return size; }
public void put(Book x) throws Full {

if (usedSlots == array.length) throw new Full();
array[putPtr] = x;
putPtr = (putPtr + 1) % size;
usedSlots++;
System.out.println("BB got book:");
b.print();

}
public Book take() throws Empty {

if (usedSlots == 0) throw new Empty();
Book old = array[takePtr];
takePtr = (takePtr + 1) % size;
usedSlots−−;
return old;

}
}
public class Book {

private int isbn = 0;
private String title = null;
private Postscript ps;
Book(int n, String t) {isbn = n; title = t;}
public void print() {

System.out.println ("Book: " + isbn + title);
}

}

Figure 3.7. BoundedBuffer example (reproduced from Lopes
[65]).

methods of the class that can be invoked remotely, and the parameters and return
values of those methods. For each parameter and return value the programmer
may optionally define the mode that describes how the data transfers are to be
made, copy-by-value or copy-by-reference.

60 3 An Aspect-Oriented Approach

For example, given the class6 in Figure 3.7 the portal:

portal BoundedBufferV1 {
int capacity();
void put(Book x);
Book take();

}

states that:

• The methods capacity, put and take are remote methods.
• The method count, as it has not been defined in the portal, is a local method.
• The Book argument to the put method and the Book return value from the
take method are passed and returned respectively using the default transfer
strategy, copy-by-value.

If, instead, the programmer wishes to use the copy-by-reference semantics,
the following portal can be defined using the gref (for global reference) keyword:
portal BoundedBufferV1 {

int capacity();
void put(Book x) {

x: gref;
}
Book take() {

return: gref;
}

}

However by doing so, the Book class must now be defined as a remote object as
well:
portal Book {

void print();
}

The application that instantiates the bounded buffer class, defined in Fig-
ure 3.7, must export a reference to that instance in the name server as illustrated
below:
public class StartBuffer {

public static void main(String args[]) {
BoundedBufferV1 bb = new BoundedBufferV1(100);
try {

DJNaming.bind("rmi://goblin/BB", bb);
} catch (Exception e) {

System.out.println("StartBuffer err: " + e.getMessage());
e.printStackTrace();

}
}

}

6The examples in this section are reproduced from Lopes [65].

3.8 AOP and the Distribution Concern 61

RIDL’s DJNaming class is a wrapper class that interacts with Java’s RMI
Naming class and is therefore tied to a single protocol, RMI. Objects that export
these remote object references are explicitly tied to the RIDL specific naming
framework, thereby tying them to the framework.

Client calls to remote methods are exactly the same as calls to local methods
with the following exceptions:

• The run-time exception DJInvalidRemoteOp may be thrown.
• RIDL framework elements must be used to locate the remote method.

For example, to bind to the remote object, BoundedBuffer, the RIDL specific
naming framework must be used:

BoundedBuffer1 bb = new BoundedBuffer(100);
String url = "rmi://parc.xerox.com/BoundedBuffer";
// bind url to remote object
DJNaming.bind(url, bb);

...
// lookup bounded buffer
bb = (BoundedBuffer)DJNaming.lookup(url);

One of the compelling features of RIDL is the ability to pass or return partial
copies of objects in the remote call. For example, the portal:

portal BoundedBufferV1 {
int capacity();
void put(Book x) {

x: gref;
}
Book take() {

return: copy { Book bypass title, ps; }
}

}

declares that the returned Book object does not contain the title or ps fields. This
feature can dramatically reduce the overhead of a remote call. If the programmer
inadvertently refers to the title or ps fields, an error is generated.

RIDL programmers are required to adhere to RIDL’s naming framework and
the use of the RIDL specific exception, DJInvalidRemoteOp. RIDL is therefore
not entirely transparent to the programmer and by being so is intrusive in nature
although this intrusiveness is fairly limited.

3.8.1.2 AWED

AWED [73] is a comprehensive aspect language for distribution which provides
remote pointcuts, distributed advice, and distributed aspects and is implemented
by extensions to the JAsCo [106] AOP framework called DJAsCo.

62 3 An Aspect-Oriented Approach

The main characteristics of the AWED model are:

Remote pointcuts which can be used to match events on remote hosts, including
remote sequences. Sequences define a list of methods that have been executed
in order and may be referred to in pointcuts and advice. Remote pointcuts
enable the matching of join points on remote hosts and includes remote
calls and remote cflow constructs (matching of nested calls over different
machines).

Distributed advice execution. Advice can be executed either synchronously or asyn-
chronously.

Distributed aspects which may be configured using different deployment and in-
stantiation options.

The motivation behind the development of the AWED language is trans-
actional cache replication in the JBoss application server and consequently the
language supports the notion of distributed hosts with the keyword host and
includes the ability to define groups of hosts.

On the occurrence of a join point, AWED evaluates all pointcuts on all hosts
where the corresponding aspects are deployed. Pointcuts may contain conditions
about hosts where the join point originated and may also be defined in terms where
advice is executed [73].

For example7 the pointcut:
call(void initCache()) && host("adr1:port")

matches calls to the initCache method on the host with the specified address and
the advice may be executed on any host where the aspect is deployed [73].

The AWED language is a fairly low-level language and borrows much of its
syntax from AspectJ, including the keywords pointcut, call, after, around and
before. In common with RIDL, the AWED language has no support for either
multiple protocols (its current implementation uses the RMI protocol exclusively)
or the recovery concern.

3.8.2 AspectJ Implementations

Soares et al. [91] illustrate how the AspectJ language can be used to introduce the
distribution concern in the form of the RMI protocol into existing non-distributed
applications. Soares et al.’s solution utilises two aspects, a client aspect and a
server aspect. For the server aspect, a remote interface is generated for each object
that is to be distributed and each object is altered to implement the interface. The
client aspect redirects local method calls to the now remote object and alters the
local methods to declare that they throw the RemoteException exception. Due to
AspectJ’s inability to allow changes to the target object in its proceed statement,
a dedicated redirection advice is used to redirect calls to the remote object from
the client object.

7These examples are reproduced from Navarro et al. [73].

3.8 AOP and the Distribution Concern 63

Ceccato and Tonella [18] use a static code analyser and code generator to
analyse a non-distributed application and generate AspectJ code to apply the
distribution concern using the RMI protocol. All public methods in a class are
automatically altered to be remote methods and the various RMI specific con-
ventions are applied. In addition, parameters and return values are declared to
be remote objects so that they may be passed by reference, instead of the RMI
default pass-by-value, to avoid issues that may occur if the object cannot be seri-
alized. However, as identified by Tilevich and Smaragdakis [111], this approach is
extremely inefficient as each method call generates network traffic.

3.8.3 J-Orchestra

J-Orchestra [110, 113] is an automatic partitioning system for Java, which uses
bytecode rewriting to apply distribution and claims to be able to partition any
Java application and allow any application object to be placed on any machine,
regardless of how the application objects interact.

Although J-Orchestra’s focus is on the automatic partitioning of Java ap-
plications and does not employ a domain-specific aspect language or specifically
define aspect-oriented concepts, such as join points or pointcuts, its use of bytecode
rewriting is essentially an aspect-oriented approach.

J-Orchestra replaces Java’s RMI with NRMI [111], a modified version that
implements call-by-copy-restore semantics for object types for remote calls. In
RMI, copy-by-value is used to pass parameters from the client to the server. That
is, parameter objects are serialized and copied to the server. However, any changes
to parameter objects on the server are lost when the call returns. Call-by-copy-
restore overcomes this by copying changes made on the server back to the client
which is, to the user, more natural as it emulates a local procedure call. However,
inevitably, additional network traffic is generated.

J-Orchestra implements distributed thread management [112] so that multi-
threaded applications can behave in the same manner once they are automatically
partitioned. Distributed thread management is implemented by altering only the
thread specific bytecode with calls to operations of the J-Orchestra distribution-
aware synchronisation library. Again, this has an overhead on network traffic.

Users interact with the J-Orchestra system using XML files, which simply
detail a list of classes to be distributed. J-Orchestra has no concept of a domain-
specific language, multiple protocols or user-defined definition and manipulation
of the recovery concern. Nevertheless it does, for the RMI protocol, provide so-
phisticated automatic partitioning.

3.8.4 Other Systems

Both JavaParty [83] and DJcutter [74] use a language-based approach and supply
Java language extensions to provide explicit support for distribution. Again these
systems target the RMI protocol exclusively.

64 3 An Aspect-Oriented Approach

JAC [82] is a dynamic AOP framework that has been extended to support a
distributed pointcut definition, which extends the regular pointcut definition with
the ability to specify a named host where the join point should be detected. To sup-
port the distributed deployment of aspects, JAC replicates its Aspect-Component
manager, which is used to keep track of registered aspects on the named hosts. A
consistency protocol is used to ensure that the weaving/unweaving of an aspect on
one site triggers the weaving or unweaving of the same aspect on other sites [82].

A number of multi-protocol systems, such as RMIX [62] and ACT [29], have
been proposed. However, these systems use the high-level framework approach
discussed in Section 2.7 and therefore have the same issue as all framework-based
approaches, namely tying the application code to the framework or API.

3.8.5 Our Approach

The D language framework concentrated on distributed thread co-ordination and
remote access strategies but did not address error handling mechanisms. Indeed
Lopes [65], the author of the D language framework, states that error handling was
omitted from D, not because it was not a problem, but because it was too big of a
design problem that needed much more research. Our research addresses this issue
by introducing a domain-specific aspect language that provides modularisation not
only for the distribution concern but also for the distribution recovery concern. In
addition we provide support for multiple protocols while other approaches only
support a single protocol.

Our approach introduces the concept of a Distribution Definition Language
(DDL), a simple high-level domain-specific aspect language, which generalises dis-
tributed systems development by describing the classes and methods to be made
remote, the protocol to use to make them remote and the method used to recover
from a remote error. The DDL is used by the RemoteJ compiler/generator, which
uses bytecode manipulation and generation techniques to provide a distributed
version of the application while retaining existing classes for reuse in other dis-
tributed or non-distributed applications.

By generalising and modularising the distribution and recovery concerns, the
use of a DDL provides a method of developing distributed applications that is
significantly simplified, allows multiple protocols to be supported for the same
code base, allows explicit definition of the recovery concern and enables the same
code to be used in both a distributed and non-distributed application thereby
improving software reuse.

3.9 Chapter Summary
This chapter has provided the lineage towards the domain-specific aspect lan-
guage (DSAL) approach to distributed systems development by examining aspect-

3.9 Chapter Summary 65

orientation, aspect-orientation as applied to autonomic systems, aspect-oriented
languages and aspect-oriented frameworks and their features and facilities.

Related work in using aspects for distribution, including frameworks, domain-
specific languages, Java language extensions and AspectJ approaches, have been
discussed.

We have discussed three common implementations of aspect-oriented sys-
tems:

1. The language-based approach, which is designed as an extension to an exist-
ing language.

2. The object-oriented framework-based approach, which provides a framework
that is used by developers to apply aspects to existing code.

3. The domain-specific aspect language approach, which uses a domain-specific
language to apply aspects to existing code.

AspectJ [6], an example of the first approach, extends the Java program-
ming language and provides a low level generalised approach to aspect-oriented
programming. Because AspectJ, and other language-based systems, are at a low
level they are relatively complicated to use. In addition, they introduce addi-
tional concepts and constructs, such as the notion of introductions, join points
and pointcuts, which further complicates their understanding.

The JBoss AOP [54] framework is an example of the framework-based ap-
proach as it allows programmers to define AOP constructs as Java classes using an
object-oriented framework. These constructs are used to alter the bytecode of the
target application using information contained in an XML file. Object-oriented
framework approaches are relatively easy to use compared to the language-based
approach as they use the same language as the application. However, this approach
requires developers to adhere to the framework’s protocol, such as ensuring that
invocation.invokeNext() is called in an aspect, as is the case with the JBoss
AOP framework. Therefore, although framework-based approaches are easier to
use than language-based approaches, they require the programmer to have a good
understanding of the framework.

KALA [35], a domain-specific aspect language for the transactional domain,
is an example of the third approach as it uses a high-level domain-specific as-
pect language to apply aspects to existing code. Domain-specific aspect languages
require the developer to use a different language alongside the application lan-
guage and therefore require the programmer to learn a new language, although
the language is generally relatively simple. Nevertheless domain-specific aspect
languages, because they are at a higher level of abstraction, are generally much
simpler to use than the other two approaches.

A number of systems and proposals that use AOP to provide autonomics
have been discussed. However, none of these approaches are specifically targeted
at the distribution concern and therefore do not provide a means of implementing
recovery, nor do they generalise the distribution concern. Rather they are either

66 3 An Aspect-Oriented Approach

targeted towards a specific domain, such as QoS or NetBSD, or are layered on
top of an existing middleware system, which hides the distribution and recovery
concerns.

We have introduced our approach consisting of a high-level domain-specific
aspect language for the distribution and recovery concerns we call a Distribution
Definition Language and the RemoteJ compiler/generator, which is used to apply
the distribution and recovery concerns described in the Distribution Definition
Language to existing applications. The Distribution Definition Language gener-
alises distributed systems development by describing the classes and methods to
be made remote, the protocol to use to make them remote and the method used
to recover from a remote error.

The closest work to ours thus far are RIDL and AWED. Both RIDL and
AWED use a lower level approach than RemoteJ, which, by introducing the con-
cept of a Distribution Definition Language, is at a higher level of abstraction.
In addition, the Distribution Definition Language supports error handling, which
is not supported by either RIDL or AWED or indeed any other system to our
knowledge.

	3 An Aspect-Oriented Approach
	3.1 Introduction
	3.2 Crosscutting Concerns and Aspects
	3.3 AOP Semantics
	3.4 Static and Dynamic Weaving
	3.5 Language-Based Implementations
	3.5.1 AspectJ

	3.6 Framework-Based Implementations
	3.6.1 The JBoss AOP Framework

	3.7 AOP and Autonomics
	3.7.1 The TOSKANA Toolkit
	3.7.2 The QuO Toolkit
	3.7.3 Reflection and AOP

	3.8 AOP and the Distribution Concern
	3.8.1 Domain-Specific Aspect Language Implementations
	3.8.2 AspectJ Implementations
	3.8.3 J-Orchestra
	3.8.4 Other Systems
	3.8.5 Our Approach

	3.9 Chapter Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00417
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

