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Abstract In the five decades since the identification of respiratory syncytial virus

(RSV) as an important pediatric pathogen, no effective vaccine has been developed.

Previous attempts to develop inactivated RSV vaccines resulted in vaccine-

enhanced disease, resulting in a greater focus on the generation of live attenuated

RSV vaccines. However, identifying a live attenuated vaccine candidate that is

appropriately attenuated and sufficiently immunogenic has proven to be difficult.

Recently, reverse genetics systems have been developed for RSV, allowing

researchers to introduce specific mutations into the genomes of recombinant vac-

cine candidates. These systems provide a means of determining the effects of

known attenuating mutations and identifying novel methods of attenuating the

virus without decreasing immunogenicity. In addition, different mutations can be

combined in a single genome to fine-tune the level of attenuation and immunoge-

nicity to achieve the proper balance in a viable vaccine candidate. Current research

into RSV attenuation includes investigation of point mutations responsible for

temperature sensitivity, nontemperature-sensitive attenuating mutations, and dele-

tion of nonessential viral genes that play roles in viral RNA synthesis and/or

inhibition of innate immune responses. Development of an effective RSV vaccine

will likely rely on using reverse genetics systems to optimize the attenuation and

immunogenicity of a live vaccine candidate, while preserving viral replication

in vitro.
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1 Respiratory Syncytial Virus

Respiratory syncytial virus (RSV) is the most important etiologic agent of pediatric

viral respiratory infection and remains a major cause of morbidity and mortality

among infants. Infection rates for RSV in infants have been found to be 68.8 per 100

children for the first year of life, reaching 82.6 per 100 children for the second year

[1]. Lower respiratory tract illness (LRTI) is more common during year 1, though

LRTI occurs frequently during year 2. Approximately half of all children are

reinfected by age 2, but most children experience only 1 LRTI [1]. RSV infection

accounts for between 70,000 and 120,000 hospitalizations in the United States of

infants under 6 months of age and ~70% of hospitalizations due to bronchiolitis

[2–5]. Severe RSV infection has been associated with long-term effects such as

asthma and wheezing and can cause significant mortality in high-risk groups, such

as premature infants or children with immunodeficiency, chronic pulmonary dis-

ease, or cardiovascular disease [6–9]. In addition, RSV infection is a serious

complication in immunocompromised subjects, particularly bone marrow trans-

plant patients, and the elderly [10].

Previously, RSV bronchiolitis was thought to be caused by an overactive anti-

viral immune response, similar to allergic asthma [11–13]. However, recent evi-

dence indicates that severe RSV disease is likely due to virus-induced cell death and

sloughing of apoptotic cells into the lumen of the bronchioles [14]. Examination of

autopsy specimens from fatal cases of RSV bronchiolitis showed the presence of

overwhelming RSV antigen and massive apoptotic sloughing of epithelial cells, but

a relative dearth of infiltrating T cells. In addition, infants who suffered nonfatal

cases of RSV showed decreased expression levels of cytokines, particularly IFN-g,
IL-17, IL-4, and IL-6, compared to infants infected by influenza [14, 15]. Cytokine

expression levels in RSV-infected infants did not appear to correlate with the

severity of RSV infection. However, viral replication levels directly correlated

with the severity of RSV disease [14, 16]. Thus, severe RSV LRTI is likely due

to high levels of RSV replication in ciliated and nonciliated airway cells, resulting

in cell death and a large influx of neutrophils and macrophages. This hypothesis

also fits with the time course of RSV infection and the observation that corticoster-

oids are ineffective in treating RSV bronchiolitis [17]. These results suggest that

reducing viral replication levels by the induction of protective immune responses

via vaccination is likely to reduce the morbidity and mortality due to RSV infection.

Infection by RSV causes severe disease in the very young (infants under 6

months of age) and the elderly [18]. One distinctive characteristic of RSV infection

is that it does not induce long-lived immunity upon exposure, resulting in recurrent

infection throughout life. Reinfections occur frequently throughout life, though

the symptoms of subsequent infection are generally milder [18]. Thus, the target

populations for RSV vaccines would be individuals at the extremes of age. In both

populations, lung function is suboptimal due to relatively inelastic lungs, either due

to developmental immaturity or loss of elasticity. Premature infants are particularly

susceptible to severe RSV disease due to interrupted lung development, leading to
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decreased lung function with reduced airway diameter and increased smooth

muscle. In addition, both populations present challenges to vaccination because

of deficiencies in their immune responses. For infants, there are two major hurdles

to effective immunization: (1) developmental immaturity of the immune system

and (2) presence of maternal antibodies. Neonatal immune responses are both

quantitatively and qualitatively different from those in adults, and these differ-

ences persist throughout the first year of life. The neonatal immune system

appears to be biased toward Th2-like responses, although Th1 responses can be

induced in neonates with certain stimuli including certain microbes [19–21]. This

effect is likely due in part to immaturity of dendritic and other accessory cell

populations. Serum antibodies derived from the mother pose a challenge for

vaccine take, as seen in the experience with the measles virus vaccine. In contrast,

premature infants born before 28 weeks of gestation, when maternal antibody

transfer occurs, have increased susceptibility to RSV. Premature infants born

closer to full term are likely better protected, as maternal antibody levels are

proportional to gestational age.

At the other end of the age spectrum, immunosenescence is a hurdle for RSV

vaccination in the elderly population. Not only are adaptive immune responses

blunted in the elderly, but innate immune function appears to be decreased as well

[22–24]. Protection from RSV by vaccination will likely require the induction of

both B- and T-cell responses in the elderly, similar to influenza vaccination [19, 25,

26]. Thus, a more complete understanding of the mechanisms responsible for

immunosenescence is required to improve the efficacy of RSV vaccines in the

elderly.

Immunologic protection from RSV infection requires induction of high-affinity

neutralizing antibody responses. Both infants and the elderly show decreased B-cell

responses compared with healthy adults [27–29]. Moreover, these two populations

display a limited ability to generate diversity in their antibody responses to anti-

genic stimulation [27, 30]. The exact mechanisms for these defects are not well

understood. However, increasing the diversity and affinity of the immunoglobulin

response in vaccinees is essential for efficient protection.

2 Agent

RSV is an enveloped virus classified in the family Paramyxoviridae in the order

Mononegavirales, and is the prototype member of the Pneumovirus genus. The

nonsegmented, negative-sense RNA genome of RSV is 15,222 nucleotides long and

contains 10 genes from which 11 proteins are translated (Fig. 1). The genome is

encapsidated by the viral nucleocapsid (N) protein, and this ribonucleocapsid

complex serves as the template for viral transcription and RNA replication. RSV

enters cells by direct fusion of its envelope with the plasma membrane and

replicates solely in the cytoplasm. RSV packages its own viral RNA-dependent

RNA polymerase (RdRP), which is essential for the initial transcription of its
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genome upon infection. The RdRP for RSV transcription is minimally composed of

P, M2-1, and L. L encodes the large enzymatic subunit of the polymerase, and P is

an essential cofactor for RNA synthesis. M2-1 is specific for the viral transcriptase

and is an antitermination/processivity factor. The polymerase complex accesses the

genome at a single promoter at the 30 end of the genome and initiates transcription

at the first gene (NS1). Each gene is bounded by conserved transcription initiation

and termination signals and is separated from the adjacent genes by a variable

length of intergenic sequence. The linear array of viral genes is transcribed sequen-

tially in a start/stop fashion, resulting in a polar gradient of mRNA production,

whereby genes proximal to the 30 promoter are transcribed more efficiently than

those that are promoter-distal. At a low frequency, the RdRP will fail to terminate,

resulting in an oligocistronic or “readthrough” mRNA that is terminated at a

subsequent transcription termination signal, or will fail to reinitiate, resulting in

transcription attenuation and a gradient of expression inversely proportional to the

distance from the 30 end of the genome. After primary transcription has occurred,

the polymerase complex begins replicating the viral genome, synthesizing a full-

length copy of the vRNA called the antigenome (cRNA). The regulation of the

switch from transcription to replication by RdRP is not clear; however, theM2-2 protein

is thought to be involved in this process. The antigenome is also encapsidated by N

protein and serves as a template for synthesis of more vRNA. In infected cells, there

is more vRNA than cRNA [10]. Encapsidated vRNA interacts with the matrix (M)

protein and traffics to the plasma membrane where the viral N interacts with the

cytoplasmic tails of the attachment (G) and fusion (F) proteins. Virion morphogenesis

occurs at lipid raft domains in the membrane where F is localized. In addition to G

and F, the RSV viral envelope contains a small hydrophobic (SH) protein of unknown

function. Importantly, G and F are the major neutralizing antigens for RSV. The two

remaining RSV proteins, NS1 and NS2, are nonstructural proteins that have been

Fig. 1 RSV genome and virion structure. The M2 gene overlaps with the L gene. Photograph by

Anthony Kalica (courtesy of Peter Collins, NIAID)
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shown to inhibit IFN-b induction and signaling but are otherwise dispensable for viral

replication in vitro [31, 32].

3 Treatment

Currently, there are no effective antiviral drugs to treat RSV infection. Ribavirin

has been previously used to treat severe RSV disease, but the efficacy of this treat-

ment is questionable and the cost is high [33–35]. Supportive care with sup-

plemental oxygen is the most common treatment option, although treatment

with corticosteroids and/or b-agonists has been tried with limited success [35].

Nebulized hypertonic saline with or without epinephrine has been found to decrease

length of stay in infants hospitalized with viral bronchiolitis [36, 37]. Immunopro-

phylaxis has been the mainstay for the prevention of RSV infection in high-risk

infants. Synagis (palivizumab), a recombinant humanized monoclonal antibody to

the RSV F protein, has been shown to be effective in preventing infection in

premature infants and children with underlying risk factors for severe RSV disease

[38–40]. The recent development of a higher affinity monoclonal antibody to F has

improved the efficacy profile of RSV immunoprophylaxis [41, 42]. However,

Synagis treatment is not cost-effective in normal populations due to the need to

administer the drug monthly during RSV season and the lower incidence of

hospitalization for severe RSV bronchiolitis.

4 RSV Vaccines

Although RSV is the most important cause of viral lower respiratory tract disease in

infants, initial attempts to develop an RSV vaccine by using inactivated virus met

with failure. In the early 1960s, vaccination of infants with a formalin-inactivated

(FI)-RSV vaccine not only failed to protect against RSV disease during the follow-

ing RSV season but some vaccinees developed enhanced disease upon infection

with RSV, resulting in increased rates of severe pneumonia and two deaths [43–45].

Studies on autopsy samples as well as in the mouse model suggested that the

enhanced disease due to FI-RSV vaccination was due to an imbalanced T helper

cell response, predisposing the vaccinees to a response resembling allergic asthma

upon subsequent infection by RSV (reviewed in [46]). More recently, it has been

determined that the FI-RSV vaccine has reduced the capacity for inducing high

avidity antibodies, due to reduced TLR stimulation, likely resulting in the deposi-

tion of complement in the lungs [47, 48].

In the intervening years, a number of different approaches have been evaluated

including subunit vaccines, vectored vaccines, and live attenuated vaccines; however,

as of the writing of this chapter there remains no licensed RSV vaccine. Currently,

the most promising vaccine candidates for RSV are live attenuated viruses. These
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viruses have several benefits: (1) enhanced RSV disease has not been observed

either after natural infection or vaccination with live attenuated viruses [49–53]; (2)

administration of live attenuated RSV vaccines induces balanced immune

responses that more closely match natural immunity compared with parenterally

administered subunit (or inactivated) vaccines [54, 55]. Also, vaccination with live

attenuated viruses intranasally would likely induce better local immunity compared

with intramuscular injection of subunit or killed vaccines [56]. Live attenuated RSV

vaccines have been in development for several decades, using a combination of

cold passage (cp) and chemical mutagenesis to induce temperature sensitivity (ts)
(reviewed in [57, 58]). The initial RSV vaccine candidates were either under- or

over-attenuated, with reversion of one of the ts mutants in vaccinated children [50,

59–61]. However, children vaccinated with these live attenuated viruses did not

show enhanced disease upon subsequent infection with RSV [62]. Therefore,

further development of live attenuated vaccine candidates was performed, combin-

ing cold passage and chemical mutagenesis to generate temperature-sensitive RSV.

A spectrum of cptsRSV vaccine candidates were produced by this method, with a

range of temperature sensitivity in culture and attenuation in animal models

(Fig. 2a) [53, 63–66]. Candidate vaccines from this method were immunogenic

and protected against RSV challenge in both rodent and nonhuman primate models.

Two candidate vaccines (cpts248/955 and cpts530/1009) were chosen for testing in
the clinic [53]. These candidates induced protective immune responses in seroneg-

ative children; however, both candidates were underattenuated in this age group,

precluding further analysis in infants (Table 1). One additional candidate, cpts248/
404, was found to be sufficiently attenuated and immunogenic in seronegative

children and was tested in 1- to 3-month-old infants [49]. However, cpts248/404
caused nasal congestion in these infants, an unacceptable adverse effect in this

population [49].

Production of live attenuated RSV vaccine candidates by mutagenesis and

screening for temperature sensitivity is a laborious and inefficient process. There-

fore, it is essential to develop a method of systematically deriving tsRSV and

identifying additional attenuating mutations that can be incorporated into RSV

vaccine candidates. The recent advent of reverse genetics systems for RSV has

allowed the development of live attenuated RSV vaccine candidates encoding

specific attenuating mutations, rather than relying on random mutagenesis. The

ability to generate recombinant RSV (rRSV) from cDNAs also allows the identifi-

cation of novel viral targets for attenuation through the investigation of the vir-

us–host interactions important for viral pathogenesis. Reverse genetics systems for

RSV rely on the coexpression of the viral polymerase components (N, P, M2-1, and

L) with a complete copy of the viral genome [67, 68]. Coexpression is achieved by

transfection of plasmids encoding each of the viral polymerase genes and a plasmid

encoding the full-length cDNA of the viral genome into cultured cells. Expression

from the plasmids is driven by the bacteriophage T7 RNA polymerase, which is

supplied exogenously. For the purposes of vaccine development, T7 RNA poly-

merase is expressed by cotransfection of an expression plasmid with the other

plasmids into qualified Vero cells [69]. Upon expression of viral components,
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transcription and replication of the viral genome initiates the RSV infectious cycle,

resulting in the production of infectious rRSV. The cDNA copy of the viral genome

can be mutated by standard molecular biology techniques in order to attenuate the

resultant rRSV.

Initial studies using rRSV focused on two different means of attenuating RSV.

The first method involved combining the known mutations from the cptsRSV
isolates in rRSV strain A2 (rA2) to increase attenuation of the vaccine candidates.

This resulted in the generation of rA2cpts248/404/1009 and rA2cpts248/404/1030,
combining the cpts248/404 mutations with those of 530/1009 and 530/1030 [70].

These new mutants were more attenuated than the cpts248/404 parental virus,

indicating that some mutations have additive effects in attenuation. However,

these studies also showed that certain mutations are incompatible with others, as

the rA2cpts248/404/530 could not be recovered, due to incompatibility of the 530

Fig. 2 RSV vaccine candidates. (a). Genomic organization of biologically derived, temperature-

sensitive RSV vaccine candidates. Arrows indicate relative position of the attenuating mutations

corresponding to the mutant, indicated on the left. (b). Recombinant RSV vaccine candidates. ts

point mutations are identified as in (a). Deletions are indicated with dashed lines. (c). Potential
recombinant RSV vaccine candidates. ts point mutations are identified as in (a). Deletions are

indicated with dashed lines
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mutation with, particularly, the 248 mutation [70]. Therefore, it would be desirable

to have a panel of attenuating mutations from which to select to incorporate into

rRSV vaccine candidates, so that the level of attenuation can be properly tuned. In

order to increase the number of attenuating mutations that could potentially be

combined in a vaccine candidate, specific viral proteins have been mutagenized to

replace charged amino acids with a noncharged amino acid (e.g., alanine). This

procedure has been employed to identify a number of mutations in both P and L that

result in attenuation of RSV, both in culture and in rodents [71–73]. These mutations

thus add to the panel of mutations available for inclusion in future vaccine candi-

dates, either alone or in combination with the previously identified cpts Lmutations.

Another avenue of attenuation for RSV has been the deletion of nonessential

genes. Gene deletion should be more stable than the point mutations responsible for

temperature sensitivity, reducing the risk of reversion to virulence of the vaccine

candidate. rRSVs (rA2) lacking one or a combination of NS1, NS2, M2-2, and SH

were generated and shown to be attenuated in preclinical trials [31, 74–76]. RSV

lacking SH (rA2DSH) replicated similarly to wild-type (wt) RSV (rA2) in culture

but showed a low level of attenuation in the respiratory tracts of rodents and

nonhuman primates [77]. Because clinical trials indicated that rA2cpts248/404

Table 1 Clinical trials on live attenuated RSV vaccine candidates

Vaccine candidate Attenuation phenotype Immunogenicity References

Biologically derived

cpRSV Underattenuated in

seropositive children

Mild (adults) [53]

cpts248/955 Underattenuated in

seronegative children

Good (seronegative

children)

[53]

cpts530/1009 Underattenuated in

seronegative children

Good (seronegative

children)

[53]

cpts248/404 Underattenuated in infants

(partial reversion)

Good (seronegative

children)

Mild (infants)

[49]

Recombinant

rA2cpts248/404DSH Underattenuated in

seronegative children

Good (seronegative

children)

[52]

rA2cpts248/404/1030DSH
Ongoing trials

Sufficiently attenuated in

infants (partial reversion)

Good (seronegative

children)

Poor (infants)

[52]

rA2cpDNS2 Underattenuated in

seropositive children

Mild (seropositive

children)

[79]

rA2cp248/404DNS2 Underattenuated in

seronegative children

Moderate (seronegative

children)

[79]

rA2cp530/1009DNS2 Sufficiently attenuated in

seronegative children

Poor (seronegative

children)

[79]

Vectored

MEDI-534 (rB/HPIV3-

RSV-F)

Ongoing trials

Attenuated in seropositive

children

Poor (seropositive

children)

[117]
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was only slightly underattenuated, the SH gene deletion was incorporated into this

vaccine candidate to increase the level of attenuation (Fig. 2b). However, this

vaccine candidate (rA2cpts248/404DSH) was not further attenuated in adults,

seropositive or seronegative children (Table 1) [52]. It was not possible to deter-

mine from these observations whether the SH deletion mutation confers attenuation

to RSV in humans, even though rA2DSH was attenuated in mice and chimpanzees.

These results indicate that attenuation of RSV by combining different mutations is

not necessarily additive. However, subsequent addition of the 1030 mutation to

rA2cpts248/404DSH resulted in a virus that was more ts and more attenuated in

seronegative children [52]. Further trials in seronegative infants showed that

rA2cpts248/404/1030DSH was well tolerated and appropriately attenuated

(Table 1) [52]. Only a minority of vaccinees produced increased neutralizing

antibody responses, even after a second dose of the vaccine virus. However,

replication of the second dose of vaccine was significantly reduced, indicating

that some protective immunity had been induced by the initial dose [52].

Preclinical testing of RSV lacking NS1 or NS2 (rA2DNS1 and rA2DNS2,
respectively) showed that these viruses were deficient in replication in culture

and also attenuated in rodents and nonhuman primates [31, 32, 76, 78]. In chim-

panzees, rA2DNS2 displayed an attenuation phenotype similar to rA2cpts248/404,

and rA2DNS1 was significantly more attenuated in both the upper and lower

respiratory tracts [74, 75]. However, both deletion mutants induced levels of

serum-neutralizing antibodies against RSV to levels comparable or slightly lower

than wt RSV. In addition, chimpanzees immunized with rA2DNS2 were protected

against subsequent challenge with RSV. Therefore, an NS2-deletion rA2 derivative

was then tested in clinical trials as a vaccine for the elderly because it was less

attenuated in chimpanzees than the cpts248/404 vaccine candidate (Fig. 2b) [79].

rA2cpDNS2 was shown to be overattenuated in adults; however, it was also under-

attenuated in children, a contraindication for testing in infants (Table 1). The NS2

deletion virus was further attenuated by inclusion of the ts mutations 248/404 or

530/1009. These vaccine candidates were more attenuated than their parental

strains and modestly immunogenic when tested in seronegative children [79].

5 Live Vectored RSV Vaccines

An alternative means of delivering RSV antigens in attenuated virus vaccines has

been the use of heterologous viral vectors expressing RSV F and/or G. Early efforts

focused on vaccinia viruses (VV) expressing RSV proteins. VV-F and VV-G

together were immunogenic and protective in the mouse model of RSV; however,

these VV recombinants did not induce protective immunity in chimpanzees

[80–83]. In addition, VV is likely too virulent to use as a vector for current vaccine

development. More recently, use of the attenuated modified vaccinia Ankara as a

vector for RSV antigens has shown some efficacy, though a prime-boost strategy

may be required to elicit sufficiently protective immunity [84, 85].
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Adenovirus vectors were initially used to immunize against RSV F and G over

15 years ago and, with the advent of replication-deficient adenovirus vectors, have

been further investigated more recently [86–90]. Adenovirus-vectored F and/or G

have been shown to provide protection to RSV in mice and ferrets; however, this

vaccine modality does not immunize chimpanzees against RSV, indicating that this

strategy will likely not be clinically useful [88, 89]. Alphavirus replicons have also

been tested for their ability to vaccinate against RSV [91–94]. Immunization via either

the intranasal or intramuscular route with Venezuelan equine encephalitis virus

replicons expressing RSV F induces balanced Th1/Th2 immunity, protects mice and

cotton rats against RSV challenge, and induces serum antibodies in macaques [91, 92].

The recent proliferation of reverse genetics systems for the paramyxovirus

family has provided the possibility that RSV antigens can be expressed in the

context of a number of different paramyxoviruses, including Sendai virus, New-

castle disease virus (NDV), and human parainfluenza viruses (HPIV) 1, 2, and 3

(reviewed in [95–97]). Sendai virus and NDV are murine and avian viruses,

respectively, and thus are naturally attenuated in humans due to host range restric-

tion. NDV is a strong inducer of IFN-b and may therefore provide better stimulation

of dendritic cell (DC) maturation and T-cell responses than RSV infection [98].

Both of these vector systems have been shown to be immunogenic and protective

against RSV challenge in animal model systems [98–102].

An additional consideration is the possibility of combining vaccines against

multiple pediatric viral pathogens into a single recombinant virus. Infection of

children by HPIV1 and HPIV2 generally occurs later in life (approximately 6

months of age), so immunization would occur in older infants. Thus, an HPIV1-

or HPIV2-vectored RSV vaccine may be useful as a booster to prevent secondary

disease or as a vaccine in the elderly. In addition, attenuated HPIV1 and HPIV2 are

being developed for use as vaccine candidates [103–109].

Because HPIV3 is also an important cause of pediatric respiratory tract disease,

significant effort has been put into developing a live attenuated HPIV3 vaccine that

could also be used as a vector for an RSV vaccine (Table 1). One candidate vaccine

utilizes the bovine PIV3 (BPIV3) backbone, which has been shown to be safe and

immunogenic in infants [110, 111]. In order to generate a bivalent HPIV3/RSV

vaccine, the BPIV3 F and HN genes were replaced by their HPIV3 counterparts and

RSV F was inserted into the B/HPIV3 chimera; thus, the resulting virus expresses

both RSV and HPIV3 surface antigens. Recombinant B/HPIV3-RSV-F was slightly

more attenuated than the parent virus, but remained immunogenic and was protec-

tive against both RSV and HPIV3 in animal model systems [112–115]. This vaccine

candidate (MEDI-534) has recently been tested in clinical trials. Although the

vaccine was attenuated and safe, it was minimally immunogenic in both adults

and children, indicating that further modification may be required [116, 117].

However, the major advantage of this approach is that the viral vector is also a

vaccine, thus providing protection against multiple pathogens. Because the RSV F

protein is likely not incorporated into its viral envelope, RSV-specific antibodies

were ineffective at neutralizing the chimeric virus [112], suggesting it could be also

used as to boost anti-RSV immune responses.
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6 Future Directions

There remain a number of challenges to the development of an efficacious RSV

vaccine. First, it will be important to develop additional animal models for RSV

challenge that more faithfully represent the target populations of infants and the

elderly. Although nonhuman primate models have yielded important information

on both vaccine safety and immunogenicity, these models also have not recapi-

tulated some aspects of the replication of vaccine candidates in humans. For

example, DNS2 was immunogenic in chimpanzees but not in seropositive chil-

dren [75, 79]. In addition, the partial reversion of the ts phenotype seen with the

248/404/1030 mutations in infants was not detected in animal experiments [49,

52, 70, 118]. Defining the correlates of protection and attenuation in animal

models will aid in the selection of vaccine candidates for clinical trials. In

addition, a model that recapitulates stimulation of the immature immune system

in the presence of maternal antibodies will be important for the development of a

pediatric RSV vaccine.

Perhaps the most important challenge in the development of an effective RSV

vaccine has been achieving the proper balance between immunogenicity and

attenuation. The rA2cpts248/404/1030DSH vaccine candidate, which was appro-

priately attenuated in infants, was only mildly immunogenic [52]. It is possible to

enhance immunogenicity of vaccines by increasing the dose or boosting with

multiple inoculations. However, the target population of a pediatric RSV vaccine

would be infants who are entering their first RSV season, thus shortening the

window in which immunization would be effective. Therefore, a better understand-

ing of the induction of immune responses in the target populations for RSV

vaccines will be essential. Identifying signals (e.g., TLR agonists, cytokines) that

can induce DC maturation and/or activate other antigen-presenting cell populations

stimulate Th1 responses that can augment the immunogenicity of an RSV vaccine.

For example, studies in mice suggest that deletion of NS1 results in a virus that has

enhanced capacity to induce DC maturation, likely due to increased production of

IFN-b [119]. In addition, NS1 appears to play a role in viral replication beyond IFN

antagonism, indicating that deletion of this gene might be both attenuating and

immunomodulatory [31].

An alternative method to enhancing immune responses that has been explored is

the expression of cytokine genes as an additional transcription unit in rRSV

[120–122]. Stable expression of additional gene products in the rRSV genome

has been shown for a variety of genes [123]. rRSV encoding GM-CSF as an

additional gene shows reduced replication in the respiratory tracts of mice with a

concomitant increase in the number of pulmonary DCs and in the expression of

IFN-g and IL-12 [121]. By contrast, insertion of genes for the cytokines IL-4

and IFN-g into rRSV results in viruses that caused increased pathogenesis after

immunization and/or challenge [120]. Skewing of the T helper response can have

adverse effects on secondary exposure and even to unrelated viruses [124]. Thus,

significant care must be taken in identifying specific immunomodulators that will
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increase the immunogenicity of an RSV vaccine candidate without causing

enhanced disease.

One potential mechanism of improving B-cell responses to RSV is increasing

the expression of the RSV F and G proteins, which serve as the major protection

antigens [18]. Because of the linear nature of the RSV genome, the promoter-

proximal genes are expressed to a greater extent than the promoter-distal genes

[18]. Rearrangement of the gene order in the related vesicular stomatitis virus

(VSV) has been shown to result in genome site-specific levels of expression for

the viral genes [125]. These rearranged viruses displayed an attenuated phenotype

both in vitro and in vivo and were able to vaccinate pigs against subsequent VSV

infection [126, 127]. For RSV, rearrangement of the gene order in a recombinant

virus, such that the F and/or G genes are the promoter-proximal, resulted in an

approximately twofold increase in protein expression [128]. Unlike VSV, these

viruses replicated slightly better than wt virus in culture and similarly to wt in the

respiratory tracts of mice [128]. Thus, gene rearrangement alone in the context of

RSV is not attenuating. In addition, shifting F to a promoter-proximal position

resulted in an increase in anti-F serum antibody responses in mice, suggesting that

increased F expression may be desirable in a vaccine candidate [128]. Expression

of F and G might be further increased by optimizing the codon usage of these

genes for translation [129]. Combining these relatively small increases in antigen

expression might allow for an additive effect for vaccination. Studies with anti-

RSV F antibody prophylaxis show significant increases in efficacy with even

minor increases in antibody titer [130, 131]. Thus, increasing the amount of

antigen available for presentation to the immune system may allow for a more

robust anti-RSV response.

RSV G is unique among paramyxovirus attachment proteins in that it is

produced in both a membrane-bound and a secreted form. Secreted G (sG) is

produced from the G mRNA by alternative initiation from a downstream AUG

[132, 133]. Ablation of this translation initiation codon in rRSV results in RSV

that produces only membrane-bound G [134]. Studies have shown that the sG

can act both as an antigenic decoy in vitro and as an immunomodulatory factor

in mice [135]. Importantly, sG appeared to affect restriction of RSV replication

in vivo by both anti-G and anti-F antibodies through a mechanism involving

FcgR-bearing immune cells [135]. Thus, a vaccine candidate that does not

express sG may have increased immunogenicity and may be more efficiently

controlled by the immunity induced. In addition, sG showed proinflammatory

functions in the lungs of mice, likely via its CX3C (fractalkine) motif [135].

Because pulmonary inflammation is associated with increased pathogenicity of

RSV, removal of this factor may result in decreased reactogenicity. However,

sG may be necessary for vaccine take in infants in the presence of maternal

antibody. Further studies will clarify these disparate effects of sG on RSV

pathogenesis and immunity. An alternative to ablating the expression of sG

might be removal of the CX3C motif from G; studies have shown that mutagen-

esis or deletion of this sequence does not affect viral replication in vitro or in

mice [136].
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One important characteristic of vaccine candidates is genotypic and phenotypic

stability. Genomic stability is important during the scaling up of production for

the vaccine viruses, which undergo multiple rounds of replication and thus have a

greater chance for mutation. In addition, phenotypic stability is essential during

vaccination, during which reversion to virulence can cause increased pathogenicity

and shedding. In this case, the attenuated phenotype is more important than specific

genotype provided that immunity to the major protective antigens is achieved.

Deletion of nonessential viral genes should provide the most stable attenuating

mutations because genetic recombination of RSV is extremely rare and has only

been observed in the laboratory under optimal conditions [137]. In addition to the

NS2 and SH deletion viruses, RSVs lacking NS1 or M2-2 (Fig. 2c) are significantly

attenuated and protective in animal models and are potentially good vaccine

candidates [31, 74, 76, 78].

All of the ts mutations identified in the RSV vaccine candidates that have

undergone clinical trials are point mutants. ts248, ts530, ts1009, and ts1030 are

all missense mutations within the viral polymerase (or L protein), and ts404 is a

point mutation in the M2 gene start sequence [65, 66, 70]. Characterization of virus

shed from vaccinees has shown that these point mutations can readily revert,

resulting in less ts RSV, in some cases despite the “stabilization” of these mutations

in rRSV by changing two residues of the specific codon encoding the tsmutant. For

example, analysis of nasal wash specimens from seronegative infants vaccinated

with rA2cpts248/404/1030DSH showed that approximately one-third of the sam-

ples had lost a measure of their ts phenotype, displaying a 1–3�C increase in

permissive temperature [52]. Sequencing of these clinical specimens identified

reversion mutations at either the ts248 or the ts1030 mutation [52]. Although

these partial revertants retained four of the five attenuating mutations and a measure

of attenuation, these results demonstrate the difficulty of using point mutations to

attenuate RNA viruses, which encode an error-prone viral polymerase. To counter-

act this problem, there are a number of possibilities to generate genotypically and

phenotypically stable ts RSV vaccine candidates.

It is possible to generate phenotypically stable attenuated RSV viruses by

introducing several ts point mutations in a variety of places in the RSV genome.

The difficulty with this approach is that some combinations of mutations might

increase the attenuation of the vaccine virus beyond the level required for inducing

protective immunity. In addition, some ts mutations are not compatible with each

other, resulting in a nonviable virus [70]. Thus, the spectrum of mutations that can

be combined would have to be empirically defined. The benefit to this strategy

is that reversion at any one site should be compensated by the presence of

the additional attenuating mutations. However, as seen with rA2cpts248/404/

1030DSH, particular mutations have a more prominent effect on attenuation of

the vaccine virus and reversion at these sites may result in a significant loss in

attenuation.

One method of preventing reversion is to “stabilize” existing ts mutations by

altering the codon usage to require two mutation events in order for the mutant to

revert to the wt phenotype. Theoretically, the viral polymerase would not be likely
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to introduce two mutations at the same site. Recently, Luongo et al. have con-

structed rRSV that have mutations at position 831 of L (ts248) encoding every

possible amino acid residue. Although most mutants could be recovered, only two

mutants were found to confer temperature sensitivity (831I and 831F) to the rRSV

in addition to the 831L mutation [138]. Furthermore, neither 831I nor 831F was as

attenuated as 831L in the respiratory tracts of mice, suggesting that 831L has an

attenuating function beyond temperature sensitivity. Interestingly, using the differ-

ent codons for Leu resulted in different frequencies of reversion (to wt genotype) or

pseudoreversion (to wt phenotype) [138]. These data suggest that careful selection

of mutant codons may offer a strategy for increasing genotypic stability of attenu-

ating point mutations. However, the genetic code precludes certain mutations from

being “stabilized” by this method, as not all mutations can be made with two

nucleotide differences from the wt assignment.

A novel potential mechanism of providing genotypic stability for point muta-

tions is increasing the fidelity of the viral polymerase. Recent studies with poliovi-

rus (PV) have shown that mutations that alter replication fidelity and/or replication

speed of the PV RdRp produce attenuated viruses that protect mice transgenic

for the PV receptor from a lethal challenge with wt PV [139–141]. Furthermore,

mutation of a single amino acid residue that is conserved in all viral RdRps appears

to control both replication speed and replication fidelity. This amino acid residue is

a lysine that is present in conserved structural motif D of the RdRp [142, 143]. In

the PV model, changes to this residue produce slow, high-fidelity RdRps [143].

Biochemical analysis shows that mutation of the homologous lysine in HIV RT and

T7 RNA polymerase results in similar effects on polymerase speed and fidelity

[143]. Thus, application of this technology to RSV could allow the identification of

an additional attenuating mutation and could prevent or delay the emergence of

more virulent variants of the vaccine candidates. Combinations of L mutations that

increase polymerase fidelity and known attenuating mutations could allow for even

finer tuning of vaccine efficacy and prevent outgrowth of more virulent viruses,

which could then be spread to naive individuals.

7 Summary

Much progress has been made recently toward the development of an effective, live

attenuated RSV vaccine; however, a number of hurdles remain. Most importantly,

achieving the proper balance of attenuation and immunogenicity has been difficult

because of the lack of animal models and immune correlates to investigate induc-

tion of immune responses in infants, a target population for RSV vaccines. Future

studies into the molecular biology of the virus may lead to novel ways to address

current difficulties in RSV vaccine development.
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