On a Theorem of Camps and Dicks

Victor Camillo and Pace P. Nielsen

Abstract. We provide a short, intuitive proof of a theorem of Camps and Dicks [1].

Mathematics Subject Classification (2000). Primary 16P20, Secondary 16D60. Keywords. Semi-local ring, Artinian module.

1. The theorem

Below, rings are associative with 1, but possibly noncommutative. Modules are unital. We also make use of the well-known fact that a ring R is semi-simple if and only if every maximal left ideal is a summand.

Theorem 1. Let R and S be rings and let $_RM_S$ be an R-S-bimodule. If M_S has finite uniform dimension and for $r \in R$ the equality $\operatorname{ann}_M(r) = (0)$ implies $r \in U(R)$ then R is semi-local.

Proof. Let $\overline{R} = R/J(R)$, and let $\overline{R}A$ be a maximal submodule of $\overline{R}R$. We wish to show that A is a direct summand. Since M_S has finite uniform dimension there exists an element $b \in R$, $\overline{b} \notin A$, such that $\operatorname{ann}_M(b) \subseteq M_S$ has maximal uniform dimension (with respect to the restriction $\overline{b} \notin A$).

Let $x \in R$ be such that $\overline{xb} \in A$. Notice the containment $\operatorname{ann}_M(b - bxb) \supseteq$ $\operatorname{ann}_M(b) \oplus \operatorname{ann}_M(1-xb)$ (in fact, equality holds, although we do not need that information). But $\overline{b-bxb} \notin A$, so by the maximality condition on b we conclude $\operatorname{ann}_M(1-xb) = (0)$. Therefore $1-xb \in U(R)$. Repeating the argument, we see that $1-yxb \in U(R)$ for all $y \in R$, so $xb \in J(R)$. We have thus shown that $A \cap \overline{Rb} = (\overline{0})$. By maximality of A we have $A \oplus \overline{Rb} = \overline{R}$, finishing the proof. \Box

Corollary 2. If S is a ring and M_S is an Artinian right S-module then $R = \text{End}(M_S)$ is a semi-local ring.

Notice that in the proof of Theorem 1, we could weaken the condition " $r \in U(R)$ " to "r is left invertible." We also remark that in the original proof given by Camps and Dicks in [1], they showed that R is semi-local if and only if there

exists an integer $n \ge 0$ and a function $d: R \to \{1, 2, ..., n\}$ satisfying d(b-bxb) = d(b) + d(1-xb), and if d(a) = 0 then $a \in U(R)$. One can recover this fact by letting d(a) denote the composition length of the right annihilator of $\overline{a} \in \overline{R}$ and following the ideas in the proof of Theorem 1.

Acknowledgement

This paper was written while the second author was partially supported by the University of Iowa Department of Mathematics NSF VIGRE grant DMS-0602242.

References

 Rosa Camps and Warren Dicks, On semilocal rings, Israel J. Math. 81 (1993), no. 1–2, 203–211.

Victor Camillo Department of Mathematics University of Iowa Iowa City, IA 52242,USA e-mail: camillo@math.uiowa.edu

Pace P. Nielsen Department of Mathematics Brigham Young University Provo, UT 84602, USA e-mail: pace@math.byu.edu