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Preface
Distributed applications are difficult to write. Programmers need to adhere to spe-
cific distributed systems programming conventions and frameworks, which makes
distributed systems development complex and error prone and ties the resultant
application to the distributed system because the application’s code is tangled
with the crosscutting concern distribution.

Existing mainstream programming languages, such as Java, do not provide
language support for distribution. Rather, programmers must rely on object-
oriented distribution frameworks to provide distribution support. Although highly
successful, the cost of using these frameworks is that the resultant code is tied to
the framework. Object-oriented frameworks in general, and distribution frame-
works in particular, can therefore be considered crosscutting in nature because
the framework’s code, either via inheritance or containment, is scattered through-
out the application’s code thereby tying the application to the framework.

This is a particular concern in distributed systems development because dis-
tribution frameworks impose a large code overhead due to the requirements dis-
tributed systems impose, such as the need to catch distribution-specific exceptions,
locating and binding to distributed objects, locating another server in the event
the current server becomes unavailable, and adhering to programming conventions
dictated by the framework, such as implementing framework specific interfaces.
Consequently, developing distributed applications is complex and error prone and
results in application components tied to the distribution framework, which cannot
be easily reused outside the application.

In this book we address the above issues and present four contributions to dis-
tributed systems development. Firstly, we introduce the concept of a Distribution
Definition Language, a high-level domain-specific aspect language that generalises
the distribution concern by describing the classes and methods of an existing ap-
plication to be made remote, the distributed system to use to make them remote
and the recovery mechanism to use in the event of a remote error. Secondly, we
provide the ability for multiple distribution protocols to be applied to the same
code base thereby generalising the distribution concern. Thirdly, we allow the
application of distribution awareness to applications in such a way that the ap-
plication is oblivious of the distribution implementation and recovery mechanism
yet is able to fully participate in both. Finally, we provide a simplified approach
to the development of distributed systems that allows an application to be either
distributed or non-distributed, thereby improving software reuse and simplifying
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testability of distributed applications as applications may be functionally tested
before having the distribution and recovery concerns applied.

These contributions, by alleviating some of the complexity involved in dis-
tributed systems development and by allowing autonomic features, such as recov-
ery, to be transparently added to existing applications, provides a contribution to
autonomic computing.

We introduce a software tool in the form of the RemoteJ compiler/gener-
ator that uses information contained in the Distribution Definition Language to
generate the distributed system specific code and apply it to the application us-
ing bytecode manipulation and generation techniques. Finally, we evaluate our
contributions and show that the concept of a Distribution Definition Language
simplifies the development of distributed applications whilst allowing for greater
reuse of application components.
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1 Introduction
The widespread adoption of the Internet and associated technologies has resulted in
a huge increase in the number of distributed systems, both Internet and Intranet
facing. Numerous legacy systems have been, or are being, adapted to provide
an Internet presence and to integrate to customers’ and suppliers’ systems. In
addition, faster and more reliable networks have greatly contributed to the success
of distributed systems.

However, distributed systems development is still based on the decades old
concept of the use of object-oriented frameworks or programming libraries. Al-
though highly successful, the cost of using these frameworks or libraries is that the
resultant code is tied to the framework as the distribution framework is scattered
and tangled throughout the application making reuse of the code in other domains
difficult, if not impossible. This introduces a number of issues:

• The resultant application is tied to the distribution framework in such a way
that it is generally impossible to replace one distribution implementation
with another without a significant refactoring effort.

• The resultant application’s business logic is tangled with the distribution
concern making reuse of the business logic in other domains problematic, if
not impossible.

• Distribution frameworks impose a large code overhead due to the require-
ments distributed systems impose, such as the need to catch distribution
specific exceptions, locating and binding to distributed objects, locating an-
other server in the event the current server becomes unavailable and adhering
to programming conventions dictated by the framework, such as implement-
ing framework specific interfaces.

In addition, the scattering and tangling of distribution frameworks through-
out an application violates the principle of separation of concerns, a guiding princi-
ple of software engineering that allows one to identify, encapsulate, and manipulate
only those parts of software that are relevant to a particular goal or purpose [79].
Concerns that are scattered and tangled throughout an application in this way are
referred to as crosscutting concerns [31].

There are essentially two extremes, in terms of distribution awareness, that
one could take in the development of distributed applications. The first, pioneered
by the use of the Remote Procedure Call (RPC) paradigm, attempts to make the
network transparent to the programmer by masking the difference between local



2 1 Introduction

and remote procedure calls. Many distributed systems, such as the Open Network
Computing (ONC) system [98], have adopted this philosophy.

The second extreme approach, pioneered by the developers of Java’s RMI,
argues that applications need to be aware of the distribution concern because
there are fundamental differences between the interactions of distributed objects
and the interactions of non-distributed objects, such as latency, different calling
semantics, and partial failures [118]. Consequently Java’s RMI framework, and
associated technologies that depend upon it, require that the developer be aware
of remote objects and remote errors that may occur while interacting with remote
objects. This approach is highly intrusive as the developer is required to implement
specific interfaces, catch remote exceptions, and, in some cases, inherit from the
distribution framework.

We believe that both of these methods are unsatisfactory. On the one hand,
the attempt to make the network transparent results in brittle applications and
on the other, the distribution framework is tangled with the application, thereby
violating the concept of separation of concerns, making reuse of the application’s
components difficult and the use of a different distribution framework without
significant refactoring almost impossible. Both of these extremes, and variations
in-between, result in applications that are polluted with the distribution concern.
The resultant applications, and associated components, are therefore difficult to
reuse in other domains, difficult to extend and difficult to maintain.

Aspect-oriented Programming and the Distribution Concern

Aspect-Oriented Programming (AOP) [59], a fairly recent innovation in software
development, attempts to isolate and modularise crosscutting concerns, termed
aspects, by composing them into modules and applying the aspects to existing code.
By doing so, the code only performs its intended function and is not ’polluted’ with
the crosscutting concern. The additional modularisation capability introduced by
aspects provides the ability to apply crosscutting concerns in a non-invasive way
resulting in applications that are easier to maintain, extend and reuse.

Distribution is considered a crosscutting concern and seminal work in AOP
concentrated on modularising the distribution concern [66]. Since then, several
attempts have been made to apply the distribution concern to existing code using
AOP techniques. These attempts have generally concentrated on applying aspects
to existing code that has not been written with distribution in mind. This attempt
at distribution transparency has significant issues, similar to those identified by
Waldo et al. [118], because distributed method calls do not behave in the same
way as local method calls.

We have also found during our research that applications that have not been
written with distribution in mind can, once distribution has been applied, have
undesirable side effects. For example, a class that starts threads in its constructor
will, once methods in the class are made distributed, start these threads in both
the client and server because the, now distributed, object must be instantiated
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on both the client and the server. In addition, if methods are not at the correct
level of granularity, for example too coarse or too fine grained, then distribution
cannot be applied efficiently or effectively or at all. For these reasons, we believe
distribution transparency is neither desirable nor achievable in all circumstances.

Autonomic Computing

The vision of autonomic computing [52, 56] is to reduce the configuration, op-
erational and maintenance costs of distributed systems by enabling systems to
self-manage, self-heal and self-optimise [121].

However, a key challenge limiting the use of autonomic features in appli-
cations is the lack of tools and frameworks that can alleviate the complexities
stemming from the use of manual development methods [56].

This is evident in current distributed systems development techniques, which
require the manual use of tools and frameworks and therefore cannot meet the
challenges posed by the autonomic computing vision. Consequently, alternative
methods of distributed systems development are needed to meet these challenges.

To meet the autonomic computing vision of self-managing, self-healing and
self-optimising systems requires a system to be able to dynamically adapt to its
environment and the majority of adaptions that are used in autonomic systems,
such as caching, security, persistence, distribution etc., tend to be crosscutting in
nature [44, 69].

Aspect-oriented programming, by allowing crosscutting concerns to be mod-
ularised and added to existing code, has long been realised as a viable method for
developing adaptive autonomic systems [69].

1.1 Research Goal
The primary goal of our research is to provide a contribution to the development
of autonomic systems by exploring an alternative approach to the development of
distributed applications which allows:

• An application, written with distribution in mind, to be made distributed
using any one of a number of distribution frameworks interchangeably.

• Distributed versions of an application to participate in distribution recov-
ery scenarios without the underlying application code having to be aware of
recovery.

• The same application to be used either distributed or non-distributed,
thereby improving software reuse and simplifying testing.
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1.2 Overview of Approach
For this research we have chosen to use the Java programming language as most
types of distributed systems technology are available for Java and primary research
into aspect-oriented systems either use Java as the underlying programming lan-
guage or extend it. However, we believe the concepts defined in this research are
applicable to other environments.

To achieve our goals of applying the distribution concern to existing Java
code, while allowing full participation in recovery scenarios without the underlying
code being aware of either the distribution protocol or the recovery scenario, we
use the following approach:

• We ensure that new applications are written with distribution in mind and
existing applications are refactored for distribution; that is that methods that
will become distributed are exposed at the correct level of granularity, that
threading and object consistency are catered to, and that the method’s return
value and parameters implement the java.io.Serializable interface, if
applicable.

• We introduce the concept of a Distribution Definition Language, a high-level
domain-specific aspect language, which describes the classes and methods of
an existing application that are to be made remote, the distributed system
to use to make them remote and the recovery mechanism to use in the event
of a remote error.

• We introduce a software tool in the form of the RemoteJ compiler/generator
that uses information contained in the Distribution Definition Language to
generate the distributed system specific code and apply it to the application
using bytecode manipulation and generation techniques.

1.3 Limitations
There are a number of limitations to our approach, described in detail in Section
4.5 and Section 5.7, which may be summarised as:

Concurrency. As our approach is to ensure that applications are written with dis-
tribution in mind and current Java distribution protocols do not support
distributed thread co-ordination, we do not specifically address concurrency.
We discuss this in detail in Section 4.5.3.

Object passing. Some protocols, such as RMI, pass parameters and return values
by value or by reference. In the case of RMI, if the object is a remote object
(implements the java.rmi.Remote interface), a reference to the object is
passed in a remote call, otherwise a copy of the object is passed. As pass-
by-value is supported by all protocols we have implemented, we currently do
not support pass-by-reference. Protocol agnostic pass-by-reference support
is an area for future research.
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Callbacks. We do not currently provide support for callbacks where a server calls
back into a client or is a client to another server. This limits the class of
applications that our approach may be applied to and is an area for further
research.

1.4 Hypothesis Statement
We contend that the distribution and recovery concerns can be completely and effec-
tively modularised by defining them in a high-level domain-specific aspect language
which can be applied to existing applications using a compiler/generator tool.

We evaluate the above approach and show that a Distribution Definition
Language contributes to autonomic computing by simplifying the development of
distributed applications while allowing for greater reuse of application components.

1.5 Contribution
The contributions of this research include the following:

1. The concept of a Distribution Definition Language used to define classes and
associated methods to be made distributed, the distributed system to use to
make them distributed, and the recovery mechanism to use in the event of
an error.

2. A simplified approach to the development of distributed systems that al-
lows an existing application to be distributed, thereby improving software
reusability and simplifying testability of distributed applications, as applica-
tions may be functionally tested before having the distribution and recovery
concerns applied.

3. The ability to apply one of a number of protocols to the same code base
thereby generalising the distribution concern.

4. The ability to apply distribution awareness to applications in such a way that
the application is oblivious to the distribution implementation and recovery
mechanism, yet is able to fully participate in both.

In addition, these contributions, by alleviating some of the complexity in-
volved in distributed systems development and by allowing autonomic features,
such as recovery, to be transparently added to existing applications, provides a
contribution to autonomic computing.

1.6 Publications Overview
This book is an extension of the author’s Ph.D. thesis and the Distribution Def-
inition Language was first described in a paper presented at the Domain-Specific
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Aspect Language (DSAL) workshop at the international Aspect-Oriented Software
Development (AOSD) conference. References to these papers are:

• Soule, P., T. Carnduff, and S. Lewis, A Distribution Definition Language for
the Automated Distribution of Java Objects, in Proceedings of the 2nd work-
shop on Domain Specific Aspect Languages, AOSD ’07, Vancouver, British
Columbia, Canada. ACM Press, 2007

• Soule, P., A Domain-Specific Aspect Language Approach to Distributed Sys-
tems Development, Ph.D. thesis, University of Glamorgan, Pontypridd Wales,
United Kingdom, 2008

The workshop paper may be downloaded from the ACM library at the following
URL:

http://portal.acm.org.

The thesis may be obtained directly from the institution concerned or the British
Library Electronic Thesis Online Service at the following URL:

http://ethos.bl.uk.

1.7 Book Structure
This book is structured as follows. In Chapter 2 we discuss issues surrounding
distributed systems development and the background and motivation for our work.
Chapter 3 gives a broad overview of aspect-oriented programming and its use in
distributed systems development. Chapter 4 describes the Distribution Definition
Language, its features, and motivation. In Chapter 5 we describe the RemoteJ
compiler/generator implementation and its features. In Chapter 6 we evaluate
our implementation. Finally, in Chapter 7 we provide a summary and present our
conclusions.

http://portal.acm.org
http://ethos.bl.uk
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2 Distributed Systems Development

2.1 Introduction
Computer systems used to be expensive standalone self-contained entities, each
with its own disk storage, line printers, terminals and other peripherals. The
introduction of the minicomputer made computers cheaper and more widespread,
which led to the requirement to share information between them. This requirement
led to the development of early computer networks, such as the Unix-to-Unix copy
program (UUCP) in 1976 and its subsequent release in AT&T Version 7 Unix in
the same year.

The development of Berknet by Eric Schmidt in 1978 at the University of Cal-
ifornia, Berkeley and its subsequent distribution in Version 7 Unix for the PDP-11
minicomputer allowed users to send and receive email, transfer files and print
remotely [88]. In 1980, Bolt, Beranek, and Newman were contracted by the Amer-
ican Department of Defense to implement the TCP/IP protocol for BSD UNIX.
The release of 4.2BSD in August 1983 with its implementation of TCP/IP and
the BSD sockets programming model, coupled with the growth of local area net-
works based mainly on Ethernet, allowed computers to connect to the ARPANET,
the predecessor to the Internet, which led to the enormous growth of networked
systems in the early 1980s [96].

The introduction of the personal computer and its subsequent ability to con-
nect to TCP/IP networks using the Winsock API, based on BSD sockets, led to
a huge increase in the number of networked machines and distributed systems
began to become mainstream. Automated teller machines, airline reservation sys-
tems, file sharing, file transfer, centralised database access, email and various other
distributed systems were introduced.

The subsequent invention of the web browser and HTTP protocol led to the
World Wide Web and the enormous explosion in the number of distributed systems
that we see today. With the continued increase in processing power and fall in
component prices, computing is promising to become even more widespread and
we may well see the vision of ubiquitous computing [120] being met in the future.
Yet, while distributed systems have become mainstream, distributed systems de-
velopment remains difficult and little advancement has been made since the initial
concepts were developed decades ago.
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This chapter develops the lineage towards the domain-specific aspect lan-
guage (DSAL) approach to distributed systems development by examining previ-
ous approaches, and issues surrounding those approaches.

We begin by discussing the low-level Application Programming Interface
(API) approach as exemplified by BSD sockets. We then discuss the RPC approach
for both procedural languages, in the form of ONC RPC, and object-oriented sys-
tems in the form of CORBA and Java RMI and compare the network awareness
and network transparent models.

We then discuss the high-level API approach as exemplified by JMS and
discuss the effects and implications the different approaches have on ease of devel-
opment, software reusability and maintainability.

Throughout this chapter we use the example of a simple distributed service
that returns the current date.

2.2 Sockets-Based Programming
Sockets are a low-level generalised programming interface for networking and in-
terprocess communication first provided in the BSD4.2 operating system1. Most,
if not all, UNIX systems provide the socket API and various operating systems,
such as Windows with its Winsock API, provide similar functionality.

Sockets are a low-level networking API modelled on the UNIX systems calls
related to file I/O semantics. While there is some similarity between file and
network I/O operations, network I/O has other considerations, which make the fit
less than perfect. Stevens [96] identifies the following considerations for network
I/O:

• The client server relationship is not symmetrical. The application needs to
know which role (client or server) it is to assume.

• Network connections can be connectionless or connection-oriented. Connec-
tionless operations do not map neatly to file operations because there is no
concept of opening a connection as every network I/O operation could be to
a different host.

• Names are more important in distributed systems, for example to verify se-
curity, than they are for file operations. Therefore, passing a file descriptor
to a process without knowing the original name, while being acceptable for
a file I/O operation, may not be acceptable for a network I/O operation.

• Additional parameters, for example the protocol and its details, are required
for network operations.

• While the UNIX I/O system is stream-oriented, many network protocols are
message-oriented and therefore rely on message boundaries.

1Strictly speaking, BSD sockets were initially provided in the 4.1cBSD release and subsequently
refined into their current form in 4.2BSD.
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• Network interfaces support multiple protocols, each with differing addressing
requirements so that, for example, a 32-bit identifier is not sufficient for
holding network addresses for all protocols. Network interfaces therefore
need to be generalised.

Sockets provide a low-level interface to network protocols. For anything other
than simple message exchanges, protocols are developed to exchange messages in
specific formats. Due to the stream-oriented nature of the UNIX I/O system,
this is a particularly onerous task as the programmer is required to implement
packet assembly and disassembly, which differs depending on the protocol being
implemented. In addition, error handling and recovery is left entirely up to the
programmer, making socket development difficult and error prone.

This section provides an overview and evaluation of the BSD socket interface
and illustrates its usage through a simple application.

2.2.1 BSD Socket Interface

As previously mentioned, there are a number of similarities between file and net-
work I/O operations. The BSD socket interface attempts to provide as much sim-
ilarity as possible while allowing additional network-based operations. Table 2.1
provides an overview of the differences and similarities between the socket and file
operations.

Figure 2.1 provides an overview of the steps required for both client and
server to initiate a transfer for a connection-oriented transfer. This interaction
can be summarised as:

Server interaction. Firstly, the server obtains a socket via the socket() call and
then bind() is called, which assigns a name to the socket. Next listen() is
called to indicate that the application is willing to accept connection requests.
As well as the socket, the listen() call also accepts a backlog parameter,
which stipulates the number of connection requests that can be queued by the
system while it waits for the accept() call to be executed. If a connection
attempt arrives and the queue is full, the connection is refused. Finally
accept() is called, which suspends the application until a connection request
arrives from the client.

Client interaction. A socket is obtained via the socket() call and then connect()
is called with a parameter stipulating the socket and the address of the
server. The address is passed in the sockaddr structure and contains the
local address, the remote address, and the protocol to use. Once a connection
has been established, messages can be exchanged between the two systems.
For both of the above, the close() call can be used to close the connection
and the shutdown() call can be used to close part of the connection, either
reads or writes.

The socket API also provides the select() function, which is used to provide
I/O multiplexing by allowing the programmer to examine a set of file descriptors
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Table 2.1. Comparison of file and socket calls.

Operation Files Sockets
Open open() Client socket()

bind()
connect()

Server socket()
bind()
listen()
accept()

Close close() close()
shutdown()

Read read() read()
recv()
recvfrom()

Write write() write()
send()
sendto()

Seek lseek()
Poll select() select()
Create creat()

to see if they are ready for I/O or if certain events have occurred. UNIX systems
also provide asynchronous I/O which is used in conjunction with select() thereby
allowing a single process to efficiently handle a large number of open files or sockets
simultaneously.

2.2.2 Socket Example

Our simple example provides the current system date to a client on demand and
prints it to the console. The protocol we use between client and server is based on
the exchange of C style strings between client and server. While this may sound
simple, it is not, due to fundamental differences between file I/O and network I/O
even though both share the same interface.

Using sockets, a read or write call may input or output fewer bytes than re-
quested due to underlying kernel buffer limits. However, a read operation from a
file is guaranteed to return the number of bytes requested providing that the num-
ber requested is less than or equal to that remaining before end-of-file. In the event
a read or write call returns fewer bytes than expected, the call must be invoked
again to receive or send the remaining bytes [96]. This can significantly complicate
socket development, particularly if the protocol developed contains many different
packet types of different sizes and advanced features such as slidingwindows and
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Figure 2.1. Socket calls for a connection-oriented protocol.

piggybacking [107] are used. To overcome this, we provide a set of utility routines
to read the remaining bytes, in the case of a read call, or output the remaining
bytes, in the case of a write call.

int readline(int socket, char ∗buffer, int len);
int writeline(int socket, char ∗ buffer, int bytes);

Our server implementation is as follows:

extern int writeline(int socket, char ∗ buffer, int bytes);

int main(int argc, char ∗∗ argv) {

int sock;
struct sockaddr_in server;
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if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
fprintf(stderr, "cannot open stream socket\n");
exit(1);

}

memset(&server, 0, sizeof(server));
server.sin_family = AF_INET;
server.sin_addr.s_addr = htonl(INADDR_ANY);
server.sin_port = htons(5000);

if (bind(sock, (struct sockaddr ∗) &server,
sizeof(server)) < 0) {

fprintf(stderr, "bind failed\n");
exit(1);

}

listen(sock, 10);

for(;;) {
struct sockaddr_in client;
int fd;
unsigned int client_len = sizeof(client);

fd = accept(sock, (struct sockaddr ∗) &client, &client_len);
if (fd < 0) {

fprintf(stderr, "accept failed");
exit(1);

}

time_t now = time(NULL);
char ∗s = ctime(&now);
writeline(fd, s, strlen(s));

close(fd);
}

}

The client implementation is as follows:

extern int readline(int socket, char ∗ buffer, int bytes);

int main(int argc, char ∗∗ argv) { int sock; struct sockaddr_in
server;

memset(&server, 0, sizeof(server));
server.sin_family = AF_INET;
server.sin_addr.s_addr = inet_addr("127.0.0.1");
server.sin_port = htons(5000);

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
fprintf(stderr, "cannot open stream socket\n");
exit(1);

}
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if (connect(sock, (struct sockaddr ∗) &server,
sizeof(server)) < 0) {

fprintf(stderr, "connect failed\n");
exit(1);

}

char buf [512];

readline(sock, buf, sizeof(buf));
printf("The time on the server is: %s", buf);

close(sock);
exit(0);

}

In both the client and the server examples above, the code that is used
to either obtain the date or receive it is shaded in grey, while the other code
implements the distribution concern.

2.2.3 Summary

Socket-based programming is highly complex and error prone. Developers need
to implement message-based protocols on top of the socket interface with the
resultant complexity directly proportional to the protocol requirements.

As illustrated in our simple example, socket-based programming is highly
intrusive, even for simple applications. Programmers need to adhere to the socket
API throughout the application and ensure that reads from sockets and writes to
sockets return the number of bytes requested or the number of bytes required to
be written respectively.

The most common protocols used in socket programming are TCP/IP and
UDP/IP. UDP is a datagram protocol, which does not provide guaranteed message
delivery or duplicate elimination. Although TCP/IP provides these features it
does not guarantee message delivery in all circumstances [23, 115]. If guaranteed
message delivery is a protocol requirement, it will need to be provided by the
protocol developer. Protocol reliability is discussed in detail in Section 2.3.4.

Recovery is left up to the programmer to implement at a very low level
and any significant recovery routines, for example connecting to another server
in the event the current server becomes unavailable, will have to be implemented
wherever a remote call is made, thereby further complicating development.

2.3 Remote Procedure Calls
In order to provide an environment with the simplicity of the then dominant proce-
dural programming paradigm, Birrell and Nelson [15] suggested the use of remote
procedure calls (RPC). The idea of RPCs is based on the observation that proce-
dure calls are a well-known and well-understood mechanism for transfer of control
and data within a program running on a single system and that this mechanism
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can be extended to be used across a communications network [15]. By extend-
ing procedure calls to a distributed environment, interprocess communication is
then given the syntax and semantics of a well-accepted strongly typed language
abstraction [90].

According to Soares [90], the RPC mechanism has the following advantages:

• The communication mechanism has clean, general, and comprehensible se-
mantics.

• A programmer is able to design a distributed application using the same
abstraction as well-engineered software in a non-distributed application.

• It provides information hiding as information can be hidden within design
components.

• The distribution of the application is transparent to the application user and
all communication details are hidden.

When a remote procedure call is invoked, the calling environment is sus-
pended, the procedure parameters are passed across the network to the callee, and
the procedure is executed on the remote machine. When the procedure finishes,
the results are passed back to the calling environment, where execution resumes
as if returning from a local procedure call [15].

RPCs can be either asynchronous or synchronous. Asynchronous RPC calls
do not block the caller and the replies can be received as and when they are needed,
thus allowing the caller execution to proceed in parallel with the callee execution
[4]. With synchronous RPCs, on the other hand, the caller is blocked until the
callee has finished execution.

This section provides an overview of the remote procedure call paradigm
and an implementation of a simple application using the ONC RPC system. We
describe the features and facilities of RPC systems along with their shortcomings
and compare it to BSD socket-based distributed systems.

2.3.1 Stubs and Skeletons

Remote procedure calls achieve a high-level of abstraction by using a system based
on proxies [41]. Proxies are used on the caller side to convert local procedure calls
into remote procedure calls and are used on the callee side to convert remote
procedure calls to local procedure calls. The caller proxy is known as a stub
and the callee proxy is known as a skeleton [116]. The interaction2 between the
components in an RPC system is depicted in the diagram in Figure 2.2.

When a remote procedure call is invoked, the stub (compiled into the caller
code) translates the arguments into a data representation, a process called mar-
shalling, and transmits the data to the callee via the RPCRuntime system. On
receipt of the packets, the RPCRuntime in the callee machine passes them to
the skeleton (compiled into the callee code). The skeleton unpacks them into the

2This example adapted from Birrell and Nelson [15].
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Figure 2.2. RPC components and their interactions.

appropriate data types for the machine, a process known as unmarshalling, and
makes a normal local procedure call to the server process. The return value from
the local procedure call is then marshalled by the skeleton and returned to the
calling code [15, 116].

2.3.2 Interface Definition Language

Remote procedure calls generally make no assumptions about the architecture of
the remote system or the programming language remote procedures have been
written in. Key to supporting communication between these systems of unknown
architectures written in unknown programming languages is the notion of an In-
terface Definition Language (IDL), a machine-neutral language used to describe
the remote procedures, their parameters, and the call semantics (described in Sec-
tion 2.3.4) in a machine neutral way. The IDL is read by an application, which
generates the stubs and skeletons of the application.

The Network Interface Definition Language (NIDL) defined as part of the
Network Computing Architecture (NCA) [26] provides the following data types:

Integers: Both signed and unsigned integers in one, two, four, and eight byte sizes.
Floating point: Single (four byte) and double (eight byte) precision floating point.
Scalar types: Other scalars including signed and unsigned characters, booleans,

and enumerations.
Type constructors: Structures, discriminated unions, pointers, and arrays. Pointers

to pointers or records containing pointers are not permitted.

Various attributes can be associated with remote procedures so that the RPC
compiler can generate stubs and skeletons that are either more efficient or provide a
particular feature. For example, the Distributed Computing Environment (DCE)
[109] provides the following attributes:
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The idempotent attribute: Indicates that the operation may safely be called more
than once as it does not modify any state and/or yields the same result on
each invocation.

The broadcast attribute: Specifies that the operation may be sent to multiple
servers, effectively concurrently. An operation with the broadcast attribute
is implicitly an idempotent operation.

The maybe attribute: Specifies that the operation’s caller must not require and
must not receive a response or fault indication. An operation with the maybe
attribute must not contain any output parameters and is implicitly an idem-
potent operation.

The reflect_deletions attribute: Specifies that memory occupied by targets of
pointers on the client will be released when the corresponding targets of
pointers on the server are released. This is true only for targets that are
components of in-parameters of the operation.

Having a machine-neutral IDL allows multiple languages to use the RPC
system as the IDL compilers can generate the stubs and skeletons for each imple-
mentation language. This also has the advantage of allowing a remote procedure
developed in one language to communicate with a remote procedure developed in
another language.

While this greatly simplifies the development of distributed applications, the
language-neutral nature limits the kinds of data that can be exchanged between
processes to the basic data types that can be represented in all the target languages
[116].

While IDLs remove the complexity of network data representation from the
programmer, the programmer must still control the lifecycle management of the
data sent that typically require either complex conventions or reference counting.
These procedures are prone to programmer error that can lead to memory leaks
or referential integrity loss [116].

2.3.3 Data Representation

Due to the heterogeneous nature of computer networks, data transmitted between
machines require a data representation protocol, which defines the way data is
represented so that machines that store data in different internal formats are able
to communicate [26].

There are a number of data representation standards including Sun’s XDR
standard [97] and DCE’s NDR [109].

2.3.4 Calls Semantics

Due to their distributed nature, remote procedure calls can fail. According to
Soares [90], there are three causes of RPC failure:

Network failure: The network is unavailable and the caller and callee cannot send
or receive data.
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Caller site failure: The caller process fails or the host running the caller process
fails.

Callee site failure: The callee process fails or the host running the callee process
fails. In this case, the caller may be indefinitely suspended awaiting a re-
sponse from the callee.

Most RPC systems, such as DCE RPC [109], attempt to hide their distributed
nature from the programmer so that, to the programmer, the RPC system is trans-
parent. The RPC system, and not the application code, is therefore responsible
for ensuring a message reaches its intended destination and a response is received.

If, however, no response is received within a specific timeout period, one of
four different conditions may have occurred [90]:

1. The callee did not receive the request.
2. The callee received the request and acted upon it but the caller did not receive

the response.
3. The callee failed during the execution of the call and either resumed execution

of the call upon restarting or did not.
4. The callee was still busy executing the call when the caller timed out.

According to Soares [90], a major design decision for an RPC mechanism is
the choice of call semantics in the presence of failures. Spector [95] defines four
different call semantics:

Maybe: The callee does not return a response to the caller and the caller receives
no indication of success or failure.

At least once: The remote procedure is executed at least once.
Only once type 1: This is commonly referred to as at most once [108]. The remote

procedure is executed at most once.
Only once type 2: This is commonly referred to as exactly once [108]. The call has

been executed once only.

Although exactly once call semantics are generally considered to only be
possible using asynchronous procedure calls [95], a number of attempts have been
made to provide exactly once semantics for synchronous procedure calls.

Heindel and Kasten [48] have implemented reliable synchronous RPC calls
for DCE by imposing a middleware layer between the caller and callee. This
middleware layer, however, uses asynchronous messaging to achieve this reliability
and therefore can be considered asynchronous in implementation.

The Encina transaction monitor attempts to implement reliable synchronous
messaging using an extension of DCE’s RPC, called TRPC – transactional RPC
[89]. This approach is, in many ways, similar to the asynchronous approach as
transactions are written to a log file before being committed. Other approaches,
such as replicated procedure calls, have been implemented [22]. Unfortunately
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this results in a high overhead per operation (O) as the number of messages (M)
required to complete a request (N) is (O(M ×N)) [90].

Synchronous RPC systems can generally be considered suitable3 only for
applications that can be modelled as idempotent, that is they can safely execute
the same procedure more than once without any adverse effects. Probably the
best known example is Sun’s Network File System (NFS) [99].

2.3.5 Binding

Binding refers to the process used to identity and address remote procedures.
Bindings are either performed statically, during compilation, or dynamically, at
runtime. Callees advertise their bindings, or location, in a naming service so that
callers are able to find them, based on appropriate search criteria [109].

In order to find the callee the caller needs to provide, depending on the
implementation, either the specific server process of the callee, the name of the
machine where the callee is located, or just the name of the procedure to be called
[90].

Attributes may be associated with bindings, for example a version number,
so that the caller may choose which specific instance to bind to. Once bound, the
remote procedure may be called.

2.3.6 Open Network Computing (ONC) Example

The following is an overview of the development of our simple distributed applica-
tion using Sun’s Open Network Computing (ONC) system [98], a widely deployed
RPC implementation which was originally developed for Sun’s NFS.

2.3.6.1 ONC IDL

The IDL used by ONC describes remote procedures, their arguments and return
values, associated version numbers and a unique program number identifier. To
implement our simple example, we firstly declare the remote procedure in ONC
IDL as follows:

program GETDATE_PROG {
version DETDATE_VERS {

string GETDATE(void) = 1;
} = 1;

} = 22855;

The above IDL fragment defines version .1 of a remote procedure called GET-
DATE, which has the parameter type void and returns the current date as a string.

3Although reliable synchronous RPC systems do exist, they either require the programmer to
handle timeouts, retransmissions, and the receipt and sending of messages (removing much of
the advantage of using an RPC system) or rely on other mechanisms, such as replication, which
significantly increase complexity and have adverse effects on performance.
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Figure 2.3. Sun ONC RPC generator.

The unique program number for our implementation is 22855. The rpcgen pro-
gram is then run against the IDL file, which generates a header file getdate.h, and
two skeleton files, getdate_clnt.c and getdate_svc.c for the client and server
implementations respectively as illustrated in Figure 2.3.

The generated files contain the marshalling and unmarshalling, binding, data
representation (XDR), and framework integration code required to implement the
ONC protocol.

2.3.6.2 ONC Example Implementation

The files generated by the rpcgen application are required to be linked with user-
supplied files for the client and server implementation. For our example, the
relevant portion of our client implementation is as follows:

if ((cl = clnt_create(server, GETDATE_PROG,
GETDATE_VERS, "udp")) == NULL) {

clnt_pcreateerror(server);
exit(1);

}
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Figure 2.4. Sun ONC runtime binding.

if ((message = getdate_1(NULL, cl)) == NULL) {
clnt_perror(cl, server);
exit(1);

}

printf("Server Date: %s\n", ∗message);
clnt_destroy(cl);

and our server implementation:

char ∗∗ getdate_1_svc(void ∗v, struct svc_req ∗svc) {

time_t now = time(NULL);
static char ∗date;
date = ctime(&now);

return (&date);
}

Note that both the client and server implementation code is required to ad-
here to the ONC specific framework and programming conventions. For example,
in the server implementation, the value that is returned to the client is required
to be static and the function signature is required to use the framework specific
structure svc_req and to have the program’s version number appended. For the
client implementation, the client is required to call the ONC framework directly,
as illustrated by the clnt_create function call in our example. However, for the
server code no protocol specific code is required.

ONC servers advertise their presence in the portmap service so that clients
may find them. At runtime clients bind to the portmap server, which provides the
address of the server to clients as illustrated in Figure 2.4. Clients then connect
directly to the server.
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2.3.7 Summary

This section has provided an overview of the remote procedure call paradigm and
an implementation of our simple example using the ONC RPC system. Various
aspects of RPC systems have been discussed including the IDL, data representation
and call semantics.

As illustrated in our example, RPC systems are highly intrusive as program-
mers are required to describe their remote procedures in an IDL, to implement
methods generated by the IDL program generator, to use the RPC framework
directly in the implementation code, and to adhere to framework specific con-
ventions. However, compared to BSD socket-based systems, RPC systems are
significantly easier to implement, understand, and subsequently maintain.

Most RPC systems attempt to provide programmer transparency so that
calling a remote procedure is as simple as calling a local procedure. Indeed, this
transparency is often seen as a great benefit of the RPC paradigm as Soares [90]
states:

“The ideal RPC mechanism is the one that provides the application
user with the same syntax and semantics for all procedure calls inde-
pendently of being a local call or a remote one”

This notion of transparency, however, leads to an unfortunate situation when
errors occur, as recovery is left to the RPC system to handle, not the programmer.
Unfortunately, in many situations, the RPC system simply cannot recover, result-
ing in the application hanging while the RPC runtime attempts to reconnect to
the server. Synchronous RPC systems are therefore suitable only for applications
that can be modelled as idempotent, such as the NFS system. Perhaps the biggest
weakness with RPC systems, however, is that their language-neutral nature limits
the data types that can travel between processes to the basic static data types
that can be supported by each language [116].

2.4 CORBA
One of the primary issues with early RPC systems is that they did not have an
object-oriented model and client applications need to know not only how to access
a server but also the location of the server. In addition, client code has to change
whenever the client wants to use new services [27].

The Common Object Request Broker Architecture (CORBA) is designed as
a middleware to enable distributed objects to communicate with one another via
an Object Request Broker (ORB). In the CORBA model, clients communicate to
a server via an ORB as illustrated in Figure 2.5.

Communicating via an ORB removes the necessity for a client to know the
whereabouts of a server as clients send requests to the ORB requesting that certain
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Figure 2.5. A request being sent via the ORB.

services be performed. The ORB then passes those requests on to a server, which
acts upon it, and passes the result back to the client via the ORB.

The ORB is responsible for the mechanisms required to find the object im-
plementation for the request, to prepare the object implementation to receive the
request, and to communicate the data making up the request. The interface the
client sees is completely independent of where the object is located, what pro-
gramming language it is implemented in, or any other aspect that is not reflected
in the object’s interface [77].

Clients, therefore, only know the location of the ORB and the ORB knows
the implementation details and locations of the servers. Clients and servers com-
municate only via component interfaces and any changes in object implementation
or location are insulated from the client [27, 75, 77].

CORBA is a heterogeneous system that can be run on many different plat-
forms and CORBA applications may be written in many different languages. For
this reason CORBA uses an IDL, similar to RPC type systems. The main construct
in the CORBA IDL is the interface which defines the various operations that may
be called by clients. Once written, the IDL is run through a compiler to generate
code for the particular implementation language [7]. By using a language and ma-
chine independent IDL, clients and servers may be written in different languages
and may be run on different operating systems so that it is possible for, say, a client
writing in the C language running under the UNIX operating system to commu-
nicate to a server writing in Java running under the Windows operating system.

One of the more interesting aspects of CORBA is that it uses an object-
oriented architecture in that it adds a notion of inheritance. In CORBA IDL an
interface may inherit from another interface as shown in Figure 2.6.

In addition, CORBA IDL supports multiple inheritance where an interface
may inherit from several different interfaces. There are, however, a number of
limitations to the multiple inheritance feature of the CORBA IDL [7]:

• An IDL interface cannot redefine an operation or attribute in a derived in-
terface.

• It is illegal for an interface to inherit from two interfaces that have a common
operation or attribute name.
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interface Vehicle {
};

interface Car : Vehicle {
};

Figure 2.6. An example of the CORBA IDL’s support for inher-
itance.

Servers that implement derived interfaces, however, are considered an im-
plementation of the basic interface, which gives a notion of polymorphism as the
server is treated as though it were of both the base type and the derived type
within the CORBA architecture [122].

2.4.1 CORBA Event Service

Standard CORBA requests are synchronous in nature. A request is sent from a
client to a server via the ORB and the client suspends awaiting a response from
the server. In this scenario, both client and server must be available.

The CORBA event service [76] decouples communication between clients and
servers using either the push model or the pull model.

The push model allows the supplier of events to initiate the transfer of event
data to consumers, while the pull model reverses this by allowing the event con-
sumer to request event data from the producer.

The CORBA event architecture uses an event channel, an intervening ob-
ject that allows producers and consumers to communicate asynchronously. This
architecture is illustrated in Figure 2.7.

2.4.2 CORBA Example IDL

In order to implement our simple date application, we are firstly required to define
the CORBA interface in an IDL file4. Figure 2.8 illustrates the IDL implementa-
tion for our simple example.

Our IDL defines a simple interface with two operations, getDate(), our
method to return the server’s date and shutdown(), a method used to shut down
the ORB.

Once we have defined the IDL we run the IDL through the idlj compiler
to generate CORBA helper files that are necessary to implement the client and
server code. Once run, the idlj compiler generates the following files:

4This example is derived from [101].
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module DateApp {
interface Date {

string getDate();
oneway void shutdown();

};
};

Figure 2.8. The IDL for our simple CORBA implementation

• DatePOA.java. An abstract class that provides basic CORBA functionality
for the server. It extends org.omg.PortableServer.Servant, and imple-
ments the InvokeHandler interface and the DateOperations interface. The
server class, DateServant, extends DatePOA.

• _DateStub.java. The client stub which is used to provide CORBA function-
ality for the client. It extends org.omg.CORBA.portable.ObjectImpl and
implements the Date interface.

• Date.java. This is an interface that contains the Java version of the IDL
interface and extends org.omg.CORBA.Object, providing standard CORBA
object functionality, and the DateOperations interface and
org.omg.CORBA.portable.IDLEntity class.

• DateHelper.java. This class provides auxiliary functionality, such as the
narrow() method used to cast CORBA object references to their proper
types.
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• DateHolder.java. This class holds a public instance member of type Date
and is used for all operations that have an inout IDL declaration.

• Operations.java. This interface contains the methods getDate() and
shutdown() and is shared by both the stubs and skeletons.

2.4.3 CORBA Example Implementation

Our server implementation is illustrated in Figure 2.9 and our client implementa-
tion in Figure 2.10. As can be seen by these examples, Java’s CORBA framework
is highly intrusive in nature, requiring the developer to implement the framework’s
code alongside the applications leading to a tight coupling between the application
and the distribution framework.

To run the CORBA example, the ORB needs to be started and the server
bound to the ORB. Once bound, the client application connects to the ORB and
requests the service it is interested in by name. The ORB contacts the server,
which runs the request and sends the result back to the ORB. The ORB then
returns the result back to the requesting client.

2.4.4 Summary

CORBA has similar issues to RPC type systems in that the range of values that
can be passed between systems, either as arguments or return values, is limited to
those that can be represented in all of the implementation languages supported.
In addition, as with all IDLs, programmers have an additional language to learn
and an additional artefact to deal with. A limitation with the object-oriented
nature of CORBA is that objects are passed by reference not by value. There is
also no way to extend the range of permissible values transmitted on the fly and
still ensure that the value will be correctly interpreted upon receipt [122].

As can be seen in our simple CORBA example, Java’s CORBA framework
imposes a large overhead as well as a great deal of complexity. As is common with
all frameworks, the CORBA framework is highly intrusive in nature, as illustrated
by the shaded areas in Figures 2.9 and 2.10, and results in CORBA specific code
tangled with the application’s code making reuse of the application code extremely
difficult.

2.5 Java Remote Method Invocation (RMI)
Object-oriented systems are currently the dominant programming paradigm and
a number of distributed systems exist for object-oriented languages and systems.
Many of these systems use the RPC mechanism even though procedure calls, as
such, no longer exist in the object-oriented paradigm. Consequently many of these
systems do not provide object-oriented features, such as polymorphism, because
the RPC type paradigm only allows for the static representation of data [116].
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import DateApp.∗;
import org.omg.CosNaming.∗;
import org.omg.CORBA.∗;
import org.omg.PortableServer.∗;
import org.omg.PortableServer.POA;

class HelloImpl extends DatePOA {
private ORB orb;

public void setORB(ORB orb_val) {
orb = orb_val;

}

public String getDate() {
return new java.util.Date().toString();

}

public void shutdown() {
orb.shutdown(false);

}
}

public class DateServer {

public static void main(String args[]) {
try {

ORB orb = ORB.init(args, null);
POA rootpoa =

POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
rootpoa.the_POAManager().activate();
HelloImpl helloImpl = new HelloImpl();
helloImpl.setORB(orb);
org.omg.CORBA.Object ref = rootpoa.servant_to_reference(helloImpl);
Date href = DateHelper.narrow(ref);
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
String name = "Date";
NameComponent path[] = ncRef.to_name(name);
ncRef.rebind(path, href);
System.out.println("HelloServer ready and waiting \ldots{}");
orb.run();

} catch (Exception e) {
System.err.println("ERROR: " + e);
e.printStackTrace(System.out);

}
System.out.println("DateServer Exiting \ldots{}");

}
}

Figure 2.9. An example of a simple CORBA server. Code in
the shaded area implements Java’s CORBA framework.

The Java programming language, however, provides the Remote Method In-
vocation (RMI) distributed system, based on Modula-3 network objects [14], that
allows for the dynamic representation of data and therefore allows for polymorphic
data to be transmitted and received across the network [116]. More recently, the
Jini distributed system [102] builds on the idea of polymorphic data representation
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import DateApp.∗;
import org.omg.CosNaming.∗;
import org.omg.CORBA.∗;

public class DateClient {
static Date dateImpl;

public static void main(String args[]) {
try {

// create and initialize the ORB
ORB orb = ORB.init(args, null);

// get the root naming context
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
// Use NamingContextExt instead of NamingContext. This is
// part of the Interoperable naming Service.
NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

// resolve the Object Reference in Naming
String name = "Date";
dateImpl = DateHelper.narrow(ncRef.resolve_str(name));

System.out.println("Server’s Date: " + dateImpl.getDate());

dateImpl.shutdown();

} catch (Exception e) {
System.out.println("ERROR : " + e);
e.printStackTrace(System.out);

}
}

}

Figure 2.10. An example of a simple CORBA client. Code in
the shaded area implements Java’s CORBA framework.

by allowing for the discovery and spontaneous interaction between services in a
network.

As mentioned in Section 2.3, in order to reduce the programmers’ burden,
RPC systems attempt to mask the differences between local and remote procedures
so that a remote procedure call is treated the same as a local procedure call.

Most distributed systems provide a unified view of objects in terms of their
location so that all objects are considered equal regardless of their physical loca-
tion. Indeed, many distributed systems, including most RPC systems, try and
mask the differences between local and remote objects by providing programmer
transparency.
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Figure 2.11. RMI system architecture.

Waldo et al. [118] argue that this approach is fundamentally wrong and that
non-distributed objects cannot be treated the same as distributed objects as there
are fundamental differences in terms of latency, memory access, partial failure, and
concurrency. They further argue that the merging of the computational models of
local and distributed computing is both unwise to attempt and unable to succeed.

Java’s Remote Method Invocation (RMI) takes an entirely different approach
to other types of distributed systems. RMI differs not only in the details but in the
basic set of assumptions made about the distributed systems in which it operates
[116].

While most distributed systems are heterogeneous, RMI assumes that the
client and the server are both running in a Java virtual machine and are both
written in Java. By doing so, RMI removes the need to describe remote interfaces
using a language-neutral IDL. Instead, the Java interface construct is used to
declare a remotely accessible interface as shown below:

public interface IDateService extends java.rmi.Remote {
Date getDate() throws RemoteException;

}

The RMI system architecture is illustrated in Figure 2.11. Messages from the
client application to the server pass through the stub (or proxy), an implementa-
tion of the remote objects exported interface.

The stub object is generated either statically by the RMI compiler, rmid,
or dynamically at runtime. Unlike standard RPC IDL compilers, such as those
provided by CORBA systems, the stubs are generated on the implementation class
of the object which the stub refers to. These stub objects therefore support all the
remote methods that the remote object’s implementation supports. In a system
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such as CORBA, the stub is compiled into the client and linked before runtime.
In RMI, the stub originates with the client and is loaded dynamically and may
therefore be different for different objects with the same apparent type. The actual
type of the stub is loaded at runtime when the system is able to determine the
exact type [116].

The stub forwards requests to the server using the remote reference layer.
The remote reference layer implements the semantics of the type of invocation, for
example unicast or multicast communication. The remote reference layer therefore
provides a framework for adding additional types of remote object communication
[122], although unicast communication is the only implementation that is provided
by default.

The transport layer is responsible for connection setup, connection manage-
ment and keeping track of and dispatching to remote objects. To dispatch to a
remote object, the call is forwarded by the transport to the server specific remote
reference layer. The remote reference layer hands the request off to the server’s
skeleton, which in turn passes it to the remote object implementation to perform
the actual method call. Return values from the call are passed back through the
skeleton, the remote reference layer, and finally to the client stub [122].

The RMI system passes parameters and return values either by reference
or by value. If the object to be passed is a remote object (it implements the
java.rmi.Remote interface) a remote reference is passed. If, however, the object
is not a remote object, a copy of that object is passed.

RMI uses Java’s object serialization mechanism to marshal and unmarshal
parameters and return values, which encodes objects and any objects they refer
to, into a byte stream for transmission from one virtual machine to another. Once
the byte stream is received, it is converted into the original object using a process
known as de-serialization. RMI therefore requires that all objects and any ob-
jects they reference, that are used as parameters or return values, implement the
java.io.Serializable interface, a marker interface (one that has no methods)
that indicates to the serialization system that they may be safely converted to a
byte stream.

The objects that are passed are ’real objects’ in the sense that they include
both the object’s data as well as an annotation describing the type of the object.
If an object of a previously unknown type is received, the RMI system fetches
the bytecode for the object and loads it into the receiving process. By preserving
the object’s type, RMI preserves the basic object-oriented notion of polymorphism
[116, 122].

In order to fetch the bytecode of a previously unknown object, RMI uses
Java’s dynamic class-loading mechanism. The following classes are loaded during
an RMI call [122]:

• Classes of remote objects and their interfaces.
• Stub and skeleton classes that serve as proxies for remote objects.
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• Other classes used directly in an RMI application, such as parameters and
return values.

The actual location of classes that may be needed to be loaded at runtime
are defined by the system property java.rmi.server.codebase, a URL pointing
to the location of the class files. Classes loaded by RMI are subject to security
restrictions put in place by the java.lang.SecurityManager class installed for
the virtual machine downloading the class. For classes downloaded into applets or
applications as a result of remote calls, RMI requires a security manager to protect
the application and host from potential harm [122].

Java automatically deletes objects that are no longer referenced. RMI extends
this to remote objects by using a reference counting mechanism similar to that used
by Modula-3 network objects [14]. RMI implements remote garbage collection by
keeping track of all live remote references in all virtual machines. When a remote
object is first referenced, a count is incremented and a referenced message is sent to
the remote object’s RMI runtime. When a live reference is unreferenced, the count
is decremented. When the count reaches 0 an unreferenced message is sent to the
remote object’s RMI runtime, which is then free to garbage-collect the object.

Clients hold references to remote objects for a certain period of time, called a
lease. It is the responsibility of the client to automatically renew the lease before it
expires. If the lease expires, the server assumes the client is no longer referencing
the remote object and is free to garbage-collect it [122]. Using this mechanism it is
still possible, however, for a client to call a remote object that has been garbage-
collected. For example, if the network is down for a short period of time and the
client’s RMI runtime could not renew the lease, the client could, upon the network
connection being restored, call a remote object that has been garbage-collected.
In this instance a java.rmi.RemoteException exception is thrown.

RMI uses a simple naming service to bootstrap RMI applications. Servers
register remote objects they are exporting with a name server called a registry.
When a client wishes to obtain a reference to a remote object, a lookup is performed
on a registry and a reference to the remote object is returned if the lookup succeeds.

Registry services can be used by either using the traditional RPC mechanism
of a centralised registry or by each application maintaining its own registry.

Because RMI services generally return remote objects, the registry only needs
to be contacted when making initial contact with a remote application because
once one of the remote objects on a server has been obtained, additional objects
can be obtained via method calls on the first object [28].

2.5.1 RMI Example

In order to implement our simple date application, we are firstly required to define
the remote interface, illustrated in Figure 2.12, which is required to extend from
the java.rmi.Remote interface and each remote method is required to declare
that it throws the java.rmi.RemoteException exception.



2.5 Java Remote Method Invocation (RMI) 31

public interface IDateServer extends Remote {
public Date getDate() throws RemoteException;

}

Figure 2.12. RMI interface. RMI requires an interface to be
defined listing the methods that are available to remote clients.

public class DateServer implements IDateServer {
public DateServer() {

super();
}

public Date getDate() throws RemoteException {

return new Date();
}
public static void main(String[] args) {

if (System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager());

}
try {

IdateServer server = new DateServer();

IdateServer stub =
(IdateServer) UnicastRemoteObject.exportObject(server, 0);

Registry registry = LocateRegistry.getRegistry();
registry.rebind("DateServer", stub);
System.out.println("Server Ready");

} catch (RemoteException e) {
System.err.println("DateServer exception:");
e.printStackTrace();

}

}
}

Figure 2.13. An example of an RMI server. Code in the shaded
area implements the RMI framework.

To implement our server application we can either extend the
java.rmi.server.UnicastRemoteObject, if we would like the remote object to be
implicitly exported, or we can explicitly export the object using the exportObject
method of the same class.
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public class DateClient {

public static void main(String args[]) {

if (System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager());

}
try {

Registry registry = LocateRegistry.getRegistry();
IDateServer dateServer =

(IDateServer) registry.lookup("DateServer");
System.out.println("Date on server: " +

dateServer.getDate().toString());

} catch (RemoteException e) {
System.err.println("DateServer Exception:");
e.printStackTrace();

} catch (NotBoundException e) {
System.err.println("Cannot bind to server");
e.printStackTrace();

}

}
}

Figure 2.14. An example of an RMI client. Code in the shaded
area implements the RMI framework.

In the example in Figure 2.13, our server explicitly exports a remote object,
which returns an object of type Date to the client. The date object is serialized
into a byte stream and passed to the client application, where it is deserialized
and accessed by the client, as shown by the client implementation in Figure 2.14:

As can be seen in our simple example, the RMI framework is highly
intrusive as it requires programmers to define an interface that extends the
java.rmi.Remote interface (Figure 2.12) and to implement the interface in the
server (Figure 2.13) code. The client code, illustrated in Figure 2.14, contains
RMI specific code to locate the server and execute the remote method. In addi-
tion, the client is required to be aware of the distributed nature of the application
by ensuring that it catches a RemoteException exception should one occur.

2.5.2 Summary

RMI provides a sophisticated environment for distributed computing. However,
as Hicks et al. [49] point out, programmers need to take special care to distinguish
between remote and local method invocation as the argument passing conven-
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tion between the two are different. As well as argument passing conventions, the
equals(), hashCode(), and toString() methods of the Object class are over-
ridden by the java.rmi.RemoteObject class to deal appropriately with remote
objects, for example by displaying information about the transport of the object
in the case of the toString() method. RMI applications do not, therefore, behave
the same as local applications, which adds to the programmer’s burden.

The major shortcoming of RMI is that, by ensuring that programmers are
aware of the differences between local and remote objects, an additional burden is
placed on programmers. While Waldo et al. [118] argue that this is necessary, there
are a number of significant issues with RMI’s implementation of this approach:

• Programming is far more complicated than the transparent approach adopted
by most RPC type systems.

• The programmer has to mark an object as being remote by having it imple-
ment the java.rmi.Remote interface.

• Remote operations have to be declared to throw the
java.rmi.RemoteException exception.

• Classes that are marked remote and have operations that are declared to
throw java.rmi.RemoteException in an interface, have to be altered to be
reused outside RMI.

• Clients, and servers that are also clients, are required to provide a security
manager to ensure applications can only access resources they are entitled
to.

• Applications are required to use the RMI framework for exporting and locat-
ing objects.

2.6 Message-Oriented Middleware
Message-oriented middleware (MOM) systems refer to a type of asynchronous com-
munication known as message queueing [9] where middleware is commonly defined
as a software layer that provides a higher level of abstraction, which consider-
ably simplifies distributed systems development [32]. MOM systems are highly
successful in industry and represent a sizeable segment of the Information and
Communication Technology market [32].

As described by Eugster et al. [34], MOM systems are generally highly scal-
able as the decoupling of message producer from consumer improves scalability by
removing all explicit dependencies between the interacting participants along the
following two dimensions:

Time decoupling. The interacting parties do not need to be actively participating
in the interaction at the same time. Either party may be disconnected while
the other is sending messages to it. Once they become connected, they may
be notified of an event sent by the other party and the other party may be
currently disconnected.
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Figure 2.15. Message queues.

Space decoupling. The interacting parties do not need to know each other as pub-
lishers publish messages through an event service and subscribers receive
these events indirectly from the event service. Publishers and subscribers
are not aware of each other nor do they hold references to each other.

A number of message queueing systems are widely available, such as MQSeries
from IBM [51], Microsoft’s MSMQ [25] and Apache’s ActiveMQ [5] and message
queueing is part of the Java Enterprise Edition (JEE) specification [104] in the
form of message-driven beans and the Java Message Service (JMS) API [47].

Message queueing systems typically provide two different interaction styles,
queues and publish/subscribe.

2.6.1 Message Queues

In the queue interaction style, also referred to as point-to-point, messages are
stored in a FIFO queue. Producers append messages into the queue and consumers
dequeue them at the front of the queue.

Queues typically provide transactional, ordering and timing guarantees and
messages can be one way (fire-and-forget) or two way (request-response) although
a response is not compulsory.

The JMS API [47] provides a simple queuing abstraction for Java applica-
tions. Implementing our simple date application is therefore straightforward. The
server implementation illustrated in Figure 2.16 is developed using Apache’s Ac-
tiveMQ [5] messaging product.

In our JMS server example we use the JMS TextMessage type to pass a String
representing the current date from the server to the client. A Properties object
is used to set various connection parameters required by the JMS implementation
and the DateServer class is used as a MessageListener so that it may receive
messages asynchronously.

The JMS Server example uses a simple messaging request-reply pattern [50]
where the consumer waits for a message to be sent from the producer and, upon
receipt, sends a response back to the producer on a queue defined by the producer
in the JMS reply header field. Once a message is received and if it is of type
TextMessage, the request is printed and a response is sent containing the server’s
current date. Our client, illustrated in Figure 2.17, creates a temporary queue for
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public class DateServer implements MessageListener {
private Queue destination;
private Session session;

private void initialize() throws JMSException, NamingException {
Properties props = new Properties();
props.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.apache.activemq.jndi.ActiveMQInitialContextFactory");
props.setProperty(Context.PROVIDER_URL,"tcp://localhost:61616");
props.setProperty("queue.destination","TEST");
Context ctx = new InitialContext(props);
QueueConnectionFactory connectionFactory =

(QueueConnectionFactory) ctx.lookup("ConnectionFactory");
QueueConnection c = connectionFactory.createQueueConnection();
destination = (Queue) ctx.lookup("destination");
session = c.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);
MessageConsumer requestConsumer = session.createConsumer(destination);
requestConsumer.setMessageListener(this);
c.start();

}

public static void main(String[] args) throws NamingException, JMSException {
new DateServer().initialize();

}

public void onMessage(Message message) {
try {

if ((message instanceof TextMessage) &&
(message.getJMSReplyTo() != null)) {

TextMessage requestMessage = (TextMessage) message;
System.out.println("Req Date: " + requestMessage.getText());
Destination replyDestination = message.getJMSReplyTo();
MessageProducer replyProducer =

session.createProducer(replyDestination);
TextMessage replyMessage = session.createTextMessage();
replyMessage.setText(new Date().toString());
replyMessage.setJMSCorrelationID(requestMessage.

getJMSMessageID());
replyProducer.send(replyMessage);

}
} catch (JMSException e) {

e.printStackTrace();
}

}

}

Figure 2.16. JMS server example. The shaded areas illustrate
where usage of the JMS framework is required.

the receipt of message responses and sets the JMS reply header field to the name
of the temporary queue so that the server knows which queue to use for message
responses. Once a message is sent, the client suspends waiting for a response from
the server.

As can be seen in Figures 2.16 and 2.17, the programmer is responsible for
implementing all aspects of error recovery. In addition, as illustrated by the shad-



36 2 Distributed Systems Development

public class DateClient {

private Queue destination;
private Session session;
private MessageProducer producer;
private MessageConsumer consumer;
private Queue replyQueue;

public static void main(String[] args) throws JMSException, NamingException {

DateClient d = new DateClient();
d.initialize();
System.out.println("Server’s Date: " + d.getDate());
System.exit(0);

}

private String getDate() throws JMSException {
TextMessage requestMessage = session.createTextMessage();
requestMessage.setText(new Date().toString());
requestMessage.setJMSReplyTo(replyQueue);
producer.send(requestMessage);
Message message = (TextMessage) consumer.receive();
if (message instanceof TextMessage)

return ((TextMessage) message).getText();
return "Invalid Message type Received";

}

private void initialize() throws JMSException, NamingException {
Properties props = new Properties();
props.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.apache.activemq.jndi.ActiveMQInitialContextFactory");
props.setProperty(Context.PROVIDER_URL, "tcp://localhost:61616");
props.setProperty("queue.destination", "TEST");
Context ctx = new InitialContext(props);
QueueConnectionFactory connectionFactory =

(QueueConnectionFactory) ctx.lookup("ConnectionFactory");
QueueConnection c = connectionFactory.createQueueConnection();
destination = (Queue) ctx.lookup("destination");
session = c.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);
producer = session.createProducer(destination);
replyQueue = session.createTemporaryQueue();
consumer = session.createConsumer(replyQueue);
c.start();

}

}

Figure 2.17. JMS client example. The shaded areas illustrate
where usage of the JMS framework is required.

ing in the JMS examples, the JMS framework is highly intrusive, requiring a great
deal of setup and recovery code.

2.6.2 Publish/Subscribe

In contrast to the synchronous models of communication described earlier, pub-
lish/subscribe systems provide a loosely-coupled interaction style where publish-
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Figure 2.18. Publish/subscribe overview.

ers publish events and subscribers subscribe to those events and are subsequently
asynchronously notified when an event occurs. Publish/subscribe systems there-
fore implement an event-driven style of communication [78].

This interaction style is illustrated in Figure 2.18, where publishers pub-
lish messages to a central event service. Subscribers register their interest in
messages that may be placed in the event service by publishers and are notified
asynchronously if this occurs.

As well as time and space decoupling, described in Section 2.6, publish/-
subscribe also provides synchronisation decoupling between publishers and sub-
scribers. Eugster et al. [34] describe synchronisation decoupling as the ability for
publishers to produce events without blocking and subscribers to receive those
events asynchronously through a callback mechanism.

Subscribers are usually only interested in particular events, not all events and
this has led to a number of subscription schemes. According to Eugster et al. [34],
the most widely used schemes are topic-based and content-based subscription.

The topic based subscription model is based on the notion of topics or subjects
and is implemented by many enterprise messaging solutions including IBM’s MQ
Series [51] and Tibco’s Rendezvous message bus [78]. The JMS API [47] provides
a topic abstraction mechanism and in version 1.1 of the standard, the interface
between message queues and topics has converged so the API for both types of
interaction styles are the same. Topic based publish/subscribe programming is,
using the JMS API, the same as message queue programming.

Content-based (also known as property-based [87]) publish/subscribe provides
a scheme where events are subscribed to, based on a filter mechanism. This is im-
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plemented in the JMS standard by meta-data association in the form of message
selectors, a string containing an expression based on a subset of the SQL92 condi-
tional expression syntax. For example, the message selector:

Type = ’Football’ OR Type = ’Rugby’
selects any message that has a type property that is set to ’Football’ or ’Rugby’.

In the JMS API, a message selector may be passed as an argument during
the creation of a message consumer and the message consumer will only receive
messages whose headers and properties match the selector.

2.6.3 Durable Topics

By default, events are only sent to consumers if the consumer is currently avail-
able. However, if the durable property is defined, then events are stored in the
publish/subscribe system and will be sent to consumers once they become avail-
able.

This feature, known as durable topics, requires the programmer to define two
additional properties so that the publish/subscribe system may uniquely identify
a consumer:

• A client ID for the connection so that the system may have many different
durable consumers on different topics or on the same topic with different
message selectors.

• A subscription name for the consumer.

2.7 Chapter Summary
This chapter has discussed four common approaches to distributed systems devel-
opment which are broadly indicative of current distributed systems development
practises. We classify these approaches as follows:

1. The low-level API approach, which accesses the low-level protocol stack di-
rectly.

2. The RPC distribution obliviousness approach, which attempts to hide the
distributed system from the programmer.

3. The RPC distribution awareness approach, which ensures the programmer is
aware of the distributed nature of the application and requires the program-
mer to follow specific programming conventions.

4. The high-level framework or API approach, which provides a high-level li-
brary or framework that is used to hide low-level networking details from the
programmer.

BSD sockets are indicative of the first approach and provide low-level access
to the networking stack and therefore greater control, but requires significantly
more code than other approaches. Programmers are required to implement their
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own protocol on top of the socket interface and are responsible for implementing
their own packet assembly and disassembly routines. In addition, BSD socket pro-
grammers cannot rely on the underlying transport mechanism to ensure message
delivery. Error handling and recovery is left entirely up to the programmer, which,
combined with the other requirements discussed above, makes socket programming
immensely complex and error prone.

Using the second approach, RPC systems attempt to mask the differences
between local and remote procedure calls so that, to the programmer, they appear
identical. While this approach has its advantages, remote procedure calls do not
behave in the same way as local procedure calls, and in the event of an error it
is often impossible to recover unless the programmer is aware of the distributed
nature of the application and is therefore in a position to take corrective action,
for example by reconnecting to a different server. In addition, programmers are
required to use an IDL for most RPC type systems, which is used to describe
the remote procedure calls, their parameters and other information. An IDL is
unique to a distributed system and a programmer is therefore required to learn an
additional IDL for each type of RPC system they wish to use.

RMI, an implementation of the third approach, is a Java-centric distributed
system that requires the programmer to adopt RMI specific programming conven-
tions. Programmers are required to be aware of the distributed nature of their
applications so that they may take corrective action in the event of failures, al-
though there is no specific or general recovery mechanism in the RMI system,
rather it is left to the programmer to implement one.

The JMS system uses the fourth approach to provide a high-level API to
asynchronous event-driven systems. Once again, error handling and recovery is
left to the programmer to resolve.

All of the above approaches require programmers to adhere to a framework
or API although the level of abstraction may differ. Regardless of the approach
used, programmers are required to interact with the framework or API at some
level, thereby tying the application code to the framework or API.
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3 An Aspect-Oriented Approach

3.1 Introduction
Object-orientation has been presented as the technology that will finally make soft-
ware reuse a reality as the object model provides a better fit with domain models
than procedural programming [63]. Object-orientation, currently the dominant
programming paradigm, allows a programmer to build a system by decomposing
a problem domain into objects that contain both data and the methods used to
manipulate the data, thereby providing both abstraction and encapsulation. In ad-
dition, object-oriented languages typically provide an inheritance mechanism that
allows an object to reuse the data and methods of its parent, thereby enabling
polymorphism.

There are, however, many programming problems where the object-oriented
programming (OOP) technique, or the procedural programming technique it re-
places, are not sufficient to capture the important design decisions a program
needs to implement. Kiczales et al. [59] refer to these design decisions as aspects
and claim the reason they are so difficult to capture is because they crosscut the
systems basic functionality. Kiczales et al. claim that AOP makes it possible to
clearly express programs involving such aspects, including appropriate isolation,
composition and reuse of the aspect code.

3.2 Crosscutting Concerns and Aspects
Separation of concerns has long been a guiding principle of software engineering as
it allows one to identify, encapsulate and manipulate only those parts of software
that are relevant to a particular goal or purpose [79]. Unfortunately, there can be
many concerns that crosscut one another leading to tangled code that is difficult
to understand, reuse and evolve. Concerns are said to crosscut if the methods
related to those concerns intersect [31] as illustrated in the UML for a simple
picture editor1 in Figure 3.1.

Figure 3.1 illustrates two implementations of the FigureElement interface,
Point and Line. Although these classes exhibit good modularity, consider the
concern that the screen manager must be notified whenever a FigureElement
moves. In this case every time a FigureElement changes, the screen manager must

1This example is reproduced from Kiczales et al. [60].
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Figure 3.1. Aspects crosscut classes in a simple figure editor.

be informed by calling the screen manager’s moveTracking method, as illustrated
by the band surrounding the methods that implements this concern in Figure 3.1.
This concern is called a crosscutting concern as it crosscuts methods in both the
Line and the Point classes.

AOP is an attempt to isolate and modularise these concerns and then weave
or compose them together with an existing program, thereby allowing the concern
to be applied in an oblivious way (the existing code is unaware of the crosscutting
concern). An aspect can therefore be considered as a modular unit of crosscutting
implementation [61].

It is important to note that the goal for AOP is not as a replacement for
object-orientation, it is to build on object-orientation by supporting separation of
concerns that cannot be adequately expressed in object-oriented languages [31].

3.3 AOP Semantics
AOP introduces new semantics to describe crosscutting concerns and aspects.
Much of the semantic model is based on the AspectJ language developed by Kicza-
les et al. [59] at Xerox’s Palo Alto Research Centre.

According to Kiczales et al. [59], aspect-oriented languages have three critical
elements: a join point model, a means of identifying join points, and a means of
effecting implementation at join points. These elements can be described as:
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Join points. A join point model makes it possible to define the structure of cross-
cutting concerns. Join points are well-defined points in the execution flow of
a program [59], such as method calls, constructors, function calls etc. Join
points can therefore be considered as places in a program where aspects may
be applied.

Pointcuts. A pointcut is a means used to identify a join point. This is typically
a filter mechanism that defines a subset of join points [59]. A cflow is a
type of pointcut that identifies join points based on whether they occur in
the dynamic context of other join points. For example, the cflow statement
cflow(move()) in the AspectJ language picks out each join point that occurs
between when the move() method is called and when it returns, which may
occur multiple times in the case of a recursive call [6].

Advice. The advice is used to define additional code that is run at join points.
In most AOP languages there are a number of different advice declarations
that define when the advice runs when a join point is reached. These are
typically before, after, or around the join point.

Weaving. The process of adding aspects to existing code to produce a coherent pro-
gram is known as weaving. Weaving is either done at compile time (static
weaving) or at runtime (dynamic weaving) and some systems, such as com-
position filters [12], allow aspects to be added and removed dynamically.
Weaving is achieved using a technique known as bytecode rewriting, which
alters existing bytecode, either dynamically as it is loaded or statically by
altering the bytecode contained in an existing class file.

As well as the above general AOP semantics, various aspect implementations
provide their own semantics.

3.4 Static and Dynamic Weaving
Static weaving refers to the modification of the source code of a class by inserting
aspect-specific statements at join points [21]. Java applications are compiled to
bytecode, a portable format that is interpreted by the Java virtual machine at
runtime, and consequently most Java AOP systems alter the bytecode, not the
source code. This has the added advantage of allowing Java AOP systems to be
used where the source code is not available.

Dynamic weaving refers to the ability to weave and unweave aspects at run-
time without having to restart the application [84].

A number of methods have been proposed to implement aspect-oriented func-
tionality. These can be broadly classified as language-based implementations,
framework-based implementations and domain-specific language implementations.
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3.5 Language-Based Implementations
A number of language-based approaches have been proposed to implement aspect-
oriented programming. Many of these languages, such as AspectJ [60], Caesar [71],
Jiazzi [68], AspectC [20], and JAsCo [106] have been designed as extensions to ex-
isting languages. Other novel language-based concepts, such as composition filters
that manipulate the messages passing between objects, have also been proposed
[12].

These languages and systems have typically been produced by the research
community attempting to understand the practical value of AOP in terms of how
aspects are used, the types of designs and patterns that may emerge, and how
effective crosscutting modularity actually is [60]. The most popular language-
based system is currently AspectJ.

3.5.1 AspectJ

AspectJ is an extension to the Java programming language that was developed by
Kiczales et al. [59] at Xerox’s Palo Alto Research Centre. The AspectJ language
is designed to be a simple and practical aspect-oriented extension to the Java
language that can be used to code crosscutting concerns that would otherwise
lead to tangled code [60].

AspectJ is designed as a compatible extension to Java where compatibility is
defined by Kiczales et al. [60] as:

• Upward compatibility – all legal Java programs are legal AspectJ programs.
• Platform compatibility – all legal AspectJ programs must run on standard

Java virtual machines.
• Tool Compatibility – all existing tools, including IDEs, documentation tools,

and design tools should be able to be extended to support AspectJ.
• Programmer compatibility – programming in AspectJ must feel like a natural

extension to programming in Java.

While early versions of AspectJ operated on source code, later versions alter
the bytecode generated by the Java compiler, thereby allowing aspects to be used
in situations where the source code is not available.

As discussed in Section 3.3 join points are well-defined points in the execution
flow of a program. AspectJ supports a number of join points as listed in Table 3.1
[60].

A pointcut in AspectJ is a set of join points that may be matched at runtime.
For example, the pointcut2:

call(void Point.setX(int)) ||
call(void Point.setY(int))

2These examples are reproduced from Kiczales et al. [60, 61].
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Table 3.1. The dynamic join points of AspectJ.

Kind of join point Points in the program execution at which . . .
method call A method (or a constructor of a class) is called.
constructor call Call join points are in the calling object, or in

no object if the call is from a static method.
method call reception An object receives a method or constructor call.
constructor call reception Reception join points are before method or con-

structor dispatch, i. e. they happen inside the
called object, at a point in the control flow after
control has been transferred to the called
object, but before any particular method or
constructor has been called.

method execution An individual method or constructor is invoked.
constructor execution
field get A field of an object, class or interface is read.
field set A field of an object or class is set.
exception handler execution An exception handler is invoked.
class initialisation Static initialisers for a class are run.
object initialisation When the dynamic initialisers for a class are

run during object creation.

matches any call to either the setX or setY methods defined by Point that return
void and have a parameter of int. Pointcuts may also be declared by name, for
example:

pointcut weAreMoving():
call(void Point.setX(int)) ||
call(void Point.setY(int));

As well as pointcuts that match an explicit method call, as described above,
pointcuts may also contain wildcard characters that can match a number of dif-
ferent methods. Consider the following:

call (public String Figure.get∗(..))
call (public ∗ Figure.∗(..))

The first matches any call to public methods defined in Figure that start with
get, take any number of parameters, and return a String. The second matches
any call to a public method defined in Figure.

AspectJ defines the advice declaration to stipulate the code that is run at a
join point. Three types of advice are supported:
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aspect SimpleTracing {
pointcut traced() :

call(void Display.update()) ||
call(void Display.repaint(..));

before(): traced() {
println("Entering: " + thisJoinPoint);

}

void println(String s) {
// write message

}
}

Figure 3.2. AspectJ SimpleTracing Example.

• Before advice – runs at the moment a join point is reached.
• After advice – runs after the join point has been reached.
• Around advice – runs when the join point is reached and has explicit control

over whether the method is run or not.

An advice is declared using one of the advice keywords. For example, the following
advice prints a message after the weAreMoving method is called using the after
keyword:
after(): weAreMoving() {

System.out.println("We have moved");
}

Aspects wrap up pointcuts, advice, and inter-type declarations in a modular
unit of crosscutting implementation and is defined similar to a class. Inter-type
declarations are members of an aspect (fields, members and constructors) that are
owned by other types, and aspects can also declare that other types implement
new interfaces or extend a new class [6].

Aspects can contain methods, fields, and initialisers in addition to the cross-
cutting members. The following is an example of a simple aspect that is used to
print messages before certain display operations:

As can be seen from the example in Figure 3.2, aspects in AspectJ are not
reusable because the context on which an aspect needs to be deployed is specified
directly in the aspect definition – the pointcut is part of the aspect [106]. Although
AspectJ allows aspects to be inherited from other aspects, it is only allowed if the
inherited aspect has been declared as abstract. Concrete aspects are therefore not
reusable. In addition, any change to a class may result in the necessity to alter
the aspect as the pointcut definition may no longer be valid.

Recognising this limitation, a number of researchers have been focusing on re-
moving the join point interception model from the aspect implementation. Lieber-
herr et al. [64] have developed the concept of Aspectual Components, which
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attempts to separate the pointcut from the advice, thereby making the advice
reusable. This method has subsequently been adopted by Suvée et al. [106] in the
JAsCo language. The Caesar system [71], uses an aspect collaboration interface,
a higher-level module concept that decouples the aspect implementation from the
aspect bindings, to enable reuse and componentisation of aspects.

As well as providing aspects, AspectJ also provides introductions, a mecha-
nism for adding fields, methods and interfaces to existing classes. Introductions are
motivated by the observation that concerns have an impact on the type structure
of programs which compromises modularisation, because different fields and meth-
ods in the type structure may come from different concerns. With introductions,
these fields and methods can be removed from the various concerns, modularised,
and applied to the various classes at runtime [46].

3.6 Framework-Based Implementations
One approach to the implementation of AOP is by providing an object-oriented
framework [80], a reusable semi-complete application that can be specialised to
produce custom applications [55]. A framework dictates the architecture of an
application by [41]:

• Defining its overall structure.
• Partitioning the application into classes and objects.
• Defining the key responsibilities of the classes and objects.
• Dictating how the classes and objects collaborate.
• Defining the application’s thread of control.

These design parameters are predefined so that an application programmer can
concentrate on the specifics of the application and not on the architecture [41].

The important classes in a framework are usually abstract. An abstract class
is a class with no instances and is used only as a superclass [36]. As well as
providing an interface, an abstract class provides part of the implementation of
its subclasses by using either a template method or a hook method. A template
method defines part of the implementation in an abstract class and defers other
parts to subclasses by calling methods that are defined as abstract [41]. A hook
method defines a default implementation that can be overridden by subclasses
[86]. Abstract classes that are intended to be subclassed by the framework user
are known as hot spots as they encapsulate possible variations [85].

Frameworks usually come with a component library containing concrete sub-
classes of the abstract classes in the framework [36]. According to Fayad et al.
[36], frameworks provide the following benefits:

Modularity. Implementation details are hidden behind stable interfaces. This helps
to improve quality by localising the impact of design and implementation
changes.
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1 public class MyAspect {
2 public Object trace(MethodInvocation invocation)
3 throws Throwable {
4 try {
5 System.out.println("Entering method");
6 // proceed to next advice or actual call
7 return invocation.invokeNext();
8 } finally {
9 System.out.println("Leaving method");

10 }
11 }
12 }

Figure 3.3. JBoss aspect example.

Reusability. The stable interfaces provided by frameworks define generic compo-
nents that can be reused in new applications.

Extensibility. A framework provides hook methods that can be re-implemented by
subclasses.

Inversion of control. This allows the framework, as opposed to the application, to
decide which application specific methods to invoke in response to external
events.

Frameworks are designed to either be used as a general purpose framework
usable in any environment, such as AspectWerkz [16], or to be used in a specific
environment, such as the JEE framework. Components that have been developed
to a specific framework environment cannot be reused outside that environment,
severely limiting reuse.

3.6.1 The JBoss AOP Framework

The JBoss AOP framework provides a framework that can be used to develop
aspect-oriented applications that are either tightly coupled to the JBoss JEE ap-
plication server or are standalone. To use the framework, the programmer defines
AOP constructs as Java classes and binds them to application code using XML or
Java 1.5 annotations [54].

Aspect classes are defined as normal Java class that define zero or more ad-
vices, pointcuts and/or mixins (a mixin class is a class that is used to implement
multiple unrelated interfaces and is often used as an alternative to multiple inher-
itance [17]).

Figure 3.3 contains an example of an aspect called MyAspect3, which contains
an advice, trace (line two), that traces calls to any method. The return statement,
invocation.invokeNext() (line seven) is required in order to ensure that either

3All examples presented in this section are reproduced from: JBoss AOP – Aspect-Oriented
Framework for Java [54].
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Table 3.2. Pointcuts supported by JBoss AOP.

Pointcut Type Description
execution(method Specifies that an interception occurs whenever a
or constructor) specified method or constructor is called.
get(field expression) Specifies that an interception occurs when a

specified field is accessed to be read.
set(field expression) Specifies that an interception occurs when a
field specified field is accessed to be written to.
field(field expression) Specifies that an interception occurs when a

specified field is accessed to be read from or written
to.

all(type expression) Specifies that calls to a specified constructor,
method or field of a particular class will be inter-
cepted.

call(method Specifies that calls to a specified constructor or
or constructor) method will be intercepted.
within(type expression) Matches any join point (method or constructor

call) within any code within a particular call.
withincode(method Matches any join point (method or constructor
or constructor) call) within a particular method or constructor.
has(method Used as an additional requirement for matching.
or constructor) If a join point is matched, its class must also have a

constructor or method that matches the has ex-
pression.

hasfield(field expression) Used as an additional requirement for matching. If
a join point is matched, its class must also have a
constructor or method that matches the hasfield
expression.

the next advice in the chain (if there is more than one) or the actual method or
constructor invocation is called. Failure to adhere to this protocol results in the
failure to call other advice and/or the method or constructor.

The framework also supports other invocation types such as all invocations,
public Object trace(Invocation invocation), and constructor invocations,
public Object trace(ConstructorInvocation invocation).

XML files are used by the framework to describe pointcuts and the attach-
ment of pointcuts to aspects. Table 3.2 lists the types of pointcuts supported by
the JBoss AOP framework [54].

For example, the XML constructs used to trace all calls to the withdraw
method on any object that has a parameter of double using the MyAspect aspect
example presented in Figure 3.3 is:
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<aop>
<aspect class="MyAspect"/>
<bind pointcut=

"execution(* void *->withdraw(double amount))">
<advice name="trace" aspect="MyAspect"/>

</bind>
</aop>

One of the more interesting features of the JBoss AOP framework is that it
allows for the use of introductions and mixins. An introduction is used to alter an
existing class so that it implements one or more additional interfaces. For example
the class:

public class POJO {
private String field;

}

can be made to implement the java.io.Externalizable interface by using the
following XML:

<introduction class="POJO">
<mixin>

<interfaces>
java.io.Externalizable

</interfaces>
<class>ExternalizableMixin</class>
<construction>

new ExternalizableMixin(this)
</construction>

</mixin>
</introduction>

The class element above defines the mixin class that will implement the ex-
ternalizable interface, while the construction element specifies the Java code that
will be used to initialise the mixin class when it is created.

The JBoss AOP framework also has the ability to allow the deployment and
undeployment of aspects at runtime. This is achieved by using the aopc compiler
to ’prepare’ join points in the application to accept advices at runtime. Preparing
alters the bytecode by inserting dummy placeholders where advice can later be
applied [54].

The JBoss AOP framework is an extensive elegant framework that supports
many complex AOP constructs as well as many useful features, such as the hot
deployment/undeployment of aspects at runtime. As with many object-oriented
frameworks it requires the programmer to adhere to a specified protocol, such as
ensuring that the invocation.invokeNext() method is called in an aspect. If
the programmer fails to adhere to this protocol, the application will not behave as
expected. Unfortunately these types of issues can only be picked up at runtime,
not compile time.
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Table 3.3. Four aspects of self-management with autonomic
computing.

Concept Current Computing Autonomic Computing
Self- Corporate data centres have Automated configuration of
configuration multiple vendors and plat- components and systems fol-

forms. Installing, configuring, lows high-level policies. Rest
and integrating systems is of system adjusts automati-
time consuming and error cally and seamlessly.
prone.

Self- Systems have hundreds of Components and systems
optimisation manually set, nonlinear tun- continually seek opportuni-

ing parameters, and their ties to improve their own per-
number increases with each formance and efficiency.
release.

Self-healing Problem determination in System automatically detects,
large, complex systems can diagnoses, and repairs local-
take a team of programmers ised software and hardware
weeks. problems.

Self- Detection of and recovery System automatically defends
protection from attacks and cascading against malicious attacks or

failures is manual. cascading failures. It uses early
warning to anticipate and
prevent systemwide failures.

3.7 AOP and Autonomics
Autonomic computing is an initiative proposed by the IBM corporation to over-
come an impending complexity crisis in the development of applications [52]. Ac-
cording to IBM, this complexity is growing beyond human ability to manage it.

To overcome this, IBM proposes that systems are developed to manage them-
selves, given high-level objectives by administrators, so that they may adjust their
operation, workloads, demands and external conditions in the face of hardware or
software failures. IBM cites four aspects of self-management, which are detailed
in Table 3.3 [56].

To meet the autonomic computing vision of self-managing, self-healing and
self-optimising systems requires a system to be able to dynamically adapt to its
environment. However, a key challenge limiting the use of autonomic features in
applications is the lack of tools and frameworks that can alleviate the complexities
stemming from the use of manual development methods [56].

McKinley et al. [69] define two general approaches to implement adaptive
software:
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Separation of 
concerns

Computational 
reflection

Component-
based design

Compositional adaption

Middleware

Figure 3.4. Main technologies supporting compositional adap-
tion.

Parameter adaption modifies program variables that are used to determine be-
haviour, for example by adjusting a retry count depending on current net-
work conditions. This type of adaption is severely limited as it does not allow
new algorithms and software components to be added to an application after
initial design and development.

Compositional adaption allows an application to replace parts of a program’s com-
ponents with another to improve the program’s fit into the current operating
environment, for example by adding new behaviour to a deployed system.
While this is much more flexible than parameter adaption, incorrect use may
result in a program that is difficult to test and debug.

McKinley et al. [69] define three main technologies, illustrated in Figure 3.44, that
can be used to support compositional adaption; separation of concerns, computa-
tional reflection, and component-based design.

There are two main techniques used to implement compositional adaption in
application code. The first is to use a language, such as CLOS or Python, that
directly supports dynamic recomposition, and the second is to weave the adaptive
code into the functional code using aspect-oriented techniques [69].

For the purposes of this discussion we concentrate on using the AOP tech-
nique to develop adaptive software and present relevant implementations of this
approach.

4This diagram is reproduced from McKinley et al. [69].
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Figure 3.5. TOSKANA Code Splicing.

3.7.1 The TOSKANA Toolkit

Engel and Freisleben [33] have developed the TOSKANA toolkit to dynamically
apply aspects to the NetBSD operating system. This toolkit provides a set of
tools, macros and libraries for developing and deploying dynamic aspects in the
kernel space of NetBSD.

Aspects are developed using standard C macros and are inserted into the
kernel as loadable kernel modules. A runtime library, called aspectlib.ko, dynam-
ically applies join points using a technique known as code splicing. Code splicing
replaces the bit patterns of instructions in native code with a branch to a loca-
tion outside the predefined code flow, where additional instructions followed by
the originally replaced instruction and a jump back to the instruction after the
splicing location are inserted. As the execution of kernel functions may usually be
interrupted at any time, the splicing operation is performed atomically [33]. This
process is illustrated in Figure 3.55.

TOSKANA supports before, after and around advice variants and these are
implemented using the BEFORE, AFTER and AROUND macros in standard C
code as illustrated below:

#include <sys/aspects.h>
...
void aspect_init(void) { /∗ deploy three aspects ∗/

BEFORE(sys_open, open_aspect);
AFTER(sys_open, close_aspect);
AROUND(func, some_aspect);

}
ASPECT open_aspect(void) {

...
}

5This diagram is reproduced from Engel and Freisleben [33].
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ASPECT close_aspect(void) {
...

}
ASPECT some_aspect(void) {

...
PROCEED();
...

}

The code is then compiled as a standard NetBSD kernel module. At runtime,
the user mode dynamic code weaver weave is used to load the requested kernel
module and execute its corresponding initialisation function (aspect_init()), which
calls a support library to do the actual weaving using the code splicing technique.
Subsequent functions calls are then routed through the user-provided aspects.

Engel and Freisleben [33] provide a number of use cases of adding adaption
to NetBSD using this approach:

Self-Configuration. In common with most operating systems, new devices may be
added or removed from the NetBSD operating system dynamically. While
adding a new device does not affect running processes, removing one may.
For example removing a USB memory key that contains a file system that
is currently being accessed by a process. The cross-cutting functionality
affected here is the call to the VOP_OPEN function, located in 43 areas in
the architecture-specific, base kernel, file system and device driver code in
the operating system. In this scenario an aspect may intercept the device
removal and signal the different parts of the operating system affected that
a device is no longer available if the operating system tries to open a file on
the now non-existent device.

Self-Healing. The NetBSD system, in common with all operating systems, may
run out of memory if a process requests more memory than that which is
available in the virtual memory system. Using an aspect, the out-of-memory
error condition can be intercepted and the aspect can add additional virtual
memory dynamically by adding additional swap files to the system.

Self-Optimization. To calculate the number of free blocks in a file system, the op-
erating system skims through the free block list and counts the number of
bits that indicate a free block. However, if the operating system could detect
that reading the free block count occurs more frequently than updating the
free block bitmap, an optimisation could be achieved by dynamically switch-
ing the free block calculation so that the number of free blocks is calculated
prior to every bitmap update instead of every call to a readout. This pro-
vides self optimisation because the system can dynamically shift the count
of free blocks depending on changing conditions and this functionality can
be provided in an aspect.
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behavior RSSBehavior()
{
  //Instance variable declarations...
  octet[] examples::bette::SlideShow.:read (in long gifNumber)
  {
     return_value octet[] result; 
     local instr::Trace_rec rec;

     after METHODENTRY {
        methodlD = "read"; 
        rec = rssQosket.createTraceRec(methodlD);
     }
     inplaceof METHODCALL { 
        region slow {
          java_code #{ 
            iServer =
             (com.bbn.quo.examples.bette.SlideShowlnstrumented) 
               rssQosket.getlnstrumentedServer();
          }#;
          instrumented_result = iServer.read(gifNumber,rec);
          result = instrumented_result.getBytes();
          rec = instrnmented_result.getRecord();
     }
  }
};

Advice

Region

Advice

Join Point

Method

Figure 3.6. QuO ASL example.

This approach presents the possibility of operating systems being able to be
modularised to a far greater extent than that which is currently possible and, as
described above, provides the possibly to add autonomic computing functionality.

3.7.2 The QuO Toolkit

Middleware technologies, such as CORBA [77], allow the development of dis-
tributed applications without the developer needing to be aware of details of the
distribution technology involved. As these applications may be distributed across
a number of different physical machines connected via one or more networks, the
applications concerned may need to adapt to the changing network and system
conditions to maintain an acceptable quality of of service (QoS).

Duzan et al. [30] have developed the QuO toolkit which builds QoS as an
aspect and weaves the aspect into the boundary between the application and the
middleware. QoU defines an aspect model, which includes join points specific
to distribution and adaption, and an adaption model which defines the adaption
strategy to be used. The QuO toolkit consists of four main entities [30]:

1. Contracts, which are used to define an adaption policy in QuO. Contracts
are defined using QUO’s Contract Definition Language (CDL).

2. System Condition Objects, which are used to monitor the environment.
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3. Callbacks, which are used for system, middleware and out-of-band application
adaption.

4. Delegates, which define the aspect-oriented weaving of the adaptive behaviour
into wrappers around application interfaces.

QuO provides an Aspect Specification Language (ASL), which is used to
define the monitoring or control behaviour and is compiled to produce a delegate,
which acts as a proxy for calls to an object reference or a servent (the remote
object).

Figure 3.6 illustrates an example of QuO’s ASL used to define two advices
that are to be applied for the method examples::bette::SlideShow::read.

Although delegates may be defined for other middleware environments, the
current implementation of the QuO toolkit is designed for the CORBA envi-
ronment and therefore the ASL advice is applied to a particular method in the
CORBA IDL, e. g. examples::bette::SlideShow::read in Figure 3.6.

The region statement in the ASL Figure 3.6 refers to a region defined in QuO’s
Contract Definition Language (not shown), which defines the meaning of the term
’slow’. In this example, once the system reaches that state, the corresponding
advice is executed.

3.7.3 Reflection and AOP

A reflective system is a system that incorporates structures about itself. The sum
of these structures is called the self-representation of the system, which makes it
possible for the system to answer questions about itself and support actions on its
behalf [67].

In a language that supports reflection, each object is given a meta-object,
which holds the reflective information available about the object [67]. Metaobject
protocols (MOP’s) are interfaces, to the language that give users the ability to
incrementally modify the language’s behaviour and implementation [58], typically
by using a set of classes and methods that allow a program to inspect and alter
the state of the application.

Reflection is a common way of developing adaptive software and Grace et al.
[43] have proposed combining the use of AOP and reflective middleware to imple-
ment dynamic adaptive systems to provide the following benefits:

• The ability to support fine-grained introspection and dynamic adaption of
aspects including the ability to adapt or re-order advice behaviour and re-
configure the joinpoint set thereby supporting self-adaption and system wide
validation of crosscutting concerns.

• The provision of multiple system viewpoints to support complex adaptions.
For example an MOP to manage component adaption, another to manage
crosscutting module adaption and another to manage resource usage adap-
tion.
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• Increased performance (compared to a purely reflective implementation) by
deploying reflection using aspects only where required.

Surajbali et al. [105] argue that the reflective middleware approach is limiting as
the reflective APIs have been found to expose a steep learning curve and places
too much expressive power in the hands of developers. Instead their approach
is to build an AOP support layer on top of an underlying component-based re-
flective middleware substrate. Surajbali et al. [105] provide an implementation of
their model using the OpenCOM component model and the GridKit middleware
platform and claim their approach provides the following benefits [105]:

• The complexity of the reflection layer is hidden from programmers.
• The AOP support layer can be dynamically deployed and undeployed when

required thereby avoiding overhead when not in use.
• As the AOP support layer is constructed from OpenCOM components like the

rest of the system, the underlying middleware system and the AOP support
layer can be the target of an advice.

• As distributed dynamic aspects are supported, aspects can be dynamically
deployed across a distributed system on the basis of distributed pointcut
expressions.

Greenwood and Blair [44] have proposed the use of dynamic AOP to imple-
ment autonomics. This approach allows adaptions to be encapsulated as aspects,
thereby allowing adaptions to be contained and applied retrospectively at runtime.

Greenwood and Blair’s implementation [45] uses the AspectWerkz [16] dy-
namic AOP framework combined with reflection and a policy framework to define
adaptive behaviour based on Event-Condition-Action rules.

3.8 AOP and the Distribution Concern
Several attempts have been made to apply distribution aspects to existing Java
code. These attempts typically target a single distribution protocol, RMI, and
either generate code in the general purpose aspect language, AspectJ [18, 91, 114],
use a domain-specific language [66, 73], extend Java [83], or extend the AspectJ
language to provide distribution [74].

While RMI is the most widely used distribution protocol in Java systems and
is used as the protocol for Enterprise JavaBeans (EJB), Jini and JavaSpaces, there
are a number of other distributed systems, such as CORBA, JMS, SOAP, HTTP,
Java sockets etc. that Java programmers may choose to use and indeed may have
to use to solve a particular integration problem.

Programmers therefore have a large choice of protocols, each with its own
framework and possibly different programming convention. This significantly com-
plicates distributed systems development.



58 3 An Aspect-Oriented Approach

3.8.1 Domain-Specific Aspect Language Implementations

We define a domain-specific aspect language as a language designed for a specific
domain e. g. distribution, that is used by an aspect weaver to insert code based on
instructions and possibly code contained in the language into existing code either
statically, at compile time, or dynamically at runtime.

A number of domain-specific aspect languages have been proposed including
KALA for the transactional domain [35], ERTSAL for the real-time domain [94]
and ALPH for the healthcare domain [72].

Many domain-specific languages (e. g. Orca [8]) have been proposed to aid
distributed programming, and seminal work on aspect-orientation proposes a num-
ber of domain-specific aspect languages, such as the D language framework consist-
ing of the domain-specific aspect languages COOL, for concurrency management,
and RIDL for distribution [66], and the RG language [70], amongst others.

Since the RIDL language was conceived, little work has been done on domain-
specific aspect languages for the distribution concern and the closest work to ours
thus far are RIDL and AWED, which we describe in this section.

3.8.1.1 The D Language Framework

The D language framework consists of three sub-languages:

• JCore, an object-oriented language used to express the basic functionality
and the activity of the system. JCore is a subset of Java 1.0.

• COOL, an aspect language used to express the co-ordination of threads.
• RIDL, an aspect language used to express distribution and remote access

strategies.

A tool that implements an aspect weaver takes the programs written in the
different sub-languages and combines them to produce an executable program with
the specified distributed behaviour. The D framework consists of three types of
modules [65]:

• Classes – Used to implement functional components.
• Coordinators – Used to implement the thread coordination aspect.
• Portals – Used to define code for dealing with application-level data transfers

over remote method invocations.

For the purposes of this discussion, we concentrate on RIDL, the aspect
language used to express remote access strategies.

RIDL is used to define remote RMI objects, the parameter passing mode for
each distributed method in those objects, and the parts of the object graph that
should be copied if the call uses the copy-by-value semantics.

In order for an object to become a remote object, RIDL requires that a
remote interface and portal be defined (for that object) that stipulates the subset of
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public class BoundedBufferV1 {
private Book array[];
private int takePtr = 0, putPtr = 0;
protected int usedSlots = 0, size;
BoundedBufferV1(int capacity) throws IllegalArgumentException {

if (capacity <= 0) throw new IllegalArgumentException();
array = new Object[capacity];
size = capacity ;

}
public int count() { return usedSlots; }
public int capacity() { return size; }
public void put(Book x) throws Full {

if (usedSlots == array.length) throw new Full();
array[putPtr] = x;
putPtr = (putPtr + 1) % size;
usedSlots++;
System.out.println("BB got book:");
b.print();

}
public Book take() throws Empty {

if (usedSlots == 0) throw new Empty();
Book old = array[takePtr];
takePtr = (takePtr + 1) % size;
usedSlots−−;
return old;

}
}
public class Book {

private int isbn = 0;
private String title = null;
private Postscript ps;
Book(int n, String t) {isbn = n; title = t;}
public void print() {

System.out.println ("Book: " + isbn + title);
}

}

Figure 3.7. BoundedBuffer example (reproduced from Lopes
[65]).

methods of the class that can be invoked remotely, and the parameters and return
values of those methods. For each parameter and return value the programmer
may optionally define the mode that describes how the data transfers are to be
made, copy-by-value or copy-by-reference.
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For example, given the class6 in Figure 3.7 the portal:

portal BoundedBufferV1 {
int capacity();
void put(Book x);
Book take();

}

states that:

• The methods capacity, put and take are remote methods.
• The method count, as it has not been defined in the portal, is a local method.
• The Book argument to the put method and the Book return value from the
take method are passed and returned respectively using the default transfer
strategy, copy-by-value.

If, instead, the programmer wishes to use the copy-by-reference semantics,
the following portal can be defined using the gref (for global reference) keyword:
portal BoundedBufferV1 {

int capacity();
void put(Book x) {

x: gref;
}
Book take() {

return: gref;
}

}

However by doing so, the Book class must now be defined as a remote object as
well:
portal Book {

void print();
}

The application that instantiates the bounded buffer class, defined in Fig-
ure 3.7, must export a reference to that instance in the name server as illustrated
below:
public class StartBuffer {

public static void main(String args[]) {
BoundedBufferV1 bb = new BoundedBufferV1(100);
try {

DJNaming.bind("rmi://goblin/BB", bb);
} catch (Exception e) {

System.out.println("StartBuffer err: " + e.getMessage());
e.printStackTrace();

}
}

}

6The examples in this section are reproduced from Lopes [65].
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RIDL’s DJNaming class is a wrapper class that interacts with Java’s RMI
Naming class and is therefore tied to a single protocol, RMI. Objects that export
these remote object references are explicitly tied to the RIDL specific naming
framework, thereby tying them to the framework.

Client calls to remote methods are exactly the same as calls to local methods
with the following exceptions:

• The run-time exception DJInvalidRemoteOp may be thrown.
• RIDL framework elements must be used to locate the remote method.

For example, to bind to the remote object, BoundedBuffer, the RIDL specific
naming framework must be used:

BoundedBuffer1 bb = new BoundedBuffer(100);
String url = "rmi://parc.xerox.com/BoundedBuffer";
// bind url to remote object
DJNaming.bind(url, bb);

...
// lookup bounded buffer
bb = (BoundedBuffer)DJNaming.lookup(url);

One of the compelling features of RIDL is the ability to pass or return partial
copies of objects in the remote call. For example, the portal:

portal BoundedBufferV1 {
int capacity();
void put(Book x) {

x: gref;
}
Book take() {

return: copy { Book bypass title, ps; }
}

}

declares that the returned Book object does not contain the title or ps fields. This
feature can dramatically reduce the overhead of a remote call. If the programmer
inadvertently refers to the title or ps fields, an error is generated.

RIDL programmers are required to adhere to RIDL’s naming framework and
the use of the RIDL specific exception, DJInvalidRemoteOp. RIDL is therefore
not entirely transparent to the programmer and by being so is intrusive in nature
although this intrusiveness is fairly limited.

3.8.1.2 AWED

AWED [73] is a comprehensive aspect language for distribution which provides
remote pointcuts, distributed advice, and distributed aspects and is implemented
by extensions to the JAsCo [106] AOP framework called DJAsCo.
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The main characteristics of the AWED model are:

Remote pointcuts which can be used to match events on remote hosts, including
remote sequences. Sequences define a list of methods that have been executed
in order and may be referred to in pointcuts and advice. Remote pointcuts
enable the matching of join points on remote hosts and includes remote
calls and remote cflow constructs (matching of nested calls over different
machines).

Distributed advice execution. Advice can be executed either synchronously or asyn-
chronously.

Distributed aspects which may be configured using different deployment and in-
stantiation options.

The motivation behind the development of the AWED language is trans-
actional cache replication in the JBoss application server and consequently the
language supports the notion of distributed hosts with the keyword host and
includes the ability to define groups of hosts.

On the occurrence of a join point, AWED evaluates all pointcuts on all hosts
where the corresponding aspects are deployed. Pointcuts may contain conditions
about hosts where the join point originated and may also be defined in terms where
advice is executed [73].

For example7 the pointcut:
call(void initCache()) && host("adr1:port")

matches calls to the initCache method on the host with the specified address and
the advice may be executed on any host where the aspect is deployed [73].

The AWED language is a fairly low-level language and borrows much of its
syntax from AspectJ, including the keywords pointcut, call, after, around and
before. In common with RIDL, the AWED language has no support for either
multiple protocols (its current implementation uses the RMI protocol exclusively)
or the recovery concern.

3.8.2 AspectJ Implementations

Soares et al. [91] illustrate how the AspectJ language can be used to introduce the
distribution concern in the form of the RMI protocol into existing non-distributed
applications. Soares et al.’s solution utilises two aspects, a client aspect and a
server aspect. For the server aspect, a remote interface is generated for each object
that is to be distributed and each object is altered to implement the interface. The
client aspect redirects local method calls to the now remote object and alters the
local methods to declare that they throw the RemoteException exception. Due to
AspectJ’s inability to allow changes to the target object in its proceed statement,
a dedicated redirection advice is used to redirect calls to the remote object from
the client object.

7These examples are reproduced from Navarro et al. [73].



3.8 AOP and the Distribution Concern 63

Ceccato and Tonella [18] use a static code analyser and code generator to
analyse a non-distributed application and generate AspectJ code to apply the
distribution concern using the RMI protocol. All public methods in a class are
automatically altered to be remote methods and the various RMI specific con-
ventions are applied. In addition, parameters and return values are declared to
be remote objects so that they may be passed by reference, instead of the RMI
default pass-by-value, to avoid issues that may occur if the object cannot be seri-
alized. However, as identified by Tilevich and Smaragdakis [111], this approach is
extremely inefficient as each method call generates network traffic.

3.8.3 J-Orchestra

J-Orchestra [110, 113] is an automatic partitioning system for Java, which uses
bytecode rewriting to apply distribution and claims to be able to partition any
Java application and allow any application object to be placed on any machine,
regardless of how the application objects interact.

Although J-Orchestra’s focus is on the automatic partitioning of Java ap-
plications and does not employ a domain-specific aspect language or specifically
define aspect-oriented concepts, such as join points or pointcuts, its use of bytecode
rewriting is essentially an aspect-oriented approach.

J-Orchestra replaces Java’s RMI with NRMI [111], a modified version that
implements call-by-copy-restore semantics for object types for remote calls. In
RMI, copy-by-value is used to pass parameters from the client to the server. That
is, parameter objects are serialized and copied to the server. However, any changes
to parameter objects on the server are lost when the call returns. Call-by-copy-
restore overcomes this by copying changes made on the server back to the client
which is, to the user, more natural as it emulates a local procedure call. However,
inevitably, additional network traffic is generated.

J-Orchestra implements distributed thread management [112] so that multi-
threaded applications can behave in the same manner once they are automatically
partitioned. Distributed thread management is implemented by altering only the
thread specific bytecode with calls to operations of the J-Orchestra distribution-
aware synchronisation library. Again, this has an overhead on network traffic.

Users interact with the J-Orchestra system using XML files, which simply
detail a list of classes to be distributed. J-Orchestra has no concept of a domain-
specific language, multiple protocols or user-defined definition and manipulation
of the recovery concern. Nevertheless it does, for the RMI protocol, provide so-
phisticated automatic partitioning.

3.8.4 Other Systems

Both JavaParty [83] and DJcutter [74] use a language-based approach and supply
Java language extensions to provide explicit support for distribution. Again these
systems target the RMI protocol exclusively.
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JAC [82] is a dynamic AOP framework that has been extended to support a
distributed pointcut definition, which extends the regular pointcut definition with
the ability to specify a named host where the join point should be detected. To sup-
port the distributed deployment of aspects, JAC replicates its Aspect-Component
manager, which is used to keep track of registered aspects on the named hosts. A
consistency protocol is used to ensure that the weaving/unweaving of an aspect on
one site triggers the weaving or unweaving of the same aspect on other sites [82].

A number of multi-protocol systems, such as RMIX [62] and ACT [29], have
been proposed. However, these systems use the high-level framework approach
discussed in Section 2.7 and therefore have the same issue as all framework-based
approaches, namely tying the application code to the framework or API.

3.8.5 Our Approach

The D language framework concentrated on distributed thread co-ordination and
remote access strategies but did not address error handling mechanisms. Indeed
Lopes [65], the author of the D language framework, states that error handling was
omitted from D, not because it was not a problem, but because it was too big of a
design problem that needed much more research. Our research addresses this issue
by introducing a domain-specific aspect language that provides modularisation not
only for the distribution concern but also for the distribution recovery concern. In
addition we provide support for multiple protocols while other approaches only
support a single protocol.

Our approach introduces the concept of a Distribution Definition Language
(DDL), a simple high-level domain-specific aspect language, which generalises dis-
tributed systems development by describing the classes and methods to be made
remote, the protocol to use to make them remote and the method used to recover
from a remote error. The DDL is used by the RemoteJ compiler/generator, which
uses bytecode manipulation and generation techniques to provide a distributed
version of the application while retaining existing classes for reuse in other dis-
tributed or non-distributed applications.

By generalising and modularising the distribution and recovery concerns, the
use of a DDL provides a method of developing distributed applications that is
significantly simplified, allows multiple protocols to be supported for the same
code base, allows explicit definition of the recovery concern and enables the same
code to be used in both a distributed and non-distributed application thereby
improving software reuse.

3.9 Chapter Summary
This chapter has provided the lineage towards the domain-specific aspect lan-
guage (DSAL) approach to distributed systems development by examining aspect-
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orientation, aspect-orientation as applied to autonomic systems, aspect-oriented
languages and aspect-oriented frameworks and their features and facilities.

Related work in using aspects for distribution, including frameworks, domain-
specific languages, Java language extensions and AspectJ approaches, have been
discussed.

We have discussed three common implementations of aspect-oriented sys-
tems:

1. The language-based approach, which is designed as an extension to an exist-
ing language.

2. The object-oriented framework-based approach, which provides a framework
that is used by developers to apply aspects to existing code.

3. The domain-specific aspect language approach, which uses a domain-specific
language to apply aspects to existing code.

AspectJ [6], an example of the first approach, extends the Java program-
ming language and provides a low level generalised approach to aspect-oriented
programming. Because AspectJ, and other language-based systems, are at a low
level they are relatively complicated to use. In addition, they introduce addi-
tional concepts and constructs, such as the notion of introductions, join points
and pointcuts, which further complicates their understanding.

The JBoss AOP [54] framework is an example of the framework-based ap-
proach as it allows programmers to define AOP constructs as Java classes using an
object-oriented framework. These constructs are used to alter the bytecode of the
target application using information contained in an XML file. Object-oriented
framework approaches are relatively easy to use compared to the language-based
approach as they use the same language as the application. However, this approach
requires developers to adhere to the framework’s protocol, such as ensuring that
invocation.invokeNext() is called in an aspect, as is the case with the JBoss
AOP framework. Therefore, although framework-based approaches are easier to
use than language-based approaches, they require the programmer to have a good
understanding of the framework.

KALA [35], a domain-specific aspect language for the transactional domain,
is an example of the third approach as it uses a high-level domain-specific as-
pect language to apply aspects to existing code. Domain-specific aspect languages
require the developer to use a different language alongside the application lan-
guage and therefore require the programmer to learn a new language, although
the language is generally relatively simple. Nevertheless domain-specific aspect
languages, because they are at a higher level of abstraction, are generally much
simpler to use than the other two approaches.

A number of systems and proposals that use AOP to provide autonomics
have been discussed. However, none of these approaches are specifically targeted
at the distribution concern and therefore do not provide a means of implementing
recovery, nor do they generalise the distribution concern. Rather they are either
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targeted towards a specific domain, such as QoS or NetBSD, or are layered on
top of an existing middleware system, which hides the distribution and recovery
concerns.

We have introduced our approach consisting of a high-level domain-specific
aspect language for the distribution and recovery concerns we call a Distribution
Definition Language and the RemoteJ compiler/generator, which is used to apply
the distribution and recovery concerns described in the Distribution Definition
Language to existing applications. The Distribution Definition Language gener-
alises distributed systems development by describing the classes and methods to
be made remote, the protocol to use to make them remote and the method used
to recover from a remote error.

The closest work to ours thus far are RIDL and AWED. Both RIDL and
AWED use a lower level approach than RemoteJ, which, by introducing the con-
cept of a Distribution Definition Language, is at a higher level of abstraction.
In addition, the Distribution Definition Language supports error handling, which
is not supported by either RIDL or AWED or indeed any other system to our
knowledge.
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4 The Distribution Definition Language

4.1 Introduction
In Chapter 2 we discussed distributed systems development and the issues sur-
rounding the use of frameworks and programming conventions and the alternative
network obliviousness model. Neither of these approaches is satisfactory as they
either violate the principle of separation of concerns or attempt to hide distribu-
tion and recovery altogether. In the previous chapter we provided an overview of
the aspect-oriented paradigm and introduced our approach, the high-level domain-
specific aspect language approach, which provides both separation of concerns and
network obliviousness without compromising either.

In this chapter we discuss our motivation and the DDL’s design principles in
Section 4.2 and describe the language grammar in Section 4.3. The formal syntax
of the DDL is provided in Appendix A.

4.2 Motivation and Design Principles
In this section we describe our motivation and design principles, which form the
basis of our design decisions.

4.2.1 Issues with Distributed Systems Development

Remote Procedure Calls (RPC) were designed to overcome the difficulties of dis-
tributed systems development where developers were required to deal with low-
level details such as network connections, protocol handling, data representation
between different architectures, both partial and ’hard’ failures, reassembly of data
packets and various other issues. RPCs were designed to behave the same as lo-
cal procedure calls by masking the difference between local and remote procedure
calls so that, to the developer, local and remote procedure calls were essentially
equivalent.

However, the developers of RMI argue that the RPC concept of masking the
differences between local and remote procedure calls is flawed because there are
fundamental differences between the interactions of distributed objects and the
interactions of non-distributed objects and attempts to paper over the differences
between local and remote objects leads to distributed applications that are neither
robust nor reliable [118].
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Table 4.1. The eight fallacies of distributed computing.

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn’t change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

This notion is further supported by the infamous ’Eight Fallacies of Dis-
tributed Computing’ detailed in Table 4.1, which define a set of common but
flawed assumptions made by programmers when first developing distributed ap-
plications [24].

Consequently the framework provided by RMI requires that the developer
be aware of remote objects and remote errors that may occur while interacting
with remote objects. This awareness manifests itself in the need for developers to
adhere to the RMI specific framework and conventions and to ensure that remote
methods throw the RMI specific exception java.rmi.RemoteException.

We believe that the developers of RMI are essentially correct in that the pro-
grammer needs to be aware of the distributed nature of their application. However,
we believe that the implementation of this requirement in current Java distributed
systems is fundamentally wrong as it leads to code that is polluted with the cross-
cutting concern distribution because the distribution concern crosscuts the appli-
cation making reuse of application components difficult, if not impossible.

This close coupling between frameworks and application code is not unique to
RMI or distribution frameworks, it is inherent in all object-oriented applications
that use frameworks. Frameworks may therefore be considered crosscutting in
nature because a framework’s code is scattered throughout an application’s code,
either by inheritance or containment, thereby making reuse outside the frame-
work’s domain difficult.

4.2.2 Autonomic Computing

As described in Section 4.2.1 above, there are a number of issues with distributed
systems development, which are an impediment to the realisation of the vision
of autonomic computing. One of our motivations, therefore, is to explore an
alternative approach to the development of distributed applications to overcome
these impediments.
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4.2.3 Separation of Concerns

As discussed in Chapter 2, distributed systems are difficult to write. Programmers
need to adhere to specific distributed systems programming conventions and frame-
works, which makes distributed systems development complex and error prone and
ties the resultant application to the distributed system because the application’s
code is tangled with the crosscutting concern distribution.

Separation of concerns is a primary design principle [79] yet current dis-
tributed systems development techniques require the use of distribution frame-
works, programming conventions, or both. Therefore, one of the primary motiva-
tions behind our research is to assist developers in modularising the distribution
concern and consequently separation of concerns is a primary design principle.
However, in contrast with other systems that have similar motivation, such as
the D language framework [66] and J-Orchestra [113], we expand the distribution
concern into two distinct concerns, distribution implementation and recovery.

While the systems mentioned above assume a single protocol, RMI, we as-
sume multiple protocols, and therefore multiple implementations, and while RIDL
and J-Orchestra have no concept of modularising the recovery concern, we con-
sider it a concern in its own right. Although it may be argued that recovery is
part of the distribution concern, this is only true if a single protocol is considered.
The use of multiple protocols allows the possibility of the same recovery code to
be used for multiple protocols and consequently we consider the recovery concern
distinct from the distribution concern.

4.2.4 Simplicity

The ultimate goal of the RemoteJ system is to simplify distributed programming
as much as possible. In order to achieve this a number of design decisions were
made.

• The Distribution Definition Language should be as simple as possible while
still allowing sophisticated operations on the underlying program.

• We should not impose a new language on the programmer, rather we should
follow the syntax of our target language, Java, as much as possible so that
the syntax is intuitive and easy to learn and understand.

• Unless absolutely necessary, aspect-oriented concepts should be hidden from
the programmer.

• Features of the various supported distributed systems should be hidden from
the programmer as much as possible.

4.3 The Distribution Definition Language
The DDL is a simple language, based on a Java-like syntax, used to describe classes
and their methods to be made remote, the protocol to be used, and the action to
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take in the event of an error. The DDL is designed to support any number of
protocols and recovery strategies in the same source file, thereby allowing a single
source file to be used to apply distribution to any number of class files.

4.3.1 Comments

Comments in the DDL are the same as for the Java language.
end of line

Line comments start with ’//’ and end at the end of the line
multi line

Multi line comments start with /* and end with */

4.3.2 Keywords

The DDL reserves the following keywords, which therefore cannot be used as
identifiers. We discuss these keywords in subsequent sections.

Keyword:
import | service | recovery | protocol | serverPlugin |
options | pointcut | nextServer | abort | continue

4.3.3 Import Statements

The import statement is used to avoid having to use fully qualified class names
when referring to Java classes in the DDL. They are therefore equivalent to the
use of Java’s import statement. The import statement is defined as follows:

ImportNameList ::= SingleImport (SingleImport)*
SingleImport ::= import Imports Semi
Imports ::= Identifier (Dot | Wildcard)*

The DDL specification/program may contain any number of import state-
ments and, in common with Java’s convention, import statements may only appear
at the beginning of the DDL file.

The wildcard character ’*’ may be used to refer to all classes in a particular
Java package.

4.3.4 Service Statement

The service statement is used to describe one or more protocols, and associated
classes, and one or more recovery statements. The name used for the service
must be the same as the name of the DDL file with the extension ddl, for example
the service named TestService must be contained in the file TestService.ddl.
The service statement is defined as:

Service ::= service Identifier LeftCurley StatementList RightCurley
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The service name is used by the compiler/generator as the directory name
for generated classes prefixed, by default, by either ’client’, for client classes, or
’server’ for server classes. For example, a service named TestService will have the
altered and generated classes placed in the directories client/TestService and
server/TestService. These names may be overridden by stipulating different
values on the compiler/generator command line.

4.3.5 Service Recovery Statements

The DDL supports two recovery statements, a service recovery statement, which
is defined as part of a service and contains the code to be executed in the event
of a distribution exception, and a pointcut recovery statement defined as part of
a pointcut statement, which refers to the service recovery routine to use in the
event of a distribution error or one of a number of built-in recovery routines. This
section discusses the service recovery statement. Pointcut recovery statements are
discussed in Section 4.3.8.

Service recovery statements are used to provide the code to be called in the
event of distribution exceptions. Any valid Java code may be stipulated, which
allows a great deal of control over the recovery mechanism as the programmer
is free to provide any recovery implementation not explicitly supported in the
language, providing it can be found by the RemoteJ compiler/generator (i. e. in
the compiler’s CLASSPATH). The service recovery statement is defined as:

RecoveryList ::= RecoveryStatement (RecoveryStatement)*
RecoveryStatement ::= recovery RecoveryName LeftBracket ClassName

Variable RightBracket LeftCurley JavaStatement
RightCurley

JavaStatement ::= Any Java statement accepted by Javassist [19]

Any number of recovery statements may be provided but will only be in-
voked if called by one or more pointcut recovery statements.

Recovery statements have access to the context of the remote method call
via RemoteJ’s internal Transfer object. This object contains the remote server
name, the class and method that was called, and the method’s parameters and
return type.

Recovery statements are defined with the keyword recovery followed by the
name of the recovery statement and the exception to be caught.

In the example in Figure 4.1, RemoteException is used as the exception
type. Some protocols supported by the RemoteJ DDL may not, however, use
RemoteException to indicate that an error has occurred. In these cases, the
exception type provided by the protocol may be used. In the cases where error
codes are used in place of exceptions, the protocol implementation is responsible
for providing an exception hierarchy and appropriate mapping between error codes
and exceptions.
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recovery remoteError (RemoteException e) {
System.out.println("Exception: " + e.getMessage());
System.out.println("Host : " + transfer.getCurrentHost());
System.out.println("Failed method call : " + transfer.getMethod());

}

Figure 4.1. Recovery statement example.

4.3.6 Protocol Statements

The protocol statement is used to define the protocol to be used, the protocol
options, the classes and associated methods to be altered to use the protocol and
the recovery strategy to be used.

ProtocolStatement ::= protocol Identifier Colon LeftCurley
Options (PointcutStatement)+ RightCurley

There may be any number of protocol statements and there may be more
than one protocol statement for the same protocol. Each protocol statement
must contain a single option statement and one or more pointcut statements.

4.3.7 Options Statements

As can be expected, different protocols may have different protocol options and
these options are stipulated in the options statement contained in the protocol
statement.

As there may be more than one protocol in a single application (or perhaps
the same protocol with different options, for example), any number of protocol
and associated option statements may be declared. Option statements are simple
name/value pairs using the following syntax:

Options ::= (Identifier = Identifier)+
Identifier ::= (’a’..’z’ | ’A’..’Z’)+ (IntegerLiteral)*
IntegerLiteral ::= 0..255

Options and protocols are not part of the DDL language as such. Instead, the
RemoteJ parser/generator accepts any string for the protocol and any name/value
pairs for the options and defers protocol and protocol option checking to plug in
protocol adapters.

This allows additional protocols to be added without changes needing to be
made to the RemoteJ parser. We describe this process in full in Section 5.2.

4.3.8 Pointcut Statements

The pointcut statement contains the class and associated methods that are to
become distributed using the protocol stipulated in the protocol statement. In
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addition, the recovery strategy may be stipulated for those matched methods.
Pointcut statements are described as:

PointcutStatement ::= pointcut ReturnValue PointcutName
LeftBracket (((Parameter)? (Comma Parameter)*)
| ParameterWildcard)
RightBracket LeftCurley RecoveryType RightCurley

ReturnValue ::= ClassName | PrimitiveType | void
PointcutName ::= Identifier (Dot Identifier | Wildcard)*
Parameter ::= ClassName | PrimitiveType
RecoveryType ::= recovery Equals RecoveryOption Semi
RecoveryOption ::= RecoveryName | continue | abort | nextServer
RecoveryName ::= Identifier
ClassName ::= Identifier (Dot Identifier)*
PrimitiveType ::= boolean | byte | char | short | int | long

| float | double
Wildcard ::= *
ParameterWildcard ::= ..

The pointcut statement supports the use of the asterisk wildcard character.
For example, the following statement:

pointcut ∗ Address.∗ (String, String);

stipulates that all methods in the class Address (Address.*) with two parameters
of the type String that have any type as a return statement (’*’) are selected.

In addition, wildcard parameters are supported. The following statement:
pointcut ∗ Address.∗ (..);

stipulates that all methods in the class Address (Address.*) with any parameters
that have any type as a return statement (’*’) are selected.

A compiler error is generated if a method is matched by more than one
pointcut statement.

The pointcut recovery statement may either refer to a user-defined recovery
statement, described in Section 4.3.5 or one of three built-in recovery statements
that may be used to aid recovery:

nextServer: The protocol implementation should attempt to recover from a remote
error by finding an additional server.

abort: The protocol implementation should stop in the event of a remote error.
continue: The protocol implementation should ignore remote errors.

4.4 Influences
The concept of a Distribution Definition Language has been broadly influenced
by the Interface Definition Language (IDL) concept. An IDL is a specification
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language used to describe the interfaces between client and server applications in
a language-neutral way and is used by many different distributed systems, such as
the Networking Computing Architecture [26], Sun’s ONC [98] and CORBA [77]
amongst others1.

In common with an IDL, the DDL allows for the definition of remote inter-
faces. However, the DDL differs from an IDL in a number of important ways:

• Unlike the DDL, an IDL has no concept of the recovery concern and most
implementations use the RPC concept of hiding the application’s distributed
nature.

• The DDL assumes a single implementation language, Java, while IDLs are
generally designed to support multiple languages.

• IDL’s generate stubs and skeletons, as described in Section 2.3.6, which are
used by the developer to implement the client and server portions of the
application. In contrast, the DDL requires the classes and associated methods
defined in the DDL to exist so that the compiler may rewrite the bytecode
directly.

4.5 Current Limitations
There are a number of limitations in the DDL that restrict the types of distributed
applications that the RemoteJ system is suitable for.

4.5.1 Callbacks

There is currently no support for callbacks, in the case where a server calls back
into a client, or support for a server that is also a client to another server, which
may possibly use a different protocol.

While RemoteJ is not unique in this limitation (the limitation is present in
both RIDL [65] and J-Orchestra [113]) the class of applications to which RemoteJ
may be applied to is limited as a result. For example, applications that implement
a server process that needs to inform multiple clients via a callback of a state
change cannot currently be supported. This is an area for additional research.

4.5.2 Object Passing

Some protocols, such as RMI, allow objects to be passed either by reference
or by value. If the object to be passed is a remote object (it implements the
java.rmi.Remote interface) a remote reference is passed. If, however, the object
is not a remote object, a copy of the object is passed and changes to that copy are
not reflected in the client (in the case of parameters) or server (in the case of a

1See Section 2.3.6 for an overview of Sun’s ONC IDL and Section 2.4 for an overview of the
CORBA IDL.
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returned object). Changes to the object may therefore either be reflected on the
client (or server) or not depending on how the object has been defined.

The DDL currently does not support pass-by-reference semantics as sup-
ported by RIDL [65] or call-by-copy-restore as supported by J-Orchestra [111].
Instead our implementations implement copy-by-value for all protocols as dis-
cussed in Section 5.7. DDL support for pass-by-reference and call-by-copy-restore
are an area for further research.

4.5.3 Concurrency

Automatic partitioning systems, such as J-Orchestra [113], attempt to transpar-
ently partition applications and so to provide distributed thread management.
We believe this approach cannot work in all circumstances, as verified by Tile-
vich [110], and therefore our approach is to ensure that applications are written
with distribution in mind and need to be aware of concurrency issues. This ap-
proach is consistent with current Java distribution protocols, which do not support
distributed thread co-ordination.

We therefore do not specifically address concurrency and delegate thread
management to the programmer.

To assist the programmer with concurrency issues, the RemoteJ compil-
er/generator will issue an error if a pointcut matches a method defined as
synchronized or if the method contains synchronized blocks of code.

4.6 Chapter Summary
This chapter presented our concept of a Distribution Definition Language, a high-
level domain-specific aspect language used to apply the distribution concern to
existing Java objects. Our motivation for the DDL was to modularise the distri-
bution and recovery concerns so that separation of concerns can be maintained
and distributed systems development can be simplified.

The DDL generalises distributed systems development by describing the
classes and methods to be made remote, the distributed system to use to make
them remote and the recovery mechanism to use in the event of a remote error.
This allows a single component to be reused in multiple distributed applications
as well as in other non-distributed applications, thereby improving reuse and sim-
plifying testability of application code.

The DDL’s support for distribution error recovery modularises the recovery
concern. As well as providing support for common recovery scenarios, the DDL
also allows user-defined recovery routines, which greatly enhances its capability.

The above DDL capability allows RemoteJ to support the development of a
large proportion of distributed applications in a greatly simplified way compared
to the traditional IDL or framework approach.
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5 The RemoteJ Compiler/Generator
Implementation

5.1 Introduction
In this chapter we describe the implementation of the RemoteJ compiler/generator.
We describe the compiler and its features and discuss the implementation of the
recovery concern and the JMS, REST and RMI protocol implementations.

5.2 Compiler/Generator Overview
The RemoteJ compiler is a simple three-phase compiler/generator, illustrated in
Figure 5.1, that is used to apply distribution to existing bytecode using instructions
contained in a Distribution Definition Language file.

The compiler/generator consists of three phases; syntactic analysis phase,
the contextual analysis phase and the code rewriting phase.

The syntactic analysis phase checks the syntax of the DDL file and generates
an abstract syntax tree (AST) representation. The AST is passed into the contex-
tual analysis phase, which ensures that the context of the grammar conforms to the
DDLs contextual constraints and decorates the AST with information about the
parameters, scope rules, types etc. The decorated AST is passed into the aspect
weaver, which rewrites the existing bytecode and outputs the resultant file into the
location stipulated by the DDL’s service statement as described in Section 4.3.4.

The RemoteJ compiler/generator has been developed to the compiler/inter-
preter patterns defined by Watt and Brown [119].

The compiler/generator supports any number of back-end code generators
using an extendible dynamic model that eliminates the need for changes to be
made to the compiler/generator for the addition of new protocols or protocol
options.

A high-level view of the extendible code generation support is illustrated in
Figure 5.2.

To add a new protocol, the developer extends the Protocol class, which
implements the IProtocol interface, illustrated in Figure 5.3. The Protocol class
contains generalised aspect-weaving code, such as generating recovery routines
and altering a class to implement an interface, and other useful routines including
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Figure 5.1. Compiler data flow.

methods to check if a class implements the serializable interface, renaming class
files and checking a method’s return type.

At runtime, the name of the protocol is used to dynamically load the proto-
col implementation class and defer code generation and protocol option checking
functionality to it using the following mechanism:

• The name of the protocol contained in the DDL is converted to upper case.
• The package name org.remotej.generated. is prefixed to the protocol

name.
• The word Protocol is appended to the above.
• The class is dynamically loaded and instantiated using Java’s Class class.

Using the above mechanism, a protocol with the name jms
will be converted to org.remotej.generated.JMSProtocol and will
be loaded and instantiated by the ProtocolFactory class using the
Class.forName(className).newInstance() mechanism provided by Java’s
Class class. Protocol options are collected by the compiler’s parser and are
passed to the protocol implementation for verification and subsequent use in the
code generation phase.
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Figure 5.2. Extendible code generation support.

public interface IProtocol {
void validateOptions() throws OptionException;
void setOptions(ProtocolOptions opt);
void setServerOutputDirectory(String serverOutputDirectory);
void setClientOutputDirectory(String clientOutputDirectory);
void setService(String spelling);
void setImports(Vector<String> imports);
void setReporter(ErrorHandler reporter);
void setLineNumber(SourcePosition position);
void setRecovery(Vector<JavaMethod> recovery);
void setProtocolDescription(ProtocolDescription protocols);
void generateAll();

}

Figure 5.3. IProtocol class.

This approach makes it relatively easy to add additional protocols as no
changes need to be made to the language or the compiler/generator to support
new protocols and their options.

5.2.1 Bytecode Rewriting

The RemoteJ compiler/generator uses the Javassist [19] library, a bytecode rewrit-
ing library used by the JBoss AOP framework [54], for all bytecode rewriting.
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The Javassist API allows for both source code and bytecode level manipula-
tion of Java class files. While the bytecode level API allows for the manipulation
of a class file at the bytecode level, the source code level API allows the user to
manipulate the bytecode of a class by providing Java source code statements that
are compiled by the library into bytecode before the class is manipulated. Users
therefore do not need to have detailed knowledge of bytecode or the internal Java
class file structures [19].

The library provides an object-oriented structure of a class file with ob-
jects representing classes, methods and fields. Once a class file is loaded, a class,
CtClass, is available to the user, which contains an object-oriented view of the
loaded class. Users may then obtain objects representing the fields and methods
of the class and manipulate them by adding advice code before, around or after
a method, introducing new methods or fields, altering the class to implement an
interface and so on.

Once changes have been made to the class, the altered class may be written
to either the existing class file, thereby overwriting it, or to a different directory
structure, thereby preserving the original class file. The RemoteJ compiler/gener-
ator preserves the original class file, thereby simplifying the testing of application
code, as the system may be tested as a non-distributed application, using testing
tools such as JUnit [11] and run as a distributed application using any supported
protocol.

The RemoteJ compiler/generator uses the source code level API for all byte-
code manipulation with the exception of identifying synchronized blocks of code,
which uses the bytecode level API.

5.3 Recovery Implementation
The RemoteJ DDL supports four recovery scenarios:

• A user-defined recovery statement that may consist of any valid Java code.
In addition, the programmer has access to the Transfer object, illustrated
in Figure 5.5, which provides access to the current system state. We also
provide access to various helper methods that allows the user to explicitly
define a list of available hosts or a particular alternate host to switch to in
the event of an error. In addition, we provide the serverPlugin statement,
which may be used to provide advanced recovery scenarios, which is described
below1.

• The abort statement, which simply causes the application to terminate.
• The continue statement, which causes the application to ignore the error

and continue execution.
• The nextServer statement, which causes the client to switch to the next

available server.

1A recovery implementation illustrating the usage of this statement is provided in Section 6.4.2.
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public void foo(String name) throws java.rmi.RemoteException {
boolean done = false;
do {

try {
IFooFoo stub = (IFooFoo)getRegistry().lookup("registry");
stub.foo(name);
return;

} catch (java.rmi.RemoteException e) {
findAlternateServer();

}
} while (!done);
return;

}

Figure 5.4. RMI client generated method.

To implement the recovery scenarios, we use helper classes in the client pro-
tocol implementation, which consists of generic recovery code. The code in the
helper class is merged with the client classes (the classes matched in the DDL
statements) and each matching method referred to in the DDL is wrapped with
code that calls the remote implementation and, in the event of an error, the user-
defined recovery routine. For example, for the RMI implementation, the call to a
remote method called foo(String name) with the nextServer recovery method
defined in the DDL, results in the code in Figure 5.4 being generated:

In the case where a recovery statement has been defined in the DDL,
the findAlternateServer() method call in Figure 5.4 is replaced by the user-
defined code. If the abort or continue statement has been defined, then
findAlternateServer() is replaced with System.exit(1); and done = true;
respectively.

The implementation of the DDL recovery routine nextServer cycles through
a list of comma-separated host names or IP addresses that have either been defined
in the DDL or in the system property, remotej.servers. If the system property
remotej.servers has been defined it overrides values specified in the DDL. To
guard against a continuous loop, if all hosts have been tried in sequence and
communication to all hosts is unsuccessful, the application will be terminated as
we consider this an unrecoverable error.

For user-defined recovery routines, in addition to the Transfer object we
provide access to three methods, getCurrentHost(), findAlternateServer()
(the same method used by the nextServer DDL statement implementation) and
setHosts(String[] hosts) that can be used to aid the programmer in binding to
an alternate server. This, used in conjunction with programmer-provided classes
that may be used alongside generated classes, allows for highly configurable user-
defined recovery scenarios.
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For example, the recovery routine:

recovery Error (RemoteException e) {
String[] s = new String[2];
s[0] = "host1";
s[1] = "host2";
setHosts(s);

}

resets the list of hosts to host1 and host2. For user-defined recovery routines,
RemoteJ generates code to ensure that if calls to both host1 and host2 fail in
sequence, the system will not enter an infinite loop by continuously calling the re-
covery routine. In this instance we assume recovery is impossible and we terminate
the application.

An alternative user-defined implementation may be to obtain the list of avail-
able hosts from a user-defined routine such as the example below.

recovery Error (RemoteException e) {
String[] s = MyRecovery.getAvailableHosts();
setHosts(s);

}

In this case, the user-defined routine, MyRecovery, must be made available
at both compile time and runtime and the package name must be stipulated in
the DDL’s import statement.

The Transfer object, illustrated in Figure 5.5, contains the system’s current
state, which is generated and inserted by the RemoteJ compiler/generator at the
point when a remote method is about to be called. This contains the method to
be called, the method’s parameters, the return object and the host that will be
called. As well as being available to user-defined recovery routines, the Transfer
object is also used for some protocol implementations. This is described in detail
in Section 5.5.2.

User-defined recovery routines have the ability to interact with generated
server code by the use of server plugins. Server plugin classes are classes that
extend Java’s Thread class and are stipulated in the protocol’s serverPlugin
option. The RemoteJ compiler/generator will instantiate the user-defined server
plugin at server startup and the plugin will be run in the server process in a
separate thread.

This option is intended to allow for the development of user-defined code
to interact with user-defined client-side recovery routines. For example, a server
plugin may announce its presence on the network in the event it receives a request
to do so. In the event of a failure, the user-defined recovery routine may switch
to an alternate server by broadcasting a message on the network and choosing the
first responding server. We evaluate this functionality in full in Section 6.4.2.
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public class Transfer implements Serializable {
private String className;
private String method;
private Object[] parameters;
private Class[] parameterTypes;
private Object returnValue;
private String currentHost;

public String getCurrentHost() {
return currentHost;

}
public void setCurrentHost(String currentHost) {

this.currentHost = currentHost;
}
public Class[] getParameterTypes() {

return parameterTypes;
}
public void setParameterTypes(Class[] parameterTypes) {

this.parameterTypes = parameterTypes;
}
public String getClassName() {

return className;
}
public void setClassName(String className) {

this.className = className;
}
public String getMethod() {

return method;
}
public void setMethod(String method) {

this.method = method;
}
public Object[] getParameters() {

return parameters;
}
public void setParameters(Object[] parameters) {

this.parameters = parameters;
}
public Object getReturnValue() {

return returnValue;
}
public void setReturnValue(Object returnValue) {

this.returnValue = returnValue;
}

}

Figure 5.5. Recovery Transfer object.
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5.4 RMI Protocol Implementation
RMI is a Java-centric distributed system that is used as the protocol for Enterprise
JavaBeans (EJB) [103], Jini [117] and JavaSpaces [40]. The RMI framework is
very intrusive in nature, as it requires developers to be aware of remote objects
and remote errors that may occur while interacting with remote objects. This
intrusiveness manifests itself in the need for RMI applications to follow both a
programming convention and a programming framework.

The RMI programming conventions are as follows:

• The methods that are to be made available to remote clients must be declared
in an interface that extends java.rmi.Remote.

• These methods must be declared to throw the java.rmi.RemoteException
exception.

• RMI uses Java’s object serialization to marshal and unmarshal parameters
and return values, which encodes objects and any objects they refer to, into a
byte stream for transmission from one virtual machine to another. Once the
byte stream is received, it is converted into the original object using a process
known as deserialization. RMI therefore requires that all objects and any
objects they reference that are used as parameters or return values implement
the java.io.Serializable interface, a marker interface that indicates to the
serialization system that they may be safely converted to a byte stream.

In addition, the developer is required to use RMI framework classes to:

• Access the RMI registry.
• Bind an object to the registry.
• Remove an object from the registry.
• Find an object in the registry.
• Export an object either implicitly, by extending the
java.rmi.server.UnicastRemoteObject class, or explicitly by exporting
the object using the exportObject method of the same class.

5.4.1 RMI Protocol Implementation Overview

Our RMI implementation is contained in a single class, RMIProtocol, which ex-
tends from the abstract Protocol class, described in Section 5.2. The RMI imple-
mentation supports the following options defined in the options DDL statement:

registryName. Defines the name of the remote service that is bound in the RMI
registry. It is used by the generated server as the name of the remote service
and by clients to locate the remote service.

registryHost. Defines the name of the host where the service is to be run. This
option is used by clients, together with the registryName option above and
the registryPort option below, to locate and bind to the remote service.
It may be overridden by defining an alternate host, or a list of hosts con-
taining the same service, on the command line or in the recovery statement
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Table 5.1. RMI generated output files.

Type Name Purpose
Client Files ClockService.class The client class file that connects to the

remote service getDate() contained in the
generated ClockDate server class

_IClockDate.class The RemoteJ generated RMI interface class
Server Files ClockDate.class The server class file that contains the re-

mote service getDate()
RMIServer.class The RemoteJ generated RMI server class

using the setHosts() method. If a list of hosts is defined, it is used by the
recovery routine to bind to an alternate server if the current server becomes
unavailable.

registryPort. Defines the RMI registry port number used by clients to bind to a
server. If the runEmbeddedRegistry option described below is defined, it is
used as the port number for the embedded registry.

runEmbeddedRegistry. If defined, an embedded RMI registry is started. If not, the
registry defined by the registryHost and registryPort options must be
available at runtime for the generated server to export the remote objects to,
and for the generated client to bind to, so that it may locate the exported
objects.

serverPlugin. This optional statement is used to add a user-defined class to be
started in a thread in the server-generated code. It is provided to allow for
advanced user-defined recovery scenarios as described in Section 5.3.

servers. This optional statement is used to define a comma-separated list of servers
that clients may connect to. If defined, it is used by the nextServer state-
ment to connect to an alternate server in the event of a communication or dis-
tribution error. This may be overridden by the remotej.servers command
line option. If neither servers nor remotej.servers have been defined, the
application will terminate.

Given a DDL with the single pointcut statement illustrated in Figure 5.6,
the classes in Table 5.1 are generated.

The RMI implementation has the following code generation phases:

Interface generation phase. Used to generate interfaces that extend the
java.rmi.Remote interface and contain all matching methods referred
to in the DDL. If more than one class is matched by a pointcut in the DDL,
multiple interfaces are generated, one for each class containing the matched
methods of that class.

Server generation phase. Matching classes and associated methods defined in the
DDL are altered to implement the interface described above.
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import java.rmi.∗;
import clock.∗;

service ClockService {

recovery Error (RemoteException e) {
System.out.println("Method: " + transfer.getMethod());

System.out.println("Host : " + transfer.getCurrentHost());
String[] s = new String[2];
s[0] = "hosts1";
s[1] = "hosts2";
setHosts(s);
System.out.println("Switching to alternate hosts");

}

protocol : rmi {
options {

registryName = "RMITestServer";
registryHost = "localhost";
registryPort = 1099;
runEmbeddedRegistry = true;

}
pointcut Date ClockDate.getDate () {

recovery = Error;
}

}
}

Figure 5.6. RMI ClockService DDL.

Client generation phase. Matching classes and associated methods defined in the
DDL are altered to call an RMI server.

Server bootstrap. A simple RMI server main class is generated and matching
classes and methods referred to in the DDL are exported as RMI remote
objects. Optionally, an RMI Registry is created to hold references to the
exported objects.

Each phase of the implementation is described in detail below.

5.4.2 RMI Interface Generation Phase

In order to generate the interfaces, a list of classes that match the classes referred
to in the DDL is generated. For example the DDL statement:

pointcut ∗ Address.∗ (String, String)

results in a list of all public methods defined in the Address class having any
return type and two parameters of type String. Once a list of matching meth-
ods has been collected, they are evaluated to ensure they adhere to the RMI-
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specific requirement of having their parameters and return values implement the
java.io.Serializable interface.

Using the list of classes and associated matched methods, one or more in-
terfaces that extend the java.rmi.Remote interface are generated. Each method
that is added to the interface is declared to throw the java.rmi.RemoteException
exception.

5.4.3 RMI Server Generation Phase

Each matching method defined by pointcut statements is checked to ensure they
are defined as public, non-transient and non-native. If any of these checks fail, a
compiler error is generated or, if the checks are successful, the class is altered to
implement the generated interface described in Section 5.4.2.

The altered class file is written to the server sub-directory located under the
directory defined by the DDL Service statement described in Section 4.3.4.

5.4.4 RMI Client Generation Phase

In the client generation phase a number of methods and fields, used to imple-
ment the recovery concern described in Section 5.3, are added to each client class
matched by pointcuts declared in the DDL.

As discussed in Section 4.5.3, distributed thread management is not sup-
ported so each matched method is checked to ensure that it does not contain the
synchronized keyword and there are no synchronized blocks in the methods. If
so, an error is generated. The existing method call is then replaced with an RMI
client version. E. g., the method:
public void foo(String name) {

// implementation code
}

contained in the class FooFoo with a recovery option of nextServer will be re-
placed with the code in Figure 5.4.

The altered class file is written to the client sub-directory located under the
directory defined by the DDL Service statement described in Section 4.3.4.

5.4.5 RMI Server Bootstrap

To bootstrap the server a class, org.remotej.RMIServer, is generated with a
main method defined that uses the RMI framework to:

1. Set the Java security manager to the RMISecurityManager.
2. Either locate an existing registry or start an embedded one.
3. For each class containing remote methods, the class is exported using the

UnicastRemoteObject.exportObject() method and the returned stub is
retrieved.

4. Finally, the returned stubs obtained from the call described above is added
to the RMI registry.
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Figure 5.7. JMS request/reply pattern.

5.5 JMS Protocol Implementation
The Java Messaging System (JMS) [47] is a Java API for accessing Message-
Oriented Middleware (MOM) systems. JMS is supported by most enterprise mes-
saging vendors and, as JMS is part of the Java Enterprise Edition (JEE) spec-
ification, it is supported by all JEE vendors. JMS is an asynchronous protocol
that provides both Topics, for publish/subscribe type interactions, and Queues,
for point-to-point interactions.

Our implementation supports point-to-point interactions using the JMS re-
quest/reply pattern [50], illustrated in Figure 5.7, which sends a request message
to a server via a send queue and awaits a response on a receive queue.

5.5.1 JMS Protocol Implementation Overview

To simplify implementation and to provide a multithread container that can sup-
port multiple simultaneous client requests, we use the following JMS features from
the Spring Framework [53] in our implementation:

• The JmsTemplate class for JMS client (message sending and receiving) fea-
tures.

• The SessionAwareMessageListener, which provides a multithreaded JMS
messaging container.

The JMS implementation is contained in a single class, JMSProtocol, which
extends from the abstract Protocol class and supports the following options:

initialContextFactory. The JMS JNDI [100] context that is used to obtain access to
the JMS implementation.

persist. If defined and set to ’true’, persistent messages are used for both receiving
and sending.

sendQueue. The name of the queue used to send messages.
receiveQueue. The name of the queue to receive message responses. If the name is

defined as the special name, temporary, a temporary queue is created.
servers. A comma-separated list defining the address of one or more JMS mes-

sage brokers in the format required by the underlying JMS implementa-
tion (usually a URL). In common with the RMI protocol, if defined it is
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Table 5.2. JMS generated output files.

Type Name Purpose
Client Files ClockDate.class The client class file that connects to the re-

mote service getDate() accessed via the
generated JMSServer class

JMSClient.class The RemoteJ generated JMS client helper
class

Server Files JMSServer.class The server class file that delegates remote
calls to the ClockDate.getDate() method

used by the nextServer statement to connect to an alternative server in
the event of a communication or distribution error. This may be overrid-
den by the remotej.servers command line option. If neither servers nor
remotej.servers have been defined, the application will terminate.

serverThreads. The number of server threads to create in the JMS container.
receiveTimeout. The period to wait for a message response. In addition, the JMS

time-to-live field is set to the receiveTimeout value to ensure stale messages
are removed from the queue (if supported by the JMS implementation).

serverPlugin. This optional statement is used to add a user-defined class to be
started in a thread in the server-generated code. It is provided to allow for
advanced user-defined recovery scenarios as described in Section 5.3.

Given a DDL with the single pointcut statement illustrated in Figure 5.8 the
classes in Table 5.2 are generated.

In contrast to the complexity of the RMI implementation, the JMS imple-
mentation contains only two code generation phases, the client and the server
generation phases.

5.5.2 JMS Client Generation

The JMS client generation phase performs the same checks as described for the
RMI implementation to ensure that methods matched by statements defined in
the DDL are not defined as synchronized or contain synchronized blocks of code.
Client methods matched in the DDL are replaced with method calls that:

• Create an instance of the Transfer object, described in Section 5.3.
• Call various Transfer object methods to set the name of the class and the

associated method to be executed, the method’s parameter names, and the
method’s parameter values.

• Use the RemoteJ JMSClient helper class to transmit the Transfer object
from the client to the server using the JMS ObjectMessage message type.

On the server, the values contained in the Transfer object are used to call
the requested method using the following process.
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import javax.jms.∗;
import clock.∗;

service ClockService {

recovery JMSError (JMSException e) {
System.out.println("Method: " + transfer.getMethod());
System.out.println("Host : " + transfer.getCurrentHost());
String[] s = new String[2];
s[0] = "tcp://host1:61616";
s[1] = "tcp://host2:61616";
setHosts(s);
System.out.println("Switching to host1 and host2");

}

protocol : jms {
options {

destinationClass = "org.apache.activemq.command.ActiveMQQueue";
initialContextFactory

= "org.apache.activemq.jndi.ActiveMQInitialContextFactory";
persist = true;
sendQueue = "REMOTEJ.SEND";
receiveQueue = "temporary"; // or name e.g. REMOTEJ.RECEIVE
brokerURL = "tcp://localhost:61616";
serverThreads = 5;
receiveTimeout = 5000;

}

pointcut Date ClockDate.getDate () {
recovery = JMSError;

}
}

}

Figure 5.8. JMS ClockService DDL.

The Transfer object is extracted from the message and the class name, the
method name to call and the method’s parameters are extracted from the Transfer
object. An object cache is then searched for an instance of the requested class using
the class name as the key. If an instance exists in the cache it is used for the call,
otherwise a new instance is created, put in the cache and used for all subsequent
calls. The Java reflection API is then used to make the call using the object
instance, the method name and the parameters.

Following the call, the Transfer object is set with the result value of the
method call and passed back to the client, which extracts the return value and
passes it to the caller.
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5.5.3 JMS Server Generation

The JMS server generation phase performs the same checks as the RMI server
phase to ensure methods matched by pointcuts are defined as public, non-transient
and non-native.

The RemoteJ JMSServer class implements the Spring Framework’s
SessionAwareMessageListener interface and provides a skeleton JMS con-
tainer that we use as the basis for the JMS server implementation. The
SessionAwareMessageListener interface contains a single method, onMessage(),
which is called by the Spring framework’s JMS container upon receipt of a JMS
message.

The JMSServer onMessage() implementation contains a generic method to
read the message, extract the Transfer object from the message, create an in-
stance of the class defined in the Transfer object, call the method defined in the
Transfer object after setting its parameter values and set the return value to the
return value from the call. Following the method call, the Transfer object is sent
back to the client using the Spring framework’s JmsTemplate class.

In the JMS server generation phase a main method is added to the JMSServer
class, which creates an instance of the JMSServer class, creates an instance of
the Spring framework’s DefaultMessageListenerContainer class, configures the
DefaultMessageListenerContainer instance using values contained in the DDL
and calls its setMessageListener() method with the instance of the JMSServer
class as a parameter. The DefaultMessageListenerContainer is then started,
which allows the onMessage() method of the JMSServer class instance to be called
when messages arrive.

In common with the RMI server implementation, the altered JMSServer class
file is written to the server sub-directory located under the directory defined by
the DDL Service statement described in Section 4.3.4.

5.6 REST Protocol Implementation
Representational State Transfer (REST) is not a protocol as such but an architec-
tural style based on an idealised model of the interactions within a web application
and is the foundation for the modern web architecture. REST is intended to invoke
an image of how a well-designed web application behaves where a network of web
pages forms a network of virtual state machines and a user progresses through an
application by selecting a link or submitting a form with each action resulting in
a transition to the next state of an application by transferring a representation of
that state to the user. The web is the largest example of the REST architecture
[39].

In the REST style, software components are recast as network services and
clients request resources from servers using the resource’s name and location spec-
ified as a Uniform Resource Locator (URL) [13]. All interaction is synchronous in
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nature and uses the HTTP [37] protocol. Requests can also be relayed via a series
of proxies, filters and caches [57].

Fielding [38] defines six core design principles for the REST architecture:

• The key abstraction of information is a resource. Resources are named by
a URL and any information that can be named can be a resource, e. g. a
person, a service, a document etc.

• Resources are represented by bytes and associated metadata to describe those
bytes. Access to the concrete representation of data is therefore via a layer
of indirection.

• All interactions are context free. Each interaction contains all the information
necessary to understand the request.

• A small number of primitive operations are available. These are essentially
the HTTP POST, PUT, GET and DELETE operations.

• Operations should be idempotent and representational metadata should be
provided to support caching.

• Intermediaries are promoted so that requests may be filtered, redirected,
restricted or modified transparently to both the client and the origin server.

Using the REST web service style, one constructs a URL to represent the
particular service (or resource) offered. For example the URL:

http://www.glam.ac.uk/students
refers to all students at the University of Glamorgan and the URL:

http://www.glam.ac.uk/students/computerscience
refers to all students in the computer science department at Glamorgan while the
URL:

http://www.glam.ac.uk/students/psoule
refers to a particular student. Clients access the required student resource using the
URL and a representation of the resource is returned. This representation places
the client in a state, and when another resource is accessed the new representation
that is returned causes the client to be placed in another state. Therefore each
resource representation causes the client to change (transfer) state hence the name
Representational State Transfer.

Due to its simplicity, REST has become increasingly popular as an alternative
form of web services to the SOAP model [42].

5.6.1 REST Protocol Implementation Overview

To implement our REST protocol we use the Restlet framework [2], a simple
lightweight REST framework that is suitable for both client-side and server-side
web applications.

The REST implementation is contained in a single class, RESTProtocol,
which extends from the abstract Protocol class and supports the following op-
tions:

http://www.glam.ac.uk/students
http://www.glam.ac.uk/students/computerscience
http://www.glam.ac.uk/students/psoule
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Table 5.3. REST generated output files.

Type Name Purpose
Client Files Calendar.class The client class file that has been al-

tered to connect to the remote service
contained in the generated
RESTServer class

RESTClient.class The RemoteJ REST helper client class
Server Files RESTServer.class The server class file that hosts the

HTTP server provided by the Restlet
REST framework

RemoteJResource.class The resource class called by the Reslet
REST implementation. This class re-
ceives client requests and calls the re-
quested method

servers. A comma-separated list defining the address of one or more REST servers
in URL format. In common with the JMS and RMI protocols, if defined it is
used by the nextServer statement to connect to an alternative server in the
event of a communication or distribution error. This may also be overridden
by the remotej.servers command line option.

serverThreads. The number of server threads created by the Restlet HTTP server.
serverPort. The TCP/IP port number to use for the generated HTTP server.
serverPlugin. In common with the other protocols, this optional statement is used

to add a user-defined class to be started in a thread in the server-generated
code.

Given a DDL with the five pointcut statements illustrated in Figure 5.9, the
classes in Table 5.3 are generated.

In common with the JMS implementation, the REST implementation con-
tains two code generation phases, the client and the server generation phases.
These phases work identically to, and reuse much of the functionality of, the JMS
implementation and therefore won’t be discussed further.

5.7 Implementation Issues
As discussed in Section 4.5, the DDL currently does not support pass-by-reference
semantics as supported by RIDL [65] or call-by-copy-restore as supported by J-
Orchestra [111]. Instead our implementations implement copy-by-value for all
protocols as neither the REST nor JMS protocols provide pass-by-reference. In-
deed, both the REST and JMS protocols use a simple generalised communication
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import evaluation.calendar.∗;

service CalendarService {
protocol : rest {

options {
servers = "http://localhost";
serverPort = 61616;
serverThreads = 5;

}
pointcut Appointment[] Calendar.getAppointments(User) {recovery = nextServer;}
pointcut void Calendar.addAppointment(User, Appointment) {recovery = nextServer;}
pointcut void Calendar.deleteAppointment(User, Appointment) {recovery = nextServer;}

}
}

Figure 5.9. REST CalandarService DDL.

style that does not explicitly support copy-by-value, copy-by-value-restore or pass-
by-reference as neither of them are object based.

Our implementations of the REST and JMS request-reply protocols mimic
RMI’s pass-by-value by the use of object serialisation and we therefore pass both
parameter and return values as serialized objects. The limitation of this approach
is that all parameters and return values must be serializable and implement the
Serializable interface. If not, a compile error is returned. Although the RMI
protocol supports pass-by-reference, we do not currently support it. As discussed
in Section 4.5 this is an area for further research and we discuss this further in
Section 7.3.

5.8 Chapter Summary
In this chapter we have described the implementation of the RemoteJ compiler/
generator and its features and have discussed the implementation of the recovery
concern and our three protocol implementations, JMS, REST and RMI.

The recovery implementation allows a great deal of flexibility with common
recovery techniques supported by DDL statements and the ability to add user-
defined recovery routines.

The RMI, REST and JMS protocols were chosen as they use different ap-
proaches to distribution. RMI and REST are synchronous protocols with an in-
trusive framework and, in the case of RMI, requires the developer to adhere to
a programming convention. JMS is an asynchronous protocol implemented as an
abstract framework with numerous concrete implementations that may, neverthe-
less, be used in a synchronous manner. In addition, JMS provides guaranteed
message delivery through the use of persistent messages, while RMI and REST do
not.
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Despite these differences, all protocols were relatively easily implemented
using the DDL concept and a great deal of reuse was possible using the abstract
Protocol class.
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6 Evaluation

6.1 Introduction
RemoteJ has been designed as an alternative method of developing distributed
applications to both the Java RMI convention, which requires developers to be
aware of the distributed nature of their applications, and the RPC convention,
which attempts to make remote procedure calls transparent to the developer.

Both of the above approaches result in applications tangled with the cross-
cutting concern distribution. Previous work, described in Section 3.8, has shown
that an aspect-oriented approach can significantly reduce the tangling between
application functionality and the distribution concern, thereby making programs
easier to write and understand. However, this previous work has assumed a single
protocol and has not considered the recovery concern thereby attempting, once
again, to mask the difference between local and remote method calls.

We agree with Waldo et al. [118] that any attempt to paper over the dif-
ferences between local and remote systems is fundamentally wrong, because dis-
tributed systems require that the programmer be aware of issues such as latency
and partial failures to be able to support basic requirements of robustness and
reliability.

This project has extended previous work by considering multiple protocols
and the recovery concern and has introduced the concept of a Distribution Def-
inition Language used to define classes and associated methods to be made dis-
tributed, the distributed system to use to make them distributed, and the recovery
mechanism to use in the event of an error. In this book we have made the following
claims about our approach:

• A significantly simplified approach to the development of distributed sys-
tems as it allows the same application to be used distributed or not, thereby
improving software reusability and simplifying testability of distributed ap-
plications.

• The ability to apply distribution and recovery awareness to existing applica-
tions in such a way that the application is oblivious of the distribution and
recovery mechanism.

• The Distribution Definition Language can easily be extended to support ad-
ditional protocols by the implementation of protocol plugins without changes
needing to be made to the RemoteJ parser.
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In this chapter we validate these claims by:

• Evaluating protocol extendibility by providing a case study of the addition
of a publish/subscribe event-driven protocol to RemoteJ.

• Comparing the development of a number of simple distributed applications,
developed using the RMI, REST and JMS protocols, with the RemoteJ ap-
proach. We compare this in terms of reusability, testability and lines of code.

• Evaluating RemoteJ’s recovery approach in terms of extendibility, flexibility
and the ability to add the recovery concern to existing applications.

6.2 Adding a Protocol – a Case Study
All three of RemoteJ’s protocols described thus far use the request/response syn-
chronous model where a message is sent and the system suspends awaiting a re-
sponse, a model that is used by most RPC type distributed systems. While this
may be adequate and suitable for many scenarios, there is a class of application
that is more suited to the asynchronous event-driven model, as described in Sec-
tion 2.6.1.

To fully evaluate RemoteJ and to support our claim that the DDL can easily
be extended to support additional protocols by the implementation of protocol
plugins without changes needing to be made to the RemoteJ parser, we extended
RemoteJ by adding an asynchronous event-driven protocol based on the JMS
publish/subscribe model.

An additional motivation for the choice of an asynchronous event-driven pro-
tocol was to evaluate if the DDL concept could support both the synchronous and
asynchronous models.

6.2.1 The Event-Driven Model

As described in Section 2.6.2, publish/subscribe systems provide a loosely-coupled
interaction style where publishers publish events and subscribers subscribe to those
events and are subsequently asynchronously notified when an event occurs. Pub-
lish/subscribe systems therefore implement a loosely-coupled event-driven style of
communication [78].

For our evaluation we implemented an event-driven system based on JMS
topics as the JMS API [47] provides an asynchronous event-driven topic abstrac-
tion.

In contrast to the request/response synchronous model as exemplified by our
RMI, REST and JMS implementations, our event-driven implementation defines
two protocols, pub for the publish protocol and sub for the subscriber protocol.
The reason for this is that publish/subscribe systems are asynchronous and loosely-
coupled and therefore there is no notion of a client and a server as there is for
RPC type systems. Rather publishers and subscribers are distinct entities that
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<<interface>
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PUBProtocol SUBProtocolPUBClient SUBServer

Figure 6.1. Publish/subscribe class diagram. A UML class di-
agram showing the interaction between the protocol implementa-
tion classes.

are decoupled in time, space and synchronisation [34]. We therefore allow the pub
and sub protocols to be applied to classes independently.

As we do not support multiple methods receiving a single event and multiple
methods publishing objects to the same topic, pointcut statements must match
a single class/method. In addition, for both protocols, the methods matched by
the pointcut statement in the DDL must meet the following criteria:

• They must have a single serializable parameter that is either sent to the
subscriber or received from the producer.

• They must be declared as returning void.

Given the above, the method matched by the pointcut statement for the
pub protocol is altered to have its parameter published using options defined for
the protocol. The method should contain no code as the parameter is published
to the topic and any code in the method will be ignored.

For the sub protocol, the matched method receives a published object asyn-
chronously using options defined for the protocol, and the object may be published
by any publisher, providing the publishing system is sending serialized Java objects
that the sub protocol is expecting.

6.2.2 Adding the Protocols

As described in Section 5.2, additional protocols may be added by extending the
Protocol class, which implements the IProtocol interface. The name of the
protocol implementation class must be the same as the protocol name in uppercase
with the word ’Protocol’ appended to it so that it may be dynamically loaded by
the ProtocolFactory class.

Our two protocols are therefore named PUBProtocol, for the pub protocol,
and SUBProtocol for the sub protocol. In addition, we developed two helper
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classes, PUBClient and SUBServer for use by the two protocol implementations re-
spectively. A class diagram for our implementation is illustrated in Figure 6.1. As
described in Section 5.2, the Protocol class contains generalised code generation
and aspect-weaving capabilities making the addition of new protocols reasonably
straight forward.

Both the pub and the sub protocol support the following options:

initialContextFactory. The JMS JNDI [100] context that is used to obtain access to
the JMS implementation.

topic. The name of the JMS topic.
servers. A comma-separated list defining the address of one or more JMS mes-

sage brokers in the format required by the underlying JMS implementation
(usually a URL).

In addition, the sub protocol provides the following options to support
durable topics as described in Section 2.6.3:

durable. Set to true or false, this declares that durable topics will be used.
subscriber. If the durable property is set to true above, then a network-wide name

must be defined so that a subscriber may be uniquely identified. This is used
in conjunction with the clientID below.

clientID. Used in conjunction with the subscriber property above, it is used to
uniquely identify a subscriber on the network.

Using the above method, both protocols were relatively easy to add with
the SUBProtocol class containing 397 lines of code and the PUBProtocol class
containing 363 lines. The helper classes SUBServer and PUBClient contain 238
and 168 lines of code respectively.

The above demonstrates that additional protocols may be added to RemoteJ
without the parser needing to be extended to support the new protocol.

6.2.3 Testing and Evaluation

To test our implementation, we created two simple, although representative,
classes, Publisher and Subscriber illustrated in Figure 6.2 and Figure 6.3 re-
spectively.

Our Publisher class simply calls the publish() method passing it a String
value and the Subscriber class calls the subscribe() method in a loop to demon-
strate that it may be called by multiple clients.

Applying the DDL illustrated in Figure 6.4 allows the subscribe() method
in the Subscriber class to asynchronously receive an event in the form of a string
published on the REMOTEJ.SEND topic.

The topic is also defined as durable so that the event will be delivered when
the subscriber application becomes available, if the event is published when the
subscriber is unavailable.



6.2 Adding a Protocol – a Case Study 101

public class Publisher {
public static void main(String[] args) {

Publisher a = new Publisher();
a.publish("This is a test String \ldots{}");
System.exit(0);

}

public void publish(String s) {
}

}

Figure 6.2. Java Publisher class.

public class Subscriber {
public static void main(String[] args) throws InterruptedException {

Subscriber a = new Subscriber();
while (true) {

a.subscribe("This is not from the producer");
Thread.sleep(5000);

}
}

public void subscribe(String message) {
System.out.println("Received: " + message);

}
}

Figure 6.3. Java Subscriber class.

The Publisher class is altered so that calls to its publish() method are
altered to send the String parameter as a message on the REMOTEJ.SEND topic.
As can be seen in Figure 6.2 and Figure 6.3, the existing code is unaware of the
protocol or recovery scenario that will be applied to it.

Running the applications verifies that the test applications work as expected
with the Publisher.publish() method sending String objects that are received
by the Subscriber.subscribe() method asynchronously.

6.2.4 Summary

In this section we have evaluated the extendibility of the RemoteJ system by
adding two additional protocols, pub and sub. In contrast to the RMI, REST and
JMS protocols, the sub protocol is event-driven as it alters the matched method
to receive data asynchronously. The pub protocol alters the matched method to
send its parameter as a message on a topic.

Both protocols are asynchronous and loosely-coupled in nature and are there-
fore decoupled in time, space and synchronisation, and our evaluation has demon-
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import javax.jms.∗;
import com.paul.∗;

service Subscribe {
protocol : sub {
options {

initialContextFactory =
"org.apache.activemq.jndi.ActiveMQInitialContextFactory";

topic = "REMOTEJ.SEND";
durable = true;
subscriber = "com.paul.PAUL";
clientID = "sub";
servers = "tcp://localhost:61616";

}

pointcut String Subscriber.subscribe() {
recovery = nextServer;

}
}

protocol : pub {
options {

initialContextFactory =
"org.apache.activemq.jndi.ActiveMQInitialContextFactory";

topic = "REMOTEJ.SEND";
servers = "tcp://localhost:61616";

}

pointcut void Publisher.publish(String) {
recovery = nextServer;

}
}

}

Figure 6.4. DDL for the publish/subscribe testing application.
We define a DDL with both the pub and sub protocols in the
same file. Upon compilation, both protocols are applied to their
matching pointcuts.

strated that the RemoteJ and DDL concepts can be used for both synchronous
tightly-coupled distributed systems as well as loosely-coupled asynchronous ones.

6.3 Evaluating Distributed Application Development in RemoteJ
This section evaluates the RemoteJ compiler/generator and DDL by converting
a number of applications into distributed applications, using the framework ap-
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public class Bank {
private double balance;
public BankServer() {
}
public void debit(double amount) {

balance −= amount;
}
public void credit(double amount) {

balance += amount;
}
public void create() {

balance = 0;
}
public void open() {

// open balance file
}
public void close() {

// close balance file
}
public double getBalance() {

return balance;
}

}

Figure 6.5. Bank class.

proach for the RMI, REST and JMS protocols and then converting them using
the RemoteJ compiler/generator and associated DDL files.

6.3.1 Bank Example

In this section we define a simple bank application and convert it to a distributed
application using the RMI protocol. We then convert it using the RemoteJ com-
piler/generator and compare the different approaches.

Our bank application consists of the single class, Bank, illustrated in Fig-
ure 6.5. The class consists of six methods that we wish to make remote using the
RMI protocol.

To convert the above application into an RMI application, we firstly need to
define an interface containing the remote methods we wish to define as distributed.

We then alter the Bank class to extend the UnicastRemoteObject class and
implement the IBank interface. Our converted class and interface is illustrated
in Figure 6.6 on the left-hand side with the shaded areas illustrating the changes
that needed to be made to the class to implement the RMI protocol. Note that
in order to illustrate the requirements for exporting the remote object to the RMI
registry we have added a main method.

As can be seen from the example, the RMI protocol requires developer’s
to adhere to both a coding convention as well as a framework. The methods
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RMI Code RemoteJ DDL 
public class Bank extends UnicastRemoteObject  
       implements IBank { 
   private double balance; 
 
   public Bank() throws RemoteException { } 
 
   public static void main(String[] args) { 
     if (System.getSecurityManager() == null) { 
       System.setSecurityManager( 
         new RMISecurityManager()); 
     } 
     try { 
       Bank obj = new Bank(); 
       Naming.rebind("//localhost/Bank", obj); 
     } catch (Exception e) { 
       e.printStackTrace(); 
     } 
   } 
   public void debit(double amount)  
          throws RemoteException { 
      balance -= amount; 
   } 
   public void credit(double amount)  
          throws RemoteException { 
      balance += amount; 
   } 
   public void create()  
          throws RemoteException { 
      balance = 0; 
   } 
   public void open()  
          throws RemoteException { 
      // open balance file 
   } 
   public void close()  
          throws RemoteException { 
      // close balance file 
   } 
   public double getBalance()  
           throws RemoteException { 
      return balance; 
   } 
} 
 
public interface IBank extends Remote { 
   public void debit(double amount)  
     throws RemoteException; 
   public void credit(double amount)  
     throws RemoteException; 
   public void create()  
     throws RemoteException; 
   public void open()  
     throws RemoteException; 
   public void close()  
     throws RemoteException; 
   public double getBalance()  
     throws RemoteException; 
} 

import java.rmi.*; 
import evaluation.bank.*; 
 
service BankService { 
 
  protocol : rmi { 
    options { 
   registryName = "RMITestServer"; 
   registryHost = "localhost"; 
   registryPort = 1099; 
   hosts = "localhost,bookworm,bookpro"; 
   runEmbeddedRegistry = true; 
 } 
 
 pointcut void Bank.debit(double) { 
   recovery = nextServer; 
 } 
 pointcut void Bank.credit(double) { 
   recovery = nextServer; 
 } 
 pointcut void Bank.create() { 
   recovery = nextServer; 
 } 
 pointcut void Bank.open() { 
   recovery = nextServer; 
 } 
 pointcut void Bank.close() { 
   recovery = nextServer; 
 } 
 pointcut double Bank.getBalance() { 
   recovery = nextServer; 
 } 
  } 
} 

 

Figure 6.6. The Bank class converted to implement the RMI
protocol on the left with the DDL that is required to provide the
same functionality on the right.

that are to be exported must be defined in an interface that extends the Remote
interface and the class where the methods are defined must implement the inter-
face. All methods in the interface and the class must be declared to throw the
RemoteException exception.

It should be noted that this example contains no recovery code.
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service Desktop {

protocol : rest {
options {

servers = "http://localhost";
serverPort = 61616;
serverThreads = 5;

}
pointcut void Server.updateData(Object) {

recovery = abort;
}
pointcut void Server.stopViewer(InetAddress) {

recovery = abort;
}
pointcut void Server.startViewer(InetAddress) {

recovery = abort;
}
pointcut byte[] Server.getScreenCapture(InetAddress) {

recovery = abort;
}
pointcut Rectangle Server.getScreenRect(InetAddress) {

recovery = abort;
}

}
}

Figure 6.7. Java Remote Desktop REST DDL protocol file.

To convert the Bank class using the DDL requires the DDL file illustrated on
the right-hand side of Figure 6.6, which generates both client and server code as
well as the round-robin recovery scenario defined by the nextServer statement.
The original Bank class is left unaltered and may be used to test a non-distributed
version of the application or reused in another application.

6.3.2 Remote Desktop Example

Java Remote Desktop [1] is an open source project that provides a means of viewing
and controlling a remote desktop via a GUI. A Swing client GUI communicates
to a server-side component using the RMI protocol. The application supports any
number of viewers and any changes performed in a client GUI screen is reflected
in the other screens.

To evaluate RemoteJ, we firstly refactored the application to remove the RMI
specific code. We then used RemoteJ to convert the now non-distributed applica-
tion into a REST distributed application using the DDL illustrated in Figure 6.7.

To further test RemoteJ, we converted the same application into a JMS
distributed application using the DDL in Figure 6.8.
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service Desktop {

protocol : jms {
options {

initialContextFactory =
"org.apache.activemq.jndi.ActiveMQInitialContextFactory";

persist = true;
sendQueue = "REMOTEJ.SEND";
receiveQueue = "temporary";
servers = "tcp://localhost:61616,tcp://bookworm:61616";
serverThreads = 5;
receiveTimeout = 5000;

}
pointcut void Server.updateData(Object) {

recovery = abort;
}
pointcut void Server.stopViewer(InetAddress) {

recovery = abort;
}
pointcut void Server.startViewer(InetAddress) {

recovery = abort;
}
pointcut byte[] Server.getScreenCapture(InetAddress) {

recovery = abort;
}
pointcut Rectangle Server.getScreenRect(InetAddress) {

recovery = abort;
}

}
}

Figure 6.8. Java Remote Desktop JMS protocol DDL file.

Table 6.1. Remote desktop LOC comparison.

Original RemoteJ % Difference
LOC – JMS 1556 1431 8.03

LOC – REST 1556 1427 8.29
Number of Classes 12 9 25

As well as successfully being able to convert and run the Java remote desktop
application, we were also, by removing the distribution concern, able to greatly
simplify the application as illustrated in Table 6.1 where, using the JMS protocol,
the number of lines of code was reduced by 8.03% and, using the REST protocol,
by 8.29%. In addition, the number of classes was reduced from 12 to 9, a 25%
reduction.
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6.3.3 Other Applications

We have converted a number of other smaller applications to test RemoteJ, which
we discuss below.

6.3.3.1 JClock

JClock is a simple application that displays the time in a GUI window and is
supplied as part of the Java development kit. We successfully converted the ap-
plication into a distributed application using both the RMI and JMS protocols.

The DDL for the JMS DDL is illustrated in Figure 5.8 and the RMI DDL in
Figure 5.6.

In order to convert the JClock application into a distributed application we
found it necessary to refactor the code to expose a method, getDate(), to retrieve
the current system date. During the refactoring exercise we found that JClock
starts a thread in its constructor, which resulted in the thread being started in both
the client and server processes after being converted to a distributed application.

We believe this supports our assertion that it is necessary to ensure that
applications that are to be distributed are developed with distribution in mind.

6.3.3.2 JShell

The JShell application [10] provides a UNIX style command shell written in Java.
For our evaluation we converted it into a distributed application with the client
portion prompting the user for a command and passing the command to the server
for execution. The application was successfully converted using the JMS, RMI and
REST protocols.

The DDL for the RMI DDL is illustrated in Figure 6.9, the JMS protocol in
Figure 6.10 and the REST protocol in Figure 6.11.

We then further refactored the application to expose join points at a finer
level of granularity to evaluate the DDL’s scalability. The DDL for the further
refactored JShell application using the RMI protocol is illustrated in Figure 6.12.

6.3.4 Summary

In this section we have evaluated the RemoteJ compiler/generator and the DDL.
We have converted a number of applications into distributed applications using
the RMI, JMS and REST protocols interchangeably without the underlying ap-
plication code being aware of the distribution protocol or the recovery scenario.

This demonstrates that applications can be converted into distributed ap-
plications by the RemoteJ compiler/generator using any protocol and recovery
scenario supported by the DDL.
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import java.rmi.∗;
import jshell.∗;
import jshell.commandline.∗;

service JShell {
protocol : rmi {
options {

registryName = "RMIJShellServer";
registryHost = "localhost";
registryPort = 1099;
runEmbeddedRegistry = true;
serverPlugin = "com.paul.ServerPlugin";

}

pointcut String JShell.process_command_line(String) {}
}

}

Figure 6.9. JShell RMI protocol DDL file.

import javax.jms.∗;
import jshell.∗;
import jshell.commandline.∗;

service JShell {
protocol : jms {
options {

destinationClass = "org.apache.activemq.command.ActiveMQQueue";
initialContextFactory =

"org.apache.activemq.jndi.ActiveMQInitialContextFactory";
persist = true;
sendQueue = "REMOTEJ.SEND";
receiveQueue = "temporary"; // or name e.\,g. REMOTEJ.RECEIVE
servers = "tcp://localhost:61616,tcp://bookworm:61616";
serverThreads = 5;
receiveTimeout = 5000;
serverPlugin = "com.paul.ServerPlugin";

}

pointcut String JShell.process_command_line(String) {}
}

}

Figure 6.10. JShell JMS protocol DDL file.
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import javax.jms.∗;
import jshell.∗;
import jshell.commandline.∗;

service JShell {

protocol : rest {
options {

servers = "http://localhost";
serverPort = 61616;
serverThreads = 5;

}

pointcut String JShell.process_command_line(String) {}
}

}

Figure 6.11. JShell REST protocol DDL file.

6.4 Recovery Evaluation
As discussed in Section 5.3, RemoteJ supports four recovery scenarios, the abort,
continue and nextServer statements as well as a user-defined recovery routine.
The abort statement terminates the application in the event of an error while
the continue statement simply ignores the error. Due to their simplicity, we do
not consider these statements in our evaluation and instead concentrate on the
nextServer statement and user-defined recovery routines.

6.4.1 Automatic Recovery

The nextServer statement simply cycles through a list of servers either declared in
the DDL’s servers statement or via the remotej.servers property. This allows
for a simple recovery scenario where services are run on a number of machines in
a network and in the event of a failure the client automatically reconnects to the
next server in the list as illustrated in Figure 6.13.

If no servers can be contacted the application will be terminated as this is
considered an unrecoverable error. If a server is successfully contacted following a
previous failure, then knowledge of previous failures are discarded thereby allowing
for the possibility that unavailable servers may become available.

For our evaluation we used the client code in Figure 6.14 and the associated
DDL in Figure 6.15 to generate an RMI client and associated server. As can be
seen in the client code, the test application simply calls the server repeatedly in a
loop to obtain the current date. Although this is a simplistic example it adequately
demonstrates the nextServer recovery capability.
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import java.rmi.∗;
import jshell.∗;
import jshell.commandline.∗;
import jshell.command.∗;

service JShell {

recovery RMIError (RemoteException e) {
System.out.println("Got a RMI exception: " + e.getMessage());
System.out.println("Method: " + transfer.getMethod());
System.out.println("Host: " + transfer.getCurrentHost());
System.out.println("Terminating application \ldots{}");
System.exit(1);

}

protocol : rmi {
options {

registryName = "RMIJShellServer";
registryHost = "localhost";
registryPort = 1099;
runEmbeddedRegistry = true;

}

pointcut String JShell.process_command_line(String) {
recovery = RMIError;

}

pointcut void ls.execute(String[]) {}
pointcut void ls.usage() {}
pointcut void ls.process_environment() {}
pointcut void ls.process_args(String[]) {}
pointcut void ls.process_flag(String) {}
pointcut void ls.add_files_in_current_directory() {}
pointcut Vector ls.files() {}
pointcut void ls.add_files_in_directory

(File, Queue) {}
pointcut void ls.sort_files(File[]) {}
pointcut void ls.print_files(File[]) {}
pointcut void ls.print_brief(File) {}
pointcut void ls.print_detailed(File) {}
pointcut void ls.print_remainder() {}
pointcut void ls.pad(StringBuffer, int) {}

}
}

Figure 6.12. Finer-grained JShell RMI protocol DDL file.
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Server 1

Client

1: Call getDate()
2. Call failed, call nextServer
3. Connect to Server 2
4. Call failed, call nextServer
5. Connect to Server 3
6. Call failed, call nextServer
7. Unrecoverable error if no 
servers have responded otherwise 
connect to Server 1.

1

Calls: 

Server 2

Response:

Server 3

2 3 4 5 67

Figure 6.13. Automatic recovery capability. The nextServer
statement provides a simple clustering capability where a client
request is redirected to an alternate server in the event of a dis-
tribution or communication error. If no servers can be contacted
the application will be automatically terminated.

public class ClockDate {

public Date getDate() {
return new Date();

}

public static void main(String[] args) throws InterruptedException {
ClockDate cd = new ClockDate();
while (true) {

System.out.println("Current Date: " + cd.getDate());
Thread.sleep(2000);

}
}

}

Figure 6.14. ClockDate class.

We began the evaluation by running the server-side application on three
machines in a cluster and starting the client, which connected to the first server,
localhost.

We aborted the first server, which caused the client to automatically recon-
nect to the next server, bookworm. We then restarted the first server and ter-
minated the second thereby causing the client to automatically reconnect to the
third server, bookpro.
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import java.rmi.∗;
import clock.∗;

service ClockService {

protocol : rmi {
options {

registryName = "RMITestServer";
registryHost = "localhost";
registryPort = 1099;
runEmbeddedRegistry = true;
servers = "localhost,bookworm,bookpro";

}

pointcut Date ClockDate.getDate () {
recovery = nextServer;

}
}

}

Figure 6.15. RMI ClockService DDL for recovery testing.

After terminating the third server, the client reconnected to the first server
again. We then terminated the first server which caused the application to abort
with an error indicating that no servers were available thereby verifying correct
operation of the nextServer statement.

Through this evaluation we were able to determine that a simple round-
robin type of recovery routine could be correctly implemented in the DDL for all
protocols, thereby removing the recovery concern from the client code and greatly
simplifying the development of this type of recovery.

6.4.2 User-Defined Recovery Routines

The nextServer statement above provides useful recovery functionality for a class
of applications running on a cluster of known hosts. While this may be sufficient
for a large number of application types, it cannot be used in the scenario where
servers, some of which are unknown at the time the application is started, leave
and join the network over extended periods of time.

Although we could support this scenario in the RemoteJ code generator, with
an associated DDL statement, we have chosen to implement it using a user-defined
recovery routine so that we may evaluate the functionality and extendibility of
RemoteJ’s recovery system.
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RemoteJ generated server

Multicast server

RemoteJ generated client

Multicast client

Network

Figure 6.16. Multicast recovery. A multicast server is embedded
in the RemoteJ generated server using the serverPlugin state-
ment, which allows the embedded code to run in a separate thread
in the server application. A user-defined recovery routine is then
able to interact with the server thread.

For our evaluation we implemented a simple system where a client in need
of an alternative server broadcasts a request on a multicast network1. The first
responding server, providing it is not the current server, is chosen.

For our implementation we embedded a simple multicast server in the Re-
moteJ generated server using RemoteJ’s serverPlugin capability, described in
Section 5.3. Upon application startup, the MulticastServer server plugin is
started in a separate thread and waits for a broadcast on a well-known multicast
group and associated port number whose configuration may be changed by altering
the following property items for both the client and the server:

• remotej.multicast.sendPort. The port used to send the request on2.
• remotej.multicast.receivePort. The port used to wait for a response.

1A multicast message is a message that is sent to a group of hosts that subscribe to an address
group, thereby allowing broadcasts to be sent to that group only rather than to an entire network.
Address groups are defined in the range 224.0.0.0 through 239.255.255.255 for the IP protocol
[96].
2Note that the client send port must equal the server receive port and the client receive port
must equal the server send port.
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service ClockService {

recovery Error (RemoteException e) {
MulticastClient client = new MulticastClient();
String[] s = new String[1];
s[0] = client.getNextHost();
setHosts(s);
System.out.println("Switching to: " + s[0]);

}

protocol : rmi {
options {

registryName = "RMITestServer";
registryHost = "localhost";
registryPort = 1099;
hosts = "localhost,bookworm,bookpro";
runEmbeddedRegistry = true;
serverPlugin = "uk.ac.glam.recovery.MulticastServer";

}

pointcut Date ClockDate.getDate () {
recovery = Error;

}
}

}

Figure 6.17. RMI ClockService DDL for multicast recovery.

• remoteJ.multicast.group. The multicast group address.
• remoteJ.multicast.ttl. The time-to-live value. This value is used by

routers to decide whether to pass the multicast datagram on to a destination
network or not.

Our DDL, illustrated in Figure 6.17, sets the server plugin to our simple
multicast server and uses a user-defined class, MulticastClient, in the recovery
routine.

In the event of an error, the recovery routine creates an instance of the
MulticastClient class and calls its getNextHost() method, which broadcasts a
message on the network and waits for a response from a server process. Upon
receipt of a response, the client sets the current host to the responding server’s
address and execution continues.

This recovery scenario and the interaction between client and server is illus-
trated in Figure 6.16.
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6.4.3 Summary

The nextServer round-robin recovery routine provides a simple method of error
recovery for a large proportion of applications. In the event of an error, the next
server in the list of servers is used as the current server and a failure in all servers
called in sequence (that is calling all servers in the list and receiving an error or
no response from all of them) causes the application to terminate, thus avoiding
an endless loop.

While this provides a simple and effective recovery scenario for many classes
of applications, it cannot support the scenario where server processes come and
go on the network – i. e. the spontaneous network model [117]. To support this
model, and to evaluate the extendibility of RemoteJ’s recovery capability, we have
developed a server plugin and associated client class which is called directly from a
user-defined recovery routine allowing a new server to be selected using a multicast
technique.

This has demonstrated that RemoteJ’s recovery model can be extended to
support sophisticated recovery scenarios without the client code being aware of
the recovery mechanism and yet still be able to participate in recovery scenarios.

6.5 Chapter Summary
The main goal of this project was to provide a contribution to the vision of auto-
nomic computing and to simplify the development of distributed applications by
modularising the distribution and recovery concerns and applying them to exist-
ing applications using a high-level domain-specific aspect language approach. As
we have demonstrated a number of protocol implementations, using different dis-
tributed systems concepts, and have demonstrated the flexibility of the recovery
concern, we believe we have succeeded with this goal.

Any claim to having provided an entirely new method of distributed systems
development that can replace current methods cannot be made until RemoteJ’s
deficiencies are addressed and it can be tested and studied in a commercial envi-
ronment. We discuss these deficiencies and future work in the next chapter.
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7 Conclusions and Future Work

7.1 Introduction
Our hypothesis statement declares that the distribution and recovery concerns can
be completely and effectively modularised by defining them in a high-level domain-
specific aspect language which can be applied to existing applications using a
compiler/generator tool. We believe we have proven this hypothesis by the four
contributions we have presented in this book. To recapitulate these are:

1. The concept of a Distribution Definition Language used to define classes and
associated methods to be made distributed, the distributed system to use to
make them distributed, and the recovery mechanism to use in the event of
an error.

2. A simplified approach to the development of distributed systems that al-
lows an existing application to be distributed, thereby improving software
reusability and simplifying testability of distributed applications as applica-
tions may be functionally tested before having the distribution and recovery
concerns applied.

3. The ability to apply one of a number of protocols to the same code base
thereby generalising the distribution concern.

4. The application of distribution awareness to applications in such a way that
the application is oblivious to the distribution implementation and recovery
mechanism is yet able to fully participate in both.

We have evaluated and validated our approach by:

• Providing a case study of the addition of a publish/subscribe event-driven
protocol to RemoteJ, which uses a different paradigm to the client-server
model provided by the REST, RMI and the JMS request/reply protocols.
These protocols were added without changes needing to be made to the DDL.

• Comparing the development of a number of simple distributed applications,
developed using the RMI, REST and JMS protocols, with the RemoteJ ap-
proach. This has demonstrated that our approach allows multiple protocols
to be applied to the same code base, thereby improving software reuse and
testability by allowing applications to be tested for functional correctness
before the distribution and recovery concerns are applied.

• Providing case studies of RemoteJ’s recovery approach and evaluating it in
terms of extendibility, flexibility and the ability to add the recovery concern
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to existing applications. We provided a case study of extending the recovery
capability by the use of user-defined recovery routines to provide a fairly
sophisticated recovery scenario using network multicasting.

The main motivation of this project has been to simplify the development
of distributed applications. We believe, by providing the above contributions, we
have succeeded. However, as with many projects, further work needs to be done.

We have faced a number of challenges during the project that has led us
to take various design decisions. We describe these challenges and decisions in
Section 7.2. Areas for additional work are discussed in Section 7.3 and we present
our conclusions in Section 7.4.

7.2 Challenges and Design Decisions
In this section we describe a number of challenges we have experienced and design
decisions we have taken during this project.

7.2.1 Compiler/Generator

One of the early decisions of the project was whether to use a parser generator
tool, such as ANTLR [81], for the compiler/generator or to develop our own parser
generator. Faced with the prospect of hand-coding our own parser generator led
us to evaluate the ANTLR tool. However we found that in order to use it we
would have to extend the Java grammar as we allow Java statements in the DDL
recovery statement. As the DDL is relatively simple we decided to adopt the
compiler patterns defined by Watt and Brown [119] instead. As the addition of
new protocols to the DDL can be done without extending the DDL grammar, as
discussed in Section 6.2, this has proven to be the correct decision, as it would
be difficult, or perhaps impossible, to provide this functionality using a parser
generator tool.

7.2.2 Language Features

One of the fundamental challenges we were faced with during the design of the
DDL was what to include and what not to include in the language. Our main
desire was to keep the language as simple and elegant as possible yet be able to
fully express the distribution and recovery concerns.

Our principle of ensuring that applications have been written with distribu-
tion in mind has been the guiding principle of our approach and has influenced
many design decisions. This approach was adopted from the Waldo et al. [118]
network awareness model. However, our implementation is fundamentally differ-
ent as it removes the distribution and recovery concerns from the application’s
code, whereas the Waldo et al. [118] implementation tangles the distribution and
recovery concepts in the application’s code.
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We believe this principle to be sound as the alternative, an automatic parti-
tioning system, is complex to implement and, as shown by Tilevich [110], cannot
work in all circumstances.

This approach has led us to not address concurrency because to do so would
result in a distributed thread management system, a feature of an automatic par-
titioning system, which is outside the scope of our approach.

Initial versions of the DDL allowed the use of before, after and around advice
in the pointcut statement. However, upon reflection, we decided to remove these
statements as they added complexity to the language with little benefit, bearing
in mind our primary principle.

The plugin statement, discussed in Section 6.4.2 provides an extension ca-
pability where used-defined code may be added to the DDL and accessed by the
recovery routines. Although this is designed as an extension mechanism, common
routines should be added to the DDL language instead. Exactly what to add will
become clearer once RemoteJ can be tested and studied further.

7.2.3 Protocol Implementations

Adding the event-driven protocols, described in Section 6.2.1, resulted in a com-
promise having to be made in how the DDL is used, as the asynchronous protocols
have a different usage model to the synchronous protocols. As discussed in Sec-
tion 6.2.1, the use of the asynchronous protocols constrains the usage of the DDL
as follows:

• DDL statements must match a single class/method.
• Methods matched by the pointcut statement must have a single serializable

parameter that is either sent to the subscriber or received from the producer.
• Methods matched by the pointcut statement must be declared as returning
void.

Although the above results in a different usage model depending on whether
the protocol is synchronous or asynchronous, we believe that it is better than the
alternative, which is different DDL statements for different models.

7.3 Future Work
The Distribution Definition Language currently has a number of shortcomings that
should be addressed. We have identified the following areas for further research.

7.3.1 Parameters and Return Values

The DDL currently supports copy-by-value for parameters and return values. This
could be extended to include pass-by-reference by adding a DDL statement ref
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(for reference) that may be applied to a parameter. For example:

pointcut void ls.pad(ref StringBuffer, int) {}

declares that the StringBuffer parameter should be passed by reference.
While adding support for pass-by-reference in the DDL is fairly trivial, an

implementation for all protocols, particularly those that don’t support pass-by-
reference, is not, as it requires a mechanism to call from the server to the client.
For example, in the above pointcut, method calls on the StringBuffer class will
result in a remote call from the server to the client to access the StringBuffer
method called.

Although pass-by-reference is supported by some protocols, specifically RMI,
it is not supported by all protocols. In order to implement pass-by-reference for
all protocols, we believe it will be necessary to implement the callback mechanism
described in Section 7.3.2 below.

The DDL does not currently support call-by-copy-restore as supported by
J-Orchestra [111]. To support this an additional DDL keyword restore could be
added to the DDL. For example:

pointcut void ls.pad(restore StringBuffer, int) {}

declares that the StringBuffer parameter should be passed by call-by-copy-
restore.

Again, extending the DDL to support call-by-copy-restore is fairly trivial
although a method to implement it will require additional research.

7.3.2 Callback Support

The DDL does not currently support a callback mechanism to allow a server to
call a remote object on the client or on another server.

There are a number of instances where callback support is useful. One is to
support pass-by-reference for protocols that do not support it, as described above,
and another is to support applications that need to call clients to update their
current state.

An example of the latter is a distributed card game where a server sends its
current state to all registered clients so that they may display the card selected by
the server.

Another area for further research is to extend RemoteJ and the DDL to sup-
port servers that are clients to another server, possibly using a different protocol.

7.3.3 Recovery

The DDL does not currently support the management of exceptions that may
occur on the server. For example, if a class file cannot be found or a database
connection fails, it will result in the server failing with no notification to the client
of the type of error that has occurred (besides that which may be supported
by the protocol). These exceptions could be propagated back to the client and
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an application recovery capability, similar to the distribution recovery capability,
could be added to the DDL to support application recovery.

Although not all application errors may be recoverable, the above examples
can be if the server were to send the exception to the client and the client, using
statements in the DDL, were to instruct the server to switch to another database
server or to use a different URL for its CLASSSPATH.

This capability would greatly enhance the functionality of RemoteJ and sim-
plify distributed application development further.

Our current recovery options include nextServer, abort, continue and user-
defined recovery routines. As we have shown in Section 6.4.2, user-defined recovery
routines can be used to provide fairly sophisticated recovery scenarios. However,
the DDL should be extended to include a built-in multicast recovery facility similar
to the one we developed in Section 6.4.2. We expect that as RemoteJ is further
tested, and extended, additional recovery routines will be added to the DDL.

One of the primary candidates for an additional recovery mechanism is a
stateful clustering capability. This would require the addition of a cluster re-
covery option to the DDL and the implementation could either be developed or
existing clustering frameworks, such as Terracotta [3], may be embedded in Re-
moteJ.

7.3.4 Autonomic Features

Autonomics is primarily concerned with the development of systems that are able
to manage themselves, given high-level objectives by administrators, so that they
may adjust their operation, workloads, demands and external conditions in the
face of hardware or software failures

The RemoteJ language, and in particular its support for the modularisation
of the recovery concern, provides the ability for a distributed system to heal itself
in the face of server failures by connecting to another server, if the current server
should become unavailable, using one of a number of predefined methods or by
the implementation of a new recovery method.

This approach allows autonomics development to be greatly simplified com-
pared to current framework approaches and RemoteJ can be further extended to
support other autonomic features, such as autonomic policies, autonomic sensors,
the ability to monitor remote servers and automatically switch to the one with less
latency and so forth. Dynamic support may be provided by embedding hooks into
existing code to allow the dynamic replacement or extension of referenced classes
using any framework supported by the DDL.

A domain-specific aspect language is a powerful concept that may be used
as a general method to apply autonomic features to applications thereby greatly
simplifying their development.
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7.4 Conclusion
This book has presented four contributions to improving the development of dis-
tributed applications.

Firstly, we have introduced the concept of a Distribution Definition Language,
a high-level domain-specific aspect language that generalises the distribution con-
cern by describing the classes and methods of an existing application to be made
remote, the distributed system to use to make them remote, and the recovery
mechanism to use in the event of a remote error. Secondly, we provided the ability
for multiple protocols to be applied to the same code base, thereby generalising the
distribution concern. Thirdly, we allowed the application of distribution awareness
to applications in such a way that the application is oblivious to the distribution
implementation and recovery mechanism yet is able to fully participate in both.
Finally, we provided a simplified approach to the development of distributed sys-
tems that allows an application to be either distributed or non-distributed, thereby
improving software reuse and simplifying testability of distributed applications, as
applications may be functionally tested before having the distribution and recovery
concerns applied.

In addition, these contributions, by alleviating some of the complexity in-
volved in distributed systems development and by allowing autonomic features,
such as recovery, to be transparently added to existing applications, provides a
contribution to autonomic computing. We propose that the concept of a domain-
specific aspect language be used as a general method to apply autonomic frame-
works, thereby greatly easing the programmers burden and ensuring correct use
of the framework, which reduces the effort required to develop autonomic applica-
tions.

As with many projects of this kind, additional work is needed to improve and
refine the concept further. Some of this work is currently underway and we look
forward to addressing the other outstanding issues.
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Appendix A: RemoteJ Syntax
RemoteJService ::= (ImportNameList)* Service

ImportNameList ::= SingleImport (SingleImport)*

SingleImport ::= import Imports Semi

Imports ::= Identifier (Dot | Wildcard)*

Service ::= service Identifier LeftCurley StatementList RightCurley

StatementList ::= (RecoverList)* (ProtocolList)+

RecoveryList ::= RecoveryStatement (RecoveryStatement)*

RecoveryStatement ::= recovery RecoveryName LeftBracket ClassName
Variable RightBracket LeftCurley JavaStatement RightCurley

ProtocolList ::= ProtocolStatement (ProtocolStatement)*

ProtocolStatement ::= protocol Identifier Colon
LeftCurley Options (PointcutStatement)+ RightCurley

Options ::= (Identifier = Identifier)+

PointcutStatement ::= pointcut ReturnValue PointcutName
LeftBracket (((Parameter)? (Comma Parameter)*)
| ParameterWildcard)
RightBracket LeftCurley RecoveryType RightCurley

ReturnValue ::= ClassName | PrimitiveType | void

PointcutName ::= Identifier (Dot Identifier | Wildcard)*

Parameter ::= ClassName | PrimitiveType
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RecoveryType ::= recovery Equals RecoveryOption Semi

RecoveryOption ::= RecoveryName | continue | abort | nextServer

RecoveryName ::= Identifier

ClassName ::= Identifier (Dot Identifier)*

PrimitiveType ::= boolean | byte | char | short | int | long |
float | double

Variable ::= Identifier

JavaStatement ::= Any Java statement accepted by Javassist [19]

Identifier ::= (’a’..’z’ | ’A’..’Z’)+ (IntegerLiteral)*

IntegerLiteral ::= 0..255

Comma ::= ,

Semi ::= ;

Dot ::= .

LeftCurly ::= {

RightCurley ::= }

LeftBracket ::= (

RightBracket ::= )

Colon ::= :

Equals ::= =

Wildcard ::= *

ParameterWildcard ::= ..
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