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Abstract The emergence of multi-drug resistant strains of Plasmodium falciparum
has rendered many affordable antimalarials, such as chloroquine, much less effective

in addressing the severe health issues in sub-Saharan Africa, Southeast Asia and the

Amazon region. In order to overcome the neurotoxicity of an initial series of

artemisinin-derived drugs and their relatively high production costs, an intensive

and all-inclusive research programme to develop new derivatives has been undertaken.

Two efficient antimalarial drug candidates of different chemotype have been devised,

the artemisinin derivative artemisone and 1,2,4-troxolane OZ277. Both are nontoxic,

more potent than artemisinin and should be affordable to people of endemic regions.

The same may hold for the backup candidates artemiside andOZ439.

1 Introduction

Great efforts have been expended over the last 30 years to discover new and

efficacious endoperoxide antimalarials based on a natural product isolated from

sweet wormwood – artemisinin, and related derivatives (collectively known as

artemisinins) - primarily because, until very recently [1, 2], resistance to this type

of drug had not been observed (Fig. 1) [3].

The main drawback of the initial series of artemisinin derivatives (Fig. 1) is

their relative metabolic instability, i.e., susceptibility to hydrolysis (esters), or
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oxidative-dealkylation (ethers) to dihydroartemisinin [4]. Dihydroartemisinin,

apart from being a more potent antimalarial than artemisinin [5], was found to be

neurotoxic in vitro [6, 7] and in mice [8]. However, similar neurotoxicity has not

been observed in humans [9]. Although embryotoxicity has been detected within a

narrow window of embryogenesis, this has not been convincingly observed in

clinical trials from 1,837 pregnant women [10].

These potential toxicity issues provoked an extensive search for metabolically

stable artemisinin derivatives and two major semi-synthetic artemisinin sub-classes

were developed: C(10) deoxyartemisinin derivatives usually functionalized at C(9)

or at C(14) (5) [11], and derivatives possessing a new C(10)-NR, or C(10)-C bond

(6–8) [12–15]. The second sub-class is more diversified with artemisinin-derived

dimers and artemisone (9e) as the most prominent members (Figs. 2 and 3).

The quest for efficacious and cheap antimalarial drugs that can be administered

as a single dose, preferably orally, is not limited to natural product-derived semi-

synthetic artemisinins, like artemisone, but also to other classes of peroxide

antimalarials. Of these, the most prominent peroxide classes are the fully synthetic

1,2,4-trioxanes[16, 17], 1,2,4-trioxolanes (ozonides, OZs) and mixed 1,2,4,5-
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Fig. 1 Artemisinin and its early derivatives
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Fig. 2 Semi-synthetic artemisinins: C(14) and C(10) carba derivatives
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tetraoxanes [18–20]. Two representatives of this class that have entered studies in

humans are discussed below in detail.

2 Artemisone (Artemifon)

With the aim of preventing metabolic transformation of artemisinins to dihydroar-

temisinin (1, Fig. 1) and the drive to improve pharmacokinetic characteristics,

several 10-(alkylamino)artemisinins 9 were designed (Fig. 3) [21, 22]. All the

tested compounds showed excellent in vivo activities against P. berghei (9c was

the most active derivative, almost 25 times (given s.c.) and 7 times (given p.o.)
more active than artesunate 4). Unfortunately, 9c suffers from serious neurotoxicity

issues even at low doses, thus indicating, that more lipophilic artemisinins are more

toxic [21, 23].

A detailed antimalarial efficacy and drug–drug interaction study of artemisone

(a drug examined recently in clinical Phase II trials [24]) was performed (9e, Fig. 3)

[25]. It was shown that the in vitro antimalarial activities of artemisone against 12

different P. falciparum strains were comparable (exhibiting a mean IC50 value of

0.83 nM), independent of their drug-susceptibility profile to other antimalarial drug

classes [21, 25]. During examination of the in vitro drug–drug interaction against

drug sensitive 3D7 and multi-drug resistant K1 strains, it was noticed that

artemisone showed slight antagonistic effects with chloroquine, amodiaquine,

tafenoquine, atovaquone or pyrimethamine, and slight synergism with mefloquine.

In vivo screening using the 4-day Peters test against drug-susceptible (NY),

primaquine-resistant (P) and sulphadoxine/pyrimethamine-resistant (KFY) lines

of P. berghei, chloroquine-resistant (NS) and artemisinin-resistant lines of P. yoelii
NS and drug-susceptible P. chabaudi (AS) showed artemisone has superior ED50

and ED90 activity in comparison with artesunate (4, Fig. 1). Artemisone exhibited a

7-times greater activity (lower dosage) than artesunate (artemisone ED90 ¼ 12.13

mg/kg vs. artesunate ED90 ¼ 87.50 mg/kg) against the P. yoelii artemisinin-resis-

tant line. The above results appear quite important in light of the recent in vitro

isolation of artemether-resistant P. falciparum strains from humans [26] and
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Fig. 3 Structures and antimalarial activities of derivatives 9
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emerging evidence for resistance in vivo [1, 2], suggesting more potent derivatives

may be efficacious where first generation compounds are failing.

During in vivo drug–drug interaction examinations against the drug-susceptible

P. berghei NY and the mefloquine-resistant P. berghei N1100 lines, artemisone

showed synergism with mefloquine against both parasite lines. In combination with

chloroquine, no interaction against drug-susceptible P. berghei NY parasites

was detected; however, a synergistic effect against the chloroquine-resistant line,

P. yoelii NS, was observed.
No dihydroartemisinin had been produced after 30 min, when isotopically

labelled artemisone 9e* (Scheme 1) was incubated with human liver microsomes.

Only dehydrogenated 12 and mono-hydroxylated metabolites 10 and 11 and 13 and

14, with syn-hydroxyl and peroxide groups were observed (Scheme 1) [21], clearly

distinguishing artemisone and similar compounds from the first-generation

artemisinins.1 Incubation with microsomes and 14 recombinant CYP isoforms,

together with selective inhibitors of CYP, showed that artemisone was primarily

metabolised by recombinant CYP3A4. Interestingly, artemisinin induces its own

metabolism [27] and is metabolised principally by CYP2B6 [28]. These results

indicate that artemisone and artemisinin, in spite of being structurally similar, have

a different metabolic profile in P. falciparum; therefore, it is possible that they can

exert their antimalarial activity through similar but not identical mechanisms (vide

infra). Isolated artemisone metabolites were tested against the P. falciparum K1

strain and were also found to be potent antimalarials, with 11 and 12 being the most

active (11: IC50 ¼ 5.51 nM and 12: IC50 ¼ 4.26 nM, artemisone: IC50 ¼ 1.99 nM)

[21, 29].
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1However, dihydroartemisinin was detected in plasma during assessment of the safety of

artemisone [27]. The concentrations were low, with geometric mean Cmax values of 10 ng/ml

after an 80 mg dose.
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In preclinical studies, artemisone showed enhanced efficacy and improved

pharmacokinetics in comparison with artesunate and did not demonstrate neurotox-

icity in vitro and in vivo [21, 29], which is a characteristic of the current artemisinin

derivatives used in clinical treatment [30]. Administration of artemisone as a single

dose (10–80 mg) or multiple doses (40 mg or 80 mg given once daily for 3 days)

was well tolerated. It appears that artemisone is devoid of time-dependent pharma-

cokinetics (unlike artemisinin and artemether), with comparable Cmax, AUC and t½
values after the first and third doses following the 3-day courses of artemisone.

Although not being so active in vitro as the parent drug, the relatively high

concentrations of metabolites obtained after artemisone administration probably

add to the overall parasiticidal effect of artemisone [29]. In vivo testing on non-

immune Aotus monkeys infected with P. falciparum showed that a single dose of

artemisone (10 mg/kg) in combination with single doses of mefloquine (12.5 mg/kg

or 5 mg/kg) cleared parasitaemia by day 1, with complete cure for all four monkeys

tested [31]. With a single dose of mefloquine (2.5 mg/kg) parasitaemia was cleared

by day 1 but without cure. For 3 days of treatment with a combination of artemisone

(10 mg/kg/day) and amodiaquine (20 mg/kg/day), all three monkeys tested were

cured, in contrast to those that were administered with the individual drugs for

3 days. From this study, it is clear that various total dosages of artemisone

(20–90 mg/kg) alone, administered over 1–3 days, were unable to cure non-immune

Aotus monkeys infected with P. falciparum. However, cure can be achieved when

artemisone is combined with a single, sub-curative dose of mefloquine, or with a

3-day treatment course of amodiaquine (or clindamycin).

Efficacy of several artemisinin derivatives was examined for the treatment of

murine cerebral malaria, CM, ECM [32]. It was shown that artemisone and

artemiside (9d, Fig. 3) were more effective in the treatment of ICR and C57BL

mice in comparison with dihydroartemisinin or artesunate. In all experiments

performed on P. berghei-infected mice, treatment with artemisone led to complete

cure (at least parasitaemia was reduced to an undetectable level). The observed

recrudescent parasites were successfully eradicated by repeating the treatment with

artemisone without selecting for parasite resistance. In addition, it was shown that

complete cure of infected mice could be achieved even when treatment with

artemisone was commenced at late stages of pathogenesis, 6 days post-infection.

These results opened a considerable time window for adequate treatment, since

human malaria is diagnosed after clinical symptoms are apparent. Following

WHO’s instructions for artemisinin combination therapy (ACT), the efficacy of

artemisone–CQ combination was examined and it was shown that this combination

was more successful than single therapy of both drugs individually. Combination of

these two drugs prevented recrudescence and cured all mice (2 � 5 mg/kg/day

artemisone + 15 mg/kg CQ). In this study, artemiside appeared to be even more

successful then artemisone, but this derivative has to be submitted to more detailed

preclinical toxicological evaluation. However, the preliminary results suggest that

artemiside may represent a new option for antimalarial therapy based on

artemisinin derivatives [32].
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2.1 Possible Mechanisms: Fe(II) Interaction and
the Peroxide Bond

In an effort to define more clearly a reasonable mechanism for the action of

artemisone and related derivatives, experiments with various Fe(II) salts were

performed [33]. It was found that artemisone, unlike other examined

aminoartemisinin derivatives 9a, 9b (Fig. 3) and 15–17 (Fig. 4), reacts with Fe

(II) salts under aqueous conditions to afford the products 18–20, which are struc-

turally similar to the ones obtained from artemisinin and dihydroartemisinin. The

relative ratio of products 18–20 (Scheme 2) depends on the employed salts and

solvent mixtures. A reasonable mechanism was proposed for Fe(II)-induced gener-

ation of the products, including artemisone ! 18, 19 formation via iminium

cations. Evidence that a primary C-radical is generated during Fe(II) peroxide

scission came from the isolation of adduct 22 (Scheme 2), arising from reaction

in the presence of the radical trapper 4-oxo-TEMPO. However, the yield of this
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product is low (10%) and the authors argued that the role of Fe(II) is during

decomposition rather than activation of artemisone [33].

Others have shown that artemisone readily reacts with haem in vitro producing

alkylated products [34] very similar to artemisinins [35]. The ability of artemisinin

itself to alkylate haem has been confirmed in vitro [36, 37] and in vivo [38]. These

data indicate that Fe(II) species are able to activate artemisinins, including

artemisone, in their antimalarial action. However, it should be noted that the

conditions used to determine alkylation by artemisinins have been questioned, in

particular the use of dimethyl sulphoxide that produces a reducing environment

[39, 40], and, currently, there is no evidence that artemisone alkylates haem in vivo.

In addition, the theory of Fe(II)-initiated activation of artemisinins could not

explain the pronounced antimalarial activity of 5-nor-4,5-seco-artemisinin 23

[41–43], which is clearly less capable of forming C radicals upon peroxide bridge

cleavage by Fe(II). Another inconsistency in applying the general Fe(II) mechanism

(vide supra) to artemisinin and artemisone, and their derivatives, arises from their

activities in the presence of desferrioxamine B (DFO). DFO acts as a free radical

scavenger (for hydroxyl and peroxyl radicals) and as a Fe(III) chelator and reduces

artemisinin inhibition of PfATP6 (a proposed site of action; see below) [44]. In

contrast, artemisone, which exhibits approximately the same reactivity with aque-

ous Fe(II) as artemisinin, retains inhibition potency towards PfATP6 in the pres-

ence of DFO [33]. This detail strongly indicates that although the compounds are of

similar structure, they might not exert their antimalarial activity by sharing the

same mechanism of action.

In order to understand better the manner in which artemisinins exert their

antimalarial activity, extensive research was launched bearing in mind that cleav-

age of the peroxide bridge via an iron-dependent mechanism (as the sole mecha-

nism) does not provide complete answers to observed peroxide drug behaviour.

Based on the finding that the in vitro antimalarial activity of artemisinin was

significantly increased under a 2% carbon monoxide atmosphere (by 40–50%)

and under a 20% oxygen atmosphere (by 20–30%) [45], a detailed study of the

interaction of artemisone and related derivatives with various forms of haemo-

globin (Hb), haem, as well as an analysis of their antimalarial activity was per-

formed [39]. In contrast to artemisinin, artemisone does not react with Hb–Fe(II)

and oxyHb–Fe(II) to produce metHb–Fe(III); in addition, it was shown that both

artemisinin and artemisone (and 9a, 9b, 16) are inactive towards Hb–Fe(II) in a 2%

carbon monoxide atmosphere. On the other hand, both compounds induced the

oxidation of the haemoglobin catabolic product, haem–Fe(II), to produce haem–Fe

(III). In addition, on exposure of haem–Fe(II) and Hb–Fe(II) to carbon monoxide,

stable complexes were formed, which are also inactive for reactions with peroxide

antimalarials. However, in a biologically relevant experiment, both compounds

showed increased antimalarial activity against P. falciparum W2 strain under a 2%

carbon monoxide atmosphere, while the activity of chloroquine remained unchan-

ged. The authors suggested [39] that peroxide antimalarials behave as reactive

oxygen species (ROS), or that they produce ROS via Haber–Weiss chemistry.

Furthermore, it was concluded that passivation of haem–Fe(II) by its conversion
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into the CO complex results in decreased decomposition of artemisinins

(artemisone included), thus making them more available for reaction with their

actual target. The authors proposed that Fe(II), regardless of its origin (Hb–Fe(II) or

haem–Fe(II)), is not the sole initiator of O–O scission, and suggested that another

mechanism be sought [39].

2.2 Possible Mechanisms: Primary Targets, Accumulation
and Co-Factors

The discovery that artemisinins target SERCA orthologues in P. falciparum
(PfATP6) and P. vivax (PvSERCA) [44] shed new light and encouraged research

towards the same and other novel targets for peroxide antimalarials. Thus, it was

found that artemisone is more potent against plasmodial SERCA orthologues

[Ki ¼ 1.7 � 0.6 nM (PfATP6) and Ki ¼ 0.072 � 0.012 nM (PvSERCA)], as com-

pared with values for artemisinin [Ki ¼ 169 � 31 nM (PfATP6) and Ki ¼ 7.7

� 4.9 nM (PvSERCA)] [46].

In order to better understand the mechanism of the accumulation into infected

and uninfected erythrocytes, radiolabelled artemisone 9e* was submitted to uptake

assays [47]. It was found that artemisone was accumulated in infected erythrocytes

at significantly higher levels than in uninfected ones, by a saturable, competitive,

time- and temperature-dependent mechanism. Most radioactivity was detected in

pellet fractions which predominantly contain proteins suggesting that artemisone is

probably associated with proteins [48]. The distribution of artemisone is dependent

on the stage of parasite maturation: after incubation with immature parasites, which

are highly susceptible to action of artemisinins in vitro, as well as in vivo, most

artemisone was found in a Triton-soluble fraction, which contains proteins, DNA

and RNA. In mature parasites most artemisone was found in the Triton-insoluble

fraction, which predominantly contains haemozoin. This finding suggests that

mature infected erythrocytes can act by removing the artemisinins. This was further

supported by the observation that mature infected erythrocytes take up artemisone

much faster than do the more sensitive ring-stage-infected erythrocytes.

Methylene blue (MB) was the first synthetic drug ever used in humans, and it

was Paul Erlich who cured two patients from malaria using MB in 1891 [49]. The

discovery that artemisinin and artemether exhibit synergic effects with methylene

blue [50], unlike chloroaminoquinolines, initiated systematic examination of reac-

tivity relationships between the drugs with the aim to possibly correlate their

mechanism of antimalarial action. Subsequent research by the same group [51]

revealed MB as a redox-cycling agent that produces H2O2 at the expense of O2 and

of NADPH in each cycle (Fig. 5). Thus, MB consumes NADPH and O2 needed for

the pathogen’s metabolism, with probably serious consequences to the NADPH/

NADP ratio.
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The results of subsequent research revealed that artemisone, other artemisinins

[52] and other peroxide antimalarials like ozonides and tetraoxanes [53] are active

in the presence of MB-ascorbic acid, MB–N-benzyl-1,4-dihydronicotinamide

(BNAH), riboflavin–BNAH and riboflavin–NADPH systems and yield identical

products to those that were isolated from the reaction of the same antimalarials with

Fe(II). According to this proposal, antimalarial peroxides act as oxidants re-

oxidising LMB and FADH2, so contributing to depletion of NADPH (Scheme 3).

The observed results suggest that peroxide antimalarials disrupt a highly sensi-

tive redox balance established in the parasite and thereby cause its death. The

results also correlate well with the observed SAR of artemisinins, i.e., artemisinins

that exhibited low antimalarial activity, like 9-epiartemisinin [54, 55], also show

low reactivity under the applied reaction conditions. In addition, high antimalarial

activity of 5-nor-4,5-seco-artemisinin 23 can easily be comprehended using the new

mechanism proposal. The proposed explanation involves iron-free reactions; how-

ever, Fe(III) rapidly oxidises FADH2, and thus contributes to redox cycling without

interfering with artemisinins.
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3 1,2,4-Trioxolanes (Ozonides)

1,2,4-Trioxolanes are a very well-known class of organic compounds. They are

intermediates in the transformation of olefins into carbonyls during ozonolysis. It

was an unexpected and surprising discovery [56] that ozonides are relatively stable

and that many of them express excellent activity against malaria parasites, as do the

structurally similar 1,2,4-trioxanes.

3.1 Development of 1,2,4-Trioxolanes: OZ209, OZ277 and OZ339

Preparation of 1,2,4-trioxolanes is relatively simple and relies on the Griesbaum co-

ozonolysis of suitable methyl oximes and ketones (Scheme 4) [57–59]. This method

provides a highly applicable synthetic approach to tetrasubstituted 1,2,4-trioxolanes

(ozonides), otherwise accessible only with great difficulty by ozonolysis of the

corresponding alkenes, or by other means.

The synthesis of the final OZ antimalarial drug significantly benefits from the

stability of the ozonide peroxide bridge to reduction and alkylation conditions, as

well as to other standard reaction conditions. This enables transformation of the

initial co-ozonolysis products into a vast array of unsymmetrically substituted

ozonides (n > 500!) [60]. Usually, the final 1,2,4-trioxolane antimalarials are

prepared in 1–4 steps, depending on the modifications required [57–59, 61–63],

affording the final products in yields up to 75%. The vast majority of these

antimalarials are achiral, which greatly facilitates production in the developmental

step. A substantial improvement in drug design in the antimalarial field was the

development of the 4-substituted cyclohexyl-adamantyl ozonide (adamantane-2-

spiro-30-10,20,40-trioxaspiro[4.5]decane) chemotype. The advantage of OZ antimala-

rials is the use of the adamantane moiety that has lipophilic functionality, allowing

the opposite part of the molecule to be fine-tuned using a number of polar functional

groups, preferably basic in nature [56, 58–62]. Many of the OZ compounds

obtained in this way were active in all stages of development of the malaria parasite

and are more active than artemether and artesunate, both in vivo and in vitro. All

these findings, gathered during much experimentation, contributed to the discovery

of amines OZ209 (24 as mesylate, Fig. 6) and OZ277 (25 as tosylate, Fig. 6) as the

best drug candidates.

In comparison with other OZ compounds, trioxolanes OZ209 and OZ277

showed superior pharmacokinetic results, such as prolonged half-life and enhanced

N
OCH3

O R
O

O O

R
O3

+

Scheme 4 Griesbaum co-ozonolysis: Ozonides
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bioavailability after a single oral dose. Compound OZ209 had somewhat better

antimalarial results and a lower recrudescence level. However, OZ277 was chosen

as the development candidate, primarily because of its improved toxicological

profile and reduced concentrations in brain tissue after oral dosing [56]. For

example, 2 h after dosing, both OZ209 and OZ277 were distributed throughout

the liver, kidney, lung and heart, while after 18 h, OZ277 was detected only in the

lungs and in several-fold lower concentrations than OZ209.

Unlike OZ209, which was quantified in brain tissue after both 2 h and 18 h,

trioxolane OZ277 could not be quantified in this organ at all. In view of potential

neurotoxicity issues, these findings were taken as a considerable advantage of

OZ277 over OZ209. Trioxolane OZ277 appeared quite stable to metabolic trans-

formation (t½ ¼ 17 h, p.o. in healthy rats) [56]. The metabolic profile of OZ277

was studied with human liver microsomes and only two, monohydroxylated

derivatives at the adamantane angular positions (32 and 33, Fig. 7), were identified

as major metabolites, thus confirming the stability of the trioxolane moiety to

metabolic transformation. Interestingly, both metabolites were inactive against

the P. falciparum K1 strain (IC50 > 100 ng/ml), thus demonstrating the indispens-

ability of the unsubstituted spiro-adamantane moiety to the antimalarial activity of

OZ277 (IC50 (K1) ¼ 1.0 ng/ml) [64]. Unlike the artemisone products (Scheme 1),

OZ metabolic derivatives 32 and 33 very probably lower the overall OZ277

antimalarial activity. The other derivatives 26–29 (Fig. 5) afforded further insight

into SAR in the context of the physico-chemical, biopharmaceutical and toxicolog-

ical profiles of trioxolanes [61].

30 31

O

O

O

NH224: OZ209 25: OZ277, Arterolane
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O
O

O27

O
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28

29

IC50(nM)
K1 NF54

24 1.33 1.43
25 2.55 2.32
26 0.86 1.69
27 4.12 7.41
28 3.59 6.85
29 6.46 14.10
30 471.08 ~2000
31 3002.24 2461.84

– – –

–

–
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–
–

Fig. 6 1,2,4-TroxolanesOZ209 andOZ277, and selected congeners. CompoundOZ277 has been

advanced to Phase III clinical trials (vide infra)
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Fig. 7 Microsomal metabolites of ozonide OZ277
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Recently, the same authors revealed data for a series of OZ compounds with

weak base functional groups, which were responsible for a high antimalarial

efficacy in P. berghei-infected mice [65]. Their antimalarial efficacy and ADME

profiles are equal or superior to OZ277. One of the most promising is OZ339 (as

tosylate salt). The two trioxolanes, OZ339 and OZ277 are evaluated in Table 1,

with artesunate added for comparison. Despite the obvious difference in in vitro

activity, both ozonides eradicate parasitaemia below the detectable level 1 day after

administration (99.9%, 1 �10 mg/kg, and 3 � 3 mg/kg). The drug candidate

OZ277 is a powerful fast-acting antimalarial with a 67% cure record at a

3 � 10 mg/kg dosage (mice) [56]. However, at a 3 � 3 mg/kg dosage, the same

compound cured no mice, while trioxolaneOZ339 cured 3/5 mice with an excellent

survival time of 27 days (OZ277 had a 2.4 times lower survival time). These good

pharmacokinetic characteristics are additionally enhanced by the favourable bio-

availability data for OZ339 (78%, Table 1). In all experiments, artesunate showed

inferior activity. Inhibition assays revealed thatOZ339, likeOZ277, did not inhibit

CYP3A4, CYP2C9 and 2D6CYP450 at concentrations up to 50 mM. Finally,

preliminary toxicological experiments indicated that OZ339 was minimally toxic

(liver) and, similar to OZ277, demonstrated no detectable signs of neurotoxicity.

As mentioned above, the tolerance of the 1,2,4-trioxolane moiety to diverse

reaction conditions [57] and resistance to metabolic transformation [64] enabled the

synthesis of a significant number of derivatives and many of them showed very

good antimalarial activity, e.g., derivatives 34–38 (Fig. 8) [66], and derivatives

which contain aliphatic and aromatic amino functional groups or azole heterocycles

as substituents (39–45) (Fig. 8) [62].

The lack of activity of trioxolane 46 [62], and the isolation of inactive

hydroxylated OZ277 metabolites [64], point to the essential contribution of an

unsubstituted spiro-adamantane system to the antimalarial properties of this class of

compounds.

Many of the examined derivatives exhibited excellent in vitro results, but failed

during in vivo tests, toxicity trials or metabolic stability and bioavailability tests.

More lipophilic trioxolanes tend to have better oral activities and are metabolically

less stable than their more polar counterparts. Such behaviour is consistent with

results obtained for other classes of synthetic peroxides. Trioxolanes with a wide

range of neutral and basic groups had good antimalarial profiles, unlike derivatives

with acidic groups. Based on the collected extensive screening results, the authors

concluded that in vitro activities of 1,2,4-trioxolanes are not (always) a reliable

predictor of in vivo potency [66]. Rather, their experiments in P. berghei-infected
mice confirmed that in vivo results were essential for compound differentiation and

selection for further metabolic and pharmacokinetic profiling [65].

Trioxolane OZ277 alkylates haem (Fig. 9) [67], and its in vitro activity against

P. falciparum is antagonised by DFO [68]. In vitro, artesunate and OZ277 act

antagonistically against P. falciparum. These findings, together with only weak

interaction with the proposed artemisinin target PfATP6 [44], unlike artemisone

[33], suggest that interaction with food vacuole-generated haem is probably how

trioxolanes are activated. Further support can be found in the fact that the
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stereochemistry of a given compound has little effect on the in vitro potency of

trioxolane antimalarials, thereby strongly pointing to the interaction of an antima-

larial peroxide (chiral or achiral) with an achiral target (haem). The selectivity of

trioxolanes towards infected and not-healthy erythrocytes may be explained based

on their reactivity towards free haem and stability in the presence of oxy- and

deoxyHb [69].

aActivities are represented as IC50values, expressed in nM
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Fig. 8 Structures of ozonides 33–45 with their in vitro antimalarial activity
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Based on the concept that compounds with two integrated pharmacophores

might have enhanced activity [70], the chimaeric trioxolane OZ258 was prepared

(Fig. 10) [58, 59]. Although it is very active in vitro against the K1 and NF54 strains

of P. falciparum and in vivo against the ANKA strain of P. berghei,OZ258 did not

achieve the synergic effect of two pharmacophores, especially when compared with

trioxolanes 39 and 43. The same holds for other chloroaminoquinoline and acridine

chimaeras [71].

Very often, promising peroxide drugs eradicate parasitaemia quickly, which is

crucial for rapid treatment of life-threatening cerebral malaria, and this property is

inherently protective against the development of resistance. Since the drugs are

typically administered for only a few days and they have short half-lives, the

recrudescence of malaria parasites occurs frequently (artemisone cf. [24, 32];

OZ277 cf. [58]). In an attempt to overcome this problem, artemisinin-based

combination therapies (ACTs) are recommended (as indicated for artemisone, see

above) by the WHO. The WHO currently distributes, under a no-loss and no-profit

agreement with Novartis, the fixed-dose ACT drug Coartem® (artemether 20 mg/

lumefantrine 120 mg) [72]. The drug has been recently approved by the FDA for the

treatment of acute, uncomplicated malaria infections [73]. Although each ACT is

specific [73, 74], the following concept can be applied to all: antimalarial peroxides

eliminate most of the infection and the remaining parasites are then exposed to high

concentrations of the slow-acting partner drugs; because of the rapid reduction in

parasites, the selective pressure for the emergence of mutant parasites is greatly

reduced. In accord, OZ277 (RBX-11160) entered Phase III clinical trials in combi-

nation with piperaquine (arterolane maleate + piperaquine phosphate) [75].

3.2 The Second Generation of 1,2,4-Trioxolane Drug
Candidates: OZ439

In Phase I clinical trials, the half-life of OZ277 in healthy volunteers was only

about two- to threefold longer than that of dihydroartemisinin. OZ277’s possible

first-generation ozonide alternative, OZ339, only has a slightly higher t½ value

OZ258

O

O

O

N
H

N

NH

Cl

IC50 (nM) % Activity (10 mg/kg)

K1 NF54 p.o. s.c.
11.98 10.74 75 99.95

Fig. 10 Chimaeric

trioxolane OZ258
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(Table 1); so the search for an ozonide with significantly increased half-life

continued.

As a result, screening of the second generation of ozonide antimalarials has been

completed, recently [76]. Of the several very active OZ compounds of undisclosed

structure it appears that the most promising antimalarial candidate is OZ439

(Table 2) [76]. Initial results indicate that this compound provides single-dose

oral cure in a murine malaria model at 20 mg/kg, a situation not known for any

of the peroxide antimalarials except for artelininc acid at>7 times higher dose [76].

The second-generation ozonide OZ439 completed Phase I studies and is currently

undergoing Phase IIa clinical trials. In accord with other ozonide antimalarials,

OZ439 is considered to be an Fe(II)-initiated pro-drug. However, it is >50-fold

more stable to Fe(II)-mediated degradation compared with OZ277 [76]. Consistent

with proposed Fe(II) degradation of ozonides [67] is the significantly enhanced

stability (15–20 times) of OZ439 over OZ277 in healthy and infected human and

rat blood. This prolonged blood stability and improved pharmacokinetic

characteristics (Table 2) led to the positioning of OZ439 as the current major OZ

drug candidate – with respect to post-infection cure (3 � 5 mg/kg/day and 20 mg/kg

single dose), and exclusive prophylactic characteristics (Table 2). The absence of

metabolic products significantly contributes to overall activity (prophylactic and

post-infection) of OZ439 relative to other peroxide antimalarial drugs [76].

To conclude, as a consequence of intensive and comprehensive research, effi-

cient antimalarial drug candidates of different chemotype have been devised:

artemisone and 1,2,4-trioxolane OZ277. They are nontoxic, effective at small

doses and very probably inexpensive to produce2 [77]. The same may hold for a

prospective backup candidate artemiside and the newest breakthrough drug candi-

date OZ439. It would be of benefit if their combination partner would cure malaria

through different mechanisms, since resistance is then less likely to occur.
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