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On a Theorem of Camps and Dicks
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Abstract. We provide a short, intuitive proof of a theorem of Camps and
Dicks [1].
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1. The theorem

Below, rings are associative with 1, but possibly noncommutative. Modules are
unital. We also make use of the well-known fact that a ring R is semi-simple if and
only if every maximal left ideal is a summand.

Theorem 1. Let R and S be rings and let RMS be an R-S-bimodule. If MS has
finite uniform dimension and for r ∈ R the equality annM (r) = (0) implies r ∈
U(R) then R is semi-local.

Proof. Let R = R/J(R), and let RA be a maximal submodule of RR . We wish
to show that A is a direct summand. Since MS has finite uniform dimension there
exists an element b ∈ R, b /∈ A, such that annM (b) ⊆ MS has maximal uniform
dimension (with respect to the restriction b /∈ A).

Let x ∈ R be such that xb ∈ A. Notice the containment annM (b − bxb) ⊇
annM (b) ⊕ annM (1 − xb) (in fact, equality holds, although we do not need that
information). But b− bxb /∈ A, so by the maximality condition on b we conclude
annM (1−xb) = (0). Therefore 1−xb ∈ U(R). Repeating the argument, we see that
1−yxb ∈ U(R) for all y ∈ R, so xb ∈ J(R). We have thus shown that A∩Rb = (0).
By maximality of A we have A⊕Rb = R, finishing the proof. �
Corollary 2. If S is a ring and MS is an Artinian right S-module then R =
End(MS) is a semi-local ring.

Notice that in the proof of Theorem 1, we could weaken the condition “r ∈
U(R)” to “r is left invertible.” We also remark that in the original proof given
by Camps and Dicks in [1], they showed that R is semi-local if and only if there
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exists an integer n ≥ 0 and a function d : R→ {1, 2, . . . , n} satisfying d(b− bxb) =
d(b) + d(1 − xb), and if d(a) = 0 then a ∈ U(R). One can recover this fact by
letting d(a) denote the composition length of the right annihilator of a ∈ R and
following the ideas in the proof of Theorem 1.
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