
Chapter VII Reedy model categories

This chapter contains an exposition of the Bousfield-Kan model structure on the
category cS of cosimplicial objects in simplicial sets, also known as cosimplicial
spaces. It appears here as the dual of a Reedy model category structure on the
category of simplicial objects sC in a suitable closed model category C. Another
standard example of a Reedy structure on a simplicial object category is the
Reedy structure on the category of bisimplicial sets, or simplicial objects in
simplicial sets — see Section IV.3.

Much of the chapter concerns the general Reedy theory. We preface this
development in Section 1 with a discussion of skeleta in a very general context.
The main results are Proposition 1.9 and Corollary 1.14; they discuss to what
extent a simplicial object in a category C with enough colimits can be built by
“attaching cells”. One application is a characterization of cofibrations in the
kind of model category considered in Section II.4. See Example 1.15.

In general, if a category C is a closed model category, then the Reedy
structure of the category sC of simplicial objects in C has as weak equivalences
those morphisms X → Y in sC for which each Xn → Yn is a weak equivalence
for all n ≥ 0. One of the main auxiliary results is that there is a geometric
realization functor

| · | : sC −→ C
which preserves weak equivalences between Reedy cofibrant objects — see
Proposition 3.6. The Reedy model category structure is discussed in detail
in Section 2, and the geometric realization functor is the subject of Section 3.

This theory is specialized in Section 4 to the case of cosimplicial spaces
cS; that is, to the case of the opposite category to the category of simplicial
objects in Sop. The resulting model category structure on cS is the standard
one discussed by Bousfield and Kan. In particular, we show in Proposition
4.18 that the cofibrations A → B defined by the Reedy structure are exactly
those maps which are monomorphisms in all levels and induce isomorphisms
H0A ∼= H0B on maximal augmentations.

The material in Section 4, along with that appearing in Section VI.2, is the
basis for the construction of the homotopy spectral sequence for a cosimplicial
space which is given in Chapter VIII.

1. Decomposition of simplicial objects.

Let C be a category with all limits and colimits. The purpose of this section is
to analyze how simplicial objects are constructed out of smaller components.
We will use this inductive argument in later sections.

We begin with skeleta. The category sC is the functor category CΔΔΔop

. Let
in : ΔΔΔn ⊆ ΔΔΔ be the inclusion of the full subcategory with objects k, k ≤ n, and
let snC = CΔΔΔop

n . There is a restriction function in∗ : sC → snC which simply
forgets the k-simplices, k > n. This restriction functor has a left adjoint given
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354 VII. Reedy model categories

by
(i∗nX)m = lim−→

m→k

Xk = lim−→
m↓ΔΔΔn

Xk (1.1)

and the colimit is over morphisms m → k in ΔΔΔ with k ≤ n. This is an example
of a left Kan extension. Every morphism m → k in ΔΔΔ can be factored uniquely
as

m
φ−→ k′ ψ−→ k

where φ is a surjection and ψ is one-to-one, so the surjections m → k, k ≤ n,
can be used to define the colimit of (1.1) and we get

(i∗nX)m
∼= lim−→

m↓ΔΔΔ+
n

Xk (1.2)

where ΔΔΔ+ ⊆ ΔΔΔ is the subcategory with the same objects but only surjections
as morphisms, and ΔΔΔ+

n = ΔΔΔn ∩ΔΔΔ+.
If X ∈ sC we define the nth skeleton of X by the formula

skn X = i∗nin∗X. (1.3)

There are natural maps skm X → skn X, m ≤ n, and skn X → X. The mor-
phism 1m is an initial object in the category m ↓ Δn if m ≤ n, so there is an
isomorphism (skn X)m

∼= Xm in that range. It follows that there is a natural
isomorphism

lim−→
n

skn X
∼=−→ X.

Here is an example. Because C has limits and colimits, sC has a canonical
structure as a simplicial category. (See Section II.2). In particular if X ∈ sC
and K ∈ S, then

(X ⊗ K)n =
⊔
Kn

Xn.

It is now a straightforward exercise to prove

Proposition 1.4. If X ∈ sC is constant and K ∈ S, then there are natural
isomorphisms

skn X ∼= X and X ⊗ skn K ∼= skn(X ⊗ K).

To explain how skn X is built from skn−1 X we define the nth latching
object LnX of X by the formula

LnX = (skn−1 X)n (1.5)
∼= lim−→

n↓ΔΔΔ+
n−1

Xk.
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If Z ∈ C, we may regard Z as a constant object in sC and there is an adjoint
isomorphism

homC(Z,Xn) ∼= homsC(Z ⊗ Δn,X)

for all n ≥ 0. This immediately supplies maps in sC
LnX ⊗ Δn → skn−1 X

and
Xn ⊗ Δn → skn X.

Furthermore, by Proposition 1.4, skn−1(Xn⊗Δn) = Xn⊗skn−1 Δn = Xn⊗∂Δn

and we obtain a diagram

LnX ⊗ ∂Δn
w

u

LnX ⊗ Δn

u

Xn ⊗ ∂Δn
w skn−1 X.

(1.6)

Proposition 1.7. For all X ∈ sC there is a natural pushout diagram, n ≥ 0,

Xn ⊗ ∂Δn ∪LnX⊗∂Δn LnX ⊗ Δn
w

u

skn−1 X

u

Xn ⊗ Δn
w skn X

Proof: In light of Proposition 1.4, if we apply i∗nin∗ = skn(·) to this diagram
we obtain an isomorphic diagram. Since i∗n : snC → sC is a left adjoint, we need
only show this is a pushout diagram in degrees less than or equal to n.

In degrees m < n, the map (LnX ⊗ ∂Δn)m → (LnX ⊗ Δn)m is an
isomorphism, so

(Xn ⊗ ∂Δn ∪LnX⊗∂Δn LnX ⊗ Δn)m → (Xn ⊗ Δm)m

is an isomorphism, and the assertion is that (skn−1 X)m
∼= (skn X)m, which is

true since both are isomorphic to Xm.
In degree n, the left vertical map is isomorphic to

(
⊔

(∂Δn)n

Xn) � LnX → (
⊔

(∂Δn)n

Xn) � Xn

and the right vertical map is isomorphic to the natural map LnX → Xn, by
definition of LnX. This is enough to show that the diagram is a pushout in
degree n. �
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Remark 1.8. There is another, more explicit, description of the latching ob-
jects LnX, which can be summarized as follows:

(1) By convention, L0X = ∅, where ∅ denotes the initial object of the cate-
gory C.

(2) There is an isomorphism L1X ∼= X0, and the canonical map L1X → X1

can be identified with the degeneracy map s0 : X0 → X1.
(3) For n > 1, the object LnX is defined by the coequalizer⊔

0≤i<j≤n−1

Xn−2 ⇒
n−1⊔
i=0

Xn−1 → LnX

where for i < j the restrictions of the two displayed maps to Xn−2 are
given by the composites

Xn−2

si−→ Xn−1

inj−−→
n−1⊔
i=0

Xn−1

and

Xn−2

sj−1−−−→ Xn−1

ini−−→
n−1⊔
i=0

Xn−1

(this definition corresponds to the simplicial identity sjsi = sisj−1).
The canonical map s : LnX → Xn is induced by the degeneracies si :
Xn−1 → Xn.

Claims (2) and (3) follow from the description of LnX = skn−1 Xn given in
(1.2) — this is an exercise for the reader.

Morphisms also have skeletal filtrations. If f : A → X is a morphism
in sC, define skA

n X by setting skA
−1 = A and, for n ≥ 0, defining skA

n by the
pushout diagram

skn A w

u

skn f

A

u

skn X w skA
n X.

The analog of Proposition 1.7 is the next result, which is proved in an identical
manner. Let Ln(f) = (skA

n−1 X)n = An ∪LnA LnX.

Proposition 1.9. For all morphisms A → X in sC there is a pushout diagram

Xn ⊗ ∂Δn ∪Ln(f)⊗∂Δn Ln(f) ⊗ Δn
w

u

skA
n−1 X

u

Xn ⊗ Δn
w skA

n X.

�
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There is a situation under which the pushout diagrams of Proposition 1.7
and 1.9 simplify considerably. This we now explain.

If I is a small category, let Iδ be the discrete category with the same
objects as I, but no non-identity morphism. The left adjoint r∗ to the restriction
functor r∗ : CI → CIδ

has a very simple form

(r∗Z)j =
⊔
i→j

Zi.

We call such a diagram I-free. More generally, a morphism f : A → X in CI

is I-free if there is an I-free object X ′ ∈ CI and an isomorphism under A of f
with the inclusion of the summand A → A � X ′. This implies that there is an
object {Zi} ∈ CIδ

so that

Xj
∼= Aj � (

⊔
i→j

Zi).

Notice an object X is I-free if and only if the morphism φ → X from the initial
object is I-free.

Definition 1.10. An object X ∈ sC is degeneracy free if the underlying de-
generacy diagram is free. That is, if ΔΔΔ+ ⊆ ΔΔΔ is the subcategory with same
objects but only surjective morphisms, then X regarded as an object in CΔΔΔop

+

is ΔΔΔop
+ -free. A morphism A → X is degeneracy free if, when regarded as a

morphism in CΔΔΔop
+ , is ΔΔΔop

+ free.

If X is degeneracy free, then there is a sequence {Zn}n≥0 of objects in C
so that

Xn
∼=

⊔
φ:n→m

Zm

where φ runs over the epimorphisms in ΔΔΔ. A degeneracy free map A → X
yields a similar decomposition:

Xn
∼= An �

⊔
φ:n→m

Zm. (1.11)

We say A → X is degeneracy free on {Zm}.
The following result says that degeneracy free maps are closed under a

variety of operations.

Lemma 1.12.

1) Let fα : Aα → Xα be a set of maps so that fα is degeneracy free on {Zn}.
Then

⊔
α fα is free on {⊔α Zα

n}.
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2) Suppose f : A → X is degeneracy free on {Zn} and

A w

u

f

B

u

g

X w Y

is a pushout diagram. Then g is degeneracy free on {Zn}.
3) Let A0 → A1 → A2 → · · · be a sequence of morphisms so that Aj−1 → Aj

is degeneracy free on {Zj
n}. Then A0 → lim−→ Aj is degeneracy free on {⊔j Zj

n}.
4) Let F : C → D be a functor that preserves coproducts. If f : A → X in sC
is degeneracy free on {Zn}, then Ff : FA → FX is degeneracy free on {FZn}.
Lemma 1.13. A morphism f : A → X is degeneracy free if and only if there
are objects Zn and maps Zn → Xn so that the induced map

(An ∪LnA LnX) � Zn → Xn

is an isomorphism.

Proof: If f is degeneracy free on {Zn}, the decomposition follows from the
formulas (1.5) and (1.11). To prove the converse, fix the given isomorphisms.
Then Proposition 1.9 implies there is a pushout diagram

Zn ⊗ ∂Δn
w

u

skA
n−1 X

u

Zn ⊗ Δn
w skA

n X

in CΔΔΔop
+ .
However, the morphism of simplicial sets ∂Δn → Δn is degeneracy free

on the canonical n-simplex in Δn
n; hence, skA

n−1 X → skA
n X is degeneracy free

on Zn in degree n. The result now follows from Lemma 1.12.3; indeed A → X
is degeneracy free on {Zn}. �

Here is a consequence of the proof of Lemma 1.13:

Corollary 1.14. Suppose A → X is degeneracy-free on {Zn} in sC. Then
for all n ≥ 0 there is a pushout diagram,

Zn ⊗ ∂Δn
w

u

skA
n−1 X

u

Zn ⊗ Δn
w skA

n X.

Notice that one can interpret this result as saying skA
n X is obtained from

skA
n−1 X by attaching n-cells.
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Example 1.15. Lemmas 1.12 and 1.13 provide any number of examples of
degeneracy free morphisms. For example, a cofibration in simplicial sets is
degeneracy free, by Lemma 1.13. Also, consider a category C equipped with a
functor G : C → Sets with a left adjoint F and satisfying the hypotheses of
Theorem II.4.1. Define a morphism f : A → X in sC to be free (this terminology
is from Quillen) if there is a sequence of sets {Zn} so that f is degeneracy free
on {FZn}. Then a morphism in sC is a cofibration if and only if it is a retract of
a free map. To see this, note that the small object argument of Lemma II.4.2,
coupled with Lemma 1.12 factors any morphism A → B as

A
j−→ X

q−→ Y

where j is a free map and a cofibration and q is a trivial fibration. Thus any
cofibration is a retract of a free map. Conversely, Corollary 1.14 and Proposi-
tion II.3.4 imply any free map is a cofibration. Similar remarks apply to the
model categories supplied in Theorems II.5.8 and II.6.8. In the latter case one
must generalize Lemma 1.12.3 to longer colimits.

The notion of coskeleta is dual to the notion of skeleta. The theory is
analogous, and we give only an outline.

The restriction functor in∗ : sC → snC has right adjoint i!n with

(i!nX)m = lim←−
k→m

Xk,

with the limit over all morphism k → m in ΔΔΔ with k ≤ n. Equally, one can take
the limit over morphisms k → m which are injections. The composite gives the
nth coskeleton functor:

coskn X = i!nin∗X. (1.16)

More generally, if f : X → B is a morphism in sC, let coskB
−1 X = B and let

coskB
n X be defined by the pullback

coskB
n X w

u

coskn X

u

B w coskn B.

(1.17)

Then there are maps coskB
n X → coskB

n−1 X and

X ∼= lim←−
n

coskB
n X.

Note that if B = ∗, the terminal object, then coskB
n X = coskn X.

For X ∈ sC, define the nth matching object MnX by the formula

MnX = (coskn−1 X)n = lim←−
k→n

Xk (1.18)

where k → n runs over all morphisms (or all monomorphisms) in ΔΔΔ with k < n.
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Remark 1.19. The matching object MnX has a more explicit description:

(1) By convention, M0X = ∗, where ∗ denotes the terminal object of the
category C.

(2) There is an isomorphism M1X ∼= X0×X0, and the canonical map X1 →
M1X can be identified with the product d = (d0, d1) : X1 → X0 × X0

of the face maps d0, d1 : X1 → X0.
(3) For n > 1, the matching object MnX is defined by an equalizer diagram

MnX →
n∏

i=0

Xn−1 ⇒
∏

0≤i<j≤n

Xn−2.

Here, the parallel arrows are determined by the simplicial identities
didj = dj−1di for i < j; more explicitly, the images of these maps on
the factor corresponding to i < j are the maps

n∏
i=0

Xn−1

prj−−→ Xn−1

di−→ Xn−2

and
n∏

i=0

Xn−1

pri−−→ Xn−1

dj−1−−−→ Xn−2.

The canonical map d : Xn → MnX is induced by the face maps di :
Xn → Xn−1.

Claims (2) and (3) follow from the description of (i!n−1X)n = MnX as an
inverse limit indexed over ordinal number monomorphisms. This is an exercise
for the reader.

To fit the map coskB
n X → coskB

n−1 X into a pullback diagram, we make
some definitions. Let ρn : sC → C be the functor ρnX = Xn. This is a restriction
functor between diagram categories and has a right adjoint ρ!

n. The functor
Ln : sC → C assigning each simplicial object the latching object LnX also has
a right adjoint, which we will call μ!

n. To see this, see Lemma 1.25 below, or
note that we may write

LnX = (skn−1 X)n = ρni∗n−1i(n−1)∗X

where i(n−1)∗ : sC → sn−1C is the restriction functor. Hence

μ!
nZ = i!n−1i(n−1)∗ρ!

nZ = coskn−1(ρ!
nZ).

The natural map s : LnX → X gives a natural transformation ρ!
n → μ!

n. The
reader is invited to prove the following result.
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Proposition 1.20. Let f : X → B be a morphism in sC. Then for all n ≥ 0
there is a pullback diagram

coskB
n X w

u

ρ!
nXn

u

coskB
n−1 X w ρ!

nMn(f) ×μ!
nMn(f) μ!

nXn

where Mn(f) = Bn ×MnB MnX.

We have never encountered the analog of degeneracy-free morphisms, and
don’t include an exposition here.

The latching and matching object functors Ln and Mn are examples of a
much more general sort of functor, which we now introduce and analyze. We
begin with generalized matching objects.

Proposition 1.21. Let K ∈ S be a simplicial set. Then the functor

−⊗ K : C → sC
has right adjoint MK . For fixed X ∈ sC, the assignment K �→ MKX induces a
functor Sop → C which has a left adjoint.

Proof: For objects Z of C and all n ≥ 0, there are isomorphisms

homsC(Z ⊗ Δn,X) ∼= homC(Z,Xn).

It follows that there are isomorphisms

homsC(Z ⊗ K,X) ∼= lim←−
Δn→K

homsC(Z ⊗ Δn,X)

∼= lim←−
Δn→K

homC(Z,Xn)

∼= homC(Z, lim←−
Δn→K

Xn)

= homC(Z,MKX).

Furthermore,

homC(Z,MKX) ∼= homsC(Z ⊗ K,X) ∼= homS(K,HomsC(Z,X)). �
Notice the explicit description of MKX that arose in the proof of Propo-

sition 1.21:
MKX ∼= lim←−

(Δ↓K)op

X (1.22)

is the limit of a contravariant functor on the simplex category Δ ↓ K which
sends an object Δn → K of Δ ↓ K to the object Xn of C. In particular, there
is an isomorphism

MΔnX ∼= Xn,

since the category Δ ↓ Δn has an initial object.
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Example 1.23. Let φ : Δk → Δn be any morphism in S. Then φ factors
uniquely as a composition

Δk
φ′

−→ Δm
ψ−→ Δn

where φ′ is a surjection and ψ is an injection. Thus if K ⊆ Δn is any sub-
complex, the full subcategory Δ ↓ K0 ⊆ Δ ↓ K with objects

σ : Δm → K

with σ an injection determines colimits on the larger category. Equivalently,
restriction to Δ ↓ Kop

0 determines inverse limits for Δ ↓ Kop; it follows that
there is an isomorphism

MKX ∼= lim←−
Δ↓Kop

0

X.

In particular M∂ΔnX ∼= lim←−φ:k→n
Xk where φ ∈ ΔΔΔ is an injection and k < n.

Thus M∂ΔnX ∼= MnX. Note that the inclusion map ∂Δn → Δn induces the
projection

Xn → MnX.

To generalize the latching objects we use the formulation of matching
objects presented in (1.22). Let J be a small category and F : J → ΔΔΔop. For
X ∈ sC = CΔΔΔop

, define the generalized latching object to be

LJX = lim−→
J

(X ◦ F ) (1.24)

= lim−→
j

XF (j).

We are primarily interested in sub-categories J of ΔΔΔop. We write X
∣∣
J

for X ◦F .

Lemma 1.25. For fixed F : J → ΔΔΔop, the functor LJ : sC → C has a right
adjoint and, hence, preserves colimits.

Proof: For homC(LJX,Z) ∼= homCJ (X ◦F,Z) where Z is regarded as a con-
stant diagram. But

homCJ (X
∣∣
J
, Z) = homsC(X,F !Z)

where F ! is the right Kan extension functor. �
An example of a generalized latching object is the following. Let On be

the category with objects the morphisms φ : n → m with φ surjective and
m < n. The morphisms in On are commutative triangles in ΔΔΔ under n. Define
F : Oop

n → ΔΔΔop by F (φ : n → m) = m. Then there is a natural isomorphism

LnX ∼= LOop
n

X.
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In the next section we will need a decomposition of LnX. To accomplish
this define sub-categories Mn,k ⊆ On, 0 ≤ k ≤ n, to be the full sub-category
of surjections φ : n → m, m < n, with φ(k) < k. Define, for X ∈ sC

Ln,kX = LMop
n,k

X.

Then Ln,0X = φ is the initial object in C (since Mn,0 is empty) and Ln,nX =
LnX, since Mn,n = On.

Also define M(k) ⊆ On to be the full subcategory of surjections φ : n →
m, m < n, with φ(k) = φ(k + 1). Notice that sk : n → n − 1 is the initial
object of M(k). Hence for X ∈ sC

LM(k)opX ∼= Xn−1.

The reader can verify the following statements about these subcategories.

Lemma 1.26.

1) Mn,k and M(k) are subcategories of Mn,k+1, and every object in Mn,k+1

is in Mn,k or M(k) (or both).

2) There is an isomorphism of categories

− ◦ sk : Mn−1,k → M(k) ∩Mn,k

sending φ to φ ◦ sk.

3) If φ is an object of Mn,k (or M(k)) and φ → ψ is a morphism in Mn,k+1,
then φ → ψ is a morphism in Mn,k (or M(k)).

The following example, illustrating the case n = 3, k = 2, might be
helpful.

In the following diagram the symbol 012 near a dot (•) indicates the object
s0s1s2 in the appropriate category. The unlabeled arrows indicated composition
with si for some i; for example 0 • → • 02 means s0 �→ s1s0 = s0s2.

0 1
•

u

•
�
�
��•

01

M2,2 = O2

0 1
•�
�
�
��u

•
�
��

���

�
�
�
��

01 •�
�
�
��

• 02

u

• 12
N
N
N
NQ•

012

M3,2
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2
•

u

h
h
hk

02 •

u

• 12
�
�
��•

012

M(2)

0 1 2
•

u

�
�
���

•
h
h

hhk

�
�
���

•

u

�
��

hhk01 •A
A
A
AC

• 02

u

• 12
�
�
�
��•

012

M3,3 = O3

Proposition 1.27. Let X ∈ sC. Then there is a pushout diagram in C

Ln−1,kX w

u

Xn−1

u

Ln,kX w Ln,k+1X.

Proof: Lemma 1.26 implies that

Mn−1,kX w

u

M(k)

u

Mn,kX wMn,k+1

is a pushout in the category of small categories. The same is then true of the
opposite categories. The result follows. �

2. Reedy model category structures.

Let C be a closed model category. Using the considerations of the previous
section, this structure can be promoted to a closed model category structure on
the category sC of simplicial objects in C that is particularly useful for dealing
with geometric realization. The results of this section are a recapitulation of
the highly influential, but unpublished paper of C.L. Reedy [81].

In the following definition, let L0X and M0X denote the initial and final
object of C respectively.
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Definition 2.1. A morphism f : X → Y in sC is a

1) Reedy weak equivalence if f : Xn → Yn is a weak equivalence for all
n ≥ 0;

2) a Reedy fibration if

Xn → Yn ×MnY MnX

is a fibration for all n ≥ 0;
3) a Reedy cofibration if

Xn ∪LnX LnY → Yn

is a cofibration for all n ≥ 0.

The main result is that this defines a model category structure on sC.
Before proving this we give the following lemma.

Lemma 2.2. A morphism f : X → Y in sC is a

1) Reedy trivial fibration if and only if

Xn → Yn ×MnY MnX

is a trivial fibration for n ≥ 0;

2) a Reedy trivial cofibration if and only if

Xn ∪LnX LnY → Yn

is a trivial cofibration for all n ≥ 0.

Proof: Let Δn,k = d0Δn−1 ∪ · · · ∪ dkΔn−1 ⊆ ∂Δn, −1 ≤ k ≤ n. Then
Δn,−1 = φ and Δn,n = ∂Δn. There are pushout diagrams −1 ≤ k ≤ n − 1

Δn−1,k
w

u

Δn−1

u

Δn,k
w Δn,k+1.

Taking matching objects yields a natural pullback square

Mn,k+1X w

u

Xn−1

u

Mn,kX w Mn−1,kX
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where we have written Mn,kX for MΔn,kX. It follows that there is a pullback
square

Yn ×Mn,k+1Y Mn,k+1X w

u

Xn−1

u

Yn ×Mn,kY Mn,kX w Yn−1 ×Mn−1,kY Mn−1,kX.

(2.3)

Assume f : X → Y is a Reedy fibration. Then X0 → Y0 is a fibration and
this begins an induction where the induction hypothesis is that

Xn−1 → Yn−1 ×Mn−1,kY Mn−1,kX (2.4)

is a fibration. To complete the inductive step, one uses (2.3) to show

Yn ×Mn,k+1Y Mn,k+1X → Yn ×Mn,kY Mn,kX (2.5)

is a fibration for all k, −1 ≤ k ≤ n − 1. Since composites of fibrations are
fibrations and Xn → Yn ×MnY MnX is a fibration, we close the loop.

Now suppose f : X → Y is a Reedy trivial fibration. Then, inductively,
each of the maps of (2.4) is a trivial fibration. For the inductive step, use (2.3)
to show each of the maps (2.5) is a trivial fibration. Then the axiom CM2 and
the fact that Xn → Yn a trivial fibration finishes the argument. In particular
Xn → Yn ×MnY MnX is a trivial fibration for all n.

Conversely, suppose Xn → Xn×MnY MnX is a trivial fibration. Then one
runs a similar argument to conclude Xn → Yn is a trivial fibration.

The argument for part 2) is similar, using the pushout diagram

Ln−1,kX w

u

Xn−1

u

Ln,kX w Ln,k+1X

of Proposition 1.27. �
As a corollary of the proof of Lemma 2.2 we have the following:

Corollary 2.6.

(1) Every Reedy fibration p : X → Y of sC is a level fibration in the sense
that all component maps p : Xn → Yn are fibrations of C.

(2) Every Reedy cofibration i : A → B of sC is a level cofibration in the
sense that all component maps i : An → Bn are cofibrations of C.
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We break the proof of the verification of the Reedy model category struc-
ture into several steps.

Lemma 2.7. The Reedy structure on sC satisfies the lifting axiom CM4.

Proof: Suppose we are given a lifting problem in sC

A w

u

j

X

u

q

B w Y

where j is cofibration, q is a fibration and either j or q is a weak equivalence.
We inductively solve the lifting problems

skA
n−1 B w

u

X

u

skA
n B w Y

for n ≥ 0. Because of the pushout diagram of Proposition 1.9 it is sufficient to
solve the lifting problems, with Ln(j) = An ∪LnA LnB

Ln(j) ⊗ Δn ∪Ln(j)⊗∂Δn Bn ⊗ ∂Δn
w

u

X

u

Bn ⊗ Δn
w Y.

By an adjunction argument this is equivalent to the lifting problem

An ∪LnA LnB w

u

Xn

u

Bn w Yn ×MnY MnX.

This is solvable by Lemma 2.2. �
For the proof of the factorization axiom we need to know how much data

we need to build a simplicial object.
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Lemma 2.8. Let X ∈ sC. Then skn X is determined up to natural isomorphism
by the following natural data: skn−1 X, Xn, and maps LnX → Xn → MnX so
that the composite LnX → MnX is the canonical map.

Proof: The given map Xn → MnX is adjoint to a map Xn⊗∂Δn → X which
factors uniquely through skn−1 X. The data listed thus yields the pushout
square

LnX ⊗ Δn ∪LnX⊗∂Δn Xn ⊗ ∂Δn
w

u

skn−1 X

u

Xn ⊗ Δn
w skn X

of Proposition 1.7. �
This can be restricted: let snC be the functor category CΔΔΔop

n and X ∈ snC.
Let r∗X ∈ sn−1C be the restriction and r∗ : sn−1C → snC the left Kan extension
functor. Hence (r∗r∗X)n = LnX.

Lemma 2.8 immediately implies

Lemma 2.9. Let X ∈ snC. Then X is determined up to natural isomorphism
by the following natural data: r∗X, Xn, and maps LnX → Xn → MnX so that
the composite LnX → MnX is the canonical map.

Proof: Let in∗ : sC → snC be the restriction and i∗n : snC → sC the left
adjoint. Then in∗i∗n ∼= 1 and i∗nin∗ = skn. Thus

i∗nX ∼= skn i∗nX

is determined up to natural isomorphism by skn−1 i∗nX ∼= i∗n−1r∗X, the object
Xn and maps Lni∗nX → Xn → Mni∗nX that compose to the canonical map
Lni∗nX → Mni∗nX. But LnX ∼= Lni∗nX and MnX ∼= Mni∗nX. �
Lemma 2.10. The Reedy structure on sC satisfies the factorization axiom
CM5.

Proof: Let us do the trivial cofibration-fibration factorization (compare the
proof of Lemma IV.3.6).

Let X → Y be a morphism in sC and let in∗X → in∗Y be the induced
morphism in snC. For each n ≥ 0 we construct a factorization

in∗X → Z(n) → in∗Y

in snC with the property that restricted to sn−1C we get the factorization
i(n−1)∗X → Z(n − 1) → i(n−1)∗Y .

For n = 0, simply factor X0 → Y0 as

X0

j−→ Z(0)
q−→ Y0
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where j is a trivial cofibration in C and q is a fibration in C. Suppose the factor-
ization in sn−1C has been constructed. Then there is a commutative diagram

LnX w

u

Xn w MnX

u

LnZ

u

MnZ

u

LnY w Yn w MnY

and hence a map
Xn ∪LnX LnZ → Yn ×MnY MnZ.

Factor this map as

Xn ∪LnX LnZ
j−→ Zn

q−→ Yn ×MnY MnZ (2.11)

where j is a trivial cofibration and q is a fibration. The morphisms j and q
yield diagrams

LnX w

u

Xn

u

w MnX

u

LnZ w

u

Zn

u

w MnZ

u

LnY w Yn w MnY

and so Lemma 2.9 produces a factorization

in∗X → Z(n) → in∗Y.

Finally, define Z ∈ sC by Zk = Z(n)k, k ≤ n. There is a factoring

X
j−→ Z

q−→ Y

and using (2.11) j is a trivial cofibration by Lemma 2.2 and q is a fibration by
definition.

The other factorization is similar. �
We now state

Theorem 2.12. With the definitions of Reedy weak equivalence, cofibration,
and fibration given in Definition 2.1, the category sC is a closed model category.
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Proof: The axioms CM1–CM3 are easy and Lemmas 2.7 and 2.10 prove
CM4 and CM5 respectively. �

Next suppose C is in fact a simplicial model category. For K ∈ S and
Y,Z ∈ C write Z�K, homC(K,Z), and HomC(Y,Z) for the tensor object, the
exponential object, and the mapping space. We use this notation to distinguish
the internal object Z�K from the construction Z⊗K defined by the simplicial
structure.

The category sC inherits a simplicial structure. If X ∈ sC and K ∈ S,
then X�K and homC(K,X) are defined level-wise

(X�K)n = Xn�K and homC(K,X)n = homC(K,Xn).

The mapping space is defined by the usual formula

HomsC(X,Y )n
∼= homsC(X�Δn, Y ).

We call this the internal structure on sC.

Corollary 2.13. With this internal simplicial structure on sC, the Reedy
model category structure is a simplicial model category.

Proof: We claim Mn(homC(K,Y )) ∼= homC(K,MnY ). For there is a se-
quence of natural isomorphisms, Z ∈ C,

homC(Z,Mn(homC(K,Y ))) ∼= homsC(Z ⊗ ∂Δn,homC(K,Y ))
∼= homsC((Z ⊗ ∂Δn)�K,Y )
∼= homsC((Z�K) ⊗ ∂Δn, Y )
∼= homsC(Z�K,MnY )
∼= homsC(Z,homC(K,MnY )).

The isomorphism (Z ⊗ ∂Δn)�K ∼= (Z�K) ⊗ ∂Δn follows by a level-wise cal-
culation. The result follows from the claim using Proposition II.3.13. �

One can ask if sC in the Reedy model category is a simplicial model
category in the standard simplicial structure obtained by Quillen’s method (as
in the previous section). The answer is no; for if Z ∈ C is cofibrant in C, then

1 ⊗ d0 : Z ⊗ Δ0 → Z ⊗ Δ1

is a Reedy cofibration, but not, in general, a Reedy weak equivalence (see
Remark IV.3.13).

As a corollary of the proof of Theorem 2.12 (more specifically Lemma
2.7), we have the following:
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Corollary 2.14. Suppose that j : A → B is a Reedy cofibration. Then all
maps

Ln(j) ⊗ Δn ∪Ln(j)⊗∂Δn Bn ⊗ ∂Δn → Bn ⊗ Δn

are Reedy cofibrations. In particular, if X is a Reedy cofibrant object, then all
maps

LnX ⊗ Δn ∪LnX⊗∂Δn Xn ⊗ ∂Δn → Xn ⊗ Δn

are Reedy cofibrations.

It is true (Proposition 2.15 below), however, that if f : X → Y is a Reedy
cofibration in sC and j : K → L is a cofibration of simplicial sets, then the
induced map

X ⊗ L ∪X⊗K Y ⊗ K → Y ⊗ L

is a Reedy cofibration which is a Reedy weak equivalence if f is a Reedy weak
equivalence. The proof of this statement requires that we first recast the def-
inition of Reedy fibration, and properly describe function complex objects for
the external structure.

Recall the definition: a map p : Z → W is a Reedy fibration of sC if the
induced map

Zn → Wn ×MnW MnZ

is a fibration of the closed model category C for every n ≥ 0. This means that
all such maps should have the right lifting property with respect to all trivial
cofibrations of C, so an adjointness argument says that p : Z → W is a Reedy
fibration if it has the right lifting property in sC with respect to all maps

B ⊗ ∂Δn ∪A⊗∂Δn A ⊗ Δn → B ⊗ Δn

associated to trivial cofibrations A → B of C and simplicial set inclusions
∂Δn ↪→ Δn. The underlying category C has all colimits, so p is a Reedy fibration
if and only if it has the right lifting property with respect to all maps

B ⊗ K ∪A⊗K A ⊗ L → B ⊗ L

induced by trivial cofibrations A → B of C and simplicial set inclusions K ↪→ L.
We have seen in Proposition 1.21 that the functor MK : sC → C is right

adjoint to Z �→ Z ⊗ K, and this adjunction is defined and natural for all
simplicial sets K. For such K, define a functor MK : sC → sC by specifying
MKYn = MΔn×KY . Then the adjunction isomorphisms

hom(Xn,MΔn×KY ) ∼= hom(Xn ⊗ Δn ⊗ K,Y )

jointly induce an adjunction isomorphism

hom(X,MKY ) ∼= hom(X ⊗ K,Y ).

To see this, it helps to know that there is a natural coequalizer⊔
θ:m→n

Xn ⊗ Δm ⇒
⊔
n

Xn ⊗ Δn → X

in the simplicial object category sC, and that tensoring with K preserves col-
imits.
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Proposition 2.15.

(1) Let f : X → Y be a Reedy cofibration in sC and j : K → L a cofibration
in S. Then

X ⊗ L ∪X⊗K Y ⊗ K → Y ⊗ L

is a Reedy cofibration which is a Reedy weak equivalence if f is a Reedy
weak equivalence.

(2) Suppose f : X → Y is a Reedy fibration in sC and j : K → L is a
cofibration in S. Then

MLX → MKX ×MKY MLY

is a Reedy fibration which is a Reedy weak equivalence if f is a Reedy
weak equivalence.

Proof: These two statements are equivalent by an adjunction argument, and
we shall prove the second.

The map
MLX → MKX ×MKY MLY

has the right lifting property with respect to a class of maps C → D if and only
if f : X → Y has the right lifting property with respect to all induced maps

D ⊗ K ∪C⊗K C ⊗ L → D ⊗ L

The corresponding map induced by the morphism

B ⊗ ∂Δn ∪A⊗∂Δn A ⊗ Δn → B ⊗ Δn

arising from a trivial cofibration A → B of C has the form

B ⊗ K′ ∪A⊗K′ A ⊗ L′ → B ⊗ L′

where the simplicial set inclusion K ′ ↪→ L′ is the morphism

L × ∂Δn ∪K×∂Δn K × Δn ↪→ L × Δn.

Any Reedy fibration f : X → Y has the right lifting property with respect to
all such morphisms.

The second part of claim (2) follows in a similar way from Lemma 2.2. �
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3. Geometric realization.

Suppose C is a simplicial category and X ∈ sC. Then the geometric realization
|X| ∈ C is defined by the coequalizer diagram

⊔
φ:n→m

Xm�Δn
d0

⇒
d1

⊔
n≥0

Xn�Δn → |X| (3.1)

where φ runs over the morphisms of ΔΔΔ, and d0 and d1 on the factor associated
to φ : n → m are respectively

Xm�Δn
w

φ∗�1
Xn�Δn

w

⊔
n≥0

Xn�Δn

Xm�Δn
w

1�φ
Xm�Δm

w

⊔
n≥0

Xn�Δn.

This is the obvious generalization of the geometric realization of Chapters I
and III. Note that |X| is a coend:

|X| =
∫ ΔΔΔ

X�Δ,

where Δ denotes the covariant functor n �→ Δn on ΔΔΔ. We discuss the homo-
topical properties of |X|.

First note that | · | : sC → C has a right adjoint

Y �→ Y Δ = {homC(Δn, Y )}. (3.2)

If we give sC the internal (or level-wise) simplicial structure induced from C, it
follows immediately that if X ∈ sC and K ∈ S, then

|X�K| ∼= |X|�K. (3.3)

Indeed, homsC(X�K,Y Δ) ∼= homsC(X,homC(K,Y )Δ).
Now assume C is a simplicial model category. Endow sC with the Reedy

model category structure. By Corollary 2.13, this is a simplicial model category
in the internal simplicial structure.

Lemma 3.4. The functor (·)Δ : C → sC preserves fibrations and trivial fibra-
tions.
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Proof: The first point to be proved is this: if K ∈ S and Y ∈ C, then

MK(Y Δ) ∼= homC(K,Y ). (3.5)

There are isomorphisms

MK(Y Δ) ∼= lim←−
Δn→K

(Y Δ)n

∼= lim←−
Δn→K

homC(Δn, Y )

∼= homC( lim−→
Δn→K

Δn, Y )

∼= homC(K,Y ),

where the limits and colimits are indexed over objects Δn → K of the simplex
category Δ ↓ K of K (cf. Example 1.23).

Now let X → Y be a fibration in C. Then

(XΔ)n → (Y Δ)n ×Mn(Y Δ) Mn(XΔ)

is isomorphic to

homC(Δn,X) → homC(Δn, Y ) ×homC(∂Δn,Y ) homC(∂Δn,X)

and the result follows from Lemma 2.2 and SM7 for C.
The claim about preservation of trivial fibrations has a similar proof. �

Proposition 3.6. The geometric realization functor | · | : sC → C preserves
cofibrations, trivial cofibrations and weak equivalences between Reedy cofibrant
objects.

Proof: Use Lemma 3.4 and Lemma II.7.9. �
The proof of Lemma 3.4 implicitly involves the assertion that if Z ∈ sC is

constant and K ∈ S then there is a natural isomorphism

|Z ⊗ K| ∼= Z�K. (3.7)

Indeed, using Proposition 1.10 the isomorphism (3.5), we have

homC(|Z ⊗ K|, Y ) ∼= homC(Z,homC(K,Y )),

and the assertion follows. Therefore, for X ∈ sC Reedy cofibrant, the realization
comes with a natural skeletal filtration. Define

skn |X| = | skn X|.
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Then Proposition 1.7 and the natural isomorphism of (3.7) together show that
there are natural pushout squares

Xn�∂Δn ∪LnX�∂Δn Ln�Δn
w

u

skn−1 |X|

u

Xn�Δn
w skn |X|.

(3.8)

This is because the realization functor | · | is a left adjoint and hence commutes
with all colimits. If X is cofibrant, then Proposition 3.6 and Corollary 2.14
together imply that each of the maps skn−1 |X| → skn |X| is a cofibration.
Furthermore, again since the functor | · | commutes with colimits

lim−→
n

skn |X| ∼= |X|. (3.9)

Finally if X happens to be degeneracy free on some set {Zn} of objects in C,
then (3.8) can be refined (as in Corollary 1.14) to a pushout diagram

Zn�∂Δn
w

u

skn−1 |X|

u

Zn�Δn
w skn |X|.

(3.10)

The object skn |X| can also be described as a coend. Let skn Δ be the functor
from ΔΔΔ to S with

m �→ skn Δm.

Proposition 3.11. Let X ∈ sC. Then there is a natural isomorphism

skn |X| ∼=
∫ ΔΔΔ

X� skn Δ

and this isomorphism is compatible with the skeletal filtrations of source and
target.

Proof: There is a sequence of natural isomorphisms, where

in∗ : sC → snC
is the restriction functor

homC(skn |X|, Y ) ∼= homsC(skn X,Y Δ)
∼= homsC(i∗nin∗X,Y Δ)
∼= homsC(X, i!nin∗Y

Δ)
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Now i!nin∗Y
Δ ∼= coskn(Y Δ) ∼= Y skn Δ, where Y skn Δ is defined on the simplex

level by
Y skn Δ

r = homC(skn Δr, Y ).

It follows that

homC(skn |X|, Y ) ∼= homsC(X,Y skn Δ)

∼= homC(
∫ Δ

X� skn Δ, Y ). �

4. Cosimplicial spaces.
The language and technology of the previous three sections can be used to
give a discussion of the homotopy theory of cosimplicial spaces; that is, of the
category cS = SΔΔΔ of functors from the ordinal number category to simplicial
sets. We go through some of the details and give some examples. It turns out
that cofibrations in cS have a very simple characterization; we close the section
with a proof of this fact.

We begin with two important examples.

Example 4.1. Let R = Fp, the prime field with p > 0, or let R be a subring
of the rationals. The forgetful functor from R-modules to sets has left adjoint
X �→ RX, where RX is the free R-module on X. These functors prolong to
an adjoint pair between simplicial R-modules and simplicial sets. By abuse of
notation we write

R : S → S

for the composite of these two functors. Then R is the functor underlying a
triple on S and, if X ∈ S,

π∗RX ∼= H∗(X;R).

Let T : S → S be any triple (or monad) on S with natural structure maps
η : X → TX and ε : T 2X → TX. If X ∈ S is any object, there is a natural
augmented cosimplicial space

X → T •X

with (T •X)n = Tn+1X and

di = T iηTn+1−i : (T •X)n → (T •X)n+1

si = T iεTn−i : (T •X)n+1 → (T •X)n.

The augmentation is given by η : X → TX = (T •X)0; note that

d0η = d1η : X → (T •X)1.
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In particular, if we let T = R : S → S we get an augmented cosimplicial space

X → R•X

with the property that di, i ≥ 1, and si, i ≥ 0, are all morphisms of simplicial R-
modules. Furthermore, if we apply R one more time, the augmented cosimplicial
R-module

RX → R(R•X)

has a cosimplicial contraction; hence

Hs(H∗(R•X;R)) ∼=
{

H∗(X;R), s = 0
0, s > 0.

The object X → R•X is a variation on the Bousfield-Kan R-resolution of X.

Example 4.2. Let J be a small category and SJ the category of J-diagrams
in S. Let Jδ be the category with the same objects as J but no non-identity
morphisms—Jδ is J made discrete. There is an inclusion functor Jδ → J , hence
a restriction functor

r∗ : SJ → SJδ

.

The functor r∗ has a right adjoint r! given by right Kan extension; in formulas

r!X(j) =
∏
j→i

X(i)

where the product is over morphisms in J with source j. Let

T = r!r∗ : SJ → SJ .

Then T is the functor of a triple on SJ , and if Y ∈ SJ , there is a natural
cosimplicial object in SJ

Y → T •Y. (4.3)

This cosimplicial object has the property that the underlying Jδ diagram has
a cosimplicial contraction. Put another way, for each j ∈ J , the augmented
cosimplicial space

Y (j) → T •Y (j)

has a cosimplicial contraction. We can apply the functor lim←−J
(·) to (4.3) to

obtain an augmented cosimplicial space

lim←−
J

Y → lim←−
J

T •Y. (4.4)

Note that lim←−J
(T •Y )n can be easily computed because

lim←−
J

r!X ∼=
∏
j

X(j)
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where j runs over the objects on J . This last assertion follows from the isomor-
phisms

homS(Z, lim←−
J

r!X) ∼= homSJ (Z, r!X)

∼= homSJδ (Z,X) ∼=
∏
j

homS(Z,X(j))

where Z ∈ S is regarded as a constant diagram in SJ or SJs

.
It follows that the functor TnY is defined for objects j of J by

TnY (j) =
∏

j→j0→···→jn

Y (jn),

and that
lim←−

j

TnY (j) ∼=
∏

j0→···→jn

Y (jn).

The canonical map lim←−j
Tn(j) → Tn(j) can therefore be identified with the

simplicial set map ∏
j0→···→jn

Y (jn) →
∏

j→j0→···→jn

Y (jn)

whose projection onto the factor Y (jn) corresponding to the string

j → j0
α1−→ j1

α1−→ · · · αn−−→ jn

is the projection
prα :

∏
j0→···→jn

Y (jn) → Y (jn)

corresponding to the string

α : j0
α1−→ j1

α1−→ · · · αn−−→ jn.

One also finds that the cosimplicial structure map associated to θ : m → n for
the object lim←−j

T •Y (j) can be identified with the unique simplicial set map∏
i0→···→im

Y (im)
θ∗−→

∏
j0→···→jn

Y (jn)

which makes the diagrams∏
i0→···→im

Y (im) w
θ∗

u

prα·θ

∏
j0→···→jn

Y (jn)

u

prα

Y (jθ(m)) w

(αn · · ·αθ(m)+1)∗
Y (jn)

commute.
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This is the standard description of the cosimplicial object which underlies
the homotopy inverse limit of Y ∈ SJ — see Section VIII.1.

With these examples in hand, we begin to analyze the homotopy theory
of cS. Since S is a simplicial model category, so is the opposite category Sop.
Thus the category (s(Sop))op = cS acquires a Reedy model category structure
as in Section 2. We take some care with the definitions as the opposite category
device can be confusing.

To begin with, cS is a simplicial category: if K ∈ S and X ∈ cS define
X�K and homcS(K,X) in cS by

(X�K)n = Xn × K (4.5)

and
homcS(K,X)n = hom(K,Xn). (4.6)

One often writes X⊗K for X�K; however, we are—in this chapter—reserving
the tensor product notation for the external operation on sC. The mapping
spaces functor is then

HomcS(X,Y )n
∼= homcS(X�Δn, Y ). (4.7)

There are also latching and matching objects, but at this point the litera-
ture goes to pieces. The matching objects in cS defined in [BK] are the latching
objects in s(Sop) as defined in Section 1. Since we would hope the reader will
turn to the work of Bousfield and Kan as needed, we will be explicit.

Let X ∈ cS. The nth matching space MnX ∈ S is the (n + 1)st latching
object Ln+1X of X ∈ s(Sop). Specifically,

MnX ∼= lim←−
φ:n+1→k

Xk (4.8)

where φ : n + 1 → k runs over the surjections in ΔΔΔ with k ≤ n. Thus n ≥ −1,
and Remark 1.8 implies the following:

Lemma 4.9.

(1) The simplicial set M−1X is isomorphic to the terminal object ∗.
(2) There is an isomorphism M0X ∼= X0, and the canonical map X1 →

M0X can be identified with the codegeneracy map s0 : X1 → X0.

(3) For n > 0, the object MnX is defined by the equalizer

MnX →
n∏

i=0

Xn ⇒
∏

0≤i<j≤n

Xn−1
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where the images of the two displayed maps on the factor corresponding
to the relation i < j on Xn−1 are given by the composites

n∏
i=0

Xn
prj−−→ Xn

si

−→ Xn−1 and
n∏

i=0

Xn
pri−−→ Xn

sj−1

−−−→ Xn−1.

The canonical map s : Xn+1 → MnX is induced by the codegeneracies
si : Xn+1 → Xn.

The reader should be aware of 1) the shift in indices MnX = Ln+1X and
2) the superscript versus the subscript: MnX �= MnX.

A map f : X → Y in cS is a fibration if and only if

Xn+1 → Y n+1 ×MnY MnX (4.10)

is a fibration for n ≥ −1.
Similarly, there are latching objects. If X ∈ cS, LnX = Mn+1X, the

matching spaces of X ∈ s(Sop), where n ≥ −1; thus

LnX = lim−→
φ:k→n+1

Xk

where φ runs over the injections in ΔΔΔ with k ≤ n. The following is a consequence
of Remark 1.19:

Lemma 4.11.

(1) The space L−1X is the initial object ∅ in the category of simplicial sets.

(2) There is an isomorphism L0X ∼= X0�X0, and the canonical map L0X →
X1 can be identified with the coproduct d = (d0, d1) : X0 � X0 → X1

of the coface maps d0, d1 : X0 → X1.

(3) For n > 1, the latching object LnX is defined by a coequalizer diagram

⊔
0≤i<j≤n+1

Xn−1 ⇒
n+1⊔
i=0

Xn → LnX.

Here, the restrictions of the displayed maps on the summand Xn−1

corresponding to the relation i < j are the composites

Xn−1
di

−→ Xn
inj−−→

n+1⊔
i=0

Xn and Xn−1
dj−1

−−−→ Xn
ini−−→

n+1⊔
i=0

Xn.

The canonical map d : LnX → Xn+1 is induced by the coface maps
di : Xn → Xn+1.
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A morphism X → Y in cS is a cofibration if and only if

Xn+1 ∪LnX LnY → Y n+1 (4.12)

is a cofibration (that is, inclusion) of simplicial sets.
Finally, we define a morphism X → Y in cS to be a weak equivalence if

Xn → Y n is a weak equivalence for all n ≥ 1.

Theorem 4.13. With the definitions above, the category cS of cosimplicial
spaces is a proper closed simplicial model category.

Proof: Applying Theorem 2.12 and Corollary 2.13 to the case of the category
sSop of simplicial objects in Sop gives the simplicial model structure. Properness
is a consequence of Corollary 2.6 �

We can give a simple characterization of cofibrations in cS, and along the
way show that cS is cofibrantly generated. First, let us define a set of specific
cofibrations.

The functors from cS → S

ρn : X �→ Xn, n ≥ 0

and
μn : X �→ MnX,n ≥ −1

all have left adjoints, given by variations on left Kan extension. Indeed, the
adjoint to ρn is given by the formula

(ρ∗nY )k =
⊔

φ:n→k

Y

where φ runs over all morphisms in ΔΔΔ with source n. This is a left Kan exten-
sion.

The adjoint to μn is slightly more complicated: if J is the category with
objects surjections n + 1 → k in ΔΔΔ, and r : J → ΔΔΔ the functor sending
n + 1 → k to k, then the left adjoint μ∗

n to μn is characterized by

homcS(μ∗
nZ,X) ∼= homSJ (Z, r∗X)

∼= homS(Z,MnX)

where Z ∈ SJ is the constant diagram. Thus μ∗
nZ is a left Kan extension of a

constant diagram. Alternatively, one can use the equalizer description of MnX
given in Lemma 4.9 to show that there is a natural coequalizer

⊔
0≤i<j≤n

ρn−1Z ⇒
n⊔

i=o

ρnZ → μnZ

for n > 0, and that μ0Z ∼= ρ0Z.
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Note that the natural transformation

s : Xn → Mn−1X

induces a natural transformation

μ∗
n−1Z → ρ∗nZ.

Define morphisms in cS as follows:

ρ∗n∂Δm ∪μ∗
n−1∂Δm μ∗

n−1Δ
m = ∂Δ

[
m
n

] im
n−→ Δ

[
m
n

]
= ρ∗nΔm, (4.14)

for n ≥ 0, m ≥ 0, and

ρ∗nΛm
k ∪μ∗

n−1Λ
m
k

μ∗
n−1Δ

m = Δ
[

m
n,k

] jm
n,k−−→ Δ

[
m
n

]
= ρ∗nΔm, (4.15)

for n ≥ 0, 0 ≤ k ≤ m, m ≥ 1.

Lemma 4.16. A morphism f : X → Y in cS is a fibration if and only if it
has the right lifting property with respect to the morphisms jm

n,k of (4.15).
A morphism in cS is a trivial fibration if and only if it has the right lifting
property with respect to the morphisms imn of (4.14).

Proof: We prove the trivial fibration case; the other is similar. A lifting prob-
lem

∂Δ
[

m
n

]
w

u

X

u

Δ
[

m
n

]
w Y

is equivalent, by adjointness to a lifting problem

∂Δm
w

u

Xn

u

s

Δm
w Y n ×Mn−1Y Mn−1X.

Lemma 2.2.2 implies that f : X → Y is a trivial fibration if and only if

(f, s) : Xn → Y n ×Mn−1Y Mn−1X

is a trivial fibration for all n. The result follows. �
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Proposition 4.17. The simplicial model category structure on cS is cofi-
brantly generated: the morphisms imn of (4.14) generate the cofibrations and
the morphisms jm

n,k of (4.15) generate the trivial cofibrations.

Proof: In light of Lemma 4.16, the small object argument now applies. �
We can use this result to characterize cofibrations. If X ∈ cC is a cosim-

plicial object in any category C with enough limits, define the maximal aug-
mentation H0X by the equalizer diagram

H0X → X0
d0

⇒
d1

X1.

Let d0 :0 X → X0 be the natural map.

Proposition 4.18. A morphism f : X → Y in cS is a cofibration if and only if
Xn → Y n is a cofibration in S for all n ≥ 0 and the induced map H0X → H0Y
of maximal augmentations is an isomorphism.

We give the proof below, after some technical preliminaries.
Let ΔΔΔ−1 be the augmented ordinal number category; this has objects

n = {0, 1, . . . , n − 1}, n ≥ −1,

(−1 = φ) and ordering preserving maps. An augmented cosimplicial object in
C is a functor X : ΔΔΔ−1 → C. We write d0 : X−1 → X0 for the unique map.
Note that the maximal augmentation extends any cosimplicial object to an
augmented cosimplicial object.

Lemma 4.19. Let X be an augmented cosimplicial set, and

Zn = Xn −
n⋃

i=0

diXn−1

If d0 : X−1 → X0 is isomorphic to the inclusion of the maximal augmentation,
then the map ⊔

φ

Zk → Xn

with φ : k → n running over all injections, −1 ≤ k ≤ n, is an isomorphism.

Proof: Out of any cosimplicial set X we may construct a simplicial set Y
“without d0” as follows: Yn = Xn and

di = sn−i : Yn → Yn−1, 1 ≤ i ≤ n

si = dn−i : Yn → Yn+1, 0 ≤ i ≤ n.
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Notice that this construction does not use dn : Xn−1 → Xn. Let Zn ⊆ Yn be
the non-degenerate simplices:

Zn = Yn −
⋃
i

siYn−1.

The standard argument for simplicial sets (see Example 1.15) shows that

Yn
∼=

⊔
ψ:n→k

Zk

where ψ runs over the surjections in ΔΔΔ. Unraveling the definitions shows that
our claim will follow if we can show that dn : Xn−1 → Xn induces an isomor-
phism Zn � Zn−1

∼=−→ Zn or, equivalently, an isomorphism

Zn−1
∼=−→ Zn ∩ dnXn−1.

First note that dn does induce an injection

dn : Zn−1 → Zn ∩ dnXn−1. (4.20)

For this, it is sufficient to show that if y ∈ Zn−1, then dny ∈ Zn; that is, if y �∈
∪n−1

i=0 diXn−2, then dny �∈ ∪n−1
i=0 diXn−1. The contrapositive of this statement

reads: if dny ∈ ∪n−1
i=0 diXn−1, then y ∈ ∪n−1

i=0 diXn−2. So assume dny = diz with
i < n. If i < n − 1, then

z = sidny = dn−1siy

so
dny = diz = didn−1siy = dndisiy

and y = disiy. If i = n − 1 and n > 1, then

y = sn−1dny = sn−1dn−1z = z

so dny = dn−1y; hence

y = sn−2dn−1y = sn−2dny = dn−1sn−2y.

If n = 1 and i = n−1, we have d1y = d0z, hence y = z; since d0 : X−1 → X0 is
the inclusion of the maximal augmentation, y = d0w for some w This is where
the hypothesis is used.

We now must show that dn, as in (4.20) is onto. If n = 0, Z0 = X0 and the
result is clear. If n ≥ 1, we need to show that if x = dny and x �∈ ∪n−1

i=0 diXn−1,
then y �∈ ∪n−1

i=0 diXn−2. The contrapositive of this statement is: if x = dny and
y = diw, i ≤ n − 1, then x = djz for j ≤ n − 1. But

x = dny = dndiw = didn−1w. �
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We can now prove Proposition 4.18:
Proof of 4.18: For the purposes of this argument, we say a morphism f :
X → Y in cS has Property C if Xn → Y n is a cofibration in S for all n ≥
0 and H0X ∼= H0Y . We leave it as an exercise to show that the class of
morphisms satisfying Property C is closed under isomorphisms, coproducts,
retracts, cobase change, and colimits over ordinal numbers. Only the statement
about cobase change is non-trivial. Furthermore, the generating cofibrations
ιmn : ∂Δ

[
m
n

] → Δ
[

m
n

]
have Property C. Hence Proposition 4.17 implies all

cofibrations have Property C.
For the converse, suppose f : X → Y has Property C. Referring to Lemma

4.19, write Zn(Xm) for Zn obtained from the cosimplicial set of m simplices
Xm. Then, Lemma 4.19 implies

(L0X)m
∼= Z0(Xm) � Z−1(Xm) � Z0(Xm) � Z−1(Xm),

X1
m = Z−1(Xm) � Z0(Xm) � Z0(Xm) � Z1(Xm),

and if n > 1,
(Ln−1X)m

∼=
⊔

φ:k→n

Zk(Xm)

with φ running over injections with −1 ≤ k < n. Since f : Xn
m → Y n

m is
one-to-one, Zk(·) is natural in f . Since Z−1(Xm) ∼= Z−1(Ym),

[Xn ∪Ln−1X Ln−1Y ]m ∼= Zn(Xm) �
⊔

φ:k→n

Zk(Ym)

for all n ≥ 0. Again φ runs over injections k, −1 ≤ k < n. The result follows. �
Second proof of Proposition 4.18: Note, first of all, that by manipulating
cosimplicial identities, one can show that all of the diagrams

Xn−2
w

dj−1

u

di

Xn−1

u

di

Xn−1
w

dj
Xn

are pullbacks. It follows that the maps d : Ln−1X → Xn is a monomorphism
if n > 1. Note further that Lemma 4.11 says that L0X = X0 � X0.

Now suppose that f : X → Y is a cofibration. Then f : X0 → Y 0 is
monic, so that f : L0X → L0Y is monic, and the assumption that the map

L0Y ∪L0X X1 → Y 1
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is a monomorphism implies that f : X1 → Y 1 is a monomorphism. One uses
cosimplicial identities (using Remark 1.19) to show that if f : Xi → Y i

is a monomorphism for i ≤ n then the induced map LnX → LnY is a
monomorphism. Then the assumption that f is a cofibration implies that
f : Xn+1 → Y n+1 is a monomorphism in degree n + 1. In particular, f is
a monomorphism in all degrees.

To see that the map f : H0X → H0Y on maximal augmentations is an
isomorphism, observe that there is a natural coequalizer

H0X ⇒ X0 � X0 → im(d),

where
im(d) = im(d0) ∪ im(d1) ⊂ X1.

Write PO = im(f) ∪ im(d) ⊂ Y 1 for the diagram

X0 � X0
w

f � f

u

d

Y 0 � Y 0

u

d

X1
w

f
Y 1

This diagram is a pullback by cosimplicial identities, so the induced diagram

X0 � X0
w

f � f

u

d

Y 0 � Y 0

u

d∗

X1
w

f∗
PO

(4.21)

is a pullback. This latter diagram (4.21) is also a pushout if and only if the
induced diagram

X0 � X0
w

f � f

u

d

Y 0 � Y 0

u

d∗

im(d) w im(d∗)

is a pushout, since epi-monic factorizations are preserved by pushout. The
diagram (4.21) is therefore a pushout if and only if f induces an isomorphism
H0X ∼= H0Y . The map

L0Y ∪L0X Y 1 → X1

is therefore a monomorphism if and only if the diagram (4.21) is a pushout.
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It follows that the map f : H0X → H0Y on maximal augmentations is a
bijection.

For the converse, one can show that any levelwise monomorphism f :
X → Y induces monomorphisms LnX → LnY , and that all induced diagrams

LnX w
d

u

Xn+1

u

LnY w

d
Y n+1

are pullbacks. The maps d are monomorphisms if n > 0, as are the vertical
maps, so the induced maps

LnY ∪LnX Xn+1 → Y n+1

are monomorphisms for n > 0. The assertion that the map

L0Y ∪L0X X1 → Y 1

is a monomorphism when f is a levelwise monic that induces an isomorphism
of maximal augmentations is proved in the previous paragraph. �

Proposition 4.18 makes it very easy to decide when an object of cS is
cofibrant for the Reedy structure. For example, a constant object on a non-
empty simplicial set is not cofibrant, but the standard simplices Δn form a
cosimplicial space Δ which is cofibrant. Also, every subobject of a cofibrant
simplicial space is cofibrant.




