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Preface

Paul Richard Halmos, who lived a life of unbounded devotion to mathematics and
to the mathematical community, died at the age of 90 on October 2, 2006. This
volume is a memorial to Paul by operator theorists he inspired.

Paul’s initial research, beginning with his 1938 Ph.D. thesis at the University
of Illinois under Joseph Doob, was in probability, ergodic theory, and measure
theory. A shift occurred in the 1950s when Paul’s interest in foundations led him
to invent a subject he termed algebraic logic, resulting in a succession of papers
on that subject appearing between 1954 and 1961, and the book Algebraic Logic,
published in 1962.

Paul’s first two papers in pure operator theory appeared in 1950. After 1960
Paul’s research focused on Hilbert space operators, a subject he viewed as encom-
passing finite-dimensional linear algebra.

Beyond his research, Paul contributed to mathematics and to its community
in manifold ways: as a renowned expositor, as an innovative teacher, as a tireless
editor, and through unstinting service to the American Mathematical Society and
to the Mathematical Association of America. Much of Paul’s influence flowed at a
personal level. Paul had a genuine, uncalculating interest in people; he developed
an enormous number of friendships over the years, both with mathematicians and
with nonmathematicians. Many of his mathematical friends, including the editors
of this volume, while absorbing abundant quantities of mathematics at Paul’s knee,
learned from his advice and his example what it means to be a mathematician.

The first section of this volume contains three tributes to Paul written on the
occasion of his death. They elaborate on the brief remarks in the preceding para-
graph, and are reproduced here with the kind permission of their authors and their
original publishers. The last item in the first section reproduces the late George
Piranian’s Mathematical Review of Paul’s article How to write mathematics. A list
of Paul’s publications comprises the next section, which is followed by a section of
photographs of Paul and photographs taken by Paul.

The main and final section consists of a collection of expository articles by
prominent operator theorists. From these articles, this generation of operator the-
orists and future generations will get a glimpse of many aspects of their subject,
and of how Paul enriched and advanced it through his fundamental insights and
prescient questions.
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Paul Halmos – Expositor Par Excellence*

V.S. Sunder

Abstract. Paul Richard Halmos, one of the best expositors of mathematics
– be it with pen on paper or with chalk on blackboard – passed away on
October 2, 2006 after a brief period of illness. This article is an attempt to
pay homage to him by recalling some of his contributions to mathematics.

Mathematics Subject Classification (2000). 47-xx.

Keywords. Halmos, Hilbert space, operator theory, ergodic theory.

Introduction

Here is what Donald Sarason – arguably the most accomplished PhD student of
Halmos – writes about his extraordinary teacher (in [1]):

“Halmos is renowned as an expositor. His writing is some thing he works hard
at, thinks intensely about, and is fiercely proud of. (Witness: “How to write math-
ematics” (see [2]).) In his papers, he is not content merely to present proofs that
are well organized and clearly expressed; he also suggests the thought processes
that went into the construction of his proofs, pointing out the pitfalls he encoun-
tered and indicating helpful analogies. His writings clearly reveal his commitment
as an educator. In fact, Halmos is instinctively a teacher, a quality discernible in
all his mathematical activities, even the most casual ones.

Most of us, when we discover a new mathematical fact, how ever minor, are
usually eager to tell someone about it, to display our cleverness. Halmos behaves
differently: he will not tell you his discovery, he will ask you about it, and challenge
you to find a proof. If you find a better proof than his, he will be delighted, because
then you and he will have taught each other.

To me, Halmos embodies the ideal mixture of researcher and teacher. In
him, each role is indistinguishable from the other. Perhaps that is the key to his
remarkable influence.”

* Reprinted with permission from the February 2007 issue of Resonance.
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Many of his expository writings, elaborating on his views on diverse topics
– writing, lecturing, and doing mathematics – are a ‘must read’ for every serious
student of mathematics. Conveniently, many of them have been collected together
in [2].

And here is what one finds in the web pages of the Mathematics Association
of America (MAA):

“Professor Halmos was a famed author, editor, teacher, and speaker of dis-
tinction. Nearly all of his many books are still in print. His Finite Dimensional
Vector Spaces, Naive Set Theory, Measure Theory, Problems for Mathematicians
Young and Old, and I Want to be a Mathematician are classic books that reflect his
clarity, conciseness, and color. He edited the American Mathematical Monthly from
1981–1985, and served for many years as one of the editors of the Springer-Verlag
series Undergraduate Texts in Mathematics and Graduate Texts in Mathematics.”

While Halmos will be the first to acknowledge that there were far more ac-
complished mathematicians around him, he would at the same time be the last
to be apologetic about what he did. There was the famous story of how, as a
young and very junior faculty member at the University of Chicago, he would not
let himself be bullied by the very senior faculty member André Weil on a matter
of faculty recruitment. His attitude – which functional analysts every where can
do well to remember and take strength from – was that while algebraic geometry
might be very important, the usefulness of operator theory should not be denied.

Even in his own area of specialisation, there were many mathematicians more
powerful than he; but he ‘had a nose’ for what to ask and which notions to concen-
trate on. The rest of this article is devoted to trying to justify the assertion of the
last line and describing some of the mathematics that Halmos was instrumental
in creating. Also, the author has attempted to conform with Halmos’ tenet that
symbols should, whenever possible, be substituted by words, in order to assist the
reader’s assimilation of the material. An attempt to write a mathematical article
subject to this constraint will convince the reader of the effort Halmos put into
his writing!

The invariant subspace problem

Although Halmos has done some work in probability theory (his PhD thesis was
written under the guidance of the celebrated probabilist J.L. Doob), statistics
(along with L.J. Savage, he proved an important result on sufficient statistics),
ergodic theory and algebraic logic, his preferred area of research (where he eventu-
ally ‘settled down’) was undoubtedly operator theory, more specifically, the study
of bounded operators on Hilbert space. Recall that a Hilbert space means a vector
space over the field of complex numbers which is equipped with an inner product
and is complete with respect to the norm arising from the inner product. Most of
his research work revolved around the so-called invariant subspace problem, which
asks: Does every bounded (= continuous) linear operator on a Hilbert space (of
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dimension at least 2) admit a non-trivial invariant subspace, meaning: Is there
a closed subspace, other than the zero subspace and the whole space (the two
extreme trivial ones1) which is mapped into itself by the operator? The answer
is negative over the field of real numbers (any rotation in the plane yielding a
counterexample), and is positive in the finite-dimensional complex case (thanks to
complex matrices having complex eigenvalues).

The first progress towards the solution of this problem came when von Neu-
mann showed that if an operator is compact (i.e., if it maps the unit ball into a
compact set, or equivalently, if it is uniformly approximable on the unit ball by
operators with finite-dimensional range), then it does indeed have a non-trivial
invariant subspace. This was later shown, by Aronszajn and Smith, to continue to
be true for compact operators over more general Banach, rather than just Hilbert,
spaces.

Then Smith asked and Halmos publicized the question of whether an operator
whose square is compact had invariant subspaces. It was subsequently shown by
Bernstein and Robinson, using methods of ‘non-standard analysis’, that if some
non-zero polynomial in an operator is compact, then it has invariant subspaces.
Very shortly after, Halmos came up with an alternative proof of this result, using
standard methods of operator theory.

Quasitriangularity, quasidiagonality and the
Weyl-von Neumann-Voiculescu theorem

Attempting to isolate the key idea in the proof of the Aronszajn-Smith theorem,
Halmos identified the notion of quasitriangular operators. ‘Triangular’ operators –
those which possess an upper triangular matrix with respect to some orthonormal
basis – may also be described (since finite-dimensional operators are triangular) as
those which admit an increasing sequence of finite-dimensional invariant subspaces
whose union is dense in the Hilbert space. Halmos’ definition of quasitriangularity
amounts to weakening ‘invariant’ to ‘asymptotically invariant’ in the previous sen-
tence. An entirely equivalent requirement, as it turns out, is that the operator is
of the form ‘triangular + compact’; and the search was on for invariant subspaces
of quasitriangular operators. This was until a beautiful ‘index-theoretic’ charac-
terisation of quasitriangularity was obtained by Apostol, Foias and Voiculescu,
which had the unexpected consequence that if an operator or its adjoint is not
quasitriangular, then it has a non-trivial invariant subspace.

There is a parallel story involving quasidiagonality, also starting with a def-
inition by Halmos and ending with a spectacular theorem of Voiculescu. Recall
that in finite-dimensional Hilbert spaces, according to the spectral theorem, self-
adjoint operators have diagonal matrices with respect to some orthonormal ba-
sis, and two selfadjoint operators are unitarily equivalent precisely when they

1This is why the Hilbert space needs to be at least 2-dimensional.
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have the same eigenvalues (i.e., diagonal entries in a diagonal form) which oc-
cur with the same multiplicity. Thus the spectrum of an operator (i.e., the set
(T ) = {λ ∈ C : (T − λ) is not invertible}) and the associated spectral multiplicity
(the multiplicity of λ is the dimension of the nullspace of T − λ) form a complete
set of invariants for unitary equivalence in the class of self-adjoint operators.

In the infinite-dimensional case, Hermann Weyl proved that the so-called
‘essential spectrum’ of a self-adjoint operator is left unchanged when it is perturbed
by a compact operator; (here, the ‘essential spectrum’ of a self-adjoint operator is
the complement, in the spectrum, of ‘isolated eigenvalues of finite multiplicity’;)
while von Neumann showed that the essential spectrum is a complete invariant
for ‘unitary equivalence modulo compact perturbation’ in the class of self-adjoint
operators. Thus, if one allows compact perturbations, spectral multiplicity is no
longer relevant. It follows that self-adjoint operators are expressible in the form
‘diagonal + compact’; von Neumann even proved the strengthening with ‘compact’
replaced by ‘Hilbert-Schmidt’. (Recall that an operator T is said to be a Hilbert-
Schmidt operator if

∑ ‖Ten‖2 ≤ ∞ for some (equivalently every) orthonormal
basis {en} of the Hilbert space.)

Halmos asked if both statements had valid counterparts for normal opera-
tors; specifically, does every normal operator admit a decomposition of the form
(a) diagonal + Hilbert-Schmidt, and less stringently (b) diagonal + compact. Both
questions were shown to have positive answers as a consequence of the brilliant
‘noncommutative Weyl von Neumann theorem’ due to Voiculescu (about repre-
sentations of C∗-algebras, which specialises in the case of commutative ∗-algebras
to the desired statements about normal operators); however(a) had also been in-
dependently settled by I.D. Berg.

Subnormal operators and unitary dilations

There were two other major contributions to operator theory by Halmos: subnor-
mal operators and unitary dilations. Both were born of his unwavering belief that
the secret about general operators lay in their relationship to normal operators.
He defined a subnormal operator to be the restriction of a normal operator to
an invariant subspace; the most striking example is the unilateral shift. (Recall
that the bilateral shift is the clearly unitary, hence normal, operator on the bi-
lateral sequence space �2(Z) = {f : Z → C :

∑
n∈Z |f(n)|2 < ∞} defined by the

equation (Wf)(n) = f(n − 1). In the previous sentence, if we replace Z by Z+,
the analogous equation defines the unilateral shift U on the one-sided sequence
space �2(Z+), which is the prototypical isometric operator which is not unitary. It
should be clear that �2(Z+) may be naturally identified with a subspace of �2(Z)
which is invariant under W , and that the restriction of W to that subspace may
be identified with U .) Halmos proved that a general subnormal operator exhibits
many properties enjoyed by this first example. For instance, he showed that the
normal extension of a subnormal operator is unique under a mild (and natural)
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minimality condition. (The minimal normal extension of the unilateral shift is the
bilateral shift.) Halmos also established that the spectrum of a subnormal oper-
ator is obtained by ‘filling in some holes’ in the spectrum of its minimal normal
extension. Many years later, Scott Brown fulfilled Halmos’ hope by establishing
the existence of non-trivial invariant subspaces of a subnormal operator.

More generally than extensions, Halmos also initiated the study of dilations.
It is best to first digress briefly into operator matrices. The point is that if T is
an operator on H, then any direct sum decomposition H = H1 ⊕ H2 leads to an
identification

T =
[
T11 T12
T21 T22

]
,

where Tij : Hj → Hi; 1 ≤ i, j ≤ 2 are operators which are uniquely determined by
the requirement that if the canonical decomposition H � x = x1 + x2, xi ∈ Hi is
written as x = [ x1

x2 ], then

T

[
x1
x2

]
=
[
T11 T12
T21 T22

] [
x1
x2

]
=
[
T11x1 + T12x2
T21x1 + T22x2

]
.

Thus, for instance, the orthogonal projection P1 of H onto H1 is given by

P1 =
[
idH1 0
0 0

]
and T11 = P1T |H1 . It is customary to call T11 the compression of T to H1 and to
call T a dilation of T11. (Note that if, and only if, T21 = 0, then ‘compression’ and
‘dilation’ are nothing but ‘restriction’ and ‘extension’.) Halmos wondered, but not
for long, if every operator had a normal dilation; he proved that an operator has
a unitary dilation if (and only if) it is a contraction (i.e., maps the unit ball of the
Hilbert space into itself).

Subsequently, Sz.-Nagy showed that every contraction in fact has a ‘power
dilation’: i.e., if T is a contraction, then there is a unitary operator U on some
Hilbert space such that, simultaneously, Un is a dilation of T n for every n ≥ 0.
Halmos noticed that this established the equivalence of the following conditions:
• T is a contraction,
• T n is a contraction, for each n,
• ‖p(T )‖ ≤ sup{|f(z)| : z ∈ D (i.e., |z| < 1)},

and asked if the following conditions were equivalent:
• T is similar to a contraction, i.e., there exists an invertible operator S such

that S−1TS is a contraction.
• supn ‖T n‖ ≤ K.
• ‖p(T )‖ ≤ K sup{|f(z)| : z ∈ D}.

This question, as well as generalisations with D replaced by more general domains
in Cn, had to wait a few decades before they were solved by Gilles Pisier us-
ing ‘completely bounded maps’ and ‘operator spaces’ which did not even exist in
Halmos’ time!
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His influence on operator theory may be gauged by the activity in this area
during the period between his two expository papers (which are listed as his ‘Tech-
nical papers’ at the end of this article, and which may both be found in [1]).

He listed 10 open problems in the area in the first paper, and reviewed the
progress made, in the second paper. While concluding the latter paper, he wrote:

I hope that despite its sins of omission, this survey conveyed the flavor
and the extent of progress in the subject during the last decade.

Likewise, I hope I have been able to convey something of the brilliance of
the expositor in Halmos and the excitement and direction he brought to operator
theory in the latter half of the last century.

Ergodic theory

Although the above account mainly discusses Halmos’ contributions to operator
theory, undoubtedly due to limitations of the author’s familiarity with the areas
in which Halmos worked, it would be remiss on the author’s part to not make at
least passing mention of his contributions to ergodic theory.

He wrote the first English book on ergodic theory (the first book on the
subject being Hopf’s, in German). He made his influence felt in the field through
the problems he popularised and the investigations he undertook. For instance,
he gave a lot of publicity, through his book, to the question of whether a ‘non-
singular’ transformation of a measure space – i.e., one which preserved the class of
sets of measure zero – admitted an equivalent σ-finite measure which it preserved.
This led to the negative answer by Ornstein, subsequent results in the area by Ito,
Arnold, and others and culminated in the very satisfying results by Krieger on orbit
equivalence. Other contributions of his include the consideration of topologies on
the set of measure-preserving transformations of a measure space (influenced no
doubt by the ‘category-theoretic’ results obtained by Oxtoby and Ulam about the
ampleness of ergodic homeomorphisms among all homeomorphisms of a cube in n
dimensions) and initiating the search for square roots (and cube roots, etc.) of an
ergodic transformation.

A brief biography

A brief non-mathematical account of his life follows. For a more complete and
eminently readable write-up which serves the same purpose (and much more at-
tractively, with numerous quotes of Halmos which serve to almost bring him to
life), the reader is advised to look at the web-site:

http://scidiv.bcc.ctc.edu/Math/Halmos.html

Halmos’ life was far from ‘routine’ – starting in Hungary and quickly moving
to America. The following paragraph from his autobiographical book [8] contains
a very pithy summing up of his pre-America life:
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My father, a widower, emigrated to America when I, his youngest son,
was 8 years old. When he got established, he remarried, presented us
with two step-sisters, and began to import us: first my two brothers, and
later, almost immediately after he became a naturalized citizen, myself.
In view of my father’s citizenship I became an instant American the
moment I arrived, at the age of 13.

The automathography referred to in [8] contains other vignettes where we
can see the problems/difficulties the young Halmos faced in coping with an alien
language and culture and a periodically unfriendly ‘goddam foreigner’ attitude.

After a not particularly spectacular period of undergraduate study, he began
by studying philosophy and mathematics, hoping to major in the former. Fortu-
nately for the thousands who learnt linear algebra, measure theory and Hilbert
space theory through his incomparable books, he fared poorly in the oral compre-
hensive exam for the masters’ degree, and switched to mathematics as a major.
It was only later, when he interacted with J.L. Doob that he seems to have be-
come aware of the excitement and attraction of mathematics; and wrote a thesis
on Invariants of Certain Stochastic Transformations: The Mathematical Theory
of Gambling Systems.

After he finished his PhD in 1938, he “typed 120 letters of application, and
got two answers: both NO.” “The U of I took pity on me and kept me on as an
instructor.” In the middle of that year a fellow graduate student and friend (Warren
Ambrose) of Halmos received a fellowship at the Institute for Advanced Study,
Princeton. “That made me mad. I wanted to go, too! So I resigned my teaching
job, borrowed $ 1000 from my father, [wrangled] an unsupported membership (= a
seat in the library) at the Institute, and moved to Princeton.”

There, he attended courses, including the one by John von Neumann (Every-
body called him Johnny) on ‘Rings of Operators’. Von Neumann’s official assistant
who was more interested in Topology, showed von Neumann the notes that Hal-
mos was taking of the course, and Halmos became the official note-taker for the
course and subsequently became von Neumann’s official assistant. The next year,
“with no official pre-arrangement, I simply tacked up a card on the bulletin board
in Fine Hall saying that I would offer a course called ‘Elementary theory of ma-
trices’, and I proceeded to offer it.” About a dozen students attended the course,
some took notes and these notes were subsequently pruned into what became
Finite-dimensional vector spaces; and Halmos’ career and book-writing skills were
off and running.

As a personal aside, this book was this author’s first introduction to the
charm of abstract mathematics, and which prompted him to go to graduate school
at Indiana University to become Halmos’ PhD student – his last one as it turned
out. This author cannot begin to enumerate all the things he learnt from this
supreme teacher, and will forever be in his debt.

As a final personal note, I should mention Virginia, his warm and hospitable
wife since 1945. I remember going to their house for lunch once and finding Paul
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all alone at home; his grumbled explanation: “Ginger has gone cycling to the old
folks home, to read to some people there, who are about 5 years younger than
her!”. (She was past 70 then.) She still lives at Los Gatos, California. They never
had children, but there were always a couple of cats in their house.

It seems appropriate to end with this quote from the man himself: “I’m not
a religious man, but it’s almost like being in touch with God when you’re thinking
about mathematics.”
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Paul Halmos: In His Own Words*

John Ewing

Abstract. Paul Halmos died on October 2, 2006, at the age of 90. After his
death, many people wrote about his career and praised both his mathematical
and his expository skills. Paul would have complained about that: He often
said he could smell great mathematicians, and he himself was not one of them.

But he was wrong. He was a master of mathematics in multiple ways,
and he influenced mathematicians and mathematical culture throughout his
career. Unlike most other master mathematicians, Paul’s legacy was not mere-
ly mathematics but rather advice and opinion about mathematical life—
writing, publishing, speaking, research, or even thinking about mathematics.
Paul wrote about each of these topics with an extraordinary mixture of convic-
tion and humility. Mathematicians paid attention to what he wrote, and they
often quoted it (and still do—“every talk ought to have one proof”). They dis-
agreed and frequently wrote rebuttals. They passed along his wisdom to their
students, who passed it along to theirs. Paul Halmos’s writing affected the pro-
fessional lives of nearly every mathematician in the latter half of the twentieth
century, and it will continue to influence the profession for years to come.

How does one write about great writing? Explanations of great expo-
sition always fall flat, like analyses of great poems or elucidations of famous
paintings. Art is best exhibited, not explained.

And so here is a collection of excerpts from the writing of Paul Halmos,
giving advice, offering opinions, or merely contemplating life as a mathe-
matician—all in his own words. – J.E.

Mathematics Subject Classification (2000). 00A05, 00B10.

Keywords. Mathematical exposition.

On writing

Excerpts from: “How to write mathematics”, Enseign. Math. (2) 16 (1970),
123–152.

. . . I think I can tell someone how to write, but I can’t think who would
want to listen. The ability to communicate effectively, the power to be intelligible,

* This article first appeared in Notices of the AMS, 54 (2007), 1136–1144. Reprinted with
permission.
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is congenital, I believe, or, in any event, it is so early acquired that by the time
someone reads my wisdom on the subject he is likely to be invariant under it. To
understand a syllogism is not something you can learn; you are either born with
the ability or you are not. In the same way, effective exposition is not a teachable
art; some can do it and some cannot. There is no usable recipe for good writing.

Then why go on? A small reason is the hope that what I said isn’t quite
right; and, anyway, I’d like a chance to try to do what perhaps cannot be done.
A more practical reason is that in the other arts that require innate talent, even
the gifted ones who are born with it are not usually born with full knowledge of
all the tricks of the trade. A few essays such as this may serve to “remind” (in the
sense of Plato) the ones who want to be and are destined to be the expositors of
the future of the techniques found useful by the expositors of the past.

The basic problem in writing mathematics is the same as in writing biology,
writing a novel, or writing directions for assembling a harpsichord: the problem is
to communicate an idea. To do so, and to do it clearly, you must have something
to say, and you must have someone to say it to, you must organize what you want
to say, and you must arrange it in the order you want it said in, you must write
it, rewrite it, and re-rewrite it several times, and you must be willing to think
hard about and work hard on mechanical details such as diction, notation, and
punctuation. That’s all there is to it. . .

It might seem unnecessary to insist that in order to say something well you
must have something to say, but it’s no joke. Much bad writing, mathematical
and otherwise, is caused by a violation of that first principle. Just as there are two
ways for a sequence not to have a limit (no cluster points or too many), there are
two ways for a piece of writing not to have a subject (no ideas or too many).

The first disease is the harder one to catch. It is hard to write many words
about nothing, especially in mathematics, but it can be done, and the result is
bound to be hard to read. There is a classic crank book by Carl Theodore Heisel
[The Circle Squared Beyond Refutation, Heisel, Cleveland, 1934] that serves as
an example. It is full of correctly spelled words strung together in grammatical
sentences, but after three decades of looking at it every now and then I still cannot
read two consecutive pages and make a one-paragraph abstract of what they say;
the reason is, I think, that they don’t say anything.

The second disease is very common: there are many books that violate the
principle of having something to say by trying to say too many things. . .

The second principle of good writing is to write for someone. When you
decide to write something, ask yourself who it is that you want to reach. Are you
writing a diary note to be read by yourself only, a letter to a friend, a research
announcement for specialists, or a textbook for undergraduates? The problems are
much the same in any case; what varies is the amount of motivation you need to
put in, the extent of informality you may allow yourself, the fussiness of the detail
that is necessary, and the number of times things have to be repeated. All writing
is influenced by the audience, but, given the audience, the author’s problem is to
communicate with it as best he can. . .



Paul Halmos: In His Own Words 13

Everything I’ve said so far has to do with writing in the large, global sense;
it is time to turn to the local aspects of the subject.

The English language can be a beautiful and powerful instrument for inter-
esting, clear, and completely precise information, and I have faith that the same is
true for French or Japanese or Russian. It is just as important for an expositor to
familiarize himself with that instrument as for a surgeon to know his tools. Euclid
can be explained in bad grammar and bad diction, and a vermiform appendix can
be removed with a rusty pocket knife, but the victim, even if he is unconscious of
the reason for his discomfort, would surely prefer better treatment than that. . .

My advice about the use of words can be summed up as follows. (1) Avoid
technical terms, and especially the creation of new ones, whenever possible. (2)
Think hard about the new ones that you must create; consult Roget; and make
them as appropriate as possible. (3) Use the old ones correctly and consistently,
but with a minimum of obtrusive pedantry. . .

Everything said about words, applies, mutatis mutandis, to the even smaller
units of mathematical writing, the mathematical symbols. The best notation is no
notation; whenever possible to avoid the use of a complicated alphabetic apparatus,
avoid it. A good attitude to the preparation of written mathematical exposition
is to pretend that it is spoken. Pretend that you are explaining the subject to a
friend on a long walk in the woods, with no paper available; fall back on symbolism
only when it is really necessary.

On speaking

Excerpts from: “How to talk mathematics”, Notices of AMS 21 (1974), 155–
158.

What is the purpose of a public lecture? Answer: to attract and to inform.
We like what we do, and we should like for others to like it too; and we believe that
the subject’s intrinsic qualities are good enough so that anyone who knows what
they are cannot help being attracted to them. Hence, better answer: the purpose
of a public lecture is to inform, but to do so in a manner that makes it possible
for the audience to absorb the information. An attractive presentation with no
content is worthless, to be sure, but a lump of indigestible information is worth
no more. . .

Less is more, said the great architect Mies van der Rohe, and if all lecturers
remember that adage, all audiences would be both wiser and happier.

Have you ever disliked a lecture because it was too elementary? I am sure
that there are people who would answer yes to that question, but not many. Every
time I have asked the question, the person who answered said no, and then looked
a little surprised at hearing the answer. A public lecture should be simple and
elementary; it should not be complicated and technical. If you believe and can act
on this injunction (“be simple”), you can stop reading here; the rest of what I have
to say is, in comparison, just a matter of minor detail.
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To begin a public lecture to 500 people with “Consider a sheaf of germs of
holomorphic functions. . . ” (I have heard it happen) loses people and antagonizes
them. If you mention the Künneth formula, it does no harm to say that, at least as
far as Betti numbers go, it is just what happens when you multiply polynomials.
If you mention functors, say that a typical example is the formation of the duals
of vector spaces and the adjoints of linear transformations.

Be simple by being concrete. Listeners are prepared to accept unstated (but
hinted) generalizations much more than they are able, on the spur of the mo-
ment, to decode a precisely stated abstraction and to re-invent the special cases
that motivated it in the first place. Caution: being concrete should not lead to
concentrating on the trees and missing the woods. In many parts of mathematics
a generalization is simpler and more incisive than its special parent. (Examples:
Artin’s solution of Hilbert’s 17th problem about definite forms via formally real
fields; Gelfand’s proof of Wiener’s theorem about absolutely convergent Fourier
series via Banach algebras.) In such cases there is always a concrete special case
that is simpler than the seminal one and that illustrates the generalization with
less fuss; the lecturer who knows his subject will explain the complicated special
case, and the generalization, by discussing the simple cousin.

Some lecturers defend complications and technicalities by saying that that’s
what their subject is like, and there is nothing they can do about it. I am skeptical,
and I am willing to go so far as to say that such statements indicate incomplete
understanding of the subject and of its place in mathematics. Every subject, and
even every small part of a subject, if it is identifiable, if it is big enough to give an
hour talk on, has its simple aspects, and they, the simple aspects, the roots of the
subject, the connections with more widely known and older parts of mathematics,
are what a non-specialized audience needs to be told.

Many lecturers, especially those near the foot of the academic ladder, anxious
to climb rapidly, feel under pressure to say something brand new—to impress their
elders with their brilliance and profundity. Two comments: (1) the best way to do
that is to make the talk simple, and (2) it doesn’t really have to be done. It may
be entirely appropriate to make the lecturer’s recent research the focal point of
the lecture, but it may also be entirely appropriate not to do so. An audience’s
evaluation of the merits of a talk is not proportional to the amount of original
material included; the explanation of the speaker’s latest theorem may fail to
improve his chance of creating a good impression.

An oft-quoted compromise between trying to be intelligible and trying to
seem deep is this advice: address the first quarter of your talk to your high-school
chemistry teacher, the second to a graduate student, the third to an educated
mathematician whose interests are different from yours, and the last to the spe-
cialists. I have done my duty by reporting the formula, but I’d fail in my duty if I
didn’t warn that there are many who do not agree with it. A good public lecture
should be a work of art. It should be an architectural unit whose parts reinforce
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each other in conveying the maximum possible amount of information—not a cam-
paign speech that offers something to everybody, and more likely than not, ends
by pleasing nobody. Make it simple, and you won’t go wrong. . .

Excerpt from: I Want to Be a Mathematician, p. 401, Springer-Verlag, New
York (1985).

. . . As for working hard, I got my first hint of what that means when
Carmichael told me how long it took him to prepare a fifty-minute invited ad-
dress. Fifty hours, he said: an hour of work for each minute of the final presen-
tation. When many years later, six of us wrote our “history” paper (“American
mathematics from 1940. . . ”), I calculated that my share of the work took about
150 hours; I shudder to think how many manhours the whole group put in. A
few of my hours went toward preparing the lecture (as opposed to the paper). I
talked it, the whole thing, out loud, and then, I talked it again, the whole thing,
into a dictaphone. Then I listened to it, from beginning to end, six times—three
times for spots that needed polishing (and which I polished before the next time),
and three more times to get the timing right (and, in particular, to get the feel
for the timing of each part.) Once all that was behind me, and I had prepared
the transparencies, I talked the whole thing through one final rehearsal time (by
myself—no audience). That’s work. . .

On exposition

Excerpt from: Response from Paul Halmos on winning the Steele Prize for Expo-
sition (1983).

Not long ago I ran across a reference to a publication titled A Method of
Taking Votes on More Than Two Issues. Do you know, or could you guess, who the
author is? What about an article titled “On automorphisms of compact groups”?
Who wrote that one? The answer to the first question is C.L. Dodgson, better
known as Lewis Carroll, and the answer to the second question is Paul Halmos.

Lewis Carroll and I have in common that we both called ourselves mathe-
maticians, that we both strove to do research, and that we both took very seriously
our attempts to enlarge the known body of mathematical truths. To earn his liv-
ing, Lewis Carroll was a teacher, and, just for fun, because he loved to tell stories,
he wrote Alice’s Adventures in Wonerland. To earn my living, I’ve been a teacher
for almost fifty years, and, just for fun, because I love to organize and clarify,
I wrote Finite Dimensional Vector Spaces. And what’s the outcome? I doubt if
as many as a dozen readers of these words have ever looked at either A Method
of Taking Votes. . . or “On automorphisms. . . ” but Lewis Carroll is immortal for
the Alice stories, and I got the Steele Prize for exposition. I don’t know what the
Reverend Mr. C.L. Dodgson thought about his fame, but, as for me, I was brought
up with the Puritan ethic: if something is fun, then you shouldn’t get recognized
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and rewarded for doing it. As a result, while, to be sure, I am proud and happy,
at the same time I can’t help feeling just a little worried and guilty.

I enjoy studying, learning, coming to understand, and then explaining, but it
doesn’t follow that communicating what I know is always easy; it can be devilishly
hard. To explain something you must know not only what to put in, but also what
to leave out; you must know when to tell the whole truth and when to get the
right idea across by telling a little white fib. The difficulty in exposition is not
the style, the choice of words—it is the structure, the organization. The words
are important, yes, but the arrangement of the material, the indication of the
connections of its parts with each other and with other parts of mathematics, the
proper emphasis that shows what’s easy and what deserves to be treated with
caution—these things are much more important. . .

On publishing

Excerpts from: “Four panel talks on publishing”, American Mathematical
Monthly 82 (1975), 14–17.

. . . Let me remind you that most laws (with the exception only of the regula-
tory statutes that govern traffic and taxes) are negative. Consider, as an example,
the Ten Commandments. When Moses came back from Mount Sinai, he told us
what to be by telling us, eight out of ten times, what not to do. It may therefore
be considered appropriate to say what not to publish. I warn you in advance that
all the principles that I was able to distill from interviews and from introspection,
and that I’ll now tell you about, are a little false. Counterexamples can be found
to each one—but as directional guides the principles still serve a useful purpose.

First, then, do not publish fruitless speculations: do not publish polemics
and diatribes against a friend’s error. Do not publish the detailed working out of
a known principle. (Gauss discovered exactly which regular polygons are ruler-
and-compass constructible, and he proved, in particular, that the one with 65537
sides—a Fermat prime—is constructible; please do not publish the details of the
procedure. It’s been tried.)

Do not publish in 1975 the case of dimension 2 of an interesting conjecture
in algebraic geometry, one that you don’t know how to settle in general, and then
follow it by dimension 3 in 1976, dimension 4 in 1977, and so on, with dimension
k − 3 in 197k. Do not, more generally, publish your failures: I tried to prove so-
and-so; I couldn’t; here it is—see?!

Adrian Albert used to say that a theory is worth studying if it has at least
three distinct good hard examples. Do not therefore define and study a new class of
functions, the ones that possess left upper bimeasurably approximate derivatives,
unless you can, at the very least, fulfill the good graduate student’s immediate
request: show me some that do and show me some that don’t.

A striking criterion for how to decide not to publish something was offered by
my colleague John Conway. Suppose that you have just finished typing a paper.



Paul Halmos: In His Own Words 17

Suppose now that I come to you, horns, cloven hooves, forked tail and all, and
ask: if I gave you $1,000,000, would you tear the paper up and forget it? If you
hesitate, your paper is lost—do not publish it. That’s part of a more general rule:
when in doubt, let the answer be no. . .

On research

Excerpt from: I Want to Be a Mathematician, pp. 321–322, Springer-Verlag,
New York (1985).

Can anyone tell anyone else how to do research, how to be creative, how to
discover something new? Almost certainly not. I have been trying for a long time
to learn mathematics, to understand it, to find the truth, to prove a theorem, to
solve a problem—and now I am going to try to describe just how I went about it.
The important part of the process is mental, and that is indescribable—but I can
at least take a stab at the physical part.

Mathematics is not a deductive science—that’s a cliché. When you try to
prove a theorem, you don’t just list the hypotheses, and then start to reason.
What you do is trial and error, experimentation, guesswork. You want to find out
what the facts are, and what you do is in that respect similar to what a laboratory
technician does, but it is different in the degree of precision and information.
Possibly philosophers would look on us mathematicians the same way we look on
the technicians, if they dared.

I love to do research, I want to do research, I have to do research, and I hate
to sit down and begin to do research—I always try to put it off just as long as I
can.

It is important to me to have something big and external, not inside myself,
that I can devote my life to. Gauss and Goya and Shakespeare and Paganini are
excellent, their excellence gives me pleasure, and I admire and envy them. They
were also dedicated human beings. Excellence is for the few but dedication is
something everybody can have—and should have—and without it life is not worth
living.

Despite my great emotional involvement in work, I just hate to start doing
it; it’s a battle and a wrench every time. Isn’t there something I can (must?) do
first? Shouldn’t I sharpen my pencils, perhaps? In fact I never use pencils, but
pencil sharpening has become the code phrase for anything that helps to postpone
the pain of concentrated creative attention. It stands for reference searching in
the library, systematizing old notes, or even preparing tomorrow’s class lecture,
with the excuse that once those things are out of the way I’ll really be able to
concentrate without interruption.

When Carmichael complained that as dean he didn’t have more than 20 hours
a week for research I marvelled, and I marvel still. During my productive years
I probably averaged 20 hours of concentrated mathematical thinking a week, but
much more than that was extremely rare. The rare exception came, two or three
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times in my life, when long ladders of thought were approaching their climax.
Even though I never was dean of a graduate school, I seemed to have psychic
energy for only three or four hours of work, “real work”, each day; the rest of the
time I wrote, taught, reviewed, conferred, refereed, lectured, edited, travelled, and
generally sharpened pencils all the ways I could think of. Everybody who does
research runs into fallow periods. During mine the other professional activities,
down to and including teaching trigonometry, served as a sort of excuse for living.
Yes, yes. I may not have proved any new theorems today, but at least I explained
the law of sines pretty well, and I have earned my keep.

Why do mathematicians do research? There are several answers. The one I
like best is that we are curious—we need to know. That is almost the same as
“because we want to,” and I accept that—that’s a good answer too. There are,
however, more answers, ones that are more practical.

On teaching

Excerpt from: “The problem of learning to teach”, American Mathematical
Monthly 82 (1975), 466–476.

The best way to learn is to do; the worst way to teach is to talk.
About the latter: did you ever notice that some of the best teachers of the

world are the worst lecturers? (I can prove that, but I’d rather not lose quite so
many friends.) And, the other way around, did you ever notice that good lecturers
are not necessarily good teachers? A good lecture is usually systematic, complete,
precise—and dull; it is a bad teaching instrument. When given by such legendary
outstanding speakers as Emil Artin and John von Neumann, even a lecture can
be a useful tool—their charisma and enthusiasm come through enough to inspire
the listener to go forth and do something—it looks like such fun. For most ordi-
nary mortals, however, who are not so bad at lecturing as Wiener was—not so
stimulating!—and not so good as Artin—and not so dramatic!—the lecture is an
instrument of last resort for good teaching.

My test for what makes a good teacher is very simple: it is the pragmatic one
of judging the performance by the product. If a teacher of graduate students con-
sistently produces Ph.D.’s who are mathematicians and who create high-quality
new mathematics, he is a good teacher. If a teacher of calculus consistently pro-
duces seniors who turn into outstanding graduate students of mathematics, or into
leading engineers, biologists, or economists, he is a good teacher. If a teacher of
third grade “new math” (or old) consistently produces outstanding calculus stu-
dents, or grocery store check-out clerks, or carpenters, or automobile mechanics,
he is a good teacher.

For a student of mathematics to hear someone talk about mathematics does
hardly any more good than for a student of swimming to hear someone talk about
swimming. You can’t learn swimming techniques by having someone tell you where
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to put your arms and legs; and you can’t learn to solve problems by having someone
tell you to complete the square or to substitute sinu for y.

Can one learn mathematics by reading it? I am inclined to say no. Reading
has an edge over listening because reading is more active—but not much. Reading
with pencil and paper on the side is very much better—it is a big step in the right
direction. The very best way to read a book, however, with, to be sure, pencil and
paper on the side, is to keep the pencil busy on the paper and throw the book
away.

Having stated this extreme position, I’ll rescind it immediately. I know that
it is extreme, and I don’t really mean it—but I wanted to be very emphatic about
not going along with the view that learning means going to lectures and reading
books. If we had longer lives, and bigger brains, and enough dedicated expert
teachers to have a student/teacher ratio of 1/1, I’d stick with the extreme views—
but we don’t. Books and lectures don’t do a good job of transplanting the facts
and techniques of the past into the bloodstream of the scientist of the future—but
we must put up with a second best job in order to save time and money. But, and
this is the text of my sermon today, if we rely on lectures and books only, we are
doing our students and their students, a grave disservice. . .

Excerpt from: “The heart of mathematics”, American Mathematical Monthly
87 (1980), 519–524.

. . . How can we, the teachers of today, use the problem literature? Our as-
signed task is to pass on the torch of mathematical knowledge to the technicians,
engineers, scientists, humanists, teachers, and, not least, research mathematicians
of tomorrow: do problems help?

Yes, they do. The major part of every meaningful life is the solution of prob-
lems; a considerable part of the professional life of technicians, engineers, scientists,
etc., is the solution of mathematical problems. It is the duty of all teachers, and of
teachers of mathematics in particular, to expose their students to problems much
more than to facts. It is, perhaps, more satisfying to stride into a classroom and give
a polished lecture on the WeierstrassM -test than to conduct a fumble-and-blunder
session that ends in the question: “Is the boundedness assumption of the test neces-
sary for its conclusion?” I maintain, however, that such a fumble session, intended
to motivate the student to search for a counterexample, is infinitely more valuable.

I have taught courses whose entire content was problems solved by students
(and then presented to the class). The number of theorems that the students
in such a course were exposed to was approximately half the number that they
could have been exposed to in a series of lectures. In a problem course, however,
exposure means the acquiring of an intelligent questioning attitude and of some
technique for plugging the leaks that proofs are likely to spring; in a lecture course,
exposure sometimes means not much more than learning the name of a theorem,
being intimidated by its complicated proof, and worrying about whether it would
appear on the examination.
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. . . Many teachers are concerned about the amount of material they must
cover in a course. One cynic suggested a formula; since, he said, students on the
average remember only about 40% of what you tell them, the thing to do is to
cram into each course 250% of what you hope will stick. Glib as that is, it probably
would not work.

Problem courses do work. Students who have taken my problem courses were
often complimented by their subsequent teachers. The compliments were on their
alert attitude, on their ability to get to the heart of the matter quickly, and on
their intelligently searching questions that showed that they understood what was
happening in class. All this happened on more than one level, in calculus, in linear
algebra, in set theory, and, of course, in graduate courses on measure theory and
functional analysis.

Why must we cover everything that we hope students will ultimately learn?
Even if (to stay with an example already mentioned) we think that the Weierstrass
M -test is supremely important, and that every mathematics student must know
that it exists and must understand how to apply it—even then a course on the
pertinent branch of analysis might be better for omitting it. Suppose that there
are 40 such important topics that a student must be exposed to in a term. Does
it follow that we must give 40 complete lectures and hope that they will all sink
in? Might it not be better to give 20 of the topics just a ten-minute mention (the
name, the statement, and an indication of one of the directions in which it can be
applied), and to treat the other 20 in depth, by student-solved problems, student-
constructed counterexamples, and student-discovered applications? I firmly believe
that the latter method teaches more and teaches better. Some of the material
doesn’t get covered but a lot of it gets discovered (a telling old pun that deserves
to be kept alive), and the method thereby opens doors whose very existence might
never have been suspected behind a solidly built structure of settled facts. As for
the Weierstrass M -test, or whatever was given short shrift in class—well, books
and journals do exist, and students have been known to read them in a pinch. . .

On mathematics

Excerpt from: “Mathematics as a creative art”, American Scientist 56 (1968),
375–389.

Do you know any mathematicians—and, if you do, do you know anything
about what they do with their time? Most people don’t. When I get into a conver-
sation with the man next to me in a plane, and he tells me that he is something
respectable like a doctor, lawyer, merchant or dean, I am tempted to say that I am
in roofing and siding. If I tell him that I am a mathematician, his most likely reply
will be that he himself could never balance his check book, and it must be fun to be
a whiz at math. If my neighbor is an astronomer, a biologist, a chemist, or any other
kind of natural or social scientist, I am, if anything, worse off—this man thinks he
knows what a mathematician is, and he is probably wrong. He thinks that I spend
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my time (or should) converting different orders of magnitude, comparing binomial
coefficients and powers of 2, or solving equations involving rates of reactions.

C.P. Snow points to and deplores the existence of two cultures; he worries
about the physicist whose idea of modern literature is Dickens, and he chides the
poet who cannot state the second law of thermodynamics. Mathematicians, in
converse with well-meaning, intelligent, and educated laymen (do you mind if I
refer to all nonmathematicians as laymen?) are much worse off than physicists in
converse with poets. It saddens me that educated people don’t even know that my
subject exists. There is something that they call mathematics, but they neither
know how the professionals use the word, nor can they conceive why anybody
should do it. It is, to be sure, possible that an intelligent and otherwise educated
person doesn’t know that egyptology exists, or haematology, but all you have to
tell him is that it does, and he will immediately understand in a rough general
way why it should and he will have some empathy with the scholar of the subject
who finds it interesting.

Usually when a mathematician lectures, he is a missionary. Whether he is
talking over a cup of coffee with a collaborator, lecturing to a graduate class
of specialists, teaching a reluctant group of freshman engineers, or addressing a
general audience of laymen—he is still preaching and seeking to make converts. He
will state theorems and he will discuss proofs and he will hope that when he is done
his audience will know more mathematics than they did before. My aim today is
different—I am not here to proselytize but to enlighten—I seek not converts but
friends. I do not want to teach you what mathematics is, but only that it is.

I call my subject mathematics—that’s what all my colleagues call it, all over
the world—and there, quite possibly, is the beginning of confusion. The word
covers two disciplines—many more, in reality, but two, at least two, in the same
sense in which Snow speaks of two cultures. In order to have some words with
which to refer to the ideas I want to discuss, I offer two temporary and ad hoc
neologisms. Mathematics, as the work is customarily used, consists of at least two
distinct subjects, and I propose to call them mathology and mathophysics. Roughly
speaking, mathology is what is called pure mathematics, and mathophysics is
called applied mathematics, but the qualifiers are not emotionally strong enough
to disguise that they qualify the same noun. If the concatenation of syllables I chose
here reminds you of other words, no great harm will be done; the rhymes alluded to
are not completely accidental. I originally planned to entitle this lecture something
like “Mathematics is an art,” or “Mathematics is not a science,” and “Mathematics
is useless,” but the more I thought about it the more I realized that I mean that
“Mathology is an art,” “Mathology is not a science,” and “Mathology is useless.”
When I am through, I hope you will recognize that most of you have known about
mathophysics before, only you were probably calling it mathematics; I hope that
all of you will recognize the distinction between mathology and mathophysics; and
I hope that some of you will be ready to embrace, or at least applaud, or at the
very least, recognize mathology as a respectable human endeavor.
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In the course of the lecture I’ll have to use many analogies (literature, chess,
painting), each imperfect by itself, but I hope that in their totality they will serve
to delineate what I want delineated. Sometimes in the interest of economy of time,
and sometimes doubtless unintentionally, I’ll exaggerate; when I’m done, I’ll be
glad to rescind anything that was inaccurate or that gave offense in any way. . .

Mathematics is abstract thought, mathematics is pure logic, mathematics is
creative art. All these statements are wrong, but they are all a little right, and
they are all nearer the mark than “mathematics is numbers” or “mathematics
is geometric shapes”. For the professional pure mathematician, mathematics is
the logical dovetailing of a carefully selected sparse set of assumptions with their
surprising conclusions via a conceptually elegant proof. Simplicity, intricacy, and
above all, logical analysis are the hallmark of mathematics.

The mathematician is interested in extreme cases—in this respect he is like
the industrial experimenter who breaks lightbulbs, tears shirts, and bounces cars
on ruts. How widely does a reasoning apply, he wants to know, and what happens
when it doesn’t? What happens when you weaken one of the assumptions, or under
what conditions can you strengthen one of the conclusions? It is the perpetual
asking of such questions that makes for broader understanding, better technique,
and greater elasticity for future problems.

Mathematics—this may surprise or shock you some—is never deductive in
its creation. The mathematician at work makes vague guesses, visualizes broad
generalizations, and jumps to unwarranted conclusions. He arranges and rearranges
his ideas, and he becomes convinced of their truth long before he can write down
a logical proof. The conviction is not likely to come early—it usually comes after
many attempts, many failures, many discouragements, many false starts. It often
happens that months of work result in the proof that the method of attack they
were based on cannot possibly work and the process of guessing, visualizing, and
conclusion-jumping begins again. A reformulation is needed and—and this too
may surprise you—more experimental work is needed. To be sure, by “experimental
work” I do not mean test tubes and cyclotrons. I mean thought-experiments. When
a mathematician wants to prove a theorem about an infinite-dimensional Hilbert
space, he examines its finite-dimensional analogue, he looks in detail at the 2- and
3-dimensional cases, he often tries out a particular numerical case, and he hopes
that he will gain thereby an insight that pure definition-juggling has not yielded.
The deductive stage, writing the result down, and writing down its rigorous proof
are relatively trivial once the real insight arrives; it is more like the draftsman’s
work, not the architect’s. . .

The mathematical fraternity is a little like a self-perpetuating priesthood.
The mathematicians of today train the mathematicians of tomorrow and, in effect,
decide whom to admit to the priesthood. Most people do not find it easy to join—
mathematical talent and genius are apparently exactly as rare as talent and genius
in paint and music—but anyone can join, everyone is welcome. The rules are
nowhere explicitly formulated, but they are intuitively felt by everyone in the
profession. Mistakes are forgiven and so is obscure exposition—the indispensable
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requisite is mathematical insight. Sloppy thinking, verbosity without content, and
polemic have no role, and—this is to me one of the most wonderful aspects of
mathematics—they are much easier to spot than in the nonmathematical fields of
human endeavor (much easier than, for instance, in literature among the arts, in
art criticism among the humanities, and in your favorite abomination among the
social sciences).

Although most of mathematical creation is done by one man at a desk, at a
blackboard, or taking a walk, or, sometimes, by two men in conversation, mathe-
matics is nevertheless a sociable science. The creator needs stimulation while he is
creating and he needs an audience after he has created. Mathematics is a sociable
science in the sense that I don’t think it can be done by one man on a desert island
(except for a very short time), but it is not a mob science, it is not a team science. A
theorem is not a pyramid; inspiration has never been known to descend on a com-
mittee. A great theorem can no more be obtained by a “project” approach than a
great painting: I don’t think a team of little Gausses could have obtained the the-
orem about regular polygons under the leadership of a rear admiral anymore than
a team of little Shakespeares could have written Hamlet under such conditions. . .

On pure and applied

Excerpt from: “Applied mathematics is bad mathematics”, pp. 9–20, appearing
in Mathematics Tomorrow, edited by Lynn Steen, Springer-Verlag, New York
(1981).

It isn’t really (applied mathematics, that is, isn’t really bad mathematics),
but it’s different.

Does that sound as if I had set out to capture your attention, and, having
succeeded, decided forthwith to back down and become conciliatory? Nothing of
the sort! The “conciliatory” sentence is controversial, believe it or not; lots of
people argue, vehemently, that it (meaning applied mathematics) is not different
at all, it’s all the same as pure mathematics, and anybody who says otherwise is
probably a reactionary establishmentarian and certainly wrong.

If you’re not a professional mathematician, you may be astonished to learn
that (according to some people) there are different kinds of mathematics, and that
there is anything in the subject for anyone to get excited about. There are; and
there is; and what follows is a fragment of what might be called the pertinent
sociology of mathematics: what’s the difference between pure and applied, how
do mathematicians feel about the rift, and what’s likely to happen to it in the
centuries to come. . .

The pure and applied distinction is visible in the arts and in the humani-
ties almost as clearly as in the sciences: witness Mozart versus military marches,
Rubens versus medical illustrations, or Virgil’s Aeneid versus Cicero’s Philippics.
Pure literature deals with abstractions such as love and war, and it tells about
imaginary examples of them in emotionally stirring language. Pure mathematics
deals with abstractions such as the multiplication of numbers and the congruence
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of triangles, and it reasons about Platonically idealized examples of them with
intellectually convincing logic.

There is, to be sure, one sense of the word in which all literature is “applied”.
Shakespeare’s sonnets have to do with the everyday world, and so does Tolstoy’s
War and Peace, and so do Caesar’s commentaries on the wars he fought; all start
from what human beings see and hear, and all speak of how human beings move
and feel. In that same somewhat shallow sense all mathematics is applied. It all
starts from sizes and shapes (whose study leads ultimately to algebra and geom-
etry), and it reasons about how sizes and shapes change and interact (and such
reasoning leads ultimately to the part of the subject that the professionals call
analysis).

There can be no doubt that the fountainhead, the inspiration, of all literature
is the physical and social universe we live in, and the same is true about mathe-
matics. There is no doubt that the physical and social universe daily affects each
musician, and painter, and writer, and mathematician, and that therefore a part
at least of the raw material of the artist is the work of facts and motions, sights
and sounds. Continual contact between the work and art is bound to change the
latter, and perhaps even to improve it.

The ultimate goal of “applied literature”, and of applied mathematics, is
action. A campaign speech is made so as to cause you to pull the third lever on a
voting machine rather than the fourth. An aerodynamic equation is solved so as to
cause a plane wing to lift its load fast enough to avoid complaints from the home
owners near the airport. These examples are crude and obvious; there are subtler
ones. If the biography of a candidate, a factually correct and honest biography,
does not directly mention the forthcoming election, is it then pure literature?
If a discussion of how mathematically idealized air flows around moving figures
of various shapes, a logically rigorous and correct discussion, does not mention
airplanes or airports, is it then pure mathematics? And what about the in-between
cases: the biography that, without telling lies, is heavily prejudiced; and the treatise
on aerodynamics that, without being demonstrably incorrect, uses cost-cutting
rough approximations—are they pure or applied?. . .

To confuse the issue still more, pure mathematics can be practically useful
and applied mathematics can be artistically elegant. Pure mathematicians, try-
ing to understand involved logical and geometrical interrelations, discovered the
theory of convex sets and the algebraic and topological study of various classes
of functions. Almost as if by luck, convexity has become the main tool in linear
programming (an indispensable part of modern economic and industrial practice),
and functional analysis has become the main tool in quantum theory and particle
physics. The physicist regards the applicability of von Neumann algebras (a part of
functional analysis) to elementary particles as the only justification of the former;
the mathematician regards the connections as the only interesting aspect of the
latter. De gustibus non disputandum est?

Just as pure mathematics can be useful, applied mathematics can be more
beautifully useless than is sometimes recognized. Applied mathematics is not en-
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gineering; the applied mathematician does not design airplanes or atomic bombs.
Applied mathematics is an intellectual discipline, not a part of industrial technol-
ogy. The ultimate goal of applied mathematics is action, to be sure, but, before
that, applied mathematics is a part of theoretical science concerned with the gen-
eral principles behind what makes planes fly and bombs explode. . .

The deepest assertion about the relation between pure and applied mathe-
matics that needs examination is that it is symbiotic, in the sense that neither can
survive without the other. Not only, as is universally admitted, does the applied
need the pure, but, in order to keep from becoming inbred, sterile, meaningless,
and dead, the pure needs the revitalization and the contact with reality that only
the applied can provide. . .

On being a mathematician

Excerpt from: I Want to Be a Mathematician, p. 400, Springer-Verlag, New
York (1985).

It takes a long time to learn to live—by the time you learn your time is gone.
I spent most of a lifetime trying to be a mathematician—and what did I learn?
What does it take to be one? I think I know the answer: you have to be born right,
you must continually strive to become perfect, you must love mathematics more
than anything else.

Born right? Yes. To be a scholar of mathematics you must be born with tal-
ent, insight, concentration, taste, luck, drive, and the ability to visualize and guess.
For teaching you must in addition understand what kinds of obstacles learners are
likely to place before themselves, and you must have sympathy for your audience,
dedicated selflessness, verbal ability, clear style, and expository skill. To be able,
finally, to pull your weight in the profession with the essential clerical and admin-
istrative jobs, you must be responsible, conscientious, careful, and organized—it
helps if you also have some qualities of leadership and charisma.

You can’t be perfect, but if you don’t try, you won’t be good enough.
To be a mathematician you must love mathematics more than family, reli-

gion, money, comfort, pleasure, glory. I do not mean that you must love it to the
exclusion of family, religion, and the rest, and I do not mean that if you do love it,
you’ll never have any doubts, you’ll never be discouraged, you’ll never be ready to
chuck it all and take up gardening instead. Doubts and discouragements are part of
life. Great mathematicians have doubts and get discouraged, but usually they can’t
stop doing mathematics anyway, and, when they do, they miss it very deeply. . .

John Ewing
Math for America
160 Fifth Ave, 8th fl
New York, NY 10010, USA
e-mail: jewing@mathforamerica.org
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Obituary: Paul Halmos, 1916–2006

Heydar Radjavi and Peter Rosenthal

Paul Halmos, one of the most influential mathematicians of the last half of the
twentieth century, died at the age of ninety on October 2, 2006. Paul wrote “To be
a mathematician you must love mathematics more than family, religion, money,
comfort, pleasure, glory.” Paul did love mathematics. He loved thinking about it,
talking about it, giving lectures and writing articles and books. Paul also loved
language, almost as much as he loved mathematics. That is why his books and
expository articles are so wonderful. Paul took Hardy’s famous dictum that “there
is no permanent place in the world for ugly mathematics” very seriously: he refor-
mulated and polished all the mathematics that he wrote and lectured about, and
presented it in the most beautiful way.

Irving Kaplansky, the great Canadian mathematician who also died in 2006
(at the age of eighty-nine), wrote “Paul Halmos is the wittiest person I know.”
Many quotations from Paul’s writing illustrating Kaplansky’s statement can be
found on the internet (just Google “Paul Halmos quotations”). Here are some:

– You can’t be perfect, but if you don’t try, you won’t be good enough.
– If you have to ask, you shouldn’t even ask.
– Once the problem is solved, its repetitive application has as much to do with

mathematics as the work of a Western Union messenger boy has to do with
Marconi’s genius.

– The criterion for quality is beauty, intricacy, neatness, elegance, satisfaction,
appropriateness – all subjective, but somehow mysteriously shared by all.

– There is no Berlitz course for the language of mathematics; apparently the
only way to learn it is to live with it for years.

– The recommendations I have been making are based partly on what I do, more
on what I regret not having done, and most on what I wish others had done
for me.

– Almost everybody’s answer to “What to publish?” can be expressed in either
one word – “less” – or two words – “good stuff”.

This obituary is reprinted with the kind permission of the Canadian Mathematical Society from
Volume 39 issue 2 (March, 2007) of the CMS Notes.
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Man-Duen Choi put together a number of titles of Halmos’s writings to form
a cute narrative – see “A Postscript” on page 799 of volume 103 (1996) of the
American Mathematical Monthly.

Paul liked to be provocative. He wrote, for example, “The best way to learn
is to do; the worst way to teach is to talk.” He did follow this with “Having stated
this extreme position, I’ll rescind it immediately. I know that it is extreme, and
I don’t really mean it – but I wanted to be very emphatic about not going along
with the view that learning means going to lectures and reading books.” However,
his explanation did not mollify some people who were very proud of their ability
to lecture.

Perhaps Paul’s most provocative comment in print (those who had the plea-
sure of participating in discussions with him heard even more provocative state-
ments) was his title for an article published in 1981: “Applied Mathematics is
Bad Mathematics.” Although Paul began the article with “It isn’t really (applied
mathematics, that is, isn’t really bad mathematics), but it’s different,” the title
angered many applied mathematicians.

Paul made fundamental contributions to ergodic theory and measure theory
(his classic books “Lectures on Ergodic Theory” and “Measure Theory”, and many
papers) and to algebraic logic (see “Algebraic Logic” and, with S. Givant, “Logic
as Algebra”). His book “Naive Set Theory” is a beautiful exposition of axiomatic
(Zermelo-Fraenkel) set theory, in spite of its “naive” title. But Paul’s most impor-
tant contributions to research in mathematics, at least from our prejudiced point
of view, were to the theory of operators on Hilbert space.

Paul created and led a vigorous school of operator theory. He introduced
central concepts such as unitary dilations, subnormal operators and quasitriangu-
larizability, and proved the fundamental theorems about them. These, and other
concepts he developed, became major subjects of research; there is now a large
body of knowledge about each of these topics.

Paul had extraordinary ability to discover the central questions concerning
a large number of different aspects of operator theory. In particular, his famous
article “Ten problems in Hilbert space” shaped a great deal of subsequent research
in operator theory and in C∗-algebras. As Berkeley mathematician Don Sarason
(who competes with Errett Bishop for the title “Most-distinguished of Halmos’
twenty-one Ph.D. students”) wrote, in his introduction to Paul’s selected works,
“Halmos embodies the ideal mixture of researcher and teacher. In him, each role
is indistinguishable from the other. Perhaps that is the key to his remarkable
influence.”

Paul wrote what he termed “an automathography”, a fascinating book enti-
tled “I Want to be a Mathematician.” This is a mathematical autobiography, and
contains much advice that is very useful to all mathematicians and to all those
who aspire to be mathematicians. Towards the end of that book, Paul evaluates
his career as follows: “I was, in I think decreasing order of quality, a writer, an
editor, a teacher, and a research mathematician.”
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Paul’s self-evaluation may be quite accurate, but it is important to under-
stand how high a standard he was setting for himself. He was certainly as good a
mathematical writer as ever existed. As an editor, Paul played a central role in de-
veloping several of the series of mathematics books published by Springer-Verlag,
as well as in editing several journals. Virtually everyone who ever heard him lec-
ture will testify that his lectures were maximally interesting, clear and inspiring.
(Luckily, several videotapes of Paul’s lectures can be purchased from the A.M.S.
and the M.A.A.). Moreover, Paul’s total contribution to research in mathematics
is very impressive.

As Paul wrote, “it takes a long time to learn to live – by the time you learn
your time is gone.” However, one can learn much about living from others, and
Paul taught many mathematicians a huge amount, about mathematics and about
life. For instance, Paul wrote “I like to start every course I teach with a problem.”
Those who wish to follow Paul’s example in this respect can use Paul’s book
“Problems for Mathematicians Young and Old”; it contains a surprising variety of
beautiful problems from a variety of areas of mathematics.

Paul advised efficiency in all tasks: if a letter has to be answered, or a review
has to be written for Mathematical Reviews, do it right away, rather than thinking
for months “I’d better get to that.” Good advice but, we have to confess, we failed
to follow it in the writing of this obituary. It doesn’t take a psychoanalyst to figure
out why we failed: we wanted to postpone this last goodbye to Paul Halmos. But
the time has now come. Goodbye, Paul; thanks very much for so much.

Heydar Radjavi
Department of Mathematics
University of Waterloo
Waterloo
Ontario N2L 3G1, Canada
e-mail: hradjavi@math.uwaterloo.ca

Peter Rosenthal
Department of Mathematics
University of Toronto
Toronto
Ontario M5S 3G3, Canada
e-mail: rosent@math.toronto.edu
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Mathematical Review of
“How to Write Mathematics” ∗

by P.R. Halmos

G. Piranian

Halmos delivers a vigorous piece of his mind on the craft of writing. His principal
message concerns the spiral plan, whose wide adoption would certainly raise the
standards of mathematical prose in our books and journals. Lest readers deceive
themselves and believe that they need not go to the original paper, I abstain from
describing the plan.

In addition to giving counsel on global strategy, Halmos points out many
tactical devices by which authors can bring their manuscripts nearer to unobtrusive
perfection. He expresses his displeasure over some barbarisms, for example, the
hanging theorem, the thoughtless misuse of “given” and “any”, and the sloppy
construction “if . . . , then . . . if . . . ”. He argues against the display of cumbersome
symbolic messages that only a machine or a fool would decode, and he looks
after many fine points, such as the hyphen in the compound adjective “measure-
preserving”. He even expresses his contempt for the pedantic copy-editor who in
the preceding sentence would insist on putting the second quotation mark after
the period.

This review is not a catalogue of what the paper offers. It merely serves notice
that a mathematician with an eminently successful personal style has described
his technique of writing, and that whoever pays heed will profit.

∗ Enseignement Math. (2) 16 1970 123–152
c© American Mathematical Society 1972, 2009.
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Publications of Paul R. Halmos

The publications are listed chronologically, articles and books separately. Not listed
are translations of Paul’s articles and books, of which there have been many (in
French, German, Bulgarian, Russian, Czech, Polish, Finnish, Catalan).

Research and Expository Articles

(1939-1) On a necessary condition for the strong law of large numbers. Ann. of
Math. (2) 40 (1939), 800–804.

(1941-1) Statistics, set functions, and spectra. Rec. Math. [Mat. Sbornik] N.S. 9
(51) (1941), 241–248.

(1941-2) The decomposition of measures. Duke Math. J. 8 (1941), 386–392.

(1942-1) The decomposition of measures. II. Duke Math. J. 9 (1942), 43–47
(with W. Ambrose and S. Kakutani).

(1942-2) Square roots of measure preserving transformations. Amer. J. Math. 64
(1942), 153–166.

(1942-3) On monothetic groups. Proc. Nat. Acad. Sci. U.S.A. 28 (1942),
254–258 (with H. Samelson).

(1942-4) Operator models in classical mechanics. II. Ann. of Math. (2) 43
(1942), 332–350 (with J. von Neumann).

(1943-1) On automorphisms of compact groups. Bull. Amer. Math. Soc. 49
(1943), 619–624.

(1944-1) Approximation theories for measure preserving transformations. Trans.
Amer. Math. Soc. 55 (1944), 1–18.

(1944-2) Random alms. Ann. Math. Statistics 15 (1944), 182–189.

(1944-3) The foundations of probability. Amer. Math. Monthly 51 (1944),
493–510.

(1944-4) In general a measure preserving transformation is mixing. Ann. of
Math. (2) 45 (1944), 786–792.

(1944-5) Comment on the real line. Bull. Amer. Math. Soc. 50 (1944), 877–878.
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(1946-1) The theory of unbiased estimation. Ann. Math. Statistics 17 (1946),
34–43.

(1946-2) An ergodic theorem. Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 156–161.

(1947-1) On the set of values of a finite measure. Bull. Amer. Math. Soc. 53
(1947), 138–141.

(1947-2) Invariant measures. Ann. of Math. (2) 48 (1947), 735–754.

(1947-3) Functions of integrable functions. J. Indian Math. Soc. (N.S.) 11
(1947), 81–84.

(1948-1) The range of a vector measure. Bull. Amer. Math. Soc. 54 (1948),
416–421.

(1949-1) On a theorem of Dieudonné. Proc. Nat. Acad. Sci. U.S.A. 35 (1949),
38–42.

(1949-2) A nonhomogeneous ergodic theorem. Trans. Amer. Math. Soc. 66
(1949), 284–288.

(1949-3) Application of the Radon–Nikodym theorem to the theory of sufficient
statistics. Ann. Math. Statistics 20 (1949), 225–241 (with L.J. Savage).

(1949-4) Measurable transformations. Bull. Amer. Math. Soc. 55 (1949),
1015–1034.

(1950-1) The marriage problem. Amer. J. Math. 72 (1950), 214–215 (with
H.E. Vaughan).

(1950-2) Commutativity and spectral properties of normal operators. Acta Sci.
Math. Szeged 12 (1950), 153–156.

(1950-3) Normal dilations and extensions of operators. Summa Brasil. Math. 2
(1950), 125–134.

(1952-1) Commutators of operators. Amer. J. Math. 74 (1952), 237–240.

(1952-2) Some present problems on operators in Hilbert space (Spanish).
Symposium sobre algunos problemas matemáticos se estan estudiando
en Latino América, Diciembre, 1951, pp. 9–14. Centro de Cooperación
Cient́ıfica de la Unesco para América Latina. Montevideo, Uruguay,
1952.

(1953-1) Spectra and spectral manifolds. Ann. Soc. Polon. Math. 25 (1952),
43–49 (1953).

(1953-2) Square roots of operators. Proc. Amer. Math. Soc. 4 (1953), 142–149
(with G. Lumer and J.J. Schäffer).

(1954-1) Commutators of operators. II. Amer. J. Math. 76 (1954), 191–198.

(1954-2) Polyadic Boolean algebras. Proc. Nat. Acad. Sci. U.S.A. 40 (1954),
296–301.
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(1954-3) Square roots of operators. II. Proc. Amer. Math. Soc. 5 (1954),
589–595 (with G. Lumer).

(1956-1) Algebraic logic. I. Monadic Boolean algebras. Compositio Math. 12
(1956), 217–249.

(1956-2) Predicates, terms, operations, and equality in polyadic Boolean
algebras. Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 130–136.

(1956-3) The basic concepts of algebraic logic. Amer. Math. Monthly 63 (1956),
363–387.

(1956-4) Algebraic logic. II. Homogeneous locally finite polyadic Boolean
algebras of infinite degree. Fund. Math. 43 (1956), 255–325.

(1956-5) Algebraic logic. III. Predicates, terms, and operations in polyadic
algebras. Trans. Amer. Math. Soc. 83 (1956), 430–470.

(1957-1) “Nicolas Bourbaki”. Scientific American, May 1957, 88–99.

(1957-2) Algebraic logic. IV. Equality in polyadic algebras. Trans. Amer. Math.
Soc. 86 (1957), 1–27.

(1958-1) Von Neumann on measure and ergodic theory. Bull. Amer. Math. Soc.
64 (1958), 86–94.

(1958-2) Products of symmetries. Bull. Amer. Math. Soc. 64 (1958), 77–78
(with S. Kakutani).

(1959-1) Free monadic algebras. Proc. Amer. Math. Soc. 10 (1959), 219–227.

(1959-2) The representation of monadic Boolean algebras. Duke Math. J. 26
(1959), 447–454.

(1961-1) Recent progress in ergodic theory. Bull. Amer. Math. Soc. 67 (1961),
70–80.

(1961-2) Injective and projective Boolean algebras. Proc. Sympos. Pure Math.,
Vol. II (1961), 114–122, American Mathematical Society, Providence,
RI.

(1961-3) Shifts on Hilbert spaces. J. Reine Angew. Math. 208 (1961), 102–112.

(1963-1) What does the spectral theorem say? Amer. Math. Monthly 70 (1963),
241–247.

(1963-2) Partial isometries. Pacific J. Math. 13 (1963), 285–296 (with J.E.
McLaughlin).

(1963-3) Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 213
(1963/64), 89–102 (with A. Brown).

(1963-4) A glimpse into Hilbert space. 1963 Lectures on Modern Mathematics,
Vol. 1, pp. 1–22, Wiley, New York.
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(1964-1) On Foguel’s answer to Nagy’s question. Proc. Amer. Math. Soc. 15
(1964), 791–793.

(1964-2) Numerical ranges and normal dilations. Acta Sci. Math. Szeged 25
(1964), 1–5.

(1965-1) Cesàro operators. Acta Sci. Math. Szeged 26 (1965), 125–137 (with
A. Brown and A.L. Shields).

(1965-2) Commutators of operators on Hilbert space. Canad. J. Math. 17
(1965), 695–708 (with A. Brown and C. Pearcy).

(1966-1) Invariant subspaces of polynomially compact operators. Pacific J.
Math. 16 (1966), 433–437.

(1968-1) Permutations of sequences and the Schröder–Bernstein theorem. Proc.
Amer. Math. Soc. 19 (1968), 509–510.

(1968-2) Irreducible operators. Michigan Math. J. 15 (1968), 215–223.

(1968-3) Quasitriangular operators. Acta Sci. Math. Szeged. 29 (1968), 283–293.

(1968-4) Mathematics as a creative art. American Scientist 56 (1968), 375–389.

(1969-1) Two subspaces. Trans. Amer. Math. Soc. 144 (1969), 381–389.

(1969-2) Powers of partial isometries. J. Math. Mech. 19 (1969/70), 657–663
(with L.J. Wallen).

(1969-3) Invariant subspaces. Abstract Spaces and Approximation (Proc. Conf.,
Oberwolfach, 1968), pp. 26–30, Birkhäuser, Basel, 1969.

(1970-1) Finite-dimensional Hilbert spaces. Amer. Math. Monthly 77 (1970),
457–464.

(1970-2) Capacity in Banach algebras. Indiana Univ. Math. J. 20 (1970/71),
855–863.

(1970-3) Ten problems in Hilbert space. Bull. Amer. Math. Soc. 76 (1970),
887–933.

(1970-4) How to write mathematics. Enseignement Math. (2) 16 (1970),
123–152.

(1971-1) Eigenvectors and adjoints. Linear Algebra and Appl. 4 (1971), 11–15.

(1971-2) Reflexive lattices of subspaces. J. London Math. Soc. (2) 4 (1971),
257–263.

(1971-3) Positive approximants of operators. Indiana Univ. Math. J. 21
(1971/72), 951–960.

(1972-1) Continuous functions of Hermitian operators. Proc. Amer. Math. Soc.
31 (1972), 130–132.

(1972-2) Products of shifts. Duke Math. J. 39 (1972), 772–787.
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(1990-3) Has progress in mathematics slowed down? Amer. Math. Monthly 97
(1990), 561–588.

(1991-1) Bad products of good matrices. Linear and Multilinear Algebra 29
(1991), 1–20.

(1992-1) Large intersections of large sets. Amer. Math. Monthly 99 (1992),
307–313.



Publications of Paul R. Halmos 39

(1992-2) The problem of positive contraction approximation. Chinese J. Math.
20 (1992), 241–248.

(1993-1) Postcards from Max. Amer. Math. Monthly 100 (1993), 942–944.

(1995-1) To count or to think, that is the question. Nieuw Arch. Wisk. (4) 13
(1995), 61–76.

(2000-1) An autobiography of polyadic algebras. Log. J. IGPL 8 (2000), 383–392.

Books

Paul R. Halmos. Finite Dimensional Vector Spaces. Annals of Mathematics
Studies, no. 7. Princeton University Press, Princeton, NJ, 1942.

Paul R. Halmos. Measure Theory. D. Van Nostrand Company, Inc., New York,
NY, 1950.

Paul R. Halmos. Introduction to Hilbert Space and the Theory of Spectral
Multiplicity. Chelsea Publishing Company, New York, NY, 1951.

Paul R. Halmos. Lectures on Ergodic Theory. Publications of the Mathematical
Society of Japan, no. 3, The Mathematical Society of Japan, 1956. Republished
by Chelsea Publishing Company, New York, NY, 1960.

Paul R. Halmos. Introduction to Hilbert Space and the Theory of Spectral
Multiplicity. 2nd ed. Chelsea Publishing Company, New York, NY, 1957.
Reprinted in 1998 by AMS Chelsea Publishing, Providence, RI.

Paul R. Halmos. Finite-Dimensional Vector Spaces. 2nd ed. The University
Series in Undergraduate Mathematics. D. Van Nostrand Company, Inc.,
Princeton–Toronto–New York–London, 1958. Reprinted by Springer–Verlag, New
York–Heidelberg, 1974, in the series Undergraduate Texts in Mathematics.

Paul R. Halmos. Naive Set Theory. The University Series in Undergraduate
Mathematics, D. Van Nostrand Company, Princeton–Toronto–London–New
York, 1960. Reprinted by Springer–Verlag, New York–Heidelberg, 1974, in the
series Undergraduate Texts in Mathematics.

Paul R. Halmos. Algebraic Logic. Chelsea Publishing Company, New York, NY,
1962.

Paul R. Halmos. Lectures on Boolean Algebras. Van Nostrand Mathematical
Studies, no. 1, D. Van Nostrand Company, Inc., Princeton, NJ, 1963.

Paul R. Halmos. A Hilbert Space Problem Book. D. Van Nostrand Company, Inc.,
Princeton–Toronto–London, 1967.

Paul R. Halmos and V.S. Sunder. Bounded Integral Operators on L2 Spaces.
Ergebnisse der Mathematik und ihrer Grenzgebiete, 96. Springer–Verlag,
Berlin–New York, 1978.



40 Publications of Paul R. Halmos

Paul R. Halmos. A Hilbert Space Problem Book. Second edition. Springer–Verlag,
New York–Berlin, 1982.

Paul R. Halmos. Selecta: Research Contributions. Springer–Verlag, New York,
1983.

Paul R. Halmos. Selecta: Expository Writing. Springer–Verlag, New York, 1983.

Paul R. Halmos. I want to be a mathematician. An automathography.
Springer–Verlag, New York, 1985. Published also by Mathematical Association of
America, Washington, DC, 1985.

Paul R. Halmos. I have a photographic memory. American Mathematical Society,
Providence, RI, 1987.

Paul R. Halmos. Problems for mathematicians, young and old. The Dolciani
Mathematical Expositions, 12. Mathematical Association of America,
Washington, DC, 1991.

Paul R. Halmos. Linear algebra problem book. The Dolciani Mathematical
Expositions, 16. Mathematical Association of America, Washington, DC, 1995.

Steven Givant and Paul R. Halmos. Logic as algebra. The Dolciani Mathematical
Expositions, 21. Mathematical Association of America, Washington, DC, 1995.

Steven Givant and Paul R. Halmos. Introduction to Boolean algebras.
Undergraduate Texts in Mathematics, Springer, New York, 2009.



Operator Theory:
Advances and Applications, Vol. 207, 41–77
c© 2010 Springer Basel AG

Photos

Part 1. Paul through the years, pages 43–50

Part 2. Some operator theorists of the Halmos era, and other mathematicians,
pages 51–77

Paul was a prodigious amateur photographer. He seems not to have been
motivated by photography as art, but rather to have been impelled by a desire to
preserve tangible mementos of his experiences.

In the preface to his book I Have a Photographic Memory, published in 1987,
Paul estimates that, by then, he had taken over 16,000 snapshots, about 6000 of
which are mathematically connected. Photography served in part as an adjunct to
his professional activities. He took snapshots of the students in his classes to help
him learn their names. He took photos of mathematicians visiting his department,
and of mathematicians at departments he visited. Before visiting another depart-
ment, he would look over any photos of local mathematicians in his collection, so
he could greet them quickly by name. I Have a Photographic Memory contains
over 600 of his photographs of mathematicians.

All of the photos in Part 1, and the bulk of those in Part 2, are from Paul’s
personal collection; those in the latter group were taken by Paul, except for the one
on the last photo page, in which Paul is one of the subjects (and which was no doubt
taken with his camera). All but three of the photos from Paul’s collection appearing
here are reproduced with the kind permission of Virginia Halmos. Photos of the
following mathematicians were provided by their subjects: Jim Agler and Nicholas
Young; Michael Dritschel; Nathan Feldman; John McCarthy; Carl Pearcy; Gilles
Pisier; Mihai Putinar; Alexander Volberg. We are grateful to Jim Rovnyak for
providing the photo of Marvin and Betsy Rosenblum. Three of the photographs by
Paul, the one of David Lowdenslager, the joint one of Larry Brown, Ronald Douglas
and Peter Fillmore, and the joint one of Mary R. Embry-Wardrop, Catherine L.
Olsen and Pratibha Ghatage, are reproduced from I Have a Photographic Memory,
c© 1987, American Mathematical Society, with permission of the publisher.

The mathematicians pictured in Part 2 include the contributors to this vol-
ume, operator theorists and a few other mathematicians closely connected to Paul
and/or to his work, and operator theorists mentioned prominently in our exposi-
tory articles.
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In assembling the photos in this volume, we were fortunate to have access to
Paul’s personal collection through Gerald Alexanderson, who at the time was the
collection’s temporary custodian in his role as its cataloguer. We deeply appreciate
Jerry’s invaluable assistance. Thanks also go to José Barŕıa for his aid in this
project. Paul’s photo collection, along with his personal papers, are now in the
Texas Archives in Austin.

The photos to follow, we hope, will help to evoke Paul’s spirit.



Photos 43

A 1929 photo of Paul

getting off the train in Basel

On board the

steamship Bremen,

1931
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Paul and Virginia Halmos, Cambridge, 1950
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In a double breasted

suit, 1951

With “Bertie”, short for

Bertrand Russell, as a

puppy, 1967



46 Photos

Eugene, 1969, lecturing
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Brisbane, 1975

Paul and Virginia, Bloomington, 1976
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Circa 1980

St. Andrews,

circa 1980
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Circa 1980

With Max Zorn,

1983
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Los Gatos,

1998

Los Gatos,

2000
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Jim Agler, right

and Nicholas Young,

San Diego,

2009

Tsuyoshi Ando,

Overwolfach,

1980
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Constantin Apostol,

Bloomington,

1974

Bill Arveson,

Bloomington,

1970
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Sheldon Axler, right, and Donald Sarason,

Kalamazoo, 1975

Jose Barria,

Bloomington,

1974
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Hari Bercovici,

Bloomington,

1982

Charles Berger, 1977
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Arlen Brown,

Bloomington,

1978

Kevin Clancey, left,

and Douglas Clark,

1974
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The reknowned BDF

From right to left: Larry Brown, Ronald Douglas, Peter Fillmore
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Scott Brown,

Berkeley,
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Lewis Coburn,

1965
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John B. Conway,

Bloomington,

1983

Carl Cowan,

San Antonio,
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Raul Curto,
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Ken Davidson,

Tempe,

1984

Chandler Davis,
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Joseph Doob,

New York,

1969

John Ewing
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Michael Dritschel

Nathan Feldman
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Bela Sz.-Nagy and Ciprian Foias,

1983
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Israel Gohberg,

Bloomington,

1975

Henry Helson,

1969
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Don Hadwin, Fort Worth, 1990

Ken Harrison, Honolulu, 1969
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Domingo Herrero, Tempe, 1985

Tom Kriete, Charlottesville, 1986
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Warren Ambrose
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John Mc Carthy

David Lowdenslager,

Berkeley,

1956

Paul Muhly,

Bloomington,

1969
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Zeev Nehari,

1968

Nikolai Nikolski,

Lancaster,

1984

Eric Nordgren,

Amherst,

1969
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Robert Olin,

1977

Vladimir Peller,

Budapest,

1980
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Gilles Pisier

Carl Pearcy

Mihai Putinar
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Haydar Radjavi,

Bloomington,

1974

Peter Rosenthal,

1969
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Marvin and Betsy

Rosenblum

James

Rovnyak
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Allen Shields,

Ann Arbor,

1964

Joseph Stampfli,
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V.S. Sunder,

Bloomington,

1973

James Thomson
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Four generations of operator theory. 

Right to left,

Paul Halmos, 

his student Donald Sarason, 

Don's student Sheldon Axler,

Sheldon's student Pamela Gorkin,

Lancaster, 1984
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Mary R. Embry-Wardrop, Catherine L. Olson, Pratibha Ghatage,

Crawfordsville, Indiana, 1973



Part II

Articles



Operator Theory:
Advances and Applications, Vol. 207, 81–97
c© 2010 Springer Basel AG

What Can Hilbert Spaces Tell Us About
Bounded Functions in the Bidisk?

Jim Agler and John E. McCarthy

Dedicated to the memory of Paul R. Halmos

Abstract. We discuss various theorems about bounded analytic functions on
the bidisk that were proved using operator theory.

Mathematics Subject Classification (2000). 32-02, 32A70, 46E22.

Keywords. Bidisk, Hilbert space model, bounded analytic functions, H∞.

1. Introduction

Much of modern single operator theory (as opposed to the study of operator al-
gebras) rests on a foundation of complex analysis. Every cyclic operator can be
represented as multiplication by the independent variable on the completion of
the polynomials with respect to some norm. The nicest way to have a norm is
in L2(μ), and then one is led to the study of subnormal operators, introduced
by P.R. Halmos in [34]. The study of cyclic subnormal operators becomes the
study of the spaces P 2(μ), the closure of the polynomials in L2(μ), and the the-
ory of these spaces relies on a blend of complex analysis and functional analysis;
see J. Conway’s book [27] for an exposition. Alternatively, one can start with a
Hilbert space that is amenable to complex analysis, such as the Hardy space H2,
and study classes of operators on that space that have a good function theoretic
representation, such as Toeplitz, Hankel or composition operators. All of these
classes of operators have a rich theory, which depends heavily on function theory
– for expositions, see, e.g., [41, 43] and [29].

The traffic, of course, goes both ways. There are many questions in function
theory that have either been answered or illuminated by an operator theory ap-
proach. The purpose of this article is to describe how operator theory has fared

Jim Agler was partially supported by National Science Foundation Grant DMS 0400826, and
John McCarthy was partially supported by National Science Foundation Grant DMS 0501079.
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when studying H∞(D2), the algebra of bounded analytic functions on the bidisk
D2. We focus on function theory results that were proved, originally at least, using
operator theory.

For the topics in Sections 2 to 7, we shall first describe the situation on the
disk D, and then move on to the bidisk. The topics in Sections 8 to 9 do not really
have analogues in one dimension. For simplicity, we shall stick to scalar-valued
function theory, though many of the results have natural matrix-valued analogues.

We shall use the notation that points in the bidisk are called λ or ζ, and
their coordinates will be given by superscripts: λ = (λ1, λ2). We shall use z and w
to denote the coordinate functions on D2. The closed unit ball of H∞(D) will be
written H∞1 (D) and the closed unit ball of H∞(D2) as H∞1 (D2).

2. Realization formula

The realization formula is a way of associating isometries (or contractions) with
functions in the ball of H∞(D). In one dimension, it looks like the following; see,
e.g., [19] or [9] for a proof.

Theorem 2.1. The function φ is in the closed unit ball of H∞(D) if and only if
there is a Hilbert space H and an isometry V : C⊕H → C⊕H, such that, writing
V as

V =
(C H

C A B
H C D

)
, (2.2)

one has
φ(λ) = A+ λB(I − λD)−1C. (2.3)

This formula was generalized to the bidisk in [3]. It becomes

Theorem 2.4. The function φ is in the closed unit ball of H∞(D2) if and only if
there are auxiliary Hilbert spaces H1 and H2 and an isometry

V : C⊕H1 ⊕H2 → C⊕H1 ⊕H2
such that, if H := H1 ⊕H2, V is written as

V =
(C H

C A B
H C D

)
, (2.5)

and Eλ = λ1IH1 ⊕ λ2IH2 , then

φ(λ) = A+BEλ(IH −DEλ)−1C. (2.6)

There is a natural generalization of (2.6) to functions of d variables. One
chooses d Hilbert spaces H1, . . . ,Hd, lets H = H1 ⊕ · · · ⊕ Hd, lets Eλ = λ1IH1 ⊕
· · · ⊕ λdIHd

, and then, for any isometry V as in (2.5), let

ψ(λ) = A+BEλ(IH −DEλ)−1C. (2.7)
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The set of all functions ψ that are realizable in this way is exactly the Schur-Agler
class, a class of analytic functions of d variables that can also be defined as

{ψ : ‖ψ(T1, . . . , Td)‖ ≤ 1 ∀ commuting contractive matrices (T1, . . . , Td)}.
(2.8)

Von Neumann’s inequality [58] is the assertion that for d = 1 the Schur-Agler class
equals H∞1 (D); Andô’s inequality [16] is the analogous equality for d = 2. Once
d > 2, the Schur-Agler class is a proper subset of the closed unit ball of H∞(Dd)
[57, 30]. Many of the results in Sections 3 to 7 are true, with similar proofs, for
the Schur-Agler class in higher dimensions (or rather the norm for which this is
the unit ball)1, but it is not known how to generalize them to H∞(Dd).

The usefulness of the realization formula stems primarily not from its ability
to represent functions, but to produce functions with desired properties with the
aid of a suitably chosen isometry V (dubbed a lurking isometry by Joe Ball). An
example of a lurking isometry argument is the proof of Pick’s theorem in Section 3.

It is well known that equality occurs in the Schwarz lemma on the disk only
for Möbius transformations. The Schwarz lemma on Dd reads as follows (see [47]
for a proof).

Proposition 2.9. If f is in H∞1 (Dd), then

d∑
r=1

(1 − |λr|2)
∣∣∣∣ ∂f∂λr (λ)

∣∣∣∣ ≤ 1− |f(λ)|2. (2.10)

G. Knese [38] proved that equality in (2.10) resulted in a curious form of the
realization formula. (Notice that for d ≥ 3, the hypothesis is that f lie in H∞1 (Dd),
but the conclusion means f must be in the Schur-Agler class.)

Theorem 2.11. Suppose f ∈ H∞1 (Dd) is a function of all d variables, and equality
holds in (2.10) everywhere on Dd. This occurs if and only if f has a representation
as in (2.7) where each space Hr is one-dimensional, and the unitary V is symmetric
(equal to its own transpose).

Analyzing the realization formula, J.M. Anderson, M. Dritschel and J. Rovn-
yak were able to obtain the following higher derivative version of the Schwarz
lemma [15]:

Theorem 2.12. Let f be in H∞1 (D2), and n1, n2 non-negative integers with n =
n1 + n2. Let λ = (z, w) be in D2, with |λ| = max(|z|, |w|). Then∣∣∣∣ ∂nf

∂n1z∂n2w

∣∣∣∣ ≤ (n−2)!
1−|f(λ)|2
(1−|λ|)n−1

[
n21−n1
1−|z|2 +

2n1n2√
1−|z|2

√
1−|w|2

+
n22−n2
1−|w|2

]
.

1Specifically, Theorems 3.8, 4.3, 6.4 and (i)⇔(iii) of Theorem 7.7.
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3. Pick problem

The Pick problem on the disk is to determine, given N points λ1, . . . , λN in D and
N complex numbers w1, . . . , wN , whether there exists φ ∈ H∞1 (D) such that

φ(λi) = wi, i = 1, . . . , N.

G. Pick proved [44] that the answer is yes if and only if the N -by-N matrix(
1− wiw̄j

1− λiλ̄j

)
(3.1)

is positive semi-definite.
D. Sarason realized in [49] that Pick’s theorem can be proved by showing that

operators that commute with the backward shift on an invariant subspace can be
lifted with preservation of norm to operators that commute with it on all of H2;
this result was then generalized by B. Sz.-Nagy and C. Foiaş to the commutant
lifting theorem [52]. Here is a proof of Pick’s theorem using a lurking isometry. We
shall let

kSλ (ζ) =
1

1− λ̄ζ

denote the Szegő kernel.

Proof. (Necessity) If such a φ exists, then I −MφM
∗
φ is a positive operator on all

of H2. In particular, for any scalars c1, . . . , cN , we have

0 ≤ 〈(I −MφM
∗
φ)

∑
cjk

S
λj
,
∑

cik
S
λi
〉 =

∑
cj c̄i

1− wiw̄j

1− λiλ̄j
. (3.2)

Therefore (3.1) is positive semi-definite.

(Sufficiency) If (3.1) is positive semi-definite of rank M , then one can find vectors
{gi}Ni=1 in CM such that

1− wiw̄j

1− λiλ̄j
= 〈gi, gj〉CM . (3.3)

We can rewrite (3.3) as

1 + 〈λigi, λjgj〉CM = wiw̄j + 〈gi, gj〉CM . (3.4)

The lurking isometry V : C⊕ CM → C⊕ CM is defined by

V :
(

1
λigi

)
�→

(
wi
gi

)
. (3.5)

We extend linearly to the span of{(
1

λigi

)
: i = 1, . . . , N

}
, (3.6)
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and if this is not the whole space C ⊕ CM , we extend V arbitrarily so that it
remains isometric. Write V as

V =
(C CM

C A B
CM C D

)
,

and define φ by

φ(λ) = A+ λB(I − λD)−1C. (3.7)

By the realization formula Theorem 2.1, φ is in H∞1 (D). Moreover, as (3.5) implies
that

A+Bλigi = wi (3.8)

C +Dλigi = gi, (3.9)
we get that

(I − λiD)−1 C = gi,

and hence
φ(λi) = A+ λiBgi = wi,

so φ interpolates. �

(It is not hard to show that φ is actually a Blaschke product of degree M .)
A similar argument using Theorem 2.4 solves the Pick problem on the bidisk.

The theorem was first proved, by a different method, in [2].

Theorem 3.8. Given points λ1, . . . , λN in D2 and complex numbers w1, . . . , wN ,
there is a function φ ∈ H∞1 (D2) that maps each λi to the corresponding wi if and
only if there are positive semi-definite matrices Γ1 and Γ2 such that

1− wiw̄j = (1− λ1i λ̄
1
j )Γ

1
ij + (1− λ2i λ̄

2
j)Γ

2
ij . (3.9)

On the polydisk, a necessary condition to solve the Pick problem analogous
to (3.9) has recently been found by A. Grinshpan, D. Kaliuzhnyi-Verbovetskyi,
V. Vinnikov and H. Woerdeman [33]. As of this writing, it is unknown if the
condition is also sufficient, but we would conjecture that it is not.

Theorem 3.10. Given points λ1, . . . , λN in Dd and complex numbers w1, . . . , wN , a
necessary condition for there to be a function φ ∈ H∞1 (Dd) that maps each λi to
the corresponding wi is: For every 1 ≤ p < q ≤ d, there are positive semi-definite
matrices Γp and Γq such that

1− wiw̄j =
∏
r �=q

(1− λri λ̄
r
j)Γ

q
ij +

∏
r �=p

(1− λri λ̄
r
j)Γ

p
ij . (3.11)
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4. Nevanlinna problem

If the Pick matrix (3.1) is singular (i.e., if M < N) then the solution is unique;
otherwise it is not. R. Nevanlinna found a parametrization of all solutions in this
latter case [40] (see also [20] for a more modern approach).

Theorem 4.1. If (3.1) is invertible, there is a 2-by-2 contractive matrix-valued
function

G =
(

G11 G12
G21 G22

)
such that the set of all solutions of the Pick problem is given by

{φ = G11 +G12
ψG21

1−G22ψ
: ψ ∈ H∞1 (D)}.

On the bidisk, we shall discuss uniqueness in Section 8 below. Consider now
the non-unique case. Let φ be in H∞1 (D2), and so by Theorem 2.4 it has a repre-
sentation as in (2.6). Define vector-valued functions F1, F2 by

( C

H1 F1(λ)
H2 F2(λ)

)
:= (IH −DEλ)−1C. (4.2)

For a given solvable Pick problem with a representation as (3.9), say that φ is
affiliated with (Γ1,Γ2) if, for some representation of φ and F1, F2 as in (4.2),

F1(λi)∗F1(λj) = Γ1ij
F2(λi)∗F2(λj) = Γ2ij

for i, j = 1, . . . , N . The situation is complicated by the fact that for a given φ, the
pairs (Γ1,Γ2) with which it is affiliated may or may not be unique. J. Ball and
T. Trent [21] proved:

Theorem 4.3. Given a solvable Pick problem, with a representation as in (3.9),
there is a matrix-valued function G

G =
( C CM

C G11 G12
CM G21 G22

)
in the closed unit ball of H∞(D2, B(C ⊕ CM ,C ⊕ CM )), such that the function
φ solves the Pick problem and is affiliated with (Γ1,Γ2) if and only if it can be
written as

φ = G11 +G12Ψ(I −G22Ψ)−1G21 (4.4)

for some Ψ in H∞1 (D2, B(CM ,CM )).
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5. Takagi problem

The case where the Pick matrix (3.1) has some negative eigenvalues was first
studied by T. Takagi [54], and later by many other authors [1, 42, 20]. See the book
[19] for an account. The principal difference is that if one wishes to interpolate with
a unimodular function (i.e., a function that has modulus one on the unit circle T),
then one has to allow poles inside D. A typical result is

Theorem 5.1. Suppose the Pick matrix is invertible, and has π positive eigenvalues
and ν negative eigenvalues. Then there exists a meromorphic interpolating function
φ that is unimodular, and is the quotient of a Blaschke product of degree π by a
Blaschke product of degree ν.

If Γ is not invertible, the problem is degenerate. It turns out that there is a
big difference between solving the problem of finding Blaschke products f, g such
that

f(λi) = wig(λi)

and the problem of solving

f(λi)/g(λi) = wi.

(The difference occurs if f and g both vanish at some node λi; in the first problem
the interpolation condition becomes vacuous, but in the second one needs a rela-
tion on the derivatives.) The first problem is more easily handled as the limit of
non-degenerate problems; see the paper [23] for recent developments on this ap-
proach. The second version of the problem was been solved by H. Woracek using
Pontryjagin spaces [59].

Question 1. What is the right version of Theorem 5.1 on the bidisk?

6. Interpolating sequences

Given a sequence {λi}∞i=1 in the polydisk Dd, we say it is interpolating for H∞(Dd)
if, for any bounded sequence {wi}∞i=1, there is a function φ in H∞(Dd) satisfying
φ(λi) = wi. L. Carleson characterized interpolating sequences on D in [24].

Before stating his theorem, let us introduce some definitions. A kernel on Dd

is a positive semi-definite function k : Dd × Dd → C, i.e., a function such that for
any choice of λ1, . . . , λN in Dd and any complex numbers a1, . . . , aN , we have∑

aiājk(λi, λj) ≥ 0.

Given any kernel k on Dd, a sequence {λi}∞i=1 has an associated Grammian Gk,
where

[Gk]ij =
k(λi, λj)√

k(λi, λi) k(λj , λj)
.
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We think of Gk as an infinite matrix, representing an operator on �2 (that is not
necessarily bounded). When k is the Szegő kernel on Dd,

kS(ζ, λ) =
1

(1− ζ1λ̄1)(1− ζ2λ̄2) · · · (1 − ζdλ̄d)
, (6.1)

we call the associated Grammian the Szegő Grammian. The Szegő kernel is the re-
producing kernel for the Hardy space H2(Dd) = P 2(m), where m is d-dimensional
Lebesgue measure on the distinguished boundary Td of Dd.

An analogue of the pseudo-hyperbolic metric on the polydisk is the Gleason
distance, defined by

ρ(ζ, λ) := sup{|φ(ζ)| : ‖φ‖H∞(Dd) ≤ 1, φ(λ) = 0}.
We shall call a sequence {λi}∞i=1 weakly separated if there exists ε > 0 such that,
for all i �= j, the Gleason distance ρ(λi, λj) ≥ ε. We call the sequence strongly
separated if there exists ε > 0 such that, for all i, there is a function φi in H∞1 (D)
such that

φi(λj) =
{

ε, j = i
0, j �= i

In D, a straightforward argument using Blaschke products shows that a sequence
is strongly separated if and only if∏

j �=i
ρ(λi, λj) ≥ ε ∀ i.

We can now state Carleson’s theorem. Let us note that he proved it us-
ing function theoretic methods, but later H. Shapiro and A. Shields [51] found
a Hilbert space approach, which has proved to be more easily generalized, e.g.,
to characterizing interpolating sequences in the multiplier algebra of the Dirichlet
space [39].

Theorem 6.2. On the unit disk, the following are equivalent:
(1) There exists ε > 0 such that∏

j �=i
ρ(λi, λj) ≥ ε ∀ i.

(2) The sequence {λi}∞i=1 is an interpolating sequence for H∞(D).
(3) The sequence {λi}∞i=1 is weakly separated and the associated Szegő Grammian

is a bounded operator on �2.

In 1987 B. Berndtsson, S.-Y. Chang and K.-C. Lin proved the following the-
orem [22]:

Theorem 6.3. Let d ≥ 2. Consider the three statements
(1) There exists ε > 0 such that∏

j �=i
ρ(λi, λj) ≥ ε ∀i.
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(2) The sequence {λi}∞i=1 is an interpolating sequence for H∞(Dd).
(3) The sequence {λi}∞i=1 is weakly separated and the associated Szegő Grammian

is a bounded operator on �2.
Then (1) implies (2) and (2) implies (3). Moreover the converses of these
implications are false.

We call the kernel k on Dd admissible if, for each 1 ≤ r ≤ d, the function

(1 − ζrλ̄r)k(ζ, λ)

is positive semidefinite. (This is the same as saying that multiplication by each
coordinate function on the Hilbert function space with reproducing kernel k is a
contraction.)

On the unit disk, all admissible kernels are in some sense compressions of
the Szegő kernel, and so to prove theorems about H∞(D) one can often just use
the fact that it is the multiplier algebra of H2. On the bidisk, there is no single
dominant kernel, and one must look at a huge family of them. That is the key
idea needed in Theorems 2.4 and 3.8, and it allows a different generalization of
Theorem 6.2, which was proved in [8]. (If this paragraph seems cryptic, there is a
more detailed exposition of this point of view in [9].)

For the following theorem, let {ei}∞i=1 be an orthonormal basis for �2.

Theorem 6.4. Let {λi}∞i=1 be a sequence in D2. The following are equivalent:

(i) {λi}∞i=1 is an interpolating sequence for H∞(D2).
(ii) The following two conditions hold.

(a) For all admissible kernels k, their normalized Grammians are uniformly
bounded:

Gk ≤ MI

for some positive constant M .
(b) For all admissible kernels k, their normalized Grammians are uniformly

bounded below:
NGk ≥ I

for some positive constant N .
(iii) The sequence {λi}∞i=1 is strongly separated and condition (a) alone holds.
(iv) Condition (b) alone holds.

Moreover, Condition (a) is equivalent to both (a′) and (a′′):
(a′) There exists a constant M and positive semi-definite infinite matrices Γ1 and

Γ2 such that

Mδij − 1 = Γ1ij(1− λ̄1iλ
1
j ) + Γ2ij(1− λ̄2i λ

2
j ).

(a′′) There exists a function Φ in H∞(D2, B(�2,C)) of norm at most
√
M such

that Φ(λi)ei = 1.
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Condition (b) is equivalent to both (b′) and (b′′):
(b′) There exists a constant N and positive semi-definite infinite matrices Δ1 and

Δ2 such that

N − δij = Δ1ij(1− λ̄1i λ
1
j) + Δ2ij(1− λ̄2i λ

2
j).

(b′′) There exists a function Ψ in H∞(D2, B(C, �2)) of norm at most
√
N such

that Ψ(λi) = ei.

Neither Theorem 6.3 nor 6.4 are fully satisfactory. For example, the following
is still an unsolved problem:

Question 2. If a sequence on D2 is strongly separated, is it an interpolating se-
quence?

7. Corona problem

The corona problem on a domain Ω asks whether, whenever one is given φ1, . . . , φN
in H∞(Ω) satisfying

N∑
i=1

|φi(λ)|2 ≥ ε > 0, (7.1)

there always exist ψ1, . . . , ψN in H∞(Ω) satisfying
N∑
i=1

φiψi = 1. (7.2)

If the answer is affirmative, the domain is said to have no corona.
Carleson proved that the disk has no corona in [25]. The most striking ex-

ample of our ignorance about the bidisk is that the answer there is still unknown.

Question 3. Is the corona theorem true for D2?

The best result known is due to T. Trent [55], who proved that a solution
can be found with the ψi’s in a specific Orlicz space exp(L1/3), which is contained
in ∩p<∞Hp(m).

There is a version of the corona theorem, the Toeplitz-corona theorem, proved
at various levels of generality by several authors [17], [53], [50], [46]. We use kS as
in (6.1) (with d = 1).

Theorem 7.3. Let φ1, . . . , φN be in H∞(D) and δ > 0. Then the following are
equivalent:
(i) The function [

N∑
i=1

φi(ζ)φi(λ)− δ

]
kS(ζ, λ) (7.4)

is positive semi-definite on D× D.
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(ii) The multipliers Mφi on H2 satisfy the inequality
N∑
i=1

MφiM
∗
φi
≥ δI. (7.5)

(iii) There exist functions ψ1, . . . , ψN in H∞(D) such that
N∑
i=1

ψiφi = 1 and sup
λ∈D

[
N∑
i=1

|ψi(λ)|2
]
≤ 1
δ
. (7.6)

The Toeplitz-corona theorem is often considered a weak version of the corona
theorem, because the proof is easier and the hypothesis (7.5) is more stringent than
(7.1). It does, however, have a stronger conclusion: condition (iii) gives the exact
best bound for the norm of the ψi’s, whereas the corona theorem asserts that if
(7.1) holds, then (iii) holds for some δ > 0. (Moreover, in practice, checking the
hypothesis (7.5) is an eigenvalue problem, and so quite feasible with polynomial
data. Checking (7.1) is a minimization problem over a function on the disk that
one would expect to have many local minima, even if the φi’s are polynomials of
fairly low degree.)

The Toeplitz-corona theorem does generalize to the bidisk, but again it is not
enough to check (7.4) for a single kernel (or (7.5) on a single Hilbert function space),
but rather one must find a uniform lower bound that works for all admissible
kernels. For details see [21, 4].

Theorem 7.7. Let φ1, . . . , φN be in H∞(D2) and δ > 0. Then the following are
equivalent:
(i) The function [

N∑
i=1

φi(ζ)φi(λ)− δ

]
k(ζ, λ) (7.8)

is positive semi-definite for all admissible kernels k.
(ii) For every measure μ on T2, the multipliers Mφi on P 2(μ) satisfy the inequal-

ity
N∑
i=1

MφiM
∗
φi
≥ δI. (7.9)

(iii) There exist functions ψ1, . . . , ψN in H∞(D2) such that
N∑
i=1

ψiφi = 1 and sup
λ∈D2

[
N∑
i=1

|ψi(λ)|2
]
≤ 1
δ
. (7.10)

Although Theorem 7.7 seems to depend on the specific properties of the
bidisk, (indeed, using Theorem 2.4 one can prove the equivalence of (i) and (iii)
in the Schur-Agler norm on the polydisk), there is a remarkable generalization
by E. Amar that applies not only to the polydisk, but to any smooth convex
domain [14].
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Theorem 7.11. Let Ω be a bounded convex domain in Cd containing the origin, and
assume that either Ω is Dd or its boundary is smooth. Let X be Td in the former
case, the boundary of Ω in the latter. Let φ1, . . . , φN be in H∞(Ω) and δ > 0. Then
the following are equivalent:
(i) There exist functions ψ1, . . . , ψN in H∞(D) such that

N∑
i=1

ψiφi = 1 and sup
λ∈Ω

[
N∑
i=1

|ψi(λ)|2
]
≤ 1
δ
.

(ii) For every measure μ on X, the multipliers Mφi on P 2(μ) satisfy the inequal-
ity

N∑
i=1

MφiM
∗
φi
≥ δI. (7.12)

(iii) For every measure μ on X, and every f in P 2(μ), there exist functions
ψ1, . . . , ψN in P 2(μ) such that

N∑
i=1

ψiφi = f and
N∑
i=1

‖ψi‖2 ≤
1
δ
‖f‖2, (7.13)

where the norms on both sides of (7.13) are in P 2(μ).

In [56], T. Trent and B. Wick have shown that in Amar’s theorem it is suffi-
cient to consider measures μ that are absolutely continuous and whose derivatives
are bounded away from zero.

8. Distinguished and toral varieties

A Pick problem is called extremal if it is solvable with a function of norm 1, but not
with anything smaller. In one dimension, this forces the solution to be unique. (In
the notation of Section 3, this corresponds to the Pick matrix (3.1) being singular,
the vectors in (3.6) spanning C1+M , and the unique solution being (3.7).) On the
bidisk, problems can be extremal in either one or two dimensions. For example,
consider the problems: w1 = 0, w2 = 1/2, λ1 = (0, 0) and λ2 either (1/2, 0) or
(1/2, 1/2). The first problem has the unique solution z; the latter problem has a
unique solution on the one-dimensional set {z = w}, but is not unique off this set.
Indeed, Theorem 4.3 says in this case that the general solution is given by

φ(z, w) = tz + (1− t)w + t(1− t)(z − w)2
Ψ

1− [(1− t)z + tw]Ψ
,

where Ψ is any function in H∞1 (D2) and t is any number in [0, 1].
If an extremal Pick problem on D2 does not have a solution that is unique

on all D2, then the set on which it is unique must be a variety2 (the zero set of a
polynomial). But this is not an arbitrary variety – it has special properties.

2We use the word variety where algebraic geometers would say algebraic set – i.e., we do not
require that a variety be irreducible.
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Let E be the exterior of the closed disk, C \ D. Say a variety V in C2 is
toral if every irreducible component intersects T2 in an infinite set, and say it is
distinguished if

V ⊂ D2 ∪ T2 ∪ E2.

Distinguished varieties first appeared implicitly in the paper [48] by W. Rudin,
and later in the operator theoretic context of sharpening Andô’s inequality for
matrices [11]; they turn out to be intimately connected to function theory on D2

(see Theorem 9.2, for example). Toral varieties are related to inner functions [12]
and to symmetry of a variety with respect to the torus [13]. The uniqueness variety
was partially described in [11, 12]:

Theorem 8.1. The uniqueness set for an extremal Pick problem on D2 is either all
of D2 or a toral variety. In the latter case, it contains a distinguished variety.

It is perhaps the case that the uniqueness set is all of D2 whenever the data
is in some sense “generic” (see, e.g., [7]), but how is that made precise?

Question 4. When is the uniqueness set all of D2?

Distinguished varieties have a determinantal representation. The following
theorem was proved in [11], and, more constructively, in [36].

Theorem 8.2. A variety V is a distinguished variety if and only if there is a pure
matrix-valued rational inner function Ψ on the disk such that

V ∩ D2 = {(z, w) ∈ D2 : det(Ψ(z)− wI) = 0}.

Another way to picture distinguished varieties is by taking the Cayley trans-
form of both variables; then they become varieties in C2 with the property that
when one coordinate is real, so is the other.

9. Extension property

If G is a subset of D2, we shall say that a function f defined on G is holomorphic
if, for every point P in G, there is an open ball B(P, ε) in D2 and a holomorphic
function on the ball whose restriction to G is f . Given such a holomorphic function
f , one can ask whether there is a single function F on D2 that extends it, and, if
so, whether F can be chosen with additional properties.

H. Cartan proved that if G is a subvariety, then a global extension F always
exists [26] (indeed he proved this on any pseudo-convex domain, the bidisk being
just a special case). If f is bounded, one can ask whether one can find an extension
F with the same sup-norm. If G is an analytic retract of D2, i.e., there is an analytic
map r : D2 → G that is the identity on G, then F = f ◦ r will work. (All retracts
of D2 are either singletons, embedded disks, or the whole bidisk [47].) It turns out
that extending without increasing the norm is only possible for retracts [10].
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Theorem 9.1. Let G ⊆ D2 and assume that G is relatively polynomially convex
(i.e., G∧ ∩D2 = G where G∧ denotes the polynomially convex hull of G). If every
polynomial f on G has an extension to a function F in H∞(D2) of the same norm,
then G is a retract.

Let us remark that although the theorem can be proved without using oper-
ator theory, it was discovered by studying pairs of commuting operators having G
as a spectral set.

One can also ask if a bounded function f has a bounded extension F , but with
a perhaps greater norm. G. Henkin and P. Polyakov proved that this can always
be done if G is a subvariety of the polydisk that exits transversely [35]. In the case
of a distinguished variety, Knese showed how to bound the size of the extension
even when there are singularities on T2 [36, 37] (he also gives a construction of the
function C below):

Theorem 9.2. Let V be a distinguished variety. Then there is a rational function
C(z) with no poles in D such that, for every polynomial f(z, w) there is a rational
function F which agrees with f on V ∩D2 and satisfies the estimate

|F (z, w)| ≤ |C(z)| sup
(z,w) ∈ V

|f(z)|.

If V has no singularities on T2, then C can be taken to be a constant.

10. Conclusion

Paul R. Halmos contributed in many ways to the development of operator theory.
The purpose of this article is to show that recasting many known results about
H∞(D) in terms of operator theory has been extremely fruitful in understanding
H∞(D2). So far, however, it has not helped very much in understanding H∞(B2),
where B2 is the ball in C2. There is another kernel on the ball,

k(ζ, λ) =
1

1− ζ1λ̄1 − ζ2λ̄2
,

introduced by S. Drury [31], and operator theory has been very effective in studying
this kernel [5, 6, 18, 28, 32, 45].

Question 5. What is the correct Pick theorem on H∞(B2)?
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[26] H. Cartan. Séminaire Henri Cartan 1951/2. W.A. Benjamin, New York, 1967.

[27] J.B. Conway. The Theory of Subnormal Operators. American Mathematical
Society, Providence, 1991.

[28] S. Costea, E.T. Sawyer, and B.D. Wick. The corona theorem for the
Drury-Arveson Hardy space and other holomorphic Besov-Sobolev spaces on the
unit ball in Cn. http://front.math.ucdavis.edu/0811.0627, to appear.

[29] C.C. Cowen and B.D. MacCluer. Composition operators on spaces of analytic
functions. CRC Press, Boca Raton, 1995.

[30] M.J. Crabb and A.M. Davie. Von Neumann’s inequality for Hilbert space
operators. Bull. London Math. Soc., 7:49–50, 1975.

[31] S.W. Drury. A generalization of von Neumann’s inequality to the complex ball.
Proc. Amer. Math. Soc., 68:300–304, 1978.

[32] D. Greene, S. Richter, and C. Sundberg. The structure of inner multipliers on
spaces with complete Nevanlinna Pick kernels. J. Funct. Anal., 194:311–331, 2002.

[33] A. Grinshpan, D. Kaliuzhnyi-Verbovetskyi, V. Vinnikov, and H. Woerdeman.
Classes of tuples of commuting contractions satisfying the multivariable von
Neumann inequality. J. Funct. Anal. 256 (2009), no. 9, 3035–3054.

[34] P.R. Halmos. Normal dilations and extensions of operators. Summa Brasil. Math.,
2:125–134, 1950.

[35] G.M. Henkin and P.L. Polyakov. Prolongement des fonctions holomorphes bornées
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[40] R. Nevanlinna. Über beschränkte Funktionen. Ann. Acad. Sci. Fenn. Ser. A,
32(7):7–75, 1929.
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Abstract. Paul Halmos’ work in dilation theory began with a question and
its answer: Which operators on a Hilbert space H can be extended to normal
operators on a larger Hilbert space K ⊇ H? The answer is interesting and
subtle.

The idea of representing operator-theoretic structures in terms of con-
ceptually simpler structures acting on larger Hilbert spaces has become a
central one in the development of operator theory and, more generally, non-
commutative analysis. The work continues today. This article summarizes
some of these diverse results and their history.
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1. Preface

What follows is a brief account of the development of dilation theory that highlights
Halmos’ contribution to the circle of ideas. The treatment is not comprehensive. I
have chosen topics that have interested me over the years, while perhaps neglecting
others. In order of appearance, the cast includes dilation theory for subnormal op-
erators, operator-valued measures and contractions, connections with the emerging
theory of operator spaces, the role of extensions in dilation theory, commuting sets
of operators, and semigroups of completely positive maps. I have put Stinespring’s
theorem at the center of it, but barely mention the model theory of Sz.-Nagy and
Foias or its application to systems theory.

After reflection on the common underpinnings of these results, it seemed a
good idea to feature the role of Banach ∗-algebras in their proofs, and I have done
that. An appendix is included that summarizes what is needed. Finally, I have
tried to make the subject accessible to students by keeping the prerequisites to a
minimum; but of course familiarity with the basic theory of operators on Hilbert
spaces and C∗-algebras is necessary.
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2. Origins

Hilbert spaces are important because positive definite functions give rise to inner
products on vector spaces – whose completions are Hilbert spaces – and positive
definite functions are found in every corner of mathematics and mathematical
physics. This association of a Hilbert space with a positive definite function in-
volves a construction, and like all constructions that begin with objects in one
category and generate objects in another category, it is best understood when
viewed as a functor. We begin by discussing the properties of this functor in some
detail since, while here they are simple and elementary, similar properties will
re-emerge later in other contexts.

Let X be a set and let
u : X ×X → C

be a complex-valued function of two variables that is positive definite in the sense
that for every n = 1, 2, . . . , every x1, . . . , xn ∈ X and every set λ1, . . . , λn of
complex numbers, one has

n∑
k,j=1

u(xk, xj)λj λ̄k ≥ 0. (2.1)

Notice that if f : X → H is a function from X to a Hilbert space H with inner
product 〈·, ·〉, then the function u : X ×X → C defined by

u(x, y) = 〈f(x), f(y)〉, x, y ∈ X (2.2)

is positive definite. By passing to a subspace of H if necessary, one can obviously
arrange that H is the closed linear span of the set of vectors f(X) in the range of
f , and in that case the function f : X → H is said to be minimal (for the positive
definite function u). Let us agree to say that two Hilbert space-valued functions
f1 : X → H1 and f2 : X → H2 are isomorphic if there is a unitary operator
U : H1 → H2 such that

U(f1(x)) = f2(x), x ∈ X.

A simple argument shows that all minimal functions for u are isomorphic.
For any positive definite function u : X × X → C, a self-map φ : X → X

may or may not preserve the values of u in the sense that

u(φ(x), φ(y)) = u(x, y), x, y ∈ X ;

but when this formula does hold, one would expect that φ should acquire a Hilbert
space interpretation. In order to discuss that, let us think of Hilbert spaces as the
objects of a category whose morphisms are isometries; thus, a homomorphism from
H1 to H2 is a linear isometry U ∈ B(H1, H2). Positive definite functions are also
the objects of a category, in which a homomorphism from u1 : X1 ×X1 → C to
u2 : X2 ×X2 → C is a function φ : X1 → X2 that preserves the positive structure
in the sense that

u2(φ(x), φ(y)) = u1(x, y), x, y ∈ X1. (2.3)
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Given a positive definite function u : X×X → C, one can construct a Hilbert
space H(u) and a function f : X → H(u) as follows. Consider the vector space
CX of all complex-valued functions ξ : X → C with the property that ξ(x) = 0
for all but a finite number of x ∈ X . We can define a sesquilinear form 〈·, ·〉 on
CX by way of

〈ξ, η〉 =
∑
x,y∈X

u(x, y)ξ(x)η̄(y), ξ, η ∈ CX,

and one finds that 〈·, ·〉 is positive semidefinite because of the hypothesis on u. An
application of the Schwarz inequality shows that the set

N = {ξ ∈ CX : 〈ξ, ξ〉 = 0}
is in fact a linear subspace of CX , so this sesquilinear form can be promoted
naturally to an inner product on the quotient CX/N . The completion of the inner
product space CX/N is a Hilbert space H(u), and we can define the sought-after
function f : X → H(u) as follows:

f(x) = δx +N, x ∈ X, (2.4)

where δx is the characteristic function of the singleton {x}. By construction,
u(x, y) = 〈f(x), f(y)〉. Note too that this function f is minimal for u. While there
are many (mutually isomorphic) minimal functions for u, we fix attention on the
minimal function (2.4) that has been constructed.

Given two positive definite functions uk : Xk ×Xk → C, k = 1, 2, choose a
homomorphism from u1 to u2, namely a function φ : X1 → X2 that satisfies (2.3).
Notice that while the two functions fk : Xk → H(uk)

f1(x) = δx +N1, f2(y) = δy +N2, x ∈ X1, y ∈ X2

need not be injective, we do have the relations

〈f2(φ(x)), f2(φ(y))〉H(u2) = u2(φ(x), φ(y)) = u1(x, y) = 〈f1(x), f1(y)〉H(u1),

holding for all x, y ∈ X1. Since H(u1) is spanned by f1(X1), a familiar and el-
ementary argument (that we omit) shows that there is a unique linear isometry
Uφ : H(u1)→ H(u2) such that

Uφ(f1(x)) = f2(φ(x)), x ∈ X1. (2.5)

At this point, it is straightforward to verify that the expected composition formulas
Uφ1Uφ2 = Uφ1◦φ2 hold in general, and we conclude:

Proposition 2.1. The construction (2.4) gives rise to a covariant functor (u, φ)→
(H(u), Uφ) from the category of positive definite functions on sets to the category
of complex Hilbert spaces.

It is significant that if X is a topological space and u : X × X → C is a
continuous positive definite function, then the associated map f : X → H(u) of
(2.4) is also continuous. Indeed, this is immediate from (2.2):

‖f(x)− f(y)‖2 = u(x, x) + u(y, y)− u(x, y)− u(y, x), x, y ∈ X.
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The functorial nature of Proposition 2.1 pays immediate dividends:

Remark 2.2 (Automorphisms). Every positive definite function

u : X ×X → C

has an associated group of internal symmetries, namely the group Gu of all bijec-
tions φ : X → X that preserve u in the sense that

u(φ(x), φ(y)) = u(x, y), x, y ∈ X.
Notice that Proposition 2.1 implies that this group of symmetries has a natural
unitary representation U : Gu → B(H(u)) associated with it. Indeed, for every
φ ∈ Gu, the unitary operator Uφ ∈ B(H(u)) is defined uniquely by

Uφ(f(x)) = f(φ(x)), x ∈ X.
The properties of this unitary representation of the automorphism group of u often
reflect important features of the environment that produced u.

Examples: There are many examples of positive definite functions; some of the
more popular are reproducing kernels associated with domains in Cn. Here is
another example that is important for quantum physics and happens to be one of
my favorites. Let Z be a (finite- or infinite-dimensional) Hilbert space and consider
the positive definite function u : Z × Z → C defined by

u(z, w) = e〈z,w〉, z, w ∈ Z.
We will write the Hilbert spaceH(u) defined by the construction of Proposition 2.1
as eZ , since it can be identified as the symmetric Fock space over the one-particle
space Z. We will not make that identification here, but we do write the natural
function (2.4) from Z to eZ as f(z) = ez, z ∈ Z.

One finds that the automorphism group of Remark 2.2 is the full unitary
group U(Z) of Z. Hence the functorial nature of the preceding construction leads
immediately to a (strongly continuous) unitary representation Γ of the unitary
group U(Z) on the Hilbert space eZ . In explicit terms, for U ∈ U(Z), Γ(U) is the
unique unitary operator on eZ that satisfies

Γ(U)(ez) = eUz , U ∈ U(Z), z ∈ Z.

The map Γ is called second quantization in the physics literature. It has the prop-
erty that for every one-parameter unitary group {Ut : t ∈ R} acting on Z, there
is a corresponding one-parameter unitary group {Γ(Ut) : t ∈ R} that acts on the
“first quantized” Hilbert space eZ . Equivalently, for every self-adjoint operator A
on Z, there is a corresponding “second quantized” self-adjoint operator dΓ(A) on
eZ that is uniquely defined by the formula

eitdΓ(A)) = Γ(eitA), t ∈ R,

as one sees by applying Stone’s theorem which characterizes the generators of
strongly continuous one-parameter unitary groups.
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Finally, one can exploit the functorial nature of this construction further to
obtain a natural representation of the canonical commutation relations on eZ , but
we will not pursue that here.

3. Positive linear maps on commutative ∗-algebras
The results of Sections 4 and 5 on subnormal operators, positive operator-valued
measures and the dilation theory of contractions can all be based on a single
dilation theorem for positive linear maps of commutative Banach ∗-algebras. That
commutative theorem has a direct commutative proof. But since we require a
more general noncommutative dilation theorem in Section 6 that contains it as
a special case, we avoid repetition by merely stating the commutative result in
this section. What we want to emphasize here is the unexpected appearance of
complete positivity even in this commutative context, and the functorial nature of
dilation theorems of this kind.

A Banach ∗-algebra is a Banach algebra A that is endowed with an isometric
involution – an antilinear mapping a �→ a∗ of A into itself that satisfies a∗∗ = a,
(ab)∗ = b∗a∗ and ‖a∗‖ = ‖a‖. In this section we will be concerned with Banach
∗-algebras that are commutative, and which have a multiplicative unit 1 that
satisfies ‖1‖ = 1. The basic properties of Banach ∗-algebras and their connections
with C∗-algebras are summarized in the appendix.

An operator-valued linear map φ : A → B(H) of a Banach ∗-algebra is said
to be positive if φ(a∗a) ≥ 0 for every a ∈ A. The most important fact about
operator-valued positive linear maps of commutative algebras is something of a
miracle. It asserts that a positive linear map φ : A → B(H) of a commutative
Banach ∗-algebra A is completely positive in the following sense: For every n-tuple
a1, . . . , an of elements of A, the n× n operator matrix (φ(a∗i aj)) is positive in the
natural sense that for every n-tuple of vectors ξ1, . . . , ξn ∈ H , one has

n∑
i,j=1

〈φ(a∗i aj)ξj , ξi〉 ≥ 0. (3.1)

Notice that the hypothesis φ(a∗a) ≥ 0 is the content of these inequalities for the
special case n = 1. This result for commutative C∗-algebrasA is due to Stinespring
(see Theorem 4 of [Sti55]), and the proof of (3.1) can be based on that result
combined with the properties of the completion map ι : A → C∗(A) that carries
a commutative Banach ∗-algebra A to its enveloping C∗-algebra C∗(A) ∼= C(X)
(see Remark A.3 of the appendix).

The notion of complete positivity properly belongs to the noncommutative
world. We will return to it in Section 6 where we will prove a general result
(Theorem 6.1) which, when combined with (3.1), implies the following assertion
about positive linear maps of commutative ∗-algebras.

Scholium A: Let A be a commutative Banach ∗-algebra with unit and let H be
a Hilbert space. For every operator-valued linear map φ : A → B(H) satisfying
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φ(a∗a) ≥ 0 for all a ∈ A, there is a pair (V, π) consisting of a representation
π : A → B(K) of A on another Hilbert space K and a linear operator V ∈ B(H,K)
such that

φ(a) = V ∗π(a)V, a ∈ A. (3.2)
Moreover, φ is necessarily bounded, its norm is given by

sup
‖a‖≤1

‖φ(a)‖ = ‖φ(1)‖ = ‖V ‖2, (3.3)

and V can be taken to be an isometry when φ(1) = 1.

Remark 3.1 (Minimality and uniqueness of dilation pairs). Fix A as above. By a
dilation pair for A we mean a pair (V, π) consisting of a representation π : A →
B(K) and a bounded linear map V : H → K from some other Hilbert space H into
the space K on which π acts. A dilation pair (V, π) is said to be minimal if the set
of vectors {π(a)V ξ : a ∈ A, ξ ∈ H} hasK as its closed linear span. By replacingK
with an appropriate subspace and π with an appropriate subrepresentation, we can
obviously replace every such pair with a minimal one. Moreover, the representation
associated with a minimal pair must be nondegenerate, and therefore π(1) = 1K .

Note that every dilation pair (V, π) gives rise to a positive linear map φ : A →
B(H) that is defined by the formula (3.2), and we say that (V, π) is a dilation pair
for φ. A positive map φ has many dilation pairs associated with it, but the minimal
ones are equivalent in the following sense: If (V1, π1) and (V2, π2) are two minimal
dilation pairs for φ then there is a unique unitary operator W : K1 → K2 such
that

WV1 = V2, and Wπ1(a) = π2(a)W, a ∈ A. (3.4)
The proof amounts to little more than checking inner products on the two gener-
ating sets π1(A)V1H ⊆ K1 and π2(A)V2H ⊆ K2 and noting that

〈π2(a)V2ξ, π2(b)V2η〉 = 〈π2(b∗a)V2ξ, V2η〉 = 〈φ(b∗a)ξ, η〉
= 〈π1(a)V1ξ, π1(b)V1η〉,

for a, b ∈ A and ξ, η ∈ H .
Finally, note that in cases where φ(1) = 1, the operator V of a minimal pair

(V, π) is an isometry, so by making an obvious identification we can replace (V, π)
with an equivalent one in which V is the inclusion map of H into a larger Hilbert
space ι : H ⊆ K and π is a representation of A on K. After these identifications
we find that V ∗ = PH , and (3.2) reduces to the more traditional assertion

φ(a) = PHπ(a) �H , a ∈ A. (3.5)

Remark 3.2 (Functoriality). It is a worthwhile exercise to think carefully about
what a dilation actually is, and the way to do that is to think in categorical terms.
Fix a commutative Banach ∗-algebra A with unit 1. Operator-valued positive
linear maps of A are the objects of a category, in which a homomorphism from
φ1 : A → B(H1) to φ2 : A → B(H2) is defined as a unitary operator U : H1 → H2
satisfying Uφ1(a) = φ2(a)U for all a ∈ A; equivalently, U should implement a
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unitary equivalence of positive linear maps of A. Thus the positive linear maps of
A can be viewed as a groupoid – a category in which every arrow is invertible.

There is a corresponding groupoid whose objects are minimal dilation pairs
(V, π). Homomorphisms of dilation pairs (V1, π1) → (V2, π2) (here πj is a repre-
sentation of A on Kj and Vj is an operator in B(Hj,Kj)) are defined as unitary
operators W : K1 → K2 that satisfy

Wπ1(a) = π2(a)W, a ∈ A, and WV1 = V2.

The “set” of all dilation pairs for a fixed positive linear map φ : A → B(H) is
a subgroupoid, and we have already seen in Remark 3.1 that its elements are all
isomorphic. But here we are mainly concerned with how the dilation functor treats
arrows between different positive linear maps.

A functor is the end product of a construction. In order to describe how the
dilation functor acts on arrows, we need more information than the statement of
Scholium A contains, namely the following: There is a construction which starts
with a positive linear map φ : A → B(H) and generates a particular dilation pair
(V, π)φ from that data. Scholium A asserts that such dilation pairs exist for every
φ, but since the proof is missing, we have not seen the construction. Later on,
however, we will show how to construct a particular dilation pair (V, π)φ from a
completely positive map φ when we prove Stinespring’s theorem in Section 6. That
construction is analogous to the construction underlying (2.4), which exhibits an
explicit function f : X → H(u) that arises from the construction of the Hilbert
space H(u), starting with a positive definite function u. In order to continue the
current discussion, we ask the reader to assume the result of the construction of
Theorem 6.1, namely that we are somehow given a particular dilation pair (V, π)φ
for every positive linear map φ : A → B(H).

That puts us in position to describe how the dilation functor acts on arrows.
Given two positive linear maps φj : A → B(Hj), j = 1, 2, let U : H1 → H2 be a
unitary operator satisfying Uφ1(a) = φ2(a)U for a ∈ A. Let (V1, π1) and (V2, π2)
be the dilation pairs that have been constructed from φ1 and φ2 respectively.
Notice that since U∗φ2(a)U = φ1(a) for a ∈ A, it follows that (V2U, π2) is a
second minimal dilation pair for φ1. By (3.4), there is a unique unitary operator
Ũ : K1 → K2 that satisfies

ŨV1 = V2U, and Ũπ1(a) = π2(a)Ũ , a ∈ A.
One can now check that the association φ,U → (V, π)φ, Ũ defines a covariant
functor from the groupoid of operator-valued positive linear maps of A to the
groupoid of minimal dilation pairs for A.

4. Subnormality

An operator A on a Hilbert space H is said to be subnormal if it can be extended
to a normal operator on a larger Hilbert space. More precisely, there should exist
a normal operator B acting on a Hilbert space K ⊇ H that leaves H invariant and
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restricts to A on H . Halmos’ paper [Hal50] introduced the concept, and grew out
of his observation that a subnormal operator A ∈ B(H) must satisfy the following
system of peculiar inequalities:

n∑
i,j=0

〈Aiξj , A
jξi〉 ≥ 0, ∀ ξ0, ξ1, . . . , ξn ∈ H, n = 0, 1, 2, . . . . (4.1)

It is an instructive exercise with inequalities involving 2× 2 operator matrices to
show that the case n = 1 of (4.1) is equivalent to the single operator inequality
A∗A ≥ AA∗, a property called hyponormality today. Subnormal operators are cer-
tainly hyponormal, but the converse is false even for weighted shifts (see Problem
160 of [Hal67]). Halmos showed that the full set of inequalities (4.1) – together
with a second system of necessary inequalities that we do not reproduce here –
implies that A is subnormal. Several years later, his student J. Bram proved that
the second system of inequalities follows from the first [Bra55], and simpler proofs
of that fact based on semigroup considerations emerged later [Szf77]. Hence the
system of inequalities (4.1) is by itself necessary and sufficient for subnormality.

It is not hard to reformulate Halmos’ notion of subnormality (for single op-
erators) in a more general way that applies to several operators. Let Σ be a com-
mutative semigroup (written additively) that contains a neutral element 0. By a
representation of Σ we mean an operator-valued function s ∈ Σ �→ A(s) ∈ B(H)
satisfying A(s+ t) = A(s)A(t) and A(0) = 1. Notice that we make no assumption
on the norms ‖A(s)‖ as s varies over Σ. For example, a commuting set A1, . . . , Ad

of operators on a Hilbert spaceH gives rise to a representation of the d-dimensional
additive semigroup

Σ = {(n1, . . . , nd) ∈ Zd : n1 ≥ 0, . . . , nd ≥ 0}
by way of

A(n1, . . . , nd) = An1
1 · · ·And

d , (n1, . . . , nd) ∈ Σ.
In general, a representation A : Σ → B(H) is said to be subnormal if there is a
Hilbert space K ⊇ H and a representation B : Σ → B(K) consisting of normal
operators such that each B(s) leaves H invariant and

B(s) �H= A(s), s ∈ Σ.

We now apply Scholium A to prove a general statement about commutative op-
erator semigroups that contains the Halmos-Bram characterization of subnormal
operators, as well as higher-dimensional variations of it that apply to semigroups
generated by a finite or even infinite number of mutually commuting operators.

Theorem 4.1. Let Σ be a commutative semigroup with 0. A representation A :
Σ → B(H) is subnormal iff for every n ≥ 1, every s1, . . . , sn ∈ Σ and every
ξ1, . . . , ξn ∈ H, one has

n∑
i,j=1

〈A(si)ξj , A(sj)ξi〉 ≥ 0. (4.2)
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Proof. The proof that the system of inequalities (4.2) is necessary for subnormal-
ity is straightforward, and we omit it. Here we outline a proof of the converse,
describing all essential steps in the construction but leaving routine calculations
for the reader. We shall make use of the hypothesis (4.2) in the following form:
For every function s ∈ Σ �→ ξ(s) ∈ H such that ξ(s) vanishes for all but a finite
number of s ∈ Σ, one has ∑

s,t∈Σ
〈A(s)ξ(t), A(t)ξ(s)〉 ≥ 0. (4.3)

We first construct an appropriate commutative Banach ∗-algebra. Note that
the direct sum of semigroups Σ⊕Σ is a commutative semigroup with zero element
(0, 0), but unlike Σ it has a natural involution x �→ x∗ defined by (s, t)∗ = (t, s),
s, t ∈ Σ. We will also make use of a weight function w : Σ⊕Σ→ [1,∞) defined as
follows:

w(s, t) = max(‖A(s)‖ · ‖A(t)‖, 1), s, t ∈ Σ.

Using ‖A(s+ t)‖ = ‖A(s)A(t)‖ ≤ ‖A(s)‖ · ‖A(t)‖, one finds that

1 ≤ w(x + y) ≤ w(x)w(y), w(x∗) = w(x), x, y ∈ Σ⊕ Σ.

Note too that w((0, 0)) = 1 because A(0) = 1. Consider the Banach space A of all
functions f : Σ⊕ Σ→ C having finite weighted �1-norm

‖f‖ =
∑

x∈Σ⊕Σ
|f(x)| · w(x) <∞. (4.4)

Since w ≥ 1, the norm on A dominates the ordinary �1 norm, so that every
function in A belongs to �1(Σ⊕ Σ). Ordinary convolution of functions defined on
commutative semigroups

(f ∗ g)(z) =
∑

{x,y∈Σ⊕Σ: x+y=z}
f(x)g(y), z ∈ Σ⊕ Σ

defines an associative commutative multiplication in �1(Σ ⊕ Σ), and it is easy to
check that the above properties of the weight function w imply that with respect
to convolution and the involution f∗(s, t) = f̄(t, s), A becomes a commutative
Banach ∗-algebra with normalized unit δ(0,0).

We now use the semigroup A(·) to construct a linear map φ : A → B(H):

φ(f) =
∑

(s,t)∈Σ⊕Σ
f(s, t)A(s)∗A(t).

Note that ‖φ(f)‖ ≤ ‖f‖ because of the definition of the norm of f in terms of
the weight function w. Obviously φ(δ(s,t)) = A(s)∗A(t) for all s, t ∈ Σ, and in
particular φ(δ(0,0)) = 1. It is also obvious that φ(f∗) = φ(f)∗ for f ∈ A.

What is most important for us is that φ is a positive linear map, namely for
every f ∈ A and every vector ξ ∈ H

〈φ((f∗) ∗ f)ξ, ξ〉 ≥ 0. (4.5)
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To deduce this from (4.3), note that since φ : A → B(H) is a bounded linear map
and every function in A can be norm-approximated by functions which are finitely
nonzero, it suffices to verify (4.5) for functions f : Σ⊕ Σ→ C such that f(x) = 0
for all but a finite number of x ∈ Σ⊕ Σ. But for two finitely supported functions
f, g ∈ A and any function H : Σ ⊕ Σ → C, the definition of convolution implies
that f ∗ g is finitely supported, and∑

z∈Σ⊕Σ
(f ∗ g)(z)H(z) =

∑
x,y∈Σ⊕Σ

f(x)g(y)H(x+ y).

Fixing ξ ∈ H and taking H(s, t) = 〈A(s)∗A(t)ξ, ξ〉 = 〈A(t)ξ, A(s)ξ〉, we conclude
from the preceding formula that

〈φ(f ∗ g)ξ, ξ〉 =
∑

s,t,u,v∈Σ
f(s, t)g(u, v)〈A(t+ v)ξ, A(s+ u)ξ〉

=
∑

s,t,u,v∈Σ
f(s, t)g(u, v)〈A(t)A(v)ξ, A(u)A(s)ξ〉.

Thus we can write

〈φ(f∗ ∗ f)ξ, ξ〉 =
∑

s,t,u,v∈Σ
f̄(t, s)f(u, v)〈A(t)A(v)ξ, A(u)A(s)ξ〉

=
∑
t,u∈Σ

〈A(t)(
∑
v∈Σ

f(u, v)A(v)ξ), A(u)(
∑
s∈Σ

f(t, s)A(s)ξ)〉

=
∑
t,u∈Σ

〈A(t)ξ(u), A(u)ξ(t)〉,

where t ∈ Σ �→ ξ(t) ∈ H is the vector function

ξ(t) =
∑
s∈Σ

f(t, s)A(s)ξ, t ∈ Σ.

Notice that the rearrangements of summations carried out in the preceding formula
are legitimate because all sums are finite, and in fact the vector function t �→ ξ(t)
is itself finitely nonzero. (4.5) now follows from (4.3).

At this point, we can apply Scholium A to find a Hilbert space K which
contains H and a ∗-representation π : A → B(K) such that

PHπ(f) �H= φ(f), f ∈ A.
Hence the map x �→ π(δx) is a ∗-preserving representation of the ∗-semigroup
Σ ⊕ Σ, which can be further decomposed by way of π(δ(s,t)) = B(s)∗B(t), where
B : Σ → B(K) is the representation B(t) = π(δ(0, t)). Since the commutative
semigroup of operators {π(δx) : x ∈ Σ⊕Σ} is closed under the ∗-operation, B(Σ)
is a semigroup of mutually commuting normal operators. After taking s = 0 in the
formulas PHB(s)∗B(t) �H= A(s)∗A(t), one finds that A(t) is the compression of
B(t) to H . Moreover, since for every t ∈ Σ

PHB(t)∗B(t) �H= A(t)∗A(t) = PHB(t)∗PHB(t) �H ,
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we have PHB(t)∗(1 − PH)B(t)PH = 0. Thus we have shown that H is invariant
under B(t) and the restriction of B(t) to H is A(t). �

Remark 4.2 (Minimality and functoriality). Let Σ be a commutative semigroup
with zero. A normal extension s ∈ Σ �→ B(s) ∈ B(K) of a representation s ∈ Σ �→
A(s) ∈ B(H) on a Hilbert space K ⊇ H is said to be minimal if the set of vectors
{B(t)∗ξ : t ∈ Σ, ξ ∈ H} has K as its closed linear span. This corresponds to
the notion of minimality described in Section 6. The considerations of Remark 3.1
imply that all minimal dilations are equivalent, and we can speak unambiguously
of the minimal normal extension of A. A similar comment applies to the functorial
nature of the map which carries subnormal representations of Σ to their minimal
normal extensions.

Remark 4.3 (Norms and flexibility). It is a fact that the minimal normal extension
B of A satisfies ‖B(t)‖ = ‖A(t)‖ for t ∈ Σ. The inequality ≥ is obvious since A(t)
is the restriction of B(t) to an invariant subspace. However, if one attempts to
use the obvious norm estimate for representations of Banach ∗-algebras (see the
appendix for more detail) to establish the opposite inequality, one finds that the
above construction gives only

‖B(t)‖ = ‖π(δ(0,t))‖ ≤ ‖δ(0,t)‖ = w(0, t) = max(‖A(t)‖, 1),
which is not good enough when ‖A(t)‖ < 1. On the other hand, we can use the
flexibility in the possible norms of A to obtain the correct estimate as follows. For
each ε > 0, define a new weight function wε on Σ⊕ Σ by

wε(s, t) = max(‖A(s)‖ · ‖A(t)‖, ε), s, t ∈ Σ.

If one uses wε in place of w in the definition (4.4) of the norm on A, one obtains
another commutative Banach ∗-algebra which serves equally well as the original to
construct the minimal normal extension B of A, and it has the additional feature
that ‖B(t)‖ ≤ max(‖A(t)‖, ε) for t ∈ Σ. Since ε can be arbitrarily small, the
desired estimate ‖B(t)‖ ≤ ‖A(t)‖ follows. In particular, for every t ∈ Σ we have
A(t) = 0 ⇐⇒ B(t) = 0.

5. Commutative dilation theory

Dilation theory began with two papers of Naimark, written and published somehow
during the darkest period of world war II: [Nai43a], [Nai43b]. Naimark’s theorem
asserts that a countably additive measure E : F → B(H) defined on a σ-algebra F
of subsets of a set X that takes values in the set of positive operators on a Hilbert
space H and satisfies E(X) = 1 can be expressed in the form

E(S) = PHQ(S) �H , S ∈ F ,
where K is a Hilbert space containing H and Q : F → B(K) is a spectral measure.
A version of Naimark’s theorem (for regular Borel measures on topological spaces)
can be found on p. 50 of [Pau02]. Positive operator-valued measuresE have become
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fashionable in quantum physics and quantum information theory, where they go
by the unpronounceable acronym POVM. It is interesting that the Wikipedia page
for projection operator-valued measures (http://en.wikipedia.org/wiki/POVM)
contains more information about Naimark’s famous theorem than the Wikipedia
page for Naimark himself (http://en.wikipedia.org/wiki/Mark Naimark).

In his subnormality paper [Hal50], Halmos showed that every contraction
A ∈ B(H) has a unitary dilation in the sense that there is a unitary operator U
acting on a larger Hilbert space K ⊇ H such that

A = PHU �H .

Sz.-Nagy extended that in a most significant way [SN53] by showing that every con-
traction has a unitary power dilation, and the latter result ultimately became the
cornerstone for an effective model theory for Hilbert space contractions [SNF70].
Today, these results belong to the toolkit of every operator theorist, and can be
found in many textbooks. In this section we merely state Sz.-Nagy’s theorem and
sketch a proof that is in the spirit of the preceding discussion.

Theorem 5.1. Let A ∈ B(H) be an operator satisfying ‖A‖ ≤ 1. Then there is a
unitary operator U acting on a Hilbert space K containing H such that

An = PHU
n �H , n = 0, 1, 2, . . . . (5.1)

If U is minimal in the sense that K is the closed linear span of ∪n∈ZUnH, then it
is uniquely determined up to a natural unitary equivalence.

Sketch of proof. Consider the commutative Banach ∗-algebra A = �1(Z), with
multiplication and involution given by

(f ∗ g)(n) =
+∞∑

k=−∞
f(k)g(n− k), f∗(n) = f̄(−n), n ∈ Z,

and normalized unit 1 = δ0. Define A(n) = An if n ≥ 0 and A(n) = A∗|n| if n < 0.
Since ‖A(n)‖ ≤ 1 for every n, we can define a linear map φ : A → B(H) in the
obvious way

φ(f) =
+∞∑

n=−∞
f(n)A(n), f ∈ A.

It is obvious that ‖φ(f)‖ ≤ ‖f‖, f ∈ A, but not at all obvious that φ is a positive
linear map. However, there is a standard method for showing that for every ξ ∈ H ,
the sequence of complex numbers an = 〈A(n)ξ, ξ〉, n ∈ Z, is of positive type in the
sense that for every finitely nonzero sequence of complex numbers λn, n ∈ Z, one
has

∑
n∈Z an−mλnλ̄m ≥ 0; for example, see p. 36 of [Pau02]. By approximating

f ∈ A in the norm of A with finitely nonzero functions and using

〈φ((f∗) ∗ f)ξ, ξ〉 =
+∞∑

m,n=−∞
〈A(n−m)ξ, ξ〉f(n)f̄(m),
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it follows that 〈φ(f)ξ, ξ〉 ≥ 0, and we may conclude that φ is a positive linear map
of A to B(H) satisfying φ(δ0) = 1.

Scholium A implies that there is a ∗-representation π : A → B(K) of A on a
larger Hilbert space K such that π(f) compresses to φ(f) for f ∈ A. Finally, since
the enveloping C∗-algebra of A = �1(Z) is the commutative C∗-algebra C(T),
the representation π promotes to a representation π̃ : C(T) → B(K) (see the
appendix). Taking z ∈ C(T) to be the coordinate variable, we obtain a unitary
operator U ∈ B(K) by way of U = π̃(z), and formula (5.1) follows. We omit the
proof of the last sentence. �

No operator theorist can resist repeating the elegant proof of von Neumann’s
inequality that flows from Theorem 5.1. von Neumann’s inequality [vN51] asserts
that for every operator A ∈ B(H) satisfying ‖A‖ ≤ 1, one has

‖f(A)‖ ≤ sup
|z|≤1

|f(z)| (5.2)

for every polynomial f(z) = a0 + a1z + · · ·+ anz
n. von Neumann’s original proof

was difficult, involving calculations with Möbius transformations and Blaschke
products. Letting U ∈ B(K) be a unitary power dilation of A satisfying (5.1), one
has f(A) = PHf(U) �H , for every polynomial f , hence

‖f(A)‖ ≤ ‖f(U)‖ = sup
z∈σ(U)

|f(z)| ≤ sup
|z|=1

|f(z)|.

6. Completely positivity and Stinespring’s theorem

While one can argue that the GNS construction for states of C∗-algebras is a dila-
tion theorem, it is probably best thought of as an application of the general method
of associating a Hilbert space with a positive definite function as described in Sec-
tion 2. Dilation theory proper went noncommutative in 1955 with the publication
of a theorem of Stinespring [Sti55]. Stinespring told me that his original motiva-
tion was simply to find a common generalization of Naimark’s commutative result
that a positive operator-valued measure can be dilated to a spectral measure and
the GNS construction for states of (noncommutative) C∗-algebras. The theorem
that emerged went well beyond that, and today has become a pillar upon which
significant parts of operator theory and operator algebras rest. The fundamental
new idea underlying the result was that of a completely positive linear map.

The notion of positive linear functional or positive linear map is best thought
of in a purely algebraic way. More specifically, let A be a ∗-algebra, namely a
complex algebra endowed with an antilinear mapping a �→ a∗ satisfying (ab)∗ =
b∗a∗ and a∗∗ = a for all a, b ∈ A. An operator-valued linear map φ : A → B(H)
(and in particular a complex-valued linear functional φ : A → C) is called positive
if it satisfies

φ(a∗a) ≥ 0, a ∈ A. (6.1)
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One can promote this notion of positivity to matrix algebras over A. For
every n = 1, 2, . . . , the algebra Mn(A) of n × n matrices over A has a natural
involution, in which the adjoint of an n × n matrix is defined as the transposed
matrix of adjoints (aij)∗ = (a∗ji), 1 ≤ i, j ≤ n, aij ∈ A. Fixing n ≥ 1, a linear map
φ : A → B(H) induces a linear map φn from Mn(A) to n × n operator matrices
(φ(aij)) which, after making the obvious identifications, can be viewed as a linear
map of Mn(A) to operators on the direct sum of n copies of H . The original map
φ is called completely positive if each φn is a positive linear map. More explicitly,
complete positivity at level n requires that (6.1) should hold for n × n matrices:
For every n × n matrix A = (aij) with entries in A and every n-tuple of vectors
ξ1, . . . , ξn ∈ H , the n× n matrix B = (bij) defined by B = A∗A should satisfy

n∑
i,j=1

〈φ(bij)ξj , ξi〉 =
n∑

i,j,k=1

〈φ(a∗kiakj)ξj , ξi〉 ≥ 0.

Note that this system of inequalities reduces to a somewhat simpler-looking system
of inequalities (3.1) that we have already seen in Section 3.

If A happens to be a C∗-algebra, then the elements x ∈ A that can be
represented in the form x = a∗a for some a ∈ A are precisely the self-adjoint
operators x having nonnegative spectra. Since Mn(A) is also a C∗-algebra in a
unique way for every n ≥ 1, completely positive linear maps of C∗-algebras have
a very useful spectral characterization: they should map self-adjoint n× n opera-
tor matrices with nonnegative spectra to self-adjoint operators with nonnegative
spectra. Unfortunately, this spectral characterization breaks down completely for
positive linear maps of more general Banach ∗-algebras, and in that more general
context one must always refer back to positivity as it is expressed in (6.1).

Stinespring’s original result was formulated in terms of operator maps defined
on C∗-algebras. We want to reformulate it somewhat into the more flexible context
of linear maps of Banach ∗-algebras.

Theorem 6.1. Let A be a Banach ∗-algebra with normalized unit and let H be a
Hilbert space. For every completely positive linear map φ : A → B(H) there is a
representation π : A → B(K) of A on another Hilbert space K and a bounded
linear map V : H → K such that

φ(a) = V ∗π(a)V, a ∈ A. (6.2)

Moreover, the norm of the linking operator V is given by ‖V ‖2 = ‖φ(1)‖.

We have omitted the statement and straightforward proof of the converse,
namely that every linear map φ : A → B(H) of the form (6.2) must be completely
positive, in order to properly emphasize the construction of the dilation from the
basic properties of a completely positive map.

Proof. The underlying construction is identical with the original [Sti55], but a
particular estimate requires care in the context of Banach ∗-algebras, and we will
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make that explicit. Consider the tensor product of complex vector spaces A⊗H ,
and the sesquilinear form 〈·, ·〉 defined on it by setting〈 m∑

j=1

aj ⊗ ξj ,

n∑
k=1

bk ⊗ ηk

〉
=

m,n∑
j,k=1

〈φ(b∗kaj)ξj , ηk〉.

The fact that φ is completely positive implies that 〈ζ, ζ〉 ≥ 0 for every ζ ∈ A⊗H .
Letting N = {ζ ∈ A⊗H : 〈ζ, ζ〉 = 0}, the Schwarz inequality implies that N is a
linear subspace and that the sesquilinear form can be promoted to an inner product
on the quotient K0 = (A⊗H)/N . Let K be the completion of the resulting inner
product space.

Each a ∈ A gives rise to a left multiplication operator π(a) acting on A⊗H ,
defined uniquely by π(a)(b⊗ξ) = ab⊗ξ for b ∈ A and ξ ∈ H . The critical estimate
that we require is

〈π(a)ζ, π(a)ζ〉 ≤ ‖a‖2〈ζ, ζ〉, a ∈ A, ζ ∈ A⊗H, (6.3)

and it is proved as follows. Writing ζ = a1 ⊗ ξ1 + · · ·+ an ⊗ ξn, we find that

〈π(a)ζ, π(a)ζ〉 =
n∑

j,k=1

〈abj ⊗ ξj , abk ⊗ ξk〉 =
n∑

j,k=1

〈φ(b∗ka∗abj)ξj , ξk〉

=
n∑

j,k=1

〈a∗abj ⊗ ξj , bk ⊗ ξk〉 = 〈π(a∗a)ζ, ζ〉.

This formula implies that the linear functional ρ(a) = 〈π(a)ζ, ζ〉 satisfies ρ(a∗a) =
〈π(a)ζ, π(a)ζ〉 ≥ 0. Proposition A.1 of the appendix implies

ρ(a∗a) ≤ ρ(1)‖a∗a‖ ≤ ‖ζ‖2‖a‖2,
and (6.3) follows.

It is obvious that π(ab) = π(a)π(b) and that π(1) is the identity opera-
tor. Moreover, as in the argument above, we have 〈π(a)η, ζ〉 = 〈η, π(a∗)ζ〉 for all
a ∈ A and η, ζ ∈ A ⊗ H . Finally, (6.3) implies that π(a)N ⊆ N , so that each
operator π(a), a ∈ A, promotes naturally to a linear operator on the quotient
K0 = (A⊗H)/N . Together with (6.3), these formulas imply that π gives rise to
a ∗ representation of A as bounded operators on K0 which extends uniquely to
a representation of A on the completion K of K0, which we denote by the same
letter π.

It remains only to discuss the connecting operator V , which is defined by
V ξ = 1⊗ ξ+N , ξ ∈ H . One finds that π(a)V ξ = a⊗ ξ+N , from which it follows
that

〈π(a)V ξ, V η〉 = 〈a⊗ ξ +N ,1⊗ η +N〉 = 〈φ(a)ξ, η〉, ξ, η ∈ H.

Taking a = 1, we infer that ‖V ‖2 = ‖V ∗V ‖ = ‖φ(1)‖, and at that point the
preceding formula implies φ(a) = V ∗π(a)V , a ∈ A. �
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7. Operator spaces, operator systems and extensions

In this section we discuss the basic features of operator spaces and their matrix
hierarchies, giving only the briefest of overviews. The interested reader is referred
to one of the monographs [BLM04], [ER00], [Pau86] for more about this developing
area of noncommutative analysis.

Complex Banach spaces are the objects of a category whose maps are con-
tractions – linear operators of norm ≤ 1. The isomorphisms of this category are
surjective isometries. A function space is a norm-closed linear subspace of some
C(X) – the space of (complex-valued) continuous functions on a compact Haus-
dorff spaceX , endowed with the sup norm. All students of analysis know that every
Banach space E is isometrically isomorphic to a function space. Indeed, the Hahn-
Banach theorem implies that the natural map ι : E → E′′ of E into its double dual
has the stated property after one views elements if ι(E) as continuous functions on
the weak∗-compact unit ball X of E′. In this way the study of Banach spaces can
be reduced to the study of function spaces, and that fact is occasionally useful.

An operator space is a norm-closed linear subspace E of the algebra B(H) of
all bounded operators on a Hilbert space H . Such an E is itself a Banach space,
and is therefore isometrically isomorphic to a function space. However, the key
fact about operator spaces is that they determine an entire hierarchy of operator
spaces, one for every n = 1, 2, . . . . Indeed, for every n, the spaceMn(E) of all n×n
matrices over E is naturally an operator subspace of B(n ·H), n ·H denoting the
direct sum of n copies of H . Most significantly, a linear map of operator spaces
φ : E1 → E2 determines a sequence of linear maps φn : Mn(E1) → Mn(E2), where
φn is the linear map obtained by applying φ element-by-element to an n×nmatrix
over E1. One says that φ is a complete isometry or a complete contraction if every
φn is, respectively, an isometry or a contraction. There is a corresponding notion
of complete boundedness that will not concern us here.

Operator spaces can be viewed as the objects of a category whose maps are
complete contractions. The isomorphisms of this category are complete isometries,
and one is led to seek properties of operator spaces that are invariant under this
refined notion of isomorphism. Like Shiva, a given Banach space acquires many
inequivalent likenesses when it is realized concretely as an operator space. That is
because in operator space theory one pays attention to what happens at every level
of the hierarchy. The result is a significant and fundamentally noncommutative
refinement of classical Banach space theory.

For example, since an operator space E ⊆ B(H) is an “ordinary” Banach
space, it can be represented as a function space ι : E → C(X) as in the opening
paragraphs of this section. If we form the hierarchy of C∗-algebras Mn(C(X)),
n = 1, 2, . . . , then we obtain a sequence of embeddings

ιn : Mn(E)→Mn(C(X)), n = 1, 2, . . . .

Note that the C∗-algebra Mn(C(X)) is basically the C∗-algebra of all matrix-
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valued continuous functions F : X →Mn(C), with norm

‖F‖ = sup
x∈X

‖F (x)‖, F ∈Mn(C(X)).

While the map ι is surely an isometry at the first level n = 1, it may or may not be
a complete isometry; indeed for the more interesting examples of operator spaces
it is not. Ultimately, the difference between Banach spaces and operator spaces
can be traced to the noncommutativity of operator multiplication, and for that
reason some analysts like to think of operator space theory as the “quantized”
reformulation of functional analysis.

Finally, one can think of operator spaces somewhat more flexibly as norm-
closed linear subspaces E of unital (or even nonunital) C∗-algebras A. That is
because the hierarchy of C∗-algebras Mn(A) is well defined independently of any
particular faithful realization A as a C∗-subalgebra of B(H).

One can import the notion of order into the theory of operator spaces in a
natural way. A function system is a function space E ⊆ C(X) with the property
that E is closed under complex conjugation and contains the constants. One some-
times assumes that E separates points of X but here we do not. Correspondingly,
an operator system is a self-adjoint operator space E ⊆ B(H) that contains the
identity operator 1. The natural notion of order between self-adjoint operators,
namely A ≤ B ⇐⇒ B − A is a positive operator, has meaning in any operator
system E , and in fact every operator system is linearly spanned by its positive
operators. Every member Mn(E) of the matrix hierarchy over an operator system
E is an operator system, so that it makes sense to speak of completely positive
maps from one operator system to another.

Krein’s version of the Hahn-Banach theorem implies that a positive linear
functional defined on an operator system E in a C∗-algebra A can be extended
to a positive linear functional on all of A. It is significant that this extension
theorem fails in general for operator-valued positive linear maps. Fortunately, the
following result of [Arv69] provides an effective noncommutative counterpart of
Krein’s order-theoretic Hahn-Banach theorem:

Theorem 7.1. Let E ⊆ A be an operator system in a unital C∗-algebra. Then every
operator-valued completely positive linear map φ : E → B(H) can be extended to a
completely positive linear map of A into B(H).

There is a variant of 7.1 that looks more like the original Hahn-Banach the-
orem. Let E ⊆ A be an operator space in a C∗-algebra A. Then every operator-
valued complete contraction φ : E → B(H) can be extended to a completely
contractive linear map of A to B(H). While the latter extension theorem emerged
more than a decade after Theorem 7.1 (with a different and longer proof [Wit81],
[Wit84]), Vern Paulsen discovered a simple device that enables one to deduce it
readily from the earlier result. That construction begins with an operator space
E ⊆ A and generates an associated operator system Ẽ in the 2× 2 matrix algebra
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M2(A) over A as follows:

Ẽ =
{(

λ · 1 A
B∗ λ · 1

)
: A,B ∈ E , λ ∈ C

}
.

Given a completely contractive linear map φ : E → B(H), one can define a linear
map φ̃ : Ẽ → B(H ⊕H) in a natural way

φ̃

((
λ · 1 A
B∗ λ · 1

))
=
(
λ · 1 φ(A)
φ(B)∗ λ · 1

)
,

and it is not hard to see that φ̃ is completely positive (I have reformulated the
construction in a minor but equivalent way for simplicity; see Lemma 8.1 of [Pau02]
for the original). By Theorem 7.1, φ̃ extends to a completely positive linear map
of M2(A) to B(H ⊕ H), and the behavior of that extension on the upper right
corner is a completely contractive extension of φ.

8. Spectral sets and higher-dimensional operator theory

Some aspects of commutative operator theory can be properly understood only
when placed in the noncommutative context of the matrix hierarchies of the pre-
ceding section. In this section we describe the phenomenon in concrete terms,
referring the reader to the literature for technical details.

Let A ∈ B(H) be a Hilbert space operator. If f is a rational function of a single
complex variable that has no poles on the spectrum of A, then there is an obvious
way to define an operator f(A) ∈ B(H). Now fix a compact subset X ⊆ C of the
plane that contains the spectrum of A. The algebra R(X) of all rational functions
whose poles lie in the complement of X forms a unital subalgebra of C(X), and
this functional calculus defines a unit-preserving homomorphism f �→ f(A) of
R(X) into B(H). One says that X is a spectral set for A if this homomorphism
has norm 1:

‖f(A)‖ ≤ sup
z∈X

|f(z)|, f ∈ R(X). (8.1)

Von Neumann’s inequality (5.2) asserts that the closed unit disk is a spectral
set for every contraction A ∈ B(H); indeed, that property is characteristic of
contractions. While there is no corresponding characterization of the operators
that have a more general set X as a spectral set, we are still free to consider
the class of operators that do have X as a spectral set and ask if there is a
generalization of Theorem 5.1 that would apply to them. Specifically, given an
operator A ∈ B(H) that has X as a spectral set, is there a normal operator N
acting on a larger Hilbert space K ⊇ H such that the spectrum of N is contained
in the boundary ∂X of X and

f(A) = PHf(N) �H , f ∈ R(X)? (8.2)

A result of Foias implies that the answer is yes if the complement of X
is connected, but it is no in general. The reason the answer is no in general is
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that the hypothesis (8.1) is not strong enough; and that phenomenon originates
in the noncommutative world. To see how the hypothesis must be strengthened,
let N be a normal operator with spectrum in ∂X . The functional calculus for
normal operators gives rise to a representation π : C(∂X)→ B(K), π(f) = f(N),
f ∈ C(∂X). It is easy to see that representations of C∗-algebras are completely
positive and completely contractive linear maps, hence if the formula (8.2) holds
then the map f ∈ R(X) �→ f(A) must be not only be a contraction, it must be a
complete contraction.

Let us examine the latter assertion in more detail. Fix n = 1, 2, . . . and let
Mn(R(X)) be the algebra of all n×n matrices with entries in R(X). One can view
an element of Mn(R(X)) as a matrix-valued rational function

F : z ∈ X �→ F (z) = (fij(z)) ∈Mn(C),

whose component functions belong to R(X). Notice that we can apply such a
matrix-valued function to an operator A that has spectrum in X to obtain an n×n
matrix of operators – or equivalently an operator F (A) = (fij(A)) in B(n ·H). The
map F ∈ Mn(R(X)) �→ F (A) ∈ B(n · H) is a unit-preserving homomorphism of
complex algebras.X is said to be a complete spectral set for an operator A ∈ B(H)
if it contains the spectrum of A and satisfies

‖F (A)‖ ≤ sup
z∈X

‖F (z)‖, F ∈Mn(R(X)), n = 1, 2, . . . . (8.3)

Now if there is a normal operator N with spectrum in ∂X that relates to A as in
(8.2), then for every n = 1, 2, . . . and every F ∈Mn(R(X)),

‖F (A)‖ ≤ ‖F (N)‖ ≤ sup
z∈∂X

‖F (z)‖ = sup
z∈X

‖F (z)‖,

and we conclude that X must be a complete spectral set for A.
The following result from [Arv72] implies that complete spectral sets suffice

for the existence of normal dilations. It depends in an essential way on the extension
theorem (Theorem 7.1) for completely positive maps.

Theorem 8.1. Let A ∈ B(H) be an operator that has a compact set X ⊆ C as a
complete spectral set. Then there is a normal operator N on a Hilbert space K ⊇ H
having spectrum in ∂X such that

f(A) = PHf(N) �H , f ∈ R(X).

The unitary power dilation of a contraction is unique up to natural equiv-
alence. That reflects a property of the unit circle T: Every positive linear map
φ : C(T)→ B(H) is uniquely determined by its values on the nonnegative powers
1, z, z2, . . . of the coordinate variable z. In general, however, positive linear maps
of C(X) are not uniquely determined by their values on subalgebras of C(X),
with the result that there is no uniqueness assertion to complement the existence
assertion of Theorem 8.1 for the dilation theory of complete spectral sets.

On the other hand, there is a “many operators” generalization of Theorem 8.1
that applies to completely contractive unit-preserving homomorphisms of arbitrary
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function algebras A ⊆ C(X) that act on compact Hausdorff spaces X , in which
∂X is replaced by the Silov boundary of X relative to A. The details can be found
in Theorem 1.2.2 of [Arv72] and its corollary.

9. Completely positive maps and endomorphisms

In recent years, certain problems arising in mathematical physics and quantum
information theory have led researchers to seek a different kind of dilation the-
ory, one that applies to semigroups of completely positive linear maps that act
on von Neumann algebras. In this section, we describe the simplest of these dila-
tion theorems as it applies to the simplest semigroups acting on the simplest of
von Neumann algebras. A fuller accounting of these developments together with
references to other sources can be found in Chapter 8 of the monograph [Arv03].

Let φ : B(H) → B(H) be a unit-preserving completely positive (UCP) map
which is normal in the sense that for every normal state ρ of B(H), the composition
ρ ◦ φ is also a normal state. One can think of the semigroup

{φn : n = 0, 1, 2, . . .}
as representing the discrete time evolution of an irreversible quantum system.
What we seek is another Hilbert space K together with a normal ∗-endomorphism
α : B(K) → B(K) that is in some sense a “power dilation” of φ. There are a
number of ways one can make that vague idea precise, but only one of them is
completely effective. It is described as follows.

Let K ⊇ H be a Hilbert space that contains H and suppose we are given
a normal ∗-endomorphism α : B(K) → B(K) that satisfies α(1) = 1. We write
the projection PH of K on H simply as P , and we identify B(H) with the corner
PB(K)P ⊆ B(K). α is said to be a dilation of φ if

φn(A) = Pαn(A)P, A ∈ B(H) = PB(K)P, n = 0, 1, 2, . . . . (9.1)

Since φ is a unit-preserving map of B(H), P = φ(P ) = Pα(P )P , so that
α(P ) ≥ P . Hence we obtain an increasing sequence of projections

P ≤ α(P ) ≤ α2(P ) ≤ · · · . (9.2)

The limit projection P∞ = limn α
n(P ) satisfies α(P∞) = P∞, hence the com-

pression of α to the larger corner P∞B(K)P∞ ∼= B(P∞K) of B(K) is a unital
∗-endomorphism that is itself a dilation of φ. By cutting down if necessary we can
assume that the configuration is proper in the sense that

lim
n→∞αn(P ) = 1K , (9.3)

and in that case the endomorphism α is said to be a proper dilation of φ. We
have refrained from using the term minimal to describe this situation because
in the context of semigroups of completely positive maps, the notion of minimal
dilation is a more subtle one that requires a stronger hypothesis. That hypothesis
is discussed in Remark 9.3 below.
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Remark 9.1 (Stinespring’s theorem is not enough). It is by no means obvious that
dilations should exist. One might attempt to construct a dilation of the semigroup
generated by a single UCP map φ : B(H) → B(H) by applying Stinespring’s
theorem to the individual terms of the sequence of powers φn, n = 0, 1, 2, . . . , and
then somehow putting the pieces together to obtain the dilating endomorphism
α. Indeed, Stinespring’s theorem provides us with a Hilbert space Kn ⊇ H and a
representation πn : B(H)→ B(Kn) for every n ≥ 0 such that

φn(A) = PHπn(A) �H , A ∈ B(H), n = 0, 1, 2, . . . .

However, while these formulas certainly inherit a relation to each other by virtue of
the semigroup formula φm+n = φm ◦φn, m,n ≥ 0, if one attempts to exploit these
relationships one finds that the relation between πm, πn and πm+n is extremely
awkward. Actually, there is no apparent way to assemble the von Neumann alge-
bras πn(B(H)) into a single von Neumann algebra that plays the role of B(K),
on which one can define a single endomorphism α that converts these formulas
into the single formula (9.1). Briefly put, Stinespring’s theorem does not apply to
semigroups.

These observations suggest that the problem of constructing dilations in this
context calls for an entirely new method, and it does. The proper result for normal
UCP maps acting on B(H) was discovered by Bhat and Parthasarathy [BP94],
building on earlier work of Parthasarathy [Par91] that was set in the context of
quantum probability theory. The result was later extended by Bhat to semigroups
of completely positive maps that act on arbitrary von Neumann algebras [Bha99].
The construction of the dilation has been reformulated in various ways; the one I
like is in Chapter 8 of [Arv03] (also see [Arv02]). Another approach, due to Muhly
and Solel [MS02], is based on correspondences over von Neumann algebras. The
history of earlier approaches to this kind of dilation theory is summarized in the
notes of Chapter 8 of [Arv03].

We now state the appropriate result for B(H) without proof:

Theorem 9.2. For every normal UCP map φ : B(H) → B(H), there is a Hilbert
space K ⊇ H and a normal ∗-endomorphism α : B(H)→ B(H) satisfying α(1) =
1 that is a proper dilation of φ as in (9.1).

Remark 9.3 (Minimality and uniqueness). The notion of minimality for a dilation
α : B(K)→ B(K) of a UCP map φ : B(H)→ B(H) is described as follows. Again,
we identify B(H) with the corner PB(K)P . We have already pointed out that
the projections αn(P ) increase with n. However, the sequence of (nonunital) von
Neumann subalgebras αn(B(H)), n = 0, 1, 2, . . . , neither increases nor decreases
with n, and that behavior requires care. The proper notion of minimality in this
context is that the set of all vectors in K of the form

αn1(A1)αn2(A2) · · ·αnk(Ak)ξ, (9.4)

where k = 1, 2, . . . , nk = 0, 1, 2, . . . , Ak ∈ B(H), and ξ ∈ H , should have K as
their closed linear span. Equivalently, the smallest subspace of K that contains H
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and is invariant under the set of operators

B(H) ∪ α(B(H)) ∪ α2(B(H)) ∪ · · ·
should be all of K. It is a fact that every minimal dilation is proper, but the
converse is false. It is also true that every proper dilation can be reduced in a
natural way to a minimal one, and finally, that any two minimal dilations of the
semigroup {φn : n ≥ 0} are isomorphic in a natural sense.

We also point out that there is a corresponding dilation theory for one-
parameter semigroups of UCP maps. These facts are discussed at length in Chapter
8 of [Arv03].

Appendix: Brief on Banach ∗-algebras
Banach ∗-algebras (defined at the beginning of Section 3) are useful because they
are flexible – it is usually a simple matter to define a Banach ∗-algebra with
the properties one needs. More importantly, it is far easier to define states and
representations of Banach ∗-algebras than it is for the more rigid category of C∗-
algebras. For example, we made use of the technique in the proof of Theorem 4.1
and the estimate of Remark 4.3.

On the other hand, it is obviously desirable to have C∗-algebraic tools avail-
able for carrying out analysis. Fortunately one can have it both ways, because ev-
ery Banach ∗-algebra A is associated with a unique enveloping C∗-algebra C∗(A)
which has the “same” representation theory and the “same” state space as A. In
this Appendix we briefly describe the properties of this useful functor A → C∗(A)
for the category of Banach ∗-algebras that have a normalized unit 1. There are
similar results (including Proposition A.1 below) for many nonunital Banach ∗-
algebras – including the group algebras of locally compact groups – provided that
they have appropriate approximate units. A comprehensive treatment can be found
in [Dix64].

The fundamental fact on which these results are based is the following (see
Proposition 4.7.1 of the text [Arv01] for a proof):

Proposition A.1. Every positive linear functional ρ on a unital Banach ∗-algebra
A is bounded, and in fact ‖ρ‖ = ρ(1).

What we actually use here is the following consequence, which is proved by
applying Proposition A.1 to functionals of the form ρ(a) = 〈φ(a)ξ, ξ〉:
Corollary A.2. Every operator-valued positive linear map φ :A→B(H) is bounded,
and ‖φ‖ = ‖φ(1)‖.

By a representation of a Banach ∗-algebra A we mean a ∗-preserving homo-
morphism π : A → B(H) of A into the ∗-algebra of operators on a Hilbert space. It
is useful to assume the representation is nondegenerate in the sense that π(1) = 1;
if that is not the case, it can be arranged by passing to the subrepresentation
defined on the subspace H0 = π(1)H . Representations of Banach ∗-algebras arise
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from positive linear functionals (by way of the GNS construction which makes
use of Proposition A.1) or from completely positive linear maps (by a variation of
Theorem 6.1, by making use of Corollary A.2).

While we have made no hypothesis on the norms ‖π(a)‖ associated with
a representation π, it follows immediately from Proposition A.1 that every rep-
resentation of A has norm 1. Indeed, for every unit vector ξ ∈ H and a ∈ A,
ρ(a) = 〈π(a)ξ, ξ〉 defines a positive linear functional on A with ρ(1) = 1, so that

‖π(a)ξ‖2 = 〈π(a)∗π(a)ξ, ξ〉 = 〈π(a∗a)ξ, ξ〉 = ρ(a∗a) ≤ ‖a∗a‖ ≤ ‖a‖2,
and ‖π(a)‖ ≤ ‖a‖ follows. It is an instructive exercise to find a direct proof of the
inequality ‖π(a)‖ ≤ ‖a‖ that does not make use of Proposition A.1.

Remark A.3 (Enveloping C∗-algebra of a Banach ∗-algebra). Consider the semi-
norm ‖ · ‖1 defined on A by

‖a‖1 = sup
π
‖π(a)‖, a ∈ A,

the supremum taken over a “all” representations of A. Since the representations
of A do not form a set, the quotes simply refer to an obvious way of choosing suf-
ficiently many representatives from unitary equivalence classes of representations
so that every representation is unitarily equivalent to a direct sum of the repre-
sentative ones. It is clear that ‖a∗a‖1 = ‖a‖21. Indeed, ‖ · ‖1 is a C∗-seminorm,
and the completion of A/{x ∈ A : ‖x‖1 = 0} is a C∗-algebra C∗(A), called the
enveloping C∗-algebra of A. The natural completion map

ι : A → C∗(A) (A.1)

is a ∗-homomorphism having dense range and norm 1. This completion (A.1) has
the following universal property: For every representation π : A → B(H) there is
a unique representation π̃ : C∗(A) → B(H) such that π̃ ◦ ι = π. The map π → π̃
is in fact a bijection. Indeed, Proposition A.1 is equivalent to the assertion that
there is a bijection between the set of positive linear functionals ρ on A and the set
of positive linear functionals ρ̃ on its enveloping C∗-algebra, defined by a similar
formula ρ̃ ◦ ι = ρ.

One should keep in mind that the completion map (A.1) can have a nontrivial
kernel in general, but for many important examples it is injective. For example, it
is injective in the case of group algebras – the Banach ∗-algebras L1(G) associated
with locally compact groupsG. WhenG is commutative, the enveloping C∗-algebra
of L1(G) is the C∗-algebra C∞(Ĝ) of continuous functions that vanish at ∞ on
the character group Ĝ of G.
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[Dix64] J. Dixmier. Les C∗-algèbres et leurs Représentations. Gauthier–Villars, Paris,
1964.

[ER00] E.G. Effros and Z.-J. Ruan. Operator Spaces. Oxford University Press,
Oxford, 2000.

[Hal50] P.R. Halmos. Normal dilations and extensions of operators. Summa Brasil.,
2:125–134, 1950.

[Hal67] P. Halmos. A Hilbert space problem book. Van Nostrand, Princeton, 1967.

[MS02] P. Muhly and B. Solel. Quantum Markov processes (correspondences and
dilations). Int. J. Math., 13(8):863–906, 2002.

[Nai43a] M.A. Naimark. On the representation of additive operator set functions. C.R.
(Dokl.) Acad. Sci. URSS, 41:359–361, 1943.

[Nai43b] M.A. Naimark. Positive definite operator functions on a commutative group.
Bull. (Izv.) Acad. Sci. URSS (Ser. Math.), 7:237–244, 1943.

[Par91] K.R. Parthasarathy. An introduction to quantum stochastic calculus, volume I.
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A Toeplitz matrix is a matrix that is constant on each line parallel to the main
diagonal. Thus a Toeplitz matrix looks like this:

a0 a−1 a−2 a−3 · · ·
a1 a0 a−1 a−2

. . .

a2 a1 a0 a−1
. . .

a3 a2 a1 a0
. . .

...
. . . . . . . . . . . .

In this article, Toeplitz matrices have infinitely many rows and columns, indexed by
the nonnegative integers, and the entries of the matrix are complex numbers. Thus
a Toeplitz matrix is determined by a two-sided sequence (an)∞n=−∞ of complex
numbers, with the entry in row j, column k (for j, k ≥ 0) of the Toeplitz matrix
equal to aj−k.

We can think of the Toeplitz matrix above as acting on the usual Hilbert space
�2 of square-summable sequences of complex numbers, equipped with its stan-
dard orthonormal basis. The question then arises of characterizing the two-sided
sequences (an)∞n=−∞ of complex numbers such that the corresponding Toeplitz
matrix is the matrix of a bounded operator on �2. The answer to this question
points toward the fascinating connection between Toeplitz operators and complex
function theory.

This paper is an extension and modification of the author’s article Paul Halmos and Toeplitz

Operators, which was published in Paul Halmos: Celebrating 50 Years of Mathematics, Springer,
1991, edited by John H. Ewing and F.W. Gehring.
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Let D denote the open unit disk in the complex plane and let σ denote the
usual arc length measure on the unit circle ∂D, normalized so that σ(∂D) = 1.
For f ∈ L1(∂D, σ) and n an integer, the nth Fourier coefficient of f , denoted f̂(n),
is defined by

f̂(n) =
∫
∂D

f(z)zn dσ(z).

The characterization of the Toeplitz matrices that represent bounded operators
on �2 is now given by the following result.

Theorem 1. The Toeplitz matrix corresponding to a two-sided sequence (an)∞n=−∞
of complex numbers is the matrix of a bounded operator on �2 if and only if there
exists a function f ∈ L∞(∂D, σ) such that an = f̂(n) for every integer n.

The result above first seems to have appeared in print in the Appendix of a
1954 paper by Hartman and Wintner [16], although several decades earlier Otto
Toeplitz had proved the result in the special case of symmetric Toeplitz matrices
(meaning that a−n = an for each integer n). One direction of the result above
is an easy consequence of adopting the right viewpoint. Specifically, the Hardy
space H2 is defined to be the closed linear span in L2(∂D, σ) of {zn : n ≥ 0}. For
f ∈ L∞(∂D, σ), the Toeplitz operator with symbol f , denoted Tf , is the operator
on H2 defined by

Tfh = P (fh),
where P denotes the orthogonal projection of L2(∂D, σ) onto H2. Clearly Tf
is a bounded operator on H2. The matrix of Tf with respect to the orthonor-
mal basis (zn)∞n=0 is the Toeplitz matrix corresponding to the two-sided sequence
(f̂(n))∞n=−∞, thus proving one direction of Theorem 1.

Products of Toeplitz operators

Paul Halmos’s first paper on Toeplitz operators was a joint effort with Arlen Brown
published in 1964 [5]. The Brown/Halmos paper set the tone for much of the later
work on Toeplitz operators. Some of the results in the paper now seem easy,
perhaps because in 1967 Halmos incorporated them into the chapter on Toeplitz
operators in his marvellous and unique A Hilbert Space Problem Book [11], from
which several generations of operator theorists have learned the tools of the trade.
Multiple papers have been published in the 1960s, 1970s, 1980s, 1990s, and the
2000s that extend and generalize results that first appeared in the Brown/Halmos
paper. Although it is probably the most widely cited paper ever written on Toeplitz
operators, Halmos records in his automathography ([12], pages 319–321) that this
paper was rejected by the first journal to which it was submitted before being
accepted by the prestigious Crelle’s journal.

The Brown/Halmos paper emphasized the difficulties flowing from the ob-
servation that the linear map f �→ Tf is not multiplicative. Specifically, TfTg is
rarely equal to Tfg. Brown and Halmos discovered precisely when TfTg = Tfg. To
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state their result, first we recall that the Hardy space H∞ is defined to be the set
of functions f in L∞(∂D, σ) such that f̂(n) = 0 for every n < 0. Note that a func-
tion f ∈ L∞(∂D, σ) is in H∞ if and only if the matrix of Tf is a lower-triangular
matrix. Similarly, the matrix of Tf is an upper-triangular matrix if and only if
f̄ ∈ H∞. The Brown/Halmos paper gives the following characterization of which
Toeplitz operators multiply well.

Theorem 2. Suppose f, g ∈ L∞(∂D, σ). Then TfTg = Tfg if and only if either f̄
or g is in H∞.

As a consequence of the result above, the Brown/Halmos paper shows that
there are no zero divisors among the set of Toeplitz operators:

Theorem 3. If f, g ∈ L∞(∂D, σ) and TfTg = 0, then either f = 0 or g = 0.

The theorem above naturally leads to the following question:

Question 1. Suppose f1, f2, . . . , fn ∈ L∞(∂D, σ) and

Tf1Tf2 . . . Tfn = 0.

Must some fj = 0?

Halmos did not put the question above in print, but I heard him raise and
popularize it at a number of conferences. The Brown/Halmos paper shows that
the question above has answer “yes” if n = 2. Several people extended the result to
n = 3, but after that progress was painfully slow. In 1996 Kun Yu Guo [9] proved
that the question above has an affirmative answer if n = 5. In 2000 Caixing Gu [8]
extended the positive result to the case where n = 6. Recently Alexandru Aleman
and Dragan Vukotić [1] completely solved the problem, cleverly showing that the
question above has an affirmative answer for all values of n.

The spectrum of a Toeplitz operator

Recall that the spectrum of a linear operator T is the set of complex numbers
λ such that T − λI is not invertible; here I denotes the identity operator. The
Brown/Halmos paper contains the following result, which was the starting point
for later deep work about the spectrum of a Toeplitz operator.

Theorem 4. The spectrum of a Toeplitz operator cannot consist of exactly two
points.

In the best Halmosian tradition, the Brown/Halmos paper suggests an open
problem as a yes/no question:

Question 2. Can the spectrum of a Toeplitz operator consist of exactly three points?

A bit later, in [10] (which was written after the Brown/Halmos paper al-
though published slightly earlier) Halmos asked the following bolder question.

Question 3. Does every Toeplitz operator have a connected spectrum?
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This has always struck me as an audacious question, considering what was
known at the time. The answer was known to be “yes” when the symbols are
required to be either real valued or in H∞, but these are extremely special and
unrepresentative cases. For the general complex-valued function, even the possibil-
ity that the spectrum could consist of exactly three points had not been eliminated
when Halmos posed the question above.

Nevertheless, Harold Widom [19] soon answered Halmos’s question by prov-
ing the following theorem (the essential spectrum of an operator T is the set of
complex numbers λ such that T − λI is not invertible modulo the compact oper-
ators).

Theorem 5. Every Toeplitz operator has a connected spectrum and a connected
essential spectrum.

Ron Douglas [7] has written that Widom’s proof of the theorem above is
unsatisfactory because “the proof gives us no hint as to why the result is true”,
but no alternative proof has been found.

Subnormal Toeplitz operators

Recall that a linear operator T is called normal if it commutes with its adjoint
(T ∗T = TT ∗). The Brown/Halmos paper gave the following characterization of
the normal Toeplitz operators.

Theorem 6. Suppose f ∈ L∞(∂D, σ). Then Tf is normal if and only if there is a
real-valued function g ∈ L∞(∂D, σ) and complex constants a, b such that f = ag+b.

One direction of the theorem above is easy because if g is a real-valued
function in L∞(∂D, σ) then Tg is self-adjoint, which implies that aTg+bI is normal
for all complex constants a, b.

A Toeplitz operator is called analytic if its symbol is in H∞. The reason for
this terminology is that the Fourier series of a function f ∈ L1(∂D, σ), which is
the formal sum ∞∑

n=−∞
f̂(n)zn,

is the Taylor series expansion
∞∑
n=0

f̂(n)zn

of an analytic function on the unit disk if f̂(n) = 0 for all n < 0.
An operator S on a Hilbert space H is called subnormal if there is a Hilbert

space K containing H and a normal operator T on K such that T |K = S. For
example, if f ∈ H∞, then the Toeplitz operator Tf is subnormal, as can be seen by
considering the Hilbert space L2(∂D, σ) and the normal operator of multiplication
by f on L2(∂D, σ). Thus every analytic Toeplitz operator is subnormal.
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All normal Toeplitz operators and all analytic Toeplitz operators are sub-
normal. These two classes of Toeplitz operators were the only known examples
of subnormal Toeplitz operators in 1970 when Paul Halmos gave a famous series
of lectures [14] in which he posed ten open problems in operator theory. One of
Halmos’s ten questions asked if there were any other examples:

Question 4. Is every subnormal Toeplitz operator either normal or analytic?

In 1979 Halmos described [15] what had happened to the ten problems in
the years since they had been posed. The problem about Toeplitz operators was
still unsolved, but Halmos’s question had stimulated good work on the problem.
Several papers had been written with partial results providing strong evidence
that the question above had an affirmative answer.

In the spring of 1983 I believed that the time was right for a breakthrough
on this problem, so I organized a seminar at Michigan State University to focus on
this problem. We went through every paper on this topic, including a first draft
of a manuscript by Shun-Hua Sun. Sun claimed to have proved that no nonana-
lytic Toeplitz operator can lie in a certain important subclass of the subnormal
operators. There was a uncorrectable error in the proof (and the result is false),
but Sun had introduced clever new ideas to the subject. His proof worked for all
but a single family of operators, and thus this particular family was an excellent
candidate for a counter-example that no one expected to exist.

The Spring quarter ended and I sent a copy of my seminar notes to Carl
Cowen at Purdue University. When I returned from a long trip abroad, I found a
letter from Cowen, who had amazingly answered Halmos’s question (negatively!)
by proving that each operator in the suspicious family singled out by Sun’s work
is a subnormal Toeplitz operator that is neither normal nor analytic. Here is what
Cowen had proved, where we are abusing notation and thinking of f , which starts
out as a function on D, as also a function on ∂D (just extend f by continuity
to ∂D):

Theorem 7. Suppose b ∈ (0, 1). Let f be a one-to-one analytic mapping of the
unit disk onto the ellipse with vertices 1

1+b ,
−1
1+b ,

i
1−b , and −i

1−b . Then the Toeplitz
operator with symbol f + bf̄ is subnormal but is neither normal nor analytic.

I told my PhD student John Long about Cowen’s wonderful result, although I
did not show Long the proof. Within a week, Long came back to me with a beautiful
and deep proof that was shorter and more natural than Cowen’s. Because there
was now no reason to publish Cowen’s original proof, Cowen and Long decided to
publish Long’s proof in a joint paper [6]. Thus the contributions to that paper are
as follows: Cowen first proved the result and provided the crucial knowledge of the
correct answer, including the idea of using ellipses; the proof in the paper is due
to Long. At no time did the two authors actually work together.
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The symbol map

Paul Halmos’s second major paper on Toeplitz operators was a joint effort with
José Barŕıa that was published in 1982 [4]. The main object of investigation is the
Toeplitz algebra T , which is defined to be the norm-closed algebra generated by
all the Toeplitz operators on H2. The most important tool in the study of T is
what is called the symbol map ϕ, as described in the next theorem.

Theorem 8. There exists a unique multiplicative linear map ϕ : T → L∞(∂D, σ)
such that ϕ(Tf ) = f for every f ∈ L∞(∂D, σ).

The surprising point here is the existence of a multiplicative map on T such that
ϕ(Tf ) = f for every f ∈ L∞(∂D, σ). Thus

ϕ(TfTg) = ϕ(Tf )ϕ(Tg) = fg

for all f, g ∈ L∞(∂D, σ). The symbol map ϕ was discovered and exploited by
Douglas ([7], Chapter 7).

The symbol map ϕ was a magical and mysterious homomorphism to me
until I read the Barŕıa/Halmos paper, where the authors actually construct ϕ (as
opposed to Douglas’s more abstract proof).

Here is how the Barŕıa/Halmos paper constructs ϕ: The authors prove that
if S ∈ T , then S is an asymptotic Toeplitz operator in the sense that in the matrix
of S, the limit along each line parallel to the main diagonal exists. Consider a
Toeplitz matrix in which each line parallel to the main diagonal contains the limit
of the corresponding line from the matrix of S. The nature of the construction
ensures that this Toeplitz matrix represents a bounded operator and thus is the
matrix of Tf for some f ∈ L∞(∂D, σ). Starting with S ∈ T , we have now obtained
a function f ∈ L∞(∂D, σ). Define ϕ(S) to be f . Then ϕ is the symbol map whose
existence is guaranteed by Theorem 8.

A more formal statement of the Barŕıa/Halmos result is given below. Here we
are using ϕ as in Theorem 8. Thus the point here is that we can actually construct
the symbol map ϕ.

Theorem 9. Suppose S ∈ T and the matrix of S with respect to the standard basis
of H2 is (bj,k)∞j,k=0. Then for each integer n, the limit (as j →∞) of bn+j,j exists.
Let

an = lim
j→∞

bn+j,j

and let

f =
∞∑

n=−∞
anz

n,

where the infinite sum converges in the norm of L2(∂D, σ). Then f ∈ L∞(∂D, σ)
and ϕ(S) = f .

The Barŕıa/Halmos construction of ϕ is completely different in spirit and
technique from Douglas’s existence proof. I knew Douglas’s proof well—an idea
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that I got from reading it was a key ingredient in my first published paper [2].
But until the Barŕıa/Halmos paper came along, I never guessed that ϕ could be
explicitly constructed or that so much additional insight could be squeezed from
a new approach.

Compact semi-commutators

An operator of the form TfTg − Tfg is called a semi-commutator. As discussed
earlier, the Brown/Halmos paper gave a necessary and sufficient condition on
functions f, g ∈ L∞(∂D, σ) for the semi-commutator TfTg − Tfg to equal 0. One
of the fruitful strands of generalization stemming from this result involves asking
for TfTg − Tfg to be small in some sense. In this context, the most useful way an
operator can be small is to be compact.

In 1978 Sun-Yung Alice Chang, Don Sarason, and I published a paper [3]
giving a sufficient condition on functions f, g ∈ L∞(∂D, σ) for TfTg − Tfg to be
compact. This condition included all previously known sufficient conditions. To
describe this condition, for g ∈ L∞(∂D, σ) let H∞[g] denote the smallest norm-
closed subalgebra of L∞(∂D, σ) containing H∞ and g. The Axler/Chang/Sarason
paper showed that if f, g ∈ L∞(∂D, σ) and

H∞[f̄ ] ∩H∞[g] ⊂ H∞ + C(∂D),

then TfTg − Tfg is compact.
We could prove that the condition above was necessary as well as sufficient if

we put some additional hypotheses on f and g. We conjectured that the condition
above was necessary without the additional hypotheses, but we were unable to
prove so.

A brilliant proof verifying the conjecture was published by Alexander Volberg
[18] in 1982. Combining Volberg’s result of the necessity with the previous result
of the sufficiency gives the following theorem.

Theorem 10. Suppose f, g ∈ L∞(∂D, σ). Then TfTg − Tfg is compact if and only
if H∞[f̄ ] ∩H∞[g] ⊂ H∞ + C(∂D).

A key step in Volberg’s proof of the necessity uses the following specific case
of a theorem about interpolation of operators that had been proved 26 years earlier
by Elias Stein ([17], Theorem 2).

Theorem 11. Let dμ be a positive measure on a set X, and let v and w be positive
measurable functions on X. Suppose S is a linear operator on both L2(vdμ) and
L2(wdμ), with norms ‖S‖v and ‖S‖w, respectively. If ‖S‖√vw denotes the norm
of S on L2(

√
vwdμ), then

‖S‖√vw ≤
√
‖S‖v ‖S‖w.

When I received a preprint of Volberg’s paper in Spring 1981 I told Paul
Halmos about the special interpolation result that it used. Within a few days
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Halmos surprised me by producing a clean Hilbert space proof of the interpolation
result above that Volberg had needed. Halmos’s proof (for the special case of
Theorem 11) was much nicer than Stein’s original proof. With his typical efficiency,
Halmos put his inspiration into publishable form quickly and submitted the paper
to the journal to which Volberg has submitted his article. I ended up as the referee
for both papers. It was an unusual pleasure to see how a tool used in one paper
had led to an improved proof of the tool. Halmos’s short and delightful paper [13]
containing his proof of the interpolation result was published in the same issue of
the Journal of Operator Theory as Volberg’s paper.

Remembering Paul Halmos

I would like to close with a few words about my personal debt to Paul Halmos.
Paul is my mathematical grandfather. His articles and books have been an impor-
tant part of my mathematical heritage. I first met Paul for a few seconds when I
was a graduate student, and then for a few minutes when I gave my first confer-
ence talk right after receiving my PhD. Four years later I got to know Paul well
when I spent a year’s leave at Indiana University. Later when Paul became Editor
of the American Mathematical Monthly, he selected me as one of the Associate
Editors. Still later Paul and I spent several years working together as members
of the Editorial Board for the Springer series Graduate Texts in Mathematics,
Undergraduate Texts in Mathematics, and Universitext.

Paul is one of the three people who showed me how to be a mathematician
(the other two are my wonderful thesis advisor Don Sarason, who was Paul’s
student, and Allen Shields). Watching Paul, I saw how an expert proved a theorem,
gave a talk, wrote a paper, composed a referee’s report, edited a journal, and edited
a book series. I’m extremely lucky to have had such an extraordinary model.
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1. Introduction

Consider a complex Banach space H of infinite dimension, and the algebra B(H) of
bounded linear operators acting on H. A (closed, linear) subspace M ⊂ H is said
to be invariant for an operator T ∈ B(H) if TM ⊂M. We will be concerned with
the existence of proper invariant subspaces M, i.e., spaces different from {0} and
H. We denote by H∗ the dual of H. Given a vector x ∈ H and a functional ϕ ∈ H∗,
we define the continuous linear functional x⊗ ϕ ∈ B(H)∗ by setting

(x⊗ ϕ)(T ) = ϕ(Tx), T ∈ B(H).

Fix now T ∈ B(H), and denote by PT the unital subalgebra of B(H) generated by
T . Thus, PT consists of all operators of the form p(T ) with p ∈ C[z] a polynomial.
The linear functional on C[z] defined by p �→ (x⊗ϕ)(p(T )) will be denoted x⊗T ϕ.
Lemma 1.1. The operator T ∈ B(H) has a nontrivial invariant subspace if and
only if there exist x ∈ H \ {0} and ϕ ∈ H∗ \ {0} such that x⊗T ϕ = 0.

Proof. The equality ϕ(p(T )x) = 0 simply means that ϕ is zero on the cyclic space
for T generated by x. This space is not zero if x �= 0, and it is not H if ϕ �= 0. �

The author was supported in part by a grant from the National Science Foundation.
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This result has been of limited applicability because there is no obvious way
to insure that the factors ϕ and x are not zero when x⊗T ϕ = 0. There are however
some nonzero functionals ψ on C[z] with the property that an equality of the form
x⊗T ϕ = ψ also implies the existence of nontrivial invariant subspaces. For fixed
λ ∈ C, denote by eλ : C[z]→ C the functional of evaluation at λ:

eλ(p) = p(λ), p ∈ C[z].

Lemma 1.2. Assume that x ∈ H, ϕ ∈ H∗, and λ ∈ C are such that x ⊗T ϕ = eλ,
and denote by M the cyclic space for T generated by x. Then (T − λ)M �= M; in
particular T has nontrivial invariant subspaces.

Proof. We have ϕ|M �= 0 because ϕ(x) = (x ⊗T ϕ)(1) = 1, and ϕ|(T − λ)M = 0
since ϕ((T − λ)nx) = (x⊗T ϕ)((z − λ)n) = eλ((z − λ)n) = 0 for n ≥ 1. �

Not all operators with a nontrivial invariant subspace satisfy the hypotheses
of the preceding lemma. For instance, a compact quasi-nilpotent operator with
trivial kernel has no invariant subspaces M such that (T − λ)M �= M for some
λ ∈ C. There are however many operators to which the result can be applied.
This idea was pioneered by Scott Brown, who showed in [34] that all subnormal
operators (in the sense defined by Halmos [66]) on a Hilbert space have nontrivial
invariant subspaces. Since then, the technique has been extended to cover many
classes of operators on Hilbert and Banach spaces, and it is our goal to give an
exposition of the main methods developed for this purpose.

Let us note at this point that an invariant subspace for T is also invariant for
every operator in the weak operator closureWT of PT . In case H is a Hilbert space,
WT is also closed in the weak* topology given by identifying B(H) with the dual
of the trace class. Algebras closed in this topology are now known as dual algebras.
The functionals x⊗ϕ are always continuous in the weak* topology, and the sharpest
factorization results show that for some dual algebras A, every weak* continuous
functional on A is of the form (x ⊗ ϕ)|A. Indeed, one of the features of these
developments is that one can prove the existence of a factorization eλ = x ⊗T ϕ
only by showing that a much larger class of functionals can be factored in this way.
These factorization theorems do in fact yield further insight into the structure of
the invariant subspace lattice. In particular, they demonstrate the difficulty of
one of Halmos’s famous ten problems [67]. Namely, Problem 3 asks whether an
operator T must have nontrivial invariant subspaces if T 2 or T−1 do. Let T be a
normal diagonal operator whose eigenvalues Λ = {λn}∞n=1 satisfy |λj | > 1, and the
nontangential cluster set of Λ is the unit circle. The set Λ can be chosen so that T
is reductive, while Corollary 7.2 implies that T−1 has a vast supply of nonreducing
subspaces. Thus the techniques of this paper, applied to T−1, will never yield one
of the invariant subspaces of T .

These notes are organized as follows. In Section 2 we present an open mapping
theorem for bilinear maps. This result is an abstract form of the central argument
of [34], and it is formulated so as to be applicable to operators on Banach spaces.
The proofs in the case of Hilbert space, which also yield additional information,
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are presented in full. The adaptation to Banach spaces requires almost no effort.
Section 3 contains a hyper-reflexivity theorem for weak operator algebras on a
Hilbert space. This result follows from the open mapping theorem. In Sections 4
and 5, we show that these abstract results apply in very concrete situations. Sec-
tion 4 deals with contractions on a Hilbert space, whose spectra are dominating
in the unit disk. The existence of invariant subspaces for such operators was first
proved in [38]. Section 5 demonstrates the hyper-reflexivity of an algebra which
commutes with two isometries with orthogonal ranges. An example is provided by
the free semigroup algebra, whose hyper-reflexivity was first proved in [56]. Section
6 contains a second (approximate) factorization technique. The main result is an
abstract form of the central result in [36]. This result is needed in Section 7, where
the fundamental result of [39] is proved: a contraction on Hilbert space has invari-
ant subspaces if its spectrum contains the unit circle. Here, as well as in Section
4, the Sz.-Nagy–Foias functional model for contractions plays a central role. In
Section 8 we present two Banach space techniques which are useful in going be-
yond Hilbert space. The elementary but ingenious Theorems 8.1 and 8.2 are due to
Zenger [101]. Section 9 illustrates the use of the open mapping result of Proposition
2.5 in proving that certain contractions on Banach spaces have nontrivial invariant
subspaces if they have dominating spectra. Here the existence of an analogue of
the Sz.-Nagy–Foias functional calculus must be postulated. The best result in this
direction is due to Ambrozie and Müller [8], who showed the existence of invariant
subspaces when the spectrum contains the unit circle. The arguments we present
contain many of the ideas in the proof of this general result. In Section 10 we
present an invariant subspace result for operators with large localizable spectra.
The use of local spectral theory in this context was first suggested by Apostol
[13], and one of the first significant results was Brown’s theorem [35] concerning
hyponormal operators with large spectra. Our presentation follows [63], with some
simplifications due to the fact that we restrict ourselves to localizable spectra in
the unit disk. Finally, in Section 11 we provide some historical perspective, and a
rough guide to the sizeable literature, some of which is collected in the references.

2. An open mapping theorem for bilinear maps

S. Brown’s result [34] relies on an open mapping theorem for bilinear maps which
can be proved in a fairly abstract setting. Fix two Hilbert spaces H,K, a Banach
space X, and a continuous bilinear map F : H × K → X. The scalar product in a
Hilbert space will be denoted 〈···, ···〉. We will denote by SF the collection of those
vectors x ∈ X with the following property: Given ε > 0 and finitely many vectors
h1, h2, . . . , hn ∈ H and k1, k2, . . . , kn ∈ K, there exist u ∈ H and v ∈ K such that

(a) ‖u‖, ‖v‖ < 1,
(b) ‖x− F (u, v)‖ < ε,
(c) |〈u, h�〉|+ |〈v, k�〉| < ε for � = 1, 2, . . . , n, and
(d) ‖F (u, k�)‖ + ‖F (h�, v)‖ < ε for � = 1, 2, . . . , n.
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It is obvious that the set SF is closed and balanced (i.e., λx ∈ SF if x ∈ SF
and |λ| ≤ 1). It is also clear that condition (a) could be replaced by the weaker
condition

(a′) ‖u‖, ‖v‖ < 1 + ε.

Lemma 2.1. The set SF is convex.

Proof. Consider vectors x1, x2 ∈ SF , t ∈ (0, 1), and fix ε > 0 and h1, h2, . . . , hn ∈
H, k1, k2, . . . , kn ∈ K. By definition, there exist ui ∈ H and vi ∈ K satisfying
conditions (a–d) with xi, ui, vi in place of x, u, v, i = 1, 2. Choosing u2, v2 after
u1, v1, we can also require that

|〈u1, u2〉|+ |〈v1, v2〉|+ ‖F (u1, v2)‖+ ‖F (u2, v1)‖ < ε.

Let us set then

u = t1/2u1 + (1− t)1/2u2, v = t1/2v1 + (1− t)1/2v2.

The conditions on ui, vi imply immediately that

‖u‖2 ≤ t‖u1‖2 + (1− t)‖u2‖2 + 2[t(1− t)]1/2ε,

so that ‖u‖ < 1 if ε is sufficiently small, and similarly ‖v‖ < 1. Next, setting
x = tx1 + (1− t)x2, we have

‖x− F (u, v)‖ ≤ t‖x1 − F (u1, v1)‖+ (1− t)‖x2 − F (u2, v2)‖
+ ‖F (u1, v2)‖ + ‖F (u2, v1)‖ < 2ε.

Clearly |〈u, h�〉|+ |〈v, k�〉| < 2ε and ‖F (u, k�)‖+‖F (h�, v)‖ < 2ε for � = 1, 2, . . . , n.
Since ε > 0 is arbitrary, we conclude that x ∈ SF . �

Theorem 2.2. Assume that SF contains the ball of radius ρ2 > 0 centered at 0 ∈ X.
Then the map F is open. More precisely, for every x ∈ X, u ∈ H, and v ∈ K with
‖x − F (u, v)‖ < r2 for some r > 0, there exist h ∈ H and k ∈ K such that
‖h‖, ‖k‖ < r/ρ and x = F (u + h, v + k). Given ε > 0 and vectors hi ∈ H, ki ∈ K,
1 ≤ i ≤ n, we can also require that

|〈hi, h〉|+ |〈ki, k〉|+ ‖F (hi, k)‖+ ‖F (h, ki)‖ < ε

for all i.

Proof. The hypothesis implies that, for every α > 0, αSF contains the ball of
radius αρ2 centered at 0 ∈ X. We proceed as in the proof of Banach’s open mapping
theorem. Let x, u, v be as in the statement, and fix a positive number ε < 1/2. We
can then find inductively vectors un ∈ H and vn ∈ K such that u0 = 0, v0 = 0, and
the following conditions are satisfied for n ≥ 1:

(i) ‖un‖, ‖vn‖ ≤ (1/ρ)‖x− F (u+
∑n−1

�=0 u�, v +
∑n−1

�=0 v�)‖1/2,
(ii) ‖x− F (u +

∑n−1
�=0 u�, v +

∑n−1
�=0 v�)− F (un, vn)‖ < ε2n+3, and

(iii) ‖F (un, v +
∑n−1

�=0 v�)‖+ ‖F (u+
∑n−1

�=0 u�, vn)‖ < ε2n+3.
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With the notation hn =
∑n

�=0 u�, kn =
∑n

�=0 v�, we have

‖x− F (u+ hn, v + kn)‖ ≤ ‖x− F (u+ hn−1, v + kn−1)− F (un, vn)‖
+ ‖F (un, v + kn−1)‖+ ‖F (u+ hn−1, vn)‖

< 2ε2n+3 < ε2(n+1)

for n ≥ 1, and condition (ii) implies that ‖un‖ ≤ εn/ρ for n ≥ 2. Thus
∞∑
n=1

‖un‖ ≤
1
ρ
‖x− F (u, v)‖1/2 + 1

ρ

∞∑
n=2

εn <
r

ρ

if ε is small enough. Similarly,
∑∞

n=1 ‖vn‖ < r/ρ, and hence the vectors h =∑∞
n=1 un, k =

∑∞
n=1 vn satisfy the conclusion of the theorem. The final assertion

is easily verified. One must merely require that

|〈hi, u�〉|+ |〈ki, v�〉|+ ‖F (hi, v�)‖+ ‖F (u�, ki)‖ < 2−�ε

for � ≥ 1. �

It is worth noting that the preceding proof uses the continuity of F only
to deduce that F (u + h, v + k) = x from the fact that hn → h, kn → k, and
F (u + hn, v + kn) → x. In other words, one could have started with a partially
defined bilinear map whose graph is closed.

The conclusion of this open mapping theorem can be strengthened consider-
ably by a simple inflation device. For a natural number N , denote by �2N (H) the
space HN endowed with the usual direct sum Hilbert space norm, and denote by
�1N2(X) the space of arrays [xij ]Ni,j=1 of vectors in X endowed with the norm

‖[xij ]Ni,j=1‖ =
N∑

i,j=1

‖xij‖.

Given a continuous bilinear map F : H× K→ X, the map FN : �2N(H)× �2N (K)→
�1N2(X) defined by

FN (h, k) = [F (hi, kj)]Ni,j=1, h = (hi)Ni=1 ∈ �2N(H), k = (kj)Nj=1 ∈ �2N(K),

is also continuous. Using vectors with only one nonzero component, it is easy to
verify that elements of the form [δii0δjj0x]Ni,j=1 (1 ≤ i0, j0 ≤ N) belong to SFN

provided that x ∈ SF . If F satisfies the hypothesis of Theorem 2.2, it follows now
that so does FN , and this yields the following result.

Corollary 2.3. Assume that SF contains the ball of radius ρ2 > 0 centered at 0 ∈ X.
If xij ∈ X, ui ∈ H, vj ∈ K, i, j = 1, 2, . . . , N , satisfy the inequality

N∑
i,j=1

‖xij − F (ui, vj)‖ < r2
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for some r > 0, then there exist hi ∈ H, kj ∈ K, i, j = 1, . . . , N such that
N∑
i=1

‖hi‖2 <
r2

ρ2
,

N∑
j=1

‖kj‖2 <
r2

ρ2
,

and xij = F (ui+hi, vj+kj) for i, j = 1, 2, . . . , N . Given ε > 0 and vectors ai ∈ H,
bi ∈ K, i = 1, 2, . . . , n, we can also require that

N∑
i=1

n∑
j=1

(|〈hi, aj〉|+ |〈ki, bj〉|+ ‖F (hi, bj)‖+ ‖F (aj, ki)‖) < ε.

Replacing N by ℵ0 produces a possibly discontinuous map Fℵ0 . Nevertheless,
we can prove a factorization theorem even in this case. Another approach to this
result would be to observe that Fℵ0 can be defined as a closed bilinear map (see
the remark following Theorem 2.2).

Proposition 2.4. Under the hypotheses of Theorem 2.2, for any family of vectors
xij ∈ X, i, j = 1, 2, . . . , there exist sequences hi ∈ H and kj ∈ K such that
F (hi, kj) = xij for all i, j ≥ 1.

Proof. The system of equations F (hi, kj) = xij is equivalent to F (h′i, k
′
j) = αiβjxij

if αi, βj are nonzero scalars; just substitute h′i = αihi, k′j = βjkj . Thus there is no
loss of generality in assuming that ‖xij‖ < 2−2(i+j+2) for i, j ≥ 1. For each N ≥ 0,
we construct sequences hi(N) ∈ H, kj(N) ∈ K such that
(1) hi(N) = 0, ki(N) = 0 for i > N ,
(2) F (hi(N), kj(N)) = xij for 1 ≤ i, j ≤ N , and
(3) ‖hi(N)− hi(N − 1)‖ < 2−N/ρ, ‖ki(N)− ki(N − 1)‖ < 2−N/ρ for i ≥ 1.
WhenN = 0 we have hi(N) = 0 and ki(N) = 0 for all i. If hi(N−1), kj(N−1) have
already been constructed the existence of hi(N) and kj(N) follows from Corollary
2.3 because

N∑
i,j=1

‖xij − F (hi(N − 1), kj(N − 1))‖ ≤
∞∑
i=1

(‖xiN‖+ ‖xNi‖) < 2−2N .

The sequences (hi(N))∞N=1, (kj(N))∞N=1 are obviously Cauchy, and their limits
hi, kj satisfy the requirements of the proposition. �

The results above can be extended in some form to the case of Banach spaces
H,K. Consider a closed bilinear map F : D(F ) ⊂ H × K → X, where the domain
D(F ) contains H0 × K0; the linear spaces H0 ⊂ H and K0 ⊂ K need not be either
closed or dense. Denote by S̃F the collection of those vectors x ∈ X with the
following property: Given ε > 0 and finitely many vectors h1, h2, . . . , hn ∈ H0 and
k1, k2, . . . , kn ∈ K0, there exist u ∈ H0 and v ∈ K0 such that
(ã) ‖u‖, ‖v‖ < 1,
(b̃) ‖x− F (u, v)‖ < ε, and
(d̃) ‖F (u, k�)‖ + ‖F (h�, v)‖ < ε for � = 1, 2, . . . , n.
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This set is still closed and balanced, but we cannot prove its convexity. However,
Theorem 2.2 does not use convexity, and is therefore applicable if S̃F contains
the ball of radius ρ2 centered at the origin. To treat systems of equations, we
consider the map FN : D(FN ) ⊂ �∞N (H)× �∞N (K)→ �∞N2(X), where D(FN ) consists
of those pairs (h, k) ∈ �∞N (H) × �∞N (K) with the property that (hi, kj) ∈ D(F ) for
i, j = 1, 2, . . . , N . If S̃F contains the ball of radius ρ centered at the origin, it is
easy to see that S̃FN contains the ball of radius (ρ/N)2 centered at the origin. We
obtain the following result.

Proposition 2.5. With the above notation, assume that S̃F contains the ball of
radius ρ2 centered at 0 ∈ X. If xij ∈ X, ui ∈ H, vi ∈ K, satisfy

‖xij − F (ui, vj)‖ < r2, 1 ≤ i, j ≤ N,

for some r > 0, then there exits hi ∈ H, kj ∈ K such that ‖hi‖, ‖kj‖ < N(r/ρ), and
F (ui + hi, vj + kj) = xij for i, j = 1, 2, . . . , N . Moreover, given arbitrary xij ∈ X
for i, j ≥ 1, there exists sequences hi ∈ H and kj ∈ K such that F (hi, kj) = xij for
all i, j ≥ 1.

3. Hyper-reflexivity and dilations

Consider now a Hilbert space H, and a weak* closed unital subalgebraW ⊂ B(H).
Then W can be identified with the dual of the space W∗ of all weak* continuous
linear functionals on W . The Riesz representation theorem allows us to identify
the dual of H with H; we will write h∗ ∈ H∗ for the functional associated with a
vector h ∈ H. We are interested in the bilinear map F : H× H∗ →W∗ defined by
F (h, k∗) = [h⊗ k∗]W , where [h⊗ k∗]W = (h⊗ k∗)|W for h, k ∈ H. Observe that F
is continuous; in fact

|〈h, k〉| ≤ ‖[h⊗ k∗]W‖ ≤ ‖h‖‖k‖, h, k ∈ H.

For an arbitrary operator T ∈ B(H), we denote by

d(T ) = inf{‖T − S‖ : S ∈ W}
the distance from T to W , and we set

r(T ) = sup{‖(I − P )TP‖ : P ∈ Lat(W)},
where Lat(W) denotes the collection of orthogonal projections P ∈ B(H) which
are invariant for W (i.e., (I − P )SP = 0 for every S ∈ W). Recall that W is
said to be reflexive if r(T ) = 0 implies that T ∈ W . The algebra W is said to be
hyper-reflexive if there exists a constant c > 0 such that d(T ) ≤ cr(T ) for every
T ∈ B(H); the smallest such c is called the hyper-reflexivity constant of W . Since
r(T ) can be calculated using cyclic invariant projections (i.e., projections onto
spaces of the form Wx), it is easy to see that

r(T ) = sup{|〈Th, k〉| : [h⊗ k∗]W = 0, ‖h‖, ‖k‖ ≤ 1}.
The number d(T ) has a similar description.
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Lemma 3.1. If W is closed in the weak operator topology, then

d(T ) = sup

⎧⎨⎩
∣∣∣∣∣∣
n∑
j=1

〈Thj, kj〉

∣∣∣∣∣∣ : n ≥ 1,
n∑
j=1

‖hj‖‖kj‖ ≤ 1,
n∑
j=1

[hj ⊗ k∗j ]W = 0

⎫⎬⎭
for every T ∈ B(H).

Proof. The quotient space B(H)/W can be identified isometrically with the dual
of ⊥W = {ϕ ∈ B(H)∗ : ϕ|W = 0}. The assumption that W is closed in the weak
operator topology implies that the finite rank elements in ⊥W are dense in ⊥W .
Thus we have

d(T ) = ‖T +W‖ = sup{ϕ(T ) : T ∈ ⊥W , ϕ of finite rank, ‖ϕ‖ ≤ 1}.
The lemma follows because a functional of finite rank ϕ ∈ B(H)∗ can be written
as ϕ =

∑n
j=1 hj ⊗ k∗j with

∑n
j=1 ‖hj‖‖kj‖ = ‖ϕ‖. �

When Theorem 2.2 applies to the map F , it follows that W has many in-
variant subspaces. In fact, we can prove that W is hyper-reflexive. To simplify
statements, let us say that W has property (Xρ) if SF contains the ball of radius
ρ2 centered at 0 ∈ W∗. We will also say that W has property (A1(r)) if every
ϕ ∈ W∗ with ‖ϕ‖ < 1/r can be written as ϕ = [h ⊗ k∗]W for some vectors h, k
with norm < 1. Property (A1(r)) is only possible for r ≥ 1. Theorem 2.2 shows
that property (Xρ) implies property (A1(ρ−2)).

Lemma 3.2. If W has property (A1(ρ−2)) then it is closed in the weak operator
topology.

Proof. Assume to the contrary that there exists T /∈ W, ‖T ‖ = 1, which is in
the weak operator closure of W . By the Hahn-Banach theorem, there exists ϕ ∈
⊥W such that ϕ(T ) = 1. The functional ϕ can be written as

∑∞
n=1 hn ⊗ k∗n

with
∑∞

n=1 ‖hn‖‖kn‖ < ∞. Choose N so that
∑∞

n=N ‖hn‖‖kn‖ < ρ2/4, and use
property (A1(ρ−2)) to find vectors h, k of norm < 1/2 such that [h ⊗ k]W =∑∞

n=N [hn ⊗ k∗n]W . In other words, the functionals

ϕ1 = h⊗ k∗ +
N−1∑
n=1

hn ⊗ k∗n and ϕ2 = −h⊗ k∗ +
∞∑

n=N

hn ⊗ k∗n

belong to ⊥W . The functional ϕ1 is weak operator continuous so that ϕ1(T ) = 0.
We conclude that

1 = ϕ(T ) = ϕ1(T ) + ϕ2(T ) = ϕ2(T ) ≤ ‖ϕ2‖,
and this is not possible because ‖ϕ2‖ < 1/2. �

Theorem 3.3. Assume thatW ⊂ B(H) is a weak* closed unital algebra with property
(Xρ). Then W is hyper-reflexive with constant ≤ c = 1 + 2ρ−2.
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Proof. Lemma 3.2 implies that W is closed in the weak operator topology. Fix
T ∈ B(H) and vectors hj , kj ∈ H, 1 ≤ j ≤ n, such that

n∑
j=1

[hj ⊗ k∗j ]W = 0.

By Lemma 3.1, it will suffice to show that∣∣∣∣∣∣
n∑
j=1

〈Thj, kj〉

∣∣∣∣∣∣ ≤ cr(T )
n∑
j=1

‖hj‖‖kj‖. (3.1)

We will assume without loss of generality that ‖hj‖ = ‖kj‖ for all j.
Assume for the moment that [hi ⊗ k∗j ]W = 0 and

〈hi, hj〉 = 〈ki, kj〉 = 〈Thi, kj〉 = 0

for i �= j. Then the vectors h =
∑n

j=1 hj , k =
∑n

j=1 kj satisfy [h ⊗ k∗] = 0,
‖h‖‖k‖ = ∑n

j=1 ‖hj‖‖kj‖, and∣∣∣∣∣∣
n∑
j=1

〈Thj, kj〉

∣∣∣∣∣∣ = |〈Th, k〉| ≤ r(T )‖h‖‖k‖

by the definition of r(T ). The idea of the proof is to replace the numbers 〈Thj, kj〉
by 〈Taj , bj〉 in such a way that the new vectors aj , bj satisfy (at least approxi-
mately) these orthogonality requirements. The details are as follows. Fix ε > 0,
and set δ = ε2ρ2/2n2. Apply first Theorem 2.2 n times to obtain vectors aj , bj ∈ H,
1 ≤ j ≤ n such that
(i) ‖aj‖, ‖bj‖ < ρ−1‖hj‖+ ε for 1 ≤ j ≤ n,
(ii) [aj ⊗ b∗j ]W = [hj ⊗ k∗j ]W for 1 ≤ j ≤ n,
(iii) ‖[hi ⊗ b∗j ]W‖+ ‖[ai ⊗ k∗j ]W‖ < δ for 1 ≤ i, j ≤ n, and
(iv) |〈Thi, bj〉|+ |〈Tai, kj〉| < ε for 1 ≤ i, j ≤ n.
By choosing these vectors inductively, we can also require that
(v) ‖ai ⊗ b∗j‖+ |〈ai, bj〉|+ |〈Tai, bj〉| < δ for i �= j.
Apply next Corollary 2.3 for N = 2n with h1, h2, . . . , hn, a1, a2, . . . , an (resp.
k1, k2, . . . , kn, b1, b2, . . . , bn) in place of ui (resp. vi), and

xij =

⎧⎪⎨⎪⎩
[hi ⊗ k∗j ]W for 1 ≤ i, j ≤ n

[hj−n ⊗ k∗j−n]W for n < j ≤ 2n
0 for i ≤ n < j or j ≤ n < i or n < i �= j ≤ 2n.

By (iii) and (v),
2n∑

i,j=1

‖xij − [ui ⊗ v∗j ]W‖ < 2n2δ = ρ2ε2

and we deduce the existence of vectors h′j , k
′
j , a

′
j , b

′
j ∈ H, 1 ≤ j ≤ n, satisfying

(vi) ‖x′j − xj‖, ‖y′j − yj‖, ‖a′j − aj‖, ‖b′j − bj‖ < ε for 1 ≤ j ≤ n,
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(vii) [h′i ⊗ h′∗j ]W = [hi ⊗ k∗j ]W for 1 ≤ i, j ≤ n,
(viii) [a′j ⊗ b′∗j ]W = [hj ⊗ k∗j ]W for 1 ≤ j ≤ n,
(ix) [h′i ⊗ b′∗j ]W = [a′i ⊗ k′∗j ]W = 0 for 1 ≤ i, j ≤ n, and [a′i ⊗ b′∗j ]W = 0 for i �= j.

In order to simplify the formulas, we will writeO(ε) for a quantity which is bounded
by Cε, where C depends only on n, T, hj, kj and ρ. Inequalities (iv), (v) and (vi)
imply

(x) 〈Th′i, b′j〉 = O(ε), 〈Ta′i, kj〉 = O(ε) for 1 ≤ i, j ≤ n,

(xi) 〈a′i, b′j〉 = O(ε), 〈Ta′j, b′j〉 = O(ε) for i �= j, and
(xii) 〈Thj, kj〉 − 〈Th′j, k′j〉 = O(ε) for 1 ≤ j ≤ n.

Observe now that (vii), (viii) and (ix) imply [(h′j − a′j)⊗ (k′j + b′j)
∗]W = 0, so that

|〈T (h′j − a′j), k
′
j + b′j〉| ≤ r(T )‖h′j − a′j‖‖k′j + b′j‖.

Expanding the scalar product in the left-hand side yields

|〈Th′j, k′j〉 − 〈Ta′j, b′j〉| ≤ r(T )‖h′j − a′j‖‖k′j + b′j‖+ |〈Th′j, b′j〉|+ |〈Ta′j , k′j〉|,

so that

(xiii) |〈Th′j, k′j〉 − 〈Ta′j, b′j〉| ≤ r(T )‖h′j − a′j‖‖k′j + b′j‖+O(ε), 1 ≤ j ≤ n,

by (x). To estimate the norms above, use (vi) and (ix) to obtain

‖h′j − a′j‖2 = ‖h′j‖2 + ‖a′j‖2 +O(ε)

≤ (‖hj‖+ ε)2 + (‖aj‖+ ε)2 +O(ε)

≤ (1 + ρ−2)‖hj‖2 +O(ε),

and analogous estimates for k′j + v′j yield

(xiv) ‖h′j − a′j‖‖k′j + v′j‖ ≤ (1 + ρ−2)‖hj‖2 +O(ε) for 1 ≤ j ≤ n.

Using (vii) and (ix) we see that the vectors a′ =
∑n

j=1 a
′
j , b

′ =
∑n

j=1 b
′
j satisfy

[a′ ⊗ b′∗]W =
n∑
j=1

[a′j ⊗ b′∗j ]W =
n∑
j=1

[hi ⊗ k∗j ]W = 0,

and therefore |〈Ta′, b′〉| ≤ r(T )‖a′‖‖b′‖. Using (xi) we obtain

(xv) |∑n
j=0〈Ta′j, b′j〉| ≤ r(T )‖a′‖‖b′‖+O(ε).

The norms on the right are estimated using (vi) and (xi)

‖a′‖2 =
n∑
j=1

‖a′j‖2 +O(ε) =
n∑
j=1

‖aj‖2 +O(ε)

≤ ρ−2
n∑
j=1

‖hj‖2 +O(ε) ≤ ρ−2 +O(ε),
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so that (xv) yields |∑n
j=0〈Ta′j, b′j〉| ≤ ρ−2r(T ) + O(ε). Combining this inequality

with (xii) and (xiii) we obtain∣∣∣∣∣∣
n∑
j=1

〈Thj, kj〉

∣∣∣∣∣∣ ≤ cr(T )
n∑
j=1

‖hj‖‖kj‖+O(ε),

and (3.1) is obtained by letting ε tend to zero. �

There are several invariant subspaces appearing implicitly in the above proof:
most instances of vectors u, v such that [u⊗v]W = 0 yield nontrivial subspaces. To
obtain invariant subspaces with more specific properties, assume that there exist
weak* continuous characters (i.e., algebra homomorphisms) ϕ : W → C. Recall
[88] that a subspace M ⊂ H is semi-invariant for W if the map Φ : W → B(M)
defined by compression

Φ(T ) = PMT |M

is multiplicative. Alternatively, M = M′ � M′′, where M′′ ⊂ M′ are invariant
subspaces for W .

Proposition 3.4. Under the assumptions of Theorem 3.3, let (ϕj)∞j=1 ⊂ W∗ be a
sequence of characters. There exist a semi-invariant subspace M for W and an
orthonormal basis (uj)∞j=1 in M such that

PMTuj = ϕj(T )uj, j ≥ 1.

Proof. Proposition 2.4 implies the existence of vectors ujn, vjn ∈ H such that

(a) [ujn ⊗ v∗jn]W = ϕj for j, n ≥ 1, and
(b) [ujn ⊗ v∗j′n′ ]W = 0 if j �= j′ or n �= n′.

Denote by M′ the closed linear span of the spacesWujn, j, n ≥ 1, let M′′ ⊂ M′ be
the closed linear span of the spaces (kerϕj)ujn, j, n ≥ 1, and set M0 = M′ �M′′.
With the notation wjn = PM0ujn, we have

PM0(T − ϕj(T ))wjn = 0, j, n ≥ 1,

and the vectors {wjn : j, n ≥ 1} are linearly independent. Indeed, relations (a)
and (b) show that the vectors vjn are orthogonal to M′′, and therefore

〈wjn, vj′n′〉 = 〈ujn, vj′n′〉 = [unj ⊗ v∗nj ]W(I) = δn,n′δj,j′ .

To conclude the proof, choose now an orthonormal sequence uj such that uj is
in the linear span of {wjn : n ≥ 1}, and denote by M the subspace generated by
{uj : j ≥ 1}. The proposition follows because M is invariant for all the operators
PM0T |M0, T ∈ W , and hence it is semi-invariant for W . �
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4. Dominating spectrum

It is time to show that the results of the preceding sections apply in concrete
situations. We start with examples in which the dual algebra W ⊂ B(H) is com-
mutative. Thus, assume that T ∈ B(H) is a contraction, i.e., ‖T ‖ ≤ 1. It is well
known [92] that there exists an orthogonal decomposition T = T0 ⊕ T1 such that
T1 is unitary and T0 has no unitary direct summand. When searching for invariant
subspaces it makes good sense to restrict ourselves to the case T = T0, in which
case T is said to be completely non-unitary. In this case, Sz.-Nagy has shown that
there exists a unitary operator U on a space K ⊃ H such that H is semi-invariant
for U , T = PHU |H, and the spectral measure of U is absolutely continuous rela-
tive to arclength measure m on the unit circle T ⊂ C. Denote by H∞ the Banach
algebra of bounded analytic functions on the unit disk D. The elements f ∈ H∞

can be regarded alternatively as measurable functions in L∞(T), and therefore
the spectral functional calculus f(U) makes sense for such functions. This leads
naturally to the definition of the Sz.-Nagy–Foias functional calculus given by

f(T ) = PHf(U)|H, f ∈ H∞.
When regarded as a subspace of L∞, the algebra H∞ is closed in the weak* topol-
ogy given by duality with L1(T). The map f → f(T ) is then a contractive algebra
homomorphisms, and it is also continuous when H∞ and B(H) are given their
weak* topologies. In particular, given h, k ∈ H the functional h⊗T k∗ defined by

(h⊗T k∗)(f) = 〈f(T )h, k〉, f ∈ H∞,
belongs to the predual H∞∗ . Given λ ∈ D, the evaluation functional eλ : f → f(λ)
belongs to H∞∗ .

Lemma 4.1. Assume that T is a completely nonunitary contraction, λ ∈ D, and
(hn)∞n=1 is an orthonormal sequence in H such that limn→∞ ‖(T − λ)hn‖ = 0 or
limn→∞ ‖(T ∗ − λ̄)hn‖ = 0. Then

lim
n→∞ ‖eλ − hn ⊗T h∗n‖ = 0

and
lim
n→∞(‖hn ⊗T k∗‖+ ‖k ⊗T h∗n‖) = 0

for every k ∈ H.

Proof. It suffices to treat the case of an approximate eigenvalue for T . Replacing
T by (T − λ)(I − λT ∗)−1 we may assume that λ = 0. The Hahn-Banach theorem
implies the existence of functions fn ∈ H∞ with ‖fn‖∞ = 1 such that

‖e0 − hn ⊗T h∗n‖ = fn(0)− 〈fn(T )hn, hn〉 = 〈(fn(0)− fn(T ))hn, hn〉.
Writing fn(0)− fn(z) = zgn(z) with gn ∈ H∞, we have ‖gn‖ ≤ 2, and thus

‖e0 − hn ⊗T h∗n‖ = 〈gn(T )Thn, hn〉 ≤ 2‖Thn‖ → 0
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as n → ∞. Similarly, ‖hn ⊗T k∗‖ = 〈un(T )hn, k〉 for some un ∈ H∞, ‖un‖ = 1.
Writing again un(z) = un(0) + zvn(z), we obtain

‖hn ⊗T k∗‖ = un(0)〈hn, k〉+ 〈vn(T )Thn, hn〉 ≤ |〈hn, k〉|+ 2‖Thn‖,
and the right-hand side converges to zero because the hn are orthonormal. The
study of ‖k⊗T h∗n‖ requires a closer look at the unitary dilation U ∈ B(K). Denote
by K− the closed linear span of U∗nH, and set V = U∗|K−. The space H is invariant
for V ∗, and V ∗|H = T . Consider the von Neumann–Wold decomposition of the
isometry V as V = S⊕W on K− = A⊕B, with S a shift and W unitary. Writing
hn = an ⊕ bn with an ∈ A, bn ∈ B, we have

‖bn‖ = ‖W ∗bn‖ ≤ ‖(S ⊕W )∗(hn)‖ = ‖Thn‖ → 0

as n → ∞, and similarly limn→∞ ‖S∗an‖ = 0. Write now k = α ⊕ β with α ∈
A, β ∈ B, and choose functions un ∈ H∞ with unit norm such that

‖k ⊗T h∗n‖ = 〈un(T )hn, k〉 = 〈un(S∗)an, α〉+ 〈un(W ∗)bn, β〉.
The last term on the right-hand side clearly tends to zero as n → ∞. It remains
to show that 〈un(S∗)an, α〉 → 0 as well. If we write an = a′n + a′′n with a′n =
(I − SS∗)an, we have ‖a′′n‖ → 0 while a′n tends to zero weakly. Thus

〈un(S∗)an, α〉 = 〈un(S∗)a′n, α〉+ 〈un(S∗)a′′n, α〉 = un(0)〈a′n, α〉+ 〈un(S∗)a′′n, α〉
tends to zero as n→∞. �

The preceding lemma shows that eλ belongs to the set SF for the map F :
(h, k∗) �→ h⊗T k∗ provided that λ is in the essential spectrum σe(T ) of T .

A subset Λ ⊂ D is said to be dominating if

sup{|f(λ)| : λ ∈ Λ} = ‖f‖∞
for every f ∈ H∞. An annulus with outer circle T is dominating, and it is easy to
construct dominating sets which have no accumulation points in D. A geometric
characterization of dominating sets is given in [33]: Λ is dominating if and only if
almost every ζ ∈ T is a nontangential limit point of Λ. The Hahn-Banach theorem
implies that Λ is dominating if and only if the closed, convex balanced hull of
{eλ : λ ∈ Λ} is the unit ball of H∞∗ .

Theorem 4.2. Let T ∈ H(H) be a completely nonunitary contraction such that
σe(T ) ∩ D is dominating.
(1) The functional calculus f �→ f(T ) is an isometry of H∞ onto the weak oper-

ator closed algebra WT generated by T .
(2) The algebra WT has property (X1). In particular, WT is hyper-reflexive with

constant ≤ 3.

Proof. For each λ ∈ σe(T ), there exists an orthonormal sequence (xn)∞n=1 such
that limn→∞ ‖eλ − xn ⊗T x∗n‖ = 0. For every function f ∈ H∞ we have therefore

|f(λ)| = |eλ(f)| = lim
n→∞ |〈f(T )xn, xn〉| ≤ ‖f(T )‖.
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Thus
‖f‖∞ = sup{|f(λ)| : λ ∈ σe(T )} ≤ ‖f(T )‖ ≤ ‖f‖∞,

so that indeed f �→ f(T ) is isometric. Let us set for the moment A = {u(T ) : u ∈
H∞}. Since the functional calculus is continuous relative to the weak* topologies,
it follows that

A∩ {X ∈ B(H) : ‖X‖ ≤ 1} = {f(T ) : ‖f‖∞ ≤ 1}
is weak* compact. We conclude from the Krĕın–Smul′jan theorem that A is weak*
closed, and that the map f �→ f(T ) is a weak* homeomorphism from H∞ to A.
The predual of this homeomorphism carries the functional [h⊗k∗]A to h⊗T k∗, and
thus Lemma 4.1 shows that A has property (X1). In particular, A has property
(A1(1)), and hence it is weak operator closed by Lemma 3.2. Thus we have in fact
A =WT , and the theorem follows. �

Corollary 4.3. Assume that T ∈ B(H) is a contraction such that σ(T ) ∩ D is
dominating. Then T has nontrivial invariant subspaces.

Proof. If T is not completely nonunitary, its unitary part provides an invariant
subspace. If there is λ ∈ σ(T ) \ σe(T ) then the kernel or the range of λ − T
is a nontrivial invariant subspace. Thus, we may assume that T is completely
nonunitary and σ(T ) = σe(T ), in which case the preceding theorem applies. �

The existence of invariant subspaces for subnormal operators follows from
this corollary. Indeed, the results of [89] allow one to reduce to the case of a
subnormal contraction T whose spectrum is D.

It is possible to prove property (X1) for larger classes of contractions. Recall
that a contraction T ∈ B(H) is said to be of class C0··· if

lim
n→∞ ‖T

nh‖ = 0

for every h ∈ H. If T ∗ is of class C0··· then T is said to be of class C···0, and T ∈ C00
if T is both of class C0··· and of class C···0.

Lemma 4.4. Assume that T ∈ B(H) is a contraction of class C0··· (resp. C···0),
and (xn)∞n=1 ⊂ H converges weakly to zero. Then limn→∞ ‖y ⊗T xn‖ = 0 (resp.,
limn→∞ ‖xn ⊗T y‖ = 0) for every y ∈ H.

Proof. By symmetry, it suffices to consider the sequence xn⊗T y. Since the powers
of T ∗ tend to zero, it follows [92] that there exists a unilateral shift S on a Hilbert
space K ⊃ H such that S∗H ⊂ H and S∗|H = T ∗. We have x ⊗T y∗ = x ⊗S y∗
for x, y ∈ H, so it will suffice to show that limn→∞ xn ⊗S y∗ = 0 for every y ∈ K.
Moreover, since the sequence xn is necessarily bounded, it suffices to prove this
for a dense sequence of vectors y ∈ K. The linear space

⋃∞
k=1 kerS

∗k is dense in
K, so we may assume that y ∈ kerS∗k for some k ≥ 1. Choose functions fn ∈ H∞

of unit norm such that ‖xn ⊗T y‖ = 〈fn(S)xn, y〉. For fixed k, we can write

fn(z) = an(0) + an(1)z + · · ·+ an(k − 1)zk−1 + zkgn(z),



Dual Algebras and Invariant Subspaces 149

with gn ∈ H∞. Therefore

‖xn ⊗S y‖ = 〈fn(S)xn, y〉 =
k−1∑
j=0

an(j)〈xn, S∗jy〉,

and the desired conclusion follows by letting n→∞ in this formula. �

We will apply this result to weighted shifts. Given a bounded sequence w =
(wn)∞n=0 of numbers in (0, 1), and a Hilbert space H with an orthonormal basis
(en)∞n=0, the weighted shift Sw is determined by its action on the basis: Wen =
wnen+1 for n ≥ 0. Clearly Sw is a contraction, and it is of class C00 if and only if∑∞

n=0(1− wn) =∞.

Proposition 4.5. Let T = Sw be a weighted shift of class C00 such that wn ≤
wn+1 → 1 as n→∞. Then the conclusions of Theorem 4.2 hold for T .

Proof. Given λ ∈ D, it is easy to verify that the spaces Hn = (λ − T )nH are
closed and strictly decreasing. Choose unit vectors xn ∈ Hn�Hn+1, and note that
xn ⊗T xn = eλ and xn converges weakly to zero. We can now proceed as in the
proof of Theorem 4.2 by virtue of Lemma 4.4. �

Among the operators covered by this proposition is the Bergman shift with
weights wn = (n+ 1)1/2/(n+ 2)1/2, n ≥ 0.

Proposition 3.4 applies whenever the conclusions of Theorem 4.2 hold. We
deduce that operators T covered by the above results have semi-invariant subspaces
M such that the compression PMT |M is a diagonal operator with arbitrarily given
eigenvalues in D. When all of these eigenvalues are zero and M = M′ �M′′, with
M′,M′′ invariant, the space M′�TM′ ⊃ M is infinite-dimensional, and any space
N satisfying M′′ ⊂ N ⊂ M′ is invariant for T . This reveals a shockingly large
invariant subspace lattice, especially in the case of weighted shifts.

5. A noncommutative example

In this section we will assume that W ⊂ B(H) is a unital, weak operator closed
algebra with the property that its commutant

W ′ = {X ∈ B(H) : TX = XT for all T ∈ W}

contains two isometric operators U1, U2 with orthogonal ranges, i.e., U∗1U2 = 0.
This situation arises, for instance, whenW is the algebra generated by all left cre-
ation operators on the full Fock space associated with a Hilbert space of dimension
at least 2.

Lemma 5.1. Given vectors h1, h2, . . . , hp ∈ H and ε > 0, there exists an isometry
W ∈ W ′ such that WH ⊂ U1H and ‖W ∗hj‖ < ε for j = 1, 2, . . . , p.
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Proof. We construct inductively isometries Wn such that W1 = U1, Wn+1 ∈
{WnU1,WnU2}, and

∑p
j=1 ‖W ∗

n+1hj‖2 ≤ (1/2)
∑p

j=1 ‖W ∗
nhj‖2. This is possible

because WnU1 and WnU2 have orthogonal ranges, and therefore
p∑

j=1

‖(WnU1)∗hj‖2 +
p∑

j=1

‖(WnU2)∗hj‖2 ≤
p∑

j=1

‖W ∗
nhj‖2.

The lemma is satisfied by W = Wn if n is sufficiently large. �

We recall an inequality which comes from the usual estimate of the L1 norm
of the Dirichlet kernel.

Lemma 5.2. There exist constants c, d > 0 with the following property. For every
function u(z) =

∑∞
�=0 unz

n in H∞, |∑n
�=1 un| ≤ c logn+ d for all n ≥ 1.

Proof. We have
∑n

�=1 un = (1/2π)
∫ 2π
0

u(eit)vn(t) dt, where vn(t) =
∑n

�=1 cos(�t).
The lemma follows because ‖v‖1 ≤ c logn+ d (cf. Section II.12 in [102]). �

Proposition 5.3. Fix vectors x, y, h1, h2, . . . , hp ∈ H and ε > 0. There exist vectors
x′, y′ ∈ H with the following properties:

(1) ‖x′‖ = ‖x‖, ‖y′‖ = ‖y‖,
(2) [x′ ⊗ y′∗]W = [x⊗ y∗]W , and
(3) ‖[hj ⊗ y′∗]W‖+ ‖[x′ ⊗ h∗j ]W‖ < ε for j = 1, 2, . . . , p.

Proof. We may assume without loss of generality that ‖x‖ = ‖y‖ = 1. Lemma 5.1
allows us to choose isometries W,V ∈ W ′ such that W ∗V = 0 and ‖W ∗hj‖ < ε/3
for j = 1, 2, . . . , p. If we denote uk = W kV x, vk = W kV y, it is easy to verify that
[uk ⊗ v∗� ]W = δk�[x ⊗ y∗]W and 〈uk, u�〉 = δk�‖x‖2. For instance, if k < � and
T ∈ W ,

〈Tuk, v�〉 = 〈W kV Tx,W �V y〉 = 〈W k−�−1Tx,W ∗V y〉 = 0.

Thus the vectors xn = n−1/2
∑n

k=1W
kV x and yn = n−1/2

∑n
k=1W

kV y satisfy
‖xn‖ = ‖x‖, ‖yn‖ = ‖y‖, and [xn ⊗ y∗n]W = [x ⊗ y∗]W . It will therefore suffice
to show that condition (iii) is satisfied by x′ = xn and y′ = yn provided that n
is sufficiently large. Since xn ∈ WH, we also have Txn ∈ WH for T ∈ W, and
therefore

|[xn ⊗ h∗j ]W (T )| = 〈Txn, hj〉 = 〈W ∗WTxn, hj〉
= 〈W ∗Txn,W ∗hj〉 ≤ ‖T ‖‖xn‖‖W ∗hj‖.

We conclude that ‖[xn ⊗ h∗j ]W‖ < ε/3 by the choice of W . In order to estimate
[hj ⊗ y∗n]W , we write hj = aj + bj with aj ∈ kerW ∗ and ‖bj‖ < ε/3, so that
‖[hj ⊗ y∗n]W‖ ≤ ‖[aj ⊗ y∗n]W‖ + ε/3 for j = 1, 2, . . . , p. To conclude the proof,
it suffices to prove that limn→∞ ‖[a ⊗ y∗n]W‖ = 0 for every a ∈ kerW ∗. To do
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this, consider an operator T ∈ W, and consider the analytic function f(λ) =∑∞
k=0〈Ta, vk〉, λ ∈ D. We claim that ‖f‖∞ ≤ ‖T ‖‖a‖‖y‖. Indeed, we have

f(λ)
1− |λ|2 =

( ∞∑
k=0

λ̄kλk

)( ∞∑
m=0

λm〈Ta,WmV y〉
)

=
∞∑

k,m=1

λ̄kλk+m〈W kTa,Wm+kV y〉

=
∞∑

k,�=1

λ̄kλ�〈W kTa,W �V y〉 =
〈
T
∞∑
k=1

λ̄kW ka,
∞∑
�=1

λ̄�W �V y

〉
,

where we have used the fact that 〈W kTa,W �V y〉 = 〈W k−�Ta, V y〉 = 0 for k > �.
Since the vectors (W ka)∞k=0 are mutually orthogonal, we have ‖

∑∞
k=1 λ̄

kW ka‖ =
(1 − |λ|2)−1/2‖a‖, and similarly ‖∑∞

�=1 λ̄
�W �V y‖ = (1 − |λ|2)−1/2‖y‖. The pre-

ceding identity implies the desired estimate |f(λ)| ≤ ‖T ‖‖A‖‖y‖. We can now
estimate

|[a⊗ y∗n]W(T )| = |〈Ta, yn〉| =
1

n1/2

∣∣∣∣∣
n∑

k=1

〈Ta, uk〉
∣∣∣∣∣

≤ 1
n1/2

(c log n+ d)‖T ‖‖a‖‖y‖,

and this implies that ‖[a⊗ y∗n]W‖ ≤ n−1/2(c logn+ d)‖a‖‖y‖ → 0 as n→∞. �

The following result follows immediately.

Corollary 5.4. LetW be a unital, weak operator closed subalgebra of B(H) such that
W commutes with two isometries with orthogonal ranges. Then W has property
(X1), and therefore W is hyper-reflexive with constant ≤ 3.

6. Approximate factorization

There is a second factorization technique which is appropriate for some situations
in which strong vanishing results such as Lemma 4.4 are not available. The main
ingredient has again an abstract version which we now present.

Consider a separable Hilbert space D and a separable, diffuse probabil-
ity space (Ω,F , μ), i.e., L2(μ) is separable and μ has no atoms. We denote by
L2(μ,D) the space of measurable, square integrable functions f : Ω → D. Given
two functions f, g ∈ L2(μ,D), we define the function f ··· g∗ ∈ L1(μ) by setting
(f ··· g∗)(ω) = 〈f(ω), g(ω)〉 for ω ∈ Ω, where the scalar product is calculated in D;
note that

〈f, g〉 =
∫
Ω

(f ··· g∗)(ω) dμ(ω), f, g ∈ L2(μ,D).
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A subspace H ⊂ L2(μ,D) will be said to be localizable if for every σ ∈ F with
μ(σ) > 0, and for every ε > 0, there exists f ∈ H such that ‖χΩ\σf‖ < ε‖χσf‖.
Here χσ denotes, as usual, the characteristic function of σ.

Lemma 6.1. Assume that H ⊂ L2(μ,D) is a localizable space, σ ∈ F has positive
measure, and h1, h2, . . . , hp ∈ L2(μ,D). For every ε > 0 there exists f ∈ H such
that ‖χΩ\σf‖ < ε‖χσf‖ and 〈f, hj〉 = 0 for j = 1, 2, . . . , p.

Proof. We may assume that the vectors hj belong to H and are orthonormal.
Consider a number η > 0 and subsets σn+1 ⊂ σn ⊂ σ such that limn→∞ μ(σn) =
0. By definition, there exist vectors fn ∈ H such that ‖χΩ\σn

fn‖ < η‖χσnfn‖.
Replacing fn by fn/‖fn‖, we may assume that ‖fn‖ = 1. Observe that for any
h ∈ L2(μ,D) we have

|〈fn, h〉| ≤ |〈χΩ\σn
fn, h〉|+ |〈fn, χσnh〉| ≤ η‖h‖+ ‖χσnh‖,

so that we will have |〈fn, hj〉| ≤ 2η for large n. For such a value of n, define
f = fn −

∑p
j=1〈fn, hj〉hj , so that ‖f − fn‖ ≤ 2p1/2η. Thus

‖χΩ\σf‖ ≤ ‖χΩ\σn
fn‖+ 2p1/2η ≤ (1 + 2p1/2)η,

and hence ‖χσf‖ ≥ 1− (1 + 2p1/2)η. If we choose η so that

(1 + 2p1/2)η
1− (1 + 2p1/2)η

< ε,

the function f satisfies the requirements of the lemma. �

We will use a slight variation of Lemma 6.1.

Lemma 6.2. Assume that H ⊂ L2(μ,D) is localizable, H′ ⊂ H is a dense linear
manifold, and ε > 0. Given a function f ∈ L∞(μ) such that 0 ≤ f ≤ 1 and
‖f‖∞ > 1− ε, there exists x ∈ H′ such that |〈x, hj〉| = 0 for j = 1, 2, . . . , p, and

‖(1− f)1/2x‖2 < ε

1− ε
‖f1/2x‖2.

Proof. It suffices to consider the case H′ = H since the linear manifold {x ∈ H′ :
〈x, hj〉 = 0, 1 ≤ j ≤ p} is also dense in {x ∈ H : 〈x, hj〉 = 0, 1 ≤ j ≤ p}. The set
σ = {ω : f(ω) > 1− α} has positive measure for some α < ε. Fix β > 0 such that

α+ β2

1− α
<

ε

1− ε
,

and choose x ∈ H such that ‖χΩ\σx‖ < β‖χσx‖ and 〈x, hj〉 = 0 for all j. Observe
that

‖f1/2x‖2 ≥
∫
σ

f(ω)‖x(ω)‖2 dμ(ω) ≥ (1− α)‖χσx‖2,
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and therefore

‖(1− f)1/2x‖2 =
∫
σ

(1 − f(ω))‖x(ω)‖2 dμ(ω) +
∫
Ω\σ

(1− f(ω))‖x(ω)‖2 dμ(ω)

≤ (α + β2)‖χσx‖2 ≤
α+ β2

1− α
‖f1/2x‖2 < ε

1− ε
‖f1/2x‖2,

thus yielding the desired inequality. �

The main result of this section is as follows.

Theorem 6.3. Let H ⊂ L2(μ,D) be a localizable space. Given ε > 0, a function
f ∈ L1(μ), and functions h1, h2, . . . , hp ∈ L2(μ,D), there exist x, y ∈ H such that

(1) ‖f − x ··· y∗‖1 < ε,
(2) ‖x‖, ‖y‖ ≤ ‖f‖1/21 ,
(3) 〈x, hj〉 = 〈y, hj〉 = 0 for j = 1, 2, . . . , p, and
(4) x = y if f ≥ 0.

Assume that ν is another probability measure on Ω, mutually absolutely
continuous relative to μ. In other words, dν = ρ dμ with ρ ∈ L1(μ) a strictly
positive function of norm one. One can then replace the space H with

H′ = {ρ−1/2h : h ∈ H} ⊂ L2(ν).

It is easy to see that the conclusion of Theorem 6.3 is equivalent to the correspond-
ing statement for the space H′. This allows us to make an additional assumption
about H. Namely, choose an orthonormal basis (en)∞n=1 in H, and define

ρ =
1
2
+

∞∑
n=1

1
2n+1

en ··· e∗n.

Then the functions ρ−1/2en are bounded. For the remainder of this section, H is
assumed to be a localizable space where the bounded functions are dense, and
h1, h2, . . . , hp ∈ L2(μ,D).

The essential point in the proof is the approximation of functions of the form
f = χσ by products of the form x ··· x∗, with x ∈ H. This is achieved when ‖x(ω)‖
is close to χσ(ω) on a set with large measure. Given σ ∈ F , finitely many vectors
h1, h2, . . . , hp ∈ L2(μ,D), and η, δ ∈ (0, 1), we denote by S(σ;h1, h2, . . . , hp; η; δ)
the collection of those functions x ∈ H which can be written as x = g + b, where
g, b ∈ L2(μ,D) such that:

(i) ‖g(ω)‖ ≤ χσ(ω) μ-almost everywhere,
(ii) ‖b‖ ≤ η‖g‖,
(iii) |〈g, hj〉| < δ‖x‖ for
(iv) 〈x, hj〉 = 0 for j = 1, 2, . . . , p. j = 1, 2, . . . , p, and

We can now show that the set S(σ;h1, h2, . . . , hp; η; δ) has elements of fairly
large norm.
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Proposition 6.4. We have sup{‖x‖ : x ∈ S(σ;h1, h2, . . . , hp; η; δ)} > 2−3ημ(σ)1/2

provided that η < 1/2.

Proof. We set S = S(σ;h1, h2, . . . , hp; η; δ), γμ(σ)1/2 = sup{‖x‖ : x ∈ S}, and
assume to the contrary that γ ≤ 2−3η. There exist elements xn = gn + bn ∈ S
such that limn→∞ ‖xn‖ = γμ(σ)1/2. We have

‖gn‖ ≤
‖xn‖
1− η

≤ 1
4
ημ(σ)1/2.

With the notation σn = {ω ∈ σ : ‖gn(ω)‖ < 1/2}, we have

μ(σ \ σn) ≤ 4
∫
σ\σn

‖gn(ω)‖2 dμ(ω) ≤ 4‖gn‖2 ≤
1
4
η2μ(σ),

so that μ(σn) ≥ (1− 2−2η2)μ(σ). Passing to a subsequence, we may assume that
(a) xn converges weakly to a vectorx ∈ H,
(b) χσngn converges weakly to u ∈ L2(μ,D),
(c) χΩ\σn

bn converges weakly to v ∈ L2(μ,D), and
(d) χσn converges weak* in L∞ to f , 0 ≤ f ≤ χσ.
We have

∫
σ f dμ = limn→∞ μ(σn) ≥ (1 − 2−2η2)μ(σ), and therefore ‖f‖∞ >

1− η2/2. Lemma 6.2 yields a bounded function z ∈ H such that
(e) 〈z, u〉 = 〈z, v〉 = 〈z, x〉 = 〈z, hj〉 = 〈z, fhj〉 = 0 for j = 1, 2, . . . , p, and
(f) ‖(1− f)1/2z‖2 < η2‖f1/2z‖2.

Dividing z by a sufficiently large constant, we may also assume that
(g) ‖z(ω)‖ ≤ 1/2 for almost all ω.
We will obtain a contradiction by showing that, for large n, the vector x′n = xn+z
belongs to S and ‖x′n‖ > γμ(σ)1/2. This last inequality is verified because

lim
n→∞ ‖x

′
n‖2 = γ2μ(σ) + ‖z‖2 > γ2μ(σ)

by (a) and (e). Condition (iv) in the definition of S is satisfied by (e). To verify the
remaining properties, we set g′n = gn + χσnz and b′n = bn + χΩ\σn

z, and observe
that condition (i) is satisfied by (g) and the definition of σn. Next we calculate

‖b′n‖2 − η2‖g′n‖2 = ‖bn‖2 − η2‖gn‖2 + ‖χΩ\σn
z‖2 − η2‖χσnx‖2

+ 2�[〈bn, χΩ\σn
z〉 − η2〈gn, χσnx〉]

≤ ‖χΩ\σn
z‖2 − η2‖χσnx‖2 + 2�[〈bn, χΩ\σn

z〉 − η2〈gn, χσnx〉],
where we used property (ii) for xn. Using (b–f) we obtain

lim sup
n→∞

(‖b′n‖2 − η2‖g′n‖2) ≤ ‖(1− f)1/2z‖2 − η2‖f1/2z‖2 < 0,

so that x′n also satisfies (ii) eventually. Finally,

|〈g′n, hj〉| ≤ |〈gn, hj〉|+ |〈χσnz, hj〉| ≤ δ‖xn‖+ |〈χσnz, hj〉|
≤ δγμ(σ)1/2 + |〈χσnz, hj〉,
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so that
lim sup
n→∞

|〈g′n, hj〉| ≤ δγμ(σ)1/2,

and we see that condition (iii) is satisfied for large n. Thus x′n ∈ S, as claimed. �

Proposition 6.4 can be improved considerably.

Proposition 6.5. We have sup{‖x‖ : x ∈ S(σ;h1, h2, . . . , hp; η; δ) ≥ μ(σ)1/2 for all
δ, η ∈ (0, 1).

Proof. The set S is smaller if δ, η are smaller, so it suffices to show that sup{‖x‖ :
x ∈ S} ≥ (1− η)μ(σ)1/2 for η < 1/2. Suppose to the contrary that the supremum
is α(1 − η)μ(σ)1/2 for some α < 1. Choose elements xn = gn + bn ∈ S such that
limn→∞ ‖xn‖ = α(1 − η)μ(σ)1/2, and observe that ‖gn‖ ≤ αμ(σ)1/2. Denoting
σn = {ω ∈ σ : ‖g(ω)‖ < α1/2}, we have

μ(σ \ σn) ≤
1
α

∫
σ\σn

‖g(ω)‖2 dμ(ω) ≤ αμ(σ),

so that μ(σn) ≥ (1 − α)μ(σ). Choose now positive numbers δn → 0, and vectors
zn ∈ Sn = S(σn; bn, gn, h1, h2, . . . , hp; η, δn) such that

‖zn‖ ≥ 2−3ημ(σn)1/2.

This is possible by Proposition 6.4. The orthogonality of zn and xn implies that
the vectors x′n = xn + (1 − α1/2)zn have norm greater than α(1 − η)μ(σ)1/2 for
large n, and we will obtain a contradiction by showing that x′n ∈ S for large n. To
do this, note that (iv) is satisfied. Write zn = γn+βn as required by the definition
of the sets Sn, and set g′n = gn + (1 − α1/2)γn, b′n = bn + (1 − α1/2)βn, so that
x′n = b′n + g′n. Clearly (i) is satisfied by the definition of σn. Next, observe as in
the proof of the preceding proposition that

‖b′n‖2 − η2‖g′n‖2 ≤ ‖bn‖2 − η2‖gn‖2 + 2(1− α1/2)�[〈gn, γn〉+ 〈bn, βn〉.
Since

|〈bn, βn〉| = |〈gn, γn〉| ≤ δn‖zn‖ ≤ δn(1 + η)μ(σ)1/2,
we deduce that (ii) is satisfied if δn is chosen such that

δn(1 + η)μ(σ)1/2 < η2‖gn‖2 − ‖bn‖2.
Similarly, (iii) is satisfied provided δn is sufficiently small. �

We can now prove Theorem 6.3.

Proof. Assuming that f �= 0, choose pairwise disjoint sets σ1, σ2, . . . , σn with pos-
itive measure, and scalars γ1, γ2, . . . , γn such that ‖f −

∑n
i=1 γiχσi‖1 < ε/2 and∑n

i=1 |γi|μ(σi) < ‖f‖1. Fix δ, η > 0, and use Proposition 6.5 to find inductively vec-
tors zi ∈ Si = S(σi;h1, . . . , hp, z1, . . . , zi−1; η; δ) such that ‖zi‖ ≥ (1− η)μ(σi)1/2

for i = 1, 2, . . . , n. Factor γi = αiβi with |αi| = |βi| = |γi|1/2; if γi > 0, choose
αi = βi > 0. We claim that the vectors x =

∑n
i=1 αizi and y =

∑n
i=1 βizi satisfy
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the requirements of the theorem provided that δ, η are small enough. Conditions
(3) and (4) are trivially verified. By orthogonality,

‖x‖2 = ‖y‖2 =
n∑
i=1

|γi|‖zi‖2 ≤
n∑
i=1

|γi|(‖gi‖+ ‖bi‖)2 ≤ (1 + η)
n∑
i=1

|γi|μ(σi),

so that (2) is satisfied when η is sufficiently small. Next observe that gi ··· g∗j = 0
when i �= j because σi ∩ σj = ∅. Thus

‖f − x ··· y∗‖1 <
ε

2
+

∥∥∥∥∥
n∑
i=1

γiχσi − x ··· y∗
∥∥∥∥∥
1

≤ ε

2
+

n∑
i=1

|γi|‖χσi − gi ··· g∗i ‖1 +
n∑

i,j=1

|αi||βj |(2‖gi‖‖bj‖+ ‖bi‖‖bj‖),

and it suffices to show that each term in these sums can be made arbitrarily small.
This is obvious for the terms containing a factor ‖bi‖, and

‖χσi − gi ··· g∗i ‖1 = μ(σi)− ‖gi‖2 ≤ μ(σi)−
‖xi‖2

(1 + η)2
≤ μ(σi)−

(
1− η

1 + η

)2
μ(σi),

which is < 4η. The theorem is proved. �
It should be noted that the approximate factorization in Theorem 6.3 cannot

generally be replaced by exact factorization f = x ··· y∗ with x, y ∈ H. An easy
example is provided by the Hardy spaceH2, for which the F. and M. Riesz theorem
implies that the nonzero products xȳ cannot vanish on a set of positive measure.
The factorable functions f ∈ L1 are precisely those for which log |f | is integrable.
However, exact factorization is possible if one of the vectors is allowed to be in
L2(μ,D). This follows from the following result.

Theorem 6.6. Assume that H ⊂ L2(μ,D) is localizable. Then for every nonnegative
function h ∈ L1(μ) and every ε > 0 there exists a vector x ∈ H such that ‖x(ω)‖2 ≥
h(ω) almost everywhere, and ‖x‖2 < ‖h‖1 + ε.

Proof. Fix a nonnegative function h ∈ L1(μ), and observe that the conclusion of
the theorem is true with x = 0 if ‖h‖1 = 0. We assume therefore that ‖h‖1 �= 0.
Upon replacing h by μ(σ)h/‖h‖1 we may actually restrict ourselves to the case
when ‖h‖1 = μ(σ), where σ = {ω : h(ω) �= 0}. Define ρ = h + χΩ\σ, so that
‖ρ‖1 = 1. Replace dμ by dμ′ = ρ dμ and H by H′ = ρ−1/2H. Performing this
substitution, we can assume from the beginning that f = χσ.

Fix a number α ∈ (0, 1), and set δ = α2/4. Theorem 6.3 implies the existence
of x1 ∈ H such that ‖(1 + α)χσ − x1 · x1‖1 < δ. If we set

σ1 = {ω ∈ σ : ‖x1(ω)‖2 ≤ 1 + α/2}
then μ(σ1) ≤ 2δ/α = α/2. Observe also that we have

‖x1‖2 ≤ ‖h‖1 + α+ δ ≤ ‖h‖1 + 2α = 1 + 2α.

We will construct by induction vectors xn such that
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(a) μ(σn) ≤ α/2n, where σn = {ω ∈ σ : ‖xn(ω)‖2 ≤ 1 + α/2n}, and
(b) ‖xn+1 − xn‖ ≤ (α/2n−4)1/2.

Assume that xn has been constructed, and define gn ∈ L1(μ) by gn = 9χσn .
By (a), we have ‖gn‖1 ≤ 9α/2n. Let δn be a small positive number, subject
to certain conditions to be specified shortly (in fact δn = α3/10n will satisfy
all the requirements). Theorem 6.3 implies the existence of yn ∈ H such that
‖gn − yn · yn‖1 < δn. Observe that

‖yn‖2 ≤ ‖gn‖1 + δn ≤ 9α/2n + δn,

so that ‖yn‖ ≤ (α/2n−4)1/2 if δn is chosen sufficiently small. Define xn+1 = xn+yn,
and note that condition (b) is satisfied. To complete the inductive process we
must show that (a) is satisfied with n + 1 in place of n, provided that δn is
chosen sufficiently small. Consider a point ω ∈ σ such that |gn(ω) − ‖yn(ω)‖2| <
(α/2n+3)2. If ω /∈ σn this means that ‖yn(ω)‖ < α/2n+3. If ‖xn(ω)‖ > 2 then
certainly ‖xn+1(ω)‖ ≥ 3/2 and ‖xn+1(ω)‖2 ≥ 1 + α/2n+1. If ‖xn(ω)‖ ≤ 2 then

‖xn+1(ω)‖2 ≥ (‖xn(ω)‖ − ‖yn(ω)‖)2

≥ ‖xn(ω)‖2 − 2‖xn(ω)‖‖yn(ω)‖

≥ 1 +
α

2n
− 4

α

2n+3
= 1 +

α

2n+1
.

On the other hand, if ω ∈ σn, then ‖yn(ω)‖2 ≥ 9− (α/2n+3)2 ≥ 8 and ‖xn(ω)‖2 ≤
2. Therefore

‖xn+1(ω)‖2 ≥ (‖yn(ω)‖ − ‖xn(ω)‖)2

≥ (2
√
2−

√
2)2 = 2 ≥ 1 +

α

2n+1
.

We conclude that

σn+1 ⊂
{
ω : |gn(ω)− ‖yn(ω)‖2| ≥

( α

2n+3
)2}

,

and therefore μ(σn+1) ≤ δn(2n+3/α)2. It is easy to choose now δn in order to
satisfy (a).

Denote by x the limit of the sequence {xn}∞n=1. Since
∑

n μ(σn) < ∞, it
follows that ‖xn(ω)‖2 ≥ h(ω) almost everywhere. Moreover,

‖x‖ ≤ ‖x1‖+
∞∑
n=1

‖xn+1 − xn‖ ≤ (‖h‖1 + 2α)1/2 +
∞∑
n=1

( α

2n−4
)1/2

,

so that ‖x‖2 < ‖h‖1 + ε for sufficiently small α. The theorem follows. �

The preceding result is useful when dealing with algebras consisting of sub-
normal operators.
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7. Contractions with isometric functional calculus

We return now to the study of contraction operators T on a separable Hilbert space
H. We have noted earlier that the Sz.-Nagy–Foias functional calculus is defined
when T is completely nonunitary. This calculus is also defined when T is unitary
and its spectral measure is absolutely continuous relative to arclength measure
on T. We will say that T is absolutely continuous when its unitary summand has
absolutely continuous spectral measure.

In terms of unitary dilations, absolute continuity is equivalent to the existence
of a a unitary U ∈ B(K), where K ⊃ H, H is semi-invariant for U , and T = PHU |H.
Up to unitary equivalence, K may be assumed to be contained in L2(m,D), where
m denotes normalized arclength measure on T, and U is multiplication by z:
(Uf)(z) = zf(z) for f ∈ K and z ∈ T. Given x, y ∈ H, the function x ··· y∗ ∈ L1(m)
does not depend on the particular unitary equivalence used. Indeed, its Fourier
coefficients are

x̂ ··· y∗(n) =
∫
T

z̄n(x ··· y∗)(z) dm(z) =

{
〈T ∗nx, y〉 for n > 0,
〈T−nx, y〉 for n ≥ 0.

It is also clear that

(x⊗T y∗)(u) =
∫
T

u(z)(x ··· y∗)(z) dm(z)

for all u ∈ H∞.
We define the class A to consist of those absolutely continuous contractions

such that ‖f(T )‖ = ‖f‖∞ for every f ∈ H∞.

Proposition 7.1. If T ∈ A, then the space H is localizable when viewed as a subspace
of L2(m,D).

Proof. Fix ε > 0, a set σ ⊂ T with positive measure, and choose δ > 0. There
exists a function u ∈ H∞ such that |u| = χσ + δχT\σ almost everywhere. By
hypothesis, there exists a unit vector x ∈ H such that ‖u(T )x‖2 > 1 − δ, and
therefore ‖ux‖22 = ‖u(U)x‖2 ≥ ‖u(T )x‖2 > 1− δ as well. Thus

1− δ = ‖χσx‖22 + ‖χT\σx‖22 − δ

< ‖ux‖22 = ‖χσx‖22 + δ2‖χT\σx‖22,
from which we infer ‖χσx‖2 > (1− 2δ)/(1− δ). It follows that ‖χT\σx‖ < ε‖χσx‖
if δ is sufficiently small. �

Corollary 7.2. If T ∈ A ∩ C00 then WT has property (X1). In particular, WT has
property (A1(1)) and is hyper-reflexive with constant ≤ 3.

Proof. For every f ∈ L1(m), Theorem 6.3 implies the existence of orthogonal se-
quences xn, yn ∈ H such that ‖xn‖, ‖yn‖ ≤ ‖f‖1 and limn→∞ ‖f − xn ··· y∗n‖1 = 0.
The corollary follows then from Lemma 4.4 because all weak* continuous func-
tionals on H∞ are given by functions in L1. �
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Corollary 7.2 is not true for arbitrary T ∈ A, as shown for instance by a shift
of multiplicity one. However, we have the following result.

Theorem 7.3. For every T ∈ A, the algebra WT has property (A1(1)).

Corollary 7.4. Any contraction T ∈ B(H) satisfying σ(T ) ⊃ T has nontrivial
invariant subspaces.

The corollary follows from a theorem of Apostol [10] which implies that,
provided σ(T ) ⊃ T, we either have T ∈ A, or T has nontrivial hyperinvariant
subspaces.

We will provide the proof of Theorem 7.3 under the additional hypothesis
that T is of class C0···; note that this case suffices for the proof of Corollary 7.4.

Given f ∈ L1, we denote by [f ] the weak* continuous functional on H∞

determined by f , i.e., [f ](u) =
∫
T
u(z)f(z) dm(z) for u ∈ H∞. We have [f ] = 0 if

and only if
∫
T
znf(z) dm(z) = 0 for n ≥ 0. With this notation, we have x⊗T y∗ =

[x ··· y∗] for x, y ∈ H.
For the remainder of this section, we will view H as a subspace of L2(m,D),

and we denote by K+ the smallest invariant subspace for U containing H. The
operator U+ = U |K+ satisfies U∗+H ⊂ H and T ∗ = U∗+|H. It follows that [x ··· y∗] =
[PHx ··· y∗] for x ∈ K+ and y ∈ H. Indeed,

〈Un
+x, y〉 = 〈x, U∗n+ y〉 = 〈x, T ∗ny〉 = 〈PH, T ∗ny〉 = 〈T nPH, y〉 for n ≥ 0.

We will need the Wold decomposition of U+. Thus, write K+ = M⊕R such
that U+|M is a unilateral shift, and U+|R is a unitary operator. Given vectors
m,m′ ∈M and r, r′ ∈ R, we have

(m+ r) ··· (m′ + r′)∗ = m ···m′∗ + r ··· r′∗.
The assumption that T ∈ C0··· implies that limn→∞ ‖[x ··· y∗n]‖ = 0 if x, yn ∈ H and
yn tends to zero weakly. Similarly, U+|M ∈ C···0, and thus limn→∞ ‖[mn ···m∗]‖ = 0
if m,mn ∈M and mn tends to zero weakly.

The essential step in the proof of Theorem 7.3 is an approximation argument
which can be repeated as in the proof of the open mapping theorem.

Proposition 7.5. Let α, ε > 0, x, y ∈ H, and f ∈ L1 satisfy ‖[f ] − [x ··· y∗]‖ < α.
There exist x1, y1 ∈ H with the following properties:
(1) ‖[f ]− [x1 ··· y∗1 ]‖ < ε,
(2) ‖y − y1‖ < 3α1/2, and
(3) ‖x1‖ < ‖x‖+ 3α1/2.

Proof. Fix a positive number δ, and denote β = 1 + ‖x‖+ ‖y‖. By Theorem 6.3,
there exist orthogonal sequences (xn)∞n=2 and (yn)∞n=2 in H such that ‖xn‖, ‖yn‖ <
α1/2 and

‖[f ]− [x ··· y∗]− [xn ··· y∗n]‖ < δ.

Using the observations preceding the statement, we see that ‖[x ··· y∗n]‖ < δ and
‖[PMxn ··· y]‖ < δ for large n. Fix such a value n, and define x′ = PH(x + PMxn)
and y′ = y + yn. We have then
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(i) ‖x− x′‖, ‖y − y′‖ < α1/2 and
(ii) ‖[f ]− [x′ ··· y′∗]− [PRxn ··· (PRyn)∗]‖ < 3δβ
Define next the measurable set

σ = {z ∈ T : ‖(PRyn)(z)‖ ≤ ‖(PRy′)(z)‖},
and consider a function ψ ∈ H∞ such that |ψ| = δχσ + 2χT\σ a.e. Choose an
integer N so that ‖U∗N+ PMyn‖ < δ, and define

y1 = y′ + T ∗Nψ(T ∗)yn.

Clearly,
‖y − y1‖ ≤ ‖y − y′‖+ ‖y′ − y1‖ < α1/2 + 2‖yn‖ < 3α1/2,

so that (2) is verified. The choice of σ, and the fact that PR(u(T ∗)yn)(z) =
u(z̄)(PRyn)(z), imply that
(iii) ‖(PRy1)(z)‖ ≥ (1− δ)max{‖(PRy′)(z)‖, ‖(PRyn)(z)‖} a.e.
We can therefore find a measurable function g on T such that

g(z)‖(PRy1)(z)‖2 = (x′ ··· (PRy′)∗)(z) + (PRxn ··· (PRyn)∗)(z)
almost everywhere, and g(z) = 0 when (PRy1)(z) = 0. The inequality (iii) easily
implies

|g(z)|‖(PRy1)(z)‖ ≤
1

1− δ
(‖(PRx′)(z)‖+ ‖(PRxn)(z)‖)

almost everywhere. Thus the function x2 ∈ R defined by x′′(z) = g(z)(PRy1)(z)
satisfies

‖x′′‖ ≤ 1
1− δ

(‖PRx′‖+ ‖xn‖) <
1

1− δ
(‖PRx′‖+ α1/2),

and
(iv) x′′ ··· y1 = x′ ··· (PRy′)∗ + PRxn ··· (PRyn)∗.
We define now x1 = PH(PMx′ + x′′), and observe that

‖x1‖2 ≤ ‖PMx′‖2 + ‖x′′‖2 < ‖PMx′‖2 +
1

(1 − δ)2
(‖PRx′‖+ α1/2))2

≤ 1
(1− δ)2

(‖x′‖+ α1/2)2,

which implies (3) if δ is sufficiently small. Finally, we use (iv) to calculate

[x1 ··· y∗1 ] = [(PMx′ + x′′) ··· y∗1 ] = [(PMx′) ··· y∗1 ] + [x′ ··· (PRy′)∗] + [PRxn ··· (PRyn)∗].
Using the definition of y1, we see that

‖[(PMx′) ··· y∗1 ]− [(PMx′) ··· y′∗]‖ = ‖[(PMx′) ··· (PM(T ∗Nψ(T ∗)yn)∗]‖ < δ(β + α1/2).

These two relations, combined with (ii), imply ‖[f ]− [x1 ··· y∗1 ]‖ < 4δ(β + α1/2) so
that condition (1) is also satisfied if δ is small enough. �

We can now complete the proof of Theorem 7.3 in the C0···-case.
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Proof. Fix f ∈ L1 with ‖f‖1 < 1, and 0 < δ < 1−‖f‖1. Proposition 7.5 allows us
to construct sequences of vectors xn, yn ∈ H such that

(a) ‖[f ]− [xn ··· y∗n]‖1 < δ4n for n ≥ 1,
(b) ‖x1‖, ‖y1‖ ≤ (1 − δ)1/2,
(c) ‖yn − yn−1‖ < 3δ2n for n ≥ 2, and
(d) ‖xn‖ < ‖xn−1‖+ 3δ2n for n ≥ 2.

The sequence yn is Cauchy and its limit y satisfies ‖y‖ < (1− δ)1/2 +3
∑∞

n=1 δ
2n,

while some subsequence of the xn converges weakly to a vector x satisfying the
same norm estimate. Clearly [f ] = [x ··· y∗] and ‖x‖, ‖y‖ < 1 if δ is sufficiently
small. �

The same argument easily yields the fact that the map (x, y) �→ x ⊗T y∗ is
open, not just at the origin.

8. Banach space geometry

In attempting to extend to Banach spaces the techniques developed in the context
of Hilbert space, one encounters two main difficulties. The first one is the fact that
the sets S̃F considered in Section 2 are generally not convex. The second difficulty
is the lack of a functional calculus. Thus, if H is a Banach space and T ∈ B(H)
is a contraction, we cannot generally construct a calculus with functions in H∞,
even when T ∈ C00 in the appropriate sense. There are two ways to deal with
the issue of functional calculus. One can assume that an H∞ functional calculus
exists. There are many interesting examples in which this assumption does hold.
A second way out is to use a local version of the H∞ functional calculus, and this
also covers numerous examples.

In this section we will deal with the abstract preliminaries needed in an
appropriate substitute for the argument of Lemma 2.1.

Theorem 8.1. Let H be a Banach space of dimension n <∞, let (ej)nj=1 be a basis
in H, and let (ϕj)nj=1 ⊂ H∗ be the dual basis, i.e., ϕi(xj) = δij. Given positive
numbers (γj)nj=1 such that

∑n
j=1 γj = 1, there exist α = (αj)nj=1, β = (βj)nj=1 ∈ Cn

such that

(1) ‖∑n
j=1 αjej‖ = ‖

∑n
j=1 βjϕj‖ = 1, and

(2) αjβj = γj for j = 1, 2, . . . , n.

Proof. Assume that f : H → R is a function such that f |{h : ‖h‖ ≤ 1} attains its
maximum at a point x such that ‖x‖ = 1, and f is differentiable at x. In this case,
the linear functional f ′(x) : H → R attains its norm at x. Indeed, for any vector
y ∈ H with ‖y‖ ≤ 1, we have

f ′(x)(x − y) = lim
t↓0

F (x) − F (x+ t(y − x))
t

≥ 0
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since ‖x+ t(y− x)‖ = ‖(1− t)x+ ty‖ ≤ 1 for t ∈ (0, 1). We apply this observation
to the function f : H → [0,+∞) defined by

f(h) =
n∏
j=1

|hj |γj , h =
n∑
j=1

hjej ∈ H.

Assume that f attains its maximum on the unit ball at a point x =
∑n

j=1 αjej .
Obviously ‖x‖ = 1, and none of the coordinates αj are zero. We set then βj =
γj/αj , ϕ =

∑n
j=1 βjϕj , and conclude the proof by showing that �ϕ is a positive

multiple of f ′(x). Indeed, writing αj = ξj + iηj ,

f ′(x)ej = lim
t↓0

f(x+ tej)− f(x)
t

= f(x)
γjξj

ξ2j + η2j
= f(x)�ϕ(ej),

and similarly f ′(x)(iej) = f(x)�ϕ(iej). Thus ϕ attains its norm at x, and clearly
ϕ(x) =

∑n
j=1 γj = 1. �

The Hahn-Banach theorem allows us to write this result in an equivalent
form.

Theorem 8.2. Let H be a Banach space, and let (ej)nj=1 ⊂ H be linearly in-
dependent. Given positive numbers (γj)nj=1 such that

∑n
j=1 γj = 1, there exist

α = (αj)nj=1 ∈ Cn and ϕ ∈ H∗ such that

(1) ‖∑n
j=1 αjej‖ = ‖ϕ‖ = 1, and

(2) ϕ(αjej) = γj for j = 1, 2, . . . , n.

It will be important to control the size of the constants αj in the above
theorem. Given two subspaces M′,M′′ ⊂ H we say that M′′ is ε-orthogonal to M′

for some ε > 0 if ‖h′ − h′′‖ ≥ (1 − ε)‖h′‖ for all h′ ∈M′ and h′ ∈ M′′.

Proposition 8.3. For every ε > 0 and every finite-dimensional subspace M of a
Banach space H, there exists a finite codimensional subspace N ⊂ H which is
ε-orthogonal to M.

Proof. Fix ε > 0, and for each unit vector h ∈M choose a functional ϕh ∈ H∗ such
that ‖ϕh‖ = ϕh(h) = 1. By compactness, there exist unit vectors h1, h2, . . . , hn ∈
M such that the sets {x ∈ M : |ϕhj (x)| > 1 − ε} cover the unit sphere of M.
Denote N =

⋂n
j=1 kerϕhj , and pick vectors h ∈ M, k ∈ N such that ‖h‖ = 1. We

have ‖h− k‖ ≥ |ϕhj (h− k)| = |ϕhj (h)|, and this number is greater than 1− ε for
some j. The proposition follows. �

The relation of ε-orthogonality is not symmetric. Note however that the ε-
orthogonality of M and N is equivalent to the requirement that the projection
P : M + N → M with kernel N has norm < 1/(1 − ε), and this implies that the
projection Q : M + N → N with kernel M has norm < 1 + 1/(1 − ε). Choosing,
for instance, ε = 1/2, both of these projections will have norm < 3.



Dual Algebras and Invariant Subspaces 163

Corollary 8.4. Assume that the spaces M,N ⊂ H are ε orthogonal, and ϕ0 ∈ N∗.
There exists ϕ ∈ H∗ such that ϕ|N = ϕ0, ϕ|M = 0, and

‖ϕ‖ ≤
[
1 +

1
1− ε

]
‖ϕ0‖.

9. Dominating spectrum in Banach spaces

In this section we will deal with an operator T ∈ B(H), with H a Banach space,
under the assumption that T admits an H∞ functional calculus. Thus, we assume
that there exists a unital algebra homomorphism Ψ : H∞ → B(H) such that
Ψ(IdD) = T , ‖Ψ(f)‖ ≤ ‖f‖∞ for f ∈ H∞, and the map f �→ ϕ(Ψ(f)x) is weak*
continuous for every x ∈ H and ϕ ∈ H∗. This weak* continuous functional will
now be denoted x ⊗T ϕ, in agreement with our earlier usage. We will also write
f(T ) in place Ψ(f), and this agrees with the Riesz–Dunford functional calculus
in case f is analytic in a neighborhood of D. We will denote by T ∗ ∈ B(H∗) the
dual of T , i.e., T ∗ϕ = ϕ ◦T for ϕ ∈ H∗. Recall that eλ is the functional defined by
eλ(f) = f(λ) for f ∈ H∞.

Lemma 9.1. Assume that ε > 0, λ ∈ D, x ∈ H, and ϕ ∈ H∗ are such that

min
{‖(T − λ)x‖

‖x‖ ,
‖(T ∗ − λ)ϕ‖

‖ϕ‖

}
< ε.

Then we have ‖x⊗T ϕ− ϕ(x)eλ)‖ < 2ε‖x‖‖ϕ‖/(1− |λ|).

Proof. Assume that ‖(T − λ)x‖ < ε. Every f ∈ H∞ can be written as f(z) =
f(λ) + (z − λ)g(z) with g ∈ H∞ and ‖g‖ ≤ 2/(1− |λ|). Therefore

|(x⊗T ϕ− ϕ(x)eλ)(f)| = |ϕ(g(T )(T − λ)x)| ≤ 2ε‖x‖‖ϕ‖
1− |λ| ‖f‖,

thus yielding the desired estimate. The case where ‖(T ∗− λ)ϕ‖ < ε‖ϕ‖ is treated
similarly. �

In order to approximate convex combinations
∑n

j=1 γjeλj by tensors x⊗T ϕ,
we use Theorem 8.1. Given distinct points λ1, λ2, . . . , λn ∈ D, we write

δ(λ1, λ2, . . . , λn) = min
1≤j≤n

∏
k �=j

∣∣∣∣ λj − λk

1− λjλk

∣∣∣∣ .
It is easy to see that any n vectors xj such that ‖(T − λj)xj‖ < η‖xj‖ must
be linearly independent if η is sufficiently small. Indeed, consider the functions
(Blaschke products) Bj ∈ H∞ defined by

Bj(λ) =
∏
k �=j

λj − λ

1− λjλ
.
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Observe that the vector x =
∑n

k=1 xk satisfies

‖x‖ ≥ ‖Bj(T )x‖ ≥ ‖Bj(λj)xj‖ −
n∑

k=1

‖[Bj(T )−Bj(λk)]xk‖

≥ δ(λ1, λ2, . . . , λn)‖xj‖ −
n∑
k=1

2η
1− |λj |

‖xk‖,

so that

δ(λ1, λ2, . . . , λn)‖xj‖ ≤ ‖x‖+
n∑

k=1

2η
1− |λj |

‖xk‖.

Adding these inequalities we obtain⎡⎣δ(λ1, λ2, . . . , λn)− n

n∑
j=1

2η
1− |λj |

⎤⎦ n∑
k=1

‖xk‖ ≤ n

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ . (9.1)

Consider now a point λ ∈ D in the left spectrum σ�(T ) of T , i.e., λ− T does
not have a left inverse. If λ is not an eigenvalue of T , then λ is in the left essential
spectrum σ�e(T ). More precisely, for every ε > 0, and every finite codimensional
subspace N ⊂ H, there exists a unit vector x ∈ N such that ‖(λ− T )x‖ < ε.

Lemma 9.2. Assume that λ1, λ2, . . . , λn ∈ σ�(T )∩D are distinct points, and ε > 0.
Given positive numbers γj such that

∑n
j=1 γj = 1, there exist unit vectors x ∈ H

and ϕ ∈ H∗ such that ‖x⊗T ϕ−
∑n

j=1 γjeλj‖ < ε.

Proof. Choose yj ∈ H such that ‖(T−λj)yj‖ < η‖yj‖ for some η > 0. Theorem 8.2
implies the existence of a unit vector of the form x =

∑n
j=1 xj , where xj = αjyj ,

and of a unit vector ϕ ∈ H∗ such that ϕ(xj) = γj for all j. By Lemma 9.1,∥∥∥∥∥∥x⊗T ϕ−
n∑
j=1

γjeλj

∥∥∥∥∥∥ ≤
n∑
j=1

2η‖xj‖
1− |λj |

,

and (9.1) shows that the conclusion is satisfied if η is sufficiently small. �

In order to obtain a result similar to Lemma 4.1, the vectors yj in the above
proof must be chosen more carefully.

Lemma 9.3. Let h1, h2, . . . , hN ∈ H be such that {f(T )hj : f ∈ H∞, ‖f‖ ≤ 1}
is totally bounded for 1 ≤ j ≤ N . Assume that λ1, λ2, . . . , λn ∈ σ�e(T ) ∩ D are
distinct points, and ε > 0. Given positive numbers γj such that

∑n
j=1 γj = 1, and

functionals ϕ1, ϕ2, . . . , ϕN ∈ H∗, there exist unit vectors x ∈ H and ϕ ∈ H∗ such
that ‖x‖‖ϕ‖ < 3, ‖x⊗T ϕ−

∑n
j=1 γjeλj‖ < ε, and

N∑
j=1

(‖xj ⊗T ϕ‖+ ‖x⊗T ϕj‖) < ε.
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Proof. Fix a positive number η. The hypothesis implies the existence of a finite-
dimensional space M ⊂ H such that dist(f(T )hj ,M) < η for every j = 1, 2, . . . , N ,
and every f ∈ H∞ with ‖f‖∞ ≤ 1. By Proposition 8.3, there exists a finite
codimensional space N0 which is (1/2)-orthogonal to M. The finite codimensional
space

N = N0 ∩
N⋂
k=1

kerϕk

is also (1/2)-orthogonal to M. Choose now vectors yj ∈ N such that ‖(T−λj)yj‖ <
η‖yj‖, and use Theorem 8.2 to find a unit vector x =

∑n
j=1 xj , xj = αjyj, and a

functional of norm one ϕ0 ∈ N∗ such that ϕ0(xj) = γj for j = 1, 2, . . . , n. Corollary
8.4 yields a functional ϕ ∈ H∗ such that ‖ϕ‖ ≤ 3, ϕ(xj)|N = ϕ0, and ϕ|M = 0.
The calculation in the proof of Lemma 9.2 yields now∥∥∥∥∥∥x⊗T ϕ−

n∑
j=1

γjeλj

∥∥∥∥∥∥ ≤
n∑
j=1

6η‖xj‖
1− |λj |

,

and this number is < ε for small η by (9.1). A similar calculation, using the
relations ϕk(xj) = 0, yields

‖x⊗T ϕk‖ ≤
n∑
j=1

2η‖xj‖‖ϕk‖
1− |λj |

,

and these numbers will be < ε/2N for small η. Finally, the condition ϕ|M = 0
implies

‖hk ⊗T ϕ‖ = sup
‖f‖∞≤1

|ϕ(f(T )hk)| ≤ ‖ϕ‖η ≤ 3η,

and this number is also < ε/N if η is sufficiently small. �

We can now conclude that the map S : H × H∗ → H∞∗ , F (h, ϕ) = h ⊗T ϕ,
satisfies the hypothesis of Proposition 2.5 provided that σ�e(T ) is dominating.

Proposition 9.4. Assume that σ�e(T ) is dominating, and the set

{f(T )h : f ∈ H∞, ‖f‖∞ ≤ 1}
is totally bounded for every h ∈ H. Then the set S̃F contains the ball of radius
1/48 centered at 0 ∈ H∞∗ .

Proof. Consider points λj ∈ σ�e(T ) and scalars tj such that
∑n

j=1 |tj | ≤ 1/48. It
will suffice to show that ψ =

∑n
j=1 tjeλj ∈ S̃F . We can write ψ =

∑4
�=1 i

�s�ψ�,
where 0 ≤ s� ≤ 1/48, and each ψ� is a convex combination of the functionals
eλj . Lemma 9.3 yields vectors x� ∈ H and ϕ� ∈ H∗ such that ‖x�‖, ‖ϕ�‖ ≤ 31/2,
‖ψ�− x�⊗T ϕ�‖ is arbitrarily small, and the functionals x�⊗T ϕ�′ have arbitrarily
small norm for � �= �′. The vectors x =

∑4
�=1 i

�s
1/2
� x� and ϕ =

∑4
�=1 s

1/2
� ϕ� have

norm at most one, and ‖ψ−x⊗Tϕ‖ is as small as desired. Choosing the appropriate
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vectors xj , ϕj , we can also require that a finite number of functionals of the form
h⊗T ϕ and x⊗ ϕ′ have arbitrarily small norm. �

The total boundedness in the hypothesis follows if the map f �→ f(T )h is
continuous from the weak* topology to the norm topology of H. This amounts to
requiring that T ∈ C0···. Proposition 2.5 yields the following result.

Corollary 9.5. Assume that T ∈ C0··· and σ�(T ) ∩ D is dominating. Then T has
nontrivial invariant subspaces.

The techniques in this section can be refined to yield the following result of
Ambrozie and Müller [8].

Theorem 9.6. If σ(T ) ⊃ T then T has nontrivial invariant subspaces.

One important observation is that we only need to have sufficiently many
vectors such thus ‖(T − λ)x‖ < (1− |λ|)2‖x‖. Results of Apostol [12] show that if
such vectors are not abundant, then T has hyper-invariant subspaces.

10. Localizable spectrum

Assume again that T is an operator on a Banach space H. Given x ∈ H and ϕ ∈ H∗,
it may happen that there exists a functional ψ ∈ H∞∗ such that ψ(f) = ϕ(f(T )x)
whenever f is a polynomial. When this situation occurs, we will write ψ = x⊗T ϕ.
The bilinear map S(x, ϕ) = x⊗T ϕ is only partially defined in general.

There may be vectors x ∈ H for which x ⊗T ϕ is always defined. Assume
for instance that |μ| < 1, and the local spectrum of x is contained in D(μ, δ) =
{λ : |μ− λ| < δ} ⊂ D. This simply means that there exists a continuous function
u : C \D(μ, δ)→ H, analytic on u : C \D(μ, δ), such that

(λ− T )u(λ) = x, x /∈ D(μ, δ).

Such a function obviously satisfies u(λ) = (λ− T )−1x outside σ(T ). Assume that
R > 0 is so large that σ(T ) ⊂ D(0, R). For any polynomialf we have

f(T )x =
1
2πi

∫
|λ|=R

f(λ)(λ − T )−1x dλ =
1
2πi

∫
|λ−μ|=δ

f(λ)u(λ) dλ

by Cauchy’s theorem. Thus we can use the formula

f(T )x =
1
2πi

∫
|λ−μ|=δ′

f(λ)u(λ) dλ

to define f(T )x for every f ∈ H∞ (note though that f(T ) itself is not defined).
The map f �→ f(T )x is weak* to norm continuous.

Let us denote by Xμ,δ the set of continuous functions u : C \ D(μ, δ) → H,
analytic on C \ D(μ, δ), such that (λ − T )u(λ) is a constant function. Obviously
Xμ,δ is a linear space, and it becomes a Banach space with the norm

‖u‖μ,δ = sup{|u(λ)| : |λ− μ| ≥ δ} = sup{|u(λ)| : |λ− μ| = δ}.
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If u ∈ Xμ,δ, the function λ �→ Tu(λ) also belongs to Xμ,δ, and it will be denoted
Tμ,δu. Obviously Tμ,δ ∈ B(Xμ,δ) and ‖Tμ,δ‖ ≤ ‖T ‖.

Lemma 10.1. We have σ(Tμ,δ) ⊂ D(μ, δ).

Proof. Assume that α ∈ C \D(μ, δ) and u ∈ Xμ,δ. Define a function v by

v(λ) =

{
−u′(α) if λ = α,
u(λ)−u(α)

α−λ if λ �= α.

Since u ∈ Xμ,δ, we have

(λ− T )v(λ) =
(α− T )u(α)− (λ− T )u(α)

α− λ
= u(α)

for λ �= α, and therefore v ∈ Xμ,δ as well. We also have

(α − T )v(λ) = (α− λ)v(λ) + u(α) = u(λ),

showing that (α − Tμ,δ)v = u, and thus α − Tμ,δ is onto. On the other hand, an
equation of the form (α− Tμ,δ)u = 0 implies

0 = (α− T )u(α) = (λ− T )u(λ),

so that u(λ) = 0 for |λ| > ‖T ‖, and therefore u = 0 by analytic continuation. Thus
α− Tμ,δ is one-to-one as well. �

Lemma 10.2. Assume that T has no eigenvalues, and the space Xμ,δ is nonzero for
every δ > 0. Then σ�e(Tμ,δ) ∩D(μ, δ) �= ∅ for all δ > 0.

Proof. The assumption that T has no eigenvalues implies that Tμ,δ does not have
any eigenvalues either. Assume, to get a contradiction, that σ�e(Tμ,δ)∩D(μ, δ) = ∅

for some δ > 0, and fix η ∈ (0, δ). This assumption implies that σ�e(Tμ,δ|K) ∩
D(μ, δ) = ∅ for every invariant subspace K of Tμ,δ. Consider in particular the
closure K of Xμ,η in Xμ,δ. For η < |λ− μ| < δ the operator (λ− Tμ,δ)|K has dense
range (because λ /∈ σ(Tμ,η)), and therefore it is invertible since λ /∈ σ�e(Tμ,δ).
We conclude that the closed set σ(Tμ,δ|K) ∩ D(μ, δ) is empty because otherwise
its boundary points would belong to σ�e(Tμ,δ). With this preparation, consider an
arbitrary element u ∈ Xμ,η and define a function v : C → Xμ,δ by setting

v(λ) =

{
(λ− Tμ,η)−1u for λ ∈ C \D(μ, η),
(λ− Tμ,δ)−1u for λ ∈ D(μ, δ).

The two definitions must agree on D(μ, δ)\D(μ, η), and the function v is bounded
and entire. Thus v ≡ limλ→∞ v(λ) = 0, and this implies that u = 0 as well. We
conclude that Xμ,η = {0}, contrary to the hypothesis. �

The following result is an analogue of Lemma 9.1.
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Lemma 10.3. Let x ∈ H have local spectrum contained in D(μ, δ) with |μ|+ |δ| < 1,
and let u ∈ Xμ,δ satisfy (λ− T )u(λ) = x. We have

‖x⊗T ϕ− ϕ(x)eν‖ ≤
2‖ϕ‖
1− |ν| ‖(ν − Tμ,δ)u‖μ,δ

for every ϕ ∈ H∗ and ν ∈ D(μ, δ).

Proof. Given f ∈ H∞, write f(λ) − f(ν) = (λ − ν)g(λ) with g ∈ H∞, where
‖g‖∞ ≤ 2/(1−|ν|). The usual properties of the Riesz–Dunford functional calculus
imply

ϕ(f(T )x)− ϕ(x)f(ν) = ϕ((f(T )− f(ν))x) =
1
2πi

∫
|λ−μ|=δ

g(λ)(T − ν)u(λ) dλ,

and the desired estimate follows because (T − ν)u(λ) = ((Tμ,δ − ν)u)(λ). �

A point μ ∈ D will be said to be in the localizable left spectrum σloc� (T ) of T
if Xμ,δ �= {0} for every δ > 0. If the space Xμ,δ is infinite dimensional for every
δ > 0, we say that μ is in the localizable left essential spectrum σloc�e (T ) of T . The
difference σloc� (T ) \ σloc�e (T ) consists of isolated eigenvalues of finite multiplicity.

The following result will allow us to make effective use of Lemma 10.3.

Lemma 10.4. Assume that T has no eigenvalues, μ ∈ σloc�e (T ), N ⊂ H is a finite
codimensional space, and δ > 0. There exist ν ∈ D(μ, δ), unit vectors yn ∈ N and
functions un ∈ Xμ,δ such that yn = (λ−T )un(λ) and limn→∞ ‖(ν−Tμ,λ)un‖ = 0.

Proof. Lemma 10.2 implies the existence of ν ∈ σ�e(Tμ,δ) ∩ D(μ, δ). Select unit
vectors vn ∈ Xμ,δ such that limn→∞ ‖(ν − Tμ,δ)vn‖ = 0. The vectors xn = (λ −
T )vn(λ) can be assumed to belong to N, and a subsequence of yn = xn/‖xn‖ will
satisfy the requirements of the lemma provided that ‖xn‖ does not tend to zero.
We have

xn − (λ− ν)vn(λ) = (ν − T )vn(λ),

and |λ− ν| is bounded below on ∂D(μ, δ). It follows that

lim
n→∞

∥∥∥∥ 1
λ− ν

xn − vn(λ)
∥∥∥∥ = 0

uniformly on ∂D(μ, δ), and this cannot happen if ‖xn‖ → 0. The lemma follows.
�

For the remainder of this section we will denote by H0 the linear manifold
generated by vectors x with local spectrum contained in some D(μ, δ) with |μ|+
|δ| < 1. We will consider the map S : (x, ϕ) �→ x ⊗T ϕ, whose domain contains
H0 × H∗. The set S̃F is as defined in Section 2, with K0 = H∗.

Lemma 10.5. Given distinct points λ1, λ2, . . . , λn ∈ σloc�e (T )∩D, and positive num-
bers γj such that

∑n
j=1 γj = 1, the functional ψ = (1/3)

∑n
j=1 γjeλj belongs to S̃F .
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Proof. Fix h1, h2, . . . , hN ∈ H0, ϕ1, ϕ2, . . . , ϕN ∈ H∗ and a positive number η.
There is a finite-dimensional space M ⊂ H such that dist(f(T )hj,M) < η for every
j, and every f ∈ H∞ with ‖f‖∞ ≤ 1. Find, as before, a finite codimensional space
N which is (1/2)-orthogonal to M and N ⊂ kerϕj for each j. Construct inductively
vectors yj ∈ H, functions uj ∈ Xμj ,η, points νj ∈ D(μj , η), finite-dimensional
spaces M = M1 ⊂ · · · ⊂Mn, and finite codimensional spaces N = N1 ⊃ · · · ⊃ Nn

such that

(1) yj is a unit vector in Nj ,
(2) (λ− T )uj(λ) = yj,
(3) ‖(νj − Tμj ,η)uj‖ < η,
(4) yi ∈ Mj for i < j, and
(5) Nj is η-orthogonal to Mj .

This construction is possible by Proposition 8.3 and the preceding lemmas. Theo-
rem 8.2 implies the existence of a unit vector x =

∑n
j=1 xj , where xj = αjyj , and

of a functional of unit norm ϕ0 ∈ N∗ such that ϕ0(xj) = γj for j = 1, 2, . . . , n.
We extend then ϕ0 to ϕ ∈ H∗ such that ϕ|M = 0 and ‖ϕ‖ ≤ 3. The various η-
orthogonalities will imply that ‖xj‖ ≤ 3 for all j if η is sufficiently small. Lemma
10.3 implies then the inequality

‖xj ⊗T ϕ− γjeνj‖ ≤
6η

1− |νj |
,

and therefore∥∥∥∥∥∥x⊗T ϕ−
n∑
j=1

γjeμj

∥∥∥∥∥∥ ≤
n∑
j=1

6η
1− |νj |

+
n∑
j=1

γj‖eμj − eνj‖.

The right-hand side can be made arbitrarily small for an appropriate choice of η.
Another use of Lemma 10.3 yields

‖xj ⊗T ϕk‖ ≤
6η‖ϕk‖
1− |νj |

,

and these quantities can be made arbitrarily small. Finally, the choice of M and
the equality ϕ|M = 0 allows us to conclude that ‖hk⊗T ϕ‖ is arbitrarily small, as
in the proof of Lemma 9.3. The lemma follows. �

The proof of Proposition 9.4 can now be repeated to yield the following result.

Proposition 10.6. Assume that σloc�e (T )∩D is a dominating set. Then S̃F contains
the ball of radius 1/48 centered at 0 ∈ H∞∗ .

Corollary 10.7. Assume that σloc� (T )∩D is a dominating set. Then T has nontrivial
invariant subspaces.
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11. Notes

Section 2

It is well known that surjective, continuous bilinear maps need not be open at the
origin. Theorem 2.2 appears in [34] in a concrete situation. A second appearance is
in [38]. The possibility of solving systems of equations of the form F (hi, kj) = xij
was first noted in [27] and [23]. A general study of the open mapping properties
of bilinear maps was initiated in [29], and one form of the abstract results in this
section appears there.

Section 3

Theorem 3.3 was proved in [22]. See also [28] for a related result. The use of systems
in finding a variety of invariant subspaces is exploited in [27, 23, 14] and [15].

Section 4

Operators with dominating essential spectrum, also known as (BCP) operators,
were introduced in [38], where it is shown that they have nontrivial invariant
subspaces. Their reflexivity was proved later in [18]. See also [65] for a related
hyper-reflexivity result. A detailed exposition of factorization and invariant sub-
space results for contractions is given in [26].

The invariant subspace theorem for subnormal operators is deduced in [34] by
reducing the problem (using the results of [89]) to pure cyclic subnormal contrac-
tions with dominating essential spectrum, and proving the factorization theorem
for this extremely restricted class. Factorization was proved for arbitrary subnor-
mal operators in [79]. Later, it was proved [24] that the algebra generated by a
subnormal operator has property (A1(1)). A very brief proof of the existence of
invariant subspaces for subnormal operators was given by Thomson [95], who later
found a very deep structure theorem for subnormals [96].

For the case of the Bergman shift or, more generally, multiplication operators
on Bergman spaces, many of the invariant subspace results obtained in this section
were also proved by function theoretical methods. Indeed, the progress in under-
standing Bergman spaces has been quite remarkable, and we only quote some of
the work done in this area [5, 6, 7, 68, 69, 70, 73].

Section 5

The first result on hyper-reflexivity is due to Arveson [17], who proved that nest
algebras have hyper-reflexivity constant 1. Additional examples were provided in
[54] and [56], where the free semigroup algebras (with one generator in [54]) are
shown to be hyper-reflexive. These results, along with theorem 3.3, were used in
[72] to show that all semigroup algebras are hyper-reflexive. The best constant in
Theorem 3.3 is not known, but it must be > 1. Indeed, the algebras with hyper-
reflexivity constant 1 are very special, as shown in [55]. Hyper-reflexivity, as well
as reflexivity, makes sense for weak operator closed linear spaces [76], and indeed
theorem 3.3 applies in this generality.
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Section 6

The main idea in the proof of Theorem 6.3 appears in [36]. The current abstract
form was developed in [19], [30] and [32]. Theorem 6.6 is from [21], where it is used,
along with results from [71], to show that the algebra generated by any family of
commuting isometries is reflexive. Further applications of these results appear in
[85]. Exact factorization theorems in the case of contractions have been pursued,
for instance, in [44, 45] and [48].

Section 7

The existence of invariant subspaces for contractions whose spectra contain the
unit circle was proved in [39]; see also [36] for the C00 case. Theorem 7.3 was
proved in [20] and [46].

Section 8

Proposition 8.3 is Lemma III.1.1 in [91]. Theorems 8.1 and 8.2 are from [101].
These results proved to be very useful in the study of numerical ranges of Banach
space operators, and were not known very well to Hilbert space operator theorists.
A particular form of these results was rediscovered in [10], and a Hilbert space
formulation was rediscovered in [98]. Eschmeier [58] used these results in their
original form.

Section 9

Banach space extensions of the results of [38] were already pursued in [10]; see also
[59] for extensions to domains in higher dimensions. Our approach in this section
is closest to that of Ambrozie and Müller [8], where Theorem 9.6 is proved.

Section 10

Local spectral theory in this context appeared first in [13]. The possibility of
applying this technique to hyponormal operators [35] arose because Putinar [86]
proved that hyponormal operators are restrictions of generalized scalar operators,
as defined in [52]. This yields vectors with small local spectrum. Extensions to
Banach space operators were pursued by several authors, but Corollary 10.7 (when
formulated for general domains, as in [63]) subsumes these earlier results. Note that
this provides yet another proof that subnormal operators have invariant subspaces.

Extensions to more general domains

Operators on Hilbert space, whose spectra are dominating in a multiply connected
domain, were first studied in [51]. This was pursued by many authors in the Hilbert
space [81, 49] and Banach space settings [100]. In particular, [100] extends the
results of [8] to such domains. There are also substantial advances in the case of
n-tuples of commuting operators, for which one needs to consider domains in Cn

[59, 60, 61, 57, 64, 74]. A recent result of Ambrozie and Müller [9] is that n-tuples
of contractions on a Hilbert space, whose Taylor spectra are dominating in the unit
polydisk, have nontrivial invariant subspaces. As in the case n = 1, the existence
of a good functional calculus (polynomial boundedness) must be assumed.
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1. Introduction

A prominent feature of Paul Halmos’s mathematical life was his influence on other
mathematicians. Many know of his students and their robust mathematical careers,
but another aspect was his ability to pull from an example or an isolated result just
the right question or concept and by so doing tweak and excite the curiosity of oth-
ers, thus launching a series of papers that frequently started a new area of investi-
gation. Though by no means a unique example of this, the theory of subnormal op-
erators is a prime instance of this phenomenon. A subnormal operator on a Hilbert
space H is one such that there is a larger Hilbert space K that contains H and a
normal operator N on K such that: (a) NH ⊆ H; (b) Nh = Sh for all h in H.

In 1950 Paul Halmos introduced this concept at the same time that he defined
hyponormal operators [29]. His inspiration was an examination of the unilateral
shift, from which he abstracted two properties, one analytic (having a normal ex-
tension) and one algebraic (S∗S ≥ SS∗). One must marvel at his focusing on these
two properties, each of which is satisfied by an enormous collection of examples,
even though he himself did not realize at the time how extensive these theories were
and how rich the class of examples. This constitutes a high compliment to his great
sense of mathematical taste and his instinct to isolate what must be a good idea.

In his paper he gave a characterization of subnormal operators in terms of
a positivity condition and explored some basic facts. Though Paul wrote other
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papers where he discussed particular subnormal and hyponormal operators, he
never again wrote one devoted to either topic, even though he had PhD students
who did.

The first of Paul’s students to write on subnormal operators was Joseph Bram
[7]; in fact this was the first paper devoted solely to subnormal operators. In this
work Bram improved Halmos’s characterization of subnormality and established
many basic properties of the operators. In fact the paper is still worth reading and
contains nuggets that have attracted attention and been more thoroughly explored
as well as a few that deserve a second look. One particular fundamental result that
will be used repeatedly in this paper is the characterization of cyclic subnormal
operators. Let μ be a compactly supported regular Borel measure on the complex
plane, C, and define P 2(μ) to be the closure in L2(μ) of the analytic polynomials.
That is, P 2(μ) is the closed linear span of {zn : n ≥ 0}. Now define the operator
Sμ on P 2(μ) by

Sμf(z) = zf(z).
This is a subnormal operator since the operator Nμ defined on L2(μ) by

Nμf(z) = zf(z)

is a normal extension. Also note that Sμ is cyclic; that is, there is a vector e such
that P 2(μ) =

∨{Snμe : n ≥ 0}. In this case we can take for e the constant function
1. Bram showed that if S is any subnormal operator on H that has a cyclic vector
e, then there is a measure μ and a unitary U : H → P 2(μ) such that U∗SμU = S
and Ue = 1. The proof of this is not difficult (see [14], page 51), but it sets the
stage for an intimate interaction between the theory of analytic functions and
subnormal operators. The polynomials are of course analytic and it was observed
that in every example of such a measure μ the space P 2(μ) consisted of the direct
sum of an L2-space and a Hilbert space of analytic functions. In fact it was later
established (see §5 below) that this is always the case.

Another of Paul’s students, Errett Bishop, proved a basic fact about sub-
normal operators as a consequence of a general theory he developed in his thesis
[6]: the set of subnormal operators is closed in the strong operator topology. (The
strong operator topology, or SOT, on B(H) is the one defined by the seminorms
ph(T ) = ‖Th‖ for all h in H.) Using the Halmos-Bram criterion for subnormality,
it is rather straightforward to show that the SOT limit of a sequence of subnormal
operators is again subnormal. A crucial fact in showing this is that an SOT conver-
gent sequence of operators is norm bounded. However the SOT is not metrizable
so that it is necessary to consider the limits of nets. In this case the net may not
be bounded, complicating the argument. A direct proof, avoiding the machinery
that Bishop developed in his thesis, was found much later in [16]; where it was
shown that an operator is subnormal if and only if it is an SOT limit of a sequence
of normal operators.

These three papers are the entirety of the direct contributions of Halmos and
his students to subnormal operators. This seems all the more remarkable given
that the subject has grown to the extent that it has.
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2. Fundamentals of subnormal operators

In this section we will review some basic facts concerning subnormal operators.
No proofs will be give, but rather the results will be cited from [13] or [14] where
the proofs can be found.

All Hilbert spaces are separable and over the complex numbers and B(H)
denotes the algebra of all bounded operators from H into itself. It is well known
that B(H) is the Banach space dual of B1(H), the space of trace-class operators
furnished with the trace norm. (See [14], page 8.) Here for every B in B(H) the
corresponding element FB of B1(H)∗ is given by

FB(A) = tr (AB)

for every trace class operator A. As a consequence of this, B(H) has a natural
weak∗ topology. We mention that a similar pairing results in the fact that B1(H)
is the Banach space dual of the algebra of compact operators on H.

Define a dual algebra to be any Banach algebra with identity that is the dual
of a Banach space. So B(H) is a dual algebra as is any weak∗ closed subalgebra of
B(H) that contains the identity operator. In particular, every von Neumann algebra
is a dual algebra. Also note that for any σ-finite measure space its L∞ space is also
a dual algebra. If A and B are two dual algebras, call a homomorphism ρ : A → B
a dual algebra homomorphism if it is continuous when both A and B have their
weak∗ topologies. Similarly we define a dual algebra isomorphism.

If S is a subnormal operator on H and N is a normal extension operating
on K, then for any other normal operator M on a space L the normal operator
N ⊕M is also a normal extension. So the normal extension fails to be unique.
However it is possible to obtain a minimal extension and this is unique up to
unitary equivalence. In fact, define N to be a minimal normal extension of S
provided there is no proper reducing subspace for N that contains H. With this
definition it is not hard to show the following result.

2.1. Proposition. If S is a subnormal operator on H and N is a normal extension
on K, then N is a minimal normal extension if and only if K is the closed linear
span of

2.2 {N∗kh : h ∈ H and k ≥ 0}.
Moreover any two minimal normal extensions are unitarily equivalent.

For a proof see [14], pages 38–39. In light of the uniqueness part of the
preceding result we are justified in speaking of the minimal normal extension.

This result implies that for a compactly supported measure μ on C, Nμ is
the minimal normal extension of Sμ. In fact the set appearing in (2.2) contains
{z̄kzn : k, n ≥ 0}, whose linear span is dense in L2(μ) by the Stone-Weierstrass
Theorem.

Another basic notion is that of purity. A subnormal operator S is pure pro-
vided there is no reducing subspaceM for S such that S|M is normal. For exam-
ple, if m is normalized arc length measure on the unit circle, then P 2(m) is the
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classical Hardy spaceH2 and Sm is the unilateral shift, which is pure. On the other
hand if μ = m + δ2, where δ2 is the unit point mass at 2, then P 2(μ) = H2 ⊕ C

and Sμ is not pure. Of course for certain measures μ, such as Lebesgue measure
on the unit interval, P 2(μ) = L2(μ) and Sμ is the antithesis of pure.

2.3. Proposition. If S is a subnormal operator, then there is a reducing subspace
H0 for S such that S|H0 is normal and S|H⊥0 is pure.

For the proof see [14], page 38. This allows us to split off the pure part of
any subnormal operator, treat it separately, then reassemble to get the original
operator and see if what was proved for the pure part can be extended to the
original subnormal operator. The persistent reader will see that this frequently is
the approach used in obtaining the major results on subnormal operators.

The idea here is that the presence of a non-trivial normal summand in a sub-
normal operator introduces too much symmetry. Under most situations in math-
ematics we enjoy it when symmetry is present, but with subnormal operators the
presence of a normal summand introduces a complication when we explore their
structure.

If N is a normal operator on K and N =
∫
z dE(z) is its spectral decomposi-

tion given by the Spectral Theorem ([13], page 263), then there is a scalar-valued
measure μ that has the same sets of measure zero as the spectral measure E. One
possibility is to take μ(Δ) =

∑
n 2
−n〈E(Δ)hn, hn〉, where {hn} is a countable

dense subset of the unit ball of K. This measure is far from unique since any mea-
sure that is mutually absolutely continuous with it can also serve. Nevertheless we
will refer to the scalar-valued spectral measure for N .

The role of the scalar-valued spectral measure for a normal operator is to
correctly delineate its functional calculus. If μ is the scalar-valued spectral measure
for N , then for every φ in L∞(μ) we can define the operator φ(N) =

∫
φ dE and

we have the following result.

2.4. Theorem. The map ρ : L∞(μ)→ B(K) defined by ρ(φ) = φ(N) is an isometric
*-isomorphism of L∞(μ) onto W ∗(N), the von Neumann algebra generated by N ,
and it is also a dual-algebra isomorphism.

See [13], page 288.
If S is a subnormal operator, the scalar-valued spectral measure for S is any

scalar-valued spectral measure for its minimal normal extension. In the next section
we will see how to develop a functional calculus for a subnormal operator that
extends the Riesz functional calculus and is important in obtaining some of the
deeper results for subnormal operators.

We end this section by introducing a very important collection of examples
of subnormal operators, the Bergman operators. If G is a bounded open set in C,
denote by L2a(G) the Hilbert space of all analytic functions defined on G that are
square integrable with respect to area measure on G. If the operator S is defined
on L2a(G) as multiplication by the independent variable, then S is subnormal since
it has the normal extension Nμ, where μ = Area |G. In fact this is easily seen to be
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the minimal normal extension of S. This operator is called the Bergman operator
for G. When G = D this is the Bergman shift. These operators constitute one of
the most important collections of examples of subnormal operators. Understand-
ing them would lead us far in understanding subnormal operators, not that results
about Bergman operators can be used to derive results about the arbitrary sub-
normal operator but rather the difficulties encountered in understanding Bergman
operators seem to parallel the difficulties in understanding arbitrary subnormal
operators.

A rudimentary exploration of Bergman operators can be found in various
parts of [14] but more comprehensive treatments are in [21] and [32].

3. The functional calculus

For any operator S and a function f analytic in a neighborhood of the spectrum of
S, it is well known that the Riesz functional calculus defines an operator f(S). (See
[13] or any reference in functional analysis.) If Hol(σ(S)) denotes the algebra of all
functions that are analytic in a neighborhood of σ(S), the spectrum of S, then a
standard result is that the map f → f(S) defines an algebraic homomorphism into
B(H) and the Spectral Mapping Theorem is valid: σ(f(S)) = f(σ(S)). Using this
functional calculus it is possible to derive results about general operators, though,
as is to be expected, at this level of generality what can be learned is limited.

When S is a subnormal operator there is the bonus that each f(S) is also
subnormal and, hence, its norm equals its spectral radius. Thus the Riesz func-
tional calculus becomes an isometric isomorphism. Note that though a hyponormal
operator has its norm equal to its spectral radius, it does not follow that f(S) is
hyponormal even though S may be. Thus the functional calculus marks a fork
in the road where the development of the two types of operators diverge. Indeed
it is the functional calculus that facilitates a deep study of subnormal operators,
including the proof of the existence of a rich collection of invariant subspaces.

There is another way to define this functional calculus, which, by the unique-
ness of the Riesz functional calculus, is equivalent for functions in Hol(σ(S)), but
which allows us to use a larger class of functions. For the remainder of this section
let S be the subnormal operator acting on H, and let N and μ be its minimal
normal extension and scalar-valued spectral measure. Recall Theorem 2.4 and let
R(S) = {φ ∈ L∞(μ) : φ(N)H ⊆ H}. This set of functions is called the restriction
algebra for S. It is easy to prove the following. (See [14], page 85.)

3.1. Proposition. If S,N, μ and R(S) are as above, then the following hold.

(a) R(S) is a weak∗ closed subalgebra of L∞(μ).
(b) If ρ : R(S)→ B(H) is defined by ρ(φ) = φ(N)|H, then ρ is an isometric dual

algebra isomorphism onto its image.
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This enables us to legitimately define φ(S) ≡ φ(N)|H and have a functional
calculus that extends the Riesz functional calculus. At the level of complete gen-
erality, identifying the range of this isomorphism remains an unsolved problem,
though it is clearly a subalgebra of the commutant of S. In some cases, it is easy.

3.2. Proposition. If S is the cyclic subnormal operator Sμ, then R(Sμ) = P 2(μ)∩
L∞(μ) and {φ(Sμ) : φ ∈ P 2(μ) ∩ L∞(μ)} is the commutant of Sμ.

For a proof see [14], page 86. Using the work of James Thomson on bounded
point evaluations (see Theorem 5.1 below) it is possible to characterize, in a limited
fashion, the functions in P 2(μ) ∩ L∞(μ) and this enables the solution of many
problems regarding cyclic subnormal operators.

There is a smaller class of functions than the restriction algebra whose struc-
ture we understand and which we can use to derive many results for subnormal
operators, including the existence of invariant subspaces. We consider P∞(μ), the
weak∗ closed subalgebra of L∞(μ) generated by the analytic polynomials. It is
clear that P∞(μ) ⊆ R(S) so it makes sense to examine the functional calculus
φ → φ(S) defined for φ in P∞(μ). This was done extensively in [17], where the
principal tool was the work of Don Sarason [39] characterizing P∞(μ) as the alge-
bra of bounded analytic functions on a certain open set. A special case of Sarason’s
Theorem is the following.

3.3. Sarason’s Theorem. If S is a pure subnormal operator with scalar-valued spec-
tral measure μ and Kμ is the closure of the set of λ in the plane such that p→ p(λ)
extends to a weak∗ continuous linear functional on P∞(μ); then Kμ contains the
support of μ and the identity map on polynomials extends to an isometric dual
algebra isomorphism of P∞(μ) onto H∞(intKμ).

A proof of Sarason’s Theorem can also be found in [14], page 301. This enables
us to refine and make more precise Proposition 3.1 in the case of P∞(μ).

3.4. Proposition. ([17]) If Sμ is pure and Kμ is as above, then there is an isometric
dual algebra isomorphism φ→ φ(Sμ) of H∞(intKμ) onto P∞(Sμ).

Also see [14], page 86 for a proof.
With Sarason’s Theorem in mind we see that the functional calculus for sub-

normal operators shows that there is an intimate connection with analytic function
theory. This relationship will become even more intimate when we state Thom-
son’s Theorem on bounded point evaluations. Using Sarason’s Theorem and the
functional calculus it is possible to derive several structure theorems for subnormal
operators. Here are two.

3.5. Theorem. [17] If S is a pure subnormal operator with scalar-valued spectral
measure μ and φ ∈ H∞(intKμ) such that φ is not constant on any component of
intKμ, then the minimal normal extension of φ(S) is φ(N).

A proof of this result can also be found in [14], page 317.
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3.6. Theorem. [17] A Spectral Mapping Theorem is valid for this functional calcu-
lus: if S is a pure subnormal operator with scalar-valued spectral measure μ and
φ ∈ H∞(intKμ), then σ(φ(S)) = cl [φ(σ(S) ∩ intKμ)].

A proof of this result can also be found in [14], page 326.
Note that several variations on this theme are possible. For example, these

results can be extended to the weak∗ closure in L∞(μ) of the rational functions
with poles off σ(S) and where the essential spectrum replaces the spectrum of S.
These are due to Dudziak[20] and can also be found in [14].

4. Invariant subspaces

Recall that if S is an operator on the Hilbert space H andM is a closed subspace
of H, then M is said to be an invariant subspace for S if SM ⊆ M. Let LatS
denote the collection of all invariant subspaces for S; M is non-trivial if M �= (0)
and M �= H.

4.1. Theorem. (Brown [8]) Every subnormal operator has a non-trivial invariant
subspace.

Scott Brown proved this theorem by using what has since been called “The
Scott Brown” technique, a method of factoring certain weak∗ continuous linear
functionals. The strategy is as follows. To prove the existence of invariant subspaces
it suffices to assume the subnormal operator is cyclic; thus we may assume that
S = Sμ operating on P 2(μ) for some compactly supported measure μ on the
complex plane. To avoid trivialities, we can assume that Sμ is pure. From the
preceding section P∞(Sμ) is precisely {Mφ : φ ∈ P∞(μ)}. Let λ ∈ intKμ so
that p → p(λ) defined on the set of polynomials extends to a weak∗ continuous
linear functional φ→ φ(λ) defined on P∞(μ). Assuming that Sμ has no invariant
subspaces, which implies certain spectral conditions such as σ(Sμ) = σap(Sμ),
Brown then shows that there are functions f, g in P 2(μ) such that φ(λ) =

∫
φfḡdμ

for all φ in P∞(μ). (This step is the hard one and the first use of the Scott Brown
technique.) Now letM be the closure in P 2(μ) of {(z− λ)pf : p is a polynomial};
that is, M is the closed linear span of {(Sμ − λ)Sμnf : n ≥ 0}. Clearly M is
invariant for Sμ; it remains to show that M is non-trivial. First observe that
(z −λ)f ∈M and this function is not 0. In fact if 0 = (z − λ)f = (Sμ− λ)f , then
λ is an eigenvalue for Sμ and it follows that the space Cf is a one-dimensional
reducing subspace for S. (See [14], Proposition II.4.4.) This violates the purity of
Sμ. HenceM �= (0). Second it follows by the factorization that g ⊥M and g �= 0,
so M �= P 2(μ). ThereforeM is the sought after non-trivial invariant subspace.

Thomson [41] discovered a proof of this factorization in the context of P 2(μ)
by using additional function theory and this produced a far shorter proof of the
invariant subspace result. Thankfully this occurred several years after Brown’s
result and allowed time for the Scott Brown technique to be studied for its own
sake. A whole sequence of papers appeared devoted to the factorization of weak∗
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continuous linear functionals on dual algebras. These factorization results were
extended to collections of linear functionals and then applied to other classes of
operators.

Brown himself used this technique to prove that certain hyponormal operators
have invariant subspaces. Recall that for a compact subset of the plane, C(K)
denotes the algebra of all continuous functions from K into C while R(K) is the
closure in C(K) of all rational functions with poles off K.

4.2. Theorem. (Brown [9]) If S is a hyponormal operator and R(σ(S)) �= C(σ(S)),
then S has a non-trivial invariant subspace.

In particular it follows that when S is hyponormal and its spectrum has
non-empty interior, then S has a non-trivial invariant subspace.

In a far reaching development, Apostol, Bercovici, Foias, and Pearcy [3] car-
ried the technique further and applied it to a wide collection of contractions. An
excellent place to see a self-contained treatment of the Scott Brown technique
and its extensions is the lecture notes [4]. Though there is never a linear order
of generality in these matters, a candidate for the most far reaching result that
was proved using the Scott Brown technique and that applies to non-hyponormal
operators is the result of Brown, Chevreau, and Pearcy [10] that any contraction
whose spectrum contains the unit circle has a non-trivial invariant subspace.

A surprising development in this circle of ideas was the 1985 result in [3] that
the lattice of invariant subspaces of the Bergman shift is as complicated as can
be imagined. A general result of this paper is that under certain assumptions on
a contraction T and certain scalars λ in the spectrum of T , there are invariant
subspaces M and N of T such that N ⊆ M, M� N is infinite dimensional,
and the compression of T to the orthogonal difference M � N is λ times the
identity operator. Note that this means that if L is any closed linear subspace
with N ⊆ L ⊆ M then L ∈ LatT . Thus in LatT there are copies of the lattice
of all subspaces of an infinite-dimensional Hilbert space. The remarkable thing is
that it can be verified that the Bergman shift satisfies the required conditions with
the scalar λ = 0.

Thus if S is the Bergman shift operating as multiplication by z on L2a(D),
then there are invariant subspacesM for S such thatM�zM has any dimension
possible. So from an abstract result came a fact about function theory not pre-
viously known. In fact it remained the case that there were no known examples
of such invariant subspaces until 1993 when Hedenmalm [31] found an example
of an invariant subspace for S with the property that M� zM has dimension
2. Earlier, in 1991, Hedenmalm [30] proved the existence of contractive zero di-
visors within the Bergman space L2a(D) for any Bergman space zero-set. That is,
if Z is a zero set for the Bergman space, then Hedenmalm proved that there ex-
ists a function G in L2a(D) such that for any function f in L2a(D) with f |Z = 0,
we have f/G ∈ L2a(D) and ‖f/G‖L2

a(D)
≤ ‖f‖L2

a(D)
. Thus, the function G plays

a similar roll for the Bergman space as the Blaschke products do for the Hardy
space. Since these results of Hedenmalm, there has been a flurry of papers and
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new results about invariant subspaces for the Bergman shift. In particular in 1993,
Seip [40] characterized the interpolating and sampling sequences in the Bergman
space. This allowed Hedenmalm, Richter, and Seip [33] to give a function theoretic
construction of invariant subspaces M for the Bergman shift such that M� zM
has arbitrary dimension. Some of the work on Bergman spaces has been extended
to weighted Bergman spaces and even to P 2(μ) spaces. The following theorem is
a beautiful result of Aleman, Richter, and Sundberg [2] from 2007, which can also
be stated for more general Hilbert spaces of analytic functions.

4.3. Theorem. If Sμ = Mz on P 2(μ) is pure and the set of analytic bounded point
evaluations for P 2(μ) is the open unit disk, then the following are equivalent.
(a) μ(∂D) > 0.
(b) There is a measurable set E ⊆ ∂D with μ(E) > 0 such that every function

f ∈ P 2(μ) has non-tangential limits a.e. on E.
(c) For every invariant subspace M of Sμ, dim(M� zM) = 1.

Two sources of further reading on this topic are the books [32] and [21].

4.4. Theorem. (Olin and Thomson [37]) Every subnormal operator is reflexive.

Their method of proof exploits the underlying analytic structure of subnormal
operators and generalizes the factorization theorem that Brown used in order to
get the existence of invariant subspaces. (Also see [14], page 363 for a proof.) Using
the results they obtained to prove the reflexivity of subnormal operators, Olin and
Thomson also showed that for a subnormal operator S the weakly closed algebra
it generates is the same as its weak∗ closed algebra P∞(S) (also see [14], Theorem
VII.5.2); so P∞(S) = AlgLatS.

A different and somewhat elementary proof of the reflexivity of subnormal
operators was given by McCarthy [35]. He uses the routine observation that the
proof can be reduced to the cyclic case. This enables the application of Thomson’s
Theorem on bounded point evaluations discussed in the next section though he
still requires the Olin and Thomson result on factorization of weak∗ continuous
linear functionals on P∞(S).

Recall that a subspace is hyperinvariant for an operator S if it is invariant
for every operator that commutes with S. The following basic question remains
open for subnormal operators.

4.5. Problem. Does every subnormal operator have a hyperinvariant subspace?

5. Bounded point evaluations

When Scott Brown [8] proved in 1978 that subnormal operators have invariant
subspaces, he sidestepped the issue of determining whether or not bounded point
evaluations exist. It had been known for some time that a bounded point evaluation
for a cyclic subnormal operator gives rise to a natural invariant subspace for that
operator; in fact, even a hyperinvariant subspace. While Brown’s proof of the
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existence of invariant subspaces for subnormals introduced many new ideas and has
proven fruitful in other areas, the important question of the existence of bounded
point evaluations remained open until 1991 when James Thomson [42] proved not
only that bounded point evaluations exist, but they exist in abundance. Moreover
he was able to give a beautiful structure theory for cyclic subnormal operators.

A bounded point evaluation for P 2(μ) is a complex number λ such that the
densely defined linear functional on P 2(μ) given by p �→ p(λ) for polynomials p
extends to be a continuous linear functional on P 2(μ), that is, there is a number
M > 0 such that

|p(λ)| ≤M‖p‖2
for all polynomials p.

It follows that if f ∈ P 2(μ) and {pn} is a sequence of polynomials such
that pn → f in L2(μ), then from the above inequality, we see that the sequence
{pn(λ)} is a Cauchy sequence of complex numbers, and hence must converge to a
complex number denoted by f̂(λ). So, when λ is a bounded point evaluation, the
map f �→ f̂(λ) is a well-defined continuous linear functional on P 2(μ); thus by the
Riesz Representation Theorem must be represented by a function Kλ ∈ P 2(μ) as
follows:

f̂(λ) = 〈f,Kλ〉
for all f ∈ P 2(μ). We will let bpe(μ) denote the set of all bounded point evaluations
for P 2(μ). The functions {Kλ : λ ∈ bpe(μ)} are called the reproducing kernels for
P 2(μ). It is easy to see that λ ∈ bpe(μ) if and only if λ is an eigenvalue for S∗μ. From
an operator theory point of view, scalar multiples of the reproducing kernels are
precisely the eigenvectors for S∗μ. Thus a bounded point evaluation exists for P 2(μ)
precisely when S∗μ has an eigenvalue. In this case, the corresponding eigenspace for
λ is the space spanned by the reproducing kernel, [Kλ], and is a hyperinvariant
subspace for S∗μ. Hence its orthogonal complement, [Kλ]⊥, is a hyperinvariant
subspace for Sμ. The orthogonal complement is precisely

Zλ = [Kλ]⊥ = {f ∈ P 2(μ) : f̂(λ) = 0}.
Since λ is a bounded point evaluation it follows that 1 /∈ Zλ but (z − λ) ∈ Zλ, so
Zλ is non-trivial.

For each f ∈ P 2(μ), f̂ defines a function from bpe(μ) into C. Furthermore
it is easy to see that f̂ = f μ-a.e. on the set of bounded point evaluations. A
bounded point evaluation λ for P 2(μ) is an analytic bounded point evaluation if
there is an ε > 0 such that B(λ, ε) ⊆ bpe(μ) and for any f ∈ P 2(μ) the function f̂
is analytic in a neighborhood of λ. According to this definition, the neighborhood
on which the function f̂ is analytic may depend on the function f . However, an
easy application of the Baire Category Theorem shows that in fact there is a single
neighborhood U of λ such that U ⊆ bpe(μ) and for every f ∈ P 2(μ) the function
f̂ is analytic on U . We will let abpe(μ) denote the set of all analytic bounded
point evaluations for P 2(μ). The set abpe(μ) is an open subset of bpe(μ) and for
every f ∈ P 2(μ), f̂ is an analytic function on abpe(μ). Thus all functions in P 2(μ)
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extend to be analytic on abpe(μ). Trent [43] showed that in fact abpe(μ) is a dense
open subset of bpe(μ) and that abpe(μ) = σ(Sμ) \ σap(Sμ).

In June of 1989, Thomson began circulating preprints of an amazing result
[42] that has come to be known as ‘Thomson’s Theorem’.

5.1. Thomson’s Theorem. If μ is a compactly supported positive regular Borel mea-
sure on C and Sμ = Mz on P 2(μ) is a pure subnormal operator, then the following
hold.
(a) P 2(μ) has bounded point evaluations, in fact, the closure of the set of bounded

point evaluations contains the support of μ.
(b) The reproducing kernels have dense linear span in P 2(μ).
(c) The set of bounded point evaluations is the same as the set of analytic bounded

point evaluations.
(d) If G is the open set of analytic bounded point evaluations for P 2(μ), then G

is simply connected and the map f �→ f̂ from P 2(μ) ∩ L∞(μ) → H∞(G) is
an isometric dual isomorphism.

One of the beautiful things about Thomson’s Theorem is that the only real
hypothesis is that the operator Sμ is pure. This is a very simple and natural
operator theoretic assumption, and yet from this Thomson proves some very deep
results about P 2(μ). From a function theoretic point of view, the fact that Sμ is
pure means that P 2(μ) does not have an L2-summand, or equivalently, that there
is a function g ∈ L2(μ) such that |g| > 0 μ-a.e. and g ⊥ P 2(μ); this follows from
a result of Chaumat, see [14], page 246.

Some basic questions about the operator Sμ have immediate answers from
Thomson’s Theorem and the answers all involve the set of bounded point evalua-
tions. For example if Sμ is pure and G = bpe(μ), then the spectrum, approximate
point spectrum, and essential spectrum can easily be computed: σ(Sμ) = clG,
σap(Sμ) = σe(Sμ) = ∂G. Also Sμ is irreducible if and only if G is connected.
Moreover the commutant of Sμ, which consists of the multiplication operators
f(Sμ) for f ∈ P 2(μ) ∩ L∞(μ), can naturally be identified with H∞(G).

Below are a few other consequences of Thomson’s Theorem for cyclic sub-
normal operators that are more substantial.

5.2. Theorem. If Sμ = Mz on P 2(μ) is pure and G = bpe(μ), then the following
hold.
(a) Sμ has a trace class self-commutator and tr [S∗μ, Sμ] =

1
πArea(G).

(b) If f ∈ P 2(μ) ∩ L∞(μ), then σ(f(Sμ)) = cl f(G), where f(Sμ) is the operator
of multiplication by f on P 2(μ).

(c) Sμ has a square root if and only if 0 /∈ G.
(d) S∗μ is hypercyclic if and only if every component of G intersects the unit circle.
(e) Sμ has a finite rank self-commutator if and only if G has only finitely

many components, G is a quadrature domain, and the measures μ and ωG +∑n
k=1 δak

, the sum of harmonic measure on G plus a finite sum of point
masses at points {ak}nk=1 in G, are mutually absolutely continuous.
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Trace Estimates. Recall that the self-commutator of an operator T is the self-
adjoint operator [T ∗, T ] = T ∗T − TT ∗. An operator T is normal if its self-
commutator is equal to zero, it is essentially normal if its self-commutator is com-
pact, and it is hyponormal if its self-commutator is positive semi-definite. For any
operator T , [T ∗, T ] is trace class exactly when [T ∗, T ] is compact and its (real)
eigenvalues, which necessarily converge to zero, form an absolutely convergent se-
ries. In that case the trace of [T ∗, T ], denoted by tr [T ∗, T ], is equal to the sum of
its eigenvalues.

The Berger-Shaw Theorem [5] implies that every rationally cyclic hyponormal
operator T has a trace class self-commutator and gives an estimate for the trace
of [T ∗, T ]; namely tr [T ∗, T ] ≤ 1

πArea [σ(T )].
Since subnormal operators are also hyponormal, the Berger-Shaw Theorem

implies that a cyclic subnormal operator Sμ does have a trace class self-commutator
and that tr [S∗μ, Sμ] ≤ 1

πArea[σ(Sμ)]. In 1997, Feldman [23] using Thomson’s The-
orem and some techniques from the Berger-Shaw Theorem [5] was able to give
another proof that a pure cyclic subnormal operator Sμ has a trace class self-
commutator and was able to compute the trace of the self-commutator precisely
as 1

πArea(G).
The following problem would be a natural generalization of the above result

to non-cyclic subnormal operators. See Feldman [23] for more details and some
examples surrounding this problem.

5.3. Problem. If S is a pure subnormal operator such that R(σe(S)) = C(σe(S)),
and ind(S−λI) = −1 for all λ ∈ G = σ(S)\σe(S), then is tr [S∗, S] = 1

πArea [G]?

The commutant. It is easy to identify the commutant of Sμ as the multiplication
operators f(Sμ) on P 2(μ) by functions f ∈ P 2(μ) ∩ L∞(μ). However, Thomson’s
Theorem helps us to identify the Banach algebra P 2(μ) ∩ L∞(μ) as the space of
all bounded analytic functions on H∞(G). This allows us to find the spectrum of
f(Sμ), it’s norm, and so forth.

Square roots: The above identification of the commutant of Sμ also answers im-
mediately the square root problem for cyclic subnormal operators. The operator
Sμ will have a square root exactly when the analytic function z has a square root
in H∞(G). Since G is simply connected, this will be precisely when 0 /∈ G.

We see here that it is important to be able to say which analytic functions
on G belong to P 2(μ). For this problem it suffices to assume that the set of
analytic bounded point evaluations is the open unit disk. It is clear that P 2(μ) ⊆
Hol(D) ∩ L2(μ|D). It can also be shown using Thomson’s Theorem that N+(D) ∩
L2(μ) ⊆ P 2(μ) where N+(D) is the Smirnov-Nevanlinna class of functions that are
quotients of bounded analytic functions g/h with h an outer function. In general
the following problem remains open.

5.4. Problem. Which analytic functions on the disk belong to P 2(μ) when
bpe(μ) = D?



The State of Subnormal Operators 189

It is not known in general which subnormal operators have square roots.
However, since we now understand which cyclic subnormal operators have square
roots, it is natural to ask if we can use that knowledge to say something about
square roots of the arbitrary subnormal operator. This approach is part of a general
approach to the study of subnormal operators.

A part of an operator S is any operator of the form S|M where M is an
invariant subspace for S. A cyclic part is one where S|M is a cyclic operator.
It is reasonable to ask if a subnormal operator has a given property when all its
cyclic parts have this property. For a property P one might say that a subnormal
operator has P locally if all its cyclic parts have P. In this terminology the question
is whether having P locally implies that the operator has it globally. A useful tool
in this regard is the deep result of Olin and Thomson (see [14], page 361) on the
existence of full analytic subspaces for subnormal operators. Using this result and
Thomson’s Theorem it is rather straightforward to prove the following.

5.5. Theorem. If S is a subnormal operator, then S has a square root in P∞(S)
if and only if every cyclic part of S has a square root.

5.6. Problem. Characterize the subnormal operators having a square root.

Cyclicity. In 1999, Feldman [24] proved that the adjoint of every pure subnormal
operator is cyclic. So even though most pure subnormal operators are not cyclic,
their adjoints are always cyclic! This is rather surprising, especially since the class
of pure subnormal operators is closed under direct sums. This suggests that the
adjoints of subnormal operators might possess some stronger forms of cyclicity,
such as hypercyclicity. An operator T is hypercyclic on a Hilbert space H if there
is a vector h ∈ H such that the orbit of h under T , {T nh : n ≥ 0}, is dense in H.
A necessary condition for an operator to be hypercyclic is that every component
of its spectrum must intersect the unit circle (see [34]).

Using Thomson’s Theorem and techniques developed by Godefroy and Shapi-
ro [28], it follows that for a pure cyclic subnormal operator Sμ, S∗μ is hypercyclic
if and only if every component of bpe(μ) intersects the unit circle.

In [26] Feldman, Miller, and Miller classified the hyponormal operators whose
adjoints are hypercyclic as those operators S such that every “part of the spec-
trum” of S intersects both the inside and outside of the unit circle. A “part of
the spectrum” of S is a compact set of the form σ(S|M) whereM is an invariant
subspace of S.

5.7. Theorem. If S is a hyponormal operator, then S∗ is hypercyclic if and only
if for every invariant subspace M of S we have σ(S|M) ∩ {z : |z| < 1} �= ∅ and
σ(S|M) ∩ {z : |z| > 1} �= ∅.

An operator is weakly hypercyclic if there is a vector whose orbit is weakly
dense in the underlying Hilbert space. The following problem remains unsolved.

5.8. Problem. Characterize the pure cyclic subnormal operators S such that S∗ is
weakly hypercyclic.
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As mentioned above, if S is a pure subnormal operator, then S∗ is cyclic. A
commuting tuple of operators S = (S1, S2, . . . , Sn) is said to be a subnormal tuple
if each operator is subnormal and they have commuting normal extensions. The
tuple S is pure if there is no common reducing subspace on which the tuple is a
normal tuple. Finally a tuple is cyclic if there is a vector h such that the smallest
closed invariant subspace for the tuple that contains h is the whole space.

It is possible that for a pure subnormal tuple each operator is not pure. For
example if A and B are two pure subnormal operators with ‖A‖ < 1 and ‖B‖ < 1
and S1 = A⊕ I and S2 = I ⊕B, then S = (S1, S2) is a pure subnormal tuple and
yet neither S1 nor S2 is pure. Hence the following question seems natural.

5.9. Problem. If S = (S1, S2, S3, . . . , Sn) is a pure subnormal tuple, is the adjoint
S∗ = (S∗1 , S

∗
2 , . . . , S

∗
n) cyclic?

Naturally if one of the operators Si is pure, then the answer is yes because
S∗i will be cyclic, but otherwise the problem remains open.

Finite Rank Self-Commutators. Subnormal operators with finite rank self-com-
mutators have been studied by several authors, including Xia [45, 46, 47], Olin,
Thomson, and Trent [38], McCarthy and Yang [36], Yakubovich [44], and more.
Such operators are very special and are closely related to the unilateral shift and
rational functions of the shift.

If Sm denotes the unilateral shift, Sm = Mz on H2(D) = P 2(m) where m is
normalized Lebesgue measure on the circle, then the self-commutator of Sm is the
rank one projection onto the constant functions. It is well known and not difficult to
show that if S is any pure subnormal operator that has rank-one self-commutator,
then S is simply the translate of a multiple of the unilateral shift, that is, S =
f(Sm) where f(z) = az + b. More generally, if f(z) is any rational function with
poles off the closed unit disk, then the subnormal operator S = f(Sm) will have a
finite rank self-commutator. Finally, a computation shows that a finite-dimensional
extension of an operator with finite rank self-commutator also has finite rank self-
commutator. It is natural to try to describe all subnormal operators with finite
rank self-commutators, and in particular the cyclic ones. The following theorem
was first proven by Olin, Thomson and Trent [38] in an unpublished manuscript.
It also follows from the work of Xia [45, 46, 47] and McCarthy and Yang [36].

5.10. Theorem. If Sμ = Mz on P 2(μ) is pure and G = bpe(μ), then Sμ has a
finite rank self-commutator if and only if G has only finitely many components,
G is a quadrature domain, and the measures μ and ωG +

∑n
k=1 δak

, the sum of
harmonic measure on G plus a finite sum of point masses at points {ak}nk=1 in G,
are mutually absolutely continuous.

So Sμ has finite rank self-commutator when μ is equivalent to harmonic
measure plus a finite sum of point masses and the set G of analytic bounded point
evaluations is a very special type of set, namely a quadrature domain. A domain
G is a quadrature domain if there is a meromorphic function S(z) defined on G
that is continuous up to the boundary of G and S(z) = z for all z ∈ ∂G. If G is
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simply connected, then G is a quadrature domain if and only if the Riemann map
from the open unit disk onto G is a rational function.

Notice that if we assume that Sμ is irreducible and thus G is connected, the
classification above takes on the following form.

5.11. Theorem. An irreducible cyclic subnormal operator Sμ has finite rank self-
commutator if and only if Sμ is a finite-dimensional extension of f(Sm), where f
is a univalent rational function with poles off the closed unit disk and Sm is the
unilateral shift.

In [25], Feldman studies cyclic and non-cyclic subnormal operators that are
arbitrary extensions of certain functions of the unilateral shift; such operators have
self-commutators whose ranges are not dense in the whole space. Also, McCarthy
and Yang [36] give a nice proof of the theorem of Olin, Thomson, and Trent,
making use of Thomson’s theorem on the existence of bounded point evaluations
and also characterize the rationally cyclic subnormal operators with finite rank
self-commutators in essentially the same manner, except in the rationally cyclic
case the set of bounded point evaluations need not be simply connected. Finally,
Yakubovich [44] has characterized all irreducible subnormal operators with finite
rank self-commutators using Riemann surface analogues of quadrature domains.

Extensions of Thomson’s Theorem. One natural extension of Thomson’s Theorem
is to consider bounded point evaluations for rationally cyclic subnormal operators.
That is, let R2(K,μ) denote the closure of Rat (K), the set of rational functions
with poles off K, in L2(μ). It has been known since 1975 that there are compact
sets K with no interior such that the space R2(K,Area) has no bounded point
evaluations (see Fernstrom [27]). However, after Thomson’s Theorem appeared,
Conway and Elias [15] were able to use his results and his techniques to show
that if S = Mz on R2(K,μ) is pure, then the set of analytic bounded point
evaluations for R2(K,μ) is dense in the interior of the spectrum of S. Nevertheless,
rationally cyclic subnormal operators are more complicated creatures then cyclic
subnormal operators. For instance, one may construct a compact set K from a
Swiss cheese set by adding some “bubbles” to the holes and create a rationally
cyclic subnormal operator S = Mz on R2(K,μ) so that R2(K,μ) has analytic
bounded point evaluations which form an open dense subset of the spectrum of
S and yet the reproducing kernels are not dense in R2(K,μ). So certain parts of
Thomson’s Theorem are not true in the rationally cyclic case.

In [22] Feldman proposes a natural generalization of the idea of bounded point
evaluation that may be considered for any subnormal operator. First consider the
rationally cyclic case. For a positive regular Borel measure ν on a compact set K,
ν is called an interpolating measure for S = Mz on R2(K,μ) if the densely defined
map A : Rat(K)→ L2(ν) defined by A(f) = f extends to be a surjective bounded
linear operator A : R2(K,μ) → L2(ν). When ν = δλ is the unit point mass
measure at λ, then ν is an interpolating measure precisely when λ is a bounded
point evaluation. Furthermore, one needs the map A to be surjective, so that one
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can naturally construct invariant subspaces from A. For example, the kernel of A
would then be a non-trivial invariant subspace for S.

5.12. Problem. Does Mz on R2(K,μ) have an interpolating measure?

In general if S is any subnormal operator on a Hilbert spaceH, then a measure
ν is an interpolating measure for S if there is a surjective linear map A : H → L2(ν)
such that AS = MzA. Feldman has shown that the interpolating measures for
cyclic subnormal operators all arise from the bounded point evaluations. However,
there are interpolating measures for Mz on the Hardy space of the slit disk that
are supported on the slit. Furthermore, Feldman has shown that operators, such
as the dual of the Bergman shift, have a “complete set” of interpolating measures.
The following question remains unanswered.

5.13. Problem. Does every subnormal operator have an interpolating measure?

6. Conclusion

Thus we see that from Halmos’s definition of a subnormal operator an entire theory
has arisen that has generated other areas of operator theory such as dual algebras
and has influenced a new line of inquiry in an established area of function theory,
namely Bergman spaces. This is remarkable and something that must be noted
whenever Paul Halmos is discussed.
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Abstract. A survey of the theory of k-hyponormal operators starts with the
construction of a polynomially hyponormal operator which is not subnor-
mal. This is achieved via a natural dictionary between positive functionals
on specific convex cones of polynomials and linear bounded operators acting
on a Hilbert space, with a distinguished cyclic vector. The class of unilateral
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1. Hyponormal operators

Let H be a separable complex Hilbert space. A linear operator S acting on H
is called subnormal if there exists a linear bounded extension of it to a larger
Hilbert space, which is normal. Denoting by K this larger space and P = PKH
the orthogonal projection onto H, the above definition can be translated into the
identity

S = PN |H = N |H,
with N a normal operator acting on K. The spectral theorem asserts that the
normality condition

[N∗, N ] := N∗N −NN∗ = 0

This work was partially supported by NSF grants.
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implies the existence of a standard functional model for N , specifically described
as an orthogonal direct sum of multipliers

(Nh)(z) = zh(z), h ∈ L2(μ),

where μ is a positive Borel measure, compactly supported in the complex plane
C. In turn, the canonical example of a subnormal operator is (a direct sum of)
multipliers

(Sf)(z) = zf(z), f ∈ P 2(μ),
where P 2(μ) stands for the closure of polynomials in the Lebesgue space L2(μ).

The self-commutator of a subnormal operator is non-negative:

〈[S∗, S]f, f〉 = ‖Sf‖2 − ‖S∗f‖2 = ‖Nf‖2 − ‖PN∗f‖2

= ‖N∗f‖2 − ‖PN∗f‖2 ≥ 0.

It was Paul Halmos [36] who isolated the class of hyponormal operators, as those
linear bounded operators T ∈ L(H) which satisfy [T ∗, T ] ≥ 0; it was soon discov-
ered that not all hyponormal operators are subnormal. Much later it was revealed
that a typical hyponormal operator model departs quite sharply from the above-
mentioned multipliers. More precisely, such a model is provided by one-dimensional
singular integrals, of the form

(Tφ)(x) = xφ(x) + ia(x)φ(x) − b(x)(p.v.)
∫ M

−M

b(t)φ(t)dt
t− x

,

whereM > 0, a, b ∈ L∞[−M,M ] are real-valued functions and φ ∈ L2[−M,M ; dt].
The reader will easily verify that

(T ∗φ)(x) = xφ(x) − ia(x)φ(x) + b(x)(p.v.)
∫ M

−M

b(t)φ(t)dt
t− x

,

hence

[T ∗, T ]φ = 2b(x)
∫ M

−M
b(t)φ(t)dt,

and consequently

〈[T ∗, T ]φ, φ〉 = 2

∣∣∣∣∣
∫ M

−M
b(t)φ(t)dt

∣∣∣∣∣
2

≥ 0.

The question of understanding better the gap between subnormal and hy-
ponormal operators was raised by Halmos; cf. his Hilbert space problem book [37].
In this direction, the following technical problem has naturally appeared: if S is a
subnormal operator and p is a polynomial, then it is clear from the definition that
p(S) is also subnormal. One can see using simple examples of Toeplitz operators
that, in general, T 2 is not hyponormal if T is hyponormal. What happens if p(T )
is hyponormal for all polynomials p? Is T in this case subnormal? About 15 years
ago we were able to provide a counterexample.
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Theorem 1.1 ([32]). There exists a polynomially hyponormal operator which is not
subnormal.

Much more is known today. A whole scale of intermediate classes of operators,
a real jungle, was discovered during the last decade. Their intricate structure is
discussed in Sections 3 and 4 of this note.

2. Linear operators as positive functionals

The main idea behind the proof of Theorem 1.1 is very basic, and it proved to be,
by its numerous applications, more important than the result itself.

Let A ∈ L(H) be a bounded self-adjoint operator with cyclic vector ξ; that
is, the linear span of the vectors Akξ (k ≥ 0), is dense in H. Denote M := ‖A‖ and
let Σ2 denote the convex cone of all sums of squares of moduli of complex-valued
polynomials, in the real variable x. If p ∈ Σ2 + (M2 − x2)Σ2, that is

p(x) =
∑
i

|qi(x)|2 +
∑
j

(M2 − x2)|rj(x)|2,

with qi, rj ∈ C[x], then

〈p(A)ξ, ξ〉 =
∑
i

‖qi(A)ξ‖2 +
∑
j

(M2‖rj(A)ξ‖2 − ‖Arj(A)ξ‖2) ≥ 0.

Since every non-negative polynomial p on the interval [−M,M ] belongs to Σ2 +
(M2 − x2)Σ2, the Riesz representation theorem implies the existence of a positive
measure σ, supported in [−M,M ], so that

〈p(A)ξ, ξ〉 =
∫
p(t)dσ(t).

From here, a routine path leads us to the full spectral theorem; see for details [50].
An intermediate step in the above reasoning is important for our story, namely

Proposition 2.1. There exists a canonical bijection between contractive self-adjoint
operators A with a distinguished cyclic vector ξ and linear functionals L ∈ C[x]′

which are non-negative on the cone Σ2+(1− x2)Σ2. The correspondence is estab-
lished by the compressed functional calculus map

L(p) = 〈p(A)ξ, ξ〉, p ∈ C[x].

The reader would be tempted to generalize the above proposition to an arbi-
trary tuple of commuting self-adjoint operators. Although the result is the same,
the proof requires a much more subtle Positivstellensatz (that is, a standard de-
composition of a positive polynomial, on the polydisk in this case, into a weighted
sum of squares). Here is the correspondence.

Proposition 2.2. There exists a canonical bijection between commuting d-tuples of
contractive self-adjoint operators A1, . . . , Ad with a distinguished common cyclic
vector ξ and linear functionals L ∈ C[x1, . . . , xd]′ which are non-negative on the
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cone Σ2 + (1− x21)Σ
2 + · · ·+ (1− x2d)Σ

2. The correspondence is established by the
compressed functional calculus map

L(p) := 〈p(A)ξ, ξ〉, p ∈ C[x1, . . . , xd].

The Positivstellensatz alluded to above (proved by the second named author
in 1994 [49]) asserts that a strictly positive polynomial p on the hypercube [−1, 1]×
[−1, 1] × · · · × [−1, 1] ⊂ Rd belongs to Σ2 + (1 − x21)Σ

2 + · · · + (1 − x2d)Σ
2. The

survey [40] contains ample remarks on the links between the spectral theorem,
Positivestellensätze in real algebra, optimization and applications to control theory.

In order to bring the classes of close-to-normal operators into the picture, we
need a non-commutative calculus, applied to an operator and its adjoint. The idea
goes back to the quasi-nilpotent equivalence relation introduced by I. Colojoara
and C. Foiaş [8], and the hereditary functional calculus cast into a formal definition
by J. Agler [2]. Let T ∈ L(H) and let z denote the complex variable in C. For
every monomial we define the hereditary functional calculus by

zmz̄n(T, T ∗) := T ∗nTm,

that is, we place all powers of T ∗ to the left of the powers of T . It is clear that
some weak positivity of this functional calculus map is persistent for all operators
T . More specifically, if p ∈ C[z] then

p(z)p(z)(T, T ∗) = p(T )∗p(T ) ≥ 0.

Aiming at a correspondence between positive functionals and operators as in
the self-adjoint case, we define Σ2a to be the convex cone generated in the algebra
C[z, z] by |p(z)|2, p ∈ C[z]. On the other hand, we denote as above by Σ2 the
convex cone of all sums of squares of moduli of polynomials, that is, polynomials
of the form |p(z, z)|2.

The main terms of the dictionary are contained in the following result, going
back to the works of J. Agler [2], S. McCullough and V. Paulsen [47], and the
authors [32].

Theorem 2.3.

a) There exists a bijective correspondence between linear contractive operators
T ∈ L(H) with a distinguished cyclic vector ξ and linear functionals L ∈
C[z, z]′ which are non-negative on the convex cone (1 − |z|2)Σ2a + Σ2a, estab-
lished by the hereditary calculus

L(p) := 〈p(T, T ∗)ξ, ξ〉, p ∈ C[z, z].

b) The operator T is subnormal if and only if L is non-negative on Σ2.
c) The operator T is hyponormal if and only if

L(|r + zs|2) ≥ 0, r, s ∈ C[z].

d) The operator T is polynomially hyponormal if and only if

L(|r + qs|2) ≥ 0, q, r, s ∈ C[z]. (2.1)
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The proof of assertion b) is based on the celebrated Bram-Halmos criterion
for subnormality [37]. The proofs of a), c) and d) are simple manipulations of the
definitions.

The above interpretation of subnormality and polynomial hyponormality in-
vites the study of the filtration given by the condition

L(|p|2) ≥ 0 for all p(z, z̄) ≡
k∑

j=0

z̄jpj(z) (pj ∈ C[z]), (2.2)

which defines the so-called k-hyponormal operators. In [32] we proved that polyno-
mial hyponormality does not imply 2-hyponormality, and therefore does not imply
subnormality either.

The proof of Theorem 1.1 consists in the construction of a linear functional
which separates the convex cones associated to subnormal, respectively polynomi-
ally hyponormal operators; see [32] for details. The pioneering work of G. Cassier
[5] contains an explicit construction of the same kind. The existence of the sep-
arating functional is known in the locally convex space theory community as the
Kakutani-Eidelheit Lemma, and it is nowadays popular among the customers of
multivariate moment problems (cf. [40]).

3. k-hyponormality for unilateral weighted shifts

Given a bounded sequence ≡ {αn}∞n=0 of positive numbers, the unilateral weighted
shift Wα acts on �2(Z+) by Wαen := αnen+1 (n ≥ 0). Within this class of opera-
tors, the condition (2.2) acquires a rather simple form:

Wα is k-hyponormal ⇐⇒ Hn := (γn+i+j)ki,j=0 ≥ 0 (all n ≥ 0),

where γ0 := 1 and γp+1 := α2pγp (p ≥ 0) [14]. Thus, detecting k-hyponormality
amounts to checking the positivity of a sequence of (k + 1)× (k + 1) Hankel ma-
trices. With this characterization at hand, it is possible to distinguish between
k-hyponormality and (k + 1)-hyponormality for every k ≥ 1. Moreover, by com-
bining the main result in [32] with the work in [47], we know that there exists a
polynomially hyponormal unilateral weighted shift Wα which is not subnormal;
however, it remains an open problem to find a specific weight sequence α with
that property.

While k-hyponormality of weighted shifts admits a simple characterization,
the same cannot be said of polynomial hyponormality. When one adds the con-
dition deg q ≤ k to (2.1), we obtain the notion of weak k-hyponormality. We
thus have a staircase leading up from hyponormality to subnormality, passing
through 2-hyponormality, 3-hyponormality, and so on. A second staircase starts
at hyponormality, goes up to quadratic hyponormality, to cubic hyponormality,
and eventually reaches polynomial hyponormality. How these two staircases inter-
twine is not well understood. A number of papers have been written describing the
links for specific families of weighted shifts, e.g., those with recursively generated
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tails and those obtained by restricting the Bergman shift to suitable invariant sub-
spaces [14], [15], [16], [17], [18], [19], [20], [21], [22], [29], [30], [43], [44]; the overall
problem, however, remains largely unsolved.

One first step is to study the precise connections between quadratic hyponor-
mality and 2-hyponormality. While there are several results that establish quanti-
tative differences between these two notions, there are two qualitative results that
stand out. The first one has to do with a propagation phenomenon valid for the
class of 2-hyponormal weighted shifts.

Theorem 3.1.

(i) If α0 = α1 and Wα is 2-hyponormal, then Wα = α0U+, that is, Wα is a
multiple of the (unweighted) unilateral shift [14] (for a related propagation
result, see [6]);

(ii) The set Q := {(x, y) ∈ R2+ : W1,(1,x,y)ˆ is quadratically hyponormal} contains
a closed convex set with nonempty interior [19].

Thus, there exist many nontrivial quadratically hyponormal weighted shifts with
two equal weights.

The second result entails completions of weighted shifts. J. Stampfli showed
in [51] that given three initial weights α0 < α1 < α2, it is always possible to find
new weights α3, α4, . . . such that Wα is subnormal; that is, Wα is a subnormal
completion of the initial segment of weights. In [16] and [17], the first named
author and L. Fialkow obtained the so-called Subnormal Completion Criterion,
a concrete test that determines when a collection of initial weights α0, . . . , αm
admits a subnormal completionWα. On the other hand, quadratically hyponormal
completions require different tools, as discovered in [19].

Theorem 3.2. Let α0 < α1 < α2 < α3 be a given collection of positive weights.
(i) There always exist weights α4, α5, . . . such that Wα is quadratically hyponor-

mal [28].
(ii) There exists weights α4, α5, . . . such that Wα is 2-hyponormal if and only if

H(2) :=

⎛⎝ γ0 γ1 γ2
γ1 γ2 γ3
γ2 γ3 γ4

⎞⎠ ≥ 0 and
(

γ3
γ4

)
∈ Ran

(
γ1 γ2
γ2 γ3

)
[16].

In a slightly different direction, attempts have been made to characterize,
for specific families of weighted shifts, the weight sequences that give rise to sub-
normal weighted shifts. We recall a well-known characterization of subnormality
for weighted shifts due to C. Berger and independently established by R. Gellar
and L.J. Wallen: Wα is subnormal if and only if γn =

∫
tn dμ(t), where μ is

a probability Borel measure supported in the interval [0, |Wα|2] [9, III.8.16]. The
measure μ is finitely atomic if and only if there exist scalars ϕ0, . . . , ϕr−1 such that
γn+r = ϕ0γn + · · · + ϕr−1γn+r−1 (all n ≥ 0) [16]; we call such shifts recursively
generated. The positivity conditions in Theorem 3.2(ii) ensure the existence of a
recursively generated subnormal (or, equivalently, 2-hyponormal) completion.



Polynomially Hyponormal Operators 201

In an effort to unravel how k-hyponormality and weak k-hyponormality are
interrelated, researchers have looked at weighted shifts whose first few weights are
unrestricted but whose tails are subnormal and recursively generated [4], [7], [34],
[35], [41], [42]. A special case involves shifts whose weight sequences are of the
form x, α0, α1, . . . , with Wα subnormal. Then Wx,α is subnormal if and only if
1
t ∈ L1(μ) and x2 ≤ (

∥∥ 1
t

∥∥
L1(μ)

)−1 [14]. Thus, the subnormality of a weighted shift
can be maintained if one alters the first weight slightly. The following result states
that this is the only possible finite rank perturbation that preserves subnormality;
quadratic hyponormality, on the other hand, is a lot more stable.

Theorem 3.3 ([29]).

(i) Let Wα be subnormal and let F (�= cP〈e0〉) be a nonzero finite rank operator.
Then Wα + F is not subnormal.

(ii) Let α be a strictly increasing weight sequence, and assume that Wα is 2-
hyponormal. Then Wα′ remains quadratically hyponormal for all α′ such that
α′ − α is a small nonzero finite rank perturbation.

On a related matter, takingWα as the restriction of the Bergman shift to the
invariant subspace generated by {e2, e3, . . . }, it is possible to find a range of values
for x > 0 such that Wx,α is quartically hyponormal but not 3-hyponormal [22].

On the other hand, when the weights are given by αn :=
√

an+b
cn+d (n ≥ 0), with

a, b, c, d ≥ 0 and ad− bc > 0, it was shown in [31] that Wα is always subnormal.
In many respects, 2-hyponormality behaves much like subnormality, partic-

ularly within the classes of unilateral weighted shifts and of Toeplitz operators
on H2(T); for instance, a 2-hyponormal operator always leaves the kernel of its
self-commutator invariant [26, Lemma 2.2]. The results in [7], [13], [14], [16], [17],
[23], [20], [29] and [42] all seem to indicate the existence of a model theory for
2-hyponormal operators, with building blocks given by weighted shifts with recur-
sive subnormal tails and Toeplitz operators with special trigonometric symbols. In
[26] the beginnings of such a theory are outlined, including a connection to Agler’s
abstract model theory [3] – see [26, Section 5]. The proposed model theory involves
a new notion, that of weakly subnormal operator T , characterized by an extension
T̂ ∈ L(K) such that T̂ ∗T̂ f = T̂ T̂ ∗f (all f ∈ H); we refer to T̂ as a partially normal
extension of T .

At the level of weighted shifts, it was proved in [26, Theorem 3.1] that if α is
strictly increasing then Wα is weakly subnormal precisely when lim supun+1/un <
∞, where un := α2n − α2n−1. This characterization allows one to show that every
2-hyponormal weighted shift is automatically weakly subnormal [26, Theorem 1.2]
and that the class of weakly subnormal shifts is strictly larger than the class of
2-hyponormal shifts [26, Example 3.7]; however, there exist quadratically hyponor-
mal weighted shifts which are not weakly subnormal [26, Example 5.5]. Moreover,
it was shown in [26] that if Wα is 2-hyponormal, then the sequence of quotients
un+1/un+2 is bounded, and bounded away from zero; in particular, the sequence
{un} is eventually decreasing. On the other hand, if T is 2-hyponormal or weakly
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subnormal, with rank-one self-commutator, then T is subnormal; if, in addition,
T is pure, then T is unitarily equivalent to a linear function of U+. Weak subnor-
mality can also be used to characterize k-hyponormality, as follows: an operator T
is (k+1)-hyponormal if and only if T is weakly subnormal and admits a partially
normal extension T̂ which is k-hyponormal [21].

All of the previous results encourage us to consider the following

Problem 3.4. Develop a model theory for 2-hyponormality, parallel to subnormal
operator theory.

While it is easy to see that the class of 2-hyponormal contractions forms a
family (in the sense of J. Agler), it is an open problem whether the same is true of
weakly subnormal contractions [26, Question 6.5]. M. Dritschel and S. McCullough
found in [33] a sufficient condition for a 2-hyponormal contraction to be extremal.

As we have mentioned before, nontrivial 2-hyponormal weighted shifts are
closely related to recursively generated subnormal shifts, i.e., those shifts whose
Berger measures are finitely atomic. In [20] a study of extensions of recursively
generated weight sequences was done. Given a recursively generated weight se-
quence (0 < α0 < · · · < αk), and an n-step extension α : xn, . . . , x1, (α0, . . . , αk)∧,
it was established that

Wα is subnormal ⇐⇒
{

Wα is ([k+12 ] + 1)-hyponormal (n = 1)
Wα is ([k+12 ] + 2)-hyponormal (n > 1)

.

In particular, the subnormality of an extension is independent of its length if the
length is bigger than 1. As a consequence, if α(x) is a canonical rank-one perturba-
tion of the recursive weight sequence α, then subnormality and k-hyponormality
for Wα(x) eventually coincide! This means that the subnormality of Wα(x) can be
detected after finitely many steps. Conversely, if k- and (k+1)-hyponormality for
Wα(x) coincide then α(x) must be recursively generated, i.e., Wα(x) is a recursive
subnormal.

4. The case of Toeplitz operators

Recall Paul Halmos’s Problem 5 (cf. [38], [39]): Is every subnormal Toeplitz op-
erator either normal or analytic? As we know, this was answered in the negative
by C. Cowen and J. Long [12]. It is then natural to ask: Which Toeplitz operators
are subnormal? We recall the following result.

Theorem 4.1 ([1]). If
(i) Tϕ is hyponormal;
(ii) ϕ or ϕ̄ is of bounded type (i.e., ϕ or ϕ̄ is a quotient of two analytic functions);
(iii) ker[T ∗ϕ, Tϕ] is invariant for Tϕ,
then Tϕ is normal or analytic.

(We mention in passing a recent result of S.H. Lee and W.Y. Lee [46]: if
T ∈ L(H) is a pure hyponormal operator, if ker[T ∗, T ] is invariant for T , and if
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[T ∗, T ] is rank-two, then T is either a subnormal operator or Putinar’s matricial
model of rank two.)

Since ker[T ∗, T ] is invariant under T for every subnormal operator T , The-
orem 4.1 answers Problem 5 affirmatively when ϕ or ϕ̄ is of bounded type. Also,
every hyponormal Toeplitz operator which is unitarily equivalent to a weighted
shift must be subnormal [52], [10], a fact used in

Theorem 4.2 ([12], [10]). Let 0<α<1 and let ψ be a conformal map of the unit disk
onto the interior of the ellipse with vertices ±(1+α)i and passing through ±(1−α).
If ϕ := (1−α2)−1(ψ+αψ̄), then Tϕ is a weighted shift with weight sequence αn=
(1−α2n+2)− 1

2 . Therefore, Tϕ is subnormal but neither normal nor analytic.

These results show that subnormality for weighted shifts and for Toeplitz
operators are conceptually quite different. One then tries to answer the following

Problem 4.3. Characterize subnormality of Toeplitz operators in terms of their
symbols.

Since subnormality is equivalent to k-hyponormality for every k ≥ 1 (this
is the Bram-Halmos Criterion), one possible strategy is to first characterize k-
hyponormality, and then use it to characterize subnormality. As a first step, we
pose the following

Problem 4.4. Characterize 2-hyponormality for Toeplitz operators.

As usual, the Toeplitz operator Tϕ on H2(T) with symbol ϕ ∈ L∞(T) is
given by Tϕg := P (ϕg), where P denotes the orthogonal projection from L2(T)
to H2(T). In [25, Chapter 3] the following question was considered:

Problem 4.5. Is every 2-hyponormal Toeplitz operator Tϕsubnormal ?

For the case of trigonometric symbol, one has

Theorem 4.6 ([25]). Every trigonometric Toeplitz operator whose square is hy-
ponormal must be normal or analytic; in particular, every 2-hyponormal trigono-
metric Toeplitz operator is subnormal.

Theorem 4.6 shows that there is a big gap between hyponormality and qua-
dratic hyponormality for Toeplitz operators. For example, if ϕ(z) ≡∑N

n=−m anz
n

(0 < m < N) is such that Tϕ is hyponormal, then by Theorem 4.6, Tϕ is never
quadratically hyponormal, since Tϕ is neither analytic nor normal. One can extend
Theorem 4.6. First we observe

Proposition 4.7 ([26]). If T ∈L(H) is 2-hyponormal then T (ker[T ∗,T ])⊆ker[T ∗,T ].

Corollary 4.8. If Tϕ is 2-hyponormal and if ϕ or ϕ̄ is of bounded type then Tϕ is
normal or analytic, so that Tϕ is subnormal.

Theorem 4.9 ([27, Theorem 8]). If the symbol ϕ is almost analytic (i.e., znϕ an-
alytic for some positive n), but not analytic, and if Tϕ is 2-hyponormal, then ϕ
must be a trigonometric polynomial.
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In [27, Lemma 9] it was shown that if Tϕ is 2-hyponormal and ϕ = qϕ̄,
where q is a finite Blaschke product, then Tϕ is normal or analytic. Moreover, [27,
Theorem 10] states that when log |ϕ| is not integrable, a 2-hyponormal Toeplitz
operator Tϕ with nonzero finite rank self-commutator must be analytic.

One also has

Theorem 4.10 (cf. [27]). If Tϕ is 2-hyponormal and if ϕ or ϕ̄ is of bounded type
(i.e., ϕ or ϕ̄ is a quotient of two analytic functions), then Tϕ is normal or analytic,
so that Tϕ is subnormal.

The following problem arises naturally:

Problem 4.11. If Tϕ is a 2-hyponormal Toeplitz operator with nonzero finite rank
self-commutator, does it follow that Tϕ is analytic? If so, is ϕ a linear function of
a finite Blaschke product?

A partial positive answer to Problem 4.11 was given in [27, Theorem 10]. In view
of Cowen and Long’s counterexample [12], it is worth turning attention to hy-
ponormality of Toeplitz operators, which has been studied extensively. An elegant
theorem of C. Cowen [11] characterizes the hyponormality of a Toeplitz operator
Tϕ on H2(T) by properties of the symbol ϕ ∈ L∞(T). The variant of Cowen’s the-
orem [11] that was first proposed in [48] has been most helpful. We conclude this
section with a result that extends the work of Cowen and Long to 2-hyponormality
and quadratic hyponormality.

Theorem 4.12 ([23, Theorem 6]). Let 0 < α < 1 and let ψ be the conformal map
of the unit disk onto the interior of the ellipse with vertices ±(1+α)i and passing
through ±(1−α). Let ϕ = ψ+λψ̄ and let Tϕ be the corresponding Toeplitz operator
on H2. Then

(i) Tϕ is hyponormal if and only if λ is in the closed unit disk |λ| ≤ 1.

(ii) Tϕ is subnormal if and only if λ = α or λ is in the circle
∣∣∣λ− α(1−α2k)

1−α2k+2

∣∣∣ =
αk(1−α2)
1−α2k+2 for k = 0, 1, 2, . . . . (Observe that the case λ = α is part of the main
result in [12].)

(iii) Tϕ is 2-hyponormal if and only if λ is in the unit circle |λ| = 1 or in the

closed disk
∣∣∣λ− α

1+α2

∣∣∣ ≤ α
1+α2 .

(iv) ([45]) Tϕ is 2-hyponormal if and only if Tϕ is quadratically hyponormal.
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Raúl Curto
Department of Mathematics
University of Iowa
Iowa City, IA 52246, USA
e-mail: rcurto@math.uiowa.edu

Mihai Putinar
Department of Mathematics
University of California
Santa Barbara, CA 93106, USA
e-mail: mputinar@math.ucsb.edu



Operator Theory:
Advances and Applications, Vol. 207, 209–222
c© 2010 Springer Basel AG

Essentially Normal Operators

Kenneth R. Davidson

Abstract. This is a survey of essentially normal operators and related de-
velopments. There is an overview of Weyl–von Neumann theorems about
expressing normal operators as diagonal plus compact operators. Then we
consider the Brown–Douglas–Fillmore theorem classifying essentially normal
operators. Finally we discuss almost commuting matrices, and how they were
used to obtain two other proofs of the BDF theorem.
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1. Introduction

Problem 4 of Halmos’s Ten problems in Hilbert space [26] asked whether every
normal operator is the sum of a diagonal operator and a compact operator. I believe
that this was the first of the ten problems to be solved. Indeed two solutions were
independently produced by Berg [6] and Sikonia [39] almost immediately after
dissemination of the question. But that is only the beginning of the story, as, like
many of Paul’s problems, the answer to the question is just a small step in the
bigger picture.

The subsequent discussion in Halmos’s article goes in several directions. In
particular, he discusses operators of the form normal plus compact. It is not at all
clear, a priori, if this set is even norm closed. It turned out that the characterization
of this class by other invariants is very interesting.

It is immediately clear that if T is normal plus compact, then T ∗T − TT ∗ is
compact. Operators with this latter property are called essentially normal. Not all
essentially normal operators are normal plus compact. For example, the unilateral
shift S acts on a basis {en : n ≥ 0} by Sen = en+1. It evidently satisfies

S∗S − SS∗ = I − SS∗ = e0e
∗
0,

Partially supported by an NSERC grant.
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which is the rank one projection onto Ce0. Thus the unilateral shift is essentially
normal. However it has non-zero Fredholm index:

indS = dimkerS − dimkerS∗ = −1.

For a normal operator N , one has kerN = kerN∗. Thus if N is Fredholm, then
indN = 0. Index is invariant under compact perturbations, so the same persists
for normal plus compact operators.

Brown, Douglas and Fillmore [9] raised the question of classifying essentially
normal operators. The answer took them from a naive question in operator theory
to the employment of new techniques from algebraic topology in the study of
C*-algebras. They provided a striking answer to the question of which essentially
normal operators are normal plus compact. They are precisely those essentially
normal operators with the property that ind (T − λI) = 0 for every λ �∈ σe(T ),
namely the index is zero whenever it is defined. This implies, in particular, that
the set of normal plus compact operators is norm closed.

Had they stopped there, BDF might have remained ‘just’ a tour de force that
solved an interesting question in operator theory. However they recognized that
their methods had deeper implications about the connection between topology
and operator algebras. They defined an invariant Ext(A) for any C*-algebra A,
and determined nice functorial properties of this object in the case of separable,
commutative C*-algebras. They showed that Ext has a natural pairing with the
topological K-theory of Atiyah [4] which makes Ext a K-homology theory. This
opened up a whole new world for C*-algebraists, and a new game was afoot.

At roughly the same time, George Elliott [18] introduced a complete algebraic
invariant for AF C*-algebras. These C*-algebras, introduced by Bratteli [8], are
defined by the property that they are the closure of an (increasing) union of finite-
dimensional sub-algebras. It was soon recognized [19] that this new invariant is
the K0 functor from ring theory. A very striking converse to Elliott’s theorem
was found by Effros, Handelmann and Shen [17] which characterized those groups
which arise as the K0 group of an AF algebra.

The upshot was that two very different results almost simultaneously seeded
the subject of C*-algebras with two new topological tools that provide interesting
new invariants, namely Ext andK0. These results created tremendous excitement,
and launched a program which continues to this day to classify amenable C*-
algebras. It revitalized the subject, and has led to a sophisticated set of tools which
describe and distinguish many new algebras. It is fair to say that the renaissance of
C*-algebras was due to these two developments. Indeed, not only are they related
by the spirit of K-theory, they are in fact two sides of the same coin. Kasparov
[30] introduced his bivariant KK-theory shortly afterwards which incorporates the
two theories into one.

It is not my intention to survey the vast literature in C*-algebras which
has developed as a consequence of the introduction of K-theory. I mention it to
highlight the fallout of the pursuit of a natural problem in operator theory by three
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very insightful investigators. I will limit the balance of this article to the original
operator theory questions, which have a lot of interest in their own right.

2. Weyl–von Neumann theorems

In 1909, Hermann Weyl [46] proved that every self-adjoint bounded operator A
on a separable Hilbert space can be written as A = D + K where D is a diago-
nal operator with respect to some orthonormal basis and K is compact. Hilbert’s
spectral theorem for Hermitian operators says, as formulated by Halmos [27], that
every Hermitian operator on Hilbert space is unitarily equivalent to a multiplica-
tion operatorMϕ on L2(μ), where ϕ is a bounded real-valued measurable function.
The starting point of a proof of Weyl’s theorem is the observation that if f is any
function in L2(μ) supported on ϕ−1

(
[t, t + ε)

)
, then f is almost an eigenvector

in the sense that ‖Mϕf − tf‖ < ε‖f‖. One can carefully extract an orthonormal
basis for L2(μ) consisting of functions with increasingly narrow support.

To make this more precise, suppose for convenience that A has a cyclic vector.
Then the spectral theorem produces a measure μ on the spectrum σ(A) ⊂ R so
that A is identified with Mx on L2(μ). Let Pn be the span of the characteristic
functions of diadic intervals of length 2−n. Then the previous observation can be
used to show that ‖PnA −APn‖ < 2−n. So a routine calculation shows that A is
approximated within 21−n by the operator

Dn = PnAPn +
∑
k≥n

(Pk+1 − Pk)A(Pk+1 − Pk),

and A−Dn is compact. The operator Dn is a direct sum of finite rank self-adjoint
operators, and so is diagonalizable—providing the desired approximant.

Weyl observed that if A and B are two Hermitian operators such that A−B
is compact, then the limit points of the spectrum of A and B must be the same. We
now interpret this by saying that the essential spectra are equal, σe(A) = σe(B),
where σe(·) denotes the spectrum of the image in the Calkin algebra B(H)/K.
Von Neumann [45] established the converse: if two Hermitian operators have the
same essential spectrum, then they are unitarily equivalent modulo a compact
perturbation.

Halmos’s questions asks for an extension to normal operators. It seems to
require a new approach, because the trick of compressing a Hermitian operator to
the range of an almost commuting projection Pk+1−Pk yields a Hermitian matrix,
but the same argument fails for normal operators. Also the spectrum is now a
subset of the plane. David Berg [6] nevertheless answered Halmos’s question by
adapting this method. Sikonia gave a similar proof at the same time in his doctoral
thesis (see [39]). Other proofs came quickly afterwards (for example Halmos [27]).

A proof that does the job simultaneously for a countable family of commuting
Hermitian operators {Ai} works by building a single Hermitian operator A so
that C∗(A) contains every Ai. To accomplish this, first observe that the spectral
theorem shows that C∗({Ai}) is contained in a commutative C*-algebra spanned
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by a countable family {Ej} of commuting projections. Consider the Hermitian
operator A =

∑
j≥1 3

−jEj . It is easy to see that
1
3E1 ≤ E1A ≤ 1

2E1 and 0 ≤ E⊥1 A ≤ 1
6E

⊥
1 .

Thus it follows that the spectrum of A is contained in [0, 1/6]∪ [1/3, 1/2], and that
the spectral projection for [1/3, 1/2] is E1. Similarly, each projection Ej belongs
to C∗(A). It follows that each Ai is a continuous function of A. Diagonalizing A
modulo compacts then does the same for each Ai, although one cannot control the
norm of the compact perturbations for more than a finite number at a time.

At this point, we introduce a few definitions to aid in the discussion.

Definition 2.1. Let J be a normed ideal of B(H). Two operators A and B are
unitarily equivalent modulo J if there is a unitary U so that A − UBU∗ ∈ J. We
say that A and B are approximately unitarily equivalent modulo J if there is a
sequence of unitaries Uk so that A− UkBU

∗
k ∈ J and

lim
k→∞

‖A− UkBU
∗
k‖J = 0.

We write A ∼J B. When J = B(H), we simply say that A and B are approximately
unitarily equivalent and write A ∼a B.

A careful look at Weyl’s proof shows that the perturbation will lie in certain
smaller ideals, the Schatten classes Sp with norm ‖K‖p = Tr(|K|p)1/p, provided
that p > 1; and this norm can also be made arbitrarily small. Kuroda [32] improved
on this to show that one can obtain a small perturbation in any unitarily invariant
ideal J that strictly contains the trace class operators. So any Hermitian operator
is approximately unitarily equivalent modulo J to a diagonalizable operator. Berg’s
proof works in a similar way via a process of dividing up the plane, and actually
yields small perturbations in Sp for p > 2. Likewise, for a commuting n-tuple, one
can obtain small perturbations in Sp for p > n. It is natural to ask whether this
is sharp. Elementary examples show that one cannot obtain perturbations in Sp

when p < n.
In the case of n = 1, there is an obstruction found by Kato [31] and Rosen-

blum [37]. If the spectral measure of A is not singular with respect to the Lebesgue
measure, then there is no trace class perturbation which is diagonal. In particular,
Mx on L2(0, 1) is such an operator. For n ≥ 2, Voiculescu [41, 42] showed that
every commuting n-tuple of Hermitian operators is approximately unitarily equiv-
alent to a diagonalizable n-tuple modulo the Schatten class Sn. (See [14] for an
elementary argument.) Moreover, Voiculescu identified a somewhat smaller ideal
S−n which provides an obstruction when the n-tuple has a spectral measure that is
not singular with respect to Lebesgue measure on Rn. Bercovici and Voiculescu [5]
strengthened this to the analogue of Kuroda’s theorem, showing that if a unitar-
ily invariant ideal is not included in S−n , then a small perturbation to a diagonal
operator is possible.

The ideas involved in Voiculescu’s work mentioned above build on a very
important theorem of his that preceded these results, and had a direct bearing on
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the work of Brown, Douglas and Fillmore and on subsequent developments in C*-
algebras. This is known as Voiculescu’s Weyl–von Neumann Theorem [40]. Rather
than state it in full generality, we concentrate on some of its major corollaries.
The definition of approximate unitary equivalence can readily be extended to two
maps from a C*-algebra A into B(H): say ρ ∼a σ for two maps ρ and σ if there is
a sequence of unitary operators Un such that

lim
n→∞ ‖ρ(a)Un − Unσ(a)‖ = 0 for all a ∈ A.

One similarly defines approximate unitary equivalence relative to an ideal.
Voiculescu showed that if A is a separable C*-algebra acting on H and ρ is a

∗-representation which annihilates A∩K, then id ∼K id⊕ρ, where id is the identity
representation of A. Let π denote the quotient map of B(H) onto the Calkin algebra
B(H)/K. Voiculescu’s result extends to show for two representations ρ1 and ρ2, one
has ρ1 ∼a ρ2 if and only if ρ1 ∼K ρ2. In particular, this holds provided that

kerρ1 = kerπρ1 = ker ρ2 = kerπρ2.

If N is normal, then it may have countably many eigenvalues of finite multi-
plicity which do not lie in the essential spectrum. However they must be asymptot-
ically close to the essential spectrum. One can peel off a finite diagonalizable sum-
mand, and make a small compact perturbation on the remainder to move the other
eigenvalues into σe(N). One now has a normal operatorN ′ with σ(N ′) = σe(N ′). If
one applies Voiculescu’s Theorem to C∗(N ′), one recovers the Weyl–von Neumann–
Berg Theorem.

Another consequence of this theorem was a solution to Problem 8 of Halmos’s
ten problems, which asked whether the reducible operators are dense in B(H). One
merely takes any representation ρ of C∗(T ) which factors through C∗(T ) + K/K
to obtain T ∼a T ⊕ ρ(T ). Moreover, one can show that id ∼K σ where σ is a
countable direct sum of irreducible representations.

The implications of Voiculescu’s theorem for essentially normal operators will
be considered in the next section. We mention here that a very insightful treatment
of Voiculescu’s theorem is contained in Arveson’s paper [3]. In particular, it pro-
vides a strengthening of the results for normal operators. Hadwin [25] contains a
further refinement which shows that ρ1 ∼K ρ2 if and only if rankρ1(a) = rank ρ2(a)
for all a ∈ A. All of these ideas are treated in Chapter 2 of [15].

3. Essentially normal operators

We return to the problem of classifying essentially normal operators. Let T be
essentially normal. Then t = π(T ) is a normal element of the Calkin algebra. So
C∗(t) # C(X) where X = σ(t) = σe(T ). This determines a ∗-monomorphism τ
of C(X) into B(H)/K determined by τ(z) = t. Evidently τ determines T up to a
compact perturbation. Two essentially normal operators T1 and T2 are unitarily
equivalent modulo K if and only if σe(T1) = σe(T2) =: X and the associated
monomorphisms τ1 and τ2 of C(X) are strongly unitarily equivalent, meaning
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that there is a unitary U so that adπ(U)τ1 = τ2. (The weak version would allow
equivalence by a unitary in the Calkin algebra. This turns out to be equivalent
for commutative C*-algebras.) A monomorphism τ is associated to an extension
of the compact operators. Let E = π−1(τ(C(X)) = C∗(T ) + K. Then τ−1π is a
∗-homomorphism of the C*-algebra E onto C(X) with kernel K. We obtain the
short exact sequence

0→ K→ E→ C(X)→ 0.

For example, the unilateral shift S is unitarily equivalent to the Toeplitz
operator of multiplication by z on H2. So one readily sees that C∗(S) is unitarily
equivalent to the Toeplitz C*-algebra

T(T) = {Tf +K : f ∈ C(T) and K ∈ K}.

The map τ1(f) = π(Tf ) is a monomorphism of C(T) into the Calkin algebra. It
is not hard to use the Fredholm index argument to show that this extension does
not split; i.e., there is no ∗-monomorphism of C(T) into T taking z to a compact
perturbation of Tz. Therefore this extension is not equivalent to the representation
of C(T) on L2(T) given by τ2(f) = π(Mf ) whereMf is the multiplication operator.

Turning the problem around, Brown, Douglas and Fillmore consider the class
of all ∗-monomorphisms of C(X) into B(H)/K for any compact metric space
X ; or equivalently they consider all extensions of K by C(X). Two extensions
are called equivalent if the corresponding monomorphisms are strongly unitarily
equivalent. The collection of all equivalence classes of extensions of C(X) is de-
noted by Ext(X). One can turn this into a commutative semigroup by defining
[τ1]+[τ2] = [τ1⊕τ2], which uses the fact that we can identify the direct sum H⊕H
of two separable Hilbert spaces with the original space H.

More generally, one can define Ext(A) for any C*-algebra. The theory works
best if one sticks to separable C*-algebras. Among these, things work out partic-
ularly well when A is nuclear.

The Weyl–von Neumann–Berg Theorem is exactly what is needed to show
that Ext(X) has a zero element. An extension is trivial if it splits, i.e., there
is a ∗-monomorphism σ of C(X) into B(H) so that τ = πσ. The generators of
σ(C(X)) can be perturbed by compact operators to commuting diagonal operators.
The converse of von Neumann is adapted to show that any two trivial extensions
are equivalent. An elementary argument can be used to construct approximate
eigenvectors. Repeated application yields τ ∼K τ⊕σ, where σ is a trivial extension.
So the equivalence class of all trivial extensions forms a zero element for Ext(X).

In fact, Ext(X) is a group. Brown, Douglas and Fillmore gave a complicated
proof, which required a number of topological lemmas. The proof was significantly
simplified by Arveson [2] by pointing out the crucial role of completely positive
maps. The map τ may be lifted to a completely positive unital map σ into B(H),
meaning that τ = πσ. Then the Naimark dilation theorem dilates this map to a
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∗-representation ρ of C(X) on a larger space K ⊃ H; say

ρ(f) =
[
τ(f) ρ12(f)
ρ21(f) ρ22(f)

]
.

Since the range of τ commutes modulo compacts, it is not hard to see that the
ranges of ρ12 and ρ21 consist of compact operators. It follows that πρ22 is a ∗-
homomorphism of C(X). The map πρ22 ⊕ τ0, where τ0 is any trivial extension,
yields an inverse.

More generally, Choi and Effros [12] showed that Ext(A) is a group whenever
A is a separable nuclear C*-algebra. The argument uses nuclearity and the struc-
ture of completely positive maps to accomplish the lifting. The dilation follows
from Stinespring’s theorem for completely positive maps. Voiculescu’s Theorem
provides the zero element consisting of the class of trivial extensions. (See Arve-
son [3] where all of this is put together nicely.) When A is not nuclear, Anderson [1]
showed that Ext(A) is generally not a group. Recently Haagerup and Thorbjornsen
[24] have shown that Ext of the reduced C*-algebra of the free group F2 is not a
group.

Next we observe that Ext is a covariant functor from the category of compact
metric spaces with continuous maps into the category of abelian groups. Suppose
that p : X → Y is a continuous map between compact metric spaces, and τ is an
extension of C(X). Build an extension of C(Y ) by fixing a trivial extension σ0 in
Ext(Y ) and defining

σ(f) = τ(f ◦ p)⊕ σ0(f) for all f ∈ C(Y ).

So far, we have seen little topology, although the original BDF proof used
more topological methods to establish these facts. Now we discuss some of those
aspects which are important for developing Ext as a homology theory. If A is a
closed subset of X , j is the inclusion map and p is the quotient map of X onto
X/A, then

Ext(A)
j∗−→ Ext(X)

p∗−→ Ext(X/A)

is exact. Ext also behaves well with respect to projective limits of spaces. If Xn

are compact metric spaces and pn : Xn+1 → Xn for n ≥ 1, define X = proj limXn

to be the subset of
∏
n≥1Xn consisting of sequences (xn) such that pn(xn+1) = xn

for all n ≥ 1. There are canonical maps qn : X → Xn so that qn = pnqn+1. One
can likewise define proj limExt(Xn). Since qn∗ defines a compatible sequence of
homomorphisms of Ext(X) into Ext(Xn), one obtains a natural map

κ : Ext(proj limXn) −→ proj limExt(Xn).

The key fact is that this map is always surjective. Moreover, it is an isomorphism
when each Xn is a finite set. This latter fact follows by noting that when each Xn

is finite, X is totally disconnected. From our discussion of the Weyl–von Neumann
Theorem, C(X) is generated by a single self-adjoint element, and every extension
is diagonalizable and hence trivial. So Ext(X) = {0}.
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In [10], it is shown that any covariant functor from compact metric spaces
into abelian groups satisfying the properties established in the previous paragraph
is a homotopy invariant. That is, if f and g are homotopic maps from X to Y ,
then f∗ = g∗. In particular, if X is contractible, then Ext(X) = {0}.

There is a pairing between Ext(X) and K1(X) which yields a map into the
integers based on Fredholm index.

First consider the group π1(X) = C(X)−1/C(X)−10 . An element [f ] of π1(X)
is a homotopy class of invertible functions on X . Thus if [τ ] ∈ Ext(X), one can
compute ind τ(f) independent of the choice of representatives. Moreover, this de-
termines a homomorphism γ[τ ] of π1(X) into Z. Hence we have defined a homo-
morphism

γ : Ext(X)→ Hom(π1(X),Z).

Similarly, by considering the induced monomorphisms of Mn(C(X)) into
B(H(n))/K, we can define an analogous map

γn : Ext(X)→ Hom(GLn(X)/GLn(X)0,Z).

The direct limit of the sequence of groups GLn(X)/GLn(X)0 is called K1(X).
The inductive limit of γn is a homomorphism γ∞ : Ext(X) → Hom(K1(X),Z).
This is the index map, and is the first pairing of Ext with K-theory.

When X is a planar set, an elementary argument shows that π1(X) is a
free abelian group with generators [z − λi] where one chooses a point λi in each
bounded component of C \ X . An extension τ is determined by the essentially
normal element t = τ(z) ∈ B(H)/K. The index map is given by

γ([τ ])([z − λi]) = ind (t− λi).

The Brown–Douglas–Fillmore Theorem classifies essentially normal operators by
showing that when X is planar, the map γ is an isomorphism. The hard part of
the proof is a lemma that shows that when γ[τ ] = 0, one can cut the spectrum in
half by a straight line, and split τ as the sum of two elements coming from Ext of
the two halves. Repeated bisection eventually eliminates all of the holes.

An immediate consequence is the fact that an essentially normal operator
T is normal plus compact if and only if ind (T − λI) = 0 whenever λ �∈ σe(T ).
More generally, two essentially normal operators T1 and T2 are unitarily equivalent
modulo K if and only if σe(T1) = σe(T2) =: X and

ind (T1 − λI) = ind (T2 − λI) for all λ ∈ C \X.

Another immediate corollary is that the set of normal plus compact operators is
norm closed, since the essentially normal operators are closed, the set of Fredholm
operators is open, and index is continuous.

More information on the BDF theory with an emphasis on the K-theoretical
aspects is contained in the monograph [16] by Douglas. Most of the results men-
tioned here are treated in Chapter 9 of [15].
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4. Almost commuting matrices

Peter Rosenthal [38] asked whether nearly commuting matrices are close to com-
muting. To make sense of this question, one says that A and B nearly commute if
‖AB − BA‖ is small, while close to commuting means that there are commuting
matrices A′ and B′ with ‖A − A′‖ and ‖B − B′‖ both small. He makes it clear
that to be an interesting problem, one must obtain estimates independent of the
dimension of the space on which the matrices act. We may also limit A and B to
have norm at most one. Peter recalled, in a private communication, that he dis-
cussed this problem with Paul Halmos when he was his student at the University
of Michigan. The most interesting case, and the hardest, occurs when the matrices
are all required to be Hermitian. Halmos mentions the problem specifically in this
form in [28].

This ‘finite-dimensional’ problem is closely linked to the Brown–Douglas–
Fillmore Theorem, as we shall see. I put finite dimensional in quotes because
problems about matrices which ask for quantitative answers independent of di-
mension are really infinite-dimensional problems, and can generally be stated in
terms of the compact operators rather than matrices of arbitrary size.

If A and B are Hermitian matrices in Mn, then T = A + iB is a matrix
satisfying

[T ∗, T ] = T ∗T − TT ∗ = 2i(AB −BA).

So if A and B almost commute, then T is almost normal; and they are close to
commuting if and only if T is close to a normal matrix.

Halmos [26] defines an operator T to be quasidiagonal if there is a sequence
Pn of finite rank projections increasing to the identity so that ‖PnT−TPn‖ goes to
0. The quasidiagonal operators form a closed set which is also closed under compact
perturbations. Normal operators are quasidiagonal, and thus so are normal plus
compact operators. Fredholm quasidiagonal operators have index 0.

Now suppose that T is an essentially normal operator which is quasidiagonal.
Then one can construct a sequence of projections Pn increasing to the identity so
that

∑
n≥1 ‖PnT − TPn‖ is small. A small compact perturbation of T yields the

operator
∑

n≥1⊕Tn where

Tn = (Pn − Pn−1)T (Pn − Pn−1)|(Pn−Pn−1)H.

The essentially normal property means that limn ‖[T ∗n , Tn]‖ = 0. So a positive
solution to the nearly commuting problem would show that T can be perturbed
by a block diagonal compact operator to a direct sum of normal operators. This
provides a direct link to the BDF theorem.

If one fixes the dimension n and limits A and B to the (compact) unit ball,
then a compactness argument establishes the existence of a function δ(ε, n) such
that if A and B are in the unit ball of Mn and ‖AB − BA‖ < δ(ε, n), then A
and B are within ε of a commuting pair. (See [35].) For this reason, the problem
is much less interesting for fixed n. Pearcy and Shields [36] obtain the explicit
estimate δ(ε, n) = 2ε2/n when A and A′ are Hermitian but B is arbitrary.
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After these initial results, a variety of counterexamples were found to var-
ious versions of the problem. Voiculescu [43] used very deep methods to estab-
lish the existence of triples An, Bn, Cn of norm one Hermitian n × n matrices
which asymptotically commute but are bounded away from commuting Hermitian
triples. An explicit and somewhat stronger example due to the author [13] pro-
vides matrices An = A∗n and normal matrices Bn in the unit ball of Mn2+1 with
‖AnBn−BnAn‖ = n−2, but bounded away from commuting pairs A′n and B′n with
A′n Hermitian but B′n are arbitrary. Voiculescu [44] also constructs asymptotically
commuting unitary matrices which are bounded away from commuting unitaries.
Exel and Loring [20] provide a very slick example in which the pairs of unitaries
are actually bounded away from arbitrary commuting pairs. Finally, we mention a
paper of Choi [11] who also found pairs of arbitrary matrices which asymptotically
commute but are bounded away from commuting pairs.

We sketch the Exel–Loring example [20]. Let Un be the cyclic shift on a basis
e1, . . . , en and let Vn be the diagonal unitary with eigenvalues ωj, 1 ≤ j ≤ n,
where ω = e2πi/n. Then UnVnU

−1
n V −1n = ωIn. In particular,

‖UnVn − VnUn‖ = |1− ω| = 2 sinπ/n.

Now if An and Bn are commuting matrices within 1/3 of Un and Vn, define As =
(1− s)Un + sAn and Bs = (1 − s)Vn + sBn. One can check that for 0 ≤ s, t ≤ 1,

γ(s, t) = det
(
(1− t)In + tAsBsA

−1
s B−1s

)
is never 0; and γ(s, 0) = γ(s, 1) = 1. For fixed s and 0 ≤ t ≤ 1, γ(s, ·) determines
a closed loop in C \ {0}. When s = 0, it reduces to the loop (1 − t + tω)n, which
has winding number 1. But at s = 1, it is the constant loop 1, which has winding
number 0. This establishes a contradiction.

With all this negative evidence, one might suspect that the Hermitian pair
question would also have a negative answer. However, the examples all use some
kind of topological obstruction, which Loring [34] and Loring–Exel [21] make pre-
cise. The case of a pair of Hermitian matrices is different.

This author [13] provided a partial answer to the Hermitian case by proving
an absorption result. If T ∈ Mn is an arbitrary matrix, there is a normal matrix
N in Mn with ‖N‖ ≤ ‖T ‖ and a normal matrix N ′ in M2n so that

‖T ⊕N −N ′‖ ≤ 75‖T ∗T − TT ∗‖1/2.
Thus if T has a small commutator, one obtains a normal matrix close to T ⊕N .
While this does not answer the question exactly, it can take advantage of an
approximate normal summand of T—and in the case of an essentially normal
operator T , such a summand is available with spectrum equal to σe(T ). The real
problem is that the normal matrix N may have too much spectrum, in some sense.

This approach was pursued in a paper by Berg and the author [7] in order to
provide an operator theoretic proof of the BDF Theorem. The key was to establish
a variant of the absorption theorem for the annulus. Specifically, if T is an invertible
operator with ‖T ‖ ≤ R and ‖T−1‖ ≤ 1, then there are normal operatorsN and N ′
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satisfying the same bounds (so the spectrum lies in the annulus {z : 1 ≤ |z| ≤ R})
such that

‖T ⊕N −N ′‖ ≤ 95‖T ∗T − TT ∗‖1/2.

We established this by showing that the polar decomposition of T almost com-
mutes, and using the normal summand to provide room for the perturbation.
Combining this with an elementary extraction of approximate eigenvectors allows
one to show that, with T as above, there is a normal operator N with spectrum
in the annulus so that ‖T −N‖ ≤ 100‖T ∗T − TT ∗‖1/2.

The second important step of our proof of BDF is to establish that if T is
essentially normal and ind (T − λI) = 0 for λ �∈ σe(T ), then T is quasidiagonal.
Since the set of quasidiagonal operators is closed, it suffices to work with a small
perturbation. Now T ∼a T ⊕ N where N is a diagonal normal operator with
σ(N) = σe(N) = σe(T ). We fatten up the spectrum ofN with a small perturbation
so that it is a nice domain with finitely many smooth holes. An approximation
technique replaces T ⊕ N by a finite direct sum of operators with topologically
annular spectra. Essentially one cuts the spectrum into annular regions without
cutting through any holes. Then the Riesz functional calculus and the case for
the annulus do the job. This results in a proof of the BDF theorem for essentially
normal operators (i.e., planar X).

The almost commuting matrix question was finally solved by Huaxin Lin [33].
This paper is a tour de force. It starts with an idea of Voiculescu’s. Suppose that
there is a counterexample, namely asymptotically commuting n × n Hermitian
matrices An and Bn of norm 1 which are bounded away from commuting pairs.
Let Tn = An+ iBn. Then T = T1⊕T2⊕· · · is a block diagonal, essentially normal
operator which is not a block diagonal compact perturbation of a normal operator.
One should consider T as an element of the von Neumann algebra M :=

∏
Mn

with commutator T ∗T − TT ∗ lying in the ideal J =
∑

Mn of sequences which
converge to 0. The image t = T+J is a normal element of the quotient algebra. Lin
succeeds in proving that t can be approximated by a normal element having finite
spectrum. Then it is an easy matter to lift the spectral projections to projections in
M, and so approximate T by a normal element in M, which yields a good normal
approximation to all but finitely many Tn. Unfortunately this is an extremely
difficult proof.

Lin’s Theorem was made much more accessible by Friis and Rordam [22],
who provide a short, slick and elementary proof. They begin with the same setup.
Observe that by the spectral theorem, every self-adjoint element of any von Neu-
mann algebra can be approximated arbitrarily well be self-adjoint elements with
finite spectrum. This property, called real rank zero (RR0), passes to quotients
like M/J. In Mn, the invertible matrices are dense. If you prove this by modify-
ing the positive part of the polar decomposition, the estimates are independent
of dimension. Thus the argument can be readily extended to show that the in-
vertible elements are dense in M. This property, called topological stable rank one
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(tsr1), also passes to quotients. Moreover, we observe that a normal element can
perturbed to an invertible normal operator.

Now let t be a normal element of M/J, and fix ε > 0. Cover the spectrum σ(t)
with a grid of lines spaced ε apart horizontally and vertically. Use the tsr1 property
to make a small perturbation which is normal and has a hole in the spectrum inside
each square of the grid. Then use the continuous functional calculus to obtain
another perturbation to a normal element nearby that has spectrum contained in
the grid.

The RR0 property says that self-adjoint elements can be approximated by
self-adjoint elements with finite spectrum. In particular, if a = a∗ has σ(a) = [0, 1],
this property allows us to find b = b∗ with ‖a−b‖ < ε such that b−1/2 is invertible.
A modification of this idea works on each line segment of the grid. So another
small perturbation yields a normal operator with spectrum contained in the grid
minus the mid-point of each line segment. A further use of the functional calculus
collapses the remaining components of the spectrum to the lattice points of the
grid. This produces the desired normal approximation with finite spectrum.

In their sequel [23], Friis and Rordam use similar methods in the Calkin
algebra provided that the index data is trivial. They establish quasidiagonality for
essentially normal operators with zero index data, and thus provide a third proof
of the BDF theorem.

Finally we mention that a very recent paper of Hastings [29] provides a con-
structive proof that almost commuting Hermitian matrices are close to commuting,
with explicit estimates. This is a welcome addition since the soft proof provides no
norm estimates at all. It is still an open question whether a perturbation of size
O(‖T ∗T − TT ∗‖1/2) is possible as in the case of the absorption results.
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Abstract. The Fejér-Riesz theorem has inspired numerous generalizations in
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1. Introduction

The classical Fejér-Riesz factorization theorem gives the form of a nonnegative
trigonometric polynomial on the real line, or, equivalently, a Laurent polynomial
that is nonnegative on the unit circle. For the statement, we write D = {z : |z| < 1}
and T = {ζ : |ζ| = 1} for the open unit disk and unit circle in the complex plane.

Fejér-Riesz Theorem. A Laurent polynomial q(z) =
∑m

k=−m qkz
k which has com-

plex coefficients and satisfies q(ζ) ≥ 0 for all ζ ∈ T can be written

q(ζ) = |p(ζ)|2, ζ ∈ T,

for some polynomial p(z) = p0+ p1z+ · · ·+ pmz
m, and p(z) can be chosen to have

no zeros in D.

The original sources are Fejér [22] and Riesz [47]. The proof is elementary
and consists in showing that the roots of q(z) occur in pairs zj and 1/z̄j with
|zj | ≥ 1. Then the required polynomial p(z) is the product of the factors z − zj
adjusted by a suitable multiplicative constant c. Details appear in many places;
see, e.g., [28, p. 20], [34, p. 235], or [60, p. 26].
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The Fejér-Riesz theorem arises naturally in spectral theory, the theory of
orthogonal polynomials, prediction theory, moment problems, and systems and
control theory. Applications often require generalizations to functions more general
than Laurent polynomials, and, more than that, to functions whose values are
matrices or operators on a Hilbert space. The spectral factorization problem is to
write a given nonnegative matrix- or operator-valued function F on the unit circle
in the form F = G∗G where G has an analytic extension to the unit disk (in a
suitably interpreted sense). The focal point of our survey is the special case of a
Laurent polynomial with operator coefficients.

The operator Fejér-Riesz theorem (Theorem 2.1) obtains a conclusion similar
to the classical result for a Laurent polynomial whose coefficients are Hilbert space
operators: if Qj, j = −m, . . . ,m, are Hilbert space operators such that

Q(ζ) =
m∑

k=−m
Qkζ

k ≥ 0, ζ ∈ T, (1.1)

then there is a polynomial P (z) = P0+P1z+ · · ·+Pmz
m with operator coefficients

such that
Q(ζ) = P (ζ)∗P (ζ), ζ ∈ T. (1.2)

This was first proved in full generality in 1968 by Marvin Rosenblum [49]. The proof
uses Toeplitz operators and a method of Lowdenslager, and it is a fine example
of operator theory in the spirit of Paul Halmos. Rosenblum’s proof is reproduced
in §2.

Part of the fascination of the operator Fejér-Riesz theorem is that it can be
stated in a purely algebraic way. The hypothesis (1.1) on Q(z) is equivalent to the
statement that an associated Toeplitz matrix is nonnegative. The conclusion (1.2)
is equivalent to 2m + 1 nonlinear equations whose unknowns are the coefficients
P0, P1, . . . , Pm of P (z). Can it be that this system of equations can be solved by
an algebraic procedure? The answer is, yes, and this is a recent development. The
iterative procedure uses the notion of a Schur complement and is outlined in §3.

There is a surprising connection between Rosenblum’s proof of the operator
Fejér-Riesz theorem and spectral factorization. The problem of spectral factoriza-
tion is formulated precisely in §4, using Hardy class notions. A scalar prototype
is Szegő’s theorem (Theorem 4.1) on the representation of a positive integrable
and log-integrable function w on the unit circle in the form |h|2 for some H2 func-
tion h. The operator and matrix counterparts of Szegő’s theorem, Theorems 4.5
and 4.7, have been known for many years and go back to fundamental work in the
1940s and 1950s which was motivated by applications in prediction theory (see the
historical notes at the end of §4). We present a proof that is new to the authors
and we suspect not widely known. It is based on Theorem 4.3, which traces its
origins to Rosenblum’s implementation of the Lowdenslager method. In §4 we also
state without proof some special results that hold in the matrix case.

The method of Schur complements points the way to an approach to multi-
variable factorization problems, which is the subject of §5. Even in the scalar case,
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the obvious first ideas for multivariable generalizations of the Fejér-Riesz theorem
are false by well-known examples. Part of the problem has to do with what one
might think are natural restrictions on degrees. In fact, the restrictions on degrees
are not so natural after all. When they are removed, we can prove a result, Theo-
rem 5.1, that can be viewed as a generalization of the operator Fejér-Riesz theorem
in the strictly positive case. We also look at the problem of outer factorization, at
least in some restricted settings.

In recent years there has been increasing interest in noncommutative function
theory, especially in the context of functions of freely noncommuting variables.
In §6 we consider noncommutative analogues of the d-torus, and corresponding
notions of nonnegative trigonometric polynomials. In the freely noncommutative
setting, there is a very nice version of the Fejér-Riesz theorem (Theorem 6.1). In a
somewhat more general noncommutative setting, which also happens to cover the
commutative case as well, we have a version of Theorem 5.1 for strictly positive
polynomials (Theorem 6.2).

Our survey does not aim for completeness in any area. In particular, our
bibliography represents only a selection from the literature. The authors regret
and apologize for omissions.

2. The operator Fejér-Riesz theorem

In this section we give the proof of the operator Fejér-Riesz theorem by Rosenblum
[49]. The general theorem had precursors. A finite-dimensional version was given
by Rosenblatt [48], an infinite-dimensional special case by Gohberg [26].

We follow standard conventions for Hilbert spaces and operators. If A is
an operator, A∗ is its adjoint. Norms of vectors and operators are written ‖ · ‖.
Except where noted, no assumption is made on the dimension of a Hilbert space,
and nonseparable Hilbert spaces are allowed.

Theorem 2.1 (Operator Fejér-Riesz Theorem). Let Q(z) =
∑m

k=−mQkz
k be a

Laurent polynomial with coefficients in L(G) for some Hilbert space G. If Q(ζ) ≥ 0
for all ζ ∈ T, then

Q(ζ) = P (ζ)∗P (ζ), ζ ∈ T, (2.1)

for some polynomial P (z) = P0+P1z+ · · ·+Pmz
m with coefficients in L(G). The

polynomial P (z) can be chosen to be outer.

The definition of an outer polynomial will be given later; in the scalar case,
a polynomial is outer if and only if it has no zeros in D.

The proof uses (unilateral) shift and Toeplitz operators (see [11] and [29]).
By a shift operator here we mean an isometry S on a Hilbert space H such that
the unitary component of S in its Wold decomposition is trivial. With natural
identifications, we can write H = G⊕G⊕ · · · for some Hilbert space G and

S(h0, h1, . . . ) = (0, h0, h1, . . . )
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when the elements of H are written in sequence form. Suppose that such a shift S
is chosen and fixed. If T,A ∈ L(H), we say that T is Toeplitz if S∗TS = T , and
that A is analytic if AS = SA. An analytic operator A is said to be outer if ranA
is a subspace of H of the form F⊕ F⊕ · · · for some closed subspace F of G.

As block operator matrices, Toeplitz and analytic operators have the forms

T =

⎛⎜⎜⎜⎜⎜⎝
T0 T−1 T−2 · · ·
T1 T0 T−1

. . .

T2 T1 T0
. . .

...
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ , A =

⎛⎜⎜⎜⎜⎜⎝
A0 0 0 · · ·
A1 A0 0

. . .

A2 A1 A0
. . .

...
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ . (2.2)

Here

Tj =

{
E∗0S∗

jTE0|G, j ≥ 0,

E∗0TS
|j|E0|G, j < 0,

(2.3)

where E0g = (g, 0, 0, . . . ) is the natural embedding of G into H. For examples,
consider Laurent and analytic polynomials Q(z) =

∑m
k=−mQkz

k and P (z) =
P0 + P1z + · · · + Pmz

m with coefficients in L(G). Set Qj = 0 for |j| > m and
Pj = 0 for j > m. Then the formulas

TQ =

⎛⎜⎜⎜⎜⎜⎝
Q0 Q−1 Q−2 · · ·
Q1 Q0 Q−1

. . .

Q2 Q1 Q0
. . .

...
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎠ , TP =

⎛⎜⎜⎜⎜⎜⎝
P0 0 0 · · ·
P1 P0 0

. . .

P2 P1 P0
. . .

...
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎠ (2.4)

define bounded operators on H. Boundedness follows from the identity∫
T

〈Q(ζ)f(ζ), g(ζ)〉G dσ(ζ) =
∞∑

k,j=0

〈Qj−kfk, gj〉G, (2.5)

where σ is normalized Lebesgue measure on T and f(ζ) = f0 + f1ζ + f2ζ
2 + · · ·

and g(ζ) = g0 + g1ζ + g2ζ
2 + · · · have coefficients in G, all but finitely many of

which are zero. The operator TQ is Toeplitz, and TP is analytic. Moreover,
• Q(ζ) ≥ 0 for all ζ ∈ T if and only if TQ ≥ 0;
• Q(ζ) = P (ζ)∗P (ζ) for all ζ ∈ T if and only if TQ = T ∗PTP .

Definition 2.2. We say that the polynomial P (z) is outer if the analytic Toeplitz
operator A = TP is outer.

In view of the example (2.4), the main problem is to write a given nonnegative
Toeplitz operator T in the form T = A∗A, where A is analytic. We also want to
know that if T = TQ for a Laurent polynomial Q, then we can choose A = TP for
an outer analytic polynomial P of the same degree. Lemmas 2.3 and 2.4 reduce
the problem to showing that a certain isometry is a shift operator.
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Lemma 2.3 (Lowdenslager’s Criterion). Let H be a Hilbert space, and let S ∈ L(H)
be a shift operator. Let T ∈ L(H) be Toeplitz relative to S as defined above, and
suppose that T ≥ 0. Let HT be the closure of the range of T 1/2 in the inner product
of H. Then there is an isometry ST mapping HT into itself such that

STT
1/2f = T 1/2Sf, f ∈ H.

In order that T = A∗A for some analytic operator A ∈ L(H), it is necessary and
sufficient that ST is a shift operator. In this case, A can be chosen to be outer.

Proof. The existence of the isometry ST follows from the identity S∗TS = T ,
which implies that T 1/2Sf and T 1/2f have the same norms for any f ∈ H.

If ST is a shift operator, we can view HT as a direct sum HT = GT ⊕GT ⊕· · ·
with ST (h0, h1, . . . ) = (0, h0, h1, . . . ). Here dimGT ≤ dimG. To see this, notice
that a short argument shows that T 1/2S∗T and S∗T 1/2 agree on HT , and therefore
T 1/2(kerS∗T ) ⊆ kerS∗. The dimension inequality then follows because T 1/2 is one-
to-one on the closure of its range. Therefore we may choose an isometry V from
GT into G. Define an isometry W on HT into H by

W (h0, h1, . . . ) = (V h0, V h1, . . . ).

Define A ∈ L(H) by mapping H into HT via T 1/2 and then HT into H via W :

Af = WT 1/2f, f ∈ H.

Straightforward arguments show that A is analytic, outer, and T = A∗A.
Conversely, suppose that T = A∗A where A ∈ L(H) is analytic. Define an

isometryW on HT into H by WT 1/2f = Af , f ∈ H. Then WST = SW , and hence
S∗T

n = W ∗S∗nW for all n ≥ 1. Since the powers of S∗ tend strongly to zero, so do
the powers of S∗T , and therefore ST is a shift operator. �

Lemma 2.4. In Lemma 2.3, let T = TQ be given by (2.4) for a Laurent polynomial
Q(z) of degree m. If T = A∗A where A ∈ L(H) is analytic and outer, then A = TP
for some outer analytic polynomial P (z) of degree m.

Proof. Let Q(z) =
∑m

k=−mQkz
k. Recall that Qj = 0 for |j| > m. By (2.3) applied

to A, what we must show is that S∗jAE0 = 0 for all j > m. It is sufficient to show
that S∗m+1AE0 = 0. By (2.3) applied to T , since T = A∗A and A is analytic,

E∗0A
∗S∗jAE0 = E∗0S

∗jTE0 = Qj = 0, j > m.

It follows that ranS∗m+1AE0 ⊥ ranASkE0 for all k ≥ 0, and therefore

ranS∗m+1AE0 ⊥ ranA. (2.6)

Since A is outer, ranA reduces S, and so ranS∗m+1AE0 ⊆ ranA. Therefore
S∗m+1AE0 = 0 by (2.6), and the result follows. �

The proof of the operator Fejér-Riesz theorem is now easily completed.
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Proof of Theorem 2.1. Define T = TQ as in (2.4). Lemmas 2.3 and 2.4 reduce the
problem to showing that the isometry ST is a shift operator. It is sufficient to show
that ‖S∗T nf‖ → 0 for every f in HT .

Claim: If f = T 1/2h where h ∈ H has the form h = (h0, . . . , hr, 0, . . . ), then
S∗T

nf = 0 for all sufficiently large n.

For if u ∈ H and n is any positive integer, then〈
S∗T

nf, T 1/2u
〉
HT

=
〈
f, SnTT

1/2u
〉
HT

=
〈
T 1/2h, T 1/2Snu

〉
H
= 〈Th, Snu〉H.

By the definition of T = TQ, Th has only a finite number of nonzero entries
(depending on m and r), and the first n entries of Snu are zero (irrespective of u).
The claim follows from the arbitrariness of u.

In view of the claim, ‖S∗T nf‖ → 0 for a dense set of vectors in HT , and hence
by approximation this holds for all f in HT . Thus ST is a shift operator, and the
result follows. �

A more general result is proved in the original version of Theorem 2.1 in [49].
There it is only required that Q(z)g is a Laurent polynomial for a dense set of g
in G (the degrees of these polynomials can be unbounded). We have omitted an
accompanying uniqueness statement: the outer polynomial P (z) in Theorem 2.1
can be chosen such that P (0) ≥ 0, and then it is unique. See [2] and [50].

3. Method of Schur complements

We outline now a completely different proof of the operator Fejér-Riesz theorem.
The proof is due to Dritschel and Woerdeman [19] and is based on the notion
of a Schur complement. The procedure constructs the outer polynomial P (z) =
P0+P1z+ · · ·+Pmz

m one coefficient at a time. A somewhat different use of Schur
complements in the operator Fejér-Riesz theorem appears in Dritschel [18]. The
method in [18] plays a role in the multivariable theory, which is taken up in §5.

We shall explain the main steps of the construction assuming the validity
of two lemmas. Full details are given in [19] and also in the forthcoming book
[3] by Bakonyi and Woerdeman. The authors thank Mihaly Bakonyi and Hugo
Woerdeman for advance copies of key parts of [3], which has been helpful for our
exposition. The book [3] includes many additional results not discussed here.

Definition 3.1. Let H be a Hilbert space. Suppose T ∈ L(H), T ≥ 0. Let K be a
closed subspace of H, and let PK ∈ L(H,K) be orthogonal projection of H onto K.
Then (see Appendix, Lemma A.2) there is a unique operator S ∈ L(K), S ≥ 0,
such that
(i) T − P ∗KSPK ≥ 0;
(ii) if S̃ ∈ L(K), S̃ ≥ 0, and T − P ∗KS̃PK ≥ 0, then S̃ ≤ S.
We write S = S(T,K) and call S the Schur complement of T supported on K.
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Schur complements satisfy an inheritance property, namely, if K− ⊆ K+ ⊆ H,
then S(T,K−) = S(S(T,K+),K−). If T is specified in matrix form,

T =
(
A B∗

B C

)
: K⊕ K⊥ → K⊕ K⊥,

then S = S(T,K) is the largest nonnegative operator in L(K) such that(
A− S B∗

B C

)
≥ 0.

The condition T ≥ 0 is equivalent to the existence of a contraction G ∈ L(K,K⊥)
such that B = C

1
2GA

1
2 (Appendix, Lemma A.1). In this case, G can be chosen so

that it maps ranA into ranC and is zero on the orthogonal complement of ranA,
and then

S = A
1
2 (I −G∗G)A

1
2 .

When C is invertible, this reduces to the familiar formula S = A− B∗C−1B.

Lemma 3.2. Let M ∈ L(H), M ≥ 0, and suppose that

M =
(
A B∗

B C

)
: K⊕ K⊥ → K⊕ K⊥

for some closed subspace K of H.
(1) If S(M,K) = P ∗P and C = R∗R for some P ∈ L(K) and R ∈ L(K⊥), then
there is a unique X ∈ L(K,K⊥) such that

M =
(
P ∗ X∗

0 R∗

)(
P 0
X R

)
and ranX ⊆ ranR. (3.1)

(2) Conversely, if (3.1) holds for some operators P,X,R, then S(M,K) = P ∗P .

We omit the proof and refer the reader to [3] or [19] for details.

Proof of Theorem 2.1 using Schur complements. Let Q(z) =
∑m

k=−mQkz
k satisfy

Q(ζ) ≥ 0 for all ζ ∈ T. We shall recursively construct the coefficients of an outer
polynomial P (z) = P0 + P1z + · · ·+ Pmz

m such that Q(ζ) = P (ζ)∗P (ζ), ζ ∈ T.
Write H = G⊕G⊕ · · · and Gn = G⊕ · · · ⊕G with n summands. As before,

set Qk = 0 for |k| > m, and define TQ ∈ L(H) by

TQ =

⎛⎜⎜⎜⎜⎜⎝
Q0 Q−1 Q−2 · · ·
Q1 Q0 Q−1

. . .

Q2 Q1 Q0
. . .

...
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ .

For each k = 0, 1, 2, . . . , define

S(k) = S(TQ,Gk+1),
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which we interpret as the Schur complement of TQ on the first k+1 summands of
H = G⊕G⊕ · · · . Thus S(k) is a (k+1)× (k+1) block operator matrix satisfying

S(S(k),Gj+1) = S(j), 0 ≤ j < k <∞, (3.2)

by the inheritance property of Schur complements.

Lemma 3.3. For each k = 0, 1, 2, . . . ,

S(k + 1) =

⎛⎜⎜⎜⎝
Y0

(
Y1 · · · Yk+1

)⎛⎜⎝ Y ∗1
...

Y ∗k+1

⎞⎟⎠ S(k)

⎞⎟⎟⎟⎠
for some operators Y0, Y1, . . . , Yk+1 in L(G). For k ≥ m− 1,(

Y0 Y1 · · · Yk+1
)
=
(
Q0 Q−1 · · · Q−k−1

)
.

Again see [3] or [19] for details. Granting Lemmas 3.2 and 3.3, we can proceed
with the construction.

Construction of P0, P1. Choose P0 = S(0)
1
2 . Using Lemma 3.3, write

S(1) =
(
Y0 Y1
Y ∗1 S(0)

)
.

In Lemma 3.2(1) take M = S(1) and use the factorizations

S(S(1),G1)
(3.2)
= S(0) = P ∗0 P0 and S(0) = P ∗0 P0 .

Choose P1 = X where X ∈ L(G) is the operator produced by Lemma 3.2(1). Then

S(1) =
(
P ∗0 P ∗1
0 P ∗0

)(
P0 0
P1 P0

)
and ranP1 ⊆ ranP0. (3.3)

Construction of P2. Next use Lemma 3.3 to write

S(2) =

⎛⎝ Y0
(
Y1 Y2

)(
Y ∗1
Y ∗2

)
S(1)

⎞⎠ ,

and apply Lemma 3.2(1) to M = S(2) with the factorizations

S(S(2),G1)
(3.2)
= S(0) = P ∗0 P0,

S(1) =
(
P ∗0 P ∗1
0 P ∗0

)(
P0 0
P1 P0

)
.
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This yields operators X1, X2 ∈ L(G) such that

S(2) =

⎛⎝P ∗0 X∗1 X∗2
0 P ∗0 P ∗1
0 0 P ∗0

⎞⎠⎛⎝P0 0 0
X1 P0 0
X2 P1 P0

⎞⎠ , (3.4)

ran
(
X1
X2

)
⊆ ran

(
P0 0
P1 P0

)
. (3.5)

In fact, X1 = P1. To see this, notice that we can rewrite (3.4) as

S(2) =

(
P̃ ∗ X̃∗

0 R̃∗

)(
P̃ 0
X̃ R̃

)
,

P̃ =
(
P0 0
X1 P0

)
, X̃ =

(
X2 P1

)
, R̃ = P0.

By (3.3) and (3.5), ranP1 ⊆ ranP0 and ranX2 ⊆ ranP0, and therefore ran X̃ ⊆
ranP0. Hence by Lemma 3.2(2),

S(S(2),G2) = P̃ ∗P̃ =
(
P ∗0 X∗1
0 P ∗0

)(
P0 0
X1 P0.

)
. (3.6)

Comparing this with

S(S(2),G2)
(3.2)
= S(1)

(3.3)
=

(
P ∗0 P ∗1
0 P ∗0

)(
P0 0
P1 P0

)
, (3.7)

we get P ∗0 P1 = P ∗0X1. By (3.5), ranX1 ⊆ ranP0, and therefore X1 = P1. Now
choose P2 = X2 to obtain

S(2) =

⎛⎝P ∗0 P ∗1 P ∗2
0 P ∗0 P ∗1
0 0 P ∗0

⎞⎠⎛⎝P0 0 0
P1 P0 0
P2 P1 P0

⎞⎠ , (3.8)

ran
(
P1
P2

)
⊆ ran

(
P0 0
P1 P0

)
. (3.9)

Inductive step. We continue in the same way for all k = 1, 2, 3, . . . . At the kth
stage, the procedure produces operators P0, . . . , Pk such that

S(k) =

⎛⎜⎝P
∗
0 · · · P ∗k

. . .
...

0 P ∗0

⎞⎟⎠
⎛⎜⎝P0 0

...
. . .

Pk · · · P0

⎞⎟⎠ , (3.10)

ran

⎛⎜⎝P1...
Pk

⎞⎟⎠ ⊆ ran

⎛⎜⎝P0 0
...

. . .
Pk · · · P0

⎞⎟⎠ . (3.11)
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By Lemma 3.3, in the case k ≥ m,

S(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q0
(
Q−1 · · · Q−m 0 · · · 0

)⎛⎜⎜⎜⎜⎜⎜⎜⎝

Q∗−1
· · ·
Q∗−m
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
S(k − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.12)

The zeros appear here when k > m, and their presence leads to the conclusion
that Pk = 0 for k > m. We set then

P (z) = P0 + P1z + · · ·+ Pmz
m.

Comparing (3.10) and (3.12) in the case k = m, we deduce 2m+1 relations which
are equivalent to the identity

Q(ζ) = P (ζ)∗P (ζ), ζ ∈ T.

Final step: P (z) is outer. Define TP as in (2.4). With natural identifications,

TP =

⎛⎜⎜⎜⎝
P0

(
0 0 · · ·

)⎛⎜⎝P1P2
...

⎞⎟⎠ TP

⎞⎟⎟⎟⎠ . (3.13)

The relations (3.11), combined with the fact that Pk = 0 for all k > m, imply that

ran

⎛⎜⎝P1P2
...

⎞⎟⎠ ⊆ ran TP .

Hence for any g ∈ G, a sequence fn can be found such that

TP fn →

⎛⎜⎝P1P2
...

⎞⎟⎠ g.

Then by (3.13),

TP

(
g
fn

)
→

(
P0
0

)
g.

It follows that ran TP contains every vector (P0g, 0, 0, . . . ) with g ∈ L(G), and
hence ran TP ⊇ ranP0 ⊕ ranP0 ⊕ · · · . The reverse inclusion holds because by
(3.11), the ranges of P1, P2, . . . are all contained in ranP0. Thus P (z) is outer. �
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4. Spectral factorization

The problem of spectral factorization is to write a nonnegative operator-valued
function F on the unit circle in the form F = G∗G where G is analytic (in a sense
made precise below). The terminology comes from prediction theory, where the
nonnegative function F plays the role of a spectral density for a multidimensional
stationary stochastic process. The problem may be viewed as a generalization of a
classical theorem of Szegő from Hardy class theory and the theory of orthogonal
polynomials (see Hoffman [35, p. 56] and Szegő [62, Chapter X]).

We write Hp and Lp for the standard Hardy and Lebesgue spaces for the
unit disk and unit circle. See Duren [20]. Recall that σ is normalized Lebesgue
measure on the unit circle T.

Theorem 4.1 (Szegő’s Theorem). Let w ∈ L1 satisfy w ≥ 0 a.e. on T and∫
T

logw(ζ) dσ > −∞.

Then w = |h|2 a.e. on T for some h ∈ H2, and h can be chosen to be an outer
function.

Operator and matrix generalizations of Szegő’s theorem are stated in The-
orems 4.5 and 4.7 below. Some vectorial function theory is needed to formulate
these and other results. We assume familiarity with basic concepts but recall a few
definitions. For details, see, e.g., [30, 61] and [50, Chapter 4].

In this section, G denotes a separable Hilbert space. Functions f and F on the
unit circle with values in G and L(G), respectively, are called weakly measurable
if 〈f(ζ), v〉 and 〈F (ζ)u, v〉 are measurable for all u, v ∈ G. Nontangential limits
for analytic functions on the unit disk are taken in the strong (norm) topology for
vector-valued functions, and in the strong operator topology for operator-valued
functions. We fix notation as follows:
(i) We write L2G and L∞L(G) for the standard Lebesgue spaces of weakly measur-

able functions on the unit circle with values in G and L(G).
(ii) Let H2

G and H∞L(G) be the analogous Hardy classes of analytic functions on
the unit disk. We identify elements of these spaces with their nontangen-
tial boundary functions, and so the spaces may alternatively be viewed as
subspaces of L2G and L∞L(G).

(iii) Let N+L(G) be the space of all analytic functions F on the unit disk such that
ϕF belongs to H∞L(G) for some bounded scalar outer function ϕ. The elements
of N+L(G) are also identified with their nontangential boundary functions.
A function F ∈ H∞L(G) is called outer if FH

2
G is dense in H2F for some closed

subspace F of G. A function F ∈ N+L(G) is outer if there is a bounded scalar outer
function ϕ such that ϕF ∈ H∞L(G) and ϕF is outer in the sense just defined. The
definition of an outer function given here is consistent with the previously defined
notion for polynomials in §2.
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A function A ∈ H∞L(G) is called inner if multiplication by A on H2G is a partial
isometry. In this case, the initial space of multiplication by A is a subspace of H2G
of the form H2F where F is a closed subspace of G. To prove this, notice that both
the kernel of multiplication by A and the set on which it is isometric are invariant
under multiplication by z. Therefore the initial space of multiplication by A is a
reducing subspace for multiplication by z, and so it has the form H2F where F is a
closed subspace of G (see [29, p. 106] and [50, p. 96]).

Every F ∈ H∞L(G) has an inner-outer factorization F = AG, where A is an
inner function and G is an outer function. This factorization can be chosen such
that the isometric set H2F for multiplication by A on H2G coincides with the closure
of the range of multiplication by G. The inner-outer factorization is extended in
an obvious way to functions F ∈ N+L(G). Details are given, for example, in [50,
Chapter 5].

The main problem of this section can now be interpreted more precisely:
Factorization Problem. Given a nonnegative weakly measurable function F on T,
find a function G in N+L(G) such that F = G∗G a.e. on T. If such a function exists,
we say that F is factorable.

If a factorization exists, the factor G can be chosen to be outer by the inner-
outer factorization. Moreover, an outer factor G can be chosen such that G(0) ≥ 0,
and then it is unique [50, p. 101]. By the definition of N+L(G), a necessary condition
for F to be factorable is that∫

T

log+ ‖F (ζ)‖ dσ <∞, (4.1)

where log+ x is zero or log x according as 0 ≤ x ≤ 1 or 1 < x <∞, and so we only
need consider functions which satisfy (4.1). In fact, in proofs we can usually reduce
to the bounded case by considering F/|ϕ|2 for a suitable scalar outer function ϕ.

The following result is another view of Lowdenslager’s criterion, which we
deduce from Lemma 2.3. A direct proof is given in [61, pp. 201–203].

Lemma 4.2. Suppose F ∈ L∞L(G) and F ≥ 0 a.e. on T. Let KF be the closure of
F

1
2H2G in L2G, and let SF be the isometry multiplication by ζ on KF . Then F is

factorable if and only if SF is a shift operator, that is,
∞⋂
n=0

ζn F
1
2H2G = {0}. (4.2)

Proof. In Lemma 2.3 take H = H2G viewed as a subspace of L2G, and let S be
multiplication by ζ on H. Define T ∈ L(H) by Tf = PFf , f ∈ H, where P is
the projection from L2G onto H2G. One sees easily that T is a nonnegative Toeplitz
operator, and so we can define HT and an isometry ST as in Lemma 2.3. In fact,
ST is unitarily equivalent to SF via the natural isomorphism W : HT → KF such
that W (T

1
2 f) = F

1
2 f for every f in H. Thus SF is a shift operator if and only if

ST is a shift operator, and by Lemma 2.3 this is the same as saying that T = A∗A
where A ∈ L(H) is analytic, or equivalently F is factorable [50, p. 110]. �
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We obtain a very useful sufficient condition for factorability.

Theorem 4.3. Suppose F ∈ L∞L(G) and F ≥ 0 a.e. For F to be factorable, it is
sufficient that there exists a function ψ in L∞L(G) such that

(i) ψF ∈ H∞L(G);
(ii) for all ζ ∈ T except at most a set of measure zero, ψ(ζ)

∣∣F (ζ)G is one-to-one.
If these conditions are met and F = G∗G a.e. with G outer, then ψG∗ ∈ H∞L(G).

Theorem 4.3 appears in Rosenblum [49] with ψ(ζ) = ζm (viewed as an
operator-valued function). The case of an arbitrary inner function was proved
and applied in a variety of ways by Rosenblum and Rovnyak [50, 51]. V. I. Mat-
saev first showed that more general functions ψ can be used. Matsaev’s result is
evidently unpublished, but versions were given by D.Z. Arov [1, Lemma to Theo-
rem 4] and A.S. Markus [41, Theorem 34.3 on p. 199]. Theorem 4.3 includes all of
these versions.

We do not know if the conditions (i) and (ii) in Theorem 4.3 are necessary
for factorability. It is not hard to see that they are necessary in the simple cases
dimG = 1 and dimG = 2 (for the latter case, one can use [50, Example 1, p. 125]).
The general case, however, is open.

Proof of Theorem 4.3. Let F satisfy (i) and (ii). Define a subspace M of L2G by

M =
∞⋂
n=0

ζn F
1
2H2G =

∞⋂
n=0

ζnF
1
2H2G.

We show that M = {0}. By (i),

ψF
1
2 M = ψF

1
2

∞⋂
n=0

ζnF
1
2H2G ⊆

∞⋂
n=0

ζnψFH2G ⊆
∞⋂
n=0

ζnH2G = {0}. (4.3)

Thus ψF
1
2 M = {0}. Now if g ∈ M, then ψF

1
2 g = 0 a.e. by (4.3). Hence F

1
2 g = 0

a.e. by (ii). By the definition of M, g ∈ F
1
2H2G, and standard arguments show

from this that g(ζ) ∈ F (ζ)
1
2 G a.e. Therefore g = 0 a.e. It follows that M = {0},

and so F is factorable by Lemma 4.2.
Let F = G∗G a.e. with G outer. We prove that ψG∗ ∈ H∞L(G) by showing

that ψG∗H2G ⊆ H2G. Since G is outer, GH2G = H2F for some closed subspace F of G.
By (i),

ψG∗(GH2G) = ψFH2G ⊆ H2G.

Therefore ψG∗H2F ⊆ H2G. Suppose f ∈ H2G�F, and consider any h ∈ L2G. Then

〈G∗f, h〉L2
G
=
∫
T

〈f(ζ), G(ζ)h(ζ)〉G dσ = 0,

because ranG(ζ) ⊆ F a.e. Thus ψG∗f = 0 a.e. It follows that ψG∗H2G ⊆ H2G, and
therefore ψG∗ ∈ H∞L(G). �
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For a simple application of Theorem 4.3, suppose that F is a Laurent poly-
nomial of degree m, and choose ψ to be ζmI. In short order, this yields another
proof of the operator Fejér-Riesz theorem (Theorem 2.1).

Another application is a theorem of Sarason [55, p. 198], which generalizes
the factorization of a scalar-valued function in H1 as a product of two functions
in H2 (see [35, p. 56]).

Theorem 4.4. Every G in N+L(G) can be written G = G1G2, where G1 and G2

belong to N+L(G) and

G∗2G2 = [G∗G]1/2 and G∗1G1 = G2G
∗
2 a.e.

Proof. Suppose first that G ∈ H∞L(G). For each ζ ∈ T, write

G(ζ) = U(ζ)[G∗(ζ)G(ζ)]
1
2 ,

where U(ζ) is a partial isometry with initial space ran [G∗(ζ)G(ζ)]
1
2 . It can be

shown that U is weakly measurable. We apply Theorem 4.3 with F = [G∗G]
1
2 and

ψ = U . Conditions (i) and (ii) of Theorem 4.3 are obviously satisfied, and so we
obtain an outer function G2 ∈ H∞L(G) such that

G∗2G2 = [G∗G]1/2 a.e.

and UG∗2 ∈ H∞L(G). Set G1 = UG∗2. By construction G1 ∈ H∞L(G),

G = U(G∗G)
1
2 = (UG∗2)G2 = G1G2,

and G∗1G1 = G2U
∗UG∗2 = G2G

∗
2 a.e. The result follows when G ∈ H∞L(G).

The general case follows on applying what has just been shown to ϕ2G, where
ϕ is a scalar-valued outer function such that ϕ2G ∈ H∞L(G). �

The standard operator generalization of Szegő’s theorem also follows from
Theorem 4.3.

Theorem 4.5. Let F be a weakly measurable function on T having invertible values
in L(G) satisfying F ≥ 0 a.e. If∫

T

log+ ‖F (ζ)‖ dσ <∞ and
∫
T

log+ ‖F (ζ)−1‖ dσ <∞,

then F is factorable.

Proof. Since log+ ‖F (ζ)‖ is integrable, we can choose a scalar outer function ϕ1
such that

F1 = F/|ϕ1|2 ∈ L∞L(G).
Since log+ ‖F (ζ)−1‖ is integrable, so is log+ ‖F1(ζ)−1‖. Hence there is a bounded
scalar outer function ϕ such that

ϕF−11 ∈ L∞L(G).
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We apply Theorem 4.3 to F1 with ψ = ϕF−11 . Condition (i) is satisfied because
ψF1 = ϕI. Condition (ii) holds because the values of ψ are invertible a.e. Thus F1
is factorable, and hence so is F . �

Theorem 4.3 has a half-plane version, the scalar inner case of which is given
in [50, p. 117]. This has an application to the following generalization of Akhiezer’s
theorem on factoring entire functions [50, Chapter 6].

Theorem 4.6. Let F be an entire function of exponential type τ , having values in
L(G), such that F (x) ≥ 0 for all real x and∫ ∞

−∞

log+ ‖F (t)‖
1 + t2

dt <∞.

Then F (x) = G(x)∗G(x) for all real x where G is an entire function with values
in L(G) such that exp(−iτz/2)G is of exponential type τ/2 and the restriction of
G to the upper half-plane is an outer function.

Matrix case

We end this section by quoting a few results for matrix-valued functions. The
matrix setting is more concrete, and one can do more. Statements often require
invertibility assumptions. We give no details and leave it to the interested reader
to consult other sources for further information.

Our previous definitions and results transfer in an obvious way to matrix-
valued functions. For this we choose G = Cr for some positive integer r and identify
operators on Cr with r × r matrices. The operator norm of a matrix is denoted
‖ · ‖. We write L∞r×r, H

∞
r×r in place of L∞L(G), H

∞
L(G) and ‖ · ‖∞ for the norms on

these spaces.
Theorem 4.5 is more commonly stated in a different form for matrix-valued

functions.

Theorem 4.7. Suppose that F is an r×r measurable matrix-valued function having
invertible values on T such that F ≥ 0 a.e. and log+ ‖F‖ is integrable. Then F is
factorable if and only if log detF is integrable.

Recall that when F is factorable, there is a unique outerG such that F = G∗G
and G(0) ≥ 0. It makes sense to inquire about the continuity properties of the
mapping Φ: F → G with respect to various norms. For example, see Jacob and
Partington [37]. We cite one recent result in this area.

Theorem 4.8 (Barclay [5]). Let F, Fn, n = 1, 2, . . . , be r × r measurable matrix-
valued functions on T having invertible values a.e. and integrable norms. Suppose
that F = G∗G and Fn = G∗nGn, where G,Gn are r × r matrix-valued outer func-
tions such that G(0) ≥ 0 and Gn(0) ≥ 0, n = 1, 2, . . . . Then

lim
n→∞

∫
T

‖G(ζ)−Gn(ζ)‖2 dσ = 0

if and only if
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(i) lim
n→∞

∫
T

‖F (ζ)− Fn(ζ)‖ dσ = 0, and

(ii) the family of functions {log detFn}∞n=0 is uniformly integrable.

A family of functions {ϕα}α∈A ⊆ L1 is uniformly integrable if for every ε > 0
there is a δ > 0 such that

∫
E |ϕα| dσ < ε for all α ∈ A whenever σ(E) < δ. See [5]

for additional references and similar results in other norms.
A theorem of Bourgain [9] characterizes all functions on the unit circle which

are products h̄g with g, h ∈ H∞: A function f ∈ L∞ has the form f = h̄g where
g, h ∈ H∞ if and only if log |f | is integrable. This resolves a problem of Douglas
and Rudin [17]. The problem is more delicate than spectral factorization; when
|f | = 1 a.e., the factorization cannot be achieved in general with inner functions.
Bourgain’s theorem was recently generalized to matrix-valued functions.

Theorem 4.9 (Barclay [4, 6]). Suppose F ∈ L∞r×r has invertible values a.e. Then
F has the form F = H∗G a.e. for some G,H in H∞r×r if and only if log | detF | is
integrable. In this case, for every ε > 0 such a factorization can be found with

‖G‖∞‖H‖∞ < ‖F‖∞ + ε.

The proof of Theorem 4.9 in [6] is long and technical. In fact, Barclay proves
an Lp-version of this result for all p, 1 ≤ p ≤ ∞.

Another type of generalization is factorization with indices. We quote one
result to illustrate this notion.

Theorem 4.10. Let F be an r × r matrix-valued function with rational entries.
Assume that F has no poles on T and that detF (ζ) �= 0 for all ζ in T. Then there
exist integers κ1 ≤ κ2 ≤ · · · ≤ κr such that

F (z) = F−(z)diag {zκ1, . . . , zκr}F+(z),
where F± are r × r matrix-valued functions with rational entries such that
(i) F+(z) has no poles for |z| ≤ 1 and detF+(z) �= 0 for |z| ≤ 1;
(ii) F−(z) has no poles for |z| ≥ 1 including z =∞ and detF−(z) �= 0 for |z| ≥ 1

including z =∞.

The case in which F is nonnegative on T can be handled using the operator
Fejér-Riesz theorem (the indices are all zero in this case). The general case is given
in Gohberg, Goldberg, and Kaashoek [27, pp. 236–239]. This is a large subject that
includes, for example, general theories of factorization in Bart, Gohberg, Kaashoek,
and Ran [7] and Clancey and Gohberg [13].

Historical remarks

Historical accounts of spectral factorization appear in [2, 30, 50, 52, 61]. Briefly,
the problem of factoring nonnegative matrix-valued functions on the unit circle
rose to prominence in the prediction theory of multivariate stationary stochastic
processes. The first results of this theory were announced by Zasuhin [65] without
complete proofs; proofs were supplied by M.G. Krĕın in lectures. Modern accounts
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of prediction theory and matrix generalizations of Szegő’s theorem are based on
fundamental papers of Helson and Lowdenslager [31, 32], and Wiener and Masani
[63, 64]. The general case of Theorem 4.5 is due to Devinatz [15]; other proofs are
given in [16, 30, 50]. For an engineering view and computational methods, see [38,
Chapter 8] and [56].

The original source for Lowdenslager’s Criterion (Lemmas 2.3 and 4.2) is
[40]; an error in [40] was corrected by Douglas [16]. There is a generalization,
given by Sz.-Nagy and Foias [61, pp. 201–203], in which the isometry may have a
nontrivial unitary component and the shift component yields a maximal factorable
summand. Lowdenslager’s Criterion is used in the construction of canonical models
of operators by de Branges [10]. See also Constantinescu [14] for an adaptation to
Toeplitz kernels and additional references.

5. Multivariable theory

It is natural to wonder to what extent the results for one variable carry over to sev-
eral variables. Various interpretations of “several variables” are possible. The most
straightforward is to consider Laurent polynomials in complex variables z1, . . . , zd
that are nonnegative on the d-torus Td. The method of Schur complements in §3
suggests an approach to the factorization problem for such polynomials. Care is
needed, however, since the first conjectures for a multivariable Fejér-Riesz theorem
that might come to mind are false, as explained below. Multivariable generaliza-
tions of the Fejér-Riesz theorem are thus necessarily weaker than the one-variable
result. One difficulty has to do with degrees, and if the condition on degrees is
relaxed, there is a neat result in the strictly positive case (Theorem 5.1).

By a Laurent polynomial in z = (z1, . . . , zd) we understand an expression

Q(z) =
m1∑

k1=−m1

· · ·
md∑

kd=−md

Qk1,...,kd
zk1
1 · · · zkd

d . (5.1)

We assume that the coefficients belong to L(G), where G is a Hilbert space. With
obvious interpretations, the scalar case is included. By an analytic polynomial with
coefficients in L(G) we mean an analogous expression, of the form

P (z) =
m1∑
k1=0

· · ·
md∑
kd=0

Pk1,...,kd
zk1
1 · · · zkd

d . (5.2)

The numbers m1, . . . ,md in (5.1) and (5.2) are upper bounds for the degrees of
the polynomials in z1, . . . , zd, which we define as the smallest values of m1, . . . ,md

that can be used in the representations (5.1) and (5.2).
Suppose that Q(z) has the form (5.1) and satisfies Q(ζ) ≥ 0 for all ζ ∈

Td, that is, for all ζ = (ζ1, . . . , ζd) with |ζ1| = · · · = |ζd| = 1. Already in the
scalar case, one cannot always find an analytic polynomial P (z) such that Q(ζ) =
P (ζ)∗P (ζ), ζ ∈ Td. This was first explicitly shown by Lebow and Schreiber [39].
There are also difficulties in writing Q(ζ) =

∑r
j=1 Pj(ζ)

∗Pj(ζ), ζ ∈ Td, for some
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finite set of analytic polynomials, at least if one requires that the degrees of the
analytic polynomials do not exceed those of Q(z) as in the one-variable case (see
Naftalevich and Schreiber [44], Rudin [53], and Sakhnovich [54, §3.6]). The example
in [44] is based on a Cayley transform of a version of a real polynomial over R2

called Motzkin’s polynomial, which was the first explicit example of a nonnegative
polynomial in Rd, d > 1, which is not a sum of squares of polynomials. What is
not mentioned in these sources is that if we loosen the restriction on degrees, the
polynomial in [44] can be written as a sum of squares (see [19]). Nevertheless, for
three or more variables, very general results of Scheiderer [57] imply that there
exist nonnegative, but not strictly positive, polynomials which cannot be expressed
as such finite sums regardless of degrees.

Theorem 5.1. Let Q(z) be a Laurent polynomial in z = (z1, . . . , zd) with coefficients
in L(G) for some Hilbert space G. Suppose that there is a δ > 0 such that Q(ζ) ≥ δI
for all ζ ∈ Td. Then

Q(ζ) =
r∑

j=1

Pj(ζ)∗Pj(ζ), ζ ∈ Td, (5.3)

for some analytic polynomials P1(z), . . . , Pr(z) in z = (z1, . . . , zd) which have co-
efficients in L(G). Furthermore, for any fixed k, the representation (5.3) can be
chosen such that the degree of each analytic polynomial in zk is no more than the
degree of Q(z) in zk.

The scalar case of Theorem 5.1 follows by a theorem of Schmüdgen [58],
which states that strictly positive polynomials over compact semialgebraic sets
in Rn (that is, sets which are expressible in terms of finitely many polynomial
inequalities) can be written as weighted sums of squares, where the weights are
the polynomials used to define the semialgebraic set (see also [12]); the proof is
nonconstructive. On the other hand, the proof we sketch using Schur complements
covers the operator-valued case, and it gives an algorithm for finding the solution.
One can also give estimates for the degrees of the polynomials involved, though
we have not stated these.

We prove Theorem 5.1 for the case d = 2, following Dritschel [18]. The general
case is similar. The argument mimics the method of Schur complements, especially
in its original form used in [18]. In place of Toeplitz matrices whose entries are
operators, in the case of two variables we use Toeplitz matrices whose entries
are themselves Toeplitz matrices. The fact that the first level Toeplitz blocks are
infinite in size causes problems, and so we truncate these blocks to finite size.
Then everything goes through, but instead of factoring the original polynomial
Q(z), the result is a factorization of polynomials Q(N)(z) that are close to Q(z).
When Q(ζ) ≥ δI on Td for some δ > 0, there is enough wiggle room to factor Q(z)
itself. We isolate the main steps in a lemma.
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Lemma 5.2. Let

Q(z) =
m1∑

j=−m1

m2∑
k=−m2

Qjkz
j
1z

k
2

be a Laurent polynomial with coefficients in L(G) such that Q(ζ) ≥ 0 for all
ζ = (ζ1, ζ2) in T2. Set

Q(N)(z) =
m1∑

j=−m1

m2∑
k=−m2

N + 1− |k|
N + 1

Qjk z
j
1z

k
2 .

Then for each N ≥ m2, there are analytic polynomials

F�(z) =
m1∑
j=0

N∑
k=0

F
(�)
jk zj1z

k
2 , � = 0, . . . , N, (5.4)

with coefficients in L(G) such that

Q(N)(ζ) =
N∑
�=0

F�(ζ)∗F�(ζ), ζ ∈ T2. (5.5)

Proof. Write

Q(z) =
m1∑

j=−m1

( m2∑
k=−m2

Qjkz
k
2

)
zj1 =

m1∑
j=−m1

Rj(z2) z
j
1,

and extend all sums to run from −∞ to ∞ by setting Qjk = 0 and Rj(z2) = 0 if
|j| > m1 or |k| > m2. Introduce a Toeplitz matrix T whose entries are the Toeplitz
matrices Tj corresponding to the Laurent polynomials Rj(z2), that is,

T =

⎛⎜⎜⎜⎜⎜⎝
T0 T−1 T−2 · · ·
T1 T0 T−1

. . .

T2 T1 T0
. . .

...
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ , Tj =

⎛⎜⎜⎜⎜⎜⎝
Qj0 Qj,−1 Qj,−2 · · ·
Qj1 Qj0 Qj,−1

. . .

Qj2 Qj1 Qj0
. . .

...
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ ,

j = 0,±1,±2, . . . . Notice that T is finitely banded, since Tj = 0 for |j| > m1. The
identity (2.5) has the following generalization:

〈Th, h〉 =
∞∑
p=0

∞∑
q=0

〈Tq−php, hq〉 =
∫
T2
〈Q(ζ)h(ζ), h(ζ)〉G dσ2(ζ) .

Here ζ = (ζ1, ζ2) and dσ2(ζ) = dσ(ζ1)dσ(ζ2). Also,

h(ζ) =
∞∑
p=0

∞∑
q=0

hpq ζ
p
1 ζ

q
2 ,
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where the coefficients are vectors in G and all but finitely many are zero, and

h =

⎛⎜⎝h0h1
...

⎞⎟⎠ , hp =

⎛⎜⎝hp0hp1
...

⎞⎟⎠ , p = 0, 1, 2, . . . .

It follows that T acts as a bounded operator on a suitable direct sum of copies
of G. Since Q(ζ) ≥ 0 on T2, T ≥ 0.

Fix N ≥ m2. Set

T ′ =

⎛⎜⎜⎜⎜⎜⎝
T ′0 T ′−1 T ′−2 · · ·
T ′1 T ′0 T ′−1

. . .

T ′2 T ′1 T ′0
. . .

...
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ ,

where T ′j is the upper (N + 1)× (N + 1) block of Tj with a normalizing factor:

T ′j =
1

N + 1

⎛⎜⎜⎝
Qj0 Qj,−1 · · · Qj,−N
Qj1 Qj0 · · · Qj,−N+1

· · ·
QjN Qj,N−1 · · · Qj0

⎞⎟⎟⎠ , j = 0,±1,±2, . . . .

Then T ′ is the Toeplitz matrix corresponding to the Laurent polynomial

Ψ(w) =
m1∑

j=−m1

T ′j w
j .

Moreover, T ′ ≥ 0 since it is a positive constant multiple of a compression of T .
Thus Ψ(w) ≥ 0 for |w| = 1. By the operator Fejér-Riesz theorem (Theorem 2.1),

Ψ(w) = Φ(w)∗Φ(w), |w| = 1, (5.6)

for some analytic polynomial Φ(w) =
∑m1

j=0 Φjw
j whose coefficients are (N +1)×

(N + 1) matrices with entries in L(G). Write

Φj =
(
ΦjN Φj,N−1 · · · Φj0

)
,

where Φjk is the kth column in Φj . Set

F̃ (z) =
m1∑
j=0

N∑
k=0

Φjk z
j
1z

k
2 .

The identity (5.6) is equivalent to 2m1 + 1 relations for the coefficients of Ψ(w).
The coefficients of Ψ(w) are constant on diagonals, there being N + 1 − k terms
in the kth diagonal above the main diagonal, and similarly below. If these terms
are summed, the result gives 2m1 + 1 relations equivalent to the identity

Q(N)(ζ) = F̃ (ζ)∗F̃ (ζ), ζ ∈ T2. (5.7)
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We omit the calculation, which is straightforward but laborious. To convert (5.7)
to the form (5.5), write

Φjk =

⎛⎜⎜⎜⎜⎝
F
(0)
jk

F
(1)
jk
...

F
(N)
jk

⎞⎟⎟⎟⎟⎠ , j = 0, . . . ,m1 and k = 0, . . . , N.

Then

F̃ (z) =

⎛⎜⎜⎜⎝
F0(z)
F1(z)

...
FN (z)

⎞⎟⎟⎟⎠ ,

where F0(z), . . . , FN (z) are given by (5.4), and so (5.7) takes the form (5.5). �

Proof of Theorem 5.1 for the case d = 2. Suppose N ≥ m2, and set

Q̃(z) =
m1∑

j=−m1

m2∑
k=−m2

N + 1
N + 1− |k| Qjk z

j
1z

k
2 .

The values of Q̃(z) are selfadjoint on T2, and Q̃(z) = Q(z) + S(z), where

S(z) =
m1∑

j=−m1

m2∑
k=−m2

|k|
N + 1− |k| Qjk z

j
1z

k
2 .

Now choose N large enough that ‖S(ζ)‖ < δ, ζ ∈ T2. Then Q̃(ζ) ≥ 0 on T2, and
the result follows on applying Lemma 5.2 to Q̃(z). �

Further details can be found in [18], and a variation on this method yielding
good numerical results is given in Geronimo and Lai [23].

While, as we mentioned, there is in general little hope of finding a factoriza-
tion of a positive trigonometric polynomial in two or more variables in terms of
one or more analytic polynomials of the same degree, it happens that there are
situations where the existence of such a factorization is important. In particular,
Geronimo and Woerdeman consider this question in the context of the autoregres-
sive filter problem [24, 25], with the first paper addressing the scalar case and the
second the operator-valued case, both in two variables. They show that for scalar-
valued polynomials in this setting there exists a factorization in terms of a single
stable (so invertible in the bidisk D2) analytic polynomial of the same degree if
and only if a full rank condition holds for certain submatrices of the associated
Toeplitz matrix ([24, Theorem 1.1.3]). The condition for operator-valued polyno-
mials is similar, but more complicated to state. We refer the reader to the original
papers for details.



244 M.A. Dritschel and J. Rovnyak

Stable scalar polynomials in one variable are by definition outer, so the Geron-
imo and Woerdeman results can be viewed as a statement about outer factoriza-
tions in two variables. In [19], a different notion of outerness is considered. As
we saw in §3, in one variable outer factorizations can be extracted using Schur
complements. The same Schur complement method in two or more variables gives
rise to a version of “outer” factorization which in general does not agree with
that coming from stable polynomials. In [19], this Schur complement version of
outerness is used when considering outer factorizations for polynomials in two or
more variables. As in the Geronimo and Woerdeman papers, it is required that
the factorization be in terms of a single analytic polynomial of the same degree as
the polynomial being factored. Then necessary and sufficient conditions for such
an outer factorization under these constraints are found ([19, Theorem 4.1]).

The problem of spectral factorization can also be considered in the mul-
tivariable setting. Blower [8] has several results along these lines for bivariate
matrix-valued functions, including a matrix analogue of Szegő’s theorem similar
to Theorem 4.7. His results are based on a two-variable matrix version of Theo-
rem 5.1, and the arguments he gives coupled with Theorem 5.1 can be used to
extend these results to polynomials in d > 2 variables as well.

6. Noncommutative factorization

We now present some noncommutative interpretations of the notion of “several
variables,” starting with the one most frequently considered, and for which there
is an analogue of the Fejér-Riesz theorem. It is due to Scott McCullough and comes
very close to the one-variable result. Further generalizations have been obtained
by Helton, McCullough and Putinar in [33]. For a broad overview of the area,
two nice survey articles have recently appeared by Helton and Putinar [34] and
Schmüdgen [59] covering noncommutative real algebraic geometry, of which the
noncommutative analogues of the Fejér-Riesz theorem are one aspect.

In keeping with the assumptions made in [42], all Hilbert spaces in this section
are taken to be separable. Fix Hilbert spaces G and H, and assume that H is infinite
dimensional.

Let S be the free semigroup with generators a1, . . . , ad. Thus S is the set of
words

w = aj1 · · · ajk , j1, . . . , jk ∈ {1, . . . , d}, k = 0, 1, 2, . . . , (6.1)
with the binary operation concatenation. The empty word is denoted e. The length
of the word (6.1) is |w| = k (so |e| = 0). Let Sm be the set of all words (6.1) of
length at most m. The cardinality of Sm is �m = 1 + d+ d2 + · · ·+ dm.

We extend S to a free group G. We can think of the elements of G as words
in a1, . . . , ad, a

−1
1 , . . . , a−1d , with two such words identified if one can be obtained

from the other by cancelling adjacent terms of the form aj and a−1j . The binary
operation in G is also concatenation. Words in G of the form h = v−1w with
v, w ∈ S play a special role and are called hereditary. Notice that a hereditary
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word h has many representations h = v−1w with v, w ∈ S. Let Hm be the set of
hereditary words h which have at least one representation in the form h = v−1w
with v, w ∈ Sm.

We can now introduce the noncommutative analogues of Laurent and analytic
polynomials. A hereditary polynomial is a formal expression

Q =
∑
h∈Hm

h⊗Qh, (6.2)

where Qh ∈ L(G) for all h. Analytic polynomials are hereditary polynomials of
the special form

P =
∑
w∈Sm

w ⊗ Pw, (6.3)

where Pw ∈ L(G) for all w. The identity

Q = P ∗P

is defined to mean that

Qh =
∑

v,w∈Sm

h=v−1w

P ∗v Pw, h ∈ Hd.

Next we give meaning to the expressions Q(U) and P (U) for hereditary and
analytic polynomials (6.2) and (6.3) and any tuple U = (U1, . . . , Ud) of unitary
operators on H. First define Uw ∈ L(H) for any w ∈ S by writing w in the form
(6.1) and setting

Uw = Uj1 · · ·Ujk .
By convention, Ue = I is the identity operator on H. If h ∈ G is a hereditary word,
set

Uh = (Uv)∗Uw

for any representation h = v−1w with v, w ∈ S; this definition does not depend on
the choice of representation. Finally, define Q(U), P (U) ∈ L(H⊗G) by

Q(U) =
∑
h∈Hm

Uh ⊗Qh , P (U) =
∑
w∈Sm

Uw ⊗ Pw.

The reader is referred to, for example, Murphy [43, §6.3] for the construction of
tensor products of Hilbert spaces and algebras, or Palmer, [45, §1.10] for a more
detailed account.

Theorem 6.1 (McCullough [42]). Let

Q =
∑
h∈Hm

h⊗Qh

be a hereditary polynomial with coefficients in L(G) such that Q(U) ≥ 0 for every
tuple U = (U1, . . . , Ud) of unitary operators on H. Then for some � ≤ �m, there
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exist analytic polynomials

Pj =
∑
w∈Sm

w ⊗ Pj,w , j = 1, . . . , �,

with coefficients in L(G) such that

Q = P ∗1 P1 + · · ·+ P ∗� P�.

Moreover, for any tuple U = (U1, . . . , Ud) of unitary operators on H,

Q(U) = P1(U)∗P1(U) + · · ·+ P�(U)∗P�(U).

In these statements, when G is infinite dimensional, we can choose � = 1.

As noted by McCullough, when d = 1, Theorem 6.1 gives a weaker version
of Theorem 2.1. However, Theorem 2.1 can be deduced from this by a judicious
use of Beurling’s theorem and an inner-outer factorization.

McCullough’s theorem uses one of many possible choices of noncommutative
spaces on which some form of trigonometric polynomials can be defined. We place
this, along with the commutative versions, within a general framework, which we
now explain.

The complex scalar-valued trigonometric polynomials in d variables form a
unital ∗-algebra P, the involution taking zn to z−n, where for n = (n1, . . . , nd),
−n = (−n1, . . . ,−nd). If instead the coefficients are in the algebra C = L(G) for
some Hilbert space G, then the unital involutive algebra of trigonometric polynomi-
als with coefficients in C is P⊗C. The unit is 1⊗1. A representation of P⊗C is a uni-
tal algebra ∗-homomorphism from P⊗C into L(H) for a Hilbert space H. The key
thing here is that z1, . . . , zd generate C, and so assuming we do not mess with the
coefficient space, a representation π is determined by specifying π(zk), k = 1, . . . , d.

First note that since z∗kzk = 1, π(zk) is isometric, and since z∗k = z−1k , we
then have that π(zk) is unitary. Assuming the variables commute, the zks gener-
ate a commutative group G which we can identify with Zd under addition, and
the irreducible representations of commutative groups are one dimensional. This
essentially follows from the spectral theory for normal operators (see, for exam-
ple, Edwards [21, p. 718]). However, the one-dimensional representations are point
evaluations on Td. Discrete groups with the discrete topology are examples of
locally compact groups. Group representations of locally compact groups extend
naturally to the algebraic group algebra, which in this case is P, and then on to
the algebra P⊗ C by tensoring with the identity representation of C. So a seem-
ingly more complex way of stating that a commutative trigonometric polynomial
P in several variables is positive / strictly positive is to say that for each (topo-
logically) irreducible unitary representation π of G, the extension of π to a unital
∗-representation of the algebra P⊗C, also called π, has the property that π(P ) ≥ 0
/ π(P ) > 0. By the way, since Td is compact, π(P ) > 0 implies the existence of
some ε > 0 such that π(P − ε1⊗ 1) = π(P )− ε1 ≥ 0.

What is gained through this perspective is that we may now define noncom-
mutative trigonometric polynomials over a finitely generated discrete (so locally
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compact) group G in precisely the same manner. These are the elements of the
algebraic group algebra P generated by G; that is, formal complex linear com-
binations of elements of G endowed with pointwise addition and a convolution
product (see Palmer [45, Section 1.9]). Then a trigonometric polynomial in P⊗ C
is formally a finite sum over G of the form P =

∑
g g ⊗ Pg where Pg ∈ C for all g.

We also introduce an involution by setting g∗ = g−1 for g ∈ G. A trigonomet-
ric polynomial P is selfadjoint if for all g, Pg∗ = P ∗g . There is an order structure
on selfadjoint elements defined by saying that a selfadjoint polynomial P is posi-
tive / strictly positive if for every irreducible unital ∗-representation π of G, the
extension as above of π to the algebra P⊗C (again called π), satisfies π(P ) ≥ 0 /
π(P ) > 0; where by π(P ) > 0 we mean that there exists some ε > 0 independent
of π such that π(P − ε(1⊗ 1)) ≥ 0. Letting Ω represent the set of such irreducible
representations, we can in a manner suggestive of the Gel’fand transform define
P̂ (π) = π(P ), and in this way think of Ω as a sort of noncommutative space on
which our polynomial is defined. The Gel’fand-Răıkov theorem (see, for example,
Palmer [46, Theorem 12.4.6]) ensures the existence of sufficiently many irreducible
representations to separate G, so in particular, Ω �= ∅.

For a finitely generated discrete group G with generators {a1, . . . , ad}, let
S be a fixed unital subsemigroup of G containing the generators. The most in-
teresting case is when S is the subsemigroup generated by e (the group identity)
and {a1, . . . , ad}. As an example of this, if G is the noncommutative free group
in d generators, then the unital subsemigroup generated by {a1, . . . , ad} consists
of group elements w of the form e (for the empty word) and those which are an
arbitrary finite product of positive powers of the generators, as in (6.1).

We also need to address the issue of what should play the role of Lau-
rent and analytic trigonometric polynomials in the noncommutative setting. The
hereditary trigonometric polynomials are defined as those polynomials of the form
P =

∑
j w

∗
j1wj2 ⊗ Pj , where wj1, wj2 ∈ S. We think of these as the Laurent poly-

nomials. Trigonometric polynomials over S are referred to as analytic polynomials.
The square of an analytic polynomialQ is the hereditary trigonometric polynomial
Q∗Q. Squares are easily seen to be positive. As a weak analogue of the Fejér-Riesz
theorem, we prove a partial converse below.

We refer to those hereditary polynomials which are selfadjoint as real hered-
itary polynomials, and denote the set of such polynomials by H . While these
polynomials do not form an algebra, they are clearly a vector space. Those which
are finite sums of squares form a cone C in H (that is, C is closed under sums
and positive scalar multiplication). Any real polynomial is the sum of terms of the
form 1⊗A or w∗2w1⊗B+w∗1w2⊗B∗, where w1, w2 ∈ S and A is selfadjoint. The
first of these is obviously the difference of squares. Using w∗w = 1 for any w ∈ G,
we also have

w∗2w1 ⊗B +w∗1w2 ⊗B∗ = (w1 ⊗B +w2 ⊗ 1)∗(w1 ⊗B +w2 ⊗ 1)− 1⊗ (1 +B∗B).

Hence H = C − C.
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For A,B ∈ L(H) and w1, w2 ∈ S,
0 ≤ (w1 ⊗A+ w2 ⊗B)∗(w1 ⊗ A+ w2 ⊗B)

≤ (w1 ⊗A+ w2 ⊗B)∗(w1 ⊗ A+ w2 ⊗B)

+ (w1 ⊗A− w2 ⊗B)∗(w1 ⊗ A− w2 ⊗B)

= 2(1⊗A∗A+ 1⊗B∗B)

≤ (‖A‖2 + ‖B‖2)(1⊗ 1).

Applying this iteratively, we see that for any P ∈ H , there is some constant
0 ≤ α < ∞ such that α1 ± P ∈ C. In other words, the cone C is archimedean.
In particular, 1⊗ 1 is in the algebraic interior of C, meaning that if P ∈ H , then
there is some 0 < t0 ≤ 1 such that for all 0 < t < t0, t(1⊗ 1) + (1− t)P ∈ C.

Theorem 6.2. Let G be a finitely generated discrete group, P a strictly positive
trigonometric polynomial over G with coefficients in L(G). Then P is a sum of
squares of analytic polynomials.

Proof. The proof uses a standard GNS construction and separation argument.
Suppose that for some ε > 0, P − ε(1 ⊗ 1) ≥ 0 but that P /∈ C. Since C has
nonempty algebraic interior, it follows from the Edelheit-Kakutani theorem1 that
there is a nonconstant linear functional λ : H → R such that λ(C) ≥ 0 and
λ(P ) ≤ 0. Since λ is nonzero, there is some R ∈ H with λ(R) > 0, and so since
the cone C is archimedean, there exists α > 0 such that α(1 ⊗ 1)− R ∈ C. From
this we see that λ(1 ⊗ 1) > 0, and so by scaling, we may assume λ(1 ⊗ 1) = 1.

We next define a nontrivial scalar product on H by setting

〈w1 ⊗A,w2 ⊗B〉 = λ(w∗2w1 ⊗B∗A)

and extending linearly to all of H . It is easily checked that this satisfies all of the
properties of an inner product, except that 〈w ⊗A,w ⊗ A〉 = 0 may not necessar-
ily imply that w⊗A = 0. Even so, such scalar products satisfy the Cauchy-Schwarz
inequality, and so N = {w ⊗ A : 〈w ⊗ A,w ⊗A〉 = 0} is a vector subspace of H .
Therefore this scalar product induces an inner product on H/N , and the comple-
tion H of H/N with respect to the associated norm makes H/N into a Hilbert
space.

We next define a representation π : H → L(H) by the left regular represen-
tation; that is, π(P )[w⊗A] = [P (w⊗A)], where [ · ] indicates an equivalence class
in H/N . Since P ≥ ε(1⊗ 1) ≥ 0 for some ε > 0, P − ε/2(1⊗ 1) > 0. Suppose that
P /∈ C. Then

λ((P − ε/2(1⊗ 1)) + ε/2(1⊗ 1)) = λ(P − ε/2(1⊗ 1)) + ε/2 ≤ 0.

Hence
〈π(P − ε/2(1⊗ 1))[1⊗ 1], [1⊗ 1]〉 ≤ −ε/2,

1[36] Holmes, Corollary, §4B. Let A and B be nonempty convex subsets of X, and assume the

algebraic interior of A, cor(A) is nonempty. Then A and B can be separated if and only if
cor(A) ∩B = ∅.
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and so π(P − ε/2(1 ⊗ 1)) �≥ 0. The representation π obviously induces a uni-
tary representation of G via π(ai) = π(ai ⊗ 1), where ai is a generator of G.
The (irreducible) representations of G are in bijective correspondence with the
essential unital ∗-representations of the group C∗-algebra C∗(G) (Palmer, [46,
Theorem 12.4.1]), which then restrict back to representations of H . Since unitary
representations of G are direct integrals of irreducible unitary representations (see,
for example, Palmer, [46, p. 1386]), there is an irreducible unitary representation
π′ of G such that the corresponding representation of H has the property that
π′(P − ε/2(1⊗ 1)) �≥ 0, giving a contradiction. �

The above could equally well have been derived using any C∗-algebra in the
place of L(H). One could also further generalize to non-discrete locally compact
groups, replacing the trigonometric polynomials by functions of compact support.

We obtain Theorem 5.1 as a corollary if we take G to be the free group in
d commuting letters. On the other hand, if G is the noncommutative free group
on d letters, it is again straightforward to specify the irreducible representations
of G. These take the generators (a1, . . . , ad) to irreducible d-tuples (U1, . . . , Ud) of
(noncommuting) unitary operators, yielding a weak form of McCullough’s theorem.

As mentioned earlier, it is known by results of Scheiderer [57] that when G is
the free group in d commuting letters, d ≥ 3, there are positive polynomials which
cannot be expressed as sums of squares of analytic polynomials, so no statement
along the lines of Theorem 6.1 can be true for trigonometric polynomials if it is
to hold for all finitely generated discrete groups. Just what can be said in various
special cases is still largely unexplored.

Appendix: Schur complements

We prove the existence and uniqueness of Schur complements for Hilbert space
operators as required in Definition 3.1.

Lemma A.1. Let T ∈ L(H), where H is a Hilbert space. Let K be a closed subspace
of H, and write

T =
(
A B∗

B C

)
: K⊕ K⊥ → K⊕ K⊥.

Then T ≥ 0 if and only if A ≥ 0, C ≥ 0, and B = C
1
2GA

1
2 for some contraction

G ∈ L(K,K⊥). The operator G can be chosen so that it maps ranA into ranC and
is zero on the orthogonal complement of ranA, and then it is unique.

Proof. If B = C
1
2GA

1
2 where G ∈ L(K,K⊥) is a contraction, then

T =
(
A

1
2 0

C
1
2G C

1
2 (I −GG∗)

1
2

)(
A

1
2 G∗C

1
2

0 (I −GG∗)
1
2C

1
2

)
≥ 0.

Conversely, if T ≥ 0, it is trivial that A ≥ 0 and C ≥ 0. Set

N = T
1
2 =

(
N1
N2

)
: H → H⊕ K.
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Then A = N1N
∗
1 and C = N2N

∗
2 , and so there exist partial isometries V1 ∈ L(K,H)

and V2 ∈ L(K⊥,H) with initial spaces ranA and ranC such that N∗1 = V1A
1
2 and

N∗2 = V2C
1
2 . Thus B = N2N

∗
1 = C

1
2GA

1
2 , where G = V ∗2 V1 is a contraction.

By construction G has the properties in the last statement, and clearly such an
operator is unique. �

Lemma A.2. Let H be a Hilbert space, and suppose T ∈ L(H), T ≥ 0. Let K be a
closed subspace of H, and write

T =
(
A B∗

B C

)
: K⊕ K⊥ → K⊕ K⊥.

Then there is a largest operator S ≥ 0 in L(K) such that(
A− S B∗

B C

)
≥ 0. (A.1)

It is given by S = A
1
2 (I − G∗G)A

1
2 , where G ∈ L(K,K⊥) is a contraction which

maps ranA into ranC and is zero on the orthogonal complement of ranA.

Proof. By Lemma A.1, we may define S = A
1
2 (I −G∗G)A

1
2 with G as in the last

statement of the lemma. Then(
A− S B∗

B C

)
=
(
A

1
2G∗GA

1
2 A

1
2G∗C

1
2

C
1
2GA

1
2 C

)
=
(
A

1
2G∗

C
1
2

)(
GA

1
2 C

1
2
)
≥ 0.

Consider any X ≥ 0 in L(K) such that(
A−X B∗

B C

)
≥ 0.

Since A ≥ X ≥ 0, we can write X = A
1
2KA

1
2 where K ∈ L(K) and 0 ≤ K ≤ I.

We can choose K so that it maps ranA into itself and is zero on (ranA)⊥. Then(
A−X B∗

B C

)
=
(
A−A

1
2KA

1
2 A

1
2G∗C

1
2

C
1
2GA

1
2 C

)
=
(
A

1
2 0
0 C

1
2

)(
I −K G∗

G I

)(
A

1
2 0
0 C

1
2

)
.

By our choices G and K, we deduce that(
I −K G∗

G I

)
≥ 0.

By Lemma A.1, G = G1(I−K)
1
2 where G1 ∈ L(K,K⊥) is a contraction. Therefore

G∗G ≤ I −K, and so

X = A
1
2KA

1
2 ≤ A

1
2 (I −G∗G)A

1
2 = S.

This shows S is maximal with respect to the property (A.1). �
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[14] T. Constantinescu, Factorization of positive-definite kernels, Topics in operator
theory: Ernst D. Hellinger memorial volume, Oper. Theory Adv. Appl., vol. 48,
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1. Introduction

I took a reading course from Paul in the summer of 1966. He was putting the
final touches on the first edition of his very influential A Hilbert Space Problem
Book [26], and he told me we would use it as our starting point. I was honored
(and frightened) that he trusted me with his draft copy (perhaps his only copy, I
never knew). It was in two volumes – loosely bound, some parts were typed, but
there were large inserts written by hand and taped here and there. It seemed very
fragile – and personal. The book was divided into three parts: the first contained
the problems, proper, along with narrative to motivate them. The second part, very
short, consisted of hints. The third part gave solutions along with supplemental
discussion. The first volume of the draft contained the first two parts; the second
volume contained the third part. While I was thrilled that Paul lent me his copy,
I was also dismayed that he only let me have the first volume. Nevertheless, the
course was exhilarating.

Most details from our meetings are now long gone from my memory, but one
stands out; it concerns what I like to call a Halmos Doctrine. I use the indefinite
article because Paul’s speech and writing were so definitive, so authoritative and
so unequivocal, I am sure there are other assertions which also qualify as Halmos
doctrines. Also, I suspect that there may not be unanimity about Paul’s most
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important doctrine1. In any case, I don’t want to leave the impression that Paul
was doctrinaire. I don’t think he was and this seems clear from his writings. He
frequently expressed willingness to back off from points he made – points which he
expressed in extreme forms in order to rivet the reader’s attention or to prompt
discussion. He welcomed argument and discussion. Indeed, he expected it. I learned
this the hard way: In one of our meetings, I announced that a problem he had given
me was trivial. He snapped: “You were supposed to make it nontrivial.” I responded
meekly: “I did what you told me to do.” His withering retort: “Well screw you!
[sic]” Certainly, at the time I found the reply withering, but on reflection I realized
it was not intended as a parry to the insult that his problem was trivial. It wasn’t
personal at all. Rather, it expressed strongly his view that it is a mathematician’s
responsibility to explore what may appear trivial, seeking nuggets of truth that
are in fact profound. I would add further that one should then polish these to the
point that they seem once again trivial. Paul was very good at this. His paper,
Shifts on Hilbert space [25], is a wonderful illustration.

The Halmos doctrine to which I am referring was presented to me something
like this:

If you want to study a problem about operators on infinite-dimen-
sional Hilbert space, your first task is to formulate it in terms
of operators on finite-dimensional spaces. Study it there before
attacking the infinite.

It may seem naive and impossible to follow in any realistic manner, but if one takes
this doctrine as strong advice – an admonition, even – to be fully aware of the finite-
dimensional antecedents of any problem one might consider in infinite dimensions,
then of course it is reasonable and fully consistent with best practices in the
subject. A quintessential example of how the advice can be put into practice may be
found in the introduction to Murray and von Neumann’s Rings of Operators [47].

I took this Halmos doctrine seriously, and I still do. In particular, it has
driven my thinking in the work I have been doing the last fifteen years or so with
Baruch Solel on tensor algebras and what we call Hardy algebras. I won’t try to
recapitulate all of our work in this tribute to Paul, but I would like to describe
how this doctrine and his paper, Shifts on Hilbert space, inspired parts of it.

2. Halmos’s theorem

Recall Arne Beurling’s theorem from 1949 [9], which asserts that if U+ denotes the
operator of multiplication by the independent variable z on the Hardy space H2(T),
then a subspace M of H2(T) is invariant under U+ if and only if there is an
analytic function θ on the unit disc, whose boundary values have modulus 1 almost
everywhere such that M = θH2(T) – the set of all multiples θξ, where ξ runs over

1However, as far as I can tell only one has risen to any kind of “official” status. I did a Google

search on “Halmos Doctrine” – with quotes included – and only one response was returned:
“More is less and less is more.”
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H2(T). Beurling was inspired by problems in spectral synthesis and, in particular,
by work of Norbert Wiener on translation invariant subspaces of various function
spaces. His analysis rested on deep function theoretic properties of functions in the
Hardy space and, in particular, on the structure of the functions θ, which he called
inner functions. Nevertheless, he noted that the geometry of Hilbert space also
played a fundamental role in his analysis. In 1959, Peter Lax extended Beurling’s
analysis in two directions: He moved from the Hardy space of the circle to the
Hardy space of the upper half-plane and he allowed his functions to take values
in a finite-dimensional Hilbert space. He was motivated by problems in partial
differential equations. To prove his theorem, he had to extend parts of the function
theory that Beurling had used to the setting of vector-valued functions and, as a
result, his analysis may seem complicated. However, Lax’s generalization is easy
to state: Suppose E is a finite-dimensional Hilbert space and that H2(R, E) denotes
the Hardy space for the upper half-plane consisting of functions with values in E.
Then a subspace M of H2(R, E) is invariant under multiplication by the functions
χλ, λ ≥ 0, where χλ(t) = eiλt, if and only if M is of the form ΘH2(R,F), where
F is another Hilbert space, and where Θ is an operator-valued function, such that
Θ(z) maps F into E, that is bounded and analytic in the upper half-plane and
which has boundary values almost everywhere (on R) that are isometries mapping
F into E. Two years later, Halmos published his Shifts on Hilbert space [25]. He
returned to the single operator setting, but instead of studying multiplication by z
on the vector-valued Hardy space H2(T, E), he Fourier transformed the picture for
most of the discussion and focused on shifts on the sequence spaces �2(Z+, E). This
change of perspective allowed his Hilbert spaces of “coefficients” to be of arbitrary
dimension. Moreover, and more important, he distilled the Hilbert space aspects of
Beurling’s and Lax’s arguments and effectively removed the function theory from
their theorems. More accurately, he made clear the role operator theory played in
their theorems and how it interacts with the function theory.

Halmos was not alone in trying to identify the precise role of Hilbert space
techniques in the theory. Many others were actively pursuing the subject. Indeed,
vectorial function theory began with an explosion in the late 50’s and continues
today as an important component of operator theory. I cannot rehearse here all
the contributions by all the players. However, Halmos’s paper had a terrific impact
on that theory and still, today, is frequently cited. Indeed, on MathSciNet, which
records citations since about 1997, as of February 9, 2009, it is the third most
cited research paper that Halmos wrote, receiving 37 citations. That’s a pretty
good record in view of his estimate that the expected time to obsolescence for a
mathematics research paper is five years [27].

Although nowadays Halmos’s theorem and proof are well known to many, I
want to begin by showing how short and simple the analysis is. It will be useful
to have his arguments available for reference later.

Fix an auxiliary Hilbert space E and form the Hilbert space, �2(Z+, E), con-
sisting of all norm-squared summable, E-valued functions defined on the non-
negative integers, Z+. The unilateral shift (of multiplicity equal to the dimension
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of E) is the operator U+ defined on �2(Z+, E) by the formula

U+ξ(n) = ξ(n− 1),

ξ ∈ �2(Z+, E). It is easy to see that two shifts determined by two different coefficient
Hilbert spaces are unitarily equivalent if and only if their multiplicities are the
same. Halmos’s extension of the theorems of Beurling and Lax is

Theorem 2.1. Let M be a subspace of �2(Z+, E). Then M is invariant under U+
if and only if there is a partial isometry Θ on �2(Z+, E) that commutes with U+
such that M is the range of Θ: M = Θ�2(Z+, E).

Halmos called a partial isometry that commutes with U+ a rigid Taylor func-
tion. Nowadays, such an operator is called an inner operator, or something similar,
to recognize its connections with the inner functions of Beurling’s theorem. The
Θ is essentially uniquely determined by M in the sense that if Θ1 is another in-
ner operator with the same range as Θ, then there is a partial isometry C0 on
E such that Θ1 = ΘC where C is defined by the formula Cξ(n) = C0(ξ(n)) for
all ξ ∈ �2(Z+, E) and all n ∈ Z+. Such a partial isometry is called a constant
inner operator because in the Fourier transformed picture, it becomes a constant
operator-valued function.

Halmos’s proof of Theorem 2.1 was based upon the idea captured in the
following definition.

Definition 2.2. A subspace F of �2(Z+, E) is called a wandering subspace for U+
provided F and U+F are orthogonal.

As an example, observe that the collection of all functions in �2(Z+, E) that
are supported at one point of Z+, say 0, forms a wandering subspace, E0, which of
course has the same dimension as E . More generally, ifM is a subspace of �2(Z+, E)
that is invariant under U+, then it is immediate that the subspace F :=M�U+M
is a wandering subspace since U+F is contained in U+M which is orthogonal to F
by definition. Owing to the isometric nature of U+, if F is a wandering subspace for
U+, then for all pairs of distinct non-negative integers i and j, U i

+F and U j
+F are

orthogonal. This means that the closed linear span
∨
n≥0{Un

+F}, which manifestly
is invariant for U+, is the orthogonal direct sum

∑⊕
n≥0 U

n
+F of the subspaces Un

+F .
Consequently, if F̃ is a Hilbert space of the same dimension as F and if Ũ+ denotes
the unilateral shift on �2(Z+, F̃), then the mapW from �2(Z+, F̃) to the orthogonal
direct sum

∑
n≥0 U

n
+F , defined by the formulaWξ :=

∑
n≥0 U

n
+(ξ(n)), is a Hilbert

space isomorphism from �2(Z+, F̃) onto
∑

n≥0 U
n
+F that intertwines Ũ+ and U+,

i.e., WŨ+ = U+W . So, in order to prove Theorem 2.1, the objective becomes to
prove the following two lemmas:

Lemma 2.3. If M is an invariant subspace of �2(Z+, E) for U+ and if F := M �
U+M is the wandering subspace determined by M, then M =

∨
n≥0{Un

+F}.
Lemma 2.4. If F is a wandering subspace of �2(Z+, E), then the Hilbert space
dimension of F is at most the Hilbert space dimension of E.
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Indeed, with the two lemmas in hand, the proof of Theorem 2.1 is almost
immediate: Given an invariant subspace M of �2(Z+, E), Lemma 2.3 implies that
M =

∑⊕
n≥0 U

n
+F . Then, by Lemma 2.4 we may map F isometrically onto a

subspace F̃ of E , say by an isometry V0. The operator Θ on �2(Z+, E) defined by
the formula

Θξ :=
∑
n≥0

Un
+V

∗
0 (ξ(n)), (1)

ξ ∈ �2(Z+, E), then, is a partial isometry on �2(Z+, E) that commutes with U+ and
has rangeM.

Lemma 2.3 is essentially Lemma 1 in [25]. The proof is a small variation of a
proof of the Wold decomposition of an isometry: If ξ ∈ M�∑⊕

n≥0 U
n
+F , then in

particular ξ lies in M and is orthogonal to F , which by definition is M�U+M.
Thus, ξ lies in U+M. Since ξ is also orthogonal U+F = U+M� U2+M, ξ also
belongs to U2+M. Continuing in this way, it follows that ξ lies in

⋂
n≥0 U

n
+M. But

this space is {0} since it is contained in
⋂
n≥0 U

n
+�
2(Z+, E), which manifestly is the

zero space.
Lemma 2.3 is Lemma 4 in [25]. The proof Halmos gives rests on the functional

representation of elements in �2(Z+, E), i.e., the proof involves analyzing elements
in �2(Z+, E) in terms of their Fourier transforms, which lie in the vector-valued
Hardy space H2(T, E). Israel Halperin seems to be the one who provided a proof
that was on the same level as the rest of Halmos’s arguments and was completely
free of function theory (see the addendum to the proof of [66, Page 108].) It runs
like this: Choose an orthonormal basis {un}n∈I for F and an orthonormal basis
{vm}m∈J for E0, which, recall, has the same dimension as E . Then {Uk

+vm}k≥0,m∈J
is an orthonormal basis for �2(Z+, E). Consequently, the dimension of F , dimF ,
is the sum∑

n∈I
‖un‖2 =

∑
n∈I,m∈J,k≥0

|(un, Uk
+vm)|2 =

∑
n∈I,m∈J,k≥0

|(U∗k+ un, vm)|2.

On the other hand, since F is a wandering subspace, the vectors {U∗k+ un}k≥0,n∈I
form an orthogonal subset of �2(Z+, E) consisting of vectors of norm at most one.
Consequently, the last sum is dominated by

∑
m∈J ‖vm‖2 = dim E .

Of course now with Halmos’s theorem, Theorem 2.1, before us, numerous
questions arise. Two of the most pressing are: How to describe the commutant?
How does the function theory from Beurling, Lax and others interact with that de-
scription? The answers are well known. The key is to Fourier transform �2(Z+, E)
to H2(T, E). When this is done, U+ becomes multiplication by the independent
variable z and the commutant of U+ is represented by the space of all (boundary
values of) B(E)-valued functions that are bounded and analytic on the open unit
disc D. There is an enormous literature on this subject, but while it provides a lot
of inspiration, very little of it extends to the setting I will discuss below without
a lot of modification. Consequently, I will not venture into a discussion of it now.
However, I do want to emphasize that my involvement with the function theory
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that I will describe in the final section is an outgrowth of efforts to generalize
Halmos’s theorem. Thus, from Hilbert space and Halmos’s theorem, I found my
way back to function theory.

3. C∗-correspondences, tensor algebras and C∗-envelopes

Much of my time has been spent pursuing Halmos’s doctrine in the context of
the question: How can the theory of finite-dimensional algebras inform the theory
of not-necessarily-self-adjoint operator algebras? By an operator algebra I mean
simply a norm closed subalgebra of B(H), for some Hilbert space H . The work
of Murray and von Neumann [47] made it clear they were inspired by the theory
of semisimple algebras and the related theory of group representations. Indeed,
their notation for a ring of operators (now called a von Neumann algebra) is M ,
suggesting that it should be viewed as a generalization of a matrix algebra, espe-
cially if the algebra is a factor. I have long believed that a non-self-adjoint operator
algebra should be viewed as an analogue of a non-semisimple finite-dimensional
algebra. This point of view may seem naive and that not much can be gained from
it. Indeed, if one opens almost any book on ring theory and tries to formulate the
basic elements of it in the context of operator algebras, one very quickly runs into
serious difficulties. Very little of the finite-dimensional theory seems to transfer to
the infinite-dimensional setting – especially the classification theory and represen-
tation theory of finite-dimensional algebras. More frustrating – for me, at least –
has been the difficulty of transferring large collections of meaty examples – suffi-
ciently large to capture the thrust of much of the representation theory of rings
that was and continues to be so prominent in ring theory.

Of course I am not alone in the view that non-self-adjoint operator alge-
bras should be viewed as infinite-dimensional analogues of non-semisimple finite-
dimensional algebras and I do not mean to slight in any way the work of the many
who have pursued the analogy. There is a very large literature on the subject. Op-
erator theory has numerous antecedents that provide support for this analogy, but
probably the first paper to take a truly algebraic perspective was the pioneering
work of Richard Kadison and Isadore Singer [31]. My own perspective has been
shaped to a very large extent by ideas I first learned – and continued to learn – from
Ron Douglas. He has long promoted a function-theoretic/algebrogeometric point
of view. A good source for this is his monograph written with Vern Paulsen [19].

To understand a bit more about what I was looking for, observe that one of
the striking features of Murray and von Neumann’s work is that they took great
pains to separate intrinsic properties of von Neumann algebras from the properties
that are artifacts of the way in which the algebras are represented on Hilbert space.
They did not express themselves quite in this way, but it was a theme that ran
throughout their work. This separation was made more prominent once the theory
of C∗-algebras got under way. A C∗-algebra is defined as a Banach algebra with
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certain properties which allow it to be represented faithfully as a norm-closed self-
adjoint algebra of operators on Hilbert space. One is then more freely able to study
intrinsic properties of C∗-algebras separate from their representation theory. Of
course, Sakai’s theorem [62], which identifies a von Neumann algebra abstractly
as a C∗-algebra which is a dual space, completed the separation of von Neumann
algebras from the Hilbert spaces on which they might be found. Indeed, today the
term W ∗-algebra is used to refer to a C∗-algebra that is a dual space.

The first person to take up this issue for non-self-adjoint operator algebras
was Bill Arveson in his seminal paper, Subalgebras of C∗-algebras [3]. Here, he
proposed to show that each non-self-adjoint operator algebra A can be encased in
an essentially unique C∗-algebra, C∗(A), called the C∗-envelope of A. He took a lot
of inspiration from the theory of function algebras. Suppose that a unital operator
algebra is represented unitally and completely2 isometrically in a C∗-algebra B
in such a way that the image generates B. A (2-sided) ideal J in B is called a
boundary ideal in B for A if the restriction of the quotient map π : B → B/J is
completely isometric when restricted to the image of A in B. A maximal boundary
ideal in B for A is necessarily unique and is called the Shilov boundary ideal in B
for A. The quotient of B by the Shilov boundary ideal is then unique up to C∗-
isomorphism and is the C∗-envelope of A, C∗(A). Thus C∗(A) is a quotient of any
C∗-algebra that is generated by a completely isometrically isomorphic copy of A.
Unfortunately, Arveson was not able to prove the existence of the Shilov boundary
ideal in general. That had to wait ten years for the work of Masamichi Hamana
[28]. However, it was clear already in [3] that this was an important concept and
showed promise for enabling one to study operator algebras independent of any
place they might be represented. As a concrete example, consider the disc algebra
A(D), which consists of the continuous functions on the closed unit disc that are
analytic on the interior. This algebra may be profitably studied as a subalgebra of
at least three different C∗-algebras: The continuous functions on the closed disc D,
the continuous functions on T, the boundary of D, and the C∗-algebra generated by
all Toeplitz operators with continuous symbols. Observe that A(D) generates each
of these C∗-algebras and that the continuous functions on T, C(T), is a quotient
of each of the other two; it is the C∗-envelope of A(D).

Arveson was also motivated by the dilation theory of Bela Sz.-Nagy [65] and
by Forest Stinespring’s analysis of positive maps on C∗-algebras [64]. He general-
ized both of these papers by showing that if ρ is a completely contractive repre-
sentation of A on a Hilbert space H , then there is a C∗-representation of C∗(A),
π, on a Hilbert space K and an isometry V embedding H into K such that

ρ(a) = V ∗π(a)V (2)

for all a ∈ A.

2I will use the terminology from operator spaces freely. See [10, 20, 50, 53] for this very important
theory. However, for those who are not familiar with the subject, it is safe, for the purposes of

this survey, to omit the adverb “completely” from the discussion and think solely in terms of the
adjective that “completely” modifies.
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The triple (K,π, V ) is called a C∗-dilation of ρ. (It is not uniquely determined
by ρ in general.) To prove this dilation theorem, Arveson made an extensive study
of completely positive maps, proving a Hahn-Banach-Krein type theorem for them
that subsequently contributed enormously to the birth of the theory of operator
spaces. Of special note for this discussion is the paper of David Blecher, Zhong-Jin
Ruan and Allan Sinclair [11], in which the authors characterized operator algebras
abstractly, without reference to any Hilbert spaces on which they might act. Their
work was especially inspirational to me.

Sometime in 1995 I obtained a preprint of Mihai Pimsner’s paper [52] which
contained the key to what I was looking for. This paper was based on the notion
of what has come to be known as a C∗-correspondence. A C∗-correspondence from
a C∗-algebra A to a C∗-algebra B is a right Hilbert B-module E that is endowed
with a left A-module structure through a C∗-homomorphism ϕ from A into the
algebra of all continuous adjointable operators on E, L(E). (I follow the notation
and (most of) the terminology in Chris Lance’s lovely monograph [34].) Many view
C∗-correspondences as a natural generalization of C∗-homomorphisms. Indeed,
C∗-algebras form the objects of a category whose morphisms are (isomorphism
classes) of C∗-correspondences. The composition of a C∗-correspondence E from
A to B with a C∗-correspondence F from B to C is their balanced tensor product
E⊗B F . It is the completion of the algebraic balanced tensor product of E and F
in the norm that comes from the C-valued inner product defined by the formula
〈ξ1⊗η1, ξ2⊗η2〉C := 〈η1, ϕB(〈ξ1, ξ2〉B)η2〉C . The left and right actions of A and C
on E ⊗B F are the obvious ones. In particular, a C∗-correspondence from A to A,
or simply a C∗-correspondence over A, can profitably be viewed as a generalized
endomorphism of A.

Given a C∗-algebra A and a C∗-correspondence E over A, Pimsner con-
structed an algebra, denoted O(E), that may be viewed as a generalized Cuntz
algebra and has come to be called a Cuntz-Pimsner algebra. Here is how3: Form
the tensor powers of E (all powers are balanced over A) and take their direct sum,
obtaining the Fock space over E, F(E) := A ⊕ E ⊕ E⊗2 ⊕ · · · . It is also a C∗-
correspondence over A in an obvious way (the left action is written ϕ∞). The cre-
ation operators Tξ, ξ ∈ E, are then defined on F(E) by the equation Tξη = ξ ⊗ η,
η ∈ F(E). Each Tξ is a bounded, adjointable operator on F(E) and the C∗-
subalgebra of L(F(E)) they generate, T (E), is called the Toeplitz-Cuntz-Pimsner
algebra of E. Recall that K(E) is the C∗-subalgebra of L(E) generated by the op-
erators of the form ξ ⊗ η∗, which are defined by the equation ξ ⊗ η∗(ζ) := ξ〈η, ζ〉,
and set J := ϕ−1(K(E)) – an ideal in A. Then Pimsner proves that K(F(E)J) is
an ideal in T (E) [52, Theorem 3.13]. The quotient T (E)/K(F(E)J) is defined to

3I shall assume in this discussion and throughout the rest of this paper that ϕ is injective and
essential. The latter condition means that ϕ extends to a unital embedding of the multiplier
algebra of into L(E). These restrictions can be relaxed, but at the cost of digressions that need

not concern us. Also, all representations of C∗-algebras on Hilbert space will be assumed to be
essential, i.e., non-degenerate.
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be the Cuntz-Pimsner algebra O(E). This is not Pimsner’s official definition, but
his Theorem 3.13 shows that the two are equivalent.

The reason I thought Pimsner’s work would be useful for the purpose of
connecting finite-dimensional algebra to operator algebra goes back to an old ob-
servation of Hochschild [30] that asserts that every finite-dimensional algebra over
an algebraically closed field is a quotient of a tensor algebra. Further, coupling
Hochschild’s theorem with an earlier theorem of Nesbitt and Scott [48], which in
current language asserts that every finite-dimensional algebra is Morita equivalent
to one which is commutative modulo its radical, one is led to try to represent each
finite-dimensional algebra in terms of a finite directed graph, called the quiver of
the algebra. When an algebra is commutative modulo its radical, the tensor algebra
is the path algebra built from the quiver. The representation of finite-dimensional
algebras in terms of quivers has grown into an active and deep area of algebra.
(For a survey, see [24] by Gabriel, who introduced the term ‘quiver’ in [23].) When
reflecting on graph C∗-algebras and Cuntz-Krieger algebras that have been the
focus of much C∗-algebraic research in recent years, and with the appearance of
Pimsner’s paper [52], Baruch and I were led to formulate and to study the notion
of the tensor algebra of a C∗-correspondence: If E is a C∗-correspondence over the
C∗-algebra A, then we defined the tensor algebra of E to be the norm-closed sub-
algebra, T+(E), of T (E) generated by ϕ∞(A) and {Tξ | ξ ∈ E}. We believed that
these algebras offer a means to interpret finite-dimensional algebra, particularly
the representation theory that derives from the theory of quivers, in the setting of
operator algebras. Not only have our initial speculations led to interesting develop-
ments in the theory of operator algebras per se, they have also led to contacts with
numerous subjects that are remote from our initial focus. The starting point was
our discovery that the C∗-envelope of the tensor algebra of a C∗-correspondence
is the Cuntz-Pimsner algebra of the correspondence [40, Theorem 6.4].4

When A = E = C, F(E) is simply �2(Z+), and T+(E) is the disc algebra
A(D), realized as matrices of analytic Toeplitz operators. Indeed, in this setting the
operator T1 is just the unilateral shift. The C∗-envelope, then, is C(T), as I have
noted. When A = C, but E = Cd, then F(E) is the full Fock space over Cd, which
of course is also a Hilbert space, and T+(E) is the noncommutative disc algebra
introduced by Gelu Popescu in [56]. Our theorem shows that its C∗-envelope is
O(Cd), which is the well-known Cuntz algebra, usually denoted Od.

The noncommutative disc algebra and its weak closure in its natural repre-
sentation on the Fock space, called the free semigroup algebra, Ld, have been a
terrific source of inspiration for Baruch and me – and for many others, of course.
The literature on these algebras is growing rapidly, and so I cannot recap or even
cite all of it, but I do want to note that Gelu Popescu introduced the concept in

4Our theorem was proved in a context that is a bit less restrictive than the one described
here. More recently, using technology developed in [40] and ideas of Takeshi Katsura [32], Elias

Katsoulis and David Kribs [33] removed all special hypotheses on the correspondence E and so
one can now say, without qualification, that the C∗-envelope of T+(E) is O(E).
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[56], used the notation F∞ and called F∞ the Hardy algebra. Ken Davidson and
David Pitts, who also made some of the pioneering contributions, use the name
“free semigroup algebra” for something more general than Ld. However, the term
“free semigroup algebra” and the notation Ld seem now to be most commonly
used in the literature.

When the C∗-algebra A is commutative and finite dimensional and when E is
also finite dimensional, then (E,A) may be described in terms of a graph or quiver
[40, Example 2.9]. Indeed, one may think of A as the space of functions on the finite
set of verticesG0 of a directed graphG := (G0, G1, r, s).G0 then labels the minimal
projections in A, {pv}v∈G0 . For u and v in G0, the complex vector space pvEpu is
finite dimensional and so the edge set, G1, is defined to have dim(pvEpu) edges e
starting at u and ending at v. One writes r(e) = v and s(e) = u. (The functions
r and s are to be read “range” and “source”.) The correspondence, E, in turn,
may be identified with the space of all complex-valued functions on G1, which is
a C∗-correspondence over A via the left and right actions defined by the formula
aξb(e) = a(r(e))ξ(e)b(s(e)), e ∈ G1, and inner product defined by the formula
〈ξ, η〉(u) := ∑

s(e)=u ξ(e)η(e). Finally, T+(E), is the norm completion of the quiver
algebra built from G [39, 40, 41] and the C∗-envelope is the C∗-algebra of G.

If A is a C∗-algebra and if ϕ : A → A is a C∗-endomorphism, then A
becomes a C∗-correspondence over A, denoted ϕA, by letting the right action be
the multiplication from A, by letting the inner product be the obvious one, 〈ξ, η〉 :=
ξ∗η, and by letting the left action be given by ϕ. When ϕ is an automorphism, the
tensor algebra in this case is a so-called analytic crossed product. These first arose
in the work of Kadison and Singer [31] (see their Theorem 2.2.1, in particular)
and then in the work of Arveson [2] in which he showed that they constitute a
complete set of conjugacy invariants for ϕ (under the assumption that A is an
abelian von Neumann algebra realized as L∞(m) and ϕ is given by an ergodic m-
preserving transformation). They have been of considerable interest subsequently.
The extension to a general endomorphism was first considered by Justin Peters
in [51]. If ϕ is an automorphism, then the C∗-envelope of T+( ϕA) is the crossed
product A�ϕ Z. If ϕ is an endomorphism that is not an automorphism, then one
must first extend ϕ to an automorphism ϕ∞ of the inductive limit A∞ constructed
from the inductive system induced by A and ϕ in the standard well-known fashion.
The C∗-envelope of T+( ϕA) in this case, then, is A∞ �ϕ∞ Z.

An endomorphism is a special case of a completely positive map. With these,
too, one can build C∗-correspondences. The simplest is the so-called GNS corre-
spondence. If A is a unital C∗-algebra and if P : A → A is a unital completely
positive map, then the GNS correspondence determined by P is the (Hausdorff)
completion, A⊗P A, of the algebraic tensor product A⊗A in the pre-inner product
〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 := η∗1P (〈ξ1, ξ2〉)η2. The actions of A on A⊗P A are given by the
formula a(ξ⊗η)b := (aξ)⊗(ηb). Observe that when P is an endomorphism A⊗P A
is isomorphic to PA via the map ξ⊗η → P (ξ)η. I don’t know a simple description
of O(A ⊗P A) for a general completely positive map P . However in [36], Alberto
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Marrero and I showed that when P is a completely positive unital map on the
n×n matrices,Mn(C), then O(A⊗P A) is strongly Morita equivalent to Od where
d is the index of P defined in [43].

4. Representations and dilations

Baruch’s and my approach to understanding the C∗-envelope of T+(E) was based
on the (completely contractive) representations of (E,A) and their dilations. Our
starting point was the simple fact from algebra that there is a bijective correspon-
dence between the representations of a tensor algebra and the bimodule repre-
sentations of the bimodule from which the tensor algebra is constructed. So we
began by proving that there is a bijective correspondence between the completely
contractive representations of T+(E) on a Hilbert space H and pairs (T, σ), where
σ : A → B(H) is a C∗-representation and T : E → B(H) is a completely con-
tractive bimodule map; i.e., T (a · ξ · b) = σ(a)T (ξ)σ(b) [40, Theorem 3.10]. One
direction is clear: Given a completely contractive representation ρ of T+(E) on H ,
setting σ := ρ ◦ϕ∞ and T (ξ) := ρ(Tξ), ξ ∈ E, gives the desired bimodule map. To
go from (T, σ) to a completely contractive representation of T+(E), we proved in
[40, Lemma 3.5] that a bimodule map T is completely contractive if and only if
the operator T̃ : E ⊗σ H → H , defined by T̃ (ξ ⊗ h) = T (ξ)h, is a contraction and
satisfies the equation

T̃ σE ◦ ϕ(·) = σ(·)T̃ , (3)
where σE is Rieffel’s induced representation of L(E) [61]. (Recall that σE is defined
by the formula σE(T )(ξ ⊗ h) = (Tξ) ⊗ h, T ∈ L(E), i.e., σE(T ) is just T ⊗
I. It is useful to have both notations σE(T ) and T ⊗ I.) The representation of
T+(E) determined by (T, σ) is denoted σ × T . Borrowing terminology from the
theory of crossed products, we called such pairs (completely contractive) covariant
representations of (E,A) and we called σ × T the integrated form of (T, σ).

In the special case when A = E = C, σ must represent C as scalar multiples of
the identity operator onH . Also, E⊗σH may be canonically identified withH , and
when this is done, σE ◦ϕ may also be viewed as representing C as scalar multiples
of the identity. With these identifications, T̃ is simply an ordinary contraction
operator on H . Thus, in this case, one captures the well-known fact that the
(completely) contractive representations of the disc algebra on the Hilbert space
H are in bijective correspondence with the contraction operators on H .5

In the setting with A = C and E = Cd, A = C still must be represented as
scalar multiples of the identity and so in equation (3) σ and σE ◦ ϕ may seem to
be the same. But in fact, they are acting on different Hilbert spaces. The space
E ⊗σ H should be viewed as d copies of H arranged in a column. When this is
done, T̃ is a so-called row contraction, i.e., T̃ = (T1, T2, . . . , Td), where each Ti is
an operator on H , with ‖T̃‖2 = ‖∑i TiT

∗
i ‖ ≤ 1.

5Of course, it is well known that every contractive representation of A(D) is completely contrac-
tive, but from the perspective of the theory I am discussing here, that is a separate issue.
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When E = ϕA, for some endomorphism ϕ of A, then since E is cyclic as a
right A module, E ⊗σ H is isomorphic to H via the map ξ ⊗ h → σ(ξ)h. When
the identification of E ⊗σH and H is made via this isomorphism, σE is identified
with σ, T̃ is identified with the operator T (1), and equation (3) becomes the more
familiar covariance equation

T̃ σ ◦ ϕ(·) = σ(·)T̃ .
To show that a completely contractive covariant representation (T, σ) can be

extended to a completely contractive representation of T+(E), Baruch and I needed
to show that (T, σ), can be dilated to a covariant representation, (V, ρ), where Ṽ is
an isometry [40, Theorem 3.3]. I won’t rehearse the details here except to say that it
was based on a careful analysis of Schäffer’s matrix proof [63] of Sz.-Nagy’s dilation
theorem [65] and Popescu’s generalization of it [54]. This dilation is unique, subject
to a familiar minimality condition [40, Proposition 3.2]. The integrated form, ρ×V ,
then, is a dilation of σ × T . We called a covariant representation (V, ρ), where Ṽ
is an isometry, an isometric covariant representation. An isometric representation
(V, ρ) may be characterized by the property that ρ× V extends uniquely to a C∗-
representation of the Toeplitz-Cuntz-Pimsner algebra T (E) [40, Theorem 2.12].
For this reason, isometric covariant representations of (E,A) are called in the
literature Toeplitz representations. (See [22], where this term was first used.) Thus
every completely contractive representation of T+(E) may be dilated to a C∗-
representation of the Toeplitz algebra T (E).

Pimsner proved that isometric representations (V, ρ) such that ρ× V passes
to the quotient O(E) have the special property that ρ(1) ◦ ϕ|J = ρ|J , where ρ(1) :
K(E)→ B(Hρ) is defined by the formula

ρ(1)(ξ ⊗ η∗) := V (ξ)⊗ V (η)∗ = Ṽ (ξ ⊗ η∗)Ṽ ∗, (4)

ξ ⊗ η∗ ∈ K(E) [52, Theorem 3.12]. Observe that in the case when A = E = C,
this condition on V means, simply, that Ṽ is unitary. On the other hand, when
one is dealing with a single isometry, say W+, on Hilbert space H , then it is
well known how to extend W+ to a unitary operator W on a Hilbert space K
containing H . Further, the extension is uniquely determined if one assumes that
W is minimal. However, in the setting discussed here, the problem of extending an
isometric covariant representation (ρ, V ) to a bigger space to obtain a covariant
representation with this property is more complicated. Also, the solution is not
unique. The problem is that not only must V be extended, but so must ρ, and the
process for extending ρ is based on the Hahn-Banach theorem. (See [40, 45] for
further discussion of this matter.)

If (T, σ) is an arbitrary completely contractive covariant representation of E,
then one can form σ(1) using the same type of formula as in equation (4): σ(1)(ξ⊗
η∗) = T̃ (ξ ⊗ η∗)T̃ ∗. In this more general case, however, σ(1) is only a completely
positive map (see [41, Remark 5.2] and the surrounding discussion). If, however,
σ(1)◦ϕ|J = σ|J , then T̃ ∗ acts isometrically on the essential subspace of σ|J , σ(J)H .
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In this event, Baruch and I called (T, σ) coisometric. When T̃ ∗ is an isometry, i.e.,
when T̃ is a co-isometry, then we called (T, σ) fully coisometric. So, the covariant
presentations (T, σ) of (E,A) such that σ×T gives a C∗-representation ofO(E) are
precisely the ones that are isometric and co-isometric. We have, however, resisted
the temptation to call them unitary. The completely contractive representations
(T, σ) that are isometric and fully coisometric are precisely the ones that pass to
a quotient of the Cuntz-Pimsner algebra called the Doplicher-Roberts algebra [21,
Theorem 6,6].

In sum, then, every completely contractive covariant representation of (E,A),
(T, σ), on a Hilbert space H , may be dilated to one, (U, ρ), that is isometric and
coisometric acting on a Hilbert space K containing H . The integrated form, then,
ρ× U , is a C∗-representation of O(E) such that

σ × T (F ) = Pρ× U(F )|H ,
for all F ∈ T+(E). This equation is precisely equation (2), where the operator V
there is the imbedding of H into K so that V ∗ becomes the projection P of K
onto H .

5. Induced representations and Halmos’s theorem

A representation π = ρ× V of T+(E) is called induced if there is a representation
σ : A→ B(Hσ) such that (V, ρ) is (unitarily equivalent to) the representation on
F(E)⊗σ Hσ given by the formulas ρ(a) = ϕ∞(a)⊗ I and V (ξ) = Tξ ⊗ I. In [41],
Baruch and I showed that these are natural generalizations of pure isometries,
i.e., shifts, and that every isometric representation of T+(E) splits as the direct
sum of an induced representation and a fully coisometric representation of the
Cuntz-Pimsner algebra O(E) restricted to T+(E). This decomposition is a natural
generalization of the Wold decomposition of an isometry.

To see more clearly the connection with shifts and the Wold decomposition,
consider the case when A = E = C. In this setting, the Fock space F(E) is
�2(Z+), ϕ∞ is just the representation of A = C in B(�2(Z+)) as scalar multiples
of the identity and Tξ = ξT1, where T1 is the unilateral shift, as before. Also, σ
must be the representation of A = C as scalar multiples of the identity in B(Hσ).
Consequently, ρ is the representation of A = C as scalar multiples of the identity
in B(�2(Z+) ⊗σ Hσ) and V (ξ) = ξV (1) = ξ(T1 ⊗ I). Of course T1 ⊗ I is the
unilateral shift of multiplicity equal to the dimension of Hσ. It is not hard to see
that two induced isometric representations of T+(E) are unitarily equivalent if
and only if the two representations of A from which they are induced are unitarily
equivalent. This fact is a manifest generalization of the fact that two shifts are
unitarily equivalent if and only if their multiplicities are equal.

The key to Baruch’s and my approach to the Wold decomposition theorem –
and to other things, as well – is to analyze the intertwining equation (3) associated
with a general completely contractive covariant representation (T, σ) of (E,A). The



268 P.S. Muhly

problem with T̃ is that it acts from E ⊗σ Hσ to Hσ, and so one cannot form its
powers. However, there is a way around this. Simply define T̃n : E⊗n⊗Hσ → Hσ by
the formula T̃n(ξ1⊗ξ2⊗· · ·⊗ξn⊗h) := T (ξ1)T (ξ2) · · ·T (ξn)h, ξ1⊗ξ2⊗· · ·⊗ξn⊗h ∈
E⊗n ⊗Hσ. Of course, T̃1 = T̃ . Then each T̃n is a contraction operator and they
are all related via the equation

T̃n+m = T̃n(IE⊗n ⊗ T̃m) (5)

= T̃m(IE⊗m ⊗ T̃n).

An alternate perspective we have found useful is to promote T̃ to an operator

matrix ˜̃
T on F(E)⊗Hσ via the formula

˜̃
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 T̃

0 IE ⊗ T̃

0 IE⊗2 ⊗ T̃

0
. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the formulas in equation (5) may be read from the matrix entries of the

powers of ˜̃T .
If (V, ρ) is an isometric covariant representation on a Hilbert space H , then

all the Ṽn’s are isometries [41, Lemma 2.2] and they implement the powers of an
endomorphism Φ of the commutant of ρ(A), ρ(A)′, via the equation:

Φn(x) = Ṽn(IE⊗n ⊗ x)Ṽ ∗n , (6)

x ∈ ρ(A)′ [41, Lemma 2.3]. Observe that Φ is non-unital precisely when Ṽ is not
surjective, i.e., precisely when (V, ρ) is not fully coisometric. In this event, the pro-
jections Pn := Φn(I) form a decreasing family whose infimum P∞ :=

∧
n≥0 Pn is

the projection onto a subspace that reduces (V, ρ). Further, the restriction (Vf , ρf)
of (V, ρ) to P∞H is isometric and fully coisometric [46, Theorem 2.9]. Consequently,
ρf × Vf is a representation of O(E) on P∞H .

On the other hand, if Q := I −Φ(I), and if Qn := Φn(Q), n ≥ 0, so Q = Q0,
then the Qn satisfy the following properties:

1. Each Qn commutes with ρ(A).
2. QnQm = 0, n �= m.
3.

∑⊕
n≥0Qn = I − P∞.

4. If H0 := Q0H and if σ is the representation of A on H0 defined by restricting
ρ to H0, then Ṽn is a Hilbert space isomorphism from E⊗n⊗H0 onto H0 such
that Ṽn(ϕn(a)⊗IH0 ) = σ(a)Ṽn for all a ∈ A, where ϕn gives the left action of
A on E⊗n via the formula ϕn(a)(ξ1⊗ξ2⊗· · ·⊗ξn) := (ϕ(a)ξ1)⊗ξ2⊗· · ·⊗ξn.

Since I lies in ρ(A)′, so does each Qn by [41, Lemma 2.3]. The orthogonality rela-
tions 2. are immediate from the fact that Φ is an endomorphism. Also, the “com-
pleteness” assertion, 3., follows from P∞ :=

∧
n≥0 Pn because I−Pn+1 =

∑n
k=0Qk.
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Finally, 4. is an easy consequence of equation (3) applied inductively to the defi-
nition of Ṽn. So, if we let Ṽ0 be the identity operator and set U :=

∑
n≥0 Ṽn, then

U a Hilbert space isomorphism from F(E)⊗σH0 onto H�P∞H that implements
a unitary equivalence between the isometric covariant representation of (E,A) in-
duced by σ and the restriction of (V, ρ) to (I − P∞)H . This gives the analogue of
the Wold decomposition theorem proved as [41, Theorem 2.9]: If (V, ρ) is an iso-
metric covariant representation of (E,A), then (V, ρ) decomposes uniquely as the
direct sum (V, ρ) = (Vi, ρi) ⊕ (Vf , ρf ), where (Vi, ρi) is an induced representation
and (Vf , ρf ) is isometric and fully coisometric.

Of course, one recognizes an analogy between the wandering subspaces of
Halmos [25] and the Qn. In particular property (3) is an exact analogue of [25,
Lemma 1] (Lemma 2.3). However, on close inspection the analogy breaks down. If
W is an isometry on a Hilbert space H and ifM⊆ H is a wandering subspace for
W , i.e, if M and WM are orthogonal subspaces, then not only must the family
{WnM}n≥0 be a family of mutually orthogonal subspaces, they also have the same
dimension. One might expect, therefore, that in the setting we are discussing, the
representations obtained by restricting ρ to the ranges of the Qn are all unitarily
equivalent. However, this need not be the case. In fact, they may all be disjoint;
i.e., there may be no nonzero operators intertwining them! (I will indicate why in
moment.) Further, suppose ρ is a representation of T+(E) that is induced by a
representation σ of A on Hσ, so ρ(T+(E)) acts on F(E)⊗σHσ, and supposeM is
a subspace of F(E)⊗σ Hσ that is invariant under ρ(T+(E)). Then while it is true
that the restriction of ρ(T+(E)) to M yields a representation ρ1 that is induced,
say by the representation σ1 of A [41, Proposition 2.11], the relation between σ
and σ1 can be complicated. Thus, it appears that all hope of generalizing Halmos’s
theorem to the setting I am describing is lost. However, things are not as bleak as
they may seem. One needs to add an extra concept which is taken from ergodic
theory: quasi-invariance.

First recall that two C∗-representations π1 and π2 of a C∗ -algebra A are
called quasi-equivalent in case some multiple of π1 is unitarily equivalent to a
multiple of π2 [18, 5.3.1 and 5.3.2]. In the situation of this discussion, where E
is a C∗-correspondence over A, Baruch and I called a representation π of A on
Hilbert space H quasi-invariant under E in case π and the induced representation
πF(E) ◦ϕ∞ are quasi-equivalent. Since π is a subrepresentation of πF(E) ◦ϕ∞, π is
quasi-invariant if and only if πF(E) ◦ϕ∞ is unitarily equivalent to a multiple of π.
The choice of terminology is justified by this example [41, Remark 4.6]: Suppose
A = C(X) for some compact Hausdorff space X , suppose E is the correspondence
determined by a homeomorphism τ ofX , i.e., suppose E = τC(X), where we think
of τ as inducing an automorphism of C(X) in the usual fashion, and suppose that
π is the multiplication representation of C(X) on L2(μ) for some measure μ on
X , (π(f)ξ)(x) = f(x)ξ(x), f ∈ C(X), ξ ∈ L2(μ)). Then π is quasi-invariant in
the sense just defined if and only if the measure μ is quasi-invariant in the usual
sense, vis., the τ -translate of any μ-null set is a μ-null set. At the other extreme,
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it is possible for the measures μ ◦ τn to be pairwise singular. In this event, the
representation ρ of T+(E) on F(E) ⊗π Hπ that is induced by π has the property
that the representations of A obtained by restricting ρ◦ϕ∞ to QnF(E)⊗πHπ are
pairwise disjoint.

Not only is “quasi-invariance” sufficient for formulating a version of Halmos’s
theorem in this context, it is necessary.

Theorem 5.1. [41, Theorem 4.7] Suppose π is a C∗-representation of A on a Hilbert
space Hπ, suppose that ρ is the representation of T+(E) on F(E) ⊗π Hπ that is
induced by π and suppose that M ⊆ F(E) ⊗π Hπ is a subspace that is invariant
under ρ(T+(E)). If π is quasi-invariant under E, then there is a family of partial
isometries {Θi}i∈I with orthogonal ranges in the commutant of ρ(T+(E)) such that
M =

∑⊕
i∈I ΘiF(E) ⊗π Hπ. Conversely, if every subspace of F(E) ⊗π Hπ that is

invariant under ρ(T+(E)) has this form, then π is quasi-invariant under E.

To see why this is so, let P be the projection of F(E)⊗πHπ ontoM. SinceM
reduces ρ◦ϕ∞, P commutes with ρ◦ϕ∞(A), and so, therefore, does Q := P−Φ(P ).
LetM0 be the range of Q. Since the restriction of ρ ◦ϕ∞ toM0 is a subrepresen-
tation of ρ ◦ ϕ∞, it is quasi-equivalent to a subrepresentation of π. Consequently,
from [18, 5.3.1] and the well-known structure of normal homomorphisms between
von Neumann algebras, there is a family of partial isometries {Θ0i}i∈I with or-
thogonal ranges, mapping Hπ to M0, such that Θ0iπ(·) = ρ ◦ ϕ∞(·)|M0Θ0i and
such that the range of

∑
i∈I Θ0iΘ

∗
0i is M0. If Θi is defined to be

∑
k≥0 Φ

k(Θ0i),
then an easy calculation shows: (i) Each Θi is a partial isometry in the commu-
tant of ρ(T+(E)), (ii) the ranges of the Θi are mutually orthogonal, and (iii) and
M =

∑⊕
i∈I ΘiF(E)⊗π Hπ .

This part of the proof is clearly a variation of Halmos’s arguments for Theo-
rem [25, Theorem 3]. (See the justification for equation (1).) It is very similar to
that given by Popescu [55, Theorem 2.2], which was based on his generalization
of the Wold decomposition [54]. Davidson and Pitts made similar arguments for
Theorem 2.1 in [16].

For the converse, observe that each space
∑

k≥n E
⊗k⊗Hπ is invariant under

ρ(T+(E)). If each of these has the indicated form, then it is not difficult to see
that each Θi restricted to Hπ, regarded as the 0th summand of F(E) ⊗π Hπ,
intertwines π and the representation πE

⊗n ◦ ϕn of A on E⊗n ⊗π Hπ. Since the
ranges of the Θi sum to E⊗n⊗πHπ, it follows that each representation πE

⊗n ◦ϕn
is quasi-equivalent to a subrepresentation of π. Since π is a subrepresentation
of πF(E) ◦ ϕ∞, the representation πF(E) ◦ ϕ∞ is quasi-equivalent to π, i.e., π is
quasi-invariant under E.

Absent from the discussion so far is Halmos’s fundamental lemma [25, Lemma
4] (i.e., Lemma 2.4), which asserts that if U+ is a unilateral shift of multiplicity n,
then every wandering subspace for U+ has dimension at most n. That is what is
necessary to conclude that the minimal number of partial isometries Θi necessary
in the representation in Theorem 5.1 – M =

∑⊕
i∈I ΘiF(E) ⊗π Hπ – is one. One
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may wonder, in particular, if Theorem 5.1 contains Halmos’s theorem, Theorem
2.1, as a special case. That question has two answers, at least, one “yes”, the other
“no”. The answer is “yes” in this sense: Once one knows that the dimension of
M0 is at most the dimension of Hπ, then one only needs one Θ0i. Further, I think
it is fair to say that Halperin’s elegant proof [66, Page 108] that the dimension
of M0 must be no more than the dimension of Hπ is as simple as it can be. So,
one can say that in the case when A = E = C, Theorem 5.1 yields [25, Theorem
3]. On the other hand, what is really at issue here is the comparison theory of
projections in the commutant of ρ ◦ ϕ∞. This is a subject that I have taken
up with various collaborators in the context non-self-adjoint crossed products,
also called analytic crossed products. (However, we did not express ourselves in
terms of correspondences.) The main result of [37, Theorem 3.3], for example, can
be phrased like this: Suppose A is a finite factor, and suppose E = ϕA is the
correspondence associated with an automorphism ϕ of A. Suppose π is a normal
representation of A such that π(A) admits a separating and cyclic vector. Then
the dimension ofM0 relative to the commutant of ρ ◦ϕ∞(A) is dominated by the
dimension ofHπ relative to the commutant of ρ◦ϕ∞(A). Consequently, in this case,
one Θ0i suffices. The results of [38] show that one can get a similar sort of theorem
without the assumption that A is a factor, but then one must assume that ϕ fixes
the center elementwise. I don’t know a general useful statement involving A, E and
π that guarantees that M0 is dominated by Hπ in the commutant of ρ ◦ ϕ∞(A).

At the risk of sounding Panglossian, I think the possibility that more than
one Θi may be necessary in Theorem 5.1 is terrific good news. The reason is this.
Recall that Beurling’s theorem and Halmos’s generalization of it are the mainstays
of the analogy promoted in operator theory that the disc algebraA(D) andH∞(D)
should be regarded as replacements for the polynomials in one indeterminant,
C[X ]. Of course, A(D) and H∞(D) are completions of C[X ], but what makes
the function theory in these algebras so compelling is the fact that each weak-∗
closed ideal in H∞(D) is principal; it is generated by an inner function. This is
an easy consequence of Beurling’s theorem. Halmos’s theorem implies that the
same is true for any left or right weak-∗ closed ideal in H∞(D) ⊗Mn(C). When
n =∞, one must replaceMn(C) by B(H) for an infinite-dimensional Hilbert space
H and one must understand H∞(D) ⊗ B(H) as a completion of the algebraic
tensor product. Further, the importance of H∞(D) ⊗Mn(C) resides also in the
fact that it appears as the commutant of the unilateral shift of multiplicity n. The
work of Popescu, Davidson and Pitts, and others make it clear that Popesecu’s
noncommutative disc algebra and the free semigroup algebras should be regarded
as operator algebra versions of free algebras. Indeed, analogous to the one-variable
setting they are completions of free algebras. Their generalizations of Halmos’s
Theorem, [55, Theorem 2.2] and [16, Theorem 2.1], show that the free semigroup
algebras, Ld, are free ideal rings in the sense that each weak-∗ closed left or right
ideal is free as an Ld-module [12, 1.2]. Theorem 5.1 shows that the tensor algebras
and Hardy algebras (to be discussed in a minute) should be regarded as generalized
free ideal rings, too.
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6. Duality and commutants

What is conspicuously missing in Theorem 5.1 and the theory discussed so far
is a description of the commutant of an induced representation. In the setting of
free semigroup algebras, Geulu Popescu showed that the commutant of Ld acting
on F(Cd) (to the left) is the weakly closed algebra Rd generated by the “right
creation operators”, i.e., the operators defined by the equation Rξη := η ⊗ ξ, ξ ∈
Cd, η ∈ F(Cd) [57]. Further, he showed that the map U defined on decomposable
tensors in F(Cd) by the formula

U(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = ξn ⊗ ξn−1 ⊗ · · · ⊗ ξ1

extends to a unitary operator on F(Cd) such that UTξU∗ = Rξ, for all ξ ∈ Cd.
Thus Ld andRd are isomorphic. Also, the commutant of an induced representation
of Ld, the image of which is Ld ⊗ IH for some Hilbert space H , is Rd ⊗ B(H).
These facts are used quite a bit in the free semigroup algebra literature. Note,
however, that the formulas make very little sense at the level of general tensor
algebras: Rξ isn’t a module map and U needn’t be an isometry – indeed, U isn’t
even well defined in some cases. Thus the commutant of an induced representation
appears to be mysterious. Certainly, it was to Baruch and me when we wrote [41].

The breakthrough came to us when we were studying product systems ofW ∗-
correspondences in [42]. We were inspired to study these by Arveson’s work on E0-
semigroups (See [5] for a full treatment.) and by the belief that algebras generated
by creation operators on product systems should give rise to analogues of Hardy
space theory on the upper half-plane. While the function-theoretic aspiration is still
largely unfulfilled, we found interesting connections with semigroups of completely
positive maps and a host of other things, upon which I won’t elaborate here.
The breakthrough was that the commutant problem rests, ultimately, on how to
interpret equation (3).

Recall that the point of equation (3) is this: the completely contractive repre-
sentations of T+(E) are determined by pairs (σ, T̃ ) where σ is a C∗-representation
of A on a Hilbert space H and T̃ is a contraction operator from E⊗σH to H that
intertwines σE ◦ ϕ and σ. But the intertwining space is a Banach space of opera-
tors and the contraction operators in it comprise its closed unit ball. More than
that, the set of adjoints of the operators in this intertwining space is naturally a
W ∗-correspondence over the commutant of σ(A), σ(A)′. We focus on this space of
adjoints, {X ∈ B(H,E ⊗σ H) | Xσ(a) = σE ◦ ϕ(a)X}, calling it the σ-dual of E
and denoting it by Eσ. The bimodule structure on Eσ is defined via the formulae

X · a := Xa,

and
a ·X := (IE ⊗ a)X,

a ∈ σ(A)′ and X ∈ Eσ. Further, the σ(A)′-valued inner product is defined by the
formula

〈X,Y 〉 := X∗Y,
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X,Y ∈ Eσ. With these operations, it is easily seen that Eσ is a C∗-correspondence
over σ(A)′. However, by virtue of being an intertwining space, Eσ is weakly closed
and therefore inherits a dual space structure that is compatible with the natural
dual space structure on σ(A)′.

I won’t go into detail here, but these dual space structures and compatibility
relations are what are necessary for a C∗-correspondence over a W ∗-algebra to
be a W ∗-correspondence. For further information see [42, Section 2], which is
based primarily on [6] and [49]. So, when I use the term W ∗-correspondence, it
will suffice to think C∗-correspondence over a W ∗-algebra that has additional
structure that will not be of concern in the discussion. There are, however, a few
minor adjustments one must make to some of the terms we have been discussing
in the context of C∗-correspondences. Suppose E is a W ∗-correspondence over a
W ∗-algebra A; then the Fock space over E, F(E), is taken to be a completion
of the Fock space of E regarded simply as a C∗-correspondence. When this is
done, F(E) is a W ∗-correspondence and so the algebra L(F(E)) is a W ∗-algebra
[49, Proposition 3.10]. The Hardy algebra of E is defined to be the closure of the
tensor algebra T+(E) in the weak-∗ topology on L(F(E)) and is denoted H∞(E).
Observe that when A = E = C, and when they are viewed as a W ∗-algebra and
a W ∗-correspondence, respectively, then F(E) = �2(Z+) and H∞(E) is H∞(D)
realized as the algebra of all analytic Toeplitz operators.

To get a feeling for the σ-dual of a correspondence, consider first the simple
case when E = Cd and let σ be the representation of C on Cn in the only way pos-
sible: σ(c) = cIn, where In the n× n identity matrix. Then as I remarked earlier,
E ⊗σ Cn should be viewed as d copies of Cn arranged in a column. Consequently,
since the intertwining condition is trivial (operators are linear, by assumption),
Eσ is just the collection of all d-tuples of n × n matrices arranged in a column.
This space is often denoted Cd(Mn(C)) and called column d-space over Mn(C).
More generally, one can compute duals of correspondences associated with directed
graphs and it turns out that these are natural “graphs of matrix spaces indexed
by the opposite graph” [44, Example 4.3]. Suppose ϕ is an endomorphism of the
C∗-algebra A, that E is the C∗-correspondence ϕA, and that σ is a representation
of A on the Hilbert space H . Suppose, for the sake of discussion, that σ(A) admits
a cyclic vector Ω and that the state determined by Ω is invariant under ϕ. Then
the map S defined by the equation, S(σ(a)Ω) = σ(ϕ(a))Ω, extends to an isom-
etry defined on all of H and Eσ is naturally identified as {mS | m ∈ σ(ϕ(A))′}
[44, Example 4.6]. More generally, if E = A ⊗P A is the GNS correspondence
determined by a unital completely positive map on the C∗-algebra A and if σ is
a representation of A on a Hilbert space H , then it is not difficult to see that
Eσ is the space of all operators from H to A ⊗σ◦P H that intertwine σ and the
Stinespring representation associated with σ ◦ P [44, Example 4.4]. (Recall that
A ⊗σ◦P H is the Hausdorff completion of the algebraic tensor product A ⊗H in
the pre-inner product 〈a1⊗h1, a2⊗h2〉 := 〈h1, σ ◦P (a∗1a2)h2〉 and the Stinespring
representation π is given by the formula π(a)(b⊗ h) = (ab)⊗ h.)
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Now Eσ is a W ∗-correspondence over σ(A)′, where σ is a representation of
A on H , and so one can contemplate the identity representation ι of σ(A)′ on
H and one can form (Eσ)ι. This, of course, is a W ∗-correspondence over σ(A)′′,
the weak closure of σ(A). It is naturally isomorphic to a W ∗-completion of E.
More accurately, if A were a W ∗-algebra, if E were a W ∗-correspondence over A,
and if σ were a faithful normal representation of A on H , then (Eσ)ι would be
naturally isomorphic to E [44, Theorem 3.6]. This isomorphism, in turn, lies at the
heart of the connection between duals and tensor products: If E1 and E2 are W ∗-
correspondences over a W ∗-algebra A and if σ is a faithful normal representation
of A on a Hilbert space H , then Eσ

1 ⊗Eσ
2 is isomorphic to (E2⊗E1)σ via the map

η1 ⊗ η2 �→ (IE2 ⊗ η1)η2

by [44, Lemma 3.7]. Observe that the composition in this equation makes sense
when properly interpreted: η2 is a map from H to E2 ⊗σ H and η1 is a map from
H to E1 ⊗H . Consequently, IE2 ⊗ η1 is a map from E2 ⊗σ H and the composite,
(IE2 ⊗ η1)η2, then, is a map from H to E2 ⊗IE1⊗σ (E1 ⊗σ H). Since this space is
naturally identified with (E2 ⊗ E1) ⊗σ H , the composition (IE2 ⊗ η1)η2 has the
right properties.

The solution to the commutant mystery is that the commutant of the image
of a tensor algebra under an induced representation is naturally isomorphic to an
induced representation of the Hardy algebra of the dual correspondence. It is best
to frame this entirely in terms of Hardy algebras. So, let E be aW ∗-correspondence
over aW ∗-algebraA and let σ be a faithful normal representation of A on a Hilbert
space H . Also form the dual W ∗-correspondence Eσ over σ(A)′ and let ι denote
the identity representation of σ(A)′ on H . Finally, let λ be the representation of
H∞(E) induced by σ and let ρ be the representation of H∞(Eσ) induced by ι.

Theorem 6.1. [44, Theorem 3.9] Define U from F(Eσ)⊗ιH to F(E)⊗σH by the
formula

U(η1 ⊗ η2 ⊗ · · · ⊗ ηn ⊗ h) := (IE⊗(n−1) ⊗ η1)(IE⊗(n−2) ⊗ η2) · · · (IE ⊗ ηn−1)ηnh,

for decomposable tensors η1 ⊗ η2 ⊗ · · · ⊗ ηn ⊗ h in (Eσ)⊗n ⊗ι H ⊆ F(Eσ) ⊗ι H.
Then U is a Hilbert space isomorphism from F(Eσ) ⊗ι H onto F(E) ⊗σ H with
the property that Uρ(H∞(Eσ))U∗is the commutant of λ(H∞(E)).

7. Noncommutative function theory

The identification of the commutant of an induced representation and the structure
of a σ-dual led Baruch and me to view elements of tensor and Hardy algebras as
functions on “the unit disc” in the σ-dual. This, in turn, has led us to study a kind
of noncommutative function theory that has interesting algebraic and analytic
progenitors. I want to describe some of it. As I indicated above, once σ : A →
B(H) is fixed, the points in the closed unit ball of Eσ∗, D(Eσ∗), label all the
representations ρ of the tensor algebra T+(E) with the property that ρ ◦ ϕ∞ = σ.
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This observation invites one to view elements of T+(E) as B(H)-valued functions
on D(Eσ∗). For F ∈ T+(E), the corresponding function will be denoted F̂ , and its
value at a point η∗ ∈ D(Eσ∗) is defined by the equation

F̂ (η∗) := σ × η∗(F ). (7)

This formula may seem obscure, unclear, and ad hoc, but in fact special cases of
it are quite well known and very useful, e.g., the holomorphic functional calculus
and the Sz.-Nagy–Foiaş functional calculus.

Suppose that A = E = C and that σ is the one-dimensional representation of
C. Then it is immediate that Eσ∗ may be identified with the complex plane, and
so D(Eσ∗) is just the closed unit disc. From the way T+(E) is defined, an element
F in T+(E) is an analytic Toeplitz operator and so its matrix with respect to the
usual basis in F(E) = �2(Z+) has the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 0 0
. . .

a1 a0 0 0
. . .

a2 a1 a0 0
. . .

a3 a2 a1 a0
. . .

. . . . . . . . . . . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If η∗ is in the closed unit disc, then the value F̂ (η∗) in B(H) = C defined through
equation (7) is

∑
k≥0 ak(η

∗)k. This series converges, of course, when |η∗| < 1. If
η∗ is on the boundary, then the series is Abel summable. If σ is the representation
of C by scalar multiples of the identity on a Hilbert space H , finite or infinite
dimensional, then Eσ∗ is the full algebra of operators on H , B(H), and if η∗ ∈
D(Eσ∗), then η∗ is a contraction operator. Again, equation (7) gives F̂ (η∗) =∑

k≥0 ak(η
∗)k, where the series converges in operator norm, if η∗ is in the open

ball D(Eσ∗), while if ‖η∗‖ = 1, then, in general, the series is only Abel summable.
I should note that the radius of convergence of the series representing F̂ is at least
the reciprocal of the spectral radius of η∗, which is always ≥ 1.

I want to digress momentarily to point out an important difference between
T+(E) andH∞(E), in the case when E is aW ∗-correspondence over aW ∗-algebra.
If F ∈ T+(E), then formula (7) makes sense at every point η∗ in D(Eσ∗). On the
other hand, if F is merely assumed to be in H∞(E), then F̂ (η∗) makes sense
for all η∗ in the open ball D(Eσ∗) because σ × η∗ extends from T+(E) to an
ultraweakly continuous, completely contractive representation of H∞(E) in B(H)
in this case [44, Corollary 2.14]. However, σ × η∗ need not extend from T+(E)
to H∞(E) as an ultraweakly continuous representation when η∗ on the boundary
of D(Eσ∗). In particular, when A = E = C, then H∞(E) is H∞(D) and, for
example, if η∗ has an eigenvalue of modulus 1, then σ × η∗ will never have such
an extension. On the other hand, if η∗ is a completely non-unitary contraction,
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then it is a key fact about the Sz.-Nagy–Foiaş functional calculus that σ × η∗

admits an ultraweakly continuous extension toH∞(E). (Of course, whenH is finite
dimensional being completely non-unitary and having spectral radius less than one
are one and the same thing.) One of the interesting questions in the subject is to
find general conditions that allow σ × η∗ to extend to an ultraweakly continuous
representation of H∞(E). A sufficient condition was isolated in the free semigroup
setting by Popescu; he assumed that the representation was “completely non-
coisometric” (see his [54, Proposition 2.9]). Baruch and I generalized his work in
Section 7 of [44]. However, as far as I know, no necessary condition has been found.
As one might imagine, the issue is closely related to the problem of formulating
a good notion of absolute continuity for representations of Cuntz algebras and,
more generally, of Cuntz-Pimsner algebras. (See [13, 17] for contributions to this
“absolute continuity” problem.)

When A = C and E = Cd and σ is a representation of A on a Hilbert spaceH ,
then as mentioned above, Eσ is column space over B(H), Cd(B(H)); Eσ∗, then,
is row space over B(H), i.e., all d-tuples of operators in B(H), (Z1, Z2, . . . , Zd),
arranged in a row. This space is denoted Rd(B(H)). Although Cd(B(H)) and
Rd(B(H)) are isometrically isomorphic as Banach spaces, they are very differ-
ent as operator spaces (See, e.g., [20].) The unit ball D(Rd(B(H))) is the space
of all (strict) row contractions, i.e., all d-tuples Z∗ := (Z1, Z2, . . . , Zd) such that
‖∑d

i=1 ZiZ
∗
i ‖ < 1. If F ∈ Ld, then F has a series expansion in creation operators.

Specifically, let {ei}di=1 be an orthonormal basis for Cdand let Si denote the cre-
ation operator Tei . If w = i1i2 · · · ik is a word in the free semigroup on {1, 2, . . . , d},
then one writes Sw for the operator Si1Si2 · · ·Sik . As Davidson and Pitts show in
[16, Section 1], every F ∈ Ld can be written as

F =
∑
w∈F+

d

cwSw,

where the sum ranges over the free semigroup on d letters, F+d , and the series is
Cesaro summable to F in the ultraweak operator topology. When equation (7) is
interpreted in this setting, one arrives at the formula:

F̂ (Z∗) =
∑
w∈F+

d

cwZw, (8)

where Zw = Zi1Zi2 · · ·Zik , if w = i1i2 · · · ik, and where the series converges uni-
formly on balls of radius less than 1. Thus, F̂ is a bona fide analytic B(H)-valued
function. But what kind of function is it? How does one recognize such a function?
How does one categorize the space of all such functions as F runs over Ld? A little
reflection reveals lots of natural, but difficult questions.

Already in the first nontrivial situation, when d = 1 and dimH = 2, these
questions are not easy. As I just indicated, in this case, if T is a 2 × 2 matrix,
F̂ (T ) =

∑
akT

k – something that is very familiar. But one can think of F̂ in
this way: The disc D(Eσ∗) in this setting is the collection of all 2 × 2 matrices
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of norm less than one – a classical domain in C4. So F̂ is really a 2 × 2 matrix
of holomorphic functions in four variables. So, what distinguishes functions of the
form F̂ from all the other holomorphic matrix-valued functions of four complex
variables? In short:

When is a matrix of functions a function of matrices?
One solution for polynomial functions is inspired by work of Joe Taylor [68, p. 238
ff.] and may be expressed in this way: Suppose f is a polynomial mapping from
M2(C) to M2(C), i.e., suppose f is a 2×2 matrix of polynomials, each of which is

a polynomial in 4 variables, viewed as a 2× 2 matrix z =
[
z1 z2
z3 z4

]
. Then there

is a polynomial p in one variable such that f(z) = p(z) in the sense of the usual
polynomial calculus of matrices if and only if f(z)m = mf(w) for every triple of
matrices m, z, and w such that zm = mw. The key to the proof is to fixm and then
to analyze the possibilities for z and w in terms of the Jordan canonical form of m.

Taylor was motivated to try to extend the functional calculus he had devel-
oped for commuting families of operators on a Banach space to the noncommu-
tative realm. He realized that the polynomial matrix-valued functions that one
encounters when viewing elements of C〈X1, X2, . . . , Xd〉 as functions defined on
the space of representations of C〈X1, X2, . . . , Xd〉 can be organized in terms of
what Dan Voiculescu has recently dubbed “fully matricial sets” and “fully ma-
tricial functions” [69, 70]. Voiculescu, in turn, came upon these notions through
his work on free probability. Although the definitions may seem complicated, it is
worthwhile to have a look at them.

Definition 7.1. Let G be a Banach space and for each n let Mn(G) denote the n×n
matrices over G.
1. A fully matricial G-set is a sequence Ω = {Ωn}n≥1 such that

(a) Ωn is a subset of Mn(G) for each n.
(b) Ωn+m ∩ (Mm(G) ⊕ Mn(G)) = Ωm ⊕ Ωn, m,n ≥ 1, where for X ∈

Mn(G) and Y ∈Mm(G), one writes X⊕Y for the matrix
[
X 0
0 Y

]
∈

Mn+m(G); Mm(G) ⊕Mn(G) then denotes the set of all such X ⊕ Y .
(c) If X ∈ Ωm, Y ∈ Ωn and if S ∈ GL(m + n,C) is such that Ad(S)(X ⊕

Y ) ∈ Ωm+n, then there is an S′ ∈ GL(m,C) and an S′ ∈ GL(n,C) so
that Ad(S′)(X) ∈ Ωm and Ad(S′′)(Y ) ∈ Ωn.

2. If H is another Banach space, then a sequence R = {Rn}n≥1 of functions,
with Rn defined on Ωn, is called a fully matricial H-valued function defined
on Ω in case
(a) Rn maps Ωn into Mn(H);
(b) if X ⊕ Y ∈ Ωm ⊕ Ωn, then Rm+n(X ⊕ Y ) = Rm(X)⊕Rn(Y ); and
(c) if X ∈ Ωn and if S is in a sufficiently small neighborhood of I in

GL(n,C) so that Ad(S)⊗IG(X) lies in Ωn, then Rn(Ad(S)⊗IG(X)) =
Ad(S)⊗ IH(Rn(X)).

R is called continuous, analytic, etc. iff each Rn is continuous, analytic, etc.
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Clearly, these notions connect naturally to operator space theory. To see their
relevance for our discussion, consider first the case of the free algebra on d genera-
tors, C〈X1, X2, . . . , Xd〉. The n-dimensional representations of C〈X1, X2, . . . , Xd〉
are completely determined by d-tuples of n × n matrices and every d-tuple gives
a representation. So, if one makes the following choices: G := Cd, Ωn := Mn(G),
and H := C, then one finds that Ω := {Ωn}n≥1 is a fully matricial Cd-set – by
default – and that an element f ∈ C〈X1, X2, . . . , Xd〉 determines a fully matri-
cial C-valued function {Rn}n≥1 on Ω through the formula Rn(T1, T2, . . . , Td) :=
f(T1, T2, . . . , Td). Conversely, it can be shown, using arguments from [68, Sec-
tion 6], that if {Rn}n≥1 is a fully matricial C-valued function on Ω consisting
of polynomial functions in the d · n2 variables that parameterize Mn(G), then
there is an f in the free algebra C〈X1, X2, . . . , Xd〉 such that Rn(T1, T2, . . . , Td) =
f(T1, T2, . . . , Td) for all n and for all d-tuples of n×n matrices. Thus, in this case,
one finds that the notions of fully matricial sets and functions provide a scaffold-
ing upon which one can organize the (finite-dimensional) representation theory of
C〈X1, X2, . . . , Xd〉.

Returning to the discussion of tensor algebras and Hardy algebras, suppose
A is a W ∗-algebra, suppose E is a W ∗-correspondence over A, and that σ : A →
B(H) is a faithful normal representation. For each positive integer n let nσ denote
the n-fold multiple of σ acting on the direct sum of n copies of H . Then a moment’s
thought directed toward the fact that the commutant of nσ(A) is Mn(σ(A)′)
reveals that the sequence {D(Enσ∗)}n≥1 is an example of a fully matricial Eσ∗-
set. Further, if F ∈ H∞(E) and if F̂n is the function on D(Enσ∗) defined by
equation (7), then the sequence {F̂n}n≥1 is a fully matricial B(H)-valued analytic
function on {D(Enσ∗)}n≥1. Although one is used to thinking of infinite-dimensional
structures, when one thinks of W ∗-algebras and W ∗-correspondences, the finite-
dimensional theory, i.e., the theory built from finite graphs or quivers, is very rich
and yields fully matricial sets and functions that generalize those from the free
algebra setting. Thus, it is clear that the theory I have been discussing fits nicely
into this “fully matricial function theory”. But how nicely? How can one identify
explicitly the fully matricial B(H)-valued functions on {D(Enσ∗)}n≥1 that come
from elements F in H∞(E)?

One can build analytic fully matricial B(H)-valued functions on {D(Enσ∗)}n≥1
that don’t come from elements in H∞(E), but as of this writing, the only ones I
know of all come from formal “power series” over E. By a formal power series, I
simply mean an infinite sum f ∼

∑
n≥0 fn, where each fn lies in the n-fold tensor

power of E, E⊗n. One then has the following assertion, extending [59, Theorem
1.1] in the case when E = Cd, that is familiar from basic complex analysis: Let R
satisfy 1

R = limn‖fn‖
1
n . Then for every normal representation σ : A → B(Hσ),

and every ζ∗ ∈ Eσ∗, with ‖ζ∗‖ < R, the series f(ζ∗) =
∑

n fn(ζ
∗) converges in

the norm of B(Hσ) where fn(ζ∗) := ζ∗(n)(fn) and ζ∗(n) is defined by the formula
ζ∗(n)(ξ1⊗ξ2⊗· · ·⊗ξn)(h) := ζ∗(ξ1⊗ζ∗(ξ2⊗· · ·⊗ζ∗(ξn⊗h)) · · · ), which in turn, is a
special case of equation (7). The convergence is uniform on balls of strictly smaller
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radius and the resulting function, denoted by fσ, is holomorphic as a Banach space-
valued map defined on the open ball DR(Eσ)∗ := {ζ∗ ∈ Eσ∗ | ‖ζ∗‖ < R} mapping
to B(Hσ). Moreover, {fnσ}n≥1 is a fully matricial B(Hσ)-valued function on the
fully matricial Eσ∗-set, {DR(Enσ)∗}n≥1. Results of Arveson from [4], show that
one can (almost) always construct a formal power series f and a representation σ
such that fσ is bounded and analytic on D(Eσ)∗ that is not of the form F̂ for any
F ∈ H∞(E).

Dmitry Kalyuzhny̆ı-Verbovetzkĭı and Victor Vinnikov have been studying the
issue in the case when E = Cd and have gotten a fairly precise characterization of
fully matricial B(H)-valued analytic functions on {D(Enσ∗)}n≥1. What is impres-
sive is that they require very little a priori regularity on the functions. Indeed,
Victor has told me that he views the definition of a fully matricial function as a
non-commutative generalization of the Cauchy-Riemann equations. This is because
the definition of a fully matricial function leads naturally to certain derivations
and related “differential equations” (see Section 6 of Taylor’s paper [68]). One can
do similar things in the setting of W ∗-correspondences more general than Cd, but
at this point, I do not know sharp results.

In another direction, fully matricial sets and fully matricial functions on
them have recently arisen in the theory of matrix inequalities. Indeed, so-called
dimension-free matrix inequalities are just another name for certain fully matricial
sets. These, and the functions on them, have been studied by Bill Helton and
his collaborators. It is impossible to do justice to this subject here or even to
cite all the relevant literature. However, I want to call special attention to [29]
in which connections with the theory of fully matricial sets and functions are
explicitly made. Also, although he does not express himself in terms of these
objects, Popescu’s work in [58, 60] and elsewhere leads naturally to fully matricial
domains and functions.

The contribution to the problem of characterizing the functions F̂ , F ∈
H∞(E), that Baruch and I made was recently published in [46]. It is a general-
ization of the Nevanlinna-Pick interpolation theorem and so should seem familiar
to operator theorists with a function theoretic bent. A central role is played by
the notion of a completely positive definite kernel that was introduced by Stephen
Barreto, Raja Bhat, Volkmar Liebscher and Michael Skeide in [8].

Let Ω be a set and let A and B be C∗-algebras. A function K on Ω×Ω with
values in the continuous linear transformations from A to B, B(A,B), is called
completely positive definite kernel on Ω in case for each finite set of distinct points
{ω1, ω2, . . . , ωn} in Ω, for each choice of n elements in A, a1, a2, . . . , an, and for
each choice of n elements in B, b1, b2, . . . , bn, the inequality

n∑
i,j=1

b∗iK(ωi, ωj)[a∗i aj ]bj ≥ 0

holds in B. In [8, Theorem 3.2.3], the authors prove that a completely positive
definite kernel in this sense gives rise to a C∗-correspondence from A to B that
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may be viewed as a family of B-valued functions on Ω and they prove an analogue
of the Kolmogoroff decomposition theorem that is familiar from the theory of
reproducing kernel Hilbert spaces: There is a C∗-correspondence E from A to B
and a mapping ω → kω from Ω to E such that

K(ω, ω′)[a] = 〈kω, akω′〉
for all a ∈ A. Further, E is uniquely determined by K and the condition that the
bimodule spanned by {kω}ω∈Ω is dense in E.

In [46], Baruch and I let Ω be D(Eσ∗), where E is a W ∗-correspondence over
the W ∗-algebra A and σ is a faithful normal representation of A on a Hilbert
space H . There are two types of kernels with which we are concerned. The first is
a generalized Szegö kernel KS on D(Eσ∗) defined by the formula

KS(ζ∗, ω∗) = (id− θζ,ω)−1

where id denotes the identity map on σ(A)′ and where θζ,ω(a) = 〈ζ, aω〉, a ∈ σ(A)′.
This kernel is completely positive definite with values in the operators on σ(A)′.
However, it is convenient to extend the scalars to B(H). When this is done, the
Kolmogoroff-type decomposition ofKS is afforded by the Cauchy-like kernel inside
the “augmented” Fock space B(H)⊗σ(A)′F(Eσ)⊗σ(A)′B(H), given by the formula

kζ∗ = 1⊕ ζ ⊕ ζ⊗2 ⊕ ζ⊗3 ⊕ · · · ,
with 1 denoting the identity operator in σ(A)′ and ζ⊗n denoting the nth tensor
power of ζ as an element of Eσ. The reproducing kernel correspondence associated
with KS , then, is the closed B(H)-bimodule generated by {kζ∗ | ζ∗ ∈ D(Eσ∗)}
inside B(H)⊗σ(A)′ F(Eσ)⊗σ(A)′ B(H).

The second kernel is determined by KS and any B(H)-valued function F
defined on D(Eσ∗) through the formula

KF (ζ∗, ω∗) := (id−Ad(F (ζ∗), F (ω∗)) ◦KS(ζ∗, ω∗),

where id is the identity map on B(H), and where for any pair of operators A and
B in B(H), Ad(A,B) is the map on B(H) defined by the formula Ad(A,B)(T ) =
ATB∗. The “identification theorem” that Baruch and I prove is the following
generalization of our Nevanlinna-Pick theorem [44, Theorem 5.3].

Theorem 7.2. [46, Theorems 3.1, 3.3 and 3.6] Let A be a W ∗-algebra, let E be a W ∗-
correspondence over A, and let σ : A→ B(H) be a faithful normal representation.
Then a function Φ : D(Eσ∗) → B(H) is of the form Φ(ζ∗) = F̂ (ζ∗) for some
F ∈ H∞(E) of norm at most one if and only if the kernel KF on D(Eσ)∗ is
completely positive definite.

This result, thus, enables one to view the F̂ , F ∈ H∞(E), as the collection of
all multipliers of a reproducing kernel correspondence consisting of B(H)-valued
functions defined on D(Eσ∗). But that begs the question: How to describe these
spaces and multipliers? In the setting when A = E = C, of course, the multi-
pliers are isometrically isomorphic to H∞(D). Arveson was the first to observe
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a difference when A = C and E = Cd, d ≥ 2. In this case, when σ is the one-
dimensional representation, the reproducing kernel Hilbert correspondence is the
symmetric Fock space realized as what some now call the Drury-Arveson space of
holomorphic functions on the d-dimensional ball, Bd. Arveson showed that not ev-
ery bounded analytic function comes from a multiplier [4]. Because of the evident
analogy between Theorem 7.2 and the classical analysis of Schur class functions
on the disc, we have come to call functions of the form F̂ Schur-class functions or
Schur-Agler class functions. The book of Jim Agler and John McCarthy [1] has
been an important source of inspiration for us and the proof of Theorem 7.2 owes
a lot to the exposition there. I also want to call attention to the paper by Joe Ball,
Animikh Biswas, Quanlei Fang, and Sanne ter Horst [7]. They have an approach
to reproducing kernel Hilbert correspondences that is also based on the work of
Barreto et al., but leads to a formulation and picture that are somewhat different
from ours.

At the simplest level, Theorem 7.2 has this corollary which describes when an
operator-valued function is defined through the holomorphic functional calculus:
Suppose H is a finite- or infinite-dimensional Hilbert space and let ϕ be a function
from the open unit ball in B(H), B(H)1, to B(H). Then there is a scalar-valued,
bounded analytic function f on the disc D, of sup-norm at most 1, such that ϕ(T ) =
f(T ) for all T ∈ B(H)1, where f(T ) is defined through the usual holomorphic
functional calculus, if and only if the function Kϕ from B(H)1 × B(H)1 to the
bounded linear transformations on B(H) defined by the formula

T �→ Kϕ(Z,W )(T ) : = (id−Ad(ϕ(Z), ϕ(W ))) ◦ (id−Ad(Z∗,W ∗))−1(T )

=
∑
n≥0

Z∗nTWn − ϕ(Z)(
∑
n≥0

Z∗nTWn)ϕ(W )∗

is a completely positive definite kernel.
One of the principal applications of Theorem 7.2 in [46] is to identify the

automorphisms of H∞(E) – at least when A is a factor or, more generally, when
A has an atomic center [46, Theorem 4.22]. (There are additional technical matters
that I omit here.) It turns out that they are induced by analogues of fractional
linear – or Möbius transformations. One might expect this, since our discs have the
character of bounded symmetric domains – albeit in usually infinite-dimensional
Banach spaces. However, not every Möbius transformation need be allowed. I will
omit a formal statement, but I bring it up here because the key step in [46] for
understanding an automorphism ofH∞(E) was to express it in terms of Schur-class
functions. There are points of contact between this result and a recent preprint of
Bill Helton, Igor Klep, Scott McCullough and Nick Slinglend [29] that I mentioned
above in the context of matrix inequalities.

While the definitions of fully matricial sets and functions, as well as the
function theory that goes with these objects, are formulated in the setting of
infinite-dimensional spaces, it is clear that matrix inequality theory provides a
rich environment in which to continue to follow this variant of Halmos’s doctrine:
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If you want to study fully matricial function theory in infinite-dimensional spaces,
then you must understand the finite-dimensional situation first. The problem is
– and this is good news, really – the finite-dimensional theory already is full of
difficult problems of its own, and the surface has barely been scratched.
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Abstract. This is a survey article. We consider different problems in con-
nection with the behavior of functions of operators under perturbations of
operators. We deal with three classes of operators: unitary operators, self-
adjoint operators, and contractions. We study operator Lipschitz and oper-
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1. Introduction

This survey article is devoted to problems in perturbation theory that arise in an
attempt to understand the behavior of the function f(A) of an operator A under
perturbations of A.

Consider the following example of such problems. Suppose that ϕ is a function
on the real line R, A is a self-adjoint operator on Hilbert space. The spectral
theorem for self-adjoint operators allows us to define the function ϕ(A) of A.

The author is partially supported by NSF grant DMS 0700995.
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Suppose that K is a bounded self-adjoint operator. We can ask the question of
when the function

K �→ ϕ(A +K)− ϕ(A) (1.1)

is differentiable. We can consider differentiability in the sense of Gâteaux or in
the sense of Fréchet and we can consider the problem for bounded self-adjoint
operators A or for arbitrary self-adjoint operators (i.e., not necessarily bounded).

It is obvious that for this map to be differentiable (in the sense of Fréchet) it
is necessary that ϕ is a differentiable function on R. Functions, for which the map
(1.1) is differentiable are called operator differentiable. This term needs a clarifica-
tion: we can consider operator differentiable functions in the sense of Gâteaux or
Fréchet and we can consider this property for bounded A or arbitrary self-adjoint
operators A. In [W] Widom asked the question: when are differentiable functions
differentiable?

We also consider in this survey the problem of the existence of higher operator
derivatives.

Another example of problems of perturbation theory we are going to consider
in this survey is the problem to describe operator Lipschitz functions, i.e., functions
ϕ on R, for which

‖ϕ(A)− ϕ(B)‖ ≤ const ‖A−B‖ (1.2)

for self-adjoint operators A and B. Sometimes such functions are called uniformly
operator Lipschitz. Here A and B are allowed to be unbounded provided the
difference A−B is bounded. If ϕ is a function, for which (1.2) holds for bounded
operators A and B with a constant that can depend on ‖A‖ and ‖B‖, then ϕ is
called locally operator Lipschitz. It is easy to see that if ϕ is operator Lipschitz,
then ϕ must be a Lipschitz function, i.e.,

|ϕ(x)− ϕ(y)| ≤ const |x− y|, x, y ∈ R, (1.3)

and if ϕ is locally operator Lipschitz, then ϕ is locally a Lipschitz function, i.e.,
(1.3) must hold on each bounded subset of R.

We also consider in this survey the problem for which functions ϕ

‖ϕ(A)− ϕ(B)‖ ≤ const ‖A−B‖α (1.4)

for self-adjoint operators A and B. Here 0 < α < 1. If ϕ satisfies (1.4), it is
called an operator Hölder function of order α. Again, it is obvious that for ϕ to
be operator Hölder of order α it is necessary that ϕ belongs to the Hölder class
Λα(R), i.e.,

|ϕ(x)− ϕ(y)| ≤ const |x− y|α. (1.5)

We also consider functions f on R for which

‖ϕ(A−K)− 2ϕ(A) + ϕ(A +K)‖ ≤ const ‖K‖ (1.6)

for selfadjoint operators A and K. Functions ϕ satisfying (1.6) are called operator
Zygmund functions.
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In this paper we also study the whole scale of operator Hölder–Zygmund
classes.

Another group of problems we are going to consider is the behavior of func-
tions of operators under perturbations of trace class (or other classes of operators).
In particular, the problem to describe the class of functions f , for which

f(A+K)− f(A) ∈ S1 whenever K ∈ S1,

is very important in connection with the Lifshits–Krein trace formula. We use the
notation Sp for Schatten–von Neumann classes.

We also consider problems of perturbation theory related to the Koplienko
trace formula, which deals with Hilbert–Schmidt perturbations.

It is also important to study similar problems for unitary operators and
functions on the unit circle T and for contractions and analytic functions in the
unit disk D.

The study of the problem of differentiability of functions of self-adjoint op-
erators on Hilbert space was initiated By Daletskii and S.G. Krein in [DK]. They
showed that for a function ϕ on the real line R of class C2 and for bounded
self-adjoint operators A and K the function

t �→ ϕ(A + tK) (1.7)

is differentiable in the operator norm and the derivative can be computed in terms
of double operator integrals:

d

dt
ϕ(A+ tK)

∣∣∣
t=0

=
∫∫
R×R

ϕ(x) − ϕ(y)
x− y

dEA(x)K dEA(y), (1.8)

where EA is the spectral measure of A. The expression on the right is a double
operator integral. The beautiful theory of double operator integrals due to Birman
and Solomyak was created later in [BS1], [BS2], and [BS4] (see also the survey
article [BS6]). A brief introduction into the theory of double operator integrals
will be given in § 2.

The condition ϕ ∈ C2 was relaxed by Birman and Solomyak in [BS4]: they
proved that the function (1.7) is differentiable and the Daletskii–Krein formula
(1.8) holds under the condition that ϕ is differentiable and the derivativeϕ′ satisfies
a Hölder condition of order α for some α > 0. The approach of Birman and
Solomyak is based on their formula

ϕ(A+K)− ϕ(A) =
∫∫
R×R

ϕ(x) − ϕ(y)
x− y

dEA+K(x)B dEA(y). (1.9)

Actually, Birman and Solomyak showed in [BS4] that formula (1.9) is valid under
the condition that the divided difference Dϕ,

(Dϕ)(x, y) =
ϕ(x) − ϕ(y)

x− y
,
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is a Schur multiplier of the space of all bounded linear operators (see § 2 for defi-
nitions).

Nevertheless, Farforovskaya proved in [Fa1] that the condition ϕ ∈ C1 does
not imply that ϕ is operator Lipschitz, which implies that the condition ϕ ∈ C1

is not sufficient for the differentiability of the map (1.7) (see also [Fa3] and [KA]).
A further improvement was obtained in [Pe2] and [Pe4]: it was shown that the

function (1.7) is differentiable and (1.8) holds under the assumption that ϕ belongs
to the Besov space B1∞1(R) (see § 4) and under the same assumption ϕ must be
uniformly operator Lipschitz. In the same paper [Pe2] a necessary condition was
found: ϕ must locally belong to the Besov space B11(R) = B111(R). This necessary
condition also implies that the condition ϕ ∈ C1 is not sufficient. Actually, in
[Pe2] and [Pe4] a stronger necessary condition was also obtained; see §7 for further
discussions. Finally, we mention another sufficient condition obtained in [ABF]
which is slightly better than the condition ϕ ∈ B1∞1(R), though I believe it is
more convenient to work with Besov spaces. We refer the reader to Sections 6 and
7 of this survey for a detailed discussion.

After it had become clear that Lipschitz functions do not have to be operator
Lipschitz, many mathematicians believed that Hölder functions of order α, 0 <
α < 1, are not necessarily operator Hölder functions of order α. In [Fa1] the
following upper estimate for self-adjoint operators A and B with spectra in an
interval [a, b] was obtained:

‖ϕ(A)− ϕ(B)‖ ≤ const ‖ϕ‖Λα(R)

(
log

(
b− a

‖A−B‖ + 1
)
+ 1

)2
‖A−B‖α,

where ϕ ∈ Λα(R). A similar inequality was obtained in [FN] for arbitrary moduli
of continuity.

Surprisingly, it turns out that the logarithmic factor in the above inequality is
unnecessary. In other words, for an arbitrary α ∈ (0, 1), a Hölder function of order
α must be operator Hölder of order α. Moreover, the same is true for Zygmund
functions and for the whole scale of Hölder–Zygmund classes. This has been proved
recently in [AP2], see also [AP1]. We discuss the results of [AP2] in § 10.

The problem of the existence of higher-order derivatives of the function (1.7)
was studied in [St] where it was shown that under certain assumptions on ϕ,
the function (1.7) has a second derivative that can be expressed in terms of the
following triple operator integral:

d2

dt2
ϕ(A+ tB)

∣∣∣
t=0

= 2
∫∫∫
R×R×R

(
D2ϕ

)
(x, y, z) dEA(x)B dEA(y)B dEA(z),

where D2ϕ stands for the divided difference of order 2 (see § 8 for the definition).
To interpret triple operator integrals, repeated integration was used in [St] (see also
the earlier paper [Pa], in which an attempt to define multiple operator integrals
was given). However, the class of integrable functions in [Pa] and [St] was rather
narrow and the assumption on ϕ imposed in [St] for the existence of the second



Functions of Operators Under Perturbations 291

operator derivative was too restrictive. Similar results were also obtained in [St]
for the nth derivative and multiple operator integrals.

In [Pe8] a new approach to multiple operator integrals was given. It is based
on integral projective tensor products of L∞ spaces and gives a much broader class
of integrable functions than under the approaches of [Pa] and [St]. It was shown
in [Pe8] that under the assumption that f belongs to the Besov space Bn∞1(R) the
function (1.7) has n derivatives and the nth derivative can be expressed in terms
of a multiple operator integral. Similar results were also obtained in [Pe8] in the
case of an unbounded self-adjoint operator A.

To study the problem of differentiability of functions of unitary operators,
we should consider a Borel function f on the unit circle T and the map

U �→ f(U),

where U is a unitary operator on Hilbert space. If U and V are unitary oper-
ators and V = eiAU , where A is a self-adjoint operator, we can consider the
one-parameter family of unitary operators

eitAU, 0 ≤ t ≤ 1,

and study the question of the differentiability of the function

t �→
(
eitAU

)
and the question of the existence of its higher derivatives. The results in the case
of unitary operators are similar to the results for self-adjoint operators, see [BS4],
[Pe2], [ABF], [Pe8].

Similar questions can be also considered for functions of contractions. It turns
out that to study such problems for contractions, one can use double and multi-
ple operator integrals with respect to semi-spectral measures. This approach was
proposed in [Pe3] and [Pe9]. We discuss these issues in § 9.

In Sections 2 and 3 of this survey we give a brief introduction in double
operator integrals and multiple operator integrals. In §4 we introduce the reader
to Besov spaces.

In §5 we define Hankel operators and state the nuclearity criterion obtained
in [Pe1]. It turns out that Hankel operators play an important role in perturbation
theory and the nuclearity criterion is used in § 7 to obtain necessary conditions for
operator differentiability and operator Lipschitzness.

The last 3 sections are devoted to perturbations of operators by operators
from Schatten–von Neumann classes Sp. In §11 we discuss the problem of classi-
fying the functions ϕ for which the Lifshits–Krein trace formulae are valid. This
problem is closely related to the problem of classifying the functions ϕ on R for
which a trace class perturbation of a self-adjoint operator A leads to a trace class
perturbation of ϕ(A). We present in § 11 sufficient conditions obtained in [Pe2]
and [Pe4] that improve earlier results by M.G. Krein and Birman–Solomyak. We
also discuss necessary conditions.
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Section 12 deals with perturbations of class S2 and trace formulae by Ko-
plienko and Neidhardt. We discuss the results of [Pe7] that improve earlier results
by Koplienko and Neidhardt.

Finally, in the last section we present recent results of [AP3] (see also [AP1])
that concern the following problem. Suppose that A and B are self-adjoint opera-
tors such that A−B ∈ Sp and let ϕ ∈ Λα(R). What can we say about ϕ(A)−ϕ(B)?
We also discuss a similar problem for higher-order differences. In addition to this
we state very recent results obtained in [NP] and [PS].

It was certainly impossible to give proofs of all the results discussed in this
survey. I tried to give proofs of certain key results that demonstrate principal ideas.

2. Double operator integrals

In this section we give a brief introduction in the theory of double operator integrals
developed by Birman and Solomyak in [BS1], [BS2], and [BS4], see also their survey
[BS6].

Let (X , E1) and (Y, E2) be spaces with spectral measures E1 and E2 on a
Hilbert spaces H1 and H2. Let us first define double operator integrals∫

X

∫
Y

Φ(x, y) dE1(x)QdE2(y), (2.1)

for bounded measurable functions Φ and operators Q : H2 → H1 of Hilbert–
Schmidt class S2. Consider the set function F whose values are orthogonal pro-
jections on the Hilbert space S2(H2,H1) of Hilbert–Schmidt operators from H2
to H1, which is defined on measurable rectangles by

F (Δ1 ×Δ2)Q = E1(Δ1)QE2(Δ2), Q ∈ S2(H2,H1),
Δ1 and Δ2 being measurable subsets of X and Y. Note that left multiplication by
E1(Δ1) obviously commutes with right multiplication by E2(Δ2).

It was shown in [BS5] that F extends to a spectral measure on X × Y. If Φ
is a bounded measurable function on X × Y, we define∫

X

∫
Y

Φ(x, y) dE1(x)QdE2(y) =

⎛⎝ ∫
X1×X2

Φ dF

⎞⎠Q.

Clearly, ∥∥∥∥∥∥
∫
X

∫
Y

Φ(x, y) dE1(x)QdE2(y)

∥∥∥∥∥∥
S2

≤ ‖Φ‖L∞‖Q‖S2 .

If the transformer

Q �→
∫
X

∫
Y

Φ(x, y) dE1(x)QdE2(y)
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maps the trace class S1 into itself, we say that Φ is a Schur multiplier of S1
associated with the spectral measures E1 and E2. In this case the transformer

Q �→
∫
Y

∫
X

Φ(x, y) dE2(y)QdE1(x), Q ∈ S2(H1,H2), (2.2)

extends by duality to a bounded linear transformer on the space of bounded linear
operators from H1 to H2 and we say that the function Ψ on X2 ×X1 defined by

Ψ(y, x) = Φ(x, y)

is a Schur multiplier of the space of bounded linear operators associated with E2
and E1. We denote the space of such Schur multipliers by M(E2, E1)

Birman in Solomyak obtained in [BS4] the following result:

Theorem 2.1. Let A be a self-adjoint operator (not necessarily bounded) and let K
be a bounded self-adjoint operator. Suppose that ϕ is a continuously differentiable
function on R such that the divided difference Dϕ ∈M(EA+K , EA). Then

ϕ(A+K)− ϕ(A) =
∫∫
R×R

ϕ(x) − ϕ(y)
x− y

dEA+K(x)K dEA(y) (2.3)

and
‖ϕ(A+K)− ϕ(A)‖ ≤ const ‖Dϕ‖M‖K‖,

where ‖Dϕ‖M is the norm of Dϕ in M(EA+K , EA).

In the case when K belongs to the Hilbert Schmidt class S2, the same result
was established in [BS4] under weaker assumptions on ϕ:

Theorem 2.2. Let A be a self-adjoint operator (not necessarily bounded) and let K
be a self-adjoint operator of class S2. If ϕ is a Lipschitz function on R, then (2.3)
holds,

ϕ(A+K)− ϕ(A) ∈ S2,

and

‖ϕ(A+K)− ϕ(A)‖S2 ≤ sup
x �=y

|ϕ(x) − ϕ(y)|
|x− y| ‖A−B‖S2 .

Note that if ϕ is not differentiable, Dϕ is not defined on the diagonal of R×R,
but formula (2.3) still holds if we define Dϕ to be zero on the diagonal.

Similar results also hold for functions on the unit circle and for unitary op-
erators.

It is easy to see that if a function Φ on X ×Y belongs to the projective tensor
product L∞(E1)⊗̂L∞(E2) of L∞(E1) and L∞(E2) (i.e., Φ admits a representation

Φ(x, y) =
∑
n≥0

fn(x)gn(y), (2.4)

where fn ∈ L∞(E1), gn ∈ L∞(E2), and∑
n≥0

‖fn‖L∞‖gn‖L∞ <∞), (2.5)
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then Φ ∈ M(E1, E2), i.e., Φ is a Schur multiplier of the space of bounded linear
operators. For such functions Φ we have∫

X

∫
Y

Φ(x, y) dE1(x)QdE2(y) =
∑
n≥0

⎛⎝∫
X

fn dE1

⎞⎠Q

⎛⎝∫
Y
gn dE2

⎞⎠ .

Note that if Φ belongs to the projective tensor product L∞(E1)⊗̂L∞(E2), its norm
in L∞(E1)⊗̂L∞(E2) is, by definition, the infimum of the left-hand side of (2.5)
over all representations (2.4).

One can define in the same way projective tensor products of other function
spaces.

More generally, Φ is a Schur multiplier if Φ belongs to the integral projec-
tive tensor product L∞(E1)⊗̂iL∞(E2) of L∞(E1) and L∞(E2), i.e., Φ admits a
representation

Φ(x, y) =
∫
Ω

f(x, ω)g(y, ω) dσ(ω), (2.6)

where (Ω, σ) is a measure space, f is a measurable function on X × Ω, g is a
measurable function on Y × Ω, and∫

Ω

‖f(·, ω)‖L∞(E1)‖g(·, ω)‖L∞(E2) dσ(ω) <∞. (2.7)

If Φ ∈ L∞(E1)⊗̂iL∞(E2), then∫
X

∫
Y

Φ(x, y) dE1(x)QdE2(y)

=
∫
Ω

⎛⎝∫
X

f(x, ω) dE1(x)

⎞⎠Q

⎛⎝∫
Y
g(y, ω) dE2(y)

⎞⎠ dσ(ω).

Clearly, the function

ω �→

⎛⎝∫
X

f(x, ω) dE1(x)

⎞⎠Q

⎛⎝∫
Y
g(y, ω) dE2(y)

⎞⎠
is weakly measurable and∫

Ω

∥∥∥∥∥∥
⎛⎝∫
X

f(x, ω) dE1(x)

⎞⎠T

⎛⎝∫
Y
g(y, ω) dE2(y)

⎞⎠∥∥∥∥∥∥ dσ(ω) <∞.

Moreover, it can easily be seen that such functions Φ are Schur multipliers
of an arbitrary Schatten–von Neumann class Sp with p ≥ 1.

It turns out that all Schur multipliers of the space of bounded linear operators
can be obtained in this way.
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More precisely, the following result holds (see [Pe2]):

Theorem 2.3. Let Φ be a measurable function on X ×Y. The following are equiv-
alent:

(i) Φ ∈M(E1, E2);
(ii) Φ ∈ L∞(E1)⊗̂iL∞(E2);
(iii) there exist measurable functions f on X ×Ω and g on Y ×Ω such that (2.6)

holds and∥∥∥∥∫
Ω

|f(·, ω)|2 dσ(ω)
∥∥∥∥
L∞(E1)

∥∥∥∥∫
Ω

|g(·, ω)|2 dσ(ω)
∥∥∥∥
L∞(E2)

<∞. (2.8)

Note that the implication (iii)⇒(ii) was established in [BS4]. Note also that
the equivalence of (i) and (ii) is deduced from Grothendieck’s theorem. In the
case of matrix Schur multipliers (this corresponds to discrete spectral measures of
multiplicity 1), the equivalence of (i) and (ii) was proved in [Be].

It is interesting to observe that if f and g satisfy (2.7), then they also sat-
isfy (2.8), but the converse is false. However, if Φ admits a representation of the
form (2.6) with f and g satisfying (2.8), then it also admits a (possibly different)
representation of the form (2.6) with f and g satisfying (2.7).

Let us also mention one more observation by Birman and Solomyak, see [BS4].
Suppose that μ and ν are scalar measures on X and Y that are mutually absolutely
continuous with E1 and E2. Let Nμ,ν be the class of measurable functions k on
X ×Y such that the integral operator from L2(μ) to L2(ν) with kernel function k
belongs to the trace class S1.

Theorem 2.4. A measurable function Φ on X × Y is a Schur multiplier of S1
associated with E1 and E2 if and only if Φ is a multiplier of Nμ,ν , i.e.,

k ∈ Nμ,ν ⇒ Φk ∈ Nμ,ν .

3. Multiple operator integrals

The equivalence of (i) and (ii) in the Theorem 2.3 suggests the idea explored in
[Pe8] to define multiple operator integrals.

To simplify the notation, we consider here the case of triple operator integrals;
the case of arbitrary multiple operator integrals can be treated in the same way.

Let (X , E1), (Y, E2), and (Z, E3) be spaces with spectral measures E1, E2,
and E3 on Hilbert spaces H1, H2, and H3. Suppose that Φ belongs to the integral
projective tensor product L∞(E1)⊗̂iL∞(E2)⊗̂iL∞(E3), i.e., Φ admits a represen-
tation

Φ(x, y, z) =
∫
Ω

f(x, ω)g(y, ω)h(z, ω) dσ(ω), (3.1)
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where (Ω, σ) is a measure space, f is a measurable function on X × Ω, g is a
measurable function on Y × Ω, h is a measurable function on Z × Ω, and∫

Ω

‖f(·, ω)‖L∞(E)‖g(·, ω)‖L∞(F )‖h(·, ω)‖L∞(G) dσ(ω) <∞.

Suppose now that T1 is a bounded linear operator from H2 to H1 and T2 is
a bounded linear operator from H3 to H2.

For a function Φ in L∞(E1)⊗̂iL∞(E2)⊗̂iL∞(E3) of the form (3.1), we put∫
X

∫
Y

∫
Z

Φ(x,y,z)dE1(x)T1dE2(y)T2dE3(z) (3.2)

def=
∫
Ω

(∫
X
f(x,ω)dE1(x)

)
T1

(∫
Y
g(y,ω)dE2(y)

)
T2

(∫
Z
h(z,ω)dE3(z)

)
dσ(ω).

The following lemma from [Pe8] (see also [ACDS] for a different proof) shows
that the definition does not depend on the choice of a representation (3.1).

Lemma 3.1. Suppose that Φ ∈ L∞(E1)⊗̂iL∞(E2)⊗̂iL∞(E3). Then the right-hand
side of (3.2) does not depend on the choice of a representation (3.1).

It is easy to see that the following inequality holds∥∥∥∥∫
X

∫
Y

∫
Z

Φ(x, y, z) dE1(x)T1 dE2(y)T2 dE3(z)
∥∥∥∥ ≤ ‖Φ‖L∞⊗̂iL∞⊗̂iL∞ · ‖T1‖ · ‖T2‖.

In particular, the triple operator integral on the left-hand side of (3.2) can be
defined if Φ belongs to the projective tensor product L∞(E1)⊗̂L∞(E2)⊗̂L∞(E3),
i.e., Φ admits a representation

Φ(x, y, z) =
∑
n≥1

fn(x)gn(y)hn(z),

where fn ∈ L∞(E1), gn ∈ L∞(E2), hn ∈ L∞(E3) and∑
n≥1

‖fn‖L∞(E1)‖gn‖L∞(E2)‖hn‖L∞(E3) <∞.

In a similar way one can define multiple operator integrals, see [Pe8].
Recall that earlier multiple operator integrals were considered in [Pa] and

[St]. However, in those papers the class of functions Φ for which the left-hand side
of (3.2) was defined is much narrower than in the definition given above.

Multiple operator integrals arise in connection with the problem of evaluating
higher-order operator derivatives. It turns out that if A is a self-adjoint operator
on Hilbert space and K is a bounded self-adjoint operator, then for sufficiently
nice functions ϕ on R, the function

t �→ ϕ(A + tK) (3.3)

has n derivatives in the norm and the nth derivative can be expressed in terms of
multiple operator integrals. We are going to consider this problem in § 8.
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Note that recently in [JTT] Haagerup tensor products were used to define
multiple operator integrals. However, it is not clear whether this can lead to a
broader class of functions ϕ, for which the function f has an nth derivative and
the nth derivative can be expressed in terms of a multiple operator integral.

4. Besov spaces

The purpose of this section is to give a brief introduction to the Besov spaces that
play an important role in problems of perturbation theory. We start with Besov
spaces on the unit circle.

Let 1 ≤ p, q ≤ ∞ and s ∈ R. The Besov class Bs
pq of functions (or distribu-

tions) on T can be defined in the following way. Let w be an infinitely differentiable
function on R such that

w ≥ 0, suppw ⊂
[
1
2
, 2
]
, and w(x) = 1− w

(x
2

)
for x ∈ [1, 2]. (4.1)

and w is a linear function on the intervals [1/2, 1] and [1, 2].
Consider the trigonometric polynomials Wn, and W#

n defined by

Wn(z) =
∑
k∈Z

w

(
k

2n

)
zk, n ≥ 1,

W0(z) = z̄ + 1 + z, and W#
n (z) =Wn(z), n ≥ 0.

Then for each distribution ϕ on T,

ϕ =
∑
n≥0

ϕ ∗Wn +
∑
n≥1

ϕ ∗W#
n .

The Besov class Bs
pq consists of functions (in the case s > 0) or distributions ϕ on

T such that{
‖2nsϕ ∗Wn‖Lp

}
n≥0 ∈ �q and

{
‖2nsϕ ∗W#

n ‖Lp

}
n≥1 ∈ �

q (4.2)

Besov classes admit many other descriptions. In particular, for s > 0, the space
Bs
pq admits the following characterization. A function ϕ belongs to Bs

pq, s > 0, if
and only if ∫

T

‖Δn
τϕ‖qLp

|1− τ |1+sq dm(τ) <∞ for q <∞

and

sup
τ �=1

‖Δn
τϕ‖Lp

|1− τ |s <∞ for q =∞, (4.3)

where m is normalized Lebesgue measure on T, n is an integer greater than s, and
Δτ is the difference operator:

(Δτϕ)(ζ) = ϕ(τζ) − ϕ(ζ), ζ ∈ T.

We use the notation Bs
p for Bs

pp.
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The spaces Λα
def= Bα

∞ form the Hölder–Zygmund scale. If 0 < α < 1, then
ϕ ∈ Λα if and only if

|ϕ(ζ) − ϕ(τ)| ≤ const |ζ − τ |α, ζ, τ ∈ T,

while f ∈ Λ1 if and only if

|ϕ(ζτ) − 2ϕ(ζ) + ϕ(ζτ̄ )| ≤ const |1− τ |, ζ, τ ∈ T.

It follows from (4.3) that for α > 0, ϕ ∈ Λα if and only if

|(Δn
τϕ)(ζ)| ≤ const |1− τ |α,

where n is a positive integer such that n > α.
It is easy to see from the definition of Besov classes that the Riesz projec-

tion P+,
P+ϕ =

∑
n≥0 ϕ̂(n)z

n,

is bounded on Bs
pq and functions in

(
Bs
pq

)
+

def= P+B
s
pq admit a natural extension

to analytic functions in the unit disk D. It is well known that the functions in(
Bs
pq

)
+
admit the following description:

ϕ ∈
(
Bs
pq

)
+
⇔

∫ 1

0

(1− r)q(n−s)−1‖ϕ(n)r ‖qp dr <∞, q <∞,

and
ϕ ∈

(
Bs
p∞

)
+
⇔ sup

0<r<1
(1− r)n−s‖ϕ(n)r ‖p <∞,

where ϕr(ζ)
def= ϕ(rζ) and n is a nonnegative integer greater than s.

Besov spaces play a significant role in many problems of operator theory and
it is also important to consider Besov spaces Bs

pq when p or q can be less than
1. Everything mentioned above also holds for arbitrary positive p and q provided
s>1/p−1.

Let us proceed now to Besov spaces on the real line. We consider homogeneous
Besov spaces Bs

pq(R) of functions (distributions) on R. We use the same function
w as in (4.1) and define the functions Wn and W#

n on R by

FWn(x) = w
( x

2n
)
, FW#

n (x) = FWn(−x), n ∈ Z,

where F is the Fourier transform. The Besov class Bs
pq(R) consists of distributions

ϕ on R such that

{‖2nsϕ ∗Wn‖Lp}n∈Z ∈ �q(Z) and {‖2nsϕ ∗W#
n ‖Lp}n∈Z ∈ �q(Z).

According to this definition, the space Bs
pq(R) contains all polynomials. However,

it is not necessary to include all polynomials. The definition of B2pq(R) can be
slightly modified in a natural way so that it contains no polynomials of degree
greater than s− 1/p (see [AP2]).

Besov spaces Bs
pq(R) admit equivalent definitions that are similar to those

discussed above in the case of Besov spaces of functions on T. We refer the reader
to [Pee] and [Pe6] for more detailed information on Besov spaces.
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5. Nuclearity of Hankel operators

It turns out (see [Pe2]) that Hankel operators play an important role in our prob-
lems of perturbation theory. For a function ϕ on the unit circle T, the Hankel
operator Hϕ on the Hardy class H2 ⊂ L2 is defined by

Hϕ : H2 → H2−
def= L2 �H2, Hϕf

def= P−ϕf,

where P− is the orthogonal projection onto H2−. By Nehari’s theorem,

‖Hϕ‖ = distL∞(ϕ,H∞)

(see [Pe6], Ch. 1, § 1).
In this paper we need the following result that describes the Hankel operator

of trace class S1.

Theorem 5.1. Hϕ ∈ S1 if and only if P−ϕ ∈ B11 .

Theorem 5.1 was obtained in [Pe1], see also [Pe6], Ch. 6, § 1.
Consider now the following class of integral operators. Let ϕ ∈ L∞. The

operator Cϕ on L2 is defined by

(Cϕf)(ζ) =
∫
T

ϕ(ζ) − ϕ(τ)
1− τ̄ ζ

f(τ) dm(τ).

The following result can be deduced from Theorem 5.1 (see [Pe6], Ch. 6, §7̇).

Theorem 5.2. Let ϕ ∈ L∞. Then Cϕ ∈ S1 if and only if ϕ ∈ B11 .

Proof. Indeed, it is easy to show that

Cϕf = Hϕf+ −H∗ϕf−,

where f− = P−f and f+ = f − f−. Theorem 5.2 follows now immediately from
Theorem 5.1. �

6. Operator Lipschitz and operator differentiable functions.
Sufficient conditions

In this section we discuss sufficient conditions for a function on the unit circle or
on the real line to be operator Lipschitz or operator differentiable. We begin with
unitary operators.

The following lemma gives us an estimate for the norm of Dϕ in the projec-
tive tensor product L∞⊗̂L∞ in the case of trigonometric polynomials ϕ. It was
obtained in [Pe2]. We give here a slightly modified proof given in [Pe8].

Lemma 6.1. Let ϕ be a trigonometric polynomial of degree m. Then

‖Dϕ‖L∞⊗̂L∞ ≤ constm‖ϕ‖L∞ . (6.1)
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Proof. First of all, it is evident that it suffices to consider the case when m =
2l. Next, it suffices to prove the result for analytic polynomials ϕ (i.e., linear
combinations of zj with j ≥ 0). Indeed, if (6.1) holds for analytic polynomials,
then it obviously also holds for conjugate trigonometric polynomials. Let now ϕ
be an arbitrary trigonometric polynomial of degree 2l. We have

ϕ =
l∑

j=1

ϕ ∗W#
j +

l∑
j=0

ϕ ∗Wj

(see § 4). Applying (6.1) to each term of this expansion, we obtain

‖Dϕ‖L∞⊗̂L∞ ≤
l∑

j=1

∥∥D(
ϕ ∗W#

j

)∥∥
L∞⊗̂L∞ +

l∑
j=0

‖D(ϕ ∗Wj)‖L∞⊗̂L∞

≤ const
( l∑
j=1

2j
∥∥ϕ ∗W#

j

∥∥
L∞ +

l∑
j=0

2j‖ϕ ∗Wj‖L∞

)

≤ const
l∑

j=0

2j‖ϕ‖L∞ ≤ const 2l‖ϕ‖L∞ .

Assume now that ϕ is an analytic polynomial of degree m. It is easy to see
that

(Dϕ)(z1, z2) =
∑
j,k≥0

ϕ̂(j + k + 1)zj1z
k
2 .

We have∑
j,k≥0

ϕ̂(j + k + 1)zj1z
k
2 =

∑
j,k≥0

αjkϕ̂(j + k + 1)zj1z
k
2 +

∑
j,k≥0

βjkϕ̂(j + k + 1)zj1z
k
2 ,

where

αjk =

{ 1
2 , j = k = 0,
j

j+k , j + k �= 0
and βjk =

{ 1
2 , j = k = 0,
k

j+k , j + k �= 0.

Clearly, it is sufficient to estimate∥∥∥∥∥∥
∑
j,k≥0

αjkϕ̂(j + k + 1)zj1z
k
2

∥∥∥∥∥∥
L∞⊗̂L∞

.

It is easy to see that

∑
j,k≥0

αjkϕ̂(j + k + 1)zj1z
k
2 =

∑
k≥0

⎛⎝((
(S∗)k+1ϕ

)
∗
∑
j≥0

αjkz
j
)
(z1)

⎞⎠ zk2 ,

where S∗ is backward shift, i.e., (S∗)kϕ = P+z̄
kϕ.
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Thus∥∥∥∥∥∥
∑
j,k≥0

αjkϕ̂(j + k + 1)zj1z
k
2

∥∥∥∥∥∥
L∞⊗̂L∞

≤
∑
k≥0

∥∥∥∥∥∥((S∗)k+1ϕ) ∗
∑
j≥0

αjkz
j

∥∥∥∥∥∥
L∞

.

Put

Qk(z) =
∑
i≥k

i− k

i
zi, k > 0, and Q0(z) =

1
2
+
∑
i≥1

zi.

Then it is easy to see that∥∥∥∥∥∥((S∗)k+1ϕ) ∗
∑
j≥0

αjkz
j

∥∥∥∥∥∥
L∞

= ‖ψ ∗Qk‖L∞ ,

where ψ = S∗ϕ, and so∥∥∥∥∥∥
∑
j,k≥0

αjkϕ̂(j + k + 1)zj1z
k
2

∥∥∥∥∥∥
L∞⊗̂L∞

≤
∑
k≥0

‖ψ ∗Qk‖L∞ .

Consider the function r on R defined by

r(x) =

{
1, |x| ≤ 1,
1
|x| , |x| ≥ 1.

It is easy to see that the Fourier transform Fr of r belongs to L1(R). Define the
functions Rn, n ≥ 1, on T by

Rk(ζ) =
∑
j∈Z

r

(
j

k

)
ζj .

An elementary estimate obtained in Lemma 4.3 of [Pe8] shows that

‖Rk‖L1 ≤ const .

It is easy to see that for f ∈ H∞, we have

‖f ∗Qk‖L∞ = ‖f − f ∗Rk‖L∞ ≤ ‖f‖L∞ + ‖f ∗Rk‖L∞ ≤ const ‖f‖L∞.

Thus∑
k≥0

‖ψ ∗Qk‖L∞ =
m∑
k=0

‖ψ ∗Qk‖L∞ ≤ constm‖ψ‖L∞ ≤ constm‖ϕ‖L∞ . �

The following result was obtained in [Pe2].

Theorem 6.2. Let ϕ ∈ B1∞1. Then Dϕ ∈ C(T)⊗̂C(T) and

‖Dϕ‖L∞⊗̂L∞ ≤ const ‖ϕ‖B1
∞1
.
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Proof. We have
ϕ =

∑
j>0

ϕ ∗W#
j +

∑
j≥0

ϕ ∗Wj .

By Lemma 6.1, each of the functions D
(
ϕ ∗ W#

j

)
and D(ϕ ∗ Wj) belongs to

C(T)⊗̂C(T) and∑
j>0

∥∥D(
ϕ ∗W#

j

)∥∥
L∞⊗̂L∞ +

∑
j≥0

∥∥D(ϕ ∗Wj)
∥∥
L∞⊗̂L∞

≤ const
(∑
j>0

2j
∥∥ϕ ∗W#

j

∥∥
L∞ +

∑
j≥0

2j‖ϕ ∗Wj‖L∞

)
≤ const ‖ϕ‖B1

∞1
. �

It follows from Theorem 6.2 that for ϕ ∈ B1∞1, the divided difference Dϕ
belongs to the space M(E,F ) of Schur multipliers with respect to arbitrary Borel
spectral measures E and F on T (see § 2). By the Birman–Solomyak formula for
unitary operators, we have

ϕ(U)− ϕ(V ) =
∫∫
T×T

ϕ(ζ)− ϕ(τ)
ζ − τ

dEU (ζ) (U − V ) dEV (τ), (6.2)

which implies the following result:

Theorem 6.3. Let ϕ ∈ B1∞1. Then ϕ is operator Lipschitz, i.e.,

‖ϕ(U)− ϕ(V )‖ ≤ const ‖U − V ‖,
for unitary operators U and V on Hilbert space.

Proof. It follows from (6.2) that

‖ϕ(U)− ϕ(V )‖ ≤ ‖Dϕ‖M(EU ,EV )‖U − V ‖
≤ ‖Dϕ‖L∞⊗̂L∞‖U − V ‖ ≤ const ‖ϕ‖B1

∞1
‖U − V ‖. �

Let us now show that the condition ϕ ∈ B1∞1 also implies that ϕ is operator
differentiable.

Theorem 6.4. Let ϕ be a function on T of class B1∞1. If A is a bounded self-adjoint
operator and U is a unitary operator, and Us

def= eisAU , then the function

s �→ ϕ(Us) (6.3)

is differentiable in the norm and
d

ds

(
ϕ(Us)

)∣∣∣
s=o

= i
(∫∫

ϕ(ζ) − ϕ(τ)
ζ − τ

dEU (ζ)AdEU (τ)
)
U. (6.4)

Moreover, the map

A �→ ϕ
(
eiAU

)
(6.5)

defined on the space of bounded self-adjoint operators is differentiable in the sense
of Fréchet.
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Proof. Let us prove that the function (6.3) is norm differentiable and that formula
(6.4) holds. By Theorem 6.2, there exist continuous functions fn and gn on T such
that

(Dϕ)(ζ, τ) =
∑
n≥1

fn(ζ)gn(τ), ζ, τ ∈ T,

and ∑
n≥1

‖fn‖L∞‖gn‖L∞ <∞. (6.6)

By the Birman–Solomyak formula (6.2),

ϕ(Us)− ϕ(U) =
∫∫
T×T

(Dϕ)(ζ, τ) dEUs (ζ)(Us − U) dEU (τ)

=
∑
n≥1

fn(Us)(Us − U)gn(U).

On the other hand,

i
(∫∫

ϕ(ζ) − ϕ(τ)
ζ − τ

dEU (ζ)AdEU (τ)
)
U = i

∑
n≥1

fn(U)Agn(U)U.

We have
1
s

(
ϕ(Us)− ϕ(U)

)
− i

∑
n≥1

fn(U)Agn(U)U

=
∑
n≥1

(
1
s
fn(Us)(Us − U)gn(U)− ifn(U)Agn(U)U

)

=
∑
n≥1

(
1
s
fn(Us)(Us − U)gn(U)− 1

s
fn(U)(Us − U)gn(U)

)

+
∑
n≥1

(
1
s
fn(U)(Us − U)gn(U)− ifn(U)Agn(U)U

)
.

Clearly, ∥∥∥∥1s (Us − U)
∥∥∥∥ ≤ const .

Since, fn ∈ C(T), it is easy to see that

lim
s→0

‖fn(Us)− fn(U)‖ = 0.

It follows now easily from (6.6) that

lim
s→0

∥∥∥∥∥∥
∑
n≥1

(
1
s
fn(Us)(Us − U)gn(U)− 1

s
fn(U)(Us − U)gn(U)

)∥∥∥∥∥∥ = 0.
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On the other hand, it is easy to see that

lim
s→0

∥∥∥∥1s (Us − U)− iAU
∥∥∥∥ = 0

and again, it follows from (6.6) that

lim
s→0

∥∥∥∥∥∥
∑
n≥1

(
1
s
fn(U)(Us − U)gn(U)− ifn(U)Agn(U)U

)∥∥∥∥∥∥ = 0

which proves that the function (6.3) is norm differentiable and (6.4) holds.
One can easily see that the same reasoning also shows that the map (6.5) is

differentiable in the sense of Fréchet. �

The above results of this section were obtained in [Pe2]. Recall that earlier
Birman and Solomyak proved in [BS4] the same results for functions ϕ whose
derivatives belong to the Hölder class Λα with some α > 0.

In the case of differentiability in the Hilbert–Schmidt norm, the following
result was proved by Birman and Solomyak in [BS4].

Theorem 6.5. Let ϕ ∈ C1(T). If under the hypotheses of Theorem 6.4 the self-
adjoint operator A belongs to the Hilbert–Schmidt class S2, then formula (6.4)
holds in the Hilbert–Schmidt norm.

Let us state now similar results for (not necessarily bounded) self-adjoint
operators. The following result shows that functions in B1∞1(R) are operator Lip-
schitz.

Theorem 6.6. Let ϕ be a function on R of class B1∞1(R) and let A and B be self-
adjoint operators such that A− B is bounded. Then the operator ϕ(A) − ϕ(B) is
bounded and

‖ϕ(A)− ϕ(B)‖ ≤ const ‖ϕ‖B1
∞1(R)

‖A−B‖.

Theorem 6.7. Let ϕ ∈ B1∞1(R). Suppose that A is a self-adjoint operator (not
necessarily bounded) and K is a bounded self-adjoint operator. Then the function

t �→ f(A+ tK)− f(A)

is norm differentiable and

d

dt
f(A+ tK)

∣∣∣
t=0

=
∫∫
R×R

ϕ(x)− ϕ(y)
x− y

dEA(x)K dEA(y).

Moreover, the map
K �→ f(A+K)− f(A)

defined on the space of bounded self-adjoint operators is differentiable in the sense
of Fréchet.

We refer the reader to [Pe4] and [Pe8] for the proofs of Theorems 6.6 and 6.7.
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7. Operator Lipschitz and operator differentiable functions.
Necessary conditions

Theorem 7.1. Let ϕ be a continuously differentiable function on T. If ϕ is operator
Lipschitz, then ϕ ∈ B11 .

Note that the condition ϕ ∈ B11 implies that∑
n≥0

|ϕ̂′(2n)| <∞.

This follows easily from (4.2). On the other hand, it is well known that for an
arbitrary sequence {cn}n≥0 in �2, there exists ϕ ∈ C1(T) such that

ϕ̂′(2n) = cn, n ≥ 0.

Thus the condition ϕ ∈ C1(T) is not sufficient for ϕ to be operator Lipschitz.

Proof. Let U be multiplication by z on L2 (with respect to Lebesgue measure)
and let A be a self-adjoint operator on L2 of class S2. Put Vt = eitAU , t ∈ R. It is
easy to see that

1
t
‖Vt − U‖ ≤ const ‖A‖,

and since ϕ is operator Lipschitz, we have∥∥∥∥1t (ϕ(Vt)− ϕ(U)
)∥∥∥∥ ≤ const ‖A‖.

By Theorem 6.5,

lim
t→0

1
t

(
ϕ(Vt)− ϕ(U)

)
= i

(∫∫
ϕ(ζ) − ϕ(τ)

ζ − τ
dEU (ζ)AdEU (τ)

)
U

in the Hilbert–Schmidt norm. It follows that∥∥∥∥∫∫ ϕ(ζ) − ϕ(τ)
ζ − τ

dEU (ζ)AdEU (τ)
∥∥∥∥ ≤ const ‖A‖.

This means that the divided difference Dϕ is a Schur multiplier in M(EU , EU ).
Consider now the class N of kernel functions of trace class integral operators

on L2 with respect to Lebesgue measure. By Theorem 2.4,

k ∈ N⇒ (Dϕ)k ∈ N.

Put now
k(ζ, τ) def= τ.

Clearly, the integral operator with kernel function k is a rank one operator. We
have (

(Dϕ)k
)
(ζ, τ) =

ϕ(ζ) − ϕ(τ)
1− τ̄ ζ

, ζ, τ ∈ T.

Thus Cϕ ∈ S1 and it follows now from Theorem 5.2 that ϕ ∈ B11 . �
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Remark. It is easy to see that the reasoning given in the proof of Theorem 7.1 also
gives the following result:

Suppose that ϕ ∈ C1(T) and the divided difference Dϕ is not a Schur mul-
tiplier in M(EU , EU ) (or, in other words, Dϕ is not a multiplier of the class N
of kernel functions of trace class integral operators on L2(m)). Then ϕ is not
operator Lipschitz.

Theorem 7.1 was proved in [Pe2]. A more elaborate application of the nucle-
arity criterion for Hankel operators allowed the author to obtain in [Pe2] a stronger
necessary condition. To state it, we introduce the class L.
Definition.A bounded function ϕ on T is said to belong to L if the Hankel operators
Hϕ and Hϕ̄ map the Hardy class H1 into the Besov space B11 , i.e.,

P−ϕg ∈ B11 and P−ϕ̄f ∈ B11 ,
whenever f ∈ H1.

It is easy to see that L ⊂ B11 .
The following result was obtained in [Pe2].

Theorem 7.2. Let ϕ be an operator Lipschitz function of class C1(T). Then ϕ ∈ L.

The proof of Theorem 7.2 is given in [Pe2]. It is based on the nuclearity
criterion for Hankel operators, see Theorem 5.1. Actually, it is shown in [Pe2] that
if ϕ ∈ C1(T) \ L, then Dϕ is not a multiplier of the class N.

S. Semmes observed (see the proof in [Pe5]) that ϕ ∈ L if and only if the
measure

‖Hessϕ‖ dx dy
is a Carleson measure in the unit disk D, where Hessϕ is the Hessian matrix of
the harmonic extension of ϕ to the unit disk.

M. Frazier observed that actually L is the Triebel–Lizorkin space F 1∞1. Note
that the definition of the Triebel–Lizorkin spaces Ḟ s

pq on Rn for p =∞ and q > 1
can be found in [T], § 5.1. A definition for all q > 0, which is equivalent to Triebel’s
definition when q > 1, was given by Frazier and Jawerth in [FrJ]. Their approach
did not use harmonic extensions, but a straightforward exercise in comparing ker-
nels shows that Frazier and Jawerth’s definition of Ḟ 1∞1 is equivalent to the defi-
nition requiring ‖Hessϕ‖dxdy to be a Carleson measure on the upper half-space.
Our space L is the analogue for the unit disc.

The condition ϕ ∈ L (and a fortiori the condition ϕ ∈ B11) is also a necessary
condition for the function ϕ to be operator differentiable.

Similar results also hold in the case of functions of self-adjoint operators:

Theorem 7.3. Let ϕ be a continuously differentiable function on R. If ϕ is locally
operator Lipschitz, then ϕ belongs to B11(R) locally.

Note that the latter property means that the restriction of ϕ to any finite
interval coincides with the restriction to this interval of a function of class B11(R).
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Theorem 7.4. Let ϕ be a continuously differentiable function on R. If ϕ is operator
Lipschitz, then ϕ belongs to the class L(R).

Note that the class L(R) can be defined by analogy with the class L of
functions on T. The same description in terms of Carleson measures also holds.
Theorem 7.3 can be improved: if ϕ is locally operator Lipschitz, then ϕ must
belong to L(R) locally.

Theorems 7.3 and 7.4 were proved in [Pe2] and [Pe4].
To conclude this section, we mention that the same necessary conditions also

hold for operator differentiability.

8. Higher-order operator derivatives

For a function ϕ on the circle the divided differences Dkϕ of order k are defined
inductively as follows:

D0ϕ
def= ϕ;

if k ≥ 1, then in the case when λ1, λ2, . . . , λk+1 are distinct points in T,

(Dkϕ)(λ1,...,λk+1)
def=

(Dk−1ϕ)(λ1,...,λk−1,λk)−(Dk−1ϕ)(λ1,...,λk−1,λk+1)
λk−λk+1

(the definition does not depend on the order of the variables). Clearly,

Dϕ = D1ϕ.

If ϕ ∈ Ck(T), then Dkϕ extends by continuity to a function defined for all points
λ1, λ2, . . . , λk+1.

The following result was established in [Pe8].

Theorem 8.1. Let n ≥ 1 and let ϕ be a function on T of class Bn
∞1. Then Dnϕ

belongs to the projective tensor product C(T)⊗̂ · · · ⊗̂C(T)︸ ︷︷ ︸
n+1

and

‖Dnϕ‖L∞⊗̂···⊗̂L∞ ≤ const ‖ϕ‖Bn
∞1
. (8.1)

The constant on the right-hand side of (8.1) can depend on n.
As in the case of double operator integrals, the following lemma gives us a

crucial estimate.

Lemma 8.2. Let n and m be a positive integers and let ϕ be a trigonometric poly-
nomial of degree m. Then

‖Dnϕ‖L∞⊗̂···⊗̂L∞ ≤ constmn‖ϕ‖L∞. (8.2)

Note that the constant on the right-hand side of (8.2) can depend on n, but
does not depend on m.

The proof of Lemma 8.2 is based on the same ideas as the proof of Lemma
6.1. We refer the reader to [Pe8] for the proof of Lemma 8.2.

We deduce now Theorem 8.1 from Lemma 8.2.
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Proof of Theorem 8.1. We have

ϕ =
∑
j>0

ϕ ∗W#
j +

∑
j≥0

ϕ ∗Wj .

By Lemma 8.2,

‖Dnϕ‖L∞⊗̂···⊗̂L∞ ≤
∑
j>0

∥∥Dn(ϕ ∗W#
j )

∥∥
L∞⊗̂···⊗̂L∞ +

∑
j≥0

∥∥Dn(ϕ ∗Wj)
∥∥
L∞⊗̂···⊗̂L∞

≤ const
(∑
j>0

2jn‖ϕ ∗W#
j ‖L∞ +

∑
j≥0

2jn‖ϕ ∗Wj‖L∞

)
≤ const ‖ϕ‖Bn

∞1
. �

Suppose now that U is a unitary operator and A is a bounded self-adjoint
operator on Hilbert space. Consider the family of operators

Ut = eitAU. t ∈ R.

The following result was proved in [Pe8].

Theorem 8.3. Let ϕ ∈ Bn
∞1. Then the function

t �→ ϕ(Ut)

has n derivatives in the norm and
dn

dtn
(
ϕ(Ut)

)∣∣∣
s=0

=inn!

⎛⎜⎜⎝∫
· · ·

∫
︸ ︷︷ ︸

n+1

(Dnϕ)(ζ1, . . . , ζn+1) dEU (ζ1)A · · ·AdEU (ζn+1)

⎞⎟⎟⎠Un.

Similar results hold for self-adjoint operators. The following results can be
found in [Pe8]:

Theorem 8.4. Let ϕ ∈ Bn
∞1(R). Then Dnϕ belongs to the integral projective tensor

product L∞⊗̂ · · · ⊗̂L∞︸ ︷︷ ︸
n+1

.

Theorem 8.5. Suppose that ϕ ∈ Bn
∞1(R)∩B1∞1(R). Let A be a self-adjoint operator

and let K be a bounded self-adjoint operator on Hilbert space. Then the function

t �→ ϕ(A + tK) (8.3)

has an nth derivative in the norm and
dn

dtn
(
ϕ(A+ tK)

)∣∣∣
s=0

= n!
∫
· · ·

∫
︸ ︷︷ ︸

n+1

(Dnϕ)(x1, . . . , xn+1) dEU (x1)A · · ·AdEU (xn+1).
(8.4)
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Note that under the hypotheses of Theorem 8.5, the function (8.3) has all
the derivatives in the norm up to order n. However, in the case of unbounded
self-adjoint operators it can happen that the nth derivative exists in the norm,
but lower-order derivatives do not exist in the norm. For example, if ϕ ∈ B2∞1(R),
but ϕ �∈ B1∞1(R), then it can happen that the function (8.3) does not have the
first derivative in the norm, but it is possible to interpret its second derivative so
that the second derivative exists in the norm and can be computed by formula
(8.4); see detailed comments in [Pe8].

Earlier sufficient conditions for the function (8.3) to have n derivatives in the
norm and satisfy (8.4) were found in [St]. However, the conditions found in [St]
were much more restrictive.

9. The case of contractions

Let T be a contraction (i.e., ‖T ‖ ≤ 1) on Hilbert space. Von Neumann’s inequality
(see [SNF]) says that for an arbitrary analytic polynomial ϕ,

‖ϕ(T )‖ ≤ max
|ζ|≤1

|ϕ(ζ)|.

This allows one to define the functional calculus

ϕ �→ ϕ(T )

on the disk-algebra CA.
In this case we consider the questions of the behavior of ϕ(T ) under per-

turbations of T . As in the case of unitary operators a function ϕ ∈ CA is called
operator Lipschitz if

‖ϕ(T )− ϕ(R)‖ ≤ const ‖T −R‖
for arbitrary contractions T and R. We also consider differentiability properties.

For contractions T and R, we consider the one-parameter family of contrac-
tions

Tt = (1 − t)T + tR, 0 ≤ t ≤ 1,
and we study differentiability properties of the map

t �→ ϕ(Tt) (9.1)

for a given function ϕ in CA.
It was observed in [Pe3] that if ϕ is an analytic function in

(
B1∞1

)
+
, then

ϕ is operator Lipschitz. To prove this, double operator integrals with respect to
semi-spectral measures were used.

Recently in [KS] it was proved that if ϕ ∈ CA, the the following are equivalent:
(i) ‖ϕ(U)− ϕ(V )‖ ≤ const ‖U − V ‖ for arbitrary unitary operators U and V ;
(ii) ‖ϕ(T )− ϕ(R)‖ ≤ const ‖T −R‖ for arbitrary contractions T and R.

In [Pe9] it was shown that the same condition
(
B1∞1

)
+

implies that the
function (9.1) is differentiable in the norm and the derivative can be expressed in
terms of double operator integrals with respect to semi-spectral measures. It was
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also established in [Pe9] that under the condition ϕ ∈ Bn
∞1, the function (9.1) is n

times differentiable in the norm and the nth derivative can be expressed in terms
of a multiple operator integral with respect to semi-spectral measures.

Definition. Let H be a Hilbert space and let (X ,B) be a measurable space. A
map E from B to the algebra B(H) of all bounded operators on H is called a
semi-spectral measure if

E(Δ) ≥ 0, Δ ∈ B,
E(∅) = 0 and E(X ) = I,

and for a sequence {Δj}j≥1 of disjoint sets in B,

E

⎛⎝ ∞⋃
j=1

Δj

⎞⎠ = lim
N→∞

N∑
j=1

E(Δj) in the weak operator topology.

If K is a Hilbert space, (X ,B) is a measurable space, E : B → B(K) is a
spectral measure, and H is a subspace of K, then it is easy to see that the map
E : B → B(H) defined by

E(Δ) = PHE(Δ)
∣∣H, Δ ∈ B, (9.2)

is a semi-spectral measure. Here PH stands for the orthogonal projection onto H.
Naimark proved in [Na] (see also [SNF]) that all semi-spectral measures can

be obtained in this way, i.e., a semi-spectral measure is always a compression of a
spectral measure. A spectral measure E satisfying (9.2) is called a spectral dilation
of the semi-spectral measure E .

A spectral dilation E of a semi-spectral measure E is called minimal if

K = clos span{E(Δ)H : Δ ∈ B}.
It was shown in [MM] that if E is a minimal spectral dilation of a semi-

spectral measure E , then E and E are mutually absolutely continuous and all
minimal spectral dilations of a semi-spectral measure are isomorphic in the natural
sense.

If ϕ is a bounded complex-valued measurable function on X and E : B →
B(H) is a semi-spectral measure, then the integral∫

X
f(x) dE(x) (9.3)

can be defined as∫
X
f(x) dE(x) = PH

(∫
X
f(x) dE(x)

)∣∣∣∣H, (9.4)

where E is a spectral dilation of E . It is easy to see that the right-hand side of
(9.4) does not depend on the choice of a spectral dilation. The integral (9.3) can
also be computed as the limit of sums∑

f(xα)E(Δα), xα ∈ Δα,

over all finite measurable partitions {Δα}α of X .
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If T is a contraction on a Hilbert space H, then by the Sz.-Nagy dilation
theorem (see [SNF]), T has a unitary dilation, i.e., there exist a Hilbert space K
such that H ⊂ K and a unitary operator U on K such that

T n = PHUn
∣∣H, n ≥ 0, (9.5)

where PH is the orthogonal projection onto H. Let EU be the spectral measure of
U . Consider the operator set function E defined on the Borel subsets of the unit
circle T by

E(Δ) = PHEU (Δ)
∣∣H, Δ ⊂ T.

Then E is a semi-spectral measure. It follows immediately from (9.5) that

T n =
∫
T

ζn dE(ζ) = PH
∫
T

ζn dEU (ζ)
∣∣∣H, n ≥ 0. (9.6)

Such a semi-spectral measure E is called a semi-spectral measure of T. Note that
it is not unique. To have uniqueness, we can consider a minimal unitary dilation
U of T , which is unique up to an isomorphism (see [SNF]).

It follows easily from (9.6) that

ϕ(T ) = PH
∫
T

ϕ(ζ) dEU (ζ)
∣∣∣H

for an arbitrary function ϕ in the disk-algebra CA.
In [Pe9] double operator integrals and multiple operator integrals with respect

to semi-spectral measures were introduced.
Suppose that (X1,B1) and (X2,B2) are measurable spaces, and E1 : B1 →

B(H1) and E2 : B2 → B(H2) are semi-spectral measures. Then double operator
integrals ∫∫

X1×X2

Φ(x1, x2) dE1(x1)QdE2(X2).

were defined in [Pe9] in the case when Q ∈ S2 and Φ is a bounded measurable
function and in the case when Q is a bounded linear operator and Φ belongs to
the integral projective tensor product of the spaces L∞(E1) and L∞(E2).

Similarly, multiple operator integrals with respect to semi-spectral measures
were defined in [Pe9] for functions that belong to the integral projective tensor
product of the corresponding L∞ spaces.

Let us now state the results obtained in [Pe9].
For a contraction T on Hilbert space, we denote by ET a semi-spectral mea-

sure of T. Recall that if ϕ′ ∈ CA, the function Dϕ extends to the diagonal

Δ def=
{
(ζ, ζ) : ζ ∈ T

}
by continuity: (Dϕ)(ζ, ζ) = ϕ′(ζ), ζ ∈ T.
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Theorem 9.1. Let ϕ ∈
(
B1∞1

)
+
. Then for contractions T and R on Hilbert space

the following formula holds:

ϕ(T )− ϕ(R) =
∫∫
T×T

ϕ(ζ) − ϕ(τ)
ζ − τ

dET (ζ) (T −R) dER(τ). (9.7)

Theorem 9.2. Let ϕ be a function analytic in D such that ϕ′ ∈ CA. If T and R
are contractions such that T −R ∈ S2, then formula (9.7) holds.

Remark. Theorem 9.2 can be extended to the more general case when ϕ′ ∈ H∞.
In this case we can define Dϕ to be zero on the diagonal Δ.

The following result is an immediate consequence of the above remark; it was
obtained recently in [KS] by a completely different method.

Corollary 9.3. Suppose that ϕ is a function analytic in D such that ϕ′ ∈ H∞. If
T and R are contractions on Hilbert space such that T −R ∈ S2, then

ϕ(T )− ϕ(R) ∈ S2

and
‖ϕ(R)− ϕ(T )‖S2 ≤ ‖ϕ′‖H∞‖T −R‖S2 .

We proceed now to the differentiability problem. Let T and R be contractions
on Hilbert space and let ϕ ∈ CA. We are interested in differentiability properties
of the function (9.1).

Let Et be a semi-spectral measure of Tt on the unit circle T, i.e.,

T nt =
∫
T

ζn dEt(ζ), n ≥ 0.

Put E def= E0.
The following results were established in [Pe9].

Theorem 9.4. Suppose that ϕ ∈
(
B1∞1

)
+
. Then the function (9.1) is differentiable

in the norm and
d

ds
ϕ(Ts)

∣∣∣
s=t

=
∫∫
T×T

ϕ(ζ) − ϕ(τ)
ζ − τ

dEt(ζ) (R − T ) dEt(τ).

Note that the same result holds in the case when T − R ∈ S2 and ϕ is an
analytic function in D such that ϕ′ ∈ CA. In this case the derivative exists in the
Hilbert –Schmidt norm; see [Pe9].

We conclude this section with an analog of Theorem 8.5 for contractions.

Theorem 9.5. Suppose that ϕ ∈
(
Bn
∞1

)
+
. Then the function (9.1) has nth deriva-

tive in the norm
dn

dsn
ϕ(Ts)

∣∣∣
s=t

= n!
∫
· · ·
∫

︸ ︷︷ ︸
n+1

(Dnϕ)(ζ1, . . . , ζn+1) dEt(ζ1) (R−T ) · · · (R−T ) dEt(ζn+1).

We refer the reader to [Pe9] for proofs.
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10. Operator Hölder–Zygmund functions

As we have mentioned in the introduction, surprisingly, Hölder functions of order
α must also be operator Hölder functions of order α. The same is true for all spaces
of the scale Λα of Hölder–Zygmund classes.

Recall that the results of this section were obtained in [AP2] (see also [AP1]).
Let us consider the case of unitary operators.

Theorem 10.1. Let 0 < α < 1 and ϕ ∈ Λα. If U and V are unitary operators on
Hilbert space, then

‖ϕ(U)− ϕ(V )‖ ≤ const ‖ϕ‖Λα · ‖U − V ‖α.
Note that the constant on the right-hand side of the inequality depends on α.
In the proof of Theorem 10.1 we are going to use the following norm on Λα

(see §4):
‖f‖Λα = sup

n≥0
2nα‖ϕ ∗Wn‖L∞ + sup

n>0
2nα‖ϕ ∗W#

n ‖L∞ .

Proof of Theorem 10.1. Let ϕ ∈ Λα. We have

ϕ = P+ϕ+ P−ϕ = ϕ+ + ϕ−.

We estimate ‖ϕ+(U)−ϕ+(V )‖. The norm of ϕ−(U)−ϕ−(V ) can be estimated in
the same way. Thus we assume that ϕ = ϕ+. Let

ϕn
def= ϕ ∗Wn.

Then

ϕ =
∑
n≥0

ϕn. (10.1)

Clearly, we may assume that U �= V . Let N be the nonnegative integer such that

2−N < ‖U − V ‖ ≤ 2−N+1. (10.2)

We have

ϕ(U)− ϕ(V ) =
∑
n≤N

(
ϕn(U)− ϕn(V )

)
+

∑
n>N

(
ϕn(U)− ϕn(V )

)
.

By Lemma 6.1,∥∥∥∥∑
n≤N

(
ϕn(U)− ϕn(V )

)∥∥∥∥ ≤ ∑
n≤N

∥∥ϕn(U)− ϕn(V )
∥∥

≤ const
∑
n≤N

2n‖U − V ‖ · ‖ϕn‖L∞

≤ const ‖U − V ‖
∑
n≤N

2n2−nα‖ϕ‖Λα

≤ const ‖U − V ‖2N(1−α)‖ϕ‖Λα ≤ const ‖U − V ‖α‖ϕ‖Λα ,

the last inequality being a consequence of (10.2).
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On the other hand,∥∥∥∥∥∑
n>N

(
ϕn(U)− ϕn(V )

)∥∥∥∥∥ ≤ ∑
n>N

2‖ϕn‖L∞ ≤ const
∑
n>N

2−nα‖ϕ‖Λα

≤ const 2−Nα‖ϕ‖Λα ≤ const ‖U − V ‖α‖ϕ‖Λα . �

Consider now the case of an arbitrary positive α.

Theorem 10.2. Let n be a positive integer, 0 < α < n, and let f ∈ Λα. Then for
a unitary operator U and a bounded self-adjoint operator A on Hilbert space the
following inequality holds:∥∥∥∥∥

n∑
k=0

(−1)k
(
n
k

)
ϕ
(
eikAU

)∥∥∥∥∥ ≤ const ‖ϕ‖Λα‖A‖α.

The proof of Theorem 10.2 given in [AP2] is based on multiple operator
integrals and Lemma 8.2. Let me explain how we arrive at triple operator integrals
in the case n = 2. In this case the following formula holds:

f(U1)− 2f(U2) + f(U3)

= 2
∫∫∫

(D2f)(ζ, τ, υ) dE1(ζ)(U1 − U2) dE2(τ)(U2 − U3) dE3(υ)

+
∫∫

(Df)(ζ, τ) dE1(ζ)(U1 − 2U2 + U3) dE3(τ),

where U1, U2, and U3 are unitary operators and f is a function on T such that
the function D2f belongs to the space C(T)⊕̂iC(T)⊕̂iC(T). We refer the reader
to [AP2] for the proofs.

Consider now more general classes of functions. Suppose that ω is a modulus
of continuity, i.e., ω is a nonnegative continuous function on [0,∞) such that
ω(0) = 0 and

ω(x+ y) ≤ ω(x) + ω(y), x, y ≥ 0.
The class Λω consists, by definition, of functions ϕ such that

|ϕ(ζ) − ϕ(τ)| ≤ constω(|ζ − τ |), ζ, τ ∈ T.

We put

‖ϕ‖Λω

def= sup
ζ �=τ

|ϕ(ζ) − ϕ(τ)|
ω(|ζ − τ |)

Given a modulus of continuity ω, we define

ω∗(x) = x

∫ ∞

x

ω(t)
t2

dt.

Theorem 10.3. Let ω be a modulus of continuity and let U and V be unitary
operators on Hilbert space. Then for a function ϕ ∈ Λω,

‖ϕ(U)− ϕ(V )‖ ≤ const ‖ϕ‖Λωω
∗(‖U − V ‖

)
.
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Note that if ω is a modulus of continuity, for which

ω∗(x) ≤ constω(x),

then for unitary operators U and V the following inequality holds:

‖ϕ(U)− ϕ(V )‖ ≤ const ‖ϕ‖Λωω
(
‖U − V ‖

)
.

We refer the reader to [AP2] for an analog of Theorem 10.3 for higher-order
moduli of continuity.

Finally, to conclude this section, I would like to mention that similar results
also hold for self-adjoint operators and for contractions. In particular, the analog
of Theorem 10.3 for self-adjoint operators improves the estimate obtained in [FN].
We refer the reader to [AP2] for detailed results.

Note that the case of functions of dissipative operators will be treated sepa-
rately in [AP4].

11. Lifshits–Krein trace formulae

The spectral shift function for a trace class perturbation of a self-adjoint operator
was introduced in a special case by I.M. Lifshitz [L] and in the general case by M.G.
Krein [Kr1]. It was shown in [Kr1] that for a pair of self-adjoint (not necessarily
bounded) operators A and B satisfying B−A ∈ S1, there exists a unique function
ξ ∈ L1(R) such that

trace
(
ϕ(B)− ϕ(A)

)
=
∫
R

ϕ′(x)ξ(x) dx, (11.1)

whenever ϕ is a function on R such that the Fourier transform of ϕ′ is in L1(R).
The function ξ is called the spectral shift function corresponding to the pair (A,B).

A similar result was obtained in [Kr2] for pairs of unitary operators (U, V )
with V −U ∈ S1. For each such pair there exists a function ξ on the unit circle T

of class L1(T) such that

trace
(
ϕ(V )− ϕ(U)

)
=
∫
T

ϕ′(ζ)ξ(ζ) dm(ζ), (11.2)

whenever ϕ′ has absolutely convergent Fourier series. Such a function ξ is unique
modulo an additive constant and it is called a spectral shift function corresponding
to the pair (U, V ). We refer the reader to the lectures of M.G. Krein [Kr3], in which
the above results were discussed in detail (see also [BS3] and the survey article
[BY]).

Note that the spectral shift function plays an important role in perturbation
theory. We mention here the paper [BK], in which the following remarkable formula
was found:

detS(x) = e−2πiξ(x),
where S is the scattering matrix corresponding to the pair (A,B).

It was shown later in [BS4] that formulae (11.1) and (11.2) hold under less
restrictive assumptions on ϕ.
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Note that the right-hand sides of (11.1) and (11.2) make sense for an arbitrary
Lipschitz function ϕ. However, it turns out that the condition ϕ ∈ Lip (i.e., ϕ is a
Lipschitz function) does not imply that ϕ(B) − ϕ(A) or ϕ(V ) − ϕ(U) belongs to
S1. This is not even true for bounded A and B and continuously differentiable ϕ.
The first such examples were given in [Fa2].

In this section we present results of [Pe2] and [Pe4] that give necessary con-
ditions and sufficient conditions on the function ϕ for trace formulae (11.1) and
(11.2) to hold.

We start with the case of unitary operators. Recall that the class L of func-
tions on T was defined in § 7.
Theorem 11.1. Let ϕ ∈ C1(T). Suppose that ϕ �∈ L. Then there exist unitary op-
erators U and V such that

U − V ∈ S1,

but
ϕ(U)− ϕ(V ) �∈ S1.

Corollary 11.2. Let ϕ ∈ C1(T) \B11 . Then there exist unitary operators U and V
such that

U − V ∈ S1,

but
ϕ(U)− ϕ(V ) �∈ S1.

Proof of Theorem 11.1. As we have discussed in § 7, if ϕ �∈ L, then the divided
difference Dϕ is not a multiplier of the class N of kernel functions of trace class
integral operators on L2(m). Now, the same reasoning as in the proof of Theorem
7.1 allows us to construct sequences of unitary operators {Un}n≥1 and {Vn}n≥1
such that

lim
n→∞ ‖Un − Vn‖S1 = 0

but

lim
n→∞

‖ϕ(Un)− ϕ(Vn)‖S1

‖Un − Vn‖S1

=∞.

It is easy to see now that we can select certain terms of these sequences with
repetition (if necessary) and obtain sequences {Un}n≥1 and {Vn}n≥1 of unitary
operators such that ∑

n≥1
‖Un − Vn‖S1 <∞,

but ∑
n≥1

‖ϕ(Un)− ϕ(Vn)‖S1 =∞.

Now it remains to define unitary operators U and V by

U =
∑
n≥1

⊕Un and V =
∑
n≥1

⊕Vn. �
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The following sufficient condition improves earlier results in [BS4].

Theorem 11.3. Suppose that ϕ ∈ B1∞1. Let U and V be unitary operators such that
V −U ∈ S1 and let ξ be a spectral shift function corresponding to the pair (U, V ).
Then

ϕ(V )− ϕ(U) ∈ S1 (11.3)

and trace formula (11.2) holds.

Proof. Let us first prove (11.3). By Theorem 6.2, Dϕ ∈ C(T)⊗̂C(T) which implies
that Dϕ ∈ M(EV , EU ). Thus by the Birman–Solomyak formula,

ϕ(V )− ϕ(U) =
∫∫
T×T

ϕ(ζ)− ϕ(τ)
ζ − τ

dEV (ζ) (U − V ) dEU (τ).

It follows that ϕ(V )− ϕ(U) ∈ S1.
To prove that (11.2) holds, we recall that by the results of [Kr2], (11.2) holds

for trigonometric polynomials. It suffices now to approximate ϕ by trigonometric
polynomials in the norm of B1∞1. �

Let us proceed to the case of self-adjoint operators. The following results were
obtained in [Pe4].

Theorem 11.4. Suppose that ϕ is a continuously differentiable function on R such
that ϕ �∈ L(R). Then there exist self-adjoint operators A and B such that

B −A ∈ S1,

but
ϕ(B) − ϕ(A) �∈ S1.

In particular, Theorem 11.4 implies that the condition that ϕ ∈ B11(R) locally
is a necessary condition for trace formula (11.1) to hold.

Theorem 11.5. Suppose that ϕ ∈ B1∞1(R). Let A and B be self-adjoint operators
(not necessarily bounded) such that B − A ∈ S1 and let ξ be the spectral shift
function that corresponds to the pair (A,B). Then ϕ(B) − ϕ(A) ∈ S1 and trace
formula (11.1) holds.

The proof of Theorem 11.5 is more complicated than the proof of Theorem
11.3, because nice functions are not dense in B1∞1(R), and to prove (11.1) we have
to use a weak approximation, see [Pe4].

12. Koplienko–Neidhardt trace formulae

In this section we consider trace formulae in the case of perturbations of Hilbert–
Schmidt class S2.

Let A and B be self-adjoint operators such thatK def= B−A ∈ S2. In this case
the operator ϕ(B)−ϕ(A) does not have to be in S1 even for very nice functions ϕ.
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The idea of Koplienko in [Ko] was to consider the operator

ϕ(B) − ϕ(A)− d

ds

(
ϕ(A+ sK)

)∣∣∣
s=0

and find a trace formula under certain assumptions on ϕ. It was shown in [Ko]
that there exists a unique function η ∈ L1(R) such that

trace
(
ϕ(B)− ϕ(A) − d

ds

(
ϕ(A+ sK)

)∣∣∣
s=0

)
=
∫
R

ϕ′′(x)η(x) dx (12.1)

for rational functions ϕ with poles off R. The function η is called the generalized
spectral shift function corresponding to the pair (A,B).

A similar problem for unitary operators was considered by Neidhardt in [Ne].
Let U and V be unitary operators such that V − U ∈ S2. Then V = exp(iA)U ,
where A is a self-adjoint operator in S2. Put Us = eisAU , s ∈ R. It was shown in
[Ne] that there exists a function η ∈ L1(T) such that

trace
(
ϕ(V )− ϕ(U)− d

ds

(
ϕ(Us)

)∣∣∣
s=0

)
=
∫
T

ϕ′′η dm, (12.2)

whenever ϕ′′ has absolutely convergent Fourier series. Such a function η is unique
modulo a constant and it is called a generalized spectral shift function corresponding
to the pair (U, V ).

We state in this section results of [Pe7] that guarantee the validity of trace
formulae (12.1) and (12.2) under considerably less restrictive assumptions on ϕ.

Theorem 12.1. Suppose that U and V = eiAU are unitary operators on Hilbert
space such that U − V ∈ S2. Let ϕ ∈ B2∞1. Then

ϕ(V )− ϕ(U)− d

ds

(
ϕ
(
eisAU

))∣∣∣
s=0

∈ S1

and trace formula (12.2) holds.

Theorem 12.2. Suppose that A and B are self-adjoint operators (not necessarily
bounded) on Hilbert space such that K = B −A ∈ S2. Let ϕ ∈ B2∞1(R). Then

ϕ(B) − ϕ(A)− d

ds

(
ϕ(A+ sK)

)
∈ S1

and trace formula (12.1) holds.

13. Perturbations of class Sp

In the final section of this survey article we consider the problem of the behavior
of the function of an operator under perturbations by operators of Schatten–von
Neumann class Sp. In § 11 we have already considered the special case of perturba-
tions of trace class. We have seen that the condition ϕ ∈ Lip (i.e., ϕ is a Lipschitz
function) does not guarantee that trace class perturbations of an operator lead to
trace class changes of the function of the operator.
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On the other hand, Theorem 2.2 shows that for a Lipschitz function ϕ the
condition A−B ∈ S2 implies that ϕ(A) − ϕ(B) ∈ S2.

In this section we discuss the results obtained in [Pe3] that deal with pertur-
bations of class Sp with p < 1. Then we state the results of [AP3] that discuss the
behavior of functions of class Λα under perturbations by operators of Schatten–von
Neumann classes Sp. Finally, we mention recent results of [NP] and [PS].

In the case p < 1 the following results were found in [Pe3]:

Theorem 13.1. Let 0 < p < 1 and let ϕ ∈ B
1/p
∞p . Suppose that U and V are unitary

operators such that U − V ∈ Sp. Then ϕ(U)− ϕ(V ) ∈ Sp.

Theorem 13.2. Let 0 < p < 1. Suppose that ϕ is a continuously differentiable func-
tion on T such that ϕ(U) − ϕ(V ) ∈ Sp, whenever U and V are unitary operators
such that U − V ∈ Sp. Then ϕ ∈ B

1/p
p .

As in the case p = 1, Theorem 13.2 can be improved: under the hypotheses
of Theorem 13.2, the Hankel operators Hϕ and Hϕ̄ must map the Hardy class H1

into the Besov space B1/pp .
The same results also hold for contractions and analogs of these results can

also be obtained for bounded self-adjoint operators (in the analog of Theorem 13.2
for self-adjoint operators the conclusion is that ϕ belongs to B1/pp locally).

We proceed now to the results of [AP3] (see also [AP1]) that describe the
behavior of ϕ(U) for functions of class Λα under perturbations of U by operators
of class Sp.

Definition. Let p > 0. We say that a compact operator T belongs to the ideal Sp,∞
if its singular values sn(T ) satisfies the estimate:

‖T ‖Sp,∞
def= sup

n≥0
sn(T )(1 + n)1/p <∞.

Clearly,
Sp ⊂ Sp,∞ ⊂ Sq

for any q > p. Note that ‖ · ‖Sp,∞ is not a norm, though for p > 1, the space Sp,∞
has a norm equivalent to ‖ · ‖Sp,∞ .

Theorem 13.3. Let p ≥ 1, 0 < α < 1, and let ϕ ∈ Λα. Suppose that U and V are
unitary operators on Hilbert space such that U − V ∈ Sp. Then

ϕ(U)− ϕ(V ) ∈ S p
α ,∞

and
‖ϕ(U)− ϕ(V )‖S p

α
,∞ ≤ const ‖f‖Λα‖B −A‖αSp

.

In the case when p > 1 Theorem 13.3 can be improved by using interpolation
arguments.
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Theorem 13.4. Let p > 1, 0 < α < 1, and let ϕ ∈ Λα. Suppose that U and V are
unitary operators on Hilbert space such that U − V ∈ Sp. Then

ϕ(U)− ϕ(V ) ∈ Sp

and
‖ϕ(U)− ϕ(V )‖Sp

≤ const ‖f‖Λα‖B −A‖αSp
.

Note that the constants in the above inequalities depend on α.
Let us sketch the proof of Theorem 13.3. We refer the reader to [AP3] for a

detailed proof.
As in the proof of Theorem 10.1, we assume that ϕ ∈

(
Λα

)
+
and we consider

the expansion (10.1). Put

QN =
∑
n≤N

(
ϕn(U)− ϕn(V )

)
and RN =

∑
n>N

(
ϕn(U)− ϕn(V )

)
.

Then
‖RN‖ ≤ 2

∑
n≥N

‖ϕn‖L∞ ≤ const 2−αN‖ϕ‖Λα .

It follows from Lemma 6.1 that

‖ϕn(U)− ϕn(V )‖Sp
≤ const 2n‖ϕn‖L∞‖U − V ‖Sp

which implies that

‖QN‖Sp
≤ const 2(1−α)N‖ϕ‖Λα‖U − V ‖Sp

.

The proof can easily be completed on the basis of the following estimates:

sn(QN ) ≤ (1 + n)−1/p‖QN‖Sp

and
sn
(
ϕ(U)− ϕ(V )

)
≤ sn(QN ) + ‖RN‖. �

Consider now the case of higher-order differences.

Theorem 13.5. Let 0 < α < n and p ≥ n. Suppose that U is a unitary operator
and A is a self-adjoint operator of class Sp. Then

n∑
k=0

(−1)k
(
n
k

)
ϕ
(
eikAU

)
∈ S p

α ,∞

and ∥∥∥∥∥
n∑

k=0

(−1)k
(
n
k

)
ϕ
(
eikAU

)∥∥∥∥∥
S p

α
,∞

≤ const ‖f‖Λα‖A‖αSp
.

Again, if p > n, Theorem 13.5 can be improved by using interpolation argu-
ments.
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Theorem 13.6. Let 0 < α < n and p > n. Suppose that U is a unitary operator
and A is a self-adjoint operator of class Sp. Then

n∑
k=0

(−1)k
(
n
k

)
ϕ
(
eikAU

)
∈ S p

α

and ∥∥∥∥∥
n∑

k=0

(−1)k
(
n
k

)
ϕ
(
eikAU

)∥∥∥∥∥
S p

α

≤ const ‖f‖Λα‖A‖αSp
.

We refer the reader to [AP3] for the proofs of Theorems 13.5 and 13.6.
Note that similar results also hold for contractions and for self-adjoint oper-

ators. Analogs of these results for dissipative operators will be given in [AP4].
To conclude this section, we mention briefly recent results of [NP] and [PS].
The following results have been obtained in [NP]:

Theorem 13.7. Let f be a Lipschitz function on R, and let A and B be (not
necessarily bounded) self-adjoint operators such that rank(A−B) = 1. Then f(A)−
f(B) ∈ S1,∞ and

‖f(A)− f(B)‖S1,∞ ≤ const ‖f‖Lip‖A−B‖.
This implies the following result (see[NP]):

Theorem 13.8. Let f be a Lipschitz function on R, and let A and B be (not
necessarily bounded) self-adjoint operators such that A − B ∈ S1. Then f(A) −
f(B) ∈ SΩ, i.e.,

n∑
j=0

sn
(
f(A)− f(B)

)
≤ const log(n+ 2)‖f‖Lip‖A−B‖S1 .

It is still unknown whether the assumptions that f ∈ Lip and A − B ∈ S1
imply that f(A) − f(B) ∈ S1,∞. The results of [NP] imply that if 1 ≤ p < ∞,
ε > 0, f ∈ Lip, and A−B ∈ Sp, then f(A)− f(B) ∈ Sp+ε.

In the case 1 < p <∞ the last result has been improved recently in [PS]:

Theorem 13.9. Let 1 < p <∞, f ∈ Lip, and let A and B be self-adjoint operators
such that A−B ∈ Sp. Then f(A)− f(B) ∈ Sp
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The Halmos similarity problem is the sixth one in Halmos’s list in [26]. The origin
of the problem clearly goes back to Sz.-Nagy’s works [59, 60] on power bounded
operators. An operator T : H → H on a Hilbert spaceH is called power bounded if
sup
n≥1

‖T n‖ <∞. When ‖T ‖ ≤ 1, T is called a contraction. An operator T2 : H → H

is called similar to an operator T1 : H → H if there is an invertible operator
ξ : H → H such that ξT1ξ−1 = T2. Obviously any T that is similar to a contraction
must be power bounded.

Sz.-Nagy [59, 60] proved that the converse holds in several cases, e.g., when
T is compact. The converse also holds (as proved in 1960 by Rota [58]), if σ(T )
(the spectrum of T ) is included in the open unit disc D ⊂ C, or equivalently if the
spectral radius of T is < 1. Quite naturally, Sz.-Nagy asked in [60] whether the
converse held in general, namely whether any power bounded T had to be similar
to a contraction. Sz.-Nagy’s quest for a criterion for “similarity to a contraction”
was almost surely motivated by his own work with F. Riesz in ergodic theory (see
[57, p. 402]) where contractions play a key role.

In 1964, Foguel gave in [19] the first counterexample, i.e., power bounded
but not similar to a contraction. Shortly after it circulated, Halmos published his
version of it in “On Foguel’s answer to Sz.-Nagy’s question” [25]. Foguel’s example
is as follows: Let

T =
(
S∗ Q
0 S

)
∈ B(�2 ⊕ �2),

where S is the unilateral shift on �2 (i.e., Sen = en+1) and Q is the orthogonal
projection onto the span of {en(k)} for a Hadamard lacunary sequence {n(k)},
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i.e., such that infk{n(k + 1)/n(k)} > 1 (Foguel uses n(k) = 4k). Then T is power
bounded but not similar to a contraction.

Remark 1. Other power bounded examples appeared later on, notably in [15, 9,
48]. Peller [48] asked whether, for any c > 1, any power bounded operator is similar
to one with powers bounded by c. A negative answer is given in [28] (see [53] for
related work). In analogy with Foguel’s work, the similarity problem for continuous
parameter semigroups of operators is considered in [40, 32].

It must have been when Foguel’s paper appeared that polynomial bound-
edness came into the spotlight. An operator T : H → H is called polynomially
bounded (in short p.b.) if there is a constant C such that for any polynomial P
we have

‖P (T )‖ ≤ C‖P‖∞
where

‖P‖∞ = sup{|P (z)| | |z| ≤ 1}.
Here of course, for any polynomial P (z) = a0 + a1z + · · · + anz

n we set P (T ) =
a0I + a1T + · · ·+ anT

n. We will denote by Cpb(T ) the smallest C for which this
holds (note Cpb(T ) ≥ 1 because of P ≡ 1). Obviously by spectral theory, a normal
operator T is p.b. iff ‖T ‖ ≤ 1 and then Cpb(T ) = 1. But it is much less obvious
that actually any T with ‖T ‖ ≤ 1 (i.e., any “contraction”) is p.b. with Cpb(T ) = 1.
This is a celebrated inequality due to von Neumann [38]: if ‖T ‖ ≤ 1 we have

∀P polynomial ‖P (T )‖ ≤ ‖P‖∞. (1)

Incidentally, by [20], Hilbert spaces are the only Banach spaces satisfying this.
From von Neumann’s inequality, it is clear that any T that is similar to a contrac-
tion, i.e., T = ξT1ξ

−1 with ‖T1‖ ≤ 1, must be p.b. and (since P (T ) = ξP (T1)ξ−1)
satisfies

‖P (T )‖ ≤ ‖ξ‖‖ξ−1‖‖P‖∞.
Equivalently, we have

Cpb(T ) ≤ inf{‖ξ‖‖ξ−1‖ | ‖ξT ξ−1‖ ≤ 1}. (2)

Our guess is that, immediately after Foguel’s example, the idea to replace power
bounded by polynomially bounded must have already popped up. In 1968 Lebow
[31] showed that Foguel’s example was not p.b. It thus became conceivable that
the “right” problem to ask was: Is every p.b. operator similar to a contraction?
This was put in writing by Halmos in [26], but, presumably, had circulated verbally
earlier than that (Lebow mentions the problem but without reference).

Actually, in (1) and (12) a stronger result called a “dilation theorem” holds
(see [6, 46] for more on dilation theory):

Theorem 2 (Sz.-Nagy’s dilation). For any T : H → H, ‖T ‖ ≤ 1 there is a larger
Hilbert space Ĥ ⊃ H and a unitary T̂ : Ĥ → Ĥ such that

∀n ≥ 1 T n = PH T̂
n |H .
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In that case T̂ is called a “strong dilation” of T . (One says that T̂ is a dilation
if this merely holds for n = 1.)

We will discuss below (see (12)) the possible extension of this to several
commuting operators.

In 1984, Paulsen [43] made a crucial step. Transplanting a result proved by
Haagerup [24] for C∗-algebras from the self-adjoint to the non-self-adjoint case,
he obtained the first (and in some sense the only!) criterion for similarity of a
bounded operator T : H → H to a contraction: complete polynomial boundedness.

Definition. An operator T : H → H is called completely polynomially bounded
(c.p.b. in short) if there is a constant C such that for any n and any matrix-valued
polynomial [Pij(z)]1≤i,j≤n we have

‖[Pij(T )]‖ ≤ C sup{‖[Pij(z)]‖Mn | z ∈ C, |z| ≤ 1}, (3)

where the norm of the operator-valued matrix [Pij(T )] is computed on H⊕· · ·⊕H
(n times) and ‖.‖Mn is the usual norm of an n × n matrix with complex entries.
We will (temporarily) denote by Ccpb(T ) the smallest C such that this holds.

Equivalently, using the identificationsMn = B(�n2 ) andH⊕· · ·⊕H = �n2⊗H ,
we see that Ccpb(T ) is the smallest constant C for which, for any n and any finite
sequence ak in Mn = B(�n2 ), we have∥∥∥∑ ak ⊗ T k

∥∥∥
B(�n

2⊗H)
≤ C supz∈D̄

∥∥∥∑ akz
k
∥∥∥
B(�n

2 )
.

This is easy to generalize with an arbitrary Hilbert space K in place of �n2 . Thus
we have for any finite set of coefficients ak ∈ B(K)∥∥∥∑ ak ⊗ T k

∥∥∥
B(K⊗H)

≤ C sup
z∈D̄

∥∥∥∑ akz
k
∥∥∥
B(K)

. (4)

Theorem 3 (Paulsen’s criterion). An operator T : H → H is similar to a contrac-
tion iff it is c.p.b. and moreover

Ccpb(T ) = inf{‖ξ‖‖ξ−1‖ | ‖ξT ξ−1‖ ≤ 1}.
The “only if” part is easy: by Sz.-Nagy’s dilation theorem for any contraction

T1 we can write
Pij(T1) = PHPij(T̂1)|H

but from the spectral theory of unitary operators one deduces easily

‖[Pij(T̂1)]‖ = sup{‖[Pij(z)]‖ | z ∈ σ(T̂1)} ≤ sup{‖[Pij(z)]‖ | z ∈ C, |z| = 1},
and hence Ccpb(T1) ≤ 1 for any contraction T1. But if T = ξ−1T1ξ then obviously

Ccpb(T ) ≤ ‖ξ‖‖ξ−1‖Ccpb(T1) ≤ ‖ξ‖‖ξ−1‖.
This yields

Ccpb(T ) ≤ inf{‖ξ‖‖ξ−1‖ | ‖ξT ξ−1‖ ≤ 1}.
The converse is more delicate. It uses the factorization of completely bounded
maps for which we need some background.

We start by an elementary fact.
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Proposition. Let A be any C∗-algebra. Then the algebra Mn(A) of n× n matrices
with entries in A can be equipped with a unique C∗-algebra norm. When A ⊂ B(H)
(isometric ∗-homomorphism) the norm in Mn(A) coincides with the norm induced
by the space B(H ⊕ · · · ⊕H) (where H is repeated n times).

Definition. Let A,B be C∗-algebras. Consider subspaces E ⊂ A and F ⊂ B and a
map u : E → F . We say that u is completely bounded (in short c.b.) if ‖u‖cb <∞,
where

‖u‖cb = sup
n≥1

‖un : Mn(E)→Mn(F )‖,

where Mn(E) (resp. Mn(F )) denotes the space of n × n matrices with entries in
E, equipped with the norm induced by Mn(A) (resp. Mn(B)) and where un is the
linear map defined by

un([aij ]) = [u(aij)].
We denote by CB(E,F ) the space of all c.b. maps u : E → F .

Equipped with ‖·‖cb, the space CB(E,F ) becomes a normed space (a Banach
space if F is closed in B(K)).

Let D = {z ∈ C | |z| < 1} and let A(D) denote the disc algebra, i.e., the
algebra of all analytic functions onD that extend continuously toD. Let P ⊂ A(D)
be the dense subalgebra formed by the (analytic) polynomials. We equip A(D) as
usual with the norm

∀f ∈ A(D) ‖f‖ = sup
z∈D

|f(z)| = sup
z∈D

|f(z)| = sup
z∈∂D

|f(z)|.

For any bounded T : H → H , let us denote by uT : P → B(H) the homomorphism
corresponding to the classical spectral calculus, i.e., we set

uT (P ) = P (T ).

It is then obvious that

Cpb(T ) = ‖uT‖ and Ccpb(T ) = ‖uT ‖cb.
Note that since the unit ball of A(D) is the closed convex hull of the finite Blaschke
products (see [23, p. 196]), ‖uT‖ = sup{‖B(T )‖} where the supremum runs over
all finite Blaschke products B.

The general form of Paulsen’s result in [43] is as follows:

Theorem 4. Let A be a unital subalgebra of a C∗-algebra A. Consider a unital
homomorphism u : A → B(H) and a constant C. The following are equivalent:
(i) ‖u‖cb ≤ C.
(ii) There is an invertible ξ : H → H with ‖ξ‖‖ξ−1‖ ≤ C such that the homo-

morphism a �→ ξu(a)ξ−1 satisfies ‖ξu(·)ξ−1‖cb = 1.
(iii) There is an invertible ξ : H → H with ‖ξ‖‖ξ−1‖ ≤ C a Hilbert space Ĥ ⊃ H

and a (necessarily contractive) ∗-homomorphism û : A→ B(Ĥ) such that

∀a ∈ A u(a) = ξ−1PH û(a)|Hξ.
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This last statement resets similarity problems in a much broader algebraic
framework. Already in [26], Halmos gave a slightly more “algebraic” description
of Foguel’s example. This direction was amplified by remarkable joint work by
Foias and Williams that long remained unpublished (probably due to Williams’s
untimely death). Independently, Carlson and Clark (see [11, 12]) developed ideas
inspired by the homology of Hilbert modules. They studied short exact sequences
in the category of Hilbert modules over the disc algebra. Later on, they joined
forces with Foias and published [10].

Remark 5. Let u1 : A → B(H1) and u2 : A → B(H2) be two (unital) homomor-
phisms and let D : A → B(H2, H1) be a “derivation,” i.e., we have

∀a, b ∈ A D(ab) = u1(a)D(b) +D(a)u2(b).

Then direct verification shows that

u(a) =
(
u1(a) D(a)
0 u2(a)

)
(5)

is a (unital) homomorphism from A to B(H1 ⊕ H2). The derivation D is called
“inner” if there is T in B(H2, H1) such that

∀a ∈ A D(a) = u1(a)T − Tu2(a).

In that case, we have

u(a) =
(
u1(a) D(a)
0 u2(a)

)
= ξ

(
u1(a) 0
0 u2(a)

)
ξ−1

where ξ =
(
1 −T
0 1

)
and ξ−1 = ( 1 T0 1 ). Thus, when D is inner, u is similar to u1⊕u2.

Carlson and Clark [11] relate this to the homology of Hilbert modules. Let
H = H1 ⊕H2. Let H,H1,H2 be respectively the Hilbert A-modules associated to
H,H1, H2 with the action of A corresponding respectively to u, u1, u2. Consider
then the short exact sequence

0→ H1 → H → H2 → 0.

Carlson and Clark [11] observe that this splits (that isH # H1⊕H2) iff u is similar
to u1⊕u2, meaning there is an invertible ξ on H1⊕H2 such that u = ξ

(
u1 0
0 u2

)
ξ−1.

See [16] for more on Hilbert modules.
Generally speaking, the homomorphisms of the form (5) have proved to be a

very fruitful source of examples, as will be illustrated below.

Unaware of the unpublished Foias–Williams preprint, Peller [48] observed
that Hankel operators led to a very nice class of examples for which the Halmos
problem should be checked.

Let S : �2 → �2 be the shift operator. Recall that Γ: �2 → �2 is a Hankel
operator iff ΓS = S∗Γ. Equivalently, the entries Γij depend only on i+ j. Let

RΓ =
(
S∗ Γ
0 S

)
∈ B(�2 ⊕ �2).
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Then for any polynomial P we have

P (RΓ) =
(
P (S∗) ΓP ′(S)

0 P (S)

)
.

Indeed, this is easy to check for P = zn by induction on n. Note that the homo-
morphism P �→ P (RΓ) is of the general form appearing in Remark 5. Since
‖P (S)‖ = ‖P (S∗)‖ = ‖P‖∞, we find that RΓ is p.b. iff there is a constant α
such that

∀P polynomial ‖ΓP ′(S)‖ ≤ α‖P‖∞. (6)

By the well-known Nehari theorem and Fefferman’s H1-BMO duality, it is known
that Γ is bounded iff there is a function ϕ in BMO such that Γij = ϕ̂(i + j)
∀i, j ≥ 0. Moreover, we may assume that ϕ̂(k) = 0 for all k < 0. Let BMOa

denote the subspace of such ϕ’s. Then the correspondence ϕ → Γ(ϕ) defined by
Γ(ϕ)ij = ϕ̂(i+ j) is a linear isomorphism from BMOa onto the subspace of B(�2)
formed of all the bounded Hankel operators.
Moreover, ϕ→ Γ(ϕ) is a 2-sided “module map” in the following sense: For any f
in H∞ (in particular for any polynomial) we have

f(S∗)Γ(ϕ) = Γ(ϕ)f(S) = Γ(fϕ).

Here f(S) : �2 → �2 represents the (Toeplitz) operator of multiplication by f on
H2 # �2. In particular if Γ = Γ(ϕ), we have ΓP ′(S) = Γ(ϕP ′). We will denote
R(ϕ) = RΓ(ϕ). Peller showed that if ϕ′ ∈ BMO then Γ = Γ(ϕ) satisfies (6) and
hence R(ϕ) = RΓ(ϕ) is polynomially bounded. He asked whether this implies that
R(ϕ) is similar to a contraction. Bourgain [8] then proved that indeed it is so and,
with Aleksandrov, Peller in the summer of 1995 finally showed that R(ϕ) is p.b.
iff it is similar to a contraction. This seemed to destroy all hopes to use R(ϕ) for a
counterexample. However, it turned out that the operator-valued (sometimes called
“vector-valued”) analogue of R(ϕ) does lead to a counterexample. To describe this
we first need some more terminology.

Definition. A function M : N → C is called a Paley multiplier if

sup
n

∑
2n≤k<2n+1

|M(k)|2 <∞.

It is well known that this condition characterizes the Fourier multipliers bounded
from H1 to H2 (or equivalently from H2 to BMOa).

Let (Bn) be a sequence of operators on H for which there are positive con-
stants β1, β2 such that

∀x = (xn)n ∈ �2 β1

(∑
|xn|2

)1/2
≤
∥∥∥∑xnBn

∥∥∥ ≤ β2

(∑
|xn|2

)1/2
. (7)

We will also need to assume that there is a constant γ > 0 such that for any
finitely supported scalar sequence x = (xn)n we have

γ
∑

|xn| ≤
∥∥∥∑xnBn ⊗Bn

∥∥∥ . (8)
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Example: Let (Bn) be a “spin system,” i.e., mutually anti-commuting self-adjoint
unitaries. Then (7) holds with β1 = 1 and β2 =

√
2 (see, e.g., [55, p. 76]) and (8)

holds with γ = 1/2. The latter does hold because {Bn ⊗ Bn} form a commuting
sequence of self-adjoint unitaries such that, if f denotes the classical “vacuum
state” on the C∗-algebra generated by {Bn}, f ⊗ f vanishes on any product of
distinct terms from {Bn ⊗Bn}. It follows that the spectral distribution of {Bn ⊗
Bn} with respect to f ⊗ f coincides with that of the Rademacher functions on
[0, 1] (i.e., independent ±1-valued functions). Therefore we have

(1/2)
∑

|xn| ≤ sup
{∣∣∣∑xnεn

∣∣∣ ∣∣ εn = ±1
}
=
∥∥∥∑xnBn ⊗Bn

∥∥∥ .
Consider any Hankel matrix Γ acting on Ĥ = �2(H) = H ⊕ H ⊕ · · · . Now

its entries Γij are in B(H) but still depend only on i+ j. Let Ŝ : Ĥ → Ĥ be the
usual (multivariate) shift and let

R(Γ) =

(
Ŝ∗ Γ
0 Ŝ

)
∈ B(Ĥ ⊕ Ĥ).

Then the (1, 2) entry of this 2× 2 matrix is R(Γ)12 = Γ ∈ B(Ĥ).
The same calculation as in the scalar case yields

P (R(Γ)) =

(
P (Ŝ∗) ΓP ′(Ŝ)

0 P (Ŝ)

)
.

Clearly R(Γ) is polynomially bounded iff there is a constant α such that

∀P polynomial ‖ΓP ′(Ŝ)‖ ≤ α‖P‖∞. (9)

Note that P (R(Γ))12 = ΓP ′(Ŝ) ∈ B(Ĥ) and if P =
∑

akz
k; then

ΓP ′(Ŝ)01 =
∑

k≥1 kΓ0kak. In particular, we note for further use that if P (z) = zn,
and hence P ′(z) = nzn−1 we have for any n ≥ 0

[ [R(Γ)n]12 ]01 = nΓ0n. (10)

We now turn to the Hankel matrix ΓM acting on Ĥ = �2(H) = H ⊕ H ⊕ · · ·
defined by:

ΓMij =
1

i+ j
M(i+ j)Bi+j if i+ j �= 0

and ΓMoo = 0 (say). We have

P (R(ΓM )) =

(
P (Ŝ∗) ΓMP ′(Ŝ)

0 P (Ŝ)

)
.

Thus R(ΓM ) is polynomially bounded iff there is a constant α such that

∀P polynomial ‖ΓMP ′(Ŝ)‖ ≤ α‖P‖∞. (11)

Actually, it turns out that, if M is Paley, we even have a constant α such that
‖ΓMP ′(Ŝ)‖ ≤ α‖P‖BMO for all P ([49]), and a fortiori (11) holds.
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Then the main result of [49] can be summarized as follows:

Theorem 6.

(i) Assuming (7), R(ΓM ) is polynomially bounded iff M is a Paley multiplier.
(ii) Assuming (7) and (8), R(ΓM ) is similar to a contraction only if∑

|M(n)|2 <∞.

Note: The fact that, assuming (7),
∑ |M(n)|2 <∞ implies that R(ΓM ) is similar

to a contraction was proved more recently by É. Ricard [56], refining [7]. Thus (ii)
above is also a characterization if we assume both (7) and (8).

The original proof (see [49]) that R(ΓM ) is p.b. when M is Paley appeared
rather difficult because it used the Brownian motion description of BMO. Soon
afterward, Kislyakov [29] saw how to eliminate the use of any probabilistic ar-
gument. His proof is based on “real methods” involved with the classical space
BMO. A similar proof was given by McCarthy [35]. Shortly after that, Davidson
and Paulsen [14] found the “right” proof that R(ΓM ) is p.b. Their proof uses only
the B(H)-valued version of Nehari’s theorem (due to Sarason–Page, see [39]) and
hence may be considered as strictly “operator theoretic.”

The proof of (ii) in Theorem 6, based on Theorem 3 (Paulsen’s criterion), is
much easier: if T is completely polynomially bounded and T ∈ B(�2⊗H) then for
any pair of unit vectors h, k ∈ �2 the mapping taking a polynomial P to 〈P (T )h, k〉
is clearly c.b. with c.b. norm ≤ Ccpb(T ). In particular if, say T = [Tij ] with
Tij ∈ B(H), the mapping P �→ P (T )i(0)j(0) is c.b. with c.b. norm ≤ Ccpb(T ) for
any choice of (i(0), j(0)). More precisely, for any finite set of coefficients ak ∈ B(K),
we clearly have∥∥∥∑ ak ⊗ (T k)i(0)j(0)

∥∥∥
B(K⊗H)

≤
∥∥∥∑ ak ⊗ T k

∥∥∥
B(K⊗�2⊗H)

.

But now if T = R(Γ), then (4) and (10) show that∥∥∥∑ak ⊗ kΓ0k
∥∥∥
B(K⊗H)

≤ Ccpb(T ) sup
z∈D

∥∥∥∑akz
k
∥∥∥
B(K)

.

Consider now Γ = ΓM ,K = H and ak = xkBk, with xk an arbitrary finite sequence
of scalars. Then kΓM0k = M(k)Bk for all k > 0 so that (7) and (8) combined with
this last inequality yield

γ
∑

k>0
|M(k)xk| ≤ Cβ2

(∑
|xk|2

)1/2
from which we deduce (∑

k>0
|M(k)|2

)1/2
≤ Cβ2γ

−1. �
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The most classical example of a Paley multiplier is the indicator function of
a Hadamard lacunary sequence in N, e.g., we can take

M(n) =

{
1 if n ∈ {2k | k ≥ 0}
0 otherwise

.

This gives us a Paley multiplier with
∑
|m(n)|2 =∞ and hence

Corollary 7. There is a p.b. operator on Ĥ ⊕ Ĥ # �2 that is not similar to a
contraction.

In [51] we exhibit a pair T1, T2 of operators on �2 that are each similar
to a contraction but there is no invertible ξ such that both ξT1ξ

−1, ξT2ξ−1 are
contractions.

Remark 8. The operators of the form R(Γ) (of Foias-Williams-Peller type) can be
considered on the Bergman space. However, it was proved recently (see [4, 13])
that in that class the analogous counterexamples to the preceding two similarity
problems do not exist (in fact even power bounded implies similarity to a contrac-
tion).

The history of the Halmos similarity problem is tied up with the quest for
extensions of the von Neumann inequality (see, e.g., [18]). The extension to several
variables is rather puzzling: In 1963 Ando [5] obtained a version for pairs T1, T2 of
commuting contractions and polynomials P in two variables:

∀P polynomial ‖P (T1, T2)‖ ≤ sup{|P (z1, z2)| | |z1| ≤ 1, |z2| ≤ 1} (12)

but in 1974 Varopoulos [64] showed that this does not extend to triples T1, T2, T3
of (mutually) commuting contractions. More precisely, let us examine the validity
for triples T1, T2, T3 of (mutually) commuting contractions and polynomials P in
three variables of the inequality:

∀P ‖P (T1, T2, T3)‖ ≤ C sup{|P (z1, z2, z3)| | |z1| ≤ 1, |z2| ≤ 1, |z3| ≤ 1}. (13)

We wish to emphasize that Varopoulos [64] only proves that this does not hold
with C = 1. In other words, although unlikely, it is still not known whether (13)
holds with a universal finite constant C !

Ando actually proved a dilation theorem extending Theorem 2 to commuting
pairs:

Theorem 9 (Ando’s dilation). For any commuting pair T1, T2 on H with ‖T1‖ ≤ 1,
‖T2‖ ≤ 1 there is Ĥ containing H and a commuting pair (T̂1, T̂2) of unitaries on
Ĥ such that

∀n, k ≥ 1 T n1 T
k
2 = PH T̂

n
1 T̂

k
2 |H .

Before Varopoulos’s counterexample, Parrott [41] had already shown that
Ando’s dilation does not extend to commuting triples of contractions.
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See [36, 37] and references there for work related to “polynomial bounded-
ness” on higher-dimensional domains, in the context of Douglas’s Hilbert modules.

In a different direction, consider a general bounded open domain Ω ⊂ C

that is connected but possibly not simply connected. Let us denote by A(Ω) the
closure of the set R(Ω) of rational (bounded) functions with poles off of Ω̄, in the
uniform sup norm on Ω. We are interested in contractive unital homomorphisms
u : A(Ω) → B(H). Given such a u, let T be the image under u of the function
f(z) = z, so that u(f) = f(T ) for any f in R(Ω). We say that Ω̄ is a spectral set
for T if ‖u‖=1, that is if

∀f ∈ R(Ω) ‖f(T )‖ ≤ ‖f‖A(Ω) = ‖f‖C(∂Ω).

For instance, the unit disc is a spectral set for any contraction T . In analogy with
the unitary dilation of contractions, it was conjectured that if Ω̄ is a spectral set
for T then T admits a normal dilation N with spectrum in ∂Ω. More precisely,
it was conjectured that there is Ĥ ⊃ H , and a normal operator N ∈ B(Ĥ) with
spectrum in ∂Ω such that

∀f ∈ R(Ω) f(T ) = PHf(N)|H .

When this holds, one says that T admits a normal ∂Ω-dilation. By Arveson’s results
(see [46]) this happens iff u is completely contractive, i.e., ‖u‖cb = 1. Thus the con-
jecture amounted to showing that, for a unital homomorphism u : A(Ω)→ B(H),
contractive automatically implies completely contractive. This longstanding con-
jecture was confirmed by Agler [1] for the annulus or doubly connected domains,
but was disproved independently in [2] and [17] for certain triply connected do-
mains (conformally equivalent to an annulus with a disk removed). The example
T in [2] is a 4× 4 matrix but this involves some machine numerical computation
(in the 2× 2 case, the conjecture was verified for any Ω by various authors).

Consider a uniform algebra A, i.e., a unital subalgebra of the space C(Ω) of
continuous functions on a compact set Ω. We will also assume that A separates the
points of Ω. We will say that A is “Halmos” if every bounded unital homomorphism
u : A→ B(H) is completely bounded. By Theorem 4 this means that every such
u is similar to a completely contractive homomorphism. In [50] this property is
investigated in the broader framework of (possibly non-commutative) operator
algebras. In particular, by [50], a uniform algebra A is Halmos iff there is an
exponent α and a constant K such that for all u as above we have

‖u‖cb ≤ K‖u‖α. (14)

Let αmin(A) denote the infimum of the α’s for which there is a K such that (14)
holds for all u as above. If A is Halmos, then (14) holds for α = αmin(A) (for some
K) and moreover αmin(A) is an integer. The value of this integer can be identified
by the validity of certain factorizations for matrices with entries in A, for which
we refer the reader to [50]. By [49], we know that the disc algebra A(D) is not
Halmos. From this it is immediate that the ball and polydisc algebra on Cn are
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not Halmos. Actually, no example is known of a Halmos uniform algebra except
for the obvious case A = C(Ω), so we can formulate:

Problem. Are C∗-algebras the only Halmos uniform algebras?

In that direction, there are only partial results, as follows.

Theorem 10 ([50]). If a Halmos uniform algebra A satisfies αmin(A) ≤ 2 then A
is a C∗-algebra.

Consider a uniform algebra A ⊂ C(Ω), equipped with a probability measure
μ on Ω that is multiplicative on A (for example f →

∫
f dμ = f(0) for the

disc algebra with μ = normalized Lebesgue measure on ∂D). Following [30] we
will now introduce the “martingale extension” of A. Consider the product space
(Ω∞, μ∞) = (Ω, μ)N equipped with its natural filtration {An} where An is the
σ-algebra generated by the first n-coordinates. We will denote by MA the algebra
of all continuous functions f on Ω∞ such that, for each n, f = EAnf belongs to
A as a function of the nth variable when the preceding coordinates are fixed. We
will need to assume that A admits a multiplicative linear functional ϕ (perhaps
distinct from μ) and a non-zero ψ ∈ A∗ such that

∀f, g ∈ A ψ(fg) = ϕ(f)ψ(g) + ψ(f)ϕ(g).

Theorem 11 ([30]). In the preceding situation, MA is not Halmos.

The case A = C was treated in a preliminary (unpublished) version of [49] on
which [30] is based, but the interest of the preceding statement is that it assumes
no “concrete” structure on A (except for the existence of μ, which is a rather mild
assumption) and this is precisely the difficulty in the above problem. We need
to construct a non trivial (meaning bounded but not c.b.) unital homomorphism
on A “from scratch,” and the preceding statement does something like that but
unfortunately on MA instead of A.

Remark 12. Several important open questions remain in the non-separable case,
concerning for instance the algebra H∞ of bounded analytic functions on D. It
is not known whether any contractive unital homomorphism u : H∞ → B(H) is
completely contractive, i.e., such that ‖u‖cb = 1 (or even completely bounded).
This problem is studied in [47]. Of course the answer is clearly yes if u is weak∗-
continuous. By [22] (see also [47]) it suffices to show that u2 = Id⊗u is contractive
on M2(H∞).

Remark 13. Let A be a unital C∗-algebra and let u : A → B(H) be a bounded
unital homomorphism. We will say that u is “unitarizable” (Kadison [27] used
the term “orthogonalizable”) if there is an invertible ξ : H → H such that a →
ξu(a)ξ−1 is a ∗-homomorphism on A, equivalently if it maps unitaries to unitaries.
In 1955, Kadison [27] already asked whether any bounded homomorphism u on a
C∗-algebra (with values in B(H)) is automatically unitarizable.
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This longstanding (still open) problem can be viewed as the C∗-analogue of
the Halmos similarity problem. It is known to be equivalent to the “derivation
problem.” The latter asks whether any bounded derivation D : A → B(H) on
a C∗-algebra A ⊂ B(H) is inner. We refer the reader to [54, 55, 46] for more
information on this problem.
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Abstract. This paper consists of a discussion of the contributions that Paul
Halmos made to the study of invariant subspaces of bounded linear operators
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Paul Halmos said that problems are “the heart of mathematics” [35] and explained
“The purpose of formulating the yes-or-no question is not only to elicit the answer;
its main purpose is to point to an interesting area of ignorance.” [32]

The invariant subspace problem was not originally formulated by Halmos.
(Sometime in the nineteen-thirties, von Neumann showed that compact operators
have invariant subspaces [2]). However, Paul was the person who made the prob-
lem widely known. Moreover, he proposed the study of some important special
cases of the problem and suggested numerous related questions which pointed to
very interesting areas of ignorance. As a result of the work of hundreds of mathe-
maticians, much of the ignorance has been replaced by very interesting knowledge.

The purpose of this article is to outline some of the mathematics that devel-
oped from Paul’s research and probing questions related to invariant subspaces.

We begin with the basic definitions. Throughout, we are concerned with
bounded linear operators on a complex, separable, infinite-dimensional Hilbert
space, which we generally denote by H. By a subspace we mean a subset of H that
is closed in the topological sense as well as with respect to the vector operations.
A subspace is invariant under an operator if the operator maps the subspace into
itself. That is, the subspace M is invariant under the operator A if Ax ∈ M
whenever x ∈ M. The trivial subspaces are {0} and H; they are both invariant
under all operators. The invariant subspace problem is the question: does every
bounded linear operator onH have a nontrivial invariant subspace? In other words,
if A is a bounded linear operator on H, must there exist a subspace M other
than {0} and H which is invariant under A? In spite of all the work concerning

We thank Jonathan Korman for his assistance in the preparation of this article.
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this problem that Paul and many others generated, the answer is still unknown.
However, a surprisingly large number of theorems have been established concerning
related questions.

In particular, very interesting mathematics resulted from Paul’s 1963 pro-
posal [28] that two special cases of the invariant subspace problem be attempted.

Earlier, in 1954, Aronszajn and Smith[2] published a paper proving that
every compact operator on a Banach space had a nontrivial invariant subspace
(they acknowledged that von Neumann had proven the Hilbert-space case earlier,
in unpublished work). Smith raised the question of whether an operator must
have a nontrivial invariant subspace if its square is compact (it is easy to give
examples of operators that are not compact but have compact squares). In the
1963 article[28], Paul publicized Smith’s (unpublished) question.

This problem turned out to be extremely interesting. Abraham Robinson
and his student Allen Bernstein [10] gave an affirmative answer. In fact, they
proved that polynomially-compact operators (that is, operators A such that p(A)
is compact for some nonzero polynomial p) have nontrivial invariant subspaces.
Surprisingly, their proof was based on Robinson’s theory of non-standard analysis,
and their result still seems to be the most impressive theorem obtained by using
that theory.

Paul read the pre-print of the Bernstein-Robinson paper and translated their
argument into standard analysis [29]. He subsequently [31] abstracted the con-
cept of quasitriangular operator that had been implicit in the work of Aronszajn-
Smith[2] and Bernstein-Robinson [10] (and its generalization by Arverson-Feldman
[6]). Paul defined an operator A to be quasitriangular if there is an increasing se-
quence {En} of finite rank projections such that ||AEn −EnAEn|| → 0. It is easy
to see that the range of a projection P is invariant under the operator A if and
only if AP = PAP . Thus an operator is quasitriangular if there is an increasing
sequence of finite-dimensional “almost-invariant” subspaces of the operator.

Since the essence of the concept of quasitriangularity had been used in es-
tablishing the existence of nontrivial invariant subspaces for compact operators
and generalizations, Paul’s question of whether quasitriangular operators had in-
variant subspaces appeared to be very reasonable. However, Apostol, Foias, and
Voiculescu [1] proved the remarkable result that an operator whose adjoint does
not have an eigenvector must be quasitriangular. Since the ortho-complement of
a one-dimensional space spanned by an eigenvector of A∗ is invariant under A, it
follows that every non-quasitriangular operator does have a nontrivial invariant
subspace. Thus Paul’s question of the existence of nontrivial invariant subspaces of
quasitriangular operators is equivalent to the general invariant subspace problem.

Although the hypothesis of quasitriangularity had become superfluous, the
quest continued for existence results using compactness. Arveson-Feldman[6] had
shown that a quasinilpotent operator has a nontrivial invariant subspace if the
uniformly-closed algebra generated by the operator contains a compact operator
other than 0. A natural question was whether the hypothesis of quasinilpotence
could be removed from the Arverson-Feldman result.
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In lectures and informal discussions with many mathematicians, Paul raised
several related questions. One was: must two compact operators that commute
with each other have a common nontrivial invariant subspace? Another was his
asking about a generalization of the previously-known results that seemed to be
completely out of reach, the question of whether an operator had to have an
nontrivial invariant subspace if it simply commuted with a compact operator other
than 0. It was a huge surprise to Paul and everyone else who had thought about
such problems when Victor Lomonosov [41] established an affirmative answer to
this question. In fact, Lomonosov proved much more. In particular, he showed
that if K is a compact operator other than 0, there is a nontrivial subspace that
is simultaneously invariant under all of the operators that commute with K. In
addition, Lomonosov [41] proved that the operator A has a nontrivial invariant
subspace if it commutes with any operator B that is not a multiple of the identity
operator and that itself commutes with a compact operator other than 0. The
scope of this latter result is still not clear; at first, it seemed possible that every
operator satisfied its hypothesis. Although this was shown not to be the case [25], it
remains barely conceivable that all the operators that do not satisfy the hypothesis
either have eigenvectors or have adjoints that have eigenvectors, in which case
Lomonosov’s work would solve the invariant subspace problem.

H.M. Hilden found a beautiful and unbelievably simple proof of part of
Lomonosov’s theorem. Hilden’s proof that there is a nontrivial invariant subspace
that is simultaneously invariant under all the operators that commute with each
given compact operator other than 0 uses only very elementary results of functional
analysis and can be presented in a couple of pages (see [43]).

The other special case of the invariant subspace problem that Paul raised in
his 1963 article concerned subnormal operators. Recall that an operator is normal
if it commutes with its adjoint. Normal operators have lots of invariant subspaces;
in particular, their spectral subspaces are invariant. Paul defined an operator to
be subnormal [26]1 if it is the restriction of a normal operator to an invariant
subspace. (Restrictions of normal operators to their spectral subspaces, or to any
other of their reducing subspaces, are normal. Some normal operators have non-
reducing invariant subspaces, and the restriction of a normal operator to such a
subspace need not be normal.)

The problem of existence of nontrivial invariant subspaces for subnormal
operators stimulated a great deal of research into the properties of subnormal
operators. In fact, there were so many results obtained that John Conway wrote
two books on the subject [17, 18]. The invariant subspace problem for subnormal
operators was ultimately solved by Scott Brown [14]. His proof is a beautiful
blend of techniques from operator theory and complex analysis. Brown’s work
was generalized in several directions. One impressive variant obtained by Brown-

1Actually, Paul used the terminology differently in his 1950 paper [26]. He subsequently [28]
introduced the terminology as we have defined it and this has become standard.
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Chevreau-Pearcy [16] established that every contraction whose spectrum contains
the unit circle has a nontrivial invariant subspace.

Paul introduced another generalization of normal operators. He defined [26]
an operator A to be hyponormal if A∗A − AA∗ is a positive operator2. It is easy
to see that every subnormal operator is hyponormal, so a natural question is: does
every hyponormal operator have a nontrivial invariant subspace? This problem
remains open, although Berger [9] showed that for every hyponormal operator A
there is a natural number n such that An has a nontrivial invariant subspace, and
Brown [15] proved that hyponormal operators have nontrivial invariant subspaces
if their spectra are substantial enough that the uniform closure of the rational
functions on the spectrum does not contain every function that is continuous on
the spectrum.

Paul was interested in many other aspects of invariant subspaces in addition
to their existence. Let S be any collection of bounded linear operators on a given
space H. Paul noted that the collection of all subspaces (including {0} and H) that
are simultaneously invariant under all the members of S is a complete lattice under
inclusion, with the supremum of a family of subspaces being the closed linear span
of the family and the infimum being the intersection of the members of the family.
Paul therefore suggested the notation Lat S for the collection of all subspaces that
are simultaneously invariant under all the operators in S. Similarly, Paul noted
that the collection of all operators that leave all of the subspaces in a given family
F invariant forms an algebra; he used the notation Alg F to denote that algebra of
operators. Paul suggested that an algebra A be called reflexive if A = Alg Lat A,
and that a lattice L of subspaces be called reflexive if L = Lat Alg L (see [33]).

We began thinking about reflexive algebras (but without that name and with-
out Halmos’s very useful notation) at about the same time as Paul did. Earlier,
Sarason [50] had proven that every weakly-closed commutative unital algebra of
normal operators is reflexive (though he didn’t use that term). Also, Arveson [3]
had shown that the only weakly-closed algebra of operators that contains a max-
imal abelian self-adjoint algebra and has no nontrivial invariant subspaces is the
algebra of all operators.

It is clear, if you think about it for a minute, that Arveson’s theorem can
be reformulated as follows in terms of Halmos’s notation: if A is a weakly-closed
algebra that contains a maximal abelian self-adjoint algebra and LatA = {{0},H},
then A is reflexive. We thought about Arveson’s theorem for much more than a
minute and also spent a considerable amount of time studying Sarason’s result.
This led to our conjecturing and then proving that a weakly-closed algebra A is
reflexive if it contains a maximal abelian self-adjoint algebra and LatA is totally
ordered [45]. A special case of this theorem that we were proud of then, and still
like this many years later, is the fact that an operator A on L2(0, 1) is a weak limit
of non-commutative polynomials in multiplication by x and the Volterra operator

2Paul used different terminology in [26].
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if and only if it leaves invariant all of the subspaces

Mλ = {f ∈ L2(0, 1) | f = 0 a.e. on [0, λ]}.
It seemed possible that every weakly-closed algebra containing a maximal

abelian self-adjoint algebra was reflexive; there were some other special cases that
were established ( [46], [21]). However, Arveson [4] produced an example of such an
algebra that was not reflexive. Moreover, Arveson [4] proved that a weakly-closed
algebra which contains a maximal abelian self-adjoint algebra is reflexive if LatA is
generated as a lattice by a finite number of totally-ordered sublattices. Arveson’s
beautiful paper [4] contains a number of interesting concepts and numerous results
about them. For another exposition of Arveson’s work and some of its aftermath
see [20]. There has been a great deal of subsequent work on CSL algebras (i.e.,
reflexive algebras such that the projections onto the invariant subspaces of the
algebra all commute with each other) and other concepts originating in Arveson’s
paper. Even more generally, the study of reflexive algebras appears to have played
an important role in stimulating investigation of many other kinds of nonselfadjoint
algebras.

Consistent with Paul’s definition, an individual operator A is called reflexive
if the weakly-closed algebra generated by A and the identity is reflexive. For an
individual operator A, it is customary to write LatA for Lat{A}. If an operator
is reflexive, it has a large number of invariant subspaces in the sense that an
operator B that leaves every member of LatA invariant is in the weakly-closed
algebra generated by A and the identity operator. By Sarason’s theorem [50],
every normal operator is reflexive. In the same paper, Sarason proved that every
analytic Toeplitz operator is reflexive. It has also been shown that isometries are
reflexive [22]. A striking result is the strengthening of Scott Brown’s theorem by
Olin and Thompson [44] (also see [42]) to the result that subnormal operators are
reflexive.

The reflexive lattices are, as Paul observed [33], those that can be written as
LatS for some collection S of operators. Arveson’s fundamental paper [4] contains
a number of results concerning reflexive lattices and there has also been some
subsequent work (see [20]). The case when S consists of a single operator is of
particular interest. An abstract lattice is said to be attainable if there is an operator
A on H such that the lattice is order-isomorphic to LatA [49].

In the early 1960’s, Paul raised the question of which totally-ordered lattices
are attainable. It is easy to see that every such lattice is order-isomorphic to
a closed subset of [0, 1] with the usual order (just use the separability of H).
Donoghue [24] proved that ω + 1 is attainable (where ω is the order-type of the
natural numbers), and he [24], Dixmier [23] and Brodskii [12] each independently
proved that the closed unit interval is attainable, attained by the Volterra integral
operator. In response to Paul’s questions, it was shown that ω + n and [0, 1] + n,
for n any natural number, are attainable [49]. It was subsequently proven that
ω+ω+1 is attainable [39]. Davidson and Barŕıa went on to show that the ordinal
sum α+ 1+ β∗ is attainable for all countable ordinals α and β [8], and Barŕıa [7]
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showed that every ordinal sum of a finite number of natural numbers and copies
of the closed unit interval, in any order, is attainable.

There is a large body of work concerning invariant subspaces of multiplication
by the independent variable and other operators on the Hardy-Hilbert space H2
and on other spaces of analytic functions. This work was initiated by the beautiful
paper of Beurling [11] in which he characterized the invariant spaces of the uni-
lateral shift in terms of inner functions. Although Paul did not do a lot of work in
this area, he did make some important contributions. He gave a Halmosian treat-
ment (in the words of Don Sarason [37]) of higher multiplicity shifts [27] and, in
joint work with Arlen Brown [13], gave a similarly incisive treatment of the basic
properties of Toeplitz operators.

A subspace is said to be reducing for an operator if both it and its orthogonal
complement are invariant under the operator. An operator is said to be reducible
if it has a nontrivial reducing subspace; otherwise the operator is said to be irre-
ducible. Paul [30] proved that the set of irreducible operators is uniformly dense in
the algebra of all operators on H and then asked the corresponding question about
the set of reducible operators. Although he obtained some partial results [30], he
was unable to settle this. Paul’s seemingly innocuous question remained open
for eight years until Voiculescu [52] gave an affirmative answer. This paper of
Voiculescu’s that was stimulated by Paul’s question introduced the concept of ap-
proximate equivalence of representations of C∗ algebras and powerful techniques
for the study of that concept which provided a very fruitful approach to a number
of problems in the theory of C∗-algebras.

We have described only some of the most direct consequences of Paul Hal-
mos’s interests in invariant subspaces. There is a huge body of additional work
concerning the above and related topics. There are literally thousands of research
papers that have some concern with some aspects of invariant subspaces and that
use ideas that can explicitly or implicitly be traced back to Paul Halmos.

For further information, we recommend the following expository writings (the
first two for the obvious reason of the authors’ self-interest and the rest simply
because they are excellent): [47, 48, 20, 51, 5, 40, 19] and, of course, any of Paul’s
own writings, especially [36, 37, 38, 34].

References

[1] C. Apostol, C. Foias, and D. Voiculescu, Some results on non-quasitriangular
operators IV, Rev. Roumaine Math. Pures Appl. 18 (1973), 487–514.

[2] N. Aronszajn and K.T. Smith,Invariant subspaces of completely continuous
operators, Ann. of Math. 60 (1954), 345–350.

[3] W.B. Arveson, A density theorem for operator algebras, Duke Math. J. 34 (1967),
635–647.

[4] W.B. Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) 100
(1974), 433–532.



Paul Halmos and Invariant Subspaces 347

[5] W.B. Arveson Ten lectures on operator algebras, CBMS Regional Conference Series
in Mathematics 55, A.M.S., Providence, 1984.

[6] W.B. Arveson and J. Feldman, A note on invariant subspaces, Michigan Math. J.
15 (1968), 60–64.
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Paul Halmos’s paper [6], one of his first two in pure operator theory, spawned three
major developments: the theory of subnormal operators, the theory of hyponormal
operators, and the theory of unitary dilations and operator models. Several of
the articles in this volume, including this one, concern these developments; they
illustrate how Paul’s original ideas in [6] grew into major branches of operator
theory. The present article belongs to the realm of unitary dilations.

The commutant lifting theorem of Béla Sz.-Nagy and Ciprian Foiaş is a cen-
terpiece of the theory of unitary dilations, in large part because of its intimate
connection with interpolation problems, including many arising in engineering.
This article describes my own involvement with commutant lifting. It is a personal
history that I hope conveys a picture of how research often gets done, in particular,
how fortunate happenstance can play a decisive role.

My first piece of good fortune, as far as this story goes, was to be a mathe-
matics graduate student at the University of Michigan when Paul Halmos arrived
in Ann Arbor in the fall of 1961. At that time I had passed the Ph.D. oral exams
but was unsure of my mathematical direction, except to feel it should be some
kind of analysis. I had taken the basic functional analysis course the preceding fall
but felt I lacked a good grasp of the subject. Paul was to teach the same course
in fall 1961; I decided to sit in.
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Prior to encountering Paul in person I was aware that he was well known and
that he had written a book on measure theory; that was basically the extent of
my knowledge. Paul’s entry in the first class meeting, some 48 years ago, stands
out in my memory. It was an electrifying moment – Paul had a commanding
classroom presence. His course concentrated on Hilbert space, taught by his version
of the Moore method, with an abundance of problems for the students to work on.
Through the course I was encouraged to ask Paul to direct my dissertation, and he
agreed. As a topic he suggested I look at invariant subspaces of normal operators.

Paul’s basic idea in [6] is to use normal operators to gain insight into the
structure of more general Hilbert space operators. The idea is a natural one; thanks
to the spectral theorem, the structure of normal operators is well understood, at
least at an abstract level.

Paul proved in [6] that every Hilbert space contraction has, in the terminology
of the paper, a unitary dilation: given a contraction T acting on a Hilbert space H ,
there is a Hilbert space H ′ containing H as a subspace, and a unitary operator U
on H ′, such that one obtains the action of T on a vector in H by applying U to the
vector followed by the orthogonal projection of H ′ onto H ; in Paul’s terminology,
T is the compression of U to H . A few years after [6] appeared Béla Sz.-Nagy [23]
improved Paul’s result by showing that, with H and T as above, one can take the
containing Hibert space H ′ and the unitary operator U on H ′ in such a way that
T n is the compression to H of Un for every positive integer n. As was quickly
recognized, Sz.-Nagy’s improvement is a substantial one. For example, Sz.-Nagy’s
result has as a simple corollary the inequality of J. von Neumann: if T is a Hilbert
space contraction and p is a polynomial, then the norm of p(T ) is bounded by
the supremum norm of p on the unit circle – an early success of the Halmos idea
to use normal operators (in this case, unitary operators) to study more general
operators. A dilation of the type Sz.-Nagy constructed was for a time referred to
as a strong dilation, or as a power dilation; it is now just called a dilation.

After becoming Paul’s student I was swept into several confluent mathe-
matical currents. The Sz.-Nagy–Foiaş operator model theory, the creation of a
remarkable collaboration spanning over 20 years, was in its relatively early stages,
and was of course of great interest to Paul. Exciting new connections between
abstract analysis and complex analysis were emerging, leading in particular to
the subject of function algebras. These connections often involved Hardy spaces,
which thus gained enhanced prominence. Kenneth Hoffman’s book [10] embodied
and propelled this ferment. (It is the only mathematics book I have studied nearly
cover to cover.)

As my dissertation was slated to be about invariant subspaces of normal
operators, I learned as much as I could about normal operators, picking up in the
process the basics of vector-valued function theory. In the end, the dissertation
focused on a particular normal operator whose analysis involved Hardy spaces
in an annulus [17]. Simultaneously with working on my dissertation, I tried to
understand the Sz.-Nagy–Foiaş theory.
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I received my degree in the spring of 1963. From Ann Arbor I went to the
Institute for Advanced Study, where I spent a year as an NSF postdoc before
joining the Berkeley mathematics faculty in the fall of 1964 (just in time to witness
the Free Speech Movement). I don’t remember exactly when I started thinking
about commutant lifting; most likely it happened at the Institute. Let me back up
a little.

Every contraction has a unitary dilation, but not a unique one: given any uni-
tary dilation, one can inflate it by tacking on a unitary direct summand. However,
there is always a unitary dilation that is minimal, i.e., not producible by inflation
of a smaller one, and this minimal unitary dilation is unique to within unitary
equivalence. The simplest unitary operator that can be a minimal unitary dilation
of an operator besides itself is the bilateral shift on L2 of the unit circle, the opera-
tor W on L2 of multiplication by the coordinate function. In trying to understand
the Sz.-Nagy–Foiaş theory better, I asked myself which operators (other than W
itself) can haveW as a minimal unitary dilation. Otherwise put, the question asks
for a classification of those proper subspaces K of L2 with the property that W
is the minimal unitary dilation of its compression to K. Any such subspace, one
can show, is either a nonreducing invariant subspace of W , or a nonreducing in-
variant subspace of W ∗, or the orthogonal complement of a nonreducing invariant
subspace of W in a larger one. The invariant subspace structure of W is given by
the theorem of Arne Beurling [3] and its extension by Henry Helson and David
Lowdenslager [7]. One concludes that the operators in question, besides W itself,
are, to within unitary equivalence, the unilateral shift S (the restriction of W to
the Hardy space H2), the adjoint S∗ of S, and the compressions of S to the proper
invariant subspaces of S∗.

By Beurling’s theorem, the general proper, nontrivial, invariant subspace of
S is the subspace uH2 with u a nonconstant inner function. The corresponding
orthogonal complementK2

u = H2�uH2 is the general proper, nontrivial, invariant
subspace of S∗. The compression of S to K2

u will be denoted by Su. The operators
Su, along with S and S∗, are the simplest Sz.-Nagy–Foiaş model operators.

Early in their program Sz.-Nagy and Foiaş defined an H∞ functional calculus
for completely nonunitary contractions, among which are the operators Su. For ϕ
a function in H∞, the operator ϕ(Su) is the compression to K2

u of the operator on
H2 of multiplication by ϕ. The operator ϕ(Su) depends only on the coset of ϕ in
the quotient algebra H∞/uH∞. One thereby gets an injection of H∞/uH∞ onto
a certain operator algebra on K2

u whose members commute with Su.
At some point, either when I was still in Ann Arbor or during my year at the

Institute, I read James Moeller’s paper [12], in which he determines the spectra of
the operators Su. Moeller’s analysis shows that if the point λ is not in the spectrum
of Su, the operator (Su − λI)−1 is an H∞ function of Su. This made me wonder
whether every operator commuting with Su might not be an H∞ function of Su.

In pondering this question, an obvious way for one to start is to look at the
case where u is a finite Blaschke product, in other words, where K2

u has finite
dimension. In this case a positive answer lies near the surface, but more is true
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thanks to the solutions of the classical interpolation problems of Carathéodory–
Fejér [4] and Nevanlinna–Pick [14], [16], to which I was led by my question. Those
solutions tell you that if u is a finite Blaschke product, then every operator on
K2
u that commutes with Su is an H∞ function of Su for an H∞ function whose

supremum norm equals the operator norm. Knowing this, one can generalize to the
case of an infinite Blaschke product by means of a limit argument. Once I realized
that, I was dead sure the same result holds for general u. But here I was stuck
for quite a while; the behavior of inner functions that contain singular factors is
subtler than that of those that do not. A step in the right direction, it seemed,
would be to prove for general u that the injection of H∞/uH∞ into B(K2

u) (the
algebra of operators on K2

u) preserves norms, something the classical interpolation
theory gives you for the Blaschke case. But on that I was stuck as well.

Good fortune accompanied me to Berkeley, where I became a colleague of
Henry Helson. Some mathematicians, like me when I was younger, tend to keep to
themselves the problems they are trying to solve; others, like Henry, are driven to
talk with others about the problems, sharing their sometimes tentative ideas. In the
Academic Year 1965–1966 Henry was working on a problem in prediction theory
related to earlier work he had done with Gabor Szegö [9]. He would regularly drop
by my office to discuss the problem. Back then prediction theory was a mystery
to me, and I failed to understand very much of what Henry was saying. I did a lot
of nodding, interrupted by an occasional comment or question. This was going on
one Friday afternoon in fall 1965 when Henry brought up a proof he had found
of Zeev Nehari’s theorem on boundedness of Hankel operators [13]. Henry’s proof,
which is much slicker than the original one, uses ideas from his paper with Szegö,
namely, a duality argument facilitated by a factorization result of Frigyes Riesz.
(Riesz’s result states that a nonzero function f in the Hardy space H1 can be
factored as f = f1f2, where f1 and f2 are in H2, and |f1|2 = |f2|2 = |f | almost
everywhere on the unit circle.)

The following day it suddenly struck me that Henry’s technique was exactly
what I needed to show that the injection H∞/uH∞ → B(K2

u) preserves norms in
the general case, and also that it is weak-star-topology→ weak-operator-topology
continuous. Once I knew that I was able to combine it with what I already knew
to prove the theorem I had long sought, which states: Every operator T on K2

u that
commutes with Su equals ϕ(Su) for a function ϕ in H∞ whose supremum norm
equals ‖T ‖. The proof was completed over the weekend. It uses some vector-valued
function theory, including the vector generalization of Beurling’s theorem due to
Peter Lax [11], and ideas from an earlier paper of mine [18].

After proving the theorem I spent quite a while exploring some of its impli-
cations. I wrote up my results in the summer of 1966; the paper containing them
[19] was published in May of 1967.

In [19] I was not brave enough to conjecture that my theorem generalizes
to arbitrary unitary dilations (although I did prove a rather restrictive vector-
valued generalization). It did not take long for Sz.-Nagy and Foiaş to produce the
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generalization, their famous commutant lifting theorem. Their paper [24] contains
an informative discussion of the theorem.

Perhaps I should have looked more deeply into Hankel operators after Henry
showed me his proof of Nehari’s theorem, but I did not; my thoughts were else-
where. Sometime in the 1970s Douglas Clark observed that my theorem is a fairly
simple corollary of Nehari’s. Clark did not publish his observation; it appears,
though, in the notes for a course he gave at the University of Georgia. A bit later
Nikolai Nikolski independently made the same observation. The derivation of my
theorem from Nehari’s can be found in Nikolski’s book [15] (pp. 180ff.).

Following Sz.-Nagy and Foiaş’s original proof of the commutant lifting theo-
rem, several alternative proofs were found. My favorite, because it brings us back
to Hankel operators, is due to Rodrigo Arocena [2].

In 1968 Vadim Adamyan, Damir Arov and Mark Krĕın published the first [1]
of a series of papers on Hankel operators. Originally they seemingly were unaware
of Nehari’s paper; a reference to Nehari was added to their paper in proof. Among
other things, Adamyan–Arov–Krĕın found a proof of Nehari’s theorem along the
same lines as the familiar operator theory approach to the Hamburger moment
problem.

Nehari’s theorem is a special case of the commutant lifting theorem. Aro-
cena realized that the Adamyan–Arov–Krĕın technique can be juiced up to give
a proof of the full theorem. An exposition of Arocena’s proof can be found in my
article [21].

Ever since Sz.-Nagy and Foiaş proved their theorem, commutant lifting has
played a central role in operator theory. A picture of the scope of the idea of
commutant lifting, and of its engineering connections, can be found in the book
of Foiaş and Arthur Frazho [5].

My own romance with commutant lifting seems to have come full circle. My
recent paper [22] contains a version of commutant lifting for unbounded operators:
If T is a closed densely defined operator on K2

u that commutes with Su, then
T = ϕ(Su) for a function ϕ in the Nevanlinna class (ϕ = ψ/χ, where ψ and χ are
in H∞ and χ is not the zero function). Is there a general theorem in the theory of
unitary dilations that contains this result?

Small footnote: I eventually understood enough about Henry’s problem in
prediction theory to contribute to its solution. The result is our joint paper [8] and
my subsequent paper [20]. My work on [8] took place while Henry was on leave in
France during the Academic Year 1966–1967, and our communication took place
via airmail.
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Double Cones are Intervals
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Abstract. The purpose of this short note is to point out the following fact
and some of its pleasant ‘consequences’: the so-called double-cones in (4-
dimensional) Minkowski space are nothing but the intervals (A, B) = {C ∈
H2 : A < C < B} in the space H2 of 2×2 complex Hermitian matrices, where
we write X < Y if (Y − X) is positive-definite.
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1. Introduction

This short note is a result of two events:
(i) I was recently approached by the editors of a volume being brought out in

the memory of Paul Halmos, and I certainly wanted to contribute some token
of many fond memories of Paul; and

(ii) some time ago, I learned something with considerable pleasure which, I am
sure, is just the kind of ‘fun and games with matrices’ that brought a gleam
into Paul’s eye.

2. The (H2, | · |) model of Minkowski space
It must be stated that most of what follows is probably ‘old hat’ and the many
things put down here are for the sake of setting up notation preparatory to justi-
fying the assertion of the abstract.

In the language of the first pages of a physics text on relativity, Minkowski
space is nothing but 4 (= 1+3)-dimensional real space R4 = {x = (x0, x1, x2, x3) :
xi ∈ R ∀i} equipped with the form defined by q(x) = x20 − x21 − x22 − x23. We
shall prefer to work with a ‘matricial’ model (which might appeal more to an
operator-theorist).
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Thus we wish to consider the real Hilbert space

H2 = {
(

a z
z̄ b

)
: a, b ∈ R, z ∈ C}

of 2× 2 complex Hermitian matrices, and observe that the assignment

R4 � x = (x0, x1, x2, x3)
φ�→ X =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
∈ H2 (2.1)

defines a (real-)linear isomorphism, and that we have the following identities:

q(x) = |X | , x0 = tr(X)

where |X | denotes the determinant of the matrix X and tr(X) = 1
2 Tr(X) denotes

the normalised trace (= the familiar matrix trace scaled so as to assign the value
1 to the identity matrix I).

It should be noted that the isomorphism φ of equation (2.1) can be alterna-
tively written as

φ(x) =
3∑
i=0

xiσi

where σ0 is the identity matrix, I and σ1, σ2, σ3 are the celebrated Pauli matrices
and that {σ0, σ1, σ2, σ3} is an orthonormal basis for H2 with respect to the nor-
malised Hilbert-Schmidt inner product given by 〈X,Y 〉 = tr(Y ∗X), so φ is even a
(real) unitary isomorphism.

Recall that the so-called positive and negative light cones (at the origin) are
defined as

C+(0) = {x ∈ R4 : x0 > 0, q(x) > 0}
C−(0) = {x ∈ R4 : x0 < 0, q(x) > 0}

= −C+(0)
while the ‘positive light cone’ and the ‘negative light cone’ at x ∈ R4 are defined as

C+(x) = {y ∈ R4 : (y0 − x0) > 0, q(y − x) > 0}
= x+ C+(0)

C−(x) = {y ∈ R4 : (y0 − x0) < 0, q(y − x) > 0}
= x− C+(0) .

Finally, a double-cone is a set of the form D(x, y) = C+(x) ∩ C−(y) (which is
non-empty precisely when y ∈ C+(x)).

The key observation for us is the following

Remark 2.1.
φ(C+(0)) = P (2.2)

where P is the subset of H2 consisting of positive-definite matrices.
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Reason: AnyX ∈ H2 has two real eigenvalues λ∗(X) and λ∗(X) satisfying λ∗(X) ≤
λ∗(X) and

1
2
(λ∗(X) + λ∗(X)) = tr(X), λ∗(X) · λ∗(X) = |X |

so
X ∈ P ⇔ λ∗(X), λ∗(X) > 0 ⇔ tr(X), |X | > 0.

Thus we do indeed find that

C+(X) = X + P

C−(Y ) = Y − P

D(X,Y ) = (X,Y ) = {Z ∈ H2 : X < Z < Y } ,
where we write A < C ⇔ C−A ∈ P . (It should be emphasized that A < C implies
that C −A is invertible, not merely positive semi-definite.) �

It should be observed that the relative compactness of these double cones is
an easy corollary of the above remark. (I am told that this fact is of some physical
significance.)

3. Some applications

This section derives some known facts using our Remark 2.1.

Proposition 3.1. The collection {D(x, y) : y − x ∈ C+(0)} (resp., {(X,Y ) :
Y −X ∈ P}) forms a base for the topology of R4 (resp., H2).

Proof. Suppose U is an open neighbourhood of a Z ∈ H2. By definition, we
can find ε > 0 such that W ∈ H2, ‖W − Z‖ < 2ε ⇒ W ∈ U , where we write
‖A‖ = max{‖Av‖ : v ∈ C2, ‖v‖ = 1}. Then X = Z − εI, Y = Z + εI satisfy
Z ∈ (X,Y ) ⊂ U . �

Thus the usual topology on R4 has a basis consisting of ‘intervals’.

Recall next that the causal complement O⊥ of a set O ⊂ R4 (resp., H2) is
defined by

O⊥ = {z ∈ R4 : q(z − w) < 0 ∀w ∈ O}
(resp.,

O⊥ = {Z ∈ H2 : |Z −W | < 0 ∀W ∈ O} ).

Proposition 3.2.
(X,Y )⊥⊥ = (X,Y ) ∀X < Y.

Proof. We shall find it convenient to write P0 for the set of positive semi-definite
matrices (i.e., Z ∈ P0 ⇔ λ∗(Z) ≥ 0).

We assert now that
Z ∈ (X,Y )⊥ ⇔ there exist unit vectors v1, v2 such that

〈Zv1, v1〉 ≤ 〈Xv1, v1〉 and 〈Zv2, v2〉 ≥ 〈Y v2, v2〉.
(3.3)
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Notice first that, by definition,

Z ∈ (X,Y )⊥ ⇔ |Z −W | < 0 whenever W ∈ (X,Y )

Choose ε > 0 such that Y −X > εI; so also X + εI ∈ (X,Y ) and Y − εI ∈
(X,Y ). If Z ∈ (X,Y )⊥, we find that |Z − (X + εI)| < 0 and |Z − (Y − εI)| < 0.
Now a 2 × 2 Hermitian matrix C has negative determinant if and only if we can
find unit vectors v1 and v2 such that 〈Cv1, v1〉 < 0 < 〈Cv2, v2〉. Applying this
to our situation, we can find unit vectors v1(ε), v2(ε) such that 〈Zv1(ε), v1(ε)〉 <
〈Xv1(ε), v1(ε)〉+ ε and 〈Zv2(ε), v2(ε)〉 > 〈Y v2(ε), v2(ε)〉− ε. By compactness of the
unit sphere in C2, we find, letting ε ↓ 0, that the condition (3.3) is indeed met.

Conversely, suppose condition (3.3) is met. If W ∈ (X,Y ), observe that
〈Zv1, v1〉 ≤ 〈Xv1, v1〉 < 〈Wv1, v1〉 and 〈Zv2, v2〉 ≥ 〈Y v2, v2〉 > 〈Wv2, v2〉 from
which we may conclude that indeed |Z −W | < 0.

Since O ⊂ O⊥⊥ ∀O, we only need to prove that

W /∈ (X,Y )⇒ ∃Z ∈ (X,Y )⊥ such that |W − Z| ≥ 0 (⇒ W /∈ (X,Y )⊥⊥) .

If W /∈ (X,Y ), we can find orthonormal vectors {v1, v2} such that either
〈Wv1, v1〉 ≤ 〈Xv1, v1〉 or 〈Wv2, v2〉 ≥ 〈Y v2, v2〉. Suppose the former holds. (The
other case is settled in the same manner.) Define the operator Z by Z = W +
N |v2〉〈v2| for some N chosen so large as to ensure that 〈Zv2, v2〉 > 〈Y v2, v2〉. We
then find that also 〈Zv1, v1〉 = 〈Wv1, v1〉 ≤ 〈Xv1, v1〉, and so we may deduce from
condition (3.3) that Z ∈ (X,Y )⊥. Since the construction ensures that (Z−W )v1 =
0, we find that |Z −W | = 0, and the proof of the proposition is complete. �

We close with a minimal bibliography; all the background for the mathematics
here can be found in [PRH], while physics-related topics such as Minkowski metric,
double cones, etc., are amply treated in [BAU]. In fact, it was trying to understand
the proof given in [BAU] for what we call Proposition 3.2 which led to this whole
exercise.
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