
Chapter V Simplicial groups

This is a somewhat complex chapter on the homotopy theory of simplicial
groups and groupoids, divided into seven sections. Many ideas are involved.
Here is a thumbnail outline:

Section 1, Skeleta: Skeleta for simplicial sets were introduced briefly in Chapter
I, and then discussed more fully in the context of the Reedy closed model struc-
ture for bisimplicial sets in Section IV.3.2. Skeleta are most precisely described
as Kan extensions of truncated simplicial sets. The current section gives a gen-
eral description of such Kan extensions in a more general category C, followed
by a particular application to a description of the skeleta of almost free mor-
phisms of simplicial groups. The presentation of this theory is loosely based
on the Artin-Mazur treatment of hypercovers of simplicial schemes [3], but the
main result for applications that appear in later sections is Proposition 1.9. This
result is used to show in Section 5 that the loop group construction outputs
cofibrant simplicial groups.

Section 2, Principal Fibrations I: Simplicial G-spaces: The main result of this
section asserts that the category SG of simplicial sets admitting an action by a
fixed simplicial group G admits a closed model structure: this is Theorem 2.3.
Principal G-fibrations in the classical sense may then be identified with cofi-
brant objects of SG, by Corollary 2.10, and an equivariant map between two
such objects is an isomorphism if and only if it induces an isomorphism of
coinvariants (Lemma 2.11).

Section 3, Principal Fibrations II: Classifications: This section contains a proof
of the well known result (Theorem 3.9) that isomorphism classes of principal
G-fibrations p : E → B can be classified by homotopy classes of maps B → BG,
where BG = EG/G, and EG is an arbitrary cofibrant object of SG admitting
a trivial fibration EG → ∗, all with respect to the the closed model structure
for SG of Section 2.

Section 4, Universal cocycles and WG: It is shown here that the classical model
WG for the classifying object BG of Section 3 can be constructed as a simplicial
set of cocycles taking values in the simplicial group G. This leads to “global”
descriptions of the simplicial structure maps for WG, as well as for the G-
bundles associated to simplicial set maps X → WG. The total space WG for
the canonical bundle associated to the identity map on WG is contractible
(Lemma 4.6).

Section 5, The loop group construction: The functor G �→ WG has a left adjoint
X �→ GX, defined on reduced simplicial sets X (Lemma 5.3). The simplicial
group GX is the loop group of the reduced simplicial set X, in the sense that
the total space of the bundle associated to the adjunction map X → WGX is
contractible: this is Theorem 5.10. The proof of this theorem is a modernized
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252 V. Simplicial groups

version of the Kan’s original geometric proof, in that it involves a reinterpre-
tation of the loop group GX as an object constructed from equivalence classes
of loops.

Section 6, Reduced simplicial sets, Milnor’s FK-construction: This section gives
a closed model structure for the category S0 of reduced simplicial sets. This
structure is used to show (in conjunction with the results of Section 1) that the
loop group functor preserves cofibrations and weak equivalences, and that W
preserves fibrations and weak equivalences (Proposition 6.3). In particular, the
loop group functor and the functor W together induce an equivalence between
the homotopy categories associated to the categories of reduced simplicial sets
and simplicial groups (Corollary 6.4). Furthermore, any space of the form WG
is a Kan complex (Corollary 6.8); this is the last piece of the proof of the
assertion that WG is a classifying space for the simplicial group G, as defined
in Section 3. Milnor’s FK-construction is a simplicial group which gives a
fibrant model for the space ΩΣK: Theorem 6.15 asserts that FK is a copy of
G(ΣK), by which is meant the loop group of the Kan suspension of K. The
Kan suspension was introduced in Section III.5.

Section 7, Simplicial groupoids: The main result of Section 5, which leads to
the equivalence of homotopy theories between reduced simplicial sets and sim-
plicial groups of Section 6, fails badly for non-reduced simplicial sets. We can
nevertheless recover an analogous statement for the full category of simplicial
sets if we replace simplicial groups by simplicial groupoids, by a series of results
of Dwyer and Kan. This theory is presented in this section. There is a closed
model structure on the category sGd of simplicial groupoids (Theorem 7.6)
whose associated homotopy category is equivalent to that of the full simplicial
set category (Corollary 7.11). The classifying object and loop group functors
extend, respectively, to functors W : sGd → S and G : S → sGd; the object
WA associated to a simplicial groupoid A is a simplicial set of cocycles in a way
that engulfs the corresponding object for simplicial groups, and the extended
functor G is its left adjoint.

1. Skeleta.

Suppose that C is a category having all finite colimits, and let sC denote the
category of simplicial objects in C. Recall that simplicial objects in C are con-
travariant functors of the form Δop → C, defined on the ordinal number cate-
gory Δ.

The ordinal number category contains a full subcategory Δn, defined
on the objects m with 0 ≤ m ≤ n. Any simplicial object X : Δop → C
restricts to a contravariant functor in∗X : Δop

n → C, called the n-truncation
of X. More generally, an n-truncated simplicial object in C is a contravariant
functor Y : Δop

n → C, and the category of such objects (functors and natural
transformations between them) will be denoted by snC.
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The n-truncation functor sC → snC defined by X �→ in∗X has a left
adjoint i∗n : snC → sC, on account of the completeness assumption on the
category C. Explicitly, the theory of left Kan extensions dictates that, for an
n-truncated object Y , i∗nYm should be defined by

i∗nYm = lim−→
m

θ−→i, i≤n

Yi.

As the notation indicates, the colimit is defined on the finite category whose
objects are ordinal number morphisms θ : m → i with i ≤ n, and whose
morphisms γ : θ → τ are commutative diagrams

i

u

γm
�
�
���θ

�
�
���τ

j

in the ordinal number category. The simplicial structure map ω∗ : i∗nYm → i∗nYk

is defined on the index category level by precomposition with the morphism
ω : k → m.

The functor Y �→ i∗nY is left adjoint to the n-truncation functor: this can
be seen by invoking the theory of Kan extensions, or directly.

If m ≤ n, then the index category of arrows m → i, i ≤ n, has an initial
object, namely 1m : m → m, so that the canonical map

Ym

in1m−−−→ lim−→
m

θ−→i, i≤n

Yi

is an isomorphism by formal nonsense. Furthermore, maps of this form in C are
the components of the adjunction map

Y
η−→ in∗i∗nY,

so that this map is an isomorphism of snC.
The objects i∗nYm, m > n, require further analysis. The general statement

that is of the most use is the following:

Lemma 1.1. There is a coequalizer diagram

⊔
i<j

Yn−1 ⇒
n⊔

i=0

Yn

s−→ i∗nYn+1,
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where the maps in the coequalizer are defined by the commutativity of the
following diagram:

Yn−1 w

si

u

ini<j

Yn

u

inj

A
A
A
AAC

insj

⊔
i<j

Yn−1
w

w

n⊔
i=0

Yn ws i∗nYn+1.

Yn−1 wsj−1

u

ini<j

Yn

u

ini

Proof: Write D for the category of ordinal number morphisms θ : n + 1 → j,
j ≤ n. Suppose that t : n + 1 → i is an ordinal number epimorphism, where
i ≤ n, and write Dt for the category of ordinal number morphisms θ : n + 1 →
j, j ≤ n, which factor through t. Then Dt has an initial object, namely t, so
that the canonical map int induces an isomorphism

Yi

int−−→∼= lim−→
n+1

θ−→j ∈Dt

Yj

Furthermore, if t has a factorization

n + 1 w
t

�
�
��r

i

m
�
�
��
s

where r and s are ordinal number epimorphisms, the inclusion Dt ⊂ Dr induces
a morphism s∗ of colimits which fits into a commutative diagram

Yi w
s∗

u
int

∼=
Ym

u
∼= inr

lim−→
n+1→j ∈Dt

Yj w

s∗
lim−→

n+1→j ∈Dr

Yj .

Write Dj for the category Dsj , 0 ≤ j ≤ n.
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For i < j, the diagram

n + 1 w
sj

u

si

n

u

si

n w

sj−1
n− 1

(1.2)

is a pushout in the ordinal number category: this is checked by fiddling with
simplicial identities. Now, suppose given a collection of maps

fj : lim−→
n+1

θ−→i ∈Dj

Yi → X,

0 ≤ j ≤ n, such that the diagrams

lim−→
n+1→i ∈Dt

Yi w

sj−1

u

si

lim−→
n+1→i ∈Dsi

Yi

u

fi

lim−→
n+1→i ∈Dsj

Yi w

fj
X

(1.3)

commute, where t = sisj = sj−1si. Let θ : n + 1 → k be an object of D. Then
θ ∈ Di for some i, and we define a morphism fθ : Yk → X to be the composite

Yk

inθ−−→ lim−→
n+1→k ∈Di

Yk

fi−→ X.

The pushout diagram (1.2) and the commutativity conditions (1.3) together
imply that the definition of fθ is independent of i. The collection of maps fθ,
θ ∈ D, determine a unique map

f∗ : lim−→
n+1→k ∈D

Yk

which restricts to the maps fi, for 0 ≤ i ≤ n, and the lemma is proved. �
Write skn Y = i∗nin∗Y , and write ε : skn Y → Y for the counit of the

adjunction. The simplicial set sknY is the n-skeleton of Y .



256 V. Simplicial groups

Lemma 1.4. Let Y be a simplicial object in the category C, and suppose that
there is a morphism f : N → Yn+1 such that the canonical map ε : skn Y → Y
and f together induce an isomorphism

skn Yn+1 � N
(ε,f)−−−→∼= Yn+1.

Then an extension of a map g : skn Y → Z to a map g′ : skn+1 Y → Z
corresponds to a map g̃ : N → Zn+1 such that dig̃ = gdif for 0 ≤ i ≤ n + 1.

Proof: Given such a map g̃, define a map

g′′ : Yn+1
∼= skn Yn+1 � N → Zn+1

by g′ = (g, g̃). In effect, we are looking to extend a map g : in∗Y → in∗Z to
a map g′ : i(n+1)∗Y → i(n+1)∗Z. The truncated map g′ will be the map g′′ in
degree n + 1 and will coincide with the map g in degrees below n + 1, once
we show that g′ respects simplicial identities in the sense that the following
diagram commutes:

Yn+1 w

g′

u

γ∗

Zn+1

u

γ∗

Ym

u

θ∗

wg Zm

u

θ∗

for all ordinal number maps γ : m → n + 1 and θ : n + 1 → m, where
m < n + 1. The canonical map ε : skn Y → Y consists of isomorphisms

skn Yi

ε−→∼= Yi

in degrees i ≤ n, so that θ∗ : Ym → Yn+1 factors through the map ε :
skn Yn+1 → Yn+1; the restriction of g′ to skn Yn+1 is a piece of a simplicial
map, so that g′ respects θ∗. The map γ∗ factors through some face map di, so
it’s enough to show that g′ respects the face maps, but this is automatic on
skn Yn+1 and is an assumption on g̃.

The converse is obvious. �

Lemma 1.5. Suppose that i : A → B is a morphism of sn+1C which is an
isomorphism in degrees j ≤ n. Suppose further that there is a morphism f :
N → Bn+1 such that the maps i and f together determine an isomorphism

An+1 � N
(i,f)−−−→∼= Bn+1.
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Suppose that g : A → Z is a morphism of sn+1C. Then extensions

A w

g

u

i

Z

B

h
h
hhj

g′

of the morphism g to morphisms g′ : B → Z are in one to one correspondence
with morphisms g̃ : N → Zn+1 of C such that dig̃ = gdif for 0 ≤ i ≤ n.

Proof: This lemma is an abstraction of the previous result. The proof is the
same. �

A morphism j : G → H of simplicial groups is said to be almost free if
there is a contravariant set-valued functor X defined on the epimorphisms of
the ordinal number category Δ such that there are isomorphisms

Gn ∗ F (Xn)
θn−→∼= Hn

which

(1) are compatible with the map j in the sense that θn · inGn = jn for all
n, and

(2) respect the functorial structure of X in the sense that the diagram

Gn ∗ F (Xn) w
θn

u

t∗ ∗ F (t∗)

Hn

u

t∗

Gm ∗ F (Xm) w
θm

Hm

commutes for every ordinal number epimorphism t : m → n.

The n-skeleton skn(j) of the simplicial group homomorphism j : G → H
is defined by the pushout diagram

skn G w
j∗

u

skn H

u

G w skn(j)



258 V. Simplicial groups

in the category of groups. There are maps skn(j) → skn+1(j) and morphisms
skn(j) → H such that the diagrams

G

A
A
AD

�
�
��

skn(j) w�
�
��

skn+1(j)
N
N
NQ

H

and

G w�
�
�
���j

skn(j)

u

H

commute, and such that j : G → H is a filtered colimit of the maps G → skn(j)
in the category of simplicial groups under G. The maps skn(j)i → Hi are
group isomorphisms for i ≤ n, so the map skn(j) → skn+1(j) consists of group
isomorphisms in degrees up to n.

Write DXn for the degenerate part of Xn+1. This subset can be described
(as usual) as the union of the images of the functions si : Xn → Xn+1, 0 ≤ i ≤
n. For i < j the diagram of group homomorphisms

Hn−1 w

si

u

sj−1

Hn

u

sj

Hn wsi
Hn+1

(1.6)

is a pullback, by manipulating the simplicial identities. Pullback diagrams are
closed under retraction, so the diagram of group homomorphisms

F (Xn−1) w

si

u

sj−1

F (Xn)

u

sj

F (Xn) wsi
F (Xn+1)

(1.7)

is also a pullback. All the homomorphisms in (1.7) are monomorphisms (since
they are retracts of such), so an argument on reduced words shows that (1.7)
restricts on generators to a pullback

Xn−1 w

si

u

sj−1

Xn

u

sj

Xn wsi
Xn+1

(1.8)
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in the set category. It follows that the degenerate part DXn of the set Xn+1

can be defined by a coequalizer

⊔
i<j

Xn−1 ⇒
n⊔

i=0

Xn

s−→ DXn

such as one would expect if X were part of the data for a simplicial set, in
which case DXn would be a copy of skn Xn+1.

Lemma 1.1 implies that the diagram of group homomorphisms

skn Gn+1 w

u

skn Hn+1

u

Gn+1 w skn(j)n+1

can be identified up to canonical isomorphism with the diagram

skn Gn+1 w

u

skn Gn+1 ∗ F (DXn)

u

Gn+1 w Gn+1 ∗ F (DXn).

The map skn(i)n+1 → skn+1(i)n+1 can therefore be identified up to isomor-
phism with the monomorphism

Gn+1 ∗ F (DXn) → Gn+1 ∗ F (Xn+1)

which is induced by the inclusion DXn ⊂ Xn+1.
Let NXn+1 = Xn+1 − DXn be the non-degenerate part of Xn+1. The

truncation at level n + 1 of the map skn(j) → skn+1(j) is an isomorphism in
degrees up to n, and is one of the components of an isomorphism

skn(j)n+1 ∗ F (NXn+1) ∼= skn+1(j)n+1.

in degree n + 1.
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Proposition 1.9. Suppose that j : G → H is an almost free simplicial group
homomorphism, with H generated over G by the functor X as described above.
Let NXn+1 be the non-degenerate part of Xn+1. Then there is pushout diagram
of simplicial groups of the form

∗
x∈NXn+1

F (∂Δn+1) w

u

skn(j)

u

∗
x∈NXn+1

F (Δn+1) w skn+1(j)

(1.10)

for each n ≥ −1.

Proof: From the discussion above, truncating the diagram (1.10) at level
n + 1 gives a pushout of (n + 1)-truncated simplicial groups. All objects in
(1.10) diagram are isomorphic to their (n + 1)-skeleta, so (1.10) is a pushout.

�
Corollary 1.11. Any almost free simplicial group homomorphism j : G → H
is a cofibration of simplicial groups.

2. Principal fibrations I: simplicial G-spaces.
A principal fibration is one in which the fibre is a simplicial group acting in a
particular way on the total space. They will be defined completely below and
we will classify them, but it simplifies the discussion considerably if we discuss
more general actions first.

Definition 2.1. Let G be a simplicial group and X a simplicial set. Then G
acts on X if there is a morphism of simplicial sets

μ : G × X → X

so that the following diagrams commute:

G × G × X w

1 × μ

u

m × 1

G × X

u

μ

G × X wμ X

and

X

u

i
�
�
��1X

G × X wμ X

where m is the multiplication in G and i(X) = (e,X).
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In other words, at each level, Xn is a Gn-set and the actions are compatible
with the simplicial structure maps.

Let SG be the category of simplicial sets with G-action, hereinafter known
as G-spaces. Note that SG is a simplicial category. Indeed, if K ∈ S, then K
can be given the trivial G-action. Then for X ∈ SG set

X ⊗ K = X × K (2.2.1)

with diagonal action,

homSG(K,X) = HomS(K,X) (2.2.2)

with action in the target, and for X and Y in SG,

HomSG(X,Y )n = homSG(X ⊗ Δn, Y ). (2.2.3)

Then the preliminary result is:

Theorem 2.3. There is a simplicial model category structure on SG such that
f : X → Y is

1) a weak equivalence if and only if f is a weak equivalence in S;

2) a fibration if and only if f is a fibration in S; and

3) a cofibration if and only if f has the left lifting property with respect to
all trivial fibrations.

Proof: The forgetful functor SG → S has a left adjoint given by

X �→ G × X.

Thus we can apply Theorem II.6.8 once we show that every cofibration having
the left lifting property with respect to all fibrations is a weak equivalence.
Every morphism X → Y can be factored as X

j→Z
q→X where q is a fibration

and j is obtained by setting Z = lim−→n
Zn with Z0 = X and Xn defined by a

pushout diagram ⊔
α

G × Λn
k

u
in

w Zn−1

u

jn⊔
α

G × Δn
w Zn

where α runs over all diagrams in SG

G × Λn
k

u
in

w Zn−1

u

G × Δn
w Y.
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Since in is a trivial cofibration in S, we have that jn a trivial cofibration in S
(and also in SG). So j : X → Z is a trivial cofibration in S (and SG).

If i : X → Y is a cofibration having the left lifting property with respect
to all fibrations, then i has a factorization i = q · j as above, so that i is a
retract of the cofibration j by the standard argument. �

A crucial structural fact about SG is the following:

Lemma 2.4. Let f : X → Y be a cofibration in SG. Then f is an inclusion
and at each level Yk − f(Xk) is a free Gk-set.

Proof: Every cofibration is a retract of a cofibration j : X → Z where Z =
lim−→Zn and Zn is defined recursively by setting Z0 = X and defining Zn by a
pushout diagram ⊔

α

G × ∂Δn

u

w Zn−1

u

jn⊔
α

G × Δn
w Zn.

So it is sufficient to prove the result for these more specialized cofibrations.
Now each jn is an inclusion, so j : X → Z is an inclusion. Also, at each level,
we have a formula for k simplices

(Zn)k − (Zn−1)k = (�αG × Δn)k − (�αG × ∂Δn)k

is free. Hence
(Z)k − (X)k =

⋃
n

(Zn)k − (Zn−1)k

is free. �
For X ∈ SG, let X/G be the quotient space by the G-action. Let q :

X → X/G be the quotient map. If X ∈ SG is cofibrant this map has special
properties.

Lemma 2.5. Let X ∈ SG have the property that Xn is a free Gn set for all n.
Let x ∈ (X/G)n be an n-simplex. If fx : Δn → X represents x, define Fx by
the pullback diagram

Fx w

u

X

u

q

Δn
w

fx
X/G.

Then for every z ∈ X so that q(z) = x, there is an isomorphism in SG

ϕz : G × Δn → Fx
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so that the following diagram commutes

G × Δn

u

π2

w

ϕz Fx

u

Δn
w= Δn.

(2.6)

Proof: First note that there is a natural G-action on Fx so that Fx → X is a
morphism of G-spaces. Fix z ∈ Xn so that q(z) = x. Now every element of Δn

can be written uniquely as θ∗ιn where ιn ∈ Δn
n is the canonical n-simplex and

θ : m → n is an ordinal number map. Define ϕz by the formula, for g ∈ Gm:

ϕz(g, θ∗ιn) = (θ∗ιn, gθ∗z).

One must check this is a simplicial G-map. Having done so, the diagram (2.6)
commutes, so we need only check ϕz is a bijection.

To see ϕz is onto, for fixed (a, b) ∈ Fx one has fxa = q(b). We can write
a = θ∗ιn for some θ, so

fxa = θ∗fxιn = θ∗x = qθ∗z

so b is in the same orbit as θ∗z, as required.
To see ϕz is one-to-one, suppose

(θ∗ιn, gθ∗z) = (ψ∗ιn, hψ∗z).

Then θ = ψ and, hence, gθ∗z = hθ∗z. The action is level-wise free by assump-
tion, so g = h. �
Corollary 2.7. Let X ∈ SG have the property that each Xn is a free Gn set.
The quotient map q : X → X/G is a fibration in S. It is a minimal fibration if
G is minimal as a Kan complex.

Proof: Consider a lifting problem

Λn
k w

y

u

X

u

q

Δn
O
OOP

w X/G.

This is equivalent to a lifting problem

Λn
k w

y

u

Fx

u

Δn
O
OP

w= Δn.
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By Lemma 2.5, this is equivalent to a lifting problem

Λn
k w

y

u

G × Δn

u

πj

Δn
B
BBC

w= Δn.

Because G is fibrant in S (Lemma I.3.4), πj is a fibration, so the problem has
a solution. If G is minimal, the lifting has the requisite uniqueness property to
make q a minimal fibration (see Section I.10). �
Lemma 2.8. Let X ∈ SG have the property that each Xn is a free Gn set.
Then X = lim−→X(n) where X(−1) = ∅ and for each n ≥ 0 there is a pushout

diagram ⊔
α

∂Δn × G

u

w X(n−1)

u⊔
α

Δn × G w X(n)

where α runs over the non-degenerate n-simplices of X/G.

Proof: Define X(n)n by the pullback diagram

X(n)

u

w X

u

π

skn(X/G) w X/G.

Then X(−1) = ∅ and lim−→X(n) = X. Also, the pushout diagram

⊔
α

∂Δn
w

u

skn−1(X/G)

u⊔
α

Δn
w skn(X/G)

pulls back along the canonical map X → X/G to a diagram⊔
α

F (α)|∂Δη

u

w X(n−1)

u⊔
α

F (α) w X(n),

(2.9)
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where F (α) is defined to be the pullback along α. But Lemma 2.5 rewrites
F (α) ∼= Δn × G and, hence, F (α)|∂Δn ∼= ∂Δn ×G. Finally, pulling back along
π preserves pushouts, so the diagram (2.9) is a pushout. �
Corollary 2.10. An object X ∈ SG is cofibrant if and only if Xn is a free
Gn set for all n.

Proof: One implication is Lemma 2.4. The other is a consequence of Lemma
2.8. �
Lemma 2.11. Suppose given a morphism in SG f : Y → X so that

1) Xn is a free Gn set for all n

2) the induced map Y/G → X/G is an isomorphism

then f is an isomorphism.

Proof: This is a variation on the proof of the 5-lemma. To show f is onto,
choose z ∈ X. Let qX : X → X/G and qY : Y → Y/G be the quotient maps.
Then there is a w ∈ Y/G so that (f/G)(w) = qX(z). Let y ∈ Y be so that
qY (y) = w. Then there is a g ∈ G so that gf(y) = f(gy) = z. To show f is one-
to-one suppose f(y1) = f(y2). Then qXf(y1) = qXf(y2) so qY (y1) = qY (y2) or
there is a g ∈ G so that gy1 = y2. Then

gf(y1) = f(y2) = f(y1)

Since X is free at each level, g = e, so y1 = y2. �
3. Principal fibrations II: classifications.
In this section we will define and classify principal fibrations. Let G be a fixed
simplicial group.

Definition 3.1. A principal fibration (or principal G-fibration) f : E → B is
a fibration in SG so that

1) B has trivial G-action;

2) E is a cofibrant G-space; and

3) the induced map E/G → B is an isomorphism.

Put another way, f : E → B is isomorphic to a quotient map

q : X → X/G

where X ∈ SG is cofibrant. Such a map q is automatically a fibration by Corol-
lary 2.7. Cofibrant objects can be recognized by Corollary 2.10, and Lemma 2.5
should be regarded as a local triviality condition. Finally, there is a diagram

G × E w

μ

u

∗ × f

E

u

f

∗ × B w∼= B
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where μ is the action; such diagrams figure in the topological definition of
principal fibration.

In the same vein, it is quite common to say that a principal G-fibration
is a G-bundle.

Definition 3.2. Two principal fibrations f1 : E1 → B and f2 : E2 → B
will be called isomorphic if there is an isomorphism g : E1 → E2 of G-spaces
making the diagram commute

E1 w

g
���
f1

E2
h
hkf2

B

Remark 3.3. By Lemma 2.11 it is sufficient to construct a G-equivariant
map g : E1 → E2 making the diagram commute. Then g is automatically an
isomorphism.

Let PFG(B) be the set of isomorphism class of principal fibrations over
B. The purpose of this section is to classify this set.

To begin with, note that PFG(·) is a contravariant functor. If q : E → B is
a principal fibration and f : B′ → B is any map of spaces, and if q′ : E(f) → B′

is defined by the pullback diagram

E(f) w

uq′
E

u
q

B′ w
f

B,

then f ′ is a principal fibration. Indeed

E(g) = {(b, e) ∈ B′ × E | f(b) = q(e)}
has G action given by g(b, e) = (b, ge). Then parts 1) and 3) of Definition 3.1
are obvious and part 2) follows from Corollary 2.10.

But, in fact, PFG(·) is a homotopy functor. Recall that two maps f0, f1 :
B′ → B are simplicially homotopic if there is a diagram

B′ � B′ w
d0 � d1

�
��

f0 � f1

B′ × Δ1

h
hk

B

Lemma 3.4. If f0 and f1 are simplicially homotopic, PFG(f0) = PFG(f1).
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Proof: It is sufficient to show that given q : E → B a principal fibration, the
pullbacks E(f0) → B′ and E(f1) → B′ are isomorphic. For this it is sufficient
to consider the universal example: given a principal fibration E → B×Δ1, the
pullbacks E(d0) → B and E(d1) → B are isomorphic. For this consider the
lifting problem in SG

E(d0) w

u
d0

E

u

E(d0) × Δ1
B
B
BBC

w B × Δ1.

Since E(d0) is cofibrant in SG, d0 is a trivial cofibration, so the lifting exists
and by Lemma 1.8 defines an isomorphism of principal fibrations

E(d0) × Δ1
w

∼=
AAC

E
�
��

B × Δ1

Pulling back this diagram along d1 gives the desired isomorphism. �
A similar sort of argument proves the following lemma:

Lemma 3.5. Let B ∈ S be contractible. Then any principal fibration over B
is isomorphic to π2 : G × B → B.

Proof: The isomorphism is given by lifting in the diagram (in SG).

G

uj
w E

u

G × B wπ2

O
OP

B

Here j is induced by any basepoint ∗ → B; since G is cofibrant in SG, j is a
trivial cofibration in SG. �

We can now define the classifying object for principal fibrations.

Definition 3.6. Let EG ∈ SG be any cofibrant object so that the unique
map EG → ∗ is a fibration and a weak equivalence. Let BG = EG/G and
q : EG → BG the resulting principal fibration.

Note that EG is unique up to equivariant homotopy equivalence, so q :
EG → BG is unique up to homotopy equivalence.

In other words we require more than that EG be a free contractible G-
space; EG must also be fibrant. The extra condition is important for the proof
of Theorem 3.9 below. It also makes the following result true.
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Lemma 3.7. The space BG is fibrant as a simplicial set.

Proof: By Corollary 2.7, the map q : EG → BG is a Kan fibration. It is also
surjective, so that any map Λn

k → BG lifts to a map Λn
k → EG. But then EG

is fibrant, so that the map Λn
k → EG extends to an n-simplex Δn → EG in

EG, hence in BG. �
Exercise 3.8. There is a general principle at work in the proof of Lemma 3.7.
Suppose given a diagram of simplicial set maps

X w

p
�
�
���q · p

Y

u
q

Z

such that p and the composite q · p are Kan fibrations, and that p is surjective.
Show that q is a Kan fibration.

Note that the same argument proves that if E ∈ SG is cofibrant and
fibrant, the resulting principal fibration E → E/G has fibrant base.

We now come to the main result.

Theorem 3.9. For all spaces B ∈ S, the map

θ : [B,BG] → PFG(B)

sending the class [f ] ∈ [B,BG] to the pullback of EG → BG along f is a
bijection.

Here, [B,BG] denotes morphisms in the homotopy category Ho(S) from B to
BG. The space BG is fibrant, so this morphism set cat be identified with the
set of simplicial homotopy classes of maps from B to BG.
Proof: Note that θ is well-defined by Lemma 3.4. To prove the result we
construct an inverse. If q : E → B is a principal fibration, there is a lifting in
the diagram in SG

φ w

u

EG

u

E

h
hj

w ∗
(3.10)

since E is cofibrant and EG is fibrant, and this lifting is unique up to equivariant
homotopy. Let f : B → BG be the quotient map. Define Ψ : PFG(B) →
[B,BG], by sending q : E → B to the class of f .



4. Universal cocycles and WG 269

Note that if E(f) is the pullback of f , there is a diagram

E wAAC
E(f)

�
��

B

so Lemma 2.11 implies θΨ = 1. On the other hand, given a representative
g : B → BG of a homotopy class in [B,BG], the map g′ in the diagram

E(g)

u

w

g′
EG

u

B wg BG

makes the diagram (3.10) commute, so by the homotopy uniqueness of liftings
Ψθ = 1. �
4. Universal cocycles and WG.
In the previous sections, we took a simplicial group G and assigned to it a
homotopy type BG; that is, the space BG depended on a choice EG of a
fibrant, cofibrant contractible G-space.

In this section we give a natural, canonical choice for EG and BG called,
respectively, WG and WG. The spaces WG and WG are classically defined by
letting WG be the simplicial set with

WGn = Gn × Gn−1 × · · · × G0

and

di (gn, gn−1, . . . g0)

=
{

(dign, di−1gn−1, . . . , (d0gn−i)gn−i−1, gn−i−2, ...g0) i < n,

(dngn, dn−1gn−1, . . . d1g1) i = n.

si(gn, gn−1 . . . , g0) = (sign, si−1gn−1 . . . s0gn−1, e, gn−i−1, . . . g0)

where e is always the unit. Note that WG becomes a G-space if we define
G × WG → WG by:

(h, (gn, gn−1, . . . , g0) −→ (hg, gn−1, . . . g0).

Then WG is the quotient of WG by the left G-action; write q = qG : WG →
WG for the quotient map. We establish the most of the basic properties of this
construction in this section; WG will be shown to be fibrant in Corollary 6.8.
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Lemma 4.1. The map q : WG → WG is a fibration.

Proof: This follows from Corollary 2.7 since (WG)n is a free Gn set. �
The functor G �→ WG takes values in the category S0 of reduced simplicial

sets, where a reduced simplicial set is a simplicial set having only one vertex.
The salient deeper feature of the functor W : sGr → S0 is that it has a left
adjoint G : S0 → sGr, called the loop group functor, such that the canonical
maps G(WG) → G and X → W (GX) are weak equivalences for all simplicial
groups G and reduced simplicial sets X. A demonstration of these assertions
will occupy this section and the following two. These results are originally due
to Kan, and have been known since the late 1950’s. The original proofs were
calculational — we recast them in modern terms here. Kan’s original geometric
insights survive and are perhaps sharpened, in the presence of the introduction
of a closed model structure for reduced simplicial sets and a theory of simplicial
cocycles.

A segment of an ordinal number n is an ordinal number monomorphism
n− j ↪→ n which is defined by i �→ i + j. This map can also be variously
characterized as the unique monomorphism n− j ↪→ n which takes 0 to j,
or as the map (d0)j . This map will also be denoted by [j, n], as a means of
identifying its image. There is a commutative diagram of ordinal number maps

n− kh
h
hhj

[k, n]

u

τ n

n− j
�
�
���

[j, n]

if and only if j ≤ k. The map τ is uniquely determined and must be a segment
map if it exists: it’s the map (d0)k−j. Thus, we obtain a poset Seg(n) of seg-
ments of the ordinal number n. This poset is plainly isomorphic to the poset
opposite to the ordinal n.

Suppose that G is a simplicial group. An n-cocycle f : Seg(n) 	 G as-
sociates to each relation τ : [k, n] ≤ [j, n] in Seg(n) an element f(τ) ∈ Gn−k,
such that the following conditions hold:

(1) f(1j) = e ∈ Gn−j , where 1j is the identity relation [j, n] ≤ [j, n],

(2) for any composeable pair of relations [l, n]
ζ−→ [k, n]

τ−→ [j, n], there is an
equation

ζ∗(f(τ))f(ζ) = f(τζ).
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Any ordinal number map γ : r → s has a unique factorization

r w

γ
�
�
��γ∗

s

s − γ(0)
N
N
NP
[γ(0), s] = (d0)γ(0)

where γ∗ is an ordinal number map such that γ∗(0) = 0. It follows that any
relation τ : [k,m] ≤ [j,m] in Seg(m) induces a commutative diagram of ordinal
number maps

m− k w

θk

u

[k,m]

�
�
���τ

n− θ(k)

u

[θ(k), n]

�
�
���
τ∗

m− j w

θj

�
�
�
���

[j,m]

n − θ(j)
N
N

N
N
NQ

[θ(j), n]

m w
θ

n

(4.2)

where the maps θj and θk take 0 to 0. Given an n-cocyle f : Seg(n) 	 G, define,
for each relation τ : [k,m] ≤ [j,m] in Seg(m), an element θ∗(f)(τ) ∈ Gm−k by

θ∗(f)(τ) = θ∗k(f(τ∗)).

It’s not hard to see now that the collection of all such elements θ∗(f)(τ) de-
fines an m-cocycle θ∗(f) : Seg(m) 	 G, and that the assignment θ �→ θ∗ is
contravariantly functorial in ordinal maps θ. We have therefore constructed a
simplicial set whose n-simplices are the n-cocycles Seg(n) 	 G, and whose
simplicial structure maps are the induced maps θ∗.

This simplicial set of G-cocycles is WG . This claim is checked by chas-
ing the definition through faces and degeneracies, while keeping in mind the
observation that an n-cocycle f : Seg(n) 	 G is completely determined by the
string of relations

[n, n]
τ0−→ [n − 1, n]

τ1−→ . . .
τn−2−−−→ [1, n]

τn−1−−−→ [0, n], (4.3)

and the corresponding element

(f(τn−1), f(τn−2), . . . , f(τ0)) ∈ Gn−1 × Gn−2 × · · · × G0.

Of course, each τi is an instance of the map d0.
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The identification of the simplicial set of G-cocycles with WG leads to a
“global” description of the simplicial structure of WG. Suppose that θ : m → n
is an ordinal number map, and let

g = (gn−1, gn−2, . . . , g0)

be an element of Gn−1 × Gn−2 × · · · × G0. Let Fg be the cocycle Seg(n) 	 G
associated to the n-tuple g. Then, subject to the notation appearing in diagram
(4.2), we have the relation

θ∗(gn−1, gn−2, . . . , g0) = (θ∗1Fg(τm−1∗), θ∗2Fg(τm−2∗), . . . , θ∗mFg(τ0∗)),

where τm−i∗ = (d0)θ(i)−θ(i−1) is the induced relation [θ(i), n] ≤ [θ(i − 1), n] of
Seg(n).

A simplicial map f : X → WG, from this point of view, assigns to each
n-simplex x a cocycle f(x) : Seg(n) 	 G, such that for each ordinal number
map θ : m → n and each map τ : [k,m] → [j,m] in Seg(m) there is a relation

θ∗kf(x)(τ∗) = f(θ∗(x))(τ).

Any element j ∈ n determines a unique diagram

n�
�
�
���

[0, n] = 1

n

n− j

u

[j, n]

�
�
���

[j, n]

and hence unambiguously gives rise to elements
f(x)([j, n]) ∈ Gn−j .

Observe further that if j ≤ k and τ : [k, n] ≤ [j, n] denotes the corresponding
relation in Seg(n), then the cocyle condition for the composite

[k, n]
τ−→ [j, n]

[j,n]−−→ [0, n]
can be rephrased as the relation

τ∗(f(x)([j, n])) = f(x)([k, n])f(x)(τ)−1.

Now, given a map (cocycle) f : X → WG, and an ordinal number map
θ : m → n, there is an induced function

θ∗ : Gn × Xn → Gm × Xm,

which is defined by
(g, x) �→ (θ∗(g)θ∗0(f(x)([θ(0), n])), θ∗(x)), (4.4)

where θ0 : m → n− θ(0) is the unique ordinal number map such that
[θ(0), n] · θ0 = θ.

Lemma 4.5. The maps θ∗ defined in (4.4) are functorial in ordinal number
maps θ.
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Proof: Suppose given ordinal number maps

k
γ−→ m

θ−→ n,

and form the diagram

k

u

γ0

h
h
h
h
h
h
h
hhj

γ

m− γ(0) w

[γ(0),m]

u

θγ(0)

m

u

θ0

�
�
�
�
�
�
���

θ

n− θ(γ(0)) w

[γ(0),m]∗
n − θ(0) w

[θ(0), n]
n

in the ordinal number category. In order to show that γ∗θ∗(g, x) = (θγ)∗(g, x)
in Gk × Xk, we must show that

γ∗θ∗0(f(x)([θ(0), n]))γ∗
0 (f(θ∗(x))([γ(0),m])) = γ∗

0θ∗γ(0)(f(x)([θ(γ(0)), n]))

in Gk. But
γ∗θ∗0 = γ∗

0θ∗γ(0)[γ(0),m]∗∗,

and

[γ(0),m]∗∗(f(x)[θ(0), n]) = f(x)([θγ(0), n])(f(x)([γ(0),m]∗))−1

by the cocycle condition. Finally,

θ∗γ(0)(f(x)([γ(0),m]∗)) = f(θ∗(x))([γ(0),m]),

since f is a simplicial map. The desired result follows. �
The simplicial set constructed in Lemma 4.5 from the map f : X → WG

will be denoted by Xf . The projection maps Gn×Xn → Xn define a simplicial
map π : Xf → X, and this map π has the structure of a G-bundle, or principal
fibration. This is a natural construction: if h : Y → X is a simplicial set map,
then the maps Gn × Yn → Gn × Xn defined by (g, y) �→ (g, h(y)) define a
G-equivariant simplicial set map h∗ : Yfh → Xf such that the diagram

Yfh w

h∗

u

π

Xf

u

π

Y w

h
X

commutes. Furthermore, this diagram is a pullback.
The simplicial set WG1 associated to the identity map 1 : WG → WG is

WG, and the G-bundle π : WG → WG is called the canonical G-bundle.
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Lemma 4.6. WG is contractible.

Proof: Suppose given an element (gn, (gn−1, . . . , g0)) ∈ WGn. Then the (n+
2)-tuple (e, (gn, gn−1, . . . g0)) defines an element of WGn+1, in such a way that
the following diagram of simplicial set maps commutes:

Δn+1
�
�
�
�
�
�
�
�
�
�
���

(e, (gn, gn−1, . . . , g0))

Δn

u

d0

w

(gn, (gn−1, . . . , g0))
WG

commutes. Furthermore, if θ : m → n is an ordinal number map, and θ∗ :
m + 1 → n + 1 is the unique map such that θ∗(0) = 0 and θ∗d0 = d0θ, then

θ∗∗(e, (gn, gn−1, . . . , g0)) = (e, θ∗(gn, (gn−1, . . . , g0)).

It follows that the simplices (e, gn, . . . , g0) define an extra degeneracy on WG in
the sense of Section III.5, and so Lemma III.5.1 implies that WG is contractible.

�

Remark 4.7. Every principal G-fibration p : Y → X is isomorphic to a
principal fibration Xf → X for some map f : X → WG. In effect, let Δ∗
denote the subcategory of the category Δ consisting of all ordinal number
morphisms γ : m → n such that γ(0) = 0. Then the map p restricts to a nat-
ural transformation p∗ : Y |Δ∗ → X|Δ∗ , and this transformation has a section
σ : X|Δ∗ → X|Δ∗ in the category of contravariant functors on Δ∗, essentially
since the simplicial map p is a surjective Kan fibration. Classically, the map σ
is called a pseudo cross-section for the bundle p. The pseudo cross-section σ
defines Gn-equivariant isomorphisms

φn : Gn × Xn
∼= Yn

given by (g, x) �→ g · σ(x). If τ : n− k → n− j is a morphism of Seg(n) then

τ∗(σ(dj
0x)) = fx(τ)σ(τ∗dj

0x)

for some unique element fx(τ) ∈ Gn−k. The elements fx(τ) define a cocycle
fx : Seg(n) 	 G for each simplex x of X, and the collection of cocycles fx,
x ∈ X, defines a simplicial map f : X → WG such that Y is G-equivariantly
isomorphic to Xf over X via the maps φn. The classical approach to the classi-
fication of principal G-bundles is based on this construction, albeit not in these
terms.
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5. The loop group construction.
Suppose that f : X → WG is a simplicial set map, and let x ∈ Xn be an
n-simplex of X. Recall that the associated cocycle f(x) : Seg(n) 	 G is com-
pletely determined by the group elements

f(x)(d0 : (d0)k+1 → (d0)k).

On the other hand,

f(x)(d0 : (d0)k+1 → (d0)k) = f(dk
0(x))(d0 : d0 → 1n−k).

It follows that the simplicial map f : X → WG is determined by the elements

f(x)(d0) = f(x)(d0 → 1n) ∈ Gn−1,

for x ∈ Xn, n ≥ 1. Note in particular that f(s0x)(d0) = e ∈ Gn−1.
Turning this around, suppose that x ∈ Xn+1, and the ordinal number

map θ : m → n has the factorization

n− θ(0)

u

τ

m
h
h
hhjθ0

w
θ

n,

where θ0(0) = 0 and τ is a segment map, and suppose that d0 : d0 → 1n+1 is
the inclusion in Seg(n + 1). Then

τ∗(f(x)(d0)) = f(x)(d0τ)(f(d0(x))(τ))−1.

by the cocycle condition for f(x), and so

θ∗(f(x)(d0)) = θ∗0τ∗(f(x)(d0))

= θ∗0(f(x)(d0τ))θ∗0(f(d0(x))(τ))−1

= f(θ̃∗(x))(d0)(f((cθ)∗(d0(x)))(d0))−1,

where θ̃ : m + 1 → n + 1 is defined by

θ̃(i) =
{

0 if i = 0, and
θ(i − 1) + 1 if i ≥ 1,

and cθ : m + 1 → n is the ordinal number map defined by (cθ)(0) = 0 and
(cθ)(i) = θ(i − 1) for i ≥ 1. Observe that cθ = s0θ̃.
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Define a group GXn = F (Xn+1)/s0F (Xn) for n ≥ 0, where F (Y ) denotes
the free group on a set Y . Note that GXn may also be described as the free
group on the set Xn+1 − s0Xn.

Given an ordinal number map θ : m → n, define a group homomorphism
θ∗ : GXn → GXm on generators [x], x ∈ Xn+1 by specifying

θ∗([x]) = [θ̃∗(x)][(cθ)∗(d0(x))]−1. (5.1)

If γ : k → m is an ordinal number map which is composeable with θ, then the
relations

(cγ)∗d0θ̃
∗(x) = (cγ)∗θ∗d0(x)

= (cγ)∗d0(cθ)∗d0(x)

and
γ̃∗(cθ)∗d0(x) = (c(θγ))∗d0(x)

together imply that γ∗θ∗([x]) = (θγ)∗([x]) for all x ∈ Xn+1, so that we have a
simplicial group, called the loop group of X, which will be denoted GX. This
construction is plainly functorial in simplicial sets X.

Each n-simplex x ∈ X gives rise to a string of elements

([x], [d0x], [d2
0x], . . . , [dn−1

0 x]) ∈ GXn−1 × GXn−2 × · · · × GX0,

which together determine a cocycle Fx : Seg(n) 	 GX. Suppose that θ : m →
n is an ordinal number map such that θ(0) = 0. The game is now to obtain a
recognizable formula for [θ∗x], in terms of the simplicial structure of GX.

Obviously, if θ(1) = θ(0), then [θ∗x] = e ∈ GXm−1. Suppose that θ(1) >
0. Then there is a commutative diagram of ordinal number maps

m− 1 w

θ1

u

d0

n− θ(1)

u

τ

�
�
���
(d0)θ(1)−1

n− 1
�

�
�
��� d0

m w
θ

n

If γ = (d0)θ(1)−1θ1, then θ = γ̃, and so

[θ∗(x)] = (θ∗1d
θ(1)−1
0 [x])[f(θ)∗(d0x)],
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where f(θ) is defined by f(θ) = cγ. We have f(θ)(0) = 0 by construction, and
there is a commutative diagram

m − 1 w

θ1

u

d0

n− θ(1)

u

(d0)θ(1)−1

m w

f(θ)
n − 1,

so an inductive argument on the exponent θ(1) − 1 implies that there is a
relation

[f(θ)∗(d0x)] = (θ∗1d
θ(1)−2
0 [d0x]) . . . (θ∗1 [dθ(1)−1

0 (x)]).

It follows that

[θ∗(x)] = (θ∗1d
θ(1)−1
0 [x])(θ∗1d

θ(1)−2
0 [d0x]) . . . (θ∗1 [dθ(1)−1

0 (x)]) = θ∗1(Fx(τ)). (5.2)

Lemma 5.3.

(a) The assignment

x �→ ([x], [d0x], [d2
0x], . . . , [dn−1

0 x])

defines a natural simplicial map η : X → WGX.

(b) The map η is one of the canonical homomorphisms for an adjunction

homsGr(GX,H) ∼= homS(X,WH),

where sGr denotes the category of simplicial groups.

Proof:

(a) Suppose that θ : m → n is an ordinal number map, and recall the de-
composition of (4.2). It will suit us to observe once again that the map [j,m]
is the composite (d0)j , and that τ∗ = (d0)θ(k)−θ(j). Note in particular that
θ = (d0)θ(0)θ0, and recall that θ0(0) = 0. It is also clear that there is a commu-
tative diagram

Xn w

η

u

d
θ(0)
0

WGXn

u

d
θ(0)
0

Xn−θ(0) wη WGXn−θ(0)

Let Fx be the cocycle Seg(n) 	 GX associated to the element

([x], [d0x], [d2
0x], . . . , [dn−1

0 x]).
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Then, for x ∈ Xn,

θ∗0([dθ(0)
0 x],[dθ(0)+1

0 x], . . . , [dn−1
0 x]) = (θ∗1Fx(τm−1∗), . . . , θ∗mFx(τ0∗))

= ([θ∗0d
θ(0)
0 x], [θ∗1d

θ(1)
0 x], . . . , [θ∗m−1d

θ(m−1)
0 x])

= ([θ∗x], [d0θ
∗x], . . . , [dm−1

0 θ∗x]),

where τm−i∗ = (d0)θ(i)−θ(i−1) as before, and this by repeated application of the
formula (5.2). In particular, η is a simplicial set map. The naturality is obvious.

(b) Suppose that f : X → WH is a simplicial set map, where H is a simplicial
group. Recall that the cocycle f(x) : Seg(n) 	 H can be identified with the
element

(f(x)(d0), f(d0x)(d0), . . . , f(dn−1
0 x)(d0)) ∈ Hn−1 × Hn−2 × · · · × H0.

The simplicial structure for GX given by the formula (5.1) implies that f :
X → WH induces a simplicial group map f∗ : GX → H which is specified on
generators by f∗([x]) = f(x)(d0). It follows that the function

homsGr(GX,H) → homS(X,WH)

defined by g �→ (Wg) · η is surjective. Furthermore, any map f : X → WH is
uniquely specified by the elements f(x)(d0), and hence by the simplicial group
homomorphism f∗. �
Remark 5.4. Any simplicial group homomorphism f : G → H induces a
f -equivariant morphism of associated principal fibrations of the form

G w

f

u

H

u

WG w

Wf

u

WH

u

WG w

Wf
WH,

as can be seen directly from the definitions. The canonical map η : X → WGX
induces a morphism

GX

u

GX

u

Xη w

u

WGX

u

X wη WGX
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of GX-bundles. It follows that, for any simplicial group homomorphism f :
GX → H, the map f and its adjoint f∗ = Wf · η fit into a morphism of
bundles

GX w

f

u

H

u

Xη w

u

WH

u

X w

f∗
WH.

Suppose now that the simplicial set X is reduced in the sense that it has
only one vertex. A closed n-loop of length 2k in X is defined to be a string

(x2k, x2k−1, . . . , x2, x1)

of (n +1)-simplices xj of X such that d0x2i−1 = d0x2i for 1 ≤ i ≤ k. Define an
equivalence relation on loops by requiring that

(x2k, . . . , x1) ∼ (x2k, . . . , xi+2, xi−1, . . . , x1)

if xi = xi+1. Let
〈x2k, . . . , x1〉

denote the equivalence class of the loop (x2k, . . . , x1). Write G′Xn for the set
of equivalence classes of n-loops under the relation ∼. Loops may be concate-
nated, giving G′Xn the structure of a group having identity represented by
the empty n-loop. Any ordinal number morphism θ : m → n induces a group
homomorphism

θ∗ : G′Xn → G′Xm,

which is defined by the assignment

〈x2k, . . . , x2, x1〉 �→ 〈θ̃∗x2k, . . . θ̃∗x2, θ̃
∗x1〉.

The corresponding simplicial group will be denote by G′X. This construction
is clearly functorial with respect to morphisms of reduced simplicial sets.

There is a homomorphism

φn : G′Xn → GXn

which is defined by

φn〈x2k, x2k−1, . . . , x2, x1〉 = [x2k][x2k−1]−1 . . . [x2][x1]−1.
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Observe that

θ∗([x2i][x2i−1]−1) = [θ̃∗(x2i)][(cθ)∗d0(x2i)]−1[(cθ)∗d0(x2i−1)][θ̃∗(x2i−1]−1

= [θ̃∗(x2i)][θ̃∗(x2i−1]−1,

so that

θ∗([x2k][x2k−1]−1 . . . [x2][x1]−1) = [θ̃∗x2k][θ̃∗x2k−1]−1 . . . [θ̃∗x2][θ̃∗x1]−1.

The homomorphisms φn : G′Xn → GXn, taken together, therefore define a
simplicial group homomorphism φ : G′X → GX.

Lemma 5.5. The homomorphism φ : G′X → GX is an isomorphism of sim-
plicial groups which is natural with respect to morphisms of reduced simplicial
sets X.

Proof: The homomorphism φn : G′Xn → GXn has a section, which is defined
on generators by

[x] �→ 〈x, s0d0x〉,
and elements of the form 〈x, s0d0x〉 generate G′Xn. �

Again, let X be a reduced simplicial set. The set E′Xn consists of equiv-
alence classes of strings of (n + 1)-simplices

(x2k, . . . , x1, x0)

with d0x2i = d0x2i−1, i ≥ 1, subject to an equivalence relation generated by
relations if the form

(x2k, . . . , x0) ∼ (x2k, . . . , xi+2, xi−1, . . . , x0)

if xi = xi+1. We shall write 〈x2k, . . . , x0〉 for the equivalence class containing
the element (x2k, . . . , x0). Any ordinal number map θ : m → n determines a
function θ∗ : E′Xn → E′Xm, which is defined by

θ∗〈x2k, . . . , x0〉 = 〈θ̃∗(x2k), . . . , θ̃∗(x0)〉,

and so we obtain a simplicial set E′X. Concatenation induces a left action
G′X × E′X → E′X of the simplicial group G′X on E′X.

There is a function

φ′
n : E′Xn → GXn × Xn

which is defined by

φ′
n〈x2k, . . . , x1, x0〉 = ([x2k][x2k−1]−1 . . . [x2][x1]−1[x0], d0x0).
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The function φ′
n is φn-equivariant, and so

φ′
n(φ−1

n (g)〈s0x〉) = (g, x)

for any (g, x) ∈ GXn × Xn, and φ′
n is surjective. There is an equation

〈x2k, . . . , x0〉 = 〈x2k, . . . , x0, s0d0(x0)〉〈s0d0(x0)〉
for every element of E′Xn, so that E′Xn consists of G′Xn-orbits of elements
〈s0x〉. The function φ′

n preserves orbits and φn is a bijection, so that φ′
n is

injective as well.
The set GXn × Xn is the set of n-simplices of the GX-bundle Xη which

is associated to the natural map η : X → WGX. If θ : m → n is an ordinal
number map, then the associated simplicial structure map θ∗ in Xη has the
form

θ∗([x2k] . . . [x1]−1[x0], d0x0)

= ([θ̃∗(x2k)] . . . [θ̃∗(x1)]−1[θ̃∗(x0)][(cθ)∗(d0x0)]−1θ∗0(η(x)([θ(0), n])), d0 θ̃
∗(x0))

since d0θ̃
∗(x0) = θ∗(d0x0). But

[(cθ)∗(d0x0))] = θ∗0(η(x)([θ(0), n]),

by equation (5.2). The bijections φ′
n therefore define a φ-equivariant simplicial

map, and so we have proved

Lemma 5.6. There is a φ-equivariant isomorphism

φ′ : E′X → Xη.

This isomorphism is natural with respect to maps of reduced simplicial sets.

There is a simplicial set E′′X whose n-simplices consist of the strings of
(n + 1)-simplices (x2k, . . . , x0) of X as above, and with simplicial structure
maps defined by

θ∗(x2k, . . . , x0) = (θ̃∗x2k, . . . , θ̃∗x0)

for θ : m → n. Observe that E′X = E′′X/ ∼.
Given this description of the simplicial structure maps in E′′X, the best

way to think of the members of an n-simplex is as a string (x2k, . . . , x0) of
cones on their 0th faces, with the obvious incidence relations. A homotopy
Δn × Δ1 → E′′X can therefore be identified with a string

(h2k, . . . , h1, h0),

where

(1) hi : C(Δn ×Δ1) → X is a map defined on the cone C(Δn ×Δ1) for the
simplicial set Δn × Δ1, and

(2)
h2i|Δn×Δ1 = h2i−1|Δn×Δ1

for 1 ≤ i ≤ k.
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We shall say that maps of the form C(Δn×Δ1) → Y are cone homotopies.
Examples of such include the following:

(1) The canonical contracting homotopy

0 w

u

0 w

u

· · · w 0
u

0 w 1 w · · · w n + 1

of Δn+1 onto the vertex 0 induces a map C(Δn × Δ1) → Δn+1 which
is jointly specified by the vertex 0 and the restricted homotopy

0 w

u

0 w

u

· · · w 0
u

1 w 2 w · · · w n + 1.

This map is a “contracting” cone homotopy.
(2) The vertex 0 and the constant homotopy

1 w

u

2 w

u

· · · w n + 1
u

1 w 2 w · · · w n + 1.

jointly specify a “constant” cone homotopy C(Δn × Δ1) → Δn+1.

In both of these cases, it’s helpful to know that the cone CBP on the
nerve BP of a poset P can be identified with the nerve of the cone poset CP
which is obtained from P by adjoining a disjoint initial object. Furthermore,
a poset map γ : P → Q can be extended to a map CP → Q by mapping the
initial object of CP to some common lower bound of the objects in the image
of γ, if such a lower bound exists.

Lemma 5.7. E′X is acyclic in the sense that H̃∗(E′X, Z) = 0.

Proof: Both the contracting and constant cone homotopies defined above are
natural in Δn in the sense that the diagram

C(Δm × Δ1) w
h

u

C(θ × 1)

Δm+1

u

θ̃∗

C(Δn × Δ1) w

h
Δn+1
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commutes for each ordinal number map θ : m → n, where h denotes one of the
two types. It follows that there is a homotopy from the identity map on E′′X
to the map E′′X → E′′X defined by

(x2k, . . . , x1, x0) �→ (x2k, . . . , x1, ∗),

and that this homotopy can be defined on the level of simplices by strings of
cone homotopies

(h(x2k), . . . , h(x1), h(x0)),

where h(x0) is contracting on d0x0, and all other h(xi) are constant. This
homotopy, when composed with the canonical map E′′X → E′X, determines a
chain homotopy S from the induced map ZE′′X → ZE′X to the map ZE′′X →
ZE′X which is induced by the simplicial set map defined by

(x2k, . . . , x1, x0) �→ 〈x2k, . . . , x1, ∗〉.

For each element (x2k, . . . , x1, x0), the chain S(x2k, . . . , x1, x0) is an alternating
sum of the simplices comprising the homotopy (h(x2k), . . . , h(x1), h(x0)). It
follows in particular, that if xi = xi+1 for some i ≥ 1, then the corresponding
adjacent simplices of the components of S(x2k, . . . , x1, x0) are also equal.

It also follows that there is a chain homotopy defined by

(x2k, . . . , x1, x0) �→ S(x2k, . . . , x1, x0) − S(x2k, . . . , x1, x1),

and that this is a chain homotopy from the chain map induced by the canonical
map E′′X → E′X to the chain map induced by the simplicial set map

(x2k, . . . , x1, x0) �→ 〈x2k, . . . , x3, x2〉

This construction can be iterated, to produce a chain homotopy H defined by

(x2k, . . . , x0) �→ (
k−1∑
i=0

(S(x2k, . . . , x2i+1, x2i)−S(x2k, . . . , x2i+1, x2i+1)))+S(x2k)

from the chain map ZE′′X → ZE′X to the chain map induced by the simplicial
set map E′′X → E′X which takes all simplices to the base point ∗. One can
show that

H(x2k, . . . , x0) = H(x2k, . . . xi+2, xi−1, . . . , x0)

if xi = xi+1. It follows that H induces a contracting chain homotopy on the
complex ZE′X. �

Lemma 5.8. E′X is simply connected.
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Proof: Following Lemma 5.6, we shall do a fundamental groupoid calculation
in Xη

∼= E′X.
The boundary of the 1-simplex (s0g, x) in Xη has the form

∂(s0g, x) = ((g[x], ∗), (g, ∗)).

There is an oriented graph T (X) (hence a simplicial set) having vertices coin-
ciding with the elements of GX0 and with edges x : g → gx for x ∈ X1 − {∗}.
There is plainly a simplicial set map T (X) → Xη which is the identity on
vertices and sends each edge x : g → gx to the 1-simplex (s0g, x). This map
induces a map of fundamental groupoids

πT (X) → πXη

which is bijective on objects. A reduced word argument shows that T (X) is
contractible, hence has trivial fundamental groupoid, so we conclude that Xη

is simply connected if we can show that the 1-simplices (s0g, x) generate the
fundamental groupoid πXη.

There are boundary relations

∂(s1g, s0x) = (d0(s1g, s0x), d1(s1g, s0x), d2(s1g, s0x))
= (s0d0g, x), (g, x), (g, ∗))

and in the same notation,

∂(s0g, y) = ((g[y], d0y), (g, d1y), (s0d1g, d2y)).

The upshot is that there are commuting diagrams in πXη of the form

∗ w

(s0d1g, d2y)
�
�
�
�
��(g, d1y)

∗
h
h

h
h
hk

(g[y], d0y)

�
�
�
�
��

(g[y], ∗)
w

(g[y], x) ∗

∗ ∗u

(s0d0(g[y]), d0y)

h
h
h
h
hj

(s0d0(g[y]), x)

and

∗�
�
�
�
�
��

(g, d0y)

∗u

(s0d1(g[y]−1), d2y)

h
h

h
h
h
hk

(g[y]−1, d1y)

�
�
�
�
�
��

(g[y]−1, ∗)
w

(g[y]−1, x) ∗

∗ ∗u

(s0d0(g[y]−1), d1y)

h
h
h
h
h
hj

(s0d0(g[y]−1), x)



6. Reduced simplicial sets, Milnor’s FK-construction 285

It follows that any generator (g[y], x) (respectively (g[y]−1, x) of πXη can be
replaced by a generator (g, d1y) (respectively (g, d0y)) of πXη up to multipli-
cation by elements of πT (X). In particular, any generator (h, x) of πXη can
be replaced up to multiplication by elements of πT (X) by a generator (h′, x′)
such that h′ has strictly smaller word length as an element of the free group
GX1. An induction on word length therefore shows that the groupoid πXη is
generated by the image of T (X). �
Remark 5.9. The object T (X) in the proof of Lemma 5.8 is the Serre tree
associated to the generating set X1 − {∗} of the free group GX0. See p.16 and
p.26 of [85].

An acyclic space which has a trivial fundamental group is contractible
in the sense that it is weakly equivalent to a point, by a standard Hurewicz
argument, so Lemmas 5.6 through 5.8 together imply the following:

Theorem 5.10. Suppose that X is a reduced simplicial set. Then the total
space Xη of the principal GX-fibration Xη → X is weakly equivalent to a
point.

Corollary 5.11. There are weak equivalences

GX
�−→ Xη ×X PX

�←− ΩX,

which are natural with respect to morphisms of reduced Kan complexes X.

6. Reduced simplicial sets, Milnor’s FK-construction.

The proof of Theorem 5.10 depends on an explicit geometric model for the space
Xη, and the construction of this model uses the assumption that the simplicial
set X is reduced. There is no such restriction on the loop group functor: GY is
defined for all simplicial sets Y . The geometric model for Xη can be expanded to
more general simplicial sets (see Kan’s paper), but Theorem 5.10 fails badly in
the non-reduced case: the loop group G(Δ1) on the simplex Δ1 is the constant
simplicial group on the free group Z on one letter, which is manifestly not
contractible. This sort of example forces us (for the time being — see Section
8) to restrict our attention to spaces with one vertex.

We now turn to the model category aspects of the loop group and W
functors.

Lemma 6.1. Let f : X → Y be a cofibration of simplicial sets. Then Gf :
GX → GY is a cofibration of simplicial groups. In particular, for all simplicial
sets X, GX is a cofibrant simplicial group.

Proof: This result is a consequence of Corollary 1.11.
Note that since s0Xn ⊆ Xn+1 there is an isomorphism of groups

GXn
∼= F (Xn+1 − s0Xn).
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Furthermore, for all i ≥ 0, the map si+1 : Xn → Xn+1 restricts to a map

si+1 : Xn − s0Xn−1 → Xn+1 − s0Xn

since si+1s0X = s0siX. Hence there is a diagram

GXn−1 w

∼=

u

si

F (Xn − s0Xn−1)

u

Fsi+1

GXn w

∼= F (Xn+1 − s0Xn)

and GX is almost free, hence cofibrant. For the general case, if X → Y is a
level-wise inclusion

Yn+1 − s0Yn = (Xn+1 − s0Xn) ∪ Zn+1

where Zn+1 = Yn+1 − (Xn+1 ∪ s0Yn). Thus

GYn
∼= GXn ∗ FZn+1

where the ∗ denotes the free product. Now si+1 : Yn → Yn+1 restricts to a map
si+1 : Zn → Zn+1 and, hence, the inclusion GX → GY is almost-free and a
cofibration. �

As a result of Theorem 5.10, Lemma 6.1 and a properness argument one
sees that G preserves cofibrations and weak equivalences between spaces with
one vertex. This suggests that the proper domain category for G — at least
from a model category point of view — is the category S0 of simplicial sets
with one vertex. Our next project then is to give that category a closed model
structure.

Proposition 6.2. The category S0 has a closed model category structure
where a morphism f : X → Y is a

1) a weak equivalence if it is a weak equivalence as simplicial sets;

2) a cofibration if it is a cofibration as simplicial sets; and

3) a fibration if it has the right lifting property with respect to all trivial
cofibrations.

The proof is at the end of the section, after we explore some consequences.

Proposition 6.3.

1) The functor G : S0 → sGr preserves cofibrations and weak equivalences.

2) The functor W : sGr → S0 preserves fibrations and weak equivalences.

3) Let X ∈ S0 and G ∈ sGr. Then a morphism f : GX → G is a weak
equivalence in sGr if only if the adjoint f∗ : X → WG is a weak
equivalence in S0.
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Proof: Part 1) follows from Lemma 6.1 and Theorem 5.10. For part 2) no-
tice that since W is right adjoint to a functor which preserves trivial cofibra-
tions, it preserves fibrations. The clause about weak equivalences follows from
Lemma 4.6 Finally, part 3), follows from Remark 5.4, Lemma 4.6, Theorem 5.10
and properness for simplicial sets.

Corollary 6.4. Let Ho(S0) and Ho(sGr) denote the homotopy categories.
Then the functors G and W induce an equivalence of categories

Ho(S0) ∼= Ho(sGr).

Proof: Proposition 6.3 implies that the natural maps ε : GWH → H and
η : X → WGX are weak equivalences for all simplicial groups H and reduced
simplicial sets X. �

Remark 6.5. If Ho(S)c ⊆ Ho(S) is the full sub-category of the usual homo-
topy category with objects the connected spaces, then the inclusion Ho(S0) →
Ho(S)c is an equivalence of categories. To see this, it is sufficient to prove if X
is connected there is a Y weakly equivalent to X with a single vertex. One way
is to choose a weak equivalence X → Z with Z fibrant and then let Y ⊆ Z be
a minimal subcomplex weakly equivalent to Z.

We next relate the fibrations in S0 to the fibrations in S.

Lemma 6.6. Let f : X → Y be a fibration in S0. Then f is a fibration in S if
and only if f has the right lifting property with respect to

∗ → S1 = Δ1/∂Δ1.

Proof: First suppose f is a fibration in S. Consider a lifting problem

Δ0
w

y

u

di

∗ w

u

X

u

f

Δ1
w S1

�
�
��

w Y.

(6.7)

Since f is a fibration in S, there is a map g : Δ1 → X solving the lifting
problem for the outer rectangle. Since X has one vertex g factors through the
quotient map,

Δ1 → Δ1/ sk0 Δ1 = S1 g−→X

and g solves the original lifting problem.
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Now suppose f has the stipulated lifting property. Then one must solve
all lifting problems

Λn
k w

y

u

X

u

Δn
w

�
�
��

Y.

If n > 1, this diagram can be expanded to

Λn
k w

y

u

Λn
k/ sk0 Λn

k w

u

X

u

f

Δn
w Δn/ sk0 Δn

w

�
�
��

Y.

The map
Λn

k/ sk0 Λn
k → Δn/ sk0 Δn

is still a trivial cofibration, now in S0. So the lift exists. If n = 1, the expanded
diagram is an instance of diagram (6.7), and the lift exists by hypothesis. �
Corollary 6.8. Let X ∈ S0 be fibrant in S0, then X is fibrant in S. In
particular, if G ∈ sGr, then WG is fibrant in S.

Proof: The first clause follows from the previous lemma. For the second, note
that every object of sGr is fibrant. Since W : sGr → S0 preserves fibrations,
WG is fibrant in S0. �
Corollary 6.9. Let f : X → Y be a fibration in S0 between fibrant spaces.
Then f is a fibration in S if and only if

f∗ : π1X → π1Y

is onto. In particular, if G → H is a fibration of simplicial groups, WG → WH
is a fibration of simplicial sets if and only if π0G → π0H is onto.

Proof: Consider a lifting problem

∗ w

u

X

u

S1

�
�
��

wα Y.
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This can be solved up to homotopy; that is there is a diagram

S1
w

u

d1

X

u

S1
w

d0
S1 ∧ Δ1

+ w
h Y.

where h · d0 = α. But d1 : S1 → S1 ∧ Δ1
+ is a trivial cofibration in S0 so the

homotopy h can be lifted to h̃ : S1 ∧ Δ1
+ → X and h̃ · d0 solves the original

lifting problem.
For the second part of the corollary, note that Corollary 2.7 and Lemma

4.6 together imply that π1WG ∼= π0G. �
We now produce the model category structure promised for S0. The follow-

ing lemma sets the stage. If X is a simplicial set, let #X denote the cardinality
of the non-degenerate simplices in X. Let ω be the first infinite cardinal.

Lemma 6.10.

1) Let A → B be a cofibration in S and x ∈ Bk a k-simplex. Then there is
a subspace C ⊆ B so that #C < ω and x ∈ C.

2) Let A → B be a trivial cofibration in S and x ∈ Bk a k-simplex. Then
there is a subspace D ⊆ B so that #D ≤ ω, x ∈ D and A ∩ D → D is
a trivial cofibration.

Proof: Part 1) is a reformulation of the statement that every simplicial set
is the filtered colimit of its finite subspaces. For part 2) we will construct an
expanding sequence of subspaces

D1 ⊆ D2 ⊆ · · · ⊆ B

so that x ∈ D1, #Dn ≤ ω and

πp(|Dn|, |Dn ∩ A|) → πp(|Dn+1|, |Dn+1 ∩ A|)
is the zero map. Then we can set D =

⋃
n

Dn.

To get D1, simply choose a finite subspace D1 ⊆ B with x ∈ D1. Now
suppose Dq, q ≤ n, have been constructed and satisfy the above properties. Let

α ∈ π∗(|Dn|, |Dn ∩ A|).
Since α maps to zero under

π∗(|Dn|, |Dn ∩ A|) → π∗(|B|, |A|)
there must be a subspace Dα ⊆ B, such that #D < ω and so that α maps to
zero under

π∗(|Dn|, |Dn ∩ A|) → π∗(|Dn ∪ Dα|, (Dn ∪ Dα) ∩ A|).
Set Dn+1 = Dn ∪ (

⋃
α

Dα). �
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Remark 6.11. The relative homotopy groups π∗(|B|, |A|) for a cofibration
i : A → B of simplicial sets are defined to be the homotopy groups of the
homotopy fibre of the realized map i∗ : |A| ↪→ |B|, up to a dimension shift. The
realization of a Kan fibration is a Serre fibration (Theorem I.10.10), so it follows
that these groups coincide up to isomorphism with the simplicial homotopy
groups π∗Fi of any choice of homotopy fibre Fi in the simplicial set category.
One can use Kan’s Ex∞ functor along with an analog of the classical method of
replacing a continuous map by a fibration to give a rigid construction of the Kan
complex Fi which satisfies the property that the assignment i �→ Fi preserves
filtered colimits in the maps i. The argument for part 2) of Lemma 6.10 can
therefore be made completely combinatorial. This observation becomes quite
important in contexts where functoriality is vital — see [38].

Lemma 6.12. A morphism f : X → Y in S0 is a fibration if and only if it has
the right lifting property with respect to all trivial cofibrations C → D in S0

with #D ≤ ω.

Proof: Consider a lifting problem

A w
a

u

j

X

u

f

B

�
�
��

w Y

where j is a trivial cofibration. We solve this by a Zorn’s Lemma argument.
Consider the set Λ of pairs (Z, g) where A ⊆ Z ⊆ B, A → Z is a weak
equivalence and g is a solution to the restricted lifting problem

A w
a

u

X

u

f

Z

�
�
��

w Y.

Partially order Λ by setting (Z, g) < (Z ′, g′) if Z ⊆ Z ′ and g′ extends g. Since
(A, a) ∈ Λ, Λ is not empty and any chain

· · · < (Zi, gi) < (Zi+1, gi+1) < · · ·

in Λ has an upper bound, namely (∪Zi,∪gi). Thus Λ satisfies the hypotheses of
Zorn’s lemma and has a maximal element (B0, g0). Suppose B0 �= B. Consider
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the diagram

B0 w

g0

u

i

X

u

f

B w Y.

Then i is a trivial cofibration. Choose x ∈ B with x �∈ B0. By Lemma 6.10.2
there is a subspace D ⊆ B with x ∈ D, #D ≤ ω and B0 ∩ D → D a trivial
cofibration. The restricted lifting problem

B0 ∩ D w

u

X

u

f

D

i
i
i
ij

w Y

has a solution, by hypotheses. Thus g0 can be extended over B0 ∪ D. This
contradicts the maximality of (B0, g0). Hence B0 = B. �
Remark 6.13. The proofs of Lemma 6.10 and Lemma 6.12 are actually stan-
dard moves. The same circle of ideas appears in the arguments for the closed
model structures underlying both the Bousfield homology localization theories
[8], [9] and the homotopy theory of simplicial presheaves [46], [51], [38]. We
shall return to this topic in Chapter IX.

The Proof of Proposition 6.2: Axioms CM1–CM3 for a closed model
category are easy in this case. Also, the “trivial cofibration-fibration” part of
CM4 is the definition of fibration. We next prove the factorization axiom CM5
holds, then return to finish CM4.

Let f : X → Y be a morphism in S0. To factor f as a cofibration followed
by a trivial fibration, use the usual small object argument with pushout along
cofibrations A → B in S0 with #B < ω to factor f as X

j−→Z
q−→Y where j

is cofibration and q is a map with the right lifting property with respect to all
cofibrations A → B with #B < ω. The evident variant on the Zorn’s lemma
argument given in the proof of Lemma 6.12 using 6.10.1 implies that q has
the right lifting property with respect to all cofibrations in S0. Hence q is a
fibration. We claim it is a weak equivalence and, in fact, a trivial fibration in
S. To see this consider a lifting problem

∂Δn w
y

u

Z

u

q

Δn
�
�
���

w Y.
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If n = 0 this has a solution, since Z0
∼= Y0. If n > 0, this extends to a diagram

∂Δn
w

y

u

∂Δn/ sk0(∂Δn) w

u

j

Z

u

q

Δn
w Δn/ sk0 Δn

�
�
���

w Y.

Since n ≥ 1, sk0(∂Δn) = sk0(Δn), so j is a cofibration between finite complexes
in S0 and the lift exists.

Return to f : X → Y in S0. To factor f as a trivial cofibration followed
by a fibration, we use a transfinite small object argument.

We follow the convention that a cardinal number is the smallest ordinal
number within a given bijection class; we further interpret a cardinal number
β as a poset consisting of strictly smaller ordinal numbers, and hence as a
category. Choose a cardinal number β such that β > 2ω.

Take the map f : X → Y , and define a functor X : β → S0 and a natural
transformation fs : X(s) → Y such that

(1) X(0) = X,
(2) X(t) = lim−→s<t

X(s) for all limit ordinals t < β, and

(3) the map X(s) → X(s + 1) is defined by the pushout diagram

∨
D

AD w

(αD)

u

∨iD

X(s)

u∨
D

BD w X(s + 1)

where the index D refers to a set of representatives for all diagrams

AD w

αD

u

iD

X(s)

u

fs

BD w Y

such that iD : AD → BD is a trivial cofibration in S0 with #BD ≤ ω.
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Then there is a factorization

X w

i0
�
�
�
��f

Xβ

u
fβ

Y

for the map f , where Xβ = lim−→s
X(s), and i0 : X = X(0) → Xβ is the

canonical map into the colimit. A pushout of a trivial cofibration in S0 is
a trivial cofibration in S0 because the same is true in S, so i0 is a trivial
cofibration. Also, any map A → Xβ must factor through one of the canonical
maps is : X(s) → Xβ if #A ≤ ω, for otherwise A would have too many
subobjects on account of the size of β. It follows that the map fβ : Xβ → Y is
a fibration of S0. This finishes CM5.

To prove CM4 we must show any trivial fibration f : X → Y in S0 has
the right lifting property with respect to all cofibrations. However, we factored
f as a composite

X
j−→Z

q−→Y

where j is a cofibration and q is a trivial fibration with the right lifting property
with respect to all cofibrations. Now j is a trivial cofibration, since f is a weak
equivalence. Thus there is a lifting in

X w
=

u
j

X

u
f

Z wq

�
�
��

Y

since f is a fibration. This shows f is a retract of q and has the requisite lifting
property, since q does. �

As an artifact of the proof we have:

Lemma 6.14. A morphism f : X → Y in S0 is a trivial fibration in S0 if and
only if it is a trivial fibration in S.

The Milnor FK construction associates to a pointed simplicial set K the
simplicial group FK, which is given in degree n by

FKn = F (Kn − {∗}),
so that FKn is the free group on the set Kn − {∗}. This construction gives a
functor from pointed simplicial sets to simplicial groups. The group FK is also
a loop group:
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Theorem 6.15. There is a natural isomorphism

G(ΣK) ∼= FK,

for pointed simplicial sets K.

Proof: Recall that ΣK denotes the Kan suspension of K. The group of n-
simplices of G(ΣK) is defined to be the quotient

G(ΣK)n = F (ΣKn+1)/F (s0ΣKn).

The map s0 : ΣKn → ΣKn+1 can be identified with the wedge summand
inclusion

Kn−1 ∨ · · · ∨ K0 ↪→ Kn ∨ Kn−1 ∨ · · · ∨ K0,

so that the composite group homomorphism

F (Kn)
ηn∗−−→ F (ΣKn+1) → F (ΣKn+1)/F (s0ΣKn)

can be identified via an isomorphism

F (ΣKn+1)/F (s0ΣKn) ∼= FKn (6.16)

with the quotient map

F (Kn) → F (Kn)/F (∗) ∼= FKn.

Recall that for θ : m → n, the map θ∗ : G(ΣK)n → G(ΣK)m is specified on
generators [x] by

θ∗([x]) = [θ̃∗(x)][(cθ)∗(d0(x))]−1.

But then

θ∗([ηn(x)]) = [θ̃∗(ηn(x))][(cθ)∗(d0(ηn(x)))]−1

= [θ̃∗(ηn(x))]
= [ηm(θ∗(x))],

since d0(ηn(x)) = ∗. It follows that the isomorphisms (6.16) respect the simpli-
cial structure maps. �

The proof of Theorem 6.15 is easy enough, but this result has important
consequences:

Corollary 6.17.

(1) The Milnor FK construction takes weak equivalences of pointed simpli-
cial sets to weak equivalences of simplicial groups.

(2) The simplicial group FK is a natural fibrant model for ΩΣK, in the
category of pointed simplicial sets.



7. Simplicial groupoids 295

Proof: The first assertion is proved by observing that the Kan suspension
functor preserves weak equivalences; the loop group construction has the same
property by Theorem 5.10 (see Section III.5).

Let ΣK → Y be a fibrant model for ΣK in the category of reduced simpli-
cial sets. Then Y is a Kan complex which is weakly equivalent to ΣK, so that
ΩY is a model for ΩΣK. The loop group functor preserves weak equivalences,
so that the induced map G(ΣK) → GY is a weak equivalence of simplicial
groups. Finally, we know that GY is weakly equivalent to ΩY , so that G(ΣK)
and hence FK is a model for ΩΣK. �
7. Simplicial groupoids.
A simplicial groupoid G, for our purposes, is a simplicial object in the category
of groupoids whose simplicial set of objects is discrete. In other words, G con-
sists of small groupoids Gn, n ≥ 0 with a functor θ∗ : Gm → Gn for each ordinal
number map θ : n → m, such that all sets of objects Ob(Gn) coincide with a
fixed set Ob(G), and all functors θ∗ induce the identity function on Ob(G). Of
course, θ �→ θ∗ is also contravariantly functorial in ordinal number maps θ. The
set of morphisms from x to y in Gn will be denoted by Gn(x, y), and there is a
simplicial set G(x, y) whose n-simplices are the morphism set Gn(x, y) in the
groupoid Gn. We shall denote the category of simplicial groupoids by sGd.

The free groupoid G(X) on a graph X has the same set of objects as
X, and has morphisms consisting of reduced words in arrows of X and their
inverses. There is a canonical graph morphism η : X → G(X) which is the
identity on objects, and takes an arrow α to the reduced word represented by
the string consisting of α alone. Any graph morphism f : X → H taking values
in a groupoid H extends uniquely to a functor f∗ : G(X) → H, in the sense
that the following diagram commutes:

X w

f

u

η

H

G(X)
h
h
hhj

f∗

There is a similar construction of a free groupoid GC on a category C, which
has been used without comment until now. The groupoid GC is obtained by
the free groupoid on the graph underlying the category C by killing the nor-
mal subgroupoid generated by the composition relations of C and the strings
associated to the identity morphisms of C (see also Sections I.8 and III.1). The
category of groupoids has all small coproducts, given by disjoint unions. This
category also has pushouts, which are actually pushouts in the category of
small categories, so the category of groupoids is cocomplete. Note that filtered
colimits are formed in the category of groupoids as filtered colimits of sets on
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the object and morphism levels. The initial object in the category of groupoids
has an empty set of morphisms and an empty set of objects and is denoted by ∅.

It is also completely straightforward to show that the category of simplicial
groupoids has all small inverse limits.

Dwyer and Kan define [25], for every simplicial set X, a groupoid F ′X
having object set {0, 1}, such that the set of n-simplices Xn is identified with
a set of arrows from 0 to 1, and such that F ′Xn is the free groupoid on the
resulting graph.

The groupoid F ′K is morally the same thing as the Milnor construction,
for pointed simplicial sets K. If x denotes the base point of K, then there is a
homomorphism of simplicial groups

g : FK → F ′K(0, 0)

which is defined on generators y ∈ Kn − {x} by y �→ x−1y. Also, regarding
FK as a simplicial groupoid with one object, we see that there is a map of
simplicial groupoids

f : F ′K → FK

defined by sending x to e in all degrees and such that y ∈ Kn−{x} maps to the
arrow y. The collection of all products y−1z, y, z ∈ Kn, generates F ′K(0, 0) in
degree n, and so it follows that the composite simplicial group homomorphism

F ′K(0, 0)
f−→ FK

g−→ F ′K(0, 0)

is the identity. The composite

FK
g−→ F ′K(0, 0)

f−→ FK

sends y ∈ Kn to x−1y = y ∈ FKn, so the homomorphism g is an isomorphism.

Lemma 7.1. Suppose that K is a pointed simplicial set. Then the simplicial
sets F ′K(a, b), a, b ∈ {0, 1}, are all isomorphic to the Milnor FK construction.

Proof: The base point x of K determines an isomorphism x : 0 → 1 in the
groupoid F ′Kn for all n ≥ 0. Composition and precomposition with x therefore
determines a commutative diagram of simplicial set isomorphisms

F ′K(0, 0) w

x∗∼= F ′K(0, 1)

F ′K(1, 0) w

∼=
x∗

u

x∗ ∼=

F ′K(1, 1),

u

∼= x∗ (7.2)

and of course we’ve seen that F ′K(0, 0) ∼= FK. �
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Corollary 7.3. A weak equivalence f : X → Y of simplicial sets induces
weak equivalences f∗ : F ′X(a, b) → F ′Y (a, b) for all objects a, b ∈ {0, 1}.
Proof: We can suppose that X is non-empty. Pick a base point x in X, and
observe that the diagram (7.2) is natural in pointed simplicial set maps, as is the
isomorphism F ′X(0, 0) ∼= FX. We’ve seen that the Milnor FX construction
preserves weak equivalences in Corollary 6.17. �

For an ordinary groupoid H, it’s standard to write π0H for the set of path
components of H. By this one means that

π0H = Ob(H)/ ∼,

where there is a relations x ∼ y between two objects of H if and only if there
is a morphism x → y in H. This is plainly an equivalence relation since H is
a groupoid, but more generally π0H is the specialization of a notion of the set
of path components π0C for a small category C.

If now G is a simplicial groupoid, all of the simplicial structure functors
θ∗ : Gn → Gm induce isomorphisms π0Gn

∼= π0Gm. We shall therefore refer to
π0G0 as the set of path components of the simplicial groupoid G, and denote it
by π0G.

A map f : G → H of simplicial groupoids is said to be a weak equivalence
of sGd if

(1) the morphism f induces an isomorphism π0G ∼= π0H, and
(2) each induced map f : G(x, x) → H(f(x), f(x)), x ∈ Ob(G) is a weak

equivalence of simplicial groups (or of simplicial sets).

Corollary 7.3 says that the functor F ′ : S → sGd takes weak equivalences of
simplicial sets to weak equivalences of simplicial groupoids.

A map g : H → K of simplicial groupoids is said to be a fibration if

(1) the morphism g has the path lifting property in the sense for every object
x of H and morphism ω : g(x) → y of the groupoid K0, there is a
morphism ω̂ : x → z of H0 such that g(ω̂) = ω, and

(2) each induced map g : H(x, x) → K(g(x), g(x)), x ∈ Ob(H), is a fibration
of simplicial groups (or of simplicial sets).

According to this definition, every simplicial groupoid G is fibrant, since the
map G → ∗ which takes values in the terminal simplicial groupoid ∗ is a
fibration. A cofibration of simplicial groupoids is defined to be a map which has
the left lifting property with respect to all morphisms of sGd which are both
fibrations and weak equivalences.

Picking a representative x ∈ [x] for each [x] ∈ π0G determines a map of
simplicial groupoids

i :
⊔

[x]∈π0G

G(x, x) → G
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which is plainly a weak equivalence. But more is true, in that the simplicial
groupoid

⊔
[x]∈π0G G(x, x) is a deformation retract of G in the usual groupoid-

theoretic sense. To see this, pick morphisms ωy : y → x in G0 for each y ∈
[x] and for each [x] ∈ π0G, such that ωx = 1x for all the fixed choices of
representatives x of the various path components x. Then there is a simplicial
groupoid morphism

r : G →
⊔

[x]∈π0G

G(x, x),

which is defined by conjugation by the paths ωy, in that r(y) = x if and only
if y ∈ [x] for all objects y of G, and r : G(y, z) → G(x, x) is the map sending
α : y → z to the composite ωzαω−1

y ∈ G(x, x) for all y, z ∈ [x], and for each
[x] ∈ π0G. The morphisms ωy also determine a groupoid homotopy

h : G × I → G

where I denotes the free groupoid on the ordinal number (category) 1. This
homotopy is from the identity on G to the composite ir, and is given by the
obvious conjugation picture. It follows that the maps r and i are weak equiva-
lences of simplicial groupoids.

The choices of the paths which define the retraction map r are non-
canonical and fail to be natural with respect to morphisms of simplicial group-
oids, except in certain useful isolated cases.

Lemma 7.4. Suppose that A is a connected simplicial groupoid, and that the
morphism j : A → B of simplicial groupoids is a bijection on the object level.
Pick an object x of A. Then all squares in the diagram

A(x, x) w
i

u

j

A w
r

u

j

A(x, x)

u

j

B(jx, jx) w

i
B wr B(jx, jx)

are pushouts of simplicial groupoids.

Proof: The paths ωy : y → x in A (with ωx = 1x) are used to define both
retraction maps r in the diagram (so it makes sense), and the top and bottom
horizontal compositions are the identity.

It suffices to show that the diagram

A(x, x) w
i

u

j

A

u

j

B(jx, jx) w

i
B
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is a pushout. But any commutative diagram

A(x, x) w
i

u

j

A

u

f

B(jx, jx) wg D

completely determines a function h : Ob(B) → Ob(D), since i is a bijection on
the object level, and then a simplicial groupoid map h : B → D is specified
by the observation that every morphism α : v → w of B has a representation
α = i(ωw)−1θi(ωv), where θ is a uniquely determined morphism jx → jx. �

Write F ′∂Δ0 to denote the discrete simplicial groupoid on the object set
{0, 1}, and write F ′Λ0

0 to denote the terminal groupoid ∗. The statement of
Lemma 7.4 fails for the map j : F ′Λ0

0 → F ′Δ0, precisely because the object
sets do not agree.

Lemma 7.5. Suppose that

F ′Λn
k w

u

j

C

u

j∗

F ′Δn
w D

is a pushout in the category of simplicial groupoids. Then the map j∗ is a weak
equivalence.

Proof: The simplicial groupoid F ′Λ0
0 is a strong deformation retraction of

F ′Δ0 on the groupoid level, and such strong deformation retractions are closed
under pushout in the category of simplicial groupoids. The maps involved in a
strong deformation retraction are weak equivalences of simplicial groupoids.

If n ≥ 1, it is harmless to suppose that C is connected. The maps j and j∗
are bijective on the object level, so that Lemma 7.4 applies, to give a composite
pushout diagram

F ′Λn
k (0, 0) w

i

u

j

F ′Λn
k w

u

j

C w
r

u

j∗

C(x, x)

u

j∗

F ′Δn(0, 0) w

i
F ′Δn

w D wr D(j∗x, j∗x)

The composite square is a pushout in the category of simplicial groups, so that
the map j∗ : C(x, x) → D(j∗x, j∗x) is a weak equivalence. �
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Theorem 7.6. With the definitions of weak equivalence, fibration and cofibra-
tion given above, the category sGd of simplicial groupoids satisfies the axioms
for a closed model category.

Proof: Only the factorization axiom has an interesting proof. A map of sim-
plicial groupoids f : G → H is a fibration if and only if it has the right lifting
property with respect to all morphisms F ′Λn

k → F ′Δn, 0 ≤ k ≤ n, and f is a
trivial fibration (aka. fibration and weak equivalence) if and only if it has the
right lifting property with respect to all morphisms F ′∂Δn → F ′Δn, n ≥ 0,
and the morphism ∅ → ∗ (compare [25]). We can therefore use a small object
argument to show that every simplicial groupoid morphism g : K → L has
factorizations

Nh
hhjp

K

�
�
��i

h
hhjj

w

g
L

M

�
�
��
q

where p is a fibration and i has the left lifting property with respect to all
fibrations, and q is a trivial fibration and j is a cofibration. Lemma 7.5 further
implies that i is a weak equivalence.

The proof of the lifting axiom CM4 is a standard consequence of the
proof of the factorization axiom: any map which is both a cofibration and a
weak equivalence (ie. a trivial cofibration) is a retract of a map which has the
left lifting property with respect to all fibrations, and therefore has that same
lifting property. �

There is a simplicial set WG for a simplicial groupoid G that is defined
by analogy with and extends the corresponding object for a simplicial group.
Explicitly, suppose that G is a simplicial groupoid. An n-cocycle X : Seg(n) 	
G associates to each object [k, n] an object Xk of G, and assigns to each relation
τ : [j, n] ≤ [k, n] in Seg(n) a morphism X(τ) : Xj → Xk in Gn−j , such that
the following conditions hold:

(1) X(1j) = 1Xj ∈ Gn−j , where 1j is the identity relation [j, n] ≤ [j, n],

(2) for any composeable pair of relations [l, n]
ζ−→ [k, n]

τ−→ [j, n], there is a
commutative diagram

Xl w

X(ζ)
�
�
���X(τζ)

Xk

u
ζ∗X(τ)

Xj

in the groupoid Gn−l.
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Suppose that θ : m → n is an ordinal number map. As before, θ induces
a functor θ∗ : Seg(m) → Seg(n), which is defined by sending the morphism
τ : [k,m] → [j,m] to the morphism τ∗ : [θ(k), n] → [θ(j), n]. “Composing” the
n-cocycle X : Seg(n) 	 G with θ∗ gives a cocycle θ∗X : Seg(m) 	 G, defined
for each relation τ : [k,m] ≤ [j,m] in Seg(m), (and in the notation of (4.2)) by
the morphism

θ∗X(τ) = θ∗k(X(τ∗)) : Xθ(k) → Xθ(j).

of Gm−k The assignment θ �→ θ∗ is contravariantly functorial in ordinal maps θ.
We have therefore constructed a simplicial set whose n-simplices are the

n-cocycles Seg(n) 	 G, and whose simplicial structure maps are the induced
maps θ∗. This simplicial set of G-cocycles is WG. In particular, an n-cocycle
X : Seg(n) 	 G is completely determined by the string of relations

[n, n]
τ0−→ [n − 1, n]

τ1−→ . . .
τn−2−−−→ [1, n]

τn−1−−−→ [0, n],

and the corresponding maps

Xn

X(τ0)−−−→ Xn−1

X(τ1)−−−→ Xn−2 → · · · → X1

X(τn−1)−−−−−→ X0.

Each τi is an instance of the map d0, and X(τi) is a morphism of the groupoid
Gi. Note, in particular, that the ith vertex of the cocycle X : Seg(n) 	 G is
the object Xi of G: this means that Xi can be identified with the “cocycle”
i∗X, where i : 0 → n.

Suppose that θ : m → n is an ordinal number map, and let g denote the
string of morphisms

Xn

g0−→ Xn−1

g1−→ Xn−2 → · · · → X1

gn−1−−−→ X0

in G, with gi a morphism of Gi. Let Xg be the cocycle Seg(n) 	 G associated
to the n-tuple g. Then, subject to the notation appearing in diagram (4.2),
θ∗Xg is the string

Xθ(m)

θ∗
mXg(τ0∗)

−−−−−−−→ Xθ(m−1) → · · · → Xθ(1)

θ∗
1Xg(τm−1∗)

−−−−−−−−→ Xθ(0).

This definition specializes to the cocycle definition of WG in the case where G
is a simplicial group.

A simplicial map f : X → WG assigns to each n-simplex x a cocycle
f(x) : Seg(n) 	 G, such that for each ordinal number map θ : m → n and
each map τ : [k,m] → [j,m] in Seg(m) there is a relation

θ∗kf(x)(τ∗) = f(θ∗(x))(τ).
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Furthermore, f(x) is determined by the string of maps

f(xn)
f(x)(τ0)−−−−−→ f(xn−1)

f(x)(τ1)−−−−−→ f(xn−2) → · · · → f(x1)
f(x)(τn−1)−−−−−−−→ f(x0),

in G, where xi is the ith vertex of x, and τn−i is the map τn−i = d0 : [i, n] →
[i− 1, n] of Seg(n). By the simplicial relations, f(x)(τn−i) = f(di−1

0 (x))(τn−i),
so that the simplicial map f : X → WG is completely determined by the
morphisms

f(x)(d0 = τn−1 : [1, n] → n) : f(x1) → f(x0)

in Gn−1, x ∈ X. In alternate notation then, the cocycle f(x) is given by the
string of morphisms

f(xn)
f(dn−1

0 x)(d0)

−−−−−−−−→ f(xn−1) → . . .
f(d0x)(d0)−−−−−−−→ f(x1)

f(x)(d0)−−−−−→ f(x0)

in G.
The morphism f(s0x)(d0) is the identity on f(x0). We now can define

a groupoid GXn to be the free groupoid on generators x : x1 → x0, where
x ∈ Xn+1, subject to the relations s0x = 1x0 , x ∈ Xn. The objects of this
groupoid are the vertices of X. Following the description of the loop group
from a previous section, we can define a functor θ∗ : GXn → GXm for each
ordinal number morphism θ : m → n by specifying that θ∗ is the identity
on objects, and is defined on generators [x], x ∈ Xn+1, by requiring that the
following diagram commutes:

xθ(0)+1 w

[(cθ)∗d0x]
�
�
�
�
���[θ̃∗(x)]

x1

u

θ∗[x]

x0,

or rather that
θ∗[x] = [θ̃∗(x)][(cθ)∗d0x]−1.

One checks, as before, that this assignment is functorial in ordinal number
morphisms θ, so that the groupoids GXn, n ≥ 0, and the functors θ∗ form a
simplicial groupoid GX, which we call the loop groupoid for X.

Any n-simplex x of the simplicial set X determines a string of morphisms

xn

[dn−1
0 x]

−−−−−→ xn−1 −→ . . .
[d0x]−−−→ x1

[x]−→ x0

in GX, which together determine a cocycle η(x) : Seg(n) 	 GX in the sim-
plicial groupoid GX. The calculations leading to Lemma 5.3 also imply the
following:
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Lemma 7.7.

(a) The assignment x �→ η(x) defines a natural simplicial map η : X →
WGX.

(b) The map η is one of the canonical homomorphisms for an adjunction

homsGd(GX,H) ∼= homS(X,WH),

where sGd denotes the category of simplicial groupoids.

Here’s the homotopy theoretic content of these functors:

Theorem 7.8.

(1) The functor G : S → sGd preserves cofibrations and weak equivalences.

(2) The functor W : sGd → S preserves fibrations and weak equivalences.

(3) A map K → WX ∈ S is a weak equivalence if and only if its adjoint
GK → X ∈ sGd is a weak equivalence.

Proof: The heart of the matter for this proof is statement (2). We begin by
showing that W preserves weak equivalences.

Suppose that A is a simplicial groupoid, and choose a representative x for
each [x] ∈ π0A. Recall that the inclusion

i :
⊔

[x]∈π0A

A(x, x) → A

is a homotopy equivalence of simplicial groupoids in the sense that there is a
groupoid map

r : A →
⊔

[x]∈π0A

A(x, x)

which is determined by paths, such that ri is the identity and such that the
paths defining r determine a groupoid homotopy

h : A × I → A

from the identity on A to the composite morphism ir. The object I is the
constant simplicial groupoid associated to the groupoid having two objects 0, 1
and exactly one morphism a → b for any a, b ∈ {0, 1}. One sees that WI =
BI and that W preserves products. It follows that the groupoid homotopy h
induces a homotopy of simplicial sets from the identity on WA to the composite
map Wi · Wr, and so Wi is a weak equivalence. If f : A → B is a weak
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equivalence of simplicial groupoids, then f induces an isomorphism π0A ∼= π0B,
and there is a commutative diagram of simplicial groupoid maps

⊔
x∈π0A

A(x, x) w

u

i

⊔
x∈π0A

B(f(x), f(x))

u

i

A w B

in which the vertical maps are homotopy equivalences. To see that Wf is a
weak equivalence, it therefore suffices to show that W takes the top horizontal
map to a weak equivalence. But W preserves disjoint unions, and then one uses
the corresponding result for simplicial groups (ie. Proposition 6.3).

To show that W preserves fibrations, we have to show that a lifting exists
for all diagrams

Λn
k w

α

y

u

WA

u

Wf

Δn
w

β
WB,

(7.9)

given that f : A → B is a fibration of sGd. We can assume that A and B are
connected. The lifting problem is solved by the path lifting property for f if
n = 1.

Otherwise, take a fixed x ∈ A0 and choose paths ηi : yi → x in A0, where
yi is the image of the ith vertex in Λn

k . Note that the vertices of Λn
k coincide with

those of Δn, since n ≥ 2. These paths, along with their images in the groupoid
B0 determine “cocycle homotopies” from the diagram (7.9) to a diagram

Λn
k w

α′

y

u

WA(x, x)

u

Wf

Δn
w

β′

B
B
B
B
BBCγ

WB(f(x), f(x)).

(7.10)

More explicitly, if the simplicial set map β is determined by the string of
morphisms

f(yn)
gn−1−−−→ f(yn−1)

gn−2−−−→ f(yn−2) → · · · → f(y1)
g0−→ f(y0)
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in B, then the cocycle homotopy from β to β′ is the diagram

f(yn) w

gn−1

u

f(ηn)

f(yn−1) w

gn−2

u

f(ηn−1)

. . . w

g1 f(y1) w

g0

u

f(η1)

f(y0)

u

f(η0)

f(x) w

hn−1
f(x) w

hn−2
. . . w

h1
f(x) w

h0
f(x)

where hi = f(ηi)gif(ηi+1)−1, and β′ is defined by the string of morphisms hi.
The cocycle β′ is a cocycle conjugate of β, in an obvious sense.

The indicated lift exists in the diagram (7.10), because the simplicial set
map Wf : A(x, x) → B(f(x), f(x)) satisfies the lifting property for n ≥ 2 (see
the proof of Lemma 6.6). The required lift for the diagram (7.9) is cocycle
conjugate to γ.

We have therefore proved statement (2) of the theorem. An adjointness
argument now implies that the functor G preserves cofibrations and trivial
cofibrations. Every weak equivalence K → L of simplicial sets can be factored
as a trivial cofibration, followed by a trivial fibration, and every trivial fibration
in S is left inverse to a trivial cofibration. It follows that G preserves weak
equivalences, giving statement (1).

Statement (3) is proved by showing that the unit and counit of the ad-
junction are both weak equivalences. Let A be a simplicial groupoid. To show
that the counit ε : GWA → A is a weak equivalence, we form the diagram

GW (
⊔

x∈π0A

A(x, x)) w
ε

u

GWi

⊔
x∈π0A

A(x, x)

u

� i

GWA wε A,

where we note that GWi is a weak equivalence by statements (1) and (2).
The functors G and W both preserve disjoint unions, so it’s enough to show
that the simplicial group map ε : GWA(x, x) → A(x, x) is a weak equivalence,
but this is the traditional result for simplicial groups (Proposition 6.3; see also
Corollary 6.4).

Let K be a simplicial set. To show that the unit η : K → WGK is a
weak equivalence, it suffices to assume that K is a reduced Kan complex, by
statements (1) and (2). Now apply Proposition 6.3. �
Corollary 7.11. The functors G and W induce an equivalence of homotopy
categories

Ho(sGd) � Ho(S).




